mirror of
				https://github.com/ruby/ruby.git
				synced 2022-11-09 12:17:21 -05:00 
			
		
		
		
	[ruby-dev:27820] and related thread. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@9666 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
		
			
				
	
	
		
			1398 lines
		
	
	
	
		
			30 KiB
		
	
	
	
		
			Ruby
		
	
	
	
	
	
			
		
		
	
	
			1398 lines
		
	
	
	
		
			30 KiB
		
	
	
	
		
			Ruby
		
	
	
	
	
	
#!/usr/local/bin/ruby
 | 
						|
#--
 | 
						|
#   matrix.rb - 
 | 
						|
#   	$Release Version: 1.0$
 | 
						|
#   	$Revision: 1.13 $
 | 
						|
#   	$Date: 2001/12/09 14:22:23 $
 | 
						|
#       Original Version from Smalltalk-80 version
 | 
						|
#          on July 23, 1985 at 8:37:17 am
 | 
						|
#       by Keiju ISHITSUKA
 | 
						|
#++
 | 
						|
#
 | 
						|
# = matrix.rb
 | 
						|
#
 | 
						|
# An implementation of Matrix and Vector classes.
 | 
						|
#
 | 
						|
# Author:: Keiju ISHITSUKA
 | 
						|
# Documentation:: Gavin Sinclair (sourced from <i>Ruby in a Nutshell</i> (Matsumoto, O'Reilly)) 
 | 
						|
#
 | 
						|
# See classes Matrix and Vector for documentation. 
 | 
						|
#
 | 
						|
 | 
						|
 | 
						|
require "e2mmap.rb"
 | 
						|
 | 
						|
module ExceptionForMatrix # :nodoc:
 | 
						|
  extend Exception2MessageMapper
 | 
						|
  def_e2message(TypeError, "wrong argument type %s (expected %s)")
 | 
						|
  def_e2message(ArgumentError, "Wrong # of arguments(%d for %d)")
 | 
						|
  
 | 
						|
  def_exception("ErrDimensionMismatch", "\#{self.name} dimension mismatch")
 | 
						|
  def_exception("ErrNotRegular", "Not Regular Matrix")
 | 
						|
  def_exception("ErrOperationNotDefined", "This operation(%s) can\\'t defined")
 | 
						|
end
 | 
						|
 | 
						|
#
 | 
						|
# The +Matrix+ class represents a mathematical matrix, and provides methods for creating
 | 
						|
# special-case matrices (zero, identity, diagonal, singular, vector), operating on them
 | 
						|
# arithmetically and algebraically, and determining their mathematical properties (trace, rank,
 | 
						|
# inverse, determinant).
 | 
						|
#
 | 
						|
# Note that although matrices should theoretically be rectangular, this is not
 | 
						|
# enforced by the class.
 | 
						|
#
 | 
						|
# Also note that the determinant of integer matrices may be incorrectly calculated unless you
 | 
						|
# also <tt>require 'mathn'</tt>.  This may be fixed in the future.
 | 
						|
#
 | 
						|
# == Method Catalogue
 | 
						|
#
 | 
						|
# To create a matrix:
 | 
						|
# * <tt> Matrix[*rows]                  </tt>
 | 
						|
# * <tt> Matrix.[](*rows)               </tt>
 | 
						|
# * <tt> Matrix.rows(rows, copy = true) </tt>
 | 
						|
# * <tt> Matrix.columns(columns)        </tt>
 | 
						|
# * <tt> Matrix.diagonal(*values)       </tt>
 | 
						|
# * <tt> Matrix.scalar(n, value)        </tt>
 | 
						|
# * <tt> Matrix.scalar(n, value)        </tt>
 | 
						|
# * <tt> Matrix.identity(n)             </tt>
 | 
						|
# * <tt> Matrix.unit(n)                 </tt>
 | 
						|
# * <tt> Matrix.I(n)                    </tt>
 | 
						|
# * <tt> Matrix.zero(n)                 </tt>
 | 
						|
# * <tt> Matrix.row_vector(row)         </tt>
 | 
						|
# * <tt> Matrix.column_vector(column)   </tt>
 | 
						|
#
 | 
						|
# To access Matrix elements/columns/rows/submatrices/properties: 
 | 
						|
# * <tt>  [](i, j)                      </tt>
 | 
						|
# * <tt> #row_size                      </tt>
 | 
						|
# * <tt> #column_size                   </tt>
 | 
						|
# * <tt> #row(i)                        </tt>
 | 
						|
# * <tt> #column(j)                     </tt>
 | 
						|
# * <tt> #collect                       </tt>
 | 
						|
# * <tt> #map                           </tt>
 | 
						|
# * <tt> #minor(*param)                 </tt>
 | 
						|
#
 | 
						|
# Properties of a matrix:
 | 
						|
# * <tt> #regular?                      </tt>
 | 
						|
# * <tt> #singular?                     </tt>
 | 
						|
# * <tt> #square?                       </tt>
 | 
						|
#
 | 
						|
# Matrix arithmetic:
 | 
						|
# * <tt>  *(m)                          </tt>
 | 
						|
# * <tt>  +(m)                          </tt>
 | 
						|
# * <tt>  -(m)                          </tt>
 | 
						|
# * <tt> #/(m)                          </tt>
 | 
						|
# * <tt> #inverse                       </tt>
 | 
						|
# * <tt> #inv                           </tt>
 | 
						|
# * <tt>  **                            </tt>
 | 
						|
#
 | 
						|
# Matrix functions:
 | 
						|
# * <tt> #determinant                   </tt>
 | 
						|
# * <tt> #det                           </tt>
 | 
						|
# * <tt> #rank                          </tt>
 | 
						|
# * <tt> #trace                         </tt>
 | 
						|
# * <tt> #tr                            </tt>
 | 
						|
# * <tt> #transpose                     </tt>
 | 
						|
# * <tt> #t                             </tt>
 | 
						|
#
 | 
						|
# Conversion to other data types:
 | 
						|
# * <tt> #coerce(other)                 </tt>
 | 
						|
# * <tt> #row_vectors                   </tt>
 | 
						|
# * <tt> #column_vectors                </tt>
 | 
						|
# * <tt> #to_a                          </tt>
 | 
						|
#
 | 
						|
# String representations:
 | 
						|
# * <tt> #to_s                          </tt>
 | 
						|
# * <tt> #inspect                       </tt>
 | 
						|
#
 | 
						|
class Matrix
 | 
						|
  @RCS_ID='-$Id: matrix.rb,v 1.13 2001/12/09 14:22:23 keiju Exp keiju $-'
 | 
						|
  
 | 
						|
#  extend Exception2MessageMapper
 | 
						|
  include ExceptionForMatrix
 | 
						|
  
 | 
						|
  # instance creations
 | 
						|
  private_class_method :new
 | 
						|
  
 | 
						|
  #
 | 
						|
  # Creates a matrix where each argument is a row.
 | 
						|
  #   Matrix[ [25, 93], [-1, 66] ]
 | 
						|
  #      =>  25 93
 | 
						|
  #          -1 66
 | 
						|
  #
 | 
						|
  def Matrix.[](*rows)
 | 
						|
    new(:init_rows, rows, false)
 | 
						|
  end
 | 
						|
  
 | 
						|
  #
 | 
						|
  # Creates a matrix where +rows+ is an array of arrays, each of which is a row
 | 
						|
  # to the matrix.  If the optional argument +copy+ is false, use the given
 | 
						|
  # arrays as the internal structure of the matrix without copying.
 | 
						|
  #   Matrix.rows([[25, 93], [-1, 66]])
 | 
						|
  #      =>  25 93
 | 
						|
  #          -1 66
 | 
						|
  def Matrix.rows(rows, copy = true)
 | 
						|
    new(:init_rows, rows, copy)
 | 
						|
  end
 | 
						|
  
 | 
						|
  #
 | 
						|
  # Creates a matrix using +columns+ as an array of column vectors.
 | 
						|
  #   Matrix.columns([[25, 93], [-1, 66]])
 | 
						|
  #      =>  25 -1
 | 
						|
  #          93 66
 | 
						|
  #
 | 
						|
  #
 | 
						|
  def Matrix.columns(columns)
 | 
						|
    rows = (0 .. columns[0].size - 1).collect {
 | 
						|
      |i|
 | 
						|
      (0 .. columns.size - 1).collect {
 | 
						|
        |j|
 | 
						|
        columns[j][i]
 | 
						|
      }
 | 
						|
    }
 | 
						|
    Matrix.rows(rows, false)
 | 
						|
  end
 | 
						|
  
 | 
						|
  #
 | 
						|
  # Creates a matrix where the diagonal elements are composed of +values+.
 | 
						|
  #   Matrix.diagonal(9, 5, -3)
 | 
						|
  #     =>  9  0  0
 | 
						|
  #         0  5  0
 | 
						|
  #         0  0 -3
 | 
						|
  #
 | 
						|
  def Matrix.diagonal(*values)
 | 
						|
    size = values.size
 | 
						|
    rows = (0 .. size  - 1).collect {
 | 
						|
      |j|
 | 
						|
      row = Array.new(size).fill(0, 0, size)
 | 
						|
      row[j] = values[j]
 | 
						|
      row
 | 
						|
    }
 | 
						|
    rows(rows, false)
 | 
						|
  end
 | 
						|
  
 | 
						|
  #
 | 
						|
  # Creates an +n+ by +n+ diagonal matrix where each diagonal element is
 | 
						|
  # +value+.
 | 
						|
  #   Matrix.scalar(2, 5)
 | 
						|
  #     => 5 0
 | 
						|
  #        0 5
 | 
						|
  #
 | 
						|
  def Matrix.scalar(n, value)
 | 
						|
    Matrix.diagonal(*Array.new(n).fill(value, 0, n))
 | 
						|
  end
 | 
						|
 | 
						|
  #
 | 
						|
  # Creates an +n+ by +n+ identity matrix.
 | 
						|
  #   Matrix.identity(2)
 | 
						|
  #     => 1 0
 | 
						|
  #        0 1
 | 
						|
  #
 | 
						|
  def Matrix.identity(n)
 | 
						|
    Matrix.scalar(n, 1)
 | 
						|
  end
 | 
						|
  class << Matrix 
 | 
						|
    alias unit identity
 | 
						|
    alias I identity
 | 
						|
  end
 | 
						|
  
 | 
						|
  #
 | 
						|
  # Creates an +n+ by +n+ zero matrix.
 | 
						|
  #   Matrix.zero(2)
 | 
						|
  #     => 0 0
 | 
						|
  #        0 0
 | 
						|
  #
 | 
						|
  def Matrix.zero(n)
 | 
						|
    Matrix.scalar(n, 0)
 | 
						|
  end
 | 
						|
  
 | 
						|
  #
 | 
						|
  # Creates a single-row matrix where the values of that row are as given in
 | 
						|
  # +row+.
 | 
						|
  #   Matrix.row_vector([4,5,6])
 | 
						|
  #     => 4 5 6
 | 
						|
  #
 | 
						|
  def Matrix.row_vector(row)
 | 
						|
    case row
 | 
						|
    when Vector
 | 
						|
      Matrix.rows([row.to_a], false)
 | 
						|
    when Array
 | 
						|
      Matrix.rows([row.dup], false)
 | 
						|
    else
 | 
						|
      Matrix.rows([[row]], false)
 | 
						|
    end
 | 
						|
  end
 | 
						|
  
 | 
						|
  #
 | 
						|
  # Creates a single-column matrix where the values of that column are as given
 | 
						|
  # in +column+.
 | 
						|
  #   Matrix.column_vector([4,5,6])
 | 
						|
  #     => 4
 | 
						|
  #        5
 | 
						|
  #        6
 | 
						|
  #
 | 
						|
  def Matrix.column_vector(column)
 | 
						|
    case column
 | 
						|
    when Vector
 | 
						|
      Matrix.columns([column.to_a])
 | 
						|
    when Array
 | 
						|
      Matrix.columns([column])
 | 
						|
    else
 | 
						|
      Matrix.columns([[column]])
 | 
						|
    end
 | 
						|
  end
 | 
						|
 | 
						|
  #
 | 
						|
  # This method is used by the other methods that create matrices, and is of no
 | 
						|
  # use to general users.
 | 
						|
  #
 | 
						|
  def initialize(init_method, *argv)
 | 
						|
    self.funcall(init_method, *argv)
 | 
						|
  end
 | 
						|
  
 | 
						|
  def init_rows(rows, copy)
 | 
						|
    if copy
 | 
						|
      @rows = rows.collect{|row| row.dup}
 | 
						|
    else
 | 
						|
      @rows = rows
 | 
						|
    end
 | 
						|
    self
 | 
						|
  end
 | 
						|
  private :init_rows
 | 
						|
  
 | 
						|
  #
 | 
						|
  # Returns element (+i+,+j+) of the matrix.  That is: row +i+, column +j+.
 | 
						|
  #
 | 
						|
  def [](i, j)
 | 
						|
    @rows[i][j]
 | 
						|
  end
 | 
						|
  alias element []
 | 
						|
  alias component []
 | 
						|
 | 
						|
  def []=(i, j, v)
 | 
						|
    @rows[i][j] = v
 | 
						|
  end
 | 
						|
  alias set_element []=
 | 
						|
  alias set_component []=
 | 
						|
  private :[]=, :set_element, :set_component
 | 
						|
 | 
						|
  #
 | 
						|
  # Returns the number of rows.
 | 
						|
  #
 | 
						|
  def row_size
 | 
						|
    @rows.size
 | 
						|
  end
 | 
						|
  
 | 
						|
  #
 | 
						|
  # Returns the number of columns.  Note that it is possible to construct a
 | 
						|
  # matrix with uneven columns (e.g. Matrix[ [1,2,3], [4,5] ]), but this is
 | 
						|
  # mathematically unsound.  This method uses the first row to determine the
 | 
						|
  # result.
 | 
						|
  #
 | 
						|
  def column_size
 | 
						|
    @rows[0].size
 | 
						|
  end
 | 
						|
 | 
						|
  #
 | 
						|
  # Returns row vector number +i+ of the matrix as a Vector (starting at 0 like
 | 
						|
  # an array).  When a block is given, the elements of that vector are iterated.
 | 
						|
  #
 | 
						|
  def row(i) # :yield: e
 | 
						|
    if block_given?
 | 
						|
      for e in @rows[i]
 | 
						|
        yield e
 | 
						|
      end
 | 
						|
    else
 | 
						|
      Vector.elements(@rows[i])
 | 
						|
    end
 | 
						|
  end
 | 
						|
 | 
						|
  #
 | 
						|
  # Returns column vector number +j+ of the matrix as a Vector (starting at 0
 | 
						|
  # like an array).  When a block is given, the elements of that vector are
 | 
						|
  # iterated.
 | 
						|
  #
 | 
						|
  def column(j) # :yield: e
 | 
						|
    if block_given?
 | 
						|
      0.upto(row_size - 1) do
 | 
						|
        |i|
 | 
						|
        yield @rows[i][j]
 | 
						|
      end
 | 
						|
    else
 | 
						|
      col = (0 .. row_size - 1).collect {
 | 
						|
        |i|
 | 
						|
        @rows[i][j]
 | 
						|
      }
 | 
						|
      Vector.elements(col, false)
 | 
						|
    end
 | 
						|
  end
 | 
						|
  
 | 
						|
  #
 | 
						|
  # Returns a matrix that is the result of iteration of the given block over all
 | 
						|
  # elements of the matrix.
 | 
						|
  #   Matrix[ [1,2], [3,4] ].collect { |e| e**2 }
 | 
						|
  #     => 1  4
 | 
						|
  #        9 16
 | 
						|
  #
 | 
						|
  def collect # :yield: e
 | 
						|
    rows = @rows.collect{|row| row.collect{|e| yield e}}
 | 
						|
    Matrix.rows(rows, false)
 | 
						|
  end
 | 
						|
  alias map collect
 | 
						|
  
 | 
						|
  #
 | 
						|
  # Returns a section of the matrix.  The parameters are either:
 | 
						|
  # *  start_row, nrows, start_col, ncols; OR
 | 
						|
  # *  col_range, row_range
 | 
						|
  #
 | 
						|
  #   Matrix.diagonal(9, 5, -3).minor(0..1, 0..2)
 | 
						|
  #     => 9 0 0
 | 
						|
  #        0 5 0
 | 
						|
  #
 | 
						|
  def minor(*param)
 | 
						|
    case param.size
 | 
						|
    when 2
 | 
						|
      from_row = param[0].first
 | 
						|
      size_row = param[0].end - from_row
 | 
						|
      size_row += 1 unless param[0].exclude_end?
 | 
						|
      from_col = param[1].first
 | 
						|
      size_col = param[1].end - from_col
 | 
						|
      size_col += 1 unless param[1].exclude_end?
 | 
						|
    when 4
 | 
						|
      from_row = param[0]
 | 
						|
      size_row = param[1]
 | 
						|
      from_col = param[2]
 | 
						|
      size_col = param[3]
 | 
						|
    else
 | 
						|
      Matrix.Raise ArgumentError, param.inspect
 | 
						|
    end
 | 
						|
    
 | 
						|
    rows = @rows[from_row, size_row].collect{
 | 
						|
      |row|
 | 
						|
      row[from_col, size_col]
 | 
						|
    }
 | 
						|
    Matrix.rows(rows, false)
 | 
						|
  end
 | 
						|
 
 | 
						|
  #--
 | 
						|
  # TESTING -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
 | 
						|
  #++
 | 
						|
 | 
						|
  #
 | 
						|
  # Returns +true+ if this is a regular matrix.
 | 
						|
  #
 | 
						|
  def regular?
 | 
						|
    square? and rank == column_size
 | 
						|
  end
 | 
						|
  
 | 
						|
  #
 | 
						|
  # Returns +true+ is this is a singular (i.e. non-regular) matrix.
 | 
						|
  #
 | 
						|
  def singular?
 | 
						|
    not regular?
 | 
						|
  end
 | 
						|
 | 
						|
  #
 | 
						|
  # Returns +true+ is this is a square matrix.  See note in column_size about this
 | 
						|
  # being unreliable, though.
 | 
						|
  #
 | 
						|
  def square?
 | 
						|
    column_size == row_size
 | 
						|
  end
 | 
						|
  
 | 
						|
  #--
 | 
						|
  # OBJECT METHODS -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
 | 
						|
  #++
 | 
						|
 | 
						|
  #
 | 
						|
  # Returns +true+ if and only if the two matrices contain equal elements.
 | 
						|
  #
 | 
						|
  def ==(other)
 | 
						|
    return false unless Matrix === other
 | 
						|
    
 | 
						|
    other.compare_by_row_vectors(@rows)
 | 
						|
  end
 | 
						|
  alias eql? ==
 | 
						|
  
 | 
						|
  #
 | 
						|
  # Not really intended for general consumption.
 | 
						|
  #
 | 
						|
  def compare_by_row_vectors(rows)
 | 
						|
    return false unless @rows.size == rows.size
 | 
						|
    
 | 
						|
    0.upto(@rows.size - 1) do
 | 
						|
      |i|
 | 
						|
      return false unless @rows[i] == rows[i]
 | 
						|
    end
 | 
						|
    true
 | 
						|
  end
 | 
						|
  
 | 
						|
  #
 | 
						|
  # Returns a clone of the matrix, so that the contents of each do not reference
 | 
						|
  # identical objects.
 | 
						|
  #
 | 
						|
  def clone
 | 
						|
    Matrix.rows(@rows)
 | 
						|
  end
 | 
						|
  
 | 
						|
  #
 | 
						|
  # Returns a hash-code for the matrix.
 | 
						|
  #
 | 
						|
  def hash
 | 
						|
    value = 0
 | 
						|
    for row in @rows
 | 
						|
      for e in row
 | 
						|
        value ^= e.hash
 | 
						|
      end
 | 
						|
    end
 | 
						|
    return value
 | 
						|
  end
 | 
						|
  
 | 
						|
  #--
 | 
						|
  # ARITHMETIC -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
 | 
						|
  #++
 | 
						|
  
 | 
						|
  #
 | 
						|
  # Matrix multiplication.
 | 
						|
  #   Matrix[[2,4], [6,8]] * Matrix.identity(2)
 | 
						|
  #     => 2 4
 | 
						|
  #        6 8
 | 
						|
  #
 | 
						|
  def *(m) # m is matrix or vector or number
 | 
						|
    case(m)
 | 
						|
    when Numeric
 | 
						|
      rows = @rows.collect {
 | 
						|
        |row|
 | 
						|
        row.collect {
 | 
						|
          |e|
 | 
						|
          e * m
 | 
						|
        }
 | 
						|
      }
 | 
						|
      return Matrix.rows(rows, false)
 | 
						|
    when Vector
 | 
						|
      m = Matrix.column_vector(m)
 | 
						|
      r = self * m
 | 
						|
      return r.column(0)
 | 
						|
    when Matrix
 | 
						|
      Matrix.Raise ErrDimensionMismatch if column_size != m.row_size
 | 
						|
    
 | 
						|
      rows = (0 .. row_size - 1).collect {
 | 
						|
        |i|
 | 
						|
        (0 .. m.column_size - 1).collect {
 | 
						|
          |j|
 | 
						|
          vij = 0
 | 
						|
          0.upto(column_size - 1) do
 | 
						|
            |k|
 | 
						|
            vij += self[i, k] * m[k, j]
 | 
						|
          end
 | 
						|
          vij
 | 
						|
        }
 | 
						|
      }
 | 
						|
      return Matrix.rows(rows, false)
 | 
						|
    else
 | 
						|
      x, y = m.coerce(self)
 | 
						|
      return x * y
 | 
						|
    end
 | 
						|
  end
 | 
						|
  
 | 
						|
  #
 | 
						|
  # Matrix addition.
 | 
						|
  #   Matrix.scalar(2,5) + Matrix[[1,0], [-4,7]]
 | 
						|
  #     =>  6  0
 | 
						|
  #        -4 12
 | 
						|
  #
 | 
						|
  def +(m)
 | 
						|
    case m
 | 
						|
    when Numeric
 | 
						|
      Matrix.Raise ErrOperationNotDefined, "+"
 | 
						|
    when Vector
 | 
						|
      m = Matrix.column_vector(m)
 | 
						|
    when Matrix
 | 
						|
    else
 | 
						|
      x, y = m.coerce(self)
 | 
						|
      return x + y
 | 
						|
    end
 | 
						|
    
 | 
						|
    Matrix.Raise ErrDimensionMismatch unless row_size == m.row_size and column_size == m.column_size
 | 
						|
    
 | 
						|
    rows = (0 .. row_size - 1).collect {
 | 
						|
      |i|
 | 
						|
      (0 .. column_size - 1).collect {
 | 
						|
        |j|
 | 
						|
        self[i, j] + m[i, j]
 | 
						|
      }
 | 
						|
    }
 | 
						|
    Matrix.rows(rows, false)
 | 
						|
  end
 | 
						|
 | 
						|
  #
 | 
						|
  # Matrix subtraction.
 | 
						|
  #   Matrix[[1,5], [4,2]] - Matrix[[9,3], [-4,1]]
 | 
						|
  #     => -8  2
 | 
						|
  #         8  1
 | 
						|
  #
 | 
						|
  def -(m)
 | 
						|
    case m
 | 
						|
    when Numeric
 | 
						|
      Matrix.Raise ErrOperationNotDefined, "-"
 | 
						|
    when Vector
 | 
						|
      m = Matrix.column_vector(m)
 | 
						|
    when Matrix
 | 
						|
    else
 | 
						|
      x, y = m.coerce(self)
 | 
						|
      return x - y
 | 
						|
    end
 | 
						|
    
 | 
						|
    Matrix.Raise ErrDimensionMismatch unless row_size == m.row_size and column_size == m.column_size
 | 
						|
    
 | 
						|
    rows = (0 .. row_size - 1).collect {
 | 
						|
      |i|
 | 
						|
      (0 .. column_size - 1).collect {
 | 
						|
        |j|
 | 
						|
        self[i, j] - m[i, j]
 | 
						|
      }
 | 
						|
    }
 | 
						|
    Matrix.rows(rows, false)
 | 
						|
  end
 | 
						|
  
 | 
						|
  #
 | 
						|
  # Matrix division (multiplication by the inverse).
 | 
						|
  #   Matrix[[7,6], [3,9]] / Matrix[[2,9], [3,1]]
 | 
						|
  #     => -7  1
 | 
						|
  #        -3 -6
 | 
						|
  #
 | 
						|
  def /(other)
 | 
						|
    case other
 | 
						|
    when Numeric
 | 
						|
      rows = @rows.collect {
 | 
						|
        |row|
 | 
						|
        row.collect {
 | 
						|
          |e|
 | 
						|
          e / other
 | 
						|
        }
 | 
						|
      }
 | 
						|
      return Matrix.rows(rows, false)
 | 
						|
    when Matrix
 | 
						|
      return self * other.inverse
 | 
						|
    else
 | 
						|
      x, y = other.coerce(self)
 | 
						|
      rerurn x / y
 | 
						|
    end
 | 
						|
  end
 | 
						|
 | 
						|
  #
 | 
						|
  # Returns the inverse of the matrix.
 | 
						|
  #   Matrix[[1, 2], [2, 1]].inverse
 | 
						|
  #     => -1  1
 | 
						|
  #         0 -1
 | 
						|
  #
 | 
						|
  def inverse
 | 
						|
    Matrix.Raise ErrDimensionMismatch unless square?
 | 
						|
    Matrix.I(row_size).inverse_from(self)
 | 
						|
  end
 | 
						|
  alias inv inverse
 | 
						|
 | 
						|
  #
 | 
						|
  # Not for public consumption?
 | 
						|
  #
 | 
						|
  def inverse_from(src)
 | 
						|
    size = row_size - 1
 | 
						|
    a = src.to_a
 | 
						|
    
 | 
						|
    for k in 0..size
 | 
						|
      if (akk = a[k][k]) == 0
 | 
						|
        i = k
 | 
						|
        begin
 | 
						|
          Matrix.Raise ErrNotRegular if (i += 1) > size
 | 
						|
        end while a[i][k] == 0
 | 
						|
        a[i], a[k] = a[k], a[i]
 | 
						|
        @rows[i], @rows[k] = @rows[k], @rows[i]
 | 
						|
        akk = a[k][k]
 | 
						|
      end
 | 
						|
      
 | 
						|
      for i in 0 .. size
 | 
						|
        next if i == k
 | 
						|
        q = a[i][k].quo(akk)
 | 
						|
        a[i][k] = 0
 | 
						|
        
 | 
						|
        (k + 1).upto(size) do   
 | 
						|
          |j|
 | 
						|
          a[i][j] -= a[k][j] * q
 | 
						|
        end
 | 
						|
        0.upto(size) do
 | 
						|
          |j|
 | 
						|
          @rows[i][j] -= @rows[k][j] * q
 | 
						|
        end
 | 
						|
      end
 | 
						|
      
 | 
						|
      (k + 1).upto(size) do
 | 
						|
        |j|
 | 
						|
        a[k][j] = a[k][j].quo(akk)
 | 
						|
      end
 | 
						|
      0.upto(size) do
 | 
						|
        |j|
 | 
						|
        @rows[k][j] = @rows[k][j].quo(akk)
 | 
						|
      end
 | 
						|
    end
 | 
						|
    self
 | 
						|
  end
 | 
						|
  #alias reciprocal inverse
 | 
						|
  
 | 
						|
  #
 | 
						|
  # Matrix exponentiation.  Defined for integer powers only.  Equivalent to
 | 
						|
  # multiplying the matrix by itself N times.
 | 
						|
  #   Matrix[[7,6], [3,9]] ** 2
 | 
						|
  #     => 67 96
 | 
						|
  #        48 99
 | 
						|
  #
 | 
						|
  def ** (other)
 | 
						|
    if other.kind_of?(Integer)
 | 
						|
      x = self
 | 
						|
      if other <= 0
 | 
						|
        x = self.inverse
 | 
						|
        return Matrix.identity(self.column_size) if other == 0
 | 
						|
        other = -other
 | 
						|
      end
 | 
						|
      z = x
 | 
						|
      n = other  - 1
 | 
						|
      while n != 0
 | 
						|
        while (div, mod = n.divmod(2)
 | 
						|
               mod == 0)
 | 
						|
          x = x * x
 | 
						|
          n = div
 | 
						|
        end
 | 
						|
        z *= x
 | 
						|
        n -= 1
 | 
						|
      end
 | 
						|
      z
 | 
						|
    elsif other.kind_of?(Float) || defined?(Rational) && other.kind_of?(Rational)
 | 
						|
      Matrix.Raise ErrOperationNotDefined, "**"
 | 
						|
    else
 | 
						|
      Matrix.Raise ErrOperationNotDefined, "**"
 | 
						|
    end
 | 
						|
  end
 | 
						|
  
 | 
						|
  #--
 | 
						|
  # MATRIX FUNCTIONS -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
 | 
						|
  #++
 | 
						|
  
 | 
						|
  #
 | 
						|
  # Returns the determinant of the matrix.  If the matrix is not square, the
 | 
						|
  # result is 0. This method's algorism is Gaussian elimination method
 | 
						|
  # and using Numeric#quo(). Beware that using Float values, with their
 | 
						|
  # usual lack of precision, can affect the value returned by this method.  Use
 | 
						|
  # Rational values or Matrix#det_e instead if this is important to you.
 | 
						|
  #
 | 
						|
  #   Matrix[[7,6], [3,9]].determinant
 | 
						|
  #     => 63.0
 | 
						|
  #
 | 
						|
  def determinant
 | 
						|
    return 0 unless square?
 | 
						|
    
 | 
						|
    size = row_size - 1
 | 
						|
    a = to_a
 | 
						|
    
 | 
						|
    det = 1
 | 
						|
    k = 0
 | 
						|
    begin 
 | 
						|
      if (akk = a[k][k]) == 0
 | 
						|
        i = k
 | 
						|
        begin
 | 
						|
          return 0 if (i += 1) > size
 | 
						|
        end while a[i][k] == 0
 | 
						|
        a[i], a[k] = a[k], a[i]
 | 
						|
        akk = a[k][k]
 | 
						|
        det *= -1
 | 
						|
      end
 | 
						|
      (k + 1).upto(size) do
 | 
						|
        |i|
 | 
						|
        q = a[i][k].quo(akk)
 | 
						|
        (k + 1).upto(size) do
 | 
						|
          |j|
 | 
						|
          a[i][j] -= a[k][j] * q
 | 
						|
        end
 | 
						|
      end
 | 
						|
      det *= akk
 | 
						|
    end while (k += 1) <= size
 | 
						|
    det
 | 
						|
  end
 | 
						|
  alias det determinant
 | 
						|
 | 
						|
  #
 | 
						|
  # Returns the determinant of the matrix.  If the matrix is not square, the
 | 
						|
  # result is 0. This method's algorism is Gaussian elimination method. 
 | 
						|
  # This method uses Euclidean algorism. If all elements are integer,
 | 
						|
  # really exact value. But, if an element is a float, can't return
 | 
						|
  # exact value.   
 | 
						|
  #
 | 
						|
  #   Matrix[[7,6], [3,9]].determinant
 | 
						|
  #     => 63
 | 
						|
  #
 | 
						|
  def determinant_e
 | 
						|
    return 0 unless square?
 | 
						|
    
 | 
						|
    size = row_size - 1
 | 
						|
    a = to_a
 | 
						|
    
 | 
						|
    det = 1
 | 
						|
    k = 0
 | 
						|
    begin 
 | 
						|
      if a[k][k].zero?
 | 
						|
        i = k
 | 
						|
        begin
 | 
						|
          return 0 if (i += 1) > size
 | 
						|
        end while a[i][k].zero?
 | 
						|
        a[i], a[k] = a[k], a[i]
 | 
						|
        det *= -1
 | 
						|
      end
 | 
						|
      (k + 1).upto(size) do |i|
 | 
						|
        q = a[i][k] / a[k][k]
 | 
						|
        k.upto(size) do |j|
 | 
						|
          a[i][j] -= a[k][j] * q
 | 
						|
        end
 | 
						|
        unless a[i][k].zero?
 | 
						|
          a[i], a[k] = a[k], a[i]
 | 
						|
          det *= -1
 | 
						|
          redo
 | 
						|
        end
 | 
						|
      end
 | 
						|
      det *= a[k][k]
 | 
						|
    end while (k += 1) <= size
 | 
						|
    det
 | 
						|
  end
 | 
						|
  alias det_e determinant_e
 | 
						|
 | 
						|
  #
 | 
						|
  # Returns the rank of the matrix. Beware that using Float values,
 | 
						|
  # probably return faild value. Use Rational values or Matrix#rank_e
 | 
						|
  # for getting exact result.
 | 
						|
  #
 | 
						|
  #   Matrix[[7,6], [3,9]].rank
 | 
						|
  #     => 2
 | 
						|
  #
 | 
						|
  def rank
 | 
						|
    if column_size > row_size
 | 
						|
      a = transpose.to_a
 | 
						|
      a_column_size = row_size
 | 
						|
      a_row_size = column_size
 | 
						|
    else
 | 
						|
      a = to_a
 | 
						|
      a_column_size = column_size
 | 
						|
      a_row_size = row_size
 | 
						|
    end
 | 
						|
    rank = 0
 | 
						|
    k = 0
 | 
						|
    begin
 | 
						|
      if (akk = a[k][k]) == 0
 | 
						|
        i = k
 | 
						|
        exists = true
 | 
						|
        begin
 | 
						|
          if (i += 1) > a_column_size - 1
 | 
						|
            exists = false
 | 
						|
            break
 | 
						|
          end
 | 
						|
        end while a[i][k] == 0
 | 
						|
        if exists
 | 
						|
          a[i], a[k] = a[k], a[i]
 | 
						|
          akk = a[k][k]
 | 
						|
        else
 | 
						|
          i = k
 | 
						|
          exists = true
 | 
						|
          begin
 | 
						|
            if (i += 1) > a_row_size - 1
 | 
						|
              exists = false
 | 
						|
              break
 | 
						|
            end
 | 
						|
          end while a[k][i] == 0
 | 
						|
          if exists
 | 
						|
            k.upto(a_column_size - 1) do
 | 
						|
              |j|
 | 
						|
              a[j][k], a[j][i] = a[j][i], a[j][k]
 | 
						|
            end
 | 
						|
            akk = a[k][k]
 | 
						|
          else
 | 
						|
            next
 | 
						|
          end
 | 
						|
        end
 | 
						|
      end
 | 
						|
      (k + 1).upto(a_row_size - 1) do
 | 
						|
        |i|
 | 
						|
        q = a[i][k].quo(akk)
 | 
						|
        (k + 1).upto(a_column_size - 1) do
 | 
						|
          |j|
 | 
						|
          a[i][j] -= a[k][j] * q
 | 
						|
        end
 | 
						|
      end
 | 
						|
      rank += 1
 | 
						|
    end while (k += 1) <= a_column_size - 1
 | 
						|
    return rank
 | 
						|
  end
 | 
						|
 | 
						|
  #
 | 
						|
  # Returns the rank of the matrix. This method uses Euclidean
 | 
						|
  # algorism. If all elements are integer, really exact value. But, if
 | 
						|
  # an element is a float, can't return exact value.  
 | 
						|
  #
 | 
						|
  #   Matrix[[7,6], [3,9]].rank
 | 
						|
  #     => 2
 | 
						|
  #
 | 
						|
  def rank_e
 | 
						|
    a = to_a
 | 
						|
    a_column_size = column_size
 | 
						|
    a_row_size = row_size
 | 
						|
    pi = 0
 | 
						|
    (0 ... a_column_size).each do |j|
 | 
						|
      if i = (pi ... a_row_size).find{|i0| !a[i0][j].zero?}
 | 
						|
        if i != pi
 | 
						|
          a[pi], a[i] = a[i], a[pi]
 | 
						|
        end
 | 
						|
        (pi + 1 ... a_row_size).each do |k|
 | 
						|
          q = a[k][j] / a[pi][j]
 | 
						|
          (pi ... a_column_size).each do |j0|
 | 
						|
            a[k][j0] -= q * a[pi][j0]
 | 
						|
          end
 | 
						|
          if k > pi && !a[k][j].zero?
 | 
						|
            a[k], a[pi] = a[pi], a[k]
 | 
						|
            redo
 | 
						|
          end
 | 
						|
        end
 | 
						|
        pi += 1
 | 
						|
      end
 | 
						|
    end
 | 
						|
    pi
 | 
						|
  end
 | 
						|
 | 
						|
 | 
						|
  #
 | 
						|
  # Returns the trace (sum of diagonal elements) of the matrix.
 | 
						|
  #   Matrix[[7,6], [3,9]].trace
 | 
						|
  #     => 16
 | 
						|
  #
 | 
						|
  def trace
 | 
						|
    tr = 0
 | 
						|
    0.upto(column_size - 1) do
 | 
						|
      |i|
 | 
						|
      tr += @rows[i][i]
 | 
						|
    end
 | 
						|
    tr
 | 
						|
  end
 | 
						|
  alias tr trace
 | 
						|
  
 | 
						|
  #
 | 
						|
  # Returns the transpose of the matrix.
 | 
						|
  #   Matrix[[1,2], [3,4], [5,6]]
 | 
						|
  #     => 1 2
 | 
						|
  #        3 4
 | 
						|
  #        5 6
 | 
						|
  #   Matrix[[1,2], [3,4], [5,6]].transpose
 | 
						|
  #     => 1 3 5
 | 
						|
  #        2 4 6
 | 
						|
  #
 | 
						|
  def transpose
 | 
						|
    Matrix.columns(@rows)
 | 
						|
  end
 | 
						|
  alias t transpose
 | 
						|
  
 | 
						|
  #--
 | 
						|
  # CONVERTING -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
 | 
						|
  #++
 | 
						|
  
 | 
						|
  #
 | 
						|
  # FIXME: describe #coerce.
 | 
						|
  #
 | 
						|
  def coerce(other)
 | 
						|
    case other
 | 
						|
    when Numeric
 | 
						|
      return Scalar.new(other), self
 | 
						|
    else
 | 
						|
      raise TypeError, "#{self.class} can't be coerced into #{other.class}"
 | 
						|
    end
 | 
						|
  end
 | 
						|
 | 
						|
  #
 | 
						|
  # Returns an array of the row vectors of the matrix.  See Vector.
 | 
						|
  #
 | 
						|
  def row_vectors
 | 
						|
    rows = (0 .. row_size - 1).collect {
 | 
						|
      |i|
 | 
						|
      row(i)
 | 
						|
    }
 | 
						|
    rows
 | 
						|
  end
 | 
						|
  
 | 
						|
  #
 | 
						|
  # Returns an array of the column vectors of the matrix.  See Vector.
 | 
						|
  #
 | 
						|
  def column_vectors
 | 
						|
    columns = (0 .. column_size - 1).collect {
 | 
						|
      |i|
 | 
						|
      column(i)
 | 
						|
    }
 | 
						|
    columns
 | 
						|
  end
 | 
						|
  
 | 
						|
  #
 | 
						|
  # Returns an array of arrays that describe the rows of the matrix.
 | 
						|
  #
 | 
						|
  def to_a
 | 
						|
    @rows.collect{|row| row.collect{|e| e}}
 | 
						|
  end
 | 
						|
  
 | 
						|
  def elements_to_f
 | 
						|
    collect{|e| e.to_f}
 | 
						|
  end
 | 
						|
  
 | 
						|
  def elements_to_i
 | 
						|
    collect{|e| e.to_i}
 | 
						|
  end
 | 
						|
  
 | 
						|
  def elements_to_r
 | 
						|
    collect{|e| e.to_r}
 | 
						|
  end
 | 
						|
  
 | 
						|
  #--
 | 
						|
  # PRINTING -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
 | 
						|
  #++
 | 
						|
  
 | 
						|
  #
 | 
						|
  # Overrides Object#to_s
 | 
						|
  #
 | 
						|
  def to_s
 | 
						|
    "Matrix[" + @rows.collect{
 | 
						|
      |row|
 | 
						|
      "[" + row.collect{|e| e.to_s}.join(", ") + "]"
 | 
						|
    }.join(", ")+"]"
 | 
						|
  end
 | 
						|
  
 | 
						|
  #
 | 
						|
  # Overrides Object#inspect
 | 
						|
  #
 | 
						|
  def inspect
 | 
						|
    "Matrix"+@rows.inspect
 | 
						|
  end
 | 
						|
  
 | 
						|
  # Private CLASS
 | 
						|
  
 | 
						|
  class Scalar < Numeric # :nodoc:
 | 
						|
    include ExceptionForMatrix
 | 
						|
    
 | 
						|
    def initialize(value)
 | 
						|
      @value = value
 | 
						|
    end
 | 
						|
    
 | 
						|
    # ARITHMETIC
 | 
						|
    def +(other)
 | 
						|
      case other
 | 
						|
      when Numeric
 | 
						|
        Scalar.new(@value + other)
 | 
						|
      when Vector, Matrix
 | 
						|
        Scalar.Raise WrongArgType, other.class, "Numeric or Scalar"
 | 
						|
      when Scalar
 | 
						|
        Scalar.new(@value + other.value)
 | 
						|
      else
 | 
						|
        x, y = other.coerce(self)
 | 
						|
        x + y
 | 
						|
      end
 | 
						|
    end
 | 
						|
    
 | 
						|
    def -(other)
 | 
						|
      case other
 | 
						|
      when Numeric
 | 
						|
        Scalar.new(@value - other)
 | 
						|
      when Vector, Matrix
 | 
						|
        Scalar.Raise WrongArgType, other.class, "Numeric or Scalar"
 | 
						|
      when Scalar
 | 
						|
        Scalar.new(@value - other.value)
 | 
						|
      else
 | 
						|
        x, y = other.coerce(self)
 | 
						|
        x - y
 | 
						|
      end
 | 
						|
    end
 | 
						|
    
 | 
						|
    def *(other)
 | 
						|
      case other
 | 
						|
      when Numeric
 | 
						|
        Scalar.new(@value * other)
 | 
						|
      when Vector, Matrix
 | 
						|
        other.collect{|e| @value * e}
 | 
						|
      else
 | 
						|
        x, y = other.coerce(self)
 | 
						|
        x * y
 | 
						|
      end
 | 
						|
    end
 | 
						|
    
 | 
						|
    def / (other)
 | 
						|
      case other
 | 
						|
      when Numeric
 | 
						|
        Scalar.new(@value / other)
 | 
						|
      when Vector
 | 
						|
        Scalar.Raise WrongArgType, other.class, "Numeric or Scalar or Matrix"
 | 
						|
      when Matrix
 | 
						|
	self * other.inverse
 | 
						|
      else
 | 
						|
        x, y = other.coerce(self)
 | 
						|
        x.quo(y)
 | 
						|
      end
 | 
						|
    end
 | 
						|
    
 | 
						|
    def ** (other)
 | 
						|
      case other
 | 
						|
      when Numeric
 | 
						|
        Scalar.new(@value ** other)
 | 
						|
      when Vector
 | 
						|
        Scalar.Raise WrongArgType, other.class, "Numeric or Scalar or Matrix"
 | 
						|
      when Matrix
 | 
						|
        other.powered_by(self)
 | 
						|
      else
 | 
						|
        x, y = other.coerce(self)
 | 
						|
        x ** y
 | 
						|
      end
 | 
						|
    end
 | 
						|
  end
 | 
						|
end
 | 
						|
 | 
						|
 | 
						|
#
 | 
						|
# The +Vector+ class represents a mathematical vector, which is useful in its own right, and
 | 
						|
# also constitutes a row or column of a Matrix.
 | 
						|
#
 | 
						|
# == Method Catalogue
 | 
						|
#
 | 
						|
# To create a Vector:
 | 
						|
# * <tt>  Vector.[](*array)                   </tt>
 | 
						|
# * <tt>  Vector.elements(array, copy = true) </tt>
 | 
						|
#
 | 
						|
# To access elements:
 | 
						|
# * <tt>  [](i)                               </tt>
 | 
						|
#
 | 
						|
# To enumerate the elements:
 | 
						|
# * <tt> #each2(v)                            </tt>
 | 
						|
# * <tt> #collect2(v)                         </tt>
 | 
						|
#
 | 
						|
# Vector arithmetic:
 | 
						|
# * <tt>  *(x) "is matrix or number"          </tt>
 | 
						|
# * <tt>  +(v)                                </tt>
 | 
						|
# * <tt>  -(v)                                </tt>
 | 
						|
#
 | 
						|
# Vector functions:
 | 
						|
# * <tt> #inner_product(v)                    </tt>
 | 
						|
# * <tt> #collect                             </tt>
 | 
						|
# * <tt> #map                                 </tt>
 | 
						|
# * <tt> #map2(v)                             </tt>
 | 
						|
# * <tt> #r                                   </tt>
 | 
						|
# * <tt> #size                                </tt>
 | 
						|
#
 | 
						|
# Conversion to other data types:
 | 
						|
# * <tt> #covector                            </tt>
 | 
						|
# * <tt> #to_a                                </tt>
 | 
						|
# * <tt> #coerce(other)                       </tt>
 | 
						|
#
 | 
						|
# String representations:
 | 
						|
# * <tt> #to_s                                </tt>
 | 
						|
# * <tt> #inspect                             </tt>
 | 
						|
#
 | 
						|
class Vector
 | 
						|
  include ExceptionForMatrix
 | 
						|
  
 | 
						|
  #INSTANCE CREATION
 | 
						|
  
 | 
						|
  private_class_method :new
 | 
						|
 | 
						|
  #
 | 
						|
  # Creates a Vector from a list of elements.
 | 
						|
  #   Vector[7, 4, ...]
 | 
						|
  #
 | 
						|
  def Vector.[](*array)
 | 
						|
    new(:init_elements, array, copy = false)
 | 
						|
  end
 | 
						|
  
 | 
						|
  #
 | 
						|
  # Creates a vector from an Array.  The optional second argument specifies
 | 
						|
  # whether the array itself or a copy is used internally.
 | 
						|
  #
 | 
						|
  def Vector.elements(array, copy = true)
 | 
						|
    new(:init_elements, array, copy)
 | 
						|
  end
 | 
						|
  
 | 
						|
  #
 | 
						|
  # For internal use.
 | 
						|
  #
 | 
						|
  def initialize(method, array, copy)
 | 
						|
    self.send(method, array, copy)
 | 
						|
  end
 | 
						|
  
 | 
						|
  #
 | 
						|
  # For internal use.
 | 
						|
  #
 | 
						|
  def init_elements(array, copy)
 | 
						|
    if copy
 | 
						|
      @elements = array.dup
 | 
						|
    else
 | 
						|
      @elements = array
 | 
						|
    end
 | 
						|
  end
 | 
						|
  
 | 
						|
  # ACCESSING
 | 
						|
         
 | 
						|
  #
 | 
						|
  # Returns element number +i+ (starting at zero) of the vector.
 | 
						|
  #
 | 
						|
  def [](i)
 | 
						|
    @elements[i]
 | 
						|
  end
 | 
						|
  alias element []
 | 
						|
  alias component []
 | 
						|
 | 
						|
  def []=(i, v)
 | 
						|
    @elements[i]= v
 | 
						|
  end
 | 
						|
  alias set_element []=
 | 
						|
  alias set_component []=
 | 
						|
  private :[]=, :set_element, :set_component
 | 
						|
  
 | 
						|
  #
 | 
						|
  # Returns the number of elements in the vector.
 | 
						|
  #
 | 
						|
  def size
 | 
						|
    @elements.size
 | 
						|
  end
 | 
						|
  
 | 
						|
  #--
 | 
						|
  # ENUMERATIONS -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
 | 
						|
  #++
 | 
						|
 | 
						|
  #
 | 
						|
  # Iterate over the elements of this vector and +v+ in conjunction.
 | 
						|
  #
 | 
						|
  def each2(v) # :yield: e1, e2
 | 
						|
    Vector.Raise ErrDimensionMismatch if size != v.size
 | 
						|
    0.upto(size - 1) do
 | 
						|
      |i|
 | 
						|
      yield @elements[i], v[i]
 | 
						|
    end
 | 
						|
  end
 | 
						|
  
 | 
						|
  #
 | 
						|
  # Collects (as in Enumerable#collect) over the elements of this vector and +v+
 | 
						|
  # in conjunction.
 | 
						|
  #
 | 
						|
  def collect2(v) # :yield: e1, e2
 | 
						|
    Vector.Raise ErrDimensionMismatch if size != v.size
 | 
						|
    (0 .. size - 1).collect do
 | 
						|
      |i|
 | 
						|
      yield @elements[i], v[i]
 | 
						|
    end
 | 
						|
  end
 | 
						|
 | 
						|
  #--
 | 
						|
  # COMPARING -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
 | 
						|
  #++
 | 
						|
 | 
						|
  #
 | 
						|
  # Returns +true+ iff the two vectors have the same elements in the same order.
 | 
						|
  #
 | 
						|
  def ==(other)
 | 
						|
    return false unless Vector === other
 | 
						|
    
 | 
						|
    other.compare_by(@elements)
 | 
						|
  end
 | 
						|
  alias eqn? ==
 | 
						|
  
 | 
						|
  #
 | 
						|
  # For internal use.
 | 
						|
  #
 | 
						|
  def compare_by(elements)
 | 
						|
    @elements == elements
 | 
						|
  end
 | 
						|
  
 | 
						|
  #
 | 
						|
  # Return a copy of the vector.
 | 
						|
  #
 | 
						|
  def clone
 | 
						|
    Vector.elements(@elements)
 | 
						|
  end
 | 
						|
  
 | 
						|
  #
 | 
						|
  # Return a hash-code for the vector.
 | 
						|
  #
 | 
						|
  def hash
 | 
						|
    @elements.hash
 | 
						|
  end
 | 
						|
  
 | 
						|
  #--
 | 
						|
  # ARITHMETIC -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
 | 
						|
  #++
 | 
						|
  
 | 
						|
  #
 | 
						|
  # Multiplies the vector by +x+, where +x+ is a number or another vector.
 | 
						|
  #
 | 
						|
  def *(x)
 | 
						|
    case x
 | 
						|
    when Numeric
 | 
						|
      els = @elements.collect{|e| e * x}
 | 
						|
      Vector.elements(els, false)
 | 
						|
    when Matrix
 | 
						|
      Matrix.column_vector(self) * x
 | 
						|
    else
 | 
						|
      s, x = x.coerce(self)
 | 
						|
      s * x
 | 
						|
    end
 | 
						|
  end
 | 
						|
 | 
						|
  #
 | 
						|
  # Vector addition.
 | 
						|
  #
 | 
						|
  def +(v)
 | 
						|
    case v
 | 
						|
    when Vector
 | 
						|
      Vector.Raise ErrDimensionMismatch if size != v.size
 | 
						|
      els = collect2(v) {
 | 
						|
        |v1, v2|
 | 
						|
        v1 + v2
 | 
						|
      }
 | 
						|
      Vector.elements(els, false)
 | 
						|
    when Matrix
 | 
						|
      Matrix.column_vector(self) + v
 | 
						|
    else
 | 
						|
      s, x = v.coerce(self)
 | 
						|
      s + x
 | 
						|
    end
 | 
						|
  end
 | 
						|
 | 
						|
  #
 | 
						|
  # Vector subtraction.
 | 
						|
  #
 | 
						|
  def -(v)
 | 
						|
    case v
 | 
						|
    when Vector
 | 
						|
      Vector.Raise ErrDimensionMismatch if size != v.size
 | 
						|
      els = collect2(v) {
 | 
						|
        |v1, v2|
 | 
						|
        v1 - v2
 | 
						|
      }
 | 
						|
      Vector.elements(els, false)
 | 
						|
    when Matrix
 | 
						|
      Matrix.column_vector(self) - v
 | 
						|
    else
 | 
						|
      s, x = v.coerce(self)
 | 
						|
      s - x
 | 
						|
    end
 | 
						|
  end
 | 
						|
  
 | 
						|
  #--
 | 
						|
  # VECTOR FUNCTIONS -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
 | 
						|
  #++
 | 
						|
  
 | 
						|
  #
 | 
						|
  # Returns the inner product of this vector with the other.
 | 
						|
  #   Vector[4,7].inner_product Vector[10,1]  => 47
 | 
						|
  #
 | 
						|
  def inner_product(v)
 | 
						|
    Vector.Raise ErrDimensionMismatch if size != v.size
 | 
						|
    
 | 
						|
    p = 0
 | 
						|
    each2(v) {
 | 
						|
      |v1, v2|
 | 
						|
      p += v1 * v2
 | 
						|
    }
 | 
						|
    p
 | 
						|
  end
 | 
						|
  
 | 
						|
  #
 | 
						|
  # Like Array#collect.
 | 
						|
  #
 | 
						|
  def collect # :yield: e
 | 
						|
    els = @elements.collect {
 | 
						|
      |v|
 | 
						|
      yield v
 | 
						|
    }
 | 
						|
    Vector.elements(els, false)
 | 
						|
  end
 | 
						|
  alias map collect
 | 
						|
  
 | 
						|
  #
 | 
						|
  # Like Vector#collect2, but returns a Vector instead of an Array.
 | 
						|
  #
 | 
						|
  def map2(v) # :yield: e1, e2
 | 
						|
    els = collect2(v) {
 | 
						|
      |v1, v2|
 | 
						|
      yield v1, v2
 | 
						|
    }
 | 
						|
    Vector.elements(els, false)
 | 
						|
  end
 | 
						|
  
 | 
						|
  #
 | 
						|
  # Returns the modulus (Pythagorean distance) of the vector.
 | 
						|
  #   Vector[5,8,2].r => 9.643650761
 | 
						|
  #
 | 
						|
  def r
 | 
						|
    v = 0
 | 
						|
    for e in @elements
 | 
						|
      v += e*e
 | 
						|
    end
 | 
						|
    return Math.sqrt(v)
 | 
						|
  end
 | 
						|
  
 | 
						|
  #--
 | 
						|
  # CONVERTING
 | 
						|
  #++
 | 
						|
 | 
						|
  #
 | 
						|
  # Creates a single-row matrix from this vector.
 | 
						|
  #
 | 
						|
  def covector
 | 
						|
    Matrix.row_vector(self)
 | 
						|
  end
 | 
						|
  
 | 
						|
  #
 | 
						|
  # Returns the elements of the vector in an array.
 | 
						|
  #
 | 
						|
  def to_a
 | 
						|
    @elements.dup
 | 
						|
  end
 | 
						|
  
 | 
						|
  def elements_to_f
 | 
						|
    collect{|e| e.to_f}
 | 
						|
  end
 | 
						|
  
 | 
						|
  def elements_to_i
 | 
						|
    collect{|e| e.to_i}
 | 
						|
  end
 | 
						|
  
 | 
						|
  def elements_to_r
 | 
						|
    collect{|e| e.to_r}
 | 
						|
  end
 | 
						|
  
 | 
						|
  #
 | 
						|
  # FIXME: describe Vector#coerce.
 | 
						|
  #
 | 
						|
  def coerce(other)
 | 
						|
    case other
 | 
						|
    when Numeric
 | 
						|
      return Scalar.new(other), self
 | 
						|
    else
 | 
						|
      raise TypeError, "#{self.class} can't be coerced into #{other.class}"
 | 
						|
    end
 | 
						|
  end
 | 
						|
  
 | 
						|
  #--
 | 
						|
  # PRINTING -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
 | 
						|
  #++
 | 
						|
  
 | 
						|
  #
 | 
						|
  # Overrides Object#to_s
 | 
						|
  #
 | 
						|
  def to_s
 | 
						|
    "Vector[" + @elements.join(", ") + "]"
 | 
						|
  end
 | 
						|
  
 | 
						|
  #
 | 
						|
  # Overrides Object#inspect
 | 
						|
  #
 | 
						|
  def inspect
 | 
						|
    str = "Vector"+@elements.inspect
 | 
						|
  end
 | 
						|
end
 | 
						|
 | 
						|
 | 
						|
# Documentation comments:
 | 
						|
#  - Matrix#coerce and Vector#coerce need to be documented
 |