1
0
Fork 0
mirror of https://github.com/ruby-opencv/ruby-opencv synced 2023-03-27 23:22:12 -04:00
ruby-opencv/ext/opencv/cvcondensation.cpp

231 lines
5.9 KiB
C++
Raw Normal View History

/************************************************************
cvcondensation.cpp -
$Author: lsxi $
Copyright (C) 2005-2006 Masakazu Yonekura
************************************************************/
#include "cvcondensation.h"
/*
* Document-class: OpenCV::CvConDensation
*
*/
__NAMESPACE_BEGIN_OPENCV
__NAMESPACE_BEGIN_CVCONDENSATION
VALUE rb_klass;
VALUE
rb_class()
{
return rb_klass;
}
void
define_ruby_class()
{
2011-08-11 13:26:54 -04:00
if (rb_klass)
return;
/*
* opencv = rb_define_module("OpenCV");
*
* note: this comment is used by rdoc.
*/
VALUE opencv = rb_module_opencv();
rb_klass = rb_define_class_under(opencv, "CvConDensation", rb_cObject);
rb_define_method(rb_klass, "dp", RUBY_METHOD_FUNC(rb_dp), 0);
rb_define_method(rb_klass, "mp", RUBY_METHOD_FUNC(rb_mp), 0);
rb_define_method(rb_klass, "dynamic_matrix", RUBY_METHOD_FUNC(rb_dynamic_matrix), 0);
rb_define_method(rb_klass, "confidence", RUBY_METHOD_FUNC(rb_confidence), 0);
rb_define_method(rb_klass, "cumulative", RUBY_METHOD_FUNC(rb_cumulative), 0);
rb_define_method(rb_klass, "state", RUBY_METHOD_FUNC(rb_state), 0);
rb_define_method(rb_klass, "samples_num", RUBY_METHOD_FUNC(rb_samples_num), 0);
rb_define_method(rb_klass, "init_sample_set", RUBY_METHOD_FUNC(rb_init_sample_set), 2);
rb_define_method(rb_klass, "update_by_time", RUBY_METHOD_FUNC(rb_update_by_time), 0);
rb_define_alias(rb_klass, "update", "update_by_time");
rb_define_method(rb_klass, "each_sample", RUBY_METHOD_FUNC(rb_each_sample), 0);
rb_define_method(rb_klass, "calculate_confidence", RUBY_METHOD_FUNC(rb_calculate_confidence), 0);
}
/*
* call-seq:
* dp -> int
*
* Return dimension of state vector
*/
VALUE
rb_dp(VALUE self)
{
return INT2FIX(CVCONDENSATION(self)->DP);
}
/*
* call-seq:
* mp -> int
*
* Return demension of measurement vector.
*/
VALUE
rb_mp(VALUE self)
{
return INT2FIX(CVCONDENSATION(self)->MP);
}
/*
* call-seq:
* dynamic_matrix -> mat
*
* Return matrix of the linear Dynamics system.
*/
VALUE
rb_dynamic_matrix(VALUE self)
{
CvConDensation *cd = CVCONDENSATION(self);
return DEPEND_OBJECT(cCvMat::rb_class(), cvInitMatHeader(ALLOC(CvMat), cd->DP, cd->DP, CV_MAKETYPE(CV_32F, 1), cd->DynamMatr), self);
}
/*
* call-seq:
* confidence -> mat
*
* Return confidence for each sample.
*/
VALUE
rb_confidence(VALUE self)
{
CvConDensation *cd = CVCONDENSATION(self);
return DEPEND_OBJECT(cCvMat::rb_class(), cvInitMatHeader(ALLOC(CvMat), cd->SamplesNum, 1, CV_MAKETYPE(CV_32F, 1), cd->flConfidence), self);
}
/*
* call-seq:
* cumulative -> mat
*
* Return cumulative confidence.
*/
VALUE
rb_cumulative(VALUE self)
{
CvConDensation *cd = CVCONDENSATION(self);
return DEPEND_OBJECT(cCvMat::rb_class(), cvInitMatHeader(ALLOC(CvMat), cd->SamplesNum, 1, CV_MAKETYPE(CV_32F, 1), cd->flCumulative), self);
}
/*
* call-seq:
* state -> mat
*
* Return vector of state
*/
VALUE
rb_state(VALUE self)
{
CvConDensation *cd = CVCONDENSATION(self);
return DEPEND_OBJECT(cCvMat::rb_class(), cvInitMatHeader(ALLOC(CvMat), cd->DP, 1, CV_MAKETYPE(CV_32F, 1), cd->State), self);
}
/*
* call-seq:
* samples_num -> int
*
* Return number of the samples
*/
VALUE
rb_samples_num(VALUE self)
{
return INT2FIX(CVCONDENSATION(self)->SamplesNum);
}
/*
* call-seq:
* init_sample_set(upper, lower)
*
* Initializes sample set for ConDensation algorithm.
* Fills the samples with values within specified(lower to upper) ranges.
*/
VALUE
rb_init_sample_set(VALUE self, VALUE lower, VALUE upper)
{
CvConDensation *cd = CVCONDENSATION(self);
CvMat *lower_bound = CVMAT(lower), *upper_bound = CVMAT(upper), lb_stub, ub_stub;
int lower_type = lower_bound->type, upper_type = lower_bound->type;
if (lower_type != CV_32FC1 || lower_bound->cols != 1) {
if (CV_MAT_DEPTH(lower_type) == CV_32F) {
lower_bound = cvReshape(lower_bound, &lb_stub, 1, lower_bound->rows * lower_bound->cols);
} else {
lower = cCvMat::new_object(cvSize(lower_bound->rows * lower_bound->cols, 1), CV_MAKETYPE(CV_32S, 1));
cvConvertScale(lower_bound, CVARR(lower));
lower_bound = CVMAT(lower);
}
}
if (upper_type != CV_32FC1 || upper_bound->cols != 1) {
if (CV_MAT_DEPTH(upper_type) == CV_32F) {
upper_bound = cvReshape(upper_bound, &ub_stub, 1, upper_bound->rows * upper_bound->cols);
} else {
upper = cCvMat::new_object(cvSize(upper_bound->rows * upper_bound->cols, 1), CV_MAKETYPE(CV_32F, 1));
cvConvertScale(upper_bound, CVARR(upper));
upper_bound = CVMAT(upper);
}
}
if (lower_bound->rows != cd->DP || upper_bound->rows != cd->DP) {
rb_raise(rb_eTypeError, "sample matrix step unmatch.");
}
cvConDensInitSampleSet(cd, lower_bound, upper_bound);
return self;
}
/*
* call-seq:
* update_by_time
*
* Estimates subsequent model state.
*/
VALUE
rb_update_by_time(VALUE self)
{
cvConDensUpdateByTime(CVCONDENSATION(self));
return self;
}
/*
* call-seq:
* each_sample{|mat| ... }
*
* Evaluate each sample by given block.
*/
VALUE
rb_each_sample(VALUE self)
{
CvConDensation *cd = CVCONDENSATION(self);
if (rb_block_given_p()) {
for (int i = 0; i < cd->SamplesNum; i++) {
rb_yield(DEPEND_OBJECT(cCvMat::rb_class(), cvInitMatHeader(ALLOC(CvMat), cd->DP, 1, CV_MAKETYPE(CV_32F, 1), cd->flSamples[i]), self));
}
}
return self;
}
/*
* call-seq:
* calculate_confidence{|value| ... }
*
* Evalute each sample by given block, then return value set to confidence.
*/
VALUE
rb_calculate_confidence(VALUE self)
{
VALUE value;
CvConDensation *cd = CVCONDENSATION(self);
if (rb_block_given_p()) {
for (int i = 0; i < cd->SamplesNum; i++) {
value = rb_yield(DEPEND_OBJECT(cCvMat::rb_class(), cvInitMatHeader(ALLOC(CvMat), cd->DP, 1, CV_MAKETYPE(CV_32F, 1), cd->flSamples[i]), self));
cd->flConfidence[i] = NUM2DBL(value);
}
}
return self;
}
__NAMESPACE_END_CVCONDENSATION
__NAMESPACE_END_OPENCV