mirror of
https://github.com/ruby/ruby.git
synced 2022-11-09 12:17:21 -05:00
4111028a5c
`thread_debug()` was introduced to print debug messages on `THREAD_DEBUG > 0` but `RUBY_DEBUG_LOG()` is more controllable.
5696 lines
150 KiB
C
5696 lines
150 KiB
C
/**********************************************************************
|
|
|
|
thread.c -
|
|
|
|
$Author$
|
|
|
|
Copyright (C) 2004-2007 Koichi Sasada
|
|
|
|
**********************************************************************/
|
|
|
|
/*
|
|
YARV Thread Design
|
|
|
|
model 1: Userlevel Thread
|
|
Same as traditional ruby thread.
|
|
|
|
model 2: Native Thread with Global VM lock
|
|
Using pthread (or Windows thread) and Ruby threads run concurrent.
|
|
|
|
model 3: Native Thread with fine grain lock
|
|
Using pthread and Ruby threads run concurrent or parallel.
|
|
|
|
model 4: M:N User:Native threads with Global VM lock
|
|
Combination of model 1 and 2
|
|
|
|
model 5: M:N User:Native thread with fine grain lock
|
|
Combination of model 1 and 3
|
|
|
|
------------------------------------------------------------------------
|
|
|
|
model 2:
|
|
A thread has mutex (GVL: Global VM Lock or Giant VM Lock) can run.
|
|
When thread scheduling, running thread release GVL. If running thread
|
|
try blocking operation, this thread must release GVL and another
|
|
thread can continue this flow. After blocking operation, thread
|
|
must check interrupt (RUBY_VM_CHECK_INTS).
|
|
|
|
Every VM can run parallel.
|
|
|
|
Ruby threads are scheduled by OS thread scheduler.
|
|
|
|
------------------------------------------------------------------------
|
|
|
|
model 3:
|
|
Every threads run concurrent or parallel and to access shared object
|
|
exclusive access control is needed. For example, to access String
|
|
object or Array object, fine grain lock must be locked every time.
|
|
*/
|
|
|
|
|
|
/*
|
|
* FD_SET, FD_CLR and FD_ISSET have a small sanity check when using glibc
|
|
* 2.15 or later and set _FORTIFY_SOURCE > 0.
|
|
* However, the implementation is wrong. Even though Linux's select(2)
|
|
* supports large fd size (>FD_SETSIZE), it wrongly assumes fd is always
|
|
* less than FD_SETSIZE (i.e. 1024). And then when enabling HAVE_RB_FD_INIT,
|
|
* it doesn't work correctly and makes program abort. Therefore we need to
|
|
* disable FORTIFY_SOURCE until glibc fixes it.
|
|
*/
|
|
#undef _FORTIFY_SOURCE
|
|
#undef __USE_FORTIFY_LEVEL
|
|
#define __USE_FORTIFY_LEVEL 0
|
|
|
|
/* for model 2 */
|
|
|
|
#include "ruby/internal/config.h"
|
|
|
|
#ifdef __linux__
|
|
// Normally, gcc(1) translates calls to alloca() with inlined code. This is not done when either the -ansi, -std=c89, -std=c99, or the -std=c11 option is given and the header <alloca.h> is not included.
|
|
# include <alloca.h>
|
|
#endif
|
|
|
|
#define TH_SCHED(th) (&(th)->ractor->threads.sched)
|
|
|
|
#include "eval_intern.h"
|
|
#include "gc.h"
|
|
#include "hrtime.h"
|
|
#include "internal.h"
|
|
#include "internal/class.h"
|
|
#include "internal/cont.h"
|
|
#include "internal/error.h"
|
|
#include "internal/hash.h"
|
|
#include "internal/io.h"
|
|
#include "internal/object.h"
|
|
#include "internal/proc.h"
|
|
#include "ruby/fiber/scheduler.h"
|
|
#include "internal/signal.h"
|
|
#include "internal/thread.h"
|
|
#include "internal/time.h"
|
|
#include "internal/warnings.h"
|
|
#include "iseq.h"
|
|
#include "mjit.h"
|
|
#include "ruby/debug.h"
|
|
#include "ruby/io.h"
|
|
#include "ruby/thread.h"
|
|
#include "ruby/thread_native.h"
|
|
#include "timev.h"
|
|
#include "vm_core.h"
|
|
#include "ractor_core.h"
|
|
#include "vm_debug.h"
|
|
#include "vm_sync.h"
|
|
|
|
#ifndef USE_NATIVE_THREAD_PRIORITY
|
|
#define USE_NATIVE_THREAD_PRIORITY 0
|
|
#define RUBY_THREAD_PRIORITY_MAX 3
|
|
#define RUBY_THREAD_PRIORITY_MIN -3
|
|
#endif
|
|
|
|
static VALUE rb_cThreadShield;
|
|
|
|
static VALUE sym_immediate;
|
|
static VALUE sym_on_blocking;
|
|
static VALUE sym_never;
|
|
|
|
enum SLEEP_FLAGS {
|
|
SLEEP_DEADLOCKABLE = 0x1,
|
|
SLEEP_SPURIOUS_CHECK = 0x2
|
|
};
|
|
|
|
#define THREAD_LOCAL_STORAGE_INITIALISED FL_USER13
|
|
#define THREAD_LOCAL_STORAGE_INITIALISED_P(th) RB_FL_TEST_RAW((th), THREAD_LOCAL_STORAGE_INITIALISED)
|
|
|
|
static inline VALUE
|
|
rb_thread_local_storage(VALUE thread)
|
|
{
|
|
if (LIKELY(!THREAD_LOCAL_STORAGE_INITIALISED_P(thread))) {
|
|
rb_ivar_set(thread, idLocals, rb_hash_new());
|
|
RB_FL_SET_RAW(thread, THREAD_LOCAL_STORAGE_INITIALISED);
|
|
}
|
|
return rb_ivar_get(thread, idLocals);
|
|
}
|
|
|
|
static int sleep_hrtime(rb_thread_t *, rb_hrtime_t, unsigned int fl);
|
|
static void sleep_forever(rb_thread_t *th, unsigned int fl);
|
|
static void rb_thread_sleep_deadly_allow_spurious_wakeup(VALUE blocker);
|
|
static int rb_threadptr_dead(rb_thread_t *th);
|
|
static void rb_check_deadlock(rb_ractor_t *r);
|
|
static int rb_threadptr_pending_interrupt_empty_p(const rb_thread_t *th);
|
|
static const char *thread_status_name(rb_thread_t *th, int detail);
|
|
static int hrtime_update_expire(rb_hrtime_t *, const rb_hrtime_t);
|
|
NORETURN(static void async_bug_fd(const char *mesg, int errno_arg, int fd));
|
|
static int consume_communication_pipe(int fd);
|
|
static int check_signals_nogvl(rb_thread_t *, int sigwait_fd);
|
|
void rb_sigwait_fd_migrate(rb_vm_t *); /* process.c */
|
|
|
|
#define eKillSignal INT2FIX(0)
|
|
#define eTerminateSignal INT2FIX(1)
|
|
static volatile int system_working = 1;
|
|
|
|
struct waiting_fd {
|
|
struct ccan_list_node wfd_node; /* <=> vm.waiting_fds */
|
|
rb_thread_t *th;
|
|
int fd;
|
|
};
|
|
|
|
/********************************************************************************/
|
|
|
|
#define THREAD_SYSTEM_DEPENDENT_IMPLEMENTATION
|
|
|
|
struct rb_blocking_region_buffer {
|
|
enum rb_thread_status prev_status;
|
|
};
|
|
|
|
static int unblock_function_set(rb_thread_t *th, rb_unblock_function_t *func, void *arg, int fail_if_interrupted);
|
|
static void unblock_function_clear(rb_thread_t *th);
|
|
|
|
static inline int blocking_region_begin(rb_thread_t *th, struct rb_blocking_region_buffer *region,
|
|
rb_unblock_function_t *ubf, void *arg, int fail_if_interrupted);
|
|
static inline void blocking_region_end(rb_thread_t *th, struct rb_blocking_region_buffer *region);
|
|
|
|
#define THREAD_BLOCKING_BEGIN(th) do { \
|
|
struct rb_thread_sched * const sched = TH_SCHED(th); \
|
|
RB_GC_SAVE_MACHINE_CONTEXT(th); \
|
|
thread_sched_to_waiting(sched);
|
|
|
|
#define THREAD_BLOCKING_END(th) \
|
|
thread_sched_to_running(sched, th); \
|
|
rb_ractor_thread_switch(th->ractor, th); \
|
|
} while(0)
|
|
|
|
#ifdef __GNUC__
|
|
#ifdef HAVE_BUILTIN___BUILTIN_CHOOSE_EXPR_CONSTANT_P
|
|
#define only_if_constant(expr, notconst) __builtin_choose_expr(__builtin_constant_p(expr), (expr), (notconst))
|
|
#else
|
|
#define only_if_constant(expr, notconst) (__builtin_constant_p(expr) ? (expr) : (notconst))
|
|
#endif
|
|
#else
|
|
#define only_if_constant(expr, notconst) notconst
|
|
#endif
|
|
#define BLOCKING_REGION(th, exec, ubf, ubfarg, fail_if_interrupted) do { \
|
|
struct rb_blocking_region_buffer __region; \
|
|
if (blocking_region_begin(th, &__region, (ubf), (ubfarg), fail_if_interrupted) || \
|
|
/* always return true unless fail_if_interrupted */ \
|
|
!only_if_constant(fail_if_interrupted, TRUE)) { \
|
|
exec; \
|
|
blocking_region_end(th, &__region); \
|
|
}; \
|
|
} while(0)
|
|
|
|
/*
|
|
* returns true if this thread was spuriously interrupted, false otherwise
|
|
* (e.g. hit by Thread#run or ran a Ruby-level Signal.trap handler)
|
|
*/
|
|
#define RUBY_VM_CHECK_INTS_BLOCKING(ec) vm_check_ints_blocking(ec)
|
|
static inline int
|
|
vm_check_ints_blocking(rb_execution_context_t *ec)
|
|
{
|
|
rb_thread_t *th = rb_ec_thread_ptr(ec);
|
|
|
|
if (LIKELY(rb_threadptr_pending_interrupt_empty_p(th))) {
|
|
if (LIKELY(!RUBY_VM_INTERRUPTED_ANY(ec))) return FALSE;
|
|
}
|
|
else {
|
|
th->pending_interrupt_queue_checked = 0;
|
|
RUBY_VM_SET_INTERRUPT(ec);
|
|
}
|
|
return rb_threadptr_execute_interrupts(th, 1);
|
|
}
|
|
|
|
int
|
|
rb_vm_check_ints_blocking(rb_execution_context_t *ec)
|
|
{
|
|
return vm_check_ints_blocking(ec);
|
|
}
|
|
|
|
/*
|
|
* poll() is supported by many OSes, but so far Linux is the only
|
|
* one we know of that supports using poll() in all places select()
|
|
* would work.
|
|
*/
|
|
#if defined(HAVE_POLL)
|
|
# if defined(__linux__)
|
|
# define USE_POLL
|
|
# endif
|
|
# if defined(__FreeBSD_version) && __FreeBSD_version >= 1100000
|
|
# define USE_POLL
|
|
/* FreeBSD does not set POLLOUT when POLLHUP happens */
|
|
# define POLLERR_SET (POLLHUP | POLLERR)
|
|
# endif
|
|
#endif
|
|
|
|
static void
|
|
timeout_prepare(rb_hrtime_t **to, rb_hrtime_t *rel, rb_hrtime_t *end,
|
|
const struct timeval *timeout)
|
|
{
|
|
if (timeout) {
|
|
*rel = rb_timeval2hrtime(timeout);
|
|
*end = rb_hrtime_add(rb_hrtime_now(), *rel);
|
|
*to = rel;
|
|
}
|
|
else {
|
|
*to = 0;
|
|
}
|
|
}
|
|
|
|
MAYBE_UNUSED(NOINLINE(static int thread_start_func_2(rb_thread_t *th, VALUE *stack_start)));
|
|
void ruby_sigchld_handler(rb_vm_t *); /* signal.c */
|
|
|
|
static void
|
|
ubf_sigwait(void *ignore)
|
|
{
|
|
rb_thread_wakeup_timer_thread(0);
|
|
}
|
|
|
|
#include THREAD_IMPL_SRC
|
|
|
|
/*
|
|
* TODO: somebody with win32 knowledge should be able to get rid of
|
|
* timer-thread by busy-waiting on signals. And it should be possible
|
|
* to make the GVL in thread_pthread.c be platform-independent.
|
|
*/
|
|
#ifndef BUSY_WAIT_SIGNALS
|
|
# define BUSY_WAIT_SIGNALS (0)
|
|
#endif
|
|
|
|
#ifndef USE_EVENTFD
|
|
# define USE_EVENTFD (0)
|
|
#endif
|
|
|
|
#include "thread_sync.c"
|
|
|
|
void
|
|
rb_nativethread_lock_initialize(rb_nativethread_lock_t *lock)
|
|
{
|
|
rb_native_mutex_initialize(lock);
|
|
}
|
|
|
|
void
|
|
rb_nativethread_lock_destroy(rb_nativethread_lock_t *lock)
|
|
{
|
|
rb_native_mutex_destroy(lock);
|
|
}
|
|
|
|
void
|
|
rb_nativethread_lock_lock(rb_nativethread_lock_t *lock)
|
|
{
|
|
rb_native_mutex_lock(lock);
|
|
}
|
|
|
|
void
|
|
rb_nativethread_lock_unlock(rb_nativethread_lock_t *lock)
|
|
{
|
|
rb_native_mutex_unlock(lock);
|
|
}
|
|
|
|
static int
|
|
unblock_function_set(rb_thread_t *th, rb_unblock_function_t *func, void *arg, int fail_if_interrupted)
|
|
{
|
|
do {
|
|
if (fail_if_interrupted) {
|
|
if (RUBY_VM_INTERRUPTED_ANY(th->ec)) {
|
|
return FALSE;
|
|
}
|
|
}
|
|
else {
|
|
RUBY_VM_CHECK_INTS(th->ec);
|
|
}
|
|
|
|
rb_native_mutex_lock(&th->interrupt_lock);
|
|
} while (!th->ec->raised_flag && RUBY_VM_INTERRUPTED_ANY(th->ec) &&
|
|
(rb_native_mutex_unlock(&th->interrupt_lock), TRUE));
|
|
|
|
VM_ASSERT(th->unblock.func == NULL);
|
|
|
|
th->unblock.func = func;
|
|
th->unblock.arg = arg;
|
|
rb_native_mutex_unlock(&th->interrupt_lock);
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
static void
|
|
unblock_function_clear(rb_thread_t *th)
|
|
{
|
|
rb_native_mutex_lock(&th->interrupt_lock);
|
|
th->unblock.func = 0;
|
|
rb_native_mutex_unlock(&th->interrupt_lock);
|
|
}
|
|
|
|
static void
|
|
rb_threadptr_interrupt_common(rb_thread_t *th, int trap)
|
|
{
|
|
rb_native_mutex_lock(&th->interrupt_lock);
|
|
|
|
if (trap) {
|
|
RUBY_VM_SET_TRAP_INTERRUPT(th->ec);
|
|
}
|
|
else {
|
|
RUBY_VM_SET_INTERRUPT(th->ec);
|
|
}
|
|
if (th->unblock.func != NULL) {
|
|
(th->unblock.func)(th->unblock.arg);
|
|
}
|
|
else {
|
|
/* none */
|
|
}
|
|
rb_native_mutex_unlock(&th->interrupt_lock);
|
|
}
|
|
|
|
void
|
|
rb_threadptr_interrupt(rb_thread_t *th)
|
|
{
|
|
rb_threadptr_interrupt_common(th, 0);
|
|
}
|
|
|
|
static void
|
|
threadptr_trap_interrupt(rb_thread_t *th)
|
|
{
|
|
rb_threadptr_interrupt_common(th, 1);
|
|
}
|
|
|
|
static void
|
|
terminate_all(rb_ractor_t *r, const rb_thread_t *main_thread)
|
|
{
|
|
rb_thread_t *th = 0;
|
|
|
|
ccan_list_for_each(&r->threads.set, th, lt_node) {
|
|
if (th != main_thread) {
|
|
RUBY_DEBUG_LOG("terminate start th:%u status:%s", rb_th_serial(th), thread_status_name(th, TRUE));
|
|
|
|
rb_threadptr_pending_interrupt_enque(th, eTerminateSignal);
|
|
rb_threadptr_interrupt(th);
|
|
|
|
RUBY_DEBUG_LOG("terminate done th:%u status:%s", rb_th_serial(th), thread_status_name(th, TRUE));
|
|
}
|
|
else {
|
|
RUBY_DEBUG_LOG("main thread th:%u", rb_th_serial(th));
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
rb_threadptr_join_list_wakeup(rb_thread_t *thread)
|
|
{
|
|
while (thread->join_list) {
|
|
struct rb_waiting_list *join_list = thread->join_list;
|
|
|
|
// Consume the entry from the join list:
|
|
thread->join_list = join_list->next;
|
|
|
|
rb_thread_t *target_thread = join_list->thread;
|
|
|
|
if (target_thread->scheduler != Qnil && rb_fiberptr_blocking(join_list->fiber) == 0) {
|
|
rb_fiber_scheduler_unblock(target_thread->scheduler, target_thread->self, rb_fiberptr_self(join_list->fiber));
|
|
}
|
|
else {
|
|
rb_threadptr_interrupt(target_thread);
|
|
|
|
switch (target_thread->status) {
|
|
case THREAD_STOPPED:
|
|
case THREAD_STOPPED_FOREVER:
|
|
target_thread->status = THREAD_RUNNABLE;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
rb_threadptr_unlock_all_locking_mutexes(rb_thread_t *th)
|
|
{
|
|
while (th->keeping_mutexes) {
|
|
rb_mutex_t *mutex = th->keeping_mutexes;
|
|
th->keeping_mutexes = mutex->next_mutex;
|
|
|
|
/* rb_warn("mutex #<%p> remains to be locked by terminated thread", (void *)mutexes); */
|
|
|
|
const char *error_message = rb_mutex_unlock_th(mutex, th, mutex->fiber);
|
|
if (error_message) rb_bug("invalid keeping_mutexes: %s", error_message);
|
|
}
|
|
}
|
|
|
|
void
|
|
rb_thread_terminate_all(rb_thread_t *th)
|
|
{
|
|
rb_ractor_t *cr = th->ractor;
|
|
rb_execution_context_t * volatile ec = th->ec;
|
|
volatile int sleeping = 0;
|
|
|
|
if (cr->threads.main != th) {
|
|
rb_bug("rb_thread_terminate_all: called by child thread (%p, %p)",
|
|
(void *)cr->threads.main, (void *)th);
|
|
}
|
|
|
|
/* unlock all locking mutexes */
|
|
rb_threadptr_unlock_all_locking_mutexes(th);
|
|
|
|
EC_PUSH_TAG(ec);
|
|
if (EC_EXEC_TAG() == TAG_NONE) {
|
|
retry:
|
|
RUBY_DEBUG_LOG("th:%u", rb_th_serial(th));
|
|
|
|
terminate_all(cr, th);
|
|
|
|
while (rb_ractor_living_thread_num(cr) > 1) {
|
|
rb_hrtime_t rel = RB_HRTIME_PER_SEC;
|
|
/*q
|
|
* Thread exiting routine in thread_start_func_2 notify
|
|
* me when the last sub-thread exit.
|
|
*/
|
|
sleeping = 1;
|
|
native_sleep(th, &rel);
|
|
RUBY_VM_CHECK_INTS_BLOCKING(ec);
|
|
sleeping = 0;
|
|
}
|
|
}
|
|
else {
|
|
/*
|
|
* When caught an exception (e.g. Ctrl+C), let's broadcast
|
|
* kill request again to ensure killing all threads even
|
|
* if they are blocked on sleep, mutex, etc.
|
|
*/
|
|
if (sleeping) {
|
|
sleeping = 0;
|
|
goto retry;
|
|
}
|
|
}
|
|
EC_POP_TAG();
|
|
}
|
|
|
|
void rb_threadptr_root_fiber_terminate(rb_thread_t *th);
|
|
|
|
static void
|
|
thread_cleanup_func_before_exec(void *th_ptr)
|
|
{
|
|
rb_thread_t *th = th_ptr;
|
|
th->status = THREAD_KILLED;
|
|
|
|
// The thread stack doesn't exist in the forked process:
|
|
th->ec->machine.stack_start = th->ec->machine.stack_end = NULL;
|
|
|
|
rb_threadptr_root_fiber_terminate(th);
|
|
}
|
|
|
|
static void
|
|
thread_cleanup_func(void *th_ptr, int atfork)
|
|
{
|
|
rb_thread_t *th = th_ptr;
|
|
|
|
th->locking_mutex = Qfalse;
|
|
thread_cleanup_func_before_exec(th_ptr);
|
|
|
|
/*
|
|
* Unfortunately, we can't release native threading resource at fork
|
|
* because libc may have unstable locking state therefore touching
|
|
* a threading resource may cause a deadlock.
|
|
*
|
|
* FIXME: Skipping native_mutex_destroy(pthread_mutex_destroy) is safe
|
|
* with NPTL, but native_thread_destroy calls pthread_cond_destroy
|
|
* which calls free(3), so there is a small memory leak atfork, here.
|
|
*/
|
|
if (atfork)
|
|
return;
|
|
|
|
rb_native_mutex_destroy(&th->interrupt_lock);
|
|
native_thread_destroy(th);
|
|
}
|
|
|
|
static VALUE rb_threadptr_raise(rb_thread_t *, int, VALUE *);
|
|
static VALUE rb_thread_to_s(VALUE thread);
|
|
|
|
void
|
|
ruby_thread_init_stack(rb_thread_t *th)
|
|
{
|
|
native_thread_init_stack(th);
|
|
}
|
|
|
|
const VALUE *
|
|
rb_vm_proc_local_ep(VALUE proc)
|
|
{
|
|
const VALUE *ep = vm_proc_ep(proc);
|
|
|
|
if (ep) {
|
|
return rb_vm_ep_local_ep(ep);
|
|
}
|
|
else {
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
// for ractor, defined in vm.c
|
|
VALUE rb_vm_invoke_proc_with_self(rb_execution_context_t *ec, rb_proc_t *proc, VALUE self,
|
|
int argc, const VALUE *argv, int kw_splat, VALUE passed_block_handler);
|
|
|
|
static VALUE
|
|
thread_do_start_proc(rb_thread_t *th)
|
|
{
|
|
VALUE args = th->invoke_arg.proc.args;
|
|
const VALUE *args_ptr;
|
|
int args_len;
|
|
VALUE procval = th->invoke_arg.proc.proc;
|
|
rb_proc_t *proc;
|
|
GetProcPtr(procval, proc);
|
|
|
|
th->ec->errinfo = Qnil;
|
|
th->ec->root_lep = rb_vm_proc_local_ep(procval);
|
|
th->ec->root_svar = Qfalse;
|
|
|
|
vm_check_ints_blocking(th->ec);
|
|
|
|
if (th->invoke_type == thread_invoke_type_ractor_proc) {
|
|
VALUE self = rb_ractor_self(th->ractor);
|
|
VM_ASSERT(FIXNUM_P(args));
|
|
args_len = FIX2INT(args);
|
|
args_ptr = ALLOCA_N(VALUE, args_len);
|
|
rb_ractor_receive_parameters(th->ec, th->ractor, args_len, (VALUE *)args_ptr);
|
|
vm_check_ints_blocking(th->ec);
|
|
|
|
return rb_vm_invoke_proc_with_self(
|
|
th->ec, proc, self,
|
|
args_len, args_ptr,
|
|
th->invoke_arg.proc.kw_splat,
|
|
VM_BLOCK_HANDLER_NONE
|
|
);
|
|
}
|
|
else {
|
|
args_len = RARRAY_LENINT(args);
|
|
if (args_len < 8) {
|
|
/* free proc.args if the length is enough small */
|
|
args_ptr = ALLOCA_N(VALUE, args_len);
|
|
MEMCPY((VALUE *)args_ptr, RARRAY_CONST_PTR_TRANSIENT(args), VALUE, args_len);
|
|
th->invoke_arg.proc.args = Qnil;
|
|
}
|
|
else {
|
|
args_ptr = RARRAY_CONST_PTR(args);
|
|
}
|
|
|
|
vm_check_ints_blocking(th->ec);
|
|
|
|
return rb_vm_invoke_proc(
|
|
th->ec, proc,
|
|
args_len, args_ptr,
|
|
th->invoke_arg.proc.kw_splat,
|
|
VM_BLOCK_HANDLER_NONE
|
|
);
|
|
}
|
|
}
|
|
|
|
static void
|
|
thread_do_start(rb_thread_t *th)
|
|
{
|
|
native_set_thread_name(th);
|
|
VALUE result = Qundef;
|
|
|
|
EXEC_EVENT_HOOK(th->ec, RUBY_EVENT_THREAD_BEGIN, th->self, 0, 0, 0, Qundef);
|
|
|
|
switch (th->invoke_type) {
|
|
case thread_invoke_type_proc:
|
|
result = thread_do_start_proc(th);
|
|
break;
|
|
|
|
case thread_invoke_type_ractor_proc:
|
|
result = thread_do_start_proc(th);
|
|
rb_ractor_atexit(th->ec, result);
|
|
break;
|
|
|
|
case thread_invoke_type_func:
|
|
result = (*th->invoke_arg.func.func)(th->invoke_arg.func.arg);
|
|
break;
|
|
|
|
case thread_invoke_type_none:
|
|
rb_bug("unreachable");
|
|
}
|
|
|
|
rb_fiber_scheduler_set(Qnil);
|
|
|
|
th->value = result;
|
|
|
|
EXEC_EVENT_HOOK(th->ec, RUBY_EVENT_THREAD_END, th->self, 0, 0, 0, Qundef);
|
|
}
|
|
|
|
void rb_ec_clear_current_thread_trace_func(const rb_execution_context_t *ec);
|
|
#define thread_sched_to_dead thread_sched_to_waiting
|
|
|
|
static int
|
|
thread_start_func_2(rb_thread_t *th, VALUE *stack_start)
|
|
{
|
|
STACK_GROW_DIR_DETECTION;
|
|
enum ruby_tag_type state;
|
|
VALUE errinfo = Qnil;
|
|
size_t size = th->vm->default_params.thread_vm_stack_size / sizeof(VALUE);
|
|
rb_thread_t *ractor_main_th = th->ractor->threads.main;
|
|
VALUE * vm_stack = NULL;
|
|
|
|
VM_ASSERT(th != th->vm->ractor.main_thread);
|
|
RUBY_DEBUG_LOG("th:%u", rb_th_serial(th));
|
|
|
|
// setup native thread
|
|
thread_sched_to_running(TH_SCHED(th), th);
|
|
ruby_thread_set_native(th);
|
|
|
|
RUBY_DEBUG_LOG("got lock. th:%u", rb_th_serial(th));
|
|
|
|
// setup ractor
|
|
if (rb_ractor_status_p(th->ractor, ractor_blocking)) {
|
|
RB_VM_LOCK();
|
|
{
|
|
rb_vm_ractor_blocking_cnt_dec(th->vm, th->ractor, __FILE__, __LINE__);
|
|
rb_ractor_t *r = th->ractor;
|
|
r->r_stdin = rb_io_prep_stdin();
|
|
r->r_stdout = rb_io_prep_stdout();
|
|
r->r_stderr = rb_io_prep_stderr();
|
|
}
|
|
RB_VM_UNLOCK();
|
|
}
|
|
|
|
// This assertion is not passed on win32 env. Check it later.
|
|
// VM_ASSERT((size * sizeof(VALUE)) <= th->ec->machine.stack_maxsize);
|
|
|
|
// setup VM and machine stack
|
|
vm_stack = alloca(size * sizeof(VALUE));
|
|
VM_ASSERT(vm_stack);
|
|
|
|
rb_ec_initialize_vm_stack(th->ec, vm_stack, size);
|
|
th->ec->machine.stack_start = STACK_DIR_UPPER(vm_stack + size, vm_stack);
|
|
th->ec->machine.stack_maxsize -= size * sizeof(VALUE);
|
|
|
|
// Ensure that we are not joinable.
|
|
VM_ASSERT(th->value == Qundef);
|
|
|
|
EC_PUSH_TAG(th->ec);
|
|
|
|
if ((state = EC_EXEC_TAG()) == TAG_NONE) {
|
|
SAVE_ROOT_JMPBUF(th, thread_do_start(th));
|
|
}
|
|
else {
|
|
errinfo = th->ec->errinfo;
|
|
|
|
VALUE exc = rb_vm_make_jump_tag_but_local_jump(state, Qundef);
|
|
if (!NIL_P(exc)) errinfo = exc;
|
|
|
|
if (state == TAG_FATAL) {
|
|
if (th->invoke_type == thread_invoke_type_ractor_proc) {
|
|
rb_ractor_atexit(th->ec, Qnil);
|
|
}
|
|
/* fatal error within this thread, need to stop whole script */
|
|
}
|
|
else if (rb_obj_is_kind_of(errinfo, rb_eSystemExit)) {
|
|
/* exit on main_thread. */
|
|
}
|
|
else {
|
|
if (th->report_on_exception) {
|
|
VALUE mesg = rb_thread_to_s(th->self);
|
|
rb_str_cat_cstr(mesg, " terminated with exception (report_on_exception is true):\n");
|
|
rb_write_error_str(mesg);
|
|
rb_ec_error_print(th->ec, errinfo);
|
|
}
|
|
|
|
if (th->invoke_type == thread_invoke_type_ractor_proc) {
|
|
rb_ractor_atexit_exception(th->ec);
|
|
}
|
|
|
|
if (th->vm->thread_abort_on_exception ||
|
|
th->abort_on_exception || RTEST(ruby_debug)) {
|
|
/* exit on main_thread */
|
|
}
|
|
else {
|
|
errinfo = Qnil;
|
|
}
|
|
}
|
|
th->value = Qnil;
|
|
}
|
|
|
|
// The thread is effectively finished and can be joined.
|
|
VM_ASSERT(th->value != Qundef);
|
|
|
|
rb_threadptr_join_list_wakeup(th);
|
|
rb_threadptr_unlock_all_locking_mutexes(th);
|
|
|
|
if (th->invoke_type == thread_invoke_type_ractor_proc) {
|
|
rb_thread_terminate_all(th);
|
|
rb_ractor_teardown(th->ec);
|
|
}
|
|
|
|
th->status = THREAD_KILLED;
|
|
RUBY_DEBUG_LOG("killed th:%u", rb_th_serial(th));
|
|
|
|
if (th->vm->ractor.main_thread == th) {
|
|
ruby_stop(0);
|
|
}
|
|
|
|
if (RB_TYPE_P(errinfo, T_OBJECT)) {
|
|
/* treat with normal error object */
|
|
rb_threadptr_raise(ractor_main_th, 1, &errinfo);
|
|
}
|
|
|
|
EC_POP_TAG();
|
|
|
|
rb_ec_clear_current_thread_trace_func(th->ec);
|
|
|
|
/* locking_mutex must be Qfalse */
|
|
if (th->locking_mutex != Qfalse) {
|
|
rb_bug("thread_start_func_2: locking_mutex must not be set (%p:%"PRIxVALUE")",
|
|
(void *)th, th->locking_mutex);
|
|
}
|
|
|
|
if (ractor_main_th->status == THREAD_KILLED &&
|
|
th->ractor->threads.cnt <= 2 /* main thread and this thread */) {
|
|
/* I'm last thread. wake up main thread from rb_thread_terminate_all */
|
|
rb_threadptr_interrupt(ractor_main_th);
|
|
}
|
|
|
|
rb_check_deadlock(th->ractor);
|
|
|
|
rb_fiber_close(th->ec->fiber_ptr);
|
|
|
|
thread_cleanup_func(th, FALSE);
|
|
VM_ASSERT(th->ec->vm_stack == NULL);
|
|
|
|
if (th->invoke_type == thread_invoke_type_ractor_proc) {
|
|
// after rb_ractor_living_threads_remove()
|
|
// GC will happen anytime and this ractor can be collected (and destroy GVL).
|
|
// So gvl_release() should be before it.
|
|
thread_sched_to_dead(TH_SCHED(th));
|
|
rb_ractor_living_threads_remove(th->ractor, th);
|
|
}
|
|
else {
|
|
rb_ractor_living_threads_remove(th->ractor, th);
|
|
thread_sched_to_dead(TH_SCHED(th));
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct thread_create_params {
|
|
enum thread_invoke_type type;
|
|
|
|
// for normal proc thread
|
|
VALUE args;
|
|
VALUE proc;
|
|
|
|
// for ractor
|
|
rb_ractor_t *g;
|
|
|
|
// for func
|
|
VALUE (*fn)(void *);
|
|
};
|
|
|
|
static VALUE
|
|
thread_create_core(VALUE thval, struct thread_create_params *params)
|
|
{
|
|
rb_execution_context_t *ec = GET_EC();
|
|
rb_thread_t *th = rb_thread_ptr(thval), *current_th = rb_ec_thread_ptr(ec);
|
|
int err;
|
|
|
|
if (OBJ_FROZEN(current_th->thgroup)) {
|
|
rb_raise(rb_eThreadError,
|
|
"can't start a new thread (frozen ThreadGroup)");
|
|
}
|
|
|
|
switch (params->type) {
|
|
case thread_invoke_type_proc:
|
|
th->invoke_type = thread_invoke_type_proc;
|
|
th->invoke_arg.proc.args = params->args;
|
|
th->invoke_arg.proc.proc = params->proc;
|
|
th->invoke_arg.proc.kw_splat = rb_keyword_given_p();
|
|
break;
|
|
|
|
case thread_invoke_type_ractor_proc:
|
|
#if RACTOR_CHECK_MODE > 0
|
|
rb_ractor_setup_belonging_to(thval, rb_ractor_id(params->g));
|
|
#endif
|
|
th->invoke_type = thread_invoke_type_ractor_proc;
|
|
th->ractor = params->g;
|
|
th->ractor->threads.main = th;
|
|
th->invoke_arg.proc.proc = rb_proc_isolate_bang(params->proc);
|
|
th->invoke_arg.proc.args = INT2FIX(RARRAY_LENINT(params->args));
|
|
th->invoke_arg.proc.kw_splat = rb_keyword_given_p();
|
|
rb_ractor_send_parameters(ec, params->g, params->args);
|
|
break;
|
|
|
|
case thread_invoke_type_func:
|
|
th->invoke_type = thread_invoke_type_func;
|
|
th->invoke_arg.func.func = params->fn;
|
|
th->invoke_arg.func.arg = (void *)params->args;
|
|
break;
|
|
|
|
default:
|
|
rb_bug("unreachable");
|
|
}
|
|
|
|
th->priority = current_th->priority;
|
|
th->thgroup = current_th->thgroup;
|
|
|
|
th->pending_interrupt_queue = rb_ary_tmp_new(0);
|
|
th->pending_interrupt_queue_checked = 0;
|
|
th->pending_interrupt_mask_stack = rb_ary_dup(current_th->pending_interrupt_mask_stack);
|
|
RBASIC_CLEAR_CLASS(th->pending_interrupt_mask_stack);
|
|
|
|
rb_native_mutex_initialize(&th->interrupt_lock);
|
|
|
|
RUBY_DEBUG_LOG("r:%u th:%u", rb_ractor_id(th->ractor), rb_th_serial(th));
|
|
|
|
rb_ractor_living_threads_insert(th->ractor, th);
|
|
|
|
/* kick thread */
|
|
err = native_thread_create(th);
|
|
if (err) {
|
|
th->status = THREAD_KILLED;
|
|
rb_ractor_living_threads_remove(th->ractor, th);
|
|
rb_raise(rb_eThreadError, "can't create Thread: %s", strerror(err));
|
|
}
|
|
return thval;
|
|
}
|
|
|
|
#define threadptr_initialized(th) ((th)->invoke_type != thread_invoke_type_none)
|
|
|
|
/*
|
|
* call-seq:
|
|
* Thread.new { ... } -> thread
|
|
* Thread.new(*args, &proc) -> thread
|
|
* Thread.new(*args) { |args| ... } -> thread
|
|
*
|
|
* Creates a new thread executing the given block.
|
|
*
|
|
* Any +args+ given to ::new will be passed to the block:
|
|
*
|
|
* arr = []
|
|
* a, b, c = 1, 2, 3
|
|
* Thread.new(a,b,c) { |d,e,f| arr << d << e << f }.join
|
|
* arr #=> [1, 2, 3]
|
|
*
|
|
* A ThreadError exception is raised if ::new is called without a block.
|
|
*
|
|
* If you're going to subclass Thread, be sure to call super in your
|
|
* +initialize+ method, otherwise a ThreadError will be raised.
|
|
*/
|
|
static VALUE
|
|
thread_s_new(int argc, VALUE *argv, VALUE klass)
|
|
{
|
|
rb_thread_t *th;
|
|
VALUE thread = rb_thread_alloc(klass);
|
|
|
|
if (GET_RACTOR()->threads.main->status == THREAD_KILLED) {
|
|
rb_raise(rb_eThreadError, "can't alloc thread");
|
|
}
|
|
|
|
rb_obj_call_init_kw(thread, argc, argv, RB_PASS_CALLED_KEYWORDS);
|
|
th = rb_thread_ptr(thread);
|
|
if (!threadptr_initialized(th)) {
|
|
rb_raise(rb_eThreadError, "uninitialized thread - check `%"PRIsVALUE"#initialize'",
|
|
klass);
|
|
}
|
|
return thread;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* Thread.start([args]*) {|args| block } -> thread
|
|
* Thread.fork([args]*) {|args| block } -> thread
|
|
*
|
|
* Basically the same as ::new. However, if class Thread is subclassed, then
|
|
* calling +start+ in that subclass will not invoke the subclass's
|
|
* +initialize+ method.
|
|
*/
|
|
|
|
static VALUE
|
|
thread_start(VALUE klass, VALUE args)
|
|
{
|
|
struct thread_create_params params = {
|
|
.type = thread_invoke_type_proc,
|
|
.args = args,
|
|
.proc = rb_block_proc(),
|
|
};
|
|
return thread_create_core(rb_thread_alloc(klass), ¶ms);
|
|
}
|
|
|
|
static VALUE
|
|
threadptr_invoke_proc_location(rb_thread_t *th)
|
|
{
|
|
if (th->invoke_type == thread_invoke_type_proc) {
|
|
return rb_proc_location(th->invoke_arg.proc.proc);
|
|
}
|
|
else {
|
|
return Qnil;
|
|
}
|
|
}
|
|
|
|
/* :nodoc: */
|
|
static VALUE
|
|
thread_initialize(VALUE thread, VALUE args)
|
|
{
|
|
rb_thread_t *th = rb_thread_ptr(thread);
|
|
|
|
if (!rb_block_given_p()) {
|
|
rb_raise(rb_eThreadError, "must be called with a block");
|
|
}
|
|
else if (th->invoke_type != thread_invoke_type_none) {
|
|
VALUE loc = threadptr_invoke_proc_location(th);
|
|
if (!NIL_P(loc)) {
|
|
rb_raise(rb_eThreadError,
|
|
"already initialized thread - %"PRIsVALUE":%"PRIsVALUE,
|
|
RARRAY_AREF(loc, 0), RARRAY_AREF(loc, 1));
|
|
}
|
|
else {
|
|
rb_raise(rb_eThreadError, "already initialized thread");
|
|
}
|
|
}
|
|
else {
|
|
struct thread_create_params params = {
|
|
.type = thread_invoke_type_proc,
|
|
.args = args,
|
|
.proc = rb_block_proc(),
|
|
};
|
|
return thread_create_core(thread, ¶ms);
|
|
}
|
|
}
|
|
|
|
VALUE
|
|
rb_thread_create(VALUE (*fn)(void *), void *arg)
|
|
{
|
|
struct thread_create_params params = {
|
|
.type = thread_invoke_type_func,
|
|
.fn = fn,
|
|
.args = (VALUE)arg,
|
|
};
|
|
return thread_create_core(rb_thread_alloc(rb_cThread), ¶ms);
|
|
}
|
|
|
|
VALUE
|
|
rb_thread_create_ractor(rb_ractor_t *g, VALUE args, VALUE proc)
|
|
{
|
|
struct thread_create_params params = {
|
|
.type = thread_invoke_type_ractor_proc,
|
|
.g = g,
|
|
.args = args,
|
|
.proc = proc,
|
|
};
|
|
return thread_create_core(rb_thread_alloc(rb_cThread), ¶ms);
|
|
}
|
|
|
|
|
|
struct join_arg {
|
|
struct rb_waiting_list *waiter;
|
|
rb_thread_t *target;
|
|
VALUE timeout;
|
|
rb_hrtime_t *limit;
|
|
};
|
|
|
|
static VALUE
|
|
remove_from_join_list(VALUE arg)
|
|
{
|
|
struct join_arg *p = (struct join_arg *)arg;
|
|
rb_thread_t *target_thread = p->target;
|
|
|
|
if (target_thread->status != THREAD_KILLED) {
|
|
struct rb_waiting_list **join_list = &target_thread->join_list;
|
|
|
|
while (*join_list) {
|
|
if (*join_list == p->waiter) {
|
|
*join_list = (*join_list)->next;
|
|
break;
|
|
}
|
|
|
|
join_list = &(*join_list)->next;
|
|
}
|
|
}
|
|
|
|
return Qnil;
|
|
}
|
|
|
|
static int
|
|
thread_finished(rb_thread_t *th)
|
|
{
|
|
return th->status == THREAD_KILLED || th->value != Qundef;
|
|
}
|
|
|
|
static VALUE
|
|
thread_join_sleep(VALUE arg)
|
|
{
|
|
struct join_arg *p = (struct join_arg *)arg;
|
|
rb_thread_t *target_th = p->target, *th = p->waiter->thread;
|
|
rb_hrtime_t end = 0, *limit = p->limit;
|
|
|
|
if (limit) {
|
|
end = rb_hrtime_add(*limit, rb_hrtime_now());
|
|
}
|
|
|
|
while (!thread_finished(target_th)) {
|
|
VALUE scheduler = rb_fiber_scheduler_current();
|
|
|
|
if (scheduler != Qnil) {
|
|
rb_fiber_scheduler_block(scheduler, target_th->self, p->timeout);
|
|
}
|
|
else if (!limit) {
|
|
th->status = THREAD_STOPPED_FOREVER;
|
|
rb_ractor_sleeper_threads_inc(th->ractor);
|
|
rb_check_deadlock(th->ractor);
|
|
native_sleep(th, 0);
|
|
rb_ractor_sleeper_threads_dec(th->ractor);
|
|
}
|
|
else {
|
|
if (hrtime_update_expire(limit, end)) {
|
|
RUBY_DEBUG_LOG("timeout target_th:%u", rb_th_serial(target_th));
|
|
return Qfalse;
|
|
}
|
|
th->status = THREAD_STOPPED;
|
|
native_sleep(th, limit);
|
|
}
|
|
RUBY_VM_CHECK_INTS_BLOCKING(th->ec);
|
|
th->status = THREAD_RUNNABLE;
|
|
|
|
RUBY_DEBUG_LOG("interrupted target_th:%u status:%s", rb_th_serial(target_th), thread_status_name(target_th, TRUE));
|
|
}
|
|
return Qtrue;
|
|
}
|
|
|
|
static VALUE
|
|
thread_join(rb_thread_t *target_th, VALUE timeout, rb_hrtime_t *limit)
|
|
{
|
|
rb_execution_context_t *ec = GET_EC();
|
|
rb_thread_t *th = ec->thread_ptr;
|
|
rb_fiber_t *fiber = ec->fiber_ptr;
|
|
|
|
if (th == target_th) {
|
|
rb_raise(rb_eThreadError, "Target thread must not be current thread");
|
|
}
|
|
|
|
if (th->ractor->threads.main == target_th) {
|
|
rb_raise(rb_eThreadError, "Target thread must not be main thread");
|
|
}
|
|
|
|
RUBY_DEBUG_LOG("target_th:%u status:%s", rb_th_serial(target_th), thread_status_name(target_th, TRUE));
|
|
|
|
if (target_th->status != THREAD_KILLED) {
|
|
struct rb_waiting_list waiter;
|
|
waiter.next = target_th->join_list;
|
|
waiter.thread = th;
|
|
waiter.fiber = fiber;
|
|
target_th->join_list = &waiter;
|
|
|
|
struct join_arg arg;
|
|
arg.waiter = &waiter;
|
|
arg.target = target_th;
|
|
arg.timeout = timeout;
|
|
arg.limit = limit;
|
|
|
|
if (!rb_ensure(thread_join_sleep, (VALUE)&arg, remove_from_join_list, (VALUE)&arg)) {
|
|
return Qnil;
|
|
}
|
|
}
|
|
|
|
RUBY_DEBUG_LOG("success target_th:%u status:%s", rb_th_serial(target_th), thread_status_name(target_th, TRUE));
|
|
|
|
if (target_th->ec->errinfo != Qnil) {
|
|
VALUE err = target_th->ec->errinfo;
|
|
|
|
if (FIXNUM_P(err)) {
|
|
switch (err) {
|
|
case INT2FIX(TAG_FATAL):
|
|
RUBY_DEBUG_LOG("terminated target_th:%u status:%s", rb_th_serial(target_th), thread_status_name(target_th, TRUE));
|
|
|
|
/* OK. killed. */
|
|
break;
|
|
default:
|
|
rb_bug("thread_join: Fixnum (%d) should not reach here.", FIX2INT(err));
|
|
}
|
|
}
|
|
else if (THROW_DATA_P(target_th->ec->errinfo)) {
|
|
rb_bug("thread_join: THROW_DATA should not reach here.");
|
|
}
|
|
else {
|
|
/* normal exception */
|
|
rb_exc_raise(err);
|
|
}
|
|
}
|
|
return target_th->self;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* thr.join -> thr
|
|
* thr.join(limit) -> thr
|
|
*
|
|
* The calling thread will suspend execution and run this +thr+.
|
|
*
|
|
* Does not return until +thr+ exits or until the given +limit+ seconds have
|
|
* passed.
|
|
*
|
|
* If the time limit expires, +nil+ will be returned, otherwise +thr+ is
|
|
* returned.
|
|
*
|
|
* Any threads not joined will be killed when the main program exits.
|
|
*
|
|
* If +thr+ had previously raised an exception and the ::abort_on_exception or
|
|
* $DEBUG flags are not set, (so the exception has not yet been processed), it
|
|
* will be processed at this time.
|
|
*
|
|
* a = Thread.new { print "a"; sleep(10); print "b"; print "c" }
|
|
* x = Thread.new { print "x"; Thread.pass; print "y"; print "z" }
|
|
* x.join # Let thread x finish, thread a will be killed on exit.
|
|
* #=> "axyz"
|
|
*
|
|
* The following example illustrates the +limit+ parameter.
|
|
*
|
|
* y = Thread.new { 4.times { sleep 0.1; puts 'tick... ' }}
|
|
* puts "Waiting" until y.join(0.15)
|
|
*
|
|
* This will produce:
|
|
*
|
|
* tick...
|
|
* Waiting
|
|
* tick...
|
|
* Waiting
|
|
* tick...
|
|
* tick...
|
|
*/
|
|
|
|
static VALUE
|
|
thread_join_m(int argc, VALUE *argv, VALUE self)
|
|
{
|
|
VALUE timeout = Qnil;
|
|
rb_hrtime_t rel = 0, *limit = 0;
|
|
|
|
if (rb_check_arity(argc, 0, 1)) {
|
|
timeout = argv[0];
|
|
}
|
|
|
|
// Convert the timeout eagerly, so it's always converted and deterministic
|
|
/*
|
|
* This supports INFINITY and negative values, so we can't use
|
|
* rb_time_interval right now...
|
|
*/
|
|
if (NIL_P(timeout)) {
|
|
/* unlimited */
|
|
}
|
|
else if (FIXNUM_P(timeout)) {
|
|
rel = rb_sec2hrtime(NUM2TIMET(timeout));
|
|
limit = &rel;
|
|
}
|
|
else {
|
|
limit = double2hrtime(&rel, rb_num2dbl(timeout));
|
|
}
|
|
|
|
return thread_join(rb_thread_ptr(self), timeout, limit);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* thr.value -> obj
|
|
*
|
|
* Waits for +thr+ to complete, using #join, and returns its value or raises
|
|
* the exception which terminated the thread.
|
|
*
|
|
* a = Thread.new { 2 + 2 }
|
|
* a.value #=> 4
|
|
*
|
|
* b = Thread.new { raise 'something went wrong' }
|
|
* b.value #=> RuntimeError: something went wrong
|
|
*/
|
|
|
|
static VALUE
|
|
thread_value(VALUE self)
|
|
{
|
|
rb_thread_t *th = rb_thread_ptr(self);
|
|
thread_join(th, Qnil, 0);
|
|
return th->value;
|
|
}
|
|
|
|
/*
|
|
* Thread Scheduling
|
|
*/
|
|
|
|
static void
|
|
getclockofday(struct timespec *ts)
|
|
{
|
|
#if defined(HAVE_CLOCK_GETTIME) && defined(CLOCK_MONOTONIC)
|
|
if (clock_gettime(CLOCK_MONOTONIC, ts) == 0)
|
|
return;
|
|
#endif
|
|
rb_timespec_now(ts);
|
|
}
|
|
|
|
/*
|
|
* Don't inline this, since library call is already time consuming
|
|
* and we don't want "struct timespec" on stack too long for GC
|
|
*/
|
|
NOINLINE(rb_hrtime_t rb_hrtime_now(void));
|
|
rb_hrtime_t
|
|
rb_hrtime_now(void)
|
|
{
|
|
struct timespec ts;
|
|
|
|
getclockofday(&ts);
|
|
return rb_timespec2hrtime(&ts);
|
|
}
|
|
|
|
static void
|
|
sleep_forever(rb_thread_t *th, unsigned int fl)
|
|
{
|
|
enum rb_thread_status prev_status = th->status;
|
|
enum rb_thread_status status;
|
|
int woke;
|
|
|
|
status = fl & SLEEP_DEADLOCKABLE ? THREAD_STOPPED_FOREVER : THREAD_STOPPED;
|
|
th->status = status;
|
|
RUBY_VM_CHECK_INTS_BLOCKING(th->ec);
|
|
while (th->status == status) {
|
|
if (fl & SLEEP_DEADLOCKABLE) {
|
|
rb_ractor_sleeper_threads_inc(th->ractor);
|
|
rb_check_deadlock(th->ractor);
|
|
}
|
|
native_sleep(th, 0);
|
|
if (fl & SLEEP_DEADLOCKABLE) {
|
|
rb_ractor_sleeper_threads_dec(th->ractor);
|
|
}
|
|
woke = vm_check_ints_blocking(th->ec);
|
|
if (woke && !(fl & SLEEP_SPURIOUS_CHECK))
|
|
break;
|
|
}
|
|
th->status = prev_status;
|
|
}
|
|
|
|
/*
|
|
* at least gcc 7.2 and 7.3 complains about "rb_hrtime_t end"
|
|
* being uninitialized, maybe other versions, too.
|
|
*/
|
|
COMPILER_WARNING_PUSH
|
|
#if defined(__GNUC__) && __GNUC__ == 7 && __GNUC_MINOR__ <= 3
|
|
COMPILER_WARNING_IGNORED(-Wmaybe-uninitialized)
|
|
#endif
|
|
#ifndef PRIu64
|
|
#define PRIu64 PRI_64_PREFIX "u"
|
|
#endif
|
|
/*
|
|
* @end is the absolute time when @ts is set to expire
|
|
* Returns true if @end has past
|
|
* Updates @ts and returns false otherwise
|
|
*/
|
|
static int
|
|
hrtime_update_expire(rb_hrtime_t *timeout, const rb_hrtime_t end)
|
|
{
|
|
rb_hrtime_t now = rb_hrtime_now();
|
|
|
|
if (now > end) return 1;
|
|
|
|
RUBY_DEBUG_LOG("%"PRIu64" > %"PRIu64"", (uint64_t)end, (uint64_t)now);
|
|
|
|
*timeout = end - now;
|
|
return 0;
|
|
}
|
|
COMPILER_WARNING_POP
|
|
|
|
static int
|
|
sleep_hrtime(rb_thread_t *th, rb_hrtime_t rel, unsigned int fl)
|
|
{
|
|
enum rb_thread_status prev_status = th->status;
|
|
int woke;
|
|
rb_hrtime_t end = rb_hrtime_add(rb_hrtime_now(), rel);
|
|
|
|
th->status = THREAD_STOPPED;
|
|
RUBY_VM_CHECK_INTS_BLOCKING(th->ec);
|
|
while (th->status == THREAD_STOPPED) {
|
|
native_sleep(th, &rel);
|
|
woke = vm_check_ints_blocking(th->ec);
|
|
if (woke && !(fl & SLEEP_SPURIOUS_CHECK))
|
|
break;
|
|
if (hrtime_update_expire(&rel, end))
|
|
break;
|
|
woke = 1;
|
|
}
|
|
th->status = prev_status;
|
|
return woke;
|
|
}
|
|
|
|
void
|
|
rb_thread_sleep_forever(void)
|
|
{
|
|
RUBY_DEBUG_LOG("%s", "");
|
|
sleep_forever(GET_THREAD(), SLEEP_SPURIOUS_CHECK);
|
|
}
|
|
|
|
void
|
|
rb_thread_sleep_deadly(void)
|
|
{
|
|
RUBY_DEBUG_LOG("%s", "");
|
|
sleep_forever(GET_THREAD(), SLEEP_DEADLOCKABLE|SLEEP_SPURIOUS_CHECK);
|
|
}
|
|
|
|
void
|
|
rb_thread_sleep_interruptible(void)
|
|
{
|
|
rb_thread_t *th = GET_THREAD();
|
|
enum rb_thread_status prev_status = th->status;
|
|
|
|
th->status = THREAD_STOPPED;
|
|
native_sleep(th, 0);
|
|
RUBY_VM_CHECK_INTS_BLOCKING(th->ec);
|
|
th->status = prev_status;
|
|
}
|
|
|
|
static void
|
|
rb_thread_sleep_deadly_allow_spurious_wakeup(VALUE blocker)
|
|
{
|
|
VALUE scheduler = rb_fiber_scheduler_current();
|
|
if (scheduler != Qnil) {
|
|
rb_fiber_scheduler_block(scheduler, blocker, Qnil);
|
|
}
|
|
else {
|
|
RUBY_DEBUG_LOG("%s", "");
|
|
sleep_forever(GET_THREAD(), SLEEP_DEADLOCKABLE);
|
|
}
|
|
}
|
|
|
|
void
|
|
rb_thread_wait_for(struct timeval time)
|
|
{
|
|
rb_thread_t *th = GET_THREAD();
|
|
|
|
sleep_hrtime(th, rb_timeval2hrtime(&time), SLEEP_SPURIOUS_CHECK);
|
|
}
|
|
|
|
/*
|
|
* CAUTION: This function causes thread switching.
|
|
* rb_thread_check_ints() check ruby's interrupts.
|
|
* some interrupt needs thread switching/invoke handlers,
|
|
* and so on.
|
|
*/
|
|
|
|
void
|
|
rb_thread_check_ints(void)
|
|
{
|
|
RUBY_VM_CHECK_INTS_BLOCKING(GET_EC());
|
|
}
|
|
|
|
/*
|
|
* Hidden API for tcl/tk wrapper.
|
|
* There is no guarantee to perpetuate it.
|
|
*/
|
|
int
|
|
rb_thread_check_trap_pending(void)
|
|
{
|
|
return rb_signal_buff_size() != 0;
|
|
}
|
|
|
|
/* This function can be called in blocking region. */
|
|
int
|
|
rb_thread_interrupted(VALUE thval)
|
|
{
|
|
return (int)RUBY_VM_INTERRUPTED(rb_thread_ptr(thval)->ec);
|
|
}
|
|
|
|
void
|
|
rb_thread_sleep(int sec)
|
|
{
|
|
rb_thread_wait_for(rb_time_timeval(INT2FIX(sec)));
|
|
}
|
|
|
|
static void
|
|
rb_thread_schedule_limits(uint32_t limits_us)
|
|
{
|
|
if (!rb_thread_alone()) {
|
|
rb_thread_t *th = GET_THREAD();
|
|
RUBY_DEBUG_LOG("us:%u", (unsigned int)limits_us);
|
|
|
|
if (th->running_time_us >= limits_us) {
|
|
RUBY_DEBUG_LOG("switch %s", "start");
|
|
|
|
RB_GC_SAVE_MACHINE_CONTEXT(th);
|
|
thread_sched_yield(TH_SCHED(th), th);
|
|
rb_ractor_thread_switch(th->ractor, th);
|
|
|
|
RUBY_DEBUG_LOG("switch %s", "done");
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
rb_thread_schedule(void)
|
|
{
|
|
rb_thread_schedule_limits(0);
|
|
RUBY_VM_CHECK_INTS(GET_EC());
|
|
}
|
|
|
|
/* blocking region */
|
|
|
|
static inline int
|
|
blocking_region_begin(rb_thread_t *th, struct rb_blocking_region_buffer *region,
|
|
rb_unblock_function_t *ubf, void *arg, int fail_if_interrupted)
|
|
{
|
|
#ifdef RUBY_VM_CRITICAL_SECTION
|
|
VM_ASSERT(ruby_assert_critical_section_entered == 0);
|
|
#endif
|
|
VM_ASSERT(th == GET_THREAD());
|
|
|
|
region->prev_status = th->status;
|
|
if (unblock_function_set(th, ubf, arg, fail_if_interrupted)) {
|
|
th->blocking_region_buffer = region;
|
|
th->status = THREAD_STOPPED;
|
|
rb_ractor_blocking_threads_inc(th->ractor, __FILE__, __LINE__);
|
|
|
|
RUBY_DEBUG_LOG("%s", "");
|
|
|
|
RB_GC_SAVE_MACHINE_CONTEXT(th);
|
|
thread_sched_to_waiting(TH_SCHED(th));
|
|
return TRUE;
|
|
}
|
|
else {
|
|
return FALSE;
|
|
}
|
|
}
|
|
|
|
static inline void
|
|
blocking_region_end(rb_thread_t *th, struct rb_blocking_region_buffer *region)
|
|
{
|
|
/* entry to ubf_list still permitted at this point, make it impossible: */
|
|
unblock_function_clear(th);
|
|
/* entry to ubf_list impossible at this point, so unregister is safe: */
|
|
unregister_ubf_list(th);
|
|
|
|
thread_sched_to_running(TH_SCHED(th), th);
|
|
rb_ractor_thread_switch(th->ractor, th);
|
|
|
|
th->blocking_region_buffer = 0;
|
|
rb_ractor_blocking_threads_dec(th->ractor, __FILE__, __LINE__);
|
|
if (th->status == THREAD_STOPPED) {
|
|
th->status = region->prev_status;
|
|
}
|
|
|
|
RUBY_DEBUG_LOG("%s", "");
|
|
VM_ASSERT(th == GET_THREAD());
|
|
}
|
|
|
|
void *
|
|
rb_nogvl(void *(*func)(void *), void *data1,
|
|
rb_unblock_function_t *ubf, void *data2,
|
|
int flags)
|
|
{
|
|
void *val = 0;
|
|
rb_execution_context_t *ec = GET_EC();
|
|
rb_thread_t *th = rb_ec_thread_ptr(ec);
|
|
rb_vm_t *vm = rb_ec_vm_ptr(ec);
|
|
bool is_main_thread = vm->ractor.main_thread == th;
|
|
int saved_errno = 0;
|
|
VALUE ubf_th = Qfalse;
|
|
|
|
if ((ubf == RUBY_UBF_IO) || (ubf == RUBY_UBF_PROCESS)) {
|
|
ubf = ubf_select;
|
|
data2 = th;
|
|
}
|
|
else if (ubf && rb_ractor_living_thread_num(th->ractor) == 1 && is_main_thread) {
|
|
if (flags & RB_NOGVL_UBF_ASYNC_SAFE) {
|
|
vm->ubf_async_safe = 1;
|
|
}
|
|
else {
|
|
ubf_th = rb_thread_start_unblock_thread();
|
|
}
|
|
}
|
|
|
|
BLOCKING_REGION(th, {
|
|
val = func(data1);
|
|
saved_errno = errno;
|
|
}, ubf, data2, flags & RB_NOGVL_INTR_FAIL);
|
|
|
|
if (is_main_thread) vm->ubf_async_safe = 0;
|
|
|
|
if ((flags & RB_NOGVL_INTR_FAIL) == 0) {
|
|
RUBY_VM_CHECK_INTS_BLOCKING(ec);
|
|
}
|
|
|
|
if (ubf_th != Qfalse) {
|
|
thread_value(rb_thread_kill(ubf_th));
|
|
}
|
|
|
|
errno = saved_errno;
|
|
|
|
return val;
|
|
}
|
|
|
|
/*
|
|
* rb_thread_call_without_gvl - permit concurrent/parallel execution.
|
|
* rb_thread_call_without_gvl2 - permit concurrent/parallel execution
|
|
* without interrupt process.
|
|
*
|
|
* rb_thread_call_without_gvl() does:
|
|
* (1) Check interrupts.
|
|
* (2) release GVL.
|
|
* Other Ruby threads may run in parallel.
|
|
* (3) call func with data1
|
|
* (4) acquire GVL.
|
|
* Other Ruby threads can not run in parallel any more.
|
|
* (5) Check interrupts.
|
|
*
|
|
* rb_thread_call_without_gvl2() does:
|
|
* (1) Check interrupt and return if interrupted.
|
|
* (2) release GVL.
|
|
* (3) call func with data1 and a pointer to the flags.
|
|
* (4) acquire GVL.
|
|
*
|
|
* If another thread interrupts this thread (Thread#kill, signal delivery,
|
|
* VM-shutdown request, and so on), `ubf()' is called (`ubf()' means
|
|
* "un-blocking function"). `ubf()' should interrupt `func()' execution by
|
|
* toggling a cancellation flag, canceling the invocation of a call inside
|
|
* `func()' or similar. Note that `ubf()' may not be called with the GVL.
|
|
*
|
|
* There are built-in ubfs and you can specify these ubfs:
|
|
*
|
|
* * RUBY_UBF_IO: ubf for IO operation
|
|
* * RUBY_UBF_PROCESS: ubf for process operation
|
|
*
|
|
* However, we can not guarantee our built-in ubfs interrupt your `func()'
|
|
* correctly. Be careful to use rb_thread_call_without_gvl(). If you don't
|
|
* provide proper ubf(), your program will not stop for Control+C or other
|
|
* shutdown events.
|
|
*
|
|
* "Check interrupts" on above list means checking asynchronous
|
|
* interrupt events (such as Thread#kill, signal delivery, VM-shutdown
|
|
* request, and so on) and calling corresponding procedures
|
|
* (such as `trap' for signals, raise an exception for Thread#raise).
|
|
* If `func()' finished and received interrupts, you may skip interrupt
|
|
* checking. For example, assume the following func() it reads data from file.
|
|
*
|
|
* read_func(...) {
|
|
* // (a) before read
|
|
* read(buffer); // (b) reading
|
|
* // (c) after read
|
|
* }
|
|
*
|
|
* If an interrupt occurs at (a) or (b), then `ubf()' cancels this
|
|
* `read_func()' and interrupts are checked. However, if an interrupt occurs
|
|
* at (c), after *read* operation is completed, checking interrupts is harmful
|
|
* because it causes irrevocable side-effect, the read data will vanish. To
|
|
* avoid such problem, the `read_func()' should be used with
|
|
* `rb_thread_call_without_gvl2()'.
|
|
*
|
|
* If `rb_thread_call_without_gvl2()' detects interrupt, it returns
|
|
* immediately. This function does not show when the execution was interrupted.
|
|
* For example, there are 4 possible timing (a), (b), (c) and before calling
|
|
* read_func(). You need to record progress of a read_func() and check
|
|
* the progress after `rb_thread_call_without_gvl2()'. You may need to call
|
|
* `rb_thread_check_ints()' correctly or your program can not process proper
|
|
* process such as `trap' and so on.
|
|
*
|
|
* NOTE: You can not execute most of Ruby C API and touch Ruby
|
|
* objects in `func()' and `ubf()', including raising an
|
|
* exception, because current thread doesn't acquire GVL
|
|
* (it causes synchronization problems). If you need to
|
|
* call ruby functions either use rb_thread_call_with_gvl()
|
|
* or read source code of C APIs and confirm safety by
|
|
* yourself.
|
|
*
|
|
* NOTE: In short, this API is difficult to use safely. I recommend you
|
|
* use other ways if you have. We lack experiences to use this API.
|
|
* Please report your problem related on it.
|
|
*
|
|
* NOTE: Releasing GVL and re-acquiring GVL may be expensive operations
|
|
* for a short running `func()'. Be sure to benchmark and use this
|
|
* mechanism when `func()' consumes enough time.
|
|
*
|
|
* Safe C API:
|
|
* * rb_thread_interrupted() - check interrupt flag
|
|
* * ruby_xmalloc(), ruby_xrealloc(), ruby_xfree() -
|
|
* they will work without GVL, and may acquire GVL when GC is needed.
|
|
*/
|
|
void *
|
|
rb_thread_call_without_gvl2(void *(*func)(void *), void *data1,
|
|
rb_unblock_function_t *ubf, void *data2)
|
|
{
|
|
return rb_nogvl(func, data1, ubf, data2, RB_NOGVL_INTR_FAIL);
|
|
}
|
|
|
|
void *
|
|
rb_thread_call_without_gvl(void *(*func)(void *data), void *data1,
|
|
rb_unblock_function_t *ubf, void *data2)
|
|
{
|
|
return rb_nogvl(func, data1, ubf, data2, 0);
|
|
}
|
|
|
|
VALUE
|
|
rb_thread_io_blocking_region(rb_blocking_function_t *func, void *data1, int fd)
|
|
{
|
|
volatile VALUE val = Qundef; /* shouldn't be used */
|
|
rb_execution_context_t * volatile ec = GET_EC();
|
|
volatile int saved_errno = 0;
|
|
enum ruby_tag_type state;
|
|
|
|
struct waiting_fd waiting_fd = {
|
|
.fd = fd,
|
|
.th = rb_ec_thread_ptr(ec)
|
|
};
|
|
|
|
RB_VM_LOCK_ENTER();
|
|
{
|
|
ccan_list_add(&rb_ec_vm_ptr(ec)->waiting_fds, &waiting_fd.wfd_node);
|
|
}
|
|
RB_VM_LOCK_LEAVE();
|
|
|
|
EC_PUSH_TAG(ec);
|
|
if ((state = EC_EXEC_TAG()) == TAG_NONE) {
|
|
BLOCKING_REGION(waiting_fd.th, {
|
|
val = func(data1);
|
|
saved_errno = errno;
|
|
}, ubf_select, waiting_fd.th, FALSE);
|
|
}
|
|
EC_POP_TAG();
|
|
|
|
/*
|
|
* must be deleted before jump
|
|
* this will delete either from waiting_fds or on-stack CCAN_LIST_HEAD(busy)
|
|
*/
|
|
RB_VM_LOCK_ENTER();
|
|
{
|
|
ccan_list_del(&waiting_fd.wfd_node);
|
|
}
|
|
RB_VM_LOCK_LEAVE();
|
|
|
|
if (state) {
|
|
EC_JUMP_TAG(ec, state);
|
|
}
|
|
/* TODO: check func() */
|
|
RUBY_VM_CHECK_INTS_BLOCKING(ec);
|
|
|
|
errno = saved_errno;
|
|
|
|
return val;
|
|
}
|
|
|
|
/*
|
|
* rb_thread_call_with_gvl - re-enter the Ruby world after GVL release.
|
|
*
|
|
* After releasing GVL using
|
|
* rb_thread_call_without_gvl() you can not access Ruby values or invoke
|
|
* methods. If you need to access Ruby you must use this function
|
|
* rb_thread_call_with_gvl().
|
|
*
|
|
* This function rb_thread_call_with_gvl() does:
|
|
* (1) acquire GVL.
|
|
* (2) call passed function `func'.
|
|
* (3) release GVL.
|
|
* (4) return a value which is returned at (2).
|
|
*
|
|
* NOTE: You should not return Ruby object at (2) because such Object
|
|
* will not be marked.
|
|
*
|
|
* NOTE: If an exception is raised in `func', this function DOES NOT
|
|
* protect (catch) the exception. If you have any resources
|
|
* which should free before throwing exception, you need use
|
|
* rb_protect() in `func' and return a value which represents
|
|
* exception was raised.
|
|
*
|
|
* NOTE: This function should not be called by a thread which was not
|
|
* created as Ruby thread (created by Thread.new or so). In other
|
|
* words, this function *DOES NOT* associate or convert a NON-Ruby
|
|
* thread to a Ruby thread.
|
|
*/
|
|
void *
|
|
rb_thread_call_with_gvl(void *(*func)(void *), void *data1)
|
|
{
|
|
rb_thread_t *th = ruby_thread_from_native();
|
|
struct rb_blocking_region_buffer *brb;
|
|
struct rb_unblock_callback prev_unblock;
|
|
void *r;
|
|
|
|
if (th == 0) {
|
|
/* Error has occurred, but we can't use rb_bug()
|
|
* because this thread is not Ruby's thread.
|
|
* What should we do?
|
|
*/
|
|
bp();
|
|
fprintf(stderr, "[BUG] rb_thread_call_with_gvl() is called by non-ruby thread\n");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
brb = (struct rb_blocking_region_buffer *)th->blocking_region_buffer;
|
|
prev_unblock = th->unblock;
|
|
|
|
if (brb == 0) {
|
|
rb_bug("rb_thread_call_with_gvl: called by a thread which has GVL.");
|
|
}
|
|
|
|
blocking_region_end(th, brb);
|
|
/* enter to Ruby world: You can access Ruby values, methods and so on. */
|
|
r = (*func)(data1);
|
|
/* leave from Ruby world: You can not access Ruby values, etc. */
|
|
int released = blocking_region_begin(th, brb, prev_unblock.func, prev_unblock.arg, FALSE);
|
|
RUBY_ASSERT_ALWAYS(released);
|
|
return r;
|
|
}
|
|
|
|
/*
|
|
* ruby_thread_has_gvl_p - check if current native thread has GVL.
|
|
*
|
|
***
|
|
*** This API is EXPERIMENTAL!
|
|
*** We do not guarantee that this API remains in ruby 1.9.2 or later.
|
|
***
|
|
*/
|
|
|
|
int
|
|
ruby_thread_has_gvl_p(void)
|
|
{
|
|
rb_thread_t *th = ruby_thread_from_native();
|
|
|
|
if (th && th->blocking_region_buffer == 0) {
|
|
return 1;
|
|
}
|
|
else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* Thread.pass -> nil
|
|
*
|
|
* Give the thread scheduler a hint to pass execution to another thread.
|
|
* A running thread may or may not switch, it depends on OS and processor.
|
|
*/
|
|
|
|
static VALUE
|
|
thread_s_pass(VALUE klass)
|
|
{
|
|
rb_thread_schedule();
|
|
return Qnil;
|
|
}
|
|
|
|
/*****************************************************/
|
|
|
|
/*
|
|
* rb_threadptr_pending_interrupt_* - manage asynchronous error queue
|
|
*
|
|
* Async events such as an exception thrown by Thread#raise,
|
|
* Thread#kill and thread termination (after main thread termination)
|
|
* will be queued to th->pending_interrupt_queue.
|
|
* - clear: clear the queue.
|
|
* - enque: enqueue err object into queue.
|
|
* - deque: dequeue err object from queue.
|
|
* - active_p: return 1 if the queue should be checked.
|
|
*
|
|
* All rb_threadptr_pending_interrupt_* functions are called by
|
|
* a GVL acquired thread, of course.
|
|
* Note that all "rb_" prefix APIs need GVL to call.
|
|
*/
|
|
|
|
void
|
|
rb_threadptr_pending_interrupt_clear(rb_thread_t *th)
|
|
{
|
|
rb_ary_clear(th->pending_interrupt_queue);
|
|
}
|
|
|
|
void
|
|
rb_threadptr_pending_interrupt_enque(rb_thread_t *th, VALUE v)
|
|
{
|
|
rb_ary_push(th->pending_interrupt_queue, v);
|
|
th->pending_interrupt_queue_checked = 0;
|
|
}
|
|
|
|
static void
|
|
threadptr_check_pending_interrupt_queue(rb_thread_t *th)
|
|
{
|
|
if (!th->pending_interrupt_queue) {
|
|
rb_raise(rb_eThreadError, "uninitialized thread");
|
|
}
|
|
}
|
|
|
|
enum handle_interrupt_timing {
|
|
INTERRUPT_NONE,
|
|
INTERRUPT_IMMEDIATE,
|
|
INTERRUPT_ON_BLOCKING,
|
|
INTERRUPT_NEVER
|
|
};
|
|
|
|
static enum handle_interrupt_timing
|
|
rb_threadptr_pending_interrupt_check_mask(rb_thread_t *th, VALUE err)
|
|
{
|
|
VALUE mask;
|
|
long mask_stack_len = RARRAY_LEN(th->pending_interrupt_mask_stack);
|
|
const VALUE *mask_stack = RARRAY_CONST_PTR(th->pending_interrupt_mask_stack);
|
|
VALUE mod;
|
|
long i;
|
|
|
|
for (i=0; i<mask_stack_len; i++) {
|
|
mask = mask_stack[mask_stack_len-(i+1)];
|
|
|
|
for (mod = err; mod; mod = RCLASS_SUPER(mod)) {
|
|
VALUE klass = mod;
|
|
VALUE sym;
|
|
|
|
if (BUILTIN_TYPE(mod) == T_ICLASS) {
|
|
klass = RBASIC(mod)->klass;
|
|
}
|
|
else if (mod != RCLASS_ORIGIN(mod)) {
|
|
continue;
|
|
}
|
|
|
|
if ((sym = rb_hash_aref(mask, klass)) != Qnil) {
|
|
if (sym == sym_immediate) {
|
|
return INTERRUPT_IMMEDIATE;
|
|
}
|
|
else if (sym == sym_on_blocking) {
|
|
return INTERRUPT_ON_BLOCKING;
|
|
}
|
|
else if (sym == sym_never) {
|
|
return INTERRUPT_NEVER;
|
|
}
|
|
else {
|
|
rb_raise(rb_eThreadError, "unknown mask signature");
|
|
}
|
|
}
|
|
}
|
|
/* try to next mask */
|
|
}
|
|
return INTERRUPT_NONE;
|
|
}
|
|
|
|
static int
|
|
rb_threadptr_pending_interrupt_empty_p(const rb_thread_t *th)
|
|
{
|
|
return RARRAY_LEN(th->pending_interrupt_queue) == 0;
|
|
}
|
|
|
|
static int
|
|
rb_threadptr_pending_interrupt_include_p(rb_thread_t *th, VALUE err)
|
|
{
|
|
int i;
|
|
for (i=0; i<RARRAY_LEN(th->pending_interrupt_queue); i++) {
|
|
VALUE e = RARRAY_AREF(th->pending_interrupt_queue, i);
|
|
if (rb_class_inherited_p(e, err)) {
|
|
return TRUE;
|
|
}
|
|
}
|
|
return FALSE;
|
|
}
|
|
|
|
static VALUE
|
|
rb_threadptr_pending_interrupt_deque(rb_thread_t *th, enum handle_interrupt_timing timing)
|
|
{
|
|
#if 1 /* 1 to enable Thread#handle_interrupt, 0 to ignore it */
|
|
int i;
|
|
|
|
for (i=0; i<RARRAY_LEN(th->pending_interrupt_queue); i++) {
|
|
VALUE err = RARRAY_AREF(th->pending_interrupt_queue, i);
|
|
|
|
enum handle_interrupt_timing mask_timing = rb_threadptr_pending_interrupt_check_mask(th, CLASS_OF(err));
|
|
|
|
switch (mask_timing) {
|
|
case INTERRUPT_ON_BLOCKING:
|
|
if (timing != INTERRUPT_ON_BLOCKING) {
|
|
break;
|
|
}
|
|
/* fall through */
|
|
case INTERRUPT_NONE: /* default: IMMEDIATE */
|
|
case INTERRUPT_IMMEDIATE:
|
|
rb_ary_delete_at(th->pending_interrupt_queue, i);
|
|
return err;
|
|
case INTERRUPT_NEVER:
|
|
break;
|
|
}
|
|
}
|
|
|
|
th->pending_interrupt_queue_checked = 1;
|
|
return Qundef;
|
|
#else
|
|
VALUE err = rb_ary_shift(th->pending_interrupt_queue);
|
|
if (rb_threadptr_pending_interrupt_empty_p(th)) {
|
|
th->pending_interrupt_queue_checked = 1;
|
|
}
|
|
return err;
|
|
#endif
|
|
}
|
|
|
|
static int
|
|
threadptr_pending_interrupt_active_p(rb_thread_t *th)
|
|
{
|
|
/*
|
|
* For optimization, we don't check async errinfo queue
|
|
* if the queue and the thread interrupt mask were not changed
|
|
* since last check.
|
|
*/
|
|
if (th->pending_interrupt_queue_checked) {
|
|
return 0;
|
|
}
|
|
|
|
if (rb_threadptr_pending_interrupt_empty_p(th)) {
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
handle_interrupt_arg_check_i(VALUE key, VALUE val, VALUE args)
|
|
{
|
|
VALUE *maskp = (VALUE *)args;
|
|
|
|
if (val != sym_immediate && val != sym_on_blocking && val != sym_never) {
|
|
rb_raise(rb_eArgError, "unknown mask signature");
|
|
}
|
|
|
|
if (!*maskp) {
|
|
*maskp = rb_ident_hash_new();
|
|
}
|
|
rb_hash_aset(*maskp, key, val);
|
|
|
|
return ST_CONTINUE;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* Thread.handle_interrupt(hash) { ... } -> result of the block
|
|
*
|
|
* Changes asynchronous interrupt timing.
|
|
*
|
|
* _interrupt_ means asynchronous event and corresponding procedure
|
|
* by Thread#raise, Thread#kill, signal trap (not supported yet)
|
|
* and main thread termination (if main thread terminates, then all
|
|
* other thread will be killed).
|
|
*
|
|
* The given +hash+ has pairs like <code>ExceptionClass =>
|
|
* :TimingSymbol</code>. Where the ExceptionClass is the interrupt handled by
|
|
* the given block. The TimingSymbol can be one of the following symbols:
|
|
*
|
|
* [+:immediate+] Invoke interrupts immediately.
|
|
* [+:on_blocking+] Invoke interrupts while _BlockingOperation_.
|
|
* [+:never+] Never invoke all interrupts.
|
|
*
|
|
* _BlockingOperation_ means that the operation will block the calling thread,
|
|
* such as read and write. On CRuby implementation, _BlockingOperation_ is any
|
|
* operation executed without GVL.
|
|
*
|
|
* Masked asynchronous interrupts are delayed until they are enabled.
|
|
* This method is similar to sigprocmask(3).
|
|
*
|
|
* === NOTE
|
|
*
|
|
* Asynchronous interrupts are difficult to use.
|
|
*
|
|
* If you need to communicate between threads, please consider to use another way such as Queue.
|
|
*
|
|
* Or use them with deep understanding about this method.
|
|
*
|
|
* === Usage
|
|
*
|
|
* In this example, we can guard from Thread#raise exceptions.
|
|
*
|
|
* Using the +:never+ TimingSymbol the RuntimeError exception will always be
|
|
* ignored in the first block of the main thread. In the second
|
|
* ::handle_interrupt block we can purposefully handle RuntimeError exceptions.
|
|
*
|
|
* th = Thread.new do
|
|
* Thread.handle_interrupt(RuntimeError => :never) {
|
|
* begin
|
|
* # You can write resource allocation code safely.
|
|
* Thread.handle_interrupt(RuntimeError => :immediate) {
|
|
* # ...
|
|
* }
|
|
* ensure
|
|
* # You can write resource deallocation code safely.
|
|
* end
|
|
* }
|
|
* end
|
|
* Thread.pass
|
|
* # ...
|
|
* th.raise "stop"
|
|
*
|
|
* While we are ignoring the RuntimeError exception, it's safe to write our
|
|
* resource allocation code. Then, the ensure block is where we can safely
|
|
* deallocate your resources.
|
|
*
|
|
* ==== Guarding from Timeout::Error
|
|
*
|
|
* In the next example, we will guard from the Timeout::Error exception. This
|
|
* will help prevent from leaking resources when Timeout::Error exceptions occur
|
|
* during normal ensure clause. For this example we use the help of the
|
|
* standard library Timeout, from lib/timeout.rb
|
|
*
|
|
* require 'timeout'
|
|
* Thread.handle_interrupt(Timeout::Error => :never) {
|
|
* timeout(10){
|
|
* # Timeout::Error doesn't occur here
|
|
* Thread.handle_interrupt(Timeout::Error => :on_blocking) {
|
|
* # possible to be killed by Timeout::Error
|
|
* # while blocking operation
|
|
* }
|
|
* # Timeout::Error doesn't occur here
|
|
* }
|
|
* }
|
|
*
|
|
* In the first part of the +timeout+ block, we can rely on Timeout::Error being
|
|
* ignored. Then in the <code>Timeout::Error => :on_blocking</code> block, any
|
|
* operation that will block the calling thread is susceptible to a
|
|
* Timeout::Error exception being raised.
|
|
*
|
|
* ==== Stack control settings
|
|
*
|
|
* It's possible to stack multiple levels of ::handle_interrupt blocks in order
|
|
* to control more than one ExceptionClass and TimingSymbol at a time.
|
|
*
|
|
* Thread.handle_interrupt(FooError => :never) {
|
|
* Thread.handle_interrupt(BarError => :never) {
|
|
* # FooError and BarError are prohibited.
|
|
* }
|
|
* }
|
|
*
|
|
* ==== Inheritance with ExceptionClass
|
|
*
|
|
* All exceptions inherited from the ExceptionClass parameter will be considered.
|
|
*
|
|
* Thread.handle_interrupt(Exception => :never) {
|
|
* # all exceptions inherited from Exception are prohibited.
|
|
* }
|
|
*
|
|
* For handling all interrupts, use +Object+ and not +Exception+
|
|
* as the ExceptionClass, as kill/terminate interrupts are not handled by +Exception+.
|
|
*/
|
|
static VALUE
|
|
rb_thread_s_handle_interrupt(VALUE self, VALUE mask_arg)
|
|
{
|
|
VALUE mask;
|
|
rb_execution_context_t * volatile ec = GET_EC();
|
|
rb_thread_t * volatile th = rb_ec_thread_ptr(ec);
|
|
volatile VALUE r = Qnil;
|
|
enum ruby_tag_type state;
|
|
|
|
if (!rb_block_given_p()) {
|
|
rb_raise(rb_eArgError, "block is needed.");
|
|
}
|
|
|
|
mask = 0;
|
|
mask_arg = rb_to_hash_type(mask_arg);
|
|
rb_hash_foreach(mask_arg, handle_interrupt_arg_check_i, (VALUE)&mask);
|
|
if (!mask) {
|
|
return rb_yield(Qnil);
|
|
}
|
|
OBJ_FREEZE_RAW(mask);
|
|
rb_ary_push(th->pending_interrupt_mask_stack, mask);
|
|
if (!rb_threadptr_pending_interrupt_empty_p(th)) {
|
|
th->pending_interrupt_queue_checked = 0;
|
|
RUBY_VM_SET_INTERRUPT(th->ec);
|
|
}
|
|
|
|
EC_PUSH_TAG(th->ec);
|
|
if ((state = EC_EXEC_TAG()) == TAG_NONE) {
|
|
r = rb_yield(Qnil);
|
|
}
|
|
EC_POP_TAG();
|
|
|
|
rb_ary_pop(th->pending_interrupt_mask_stack);
|
|
if (!rb_threadptr_pending_interrupt_empty_p(th)) {
|
|
th->pending_interrupt_queue_checked = 0;
|
|
RUBY_VM_SET_INTERRUPT(th->ec);
|
|
}
|
|
|
|
RUBY_VM_CHECK_INTS(th->ec);
|
|
|
|
if (state) {
|
|
EC_JUMP_TAG(th->ec, state);
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* target_thread.pending_interrupt?(error = nil) -> true/false
|
|
*
|
|
* Returns whether or not the asynchronous queue is empty for the target thread.
|
|
*
|
|
* If +error+ is given, then check only for +error+ type deferred events.
|
|
*
|
|
* See ::pending_interrupt? for more information.
|
|
*/
|
|
static VALUE
|
|
rb_thread_pending_interrupt_p(int argc, VALUE *argv, VALUE target_thread)
|
|
{
|
|
rb_thread_t *target_th = rb_thread_ptr(target_thread);
|
|
|
|
if (!target_th->pending_interrupt_queue) {
|
|
return Qfalse;
|
|
}
|
|
if (rb_threadptr_pending_interrupt_empty_p(target_th)) {
|
|
return Qfalse;
|
|
}
|
|
if (rb_check_arity(argc, 0, 1)) {
|
|
VALUE err = argv[0];
|
|
if (!rb_obj_is_kind_of(err, rb_cModule)) {
|
|
rb_raise(rb_eTypeError, "class or module required for rescue clause");
|
|
}
|
|
return RBOOL(rb_threadptr_pending_interrupt_include_p(target_th, err));
|
|
}
|
|
else {
|
|
return Qtrue;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* Thread.pending_interrupt?(error = nil) -> true/false
|
|
*
|
|
* Returns whether or not the asynchronous queue is empty.
|
|
*
|
|
* Since Thread::handle_interrupt can be used to defer asynchronous events,
|
|
* this method can be used to determine if there are any deferred events.
|
|
*
|
|
* If you find this method returns true, then you may finish +:never+ blocks.
|
|
*
|
|
* For example, the following method processes deferred asynchronous events
|
|
* immediately.
|
|
*
|
|
* def Thread.kick_interrupt_immediately
|
|
* Thread.handle_interrupt(Object => :immediate) {
|
|
* Thread.pass
|
|
* }
|
|
* end
|
|
*
|
|
* If +error+ is given, then check only for +error+ type deferred events.
|
|
*
|
|
* === Usage
|
|
*
|
|
* th = Thread.new{
|
|
* Thread.handle_interrupt(RuntimeError => :on_blocking){
|
|
* while true
|
|
* ...
|
|
* # reach safe point to invoke interrupt
|
|
* if Thread.pending_interrupt?
|
|
* Thread.handle_interrupt(Object => :immediate){}
|
|
* end
|
|
* ...
|
|
* end
|
|
* }
|
|
* }
|
|
* ...
|
|
* th.raise # stop thread
|
|
*
|
|
* This example can also be written as the following, which you should use to
|
|
* avoid asynchronous interrupts.
|
|
*
|
|
* flag = true
|
|
* th = Thread.new{
|
|
* Thread.handle_interrupt(RuntimeError => :on_blocking){
|
|
* while true
|
|
* ...
|
|
* # reach safe point to invoke interrupt
|
|
* break if flag == false
|
|
* ...
|
|
* end
|
|
* }
|
|
* }
|
|
* ...
|
|
* flag = false # stop thread
|
|
*/
|
|
|
|
static VALUE
|
|
rb_thread_s_pending_interrupt_p(int argc, VALUE *argv, VALUE self)
|
|
{
|
|
return rb_thread_pending_interrupt_p(argc, argv, GET_THREAD()->self);
|
|
}
|
|
|
|
NORETURN(static void rb_threadptr_to_kill(rb_thread_t *th));
|
|
|
|
static void
|
|
rb_threadptr_to_kill(rb_thread_t *th)
|
|
{
|
|
rb_threadptr_pending_interrupt_clear(th);
|
|
th->status = THREAD_RUNNABLE;
|
|
th->to_kill = 1;
|
|
th->ec->errinfo = INT2FIX(TAG_FATAL);
|
|
EC_JUMP_TAG(th->ec, TAG_FATAL);
|
|
}
|
|
|
|
static inline rb_atomic_t
|
|
threadptr_get_interrupts(rb_thread_t *th)
|
|
{
|
|
rb_execution_context_t *ec = th->ec;
|
|
rb_atomic_t interrupt;
|
|
rb_atomic_t old;
|
|
|
|
do {
|
|
interrupt = ec->interrupt_flag;
|
|
old = ATOMIC_CAS(ec->interrupt_flag, interrupt, interrupt & ec->interrupt_mask);
|
|
} while (old != interrupt);
|
|
return interrupt & (rb_atomic_t)~ec->interrupt_mask;
|
|
}
|
|
|
|
MJIT_FUNC_EXPORTED int
|
|
rb_threadptr_execute_interrupts(rb_thread_t *th, int blocking_timing)
|
|
{
|
|
rb_atomic_t interrupt;
|
|
int postponed_job_interrupt = 0;
|
|
int ret = FALSE;
|
|
|
|
if (th->ec->raised_flag) return ret;
|
|
|
|
while ((interrupt = threadptr_get_interrupts(th)) != 0) {
|
|
int sig;
|
|
int timer_interrupt;
|
|
int pending_interrupt;
|
|
int trap_interrupt;
|
|
int terminate_interrupt;
|
|
|
|
timer_interrupt = interrupt & TIMER_INTERRUPT_MASK;
|
|
pending_interrupt = interrupt & PENDING_INTERRUPT_MASK;
|
|
postponed_job_interrupt = interrupt & POSTPONED_JOB_INTERRUPT_MASK;
|
|
trap_interrupt = interrupt & TRAP_INTERRUPT_MASK;
|
|
terminate_interrupt = interrupt & TERMINATE_INTERRUPT_MASK; // request from other ractors
|
|
|
|
if (interrupt & VM_BARRIER_INTERRUPT_MASK) {
|
|
RB_VM_LOCK_ENTER();
|
|
RB_VM_LOCK_LEAVE();
|
|
}
|
|
|
|
if (postponed_job_interrupt) {
|
|
rb_postponed_job_flush(th->vm);
|
|
}
|
|
|
|
/* signal handling */
|
|
if (trap_interrupt && (th == th->vm->ractor.main_thread)) {
|
|
enum rb_thread_status prev_status = th->status;
|
|
int sigwait_fd = rb_sigwait_fd_get(th);
|
|
|
|
if (sigwait_fd >= 0) {
|
|
(void)consume_communication_pipe(sigwait_fd);
|
|
ruby_sigchld_handler(th->vm);
|
|
rb_sigwait_fd_put(th, sigwait_fd);
|
|
rb_sigwait_fd_migrate(th->vm);
|
|
}
|
|
th->status = THREAD_RUNNABLE;
|
|
while ((sig = rb_get_next_signal()) != 0) {
|
|
ret |= rb_signal_exec(th, sig);
|
|
}
|
|
th->status = prev_status;
|
|
}
|
|
|
|
/* exception from another thread */
|
|
if (pending_interrupt && threadptr_pending_interrupt_active_p(th)) {
|
|
VALUE err = rb_threadptr_pending_interrupt_deque(th, blocking_timing ? INTERRUPT_ON_BLOCKING : INTERRUPT_NONE);
|
|
RUBY_DEBUG_LOG("err:%"PRIdVALUE"\n", err);
|
|
ret = TRUE;
|
|
|
|
if (err == Qundef) {
|
|
/* no error */
|
|
}
|
|
else if (err == eKillSignal /* Thread#kill received */ ||
|
|
err == eTerminateSignal /* Terminate thread */ ||
|
|
err == INT2FIX(TAG_FATAL) /* Thread.exit etc. */ ) {
|
|
terminate_interrupt = 1;
|
|
}
|
|
else {
|
|
if (err == th->vm->special_exceptions[ruby_error_stream_closed]) {
|
|
/* the only special exception to be queued across thread */
|
|
err = ruby_vm_special_exception_copy(err);
|
|
}
|
|
/* set runnable if th was slept. */
|
|
if (th->status == THREAD_STOPPED ||
|
|
th->status == THREAD_STOPPED_FOREVER)
|
|
th->status = THREAD_RUNNABLE;
|
|
rb_exc_raise(err);
|
|
}
|
|
}
|
|
|
|
if (terminate_interrupt) {
|
|
rb_threadptr_to_kill(th);
|
|
}
|
|
|
|
if (timer_interrupt) {
|
|
uint32_t limits_us = TIME_QUANTUM_USEC;
|
|
|
|
if (th->priority > 0)
|
|
limits_us <<= th->priority;
|
|
else
|
|
limits_us >>= -th->priority;
|
|
|
|
if (th->status == THREAD_RUNNABLE)
|
|
th->running_time_us += TIME_QUANTUM_USEC;
|
|
|
|
VM_ASSERT(th->ec->cfp);
|
|
EXEC_EVENT_HOOK(th->ec, RUBY_INTERNAL_EVENT_SWITCH, th->ec->cfp->self,
|
|
0, 0, 0, Qundef);
|
|
|
|
rb_thread_schedule_limits(limits_us);
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
void
|
|
rb_thread_execute_interrupts(VALUE thval)
|
|
{
|
|
rb_threadptr_execute_interrupts(rb_thread_ptr(thval), 1);
|
|
}
|
|
|
|
static void
|
|
rb_threadptr_ready(rb_thread_t *th)
|
|
{
|
|
rb_threadptr_interrupt(th);
|
|
}
|
|
|
|
static VALUE
|
|
rb_threadptr_raise(rb_thread_t *target_th, int argc, VALUE *argv)
|
|
{
|
|
VALUE exc;
|
|
|
|
if (rb_threadptr_dead(target_th)) {
|
|
return Qnil;
|
|
}
|
|
|
|
if (argc == 0) {
|
|
exc = rb_exc_new(rb_eRuntimeError, 0, 0);
|
|
}
|
|
else {
|
|
exc = rb_make_exception(argc, argv);
|
|
}
|
|
|
|
/* making an exception object can switch thread,
|
|
so we need to check thread deadness again */
|
|
if (rb_threadptr_dead(target_th)) {
|
|
return Qnil;
|
|
}
|
|
|
|
rb_ec_setup_exception(GET_EC(), exc, Qundef);
|
|
rb_threadptr_pending_interrupt_enque(target_th, exc);
|
|
rb_threadptr_interrupt(target_th);
|
|
return Qnil;
|
|
}
|
|
|
|
void
|
|
rb_threadptr_signal_raise(rb_thread_t *th, int sig)
|
|
{
|
|
VALUE argv[2];
|
|
|
|
argv[0] = rb_eSignal;
|
|
argv[1] = INT2FIX(sig);
|
|
rb_threadptr_raise(th->vm->ractor.main_thread, 2, argv);
|
|
}
|
|
|
|
void
|
|
rb_threadptr_signal_exit(rb_thread_t *th)
|
|
{
|
|
VALUE argv[2];
|
|
|
|
argv[0] = rb_eSystemExit;
|
|
argv[1] = rb_str_new2("exit");
|
|
|
|
// TODO: check signal raise deliverly
|
|
rb_threadptr_raise(th->vm->ractor.main_thread, 2, argv);
|
|
}
|
|
|
|
int
|
|
rb_ec_set_raised(rb_execution_context_t *ec)
|
|
{
|
|
if (ec->raised_flag & RAISED_EXCEPTION) {
|
|
return 1;
|
|
}
|
|
ec->raised_flag |= RAISED_EXCEPTION;
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
rb_ec_reset_raised(rb_execution_context_t *ec)
|
|
{
|
|
if (!(ec->raised_flag & RAISED_EXCEPTION)) {
|
|
return 0;
|
|
}
|
|
ec->raised_flag &= ~RAISED_EXCEPTION;
|
|
return 1;
|
|
}
|
|
|
|
int
|
|
rb_notify_fd_close(int fd, struct ccan_list_head *busy)
|
|
{
|
|
rb_vm_t *vm = GET_THREAD()->vm;
|
|
struct waiting_fd *wfd = 0, *next;
|
|
|
|
RB_VM_LOCK_ENTER();
|
|
{
|
|
ccan_list_for_each_safe(&vm->waiting_fds, wfd, next, wfd_node) {
|
|
if (wfd->fd == fd) {
|
|
rb_thread_t *th = wfd->th;
|
|
VALUE err;
|
|
|
|
ccan_list_del(&wfd->wfd_node);
|
|
ccan_list_add(busy, &wfd->wfd_node);
|
|
|
|
err = th->vm->special_exceptions[ruby_error_stream_closed];
|
|
rb_threadptr_pending_interrupt_enque(th, err);
|
|
rb_threadptr_interrupt(th);
|
|
}
|
|
}
|
|
}
|
|
RB_VM_LOCK_LEAVE();
|
|
|
|
return !ccan_list_empty(busy);
|
|
}
|
|
|
|
void
|
|
rb_thread_fd_close(int fd)
|
|
{
|
|
struct ccan_list_head busy;
|
|
|
|
ccan_list_head_init(&busy);
|
|
if (rb_notify_fd_close(fd, &busy)) {
|
|
do rb_thread_schedule(); while (!ccan_list_empty(&busy));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* thr.raise
|
|
* thr.raise(string)
|
|
* thr.raise(exception [, string [, array]])
|
|
*
|
|
* Raises an exception from the given thread. The caller does not have to be
|
|
* +thr+. See Kernel#raise for more information.
|
|
*
|
|
* Thread.abort_on_exception = true
|
|
* a = Thread.new { sleep(200) }
|
|
* a.raise("Gotcha")
|
|
*
|
|
* This will produce:
|
|
*
|
|
* prog.rb:3: Gotcha (RuntimeError)
|
|
* from prog.rb:2:in `initialize'
|
|
* from prog.rb:2:in `new'
|
|
* from prog.rb:2
|
|
*/
|
|
|
|
static VALUE
|
|
thread_raise_m(int argc, VALUE *argv, VALUE self)
|
|
{
|
|
rb_thread_t *target_th = rb_thread_ptr(self);
|
|
const rb_thread_t *current_th = GET_THREAD();
|
|
|
|
threadptr_check_pending_interrupt_queue(target_th);
|
|
rb_threadptr_raise(target_th, argc, argv);
|
|
|
|
/* To perform Thread.current.raise as Kernel.raise */
|
|
if (current_th == target_th) {
|
|
RUBY_VM_CHECK_INTS(target_th->ec);
|
|
}
|
|
return Qnil;
|
|
}
|
|
|
|
|
|
/*
|
|
* call-seq:
|
|
* thr.exit -> thr
|
|
* thr.kill -> thr
|
|
* thr.terminate -> thr
|
|
*
|
|
* Terminates +thr+ and schedules another thread to be run, returning
|
|
* the terminated Thread. If this is the main thread, or the last
|
|
* thread, exits the process.
|
|
*/
|
|
|
|
VALUE
|
|
rb_thread_kill(VALUE thread)
|
|
{
|
|
rb_thread_t *target_th = rb_thread_ptr(thread);
|
|
|
|
if (target_th->to_kill || target_th->status == THREAD_KILLED) {
|
|
return thread;
|
|
}
|
|
if (target_th == target_th->vm->ractor.main_thread) {
|
|
rb_exit(EXIT_SUCCESS);
|
|
}
|
|
|
|
RUBY_DEBUG_LOG("target_th:%u", rb_th_serial(target_th));
|
|
|
|
if (target_th == GET_THREAD()) {
|
|
/* kill myself immediately */
|
|
rb_threadptr_to_kill(target_th);
|
|
}
|
|
else {
|
|
threadptr_check_pending_interrupt_queue(target_th);
|
|
rb_threadptr_pending_interrupt_enque(target_th, eKillSignal);
|
|
rb_threadptr_interrupt(target_th);
|
|
}
|
|
|
|
return thread;
|
|
}
|
|
|
|
int
|
|
rb_thread_to_be_killed(VALUE thread)
|
|
{
|
|
rb_thread_t *target_th = rb_thread_ptr(thread);
|
|
|
|
if (target_th->to_kill || target_th->status == THREAD_KILLED) {
|
|
return TRUE;
|
|
}
|
|
return FALSE;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* Thread.kill(thread) -> thread
|
|
*
|
|
* Causes the given +thread+ to exit, see also Thread::exit.
|
|
*
|
|
* count = 0
|
|
* a = Thread.new { loop { count += 1 } }
|
|
* sleep(0.1) #=> 0
|
|
* Thread.kill(a) #=> #<Thread:0x401b3d30 dead>
|
|
* count #=> 93947
|
|
* a.alive? #=> false
|
|
*/
|
|
|
|
static VALUE
|
|
rb_thread_s_kill(VALUE obj, VALUE th)
|
|
{
|
|
return rb_thread_kill(th);
|
|
}
|
|
|
|
|
|
/*
|
|
* call-seq:
|
|
* Thread.exit -> thread
|
|
*
|
|
* Terminates the currently running thread and schedules another thread to be
|
|
* run.
|
|
*
|
|
* If this thread is already marked to be killed, ::exit returns the Thread.
|
|
*
|
|
* If this is the main thread, or the last thread, exit the process.
|
|
*/
|
|
|
|
static VALUE
|
|
rb_thread_exit(VALUE _)
|
|
{
|
|
rb_thread_t *th = GET_THREAD();
|
|
return rb_thread_kill(th->self);
|
|
}
|
|
|
|
|
|
/*
|
|
* call-seq:
|
|
* thr.wakeup -> thr
|
|
*
|
|
* Marks a given thread as eligible for scheduling, however it may still
|
|
* remain blocked on I/O.
|
|
*
|
|
* *Note:* This does not invoke the scheduler, see #run for more information.
|
|
*
|
|
* c = Thread.new { Thread.stop; puts "hey!" }
|
|
* sleep 0.1 while c.status!='sleep'
|
|
* c.wakeup
|
|
* c.join
|
|
* #=> "hey!"
|
|
*/
|
|
|
|
VALUE
|
|
rb_thread_wakeup(VALUE thread)
|
|
{
|
|
if (!RTEST(rb_thread_wakeup_alive(thread))) {
|
|
rb_raise(rb_eThreadError, "killed thread");
|
|
}
|
|
return thread;
|
|
}
|
|
|
|
VALUE
|
|
rb_thread_wakeup_alive(VALUE thread)
|
|
{
|
|
rb_thread_t *target_th = rb_thread_ptr(thread);
|
|
if (target_th->status == THREAD_KILLED) return Qnil;
|
|
|
|
rb_threadptr_ready(target_th);
|
|
|
|
if (target_th->status == THREAD_STOPPED ||
|
|
target_th->status == THREAD_STOPPED_FOREVER) {
|
|
target_th->status = THREAD_RUNNABLE;
|
|
}
|
|
|
|
return thread;
|
|
}
|
|
|
|
|
|
/*
|
|
* call-seq:
|
|
* thr.run -> thr
|
|
*
|
|
* Wakes up +thr+, making it eligible for scheduling.
|
|
*
|
|
* a = Thread.new { puts "a"; Thread.stop; puts "c" }
|
|
* sleep 0.1 while a.status!='sleep'
|
|
* puts "Got here"
|
|
* a.run
|
|
* a.join
|
|
*
|
|
* This will produce:
|
|
*
|
|
* a
|
|
* Got here
|
|
* c
|
|
*
|
|
* See also the instance method #wakeup.
|
|
*/
|
|
|
|
VALUE
|
|
rb_thread_run(VALUE thread)
|
|
{
|
|
rb_thread_wakeup(thread);
|
|
rb_thread_schedule();
|
|
return thread;
|
|
}
|
|
|
|
|
|
VALUE
|
|
rb_thread_stop(void)
|
|
{
|
|
if (rb_thread_alone()) {
|
|
rb_raise(rb_eThreadError,
|
|
"stopping only thread\n\tnote: use sleep to stop forever");
|
|
}
|
|
rb_thread_sleep_deadly();
|
|
return Qnil;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* Thread.stop -> nil
|
|
*
|
|
* Stops execution of the current thread, putting it into a ``sleep'' state,
|
|
* and schedules execution of another thread.
|
|
*
|
|
* a = Thread.new { print "a"; Thread.stop; print "c" }
|
|
* sleep 0.1 while a.status!='sleep'
|
|
* print "b"
|
|
* a.run
|
|
* a.join
|
|
* #=> "abc"
|
|
*/
|
|
|
|
static VALUE
|
|
thread_stop(VALUE _)
|
|
{
|
|
return rb_thread_stop();
|
|
}
|
|
|
|
/********************************************************************/
|
|
|
|
VALUE
|
|
rb_thread_list(void)
|
|
{
|
|
// TODO
|
|
return rb_ractor_thread_list(GET_RACTOR());
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* Thread.list -> array
|
|
*
|
|
* Returns an array of Thread objects for all threads that are either runnable
|
|
* or stopped.
|
|
*
|
|
* Thread.new { sleep(200) }
|
|
* Thread.new { 1000000.times {|i| i*i } }
|
|
* Thread.new { Thread.stop }
|
|
* Thread.list.each {|t| p t}
|
|
*
|
|
* This will produce:
|
|
*
|
|
* #<Thread:0x401b3e84 sleep>
|
|
* #<Thread:0x401b3f38 run>
|
|
* #<Thread:0x401b3fb0 sleep>
|
|
* #<Thread:0x401bdf4c run>
|
|
*/
|
|
|
|
static VALUE
|
|
thread_list(VALUE _)
|
|
{
|
|
return rb_thread_list();
|
|
}
|
|
|
|
VALUE
|
|
rb_thread_current(void)
|
|
{
|
|
return GET_THREAD()->self;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* Thread.current -> thread
|
|
*
|
|
* Returns the currently executing thread.
|
|
*
|
|
* Thread.current #=> #<Thread:0x401bdf4c run>
|
|
*/
|
|
|
|
static VALUE
|
|
thread_s_current(VALUE klass)
|
|
{
|
|
return rb_thread_current();
|
|
}
|
|
|
|
VALUE
|
|
rb_thread_main(void)
|
|
{
|
|
return GET_RACTOR()->threads.main->self;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* Thread.main -> thread
|
|
*
|
|
* Returns the main thread.
|
|
*/
|
|
|
|
static VALUE
|
|
rb_thread_s_main(VALUE klass)
|
|
{
|
|
return rb_thread_main();
|
|
}
|
|
|
|
|
|
/*
|
|
* call-seq:
|
|
* Thread.abort_on_exception -> true or false
|
|
*
|
|
* Returns the status of the global ``abort on exception'' condition.
|
|
*
|
|
* The default is +false+.
|
|
*
|
|
* When set to +true+, if any thread is aborted by an exception, the
|
|
* raised exception will be re-raised in the main thread.
|
|
*
|
|
* Can also be specified by the global $DEBUG flag or command line option
|
|
* +-d+.
|
|
*
|
|
* See also ::abort_on_exception=.
|
|
*
|
|
* There is also an instance level method to set this for a specific thread,
|
|
* see #abort_on_exception.
|
|
*/
|
|
|
|
static VALUE
|
|
rb_thread_s_abort_exc(VALUE _)
|
|
{
|
|
return RBOOL(GET_THREAD()->vm->thread_abort_on_exception);
|
|
}
|
|
|
|
|
|
/*
|
|
* call-seq:
|
|
* Thread.abort_on_exception= boolean -> true or false
|
|
*
|
|
* When set to +true+, if any thread is aborted by an exception, the
|
|
* raised exception will be re-raised in the main thread.
|
|
* Returns the new state.
|
|
*
|
|
* Thread.abort_on_exception = true
|
|
* t1 = Thread.new do
|
|
* puts "In new thread"
|
|
* raise "Exception from thread"
|
|
* end
|
|
* sleep(1)
|
|
* puts "not reached"
|
|
*
|
|
* This will produce:
|
|
*
|
|
* In new thread
|
|
* prog.rb:4: Exception from thread (RuntimeError)
|
|
* from prog.rb:2:in `initialize'
|
|
* from prog.rb:2:in `new'
|
|
* from prog.rb:2
|
|
*
|
|
* See also ::abort_on_exception.
|
|
*
|
|
* There is also an instance level method to set this for a specific thread,
|
|
* see #abort_on_exception=.
|
|
*/
|
|
|
|
static VALUE
|
|
rb_thread_s_abort_exc_set(VALUE self, VALUE val)
|
|
{
|
|
GET_THREAD()->vm->thread_abort_on_exception = RTEST(val);
|
|
return val;
|
|
}
|
|
|
|
|
|
/*
|
|
* call-seq:
|
|
* thr.abort_on_exception -> true or false
|
|
*
|
|
* Returns the status of the thread-local ``abort on exception'' condition for
|
|
* this +thr+.
|
|
*
|
|
* The default is +false+.
|
|
*
|
|
* See also #abort_on_exception=.
|
|
*
|
|
* There is also a class level method to set this for all threads, see
|
|
* ::abort_on_exception.
|
|
*/
|
|
|
|
static VALUE
|
|
rb_thread_abort_exc(VALUE thread)
|
|
{
|
|
return RBOOL(rb_thread_ptr(thread)->abort_on_exception);
|
|
}
|
|
|
|
|
|
/*
|
|
* call-seq:
|
|
* thr.abort_on_exception= boolean -> true or false
|
|
*
|
|
* When set to +true+, if this +thr+ is aborted by an exception, the
|
|
* raised exception will be re-raised in the main thread.
|
|
*
|
|
* See also #abort_on_exception.
|
|
*
|
|
* There is also a class level method to set this for all threads, see
|
|
* ::abort_on_exception=.
|
|
*/
|
|
|
|
static VALUE
|
|
rb_thread_abort_exc_set(VALUE thread, VALUE val)
|
|
{
|
|
rb_thread_ptr(thread)->abort_on_exception = RTEST(val);
|
|
return val;
|
|
}
|
|
|
|
|
|
/*
|
|
* call-seq:
|
|
* Thread.report_on_exception -> true or false
|
|
*
|
|
* Returns the status of the global ``report on exception'' condition.
|
|
*
|
|
* The default is +true+ since Ruby 2.5.
|
|
*
|
|
* All threads created when this flag is true will report
|
|
* a message on $stderr if an exception kills the thread.
|
|
*
|
|
* Thread.new { 1.times { raise } }
|
|
*
|
|
* will produce this output on $stderr:
|
|
*
|
|
* #<Thread:...> terminated with exception (report_on_exception is true):
|
|
* Traceback (most recent call last):
|
|
* 2: from -e:1:in `block in <main>'
|
|
* 1: from -e:1:in `times'
|
|
*
|
|
* This is done to catch errors in threads early.
|
|
* In some cases, you might not want this output.
|
|
* There are multiple ways to avoid the extra output:
|
|
*
|
|
* * If the exception is not intended, the best is to fix the cause of
|
|
* the exception so it does not happen anymore.
|
|
* * If the exception is intended, it might be better to rescue it closer to
|
|
* where it is raised rather then let it kill the Thread.
|
|
* * If it is guaranteed the Thread will be joined with Thread#join or
|
|
* Thread#value, then it is safe to disable this report with
|
|
* <code>Thread.current.report_on_exception = false</code>
|
|
* when starting the Thread.
|
|
* However, this might handle the exception much later, or not at all
|
|
* if the Thread is never joined due to the parent thread being blocked, etc.
|
|
*
|
|
* See also ::report_on_exception=.
|
|
*
|
|
* There is also an instance level method to set this for a specific thread,
|
|
* see #report_on_exception=.
|
|
*
|
|
*/
|
|
|
|
static VALUE
|
|
rb_thread_s_report_exc(VALUE _)
|
|
{
|
|
return RBOOL(GET_THREAD()->vm->thread_report_on_exception);
|
|
}
|
|
|
|
|
|
/*
|
|
* call-seq:
|
|
* Thread.report_on_exception= boolean -> true or false
|
|
*
|
|
* Returns the new state.
|
|
* When set to +true+, all threads created afterwards will inherit the
|
|
* condition and report a message on $stderr if an exception kills a thread:
|
|
*
|
|
* Thread.report_on_exception = true
|
|
* t1 = Thread.new do
|
|
* puts "In new thread"
|
|
* raise "Exception from thread"
|
|
* end
|
|
* sleep(1)
|
|
* puts "In the main thread"
|
|
*
|
|
* This will produce:
|
|
*
|
|
* In new thread
|
|
* #<Thread:...prog.rb:2> terminated with exception (report_on_exception is true):
|
|
* Traceback (most recent call last):
|
|
* prog.rb:4:in `block in <main>': Exception from thread (RuntimeError)
|
|
* In the main thread
|
|
*
|
|
* See also ::report_on_exception.
|
|
*
|
|
* There is also an instance level method to set this for a specific thread,
|
|
* see #report_on_exception=.
|
|
*/
|
|
|
|
static VALUE
|
|
rb_thread_s_report_exc_set(VALUE self, VALUE val)
|
|
{
|
|
GET_THREAD()->vm->thread_report_on_exception = RTEST(val);
|
|
return val;
|
|
}
|
|
|
|
|
|
/*
|
|
* call-seq:
|
|
* Thread.ignore_deadlock -> true or false
|
|
*
|
|
* Returns the status of the global ``ignore deadlock'' condition.
|
|
* The default is +false+, so that deadlock conditions are not ignored.
|
|
*
|
|
* See also ::ignore_deadlock=.
|
|
*
|
|
*/
|
|
|
|
static VALUE
|
|
rb_thread_s_ignore_deadlock(VALUE _)
|
|
{
|
|
return RBOOL(GET_THREAD()->vm->thread_ignore_deadlock);
|
|
}
|
|
|
|
|
|
/*
|
|
* call-seq:
|
|
* Thread.ignore_deadlock = boolean -> true or false
|
|
*
|
|
* Returns the new state.
|
|
* When set to +true+, the VM will not check for deadlock conditions.
|
|
* It is only useful to set this if your application can break a
|
|
* deadlock condition via some other means, such as a signal.
|
|
*
|
|
* Thread.ignore_deadlock = true
|
|
* queue = Thread::Queue.new
|
|
*
|
|
* trap(:SIGUSR1){queue.push "Received signal"}
|
|
*
|
|
* # raises fatal error unless ignoring deadlock
|
|
* puts queue.pop
|
|
*
|
|
* See also ::ignore_deadlock.
|
|
*/
|
|
|
|
static VALUE
|
|
rb_thread_s_ignore_deadlock_set(VALUE self, VALUE val)
|
|
{
|
|
GET_THREAD()->vm->thread_ignore_deadlock = RTEST(val);
|
|
return val;
|
|
}
|
|
|
|
|
|
/*
|
|
* call-seq:
|
|
* thr.report_on_exception -> true or false
|
|
*
|
|
* Returns the status of the thread-local ``report on exception'' condition for
|
|
* this +thr+.
|
|
*
|
|
* The default value when creating a Thread is the value of
|
|
* the global flag Thread.report_on_exception.
|
|
*
|
|
* See also #report_on_exception=.
|
|
*
|
|
* There is also a class level method to set this for all new threads, see
|
|
* ::report_on_exception=.
|
|
*/
|
|
|
|
static VALUE
|
|
rb_thread_report_exc(VALUE thread)
|
|
{
|
|
return RBOOL(rb_thread_ptr(thread)->report_on_exception);
|
|
}
|
|
|
|
|
|
/*
|
|
* call-seq:
|
|
* thr.report_on_exception= boolean -> true or false
|
|
*
|
|
* When set to +true+, a message is printed on $stderr if an exception
|
|
* kills this +thr+. See ::report_on_exception for details.
|
|
*
|
|
* See also #report_on_exception.
|
|
*
|
|
* There is also a class level method to set this for all new threads, see
|
|
* ::report_on_exception=.
|
|
*/
|
|
|
|
static VALUE
|
|
rb_thread_report_exc_set(VALUE thread, VALUE val)
|
|
{
|
|
rb_thread_ptr(thread)->report_on_exception = RTEST(val);
|
|
return val;
|
|
}
|
|
|
|
|
|
/*
|
|
* call-seq:
|
|
* thr.group -> thgrp or nil
|
|
*
|
|
* Returns the ThreadGroup which contains the given thread.
|
|
*
|
|
* Thread.main.group #=> #<ThreadGroup:0x4029d914>
|
|
*/
|
|
|
|
VALUE
|
|
rb_thread_group(VALUE thread)
|
|
{
|
|
return rb_thread_ptr(thread)->thgroup;
|
|
}
|
|
|
|
static const char *
|
|
thread_status_name(rb_thread_t *th, int detail)
|
|
{
|
|
switch (th->status) {
|
|
case THREAD_RUNNABLE:
|
|
return th->to_kill ? "aborting" : "run";
|
|
case THREAD_STOPPED_FOREVER:
|
|
if (detail) return "sleep_forever";
|
|
case THREAD_STOPPED:
|
|
return "sleep";
|
|
case THREAD_KILLED:
|
|
return "dead";
|
|
default:
|
|
return "unknown";
|
|
}
|
|
}
|
|
|
|
static int
|
|
rb_threadptr_dead(rb_thread_t *th)
|
|
{
|
|
return th->status == THREAD_KILLED;
|
|
}
|
|
|
|
|
|
/*
|
|
* call-seq:
|
|
* thr.status -> string, false or nil
|
|
*
|
|
* Returns the status of +thr+.
|
|
*
|
|
* [<tt>"sleep"</tt>]
|
|
* Returned if this thread is sleeping or waiting on I/O
|
|
* [<tt>"run"</tt>]
|
|
* When this thread is executing
|
|
* [<tt>"aborting"</tt>]
|
|
* If this thread is aborting
|
|
* [+false+]
|
|
* When this thread is terminated normally
|
|
* [+nil+]
|
|
* If terminated with an exception.
|
|
*
|
|
* a = Thread.new { raise("die now") }
|
|
* b = Thread.new { Thread.stop }
|
|
* c = Thread.new { Thread.exit }
|
|
* d = Thread.new { sleep }
|
|
* d.kill #=> #<Thread:0x401b3678 aborting>
|
|
* a.status #=> nil
|
|
* b.status #=> "sleep"
|
|
* c.status #=> false
|
|
* d.status #=> "aborting"
|
|
* Thread.current.status #=> "run"
|
|
*
|
|
* See also the instance methods #alive? and #stop?
|
|
*/
|
|
|
|
static VALUE
|
|
rb_thread_status(VALUE thread)
|
|
{
|
|
rb_thread_t *target_th = rb_thread_ptr(thread);
|
|
|
|
if (rb_threadptr_dead(target_th)) {
|
|
if (!NIL_P(target_th->ec->errinfo) &&
|
|
!FIXNUM_P(target_th->ec->errinfo)) {
|
|
return Qnil;
|
|
}
|
|
else {
|
|
return Qfalse;
|
|
}
|
|
}
|
|
else {
|
|
return rb_str_new2(thread_status_name(target_th, FALSE));
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* call-seq:
|
|
* thr.alive? -> true or false
|
|
*
|
|
* Returns +true+ if +thr+ is running or sleeping.
|
|
*
|
|
* thr = Thread.new { }
|
|
* thr.join #=> #<Thread:0x401b3fb0 dead>
|
|
* Thread.current.alive? #=> true
|
|
* thr.alive? #=> false
|
|
*
|
|
* See also #stop? and #status.
|
|
*/
|
|
|
|
static VALUE
|
|
rb_thread_alive_p(VALUE thread)
|
|
{
|
|
return RBOOL(!thread_finished(rb_thread_ptr(thread)));
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* thr.stop? -> true or false
|
|
*
|
|
* Returns +true+ if +thr+ is dead or sleeping.
|
|
*
|
|
* a = Thread.new { Thread.stop }
|
|
* b = Thread.current
|
|
* a.stop? #=> true
|
|
* b.stop? #=> false
|
|
*
|
|
* See also #alive? and #status.
|
|
*/
|
|
|
|
static VALUE
|
|
rb_thread_stop_p(VALUE thread)
|
|
{
|
|
rb_thread_t *th = rb_thread_ptr(thread);
|
|
|
|
if (rb_threadptr_dead(th)) {
|
|
return Qtrue;
|
|
}
|
|
return RBOOL(th->status == THREAD_STOPPED || th->status == THREAD_STOPPED_FOREVER);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* thr.name -> string
|
|
*
|
|
* show the name of the thread.
|
|
*/
|
|
|
|
static VALUE
|
|
rb_thread_getname(VALUE thread)
|
|
{
|
|
return rb_thread_ptr(thread)->name;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* thr.name=(name) -> string
|
|
*
|
|
* set given name to the ruby thread.
|
|
* On some platform, it may set the name to pthread and/or kernel.
|
|
*/
|
|
|
|
static VALUE
|
|
rb_thread_setname(VALUE thread, VALUE name)
|
|
{
|
|
rb_thread_t *target_th = rb_thread_ptr(thread);
|
|
|
|
if (!NIL_P(name)) {
|
|
rb_encoding *enc;
|
|
StringValueCStr(name);
|
|
enc = rb_enc_get(name);
|
|
if (!rb_enc_asciicompat(enc)) {
|
|
rb_raise(rb_eArgError, "ASCII incompatible encoding (%s)",
|
|
rb_enc_name(enc));
|
|
}
|
|
name = rb_str_new_frozen(name);
|
|
}
|
|
target_th->name = name;
|
|
if (threadptr_initialized(target_th)) {
|
|
native_set_another_thread_name(target_th->nt->thread_id, name);
|
|
}
|
|
return name;
|
|
}
|
|
|
|
#if USE_NATIVE_THREAD_NATIVE_THREAD_ID
|
|
/*
|
|
* call-seq:
|
|
* thr.native_thread_id -> integer
|
|
*
|
|
* Return the native thread ID which is used by the Ruby thread.
|
|
*
|
|
* The ID depends on the OS. (not POSIX thread ID returned by pthread_self(3))
|
|
* * On Linux it is TID returned by gettid(2).
|
|
* * On macOS it is the system-wide unique integral ID of thread returned
|
|
* by pthread_threadid_np(3).
|
|
* * On FreeBSD it is the unique integral ID of the thread returned by
|
|
* pthread_getthreadid_np(3).
|
|
* * On Windows it is the thread identifier returned by GetThreadId().
|
|
* * On other platforms, it raises NotImplementedError.
|
|
*
|
|
* NOTE:
|
|
* If the thread is not associated yet or already deassociated with a native
|
|
* thread, it returns _nil_.
|
|
* If the Ruby implementation uses M:N thread model, the ID may change
|
|
* depending on the timing.
|
|
*/
|
|
|
|
static VALUE
|
|
rb_thread_native_thread_id(VALUE thread)
|
|
{
|
|
rb_thread_t *target_th = rb_thread_ptr(thread);
|
|
if (rb_threadptr_dead(target_th)) return Qnil;
|
|
return native_thread_native_thread_id(target_th);
|
|
}
|
|
#else
|
|
# define rb_thread_native_thread_id rb_f_notimplement
|
|
#endif
|
|
|
|
/*
|
|
* call-seq:
|
|
* thr.to_s -> string
|
|
*
|
|
* Dump the name, id, and status of _thr_ to a string.
|
|
*/
|
|
|
|
static VALUE
|
|
rb_thread_to_s(VALUE thread)
|
|
{
|
|
VALUE cname = rb_class_path(rb_obj_class(thread));
|
|
rb_thread_t *target_th = rb_thread_ptr(thread);
|
|
const char *status;
|
|
VALUE str, loc;
|
|
|
|
status = thread_status_name(target_th, TRUE);
|
|
str = rb_sprintf("#<%"PRIsVALUE":%p", cname, (void *)thread);
|
|
if (!NIL_P(target_th->name)) {
|
|
rb_str_catf(str, "@%"PRIsVALUE, target_th->name);
|
|
}
|
|
if ((loc = threadptr_invoke_proc_location(target_th)) != Qnil) {
|
|
rb_str_catf(str, " %"PRIsVALUE":%"PRIsVALUE,
|
|
RARRAY_AREF(loc, 0), RARRAY_AREF(loc, 1));
|
|
}
|
|
rb_str_catf(str, " %s>", status);
|
|
|
|
return str;
|
|
}
|
|
|
|
/* variables for recursive traversals */
|
|
#define recursive_key id__recursive_key__
|
|
|
|
static VALUE
|
|
threadptr_local_aref(rb_thread_t *th, ID id)
|
|
{
|
|
if (id == recursive_key) {
|
|
return th->ec->local_storage_recursive_hash;
|
|
}
|
|
else {
|
|
VALUE val;
|
|
struct rb_id_table *local_storage = th->ec->local_storage;
|
|
|
|
if (local_storage != NULL && rb_id_table_lookup(local_storage, id, &val)) {
|
|
return val;
|
|
}
|
|
else {
|
|
return Qnil;
|
|
}
|
|
}
|
|
}
|
|
|
|
VALUE
|
|
rb_thread_local_aref(VALUE thread, ID id)
|
|
{
|
|
return threadptr_local_aref(rb_thread_ptr(thread), id);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* thr[sym] -> obj or nil
|
|
*
|
|
* Attribute Reference---Returns the value of a fiber-local variable (current thread's root fiber
|
|
* if not explicitly inside a Fiber), using either a symbol or a string name.
|
|
* If the specified variable does not exist, returns +nil+.
|
|
*
|
|
* [
|
|
* Thread.new { Thread.current["name"] = "A" },
|
|
* Thread.new { Thread.current[:name] = "B" },
|
|
* Thread.new { Thread.current["name"] = "C" }
|
|
* ].each do |th|
|
|
* th.join
|
|
* puts "#{th.inspect}: #{th[:name]}"
|
|
* end
|
|
*
|
|
* This will produce:
|
|
*
|
|
* #<Thread:0x00000002a54220 dead>: A
|
|
* #<Thread:0x00000002a541a8 dead>: B
|
|
* #<Thread:0x00000002a54130 dead>: C
|
|
*
|
|
* Thread#[] and Thread#[]= are not thread-local but fiber-local.
|
|
* This confusion did not exist in Ruby 1.8 because
|
|
* fibers are only available since Ruby 1.9.
|
|
* Ruby 1.9 chooses that the methods behaves fiber-local to save
|
|
* following idiom for dynamic scope.
|
|
*
|
|
* def meth(newvalue)
|
|
* begin
|
|
* oldvalue = Thread.current[:name]
|
|
* Thread.current[:name] = newvalue
|
|
* yield
|
|
* ensure
|
|
* Thread.current[:name] = oldvalue
|
|
* end
|
|
* end
|
|
*
|
|
* The idiom may not work as dynamic scope if the methods are thread-local
|
|
* and a given block switches fiber.
|
|
*
|
|
* f = Fiber.new {
|
|
* meth(1) {
|
|
* Fiber.yield
|
|
* }
|
|
* }
|
|
* meth(2) {
|
|
* f.resume
|
|
* }
|
|
* f.resume
|
|
* p Thread.current[:name]
|
|
* #=> nil if fiber-local
|
|
* #=> 2 if thread-local (The value 2 is leaked to outside of meth method.)
|
|
*
|
|
* For thread-local variables, please see #thread_variable_get and
|
|
* #thread_variable_set.
|
|
*
|
|
*/
|
|
|
|
static VALUE
|
|
rb_thread_aref(VALUE thread, VALUE key)
|
|
{
|
|
ID id = rb_check_id(&key);
|
|
if (!id) return Qnil;
|
|
return rb_thread_local_aref(thread, id);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* thr.fetch(sym) -> obj
|
|
* thr.fetch(sym) { } -> obj
|
|
* thr.fetch(sym, default) -> obj
|
|
*
|
|
* Returns a fiber-local for the given key. If the key can't be
|
|
* found, there are several options: With no other arguments, it will
|
|
* raise a KeyError exception; if <i>default</i> is given, then that
|
|
* will be returned; if the optional code block is specified, then
|
|
* that will be run and its result returned. See Thread#[] and
|
|
* Hash#fetch.
|
|
*/
|
|
static VALUE
|
|
rb_thread_fetch(int argc, VALUE *argv, VALUE self)
|
|
{
|
|
VALUE key, val;
|
|
ID id;
|
|
rb_thread_t *target_th = rb_thread_ptr(self);
|
|
int block_given;
|
|
|
|
rb_check_arity(argc, 1, 2);
|
|
key = argv[0];
|
|
|
|
block_given = rb_block_given_p();
|
|
if (block_given && argc == 2) {
|
|
rb_warn("block supersedes default value argument");
|
|
}
|
|
|
|
id = rb_check_id(&key);
|
|
|
|
if (id == recursive_key) {
|
|
return target_th->ec->local_storage_recursive_hash;
|
|
}
|
|
else if (id && target_th->ec->local_storage &&
|
|
rb_id_table_lookup(target_th->ec->local_storage, id, &val)) {
|
|
return val;
|
|
}
|
|
else if (block_given) {
|
|
return rb_yield(key);
|
|
}
|
|
else if (argc == 1) {
|
|
rb_key_err_raise(rb_sprintf("key not found: %+"PRIsVALUE, key), self, key);
|
|
}
|
|
else {
|
|
return argv[1];
|
|
}
|
|
}
|
|
|
|
static VALUE
|
|
threadptr_local_aset(rb_thread_t *th, ID id, VALUE val)
|
|
{
|
|
if (id == recursive_key) {
|
|
th->ec->local_storage_recursive_hash = val;
|
|
return val;
|
|
}
|
|
else {
|
|
struct rb_id_table *local_storage = th->ec->local_storage;
|
|
|
|
if (NIL_P(val)) {
|
|
if (!local_storage) return Qnil;
|
|
rb_id_table_delete(local_storage, id);
|
|
return Qnil;
|
|
}
|
|
else {
|
|
if (local_storage == NULL) {
|
|
th->ec->local_storage = local_storage = rb_id_table_create(0);
|
|
}
|
|
rb_id_table_insert(local_storage, id, val);
|
|
return val;
|
|
}
|
|
}
|
|
}
|
|
|
|
VALUE
|
|
rb_thread_local_aset(VALUE thread, ID id, VALUE val)
|
|
{
|
|
if (OBJ_FROZEN(thread)) {
|
|
rb_frozen_error_raise(thread, "can't modify frozen thread locals");
|
|
}
|
|
|
|
return threadptr_local_aset(rb_thread_ptr(thread), id, val);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* thr[sym] = obj -> obj
|
|
*
|
|
* Attribute Assignment---Sets or creates the value of a fiber-local variable,
|
|
* using either a symbol or a string.
|
|
*
|
|
* See also Thread#[].
|
|
*
|
|
* For thread-local variables, please see #thread_variable_set and
|
|
* #thread_variable_get.
|
|
*/
|
|
|
|
static VALUE
|
|
rb_thread_aset(VALUE self, VALUE id, VALUE val)
|
|
{
|
|
return rb_thread_local_aset(self, rb_to_id(id), val);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* thr.thread_variable_get(key) -> obj or nil
|
|
*
|
|
* Returns the value of a thread local variable that has been set. Note that
|
|
* these are different than fiber local values. For fiber local values,
|
|
* please see Thread#[] and Thread#[]=.
|
|
*
|
|
* Thread local values are carried along with threads, and do not respect
|
|
* fibers. For example:
|
|
*
|
|
* Thread.new {
|
|
* Thread.current.thread_variable_set("foo", "bar") # set a thread local
|
|
* Thread.current["foo"] = "bar" # set a fiber local
|
|
*
|
|
* Fiber.new {
|
|
* Fiber.yield [
|
|
* Thread.current.thread_variable_get("foo"), # get the thread local
|
|
* Thread.current["foo"], # get the fiber local
|
|
* ]
|
|
* }.resume
|
|
* }.join.value # => ['bar', nil]
|
|
*
|
|
* The value "bar" is returned for the thread local, where nil is returned
|
|
* for the fiber local. The fiber is executed in the same thread, so the
|
|
* thread local values are available.
|
|
*/
|
|
|
|
static VALUE
|
|
rb_thread_variable_get(VALUE thread, VALUE key)
|
|
{
|
|
VALUE locals;
|
|
|
|
if (LIKELY(!THREAD_LOCAL_STORAGE_INITIALISED_P(thread))) {
|
|
return Qnil;
|
|
}
|
|
locals = rb_thread_local_storage(thread);
|
|
return rb_hash_aref(locals, rb_to_symbol(key));
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* thr.thread_variable_set(key, value)
|
|
*
|
|
* Sets a thread local with +key+ to +value+. Note that these are local to
|
|
* threads, and not to fibers. Please see Thread#thread_variable_get and
|
|
* Thread#[] for more information.
|
|
*/
|
|
|
|
static VALUE
|
|
rb_thread_variable_set(VALUE thread, VALUE key, VALUE val)
|
|
{
|
|
VALUE locals;
|
|
|
|
if (OBJ_FROZEN(thread)) {
|
|
rb_frozen_error_raise(thread, "can't modify frozen thread locals");
|
|
}
|
|
|
|
locals = rb_thread_local_storage(thread);
|
|
return rb_hash_aset(locals, rb_to_symbol(key), val);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* thr.key?(sym) -> true or false
|
|
*
|
|
* Returns +true+ if the given string (or symbol) exists as a fiber-local
|
|
* variable.
|
|
*
|
|
* me = Thread.current
|
|
* me[:oliver] = "a"
|
|
* me.key?(:oliver) #=> true
|
|
* me.key?(:stanley) #=> false
|
|
*/
|
|
|
|
static VALUE
|
|
rb_thread_key_p(VALUE self, VALUE key)
|
|
{
|
|
VALUE val;
|
|
ID id = rb_check_id(&key);
|
|
struct rb_id_table *local_storage = rb_thread_ptr(self)->ec->local_storage;
|
|
|
|
if (!id || local_storage == NULL) {
|
|
return Qfalse;
|
|
}
|
|
return RBOOL(rb_id_table_lookup(local_storage, id, &val));
|
|
}
|
|
|
|
static enum rb_id_table_iterator_result
|
|
thread_keys_i(ID key, VALUE value, void *ary)
|
|
{
|
|
rb_ary_push((VALUE)ary, ID2SYM(key));
|
|
return ID_TABLE_CONTINUE;
|
|
}
|
|
|
|
int
|
|
rb_thread_alone(void)
|
|
{
|
|
// TODO
|
|
return rb_ractor_living_thread_num(GET_RACTOR()) == 1;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* thr.keys -> array
|
|
*
|
|
* Returns an array of the names of the fiber-local variables (as Symbols).
|
|
*
|
|
* thr = Thread.new do
|
|
* Thread.current[:cat] = 'meow'
|
|
* Thread.current["dog"] = 'woof'
|
|
* end
|
|
* thr.join #=> #<Thread:0x401b3f10 dead>
|
|
* thr.keys #=> [:dog, :cat]
|
|
*/
|
|
|
|
static VALUE
|
|
rb_thread_keys(VALUE self)
|
|
{
|
|
struct rb_id_table *local_storage = rb_thread_ptr(self)->ec->local_storage;
|
|
VALUE ary = rb_ary_new();
|
|
|
|
if (local_storage) {
|
|
rb_id_table_foreach(local_storage, thread_keys_i, (void *)ary);
|
|
}
|
|
return ary;
|
|
}
|
|
|
|
static int
|
|
keys_i(VALUE key, VALUE value, VALUE ary)
|
|
{
|
|
rb_ary_push(ary, key);
|
|
return ST_CONTINUE;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* thr.thread_variables -> array
|
|
*
|
|
* Returns an array of the names of the thread-local variables (as Symbols).
|
|
*
|
|
* thr = Thread.new do
|
|
* Thread.current.thread_variable_set(:cat, 'meow')
|
|
* Thread.current.thread_variable_set("dog", 'woof')
|
|
* end
|
|
* thr.join #=> #<Thread:0x401b3f10 dead>
|
|
* thr.thread_variables #=> [:dog, :cat]
|
|
*
|
|
* Note that these are not fiber local variables. Please see Thread#[] and
|
|
* Thread#thread_variable_get for more details.
|
|
*/
|
|
|
|
static VALUE
|
|
rb_thread_variables(VALUE thread)
|
|
{
|
|
VALUE locals;
|
|
VALUE ary;
|
|
|
|
ary = rb_ary_new();
|
|
if (LIKELY(!THREAD_LOCAL_STORAGE_INITIALISED_P(thread))) {
|
|
return ary;
|
|
}
|
|
locals = rb_thread_local_storage(thread);
|
|
rb_hash_foreach(locals, keys_i, ary);
|
|
|
|
return ary;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* thr.thread_variable?(key) -> true or false
|
|
*
|
|
* Returns +true+ if the given string (or symbol) exists as a thread-local
|
|
* variable.
|
|
*
|
|
* me = Thread.current
|
|
* me.thread_variable_set(:oliver, "a")
|
|
* me.thread_variable?(:oliver) #=> true
|
|
* me.thread_variable?(:stanley) #=> false
|
|
*
|
|
* Note that these are not fiber local variables. Please see Thread#[] and
|
|
* Thread#thread_variable_get for more details.
|
|
*/
|
|
|
|
static VALUE
|
|
rb_thread_variable_p(VALUE thread, VALUE key)
|
|
{
|
|
VALUE locals;
|
|
|
|
if (LIKELY(!THREAD_LOCAL_STORAGE_INITIALISED_P(thread))) {
|
|
return Qfalse;
|
|
}
|
|
locals = rb_thread_local_storage(thread);
|
|
|
|
return RBOOL(rb_hash_lookup(locals, rb_to_symbol(key)) != Qnil);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* thr.priority -> integer
|
|
*
|
|
* Returns the priority of <i>thr</i>. Default is inherited from the
|
|
* current thread which creating the new thread, or zero for the
|
|
* initial main thread; higher-priority thread will run more frequently
|
|
* than lower-priority threads (but lower-priority threads can also run).
|
|
*
|
|
* This is just hint for Ruby thread scheduler. It may be ignored on some
|
|
* platform.
|
|
*
|
|
* Thread.current.priority #=> 0
|
|
*/
|
|
|
|
static VALUE
|
|
rb_thread_priority(VALUE thread)
|
|
{
|
|
return INT2NUM(rb_thread_ptr(thread)->priority);
|
|
}
|
|
|
|
|
|
/*
|
|
* call-seq:
|
|
* thr.priority= integer -> thr
|
|
*
|
|
* Sets the priority of <i>thr</i> to <i>integer</i>. Higher-priority threads
|
|
* will run more frequently than lower-priority threads (but lower-priority
|
|
* threads can also run).
|
|
*
|
|
* This is just hint for Ruby thread scheduler. It may be ignored on some
|
|
* platform.
|
|
*
|
|
* count1 = count2 = 0
|
|
* a = Thread.new do
|
|
* loop { count1 += 1 }
|
|
* end
|
|
* a.priority = -1
|
|
*
|
|
* b = Thread.new do
|
|
* loop { count2 += 1 }
|
|
* end
|
|
* b.priority = -2
|
|
* sleep 1 #=> 1
|
|
* count1 #=> 622504
|
|
* count2 #=> 5832
|
|
*/
|
|
|
|
static VALUE
|
|
rb_thread_priority_set(VALUE thread, VALUE prio)
|
|
{
|
|
rb_thread_t *target_th = rb_thread_ptr(thread);
|
|
int priority;
|
|
|
|
#if USE_NATIVE_THREAD_PRIORITY
|
|
target_th->priority = NUM2INT(prio);
|
|
native_thread_apply_priority(th);
|
|
#else
|
|
priority = NUM2INT(prio);
|
|
if (priority > RUBY_THREAD_PRIORITY_MAX) {
|
|
priority = RUBY_THREAD_PRIORITY_MAX;
|
|
}
|
|
else if (priority < RUBY_THREAD_PRIORITY_MIN) {
|
|
priority = RUBY_THREAD_PRIORITY_MIN;
|
|
}
|
|
target_th->priority = (int8_t)priority;
|
|
#endif
|
|
return INT2NUM(target_th->priority);
|
|
}
|
|
|
|
/* for IO */
|
|
|
|
#if defined(NFDBITS) && defined(HAVE_RB_FD_INIT)
|
|
|
|
/*
|
|
* several Unix platforms support file descriptors bigger than FD_SETSIZE
|
|
* in select(2) system call.
|
|
*
|
|
* - Linux 2.2.12 (?)
|
|
* - NetBSD 1.2 (src/sys/kern/sys_generic.c:1.25)
|
|
* select(2) documents how to allocate fd_set dynamically.
|
|
* http://netbsd.gw.com/cgi-bin/man-cgi?select++NetBSD-4.0
|
|
* - FreeBSD 2.2 (src/sys/kern/sys_generic.c:1.19)
|
|
* - OpenBSD 2.0 (src/sys/kern/sys_generic.c:1.4)
|
|
* select(2) documents how to allocate fd_set dynamically.
|
|
* http://www.openbsd.org/cgi-bin/man.cgi?query=select&manpath=OpenBSD+4.4
|
|
* - Solaris 8 has select_large_fdset
|
|
* - Mac OS X 10.7 (Lion)
|
|
* select(2) returns EINVAL if nfds is greater than FD_SET_SIZE and
|
|
* _DARWIN_UNLIMITED_SELECT (or _DARWIN_C_SOURCE) isn't defined.
|
|
* https://developer.apple.com/library/archive/releasenotes/Darwin/SymbolVariantsRelNotes/index.html
|
|
*
|
|
* When fd_set is not big enough to hold big file descriptors,
|
|
* it should be allocated dynamically.
|
|
* Note that this assumes fd_set is structured as bitmap.
|
|
*
|
|
* rb_fd_init allocates the memory.
|
|
* rb_fd_term free the memory.
|
|
* rb_fd_set may re-allocates bitmap.
|
|
*
|
|
* So rb_fd_set doesn't reject file descriptors bigger than FD_SETSIZE.
|
|
*/
|
|
|
|
void
|
|
rb_fd_init(rb_fdset_t *fds)
|
|
{
|
|
fds->maxfd = 0;
|
|
fds->fdset = ALLOC(fd_set);
|
|
FD_ZERO(fds->fdset);
|
|
}
|
|
|
|
void
|
|
rb_fd_init_copy(rb_fdset_t *dst, rb_fdset_t *src)
|
|
{
|
|
size_t size = howmany(rb_fd_max(src), NFDBITS) * sizeof(fd_mask);
|
|
|
|
if (size < sizeof(fd_set))
|
|
size = sizeof(fd_set);
|
|
dst->maxfd = src->maxfd;
|
|
dst->fdset = xmalloc(size);
|
|
memcpy(dst->fdset, src->fdset, size);
|
|
}
|
|
|
|
void
|
|
rb_fd_term(rb_fdset_t *fds)
|
|
{
|
|
if (fds->fdset) xfree(fds->fdset);
|
|
fds->maxfd = 0;
|
|
fds->fdset = 0;
|
|
}
|
|
|
|
void
|
|
rb_fd_zero(rb_fdset_t *fds)
|
|
{
|
|
if (fds->fdset)
|
|
MEMZERO(fds->fdset, fd_mask, howmany(fds->maxfd, NFDBITS));
|
|
}
|
|
|
|
static void
|
|
rb_fd_resize(int n, rb_fdset_t *fds)
|
|
{
|
|
size_t m = howmany(n + 1, NFDBITS) * sizeof(fd_mask);
|
|
size_t o = howmany(fds->maxfd, NFDBITS) * sizeof(fd_mask);
|
|
|
|
if (m < sizeof(fd_set)) m = sizeof(fd_set);
|
|
if (o < sizeof(fd_set)) o = sizeof(fd_set);
|
|
|
|
if (m > o) {
|
|
fds->fdset = xrealloc(fds->fdset, m);
|
|
memset((char *)fds->fdset + o, 0, m - o);
|
|
}
|
|
if (n >= fds->maxfd) fds->maxfd = n + 1;
|
|
}
|
|
|
|
void
|
|
rb_fd_set(int n, rb_fdset_t *fds)
|
|
{
|
|
rb_fd_resize(n, fds);
|
|
FD_SET(n, fds->fdset);
|
|
}
|
|
|
|
void
|
|
rb_fd_clr(int n, rb_fdset_t *fds)
|
|
{
|
|
if (n >= fds->maxfd) return;
|
|
FD_CLR(n, fds->fdset);
|
|
}
|
|
|
|
int
|
|
rb_fd_isset(int n, const rb_fdset_t *fds)
|
|
{
|
|
if (n >= fds->maxfd) return 0;
|
|
return FD_ISSET(n, fds->fdset) != 0; /* "!= 0" avoids FreeBSD PR 91421 */
|
|
}
|
|
|
|
void
|
|
rb_fd_copy(rb_fdset_t *dst, const fd_set *src, int max)
|
|
{
|
|
size_t size = howmany(max, NFDBITS) * sizeof(fd_mask);
|
|
|
|
if (size < sizeof(fd_set)) size = sizeof(fd_set);
|
|
dst->maxfd = max;
|
|
dst->fdset = xrealloc(dst->fdset, size);
|
|
memcpy(dst->fdset, src, size);
|
|
}
|
|
|
|
void
|
|
rb_fd_dup(rb_fdset_t *dst, const rb_fdset_t *src)
|
|
{
|
|
size_t size = howmany(rb_fd_max(src), NFDBITS) * sizeof(fd_mask);
|
|
|
|
if (size < sizeof(fd_set))
|
|
size = sizeof(fd_set);
|
|
dst->maxfd = src->maxfd;
|
|
dst->fdset = xrealloc(dst->fdset, size);
|
|
memcpy(dst->fdset, src->fdset, size);
|
|
}
|
|
|
|
int
|
|
rb_fd_select(int n, rb_fdset_t *readfds, rb_fdset_t *writefds, rb_fdset_t *exceptfds, struct timeval *timeout)
|
|
{
|
|
fd_set *r = NULL, *w = NULL, *e = NULL;
|
|
if (readfds) {
|
|
rb_fd_resize(n - 1, readfds);
|
|
r = rb_fd_ptr(readfds);
|
|
}
|
|
if (writefds) {
|
|
rb_fd_resize(n - 1, writefds);
|
|
w = rb_fd_ptr(writefds);
|
|
}
|
|
if (exceptfds) {
|
|
rb_fd_resize(n - 1, exceptfds);
|
|
e = rb_fd_ptr(exceptfds);
|
|
}
|
|
return select(n, r, w, e, timeout);
|
|
}
|
|
|
|
#define rb_fd_no_init(fds) ((void)((fds)->fdset = 0), (void)((fds)->maxfd = 0))
|
|
|
|
#undef FD_ZERO
|
|
#undef FD_SET
|
|
#undef FD_CLR
|
|
#undef FD_ISSET
|
|
|
|
#define FD_ZERO(f) rb_fd_zero(f)
|
|
#define FD_SET(i, f) rb_fd_set((i), (f))
|
|
#define FD_CLR(i, f) rb_fd_clr((i), (f))
|
|
#define FD_ISSET(i, f) rb_fd_isset((i), (f))
|
|
|
|
#elif defined(_WIN32)
|
|
|
|
void
|
|
rb_fd_init(rb_fdset_t *set)
|
|
{
|
|
set->capa = FD_SETSIZE;
|
|
set->fdset = ALLOC(fd_set);
|
|
FD_ZERO(set->fdset);
|
|
}
|
|
|
|
void
|
|
rb_fd_init_copy(rb_fdset_t *dst, rb_fdset_t *src)
|
|
{
|
|
rb_fd_init(dst);
|
|
rb_fd_dup(dst, src);
|
|
}
|
|
|
|
void
|
|
rb_fd_term(rb_fdset_t *set)
|
|
{
|
|
xfree(set->fdset);
|
|
set->fdset = NULL;
|
|
set->capa = 0;
|
|
}
|
|
|
|
void
|
|
rb_fd_set(int fd, rb_fdset_t *set)
|
|
{
|
|
unsigned int i;
|
|
SOCKET s = rb_w32_get_osfhandle(fd);
|
|
|
|
for (i = 0; i < set->fdset->fd_count; i++) {
|
|
if (set->fdset->fd_array[i] == s) {
|
|
return;
|
|
}
|
|
}
|
|
if (set->fdset->fd_count >= (unsigned)set->capa) {
|
|
set->capa = (set->fdset->fd_count / FD_SETSIZE + 1) * FD_SETSIZE;
|
|
set->fdset =
|
|
rb_xrealloc_mul_add(
|
|
set->fdset, set->capa, sizeof(SOCKET), sizeof(unsigned int));
|
|
}
|
|
set->fdset->fd_array[set->fdset->fd_count++] = s;
|
|
}
|
|
|
|
#undef FD_ZERO
|
|
#undef FD_SET
|
|
#undef FD_CLR
|
|
#undef FD_ISSET
|
|
|
|
#define FD_ZERO(f) rb_fd_zero(f)
|
|
#define FD_SET(i, f) rb_fd_set((i), (f))
|
|
#define FD_CLR(i, f) rb_fd_clr((i), (f))
|
|
#define FD_ISSET(i, f) rb_fd_isset((i), (f))
|
|
|
|
#define rb_fd_no_init(fds) (void)((fds)->fdset = 0)
|
|
|
|
#endif
|
|
|
|
#ifndef rb_fd_no_init
|
|
#define rb_fd_no_init(fds) (void)(fds)
|
|
#endif
|
|
|
|
static int
|
|
wait_retryable(int *result, int errnum, rb_hrtime_t *rel, rb_hrtime_t end)
|
|
{
|
|
if (*result < 0) {
|
|
switch (errnum) {
|
|
case EINTR:
|
|
#ifdef ERESTART
|
|
case ERESTART:
|
|
#endif
|
|
*result = 0;
|
|
if (rel && hrtime_update_expire(rel, end)) {
|
|
*rel = 0;
|
|
}
|
|
return TRUE;
|
|
}
|
|
return FALSE;
|
|
}
|
|
else if (*result == 0) {
|
|
/* check for spurious wakeup */
|
|
if (rel) {
|
|
return !hrtime_update_expire(rel, end);
|
|
}
|
|
return TRUE;
|
|
}
|
|
return FALSE;
|
|
}
|
|
|
|
struct select_set {
|
|
int max;
|
|
int sigwait_fd;
|
|
rb_thread_t *th;
|
|
rb_fdset_t *rset;
|
|
rb_fdset_t *wset;
|
|
rb_fdset_t *eset;
|
|
rb_fdset_t orig_rset;
|
|
rb_fdset_t orig_wset;
|
|
rb_fdset_t orig_eset;
|
|
struct timeval *timeout;
|
|
};
|
|
|
|
static VALUE
|
|
select_set_free(VALUE p)
|
|
{
|
|
struct select_set *set = (struct select_set *)p;
|
|
|
|
if (set->sigwait_fd >= 0) {
|
|
rb_sigwait_fd_put(set->th, set->sigwait_fd);
|
|
rb_sigwait_fd_migrate(set->th->vm);
|
|
}
|
|
|
|
rb_fd_term(&set->orig_rset);
|
|
rb_fd_term(&set->orig_wset);
|
|
rb_fd_term(&set->orig_eset);
|
|
|
|
return Qfalse;
|
|
}
|
|
|
|
static const rb_hrtime_t *
|
|
sigwait_timeout(rb_thread_t *th, int sigwait_fd, const rb_hrtime_t *orig,
|
|
int *drained_p)
|
|
{
|
|
static const rb_hrtime_t quantum = TIME_QUANTUM_USEC * 1000;
|
|
|
|
if (sigwait_fd >= 0 && (!ubf_threads_empty() || BUSY_WAIT_SIGNALS)) {
|
|
*drained_p = check_signals_nogvl(th, sigwait_fd);
|
|
if (!orig || *orig > quantum)
|
|
return &quantum;
|
|
}
|
|
|
|
return orig;
|
|
}
|
|
|
|
#define sigwait_signals_fd(result, cond, sigwait_fd) \
|
|
(result > 0 && (cond) ? (result--, (sigwait_fd)) : -1)
|
|
|
|
static VALUE
|
|
do_select(VALUE p)
|
|
{
|
|
struct select_set *set = (struct select_set *)p;
|
|
int result = 0;
|
|
int lerrno;
|
|
rb_hrtime_t *to, rel, end = 0;
|
|
|
|
timeout_prepare(&to, &rel, &end, set->timeout);
|
|
#define restore_fdset(dst, src) \
|
|
((dst) ? rb_fd_dup(dst, src) : (void)0)
|
|
#define do_select_update() \
|
|
(restore_fdset(set->rset, &set->orig_rset), \
|
|
restore_fdset(set->wset, &set->orig_wset), \
|
|
restore_fdset(set->eset, &set->orig_eset), \
|
|
TRUE)
|
|
|
|
do {
|
|
int drained;
|
|
lerrno = 0;
|
|
|
|
BLOCKING_REGION(set->th, {
|
|
const rb_hrtime_t *sto;
|
|
struct timeval tv;
|
|
|
|
sto = sigwait_timeout(set->th, set->sigwait_fd, to, &drained);
|
|
if (!RUBY_VM_INTERRUPTED(set->th->ec)) {
|
|
result = native_fd_select(set->max, set->rset, set->wset,
|
|
set->eset,
|
|
rb_hrtime2timeval(&tv, sto), set->th);
|
|
if (result < 0) lerrno = errno;
|
|
}
|
|
}, set->sigwait_fd >= 0 ? ubf_sigwait : ubf_select, set->th, TRUE);
|
|
|
|
if (set->sigwait_fd >= 0) {
|
|
int fd = sigwait_signals_fd(result,
|
|
rb_fd_isset(set->sigwait_fd, set->rset),
|
|
set->sigwait_fd);
|
|
(void)check_signals_nogvl(set->th, fd);
|
|
}
|
|
|
|
RUBY_VM_CHECK_INTS_BLOCKING(set->th->ec); /* may raise */
|
|
} while (wait_retryable(&result, lerrno, to, end) && do_select_update());
|
|
|
|
if (result < 0) {
|
|
errno = lerrno;
|
|
}
|
|
|
|
return (VALUE)result;
|
|
}
|
|
|
|
static rb_fdset_t *
|
|
init_set_fd(int fd, rb_fdset_t *fds)
|
|
{
|
|
if (fd < 0) {
|
|
return 0;
|
|
}
|
|
rb_fd_init(fds);
|
|
rb_fd_set(fd, fds);
|
|
|
|
return fds;
|
|
}
|
|
|
|
int
|
|
rb_thread_fd_select(int max, rb_fdset_t * read, rb_fdset_t * write, rb_fdset_t * except,
|
|
struct timeval *timeout)
|
|
{
|
|
struct select_set set;
|
|
|
|
set.th = GET_THREAD();
|
|
RUBY_VM_CHECK_INTS_BLOCKING(set.th->ec);
|
|
set.max = max;
|
|
set.rset = read;
|
|
set.wset = write;
|
|
set.eset = except;
|
|
set.timeout = timeout;
|
|
|
|
if (!set.rset && !set.wset && !set.eset) {
|
|
if (!timeout) {
|
|
rb_thread_sleep_forever();
|
|
return 0;
|
|
}
|
|
rb_thread_wait_for(*timeout);
|
|
return 0;
|
|
}
|
|
|
|
set.sigwait_fd = rb_sigwait_fd_get(set.th);
|
|
if (set.sigwait_fd >= 0) {
|
|
if (set.rset)
|
|
rb_fd_set(set.sigwait_fd, set.rset);
|
|
else
|
|
set.rset = init_set_fd(set.sigwait_fd, &set.orig_rset);
|
|
if (set.sigwait_fd >= set.max) {
|
|
set.max = set.sigwait_fd + 1;
|
|
}
|
|
}
|
|
#define fd_init_copy(f) do { \
|
|
if (set.f) { \
|
|
rb_fd_resize(set.max - 1, set.f); \
|
|
if (&set.orig_##f != set.f) { /* sigwait_fd */ \
|
|
rb_fd_init_copy(&set.orig_##f, set.f); \
|
|
} \
|
|
} \
|
|
else { \
|
|
rb_fd_no_init(&set.orig_##f); \
|
|
} \
|
|
} while (0)
|
|
fd_init_copy(rset);
|
|
fd_init_copy(wset);
|
|
fd_init_copy(eset);
|
|
#undef fd_init_copy
|
|
|
|
return (int)rb_ensure(do_select, (VALUE)&set, select_set_free, (VALUE)&set);
|
|
}
|
|
|
|
#ifdef USE_POLL
|
|
|
|
/* The same with linux kernel. TODO: make platform independent definition. */
|
|
#define POLLIN_SET (POLLRDNORM | POLLRDBAND | POLLIN | POLLHUP | POLLERR)
|
|
#define POLLOUT_SET (POLLWRBAND | POLLWRNORM | POLLOUT | POLLERR)
|
|
#define POLLEX_SET (POLLPRI)
|
|
|
|
#ifndef POLLERR_SET /* defined for FreeBSD for now */
|
|
# define POLLERR_SET (0)
|
|
#endif
|
|
|
|
/*
|
|
* returns a mask of events
|
|
*/
|
|
int
|
|
rb_thread_wait_for_single_fd(int fd, int events, struct timeval *timeout)
|
|
{
|
|
struct pollfd fds[2];
|
|
int result = 0;
|
|
int drained;
|
|
nfds_t nfds;
|
|
rb_unblock_function_t *ubf;
|
|
struct waiting_fd wfd;
|
|
int state;
|
|
volatile int lerrno;
|
|
|
|
wfd.th = GET_THREAD();
|
|
wfd.fd = fd;
|
|
|
|
RB_VM_LOCK_ENTER();
|
|
{
|
|
ccan_list_add(&wfd.th->vm->waiting_fds, &wfd.wfd_node);
|
|
}
|
|
RB_VM_LOCK_LEAVE();
|
|
|
|
EC_PUSH_TAG(wfd.th->ec);
|
|
if ((state = EC_EXEC_TAG()) == TAG_NONE) {
|
|
rb_hrtime_t *to, rel, end = 0;
|
|
RUBY_VM_CHECK_INTS_BLOCKING(wfd.th->ec);
|
|
timeout_prepare(&to, &rel, &end, timeout);
|
|
fds[0].fd = fd;
|
|
fds[0].events = (short)events;
|
|
fds[0].revents = 0;
|
|
do {
|
|
fds[1].fd = rb_sigwait_fd_get(wfd.th);
|
|
|
|
if (fds[1].fd >= 0) {
|
|
fds[1].events = POLLIN;
|
|
fds[1].revents = 0;
|
|
nfds = 2;
|
|
ubf = ubf_sigwait;
|
|
}
|
|
else {
|
|
nfds = 1;
|
|
ubf = ubf_select;
|
|
}
|
|
|
|
lerrno = 0;
|
|
BLOCKING_REGION(wfd.th, {
|
|
const rb_hrtime_t *sto;
|
|
struct timespec ts;
|
|
|
|
sto = sigwait_timeout(wfd.th, fds[1].fd, to, &drained);
|
|
if (!RUBY_VM_INTERRUPTED(wfd.th->ec)) {
|
|
result = ppoll(fds, nfds, rb_hrtime2timespec(&ts, sto), 0);
|
|
if (result < 0) lerrno = errno;
|
|
}
|
|
}, ubf, wfd.th, TRUE);
|
|
|
|
if (fds[1].fd >= 0) {
|
|
int fd1 = sigwait_signals_fd(result, fds[1].revents, fds[1].fd);
|
|
(void)check_signals_nogvl(wfd.th, fd1);
|
|
rb_sigwait_fd_put(wfd.th, fds[1].fd);
|
|
rb_sigwait_fd_migrate(wfd.th->vm);
|
|
}
|
|
RUBY_VM_CHECK_INTS_BLOCKING(wfd.th->ec);
|
|
} while (wait_retryable(&result, lerrno, to, end));
|
|
}
|
|
EC_POP_TAG();
|
|
|
|
RB_VM_LOCK_ENTER();
|
|
{
|
|
ccan_list_del(&wfd.wfd_node);
|
|
}
|
|
RB_VM_LOCK_LEAVE();
|
|
|
|
if (state) {
|
|
EC_JUMP_TAG(wfd.th->ec, state);
|
|
}
|
|
|
|
if (result < 0) {
|
|
errno = lerrno;
|
|
return -1;
|
|
}
|
|
|
|
if (fds[0].revents & POLLNVAL) {
|
|
errno = EBADF;
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* POLLIN, POLLOUT have a different meanings from select(2)'s read/write bit.
|
|
* Therefore we need to fix it up.
|
|
*/
|
|
result = 0;
|
|
if (fds[0].revents & POLLIN_SET)
|
|
result |= RB_WAITFD_IN;
|
|
if (fds[0].revents & POLLOUT_SET)
|
|
result |= RB_WAITFD_OUT;
|
|
if (fds[0].revents & POLLEX_SET)
|
|
result |= RB_WAITFD_PRI;
|
|
|
|
/* all requested events are ready if there is an error */
|
|
if (fds[0].revents & POLLERR_SET)
|
|
result |= events;
|
|
|
|
return result;
|
|
}
|
|
#else /* ! USE_POLL - implement rb_io_poll_fd() using select() */
|
|
struct select_args {
|
|
union {
|
|
int fd;
|
|
int error;
|
|
} as;
|
|
rb_fdset_t *read;
|
|
rb_fdset_t *write;
|
|
rb_fdset_t *except;
|
|
struct waiting_fd wfd;
|
|
struct timeval *tv;
|
|
};
|
|
|
|
static VALUE
|
|
select_single(VALUE ptr)
|
|
{
|
|
struct select_args *args = (struct select_args *)ptr;
|
|
int r;
|
|
|
|
r = rb_thread_fd_select(args->as.fd + 1,
|
|
args->read, args->write, args->except, args->tv);
|
|
if (r == -1)
|
|
args->as.error = errno;
|
|
if (r > 0) {
|
|
r = 0;
|
|
if (args->read && rb_fd_isset(args->as.fd, args->read))
|
|
r |= RB_WAITFD_IN;
|
|
if (args->write && rb_fd_isset(args->as.fd, args->write))
|
|
r |= RB_WAITFD_OUT;
|
|
if (args->except && rb_fd_isset(args->as.fd, args->except))
|
|
r |= RB_WAITFD_PRI;
|
|
}
|
|
return (VALUE)r;
|
|
}
|
|
|
|
static VALUE
|
|
select_single_cleanup(VALUE ptr)
|
|
{
|
|
struct select_args *args = (struct select_args *)ptr;
|
|
|
|
ccan_list_del(&args->wfd.wfd_node);
|
|
if (args->read) rb_fd_term(args->read);
|
|
if (args->write) rb_fd_term(args->write);
|
|
if (args->except) rb_fd_term(args->except);
|
|
|
|
return (VALUE)-1;
|
|
}
|
|
|
|
int
|
|
rb_thread_wait_for_single_fd(int fd, int events, struct timeval *timeout)
|
|
{
|
|
rb_fdset_t rfds, wfds, efds;
|
|
struct select_args args;
|
|
int r;
|
|
VALUE ptr = (VALUE)&args;
|
|
|
|
args.as.fd = fd;
|
|
args.read = (events & RB_WAITFD_IN) ? init_set_fd(fd, &rfds) : NULL;
|
|
args.write = (events & RB_WAITFD_OUT) ? init_set_fd(fd, &wfds) : NULL;
|
|
args.except = (events & RB_WAITFD_PRI) ? init_set_fd(fd, &efds) : NULL;
|
|
args.tv = timeout;
|
|
args.wfd.fd = fd;
|
|
args.wfd.th = GET_THREAD();
|
|
|
|
RB_VM_LOCK_ENTER();
|
|
{
|
|
ccan_list_add(&args.wfd.th->vm->waiting_fds, &args.wfd.wfd_node);
|
|
}
|
|
RB_VM_LOCK_LEAVE();
|
|
|
|
r = (int)rb_ensure(select_single, ptr, select_single_cleanup, ptr);
|
|
if (r == -1)
|
|
errno = args.as.error;
|
|
|
|
return r;
|
|
}
|
|
#endif /* ! USE_POLL */
|
|
|
|
/*
|
|
* for GC
|
|
*/
|
|
|
|
#ifdef USE_CONSERVATIVE_STACK_END
|
|
void
|
|
rb_gc_set_stack_end(VALUE **stack_end_p)
|
|
{
|
|
VALUE stack_end;
|
|
*stack_end_p = &stack_end;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
*
|
|
*/
|
|
|
|
void
|
|
rb_threadptr_check_signal(rb_thread_t *mth)
|
|
{
|
|
/* mth must be main_thread */
|
|
if (rb_signal_buff_size() > 0) {
|
|
/* wakeup main thread */
|
|
threadptr_trap_interrupt(mth);
|
|
}
|
|
}
|
|
|
|
static void
|
|
async_bug_fd(const char *mesg, int errno_arg, int fd)
|
|
{
|
|
char buff[64];
|
|
size_t n = strlcpy(buff, mesg, sizeof(buff));
|
|
if (n < sizeof(buff)-3) {
|
|
ruby_snprintf(buff+n, sizeof(buff)-n, "(%d)", fd);
|
|
}
|
|
rb_async_bug_errno(buff, errno_arg);
|
|
}
|
|
|
|
/* VM-dependent API is not available for this function */
|
|
static int
|
|
consume_communication_pipe(int fd)
|
|
{
|
|
#if USE_EVENTFD
|
|
uint64_t buff[1];
|
|
#else
|
|
/* buffer can be shared because no one refers to them. */
|
|
static char buff[1024];
|
|
#endif
|
|
ssize_t result;
|
|
int ret = FALSE; /* for rb_sigwait_sleep */
|
|
|
|
/*
|
|
* disarm UBF_TIMER before we read, because it can become
|
|
* re-armed at any time via sighandler and the pipe will refill
|
|
* We can disarm it because this thread is now processing signals
|
|
* and we do not want unnecessary SIGVTALRM
|
|
*/
|
|
ubf_timer_disarm();
|
|
|
|
while (1) {
|
|
result = read(fd, buff, sizeof(buff));
|
|
if (result > 0) {
|
|
ret = TRUE;
|
|
if (USE_EVENTFD || result < (ssize_t)sizeof(buff)) {
|
|
return ret;
|
|
}
|
|
}
|
|
else if (result == 0) {
|
|
return ret;
|
|
}
|
|
else if (result < 0) {
|
|
int e = errno;
|
|
switch (e) {
|
|
case EINTR:
|
|
continue; /* retry */
|
|
case EAGAIN:
|
|
#if defined(EWOULDBLOCK) && EWOULDBLOCK != EAGAIN
|
|
case EWOULDBLOCK:
|
|
#endif
|
|
return ret;
|
|
default:
|
|
async_bug_fd("consume_communication_pipe: read", e, fd);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static int
|
|
check_signals_nogvl(rb_thread_t *th, int sigwait_fd)
|
|
{
|
|
rb_vm_t *vm = GET_VM(); /* th may be 0 */
|
|
int ret = sigwait_fd >= 0 ? consume_communication_pipe(sigwait_fd) : FALSE;
|
|
ubf_wakeup_all_threads();
|
|
ruby_sigchld_handler(vm);
|
|
if (rb_signal_buff_size()) {
|
|
if (th == vm->ractor.main_thread) {
|
|
/* no need to lock + wakeup if already in main thread */
|
|
RUBY_VM_SET_TRAP_INTERRUPT(th->ec);
|
|
}
|
|
else {
|
|
threadptr_trap_interrupt(vm->ractor.main_thread);
|
|
}
|
|
ret = TRUE; /* for SIGCHLD_LOSSY && rb_sigwait_sleep */
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
void
|
|
rb_thread_stop_timer_thread(void)
|
|
{
|
|
if (TIMER_THREAD_CREATED_P() && native_stop_timer_thread()) {
|
|
native_reset_timer_thread();
|
|
}
|
|
}
|
|
|
|
void
|
|
rb_thread_reset_timer_thread(void)
|
|
{
|
|
native_reset_timer_thread();
|
|
}
|
|
|
|
void
|
|
rb_thread_start_timer_thread(void)
|
|
{
|
|
system_working = 1;
|
|
rb_thread_create_timer_thread();
|
|
}
|
|
|
|
static int
|
|
clear_coverage_i(st_data_t key, st_data_t val, st_data_t dummy)
|
|
{
|
|
int i;
|
|
VALUE coverage = (VALUE)val;
|
|
VALUE lines = RARRAY_AREF(coverage, COVERAGE_INDEX_LINES);
|
|
VALUE branches = RARRAY_AREF(coverage, COVERAGE_INDEX_BRANCHES);
|
|
|
|
if (lines) {
|
|
if (GET_VM()->coverage_mode & COVERAGE_TARGET_ONESHOT_LINES) {
|
|
rb_ary_clear(lines);
|
|
}
|
|
else {
|
|
int i;
|
|
for (i = 0; i < RARRAY_LEN(lines); i++) {
|
|
if (RARRAY_AREF(lines, i) != Qnil)
|
|
RARRAY_ASET(lines, i, INT2FIX(0));
|
|
}
|
|
}
|
|
}
|
|
if (branches) {
|
|
VALUE counters = RARRAY_AREF(branches, 1);
|
|
for (i = 0; i < RARRAY_LEN(counters); i++) {
|
|
RARRAY_ASET(counters, i, INT2FIX(0));
|
|
}
|
|
}
|
|
|
|
return ST_CONTINUE;
|
|
}
|
|
|
|
void
|
|
rb_clear_coverages(void)
|
|
{
|
|
VALUE coverages = rb_get_coverages();
|
|
if (RTEST(coverages)) {
|
|
rb_hash_foreach(coverages, clear_coverage_i, 0);
|
|
}
|
|
}
|
|
|
|
#if defined(HAVE_WORKING_FORK)
|
|
|
|
static void
|
|
rb_thread_atfork_internal(rb_thread_t *th, void (*atfork)(rb_thread_t *, const rb_thread_t *))
|
|
{
|
|
rb_thread_t *i = 0;
|
|
rb_vm_t *vm = th->vm;
|
|
rb_ractor_t *r = th->ractor;
|
|
vm->ractor.main_ractor = r;
|
|
vm->ractor.main_thread = th;
|
|
r->threads.main = th;
|
|
r->status_ = ractor_created;
|
|
|
|
thread_sched_atfork(TH_SCHED(th));
|
|
ubf_list_atfork();
|
|
|
|
// OK. Only this thread accesses:
|
|
ccan_list_for_each(&vm->ractor.set, r, vmlr_node) {
|
|
ccan_list_for_each(&r->threads.set, i, lt_node) {
|
|
atfork(i, th);
|
|
}
|
|
}
|
|
rb_vm_living_threads_init(vm);
|
|
|
|
rb_ractor_atfork(vm, th);
|
|
|
|
/* may be held by MJIT threads in parent */
|
|
rb_native_mutex_initialize(&vm->waitpid_lock);
|
|
rb_native_mutex_initialize(&vm->workqueue_lock);
|
|
|
|
/* may be held by any thread in parent */
|
|
rb_native_mutex_initialize(&th->interrupt_lock);
|
|
|
|
vm->fork_gen++;
|
|
rb_ractor_sleeper_threads_clear(th->ractor);
|
|
rb_clear_coverages();
|
|
|
|
VM_ASSERT(vm->ractor.blocking_cnt == 0);
|
|
VM_ASSERT(vm->ractor.cnt == 1);
|
|
}
|
|
|
|
static void
|
|
terminate_atfork_i(rb_thread_t *th, const rb_thread_t *current_th)
|
|
{
|
|
if (th != current_th) {
|
|
rb_mutex_abandon_keeping_mutexes(th);
|
|
rb_mutex_abandon_locking_mutex(th);
|
|
thread_cleanup_func(th, TRUE);
|
|
}
|
|
}
|
|
|
|
void rb_fiber_atfork(rb_thread_t *);
|
|
void
|
|
rb_thread_atfork(void)
|
|
{
|
|
rb_thread_t *th = GET_THREAD();
|
|
rb_thread_atfork_internal(th, terminate_atfork_i);
|
|
th->join_list = NULL;
|
|
rb_fiber_atfork(th);
|
|
|
|
/* We don't want reproduce CVE-2003-0900. */
|
|
rb_reset_random_seed();
|
|
|
|
/* For child, starting MJIT worker thread in this place which is safer than immediately after `after_fork_ruby`. */
|
|
mjit_child_after_fork();
|
|
}
|
|
|
|
static void
|
|
terminate_atfork_before_exec_i(rb_thread_t *th, const rb_thread_t *current_th)
|
|
{
|
|
if (th != current_th) {
|
|
thread_cleanup_func_before_exec(th);
|
|
}
|
|
}
|
|
|
|
void
|
|
rb_thread_atfork_before_exec(void)
|
|
{
|
|
rb_thread_t *th = GET_THREAD();
|
|
rb_thread_atfork_internal(th, terminate_atfork_before_exec_i);
|
|
}
|
|
#else
|
|
void
|
|
rb_thread_atfork(void)
|
|
{
|
|
}
|
|
|
|
void
|
|
rb_thread_atfork_before_exec(void)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
struct thgroup {
|
|
int enclosed;
|
|
VALUE group;
|
|
};
|
|
|
|
static size_t
|
|
thgroup_memsize(const void *ptr)
|
|
{
|
|
return sizeof(struct thgroup);
|
|
}
|
|
|
|
static const rb_data_type_t thgroup_data_type = {
|
|
"thgroup",
|
|
{0, RUBY_TYPED_DEFAULT_FREE, thgroup_memsize,},
|
|
0, 0, RUBY_TYPED_FREE_IMMEDIATELY
|
|
};
|
|
|
|
/*
|
|
* Document-class: ThreadGroup
|
|
*
|
|
* ThreadGroup provides a means of keeping track of a number of threads as a
|
|
* group.
|
|
*
|
|
* A given Thread object can only belong to one ThreadGroup at a time; adding
|
|
* a thread to a new group will remove it from any previous group.
|
|
*
|
|
* Newly created threads belong to the same group as the thread from which they
|
|
* were created.
|
|
*/
|
|
|
|
/*
|
|
* Document-const: Default
|
|
*
|
|
* The default ThreadGroup created when Ruby starts; all Threads belong to it
|
|
* by default.
|
|
*/
|
|
static VALUE
|
|
thgroup_s_alloc(VALUE klass)
|
|
{
|
|
VALUE group;
|
|
struct thgroup *data;
|
|
|
|
group = TypedData_Make_Struct(klass, struct thgroup, &thgroup_data_type, data);
|
|
data->enclosed = 0;
|
|
data->group = group;
|
|
|
|
return group;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* thgrp.list -> array
|
|
*
|
|
* Returns an array of all existing Thread objects that belong to this group.
|
|
*
|
|
* ThreadGroup::Default.list #=> [#<Thread:0x401bdf4c run>]
|
|
*/
|
|
|
|
static VALUE
|
|
thgroup_list(VALUE group)
|
|
{
|
|
VALUE ary = rb_ary_new();
|
|
rb_thread_t *th = 0;
|
|
rb_ractor_t *r = GET_RACTOR();
|
|
|
|
ccan_list_for_each(&r->threads.set, th, lt_node) {
|
|
if (th->thgroup == group) {
|
|
rb_ary_push(ary, th->self);
|
|
}
|
|
}
|
|
return ary;
|
|
}
|
|
|
|
|
|
/*
|
|
* call-seq:
|
|
* thgrp.enclose -> thgrp
|
|
*
|
|
* Prevents threads from being added to or removed from the receiving
|
|
* ThreadGroup.
|
|
*
|
|
* New threads can still be started in an enclosed ThreadGroup.
|
|
*
|
|
* ThreadGroup::Default.enclose #=> #<ThreadGroup:0x4029d914>
|
|
* thr = Thread.new { Thread.stop } #=> #<Thread:0x402a7210 sleep>
|
|
* tg = ThreadGroup.new #=> #<ThreadGroup:0x402752d4>
|
|
* tg.add thr
|
|
* #=> ThreadError: can't move from the enclosed thread group
|
|
*/
|
|
|
|
static VALUE
|
|
thgroup_enclose(VALUE group)
|
|
{
|
|
struct thgroup *data;
|
|
|
|
TypedData_Get_Struct(group, struct thgroup, &thgroup_data_type, data);
|
|
data->enclosed = 1;
|
|
|
|
return group;
|
|
}
|
|
|
|
|
|
/*
|
|
* call-seq:
|
|
* thgrp.enclosed? -> true or false
|
|
*
|
|
* Returns +true+ if the +thgrp+ is enclosed. See also ThreadGroup#enclose.
|
|
*/
|
|
|
|
static VALUE
|
|
thgroup_enclosed_p(VALUE group)
|
|
{
|
|
struct thgroup *data;
|
|
|
|
TypedData_Get_Struct(group, struct thgroup, &thgroup_data_type, data);
|
|
return RBOOL(data->enclosed);
|
|
}
|
|
|
|
|
|
/*
|
|
* call-seq:
|
|
* thgrp.add(thread) -> thgrp
|
|
*
|
|
* Adds the given +thread+ to this group, removing it from any other
|
|
* group to which it may have previously been a member.
|
|
*
|
|
* puts "Initial group is #{ThreadGroup::Default.list}"
|
|
* tg = ThreadGroup.new
|
|
* t1 = Thread.new { sleep }
|
|
* t2 = Thread.new { sleep }
|
|
* puts "t1 is #{t1}"
|
|
* puts "t2 is #{t2}"
|
|
* tg.add(t1)
|
|
* puts "Initial group now #{ThreadGroup::Default.list}"
|
|
* puts "tg group now #{tg.list}"
|
|
*
|
|
* This will produce:
|
|
*
|
|
* Initial group is #<Thread:0x401bdf4c>
|
|
* t1 is #<Thread:0x401b3c90>
|
|
* t2 is #<Thread:0x401b3c18>
|
|
* Initial group now #<Thread:0x401b3c18>#<Thread:0x401bdf4c>
|
|
* tg group now #<Thread:0x401b3c90>
|
|
*/
|
|
|
|
static VALUE
|
|
thgroup_add(VALUE group, VALUE thread)
|
|
{
|
|
rb_thread_t *target_th = rb_thread_ptr(thread);
|
|
struct thgroup *data;
|
|
|
|
if (OBJ_FROZEN(group)) {
|
|
rb_raise(rb_eThreadError, "can't move to the frozen thread group");
|
|
}
|
|
TypedData_Get_Struct(group, struct thgroup, &thgroup_data_type, data);
|
|
if (data->enclosed) {
|
|
rb_raise(rb_eThreadError, "can't move to the enclosed thread group");
|
|
}
|
|
|
|
if (OBJ_FROZEN(target_th->thgroup)) {
|
|
rb_raise(rb_eThreadError, "can't move from the frozen thread group");
|
|
}
|
|
TypedData_Get_Struct(target_th->thgroup, struct thgroup, &thgroup_data_type, data);
|
|
if (data->enclosed) {
|
|
rb_raise(rb_eThreadError,
|
|
"can't move from the enclosed thread group");
|
|
}
|
|
|
|
target_th->thgroup = group;
|
|
return group;
|
|
}
|
|
|
|
/*
|
|
* Document-class: ThreadShield
|
|
*/
|
|
static void
|
|
thread_shield_mark(void *ptr)
|
|
{
|
|
rb_gc_mark((VALUE)ptr);
|
|
}
|
|
|
|
static const rb_data_type_t thread_shield_data_type = {
|
|
"thread_shield",
|
|
{thread_shield_mark, 0, 0,},
|
|
0, 0, RUBY_TYPED_FREE_IMMEDIATELY
|
|
};
|
|
|
|
static VALUE
|
|
thread_shield_alloc(VALUE klass)
|
|
{
|
|
return TypedData_Wrap_Struct(klass, &thread_shield_data_type, (void *)mutex_alloc(0));
|
|
}
|
|
|
|
#define GetThreadShieldPtr(obj) ((VALUE)rb_check_typeddata((obj), &thread_shield_data_type))
|
|
#define THREAD_SHIELD_WAITING_MASK (((FL_USER19-1)&~(FL_USER0-1))|FL_USER19)
|
|
#define THREAD_SHIELD_WAITING_SHIFT (FL_USHIFT)
|
|
#define THREAD_SHIELD_WAITING_MAX (THREAD_SHIELD_WAITING_MASK>>THREAD_SHIELD_WAITING_SHIFT)
|
|
STATIC_ASSERT(THREAD_SHIELD_WAITING_MAX, THREAD_SHIELD_WAITING_MAX <= UINT_MAX);
|
|
static inline unsigned int
|
|
rb_thread_shield_waiting(VALUE b)
|
|
{
|
|
return ((RBASIC(b)->flags&THREAD_SHIELD_WAITING_MASK)>>THREAD_SHIELD_WAITING_SHIFT);
|
|
}
|
|
|
|
static inline void
|
|
rb_thread_shield_waiting_inc(VALUE b)
|
|
{
|
|
unsigned int w = rb_thread_shield_waiting(b);
|
|
w++;
|
|
if (w > THREAD_SHIELD_WAITING_MAX)
|
|
rb_raise(rb_eRuntimeError, "waiting count overflow");
|
|
RBASIC(b)->flags &= ~THREAD_SHIELD_WAITING_MASK;
|
|
RBASIC(b)->flags |= ((VALUE)w << THREAD_SHIELD_WAITING_SHIFT);
|
|
}
|
|
|
|
static inline void
|
|
rb_thread_shield_waiting_dec(VALUE b)
|
|
{
|
|
unsigned int w = rb_thread_shield_waiting(b);
|
|
if (!w) rb_raise(rb_eRuntimeError, "waiting count underflow");
|
|
w--;
|
|
RBASIC(b)->flags &= ~THREAD_SHIELD_WAITING_MASK;
|
|
RBASIC(b)->flags |= ((VALUE)w << THREAD_SHIELD_WAITING_SHIFT);
|
|
}
|
|
|
|
VALUE
|
|
rb_thread_shield_new(void)
|
|
{
|
|
VALUE thread_shield = thread_shield_alloc(rb_cThreadShield);
|
|
rb_mutex_lock((VALUE)DATA_PTR(thread_shield));
|
|
return thread_shield;
|
|
}
|
|
|
|
/*
|
|
* Wait a thread shield.
|
|
*
|
|
* Returns
|
|
* true: acquired the thread shield
|
|
* false: the thread shield was destroyed and no other threads waiting
|
|
* nil: the thread shield was destroyed but still in use
|
|
*/
|
|
VALUE
|
|
rb_thread_shield_wait(VALUE self)
|
|
{
|
|
VALUE mutex = GetThreadShieldPtr(self);
|
|
rb_mutex_t *m;
|
|
|
|
if (!mutex) return Qfalse;
|
|
m = mutex_ptr(mutex);
|
|
if (m->fiber == GET_EC()->fiber_ptr) return Qnil;
|
|
rb_thread_shield_waiting_inc(self);
|
|
rb_mutex_lock(mutex);
|
|
rb_thread_shield_waiting_dec(self);
|
|
if (DATA_PTR(self)) return Qtrue;
|
|
rb_mutex_unlock(mutex);
|
|
return rb_thread_shield_waiting(self) > 0 ? Qnil : Qfalse;
|
|
}
|
|
|
|
static VALUE
|
|
thread_shield_get_mutex(VALUE self)
|
|
{
|
|
VALUE mutex = GetThreadShieldPtr(self);
|
|
if (!mutex)
|
|
rb_raise(rb_eThreadError, "destroyed thread shield - %p", (void *)self);
|
|
return mutex;
|
|
}
|
|
|
|
/*
|
|
* Release a thread shield, and return true if it has waiting threads.
|
|
*/
|
|
VALUE
|
|
rb_thread_shield_release(VALUE self)
|
|
{
|
|
VALUE mutex = thread_shield_get_mutex(self);
|
|
rb_mutex_unlock(mutex);
|
|
return RBOOL(rb_thread_shield_waiting(self) > 0);
|
|
}
|
|
|
|
/*
|
|
* Release and destroy a thread shield, and return true if it has waiting threads.
|
|
*/
|
|
VALUE
|
|
rb_thread_shield_destroy(VALUE self)
|
|
{
|
|
VALUE mutex = thread_shield_get_mutex(self);
|
|
DATA_PTR(self) = 0;
|
|
rb_mutex_unlock(mutex);
|
|
return RBOOL(rb_thread_shield_waiting(self) > 0);
|
|
}
|
|
|
|
static VALUE
|
|
threadptr_recursive_hash(rb_thread_t *th)
|
|
{
|
|
return th->ec->local_storage_recursive_hash;
|
|
}
|
|
|
|
static void
|
|
threadptr_recursive_hash_set(rb_thread_t *th, VALUE hash)
|
|
{
|
|
th->ec->local_storage_recursive_hash = hash;
|
|
}
|
|
|
|
ID rb_frame_last_func(void);
|
|
|
|
/*
|
|
* Returns the current "recursive list" used to detect recursion.
|
|
* This list is a hash table, unique for the current thread and for
|
|
* the current __callee__.
|
|
*/
|
|
|
|
static VALUE
|
|
recursive_list_access(VALUE sym)
|
|
{
|
|
rb_thread_t *th = GET_THREAD();
|
|
VALUE hash = threadptr_recursive_hash(th);
|
|
VALUE list;
|
|
if (NIL_P(hash) || !RB_TYPE_P(hash, T_HASH)) {
|
|
hash = rb_ident_hash_new();
|
|
threadptr_recursive_hash_set(th, hash);
|
|
list = Qnil;
|
|
}
|
|
else {
|
|
list = rb_hash_aref(hash, sym);
|
|
}
|
|
if (NIL_P(list) || !RB_TYPE_P(list, T_HASH)) {
|
|
list = rb_ident_hash_new();
|
|
rb_hash_aset(hash, sym, list);
|
|
}
|
|
return list;
|
|
}
|
|
|
|
/*
|
|
* Returns Qtrue if and only if obj (or the pair <obj, paired_obj>) is already
|
|
* in the recursion list.
|
|
* Assumes the recursion list is valid.
|
|
*/
|
|
|
|
static VALUE
|
|
recursive_check(VALUE list, VALUE obj, VALUE paired_obj_id)
|
|
{
|
|
#if SIZEOF_LONG == SIZEOF_VOIDP
|
|
#define OBJ_ID_EQL(obj_id, other) ((obj_id) == (other))
|
|
#elif SIZEOF_LONG_LONG == SIZEOF_VOIDP
|
|
#define OBJ_ID_EQL(obj_id, other) (RB_BIGNUM_TYPE_P((obj_id)) ? \
|
|
rb_big_eql((obj_id), (other)) : ((obj_id) == (other)))
|
|
#endif
|
|
|
|
VALUE pair_list = rb_hash_lookup2(list, obj, Qundef);
|
|
if (pair_list == Qundef)
|
|
return Qfalse;
|
|
if (paired_obj_id) {
|
|
if (!RB_TYPE_P(pair_list, T_HASH)) {
|
|
if (!OBJ_ID_EQL(paired_obj_id, pair_list))
|
|
return Qfalse;
|
|
}
|
|
else {
|
|
if (NIL_P(rb_hash_lookup(pair_list, paired_obj_id)))
|
|
return Qfalse;
|
|
}
|
|
}
|
|
return Qtrue;
|
|
}
|
|
|
|
/*
|
|
* Pushes obj (or the pair <obj, paired_obj>) in the recursion list.
|
|
* For a single obj, it sets list[obj] to Qtrue.
|
|
* For a pair, it sets list[obj] to paired_obj_id if possible,
|
|
* otherwise list[obj] becomes a hash like:
|
|
* {paired_obj_id_1 => true, paired_obj_id_2 => true, ... }
|
|
* Assumes the recursion list is valid.
|
|
*/
|
|
|
|
static void
|
|
recursive_push(VALUE list, VALUE obj, VALUE paired_obj)
|
|
{
|
|
VALUE pair_list;
|
|
|
|
if (!paired_obj) {
|
|
rb_hash_aset(list, obj, Qtrue);
|
|
}
|
|
else if ((pair_list = rb_hash_lookup2(list, obj, Qundef)) == Qundef) {
|
|
rb_hash_aset(list, obj, paired_obj);
|
|
}
|
|
else {
|
|
if (!RB_TYPE_P(pair_list, T_HASH)){
|
|
VALUE other_paired_obj = pair_list;
|
|
pair_list = rb_hash_new();
|
|
rb_hash_aset(pair_list, other_paired_obj, Qtrue);
|
|
rb_hash_aset(list, obj, pair_list);
|
|
}
|
|
rb_hash_aset(pair_list, paired_obj, Qtrue);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Pops obj (or the pair <obj, paired_obj>) from the recursion list.
|
|
* For a pair, if list[obj] is a hash, then paired_obj_id is
|
|
* removed from the hash and no attempt is made to simplify
|
|
* list[obj] from {only_one_paired_id => true} to only_one_paired_id
|
|
* Assumes the recursion list is valid.
|
|
*/
|
|
|
|
static int
|
|
recursive_pop(VALUE list, VALUE obj, VALUE paired_obj)
|
|
{
|
|
if (paired_obj) {
|
|
VALUE pair_list = rb_hash_lookup2(list, obj, Qundef);
|
|
if (pair_list == Qundef) {
|
|
return 0;
|
|
}
|
|
if (RB_TYPE_P(pair_list, T_HASH)) {
|
|
rb_hash_delete_entry(pair_list, paired_obj);
|
|
if (!RHASH_EMPTY_P(pair_list)) {
|
|
return 1; /* keep hash until is empty */
|
|
}
|
|
}
|
|
}
|
|
rb_hash_delete_entry(list, obj);
|
|
return 1;
|
|
}
|
|
|
|
struct exec_recursive_params {
|
|
VALUE (*func) (VALUE, VALUE, int);
|
|
VALUE list;
|
|
VALUE obj;
|
|
VALUE pairid;
|
|
VALUE arg;
|
|
};
|
|
|
|
static VALUE
|
|
exec_recursive_i(RB_BLOCK_CALL_FUNC_ARGLIST(tag, data))
|
|
{
|
|
struct exec_recursive_params *p = (void *)data;
|
|
return (*p->func)(p->obj, p->arg, FALSE);
|
|
}
|
|
|
|
/*
|
|
* Calls func(obj, arg, recursive), where recursive is non-zero if the
|
|
* current method is called recursively on obj, or on the pair <obj, pairid>
|
|
* If outer is 0, then the innermost func will be called with recursive set
|
|
* to Qtrue, otherwise the outermost func will be called. In the latter case,
|
|
* all inner func are short-circuited by throw.
|
|
* Implementation details: the value thrown is the recursive list which is
|
|
* proper to the current method and unlikely to be caught anywhere else.
|
|
* list[recursive_key] is used as a flag for the outermost call.
|
|
*/
|
|
|
|
static VALUE
|
|
exec_recursive(VALUE (*func) (VALUE, VALUE, int), VALUE obj, VALUE pairid, VALUE arg, int outer)
|
|
{
|
|
VALUE result = Qundef;
|
|
const ID mid = rb_frame_last_func();
|
|
const VALUE sym = mid ? ID2SYM(mid) : ID2SYM(idNULL);
|
|
struct exec_recursive_params p;
|
|
int outermost;
|
|
p.list = recursive_list_access(sym);
|
|
p.obj = obj;
|
|
p.pairid = pairid;
|
|
p.arg = arg;
|
|
outermost = outer && !recursive_check(p.list, ID2SYM(recursive_key), 0);
|
|
|
|
if (recursive_check(p.list, p.obj, pairid)) {
|
|
if (outer && !outermost) {
|
|
rb_throw_obj(p.list, p.list);
|
|
}
|
|
return (*func)(obj, arg, TRUE);
|
|
}
|
|
else {
|
|
enum ruby_tag_type state;
|
|
|
|
p.func = func;
|
|
|
|
if (outermost) {
|
|
recursive_push(p.list, ID2SYM(recursive_key), 0);
|
|
recursive_push(p.list, p.obj, p.pairid);
|
|
result = rb_catch_protect(p.list, exec_recursive_i, (VALUE)&p, &state);
|
|
if (!recursive_pop(p.list, p.obj, p.pairid)) goto invalid;
|
|
if (!recursive_pop(p.list, ID2SYM(recursive_key), 0)) goto invalid;
|
|
if (state != TAG_NONE) EC_JUMP_TAG(GET_EC(), state);
|
|
if (result == p.list) {
|
|
result = (*func)(obj, arg, TRUE);
|
|
}
|
|
}
|
|
else {
|
|
volatile VALUE ret = Qundef;
|
|
recursive_push(p.list, p.obj, p.pairid);
|
|
EC_PUSH_TAG(GET_EC());
|
|
if ((state = EC_EXEC_TAG()) == TAG_NONE) {
|
|
ret = (*func)(obj, arg, FALSE);
|
|
}
|
|
EC_POP_TAG();
|
|
if (!recursive_pop(p.list, p.obj, p.pairid)) {
|
|
goto invalid;
|
|
}
|
|
if (state != TAG_NONE) EC_JUMP_TAG(GET_EC(), state);
|
|
result = ret;
|
|
}
|
|
}
|
|
*(volatile struct exec_recursive_params *)&p;
|
|
return result;
|
|
|
|
invalid:
|
|
rb_raise(rb_eTypeError, "invalid inspect_tbl pair_list "
|
|
"for %+"PRIsVALUE" in %+"PRIsVALUE,
|
|
sym, rb_thread_current());
|
|
UNREACHABLE_RETURN(Qundef);
|
|
}
|
|
|
|
/*
|
|
* Calls func(obj, arg, recursive), where recursive is non-zero if the
|
|
* current method is called recursively on obj
|
|
*/
|
|
|
|
VALUE
|
|
rb_exec_recursive(VALUE (*func) (VALUE, VALUE, int), VALUE obj, VALUE arg)
|
|
{
|
|
return exec_recursive(func, obj, 0, arg, 0);
|
|
}
|
|
|
|
/*
|
|
* Calls func(obj, arg, recursive), where recursive is non-zero if the
|
|
* current method is called recursively on the ordered pair <obj, paired_obj>
|
|
*/
|
|
|
|
VALUE
|
|
rb_exec_recursive_paired(VALUE (*func) (VALUE, VALUE, int), VALUE obj, VALUE paired_obj, VALUE arg)
|
|
{
|
|
return exec_recursive(func, obj, rb_memory_id(paired_obj), arg, 0);
|
|
}
|
|
|
|
/*
|
|
* If recursion is detected on the current method and obj, the outermost
|
|
* func will be called with (obj, arg, Qtrue). All inner func will be
|
|
* short-circuited using throw.
|
|
*/
|
|
|
|
VALUE
|
|
rb_exec_recursive_outer(VALUE (*func) (VALUE, VALUE, int), VALUE obj, VALUE arg)
|
|
{
|
|
return exec_recursive(func, obj, 0, arg, 1);
|
|
}
|
|
|
|
/*
|
|
* If recursion is detected on the current method, obj and paired_obj,
|
|
* the outermost func will be called with (obj, arg, Qtrue). All inner
|
|
* func will be short-circuited using throw.
|
|
*/
|
|
|
|
VALUE
|
|
rb_exec_recursive_paired_outer(VALUE (*func) (VALUE, VALUE, int), VALUE obj, VALUE paired_obj, VALUE arg)
|
|
{
|
|
return exec_recursive(func, obj, rb_memory_id(paired_obj), arg, 1);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* thread.backtrace -> array or nil
|
|
*
|
|
* Returns the current backtrace of the target thread.
|
|
*
|
|
*/
|
|
|
|
static VALUE
|
|
rb_thread_backtrace_m(int argc, VALUE *argv, VALUE thval)
|
|
{
|
|
return rb_vm_thread_backtrace(argc, argv, thval);
|
|
}
|
|
|
|
/* call-seq:
|
|
* thread.backtrace_locations(*args) -> array or nil
|
|
*
|
|
* Returns the execution stack for the target thread---an array containing
|
|
* backtrace location objects.
|
|
*
|
|
* See Thread::Backtrace::Location for more information.
|
|
*
|
|
* This method behaves similarly to Kernel#caller_locations except it applies
|
|
* to a specific thread.
|
|
*/
|
|
static VALUE
|
|
rb_thread_backtrace_locations_m(int argc, VALUE *argv, VALUE thval)
|
|
{
|
|
return rb_vm_thread_backtrace_locations(argc, argv, thval);
|
|
}
|
|
|
|
void
|
|
Init_Thread_Mutex(void)
|
|
{
|
|
rb_thread_t *th = GET_THREAD();
|
|
|
|
rb_native_mutex_initialize(&th->vm->waitpid_lock);
|
|
rb_native_mutex_initialize(&th->vm->workqueue_lock);
|
|
rb_native_mutex_initialize(&th->interrupt_lock);
|
|
}
|
|
|
|
/*
|
|
* Document-class: ThreadError
|
|
*
|
|
* Raised when an invalid operation is attempted on a thread.
|
|
*
|
|
* For example, when no other thread has been started:
|
|
*
|
|
* Thread.stop
|
|
*
|
|
* This will raises the following exception:
|
|
*
|
|
* ThreadError: stopping only thread
|
|
* note: use sleep to stop forever
|
|
*/
|
|
|
|
void
|
|
Init_Thread(void)
|
|
{
|
|
VALUE cThGroup;
|
|
rb_thread_t *th = GET_THREAD();
|
|
|
|
sym_never = ID2SYM(rb_intern_const("never"));
|
|
sym_immediate = ID2SYM(rb_intern_const("immediate"));
|
|
sym_on_blocking = ID2SYM(rb_intern_const("on_blocking"));
|
|
|
|
rb_define_singleton_method(rb_cThread, "new", thread_s_new, -1);
|
|
rb_define_singleton_method(rb_cThread, "start", thread_start, -2);
|
|
rb_define_singleton_method(rb_cThread, "fork", thread_start, -2);
|
|
rb_define_singleton_method(rb_cThread, "main", rb_thread_s_main, 0);
|
|
rb_define_singleton_method(rb_cThread, "current", thread_s_current, 0);
|
|
rb_define_singleton_method(rb_cThread, "stop", thread_stop, 0);
|
|
rb_define_singleton_method(rb_cThread, "kill", rb_thread_s_kill, 1);
|
|
rb_define_singleton_method(rb_cThread, "exit", rb_thread_exit, 0);
|
|
rb_define_singleton_method(rb_cThread, "pass", thread_s_pass, 0);
|
|
rb_define_singleton_method(rb_cThread, "list", thread_list, 0);
|
|
rb_define_singleton_method(rb_cThread, "abort_on_exception", rb_thread_s_abort_exc, 0);
|
|
rb_define_singleton_method(rb_cThread, "abort_on_exception=", rb_thread_s_abort_exc_set, 1);
|
|
rb_define_singleton_method(rb_cThread, "report_on_exception", rb_thread_s_report_exc, 0);
|
|
rb_define_singleton_method(rb_cThread, "report_on_exception=", rb_thread_s_report_exc_set, 1);
|
|
rb_define_singleton_method(rb_cThread, "ignore_deadlock", rb_thread_s_ignore_deadlock, 0);
|
|
rb_define_singleton_method(rb_cThread, "ignore_deadlock=", rb_thread_s_ignore_deadlock_set, 1);
|
|
rb_define_singleton_method(rb_cThread, "handle_interrupt", rb_thread_s_handle_interrupt, 1);
|
|
rb_define_singleton_method(rb_cThread, "pending_interrupt?", rb_thread_s_pending_interrupt_p, -1);
|
|
rb_define_method(rb_cThread, "pending_interrupt?", rb_thread_pending_interrupt_p, -1);
|
|
|
|
rb_define_method(rb_cThread, "initialize", thread_initialize, -2);
|
|
rb_define_method(rb_cThread, "raise", thread_raise_m, -1);
|
|
rb_define_method(rb_cThread, "join", thread_join_m, -1);
|
|
rb_define_method(rb_cThread, "value", thread_value, 0);
|
|
rb_define_method(rb_cThread, "kill", rb_thread_kill, 0);
|
|
rb_define_method(rb_cThread, "terminate", rb_thread_kill, 0);
|
|
rb_define_method(rb_cThread, "exit", rb_thread_kill, 0);
|
|
rb_define_method(rb_cThread, "run", rb_thread_run, 0);
|
|
rb_define_method(rb_cThread, "wakeup", rb_thread_wakeup, 0);
|
|
rb_define_method(rb_cThread, "[]", rb_thread_aref, 1);
|
|
rb_define_method(rb_cThread, "[]=", rb_thread_aset, 2);
|
|
rb_define_method(rb_cThread, "fetch", rb_thread_fetch, -1);
|
|
rb_define_method(rb_cThread, "key?", rb_thread_key_p, 1);
|
|
rb_define_method(rb_cThread, "keys", rb_thread_keys, 0);
|
|
rb_define_method(rb_cThread, "priority", rb_thread_priority, 0);
|
|
rb_define_method(rb_cThread, "priority=", rb_thread_priority_set, 1);
|
|
rb_define_method(rb_cThread, "status", rb_thread_status, 0);
|
|
rb_define_method(rb_cThread, "thread_variable_get", rb_thread_variable_get, 1);
|
|
rb_define_method(rb_cThread, "thread_variable_set", rb_thread_variable_set, 2);
|
|
rb_define_method(rb_cThread, "thread_variables", rb_thread_variables, 0);
|
|
rb_define_method(rb_cThread, "thread_variable?", rb_thread_variable_p, 1);
|
|
rb_define_method(rb_cThread, "alive?", rb_thread_alive_p, 0);
|
|
rb_define_method(rb_cThread, "stop?", rb_thread_stop_p, 0);
|
|
rb_define_method(rb_cThread, "abort_on_exception", rb_thread_abort_exc, 0);
|
|
rb_define_method(rb_cThread, "abort_on_exception=", rb_thread_abort_exc_set, 1);
|
|
rb_define_method(rb_cThread, "report_on_exception", rb_thread_report_exc, 0);
|
|
rb_define_method(rb_cThread, "report_on_exception=", rb_thread_report_exc_set, 1);
|
|
rb_define_method(rb_cThread, "group", rb_thread_group, 0);
|
|
rb_define_method(rb_cThread, "backtrace", rb_thread_backtrace_m, -1);
|
|
rb_define_method(rb_cThread, "backtrace_locations", rb_thread_backtrace_locations_m, -1);
|
|
|
|
rb_define_method(rb_cThread, "name", rb_thread_getname, 0);
|
|
rb_define_method(rb_cThread, "name=", rb_thread_setname, 1);
|
|
rb_define_method(rb_cThread, "native_thread_id", rb_thread_native_thread_id, 0);
|
|
rb_define_method(rb_cThread, "to_s", rb_thread_to_s, 0);
|
|
rb_define_alias(rb_cThread, "inspect", "to_s");
|
|
|
|
rb_vm_register_special_exception(ruby_error_stream_closed, rb_eIOError,
|
|
"stream closed in another thread");
|
|
|
|
cThGroup = rb_define_class("ThreadGroup", rb_cObject);
|
|
rb_define_alloc_func(cThGroup, thgroup_s_alloc);
|
|
rb_define_method(cThGroup, "list", thgroup_list, 0);
|
|
rb_define_method(cThGroup, "enclose", thgroup_enclose, 0);
|
|
rb_define_method(cThGroup, "enclosed?", thgroup_enclosed_p, 0);
|
|
rb_define_method(cThGroup, "add", thgroup_add, 1);
|
|
|
|
{
|
|
th->thgroup = th->ractor->thgroup_default = rb_obj_alloc(cThGroup);
|
|
rb_define_const(cThGroup, "Default", th->thgroup);
|
|
}
|
|
|
|
rb_eThreadError = rb_define_class("ThreadError", rb_eStandardError);
|
|
|
|
/* init thread core */
|
|
{
|
|
/* main thread setting */
|
|
{
|
|
/* acquire global vm lock */
|
|
struct rb_thread_sched *sched = TH_SCHED(th);
|
|
thread_sched_to_running(sched, th);
|
|
|
|
th->pending_interrupt_queue = rb_ary_tmp_new(0);
|
|
th->pending_interrupt_queue_checked = 0;
|
|
th->pending_interrupt_mask_stack = rb_ary_tmp_new(0);
|
|
}
|
|
}
|
|
|
|
rb_thread_create_timer_thread();
|
|
|
|
Init_thread_sync();
|
|
}
|
|
|
|
int
|
|
ruby_native_thread_p(void)
|
|
{
|
|
rb_thread_t *th = ruby_thread_from_native();
|
|
|
|
return th != 0;
|
|
}
|
|
|
|
#ifdef NON_SCALAR_THREAD_ID
|
|
#define thread_id_str(th) (NULL)
|
|
#else
|
|
#define thread_id_str(th) ((void *)(uintptr_t)(th)->nt->thread_id)
|
|
#endif
|
|
|
|
static void
|
|
debug_deadlock_check(rb_ractor_t *r, VALUE msg)
|
|
{
|
|
rb_thread_t *th = 0;
|
|
VALUE sep = rb_str_new_cstr("\n ");
|
|
|
|
rb_str_catf(msg, "\n%d threads, %d sleeps current:%p main thread:%p\n",
|
|
rb_ractor_living_thread_num(r), rb_ractor_sleeper_thread_num(r),
|
|
(void *)GET_THREAD(), (void *)r->threads.main);
|
|
|
|
ccan_list_for_each(&r->threads.set, th, lt_node) {
|
|
rb_str_catf(msg, "* %+"PRIsVALUE"\n rb_thread_t:%p "
|
|
"native:%p int:%u",
|
|
th->self, (void *)th, thread_id_str(th), th->ec->interrupt_flag);
|
|
|
|
if (th->locking_mutex) {
|
|
rb_mutex_t *mutex = mutex_ptr(th->locking_mutex);
|
|
rb_str_catf(msg, " mutex:%p cond:%"PRIuSIZE,
|
|
(void *)mutex->fiber, rb_mutex_num_waiting(mutex));
|
|
}
|
|
|
|
{
|
|
struct rb_waiting_list *list = th->join_list;
|
|
while (list) {
|
|
rb_str_catf(msg, "\n depended by: tb_thread_id:%p", (void *)list->thread);
|
|
list = list->next;
|
|
}
|
|
}
|
|
rb_str_catf(msg, "\n ");
|
|
rb_str_concat(msg, rb_ary_join(rb_ec_backtrace_str_ary(th->ec, 0, 0), sep));
|
|
rb_str_catf(msg, "\n");
|
|
}
|
|
}
|
|
|
|
static void
|
|
rb_check_deadlock(rb_ractor_t *r)
|
|
{
|
|
if (GET_THREAD()->vm->thread_ignore_deadlock) return;
|
|
|
|
int found = 0;
|
|
rb_thread_t *th = NULL;
|
|
int sleeper_num = rb_ractor_sleeper_thread_num(r);
|
|
int ltnum = rb_ractor_living_thread_num(r);
|
|
|
|
if (ltnum > sleeper_num) return;
|
|
if (ltnum < sleeper_num) rb_bug("sleeper must not be more than vm_living_thread_num(vm)");
|
|
if (patrol_thread && patrol_thread != GET_THREAD()) return;
|
|
|
|
ccan_list_for_each(&r->threads.set, th, lt_node) {
|
|
if (th->status != THREAD_STOPPED_FOREVER || RUBY_VM_INTERRUPTED(th->ec)) {
|
|
found = 1;
|
|
}
|
|
else if (th->locking_mutex) {
|
|
rb_mutex_t *mutex = mutex_ptr(th->locking_mutex);
|
|
if (mutex->fiber == th->ec->fiber_ptr || (!mutex->fiber && !ccan_list_empty(&mutex->waitq))) {
|
|
found = 1;
|
|
}
|
|
}
|
|
if (found)
|
|
break;
|
|
}
|
|
|
|
if (!found) {
|
|
VALUE argv[2];
|
|
argv[0] = rb_eFatal;
|
|
argv[1] = rb_str_new2("No live threads left. Deadlock?");
|
|
debug_deadlock_check(r, argv[1]);
|
|
rb_ractor_sleeper_threads_dec(GET_RACTOR());
|
|
rb_threadptr_raise(r->threads.main, 2, argv);
|
|
}
|
|
}
|
|
|
|
// Used for VM memsize reporting. Returns the size of a list of waiting_fd
|
|
// structs. Defined here because the struct definition lives here as well.
|
|
size_t
|
|
rb_vm_memsize_waiting_fds(struct ccan_list_head *waiting_fds)
|
|
{
|
|
struct waiting_fd *waitfd = 0;
|
|
size_t size = 0;
|
|
|
|
ccan_list_for_each(waiting_fds, waitfd, wfd_node) {
|
|
size += sizeof(struct waiting_fd);
|
|
}
|
|
|
|
return size;
|
|
}
|
|
|
|
static void
|
|
update_line_coverage(VALUE data, const rb_trace_arg_t *trace_arg)
|
|
{
|
|
const rb_control_frame_t *cfp = GET_EC()->cfp;
|
|
VALUE coverage = rb_iseq_coverage(cfp->iseq);
|
|
if (RB_TYPE_P(coverage, T_ARRAY) && !RBASIC_CLASS(coverage)) {
|
|
VALUE lines = RARRAY_AREF(coverage, COVERAGE_INDEX_LINES);
|
|
if (lines) {
|
|
long line = rb_sourceline() - 1;
|
|
long count;
|
|
VALUE num;
|
|
void rb_iseq_clear_event_flags(const rb_iseq_t *iseq, size_t pos, rb_event_flag_t reset);
|
|
if (GET_VM()->coverage_mode & COVERAGE_TARGET_ONESHOT_LINES) {
|
|
rb_iseq_clear_event_flags(cfp->iseq, cfp->pc - ISEQ_BODY(cfp->iseq)->iseq_encoded - 1, RUBY_EVENT_COVERAGE_LINE);
|
|
rb_ary_push(lines, LONG2FIX(line + 1));
|
|
return;
|
|
}
|
|
if (line >= RARRAY_LEN(lines)) { /* no longer tracked */
|
|
return;
|
|
}
|
|
num = RARRAY_AREF(lines, line);
|
|
if (!FIXNUM_P(num)) return;
|
|
count = FIX2LONG(num) + 1;
|
|
if (POSFIXABLE(count)) {
|
|
RARRAY_ASET(lines, line, LONG2FIX(count));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
update_branch_coverage(VALUE data, const rb_trace_arg_t *trace_arg)
|
|
{
|
|
const rb_control_frame_t *cfp = GET_EC()->cfp;
|
|
VALUE coverage = rb_iseq_coverage(cfp->iseq);
|
|
if (RB_TYPE_P(coverage, T_ARRAY) && !RBASIC_CLASS(coverage)) {
|
|
VALUE branches = RARRAY_AREF(coverage, COVERAGE_INDEX_BRANCHES);
|
|
if (branches) {
|
|
long pc = cfp->pc - ISEQ_BODY(cfp->iseq)->iseq_encoded - 1;
|
|
long idx = FIX2INT(RARRAY_AREF(ISEQ_PC2BRANCHINDEX(cfp->iseq), pc)), count;
|
|
VALUE counters = RARRAY_AREF(branches, 1);
|
|
VALUE num = RARRAY_AREF(counters, idx);
|
|
count = FIX2LONG(num) + 1;
|
|
if (POSFIXABLE(count)) {
|
|
RARRAY_ASET(counters, idx, LONG2FIX(count));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
const rb_method_entry_t *
|
|
rb_resolve_me_location(const rb_method_entry_t *me, VALUE resolved_location[5])
|
|
{
|
|
VALUE path, beg_pos_lineno, beg_pos_column, end_pos_lineno, end_pos_column;
|
|
|
|
if (!me->def) return NULL; // negative cme
|
|
|
|
retry:
|
|
switch (me->def->type) {
|
|
case VM_METHOD_TYPE_ISEQ: {
|
|
const rb_iseq_t *iseq = me->def->body.iseq.iseqptr;
|
|
rb_iseq_location_t *loc = &ISEQ_BODY(iseq)->location;
|
|
path = rb_iseq_path(iseq);
|
|
beg_pos_lineno = INT2FIX(loc->code_location.beg_pos.lineno);
|
|
beg_pos_column = INT2FIX(loc->code_location.beg_pos.column);
|
|
end_pos_lineno = INT2FIX(loc->code_location.end_pos.lineno);
|
|
end_pos_column = INT2FIX(loc->code_location.end_pos.column);
|
|
break;
|
|
}
|
|
case VM_METHOD_TYPE_BMETHOD: {
|
|
const rb_iseq_t *iseq = rb_proc_get_iseq(me->def->body.bmethod.proc, 0);
|
|
if (iseq) {
|
|
rb_iseq_location_t *loc;
|
|
rb_iseq_check(iseq);
|
|
path = rb_iseq_path(iseq);
|
|
loc = &ISEQ_BODY(iseq)->location;
|
|
beg_pos_lineno = INT2FIX(loc->code_location.beg_pos.lineno);
|
|
beg_pos_column = INT2FIX(loc->code_location.beg_pos.column);
|
|
end_pos_lineno = INT2FIX(loc->code_location.end_pos.lineno);
|
|
end_pos_column = INT2FIX(loc->code_location.end_pos.column);
|
|
break;
|
|
}
|
|
return NULL;
|
|
}
|
|
case VM_METHOD_TYPE_ALIAS:
|
|
me = me->def->body.alias.original_me;
|
|
goto retry;
|
|
case VM_METHOD_TYPE_REFINED:
|
|
me = me->def->body.refined.orig_me;
|
|
if (!me) return NULL;
|
|
goto retry;
|
|
default:
|
|
return NULL;
|
|
}
|
|
|
|
/* found */
|
|
if (RB_TYPE_P(path, T_ARRAY)) {
|
|
path = rb_ary_entry(path, 1);
|
|
if (!RB_TYPE_P(path, T_STRING)) return NULL; /* just for the case... */
|
|
}
|
|
if (resolved_location) {
|
|
resolved_location[0] = path;
|
|
resolved_location[1] = beg_pos_lineno;
|
|
resolved_location[2] = beg_pos_column;
|
|
resolved_location[3] = end_pos_lineno;
|
|
resolved_location[4] = end_pos_column;
|
|
}
|
|
return me;
|
|
}
|
|
|
|
static void
|
|
update_method_coverage(VALUE me2counter, rb_trace_arg_t *trace_arg)
|
|
{
|
|
const rb_control_frame_t *cfp = GET_EC()->cfp;
|
|
const rb_callable_method_entry_t *cme = rb_vm_frame_method_entry(cfp);
|
|
const rb_method_entry_t *me = (const rb_method_entry_t *)cme;
|
|
VALUE rcount;
|
|
long count;
|
|
|
|
me = rb_resolve_me_location(me, 0);
|
|
if (!me) return;
|
|
|
|
rcount = rb_hash_aref(me2counter, (VALUE) me);
|
|
count = FIXNUM_P(rcount) ? FIX2LONG(rcount) + 1 : 1;
|
|
if (POSFIXABLE(count)) {
|
|
rb_hash_aset(me2counter, (VALUE) me, LONG2FIX(count));
|
|
}
|
|
}
|
|
|
|
VALUE
|
|
rb_get_coverages(void)
|
|
{
|
|
return GET_VM()->coverages;
|
|
}
|
|
|
|
int
|
|
rb_get_coverage_mode(void)
|
|
{
|
|
return GET_VM()->coverage_mode;
|
|
}
|
|
|
|
void
|
|
rb_set_coverages(VALUE coverages, int mode, VALUE me2counter)
|
|
{
|
|
GET_VM()->coverages = coverages;
|
|
GET_VM()->me2counter = me2counter;
|
|
GET_VM()->coverage_mode = mode;
|
|
}
|
|
|
|
void
|
|
rb_resume_coverages(void)
|
|
{
|
|
int mode = GET_VM()->coverage_mode;
|
|
VALUE me2counter = GET_VM()->me2counter;
|
|
rb_add_event_hook2((rb_event_hook_func_t) update_line_coverage, RUBY_EVENT_COVERAGE_LINE, Qnil, RUBY_EVENT_HOOK_FLAG_SAFE | RUBY_EVENT_HOOK_FLAG_RAW_ARG);
|
|
if (mode & COVERAGE_TARGET_BRANCHES) {
|
|
rb_add_event_hook2((rb_event_hook_func_t) update_branch_coverage, RUBY_EVENT_COVERAGE_BRANCH, Qnil, RUBY_EVENT_HOOK_FLAG_SAFE | RUBY_EVENT_HOOK_FLAG_RAW_ARG);
|
|
}
|
|
if (mode & COVERAGE_TARGET_METHODS) {
|
|
rb_add_event_hook2((rb_event_hook_func_t) update_method_coverage, RUBY_EVENT_CALL, me2counter, RUBY_EVENT_HOOK_FLAG_SAFE | RUBY_EVENT_HOOK_FLAG_RAW_ARG);
|
|
}
|
|
}
|
|
|
|
void
|
|
rb_suspend_coverages(void)
|
|
{
|
|
rb_remove_event_hook((rb_event_hook_func_t) update_line_coverage);
|
|
if (GET_VM()->coverage_mode & COVERAGE_TARGET_BRANCHES) {
|
|
rb_remove_event_hook((rb_event_hook_func_t) update_branch_coverage);
|
|
}
|
|
if (GET_VM()->coverage_mode & COVERAGE_TARGET_METHODS) {
|
|
rb_remove_event_hook((rb_event_hook_func_t) update_method_coverage);
|
|
}
|
|
}
|
|
|
|
/* Make coverage arrays empty so old covered files are no longer tracked. */
|
|
void
|
|
rb_reset_coverages(void)
|
|
{
|
|
rb_clear_coverages();
|
|
rb_iseq_remove_coverage_all();
|
|
GET_VM()->coverages = Qfalse;
|
|
}
|
|
|
|
VALUE
|
|
rb_default_coverage(int n)
|
|
{
|
|
VALUE coverage = rb_ary_tmp_new_fill(3);
|
|
VALUE lines = Qfalse, branches = Qfalse;
|
|
int mode = GET_VM()->coverage_mode;
|
|
|
|
if (mode & COVERAGE_TARGET_LINES) {
|
|
lines = n > 0 ? rb_ary_tmp_new_fill(n) : rb_ary_tmp_new(0);
|
|
}
|
|
RARRAY_ASET(coverage, COVERAGE_INDEX_LINES, lines);
|
|
|
|
if (mode & COVERAGE_TARGET_BRANCHES) {
|
|
branches = rb_ary_tmp_new_fill(2);
|
|
/* internal data structures for branch coverage:
|
|
*
|
|
* { branch base node =>
|
|
* [base_type, base_first_lineno, base_first_column, base_last_lineno, base_last_column, {
|
|
* branch target id =>
|
|
* [target_type, target_first_lineno, target_first_column, target_last_lineno, target_last_column, target_counter_index],
|
|
* ...
|
|
* }],
|
|
* ...
|
|
* }
|
|
*
|
|
* Example:
|
|
* { NODE_CASE =>
|
|
* [1, 0, 4, 3, {
|
|
* NODE_WHEN => [2, 8, 2, 9, 0],
|
|
* NODE_WHEN => [3, 8, 3, 9, 1],
|
|
* ...
|
|
* }],
|
|
* ...
|
|
* }
|
|
*/
|
|
VALUE structure = rb_hash_new();
|
|
rb_obj_hide(structure);
|
|
RARRAY_ASET(branches, 0, structure);
|
|
/* branch execution counters */
|
|
RARRAY_ASET(branches, 1, rb_ary_tmp_new(0));
|
|
}
|
|
RARRAY_ASET(coverage, COVERAGE_INDEX_BRANCHES, branches);
|
|
|
|
return coverage;
|
|
}
|
|
|
|
static VALUE
|
|
uninterruptible_exit(VALUE v)
|
|
{
|
|
rb_thread_t *cur_th = GET_THREAD();
|
|
rb_ary_pop(cur_th->pending_interrupt_mask_stack);
|
|
|
|
cur_th->pending_interrupt_queue_checked = 0;
|
|
if (!rb_threadptr_pending_interrupt_empty_p(cur_th)) {
|
|
RUBY_VM_SET_INTERRUPT(cur_th->ec);
|
|
}
|
|
return Qnil;
|
|
}
|
|
|
|
VALUE
|
|
rb_uninterruptible(VALUE (*b_proc)(VALUE), VALUE data)
|
|
{
|
|
VALUE interrupt_mask = rb_ident_hash_new();
|
|
rb_thread_t *cur_th = GET_THREAD();
|
|
|
|
rb_hash_aset(interrupt_mask, rb_cObject, sym_never);
|
|
OBJ_FREEZE_RAW(interrupt_mask);
|
|
rb_ary_push(cur_th->pending_interrupt_mask_stack, interrupt_mask);
|
|
|
|
VALUE ret = rb_ensure(b_proc, data, uninterruptible_exit, Qnil);
|
|
|
|
RUBY_VM_CHECK_INTS(cur_th->ec);
|
|
return ret;
|
|
}
|