mirror of
				https://github.com/ruby/ruby.git
				synced 2022-11-09 12:17:21 -05:00 
			
		
		
		
	 42a9234cc4
			
		
	
	
		42a9234cc4
		
	
	
	
	
		
			
			Random.new_seed, not zero. Based on patch by Roger Pack. [ruby-trunk - Bug #6313] * random.c (rb_f_srand): ditto. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@35393 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
		
			
				
	
	
		
			1425 lines
		
	
	
	
		
			35 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1425 lines
		
	
	
	
		
			35 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /**********************************************************************
 | |
| 
 | |
|   random.c -
 | |
| 
 | |
|   $Author$
 | |
|   created at: Fri Dec 24 16:39:21 JST 1993
 | |
| 
 | |
|   Copyright (C) 1993-2007 Yukihiro Matsumoto
 | |
| 
 | |
| **********************************************************************/
 | |
| 
 | |
| /*
 | |
| This is based on trimmed version of MT19937.  To get the original version,
 | |
| contact <http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html>.
 | |
| 
 | |
| The original copyright notice follows.
 | |
| 
 | |
|    A C-program for MT19937, with initialization improved 2002/2/10.
 | |
|    Coded by Takuji Nishimura and Makoto Matsumoto.
 | |
|    This is a faster version by taking Shawn Cokus's optimization,
 | |
|    Matthe Bellew's simplification, Isaku Wada's real version.
 | |
| 
 | |
|    Before using, initialize the state by using init_genrand(mt, seed)
 | |
|    or init_by_array(mt, init_key, key_length).
 | |
| 
 | |
|    Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
 | |
|    All rights reserved.
 | |
| 
 | |
|    Redistribution and use in source and binary forms, with or without
 | |
|    modification, are permitted provided that the following conditions
 | |
|    are met:
 | |
| 
 | |
|      1. Redistributions of source code must retain the above copyright
 | |
|         notice, this list of conditions and the following disclaimer.
 | |
| 
 | |
|      2. Redistributions in binary form must reproduce the above copyright
 | |
|         notice, this list of conditions and the following disclaimer in the
 | |
|         documentation and/or other materials provided with the distribution.
 | |
| 
 | |
|      3. The names of its contributors may not be used to endorse or promote
 | |
|         products derived from this software without specific prior written
 | |
|         permission.
 | |
| 
 | |
|    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 | |
|    "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 | |
|    LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 | |
|    A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR
 | |
|    CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 | |
|    EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 | |
|    PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 | |
|    PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 | |
|    LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 | |
|    NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 | |
|    SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | |
| 
 | |
| 
 | |
|    Any feedback is very welcome.
 | |
|    http://www.math.keio.ac.jp/matumoto/emt.html
 | |
|    email: matumoto@math.keio.ac.jp
 | |
| */
 | |
| 
 | |
| #include "ruby/ruby.h"
 | |
| 
 | |
| #include <limits.h>
 | |
| #ifdef HAVE_UNISTD_H
 | |
| #include <unistd.h>
 | |
| #endif
 | |
| #include <time.h>
 | |
| #include <sys/types.h>
 | |
| #include <sys/stat.h>
 | |
| #ifdef HAVE_FCNTL_H
 | |
| #include <fcntl.h>
 | |
| #endif
 | |
| #include <math.h>
 | |
| #include <errno.h>
 | |
| 
 | |
| #ifdef _WIN32
 | |
| # if !defined(_WIN32_WINNT) || _WIN32_WINNT < 0x0400
 | |
| #  undef _WIN32_WINNT
 | |
| #  define _WIN32_WINNT 0x400
 | |
| #  undef __WINCRYPT_H__
 | |
| # endif
 | |
| #include <wincrypt.h>
 | |
| #endif
 | |
| 
 | |
| typedef int int_must_be_32bit_at_least[sizeof(int) * CHAR_BIT < 32 ? -1 : 1];
 | |
| 
 | |
| /* Period parameters */
 | |
| #define N 624
 | |
| #define M 397
 | |
| #define MATRIX_A 0x9908b0dfU	/* constant vector a */
 | |
| #define UMASK 0x80000000U	/* most significant w-r bits */
 | |
| #define LMASK 0x7fffffffU	/* least significant r bits */
 | |
| #define MIXBITS(u,v) ( ((u) & UMASK) | ((v) & LMASK) )
 | |
| #define TWIST(u,v) ((MIXBITS((u),(v)) >> 1) ^ ((v)&1U ? MATRIX_A : 0U))
 | |
| 
 | |
| enum {MT_MAX_STATE = N};
 | |
| 
 | |
| struct MT {
 | |
|     /* assume int is enough to store 32bits */
 | |
|     unsigned int state[N]; /* the array for the state vector  */
 | |
|     unsigned int *next;
 | |
|     int left;
 | |
| };
 | |
| 
 | |
| #define genrand_initialized(mt) ((mt)->next != 0)
 | |
| #define uninit_genrand(mt) ((mt)->next = 0)
 | |
| 
 | |
| /* initializes state[N] with a seed */
 | |
| static void
 | |
| init_genrand(struct MT *mt, unsigned int s)
 | |
| {
 | |
|     int j;
 | |
|     mt->state[0] = s & 0xffffffffU;
 | |
|     for (j=1; j<N; j++) {
 | |
|         mt->state[j] = (1812433253U * (mt->state[j-1] ^ (mt->state[j-1] >> 30)) + j);
 | |
|         /* See Knuth TAOCP Vol2. 3rd Ed. P.106 for multiplier. */
 | |
|         /* In the previous versions, MSBs of the seed affect   */
 | |
|         /* only MSBs of the array state[].                     */
 | |
|         /* 2002/01/09 modified by Makoto Matsumoto             */
 | |
|         mt->state[j] &= 0xffffffff;  /* for >32 bit machines */
 | |
|     }
 | |
|     mt->left = 1;
 | |
|     mt->next = mt->state + N;
 | |
| }
 | |
| 
 | |
| /* initialize by an array with array-length */
 | |
| /* init_key is the array for initializing keys */
 | |
| /* key_length is its length */
 | |
| /* slight change for C++, 2004/2/26 */
 | |
| static void
 | |
| init_by_array(struct MT *mt, unsigned int init_key[], int key_length)
 | |
| {
 | |
|     int i, j, k;
 | |
|     init_genrand(mt, 19650218U);
 | |
|     i=1; j=0;
 | |
|     k = (N>key_length ? N : key_length);
 | |
|     for (; k; k--) {
 | |
|         mt->state[i] = (mt->state[i] ^ ((mt->state[i-1] ^ (mt->state[i-1] >> 30)) * 1664525U))
 | |
|           + init_key[j] + j; /* non linear */
 | |
|         mt->state[i] &= 0xffffffffU; /* for WORDSIZE > 32 machines */
 | |
|         i++; j++;
 | |
|         if (i>=N) { mt->state[0] = mt->state[N-1]; i=1; }
 | |
|         if (j>=key_length) j=0;
 | |
|     }
 | |
|     for (k=N-1; k; k--) {
 | |
|         mt->state[i] = (mt->state[i] ^ ((mt->state[i-1] ^ (mt->state[i-1] >> 30)) * 1566083941U))
 | |
|           - i; /* non linear */
 | |
|         mt->state[i] &= 0xffffffffU; /* for WORDSIZE > 32 machines */
 | |
|         i++;
 | |
|         if (i>=N) { mt->state[0] = mt->state[N-1]; i=1; }
 | |
|     }
 | |
| 
 | |
|     mt->state[0] = 0x80000000U; /* MSB is 1; assuring non-zero initial array */
 | |
| }
 | |
| 
 | |
| static void
 | |
| next_state(struct MT *mt)
 | |
| {
 | |
|     unsigned int *p = mt->state;
 | |
|     int j;
 | |
| 
 | |
|     mt->left = N;
 | |
|     mt->next = mt->state;
 | |
| 
 | |
|     for (j=N-M+1; --j; p++)
 | |
|         *p = p[M] ^ TWIST(p[0], p[1]);
 | |
| 
 | |
|     for (j=M; --j; p++)
 | |
|         *p = p[M-N] ^ TWIST(p[0], p[1]);
 | |
| 
 | |
|     *p = p[M-N] ^ TWIST(p[0], mt->state[0]);
 | |
| }
 | |
| 
 | |
| /* generates a random number on [0,0xffffffff]-interval */
 | |
| static unsigned int
 | |
| genrand_int32(struct MT *mt)
 | |
| {
 | |
|     /* mt must be initialized */
 | |
|     unsigned int y;
 | |
| 
 | |
|     if (--mt->left <= 0) next_state(mt);
 | |
|     y = *mt->next++;
 | |
| 
 | |
|     /* Tempering */
 | |
|     y ^= (y >> 11);
 | |
|     y ^= (y << 7) & 0x9d2c5680;
 | |
|     y ^= (y << 15) & 0xefc60000;
 | |
|     y ^= (y >> 18);
 | |
| 
 | |
|     return y;
 | |
| }
 | |
| 
 | |
| /* generates a random number on [0,1) with 53-bit resolution*/
 | |
| static double
 | |
| genrand_real(struct MT *mt)
 | |
| {
 | |
|     /* mt must be initialized */
 | |
|     unsigned int a = genrand_int32(mt)>>5, b = genrand_int32(mt)>>6;
 | |
|     return(a*67108864.0+b)*(1.0/9007199254740992.0);
 | |
| }
 | |
| 
 | |
| /* generates a random number on [0,1] with 53-bit resolution*/
 | |
| static double int_pair_to_real_inclusive(unsigned int a, unsigned int b);
 | |
| static double
 | |
| genrand_real2(struct MT *mt)
 | |
| {
 | |
|     /* mt must be initialized */
 | |
|     unsigned int a = genrand_int32(mt), b = genrand_int32(mt);
 | |
|     return int_pair_to_real_inclusive(a, b);
 | |
| }
 | |
| 
 | |
| /* These real versions are due to Isaku Wada, 2002/01/09 added */
 | |
| 
 | |
| #undef N
 | |
| #undef M
 | |
| 
 | |
| typedef struct {
 | |
|     VALUE seed;
 | |
|     struct MT mt;
 | |
| } rb_random_t;
 | |
| 
 | |
| #define DEFAULT_SEED_CNT 4
 | |
| 
 | |
| static rb_random_t default_rand;
 | |
| 
 | |
| static VALUE rand_init(struct MT *mt, VALUE vseed);
 | |
| static VALUE random_seed(void);
 | |
| 
 | |
| static rb_random_t *
 | |
| rand_start(rb_random_t *r)
 | |
| {
 | |
|     struct MT *mt = &r->mt;
 | |
|     if (!genrand_initialized(mt)) {
 | |
| 	r->seed = rand_init(mt, random_seed());
 | |
|     }
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| static struct MT *
 | |
| default_mt(void)
 | |
| {
 | |
|     return &rand_start(&default_rand)->mt;
 | |
| }
 | |
| 
 | |
| unsigned int
 | |
| rb_genrand_int32(void)
 | |
| {
 | |
|     struct MT *mt = default_mt();
 | |
|     return genrand_int32(mt);
 | |
| }
 | |
| 
 | |
| double
 | |
| rb_genrand_real(void)
 | |
| {
 | |
|     struct MT *mt = default_mt();
 | |
|     return genrand_real(mt);
 | |
| }
 | |
| 
 | |
| #define BDIGITS(x) (RBIGNUM_DIGITS(x))
 | |
| #define BITSPERDIG (SIZEOF_BDIGITS*CHAR_BIT)
 | |
| #define BIGRAD ((BDIGIT_DBL)1 << BITSPERDIG)
 | |
| #define DIGSPERINT (SIZEOF_INT/SIZEOF_BDIGITS)
 | |
| #define BIGUP(x) ((BDIGIT_DBL)(x) << BITSPERDIG)
 | |
| #define BIGDN(x) RSHIFT((x),BITSPERDIG)
 | |
| #define BIGLO(x) ((BDIGIT)((x) & (BIGRAD-1)))
 | |
| #define BDIGMAX ((BDIGIT)-1)
 | |
| 
 | |
| #define roomof(n, m) (int)(((n)+(m)-1) / (m))
 | |
| #define numberof(array) (int)(sizeof(array) / sizeof((array)[0]))
 | |
| #define SIZEOF_INT32 (31/CHAR_BIT + 1)
 | |
| 
 | |
| static double
 | |
| int_pair_to_real_inclusive(unsigned int a, unsigned int b)
 | |
| {
 | |
|     VALUE x = rb_big_new(roomof(64, BITSPERDIG), 1);
 | |
|     VALUE m = rb_big_new(roomof(53, BITSPERDIG), 1);
 | |
|     BDIGIT *xd = BDIGITS(x);
 | |
|     int i = 0;
 | |
|     double r;
 | |
| 
 | |
|     xd[i++] = (BDIGIT)b;
 | |
| #if BITSPERDIG < 32
 | |
|     xd[i++] = (BDIGIT)(b >> BITSPERDIG);
 | |
| #endif
 | |
|     xd[i++] = (BDIGIT)a;
 | |
| #if BITSPERDIG < 32
 | |
|     xd[i++] = (BDIGIT)(a >> BITSPERDIG);
 | |
| #endif
 | |
|     xd = BDIGITS(m);
 | |
| #if BITSPERDIG < 53
 | |
|     MEMZERO(xd, BDIGIT, roomof(53, BITSPERDIG) - 1);
 | |
| #endif
 | |
|     xd[53 / BITSPERDIG] = 1 << 53 % BITSPERDIG;
 | |
|     xd[0] |= 1;
 | |
|     x = rb_big_mul(x, m);
 | |
|     if (FIXNUM_P(x)) {
 | |
| #if CHAR_BIT * SIZEOF_LONG > 64
 | |
| 	r = (double)(FIX2ULONG(x) >> 64);
 | |
| #else
 | |
| 	return 0.0;
 | |
| #endif
 | |
|     }
 | |
|     else {
 | |
| #if 64 % BITSPERDIG == 0
 | |
| 	long len = RBIGNUM_LEN(x);
 | |
| 	xd = BDIGITS(x);
 | |
| 	MEMMOVE(xd, xd + 64 / BITSPERDIG, BDIGIT, len - 64 / BITSPERDIG);
 | |
| 	MEMZERO(xd + len - 64 / BITSPERDIG, BDIGIT, 64 / BITSPERDIG);
 | |
| 	r = rb_big2dbl(x);
 | |
| #else
 | |
| 	x = rb_big_rshift(x, INT2FIX(64));
 | |
| 	if (FIXNUM_P(x)) {
 | |
| 	    r = (double)FIX2ULONG(x);
 | |
| 	}
 | |
| 	else {
 | |
| 	    r = rb_big2dbl(x);
 | |
| 	}
 | |
| #endif
 | |
|     }
 | |
|     return ldexp(r, -53);
 | |
| }
 | |
| 
 | |
| VALUE rb_cRandom;
 | |
| #define id_minus '-'
 | |
| #define id_plus  '+'
 | |
| static ID id_rand, id_bytes;
 | |
| 
 | |
| /* :nodoc: */
 | |
| static void
 | |
| random_mark(void *ptr)
 | |
| {
 | |
|     rb_gc_mark(((rb_random_t *)ptr)->seed);
 | |
| }
 | |
| 
 | |
| static void
 | |
| random_free(void *ptr)
 | |
| {
 | |
|     if (ptr != &default_rand)
 | |
| 	xfree(ptr);
 | |
| }
 | |
| 
 | |
| static size_t
 | |
| random_memsize(const void *ptr)
 | |
| {
 | |
|     return ptr ? sizeof(rb_random_t) : 0;
 | |
| }
 | |
| 
 | |
| static const rb_data_type_t random_data_type = {
 | |
|     "random",
 | |
|     {
 | |
| 	random_mark,
 | |
| 	random_free,
 | |
| 	random_memsize,
 | |
|     },
 | |
| };
 | |
| 
 | |
| static rb_random_t *
 | |
| get_rnd(VALUE obj)
 | |
| {
 | |
|     rb_random_t *ptr;
 | |
|     TypedData_Get_Struct(obj, rb_random_t, &random_data_type, ptr);
 | |
|     return ptr;
 | |
| }
 | |
| 
 | |
| static rb_random_t *
 | |
| try_get_rnd(VALUE obj)
 | |
| {
 | |
|     if (obj == rb_cRandom) {
 | |
| 	return rand_start(&default_rand);
 | |
|     }
 | |
|     if (!rb_typeddata_is_kind_of(obj, &random_data_type)) return NULL;
 | |
|     return DATA_PTR(obj);
 | |
| }
 | |
| 
 | |
| /* :nodoc: */
 | |
| static VALUE
 | |
| random_alloc(VALUE klass)
 | |
| {
 | |
|     rb_random_t *rnd;
 | |
|     VALUE obj = TypedData_Make_Struct(klass, rb_random_t, &random_data_type, rnd);
 | |
|     rnd->seed = INT2FIX(0);
 | |
|     return obj;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| rand_init(struct MT *mt, VALUE vseed)
 | |
| {
 | |
|     volatile VALUE seed;
 | |
|     long blen = 0;
 | |
|     long fixnum_seed;
 | |
|     int i, j, len;
 | |
|     unsigned int buf0[SIZEOF_LONG / SIZEOF_INT32 * 4], *buf = buf0;
 | |
| 
 | |
|     seed = rb_to_int(vseed);
 | |
|     switch (TYPE(seed)) {
 | |
|       case T_FIXNUM:
 | |
| 	len = 1;
 | |
| 	fixnum_seed = FIX2LONG(seed);
 | |
|         if (fixnum_seed < 0)
 | |
|             fixnum_seed = -fixnum_seed;
 | |
| 	buf[0] = (unsigned int)(fixnum_seed & 0xffffffff);
 | |
| #if SIZEOF_LONG > SIZEOF_INT32
 | |
| 	if ((long)(int32_t)fixnum_seed != fixnum_seed) {
 | |
| 	    if ((buf[1] = (unsigned int)(fixnum_seed >> 32)) != 0) ++len;
 | |
| 	}
 | |
| #endif
 | |
| 	break;
 | |
|       case T_BIGNUM:
 | |
| 	blen = RBIGNUM_LEN(seed);
 | |
| 	if (blen == 0) {
 | |
| 	    len = 1;
 | |
| 	}
 | |
| 	else {
 | |
| 	    if (blen > MT_MAX_STATE * SIZEOF_INT32 / SIZEOF_BDIGITS)
 | |
| 		blen = MT_MAX_STATE * SIZEOF_INT32 / SIZEOF_BDIGITS;
 | |
| 	    len = roomof((int)blen * SIZEOF_BDIGITS, SIZEOF_INT32);
 | |
| 	}
 | |
| 	/* allocate ints for init_by_array */
 | |
| 	if (len > numberof(buf0)) buf = ALLOC_N(unsigned int, len);
 | |
| 	memset(buf, 0, len * sizeof(*buf));
 | |
| 	len = 0;
 | |
| 	for (i = (int)(blen-1); 0 <= i; i--) {
 | |
| 	    j = i * SIZEOF_BDIGITS / SIZEOF_INT32;
 | |
| #if SIZEOF_BDIGITS < SIZEOF_INT32
 | |
| 	    buf[j] <<= BITSPERDIG;
 | |
| #endif
 | |
| 	    buf[j] |= RBIGNUM_DIGITS(seed)[i];
 | |
| 	    if (!len && buf[j]) len = j;
 | |
| 	}
 | |
| 	++len;
 | |
| 	break;
 | |
|       default:
 | |
| 	rb_raise(rb_eTypeError, "failed to convert %s into Integer",
 | |
| 		 rb_obj_classname(vseed));
 | |
|     }
 | |
|     if (len <= 1) {
 | |
|         init_genrand(mt, buf[0]);
 | |
|     }
 | |
|     else {
 | |
|         if (buf[len-1] == 1) /* remove leading-zero-guard */
 | |
|             len--;
 | |
|         init_by_array(mt, buf, len);
 | |
|     }
 | |
|     if (buf != buf0) xfree(buf);
 | |
|     return seed;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *   Random.new(seed = Random.new_seed) -> prng
 | |
|  *
 | |
|  * Creates a new PRNG using +seed+ to set the initial state. If +seed+ is
 | |
|  * omitted, the generator is initialized with Random.new_seed.
 | |
|  *
 | |
|  * See Random.srand for more information on the use of seed values.
 | |
|  */
 | |
| static VALUE
 | |
| random_init(int argc, VALUE *argv, VALUE obj)
 | |
| {
 | |
|     VALUE vseed;
 | |
|     rb_random_t *rnd = get_rnd(obj);
 | |
| 
 | |
|     if (argc == 0) {
 | |
| 	vseed = random_seed();
 | |
|     }
 | |
|     else {
 | |
| 	rb_scan_args(argc, argv, "01", &vseed);
 | |
|     }
 | |
|     rnd->seed = rand_init(&rnd->mt, vseed);
 | |
|     return obj;
 | |
| }
 | |
| 
 | |
| #define DEFAULT_SEED_LEN (DEFAULT_SEED_CNT * (int)sizeof(int))
 | |
| 
 | |
| #if defined(S_ISCHR) && !defined(DOSISH)
 | |
| # define USE_DEV_URANDOM 1
 | |
| #else
 | |
| # define USE_DEV_URANDOM 0
 | |
| #endif
 | |
| 
 | |
| static void
 | |
| fill_random_seed(unsigned int seed[DEFAULT_SEED_CNT])
 | |
| {
 | |
|     static int n = 0;
 | |
|     struct timeval tv;
 | |
| #if USE_DEV_URANDOM
 | |
|     int fd;
 | |
|     struct stat statbuf;
 | |
| #elif defined(_WIN32)
 | |
|     HCRYPTPROV prov;
 | |
| #endif
 | |
| 
 | |
|     memset(seed, 0, DEFAULT_SEED_LEN);
 | |
| 
 | |
| #if USE_DEV_URANDOM
 | |
|     if ((fd = rb_cloexec_open("/dev/urandom", O_RDONLY
 | |
| #ifdef O_NONBLOCK
 | |
|             |O_NONBLOCK
 | |
| #endif
 | |
| #ifdef O_NOCTTY
 | |
|             |O_NOCTTY
 | |
| #endif
 | |
|             , 0)) >= 0) {
 | |
|         rb_update_max_fd(fd);
 | |
|         if (fstat(fd, &statbuf) == 0 && S_ISCHR(statbuf.st_mode)) {
 | |
| 	    if (read(fd, seed, DEFAULT_SEED_LEN) < DEFAULT_SEED_LEN) {
 | |
| 		/* abandon */;
 | |
| 	    }
 | |
|         }
 | |
|         close(fd);
 | |
|     }
 | |
| #elif defined(_WIN32)
 | |
|     if (CryptAcquireContext(&prov, NULL, NULL, PROV_RSA_FULL, CRYPT_VERIFYCONTEXT)) {
 | |
| 	CryptGenRandom(prov, DEFAULT_SEED_LEN, (void *)seed);
 | |
| 	CryptReleaseContext(prov, 0);
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     gettimeofday(&tv, 0);
 | |
|     seed[0] ^= tv.tv_usec;
 | |
|     seed[1] ^= (unsigned int)tv.tv_sec;
 | |
| #if SIZEOF_TIME_T > SIZEOF_INT
 | |
|     seed[0] ^= (unsigned int)((time_t)tv.tv_sec >> SIZEOF_INT * CHAR_BIT);
 | |
| #endif
 | |
|     seed[2] ^= getpid() ^ (n++ << 16);
 | |
|     seed[3] ^= (unsigned int)(VALUE)&seed;
 | |
| #if SIZEOF_VOIDP > SIZEOF_INT
 | |
|     seed[2] ^= (unsigned int)((VALUE)&seed >> SIZEOF_INT * CHAR_BIT);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| make_seed_value(const void *ptr)
 | |
| {
 | |
|     const long len = DEFAULT_SEED_LEN/SIZEOF_BDIGITS;
 | |
|     BDIGIT *digits;
 | |
|     NEWOBJ(big, struct RBignum);
 | |
|     OBJSETUP(big, rb_cBignum, T_BIGNUM);
 | |
| 
 | |
|     RBIGNUM_SET_SIGN(big, 1);
 | |
|     rb_big_resize((VALUE)big, len + 1);
 | |
|     digits = RBIGNUM_DIGITS(big);
 | |
| 
 | |
|     MEMCPY(digits, ptr, char, DEFAULT_SEED_LEN);
 | |
| 
 | |
|     /* set leading-zero-guard if need. */
 | |
|     digits[len] =
 | |
| #if SIZEOF_INT32 / SIZEOF_BDIGITS > 1
 | |
| 	digits[len-2] <= 1 && digits[len-1] == 0
 | |
| #else
 | |
| 	digits[len-1] <= 1
 | |
| #endif
 | |
| 	? 1 : 0;
 | |
| 
 | |
|     return rb_big_norm((VALUE)big);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq: Random.new_seed -> integer
 | |
|  *
 | |
|  * Returns an arbitrary seed value. This is used by Random.new
 | |
|  * when no seed value is specified as an argument.
 | |
|  *
 | |
|  *   Random.new_seed  #=> 115032730400174366788466674494640623225
 | |
|  */
 | |
| static VALUE
 | |
| random_seed(void)
 | |
| {
 | |
|     unsigned int buf[DEFAULT_SEED_CNT];
 | |
|     fill_random_seed(buf);
 | |
|     return make_seed_value(buf);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq: prng.seed -> integer
 | |
|  *
 | |
|  * Returns the seed value used to initialize the generator. This may be used to
 | |
|  * initialize another generator with the same state at a later time, causing it
 | |
|  * to produce the same sequence of numbers.
 | |
|  *
 | |
|  *   prng1 = Random.new(1234)
 | |
|  *   prng1.seed       #=> 1234
 | |
|  *   prng1.rand(100)  #=> 47
 | |
|  *
 | |
|  *   prng2 = Random.new(prng1.seed)
 | |
|  *   prng2.rand(100)  #=> 47
 | |
|  */
 | |
| static VALUE
 | |
| random_get_seed(VALUE obj)
 | |
| {
 | |
|     return get_rnd(obj)->seed;
 | |
| }
 | |
| 
 | |
| /* :nodoc: */
 | |
| static VALUE
 | |
| random_copy(VALUE obj, VALUE orig)
 | |
| {
 | |
|     rb_random_t *rnd1 = get_rnd(obj);
 | |
|     rb_random_t *rnd2 = get_rnd(orig);
 | |
|     struct MT *mt = &rnd1->mt;
 | |
| 
 | |
|     *rnd1 = *rnd2;
 | |
|     mt->next = mt->state + numberof(mt->state) - mt->left + 1;
 | |
|     return obj;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| mt_state(const struct MT *mt)
 | |
| {
 | |
|     VALUE bigo = rb_big_new(sizeof(mt->state) / sizeof(BDIGIT), 1);
 | |
|     BDIGIT *d = RBIGNUM_DIGITS(bigo);
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < numberof(mt->state); ++i) {
 | |
| 	unsigned int x = mt->state[i];
 | |
| #if SIZEOF_BDIGITS < SIZEOF_INT32
 | |
| 	int j;
 | |
| 	for (j = 0; j < SIZEOF_INT32 / SIZEOF_BDIGITS; ++j) {
 | |
| 	    *d++ = BIGLO(x);
 | |
| 	    x = BIGDN(x);
 | |
| 	}
 | |
| #else
 | |
| 	*d++ = (BDIGIT)x;
 | |
| #endif
 | |
|     }
 | |
|     return rb_big_norm(bigo);
 | |
| }
 | |
| 
 | |
| /* :nodoc: */
 | |
| static VALUE
 | |
| random_state(VALUE obj)
 | |
| {
 | |
|     rb_random_t *rnd = get_rnd(obj);
 | |
|     return mt_state(&rnd->mt);
 | |
| }
 | |
| 
 | |
| /* :nodoc: */
 | |
| static VALUE
 | |
| random_s_state(VALUE klass)
 | |
| {
 | |
|     return mt_state(&default_rand.mt);
 | |
| }
 | |
| 
 | |
| /* :nodoc: */
 | |
| static VALUE
 | |
| random_left(VALUE obj)
 | |
| {
 | |
|     rb_random_t *rnd = get_rnd(obj);
 | |
|     return INT2FIX(rnd->mt.left);
 | |
| }
 | |
| 
 | |
| /* :nodoc: */
 | |
| static VALUE
 | |
| random_s_left(VALUE klass)
 | |
| {
 | |
|     return INT2FIX(default_rand.mt.left);
 | |
| }
 | |
| 
 | |
| /* :nodoc: */
 | |
| static VALUE
 | |
| random_dump(VALUE obj)
 | |
| {
 | |
|     rb_random_t *rnd = get_rnd(obj);
 | |
|     VALUE dump = rb_ary_new2(3);
 | |
| 
 | |
|     rb_ary_push(dump, mt_state(&rnd->mt));
 | |
|     rb_ary_push(dump, INT2FIX(rnd->mt.left));
 | |
|     rb_ary_push(dump, rnd->seed);
 | |
| 
 | |
|     return dump;
 | |
| }
 | |
| 
 | |
| /* :nodoc: */
 | |
| static VALUE
 | |
| random_load(VALUE obj, VALUE dump)
 | |
| {
 | |
|     rb_random_t *rnd = get_rnd(obj);
 | |
|     struct MT *mt = &rnd->mt;
 | |
|     VALUE state, left = INT2FIX(1), seed = INT2FIX(0);
 | |
|     VALUE *ary;
 | |
|     unsigned long x;
 | |
| 
 | |
|     Check_Type(dump, T_ARRAY);
 | |
|     ary = RARRAY_PTR(dump);
 | |
|     switch (RARRAY_LEN(dump)) {
 | |
|       case 3:
 | |
| 	seed = ary[2];
 | |
|       case 2:
 | |
| 	left = ary[1];
 | |
|       case 1:
 | |
| 	state = ary[0];
 | |
| 	break;
 | |
|       default:
 | |
| 	rb_raise(rb_eArgError, "wrong dump data");
 | |
|     }
 | |
|     memset(mt->state, 0, sizeof(mt->state));
 | |
|     if (FIXNUM_P(state)) {
 | |
| 	x = FIX2ULONG(state);
 | |
| 	mt->state[0] = (unsigned int)x;
 | |
| #if SIZEOF_LONG / SIZEOF_INT >= 2
 | |
| 	mt->state[1] = (unsigned int)(x >> BITSPERDIG);
 | |
| #endif
 | |
| #if SIZEOF_LONG / SIZEOF_INT >= 3
 | |
| 	mt->state[2] = (unsigned int)(x >> 2 * BITSPERDIG);
 | |
| #endif
 | |
| #if SIZEOF_LONG / SIZEOF_INT >= 4
 | |
| 	mt->state[3] = (unsigned int)(x >> 3 * BITSPERDIG);
 | |
| #endif
 | |
|     }
 | |
|     else {
 | |
| 	BDIGIT *d;
 | |
| 	long len;
 | |
| 	Check_Type(state, T_BIGNUM);
 | |
| 	len = RBIGNUM_LEN(state);
 | |
| 	if (len > roomof(sizeof(mt->state), SIZEOF_BDIGITS)) {
 | |
| 	    len = roomof(sizeof(mt->state), SIZEOF_BDIGITS);
 | |
| 	}
 | |
| #if SIZEOF_BDIGITS < SIZEOF_INT
 | |
| 	else if (len % DIGSPERINT) {
 | |
| 	    d = RBIGNUM_DIGITS(state) + len;
 | |
| # if DIGSPERINT == 2
 | |
| 	    --len;
 | |
| 	    x = *--d;
 | |
| # else
 | |
| 	    x = 0;
 | |
| 	    do {
 | |
| 		x = (x << BITSPERDIG) | *--d;
 | |
| 	    } while (--len % DIGSPERINT);
 | |
| # endif
 | |
| 	    mt->state[len / DIGSPERINT] = (unsigned int)x;
 | |
| 	}
 | |
| #endif
 | |
| 	if (len > 0) {
 | |
| 	    d = BDIGITS(state) + len;
 | |
| 	    do {
 | |
| 		--len;
 | |
| 		x = *--d;
 | |
| # if DIGSPERINT == 2
 | |
| 		--len;
 | |
| 		x = (x << BITSPERDIG) | *--d;
 | |
| # elif SIZEOF_BDIGITS < SIZEOF_INT
 | |
| 		do {
 | |
| 		    x = (x << BITSPERDIG) | *--d;
 | |
| 		} while (--len % DIGSPERINT);
 | |
| # endif
 | |
| 		mt->state[len / DIGSPERINT] = (unsigned int)x;
 | |
| 	    } while (len > 0);
 | |
| 	}
 | |
|     }
 | |
|     x = NUM2ULONG(left);
 | |
|     if (x > numberof(mt->state)) {
 | |
| 	rb_raise(rb_eArgError, "wrong value");
 | |
|     }
 | |
|     mt->left = (unsigned int)x;
 | |
|     mt->next = mt->state + numberof(mt->state) - x + 1;
 | |
|     rnd->seed = rb_to_int(seed);
 | |
| 
 | |
|     return obj;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *   srand(number = Random.new_seed) -> old_seed
 | |
|  *
 | |
|  * Seeds the system pseudo-random number generator, Random::DEFAULT, with
 | |
|  * +number+.  The previous seed value is returned.
 | |
|  *
 | |
|  * If +number+ is omitted, seeds the generator using a source of entropy
 | |
|  * provided by the operating system, if available (/dev/urandom on Unix systems
 | |
|  * or the RSA cryptographic provider on Windows), which is then combined with
 | |
|  * the time, the process id, and a sequence number.
 | |
|  *
 | |
|  * srand may be used to ensure repeatable sequences of pseudo-random numbers
 | |
|  * between different runs of the program. By setting the seed to a known value,
 | |
|  * programs can be made deterministic during testing.
 | |
|  *
 | |
|  *   srand 1234               # => 268519324636777531569100071560086917274
 | |
|  *   [ rand, rand ]           # => [0.1915194503788923, 0.6221087710398319]
 | |
|  *   [ rand(10), rand(1000) ] # => [4, 664]
 | |
|  *   srand 1234               # => 1234
 | |
|  *   [ rand, rand ]           # => [0.1915194503788923, 0.6221087710398319]
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_f_srand(int argc, VALUE *argv, VALUE obj)
 | |
| {
 | |
|     VALUE seed, old;
 | |
|     rb_random_t *r = &default_rand;
 | |
| 
 | |
|     rb_secure(4);
 | |
|     if (argc == 0) {
 | |
| 	seed = random_seed();
 | |
|     }
 | |
|     else {
 | |
| 	rb_scan_args(argc, argv, "01", &seed);
 | |
|     }
 | |
|     old = r->seed;
 | |
|     r->seed = rand_init(&r->mt, seed);
 | |
| 
 | |
|     return old;
 | |
| }
 | |
| 
 | |
| static unsigned long
 | |
| make_mask(unsigned long x)
 | |
| {
 | |
|     x = x | x >> 1;
 | |
|     x = x | x >> 2;
 | |
|     x = x | x >> 4;
 | |
|     x = x | x >> 8;
 | |
|     x = x | x >> 16;
 | |
| #if 4 < SIZEOF_LONG
 | |
|     x = x | x >> 32;
 | |
| #endif
 | |
|     return x;
 | |
| }
 | |
| 
 | |
| static unsigned long
 | |
| limited_rand(struct MT *mt, unsigned long limit)
 | |
| {
 | |
|     /* mt must be initialized */
 | |
|     int i;
 | |
|     unsigned long val, mask;
 | |
| 
 | |
|     if (!limit) return 0;
 | |
|     mask = make_mask(limit);
 | |
|   retry:
 | |
|     val = 0;
 | |
|     for (i = SIZEOF_LONG/SIZEOF_INT32-1; 0 <= i; i--) {
 | |
|         if ((mask >> (i * 32)) & 0xffffffff) {
 | |
|             val |= (unsigned long)genrand_int32(mt) << (i * 32);
 | |
|             val &= mask;
 | |
|             if (limit < val)
 | |
|                 goto retry;
 | |
|         }
 | |
|     }
 | |
|     return val;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| limited_big_rand(struct MT *mt, struct RBignum *limit)
 | |
| {
 | |
|     /* mt must be initialized */
 | |
|     unsigned long mask, lim, rnd;
 | |
|     struct RBignum *val;
 | |
|     long i, len;
 | |
|     int boundary;
 | |
| 
 | |
|     len = (RBIGNUM_LEN(limit) * SIZEOF_BDIGITS + 3) / 4;
 | |
|     val = (struct RBignum *)rb_big_clone((VALUE)limit);
 | |
|     RBIGNUM_SET_SIGN(val, 1);
 | |
| #if SIZEOF_BDIGITS == 2
 | |
| # define BIG_GET32(big,i) \
 | |
|     (RBIGNUM_DIGITS(big)[(i)*2] | \
 | |
|      ((i)*2+1 < RBIGNUM_LEN(big) ? \
 | |
|       (RBIGNUM_DIGITS(big)[(i)*2+1] << 16) : \
 | |
|       0))
 | |
| # define BIG_SET32(big,i,d) \
 | |
|     ((RBIGNUM_DIGITS(big)[(i)*2] = (d) & 0xffff), \
 | |
|      ((i)*2+1 < RBIGNUM_LEN(big) ? \
 | |
|       (RBIGNUM_DIGITS(big)[(i)*2+1] = (d) >> 16) : \
 | |
|       0))
 | |
| #else
 | |
|     /* SIZEOF_BDIGITS == 4 */
 | |
| # define BIG_GET32(big,i) (RBIGNUM_DIGITS(big)[(i)])
 | |
| # define BIG_SET32(big,i,d) (RBIGNUM_DIGITS(big)[(i)] = (d))
 | |
| #endif
 | |
|   retry:
 | |
|     mask = 0;
 | |
|     boundary = 1;
 | |
|     for (i = len-1; 0 <= i; i--) {
 | |
|         lim = BIG_GET32(limit, i);
 | |
|         mask = mask ? 0xffffffff : make_mask(lim);
 | |
|         if (mask) {
 | |
|             rnd = genrand_int32(mt) & mask;
 | |
|             if (boundary) {
 | |
|                 if (lim < rnd)
 | |
|                     goto retry;
 | |
|                 if (rnd < lim)
 | |
|                     boundary = 0;
 | |
|             }
 | |
|         }
 | |
|         else {
 | |
|             rnd = 0;
 | |
|         }
 | |
|         BIG_SET32(val, i, (BDIGIT)rnd);
 | |
|     }
 | |
|     return rb_big_norm((VALUE)val);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns random unsigned long value in [0, +limit+].
 | |
|  *
 | |
|  * Note that +limit+ is included, and the range of the argument and the
 | |
|  * return value depends on environments.
 | |
|  */
 | |
| unsigned long
 | |
| rb_genrand_ulong_limited(unsigned long limit)
 | |
| {
 | |
|     return limited_rand(default_mt(), limit);
 | |
| }
 | |
| 
 | |
| unsigned int
 | |
| rb_random_int32(VALUE obj)
 | |
| {
 | |
|     rb_random_t *rnd = try_get_rnd(obj);
 | |
|     if (!rnd) {
 | |
| #if SIZEOF_LONG * CHAR_BIT > 32
 | |
| 	VALUE lim = ULONG2NUM(0x100000000);
 | |
| #elif defined HAVE_LONG_LONG
 | |
| 	VALUE lim = ULL2NUM((LONG_LONG)0xffffffff+1);
 | |
| #else
 | |
| 	VALUE lim = rb_big_plus(ULONG2NUM(0xffffffff), INT2FIX(1));
 | |
| #endif
 | |
| 	return (unsigned int)NUM2ULONG(rb_funcall2(obj, id_rand, 1, &lim));
 | |
|     }
 | |
|     return genrand_int32(&rnd->mt);
 | |
| }
 | |
| 
 | |
| double
 | |
| rb_random_real(VALUE obj)
 | |
| {
 | |
|     rb_random_t *rnd = try_get_rnd(obj);
 | |
|     if (!rnd) {
 | |
| 	VALUE v = rb_funcall2(obj, id_rand, 0, 0);
 | |
| 	double d = NUM2DBL(v);
 | |
| 	if (d < 0.0 || d >= 1.0) {
 | |
| 	    rb_raise(rb_eRangeError, "random number too big %g", d);
 | |
| 	}
 | |
| 	return d;
 | |
|     }
 | |
|     return genrand_real(&rnd->mt);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq: prng.bytes(size) -> a_string
 | |
|  *
 | |
|  * Returns a random binary string containing +size+ bytes.
 | |
|  *
 | |
|  *   random_string = Random.new.bytes(10) # => "\xD7:R\xAB?\x83\xCE\xFAkO"
 | |
|  *   random_string.size                   # => 10
 | |
|  */
 | |
| static VALUE
 | |
| random_bytes(VALUE obj, VALUE len)
 | |
| {
 | |
|     return rb_random_bytes(obj, NUM2LONG(rb_to_int(len)));
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_random_bytes(VALUE obj, long n)
 | |
| {
 | |
|     rb_random_t *rnd = try_get_rnd(obj);
 | |
|     VALUE bytes;
 | |
|     char *ptr;
 | |
|     unsigned int r, i;
 | |
| 
 | |
|     if (!rnd) {
 | |
| 	VALUE len = LONG2NUM(n);
 | |
| 	return rb_funcall2(obj, id_bytes, 1, &len);
 | |
|     }
 | |
|     bytes = rb_str_new(0, n);
 | |
|     ptr = RSTRING_PTR(bytes);
 | |
|     for (; n >= SIZEOF_INT32; n -= SIZEOF_INT32) {
 | |
| 	r = genrand_int32(&rnd->mt);
 | |
| 	i = SIZEOF_INT32;
 | |
| 	do {
 | |
| 	    *ptr++ = (char)r;
 | |
| 	    r >>= CHAR_BIT;
 | |
|         } while (--i);
 | |
|     }
 | |
|     if (n > 0) {
 | |
| 	r = genrand_int32(&rnd->mt);
 | |
| 	do {
 | |
| 	    *ptr++ = (char)r;
 | |
| 	    r >>= CHAR_BIT;
 | |
| 	} while (--n);
 | |
|     }
 | |
|     return bytes;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| range_values(VALUE vmax, VALUE *begp, VALUE *endp, int *exclp)
 | |
| {
 | |
|     VALUE end, r;
 | |
| 
 | |
|     if (!rb_range_values(vmax, begp, &end, exclp)) return Qfalse;
 | |
|     if (endp) *endp = end;
 | |
|     if (!rb_respond_to(end, id_minus)) return Qfalse;
 | |
|     r = rb_funcall2(end, id_minus, 1, begp);
 | |
|     if (NIL_P(r)) return Qfalse;
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| rand_int(struct MT *mt, VALUE vmax, int restrictive)
 | |
| {
 | |
|     /* mt must be initialized */
 | |
|     long max;
 | |
|     unsigned long r;
 | |
| 
 | |
|     if (FIXNUM_P(vmax)) {
 | |
| 	max = FIX2LONG(vmax);
 | |
| 	if (!max) return Qnil;
 | |
| 	if (max < 0) {
 | |
| 	    if (restrictive) return Qnil;
 | |
| 	    max = -max;
 | |
| 	}
 | |
| 	r = limited_rand(mt, (unsigned long)max - 1);
 | |
| 	return ULONG2NUM(r);
 | |
|     }
 | |
|     else {
 | |
| 	VALUE ret;
 | |
| 	if (rb_bigzero_p(vmax)) return Qnil;
 | |
| 	if (!RBIGNUM_SIGN(vmax)) {
 | |
| 	    if (restrictive) return Qnil;
 | |
| 	    vmax = rb_big_clone(vmax);
 | |
| 	    RBIGNUM_SET_SIGN(vmax, 1);
 | |
| 	}
 | |
| 	vmax = rb_big_minus(vmax, INT2FIX(1));
 | |
| 	if (FIXNUM_P(vmax)) {
 | |
| 	    max = FIX2LONG(vmax);
 | |
| 	    if (max == -1) return Qnil;
 | |
| 	    r = limited_rand(mt, max);
 | |
| 	    return LONG2NUM(r);
 | |
| 	}
 | |
| 	ret = limited_big_rand(mt, RBIGNUM(vmax));
 | |
| 	RB_GC_GUARD(vmax);
 | |
| 	return ret;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline double
 | |
| float_value(VALUE v)
 | |
| {
 | |
|     double x = RFLOAT_VALUE(v);
 | |
|     if (isinf(x) || isnan(x)) {
 | |
| 	VALUE error = INT2FIX(EDOM);
 | |
| 	rb_exc_raise(rb_class_new_instance(1, &error, rb_eSystemCallError));
 | |
|     }
 | |
|     return x;
 | |
| }
 | |
| 
 | |
| static inline VALUE
 | |
| rand_range(struct MT* mt, VALUE range)
 | |
| {
 | |
|     VALUE beg = Qundef, end = Qundef, vmax, v;
 | |
|     int excl = 0;
 | |
| 
 | |
|     if ((v = vmax = range_values(range, &beg, &end, &excl)) == Qfalse)
 | |
| 	return Qfalse;
 | |
|     if (!RB_TYPE_P(vmax, T_FLOAT) && (v = rb_check_to_integer(vmax, "to_int"), !NIL_P(v))) {
 | |
| 	long max;
 | |
| 	vmax = v;
 | |
| 	v = Qnil;
 | |
| 	if (FIXNUM_P(vmax)) {
 | |
| 	  fixnum:
 | |
| 	    if ((max = FIX2LONG(vmax) - excl) >= 0) {
 | |
| 		unsigned long r = limited_rand(mt, (unsigned long)max);
 | |
| 		v = ULONG2NUM(r);
 | |
| 	    }
 | |
| 	}
 | |
| 	else if (BUILTIN_TYPE(vmax) == T_BIGNUM && RBIGNUM_SIGN(vmax) && !rb_bigzero_p(vmax)) {
 | |
| 	    vmax = excl ? rb_big_minus(vmax, INT2FIX(1)) : rb_big_norm(vmax);
 | |
| 	    if (FIXNUM_P(vmax)) {
 | |
| 		excl = 0;
 | |
| 		goto fixnum;
 | |
| 	    }
 | |
| 	    v = limited_big_rand(mt, RBIGNUM(vmax));
 | |
| 	}
 | |
|     }
 | |
|     else if (v = rb_check_to_float(vmax), !NIL_P(v)) {
 | |
| 	int scale = 1;
 | |
| 	double max = RFLOAT_VALUE(v), mid = 0.5, r;
 | |
| 	if (isinf(max)) {
 | |
| 	    double min = float_value(rb_to_float(beg)) / 2.0;
 | |
| 	    max = float_value(rb_to_float(end)) / 2.0;
 | |
| 	    scale = 2;
 | |
| 	    mid = max + min;
 | |
| 	    max -= min;
 | |
| 	}
 | |
| 	else {
 | |
| 	    float_value(v);
 | |
| 	}
 | |
| 	v = Qnil;
 | |
| 	if (max > 0.0) {
 | |
| 	    if (excl) {
 | |
| 		r = genrand_real(mt);
 | |
| 	    }
 | |
| 	    else {
 | |
| 		r = genrand_real2(mt);
 | |
| 	    }
 | |
| 	    if (scale > 1) {
 | |
| 		return rb_float_new(+(+(+(r - 0.5) * max) * scale) + mid);
 | |
| 	    }
 | |
| 	    v = rb_float_new(r * max);
 | |
| 	}
 | |
| 	else if (max == 0.0 && !excl) {
 | |
| 	    v = rb_float_new(0.0);
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     if (FIXNUM_P(beg) && FIXNUM_P(v)) {
 | |
| 	long x = FIX2LONG(beg) + FIX2LONG(v);
 | |
| 	return LONG2NUM(x);
 | |
|     }
 | |
|     switch (TYPE(v)) {
 | |
|       case T_NIL:
 | |
| 	break;
 | |
|       case T_BIGNUM:
 | |
| 	return rb_big_plus(v, beg);
 | |
|       case T_FLOAT: {
 | |
| 	VALUE f = rb_check_to_float(beg);
 | |
| 	if (!NIL_P(f)) {
 | |
| 	    RFLOAT_VALUE(v) += RFLOAT_VALUE(f);
 | |
| 	    return v;
 | |
| 	}
 | |
|       }
 | |
|       default:
 | |
| 	return rb_funcall2(beg, id_plus, 1, &v);
 | |
|     }
 | |
| 
 | |
|     return v;
 | |
| }
 | |
| 
 | |
| static VALUE rand_random(int argc, VALUE *argv, rb_random_t *rnd);
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *   prng.rand -> float
 | |
|  *   prng.rand(max) -> number
 | |
|  *
 | |
|  * When +max+ is an Integer, +rand+ returns a random integer greater than
 | |
|  * or equal to zero and less than +max+. Unlike Kernel.rand, when +max+
 | |
|  * is a negative integer or zero, +rand+ raises an ArgumentError.
 | |
|  *
 | |
|  *   prng = Random.new
 | |
|  *   prng.rand(100)       # => 42
 | |
|  *
 | |
|  * When +max+ is a Float, +rand+ returns a random floating point number
 | |
|  * between 0.0 and +max+, including 0.0 and excluding +max+.
 | |
|  *
 | |
|  *   prng.rand(1.5)       # => 1.4600282860034115
 | |
|  *
 | |
|  * When +max+ is a Range, +rand+ returns a random number where
 | |
|  * range.member?(number) == true.
 | |
|  *
 | |
|  *   prng.rand(5..9)      # => one of [5, 6, 7, 8, 9]
 | |
|  *   prng.rand(5...9)     # => one of [5, 6, 7, 8]
 | |
|  *   prng.rand(5.0..9.0)  # => between 5.0 and 9.0, including 9.0
 | |
|  *   prng.rand(5.0...9.0) # => between 5.0 and 9.0, excluding 9.0
 | |
|  *
 | |
|  * Both the beginning and ending values of the range must respond to subtract
 | |
|  * (<tt>-</tt>) and add (<tt>+</tt>)methods, or rand will raise an
 | |
|  * ArgumentError.
 | |
|  */
 | |
| static VALUE
 | |
| random_rand(int argc, VALUE *argv, VALUE obj)
 | |
| {
 | |
|     return rand_random(argc, argv, get_rnd(obj));
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| rand_random(int argc, VALUE *argv, rb_random_t *rnd)
 | |
| {
 | |
|     VALUE vmax, v;
 | |
| 
 | |
|     if (argc == 0) {
 | |
| 	return rb_float_new(genrand_real(&rnd->mt));
 | |
|     }
 | |
|     else {
 | |
| 	rb_check_arity(argc, 0, 1);
 | |
|     }
 | |
|     vmax = argv[0];
 | |
|     if (NIL_P(vmax)) {
 | |
| 	v = Qnil;
 | |
|     }
 | |
|     else if (!RB_TYPE_P(vmax, T_FLOAT) && (v = rb_check_to_integer(vmax, "to_int"), !NIL_P(v))) {
 | |
| 	v = rand_int(&rnd->mt, v, 1);
 | |
|     }
 | |
|     else if (v = rb_check_to_float(vmax), !NIL_P(v)) {
 | |
| 	double max = float_value(v);
 | |
| 	if (max > 0.0)
 | |
| 	    v = rb_float_new(max * genrand_real(&rnd->mt));
 | |
| 	else
 | |
| 	    v = Qnil;
 | |
|     }
 | |
|     else if ((v = rand_range(&rnd->mt, vmax)) != Qfalse) {
 | |
| 	/* nothing to do */
 | |
|     }
 | |
|     else {
 | |
| 	v = Qnil;
 | |
| 	(void)NUM2LONG(vmax);
 | |
|     }
 | |
|     if (NIL_P(v)) {
 | |
| 	VALUE mesg = rb_str_new_cstr("invalid argument - ");
 | |
| 	rb_str_append(mesg, rb_obj_as_string(argv[0]));
 | |
| 	rb_exc_raise(rb_exc_new3(rb_eArgError, mesg));
 | |
|     }
 | |
| 
 | |
|     return v;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *   prng1 == prng2 -> true or false
 | |
|  *
 | |
|  * Returns true if the two generators have the same internal state, otherwise
 | |
|  * false.  Equivalent generators will return the same sequence of
 | |
|  * pseudo-random numbers.  Two generators will generally have the same state
 | |
|  * only if they were initialized with the same seed
 | |
|  *
 | |
|  *   Random.new == Random.new             # => false
 | |
|  *   Random.new(1234) == Random.new(1234) # => true
 | |
|  *
 | |
|  * and have the same invocation history.
 | |
|  *
 | |
|  *   prng1 = Random.new(1234)
 | |
|  *   prng2 = Random.new(1234)
 | |
|  *   prng1 == prng2 # => true
 | |
|  *
 | |
|  *   prng1.rand     # => 0.1915194503788923
 | |
|  *   prng1 == prng2 # => false
 | |
|  *
 | |
|  *   prng2.rand     # => 0.1915194503788923
 | |
|  *   prng1 == prng2 # => true
 | |
|  */
 | |
| static VALUE
 | |
| random_equal(VALUE self, VALUE other)
 | |
| {
 | |
|     rb_random_t *r1, *r2;
 | |
|     if (rb_obj_class(self) != rb_obj_class(other)) return Qfalse;
 | |
|     r1 = get_rnd(self);
 | |
|     r2 = get_rnd(other);
 | |
|     if (!RTEST(rb_funcall2(r1->seed, rb_intern("=="), 1, &r2->seed))) return Qfalse;
 | |
|     if (memcmp(r1->mt.state, r2->mt.state, sizeof(r1->mt.state))) return Qfalse;
 | |
|     if ((r1->mt.next - r1->mt.state) != (r2->mt.next - r2->mt.state)) return Qfalse;
 | |
|     if (r1->mt.left != r2->mt.left) return Qfalse;
 | |
|     return Qtrue;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *   rand(max=0)    -> number
 | |
|  *
 | |
|  * If called without an argument, or if <tt>max.to_i.abs == 0</tt>, rand
 | |
|  * returns a pseudo-random floating point number between 0.0 and 1.0,
 | |
|  * including 0.0 and excluding 1.0.
 | |
|  *
 | |
|  *   rand        #=> 0.2725926052826416
 | |
|  *
 | |
|  * When <tt>max.abs</tt> is greater than or equal to 1, +rand+ returns a
 | |
|  * pseudo-random integer greater than or equal to 0 and less than
 | |
|  * <tt>max.to_i.abs</tt>.
 | |
|  *
 | |
|  *   rand(100)   #=> 12
 | |
|  *
 | |
|  * Negative or floating point values for +max+ are allowed, but may give
 | |
|  * surprising results.
 | |
|  *
 | |
|  *   rand(-100) # => 87
 | |
|  *   rand(-0.5) # => 0.8130921818028143
 | |
|  *   rand(1.9)  # equivalent to rand(1), which is always 0
 | |
|  *
 | |
|  * Kernel.srand may be used to ensure that sequences of random numbers are
 | |
|  * reproducible between different runs of a program.
 | |
|  *
 | |
|  * See also Random.rand.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_f_rand(int argc, VALUE *argv, VALUE obj)
 | |
| {
 | |
|     VALUE v, vmax, r;
 | |
|     struct MT *mt = default_mt();
 | |
| 
 | |
|     if (argc == 0) goto zero_arg;
 | |
|     rb_scan_args(argc, argv, "01", &vmax);
 | |
|     if (NIL_P(vmax)) goto zero_arg;
 | |
|     if ((v = rand_range(mt, vmax)) != Qfalse) {
 | |
| 	return v;
 | |
|     }
 | |
|     vmax = rb_to_int(vmax);
 | |
|     if (vmax == INT2FIX(0) || NIL_P(r = rand_int(mt, vmax, 0))) {
 | |
|       zero_arg:
 | |
| 	return DBL2NUM(genrand_real(mt));
 | |
|     }
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *   Random.rand -> float
 | |
|  *   Random.rand(max) -> number
 | |
|  *
 | |
|  * Alias of Random::DEFAULT.rand.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| random_s_rand(int argc, VALUE *argv, VALUE obj)
 | |
| {
 | |
|     return rand_random(argc, argv, rand_start(&default_rand));
 | |
| }
 | |
| 
 | |
| static st_index_t hashseed;
 | |
| 
 | |
| static VALUE
 | |
| init_randomseed(struct MT *mt, unsigned int initial[DEFAULT_SEED_CNT])
 | |
| {
 | |
|     VALUE seed;
 | |
|     fill_random_seed(initial);
 | |
|     init_by_array(mt, initial, DEFAULT_SEED_CNT);
 | |
|     seed = make_seed_value(initial);
 | |
|     memset(initial, 0, DEFAULT_SEED_LEN);
 | |
|     return seed;
 | |
| }
 | |
| 
 | |
| void
 | |
| Init_RandomSeed(void)
 | |
| {
 | |
|     rb_random_t *r = &default_rand;
 | |
|     unsigned int initial[DEFAULT_SEED_CNT];
 | |
|     struct MT *mt = &r->mt;
 | |
|     VALUE seed = init_randomseed(mt, initial);
 | |
| 
 | |
|     hashseed = genrand_int32(mt);
 | |
| #if SIZEOF_ST_INDEX_T*CHAR_BIT > 4*8
 | |
|     hashseed <<= 32;
 | |
|     hashseed |= genrand_int32(mt);
 | |
| #endif
 | |
| #if SIZEOF_ST_INDEX_T*CHAR_BIT > 8*8
 | |
|     hashseed <<= 32;
 | |
|     hashseed |= genrand_int32(mt);
 | |
| #endif
 | |
| #if SIZEOF_ST_INDEX_T*CHAR_BIT > 12*8
 | |
|     hashseed <<= 32;
 | |
|     hashseed |= genrand_int32(mt);
 | |
| #endif
 | |
| 
 | |
|     rb_global_variable(&r->seed);
 | |
|     r->seed = seed;
 | |
| }
 | |
| 
 | |
| st_index_t
 | |
| rb_hash_start(st_index_t h)
 | |
| {
 | |
|     return st_hash_start(hashseed + h);
 | |
| }
 | |
| 
 | |
| static void
 | |
| Init_RandomSeed2(void)
 | |
| {
 | |
|     VALUE seed = default_rand.seed;
 | |
| 
 | |
|     if (RB_TYPE_P(seed, T_BIGNUM)) {
 | |
| 	RBASIC(seed)->klass = rb_cBignum;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void
 | |
| rb_reset_random_seed(void)
 | |
| {
 | |
|     rb_random_t *r = &default_rand;
 | |
|     uninit_genrand(&r->mt);
 | |
|     r->seed = INT2FIX(0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Document-class: Random
 | |
|  *
 | |
|  * Random provides an interface to Ruby's pseudo-random number generator, or
 | |
|  * PRNG.  The PRNG produces a deterministic sequence of bits which approximate
 | |
|  * true randomness. The sequence may be represented by integers, floats, or
 | |
|  * binary strings.
 | |
|  *
 | |
|  * The generator may be initialized with either a system-generated or
 | |
|  * user-supplied seed value by using Random.srand.
 | |
|  *
 | |
|  * The class method Random.rand provides the base functionality of Kernel.rand
 | |
|  * along with better handling of floating point values. These are both
 | |
|  * interfaces to Random::DEFAULT, the Ruby system PRNG.
 | |
|  *
 | |
|  * Random.new will create a new PRNG with a state independent of
 | |
|  * Random::DEFAULT, allowing multiple generators with different seed values or
 | |
|  * sequence positions to exist simultaneously. Random objects can be
 | |
|  * marshaled, allowing sequences to be saved and resumed.
 | |
|  *
 | |
|  * PRNGs are currently implemented as a modified Mersenne Twister with a period
 | |
|  * of 2**19937-1.
 | |
|  */
 | |
| 
 | |
| void
 | |
| Init_Random(void)
 | |
| {
 | |
|     Init_RandomSeed2();
 | |
|     rb_define_global_function("srand", rb_f_srand, -1);
 | |
|     rb_define_global_function("rand", rb_f_rand, -1);
 | |
| 
 | |
|     rb_cRandom = rb_define_class("Random", rb_cObject);
 | |
|     rb_define_alloc_func(rb_cRandom, random_alloc);
 | |
|     rb_define_method(rb_cRandom, "initialize", random_init, -1);
 | |
|     rb_define_method(rb_cRandom, "rand", random_rand, -1);
 | |
|     rb_define_method(rb_cRandom, "bytes", random_bytes, 1);
 | |
|     rb_define_method(rb_cRandom, "seed", random_get_seed, 0);
 | |
|     rb_define_method(rb_cRandom, "initialize_copy", random_copy, 1);
 | |
|     rb_define_method(rb_cRandom, "marshal_dump", random_dump, 0);
 | |
|     rb_define_method(rb_cRandom, "marshal_load", random_load, 1);
 | |
|     rb_define_private_method(rb_cRandom, "state", random_state, 0);
 | |
|     rb_define_private_method(rb_cRandom, "left", random_left, 0);
 | |
|     rb_define_method(rb_cRandom, "==", random_equal, 1);
 | |
| 
 | |
|     {
 | |
| 	VALUE rand_default = TypedData_Wrap_Struct(rb_cRandom, &random_data_type, &default_rand);
 | |
| 	rb_gc_register_mark_object(rand_default);
 | |
| 	rb_define_const(rb_cRandom, "DEFAULT", rand_default);
 | |
|     }
 | |
| 
 | |
|     rb_define_singleton_method(rb_cRandom, "srand", rb_f_srand, -1);
 | |
|     rb_define_singleton_method(rb_cRandom, "rand", random_s_rand, -1);
 | |
|     rb_define_singleton_method(rb_cRandom, "new_seed", random_seed, 0);
 | |
|     rb_define_private_method(CLASS_OF(rb_cRandom), "state", random_s_state, 0);
 | |
|     rb_define_private_method(CLASS_OF(rb_cRandom), "left", random_s_left, 0);
 | |
| 
 | |
|     id_rand = rb_intern("rand");
 | |
|     id_bytes = rb_intern("bytes");
 | |
| }
 |