mirror of
https://github.com/ruby/ruby.git
synced 2022-11-09 12:17:21 -05:00
51c44ab1ec
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@36146 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
5043 lines
130 KiB
C
5043 lines
130 KiB
C
/**********************************************************************
|
|
|
|
time.c -
|
|
|
|
$Author$
|
|
created at: Tue Dec 28 14:31:59 JST 1993
|
|
|
|
Copyright (C) 1993-2007 Yukihiro Matsumoto
|
|
|
|
**********************************************************************/
|
|
|
|
#include "ruby/ruby.h"
|
|
#include <sys/types.h>
|
|
#include <time.h>
|
|
#include <errno.h>
|
|
#include "ruby/encoding.h"
|
|
#include "internal.h"
|
|
|
|
#ifdef HAVE_UNISTD_H
|
|
#include <unistd.h>
|
|
#endif
|
|
|
|
#include <float.h>
|
|
#include <math.h>
|
|
|
|
#ifdef HAVE_STRINGS_H
|
|
#include <strings.h>
|
|
#endif
|
|
|
|
#include "timev.h"
|
|
|
|
static ID id_divmod, id_mul, id_submicro, id_nano_num, id_nano_den, id_offset;
|
|
static ID id_eq, id_ne, id_quo, id_div, id_cmp, id_lshift;
|
|
|
|
#define NDIV(x,y) (-(-((x)+1)/(y))-1)
|
|
#define NMOD(x,y) ((y)-(-((x)+1)%(y))-1)
|
|
#define DIV(n,d) ((n)<0 ? NDIV((n),(d)) : (n)/(d))
|
|
#define MOD(n,d) ((n)<0 ? NMOD((n),(d)) : (n)%(d))
|
|
|
|
static int
|
|
eq(VALUE x, VALUE y)
|
|
{
|
|
if (FIXNUM_P(x) && FIXNUM_P(y)) {
|
|
return x == y;
|
|
}
|
|
return RTEST(rb_funcall(x, id_eq, 1, y));
|
|
}
|
|
|
|
static int
|
|
cmp(VALUE x, VALUE y)
|
|
{
|
|
if (FIXNUM_P(x) && FIXNUM_P(y)) {
|
|
if ((long)x < (long)y)
|
|
return -1;
|
|
if ((long)x > (long)y)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
return rb_cmpint(rb_funcall(x, id_cmp, 1, y), x, y);
|
|
}
|
|
|
|
#define ne(x,y) (!eq((x),(y)))
|
|
#define lt(x,y) (cmp((x),(y)) < 0)
|
|
#define gt(x,y) (cmp((x),(y)) > 0)
|
|
#define le(x,y) (cmp((x),(y)) <= 0)
|
|
#define ge(x,y) (cmp((x),(y)) >= 0)
|
|
|
|
static VALUE
|
|
add(VALUE x, VALUE y)
|
|
{
|
|
if (FIXNUM_P(x) && FIXNUM_P(y)) {
|
|
long l = FIX2LONG(x) + FIX2LONG(y);
|
|
if (FIXABLE(l)) return LONG2FIX(l);
|
|
return LONG2NUM(l);
|
|
}
|
|
if (RB_TYPE_P(x, T_BIGNUM)) return rb_big_plus(x, y);
|
|
return rb_funcall(x, '+', 1, y);
|
|
}
|
|
|
|
static VALUE
|
|
sub(VALUE x, VALUE y)
|
|
{
|
|
if (FIXNUM_P(x) && FIXNUM_P(y)) {
|
|
long l = FIX2LONG(x) - FIX2LONG(y);
|
|
if (FIXABLE(l)) return LONG2FIX(l);
|
|
return LONG2NUM(l);
|
|
}
|
|
if (RB_TYPE_P(x, T_BIGNUM)) return rb_big_minus(x, y);
|
|
return rb_funcall(x, '-', 1, y);
|
|
}
|
|
|
|
#if !(HAVE_LONG_LONG && SIZEOF_LONG * 2 <= SIZEOF_LONG_LONG)
|
|
static int
|
|
long_mul(long x, long y, long *z)
|
|
{
|
|
unsigned long a, b, c;
|
|
int s;
|
|
if (x == 0 || y == 0) {
|
|
*z = 0;
|
|
return 1;
|
|
}
|
|
if (x < 0) {
|
|
s = -1;
|
|
a = (unsigned long)-x;
|
|
}
|
|
else {
|
|
s = 1;
|
|
a = (unsigned long)x;
|
|
}
|
|
if (y < 0) {
|
|
s = -s;
|
|
b = (unsigned long)-y;
|
|
}
|
|
else {
|
|
b = (unsigned long)y;
|
|
}
|
|
if (a <= ULONG_MAX / b) {
|
|
c = a * b;
|
|
if (s < 0) {
|
|
if (c <= (unsigned long)LONG_MAX + 1) {
|
|
*z = -(long)c;
|
|
return 1;
|
|
}
|
|
}
|
|
else {
|
|
if (c <= (unsigned long)LONG_MAX) {
|
|
*z = (long)c;
|
|
return 1;
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
static VALUE
|
|
mul(VALUE x, VALUE y)
|
|
{
|
|
if (FIXNUM_P(x) && FIXNUM_P(y)) {
|
|
#if HAVE_LONG_LONG && SIZEOF_LONG * 2 <= SIZEOF_LONG_LONG
|
|
LONG_LONG ll = (LONG_LONG)FIX2LONG(x) * FIX2LONG(y);
|
|
if (FIXABLE(ll))
|
|
return LONG2FIX(ll);
|
|
return LL2NUM(ll);
|
|
#else
|
|
long z;
|
|
if (long_mul(FIX2LONG(x), FIX2LONG(y), &z))
|
|
return LONG2NUM(z);
|
|
#endif
|
|
}
|
|
if (RB_TYPE_P(x, T_BIGNUM))
|
|
return rb_big_mul(x, y);
|
|
return rb_funcall(x, '*', 1, y);
|
|
}
|
|
|
|
#define div(x,y) (rb_funcall((x), id_div, 1, (y)))
|
|
|
|
static VALUE
|
|
mod(VALUE x, VALUE y)
|
|
{
|
|
switch (TYPE(x)) {
|
|
case T_BIGNUM: return rb_big_modulo(x, y);
|
|
default: return rb_funcall(x, '%', 1, y);
|
|
}
|
|
}
|
|
|
|
#define neg(x) (sub(INT2FIX(0), (x)))
|
|
#define lshift(x,y) (rb_funcall((x), id_lshift, 1, (y)))
|
|
|
|
static VALUE
|
|
quo(VALUE x, VALUE y)
|
|
{
|
|
VALUE ret;
|
|
if (FIXNUM_P(x) && FIXNUM_P(y)) {
|
|
long a, b, c;
|
|
a = FIX2LONG(x);
|
|
b = FIX2LONG(y);
|
|
if (b == 0) rb_num_zerodiv();
|
|
c = a / b;
|
|
if (c * b == a) {
|
|
return LONG2NUM(c);
|
|
}
|
|
}
|
|
ret = rb_funcall(x, id_quo, 1, y);
|
|
if (RB_TYPE_P(ret, T_RATIONAL) &&
|
|
RRATIONAL(ret)->den == INT2FIX(1)) {
|
|
ret = RRATIONAL(ret)->num;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
#define mulquo(x,y,z) (((y) == (z)) ? (x) : quo(mul((x),(y)),(z)))
|
|
|
|
static void
|
|
divmodv(VALUE n, VALUE d, VALUE *q, VALUE *r)
|
|
{
|
|
VALUE tmp, ary;
|
|
tmp = rb_funcall(n, id_divmod, 1, d);
|
|
ary = rb_check_array_type(tmp);
|
|
if (NIL_P(ary)) {
|
|
rb_raise(rb_eTypeError, "unexpected divmod result: into %s",
|
|
rb_obj_classname(tmp));
|
|
}
|
|
*q = rb_ary_entry(ary, 0);
|
|
*r = rb_ary_entry(ary, 1);
|
|
}
|
|
|
|
#if SIZEOF_LONG == 8
|
|
# define INT64toNUM(x) LONG2NUM(x)
|
|
# define UINT64toNUM(x) ULONG2NUM(x)
|
|
#elif defined(HAVE_LONG_LONG) && SIZEOF_LONG_LONG == 8
|
|
# define INT64toNUM(x) LL2NUM(x)
|
|
# define UINT64toNUM(x) ULL2NUM(x)
|
|
#endif
|
|
|
|
#if defined(HAVE_UINT64_T) && SIZEOF_LONG*2 <= SIZEOF_UINT64_T
|
|
typedef uint64_t uwideint_t;
|
|
typedef int64_t wideint_t;
|
|
typedef uint64_t WIDEVALUE;
|
|
typedef int64_t SIGNED_WIDEVALUE;
|
|
# define WIDEVALUE_IS_WIDER 1
|
|
# define UWIDEINT_MAX UINT64_MAX
|
|
# define WIDEINT_MAX INT64_MAX
|
|
# define WIDEINT_MIN INT64_MIN
|
|
# define FIXWINT_P(tv) ((tv) & 1)
|
|
# define FIXWVtoINT64(tv) RSHIFT((SIGNED_WIDEVALUE)(tv), 1)
|
|
# define INT64toFIXWV(wi) ((WIDEVALUE)((SIGNED_WIDEVALUE)(wi) << 1 | FIXNUM_FLAG))
|
|
# define FIXWV_MAX (((int64_t)1 << 62) - 1)
|
|
# define FIXWV_MIN (-((int64_t)1 << 62))
|
|
# define FIXWVABLE(wi) (POSFIXWVABLE(wi) && NEGFIXWVABLE(wi))
|
|
# define WINT2FIXWV(i) WIDEVAL_WRAP(INT64toFIXWV(i))
|
|
# define FIXWV2WINT(w) FIXWVtoINT64(WIDEVAL_GET(w))
|
|
#else
|
|
typedef unsigned long uwideint_t;
|
|
typedef long wideint_t;
|
|
typedef VALUE WIDEVALUE;
|
|
typedef SIGNED_VALUE SIGNED_WIDEVALUE;
|
|
# define WIDEVALUE_IS_WIDER 0
|
|
# define UWIDEINT_MAX ULONG_MAX
|
|
# define WIDEINT_MAX LONG_MAX
|
|
# define WIDEINT_MIN LONG_MIN
|
|
# define FIXWINT_P(v) FIXNUM_P(v)
|
|
# define FIXWV_MAX FIXNUM_MAX
|
|
# define FIXWV_MIN FIXNUM_MIN
|
|
# define FIXWVABLE(i) FIXABLE(i)
|
|
# define WINT2FIXWV(i) WIDEVAL_WRAP(LONG2FIX(i))
|
|
# define FIXWV2WINT(w) FIX2LONG(WIDEVAL_GET(w))
|
|
#endif
|
|
|
|
#define POSFIXWVABLE(wi) ((wi) < FIXWV_MAX+1)
|
|
#define NEGFIXWVABLE(wi) ((wi) >= FIXWV_MIN)
|
|
#define FIXWV_P(w) FIXWINT_P(WIDEVAL_GET(w))
|
|
|
|
/* #define STRUCT_WIDEVAL */
|
|
#ifdef STRUCT_WIDEVAL
|
|
/* for type checking */
|
|
typedef struct {
|
|
WIDEVALUE value;
|
|
} wideval_t;
|
|
static inline wideval_t WIDEVAL_WRAP(WIDEVALUE v) { wideval_t w = { v }; return w; }
|
|
# define WIDEVAL_GET(w) ((w).value)
|
|
#else
|
|
typedef WIDEVALUE wideval_t;
|
|
# define WIDEVAL_WRAP(v) (v)
|
|
# define WIDEVAL_GET(w) (w)
|
|
#endif
|
|
|
|
#if WIDEVALUE_IS_WIDER
|
|
static inline wideval_t
|
|
wint2wv(wideint_t wi)
|
|
{
|
|
if (FIXWVABLE(wi))
|
|
return WINT2FIXWV(wi);
|
|
else
|
|
return WIDEVAL_WRAP(INT64toNUM(wi));
|
|
}
|
|
# define WINT2WV(wi) wint2wv(wi)
|
|
#else
|
|
# define WINT2WV(wi) WIDEVAL_WRAP(LONG2NUM(wi))
|
|
#endif
|
|
|
|
static inline VALUE
|
|
w2v(wideval_t w)
|
|
{
|
|
#if WIDEVALUE_IS_WIDER
|
|
if (FIXWV_P(w))
|
|
return INT64toNUM(FIXWV2WINT(w));
|
|
return (VALUE)WIDEVAL_GET(w);
|
|
#else
|
|
return WIDEVAL_GET(w);
|
|
#endif
|
|
}
|
|
|
|
#if WIDEVALUE_IS_WIDER
|
|
static int
|
|
bdigit_find_maxbit(BDIGIT d)
|
|
{
|
|
int res = 0;
|
|
if (d & ~(BDIGIT)0xffff) {
|
|
d >>= 16;
|
|
res += 16;
|
|
}
|
|
if (d & ~(BDIGIT)0xff) {
|
|
d >>= 8;
|
|
res += 8;
|
|
}
|
|
if (d & ~(BDIGIT)0xf) {
|
|
d >>= 4;
|
|
res += 4;
|
|
}
|
|
if (d & ~(BDIGIT)0x3) {
|
|
d >>= 2;
|
|
res += 2;
|
|
}
|
|
if (d & ~(BDIGIT)0x1) {
|
|
d >>= 1;
|
|
res += 1;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
static VALUE
|
|
rb_big_abs_find_maxbit(VALUE big)
|
|
{
|
|
BDIGIT *ds = RBIGNUM_DIGITS(big);
|
|
BDIGIT d;
|
|
long len = RBIGNUM_LEN(big);
|
|
VALUE res;
|
|
while (0 < len && ds[len-1] == 0)
|
|
len--;
|
|
if (len == 0)
|
|
return Qnil;
|
|
res = mul(LONG2NUM(len-1), INT2FIX(SIZEOF_BDIGITS * CHAR_BIT));
|
|
d = ds[len-1];
|
|
res = add(res, LONG2FIX(bdigit_find_maxbit(d)));
|
|
return res;
|
|
}
|
|
|
|
static VALUE
|
|
rb_big_abs_find_minbit(VALUE big)
|
|
{
|
|
BDIGIT *ds = RBIGNUM_DIGITS(big);
|
|
BDIGIT d;
|
|
long len = RBIGNUM_LEN(big);
|
|
long i;
|
|
VALUE res;
|
|
for (i = 0; i < len; i++)
|
|
if (ds[i])
|
|
break;
|
|
if (i == len)
|
|
return Qnil;
|
|
res = mul(LONG2NUM(i), INT2FIX(SIZEOF_BDIGITS * CHAR_BIT));
|
|
d = ds[i];
|
|
res = add(res, LONG2FIX(ffs(d)-1));
|
|
return res;
|
|
}
|
|
|
|
static wideval_t
|
|
v2w_bignum(VALUE v)
|
|
{
|
|
long len = RBIGNUM_LEN(v);
|
|
BDIGIT *ds;
|
|
wideval_t w;
|
|
VALUE maxbit;
|
|
ds = RBIGNUM_DIGITS(v);
|
|
w = WIDEVAL_WRAP(v);
|
|
maxbit = rb_big_abs_find_maxbit(v);
|
|
if (NIL_P(maxbit))
|
|
return WINT2FIXWV(0);
|
|
if (lt(maxbit, INT2FIX(sizeof(wideint_t) * CHAR_BIT - 2)) ||
|
|
(eq(maxbit, INT2FIX(sizeof(wideint_t) * CHAR_BIT - 2)) &&
|
|
RBIGNUM_NEGATIVE_P(v) &&
|
|
eq(rb_big_abs_find_minbit(v), INT2FIX(sizeof(wideint_t) * CHAR_BIT - 2)))) {
|
|
wideint_t i;
|
|
i = 0;
|
|
while (len)
|
|
i = (i << sizeof(BDIGIT)*CHAR_BIT) | ds[--len];
|
|
if (RBIGNUM_NEGATIVE_P(v)) {
|
|
i = -i;
|
|
}
|
|
w = WINT2FIXWV(i);
|
|
}
|
|
return w;
|
|
}
|
|
#endif
|
|
|
|
static inline wideval_t
|
|
v2w(VALUE v)
|
|
{
|
|
#if WIDEVALUE_IS_WIDER
|
|
if (FIXNUM_P(v)) {
|
|
return WIDEVAL_WRAP((WIDEVALUE)(SIGNED_WIDEVALUE)(long)v);
|
|
}
|
|
else if (RB_TYPE_P(v, T_BIGNUM) &&
|
|
RBIGNUM_LEN(v) * sizeof(BDIGIT) <= sizeof(WIDEVALUE)) {
|
|
return v2w_bignum(v);
|
|
}
|
|
#endif
|
|
return WIDEVAL_WRAP(v);
|
|
}
|
|
|
|
static int
|
|
weq(wideval_t wx, wideval_t wy)
|
|
{
|
|
#if WIDEVALUE_IS_WIDER
|
|
if (FIXWV_P(wx) && FIXWV_P(wy)) {
|
|
return WIDEVAL_GET(wx) == WIDEVAL_GET(wy);
|
|
}
|
|
return RTEST(rb_funcall(w2v(wx), id_eq, 1, w2v(wy)));
|
|
#else
|
|
return eq(WIDEVAL_GET(wx), WIDEVAL_GET(wy));
|
|
#endif
|
|
}
|
|
|
|
static int
|
|
wcmp(wideval_t wx, wideval_t wy)
|
|
{
|
|
VALUE x, y;
|
|
#if WIDEVALUE_IS_WIDER
|
|
if (FIXWV_P(wx) && FIXWV_P(wy)) {
|
|
wideint_t a, b;
|
|
a = FIXWV2WINT(wx);
|
|
b = FIXWV2WINT(wy);
|
|
if (a < b)
|
|
return -1;
|
|
if (a > b)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
#endif
|
|
x = w2v(wx);
|
|
y = w2v(wy);
|
|
return rb_cmpint(rb_funcall(x, id_cmp, 1, y), x, y);
|
|
}
|
|
|
|
#define wne(x,y) (!weq((x),(y)))
|
|
#define wlt(x,y) (wcmp((x),(y)) < 0)
|
|
#define wgt(x,y) (wcmp((x),(y)) > 0)
|
|
#define wle(x,y) (wcmp((x),(y)) <= 0)
|
|
#define wge(x,y) (wcmp((x),(y)) >= 0)
|
|
|
|
static wideval_t
|
|
wadd(wideval_t wx, wideval_t wy)
|
|
{
|
|
VALUE x;
|
|
#if WIDEVALUE_IS_WIDER
|
|
if (FIXWV_P(wx) && FIXWV_P(wy)) {
|
|
wideint_t r = FIXWV2WINT(wx) + FIXWV2WINT(wy);
|
|
return WINT2WV(r);
|
|
}
|
|
else
|
|
#endif
|
|
x = w2v(wx);
|
|
if (RB_TYPE_P(x, T_BIGNUM)) return v2w(rb_big_plus(x, w2v(wy)));
|
|
return v2w(rb_funcall(x, '+', 1, w2v(wy)));
|
|
}
|
|
|
|
static wideval_t
|
|
wsub(wideval_t wx, wideval_t wy)
|
|
{
|
|
VALUE x;
|
|
#if WIDEVALUE_IS_WIDER
|
|
if (FIXWV_P(wx) && FIXWV_P(wy)) {
|
|
wideint_t r = FIXWV2WINT(wx) - FIXWV2WINT(wy);
|
|
return WINT2WV(r);
|
|
}
|
|
else
|
|
#endif
|
|
x = w2v(wx);
|
|
if (RB_TYPE_P(x, T_BIGNUM)) return v2w(rb_big_minus(x, w2v(wy)));
|
|
return v2w(rb_funcall(x, '-', 1, w2v(wy)));
|
|
}
|
|
|
|
static int
|
|
wi_mul(wideint_t x, wideint_t y, wideint_t *z)
|
|
{
|
|
uwideint_t a, b, c;
|
|
int s;
|
|
if (x == 0 || y == 0) {
|
|
*z = 0;
|
|
return 1;
|
|
}
|
|
if (x < 0) {
|
|
s = -1;
|
|
a = (uwideint_t)-x;
|
|
}
|
|
else {
|
|
s = 1;
|
|
a = (uwideint_t)x;
|
|
}
|
|
if (y < 0) {
|
|
s = -s;
|
|
b = (uwideint_t)-y;
|
|
}
|
|
else {
|
|
b = (uwideint_t)y;
|
|
}
|
|
if (a <= UWIDEINT_MAX / b) {
|
|
c = a * b;
|
|
if (s < 0) {
|
|
if (c <= (uwideint_t)WIDEINT_MAX + 1) {
|
|
*z = -(wideint_t)c;
|
|
return 1;
|
|
}
|
|
}
|
|
else {
|
|
if (c <= (uwideint_t)WIDEINT_MAX) {
|
|
*z = (wideint_t)c;
|
|
return 1;
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static wideval_t
|
|
wmul(wideval_t wx, wideval_t wy)
|
|
{
|
|
VALUE x, z;
|
|
#if WIDEVALUE_IS_WIDER
|
|
if (FIXWV_P(wx) && FIXWV_P(wy)) {
|
|
wideint_t z;
|
|
if (wi_mul(FIXWV2WINT(wx), FIXWV2WINT(wy), &z))
|
|
return WINT2WV(z);
|
|
}
|
|
#endif
|
|
x = w2v(wx);
|
|
if (RB_TYPE_P(x, T_BIGNUM)) return v2w(rb_big_mul(x, w2v(wy)));
|
|
z = rb_funcall(x, '*', 1, w2v(wy));
|
|
if (RB_TYPE_P(z, T_RATIONAL) && RRATIONAL(z)->den == INT2FIX(1)) {
|
|
z = RRATIONAL(z)->num;
|
|
}
|
|
return v2w(z);
|
|
}
|
|
|
|
static wideval_t
|
|
wquo(wideval_t wx, wideval_t wy)
|
|
{
|
|
VALUE x, y, ret;
|
|
#if WIDEVALUE_IS_WIDER
|
|
if (FIXWV_P(wx) && FIXWV_P(wy)) {
|
|
wideint_t a, b, c;
|
|
a = FIXWV2WINT(wx);
|
|
b = FIXWV2WINT(wy);
|
|
if (b == 0) rb_num_zerodiv();
|
|
c = a / b;
|
|
if (c * b == a) {
|
|
return WINT2WV(c);
|
|
}
|
|
}
|
|
#endif
|
|
x = w2v(wx);
|
|
y = w2v(wy);
|
|
ret = rb_funcall(x, id_quo, 1, y);
|
|
if (RB_TYPE_P(ret, T_RATIONAL) &&
|
|
RRATIONAL(ret)->den == INT2FIX(1)) {
|
|
ret = RRATIONAL(ret)->num;
|
|
}
|
|
return v2w(ret);
|
|
}
|
|
|
|
#define wmulquo(x,y,z) ((WIDEVAL_GET(y) == WIDEVAL_GET(z)) ? (x) : wquo(wmul((x),(y)),(z)))
|
|
#define wmulquoll(x,y,z) (((y) == (z)) ? (x) : wquo(wmul((x),WINT2WV(y)),WINT2WV(z)))
|
|
|
|
static void
|
|
wdivmod(wideval_t wn, wideval_t wd, wideval_t *wq, wideval_t *wr)
|
|
{
|
|
VALUE tmp, ary;
|
|
#if WIDEVALUE_IS_WIDER
|
|
if (FIXWV_P(wn) && FIXWV_P(wd)) {
|
|
wideint_t n, d, q, r;
|
|
d = FIXWV2WINT(wd);
|
|
if (d == 0) rb_num_zerodiv();
|
|
if (d == 1) {
|
|
*wq = wn;
|
|
*wr = WINT2FIXWV(0);
|
|
return;
|
|
}
|
|
if (d == -1) {
|
|
wideint_t xneg = -FIXWV2WINT(wn);
|
|
*wq = WINT2WV(xneg);
|
|
*wr = WINT2FIXWV(0);
|
|
return;
|
|
}
|
|
n = FIXWV2WINT(wn);
|
|
if (n == 0) {
|
|
*wq = WINT2FIXWV(0);
|
|
*wr = WINT2FIXWV(0);
|
|
return;
|
|
}
|
|
if (d < 0) {
|
|
if (n < 0) {
|
|
q = ((-n) / (-d));
|
|
r = ((-n) % (-d));
|
|
if (r != 0) {
|
|
q -= 1;
|
|
r += d;
|
|
}
|
|
}
|
|
else { /* 0 < n */
|
|
q = -(n / (-d));
|
|
r = -(n % (-d));
|
|
}
|
|
}
|
|
else { /* 0 < d */
|
|
if (n < 0) {
|
|
q = -((-n) / d);
|
|
r = -((-n) % d);
|
|
if (r != 0) {
|
|
q -= 1;
|
|
r += d;
|
|
}
|
|
}
|
|
else { /* 0 < n */
|
|
q = n / d;
|
|
r = n % d;
|
|
}
|
|
}
|
|
*wq = WINT2FIXWV(q);
|
|
*wr = WINT2FIXWV(r);
|
|
return;
|
|
}
|
|
#endif
|
|
tmp = rb_funcall(w2v(wn), id_divmod, 1, w2v(wd));
|
|
ary = rb_check_array_type(tmp);
|
|
if (NIL_P(ary)) {
|
|
rb_raise(rb_eTypeError, "unexpected divmod result: into %s",
|
|
rb_obj_classname(tmp));
|
|
}
|
|
*wq = v2w(rb_ary_entry(ary, 0));
|
|
*wr = v2w(rb_ary_entry(ary, 1));
|
|
}
|
|
|
|
static void
|
|
wmuldivmod(wideval_t wx, wideval_t wy, wideval_t wz, wideval_t *wq, wideval_t *wr)
|
|
{
|
|
if (WIDEVAL_GET(wy) == WIDEVAL_GET(wz)) {
|
|
*wq = wx;
|
|
*wr = WINT2FIXWV(0);
|
|
return;
|
|
}
|
|
wdivmod(wmul(wx,wy), wz, wq, wr);
|
|
}
|
|
|
|
static wideval_t
|
|
wdiv(wideval_t wx, wideval_t wy)
|
|
{
|
|
wideval_t q, r;
|
|
wdivmod(wx, wy, &q, &r);
|
|
return q;
|
|
}
|
|
|
|
static wideval_t
|
|
wmod(wideval_t wx, wideval_t wy)
|
|
{
|
|
wideval_t q, r;
|
|
wdivmod(wx, wy, &q, &r);
|
|
return r;
|
|
}
|
|
|
|
static VALUE
|
|
num_exact(VALUE v)
|
|
{
|
|
VALUE tmp;
|
|
int t;
|
|
|
|
t = TYPE(v);
|
|
switch (t) {
|
|
case T_FIXNUM:
|
|
case T_BIGNUM:
|
|
return v;
|
|
|
|
case T_RATIONAL:
|
|
break;
|
|
|
|
case T_STRING:
|
|
case T_NIL:
|
|
goto typeerror;
|
|
|
|
default:
|
|
if ((tmp = rb_check_funcall(v, rb_intern("to_r"), 0, NULL)) != Qundef) {
|
|
if (rb_respond_to(v, rb_intern("to_str"))) goto typeerror;
|
|
v = tmp;
|
|
break;
|
|
}
|
|
if (!NIL_P(tmp = rb_check_to_integer(v, "to_int"))) {
|
|
v = tmp;
|
|
break;
|
|
}
|
|
goto typeerror;
|
|
}
|
|
|
|
t = TYPE(v);
|
|
switch (t) {
|
|
case T_FIXNUM:
|
|
case T_BIGNUM:
|
|
return v;
|
|
|
|
case T_RATIONAL:
|
|
if (RRATIONAL(v)->den == INT2FIX(1))
|
|
v = RRATIONAL(v)->num;
|
|
break;
|
|
|
|
default:
|
|
typeerror:
|
|
rb_raise(rb_eTypeError, "can't convert %s into an exact number",
|
|
NIL_P(v) ? "nil" : rb_obj_classname(v));
|
|
}
|
|
return v;
|
|
}
|
|
|
|
/* time_t */
|
|
|
|
#ifndef TYPEOF_TIMEVAL_TV_SEC
|
|
# define TYPEOF_TIMEVAL_TV_SEC time_t
|
|
#endif
|
|
#ifndef TYPEOF_TIMEVAL_TV_USEC
|
|
# if INT_MAX >= 1000000
|
|
# define TYPEOF_TIMEVAL_TV_USEC int
|
|
# else
|
|
# define TYPEOF_TIMEVAL_TV_USEC long
|
|
# endif
|
|
#endif
|
|
|
|
#if SIZEOF_TIME_T == SIZEOF_LONG
|
|
typedef unsigned long unsigned_time_t;
|
|
#elif SIZEOF_TIME_T == SIZEOF_INT
|
|
typedef unsigned int unsigned_time_t;
|
|
#elif SIZEOF_TIME_T == SIZEOF_LONG_LONG
|
|
typedef unsigned LONG_LONG unsigned_time_t;
|
|
#else
|
|
# error cannot find integer type which size is same as time_t.
|
|
#endif
|
|
|
|
#define TIMET_MAX (~(time_t)0 <= 0 ? (time_t)((~(unsigned_time_t)0) >> 1) : (time_t)(~(unsigned_time_t)0))
|
|
#define TIMET_MIN (~(time_t)0 <= 0 ? (time_t)(((unsigned_time_t)1) << (sizeof(time_t) * CHAR_BIT - 1)) : (time_t)0)
|
|
|
|
static wideval_t
|
|
rb_time_magnify(wideval_t w)
|
|
{
|
|
if (FIXWV_P(w)) {
|
|
wideint_t z;
|
|
if (wi_mul(FIXWV2WINT(w), TIME_SCALE, &z))
|
|
return WINT2WV(z);
|
|
}
|
|
return wmul(w, WINT2FIXWV(TIME_SCALE));
|
|
}
|
|
|
|
static wideval_t
|
|
rb_time_unmagnify(wideval_t w)
|
|
{
|
|
#if WIDEVALUE_IS_WIDER
|
|
if (FIXWV_P(w)) {
|
|
wideint_t a, b, c;
|
|
a = FIXWV2WINT(w);
|
|
b = TIME_SCALE;
|
|
c = a / b;
|
|
if (c * b == a) {
|
|
return WINT2FIXWV(c);
|
|
}
|
|
}
|
|
#endif
|
|
return wquo(w, WINT2FIXWV(TIME_SCALE));
|
|
}
|
|
|
|
static VALUE
|
|
rb_time_unmagnify_to_float(wideval_t w)
|
|
{
|
|
VALUE v;
|
|
#if WIDEVALUE_IS_WIDER
|
|
if (FIXWV_P(w)) {
|
|
wideint_t a, b, c;
|
|
a = FIXWV2WINT(w);
|
|
b = TIME_SCALE;
|
|
c = a / b;
|
|
if (c * b == a) {
|
|
return DBL2NUM((double)c);
|
|
}
|
|
v = DBL2NUM((double)FIXWV2WINT(w));
|
|
return quo(v, DBL2NUM(TIME_SCALE));
|
|
}
|
|
#endif
|
|
v = w2v(w);
|
|
return quo(v, DBL2NUM(TIME_SCALE));
|
|
}
|
|
|
|
static void
|
|
split_second(wideval_t timew, wideval_t *timew_p, VALUE *subsecx_p)
|
|
{
|
|
wideval_t q, r;
|
|
wdivmod(timew, WINT2FIXWV(TIME_SCALE), &q, &r);
|
|
*timew_p = q;
|
|
*subsecx_p = w2v(r);
|
|
}
|
|
|
|
static wideval_t
|
|
timet2wv(time_t t)
|
|
{
|
|
#if WIDEVALUE_IS_WIDER
|
|
if (TIMET_MIN == 0) {
|
|
uwideint_t wi = (uwideint_t)t;
|
|
if (wi <= FIXWV_MAX) {
|
|
return WINT2FIXWV(wi);
|
|
}
|
|
}
|
|
else {
|
|
wideint_t wi = (wideint_t)t;
|
|
if (FIXWV_MIN <= wi && wi <= FIXWV_MAX) {
|
|
return WINT2FIXWV(wi);
|
|
}
|
|
}
|
|
#endif
|
|
return v2w(TIMET2NUM(t));
|
|
}
|
|
#define TIMET2WV(t) timet2wv(t)
|
|
|
|
static time_t
|
|
wv2timet(wideval_t w)
|
|
{
|
|
#if WIDEVALUE_IS_WIDER
|
|
if (FIXWV_P(w)) {
|
|
wideint_t wi = FIXWV2WINT(w);
|
|
if (TIMET_MIN == 0) {
|
|
if (wi < 0)
|
|
rb_raise(rb_eRangeError, "negative value to convert into `time_t'");
|
|
if (TIMET_MAX < (uwideint_t)wi)
|
|
rb_raise(rb_eRangeError, "too big to convert into `time_t'");
|
|
}
|
|
else {
|
|
if (wi < TIMET_MIN || TIMET_MAX < wi)
|
|
rb_raise(rb_eRangeError, "too big to convert into `time_t'");
|
|
}
|
|
return (time_t)wi;
|
|
}
|
|
#endif
|
|
return NUM2TIMET(w2v(w));
|
|
}
|
|
#define WV2TIMET(t) wv2timet(t)
|
|
|
|
VALUE rb_cTime;
|
|
static VALUE time_utc_offset _((VALUE));
|
|
|
|
static int obj2int(VALUE obj);
|
|
static VALUE obj2vint(VALUE obj);
|
|
static int month_arg(VALUE arg);
|
|
static void validate_utc_offset(VALUE utc_offset);
|
|
static void validate_vtm(struct vtm *vtm);
|
|
static int obj2subsecx(VALUE obj, VALUE *subsecx);
|
|
|
|
static VALUE time_gmtime(VALUE);
|
|
static VALUE time_localtime(VALUE);
|
|
static VALUE time_fixoff(VALUE);
|
|
|
|
static time_t timegm_noleapsecond(struct tm *tm);
|
|
static int tmcmp(struct tm *a, struct tm *b);
|
|
static int vtmcmp(struct vtm *a, struct vtm *b);
|
|
static const char *find_time_t(struct tm *tptr, int utc_p, time_t *tp);
|
|
|
|
static struct vtm *localtimew(wideval_t timew, struct vtm *result);
|
|
|
|
static int leap_year_p(long y);
|
|
#define leap_year_v_p(y) leap_year_p(NUM2LONG(mod((y), INT2FIX(400))))
|
|
|
|
#ifdef HAVE_GMTIME_R
|
|
#define rb_gmtime_r(t, tm) gmtime_r((t), (tm))
|
|
#define rb_localtime_r(t, tm) localtime_r((t), (tm))
|
|
#else
|
|
static inline struct tm *
|
|
rb_gmtime_r(const time_t *tp, struct tm *result)
|
|
{
|
|
struct tm *t = gmtime(tp);
|
|
if (t) *result = *t;
|
|
return t;
|
|
}
|
|
|
|
static inline struct tm *
|
|
rb_localtime_r(const time_t *tp, struct tm *result)
|
|
{
|
|
struct tm *t = localtime(tp);
|
|
if (t) *result = *t;
|
|
return t;
|
|
}
|
|
#endif
|
|
|
|
static struct tm *
|
|
rb_localtime_r2(const time_t *t, struct tm *result)
|
|
{
|
|
#if defined __APPLE__ && defined __LP64__
|
|
if (*t != (time_t)(int)*t) return NULL;
|
|
#endif
|
|
result = rb_localtime_r(t, result);
|
|
#if defined(HAVE_MKTIME) && defined(LOCALTIME_OVERFLOW_PROBLEM)
|
|
if (result) {
|
|
long gmtoff1 = 0;
|
|
long gmtoff2 = 0;
|
|
struct tm tmp = *result;
|
|
time_t t2;
|
|
# if defined(HAVE_STRUCT_TM_TM_GMTOFF)
|
|
gmtoff1 = result->tm_gmtoff;
|
|
# endif
|
|
t2 = mktime(&tmp);
|
|
# if defined(HAVE_STRUCT_TM_TM_GMTOFF)
|
|
gmtoff2 = tmp.tm_gmtoff;
|
|
# endif
|
|
if (*t + gmtoff1 != t2 + gmtoff2)
|
|
result = NULL;
|
|
}
|
|
#endif
|
|
return result;
|
|
}
|
|
#define LOCALTIME(tm, result) (tzset(),rb_localtime_r2((tm), &(result)))
|
|
|
|
#if !defined(HAVE_STRUCT_TM_TM_GMTOFF)
|
|
static struct tm *
|
|
rb_gmtime_r2(const time_t *t, struct tm *result)
|
|
{
|
|
result = rb_gmtime_r(t, result);
|
|
#if defined(HAVE_TIMEGM) && defined(LOCALTIME_OVERFLOW_PROBLEM)
|
|
if (result) {
|
|
struct tm tmp = *result;
|
|
time_t t2 = timegm(&tmp);
|
|
if (*t != t2)
|
|
result = NULL;
|
|
}
|
|
#endif
|
|
return result;
|
|
}
|
|
# define GMTIME(tm, result) rb_gmtime_r2((tm), &(result))
|
|
#endif
|
|
|
|
static const int common_year_yday_offset[] = {
|
|
-1,
|
|
-1 + 31,
|
|
-1 + 31 + 28,
|
|
-1 + 31 + 28 + 31,
|
|
-1 + 31 + 28 + 31 + 30,
|
|
-1 + 31 + 28 + 31 + 30 + 31,
|
|
-1 + 31 + 28 + 31 + 30 + 31 + 30,
|
|
-1 + 31 + 28 + 31 + 30 + 31 + 30 + 31,
|
|
-1 + 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31,
|
|
-1 + 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30,
|
|
-1 + 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31,
|
|
-1 + 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30
|
|
/* 1 2 3 4 5 6 7 8 9 10 11 */
|
|
};
|
|
static const int leap_year_yday_offset[] = {
|
|
-1,
|
|
-1 + 31,
|
|
-1 + 31 + 29,
|
|
-1 + 31 + 29 + 31,
|
|
-1 + 31 + 29 + 31 + 30,
|
|
-1 + 31 + 29 + 31 + 30 + 31,
|
|
-1 + 31 + 29 + 31 + 30 + 31 + 30,
|
|
-1 + 31 + 29 + 31 + 30 + 31 + 30 + 31,
|
|
-1 + 31 + 29 + 31 + 30 + 31 + 30 + 31 + 31,
|
|
-1 + 31 + 29 + 31 + 30 + 31 + 30 + 31 + 31 + 30,
|
|
-1 + 31 + 29 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31,
|
|
-1 + 31 + 29 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30
|
|
/* 1 2 3 4 5 6 7 8 9 10 11 */
|
|
};
|
|
|
|
static const int common_year_days_in_month[] = {
|
|
31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
|
|
};
|
|
static const int leap_year_days_in_month[] = {
|
|
31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
|
|
};
|
|
|
|
static int
|
|
calc_tm_yday(long tm_year, int tm_mon, int tm_mday)
|
|
{
|
|
int tm_year_mod400 = (int)MOD(tm_year, 400);
|
|
int tm_yday = tm_mday;
|
|
|
|
if (leap_year_p(tm_year_mod400 + 1900))
|
|
tm_yday += leap_year_yday_offset[tm_mon];
|
|
else
|
|
tm_yday += common_year_yday_offset[tm_mon];
|
|
|
|
return tm_yday;
|
|
}
|
|
|
|
static wideval_t
|
|
timegmw_noleapsecond(struct vtm *vtm)
|
|
{
|
|
VALUE year1900;
|
|
VALUE q400, r400;
|
|
int year_mod400;
|
|
int yday;
|
|
long days_in400;
|
|
VALUE vdays, ret;
|
|
wideval_t wret;
|
|
|
|
year1900 = sub(vtm->year, INT2FIX(1900));
|
|
|
|
divmodv(year1900, INT2FIX(400), &q400, &r400);
|
|
year_mod400 = NUM2INT(r400);
|
|
|
|
yday = calc_tm_yday(year_mod400, vtm->mon-1, vtm->mday);
|
|
|
|
/*
|
|
* `Seconds Since the Epoch' in SUSv3:
|
|
* tm_sec + tm_min*60 + tm_hour*3600 + tm_yday*86400 +
|
|
* (tm_year-70)*31536000 + ((tm_year-69)/4)*86400 -
|
|
* ((tm_year-1)/100)*86400 + ((tm_year+299)/400)*86400
|
|
*/
|
|
ret = LONG2NUM(vtm->sec
|
|
+ vtm->min*60
|
|
+ vtm->hour*3600);
|
|
days_in400 = yday
|
|
- 70*365
|
|
+ DIV(year_mod400 - 69, 4)
|
|
- DIV(year_mod400 - 1, 100)
|
|
+ (year_mod400 + 299) / 400;
|
|
vdays = LONG2NUM(days_in400);
|
|
vdays = add(vdays, mul(q400, INT2FIX(97)));
|
|
vdays = add(vdays, mul(year1900, INT2FIX(365)));
|
|
wret = wadd(rb_time_magnify(v2w(ret)), wmul(rb_time_magnify(v2w(vdays)), WINT2FIXWV(86400)));
|
|
wret = wadd(wret, v2w(vtm->subsecx));
|
|
|
|
return wret;
|
|
}
|
|
|
|
static st_table *zone_table;
|
|
|
|
static const char *
|
|
zone_str(const char *s)
|
|
{
|
|
st_data_t k, v;
|
|
|
|
if (!zone_table)
|
|
zone_table = st_init_strtable();
|
|
|
|
k = (st_data_t)s;
|
|
if (st_lookup(zone_table, k, &v)) {
|
|
return (const char *)v;
|
|
}
|
|
s = strdup(s);
|
|
k = (st_data_t)s;
|
|
st_add_direct(zone_table, k, k);
|
|
|
|
return s;
|
|
}
|
|
|
|
static void
|
|
gmtimew_noleapsecond(wideval_t timew, struct vtm *vtm)
|
|
{
|
|
VALUE v;
|
|
int i, n, x, y;
|
|
const int *yday_offset;
|
|
int wday;
|
|
VALUE timev;
|
|
wideval_t timew2, w, w2;
|
|
|
|
vtm->isdst = 0;
|
|
|
|
split_second(timew, &timew2, &vtm->subsecx);
|
|
|
|
wdivmod(timew2, WINT2FIXWV(86400), &w2, &w);
|
|
timev = w2v(w2);
|
|
v = w2v(w);
|
|
|
|
wday = NUM2INT(mod(timev, INT2FIX(7)));
|
|
vtm->wday = (wday + 4) % 7;
|
|
|
|
n = NUM2INT(v);
|
|
vtm->sec = n % 60; n = n / 60;
|
|
vtm->min = n % 60; n = n / 60;
|
|
vtm->hour = n;
|
|
|
|
/* 97 leap days in the 400 year cycle */
|
|
divmodv(timev, INT2FIX(400*365 + 97), &timev, &v);
|
|
vtm->year = mul(timev, INT2FIX(400));
|
|
|
|
/* n is the days in the 400 year cycle.
|
|
* the start of the cycle is 1970-01-01. */
|
|
|
|
n = NUM2INT(v);
|
|
y = 1970;
|
|
|
|
/* 30 years including 7 leap days (1972, 1976, ... 1996),
|
|
* 31 days in January 2000 and
|
|
* 29 days in February 2000
|
|
* from 1970-01-01 to 2000-02-29 */
|
|
if (30*365+7+31+29-1 <= n) {
|
|
/* 2000-02-29 or after */
|
|
if (n < 31*365+8) {
|
|
/* 2000-02-29 to 2000-12-31 */
|
|
y += 30;
|
|
n -= 30*365+7;
|
|
goto found;
|
|
}
|
|
else {
|
|
/* 2001-01-01 or after */
|
|
n -= 1;
|
|
}
|
|
}
|
|
|
|
x = n / (365*100 + 24);
|
|
n = n % (365*100 + 24);
|
|
y += x * 100;
|
|
if (30*365+7+31+29-1 <= n) {
|
|
if (n < 31*365+7) {
|
|
y += 30;
|
|
n -= 30*365+7;
|
|
goto found;
|
|
}
|
|
else
|
|
n += 1;
|
|
}
|
|
|
|
x = n / (365*4 + 1);
|
|
n = n % (365*4 + 1);
|
|
y += x * 4;
|
|
if (365*2+31+29-1 <= n) {
|
|
if (n < 365*2+366) {
|
|
y += 2;
|
|
n -= 365*2;
|
|
goto found;
|
|
}
|
|
else
|
|
n -= 1;
|
|
}
|
|
|
|
x = n / 365;
|
|
n = n % 365;
|
|
y += x;
|
|
|
|
found:
|
|
vtm->yday = n+1;
|
|
vtm->year = add(vtm->year, INT2NUM(y));
|
|
|
|
if (leap_year_p(y))
|
|
yday_offset = leap_year_yday_offset;
|
|
else
|
|
yday_offset = common_year_yday_offset;
|
|
|
|
for (i = 0; i < 12; i++) {
|
|
if (yday_offset[i] < n) {
|
|
vtm->mon = i+1;
|
|
vtm->mday = n - yday_offset[i];
|
|
}
|
|
else
|
|
break;
|
|
}
|
|
|
|
vtm->utc_offset = INT2FIX(0);
|
|
vtm->zone = "UTC";
|
|
}
|
|
|
|
static struct tm *
|
|
gmtime_with_leapsecond(const time_t *timep, struct tm *result)
|
|
{
|
|
#if defined(HAVE_STRUCT_TM_TM_GMTOFF)
|
|
/* 4.4BSD counts leap seconds only with localtime, not with gmtime. */
|
|
struct tm *t;
|
|
int sign;
|
|
int gmtoff_sec, gmtoff_min, gmtoff_hour, gmtoff_day;
|
|
long gmtoff;
|
|
t = LOCALTIME(timep, *result);
|
|
if (t == NULL)
|
|
return NULL;
|
|
|
|
/* subtract gmtoff */
|
|
if (t->tm_gmtoff < 0) {
|
|
sign = 1;
|
|
gmtoff = -t->tm_gmtoff;
|
|
}
|
|
else {
|
|
sign = -1;
|
|
gmtoff = t->tm_gmtoff;
|
|
}
|
|
gmtoff_sec = (int)(gmtoff % 60);
|
|
gmtoff = gmtoff / 60;
|
|
gmtoff_min = (int)(gmtoff % 60);
|
|
gmtoff = gmtoff / 60;
|
|
gmtoff_hour = (int)gmtoff; /* <= 12 */
|
|
|
|
gmtoff_sec *= sign;
|
|
gmtoff_min *= sign;
|
|
gmtoff_hour *= sign;
|
|
|
|
gmtoff_day = 0;
|
|
|
|
if (gmtoff_sec) {
|
|
/* If gmtoff_sec == 0, don't change result->tm_sec.
|
|
* It may be 60 which is a leap second. */
|
|
result->tm_sec += gmtoff_sec;
|
|
if (result->tm_sec < 0) {
|
|
result->tm_sec += 60;
|
|
gmtoff_min -= 1;
|
|
}
|
|
if (60 <= result->tm_sec) {
|
|
result->tm_sec -= 60;
|
|
gmtoff_min += 1;
|
|
}
|
|
}
|
|
if (gmtoff_min) {
|
|
result->tm_min += gmtoff_min;
|
|
if (result->tm_min < 0) {
|
|
result->tm_min += 60;
|
|
gmtoff_hour -= 1;
|
|
}
|
|
if (60 <= result->tm_min) {
|
|
result->tm_min -= 60;
|
|
gmtoff_hour += 1;
|
|
}
|
|
}
|
|
if (gmtoff_hour) {
|
|
result->tm_hour += gmtoff_hour;
|
|
if (result->tm_hour < 0) {
|
|
result->tm_hour += 24;
|
|
gmtoff_day = -1;
|
|
}
|
|
if (24 <= result->tm_hour) {
|
|
result->tm_hour -= 24;
|
|
gmtoff_day = 1;
|
|
}
|
|
}
|
|
|
|
if (gmtoff_day) {
|
|
if (gmtoff_day < 0) {
|
|
if (result->tm_yday == 0) {
|
|
result->tm_mday = 31;
|
|
result->tm_mon = 11; /* December */
|
|
result->tm_year--;
|
|
result->tm_yday = leap_year_p(result->tm_year + 1900) ? 365 : 364;
|
|
}
|
|
else if (result->tm_mday == 1) {
|
|
const int *days_in_month = leap_year_p(result->tm_year + 1900) ?
|
|
leap_year_days_in_month :
|
|
common_year_days_in_month;
|
|
result->tm_mon--;
|
|
result->tm_mday = days_in_month[result->tm_mon];
|
|
result->tm_yday--;
|
|
}
|
|
else {
|
|
result->tm_mday--;
|
|
result->tm_yday--;
|
|
}
|
|
result->tm_wday = (result->tm_wday + 6) % 7;
|
|
}
|
|
else {
|
|
int leap = leap_year_p(result->tm_year + 1900);
|
|
if (result->tm_yday == (leap ? 365 : 364)) {
|
|
result->tm_year++;
|
|
result->tm_mon = 0; /* January */
|
|
result->tm_mday = 1;
|
|
result->tm_yday = 0;
|
|
}
|
|
else if (result->tm_mday == (leap ? leap_year_days_in_month :
|
|
common_year_days_in_month)[result->tm_mon]) {
|
|
result->tm_mon++;
|
|
result->tm_mday = 1;
|
|
result->tm_yday++;
|
|
}
|
|
else {
|
|
result->tm_mday++;
|
|
result->tm_yday++;
|
|
}
|
|
result->tm_wday = (result->tm_wday + 1) % 7;
|
|
}
|
|
}
|
|
result->tm_isdst = 0;
|
|
result->tm_gmtoff = 0;
|
|
#if defined(HAVE_TM_ZONE)
|
|
result->tm_zone = (char *)"UTC";
|
|
#endif
|
|
return result;
|
|
#else
|
|
return GMTIME(timep, *result);
|
|
#endif
|
|
}
|
|
|
|
static long this_year = 0;
|
|
static time_t known_leap_seconds_limit;
|
|
static int number_of_leap_seconds_known;
|
|
|
|
static void
|
|
init_leap_second_info(void)
|
|
{
|
|
/*
|
|
* leap seconds are determined by IERS.
|
|
* It is announced 6 months before the leap second.
|
|
* So no one knows leap seconds in the future after the next year.
|
|
*/
|
|
if (this_year == 0) {
|
|
time_t now;
|
|
struct tm *tm, result;
|
|
struct vtm vtm;
|
|
wideval_t timew;
|
|
now = time(NULL);
|
|
gmtime(&now);
|
|
tm = gmtime_with_leapsecond(&now, &result);
|
|
if (!tm) return;
|
|
this_year = tm->tm_year;
|
|
|
|
if (TIMET_MAX - now < (time_t)(366*86400))
|
|
known_leap_seconds_limit = TIMET_MAX;
|
|
else
|
|
known_leap_seconds_limit = now + (time_t)(366*86400);
|
|
|
|
if (!gmtime_with_leapsecond(&known_leap_seconds_limit, &result))
|
|
return;
|
|
|
|
vtm.year = LONG2NUM(result.tm_year + 1900);
|
|
vtm.mon = result.tm_mon + 1;
|
|
vtm.mday = result.tm_mday;
|
|
vtm.hour = result.tm_hour;
|
|
vtm.min = result.tm_min;
|
|
vtm.sec = result.tm_sec;
|
|
vtm.subsecx = INT2FIX(0);
|
|
vtm.utc_offset = INT2FIX(0);
|
|
|
|
timew = timegmw_noleapsecond(&vtm);
|
|
|
|
number_of_leap_seconds_known = NUM2INT(w2v(wsub(TIMET2WV(known_leap_seconds_limit), rb_time_unmagnify(timew))));
|
|
}
|
|
}
|
|
|
|
static wideval_t
|
|
timegmw(struct vtm *vtm)
|
|
{
|
|
wideval_t timew;
|
|
struct tm tm;
|
|
time_t t;
|
|
const char *errmsg;
|
|
|
|
/* The first leap second is 1972-06-30 23:59:60 UTC.
|
|
* No leap seconds before. */
|
|
if (gt(INT2FIX(1972), vtm->year))
|
|
return timegmw_noleapsecond(vtm);
|
|
|
|
init_leap_second_info();
|
|
|
|
timew = timegmw_noleapsecond(vtm);
|
|
|
|
if (wlt(rb_time_magnify(TIMET2WV(known_leap_seconds_limit)), timew)) {
|
|
return wadd(timew, rb_time_magnify(WINT2WV(number_of_leap_seconds_known)));
|
|
}
|
|
|
|
tm.tm_year = rb_long2int(NUM2LONG(vtm->year) - 1900);
|
|
tm.tm_mon = vtm->mon - 1;
|
|
tm.tm_mday = vtm->mday;
|
|
tm.tm_hour = vtm->hour;
|
|
tm.tm_min = vtm->min;
|
|
tm.tm_sec = vtm->sec;
|
|
tm.tm_isdst = 0;
|
|
|
|
errmsg = find_time_t(&tm, 1, &t);
|
|
if (errmsg)
|
|
rb_raise(rb_eArgError, "%s", errmsg);
|
|
return wadd(rb_time_magnify(TIMET2WV(t)), v2w(vtm->subsecx));
|
|
}
|
|
|
|
static struct vtm *
|
|
gmtimew(wideval_t timew, struct vtm *result)
|
|
{
|
|
time_t t;
|
|
struct tm tm;
|
|
VALUE subsecx;
|
|
wideval_t timew2;
|
|
|
|
if (wlt(timew, WINT2FIXWV(0))) {
|
|
gmtimew_noleapsecond(timew, result);
|
|
return result;
|
|
}
|
|
|
|
init_leap_second_info();
|
|
|
|
if (wlt(rb_time_magnify(TIMET2WV(known_leap_seconds_limit)), timew)) {
|
|
timew = wsub(timew, rb_time_magnify(WINT2WV(number_of_leap_seconds_known)));
|
|
gmtimew_noleapsecond(timew, result);
|
|
return result;
|
|
}
|
|
|
|
split_second(timew, &timew2, &subsecx);
|
|
|
|
t = WV2TIMET(timew2);
|
|
if (!gmtime_with_leapsecond(&t, &tm))
|
|
return NULL;
|
|
|
|
result->year = LONG2NUM((long)tm.tm_year + 1900);
|
|
result->mon = tm.tm_mon + 1;
|
|
result->mday = tm.tm_mday;
|
|
result->hour = tm.tm_hour;
|
|
result->min = tm.tm_min;
|
|
result->sec = tm.tm_sec;
|
|
result->subsecx = subsecx;
|
|
result->utc_offset = INT2FIX(0);
|
|
result->wday = tm.tm_wday;
|
|
result->yday = tm.tm_yday+1;
|
|
result->isdst = tm.tm_isdst;
|
|
result->zone = "UTC";
|
|
|
|
return result;
|
|
}
|
|
|
|
static struct tm *localtime_with_gmtoff_zone(const time_t *t, struct tm *result, long *gmtoff, const char **zone);
|
|
|
|
/*
|
|
* The idea is come from Perl:
|
|
* http://use.perl.org/articles/08/02/07/197204.shtml
|
|
*
|
|
* compat_common_month_table is generated by following program.
|
|
* This table finds the last month which start the same day of a week.
|
|
* The year 2037 is not used because
|
|
* http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=522949
|
|
*
|
|
* #!/usr/bin/ruby
|
|
*
|
|
* require 'date'
|
|
*
|
|
* h = {}
|
|
* 2036.downto(2010) {|y|
|
|
* 1.upto(12) {|m|
|
|
* next if m == 2 && y % 4 == 0
|
|
* d = Date.new(y,m,1)
|
|
* h[m] ||= {}
|
|
* h[m][d.wday] ||= y
|
|
* }
|
|
* }
|
|
*
|
|
* 1.upto(12) {|m|
|
|
* print "{"
|
|
* 0.upto(6) {|w|
|
|
* y = h[m][w]
|
|
* print " #{y},"
|
|
* }
|
|
* puts "},"
|
|
* }
|
|
*
|
|
*/
|
|
static int compat_common_month_table[12][7] = {
|
|
/* Sun Mon Tue Wed Thu Fri Sat */
|
|
{ 2034, 2035, 2036, 2031, 2032, 2027, 2033 }, /* January */
|
|
{ 2026, 2027, 2033, 2034, 2035, 2030, 2031 }, /* February */
|
|
{ 2026, 2032, 2033, 2034, 2035, 2030, 2036 }, /* March */
|
|
{ 2035, 2030, 2036, 2026, 2032, 2033, 2034 }, /* April */
|
|
{ 2033, 2034, 2035, 2030, 2036, 2026, 2032 }, /* May */
|
|
{ 2036, 2026, 2032, 2033, 2034, 2035, 2030 }, /* June */
|
|
{ 2035, 2030, 2036, 2026, 2032, 2033, 2034 }, /* July */
|
|
{ 2032, 2033, 2034, 2035, 2030, 2036, 2026 }, /* August */
|
|
{ 2030, 2036, 2026, 2032, 2033, 2034, 2035 }, /* September */
|
|
{ 2034, 2035, 2030, 2036, 2026, 2032, 2033 }, /* October */
|
|
{ 2026, 2032, 2033, 2034, 2035, 2030, 2036 }, /* November */
|
|
{ 2030, 2036, 2026, 2032, 2033, 2034, 2035 }, /* December */
|
|
};
|
|
|
|
/*
|
|
* compat_leap_month_table is generated by following program.
|
|
*
|
|
* #!/usr/bin/ruby
|
|
*
|
|
* require 'date'
|
|
*
|
|
* h = {}
|
|
* 2037.downto(2010) {|y|
|
|
* 1.upto(12) {|m|
|
|
* next unless m == 2 && y % 4 == 0
|
|
* d = Date.new(y,m,1)
|
|
* h[m] ||= {}
|
|
* h[m][d.wday] ||= y
|
|
* }
|
|
* }
|
|
*
|
|
* 2.upto(2) {|m|
|
|
* 0.upto(6) {|w|
|
|
* y = h[m][w]
|
|
* print " #{y},"
|
|
* }
|
|
* puts
|
|
* }
|
|
*/
|
|
static int compat_leap_month_table[7] = {
|
|
/* Sun Mon Tue Wed Thu Fri Sat */
|
|
2032, 2016, 2028, 2012, 2024, 2036, 2020, /* February */
|
|
};
|
|
|
|
static int
|
|
calc_wday(int year, int month, int day)
|
|
{
|
|
int a, y, m;
|
|
int wday;
|
|
|
|
a = (14 - month) / 12;
|
|
y = year + 4800 - a;
|
|
m = month + 12 * a - 3;
|
|
wday = day + (153*m+2)/5 + 365*y + y/4 - y/100 + y/400 + 2;
|
|
wday = wday % 7;
|
|
return wday;
|
|
}
|
|
|
|
static VALUE
|
|
guess_local_offset(struct vtm *vtm_utc, int *isdst_ret, const char **zone_ret)
|
|
{
|
|
struct tm tm;
|
|
long gmtoff;
|
|
const char *zone;
|
|
time_t t;
|
|
struct vtm vtm2;
|
|
VALUE timev;
|
|
int y, wday;
|
|
|
|
/* The first DST is at 1916 in German.
|
|
* So we don't need to care DST before that. */
|
|
if (lt(vtm_utc->year, INT2FIX(1916))) {
|
|
VALUE off = INT2FIX(0);
|
|
int isdst = 0;
|
|
zone = "UTC";
|
|
|
|
# if defined(NEGATIVE_TIME_T)
|
|
# if SIZEOF_TIME_T <= 4
|
|
/* 1901-12-13 20:45:52 UTC : The oldest time in 32-bit signed time_t. */
|
|
# define THE_TIME_OLD_ENOUGH ((time_t)0x80000000)
|
|
# else
|
|
/* Since the Royal Greenwich Observatory was commissioned in 1675,
|
|
no timezone defined using GMT at 1600. */
|
|
# define THE_TIME_OLD_ENOUGH ((time_t)(1600-1970)*366*24*60*60)
|
|
# endif
|
|
if (localtime_with_gmtoff_zone((t = THE_TIME_OLD_ENOUGH, &t), &tm, &gmtoff, &zone)) {
|
|
off = LONG2FIX(gmtoff);
|
|
isdst = tm.tm_isdst;
|
|
}
|
|
else
|
|
# endif
|
|
/* 1970-01-01 00:00:00 UTC : The Unix epoch - the oldest time in portable time_t. */
|
|
if (localtime_with_gmtoff_zone((t = 0, &t), &tm, &gmtoff, &zone)) {
|
|
off = LONG2FIX(gmtoff);
|
|
isdst = tm.tm_isdst;
|
|
}
|
|
|
|
if (isdst_ret)
|
|
*isdst_ret = isdst;
|
|
if (zone_ret)
|
|
*zone_ret = zone;
|
|
return off;
|
|
}
|
|
|
|
/* It is difficult to guess future. */
|
|
|
|
vtm2 = *vtm_utc;
|
|
|
|
/* guess using a year before 2038. */
|
|
y = NUM2INT(mod(vtm_utc->year, INT2FIX(400)));
|
|
wday = calc_wday(y, vtm_utc->mon, 1);
|
|
if (vtm_utc->mon == 2 && leap_year_p(y))
|
|
vtm2.year = INT2FIX(compat_leap_month_table[wday]);
|
|
else
|
|
vtm2.year = INT2FIX(compat_common_month_table[vtm_utc->mon-1][wday]);
|
|
|
|
timev = w2v(rb_time_unmagnify(timegmw(&vtm2)));
|
|
t = NUM2TIMET(timev);
|
|
zone = "UTC";
|
|
if (localtime_with_gmtoff_zone(&t, &tm, &gmtoff, &zone)) {
|
|
if (isdst_ret)
|
|
*isdst_ret = tm.tm_isdst;
|
|
if (zone_ret)
|
|
*zone_ret = zone;
|
|
return LONG2FIX(gmtoff);
|
|
}
|
|
|
|
{
|
|
/* Use the current time offset as a last resort. */
|
|
static time_t now = 0;
|
|
static long now_gmtoff = 0;
|
|
static const char *now_zone = "UTC";
|
|
if (now == 0) {
|
|
now = time(NULL);
|
|
localtime_with_gmtoff_zone(&now, &tm, &now_gmtoff, &now_zone);
|
|
}
|
|
if (isdst_ret)
|
|
*isdst_ret = tm.tm_isdst;
|
|
if (zone_ret)
|
|
*zone_ret = now_zone;
|
|
return LONG2FIX(now_gmtoff);
|
|
}
|
|
}
|
|
|
|
static VALUE
|
|
small_vtm_sub(struct vtm *vtm1, struct vtm *vtm2)
|
|
{
|
|
int off;
|
|
|
|
off = vtm1->sec - vtm2->sec;
|
|
off += (vtm1->min - vtm2->min) * 60;
|
|
off += (vtm1->hour - vtm2->hour) * 3600;
|
|
if (ne(vtm1->year, vtm2->year))
|
|
off += lt(vtm1->year, vtm2->year) ? -24*3600 : 24*3600;
|
|
else if (vtm1->mon != vtm2->mon)
|
|
off += vtm1->mon < vtm2->mon ? -24*3600 : 24*3600;
|
|
else if (vtm1->mday != vtm2->mday)
|
|
off += vtm1->mday < vtm2->mday ? -24*3600 : 24*3600;
|
|
|
|
return INT2FIX(off);
|
|
}
|
|
|
|
static wideval_t
|
|
timelocalw(struct vtm *vtm)
|
|
{
|
|
time_t t;
|
|
struct tm tm;
|
|
VALUE v;
|
|
wideval_t timew1, timew2;
|
|
struct vtm vtm1, vtm2;
|
|
int n;
|
|
|
|
if (FIXNUM_P(vtm->year)) {
|
|
long l = FIX2LONG(vtm->year) - 1900;
|
|
if (l < INT_MIN || INT_MAX < l)
|
|
goto no_localtime;
|
|
tm.tm_year = (int)l;
|
|
}
|
|
else {
|
|
v = sub(vtm->year, INT2FIX(1900));
|
|
if (lt(v, INT2NUM(INT_MIN)) || lt(INT2NUM(INT_MAX), v))
|
|
goto no_localtime;
|
|
tm.tm_year = NUM2INT(v);
|
|
}
|
|
|
|
tm.tm_mon = vtm->mon-1;
|
|
tm.tm_mday = vtm->mday;
|
|
tm.tm_hour = vtm->hour;
|
|
tm.tm_min = vtm->min;
|
|
tm.tm_sec = vtm->sec;
|
|
tm.tm_isdst = vtm->isdst;
|
|
|
|
if (find_time_t(&tm, 0, &t))
|
|
goto no_localtime;
|
|
return wadd(rb_time_magnify(TIMET2WV(t)), v2w(vtm->subsecx));
|
|
|
|
no_localtime:
|
|
timew1 = timegmw(vtm);
|
|
|
|
if (!localtimew(timew1, &vtm1))
|
|
rb_raise(rb_eArgError, "localtimew error");
|
|
|
|
n = vtmcmp(vtm, &vtm1);
|
|
if (n == 0) {
|
|
timew1 = wsub(timew1, rb_time_magnify(WINT2FIXWV(12*3600)));
|
|
if (!localtimew(timew1, &vtm1))
|
|
rb_raise(rb_eArgError, "localtimew error");
|
|
n = 1;
|
|
}
|
|
|
|
if (n < 0) {
|
|
timew2 = timew1;
|
|
vtm2 = vtm1;
|
|
timew1 = wsub(timew1, rb_time_magnify(WINT2FIXWV(24*3600)));
|
|
if (!localtimew(timew1, &vtm1))
|
|
rb_raise(rb_eArgError, "localtimew error");
|
|
}
|
|
else {
|
|
timew2 = wadd(timew1, rb_time_magnify(WINT2FIXWV(24*3600)));
|
|
if (!localtimew(timew2, &vtm2))
|
|
rb_raise(rb_eArgError, "localtimew error");
|
|
}
|
|
timew1 = wadd(timew1, rb_time_magnify(v2w(small_vtm_sub(vtm, &vtm1))));
|
|
timew2 = wadd(timew2, rb_time_magnify(v2w(small_vtm_sub(vtm, &vtm2))));
|
|
|
|
if (weq(timew1, timew2))
|
|
return timew1;
|
|
|
|
if (!localtimew(timew1, &vtm1))
|
|
rb_raise(rb_eArgError, "localtimew error");
|
|
if (vtm->hour != vtm1.hour || vtm->min != vtm1.min || vtm->sec != vtm1.sec)
|
|
return timew2;
|
|
|
|
if (!localtimew(timew2, &vtm2))
|
|
rb_raise(rb_eArgError, "localtimew error");
|
|
if (vtm->hour != vtm2.hour || vtm->min != vtm2.min || vtm->sec != vtm2.sec)
|
|
return timew1;
|
|
|
|
if (vtm->isdst)
|
|
return lt(vtm1.utc_offset, vtm2.utc_offset) ? timew2 : timew1;
|
|
else
|
|
return lt(vtm1.utc_offset, vtm2.utc_offset) ? timew1 : timew2;
|
|
}
|
|
|
|
static struct tm *
|
|
localtime_with_gmtoff_zone(const time_t *t, struct tm *result, long *gmtoff, const char **zone)
|
|
{
|
|
struct tm tm;
|
|
|
|
if (LOCALTIME(t, tm)) {
|
|
#if defined(HAVE_STRUCT_TM_TM_GMTOFF)
|
|
*gmtoff = tm.tm_gmtoff;
|
|
#else
|
|
struct tm *u, *l;
|
|
long off;
|
|
struct tm tmbuf;
|
|
l = &tm;
|
|
u = GMTIME(t, tmbuf);
|
|
if (!u)
|
|
return NULL;
|
|
if (l->tm_year != u->tm_year)
|
|
off = l->tm_year < u->tm_year ? -1 : 1;
|
|
else if (l->tm_mon != u->tm_mon)
|
|
off = l->tm_mon < u->tm_mon ? -1 : 1;
|
|
else if (l->tm_mday != u->tm_mday)
|
|
off = l->tm_mday < u->tm_mday ? -1 : 1;
|
|
else
|
|
off = 0;
|
|
off = off * 24 + l->tm_hour - u->tm_hour;
|
|
off = off * 60 + l->tm_min - u->tm_min;
|
|
off = off * 60 + l->tm_sec - u->tm_sec;
|
|
*gmtoff = off;
|
|
#endif
|
|
|
|
if (zone) {
|
|
#if defined(HAVE_TM_ZONE)
|
|
*zone = zone_str(tm.tm_zone);
|
|
#elif defined(HAVE_TZNAME) && defined(HAVE_DAYLIGHT)
|
|
/* this needs tzset or localtime, instead of localtime_r */
|
|
*zone = zone_str(tzname[daylight && tm.tm_isdst]);
|
|
#else
|
|
{
|
|
char buf[64];
|
|
strftime(buf, sizeof(buf), "%Z", &tm);
|
|
*zone = zone_str(buf);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
*result = tm;
|
|
return result;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static int
|
|
timew_out_of_timet_range(wideval_t timew)
|
|
{
|
|
VALUE timexv;
|
|
#if WIDEVALUE_IS_WIDER && SIZEOF_TIME_T < SIZEOF_INT64_T
|
|
if (FIXWV_P(timew)) {
|
|
wideint_t t = FIXWV2WINT(timew);
|
|
if (t < TIME_SCALE * (wideint_t)TIMET_MIN ||
|
|
TIME_SCALE * (1 + (wideint_t)TIMET_MAX) <= t)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
#endif
|
|
timexv = w2v(timew);
|
|
if (lt(timexv, mul(INT2FIX(TIME_SCALE), TIMET2NUM(TIMET_MIN))) ||
|
|
le(mul(INT2FIX(TIME_SCALE), add(TIMET2NUM(TIMET_MAX), INT2FIX(1))), timexv))
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
static struct vtm *
|
|
localtimew(wideval_t timew, struct vtm *result)
|
|
{
|
|
VALUE subsecx, offset;
|
|
const char *zone;
|
|
int isdst;
|
|
|
|
if (!timew_out_of_timet_range(timew)) {
|
|
time_t t;
|
|
struct tm tm;
|
|
long gmtoff;
|
|
wideval_t timew2;
|
|
|
|
split_second(timew, &timew2, &subsecx);
|
|
|
|
t = WV2TIMET(timew2);
|
|
|
|
if (localtime_with_gmtoff_zone(&t, &tm, &gmtoff, &zone)) {
|
|
result->year = LONG2NUM((long)tm.tm_year + 1900);
|
|
result->mon = tm.tm_mon + 1;
|
|
result->mday = tm.tm_mday;
|
|
result->hour = tm.tm_hour;
|
|
result->min = tm.tm_min;
|
|
result->sec = tm.tm_sec;
|
|
result->subsecx = subsecx;
|
|
result->wday = tm.tm_wday;
|
|
result->yday = tm.tm_yday+1;
|
|
result->isdst = tm.tm_isdst;
|
|
result->utc_offset = LONG2NUM(gmtoff);
|
|
result->zone = zone;
|
|
return result;
|
|
}
|
|
}
|
|
|
|
if (!gmtimew(timew, result))
|
|
return NULL;
|
|
|
|
offset = guess_local_offset(result, &isdst, &zone);
|
|
|
|
if (!gmtimew(wadd(timew, rb_time_magnify(v2w(offset))), result))
|
|
return NULL;
|
|
|
|
result->utc_offset = offset;
|
|
result->isdst = isdst;
|
|
result->zone = zone;
|
|
|
|
return result;
|
|
}
|
|
|
|
struct time_object {
|
|
wideval_t timew; /* time_t value * TIME_SCALE. possibly Rational. */
|
|
struct vtm vtm;
|
|
int gmt; /* 0:utc 1:localtime 2:fixoff */
|
|
int tm_got;
|
|
};
|
|
|
|
#define GetTimeval(obj, tobj) \
|
|
TypedData_Get_Struct((obj), struct time_object, &time_data_type, (tobj))
|
|
|
|
#define IsTimeval(obj) rb_typeddata_is_kind_of((obj), &time_data_type)
|
|
|
|
#define TIME_UTC_P(tobj) ((tobj)->gmt == 1)
|
|
#define TIME_SET_UTC(tobj) ((tobj)->gmt = 1)
|
|
|
|
#define TIME_LOCALTIME_P(tobj) ((tobj)->gmt == 0)
|
|
#define TIME_SET_LOCALTIME(tobj) ((tobj)->gmt = 0)
|
|
|
|
#define TIME_FIXOFF_P(tobj) ((tobj)->gmt == 2)
|
|
#define TIME_SET_FIXOFF(tobj, off) \
|
|
((tobj)->gmt = 2, \
|
|
(tobj)->vtm.utc_offset = (off), \
|
|
(tobj)->vtm.zone = NULL)
|
|
|
|
#define TIME_COPY_GMT(tobj1, tobj2) \
|
|
((tobj1)->gmt = (tobj2)->gmt, \
|
|
(tobj1)->vtm.utc_offset = (tobj2)->vtm.utc_offset, \
|
|
(tobj1)->vtm.zone = (tobj2)->vtm.zone)
|
|
|
|
static VALUE time_get_tm(VALUE, struct time_object *);
|
|
#define MAKE_TM(time, tobj) \
|
|
do { \
|
|
if ((tobj)->tm_got == 0) { \
|
|
time_get_tm((time), (tobj)); \
|
|
} \
|
|
} while (0)
|
|
|
|
static void
|
|
time_mark(void *ptr)
|
|
{
|
|
struct time_object *tobj = ptr;
|
|
if (!tobj) return;
|
|
if (!FIXWV_P(tobj->timew))
|
|
rb_gc_mark(w2v(tobj->timew));
|
|
rb_gc_mark(tobj->vtm.year);
|
|
rb_gc_mark(tobj->vtm.subsecx);
|
|
rb_gc_mark(tobj->vtm.utc_offset);
|
|
}
|
|
|
|
static void
|
|
time_free(void *tobj)
|
|
{
|
|
if (tobj) xfree(tobj);
|
|
}
|
|
|
|
static size_t
|
|
time_memsize(const void *tobj)
|
|
{
|
|
return tobj ? sizeof(struct time_object) : 0;
|
|
}
|
|
|
|
static const rb_data_type_t time_data_type = {
|
|
"time",
|
|
{time_mark, time_free, time_memsize,},
|
|
};
|
|
|
|
static VALUE
|
|
time_s_alloc(VALUE klass)
|
|
{
|
|
VALUE obj;
|
|
struct time_object *tobj;
|
|
|
|
obj = TypedData_Make_Struct(klass, struct time_object, &time_data_type, tobj);
|
|
tobj->tm_got=0;
|
|
tobj->timew = WINT2FIXWV(0);
|
|
|
|
return obj;
|
|
}
|
|
|
|
static void
|
|
time_modify(VALUE time)
|
|
{
|
|
rb_check_frozen(time);
|
|
rb_check_trusted(time);
|
|
}
|
|
|
|
static wideval_t
|
|
timespec2timew(struct timespec *ts)
|
|
{
|
|
wideval_t timew;
|
|
|
|
timew = rb_time_magnify(TIMET2WV(ts->tv_sec));
|
|
if (ts->tv_nsec)
|
|
timew = wadd(timew, wmulquoll(WINT2WV(ts->tv_nsec), TIME_SCALE, 1000000000));
|
|
return timew;
|
|
}
|
|
|
|
static struct timespec
|
|
timew2timespec(wideval_t timew)
|
|
{
|
|
VALUE subsecx;
|
|
struct timespec ts;
|
|
wideval_t timew2;
|
|
|
|
if (timew_out_of_timet_range(timew))
|
|
rb_raise(rb_eArgError, "time out of system range");
|
|
split_second(timew, &timew2, &subsecx);
|
|
ts.tv_sec = WV2TIMET(timew2);
|
|
ts.tv_nsec = NUM2LONG(mulquo(subsecx, INT2FIX(1000000000), INT2FIX(TIME_SCALE)));
|
|
return ts;
|
|
}
|
|
|
|
static struct timespec *
|
|
timew2timespec_exact(wideval_t timew, struct timespec *ts)
|
|
{
|
|
VALUE subsecx;
|
|
wideval_t timew2;
|
|
VALUE nsecv;
|
|
|
|
if (timew_out_of_timet_range(timew))
|
|
return NULL;
|
|
split_second(timew, &timew2, &subsecx);
|
|
ts->tv_sec = WV2TIMET(timew2);
|
|
nsecv = mulquo(subsecx, INT2FIX(1000000000), INT2FIX(TIME_SCALE));
|
|
if (!FIXNUM_P(nsecv))
|
|
return NULL;
|
|
ts->tv_nsec = NUM2LONG(nsecv);
|
|
return ts;
|
|
}
|
|
|
|
/*
|
|
* Document-method: now
|
|
*
|
|
* Synonym for <code>Time.new</code>. Returns a +Time+ object
|
|
* initialized to the current system time.
|
|
*/
|
|
|
|
static VALUE
|
|
time_init_0(VALUE time)
|
|
{
|
|
struct time_object *tobj;
|
|
struct timespec ts;
|
|
|
|
time_modify(time);
|
|
GetTimeval(time, tobj);
|
|
tobj->tm_got=0;
|
|
tobj->timew = WINT2FIXWV(0);
|
|
#ifdef HAVE_CLOCK_GETTIME
|
|
if (clock_gettime(CLOCK_REALTIME, &ts) == -1) {
|
|
rb_sys_fail("clock_gettime");
|
|
}
|
|
#else
|
|
{
|
|
struct timeval tv;
|
|
if (gettimeofday(&tv, 0) < 0) {
|
|
rb_sys_fail("gettimeofday");
|
|
}
|
|
ts.tv_sec = tv.tv_sec;
|
|
ts.tv_nsec = tv.tv_usec * 1000;
|
|
}
|
|
#endif
|
|
tobj->timew = timespec2timew(&ts);
|
|
|
|
return time;
|
|
}
|
|
|
|
static VALUE
|
|
time_set_utc_offset(VALUE time, VALUE off)
|
|
{
|
|
struct time_object *tobj;
|
|
off = num_exact(off);
|
|
|
|
time_modify(time);
|
|
GetTimeval(time, tobj);
|
|
|
|
tobj->tm_got = 0;
|
|
TIME_SET_FIXOFF(tobj, off);
|
|
|
|
return time;
|
|
}
|
|
|
|
static void
|
|
vtm_add_offset(struct vtm *vtm, VALUE off)
|
|
{
|
|
int sign;
|
|
VALUE subsec, v;
|
|
int sec, min, hour;
|
|
int day;
|
|
|
|
vtm->utc_offset = sub(vtm->utc_offset, off);
|
|
|
|
if (lt(off, INT2FIX(0))) {
|
|
sign = -1;
|
|
off = neg(off);
|
|
}
|
|
else {
|
|
sign = 1;
|
|
}
|
|
divmodv(off, INT2FIX(1), &off, &subsec);
|
|
divmodv(off, INT2FIX(60), &off, &v);
|
|
sec = NUM2INT(v);
|
|
divmodv(off, INT2FIX(60), &off, &v);
|
|
min = NUM2INT(v);
|
|
divmodv(off, INT2FIX(24), &off, &v);
|
|
hour = NUM2INT(v);
|
|
|
|
if (sign < 0) {
|
|
subsec = neg(subsec);
|
|
sec = -sec;
|
|
min = -min;
|
|
hour = -hour;
|
|
}
|
|
|
|
day = 0;
|
|
|
|
if (!rb_equal(subsec, INT2FIX(0))) {
|
|
vtm->subsecx = add(vtm->subsecx, w2v(rb_time_magnify(v2w(subsec))));
|
|
if (lt(vtm->subsecx, INT2FIX(0))) {
|
|
vtm->subsecx = add(vtm->subsecx, INT2FIX(TIME_SCALE));
|
|
sec -= 1;
|
|
}
|
|
if (le(INT2FIX(TIME_SCALE), vtm->subsecx)) {
|
|
vtm->subsecx = sub(vtm->subsecx, INT2FIX(TIME_SCALE));
|
|
sec += 1;
|
|
}
|
|
goto not_zero_sec;
|
|
}
|
|
if (sec) {
|
|
not_zero_sec:
|
|
/* If sec + subsec == 0, don't change vtm->sec.
|
|
* It may be 60 which is a leap second. */
|
|
vtm->sec += sec;
|
|
if (vtm->sec < 0) {
|
|
vtm->sec += 60;
|
|
min -= 1;
|
|
}
|
|
if (60 <= vtm->sec) {
|
|
vtm->sec -= 60;
|
|
min += 1;
|
|
}
|
|
}
|
|
if (min) {
|
|
vtm->min += min;
|
|
if (vtm->min < 0) {
|
|
vtm->min += 60;
|
|
hour -= 1;
|
|
}
|
|
if (60 <= vtm->min) {
|
|
vtm->min -= 60;
|
|
hour += 1;
|
|
}
|
|
}
|
|
if (hour) {
|
|
vtm->hour += hour;
|
|
if (vtm->hour < 0) {
|
|
vtm->hour += 24;
|
|
day = -1;
|
|
}
|
|
if (24 <= vtm->hour) {
|
|
vtm->hour -= 24;
|
|
day = 1;
|
|
}
|
|
}
|
|
|
|
if (day) {
|
|
if (day < 0) {
|
|
if (vtm->mon == 1 && vtm->mday == 1) {
|
|
vtm->mday = 31;
|
|
vtm->mon = 12; /* December */
|
|
vtm->year = sub(vtm->year, INT2FIX(1));
|
|
vtm->yday = leap_year_v_p(vtm->year) ? 365 : 364;
|
|
}
|
|
else if (vtm->mday == 1) {
|
|
const int *days_in_month = leap_year_v_p(vtm->year) ?
|
|
leap_year_days_in_month :
|
|
common_year_days_in_month;
|
|
vtm->mon--;
|
|
vtm->mday = days_in_month[vtm->mon-1];
|
|
vtm->yday--;
|
|
}
|
|
else {
|
|
vtm->mday--;
|
|
vtm->yday--;
|
|
}
|
|
vtm->wday = (vtm->wday + 6) % 7;
|
|
}
|
|
else {
|
|
int leap = leap_year_v_p(vtm->year);
|
|
if (vtm->mon == 12 && vtm->mday == 31) {
|
|
vtm->year = add(vtm->year, INT2FIX(1));
|
|
vtm->mon = 1; /* January */
|
|
vtm->mday = 1;
|
|
vtm->yday = 1;
|
|
}
|
|
else if (vtm->mday == (leap ? leap_year_days_in_month :
|
|
common_year_days_in_month)[vtm->mon-1]) {
|
|
vtm->mon++;
|
|
vtm->mday = 1;
|
|
vtm->yday++;
|
|
}
|
|
else {
|
|
vtm->mday++;
|
|
vtm->yday++;
|
|
}
|
|
vtm->wday = (vtm->wday + 1) % 7;
|
|
}
|
|
}
|
|
}
|
|
|
|
static VALUE
|
|
utc_offset_arg(VALUE arg)
|
|
{
|
|
VALUE tmp;
|
|
if (!NIL_P(tmp = rb_check_string_type(arg))) {
|
|
int n = 0;
|
|
char *s = RSTRING_PTR(tmp);
|
|
if (!rb_enc_str_asciicompat_p(tmp)) {
|
|
invalid_utc_offset:
|
|
rb_raise(rb_eArgError, "\"+HH:MM\" or \"-HH:MM\" expected for utc_offset");
|
|
}
|
|
switch (RSTRING_LEN(tmp)) {
|
|
case 9:
|
|
if (s[6] != ':') goto invalid_utc_offset;
|
|
if (!ISDIGIT(s[7]) || !ISDIGIT(s[8])) goto invalid_utc_offset;
|
|
n += (s[7] * 10 + s[8] - '0' * 11);
|
|
case 6:
|
|
if (s[0] != '+' && s[0] != '-') goto invalid_utc_offset;
|
|
if (!ISDIGIT(s[1]) || !ISDIGIT(s[2])) goto invalid_utc_offset;
|
|
if (s[3] != ':') goto invalid_utc_offset;
|
|
if (!ISDIGIT(s[4]) || !ISDIGIT(s[5])) goto invalid_utc_offset;
|
|
break;
|
|
default:
|
|
goto invalid_utc_offset;
|
|
}
|
|
n += (s[1] * 10 + s[2] - '0' * 11) * 3600;
|
|
n += (s[4] * 10 + s[5] - '0' * 11) * 60;
|
|
if (s[0] == '-')
|
|
n = -n;
|
|
return INT2FIX(n);
|
|
}
|
|
else {
|
|
return num_exact(arg);
|
|
}
|
|
}
|
|
|
|
static VALUE
|
|
time_init_1(int argc, VALUE *argv, VALUE time)
|
|
{
|
|
struct vtm vtm;
|
|
VALUE v[7];
|
|
struct time_object *tobj;
|
|
|
|
vtm.wday = -1;
|
|
vtm.yday = 0;
|
|
vtm.zone = "";
|
|
|
|
/* year mon mday hour min sec off */
|
|
rb_scan_args(argc, argv, "16", &v[0],&v[1],&v[2],&v[3],&v[4],&v[5],&v[6]);
|
|
|
|
vtm.year = obj2vint(v[0]);
|
|
|
|
vtm.mon = NIL_P(v[1]) ? 1 : month_arg(v[1]);
|
|
|
|
vtm.mday = NIL_P(v[2]) ? 1 : obj2int(v[2]);
|
|
|
|
vtm.hour = NIL_P(v[3]) ? 0 : obj2int(v[3]);
|
|
|
|
vtm.min = NIL_P(v[4]) ? 0 : obj2int(v[4]);
|
|
|
|
vtm.subsecx = INT2FIX(0);
|
|
vtm.sec = NIL_P(v[5]) ? 0 : obj2subsecx(v[5], &vtm.subsecx);
|
|
|
|
vtm.isdst = -1;
|
|
vtm.utc_offset = Qnil;
|
|
if (!NIL_P(v[6])) {
|
|
VALUE arg = v[6];
|
|
if (arg == ID2SYM(rb_intern("dst")))
|
|
vtm.isdst = 1;
|
|
else if (arg == ID2SYM(rb_intern("std")))
|
|
vtm.isdst = 0;
|
|
else
|
|
vtm.utc_offset = utc_offset_arg(arg);
|
|
}
|
|
|
|
validate_vtm(&vtm);
|
|
|
|
time_modify(time);
|
|
GetTimeval(time, tobj);
|
|
tobj->tm_got=0;
|
|
tobj->timew = WINT2FIXWV(0);
|
|
|
|
if (!NIL_P(vtm.utc_offset)) {
|
|
VALUE off = vtm.utc_offset;
|
|
vtm_add_offset(&vtm, neg(off));
|
|
vtm.utc_offset = Qnil;
|
|
tobj->timew = timegmw(&vtm);
|
|
return time_set_utc_offset(time, off);
|
|
}
|
|
else {
|
|
tobj->timew = timelocalw(&vtm);
|
|
return time_localtime(time);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* call-seq:
|
|
* Time.new -> time
|
|
* Time.new(year, month=nil, day=nil, hour=nil, min=nil, sec=nil, utc_offset=nil) -> time
|
|
*
|
|
* Returns a <code>Time</code> object.
|
|
*
|
|
* It is initialized to the current system time if no argument.
|
|
* <b>Note:</b> The object created will be created using the
|
|
* resolution available on your system clock, and so may include
|
|
* fractional seconds.
|
|
*
|
|
* If one or more arguments specified, the time is initialized
|
|
* to the specified time.
|
|
* _sec_ may have fraction if it is a rational.
|
|
*
|
|
* _utc_offset_ is the offset from UTC.
|
|
* It is a string such as "+09:00" or a number of seconds such as 32400.
|
|
*
|
|
* a = Time.new #=> 2007-11-19 07:50:02 -0600
|
|
* b = Time.new #=> 2007-11-19 07:50:02 -0600
|
|
* a == b #=> false
|
|
* "%.6f" % a.to_f #=> "1195480202.282373"
|
|
* "%.6f" % b.to_f #=> "1195480202.283415"
|
|
*
|
|
* Time.new(2008,6,21, 13,30,0, "+09:00") #=> 2008-06-21 13:30:00 +0900
|
|
*
|
|
* # A trip for RubyConf 2007
|
|
* t1 = Time.new(2007,11,1,15,25,0, "+09:00") # JST (Narita)
|
|
* t2 = Time.new(2007,11,1,12, 5,0, "-05:00") # CDT (Minneapolis)
|
|
* t3 = Time.new(2007,11,1,13,25,0, "-05:00") # CDT (Minneapolis)
|
|
* t4 = Time.new(2007,11,1,16,53,0, "-04:00") # EDT (Charlotte)
|
|
* t5 = Time.new(2007,11,5, 9,24,0, "-05:00") # EST (Charlotte)
|
|
* t6 = Time.new(2007,11,5,11,21,0, "-05:00") # EST (Detroit)
|
|
* t7 = Time.new(2007,11,5,13,45,0, "-05:00") # EST (Detroit)
|
|
* t8 = Time.new(2007,11,6,17,10,0, "+09:00") # JST (Narita)
|
|
* p((t2-t1)/3600.0) #=> 10.666666666666666
|
|
* p((t4-t3)/3600.0) #=> 2.466666666666667
|
|
* p((t6-t5)/3600.0) #=> 1.95
|
|
* p((t8-t7)/3600.0) #=> 13.416666666666666
|
|
*
|
|
*/
|
|
|
|
static VALUE
|
|
time_init(int argc, VALUE *argv, VALUE time)
|
|
{
|
|
if (argc == 0)
|
|
return time_init_0(time);
|
|
else
|
|
return time_init_1(argc, argv, time);
|
|
}
|
|
|
|
static void
|
|
time_overflow_p(time_t *secp, long *nsecp)
|
|
{
|
|
time_t tmp, sec = *secp;
|
|
long nsec = *nsecp;
|
|
|
|
if (nsec >= 1000000000) { /* nsec positive overflow */
|
|
tmp = sec + nsec / 1000000000;
|
|
nsec %= 1000000000;
|
|
if (sec > 0 && tmp < 0) {
|
|
rb_raise(rb_eRangeError, "out of Time range");
|
|
}
|
|
sec = tmp;
|
|
}
|
|
if (nsec < 0) { /* nsec negative overflow */
|
|
tmp = sec + NDIV(nsec,1000000000); /* negative div */
|
|
nsec = NMOD(nsec,1000000000); /* negative mod */
|
|
if (sec < 0 && tmp > 0) {
|
|
rb_raise(rb_eRangeError, "out of Time range");
|
|
}
|
|
sec = tmp;
|
|
}
|
|
#ifndef NEGATIVE_TIME_T
|
|
if (sec < 0)
|
|
rb_raise(rb_eArgError, "time must be positive");
|
|
#endif
|
|
*secp = sec;
|
|
*nsecp = nsec;
|
|
}
|
|
|
|
static wideval_t
|
|
nsec2timew(time_t sec, long nsec)
|
|
{
|
|
struct timespec ts;
|
|
time_overflow_p(&sec, &nsec);
|
|
ts.tv_sec = sec;
|
|
ts.tv_nsec = nsec;
|
|
return timespec2timew(&ts);
|
|
}
|
|
|
|
static VALUE
|
|
time_new_timew(VALUE klass, wideval_t timew)
|
|
{
|
|
VALUE time = time_s_alloc(klass);
|
|
struct time_object *tobj;
|
|
|
|
GetTimeval(time, tobj);
|
|
tobj->timew = timew;
|
|
|
|
return time;
|
|
}
|
|
|
|
VALUE
|
|
rb_time_new(time_t sec, long usec)
|
|
{
|
|
wideval_t timew;
|
|
|
|
if (usec >= 1000000) {
|
|
long sec2 = usec / 1000000;
|
|
if (sec > TIMET_MAX - sec2) {
|
|
rb_raise(rb_eRangeError, "out of Time range");
|
|
}
|
|
usec -= sec2 * 1000000;
|
|
sec += sec2;
|
|
}
|
|
else if (usec <= 1000000) {
|
|
long sec2 = usec / 1000000;
|
|
if (sec < -TIMET_MAX - sec2) {
|
|
rb_raise(rb_eRangeError, "out of Time range");
|
|
}
|
|
usec -= sec2 * 1000000;
|
|
sec += sec2;
|
|
}
|
|
|
|
timew = nsec2timew(sec, usec * 1000);
|
|
return time_new_timew(rb_cTime, timew);
|
|
}
|
|
|
|
VALUE
|
|
rb_time_nano_new(time_t sec, long nsec)
|
|
{
|
|
return time_new_timew(rb_cTime, nsec2timew(sec, nsec));
|
|
}
|
|
|
|
VALUE
|
|
rb_time_num_new(VALUE timev, VALUE off)
|
|
{
|
|
VALUE time = time_new_timew(rb_cTime, rb_time_magnify(v2w(timev)));
|
|
|
|
if (!NIL_P(off)) {
|
|
off = utc_offset_arg(off);
|
|
validate_utc_offset(off);
|
|
time_set_utc_offset(time, off);
|
|
return time;
|
|
}
|
|
|
|
return time;
|
|
}
|
|
|
|
static struct timespec
|
|
time_timespec(VALUE num, int interval)
|
|
{
|
|
struct timespec t;
|
|
const char *tstr = interval ? "time interval" : "time";
|
|
VALUE i, f, ary;
|
|
|
|
#ifndef NEGATIVE_TIME_T
|
|
interval = 1;
|
|
#endif
|
|
|
|
switch (TYPE(num)) {
|
|
case T_FIXNUM:
|
|
t.tv_sec = NUM2TIMET(num);
|
|
if (interval && t.tv_sec < 0)
|
|
rb_raise(rb_eArgError, "%s must be positive", tstr);
|
|
t.tv_nsec = 0;
|
|
break;
|
|
|
|
case T_FLOAT:
|
|
if (interval && RFLOAT_VALUE(num) < 0.0)
|
|
rb_raise(rb_eArgError, "%s must be positive", tstr);
|
|
else {
|
|
double f, d;
|
|
|
|
d = modf(RFLOAT_VALUE(num), &f);
|
|
if (d >= 0) {
|
|
t.tv_nsec = (int)(d*1e9+0.5);
|
|
}
|
|
else if ((t.tv_nsec = (int)(-d*1e9+0.5)) > 0) {
|
|
t.tv_nsec = 1000000000 - t.tv_nsec;
|
|
f -= 1;
|
|
}
|
|
t.tv_sec = (time_t)f;
|
|
if (f != t.tv_sec) {
|
|
rb_raise(rb_eRangeError, "%f out of Time range", RFLOAT_VALUE(num));
|
|
}
|
|
}
|
|
break;
|
|
|
|
case T_BIGNUM:
|
|
t.tv_sec = NUM2TIMET(num);
|
|
if (interval && t.tv_sec < 0)
|
|
rb_raise(rb_eArgError, "%s must be positive", tstr);
|
|
t.tv_nsec = 0;
|
|
break;
|
|
|
|
default:
|
|
i = INT2FIX(1);
|
|
ary = rb_check_funcall(num, id_divmod, 1, &i);
|
|
if (ary != Qundef && !NIL_P(ary = rb_check_array_type(ary))) {
|
|
i = rb_ary_entry(ary, 0);
|
|
f = rb_ary_entry(ary, 1);
|
|
t.tv_sec = NUM2TIMET(i);
|
|
if (interval && t.tv_sec < 0)
|
|
rb_raise(rb_eArgError, "%s must be positive", tstr);
|
|
f = rb_funcall(f, id_mul, 1, INT2FIX(1000000000));
|
|
t.tv_nsec = NUM2LONG(f);
|
|
}
|
|
else {
|
|
rb_raise(rb_eTypeError, "can't convert %s into %s",
|
|
rb_obj_classname(num), tstr);
|
|
}
|
|
break;
|
|
}
|
|
return t;
|
|
}
|
|
|
|
static struct timeval
|
|
time_timeval(VALUE num, int interval)
|
|
{
|
|
struct timespec ts;
|
|
struct timeval tv;
|
|
|
|
ts = time_timespec(num, interval);
|
|
tv.tv_sec = (TYPEOF_TIMEVAL_TV_SEC)ts.tv_sec;
|
|
tv.tv_usec = (TYPEOF_TIMEVAL_TV_USEC)(ts.tv_nsec / 1000);
|
|
|
|
return tv;
|
|
}
|
|
|
|
struct timeval
|
|
rb_time_interval(VALUE num)
|
|
{
|
|
return time_timeval(num, TRUE);
|
|
}
|
|
|
|
struct timeval
|
|
rb_time_timeval(VALUE time)
|
|
{
|
|
struct time_object *tobj;
|
|
struct timeval t;
|
|
struct timespec ts;
|
|
|
|
if (IsTimeval(time)) {
|
|
GetTimeval(time, tobj);
|
|
ts = timew2timespec(tobj->timew);
|
|
t.tv_sec = (TYPEOF_TIMEVAL_TV_SEC)ts.tv_sec;
|
|
t.tv_usec = (TYPEOF_TIMEVAL_TV_USEC)(ts.tv_nsec / 1000);
|
|
return t;
|
|
}
|
|
return time_timeval(time, FALSE);
|
|
}
|
|
|
|
struct timespec
|
|
rb_time_timespec(VALUE time)
|
|
{
|
|
struct time_object *tobj;
|
|
struct timespec t;
|
|
|
|
if (IsTimeval(time)) {
|
|
GetTimeval(time, tobj);
|
|
t = timew2timespec(tobj->timew);
|
|
return t;
|
|
}
|
|
return time_timespec(time, FALSE);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* Time.now -> time
|
|
*
|
|
* Creates a new time object for the current time.
|
|
*
|
|
* Time.now #=> 2009-06-24 12:39:54 +0900
|
|
*/
|
|
|
|
static VALUE
|
|
time_s_now(VALUE klass)
|
|
{
|
|
return rb_class_new_instance(0, NULL, klass);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* Time.at(time) -> time
|
|
* Time.at(seconds_with_frac) -> time
|
|
* Time.at(seconds, microseconds_with_frac) -> time
|
|
*
|
|
* Creates a new time object with the value given by <i>time</i>,
|
|
* the given number of <i>seconds_with_frac</i>, or
|
|
* <i>seconds</i> and <i>microseconds_with_frac</i> from the Epoch.
|
|
* <i>seconds_with_frac</i> and <i>microseconds_with_frac</i>
|
|
* can be Integer, Float, Rational, or other Numeric.
|
|
* non-portable feature allows the offset to be negative on some systems.
|
|
*
|
|
* If a numeric argument is given, the result is in local time.
|
|
*
|
|
* Time.at(0) #=> 1969-12-31 18:00:00 -0600
|
|
* Time.at(Time.at(0)) #=> 1969-12-31 18:00:00 -0600
|
|
* Time.at(946702800) #=> 1999-12-31 23:00:00 -0600
|
|
* Time.at(-284061600) #=> 1960-12-31 00:00:00 -0600
|
|
* Time.at(946684800.2).usec #=> 200000
|
|
* Time.at(946684800, 123456.789).nsec #=> 123456789
|
|
*/
|
|
|
|
static VALUE
|
|
time_s_at(int argc, VALUE *argv, VALUE klass)
|
|
{
|
|
VALUE time, t;
|
|
wideval_t timew;
|
|
|
|
if (rb_scan_args(argc, argv, "11", &time, &t) == 2) {
|
|
time = num_exact(time);
|
|
t = num_exact(t);
|
|
timew = wadd(rb_time_magnify(v2w(time)), wmulquoll(v2w(t), TIME_SCALE, 1000000));
|
|
t = time_new_timew(klass, timew);
|
|
}
|
|
else if (IsTimeval(time)) {
|
|
struct time_object *tobj, *tobj2;
|
|
GetTimeval(time, tobj);
|
|
t = time_new_timew(klass, tobj->timew);
|
|
GetTimeval(t, tobj2);
|
|
TIME_COPY_GMT(tobj2, tobj);
|
|
}
|
|
else {
|
|
timew = rb_time_magnify(v2w(num_exact(time)));
|
|
t = time_new_timew(klass, timew);
|
|
}
|
|
|
|
return t;
|
|
}
|
|
|
|
static const char months[][4] = {
|
|
"jan", "feb", "mar", "apr", "may", "jun",
|
|
"jul", "aug", "sep", "oct", "nov", "dec",
|
|
};
|
|
|
|
static int
|
|
obj2int(VALUE obj)
|
|
{
|
|
if (RB_TYPE_P(obj, T_STRING)) {
|
|
obj = rb_str_to_inum(obj, 10, FALSE);
|
|
}
|
|
|
|
return NUM2INT(obj);
|
|
}
|
|
|
|
static VALUE
|
|
obj2vint(VALUE obj)
|
|
{
|
|
if (RB_TYPE_P(obj, T_STRING)) {
|
|
obj = rb_str_to_inum(obj, 10, FALSE);
|
|
}
|
|
else {
|
|
obj = rb_to_int(obj);
|
|
}
|
|
|
|
return obj;
|
|
}
|
|
|
|
static int
|
|
obj2subsecx(VALUE obj, VALUE *subsecx)
|
|
{
|
|
VALUE subsec;
|
|
|
|
if (RB_TYPE_P(obj, T_STRING)) {
|
|
obj = rb_str_to_inum(obj, 10, FALSE);
|
|
*subsecx = INT2FIX(0);
|
|
return NUM2INT(obj);
|
|
}
|
|
|
|
divmodv(num_exact(obj), INT2FIX(1), &obj, &subsec);
|
|
*subsecx = w2v(rb_time_magnify(v2w(subsec)));
|
|
return NUM2INT(obj);
|
|
}
|
|
|
|
static long
|
|
usec2subsecx(VALUE obj)
|
|
{
|
|
if (RB_TYPE_P(obj, T_STRING)) {
|
|
obj = rb_str_to_inum(obj, 10, FALSE);
|
|
}
|
|
|
|
return mulquo(num_exact(obj), INT2FIX(TIME_SCALE), INT2FIX(1000000));
|
|
}
|
|
|
|
static int
|
|
month_arg(VALUE arg)
|
|
{
|
|
int i, mon;
|
|
|
|
VALUE s = rb_check_string_type(arg);
|
|
if (!NIL_P(s)) {
|
|
mon = 0;
|
|
for (i=0; i<12; i++) {
|
|
if (RSTRING_LEN(s) == 3 &&
|
|
STRCASECMP(months[i], RSTRING_PTR(s)) == 0) {
|
|
mon = i+1;
|
|
break;
|
|
}
|
|
}
|
|
if (mon == 0) {
|
|
char c = RSTRING_PTR(s)[0];
|
|
|
|
if ('0' <= c && c <= '9') {
|
|
mon = obj2int(s);
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
mon = obj2int(arg);
|
|
}
|
|
return mon;
|
|
}
|
|
|
|
static void
|
|
validate_utc_offset(VALUE utc_offset)
|
|
{
|
|
if (le(utc_offset, INT2FIX(-86400)) || ge(utc_offset, INT2FIX(86400)))
|
|
rb_raise(rb_eArgError, "utc_offset out of range");
|
|
}
|
|
|
|
static void
|
|
validate_vtm(struct vtm *vtm)
|
|
{
|
|
if ( vtm->mon < 1 || vtm->mon > 12
|
|
|| vtm->mday < 1 || vtm->mday > 31
|
|
|| vtm->hour < 0 || vtm->hour > 24
|
|
|| (vtm->hour == 24 && (vtm->min > 0 || vtm->sec > 0))
|
|
|| vtm->min < 0 || vtm->min > 59
|
|
|| vtm->sec < 0 || vtm->sec > 60
|
|
|| lt(vtm->subsecx, INT2FIX(0)) || ge(vtm->subsecx, INT2FIX(TIME_SCALE))
|
|
|| (!NIL_P(vtm->utc_offset) && (validate_utc_offset(vtm->utc_offset), 0)))
|
|
rb_raise(rb_eArgError, "argument out of range");
|
|
}
|
|
|
|
static void
|
|
time_arg(int argc, VALUE *argv, struct vtm *vtm)
|
|
{
|
|
VALUE v[8];
|
|
|
|
vtm->year = INT2FIX(0);
|
|
vtm->mon = 0;
|
|
vtm->mday = 0;
|
|
vtm->hour = 0;
|
|
vtm->min = 0;
|
|
vtm->sec = 0;
|
|
vtm->subsecx = INT2FIX(0);
|
|
vtm->utc_offset = Qnil;
|
|
vtm->wday = 0;
|
|
vtm->yday = 0;
|
|
vtm->isdst = 0;
|
|
vtm->zone = "";
|
|
|
|
if (argc == 10) {
|
|
v[0] = argv[5];
|
|
v[1] = argv[4];
|
|
v[2] = argv[3];
|
|
v[3] = argv[2];
|
|
v[4] = argv[1];
|
|
v[5] = argv[0];
|
|
v[6] = Qnil;
|
|
vtm->isdst = RTEST(argv[8]) ? 1 : 0;
|
|
}
|
|
else {
|
|
rb_scan_args(argc, argv, "17", &v[0],&v[1],&v[2],&v[3],&v[4],&v[5],&v[6],&v[7]);
|
|
/* v[6] may be usec or zone (parsedate) */
|
|
/* v[7] is wday (parsedate; ignored) */
|
|
vtm->wday = -1;
|
|
vtm->isdst = -1;
|
|
}
|
|
|
|
vtm->year = obj2vint(v[0]);
|
|
|
|
if (NIL_P(v[1])) {
|
|
vtm->mon = 1;
|
|
}
|
|
else {
|
|
vtm->mon = month_arg(v[1]);
|
|
}
|
|
|
|
if (NIL_P(v[2])) {
|
|
vtm->mday = 1;
|
|
}
|
|
else {
|
|
vtm->mday = obj2int(v[2]);
|
|
}
|
|
|
|
vtm->hour = NIL_P(v[3])?0:obj2int(v[3]);
|
|
|
|
vtm->min = NIL_P(v[4])?0:obj2int(v[4]);
|
|
|
|
if (!NIL_P(v[6]) && argc == 7) {
|
|
vtm->sec = NIL_P(v[5])?0:obj2int(v[5]);
|
|
vtm->subsecx = usec2subsecx(v[6]);
|
|
}
|
|
else {
|
|
/* when argc == 8, v[6] is timezone, but ignored */
|
|
vtm->sec = NIL_P(v[5])?0:obj2subsecx(v[5], &vtm->subsecx);
|
|
}
|
|
|
|
validate_vtm(vtm);
|
|
}
|
|
|
|
static int
|
|
leap_year_p(long y)
|
|
{
|
|
return ((y % 4 == 0) && (y % 100 != 0)) || (y % 400 == 0);
|
|
}
|
|
|
|
static time_t
|
|
timegm_noleapsecond(struct tm *tm)
|
|
{
|
|
long tm_year = tm->tm_year;
|
|
int tm_yday = tm->tm_mday;
|
|
if (leap_year_p(tm_year + 1900))
|
|
tm_yday += leap_year_yday_offset[tm->tm_mon];
|
|
else
|
|
tm_yday += common_year_yday_offset[tm->tm_mon];
|
|
|
|
/*
|
|
* `Seconds Since the Epoch' in SUSv3:
|
|
* tm_sec + tm_min*60 + tm_hour*3600 + tm_yday*86400 +
|
|
* (tm_year-70)*31536000 + ((tm_year-69)/4)*86400 -
|
|
* ((tm_year-1)/100)*86400 + ((tm_year+299)/400)*86400
|
|
*/
|
|
return tm->tm_sec + tm->tm_min*60 + tm->tm_hour*3600 +
|
|
(time_t)(tm_yday +
|
|
(tm_year-70)*365 +
|
|
DIV(tm_year-69,4) -
|
|
DIV(tm_year-1,100) +
|
|
DIV(tm_year+299,400))*86400;
|
|
}
|
|
|
|
#if 0
|
|
#define DEBUG_FIND_TIME_NUMGUESS
|
|
#define DEBUG_GUESSRANGE
|
|
#endif
|
|
|
|
#ifdef DEBUG_GUESSRANGE
|
|
#define DEBUG_REPORT_GUESSRANGE fprintf(stderr, "find time guess range: %ld - %ld : %lu\n", guess_lo, guess_hi, (unsigned_time_t)(guess_hi-guess_lo))
|
|
#else
|
|
#define DEBUG_REPORT_GUESSRANGE
|
|
#endif
|
|
|
|
#ifdef DEBUG_FIND_TIME_NUMGUESS
|
|
#define DEBUG_FIND_TIME_NUMGUESS_INC find_time_numguess++,
|
|
static unsigned long long find_time_numguess;
|
|
|
|
static VALUE find_time_numguess_getter(void)
|
|
{
|
|
return ULL2NUM(find_time_numguess);
|
|
}
|
|
#else
|
|
#define DEBUG_FIND_TIME_NUMGUESS_INC
|
|
#endif
|
|
|
|
static const char *
|
|
find_time_t(struct tm *tptr, int utc_p, time_t *tp)
|
|
{
|
|
time_t guess, guess0, guess_lo, guess_hi;
|
|
struct tm *tm, tm0, tm_lo, tm_hi;
|
|
int d;
|
|
int find_dst;
|
|
struct tm result;
|
|
int status;
|
|
int tptr_tm_yday;
|
|
|
|
#define GUESS(p) (DEBUG_FIND_TIME_NUMGUESS_INC (utc_p ? gmtime_with_leapsecond((p), &result) : LOCALTIME((p), result)))
|
|
|
|
guess_lo = TIMET_MIN;
|
|
guess_hi = TIMET_MAX;
|
|
|
|
find_dst = 0 < tptr->tm_isdst;
|
|
|
|
#if defined(HAVE_MKTIME)
|
|
tm0 = *tptr;
|
|
if (!utc_p && (guess = mktime(&tm0)) != -1) {
|
|
tm = GUESS(&guess);
|
|
if (tm && tmcmp(tptr, tm) == 0) {
|
|
goto found;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
tm0 = *tptr;
|
|
if (tm0.tm_mon < 0) {
|
|
tm0.tm_mon = 0;
|
|
tm0.tm_mday = 1;
|
|
tm0.tm_hour = 0;
|
|
tm0.tm_min = 0;
|
|
tm0.tm_sec = 0;
|
|
}
|
|
else if (11 < tm0.tm_mon) {
|
|
tm0.tm_mon = 11;
|
|
tm0.tm_mday = 31;
|
|
tm0.tm_hour = 23;
|
|
tm0.tm_min = 59;
|
|
tm0.tm_sec = 60;
|
|
}
|
|
else if (tm0.tm_mday < 1) {
|
|
tm0.tm_mday = 1;
|
|
tm0.tm_hour = 0;
|
|
tm0.tm_min = 0;
|
|
tm0.tm_sec = 0;
|
|
}
|
|
else if ((d = (leap_year_p(1900 + tm0.tm_year) ?
|
|
leap_year_days_in_month :
|
|
common_year_days_in_month)[tm0.tm_mon]) < tm0.tm_mday) {
|
|
tm0.tm_mday = d;
|
|
tm0.tm_hour = 23;
|
|
tm0.tm_min = 59;
|
|
tm0.tm_sec = 60;
|
|
}
|
|
else if (tm0.tm_hour < 0) {
|
|
tm0.tm_hour = 0;
|
|
tm0.tm_min = 0;
|
|
tm0.tm_sec = 0;
|
|
}
|
|
else if (23 < tm0.tm_hour) {
|
|
tm0.tm_hour = 23;
|
|
tm0.tm_min = 59;
|
|
tm0.tm_sec = 60;
|
|
}
|
|
else if (tm0.tm_min < 0) {
|
|
tm0.tm_min = 0;
|
|
tm0.tm_sec = 0;
|
|
}
|
|
else if (59 < tm0.tm_min) {
|
|
tm0.tm_min = 59;
|
|
tm0.tm_sec = 60;
|
|
}
|
|
else if (tm0.tm_sec < 0) {
|
|
tm0.tm_sec = 0;
|
|
}
|
|
else if (60 < tm0.tm_sec) {
|
|
tm0.tm_sec = 60;
|
|
}
|
|
|
|
DEBUG_REPORT_GUESSRANGE;
|
|
guess0 = guess = timegm_noleapsecond(&tm0);
|
|
tm = GUESS(&guess);
|
|
if (tm) {
|
|
d = tmcmp(tptr, tm);
|
|
if (d == 0) { goto found; }
|
|
if (d < 0) {
|
|
guess_hi = guess;
|
|
guess -= 24 * 60 * 60;
|
|
}
|
|
else {
|
|
guess_lo = guess;
|
|
guess += 24 * 60 * 60;
|
|
}
|
|
DEBUG_REPORT_GUESSRANGE;
|
|
if (guess_lo < guess && guess < guess_hi && (tm = GUESS(&guess)) != NULL) {
|
|
d = tmcmp(tptr, tm);
|
|
if (d == 0) { goto found; }
|
|
if (d < 0)
|
|
guess_hi = guess;
|
|
else
|
|
guess_lo = guess;
|
|
DEBUG_REPORT_GUESSRANGE;
|
|
}
|
|
}
|
|
|
|
tm = GUESS(&guess_lo);
|
|
if (!tm) goto error;
|
|
d = tmcmp(tptr, tm);
|
|
if (d < 0) goto out_of_range;
|
|
if (d == 0) { guess = guess_lo; goto found; }
|
|
tm_lo = *tm;
|
|
|
|
tm = GUESS(&guess_hi);
|
|
if (!tm) goto error;
|
|
d = tmcmp(tptr, tm);
|
|
if (d > 0) goto out_of_range;
|
|
if (d == 0) { guess = guess_hi; goto found; }
|
|
tm_hi = *tm;
|
|
|
|
DEBUG_REPORT_GUESSRANGE;
|
|
|
|
status = 1;
|
|
|
|
while (guess_lo + 1 < guess_hi) {
|
|
if (status == 0) {
|
|
binsearch:
|
|
guess = guess_lo / 2 + guess_hi / 2;
|
|
if (guess <= guess_lo)
|
|
guess = guess_lo + 1;
|
|
else if (guess >= guess_hi)
|
|
guess = guess_hi - 1;
|
|
status = 1;
|
|
}
|
|
else {
|
|
if (status == 1) {
|
|
time_t guess0_hi = timegm_noleapsecond(&tm_hi);
|
|
guess = guess_hi - (guess0_hi - guess0);
|
|
if (guess == guess_hi) /* hh:mm:60 tends to cause this condition. */
|
|
guess--;
|
|
status = 2;
|
|
}
|
|
else if (status == 2) {
|
|
time_t guess0_lo = timegm_noleapsecond(&tm_lo);
|
|
guess = guess_lo + (guess0 - guess0_lo);
|
|
if (guess == guess_lo)
|
|
guess++;
|
|
status = 0;
|
|
}
|
|
if (guess <= guess_lo || guess_hi <= guess) {
|
|
/* Precious guess is invalid. try binary search. */
|
|
#ifdef DEBUG_GUESSRANGE
|
|
if (guess <= guess_lo) fprintf(stderr, "too small guess: %ld <= %ld\n", guess, guess_lo);
|
|
if (guess_hi <= guess) fprintf(stderr, "too big guess: %ld <= %ld\n", guess_hi, guess);
|
|
#endif
|
|
goto binsearch;
|
|
}
|
|
}
|
|
|
|
tm = GUESS(&guess);
|
|
if (!tm) goto error;
|
|
|
|
d = tmcmp(tptr, tm);
|
|
|
|
if (d < 0) {
|
|
guess_hi = guess;
|
|
tm_hi = *tm;
|
|
DEBUG_REPORT_GUESSRANGE;
|
|
}
|
|
else if (d > 0) {
|
|
guess_lo = guess;
|
|
tm_lo = *tm;
|
|
DEBUG_REPORT_GUESSRANGE;
|
|
}
|
|
else {
|
|
found:
|
|
if (!utc_p) {
|
|
/* If localtime is nonmonotonic, another result may exist. */
|
|
time_t guess2;
|
|
if (find_dst) {
|
|
guess2 = guess - 2 * 60 * 60;
|
|
tm = LOCALTIME(&guess2, result);
|
|
if (tm) {
|
|
if (tptr->tm_hour != (tm->tm_hour + 2) % 24 ||
|
|
tptr->tm_min != tm->tm_min ||
|
|
tptr->tm_sec != tm->tm_sec) {
|
|
guess2 -= (tm->tm_hour - tptr->tm_hour) * 60 * 60 +
|
|
(tm->tm_min - tptr->tm_min) * 60 +
|
|
(tm->tm_sec - tptr->tm_sec);
|
|
if (tptr->tm_mday != tm->tm_mday)
|
|
guess2 += 24 * 60 * 60;
|
|
if (guess != guess2) {
|
|
tm = LOCALTIME(&guess2, result);
|
|
if (tm && tmcmp(tptr, tm) == 0) {
|
|
if (guess < guess2)
|
|
*tp = guess;
|
|
else
|
|
*tp = guess2;
|
|
return NULL;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
guess2 = guess + 2 * 60 * 60;
|
|
tm = LOCALTIME(&guess2, result);
|
|
if (tm) {
|
|
if ((tptr->tm_hour + 2) % 24 != tm->tm_hour ||
|
|
tptr->tm_min != tm->tm_min ||
|
|
tptr->tm_sec != tm->tm_sec) {
|
|
guess2 -= (tm->tm_hour - tptr->tm_hour) * 60 * 60 +
|
|
(tm->tm_min - tptr->tm_min) * 60 +
|
|
(tm->tm_sec - tptr->tm_sec);
|
|
if (tptr->tm_mday != tm->tm_mday)
|
|
guess2 -= 24 * 60 * 60;
|
|
if (guess != guess2) {
|
|
tm = LOCALTIME(&guess2, result);
|
|
if (tm && tmcmp(tptr, tm) == 0) {
|
|
if (guess < guess2)
|
|
*tp = guess2;
|
|
else
|
|
*tp = guess;
|
|
return NULL;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
*tp = guess;
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
/* Given argument has no corresponding time_t. Let's outerpolation. */
|
|
/*
|
|
* `Seconds Since the Epoch' in SUSv3:
|
|
* tm_sec + tm_min*60 + tm_hour*3600 + tm_yday*86400 +
|
|
* (tm_year-70)*31536000 + ((tm_year-69)/4)*86400 -
|
|
* ((tm_year-1)/100)*86400 + ((tm_year+299)/400)*86400
|
|
*/
|
|
|
|
tptr_tm_yday = calc_tm_yday(tptr->tm_year, tptr->tm_mon, tptr->tm_mday);
|
|
|
|
*tp = guess_lo +
|
|
((tptr->tm_year - tm_lo.tm_year) * 365 +
|
|
((tptr->tm_year-69)/4) -
|
|
((tptr->tm_year-1)/100) +
|
|
((tptr->tm_year+299)/400) -
|
|
((tm_lo.tm_year-69)/4) +
|
|
((tm_lo.tm_year-1)/100) -
|
|
((tm_lo.tm_year+299)/400) +
|
|
tptr_tm_yday -
|
|
tm_lo.tm_yday) * 86400 +
|
|
(tptr->tm_hour - tm_lo.tm_hour) * 3600 +
|
|
(tptr->tm_min - tm_lo.tm_min) * 60 +
|
|
(tptr->tm_sec - (tm_lo.tm_sec == 60 ? 59 : tm_lo.tm_sec));
|
|
|
|
return NULL;
|
|
|
|
out_of_range:
|
|
return "time out of range";
|
|
|
|
error:
|
|
return "gmtime/localtime error";
|
|
}
|
|
|
|
static int
|
|
vtmcmp(struct vtm *a, struct vtm *b)
|
|
{
|
|
if (ne(a->year, b->year))
|
|
return lt(a->year, b->year) ? -1 : 1;
|
|
else if (a->mon != b->mon)
|
|
return a->mon < b->mon ? -1 : 1;
|
|
else if (a->mday != b->mday)
|
|
return a->mday < b->mday ? -1 : 1;
|
|
else if (a->hour != b->hour)
|
|
return a->hour < b->hour ? -1 : 1;
|
|
else if (a->min != b->min)
|
|
return a->min < b->min ? -1 : 1;
|
|
else if (a->sec != b->sec)
|
|
return a->sec < b->sec ? -1 : 1;
|
|
else if (ne(a->subsecx, b->subsecx))
|
|
return lt(a->subsecx, b->subsecx) ? -1 : 1;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
tmcmp(struct tm *a, struct tm *b)
|
|
{
|
|
if (a->tm_year != b->tm_year)
|
|
return a->tm_year < b->tm_year ? -1 : 1;
|
|
else if (a->tm_mon != b->tm_mon)
|
|
return a->tm_mon < b->tm_mon ? -1 : 1;
|
|
else if (a->tm_mday != b->tm_mday)
|
|
return a->tm_mday < b->tm_mday ? -1 : 1;
|
|
else if (a->tm_hour != b->tm_hour)
|
|
return a->tm_hour < b->tm_hour ? -1 : 1;
|
|
else if (a->tm_min != b->tm_min)
|
|
return a->tm_min < b->tm_min ? -1 : 1;
|
|
else if (a->tm_sec != b->tm_sec)
|
|
return a->tm_sec < b->tm_sec ? -1 : 1;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
static VALUE
|
|
time_utc_or_local(int argc, VALUE *argv, int utc_p, VALUE klass)
|
|
{
|
|
struct vtm vtm;
|
|
VALUE time;
|
|
|
|
time_arg(argc, argv, &vtm);
|
|
if (utc_p)
|
|
time = time_new_timew(klass, timegmw(&vtm));
|
|
else
|
|
time = time_new_timew(klass, timelocalw(&vtm));
|
|
if (utc_p) return time_gmtime(time);
|
|
return time_localtime(time);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* Time.utc(year) -> time
|
|
* Time.utc(year, month) -> time
|
|
* Time.utc(year, month, day) -> time
|
|
* Time.utc(year, month, day, hour) -> time
|
|
* Time.utc(year, month, day, hour, min) -> time
|
|
* Time.utc(year, month, day, hour, min, sec_with_frac) -> time
|
|
* Time.utc(year, month, day, hour, min, sec, usec_with_frac) -> time
|
|
* Time.utc(sec, min, hour, day, month, year, wday, yday, isdst, tz) -> time
|
|
* Time.gm(year) -> time
|
|
* Time.gm(year, month) -> time
|
|
* Time.gm(year, month, day) -> time
|
|
* Time.gm(year, month, day, hour) -> time
|
|
* Time.gm(year, month, day, hour, min) -> time
|
|
* Time.gm(year, month, day, hour, min, sec_with_frac) -> time
|
|
* Time.gm(year, month, day, hour, min, sec, usec_with_frac) -> time
|
|
* Time.gm(sec, min, hour, day, month, year, wday, yday, isdst, tz) -> time
|
|
*
|
|
* Creates a time based on given values, interpreted as UTC (GMT). The
|
|
* year must be specified. Other values default to the minimum value
|
|
* for that field (and may be <code>nil</code> or omitted). Months may
|
|
* be specified by numbers from 1 to 12, or by the three-letter English
|
|
* month names. Hours are specified on a 24-hour clock (0..23). Raises
|
|
* an <code>ArgumentError</code> if any values are out of range. Will
|
|
* also accept ten arguments in the order output by
|
|
* <code>Time#to_a</code>.
|
|
* <i>sec_with_frac</i> and <i>usec_with_frac</i> can have a fractional part.
|
|
*
|
|
* Time.utc(2000,"jan",1,20,15,1) #=> 2000-01-01 20:15:01 UTC
|
|
* Time.gm(2000,"jan",1,20,15,1) #=> 2000-01-01 20:15:01 UTC
|
|
*/
|
|
static VALUE
|
|
time_s_mkutc(int argc, VALUE *argv, VALUE klass)
|
|
{
|
|
return time_utc_or_local(argc, argv, TRUE, klass);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* Time.local(year) -> time
|
|
* Time.local(year, month) -> time
|
|
* Time.local(year, month, day) -> time
|
|
* Time.local(year, month, day, hour) -> time
|
|
* Time.local(year, month, day, hour, min) -> time
|
|
* Time.local(year, month, day, hour, min, sec_with_frac) -> time
|
|
* Time.local(year, month, day, hour, min, sec, usec_with_frac) -> time
|
|
* Time.local(sec, min, hour, day, month, year, wday, yday, isdst, tz) -> time
|
|
* Time.mktime(year) -> time
|
|
* Time.mktime(year, month) -> time
|
|
* Time.mktime(year, month, day) -> time
|
|
* Time.mktime(year, month, day, hour) -> time
|
|
* Time.mktime(year, month, day, hour, min) -> time
|
|
* Time.mktime(year, month, day, hour, min, sec_with_frac) -> time
|
|
* Time.mktime(year, month, day, hour, min, sec, usec_with_frac) -> time
|
|
* Time.mktime(sec, min, hour, day, month, year, wday, yday, isdst, tz) -> time
|
|
*
|
|
* Same as <code>Time::gm</code>, but interprets the values in the
|
|
* local time zone.
|
|
*
|
|
* Time.local(2000,"jan",1,20,15,1) #=> 2000-01-01 20:15:01 -0600
|
|
*/
|
|
|
|
static VALUE
|
|
time_s_mktime(int argc, VALUE *argv, VALUE klass)
|
|
{
|
|
return time_utc_or_local(argc, argv, FALSE, klass);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* time.to_i -> int
|
|
* time.tv_sec -> int
|
|
*
|
|
* Returns the value of <i>time</i> as an integer number of seconds
|
|
* since the Epoch.
|
|
*
|
|
* t = Time.now
|
|
* "%10.5f" % t.to_f #=> "1270968656.89607"
|
|
* t.to_i #=> 1270968656
|
|
*/
|
|
|
|
static VALUE
|
|
time_to_i(VALUE time)
|
|
{
|
|
struct time_object *tobj;
|
|
|
|
GetTimeval(time, tobj);
|
|
return w2v(wdiv(tobj->timew, WINT2FIXWV(TIME_SCALE)));
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* time.to_f -> float
|
|
*
|
|
* Returns the value of <i>time</i> as a floating point number of
|
|
* seconds since the Epoch.
|
|
*
|
|
* t = Time.now
|
|
* "%10.5f" % t.to_f #=> "1270968744.77658"
|
|
* t.to_i #=> 1270968744
|
|
*
|
|
* Note that IEEE 754 double is not accurate enough to represent
|
|
* number of nanoseconds from the Epoch.
|
|
*/
|
|
|
|
static VALUE
|
|
time_to_f(VALUE time)
|
|
{
|
|
struct time_object *tobj;
|
|
|
|
GetTimeval(time, tobj);
|
|
return rb_Float(rb_time_unmagnify_to_float(tobj->timew));
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* time.to_r -> a_rational
|
|
*
|
|
* Returns the value of <i>time</i> as a rational number of seconds
|
|
* since the Epoch.
|
|
*
|
|
* t = Time.now
|
|
* p t.to_r #=> (1270968792716287611/1000000000)
|
|
*
|
|
* This methods is intended to be used to get an accurate value
|
|
* representing nanoseconds from the Epoch. You can use this
|
|
* to convert time to another Epoch.
|
|
*/
|
|
|
|
static VALUE
|
|
time_to_r(VALUE time)
|
|
{
|
|
struct time_object *tobj;
|
|
VALUE v;
|
|
|
|
GetTimeval(time, tobj);
|
|
v = w2v(rb_time_unmagnify(tobj->timew));
|
|
if (!RB_TYPE_P(v, T_RATIONAL)) {
|
|
v = rb_Rational1(v);
|
|
}
|
|
return v;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* time.usec -> int
|
|
* time.tv_usec -> int
|
|
*
|
|
* Returns just the number of microseconds for <i>time</i>.
|
|
*
|
|
* t = Time.now #=> 2007-11-19 08:03:26 -0600
|
|
* "%10.6f" % t.to_f #=> "1195481006.775195"
|
|
* t.usec #=> 775195
|
|
*/
|
|
|
|
static VALUE
|
|
time_usec(VALUE time)
|
|
{
|
|
struct time_object *tobj;
|
|
wideval_t w, q, r;
|
|
|
|
GetTimeval(time, tobj);
|
|
|
|
w = wmod(tobj->timew, WINT2WV(TIME_SCALE));
|
|
wmuldivmod(w, WINT2FIXWV(1000000), WINT2FIXWV(TIME_SCALE), &q, &r);
|
|
return rb_to_int(w2v(q));
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* time.nsec -> int
|
|
* time.tv_nsec -> int
|
|
*
|
|
* Returns just the number of nanoseconds for <i>time</i>.
|
|
*
|
|
* t = Time.now #=> 2007-11-17 15:18:03 +0900
|
|
* "%10.9f" % t.to_f #=> "1195280283.536151409"
|
|
* t.nsec #=> 536151406
|
|
*
|
|
* The lowest digit of to_f and nsec is different because
|
|
* IEEE 754 double is not accurate enough to represent
|
|
* nanoseconds from the Epoch.
|
|
* The accurate value is returned by nsec.
|
|
*/
|
|
|
|
static VALUE
|
|
time_nsec(VALUE time)
|
|
{
|
|
struct time_object *tobj;
|
|
|
|
GetTimeval(time, tobj);
|
|
return rb_to_int(w2v(wmulquoll(wmod(tobj->timew, WINT2WV(TIME_SCALE)), 1000000000, TIME_SCALE)));
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* time.subsec -> number
|
|
*
|
|
* Returns just the fraction for <i>time</i>.
|
|
*
|
|
* The result is possibly rational.
|
|
*
|
|
* t = Time.now #=> 2009-03-26 22:33:12 +0900
|
|
* "%10.9f" % t.to_f #=> "1238074392.940563917"
|
|
* t.subsec #=> (94056401/100000000)
|
|
*
|
|
* The lowest digit of to_f and subsec is different because
|
|
* IEEE 754 double is not accurate enough to represent
|
|
* the rational.
|
|
* The accurate value is returned by subsec.
|
|
*/
|
|
|
|
static VALUE
|
|
time_subsec(VALUE time)
|
|
{
|
|
struct time_object *tobj;
|
|
|
|
GetTimeval(time, tobj);
|
|
return quo(w2v(wmod(tobj->timew, WINT2FIXWV(TIME_SCALE))), INT2FIX(TIME_SCALE));
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* time <=> other_time -> -1, 0, +1 or nil
|
|
*
|
|
* Comparison---Compares <i>time</i> with <i>other_time</i>.
|
|
*
|
|
* t = Time.now #=> 2007-11-19 08:12:12 -0600
|
|
* t2 = t + 2592000 #=> 2007-12-19 08:12:12 -0600
|
|
* t <=> t2 #=> -1
|
|
* t2 <=> t #=> 1
|
|
*
|
|
* t = Time.now #=> 2007-11-19 08:13:38 -0600
|
|
* t2 = t + 0.1 #=> 2007-11-19 08:13:38 -0600
|
|
* t.nsec #=> 98222999
|
|
* t2.nsec #=> 198222999
|
|
* t <=> t2 #=> -1
|
|
* t2 <=> t #=> 1
|
|
* t <=> t #=> 0
|
|
*/
|
|
|
|
static VALUE
|
|
time_cmp(VALUE time1, VALUE time2)
|
|
{
|
|
struct time_object *tobj1, *tobj2;
|
|
int n;
|
|
|
|
GetTimeval(time1, tobj1);
|
|
if (IsTimeval(time2)) {
|
|
GetTimeval(time2, tobj2);
|
|
n = wcmp(tobj1->timew, tobj2->timew);
|
|
}
|
|
else {
|
|
VALUE tmp;
|
|
|
|
tmp = rb_funcall(time2, rb_intern("<=>"), 1, time1);
|
|
if (NIL_P(tmp)) return Qnil;
|
|
|
|
n = -rb_cmpint(tmp, time1, time2);
|
|
}
|
|
if (n == 0) return INT2FIX(0);
|
|
if (n > 0) return INT2FIX(1);
|
|
return INT2FIX(-1);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* time.eql?(other_time)
|
|
*
|
|
* Return <code>true</code> if <i>time</i> and <i>other_time</i> are
|
|
* both <code>Time</code> objects with the same seconds and fractional
|
|
* seconds.
|
|
*/
|
|
|
|
static VALUE
|
|
time_eql(VALUE time1, VALUE time2)
|
|
{
|
|
struct time_object *tobj1, *tobj2;
|
|
|
|
GetTimeval(time1, tobj1);
|
|
if (IsTimeval(time2)) {
|
|
GetTimeval(time2, tobj2);
|
|
return rb_equal(w2v(tobj1->timew), w2v(tobj2->timew));
|
|
}
|
|
return Qfalse;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* time.utc? -> true or false
|
|
* time.gmt? -> true or false
|
|
*
|
|
* Returns <code>true</code> if <i>time</i> represents a time in UTC
|
|
* (GMT).
|
|
*
|
|
* t = Time.now #=> 2007-11-19 08:15:23 -0600
|
|
* t.utc? #=> false
|
|
* t = Time.gm(2000,"jan",1,20,15,1) #=> 2000-01-01 20:15:01 UTC
|
|
* t.utc? #=> true
|
|
*
|
|
* t = Time.now #=> 2007-11-19 08:16:03 -0600
|
|
* t.gmt? #=> false
|
|
* t = Time.gm(2000,1,1,20,15,1) #=> 2000-01-01 20:15:01 UTC
|
|
* t.gmt? #=> true
|
|
*/
|
|
|
|
static VALUE
|
|
time_utc_p(VALUE time)
|
|
{
|
|
struct time_object *tobj;
|
|
|
|
GetTimeval(time, tobj);
|
|
if (TIME_UTC_P(tobj)) return Qtrue;
|
|
return Qfalse;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* time.hash -> fixnum
|
|
*
|
|
* Return a hash code for this time object.
|
|
*/
|
|
|
|
static VALUE
|
|
time_hash(VALUE time)
|
|
{
|
|
struct time_object *tobj;
|
|
|
|
GetTimeval(time, tobj);
|
|
return rb_hash(w2v(tobj->timew));
|
|
}
|
|
|
|
/* :nodoc: */
|
|
static VALUE
|
|
time_init_copy(VALUE copy, VALUE time)
|
|
{
|
|
struct time_object *tobj, *tcopy;
|
|
|
|
if (!OBJ_INIT_COPY(copy, time)) return copy;
|
|
GetTimeval(time, tobj);
|
|
GetTimeval(copy, tcopy);
|
|
MEMCPY(tcopy, tobj, struct time_object, 1);
|
|
|
|
return copy;
|
|
}
|
|
|
|
static VALUE
|
|
time_dup(VALUE time)
|
|
{
|
|
VALUE dup = time_s_alloc(rb_obj_class(time));
|
|
time_init_copy(dup, time);
|
|
return dup;
|
|
}
|
|
|
|
static VALUE
|
|
time_localtime(VALUE time)
|
|
{
|
|
struct time_object *tobj;
|
|
struct vtm vtm;
|
|
|
|
GetTimeval(time, tobj);
|
|
if (TIME_LOCALTIME_P(tobj)) {
|
|
if (tobj->tm_got)
|
|
return time;
|
|
}
|
|
else {
|
|
time_modify(time);
|
|
}
|
|
|
|
if (!localtimew(tobj->timew, &vtm))
|
|
rb_raise(rb_eArgError, "localtime error");
|
|
tobj->vtm = vtm;
|
|
|
|
tobj->tm_got = 1;
|
|
TIME_SET_LOCALTIME(tobj);
|
|
return time;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* time.localtime -> time
|
|
* time.localtime(utc_offset) -> time
|
|
*
|
|
* Converts <i>time</i> to local time (using the local time zone in
|
|
* effect for this process) modifying the receiver.
|
|
*
|
|
* If _utc_offset_ is given, it is used instead of the local time.
|
|
*
|
|
* t = Time.utc(2000, "jan", 1, 20, 15, 1) #=> 2000-01-01 20:15:01 UTC
|
|
* t.utc? #=> true
|
|
*
|
|
* t.localtime #=> 2000-01-01 14:15:01 -0600
|
|
* t.utc? #=> false
|
|
*
|
|
* t.localtime("+09:00") #=> 2000-01-02 05:15:01 +0900
|
|
* t.utc? #=> false
|
|
*/
|
|
|
|
static VALUE
|
|
time_localtime_m(int argc, VALUE *argv, VALUE time)
|
|
{
|
|
VALUE off;
|
|
rb_scan_args(argc, argv, "01", &off);
|
|
|
|
if (!NIL_P(off)) {
|
|
off = utc_offset_arg(off);
|
|
validate_utc_offset(off);
|
|
|
|
time_set_utc_offset(time, off);
|
|
return time_fixoff(time);
|
|
}
|
|
|
|
return time_localtime(time);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* time.gmtime -> time
|
|
* time.utc -> time
|
|
*
|
|
* Converts <i>time</i> to UTC (GMT), modifying the receiver.
|
|
*
|
|
* t = Time.now #=> 2007-11-19 08:18:31 -0600
|
|
* t.gmt? #=> false
|
|
* t.gmtime #=> 2007-11-19 14:18:31 UTC
|
|
* t.gmt? #=> true
|
|
*
|
|
* t = Time.now #=> 2007-11-19 08:18:51 -0600
|
|
* t.utc? #=> false
|
|
* t.utc #=> 2007-11-19 14:18:51 UTC
|
|
* t.utc? #=> true
|
|
*/
|
|
|
|
static VALUE
|
|
time_gmtime(VALUE time)
|
|
{
|
|
struct time_object *tobj;
|
|
struct vtm vtm;
|
|
|
|
GetTimeval(time, tobj);
|
|
if (TIME_UTC_P(tobj)) {
|
|
if (tobj->tm_got)
|
|
return time;
|
|
}
|
|
else {
|
|
time_modify(time);
|
|
}
|
|
|
|
if (!gmtimew(tobj->timew, &vtm))
|
|
rb_raise(rb_eArgError, "gmtime error");
|
|
tobj->vtm = vtm;
|
|
|
|
tobj->tm_got = 1;
|
|
TIME_SET_UTC(tobj);
|
|
return time;
|
|
}
|
|
|
|
static VALUE
|
|
time_fixoff(VALUE time)
|
|
{
|
|
struct time_object *tobj;
|
|
struct vtm vtm;
|
|
VALUE off;
|
|
|
|
GetTimeval(time, tobj);
|
|
if (TIME_FIXOFF_P(tobj)) {
|
|
if (tobj->tm_got)
|
|
return time;
|
|
}
|
|
else {
|
|
time_modify(time);
|
|
}
|
|
|
|
if (TIME_FIXOFF_P(tobj))
|
|
off = tobj->vtm.utc_offset;
|
|
else
|
|
off = INT2FIX(0);
|
|
|
|
if (!gmtimew(tobj->timew, &vtm))
|
|
rb_raise(rb_eArgError, "gmtime error");
|
|
|
|
tobj->vtm = vtm;
|
|
vtm_add_offset(&tobj->vtm, off);
|
|
|
|
tobj->tm_got = 1;
|
|
TIME_SET_FIXOFF(tobj, off);
|
|
return time;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* time.getlocal -> new_time
|
|
* time.getlocal(utc_offset) -> new_time
|
|
*
|
|
* Returns a new <code>new_time</code> object representing <i>time</i> in
|
|
* local time (using the local time zone in effect for this process).
|
|
*
|
|
* If _utc_offset_ is given, it is used instead of the local time.
|
|
*
|
|
* t = Time.utc(2000,1,1,20,15,1) #=> 2000-01-01 20:15:01 UTC
|
|
* t.utc? #=> true
|
|
*
|
|
* l = t.getlocal #=> 2000-01-01 14:15:01 -0600
|
|
* l.utc? #=> false
|
|
* t == l #=> true
|
|
*
|
|
* j = t.getlocal("+09:00") #=> 2000-01-02 05:15:01 +0900
|
|
* j.utc? #=> false
|
|
* t == j #=> true
|
|
*/
|
|
|
|
static VALUE
|
|
time_getlocaltime(int argc, VALUE *argv, VALUE time)
|
|
{
|
|
VALUE off;
|
|
rb_scan_args(argc, argv, "01", &off);
|
|
|
|
if (!NIL_P(off)) {
|
|
off = utc_offset_arg(off);
|
|
validate_utc_offset(off);
|
|
|
|
time = time_dup(time);
|
|
time_set_utc_offset(time, off);
|
|
return time_fixoff(time);
|
|
}
|
|
|
|
return time_localtime(time_dup(time));
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* time.getgm -> new_time
|
|
* time.getutc -> new_time
|
|
*
|
|
* Returns a new <code>new_time</code> object representing <i>time</i> in
|
|
* UTC.
|
|
*
|
|
* t = Time.local(2000,1,1,20,15,1) #=> 2000-01-01 20:15:01 -0600
|
|
* t.gmt? #=> false
|
|
* y = t.getgm #=> 2000-01-02 02:15:01 UTC
|
|
* y.gmt? #=> true
|
|
* t == y #=> true
|
|
*/
|
|
|
|
static VALUE
|
|
time_getgmtime(VALUE time)
|
|
{
|
|
return time_gmtime(time_dup(time));
|
|
}
|
|
|
|
static VALUE
|
|
time_get_tm(VALUE time, struct time_object *tobj)
|
|
{
|
|
if (TIME_UTC_P(tobj)) return time_gmtime(time);
|
|
if (TIME_FIXOFF_P(tobj)) return time_fixoff(time);
|
|
return time_localtime(time);
|
|
}
|
|
|
|
static VALUE strftimev(const char *fmt, VALUE time, rb_encoding *enc);
|
|
|
|
/*
|
|
* call-seq:
|
|
* time.asctime -> string
|
|
* time.ctime -> string
|
|
*
|
|
* Returns a canonical string representation of <i>time</i>.
|
|
*
|
|
* Time.now.asctime #=> "Wed Apr 9 08:56:03 2003"
|
|
*/
|
|
|
|
static VALUE
|
|
time_asctime(VALUE time)
|
|
{
|
|
return strftimev("%a %b %e %T %Y", time, rb_usascii_encoding());
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* time.inspect -> string
|
|
* time.to_s -> string
|
|
*
|
|
* Returns a string representing <i>time</i>. Equivalent to calling
|
|
* <code>Time#strftime</code> with a format string of
|
|
* ``<code>%Y-%m-%d</code> <code>%H:%M:%S</code> <code>%z</code>''
|
|
* for a local time and
|
|
* ``<code>%Y-%m-%d</code> <code>%H:%M:%S</code> <code>UTC</code>''
|
|
* for a UTC time.
|
|
*
|
|
* Time.now.to_s #=> "2007-10-05 16:09:51 +0900"
|
|
* Time.now.utc.to_s #=> "2007-10-05 07:09:51 UTC"
|
|
*/
|
|
|
|
static VALUE
|
|
time_to_s(VALUE time)
|
|
{
|
|
struct time_object *tobj;
|
|
|
|
GetTimeval(time, tobj);
|
|
if (TIME_UTC_P(tobj))
|
|
return strftimev("%Y-%m-%d %H:%M:%S UTC", time, rb_usascii_encoding());
|
|
else
|
|
return strftimev("%Y-%m-%d %H:%M:%S %z", time, rb_usascii_encoding());
|
|
}
|
|
|
|
static VALUE
|
|
time_add(struct time_object *tobj, VALUE offset, int sign)
|
|
{
|
|
VALUE result;
|
|
offset = num_exact(offset);
|
|
if (sign < 0)
|
|
result = time_new_timew(rb_cTime, wsub(tobj->timew, rb_time_magnify(v2w(offset))));
|
|
else
|
|
result = time_new_timew(rb_cTime, wadd(tobj->timew, rb_time_magnify(v2w(offset))));
|
|
if (TIME_UTC_P(tobj)) {
|
|
GetTimeval(result, tobj);
|
|
TIME_SET_UTC(tobj);
|
|
}
|
|
else if (TIME_FIXOFF_P(tobj)) {
|
|
VALUE off = tobj->vtm.utc_offset;
|
|
GetTimeval(result, tobj);
|
|
TIME_SET_FIXOFF(tobj, off);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* time + numeric -> time
|
|
*
|
|
* Addition---Adds some number of seconds (possibly fractional) to
|
|
* <i>time</i> and returns that value as a new time.
|
|
*
|
|
* t = Time.now #=> 2007-11-19 08:22:21 -0600
|
|
* t + (60 * 60 * 24) #=> 2007-11-20 08:22:21 -0600
|
|
*/
|
|
|
|
static VALUE
|
|
time_plus(VALUE time1, VALUE time2)
|
|
{
|
|
struct time_object *tobj;
|
|
GetTimeval(time1, tobj);
|
|
|
|
if (IsTimeval(time2)) {
|
|
rb_raise(rb_eTypeError, "time + time?");
|
|
}
|
|
return time_add(tobj, time2, 1);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* time - other_time -> float
|
|
* time - numeric -> time
|
|
*
|
|
* Difference---Returns a new time that represents the difference
|
|
* between two times, or subtracts the given number of seconds in
|
|
* <i>numeric</i> from <i>time</i>.
|
|
*
|
|
* t = Time.now #=> 2007-11-19 08:23:10 -0600
|
|
* t2 = t + 2592000 #=> 2007-12-19 08:23:10 -0600
|
|
* t2 - t #=> 2592000.0
|
|
* t2 - 2592000 #=> 2007-11-19 08:23:10 -0600
|
|
*/
|
|
|
|
static VALUE
|
|
time_minus(VALUE time1, VALUE time2)
|
|
{
|
|
struct time_object *tobj;
|
|
|
|
GetTimeval(time1, tobj);
|
|
if (IsTimeval(time2)) {
|
|
struct time_object *tobj2;
|
|
|
|
GetTimeval(time2, tobj2);
|
|
return rb_Float(rb_time_unmagnify_to_float(wsub(tobj->timew, tobj2->timew)));
|
|
}
|
|
return time_add(tobj, time2, -1);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* time.succ -> new_time
|
|
*
|
|
* Return a new time object, one second later than <code>time</code>.
|
|
* Time#succ is obsolete since 1.9.2 for time is not a discrete value.
|
|
*
|
|
* t = Time.now #=> 2007-11-19 08:23:57 -0600
|
|
* t.succ #=> 2007-11-19 08:23:58 -0600
|
|
*/
|
|
|
|
VALUE
|
|
rb_time_succ(VALUE time)
|
|
{
|
|
struct time_object *tobj;
|
|
struct time_object *tobj2;
|
|
|
|
rb_warn("Time#succ is obsolete; use time + 1");
|
|
GetTimeval(time, tobj);
|
|
time = time_new_timew(rb_cTime, wadd(tobj->timew, WINT2FIXWV(TIME_SCALE)));
|
|
GetTimeval(time, tobj2);
|
|
TIME_COPY_GMT(tobj2, tobj);
|
|
return time;
|
|
}
|
|
|
|
#define time_succ rb_time_succ
|
|
|
|
/*
|
|
* call-seq:
|
|
* time.round([ndigits]) -> new_time
|
|
*
|
|
* Rounds sub seconds to a given precision in decimal digits (0 digits by default).
|
|
* It returns a new time object.
|
|
* _ndigits_ should be zero or positive integer.
|
|
*
|
|
* require 'time'
|
|
*
|
|
* t = Time.utc(2010,3,30, 5,43,"25.123456789".to_r)
|
|
* p t.iso8601(10) #=> "2010-03-30T05:43:25.1234567890Z"
|
|
* p t.round.iso8601(10) #=> "2010-03-30T05:43:25.0000000000Z"
|
|
* p t.round(0).iso8601(10) #=> "2010-03-30T05:43:25.0000000000Z"
|
|
* p t.round(1).iso8601(10) #=> "2010-03-30T05:43:25.1000000000Z"
|
|
* p t.round(2).iso8601(10) #=> "2010-03-30T05:43:25.1200000000Z"
|
|
* p t.round(3).iso8601(10) #=> "2010-03-30T05:43:25.1230000000Z"
|
|
* p t.round(4).iso8601(10) #=> "2010-03-30T05:43:25.1235000000Z"
|
|
* p t.round(5).iso8601(10) #=> "2010-03-30T05:43:25.1234600000Z"
|
|
* p t.round(6).iso8601(10) #=> "2010-03-30T05:43:25.1234570000Z"
|
|
* p t.round(7).iso8601(10) #=> "2010-03-30T05:43:25.1234568000Z"
|
|
* p t.round(8).iso8601(10) #=> "2010-03-30T05:43:25.1234567900Z"
|
|
* p t.round(9).iso8601(10) #=> "2010-03-30T05:43:25.1234567890Z"
|
|
* p t.round(10).iso8601(10) #=> "2010-03-30T05:43:25.1234567890Z"
|
|
*
|
|
* t = Time.utc(1999,12,31, 23,59,59)
|
|
* p((t + 0.4).round.iso8601(3)) #=> "1999-12-31T23:59:59.000Z"
|
|
* p((t + 0.49).round.iso8601(3)) #=> "1999-12-31T23:59:59.000Z"
|
|
* p((t + 0.5).round.iso8601(3)) #=> "2000-01-01T00:00:00.000Z"
|
|
* p((t + 1.4).round.iso8601(3)) #=> "2000-01-01T00:00:00.000Z"
|
|
* p((t + 1.49).round.iso8601(3)) #=> "2000-01-01T00:00:00.000Z"
|
|
* p((t + 1.5).round.iso8601(3)) #=> "2000-01-01T00:00:01.000Z"
|
|
*
|
|
* t = Time.utc(1999,12,31, 23,59,59)
|
|
* p (t + 0.123456789).round(4).iso8601(6) #=> "1999-12-31T23:59:59.123500Z"
|
|
*/
|
|
|
|
static VALUE
|
|
time_round(int argc, VALUE *argv, VALUE time)
|
|
{
|
|
VALUE ndigits, v, a, b, den;
|
|
long nd;
|
|
struct time_object *tobj;
|
|
|
|
rb_scan_args(argc, argv, "01", &ndigits);
|
|
|
|
if (NIL_P(ndigits))
|
|
ndigits = INT2FIX(0);
|
|
else
|
|
ndigits = rb_to_int(ndigits);
|
|
|
|
nd = NUM2LONG(ndigits);
|
|
if (nd < 0)
|
|
rb_raise(rb_eArgError, "negative ndigits given");
|
|
|
|
GetTimeval(time, tobj);
|
|
v = w2v(rb_time_unmagnify(tobj->timew));
|
|
|
|
a = INT2FIX(1);
|
|
b = INT2FIX(10);
|
|
while (0 < nd) {
|
|
if (nd & 1)
|
|
a = mul(a, b);
|
|
b = mul(b, b);
|
|
nd = nd >> 1;
|
|
}
|
|
den = quo(INT2FIX(1), a);
|
|
v = mod(v, den);
|
|
if (lt(v, quo(den, INT2FIX(2))))
|
|
return time_add(tobj, v, -1);
|
|
else
|
|
return time_add(tobj, sub(den, v), 1);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* time.sec -> fixnum
|
|
*
|
|
* Returns the second of the minute (0..60)<em>[Yes, seconds really can
|
|
* range from zero to 60. This allows the system to inject leap seconds
|
|
* every now and then to correct for the fact that years are not really
|
|
* a convenient number of hours long.]</em> for <i>time</i>.
|
|
*
|
|
* t = Time.now #=> 2007-11-19 08:25:02 -0600
|
|
* t.sec #=> 2
|
|
*/
|
|
|
|
static VALUE
|
|
time_sec(VALUE time)
|
|
{
|
|
struct time_object *tobj;
|
|
|
|
GetTimeval(time, tobj);
|
|
MAKE_TM(time, tobj);
|
|
return INT2FIX(tobj->vtm.sec);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* time.min -> fixnum
|
|
*
|
|
* Returns the minute of the hour (0..59) for <i>time</i>.
|
|
*
|
|
* t = Time.now #=> 2007-11-19 08:25:51 -0600
|
|
* t.min #=> 25
|
|
*/
|
|
|
|
static VALUE
|
|
time_min(VALUE time)
|
|
{
|
|
struct time_object *tobj;
|
|
|
|
GetTimeval(time, tobj);
|
|
MAKE_TM(time, tobj);
|
|
return INT2FIX(tobj->vtm.min);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* time.hour -> fixnum
|
|
*
|
|
* Returns the hour of the day (0..23) for <i>time</i>.
|
|
*
|
|
* t = Time.now #=> 2007-11-19 08:26:20 -0600
|
|
* t.hour #=> 8
|
|
*/
|
|
|
|
static VALUE
|
|
time_hour(VALUE time)
|
|
{
|
|
struct time_object *tobj;
|
|
|
|
GetTimeval(time, tobj);
|
|
MAKE_TM(time, tobj);
|
|
return INT2FIX(tobj->vtm.hour);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* time.day -> fixnum
|
|
* time.mday -> fixnum
|
|
*
|
|
* Returns the day of the month (1..n) for <i>time</i>.
|
|
*
|
|
* t = Time.now #=> 2007-11-19 08:27:03 -0600
|
|
* t.day #=> 19
|
|
* t.mday #=> 19
|
|
*/
|
|
|
|
static VALUE
|
|
time_mday(VALUE time)
|
|
{
|
|
struct time_object *tobj;
|
|
|
|
GetTimeval(time, tobj);
|
|
MAKE_TM(time, tobj);
|
|
return INT2FIX(tobj->vtm.mday);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* time.mon -> fixnum
|
|
* time.month -> fixnum
|
|
*
|
|
* Returns the month of the year (1..12) for <i>time</i>.
|
|
*
|
|
* t = Time.now #=> 2007-11-19 08:27:30 -0600
|
|
* t.mon #=> 11
|
|
* t.month #=> 11
|
|
*/
|
|
|
|
static VALUE
|
|
time_mon(VALUE time)
|
|
{
|
|
struct time_object *tobj;
|
|
|
|
GetTimeval(time, tobj);
|
|
MAKE_TM(time, tobj);
|
|
return INT2FIX(tobj->vtm.mon);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* time.year -> fixnum
|
|
*
|
|
* Returns the year for <i>time</i> (including the century).
|
|
*
|
|
* t = Time.now #=> 2007-11-19 08:27:51 -0600
|
|
* t.year #=> 2007
|
|
*/
|
|
|
|
static VALUE
|
|
time_year(VALUE time)
|
|
{
|
|
struct time_object *tobj;
|
|
|
|
GetTimeval(time, tobj);
|
|
MAKE_TM(time, tobj);
|
|
return tobj->vtm.year;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* time.wday -> fixnum
|
|
*
|
|
* Returns an integer representing the day of the week, 0..6, with
|
|
* Sunday == 0.
|
|
*
|
|
* t = Time.now #=> 2007-11-20 02:35:35 -0600
|
|
* t.wday #=> 2
|
|
* t.sunday? #=> false
|
|
* t.monday? #=> false
|
|
* t.tuesday? #=> true
|
|
* t.wednesday? #=> false
|
|
* t.thursday? #=> false
|
|
* t.friday? #=> false
|
|
* t.saturday? #=> false
|
|
*/
|
|
|
|
static VALUE
|
|
time_wday(VALUE time)
|
|
{
|
|
struct time_object *tobj;
|
|
|
|
GetTimeval(time, tobj);
|
|
MAKE_TM(time, tobj);
|
|
return INT2FIX(tobj->vtm.wday);
|
|
}
|
|
|
|
#define wday_p(n) {\
|
|
struct time_object *tobj;\
|
|
GetTimeval(time, tobj);\
|
|
MAKE_TM(time, tobj);\
|
|
return (tobj->vtm.wday == (n)) ? Qtrue : Qfalse;\
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* time.sunday? -> true or false
|
|
*
|
|
* Returns <code>true</code> if <i>time</i> represents Sunday.
|
|
*
|
|
* t = Time.local(1990, 4, 1) #=> 1990-04-01 00:00:00 -0600
|
|
* t.sunday? #=> true
|
|
*/
|
|
|
|
static VALUE
|
|
time_sunday(VALUE time)
|
|
{
|
|
wday_p(0);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* time.monday? -> true or false
|
|
*
|
|
* Returns <code>true</code> if <i>time</i> represents Monday.
|
|
*
|
|
* t = Time.local(2003, 8, 4) #=> 2003-08-04 00:00:00 -0500
|
|
* p t.monday? #=> true
|
|
*/
|
|
|
|
static VALUE
|
|
time_monday(VALUE time)
|
|
{
|
|
wday_p(1);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* time.tuesday? -> true or false
|
|
*
|
|
* Returns <code>true</code> if <i>time</i> represents Tuesday.
|
|
*
|
|
* t = Time.local(1991, 2, 19) #=> 1991-02-19 00:00:00 -0600
|
|
* p t.tuesday? #=> true
|
|
*/
|
|
|
|
static VALUE
|
|
time_tuesday(VALUE time)
|
|
{
|
|
wday_p(2);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* time.wednesday? -> true or false
|
|
*
|
|
* Returns <code>true</code> if <i>time</i> represents Wednesday.
|
|
*
|
|
* t = Time.local(1993, 2, 24) #=> 1993-02-24 00:00:00 -0600
|
|
* p t.wednesday? #=> true
|
|
*/
|
|
|
|
static VALUE
|
|
time_wednesday(VALUE time)
|
|
{
|
|
wday_p(3);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* time.thursday? -> true or false
|
|
*
|
|
* Returns <code>true</code> if <i>time</i> represents Thursday.
|
|
*
|
|
* t = Time.local(1995, 12, 21) #=> 1995-12-21 00:00:00 -0600
|
|
* p t.thursday? #=> true
|
|
*/
|
|
|
|
static VALUE
|
|
time_thursday(VALUE time)
|
|
{
|
|
wday_p(4);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* time.friday? -> true or false
|
|
*
|
|
* Returns <code>true</code> if <i>time</i> represents Friday.
|
|
*
|
|
* t = Time.local(1987, 12, 18) #=> 1987-12-18 00:00:00 -0600
|
|
* t.friday? #=> true
|
|
*/
|
|
|
|
static VALUE
|
|
time_friday(VALUE time)
|
|
{
|
|
wday_p(5);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* time.saturday? -> true or false
|
|
*
|
|
* Returns <code>true</code> if <i>time</i> represents Saturday.
|
|
*
|
|
* t = Time.local(2006, 6, 10) #=> 2006-06-10 00:00:00 -0500
|
|
* t.saturday? #=> true
|
|
*/
|
|
|
|
static VALUE
|
|
time_saturday(VALUE time)
|
|
{
|
|
wday_p(6);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* time.yday -> fixnum
|
|
*
|
|
* Returns an integer representing the day of the year, 1..366.
|
|
*
|
|
* t = Time.now #=> 2007-11-19 08:32:31 -0600
|
|
* t.yday #=> 323
|
|
*/
|
|
|
|
static VALUE
|
|
time_yday(VALUE time)
|
|
{
|
|
struct time_object *tobj;
|
|
|
|
GetTimeval(time, tobj);
|
|
MAKE_TM(time, tobj);
|
|
return INT2FIX(tobj->vtm.yday);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* time.isdst -> true or false
|
|
* time.dst? -> true or false
|
|
*
|
|
* Returns <code>true</code> if <i>time</i> occurs during Daylight
|
|
* Saving Time in its time zone.
|
|
*
|
|
* # CST6CDT:
|
|
* Time.local(2000, 1, 1).zone #=> "CST"
|
|
* Time.local(2000, 1, 1).isdst #=> false
|
|
* Time.local(2000, 1, 1).dst? #=> false
|
|
* Time.local(2000, 7, 1).zone #=> "CDT"
|
|
* Time.local(2000, 7, 1).isdst #=> true
|
|
* Time.local(2000, 7, 1).dst? #=> true
|
|
*
|
|
* # Asia/Tokyo:
|
|
* Time.local(2000, 1, 1).zone #=> "JST"
|
|
* Time.local(2000, 1, 1).isdst #=> false
|
|
* Time.local(2000, 1, 1).dst? #=> false
|
|
* Time.local(2000, 7, 1).zone #=> "JST"
|
|
* Time.local(2000, 7, 1).isdst #=> false
|
|
* Time.local(2000, 7, 1).dst? #=> false
|
|
*/
|
|
|
|
static VALUE
|
|
time_isdst(VALUE time)
|
|
{
|
|
struct time_object *tobj;
|
|
|
|
GetTimeval(time, tobj);
|
|
MAKE_TM(time, tobj);
|
|
return tobj->vtm.isdst ? Qtrue : Qfalse;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* time.zone -> string
|
|
*
|
|
* Returns the name of the time zone used for <i>time</i>. As of Ruby
|
|
* 1.8, returns ``UTC'' rather than ``GMT'' for UTC times.
|
|
*
|
|
* t = Time.gm(2000, "jan", 1, 20, 15, 1)
|
|
* t.zone #=> "UTC"
|
|
* t = Time.local(2000, "jan", 1, 20, 15, 1)
|
|
* t.zone #=> "CST"
|
|
*/
|
|
|
|
static VALUE
|
|
time_zone(VALUE time)
|
|
{
|
|
struct time_object *tobj;
|
|
|
|
GetTimeval(time, tobj);
|
|
MAKE_TM(time, tobj);
|
|
|
|
if (TIME_UTC_P(tobj)) {
|
|
return rb_obj_untaint(rb_locale_str_new_cstr("UTC"));
|
|
}
|
|
if (tobj->vtm.zone == NULL)
|
|
return Qnil;
|
|
return rb_obj_untaint(rb_locale_str_new_cstr(tobj->vtm.zone));
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* time.gmt_offset -> fixnum
|
|
* time.gmtoff -> fixnum
|
|
* time.utc_offset -> fixnum
|
|
*
|
|
* Returns the offset in seconds between the timezone of <i>time</i>
|
|
* and UTC.
|
|
*
|
|
* t = Time.gm(2000,1,1,20,15,1) #=> 2000-01-01 20:15:01 UTC
|
|
* t.gmt_offset #=> 0
|
|
* l = t.getlocal #=> 2000-01-01 14:15:01 -0600
|
|
* l.gmt_offset #=> -21600
|
|
*/
|
|
|
|
static VALUE
|
|
time_utc_offset(VALUE time)
|
|
{
|
|
struct time_object *tobj;
|
|
|
|
GetTimeval(time, tobj);
|
|
MAKE_TM(time, tobj);
|
|
|
|
if (TIME_UTC_P(tobj)) {
|
|
return INT2FIX(0);
|
|
}
|
|
else {
|
|
return tobj->vtm.utc_offset;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* time.to_a -> array
|
|
*
|
|
* Returns a ten-element <i>array</i> of values for <i>time</i>:
|
|
* {<code>[ sec, min, hour, day, month, year, wday, yday, isdst, zone
|
|
* ]</code>}. See the individual methods for an explanation of the
|
|
* valid ranges of each value. The ten elements can be passed directly
|
|
* to <code>Time::utc</code> or <code>Time::local</code> to create a
|
|
* new <code>Time</code>.
|
|
*
|
|
* t = Time.now #=> 2007-11-19 08:36:01 -0600
|
|
* now = t.to_a #=> [1, 36, 8, 19, 11, 2007, 1, 323, false, "CST"]
|
|
*/
|
|
|
|
static VALUE
|
|
time_to_a(VALUE time)
|
|
{
|
|
struct time_object *tobj;
|
|
|
|
GetTimeval(time, tobj);
|
|
MAKE_TM(time, tobj);
|
|
return rb_ary_new3(10,
|
|
INT2FIX(tobj->vtm.sec),
|
|
INT2FIX(tobj->vtm.min),
|
|
INT2FIX(tobj->vtm.hour),
|
|
INT2FIX(tobj->vtm.mday),
|
|
INT2FIX(tobj->vtm.mon),
|
|
tobj->vtm.year,
|
|
INT2FIX(tobj->vtm.wday),
|
|
INT2FIX(tobj->vtm.yday),
|
|
tobj->vtm.isdst?Qtrue:Qfalse,
|
|
time_zone(time));
|
|
}
|
|
|
|
#define SMALLBUF 100
|
|
static size_t
|
|
rb_strftime_alloc(char **buf, VALUE formatv, const char *format, rb_encoding *enc,
|
|
struct vtm *vtm, wideval_t timew, int gmt)
|
|
{
|
|
size_t size, len, flen;
|
|
VALUE timev = Qnil;
|
|
struct timespec ts;
|
|
|
|
if (!timew2timespec_exact(timew, &ts))
|
|
timev = w2v(rb_time_unmagnify(timew));
|
|
|
|
(*buf)[0] = '\0';
|
|
flen = strlen(format);
|
|
if (flen == 0) {
|
|
return 0;
|
|
}
|
|
errno = 0;
|
|
if (timev == Qnil)
|
|
len = rb_strftime_timespec(*buf, SMALLBUF, format, enc, vtm, &ts, gmt);
|
|
else
|
|
len = rb_strftime(*buf, SMALLBUF, format, enc, vtm, timev, gmt);
|
|
if (len != 0 || (**buf == '\0' && errno != ERANGE)) return len;
|
|
for (size=1024; ; size*=2) {
|
|
*buf = xmalloc(size);
|
|
(*buf)[0] = '\0';
|
|
if (timev == Qnil)
|
|
len = rb_strftime_timespec(*buf, size, format, enc, vtm, &ts, gmt);
|
|
else
|
|
len = rb_strftime(*buf, size, format, enc, vtm, timev, gmt);
|
|
/*
|
|
* buflen can be zero EITHER because there's not enough
|
|
* room in the string, or because the control command
|
|
* goes to the empty string. Make a reasonable guess that
|
|
* if the buffer is 1024 times bigger than the length of the
|
|
* format string, it's not failing for lack of room.
|
|
*/
|
|
if (len > 0) break;
|
|
xfree(*buf);
|
|
if (size >= 1024 * flen) {
|
|
if (!NIL_P(formatv)) rb_sys_fail_str(formatv);
|
|
rb_sys_fail(format);
|
|
break;
|
|
}
|
|
}
|
|
return len;
|
|
}
|
|
|
|
static VALUE
|
|
strftimev(const char *fmt, VALUE time, rb_encoding *enc)
|
|
{
|
|
struct time_object *tobj;
|
|
char buffer[SMALLBUF], *buf = buffer;
|
|
long len;
|
|
VALUE str;
|
|
|
|
GetTimeval(time, tobj);
|
|
MAKE_TM(time, tobj);
|
|
len = rb_strftime_alloc(&buf, Qnil, fmt, enc, &tobj->vtm, tobj->timew, TIME_UTC_P(tobj));
|
|
str = rb_enc_str_new(buf, len, enc);
|
|
if (buf != buffer) xfree(buf);
|
|
return str;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* time.strftime( string ) -> string
|
|
*
|
|
* Formats <i>time</i> according to the directives in the given format
|
|
* string.
|
|
* The directives begins with a percent (%) character.
|
|
* Any text not listed as a directive will be passed through to the
|
|
* output string.
|
|
*
|
|
* The directive consists of a percent (%) character,
|
|
* zero or more flags, optional minimum field width,
|
|
* optional modifier and a conversion specifier
|
|
* as follows.
|
|
*
|
|
* %<flags><width><modifier><conversion>
|
|
*
|
|
* Flags:
|
|
* - don't pad a numerical output.
|
|
* _ use spaces for padding.
|
|
* 0 use zeros for padding.
|
|
* ^ upcase the result string.
|
|
* # change case.
|
|
* : use colons for %z.
|
|
*
|
|
* The minimum field width specifies the minimum width.
|
|
*
|
|
* The modifier is "E" and "O".
|
|
* They are ignored.
|
|
*
|
|
* Format directives:
|
|
*
|
|
* Date (Year, Month, Day):
|
|
* %Y - Year with century (can be negative, 4 digits at least)
|
|
* -0001, 0000, 1995, 2009, 14292, etc.
|
|
* %C - year / 100 (round down. 20 in 2009)
|
|
* %y - year % 100 (00..99)
|
|
*
|
|
* %m - Month of the year, zero-padded (01..12)
|
|
* %_m blank-padded ( 1..12)
|
|
* %-m no-padded (1..12)
|
|
* %B - The full month name (``January'')
|
|
* %^B uppercased (``JANUARY'')
|
|
* %b - The abbreviated month name (``Jan'')
|
|
* %^b uppercased (``JAN'')
|
|
* %h - Equivalent to %b
|
|
*
|
|
* %d - Day of the month, zero-padded (01..31)
|
|
* %-d no-padded (1..31)
|
|
* %e - Day of the month, blank-padded ( 1..31)
|
|
*
|
|
* %j - Day of the year (001..366)
|
|
*
|
|
* Time (Hour, Minute, Second, Subsecond):
|
|
* %H - Hour of the day, 24-hour clock, zero-padded (00..23)
|
|
* %k - Hour of the day, 24-hour clock, blank-padded ( 0..23)
|
|
* %I - Hour of the day, 12-hour clock, zero-padded (01..12)
|
|
* %l - Hour of the day, 12-hour clock, blank-padded ( 1..12)
|
|
* %P - Meridian indicator, lowercase (``am'' or ``pm'')
|
|
* %p - Meridian indicator, uppercase (``AM'' or ``PM'')
|
|
*
|
|
* %M - Minute of the hour (00..59)
|
|
*
|
|
* %S - Second of the minute (00..60)
|
|
*
|
|
* %L - Millisecond of the second (000..999)
|
|
* %N - Fractional seconds digits, default is 9 digits (nanosecond)
|
|
* %3N milli second (3 digits)
|
|
* %6N micro second (6 digits)
|
|
* %9N nano second (9 digits)
|
|
* %12N pico second (12 digits)
|
|
* %15N femto second (15 digits)
|
|
* %18N atto second (18 digits)
|
|
* %21N zepto second (21 digits)
|
|
* %24N yocto second (24 digits)
|
|
*
|
|
* Time zone:
|
|
* %z - Time zone as hour and minute offset from UTC (e.g. +0900)
|
|
* %:z - hour and minute offset from UTC with a colon (e.g. +09:00)
|
|
* %::z - hour, minute and second offset from UTC (e.g. +09:00:00)
|
|
* %Z - Time zone abbreviation name or something similar information.
|
|
*
|
|
* Weekday:
|
|
* %A - The full weekday name (``Sunday'')
|
|
* %^A uppercased (``SUNDAY'')
|
|
* %a - The abbreviated name (``Sun'')
|
|
* %^a uppercased (``SUN'')
|
|
* %u - Day of the week (Monday is 1, 1..7)
|
|
* %w - Day of the week (Sunday is 0, 0..6)
|
|
*
|
|
* ISO 8601 week-based year and week number:
|
|
* The week 1 of YYYY starts with a Monday and includes YYYY-01-04.
|
|
* The days in the year before the first week are in the last week of
|
|
* the previous year.
|
|
* %G - The week-based year
|
|
* %g - The last 2 digits of the week-based year (00..99)
|
|
* %V - Week number of the week-based year (01..53)
|
|
*
|
|
* Week number:
|
|
* The week 1 of YYYY starts with a Sunday or Monday (according to %U
|
|
* or %W). The days in the year before the first week are in week 0.
|
|
* %U - Week number of the year. The week starts with Sunday. (00..53)
|
|
* %W - Week number of the year. The week starts with Monday. (00..53)
|
|
*
|
|
* Seconds since the Epoch:
|
|
* %s - Number of seconds since 1970-01-01 00:00:00 UTC.
|
|
*
|
|
* Literal string:
|
|
* %n - Newline character (\n)
|
|
* %t - Tab character (\t)
|
|
* %% - Literal ``%'' character
|
|
*
|
|
* Combination:
|
|
* %c - date and time (%a %b %e %T %Y)
|
|
* %D - Date (%m/%d/%y)
|
|
* %F - The ISO 8601 date format (%Y-%m-%d)
|
|
* %v - VMS date (%e-%^b-%4Y)
|
|
* %x - Same as %D
|
|
* %X - Same as %T
|
|
* %r - 12-hour time (%I:%M:%S %p)
|
|
* %R - 24-hour time (%H:%M)
|
|
* %T - 24-hour time (%H:%M:%S)
|
|
*
|
|
* This method is similar to strftime() function defined in ISO C and POSIX.
|
|
* Several directives (%a, %A, %b, %B, %c, %p, %r, %x, %X, %E*, %O* and %Z)
|
|
* are locale dependent in the function.
|
|
* However this method is locale independent since Ruby 1.9.
|
|
* (%Z is platform dependent, though.)
|
|
* So, the result may differ even if a same format string is used in other
|
|
* systems such as C.
|
|
* It is good practice to avoid %x and %X because there are corresponding
|
|
* locale independent representations, %D and %T.
|
|
*
|
|
* %z is recommended over %Z.
|
|
* %Z doesn't identify the timezone.
|
|
* For example, "CST" is used at America/Chicago (-06:00),
|
|
* America/Havana (-05:00), Asia/Harbin (+08:00), Australia/Darwin (+09:30)
|
|
* and Australia/Adelaide (+10:30).
|
|
* Also, %Z is highly dependent for OS.
|
|
* For example, it may generate a non ASCII string on Japanese Windows.
|
|
* i.e. the result can be different to "JST".
|
|
* So the numeric time zone offset, %z, is recommended.
|
|
*
|
|
* Examples:
|
|
*
|
|
* t = Time.new(2007,11,19,8,37,48,"-06:00") #=> 2007-11-19 08:37:48 -0600
|
|
* t.strftime("Printed on %m/%d/%Y") #=> "Printed on 11/19/2007"
|
|
* t.strftime("at %I:%M%p") #=> "at 08:37AM"
|
|
*
|
|
* Various ISO 8601 formats:
|
|
* %Y%m%d => 20071119 Calendar date (basic)
|
|
* %F => 2007-11-19 Calendar date (extended)
|
|
* %Y-%m => 2007-11 Calendar date, reduced accuracy, specific month
|
|
* %Y => 2007 Calendar date, reduced accuracy, specific year
|
|
* %C => 20 Calendar date, reduced accuracy, specific century
|
|
* %Y%j => 2007323 Ordinal date (basic)
|
|
* %Y-%j => 2007-323 Ordinal date (extended)
|
|
* %GW%V%u => 2007W471 Week date (basic)
|
|
* %G-W%V-%u => 2007-W47-1 Week date (extended)
|
|
* %GW%V => 2007W47 Week date, reduced accuracy, specific week (basic)
|
|
* %G-W%V => 2007-W47 Week date, reduced accuracy, specific week (extended)
|
|
* %H%M%S => 083748 Local time (basic)
|
|
* %T => 08:37:48 Local time (extended)
|
|
* %H%M => 0837 Local time, reduced accuracy, specific minute (basic)
|
|
* %H:%M => 08:37 Local time, reduced accuracy, specific minute (extended)
|
|
* %H => 08 Local time, reduced accuracy, specific hour
|
|
* %H%M%S,%L => 083748,000 Local time with decimal fraction, comma as decimal sign (basic)
|
|
* %T,%L => 08:37:48,000 Local time with decimal fraction, comma as decimal sign (extended)
|
|
* %H%M%S.%L => 083748.000 Local time with decimal fraction, full stop as decimal sign (basic)
|
|
* %T.%L => 08:37:48.000 Local time with decimal fraction, full stop as decimal sign (extended)
|
|
* %H%M%S%z => 083748-0600 Local time and the difference from UTC (basic)
|
|
* %T%:z => 08:37:48-06:00 Local time and the difference from UTC (extended)
|
|
* %Y%m%dT%H%M%S%z => 20071119T083748-0600 Date and time of day for calendar date (basic)
|
|
* %FT%T%:z => 2007-11-19T08:37:48-06:00 Date and time of day for calendar date (extended)
|
|
* %Y%jT%H%M%S%z => 2007323T083748-0600 Date and time of day for ordinal date (basic)
|
|
* %Y-%jT%T%:z => 2007-323T08:37:48-06:00 Date and time of day for ordinal date (extended)
|
|
* %GW%V%uT%H%M%S%z => 2007W471T083748-0600 Date and time of day for week date (basic)
|
|
* %G-W%V-%uT%T%:z => 2007-W47-1T08:37:48-06:00 Date and time of day for week date (extended)
|
|
* %Y%m%dT%H%M => 20071119T0837 Calendar date and local time (basic)
|
|
* %FT%R => 2007-11-19T08:37 Calendar date and local time (extended)
|
|
* %Y%jT%H%MZ => 2007323T0837Z Ordinal date and UTC of day (basic)
|
|
* %Y-%jT%RZ => 2007-323T08:37Z Ordinal date and UTC of day (extended)
|
|
* %GW%V%uT%H%M%z => 2007W471T0837-0600 Week date and local time and difference from UTC (basic)
|
|
* %G-W%V-%uT%R%:z => 2007-W47-1T08:37-06:00 Week date and local time and difference from UTC (extended)
|
|
*
|
|
*/
|
|
|
|
static VALUE
|
|
time_strftime(VALUE time, VALUE format)
|
|
{
|
|
struct time_object *tobj;
|
|
char buffer[SMALLBUF], *buf = buffer;
|
|
const char *fmt;
|
|
long len;
|
|
rb_encoding *enc;
|
|
VALUE str;
|
|
|
|
GetTimeval(time, tobj);
|
|
MAKE_TM(time, tobj);
|
|
StringValue(format);
|
|
if (!rb_enc_str_asciicompat_p(format)) {
|
|
rb_raise(rb_eArgError, "format should have ASCII compatible encoding");
|
|
}
|
|
format = rb_str_new4(format);
|
|
fmt = RSTRING_PTR(format);
|
|
len = RSTRING_LEN(format);
|
|
enc = rb_enc_get(format);
|
|
if (len == 0) {
|
|
rb_warning("strftime called with empty format string");
|
|
}
|
|
else if (memchr(fmt, '\0', len)) {
|
|
/* Ruby string may contain \0's. */
|
|
const char *p = fmt, *pe = fmt + len;
|
|
|
|
str = rb_str_new(0, 0);
|
|
while (p < pe) {
|
|
len = rb_strftime_alloc(&buf, format, p, enc,
|
|
&tobj->vtm, tobj->timew, TIME_UTC_P(tobj));
|
|
rb_str_cat(str, buf, len);
|
|
p += strlen(p);
|
|
if (buf != buffer) {
|
|
xfree(buf);
|
|
buf = buffer;
|
|
}
|
|
for (fmt = p; p < pe && !*p; ++p);
|
|
if (p > fmt) rb_str_cat(str, fmt, p - fmt);
|
|
}
|
|
return str;
|
|
}
|
|
else {
|
|
len = rb_strftime_alloc(&buf, format, RSTRING_PTR(format), enc,
|
|
&tobj->vtm, tobj->timew, TIME_UTC_P(tobj));
|
|
}
|
|
str = rb_enc_str_new(buf, len, enc);
|
|
if (buf != buffer) xfree(buf);
|
|
return str;
|
|
}
|
|
|
|
/*
|
|
* undocumented
|
|
*/
|
|
|
|
static VALUE
|
|
time_mdump(VALUE time)
|
|
{
|
|
struct time_object *tobj;
|
|
unsigned long p, s;
|
|
char buf[8];
|
|
int i;
|
|
VALUE str;
|
|
|
|
struct vtm vtm;
|
|
long year;
|
|
long usec, nsec;
|
|
VALUE subsecx, nano, subnano, v;
|
|
|
|
GetTimeval(time, tobj);
|
|
|
|
gmtimew(tobj->timew, &vtm);
|
|
|
|
if (FIXNUM_P(vtm.year)) {
|
|
year = FIX2LONG(vtm.year);
|
|
if (year < 1900 || 1900+0xffff < year)
|
|
rb_raise(rb_eArgError, "year too big to marshal: %ld UTC", year);
|
|
}
|
|
else {
|
|
rb_raise(rb_eArgError, "year too big to marshal");
|
|
}
|
|
|
|
subsecx = vtm.subsecx;
|
|
|
|
nano = mulquo(subsecx, INT2FIX(1000000000), INT2FIX(TIME_SCALE));
|
|
divmodv(nano, INT2FIX(1), &v, &subnano);
|
|
nsec = FIX2LONG(v);
|
|
usec = nsec / 1000;
|
|
nsec = nsec % 1000;
|
|
|
|
nano = add(LONG2FIX(nsec), subnano);
|
|
|
|
p = 0x1UL << 31 | /* 1 */
|
|
TIME_UTC_P(tobj) << 30 | /* 1 */
|
|
(year-1900) << 14 | /* 16 */
|
|
(vtm.mon-1) << 10 | /* 4 */
|
|
vtm.mday << 5 | /* 5 */
|
|
vtm.hour; /* 5 */
|
|
s = vtm.min << 26 | /* 6 */
|
|
vtm.sec << 20 | /* 6 */
|
|
usec; /* 20 */
|
|
|
|
for (i=0; i<4; i++) {
|
|
buf[i] = (unsigned char)p;
|
|
p = RSHIFT(p, 8);
|
|
}
|
|
for (i=4; i<8; i++) {
|
|
buf[i] = (unsigned char)s;
|
|
s = RSHIFT(s, 8);
|
|
}
|
|
|
|
str = rb_str_new(buf, 8);
|
|
rb_copy_generic_ivar(str, time);
|
|
if (!rb_equal(nano, INT2FIX(0))) {
|
|
if (RB_TYPE_P(nano, T_RATIONAL)) {
|
|
rb_ivar_set(str, id_nano_num, RRATIONAL(nano)->num);
|
|
rb_ivar_set(str, id_nano_den, RRATIONAL(nano)->den);
|
|
}
|
|
else {
|
|
rb_ivar_set(str, id_nano_num, nano);
|
|
rb_ivar_set(str, id_nano_den, INT2FIX(1));
|
|
}
|
|
}
|
|
if (nsec) { /* submicro is only for Ruby 1.9.1 compatibility */
|
|
/*
|
|
* submicro is formatted in fixed-point packed BCD (without sign).
|
|
* It represent digits under microsecond.
|
|
* For nanosecond resolution, 3 digits (2 bytes) are used.
|
|
* However it can be longer.
|
|
* Extra digits are ignored for loading.
|
|
*/
|
|
char buf[2];
|
|
int len = (int)sizeof(buf);
|
|
buf[1] = (char)((nsec % 10) << 4);
|
|
nsec /= 10;
|
|
buf[0] = (char)(nsec % 10);
|
|
nsec /= 10;
|
|
buf[0] |= (char)((nsec % 10) << 4);
|
|
if (buf[1] == 0)
|
|
len = 1;
|
|
rb_ivar_set(str, id_submicro, rb_str_new(buf, len));
|
|
}
|
|
if (!TIME_UTC_P(tobj)) {
|
|
VALUE off = time_utc_offset(time), div, mod;
|
|
divmodv(off, INT2FIX(1), &div, &mod);
|
|
if (rb_equal(mod, INT2FIX(0)))
|
|
off = rb_Integer(div);
|
|
rb_ivar_set(str, id_offset, off);
|
|
}
|
|
return str;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* time._dump -> string
|
|
*
|
|
* Dump _time_ for marshaling.
|
|
*/
|
|
|
|
static VALUE
|
|
time_dump(int argc, VALUE *argv, VALUE time)
|
|
{
|
|
VALUE str;
|
|
|
|
rb_scan_args(argc, argv, "01", 0);
|
|
str = time_mdump(time);
|
|
|
|
return str;
|
|
}
|
|
|
|
/*
|
|
* undocumented
|
|
*/
|
|
|
|
static VALUE
|
|
time_mload(VALUE time, VALUE str)
|
|
{
|
|
struct time_object *tobj;
|
|
unsigned long p, s;
|
|
time_t sec;
|
|
long usec;
|
|
unsigned char *buf;
|
|
struct vtm vtm;
|
|
int i, gmt;
|
|
long nsec;
|
|
VALUE submicro, nano_num, nano_den, offset;
|
|
wideval_t timew;
|
|
st_data_t data;
|
|
|
|
time_modify(time);
|
|
|
|
#define get_attr(attr, iffound) \
|
|
attr = rb_attr_get(str, id_##attr); \
|
|
if (!NIL_P(attr)) { \
|
|
data = id_##attr; \
|
|
iffound; \
|
|
st_delete(rb_generic_ivar_table(str), &data, 0); \
|
|
}
|
|
|
|
get_attr(nano_num, {});
|
|
get_attr(nano_den, {});
|
|
get_attr(submicro, {});
|
|
get_attr(offset, validate_utc_offset(offset));
|
|
#undef get_attr
|
|
|
|
rb_copy_generic_ivar(time, str);
|
|
|
|
StringValue(str);
|
|
buf = (unsigned char *)RSTRING_PTR(str);
|
|
if (RSTRING_LEN(str) != 8) {
|
|
rb_raise(rb_eTypeError, "marshaled time format differ");
|
|
}
|
|
|
|
p = s = 0;
|
|
for (i=0; i<4; i++) {
|
|
p |= buf[i]<<(8*i);
|
|
}
|
|
for (i=4; i<8; i++) {
|
|
s |= buf[i]<<(8*(i-4));
|
|
}
|
|
|
|
if ((p & (1UL<<31)) == 0) {
|
|
gmt = 0;
|
|
offset = Qnil;
|
|
sec = p;
|
|
usec = s;
|
|
nsec = usec * 1000;
|
|
timew = wadd(rb_time_magnify(TIMET2WV(sec)), wmulquoll(WINT2FIXWV(usec), TIME_SCALE, 1000000));
|
|
}
|
|
else {
|
|
p &= ~(1UL<<31);
|
|
gmt = (int)((p >> 30) & 0x1);
|
|
|
|
vtm.year = INT2FIX(((int)(p >> 14) & 0xffff) + 1900);
|
|
vtm.mon = ((int)(p >> 10) & 0xf) + 1;
|
|
vtm.mday = (int)(p >> 5) & 0x1f;
|
|
vtm.hour = (int) p & 0x1f;
|
|
vtm.min = (int)(s >> 26) & 0x3f;
|
|
vtm.sec = (int)(s >> 20) & 0x3f;
|
|
vtm.utc_offset = INT2FIX(0);
|
|
vtm.yday = vtm.wday = 0;
|
|
vtm.isdst = 0;
|
|
vtm.zone = "";
|
|
|
|
usec = (long)(s & 0xfffff);
|
|
nsec = usec * 1000;
|
|
|
|
|
|
vtm.subsecx = mulquo(LONG2FIX(nsec), INT2FIX(TIME_SCALE), LONG2FIX(1000000000));
|
|
if (nano_num != Qnil) {
|
|
VALUE nano = quo(num_exact(nano_num), num_exact(nano_den));
|
|
vtm.subsecx = add(vtm.subsecx, mulquo(nano, INT2FIX(TIME_SCALE), LONG2FIX(1000000000)));
|
|
}
|
|
else if (submicro != Qnil) { /* for Ruby 1.9.1 compatibility */
|
|
unsigned char *ptr;
|
|
long len;
|
|
int digit;
|
|
ptr = (unsigned char*)StringValuePtr(submicro);
|
|
len = RSTRING_LEN(submicro);
|
|
nsec = 0;
|
|
if (0 < len) {
|
|
if (10 <= (digit = ptr[0] >> 4)) goto end_submicro;
|
|
nsec += digit * 100;
|
|
if (10 <= (digit = ptr[0] & 0xf)) goto end_submicro;
|
|
nsec += digit * 10;
|
|
}
|
|
if (1 < len) {
|
|
if (10 <= (digit = ptr[1] >> 4)) goto end_submicro;
|
|
nsec += digit;
|
|
}
|
|
vtm.subsecx = add(vtm.subsecx, mulquo(LONG2FIX(nsec), INT2FIX(TIME_SCALE), LONG2FIX(1000000000)));
|
|
end_submicro: ;
|
|
}
|
|
timew = timegmw(&vtm);
|
|
}
|
|
|
|
GetTimeval(time, tobj);
|
|
tobj->tm_got = 0;
|
|
tobj->timew = timew;
|
|
if (gmt) {
|
|
TIME_SET_UTC(tobj);
|
|
}
|
|
else if (!NIL_P(offset)) {
|
|
time_set_utc_offset(time, offset);
|
|
time_fixoff(time);
|
|
}
|
|
|
|
return time;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* Time._load(string) -> time
|
|
*
|
|
* Unmarshal a dumped +Time+ object.
|
|
*/
|
|
|
|
static VALUE
|
|
time_load(VALUE klass, VALUE str)
|
|
{
|
|
VALUE time = time_s_alloc(klass);
|
|
|
|
time_mload(time, str);
|
|
return time;
|
|
}
|
|
|
|
/*
|
|
* Time is an abstraction of dates and times. Time is stored internally as
|
|
* the number of seconds with fraction since the _Epoch_, January 1, 1970
|
|
* 00:00 UTC. Also see the library modules Date. The Time class treats GMT
|
|
* (Greenwich Mean Time) and UTC (Coordinated Universal Time) as equivalent.
|
|
* GMT is the older way of referring to these baseline times but persists in
|
|
* the names of calls on POSIX systems.
|
|
*
|
|
* All times may have fraction. Be aware of this fact when comparing times
|
|
* with each other -- times that are apparently equal when displayed may be
|
|
* different when compared.
|
|
*
|
|
* Since Ruby 1.9.2, Time implementation uses a signed 63 bit integer, Bignum or Rational.
|
|
* The integer is a number of nanoseconds since the _Epoch_ which can
|
|
* represent 1823-11-12 to 2116-02-20.
|
|
* When Bignum or Rational is used (before 1823, after 2116, under nanosecond),
|
|
* Time works slower than the integer is used.
|
|
*
|
|
* = Examples
|
|
*
|
|
* All of these examples were done using the EST timezone which is GMT-5.
|
|
*
|
|
* == Creating a new Time instance
|
|
*
|
|
* You can create a new instance of time with Time.new. This will use the
|
|
* current system time. Time.now is a synonym for this. You can also
|
|
* pass parts of the time to Time.new such as year, month, minute, etc. When
|
|
* you want to construct a time this way you must pass at least a year. If you
|
|
* pass the year with nothing else time with default to January 1 of that year
|
|
* at 00:00:00 with the current system timezone. Here are some examples:
|
|
*
|
|
* Time.new(2002) #=> 2002-01-01 00:00:00 -0500
|
|
* Time.new(2002, 10) #=> 2002-10-01 00:00:00 -0500
|
|
* Time.new(2002, 10, 31) #=> 2002-10-31 00:00:00 -0500
|
|
* Time.new(2002, 10, 31, 2, 2, 2, "+02:00") #=> 2002-10-31 02:02:02 -0200
|
|
*
|
|
* You can also use #gm, #local and #utc to infer GMT, local and UTC
|
|
* timezones instead of using the current system setting.
|
|
*
|
|
* You can also create a new time using Time.at which takes the number of
|
|
* seconds (or fraction of seconds) since the {Unix
|
|
* Epoch}[http://en.wikipedia.org/wiki/Unix_time].
|
|
*
|
|
* Time.at(628232400) #=> 1989-11-28 00:00:00 -0500
|
|
*
|
|
* == Working with an instance of Time
|
|
*
|
|
* Once you have an instance of time there is a multitude of things you can do
|
|
* with it. Below are some examples. For all of the following examples, we
|
|
* will work on the assumption that you have done the following:
|
|
*
|
|
* t = Time.new(1993, 02, 24, 12, 0, 0, "+09:00")
|
|
*
|
|
* Was that a monday?
|
|
*
|
|
* t.monday? #=> false
|
|
*
|
|
* What year was that again?
|
|
*
|
|
* t.year #=> 1993
|
|
*
|
|
* Was is daylight savings at the time?
|
|
*
|
|
* t.dst? #=> false
|
|
*
|
|
* What's the day a year later?
|
|
*
|
|
* t + (60*60*24*365) #=> 1994-02-24 12:00:00 +0900
|
|
*
|
|
* How many second was that from the Unix Epoch?
|
|
*
|
|
* t.to_i #=> 730522800
|
|
*
|
|
* You can also do standard functions like compare two times.
|
|
*
|
|
* t1 = Time.new(2010)
|
|
* t2 = Time.new(2011)
|
|
*
|
|
* t1 == t2 #=> false
|
|
* t1 == t1 #=> true
|
|
* t1 < t2 #=> true
|
|
* t1 > t2 #=> false
|
|
*
|
|
* Time.new(2010,10,31).between?(t1, t2) #=> true
|
|
*/
|
|
|
|
void
|
|
Init_Time(void)
|
|
{
|
|
#undef rb_intern
|
|
#define rb_intern(str) rb_intern_const(str)
|
|
|
|
id_eq = rb_intern("==");
|
|
id_ne = rb_intern("!=");
|
|
id_quo = rb_intern("quo");
|
|
id_div = rb_intern("div");
|
|
id_cmp = rb_intern("<=>");
|
|
id_lshift = rb_intern("<<");
|
|
id_divmod = rb_intern("divmod");
|
|
id_mul = rb_intern("*");
|
|
id_submicro = rb_intern("submicro");
|
|
id_nano_num = rb_intern("nano_num");
|
|
id_nano_den = rb_intern("nano_den");
|
|
id_offset = rb_intern("offset");
|
|
|
|
rb_cTime = rb_define_class("Time", rb_cObject);
|
|
rb_include_module(rb_cTime, rb_mComparable);
|
|
|
|
rb_define_alloc_func(rb_cTime, time_s_alloc);
|
|
rb_define_singleton_method(rb_cTime, "now", time_s_now, 0);
|
|
rb_define_singleton_method(rb_cTime, "at", time_s_at, -1);
|
|
rb_define_singleton_method(rb_cTime, "utc", time_s_mkutc, -1);
|
|
rb_define_singleton_method(rb_cTime, "gm", time_s_mkutc, -1);
|
|
rb_define_singleton_method(rb_cTime, "local", time_s_mktime, -1);
|
|
rb_define_singleton_method(rb_cTime, "mktime", time_s_mktime, -1);
|
|
|
|
rb_define_method(rb_cTime, "to_i", time_to_i, 0);
|
|
rb_define_method(rb_cTime, "to_f", time_to_f, 0);
|
|
rb_define_method(rb_cTime, "to_r", time_to_r, 0);
|
|
rb_define_method(rb_cTime, "<=>", time_cmp, 1);
|
|
rb_define_method(rb_cTime, "eql?", time_eql, 1);
|
|
rb_define_method(rb_cTime, "hash", time_hash, 0);
|
|
rb_define_method(rb_cTime, "initialize", time_init, -1);
|
|
rb_define_method(rb_cTime, "initialize_copy", time_init_copy, 1);
|
|
|
|
rb_define_method(rb_cTime, "localtime", time_localtime_m, -1);
|
|
rb_define_method(rb_cTime, "gmtime", time_gmtime, 0);
|
|
rb_define_method(rb_cTime, "utc", time_gmtime, 0);
|
|
rb_define_method(rb_cTime, "getlocal", time_getlocaltime, -1);
|
|
rb_define_method(rb_cTime, "getgm", time_getgmtime, 0);
|
|
rb_define_method(rb_cTime, "getutc", time_getgmtime, 0);
|
|
|
|
rb_define_method(rb_cTime, "ctime", time_asctime, 0);
|
|
rb_define_method(rb_cTime, "asctime", time_asctime, 0);
|
|
rb_define_method(rb_cTime, "to_s", time_to_s, 0);
|
|
rb_define_method(rb_cTime, "inspect", time_to_s, 0);
|
|
rb_define_method(rb_cTime, "to_a", time_to_a, 0);
|
|
|
|
rb_define_method(rb_cTime, "+", time_plus, 1);
|
|
rb_define_method(rb_cTime, "-", time_minus, 1);
|
|
|
|
rb_define_method(rb_cTime, "succ", time_succ, 0);
|
|
rb_define_method(rb_cTime, "round", time_round, -1);
|
|
|
|
rb_define_method(rb_cTime, "sec", time_sec, 0);
|
|
rb_define_method(rb_cTime, "min", time_min, 0);
|
|
rb_define_method(rb_cTime, "hour", time_hour, 0);
|
|
rb_define_method(rb_cTime, "mday", time_mday, 0);
|
|
rb_define_method(rb_cTime, "day", time_mday, 0);
|
|
rb_define_method(rb_cTime, "mon", time_mon, 0);
|
|
rb_define_method(rb_cTime, "month", time_mon, 0);
|
|
rb_define_method(rb_cTime, "year", time_year, 0);
|
|
rb_define_method(rb_cTime, "wday", time_wday, 0);
|
|
rb_define_method(rb_cTime, "yday", time_yday, 0);
|
|
rb_define_method(rb_cTime, "isdst", time_isdst, 0);
|
|
rb_define_method(rb_cTime, "dst?", time_isdst, 0);
|
|
rb_define_method(rb_cTime, "zone", time_zone, 0);
|
|
rb_define_method(rb_cTime, "gmtoff", time_utc_offset, 0);
|
|
rb_define_method(rb_cTime, "gmt_offset", time_utc_offset, 0);
|
|
rb_define_method(rb_cTime, "utc_offset", time_utc_offset, 0);
|
|
|
|
rb_define_method(rb_cTime, "utc?", time_utc_p, 0);
|
|
rb_define_method(rb_cTime, "gmt?", time_utc_p, 0);
|
|
|
|
rb_define_method(rb_cTime, "sunday?", time_sunday, 0);
|
|
rb_define_method(rb_cTime, "monday?", time_monday, 0);
|
|
rb_define_method(rb_cTime, "tuesday?", time_tuesday, 0);
|
|
rb_define_method(rb_cTime, "wednesday?", time_wednesday, 0);
|
|
rb_define_method(rb_cTime, "thursday?", time_thursday, 0);
|
|
rb_define_method(rb_cTime, "friday?", time_friday, 0);
|
|
rb_define_method(rb_cTime, "saturday?", time_saturday, 0);
|
|
|
|
rb_define_method(rb_cTime, "tv_sec", time_to_i, 0);
|
|
rb_define_method(rb_cTime, "tv_usec", time_usec, 0);
|
|
rb_define_method(rb_cTime, "usec", time_usec, 0);
|
|
rb_define_method(rb_cTime, "tv_nsec", time_nsec, 0);
|
|
rb_define_method(rb_cTime, "nsec", time_nsec, 0);
|
|
rb_define_method(rb_cTime, "subsec", time_subsec, 0);
|
|
|
|
rb_define_method(rb_cTime, "strftime", time_strftime, 1);
|
|
|
|
/* methods for marshaling */
|
|
rb_define_method(rb_cTime, "_dump", time_dump, -1);
|
|
rb_define_singleton_method(rb_cTime, "_load", time_load, 1);
|
|
#if 0
|
|
/* Time will support marshal_dump and marshal_load in the future (1.9 maybe) */
|
|
rb_define_method(rb_cTime, "marshal_dump", time_mdump, 0);
|
|
rb_define_method(rb_cTime, "marshal_load", time_mload, 1);
|
|
#endif
|
|
|
|
#ifdef DEBUG_FIND_TIME_NUMGUESS
|
|
rb_define_virtual_variable("$find_time_numguess", find_time_numguess_getter, NULL);
|
|
#endif
|
|
}
|