From 11c4154b7cd44f44f599a9dbab074e9464af6d16 Mon Sep 17 00:00:00 2001 From: ser1zw Date: Sun, 3 Apr 2016 05:19:48 +0900 Subject: [PATCH] experimental implementation for OpenCV 3 --- DEVELOPERS_NOTE.md | 137 - Gemfile | 10 +- History.txt | 5 - LICENSE.txt | 21 + License.txt | 30 - Manifest.txt | 239 - README.md | 33 +- Rakefile | 96 +- config.yml | 7 - examples/alpha_blend.rb | 18 +- .../contours/bitmap-contours-with-labels.png | Bin 3387 -> 0 bytes examples/contours/bitmap-contours.png | Bin 1738 -> 0 bytes .../contours/bounding-box-detect-canny.rb | 62 - examples/contours/contour_retrieval_modes.rb | 139 - examples/contours/rotated-boxes.jpg | Bin 5985 -> 0 bytes examples/convexhull.rb | 47 - examples/face_detect.rb | 20 - examples/facedetect.rb | 15 + examples/facerec/create_csv.rb | 43 - examples/facerec/facerec_eigenfaces.rb | 132 - examples/facerec/facerec_fisherfaces.rb | 131 - examples/facerec/facerec_lbph.rb | 116 - examples/facerec/readme.md | 111 - examples/find_obj.rb | 169 - examples/haarcascade_frontalface_alt.xml | 24350 ++++++++++++++++ examples/houghcircle.rb | 22 - examples/inpaint.rb | 57 - examples/match_kdtree.rb | 88 - examples/match_template.rb | 26 - examples/paint.rb | 80 +- examples/snake.rb | 43 - examples/video.rb | 22 + ext/opencv/algorithm.cpp | 291 - ext/opencv/algorithm.h | 38 - ext/opencv/cascadeclassifier.cpp | 138 + ext/opencv/cascadeclassifier.hpp | 13 + ext/opencv/curve.cpp | 127 - ext/opencv/curve.h | 34 - ext/opencv/cvavgcomp.cpp | 64 - ext/opencv/cvavgcomp.h | 39 - ext/opencv/cvbox2d.cpp | 195 - ext/opencv/cvbox2d.h | 61 - ext/opencv/cvcapture.cpp | 607 - ext/opencv/cvcapture.h | 72 - ext/opencv/cvchain.cpp | 233 - ext/opencv/cvchain.h | 46 - ext/opencv/cvcircle32f.cpp | 126 - ext/opencv/cvcircle32f.h | 52 - ext/opencv/cvconnectedcomp.cpp | 156 - ext/opencv/cvconnectedcomp.h | 49 - ext/opencv/cvcontour.cpp | 350 - ext/opencv/cvcontour.h | 48 - ext/opencv/cvcontourtree.cpp | 96 - ext/opencv/cvcontourtree.h | 41 - ext/opencv/cvconvexitydefect.cpp | 92 - ext/opencv/cvconvexitydefect.h | 42 - ext/opencv/cverror.cpp | 115 - ext/opencv/cverror.h | 28 - ext/opencv/cvfeaturetree.cpp | 123 - ext/opencv/cvfeaturetree.h | 55 - ext/opencv/cvfont.cpp | 228 - ext/opencv/cvfont.h | 64 - ext/opencv/cvhaarclassifiercascade.cpp | 148 - ext/opencv/cvhaarclassifiercascade.h | 39 - ext/opencv/cvhistogram.cpp | 717 - ext/opencv/cvhistogram.h | 73 - ext/opencv/cvhumoments.cpp | 178 - ext/opencv/cvhumoments.h | 51 - ext/opencv/cvline.cpp | 159 - ext/opencv/cvline.h | 54 - ext/opencv/cvmat.cpp | 6086 ---- ext/opencv/cvmat.h | 290 - ext/opencv/cvmemstorage.cpp | 73 - ext/opencv/cvmemstorage.h | 50 - ext/opencv/cvmoments.cpp | 293 - ext/opencv/cvmoments.h | 75 - ext/opencv/cvpoint.cpp | 234 - ext/opencv/cvpoint.h | 64 - ext/opencv/cvpoint2d32f.cpp | 216 - ext/opencv/cvpoint2d32f.h | 63 - ext/opencv/cvpoint3d32f.cpp | 252 - ext/opencv/cvpoint3d32f.h | 66 - ext/opencv/cvrect.cpp | 338 - ext/opencv/cvrect.h | 79 - ext/opencv/cvscalar.cpp | 241 - ext/opencv/cvscalar.h | 71 - ext/opencv/cvseq.cpp | 648 - ext/opencv/cvseq.h | 75 - ext/opencv/cvsize.cpp | 227 - ext/opencv/cvsize.h | 65 - ext/opencv/cvsize2d32f.cpp | 215 - ext/opencv/cvsize2d32f.h | 64 - ext/opencv/cvslice.cpp | 126 - ext/opencv/cvslice.h | 61 - ext/opencv/cvsurfparams.cpp | 208 - ext/opencv/cvsurfparams.h | 58 - ext/opencv/cvsurfpoint.cpp | 246 - ext/opencv/cvsurfpoint.h | 52 - ext/opencv/cvtermcriteria.cpp | 198 - ext/opencv/cvtermcriteria.h | 71 - ext/opencv/cvtwopoints.cpp | 122 - ext/opencv/cvtwopoints.h | 51 - ext/opencv/cvutils.cpp | 192 - ext/opencv/cvutils.h | 30 - ext/opencv/cvvideowriter.cpp | 142 - ext/opencv/cvvideowriter.h | 43 - ext/opencv/eigenfaces.cpp | 75 - ext/opencv/eigenfaces.h | 30 - ext/opencv/error.cpp | 92 + ext/opencv/error.hpp | 16 + ext/opencv/extconf.rb | 32 +- ext/opencv/facerecognizer.cpp | 219 - ext/opencv/facerecognizer.h | 46 - ext/opencv/fisherfaces.cpp | 75 - ext/opencv/fisherfaces.h | 30 - ext/opencv/gui.cpp | 71 - ext/opencv/gui.h | 30 - ext/opencv/iplconvkernel.cpp | 198 - ext/opencv/iplconvkernel.h | 71 - ext/opencv/iplimage.cpp | 651 - ext/opencv/iplimage.h | 73 - ext/opencv/lbph.cpp | 78 - ext/opencv/lbph.h | 30 - ext/opencv/mat.cpp | 834 + ext/opencv/mat.hpp | 72 + ext/opencv/mat_drawing.cpp | 158 + ext/opencv/mat_drawing.hpp | 11 + ext/opencv/mat_imgproc.cpp | 181 + ext/opencv/mat_imgproc.hpp | 17 + ext/opencv/mouseevent.cpp | 186 - ext/opencv/mouseevent.h | 56 - ext/opencv/opencv-3.1.0 | 1 + ext/opencv/opencv.cpp | 858 +- ext/opencv/opencv.h | 405 - ext/opencv/opencv.hpp | 25 + ext/opencv/opencv_const.cpp | 381 + ext/opencv/opencv_const.hpp | 5 + ext/opencv/point.cpp | 167 + ext/opencv/point.hpp | 11 + ext/opencv/pointset.cpp | 280 - ext/opencv/pointset.h | 68 - ext/opencv/rect.cpp | 158 + ext/opencv/rect.hpp | 13 + ext/opencv/scalar.cpp | 120 + ext/opencv/scalar.hpp | 14 + ext/opencv/size.cpp | 94 + ext/opencv/size.hpp | 11 + ext/opencv/trackbar.cpp | 246 +- ext/opencv/trackbar.h | 69 - ext/opencv/trackbar.hpp | 20 + ext/opencv/videocapture.cpp | 207 + ext/opencv/videocapture.hpp | 10 + ext/opencv/window.cpp | 628 +- ext/opencv/window.h | 66 - ext/opencv/window.hpp | 21 + images/CvMat_sobel.png | Bin 198319 -> 0 bytes images/CvMat_sub_rect.png | Bin 186386 -> 0 bytes images/CvSeq_relationmap.png | Bin 6847 -> 0 bytes lib/opencv.rb | 16 +- lib/opencv/basic_structs.rb | 7 + lib/opencv/cvmat.rb | 95 + lib/opencv/psyched_yaml.rb | 22 - lib/opencv/version.rb | 3 +- ruby-opencv.gemspec | 60 +- test/eigenfaces_save.xml | 7524 ----- test/fisherfaces_save.xml | 7530 ----- test/helper.rb | 120 +- test/lbph_save.xml | 4304 --- test/legacy/test_cvmat.rb | 213 + test/legacy/test_cvmat_imageprocessing.rb | 84 + test/samples/airplane.jpg | Bin 85238 -> 0 bytes test/samples/baboon.jpg | Bin 179920 -> 0 bytes test/samples/baboon200.jpg | Bin 21952 -> 0 bytes test/samples/baboon200_rotated.jpg | Bin 11226 -> 0 bytes test/samples/blank0.jpg | Bin 3890 -> 0 bytes test/samples/blank1.jpg | Bin 13680 -> 0 bytes test/samples/blank2.jpg | Bin 9757 -> 0 bytes test/samples/blank3.jpg | Bin 6454 -> 0 bytes test/samples/blank4.jpg | Bin 12853 -> 0 bytes test/samples/blank5.jpg | Bin 79200 -> 0 bytes test/samples/blank6.jpg | Bin 4860 -> 0 bytes test/samples/blank7.jpg | Bin 196662 -> 0 bytes test/samples/blank8.jpg | Bin 196662 -> 0 bytes test/samples/blank9.jpg | Bin 2935 -> 0 bytes test/samples/chessboard.jpg | Bin 1846 -> 0 bytes test/samples/contours.jpg | Bin 4492 -> 0 bytes test/samples/fruits.jpg | Bin 82429 -> 0 bytes ...-and-plant-flowers-in-the-park-725x480.jpg | Bin 0 -> 70533 bytes test/samples/haarcascade_frontalface_alt.xml | 24350 ++++++++++++++++ .../haarcascade_frontalface_alt.xml.gz | Bin 105708 -> 0 bytes test/samples/inpaint-mask.bmp | Bin 196662 -> 0 bytes test/samples/lena-eyes.jpg | Bin 3174 -> 0 bytes test/samples/lena-inpaint.jpg | Bin 15825 -> 0 bytes test/samples/lena.jpg | Bin 91814 -> 0 bytes test/samples/lena.png | Bin 0 -> 620636 bytes test/samples/lines.jpg | Bin 3096 -> 0 bytes test/samples/messy0.jpg | Bin 36315 -> 0 bytes test/samples/messy1.jpg | Bin 625989 -> 0 bytes test/samples/one_way_train_0000.jpg | Bin 28611 -> 0 bytes test/samples/one_way_train_0001.jpg | Bin 29553 -> 0 bytes test/samples/partially_blank0.jpg | Bin 2696 -> 0 bytes test/samples/partially_blank1.jpg | Bin 2868 -> 0 bytes test/samples/smooth0.jpg | Bin 7195 -> 0 bytes test/samples/smooth1.jpg | Bin 23269 -> 0 bytes test/samples/smooth2.jpg | Bin 162019 -> 0 bytes test/samples/smooth3.jpg | Bin 86460 -> 0 bytes test/samples/smooth4.jpg | Bin 28808 -> 0 bytes test/samples/smooth5.jpg | Bin 12776 -> 0 bytes test/samples/smooth6.jpg | Bin 35063 -> 0 bytes test/samples/str-cv-rotated.jpg | Bin 2329 -> 0 bytes test/samples/str-cv.jpg | Bin 2337 -> 0 bytes test/samples/str-ov.jpg | Bin 2443 -> 0 bytes test/samples/stuff.jpg | Bin 29365 -> 0 bytes test/test_cascadeclassifier.rb | 61 + test/test_curve.rb | 43 - test/test_cvavgcomp.rb | 24 - test/test_cvbox2d.rb | 76 - test/test_cvcapture.rb | 183 - test/test_cvchain.rb | 108 - test/test_cvcircle32f.rb | 41 - test/test_cvconnectedcomp.rb | 61 - test/test_cvcontour.rb | 150 - test/test_cvcontourtree.rb | 43 - test/test_cverror.rb | 50 - test/test_cvfeaturetree.rb | 65 - test/test_cvfont.rb | 58 - test/test_cvhaarclassifiercascade.rb | 63 - test/test_cvhistogram.rb | 271 - test/test_cvhumoments.rb | 83 - test/test_cvline.rb | 50 - test/test_cvmat.rb | 3036 -- test/test_cvmat_drawing.rb | 349 - test/test_cvmat_dxt.rb | 150 - test/test_cvmat_imageprocessing.rb | 2085 -- test/test_cvmoments.rb | 180 - test/test_cvpoint.rb | 75 - test/test_cvpoint2d32f.rb | 75 - test/test_cvpoint3d32f.rb | 93 - test/test_cvrect.rb | 144 - test/test_cvscalar.rb | 113 - test/test_cvseq.rb | 311 - test/test_cvsize.rb | 75 - test/test_cvsize2d32f.rb | 75 - test/test_cvslice.rb | 31 - test/test_cvsurfparams.rb | 57 - test/test_cvsurfpoint.rb | 66 - test/test_cvtermcriteria.rb | 56 - test/test_cvtwopoints.rb | 40 - test/test_cvvideowriter.rb | 58 - test/test_eigenfaces.rb | 93 - test/test_fisherfaces.rb | 93 - test/test_iplconvkernel.rb | 54 - test/test_iplimage.rb | 232 - test/test_lbph.rb | 166 - test/test_mat.rb | 456 + test/test_mat_imgproc.rb | 151 + test/test_mouseevent.rb | 17 - test/test_opencv.rb | 386 +- test/test_pointset.rb | 128 - test/test_preliminary.rb | 130 - test/test_trackbar.rb | 47 - test/test_videocapture.rb | 59 + test/test_window.rb | 115 - yard_extension.rb | 28 +- 264 files changed, 53296 insertions(+), 51592 deletions(-) delete mode 100644 DEVELOPERS_NOTE.md delete mode 100644 History.txt create mode 100644 LICENSE.txt delete mode 100644 License.txt delete mode 100644 Manifest.txt delete mode 100644 config.yml mode change 100755 => 100644 examples/alpha_blend.rb delete mode 100644 examples/contours/bitmap-contours-with-labels.png delete mode 100644 examples/contours/bitmap-contours.png delete mode 100755 examples/contours/bounding-box-detect-canny.rb delete mode 100755 examples/contours/contour_retrieval_modes.rb delete mode 100644 examples/contours/rotated-boxes.jpg delete mode 100755 examples/convexhull.rb delete mode 100755 examples/face_detect.rb create mode 100644 examples/facedetect.rb delete mode 100755 examples/facerec/create_csv.rb delete mode 100755 examples/facerec/facerec_eigenfaces.rb delete mode 100755 examples/facerec/facerec_fisherfaces.rb delete mode 100755 examples/facerec/facerec_lbph.rb delete mode 100644 examples/facerec/readme.md delete mode 100755 examples/find_obj.rb create mode 100644 examples/haarcascade_frontalface_alt.xml delete mode 100755 examples/houghcircle.rb delete mode 100755 examples/inpaint.rb delete mode 100755 examples/match_kdtree.rb delete mode 100755 examples/match_template.rb mode change 100755 => 100644 examples/paint.rb delete mode 100755 examples/snake.rb create mode 100644 examples/video.rb delete mode 100644 ext/opencv/algorithm.cpp delete mode 100644 ext/opencv/algorithm.h create mode 100644 ext/opencv/cascadeclassifier.cpp create mode 100644 ext/opencv/cascadeclassifier.hpp delete mode 100644 ext/opencv/curve.cpp delete mode 100644 ext/opencv/curve.h delete mode 100644 ext/opencv/cvavgcomp.cpp delete mode 100644 ext/opencv/cvavgcomp.h delete mode 100644 ext/opencv/cvbox2d.cpp delete mode 100644 ext/opencv/cvbox2d.h delete mode 100644 ext/opencv/cvcapture.cpp delete mode 100644 ext/opencv/cvcapture.h delete mode 100644 ext/opencv/cvchain.cpp delete mode 100644 ext/opencv/cvchain.h delete mode 100644 ext/opencv/cvcircle32f.cpp delete mode 100644 ext/opencv/cvcircle32f.h delete mode 100644 ext/opencv/cvconnectedcomp.cpp delete mode 100644 ext/opencv/cvconnectedcomp.h delete mode 100644 ext/opencv/cvcontour.cpp delete mode 100644 ext/opencv/cvcontour.h delete mode 100644 ext/opencv/cvcontourtree.cpp delete mode 100644 ext/opencv/cvcontourtree.h delete mode 100644 ext/opencv/cvconvexitydefect.cpp delete mode 100644 ext/opencv/cvconvexitydefect.h delete mode 100644 ext/opencv/cverror.cpp delete mode 100644 ext/opencv/cverror.h delete mode 100644 ext/opencv/cvfeaturetree.cpp delete mode 100644 ext/opencv/cvfeaturetree.h delete mode 100644 ext/opencv/cvfont.cpp delete mode 100644 ext/opencv/cvfont.h delete mode 100644 ext/opencv/cvhaarclassifiercascade.cpp delete mode 100644 ext/opencv/cvhaarclassifiercascade.h delete mode 100644 ext/opencv/cvhistogram.cpp delete mode 100644 ext/opencv/cvhistogram.h delete mode 100644 ext/opencv/cvhumoments.cpp delete mode 100644 ext/opencv/cvhumoments.h delete mode 100644 ext/opencv/cvline.cpp delete mode 100644 ext/opencv/cvline.h delete mode 100644 ext/opencv/cvmat.cpp delete mode 100644 ext/opencv/cvmat.h delete mode 100644 ext/opencv/cvmemstorage.cpp delete mode 100644 ext/opencv/cvmemstorage.h delete mode 100644 ext/opencv/cvmoments.cpp delete mode 100644 ext/opencv/cvmoments.h delete mode 100644 ext/opencv/cvpoint.cpp delete mode 100644 ext/opencv/cvpoint.h delete mode 100644 ext/opencv/cvpoint2d32f.cpp delete mode 100644 ext/opencv/cvpoint2d32f.h delete mode 100644 ext/opencv/cvpoint3d32f.cpp delete mode 100644 ext/opencv/cvpoint3d32f.h delete mode 100644 ext/opencv/cvrect.cpp delete mode 100644 ext/opencv/cvrect.h delete mode 100644 ext/opencv/cvscalar.cpp delete mode 100644 ext/opencv/cvscalar.h delete mode 100644 ext/opencv/cvseq.cpp delete mode 100644 ext/opencv/cvseq.h delete mode 100644 ext/opencv/cvsize.cpp delete mode 100644 ext/opencv/cvsize.h delete mode 100644 ext/opencv/cvsize2d32f.cpp delete mode 100644 ext/opencv/cvsize2d32f.h delete mode 100644 ext/opencv/cvslice.cpp delete mode 100644 ext/opencv/cvslice.h delete mode 100644 ext/opencv/cvsurfparams.cpp delete mode 100644 ext/opencv/cvsurfparams.h delete mode 100644 ext/opencv/cvsurfpoint.cpp delete mode 100644 ext/opencv/cvsurfpoint.h delete mode 100644 ext/opencv/cvtermcriteria.cpp delete mode 100644 ext/opencv/cvtermcriteria.h delete mode 100644 ext/opencv/cvtwopoints.cpp delete mode 100644 ext/opencv/cvtwopoints.h delete mode 100644 ext/opencv/cvutils.cpp delete mode 100644 ext/opencv/cvutils.h delete mode 100644 ext/opencv/cvvideowriter.cpp delete mode 100644 ext/opencv/cvvideowriter.h delete mode 100644 ext/opencv/eigenfaces.cpp delete mode 100644 ext/opencv/eigenfaces.h create mode 100644 ext/opencv/error.cpp create mode 100644 ext/opencv/error.hpp delete mode 100644 ext/opencv/facerecognizer.cpp delete mode 100644 ext/opencv/facerecognizer.h delete mode 100644 ext/opencv/fisherfaces.cpp delete mode 100644 ext/opencv/fisherfaces.h delete mode 100644 ext/opencv/gui.cpp delete mode 100644 ext/opencv/gui.h delete mode 100644 ext/opencv/iplconvkernel.cpp delete mode 100644 ext/opencv/iplconvkernel.h delete mode 100644 ext/opencv/iplimage.cpp delete mode 100644 ext/opencv/iplimage.h delete mode 100644 ext/opencv/lbph.cpp delete mode 100644 ext/opencv/lbph.h create mode 100644 ext/opencv/mat.cpp create mode 100644 ext/opencv/mat.hpp create mode 100644 ext/opencv/mat_drawing.cpp create mode 100644 ext/opencv/mat_drawing.hpp create mode 100644 ext/opencv/mat_imgproc.cpp create mode 100644 ext/opencv/mat_imgproc.hpp delete mode 100644 ext/opencv/mouseevent.cpp delete mode 100644 ext/opencv/mouseevent.h create mode 120000 ext/opencv/opencv-3.1.0 delete mode 100644 ext/opencv/opencv.h create mode 100644 ext/opencv/opencv.hpp create mode 100644 ext/opencv/opencv_const.cpp create mode 100644 ext/opencv/opencv_const.hpp create mode 100644 ext/opencv/point.cpp create mode 100644 ext/opencv/point.hpp delete mode 100644 ext/opencv/pointset.cpp delete mode 100644 ext/opencv/pointset.h create mode 100644 ext/opencv/rect.cpp create mode 100644 ext/opencv/rect.hpp create mode 100644 ext/opencv/scalar.cpp create mode 100644 ext/opencv/scalar.hpp create mode 100644 ext/opencv/size.cpp create mode 100644 ext/opencv/size.hpp delete mode 100644 ext/opencv/trackbar.h create mode 100644 ext/opencv/trackbar.hpp create mode 100644 ext/opencv/videocapture.cpp create mode 100644 ext/opencv/videocapture.hpp delete mode 100644 ext/opencv/window.h create mode 100644 ext/opencv/window.hpp delete mode 100644 images/CvMat_sobel.png delete mode 100644 images/CvMat_sub_rect.png delete mode 100644 images/CvSeq_relationmap.png mode change 100755 => 100644 lib/opencv.rb create mode 100644 lib/opencv/basic_structs.rb create mode 100644 lib/opencv/cvmat.rb delete mode 100644 lib/opencv/psyched_yaml.rb mode change 100755 => 100644 lib/opencv/version.rb delete mode 100644 test/eigenfaces_save.xml delete mode 100644 test/fisherfaces_save.xml delete mode 100644 test/lbph_save.xml create mode 100755 test/legacy/test_cvmat.rb create mode 100755 test/legacy/test_cvmat_imageprocessing.rb delete mode 100644 test/samples/airplane.jpg delete mode 100644 test/samples/baboon.jpg delete mode 100644 test/samples/baboon200.jpg delete mode 100644 test/samples/baboon200_rotated.jpg delete mode 100644 test/samples/blank0.jpg delete mode 100644 test/samples/blank1.jpg delete mode 100644 test/samples/blank2.jpg delete mode 100644 test/samples/blank3.jpg delete mode 100644 test/samples/blank4.jpg delete mode 100644 test/samples/blank5.jpg delete mode 100644 test/samples/blank6.jpg delete mode 100644 test/samples/blank7.jpg delete mode 100644 test/samples/blank8.jpg delete mode 100644 test/samples/blank9.jpg delete mode 100644 test/samples/chessboard.jpg delete mode 100644 test/samples/contours.jpg delete mode 100644 test/samples/fruits.jpg create mode 100644 test/samples/girls-play-and-plant-flowers-in-the-park-725x480.jpg create mode 100644 test/samples/haarcascade_frontalface_alt.xml delete mode 100644 test/samples/haarcascade_frontalface_alt.xml.gz delete mode 100644 test/samples/inpaint-mask.bmp delete mode 100644 test/samples/lena-eyes.jpg delete mode 100644 test/samples/lena-inpaint.jpg delete mode 100644 test/samples/lena.jpg create mode 100644 test/samples/lena.png delete mode 100644 test/samples/lines.jpg delete mode 100644 test/samples/messy0.jpg delete mode 100644 test/samples/messy1.jpg delete mode 100644 test/samples/one_way_train_0000.jpg delete mode 100644 test/samples/one_way_train_0001.jpg delete mode 100644 test/samples/partially_blank0.jpg delete mode 100644 test/samples/partially_blank1.jpg delete mode 100644 test/samples/smooth0.jpg delete mode 100644 test/samples/smooth1.jpg delete mode 100644 test/samples/smooth2.jpg delete mode 100644 test/samples/smooth3.jpg delete mode 100644 test/samples/smooth4.jpg delete mode 100644 test/samples/smooth5.jpg delete mode 100644 test/samples/smooth6.jpg delete mode 100644 test/samples/str-cv-rotated.jpg delete mode 100644 test/samples/str-cv.jpg delete mode 100644 test/samples/str-ov.jpg delete mode 100644 test/samples/stuff.jpg create mode 100755 test/test_cascadeclassifier.rb delete mode 100755 test/test_curve.rb delete mode 100755 test/test_cvavgcomp.rb delete mode 100755 test/test_cvbox2d.rb delete mode 100755 test/test_cvcapture.rb delete mode 100755 test/test_cvchain.rb delete mode 100755 test/test_cvcircle32f.rb delete mode 100755 test/test_cvconnectedcomp.rb delete mode 100755 test/test_cvcontour.rb delete mode 100755 test/test_cvcontourtree.rb delete mode 100755 test/test_cverror.rb delete mode 100755 test/test_cvfeaturetree.rb delete mode 100755 test/test_cvfont.rb delete mode 100755 test/test_cvhaarclassifiercascade.rb delete mode 100755 test/test_cvhistogram.rb delete mode 100755 test/test_cvhumoments.rb delete mode 100755 test/test_cvline.rb delete mode 100755 test/test_cvmat.rb delete mode 100755 test/test_cvmat_drawing.rb delete mode 100755 test/test_cvmat_dxt.rb delete mode 100755 test/test_cvmat_imageprocessing.rb delete mode 100755 test/test_cvmoments.rb delete mode 100755 test/test_cvpoint.rb delete mode 100755 test/test_cvpoint2d32f.rb delete mode 100755 test/test_cvpoint3d32f.rb delete mode 100755 test/test_cvrect.rb delete mode 100755 test/test_cvscalar.rb delete mode 100755 test/test_cvseq.rb delete mode 100755 test/test_cvsize.rb delete mode 100755 test/test_cvsize2d32f.rb delete mode 100755 test/test_cvslice.rb delete mode 100755 test/test_cvsurfparams.rb delete mode 100755 test/test_cvsurfpoint.rb delete mode 100755 test/test_cvtermcriteria.rb delete mode 100755 test/test_cvtwopoints.rb delete mode 100755 test/test_cvvideowriter.rb delete mode 100755 test/test_eigenfaces.rb delete mode 100755 test/test_fisherfaces.rb delete mode 100755 test/test_iplconvkernel.rb delete mode 100755 test/test_iplimage.rb delete mode 100755 test/test_lbph.rb create mode 100755 test/test_mat.rb create mode 100755 test/test_mat_imgproc.rb delete mode 100755 test/test_mouseevent.rb delete mode 100755 test/test_pointset.rb delete mode 100755 test/test_preliminary.rb delete mode 100755 test/test_trackbar.rb create mode 100755 test/test_videocapture.rb delete mode 100755 test/test_window.rb diff --git a/DEVELOPERS_NOTE.md b/DEVELOPERS_NOTE.md deleted file mode 100644 index 650ce34..0000000 --- a/DEVELOPERS_NOTE.md +++ /dev/null @@ -1,137 +0,0 @@ -# DEVELOPER'S NOTE - -## Requirement to develop ruby-opencv - -* OpenCV -* Git -* Microsoft Visual C++ (for mswin32) - * -* MinGW and MSYS (for mingw32) - * gcc, g++ and MSYS are needed. - * -* Some gems (see Gemfile) - * [bundler](https://github.com/carlhuda/bundler/) - * [hoe](https://github.com/seattlerb/hoe) - * [hoe-gemspec](https://github.com/flavorjones/hoe-gemspec) - * [rake-compiler](https://github.com/luislavena/rake-compiler) - - -## Create ruby-opencv gem -Run the following commands. -When you use mingw32, use **MSYS console**, or when you use mswin32, -use [**Visual Studio Command Prompt**](http://msdn.microsoft.com/en-us/library/ms229859.aspx) -instead of cmd.exe. - -``` -$ git clone git://github.com/ruby-opencv/ruby-opencv.git -$ cd ruby-opencv -$ git checkout master -$ bundle install -$ git ls-files > Manifest.txt -$ rake gem:spec -$ rake gem -``` -**ruby-opencv-x.y.z.gem** will be created in **pkg** directory. - -To create pre-build binaries, create a config file firstly: - -```yml -# config.yml -platform: mingw32 -rubies: - - C:/ruby-1.9.3-p392-mingw32/bin/ruby.exe - - C:/ruby-2.0.0-p0-mingw32/bin/ruby.exe -extopts: - - --with-opencv-include=C:/opencv/build/include - - --with-opencv-lib=C:/opencv/build/x86/mingw/lib -``` - -Entries are below: - -- **platform**: Target platform (e.g. mingw32, mswin32) -- **rubies**: Array of target versions of ruby's paths (You can create fat gems if you specify multiple versions of ruby) -- **extopts**: Array of options to be passed to **extconf.rb** - -Then, run the following command: - -``` -$ rake gem:precompile CONFIG=config.yml -``` - -**ruby-opencv-x.y.z-mingw32.gem** will be created when you use mingw32, or -**ruby-opencv-x.y.z-x86-mswin32.gem** when you use mswin32. - - -## Install ruby-opencv manually -### Linux/Mac - -``` -$ git clone git://github.com/ruby-opencv/ruby-opencv.git -$ cd ruby-opencv -$ git checkout master -$ ruby ext/opencv/extconf.rb --with-opencv-dir=/path/to/opencvdir -$ make -$ make install -``` - -Note: **/path/to/opencvdir** is the directory where you installed OpenCV. - - -### Windows (mswin32) - -Run the following commands on [**Visual Studio Command Prompt**](http://msdn.microsoft.com/en-us/library/ms229859.aspx). - -``` -$ git clone git://github.com/ruby-opencv/ruby-opencv.git -$ cd ruby-opencv -$ git checkout master -$ ruby ext/opencv/extconf.rb --with-opencv-dir=C:\path\to\opencvdir\install # for your own built OpenCV library -$ nmake -$ nmake install -``` - -To use pre-built OpenCV libraries, set the following option to extconf.rb. - -``` -$ ruby ext/opencv/extconf.rb --with-opencv-include=C:\path\to\opencvdir\build\include --with-opencv-lib=C:\path\to\opencvdir\build\x86\vc10\lib -``` - - -### Windows (mingw32) - -Run the following commands on **MSYS console**. - -``` -$ git clone git://github.com/ruby-opencv/ruby-opencv.git -$ cd ruby-opencv -$ git checkout master -$ ruby ext/opencv/extconf.rb --with-opencv-dir=/C/path/to/opencvdir/install # for your own built OpenCV library -$ make -$ make install -``` - -To use pre-built OpenCV libraries, set the following option to extconf.rb. - -``` -$ ruby ext/opencv/extconf.rb --with-opencv-include=/c/path/to/opencvdir/build/include --with-opencv-lib=/c/path/to/opencvdir/build/x86/mingw/lib -``` - - -## Run tests - -To run all tests, run **test/runner.rb** - -``` -$ cd ruby-opencv/test -$ ruby runner.rb -``` - -To run tests of the specified function, run a specific test with --name option. - -The following sample runs tests for CvMat#initialize - -``` -$ cd ruby-opencv/test -$ ruby test_cvmat.rb --name=test_initialize -``` - diff --git a/Gemfile b/Gemfile index 0cb99e2..3214abf 100644 --- a/Gemfile +++ b/Gemfile @@ -1,9 +1,5 @@ source 'https://rubygems.org' -group :development do - gem "hoe" - gem "hoe-gemspec" - gem "rake-compiler" - gem "yard" -end - +# Specify your gem's dependencies in ruby-opencv.gemspec +gemspec +gem 'rake-compiler' diff --git a/History.txt b/History.txt deleted file mode 100644 index c301152..0000000 --- a/History.txt +++ /dev/null @@ -1,5 +0,0 @@ -=== 0.0.6 / 2008-06-27 - -* First gem release. - - * Some OpenCV function wrapped. diff --git a/LICENSE.txt b/LICENSE.txt new file mode 100644 index 0000000..df53a6c --- /dev/null +++ b/LICENSE.txt @@ -0,0 +1,21 @@ +The MIT License (MIT) + +Copyright (c) 2016 ser1zw + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in +all copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN +THE SOFTWARE. diff --git a/License.txt b/License.txt deleted file mode 100644 index 896d146..0000000 --- a/License.txt +++ /dev/null @@ -1,30 +0,0 @@ -The BSD License - -Copyright (c) 2008, Masakazu Yonekura -All rights reserved. - -Redistribution and use of this software in source and binary forms, with or without modification, are -permitted provided that the following conditions are met: - -* Redistributions of source code must retain the above - copyright notice, this list of conditions and the - following disclaimer. - -* Redistributions in binary form must reproduce the above - copyright notice, this list of conditions and the - following disclaimer in the documentation and/or other - materials provided with the distribution. - -* Neither the name of Masakazu Yonekura. nor the names of its - contributors may be used to endorse or promote products - derived from this software without specific prior - written permission of Masakazu Yonekura. - -THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED -WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A -PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR -ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT -LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS -INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR -TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF -ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. diff --git a/Manifest.txt b/Manifest.txt deleted file mode 100644 index c48551b..0000000 --- a/Manifest.txt +++ /dev/null @@ -1,239 +0,0 @@ -.gitignore -.yardopts -DEVELOPERS_NOTE.md -Gemfile -History.txt -License.txt -Manifest.txt -README.md -Rakefile -config.yml -examples/alpha_blend.rb -examples/contours/bitmap-contours-with-labels.png -examples/contours/bitmap-contours.png -examples/contours/bounding-box-detect-canny.rb -examples/contours/contour_retrieval_modes.rb -examples/contours/rotated-boxes.jpg -examples/convexhull.rb -examples/face_detect.rb -examples/facerec/create_csv.rb -examples/facerec/facerec_eigenfaces.rb -examples/facerec/facerec_fisherfaces.rb -examples/facerec/facerec_lbph.rb -examples/facerec/readme.md -examples/find_obj.rb -examples/houghcircle.rb -examples/images/box.png -examples/images/box_in_scene.png -examples/images/inpaint.png -examples/images/lena-256x256.jpg -examples/images/lena-eyes.jpg -examples/images/lenna-rotated.jpg -examples/images/lenna.jpg -examples/images/stuff.jpg -examples/images/tiffany.jpg -examples/inpaint.rb -examples/match_kdtree.rb -examples/match_template.rb -examples/paint.rb -examples/snake.rb -ext/opencv/algorithm.cpp -ext/opencv/algorithm.h -ext/opencv/curve.cpp -ext/opencv/curve.h -ext/opencv/cvavgcomp.cpp -ext/opencv/cvavgcomp.h -ext/opencv/cvbox2d.cpp -ext/opencv/cvbox2d.h -ext/opencv/cvcapture.cpp -ext/opencv/cvcapture.h -ext/opencv/cvchain.cpp -ext/opencv/cvchain.h -ext/opencv/cvcircle32f.cpp -ext/opencv/cvcircle32f.h -ext/opencv/cvconnectedcomp.cpp -ext/opencv/cvconnectedcomp.h -ext/opencv/cvcontour.cpp -ext/opencv/cvcontour.h -ext/opencv/cvcontourtree.cpp -ext/opencv/cvcontourtree.h -ext/opencv/cvconvexitydefect.cpp -ext/opencv/cvconvexitydefect.h -ext/opencv/cverror.cpp -ext/opencv/cverror.h -ext/opencv/cvfeaturetree.cpp -ext/opencv/cvfeaturetree.h -ext/opencv/cvfont.cpp -ext/opencv/cvfont.h -ext/opencv/cvhaarclassifiercascade.cpp -ext/opencv/cvhaarclassifiercascade.h -ext/opencv/cvhistogram.cpp -ext/opencv/cvhistogram.h -ext/opencv/cvhumoments.cpp -ext/opencv/cvhumoments.h -ext/opencv/cvline.cpp -ext/opencv/cvline.h -ext/opencv/cvmat.cpp -ext/opencv/cvmat.h -ext/opencv/cvmemstorage.cpp -ext/opencv/cvmemstorage.h -ext/opencv/cvmoments.cpp -ext/opencv/cvmoments.h -ext/opencv/cvpoint.cpp -ext/opencv/cvpoint.h -ext/opencv/cvpoint2d32f.cpp -ext/opencv/cvpoint2d32f.h -ext/opencv/cvpoint3d32f.cpp -ext/opencv/cvpoint3d32f.h -ext/opencv/cvrect.cpp -ext/opencv/cvrect.h -ext/opencv/cvscalar.cpp -ext/opencv/cvscalar.h -ext/opencv/cvseq.cpp -ext/opencv/cvseq.h -ext/opencv/cvsize.cpp -ext/opencv/cvsize.h -ext/opencv/cvsize2d32f.cpp -ext/opencv/cvsize2d32f.h -ext/opencv/cvslice.cpp -ext/opencv/cvslice.h -ext/opencv/cvsurfparams.cpp -ext/opencv/cvsurfparams.h -ext/opencv/cvsurfpoint.cpp -ext/opencv/cvsurfpoint.h -ext/opencv/cvtermcriteria.cpp -ext/opencv/cvtermcriteria.h -ext/opencv/cvtwopoints.cpp -ext/opencv/cvtwopoints.h -ext/opencv/cvutils.cpp -ext/opencv/cvutils.h -ext/opencv/cvvideowriter.cpp -ext/opencv/cvvideowriter.h -ext/opencv/eigenfaces.cpp -ext/opencv/eigenfaces.h -ext/opencv/extconf.rb -ext/opencv/facerecognizer.cpp -ext/opencv/facerecognizer.h -ext/opencv/fisherfaces.cpp -ext/opencv/fisherfaces.h -ext/opencv/gui.cpp -ext/opencv/gui.h -ext/opencv/iplconvkernel.cpp -ext/opencv/iplconvkernel.h -ext/opencv/iplimage.cpp -ext/opencv/iplimage.h -ext/opencv/lbph.cpp -ext/opencv/lbph.h -ext/opencv/mouseevent.cpp -ext/opencv/mouseevent.h -ext/opencv/opencv.cpp -ext/opencv/opencv.h -ext/opencv/pointset.cpp -ext/opencv/pointset.h -ext/opencv/trackbar.cpp -ext/opencv/trackbar.h -ext/opencv/window.cpp -ext/opencv/window.h -images/CvMat_sobel.png -images/CvMat_sub_rect.png -images/CvSeq_relationmap.png -lib/opencv.rb -lib/opencv/psyched_yaml.rb -lib/opencv/version.rb -ruby-opencv.gemspec -test/eigenfaces_save.xml -test/fisherfaces_save.xml -test/helper.rb -test/lbph_save.xml -test/runner.rb -test/samples/airplane.jpg -test/samples/baboon.jpg -test/samples/baboon200.jpg -test/samples/baboon200_rotated.jpg -test/samples/blank0.jpg -test/samples/blank1.jpg -test/samples/blank2.jpg -test/samples/blank3.jpg -test/samples/blank4.jpg -test/samples/blank5.jpg -test/samples/blank6.jpg -test/samples/blank7.jpg -test/samples/blank8.jpg -test/samples/blank9.jpg -test/samples/cat.jpg -test/samples/chessboard.jpg -test/samples/contours.jpg -test/samples/fruits.jpg -test/samples/haarcascade_frontalface_alt.xml.gz -test/samples/inpaint-mask.bmp -test/samples/lena-256x256.jpg -test/samples/lena-32x32.jpg -test/samples/lena-eyes.jpg -test/samples/lena-inpaint.jpg -test/samples/lena.jpg -test/samples/lines.jpg -test/samples/messy0.jpg -test/samples/messy1.jpg -test/samples/movie_sample.avi -test/samples/one_way_train_0000.jpg -test/samples/one_way_train_0001.jpg -test/samples/partially_blank0.jpg -test/samples/partially_blank1.jpg -test/samples/smooth0.jpg -test/samples/smooth1.jpg -test/samples/smooth2.jpg -test/samples/smooth3.jpg -test/samples/smooth4.jpg -test/samples/smooth5.jpg -test/samples/smooth6.jpg -test/samples/str-cv-rotated.jpg -test/samples/str-cv.jpg -test/samples/str-ov.jpg -test/samples/stuff.jpg -test/test_curve.rb -test/test_cvavgcomp.rb -test/test_cvbox2d.rb -test/test_cvcapture.rb -test/test_cvchain.rb -test/test_cvcircle32f.rb -test/test_cvconnectedcomp.rb -test/test_cvcontour.rb -test/test_cvcontourtree.rb -test/test_cverror.rb -test/test_cvfeaturetree.rb -test/test_cvfont.rb -test/test_cvhaarclassifiercascade.rb -test/test_cvhistogram.rb -test/test_cvhumoments.rb -test/test_cvline.rb -test/test_cvmat.rb -test/test_cvmat_drawing.rb -test/test_cvmat_dxt.rb -test/test_cvmat_imageprocessing.rb -test/test_cvmoments.rb -test/test_cvpoint.rb -test/test_cvpoint2d32f.rb -test/test_cvpoint3d32f.rb -test/test_cvrect.rb -test/test_cvscalar.rb -test/test_cvseq.rb -test/test_cvsize.rb -test/test_cvsize2d32f.rb -test/test_cvslice.rb -test/test_cvsurfparams.rb -test/test_cvsurfpoint.rb -test/test_cvtermcriteria.rb -test/test_cvtwopoints.rb -test/test_cvvideowriter.rb -test/test_eigenfaces.rb -test/test_fisherfaces.rb -test/test_iplconvkernel.rb -test/test_iplimage.rb -test/test_lbph.rb -test/test_mouseevent.rb -test/test_opencv.rb -test/test_pointset.rb -test/test_preliminary.rb -test/test_trackbar.rb -test/test_window.rb -yard_extension.rb diff --git a/README.md b/README.md index 60348b7..35a8ec6 100644 --- a/README.md +++ b/README.md @@ -3,7 +3,7 @@ An OpenCV wrapper for Ruby. * Web site: -* Ruby 1.9.3, 2.x and OpenCV 2.4.10 are supported. +* Ruby 2.x and OpenCV 3.1.0 are supported. ## Requirement @@ -41,7 +41,6 @@ A sample to load and display an image. An equivalent code of [this tutorial](htt ```ruby require 'opencv' -include OpenCV if ARGV.size == 0 puts "Usage: ruby #{__FILE__} ImageToLoadAndDisplay" @@ -50,15 +49,15 @@ end image = nil begin - image = CvMat.load(ARGV[0], CV_LOAD_IMAGE_COLOR) # Read the file. + image = Cv::imread(ARGV[0], Cv::CV_LOAD_IMAGE_COLOR) # Read the file. rescue puts 'Could not open or find the image.' exit end -window = GUI::Window.new('Display window') # Create a window for display. +window = Cv::Window.new('Display window') # Create a window for display. window.show(image) # Show our image inside it. -GUI::wait_key # Wait for a keystroke in the window. +Cv::wait_key # Wait for a keystroke in the window. ``` ### Face Detection @@ -67,25 +66,25 @@ A sample to detect faces from an image. ```ruby require 'opencv' -include OpenCV -if ARGV.length < 2 - puts "Usage: ruby #{__FILE__} source dest" +if ARGV.length < 1 + puts "Usage: ruby #{__FILE__} image" exit end -data = './data/haarcascades/haarcascade_frontalface_alt.xml' -detector = CvHaarClassifierCascade::load(data) -image = CvMat.load(ARGV[0]) -detector.detect_objects(image).each do |region| - color = CvColor::Blue - image.rectangle! region.top_left, region.bottom_right, :color => color +classifier = Cv::CascadeClassifier.new('examples/haarcascade_frontalface_alt.xml') +image = Cv::imread(ARGV[0], -1) + +color = Cv::Scalar.new(0, 255, 255) +classifier.detect_multi_scale(image).each do |r| + pt1 = Cv::Point.new(r.x, r.y) + pt2 = Cv::Point.new(r.x + r.width, r.y + r.height) + image.rectangle!(pt1, pt2, color, thickness: 3, line_type: Cv::CV_AA) end -image.save_image(ARGV[1]) -window = GUI::Window.new('Face detection') +window = Cv::Window.new('Face detection') window.show(image) -GUI::wait_key +Cv::wait_key ``` For more samples, see examples/*.rb diff --git a/Rakefile b/Rakefile index 03d2e7a..7ea67a1 100644 --- a/Rakefile +++ b/Rakefile @@ -1,99 +1,15 @@ # -*- mode: ruby; coding: utf-8 -*- -require 'rubygems' -require "rubygems/ext" -require "rubygems/installer" -require 'hoe' +require 'bundler/gem_tasks' require 'rake/extensiontask' -require 'fileutils' -require './lib/opencv/psyched_yaml' require 'yard' -require 'yard/rake/yardoc_task' -require './yard_extension' +require_relative 'yard_extension' -SO_FILE = 'opencv.so' +task :default => :spec -Hoe.plugin :gemspec - -hoespec = Hoe.spec 'ruby-opencv' do |s| - s.summary = 'OpenCV wrapper for Ruby' - s.description = 'ruby-opencv is a wrapper of OpenCV for Ruby. It helps you to write computer vision programs (e.g. detecting faces from pictures) with Ruby.' - s.licenses = ['The BSD License'] - s.developer('lsxi', 'masakazu.yonekura@gmail.com') - s.developer('ser1zw', 'azariahsawtikes@gmail.com') - s.developer('pcting', 'pcting@gmail.com') - - s.readme_file = 'README.md' - s.history_file = 'History.txt' - - s.spec_extras = { :extensions => ['ext/opencv/extconf.rb'] } - - s.test_globs = ['test/test_*.rb'] - s.urls = ['https://github.com/ruby-opencv/ruby-opencv/'] - - s.extra_dev_deps << ['rake-compiler', '~> 0'] << ['hoe-gemspec', '~> 0'] - - Rake::ExtensionTask.new('opencv', spec) do |ext| - ext.lib_dir = 'lib' - end +Rake::ExtensionTask.new('opencv') do |ext| + ext.lib_dir = 'lib' end -hoespec.spec.files.delete('.gemtest') - -Rake::Task[:test].prerequisites << :compile - -desc 'Create a pre-compiled gem' -task 'gem:precompile' => ['gem'] do - tmp_dir = Dir.mktmpdir('tmp', '.') - gemfile = Dir.glob("pkg/*.gem")[0] - target_dir = File.join(tmp_dir, File.basename(gemfile, '.gem')) - - installer = Gem::Installer.new(gemfile) - installer.unpack(target_dir) - - gemspec = installer.spec - extension = gemspec.extensions[0] - gemspec.extensions.clear - - config = ENV['CONFIG'] ? YAML.load_file(ENV['CONFIG']) : {} - rubies = config['rubies'] || [Gem.ruby] - args = config['extopts'] || [] - gemspec.platform = config['platform'] || Gem::Platform::CURRENT - - multi = rubies.size > 1 - rubies.each { |ruby| - lib_dir = 'lib' - if multi - major, minor, _ = `#{ruby} -e "print RUBY_VERSION"`.chomp.split('.') - lib_dir = File.join(lib_dir, [major, minor].join('.')) - end - - make_cmd = (`#{ruby} -e "print RUBY_PLATFORM"` =~ /mswin/) ? 'nmake' : 'make' - Dir.chdir(target_dir) { - cmd = [ruby, extension, *args].join(' ') - results = [] - Gem::Ext::ExtConfBuilder.run(cmd, results) - Gem::Ext::ExtConfBuilder.make('', results) - - FileUtils.mkdir_p lib_dir - FileUtils.mv SO_FILE, lib_dir - sh "#{make_cmd} clean" - } - - gemspec.files << File.join(lib_dir, SO_FILE) - } - - Dir.chdir(target_dir) { - gemfile = Gem::Package.build(gemspec) - FileUtils.mv gemfile, File.dirname(__FILE__) - } - - FileUtils.rm_rf tmp_dir -end - -# yard YARD::Rake::YardocTask.new do |t| - t.files = ['lib/**/*.rb', 'ext/**/*.cpp'] + t.files = ['lib/**/*.rb', 'ext/opencv/*.cpp'] end - -# vim: syntax=ruby - diff --git a/config.yml b/config.yml deleted file mode 100644 index 4034d68..0000000 --- a/config.yml +++ /dev/null @@ -1,7 +0,0 @@ -platform: mingw32 -rubies: - - C:/ruby-1.9.3-p392-mingw32/bin/ruby.exe - - C:/ruby-2.0.0-p0-mingw32/bin/ruby.exe -extopts: - - --with-opencv-include=C:/opencv/build/include - - --with-opencv-lib=C:/opencv/build/x86/mingw/lib diff --git a/examples/alpha_blend.rb b/examples/alpha_blend.rb old mode 100755 new mode 100644 index e65331a..f7fa8a1 --- a/examples/alpha_blend.rb +++ b/examples/alpha_blend.rb @@ -1,21 +1,15 @@ -#!/usr/bin/env ruby -# -*- mode: ruby; coding: utf-8 -*- - -# Alpha blending sample with GUI - require 'opencv' -include OpenCV -img1 = IplImage.load('images/lenna.jpg', CV_LOAD_IMAGE_ANYCOLOR | CV_LOAD_IMAGE_ANYDEPTH) -img2 = IplImage.load('images/tiffany.jpg', CV_LOAD_IMAGE_ANYCOLOR | CV_LOAD_IMAGE_ANYDEPTH) +img1 = Cv::imread('images/lenna.jpg', -1) +img2 = Cv::imread('images/tiffany.jpg', -1) -window = GUI::Window.new('Alpha blend') +window = Cv::Window.new('Alpha blend') max = 100.0 val = max / 2.0 window.set_trackbar("Alpha", max, val) { |v| a = v.to_f / max - window.show CvMat.add_weighted(img1, a, img2, 1.0 - a, 0) + window.show(Cv::add_weighted(img1, a, img2, 1.0 - a, 0)) } -window.show CvMat.add_weighted(img1, val / max, img2, 1.0 - val / max, 0) -GUI::wait_key +window.show(Cv::add_weighted(img1, val / max, img2, 1.0 - val / max, 0)) +Cv.wait_key diff --git a/examples/contours/bitmap-contours-with-labels.png b/examples/contours/bitmap-contours-with-labels.png deleted file mode 100644 index 674050aed1f278d28a5c0981f392748f00dde6ef..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 3387 zcmbtX4Lp?D8Xv|CVW<=urCb|!Ew;NPe&KCtnG_}4_((oN<2&C*8HR1Et+-YQP2N)3 zR%ZI}Ev8)|ru4e{KxVWwOvE%yYZ}JfGb8TqZ@2r~-TQlH&U?-?=Y7t+=YRgs^M6n7 zc5}w5;#E;76prBHSHj+y(1hf`xDeE~;FzG04TPw` zLm?g^fx+b1j*zWj5_b1a&+XtUl}fMlm9kMNbr!*Cn`cV@Yj$7K(3Vxuo>$WJ1|kuA z)XF7rJ$r-R=UR(>O05JA67y$E1Fy z)9O@hZdHJ(s$s-2op0K}3Q;*yCf_!1MY=e#Oz0IPXh7jR4UNhwZt-o(@1WSDUYT^} z*ZKBH|0W$4!z@3m`cUee$x%sBe)}`})YLrR1kWQDpIWwDU`MqFF;j za-ttOV57C$u5dQr&JHcf?CI8;)oIT7W@;a3Cf)9yk5U%WPS~u+^QI5IzRFsJU?VKE zB~%u0S#$wh%w#45Y7tFIIGh)~PLA0EuxK2B6wG`-YC8B}_|5S?ucC@;zKS?uv%$^? zqj;@^P2nvD>egodDiFGYKSCXied|?K7)ucC}SUjAdvPP7NjIRTMhWb^WcTpux4myTLJ82V-pp zB9z3ljC){J7FDBgSg&bF5a0XYz`!aJ{7CnfH^Nm-)et(cewG9s@uO6dU@Dz>S*v7i zD`oU;D?s!s(9O+zM|6y-SVMvbS5#S9A`Fd&+Ufz0zIU`EW8x+j&#U;wQ4`Y4URA?U z*2o?NcWr}-Iji>RoN5`VjJN4Tn}$tX*MzAY`=D3#@iseB*|$f&y`A$@l2EkPWcDJ} zUPXAXFG)vT4T1cda}_NSCuYGRI1#gD)DfLl&9kN?z=`9v_ZFEV+g3~2*2@tBqbA9+ z&?Zkvw&$Rcv*mqX=2!q~!LbM$OvU2Cqsjr4MOnCaDdNJ6sa{i1rJwe8Oa$_Wxma zopm-eh)XycZkTR(CfBP|4PiwLUl}p1n%q6ezd=tZ+XwqhE3!|DD3tmG4bJOiq!>_L@; z>ThX^G$!Zt)h@M26|qS-gto)7%bp)S5$EDD`|u+Kk{a;po(0b>KlrF@JNVDzRC+cx z6cA}-*Uy2^kux;oCcE@lJzFcz^xIz?!Gs6Vjg_+(ond13CZTw*j-=pH~06Ak>7DA@CqVmuuh;Nu?1x>CAco4KRs)r$_U z&zs>m@)a_=VR&YyO+cA0q@?SLw5|OQJR>JbrCSEV1SVX`m@^8`Q?V^BVtTHawGw&J z%%NHvy4{XMX508Op8McS-J&Aq<6g1Z(_XF}lR46A`pFFKscST6B?(U6Va}O(yRQZ? zF9wxbpBbGM9T{bP&IqPnz&6!Q*dvv@`fvO*I&+?~zBm2+fHJ%8V+1P2*yiw8&a@>G zh4n{di83*->~^T%yw61A$ajZF_hewje2Cb1y-}WXqYnW{&`3*``IAlOIGYoON6Tt2 z0z_U=c-YRXJ#8zByP8i;b$rzxmw`>i2(t~3y|vM$8FEkYSrVkRjd1j=xDc>J>k*e1 zWks~MINg=$W_p2&ZBS|&k8ET;B4Y47(=<>oe6yN;s%}qYH0P0Iw6?$H;8#FKi}w{- zqtS~51mq=u{uxvvcUj}lxzE~VY&Hl0CqjV6lUNu4A5I;hA2pYO?H2(zR}pX?iv@>e zGez!h*5rwX-?>WdvF&#hBr`CxS*^4{Z~dVm4>5W9G*+0$qIrk4`PQ0C=C3#WI8-)% zp;5^aiDyX~2=9t6mF15Nl?y&5=A0iIwJ?{?KDff?Kh#4iShye~Vlk6G{e~ZN_1OLP zU7PDb*6ZVrh)yE$k3EXt&6YT%x8g`JL#b(hi5uQ^Z#w<3AjM`%3D3(bC;=J#09=Av zIMB@wJh0-7g5T?!+o0~SIIAvT8n)cHHQ{1_Kr#JM$wCTm%w2oZwy*^}!5lUJV9u(x z;g{s`zN8TxuUs>&{PQlZ=u$cnx zyfg!h=p*oKBI`x8{yWMn6Mq%3s8!^_FB)&GmKq0TOWmXO)$hiI1?B=jC+Mom#E;tc z8v_N^lAFq>h+oFGzsXTVAO=}~Wq-C=GIZS4!CfHmjF)sOUQ&pODfGYEcnf zdvH9{JXv(?VewOq*OLX{1SNY4RVMCg`&&v3kJVG)?m&H@NHm0dddHfQK*btMW1n$% zb_cmtou_e;*877bsnXSy<>Gz>D;}P4OkOr|FR8Pr0#xmXt&~W>7E|QaSporc&hUPG zSEiGS6+0@Atc*Nv0WfS*Ztw1;tB}y~6@N7aUE-?Bi`<9H(^8uJZQfke9lx%Kp!WUk zEc!m-f^c$C^DDl}r0H)8@Bg!mqWCA{?+aCzWYa>d#fSO(BY7oXjJj0iWh$Z+^Ly0| z6hr~A_u}9K0{jnE`GWK?TT+hzl;26k1%0w8{N>UANZ@}k)W$#g!a?}Aval3|MqTt} WX)LqYn*?5PP=xJnPV_GVGXDc)UFMPi diff --git a/examples/contours/bitmap-contours.png b/examples/contours/bitmap-contours.png deleted file mode 100644 index 4890a4e55ee34fe0176ae3a7ed50c135ccaa67d1..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 1738 zcmeAS@N?(olHy`uVBq!ia0y~yV7dUr5gg1wk(w+;X&@z8;u=vBoS#-wo>-L1;Fyx1 zl&avFo0y&&l$w}QS$Hzl2B?TFz$e5NNdN!;f9cKncYy*?o-U3d6}R5p-6(iKfrrKM zV*TYU4qqC!TxXbf{n@%nDxO55$5EG#Hi%tt;LhL#LPp*#4Qx>k-ayEmv4GX&0#g(S zIxy=lXcW631cXdd8H~9>jJhBQ6N89?g%E-ug+SA$0U_A<1*}_GfDmLn&@@#b1Q`!h zMA#@K^FdZhURZh!Vh_}jQ0Gy^gE)xeFEVz5t0HOx$+}*Pi8_LWNGa&r(Hm{BG)?FTEs8R3O zAle$uU}=?H4qD)4SjR5^XFK*Z_259nfX5 zz%T;2^{qkzFdF{?MRx;3U<=R(QW?J)-yWa6@(yWX0@97@LE^#$Xgf$7#M5}! sTG>jt$Ryn;BCCQ)Dwz(^4U7yE4Ntra{pU3cSl=*sy85}Sb4q9e0I0%35&!@I diff --git a/examples/contours/bounding-box-detect-canny.rb b/examples/contours/bounding-box-detect-canny.rb deleted file mode 100755 index e0d3b6f..0000000 --- a/examples/contours/bounding-box-detect-canny.rb +++ /dev/null @@ -1,62 +0,0 @@ -#!/usr/bin/env ruby -# -# Detects contours in an image and -# their boundingboxes -# -require "opencv" - -# Load image -cvmat = OpenCV::CvMat.load("rotated-boxes.jpg") - -# The "canny" edge-detector does only work with grayscale images -# so to be sure, convert the image -# otherwise you will get an OpenCV::CvStsAssert exception. -cvmat = cvmat.BGR2GRAY - -# Use the "canny" edge detection algorithm (http://en.wikipedia.org/wiki/Canny_edge_detector) -# Parameters are two colors that are then used to determine possible corners -canny = cvmat.canny(50, 150) - -# Look for contours -# We want them to be returned as a flat list (CV_RETR_LIST) and simplified (CV_CHAIN_APPROX_SIMPLE) -# Both are the defaults but included here for clarity -contour = canny.find_contours(:mode => OpenCV::CV_RETR_LIST, :method => OpenCV::CV_CHAIN_APPROX_SIMPLE) - -# The Canny Algorithm returns two matches for every contour (see O'Reilly: Learning OpenCV Page 235) -# We need only the external edges so we ignore holes. -# When there are no more contours, contours.h_next will return nil -while contour - # No "holes" please (aka. internal contours) - unless contour.hole? - - puts '-' * 80 - puts "BOUNDING RECT FOUND" - puts '-' * 80 - - # You can detect the "bounding rectangle" which is always oriented horizontally and vertically - box = contour.bounding_rect - puts "found external contour with bounding rectangle from #{box.top_left.x},#{box.top_left.y} to #{box.bottom_right.x},#{box.bottom_right.y}" - - # The contour area can be computed: - puts "that contour encloses an area of #{contour.contour_area} square pixels" - - # .. as can be the length of the contour - puts "that contour is #{contour.arc_length} pixels long " - - # Draw that bounding rectangle - cvmat.rectangle! box.top_left, box.bottom_right, :color => OpenCV::CvColor::Black - - # You can also detect the "minimal rectangle" which has an angle, width, height and center coordinates - # and is not neccessarily horizonally or vertically aligned. - # The corner of the rectangle with the lowest y and x position is the anchor (see image here: http://bit.ly/lT1XvB) - # The zero angle position is always straight up. - # Positive angle values are clockwise and negative values counter clockwise (so -60 means 60 degree counter clockwise) - box = contour.min_area_rect2 - puts "found minimal rectangle with its center at (#{box.center.x.round},#{box.center.y.round}), width of #{box.size.width.round}px, height of #{box.size.height.round} and an angle of #{box.angle.round} degree" - end - contour = contour.h_next -end - -# And save the image -puts "\nSaving image with bounding rectangles" -cvmat.save_image("rotated-boxes-with-detected-bounding-rectangles.jpg") diff --git a/examples/contours/contour_retrieval_modes.rb b/examples/contours/contour_retrieval_modes.rb deleted file mode 100755 index 929b42c..0000000 --- a/examples/contours/contour_retrieval_modes.rb +++ /dev/null @@ -1,139 +0,0 @@ -#!/usr/bin/env ruby -# -# This file shows the different retrieval modes for contour detection -# -require "opencv" - -# Load image -# The structure of the image is "explained" in bitmap-contours-with-labels.png -cvmat = OpenCV::CvMat.load("bitmap-contours.png") - -# "find_contours" does only operate on bitmap images (black/white) -mat = OpenCV::CvMat.new(cvmat.rows, cvmat.cols, :cv8u, 1) -(cvmat.rows * cvmat.cols).times do |i| - mat[i] = (cvmat[i][0] <= 128) ? OpenCV::CvScalar.new(0) : OpenCV::CvScalar.new(255) -end - -# find_contours takes two parameters: -# 1. Retrieval mode (:mode, defines the structure of the contour sequence returned) -# - CV_RETR_LIST (default) -# - CV_RETR_EXTERNAL -# - CV_RETR_CCOMP -# - CV_RETR_TREE -# 2. Retrieval Method (:method, how the contours are approximated) -# - CV_CHAIN_CODE -# - CV_CHAIN_APPROX_NONE -# - CV_CHAIN_APPROX_SIMPLE (default) -# - CV_CHAIN_APPROX_TC89_L1 -# - CV_CHAIN_APPROX_T89_KCOS -# - CV_LINK_RUNS - -# -# The default: CV_RETR_LIST and CV_CHAIN_APPROX_SIMPLE -# This produces a flat list of contours that can be traversed with .h_next and .h_prev -# -puts "Detecting using CV_RETR_LIST and CV_CHAIN_APPROX_SIMPLE" -contour = mat.find_contours(:mode => OpenCV::CV_RETR_LIST, :method => OpenCV::CV_CHAIN_APPROX_SIMPLE) -cindex=1 - -while contour - puts "Contour ##{cindex} is #{contour.contour_area} px^2 (width: #{contour.bounding_rect.width}, height: #{contour.bounding_rect.height}, type: #{(contour.hole?)?"hole":"contour"})" - contour = contour.h_next - cindex+=1 -end - -# -# CV_RETR_EXTERNAL retrieves only the outer most non "hole" contour -# -puts '-'*80 -puts "Detecting using CV_RETR_EXTERNAL and CV_CHAIN_APPROX_SIMPLE" -contour = mat.find_contours(:mode => OpenCV::CV_RETR_EXTERNAL, :method => OpenCV::CV_CHAIN_APPROX_SIMPLE) -cindex=1 - -while contour - puts "Contour ##{cindex} is #{contour.contour_area} px^2 (width: #{contour.bounding_rect.width}, height: #{contour.bounding_rect.height}, type: #{(contour.hole?)?"hole":"contour"})" - contour = contour.h_next - cindex+=1 -end - -# -# CV_RETR_CCOMP organizes the contours in a two level deep stack -# The first level holds the contours -# The second level contains the holes of the contours in level 1 -# -# C00001 <-> C00000 <-> C000 <-> C0 -# | | -# V V -# H0000 H00 -# -puts '-'*80 -puts "Detecting using CV_RETR_CCOMP and CV_CHAIN_APPROX_SIMPLE" -contour = mat.find_contours(:mode => OpenCV::CV_RETR_CCOMP, :method => OpenCV::CV_CHAIN_APPROX_SIMPLE) - -# C00001 -puts "Contour #1 is #{contour.contour_area} px^2 (width: #{contour.bounding_rect.width}, height: #{contour.bounding_rect.height}, type: #{(contour.hole?)?"hole":"contour"})" -contour = contour.h_next - -# C00000 -puts "Contour #2 is #{contour.contour_area} px^2 (width: #{contour.bounding_rect.width}, height: #{contour.bounding_rect.height}, type: #{(contour.hole?)?"hole":"contour"})" -contour = contour.h_next - -# C000 -puts "Contour #3 is #{contour.contour_area} px^2 (width: #{contour.bounding_rect.width}, height: #{contour.bounding_rect.height}, type: #{(contour.hole?)?"hole":"contour"})" -contour_down = contour.v_next - -# H0000 -puts "Contour #4 is #{contour_down.contour_area} px^2 (width: #{contour_down.bounding_rect.width}, height: #{contour_down.bounding_rect.height}, type: #{(contour_down.hole?)?"hole":"contour"})" -contour = contour.h_next - -# C0 -puts "Contour #5 is #{contour.contour_area} px^2 (width: #{contour.bounding_rect.width}, height: #{contour.bounding_rect.height}, type: #{(contour.hole?)?"hole":"contour"})" -contour_down = contour.v_next - -# H00 -puts "Contour #6 is #{contour_down.contour_area} px^2 (width: #{contour_down.bounding_rect.width}, height: #{contour_down.bounding_rect.height}, type: #{(contour_down.hole?)?"hole":"contour"})" - -# -# CV_RETR_TREE manages the contours in a tree structure -# This reconstructs the complete hierarchy of contours and holes that the image displayed -# -# C0 -# | -# V -# H00 -# | -# V -# C000 -# | -# V -# H0000-------+ -# | | -# V V -# C00000 C00001 -# -puts '-'*80 -puts "Detecting using CV_RETR_TREE and CV_CHAIN_APPROX_SIMPLE" -contour = mat.find_contours(:mode => OpenCV::CV_RETR_TREE, :method => OpenCV::CV_CHAIN_APPROX_SIMPLE) - -# C0 -puts "Contour #1 is #{contour.contour_area} px^2 (width: #{contour.bounding_rect.width}, height: #{contour.bounding_rect.height}, type: #{(contour.hole?)?"hole":"contour"})" -contour = contour.v_next - -# H00 -puts "Contour #2 is #{contour.contour_area} px^2 (width: #{contour.bounding_rect.width}, height: #{contour.bounding_rect.height}, type: #{(contour.hole?)?"hole":"contour"})" -contour = contour.v_next - -# C000 -puts "Contour #3 is #{contour.contour_area} px^2 (width: #{contour.bounding_rect.width}, height: #{contour.bounding_rect.height}, type: #{(contour.hole?)?"hole":"contour"})" -contour = contour.v_next - -# H0000 -puts "Contour #4 is #{contour.contour_area} px^2 (width: #{contour.bounding_rect.width}, height: #{contour.bounding_rect.height}, type: #{(contour.hole?)?"hole":"contour"})" -contour = contour.v_next - -# C00000 -puts "Contour #5 is #{contour.contour_area} px^2 (width: #{contour.bounding_rect.width}, height: #{contour.bounding_rect.height}, type: #{(contour.hole?)?"hole":"contour"})" -contour_right = contour.h_next - -# C00001 -puts "Contour #6 is #{contour_right.contour_area} px^2 (width: #{contour_right.bounding_rect.width}, height: #{contour_right.bounding_rect.height}, type: #{(contour_right.hole?)?"hole":"contour"})" diff --git a/examples/contours/rotated-boxes.jpg b/examples/contours/rotated-boxes.jpg deleted file mode 100644 index cf3a2e6f608fae12e59467dd8c302c3ce6902424..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 5985 zcmds4dpy(o|Nk)8$|<>ZT;foc?Xbv_5FM7JS;LIEb#ghGSne^o)TwWXl7m_%xz2`V z8f|Vxxkg7!YzUD%rCf5!Z&Etvaem*&-~DKb*=RS zJ5C(4I0gs^0)RXJ1FTH~l4e0}-l2d1AOrxwNq*Nf@WWAe!Wj?1{V~5sV2ua-4uAyL zh2MgNK>VMu5QyK12(OEXn24wd|0^aYF1|%vTx{DHkyw}Qn<4-LfkZ?^wu*^um6X^j zAt}8+A}#r4TyjHg|Ef0c`J1u!7?2bLh6HYd1SA1LNdb_gz}i!Q2nYxOAc1w^Q~e@h zAQ4evAwdE0?_J-9b^v@Df*?L+KL0N_2&~UVL{ju8?VU%_s#0RV`stjJj{e2kUrpvx z=7Bx34AX$iiN$U=+BuEl42G#)E$KOW&FM6AXjTIAm>{c#Y|RQKU?)zxOT@HCk+#N519mFl85F z>VPH`Ip}8CyW1V!5`5krSJwR=4A#mBzF0bkYm|jr4V(TsEn(Sv!0^bY0RoIDwPm2=E zv@QVhsL_+t;&EpR>!7beyD23vjq6c*D~WXB0p5G?nP{{RJ>SV(`*`6UW#oTU{Ik$| zL*|nVQpcLufz;1(s|n|o;$;*`dD1Q?L_hvJLf&_y@BDfC5IF*M-qzp7JjW2i{<*#S zcfY*K&;@m>kZ5Rm4{QNf-un_m8gM=^LP;dL%y9zeLsXP^@dJ!G`c#J&_5ExMg-v(8 z(Z%!dY1O%Xqk9I6mmif43+D5BU)PkW$}*aUcOm>!?tVx*%T7@#!iud=)0pDaPo8*~hIL%m6JH|@+#&s|IcjzQGT3y3|oy(Vvdt$gj-~l4mj#X8! znju}p3(J4lYe=&jFyr}zjdu3_YOV==mBJ{A%fiec9Y3A=VZj1x>5NqJkZ$X+KG_j& zV>T2{z|RIa^`cL0>;Ef3zAexif+G6)ltg#jVrl(o(9IF1g8h6e$Oem_d_H?jn(Wy& zn*?XBR&XbpKX_3YEC z8P*d>d`!>)NN$M~QW&E_$j`p_pMvMbg zCFctDlV@T>op#}1Q2;qpRYfXzYAFNrp?LLSGp;fio%81?w3e2k zHK3SiG8y%qhp70RIm`IX;_`lPC${s9_8eB9RtM1xv~~T2IUET&B>w#Y@c*{Xd0t1b z+wY-vyk_#ndWS4)@xE&G*3gJQnyI7Y_~865vWo2^t&v}OaprS}di{^&#G9jzY9(?^ zKfU2x2yfw3{dw@g_t+rp3q1u{-d$V|<8Zcn0%8fb?_&_cG-mNxUff6$l%(Uj!>CfuIg`&eJ+LV zP6dOtN7J}N{S@JmsJETu$8}yhmX;M#Wx1IWXlJ1olp?B~6&jMa;~@W$eU%S7hL?D8 z_B4jV!*u7WOL9nPIX34IJfAxP6S8`zqSy>!d3M7ikb$n#G!JZ+WY9UkJQ1_kZn$ev z7c#zqtZQY2a1EQ|AXC?k*4!KZ!^EXbQMUfB>3J44Hp<38ZhR}aiC}x%3iZoGveW1c zWXkGVeQ^Q7nteY_KEHO5fExCXMr`7V?(D6$K6uhdz4+G&nOA#}4w}EfFq+V$OLLG& z^w=Ug5LHnfD1KrMxY;**H@mFh5(77pwgz;hV>p3UNIY1CX&`w>W%tH%5Vh>8TL9J|Btr_^Cm+R4)aK+K6x5Z^U#kTVh)~Zf*4)#2M(Ih?UoAZXIU)=9Q9bBws zEN46Gl~2e&935(FLxW>t)_^mMuex7~`hN9aPngiZCrq|Ft+CLI<1{?UPn$yb%U!Zz zcW#i+JWX-5(xDdIa(5w7b7yVC%9eawYdCKfQm3PzeTy!D3On6fO}$c1xY?1UBs z9IsaNde*T-_YN%?9_WffXMBx|SIA3$In}D&a!hKzLTo5d#^lu=W51HK`^N2Qr^`NaoL#$$ znc@4Fhg_6X^N9eftIn*hUIAUql$7s4N=hD5RaH^`x+oM!0vF0;d54rNpw;Ia`&ucQ zr&#dywD{dcBn>Iaen5ru37C)=>m!uX>epO`@DxI=Oj}u)E_eXGUu9s-}&TtmW&xx#vms$ zHOqx5C=_7qWOxpHmgsZIMY>Gi- zu0-h?u(y$X$NATBMpxgx6A7qoOg6sPco4Odzg1(SzWB;d2a)YdKPV@uHYllD!^fnx z&7OtddOn0bcrb4d<``WLq9WNjM)0&@F@MM*Hy^!TylOj7ArCmqUCs^JuKl`+d`;9~ zGwQk_(6g#L{c7=9?<1q7h_r|i^@lo@;kt8H1MQRN(kc^{O^P<$;VZSm&q|sjr&vZp zL4KLAWXPiD73>T`EifSRV{v9MFcgmJ!?S*htn#0dtzF! zkG3v|J}q3-(j?Sr<`?Mtskx^jWgVOcZ()f}!fBY^`X8tu&amKFFSHaSb@iw1{kafEKRmI5vQ%-Oovhv%2aZr)oA%~E~!vV z*oATg=GbWLOhtvsLevIkKucZsHmG0sUZlHn*=vrW9L_Gw9kT|EzrJd=uvnfJb%Gbq z2rcC`EX6KG7Cp%POy(xbw4JS}=vd5hZ5f#MkIvWtT5q=yU#4>lHFe7qgW@d4(H}cK zSx0s;$5Px^n#dZH<1>QsUwuI&LJG%}W#3eFrO+4cq_;(}9K;YswEru{x)OL-;>xKUpG2VHs z@%CsA{s=geIq8q**Q{uC=(wn458ZOH^8}-Jf0?;kr2$q`EAFFCd3jF7na|Q=pG30-!t|(6GQ6bn$8C~uSGAss z#6n*xRao<3dg?<iME)o9DgD{l#!@aa@aRe&c&sL%Q-)+Pi4PGilrRI_c#21TpUQ zgoCQ^LT?*0Z?wMZ_wAJ*=>t7QK?~`d(jJ+4wTcI;M;V}7IQshV!33*kR{MkoST28z zj~VhxdC!@;D^3$|%cK^3z{?-8W|70eaUTwe&khjiOgl?oR(rFBD~RoxcPGL9dPo3i z2w`$$qY&7t*M5~3dF9uZDyPiR2700U2el+~1hRGCqgf1MJcJpzoDtN&Ip-%1=9Yfh zq)Tjdl=-Q8gdq%xn>W(6qr$=jBnU^kY^PG}mi8sSsHb7tad@TrC-hxu)v-o_uKZ&2 z&u<_C%&E`a!^A}YCB?A2%l17n*z>9UqCSqh5V8O_JRuxis&F87Dj8ylkhdE`5s-*J z&%E3059g4BiDg}B*cnLlCe&9*&VfQkZJBJm1_P(wc&hH>6Ia>9j@nOq+Aer6IMXgh zSvn?-)oRz+IVLA7@vBu@3O*Rt@k?JMZ3~_a9`w!UR;u`$@UcLYu!}s87axv~dk;?3 z|2)nmea?Q@uo`(nc%_L%Z{i4YK}+9e0RV8LX5Mn}&>7~Tx!}YO$j=XD@T3A63B+h* zSe{!F6SzE6YMG*Uf%c&9CwnbhYqrLqOT8Y8UqJaGra}E1I08MTsqL888nc9MwxxG{ zYVPr~NwpZ;zVM(o3Ud6DN7uazTXGxEl)Opl@{xrcqWC;ePqeA&OUVnPoL%5X^D2mNXRJql8Ww6#qJ`JSTkWCnT1w!7{OVtb9El? zy4J0lYp{aKH;IDlc)LeY~%EJ?qJ zBLnmklgDuFfggO!iBKQr1g#f;2jk`Lf={gGA7iJT`Nvpsnp&OCwiAQP$1IM*g^9+z z| zCR%>pesK*@XPD*3^=A9i{>PSpRIDfBC?ZbYO3X9C5X0bRxukRVhKQ+2xXy8EhBeP} zECNCRtMud^^jbW!RSIjT9h%9}uim*5Gq7@^T1?t$|1*@7##mQZe>|n(%^5XZCsWtV z%<6cQ``;=4_p1QpEca0ebXNf7cIU8cC)@E{h1Bx_T896Ev6WKmvPsf;=fdY9g721* zq?q>%5=v{p;nXX02}tI93mF?1dZHAq`}vlIa|eHu;X&*g|F;|!M_nC0b@;zC_{YdD quQ9KD^i)pF%~A`cpRd(rg=L4$=}+XrF>f CvColor::Blue, :line_type => :aa, :thickness => -1 } - -loop do - image = capture.query - - # Calculate contours from a binary image - gray = image.BGR2GRAY - bin = gray.threshold(0x44, 0xFF, :binary) - contours = bin.find_contours - - while contours - # Draw contours - poly = contours.approx(:accuracy => accuracy) - begin - image.draw_contours!(poly, CvColor::Red, CvColor::Black, 2, - :thickness => 2, :line_type => :aa) - end while (poly = poly.h_next) - - # Draw convexity defects - hull = contours.convex_hull2(true, false) - contours.convexity_defects(hull).each { |cd| - image.circle!(cd.start, 3, circle_options) - image.circle!(cd.depth_point, 3, circle_options) - image.circle!(cd.end, 3, circle_options) - } - contours = contours.h_next - end - - window.show image - exit if GUI::wait_key(1) -end - diff --git a/examples/face_detect.rb b/examples/face_detect.rb deleted file mode 100755 index 153db6c..0000000 --- a/examples/face_detect.rb +++ /dev/null @@ -1,20 +0,0 @@ -#!/usr/bin/env ruby -# face_detect.rb -require "rubygems" -require "opencv" - -include OpenCV - -window = GUI::Window.new("face detect") -capture = CvCapture.open -detector = CvHaarClassifierCascade::load("./data/haarcascades/haarcascade_frontalface_alt.xml") - -loop { - image = capture.query - detector.detect_objects(image).each { |rect| - image.rectangle! rect.top_left, rect.bottom_right, :color => CvColor::Red - } - window.show image - break if GUI::wait_key(100) -} - diff --git a/examples/facedetect.rb b/examples/facedetect.rb new file mode 100644 index 0000000..9d1ca86 --- /dev/null +++ b/examples/facedetect.rb @@ -0,0 +1,15 @@ +require 'opencv' + +m = Cv::imread('images/lenna.jpg', -1) +classifier = Cv::CascadeClassifier.new('haarcascade_frontalface_alt.xml') +rects = classifier.detect_multi_scale(m) +color = Cv::Scalar.new(0, 255, 255) +rects.each do |r| + pt1 = Cv::Point.new(r.x, r.y) + pt2 = Cv::Point.new(r.x + r.width, r.y + r.height) + m.rectangle!(pt1, pt2, color, thickness: 3, line_type: Cv::CV_AA) +end + +w = Cv::Window.new('Face detect') +w.show(m) +Cv::wait_key diff --git a/examples/facerec/create_csv.rb b/examples/facerec/create_csv.rb deleted file mode 100755 index 9081e0b..0000000 --- a/examples/facerec/create_csv.rb +++ /dev/null @@ -1,43 +0,0 @@ -#!/usr/bin/env ruby -# -*- mode: ruby; coding: utf-8 -*- - -# This is a tiny script to help you creating a CSV file from a face -# database with a similar hierarchie: -# -# philipp@mango:~/facerec/data/at$ tree -# . -# |-- README -# |-- s1 -# | |-- 1.pgm -# | |-- ... -# | |-- 10.pgm -# |-- s2 -# | |-- 1.pgm -# | |-- ... -# | |-- 10.pgm -# ... -# |-- s40 -# | |-- 1.pgm -# | |-- ... -# | |-- 10.pgm -# -# See http://docs.opencv.org/trunk/modules/contrib/doc/facerec/facerec_tutorial.html -# -if ARGV.size != 1 - puts "usage: ruby #{__FILE__} " - exit -end - -BASE_PATH = ARGV[0] -SEPARATOR = ';' - -label = 0 -Dir.glob("#{BASE_PATH}/*").each { |dir| - if FileTest::directory? dir - Dir.glob("#{dir}/*") { |filename| - puts "#{filename}#{SEPARATOR}#{label}" - } - label += 1 - end -} - diff --git a/examples/facerec/facerec_eigenfaces.rb b/examples/facerec/facerec_eigenfaces.rb deleted file mode 100755 index 866529b..0000000 --- a/examples/facerec/facerec_eigenfaces.rb +++ /dev/null @@ -1,132 +0,0 @@ -#!/usr/bin/env ruby -# -*- mode: ruby; coding: utf-8 -*- - -# Eigenfaces sample in ruby-opencv, equivalent to http://docs.opencv.org/trunk/_downloads/facerec_eigenfaces.cpp -# See http://docs.opencv.org/trunk/modules/contrib/doc/facerec/facerec_tutorial.html -require 'opencv' -include OpenCV - -def norm_0_255(src) - dst = nil - case src.channel - when 1 - dst = src.normalize(0, 255, CV_NORM_MINMAX, CV_8UC1) - when 2 - dst = src.normalize(0, 255, CV_NORM_MINMAX, CV_8UC3) - else - dst = src.copy - end - - dst -end - -def read_csv(filename, sepalator = ';') - images = [] - labels = [] - open(filename, 'r') { |f| - f.each { |line| - path, label = line.chomp.split(sepalator) - images << CvMat.load(path, CV_LOAD_IMAGE_GRAYSCALE) - labels << label.to_i - } - } - - [images, labels] -end - -if ARGV.size < 1 - puts "usage: ruby #{__FILE__} " - exit 1 -end -fn_csv = ARGV.shift -output_folder = ARGV.shift - -images, labels = read_csv(fn_csv); - -height = images[0].rows; - -# The following lines simply get the last images from your dataset and remove it -# from the vector. This is done, so that the training data (which we learn the -# cv::FaceRecognizer on) and the test data we test the model with, do not overlap. -test_sample = images.pop -test_label = labels.pop - -# The following lines create an Eigenfaces model for -# face recognition and train it with the images and -# labels read from the given CSV file. -# This here is a full PCA, if you just want to keep -# 10 principal components (read Eigenfaces), then call -# the factory method like this: -# -# EigenFaces.new(10) -# -# If you want to create a FaceRecognizer with a -# confidence threshold (e.g. 123.0), call it with: -# -# EigenFaces.new(10, 123.0) -# -# If you want to use _all_ Eigenfaces and have a threshold, -# then call the method like this: -# -# EigenFaces.new(0, 123.0) -# -model = EigenFaces.new -model.train(images, labels) - -# The following line predicts the label of a given test image: -predicted_label, predicted_confidence = model.predict(test_sample) - -puts "Predicted class: #{predicted_label} / Actual class: #{test_label}" - -eigenvalues = model.get_mat('eigenvalues') -w = model.get_mat('eigenvectors'); -mean = model.get_mat('mean') - -if output_folder - norm_0_255(mean.reshape(1, images[0].rows)).save("#{output_folder}/mean.png") -else - w1 = GUI::Window.new('Predicted') - w2 = GUI::Window.new('Actual') - w3 = GUI::Window.new('mean') - - w1.show images[predicted_label] - w2.show images[test_label] - w3.show norm_0_255(mean.reshape(1, images[0].rows)) -end - -# Display or save the Eigenfaces: -[w.cols, 10].min.times { |i| - puts "Eigenvalue ##{i} = #{eigenvalues[i][0]}" - ev = w.get_cols(i).clone() - grayscale = norm_0_255(ev.reshape(1, height)) - - # Show the image & apply a Jet colormap for better sensing. - cgrayscale = grayscale.apply_color_map(COLORMAP_JET) - if output_folder - norm_0_255(cgrayscale).save("#{output_folder}/eigenface_#{i}.png") - else - w4 = GUI::Window.new("eigenface_#{i}") - w4.show norm_0_255(cgrayscale) - end -} - -[w.cols, 10].min.step([w.cols, 300].min, 15) { |num_components| - # slice the eigenvectors from the model - evs = w.get_cols(0..num_components) - projection = images[0].reshape(1, 1).subspace_project(evs, mean) - reconstruction = projection.subspace_reconstruct(evs, mean) - - # Normalize the result: - reconstruction = norm_0_255(reconstruction.reshape(1, images[0].rows)) - - # Display or save: - if output_folder - norm_0_255(reconstruction).save("#{output_folder}/eigenface_reconstruction_#{num_components}.png") - else - w5 = GUI::Window.new("eigenface_reconstruction_#{num_components}") - w5.show norm_0_255(reconstruction) - end -} - -GUI::wait_key unless output_folder - diff --git a/examples/facerec/facerec_fisherfaces.rb b/examples/facerec/facerec_fisherfaces.rb deleted file mode 100755 index f2f9a4a..0000000 --- a/examples/facerec/facerec_fisherfaces.rb +++ /dev/null @@ -1,131 +0,0 @@ -#!/usr/bin/env ruby -# -*- mode: ruby; coding: utf-8 -*- - -# Fisherfaces sample in ruby-opencv, equivalent to http://docs.opencv.org/trunk/_downloads/facerec_fisherfaces.cpp -# See http://docs.opencv.org/trunk/modules/contrib/doc/facerec/facerec_tutorial.html -require 'opencv' -include OpenCV - -def norm_0_255(src) - dst = nil - case src.channel - when 1 - dst = src.normalize(0, 255, CV_NORM_MINMAX, CV_8UC1) - when 2 - dst = src.normalize(0, 255, CV_NORM_MINMAX, CV_8UC3) - else - dst = src.copy - end - - dst -end - -def read_csv(filename, sepalator = ';') - images = [] - labels = [] - open(filename, 'r') { |f| - f.each { |line| - path, label = line.chomp.split(sepalator) - images << CvMat.load(path, CV_LOAD_IMAGE_GRAYSCALE) - labels << label.to_i - } - } - - [images, labels] -end - -if ARGV.size < 1 - puts "usage: ruby #{__FILE__} " - exit 1 -end -fn_csv = ARGV.shift -output_folder = ARGV.shift - -images, labels = read_csv(fn_csv); - -height = images[0].rows; - -# The following lines simply get the last images from your dataset and remove it -# from the vector. This is done, so that the training data (which we learn the -# cv::FaceRecognizer on) and the test data we test the model with, do not overlap. -test_sample = images.pop -test_label = labels.pop - -# The following lines create an Fisherfaces model for -# face recognition and train it with the images and -# labels read from the given CSV file. -# If you just want to keep 10 Fisherfaces, then call -# the factory method like this: -# -# FisherFaces.new(10) -# -# However it is not useful to discard Fisherfaces! Please -# always try to use _all_ available Fisherfaces for -# classification. -# -# If you want to create a FaceRecognizer with a -# confidence threshold (e.g. 123.0) and use _all_ -# Fisherfaces, then call it with: -# -# FisherFaces.new(0, 123.0); -# -model = FisherFaces.new -model.train(images, labels) - -# The following line predicts the label of a given test image: -predicted_label, predicted_confidence = model.predict(test_sample) - -puts "Predicted class: #{predicted_label} / Actual class: #{test_label}" - -eigenvalues = model.get_mat('eigenvalues') -w = model.get_mat('eigenvectors'); -mean = model.get_mat('mean') - -if output_folder - norm_0_255(mean.reshape(1, images[0].rows)).save("#{output_folder}/mean.png") -else - w1 = GUI::Window.new('Predicted') - w2 = GUI::Window.new('Actual') - w3 = GUI::Window.new('mean') - - w1.show images[predicted_label] - w2.show images[test_label] - w3.show norm_0_255(mean.reshape(1, images[0].rows)) -end - -# Display or save the first, at most 16 Fisherfaces -[w.cols, 16].min.times { |i| - puts "Eigenvalue ##{i} = #{eigenvalues[i][0]}" - ev = w.get_cols(i).clone() - grayscale = norm_0_255(ev.reshape(1, height)) - - # Show the image & apply a Bone colormap for better sensing. - cgrayscale = grayscale.apply_color_map(COLORMAP_BONE) - if output_folder - norm_0_255(cgrayscale).save("#{output_folder}/fisherface_#{i}.png") - else - w4 = GUI::Window.new("fisherface_#{i}") - w4.show norm_0_255(cgrayscale) - end -} - -[w.cols, 16].min.times { |num_component| - # Slice the Fisherface from the model - ev = w.get_cols(num_component) - projection = images[0].reshape(1, 1).subspace_project(ev, mean) - reconstruction = projection.subspace_reconstruct(ev, mean) - - # Normalize the result: - reconstruction = norm_0_255(reconstruction.reshape(1, images[0].rows)) - - # Display or save: - if output_folder - norm_0_255(reconstruction).save("#{output_folder}/fisherface_reconstruction_#{num_component}.png") - else - w5 = GUI::Window.new("fisherface_reconstruction_#{num_component}") - w5.show norm_0_255(reconstruction) - end -} - -GUI::wait_key unless output_folder - diff --git a/examples/facerec/facerec_lbph.rb b/examples/facerec/facerec_lbph.rb deleted file mode 100755 index ba3e8a8..0000000 --- a/examples/facerec/facerec_lbph.rb +++ /dev/null @@ -1,116 +0,0 @@ -#!/usr/bin/env ruby -# -*- mode: ruby; coding: utf-8 -*- - -# LBPH sample in ruby-opencv, equivalent to http://docs.opencv.org/trunk/_downloads/facerec_lbph.cpp -# See http://docs.opencv.org/trunk/modules/contrib/doc/facerec/facerec_tutorial.html -require 'opencv' -include OpenCV - -def read_csv(filename, sepalator = ';') - images = [] - labels = [] - open(filename, 'r') { |f| - f.each { |line| - path, label = line.chomp.split(sepalator) - images << CvMat.load(path, CV_LOAD_IMAGE_GRAYSCALE) - labels << label.to_i - } - } - - [images, labels] -end - -# Check for valid command line arguments, print usage -# if no arguments were given. -if ARGV.size < 1 - puts "usage: ruby #{__FILE__} " - exit 1 -end - -# Get the path to your CSV. -fn_csv = ARGV.shift - -# Read in the data. This can fail if no valid -# input filename is given. -images, labels = read_csv(fn_csv); - -# Quit if there are not enough images for this demo. -raise 'This demo needs at least 2 images to work. Please add more images to your data set!' if images.size <= 1 - -# Get the height from the first image. We'll need this -# later in code to reshape the images to their original size: -height = images[0].rows; - -# The following lines simply get the last images from -# your dataset and remove it from the vector. This is -# done, so that the training data (which we learn the -# cv::FaceRecognizer on) and the test data we test -# the model with, do not overlap. -test_sample = images.pop -test_label = labels.pop - -# The following lines create an LBPH model for -# face recognition and train it with the images and -# labels read from the given CSV file. -# -# The LBPHFaceRecognizer uses Extended Local Binary Patterns -# (it's probably configurable with other operators at a later -# point), and has the following default values -# -# radius = 1 -# neighbors = 8 -# grid_x = 8 -# grid_y = 8 -# -# So if you want a LBPH FaceRecognizer using a radius of -# 2 and 16 neighbors, call the factory method with: -# -# LBPH.new(2, 16); -# -# And if you want a threshold (e.g. 123.0) call it with its default values: -# -# LBPH.new(1,8,8,8,123.0) -# -model = LBPH.new -model.train(images, labels) - -# The following line predicts the label of a given test image: -predicted_label, predicted_confidence = model.predict(test_sample) - -# To get the confidence of a prediction call the model with: -# -# predicted_label = -1; -# confidence = 0.0; -# model.predict(test_sample, predicted_label, confidence) -# -puts "Predicted class: #{predicted_label} / Actual class: #{test_label}" - -# Sometimes you'll need to get/set internal model data, -# which isn't exposed by the public FaceRecognizer. -# Since each FaceRecognizer is derived from a Algorithm, -# you can query the data. -# -# First we'll use it to set the threshold of the FaceRecognizer -# to 0.0 without retraining the model. This can be useful if -# you are evaluating the model: -model.set_double('threshold', 0.0); - -# Now the threshold of this model is set to 0.0. A prediction -# now returns -1, as it's impossible to have a distance below it -predicted_label, predicted_confidence = model.predict(test_sample) -puts "Predicted class = #{predicted_label}" - -# Show some informations about the model, as there's no cool -# Model data to display as in Eigenfaces/Fisherfaces. -# Due to efficiency reasons the LBP images are not stored -# within the model: -puts 'Model Information:' -model_info = "\tLBPH(radius=#{model.get_int('radius')}, neighbors=#{model.get_int('neighbors')}, grid_x=#{model.get_int('grid_x')}, grid_y=#{model.get_int('grid_y')}, threshold=#{model.get_double('threshold')})" -puts model_info - -# We could get the histograms for example: -histgrams = model.get_matvector('histograms'); - -# But should I really visualize it? Probably the length is interesting: -puts "Size of the histograms: #{histgrams[0].dims.reduce(&:*)}" - diff --git a/examples/facerec/readme.md b/examples/facerec/readme.md deleted file mode 100644 index ffaaf4c..0000000 --- a/examples/facerec/readme.md +++ /dev/null @@ -1,111 +0,0 @@ -# Face recognition with ruby-opencv - -This is a face recognition sample with ruby-opencv, which equivalent to the following OpenCV's tutorial. - -[Face Recognition with OpenCV](http://docs.opencv.org/trunk/modules/contrib/doc/facerec/facerec_tutorial.html) - - -## Running samples - -### 1. Get AT&T Facedatabase - -Get AT&T Facedatabase from http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html and unzip it. - -```sh -$ wget http://www.cl.cam.ac.uk/Research/DTG/attarchive/pub/data/att_faces.zip -$ unzip att_faces.zip -``` - -### 2. Prepare the data - -Create a CSV file to run samples. - -```sh -$ ruby create_csv.rb att_faces > at.txt -``` - -You will get a CSV file which contains lines composed of a filename followed by a ; followed by the label (as integer number). - -```sh -$ cat at.txt -att_faces/s34/2.pgm;0 -att_faces/s34/3.pgm;0 -att_faces/s34/8.pgm;0 -att_faces/s34/4.pgm;0 -att_faces/s34/5.pgm;0 -att_faces/s34/10.pgm;0 -att_faces/s34/9.pgm;0 -att_faces/s34/7.pgm;0 -att_faces/s34/6.pgm;0 -att_faces/s34/1.pgm;0 -... -``` - -### 3. Run sample codes - -#### Eigenfaces - -```sh -$ mkdir output-eigenfaces -$ ruby facerec_eigenfaces.rb at.txt output-eigenfaces -``` - -You will get the predicted class, actual class and eignvalues shown in console. - -```sh -Predicted class: 39 / Actual class: 39 -Eigenvalue #0 = 2823424.500638128 -Eigenvalue #1 = 2062015.3818895558 -Eigenvalue #2 = 1090171.0771557507 -Eigenvalue #3 = 892019.3644237233 -Eigenvalue #4 = 818537.7917991373 -Eigenvalue #5 = 539058.2364753223 -Eigenvalue #6 = 390359.3231975121 -Eigenvalue #7 = 373809.5486713626 -Eigenvalue #8 = 314658.94374918053 -Eigenvalue #9 = 288764.63018440653 -``` - -The result images will be stored in **output-eigenfaces** . - - -#### Fisherfaces - -```sh -$ mkdir output-fisherfaces -$ ruby facerec_fisherfaces.rb at.txt output-fisherfaces -``` - -You will get the predicted class, actual class and eignvalues like Eigenfaces sample. - -The result images will be stored in **output-fisherfaces** . - - -#### Local Binary Patterns Histograms - -```sh -$ ruby facerec_lbph.rb at.txt -``` - -You will get the predicted class, actual class, model information and size of the histgrams. - -``` -Predicted class: 39 / Actual class: 39 -Predicted class = -1 -Model Information: - LBPH(radius=1, neighbors=8, grid_x=8, grid_y=8, threshold=0.0) -Size of the histograms: 16384 -``` - -## Credits - -### The Database of Faces - -The Database of Faces, formerly The ORL Database of Faces, contains a set of face images taken between April 1992 and April 1994. The database was used in the context of a face recognition project carried out in collaboration with the Speech, Vision and Robotics Group of the Cambridge University Engineering Department. - -There are ten different images of each of 40 distinct subjects. For some subjects, the images were taken at different times, varying the lighting, facial expressions (open / closed eyes, smiling / not smiling) and facial details (glasses / no glasses). All the images were taken against a dark homogeneous background with the subjects in an upright, frontal position (with tolerance for some side movement). - -The files are in PGM format. The size of each image is 92x112 pixels, with 256 grey levels per pixel. The images are organised in 40 directories (one for each subject), which have names of the form sX, where X indicates the subject number (between 1 and 40). In each of these directories, there are ten different images of that subject, which have names of the form Y.pgm, where Y is the image number for that subject (between 1 and 10). - -A copy of the database can be retrieved from: http://www.cl.cam.ac.uk/research/dtg/attarchive/pub/data/att_faces.zip. - diff --git a/examples/find_obj.rb b/examples/find_obj.rb deleted file mode 100755 index ac8f8a6..0000000 --- a/examples/find_obj.rb +++ /dev/null @@ -1,169 +0,0 @@ -#!/usr/bin/env ruby -# -*- mode: ruby; coding: utf-8 -*- - -# A Demo Ruby/OpenCV Implementation of SURF -# See https://code.ros.org/trac/opencv/browser/tags/2.3.1/opencv/samples/c/find_obj.cpp -require 'opencv' -require 'benchmark' -include OpenCV - -def compare_surf_descriptors(d1, d2, best, length) - raise ArgumentError unless (length % 4) == 0 - total_cost = 0 - 0.step(length - 1, 4) { |i| - t0 = d1[i] - d2[i] - t1 = d1[i + 1] - d2[i + 1] - t2 = d1[i + 2] - d2[i + 2] - t3 = d1[i + 3] - d2[i + 3] - total_cost += t0 * t0 + t1 * t1 + t2 * t2 + t3 * t3 - break if total_cost > best - } - total_cost -end - -def naive_nearest_neighbor(vec, laplacian, model_keypoints, model_descriptors) - length = model_descriptors[0].size - neighbor = nil - dist1 = 1e6 - dist2 = 1e6 - - model_descriptors.size.times { |i| - kp = model_keypoints[i] - mvec = model_descriptors[i] - next if laplacian != kp.laplacian - - d = compare_surf_descriptors(vec, mvec, dist2, length) - if d < dist1 - dist2 = dist1 - dist1 = d - neighbor = i - elsif d < dist2 - dist2 = d - end - } - - return (dist1 < 0.6 * dist2) ? neighbor : nil -end - -def find_pairs(object_keypoints, object_descriptors, - image_keypoints, image_descriptors) - ptpairs = [] - object_descriptors.size.times { |i| - kp = object_keypoints[i] - descriptor = object_descriptors[i] - nearest_neighbor = naive_nearest_neighbor(descriptor, kp.laplacian, image_keypoints, image_descriptors) - unless nearest_neighbor.nil? - ptpairs << i - ptpairs << nearest_neighbor - end - } - ptpairs -end - -def locate_planar_object(object_keypoints, object_descriptors, - image_keypoints, image_descriptors, src_corners) - ptpairs = find_pairs(object_keypoints, object_descriptors, image_keypoints, image_descriptors) - n = ptpairs.size / 2 - return nil if n < 4 - - pt1 = [] - pt2 = [] - n.times { |i| - pt1 << object_keypoints[ptpairs[i * 2]].pt - pt2 << image_keypoints[ptpairs[i * 2 + 1]].pt - } - - _pt1 = CvMat.new(1, n, CV_32F, 2) - _pt2 = CvMat.new(1, n, CV_32F, 2) - _pt1.set_data(pt1) - _pt2.set_data(pt2) - h = CvMat.find_homography(_pt1, _pt2, :ransac, 5) - - dst_corners = [] - 4.times { |i| - x = src_corners[i].x - y = src_corners[i].y - z = 1.0 / (h[6][0] * x + h[7][0] * y + h[8][0]) - x = (h[0][0] * x + h[1][0] * y + h[2][0]) * z - y = (h[3][0] * x + h[4][0] * y + h[5][0]) * z - dst_corners << CvPoint.new(x.to_i, y.to_i) - } - - dst_corners -end - - -##### Main ##### -puts 'This program demonstrated the use of the SURF Detector and Descriptor using' -puts 'brute force matching on planar objects.' -puts 'Usage:' -puts "ruby #{__FILE__} , default is box.png and box_in_scene.png" -puts - -object_filename = (ARGV.size == 2) ? ARGV[0] : 'images/box.png' -scene_filename = (ARGV.size == 2) ? ARGV[1] : 'images/box_in_scene.png' - -object, image = nil, nil -begin - object = IplImage.load(object_filename, CV_LOAD_IMAGE_GRAYSCALE) - image = IplImage.load(scene_filename, CV_LOAD_IMAGE_GRAYSCALE) -rescue - puts "Can not load #{object_filename} and/or #{scene_filename}" - puts "Usage: ruby #{__FILE__} [ ]" - exit -end -object_color = object.GRAY2BGR - -param = CvSURFParams.new(1500) - -object_keypoints, object_descriptors = nil, nil -image_keypoints, image_descriptors = nil, nil -tms = Benchmark.measure { - object_keypoints, object_descriptors = object.extract_surf(param) - puts "Object Descriptors: #{object_descriptors.size}" - - image_keypoints, image_descriptors = image.extract_surf(param) - puts "Image Descriptors: #{image_descriptors.size}" -} -puts "Extraction time = #{tms.real * 1000} ms" - -correspond = IplImage.new(image.width, object.height + image.height, CV_8U, 1); -correspond.set_roi(CvRect.new(0, 0, object.width, object.height)) -object.copy(correspond) -correspond.set_roi(CvRect.new(0, object.height, image.width, image.height)) -image.copy(correspond) -correspond.reset_roi - -src_corners = [CvPoint.new(0, 0), CvPoint.new(object.width, 0), - CvPoint.new(object.width, object.height), CvPoint.new(0, object.height)] -dst_corners = locate_planar_object(object_keypoints, object_descriptors, - image_keypoints, image_descriptors, src_corners) - -correspond = correspond.GRAY2BGR -if dst_corners - 4.times { |i| - r1 = dst_corners[i % 4] - r2 = dst_corners[(i + 1) % 4] - correspond.line!(CvPoint.new(r1.x, r1.y + object.height), CvPoint.new(r2.x, r2.y + object.height), - :color => CvColor::Red, :thickness => 2, :line_type => :aa) - } -end - -ptpairs = find_pairs(object_keypoints, object_descriptors, image_keypoints, image_descriptors) - -0.step(ptpairs.size - 1, 2) { |i| - r1 = object_keypoints[ptpairs[i]] - r2 = image_keypoints[ptpairs[i + 1]] - correspond.line!(r1.pt, CvPoint.new(r2.pt.x, r2.pt.y + object.height), - :color => CvColor::Red, :line_type => :aa) -} - -object_keypoints.each { |r| - radius = (r.size * 1.2 / 9.0 * 2).to_i - object_color.circle!(r.pt, radius, :color => CvColor::Red, :line_type => :aa) -} - -GUI::Window.new('Object Correspond').show correspond -GUI::Window.new('Object').show object_color -GUI::wait_key - diff --git a/examples/haarcascade_frontalface_alt.xml b/examples/haarcascade_frontalface_alt.xml new file mode 100644 index 0000000..ade4b21 --- /dev/null +++ b/examples/haarcascade_frontalface_alt.xml @@ -0,0 +1,24350 @@ + + + +BOOST + HAAR + 20 + 20 + + 213 + + 0 + 22 + + <_> + 3 + 8.2268941402435303e-01 + + <_> + + 0 -1 0 4.0141958743333817e-03 + + 3.3794190734624863e-02 8.3781069517135620e-01 + <_> + + 0 -1 1 1.5151339583098888e-02 + + 1.5141320228576660e-01 7.4888122081756592e-01 + <_> + + 0 -1 2 4.2109931819140911e-03 + + 9.0049281716346741e-02 6.3748198747634888e-01 + <_> + 16 + 6.9566087722778320e+00 + + <_> + + 0 -1 3 1.6227109590545297e-03 + + 6.9308586418628693e-02 7.1109461784362793e-01 + <_> + + 0 -1 4 2.2906649392098188e-03 + + 1.7958030104637146e-01 6.6686922311782837e-01 + <_> + + 0 -1 5 5.0025708042085171e-03 + + 1.6936729848384857e-01 6.5540069341659546e-01 + <_> + + 0 -1 6 7.9659894108772278e-03 + + 5.8663320541381836e-01 9.1414518654346466e-02 + <_> + + 0 -1 7 -3.5227010957896709e-03 + + 1.4131669700145721e-01 6.0318958759307861e-01 + <_> + + 0 -1 8 3.6667689681053162e-02 + + 3.6756721138954163e-01 7.9203182458877563e-01 + <_> + + 0 -1 9 9.3361474573612213e-03 + + 6.1613857746124268e-01 2.0885099470615387e-01 + <_> + + 0 -1 10 8.6961314082145691e-03 + + 2.8362309932708740e-01 6.3602739572525024e-01 + <_> + + 0 -1 11 1.1488880263641477e-03 + + 2.2235809266567230e-01 5.8007007837295532e-01 + <_> + + 0 -1 12 -2.1484689787030220e-03 + + 2.4064640700817108e-01 5.7870548963546753e-01 + <_> + + 0 -1 13 2.1219060290604830e-03 + + 5.5596548318862915e-01 1.3622370362281799e-01 + <_> + + 0 -1 14 -9.3949146568775177e-02 + + 8.5027372837066650e-01 4.7177401185035706e-01 + <_> + + 0 -1 15 1.3777789426967502e-03 + + 5.9936738014221191e-01 2.8345298767089844e-01 + <_> + + 0 -1 16 7.3063157498836517e-02 + + 4.3418860435485840e-01 7.0600342750549316e-01 + <_> + + 0 -1 17 3.6767389974556863e-04 + + 3.0278879404067993e-01 6.0515749454498291e-01 + <_> + + 0 -1 18 -6.0479710809886456e-03 + + 1.7984339594841003e-01 5.6752568483352661e-01 + <_> + 21 + 9.4985427856445312e+00 + + <_> + + 0 -1 19 -1.6510689631104469e-02 + + 6.6442251205444336e-01 1.4248579740524292e-01 + <_> + + 0 -1 20 2.7052499353885651e-03 + + 6.3253521919250488e-01 1.2884770333766937e-01 + <_> + + 0 -1 21 2.8069869149476290e-03 + + 1.2402880191802979e-01 6.1931931972503662e-01 + <_> + + 0 -1 22 -1.5402400167658925e-03 + + 1.4321430027484894e-01 5.6700158119201660e-01 + <_> + + 0 -1 23 -5.6386279175058007e-04 + + 1.6574330627918243e-01 5.9052079916000366e-01 + <_> + + 0 -1 24 1.9253729842603207e-03 + + 2.6955071091651917e-01 5.7388240098953247e-01 + <_> + + 0 -1 25 -5.0214841030538082e-03 + + 1.8935389816761017e-01 5.7827740907669067e-01 + <_> + + 0 -1 26 2.6365420781075954e-03 + + 2.3093290627002716e-01 5.6954258680343628e-01 + <_> + + 0 -1 27 -1.5127769438549876e-03 + + 2.7596020698547363e-01 5.9566420316696167e-01 + <_> + + 0 -1 28 -1.0157439857721329e-02 + + 1.7325380444526672e-01 5.5220472812652588e-01 + <_> + + 0 -1 29 -1.1953660286962986e-02 + + 1.3394099473953247e-01 5.5590140819549561e-01 + <_> + + 0 -1 30 4.8859491944313049e-03 + + 3.6287039518356323e-01 6.1888492107391357e-01 + <_> + + 0 -1 31 -8.0132916569709778e-02 + + 9.1211050748825073e-02 5.4759448766708374e-01 + <_> + + 0 -1 32 1.0643280111253262e-03 + + 3.7151429057121277e-01 5.7113999128341675e-01 + <_> + + 0 -1 33 -1.3419450260698795e-03 + + 5.9533137083053589e-01 3.3180978894233704e-01 + <_> + + 0 -1 34 -5.4601140320301056e-02 + + 1.8440659344196320e-01 5.6028461456298828e-01 + <_> + + 0 -1 35 2.9071690514683723e-03 + + 3.5942441225051880e-01 6.1317151784896851e-01 + <_> + + 0 -1 36 7.4718717951327562e-04 + + 5.9943532943725586e-01 3.4595629572868347e-01 + <_> + + 0 -1 37 4.3013808317482471e-03 + + 4.1726520657539368e-01 6.9908452033996582e-01 + <_> + + 0 -1 38 4.5017572119832039e-03 + + 4.5097151398658752e-01 7.8014570474624634e-01 + <_> + + 0 -1 39 2.4138500913977623e-02 + + 5.4382127523422241e-01 1.3198269903659821e-01 + <_> + 39 + 1.8412969589233398e+01 + + <_> + + 0 -1 40 1.9212230108678341e-03 + + 1.4152669906616211e-01 6.1998707056045532e-01 + <_> + + 0 -1 41 -1.2748669541906565e-04 + + 6.1910742521286011e-01 1.8849289417266846e-01 + <_> + + 0 -1 42 5.1409931620582938e-04 + + 1.4873969554901123e-01 5.8579277992248535e-01 + <_> + + 0 -1 43 4.1878609918057919e-03 + + 2.7469098567962646e-01 6.3592398166656494e-01 + <_> + + 0 -1 44 5.1015717908740044e-03 + + 5.8708512783050537e-01 2.1756289899349213e-01 + <_> + + 0 -1 45 -2.1448440384119749e-03 + + 5.8809447288513184e-01 2.9795908927917480e-01 + <_> + + 0 -1 46 -2.8977119363844395e-03 + + 2.3733270168304443e-01 5.8766472339630127e-01 + <_> + + 0 -1 47 -2.1610679104924202e-02 + + 1.2206549942493439e-01 5.1942020654678345e-01 + <_> + + 0 -1 48 -4.6299318782985210e-03 + + 2.6312309503555298e-01 5.8174091577529907e-01 + <_> + + 0 -1 49 5.9393711853772402e-04 + + 3.6386200785636902e-01 5.6985449790954590e-01 + <_> + + 0 -1 50 5.3878661245107651e-02 + + 4.3035310506820679e-01 7.5593662261962891e-01 + <_> + + 0 -1 51 1.8887349870055914e-03 + + 2.1226030588150024e-01 5.6134271621704102e-01 + <_> + + 0 -1 52 -2.3635339457541704e-03 + + 5.6318491697311401e-01 2.6427671313285828e-01 + <_> + + 0 -1 53 2.4017799645662308e-02 + + 5.7971078157424927e-01 2.7517059445381165e-01 + <_> + + 0 -1 54 2.0543030404951423e-04 + + 2.7052420377731323e-01 5.7525688409805298e-01 + <_> + + 0 -1 55 8.4790197433903813e-04 + + 5.4356247186660767e-01 2.3348769545555115e-01 + <_> + + 0 -1 56 1.4091329649090767e-03 + + 5.3194248676300049e-01 2.0631550252437592e-01 + <_> + + 0 -1 57 1.4642629539594054e-03 + + 5.4189807176589966e-01 3.0688610672950745e-01 + <_> + + 0 -1 58 1.6352549428120255e-03 + + 3.6953729391098022e-01 6.1128681898117065e-01 + <_> + + 0 -1 59 8.3172752056270838e-04 + + 3.5650369524955750e-01 6.0252362489700317e-01 + <_> + + 0 -1 60 -2.0998890977352858e-03 + + 1.9139820337295532e-01 5.3628271818161011e-01 + <_> + + 0 -1 61 -7.4213981861248612e-04 + + 3.8355550169944763e-01 5.5293101072311401e-01 + <_> + + 0 -1 62 3.2655049581080675e-03 + + 4.3128961324691772e-01 7.1018958091735840e-01 + <_> + + 0 -1 63 8.9134991867467761e-04 + + 3.9848309755325317e-01 6.3919639587402344e-01 + <_> + + 0 -1 64 -1.5284179709851742e-02 + + 2.3667329549789429e-01 5.4337137937545776e-01 + <_> + + 0 -1 65 4.8381411470472813e-03 + + 5.8175009489059448e-01 3.2391890883445740e-01 + <_> + + 0 -1 66 -9.1093179071322083e-04 + + 5.5405938625335693e-01 2.9118689894676208e-01 + <_> + + 0 -1 67 -6.1275060288608074e-03 + + 1.7752550542354584e-01 5.1966291666030884e-01 + <_> + + 0 -1 68 -4.4576259097084403e-04 + + 3.0241701006889343e-01 5.5335938930511475e-01 + <_> + + 0 -1 69 2.2646540775895119e-02 + + 4.4149309396743774e-01 6.9753772020339966e-01 + <_> + + 0 -1 70 -1.8804960418492556e-03 + + 2.7913948893547058e-01 5.4979521036148071e-01 + <_> + + 0 -1 71 7.0889107882976532e-03 + + 5.2631992101669312e-01 2.3855470120906830e-01 + <_> + + 0 -1 72 1.7318050377070904e-03 + + 4.3193790316581726e-01 6.9836008548736572e-01 + <_> + + 0 -1 73 -6.8482700735330582e-03 + + 3.0820429325103760e-01 5.3909200429916382e-01 + <_> + + 0 -1 74 -1.5062530110299122e-05 + + 5.5219221115112305e-01 3.1203660368919373e-01 + <_> + + 0 -1 75 2.9475569725036621e-02 + + 5.4013228416442871e-01 1.7706030607223511e-01 + <_> + + 0 -1 76 8.1387329846620560e-03 + + 5.1786178350448608e-01 1.2110190093517303e-01 + <_> + + 0 -1 77 2.0942950621247292e-02 + + 5.2902942895889282e-01 3.3112218976020813e-01 + <_> + + 0 -1 78 -9.5665529370307922e-03 + + 7.4719941616058350e-01 4.4519689679145813e-01 + <_> + 33 + 1.5324139595031738e+01 + + <_> + + 0 -1 79 -2.8206960996612906e-04 + + 2.0640860497951508e-01 6.0767322778701782e-01 + <_> + + 0 -1 80 1.6790600493550301e-03 + + 5.8519971370697021e-01 1.2553839385509491e-01 + <_> + + 0 -1 81 6.9827912375330925e-04 + + 9.4018429517745972e-02 5.7289612293243408e-01 + <_> + + 0 -1 82 7.8959012171253562e-04 + + 1.7819879949092865e-01 5.6943088769912720e-01 + <_> + + 0 -1 83 -2.8560499195009470e-03 + + 1.6383990645408630e-01 5.7886648178100586e-01 + <_> + + 0 -1 84 -3.8122469559311867e-03 + + 2.0854400098323822e-01 5.5085647106170654e-01 + <_> + + 0 -1 85 1.5896620461717248e-03 + + 5.7027608156204224e-01 1.8572150170803070e-01 + <_> + + 0 -1 86 1.0078339837491512e-02 + + 5.1169431209564209e-01 2.1897700428962708e-01 + <_> + + 0 -1 87 -6.3526302576065063e-02 + + 7.1313798427581787e-01 4.0438130497932434e-01 + <_> + + 0 -1 88 -9.1031491756439209e-03 + + 2.5671818852424622e-01 5.4639732837677002e-01 + <_> + + 0 -1 89 -2.4035000242292881e-03 + + 1.7006659507751465e-01 5.5909740924835205e-01 + <_> + + 0 -1 90 1.5226360410451889e-03 + + 5.4105567932128906e-01 2.6190540194511414e-01 + <_> + + 0 -1 91 1.7997439950704575e-02 + + 3.7324368953704834e-01 6.5352207422256470e-01 + <_> + + 0 -1 92 -6.4538191072642803e-03 + + 2.6264819502830505e-01 5.5374461412429810e-01 + <_> + + 0 -1 93 -1.1880760081112385e-02 + + 2.0037539303302765e-01 5.5447459220886230e-01 + <_> + + 0 -1 94 1.2713660253211856e-03 + + 5.5919027328491211e-01 3.0319759249687195e-01 + <_> + + 0 -1 95 1.1376109905540943e-03 + + 2.7304071187973022e-01 5.6465089321136475e-01 + <_> + + 0 -1 96 -4.2651998810470104e-03 + + 1.4059090614318848e-01 5.4618209600448608e-01 + <_> + + 0 -1 97 -2.9602861031889915e-03 + + 1.7950350046157837e-01 5.4592901468276978e-01 + <_> + + 0 -1 98 -8.8448226451873779e-03 + + 5.7367831468582153e-01 2.8092199563980103e-01 + <_> + + 0 -1 99 -6.6430689767003059e-03 + + 2.3706759512424469e-01 5.5038261413574219e-01 + <_> + + 0 -1 100 3.9997808635234833e-03 + + 5.6081998348236084e-01 3.3042821288108826e-01 + <_> + + 0 -1 101 -4.1221720166504383e-03 + + 1.6401059925556183e-01 5.3789931535720825e-01 + <_> + + 0 -1 102 1.5624909661710262e-02 + + 5.2276492118835449e-01 2.2886039316654205e-01 + <_> + + 0 -1 103 -1.0356419719755650e-02 + + 7.0161938667297363e-01 4.2529278993606567e-01 + <_> + + 0 -1 104 -8.7960809469223022e-03 + + 2.7673470973968506e-01 5.3558301925659180e-01 + <_> + + 0 -1 105 1.6226939857006073e-01 + + 4.3422400951385498e-01 7.4425792694091797e-01 + <_> + + 0 -1 106 4.5542530715465546e-03 + + 5.7264858484268188e-01 2.5821250677108765e-01 + <_> + + 0 -1 107 -2.1309209987521172e-03 + + 2.1068480610847473e-01 5.3610187768936157e-01 + <_> + + 0 -1 108 -1.3208420015871525e-02 + + 7.5937908887863159e-01 4.5524680614471436e-01 + <_> + + 0 -1 109 -6.5996676683425903e-02 + + 1.2524759769439697e-01 5.3440397977828979e-01 + <_> + + 0 -1 110 7.9142656177282333e-03 + + 3.3153840899467468e-01 5.6010431051254272e-01 + <_> + + 0 -1 111 2.0894279703497887e-02 + + 5.5060499906539917e-01 2.7688381075859070e-01 + <_> + 44 + 2.1010639190673828e+01 + + <_> + + 0 -1 112 1.1961159761995077e-03 + + 1.7626909911632538e-01 6.1562412977218628e-01 + <_> + + 0 -1 113 -1.8679830245673656e-03 + + 6.1181068420410156e-01 1.8323999643325806e-01 + <_> + + 0 -1 114 -1.9579799845814705e-04 + + 9.9044263362884521e-02 5.7238161563873291e-01 + <_> + + 0 -1 115 -8.0255657667294145e-04 + + 5.5798798799514771e-01 2.3772829771041870e-01 + <_> + + 0 -1 116 -2.4510810617357492e-03 + + 2.2314579784870148e-01 5.8589351177215576e-01 + <_> + + 0 -1 117 5.0361850298941135e-04 + + 2.6539939641952515e-01 5.7941037416458130e-01 + <_> + + 0 -1 118 4.0293349884450436e-03 + + 5.8038270473480225e-01 2.4848650395870209e-01 + <_> + + 0 -1 119 -1.4451709575951099e-02 + + 1.8303519487380981e-01 5.4842048883438110e-01 + <_> + + 0 -1 120 2.0380979403853416e-03 + + 3.3635589480400085e-01 6.0510927438735962e-01 + <_> + + 0 -1 121 -1.6155190533027053e-03 + + 2.2866420447826385e-01 5.4412460327148438e-01 + <_> + + 0 -1 122 3.3458340913057327e-03 + + 5.6259131431579590e-01 2.3923380672931671e-01 + <_> + + 0 -1 123 1.6379579901695251e-03 + + 3.9069938659667969e-01 5.9646219015121460e-01 + <_> + + 0 -1 124 3.0251210555434227e-02 + + 5.2484822273254395e-01 1.5757469832897186e-01 + <_> + + 0 -1 125 3.7251990288496017e-02 + + 4.1943109035491943e-01 6.7484188079833984e-01 + <_> + + 0 -1 126 -2.5109790265560150e-02 + + 1.8825499713420868e-01 5.4734510183334351e-01 + <_> + + 0 -1 127 -5.3099058568477631e-03 + + 1.3399730622768402e-01 5.2271109819412231e-01 + <_> + + 0 -1 128 1.2086479691788554e-03 + + 3.7620881199836731e-01 6.1096358299255371e-01 + <_> + + 0 -1 129 -2.1907679736614227e-02 + + 2.6631429791450500e-01 5.4040068387985229e-01 + <_> + + 0 -1 130 5.4116579703986645e-03 + + 5.3635787963867188e-01 2.2322730720043182e-01 + <_> + + 0 -1 131 6.9946326315402985e-02 + + 5.3582328557968140e-01 2.4536980688571930e-01 + <_> + + 0 -1 132 3.4520021290518343e-04 + + 2.4096719920635223e-01 5.3769302368164062e-01 + <_> + + 0 -1 133 1.2627709656953812e-03 + + 5.4258567094802856e-01 3.1556931138038635e-01 + <_> + + 0 -1 134 2.2719509899616241e-02 + + 4.1584059596061707e-01 6.5978652238845825e-01 + <_> + + 0 -1 135 -1.8111000536009669e-03 + + 2.8112530708312988e-01 5.5052447319030762e-01 + <_> + + 0 -1 136 3.3469670452177525e-03 + + 5.2600282430648804e-01 1.8914650380611420e-01 + <_> + + 0 -1 137 4.0791751234792173e-04 + + 5.6735092401504517e-01 3.3442100882530212e-01 + <_> + + 0 -1 138 1.2734799645841122e-02 + + 5.3435921669006348e-01 2.3956120014190674e-01 + <_> + + 0 -1 139 -7.3119727894663811e-03 + + 6.0108900070190430e-01 4.0222078561782837e-01 + <_> + + 0 -1 140 -5.6948751211166382e-02 + + 8.1991511583328247e-01 4.5431908965110779e-01 + <_> + + 0 -1 141 -5.0116591155529022e-03 + + 2.2002810239791870e-01 5.3577107191085815e-01 + <_> + + 0 -1 142 6.0334368608891964e-03 + + 4.4130811095237732e-01 7.1817511320114136e-01 + <_> + + 0 -1 143 3.9437441155314445e-03 + + 5.4788607358932495e-01 2.7917331457138062e-01 + <_> + + 0 -1 144 -3.6591119132936001e-03 + + 6.3578677177429199e-01 3.9897239208221436e-01 + <_> + + 0 -1 145 -3.8456181064248085e-03 + + 3.4936860203742981e-01 5.3006649017333984e-01 + <_> + + 0 -1 146 -7.1926261298358440e-03 + + 1.1196149885654449e-01 5.2296727895736694e-01 + <_> + + 0 -1 147 -5.2798941731452942e-02 + + 2.3871029913425446e-01 5.4534512758255005e-01 + <_> + + 0 -1 148 -7.9537667334079742e-03 + + 7.5869178771972656e-01 4.4393768906593323e-01 + <_> + + 0 -1 149 -2.7344180271029472e-03 + + 2.5654768943786621e-01 5.4893219470977783e-01 + <_> + + 0 -1 150 -1.8507939530536532e-03 + + 6.7343479394912720e-01 4.2524749040603638e-01 + <_> + + 0 -1 151 1.5918919816613197e-02 + + 5.4883527755737305e-01 2.2926619648933411e-01 + <_> + + 0 -1 152 -1.2687679845839739e-03 + + 6.1043310165405273e-01 4.0223899483680725e-01 + <_> + + 0 -1 153 6.2883910723030567e-03 + + 5.3108531236648560e-01 1.5361930429935455e-01 + <_> + + 0 -1 154 -6.2259892001748085e-03 + + 1.7291119694709778e-01 5.2416062355041504e-01 + <_> + + 0 -1 155 -1.2132599949836731e-02 + + 6.5977597236633301e-01 4.3251821398735046e-01 + <_> + 50 + 2.3918790817260742e+01 + + <_> + + 0 -1 156 -3.9184908382594585e-03 + + 6.1034351587295532e-01 1.4693309366703033e-01 + <_> + + 0 -1 157 1.5971299726516008e-03 + + 2.6323631405830383e-01 5.8964669704437256e-01 + <_> + + 0 -1 158 1.7780110239982605e-02 + + 5.8728742599487305e-01 1.7603619396686554e-01 + <_> + + 0 -1 159 6.5334769897162914e-04 + + 1.5678019821643829e-01 5.5960661172866821e-01 + <_> + + 0 -1 160 -2.8353091329336166e-04 + + 1.9131539762020111e-01 5.7320362329483032e-01 + <_> + + 0 -1 161 1.6104689566418529e-03 + + 2.9149138927459717e-01 5.6230807304382324e-01 + <_> + + 0 -1 162 -9.7750619053840637e-02 + + 1.9434769451618195e-01 5.6482332944869995e-01 + <_> + + 0 -1 163 5.5182358482852578e-04 + + 3.1346169114112854e-01 5.5046397447586060e-01 + <_> + + 0 -1 164 -1.2858220376074314e-02 + + 2.5364819169044495e-01 5.7601428031921387e-01 + <_> + + 0 -1 165 4.1530239395797253e-03 + + 5.7677221298217773e-01 3.6597740650177002e-01 + <_> + + 0 -1 166 1.7092459602281451e-03 + + 2.8431910276412964e-01 5.9189391136169434e-01 + <_> + + 0 -1 167 7.5217359699308872e-03 + + 4.0524271130561829e-01 6.1831092834472656e-01 + <_> + + 0 -1 168 2.2479810286313295e-03 + + 5.7837551832199097e-01 3.1354010105133057e-01 + <_> + + 0 -1 169 5.2006211131811142e-02 + + 5.5413120985031128e-01 1.9166369736194611e-01 + <_> + + 0 -1 170 1.2085529975593090e-02 + + 4.0326559543609619e-01 6.6445910930633545e-01 + <_> + + 0 -1 171 1.4687820112158079e-05 + + 3.5359779000282288e-01 5.7093828916549683e-01 + <_> + + 0 -1 172 7.1395188570022583e-06 + + 3.0374449491500854e-01 5.6102699041366577e-01 + <_> + + 0 -1 173 -4.6001640148460865e-03 + + 7.1810871362686157e-01 4.5803260803222656e-01 + <_> + + 0 -1 174 2.0058949012309313e-03 + + 5.6219518184661865e-01 2.9536840319633484e-01 + <_> + + 0 -1 175 4.5050270855426788e-03 + + 4.6153879165649414e-01 7.6190179586410522e-01 + <_> + + 0 -1 176 1.1746830306947231e-02 + + 5.3438371419906616e-01 1.7725290358066559e-01 + <_> + + 0 -1 177 -5.8316338807344437e-02 + + 1.6862459480762482e-01 5.3407722711563110e-01 + <_> + + 0 -1 178 2.3629379575140774e-04 + + 3.7920561432838440e-01 6.0268038511276245e-01 + <_> + + 0 -1 179 -7.8156180679798126e-03 + + 1.5128670632839203e-01 5.3243237733840942e-01 + <_> + + 0 -1 180 -1.0876160115003586e-02 + + 2.0818220078945160e-01 5.3199452161788940e-01 + <_> + + 0 -1 181 -2.7745519764721394e-03 + + 4.0982469916343689e-01 5.2103281021118164e-01 + <_> + + 0 -1 182 -7.8276381827890873e-04 + + 5.6932741403579712e-01 3.4788420796394348e-01 + <_> + + 0 -1 183 1.3870409689843655e-02 + + 5.3267508745193481e-01 2.2576980292797089e-01 + <_> + + 0 -1 184 -2.3674910888075829e-02 + + 1.5513050556182861e-01 5.2007079124450684e-01 + <_> + + 0 -1 185 -1.4879409718560055e-05 + + 5.5005669593811035e-01 3.8201761245727539e-01 + <_> + + 0 -1 186 3.6190641112625599e-03 + + 4.2386838793754578e-01 6.6397482156753540e-01 + <_> + + 0 -1 187 -1.9817110151052475e-02 + + 2.1500380337238312e-01 5.3823578357696533e-01 + <_> + + 0 -1 188 -3.8154039066284895e-03 + + 6.6757112741470337e-01 4.2152971029281616e-01 + <_> + + 0 -1 189 -4.9775829538702965e-03 + + 2.2672890126705170e-01 5.3863281011581421e-01 + <_> + + 0 -1 190 2.2441020701080561e-03 + + 4.3086910247802734e-01 6.8557357788085938e-01 + <_> + + 0 -1 191 1.2282459996640682e-02 + + 5.8366149663925171e-01 3.4674790501594543e-01 + <_> + + 0 -1 192 -2.8548699337989092e-03 + + 7.0169448852539062e-01 4.3114539980888367e-01 + <_> + + 0 -1 193 -3.7875669077038765e-03 + + 2.8953450918197632e-01 5.2249461412429810e-01 + <_> + + 0 -1 194 -1.2201230274513364e-03 + + 2.9755708575248718e-01 5.4816448688507080e-01 + <_> + + 0 -1 195 1.0160599835216999e-02 + + 4.8888179659843445e-01 8.1826978921890259e-01 + <_> + + 0 -1 196 -1.6174569725990295e-02 + + 1.4814929664134979e-01 5.2399927377700806e-01 + <_> + + 0 -1 197 1.9292460754513741e-02 + + 4.7863098978996277e-01 7.3781907558441162e-01 + <_> + + 0 -1 198 -3.2479539513587952e-03 + + 7.3742228746414185e-01 4.4706439971923828e-01 + <_> + + 0 -1 199 -9.3803480267524719e-03 + + 3.4891548752784729e-01 5.5379962921142578e-01 + <_> + + 0 -1 200 -1.2606129981577396e-02 + + 2.3796869814395905e-01 5.3154432773590088e-01 + <_> + + 0 -1 201 -2.5621930137276649e-02 + + 1.9646880030632019e-01 5.1387697458267212e-01 + <_> + + 0 -1 202 -7.5741496402770281e-05 + + 5.5905228853225708e-01 3.3658531308174133e-01 + <_> + + 0 -1 203 -8.9210882782936096e-02 + + 6.3404656946659088e-02 5.1626348495483398e-01 + <_> + + 0 -1 204 -2.7670480776578188e-03 + + 7.3234677314758301e-01 4.4907060265541077e-01 + <_> + + 0 -1 205 2.7152578695677221e-04 + + 4.1148349642753601e-01 5.9855180978775024e-01 + <_> + 51 + 2.4527879714965820e+01 + + <_> + + 0 -1 206 1.4786219689995050e-03 + + 2.6635450124740601e-01 6.6433167457580566e-01 + <_> + + 0 -1 207 -1.8741659587249160e-03 + + 6.1438488960266113e-01 2.5185129046440125e-01 + <_> + + 0 -1 208 -1.7151009524241090e-03 + + 5.7663410902023315e-01 2.3974630236625671e-01 + <_> + + 0 -1 209 -1.8939269939437509e-03 + + 5.6820458173751831e-01 2.5291448831558228e-01 + <_> + + 0 -1 210 -5.3006052039563656e-03 + + 1.6406759619712830e-01 5.5560797452926636e-01 + <_> + + 0 -1 211 -4.6662531793117523e-02 + + 6.1231541633605957e-01 4.7628301382064819e-01 + <_> + + 0 -1 212 -7.9431332414969802e-04 + + 5.7078588008880615e-01 2.8394040465354919e-01 + <_> + + 0 -1 213 1.4891670085489750e-02 + + 4.0896728634834290e-01 6.0063672065734863e-01 + <_> + + 0 -1 214 -1.2046529445797205e-03 + + 5.7124507427215576e-01 2.7052891254425049e-01 + <_> + + 0 -1 215 6.0619381256401539e-03 + + 5.2625042200088501e-01 3.2622259855270386e-01 + <_> + + 0 -1 216 -2.5286648888140917e-03 + + 6.8538308143615723e-01 4.1992568969726562e-01 + <_> + + 0 -1 217 -5.9010218828916550e-03 + + 3.2662820816040039e-01 5.4348129034042358e-01 + <_> + + 0 -1 218 5.6702760048210621e-03 + + 5.4684108495712280e-01 2.3190039396286011e-01 + <_> + + 0 -1 219 -3.0304100364446640e-03 + + 5.5706679821014404e-01 2.7082380652427673e-01 + <_> + + 0 -1 220 2.9803649522364140e-03 + + 3.7005689740180969e-01 5.8906257152557373e-01 + <_> + + 0 -1 221 -7.5840510427951813e-02 + + 2.1400700509548187e-01 5.4199481010437012e-01 + <_> + + 0 -1 222 1.9262539222836494e-02 + + 5.5267721414566040e-01 2.7265900373458862e-01 + <_> + + 0 -1 223 1.8888259364757687e-04 + + 3.9580118656158447e-01 6.0172098875045776e-01 + <_> + + 0 -1 224 2.9369549825787544e-02 + + 5.2413737773895264e-01 1.4357580244541168e-01 + <_> + + 0 -1 225 1.0417619487270713e-03 + + 3.3854091167449951e-01 5.9299832582473755e-01 + <_> + + 0 -1 226 2.6125640142709017e-03 + + 5.4853779077529907e-01 3.0215978622436523e-01 + <_> + + 0 -1 227 9.6977467183023691e-04 + + 3.3752760291099548e-01 5.5320328474044800e-01 + <_> + + 0 -1 228 5.9512659208849072e-04 + + 5.6317430734634399e-01 3.3593991398811340e-01 + <_> + + 0 -1 229 -1.0156559944152832e-01 + + 6.3735038042068481e-02 5.2304250001907349e-01 + <_> + + 0 -1 230 3.6156699061393738e-02 + + 5.1369631290435791e-01 1.0295289754867554e-01 + <_> + + 0 -1 231 3.4624140243977308e-03 + + 3.8793200254440308e-01 5.5582892894744873e-01 + <_> + + 0 -1 232 1.9554980099201202e-02 + + 5.2500867843627930e-01 1.8758599460124969e-01 + <_> + + 0 -1 233 -2.3121440317481756e-03 + + 6.6720288991928101e-01 4.6796411275863647e-01 + <_> + + 0 -1 234 -1.8605289515107870e-03 + + 7.1633791923522949e-01 4.3346709012985229e-01 + <_> + + 0 -1 235 -9.4026362057775259e-04 + + 3.0213609337806702e-01 5.6502032279968262e-01 + <_> + + 0 -1 236 -5.2418331615626812e-03 + + 1.8200090527534485e-01 5.2502560615539551e-01 + <_> + + 0 -1 237 1.1729019752237946e-04 + + 3.3891880512237549e-01 5.4459732770919800e-01 + <_> + + 0 -1 238 1.1878840159624815e-03 + + 4.0853491425514221e-01 6.2535631656646729e-01 + <_> + + 0 -1 239 -1.0881359688937664e-02 + + 3.3783990144729614e-01 5.7000827789306641e-01 + <_> + + 0 -1 240 1.7354859737679362e-03 + + 4.2046359181404114e-01 6.5230387449264526e-01 + <_> + + 0 -1 241 -6.5119052305817604e-03 + + 2.5952160358428955e-01 5.4281437397003174e-01 + <_> + + 0 -1 242 -1.2136430013924837e-03 + + 6.1651438474655151e-01 3.9778938889503479e-01 + <_> + + 0 -1 243 -1.0354240424931049e-02 + + 1.6280280053615570e-01 5.2195048332214355e-01 + <_> + + 0 -1 244 5.5858830455690622e-04 + + 3.1996509432792664e-01 5.5035740137100220e-01 + <_> + + 0 -1 245 1.5299649909138680e-02 + + 4.1039940714836121e-01 6.1223882436752319e-01 + <_> + + 0 -1 246 -2.1588210016489029e-02 + + 1.0349129885435104e-01 5.1973849534988403e-01 + <_> + + 0 -1 247 -1.2834629416465759e-01 + + 8.4938651323318481e-01 4.8931029438972473e-01 + <_> + + 0 -1 248 -2.2927189711481333e-03 + + 3.1301578879356384e-01 5.4715752601623535e-01 + <_> + + 0 -1 249 7.9915106296539307e-02 + + 4.8563209176063538e-01 6.0739892721176147e-01 + <_> + + 0 -1 250 -7.9441092908382416e-02 + + 8.3946740627288818e-01 4.6245330572128296e-01 + <_> + + 0 -1 251 -5.2800010889768600e-03 + + 1.8816959857940674e-01 5.3066980838775635e-01 + <_> + + 0 -1 252 1.0463109938427806e-03 + + 5.2712291479110718e-01 2.5830659270286560e-01 + <_> + + 0 -1 253 2.6317298761568964e-04 + + 4.2353048920631409e-01 5.7354408502578735e-01 + <_> + + 0 -1 254 -3.6173160187900066e-03 + + 6.9343960285186768e-01 4.4954448938369751e-01 + <_> + + 0 -1 255 1.1421879753470421e-02 + + 5.9009212255477905e-01 4.1381931304931641e-01 + <_> + + 0 -1 256 -1.9963278900831938e-03 + + 6.4663827419281006e-01 4.3272399902343750e-01 + <_> + 56 + 2.7153350830078125e+01 + + <_> + + 0 -1 257 -9.9691245704889297e-03 + + 6.1423242092132568e-01 2.4822120368480682e-01 + <_> + + 0 -1 258 7.3073059320449829e-04 + + 5.7049518823623657e-01 2.3219659924507141e-01 + <_> + + 0 -1 259 6.4045301405712962e-04 + + 2.1122519671916962e-01 5.8149331808090210e-01 + <_> + + 0 -1 260 4.5424019917845726e-03 + + 2.9504820704460144e-01 5.8663117885589600e-01 + <_> + + 0 -1 261 9.2477443104144186e-05 + + 2.9909908771514893e-01 5.7913267612457275e-01 + <_> + + 0 -1 262 -8.6603146046400070e-03 + + 2.8130298852920532e-01 5.6355422735214233e-01 + <_> + + 0 -1 263 8.0515816807746887e-03 + + 3.5353690385818481e-01 6.0547572374343872e-01 + <_> + + 0 -1 264 4.3835240649059415e-04 + + 5.5965322256088257e-01 2.7315109968185425e-01 + <_> + + 0 -1 265 -9.8168973636347800e-05 + + 5.9780317544937134e-01 3.6385610699653625e-01 + <_> + + 0 -1 266 -1.1298790341243148e-03 + + 2.7552521228790283e-01 5.4327291250228882e-01 + <_> + + 0 -1 267 6.4356150105595589e-03 + + 4.3056419491767883e-01 7.0698332786560059e-01 + <_> + + 0 -1 268 -5.6829329580068588e-02 + + 2.4952429533004761e-01 5.2949970960617065e-01 + <_> + + 0 -1 269 4.0668169967830181e-03 + + 5.4785531759262085e-01 2.4977239966392517e-01 + <_> + + 0 -1 270 4.8164798499783501e-05 + + 3.9386010169982910e-01 5.7063561677932739e-01 + <_> + + 0 -1 271 6.1795017682015896e-03 + + 4.4076061248779297e-01 7.3947668075561523e-01 + <_> + + 0 -1 272 6.4985752105712891e-03 + + 5.4452431201934814e-01 2.4791529774665833e-01 + <_> + + 0 -1 273 -1.0211090557277203e-03 + + 2.5447669625282288e-01 5.3389710187911987e-01 + <_> + + 0 -1 274 -5.4247528314590454e-03 + + 2.7188581228256226e-01 5.3240692615509033e-01 + <_> + + 0 -1 275 -1.0559899965301156e-03 + + 3.1782880425453186e-01 5.5345088243484497e-01 + <_> + + 0 -1 276 6.6465808777138591e-04 + + 4.2842191457748413e-01 6.5581941604614258e-01 + <_> + + 0 -1 277 -2.7524109464138746e-04 + + 5.9028607606887817e-01 3.8102629780769348e-01 + <_> + + 0 -1 278 4.2293202131986618e-03 + + 3.8164898753166199e-01 5.7093858718872070e-01 + <_> + + 0 -1 279 -3.2868210691958666e-03 + + 1.7477439343929291e-01 5.2595442533493042e-01 + <_> + + 0 -1 280 1.5611879643984139e-04 + + 3.6017221212387085e-01 5.7256120443344116e-01 + <_> + + 0 -1 281 -7.3621381488919724e-06 + + 5.4018580913543701e-01 3.0444970726966858e-01 + <_> + + 0 -1 282 -1.4767250046133995e-02 + + 3.2207700610160828e-01 5.5734348297119141e-01 + <_> + + 0 -1 283 2.4489590898156166e-02 + + 4.3015280365943909e-01 6.5188127756118774e-01 + <_> + + 0 -1 284 -3.7652091123163700e-04 + + 3.5645830631256104e-01 5.5982369184494019e-01 + <_> + + 0 -1 285 7.3657688517414499e-06 + + 3.4907829761505127e-01 5.5618977546691895e-01 + <_> + + 0 -1 286 -1.5099939890205860e-02 + + 1.7762720584869385e-01 5.3352999687194824e-01 + <_> + + 0 -1 287 -3.8316650316119194e-03 + + 6.1496877670288086e-01 4.2213940620422363e-01 + <_> + + 0 -1 288 1.6925400123000145e-02 + + 5.4130148887634277e-01 2.1665850281715393e-01 + <_> + + 0 -1 289 -3.0477850232273340e-03 + + 6.4494907855987549e-01 4.3546178936958313e-01 + <_> + + 0 -1 290 3.2140589319169521e-03 + + 5.4001551866531372e-01 3.5232171416282654e-01 + <_> + + 0 -1 291 -4.0023201145231724e-03 + + 2.7745240926742554e-01 5.3384172916412354e-01 + <_> + + 0 -1 292 7.4182129465043545e-03 + + 5.6767392158508301e-01 3.7028178572654724e-01 + <_> + + 0 -1 293 -8.8764587417244911e-03 + + 7.7492219209671021e-01 4.5836889743804932e-01 + <_> + + 0 -1 294 2.7311739977449179e-03 + + 5.3387218713760376e-01 3.9966610074043274e-01 + <_> + + 0 -1 295 -2.5082379579544067e-03 + + 5.6119632720947266e-01 3.7774989008903503e-01 + <_> + + 0 -1 296 -8.0541074275970459e-03 + + 2.9152289032936096e-01 5.1791828870773315e-01 + <_> + + 0 -1 297 -9.7938813269138336e-04 + + 5.5364328622817993e-01 3.7001928687095642e-01 + <_> + + 0 -1 298 -5.8745909482240677e-03 + + 3.7543910741806030e-01 5.6793761253356934e-01 + <_> + + 0 -1 299 -4.4936719350516796e-03 + + 7.0196992158889771e-01 4.4809499382972717e-01 + <_> + + 0 -1 300 -5.4389229044318199e-03 + + 2.3103649914264679e-01 5.3133869171142578e-01 + <_> + + 0 -1 301 -7.5094640487805009e-04 + + 5.8648687601089478e-01 4.1293430328369141e-01 + <_> + + 0 -1 302 1.4528800420521293e-05 + + 3.7324070930480957e-01 5.6196212768554688e-01 + <_> + + 0 -1 303 4.0758069604635239e-02 + + 5.3120911121368408e-01 2.7205219864845276e-01 + <_> + + 0 -1 304 6.6505931317806244e-03 + + 4.7100159525871277e-01 6.6934937238693237e-01 + <_> + + 0 -1 305 4.5759351924061775e-03 + + 5.1678192615509033e-01 1.6372759640216827e-01 + <_> + + 0 -1 306 6.5269311890006065e-03 + + 5.3976088762283325e-01 2.9385319352149963e-01 + <_> + + 0 -1 307 -1.3660379685461521e-02 + + 7.0864880084991455e-01 4.5322000980377197e-01 + <_> + + 0 -1 308 2.7358869090676308e-02 + + 5.2064812183380127e-01 3.5892319679260254e-01 + <_> + + 0 -1 309 6.2197551596909761e-04 + + 3.5070759057998657e-01 5.4411232471466064e-01 + <_> + + 0 -1 310 -3.3077080734074116e-03 + + 5.8595228195190430e-01 4.0248918533325195e-01 + <_> + + 0 -1 311 -1.0631109587848186e-02 + + 6.7432671785354614e-01 4.4226029515266418e-01 + <_> + + 0 -1 312 1.9441649317741394e-02 + + 5.2827161550521851e-01 1.7979049682617188e-01 + <_> + 71 + 3.4554111480712891e+01 + + <_> + + 0 -1 313 -5.5052167735993862e-03 + + 5.9147310256958008e-01 2.6265591382980347e-01 + <_> + + 0 -1 314 1.9562279339879751e-03 + + 2.3125819861888885e-01 5.7416272163391113e-01 + <_> + + 0 -1 315 -8.8924784213304520e-03 + + 1.6565300524234772e-01 5.6266540288925171e-01 + <_> + + 0 -1 316 8.3638377487659454e-02 + + 5.4234498739242554e-01 1.9572949409484863e-01 + <_> + + 0 -1 317 1.2282270472496748e-03 + + 3.4179040789604187e-01 5.9925037622451782e-01 + <_> + + 0 -1 318 5.7629169896245003e-03 + + 3.7195819616317749e-01 6.0799038410186768e-01 + <_> + + 0 -1 319 -1.6417410224676132e-03 + + 2.5774860382080078e-01 5.5769157409667969e-01 + <_> + + 0 -1 320 3.4113149158656597e-03 + + 2.9507490992546082e-01 5.5141717195510864e-01 + <_> + + 0 -1 321 -1.1069320142269135e-02 + + 7.5693589448928833e-01 4.4770789146423340e-01 + <_> + + 0 -1 322 3.4865971654653549e-02 + + 5.5837088823318481e-01 2.6696211099624634e-01 + <_> + + 0 -1 323 6.5701099811121821e-04 + + 5.6273132562637329e-01 2.9888901114463806e-01 + <_> + + 0 -1 324 -2.4339130148291588e-02 + + 2.7711850404739380e-01 5.1088631153106689e-01 + <_> + + 0 -1 325 5.9435202274471521e-04 + + 5.5806517601013184e-01 3.1203418970108032e-01 + <_> + + 0 -1 326 2.2971509024500847e-03 + + 3.3302500844001770e-01 5.6790757179260254e-01 + <_> + + 0 -1 327 -3.7801829166710377e-03 + + 2.9905349016189575e-01 5.3448081016540527e-01 + <_> + + 0 -1 328 -1.3420669734477997e-01 + + 1.4638589322566986e-01 5.3925681114196777e-01 + <_> + + 0 -1 329 7.5224548345431685e-04 + + 3.7469539046287537e-01 5.6927347183227539e-01 + <_> + + 0 -1 330 -4.0545541793107986e-02 + + 2.7547478675842285e-01 5.4842978715896606e-01 + <_> + + 0 -1 331 1.2572970008477569e-03 + + 3.7445840239524841e-01 5.7560759782791138e-01 + <_> + + 0 -1 332 -7.4249948374927044e-03 + + 7.5138592720031738e-01 4.7282311320304871e-01 + <_> + + 0 -1 333 5.0908129196614027e-04 + + 5.4048967361450195e-01 2.9323211312294006e-01 + <_> + + 0 -1 334 -1.2808450264856219e-03 + + 6.1697798967361450e-01 4.2733490467071533e-01 + <_> + + 0 -1 335 -1.8348860321566463e-03 + + 2.0484960079193115e-01 5.2064722776412964e-01 + <_> + + 0 -1 336 2.7484869584441185e-02 + + 5.2529847621917725e-01 1.6755220293998718e-01 + <_> + + 0 -1 337 2.2372419480234385e-03 + + 5.2677828073501587e-01 2.7776581048965454e-01 + <_> + + 0 -1 338 -8.8635291904211044e-03 + + 6.9545578956604004e-01 4.8120489716529846e-01 + <_> + + 0 -1 339 4.1753971017897129e-03 + + 4.2918878793716431e-01 6.3491958379745483e-01 + <_> + + 0 -1 340 -1.7098189564421773e-03 + + 2.9305368661880493e-01 5.3612488508224487e-01 + <_> + + 0 -1 341 6.5328548662364483e-03 + + 4.4953250885009766e-01 7.4096941947937012e-01 + <_> + + 0 -1 342 -9.5372907817363739e-03 + + 3.1491199135780334e-01 5.4165017604827881e-01 + <_> + + 0 -1 343 2.5310989469289780e-02 + + 5.1218920946121216e-01 1.3117079436779022e-01 + <_> + + 0 -1 344 3.6460969597101212e-02 + + 5.1759117841720581e-01 2.5913399457931519e-01 + <_> + + 0 -1 345 2.0854329690337181e-02 + + 5.1371401548385620e-01 1.5823160111904144e-01 + <_> + + 0 -1 346 -8.7207747856155038e-04 + + 5.5743098258972168e-01 4.3989789485931396e-01 + <_> + + 0 -1 347 -1.5227000403683633e-05 + + 5.5489408969879150e-01 3.7080699205398560e-01 + <_> + + 0 -1 348 -8.4316509310156107e-04 + + 3.3874198794364929e-01 5.5542111396789551e-01 + <_> + + 0 -1 349 3.6037859972566366e-03 + + 5.3580617904663086e-01 3.4111711382865906e-01 + <_> + + 0 -1 350 -6.8057891912758350e-03 + + 6.1252027750015259e-01 4.3458628654479980e-01 + <_> + + 0 -1 351 -4.7021660953760147e-02 + + 2.3581659793853760e-01 5.1937389373779297e-01 + <_> + + 0 -1 352 -3.6954108625650406e-02 + + 7.3231112957000732e-01 4.7609439492225647e-01 + <_> + + 0 -1 353 1.0439479956403375e-03 + + 5.4194551706314087e-01 3.4113308787345886e-01 + <_> + + 0 -1 354 -2.1050689974799752e-04 + + 2.8216940164566040e-01 5.5549472570419312e-01 + <_> + + 0 -1 355 -8.0831587314605713e-02 + + 9.1299301385879517e-01 4.6974349021911621e-01 + <_> + + 0 -1 356 -3.6579059087671340e-04 + + 6.0226702690124512e-01 3.9782929420471191e-01 + <_> + + 0 -1 357 -1.2545920617412776e-04 + + 5.6132131814956665e-01 3.8455399870872498e-01 + <_> + + 0 -1 358 -6.8786486983299255e-02 + + 2.2616119682788849e-01 5.3004968166351318e-01 + <_> + + 0 -1 359 1.2415789999067783e-02 + + 4.0756919980049133e-01 5.8288121223449707e-01 + <_> + + 0 -1 360 -4.7174817882478237e-03 + + 2.8272539377212524e-01 5.2677577733993530e-01 + <_> + + 0 -1 361 3.8136858493089676e-02 + + 5.0747412443161011e-01 1.0236159712076187e-01 + <_> + + 0 -1 362 -2.8168049175292253e-03 + + 6.1690068244934082e-01 4.3596929311752319e-01 + <_> + + 0 -1 363 8.1303603947162628e-03 + + 4.5244330167770386e-01 7.6060950756072998e-01 + <_> + + 0 -1 364 6.0056019574403763e-03 + + 5.2404087781906128e-01 1.8597120046615601e-01 + <_> + + 0 -1 365 1.9139319658279419e-02 + + 5.2093791961669922e-01 2.3320719599723816e-01 + <_> + + 0 -1 366 1.6445759683847427e-02 + + 5.4507029056549072e-01 3.2642349600791931e-01 + <_> + + 0 -1 367 -3.7356890738010406e-02 + + 6.9990468025207520e-01 4.5332419872283936e-01 + <_> + + 0 -1 368 -1.9727900624275208e-02 + + 2.6536649465560913e-01 5.4128098487854004e-01 + <_> + + 0 -1 369 6.6972579807043076e-03 + + 4.4805660843849182e-01 7.1386522054672241e-01 + <_> + + 0 -1 370 7.4457528535276651e-04 + + 4.2313501238822937e-01 5.4713201522827148e-01 + <_> + + 0 -1 371 1.1790640419349074e-03 + + 5.3417021036148071e-01 3.1304550170898438e-01 + <_> + + 0 -1 372 3.4980610013008118e-02 + + 5.1186597347259521e-01 3.4305301308631897e-01 + <_> + + 0 -1 373 5.6859792675822973e-04 + + 3.5321870446205139e-01 5.4686397314071655e-01 + <_> + + 0 -1 374 -1.1340649798512459e-02 + + 2.8423538804054260e-01 5.3487008810043335e-01 + <_> + + 0 -1 375 -6.6228108480572701e-03 + + 6.8836402893066406e-01 4.4926649332046509e-01 + <_> + + 0 -1 376 -8.0160330981016159e-03 + + 1.7098939418792725e-01 5.2243089675903320e-01 + <_> + + 0 -1 377 1.4206819469109178e-03 + + 5.2908462285995483e-01 2.9933831095695496e-01 + <_> + + 0 -1 378 -2.7801711112260818e-03 + + 6.4988541603088379e-01 4.4604998826980591e-01 + <_> + + 0 -1 379 -1.4747589593753219e-03 + + 3.2604381442070007e-01 5.3881132602691650e-01 + <_> + + 0 -1 380 -2.3830339312553406e-02 + + 7.5289410352706909e-01 4.8012199997901917e-01 + <_> + + 0 -1 381 6.9369790144264698e-03 + + 5.3351658582687378e-01 3.2614278793334961e-01 + <_> + + 0 -1 382 8.2806255668401718e-03 + + 4.5803940296173096e-01 5.7378298044204712e-01 + <_> + + 0 -1 383 -1.0439500212669373e-02 + + 2.5923201441764832e-01 5.2338278293609619e-01 + <_> + 80 + 3.9107288360595703e+01 + + <_> + + 0 -1 384 7.2006587870419025e-03 + + 3.2588860392570496e-01 6.8498080968856812e-01 + <_> + + 0 -1 385 -2.8593589086085558e-03 + + 5.8388811349868774e-01 2.5378298759460449e-01 + <_> + + 0 -1 386 6.8580528022721410e-04 + + 5.7080817222595215e-01 2.8124240040779114e-01 + <_> + + 0 -1 387 7.9580191522836685e-03 + + 2.5010511279106140e-01 5.5442607402801514e-01 + <_> + + 0 -1 388 -1.2124150525778532e-03 + + 2.3853680491447449e-01 5.4333502054214478e-01 + <_> + + 0 -1 389 7.9426132142543793e-03 + + 3.9550709724426270e-01 6.2207579612731934e-01 + <_> + + 0 -1 390 2.4630590341985226e-03 + + 5.6397080421447754e-01 2.9923579096794128e-01 + <_> + + 0 -1 391 -6.0396599583327770e-03 + + 2.1865129470825195e-01 5.4116767644882202e-01 + <_> + + 0 -1 392 -1.2988339876756072e-03 + + 2.3507060110569000e-01 5.3645849227905273e-01 + <_> + + 0 -1 393 2.2299369447864592e-04 + + 3.8041129708290100e-01 5.7296061515808105e-01 + <_> + + 0 -1 394 1.4654280385002494e-03 + + 2.5101679563522339e-01 5.2582687139511108e-01 + <_> + + 0 -1 395 -8.1210042117163539e-04 + + 5.9928238391876221e-01 3.8511589169502258e-01 + <_> + + 0 -1 396 -1.3836020370945334e-03 + + 5.6813961267471313e-01 3.6365869641304016e-01 + <_> + + 0 -1 397 -2.7936449274420738e-02 + + 1.4913170039653778e-01 5.3775602579116821e-01 + <_> + + 0 -1 398 -4.6919551095925272e-04 + + 3.6924299597740173e-01 5.5724847316741943e-01 + <_> + + 0 -1 399 -4.9829659983515739e-03 + + 6.7585092782974243e-01 4.5325040817260742e-01 + <_> + + 0 -1 400 1.8815309740602970e-03 + + 5.3680229187011719e-01 2.9325398802757263e-01 + <_> + + 0 -1 401 -1.9067550078034401e-02 + + 1.6493770480155945e-01 5.3300672769546509e-01 + <_> + + 0 -1 402 -4.6906559728085995e-03 + + 1.9639259576797485e-01 5.1193618774414062e-01 + <_> + + 0 -1 403 5.9777139686048031e-03 + + 4.6711719036102295e-01 7.0083981752395630e-01 + <_> + + 0 -1 404 -3.3303130418062210e-02 + + 1.1554169654846191e-01 5.1041620969772339e-01 + <_> + + 0 -1 405 9.0744107961654663e-02 + + 5.1496601104736328e-01 1.3061730563640594e-01 + <_> + + 0 -1 406 9.3555898638442159e-04 + + 3.6054810881614685e-01 5.4398590326309204e-01 + <_> + + 0 -1 407 1.4901650138199329e-02 + + 4.8862120509147644e-01 7.6875698566436768e-01 + <_> + + 0 -1 408 6.1594118596985936e-04 + + 5.3568130731582642e-01 3.2409390807151794e-01 + <_> + + 0 -1 409 -5.0670988857746124e-02 + + 1.8486219644546509e-01 5.2304041385650635e-01 + <_> + + 0 -1 410 6.8665749859064817e-04 + + 3.8405799865722656e-01 5.5179458856582642e-01 + <_> + + 0 -1 411 8.3712432533502579e-03 + + 4.2885640263557434e-01 6.1317539215087891e-01 + <_> + + 0 -1 412 -1.2953069526702166e-03 + + 2.9136741161346436e-01 5.2807378768920898e-01 + <_> + + 0 -1 413 -4.1941680014133453e-02 + + 7.5547999143600464e-01 4.8560309410095215e-01 + <_> + + 0 -1 414 -2.3529380559921265e-02 + + 2.8382799029350281e-01 5.2560812234878540e-01 + <_> + + 0 -1 415 4.0857449173927307e-02 + + 4.8709350824356079e-01 6.2772971391677856e-01 + <_> + + 0 -1 416 -2.5406869128346443e-02 + + 7.0997077226638794e-01 4.5750290155410767e-01 + <_> + + 0 -1 417 -4.1415440500713885e-04 + + 4.0308868885040283e-01 5.4694122076034546e-01 + <_> + + 0 -1 418 2.1824119612574577e-02 + + 4.5020240545272827e-01 6.7687010765075684e-01 + <_> + + 0 -1 419 1.4114039950072765e-02 + + 5.4428607225418091e-01 3.7917000055313110e-01 + <_> + + 0 -1 420 6.7214590671937913e-05 + + 4.2004638910293579e-01 5.8734762668609619e-01 + <_> + + 0 -1 421 -7.9417638480663300e-03 + + 3.7925618886947632e-01 5.5852657556533813e-01 + <_> + + 0 -1 422 -7.2144409641623497e-03 + + 7.2531038522720337e-01 4.6035489439964294e-01 + <_> + + 0 -1 423 2.5817339774221182e-03 + + 4.6933019161224365e-01 5.9002387523651123e-01 + <_> + + 0 -1 424 1.3409319519996643e-01 + + 5.1492130756378174e-01 1.8088449537754059e-01 + <_> + + 0 -1 425 2.2962710354477167e-03 + + 5.3997439146041870e-01 3.7178671360015869e-01 + <_> + + 0 -1 426 -2.1575849968940020e-03 + + 2.4084959924221039e-01 5.1488637924194336e-01 + <_> + + 0 -1 427 -4.9196188338100910e-03 + + 6.5735882520675659e-01 4.7387400269508362e-01 + <_> + + 0 -1 428 1.6267469618469477e-03 + + 4.1928219795227051e-01 6.3031142950057983e-01 + <_> + + 0 -1 429 3.3413388882763684e-04 + + 5.5402982234954834e-01 3.7021011114120483e-01 + <_> + + 0 -1 430 -2.6698080822825432e-02 + + 1.7109179496765137e-01 5.1014107465744019e-01 + <_> + + 0 -1 431 -3.0561879277229309e-02 + + 1.9042180478572845e-01 5.1687937974929810e-01 + <_> + + 0 -1 432 2.8511548880487680e-03 + + 4.4475069642066956e-01 6.3138538599014282e-01 + <_> + + 0 -1 433 -3.6211479455232620e-02 + + 2.4907270073890686e-01 5.3773492574691772e-01 + <_> + + 0 -1 434 -2.4115189444273710e-03 + + 5.3812432289123535e-01 3.6642369627952576e-01 + <_> + + 0 -1 435 -7.7253201743587852e-04 + + 5.5302321910858154e-01 3.5415500402450562e-01 + <_> + + 0 -1 436 2.9481729143299162e-04 + + 4.1326990723609924e-01 5.6672430038452148e-01 + <_> + + 0 -1 437 -6.2334560789167881e-03 + + 9.8787233233451843e-02 5.1986688375473022e-01 + <_> + + 0 -1 438 -2.6274729520082474e-02 + + 9.1127492487430573e-02 5.0281071662902832e-01 + <_> + + 0 -1 439 5.3212260827422142e-03 + + 4.7266489267349243e-01 6.2227207422256470e-01 + <_> + + 0 -1 440 -4.1129058226943016e-03 + + 2.1574570238590240e-01 5.1378047466278076e-01 + <_> + + 0 -1 441 3.2457809429615736e-03 + + 5.4107707738876343e-01 3.7217769026756287e-01 + <_> + + 0 -1 442 -1.6359709203243256e-02 + + 7.7878749370574951e-01 4.6852919459342957e-01 + <_> + + 0 -1 443 3.2166109303943813e-04 + + 5.4789870977401733e-01 4.2403739690780640e-01 + <_> + + 0 -1 444 6.4452440710738301e-04 + + 5.3305608034133911e-01 3.5013249516487122e-01 + <_> + + 0 -1 445 -7.8909732401371002e-03 + + 6.9235211610794067e-01 4.7265690565109253e-01 + <_> + + 0 -1 446 4.8336211591959000e-02 + + 5.0559002161026001e-01 7.5749203562736511e-02 + <_> + + 0 -1 447 -7.5178127735853195e-04 + + 3.7837418913841248e-01 5.5385738611221313e-01 + <_> + + 0 -1 448 -2.4953910615295172e-03 + + 3.0816510319709778e-01 5.3596121072769165e-01 + <_> + + 0 -1 449 -2.2385010961443186e-03 + + 6.6339588165283203e-01 4.6493428945541382e-01 + <_> + + 0 -1 450 -1.7988430336117744e-03 + + 6.5968447923660278e-01 4.3471878767013550e-01 + <_> + + 0 -1 451 8.7860915809869766e-03 + + 5.2318328619003296e-01 2.3155799508094788e-01 + <_> + + 0 -1 452 3.6715380847454071e-03 + + 5.2042502164840698e-01 2.9773768782615662e-01 + <_> + + 0 -1 453 -3.5336449742317200e-02 + + 7.2388780117034912e-01 4.8615050315856934e-01 + <_> + + 0 -1 454 -6.9189240457490087e-04 + + 3.1050220131874084e-01 5.2298247814178467e-01 + <_> + + 0 -1 455 -3.3946109469980001e-03 + + 3.1389680504798889e-01 5.2101737260818481e-01 + <_> + + 0 -1 456 9.8569283727556467e-04 + + 4.5365801453590393e-01 6.5850979089736938e-01 + <_> + + 0 -1 457 -5.0163101404905319e-02 + + 1.8044540286064148e-01 5.1989167928695679e-01 + <_> + + 0 -1 458 -2.2367259953171015e-03 + + 7.2557020187377930e-01 4.6513590216636658e-01 + <_> + + 0 -1 459 7.4326287722215056e-04 + + 4.4129210710525513e-01 5.8985459804534912e-01 + <_> + + 0 -1 460 -9.3485182151198387e-04 + + 3.5000529885292053e-01 5.3660178184509277e-01 + <_> + + 0 -1 461 1.7497939988970757e-02 + + 4.9121949076652527e-01 8.3152848482131958e-01 + <_> + + 0 -1 462 -1.5200000489130616e-03 + + 3.5702759027481079e-01 5.3705602884292603e-01 + <_> + + 0 -1 463 7.8003940870985389e-04 + + 4.3537721037864685e-01 5.9673351049423218e-01 + <_> + 103 + 5.0610481262207031e+01 + + <_> + + 0 -1 464 -9.9945552647113800e-03 + + 6.1625832319259644e-01 3.0545330047607422e-01 + <_> + + 0 -1 465 -1.1085229925811291e-03 + + 5.8182948827743530e-01 3.1555780768394470e-01 + <_> + + 0 -1 466 1.0364380432292819e-03 + + 2.5520521402359009e-01 5.6929117441177368e-01 + <_> + + 0 -1 467 6.8211311008781195e-04 + + 3.6850899457931519e-01 5.9349310398101807e-01 + <_> + + 0 -1 468 -6.8057340104132891e-04 + + 2.3323920369148254e-01 5.4747921228408813e-01 + <_> + + 0 -1 469 2.6068789884448051e-04 + + 3.2574570178985596e-01 5.6675457954406738e-01 + <_> + + 0 -1 470 5.1607372006401420e-04 + + 3.7447169423103333e-01 5.8454728126525879e-01 + <_> + + 0 -1 471 8.5007521556690335e-04 + + 3.4203711152076721e-01 5.5228072404861450e-01 + <_> + + 0 -1 472 -1.8607829697430134e-03 + + 2.8044199943542480e-01 5.3754240274429321e-01 + <_> + + 0 -1 473 -1.5033970121294260e-03 + + 2.5790509581565857e-01 5.4989522695541382e-01 + <_> + + 0 -1 474 2.3478909861296415e-03 + + 4.1751560568809509e-01 6.3137108087539673e-01 + <_> + + 0 -1 475 -2.8880240279249847e-04 + + 5.8651697635650635e-01 4.0526661276817322e-01 + <_> + + 0 -1 476 8.9405477046966553e-03 + + 5.2111411094665527e-01 2.3186540603637695e-01 + <_> + + 0 -1 477 -1.9327739253640175e-02 + + 2.7534329891204834e-01 5.2415257692337036e-01 + <_> + + 0 -1 478 -2.0202060113660991e-04 + + 5.7229787111282349e-01 3.6771959066390991e-01 + <_> + + 0 -1 479 2.1179069299250841e-03 + + 4.4661080837249756e-01 5.5424308776855469e-01 + <_> + + 0 -1 480 -1.7743760254234076e-03 + + 2.8132531046867371e-01 5.3009599447250366e-01 + <_> + + 0 -1 481 4.2234458960592747e-03 + + 4.3997099995613098e-01 5.7954281568527222e-01 + <_> + + 0 -1 482 -1.4375220052897930e-02 + + 2.9811179637908936e-01 5.2920591831207275e-01 + <_> + + 0 -1 483 -1.5349180437624454e-02 + + 7.7052152156829834e-01 4.7481718659400940e-01 + <_> + + 0 -1 484 1.5152279956964776e-05 + + 3.7188440561294556e-01 5.5768972635269165e-01 + <_> + + 0 -1 485 -9.1293919831514359e-03 + + 3.6151960492134094e-01 5.2867668867111206e-01 + <_> + + 0 -1 486 2.2512159775942564e-03 + + 5.3647047281265259e-01 3.4862980246543884e-01 + <_> + + 0 -1 487 -4.9696918576955795e-03 + + 6.9276517629623413e-01 4.6768361330032349e-01 + <_> + + 0 -1 488 -1.2829010374844074e-02 + + 7.7121537923812866e-01 4.6607351303100586e-01 + <_> + + 0 -1 489 -9.3660065904259682e-03 + + 3.3749839663505554e-01 5.3512877225875854e-01 + <_> + + 0 -1 490 3.2452319283038378e-03 + + 5.3251898288726807e-01 3.2896101474761963e-01 + <_> + + 0 -1 491 -1.1723560281097889e-02 + + 6.8376529216766357e-01 4.7543001174926758e-01 + <_> + + 0 -1 492 2.9257940695970319e-05 + + 3.5720878839492798e-01 5.3605020046234131e-01 + <_> + + 0 -1 493 -2.2244219508138485e-05 + + 5.5414271354675293e-01 3.5520640015602112e-01 + <_> + + 0 -1 494 5.0881509669125080e-03 + + 5.0708442926406860e-01 1.2564620375633240e-01 + <_> + + 0 -1 495 2.7429679408669472e-02 + + 5.2695602178573608e-01 1.6258180141448975e-01 + <_> + + 0 -1 496 -6.4142867922782898e-03 + + 7.1455889940261841e-01 4.5841971039772034e-01 + <_> + + 0 -1 497 3.3479959238320589e-03 + + 5.3986120223999023e-01 3.4946969151496887e-01 + <_> + + 0 -1 498 -8.2635492086410522e-02 + + 2.4391929805278778e-01 5.1602262258529663e-01 + <_> + + 0 -1 499 1.0261740535497665e-03 + + 3.8868919014930725e-01 5.7679080963134766e-01 + <_> + + 0 -1 500 -1.6307090409100056e-03 + + 3.3894580602645874e-01 5.3477007150650024e-01 + <_> + + 0 -1 501 2.4546680506318808e-03 + + 4.6014139056205750e-01 6.3872468471527100e-01 + <_> + + 0 -1 502 -9.9476519972085953e-04 + + 5.7698792219161987e-01 4.1203960776329041e-01 + <_> + + 0 -1 503 1.5409190207719803e-02 + + 4.8787090182304382e-01 7.0898222923278809e-01 + <_> + + 0 -1 504 1.1784400558099151e-03 + + 5.2635532617568970e-01 2.8952449560165405e-01 + <_> + + 0 -1 505 -2.7701919898390770e-02 + + 1.4988289773464203e-01 5.2196067571640015e-01 + <_> + + 0 -1 506 -2.9505399987101555e-02 + + 2.4893319234251976e-02 4.9998161196708679e-01 + <_> + + 0 -1 507 4.5159430010244250e-04 + + 5.4646229743957520e-01 4.0296629071235657e-01 + <_> + + 0 -1 508 7.1772639639675617e-03 + + 4.2710569500923157e-01 5.8662968873977661e-01 + <_> + + 0 -1 509 -7.4182048439979553e-02 + + 6.8741792440414429e-01 4.9190279841423035e-01 + <_> + + 0 -1 510 -1.7254160717129707e-02 + + 3.3706760406494141e-01 5.3487390279769897e-01 + <_> + + 0 -1 511 1.4851559884846210e-02 + + 4.6267929673194885e-01 6.1299049854278564e-01 + <_> + + 0 -1 512 1.0002000257372856e-02 + + 5.3461229801177979e-01 3.4234538674354553e-01 + <_> + + 0 -1 513 2.0138120744377375e-03 + + 4.6438300609588623e-01 5.8243042230606079e-01 + <_> + + 0 -1 514 1.5135470312088728e-03 + + 5.1963961124420166e-01 2.8561499714851379e-01 + <_> + + 0 -1 515 3.1381431035697460e-03 + + 4.8381629586219788e-01 5.9585297107696533e-01 + <_> + + 0 -1 516 -5.1450440660119057e-03 + + 8.9203029870986938e-01 4.7414121031761169e-01 + <_> + + 0 -1 517 -4.4736708514392376e-03 + + 2.0339429378509521e-01 5.3372788429260254e-01 + <_> + + 0 -1 518 1.9628470763564110e-03 + + 4.5716339349746704e-01 6.7258632183074951e-01 + <_> + + 0 -1 519 5.4260450415313244e-03 + + 5.2711081504821777e-01 2.8456708788871765e-01 + <_> + + 0 -1 520 4.9611460417509079e-04 + + 4.1383129358291626e-01 5.7185977697372437e-01 + <_> + + 0 -1 521 9.3728788197040558e-03 + + 5.2251511812210083e-01 2.8048470616340637e-01 + <_> + + 0 -1 522 6.0500897234305739e-04 + + 5.2367687225341797e-01 3.3145239949226379e-01 + <_> + + 0 -1 523 5.6792551185935736e-04 + + 4.5310598611831665e-01 6.2769711017608643e-01 + <_> + + 0 -1 524 2.4644339457154274e-02 + + 5.1308518648147583e-01 2.0171439647674561e-01 + <_> + + 0 -1 525 -1.0290450416505337e-02 + + 7.7865952253341675e-01 4.8766410350799561e-01 + <_> + + 0 -1 526 2.0629419013857841e-03 + + 4.2885988950729370e-01 5.8812642097473145e-01 + <_> + + 0 -1 527 -5.0519481301307678e-03 + + 3.5239779949188232e-01 5.2860087156295776e-01 + <_> + + 0 -1 528 -5.7692620903253555e-03 + + 6.8410861492156982e-01 4.5880940556526184e-01 + <_> + + 0 -1 529 -4.5789941214025021e-04 + + 3.5655200481414795e-01 5.4859781265258789e-01 + <_> + + 0 -1 530 -7.5918837683275342e-04 + + 3.3687931299209595e-01 5.2541971206665039e-01 + <_> + + 0 -1 531 -1.7737259622663260e-03 + + 3.4221610426902771e-01 5.4540151357650757e-01 + <_> + + 0 -1 532 -8.5610467940568924e-03 + + 6.5336120128631592e-01 4.4858568906784058e-01 + <_> + + 0 -1 533 1.7277270089834929e-03 + + 5.3075802326202393e-01 3.9253529906272888e-01 + <_> + + 0 -1 534 -2.8199609369039536e-02 + + 6.8574589490890503e-01 4.5885840058326721e-01 + <_> + + 0 -1 535 -1.7781109781935811e-03 + + 4.0378510951995850e-01 5.3698569536209106e-01 + <_> + + 0 -1 536 3.3177141449414194e-04 + + 5.3997987508773804e-01 3.7057501077651978e-01 + <_> + + 0 -1 537 2.6385399978607893e-03 + + 4.6654370427131653e-01 6.4527308940887451e-01 + <_> + + 0 -1 538 -2.1183069329708815e-03 + + 5.9147810935974121e-01 4.0646770596504211e-01 + <_> + + 0 -1 539 -1.4773289673030376e-02 + + 3.6420381069183350e-01 5.2947628498077393e-01 + <_> + + 0 -1 540 -1.6815440729260445e-02 + + 2.6642319560050964e-01 5.1449728012084961e-01 + <_> + + 0 -1 541 -6.3370140269398689e-03 + + 6.7795312404632568e-01 4.8520979285240173e-01 + <_> + + 0 -1 542 -4.4560048991115764e-05 + + 5.6139647960662842e-01 4.1530540585517883e-01 + <_> + + 0 -1 543 -1.0240620467811823e-03 + + 5.9644782543182373e-01 4.5663040876388550e-01 + <_> + + 0 -1 544 -2.3161689750850201e-03 + + 2.9761150479316711e-01 5.1881599426269531e-01 + <_> + + 0 -1 545 5.3217571973800659e-01 + + 5.1878392696380615e-01 2.2026319801807404e-01 + <_> + + 0 -1 546 -1.6643050312995911e-01 + + 1.8660229444503784e-01 5.0603431463241577e-01 + <_> + + 0 -1 547 1.1253529787063599e-01 + + 5.2121251821517944e-01 1.1850229650735855e-01 + <_> + + 0 -1 548 9.3046864494681358e-03 + + 4.5899370312690735e-01 6.8261492252349854e-01 + <_> + + 0 -1 549 -4.6255099587142467e-03 + + 3.0799409747123718e-01 5.2250087261199951e-01 + <_> + + 0 -1 550 -1.1116469651460648e-01 + + 2.1010440587997437e-01 5.0808018445968628e-01 + <_> + + 0 -1 551 -1.0888439603149891e-02 + + 5.7653552293777466e-01 4.7904640436172485e-01 + <_> + + 0 -1 552 5.8564301580190659e-03 + + 5.0651001930236816e-01 1.5635989606380463e-01 + <_> + + 0 -1 553 5.4854389280080795e-02 + + 4.9669149518013000e-01 7.2305107116699219e-01 + <_> + + 0 -1 554 -1.1197339743375778e-02 + + 2.1949790418148041e-01 5.0987982749938965e-01 + <_> + + 0 -1 555 4.4069071300327778e-03 + + 4.7784018516540527e-01 6.7709028720855713e-01 + <_> + + 0 -1 556 -6.3665293157100677e-02 + + 1.9363629817962646e-01 5.0810241699218750e-01 + <_> + + 0 -1 557 -9.8081491887569427e-03 + + 5.9990632534027100e-01 4.8103410005569458e-01 + <_> + + 0 -1 558 -2.1717099007219076e-03 + + 3.3383339643478394e-01 5.2354729175567627e-01 + <_> + + 0 -1 559 -1.3315520249307156e-02 + + 6.6170698404312134e-01 4.9192130565643311e-01 + <_> + + 0 -1 560 2.5442079640924931e-03 + + 4.4887441396713257e-01 6.0821849107742310e-01 + <_> + + 0 -1 561 1.2037839740514755e-02 + + 5.4093921184539795e-01 3.2924321293830872e-01 + <_> + + 0 -1 562 -2.0701050758361816e-02 + + 6.8191200494766235e-01 4.5949959754943848e-01 + <_> + + 0 -1 563 2.7608279138803482e-02 + + 4.6307921409606934e-01 5.7672828435897827e-01 + <_> + + 0 -1 564 1.2370620388537645e-03 + + 5.1653790473937988e-01 2.6350161433219910e-01 + <_> + + 0 -1 565 -3.7669338285923004e-02 + + 2.5363931059837341e-01 5.2789801359176636e-01 + <_> + + 0 -1 566 -1.8057259730994701e-03 + + 3.9851561188697815e-01 5.5175000429153442e-01 + <_> + 111 + 5.4620071411132812e+01 + + <_> + + 0 -1 567 4.4299028813838959e-03 + + 2.8910180926322937e-01 6.3352262973785400e-01 + <_> + + 0 -1 568 -2.3813319858163595e-03 + + 6.2117892503738403e-01 3.4774878621101379e-01 + <_> + + 0 -1 569 2.2915711160749197e-03 + + 2.2544120252132416e-01 5.5821180343627930e-01 + <_> + + 0 -1 570 9.9457940086722374e-04 + + 3.7117108702659607e-01 5.9300708770751953e-01 + <_> + + 0 -1 571 7.7164667891338468e-04 + + 5.6517201662063599e-01 3.3479958772659302e-01 + <_> + + 0 -1 572 -1.1386410333216190e-03 + + 3.0691260099411011e-01 5.5086308717727661e-01 + <_> + + 0 -1 573 -1.6403039626311511e-04 + + 5.7628279924392700e-01 3.6990478634834290e-01 + <_> + + 0 -1 574 2.9793529392918572e-05 + + 2.6442441344261169e-01 5.4379111528396606e-01 + <_> + + 0 -1 575 8.5774902254343033e-03 + + 5.0511389970779419e-01 1.7957249283790588e-01 + <_> + + 0 -1 576 -2.6032689493149519e-04 + + 5.8269691467285156e-01 4.4468268752098083e-01 + <_> + + 0 -1 577 -6.1404630541801453e-03 + + 3.1138521432876587e-01 5.3469717502593994e-01 + <_> + + 0 -1 578 -2.3086950182914734e-02 + + 3.2779461145401001e-01 5.3311979770660400e-01 + <_> + + 0 -1 579 -1.4243650250136852e-02 + + 7.3817098140716553e-01 4.5880630612373352e-01 + <_> + + 0 -1 580 1.9487129524350166e-02 + + 5.2566307783126831e-01 2.2744719684123993e-01 + <_> + + 0 -1 581 -9.6681108698248863e-04 + + 5.5112308263778687e-01 3.8150069117546082e-01 + <_> + + 0 -1 582 3.1474709976464510e-03 + + 5.4256367683410645e-01 2.5437268614768982e-01 + <_> + + 0 -1 583 -1.8026070029009134e-04 + + 5.3801918029785156e-01 3.4063041210174561e-01 + <_> + + 0 -1 584 -6.0266260989010334e-03 + + 3.0358019471168518e-01 5.4205721616744995e-01 + <_> + + 0 -1 585 4.4462960795499384e-04 + + 3.9909970760345459e-01 5.6601101160049438e-01 + <_> + + 0 -1 586 2.2609760053455830e-03 + + 5.5628067255020142e-01 3.9406880736351013e-01 + <_> + + 0 -1 587 5.1133058965206146e-02 + + 4.6096539497375488e-01 7.1185618638992310e-01 + <_> + + 0 -1 588 -1.7786309123039246e-02 + + 2.3161660134792328e-01 5.3221440315246582e-01 + <_> + + 0 -1 589 -4.9679628573358059e-03 + + 2.3307719826698303e-01 5.1220291852951050e-01 + <_> + + 0 -1 590 2.0667689386755228e-03 + + 4.6574440598487854e-01 6.4554882049560547e-01 + <_> + + 0 -1 591 7.4413768015801907e-03 + + 5.1543921232223511e-01 2.3616339266300201e-01 + <_> + + 0 -1 592 -3.6277279723435640e-03 + + 6.2197732925415039e-01 4.4766610860824585e-01 + <_> + + 0 -1 593 -5.3530759178102016e-03 + + 1.8373550474643707e-01 5.1022082567214966e-01 + <_> + + 0 -1 594 1.4530919492244720e-01 + + 5.1459872722625732e-01 1.5359309315681458e-01 + <_> + + 0 -1 595 2.4394490756094456e-03 + + 5.3436601161956787e-01 3.6246618628501892e-01 + <_> + + 0 -1 596 -3.1283390708267689e-03 + + 6.2150079011917114e-01 4.8455920815467834e-01 + <_> + + 0 -1 597 1.7940260004252195e-03 + + 4.2992618680000305e-01 5.8241981267929077e-01 + <_> + + 0 -1 598 3.6253821104764938e-02 + + 5.2603340148925781e-01 1.4394679665565491e-01 + <_> + + 0 -1 599 -5.1746722310781479e-03 + + 3.5065388679504395e-01 5.2870452404022217e-01 + <_> + + 0 -1 600 6.5383297624066472e-04 + + 4.8096409440040588e-01 6.1220401525497437e-01 + <_> + + 0 -1 601 -2.6480229571461678e-02 + + 1.1393620073795319e-01 5.0455862283706665e-01 + <_> + + 0 -1 602 -3.0440660193562508e-03 + + 6.3520950078964233e-01 4.7947341203689575e-01 + <_> + + 0 -1 603 3.6993520334362984e-03 + + 5.1311182975769043e-01 2.4985109269618988e-01 + <_> + + 0 -1 604 -3.6762931267730892e-04 + + 5.4213947057723999e-01 3.7095320224761963e-01 + <_> + + 0 -1 605 -4.1382260620594025e-02 + + 1.8949599564075470e-01 5.0816917419433594e-01 + <_> + + 0 -1 606 -1.0532729793339968e-03 + + 6.4543670415878296e-01 4.7836089134216309e-01 + <_> + + 0 -1 607 -2.1648600231856108e-03 + + 6.2150311470031738e-01 4.4998261332511902e-01 + <_> + + 0 -1 608 -5.6747748749330640e-04 + + 3.7126109004020691e-01 5.4193347692489624e-01 + <_> + + 0 -1 609 1.7375840246677399e-01 + + 5.0236439704895020e-01 1.2157420068979263e-01 + <_> + + 0 -1 610 -2.9049699660390615e-03 + + 3.2402679324150085e-01 5.3818839788436890e-01 + <_> + + 0 -1 611 1.2299539521336555e-03 + + 4.1655078530311584e-01 5.7034862041473389e-01 + <_> + + 0 -1 612 -5.4329237900674343e-04 + + 3.8540428876876831e-01 5.5475491285324097e-01 + <_> + + 0 -1 613 -8.3297258242964745e-03 + + 2.2044940292835236e-01 5.0970828533172607e-01 + <_> + + 0 -1 614 -1.0417630255687982e-04 + + 5.6070661544799805e-01 4.3030360341072083e-01 + <_> + + 0 -1 615 3.1204700469970703e-02 + + 4.6216571331024170e-01 6.9820040464401245e-01 + <_> + + 0 -1 616 7.8943502157926559e-03 + + 5.2695941925048828e-01 2.2690680623054504e-01 + <_> + + 0 -1 617 -4.3645310215651989e-03 + + 6.3592231273651123e-01 4.5379561185836792e-01 + <_> + + 0 -1 618 7.6793059706687927e-03 + + 5.2747678756713867e-01 2.7404838800430298e-01 + <_> + + 0 -1 619 -2.5431139394640923e-02 + + 2.0385199785232544e-01 5.0717329978942871e-01 + <_> + + 0 -1 620 8.2000601105391979e-04 + + 4.5874550938606262e-01 6.1198681592941284e-01 + <_> + + 0 -1 621 2.9284600168466568e-03 + + 5.0712740421295166e-01 2.0282049477100372e-01 + <_> + + 0 -1 622 4.5256470912136137e-05 + + 4.8121041059494019e-01 5.4308217763900757e-01 + <_> + + 0 -1 623 1.3158309739083052e-03 + + 4.6258139610290527e-01 6.7793232202529907e-01 + <_> + + 0 -1 624 1.5870389761403203e-03 + + 5.3862917423248291e-01 3.4314650297164917e-01 + <_> + + 0 -1 625 -2.1539660170674324e-02 + + 2.5942500680685043e-02 5.0032228231430054e-01 + <_> + + 0 -1 626 1.4334480278193951e-02 + + 5.2028447389602661e-01 1.5906329452991486e-01 + <_> + + 0 -1 627 -8.3881383761763573e-03 + + 7.2824811935424805e-01 4.6480441093444824e-01 + <_> + + 0 -1 628 9.1906841844320297e-03 + + 5.5623567104339600e-01 3.9231911301612854e-01 + <_> + + 0 -1 629 -5.8453059755265713e-03 + + 6.8033927679061890e-01 4.6291279792785645e-01 + <_> + + 0 -1 630 -5.4707799106836319e-02 + + 2.5616711378097534e-01 5.2061259746551514e-01 + <_> + + 0 -1 631 9.1142775490880013e-03 + + 5.1896202564239502e-01 3.0538770556449890e-01 + <_> + + 0 -1 632 -1.5575000084936619e-02 + + 1.2950749695301056e-01 5.1690948009490967e-01 + <_> + + 0 -1 633 -1.2050600344082341e-04 + + 5.7350981235504150e-01 4.2308250069618225e-01 + <_> + + 0 -1 634 1.2273970060050488e-03 + + 5.2898782491683960e-01 4.0797919034957886e-01 + <_> + + 0 -1 635 -1.2186600361019373e-03 + + 6.5756398439407349e-01 4.5744091272354126e-01 + <_> + + 0 -1 636 -3.3256649039685726e-03 + + 3.6280471086502075e-01 5.1950198411941528e-01 + <_> + + 0 -1 637 -1.3288309797644615e-02 + + 1.2842659652233124e-01 5.0434887409210205e-01 + <_> + + 0 -1 638 -3.3839771058410406e-03 + + 6.2922400236129761e-01 4.7575059533119202e-01 + <_> + + 0 -1 639 -2.1954220533370972e-01 + + 1.4877319335937500e-01 5.0650137662887573e-01 + <_> + + 0 -1 640 4.9111708067357540e-03 + + 4.2561021447181702e-01 5.6658387184143066e-01 + <_> + + 0 -1 641 -1.8744950648397207e-04 + + 4.0041440725326538e-01 5.5868571996688843e-01 + <_> + + 0 -1 642 -5.2178641781210899e-03 + + 6.0091161727905273e-01 4.8127061128616333e-01 + <_> + + 0 -1 643 -1.1111519997939467e-03 + + 3.5149338841438293e-01 5.2870899438858032e-01 + <_> + + 0 -1 644 4.4036400504410267e-03 + + 4.6422758698463440e-01 5.9240859746932983e-01 + <_> + + 0 -1 645 1.2299499660730362e-01 + + 5.0255292654037476e-01 6.9152481853961945e-02 + <_> + + 0 -1 646 -1.2313510291278362e-02 + + 5.8845919370651245e-01 4.9340128898620605e-01 + <_> + + 0 -1 647 4.1471039876341820e-03 + + 4.3722391128540039e-01 5.8934777975082397e-01 + <_> + + 0 -1 648 -3.5502649843692780e-03 + + 4.3275511264801025e-01 5.3962701559066772e-01 + <_> + + 0 -1 649 -1.9224269315600395e-02 + + 1.9131340086460114e-01 5.0683307647705078e-01 + <_> + + 0 -1 650 1.4395059552043676e-03 + + 5.3081780672073364e-01 4.2435330152511597e-01 + <_> + + 0 -1 651 -6.7751999013125896e-03 + + 6.3653957843780518e-01 4.5400860905647278e-01 + <_> + + 0 -1 652 7.0119630545377731e-03 + + 5.1898342370986938e-01 3.0261999368667603e-01 + <_> + + 0 -1 653 5.4014651104807854e-03 + + 5.1050621271133423e-01 2.5576829910278320e-01 + <_> + + 0 -1 654 9.0274988906458020e-04 + + 4.6969148516654968e-01 5.8618277311325073e-01 + <_> + + 0 -1 655 1.1474450118839741e-02 + + 5.0536459684371948e-01 1.5271779894828796e-01 + <_> + + 0 -1 656 -6.7023430019617081e-03 + + 6.5089809894561768e-01 4.8906040191650391e-01 + <_> + + 0 -1 657 -2.0462959073483944e-03 + + 6.2418168783187866e-01 4.5146000385284424e-01 + <_> + + 0 -1 658 -9.9951568990945816e-03 + + 3.4327811002731323e-01 5.4009538888931274e-01 + <_> + + 0 -1 659 -3.5700708627700806e-02 + + 1.8780590593814850e-01 5.0740778446197510e-01 + <_> + + 0 -1 660 4.5584561303257942e-04 + + 3.8052770495414734e-01 5.4025697708129883e-01 + <_> + + 0 -1 661 -5.4260600358247757e-02 + + 6.8437147140502930e-01 4.5950970053672791e-01 + <_> + + 0 -1 662 6.0600461438298225e-03 + + 5.5029052495956421e-01 4.5005279779434204e-01 + <_> + + 0 -1 663 -6.4791832119226456e-03 + + 3.3688580989837646e-01 5.3107571601867676e-01 + <_> + + 0 -1 664 -1.4939469983801246e-03 + + 6.4876401424407959e-01 4.7561758756637573e-01 + <_> + + 0 -1 665 1.4610530342906713e-05 + + 4.0345790982246399e-01 5.4510641098022461e-01 + <_> + + 0 -1 666 -7.2321938350796700e-03 + + 6.3868737220764160e-01 4.8247399926185608e-01 + <_> + + 0 -1 667 -4.0645818226039410e-03 + + 2.9864218831062317e-01 5.1573359966278076e-01 + <_> + + 0 -1 668 3.0463080853223801e-02 + + 5.0221997499465942e-01 7.1599560976028442e-01 + <_> + + 0 -1 669 -8.0544911324977875e-03 + + 6.4924520254135132e-01 4.6192750334739685e-01 + <_> + + 0 -1 670 3.9505138993263245e-02 + + 5.1505708694458008e-01 2.4506139755249023e-01 + <_> + + 0 -1 671 8.4530208259820938e-03 + + 4.5736691355705261e-01 6.3940370082855225e-01 + <_> + + 0 -1 672 -1.1688120430335402e-03 + + 3.8655120134353638e-01 5.4836612939834595e-01 + <_> + + 0 -1 673 2.8070670086890459e-03 + + 5.1285791397094727e-01 2.7014800906181335e-01 + <_> + + 0 -1 674 4.7365209320560098e-04 + + 4.0515819191932678e-01 5.3874611854553223e-01 + <_> + + 0 -1 675 1.1741080321371555e-02 + + 5.2959501743316650e-01 3.7194138765335083e-01 + <_> + + 0 -1 676 3.1833238899707794e-03 + + 4.7894069552421570e-01 6.8951261043548584e-01 + <_> + + 0 -1 677 7.0241501089185476e-04 + + 5.3844892978668213e-01 3.9180809259414673e-01 + <_> + 102 + 5.0169731140136719e+01 + + <_> + + 0 -1 678 1.7059929668903351e-02 + + 3.9485278725624084e-01 7.1425348520278931e-01 + <_> + + 0 -1 679 2.1840840578079224e-02 + + 3.3703160285949707e-01 6.0900169610977173e-01 + <_> + + 0 -1 680 2.4520049919374287e-04 + + 3.5005760192871094e-01 5.9879022836685181e-01 + <_> + + 0 -1 681 8.3272606134414673e-03 + + 3.2675281167030334e-01 5.6972408294677734e-01 + <_> + + 0 -1 682 5.7148298947140574e-04 + + 3.0445998907089233e-01 5.5316567420959473e-01 + <_> + + 0 -1 683 6.7373987985774875e-04 + + 3.6500120162963867e-01 5.6726312637329102e-01 + <_> + + 0 -1 684 3.4681590477703139e-05 + + 3.3135411143302917e-01 5.3887271881103516e-01 + <_> + + 0 -1 685 -5.8563398197293282e-03 + + 2.6979428529739380e-01 5.4987788200378418e-01 + <_> + + 0 -1 686 8.5102273151278496e-03 + + 5.2693581581115723e-01 2.7628791332244873e-01 + <_> + + 0 -1 687 -6.9817207753658295e-02 + + 2.9096031188964844e-01 5.2592468261718750e-01 + <_> + + 0 -1 688 -8.6113670840859413e-04 + + 5.8925771713256836e-01 4.0736979246139526e-01 + <_> + + 0 -1 689 9.7149249631911516e-04 + + 3.5235640406608582e-01 5.4158622026443481e-01 + <_> + + 0 -1 690 -1.4727490452060010e-05 + + 5.4230177402496338e-01 3.5031560063362122e-01 + <_> + + 0 -1 691 4.8420291393995285e-02 + + 5.1939457654953003e-01 3.4111958742141724e-01 + <_> + + 0 -1 692 1.3257140526548028e-03 + + 3.1577691435813904e-01 5.3353762626647949e-01 + <_> + + 0 -1 693 1.4922149603080470e-05 + + 4.4512999057769775e-01 5.5365538597106934e-01 + <_> + + 0 -1 694 -2.7173398993909359e-03 + + 3.0317419767379761e-01 5.2480888366699219e-01 + <_> + + 0 -1 695 2.9219500720500946e-03 + + 4.7814530134201050e-01 6.6060417890548706e-01 + <_> + + 0 -1 696 -1.9804988987743855e-03 + + 3.1863081455230713e-01 5.2876251935958862e-01 + <_> + + 0 -1 697 -4.0012109093368053e-03 + + 6.4135968685150146e-01 4.7499281167984009e-01 + <_> + + 0 -1 698 -4.3491991236805916e-03 + + 1.5074980258941650e-01 5.0989967584609985e-01 + <_> + + 0 -1 699 1.3490889687091112e-03 + + 4.3161588907241821e-01 5.8811670541763306e-01 + <_> + + 0 -1 700 1.8597070127725601e-02 + + 4.7355538606643677e-01 9.0897941589355469e-01 + <_> + + 0 -1 701 -1.8562379991635680e-03 + + 3.5531890392303467e-01 5.5778372287750244e-01 + <_> + + 0 -1 702 2.2940430790185928e-03 + + 4.5000949501991272e-01 6.5808779001235962e-01 + <_> + + 0 -1 703 2.9982850537635386e-04 + + 5.6292420625686646e-01 3.9758789539337158e-01 + <_> + + 0 -1 704 3.5455459728837013e-03 + + 5.3815472126007080e-01 3.6054858565330505e-01 + <_> + + 0 -1 705 9.6104722470045090e-03 + + 5.2559971809387207e-01 1.7967459559440613e-01 + <_> + + 0 -1 706 -6.2783220782876015e-03 + + 2.2728569805622101e-01 5.1140302419662476e-01 + <_> + + 0 -1 707 3.4598479978740215e-03 + + 4.6263080835342407e-01 6.6082191467285156e-01 + <_> + + 0 -1 708 -1.3112019514665008e-03 + + 6.3175398111343384e-01 4.4368579983711243e-01 + <_> + + 0 -1 709 2.6876179035753012e-03 + + 5.4211097955703735e-01 4.0540221333503723e-01 + <_> + + 0 -1 710 3.9118169806897640e-03 + + 5.3584778308868408e-01 3.2734549045562744e-01 + <_> + + 0 -1 711 -1.4206450432538986e-02 + + 7.7935767173767090e-01 4.9757811427116394e-01 + <_> + + 0 -1 712 7.1705528534948826e-04 + + 5.2973198890686035e-01 3.5609039664268494e-01 + <_> + + 0 -1 713 1.6635019565001130e-03 + + 4.6780940890312195e-01 5.8164817094802856e-01 + <_> + + 0 -1 714 3.3686188980937004e-03 + + 5.2767342329025269e-01 3.4464201331138611e-01 + <_> + + 0 -1 715 1.2799530290067196e-02 + + 4.8346799612045288e-01 7.4721592664718628e-01 + <_> + + 0 -1 716 3.3901201095432043e-03 + + 4.5118591189384460e-01 6.4017212390899658e-01 + <_> + + 0 -1 717 4.7070779837667942e-03 + + 5.3356587886810303e-01 3.5552209615707397e-01 + <_> + + 0 -1 718 1.4819339849054813e-03 + + 4.2507070302963257e-01 5.7727241516113281e-01 + <_> + + 0 -1 719 -6.9995759986341000e-03 + + 3.0033200979232788e-01 5.2929002046585083e-01 + <_> + + 0 -1 720 1.5939010307192802e-02 + + 5.0673192739486694e-01 1.6755819320678711e-01 + <_> + + 0 -1 721 7.6377349905669689e-03 + + 4.7950699925422668e-01 7.0856010913848877e-01 + <_> + + 0 -1 722 6.7334040068089962e-03 + + 5.1331132650375366e-01 2.1624700725078583e-01 + <_> + + 0 -1 723 -1.2858809903264046e-02 + + 1.9388419389724731e-01 5.2513718605041504e-01 + <_> + + 0 -1 724 -6.2270800117403269e-04 + + 5.6865382194519043e-01 4.1978681087493896e-01 + <_> + + 0 -1 725 -5.2651681471616030e-04 + + 4.2241689562797546e-01 5.4296958446502686e-01 + <_> + + 0 -1 726 1.1075099930167198e-02 + + 5.1137751340866089e-01 2.5145179033279419e-01 + <_> + + 0 -1 727 -3.6728251725435257e-02 + + 7.1946620941162109e-01 4.8496189713478088e-01 + <_> + + 0 -1 728 -2.8207109426148236e-04 + + 3.8402619957923889e-01 5.3944462537765503e-01 + <_> + + 0 -1 729 -2.7489690110087395e-03 + + 5.9370887279510498e-01 4.5691820979118347e-01 + <_> + + 0 -1 730 1.0047519579529762e-02 + + 5.1385760307312012e-01 2.8022980690002441e-01 + <_> + + 0 -1 731 -8.1497840583324432e-03 + + 6.0900372266769409e-01 4.6361210942268372e-01 + <_> + + 0 -1 732 -6.8833888508379459e-03 + + 3.4586110711097717e-01 5.2546602487564087e-01 + <_> + + 0 -1 733 -1.4039360394235700e-05 + + 5.6931042671203613e-01 4.0820831060409546e-01 + <_> + + 0 -1 734 1.5498419525101781e-03 + + 4.3505370616912842e-01 5.8065170049667358e-01 + <_> + + 0 -1 735 -6.7841499112546444e-03 + + 1.4688730239868164e-01 5.1827752590179443e-01 + <_> + + 0 -1 736 2.1705629478674382e-04 + + 5.2935242652893066e-01 3.4561741352081299e-01 + <_> + + 0 -1 737 3.1198898795992136e-04 + + 4.6524509787559509e-01 5.9424138069152832e-01 + <_> + + 0 -1 738 5.4507530294358730e-03 + + 4.6535089612007141e-01 7.0248460769653320e-01 + <_> + + 0 -1 739 -2.5818689027801156e-04 + + 5.4972952604293823e-01 3.7689670920372009e-01 + <_> + + 0 -1 740 -1.7442539334297180e-02 + + 3.9190879464149475e-01 5.4574978351593018e-01 + <_> + + 0 -1 741 -4.5343529433012009e-02 + + 1.6313570737838745e-01 5.1549088954925537e-01 + <_> + + 0 -1 742 1.9190689781680703e-03 + + 5.1458978652954102e-01 2.7918958663940430e-01 + <_> + + 0 -1 743 -6.0177869163453579e-03 + + 6.5176361799240112e-01 4.7563329339027405e-01 + <_> + + 0 -1 744 -4.0720738470554352e-03 + + 5.5146527290344238e-01 4.0926858782768250e-01 + <_> + + 0 -1 745 3.9855059003457427e-04 + + 3.1652408838272095e-01 5.2855509519577026e-01 + <_> + + 0 -1 746 -6.5418570302426815e-03 + + 6.8533778190612793e-01 4.6528089046478271e-01 + <_> + + 0 -1 747 3.4845089539885521e-03 + + 5.4845881462097168e-01 4.5027598738670349e-01 + <_> + + 0 -1 748 -1.3696780428290367e-02 + + 6.3957798480987549e-01 4.5725551247596741e-01 + <_> + + 0 -1 749 -1.7347140237689018e-02 + + 2.7510729432106018e-01 5.1816147565841675e-01 + <_> + + 0 -1 750 -4.0885428898036480e-03 + + 3.3256360888481140e-01 5.1949840784072876e-01 + <_> + + 0 -1 751 -9.4687901437282562e-03 + + 5.9422808885574341e-01 4.8518198728561401e-01 + <_> + + 0 -1 752 1.7084840219467878e-03 + + 4.1671109199523926e-01 5.5198061466217041e-01 + <_> + + 0 -1 753 9.4809094443917274e-03 + + 5.4338949918746948e-01 4.2085149884223938e-01 + <_> + + 0 -1 754 -4.7389650717377663e-03 + + 6.4071899652481079e-01 4.5606550574302673e-01 + <_> + + 0 -1 755 6.5761050209403038e-03 + + 5.2145552635192871e-01 2.2582270205020905e-01 + <_> + + 0 -1 756 -2.1690549328923225e-03 + + 3.1515279412269592e-01 5.1567047834396362e-01 + <_> + + 0 -1 757 1.4660170301795006e-02 + + 4.8708370327949524e-01 6.6899412870407104e-01 + <_> + + 0 -1 758 1.7231999663636088e-04 + + 3.5697489976882935e-01 5.2510780096054077e-01 + <_> + + 0 -1 759 -2.1803760901093483e-02 + + 8.8259208202362061e-01 4.9663299322128296e-01 + <_> + + 0 -1 760 -9.4736106693744659e-02 + + 1.4461620151996613e-01 5.0611138343811035e-01 + <_> + + 0 -1 761 5.5825551971793175e-03 + + 5.3964787721633911e-01 4.2380660772323608e-01 + <_> + + 0 -1 762 1.9517090404406190e-03 + + 4.1704109311103821e-01 5.4977869987487793e-01 + <_> + + 0 -1 763 1.2149900197982788e-02 + + 4.6983671188354492e-01 5.6642740964889526e-01 + <_> + + 0 -1 764 -7.5169620104134083e-03 + + 6.2677729129791260e-01 4.4631358981132507e-01 + <_> + + 0 -1 765 -7.1667909622192383e-02 + + 3.0970111489295959e-01 5.2210032939910889e-01 + <_> + + 0 -1 766 -8.8292419910430908e-02 + + 8.1123888492584229e-02 5.0063651800155640e-01 + <_> + + 0 -1 767 3.1063079833984375e-02 + + 5.1555037498474121e-01 1.2822559475898743e-01 + <_> + + 0 -1 768 4.6621840447187424e-02 + + 4.6997779607772827e-01 7.3639607429504395e-01 + <_> + + 0 -1 769 -1.2189489789307117e-02 + + 3.9205300807952881e-01 5.5189967155456543e-01 + <_> + + 0 -1 770 1.3016110286116600e-02 + + 5.2606582641601562e-01 3.6851361393928528e-01 + <_> + + 0 -1 771 -3.4952899441123009e-03 + + 6.3392949104309082e-01 4.7162809967994690e-01 + <_> + + 0 -1 772 -4.4015039748046547e-05 + + 5.3330272436141968e-01 3.7761849164962769e-01 + <_> + + 0 -1 773 -1.0966490209102631e-01 + + 1.7653420567512512e-01 5.1983469724655151e-01 + <_> + + 0 -1 774 -9.0279558207839727e-04 + + 5.3241598606109619e-01 3.8389080762863159e-01 + <_> + + 0 -1 775 7.1126641705632210e-04 + + 4.6479299664497375e-01 5.7552242279052734e-01 + <_> + + 0 -1 776 -3.1250279862433672e-03 + + 3.2367089390754700e-01 5.1667708158493042e-01 + <_> + + 0 -1 777 2.4144679773598909e-03 + + 4.7874391078948975e-01 6.4597177505493164e-01 + <_> + + 0 -1 778 4.4391240226104856e-04 + + 4.4093081355094910e-01 6.0102558135986328e-01 + <_> + + 0 -1 779 -2.2611189342569560e-04 + + 4.0381139516830444e-01 5.4932558536529541e-01 + <_> + 135 + 6.6669120788574219e+01 + + <_> + + 0 -1 780 -4.6901289373636246e-02 + + 6.6001719236373901e-01 3.7438011169433594e-01 + <_> + + 0 -1 781 -1.4568349579349160e-03 + + 5.7839912176132202e-01 3.4377971291542053e-01 + <_> + + 0 -1 782 5.5598369799554348e-03 + + 3.6222669482231140e-01 5.9082162380218506e-01 + <_> + + 0 -1 783 7.3170487303286791e-04 + + 5.5004191398620605e-01 2.8735581040382385e-01 + <_> + + 0 -1 784 1.3318009441718459e-03 + + 2.6731699705123901e-01 5.4310190677642822e-01 + <_> + + 0 -1 785 2.4347059661522508e-04 + + 3.8550278544425964e-01 5.7413887977600098e-01 + <_> + + 0 -1 786 -3.0512469820678234e-03 + + 5.5032098293304443e-01 3.4628450870513916e-01 + <_> + + 0 -1 787 -6.8657199153676629e-04 + + 3.2912218570709229e-01 5.4295092821121216e-01 + <_> + + 0 -1 788 1.4668200165033340e-03 + + 3.5883820056915283e-01 5.3518110513687134e-01 + <_> + + 0 -1 789 3.2021870720200241e-04 + + 4.2968419194221497e-01 5.7002341747283936e-01 + <_> + + 0 -1 790 7.4122188379988074e-04 + + 5.2821648120880127e-01 3.3668708801269531e-01 + <_> + + 0 -1 791 3.8330298848450184e-03 + + 4.5595678687095642e-01 6.2573361396789551e-01 + <_> + + 0 -1 792 -1.5456439927220345e-02 + + 2.3501169681549072e-01 5.1294529438018799e-01 + <_> + + 0 -1 793 2.6796779129654169e-03 + + 5.3294152021408081e-01 4.1550621390342712e-01 + <_> + + 0 -1 794 2.8296569362282753e-03 + + 4.2730879783630371e-01 5.8045381307601929e-01 + <_> + + 0 -1 795 -3.9444249123334885e-03 + + 2.9126119613647461e-01 5.2026861906051636e-01 + <_> + + 0 -1 796 2.7179559692740440e-03 + + 5.3076881170272827e-01 3.5856771469116211e-01 + <_> + + 0 -1 797 5.9077627956867218e-03 + + 4.7037750482559204e-01 5.9415858983993530e-01 + <_> + + 0 -1 798 -4.2240349575877190e-03 + + 2.1415670216083527e-01 5.0887960195541382e-01 + <_> + + 0 -1 799 4.0725888684391975e-03 + + 4.7664138674736023e-01 6.8410611152648926e-01 + <_> + + 0 -1 800 1.0149530135095119e-02 + + 5.3607988357543945e-01 3.7484970688819885e-01 + <_> + + 0 -1 801 -1.8864999583456665e-04 + + 5.7201302051544189e-01 3.8538050651550293e-01 + <_> + + 0 -1 802 -4.8864358104765415e-03 + + 3.6931228637695312e-01 5.3409588336944580e-01 + <_> + + 0 -1 803 2.6158479973673820e-02 + + 4.9623748660087585e-01 6.0599899291992188e-01 + <_> + + 0 -1 804 4.8560759751126170e-04 + + 4.4389459490776062e-01 6.0124689340591431e-01 + <_> + + 0 -1 805 1.1268709786236286e-02 + + 5.2442502975463867e-01 1.8403880298137665e-01 + <_> + + 0 -1 806 -2.8114619199186563e-03 + + 6.0602837800979614e-01 4.4098970293998718e-01 + <_> + + 0 -1 807 -5.6112729944288731e-03 + + 3.8911709189414978e-01 5.5892372131347656e-01 + <_> + + 0 -1 808 8.5680093616247177e-03 + + 5.0693458318710327e-01 2.0626190304756165e-01 + <_> + + 0 -1 809 -3.8172779022715986e-04 + + 5.8822017908096313e-01 4.1926109790802002e-01 + <_> + + 0 -1 810 -1.7680290329735726e-04 + + 5.5336058139801025e-01 4.0033689141273499e-01 + <_> + + 0 -1 811 6.5112537704408169e-03 + + 3.3101469278335571e-01 5.4441910982131958e-01 + <_> + + 0 -1 812 -6.5948683186434209e-05 + + 5.4338318109512329e-01 3.9449059963226318e-01 + <_> + + 0 -1 813 6.9939051754772663e-03 + + 5.6003582477569580e-01 4.1927140951156616e-01 + <_> + + 0 -1 814 -4.6744439750909805e-03 + + 6.6854667663574219e-01 4.6049609780311584e-01 + <_> + + 0 -1 815 1.1589850299060345e-02 + + 5.3571212291717529e-01 2.9268300533294678e-01 + <_> + + 0 -1 816 1.3007840141654015e-02 + + 4.6798178553581238e-01 7.3074632883071899e-01 + <_> + + 0 -1 817 -1.1008579749614000e-03 + + 3.9375010132789612e-01 5.4150652885437012e-01 + <_> + + 0 -1 818 6.0472649056464434e-04 + + 4.2423760890960693e-01 5.6040412187576294e-01 + <_> + + 0 -1 819 -1.4494840055704117e-02 + + 3.6312100291252136e-01 5.2931827306747437e-01 + <_> + + 0 -1 820 -5.3056948818266392e-03 + + 6.8604522943496704e-01 4.6218210458755493e-01 + <_> + + 0 -1 821 -8.1829127157106996e-04 + + 3.9440968632698059e-01 5.4204392433166504e-01 + <_> + + 0 -1 822 -1.9077520817518234e-02 + + 1.9626219570636749e-01 5.0378918647766113e-01 + <_> + + 0 -1 823 3.5549470339901745e-04 + + 4.0862590074539185e-01 5.6139731407165527e-01 + <_> + + 0 -1 824 1.9679730758070946e-03 + + 4.4891211390495300e-01 5.9261232614517212e-01 + <_> + + 0 -1 825 6.9189141504466534e-03 + + 5.3359258174896240e-01 3.7283858656883240e-01 + <_> + + 0 -1 826 2.9872779268771410e-03 + + 5.1113212108612061e-01 2.9756438732147217e-01 + <_> + + 0 -1 827 -6.2264618463814259e-03 + + 5.5414897203445435e-01 4.8245379328727722e-01 + <_> + + 0 -1 828 1.3353300280869007e-02 + + 4.5864239335060120e-01 6.4147979021072388e-01 + <_> + + 0 -1 829 3.3505238592624664e-02 + + 5.3924250602722168e-01 3.4299948811531067e-01 + <_> + + 0 -1 830 -2.5294460356235504e-03 + + 1.7037139832973480e-01 5.0133150815963745e-01 + <_> + + 0 -1 831 -1.2801629491150379e-03 + + 5.3054618835449219e-01 4.6974050998687744e-01 + <_> + + 0 -1 832 7.0687388069927692e-03 + + 4.6155458688735962e-01 6.4365047216415405e-01 + <_> + + 0 -1 833 9.6880499040707946e-04 + + 4.8335990309715271e-01 6.0438942909240723e-01 + <_> + + 0 -1 834 3.9647659286856651e-03 + + 5.1876372098922729e-01 3.2318168878555298e-01 + <_> + + 0 -1 835 -2.2057730704545975e-02 + + 4.0792569518089294e-01 5.2009809017181396e-01 + <_> + + 0 -1 836 -6.6906312713399529e-04 + + 5.3316092491149902e-01 3.8156008720397949e-01 + <_> + + 0 -1 837 -6.7009328631684184e-04 + + 5.6554222106933594e-01 4.6889019012451172e-01 + <_> + + 0 -1 838 7.4284552829340100e-04 + + 4.5343810319900513e-01 6.2874001264572144e-01 + <_> + + 0 -1 839 2.2227810695767403e-03 + + 5.3506332635879517e-01 3.3036559820175171e-01 + <_> + + 0 -1 840 -5.4130521602928638e-03 + + 1.1136870086193085e-01 5.0054347515106201e-01 + <_> + + 0 -1 841 -1.4520040167553816e-05 + + 5.6287378072738647e-01 4.3251338601112366e-01 + <_> + + 0 -1 842 2.3369169502984732e-04 + + 4.1658350825309753e-01 5.4477912187576294e-01 + <_> + + 0 -1 843 4.2894547805190086e-03 + + 4.8603910207748413e-01 6.7786490917205811e-01 + <_> + + 0 -1 844 5.9103150852024555e-03 + + 5.2623051404953003e-01 3.6121138930320740e-01 + <_> + + 0 -1 845 1.2900539673864841e-02 + + 5.3193771839141846e-01 3.2502880692481995e-01 + <_> + + 0 -1 846 4.6982979401946068e-03 + + 4.6182450652122498e-01 6.6659259796142578e-01 + <_> + + 0 -1 847 1.0439859703183174e-02 + + 5.5056709051132202e-01 3.8836041092872620e-01 + <_> + + 0 -1 848 3.0443191062659025e-03 + + 4.6978530287742615e-01 7.3018449544906616e-01 + <_> + + 0 -1 849 -6.1593751888722181e-04 + + 3.8308390974998474e-01 5.4649841785430908e-01 + <_> + + 0 -1 850 -3.4247159492224455e-03 + + 2.5663000345230103e-01 5.0895309448242188e-01 + <_> + + 0 -1 851 -9.3538565561175346e-03 + + 6.4699661731719971e-01 4.9407958984375000e-01 + <_> + + 0 -1 852 5.2338998764753342e-02 + + 4.7459828853607178e-01 7.8787708282470703e-01 + <_> + + 0 -1 853 3.5765620414167643e-03 + + 5.3066647052764893e-01 2.7484980225563049e-01 + <_> + + 0 -1 854 7.1555317845195532e-04 + + 5.4131257534027100e-01 4.0419089794158936e-01 + <_> + + 0 -1 855 -1.0516679845750332e-02 + + 6.1585122346878052e-01 4.8152831196784973e-01 + <_> + + 0 -1 856 7.7347927726805210e-03 + + 4.6958059072494507e-01 7.0289808511734009e-01 + <_> + + 0 -1 857 -4.3226778507232666e-03 + + 2.8495660424232483e-01 5.3046840429306030e-01 + <_> + + 0 -1 858 -2.5534399319440126e-03 + + 7.0569849014282227e-01 4.6888920664787292e-01 + <_> + + 0 -1 859 1.0268510231981054e-04 + + 3.9029321074485779e-01 5.5734640359878540e-01 + <_> + + 0 -1 860 7.1395188570022583e-06 + + 3.6842319369316101e-01 5.2639877796173096e-01 + <_> + + 0 -1 861 -1.6711989883333445e-03 + + 3.8491758704185486e-01 5.3872710466384888e-01 + <_> + + 0 -1 862 4.9260449595749378e-03 + + 4.7297719120979309e-01 7.4472510814666748e-01 + <_> + + 0 -1 863 4.3908702209591866e-03 + + 4.8091810941696167e-01 5.5919218063354492e-01 + <_> + + 0 -1 864 -1.7793629318475723e-02 + + 6.9036781787872314e-01 4.6769270300865173e-01 + <_> + + 0 -1 865 2.0469669252634048e-03 + + 5.3706902265548706e-01 3.3081620931625366e-01 + <_> + + 0 -1 866 2.9891489073634148e-02 + + 5.1398652791976929e-01 3.3090591430664062e-01 + <_> + + 0 -1 867 1.5494900289922953e-03 + + 4.6602371335029602e-01 6.0783427953720093e-01 + <_> + + 0 -1 868 1.4956969534978271e-03 + + 4.4048359990119934e-01 5.8639198541641235e-01 + <_> + + 0 -1 869 9.5885928021743894e-04 + + 5.4359710216522217e-01 4.2085230350494385e-01 + <_> + + 0 -1 870 4.9643701640889049e-04 + + 5.3705781698226929e-01 4.0006220340728760e-01 + <_> + + 0 -1 871 -2.7280810754746199e-03 + + 5.6594127416610718e-01 4.2596429586410522e-01 + <_> + + 0 -1 872 2.3026480339467525e-03 + + 5.1616579294204712e-01 3.3508691191673279e-01 + <_> + + 0 -1 873 2.5151631236076355e-01 + + 4.8696619272232056e-01 7.1473097801208496e-01 + <_> + + 0 -1 874 -4.6328022144734859e-03 + + 2.7274489402770996e-01 5.0837898254394531e-01 + <_> + + 0 -1 875 -4.0434490889310837e-02 + + 6.8514388799667358e-01 5.0217670202255249e-01 + <_> + + 0 -1 876 1.4972220014897175e-05 + + 4.2844650149345398e-01 5.5225551128387451e-01 + <_> + + 0 -1 877 -2.4050309730228037e-04 + + 4.2261189222335815e-01 5.3900748491287231e-01 + <_> + + 0 -1 878 2.3657839745283127e-02 + + 4.7446319460868835e-01 7.5043660402297974e-01 + <_> + + 0 -1 879 -8.1449104472994804e-03 + + 4.2450588941574097e-01 5.5383628606796265e-01 + <_> + + 0 -1 880 -3.6992130335420370e-03 + + 5.9523570537567139e-01 4.5297130942344666e-01 + <_> + + 0 -1 881 -6.7718601785600185e-03 + + 4.1377940773963928e-01 5.4733997583389282e-01 + <_> + + 0 -1 882 4.2669530957937241e-03 + + 4.4841149449348450e-01 5.7979941368103027e-01 + <_> + + 0 -1 883 1.7791989957913756e-03 + + 5.6248587369918823e-01 4.4324448704719543e-01 + <_> + + 0 -1 884 1.6774770338088274e-03 + + 4.6377518773078918e-01 6.3642418384552002e-01 + <_> + + 0 -1 885 1.1732629500329494e-03 + + 4.5445030927658081e-01 5.9144157171249390e-01 + <_> + + 0 -1 886 8.6998171173036098e-04 + + 5.3347527980804443e-01 3.8859179615974426e-01 + <_> + + 0 -1 887 7.6378340600058436e-04 + + 5.3985852003097534e-01 3.7449419498443604e-01 + <_> + + 0 -1 888 1.5684569370932877e-04 + + 4.3178731203079224e-01 5.6146162748336792e-01 + <_> + + 0 -1 889 -2.1511370316147804e-02 + + 1.7859250307083130e-01 5.1855427026748657e-01 + <_> + + 0 -1 890 1.3081369979772717e-04 + + 4.3424990773200989e-01 5.6828498840332031e-01 + <_> + + 0 -1 891 2.1992040798068047e-02 + + 5.1617169380187988e-01 2.3793940246105194e-01 + <_> + + 0 -1 892 -8.0136500764638186e-04 + + 5.9867632389068604e-01 4.4664269685745239e-01 + <_> + + 0 -1 893 -8.2736099138855934e-03 + + 4.1082179546356201e-01 5.2510571479797363e-01 + <_> + + 0 -1 894 3.6831789184361696e-03 + + 5.1738142967224121e-01 3.3975180983543396e-01 + <_> + + 0 -1 895 -7.9525681212544441e-03 + + 6.8889832496643066e-01 4.8459240794181824e-01 + <_> + + 0 -1 896 1.5382299898192286e-03 + + 5.1785671710968018e-01 3.4541139006614685e-01 + <_> + + 0 -1 897 -1.4043530449271202e-02 + + 1.6784210503101349e-01 5.1886677742004395e-01 + <_> + + 0 -1 898 1.4315890148282051e-03 + + 4.3682569265365601e-01 5.6557738780975342e-01 + <_> + + 0 -1 899 -3.4014228731393814e-02 + + 7.8022962808609009e-01 4.9592170119285583e-01 + <_> + + 0 -1 900 -1.2027299962937832e-02 + + 1.5851010382175446e-01 5.0322318077087402e-01 + <_> + + 0 -1 901 1.3316619396209717e-01 + + 5.1633048057556152e-01 2.7551281452178955e-01 + <_> + + 0 -1 902 -1.5221949433907866e-03 + + 3.7283179163932800e-01 5.2145522832870483e-01 + <_> + + 0 -1 903 -9.3929271679371595e-04 + + 5.8383792638778687e-01 4.5111650228500366e-01 + <_> + + 0 -1 904 2.7719739824533463e-02 + + 4.7282868623733521e-01 7.3315447568893433e-01 + <_> + + 0 -1 905 3.1030150130391121e-03 + + 5.3022021055221558e-01 4.1015630960464478e-01 + <_> + + 0 -1 906 7.7861219644546509e-02 + + 4.9983340501785278e-01 1.2729619443416595e-01 + <_> + + 0 -1 907 -1.5854939818382263e-02 + + 5.0833359360694885e-02 5.1656562089920044e-01 + <_> + + 0 -1 908 -4.9725300632417202e-03 + + 6.7981338500976562e-01 4.6842318773269653e-01 + <_> + + 0 -1 909 -9.7676506265997887e-04 + + 6.0107719898223877e-01 4.7889319062232971e-01 + <_> + + 0 -1 910 -2.4647710379213095e-03 + + 3.3933979272842407e-01 5.2205038070678711e-01 + <_> + + 0 -1 911 -6.7937700077891350e-03 + + 4.3651369214057922e-01 5.2396631240844727e-01 + <_> + + 0 -1 912 3.2608021050691605e-02 + + 5.0527238845825195e-01 2.4252149462699890e-01 + <_> + + 0 -1 913 -5.8514421107247472e-04 + + 5.7339739799499512e-01 4.7585740685462952e-01 + <_> + + 0 -1 914 -2.9632600024342537e-02 + + 3.8922891020774841e-01 5.2635979652404785e-01 + <_> + 137 + 6.7698921203613281e+01 + + <_> + + 0 -1 915 4.6550851315259933e-02 + + 3.2769501209259033e-01 6.2405228614807129e-01 + <_> + + 0 -1 916 7.9537127166986465e-03 + + 4.2564851045608521e-01 6.9429391622543335e-01 + <_> + + 0 -1 917 6.8221561377868056e-04 + + 3.7114870548248291e-01 5.9007328748703003e-01 + <_> + + 0 -1 918 -1.9348249770700932e-04 + + 2.0411339402198792e-01 5.3005450963973999e-01 + <_> + + 0 -1 919 -2.6710508973337710e-04 + + 5.4161262512207031e-01 3.1031790375709534e-01 + <_> + + 0 -1 920 2.7818060480058193e-03 + + 5.2778327465057373e-01 3.4670698642730713e-01 + <_> + + 0 -1 921 -4.6779078547842801e-04 + + 5.3082311153411865e-01 3.2944920659065247e-01 + <_> + + 0 -1 922 -3.0335160772665404e-05 + + 5.7738727331161499e-01 3.8520970940589905e-01 + <_> + + 0 -1 923 7.8038009814918041e-04 + + 4.3174389004707336e-01 6.1500579118728638e-01 + <_> + + 0 -1 924 -4.2553851380944252e-03 + + 2.9339039325714111e-01 5.3242927789688110e-01 + <_> + + 0 -1 925 -2.4735610350035131e-04 + + 5.4688447713851929e-01 3.8430300354957581e-01 + <_> + + 0 -1 926 -1.4724259381182492e-04 + + 4.2815428972244263e-01 5.7555872201919556e-01 + <_> + + 0 -1 927 1.1864770203828812e-03 + + 3.7473011016845703e-01 5.4714661836624146e-01 + <_> + + 0 -1 928 2.3936580400913954e-03 + + 4.5377838611602783e-01 6.1115288734436035e-01 + <_> + + 0 -1 929 -1.5390539774671197e-03 + + 2.9713419079780579e-01 5.1895380020141602e-01 + <_> + + 0 -1 930 -7.1968790143728256e-03 + + 6.6990667581558228e-01 4.7264769673347473e-01 + <_> + + 0 -1 931 -4.1499789222143590e-04 + + 3.3849540352821350e-01 5.2603179216384888e-01 + <_> + + 0 -1 932 4.4359830208122730e-03 + + 5.3991222381591797e-01 3.9201408624649048e-01 + <_> + + 0 -1 933 2.6606200262904167e-03 + + 4.4825780391693115e-01 6.1196178197860718e-01 + <_> + + 0 -1 934 -1.5287200221791863e-03 + + 3.7112379074096680e-01 5.3402662277221680e-01 + <_> + + 0 -1 935 -4.7397250309586525e-03 + + 6.0310882329940796e-01 4.4551450014114380e-01 + <_> + + 0 -1 936 -1.4829129911959171e-02 + + 2.8387540578842163e-01 5.3418618440628052e-01 + <_> + + 0 -1 937 9.2275557108223438e-04 + + 5.2095472812652588e-01 3.3616539835929871e-01 + <_> + + 0 -1 938 8.3529807627201080e-02 + + 5.1199698448181152e-01 8.1164449453353882e-02 + <_> + + 0 -1 939 -7.5633148662745953e-04 + + 3.3171200752258301e-01 5.1898312568664551e-01 + <_> + + 0 -1 940 9.8403859883546829e-03 + + 5.2475982904434204e-01 2.3349590599536896e-01 + <_> + + 0 -1 941 -1.5953830443322659e-03 + + 5.7500940561294556e-01 4.2956221103668213e-01 + <_> + + 0 -1 942 3.4766020689858124e-05 + + 4.3424451351165771e-01 5.5640292167663574e-01 + <_> + + 0 -1 943 2.9862910509109497e-02 + + 4.5791471004486084e-01 6.5791881084442139e-01 + <_> + + 0 -1 944 1.1325590312480927e-02 + + 5.2743119001388550e-01 3.6738881468772888e-01 + <_> + + 0 -1 945 -8.7828645482659340e-03 + + 7.1003687381744385e-01 4.6421670913696289e-01 + <_> + + 0 -1 946 4.3639959767460823e-03 + + 5.2792161703109741e-01 2.7058771252632141e-01 + <_> + + 0 -1 947 4.1804728098213673e-03 + + 5.0725251436233521e-01 2.4490830302238464e-01 + <_> + + 0 -1 948 -4.5668511302210391e-04 + + 4.2831051349639893e-01 5.5486911535263062e-01 + <_> + + 0 -1 949 -3.7140368949621916e-03 + + 5.5193877220153809e-01 4.1036531329154968e-01 + <_> + + 0 -1 950 -2.5304289534687996e-02 + + 6.8670022487640381e-01 4.8698890209197998e-01 + <_> + + 0 -1 951 -3.4454080741852522e-04 + + 3.7288740277290344e-01 5.2876931428909302e-01 + <_> + + 0 -1 952 -8.3935231668874621e-04 + + 6.0601520538330078e-01 4.6160620450973511e-01 + <_> + + 0 -1 953 1.7280049622058868e-02 + + 5.0496357679367065e-01 1.8198239803314209e-01 + <_> + + 0 -1 954 -6.3595077954232693e-03 + + 1.6312399506568909e-01 5.2327787876129150e-01 + <_> + + 0 -1 955 1.0298109846189618e-03 + + 4.4632780551910400e-01 6.1765491962432861e-01 + <_> + + 0 -1 956 1.0117109632119536e-03 + + 5.4733848571777344e-01 4.3006989359855652e-01 + <_> + + 0 -1 957 -1.0308800265192986e-02 + + 1.1669850349426270e-01 5.0008672475814819e-01 + <_> + + 0 -1 958 5.4682018235325813e-03 + + 4.7692871093750000e-01 6.7192137241363525e-01 + <_> + + 0 -1 959 -9.1696460731327534e-04 + + 3.4710898995399475e-01 5.1781648397445679e-01 + <_> + + 0 -1 960 2.3922820109874010e-03 + + 4.7852361202239990e-01 6.2163108587265015e-01 + <_> + + 0 -1 961 -7.5573818758130074e-03 + + 5.8147960901260376e-01 4.4100850820541382e-01 + <_> + + 0 -1 962 -7.7024032361805439e-04 + + 3.8780000805854797e-01 5.4657220840454102e-01 + <_> + + 0 -1 963 -8.7125990539789200e-03 + + 1.6600510478019714e-01 4.9958360195159912e-01 + <_> + + 0 -1 964 -1.0306320153176785e-02 + + 4.0933910012245178e-01 5.2742338180541992e-01 + <_> + + 0 -1 965 -2.0940979011356831e-03 + + 6.2061947584152222e-01 4.5722800493240356e-01 + <_> + + 0 -1 966 6.8099051713943481e-03 + + 5.5677592754364014e-01 4.1556000709533691e-01 + <_> + + 0 -1 967 -1.0746059706434608e-03 + + 5.6389278173446655e-01 4.3530249595642090e-01 + <_> + + 0 -1 968 2.1550289820879698e-03 + + 4.8262658715248108e-01 6.7497581243515015e-01 + <_> + + 0 -1 969 3.1742319464683533e-02 + + 5.0483798980712891e-01 1.8832489848136902e-01 + <_> + + 0 -1 970 -7.8382723033428192e-02 + + 2.3695489764213562e-01 5.2601581811904907e-01 + <_> + + 0 -1 971 5.7415119372308254e-03 + + 5.0488287210464478e-01 2.7764698863029480e-01 + <_> + + 0 -1 972 -2.9014600440859795e-03 + + 6.2386047840118408e-01 4.6933171153068542e-01 + <_> + + 0 -1 973 -2.6427931152284145e-03 + + 3.3141419291496277e-01 5.1697772741317749e-01 + <_> + + 0 -1 974 -1.0949660092592239e-01 + + 2.3800450563430786e-01 5.1834410429000854e-01 + <_> + + 0 -1 975 7.4075913289561868e-05 + + 4.0696358680725098e-01 5.3621500730514526e-01 + <_> + + 0 -1 976 -5.0593802006915212e-04 + + 5.5067062377929688e-01 4.3745940923690796e-01 + <_> + + 0 -1 977 -8.2131777890026569e-04 + + 5.5257099866867065e-01 4.2093759775161743e-01 + <_> + + 0 -1 978 -6.0276539443293586e-05 + + 5.4554748535156250e-01 4.7482660412788391e-01 + <_> + + 0 -1 979 6.8065142259001732e-03 + + 5.1579958200454712e-01 3.4245771169662476e-01 + <_> + + 0 -1 980 1.7202789895236492e-03 + + 5.0132077932357788e-01 6.3312637805938721e-01 + <_> + + 0 -1 981 -1.3016929733566940e-04 + + 5.5397182703018188e-01 4.2268699407577515e-01 + <_> + + 0 -1 982 -4.8016388900578022e-03 + + 4.4250950217247009e-01 5.4307800531387329e-01 + <_> + + 0 -1 983 -2.5399310979992151e-03 + + 7.1457821130752563e-01 4.6976050734519958e-01 + <_> + + 0 -1 984 -1.4278929447755218e-03 + + 4.0704450011253357e-01 5.3996050357818604e-01 + <_> + + 0 -1 985 -2.5142550468444824e-02 + + 7.8846907615661621e-01 4.7473520040512085e-01 + <_> + + 0 -1 986 -3.8899609353393316e-03 + + 4.2961919307708740e-01 5.5771100521087646e-01 + <_> + + 0 -1 987 4.3947459198534489e-03 + + 4.6931621432304382e-01 7.0239442586898804e-01 + <_> + + 0 -1 988 2.4678420275449753e-02 + + 5.2423220872879028e-01 3.8125100731849670e-01 + <_> + + 0 -1 989 3.8047678768634796e-02 + + 5.0117397308349609e-01 1.6878280043601990e-01 + <_> + + 0 -1 990 7.9424865543842316e-03 + + 4.8285821080207825e-01 6.3695681095123291e-01 + <_> + + 0 -1 991 -1.5110049862414598e-03 + + 5.9064859151840210e-01 4.4876679778099060e-01 + <_> + + 0 -1 992 6.4201741479337215e-03 + + 5.2410978078842163e-01 2.9905700683593750e-01 + <_> + + 0 -1 993 -2.9802159406244755e-03 + + 3.0414658784866333e-01 5.0784897804260254e-01 + <_> + + 0 -1 994 -7.4580078944563866e-04 + + 4.1281390190124512e-01 5.2568262815475464e-01 + <_> + + 0 -1 995 -1.0470950044691563e-02 + + 5.8083951473236084e-01 4.4942960143089294e-01 + <_> + + 0 -1 996 9.3369204550981522e-03 + + 5.2465528249740601e-01 2.6589488983154297e-01 + <_> + + 0 -1 997 2.7936900034546852e-02 + + 4.6749550104141235e-01 7.0872569084167480e-01 + <_> + + 0 -1 998 7.4277678504586220e-03 + + 5.4094868898391724e-01 3.7585180997848511e-01 + <_> + + 0 -1 999 -2.3584509268403053e-02 + + 3.7586399912834167e-01 5.2385509014129639e-01 + <_> + + 0 -1 1000 1.1452640173956752e-03 + + 4.3295788764953613e-01 5.8042472600936890e-01 + <_> + + 0 -1 1001 -4.3468660442158580e-04 + + 5.2806180715560913e-01 3.8730698823928833e-01 + <_> + + 0 -1 1002 1.0648540221154690e-02 + + 4.9021130800247192e-01 5.6812518835067749e-01 + <_> + + 0 -1 1003 -3.9418050437234342e-04 + + 5.5708801746368408e-01 4.3182510137557983e-01 + <_> + + 0 -1 1004 -1.3270479394122958e-04 + + 5.6584399938583374e-01 4.3435549736022949e-01 + <_> + + 0 -1 1005 -2.0125510636717081e-03 + + 6.0567390918731689e-01 4.5375239849090576e-01 + <_> + + 0 -1 1006 2.4854319635778666e-03 + + 5.3904771804809570e-01 4.1380101442337036e-01 + <_> + + 0 -1 1007 1.8237880431115627e-03 + + 4.3548288941383362e-01 5.7171887159347534e-01 + <_> + + 0 -1 1008 -1.6656659543514252e-02 + + 3.0109131336212158e-01 5.2161228656768799e-01 + <_> + + 0 -1 1009 8.0349558265879750e-04 + + 5.3001511096954346e-01 3.8183969259262085e-01 + <_> + + 0 -1 1010 3.4170378930866718e-03 + + 5.3280287981033325e-01 4.2414000630378723e-01 + <_> + + 0 -1 1011 -3.6222729249857366e-04 + + 5.4917281866073608e-01 4.1869771480560303e-01 + <_> + + 0 -1 1012 -1.1630020290613174e-01 + + 1.4407220482826233e-01 5.2264511585235596e-01 + <_> + + 0 -1 1013 -1.4695010147988796e-02 + + 7.7477252483367920e-01 4.7157171368598938e-01 + <_> + + 0 -1 1014 2.1972130052745342e-03 + + 5.3554338216781616e-01 3.3156448602676392e-01 + <_> + + 0 -1 1015 -4.6965209185145795e-04 + + 5.7672351598739624e-01 4.4581368565559387e-01 + <_> + + 0 -1 1016 6.5144998952746391e-03 + + 5.2156740427017212e-01 3.6478888988494873e-01 + <_> + + 0 -1 1017 2.1300060674548149e-02 + + 4.9942049384117126e-01 1.5679509937763214e-01 + <_> + + 0 -1 1018 3.1881409231573343e-03 + + 4.7422000765800476e-01 6.2872701883316040e-01 + <_> + + 0 -1 1019 9.0019777417182922e-04 + + 5.3479540348052979e-01 3.9437520503997803e-01 + <_> + + 0 -1 1020 -5.1772277802228928e-03 + + 6.7271918058395386e-01 5.0131380558013916e-01 + <_> + + 0 -1 1021 -4.3764649890363216e-03 + + 3.1066751480102539e-01 5.1287931203842163e-01 + <_> + + 0 -1 1022 2.6299960445612669e-03 + + 4.8863101005554199e-01 5.7552158832550049e-01 + <_> + + 0 -1 1023 -2.0458688959479332e-03 + + 6.0257941484451294e-01 4.5580768585205078e-01 + <_> + + 0 -1 1024 6.9482706487178802e-02 + + 5.2407479286193848e-01 2.1852590143680573e-01 + <_> + + 0 -1 1025 2.4048939347267151e-02 + + 5.0118672847747803e-01 2.0906220376491547e-01 + <_> + + 0 -1 1026 3.1095340382307768e-03 + + 4.8667120933532715e-01 7.1085482835769653e-01 + <_> + + 0 -1 1027 -1.2503260513767600e-03 + + 3.4078910946846008e-01 5.1561951637268066e-01 + <_> + + 0 -1 1028 -1.0281190043315291e-03 + + 5.5755722522735596e-01 4.4394320249557495e-01 + <_> + + 0 -1 1029 -8.8893622159957886e-03 + + 6.4020007848739624e-01 4.6204420924186707e-01 + <_> + + 0 -1 1030 -6.1094801640138030e-04 + + 3.7664419412612915e-01 5.4488998651504517e-01 + <_> + + 0 -1 1031 -5.7686357758939266e-03 + + 3.3186489343643188e-01 5.1336771249771118e-01 + <_> + + 0 -1 1032 1.8506490159779787e-03 + + 4.9035701155662537e-01 6.4069348573684692e-01 + <_> + + 0 -1 1033 -9.9799469113349915e-02 + + 1.5360510349273682e-01 5.0155621767044067e-01 + <_> + + 0 -1 1034 -3.5128349065780640e-01 + + 5.8823131024837494e-02 5.1743787527084351e-01 + <_> + + 0 -1 1035 -4.5244570821523666e-02 + + 6.9614887237548828e-01 4.6778729557991028e-01 + <_> + + 0 -1 1036 7.1481578052043915e-02 + + 5.1679861545562744e-01 1.0380929708480835e-01 + <_> + + 0 -1 1037 2.1895780228078365e-03 + + 4.2730781435966492e-01 5.5320608615875244e-01 + <_> + + 0 -1 1038 -5.9242651332169771e-04 + + 4.6389439702033997e-01 5.2763891220092773e-01 + <_> + + 0 -1 1039 1.6788389766588807e-03 + + 5.3016489744186401e-01 3.9320349693298340e-01 + <_> + + 0 -1 1040 -2.2163488902151585e-03 + + 5.6306940317153931e-01 4.7570338845252991e-01 + <_> + + 0 -1 1041 1.1568699846975505e-04 + + 4.3075358867645264e-01 5.5357027053833008e-01 + <_> + + 0 -1 1042 -7.2017288766801357e-03 + + 1.4448820054531097e-01 5.1930642127990723e-01 + <_> + + 0 -1 1043 8.9081272017210722e-04 + + 4.3844321370124817e-01 5.5936211347579956e-01 + <_> + + 0 -1 1044 1.9605009583756328e-04 + + 5.3404158353805542e-01 4.7059568762779236e-01 + <_> + + 0 -1 1045 5.2022142335772514e-04 + + 5.2138561010360718e-01 3.8100790977478027e-01 + <_> + + 0 -1 1046 9.4588572392240167e-04 + + 4.7694149613380432e-01 6.1307388544082642e-01 + <_> + + 0 -1 1047 9.1698471806012094e-05 + + 4.2450091242790222e-01 5.4293632507324219e-01 + <_> + + 0 -1 1048 2.1833200007677078e-03 + + 5.4577308893203735e-01 4.1910758614540100e-01 + <_> + + 0 -1 1049 -8.6039671441540122e-04 + + 5.7645887136459351e-01 4.4716599583625793e-01 + <_> + + 0 -1 1050 -1.3236239552497864e-02 + + 6.3728231191635132e-01 4.6950098872184753e-01 + <_> + + 0 -1 1051 4.3376701069064438e-04 + + 5.3178739547729492e-01 3.9458298683166504e-01 + <_> + 140 + 6.9229873657226562e+01 + + <_> + + 0 -1 1052 -2.4847149848937988e-02 + + 6.5555167198181152e-01 3.8733118772506714e-01 + <_> + + 0 -1 1053 6.1348611488938332e-03 + + 3.7480720877647400e-01 5.9739977121353149e-01 + <_> + + 0 -1 1054 6.4498498104512691e-03 + + 5.4254919290542603e-01 2.5488111376762390e-01 + <_> + + 0 -1 1055 6.3491211039945483e-04 + + 2.4624420702457428e-01 5.3872537612915039e-01 + <_> + + 0 -1 1056 1.4023890253156424e-03 + + 5.5943220853805542e-01 3.5286578536033630e-01 + <_> + + 0 -1 1057 3.0044000595808029e-04 + + 3.9585039019584656e-01 5.7659381628036499e-01 + <_> + + 0 -1 1058 1.0042409849120304e-04 + + 3.6989969015121460e-01 5.5349981784820557e-01 + <_> + + 0 -1 1059 -5.0841490738093853e-03 + + 3.7110909819602966e-01 5.5478000640869141e-01 + <_> + + 0 -1 1060 -1.9537260755896568e-02 + + 7.4927550554275513e-01 4.5792970061302185e-01 + <_> + + 0 -1 1061 -7.4532740654831287e-06 + + 5.6497871875762939e-01 3.9040699601173401e-01 + <_> + + 0 -1 1062 -3.6079459823668003e-03 + + 3.3810880780220032e-01 5.2678012847900391e-01 + <_> + + 0 -1 1063 2.0697501022368670e-03 + + 5.5192911624908447e-01 3.7143889069557190e-01 + <_> + + 0 -1 1064 -4.6463840408250690e-04 + + 5.6082147359848022e-01 4.1135668754577637e-01 + <_> + + 0 -1 1065 7.5490452582016587e-04 + + 3.5592061281204224e-01 5.3293561935424805e-01 + <_> + + 0 -1 1066 -9.8322238773107529e-04 + + 5.4147958755493164e-01 3.7632051110267639e-01 + <_> + + 0 -1 1067 -1.9940640777349472e-02 + + 6.3479030132293701e-01 4.7052991390228271e-01 + <_> + + 0 -1 1068 3.7680300883948803e-03 + + 3.9134898781776428e-01 5.5637162923812866e-01 + <_> + + 0 -1 1069 -9.4528505578637123e-03 + + 2.5548928976058960e-01 5.2151167392730713e-01 + <_> + + 0 -1 1070 2.9560849070549011e-03 + + 5.1746791601181030e-01 3.0639201402664185e-01 + <_> + + 0 -1 1071 9.1078737750649452e-03 + + 5.3884482383728027e-01 2.8859630227088928e-01 + <_> + + 0 -1 1072 1.8219229532405734e-03 + + 4.3360430002212524e-01 5.8521968126296997e-01 + <_> + + 0 -1 1073 1.4688739553093910e-02 + + 5.2873617410659790e-01 2.8700059652328491e-01 + <_> + + 0 -1 1074 -1.4387990348041058e-02 + + 7.0194488763809204e-01 4.6473708748817444e-01 + <_> + + 0 -1 1075 -1.8986649811267853e-02 + + 2.9865521192550659e-01 5.2470117807388306e-01 + <_> + + 0 -1 1076 1.1527639580890536e-03 + + 4.3234738707542419e-01 5.9316617250442505e-01 + <_> + + 0 -1 1077 1.0933670215308666e-02 + + 5.2868640422821045e-01 3.1303191184997559e-01 + <_> + + 0 -1 1078 -1.4932730235159397e-02 + + 2.6584190130233765e-01 5.0840771198272705e-01 + <_> + + 0 -1 1079 -2.9970539617352188e-04 + + 5.4635268449783325e-01 3.7407240271568298e-01 + <_> + + 0 -1 1080 4.1677621193230152e-03 + + 4.7034969925880432e-01 7.4357217550277710e-01 + <_> + + 0 -1 1081 -6.3905320130288601e-03 + + 2.0692589879035950e-01 5.2805382013320923e-01 + <_> + + 0 -1 1082 4.5029609464108944e-03 + + 5.1826488971710205e-01 3.4835430979728699e-01 + <_> + + 0 -1 1083 -9.2040365561842918e-03 + + 6.8037772178649902e-01 4.9323600530624390e-01 + <_> + + 0 -1 1084 8.1327259540557861e-02 + + 5.0583988428115845e-01 2.2530519962310791e-01 + <_> + + 0 -1 1085 -1.5079280734062195e-01 + + 2.9634249210357666e-01 5.2646797895431519e-01 + <_> + + 0 -1 1086 3.3179009333252907e-03 + + 4.6554958820343018e-01 7.0729321241378784e-01 + <_> + + 0 -1 1087 7.7402801252901554e-04 + + 4.7803479433059692e-01 5.6682378053665161e-01 + <_> + + 0 -1 1088 6.8199541419744492e-04 + + 4.2869961261749268e-01 5.7221567630767822e-01 + <_> + + 0 -1 1089 5.3671570494771004e-03 + + 5.2993071079254150e-01 3.1146219372749329e-01 + <_> + + 0 -1 1090 9.7018666565418243e-05 + + 3.6746388673782349e-01 5.2694618701934814e-01 + <_> + + 0 -1 1091 -1.2534089386463165e-01 + + 2.3514920473098755e-01 5.2457910776138306e-01 + <_> + + 0 -1 1092 -5.2516269497573376e-03 + + 7.1159368753433228e-01 4.6937671303749084e-01 + <_> + + 0 -1 1093 -7.8342109918594360e-03 + + 4.4626510143280029e-01 5.4090857505798340e-01 + <_> + + 0 -1 1094 -1.1310069821774960e-03 + + 5.9456187486648560e-01 4.4176620244979858e-01 + <_> + + 0 -1 1095 1.7601120052859187e-03 + + 5.3532499074935913e-01 3.9734530448913574e-01 + <_> + + 0 -1 1096 -8.1581249833106995e-04 + + 3.7602680921554565e-01 5.2647268772125244e-01 + <_> + + 0 -1 1097 -3.8687589112669230e-03 + + 6.3099128007888794e-01 4.7498199343681335e-01 + <_> + + 0 -1 1098 1.5207129763439298e-03 + + 5.2301818132400513e-01 3.3612239360809326e-01 + <_> + + 0 -1 1099 5.4586738348007202e-01 + + 5.1671397686004639e-01 1.1726350337266922e-01 + <_> + + 0 -1 1100 1.5650190412998199e-02 + + 4.9794390797615051e-01 1.3932949304580688e-01 + <_> + + 0 -1 1101 -1.1731860227882862e-02 + + 7.1296507120132446e-01 4.9211961030960083e-01 + <_> + + 0 -1 1102 -6.1765122227370739e-03 + + 2.2881029546260834e-01 5.0497019290924072e-01 + <_> + + 0 -1 1103 2.2457661107182503e-03 + + 4.6324339509010315e-01 6.0487258434295654e-01 + <_> + + 0 -1 1104 -5.1915869116783142e-03 + + 6.4674210548400879e-01 4.6021929383277893e-01 + <_> + + 0 -1 1105 -2.3827880620956421e-02 + + 1.4820009469985962e-01 5.2260792255401611e-01 + <_> + + 0 -1 1106 1.0284580057486892e-03 + + 5.1354891061782837e-01 3.3759570121765137e-01 + <_> + + 0 -1 1107 -1.0078850202262402e-02 + + 2.7405610680580139e-01 5.3035670518875122e-01 + <_> + + 0 -1 1108 2.6168930344283581e-03 + + 5.3326708078384399e-01 3.9724540710449219e-01 + <_> + + 0 -1 1109 5.4385367548093200e-04 + + 5.3656041622161865e-01 4.0634119510650635e-01 + <_> + + 0 -1 1110 5.3510512225329876e-03 + + 4.6537590026855469e-01 6.8890458345413208e-01 + <_> + + 0 -1 1111 -1.5274790348485112e-03 + + 5.4495012760162354e-01 3.6247238516807556e-01 + <_> + + 0 -1 1112 -8.0624416470527649e-02 + + 1.6560870409011841e-01 5.0002872943878174e-01 + <_> + + 0 -1 1113 2.2192029282450676e-02 + + 5.1327311992645264e-01 2.0028080046176910e-01 + <_> + + 0 -1 1114 7.3100631125271320e-03 + + 4.6179479360580444e-01 6.3665360212326050e-01 + <_> + + 0 -1 1115 -6.4063072204589844e-03 + + 5.9162509441375732e-01 4.8678609728813171e-01 + <_> + + 0 -1 1116 -7.6415040530264378e-04 + + 3.8884091377258301e-01 5.3157979249954224e-01 + <_> + + 0 -1 1117 7.6734489994123578e-04 + + 4.1590648889541626e-01 5.6052798032760620e-01 + <_> + + 0 -1 1118 6.1474501853808761e-04 + + 3.0890220403671265e-01 5.1201480627059937e-01 + <_> + + 0 -1 1119 -5.0105270929634571e-03 + + 3.9721998572349548e-01 5.2073061466217041e-01 + <_> + + 0 -1 1120 -8.6909132078289986e-03 + + 6.2574082612991333e-01 4.6085759997367859e-01 + <_> + + 0 -1 1121 -1.6391459852457047e-02 + + 2.0852099359035492e-01 5.2422660589218140e-01 + <_> + + 0 -1 1122 4.0973909199237823e-04 + + 5.2224272489547729e-01 3.7803208827972412e-01 + <_> + + 0 -1 1123 -2.5242289993911982e-03 + + 5.8039271831512451e-01 4.6118900179862976e-01 + <_> + + 0 -1 1124 5.0945312250405550e-04 + + 4.4012719392776489e-01 5.8460158109664917e-01 + <_> + + 0 -1 1125 1.9656419754028320e-03 + + 5.3223252296447754e-01 4.1845908761024475e-01 + <_> + + 0 -1 1126 5.6298897834494710e-04 + + 3.7418448925018311e-01 5.2345657348632812e-01 + <_> + + 0 -1 1127 -6.7946797935292125e-04 + + 4.6310418844223022e-01 5.3564780950546265e-01 + <_> + + 0 -1 1128 7.2856349870562553e-03 + + 5.0446701049804688e-01 2.3775640130043030e-01 + <_> + + 0 -1 1129 -1.7459489405155182e-02 + + 7.2891211509704590e-01 5.0504350662231445e-01 + <_> + + 0 -1 1130 -2.5421749800443649e-02 + + 6.6671347618103027e-01 4.6781000494956970e-01 + <_> + + 0 -1 1131 -1.5647639520466328e-03 + + 4.3917590379714966e-01 5.3236269950866699e-01 + <_> + + 0 -1 1132 1.1444360017776489e-02 + + 4.3464401364326477e-01 5.6800121068954468e-01 + <_> + + 0 -1 1133 -6.7352550104260445e-04 + + 4.4771409034729004e-01 5.2968120574951172e-01 + <_> + + 0 -1 1134 9.3194209039211273e-03 + + 4.7402000427246094e-01 7.4626070261001587e-01 + <_> + + 0 -1 1135 1.3328490604180843e-04 + + 5.3650617599487305e-01 4.7521349787712097e-01 + <_> + + 0 -1 1136 -7.8815799206495285e-03 + + 1.7522190511226654e-01 5.0152552127838135e-01 + <_> + + 0 -1 1137 -5.7985680177807808e-03 + + 7.2712367773056030e-01 4.8962008953094482e-01 + <_> + + 0 -1 1138 -3.8922499516047537e-04 + + 4.0039089322090149e-01 5.3449410200119019e-01 + <_> + + 0 -1 1139 -1.9288610201328993e-03 + + 5.6056129932403564e-01 4.8039558529853821e-01 + <_> + + 0 -1 1140 8.4214154630899429e-03 + + 4.7532469034194946e-01 7.6236087083816528e-01 + <_> + + 0 -1 1141 8.1655876711010933e-03 + + 5.3932619094848633e-01 4.1916438937187195e-01 + <_> + + 0 -1 1142 4.8280550981871784e-04 + + 4.2408001422882080e-01 5.3998219966888428e-01 + <_> + + 0 -1 1143 -2.7186630759388208e-03 + + 4.2445999383926392e-01 5.4249238967895508e-01 + <_> + + 0 -1 1144 -1.2507230043411255e-02 + + 5.8958417177200317e-01 4.5504111051559448e-01 + <_> + + 0 -1 1145 -2.4286519736051559e-02 + + 2.6471349596977234e-01 5.1891797780990601e-01 + <_> + + 0 -1 1146 -2.9676330741494894e-03 + + 7.3476827144622803e-01 4.7497498989105225e-01 + <_> + + 0 -1 1147 -1.2528999708592892e-02 + + 2.7560499310493469e-01 5.1775997877120972e-01 + <_> + + 0 -1 1148 -1.0104000102728605e-03 + + 3.5105609893798828e-01 5.1447242498397827e-01 + <_> + + 0 -1 1149 -2.1348530426621437e-03 + + 5.6379258632659912e-01 4.6673199534416199e-01 + <_> + + 0 -1 1150 1.9564259797334671e-02 + + 4.6145731210708618e-01 6.1376398801803589e-01 + <_> + + 0 -1 1151 -9.7146347165107727e-02 + + 2.9983788728713989e-01 5.1935559511184692e-01 + <_> + + 0 -1 1152 4.5014568604528904e-03 + + 5.0778847932815552e-01 3.0457559227943420e-01 + <_> + + 0 -1 1153 6.3706971704959869e-03 + + 4.8610189557075500e-01 6.8875008821487427e-01 + <_> + + 0 -1 1154 -9.0721528977155685e-03 + + 1.6733959317207336e-01 5.0175631046295166e-01 + <_> + + 0 -1 1155 -5.3537208586931229e-03 + + 2.6927569508552551e-01 5.2426332235336304e-01 + <_> + + 0 -1 1156 -1.0932840406894684e-02 + + 7.1838641166687012e-01 4.7360289096832275e-01 + <_> + + 0 -1 1157 8.2356072962284088e-03 + + 5.2239668369293213e-01 2.3898629844188690e-01 + <_> + + 0 -1 1158 -1.0038160253316164e-03 + + 5.7193559408187866e-01 4.4339430332183838e-01 + <_> + + 0 -1 1159 4.0859128348529339e-03 + + 5.4728418588638306e-01 4.1488361358642578e-01 + <_> + + 0 -1 1160 1.5485419332981110e-01 + + 4.9738121032714844e-01 6.1061598360538483e-02 + <_> + + 0 -1 1161 2.0897459762636572e-04 + + 4.7091740369796753e-01 5.4238891601562500e-01 + <_> + + 0 -1 1162 3.3316991175524890e-04 + + 4.0896269679069519e-01 5.3009921312332153e-01 + <_> + + 0 -1 1163 -1.0813400149345398e-02 + + 6.1043697595596313e-01 4.9573341012001038e-01 + <_> + + 0 -1 1164 4.5656010508537292e-02 + + 5.0696891546249390e-01 2.8666600584983826e-01 + <_> + + 0 -1 1165 1.2569549726322293e-03 + + 4.8469170928001404e-01 6.3181710243225098e-01 + <_> + + 0 -1 1166 -1.2015070021152496e-01 + + 6.0526140034198761e-02 4.9809598922729492e-01 + <_> + + 0 -1 1167 -1.0533799650147557e-04 + + 5.3631097078323364e-01 4.7080421447753906e-01 + <_> + + 0 -1 1168 -2.0703190565109253e-01 + + 5.9660330414772034e-02 4.9790981411933899e-01 + <_> + + 0 -1 1169 1.2909180077258497e-04 + + 4.7129771113395691e-01 5.3779977560043335e-01 + <_> + + 0 -1 1170 3.8818528992123902e-04 + + 4.3635380268096924e-01 5.5341911315917969e-01 + <_> + + 0 -1 1171 -2.9243610333651304e-03 + + 5.8111858367919922e-01 4.8252159357070923e-01 + <_> + + 0 -1 1172 8.3882332546636462e-04 + + 5.3117001056671143e-01 4.0381389856338501e-01 + <_> + + 0 -1 1173 -1.9061550265178084e-03 + + 3.7707018852233887e-01 5.2600151300430298e-01 + <_> + + 0 -1 1174 8.9514348655939102e-03 + + 4.7661679983139038e-01 7.6821839809417725e-01 + <_> + + 0 -1 1175 1.3083459809422493e-02 + + 5.2644628286361694e-01 3.0622220039367676e-01 + <_> + + 0 -1 1176 -2.1159330010414124e-01 + + 6.7371982336044312e-01 4.6958100795745850e-01 + <_> + + 0 -1 1177 3.1493250280618668e-03 + + 5.6448352336883545e-01 4.3869531154632568e-01 + <_> + + 0 -1 1178 3.9754100725986063e-04 + + 4.5260611176490784e-01 5.8956301212310791e-01 + <_> + + 0 -1 1179 -1.3814480043947697e-03 + + 6.0705822706222534e-01 4.9424138665199280e-01 + <_> + + 0 -1 1180 -5.8122188784182072e-04 + + 5.9982132911682129e-01 4.5082521438598633e-01 + <_> + + 0 -1 1181 -2.3905329871922731e-03 + + 4.2055889964103699e-01 5.2238482236862183e-01 + <_> + + 0 -1 1182 2.7268929407000542e-02 + + 5.2064472436904907e-01 3.5633018612861633e-01 + <_> + + 0 -1 1183 -3.7658358924090862e-03 + + 3.1447041034698486e-01 5.2188140153884888e-01 + <_> + + 0 -1 1184 -1.4903489500284195e-03 + + 3.3801960945129395e-01 5.1244372129440308e-01 + <_> + + 0 -1 1185 -1.7428230494260788e-02 + + 5.8299607038497925e-01 4.9197259545326233e-01 + <_> + + 0 -1 1186 -1.5278030186891556e-02 + + 6.1631447076797485e-01 4.6178871393203735e-01 + <_> + + 0 -1 1187 3.1995609402656555e-02 + + 5.1663571596145630e-01 1.7127640545368195e-01 + <_> + + 0 -1 1188 -3.8256710395216942e-03 + + 3.4080120921134949e-01 5.1313877105712891e-01 + <_> + + 0 -1 1189 -8.5186436772346497e-03 + + 6.1055189371109009e-01 4.9979418516159058e-01 + <_> + + 0 -1 1190 9.0641621500253677e-04 + + 4.3272709846496582e-01 5.5823111534118652e-01 + <_> + + 0 -1 1191 1.0344849899411201e-02 + + 4.8556530475616455e-01 5.4524201154708862e-01 + <_> + 160 + 7.9249076843261719e+01 + + <_> + + 0 -1 1192 7.8981826081871986e-03 + + 3.3325248956680298e-01 5.9464621543884277e-01 + <_> + + 0 -1 1193 1.6170160379260778e-03 + + 3.4906411170959473e-01 5.5778688192367554e-01 + <_> + + 0 -1 1194 -5.5449741194024682e-04 + + 5.5425661802291870e-01 3.2915300130844116e-01 + <_> + + 0 -1 1195 1.5428980113938451e-03 + + 3.6125791072845459e-01 5.5459791421890259e-01 + <_> + + 0 -1 1196 -1.0329450014978647e-03 + + 3.5301390290260315e-01 5.5761402845382690e-01 + <_> + + 0 -1 1197 7.7698158565908670e-04 + + 3.9167788624763489e-01 5.6453210115432739e-01 + <_> + + 0 -1 1198 1.4320300519466400e-01 + + 4.6674820780754089e-01 7.0236331224441528e-01 + <_> + + 0 -1 1199 -7.3866490274667740e-03 + + 3.0736848711967468e-01 5.2892577648162842e-01 + <_> + + 0 -1 1200 -6.2936742324382067e-04 + + 5.6221181154251099e-01 4.0370491147041321e-01 + <_> + + 0 -1 1201 7.8893528552725911e-04 + + 5.2676612138748169e-01 3.5578748583793640e-01 + <_> + + 0 -1 1202 -1.2228050269186497e-02 + + 6.6683208942413330e-01 4.6255499124526978e-01 + <_> + + 0 -1 1203 3.5420239437371492e-03 + + 5.5214381217956543e-01 3.8696730136871338e-01 + <_> + + 0 -1 1204 -1.0585320414975286e-03 + + 3.6286780238151550e-01 5.3209269046783447e-01 + <_> + + 0 -1 1205 1.4935660146875307e-05 + + 4.6324449777603149e-01 5.3633230924606323e-01 + <_> + + 0 -1 1206 5.2537708543241024e-03 + + 5.1322317123413086e-01 3.2657089829444885e-01 + <_> + + 0 -1 1207 -8.2338023930788040e-03 + + 6.6936898231506348e-01 4.7741401195526123e-01 + <_> + + 0 -1 1208 2.1866810129722580e-05 + + 4.0538620948791504e-01 5.4579311609268188e-01 + <_> + + 0 -1 1209 -3.8150229956954718e-03 + + 6.4549958705902100e-01 4.7931781411170959e-01 + <_> + + 0 -1 1210 1.1105879675596952e-03 + + 5.2704071998596191e-01 3.5296788811683655e-01 + <_> + + 0 -1 1211 -5.7707689702510834e-03 + + 3.8035470247268677e-01 5.3529578447341919e-01 + <_> + + 0 -1 1212 -3.0158339068293571e-03 + + 5.3394031524658203e-01 3.8871330022811890e-01 + <_> + + 0 -1 1213 -8.5453689098358154e-04 + + 3.5646161437034607e-01 5.2736037969589233e-01 + <_> + + 0 -1 1214 1.1050510220229626e-02 + + 4.6719071269035339e-01 6.8497377634048462e-01 + <_> + + 0 -1 1215 4.2605839669704437e-02 + + 5.1514732837677002e-01 7.0220090448856354e-02 + <_> + + 0 -1 1216 -3.0781750101596117e-03 + + 3.0416610836982727e-01 5.1526021957397461e-01 + <_> + + 0 -1 1217 -5.4815728217363358e-03 + + 6.4302957057952881e-01 4.8972299695014954e-01 + <_> + + 0 -1 1218 3.1881860923022032e-03 + + 5.3074932098388672e-01 3.8262099027633667e-01 + <_> + + 0 -1 1219 3.5947180003859103e-04 + + 4.6500471234321594e-01 5.4219049215316772e-01 + <_> + + 0 -1 1220 -4.0705031715333462e-03 + + 2.8496798872947693e-01 5.0791162252426147e-01 + <_> + + 0 -1 1221 -1.4594170264899731e-02 + + 2.9716458916664124e-01 5.1284617185592651e-01 + <_> + + 0 -1 1222 -1.1947689927183092e-04 + + 5.6310981512069702e-01 4.3430820107460022e-01 + <_> + + 0 -1 1223 -6.9344649091362953e-04 + + 4.4035780429840088e-01 5.3599590063095093e-01 + <_> + + 0 -1 1224 1.4834799912932795e-05 + + 3.4210088849067688e-01 5.1646977663040161e-01 + <_> + + 0 -1 1225 9.0296985581517220e-03 + + 4.6393430233001709e-01 6.1140751838684082e-01 + <_> + + 0 -1 1226 -8.0640818923711777e-03 + + 2.8201588988304138e-01 5.0754940509796143e-01 + <_> + + 0 -1 1227 2.6062119752168655e-02 + + 5.2089059352874756e-01 2.6887780427932739e-01 + <_> + + 0 -1 1228 1.7314659431576729e-02 + + 4.6637138724327087e-01 6.7385399341583252e-01 + <_> + + 0 -1 1229 2.2666640579700470e-02 + + 5.2093499898910522e-01 2.2127239406108856e-01 + <_> + + 0 -1 1230 -2.1965929772704840e-03 + + 6.0631012916564941e-01 4.5381900668144226e-01 + <_> + + 0 -1 1231 -9.5282476395368576e-03 + + 4.6352049708366394e-01 5.2474308013916016e-01 + <_> + + 0 -1 1232 8.0943619832396507e-03 + + 5.2894401550292969e-01 3.9138820767402649e-01 + <_> + + 0 -1 1233 -7.2877332568168640e-02 + + 7.7520018815994263e-01 4.9902349710464478e-01 + <_> + + 0 -1 1234 -6.9009521976113319e-03 + + 2.4280390143394470e-01 5.0480902194976807e-01 + <_> + + 0 -1 1235 -1.1308239772915840e-02 + + 5.7343649864196777e-01 4.8423761129379272e-01 + <_> + + 0 -1 1236 5.9613201767206192e-02 + + 5.0298362970352173e-01 2.5249770283699036e-01 + <_> + + 0 -1 1237 -2.8624620754271746e-03 + + 6.0730451345443726e-01 4.8984599113464355e-01 + <_> + + 0 -1 1238 4.4781449250876904e-03 + + 5.0152891874313354e-01 2.2203169763088226e-01 + <_> + + 0 -1 1239 -1.7513240454718471e-03 + + 6.6144287586212158e-01 4.9338689446449280e-01 + <_> + + 0 -1 1240 4.0163420140743256e-02 + + 5.1808780431747437e-01 3.7410449981689453e-01 + <_> + + 0 -1 1241 3.4768949262797832e-04 + + 4.7204169631004333e-01 5.8180320262908936e-01 + <_> + + 0 -1 1242 2.6551650371402502e-03 + + 3.8050109148025513e-01 5.2213358879089355e-01 + <_> + + 0 -1 1243 -8.7706279009580612e-03 + + 2.9441660642623901e-01 5.2312952280044556e-01 + <_> + + 0 -1 1244 -5.5122091434895992e-03 + + 7.3461771011352539e-01 4.7228169441223145e-01 + <_> + + 0 -1 1245 6.8672042107209563e-04 + + 5.4528760910034180e-01 4.2424130439758301e-01 + <_> + + 0 -1 1246 5.6019669864326715e-04 + + 4.3988621234893799e-01 5.6012850999832153e-01 + <_> + + 0 -1 1247 2.4143769405782223e-03 + + 4.7416868805885315e-01 6.1366218328475952e-01 + <_> + + 0 -1 1248 -1.5680900542065501e-03 + + 6.0445529222488403e-01 4.5164099335670471e-01 + <_> + + 0 -1 1249 -3.6827491130679846e-03 + + 2.4524590373039246e-01 5.2949821949005127e-01 + <_> + + 0 -1 1250 -2.9409190756268799e-04 + + 3.7328380346298218e-01 5.2514511346817017e-01 + <_> + + 0 -1 1251 4.2847759323194623e-04 + + 5.4988098144531250e-01 4.0655350685119629e-01 + <_> + + 0 -1 1252 -4.8817070201039314e-03 + + 2.1399089694023132e-01 4.9999570846557617e-01 + <_> + + 0 -1 1253 2.7272020815871656e-04 + + 4.6502870321273804e-01 5.8134287595748901e-01 + <_> + + 0 -1 1254 2.0947199664078653e-04 + + 4.3874868750572205e-01 5.5727928876876831e-01 + <_> + + 0 -1 1255 4.8501189798116684e-02 + + 5.2449727058410645e-01 3.2128891348838806e-01 + <_> + + 0 -1 1256 -4.5166411437094212e-03 + + 6.0568130016326904e-01 4.5458820462226868e-01 + <_> + + 0 -1 1257 -1.2291680090129375e-02 + + 2.0409290492534637e-01 5.1522141695022583e-01 + <_> + + 0 -1 1258 4.8549679922871292e-04 + + 5.2376049757003784e-01 3.7395030260086060e-01 + <_> + + 0 -1 1259 3.0556049197912216e-02 + + 4.9605339765548706e-01 5.9382462501525879e-01 + <_> + + 0 -1 1260 -1.5105320198927075e-04 + + 5.3513038158416748e-01 4.1452041268348694e-01 + <_> + + 0 -1 1261 2.4937440175563097e-03 + + 4.6933668851852417e-01 5.5149412155151367e-01 + <_> + + 0 -1 1262 -1.2382130138576031e-02 + + 6.7913967370986938e-01 4.6816679835319519e-01 + <_> + + 0 -1 1263 -5.1333461888134480e-03 + + 3.6087390780448914e-01 5.2291601896286011e-01 + <_> + + 0 -1 1264 5.1919277757406235e-04 + + 5.3000730276107788e-01 3.6336138844490051e-01 + <_> + + 0 -1 1265 1.5060420334339142e-01 + + 5.1573169231414795e-01 2.2117820382118225e-01 + <_> + + 0 -1 1266 7.7144149690866470e-03 + + 4.4104969501495361e-01 5.7766091823577881e-01 + <_> + + 0 -1 1267 9.4443522393703461e-03 + + 5.4018551111221313e-01 3.7566500902175903e-01 + <_> + + 0 -1 1268 2.5006249779835343e-04 + + 4.3682709336280823e-01 5.6073749065399170e-01 + <_> + + 0 -1 1269 -3.3077150583267212e-03 + + 4.2447990179061890e-01 5.5182307958602905e-01 + <_> + + 0 -1 1270 7.4048910755664110e-04 + + 4.4969621300697327e-01 5.9005767107009888e-01 + <_> + + 0 -1 1271 4.4092051684856415e-02 + + 5.2934932708740234e-01 3.1563550233840942e-01 + <_> + + 0 -1 1272 3.3639909233897924e-03 + + 4.4832968711853027e-01 5.8486622571945190e-01 + <_> + + 0 -1 1273 -3.9760079234838486e-03 + + 4.5595070719718933e-01 5.4836392402648926e-01 + <_> + + 0 -1 1274 2.7716930489987135e-03 + + 5.3417861461639404e-01 3.7924841046333313e-01 + <_> + + 0 -1 1275 -2.4123019829858094e-04 + + 5.6671887636184692e-01 4.5769730210304260e-01 + <_> + + 0 -1 1276 4.9425667384639382e-04 + + 4.4212448596954346e-01 5.6287872791290283e-01 + <_> + + 0 -1 1277 -3.8876468897797167e-04 + + 4.2883709073066711e-01 5.3910630941390991e-01 + <_> + + 0 -1 1278 -5.0048898905515671e-02 + + 6.8995130062103271e-01 4.7037428617477417e-01 + <_> + + 0 -1 1279 -3.6635480821132660e-02 + + 2.2177790105342865e-01 5.1918262243270874e-01 + <_> + + 0 -1 1280 2.4273579474538565e-03 + + 5.1362240314483643e-01 3.4973978996276855e-01 + <_> + + 0 -1 1281 1.9558030180633068e-03 + + 4.8261928558349609e-01 6.4083808660507202e-01 + <_> + + 0 -1 1282 -1.7494610510766506e-03 + + 3.9228358864784241e-01 5.2726852893829346e-01 + <_> + + 0 -1 1283 1.3955079950392246e-02 + + 5.0782018899917603e-01 8.4165048599243164e-01 + <_> + + 0 -1 1284 -2.1896739781368524e-04 + + 5.5204898118972778e-01 4.3142348527908325e-01 + <_> + + 0 -1 1285 -1.5131309628486633e-03 + + 3.9346051216125488e-01 5.3825712203979492e-01 + <_> + + 0 -1 1286 -4.3622800149023533e-03 + + 7.3706287145614624e-01 4.7364759445190430e-01 + <_> + + 0 -1 1287 6.5160587430000305e-02 + + 5.1592797040939331e-01 3.2815951108932495e-01 + <_> + + 0 -1 1288 -2.3567399475723505e-03 + + 3.6728268861770630e-01 5.1728862524032593e-01 + <_> + + 0 -1 1289 1.5146659687161446e-02 + + 5.0314939022064209e-01 6.6876041889190674e-01 + <_> + + 0 -1 1290 -2.2850960493087769e-02 + + 6.7675197124481201e-01 4.7095969319343567e-01 + <_> + + 0 -1 1291 4.8867650330066681e-03 + + 5.2579981088638306e-01 4.0598788857460022e-01 + <_> + + 0 -1 1292 1.7619599821045995e-03 + + 4.6962729096412659e-01 6.6882789134979248e-01 + <_> + + 0 -1 1293 -1.2942519970238209e-03 + + 4.3207129836082458e-01 5.3442817926406860e-01 + <_> + + 0 -1 1294 1.0929949581623077e-02 + + 4.9977061152458191e-01 1.6374860703945160e-01 + <_> + + 0 -1 1295 2.9958489903947338e-05 + + 4.2824178934097290e-01 5.6332242488861084e-01 + <_> + + 0 -1 1296 -6.5884361974895000e-03 + + 6.7721211910247803e-01 4.7005268931388855e-01 + <_> + + 0 -1 1297 3.2527779694646597e-03 + + 5.3133970499038696e-01 4.5361489057540894e-01 + <_> + + 0 -1 1298 -4.0435739792883396e-03 + + 5.6600618362426758e-01 4.4133889675140381e-01 + <_> + + 0 -1 1299 -1.2523540062829852e-03 + + 3.7319138646125793e-01 5.3564518690109253e-01 + <_> + + 0 -1 1300 1.9246719602961093e-04 + + 5.1899862289428711e-01 3.7388110160827637e-01 + <_> + + 0 -1 1301 -3.8589671254158020e-02 + + 2.9563739895820618e-01 5.1888108253479004e-01 + <_> + + 0 -1 1302 1.5489870565943420e-04 + + 4.3471351265907288e-01 5.5095332860946655e-01 + <_> + + 0 -1 1303 -3.3763848245143890e-02 + + 3.2303300499916077e-01 5.1954758167266846e-01 + <_> + + 0 -1 1304 -8.2657067105174065e-03 + + 5.9754890203475952e-01 4.5521140098571777e-01 + <_> + + 0 -1 1305 1.4481440302915871e-05 + + 4.7456780076026917e-01 5.4974269866943359e-01 + <_> + + 0 -1 1306 1.4951299817766994e-05 + + 4.3244731426239014e-01 5.4806441068649292e-01 + <_> + + 0 -1 1307 -1.8741799518465996e-02 + + 1.5800529718399048e-01 5.1785331964492798e-01 + <_> + + 0 -1 1308 1.7572239739820361e-03 + + 4.5176368951797485e-01 5.7737642526626587e-01 + <_> + + 0 -1 1309 -3.1391119118779898e-03 + + 4.1496479511260986e-01 5.4608422517776489e-01 + <_> + + 0 -1 1310 6.6656779381446540e-05 + + 4.0390908718109131e-01 5.2930849790573120e-01 + <_> + + 0 -1 1311 6.7743421532213688e-03 + + 4.7676518559455872e-01 6.1219561100006104e-01 + <_> + + 0 -1 1312 -7.3868161998689175e-03 + + 3.5862588882446289e-01 5.1872807741165161e-01 + <_> + + 0 -1 1313 1.4040930196642876e-02 + + 4.7121399641036987e-01 5.5761557817459106e-01 + <_> + + 0 -1 1314 -5.5258329957723618e-03 + + 2.6610270142555237e-01 5.0392812490463257e-01 + <_> + + 0 -1 1315 3.8684239983558655e-01 + + 5.1443397998809814e-01 2.5258991122245789e-01 + <_> + + 0 -1 1316 1.1459240340627730e-04 + + 4.2849949002265930e-01 5.4233711957931519e-01 + <_> + + 0 -1 1317 -1.8467569723725319e-02 + + 3.8858351111412048e-01 5.2130621671676636e-01 + <_> + + 0 -1 1318 -4.5907011372037232e-04 + + 5.4125630855560303e-01 4.2359098792076111e-01 + <_> + + 0 -1 1319 1.2527540093287826e-03 + + 4.8993051052093506e-01 6.6240912675857544e-01 + <_> + + 0 -1 1320 1.4910609461367130e-03 + + 5.2867782115936279e-01 4.0400519967079163e-01 + <_> + + 0 -1 1321 -7.5435562757775187e-04 + + 6.0329902172088623e-01 4.7951200604438782e-01 + <_> + + 0 -1 1322 -6.9478838704526424e-03 + + 4.0844011306762695e-01 5.3735041618347168e-01 + <_> + + 0 -1 1323 2.8092920547351241e-04 + + 4.8460629582405090e-01 5.7593822479248047e-01 + <_> + + 0 -1 1324 9.6073717577382922e-04 + + 5.1647412776947021e-01 3.5549798607826233e-01 + <_> + + 0 -1 1325 -2.6883929967880249e-04 + + 5.6775820255279541e-01 4.7317659854888916e-01 + <_> + + 0 -1 1326 2.1599370520561934e-03 + + 4.7314870357513428e-01 7.0705670118331909e-01 + <_> + + 0 -1 1327 5.6235301308333874e-03 + + 5.2402430772781372e-01 2.7817919850349426e-01 + <_> + + 0 -1 1328 -5.0243991427123547e-03 + + 2.8370139002799988e-01 5.0623041391372681e-01 + <_> + + 0 -1 1329 -9.7611639648675919e-03 + + 7.4007177352905273e-01 4.9345690011978149e-01 + <_> + + 0 -1 1330 4.1515100747346878e-03 + + 5.1191312074661255e-01 3.4070080518722534e-01 + <_> + + 0 -1 1331 6.2465080991387367e-03 + + 4.9237880110740662e-01 6.5790587663650513e-01 + <_> + + 0 -1 1332 -7.0597478188574314e-03 + + 2.4347110092639923e-01 5.0328421592712402e-01 + <_> + + 0 -1 1333 -2.0587709732353687e-03 + + 5.9003108739852905e-01 4.6950870752334595e-01 + <_> + + 0 -1 1334 -2.4146060459315777e-03 + + 3.6473178863525391e-01 5.1892018318176270e-01 + <_> + + 0 -1 1335 -1.4817609917372465e-03 + + 6.0349482297897339e-01 4.9401280283927917e-01 + <_> + + 0 -1 1336 -6.3016400672495365e-03 + + 5.8189898729324341e-01 4.5604279637336731e-01 + <_> + + 0 -1 1337 3.4763428848236799e-03 + + 5.2174758911132812e-01 3.4839931130409241e-01 + <_> + + 0 -1 1338 -2.2250870242714882e-02 + + 2.3607000708580017e-01 5.0320827960968018e-01 + <_> + + 0 -1 1339 -3.0612550675868988e-02 + + 6.4991867542266846e-01 4.9149191379547119e-01 + <_> + + 0 -1 1340 1.3057479634881020e-02 + + 4.4133231043815613e-01 5.6837642192840576e-01 + <_> + + 0 -1 1341 -6.0095742810517550e-04 + + 4.3597310781478882e-01 5.3334832191467285e-01 + <_> + + 0 -1 1342 -4.1514250915497541e-04 + + 5.5040627717971802e-01 4.3260601162910461e-01 + <_> + + 0 -1 1343 -1.3776290230453014e-02 + + 4.0641129016876221e-01 5.2015489339828491e-01 + <_> + + 0 -1 1344 -3.2296508550643921e-02 + + 4.7351971268653870e-02 4.9771949648857117e-01 + <_> + + 0 -1 1345 5.3556978702545166e-02 + + 4.8817330598831177e-01 6.6669392585754395e-01 + <_> + + 0 -1 1346 8.1889545544981956e-03 + + 5.4000371694564819e-01 4.2408201098442078e-01 + <_> + + 0 -1 1347 2.1055320394225419e-04 + + 4.8020479083061218e-01 5.5638527870178223e-01 + <_> + + 0 -1 1348 -2.4382730480283499e-03 + + 7.3877930641174316e-01 4.7736850380897522e-01 + <_> + + 0 -1 1349 3.2835570164024830e-03 + + 5.2885460853576660e-01 3.1712919473648071e-01 + <_> + + 0 -1 1350 2.3729570675641298e-03 + + 4.7508129477500916e-01 7.0601707696914673e-01 + <_> + + 0 -1 1351 -1.4541699783876538e-03 + + 3.8117301464080811e-01 5.3307390213012695e-01 + <_> + 177 + 8.7696029663085938e+01 + + <_> + + 0 -1 1352 5.5755238980054855e-02 + + 4.0191569924354553e-01 6.8060368299484253e-01 + <_> + + 0 -1 1353 2.4730248842388391e-03 + + 3.3511489629745483e-01 5.9657198190689087e-01 + <_> + + 0 -1 1354 -3.5031698644161224e-04 + + 5.5577081441879272e-01 3.4822869300842285e-01 + <_> + + 0 -1 1355 5.4167630150914192e-04 + + 4.2608588933944702e-01 5.6933808326721191e-01 + <_> + + 0 -1 1356 7.7193678589537740e-04 + + 3.4942400455474854e-01 5.4336887598037720e-01 + <_> + + 0 -1 1357 -1.5999219613149762e-03 + + 4.0284991264343262e-01 5.4843592643737793e-01 + <_> + + 0 -1 1358 -1.1832080053864047e-04 + + 3.8069018721580505e-01 5.4254651069641113e-01 + <_> + + 0 -1 1359 3.2909031142480671e-04 + + 2.6201000809669495e-01 5.4295217990875244e-01 + <_> + + 0 -1 1360 2.9518108931370080e-04 + + 3.7997689843177795e-01 5.3992640972137451e-01 + <_> + + 0 -1 1361 9.0466710389591753e-05 + + 4.4336450099945068e-01 5.4402261972427368e-01 + <_> + + 0 -1 1362 1.5007190086180344e-05 + + 3.7196549773216248e-01 5.4091197252273560e-01 + <_> + + 0 -1 1363 1.3935610651969910e-01 + + 5.5253958702087402e-01 4.4790428876876831e-01 + <_> + + 0 -1 1364 1.6461990308016539e-03 + + 4.2645010352134705e-01 5.7721698284149170e-01 + <_> + + 0 -1 1365 4.9984431825578213e-04 + + 4.3595260381698608e-01 5.6858712434768677e-01 + <_> + + 0 -1 1366 -1.0971280280500650e-03 + + 3.3901369571685791e-01 5.2054089307785034e-01 + <_> + + 0 -1 1367 6.6919892560690641e-04 + + 4.5574560761451721e-01 5.9806597232818604e-01 + <_> + + 0 -1 1368 8.6471042595803738e-04 + + 5.1348412036895752e-01 2.9440331459045410e-01 + <_> + + 0 -1 1369 -2.7182599296793342e-04 + + 3.9065781235694885e-01 5.3771811723709106e-01 + <_> + + 0 -1 1370 3.0249499104684219e-05 + + 3.6796098947525024e-01 5.2256888151168823e-01 + <_> + + 0 -1 1371 -8.5225896909832954e-03 + + 7.2931021451950073e-01 4.8923650383949280e-01 + <_> + + 0 -1 1372 1.6705560265108943e-03 + + 4.3453249335289001e-01 5.6961381435394287e-01 + <_> + + 0 -1 1373 -7.1433838456869125e-03 + + 2.5912800431251526e-01 5.2256238460540771e-01 + <_> + + 0 -1 1374 -1.6319369897246361e-02 + + 6.9222790002822876e-01 4.6515759825706482e-01 + <_> + + 0 -1 1375 4.8034260980784893e-03 + + 5.3522628545761108e-01 3.2863029837608337e-01 + <_> + + 0 -1 1376 -7.5421929359436035e-03 + + 2.0405440032482147e-01 5.0345462560653687e-01 + <_> + + 0 -1 1377 -1.4363110065460205e-02 + + 6.8048888444900513e-01 4.8890590667724609e-01 + <_> + + 0 -1 1378 8.9063588529825211e-04 + + 5.3106957674026489e-01 3.8954809308052063e-01 + <_> + + 0 -1 1379 -4.4060191139578819e-03 + + 5.7415628433227539e-01 4.3724268674850464e-01 + <_> + + 0 -1 1380 -1.8862540309783071e-04 + + 2.8317859768867493e-01 5.0982052087783813e-01 + <_> + + 0 -1 1381 -3.7979281041771173e-03 + + 3.3725079894065857e-01 5.2465802431106567e-01 + <_> + + 0 -1 1382 1.4627049677073956e-04 + + 5.3066742420196533e-01 3.9117100834846497e-01 + <_> + + 0 -1 1383 -4.9164638767251745e-05 + + 5.4624962806701660e-01 3.9427208900451660e-01 + <_> + + 0 -1 1384 -3.3582501113414764e-02 + + 2.1578240394592285e-01 5.0482118129730225e-01 + <_> + + 0 -1 1385 -3.5339309833943844e-03 + + 6.4653122425079346e-01 4.8726969957351685e-01 + <_> + + 0 -1 1386 5.0144111737608910e-03 + + 4.6176680922508240e-01 6.2480747699737549e-01 + <_> + + 0 -1 1387 1.8817370757460594e-02 + + 5.2206891775131226e-01 2.0000520348548889e-01 + <_> + + 0 -1 1388 -1.3434339780360460e-03 + + 4.0145379304885864e-01 5.3016197681427002e-01 + <_> + + 0 -1 1389 1.7557960236445069e-03 + + 4.7940391302108765e-01 5.6531697511672974e-01 + <_> + + 0 -1 1390 -9.5637463033199310e-02 + + 2.0341950654983521e-01 5.0067067146301270e-01 + <_> + + 0 -1 1391 -2.2241229191422462e-02 + + 7.6724731922149658e-01 5.0463402271270752e-01 + <_> + + 0 -1 1392 -1.5575819648802280e-02 + + 7.4903422594070435e-01 4.7558510303497314e-01 + <_> + + 0 -1 1393 5.3599118255078793e-03 + + 5.3653037548065186e-01 4.0046709775924683e-01 + <_> + + 0 -1 1394 -2.1763499826192856e-02 + + 7.4015498161315918e-02 4.9641749262809753e-01 + <_> + + 0 -1 1395 -1.6561590135097504e-01 + + 2.8591030836105347e-01 5.2180862426757812e-01 + <_> + + 0 -1 1396 1.6461320046801120e-04 + + 4.1916158795356750e-01 5.3807932138442993e-01 + <_> + + 0 -1 1397 -8.9077502489089966e-03 + + 6.2731927633285522e-01 4.8774048686027527e-01 + <_> + + 0 -1 1398 8.6346449097618461e-04 + + 5.1599407196044922e-01 3.6710259318351746e-01 + <_> + + 0 -1 1399 -1.3751760125160217e-03 + + 5.8843767642974854e-01 4.5790839195251465e-01 + <_> + + 0 -1 1400 -1.4081239933148026e-03 + + 3.5605099797248840e-01 5.1399451494216919e-01 + <_> + + 0 -1 1401 -3.9342888630926609e-03 + + 5.9942889213562012e-01 4.6642720699310303e-01 + <_> + + 0 -1 1402 -3.1966928392648697e-02 + + 3.3454620838165283e-01 5.1441830396652222e-01 + <_> + + 0 -1 1403 -1.5089280168467667e-05 + + 5.5826562643051147e-01 4.4140571355819702e-01 + <_> + + 0 -1 1404 5.1994470413774252e-04 + + 4.6236801147460938e-01 6.1689937114715576e-01 + <_> + + 0 -1 1405 -3.4220460802316666e-03 + + 6.5570747852325439e-01 4.9748051166534424e-01 + <_> + + 0 -1 1406 1.7723299970384687e-04 + + 5.2695018053054810e-01 3.9019080996513367e-01 + <_> + + 0 -1 1407 1.5716759953647852e-03 + + 4.6333730220794678e-01 5.7904577255249023e-01 + <_> + + 0 -1 1408 -8.9041329920291901e-03 + + 2.6896080374717712e-01 5.0535911321640015e-01 + <_> + + 0 -1 1409 4.0677518700249493e-04 + + 5.4566031694412231e-01 4.3298989534378052e-01 + <_> + + 0 -1 1410 6.7604780197143555e-03 + + 4.6489939093589783e-01 6.6897618770599365e-01 + <_> + + 0 -1 1411 2.9100088868290186e-03 + + 5.3097039461135864e-01 3.3778399229049683e-01 + <_> + + 0 -1 1412 1.3885459629818797e-03 + + 4.0747389197349548e-01 5.3491330146789551e-01 + <_> + + 0 -1 1413 -7.6764263212680817e-02 + + 1.9921760261058807e-01 5.2282422780990601e-01 + <_> + + 0 -1 1414 -2.2688310127705336e-04 + + 5.4385018348693848e-01 4.2530721426010132e-01 + <_> + + 0 -1 1415 -6.3094152137637138e-03 + + 4.2591789364814758e-01 5.3789097070693970e-01 + <_> + + 0 -1 1416 -1.1007279902696609e-01 + + 6.9041568040847778e-01 4.7217491269111633e-01 + <_> + + 0 -1 1417 2.8619659133255482e-04 + + 4.5249149203300476e-01 5.5483061075210571e-01 + <_> + + 0 -1 1418 2.9425329557852820e-05 + + 5.3703737258911133e-01 4.2364639043807983e-01 + <_> + + 0 -1 1419 -2.4886570870876312e-02 + + 6.4235579967498779e-01 4.9693039059638977e-01 + <_> + + 0 -1 1420 3.3148851245641708e-02 + + 4.9884751439094543e-01 1.6138119995594025e-01 + <_> + + 0 -1 1421 7.8491691965609789e-04 + + 5.4160261154174805e-01 4.2230090498924255e-01 + <_> + + 0 -1 1422 4.7087189741432667e-03 + + 4.5763289928436279e-01 6.0275578498840332e-01 + <_> + + 0 -1 1423 2.4144479539245367e-03 + + 5.3089731931686401e-01 4.4224989414215088e-01 + <_> + + 0 -1 1424 1.9523180089890957e-03 + + 4.7056341171264648e-01 6.6633248329162598e-01 + <_> + + 0 -1 1425 1.3031980488449335e-03 + + 4.4061261415481567e-01 5.5269622802734375e-01 + <_> + + 0 -1 1426 4.4735497795045376e-03 + + 5.1290237903594971e-01 3.3014988899230957e-01 + <_> + + 0 -1 1427 -2.6652868837118149e-03 + + 3.1354710459709167e-01 5.1750361919403076e-01 + <_> + + 0 -1 1428 1.3666770246345550e-04 + + 4.1193708777427673e-01 5.3068768978118896e-01 + <_> + + 0 -1 1429 -1.7126450315117836e-02 + + 6.1778062582015991e-01 4.8365789651870728e-01 + <_> + + 0 -1 1430 -2.6601430727168918e-04 + + 3.6543309688568115e-01 5.1697367429733276e-01 + <_> + + 0 -1 1431 -2.2932380437850952e-02 + + 3.4909150004386902e-01 5.1639920473098755e-01 + <_> + + 0 -1 1432 2.3316550068557262e-03 + + 5.1662999391555786e-01 3.7093898653984070e-01 + <_> + + 0 -1 1433 1.6925660893321037e-02 + + 5.0147360563278198e-01 8.0539882183074951e-01 + <_> + + 0 -1 1434 -8.9858826249837875e-03 + + 6.4707887172698975e-01 4.6570208668708801e-01 + <_> + + 0 -1 1435 -1.1874699965119362e-02 + + 3.2463788986206055e-01 5.2587550878524780e-01 + <_> + + 0 -1 1436 1.9350569345988333e-04 + + 5.1919418573379517e-01 3.8396438956260681e-01 + <_> + + 0 -1 1437 5.8713490143418312e-03 + + 4.9181339144706726e-01 6.1870431900024414e-01 + <_> + + 0 -1 1438 -2.4838790297508240e-01 + + 1.8368029594421387e-01 4.9881500005722046e-01 + <_> + + 0 -1 1439 1.2256000190973282e-02 + + 5.2270537614822388e-01 3.6320298910140991e-01 + <_> + + 0 -1 1440 8.3990179700776935e-04 + + 4.4902500510215759e-01 5.7741481065750122e-01 + <_> + + 0 -1 1441 2.5407369248569012e-03 + + 4.8047870397567749e-01 5.8582991361618042e-01 + <_> + + 0 -1 1442 -1.4822429977357388e-02 + + 2.5210499763488770e-01 5.0235372781753540e-01 + <_> + + 0 -1 1443 -5.7973959483206272e-03 + + 5.9966957569122314e-01 4.8537150025367737e-01 + <_> + + 0 -1 1444 7.2662148158997297e-04 + + 5.1537168025970459e-01 3.6717799305915833e-01 + <_> + + 0 -1 1445 -1.7232580110430717e-02 + + 6.6217190027236938e-01 4.9946561455726624e-01 + <_> + + 0 -1 1446 7.8624086454510689e-03 + + 4.6333950757980347e-01 6.2561017274856567e-01 + <_> + + 0 -1 1447 -4.7343620099127293e-03 + + 3.6155730485916138e-01 5.2818852663040161e-01 + <_> + + 0 -1 1448 8.3048478700220585e-04 + + 4.4428890943527222e-01 5.5509579181671143e-01 + <_> + + 0 -1 1449 7.6602199114859104e-03 + + 5.1629352569580078e-01 2.6133549213409424e-01 + <_> + + 0 -1 1450 -4.1048377752304077e-03 + + 2.7896320819854736e-01 5.0190317630767822e-01 + <_> + + 0 -1 1451 4.8512578941881657e-03 + + 4.9689841270446777e-01 5.6616681814193726e-01 + <_> + + 0 -1 1452 9.9896453320980072e-04 + + 4.4456079602241516e-01 5.5518132448196411e-01 + <_> + + 0 -1 1453 -2.7023631334304810e-01 + + 2.9388209804892540e-02 5.1513141393661499e-01 + <_> + + 0 -1 1454 -1.3090680353343487e-02 + + 5.6993997097015381e-01 4.4474598765373230e-01 + <_> + + 0 -1 1455 -9.4342790544033051e-03 + + 4.3054661154747009e-01 5.4878950119018555e-01 + <_> + + 0 -1 1456 -1.5482039889320731e-03 + + 3.6803171038627625e-01 5.1280808448791504e-01 + <_> + + 0 -1 1457 5.3746132180094719e-03 + + 4.8389169573783875e-01 6.1015558242797852e-01 + <_> + + 0 -1 1458 1.5786769799888134e-03 + + 5.3252232074737549e-01 4.1185480356216431e-01 + <_> + + 0 -1 1459 3.6856050137430429e-03 + + 4.8109480738639832e-01 6.2523031234741211e-01 + <_> + + 0 -1 1460 9.3887019902467728e-03 + + 5.2002298831939697e-01 3.6294108629226685e-01 + <_> + + 0 -1 1461 1.2792630121111870e-02 + + 4.9617099761962891e-01 6.7380160093307495e-01 + <_> + + 0 -1 1462 -3.3661040943115950e-03 + + 4.0602791309356689e-01 5.2835988998413086e-01 + <_> + + 0 -1 1463 3.9771420415490866e-04 + + 4.6741139888763428e-01 5.9007751941680908e-01 + <_> + + 0 -1 1464 1.4868030557408929e-03 + + 4.5191168785095215e-01 6.0820537805557251e-01 + <_> + + 0 -1 1465 -8.8686749339103699e-02 + + 2.8078991174697876e-01 5.1809918880462646e-01 + <_> + + 0 -1 1466 -7.4296112870797515e-05 + + 5.2955842018127441e-01 4.0876251459121704e-01 + <_> + + 0 -1 1467 -1.4932939848222304e-05 + + 5.4614001512527466e-01 4.5385429263114929e-01 + <_> + + 0 -1 1468 5.9162238612771034e-03 + + 5.3291612863540649e-01 4.1921341419219971e-01 + <_> + + 0 -1 1469 1.1141640134155750e-03 + + 4.5120179653167725e-01 5.7062172889709473e-01 + <_> + + 0 -1 1470 8.9249362645205110e-05 + + 4.5778059959411621e-01 5.8976382017135620e-01 + <_> + + 0 -1 1471 2.5319510605186224e-03 + + 5.2996039390563965e-01 3.3576390147209167e-01 + <_> + + 0 -1 1472 1.2426200322806835e-02 + + 4.9590590596199036e-01 1.3466019928455353e-01 + <_> + + 0 -1 1473 2.8335750102996826e-02 + + 5.1170790195465088e-01 6.1043637106195092e-04 + <_> + + 0 -1 1474 6.6165882162749767e-03 + + 4.7363498806953430e-01 7.0116281509399414e-01 + <_> + + 0 -1 1475 8.0468766391277313e-03 + + 5.2164179086685181e-01 3.2828199863433838e-01 + <_> + + 0 -1 1476 -1.1193980462849140e-03 + + 5.8098608255386353e-01 4.5637390017509460e-01 + <_> + + 0 -1 1477 1.3277590274810791e-02 + + 5.3983622789382935e-01 4.1039010882377625e-01 + <_> + + 0 -1 1478 4.8794739996083081e-04 + + 4.2492860555648804e-01 5.4105907678604126e-01 + <_> + + 0 -1 1479 1.1243170127272606e-02 + + 5.2699637413024902e-01 3.4382158517837524e-01 + <_> + + 0 -1 1480 -8.9896668214350939e-04 + + 5.6330758333206177e-01 4.4566130638122559e-01 + <_> + + 0 -1 1481 6.6677159629762173e-03 + + 5.3128892183303833e-01 4.3626791238784790e-01 + <_> + + 0 -1 1482 2.8947299346327782e-02 + + 4.7017949819564819e-01 6.5757977962493896e-01 + <_> + + 0 -1 1483 -2.3400049656629562e-02 + + 0. 5.1373988389968872e-01 + <_> + + 0 -1 1484 -8.9117050170898438e-02 + + 2.3745279759168625e-02 4.9424308538436890e-01 + <_> + + 0 -1 1485 -1.4054600149393082e-02 + + 3.1273230910301208e-01 5.1175111532211304e-01 + <_> + + 0 -1 1486 8.1239398568868637e-03 + + 5.0090491771697998e-01 2.5200259685516357e-01 + <_> + + 0 -1 1487 -4.9964650534093380e-03 + + 6.3871437311172485e-01 4.9278119206428528e-01 + <_> + + 0 -1 1488 3.1253970228135586e-03 + + 5.1368498802185059e-01 3.6804521083831787e-01 + <_> + + 0 -1 1489 6.7669642157852650e-03 + + 5.5098438262939453e-01 4.3636319041252136e-01 + <_> + + 0 -1 1490 -2.3711440153419971e-03 + + 6.1623352766036987e-01 4.5869469642639160e-01 + <_> + + 0 -1 1491 -5.3522791713476181e-03 + + 6.1854577064514160e-01 4.9204909801483154e-01 + <_> + + 0 -1 1492 -1.5968859195709229e-02 + + 1.3826179504394531e-01 4.9832528829574585e-01 + <_> + + 0 -1 1493 4.7676060348749161e-03 + + 4.6880578994750977e-01 5.4900461435317993e-01 + <_> + + 0 -1 1494 -2.4714691098779440e-03 + + 2.3685149848461151e-01 5.0039529800415039e-01 + <_> + + 0 -1 1495 -7.1033788844943047e-04 + + 5.8563941717147827e-01 4.7215330600738525e-01 + <_> + + 0 -1 1496 -1.4117559790611267e-01 + + 8.6900062859058380e-02 4.9615910649299622e-01 + <_> + + 0 -1 1497 1.0651809722185135e-01 + + 5.1388370990753174e-01 1.7410050332546234e-01 + <_> + + 0 -1 1498 -5.2744749933481216e-02 + + 7.3536360263824463e-01 4.7728818655014038e-01 + <_> + + 0 -1 1499 -4.7431760467588902e-03 + + 3.8844060897827148e-01 5.2927017211914062e-01 + <_> + + 0 -1 1500 9.9676765967160463e-04 + + 5.2234929800033569e-01 4.0034240484237671e-01 + <_> + + 0 -1 1501 8.0284131690859795e-03 + + 4.9591061472892761e-01 7.2129642963409424e-01 + <_> + + 0 -1 1502 8.6025858763605356e-04 + + 4.4448840618133545e-01 5.5384761095046997e-01 + <_> + + 0 -1 1503 9.3191501218825579e-04 + + 5.3983712196350098e-01 4.1632440686225891e-01 + <_> + + 0 -1 1504 -2.5082060601562262e-03 + + 5.8542650938034058e-01 4.5625001192092896e-01 + <_> + + 0 -1 1505 -2.1378761157393456e-03 + + 4.6080690622329712e-01 5.2802592515945435e-01 + <_> + + 0 -1 1506 -2.1546049974858761e-03 + + 3.7911269068717957e-01 5.2559971809387207e-01 + <_> + + 0 -1 1507 -7.6214009895920753e-03 + + 5.9986090660095215e-01 4.9520739912986755e-01 + <_> + + 0 -1 1508 2.2055360022932291e-03 + + 4.4842061400413513e-01 5.5885308980941772e-01 + <_> + + 0 -1 1509 1.2586950324475765e-03 + + 5.4507470130920410e-01 4.4238409399986267e-01 + <_> + + 0 -1 1510 -5.0926720723509789e-03 + + 4.1182750463485718e-01 5.2630358934402466e-01 + <_> + + 0 -1 1511 -2.5095739401876926e-03 + + 5.7879078388214111e-01 4.9984949827194214e-01 + <_> + + 0 -1 1512 -7.7327556908130646e-02 + + 8.3978658914566040e-01 4.8111200332641602e-01 + <_> + + 0 -1 1513 -4.1485819965600967e-02 + + 2.4086110293865204e-01 5.1769930124282837e-01 + <_> + + 0 -1 1514 1.0355669655837119e-04 + + 4.3553608655929565e-01 5.4170542955398560e-01 + <_> + + 0 -1 1515 1.3255809899419546e-03 + + 5.4539710283279419e-01 4.8940950632095337e-01 + <_> + + 0 -1 1516 -8.0598732456564903e-03 + + 5.7710242271423340e-01 4.5779189467430115e-01 + <_> + + 0 -1 1517 1.9058620557188988e-02 + + 5.1698678731918335e-01 3.4004750847816467e-01 + <_> + + 0 -1 1518 -3.5057891160249710e-02 + + 2.2032439708709717e-01 5.0005030632019043e-01 + <_> + + 0 -1 1519 5.7296059094369411e-03 + + 5.0434082746505737e-01 6.5975707769393921e-01 + <_> + + 0 -1 1520 -1.1648329906165600e-02 + + 2.1862849593162537e-01 4.9966529011726379e-01 + <_> + + 0 -1 1521 1.4544479781761765e-03 + + 5.0076818466186523e-01 5.5037277936935425e-01 + <_> + + 0 -1 1522 -2.5030909455381334e-04 + + 4.1298410296440125e-01 5.2416700124740601e-01 + <_> + + 0 -1 1523 -8.2907272735610604e-04 + + 5.4128682613372803e-01 4.9744960665702820e-01 + <_> + + 0 -1 1524 1.0862209601327777e-03 + + 4.6055299043655396e-01 5.8792287111282349e-01 + <_> + + 0 -1 1525 2.0000500080641359e-04 + + 5.2788549661636353e-01 4.7052091360092163e-01 + <_> + + 0 -1 1526 2.9212920926511288e-03 + + 5.1296097040176392e-01 3.7555369734764099e-01 + <_> + + 0 -1 1527 2.5387400761246681e-02 + + 4.8226919770240784e-01 5.7907682657241821e-01 + <_> + + 0 -1 1528 -3.1968469265848398e-03 + + 5.2483952045440674e-01 3.9628401398658752e-01 + <_> + 182 + 9.0253349304199219e+01 + + <_> + + 0 -1 1529 5.8031738735735416e-03 + + 3.4989839792251587e-01 5.9619832038879395e-01 + <_> + + 0 -1 1530 -9.0003069490194321e-03 + + 6.8166369199752808e-01 4.4785520434379578e-01 + <_> + + 0 -1 1531 -1.1549659539014101e-03 + + 5.5857062339782715e-01 3.5782510042190552e-01 + <_> + + 0 -1 1532 -1.1069850297644734e-03 + + 5.3650361299514771e-01 3.0504280328750610e-01 + <_> + + 0 -1 1533 1.0308309720130637e-04 + + 3.6390951275825500e-01 5.3446358442306519e-01 + <_> + + 0 -1 1534 -5.0984839908778667e-03 + + 2.8591570258140564e-01 5.5042648315429688e-01 + <_> + + 0 -1 1535 8.2572200335562229e-04 + + 5.2365237474441528e-01 3.4760418534278870e-01 + <_> + + 0 -1 1536 9.9783325567841530e-03 + + 4.7503221035003662e-01 6.2196469306945801e-01 + <_> + + 0 -1 1537 -3.7402529269456863e-02 + + 3.3433759212493896e-01 5.2780628204345703e-01 + <_> + + 0 -1 1538 4.8548257909715176e-03 + + 5.1921808719635010e-01 3.7004441022872925e-01 + <_> + + 0 -1 1539 -1.8664470408111811e-03 + + 2.9298439621925354e-01 5.0919449329376221e-01 + <_> + + 0 -1 1540 1.6888890415430069e-02 + + 3.6868458986282349e-01 5.4312258958816528e-01 + <_> + + 0 -1 1541 -5.8372621424496174e-03 + + 3.6321839690208435e-01 5.2213358879089355e-01 + <_> + + 0 -1 1542 -1.4713739510625601e-03 + + 5.8706837892532349e-01 4.7006508708000183e-01 + <_> + + 0 -1 1543 -1.1522950371727347e-03 + + 3.1958949565887451e-01 5.1409542560577393e-01 + <_> + + 0 -1 1544 -4.2560300789773464e-03 + + 6.3018590211868286e-01 4.8149210214614868e-01 + <_> + + 0 -1 1545 -6.7378291860222816e-03 + + 1.9770480692386627e-01 5.0258082151412964e-01 + <_> + + 0 -1 1546 1.1382670141756535e-02 + + 4.9541321396827698e-01 6.8670457601547241e-01 + <_> + + 0 -1 1547 5.1794708706438541e-03 + + 5.1644277572631836e-01 3.3506479859352112e-01 + <_> + + 0 -1 1548 -1.1743789911270142e-01 + + 2.3152460157871246e-01 5.2344137430191040e-01 + <_> + + 0 -1 1549 2.8703449293971062e-02 + + 4.6642971038818359e-01 6.7225211858749390e-01 + <_> + + 0 -1 1550 4.8231030814349651e-03 + + 5.2208751440048218e-01 2.7235329151153564e-01 + <_> + + 0 -1 1551 2.6798530016094446e-03 + + 5.0792771577835083e-01 2.9069489240646362e-01 + <_> + + 0 -1 1552 8.0504082143306732e-03 + + 4.8859509825706482e-01 6.3950210809707642e-01 + <_> + + 0 -1 1553 4.8054959625005722e-03 + + 5.1972568035125732e-01 3.6566638946533203e-01 + <_> + + 0 -1 1554 -2.2420159075409174e-03 + + 6.1534678936004639e-01 4.7637018561363220e-01 + <_> + + 0 -1 1555 -1.3757710345089436e-02 + + 2.6373448967933655e-01 5.0309032201766968e-01 + <_> + + 0 -1 1556 -1.0338299721479416e-01 + + 2.2875219583511353e-01 5.1824611425399780e-01 + <_> + + 0 -1 1557 -9.4432085752487183e-03 + + 6.9533038139343262e-01 4.6949490904808044e-01 + <_> + + 0 -1 1558 8.0271181650459766e-04 + + 5.4506552219390869e-01 4.2687839269638062e-01 + <_> + + 0 -1 1559 -4.1945669800043106e-03 + + 6.0913878679275513e-01 4.5716428756713867e-01 + <_> + + 0 -1 1560 1.0942210443317890e-02 + + 5.2410632371902466e-01 3.2845470309257507e-01 + <_> + + 0 -1 1561 -5.7841069065034389e-04 + + 5.3879290819168091e-01 4.1793689131736755e-01 + <_> + + 0 -1 1562 -2.0888620056211948e-03 + + 4.2926910519599915e-01 5.3017157316207886e-01 + <_> + + 0 -1 1563 3.2383969519287348e-03 + + 3.7923479080200195e-01 5.2207440137863159e-01 + <_> + + 0 -1 1564 4.9075027927756310e-03 + + 5.2372831106185913e-01 4.1267579793930054e-01 + <_> + + 0 -1 1565 -3.2277941703796387e-02 + + 1.9476559758186340e-01 4.9945020675659180e-01 + <_> + + 0 -1 1566 -8.9711230248212814e-03 + + 6.0112851858139038e-01 4.9290320277214050e-01 + <_> + + 0 -1 1567 1.5321089886128902e-02 + + 5.0097537040710449e-01 2.0398220419883728e-01 + <_> + + 0 -1 1568 2.0855569746345282e-03 + + 4.8621898889541626e-01 5.7216948270797729e-01 + <_> + + 0 -1 1569 5.0615021027624607e-03 + + 5.0002187490463257e-01 1.8018059432506561e-01 + <_> + + 0 -1 1570 -3.7174751050770283e-03 + + 5.5301171541213989e-01 4.8975929617881775e-01 + <_> + + 0 -1 1571 -1.2170500122010708e-02 + + 4.1786059737205505e-01 5.3837239742279053e-01 + <_> + + 0 -1 1572 4.6248398721218109e-03 + + 4.9971699714660645e-01 5.7613271474838257e-01 + <_> + + 0 -1 1573 -2.1040429419372231e-04 + + 5.3318071365356445e-01 4.0976810455322266e-01 + <_> + + 0 -1 1574 -1.4641780406236649e-02 + + 5.7559251785278320e-01 5.0517761707305908e-01 + <_> + + 0 -1 1575 3.3199489116668701e-03 + + 4.5769768953323364e-01 6.0318058729171753e-01 + <_> + + 0 -1 1576 3.7236879579722881e-03 + + 4.3803969025611877e-01 5.4158830642700195e-01 + <_> + + 0 -1 1577 8.2951161311939359e-04 + + 5.1630318164825439e-01 3.7022191286087036e-01 + <_> + + 0 -1 1578 -1.1408490128815174e-02 + + 6.0729467868804932e-01 4.8625651001930237e-01 + <_> + + 0 -1 1579 -4.5320121571421623e-03 + + 3.2924759387969971e-01 5.0889629125595093e-01 + <_> + + 0 -1 1580 5.1276017911732197e-03 + + 4.8297679424285889e-01 6.1227089166641235e-01 + <_> + + 0 -1 1581 9.8583158105611801e-03 + + 4.6606799960136414e-01 6.5561771392822266e-01 + <_> + + 0 -1 1582 3.6985918879508972e-02 + + 5.2048492431640625e-01 1.6904720664024353e-01 + <_> + + 0 -1 1583 4.6491161920130253e-03 + + 5.1673221588134766e-01 3.7252250313758850e-01 + <_> + + 0 -1 1584 -4.2664702050387859e-03 + + 6.4064931869506836e-01 4.9873429536819458e-01 + <_> + + 0 -1 1585 -4.7956590424291790e-04 + + 5.8972930908203125e-01 4.4648739695549011e-01 + <_> + + 0 -1 1586 3.6827160511165857e-03 + + 5.4415607452392578e-01 3.4726628661155701e-01 + <_> + + 0 -1 1587 -1.0059880092740059e-02 + + 2.1431629359722137e-01 5.0048297643661499e-01 + <_> + + 0 -1 1588 -3.0361840617842972e-04 + + 5.3864240646362305e-01 4.5903238654136658e-01 + <_> + + 0 -1 1589 -1.4545479789376259e-03 + + 5.7511842250823975e-01 4.4970950484275818e-01 + <_> + + 0 -1 1590 1.6515209572389722e-03 + + 5.4219377040863037e-01 4.2385208606719971e-01 + <_> + + 0 -1 1591 -7.8468639403581619e-03 + + 4.0779209136962891e-01 5.2581572532653809e-01 + <_> + + 0 -1 1592 -5.1259850151836872e-03 + + 4.2292758822441101e-01 5.4794532060623169e-01 + <_> + + 0 -1 1593 -3.6890961229801178e-02 + + 6.5963757038116455e-01 4.6746781468391418e-01 + <_> + + 0 -1 1594 2.4035639944486320e-04 + + 4.2511358857154846e-01 5.5732029676437378e-01 + <_> + + 0 -1 1595 -1.5150169929256663e-05 + + 5.2592468261718750e-01 4.0741148591041565e-01 + <_> + + 0 -1 1596 2.2108471021056175e-03 + + 4.6717229485511780e-01 5.8863520622253418e-01 + <_> + + 0 -1 1597 -1.1568620102480054e-03 + + 5.7110661268234253e-01 4.4871619343757629e-01 + <_> + + 0 -1 1598 4.9996292218565941e-03 + + 5.2641981840133667e-01 2.8983271121978760e-01 + <_> + + 0 -1 1599 -1.4656189596280456e-03 + + 3.8917380571365356e-01 5.1978719234466553e-01 + <_> + + 0 -1 1600 -1.1975039960816503e-03 + + 5.7958728075027466e-01 4.9279558658599854e-01 + <_> + + 0 -1 1601 -4.4954330660402775e-03 + + 2.3776030540466309e-01 5.0125551223754883e-01 + <_> + + 0 -1 1602 1.4997160178609192e-04 + + 4.8766261339187622e-01 5.6176078319549561e-01 + <_> + + 0 -1 1603 2.6391509454697371e-03 + + 5.1680880784988403e-01 3.7655091285705566e-01 + <_> + + 0 -1 1604 -2.9368131072260439e-04 + + 5.4466491937637329e-01 4.8746308684349060e-01 + <_> + + 0 -1 1605 1.4211760135367513e-03 + + 4.6878978610038757e-01 6.6913318634033203e-01 + <_> + + 0 -1 1606 7.9427637159824371e-02 + + 5.1934438943862915e-01 2.7329459786415100e-01 + <_> + + 0 -1 1607 7.9937502741813660e-02 + + 4.9717310070991516e-01 1.7820839583873749e-01 + <_> + + 0 -1 1608 1.1089259758591652e-02 + + 5.1659947633743286e-01 3.2094758749008179e-01 + <_> + + 0 -1 1609 1.6560709627810866e-04 + + 4.0584719181060791e-01 5.3072762489318848e-01 + <_> + + 0 -1 1610 -5.3354292176663876e-03 + + 3.4450569748878479e-01 5.1581299304962158e-01 + <_> + + 0 -1 1611 1.1287260567769408e-03 + + 4.5948630571365356e-01 6.0755330324172974e-01 + <_> + + 0 -1 1612 -2.1969219669699669e-02 + + 1.6804009675979614e-01 5.2285957336425781e-01 + <_> + + 0 -1 1613 -2.1775320055894554e-04 + + 3.8615968823432922e-01 5.2156728506088257e-01 + <_> + + 0 -1 1614 2.0200149447191507e-04 + + 5.5179792642593384e-01 4.3630391359329224e-01 + <_> + + 0 -1 1615 -2.1733149886131287e-02 + + 7.9994601011276245e-01 4.7898510098457336e-01 + <_> + + 0 -1 1616 -8.4399932529777288e-04 + + 4.0859758853912354e-01 5.3747731447219849e-01 + <_> + + 0 -1 1617 -4.3895249837078154e-04 + + 5.4704052209854126e-01 4.3661430478096008e-01 + <_> + + 0 -1 1618 1.5092400135472417e-03 + + 4.9889969825744629e-01 5.8421492576599121e-01 + <_> + + 0 -1 1619 -3.5547839943319559e-03 + + 6.7536902427673340e-01 4.7210058569908142e-01 + <_> + + 0 -1 1620 4.8191400128416717e-04 + + 5.4158538579940796e-01 4.3571090698242188e-01 + <_> + + 0 -1 1621 -6.0264398343861103e-03 + + 2.2585099935531616e-01 4.9918809533119202e-01 + <_> + + 0 -1 1622 -1.1668140068650246e-02 + + 6.2565547227859497e-01 4.9274989962577820e-01 + <_> + + 0 -1 1623 -2.8718370012938976e-03 + + 3.9477849006652832e-01 5.2458018064498901e-01 + <_> + + 0 -1 1624 1.7051169648766518e-02 + + 4.7525110840797424e-01 5.7942241430282593e-01 + <_> + + 0 -1 1625 -1.3352080248296261e-02 + + 6.0411047935485840e-01 4.5445358753204346e-01 + <_> + + 0 -1 1626 -3.9301801007241011e-04 + + 4.2582759261131287e-01 5.5449050664901733e-01 + <_> + + 0 -1 1627 3.0483349692076445e-03 + + 5.2334201335906982e-01 3.7802729010581970e-01 + <_> + + 0 -1 1628 -4.3579288758337498e-03 + + 6.3718891143798828e-01 4.8386740684509277e-01 + <_> + + 0 -1 1629 5.6661018170416355e-03 + + 5.3747057914733887e-01 4.1636660695075989e-01 + <_> + + 0 -1 1630 6.0677339206449687e-05 + + 4.6387958526611328e-01 5.3116250038146973e-01 + <_> + + 0 -1 1631 3.6738160997629166e-02 + + 4.6886560320854187e-01 6.4665240049362183e-01 + <_> + + 0 -1 1632 8.6528137326240540e-03 + + 5.2043187618255615e-01 2.1886579692363739e-01 + <_> + + 0 -1 1633 -1.5371359884738922e-01 + + 1.6303719580173492e-01 4.9588400125503540e-01 + <_> + + 0 -1 1634 -4.1560421232134104e-04 + + 5.7744592428207397e-01 4.6964588761329651e-01 + <_> + + 0 -1 1635 -1.2640169588848948e-03 + + 3.9771759510040283e-01 5.2171981334686279e-01 + <_> + + 0 -1 1636 -3.5473341122269630e-03 + + 6.0465282201766968e-01 4.8083150386810303e-01 + <_> + + 0 -1 1637 3.0019069527043030e-05 + + 3.9967238903045654e-01 5.2282011508941650e-01 + <_> + + 0 -1 1638 1.3113019522279501e-03 + + 4.7121581435203552e-01 5.7659977674484253e-01 + <_> + + 0 -1 1639 -1.3374709524214268e-03 + + 4.1095849871635437e-01 5.2531701326370239e-01 + <_> + + 0 -1 1640 2.0876709371805191e-02 + + 5.2029937505722046e-01 1.7579819262027740e-01 + <_> + + 0 -1 1641 -7.5497948564589024e-03 + + 6.5666097402572632e-01 4.6949750185012817e-01 + <_> + + 0 -1 1642 2.4188550189137459e-02 + + 5.1286739110946655e-01 3.3702209591865540e-01 + <_> + + 0 -1 1643 -2.9358828905969858e-03 + + 6.5807867050170898e-01 4.6945410966873169e-01 + <_> + + 0 -1 1644 5.7557929307222366e-02 + + 5.1464450359344482e-01 2.7752599120140076e-01 + <_> + + 0 -1 1645 -1.1343370424583554e-03 + + 3.8366019725799561e-01 5.1926672458648682e-01 + <_> + + 0 -1 1646 1.6816999763250351e-02 + + 5.0855928659439087e-01 6.1772608757019043e-01 + <_> + + 0 -1 1647 5.0535178743302822e-03 + + 5.1387631893157959e-01 3.6847919225692749e-01 + <_> + + 0 -1 1648 -4.5874710194766521e-03 + + 5.9896552562713623e-01 4.8352020978927612e-01 + <_> + + 0 -1 1649 1.6882460331544280e-03 + + 4.5094868540763855e-01 5.7230567932128906e-01 + <_> + + 0 -1 1650 -1.6554000321775675e-03 + + 3.4967708587646484e-01 5.2433192729949951e-01 + <_> + + 0 -1 1651 -1.9373800605535507e-02 + + 1.1205369979143143e-01 4.9687129259109497e-01 + <_> + + 0 -1 1652 1.0374450124800205e-02 + + 5.1481968164443970e-01 4.3952131271362305e-01 + <_> + + 0 -1 1653 1.4973050565458834e-04 + + 4.0849998593330383e-01 5.2698868513107300e-01 + <_> + + 0 -1 1654 -4.2981930077075958e-02 + + 6.3941049575805664e-01 5.0185042619705200e-01 + <_> + + 0 -1 1655 8.3065936341881752e-03 + + 4.7075539827346802e-01 6.6983532905578613e-01 + <_> + + 0 -1 1656 -4.1285790503025055e-03 + + 4.5413690805435181e-01 5.3236472606658936e-01 + <_> + + 0 -1 1657 1.7399420030415058e-03 + + 4.3339619040489197e-01 5.4398661851882935e-01 + <_> + + 0 -1 1658 1.1739750334527344e-04 + + 4.5796871185302734e-01 5.5434262752532959e-01 + <_> + + 0 -1 1659 1.8585780344437808e-04 + + 4.3246439099311829e-01 5.4267549514770508e-01 + <_> + + 0 -1 1660 5.5587692186236382e-03 + + 5.2572208642959595e-01 3.5506111383438110e-01 + <_> + + 0 -1 1661 -7.9851560294628143e-03 + + 6.0430181026458740e-01 4.6306359767913818e-01 + <_> + + 0 -1 1662 6.0594122624024749e-04 + + 4.5982548594474792e-01 5.5331951379776001e-01 + <_> + + 0 -1 1663 -2.2983040253166109e-04 + + 4.1307520866394043e-01 5.3224611282348633e-01 + <_> + + 0 -1 1664 4.3740210821852088e-04 + + 4.0430399775505066e-01 5.4092890024185181e-01 + <_> + + 0 -1 1665 2.9482020181603730e-04 + + 4.4949638843536377e-01 5.6288522481918335e-01 + <_> + + 0 -1 1666 1.0312659665942192e-02 + + 5.1775109767913818e-01 2.7043169736862183e-01 + <_> + + 0 -1 1667 -7.7241109684109688e-03 + + 1.9880190491676331e-01 4.9805539846420288e-01 + <_> + + 0 -1 1668 -4.6797208487987518e-03 + + 6.6447502374649048e-01 5.0182962417602539e-01 + <_> + + 0 -1 1669 -5.0755459815263748e-03 + + 3.8983049988746643e-01 5.1852691173553467e-01 + <_> + + 0 -1 1670 2.2479740437120199e-03 + + 4.8018088936805725e-01 5.6603360176086426e-01 + <_> + + 0 -1 1671 8.3327008178457618e-04 + + 5.2109199762344360e-01 3.9571881294250488e-01 + <_> + + 0 -1 1672 -4.1279330849647522e-02 + + 6.1545419692993164e-01 5.0070542097091675e-01 + <_> + + 0 -1 1673 -5.0930189900100231e-04 + + 3.9759421348571777e-01 5.2284038066864014e-01 + <_> + + 0 -1 1674 1.2568780221045017e-03 + + 4.9791380763053894e-01 5.9391832351684570e-01 + <_> + + 0 -1 1675 8.0048497766256332e-03 + + 4.9844971299171448e-01 1.6333660483360291e-01 + <_> + + 0 -1 1676 -1.1879300000146031e-03 + + 5.9049648046493530e-01 4.9426248669624329e-01 + <_> + + 0 -1 1677 6.1948952497914433e-04 + + 4.1995579004287720e-01 5.3287261724472046e-01 + <_> + + 0 -1 1678 6.6829859279096127e-03 + + 5.4186028242111206e-01 4.9058890342712402e-01 + <_> + + 0 -1 1679 -3.7062340416014194e-03 + + 3.7259390950202942e-01 5.1380002498626709e-01 + <_> + + 0 -1 1680 -3.9739411324262619e-02 + + 6.4789611101150513e-01 5.0503468513488770e-01 + <_> + + 0 -1 1681 1.4085009461268783e-03 + + 4.6823391318321228e-01 6.3778841495513916e-01 + <_> + + 0 -1 1682 3.9322688826359808e-04 + + 5.4585301876068115e-01 4.1504821181297302e-01 + <_> + + 0 -1 1683 -1.8979819724336267e-03 + + 3.6901599168777466e-01 5.1497042179107666e-01 + <_> + + 0 -1 1684 -1.3970440253615379e-02 + + 6.0505628585815430e-01 4.8113578557968140e-01 + <_> + + 0 -1 1685 -1.0100819915533066e-01 + + 2.0170800387859344e-01 4.9923619627952576e-01 + <_> + + 0 -1 1686 -1.7346920445561409e-02 + + 5.7131487131118774e-01 4.8994860053062439e-01 + <_> + + 0 -1 1687 1.5619759506080300e-04 + + 4.2153888940811157e-01 5.3926420211791992e-01 + <_> + + 0 -1 1688 1.3438929617404938e-01 + + 5.1361519098281860e-01 3.7676128745079041e-01 + <_> + + 0 -1 1689 -2.4582240730524063e-02 + + 7.0273578166961670e-01 4.7479069232940674e-01 + <_> + + 0 -1 1690 -3.8553720805794001e-03 + + 4.3174090981483459e-01 5.4277169704437256e-01 + <_> + + 0 -1 1691 -2.3165249731391668e-03 + + 5.9426987171173096e-01 4.6186479926109314e-01 + <_> + + 0 -1 1692 -4.8518120311200619e-03 + + 6.1915689706802368e-01 4.8848950862884521e-01 + <_> + + 0 -1 1693 2.4699938949197531e-03 + + 5.2566647529602051e-01 4.0171998739242554e-01 + <_> + + 0 -1 1694 4.5496959239244461e-02 + + 5.2378678321838379e-01 2.6857739686965942e-01 + <_> + + 0 -1 1695 -2.0319599658250809e-02 + + 2.1304459869861603e-01 4.9797388911247253e-01 + <_> + + 0 -1 1696 2.6994998916052282e-04 + + 4.8140418529510498e-01 5.5431222915649414e-01 + <_> + + 0 -1 1697 -1.8232699949294329e-03 + + 6.4825797080993652e-01 4.7099891304969788e-01 + <_> + + 0 -1 1698 -6.3015790656208992e-03 + + 4.5819279551506042e-01 5.3062361478805542e-01 + <_> + + 0 -1 1699 -2.4139499873854220e-04 + + 5.2320867776870728e-01 4.0517631173133850e-01 + <_> + + 0 -1 1700 -1.0330369696021080e-03 + + 5.5562019348144531e-01 4.7891938686370850e-01 + <_> + + 0 -1 1701 1.8041160365100950e-04 + + 5.2294427156448364e-01 4.0118101239204407e-01 + <_> + + 0 -1 1702 -6.1407860368490219e-02 + + 6.2986820936203003e-01 5.0107032060623169e-01 + <_> + + 0 -1 1703 -6.9543913006782532e-02 + + 7.2282809019088745e-01 4.7731840610504150e-01 + <_> + + 0 -1 1704 -7.0542663335800171e-02 + + 2.2695130109786987e-01 5.1825290918350220e-01 + <_> + + 0 -1 1705 2.4423799477517605e-03 + + 5.2370971441268921e-01 4.0981510281562805e-01 + <_> + + 0 -1 1706 1.5494349645450711e-03 + + 4.7737509012222290e-01 5.4680430889129639e-01 + <_> + + 0 -1 1707 -2.3914219811558723e-02 + + 7.1469759941101074e-01 4.7838249802589417e-01 + <_> + + 0 -1 1708 -1.2453690171241760e-02 + + 2.6352968811988831e-01 5.2411228418350220e-01 + <_> + + 0 -1 1709 -2.0760179904755205e-04 + + 3.6237570643424988e-01 5.1136088371276855e-01 + <_> + + 0 -1 1710 2.9781080229440704e-05 + + 4.7059321403503418e-01 5.4328018426895142e-01 + <_> + 211 + 1.0474919891357422e+02 + + <_> + + 0 -1 1711 1.1772749945521355e-02 + + 3.8605189323425293e-01 6.4211672544479370e-01 + <_> + + 0 -1 1712 2.7037570253014565e-02 + + 4.3856549263000488e-01 6.7540389299392700e-01 + <_> + + 0 -1 1713 -3.6419500247575343e-05 + + 5.4871010780334473e-01 3.4233158826828003e-01 + <_> + + 0 -1 1714 1.9995409529656172e-03 + + 3.2305321097373962e-01 5.4003179073333740e-01 + <_> + + 0 -1 1715 4.5278300531208515e-03 + + 5.0916397571563721e-01 2.9350438714027405e-01 + <_> + + 0 -1 1716 4.7890920541249216e-04 + + 4.1781538724899292e-01 5.3440642356872559e-01 + <_> + + 0 -1 1717 1.1720920447260141e-03 + + 2.8991821408271790e-01 5.1320707798004150e-01 + <_> + + 0 -1 1718 9.5305702416226268e-04 + + 4.2801249027252197e-01 5.5608451366424561e-01 + <_> + + 0 -1 1719 1.5099150004971307e-05 + + 4.0448719263076782e-01 5.4047602415084839e-01 + <_> + + 0 -1 1720 -6.0817901976406574e-04 + + 4.2717689275741577e-01 5.5034661293029785e-01 + <_> + + 0 -1 1721 3.3224520739167929e-03 + + 3.9627239108085632e-01 5.3697347640991211e-01 + <_> + + 0 -1 1722 -1.1037490330636501e-03 + + 4.7271779179573059e-01 5.2377498149871826e-01 + <_> + + 0 -1 1723 -1.4350269921123981e-03 + + 5.6030082702636719e-01 4.2235091328620911e-01 + <_> + + 0 -1 1724 2.0767399109899998e-03 + + 5.2259171009063721e-01 4.7327259182929993e-01 + <_> + + 0 -1 1725 -1.6412809782195836e-04 + + 3.9990758895874023e-01 5.4327398538589478e-01 + <_> + + 0 -1 1726 8.8302437216043472e-03 + + 4.6783858537673950e-01 6.0273271799087524e-01 + <_> + + 0 -1 1727 -1.0552070103585720e-02 + + 3.4939670562744141e-01 5.2139747142791748e-01 + <_> + + 0 -1 1728 -2.2731600329279900e-03 + + 6.1858189105987549e-01 4.7490629553794861e-01 + <_> + + 0 -1 1729 -8.4786332445219159e-04 + + 5.2853411436080933e-01 3.8434821367263794e-01 + <_> + + 0 -1 1730 1.2081359745934606e-03 + + 5.3606408834457397e-01 3.4473359584808350e-01 + <_> + + 0 -1 1731 2.6512730401009321e-03 + + 4.5582920312881470e-01 6.1939620971679688e-01 + <_> + + 0 -1 1732 -1.1012479662895203e-03 + + 3.6802300810813904e-01 5.3276282548904419e-01 + <_> + + 0 -1 1733 4.9561518244445324e-04 + + 3.9605951309204102e-01 5.2749407291412354e-01 + <_> + + 0 -1 1734 -4.3901771306991577e-02 + + 7.0204448699951172e-01 4.9928390979766846e-01 + <_> + + 0 -1 1735 3.4690350294113159e-02 + + 5.0491642951965332e-01 2.7666029334068298e-01 + <_> + + 0 -1 1736 -2.7442190330475569e-03 + + 2.6726329326629639e-01 5.2749711275100708e-01 + <_> + + 0 -1 1737 3.3316588960587978e-03 + + 4.5794829726219177e-01 6.0011017322540283e-01 + <_> + + 0 -1 1738 -2.0044570788741112e-02 + + 3.1715941429138184e-01 5.2357178926467896e-01 + <_> + + 0 -1 1739 1.3492030557245016e-03 + + 5.2653628587722778e-01 4.0343248844146729e-01 + <_> + + 0 -1 1740 2.9702018946409225e-03 + + 5.3324568271636963e-01 4.5719841122627258e-01 + <_> + + 0 -1 1741 6.3039981760084629e-03 + + 4.5933109521865845e-01 6.0346359014511108e-01 + <_> + + 0 -1 1742 -1.2936590239405632e-02 + + 4.4379639625549316e-01 5.3729712963104248e-01 + <_> + + 0 -1 1743 4.0148729458451271e-03 + + 4.6803238987922668e-01 6.4378339052200317e-01 + <_> + + 0 -1 1744 -2.6401679497212172e-03 + + 3.7096318602561951e-01 5.3143328428268433e-01 + <_> + + 0 -1 1745 1.3918439857661724e-02 + + 4.7235551476478577e-01 7.1308088302612305e-01 + <_> + + 0 -1 1746 -4.5087869511917233e-04 + + 4.4923940300941467e-01 5.3704041242599487e-01 + <_> + + 0 -1 1747 2.5384349282830954e-04 + + 4.4068640470504761e-01 5.5144029855728149e-01 + <_> + + 0 -1 1748 2.2710000630468130e-03 + + 4.6824169158935547e-01 5.9679841995239258e-01 + <_> + + 0 -1 1749 2.4120779708027840e-03 + + 5.0793921947479248e-01 3.0185988545417786e-01 + <_> + + 0 -1 1750 -3.6025670851813629e-05 + + 5.6010371446609497e-01 4.4710969924926758e-01 + <_> + + 0 -1 1751 -7.4905529618263245e-03 + + 2.2075350582599640e-01 4.9899441003799438e-01 + <_> + + 0 -1 1752 -1.7513120546936989e-02 + + 6.5312159061431885e-01 5.0176489353179932e-01 + <_> + + 0 -1 1753 1.4281630516052246e-01 + + 4.9679630994796753e-01 1.4820620417594910e-01 + <_> + + 0 -1 1754 5.5345268920063972e-03 + + 4.8989468812942505e-01 5.9542238712310791e-01 + <_> + + 0 -1 1755 -9.6323591424152255e-04 + + 3.9271169900894165e-01 5.1960742473602295e-01 + <_> + + 0 -1 1756 -2.0370010752230883e-03 + + 5.6133252382278442e-01 4.8848581314086914e-01 + <_> + + 0 -1 1757 1.6614829655736685e-03 + + 4.4728800654411316e-01 5.5788809061050415e-01 + <_> + + 0 -1 1758 -3.1188090797513723e-03 + + 3.8405328989028931e-01 5.3974777460098267e-01 + <_> + + 0 -1 1759 -6.4000617712736130e-03 + + 5.8439838886260986e-01 4.5332181453704834e-01 + <_> + + 0 -1 1760 3.1319601112045348e-04 + + 5.4392218589782715e-01 4.2347279191017151e-01 + <_> + + 0 -1 1761 -1.8222099170088768e-02 + + 1.2884649634361267e-01 4.9584048986434937e-01 + <_> + + 0 -1 1762 8.7969247251749039e-03 + + 4.9512979388237000e-01 7.1534800529479980e-01 + <_> + + 0 -1 1763 -4.2395070195198059e-03 + + 3.9465999603271484e-01 5.1949369907379150e-01 + <_> + + 0 -1 1764 9.7086271271109581e-03 + + 4.8975038528442383e-01 6.0649001598358154e-01 + <_> + + 0 -1 1765 -3.9934171363711357e-03 + + 3.2454401254653931e-01 5.0608289241790771e-01 + <_> + + 0 -1 1766 -1.6785059124231339e-02 + + 1.5819530189037323e-01 5.2037787437438965e-01 + <_> + + 0 -1 1767 1.8272090703248978e-02 + + 4.6809351444244385e-01 6.6269791126251221e-01 + <_> + + 0 -1 1768 5.6872838176786900e-03 + + 5.2116978168487549e-01 3.5121849179267883e-01 + <_> + + 0 -1 1769 -1.0739039862528443e-03 + + 5.7683861255645752e-01 4.5298451185226440e-01 + <_> + + 0 -1 1770 -3.7093870341777802e-03 + + 4.5077630877494812e-01 5.3135812282562256e-01 + <_> + + 0 -1 1771 -2.1110709349159151e-04 + + 5.4608201980590820e-01 4.3333768844604492e-01 + <_> + + 0 -1 1772 1.0670139454305172e-03 + + 5.3718560934066772e-01 4.0783908963203430e-01 + <_> + + 0 -1 1773 3.5943021066486835e-03 + + 4.4712871313095093e-01 5.6438362598419189e-01 + <_> + + 0 -1 1774 -5.1776031032204628e-03 + + 4.4993931055068970e-01 5.2803301811218262e-01 + <_> + + 0 -1 1775 -2.5414369883947074e-04 + + 5.5161732435226440e-01 4.4077080488204956e-01 + <_> + + 0 -1 1776 6.3522560521960258e-03 + + 5.1941901445388794e-01 2.4652279913425446e-01 + <_> + + 0 -1 1777 -4.4205080484971404e-04 + + 3.8307058811187744e-01 5.1396822929382324e-01 + <_> + + 0 -1 1778 7.4488727841526270e-04 + + 4.8910909891128540e-01 5.9747868776321411e-01 + <_> + + 0 -1 1779 -3.5116379149258137e-03 + + 7.4136817455291748e-01 4.7687649726867676e-01 + <_> + + 0 -1 1780 -1.2540910392999649e-02 + + 3.6488190293312073e-01 5.2528268098831177e-01 + <_> + + 0 -1 1781 9.4931852072477341e-03 + + 5.1004928350448608e-01 3.6295869946479797e-01 + <_> + + 0 -1 1782 1.2961150147020817e-02 + + 5.2324420213699341e-01 4.3335610628128052e-01 + <_> + + 0 -1 1783 4.7209449112415314e-03 + + 4.6481490135192871e-01 6.3310527801513672e-01 + <_> + + 0 -1 1784 -2.3119079414755106e-03 + + 5.9303098917007446e-01 4.5310580730438232e-01 + <_> + + 0 -1 1785 -2.8262299019843340e-03 + + 3.8704779744148254e-01 5.2571010589599609e-01 + <_> + + 0 -1 1786 -1.4311339473351836e-03 + + 5.5225032567977905e-01 4.5618548989295959e-01 + <_> + + 0 -1 1787 1.9378310535103083e-03 + + 4.5462208986282349e-01 5.7369667291641235e-01 + <_> + + 0 -1 1788 2.6343559147790074e-04 + + 5.3457391262054443e-01 4.5718750357627869e-01 + <_> + + 0 -1 1789 7.8257522545754910e-04 + + 3.9678159356117249e-01 5.2201879024505615e-01 + <_> + + 0 -1 1790 -1.9550440832972527e-02 + + 2.8296428918838501e-01 5.2435082197189331e-01 + <_> + + 0 -1 1791 4.3914958951063454e-04 + + 4.5900669693946838e-01 5.8990901708602905e-01 + <_> + + 0 -1 1792 2.1452000364661217e-02 + + 5.2314108610153198e-01 2.8553789854049683e-01 + <_> + + 0 -1 1793 5.8973580598831177e-04 + + 4.3972569704055786e-01 5.5064219236373901e-01 + <_> + + 0 -1 1794 -2.6157610118389130e-02 + + 3.1350791454315186e-01 5.1891750097274780e-01 + <_> + + 0 -1 1795 -1.3959860429167747e-02 + + 3.2132729887962341e-01 5.0407177209854126e-01 + <_> + + 0 -1 1796 -6.3699018210172653e-03 + + 6.3875448703765869e-01 4.8495069146156311e-01 + <_> + + 0 -1 1797 -8.5613820701837540e-03 + + 2.7591320872306824e-01 5.0320190191268921e-01 + <_> + + 0 -1 1798 9.6622901037335396e-04 + + 4.6856409311294556e-01 5.8348792791366577e-01 + <_> + + 0 -1 1799 7.6550268568098545e-04 + + 5.1752072572708130e-01 3.8964220881462097e-01 + <_> + + 0 -1 1800 -8.1833340227603912e-03 + + 2.0691369473934174e-01 5.2081221342086792e-01 + <_> + + 0 -1 1801 -9.3976939097046852e-03 + + 6.1340910196304321e-01 4.6412229537963867e-01 + <_> + + 0 -1 1802 4.8028980381786823e-03 + + 5.4541081190109253e-01 4.3952199816703796e-01 + <_> + + 0 -1 1803 -3.5680569708347321e-03 + + 6.3444852828979492e-01 4.6810939908027649e-01 + <_> + + 0 -1 1804 4.0733120404183865e-03 + + 5.2926832437515259e-01 4.0156200528144836e-01 + <_> + + 0 -1 1805 1.2568129459396005e-03 + + 4.3929880857467651e-01 5.4528248310089111e-01 + <_> + + 0 -1 1806 -2.9065010603517294e-03 + + 5.8988320827484131e-01 4.8633798956871033e-01 + <_> + + 0 -1 1807 -2.4409340694546700e-03 + + 4.0693649649620056e-01 5.2474218606948853e-01 + <_> + + 0 -1 1808 2.4830700829625130e-02 + + 5.1827257871627808e-01 3.6825248599052429e-01 + <_> + + 0 -1 1809 -4.8854008316993713e-02 + + 1.3075779378414154e-01 4.9612811207771301e-01 + <_> + + 0 -1 1810 -1.6110379947349429e-03 + + 6.4210057258605957e-01 4.8726621270179749e-01 + <_> + + 0 -1 1811 -9.7009479999542236e-02 + + 4.7769349068403244e-02 4.9509888887405396e-01 + <_> + + 0 -1 1812 1.1209240183234215e-03 + + 4.6162670850753784e-01 5.3547459840774536e-01 + <_> + + 0 -1 1813 -1.3064090162515640e-03 + + 6.2618541717529297e-01 4.6388059854507446e-01 + <_> + + 0 -1 1814 4.5771620352752507e-04 + + 5.3844177722930908e-01 4.6466401219367981e-01 + <_> + + 0 -1 1815 -6.3149951165542006e-04 + + 3.8040471076965332e-01 5.1302570104598999e-01 + <_> + + 0 -1 1816 1.4505970466416329e-04 + + 4.5543101429939270e-01 5.6644618511199951e-01 + <_> + + 0 -1 1817 -1.6474550589919090e-02 + + 6.5969580411911011e-01 4.7158598899841309e-01 + <_> + + 0 -1 1818 1.3369579799473286e-02 + + 5.1954662799835205e-01 3.0359649658203125e-01 + <_> + + 0 -1 1819 1.0271780047332868e-04 + + 5.2291762828826904e-01 4.1070660948753357e-01 + <_> + + 0 -1 1820 -5.5311559699475765e-03 + + 6.3528877496719360e-01 4.9609071016311646e-01 + <_> + + 0 -1 1821 -2.6187049224972725e-03 + + 3.8245460391044617e-01 5.1409840583801270e-01 + <_> + + 0 -1 1822 5.0834268331527710e-03 + + 4.9504399299621582e-01 6.2208187580108643e-01 + <_> + + 0 -1 1823 7.9818159341812134e-02 + + 4.9523359537124634e-01 1.3224759697914124e-01 + <_> + + 0 -1 1824 -9.9226586520671844e-02 + + 7.5427287817001343e-01 5.0084167718887329e-01 + <_> + + 0 -1 1825 -6.5174017800018191e-04 + + 3.6993029713630676e-01 5.1301211118698120e-01 + <_> + + 0 -1 1826 -1.8996849656105042e-02 + + 6.6891789436340332e-01 4.9212029576301575e-01 + <_> + + 0 -1 1827 1.7346899956464767e-02 + + 4.9833008646965027e-01 1.8591980636119843e-01 + <_> + + 0 -1 1828 5.5082101607695222e-04 + + 4.5744240283966064e-01 5.5221217870712280e-01 + <_> + + 0 -1 1829 2.0056050270795822e-03 + + 5.1317447423934937e-01 3.8564699888229370e-01 + <_> + + 0 -1 1830 -7.7688191086053848e-03 + + 4.3617001175880432e-01 5.4343092441558838e-01 + <_> + + 0 -1 1831 5.0878278911113739e-02 + + 4.6827208995819092e-01 6.8406397104263306e-01 + <_> + + 0 -1 1832 -2.2901780903339386e-03 + + 4.3292450904846191e-01 5.3060990571975708e-01 + <_> + + 0 -1 1833 -1.5715380141045898e-04 + + 5.3700572252273560e-01 4.3781641125679016e-01 + <_> + + 0 -1 1834 1.0519240051507950e-01 + + 5.1372742652893066e-01 6.7361466586589813e-02 + <_> + + 0 -1 1835 2.7198919560760260e-03 + + 4.1120609641075134e-01 5.2556651830673218e-01 + <_> + + 0 -1 1836 4.8337779939174652e-02 + + 5.4046237468719482e-01 4.4389671087265015e-01 + <_> + + 0 -1 1837 9.5703761326149106e-04 + + 4.3559691309928894e-01 5.3995108604431152e-01 + <_> + + 0 -1 1838 -2.5371259078383446e-02 + + 5.9951752424240112e-01 5.0310248136520386e-01 + <_> + + 0 -1 1839 5.2457951009273529e-02 + + 4.9502879381179810e-01 1.3983510434627533e-01 + <_> + + 0 -1 1840 -1.2365629896521568e-02 + + 6.3972991704940796e-01 4.9641060829162598e-01 + <_> + + 0 -1 1841 -1.4589719474315643e-01 + + 1.0016699880361557e-01 4.9463221430778503e-01 + <_> + + 0 -1 1842 -1.5908600762486458e-02 + + 3.3123299479484558e-01 5.2083408832550049e-01 + <_> + + 0 -1 1843 3.9486068999394774e-04 + + 4.4063639640808105e-01 5.4261028766632080e-01 + <_> + + 0 -1 1844 -5.2454001270234585e-03 + + 2.7995899319648743e-01 5.1899671554565430e-01 + <_> + + 0 -1 1845 -5.0421799533069134e-03 + + 6.9875800609588623e-01 4.7521421313285828e-01 + <_> + + 0 -1 1846 2.9812189750373363e-03 + + 4.9832889437675476e-01 6.3074797391891479e-01 + <_> + + 0 -1 1847 -7.2884308174252510e-03 + + 2.9823330044746399e-01 5.0268697738647461e-01 + <_> + + 0 -1 1848 1.5094350092113018e-03 + + 5.3084421157836914e-01 3.8329708576202393e-01 + <_> + + 0 -1 1849 -9.3340799212455750e-03 + + 2.0379640161991119e-01 4.9698171019554138e-01 + <_> + + 0 -1 1850 2.8667140752077103e-02 + + 5.0256967544555664e-01 6.9280272722244263e-01 + <_> + + 0 -1 1851 1.7019680142402649e-01 + + 4.9600529670715332e-01 1.4764429628849030e-01 + <_> + + 0 -1 1852 -3.2614478841423988e-03 + + 5.6030637025833130e-01 4.8260560631752014e-01 + <_> + + 0 -1 1853 5.5769277969375253e-04 + + 5.2055621147155762e-01 4.1296330094337463e-01 + <_> + + 0 -1 1854 3.6258339881896973e-01 + + 5.2216529846191406e-01 3.7686121463775635e-01 + <_> + + 0 -1 1855 -1.1615130119025707e-02 + + 6.0226827859878540e-01 4.6374899148941040e-01 + <_> + + 0 -1 1856 -4.0795197710394859e-03 + + 4.0704470872879028e-01 5.3374791145324707e-01 + <_> + + 0 -1 1857 5.7204300537705421e-04 + + 4.6018350124359131e-01 5.9003931283950806e-01 + <_> + + 0 -1 1858 6.7543348995968699e-04 + + 5.3982520103454590e-01 4.3454289436340332e-01 + <_> + + 0 -1 1859 6.3295697327703238e-04 + + 5.2015632390975952e-01 4.0513589978218079e-01 + <_> + + 0 -1 1860 1.2435320531949401e-03 + + 4.6423879265785217e-01 5.5474412441253662e-01 + <_> + + 0 -1 1861 -4.7363857738673687e-03 + + 6.1985671520233154e-01 4.6725520491600037e-01 + <_> + + 0 -1 1862 -6.4658462069928646e-03 + + 6.8373328447341919e-01 5.0190007686614990e-01 + <_> + + 0 -1 1863 3.5017321351915598e-04 + + 4.3448030948638916e-01 5.3636229038238525e-01 + <_> + + 0 -1 1864 1.5754920605104417e-04 + + 4.7600790858268738e-01 5.7320207357406616e-01 + <_> + + 0 -1 1865 9.9774366244673729e-03 + + 5.0909858942031860e-01 3.6350399255752563e-01 + <_> + + 0 -1 1866 -4.1464529931545258e-04 + + 5.5700647830963135e-01 4.5938020944595337e-01 + <_> + + 0 -1 1867 -3.5888899583369493e-04 + + 5.3568458557128906e-01 4.3391349911689758e-01 + <_> + + 0 -1 1868 4.0463250479660928e-04 + + 4.4398030638694763e-01 5.4367768764495850e-01 + <_> + + 0 -1 1869 -8.2184787606820464e-04 + + 4.0422949194908142e-01 5.1762992143630981e-01 + <_> + + 0 -1 1870 5.9467419050633907e-03 + + 4.9276518821716309e-01 5.6337797641754150e-01 + <_> + + 0 -1 1871 -2.1753389388322830e-02 + + 8.0062937736511230e-01 4.8008409142494202e-01 + <_> + + 0 -1 1872 -1.4540379866957664e-02 + + 3.9460548758506775e-01 5.1822227239608765e-01 + <_> + + 0 -1 1873 -4.0510769933462143e-02 + + 2.1324990317225456e-02 4.9357929825782776e-01 + <_> + + 0 -1 1874 -5.8458268176764250e-04 + + 4.0127959847450256e-01 5.3140252828598022e-01 + <_> + + 0 -1 1875 5.5151800625026226e-03 + + 4.6424189209938049e-01 5.8962607383728027e-01 + <_> + + 0 -1 1876 -6.0626221820712090e-03 + + 6.5021592378616333e-01 5.0164777040481567e-01 + <_> + + 0 -1 1877 9.4535842537879944e-02 + + 5.2647089958190918e-01 4.1268271207809448e-01 + <_> + + 0 -1 1878 4.7315051779150963e-03 + + 4.8791998624801636e-01 5.8924478292465210e-01 + <_> + + 0 -1 1879 -5.2571471314877272e-04 + + 3.9172801375389099e-01 5.1894128322601318e-01 + <_> + + 0 -1 1880 -2.5464049540460110e-03 + + 5.8375990390777588e-01 4.9857059121131897e-01 + <_> + + 0 -1 1881 -2.6075689122080803e-02 + + 1.2619839608669281e-01 4.9558219313621521e-01 + <_> + + 0 -1 1882 -5.4779709316790104e-03 + + 5.7225137948989868e-01 5.0102657079696655e-01 + <_> + + 0 -1 1883 5.1337741315364838e-03 + + 5.2732622623443604e-01 4.2263761162757874e-01 + <_> + + 0 -1 1884 4.7944980906322598e-04 + + 4.4500669836997986e-01 5.8195871114730835e-01 + <_> + + 0 -1 1885 -2.1114079281687737e-03 + + 5.7576531171798706e-01 4.5117148756980896e-01 + <_> + + 0 -1 1886 -1.3179990462958813e-02 + + 1.8843810260295868e-01 5.1607340574264526e-01 + <_> + + 0 -1 1887 -4.7968099825084209e-03 + + 6.5897899866104126e-01 4.7361189126968384e-01 + <_> + + 0 -1 1888 6.7483168095350266e-03 + + 5.2594298124313354e-01 3.3563950657844543e-01 + <_> + + 0 -1 1889 1.4623369788751006e-03 + + 5.3552711009979248e-01 4.2640921473503113e-01 + <_> + + 0 -1 1890 4.7645159065723419e-03 + + 5.0344067811965942e-01 5.7868278026580811e-01 + <_> + + 0 -1 1891 6.8066660314798355e-03 + + 4.7566050291061401e-01 6.6778290271759033e-01 + <_> + + 0 -1 1892 3.6608621012419462e-03 + + 5.3696119785308838e-01 4.3115469813346863e-01 + <_> + + 0 -1 1893 2.1449640393257141e-02 + + 4.9686419963836670e-01 1.8888160586357117e-01 + <_> + + 0 -1 1894 4.1678901761770248e-03 + + 4.9307331442832947e-01 5.8153688907623291e-01 + <_> + + 0 -1 1895 8.6467564105987549e-03 + + 5.2052050828933716e-01 4.1325950622558594e-01 + <_> + + 0 -1 1896 -3.6114078829996288e-04 + + 5.4835551977157593e-01 4.8009279370307922e-01 + <_> + + 0 -1 1897 1.0808729566633701e-03 + + 4.6899020671844482e-01 6.0414212942123413e-01 + <_> + + 0 -1 1898 5.7719959877431393e-03 + + 5.1711422204971313e-01 3.0532771348953247e-01 + <_> + + 0 -1 1899 1.5720770461484790e-03 + + 5.2199780941009521e-01 4.1788038611412048e-01 + <_> + + 0 -1 1900 -1.9307859474793077e-03 + + 5.8603698015213013e-01 4.8129200935363770e-01 + <_> + + 0 -1 1901 -7.8926272690296173e-03 + + 1.7492769658565521e-01 4.9717339873313904e-01 + <_> + + 0 -1 1902 -2.2224679123610258e-03 + + 4.3425890803337097e-01 5.2128481864929199e-01 + <_> + + 0 -1 1903 1.9011989934369922e-03 + + 4.7651869058609009e-01 6.8920552730560303e-01 + <_> + + 0 -1 1904 2.7576119173318148e-03 + + 5.2621912956237793e-01 4.3374860286712646e-01 + <_> + + 0 -1 1905 5.1787449046969414e-03 + + 4.8040691018104553e-01 7.8437292575836182e-01 + <_> + + 0 -1 1906 -9.0273341629654169e-04 + + 4.1208469867706299e-01 5.3534239530563354e-01 + <_> + + 0 -1 1907 5.1797959022223949e-03 + + 4.7403728961944580e-01 6.4259600639343262e-01 + <_> + + 0 -1 1908 -1.0114000178873539e-02 + + 2.4687920510768890e-01 5.1750177145004272e-01 + <_> + + 0 -1 1909 -1.8617060035467148e-02 + + 5.7562941312789917e-01 4.6289789676666260e-01 + <_> + + 0 -1 1910 5.9225959703326225e-03 + + 5.1696258783340454e-01 3.2142710685729980e-01 + <_> + + 0 -1 1911 -6.2945079989731312e-03 + + 3.8720148801803589e-01 5.1416367292404175e-01 + <_> + + 0 -1 1912 6.5353019163012505e-03 + + 4.8530489206314087e-01 6.3104897737503052e-01 + <_> + + 0 -1 1913 1.0878399480134249e-03 + + 5.1173150539398193e-01 3.7232589721679688e-01 + <_> + + 0 -1 1914 -2.2542240098118782e-02 + + 5.6927400827407837e-01 4.8871129751205444e-01 + <_> + + 0 -1 1915 -3.0065660830587149e-03 + + 2.5560128688812256e-01 5.0039929151535034e-01 + <_> + + 0 -1 1916 7.4741272255778313e-03 + + 4.8108729720115662e-01 5.6759268045425415e-01 + <_> + + 0 -1 1917 2.6162320747971535e-02 + + 4.9711948633193970e-01 1.7772370576858521e-01 + <_> + + 0 -1 1918 9.4352738233283162e-04 + + 4.9400109052658081e-01 5.4912507534027100e-01 + <_> + + 0 -1 1919 3.3363241702318192e-02 + + 5.0076121091842651e-01 2.7907240390777588e-01 + <_> + + 0 -1 1920 -1.5118650160729885e-02 + + 7.0595788955688477e-01 4.9730318784713745e-01 + <_> + + 0 -1 1921 9.8648946732282639e-04 + + 5.1286202669143677e-01 3.7767618894577026e-01 + <_> + 213 + 1.0576110076904297e+02 + + <_> + + 0 -1 1922 -9.5150798559188843e-02 + + 6.4707571268081665e-01 4.0172868967056274e-01 + <_> + + 0 -1 1923 6.2702340073883533e-03 + + 3.9998221397399902e-01 5.7464492321014404e-01 + <_> + + 0 -1 1924 3.0018089455552399e-04 + + 3.5587701201438904e-01 5.5388098955154419e-01 + <_> + + 0 -1 1925 1.1757409665733576e-03 + + 4.2565348744392395e-01 5.3826177120208740e-01 + <_> + + 0 -1 1926 4.4235268433112651e-05 + + 3.6829081177711487e-01 5.5899268388748169e-01 + <_> + + 0 -1 1927 -2.9936920327600092e-05 + + 5.4524701833724976e-01 4.0203678607940674e-01 + <_> + + 0 -1 1928 3.0073199886828661e-03 + + 5.2390581369400024e-01 3.3178439736366272e-01 + <_> + + 0 -1 1929 -1.0513889603316784e-02 + + 4.3206891417503357e-01 5.3079837560653687e-01 + <_> + + 0 -1 1930 8.3476826548576355e-03 + + 4.5046371221542358e-01 6.4532989263534546e-01 + <_> + + 0 -1 1931 -3.1492270063608885e-03 + + 4.3134251236915588e-01 5.3705251216888428e-01 + <_> + + 0 -1 1932 -1.4435649973165710e-05 + + 5.3266030550003052e-01 3.8179719448089600e-01 + <_> + + 0 -1 1933 -4.2855090578086674e-04 + + 4.3051639199256897e-01 5.3820097446441650e-01 + <_> + + 0 -1 1934 1.5062429883982986e-04 + + 4.2359709739685059e-01 5.5449652671813965e-01 + <_> + + 0 -1 1935 7.1559831500053406e-02 + + 5.3030598163604736e-01 2.6788029074668884e-01 + <_> + + 0 -1 1936 8.4095180500298738e-04 + + 3.5571089386940002e-01 5.2054339647293091e-01 + <_> + + 0 -1 1937 6.2986500561237335e-02 + + 5.2253627777099609e-01 2.8613761067390442e-01 + <_> + + 0 -1 1938 -3.3798629883676767e-03 + + 3.6241859197616577e-01 5.2016979455947876e-01 + <_> + + 0 -1 1939 -1.1810739670181647e-04 + + 5.4744768142700195e-01 3.9598938822746277e-01 + <_> + + 0 -1 1940 -5.4505601292476058e-04 + + 3.7404221296310425e-01 5.2157157659530640e-01 + <_> + + 0 -1 1941 -1.8454910023137927e-03 + + 5.8930522203445435e-01 4.5844489336013794e-01 + <_> + + 0 -1 1942 -4.3832371011376381e-04 + + 4.0845820307731628e-01 5.3853511810302734e-01 + <_> + + 0 -1 1943 -2.4000830017030239e-03 + + 3.7774550914764404e-01 5.2935802936553955e-01 + <_> + + 0 -1 1944 -9.8795741796493530e-02 + + 2.9636120796203613e-01 5.0700891017913818e-01 + <_> + + 0 -1 1945 3.1798239797353745e-03 + + 4.8776328563690186e-01 6.7264437675476074e-01 + <_> + + 0 -1 1946 3.2406419632025063e-04 + + 4.3669110536575317e-01 5.5611097812652588e-01 + <_> + + 0 -1 1947 -3.2547250390052795e-02 + + 3.1281578540802002e-01 5.3086161613464355e-01 + <_> + + 0 -1 1948 -7.7561130747199059e-03 + + 6.5602248907089233e-01 4.6398720145225525e-01 + <_> + + 0 -1 1949 1.6027249395847321e-02 + + 5.1726800203323364e-01 3.1418979167938232e-01 + <_> + + 0 -1 1950 7.1002350523485802e-06 + + 4.0844461321830750e-01 5.3362947702407837e-01 + <_> + + 0 -1 1951 7.3422808200120926e-03 + + 4.9669221043586731e-01 6.6034650802612305e-01 + <_> + + 0 -1 1952 -1.6970280557870865e-03 + + 5.9082370996475220e-01 4.5001828670501709e-01 + <_> + + 0 -1 1953 2.4118260480463505e-03 + + 5.3151607513427734e-01 3.5997208952903748e-01 + <_> + + 0 -1 1954 -5.5300937965512276e-03 + + 2.3340409994125366e-01 4.9968141317367554e-01 + <_> + + 0 -1 1955 -2.6478730142116547e-03 + + 5.8809357881546021e-01 4.6847340464591980e-01 + <_> + + 0 -1 1956 1.1295629665255547e-02 + + 4.9837771058082581e-01 1.8845909833908081e-01 + <_> + + 0 -1 1957 -6.6952878842130303e-04 + + 5.8721381425857544e-01 4.7990199923515320e-01 + <_> + + 0 -1 1958 1.4410680159926414e-03 + + 5.1311892271041870e-01 3.5010111331939697e-01 + <_> + + 0 -1 1959 2.4637870956212282e-03 + + 5.3393721580505371e-01 4.1176390647888184e-01 + <_> + + 0 -1 1960 3.3114518737420440e-04 + + 4.3133831024169922e-01 5.3982460498809814e-01 + <_> + + 0 -1 1961 -3.3557269722223282e-02 + + 2.6753368973731995e-01 5.1791548728942871e-01 + <_> + + 0 -1 1962 1.8539419397711754e-02 + + 4.9738699197769165e-01 2.3171770572662354e-01 + <_> + + 0 -1 1963 -2.9698139405809343e-04 + + 5.5297082662582397e-01 4.6436640620231628e-01 + <_> + + 0 -1 1964 -4.5577259152196348e-04 + + 5.6295841932296753e-01 4.4691911339759827e-01 + <_> + + 0 -1 1965 -1.0158980265259743e-02 + + 6.7062127590179443e-01 4.9259188771247864e-01 + <_> + + 0 -1 1966 -2.2413829356082715e-05 + + 5.2394217252731323e-01 3.9129018783569336e-01 + <_> + + 0 -1 1967 7.2034963523037732e-05 + + 4.7994381189346313e-01 5.5017888545989990e-01 + <_> + + 0 -1 1968 -6.9267209619283676e-03 + + 6.9300097227096558e-01 4.6980848908424377e-01 + <_> + + 0 -1 1969 -7.6997838914394379e-03 + + 4.0996238589286804e-01 5.4808831214904785e-01 + <_> + + 0 -1 1970 -7.3130549862980843e-03 + + 3.2834759354591370e-01 5.0578862428665161e-01 + <_> + + 0 -1 1971 1.9650589674711227e-03 + + 4.9780470132827759e-01 6.3982498645782471e-01 + <_> + + 0 -1 1972 7.1647600270807743e-03 + + 4.6611601114273071e-01 6.2221372127532959e-01 + <_> + + 0 -1 1973 -2.4078639224171638e-02 + + 2.3346449434757233e-01 5.2221620082855225e-01 + <_> + + 0 -1 1974 -2.1027969196438789e-02 + + 1.1836539953947067e-01 4.9382260441780090e-01 + <_> + + 0 -1 1975 3.6017020465806127e-04 + + 5.3250199556350708e-01 4.1167110204696655e-01 + <_> + + 0 -1 1976 -1.7219729721546173e-02 + + 6.2787622213363647e-01 4.6642690896987915e-01 + <_> + + 0 -1 1977 -7.8672142699360847e-03 + + 3.4034150838851929e-01 5.2497369050979614e-01 + <_> + + 0 -1 1978 -4.4777389848604798e-04 + + 3.6104118824005127e-01 5.0862592458724976e-01 + <_> + + 0 -1 1979 5.5486010387539864e-03 + + 4.8842659592628479e-01 6.2034982442855835e-01 + <_> + + 0 -1 1980 -6.9461148232221603e-03 + + 2.6259300112724304e-01 5.0110971927642822e-01 + <_> + + 0 -1 1981 1.3569870498031378e-04 + + 4.3407949805259705e-01 5.6283122301101685e-01 + <_> + + 0 -1 1982 -4.5880250632762909e-02 + + 6.5079987049102783e-01 4.6962749958038330e-01 + <_> + + 0 -1 1983 -2.1582560613751411e-02 + + 3.8265028595924377e-01 5.2876168489456177e-01 + <_> + + 0 -1 1984 -2.0209539681673050e-02 + + 3.2333680987358093e-01 5.0744771957397461e-01 + <_> + + 0 -1 1985 5.8496710844337940e-03 + + 5.1776039600372314e-01 4.4896709918975830e-01 + <_> + + 0 -1 1986 -5.7476379879517481e-05 + + 4.0208509564399719e-01 5.2463638782501221e-01 + <_> + + 0 -1 1987 -1.1513100471347570e-03 + + 6.3150721788406372e-01 4.9051541090011597e-01 + <_> + + 0 -1 1988 1.9862831104546785e-03 + + 4.7024598717689514e-01 6.4971512556076050e-01 + <_> + + 0 -1 1989 -5.2719512023031712e-03 + + 3.6503839492797852e-01 5.2276527881622314e-01 + <_> + + 0 -1 1990 1.2662699446082115e-03 + + 5.1661008596420288e-01 3.8776180148124695e-01 + <_> + + 0 -1 1991 -6.2919440679252148e-03 + + 7.3758941888809204e-01 5.0238478183746338e-01 + <_> + + 0 -1 1992 6.7360111279413104e-04 + + 4.4232261180877686e-01 5.4955857992172241e-01 + <_> + + 0 -1 1993 -1.0523450328037143e-03 + + 5.9763962030410767e-01 4.8595830798149109e-01 + <_> + + 0 -1 1994 -4.4216238893568516e-04 + + 5.9559392929077148e-01 4.3989309668540955e-01 + <_> + + 0 -1 1995 1.1747940443456173e-03 + + 5.3498882055282593e-01 4.6050581336021423e-01 + <_> + + 0 -1 1996 5.2457437850534916e-03 + + 5.0491911172866821e-01 2.9415771365165710e-01 + <_> + + 0 -1 1997 -2.4539720267057419e-02 + + 2.5501778721809387e-01 5.2185869216918945e-01 + <_> + + 0 -1 1998 7.3793041519820690e-04 + + 4.4248610734939575e-01 5.4908162355422974e-01 + <_> + + 0 -1 1999 1.4233799884095788e-03 + + 5.3195142745971680e-01 4.0813559293746948e-01 + <_> + + 0 -1 2000 -2.4149110540747643e-03 + + 4.0876591205596924e-01 5.2389502525329590e-01 + <_> + + 0 -1 2001 -1.2165299849584699e-03 + + 5.6745791435241699e-01 4.9080529808998108e-01 + <_> + + 0 -1 2002 -1.2438809499144554e-03 + + 4.1294258832931519e-01 5.2561181783676147e-01 + <_> + + 0 -1 2003 6.1942739412188530e-03 + + 5.0601941347122192e-01 7.3136532306671143e-01 + <_> + + 0 -1 2004 -1.6607169527560472e-03 + + 5.9796321392059326e-01 4.5963698625564575e-01 + <_> + + 0 -1 2005 -2.7316259220242500e-02 + + 4.1743651032447815e-01 5.3088420629501343e-01 + <_> + + 0 -1 2006 -1.5845570014789701e-03 + + 5.6158047914505005e-01 4.5194861292839050e-01 + <_> + + 0 -1 2007 -1.5514739789068699e-03 + + 4.0761870145797729e-01 5.3607851266860962e-01 + <_> + + 0 -1 2008 3.8446558755822480e-04 + + 4.3472939729690552e-01 5.4304420948028564e-01 + <_> + + 0 -1 2009 -1.4672259800136089e-02 + + 1.6593049466609955e-01 5.1460939645767212e-01 + <_> + + 0 -1 2010 8.1608882173895836e-03 + + 4.9618190526962280e-01 1.8847459554672241e-01 + <_> + + 0 -1 2011 1.1121659772470593e-03 + + 4.8682639002799988e-01 6.0938161611557007e-01 + <_> + + 0 -1 2012 -7.2603770531713963e-03 + + 6.2843251228332520e-01 4.6903759241104126e-01 + <_> + + 0 -1 2013 -2.4046430189628154e-04 + + 5.5750000476837158e-01 4.0460440516471863e-01 + <_> + + 0 -1 2014 -2.3348190006799996e-04 + + 4.1157621145248413e-01 5.2528482675552368e-01 + <_> + + 0 -1 2015 5.5736480280756950e-03 + + 4.7300729155540466e-01 5.6901007890701294e-01 + <_> + + 0 -1 2016 3.0623769387602806e-02 + + 4.9718868732452393e-01 1.7400950193405151e-01 + <_> + + 0 -1 2017 9.2074798885732889e-04 + + 5.3721177577972412e-01 4.3548721075057983e-01 + <_> + + 0 -1 2018 -4.3550739064812660e-05 + + 5.3668838739395142e-01 4.3473169207572937e-01 + <_> + + 0 -1 2019 -6.6452710889279842e-03 + + 3.4355181455612183e-01 5.1605331897735596e-01 + <_> + + 0 -1 2020 4.3221998959779739e-02 + + 4.7667920589447021e-01 7.2936528921127319e-01 + <_> + + 0 -1 2021 2.2331769578158855e-03 + + 5.0293159484863281e-01 5.6331712007522583e-01 + <_> + + 0 -1 2022 3.1829739455133677e-03 + + 4.0160921216011047e-01 5.1921367645263672e-01 + <_> + + 0 -1 2023 -1.8027749320026487e-04 + + 4.0883159637451172e-01 5.4179197549819946e-01 + <_> + + 0 -1 2024 -5.2934689447283745e-03 + + 4.0756770968437195e-01 5.2435618638992310e-01 + <_> + + 0 -1 2025 1.2750959722325206e-03 + + 4.9132829904556274e-01 6.3870108127593994e-01 + <_> + + 0 -1 2026 4.3385322205722332e-03 + + 5.0316721200942993e-01 2.9473468661308289e-01 + <_> + + 0 -1 2027 8.5250744596123695e-03 + + 4.9497890472412109e-01 6.3088691234588623e-01 + <_> + + 0 -1 2028 -9.4266352243721485e-04 + + 5.3283667564392090e-01 4.2856499552726746e-01 + <_> + + 0 -1 2029 1.3609660090878606e-03 + + 4.9915251135826111e-01 5.9415012598037720e-01 + <_> + + 0 -1 2030 4.4782509212382138e-04 + + 4.5735040307044983e-01 5.8544808626174927e-01 + <_> + + 0 -1 2031 1.3360050506889820e-03 + + 4.6043589711189270e-01 5.8490520715713501e-01 + <_> + + 0 -1 2032 -6.0967548051849008e-04 + + 3.9693889021873474e-01 5.2294230461120605e-01 + <_> + + 0 -1 2033 -2.3656780831515789e-03 + + 5.8083200454711914e-01 4.8983570933341980e-01 + <_> + + 0 -1 2034 1.0734340175986290e-03 + + 4.3512108922004700e-01 5.4700392484664917e-01 + <_> + + 0 -1 2035 2.1923359017819166e-03 + + 5.3550601005554199e-01 3.8429039716720581e-01 + <_> + + 0 -1 2036 5.4968618787825108e-03 + + 5.0181388854980469e-01 2.8271919488906860e-01 + <_> + + 0 -1 2037 -7.5368821620941162e-02 + + 1.2250760197639465e-01 5.1488268375396729e-01 + <_> + + 0 -1 2038 2.5134470313787460e-02 + + 4.7317668795585632e-01 7.0254462957382202e-01 + <_> + + 0 -1 2039 -2.9358599931583740e-05 + + 5.4305320978164673e-01 4.6560868620872498e-01 + <_> + + 0 -1 2040 -5.8355910005047917e-04 + + 4.0310400724411011e-01 5.1901197433471680e-01 + <_> + + 0 -1 2041 -2.6639450807124376e-03 + + 4.3081268668174744e-01 5.1617711782455444e-01 + <_> + + 0 -1 2042 -1.3804089976474643e-03 + + 6.2198299169540405e-01 4.6955159306526184e-01 + <_> + + 0 -1 2043 1.2313219485804439e-03 + + 5.3793638944625854e-01 4.4258311390876770e-01 + <_> + + 0 -1 2044 -1.4644179827882908e-05 + + 5.2816402912139893e-01 4.2225030064582825e-01 + <_> + + 0 -1 2045 -1.2818809598684311e-02 + + 2.5820928812026978e-01 5.1799327135086060e-01 + <_> + + 0 -1 2046 2.2852189838886261e-02 + + 4.7786930203437805e-01 7.6092642545700073e-01 + <_> + + 0 -1 2047 8.2305970136076212e-04 + + 5.3409922122955322e-01 4.6717241406440735e-01 + <_> + + 0 -1 2048 1.2770120054483414e-02 + + 4.9657610058784485e-01 1.4723660051822662e-01 + <_> + + 0 -1 2049 -5.0051510334014893e-02 + + 6.4149940013885498e-01 5.0165921449661255e-01 + <_> + + 0 -1 2050 1.5775270760059357e-02 + + 4.5223200321197510e-01 5.6853622198104858e-01 + <_> + + 0 -1 2051 -1.8501620739698410e-02 + + 2.7647489309310913e-01 5.1379591226577759e-01 + <_> + + 0 -1 2052 2.4626250378787518e-03 + + 5.1419419050216675e-01 3.7954080104827881e-01 + <_> + + 0 -1 2053 6.2916167080402374e-02 + + 5.0606489181518555e-01 6.5804338455200195e-01 + <_> + + 0 -1 2054 -2.1648500478477217e-05 + + 5.1953881978988647e-01 4.0198868513107300e-01 + <_> + + 0 -1 2055 2.1180990152060986e-03 + + 4.9623650312423706e-01 5.9544587135314941e-01 + <_> + + 0 -1 2056 -1.6634890809655190e-02 + + 3.7579330801963806e-01 5.1754468679428101e-01 + <_> + + 0 -1 2057 -2.8899470344185829e-03 + + 6.6240137815475464e-01 5.0571787357330322e-01 + <_> + + 0 -1 2058 7.6783262193202972e-02 + + 4.7957968711853027e-01 8.0477148294448853e-01 + <_> + + 0 -1 2059 3.9170677773654461e-03 + + 4.9378821253776550e-01 5.7199418544769287e-01 + <_> + + 0 -1 2060 -7.2670601308345795e-02 + + 5.3894560784101486e-02 4.9439039826393127e-01 + <_> + + 0 -1 2061 5.4039502143859863e-01 + + 5.1297742128372192e-01 1.1433389782905579e-01 + <_> + + 0 -1 2062 2.9510019812732935e-03 + + 4.5283439755439758e-01 5.6985741853713989e-01 + <_> + + 0 -1 2063 3.4508369863033295e-03 + + 5.3577268123626709e-01 4.2187309265136719e-01 + <_> + + 0 -1 2064 -4.2077939724549651e-04 + + 5.9161728620529175e-01 4.6379259228706360e-01 + <_> + + 0 -1 2065 3.3051050268113613e-03 + + 5.2733850479125977e-01 4.3820428848266602e-01 + <_> + + 0 -1 2066 4.7735060798004270e-04 + + 4.0465280413627625e-01 5.1818847656250000e-01 + <_> + + 0 -1 2067 -2.5928510352969170e-02 + + 7.4522358179092407e-01 5.0893861055374146e-01 + <_> + + 0 -1 2068 -2.9729790985584259e-03 + + 3.2954359054565430e-01 5.0587952136993408e-01 + <_> + + 0 -1 2069 5.8508329093456268e-03 + + 4.8571440577507019e-01 5.7930248975753784e-01 + <_> + + 0 -1 2070 -4.5967519283294678e-02 + + 4.3127310276031494e-01 5.3806531429290771e-01 + <_> + + 0 -1 2071 1.5585960447788239e-01 + + 5.1961702108383179e-01 1.6847139596939087e-01 + <_> + + 0 -1 2072 1.5164829790592194e-02 + + 4.7357571125030518e-01 6.7350268363952637e-01 + <_> + + 0 -1 2073 -1.0604249546304345e-03 + + 5.8229267597198486e-01 4.7757029533386230e-01 + <_> + + 0 -1 2074 6.6476291976869106e-03 + + 4.9991989135742188e-01 2.3195350170135498e-01 + <_> + + 0 -1 2075 -1.2231130152940750e-02 + + 4.7508931159973145e-01 5.2629822492599487e-01 + <_> + + 0 -1 2076 5.6528882123529911e-03 + + 5.0697678327560425e-01 3.5618188977241516e-01 + <_> + + 0 -1 2077 1.2977829901501536e-03 + + 4.8756939172744751e-01 5.6190627813339233e-01 + <_> + + 0 -1 2078 1.0781589895486832e-02 + + 4.7507700324058533e-01 6.7823082208633423e-01 + <_> + + 0 -1 2079 2.8654779307544231e-03 + + 5.3054618835449219e-01 4.2907360196113586e-01 + <_> + + 0 -1 2080 2.8663428965955973e-03 + + 4.5184791088104248e-01 5.5393511056900024e-01 + <_> + + 0 -1 2081 -5.1983320154249668e-03 + + 4.1491198539733887e-01 5.4341888427734375e-01 + <_> + + 0 -1 2082 5.3739990107715130e-03 + + 4.7178968787193298e-01 6.5076571702957153e-01 + <_> + + 0 -1 2083 -1.4641529880464077e-02 + + 2.1721640229225159e-01 5.1617771387100220e-01 + <_> + + 0 -1 2084 -1.5042580344015732e-05 + + 5.3373837471008301e-01 4.2988368868827820e-01 + <_> + + 0 -1 2085 -1.1875660129589960e-04 + + 4.6045941114425659e-01 5.5824470520019531e-01 + <_> + + 0 -1 2086 1.6995530575513840e-02 + + 4.9458950757980347e-01 7.3880076408386230e-02 + <_> + + 0 -1 2087 -3.5095941275358200e-02 + + 7.0055091381072998e-01 4.9775910377502441e-01 + <_> + + 0 -1 2088 2.4217350874096155e-03 + + 4.4662651419639587e-01 5.4776942729949951e-01 + <_> + + 0 -1 2089 -9.6340337768197060e-04 + + 4.7140988707542419e-01 5.3133380413055420e-01 + <_> + + 0 -1 2090 1.6391130338888615e-04 + + 4.3315461277961731e-01 5.3422421216964722e-01 + <_> + + 0 -1 2091 -2.1141460165381432e-02 + + 2.6447001099586487e-01 5.2044987678527832e-01 + <_> + + 0 -1 2092 8.7775202700868249e-04 + + 5.2083498239517212e-01 4.1527429223060608e-01 + <_> + + 0 -1 2093 -2.7943920344114304e-02 + + 6.3441252708435059e-01 5.0188118219375610e-01 + <_> + + 0 -1 2094 6.7297378554940224e-03 + + 5.0504380464553833e-01 3.5008639097213745e-01 + <_> + + 0 -1 2095 2.3281039670109749e-02 + + 4.9663180112838745e-01 6.9686770439147949e-01 + <_> + + 0 -1 2096 -1.1644979938864708e-02 + + 3.3002600073814392e-01 5.0496298074722290e-01 + <_> + + 0 -1 2097 1.5764309093356133e-02 + + 4.9915981292724609e-01 7.3211538791656494e-01 + <_> + + 0 -1 2098 -1.3611479662358761e-03 + + 3.9117351174354553e-01 5.1606708765029907e-01 + <_> + + 0 -1 2099 -8.1522337859496474e-04 + + 5.6289112567901611e-01 4.9497190117835999e-01 + <_> + + 0 -1 2100 -6.0066272271797061e-04 + + 5.8535951375961304e-01 4.5505958795547485e-01 + <_> + + 0 -1 2101 4.9715518252924085e-04 + + 4.2714700102806091e-01 5.4435992240905762e-01 + <_> + + 0 -1 2102 2.3475370835512877e-03 + + 5.1431107521057129e-01 3.8876569271087646e-01 + <_> + + 0 -1 2103 -8.9261569082736969e-03 + + 6.0445022583007812e-01 4.9717208743095398e-01 + <_> + + 0 -1 2104 -1.3919910416007042e-02 + + 2.5831609964370728e-01 5.0003677606582642e-01 + <_> + + 0 -1 2105 1.0209949687123299e-03 + + 4.8573741316795349e-01 5.5603581666946411e-01 + <_> + + 0 -1 2106 -2.7441629208624363e-03 + + 5.9368848800659180e-01 4.6457770466804504e-01 + <_> + + 0 -1 2107 -1.6200130805373192e-02 + + 3.1630149483680725e-01 5.1934951543807983e-01 + <_> + + 0 -1 2108 4.3331980705261230e-03 + + 5.0612241029739380e-01 3.4588789939880371e-01 + <_> + + 0 -1 2109 5.8497930876910686e-04 + + 4.7790178656578064e-01 5.8701777458190918e-01 + <_> + + 0 -1 2110 -2.2466450463980436e-03 + + 4.2978510260581970e-01 5.3747731447219849e-01 + <_> + + 0 -1 2111 2.3146099410951138e-03 + + 5.4386717081069946e-01 4.6409699320793152e-01 + <_> + + 0 -1 2112 8.7679121643304825e-03 + + 4.7268930077552795e-01 6.7717897891998291e-01 + <_> + + 0 -1 2113 -2.2448020172305405e-04 + + 4.2291730642318726e-01 5.4280489683151245e-01 + <_> + + 0 -1 2114 -7.4336021207273006e-03 + + 6.0988807678222656e-01 4.6836739778518677e-01 + <_> + + 0 -1 2115 -2.3189240600913763e-03 + + 5.6894367933273315e-01 4.4242420792579651e-01 + <_> + + 0 -1 2116 -2.1042178850620985e-03 + + 3.7622210383415222e-01 5.1870870590209961e-01 + <_> + + 0 -1 2117 4.6034841216169298e-04 + + 4.6994051337242126e-01 5.7712072134017944e-01 + <_> + + 0 -1 2118 1.0547629790380597e-03 + + 4.4652169942855835e-01 5.6017017364501953e-01 + <_> + + 0 -1 2119 8.7148818420246243e-04 + + 5.4498052597045898e-01 3.9147090911865234e-01 + <_> + + 0 -1 2120 3.3364820410497487e-04 + + 4.5640090107917786e-01 5.6457388401031494e-01 + <_> + + 0 -1 2121 -1.4853250468149781e-03 + + 5.7473778724670410e-01 4.6927788853645325e-01 + <_> + + 0 -1 2122 3.0251620337367058e-03 + + 5.1661968231201172e-01 3.7628141045570374e-01 + <_> + + 0 -1 2123 5.0280741415917873e-03 + + 5.0021117925643921e-01 6.1515271663665771e-01 + <_> + + 0 -1 2124 -5.8164511574432254e-04 + + 5.3945982456207275e-01 4.3907511234283447e-01 + <_> + + 0 -1 2125 4.5141529291868210e-02 + + 5.1883268356323242e-01 2.0630359649658203e-01 + <_> + + 0 -1 2126 -1.0795620037242770e-03 + + 3.9046850800514221e-01 5.1379072666168213e-01 + <_> + + 0 -1 2127 1.5995999274309725e-04 + + 4.8953229188919067e-01 5.4275041818618774e-01 + <_> + + 0 -1 2128 -1.9359270110726357e-02 + + 6.9752287864685059e-01 4.7735071182250977e-01 + <_> + + 0 -1 2129 2.0725509524345398e-01 + + 5.2336359024047852e-01 3.0349919199943542e-01 + <_> + + 0 -1 2130 -4.1953290929086506e-04 + + 5.4193967580795288e-01 4.4601860642433167e-01 + <_> + + 0 -1 2131 2.2582069505006075e-03 + + 4.8157641291618347e-01 6.0274088382720947e-01 + <_> + + 0 -1 2132 -6.7811207845807076e-03 + + 3.9802789688110352e-01 5.1833057403564453e-01 + <_> + + 0 -1 2133 1.1154309846460819e-02 + + 5.4312318563461304e-01 4.1887599229812622e-01 + <_> + + 0 -1 2134 4.3162431567907333e-02 + + 4.7382280230522156e-01 6.5229612588882446e-01 + + <_> + + <_> + 3 7 14 4 -1. + <_> + 3 9 14 2 2. + <_> + + <_> + 1 2 18 4 -1. + <_> + 7 2 6 4 3. + <_> + + <_> + 1 7 15 9 -1. + <_> + 1 10 15 3 3. + <_> + + <_> + 5 6 2 6 -1. + <_> + 5 9 2 3 2. + <_> + + <_> + 7 5 6 3 -1. + <_> + 9 5 2 3 3. + <_> + + <_> + 4 0 12 9 -1. + <_> + 4 3 12 3 3. + <_> + + <_> + 6 9 10 8 -1. + <_> + 6 13 10 4 2. + <_> + + <_> + 3 6 14 8 -1. + <_> + 3 10 14 4 2. + <_> + + <_> + 14 1 6 10 -1. + <_> + 14 1 3 10 2. + <_> + + <_> + 7 8 5 12 -1. + <_> + 7 12 5 4 3. + <_> + + <_> + 1 1 18 3 -1. + <_> + 7 1 6 3 3. + <_> + + <_> + 1 8 17 2 -1. + <_> + 1 9 17 1 2. + <_> + + <_> + 16 6 4 2 -1. + <_> + 16 7 4 1 2. + <_> + + <_> + 5 17 2 2 -1. + <_> + 5 18 2 1 2. + <_> + + <_> + 14 2 6 12 -1. + <_> + 14 2 3 12 2. + <_> + + <_> + 4 0 4 12 -1. + <_> + 4 0 2 6 2. + <_> + 6 6 2 6 2. + <_> + + <_> + 2 11 18 8 -1. + <_> + 8 11 6 8 3. + <_> + + <_> + 5 7 10 2 -1. + <_> + 5 8 10 1 2. + <_> + + <_> + 15 11 5 3 -1. + <_> + 15 12 5 1 3. + <_> + + <_> + 5 3 10 9 -1. + <_> + 5 6 10 3 3. + <_> + + <_> + 9 4 2 14 -1. + <_> + 9 11 2 7 2. + <_> + + <_> + 3 5 4 12 -1. + <_> + 3 9 4 4 3. + <_> + + <_> + 4 5 12 5 -1. + <_> + 8 5 4 5 3. + <_> + + <_> + 5 6 10 8 -1. + <_> + 5 10 10 4 2. + <_> + + <_> + 8 0 6 9 -1. + <_> + 8 3 6 3 3. + <_> + + <_> + 9 12 1 8 -1. + <_> + 9 16 1 4 2. + <_> + + <_> + 0 7 20 6 -1. + <_> + 0 9 20 2 3. + <_> + + <_> + 7 0 6 17 -1. + <_> + 9 0 2 17 3. + <_> + + <_> + 9 0 6 4 -1. + <_> + 11 0 2 4 3. + <_> + + <_> + 5 1 6 4 -1. + <_> + 7 1 2 4 3. + <_> + + <_> + 12 1 6 16 -1. + <_> + 14 1 2 16 3. + <_> + + <_> + 0 5 18 8 -1. + <_> + 0 5 9 4 2. + <_> + 9 9 9 4 2. + <_> + + <_> + 8 15 10 4 -1. + <_> + 13 15 5 2 2. + <_> + 8 17 5 2 2. + <_> + + <_> + 3 1 4 8 -1. + <_> + 3 1 2 4 2. + <_> + 5 5 2 4 2. + <_> + + <_> + 3 6 14 10 -1. + <_> + 10 6 7 5 2. + <_> + 3 11 7 5 2. + <_> + + <_> + 2 1 6 16 -1. + <_> + 4 1 2 16 3. + <_> + + <_> + 0 18 20 2 -1. + <_> + 0 19 20 1 2. + <_> + + <_> + 8 13 4 3 -1. + <_> + 8 14 4 1 3. + <_> + + <_> + 9 14 2 3 -1. + <_> + 9 15 2 1 3. + <_> + + <_> + 0 12 9 6 -1. + <_> + 0 14 9 2 3. + <_> + + <_> + 5 7 3 4 -1. + <_> + 5 9 3 2 2. + <_> + + <_> + 9 3 2 16 -1. + <_> + 9 11 2 8 2. + <_> + + <_> + 3 6 13 8 -1. + <_> + 3 10 13 4 2. + <_> + + <_> + 12 3 8 2 -1. + <_> + 12 3 4 2 2. + <_> + + <_> + 8 8 4 12 -1. + <_> + 8 12 4 4 3. + <_> + + <_> + 11 3 8 6 -1. + <_> + 15 3 4 3 2. + <_> + 11 6 4 3 2. + <_> + + <_> + 7 1 6 19 -1. + <_> + 9 1 2 19 3. + <_> + + <_> + 9 0 6 4 -1. + <_> + 11 0 2 4 3. + <_> + + <_> + 3 1 9 3 -1. + <_> + 6 1 3 3 3. + <_> + + <_> + 8 15 10 4 -1. + <_> + 13 15 5 2 2. + <_> + 8 17 5 2 2. + <_> + + <_> + 0 3 6 10 -1. + <_> + 3 3 3 10 2. + <_> + + <_> + 3 4 15 15 -1. + <_> + 3 9 15 5 3. + <_> + + <_> + 6 5 8 6 -1. + <_> + 6 7 8 2 3. + <_> + + <_> + 4 4 12 10 -1. + <_> + 10 4 6 5 2. + <_> + 4 9 6 5 2. + <_> + + <_> + 6 4 4 4 -1. + <_> + 8 4 2 4 2. + <_> + + <_> + 15 11 1 2 -1. + <_> + 15 12 1 1 2. + <_> + + <_> + 3 11 2 2 -1. + <_> + 3 12 2 1 2. + <_> + + <_> + 16 11 1 3 -1. + <_> + 16 12 1 1 3. + <_> + + <_> + 3 15 6 4 -1. + <_> + 3 15 3 2 2. + <_> + 6 17 3 2 2. + <_> + + <_> + 6 7 8 2 -1. + <_> + 6 8 8 1 2. + <_> + + <_> + 3 11 1 3 -1. + <_> + 3 12 1 1 3. + <_> + + <_> + 6 0 12 2 -1. + <_> + 6 1 12 1 2. + <_> + + <_> + 9 14 2 3 -1. + <_> + 9 15 2 1 3. + <_> + + <_> + 7 15 6 2 -1. + <_> + 7 16 6 1 2. + <_> + + <_> + 0 5 4 6 -1. + <_> + 0 7 4 2 3. + <_> + + <_> + 4 12 12 2 -1. + <_> + 8 12 4 2 3. + <_> + + <_> + 6 3 1 9 -1. + <_> + 6 6 1 3 3. + <_> + + <_> + 10 17 3 2 -1. + <_> + 11 17 1 2 3. + <_> + + <_> + 9 9 2 2 -1. + <_> + 9 10 2 1 2. + <_> + + <_> + 7 6 6 4 -1. + <_> + 9 6 2 4 3. + <_> + + <_> + 7 17 3 2 -1. + <_> + 8 17 1 2 3. + <_> + + <_> + 10 17 3 3 -1. + <_> + 11 17 1 3 3. + <_> + + <_> + 8 12 3 2 -1. + <_> + 8 13 3 1 2. + <_> + + <_> + 9 3 6 2 -1. + <_> + 11 3 2 2 3. + <_> + + <_> + 3 11 14 4 -1. + <_> + 3 13 14 2 2. + <_> + + <_> + 1 10 18 4 -1. + <_> + 10 10 9 2 2. + <_> + 1 12 9 2 2. + <_> + + <_> + 0 10 3 3 -1. + <_> + 0 11 3 1 3. + <_> + + <_> + 9 1 6 6 -1. + <_> + 11 1 2 6 3. + <_> + + <_> + 8 7 3 6 -1. + <_> + 9 7 1 6 3. + <_> + + <_> + 1 0 18 9 -1. + <_> + 1 3 18 3 3. + <_> + + <_> + 12 10 2 6 -1. + <_> + 12 13 2 3 2. + <_> + + <_> + 0 5 19 8 -1. + <_> + 0 9 19 4 2. + <_> + + <_> + 7 0 6 9 -1. + <_> + 9 0 2 9 3. + <_> + + <_> + 5 3 6 1 -1. + <_> + 7 3 2 1 3. + <_> + + <_> + 11 3 6 1 -1. + <_> + 13 3 2 1 3. + <_> + + <_> + 5 10 4 6 -1. + <_> + 5 13 4 3 2. + <_> + + <_> + 11 3 6 1 -1. + <_> + 13 3 2 1 3. + <_> + + <_> + 4 4 12 6 -1. + <_> + 4 6 12 2 3. + <_> + + <_> + 15 12 2 6 -1. + <_> + 15 14 2 2 3. + <_> + + <_> + 9 3 2 2 -1. + <_> + 10 3 1 2 2. + <_> + + <_> + 9 3 3 1 -1. + <_> + 10 3 1 1 3. + <_> + + <_> + 1 1 4 14 -1. + <_> + 3 1 2 14 2. + <_> + + <_> + 9 0 4 4 -1. + <_> + 11 0 2 2 2. + <_> + 9 2 2 2 2. + <_> + + <_> + 7 5 1 14 -1. + <_> + 7 12 1 7 2. + <_> + + <_> + 19 0 1 4 -1. + <_> + 19 2 1 2 2. + <_> + + <_> + 5 5 6 4 -1. + <_> + 8 5 3 4 2. + <_> + + <_> + 9 18 3 2 -1. + <_> + 10 18 1 2 3. + <_> + + <_> + 8 18 3 2 -1. + <_> + 9 18 1 2 3. + <_> + + <_> + 4 5 12 6 -1. + <_> + 4 7 12 2 3. + <_> + + <_> + 3 12 2 6 -1. + <_> + 3 14 2 2 3. + <_> + + <_> + 10 8 2 12 -1. + <_> + 10 12 2 4 3. + <_> + + <_> + 7 18 3 2 -1. + <_> + 8 18 1 2 3. + <_> + + <_> + 9 0 6 2 -1. + <_> + 11 0 2 2 3. + <_> + + <_> + 5 11 9 3 -1. + <_> + 5 12 9 1 3. + <_> + + <_> + 9 0 6 2 -1. + <_> + 11 0 2 2 3. + <_> + + <_> + 1 1 18 5 -1. + <_> + 7 1 6 5 3. + <_> + + <_> + 8 0 4 4 -1. + <_> + 10 0 2 2 2. + <_> + 8 2 2 2 2. + <_> + + <_> + 3 12 1 3 -1. + <_> + 3 13 1 1 3. + <_> + + <_> + 8 14 5 3 -1. + <_> + 8 15 5 1 3. + <_> + + <_> + 5 4 10 12 -1. + <_> + 5 4 5 6 2. + <_> + 10 10 5 6 2. + <_> + + <_> + 9 6 9 12 -1. + <_> + 9 10 9 4 3. + <_> + + <_> + 2 2 12 14 -1. + <_> + 2 2 6 7 2. + <_> + 8 9 6 7 2. + <_> + + <_> + 4 7 12 2 -1. + <_> + 8 7 4 2 3. + <_> + + <_> + 7 4 6 4 -1. + <_> + 7 6 6 2 2. + <_> + + <_> + 4 5 11 8 -1. + <_> + 4 9 11 4 2. + <_> + + <_> + 3 10 16 4 -1. + <_> + 3 12 16 2 2. + <_> + + <_> + 0 0 16 2 -1. + <_> + 0 1 16 1 2. + <_> + + <_> + 7 5 6 2 -1. + <_> + 9 5 2 2 3. + <_> + + <_> + 3 2 6 10 -1. + <_> + 3 2 3 5 2. + <_> + 6 7 3 5 2. + <_> + + <_> + 10 5 8 15 -1. + <_> + 10 10 8 5 3. + <_> + + <_> + 3 14 8 6 -1. + <_> + 3 14 4 3 2. + <_> + 7 17 4 3 2. + <_> + + <_> + 14 2 2 2 -1. + <_> + 14 3 2 1 2. + <_> + + <_> + 1 10 7 6 -1. + <_> + 1 13 7 3 2. + <_> + + <_> + 15 4 4 3 -1. + <_> + 15 4 2 3 2. + <_> + + <_> + 2 9 14 6 -1. + <_> + 2 9 7 3 2. + <_> + 9 12 7 3 2. + <_> + + <_> + 5 7 10 4 -1. + <_> + 5 9 10 2 2. + <_> + + <_> + 6 9 8 8 -1. + <_> + 6 9 4 4 2. + <_> + 10 13 4 4 2. + <_> + + <_> + 14 1 3 2 -1. + <_> + 14 2 3 1 2. + <_> + + <_> + 1 4 4 2 -1. + <_> + 3 4 2 2 2. + <_> + + <_> + 11 10 2 8 -1. + <_> + 11 14 2 4 2. + <_> + + <_> + 0 0 5 3 -1. + <_> + 0 1 5 1 3. + <_> + + <_> + 2 5 18 8 -1. + <_> + 11 5 9 4 2. + <_> + 2 9 9 4 2. + <_> + + <_> + 6 6 1 6 -1. + <_> + 6 9 1 3 2. + <_> + + <_> + 19 1 1 3 -1. + <_> + 19 2 1 1 3. + <_> + + <_> + 7 6 6 6 -1. + <_> + 9 6 2 6 3. + <_> + + <_> + 19 1 1 3 -1. + <_> + 19 2 1 1 3. + <_> + + <_> + 3 13 2 3 -1. + <_> + 3 14 2 1 3. + <_> + + <_> + 8 4 8 12 -1. + <_> + 12 4 4 6 2. + <_> + 8 10 4 6 2. + <_> + + <_> + 5 2 6 3 -1. + <_> + 7 2 2 3 3. + <_> + + <_> + 6 1 9 10 -1. + <_> + 6 6 9 5 2. + <_> + + <_> + 0 4 6 12 -1. + <_> + 2 4 2 12 3. + <_> + + <_> + 15 13 2 3 -1. + <_> + 15 14 2 1 3. + <_> + + <_> + 7 14 5 3 -1. + <_> + 7 15 5 1 3. + <_> + + <_> + 15 13 3 3 -1. + <_> + 15 14 3 1 3. + <_> + + <_> + 6 14 8 3 -1. + <_> + 6 15 8 1 3. + <_> + + <_> + 15 13 3 3 -1. + <_> + 15 14 3 1 3. + <_> + + <_> + 2 13 3 3 -1. + <_> + 2 14 3 1 3. + <_> + + <_> + 4 7 12 12 -1. + <_> + 10 7 6 6 2. + <_> + 4 13 6 6 2. + <_> + + <_> + 9 7 2 6 -1. + <_> + 10 7 1 6 2. + <_> + + <_> + 8 9 5 2 -1. + <_> + 8 10 5 1 2. + <_> + + <_> + 8 6 3 4 -1. + <_> + 9 6 1 4 3. + <_> + + <_> + 9 6 2 8 -1. + <_> + 9 10 2 4 2. + <_> + + <_> + 7 7 3 6 -1. + <_> + 8 7 1 6 3. + <_> + + <_> + 11 3 3 3 -1. + <_> + 12 3 1 3 3. + <_> + + <_> + 5 4 6 1 -1. + <_> + 7 4 2 1 3. + <_> + + <_> + 5 6 10 3 -1. + <_> + 5 7 10 1 3. + <_> + + <_> + 7 3 6 9 -1. + <_> + 7 6 6 3 3. + <_> + + <_> + 6 7 9 1 -1. + <_> + 9 7 3 1 3. + <_> + + <_> + 2 8 16 8 -1. + <_> + 2 12 16 4 2. + <_> + + <_> + 14 6 2 6 -1. + <_> + 14 9 2 3 2. + <_> + + <_> + 1 5 6 15 -1. + <_> + 1 10 6 5 3. + <_> + + <_> + 10 0 6 9 -1. + <_> + 10 3 6 3 3. + <_> + + <_> + 6 6 7 14 -1. + <_> + 6 13 7 7 2. + <_> + + <_> + 13 7 3 6 -1. + <_> + 13 9 3 2 3. + <_> + + <_> + 1 8 15 4 -1. + <_> + 6 8 5 4 3. + <_> + + <_> + 11 2 3 10 -1. + <_> + 11 7 3 5 2. + <_> + + <_> + 3 7 4 6 -1. + <_> + 3 9 4 2 3. + <_> + + <_> + 13 3 6 10 -1. + <_> + 15 3 2 10 3. + <_> + + <_> + 5 7 8 10 -1. + <_> + 5 7 4 5 2. + <_> + 9 12 4 5 2. + <_> + + <_> + 4 4 12 12 -1. + <_> + 10 4 6 6 2. + <_> + 4 10 6 6 2. + <_> + + <_> + 1 4 6 9 -1. + <_> + 3 4 2 9 3. + <_> + + <_> + 11 3 2 5 -1. + <_> + 11 3 1 5 2. + <_> + + <_> + 7 3 2 5 -1. + <_> + 8 3 1 5 2. + <_> + + <_> + 10 14 2 3 -1. + <_> + 10 15 2 1 3. + <_> + + <_> + 5 12 6 2 -1. + <_> + 8 12 3 2 2. + <_> + + <_> + 9 14 2 3 -1. + <_> + 9 15 2 1 3. + <_> + + <_> + 4 11 12 6 -1. + <_> + 4 14 12 3 2. + <_> + + <_> + 11 11 5 9 -1. + <_> + 11 14 5 3 3. + <_> + + <_> + 6 15 3 2 -1. + <_> + 6 16 3 1 2. + <_> + + <_> + 11 0 3 5 -1. + <_> + 12 0 1 5 3. + <_> + + <_> + 5 5 6 7 -1. + <_> + 8 5 3 7 2. + <_> + + <_> + 13 0 1 9 -1. + <_> + 13 3 1 3 3. + <_> + + <_> + 3 2 4 8 -1. + <_> + 3 2 2 4 2. + <_> + 5 6 2 4 2. + <_> + + <_> + 13 12 4 6 -1. + <_> + 13 14 4 2 3. + <_> + + <_> + 3 12 4 6 -1. + <_> + 3 14 4 2 3. + <_> + + <_> + 13 11 3 4 -1. + <_> + 13 13 3 2 2. + <_> + + <_> + 4 4 4 3 -1. + <_> + 4 5 4 1 3. + <_> + + <_> + 7 5 11 8 -1. + <_> + 7 9 11 4 2. + <_> + + <_> + 7 8 3 4 -1. + <_> + 8 8 1 4 3. + <_> + + <_> + 9 1 6 1 -1. + <_> + 11 1 2 1 3. + <_> + + <_> + 5 5 3 3 -1. + <_> + 5 6 3 1 3. + <_> + + <_> + 0 9 20 6 -1. + <_> + 10 9 10 3 2. + <_> + 0 12 10 3 2. + <_> + + <_> + 8 6 3 5 -1. + <_> + 9 6 1 5 3. + <_> + + <_> + 11 0 1 3 -1. + <_> + 11 1 1 1 3. + <_> + + <_> + 4 2 4 2 -1. + <_> + 4 3 4 1 2. + <_> + + <_> + 12 6 4 3 -1. + <_> + 12 7 4 1 3. + <_> + + <_> + 5 0 6 4 -1. + <_> + 7 0 2 4 3. + <_> + + <_> + 9 7 3 8 -1. + <_> + 10 7 1 8 3. + <_> + + <_> + 9 7 2 2 -1. + <_> + 10 7 1 2 2. + <_> + + <_> + 6 7 14 4 -1. + <_> + 13 7 7 2 2. + <_> + 6 9 7 2 2. + <_> + + <_> + 0 5 3 6 -1. + <_> + 0 7 3 2 3. + <_> + + <_> + 13 11 3 4 -1. + <_> + 13 13 3 2 2. + <_> + + <_> + 4 11 3 4 -1. + <_> + 4 13 3 2 2. + <_> + + <_> + 5 9 12 8 -1. + <_> + 11 9 6 4 2. + <_> + 5 13 6 4 2. + <_> + + <_> + 9 12 1 3 -1. + <_> + 9 13 1 1 3. + <_> + + <_> + 10 15 2 4 -1. + <_> + 10 17 2 2 2. + <_> + + <_> + 7 7 6 1 -1. + <_> + 9 7 2 1 3. + <_> + + <_> + 12 3 6 6 -1. + <_> + 15 3 3 3 2. + <_> + 12 6 3 3 2. + <_> + + <_> + 0 4 10 6 -1. + <_> + 0 6 10 2 3. + <_> + + <_> + 8 3 8 14 -1. + <_> + 12 3 4 7 2. + <_> + 8 10 4 7 2. + <_> + + <_> + 4 4 7 15 -1. + <_> + 4 9 7 5 3. + <_> + + <_> + 12 2 6 8 -1. + <_> + 15 2 3 4 2. + <_> + 12 6 3 4 2. + <_> + + <_> + 2 2 6 8 -1. + <_> + 2 2 3 4 2. + <_> + 5 6 3 4 2. + <_> + + <_> + 2 13 18 7 -1. + <_> + 8 13 6 7 3. + <_> + + <_> + 4 3 8 14 -1. + <_> + 4 3 4 7 2. + <_> + 8 10 4 7 2. + <_> + + <_> + 18 1 2 6 -1. + <_> + 18 3 2 2 3. + <_> + + <_> + 9 11 2 3 -1. + <_> + 9 12 2 1 3. + <_> + + <_> + 18 1 2 6 -1. + <_> + 18 3 2 2 3. + <_> + + <_> + 0 1 2 6 -1. + <_> + 0 3 2 2 3. + <_> + + <_> + 1 5 18 6 -1. + <_> + 1 7 18 2 3. + <_> + + <_> + 0 2 6 7 -1. + <_> + 3 2 3 7 2. + <_> + + <_> + 7 3 6 14 -1. + <_> + 7 10 6 7 2. + <_> + + <_> + 3 7 13 10 -1. + <_> + 3 12 13 5 2. + <_> + + <_> + 11 15 2 2 -1. + <_> + 11 16 2 1 2. + <_> + + <_> + 2 11 16 4 -1. + <_> + 2 11 8 2 2. + <_> + 10 13 8 2 2. + <_> + + <_> + 13 7 6 4 -1. + <_> + 16 7 3 2 2. + <_> + 13 9 3 2 2. + <_> + + <_> + 6 10 3 9 -1. + <_> + 6 13 3 3 3. + <_> + + <_> + 14 6 1 6 -1. + <_> + 14 9 1 3 2. + <_> + + <_> + 5 10 4 1 -1. + <_> + 7 10 2 1 2. + <_> + + <_> + 3 8 15 5 -1. + <_> + 8 8 5 5 3. + <_> + + <_> + 1 6 5 4 -1. + <_> + 1 8 5 2 2. + <_> + + <_> + 3 1 17 6 -1. + <_> + 3 3 17 2 3. + <_> + + <_> + 6 7 8 2 -1. + <_> + 10 7 4 2 2. + <_> + + <_> + 9 7 3 2 -1. + <_> + 10 7 1 2 3. + <_> + + <_> + 8 7 3 2 -1. + <_> + 9 7 1 2 3. + <_> + + <_> + 8 9 4 2 -1. + <_> + 8 10 4 1 2. + <_> + + <_> + 8 8 4 3 -1. + <_> + 8 9 4 1 3. + <_> + + <_> + 9 5 6 4 -1. + <_> + 9 5 3 4 2. + <_> + + <_> + 8 13 4 3 -1. + <_> + 8 14 4 1 3. + <_> + + <_> + 4 7 12 6 -1. + <_> + 10 7 6 3 2. + <_> + 4 10 6 3 2. + <_> + + <_> + 8 14 4 3 -1. + <_> + 8 15 4 1 3. + <_> + + <_> + 9 7 3 3 -1. + <_> + 9 8 3 1 3. + <_> + + <_> + 7 4 3 8 -1. + <_> + 8 4 1 8 3. + <_> + + <_> + 10 0 3 6 -1. + <_> + 11 0 1 6 3. + <_> + + <_> + 6 3 4 8 -1. + <_> + 8 3 2 8 2. + <_> + + <_> + 14 3 6 13 -1. + <_> + 14 3 3 13 2. + <_> + + <_> + 8 13 3 6 -1. + <_> + 8 16 3 3 2. + <_> + + <_> + 14 3 6 13 -1. + <_> + 14 3 3 13 2. + <_> + + <_> + 0 7 10 4 -1. + <_> + 0 7 5 2 2. + <_> + 5 9 5 2 2. + <_> + + <_> + 14 3 6 13 -1. + <_> + 14 3 3 13 2. + <_> + + <_> + 0 3 6 13 -1. + <_> + 3 3 3 13 2. + <_> + + <_> + 9 1 4 1 -1. + <_> + 9 1 2 1 2. + <_> + + <_> + 8 0 2 1 -1. + <_> + 9 0 1 1 2. + <_> + + <_> + 10 16 4 4 -1. + <_> + 12 16 2 2 2. + <_> + 10 18 2 2 2. + <_> + + <_> + 9 6 2 3 -1. + <_> + 10 6 1 3 2. + <_> + + <_> + 4 5 12 2 -1. + <_> + 8 5 4 2 3. + <_> + + <_> + 8 7 3 5 -1. + <_> + 9 7 1 5 3. + <_> + + <_> + 6 4 8 6 -1. + <_> + 6 6 8 2 3. + <_> + + <_> + 9 5 2 12 -1. + <_> + 9 11 2 6 2. + <_> + + <_> + 4 6 6 8 -1. + <_> + 4 10 6 4 2. + <_> + + <_> + 12 2 8 5 -1. + <_> + 12 2 4 5 2. + <_> + + <_> + 0 8 18 3 -1. + <_> + 0 9 18 1 3. + <_> + + <_> + 8 12 4 8 -1. + <_> + 8 16 4 4 2. + <_> + + <_> + 0 2 8 5 -1. + <_> + 4 2 4 5 2. + <_> + + <_> + 13 11 3 4 -1. + <_> + 13 13 3 2 2. + <_> + + <_> + 5 11 6 1 -1. + <_> + 7 11 2 1 3. + <_> + + <_> + 11 3 3 1 -1. + <_> + 12 3 1 1 3. + <_> + + <_> + 7 13 5 3 -1. + <_> + 7 14 5 1 3. + <_> + + <_> + 11 11 7 6 -1. + <_> + 11 14 7 3 2. + <_> + + <_> + 2 11 7 6 -1. + <_> + 2 14 7 3 2. + <_> + + <_> + 12 14 2 6 -1. + <_> + 12 16 2 2 3. + <_> + + <_> + 8 14 3 3 -1. + <_> + 8 15 3 1 3. + <_> + + <_> + 11 0 3 5 -1. + <_> + 12 0 1 5 3. + <_> + + <_> + 6 1 4 9 -1. + <_> + 8 1 2 9 2. + <_> + + <_> + 10 3 6 1 -1. + <_> + 12 3 2 1 3. + <_> + + <_> + 8 8 3 4 -1. + <_> + 8 10 3 2 2. + <_> + + <_> + 8 12 4 2 -1. + <_> + 8 13 4 1 2. + <_> + + <_> + 5 18 4 2 -1. + <_> + 5 19 4 1 2. + <_> + + <_> + 2 1 18 6 -1. + <_> + 2 3 18 2 3. + <_> + + <_> + 6 0 3 2 -1. + <_> + 7 0 1 2 3. + <_> + + <_> + 13 8 6 2 -1. + <_> + 16 8 3 1 2. + <_> + 13 9 3 1 2. + <_> + + <_> + 6 10 3 6 -1. + <_> + 6 13 3 3 2. + <_> + + <_> + 0 13 20 4 -1. + <_> + 10 13 10 2 2. + <_> + 0 15 10 2 2. + <_> + + <_> + 7 7 6 5 -1. + <_> + 9 7 2 5 3. + <_> + + <_> + 11 0 2 2 -1. + <_> + 11 1 2 1 2. + <_> + + <_> + 1 8 6 2 -1. + <_> + 1 8 3 1 2. + <_> + 4 9 3 1 2. + <_> + + <_> + 0 2 20 2 -1. + <_> + 10 2 10 1 2. + <_> + 0 3 10 1 2. + <_> + + <_> + 7 14 5 3 -1. + <_> + 7 15 5 1 3. + <_> + + <_> + 7 13 6 6 -1. + <_> + 10 13 3 3 2. + <_> + 7 16 3 3 2. + <_> + + <_> + 9 12 2 3 -1. + <_> + 9 13 2 1 3. + <_> + + <_> + 16 11 1 6 -1. + <_> + 16 13 1 2 3. + <_> + + <_> + 3 11 1 6 -1. + <_> + 3 13 1 2 3. + <_> + + <_> + 4 4 14 12 -1. + <_> + 11 4 7 6 2. + <_> + 4 10 7 6 2. + <_> + + <_> + 5 4 3 3 -1. + <_> + 5 5 3 1 3. + <_> + + <_> + 12 3 3 3 -1. + <_> + 13 3 1 3 3. + <_> + + <_> + 6 6 8 3 -1. + <_> + 6 7 8 1 3. + <_> + + <_> + 12 3 3 3 -1. + <_> + 13 3 1 3 3. + <_> + + <_> + 3 1 4 10 -1. + <_> + 3 1 2 5 2. + <_> + 5 6 2 5 2. + <_> + + <_> + 5 7 10 2 -1. + <_> + 5 7 5 2 2. + <_> + + <_> + 8 7 3 3 -1. + <_> + 9 7 1 3 3. + <_> + + <_> + 15 12 2 3 -1. + <_> + 15 13 2 1 3. + <_> + + <_> + 7 8 3 4 -1. + <_> + 8 8 1 4 3. + <_> + + <_> + 13 4 1 12 -1. + <_> + 13 10 1 6 2. + <_> + + <_> + 4 5 12 12 -1. + <_> + 4 5 6 6 2. + <_> + 10 11 6 6 2. + <_> + + <_> + 7 14 7 3 -1. + <_> + 7 15 7 1 3. + <_> + + <_> + 3 12 2 3 -1. + <_> + 3 13 2 1 3. + <_> + + <_> + 3 2 14 2 -1. + <_> + 10 2 7 1 2. + <_> + 3 3 7 1 2. + <_> + + <_> + 0 1 3 10 -1. + <_> + 1 1 1 10 3. + <_> + + <_> + 9 0 6 5 -1. + <_> + 11 0 2 5 3. + <_> + + <_> + 5 7 6 2 -1. + <_> + 8 7 3 2 2. + <_> + + <_> + 7 1 6 10 -1. + <_> + 7 6 6 5 2. + <_> + + <_> + 1 1 18 3 -1. + <_> + 7 1 6 3 3. + <_> + + <_> + 16 3 3 6 -1. + <_> + 16 5 3 2 3. + <_> + + <_> + 6 3 7 6 -1. + <_> + 6 6 7 3 2. + <_> + + <_> + 4 7 12 2 -1. + <_> + 8 7 4 2 3. + <_> + + <_> + 0 4 17 10 -1. + <_> + 0 9 17 5 2. + <_> + + <_> + 3 4 15 16 -1. + <_> + 3 12 15 8 2. + <_> + + <_> + 7 15 6 4 -1. + <_> + 7 17 6 2 2. + <_> + + <_> + 15 2 4 9 -1. + <_> + 15 2 2 9 2. + <_> + + <_> + 2 3 3 2 -1. + <_> + 2 4 3 1 2. + <_> + + <_> + 13 6 7 9 -1. + <_> + 13 9 7 3 3. + <_> + + <_> + 8 11 4 3 -1. + <_> + 8 12 4 1 3. + <_> + + <_> + 0 2 20 6 -1. + <_> + 10 2 10 3 2. + <_> + 0 5 10 3 2. + <_> + + <_> + 3 2 6 10 -1. + <_> + 3 2 3 5 2. + <_> + 6 7 3 5 2. + <_> + + <_> + 13 10 3 4 -1. + <_> + 13 12 3 2 2. + <_> + + <_> + 4 10 3 4 -1. + <_> + 4 12 3 2 2. + <_> + + <_> + 7 5 6 3 -1. + <_> + 9 5 2 3 3. + <_> + + <_> + 7 6 6 8 -1. + <_> + 7 10 6 4 2. + <_> + + <_> + 0 11 20 6 -1. + <_> + 0 14 20 3 2. + <_> + + <_> + 4 13 4 6 -1. + <_> + 4 13 2 3 2. + <_> + 6 16 2 3 2. + <_> + + <_> + 6 0 8 12 -1. + <_> + 10 0 4 6 2. + <_> + 6 6 4 6 2. + <_> + + <_> + 2 0 15 2 -1. + <_> + 2 1 15 1 2. + <_> + + <_> + 9 12 2 3 -1. + <_> + 9 13 2 1 3. + <_> + + <_> + 3 12 1 2 -1. + <_> + 3 13 1 1 2. + <_> + + <_> + 9 11 2 3 -1. + <_> + 9 12 2 1 3. + <_> + + <_> + 7 3 3 1 -1. + <_> + 8 3 1 1 3. + <_> + + <_> + 17 7 3 6 -1. + <_> + 17 9 3 2 3. + <_> + + <_> + 7 2 3 2 -1. + <_> + 8 2 1 2 3. + <_> + + <_> + 11 4 5 3 -1. + <_> + 11 5 5 1 3. + <_> + + <_> + 4 4 5 3 -1. + <_> + 4 5 5 1 3. + <_> + + <_> + 19 3 1 2 -1. + <_> + 19 4 1 1 2. + <_> + + <_> + 5 5 4 3 -1. + <_> + 5 6 4 1 3. + <_> + + <_> + 17 7 3 6 -1. + <_> + 17 9 3 2 3. + <_> + + <_> + 0 7 3 6 -1. + <_> + 0 9 3 2 3. + <_> + + <_> + 14 2 6 9 -1. + <_> + 14 5 6 3 3. + <_> + + <_> + 0 4 5 6 -1. + <_> + 0 6 5 2 3. + <_> + + <_> + 10 5 6 2 -1. + <_> + 12 5 2 2 3. + <_> + + <_> + 4 5 6 2 -1. + <_> + 6 5 2 2 3. + <_> + + <_> + 8 1 4 6 -1. + <_> + 8 3 4 2 3. + <_> + + <_> + 0 2 3 6 -1. + <_> + 0 4 3 2 3. + <_> + + <_> + 6 6 8 3 -1. + <_> + 6 7 8 1 3. + <_> + + <_> + 0 1 5 9 -1. + <_> + 0 4 5 3 3. + <_> + + <_> + 16 0 4 15 -1. + <_> + 16 0 2 15 2. + <_> + + <_> + 1 10 3 2 -1. + <_> + 1 11 3 1 2. + <_> + + <_> + 14 4 1 10 -1. + <_> + 14 9 1 5 2. + <_> + + <_> + 0 1 4 12 -1. + <_> + 2 1 2 12 2. + <_> + + <_> + 11 11 4 2 -1. + <_> + 11 11 2 2 2. + <_> + + <_> + 5 11 4 2 -1. + <_> + 7 11 2 2 2. + <_> + + <_> + 3 8 15 5 -1. + <_> + 8 8 5 5 3. + <_> + + <_> + 0 0 6 10 -1. + <_> + 3 0 3 10 2. + <_> + + <_> + 11 4 3 2 -1. + <_> + 12 4 1 2 3. + <_> + + <_> + 8 12 3 8 -1. + <_> + 8 16 3 4 2. + <_> + + <_> + 8 14 5 3 -1. + <_> + 8 15 5 1 3. + <_> + + <_> + 7 14 4 3 -1. + <_> + 7 15 4 1 3. + <_> + + <_> + 11 4 3 2 -1. + <_> + 12 4 1 2 3. + <_> + + <_> + 3 15 14 4 -1. + <_> + 3 15 7 2 2. + <_> + 10 17 7 2 2. + <_> + + <_> + 2 2 16 4 -1. + <_> + 10 2 8 2 2. + <_> + 2 4 8 2 2. + <_> + + <_> + 0 8 6 12 -1. + <_> + 3 8 3 12 2. + <_> + + <_> + 5 7 10 2 -1. + <_> + 5 7 5 2 2. + <_> + + <_> + 9 7 2 5 -1. + <_> + 10 7 1 5 2. + <_> + + <_> + 13 7 6 4 -1. + <_> + 16 7 3 2 2. + <_> + 13 9 3 2 2. + <_> + + <_> + 0 13 8 2 -1. + <_> + 0 14 8 1 2. + <_> + + <_> + 13 7 6 4 -1. + <_> + 16 7 3 2 2. + <_> + 13 9 3 2 2. + <_> + + <_> + 1 7 6 4 -1. + <_> + 1 7 3 2 2. + <_> + 4 9 3 2 2. + <_> + + <_> + 12 6 1 12 -1. + <_> + 12 12 1 6 2. + <_> + + <_> + 9 5 2 6 -1. + <_> + 10 5 1 6 2. + <_> + + <_> + 14 12 2 3 -1. + <_> + 14 13 2 1 3. + <_> + + <_> + 4 12 2 3 -1. + <_> + 4 13 2 1 3. + <_> + + <_> + 8 12 4 3 -1. + <_> + 8 13 4 1 3. + <_> + + <_> + 5 2 2 4 -1. + <_> + 5 2 1 2 2. + <_> + 6 4 1 2 2. + <_> + + <_> + 5 5 11 3 -1. + <_> + 5 6 11 1 3. + <_> + + <_> + 7 6 4 12 -1. + <_> + 7 12 4 6 2. + <_> + + <_> + 12 13 8 5 -1. + <_> + 12 13 4 5 2. + <_> + + <_> + 7 6 1 12 -1. + <_> + 7 12 1 6 2. + <_> + + <_> + 1 2 6 3 -1. + <_> + 4 2 3 3 2. + <_> + + <_> + 9 5 6 10 -1. + <_> + 12 5 3 5 2. + <_> + 9 10 3 5 2. + <_> + + <_> + 5 5 8 12 -1. + <_> + 5 5 4 6 2. + <_> + 9 11 4 6 2. + <_> + + <_> + 0 7 20 6 -1. + <_> + 0 9 20 2 3. + <_> + + <_> + 4 2 2 2 -1. + <_> + 4 3 2 1 2. + <_> + + <_> + 4 18 12 2 -1. + <_> + 8 18 4 2 3. + <_> + + <_> + 7 4 4 16 -1. + <_> + 7 12 4 8 2. + <_> + + <_> + 7 6 7 8 -1. + <_> + 7 10 7 4 2. + <_> + + <_> + 6 3 3 1 -1. + <_> + 7 3 1 1 3. + <_> + + <_> + 11 15 2 4 -1. + <_> + 11 17 2 2 2. + <_> + + <_> + 3 5 4 8 -1. + <_> + 3 9 4 4 2. + <_> + + <_> + 7 1 6 12 -1. + <_> + 7 7 6 6 2. + <_> + + <_> + 4 6 6 2 -1. + <_> + 6 6 2 2 3. + <_> + + <_> + 16 4 4 6 -1. + <_> + 16 6 4 2 3. + <_> + + <_> + 3 3 5 2 -1. + <_> + 3 4 5 1 2. + <_> + + <_> + 9 11 2 3 -1. + <_> + 9 12 2 1 3. + <_> + + <_> + 2 16 4 2 -1. + <_> + 2 17 4 1 2. + <_> + + <_> + 7 13 6 6 -1. + <_> + 10 13 3 3 2. + <_> + 7 16 3 3 2. + <_> + + <_> + 7 0 3 4 -1. + <_> + 8 0 1 4 3. + <_> + + <_> + 8 15 4 3 -1. + <_> + 8 16 4 1 3. + <_> + + <_> + 0 4 4 6 -1. + <_> + 0 6 4 2 3. + <_> + + <_> + 5 6 12 3 -1. + <_> + 9 6 4 3 3. + <_> + + <_> + 7 6 6 14 -1. + <_> + 9 6 2 14 3. + <_> + + <_> + 9 7 3 3 -1. + <_> + 10 7 1 3 3. + <_> + + <_> + 6 12 2 4 -1. + <_> + 6 14 2 2 2. + <_> + + <_> + 10 12 7 6 -1. + <_> + 10 14 7 2 3. + <_> + + <_> + 1 0 15 2 -1. + <_> + 1 1 15 1 2. + <_> + + <_> + 14 0 6 6 -1. + <_> + 14 0 3 6 2. + <_> + + <_> + 5 3 3 1 -1. + <_> + 6 3 1 1 3. + <_> + + <_> + 14 0 6 6 -1. + <_> + 14 0 3 6 2. + <_> + + <_> + 0 3 20 10 -1. + <_> + 0 8 20 5 2. + <_> + + <_> + 14 0 6 6 -1. + <_> + 14 0 3 6 2. + <_> + + <_> + 0 0 6 6 -1. + <_> + 3 0 3 6 2. + <_> + + <_> + 19 15 1 2 -1. + <_> + 19 16 1 1 2. + <_> + + <_> + 0 2 4 8 -1. + <_> + 2 2 2 8 2. + <_> + + <_> + 2 1 18 4 -1. + <_> + 11 1 9 2 2. + <_> + 2 3 9 2 2. + <_> + + <_> + 8 12 1 2 -1. + <_> + 8 13 1 1 2. + <_> + + <_> + 5 2 10 6 -1. + <_> + 10 2 5 3 2. + <_> + 5 5 5 3 2. + <_> + + <_> + 9 7 2 4 -1. + <_> + 10 7 1 4 2. + <_> + + <_> + 9 7 3 3 -1. + <_> + 10 7 1 3 3. + <_> + + <_> + 4 5 12 8 -1. + <_> + 8 5 4 8 3. + <_> + + <_> + 15 15 4 3 -1. + <_> + 15 16 4 1 3. + <_> + + <_> + 8 18 3 1 -1. + <_> + 9 18 1 1 3. + <_> + + <_> + 9 13 4 3 -1. + <_> + 9 14 4 1 3. + <_> + + <_> + 7 13 4 3 -1. + <_> + 7 14 4 1 3. + <_> + + <_> + 19 15 1 2 -1. + <_> + 19 16 1 1 2. + <_> + + <_> + 0 15 8 4 -1. + <_> + 0 17 8 2 2. + <_> + + <_> + 9 3 6 4 -1. + <_> + 11 3 2 4 3. + <_> + + <_> + 8 14 4 3 -1. + <_> + 8 15 4 1 3. + <_> + + <_> + 3 14 14 6 -1. + <_> + 3 16 14 2 3. + <_> + + <_> + 6 3 6 6 -1. + <_> + 6 6 6 3 2. + <_> + + <_> + 5 11 10 6 -1. + <_> + 5 14 10 3 2. + <_> + + <_> + 3 10 3 4 -1. + <_> + 4 10 1 4 3. + <_> + + <_> + 13 9 2 2 -1. + <_> + 13 9 1 2 2. + <_> + + <_> + 5 3 6 4 -1. + <_> + 7 3 2 4 3. + <_> + + <_> + 9 7 3 3 -1. + <_> + 10 7 1 3 3. + <_> + + <_> + 2 12 2 3 -1. + <_> + 2 13 2 1 3. + <_> + + <_> + 9 8 3 12 -1. + <_> + 9 12 3 4 3. + <_> + + <_> + 3 14 4 6 -1. + <_> + 3 14 2 3 2. + <_> + 5 17 2 3 2. + <_> + + <_> + 16 15 2 2 -1. + <_> + 16 16 2 1 2. + <_> + + <_> + 2 15 2 2 -1. + <_> + 2 16 2 1 2. + <_> + + <_> + 8 12 4 3 -1. + <_> + 8 13 4 1 3. + <_> + + <_> + 0 7 20 1 -1. + <_> + 10 7 10 1 2. + <_> + + <_> + 7 6 8 3 -1. + <_> + 7 6 4 3 2. + <_> + + <_> + 5 7 8 2 -1. + <_> + 9 7 4 2 2. + <_> + + <_> + 9 7 3 5 -1. + <_> + 10 7 1 5 3. + <_> + + <_> + 8 7 3 5 -1. + <_> + 9 7 1 5 3. + <_> + + <_> + 11 1 3 5 -1. + <_> + 12 1 1 5 3. + <_> + + <_> + 6 2 3 6 -1. + <_> + 7 2 1 6 3. + <_> + + <_> + 14 14 6 5 -1. + <_> + 14 14 3 5 2. + <_> + + <_> + 9 8 2 2 -1. + <_> + 9 9 2 1 2. + <_> + + <_> + 10 7 1 3 -1. + <_> + 10 8 1 1 3. + <_> + + <_> + 6 6 2 2 -1. + <_> + 6 6 1 1 2. + <_> + 7 7 1 1 2. + <_> + + <_> + 2 11 18 4 -1. + <_> + 11 11 9 2 2. + <_> + 2 13 9 2 2. + <_> + + <_> + 6 6 2 2 -1. + <_> + 6 6 1 1 2. + <_> + 7 7 1 1 2. + <_> + + <_> + 0 15 20 2 -1. + <_> + 0 16 20 1 2. + <_> + + <_> + 4 14 2 3 -1. + <_> + 4 15 2 1 3. + <_> + + <_> + 8 14 4 3 -1. + <_> + 8 15 4 1 3. + <_> + + <_> + 8 7 2 3 -1. + <_> + 8 8 2 1 3. + <_> + + <_> + 9 10 2 3 -1. + <_> + 9 11 2 1 3. + <_> + + <_> + 5 4 10 4 -1. + <_> + 5 6 10 2 2. + <_> + + <_> + 9 7 6 4 -1. + <_> + 12 7 3 2 2. + <_> + 9 9 3 2 2. + <_> + + <_> + 4 7 3 6 -1. + <_> + 4 9 3 2 3. + <_> + + <_> + 11 15 4 4 -1. + <_> + 13 15 2 2 2. + <_> + 11 17 2 2 2. + <_> + + <_> + 7 8 4 2 -1. + <_> + 7 9 4 1 2. + <_> + + <_> + 13 1 4 3 -1. + <_> + 13 1 2 3 2. + <_> + + <_> + 5 15 4 4 -1. + <_> + 5 15 2 2 2. + <_> + 7 17 2 2 2. + <_> + + <_> + 9 5 4 7 -1. + <_> + 9 5 2 7 2. + <_> + + <_> + 5 6 8 3 -1. + <_> + 9 6 4 3 2. + <_> + + <_> + 9 9 2 2 -1. + <_> + 9 10 2 1 2. + <_> + + <_> + 7 15 5 3 -1. + <_> + 7 16 5 1 3. + <_> + + <_> + 11 10 4 3 -1. + <_> + 11 10 2 3 2. + <_> + + <_> + 6 9 8 10 -1. + <_> + 6 14 8 5 2. + <_> + + <_> + 10 11 6 2 -1. + <_> + 10 11 3 2 2. + <_> + + <_> + 4 11 6 2 -1. + <_> + 7 11 3 2 2. + <_> + + <_> + 11 3 8 1 -1. + <_> + 11 3 4 1 2. + <_> + + <_> + 6 3 3 2 -1. + <_> + 7 3 1 2 3. + <_> + + <_> + 14 5 6 5 -1. + <_> + 14 5 3 5 2. + <_> + + <_> + 7 5 2 12 -1. + <_> + 7 11 2 6 2. + <_> + + <_> + 8 11 4 3 -1. + <_> + 8 12 4 1 3. + <_> + + <_> + 4 1 2 3 -1. + <_> + 5 1 1 3 2. + <_> + + <_> + 18 3 2 6 -1. + <_> + 18 5 2 2 3. + <_> + + <_> + 0 3 2 6 -1. + <_> + 0 5 2 2 3. + <_> + + <_> + 9 12 2 3 -1. + <_> + 9 13 2 1 3. + <_> + + <_> + 7 13 4 3 -1. + <_> + 7 14 4 1 3. + <_> + + <_> + 18 0 2 6 -1. + <_> + 18 2 2 2 3. + <_> + + <_> + 0 0 2 6 -1. + <_> + 0 2 2 2 3. + <_> + + <_> + 8 14 6 3 -1. + <_> + 8 15 6 1 3. + <_> + + <_> + 7 4 2 4 -1. + <_> + 8 4 1 4 2. + <_> + + <_> + 8 5 4 6 -1. + <_> + 8 7 4 2 3. + <_> + + <_> + 6 4 2 2 -1. + <_> + 7 4 1 2 2. + <_> + + <_> + 3 14 14 4 -1. + <_> + 10 14 7 2 2. + <_> + 3 16 7 2 2. + <_> + + <_> + 6 15 6 2 -1. + <_> + 6 15 3 1 2. + <_> + 9 16 3 1 2. + <_> + + <_> + 14 15 6 2 -1. + <_> + 14 16 6 1 2. + <_> + + <_> + 2 12 12 8 -1. + <_> + 2 16 12 4 2. + <_> + + <_> + 7 7 7 2 -1. + <_> + 7 8 7 1 2. + <_> + + <_> + 0 2 18 2 -1. + <_> + 0 3 18 1 2. + <_> + + <_> + 9 6 2 5 -1. + <_> + 9 6 1 5 2. + <_> + + <_> + 7 5 3 8 -1. + <_> + 8 5 1 8 3. + <_> + + <_> + 9 6 3 4 -1. + <_> + 10 6 1 4 3. + <_> + + <_> + 4 13 3 2 -1. + <_> + 4 14 3 1 2. + <_> + + <_> + 9 4 6 3 -1. + <_> + 11 4 2 3 3. + <_> + + <_> + 5 4 6 3 -1. + <_> + 7 4 2 3 3. + <_> + + <_> + 14 11 5 2 -1. + <_> + 14 12 5 1 2. + <_> + + <_> + 1 2 6 9 -1. + <_> + 3 2 2 9 3. + <_> + + <_> + 14 6 6 13 -1. + <_> + 14 6 3 13 2. + <_> + + <_> + 3 6 14 8 -1. + <_> + 3 6 7 4 2. + <_> + 10 10 7 4 2. + <_> + + <_> + 16 0 4 11 -1. + <_> + 16 0 2 11 2. + <_> + + <_> + 3 4 12 12 -1. + <_> + 3 4 6 6 2. + <_> + 9 10 6 6 2. + <_> + + <_> + 11 4 5 3 -1. + <_> + 11 5 5 1 3. + <_> + + <_> + 4 11 4 2 -1. + <_> + 4 12 4 1 2. + <_> + + <_> + 10 7 2 2 -1. + <_> + 10 7 1 2 2. + <_> + + <_> + 8 7 2 2 -1. + <_> + 9 7 1 2 2. + <_> + + <_> + 9 17 3 2 -1. + <_> + 10 17 1 2 3. + <_> + + <_> + 5 6 3 3 -1. + <_> + 5 7 3 1 3. + <_> + + <_> + 10 0 3 3 -1. + <_> + 11 0 1 3 3. + <_> + + <_> + 5 6 6 2 -1. + <_> + 5 6 3 1 2. + <_> + 8 7 3 1 2. + <_> + + <_> + 12 16 4 3 -1. + <_> + 12 17 4 1 3. + <_> + + <_> + 3 12 3 2 -1. + <_> + 3 13 3 1 2. + <_> + + <_> + 9 12 3 2 -1. + <_> + 9 13 3 1 2. + <_> + + <_> + 1 11 16 4 -1. + <_> + 1 11 8 2 2. + <_> + 9 13 8 2 2. + <_> + + <_> + 12 4 3 3 -1. + <_> + 12 5 3 1 3. + <_> + + <_> + 4 4 5 3 -1. + <_> + 4 5 5 1 3. + <_> + + <_> + 12 16 4 3 -1. + <_> + 12 17 4 1 3. + <_> + + <_> + 5 4 3 3 -1. + <_> + 5 5 3 1 3. + <_> + + <_> + 9 0 2 2 -1. + <_> + 9 1 2 1 2. + <_> + + <_> + 8 9 4 2 -1. + <_> + 8 10 4 1 2. + <_> + + <_> + 8 8 4 3 -1. + <_> + 8 9 4 1 3. + <_> + + <_> + 0 13 6 3 -1. + <_> + 2 13 2 3 3. + <_> + + <_> + 16 14 3 2 -1. + <_> + 16 15 3 1 2. + <_> + + <_> + 1 18 18 2 -1. + <_> + 7 18 6 2 3. + <_> + + <_> + 16 14 3 2 -1. + <_> + 16 15 3 1 2. + <_> + + <_> + 1 14 3 2 -1. + <_> + 1 15 3 1 2. + <_> + + <_> + 7 14 6 3 -1. + <_> + 7 15 6 1 3. + <_> + + <_> + 5 14 8 3 -1. + <_> + 5 15 8 1 3. + <_> + + <_> + 10 6 4 14 -1. + <_> + 10 6 2 14 2. + <_> + + <_> + 6 6 4 14 -1. + <_> + 8 6 2 14 2. + <_> + + <_> + 13 5 2 3 -1. + <_> + 13 6 2 1 3. + <_> + + <_> + 7 16 6 1 -1. + <_> + 9 16 2 1 3. + <_> + + <_> + 9 12 3 3 -1. + <_> + 9 13 3 1 3. + <_> + + <_> + 7 0 3 3 -1. + <_> + 8 0 1 3 3. + <_> + + <_> + 4 0 16 18 -1. + <_> + 4 9 16 9 2. + <_> + + <_> + 1 1 16 14 -1. + <_> + 1 8 16 7 2. + <_> + + <_> + 3 9 15 4 -1. + <_> + 8 9 5 4 3. + <_> + + <_> + 6 12 7 3 -1. + <_> + 6 13 7 1 3. + <_> + + <_> + 14 15 2 3 -1. + <_> + 14 16 2 1 3. + <_> + + <_> + 2 3 16 14 -1. + <_> + 2 3 8 7 2. + <_> + 10 10 8 7 2. + <_> + + <_> + 16 2 4 18 -1. + <_> + 18 2 2 9 2. + <_> + 16 11 2 9 2. + <_> + + <_> + 4 15 2 3 -1. + <_> + 4 16 2 1 3. + <_> + + <_> + 16 2 4 18 -1. + <_> + 18 2 2 9 2. + <_> + 16 11 2 9 2. + <_> + + <_> + 1 1 8 3 -1. + <_> + 1 2 8 1 3. + <_> + + <_> + 8 11 4 3 -1. + <_> + 8 12 4 1 3. + <_> + + <_> + 5 11 5 9 -1. + <_> + 5 14 5 3 3. + <_> + + <_> + 16 0 4 11 -1. + <_> + 16 0 2 11 2. + <_> + + <_> + 7 0 6 1 -1. + <_> + 9 0 2 1 3. + <_> + + <_> + 16 3 3 7 -1. + <_> + 17 3 1 7 3. + <_> + + <_> + 1 3 3 7 -1. + <_> + 2 3 1 7 3. + <_> + + <_> + 7 8 6 12 -1. + <_> + 7 12 6 4 3. + <_> + + <_> + 0 0 4 11 -1. + <_> + 2 0 2 11 2. + <_> + + <_> + 14 0 6 20 -1. + <_> + 14 0 3 20 2. + <_> + + <_> + 0 3 1 2 -1. + <_> + 0 4 1 1 2. + <_> + + <_> + 5 5 10 8 -1. + <_> + 10 5 5 4 2. + <_> + 5 9 5 4 2. + <_> + + <_> + 4 7 12 4 -1. + <_> + 4 7 6 2 2. + <_> + 10 9 6 2 2. + <_> + + <_> + 2 1 6 4 -1. + <_> + 5 1 3 4 2. + <_> + + <_> + 9 7 6 4 -1. + <_> + 12 7 3 2 2. + <_> + 9 9 3 2 2. + <_> + + <_> + 5 6 2 6 -1. + <_> + 5 9 2 3 2. + <_> + + <_> + 9 16 6 4 -1. + <_> + 12 16 3 2 2. + <_> + 9 18 3 2 2. + <_> + + <_> + 9 4 2 12 -1. + <_> + 9 10 2 6 2. + <_> + + <_> + 7 1 6 18 -1. + <_> + 9 1 2 18 3. + <_> + + <_> + 4 12 12 2 -1. + <_> + 8 12 4 2 3. + <_> + + <_> + 8 8 6 2 -1. + <_> + 8 9 6 1 2. + <_> + + <_> + 8 0 3 6 -1. + <_> + 9 0 1 6 3. + <_> + + <_> + 11 18 3 2 -1. + <_> + 11 19 3 1 2. + <_> + + <_> + 1 1 17 4 -1. + <_> + 1 3 17 2 2. + <_> + + <_> + 11 8 4 12 -1. + <_> + 11 8 2 12 2. + <_> + + <_> + 8 14 4 3 -1. + <_> + 8 15 4 1 3. + <_> + + <_> + 12 3 2 17 -1. + <_> + 12 3 1 17 2. + <_> + + <_> + 4 7 6 1 -1. + <_> + 6 7 2 1 3. + <_> + + <_> + 18 3 2 3 -1. + <_> + 18 4 2 1 3. + <_> + + <_> + 8 4 3 4 -1. + <_> + 8 6 3 2 2. + <_> + + <_> + 4 5 12 10 -1. + <_> + 4 10 12 5 2. + <_> + + <_> + 5 18 4 2 -1. + <_> + 7 18 2 2 2. + <_> + + <_> + 17 2 3 6 -1. + <_> + 17 4 3 2 3. + <_> + + <_> + 7 7 6 6 -1. + <_> + 9 7 2 6 3. + <_> + + <_> + 17 2 3 6 -1. + <_> + 17 4 3 2 3. + <_> + + <_> + 8 0 3 4 -1. + <_> + 9 0 1 4 3. + <_> + + <_> + 9 14 2 3 -1. + <_> + 9 15 2 1 3. + <_> + + <_> + 0 12 6 3 -1. + <_> + 0 13 6 1 3. + <_> + + <_> + 8 14 4 3 -1. + <_> + 8 15 4 1 3. + <_> + + <_> + 3 12 2 3 -1. + <_> + 3 13 2 1 3. + <_> + + <_> + 5 6 12 7 -1. + <_> + 9 6 4 7 3. + <_> + + <_> + 0 2 3 6 -1. + <_> + 0 4 3 2 3. + <_> + + <_> + 14 6 1 3 -1. + <_> + 14 7 1 1 3. + <_> + + <_> + 2 0 3 14 -1. + <_> + 3 0 1 14 3. + <_> + + <_> + 12 14 5 6 -1. + <_> + 12 16 5 2 3. + <_> + + <_> + 4 14 5 6 -1. + <_> + 4 16 5 2 3. + <_> + + <_> + 11 10 2 2 -1. + <_> + 12 10 1 1 2. + <_> + 11 11 1 1 2. + <_> + + <_> + 5 0 3 14 -1. + <_> + 6 0 1 14 3. + <_> + + <_> + 10 15 2 3 -1. + <_> + 10 16 2 1 3. + <_> + + <_> + 0 2 2 3 -1. + <_> + 0 3 2 1 3. + <_> + + <_> + 5 11 12 6 -1. + <_> + 5 14 12 3 2. + <_> + + <_> + 6 11 3 9 -1. + <_> + 6 14 3 3 3. + <_> + + <_> + 11 10 2 2 -1. + <_> + 12 10 1 1 2. + <_> + 11 11 1 1 2. + <_> + + <_> + 5 6 1 3 -1. + <_> + 5 7 1 1 3. + <_> + + <_> + 4 9 13 3 -1. + <_> + 4 10 13 1 3. + <_> + + <_> + 1 7 15 6 -1. + <_> + 6 7 5 6 3. + <_> + + <_> + 4 5 12 6 -1. + <_> + 8 5 4 6 3. + <_> + + <_> + 8 10 4 3 -1. + <_> + 8 11 4 1 3. + <_> + + <_> + 15 14 1 3 -1. + <_> + 15 15 1 1 3. + <_> + + <_> + 1 11 5 3 -1. + <_> + 1 12 5 1 3. + <_> + + <_> + 7 1 7 12 -1. + <_> + 7 7 7 6 2. + <_> + + <_> + 0 1 6 10 -1. + <_> + 0 1 3 5 2. + <_> + 3 6 3 5 2. + <_> + + <_> + 16 1 4 3 -1. + <_> + 16 2 4 1 3. + <_> + + <_> + 5 5 2 3 -1. + <_> + 5 6 2 1 3. + <_> + + <_> + 12 2 3 5 -1. + <_> + 13 2 1 5 3. + <_> + + <_> + 0 3 4 6 -1. + <_> + 0 5 4 2 3. + <_> + + <_> + 8 12 4 2 -1. + <_> + 8 13 4 1 2. + <_> + + <_> + 8 18 3 1 -1. + <_> + 9 18 1 1 3. + <_> + + <_> + 11 10 2 2 -1. + <_> + 12 10 1 1 2. + <_> + 11 11 1 1 2. + <_> + + <_> + 7 10 2 2 -1. + <_> + 7 10 1 1 2. + <_> + 8 11 1 1 2. + <_> + + <_> + 11 11 4 4 -1. + <_> + 11 13 4 2 2. + <_> + + <_> + 8 12 3 8 -1. + <_> + 9 12 1 8 3. + <_> + + <_> + 13 0 6 3 -1. + <_> + 13 1 6 1 3. + <_> + + <_> + 8 8 3 4 -1. + <_> + 9 8 1 4 3. + <_> + + <_> + 5 7 10 10 -1. + <_> + 10 7 5 5 2. + <_> + 5 12 5 5 2. + <_> + + <_> + 3 18 8 2 -1. + <_> + 3 18 4 1 2. + <_> + 7 19 4 1 2. + <_> + + <_> + 10 2 6 8 -1. + <_> + 12 2 2 8 3. + <_> + + <_> + 4 2 6 8 -1. + <_> + 6 2 2 8 3. + <_> + + <_> + 11 0 3 7 -1. + <_> + 12 0 1 7 3. + <_> + + <_> + 7 11 2 1 -1. + <_> + 8 11 1 1 2. + <_> + + <_> + 15 14 1 3 -1. + <_> + 15 15 1 1 3. + <_> + + <_> + 7 15 2 2 -1. + <_> + 7 15 1 1 2. + <_> + 8 16 1 1 2. + <_> + + <_> + 15 14 1 3 -1. + <_> + 15 15 1 1 3. + <_> + + <_> + 6 0 3 7 -1. + <_> + 7 0 1 7 3. + <_> + + <_> + 18 1 2 7 -1. + <_> + 18 1 1 7 2. + <_> + + <_> + 2 0 8 20 -1. + <_> + 2 10 8 10 2. + <_> + + <_> + 3 0 15 6 -1. + <_> + 3 2 15 2 3. + <_> + + <_> + 4 3 12 2 -1. + <_> + 4 4 12 1 2. + <_> + + <_> + 16 0 4 5 -1. + <_> + 16 0 2 5 2. + <_> + + <_> + 7 0 3 4 -1. + <_> + 8 0 1 4 3. + <_> + + <_> + 16 0 4 5 -1. + <_> + 16 0 2 5 2. + <_> + + <_> + 1 7 6 13 -1. + <_> + 3 7 2 13 3. + <_> + + <_> + 16 0 4 5 -1. + <_> + 16 0 2 5 2. + <_> + + <_> + 0 0 4 5 -1. + <_> + 2 0 2 5 2. + <_> + + <_> + 14 12 3 6 -1. + <_> + 14 14 3 2 3. + <_> + + <_> + 3 12 3 6 -1. + <_> + 3 14 3 2 3. + <_> + + <_> + 16 1 4 3 -1. + <_> + 16 2 4 1 3. + <_> + + <_> + 8 7 2 10 -1. + <_> + 8 7 1 5 2. + <_> + 9 12 1 5 2. + <_> + + <_> + 11 11 4 4 -1. + <_> + 11 13 4 2 2. + <_> + + <_> + 0 1 4 3 -1. + <_> + 0 2 4 1 3. + <_> + + <_> + 13 4 1 3 -1. + <_> + 13 5 1 1 3. + <_> + + <_> + 7 15 3 5 -1. + <_> + 8 15 1 5 3. + <_> + + <_> + 9 7 3 5 -1. + <_> + 10 7 1 5 3. + <_> + + <_> + 8 7 3 5 -1. + <_> + 9 7 1 5 3. + <_> + + <_> + 10 6 4 14 -1. + <_> + 10 6 2 14 2. + <_> + + <_> + 0 5 5 6 -1. + <_> + 0 7 5 2 3. + <_> + + <_> + 9 5 6 4 -1. + <_> + 9 5 3 4 2. + <_> + + <_> + 0 0 18 10 -1. + <_> + 6 0 6 10 3. + <_> + + <_> + 10 6 4 14 -1. + <_> + 10 6 2 14 2. + <_> + + <_> + 6 6 4 14 -1. + <_> + 8 6 2 14 2. + <_> + + <_> + 13 4 1 3 -1. + <_> + 13 5 1 1 3. + <_> + + <_> + 5 1 2 3 -1. + <_> + 6 1 1 3 2. + <_> + + <_> + 18 1 2 18 -1. + <_> + 19 1 1 9 2. + <_> + 18 10 1 9 2. + <_> + + <_> + 2 1 4 3 -1. + <_> + 2 2 4 1 3. + <_> + + <_> + 18 1 2 18 -1. + <_> + 19 1 1 9 2. + <_> + 18 10 1 9 2. + <_> + + <_> + 1 14 4 6 -1. + <_> + 1 14 2 3 2. + <_> + 3 17 2 3 2. + <_> + + <_> + 10 11 7 6 -1. + <_> + 10 13 7 2 3. + <_> + + <_> + 0 10 6 10 -1. + <_> + 0 10 3 5 2. + <_> + 3 15 3 5 2. + <_> + + <_> + 11 0 3 4 -1. + <_> + 12 0 1 4 3. + <_> + + <_> + 5 10 5 6 -1. + <_> + 5 13 5 3 2. + <_> + + <_> + 14 6 1 8 -1. + <_> + 14 10 1 4 2. + <_> + + <_> + 1 7 18 6 -1. + <_> + 1 7 9 3 2. + <_> + 10 10 9 3 2. + <_> + + <_> + 9 7 2 2 -1. + <_> + 9 7 1 2 2. + <_> + + <_> + 5 9 4 5 -1. + <_> + 7 9 2 5 2. + <_> + + <_> + 7 6 6 3 -1. + <_> + 9 6 2 3 3. + <_> + + <_> + 1 0 18 4 -1. + <_> + 7 0 6 4 3. + <_> + + <_> + 7 15 2 4 -1. + <_> + 7 17 2 2 2. + <_> + + <_> + 1 0 19 9 -1. + <_> + 1 3 19 3 3. + <_> + + <_> + 3 7 3 6 -1. + <_> + 3 9 3 2 3. + <_> + + <_> + 13 7 4 4 -1. + <_> + 15 7 2 2 2. + <_> + 13 9 2 2 2. + <_> + + <_> + 3 7 4 4 -1. + <_> + 3 7 2 2 2. + <_> + 5 9 2 2 2. + <_> + + <_> + 9 6 10 8 -1. + <_> + 9 10 10 4 2. + <_> + + <_> + 3 8 14 12 -1. + <_> + 3 14 14 6 2. + <_> + + <_> + 6 5 10 12 -1. + <_> + 11 5 5 6 2. + <_> + 6 11 5 6 2. + <_> + + <_> + 9 11 2 3 -1. + <_> + 9 12 2 1 3. + <_> + + <_> + 9 5 6 5 -1. + <_> + 9 5 3 5 2. + <_> + + <_> + 9 4 2 4 -1. + <_> + 9 6 2 2 2. + <_> + + <_> + 9 5 6 5 -1. + <_> + 9 5 3 5 2. + <_> + + <_> + 5 5 6 5 -1. + <_> + 8 5 3 5 2. + <_> + + <_> + 11 2 6 1 -1. + <_> + 13 2 2 1 3. + <_> + + <_> + 3 2 6 1 -1. + <_> + 5 2 2 1 3. + <_> + + <_> + 13 5 2 3 -1. + <_> + 13 6 2 1 3. + <_> + + <_> + 0 10 1 4 -1. + <_> + 0 12 1 2 2. + <_> + + <_> + 13 5 2 3 -1. + <_> + 13 6 2 1 3. + <_> + + <_> + 8 18 3 2 -1. + <_> + 9 18 1 2 3. + <_> + + <_> + 6 15 9 2 -1. + <_> + 6 16 9 1 2. + <_> + + <_> + 8 14 4 3 -1. + <_> + 8 15 4 1 3. + <_> + + <_> + 18 4 2 4 -1. + <_> + 18 6 2 2 2. + <_> + + <_> + 5 5 2 3 -1. + <_> + 5 6 2 1 3. + <_> + + <_> + 15 16 3 2 -1. + <_> + 15 17 3 1 2. + <_> + + <_> + 0 0 3 9 -1. + <_> + 0 3 3 3 3. + <_> + + <_> + 9 7 3 3 -1. + <_> + 9 8 3 1 3. + <_> + + <_> + 8 7 3 3 -1. + <_> + 8 8 3 1 3. + <_> + + <_> + 9 5 2 6 -1. + <_> + 9 5 1 6 2. + <_> + + <_> + 8 6 3 4 -1. + <_> + 9 6 1 4 3. + <_> + + <_> + 7 6 8 12 -1. + <_> + 11 6 4 6 2. + <_> + 7 12 4 6 2. + <_> + + <_> + 5 6 8 12 -1. + <_> + 5 6 4 6 2. + <_> + 9 12 4 6 2. + <_> + + <_> + 12 4 3 3 -1. + <_> + 12 5 3 1 3. + <_> + + <_> + 2 16 3 2 -1. + <_> + 2 17 3 1 2. + <_> + + <_> + 12 4 3 3 -1. + <_> + 12 5 3 1 3. + <_> + + <_> + 2 12 6 6 -1. + <_> + 2 14 6 2 3. + <_> + + <_> + 7 13 6 3 -1. + <_> + 7 14 6 1 3. + <_> + + <_> + 6 14 6 3 -1. + <_> + 6 15 6 1 3. + <_> + + <_> + 14 15 5 3 -1. + <_> + 14 16 5 1 3. + <_> + + <_> + 5 4 3 3 -1. + <_> + 5 5 3 1 3. + <_> + + <_> + 14 15 5 3 -1. + <_> + 14 16 5 1 3. + <_> + + <_> + 5 3 6 2 -1. + <_> + 7 3 2 2 3. + <_> + + <_> + 8 15 4 3 -1. + <_> + 8 16 4 1 3. + <_> + + <_> + 1 15 5 3 -1. + <_> + 1 16 5 1 3. + <_> + + <_> + 8 13 4 6 -1. + <_> + 10 13 2 3 2. + <_> + 8 16 2 3 2. + <_> + + <_> + 7 8 3 3 -1. + <_> + 8 8 1 3 3. + <_> + + <_> + 12 0 5 4 -1. + <_> + 12 2 5 2 2. + <_> + + <_> + 0 2 20 2 -1. + <_> + 0 2 10 1 2. + <_> + 10 3 10 1 2. + <_> + + <_> + 1 0 18 4 -1. + <_> + 7 0 6 4 3. + <_> + + <_> + 4 3 6 1 -1. + <_> + 6 3 2 1 3. + <_> + + <_> + 4 18 13 2 -1. + <_> + 4 19 13 1 2. + <_> + + <_> + 2 10 3 6 -1. + <_> + 2 12 3 2 3. + <_> + + <_> + 14 12 6 8 -1. + <_> + 17 12 3 4 2. + <_> + 14 16 3 4 2. + <_> + + <_> + 4 13 10 6 -1. + <_> + 4 13 5 3 2. + <_> + 9 16 5 3 2. + <_> + + <_> + 14 12 1 2 -1. + <_> + 14 13 1 1 2. + <_> + + <_> + 8 13 4 3 -1. + <_> + 8 14 4 1 3. + <_> + + <_> + 14 12 2 2 -1. + <_> + 14 13 2 1 2. + <_> + + <_> + 4 12 2 2 -1. + <_> + 4 13 2 1 2. + <_> + + <_> + 8 12 9 2 -1. + <_> + 8 13 9 1 2. + <_> + + <_> + 9 14 2 3 -1. + <_> + 9 15 2 1 3. + <_> + + <_> + 11 10 3 6 -1. + <_> + 11 13 3 3 2. + <_> + + <_> + 5 6 9 12 -1. + <_> + 5 12 9 6 2. + <_> + + <_> + 11 10 3 6 -1. + <_> + 11 13 3 3 2. + <_> + + <_> + 6 10 3 6 -1. + <_> + 6 13 3 3 2. + <_> + + <_> + 5 4 11 3 -1. + <_> + 5 5 11 1 3. + <_> + + <_> + 7 1 5 10 -1. + <_> + 7 6 5 5 2. + <_> + + <_> + 2 8 18 2 -1. + <_> + 2 9 18 1 2. + <_> + + <_> + 7 17 5 3 -1. + <_> + 7 18 5 1 3. + <_> + + <_> + 5 9 12 1 -1. + <_> + 9 9 4 1 3. + <_> + + <_> + 0 14 6 6 -1. + <_> + 0 14 3 3 2. + <_> + 3 17 3 3 2. + <_> + + <_> + 5 9 12 1 -1. + <_> + 9 9 4 1 3. + <_> + + <_> + 3 9 12 1 -1. + <_> + 7 9 4 1 3. + <_> + + <_> + 14 10 6 7 -1. + <_> + 14 10 3 7 2. + <_> + + <_> + 1 0 16 2 -1. + <_> + 1 1 16 1 2. + <_> + + <_> + 10 9 10 9 -1. + <_> + 10 12 10 3 3. + <_> + + <_> + 0 1 10 2 -1. + <_> + 5 1 5 2 2. + <_> + + <_> + 17 3 2 3 -1. + <_> + 17 4 2 1 3. + <_> + + <_> + 1 3 2 3 -1. + <_> + 1 4 2 1 3. + <_> + + <_> + 9 7 3 6 -1. + <_> + 10 7 1 6 3. + <_> + + <_> + 6 5 4 3 -1. + <_> + 8 5 2 3 2. + <_> + + <_> + 7 5 6 6 -1. + <_> + 9 5 2 6 3. + <_> + + <_> + 3 4 12 12 -1. + <_> + 3 4 6 6 2. + <_> + 9 10 6 6 2. + <_> + + <_> + 9 2 6 15 -1. + <_> + 11 2 2 15 3. + <_> + + <_> + 2 2 6 17 -1. + <_> + 4 2 2 17 3. + <_> + + <_> + 14 10 6 7 -1. + <_> + 14 10 3 7 2. + <_> + + <_> + 0 10 6 7 -1. + <_> + 3 10 3 7 2. + <_> + + <_> + 9 2 6 15 -1. + <_> + 11 2 2 15 3. + <_> + + <_> + 5 2 6 15 -1. + <_> + 7 2 2 15 3. + <_> + + <_> + 17 9 3 6 -1. + <_> + 17 11 3 2 3. + <_> + + <_> + 6 7 6 6 -1. + <_> + 8 7 2 6 3. + <_> + + <_> + 1 10 18 6 -1. + <_> + 10 10 9 3 2. + <_> + 1 13 9 3 2. + <_> + + <_> + 0 9 10 9 -1. + <_> + 0 12 10 3 3. + <_> + + <_> + 8 15 4 3 -1. + <_> + 8 16 4 1 3. + <_> + + <_> + 5 12 3 4 -1. + <_> + 5 14 3 2 2. + <_> + + <_> + 3 3 16 12 -1. + <_> + 3 9 16 6 2. + <_> + + <_> + 1 1 12 12 -1. + <_> + 1 1 6 6 2. + <_> + 7 7 6 6 2. + <_> + + <_> + 10 4 2 4 -1. + <_> + 11 4 1 2 2. + <_> + 10 6 1 2 2. + <_> + + <_> + 0 9 10 2 -1. + <_> + 0 9 5 1 2. + <_> + 5 10 5 1 2. + <_> + + <_> + 9 11 3 3 -1. + <_> + 9 12 3 1 3. + <_> + + <_> + 3 12 9 2 -1. + <_> + 3 13 9 1 2. + <_> + + <_> + 9 9 2 2 -1. + <_> + 9 10 2 1 2. + <_> + + <_> + 3 4 13 6 -1. + <_> + 3 6 13 2 3. + <_> + + <_> + 9 7 6 4 -1. + <_> + 12 7 3 2 2. + <_> + 9 9 3 2 2. + <_> + + <_> + 1 0 6 8 -1. + <_> + 4 0 3 8 2. + <_> + + <_> + 9 5 2 12 -1. + <_> + 9 11 2 6 2. + <_> + + <_> + 4 4 3 10 -1. + <_> + 4 9 3 5 2. + <_> + + <_> + 6 17 8 3 -1. + <_> + 6 18 8 1 3. + <_> + + <_> + 0 5 10 6 -1. + <_> + 0 7 10 2 3. + <_> + + <_> + 13 2 3 2 -1. + <_> + 13 3 3 1 2. + <_> + + <_> + 7 5 4 5 -1. + <_> + 9 5 2 5 2. + <_> + + <_> + 12 14 3 6 -1. + <_> + 12 16 3 2 3. + <_> + + <_> + 1 11 8 2 -1. + <_> + 1 12 8 1 2. + <_> + + <_> + 7 13 6 3 -1. + <_> + 7 14 6 1 3. + <_> + + <_> + 0 5 3 6 -1. + <_> + 0 7 3 2 3. + <_> + + <_> + 13 2 3 2 -1. + <_> + 13 3 3 1 2. + <_> + + <_> + 4 14 4 6 -1. + <_> + 4 14 2 3 2. + <_> + 6 17 2 3 2. + <_> + + <_> + 13 2 3 2 -1. + <_> + 13 3 3 1 2. + <_> + + <_> + 8 2 4 12 -1. + <_> + 8 6 4 4 3. + <_> + + <_> + 14 0 6 8 -1. + <_> + 17 0 3 4 2. + <_> + 14 4 3 4 2. + <_> + + <_> + 7 17 3 2 -1. + <_> + 8 17 1 2 3. + <_> + + <_> + 8 12 4 2 -1. + <_> + 8 13 4 1 2. + <_> + + <_> + 6 0 8 12 -1. + <_> + 6 0 4 6 2. + <_> + 10 6 4 6 2. + <_> + + <_> + 14 0 2 10 -1. + <_> + 15 0 1 5 2. + <_> + 14 5 1 5 2. + <_> + + <_> + 5 3 8 6 -1. + <_> + 5 3 4 3 2. + <_> + 9 6 4 3 2. + <_> + + <_> + 14 0 6 10 -1. + <_> + 17 0 3 5 2. + <_> + 14 5 3 5 2. + <_> + + <_> + 9 14 1 2 -1. + <_> + 9 15 1 1 2. + <_> + + <_> + 15 10 4 3 -1. + <_> + 15 11 4 1 3. + <_> + + <_> + 8 14 2 3 -1. + <_> + 8 15 2 1 3. + <_> + + <_> + 3 13 14 4 -1. + <_> + 10 13 7 2 2. + <_> + 3 15 7 2 2. + <_> + + <_> + 1 10 4 3 -1. + <_> + 1 11 4 1 3. + <_> + + <_> + 9 11 6 1 -1. + <_> + 11 11 2 1 3. + <_> + + <_> + 5 11 6 1 -1. + <_> + 7 11 2 1 3. + <_> + + <_> + 3 5 16 15 -1. + <_> + 3 10 16 5 3. + <_> + + <_> + 6 12 4 2 -1. + <_> + 8 12 2 2 2. + <_> + + <_> + 4 4 12 10 -1. + <_> + 10 4 6 5 2. + <_> + 4 9 6 5 2. + <_> + + <_> + 8 6 3 4 -1. + <_> + 9 6 1 4 3. + <_> + + <_> + 8 12 4 8 -1. + <_> + 10 12 2 4 2. + <_> + 8 16 2 4 2. + <_> + + <_> + 8 14 4 3 -1. + <_> + 8 15 4 1 3. + <_> + + <_> + 12 2 3 2 -1. + <_> + 13 2 1 2 3. + <_> + + <_> + 8 15 3 2 -1. + <_> + 8 16 3 1 2. + <_> + + <_> + 6 0 9 14 -1. + <_> + 9 0 3 14 3. + <_> + + <_> + 9 6 2 3 -1. + <_> + 10 6 1 3 2. + <_> + + <_> + 10 8 2 3 -1. + <_> + 10 9 2 1 3. + <_> + + <_> + 0 9 4 6 -1. + <_> + 0 11 4 2 3. + <_> + + <_> + 6 0 8 2 -1. + <_> + 6 1 8 1 2. + <_> + + <_> + 6 14 7 3 -1. + <_> + 6 15 7 1 3. + <_> + + <_> + 8 10 8 9 -1. + <_> + 8 13 8 3 3. + <_> + + <_> + 5 2 3 2 -1. + <_> + 6 2 1 2 3. + <_> + + <_> + 14 1 6 8 -1. + <_> + 17 1 3 4 2. + <_> + 14 5 3 4 2. + <_> + + <_> + 0 1 6 8 -1. + <_> + 0 1 3 4 2. + <_> + 3 5 3 4 2. + <_> + + <_> + 1 2 18 6 -1. + <_> + 10 2 9 3 2. + <_> + 1 5 9 3 2. + <_> + + <_> + 9 3 2 1 -1. + <_> + 10 3 1 1 2. + <_> + + <_> + 13 2 4 6 -1. + <_> + 15 2 2 3 2. + <_> + 13 5 2 3 2. + <_> + + <_> + 5 4 3 3 -1. + <_> + 5 5 3 1 3. + <_> + + <_> + 13 5 1 3 -1. + <_> + 13 6 1 1 3. + <_> + + <_> + 2 16 5 3 -1. + <_> + 2 17 5 1 3. + <_> + + <_> + 13 2 4 6 -1. + <_> + 15 2 2 3 2. + <_> + 13 5 2 3 2. + <_> + + <_> + 3 2 4 6 -1. + <_> + 3 2 2 3 2. + <_> + 5 5 2 3 2. + <_> + + <_> + 13 5 1 2 -1. + <_> + 13 6 1 1 2. + <_> + + <_> + 5 5 2 2 -1. + <_> + 5 6 2 1 2. + <_> + + <_> + 13 9 2 2 -1. + <_> + 13 9 1 2 2. + <_> + + <_> + 5 9 2 2 -1. + <_> + 6 9 1 2 2. + <_> + + <_> + 13 17 3 2 -1. + <_> + 13 18 3 1 2. + <_> + + <_> + 6 16 4 4 -1. + <_> + 6 16 2 2 2. + <_> + 8 18 2 2 2. + <_> + + <_> + 9 16 2 3 -1. + <_> + 9 17 2 1 3. + <_> + + <_> + 0 13 9 6 -1. + <_> + 0 15 9 2 3. + <_> + + <_> + 9 14 2 6 -1. + <_> + 9 17 2 3 2. + <_> + + <_> + 9 15 2 3 -1. + <_> + 9 16 2 1 3. + <_> + + <_> + 1 10 18 6 -1. + <_> + 1 12 18 2 3. + <_> + + <_> + 8 11 4 2 -1. + <_> + 8 12 4 1 2. + <_> + + <_> + 7 9 6 2 -1. + <_> + 7 10 6 1 2. + <_> + + <_> + 8 8 2 3 -1. + <_> + 8 9 2 1 3. + <_> + + <_> + 17 5 3 4 -1. + <_> + 18 5 1 4 3. + <_> + + <_> + 1 19 18 1 -1. + <_> + 7 19 6 1 3. + <_> + + <_> + 9 0 3 2 -1. + <_> + 10 0 1 2 3. + <_> + + <_> + 1 8 1 6 -1. + <_> + 1 10 1 2 3. + <_> + + <_> + 12 17 8 3 -1. + <_> + 12 17 4 3 2. + <_> + + <_> + 0 5 3 4 -1. + <_> + 1 5 1 4 3. + <_> + + <_> + 9 7 2 3 -1. + <_> + 9 8 2 1 3. + <_> + + <_> + 7 11 2 2 -1. + <_> + 7 11 1 1 2. + <_> + 8 12 1 1 2. + <_> + + <_> + 11 3 2 5 -1. + <_> + 11 3 1 5 2. + <_> + + <_> + 7 3 2 5 -1. + <_> + 8 3 1 5 2. + <_> + + <_> + 15 13 2 3 -1. + <_> + 15 14 2 1 3. + <_> + + <_> + 5 6 2 3 -1. + <_> + 5 7 2 1 3. + <_> + + <_> + 4 19 15 1 -1. + <_> + 9 19 5 1 3. + <_> + + <_> + 1 19 15 1 -1. + <_> + 6 19 5 1 3. + <_> + + <_> + 15 13 2 3 -1. + <_> + 15 14 2 1 3. + <_> + + <_> + 5 0 4 15 -1. + <_> + 7 0 2 15 2. + <_> + + <_> + 9 6 2 5 -1. + <_> + 9 6 1 5 2. + <_> + + <_> + 9 5 2 7 -1. + <_> + 10 5 1 7 2. + <_> + + <_> + 16 11 3 3 -1. + <_> + 16 12 3 1 3. + <_> + + <_> + 1 11 3 3 -1. + <_> + 1 12 3 1 3. + <_> + + <_> + 6 6 8 3 -1. + <_> + 6 7 8 1 3. + <_> + + <_> + 0 15 6 2 -1. + <_> + 0 16 6 1 2. + <_> + + <_> + 1 0 18 6 -1. + <_> + 7 0 6 6 3. + <_> + + <_> + 6 0 3 4 -1. + <_> + 7 0 1 4 3. + <_> + + <_> + 14 10 4 10 -1. + <_> + 16 10 2 5 2. + <_> + 14 15 2 5 2. + <_> + + <_> + 3 2 3 2 -1. + <_> + 4 2 1 2 3. + <_> + + <_> + 11 2 2 2 -1. + <_> + 11 3 2 1 2. + <_> + + <_> + 2 10 4 10 -1. + <_> + 2 10 2 5 2. + <_> + 4 15 2 5 2. + <_> + + <_> + 0 13 20 6 -1. + <_> + 10 13 10 3 2. + <_> + 0 16 10 3 2. + <_> + + <_> + 0 5 2 15 -1. + <_> + 1 5 1 15 2. + <_> + + <_> + 1 7 18 4 -1. + <_> + 10 7 9 2 2. + <_> + 1 9 9 2 2. + <_> + + <_> + 0 0 2 17 -1. + <_> + 1 0 1 17 2. + <_> + + <_> + 2 6 16 6 -1. + <_> + 10 6 8 3 2. + <_> + 2 9 8 3 2. + <_> + + <_> + 8 14 1 3 -1. + <_> + 8 15 1 1 3. + <_> + + <_> + 8 15 4 2 -1. + <_> + 8 16 4 1 2. + <_> + + <_> + 5 2 8 2 -1. + <_> + 5 2 4 1 2. + <_> + 9 3 4 1 2. + <_> + + <_> + 6 11 8 6 -1. + <_> + 6 14 8 3 2. + <_> + + <_> + 9 13 2 2 -1. + <_> + 9 14 2 1 2. + <_> + + <_> + 18 4 2 6 -1. + <_> + 18 6 2 2 3. + <_> + + <_> + 9 12 2 2 -1. + <_> + 9 13 2 1 2. + <_> + + <_> + 18 4 2 6 -1. + <_> + 18 6 2 2 3. + <_> + + <_> + 9 13 1 3 -1. + <_> + 9 14 1 1 3. + <_> + + <_> + 18 4 2 6 -1. + <_> + 18 6 2 2 3. + <_> + + <_> + 0 4 2 6 -1. + <_> + 0 6 2 2 3. + <_> + + <_> + 9 12 3 3 -1. + <_> + 9 13 3 1 3. + <_> + + <_> + 3 13 2 3 -1. + <_> + 3 14 2 1 3. + <_> + + <_> + 13 13 4 3 -1. + <_> + 13 14 4 1 3. + <_> + + <_> + 5 4 3 3 -1. + <_> + 5 5 3 1 3. + <_> + + <_> + 5 2 10 6 -1. + <_> + 5 4 10 2 3. + <_> + + <_> + 3 13 4 3 -1. + <_> + 3 14 4 1 3. + <_> + + <_> + 3 7 15 5 -1. + <_> + 8 7 5 5 3. + <_> + + <_> + 3 7 12 2 -1. + <_> + 7 7 4 2 3. + <_> + + <_> + 10 3 3 9 -1. + <_> + 11 3 1 9 3. + <_> + + <_> + 8 6 4 6 -1. + <_> + 10 6 2 6 2. + <_> + + <_> + 9 7 4 3 -1. + <_> + 9 8 4 1 3. + <_> + + <_> + 0 9 4 9 -1. + <_> + 2 9 2 9 2. + <_> + + <_> + 9 13 3 5 -1. + <_> + 10 13 1 5 3. + <_> + + <_> + 7 7 6 3 -1. + <_> + 9 7 2 3 3. + <_> + + <_> + 9 7 3 5 -1. + <_> + 10 7 1 5 3. + <_> + + <_> + 5 7 8 2 -1. + <_> + 9 7 4 2 2. + <_> + + <_> + 5 9 12 2 -1. + <_> + 9 9 4 2 3. + <_> + + <_> + 5 6 10 3 -1. + <_> + 10 6 5 3 2. + <_> + + <_> + 10 12 3 1 -1. + <_> + 11 12 1 1 3. + <_> + + <_> + 0 1 11 15 -1. + <_> + 0 6 11 5 3. + <_> + + <_> + 1 0 18 6 -1. + <_> + 7 0 6 6 3. + <_> + + <_> + 7 7 6 1 -1. + <_> + 9 7 2 1 3. + <_> + + <_> + 5 16 6 4 -1. + <_> + 5 16 3 2 2. + <_> + 8 18 3 2 2. + <_> + + <_> + 6 5 9 8 -1. + <_> + 6 9 9 4 2. + <_> + + <_> + 5 10 2 6 -1. + <_> + 5 13 2 3 2. + <_> + + <_> + 7 6 8 10 -1. + <_> + 11 6 4 5 2. + <_> + 7 11 4 5 2. + <_> + + <_> + 5 6 8 10 -1. + <_> + 5 6 4 5 2. + <_> + 9 11 4 5 2. + <_> + + <_> + 9 5 2 2 -1. + <_> + 9 6 2 1 2. + <_> + + <_> + 5 12 8 2 -1. + <_> + 5 13 8 1 2. + <_> + + <_> + 10 2 8 2 -1. + <_> + 10 3 8 1 2. + <_> + + <_> + 4 0 2 10 -1. + <_> + 4 0 1 5 2. + <_> + 5 5 1 5 2. + <_> + + <_> + 9 10 2 2 -1. + <_> + 9 11 2 1 2. + <_> + + <_> + 2 8 15 3 -1. + <_> + 2 9 15 1 3. + <_> + + <_> + 8 13 4 3 -1. + <_> + 8 14 4 1 3. + <_> + + <_> + 7 2 3 2 -1. + <_> + 8 2 1 2 3. + <_> + + <_> + 7 13 6 3 -1. + <_> + 7 14 6 1 3. + <_> + + <_> + 9 9 2 2 -1. + <_> + 9 10 2 1 2. + <_> + + <_> + 17 2 3 6 -1. + <_> + 17 4 3 2 3. + <_> + + <_> + 1 5 3 4 -1. + <_> + 2 5 1 4 3. + <_> + + <_> + 14 8 4 6 -1. + <_> + 14 10 4 2 3. + <_> + + <_> + 1 4 3 8 -1. + <_> + 2 4 1 8 3. + <_> + + <_> + 8 13 4 6 -1. + <_> + 8 16 4 3 2. + <_> + + <_> + 3 14 2 2 -1. + <_> + 3 15 2 1 2. + <_> + + <_> + 14 8 4 6 -1. + <_> + 14 10 4 2 3. + <_> + + <_> + 2 8 4 6 -1. + <_> + 2 10 4 2 3. + <_> + + <_> + 10 14 1 6 -1. + <_> + 10 17 1 3 2. + <_> + + <_> + 7 5 3 6 -1. + <_> + 8 5 1 6 3. + <_> + + <_> + 11 2 2 6 -1. + <_> + 12 2 1 3 2. + <_> + 11 5 1 3 2. + <_> + + <_> + 6 6 6 5 -1. + <_> + 8 6 2 5 3. + <_> + + <_> + 17 1 3 6 -1. + <_> + 17 3 3 2 3. + <_> + + <_> + 8 7 3 5 -1. + <_> + 9 7 1 5 3. + <_> + + <_> + 9 18 3 2 -1. + <_> + 10 18 1 2 3. + <_> + + <_> + 8 18 3 2 -1. + <_> + 9 18 1 2 3. + <_> + + <_> + 12 3 5 2 -1. + <_> + 12 4 5 1 2. + <_> + + <_> + 7 1 5 12 -1. + <_> + 7 7 5 6 2. + <_> + + <_> + 1 0 18 4 -1. + <_> + 7 0 6 4 3. + <_> + + <_> + 4 2 2 2 -1. + <_> + 4 3 2 1 2. + <_> + + <_> + 11 14 4 2 -1. + <_> + 13 14 2 1 2. + <_> + 11 15 2 1 2. + <_> + + <_> + 0 2 3 6 -1. + <_> + 0 4 3 2 3. + <_> + + <_> + 9 7 2 3 -1. + <_> + 9 8 2 1 3. + <_> + + <_> + 5 5 1 3 -1. + <_> + 5 6 1 1 3. + <_> + + <_> + 10 10 6 1 -1. + <_> + 10 10 3 1 2. + <_> + + <_> + 4 10 6 1 -1. + <_> + 7 10 3 1 2. + <_> + + <_> + 9 17 3 3 -1. + <_> + 9 18 3 1 3. + <_> + + <_> + 4 14 1 3 -1. + <_> + 4 15 1 1 3. + <_> + + <_> + 12 5 3 3 -1. + <_> + 12 6 3 1 3. + <_> + + <_> + 4 5 12 3 -1. + <_> + 4 6 12 1 3. + <_> + + <_> + 9 8 2 3 -1. + <_> + 9 9 2 1 3. + <_> + + <_> + 4 9 3 3 -1. + <_> + 5 9 1 3 3. + <_> + + <_> + 6 0 9 17 -1. + <_> + 9 0 3 17 3. + <_> + + <_> + 9 12 1 3 -1. + <_> + 9 13 1 1 3. + <_> + + <_> + 9 5 2 15 -1. + <_> + 9 10 2 5 3. + <_> + + <_> + 8 14 2 3 -1. + <_> + 8 15 2 1 3. + <_> + + <_> + 10 14 1 3 -1. + <_> + 10 15 1 1 3. + <_> + + <_> + 7 1 6 5 -1. + <_> + 9 1 2 5 3. + <_> + + <_> + 0 0 20 2 -1. + <_> + 0 0 10 2 2. + <_> + + <_> + 2 13 5 3 -1. + <_> + 2 14 5 1 3. + <_> + + <_> + 9 11 2 3 -1. + <_> + 9 12 2 1 3. + <_> + + <_> + 2 5 9 15 -1. + <_> + 2 10 9 5 3. + <_> + + <_> + 5 0 12 10 -1. + <_> + 11 0 6 5 2. + <_> + 5 5 6 5 2. + <_> + + <_> + 5 1 2 3 -1. + <_> + 6 1 1 3 2. + <_> + + <_> + 10 7 6 1 -1. + <_> + 12 7 2 1 3. + <_> + + <_> + 3 1 2 10 -1. + <_> + 3 1 1 5 2. + <_> + 4 6 1 5 2. + <_> + + <_> + 13 7 2 1 -1. + <_> + 13 7 1 1 2. + <_> + + <_> + 4 13 4 6 -1. + <_> + 4 15 4 2 3. + <_> + + <_> + 13 7 2 1 -1. + <_> + 13 7 1 1 2. + <_> + + <_> + 5 7 2 1 -1. + <_> + 6 7 1 1 2. + <_> + + <_> + 2 12 18 4 -1. + <_> + 11 12 9 2 2. + <_> + 2 14 9 2 2. + <_> + + <_> + 5 7 2 2 -1. + <_> + 5 7 1 1 2. + <_> + 6 8 1 1 2. + <_> + + <_> + 16 3 4 2 -1. + <_> + 16 4 4 1 2. + <_> + + <_> + 0 2 2 18 -1. + <_> + 0 2 1 9 2. + <_> + 1 11 1 9 2. + <_> + + <_> + 1 2 18 4 -1. + <_> + 10 2 9 2 2. + <_> + 1 4 9 2 2. + <_> + + <_> + 9 14 1 3 -1. + <_> + 9 15 1 1 3. + <_> + + <_> + 2 12 18 4 -1. + <_> + 11 12 9 2 2. + <_> + 2 14 9 2 2. + <_> + + <_> + 0 12 18 4 -1. + <_> + 0 12 9 2 2. + <_> + 9 14 9 2 2. + <_> + + <_> + 11 4 5 3 -1. + <_> + 11 5 5 1 3. + <_> + + <_> + 6 4 7 3 -1. + <_> + 6 5 7 1 3. + <_> + + <_> + 13 17 3 3 -1. + <_> + 13 18 3 1 3. + <_> + + <_> + 8 1 3 4 -1. + <_> + 9 1 1 4 3. + <_> + + <_> + 11 4 2 4 -1. + <_> + 11 4 1 4 2. + <_> + + <_> + 0 17 9 3 -1. + <_> + 3 17 3 3 3. + <_> + + <_> + 11 0 2 8 -1. + <_> + 12 0 1 4 2. + <_> + 11 4 1 4 2. + <_> + + <_> + 0 8 6 12 -1. + <_> + 0 8 3 6 2. + <_> + 3 14 3 6 2. + <_> + + <_> + 10 7 4 12 -1. + <_> + 10 13 4 6 2. + <_> + + <_> + 5 3 8 14 -1. + <_> + 5 10 8 7 2. + <_> + + <_> + 14 10 6 1 -1. + <_> + 14 10 3 1 2. + <_> + + <_> + 0 4 10 4 -1. + <_> + 0 6 10 2 2. + <_> + + <_> + 10 0 5 8 -1. + <_> + 10 4 5 4 2. + <_> + + <_> + 8 1 4 8 -1. + <_> + 8 1 2 4 2. + <_> + 10 5 2 4 2. + <_> + + <_> + 9 11 6 1 -1. + <_> + 11 11 2 1 3. + <_> + + <_> + 8 9 3 4 -1. + <_> + 9 9 1 4 3. + <_> + + <_> + 18 4 2 6 -1. + <_> + 18 6 2 2 3. + <_> + + <_> + 8 8 3 4 -1. + <_> + 9 8 1 4 3. + <_> + + <_> + 7 1 13 3 -1. + <_> + 7 2 13 1 3. + <_> + + <_> + 7 13 6 1 -1. + <_> + 9 13 2 1 3. + <_> + + <_> + 12 11 3 6 -1. + <_> + 12 13 3 2 3. + <_> + + <_> + 5 11 6 1 -1. + <_> + 7 11 2 1 3. + <_> + + <_> + 1 4 18 10 -1. + <_> + 10 4 9 5 2. + <_> + 1 9 9 5 2. + <_> + + <_> + 8 6 4 9 -1. + <_> + 8 9 4 3 3. + <_> + + <_> + 8 6 4 3 -1. + <_> + 8 7 4 1 3. + <_> + + <_> + 8 7 3 3 -1. + <_> + 9 7 1 3 3. + <_> + + <_> + 14 15 4 3 -1. + <_> + 14 16 4 1 3. + <_> + + <_> + 5 10 3 10 -1. + <_> + 6 10 1 10 3. + <_> + + <_> + 8 15 4 3 -1. + <_> + 8 16 4 1 3. + <_> + + <_> + 0 8 1 6 -1. + <_> + 0 10 1 2 3. + <_> + + <_> + 10 15 1 3 -1. + <_> + 10 16 1 1 3. + <_> + + <_> + 2 15 4 3 -1. + <_> + 2 16 4 1 3. + <_> + + <_> + 18 3 2 8 -1. + <_> + 19 3 1 4 2. + <_> + 18 7 1 4 2. + <_> + + <_> + 0 3 2 8 -1. + <_> + 0 3 1 4 2. + <_> + 1 7 1 4 2. + <_> + + <_> + 3 7 14 10 -1. + <_> + 10 7 7 5 2. + <_> + 3 12 7 5 2. + <_> + + <_> + 0 7 19 3 -1. + <_> + 0 8 19 1 3. + <_> + + <_> + 12 6 3 3 -1. + <_> + 12 7 3 1 3. + <_> + + <_> + 0 6 1 3 -1. + <_> + 0 7 1 1 3. + <_> + + <_> + 12 6 3 3 -1. + <_> + 12 7 3 1 3. + <_> + + <_> + 5 6 3 3 -1. + <_> + 5 7 3 1 3. + <_> + + <_> + 8 2 4 2 -1. + <_> + 8 3 4 1 2. + <_> + + <_> + 6 3 4 12 -1. + <_> + 8 3 2 12 2. + <_> + + <_> + 13 6 2 3 -1. + <_> + 13 7 2 1 3. + <_> + + <_> + 0 10 20 4 -1. + <_> + 0 12 20 2 2. + <_> + + <_> + 2 0 17 14 -1. + <_> + 2 7 17 7 2. + <_> + + <_> + 0 0 6 10 -1. + <_> + 0 0 3 5 2. + <_> + 3 5 3 5 2. + <_> + + <_> + 14 6 6 4 -1. + <_> + 14 6 3 4 2. + <_> + + <_> + 0 6 6 4 -1. + <_> + 3 6 3 4 2. + <_> + + <_> + 13 2 7 2 -1. + <_> + 13 3 7 1 2. + <_> + + <_> + 0 2 7 2 -1. + <_> + 0 3 7 1 2. + <_> + + <_> + 6 11 14 2 -1. + <_> + 13 11 7 1 2. + <_> + 6 12 7 1 2. + <_> + + <_> + 8 5 2 2 -1. + <_> + 8 5 1 1 2. + <_> + 9 6 1 1 2. + <_> + + <_> + 13 9 2 3 -1. + <_> + 13 9 1 3 2. + <_> + + <_> + 1 1 3 12 -1. + <_> + 2 1 1 12 3. + <_> + + <_> + 17 4 1 3 -1. + <_> + 17 5 1 1 3. + <_> + + <_> + 2 4 1 3 -1. + <_> + 2 5 1 1 3. + <_> + + <_> + 14 5 1 3 -1. + <_> + 14 6 1 1 3. + <_> + + <_> + 7 16 2 3 -1. + <_> + 7 17 2 1 3. + <_> + + <_> + 8 13 4 6 -1. + <_> + 10 13 2 3 2. + <_> + 8 16 2 3 2. + <_> + + <_> + 5 5 1 3 -1. + <_> + 5 6 1 1 3. + <_> + + <_> + 16 0 4 20 -1. + <_> + 16 0 2 20 2. + <_> + + <_> + 5 1 2 6 -1. + <_> + 5 1 1 3 2. + <_> + 6 4 1 3 2. + <_> + + <_> + 5 4 10 4 -1. + <_> + 5 6 10 2 2. + <_> + + <_> + 15 2 4 12 -1. + <_> + 15 2 2 12 2. + <_> + + <_> + 7 6 4 12 -1. + <_> + 7 12 4 6 2. + <_> + + <_> + 14 5 1 8 -1. + <_> + 14 9 1 4 2. + <_> + + <_> + 1 4 14 10 -1. + <_> + 1 4 7 5 2. + <_> + 8 9 7 5 2. + <_> + + <_> + 11 6 6 14 -1. + <_> + 14 6 3 7 2. + <_> + 11 13 3 7 2. + <_> + + <_> + 3 6 6 14 -1. + <_> + 3 6 3 7 2. + <_> + 6 13 3 7 2. + <_> + + <_> + 4 9 15 2 -1. + <_> + 9 9 5 2 3. + <_> + + <_> + 7 14 6 3 -1. + <_> + 7 15 6 1 3. + <_> + + <_> + 6 3 14 4 -1. + <_> + 13 3 7 2 2. + <_> + 6 5 7 2 2. + <_> + + <_> + 1 9 15 2 -1. + <_> + 6 9 5 2 3. + <_> + + <_> + 6 11 8 9 -1. + <_> + 6 14 8 3 3. + <_> + + <_> + 7 4 3 8 -1. + <_> + 8 4 1 8 3. + <_> + + <_> + 14 6 2 6 -1. + <_> + 14 9 2 3 2. + <_> + + <_> + 5 7 6 4 -1. + <_> + 5 7 3 2 2. + <_> + 8 9 3 2 2. + <_> + + <_> + 1 1 18 19 -1. + <_> + 7 1 6 19 3. + <_> + + <_> + 1 2 6 5 -1. + <_> + 4 2 3 5 2. + <_> + + <_> + 12 17 6 2 -1. + <_> + 12 18 6 1 2. + <_> + + <_> + 2 17 6 2 -1. + <_> + 2 18 6 1 2. + <_> + + <_> + 17 3 3 6 -1. + <_> + 17 5 3 2 3. + <_> + + <_> + 8 17 3 3 -1. + <_> + 8 18 3 1 3. + <_> + + <_> + 10 13 2 6 -1. + <_> + 10 16 2 3 2. + <_> + + <_> + 7 13 6 3 -1. + <_> + 7 14 6 1 3. + <_> + + <_> + 17 3 3 6 -1. + <_> + 17 5 3 2 3. + <_> + + <_> + 8 13 2 3 -1. + <_> + 8 14 2 1 3. + <_> + + <_> + 9 3 6 2 -1. + <_> + 11 3 2 2 3. + <_> + + <_> + 0 3 3 6 -1. + <_> + 0 5 3 2 3. + <_> + + <_> + 8 5 4 6 -1. + <_> + 8 7 4 2 3. + <_> + + <_> + 5 5 3 2 -1. + <_> + 5 6 3 1 2. + <_> + + <_> + 10 1 3 4 -1. + <_> + 11 1 1 4 3. + <_> + + <_> + 1 2 5 9 -1. + <_> + 1 5 5 3 3. + <_> + + <_> + 13 6 2 3 -1. + <_> + 13 7 2 1 3. + <_> + + <_> + 0 6 14 3 -1. + <_> + 7 6 7 3 2. + <_> + + <_> + 2 11 18 8 -1. + <_> + 2 15 18 4 2. + <_> + + <_> + 5 6 2 3 -1. + <_> + 5 7 2 1 3. + <_> + + <_> + 10 6 4 2 -1. + <_> + 12 6 2 1 2. + <_> + 10 7 2 1 2. + <_> + + <_> + 6 6 4 2 -1. + <_> + 6 6 2 1 2. + <_> + 8 7 2 1 2. + <_> + + <_> + 10 1 3 4 -1. + <_> + 11 1 1 4 3. + <_> + + <_> + 7 1 2 7 -1. + <_> + 8 1 1 7 2. + <_> + + <_> + 4 2 15 14 -1. + <_> + 4 9 15 7 2. + <_> + + <_> + 8 7 3 2 -1. + <_> + 9 7 1 2 3. + <_> + + <_> + 2 3 18 4 -1. + <_> + 11 3 9 2 2. + <_> + 2 5 9 2 2. + <_> + + <_> + 9 7 2 2 -1. + <_> + 10 7 1 2 2. + <_> + + <_> + 13 9 2 3 -1. + <_> + 13 9 1 3 2. + <_> + + <_> + 5 2 6 2 -1. + <_> + 7 2 2 2 3. + <_> + + <_> + 9 5 2 7 -1. + <_> + 9 5 1 7 2. + <_> + + <_> + 5 9 2 3 -1. + <_> + 6 9 1 3 2. + <_> + + <_> + 6 0 14 18 -1. + <_> + 6 9 14 9 2. + <_> + + <_> + 2 16 6 3 -1. + <_> + 2 17 6 1 3. + <_> + + <_> + 9 7 3 6 -1. + <_> + 10 7 1 6 3. + <_> + + <_> + 7 8 4 3 -1. + <_> + 7 9 4 1 3. + <_> + + <_> + 7 12 6 3 -1. + <_> + 7 13 6 1 3. + <_> + + <_> + 9 12 2 3 -1. + <_> + 9 13 2 1 3. + <_> + + <_> + 7 12 6 2 -1. + <_> + 9 12 2 2 3. + <_> + + <_> + 5 11 4 6 -1. + <_> + 5 14 4 3 2. + <_> + + <_> + 11 12 7 2 -1. + <_> + 11 13 7 1 2. + <_> + + <_> + 6 10 8 6 -1. + <_> + 6 10 4 3 2. + <_> + 10 13 4 3 2. + <_> + + <_> + 11 10 3 4 -1. + <_> + 11 12 3 2 2. + <_> + + <_> + 9 16 2 3 -1. + <_> + 9 17 2 1 3. + <_> + + <_> + 13 3 1 9 -1. + <_> + 13 6 1 3 3. + <_> + + <_> + 1 13 14 6 -1. + <_> + 1 15 14 2 3. + <_> + + <_> + 13 6 1 6 -1. + <_> + 13 9 1 3 2. + <_> + + <_> + 0 4 3 8 -1. + <_> + 1 4 1 8 3. + <_> + + <_> + 18 0 2 18 -1. + <_> + 18 0 1 18 2. + <_> + + <_> + 2 3 6 2 -1. + <_> + 2 4 6 1 2. + <_> + + <_> + 9 0 8 6 -1. + <_> + 9 2 8 2 3. + <_> + + <_> + 6 6 1 6 -1. + <_> + 6 9 1 3 2. + <_> + + <_> + 14 8 6 3 -1. + <_> + 14 9 6 1 3. + <_> + + <_> + 0 0 2 18 -1. + <_> + 1 0 1 18 2. + <_> + + <_> + 1 18 18 2 -1. + <_> + 10 18 9 1 2. + <_> + 1 19 9 1 2. + <_> + + <_> + 3 15 2 2 -1. + <_> + 3 16 2 1 2. + <_> + + <_> + 8 14 5 3 -1. + <_> + 8 15 5 1 3. + <_> + + <_> + 8 14 2 3 -1. + <_> + 8 15 2 1 3. + <_> + + <_> + 12 3 3 3 -1. + <_> + 13 3 1 3 3. + <_> + + <_> + 7 5 6 2 -1. + <_> + 9 5 2 2 3. + <_> + + <_> + 15 5 5 2 -1. + <_> + 15 6 5 1 2. + <_> + + <_> + 0 5 5 2 -1. + <_> + 0 6 5 1 2. + <_> + + <_> + 17 14 1 6 -1. + <_> + 17 17 1 3 2. + <_> + + <_> + 2 9 9 3 -1. + <_> + 5 9 3 3 3. + <_> + + <_> + 12 3 3 3 -1. + <_> + 13 3 1 3 3. + <_> + + <_> + 0 0 4 18 -1. + <_> + 2 0 2 18 2. + <_> + + <_> + 17 6 1 3 -1. + <_> + 17 7 1 1 3. + <_> + + <_> + 2 14 1 6 -1. + <_> + 2 17 1 3 2. + <_> + + <_> + 19 8 1 2 -1. + <_> + 19 9 1 1 2. + <_> + + <_> + 5 3 3 3 -1. + <_> + 6 3 1 3 3. + <_> + + <_> + 9 16 2 3 -1. + <_> + 9 17 2 1 3. + <_> + + <_> + 2 6 1 3 -1. + <_> + 2 7 1 1 3. + <_> + + <_> + 12 4 8 2 -1. + <_> + 16 4 4 1 2. + <_> + 12 5 4 1 2. + <_> + + <_> + 0 4 8 2 -1. + <_> + 0 4 4 1 2. + <_> + 4 5 4 1 2. + <_> + + <_> + 2 16 18 4 -1. + <_> + 2 18 18 2 2. + <_> + + <_> + 7 15 2 4 -1. + <_> + 7 17 2 2 2. + <_> + + <_> + 4 0 14 3 -1. + <_> + 4 1 14 1 3. + <_> + + <_> + 0 0 4 20 -1. + <_> + 2 0 2 20 2. + <_> + + <_> + 12 4 4 8 -1. + <_> + 14 4 2 4 2. + <_> + 12 8 2 4 2. + <_> + + <_> + 6 7 2 2 -1. + <_> + 6 7 1 1 2. + <_> + 7 8 1 1 2. + <_> + + <_> + 10 6 2 3 -1. + <_> + 10 7 2 1 3. + <_> + + <_> + 8 7 3 2 -1. + <_> + 8 8 3 1 2. + <_> + + <_> + 8 2 6 12 -1. + <_> + 8 8 6 6 2. + <_> + + <_> + 4 0 11 12 -1. + <_> + 4 4 11 4 3. + <_> + + <_> + 14 9 6 11 -1. + <_> + 16 9 2 11 3. + <_> + + <_> + 0 14 4 3 -1. + <_> + 0 15 4 1 3. + <_> + + <_> + 9 10 2 3 -1. + <_> + 9 11 2 1 3. + <_> + + <_> + 5 11 3 2 -1. + <_> + 5 12 3 1 2. + <_> + + <_> + 9 15 3 3 -1. + <_> + 10 15 1 3 3. + <_> + + <_> + 8 8 3 4 -1. + <_> + 9 8 1 4 3. + <_> + + <_> + 9 15 3 3 -1. + <_> + 10 15 1 3 3. + <_> + + <_> + 7 7 3 2 -1. + <_> + 8 7 1 2 3. + <_> + + <_> + 2 10 16 4 -1. + <_> + 10 10 8 2 2. + <_> + 2 12 8 2 2. + <_> + + <_> + 2 3 4 17 -1. + <_> + 4 3 2 17 2. + <_> + + <_> + 15 13 2 7 -1. + <_> + 15 13 1 7 2. + <_> + + <_> + 2 2 6 1 -1. + <_> + 5 2 3 1 2. + <_> + + <_> + 5 2 12 4 -1. + <_> + 9 2 4 4 3. + <_> + + <_> + 6 0 8 12 -1. + <_> + 6 0 4 6 2. + <_> + 10 6 4 6 2. + <_> + + <_> + 13 7 2 2 -1. + <_> + 14 7 1 1 2. + <_> + 13 8 1 1 2. + <_> + + <_> + 0 12 20 6 -1. + <_> + 0 14 20 2 3. + <_> + + <_> + 14 7 2 3 -1. + <_> + 14 7 1 3 2. + <_> + + <_> + 0 8 9 12 -1. + <_> + 3 8 3 12 3. + <_> + + <_> + 3 0 16 2 -1. + <_> + 3 0 8 2 2. + <_> + + <_> + 6 15 3 3 -1. + <_> + 6 16 3 1 3. + <_> + + <_> + 8 15 6 3 -1. + <_> + 8 16 6 1 3. + <_> + + <_> + 0 10 1 6 -1. + <_> + 0 12 1 2 3. + <_> + + <_> + 10 9 4 3 -1. + <_> + 10 10 4 1 3. + <_> + + <_> + 9 15 2 3 -1. + <_> + 9 16 2 1 3. + <_> + + <_> + 5 7 10 1 -1. + <_> + 5 7 5 1 2. + <_> + + <_> + 4 0 12 19 -1. + <_> + 10 0 6 19 2. + <_> + + <_> + 0 6 20 6 -1. + <_> + 10 6 10 3 2. + <_> + 0 9 10 3 2. + <_> + + <_> + 3 6 2 2 -1. + <_> + 3 6 1 1 2. + <_> + 4 7 1 1 2. + <_> + + <_> + 15 6 2 2 -1. + <_> + 16 6 1 1 2. + <_> + 15 7 1 1 2. + <_> + + <_> + 3 6 2 2 -1. + <_> + 3 6 1 1 2. + <_> + 4 7 1 1 2. + <_> + + <_> + 14 4 1 12 -1. + <_> + 14 10 1 6 2. + <_> + + <_> + 2 5 16 10 -1. + <_> + 2 5 8 5 2. + <_> + 10 10 8 5 2. + <_> + + <_> + 9 17 3 2 -1. + <_> + 10 17 1 2 3. + <_> + + <_> + 1 4 2 2 -1. + <_> + 1 5 2 1 2. + <_> + + <_> + 5 0 15 5 -1. + <_> + 10 0 5 5 3. + <_> + + <_> + 0 0 15 5 -1. + <_> + 5 0 5 5 3. + <_> + + <_> + 11 2 2 17 -1. + <_> + 11 2 1 17 2. + <_> + + <_> + 7 2 2 17 -1. + <_> + 8 2 1 17 2. + <_> + + <_> + 15 11 2 9 -1. + <_> + 15 11 1 9 2. + <_> + + <_> + 3 11 2 9 -1. + <_> + 4 11 1 9 2. + <_> + + <_> + 5 16 14 4 -1. + <_> + 5 16 7 4 2. + <_> + + <_> + 1 4 18 1 -1. + <_> + 7 4 6 1 3. + <_> + + <_> + 13 7 6 4 -1. + <_> + 16 7 3 2 2. + <_> + 13 9 3 2 2. + <_> + + <_> + 9 8 2 12 -1. + <_> + 9 12 2 4 3. + <_> + + <_> + 12 1 6 6 -1. + <_> + 12 3 6 2 3. + <_> + + <_> + 5 2 6 6 -1. + <_> + 5 2 3 3 2. + <_> + 8 5 3 3 2. + <_> + + <_> + 9 16 6 4 -1. + <_> + 12 16 3 2 2. + <_> + 9 18 3 2 2. + <_> + + <_> + 1 2 18 3 -1. + <_> + 7 2 6 3 3. + <_> + + <_> + 7 4 9 10 -1. + <_> + 7 9 9 5 2. + <_> + + <_> + 5 9 4 4 -1. + <_> + 7 9 2 4 2. + <_> + + <_> + 11 10 3 6 -1. + <_> + 11 13 3 3 2. + <_> + + <_> + 7 11 5 3 -1. + <_> + 7 12 5 1 3. + <_> + + <_> + 7 11 6 6 -1. + <_> + 10 11 3 3 2. + <_> + 7 14 3 3 2. + <_> + + <_> + 0 0 10 9 -1. + <_> + 0 3 10 3 3. + <_> + + <_> + 13 14 1 6 -1. + <_> + 13 16 1 2 3. + <_> + + <_> + 0 2 3 6 -1. + <_> + 0 4 3 2 3. + <_> + + <_> + 8 14 4 3 -1. + <_> + 8 15 4 1 3. + <_> + + <_> + 6 14 1 6 -1. + <_> + 6 16 1 2 3. + <_> + + <_> + 9 15 2 3 -1. + <_> + 9 16 2 1 3. + <_> + + <_> + 6 4 3 3 -1. + <_> + 7 4 1 3 3. + <_> + + <_> + 9 0 11 3 -1. + <_> + 9 1 11 1 3. + <_> + + <_> + 0 6 20 3 -1. + <_> + 0 7 20 1 3. + <_> + + <_> + 10 1 1 2 -1. + <_> + 10 2 1 1 2. + <_> + + <_> + 9 6 2 6 -1. + <_> + 10 6 1 6 2. + <_> + + <_> + 5 8 12 1 -1. + <_> + 9 8 4 1 3. + <_> + + <_> + 3 8 12 1 -1. + <_> + 7 8 4 1 3. + <_> + + <_> + 9 7 3 5 -1. + <_> + 10 7 1 5 3. + <_> + + <_> + 3 9 6 2 -1. + <_> + 6 9 3 2 2. + <_> + + <_> + 12 9 3 3 -1. + <_> + 12 10 3 1 3. + <_> + + <_> + 7 0 6 1 -1. + <_> + 9 0 2 1 3. + <_> + + <_> + 12 9 3 3 -1. + <_> + 12 10 3 1 3. + <_> + + <_> + 7 10 2 1 -1. + <_> + 8 10 1 1 2. + <_> + + <_> + 6 4 9 13 -1. + <_> + 9 4 3 13 3. + <_> + + <_> + 6 8 4 2 -1. + <_> + 6 9 4 1 2. + <_> + + <_> + 16 2 4 6 -1. + <_> + 16 2 2 6 2. + <_> + + <_> + 0 17 6 3 -1. + <_> + 0 18 6 1 3. + <_> + + <_> + 10 10 3 10 -1. + <_> + 10 15 3 5 2. + <_> + + <_> + 8 7 3 5 -1. + <_> + 9 7 1 5 3. + <_> + + <_> + 10 4 4 3 -1. + <_> + 10 4 2 3 2. + <_> + + <_> + 8 4 3 8 -1. + <_> + 9 4 1 8 3. + <_> + + <_> + 6 6 9 13 -1. + <_> + 9 6 3 13 3. + <_> + + <_> + 6 0 8 12 -1. + <_> + 6 0 4 6 2. + <_> + 10 6 4 6 2. + <_> + + <_> + 14 2 6 8 -1. + <_> + 16 2 2 8 3. + <_> + + <_> + 6 0 3 6 -1. + <_> + 7 0 1 6 3. + <_> + + <_> + 14 2 6 8 -1. + <_> + 16 2 2 8 3. + <_> + + <_> + 0 5 6 6 -1. + <_> + 0 8 6 3 2. + <_> + + <_> + 9 12 6 2 -1. + <_> + 12 12 3 1 2. + <_> + 9 13 3 1 2. + <_> + + <_> + 8 17 3 2 -1. + <_> + 9 17 1 2 3. + <_> + + <_> + 11 6 2 2 -1. + <_> + 12 6 1 1 2. + <_> + 11 7 1 1 2. + <_> + + <_> + 1 9 18 2 -1. + <_> + 7 9 6 2 3. + <_> + + <_> + 11 6 2 2 -1. + <_> + 12 6 1 1 2. + <_> + 11 7 1 1 2. + <_> + + <_> + 3 4 12 8 -1. + <_> + 7 4 4 8 3. + <_> + + <_> + 13 11 5 3 -1. + <_> + 13 12 5 1 3. + <_> + + <_> + 9 10 2 3 -1. + <_> + 9 11 2 1 3. + <_> + + <_> + 14 7 2 3 -1. + <_> + 14 7 1 3 2. + <_> + + <_> + 5 4 1 3 -1. + <_> + 5 5 1 1 3. + <_> + + <_> + 13 4 2 3 -1. + <_> + 13 5 2 1 3. + <_> + + <_> + 5 4 2 3 -1. + <_> + 5 5 2 1 3. + <_> + + <_> + 9 8 2 3 -1. + <_> + 9 9 2 1 3. + <_> + + <_> + 8 9 2 2 -1. + <_> + 8 10 2 1 2. + <_> + + <_> + 15 14 1 4 -1. + <_> + 15 16 1 2 2. + <_> + + <_> + 3 12 2 2 -1. + <_> + 3 13 2 1 2. + <_> + + <_> + 12 15 2 2 -1. + <_> + 13 15 1 1 2. + <_> + 12 16 1 1 2. + <_> + + <_> + 9 13 2 2 -1. + <_> + 9 14 2 1 2. + <_> + + <_> + 4 11 14 9 -1. + <_> + 4 14 14 3 3. + <_> + + <_> + 7 13 4 3 -1. + <_> + 7 14 4 1 3. + <_> + + <_> + 15 14 1 4 -1. + <_> + 15 16 1 2 2. + <_> + + <_> + 4 14 1 4 -1. + <_> + 4 16 1 2 2. + <_> + + <_> + 14 0 6 13 -1. + <_> + 16 0 2 13 3. + <_> + + <_> + 4 1 2 12 -1. + <_> + 4 1 1 6 2. + <_> + 5 7 1 6 2. + <_> + + <_> + 11 14 6 6 -1. + <_> + 14 14 3 3 2. + <_> + 11 17 3 3 2. + <_> + + <_> + 3 14 6 6 -1. + <_> + 3 14 3 3 2. + <_> + 6 17 3 3 2. + <_> + + <_> + 14 17 3 2 -1. + <_> + 14 18 3 1 2. + <_> + + <_> + 3 17 3 2 -1. + <_> + 3 18 3 1 2. + <_> + + <_> + 14 0 6 13 -1. + <_> + 16 0 2 13 3. + <_> + + <_> + 0 0 6 13 -1. + <_> + 2 0 2 13 3. + <_> + + <_> + 10 10 7 6 -1. + <_> + 10 12 7 2 3. + <_> + + <_> + 6 15 2 2 -1. + <_> + 6 15 1 1 2. + <_> + 7 16 1 1 2. + <_> + + <_> + 6 11 8 6 -1. + <_> + 10 11 4 3 2. + <_> + 6 14 4 3 2. + <_> + + <_> + 7 6 2 2 -1. + <_> + 7 6 1 1 2. + <_> + 8 7 1 1 2. + <_> + + <_> + 2 2 16 6 -1. + <_> + 10 2 8 3 2. + <_> + 2 5 8 3 2. + <_> + + <_> + 5 4 3 3 -1. + <_> + 5 5 3 1 3. + <_> + + <_> + 11 7 3 10 -1. + <_> + 11 12 3 5 2. + <_> + + <_> + 6 7 3 10 -1. + <_> + 6 12 3 5 2. + <_> + + <_> + 10 7 3 2 -1. + <_> + 11 7 1 2 3. + <_> + + <_> + 8 12 4 2 -1. + <_> + 8 13 4 1 2. + <_> + + <_> + 10 1 1 3 -1. + <_> + 10 2 1 1 3. + <_> + + <_> + 1 2 4 18 -1. + <_> + 1 2 2 9 2. + <_> + 3 11 2 9 2. + <_> + + <_> + 12 4 4 12 -1. + <_> + 12 10 4 6 2. + <_> + + <_> + 0 0 1 6 -1. + <_> + 0 2 1 2 3. + <_> + + <_> + 9 11 2 3 -1. + <_> + 9 12 2 1 3. + <_> + + <_> + 8 7 4 3 -1. + <_> + 8 8 4 1 3. + <_> + + <_> + 10 7 3 2 -1. + <_> + 11 7 1 2 3. + <_> + + <_> + 7 7 3 2 -1. + <_> + 8 7 1 2 3. + <_> + + <_> + 9 4 6 1 -1. + <_> + 11 4 2 1 3. + <_> + + <_> + 8 7 2 3 -1. + <_> + 9 7 1 3 2. + <_> + + <_> + 12 7 8 6 -1. + <_> + 16 7 4 3 2. + <_> + 12 10 4 3 2. + <_> + + <_> + 0 7 8 6 -1. + <_> + 0 7 4 3 2. + <_> + 4 10 4 3 2. + <_> + + <_> + 18 2 2 10 -1. + <_> + 19 2 1 5 2. + <_> + 18 7 1 5 2. + <_> + + <_> + 0 2 6 4 -1. + <_> + 3 2 3 4 2. + <_> + + <_> + 9 4 6 1 -1. + <_> + 11 4 2 1 3. + <_> + + <_> + 7 15 2 2 -1. + <_> + 7 15 1 1 2. + <_> + 8 16 1 1 2. + <_> + + <_> + 11 13 1 6 -1. + <_> + 11 16 1 3 2. + <_> + + <_> + 8 13 1 6 -1. + <_> + 8 16 1 3 2. + <_> + + <_> + 14 3 2 1 -1. + <_> + 14 3 1 1 2. + <_> + + <_> + 8 15 2 3 -1. + <_> + 8 16 2 1 3. + <_> + + <_> + 12 15 7 4 -1. + <_> + 12 17 7 2 2. + <_> + + <_> + 4 14 12 3 -1. + <_> + 4 15 12 1 3. + <_> + + <_> + 10 3 3 2 -1. + <_> + 11 3 1 2 3. + <_> + + <_> + 4 12 2 2 -1. + <_> + 4 13 2 1 2. + <_> + + <_> + 10 11 4 6 -1. + <_> + 10 14 4 3 2. + <_> + + <_> + 7 13 2 2 -1. + <_> + 7 13 1 1 2. + <_> + 8 14 1 1 2. + <_> + + <_> + 4 11 14 4 -1. + <_> + 11 11 7 2 2. + <_> + 4 13 7 2 2. + <_> + + <_> + 1 18 18 2 -1. + <_> + 7 18 6 2 3. + <_> + + <_> + 11 18 2 2 -1. + <_> + 12 18 1 1 2. + <_> + 11 19 1 1 2. + <_> + + <_> + 7 18 2 2 -1. + <_> + 7 18 1 1 2. + <_> + 8 19 1 1 2. + <_> + + <_> + 12 18 8 2 -1. + <_> + 12 19 8 1 2. + <_> + + <_> + 7 14 6 2 -1. + <_> + 7 15 6 1 2. + <_> + + <_> + 8 12 4 8 -1. + <_> + 10 12 2 4 2. + <_> + 8 16 2 4 2. + <_> + + <_> + 4 9 3 3 -1. + <_> + 4 10 3 1 3. + <_> + + <_> + 7 10 6 2 -1. + <_> + 9 10 2 2 3. + <_> + + <_> + 5 0 4 15 -1. + <_> + 7 0 2 15 2. + <_> + + <_> + 8 6 12 14 -1. + <_> + 12 6 4 14 3. + <_> + + <_> + 5 16 3 3 -1. + <_> + 5 17 3 1 3. + <_> + + <_> + 8 1 12 19 -1. + <_> + 12 1 4 19 3. + <_> + + <_> + 3 0 3 2 -1. + <_> + 3 1 3 1 2. + <_> + + <_> + 10 12 4 5 -1. + <_> + 10 12 2 5 2. + <_> + + <_> + 6 12 4 5 -1. + <_> + 8 12 2 5 2. + <_> + + <_> + 11 11 2 2 -1. + <_> + 12 11 1 1 2. + <_> + 11 12 1 1 2. + <_> + + <_> + 0 2 3 6 -1. + <_> + 0 4 3 2 3. + <_> + + <_> + 11 11 2 2 -1. + <_> + 12 11 1 1 2. + <_> + 11 12 1 1 2. + <_> + + <_> + 7 6 4 10 -1. + <_> + 7 11 4 5 2. + <_> + + <_> + 11 11 2 2 -1. + <_> + 12 11 1 1 2. + <_> + 11 12 1 1 2. + <_> + + <_> + 2 13 5 2 -1. + <_> + 2 14 5 1 2. + <_> + + <_> + 11 11 2 2 -1. + <_> + 12 11 1 1 2. + <_> + 11 12 1 1 2. + <_> + + <_> + 7 11 2 2 -1. + <_> + 7 11 1 1 2. + <_> + 8 12 1 1 2. + <_> + + <_> + 14 13 3 3 -1. + <_> + 14 14 3 1 3. + <_> + + <_> + 3 13 3 3 -1. + <_> + 3 14 3 1 3. + <_> + + <_> + 9 14 2 3 -1. + <_> + 9 15 2 1 3. + <_> + + <_> + 8 7 3 3 -1. + <_> + 8 8 3 1 3. + <_> + + <_> + 13 5 3 3 -1. + <_> + 13 6 3 1 3. + <_> + + <_> + 0 9 5 3 -1. + <_> + 0 10 5 1 3. + <_> + + <_> + 13 5 3 3 -1. + <_> + 13 6 3 1 3. + <_> + + <_> + 9 12 2 8 -1. + <_> + 9 12 1 4 2. + <_> + 10 16 1 4 2. + <_> + + <_> + 11 7 2 2 -1. + <_> + 12 7 1 1 2. + <_> + 11 8 1 1 2. + <_> + + <_> + 0 16 6 4 -1. + <_> + 3 16 3 4 2. + <_> + + <_> + 10 6 2 3 -1. + <_> + 10 7 2 1 3. + <_> + + <_> + 9 5 2 6 -1. + <_> + 9 7 2 2 3. + <_> + + <_> + 12 15 8 4 -1. + <_> + 12 15 4 4 2. + <_> + + <_> + 0 14 8 6 -1. + <_> + 4 14 4 6 2. + <_> + + <_> + 9 0 3 2 -1. + <_> + 10 0 1 2 3. + <_> + + <_> + 4 15 4 2 -1. + <_> + 6 15 2 2 2. + <_> + + <_> + 12 7 3 13 -1. + <_> + 13 7 1 13 3. + <_> + + <_> + 5 7 3 13 -1. + <_> + 6 7 1 13 3. + <_> + + <_> + 9 6 3 9 -1. + <_> + 9 9 3 3 3. + <_> + + <_> + 4 4 7 12 -1. + <_> + 4 10 7 6 2. + <_> + + <_> + 12 12 2 2 -1. + <_> + 13 12 1 1 2. + <_> + 12 13 1 1 2. + <_> + + <_> + 6 12 2 2 -1. + <_> + 6 12 1 1 2. + <_> + 7 13 1 1 2. + <_> + + <_> + 8 9 4 2 -1. + <_> + 10 9 2 1 2. + <_> + 8 10 2 1 2. + <_> + + <_> + 3 6 2 2 -1. + <_> + 3 6 1 1 2. + <_> + 4 7 1 1 2. + <_> + + <_> + 16 6 3 2 -1. + <_> + 16 7 3 1 2. + <_> + + <_> + 0 7 19 4 -1. + <_> + 0 9 19 2 2. + <_> + + <_> + 10 2 10 1 -1. + <_> + 10 2 5 1 2. + <_> + + <_> + 9 4 2 12 -1. + <_> + 9 10 2 6 2. + <_> + + <_> + 12 18 4 1 -1. + <_> + 12 18 2 1 2. + <_> + + <_> + 1 7 6 4 -1. + <_> + 1 7 3 2 2. + <_> + 4 9 3 2 2. + <_> + + <_> + 12 0 6 13 -1. + <_> + 14 0 2 13 3. + <_> + + <_> + 2 0 6 13 -1. + <_> + 4 0 2 13 3. + <_> + + <_> + 10 5 8 8 -1. + <_> + 10 9 8 4 2. + <_> + + <_> + 8 3 2 5 -1. + <_> + 9 3 1 5 2. + <_> + + <_> + 8 4 9 1 -1. + <_> + 11 4 3 1 3. + <_> + + <_> + 3 4 9 1 -1. + <_> + 6 4 3 1 3. + <_> + + <_> + 1 0 18 10 -1. + <_> + 7 0 6 10 3. + <_> + + <_> + 7 17 5 3 -1. + <_> + 7 18 5 1 3. + <_> + + <_> + 7 11 6 1 -1. + <_> + 9 11 2 1 3. + <_> + + <_> + 2 2 3 2 -1. + <_> + 2 3 3 1 2. + <_> + + <_> + 8 12 4 2 -1. + <_> + 8 13 4 1 2. + <_> + + <_> + 6 10 3 6 -1. + <_> + 6 13 3 3 2. + <_> + + <_> + 11 4 2 4 -1. + <_> + 11 4 1 4 2. + <_> + + <_> + 7 4 2 4 -1. + <_> + 8 4 1 4 2. + <_> + + <_> + 9 6 2 4 -1. + <_> + 9 6 1 4 2. + <_> + + <_> + 6 13 8 3 -1. + <_> + 6 14 8 1 3. + <_> + + <_> + 9 15 3 4 -1. + <_> + 10 15 1 4 3. + <_> + + <_> + 9 2 2 17 -1. + <_> + 10 2 1 17 2. + <_> + + <_> + 7 0 6 1 -1. + <_> + 9 0 2 1 3. + <_> + + <_> + 8 15 3 4 -1. + <_> + 9 15 1 4 3. + <_> + + <_> + 7 13 7 3 -1. + <_> + 7 14 7 1 3. + <_> + + <_> + 8 16 3 3 -1. + <_> + 9 16 1 3 3. + <_> + + <_> + 6 2 8 10 -1. + <_> + 6 7 8 5 2. + <_> + + <_> + 2 5 8 8 -1. + <_> + 2 9 8 4 2. + <_> + + <_> + 14 16 2 2 -1. + <_> + 14 17 2 1 2. + <_> + + <_> + 4 16 2 2 -1. + <_> + 4 17 2 1 2. + <_> + + <_> + 10 11 4 6 -1. + <_> + 10 14 4 3 2. + <_> + + <_> + 6 11 4 6 -1. + <_> + 6 14 4 3 2. + <_> + + <_> + 10 14 1 3 -1. + <_> + 10 15 1 1 3. + <_> + + <_> + 8 14 4 3 -1. + <_> + 8 15 4 1 3. + <_> + + <_> + 10 0 4 6 -1. + <_> + 12 0 2 3 2. + <_> + 10 3 2 3 2. + <_> + + <_> + 0 3 20 2 -1. + <_> + 0 4 20 1 2. + <_> + + <_> + 12 0 8 2 -1. + <_> + 16 0 4 1 2. + <_> + 12 1 4 1 2. + <_> + + <_> + 2 12 10 8 -1. + <_> + 2 16 10 4 2. + <_> + + <_> + 17 7 2 10 -1. + <_> + 18 7 1 5 2. + <_> + 17 12 1 5 2. + <_> + + <_> + 1 7 2 10 -1. + <_> + 1 7 1 5 2. + <_> + 2 12 1 5 2. + <_> + + <_> + 15 10 3 6 -1. + <_> + 15 12 3 2 3. + <_> + + <_> + 4 4 6 2 -1. + <_> + 6 4 2 2 3. + <_> + + <_> + 0 5 20 6 -1. + <_> + 0 7 20 2 3. + <_> + + <_> + 0 0 8 2 -1. + <_> + 0 0 4 1 2. + <_> + 4 1 4 1 2. + <_> + + <_> + 1 0 18 4 -1. + <_> + 7 0 6 4 3. + <_> + + <_> + 1 13 6 2 -1. + <_> + 1 14 6 1 2. + <_> + + <_> + 10 8 3 4 -1. + <_> + 11 8 1 4 3. + <_> + + <_> + 6 1 6 1 -1. + <_> + 8 1 2 1 3. + <_> + + <_> + 8 14 4 3 -1. + <_> + 8 15 4 1 3. + <_> + + <_> + 1 6 18 2 -1. + <_> + 10 6 9 2 2. + <_> + + <_> + 15 11 1 2 -1. + <_> + 15 12 1 1 2. + <_> + + <_> + 6 5 1 2 -1. + <_> + 6 6 1 1 2. + <_> + + <_> + 13 4 1 3 -1. + <_> + 13 5 1 1 3. + <_> + + <_> + 2 15 1 2 -1. + <_> + 2 16 1 1 2. + <_> + + <_> + 12 4 4 3 -1. + <_> + 12 5 4 1 3. + <_> + + <_> + 0 0 7 3 -1. + <_> + 0 1 7 1 3. + <_> + + <_> + 9 12 6 2 -1. + <_> + 9 12 3 2 2. + <_> + + <_> + 5 4 2 3 -1. + <_> + 5 5 2 1 3. + <_> + + <_> + 18 4 2 3 -1. + <_> + 18 5 2 1 3. + <_> + + <_> + 3 0 8 6 -1. + <_> + 3 2 8 2 3. + <_> + + <_> + 0 2 20 6 -1. + <_> + 10 2 10 3 2. + <_> + 0 5 10 3 2. + <_> + + <_> + 4 7 2 4 -1. + <_> + 5 7 1 4 2. + <_> + + <_> + 3 10 15 2 -1. + <_> + 8 10 5 2 3. + <_> + + <_> + 3 0 12 11 -1. + <_> + 9 0 6 11 2. + <_> + + <_> + 13 0 2 6 -1. + <_> + 13 0 1 6 2. + <_> + + <_> + 0 19 2 1 -1. + <_> + 1 19 1 1 2. + <_> + + <_> + 16 10 4 10 -1. + <_> + 18 10 2 5 2. + <_> + 16 15 2 5 2. + <_> + + <_> + 4 8 10 3 -1. + <_> + 4 9 10 1 3. + <_> + + <_> + 14 12 3 3 -1. + <_> + 14 13 3 1 3. + <_> + + <_> + 0 10 4 10 -1. + <_> + 0 10 2 5 2. + <_> + 2 15 2 5 2. + <_> + + <_> + 18 3 2 6 -1. + <_> + 18 5 2 2 3. + <_> + + <_> + 6 6 1 3 -1. + <_> + 6 7 1 1 3. + <_> + + <_> + 7 7 7 2 -1. + <_> + 7 8 7 1 2. + <_> + + <_> + 0 3 2 6 -1. + <_> + 0 5 2 2 3. + <_> + + <_> + 11 1 3 1 -1. + <_> + 12 1 1 1 3. + <_> + + <_> + 5 0 2 6 -1. + <_> + 6 0 1 6 2. + <_> + + <_> + 1 1 18 14 -1. + <_> + 7 1 6 14 3. + <_> + + <_> + 4 6 8 3 -1. + <_> + 8 6 4 3 2. + <_> + + <_> + 9 12 6 2 -1. + <_> + 9 12 3 2 2. + <_> + + <_> + 5 12 6 2 -1. + <_> + 8 12 3 2 2. + <_> + + <_> + 10 7 3 5 -1. + <_> + 11 7 1 5 3. + <_> + + <_> + 7 7 3 5 -1. + <_> + 8 7 1 5 3. + <_> + + <_> + 13 0 3 10 -1. + <_> + 14 0 1 10 3. + <_> + + <_> + 4 11 3 2 -1. + <_> + 4 12 3 1 2. + <_> + + <_> + 17 3 3 6 -1. + <_> + 18 3 1 6 3. + <_> + + <_> + 1 8 18 10 -1. + <_> + 1 13 18 5 2. + <_> + + <_> + 13 0 3 10 -1. + <_> + 14 0 1 10 3. + <_> + + <_> + 9 14 2 3 -1. + <_> + 9 15 2 1 3. + <_> + + <_> + 16 3 3 7 -1. + <_> + 17 3 1 7 3. + <_> + + <_> + 4 0 3 10 -1. + <_> + 5 0 1 10 3. + <_> + + <_> + 16 3 3 7 -1. + <_> + 17 3 1 7 3. + <_> + + <_> + 0 9 1 2 -1. + <_> + 0 10 1 1 2. + <_> + + <_> + 18 1 2 10 -1. + <_> + 18 1 1 10 2. + <_> + + <_> + 0 1 2 10 -1. + <_> + 1 1 1 10 2. + <_> + + <_> + 10 16 3 4 -1. + <_> + 11 16 1 4 3. + <_> + + <_> + 2 8 3 3 -1. + <_> + 3 8 1 3 3. + <_> + + <_> + 11 0 2 6 -1. + <_> + 12 0 1 3 2. + <_> + 11 3 1 3 2. + <_> + + <_> + 7 0 2 6 -1. + <_> + 7 0 1 3 2. + <_> + 8 3 1 3 2. + <_> + + <_> + 16 3 3 7 -1. + <_> + 17 3 1 7 3. + <_> + + <_> + 1 3 3 7 -1. + <_> + 2 3 1 7 3. + <_> + + <_> + 14 1 6 16 -1. + <_> + 16 1 2 16 3. + <_> + + <_> + 0 1 6 16 -1. + <_> + 2 1 2 16 3. + <_> + + <_> + 2 0 16 8 -1. + <_> + 10 0 8 4 2. + <_> + 2 4 8 4 2. + <_> + + <_> + 6 8 5 3 -1. + <_> + 6 9 5 1 3. + <_> + + <_> + 9 7 3 3 -1. + <_> + 10 7 1 3 3. + <_> + + <_> + 8 8 4 3 -1. + <_> + 8 9 4 1 3. + <_> + + <_> + 9 6 2 4 -1. + <_> + 9 6 1 4 2. + <_> + + <_> + 0 7 15 1 -1. + <_> + 5 7 5 1 3. + <_> + + <_> + 8 2 7 9 -1. + <_> + 8 5 7 3 3. + <_> + + <_> + 1 7 16 4 -1. + <_> + 1 7 8 2 2. + <_> + 9 9 8 2 2. + <_> + + <_> + 6 12 8 2 -1. + <_> + 6 13 8 1 2. + <_> + + <_> + 8 11 3 3 -1. + <_> + 8 12 3 1 3. + <_> + + <_> + 4 5 14 10 -1. + <_> + 11 5 7 5 2. + <_> + 4 10 7 5 2. + <_> + + <_> + 4 12 3 2 -1. + <_> + 4 13 3 1 2. + <_> + + <_> + 9 11 6 1 -1. + <_> + 11 11 2 1 3. + <_> + + <_> + 4 9 7 6 -1. + <_> + 4 11 7 2 3. + <_> + + <_> + 7 10 6 3 -1. + <_> + 7 11 6 1 3. + <_> + + <_> + 9 11 2 2 -1. + <_> + 9 12 2 1 2. + <_> + + <_> + 0 5 20 6 -1. + <_> + 0 7 20 2 3. + <_> + + <_> + 6 4 6 1 -1. + <_> + 8 4 2 1 3. + <_> + + <_> + 9 11 6 1 -1. + <_> + 11 11 2 1 3. + <_> + + <_> + 5 11 6 1 -1. + <_> + 7 11 2 1 3. + <_> + + <_> + 10 16 3 4 -1. + <_> + 11 16 1 4 3. + <_> + + <_> + 8 7 3 3 -1. + <_> + 9 7 1 3 3. + <_> + + <_> + 2 12 16 8 -1. + <_> + 2 16 16 4 2. + <_> + + <_> + 0 15 15 2 -1. + <_> + 0 16 15 1 2. + <_> + + <_> + 15 4 5 6 -1. + <_> + 15 6 5 2 3. + <_> + + <_> + 9 5 2 4 -1. + <_> + 10 5 1 4 2. + <_> + + <_> + 8 10 9 6 -1. + <_> + 8 12 9 2 3. + <_> + + <_> + 2 19 15 1 -1. + <_> + 7 19 5 1 3. + <_> + + <_> + 10 16 3 4 -1. + <_> + 11 16 1 4 3. + <_> + + <_> + 0 15 20 4 -1. + <_> + 0 17 20 2 2. + <_> + + <_> + 10 16 3 4 -1. + <_> + 11 16 1 4 3. + <_> + + <_> + 7 16 3 4 -1. + <_> + 8 16 1 4 3. + <_> + + <_> + 9 16 3 3 -1. + <_> + 9 17 3 1 3. + <_> + + <_> + 8 11 4 6 -1. + <_> + 8 14 4 3 2. + <_> + + <_> + 9 6 2 12 -1. + <_> + 9 10 2 4 3. + <_> + + <_> + 8 17 4 3 -1. + <_> + 8 18 4 1 3. + <_> + + <_> + 9 18 8 2 -1. + <_> + 13 18 4 1 2. + <_> + 9 19 4 1 2. + <_> + + <_> + 1 18 8 2 -1. + <_> + 1 19 8 1 2. + <_> + + <_> + 13 5 6 15 -1. + <_> + 15 5 2 15 3. + <_> + + <_> + 9 8 2 2 -1. + <_> + 9 9 2 1 2. + <_> + + <_> + 9 5 2 3 -1. + <_> + 9 5 1 3 2. + <_> + + <_> + 1 5 6 15 -1. + <_> + 3 5 2 15 3. + <_> + + <_> + 4 1 14 8 -1. + <_> + 11 1 7 4 2. + <_> + 4 5 7 4 2. + <_> + + <_> + 2 4 4 16 -1. + <_> + 2 4 2 8 2. + <_> + 4 12 2 8 2. + <_> + + <_> + 12 4 3 12 -1. + <_> + 12 10 3 6 2. + <_> + + <_> + 4 5 10 12 -1. + <_> + 4 5 5 6 2. + <_> + 9 11 5 6 2. + <_> + + <_> + 9 14 2 3 -1. + <_> + 9 15 2 1 3. + <_> + + <_> + 5 4 2 3 -1. + <_> + 5 5 2 1 3. + <_> + + <_> + 12 2 4 10 -1. + <_> + 14 2 2 5 2. + <_> + 12 7 2 5 2. + <_> + + <_> + 6 4 7 3 -1. + <_> + 6 5 7 1 3. + <_> + + <_> + 2 0 18 2 -1. + <_> + 11 0 9 1 2. + <_> + 2 1 9 1 2. + <_> + + <_> + 0 0 18 2 -1. + <_> + 0 0 9 1 2. + <_> + 9 1 9 1 2. + <_> + + <_> + 13 13 4 6 -1. + <_> + 15 13 2 3 2. + <_> + 13 16 2 3 2. + <_> + + <_> + 3 13 4 6 -1. + <_> + 3 13 2 3 2. + <_> + 5 16 2 3 2. + <_> + + <_> + 10 12 2 6 -1. + <_> + 10 15 2 3 2. + <_> + + <_> + 5 9 10 10 -1. + <_> + 5 9 5 5 2. + <_> + 10 14 5 5 2. + <_> + + <_> + 11 4 4 2 -1. + <_> + 13 4 2 1 2. + <_> + 11 5 2 1 2. + <_> + + <_> + 7 12 6 8 -1. + <_> + 10 12 3 8 2. + <_> + + <_> + 12 2 4 10 -1. + <_> + 14 2 2 5 2. + <_> + 12 7 2 5 2. + <_> + + <_> + 8 11 2 1 -1. + <_> + 9 11 1 1 2. + <_> + + <_> + 10 5 1 12 -1. + <_> + 10 9 1 4 3. + <_> + + <_> + 0 11 6 9 -1. + <_> + 3 11 3 9 2. + <_> + + <_> + 12 2 4 10 -1. + <_> + 14 2 2 5 2. + <_> + 12 7 2 5 2. + <_> + + <_> + 4 2 4 10 -1. + <_> + 4 2 2 5 2. + <_> + 6 7 2 5 2. + <_> + + <_> + 11 4 4 2 -1. + <_> + 13 4 2 1 2. + <_> + 11 5 2 1 2. + <_> + + <_> + 0 14 6 3 -1. + <_> + 0 15 6 1 3. + <_> + + <_> + 11 4 4 2 -1. + <_> + 13 4 2 1 2. + <_> + 11 5 2 1 2. + <_> + + <_> + 6 1 3 2 -1. + <_> + 7 1 1 2 3. + <_> + + <_> + 11 4 4 2 -1. + <_> + 13 4 2 1 2. + <_> + 11 5 2 1 2. + <_> + + <_> + 5 4 4 2 -1. + <_> + 5 4 2 1 2. + <_> + 7 5 2 1 2. + <_> + + <_> + 13 0 2 12 -1. + <_> + 14 0 1 6 2. + <_> + 13 6 1 6 2. + <_> + + <_> + 6 0 3 10 -1. + <_> + 7 0 1 10 3. + <_> + + <_> + 3 0 17 8 -1. + <_> + 3 4 17 4 2. + <_> + + <_> + 0 4 20 4 -1. + <_> + 0 6 20 2 2. + <_> + + <_> + 0 3 8 2 -1. + <_> + 4 3 4 2 2. + <_> + + <_> + 8 11 4 3 -1. + <_> + 8 12 4 1 3. + <_> + + <_> + 5 7 6 4 -1. + <_> + 5 7 3 2 2. + <_> + 8 9 3 2 2. + <_> + + <_> + 8 3 4 9 -1. + <_> + 8 6 4 3 3. + <_> + + <_> + 8 15 1 4 -1. + <_> + 8 17 1 2 2. + <_> + + <_> + 4 5 12 7 -1. + <_> + 8 5 4 7 3. + <_> + + <_> + 4 2 4 10 -1. + <_> + 4 2 2 5 2. + <_> + 6 7 2 5 2. + <_> + + <_> + 3 0 17 2 -1. + <_> + 3 1 17 1 2. + <_> + + <_> + 2 2 16 15 -1. + <_> + 2 7 16 5 3. + <_> + + <_> + 15 2 5 2 -1. + <_> + 15 3 5 1 2. + <_> + + <_> + 9 3 2 2 -1. + <_> + 10 3 1 2 2. + <_> + + <_> + 4 5 16 15 -1. + <_> + 4 10 16 5 3. + <_> + + <_> + 7 13 5 6 -1. + <_> + 7 16 5 3 2. + <_> + + <_> + 10 7 3 2 -1. + <_> + 11 7 1 2 3. + <_> + + <_> + 8 3 3 1 -1. + <_> + 9 3 1 1 3. + <_> + + <_> + 9 16 3 3 -1. + <_> + 9 17 3 1 3. + <_> + + <_> + 0 2 5 2 -1. + <_> + 0 3 5 1 2. + <_> + + <_> + 12 5 4 3 -1. + <_> + 12 6 4 1 3. + <_> + + <_> + 1 7 12 1 -1. + <_> + 5 7 4 1 3. + <_> + + <_> + 7 5 6 14 -1. + <_> + 7 12 6 7 2. + <_> + + <_> + 0 0 8 10 -1. + <_> + 0 0 4 5 2. + <_> + 4 5 4 5 2. + <_> + + <_> + 9 1 3 2 -1. + <_> + 10 1 1 2 3. + <_> + + <_> + 8 1 3 2 -1. + <_> + 9 1 1 2 3. + <_> + + <_> + 12 4 3 3 -1. + <_> + 12 5 3 1 3. + <_> + + <_> + 7 4 6 16 -1. + <_> + 7 12 6 8 2. + <_> + + <_> + 12 4 3 3 -1. + <_> + 12 5 3 1 3. + <_> + + <_> + 2 3 2 6 -1. + <_> + 2 5 2 2 3. + <_> + + <_> + 14 2 6 9 -1. + <_> + 14 5 6 3 3. + <_> + + <_> + 5 4 3 3 -1. + <_> + 5 5 3 1 3. + <_> + + <_> + 9 17 3 2 -1. + <_> + 10 17 1 2 3. + <_> + + <_> + 5 5 2 3 -1. + <_> + 5 6 2 1 3. + <_> + + <_> + 13 11 3 6 -1. + <_> + 13 13 3 2 3. + <_> + + <_> + 3 14 2 6 -1. + <_> + 3 17 2 3 2. + <_> + + <_> + 14 3 6 2 -1. + <_> + 14 4 6 1 2. + <_> + + <_> + 0 8 16 2 -1. + <_> + 0 9 16 1 2. + <_> + + <_> + 14 3 6 2 -1. + <_> + 14 4 6 1 2. + <_> + + <_> + 0 0 5 6 -1. + <_> + 0 2 5 2 3. + <_> + + <_> + 12 5 4 3 -1. + <_> + 12 6 4 1 3. + <_> + + <_> + 4 11 3 6 -1. + <_> + 4 13 3 2 3. + <_> + + <_> + 12 5 4 3 -1. + <_> + 12 6 4 1 3. + <_> + + <_> + 9 5 1 3 -1. + <_> + 9 6 1 1 3. + <_> + + <_> + 12 5 4 3 -1. + <_> + 12 6 4 1 3. + <_> + + <_> + 6 6 8 12 -1. + <_> + 6 12 8 6 2. + <_> + + <_> + 12 5 4 3 -1. + <_> + 12 6 4 1 3. + <_> + + <_> + 5 12 9 2 -1. + <_> + 8 12 3 2 3. + <_> + + <_> + 12 5 4 3 -1. + <_> + 12 6 4 1 3. + <_> + + <_> + 4 5 4 3 -1. + <_> + 4 6 4 1 3. + <_> + + <_> + 6 6 9 2 -1. + <_> + 9 6 3 2 3. + <_> + + <_> + 4 11 1 3 -1. + <_> + 4 12 1 1 3. + <_> + + <_> + 14 12 6 6 -1. + <_> + 14 12 3 6 2. + <_> + + <_> + 7 0 3 7 -1. + <_> + 8 0 1 7 3. + <_> + + <_> + 9 8 3 3 -1. + <_> + 10 8 1 3 3. + <_> + + <_> + 8 8 3 3 -1. + <_> + 9 8 1 3 3. + <_> + + <_> + 5 10 11 3 -1. + <_> + 5 11 11 1 3. + <_> + + <_> + 5 7 10 1 -1. + <_> + 10 7 5 1 2. + <_> + + <_> + 9 7 3 2 -1. + <_> + 10 7 1 2 3. + <_> + + <_> + 8 7 3 2 -1. + <_> + 9 7 1 2 3. + <_> + + <_> + 11 9 4 2 -1. + <_> + 11 9 2 2 2. + <_> + + <_> + 5 9 4 2 -1. + <_> + 7 9 2 2 2. + <_> + + <_> + 14 10 2 4 -1. + <_> + 14 12 2 2 2. + <_> + + <_> + 7 7 3 2 -1. + <_> + 8 7 1 2 3. + <_> + + <_> + 14 17 6 3 -1. + <_> + 14 18 6 1 3. + <_> + + <_> + 4 5 12 12 -1. + <_> + 4 5 6 6 2. + <_> + 10 11 6 6 2. + <_> + + <_> + 6 9 8 8 -1. + <_> + 10 9 4 4 2. + <_> + 6 13 4 4 2. + <_> + + <_> + 0 4 15 4 -1. + <_> + 5 4 5 4 3. + <_> + + <_> + 13 2 4 1 -1. + <_> + 13 2 2 1 2. + <_> + + <_> + 4 12 2 2 -1. + <_> + 4 13 2 1 2. + <_> + + <_> + 8 13 4 3 -1. + <_> + 8 14 4 1 3. + <_> + + <_> + 9 13 2 3 -1. + <_> + 9 14 2 1 3. + <_> + + <_> + 13 11 2 3 -1. + <_> + 13 12 2 1 3. + <_> + + <_> + 7 12 4 4 -1. + <_> + 7 12 2 2 2. + <_> + 9 14 2 2 2. + <_> + + <_> + 10 11 2 2 -1. + <_> + 11 11 1 1 2. + <_> + 10 12 1 1 2. + <_> + + <_> + 8 17 3 2 -1. + <_> + 9 17 1 2 3. + <_> + + <_> + 10 11 2 2 -1. + <_> + 11 11 1 1 2. + <_> + 10 12 1 1 2. + <_> + + <_> + 0 17 6 3 -1. + <_> + 0 18 6 1 3. + <_> + + <_> + 10 11 2 2 -1. + <_> + 11 11 1 1 2. + <_> + 10 12 1 1 2. + <_> + + <_> + 8 11 2 2 -1. + <_> + 8 11 1 1 2. + <_> + 9 12 1 1 2. + <_> + + <_> + 12 5 8 4 -1. + <_> + 12 5 4 4 2. + <_> + + <_> + 0 5 8 4 -1. + <_> + 4 5 4 4 2. + <_> + + <_> + 13 2 4 1 -1. + <_> + 13 2 2 1 2. + <_> + + <_> + 3 2 4 1 -1. + <_> + 5 2 2 1 2. + <_> + + <_> + 10 0 4 2 -1. + <_> + 12 0 2 1 2. + <_> + 10 1 2 1 2. + <_> + + <_> + 7 12 3 1 -1. + <_> + 8 12 1 1 3. + <_> + + <_> + 8 11 4 8 -1. + <_> + 10 11 2 4 2. + <_> + 8 15 2 4 2. + <_> + + <_> + 9 9 2 2 -1. + <_> + 9 10 2 1 2. + <_> + + <_> + 3 18 15 2 -1. + <_> + 3 19 15 1 2. + <_> + + <_> + 2 6 2 12 -1. + <_> + 2 6 1 6 2. + <_> + 3 12 1 6 2. + <_> + + <_> + 9 8 2 3 -1. + <_> + 9 9 2 1 3. + <_> + + <_> + 7 10 3 2 -1. + <_> + 8 10 1 2 3. + <_> + + <_> + 11 11 3 1 -1. + <_> + 12 11 1 1 3. + <_> + + <_> + 6 11 3 1 -1. + <_> + 7 11 1 1 3. + <_> + + <_> + 9 2 4 2 -1. + <_> + 11 2 2 1 2. + <_> + 9 3 2 1 2. + <_> + + <_> + 4 12 2 3 -1. + <_> + 4 13 2 1 3. + <_> + + <_> + 2 1 18 3 -1. + <_> + 8 1 6 3 3. + <_> + + <_> + 5 1 4 14 -1. + <_> + 7 1 2 14 2. + <_> + + <_> + 8 16 12 3 -1. + <_> + 8 16 6 3 2. + <_> + + <_> + 1 17 18 3 -1. + <_> + 7 17 6 3 3. + <_> + + <_> + 9 14 2 6 -1. + <_> + 9 17 2 3 2. + <_> + + <_> + 9 12 1 8 -1. + <_> + 9 16 1 4 2. + <_> + + <_> + 9 14 2 3 -1. + <_> + 9 15 2 1 3. + <_> + + <_> + 9 6 2 12 -1. + <_> + 9 10 2 4 3. + <_> + + <_> + 12 9 3 3 -1. + <_> + 12 10 3 1 3. + <_> + + <_> + 0 1 4 8 -1. + <_> + 2 1 2 8 2. + <_> + + <_> + 9 1 6 2 -1. + <_> + 12 1 3 1 2. + <_> + 9 2 3 1 2. + <_> + + <_> + 1 3 12 14 -1. + <_> + 1 10 12 7 2. + <_> + + <_> + 8 12 4 2 -1. + <_> + 10 12 2 1 2. + <_> + 8 13 2 1 2. + <_> + + <_> + 1 9 10 2 -1. + <_> + 1 9 5 1 2. + <_> + 6 10 5 1 2. + <_> + + <_> + 8 15 4 3 -1. + <_> + 8 16 4 1 3. + <_> + + <_> + 6 8 8 3 -1. + <_> + 6 9 8 1 3. + <_> + + <_> + 9 15 5 3 -1. + <_> + 9 16 5 1 3. + <_> + + <_> + 8 7 4 3 -1. + <_> + 8 8 4 1 3. + <_> + + <_> + 7 7 6 2 -1. + <_> + 7 8 6 1 2. + <_> + + <_> + 5 7 8 2 -1. + <_> + 5 7 4 1 2. + <_> + 9 8 4 1 2. + <_> + + <_> + 12 9 3 3 -1. + <_> + 12 10 3 1 3. + <_> + + <_> + 4 7 4 2 -1. + <_> + 4 8 4 1 2. + <_> + + <_> + 14 2 6 9 -1. + <_> + 14 5 6 3 3. + <_> + + <_> + 4 9 3 3 -1. + <_> + 5 9 1 3 3. + <_> + + <_> + 12 9 3 3 -1. + <_> + 12 10 3 1 3. + <_> + + <_> + 0 2 6 9 -1. + <_> + 0 5 6 3 3. + <_> + + <_> + 17 3 3 6 -1. + <_> + 18 3 1 6 3. + <_> + + <_> + 0 3 3 6 -1. + <_> + 1 3 1 6 3. + <_> + + <_> + 17 14 1 2 -1. + <_> + 17 15 1 1 2. + <_> + + <_> + 4 9 4 3 -1. + <_> + 6 9 2 3 2. + <_> + + <_> + 12 9 3 3 -1. + <_> + 12 10 3 1 3. + <_> + + <_> + 5 9 3 3 -1. + <_> + 5 10 3 1 3. + <_> + + <_> + 9 5 6 8 -1. + <_> + 12 5 3 4 2. + <_> + 9 9 3 4 2. + <_> + + <_> + 5 5 6 8 -1. + <_> + 5 5 3 4 2. + <_> + 8 9 3 4 2. + <_> + + <_> + 16 1 4 6 -1. + <_> + 16 4 4 3 2. + <_> + + <_> + 1 0 6 20 -1. + <_> + 3 0 2 20 3. + <_> + + <_> + 12 11 3 2 -1. + <_> + 13 11 1 2 3. + <_> + + <_> + 5 11 3 2 -1. + <_> + 6 11 1 2 3. + <_> + + <_> + 9 4 6 1 -1. + <_> + 11 4 2 1 3. + <_> + + <_> + 0 0 8 3 -1. + <_> + 4 0 4 3 2. + <_> + + <_> + 15 0 2 5 -1. + <_> + 15 0 1 5 2. + <_> + + <_> + 4 1 3 2 -1. + <_> + 5 1 1 2 3. + <_> + + <_> + 7 0 6 15 -1. + <_> + 9 0 2 15 3. + <_> + + <_> + 6 11 3 1 -1. + <_> + 7 11 1 1 3. + <_> + + <_> + 12 0 3 4 -1. + <_> + 13 0 1 4 3. + <_> + + <_> + 5 4 6 1 -1. + <_> + 7 4 2 1 3. + <_> + + <_> + 12 7 3 2 -1. + <_> + 12 8 3 1 2. + <_> + + <_> + 0 1 4 6 -1. + <_> + 0 4 4 3 2. + <_> + + <_> + 12 7 3 2 -1. + <_> + 12 8 3 1 2. + <_> + + <_> + 2 16 3 3 -1. + <_> + 2 17 3 1 3. + <_> + + <_> + 13 8 6 10 -1. + <_> + 16 8 3 5 2. + <_> + 13 13 3 5 2. + <_> + + <_> + 0 9 5 2 -1. + <_> + 0 10 5 1 2. + <_> + + <_> + 12 11 2 2 -1. + <_> + 13 11 1 1 2. + <_> + 12 12 1 1 2. + <_> + + <_> + 3 15 3 3 -1. + <_> + 3 16 3 1 3. + <_> + + <_> + 12 7 3 2 -1. + <_> + 12 8 3 1 2. + <_> + + <_> + 5 7 3 2 -1. + <_> + 5 8 3 1 2. + <_> + + <_> + 9 5 9 9 -1. + <_> + 9 8 9 3 3. + <_> + + <_> + 5 0 3 7 -1. + <_> + 6 0 1 7 3. + <_> + + <_> + 5 2 12 5 -1. + <_> + 9 2 4 5 3. + <_> + + <_> + 6 11 2 2 -1. + <_> + 6 11 1 1 2. + <_> + 7 12 1 1 2. + <_> + + <_> + 15 15 3 2 -1. + <_> + 15 16 3 1 2. + <_> + + <_> + 2 15 3 2 -1. + <_> + 2 16 3 1 2. + <_> + + <_> + 14 12 6 8 -1. + <_> + 17 12 3 4 2. + <_> + 14 16 3 4 2. + <_> + + <_> + 2 8 15 6 -1. + <_> + 7 8 5 6 3. + <_> + + <_> + 2 2 18 17 -1. + <_> + 8 2 6 17 3. + <_> + + <_> + 5 1 4 1 -1. + <_> + 7 1 2 1 2. + <_> + + <_> + 5 2 12 5 -1. + <_> + 9 2 4 5 3. + <_> + + <_> + 3 2 12 5 -1. + <_> + 7 2 4 5 3. + <_> + + <_> + 4 9 12 4 -1. + <_> + 10 9 6 2 2. + <_> + 4 11 6 2 2. + <_> + + <_> + 5 15 6 2 -1. + <_> + 5 15 3 1 2. + <_> + 8 16 3 1 2. + <_> + + <_> + 10 14 2 3 -1. + <_> + 10 15 2 1 3. + <_> + + <_> + 0 13 20 2 -1. + <_> + 0 13 10 1 2. + <_> + 10 14 10 1 2. + <_> + + <_> + 4 9 12 8 -1. + <_> + 10 9 6 4 2. + <_> + 4 13 6 4 2. + <_> + + <_> + 8 13 3 6 -1. + <_> + 8 16 3 3 2. + <_> + + <_> + 10 12 2 2 -1. + <_> + 10 13 2 1 2. + <_> + + <_> + 9 12 2 2 -1. + <_> + 9 12 1 1 2. + <_> + 10 13 1 1 2. + <_> + + <_> + 4 11 14 4 -1. + <_> + 11 11 7 2 2. + <_> + 4 13 7 2 2. + <_> + + <_> + 8 5 4 2 -1. + <_> + 8 6 4 1 2. + <_> + + <_> + 10 10 6 3 -1. + <_> + 12 10 2 3 3. + <_> + + <_> + 2 14 1 2 -1. + <_> + 2 15 1 1 2. + <_> + + <_> + 13 8 6 12 -1. + <_> + 16 8 3 6 2. + <_> + 13 14 3 6 2. + <_> + + <_> + 1 8 6 12 -1. + <_> + 1 8 3 6 2. + <_> + 4 14 3 6 2. + <_> + + <_> + 10 0 6 10 -1. + <_> + 12 0 2 10 3. + <_> + + <_> + 5 11 8 4 -1. + <_> + 5 11 4 2 2. + <_> + 9 13 4 2 2. + <_> + + <_> + 10 16 8 4 -1. + <_> + 14 16 4 2 2. + <_> + 10 18 4 2 2. + <_> + + <_> + 7 7 6 6 -1. + <_> + 9 7 2 6 3. + <_> + + <_> + 10 2 4 10 -1. + <_> + 10 2 2 10 2. + <_> + + <_> + 6 1 4 9 -1. + <_> + 8 1 2 9 2. + <_> + + <_> + 12 19 2 1 -1. + <_> + 12 19 1 1 2. + <_> + + <_> + 1 2 4 9 -1. + <_> + 3 2 2 9 2. + <_> + + <_> + 7 5 6 4 -1. + <_> + 9 5 2 4 3. + <_> + + <_> + 9 4 2 4 -1. + <_> + 9 6 2 2 2. + <_> + + <_> + 14 5 2 8 -1. + <_> + 14 9 2 4 2. + <_> + + <_> + 7 6 5 12 -1. + <_> + 7 12 5 6 2. + <_> + + <_> + 14 6 2 6 -1. + <_> + 14 9 2 3 2. + <_> + + <_> + 4 6 2 6 -1. + <_> + 4 9 2 3 2. + <_> + + <_> + 8 15 10 4 -1. + <_> + 13 15 5 2 2. + <_> + 8 17 5 2 2. + <_> + + <_> + 6 18 2 2 -1. + <_> + 7 18 1 2 2. + <_> + + <_> + 11 3 6 2 -1. + <_> + 11 4 6 1 2. + <_> + + <_> + 2 0 16 6 -1. + <_> + 2 2 16 2 3. + <_> + + <_> + 11 3 6 2 -1. + <_> + 11 4 6 1 2. + <_> + + <_> + 4 11 10 3 -1. + <_> + 4 12 10 1 3. + <_> + + <_> + 11 3 6 2 -1. + <_> + 11 4 6 1 2. + <_> + + <_> + 3 3 6 2 -1. + <_> + 3 4 6 1 2. + <_> + + <_> + 16 0 4 7 -1. + <_> + 16 0 2 7 2. + <_> + + <_> + 0 14 9 6 -1. + <_> + 0 16 9 2 3. + <_> + + <_> + 9 16 3 3 -1. + <_> + 9 17 3 1 3. + <_> + + <_> + 4 6 6 2 -1. + <_> + 6 6 2 2 3. + <_> + + <_> + 15 11 1 3 -1. + <_> + 15 12 1 1 3. + <_> + + <_> + 5 5 2 3 -1. + <_> + 5 6 2 1 3. + <_> + + <_> + 10 9 2 2 -1. + <_> + 10 10 2 1 2. + <_> + + <_> + 3 1 4 3 -1. + <_> + 5 1 2 3 2. + <_> + + <_> + 16 0 4 7 -1. + <_> + 16 0 2 7 2. + <_> + + <_> + 0 0 20 1 -1. + <_> + 10 0 10 1 2. + <_> + + <_> + 15 11 1 3 -1. + <_> + 15 12 1 1 3. + <_> + + <_> + 0 4 3 4 -1. + <_> + 1 4 1 4 3. + <_> + + <_> + 16 3 3 6 -1. + <_> + 16 5 3 2 3. + <_> + + <_> + 1 3 3 6 -1. + <_> + 1 5 3 2 3. + <_> + + <_> + 6 2 12 6 -1. + <_> + 12 2 6 3 2. + <_> + 6 5 6 3 2. + <_> + + <_> + 8 10 4 3 -1. + <_> + 8 11 4 1 3. + <_> + + <_> + 4 2 14 6 -1. + <_> + 11 2 7 3 2. + <_> + 4 5 7 3 2. + <_> + + <_> + 9 11 2 3 -1. + <_> + 9 12 2 1 3. + <_> + + <_> + 15 13 2 3 -1. + <_> + 15 14 2 1 3. + <_> + + <_> + 8 12 4 3 -1. + <_> + 8 13 4 1 3. + <_> + + <_> + 15 11 1 3 -1. + <_> + 15 12 1 1 3. + <_> + + <_> + 7 13 5 2 -1. + <_> + 7 14 5 1 2. + <_> + + <_> + 7 12 6 3 -1. + <_> + 7 13 6 1 3. + <_> + + <_> + 5 11 4 4 -1. + <_> + 5 13 4 2 2. + <_> + + <_> + 11 4 3 3 -1. + <_> + 12 4 1 3 3. + <_> + + <_> + 6 4 3 3 -1. + <_> + 7 4 1 3 3. + <_> + + <_> + 16 5 3 6 -1. + <_> + 17 5 1 6 3. + <_> + + <_> + 3 6 12 7 -1. + <_> + 7 6 4 7 3. + <_> + + <_> + 16 5 3 6 -1. + <_> + 17 5 1 6 3. + <_> + + <_> + 3 13 2 3 -1. + <_> + 3 14 2 1 3. + <_> + + <_> + 16 5 3 6 -1. + <_> + 17 5 1 6 3. + <_> + + <_> + 1 5 3 6 -1. + <_> + 2 5 1 6 3. + <_> + + <_> + 1 9 18 1 -1. + <_> + 7 9 6 1 3. + <_> + + <_> + 0 9 8 7 -1. + <_> + 4 9 4 7 2. + <_> + + <_> + 12 11 8 2 -1. + <_> + 12 12 8 1 2. + <_> + + <_> + 0 11 8 2 -1. + <_> + 0 12 8 1 2. + <_> + + <_> + 9 13 2 3 -1. + <_> + 9 14 2 1 3. + <_> + + <_> + 4 10 12 4 -1. + <_> + 4 10 6 2 2. + <_> + 10 12 6 2 2. + <_> + + <_> + 9 3 3 7 -1. + <_> + 10 3 1 7 3. + <_> + + <_> + 7 2 3 5 -1. + <_> + 8 2 1 5 3. + <_> + + <_> + 9 12 4 6 -1. + <_> + 11 12 2 3 2. + <_> + 9 15 2 3 2. + <_> + + <_> + 8 7 3 6 -1. + <_> + 9 7 1 6 3. + <_> + + <_> + 15 4 4 2 -1. + <_> + 15 5 4 1 2. + <_> + + <_> + 8 7 3 3 -1. + <_> + 9 7 1 3 3. + <_> + + <_> + 14 2 6 4 -1. + <_> + 14 4 6 2 2. + <_> + + <_> + 7 16 6 1 -1. + <_> + 9 16 2 1 3. + <_> + + <_> + 15 13 2 3 -1. + <_> + 15 14 2 1 3. + <_> + + <_> + 8 7 3 10 -1. + <_> + 9 7 1 10 3. + <_> + + <_> + 11 10 2 6 -1. + <_> + 11 12 2 2 3. + <_> + + <_> + 6 10 4 1 -1. + <_> + 8 10 2 1 2. + <_> + + <_> + 10 9 2 2 -1. + <_> + 10 10 2 1 2. + <_> + + <_> + 8 9 2 2 -1. + <_> + 8 10 2 1 2. + <_> + + <_> + 12 7 2 2 -1. + <_> + 13 7 1 1 2. + <_> + 12 8 1 1 2. + <_> + + <_> + 5 7 2 2 -1. + <_> + 5 7 1 1 2. + <_> + 6 8 1 1 2. + <_> + + <_> + 13 0 3 14 -1. + <_> + 14 0 1 14 3. + <_> + + <_> + 4 0 3 14 -1. + <_> + 5 0 1 14 3. + <_> + + <_> + 13 4 3 14 -1. + <_> + 14 4 1 14 3. + <_> + + <_> + 9 14 2 3 -1. + <_> + 9 15 2 1 3. + <_> + + <_> + 8 14 4 3 -1. + <_> + 8 15 4 1 3. + <_> + + <_> + 4 2 3 16 -1. + <_> + 5 2 1 16 3. + <_> + + <_> + 7 2 8 10 -1. + <_> + 7 7 8 5 2. + <_> + + <_> + 6 14 7 3 -1. + <_> + 6 15 7 1 3. + <_> + + <_> + 9 2 10 12 -1. + <_> + 14 2 5 6 2. + <_> + 9 8 5 6 2. + <_> + + <_> + 6 7 8 2 -1. + <_> + 6 8 8 1 2. + <_> + + <_> + 8 13 4 6 -1. + <_> + 8 16 4 3 2. + <_> + + <_> + 6 6 1 3 -1. + <_> + 6 7 1 1 3. + <_> + + <_> + 16 2 4 6 -1. + <_> + 16 4 4 2 3. + <_> + + <_> + 6 6 4 2 -1. + <_> + 6 6 2 1 2. + <_> + 8 7 2 1 2. + <_> + + <_> + 16 2 4 6 -1. + <_> + 16 4 4 2 3. + <_> + + <_> + 0 2 4 6 -1. + <_> + 0 4 4 2 3. + <_> + + <_> + 9 6 2 6 -1. + <_> + 9 6 1 6 2. + <_> + + <_> + 3 4 6 10 -1. + <_> + 3 9 6 5 2. + <_> + + <_> + 9 5 2 6 -1. + <_> + 9 5 1 6 2. + <_> + + <_> + 3 13 2 3 -1. + <_> + 3 14 2 1 3. + <_> + + <_> + 13 13 3 2 -1. + <_> + 13 14 3 1 2. + <_> + + <_> + 2 16 10 4 -1. + <_> + 2 16 5 2 2. + <_> + 7 18 5 2 2. + <_> + + <_> + 5 6 10 6 -1. + <_> + 10 6 5 3 2. + <_> + 5 9 5 3 2. + <_> + + <_> + 7 14 1 3 -1. + <_> + 7 15 1 1 3. + <_> + + <_> + 14 16 6 3 -1. + <_> + 14 17 6 1 3. + <_> + + <_> + 5 4 3 3 -1. + <_> + 5 5 3 1 3. + <_> + + <_> + 7 4 10 3 -1. + <_> + 7 5 10 1 3. + <_> + + <_> + 0 4 5 4 -1. + <_> + 0 6 5 2 2. + <_> + + <_> + 13 11 3 9 -1. + <_> + 13 14 3 3 3. + <_> + + <_> + 4 11 3 9 -1. + <_> + 4 14 3 3 3. + <_> + + <_> + 9 7 2 1 -1. + <_> + 9 7 1 1 2. + <_> + + <_> + 5 0 6 17 -1. + <_> + 7 0 2 17 3. + <_> + + <_> + 10 3 6 3 -1. + <_> + 10 3 3 3 2. + <_> + + <_> + 2 2 15 4 -1. + <_> + 7 2 5 4 3. + <_> + + <_> + 8 2 8 2 -1. + <_> + 12 2 4 1 2. + <_> + 8 3 4 1 2. + <_> + + <_> + 8 1 3 6 -1. + <_> + 8 3 3 2 3. + <_> + + <_> + 9 17 2 2 -1. + <_> + 9 18 2 1 2. + <_> + + <_> + 0 0 2 14 -1. + <_> + 1 0 1 14 2. + <_> + + <_> + 12 0 7 3 -1. + <_> + 12 1 7 1 3. + <_> + + <_> + 1 14 1 2 -1. + <_> + 1 15 1 1 2. + <_> + + <_> + 14 12 2 8 -1. + <_> + 15 12 1 4 2. + <_> + 14 16 1 4 2. + <_> + + <_> + 1 0 7 3 -1. + <_> + 1 1 7 1 3. + <_> + + <_> + 14 12 2 8 -1. + <_> + 15 12 1 4 2. + <_> + 14 16 1 4 2. + <_> + + <_> + 6 0 8 12 -1. + <_> + 6 0 4 6 2. + <_> + 10 6 4 6 2. + <_> + + <_> + 6 1 8 9 -1. + <_> + 6 4 8 3 3. + <_> + + <_> + 5 2 2 2 -1. + <_> + 5 3 2 1 2. + <_> + + <_> + 13 14 6 6 -1. + <_> + 16 14 3 3 2. + <_> + 13 17 3 3 2. + <_> + + <_> + 0 17 20 2 -1. + <_> + 0 17 10 1 2. + <_> + 10 18 10 1 2. + <_> + + <_> + 10 3 2 6 -1. + <_> + 11 3 1 3 2. + <_> + 10 6 1 3 2. + <_> + + <_> + 5 12 6 2 -1. + <_> + 8 12 3 2 2. + <_> + + <_> + 10 7 6 13 -1. + <_> + 10 7 3 13 2. + <_> + + <_> + 5 15 10 5 -1. + <_> + 10 15 5 5 2. + <_> + + <_> + 10 4 4 10 -1. + <_> + 10 4 2 10 2. + <_> + + <_> + 5 7 2 1 -1. + <_> + 6 7 1 1 2. + <_> + + <_> + 10 3 6 7 -1. + <_> + 10 3 3 7 2. + <_> + + <_> + 4 3 6 7 -1. + <_> + 7 3 3 7 2. + <_> + + <_> + 1 7 18 5 -1. + <_> + 7 7 6 5 3. + <_> + + <_> + 3 17 4 3 -1. + <_> + 5 17 2 3 2. + <_> + + <_> + 8 14 12 6 -1. + <_> + 14 14 6 3 2. + <_> + 8 17 6 3 2. + <_> + + <_> + 0 13 20 4 -1. + <_> + 0 13 10 2 2. + <_> + 10 15 10 2 2. + <_> + + <_> + 4 5 14 2 -1. + <_> + 11 5 7 1 2. + <_> + 4 6 7 1 2. + <_> + + <_> + 1 2 10 12 -1. + <_> + 1 2 5 6 2. + <_> + 6 8 5 6 2. + <_> + + <_> + 6 1 14 3 -1. + <_> + 6 2 14 1 3. + <_> + + <_> + 8 16 2 3 -1. + <_> + 8 17 2 1 3. + <_> + + <_> + 9 17 3 2 -1. + <_> + 10 17 1 2 3. + <_> + + <_> + 5 15 4 2 -1. + <_> + 5 15 2 1 2. + <_> + 7 16 2 1 2. + <_> + + <_> + 10 15 1 3 -1. + <_> + 10 16 1 1 3. + <_> + + <_> + 8 16 4 4 -1. + <_> + 8 16 2 2 2. + <_> + 10 18 2 2 2. + <_> + + <_> + 6 11 8 6 -1. + <_> + 6 14 8 3 2. + <_> + + <_> + 2 13 5 2 -1. + <_> + 2 14 5 1 2. + <_> + + <_> + 13 14 6 6 -1. + <_> + 16 14 3 3 2. + <_> + 13 17 3 3 2. + <_> + + <_> + 1 9 18 4 -1. + <_> + 7 9 6 4 3. + <_> + + <_> + 13 14 6 6 -1. + <_> + 16 14 3 3 2. + <_> + 13 17 3 3 2. + <_> + + <_> + 0 2 1 6 -1. + <_> + 0 4 1 2 3. + <_> + + <_> + 5 0 15 20 -1. + <_> + 5 10 15 10 2. + <_> + + <_> + 1 14 6 6 -1. + <_> + 1 14 3 3 2. + <_> + 4 17 3 3 2. + <_> + + <_> + 8 14 4 6 -1. + <_> + 10 14 2 3 2. + <_> + 8 17 2 3 2. + <_> + + <_> + 7 11 2 1 -1. + <_> + 8 11 1 1 2. + <_> + + <_> + 9 17 3 2 -1. + <_> + 10 17 1 2 3. + <_> + + <_> + 8 17 3 2 -1. + <_> + 9 17 1 2 3. + <_> + + <_> + 12 14 4 6 -1. + <_> + 14 14 2 3 2. + <_> + 12 17 2 3 2. + <_> + + <_> + 4 14 4 6 -1. + <_> + 4 14 2 3 2. + <_> + 6 17 2 3 2. + <_> + + <_> + 13 14 2 6 -1. + <_> + 14 14 1 3 2. + <_> + 13 17 1 3 2. + <_> + + <_> + 5 14 2 6 -1. + <_> + 5 14 1 3 2. + <_> + 6 17 1 3 2. + <_> + + <_> + 7 0 6 12 -1. + <_> + 7 4 6 4 3. + <_> + + <_> + 0 7 12 2 -1. + <_> + 4 7 4 2 3. + <_> + + <_> + 10 3 3 13 -1. + <_> + 11 3 1 13 3. + <_> + + <_> + 7 3 3 13 -1. + <_> + 8 3 1 13 3. + <_> + + <_> + 10 8 6 3 -1. + <_> + 10 9 6 1 3. + <_> + + <_> + 3 11 3 2 -1. + <_> + 4 11 1 2 3. + <_> + + <_> + 13 12 6 8 -1. + <_> + 16 12 3 4 2. + <_> + 13 16 3 4 2. + <_> + + <_> + 7 6 6 5 -1. + <_> + 9 6 2 5 3. + <_> + + <_> + 17 11 2 7 -1. + <_> + 17 11 1 7 2. + <_> + + <_> + 3 13 8 2 -1. + <_> + 7 13 4 2 2. + <_> + + <_> + 6 9 8 3 -1. + <_> + 6 10 8 1 3. + <_> + + <_> + 4 3 4 3 -1. + <_> + 4 4 4 1 3. + <_> + + <_> + 11 3 4 3 -1. + <_> + 11 4 4 1 3. + <_> + + <_> + 1 4 17 12 -1. + <_> + 1 8 17 4 3. + <_> + + <_> + 11 3 4 3 -1. + <_> + 11 4 4 1 3. + <_> + + <_> + 4 8 6 3 -1. + <_> + 4 9 6 1 3. + <_> + + <_> + 12 3 5 3 -1. + <_> + 12 4 5 1 3. + <_> + + <_> + 1 11 2 7 -1. + <_> + 2 11 1 7 2. + <_> + + <_> + 15 12 2 8 -1. + <_> + 16 12 1 4 2. + <_> + 15 16 1 4 2. + <_> + + <_> + 4 8 11 3 -1. + <_> + 4 9 11 1 3. + <_> + + <_> + 9 13 6 2 -1. + <_> + 12 13 3 1 2. + <_> + 9 14 3 1 2. + <_> + + <_> + 6 13 4 3 -1. + <_> + 6 14 4 1 3. + <_> + + <_> + 9 12 3 3 -1. + <_> + 10 12 1 3 3. + <_> + + <_> + 5 3 3 3 -1. + <_> + 5 4 3 1 3. + <_> + + <_> + 9 4 2 3 -1. + <_> + 9 5 2 1 3. + <_> + + <_> + 0 2 16 3 -1. + <_> + 0 3 16 1 3. + <_> + + <_> + 15 12 2 8 -1. + <_> + 16 12 1 4 2. + <_> + 15 16 1 4 2. + <_> + + <_> + 3 12 2 8 -1. + <_> + 3 12 1 4 2. + <_> + 4 16 1 4 2. + <_> + + <_> + 14 13 3 6 -1. + <_> + 14 15 3 2 3. + <_> + + <_> + 3 13 3 6 -1. + <_> + 3 15 3 2 3. + <_> + + <_> + 6 5 10 2 -1. + <_> + 11 5 5 1 2. + <_> + 6 6 5 1 2. + <_> + + <_> + 2 14 14 6 -1. + <_> + 2 17 14 3 2. + <_> + + <_> + 10 14 1 3 -1. + <_> + 10 15 1 1 3. + <_> + + <_> + 4 16 2 2 -1. + <_> + 4 16 1 1 2. + <_> + 5 17 1 1 2. + <_> + + <_> + 10 6 2 3 -1. + <_> + 10 7 2 1 3. + <_> + + <_> + 0 17 20 2 -1. + <_> + 0 17 10 1 2. + <_> + 10 18 10 1 2. + <_> + + <_> + 13 6 1 3 -1. + <_> + 13 7 1 1 3. + <_> + + <_> + 8 13 3 2 -1. + <_> + 9 13 1 2 3. + <_> + + <_> + 12 2 3 3 -1. + <_> + 13 2 1 3 3. + <_> + + <_> + 3 18 2 2 -1. + <_> + 3 18 1 1 2. + <_> + 4 19 1 1 2. + <_> + + <_> + 9 16 3 4 -1. + <_> + 10 16 1 4 3. + <_> + + <_> + 6 6 1 3 -1. + <_> + 6 7 1 1 3. + <_> + + <_> + 13 1 5 2 -1. + <_> + 13 2 5 1 2. + <_> + + <_> + 7 14 6 2 -1. + <_> + 7 14 3 1 2. + <_> + 10 15 3 1 2. + <_> + + <_> + 11 3 3 4 -1. + <_> + 12 3 1 4 3. + <_> + + <_> + 1 13 12 6 -1. + <_> + 5 13 4 6 3. + <_> + + <_> + 14 11 5 2 -1. + <_> + 14 12 5 1 2. + <_> + + <_> + 2 15 14 4 -1. + <_> + 2 15 7 2 2. + <_> + 9 17 7 2 2. + <_> + + <_> + 3 7 14 2 -1. + <_> + 10 7 7 1 2. + <_> + 3 8 7 1 2. + <_> + + <_> + 1 11 4 2 -1. + <_> + 1 12 4 1 2. + <_> + + <_> + 14 0 6 14 -1. + <_> + 16 0 2 14 3. + <_> + + <_> + 4 11 1 3 -1. + <_> + 4 12 1 1 3. + <_> + + <_> + 14 0 6 14 -1. + <_> + 16 0 2 14 3. + <_> + + <_> + 1 10 3 7 -1. + <_> + 2 10 1 7 3. + <_> + + <_> + 8 12 9 2 -1. + <_> + 8 13 9 1 2. + <_> + + <_> + 0 6 20 1 -1. + <_> + 10 6 10 1 2. + <_> + + <_> + 8 4 4 4 -1. + <_> + 8 4 2 4 2. + <_> + + <_> + 0 0 2 2 -1. + <_> + 0 1 2 1 2. + <_> + + <_> + 5 3 10 9 -1. + <_> + 5 6 10 3 3. + <_> + + <_> + 15 2 4 10 -1. + <_> + 15 2 2 10 2. + <_> + + <_> + 8 2 2 7 -1. + <_> + 9 2 1 7 2. + <_> + + <_> + 7 4 12 1 -1. + <_> + 11 4 4 1 3. + <_> + + <_> + 3 4 9 1 -1. + <_> + 6 4 3 1 3. + <_> + + <_> + 15 10 1 4 -1. + <_> + 15 12 1 2 2. + <_> + + <_> + 4 10 6 4 -1. + <_> + 7 10 3 4 2. + <_> + + <_> + 15 9 1 6 -1. + <_> + 15 12 1 3 2. + <_> + + <_> + 7 17 6 3 -1. + <_> + 7 18 6 1 3. + <_> + + <_> + 14 3 2 16 -1. + <_> + 15 3 1 8 2. + <_> + 14 11 1 8 2. + <_> + + <_> + 4 9 1 6 -1. + <_> + 4 12 1 3 2. + <_> + + <_> + 12 1 5 2 -1. + <_> + 12 2 5 1 2. + <_> + + <_> + 6 18 4 2 -1. + <_> + 6 18 2 1 2. + <_> + 8 19 2 1 2. + <_> + + <_> + 2 4 16 10 -1. + <_> + 10 4 8 5 2. + <_> + 2 9 8 5 2. + <_> + + <_> + 6 5 1 10 -1. + <_> + 6 10 1 5 2. + <_> + + <_> + 4 8 15 2 -1. + <_> + 9 8 5 2 3. + <_> + + <_> + 1 8 15 2 -1. + <_> + 6 8 5 2 3. + <_> + + <_> + 9 5 3 6 -1. + <_> + 9 7 3 2 3. + <_> + + <_> + 5 7 8 2 -1. + <_> + 9 7 4 2 2. + <_> + + <_> + 9 11 2 3 -1. + <_> + 9 12 2 1 3. + <_> + + <_> + 1 0 16 3 -1. + <_> + 1 1 16 1 3. + <_> + + <_> + 11 2 7 2 -1. + <_> + 11 3 7 1 2. + <_> + + <_> + 5 1 10 18 -1. + <_> + 5 7 10 6 3. + <_> + + <_> + 17 4 3 2 -1. + <_> + 18 4 1 2 3. + <_> + + <_> + 8 13 1 3 -1. + <_> + 8 14 1 1 3. + <_> + + <_> + 3 14 14 6 -1. + <_> + 3 16 14 2 3. + <_> + + <_> + 0 2 3 4 -1. + <_> + 1 2 1 4 3. + <_> + + <_> + 12 1 5 2 -1. + <_> + 12 2 5 1 2. + <_> + + <_> + 3 1 5 2 -1. + <_> + 3 2 5 1 2. + <_> + + <_> + 10 13 2 3 -1. + <_> + 10 14 2 1 3. + <_> + + <_> + 8 13 2 3 -1. + <_> + 8 14 2 1 3. + <_> + + <_> + 14 12 2 3 -1. + <_> + 14 13 2 1 3. + <_> + + <_> + 7 2 2 3 -1. + <_> + 7 3 2 1 3. + <_> + + <_> + 5 6 10 4 -1. + <_> + 10 6 5 2 2. + <_> + 5 8 5 2 2. + <_> + + <_> + 9 13 1 6 -1. + <_> + 9 16 1 3 2. + <_> + + <_> + 10 12 2 2 -1. + <_> + 11 12 1 1 2. + <_> + 10 13 1 1 2. + <_> + + <_> + 4 12 2 3 -1. + <_> + 4 13 2 1 3. + <_> + + <_> + 14 4 6 6 -1. + <_> + 14 6 6 2 3. + <_> + + <_> + 8 17 2 3 -1. + <_> + 8 18 2 1 3. + <_> + + <_> + 16 4 4 6 -1. + <_> + 16 6 4 2 3. + <_> + + <_> + 0 4 4 6 -1. + <_> + 0 6 4 2 3. + <_> + + <_> + 14 6 2 3 -1. + <_> + 14 6 1 3 2. + <_> + + <_> + 4 9 8 1 -1. + <_> + 8 9 4 1 2. + <_> + + <_> + 8 12 4 3 -1. + <_> + 8 13 4 1 3. + <_> + + <_> + 5 12 10 6 -1. + <_> + 5 14 10 2 3. + <_> + + <_> + 11 12 1 2 -1. + <_> + 11 13 1 1 2. + <_> + + <_> + 8 15 4 2 -1. + <_> + 8 16 4 1 2. + <_> + + <_> + 6 9 8 8 -1. + <_> + 10 9 4 4 2. + <_> + 6 13 4 4 2. + <_> + + <_> + 7 12 4 6 -1. + <_> + 7 12 2 3 2. + <_> + 9 15 2 3 2. + <_> + + <_> + 10 11 3 1 -1. + <_> + 11 11 1 1 3. + <_> + + <_> + 9 7 2 10 -1. + <_> + 9 7 1 5 2. + <_> + 10 12 1 5 2. + <_> + + <_> + 8 0 6 6 -1. + <_> + 10 0 2 6 3. + <_> + + <_> + 3 11 2 6 -1. + <_> + 3 13 2 2 3. + <_> + + <_> + 16 12 1 2 -1. + <_> + 16 13 1 1 2. + <_> + + <_> + 1 14 6 6 -1. + <_> + 1 14 3 3 2. + <_> + 4 17 3 3 2. + <_> + + <_> + 13 1 3 6 -1. + <_> + 14 1 1 6 3. + <_> + + <_> + 8 8 2 2 -1. + <_> + 8 9 2 1 2. + <_> + + <_> + 9 9 3 3 -1. + <_> + 10 9 1 3 3. + <_> + + <_> + 8 7 3 3 -1. + <_> + 8 8 3 1 3. + <_> + + <_> + 14 0 2 3 -1. + <_> + 14 0 1 3 2. + <_> + + <_> + 1 0 18 9 -1. + <_> + 7 0 6 9 3. + <_> + + <_> + 11 5 4 15 -1. + <_> + 11 5 2 15 2. + <_> + + <_> + 5 5 4 15 -1. + <_> + 7 5 2 15 2. + <_> + + <_> + 14 0 2 3 -1. + <_> + 14 0 1 3 2. + <_> + + <_> + 4 0 2 3 -1. + <_> + 5 0 1 3 2. + <_> + + <_> + 11 12 2 2 -1. + <_> + 12 12 1 1 2. + <_> + 11 13 1 1 2. + <_> + + <_> + 7 12 2 2 -1. + <_> + 7 12 1 1 2. + <_> + 8 13 1 1 2. + <_> + + <_> + 12 0 3 4 -1. + <_> + 13 0 1 4 3. + <_> + + <_> + 4 11 3 3 -1. + <_> + 4 12 3 1 3. + <_> + + <_> + 12 7 4 2 -1. + <_> + 12 8 4 1 2. + <_> + + <_> + 8 10 3 2 -1. + <_> + 9 10 1 2 3. + <_> + + <_> + 9 9 3 2 -1. + <_> + 10 9 1 2 3. + <_> + + <_> + 8 9 3 2 -1. + <_> + 9 9 1 2 3. + <_> + + <_> + 12 0 3 4 -1. + <_> + 13 0 1 4 3. + <_> + + <_> + 5 0 3 4 -1. + <_> + 6 0 1 4 3. + <_> + + <_> + 4 14 12 4 -1. + <_> + 10 14 6 2 2. + <_> + 4 16 6 2 2. + <_> + + <_> + 8 13 2 3 -1. + <_> + 8 14 2 1 3. + <_> + + <_> + 10 10 3 8 -1. + <_> + 10 14 3 4 2. + <_> + + <_> + 8 10 4 8 -1. + <_> + 8 10 2 4 2. + <_> + 10 14 2 4 2. + <_> + + <_> + 10 8 3 1 -1. + <_> + 11 8 1 1 3. + <_> + + <_> + 9 12 1 6 -1. + <_> + 9 15 1 3 2. + <_> + + <_> + 10 8 3 1 -1. + <_> + 11 8 1 1 3. + <_> + + <_> + 7 8 3 1 -1. + <_> + 8 8 1 1 3. + <_> + + <_> + 5 2 15 14 -1. + <_> + 5 9 15 7 2. + <_> + + <_> + 2 1 2 10 -1. + <_> + 2 1 1 5 2. + <_> + 3 6 1 5 2. + <_> + + <_> + 14 14 2 3 -1. + <_> + 14 15 2 1 3. + <_> + + <_> + 2 7 3 3 -1. + <_> + 3 7 1 3 3. + <_> + + <_> + 17 4 3 3 -1. + <_> + 17 5 3 1 3. + <_> + + <_> + 0 4 3 3 -1. + <_> + 0 5 3 1 3. + <_> + + <_> + 13 5 6 2 -1. + <_> + 16 5 3 1 2. + <_> + 13 6 3 1 2. + <_> + + <_> + 4 19 12 1 -1. + <_> + 8 19 4 1 3. + <_> + + <_> + 12 12 2 4 -1. + <_> + 12 14 2 2 2. + <_> + + <_> + 3 15 1 3 -1. + <_> + 3 16 1 1 3. + <_> + + <_> + 11 16 6 4 -1. + <_> + 11 16 3 4 2. + <_> + + <_> + 2 10 3 10 -1. + <_> + 3 10 1 10 3. + <_> + + <_> + 12 8 2 4 -1. + <_> + 12 8 1 4 2. + <_> + + <_> + 6 8 2 4 -1. + <_> + 7 8 1 4 2. + <_> + + <_> + 10 14 2 3 -1. + <_> + 10 14 1 3 2. + <_> + + <_> + 5 1 10 3 -1. + <_> + 10 1 5 3 2. + <_> + + <_> + 10 7 3 2 -1. + <_> + 11 7 1 2 3. + <_> + + <_> + 5 6 9 2 -1. + <_> + 8 6 3 2 3. + <_> + + <_> + 9 8 2 2 -1. + <_> + 9 9 2 1 2. + <_> + + <_> + 2 11 16 6 -1. + <_> + 2 11 8 3 2. + <_> + 10 14 8 3 2. + <_> + + <_> + 12 7 2 2 -1. + <_> + 13 7 1 1 2. + <_> + 12 8 1 1 2. + <_> + + <_> + 9 5 2 3 -1. + <_> + 9 6 2 1 3. + <_> + + <_> + 9 7 3 2 -1. + <_> + 10 7 1 2 3. + <_> + + <_> + 5 1 8 12 -1. + <_> + 5 7 8 6 2. + <_> + + <_> + 13 5 2 2 -1. + <_> + 13 6 2 1 2. + <_> + + <_> + 5 5 2 2 -1. + <_> + 5 6 2 1 2. + <_> + + <_> + 12 4 3 3 -1. + <_> + 12 5 3 1 3. + <_> + + <_> + 4 14 2 3 -1. + <_> + 4 15 2 1 3. + <_> + + <_> + 12 4 3 3 -1. + <_> + 12 5 3 1 3. + <_> + + <_> + 5 4 3 3 -1. + <_> + 5 5 3 1 3. + <_> + + <_> + 9 14 2 6 -1. + <_> + 10 14 1 3 2. + <_> + 9 17 1 3 2. + <_> + + <_> + 8 14 3 2 -1. + <_> + 9 14 1 2 3. + <_> + + <_> + 9 5 6 6 -1. + <_> + 11 5 2 6 3. + <_> + + <_> + 5 5 6 6 -1. + <_> + 7 5 2 6 3. + <_> + + <_> + 13 13 1 2 -1. + <_> + 13 14 1 1 2. + <_> + + <_> + 0 2 10 2 -1. + <_> + 0 3 10 1 2. + <_> + + <_> + 13 13 1 2 -1. + <_> + 13 14 1 1 2. + <_> + + <_> + 5 7 2 2 -1. + <_> + 5 7 1 1 2. + <_> + 6 8 1 1 2. + <_> + + <_> + 13 5 2 7 -1. + <_> + 13 5 1 7 2. + <_> + + <_> + 6 13 1 2 -1. + <_> + 6 14 1 1 2. + <_> + + <_> + 11 0 3 7 -1. + <_> + 12 0 1 7 3. + <_> + + <_> + 0 3 2 16 -1. + <_> + 0 3 1 8 2. + <_> + 1 11 1 8 2. + <_> + + <_> + 11 0 3 7 -1. + <_> + 12 0 1 7 3. + <_> + + <_> + 6 0 3 7 -1. + <_> + 7 0 1 7 3. + <_> + + <_> + 11 16 8 4 -1. + <_> + 11 16 4 4 2. + <_> + + <_> + 1 16 8 4 -1. + <_> + 5 16 4 4 2. + <_> + + <_> + 13 5 2 7 -1. + <_> + 13 5 1 7 2. + <_> + + <_> + 5 5 2 7 -1. + <_> + 6 5 1 7 2. + <_> + + <_> + 18 6 2 14 -1. + <_> + 18 13 2 7 2. + <_> + + <_> + 6 10 3 4 -1. + <_> + 6 12 3 2 2. + <_> + + <_> + 14 7 1 2 -1. + <_> + 14 8 1 1 2. + <_> + + <_> + 0 1 18 6 -1. + <_> + 0 1 9 3 2. + <_> + 9 4 9 3 2. + <_> + + <_> + 14 7 1 2 -1. + <_> + 14 8 1 1 2. + <_> + + <_> + 0 6 2 14 -1. + <_> + 0 13 2 7 2. + <_> + + <_> + 17 0 3 12 -1. + <_> + 18 0 1 12 3. + <_> + + <_> + 0 6 18 3 -1. + <_> + 0 7 18 1 3. + <_> + + <_> + 6 0 14 16 -1. + <_> + 6 8 14 8 2. + <_> + + <_> + 0 0 3 12 -1. + <_> + 1 0 1 12 3. + <_> + + <_> + 13 0 3 7 -1. + <_> + 14 0 1 7 3. + <_> + + <_> + 5 7 1 2 -1. + <_> + 5 8 1 1 2. + <_> + + <_> + 14 4 6 6 -1. + <_> + 14 6 6 2 3. + <_> + + <_> + 5 7 7 2 -1. + <_> + 5 8 7 1 2. + <_> + + <_> + 8 6 6 9 -1. + <_> + 8 9 6 3 3. + <_> + + <_> + 5 4 6 1 -1. + <_> + 7 4 2 1 3. + <_> + + <_> + 13 0 6 4 -1. + <_> + 16 0 3 2 2. + <_> + 13 2 3 2 2. + <_> + + <_> + 1 2 18 12 -1. + <_> + 1 6 18 4 3. + <_> + + <_> + 3 2 17 12 -1. + <_> + 3 6 17 4 3. + <_> + + <_> + 5 14 7 3 -1. + <_> + 5 15 7 1 3. + <_> + + <_> + 10 14 1 3 -1. + <_> + 10 15 1 1 3. + <_> + + <_> + 3 14 3 3 -1. + <_> + 3 15 3 1 3. + <_> + + <_> + 14 4 6 6 -1. + <_> + 14 6 6 2 3. + <_> + + <_> + 0 4 6 6 -1. + <_> + 0 6 6 2 3. + <_> + + <_> + 12 5 4 3 -1. + <_> + 12 6 4 1 3. + <_> + + <_> + 4 5 4 3 -1. + <_> + 4 6 4 1 3. + <_> + + <_> + 18 0 2 6 -1. + <_> + 18 2 2 2 3. + <_> + + <_> + 8 1 4 9 -1. + <_> + 10 1 2 9 2. + <_> + + <_> + 6 6 8 2 -1. + <_> + 6 6 4 2 2. + <_> + + <_> + 6 5 4 2 -1. + <_> + 6 5 2 1 2. + <_> + 8 6 2 1 2. + <_> + + <_> + 10 5 2 3 -1. + <_> + 10 6 2 1 3. + <_> + + <_> + 9 5 1 3 -1. + <_> + 9 6 1 1 3. + <_> + + <_> + 9 10 2 2 -1. + <_> + 9 11 2 1 2. + <_> + + <_> + 0 8 4 3 -1. + <_> + 0 9 4 1 3. + <_> + + <_> + 6 0 8 6 -1. + <_> + 6 3 8 3 2. + <_> + + <_> + 1 0 6 4 -1. + <_> + 1 0 3 2 2. + <_> + 4 2 3 2 2. + <_> + + <_> + 13 0 3 7 -1. + <_> + 14 0 1 7 3. + <_> + + <_> + 9 16 2 2 -1. + <_> + 9 17 2 1 2. + <_> + + <_> + 11 4 6 10 -1. + <_> + 11 9 6 5 2. + <_> + + <_> + 0 10 19 2 -1. + <_> + 0 11 19 1 2. + <_> + + <_> + 9 5 8 9 -1. + <_> + 9 8 8 3 3. + <_> + + <_> + 4 0 3 7 -1. + <_> + 5 0 1 7 3. + <_> + + <_> + 8 6 4 12 -1. + <_> + 10 6 2 6 2. + <_> + 8 12 2 6 2. + <_> + + <_> + 0 2 6 4 -1. + <_> + 0 4 6 2 2. + <_> + + <_> + 8 15 4 3 -1. + <_> + 8 16 4 1 3. + <_> + + <_> + 8 0 3 7 -1. + <_> + 9 0 1 7 3. + <_> + + <_> + 9 5 3 4 -1. + <_> + 10 5 1 4 3. + <_> + + <_> + 8 5 3 4 -1. + <_> + 9 5 1 4 3. + <_> + + <_> + 7 6 6 1 -1. + <_> + 9 6 2 1 3. + <_> + + <_> + 7 14 4 4 -1. + <_> + 7 14 2 2 2. + <_> + 9 16 2 2 2. + <_> + + <_> + 13 14 4 6 -1. + <_> + 15 14 2 3 2. + <_> + 13 17 2 3 2. + <_> + + <_> + 7 8 1 8 -1. + <_> + 7 12 1 4 2. + <_> + + <_> + 16 0 2 8 -1. + <_> + 17 0 1 4 2. + <_> + 16 4 1 4 2. + <_> + + <_> + 2 0 2 8 -1. + <_> + 2 0 1 4 2. + <_> + 3 4 1 4 2. + <_> + + <_> + 6 1 14 3 -1. + <_> + 6 2 14 1 3. + <_> + + <_> + 7 9 3 10 -1. + <_> + 7 14 3 5 2. + <_> + + <_> + 9 14 2 2 -1. + <_> + 9 15 2 1 2. + <_> + + <_> + 7 7 6 8 -1. + <_> + 7 11 6 4 2. + <_> + + <_> + 9 7 3 6 -1. + <_> + 9 10 3 3 2. + <_> + + <_> + 7 13 3 3 -1. + <_> + 7 14 3 1 3. + <_> + + <_> + 9 9 2 2 -1. + <_> + 9 10 2 1 2. + <_> + + <_> + 0 1 18 2 -1. + <_> + 6 1 6 2 3. + <_> + + <_> + 7 1 6 14 -1. + <_> + 7 8 6 7 2. + <_> + + <_> + 1 9 18 1 -1. + <_> + 7 9 6 1 3. + <_> + + <_> + 9 7 2 2 -1. + <_> + 9 7 1 2 2. + <_> + + <_> + 9 3 2 9 -1. + <_> + 10 3 1 9 2. + <_> + + <_> + 18 14 2 3 -1. + <_> + 18 15 2 1 3. + <_> + + <_> + 7 11 3 1 -1. + <_> + 8 11 1 1 3. + <_> + + <_> + 10 8 3 4 -1. + <_> + 11 8 1 4 3. + <_> + + <_> + 7 14 3 6 -1. + <_> + 8 14 1 6 3. + <_> + + <_> + 10 8 3 4 -1. + <_> + 11 8 1 4 3. + <_> + + <_> + 7 8 3 4 -1. + <_> + 8 8 1 4 3. + <_> + + <_> + 7 9 6 9 -1. + <_> + 7 12 6 3 3. + <_> + + <_> + 0 14 2 3 -1. + <_> + 0 15 2 1 3. + <_> + + <_> + 11 12 1 2 -1. + <_> + 11 13 1 1 2. + <_> + + <_> + 4 3 8 3 -1. + <_> + 8 3 4 3 2. + <_> + + <_> + 0 4 20 6 -1. + <_> + 0 4 10 6 2. + <_> + + <_> + 9 14 1 3 -1. + <_> + 9 15 1 1 3. + <_> + + <_> + 8 14 4 3 -1. + <_> + 8 15 4 1 3. + <_> + + <_> + 0 15 14 4 -1. + <_> + 0 17 14 2 2. + <_> + + <_> + 1 14 18 6 -1. + <_> + 1 17 18 3 2. + <_> + + <_> + 0 0 10 6 -1. + <_> + 0 0 5 3 2. + <_> + 5 3 5 3 2. + diff --git a/examples/houghcircle.rb b/examples/houghcircle.rb deleted file mode 100755 index 226377f..0000000 --- a/examples/houghcircle.rb +++ /dev/null @@ -1,22 +0,0 @@ -#!/usr/bin/env ruby -# houghcircle.rb -require "rubygems" -require "opencv" -include OpenCV - -original_window = GUI::Window.new "original" -hough_window = GUI::Window.new "hough circles" - -image = IplImage::load "images/stuff.jpg" -gray = image.BGR2GRAY - -result = image.clone -original_window.show image -detect = gray.hough_circles(CV_HOUGH_GRADIENT, 2.0, 10, 200, 50) -puts detect.size -detect.each{|circle| - puts "#{circle.center.x},#{circle.center.y} - #{circle.radius}" - result.circle! circle.center, circle.radius, :color => CvColor::Red, :thickness => 3 -} -hough_window.show result -GUI::wait_key diff --git a/examples/inpaint.rb b/examples/inpaint.rb deleted file mode 100755 index de7823b..0000000 --- a/examples/inpaint.rb +++ /dev/null @@ -1,57 +0,0 @@ -#!/usr/bin/env ruby -# inpaint.rb -require "rubygems" -require "opencv" -include OpenCV - -puts < img2.rows) ? img1.rows : img2.rows -correspond = IplImage.new(width, height, :cv8u, 1); -correspond.set_roi(CvRect.new(0, 0, img1.cols, img1.rows)) -img1.copy(correspond) -correspond.set_roi(CvRect.new(img1.cols, 0, img1.cols + img2.cols, img2.rows)) -img2.copy(correspond) -correspond.reset_roi - -points1.zip(points2) { |pt1, pt2| - pt2.x += img1.cols - correspond.line!(pt1, pt2, :color => CvColor::White) -} - -GUI::Window.new('Object Correspond').show correspond -GUI::wait_key - diff --git a/examples/match_template.rb b/examples/match_template.rb deleted file mode 100755 index f08f2c8..0000000 --- a/examples/match_template.rb +++ /dev/null @@ -1,26 +0,0 @@ -#!/usr/bin/env ruby - -# A demo of Ruby/OpenCV's match_template function - -require 'opencv' -include OpenCV - -puts 'This program demonstrates the match_template function' -puts 'Usage:' -puts "ruby #{__FILE__} " -puts - -template_filename = (ARGV.size == 2) ? ARGV[0] : File.expand_path(File.dirname(__FILE__) + '/images/lena-eyes.jpg') -match_image_filename = (ARGV.size == 2) ? ARGV[1] : File.expand_path(File.dirname(__FILE__) + '/images/lena-256x256.jpg') - -template = CvMat.load(template_filename) -match_image = CvMat.load(match_image_filename) -result = match_image.match_template(template, :sqdiff_normed) - -pt1 = result.min_max_loc[2] # minimum location -pt2 = CvPoint.new(pt1.x + template.width, pt1.y + template.height) -match_image.rectangle!(pt1, pt2, :color => CvColor::Black, :thickness => 3) - -window = GUI::Window.new('Display window') # Create a window for display. -window.show(match_image) # Show our image inside it. -GUI::wait_key # Wait for a keystroke in the window. diff --git a/examples/paint.rb b/examples/paint.rb old mode 100755 new mode 100644 index ef7c466..e8ad9fb --- a/examples/paint.rb +++ b/examples/paint.rb @@ -1,70 +1,30 @@ -#!/usr/bin/env ruby -# paint.rb -require "rubygems" -require "opencv" +require 'opencv' -include OpenCV +w = Cv::Window.new('Paint') +canvas = Cv::Mat.new(500, 500, Cv::CV_8UC3).set_to(Cv::Scalar.new(255, 255, 255)) +w.show(canvas) -window = GUI::Window.new("free canvas") -canvas = CvMat.new(500, 500, CV_8U, 3).fill!(CvColor::White) # create white canvas -window.show canvas - -colors = CvColor::constants.collect{ |i| i.to_s } - -usage =< CvColor::Black, - :tickness => 1 + color: Cv::Scalar.new(0), + tickness: 1, + line_type: Cv::CV_AA } point = nil -window.on_mouse{ |m| - case m.event - when :move - if m.left_button? - canvas.line!(point, m, opt) if point - point = m +w.set_mouse_callback { |event, x, y, flags| + case event + when Cv::EVENT_MOUSEMOVE + if flags & Cv::EVENT_FLAG_LBUTTON > 0 + p2 = Cv::Point.new(x, y) + canvas.line!(point, p2, opt[:color], opt) if point + point = p2 end - when :left_button_down - canvas.line!(m, m, opt) - point = m - when :left_button_up - point = nil - when :right_button_down - mask = canvas.flood_fill!(m, opt[:color]) + when Cv::EVENT_LBUTTONDOWN + point = Cv::Point.new(x, y) + canvas.line!(point, point, opt[:color], opt) end - window.show canvas + w.show(canvas) } -color_name = '' -while key = GUI.wait_key - next if key < 0 or key > 255 - case key.chr - when "\e" # [esc] - exit - exit - when '1'..'9' - puts "change thickness to #{key.chr.to_i}." - opt[:thickness] = key.chr.to_i - when /[A-Za-z]/ - color_name << key.chr - choice = colors.find_all{ |i| i =~ /\A#{color_name}/i } - if choice.size == 1 - color,= choice - puts "change color to #{color}." - opt[:color] = CvColor::const_get(color) - end - color_name = '' if choice.size < 2 - end -end - +Cv::wait_key diff --git a/examples/snake.rb b/examples/snake.rb deleted file mode 100755 index a00d501..0000000 --- a/examples/snake.rb +++ /dev/null @@ -1,43 +0,0 @@ -#!/usr/bin/env ruby -# snake.rb -require "rubygems" -require "opencv" -include OpenCV - -puts < CvColor::White, :thickness => -1) -display = image.GRAY2BGR - -window.show display - -points = [] - -window.on_mouse{|mouse| - case mouse.event - when :left_button_down - display.circle!(mouse, 1, :color => CvColor::Red, :thickness => 2) - puts "set point (#{mouse.x},#{mouse.y})" - points << CvPoint.new(mouse.x, mouse.y) - window.show display - when :right_button_down - if points.length < 3 - puts "please set more point!" - next - end - snake_points = image.snake_image(points, 1.0, 0.5, 1.5, CvSize.new(3, 3), 100) - display = image.GRAY2BGR - display.poly_line!([snake_points], :color => CvColor::Red, :is_closed => true, :thickness => 2) - window.show display - points.clear - end -} - -GUI::wait_key - diff --git a/examples/video.rb b/examples/video.rb new file mode 100644 index 0000000..8cb2752 --- /dev/null +++ b/examples/video.rb @@ -0,0 +1,22 @@ +require 'opencv' + +capture = Cv::VideoCapture.new +w = Cv::Window.new('video') + +classifier = Cv::CascadeClassifier.new +classifier.load('haarcascade_frontalface_alt.xml') +color = Cv::Scalar.new(0, 255, 255) + +loop do + m = capture.read + rects = classifier.detect_multi_scale(m) + rects.each do |r| + pt1 = Cv::Point.new(r.x, r.y) + pt2 = Cv::Point.new(r.x + r.width, r.y + r.height) + m.rectangle!(pt1, pt2, color, thickness: 3, line_type: Cv::CV_AA) + end + + w.show(m) + break if Cv::wait_key(10) > 0 +end + diff --git a/ext/opencv/algorithm.cpp b/ext/opencv/algorithm.cpp deleted file mode 100644 index d702b42..0000000 --- a/ext/opencv/algorithm.cpp +++ /dev/null @@ -1,291 +0,0 @@ -/************************************************************ - - algorithm.cpp - - - $Author: ser1zw $ - - Copyright (C) 2013 ser1zw - -************************************************************/ -#include -#include "algorithm.h" -/* - * Document-class: OpenCV::Algorithm - * - */ -__NAMESPACE_BEGIN_OPENCV -__NAMESPACE_BEGIN_ALGORITHM - -VALUE rb_klass; - -VALUE -rb_class() -{ - return rb_klass; -} - -VALUE -rb_set_int(VALUE self, VALUE parameter, VALUE value) -{ - Check_Type(parameter, T_STRING); - try { - ALGORITHM(self)->setInt(StringValueCStr(parameter), NUM2INT(value)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - - return Qnil; -} - -VALUE -rb_set_double(VALUE self, VALUE parameter, VALUE value) -{ - Check_Type(parameter, T_STRING); - try { - ALGORITHM(self)->setDouble(StringValueCStr(parameter), NUM2DBL(value)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - - return Qnil; -} - -VALUE -rb_set_bool(VALUE self, VALUE parameter, VALUE value) -{ - Check_Type(parameter, T_STRING); - try { - bool val = TRUE_OR_FALSE(value) ? true : false; - ALGORITHM(self)->setBool(StringValueCStr(parameter), val); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - - return Qnil; -} - -VALUE -rb_set_string(VALUE self, VALUE parameter, VALUE value) -{ - Check_Type(parameter, T_STRING); - Check_Type(value, T_STRING); - try { - ALGORITHM(self)->setString(StringValueCStr(parameter), StringValueCStr(value)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - - return Qnil; -} - -VALUE -rb_set_mat(VALUE self, VALUE parameter, VALUE value) -{ - Check_Type(parameter, T_STRING); - try { - CvMat* val = CVMAT_WITH_CHECK(value); - cv::Mat mat(val); - ALGORITHM(self)->setMat(StringValueCStr(parameter), mat); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - - return Qnil; -} - -VALUE -rb_set_matvector(VALUE self, VALUE parameter, VALUE value) -{ - Check_Type(parameter, T_STRING); - Check_Type(value, T_ARRAY); - try { - long len = RARRAY_LEN(value); - VALUE* value_ptr = RARRAY_PTR(value); - std::vector mat_vector; - for (int i = 0; i < len; i++) { - CvMat* val = CVMAT_WITH_CHECK(value_ptr[i]); - cv::Mat mat(val); - mat_vector.push_back(mat); - } - ALGORITHM(self)->setMatVector(StringValueCStr(parameter), mat_vector); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - - return Qnil; -} - -VALUE -rb_set_algorithm(VALUE self, VALUE parameter, VALUE value) -{ - Check_Type(parameter, T_STRING); - try { - ALGORITHM(self)->setAlgorithm(StringValueCStr(parameter), ALGORITHM(value)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - - return Qnil; -} - - -VALUE -rb_get_int(VALUE self, VALUE parameter) -{ - Check_Type(parameter, T_STRING); - int value = 0; - try { - value = ALGORITHM(self)->getInt(StringValueCStr(parameter)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - - return INT2NUM(value); -} - -VALUE -rb_get_double(VALUE self, VALUE parameter) -{ - Check_Type(parameter, T_STRING); - double value = 0.0; - try { - value = ALGORITHM(self)->getDouble(StringValueCStr(parameter)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - - return DBL2NUM(value); -} - -VALUE -rb_get_bool(VALUE self, VALUE parameter) -{ - Check_Type(parameter, T_STRING); - bool value = false; - try { - value = ALGORITHM(self)->getBool(StringValueCStr(parameter)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - - return value ? Qtrue : Qfalse; -} - -VALUE -rb_get_string(VALUE self, VALUE parameter) -{ - Check_Type(parameter, T_STRING); - std::string value = ""; - try { - value = ALGORITHM(self)->getString(StringValueCStr(parameter)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - - return rb_str_new_cstr(value.c_str()); -} - -VALUE -rb_get_mat(VALUE self, VALUE parameter) -{ - Check_Type(parameter, T_STRING); - VALUE mat = Qnil; - try { - cv::Mat value = ALGORITHM(self)->getMat(StringValueCStr(parameter)); - cv::Size size = value.size(); - mat = cCvMat::new_object(size.height, size.width, value.type()); - cv::Mat dst(CVMAT(mat)); - value.copyTo(dst); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return mat; -} - -VALUE -rb_get_matvector(VALUE self, VALUE parameter) -{ - Check_Type(parameter, T_STRING); - VALUE array = Qnil; - try { - std::vector value = ALGORITHM(self)->getMatVector(StringValueCStr(parameter)); - int len = value.size(); - array = rb_ary_new2(len); - for (int i = 0; i < len; i++) { - cv::Mat m = value[i]; - cv::Size size = m.size(); - VALUE mat = cCvMat::new_object(size.height, size.width, m.type()); - cv::Mat dst(CVMAT(mat)); - m.copyTo(dst); - rb_ary_store(array, i, mat); - } - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return array; -} - -VALUE -rb_name(VALUE self) -{ - VALUE name = Qnil; - try { - name = rb_str_new_cstr(ALGORITHM(self)->name().c_str()); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return name; -} - -void -init_ruby_class() -{ -#if 0 - // For documentation using YARD - VALUE opencv = rb_define_module("OpenCV"); -#endif - - if (rb_klass) - return; - /* - * opencv = rb_define_module("OpenCV"); - * - * note: this comment is used by rdoc. - */ - VALUE opencv = rb_module_opencv(); - rb_klass = rb_define_class_under(opencv, "Algorithm", rb_cObject); - rb_define_method(rb_klass, "set_int", RUBY_METHOD_FUNC(rb_set_int), 2); - rb_define_method(rb_klass, "set_double", RUBY_METHOD_FUNC(rb_set_double), 2); - rb_define_method(rb_klass, "set_bool", RUBY_METHOD_FUNC(rb_set_bool), 2); - rb_define_method(rb_klass, "set_string", RUBY_METHOD_FUNC(rb_set_string), 2); - rb_define_method(rb_klass, "set_mat", RUBY_METHOD_FUNC(rb_set_mat), 2); - rb_define_method(rb_klass, "set_matvector", RUBY_METHOD_FUNC(rb_set_matvector), 2); - rb_define_method(rb_klass, "set_algorithm", RUBY_METHOD_FUNC(rb_set_algorithm), 2); - - rb_define_method(rb_klass, "get_int", RUBY_METHOD_FUNC(rb_get_int), 1); - rb_define_method(rb_klass, "get_double", RUBY_METHOD_FUNC(rb_get_double), 1); - rb_define_method(rb_klass, "get_bool", RUBY_METHOD_FUNC(rb_get_bool), 1); - rb_define_method(rb_klass, "get_string", RUBY_METHOD_FUNC(rb_get_string), 1); - rb_define_method(rb_klass, "get_mat", RUBY_METHOD_FUNC(rb_get_mat), 1); - rb_define_method(rb_klass, "get_matvector", RUBY_METHOD_FUNC(rb_get_matvector), 1); - - rb_define_method(rb_klass, "name", RUBY_METHOD_FUNC(rb_name), 0); -} - -__NAMESPACE_END_ALGORITM -__NAMESPACE_END_OPENCV - diff --git a/ext/opencv/algorithm.h b/ext/opencv/algorithm.h deleted file mode 100644 index 945ee69..0000000 --- a/ext/opencv/algorithm.h +++ /dev/null @@ -1,38 +0,0 @@ -/************************************************************ - - algorithm.h - - $Author: ser1zw $ - - Copyright (C) 2013 ser1zw - -************************************************************/ -#ifndef RUBY_OPENCV_ALGORITHM_H -#define RUBY_OPENCV_ALGORITHM_H - -#include "opencv.h" - -#define __NAMESPACE_BEGIN_ALGORITHM namespace cAlgorithm { -#define __NAMESPACE_END_ALGORITM } - -__NAMESPACE_BEGIN_OPENCV -__NAMESPACE_BEGIN_ALGORITHM - -VALUE rb_class(); - -void init_ruby_class(); - -__NAMESPACE_END_ALGORITM - -inline cv::Algorithm* -ALGORITHM(VALUE object) -{ - cv::Algorithm *ptr; - Data_Get_Struct(object, cv::Algorithm, ptr); - return ptr; -} - -__NAMESPACE_END_OPENCV - -#endif // RUBY_OPENCV_ALGORITHM_H - diff --git a/ext/opencv/cascadeclassifier.cpp b/ext/opencv/cascadeclassifier.cpp new file mode 100644 index 0000000..782e94f --- /dev/null +++ b/ext/opencv/cascadeclassifier.cpp @@ -0,0 +1,138 @@ +#include "opencv2/objdetect.hpp" + +#include "opencv.hpp" +#include "mat.hpp" +#include "size.hpp" +#include "rect.hpp" +#include "error.hpp" + +/* + * Document-class: OpenCV::CascadeClassifier + */ +namespace rubyopencv { + namespace CascadeClassifier { + void free_cascadeclassifier(void* ptr); + size_t memsize_cascadeclassifier(const void* ptr); + + VALUE rb_klass = Qnil; + rb_data_type_t opencv_cascadeclassifier_type = { + "CascadeClassifier", + { 0, free_cascadeclassifier, memsize_cascadeclassifier, 0 }, + 0, + 0, + 0 + }; + + void free_cascadeclassifier(void* ptr) { + delete (cv::CascadeClassifier*)ptr; + } + + size_t memsize_cascadeclassifier(const void* ptr) { + return sizeof(cv::CascadeClassifier); + } + + cv::CascadeClassifier* obj2cascadeclassifier(VALUE obj) { + cv::CascadeClassifier* ptr = NULL; + TypedData_Get_Struct(obj, cv::CascadeClassifier, &opencv_cascadeclassifier_type, ptr); + return ptr; + } + + VALUE rb_allocate(VALUE klass) { + cv::CascadeClassifier* ptr = new cv::CascadeClassifier(); + return TypedData_Wrap_Struct(klass, &opencv_cascadeclassifier_type, ptr); + } + + VALUE rb_initialize(int argc, VALUE *argv, VALUE self) { + VALUE filename; + rb_scan_args(argc, argv, "01", &filename); + + cv::CascadeClassifier* selfptr = obj2cascadeclassifier(self); + if (!NIL_P(filename)) { + selfptr->load(StringValueCStr(filename)); + } + + return self; + } + + VALUE rb_load(VALUE self, VALUE filename) { + cv::CascadeClassifier* selfptr = obj2cascadeclassifier(self); + bool ret = selfptr->load(StringValueCStr(filename)); + + return ret ? Qtrue : Qfalse; + } + + /* + * Detects objects of different sizes in the input image. The detected objects are returned as a list of rectangles. + * + * @overload detect_multi_scale(image, options = nil) + * @param image [Mat] Matrix of the type CV_8U containing an image where objects are detected. + * @param options [Hash] Options + * @option options [Number] :scale_factor + * Parameter specifying how much the image size is reduced at each image scale. + * @option options [Integer] :min_neighbors + * Parameter specifying how many neighbors each candidate rectangle should have to retain it. + * @option options [Size] :min_size + * Minimum possible object size. Objects smaller than that are ignored. + * @option options [Size] :max_size + * Maximum possible object size. Objects larger than that are ignored. + * @return [Array] Detected objects as a list of rectangles. + * @opencv_func cv::CascadeClassifier::detectMultiScale + */ + VALUE rb_detect_multi_scale(int argc, VALUE *argv, VALUE self) { + VALUE image, options; + + rb_scan_args(argc, argv, "11", &image, &options); + + cv::CascadeClassifier* selfptr = obj2cascadeclassifier(self); + std::vector objects; + try { + cv::Mat* m = Mat::obj2mat(image); + if (NIL_P(options)) { + selfptr->detectMultiScale(*m, objects); + } + else { + Check_Type(options, T_HASH); + double scale_factor = NUM2DBL_DEFAULT(HASH_LOOKUP(options, "scale_factor"), 1.1); + int min_neighbors = NUM2INT_DEFAULT(HASH_LOOKUP(options, "min_neighbors"), 3); + cv::Size min_size; + cv::Size max_size; + + VALUE tmp = Qnil; + tmp = rb_hash_lookup(options, ID2SYM(rb_intern("min_size"))); + if (!NIL_P(tmp)) { + min_size = *(Size::obj2size(tmp)); + } + tmp = rb_hash_lookup(options, ID2SYM(rb_intern("max_size"))); + if (!NIL_P(tmp)) { + max_size = *(Size::obj2size(tmp)); + } + selfptr->detectMultiScale(*m, objects, scale_factor, min_neighbors, 0, min_size, max_size); + } + } + catch (cv::Exception& e) { + Error::raise(e); + } + + const long size = objects.size(); + VALUE detected_objects = rb_ary_new_capa(size); + for (long i = 0; i < size; i++) { + VALUE v = Rect::rect2obj(objects[i]); + rb_ary_store(detected_objects, i, v); + } + + return detected_objects; + } + + void init() { + VALUE opencv = rb_define_module("OpenCV"); + + rb_klass = rb_define_class_under(opencv, "CascadeClassifier", rb_cData); + rb_define_alloc_func(rb_klass, rb_allocate); + + rb_define_private_method(rb_klass, "initialize", RUBY_METHOD_FUNC(rb_initialize), -1); + + rb_define_method(rb_klass, "load", RUBY_METHOD_FUNC(rb_load), 1); + rb_define_method(rb_klass, "detect_multi_scale", RUBY_METHOD_FUNC(rb_detect_multi_scale), -1); + } + } +} diff --git a/ext/opencv/cascadeclassifier.hpp b/ext/opencv/cascadeclassifier.hpp new file mode 100644 index 0000000..61a8e61 --- /dev/null +++ b/ext/opencv/cascadeclassifier.hpp @@ -0,0 +1,13 @@ +#ifndef RUBY_OPENCV_CASCADECLASSIFIER_H +#define RUBY_OPENCV_CASCADECLASSIFIER_H + +/* + * Document-class: OpenCV::CascadeClassifier + */ +namespace rubyopencv { + namespace CascadeClassifier { + void init(); + } +} + +#endif // RUBY_OPENCV_CASCADECLASSIFIER_H diff --git a/ext/opencv/curve.cpp b/ext/opencv/curve.cpp deleted file mode 100644 index 1aa0c82..0000000 --- a/ext/opencv/curve.cpp +++ /dev/null @@ -1,127 +0,0 @@ -/************************************************************ - - curve.cpp - - - $Author: lsxi $ - - Copyright (C) 2005 Masakazu Yonekura - -************************************************************/ -#include "curve.h" -/* - * Document-class: OpenCV::Curve - * - * Curve sequence - */ -__NAMESPACE_BEGIN_OPENCV -__NAMESPACE_BEGIN_CURVE - -VALUE module; - -VALUE -rb_module() -{ - return module; -} - -/* - * If the curve is closed, return true. Otherwise return false. - * @overload closed? - * @return [Boolean] Closed or not - * @opencv_func CV_IS_SEQ_CLOSED - */ -VALUE -rb_closed_q(VALUE self) -{ - return CV_IS_SEQ_CLOSED(CVSEQ(self)) ? Qtrue : Qfalse; -} - -/* - * If the curve is convex, return true. Otherwise return false. - * @overload convex? - * @return [Boolean] Convex or not - * @opencv_func CV_IS_SEQ_CONVEX - */ -VALUE -rb_convex_q(VALUE self) -{ - return CV_IS_SEQ_CONVEX(CVSEQ(self)) ? Qtrue : Qfalse; -} - -/* - * If the curve is hole(inner contour), return true. Otherwise return false. - * @overload hole? - * @return [Boolean] Hole or not - * @opencv_func CV_IS_SEQ_HOLE - */ -VALUE -rb_hole_q(VALUE self) -{ - return CV_IS_SEQ_HOLE(CVSEQ(self)) ? Qtrue : Qfalse; -} - -/* - * If the curve is simple, return true. Otherwise return false. - * @overload simple? - * @return [Boolean] Simple or not - * @opencv_func CV_IS_SEQ_SIMPLE - */ -VALUE -rb_simple_q(VALUE self) -{ - return CV_IS_SEQ_SIMPLE(CVSEQ(self)) ? Qtrue : Qfalse; -} - -/* - * Calculates length of a curve - * @overload arc_length(slice = nil, is_closed = nil) - * @param slice [Range,CvSlice,nil] Starting and ending points of the curve. - * By default, the whole curve length is calculated. - * @param is_closed [Boolean,nil] Indicates whether the curve is closed or not. - * There are 3 cases: - * * is_closed = true - the curve is assumed to be unclosed. - * * is_closed = false - the curve is assumed to be closed. - * * is_closed = nil (default) use self#closed? - * @return [Number] Length of the curve - * @opencv_func cvArcLength - */ -VALUE -rb_arc_length(int argc, VALUE *argv, VALUE self) -{ - VALUE slice, is_closed; - rb_scan_args(argc, argv, "02", &slice, &is_closed); - double length = 0; - try { - length = cvArcLength(CVARR(self), - NIL_P(slice) ? CV_WHOLE_SEQ : VALUE_TO_CVSLICE(slice), - TRUE_OR_FALSE(is_closed, -1)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return rb_float_new(length); -} - -void -init_ruby_module() -{ -#if 0 - // For documentation using YARD - VALUE opencv = rb_define_module("OpenCV"); -#endif - - if (module) - return; - - VALUE opencv = rb_module_opencv(); - module = rb_define_module_under(opencv, "Curve"); - rb_define_method(module, "closed?", RUBY_METHOD_FUNC(rb_closed_q), 0); - rb_define_method(module, "convex?", RUBY_METHOD_FUNC(rb_convex_q), 0); - rb_define_method(module, "hole?", RUBY_METHOD_FUNC(rb_hole_q), 0); - rb_define_method(module, "simple?", RUBY_METHOD_FUNC(rb_simple_q), 0); - rb_define_method(module, "arc_length", RUBY_METHOD_FUNC(rb_arc_length), -1); -} - -__NAMESPACE_END_CURVE -__NAMESPACE_END_OPENCV - diff --git a/ext/opencv/curve.h b/ext/opencv/curve.h deleted file mode 100644 index 28ec556..0000000 --- a/ext/opencv/curve.h +++ /dev/null @@ -1,34 +0,0 @@ -/************************************************************ - - curve.h - - - $Author: lsxi $ - - Copyright (C) 2005-2006 Masakazu Yonekura - -************************************************************/ -#ifndef RUBY_OPENCV_CVSEQ_CURVE_H -#define RUBY_OPENCV_CVSEQ_CURVE_H - -#include "opencv.h" - -#define __NAMESPACE_BEGIN_CURVE namespace mCurve { -#define __NAMESPACE_END_CURVE } - -__NAMESPACE_BEGIN_OPENCV -__NAMESPACE_BEGIN_CURVE - -VALUE rb_module(); - -void init_ruby_module(); - -VALUE rb_closed_q(VALUE self); -VALUE rb_convex_q(VALUE self); -VALUE rb_hole_q(VALUE self); -VALUE rb_simple_q(VALUE self); -VALUE rb_arc_length(int argc, VALUE *argv, VALUE self); - -__NAMESPACE_END_CURVE -__NAMESPACE_END_OPENCV - -#endif // RUBY_OPENCV_CVSEQ_CURVE_H diff --git a/ext/opencv/cvavgcomp.cpp b/ext/opencv/cvavgcomp.cpp deleted file mode 100644 index ec64648..0000000 --- a/ext/opencv/cvavgcomp.cpp +++ /dev/null @@ -1,64 +0,0 @@ -/************************************************************ - - cvavgcomp.cpp - - - $Author: lsxi $ - - Copyright (C) 2005-2006 Masakazu Yonekura - -************************************************************/ -#include "cvavgcomp.h" -/* - * Document-class: OpenCV::CvAvgComp - * - * CvRect with parameter "neighbors" - */ -__NAMESPACE_BEGIN_OPENCV -__NAMESPACE_BEGIN_AVGCOMP - -VALUE rb_klass; - -VALUE -rb_class() -{ - return rb_klass; -} - -VALUE -rb_allocate(VALUE klass) -{ - CvAvgComp *ptr; - return Data_Make_Struct(klass, CvAvgComp, 0, -1, ptr); -} - -/* - * Return neighbors - * @overload neighbors - * @return [Integer] neighbors - */ -VALUE -rb_neighbors(VALUE self) -{ - return INT2NUM(CVAVGCOMP(self)->neighbors); -} - -void -init_ruby_class() -{ -#if 0 - // For documentation using YARD - VALUE opencv = rb_define_module("OpenCV"); - VALUE cvrect = rb_define_class_under(opencv, "CvRect", rb_cObject); -#endif - - if (rb_klass) - return; - - VALUE opencv = rb_module_opencv(), cvrect = cCvRect::rb_class(); - rb_klass = rb_define_class_under(opencv, "CvAvgComp", cvrect); - rb_define_alloc_func(rb_klass, rb_allocate); - rb_define_method(rb_klass, "neighbors", RUBY_METHOD_FUNC(rb_neighbors), 0); -} - -__NAMESPACE_END_AVGCOMP -__NAMESPACE_END_OPENCV diff --git a/ext/opencv/cvavgcomp.h b/ext/opencv/cvavgcomp.h deleted file mode 100644 index a29d7d0..0000000 --- a/ext/opencv/cvavgcomp.h +++ /dev/null @@ -1,39 +0,0 @@ -/********************************************************************** - - cvavgcomp.h - - $Author: lsxi $ - - Copyright (C) 2005-2006 Masakazu Yonekura - -**********************************************************************/ -#ifndef RUBY_OPENCV_AVGCOMP_H -#define RUBY_OPENCV_AVGCOMP_H - -#define __NAMESPACE_BEGIN_AVGCOMP namespace cCvAvgComp { -#define __NAMESPACE_END_AVGCOMP } - -#include - -__NAMESPACE_BEGIN_OPENCV -__NAMESPACE_BEGIN_AVGCOMP - -VALUE rb_class(); - -void init_ruby_class(); - -VALUE rb_allocate(VALUE klass); -VALUE rb_neighbors(VALUE self); - -__NAMESPACE_END_AVGCOMP - -inline CvAvgComp *CVAVGCOMP(VALUE object){ - CvAvgComp *ptr; - Data_Get_Struct(object, CvAvgComp, ptr); - return ptr; -} - -__NAMESPACE_END_OPENCV - - -#endif // RUBY_OPENCV_AVGCOMP_H diff --git a/ext/opencv/cvbox2d.cpp b/ext/opencv/cvbox2d.cpp deleted file mode 100644 index bf39e04..0000000 --- a/ext/opencv/cvbox2d.cpp +++ /dev/null @@ -1,195 +0,0 @@ -/************************************************************ - - cvbox2d.cpp - - - $Author: lsxi $ - - Copyright (C) 2005-2006 Masakazu Yonekura - -************************************************************/ -#include "cvbox2d.h" -/* - * Document-class: OpenCV::CvBox2D - * - * Stores coordinates of a rotated rectangle. - */ -__NAMESPACE_BEGIN_OPENCV -__NAMESPACE_BEGIN_CVBOX2D - -VALUE rb_klass; - -VALUE -rb_class() -{ - return rb_klass; -} - -VALUE -rb_allocate(VALUE klass) -{ - CvBox2D *ptr; - return Data_Make_Struct(klass, CvBox2D, 0, -1, ptr); -} - -/* - * Create a box - * @overload new(center=nil, size=nil, angle=nil) - * @param center [CvPoint2D32f,nil] Center of the box - * @param size [CvSize,nil] Size of the box - * @param angle [Number,nil] Angle between the horizontal axis and the first side in degrees - * @return [CvBox2D] New box - */ -VALUE -rb_initialize(int argc, VALUE *argv, VALUE self) -{ - VALUE center, size, angle; - CvBox2D* self_ptr = CVBOX2D(self); - rb_scan_args(argc, argv, "03", ¢er, &size, &angle); - - if (!NIL_P(center)) { - self_ptr->center = VALUE_TO_CVPOINT2D32F(center); - } - if (!NIL_P(size)) { - self_ptr->size = VALUE_TO_CVSIZE2D32F(size); - self_ptr->angle = NUM2DBL(angle); - } - - return self; -} - -/* - * Returns center point of the box - * @overload center - * @return [CvPoint2D32f] Center of the box - */ -VALUE -rb_center(VALUE self) -{ - return REFER_OBJECT(cCvPoint2D32f::rb_class(), &CVBOX2D(self)->center, self); -} - -/* - * Set center point of the box - * @overload center=value - * @param value [CvPoint2D32f] Center of the box - * @return [CvBox2D] self - */ -VALUE -rb_set_center(VALUE self, VALUE value) -{ - CVBOX2D(self)->center = VALUE_TO_CVPOINT2D32F(value); - return self; -} - -/* - * Returns size of the box - * @overload size - * @return [CvSize2D32f] Size of the box - */ -VALUE -rb_size(VALUE self) -{ - return REFER_OBJECT(cCvSize2D32f::rb_class(), &CVBOX2D(self)->size, self); -} - -/* - * Set size of the box - * @overload size=value - * @param value [CvSize2D32f] Size of the box - * @return [CvBox2D] self - */ -VALUE -rb_set_size(VALUE self, VALUE value) -{ - CVBOX2D(self)->size = VALUE_TO_CVSIZE2D32F(value); - return self; -} - -/* - * Returns angle of the box - * @overload angle - * @return [Float] Angle of the box - */ -VALUE -rb_angle(VALUE self) -{ - return rb_float_new(CVBOX2D(self)->angle); -} - -/* - * Set angle of the box - * @overload angle=value - * @param value [Number] Angle of the box - * @return [CvBox2D] self - */ -VALUE -rb_set_angle(VALUE self, VALUE value) -{ - CVBOX2D(self)->angle = NUM2DBL(value); - return self; -} - -/* - * Find box vertices - * @overload points - * @return [Array] Vertices of the box - * @opencv_func cvBoxPoints - */ -VALUE -rb_points(VALUE self) -{ - const int n = 4; - CvPoint2D32f p[n]; - try { - cvBoxPoints(*CVBOX2D(self), p); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - VALUE points = rb_ary_new2(n); - for (int i = 0; i < n; ++i) { - rb_ary_store(points, i, cCvPoint2D32f::new_object(p[i])); - } - return points; -} - -VALUE -new_object() -{ - return rb_allocate(cCvBox2D::rb_class()); -} - -VALUE -new_object(CvBox2D box) -{ - VALUE object = rb_allocate(rb_klass); - *CVBOX2D(object) = box; - return object; -} - -void -init_ruby_class() -{ -#if 0 - // For documentation using YARD - VALUE opencv = rb_define_module("OpenCV"); -#endif - - if (rb_klass) - return; - - VALUE opencv = rb_module_opencv(); - rb_klass = rb_define_class_under(opencv, "CvBox2D", rb_cObject); - rb_define_alloc_func(rb_klass, rb_allocate); - rb_define_method(rb_klass, "initialize", RUBY_METHOD_FUNC(rb_initialize), -1); - rb_define_method(rb_klass, "center", RUBY_METHOD_FUNC(rb_center), 0); - rb_define_method(rb_klass, "center=", RUBY_METHOD_FUNC(rb_set_center), 1); - rb_define_method(rb_klass, "size", RUBY_METHOD_FUNC(rb_size), 0); - rb_define_method(rb_klass, "size=", RUBY_METHOD_FUNC(rb_set_size), 1); - rb_define_method(rb_klass, "angle", RUBY_METHOD_FUNC(rb_angle), 0); - rb_define_method(rb_klass, "angle=", RUBY_METHOD_FUNC(rb_set_angle), 1); - rb_define_method(rb_klass, "points", RUBY_METHOD_FUNC(rb_points), 0); -} - -__NAMESPACE_END_CVBOX2D -__NAMESPACE_END_OPENCV diff --git a/ext/opencv/cvbox2d.h b/ext/opencv/cvbox2d.h deleted file mode 100644 index fa1432a..0000000 --- a/ext/opencv/cvbox2d.h +++ /dev/null @@ -1,61 +0,0 @@ -/************************************************************ - - cvbox2d.h - - - $Author: lsxi $ - - Copyright (C) 2005-2006 Masakazu Yonekura - -************************************************************/ -#ifndef RUBY_OPENCV_CVBOX2D_H -#define RUBY_OPENCV_CVBOX2D_H - -#include "opencv.h" - -#define __NAMESPACE_BEGIN_CVBOX2D namespace cCvBox2D { -#define __NAMESPACE_END_CVBOX2D } - -__NAMESPACE_BEGIN_OPENCV -__NAMESPACE_BEGIN_CVBOX2D - -VALUE rb_class(); - -void init_ruby_class(); - -VALUE rb_allocate(VALUE klass); - -VALUE rb_initialize(int argc, VALUE *argv, VALUE self); -VALUE rb_center(VALUE self); -VALUE rb_set_center(VALUE self, VALUE value); -VALUE rb_size(VALUE self); -VALUE rb_set_size(VALUE self, VALUE value); -VALUE rb_angle(VALUE self); -VALUE rb_set_angle(VALUE self, VALUE value); -VALUE rb_points(VALUE self); - -VALUE new_object(); -VALUE new_object(CvBox2D box); - -__NAMESPACE_END_CVBOX2D - -inline CvBox2D* -CVBOX2D(VALUE object){ - CvBox2D *ptr; - Data_Get_Struct(object, CvBox2D, ptr); - return ptr; -} - -inline CvBox2D -VALUE_TO_CVBOX2D(VALUE object){ - if (rb_obj_is_kind_of(object, cCvBox2D::rb_class())) { - return *CVBOX2D(object); - } - else { - raise_typeerror(object, cCvBox2D::rb_class()); - } - throw "Should never reach here"; -} - -__NAMESPACE_END_OPENCV - -#endif // RUBY_OPENCV_CVBOX2D_H diff --git a/ext/opencv/cvcapture.cpp b/ext/opencv/cvcapture.cpp deleted file mode 100644 index 3675c4a..0000000 --- a/ext/opencv/cvcapture.cpp +++ /dev/null @@ -1,607 +0,0 @@ -/************************************************************ - - cvcapture.cpp - - - $Author: lsxi $ - - Copyright (C) 2005-2006 Masakazu Yonekura - -************************************************************/ -#include "cvcapture.h" -/* - * Document-class: OpenCV::CvCapture - * - * Class for video capturing from video files or cameras - */ -__NAMESPACE_BEGIN_OPENCV -__NAMESPACE_BEGIN_CVCAPTURE - -VALUE rb_klass; - -VALUE -rb_class() -{ - return rb_klass; -} - -void -cvcapture_free(void *ptr) -{ - if (ptr) - cvReleaseCapture((CvCapture**)&ptr); -} - -/* - * Open video file or a capturing device for video capturing - * @scope class - * @overload open(dev = nil) - * @param dev [String,Fixnum,Simbol,nil] Video capturing device - * * If dev is a string (i.e "stream.avi"), reads video stream from a file. - * * If dev is a number or symbol (included in CvCapture::INTERFACE), reads video stream from a device. - * * If dev is a nil, same as CvCapture.open(:any) - * @return [CvCapture] Opened CvCapture instance - * @opencv_func cvCaptureFromCAM - * @opencv_func cvCaptureFromFile - */ -VALUE -rb_open(int argc, VALUE *argv, VALUE self) -{ - VALUE device; - rb_scan_args(argc, argv, "01", &device); - CvCapture *capture = 0; - try { - switch (TYPE(device)) { - case T_STRING: - capture = cvCaptureFromFile(StringValueCStr(device)); - break; - case T_FIXNUM: - capture = cvCaptureFromCAM(FIX2INT(device)); - break; - case T_SYMBOL: { - VALUE cap_index = rb_hash_lookup(rb_const_get(rb_class(), rb_intern("INTERFACE")), device); - if (NIL_P(cap_index)) - rb_raise(rb_eArgError, "undefined interface."); - capture = cvCaptureFromCAM(NUM2INT(cap_index)); - break; - } - case T_NIL: - capture = cvCaptureFromCAM(CV_CAP_ANY); - break; - } - } - catch (cv::Exception& e) { - raise_cverror(e); - } - if (!capture) - rb_raise(rb_eStandardError, "Invalid capture format."); - return Data_Wrap_Struct(rb_klass, 0, cvcapture_free, capture); -} - -/* - * Grabs the next frame from video file or capturing device. - * @overload grab - * @return [Boolean] If grabbing a frame successed, returns true, otherwise returns false. - * @opencv_func cvGrabFrame - */ -VALUE -rb_grab(VALUE self) -{ - int grab = 0; - try { - grab = cvGrabFrame(CVCAPTURE(self)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return grab ? Qtrue : Qfalse; -} - -/* - * Decodes and returns the grabbed video frame. - * @overload retrieve - * @return [IplImage] Grabbed video frame - * @return [nil] Failed to grabbing a frame - * @opencv_func cvRetrieveFrame - */ -VALUE -rb_retrieve(VALUE self) -{ - VALUE image = Qnil; - IplImage *frame = NULL; - try { - if (!(frame = cvRetrieveFrame(CVCAPTURE(self)))) { - return Qnil; - } - image = cIplImage::new_object(frame->width, frame->height, - CV_MAKETYPE(IPL2CV_DEPTH(frame->depth), frame->nChannels)); - if (frame->origin == IPL_ORIGIN_TL) { - cvCopy(frame, CVARR(image)); - } - else { - cvFlip(frame, CVARR(image)); - } - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return image; - -} - -/* - * Grabs, decodes and returns the next video frame. - * @overload query - * @return [IplImage] Next video frame - * @return [nil] Failed to read next video frame - * @opencv_func cvQueryFrame - */ -VALUE -rb_query(VALUE self) -{ - VALUE image = Qnil; - IplImage *frame = NULL; - try { - if (!(frame = cvQueryFrame(CVCAPTURE(self)))) { - return Qnil; - } - image = cIplImage::new_object(frame->width, frame->height, - CV_MAKETYPE(IPL2CV_DEPTH(frame->depth), frame->nChannels)); - if (frame->origin == IPL_ORIGIN_TL) { - cvCopy(frame, CVARR(image)); - } - else { - cvFlip(frame, CVARR(image)); - } - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return image; -} - -VALUE -rb_get_capture_property(VALUE self, int id) -{ - double result = 0; - try { - result = cvGetCaptureProperty(CVCAPTURE(self), id); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return rb_float_new(result); -} - -VALUE -rb_set_capture_property(VALUE self, int id, VALUE value) -{ - double result = 0; - try { - result = cvSetCaptureProperty(CVCAPTURE(self), id, NUM2DBL(value)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return rb_float_new(result); -} - -/* - * Get film current position in milliseconds or video capture timestamp. - * @overload millisecond - * @return [Number] Current position of the video file in milliseconds or video capture timestamp - * @opencv_func cvGetCaptureProperty (propId=CV_CAP_PROP_POS_MSEC) - */ -VALUE -rb_get_millisecond(VALUE self) -{ - return rb_get_capture_property(self, CV_CAP_PROP_POS_MSEC); -} - -/* - * Set film current position in milliseconds or video capture timestamp. - * @overload millisecond=value - * @param value [Number] Position in milliseconds or video capture timestamp. - * @return [Number] - * @opencv_func cvSetCaptureProperty (propId=CV_CAP_PROP_POS_MSEC) - */ -VALUE -rb_set_millisecond(VALUE self, VALUE value) -{ - return rb_set_capture_property(self, CV_CAP_PROP_POS_MSEC, value); -} - -/* - * Get 0-based index of the frame to be decoded/captured next - * @overload frames - * @return [Number] 0-based index of the frame to be decoded/captured next - * @opencv_func cvGetCaptureProperty (propId=CV_CAP_PROP_POS_FRAMES) - */ -VALUE -rb_get_frames(VALUE self) -{ - return rb_get_capture_property(self, CV_CAP_PROP_POS_FRAMES); -} - -/* - * Set 0-based index of the frame to be decoded/captured next - * @overload frames=value - * @param value [Number] 0-based index of the frame to be decoded/captured next - * @return [Number] - * @opencv_func cvSetCaptureProperty (propId=CV_CAP_PROP_POS_FRAMES) - */ -VALUE -rb_set_frames(VALUE self, VALUE value) -{ - return rb_set_capture_property(self, CV_CAP_PROP_POS_FRAMES, value); -} -/* - * Get relative position of video file - * @overload avi_ratio - * @return [Number] Relative position of video file (0: Start of the film, 1: End of the film) - * @opencv_func cvGetCaptureProperty (propId=CV_CAP_PROP_POS_AVI_RATIO) - */ -VALUE -rb_get_avi_ratio(VALUE self) -{ - return rb_get_capture_property(self, CV_CAP_PROP_POS_AVI_RATIO); -} -/* - * Set relative position of video file - * @overload avi_ratio=value - * @param value [Number] Relative position of video file (0: Start of the film, 1: End of the film) - * @return [Number] - * @opencv_func cvSetCaptureProperty (propId=CV_CAP_PROP_POS_AVI_RATIO) - */ -VALUE -rb_set_avi_ratio(VALUE self, VALUE value) -{ - return rb_set_capture_property(self, CV_CAP_PROP_POS_AVI_RATIO, value); -} - -/* - * Get size of frames in the video stream. - * @overload size - * @return [Size] Size of frames in the video stream. - * @opencv_func cvGetCaptureProperty (propId=CV_CAP_PROP_FRAME_WIDTH,CV_CAP_PROP_FRAME_HEIGHT) - */ -VALUE -rb_get_size(VALUE self) -{ - CvSize size; - try { - CvCapture* self_ptr = CVCAPTURE(self); - size = cvSize((int)cvGetCaptureProperty(self_ptr, CV_CAP_PROP_FRAME_WIDTH), - (int)cvGetCaptureProperty(self_ptr, CV_CAP_PROP_FRAME_HEIGHT)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return cCvSize::new_object(size); -} - -/* - * Set size of frames in the video stream. - * @overload size=value - * @param value [CvSize] Size of frames - * @return [Number] - * @opencv_func cvSetCaptureProperty (propId=CV_CAP_PROP_FRAME_WIDTH,CV_CAP_PROP_FRAME_HEIGHT) - */ -VALUE -rb_set_size(VALUE self, VALUE value) -{ - double result = 0; - CvSize size = VALUE_TO_CVSIZE(value); - try { - CvCapture* self_ptr = CVCAPTURE(self); - cvSetCaptureProperty(self_ptr, CV_CAP_PROP_FRAME_WIDTH, size.width); - result = cvSetCaptureProperty(self_ptr, CV_CAP_PROP_FRAME_HEIGHT, size.height); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return DBL2NUM(result); -} - -/* - * Get width of frames in the video stream. - * @overload width - * @return [Number] Width of frames in the video stream. - * @opencv_func cvGetCaptureProperty (propId=CV_CAP_FRAME_WIDTH) - */ -VALUE -rb_get_width(VALUE self) -{ - return rb_get_capture_property(self, CV_CAP_PROP_FRAME_WIDTH); -} - -/* - * Set width of frames in the video stream. - * @overload width=value - * @param value [Number] Width of frames - * @return [Number] - * @opencv_func cvSetCaptureProperty (propId=CV_CAP_PROP_FRAME_WIDTH) - */ -VALUE -rb_set_width(VALUE self, VALUE value) -{ - return rb_set_capture_property(self, CV_CAP_PROP_FRAME_WIDTH, value); -} - -/* - * Get height of frames in the video stream. - * @overload height - * @return [Number] Height of frames in the video stream. - * @opencv_func cvGetCaptureProperty (propId=CV_CAP_PROP_FRAME_HEIGHT) - */ -VALUE -rb_get_height(VALUE self) -{ - return rb_get_capture_property(self, CV_CAP_PROP_FRAME_HEIGHT); -} - -/* - * Set height of frames in the video stream. - * @overload height=value - * @param value [Number] Height of frames - * @return [Number] - * @opencv_func cvSetCaptureProperty (propId=CV_CAP_PROP_FRAME_HEIGHT) - */ -VALUE -rb_set_height(VALUE self, VALUE value) -{ - return rb_set_capture_property(self, CV_CAP_PROP_FRAME_HEIGHT, value); -} - -/* - * Get frame rate - * @overload fps - * @return [Number] Frame rate - * @opencv_func cvGetCaptureProperty (propId=CV_CAP_PROP_FPS) - */ -VALUE -rb_get_fps(VALUE self) -{ - return rb_get_capture_property(self, CV_CAP_PROP_FPS); -} - -/* - * Set frame rate - * @overload fps=value - * @param value [Number] Frame rate - * @return [Number] - * @opencv_func cvSetCaptureProperty (propId=CV_CAP_PROP_FPS) - */ -VALUE -rb_set_fps(VALUE self, VALUE value) -{ - return rb_set_capture_property(self, CV_CAP_PROP_FPS, value); -} - -/* - * Get 4 character code of codec. see http://www.fourcc.org/ - * @overload fourcc - * @return [Number] Codec code - * @opencv_func cvGetCaptureProperty (propId=CV_CAP_PROP_FOURCC) - */ -VALUE -rb_get_fourcc(VALUE self) -{ - char str[4]; - double fourcc = cvGetCaptureProperty(CVCAPTURE(self), CV_CAP_PROP_FOURCC); - sprintf(str, "%s", (char*)&fourcc); - return rb_str_new2(str); -} - -/* - * Get number of frames in video file. - * @overload frame_count - * @return [Number] Number of frames - * @opencv_func cvGetCaptureProperty (propId=CV_CAP_PROP_FRAME_COUNT) - */ -VALUE -rb_get_frame_count(VALUE self) -{ - return rb_get_capture_property(self, CV_CAP_PROP_FRAME_COUNT); -} - -/* - * Get format of images returned by CvCapture#retrieve - * @overload format - * @return [Number] format - * @opencv_func cvGetCaptureProperty (propId=CV_CAP_PROP_FORMAT) - */ -VALUE -rb_get_format(VALUE self) -{ - return rb_get_capture_property(self, CV_CAP_PROP_FORMAT); -} - -/* - * Get a backend-specific value indicating the current capture mode - * @overload mode - * @return [Number] Backend-specific value indicating the current capture mode - * @opencv_func cvGetCaptureProperty (propId=CV_CAP_PROP_MODE) - */ -VALUE -rb_get_mode(VALUE self) -{ - return rb_get_capture_property(self, CV_CAP_PROP_MODE); -} - -/* - * Get brightness of the image (only for cameras) - * @overload brightness - * @return [Number] Brightness - * @opencv_func cvGetCaptureProperty (propId=CV_CAP_PROP_BRIGHTNESS) - */ -VALUE -rb_get_brightness(VALUE self) -{ - return rb_get_capture_property(self, CV_CAP_PROP_BRIGHTNESS); -} - -/* - * Get contrast of the image (only for cameras) - * @overload contrast - * @return [Number] Contrast - * @opencv_func cvGetCaptureProperty (propId=CV_CAP_PROP_CONTRAST) - */ -VALUE -rb_get_contrast(VALUE self) -{ - return rb_get_capture_property(self, CV_CAP_PROP_CONTRAST); -} - -/* - * Get saturation of the image (only for cameras) - * @overload saturation - * @return [Number] Saturation - * @opencv_func cvGetCaptureProperty (propId=CV_CAP_PROP_SATURATION) - */ -VALUE -rb_get_saturation(VALUE self) -{ - return rb_get_capture_property(self, CV_CAP_PROP_SATURATION); -} -/* - * Get hue of the image (only for cameras) - * @overload hue - * @return [Number] Hue - * @opencv_func cvGetCaptureProperty (propId=CV_CAP_PROP_HUE) - */ -VALUE -rb_get_hue(VALUE self) -{ - return rb_get_capture_property(self, CV_CAP_PROP_HUE); -} - -/* - * Get gain of the image (only for cameras) - * @overload gain - * @return [Number] Gain - * @opencv_func cvGetCaptureProperty (propId=CV_CAP_PROP_GAIN) - */ -VALUE -rb_get_gain(VALUE self) -{ - return rb_get_capture_property(self, CV_CAP_PROP_GAIN); -} - -/* - * Get exposure (only for cameras) - * @overload exposure - * @return [Number] Exposure - * @opencv_func cvGetCaptureProperty (propId=CV_CAP_PROP_EXPOSURE) - */ -VALUE -rb_get_exposure(VALUE self) -{ - return rb_get_capture_property(self, CV_CAP_PROP_EXPOSURE); -} - -/* - * Get boolean flags indicating whether images should be converted to RGB - * @overload convert_rgb - * @return [Boolean] Whether images should be converted to RGB - * @opencv_func cvGetCaptureProperty (propId=CV_CAP_PROP_CONVERT_RGB) - */ -VALUE -rb_get_convert_rgb(VALUE self) -{ - int flag = 0; - try { - flag = (int)cvGetCaptureProperty(CVCAPTURE(self), CV_CAP_PROP_CONVERT_RGB); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return flag ? Qtrue : Qfalse; -} - -/* - * Get rectification flag for stereo cameras (note: only supported by DC1394 v 2.x backend currently) - * @overload rectification - * @return [Number] Rectification flag - * @opencv_func cvGetCaptureProperty (propId=CV_CAP_PROP_RECTIFICATION) - */ -VALUE -rb_get_rectification(VALUE self) -{ - return rb_get_capture_property(self, CV_CAP_PROP_RECTIFICATION); -} - -void -init_ruby_class() -{ -#if 0 - // For documentation using YARD - VALUE opencv = rb_define_module("OpenCV"); -#endif - - if (rb_klass) - return; - - VALUE opencv = rb_module_opencv(); - - rb_klass = rb_define_class_under(opencv, "CvCapture", rb_cData); - - VALUE video_interface = rb_hash_new(); - /* - * :any, :mil, :vfw, :v4l, :v4l2, :fireware, :ieee1394, :dc1394, :cmu1394, - * :stereo, :tyzx, :tyzx_left, :tyzx_right, :tyzx_color, :tyzx_z, :qt, :qtuicktime - */ - rb_define_const(rb_klass, "INTERFACE", video_interface); - rb_hash_aset(video_interface, ID2SYM(rb_intern("any")), INT2FIX(CV_CAP_ANY)); - rb_hash_aset(video_interface, ID2SYM(rb_intern("mil")), INT2FIX(CV_CAP_MIL)); - rb_hash_aset(video_interface, ID2SYM(rb_intern("vfw")), INT2FIX(CV_CAP_VFW)); - rb_hash_aset(video_interface, ID2SYM(rb_intern("v4l")), INT2FIX(CV_CAP_V4L)); - rb_hash_aset(video_interface, ID2SYM(rb_intern("v4l2")), INT2FIX(CV_CAP_V4L2)); - rb_hash_aset(video_interface, ID2SYM(rb_intern("fireware")), INT2FIX(CV_CAP_FIREWARE)); - rb_hash_aset(video_interface, ID2SYM(rb_intern("ieee1394")), INT2FIX(CV_CAP_IEEE1394)); - rb_hash_aset(video_interface, ID2SYM(rb_intern("dc1394")), INT2FIX(CV_CAP_DC1394)); - rb_hash_aset(video_interface, ID2SYM(rb_intern("cmu1394")), INT2FIX(CV_CAP_CMU1394)); - rb_hash_aset(video_interface, ID2SYM(rb_intern("stereo")), INT2FIX(CV_CAP_STEREO)); - rb_hash_aset(video_interface, ID2SYM(rb_intern("tyzx")), INT2FIX(CV_CAP_TYZX)); - rb_hash_aset(video_interface, ID2SYM(rb_intern("tyzx_left")), INT2FIX(CV_TYZX_LEFT)); - rb_hash_aset(video_interface, ID2SYM(rb_intern("tyzx_right")), INT2FIX(CV_TYZX_RIGHT)); - rb_hash_aset(video_interface, ID2SYM(rb_intern("tyzx_color")), INT2FIX(CV_TYZX_COLOR)); - rb_hash_aset(video_interface, ID2SYM(rb_intern("tyzx_z")), INT2FIX(CV_TYZX_Z)); - rb_hash_aset(video_interface, ID2SYM(rb_intern("qt")), INT2FIX(CV_CAP_QT)); - rb_hash_aset(video_interface, ID2SYM(rb_intern("quicktime")), INT2FIX(CV_CAP_QT)); - - rb_define_singleton_method(rb_klass, "open", RUBY_METHOD_FUNC(rb_open), -1); - - rb_define_method(rb_klass, "grab", RUBY_METHOD_FUNC(rb_grab), 0); - rb_define_method(rb_klass, "retrieve", RUBY_METHOD_FUNC(rb_retrieve), 0); - rb_define_method(rb_klass, "query", RUBY_METHOD_FUNC(rb_query), 0); - rb_define_method(rb_klass, "millisecond", RUBY_METHOD_FUNC(rb_get_millisecond), 0); - rb_define_method(rb_klass, "millisecond=", RUBY_METHOD_FUNC(rb_set_millisecond), 1); - rb_define_method(rb_klass, "frames", RUBY_METHOD_FUNC(rb_get_frames), 0); - rb_define_method(rb_klass, "frames=", RUBY_METHOD_FUNC(rb_set_frames), 1); - rb_define_method(rb_klass, "avi_ratio", RUBY_METHOD_FUNC(rb_get_avi_ratio), 0); - rb_define_method(rb_klass, "avi_ratio=", RUBY_METHOD_FUNC(rb_set_avi_ratio), 1); - rb_define_method(rb_klass, "size", RUBY_METHOD_FUNC(rb_get_size), 0); - rb_define_method(rb_klass, "size=", RUBY_METHOD_FUNC(rb_set_size), 1); - rb_define_method(rb_klass, "width", RUBY_METHOD_FUNC(rb_get_width), 0); - rb_define_method(rb_klass, "width=", RUBY_METHOD_FUNC(rb_set_width), 1); - rb_define_method(rb_klass, "height", RUBY_METHOD_FUNC(rb_get_height), 0); - rb_define_method(rb_klass, "height=", RUBY_METHOD_FUNC(rb_set_height), 1); - rb_define_method(rb_klass, "fps", RUBY_METHOD_FUNC(rb_get_fps), 0); - rb_define_method(rb_klass, "fps=", RUBY_METHOD_FUNC(rb_set_fps), 1); - rb_define_method(rb_klass, "fourcc", RUBY_METHOD_FUNC(rb_get_fourcc), 0); - rb_define_method(rb_klass, "frame_count", RUBY_METHOD_FUNC(rb_get_frame_count), 0); - rb_define_method(rb_klass, "format", RUBY_METHOD_FUNC(rb_get_format), 0); - rb_define_method(rb_klass, "mode", RUBY_METHOD_FUNC(rb_get_mode), 0); - rb_define_method(rb_klass, "brightness", RUBY_METHOD_FUNC(rb_get_brightness), 0); - rb_define_method(rb_klass, "contrast", RUBY_METHOD_FUNC(rb_get_contrast), 0); - rb_define_method(rb_klass, "saturation", RUBY_METHOD_FUNC(rb_get_saturation), 0); - rb_define_method(rb_klass, "hue", RUBY_METHOD_FUNC(rb_get_hue), 0); - rb_define_method(rb_klass, "gain", RUBY_METHOD_FUNC(rb_get_gain), 0); - rb_define_method(rb_klass, "exposure", RUBY_METHOD_FUNC(rb_get_exposure), 0); - rb_define_method(rb_klass, "convert_rgb", RUBY_METHOD_FUNC(rb_get_convert_rgb), 0); - rb_define_method(rb_klass, "rectification", RUBY_METHOD_FUNC(rb_get_rectification), 0); -} - -__NAMESPACE_END_CVCAPTURE -__NAMESPACE_END_OPENCV - diff --git a/ext/opencv/cvcapture.h b/ext/opencv/cvcapture.h deleted file mode 100644 index 70a0575..0000000 --- a/ext/opencv/cvcapture.h +++ /dev/null @@ -1,72 +0,0 @@ -/************************************************************ - - cvcapture.h - - - $Author: lsxi $ - - Copyright (C) 2005-2006 Masakazu Yonekura - -************************************************************/ -#ifndef RUBY_OPENCV_CVCAPTURE_H -#define RUBY_OPENCV_CVCAPTURE_H - -#include "opencv.h" - -#define __NAMESPACE_BEGIN_CVCAPTURE namespace cCvCapture { -#define __NAMESPACE_END_CVCAPTURE } - -__NAMESPACE_BEGIN_OPENCV -__NAMESPACE_BEGIN_CVCAPTURE - - -VALUE rb_class(); - -void init_ruby_class(); - -void cvcapture_free(void *ptr); -VALUE rb_open(int argc, VALUE *argv, VALUE klass); - -VALUE rb_grab(VALUE self); -VALUE rb_retrieve(VALUE self); -VALUE rb_query(VALUE self); - -VALUE rb_get_millisecond(VALUE self); -VALUE rb_set_millisecond(VALUE self, VALUE value); -VALUE rb_get_frames(VALUE self); -VALUE rb_set_frames(VALUE self, VALUE value); -VALUE rb_get_avi_ratio(VALUE self); -VALUE rb_set_avi_ratio(VALUE self, VALUE value); -VALUE rb_get_size(VALUE self); -VALUE rb_set_size(VALUE self, VALUE value); -VALUE rb_get_width(VALUE self); -VALUE rb_set_width(VALUE self, VALUE value); -VALUE rb_get_height(VALUE self); -VALUE rb_set_height(VALUE self, VALUE value); -VALUE rb_get_fps(VALUE self); -VALUE rb_set_fps(VALUE self, VALUE value); -VALUE rb_get_fourcc(VALUE self); -VALUE rb_get_frame_count(VALUE self); -VALUE rb_get_format(VALUE self); -VALUE rb_get_mode(VALUE self); -VALUE rb_get_brightness(VALUE self); -VALUE rb_get_contrast(VALUE self); -VALUE rb_get_saturation(VALUE self); -VALUE rb_get_hue(VALUE self); -VALUE rb_get_gain(VALUE self); -VALUE rb_get_exposure(VALUE self); -VALUE rb_get_convert_rgb(VALUE self); -VALUE rb_get_rectification(VALUE self); - -__NAMESPACE_END_CVCAPTURE - - -inline CvCapture* -CVCAPTURE(VALUE object) { - CvCapture *ptr; - Data_Get_Struct(object, CvCapture, ptr); - return ptr; -} - -__NAMESPACE_END_OPENCV - -#endif // RUBY_OPENCV_CVCAPTURE_H diff --git a/ext/opencv/cvchain.cpp b/ext/opencv/cvchain.cpp deleted file mode 100644 index ccec7d4..0000000 --- a/ext/opencv/cvchain.cpp +++ /dev/null @@ -1,233 +0,0 @@ -/************************************************************ - - cvchain.cpp - - - $Author: lsxi $ - - Copyright (C) 2007 Masakazu Yonekura - -************************************************************/ -#include "cvchain.h" -/* - * Document-class: OpenCV::CvChain - * - * Freeman chain code - */ -__NAMESPACE_BEGIN_OPENCV -__NAMESPACE_BEGIN_CVCHAIN - -#define APPROX_CHAIN_OPTION(op) rb_get_option_table(rb_klass, "APPROX_CHAIN_OPTION", op) -#define APPROX_CHAIN_METHOD(op) CVMETHOD("APPROX_CHAIN_METHOD", LOOKUP_HASH(op, "method"), CV_CHAIN_APPROX_SIMPLE) -#define APPROX_CHAIN_PARAMETER(op) NUM2INT(LOOKUP_HASH(op, "parameter")) -#define APPROX_CHAIN_MINIMAL_PERIMETER(op) NUM2INT(LOOKUP_HASH(op, "minimal_perimeter")) -#define APPROX_CHAIN_RECURSIVE(op) TRUE_OR_FALSE(LOOKUP_HASH(op, "recursive")) - -VALUE rb_klass; - -VALUE -rb_class() -{ - return rb_klass; -} - -VALUE -rb_allocate(VALUE klass) -{ - return Data_Wrap_Struct(klass, mark_root_object, unregister_object, NULL); -} - -/* - * Create a new chain code - * @overload new(storage=nil) - * @param storage [CvMemStorage,nil] Sequence location (If storage is nil, allocates a new storage automatically) - * @return [CvChain] New CvChain instance - * @opencv_func cvCreateSeq (seq_flags=CV_SEQ_ELTYPE_CODE) - */ -VALUE -rb_initialize(int argc, VALUE *argv, VALUE self) -{ - CvMemStorage *storage; - VALUE storage_value; - if (rb_scan_args(argc, argv, "01", &storage_value) > 0) { - storage_value = CHECK_CVMEMSTORAGE(storage_value); - storage = CVMEMSTORAGE(storage_value); - } - else - storage = rb_cvCreateMemStorage(0); - try { - DATA_PTR(self) = (CvChain*)cvCreateSeq(CV_SEQ_ELTYPE_CODE, sizeof(CvChain), - sizeof(int), storage); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - CvSeq* self_ptr = CVSEQ(self); - cCvSeq::register_elem_class(self_ptr, rb_cFixnum); - register_root_object(self_ptr, storage_value); - - return self; -} - -/* - * Returns Freeman chain code origin - * @overload origin - * @return [CvPoint] Origin of the chain code - */ -VALUE -rb_origin(VALUE self) -{ - return cCvPoint::new_object(CVCHAIN(self)->origin); -} - -/* - * Set Freeman chain code origin - * @overload origin=value - * @param value [CvPoint] Origin of the chain code - * @return [CvChain] self - */ -VALUE -rb_set_origin(VALUE self, VALUE origin) -{ - CVCHAIN(self)->origin = VALUE_TO_CVPOINT(origin); - return self; -} - -/* - * Returns the chain codes - * @overload codes - * @return [Array] Chain codes - * @opencv_func cvStartReadChainPoints - * @opencv_func CV_READ_SEQ_ELEM - */ -VALUE -rb_codes(VALUE self) -{ - CvChain *chain = CVCHAIN(self); - CvChainPtReader reader; - int total = chain->total; - VALUE ary = rb_ary_new2(total); - try { - cvStartReadChainPoints(chain, &reader); - for (int i = 0; i < total; ++i) { - CV_READ_SEQ_ELEM(reader.code, (*((CvSeqReader*)&(reader)))); - rb_ary_store(ary, i, INT2FIX(reader.code)); - } - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return ary; -} - -/* - * Returns the points of the chain codes - * @overload points - * @return [Array] Points of the chain codes - * @opencv_func cvStartReadChainPoints - * @opencv_func CV_READ_CHAIN_POINT - */ -VALUE -rb_points(VALUE self) -{ - CvChain *chain = CVCHAIN(self); - CvChainPtReader reader; - CvPoint p = chain->origin; - int total = chain->total; - VALUE ary = rb_ary_new2(total); - try { - cvStartReadChainPoints(chain, &reader); - for (int i = 0; i < total; ++i) { - CV_READ_CHAIN_POINT(p, reader); - rb_ary_store(ary, i, cCvPoint::new_object(p)); - } - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return ary; -} - -/* - * Approximates Freeman chains with a polygonal curve - * @overload approx_chain(options) - * @param options [Hash] Parameters - * @option options [Symbol] :method Approximation method (see the description of CvMat#find_contours) - * @option options [Number] :minimal_perimeter Approximates only those contours whose perimeters - * are not less than minimal_perimeter. Other chains are removed from the resulting structure. - * @option options [Boolean] :recursive Recursion flag. If it is true, the function approximates - * all chains that can be obtained from chain by using the h_next or v_next links. - * Otherwise, the single input chain is approximated. - * @return [CvSeq] Polygonal curve - * @opencv_func cvApproxChains - */ -VALUE -rb_approx_chains(int argc, VALUE *argv, VALUE self) -{ - VALUE approx_chain_option; - rb_scan_args(argc, argv, "01", &approx_chain_option); - - approx_chain_option = APPROX_CHAIN_OPTION(approx_chain_option); - VALUE storage = cCvMemStorage::new_object(); - CvSeq *seq = cvApproxChains(CVSEQ(self), CVMEMSTORAGE(storage), - APPROX_CHAIN_METHOD(approx_chain_option), - APPROX_CHAIN_PARAMETER(approx_chain_option), - APPROX_CHAIN_MINIMAL_PERIMETER(approx_chain_option), - APPROX_CHAIN_RECURSIVE(approx_chain_option)); - - if (seq && seq->total > 0) { - return cCvSeq::new_sequence(cCvChain::rb_class(), seq, cCvPoint::rb_class(), storage); - } - return Qnil; -} - -VALUE -new_object() -{ - VALUE storage = cCvMemStorage::new_object(); - CvSeq *seq = NULL; - try { - seq = cvCreateSeq(CV_SEQ_CHAIN_CONTOUR, sizeof(CvChain), sizeof(int), CVMEMSTORAGE(storage)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return cCvSeq::new_sequence(cCvChain::rb_class(), seq, T_FIXNUM, storage); -} - -void -init_ruby_class() -{ -#if 0 - // For documentation using YARD - VALUE opencv = rb_define_module("OpenCV"); - VALUE cvseq = rb_define_class_under(opencv, "CvSeq"); - VALUE curve = rb_define_module_under(opencv, "Curve"); -#endif - - if (rb_klass) - return; - - VALUE opencv = rb_module_opencv(); - VALUE cvseq = cCvSeq::rb_class(); - VALUE curve = mCurve::rb_module(); - - rb_klass = rb_define_class_under(opencv, "CvChain", cvseq); - rb_include_module(rb_klass, curve); - VALUE approx_chain_option = rb_hash_new(); - rb_define_const(rb_klass, "APPROX_CHAIN_OPTION", approx_chain_option); - rb_hash_aset(approx_chain_option, ID2SYM(rb_intern("method")), ID2SYM(rb_intern("approx_simple"))); - rb_hash_aset(approx_chain_option, ID2SYM(rb_intern("parameter")), rb_float_new(0)); - rb_hash_aset(approx_chain_option, ID2SYM(rb_intern("minimal_perimeter")), INT2FIX(0)); - rb_hash_aset(approx_chain_option, ID2SYM(rb_intern("recursive")), Qfalse); - - rb_define_method(rb_klass, "initialize", RUBY_METHOD_FUNC(rb_initialize), -1); - rb_define_method(rb_klass, "origin", RUBY_METHOD_FUNC(rb_origin), 0); - rb_define_method(rb_klass, "origin=", RUBY_METHOD_FUNC(rb_set_origin), 1); - rb_define_method(rb_klass, "codes", RUBY_METHOD_FUNC(rb_codes), 0); - rb_define_method(rb_klass, "points", RUBY_METHOD_FUNC(rb_points), 0); - rb_define_method(rb_klass, "approx_chains", RUBY_METHOD_FUNC(rb_approx_chains), -1); - rb_define_alias(rb_klass, "approx", "approx_chains"); -} - -__NAMESPACE_END_CVCHAIN -__NAMESPACE_END_OPENCV diff --git a/ext/opencv/cvchain.h b/ext/opencv/cvchain.h deleted file mode 100644 index e0bb892..0000000 --- a/ext/opencv/cvchain.h +++ /dev/null @@ -1,46 +0,0 @@ -/************************************************************ - - cvchain.h - - - $Author: lsxi $ - - Copyright (C) 2007 Masakazu Yonekura - -************************************************************/ -#ifndef RUBY_OPENCV_CVCHAIN_H -#define RUBY_OPENCV_CVCHAIN_H -#include "opencv.h" - -#define __NAMESPACE_BEGIN_CVCHAIN namespace cCvChain { -#define __NAMESPACE_END_CVCHAIN } - -__NAMESPACE_BEGIN_OPENCV -__NAMESPACE_BEGIN_CVCHAIN - -VALUE rb_class(); - -void init_ruby_class(); - -VALUE rb_allocate(VALUE klass); - -VALUE rb_initialize(int argc, VALUE *argv, VALUE self); -VALUE rb_origin(VALUE self); -VALUE rb_set_origin(VALUE self, VALUE origin); -VALUE rb_codes(VALUE self); -VALUE rb_points(VALUE self); -VALUE rb_approx_chains(int argc, VALUE *argv, VALUE self); - -VALUE new_object(); - -__NAMESPACE_END_CVCHAIN - -inline CvChain* -CVCHAIN(VALUE object){ - CvChain *ptr; - Data_Get_Struct(object, CvChain, ptr); - return ptr; -} - -__NAMESPACE_END_OPENCV - -#endif // RUBY_OPENCV_CVCHAIN_H diff --git a/ext/opencv/cvcircle32f.cpp b/ext/opencv/cvcircle32f.cpp deleted file mode 100644 index 2e8bbe3..0000000 --- a/ext/opencv/cvcircle32f.cpp +++ /dev/null @@ -1,126 +0,0 @@ -/************************************************************ - - cvcircle32f.cpp - - - $Author: lsxi $ - - Copyright (C) 2005-2006 Masakazu Yonekura - -************************************************************/ -#include "cvcircle32f.h" -/* - * Document-class: OpenCV::CvCircle32f - * - * Combination of center and radius. - * - * see CvMat#hough_circles - */ -__NAMESPACE_BEGIN_OPENCV -__NAMESPACE_BEGIN_CVCIRCLE32F - -VALUE rb_klass; - -VALUE -rb_class() -{ - return rb_klass; -} - -VALUE -rb_allocate(VALUE klass) -{ - CvCircle32f *ptr; - return Data_Make_Struct(klass, CvCircle32f, 0, -1, ptr); -} - -/* - * Returns center point of the circle - * @overload center - * @return [CvPoint2D32f] Center point of the circle - */ -VALUE -rb_center(VALUE self) -{ - return cCvPoint2D32f::new_object(CVCIRCLE32F(self)->center); -} - -/* - * Returns radius of the circle - * @overload radius - * @return [Number] Radius of the circle - */ -VALUE -rb_radius(VALUE self) -{ - return rb_float_new(CVCIRCLE32F(self)->radius); -} - -/* - * Accesses to parameters of the circle by array-like interface ([X-coordinate, Y-coordinate, radius]) - * @overload [] - * @param index [Integer] Index - * @return [Number] X-coordinate, Y-coordinate or radius of the circle - */ -VALUE -rb_aref(VALUE self, VALUE index) -{ - switch (NUM2INT(index)) { - case 0: - return DBL2NUM(CVCIRCLE32F(self)->center.x); - break; - case 1: - return DBL2NUM(CVCIRCLE32F(self)->center.y); - break; - case 2: - return DBL2NUM(CVCIRCLE32F(self)->radius); - break; - default: - rb_raise(rb_eIndexError, "index should be 0...3"); - break; - } - return Qnil; -} - -/* - * Returns parameters of the circle as an array which contains [center, radius] - * @overload to_ary - * @return [Array] An array which contains [center, radius] - */ -VALUE -rb_to_ary(VALUE self) -{ - return rb_ary_new3(2, rb_center(self), rb_radius(self)); -} - -VALUE -new_object(CvCircle32f circle32f) -{ - VALUE object = rb_allocate(rb_klass); - *CVCIRCLE32F(object) = circle32f; - return object; -} - -void -init_ruby_class() -{ -#if 0 - // For documentation using YARD - VALUE opencv = rb_define_module("OpenCV"); -#endif - - if (rb_klass) - return; - - VALUE opencv = rb_module_opencv(); - - rb_klass = rb_define_class_under(opencv, "CvCircle32f", rb_cObject); - rb_define_alloc_func(rb_klass, rb_allocate); - rb_define_method(rb_klass, "center", RUBY_METHOD_FUNC(rb_center), 0); - rb_define_method(rb_klass, "radius", RUBY_METHOD_FUNC(rb_radius), 0); - rb_define_method(rb_klass, "[]", RUBY_METHOD_FUNC(rb_aref), 1); - rb_define_method(rb_klass, "to_ary", RUBY_METHOD_FUNC(rb_to_ary), 0); - rb_define_alias(rb_klass, "to_a", "to_ary"); -} - -__NAMESPACE_END_CVCIRCLE32F -__NAMESPACE_END_OPENCV diff --git a/ext/opencv/cvcircle32f.h b/ext/opencv/cvcircle32f.h deleted file mode 100644 index 065c647..0000000 --- a/ext/opencv/cvcircle32f.h +++ /dev/null @@ -1,52 +0,0 @@ -/************************************************************ - - cvcircle32f.h - - - $Author: lsxi $ - - Copyright (C) 2007 Masakazu Yonekura - -************************************************************/ -#ifndef RUBY_OPENCV_CVCIRCLE32F_H -#define RUBY_OPENCV_CVCIRCLE32F_H - -#include "opencv.h" - -#define __NAMESPACE_BEGIN_CVCIRCLE32F namespace cCvCircle32f { -#define __NAMESPACE_END_CVCIRCLE32F } - -__NAMESPACE_BEGIN_OPENCV - -typedef struct CvCircle32f { - CvPoint2D32f center; - float radius; -} CvCircle32f; - -__NAMESPACE_BEGIN_CVCIRCLE32F - -VALUE rb_class(); - -void init_ruby_class(); - -VALUE rb_allocate(VALUE klass); -VALUE rb_initialize(int argc, VALUE *argv, VALUE self); -VALUE rb_center(VALUE self); -VALUE rb_radius(VALUE self); -VALUE rb_aref(VALUE self, VALUE index); -VALUE rb_to_ary(VALUE self); - -VALUE new_object(CvCircle32f circle32f); - -__NAMESPACE_END_CVCIRCLE32F - -inline CvCircle32f* -CVCIRCLE32F(VALUE object) -{ - CvCircle32f *ptr; - Data_Get_Struct(object, CvCircle32f, ptr); - return ptr; -} - -__NAMESPACE_END_OPENCV - -#endif // RUBY_OPENCV_CVCIRCLE32F_H diff --git a/ext/opencv/cvconnectedcomp.cpp b/ext/opencv/cvconnectedcomp.cpp deleted file mode 100644 index fb10309..0000000 --- a/ext/opencv/cvconnectedcomp.cpp +++ /dev/null @@ -1,156 +0,0 @@ -/************************************************************ - - cvconnectedcomp.cpp - - - $Author: lsxi $ - - Copyright (C) 2005-2007 Masakazu Yonekura - -************************************************************/ -#include "cvconnectedcomp.h" -/* - * Document-class: OpenCV::CvConnectedComp - * - * Connected component - * see CvMat#flood_fill - */ -__NAMESPACE_BEGIN_OPENCV -__NAMESPACE_BEGIN_CVCONNECTEDCOMP - -VALUE rb_klass; - -VALUE -rb_class() -{ - return rb_klass; -} - -VALUE -rb_allocate(VALUE klass) -{ - CvConnectedComp *ptr; - return Data_Make_Struct(klass, CvConnectedComp, 0, -1, ptr); -} - -/* - * Constructor - * @overload new(area = nil, value = nil, rect = nil, contour = nil) - * @param area [Number] Area of the segmented component - * @param value [CvScalar] Average color of the connected component - * @param rect [CvRect] ROI of the segmented component - * @param contour [CvSeq] Optional component boundary - * @return [CvConnectedComp] self - */ -VALUE -rb_initialize(int argc, VALUE *argv, VALUE self) -{ - VALUE area, value, rect, contour; - rb_scan_args(argc, argv, "04", &area, &value, &rect, &contour); - - if (!NIL_P(area)) - CVCONNECTEDCOMP(self)->area = NUM2DBL(area); - if (!NIL_P(value)) - CVCONNECTEDCOMP(self)->value = *CVSCALAR(value); - if (!NIL_P(rect)) - CVCONNECTEDCOMP(self)->rect = *CVRECT(rect); - if (!NIL_P(contour)) - CVCONNECTEDCOMP(self)->contour = CVSEQ(contour); - return self; -} - -/* - * Returns area of connected component - * @overload area - * @return [Number] Area of the connected component - */ -VALUE -rb_area(VALUE self) -{ - return rb_float_new(CVCONNECTEDCOMP(self)->area); -} - -/* - * Return average color of the connected component. - * @overload value - * @return [CvScalar] Average color of the connected component - */ -VALUE -rb_value(VALUE self) -{ - return REFER_OBJECT(cCvScalar::rb_class(), &CVCONNECTEDCOMP(self)->value, self); -} - -/* - * Return ROI of the segmented component - * @overload rect - * @return [CvRect] ROI of the segmented component - */ -VALUE -rb_rect(VALUE self) -{ - return REFER_OBJECT(cCvRect::rb_class(), &CVCONNECTEDCOMP(self)->rect, self); -} - -/* - * Set ROI of the segmented component - * @overload rect=value - * @param value [CvRect] ROI to set - * @return [CvRect] ROI of the segmented component - */ -VALUE -rb_set_rect(VALUE self, VALUE rect) -{ - CVCONNECTEDCOMP(self)->rect = VALUE_TO_CVRECT(rect); - return self; -} - -/* - * Returns optional component boundary - * @overload contour - * @return [CvContour] Optional component boundary - */ -VALUE -rb_contour(VALUE self) -{ - return REFER_OBJECT(cCvContour::rb_class(), &CVCONNECTEDCOMP(self)->contour, self); -} - -VALUE -new_object() -{ - return rb_allocate(rb_klass); -} - -VALUE -new_object(CvConnectedComp comp) -{ - VALUE object = rb_allocate(rb_klass); - *CVCONNECTEDCOMP(object) = comp; - return object; -} - -void -init_ruby_class() -{ -#if 0 - // For documentation using YARD - VALUE opencv = rb_define_module("OpenCV"); -#endif - - if (rb_klass) - return; - - VALUE opencv = rb_module_opencv(); - - rb_klass = rb_define_class_under(opencv, "CvConnectedComp", rb_cObject); - rb_define_alloc_func(rb_klass, rb_allocate); - rb_define_method(rb_klass, "initialize", RUBY_METHOD_FUNC(rb_initialize), -1); - rb_define_method(rb_klass, "area", RUBY_METHOD_FUNC(rb_area), 0); - rb_define_method(rb_klass, "value", RUBY_METHOD_FUNC(rb_value), 0); - rb_define_method(rb_klass, "rect", RUBY_METHOD_FUNC(rb_rect), 0); - rb_define_method(rb_klass, "rect=", RUBY_METHOD_FUNC(rb_set_rect), 1); - rb_define_method(rb_klass, "contour", RUBY_METHOD_FUNC(rb_contour), 0); -} - -__NAMESPACE_END_CVCONNECTEDCOMP -__NAMESPACE_END_OPENCV diff --git a/ext/opencv/cvconnectedcomp.h b/ext/opencv/cvconnectedcomp.h deleted file mode 100644 index beadd29..0000000 --- a/ext/opencv/cvconnectedcomp.h +++ /dev/null @@ -1,49 +0,0 @@ -/************************************************************ - - cvconnectedcomp.h - - - $Author: lsxi $ - - Copyright (C) 2005-2007 Masakazu Yonekura - -************************************************************/ -#ifndef RUBY_OPENCV_CVCONNECTEDCOMP_H -#define RUBY_OPENCV_CVCONNECTEDCOMP_H - -#include "opencv.h" - -#define __NAMESPACE_BEGIN_CVCONNECTEDCOMP namespace cCvConnectedComp { -#define __NAMESPACE_END_CVCONNECTEDCOMP } - -__NAMESPACE_BEGIN_OPENCV -__NAMESPACE_BEGIN_CVCONNECTEDCOMP - -VALUE rb_class(); - -void init_ruby_class(); - -VALUE rb_allocate(VALUE klass); - -VALUE rb_initialize(int argc, VALUE *argv, VALUE self); -VALUE rb_area(VALUE self); -VALUE rb_value(VALUE self); -VALUE rb_rect(VALUE self); -VALUE rb_set_rect(VALUE self, VALUE rect); -VALUE rb_contour(VALUE self); - -VALUE new_object(); -VALUE new_object(CvConnectedComp comp); - -__NAMESPACE_END_CVCONNECTEDCOMP - -inline CvConnectedComp* -CVCONNECTEDCOMP(VALUE object) -{ - CvConnectedComp *ptr; - Data_Get_Struct(object, CvConnectedComp, ptr); - return ptr; -} - -__NAMESPACE_END_OPENCV - -#endif // RUBY_OPENCV_CVCONNECTEDCOMP_H diff --git a/ext/opencv/cvcontour.cpp b/ext/opencv/cvcontour.cpp deleted file mode 100644 index f3409b4..0000000 --- a/ext/opencv/cvcontour.cpp +++ /dev/null @@ -1,350 +0,0 @@ -/************************************************************ - - cvcontour.cpp - - - $Author: lsxi $ - - Copyright (C) 2007 Masakazu Yonekura - -************************************************************/ -#include "cvcontour.h" -/* - * Document-class: OpenCV::CvContour - * - * Contour - * - * @see CvMat#find_contours - */ -__NAMESPACE_BEGIN_OPENCV -__NAMESPACE_BEGIN_CVCONTOUR - -#define APPROX_POLY_OPTION(op) rb_get_option_table(rb_klass, "APPROX_OPTION", op) -#define APPROX_POLY_METHOD(op) CVMETHOD("APPROX_POLY_METHOD", LOOKUP_HASH(op, "method"), CV_POLY_APPROX_DP) -#define APPROX_POLY_ACCURACY(op) NUM2DBL(LOOKUP_HASH(op, "accuracy")) -#define APPROX_POLY_RECURSIVE(op) TRUE_OR_FALSE(LOOKUP_HASH(op, "recursive")) - -VALUE rb_allocate(VALUE klass); -void cvcontour_free(void *ptr); - -VALUE rb_klass; - -VALUE -rb_class() -{ - return rb_klass; -} - -VALUE -rb_allocate(VALUE klass) -{ - return Data_Wrap_Struct(klass, mark_root_object, unregister_object, NULL); -} - -/* - * Constructor - * - * @overload new(seq_flags = CV_SEQ_ELTYPE_POINT | CV_SEQ_KIND_GENERIC, storage = nil) - * @param [Fixnum] seq_flags Flags of the created sequence, which are combinations of - * the element types and sequence types. - * - Element type: - * - CV_SEQ_ELTYPE_POINT: {CvPoint} - * - CV_32FC2: {CvPoint2D32f} - * - CV_SEQ_ELTYPE_POINT3D: {CvPoint3D32f} - * - CV_SEQ_ELTYPE_INDEX: Fixnum - * - CV_SEQ_ELTYPE_CODE: Fixnum (Freeman code) - * - Sequence type: - * - CV_SEQ_KIND_GENERIC: Generic sequence - * - CV_SEQ_KIND_CURVE: Curve - * @param [CvMemStorage] storage Sequence location - * @return [CvContour] self - * @opencv_func cvCreateSeq - * @example - * seq = CvContour.new(CV_SEQ_ELTYPE_POINT | CV_SEQ_KIND_CURVE) - * seq << CvPoint.new(1, 2) - * seq << 3 #=> TypeError - */ -VALUE -rb_initialize(int argc, VALUE *argv, VALUE self) -{ - VALUE seq_flags_value, storage_value; - rb_scan_args(argc, argv, "02", &seq_flags_value, &storage_value); - - int seq_flags = 0; - if (NIL_P(seq_flags_value)) { - seq_flags = CV_SEQ_ELTYPE_POINT | CV_SEQ_KIND_GENERIC; - } - else { - Check_Type(seq_flags_value, T_FIXNUM); - seq_flags = FIX2INT(seq_flags_value); - } - storage_value = CHECK_CVMEMSTORAGE(storage_value); - - try { - DATA_PTR(self) = (CvContour*)cCvSeq::create_seq(seq_flags, sizeof(CvContour), storage_value); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - - return self; -} - -/* - * Returns bounding box of the contour - * @overload rect - * @return [CvRect] Bounding box of the contour - */ -VALUE -rb_rect(VALUE self) -{ - return cCvRect::new_object(CVCONTOUR(self)->rect); -} - -/* - * Returns color of the contour - * @overload color - * @return [Number] Color of the contour - */ -VALUE -rb_color(VALUE self) -{ - return INT2NUM(CVCONTOUR(self)->color); -} - -/* - * Set color of the contour - * @overload color=value - * @param value [Number] Color of the contour - */ -VALUE -rb_set_color(VALUE self, VALUE color) -{ - CVCONTOUR(self)->color = NUM2INT(color); - return self; -} - -/* - * Returns reserved region values of the contour - * @overload reserved - * @return [Array] Reserved region values of the contour - */ -VALUE -rb_reserved(VALUE self) -{ - return rb_ary_new3(3, - INT2NUM(CVCONTOUR(self)->reserved[0]), - INT2NUM(CVCONTOUR(self)->reserved[1]), - INT2NUM(CVCONTOUR(self)->reserved[2])); -} - -/* - * Approximates polygonal curves with desired precision - * @overload approx_poly(options) - * @param options [Hash] Parameters - * @option options [Symbol] :method Approximation method (default :dp) - * * :dp - Douglas-Peucker algorithm. - * @option options [Number] :accuracy Parameter specifying the approximation accuracy. - * This is the maximum distance between the original curve and its approximation. - * @option options [Boolean] :recursive Recursion flag. If true, the function approximates - * all the contours accessible from curve by h_next and v_next links. - * @return [CvContour] Result of the approximation - * @return [nil] Approximation faied - * @opencv_func cvApproxPoly - */ -VALUE -rb_approx_poly(int argc, VALUE *argv, VALUE self) -{ - VALUE approx_poly_option; - rb_scan_args(argc, argv, "01", &approx_poly_option); - approx_poly_option = APPROX_POLY_OPTION(approx_poly_option); - VALUE storage = cCvMemStorage::new_object(); - CvSeq *contour = cvApproxPoly(CVCONTOUR(self), sizeof(CvContour), CVMEMSTORAGE(storage), - APPROX_POLY_METHOD(approx_poly_option), - APPROX_POLY_ACCURACY(approx_poly_option), - APPROX_POLY_RECURSIVE(approx_poly_option)); - - if (contour && contour->total > 0) { - return cCvSeq::new_sequence(cCvContour::rb_class(), contour, cCvPoint::rb_class(), storage); - } - return Qnil; -} - -/* - * Calculates up-right bounding rectangle of point set. - * @overload bounding_rect - * @return [CvRect] Bounding rectangle - * @opencv_func cvBoundingRect - */ -VALUE -rb_bounding_rect(VALUE self) -{ - CvRect rect; - try { - rect = cvBoundingRect(CVCONTOUR(self), 1); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return cCvRect::new_object(rect); -} - -/* - * Creates hierarchical representation of contour - * @overload create_tree(threshold = 0.0) - * @param threshold [Number] If <= 0, the method creates full binary tree representation. - * If > 0, the method creates representation with the precision threshold. - * @return [CvContourTree] Hierarchical representation of the contour - * @opencv_func cvCreateContourTree - */ -VALUE -rb_create_tree(int argc, VALUE *argv, VALUE self) -{ - VALUE threshold, storage; - rb_scan_args(argc, argv, "01", &threshold); - storage = cCvMemStorage::new_object(); - CvContourTree *tree = NULL; - try { - tree = cvCreateContourTree(CVSEQ(self), CVMEMSTORAGE(storage), IF_DBL(threshold, 0.0)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return cCvSeq::new_sequence(cCvContourTree::rb_class(), (CvSeq*)tree, cCvPoint::rb_class(), storage); -} - -/* - * Performs a point-in-contour test. - * The method determines whether the point is inside a contour, outside, - * or lies on an edge (or coincides with a vertex). - * @overload in?(point) - * @param point [CvPoint2D32f] Point tested against the contour - * @return [Boolean] If the point is inside, returns true. If outside, returns false. - * If lies on an edge, returns nil. - * @opencv_func cvPointPolygonTest - */ -VALUE -rb_in_q(VALUE self, VALUE point) -{ - double n = 0; - try { - n = cvPointPolygonTest(CVARR(self), VALUE_TO_CVPOINT2D32F(point), 0); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return n == 0 ? Qnil : n > 0 ? Qtrue : Qfalse; -} - -/* - * Calculates distance between a point and the nearest contour edgex - * @overload measure_distance(point) - * @param point [CvPoint2D32f] Point tested against the contour - * @return Signed distance between the point and the nearest contour edge - * @opencv_func cvPointPolygonTest - */ -VALUE -rb_measure_distance(VALUE self, VALUE point) -{ - double distance = 0; - try { - distance = cvPointPolygonTest(CVARR(self), VALUE_TO_CVPOINT2D32F(point), 1); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return rb_float_new(distance); -} - -/* - * Determines whether the point is inside a contour, outside, or lies on an edge (or coinsides with a vertex). - * @overload point_polygon_test(point, measure_dist) - * @param point [CvPoint2D32f] Point tested against the contour - * @param measure_dist [Boolean] If true, the method estimates the signed distance from the point to - * the nearest contour edge. Otherwise, the function only checks if the point is inside a contour or not. - * @return [Number] When measure_dist = false, the return value is +1, -1 and 0, respectively. - * When measure_dist = true, it is a signed distance between the point and the nearest contour edge. - * @opencv_func cvPointPolygonTest - */ -VALUE -rb_point_polygon_test(VALUE self, VALUE point, VALUE measure_dist) -{ - int measure_dist_flag; - - if (measure_dist == Qtrue) - measure_dist_flag = 1; - else if (measure_dist == Qfalse) - measure_dist_flag = 0; - else - measure_dist_flag = NUM2INT(measure_dist); - - double dist = Qnil; - try { - dist = cvPointPolygonTest(CVARR(self), VALUE_TO_CVPOINT2D32F(point), measure_dist_flag); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - - /* cvPointPolygonTest returns 100, -100 or 0 when measure_dist = 0 */ - if ((!measure_dist_flag) && ((int)dist) != 0) - dist = (dist > 0) ? 1 : -1; - - return rb_float_new(dist); -} - -VALUE new_object() -{ - VALUE object = rb_allocate(rb_klass); - rb_initialize(0, NULL, object); - return object; -} - - -void -init_ruby_class() -{ -#if 0 - // For documentation using YARD - VALUE opencv = rb_define_module("OpenCV"); - VALUE cvseq = rb_define_class_under(opencv, "CvSeq"); - VALUE curve = rb_define_module_under(opencv, "Curve"); - VALUE pointset = rb_define_module_under(opencv, "PointSet"); -#endif - - if (rb_klass) - return; - - VALUE opencv = rb_module_opencv(); - VALUE cvseq = cCvSeq::rb_class(); - VALUE curve = mCurve::rb_module(); - VALUE pointset = mPointSet::rb_module(); - - rb_klass = rb_define_class_under(opencv, "CvContour", cvseq); - rb_include_module(rb_klass, curve); - rb_include_module(rb_klass, pointset); - - rb_define_alloc_func(rb_klass, rb_allocate); - - VALUE approx_option = rb_hash_new(); - rb_define_const(rb_klass, "APPROX_OPTION", approx_option); - rb_hash_aset(approx_option, ID2SYM(rb_intern("method")), INT2FIX(CV_POLY_APPROX_DP)); - rb_hash_aset(approx_option, ID2SYM(rb_intern("accuracy")), rb_float_new(1.0)); - rb_hash_aset(approx_option, ID2SYM(rb_intern("recursive")), Qfalse); - - rb_define_method(rb_klass, "initialize", RUBY_METHOD_FUNC(rb_initialize), -1); - rb_define_method(rb_klass, "rect", RUBY_METHOD_FUNC(rb_rect), 0); - rb_define_method(rb_klass, "color", RUBY_METHOD_FUNC(rb_color), 0); - rb_define_method(rb_klass, "color=", RUBY_METHOD_FUNC(rb_set_color), 1); - rb_define_method(rb_klass, "reserved", RUBY_METHOD_FUNC(rb_reserved), 0); - rb_define_method(rb_klass, "approx_poly", RUBY_METHOD_FUNC(rb_approx_poly), -1); - rb_define_alias(rb_klass, "approx", "approx_poly"); - rb_define_method(rb_klass, "bounding_rect", RUBY_METHOD_FUNC(rb_bounding_rect), 0); - rb_define_method(rb_klass, "create_tree", RUBY_METHOD_FUNC(rb_create_tree), -1); - rb_define_method(rb_klass, "in?", RUBY_METHOD_FUNC(rb_in_q), 1); - rb_define_method(rb_klass, "measure_distance", RUBY_METHOD_FUNC(rb_measure_distance), 1); - rb_define_method(rb_klass, "point_polygon_test", RUBY_METHOD_FUNC(rb_point_polygon_test), 2); -} - -__NAMESPACE_END_CVCONTOUR -__NAMESPACE_END_OPENCV - diff --git a/ext/opencv/cvcontour.h b/ext/opencv/cvcontour.h deleted file mode 100644 index 4654654..0000000 --- a/ext/opencv/cvcontour.h +++ /dev/null @@ -1,48 +0,0 @@ -/************************************************************ - - cvcontour.h - - - $Author: lsxi $ - - Copyright (C) 2007 Masakazu Yonekura - -************************************************************/ -#ifndef RUBY_OPENCV_CVCONTOUR_H -#define RUBY_OPENCV_CVCONTOUR_H -#include "opencv.h" - -#define __NAMESPACE_BEGIN_CVCONTOUR namespace cCvContour { -#define __NAMESPACE_END_CVCONTOUR } - -__NAMESPACE_BEGIN_OPENCV -__NAMESPACE_BEGIN_CVCONTOUR - -VALUE rb_class(); - -void init_ruby_class(); - -VALUE rb_initialize(int argc, VALUE *argv, VALUE self); -VALUE rb_rect(VALUE self); -VALUE rb_color(VALUE self); -VALUE rb_set_color(VALUE self, VALUE color); -VALUE rb_reserved(VALUE self); -VALUE rb_approx_poly(int argc, VALUE *argv, VALUE self); -VALUE rb_bounding_rect(VALUE self); -VALUE rb_create_tree(int argc, VALUE *argv, VALUE self); -VALUE rb_in_q(VALUE self, VALUE point); -VALUE rb_measure_distance(VALUE self, VALUE point); -VALUE rb_point_polygon_test(VALUE self, VALUE point, VALUE measure_dist); - -VALUE new_object(); -__NAMESPACE_END_CVCONTOUR - -inline CvContour* -CVCONTOUR(VALUE object){ - CvContour *ptr; - Data_Get_Struct(object, CvContour, ptr); - return ptr; -} - -__NAMESPACE_END_OPENCV - -#endif // RUBY_OPENCV_CVCONTOUR_H diff --git a/ext/opencv/cvcontourtree.cpp b/ext/opencv/cvcontourtree.cpp deleted file mode 100644 index bb8b833..0000000 --- a/ext/opencv/cvcontourtree.cpp +++ /dev/null @@ -1,96 +0,0 @@ -/************************************************************ - - cvcontourtree.cpp - - - $Author: lsxi $ - - Copyright (C) 2007 Masakazu Yonekura - -************************************************************/ -#include "cvcontour.h" -/* - * Document-class: OpenCV::CvContourTree - * - * Contour tree - * - * @see CvContour#create_tree - */ -__NAMESPACE_BEGIN_OPENCV -__NAMESPACE_BEGIN_CVCONTOURTREE - -VALUE rb_klass; - -VALUE -rb_class() -{ - return rb_klass; -} - -/* - * Returns the first point of the binary tree root segment - * @overload p1 - * @return [CvPoint] First point of the binary tree root segment - */ -VALUE -rb_p1(VALUE self) -{ - return REFER_OBJECT(cCvPoint::rb_class(), &CVCONTOURTREE(self)->p1, self); -} - -/* - * Returns the last point of the binary tree root segment - * @overload p2 - * @return [CvPoint] Last point of the binary tree root segment - */ -VALUE -rb_p2(VALUE self) -{ - return REFER_OBJECT(cCvPoint::rb_class(), &CVCONTOURTREE(self)->p2, self); -} - -/* - * Restores the contour from its binary tree representation. - * - * The parameter +criteria+ determines the accuracy and/or the number of tree levels - * used for reconstruction, so it is possible to build approximated contour. - * @overload contour(criteria = 0) - * @param criteria [Integer] Criteria, where to stop reconstruction - * @return [CvContour] Contour tree - * @opencv_func cvContourFromContourTree - */ -VALUE -rb_contour(VALUE self, VALUE criteria) -{ - VALUE storage = cCvMemStorage::new_object(); - CvSeq *contour = NULL; - try { - contour = cvContourFromContourTree(CVCONTOURTREE(self), CVMEMSTORAGE(storage), - VALUE_TO_CVTERMCRITERIA(criteria)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return cCvSeq::new_sequence(cCvContour::rb_class(), contour, cCvPoint::rb_class(), storage); -} - -void -init_ruby_class() -{ -#if 0 - // For documentation using YARD - VALUE opencv = rb_define_module("OpenCV"); - VALUE cvseq = rb_define_class_under(opencv, "CvSeq"); -#endif - if (rb_klass) - return; - VALUE opencv = rb_module_opencv(); - VALUE cvseq = cCvSeq::rb_class(); - - rb_klass = rb_define_class_under(opencv, "CvContourTree", cvseq); - rb_define_method(rb_klass, "p1", RUBY_METHOD_FUNC(rb_p1), 0); - rb_define_method(rb_klass, "p2", RUBY_METHOD_FUNC(rb_p2), 0); - rb_define_method(rb_klass, "contour", RUBY_METHOD_FUNC(rb_contour), 1); -} - -__NAMESPACE_END_CVCONTOURTREE -__NAMESPACE_END_OPENCV diff --git a/ext/opencv/cvcontourtree.h b/ext/opencv/cvcontourtree.h deleted file mode 100644 index 570fcde..0000000 --- a/ext/opencv/cvcontourtree.h +++ /dev/null @@ -1,41 +0,0 @@ -/************************************************************ - - cvcontourtree.h - - - $Author: lsxi $ - - Copyright (C) 2007 Masakazu Yonekura - -************************************************************/ -#ifndef RUBY_OPENCV_CVCONTOURTREE_H -#define RUBY_OPENCV_CVCONTOURTREE_H -#include "opencv.h" - -#define __NAMESPACE_BEGIN_CVCONTOURTREE namespace cCvContourTree { -#define __NAMESPACE_END_CVCONTOURTREE } - -__NAMESPACE_BEGIN_OPENCV -__NAMESPACE_BEGIN_CVCONTOURTREE - -VALUE rb_class(); - -void init_ruby_class(); - -VALUE rb_p1(VALUE self); -VALUE rb_p2(VALUE self); -VALUE rb_contour(VALUE self, VALUE criteria); - -VALUE new_object(); - -__NAMESPACE_END_CVCONTOURTREE - -inline CvContourTree* -CVCONTOURTREE(VALUE object){ - CvContourTree *ptr; - Data_Get_Struct(object, CvContourTree, ptr); - return ptr; -} - -__NAMESPACE_END_OPENCV - -#endif // RUBY_OPENCV_CVCONTOUR_H diff --git a/ext/opencv/cvconvexitydefect.cpp b/ext/opencv/cvconvexitydefect.cpp deleted file mode 100644 index e810e1a..0000000 --- a/ext/opencv/cvconvexitydefect.cpp +++ /dev/null @@ -1,92 +0,0 @@ -/************************************************************ - - cvconvexitydefect.cpp - - - $Author: lsxi $ - - Copyright (C) 2007 Masakazu Yonekura - -************************************************************/ -#include "cvconvexitydefect.h" -/* - * Document-class: OpenCV::CvConvexityDefect - * - * Convexity defect - */ -__NAMESPACE_BEGIN_OPENCV -__NAMESPACE_BEGIN_CVCONVEXITYDEFECT - -VALUE rb_klass; - -VALUE -rb_class() -{ - return rb_klass; -} - -/* - * Returns the point of the contour where the defect begins - * @overload start - * @return [CvPoint] Start point of the contour - */ -VALUE -rb_start(VALUE self) -{ - return cCvPoint::new_object(*CVCONVEXITYDEFECT(self)->start); -} - -/* - * Returns the point of the contour where the defect ends - * @overload end - * @return [CvPoint] End point of the contour - */ -VALUE -rb_end(VALUE self) -{ - return cCvPoint::new_object(*CVCONVEXITYDEFECT(self)->end); -} - -/* - * Returns the farthest from the convex hull point within the defect - * @overload depth_point - * @return [CvPoint] The farthest from the convex hull point within the defect - */ -VALUE -rb_depth_point(VALUE self) -{ - return cCvPoint::new_object(*CVCONVEXITYDEFECT(self)->depth_point); -} - -/* - * Returns distance between the farthest point and the convex hull - * @overload depth - * @return [Number] Distance between the farthest point and the convex hull - */ -VALUE -rb_depth(VALUE self) -{ - return rb_float_new(CVCONVEXITYDEFECT(self)->depth); -} - -void -init_ruby_class() -{ -#if 0 - // For documentation using YARD - VALUE opencv = rb_define_module("OpenCV"); -#endif - - if (rb_klass) - return; - - VALUE opencv = rb_module_opencv(); - - rb_klass = rb_define_class_under(opencv, "CvConvexityDefect", rb_cObject); - rb_define_method(rb_klass, "start", RUBY_METHOD_FUNC(rb_start), 0); - rb_define_method(rb_klass, "end", RUBY_METHOD_FUNC(rb_end), 0); - rb_define_method(rb_klass, "depth_point", RUBY_METHOD_FUNC(rb_depth_point), 0); - rb_define_method(rb_klass, "depth", RUBY_METHOD_FUNC(rb_depth), 0); -} - -__NAMESPACE_END_CVCONVEXITYDEFECT -__NAMESPACE_END_OPENCV diff --git a/ext/opencv/cvconvexitydefect.h b/ext/opencv/cvconvexitydefect.h deleted file mode 100644 index 6c7df25..0000000 --- a/ext/opencv/cvconvexitydefect.h +++ /dev/null @@ -1,42 +0,0 @@ -/************************************************************ - - cvconvexitydefect.h - - - $Author: lsxi $ - - Copyright (C) 2007 Masakazu Yonekura - -************************************************************/ -#ifndef RUBY_OPENCV_CVCONVEXITYDEFECT_H -#define RUBY_OPENCV_CVCONVEXITYDEFECT_H - -#include "opencv.h" - -#define __NAMESPACE_BEGIN_CVCONVEXITYDEFECT namespace cCvConvexityDefect { -#define __NAMESPACE_END_CVCONVEXITYDEFECT } - -__NAMESPACE_BEGIN_OPENCV -__NAMESPACE_BEGIN_CVCONVEXITYDEFECT - -VALUE rb_class(); - -void init_ruby_class(); - -VALUE rb_start(VALUE self); -VALUE rb_end(VALUE self); -VALUE rb_depth_point(VALUE self); -VALUE rb_depth(VALUE self); - -__NAMESPACE_END_CVCONVEXITYDEFECT - -inline CvConvexityDefect* -CVCONVEXITYDEFECT(VALUE object) -{ - CvConvexityDefect *ptr; - Data_Get_Struct(object, CvConvexityDefect, ptr); - return ptr; -} - -__NAMESPACE_END_OPENCV - -#endif // RUBY_OPENCV_CVCONVEXITYDEFECT_H diff --git a/ext/opencv/cverror.cpp b/ext/opencv/cverror.cpp deleted file mode 100644 index 8b1edb3..0000000 --- a/ext/opencv/cverror.cpp +++ /dev/null @@ -1,115 +0,0 @@ -/************************************************************ - - cverror.cpp - - - $Author: lsxi $ - - Copyright (C) 2005-2006 Masakazu Yonekura - -************************************************************/ -#include "cverror.h" -/* - * Document-class: OpenCV::CvError - * - * OpenCV errors - */ - -__NAMESPACE_BEGIN_OPENCV -__NAMESPACE_BEGIN_CVERROR - -st_table *cv_error = st_init_numtable(); - -VALUE rb_klass; - -void -REGISTER_CVERROR(const char* object_name, int error_code) -{ - st_insert(cv_error, (st_data_t)error_code, - (st_data_t)rb_define_class_under(rb_module_opencv(), object_name, rb_klass)); -} - -VALUE -rb_class() -{ - return rb_klass; -} - -VALUE -by_code(int error_code) -{ - VALUE klass = 0; - st_lookup(cv_error, (st_data_t)error_code, (st_data_t*)&klass); - return klass ? klass : rb_eStandardError; -} - -void -raise(cv::Exception e) -{ - rb_raise(by_code(e.code), "%s", e.what()); -} - -void -init_ruby_class() -{ -#if 0 - // For documentation using YARD - VALUE opencv = rb_define_module("OpenCV"); -#endif - - if (rb_klass) - return; - - VALUE opencv = rb_module_opencv(); - rb_klass = rb_define_class_under(opencv, "CvError", rb_eStandardError); - REGISTER_CVERROR("CvStsBackTrace", CV_StsBackTrace); - REGISTER_CVERROR("CvStsError", CV_StsError); - REGISTER_CVERROR("CvStsInternal", CV_StsInternal); - REGISTER_CVERROR("CvStsNoMem", CV_StsNoMem); - REGISTER_CVERROR("CvStsBadArg", CV_StsBadArg); - REGISTER_CVERROR("CvStsBadFunc", CV_StsBadFunc); - REGISTER_CVERROR("CvStsNoConv", CV_StsNoConv); - REGISTER_CVERROR("CvStsAutoTrace", CV_StsAutoTrace); - REGISTER_CVERROR("CvHeaderIsNull", CV_HeaderIsNull); - REGISTER_CVERROR("CvBadImageSize", CV_BadImageSize); - REGISTER_CVERROR("CvBadOffset", CV_BadOffset); - REGISTER_CVERROR("CvBadDataPtr", CV_BadDataPtr); - REGISTER_CVERROR("CvBadStep", CV_BadStep); - REGISTER_CVERROR("CvBadModelOrChSeq", CV_BadModelOrChSeq); - REGISTER_CVERROR("CvBadNumChannels", CV_BadNumChannels); - REGISTER_CVERROR("CvBadNumChannel1U", CV_BadNumChannel1U); - REGISTER_CVERROR("CvBadDepth", CV_BadDepth); - REGISTER_CVERROR("CvBadAlphaChannel", CV_BadAlphaChannel); - REGISTER_CVERROR("CvBadOrder", CV_BadOrder); - REGISTER_CVERROR("CvBadOrigin", CV_BadOrigin); - REGISTER_CVERROR("CvBadAlign", CV_BadAlign); - REGISTER_CVERROR("CvBadCallBack", CV_BadCallBack); - REGISTER_CVERROR("CvBadTileSize", CV_BadTileSize); - REGISTER_CVERROR("CvBadCOI", CV_BadCOI); - REGISTER_CVERROR("CvBadROISize", CV_BadROISize); - REGISTER_CVERROR("CvMaskIsTiled", CV_MaskIsTiled); - REGISTER_CVERROR("CvStsNullPtr", CV_StsNullPtr); - REGISTER_CVERROR("CvStsVecLengthErr", CV_StsVecLengthErr); - REGISTER_CVERROR("CvStsFilterStructContentErr", CV_StsFilterStructContentErr); - REGISTER_CVERROR("CvStsKernelStructContentErr", CV_StsKernelStructContentErr); - REGISTER_CVERROR("CvStsFilterOffsetErr", CV_StsFilterOffsetErr); - REGISTER_CVERROR("CvStsBadSize", CV_StsBadSize); - REGISTER_CVERROR("CvStsDivByZero", CV_StsDivByZero); - REGISTER_CVERROR("CvStsInplaceNotSupported", CV_StsInplaceNotSupported); - REGISTER_CVERROR("CvStsObjectNotFound", CV_StsObjectNotFound); - REGISTER_CVERROR("CvStsUnmatchedFormats", CV_StsUnmatchedFormats); - REGISTER_CVERROR("CvStsBadFlag", CV_StsBadFlag); - REGISTER_CVERROR("CvStsBadPoint", CV_StsBadPoint); - REGISTER_CVERROR("CvStsBadMask", CV_StsBadMask); - REGISTER_CVERROR("CvStsUnmatchedSizes", CV_StsUnmatchedSizes); - REGISTER_CVERROR("CvStsUnsupportedFormat", CV_StsUnsupportedFormat); - REGISTER_CVERROR("CvStsOutOfRange", CV_StsOutOfRange); - REGISTER_CVERROR("CvStsParseError", CV_StsParseError); - REGISTER_CVERROR("CvStsNotImplemented", CV_StsNotImplemented); - REGISTER_CVERROR("CvStsBadMemBlock", CV_StsBadMemBlock); - REGISTER_CVERROR("CvStsAssert", CV_StsAssert); - REGISTER_CVERROR("CvGpuNotSupported", CV_GpuNotSupported); - REGISTER_CVERROR("CvGpuApiCallError", CV_GpuApiCallError); -} - -__NAMESPACE_END_CVERROR -__NAMESPACE_END_OPENCV diff --git a/ext/opencv/cverror.h b/ext/opencv/cverror.h deleted file mode 100644 index aba2cf8..0000000 --- a/ext/opencv/cverror.h +++ /dev/null @@ -1,28 +0,0 @@ -/************************************************************ - - cverror.h - - - $Author: lsxi $ - - Copyright (C) 2005-2006 Masakazu Yonekura - -************************************************************/ -#ifndef RUBY_OPENCV_CVERROR_H -#define RUBY_OPENCV_CVERROR_H - -#include "opencv.h" - -#define __NAMESPACE_BEGIN_CVERROR namespace cCvError { -#define __NAMESPACE_END_CVERROR } - -__NAMESPACE_BEGIN_OPENCV -__NAMESPACE_BEGIN_CVERROR - -void init_ruby_class(); -VALUE by_code(int error_code); -void raise(cv::Exception e); - -__NAMESPACE_END_CVERROR -__NAMESPACE_END_OPENCV - -#endif // RUBY_OPENCV_CVERROR_H diff --git a/ext/opencv/cvfeaturetree.cpp b/ext/opencv/cvfeaturetree.cpp deleted file mode 100644 index a559e8b..0000000 --- a/ext/opencv/cvfeaturetree.cpp +++ /dev/null @@ -1,123 +0,0 @@ -/************************************************************ - - cvfeaturetree.cpp - - - $Author: ser1zw $ - - Copyright (C) 2011 ser1zw - -************************************************************/ -#include "cvfeaturetree.h" -/* - * Document-class: OpenCV::CvFeatureTree - */ -__NAMESPACE_BEGIN_OPENCV -__NAMESPACE_BEGIN_CVFEATURETREE - -VALUE rb_klass; - -VALUE -rb_class() -{ - return rb_klass; -} - -void -mark_feature_tree(void *ptr) -{ - if (ptr) { - VALUE desc = ((CvFeatureTreeWrap*)ptr)->desc; - rb_gc_mark(desc); - } -} - -void -rb_release_feature_tree(void *ptr) -{ - if (ptr) { - CvFeatureTree* ft = ((CvFeatureTreeWrap*)ptr)->feature_tree; - cvReleaseFeatureTree(ft); - } -} - -VALUE -rb_allocate(VALUE klass) -{ - CvFeatureTreeWrap* ptr; - return Data_Make_Struct(klass, CvFeatureTreeWrap, mark_feature_tree, - rb_release_feature_tree, ptr); -} - -/* - * Create a new kd-tree - * @overload new(desc) - * @param desc [CvMat] Descriptors - * @return [CvFeatureTree] self - * @opencv_func cvCreateKDTree - */ -VALUE -rb_initialize(VALUE self, VALUE desc) -{ - CvMat* desc_mat = CVMAT_WITH_CHECK(desc); - CvFeatureTreeWrap* self_ptr = (CvFeatureTreeWrap*)DATA_PTR(self); - free(self_ptr); - self_ptr = ALLOC(CvFeatureTreeWrap); - try { - self_ptr->feature_tree = cvCreateKDTree(desc_mat); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - self_ptr->desc = desc; - return self; -} - -/* - * Find features from kd-tree - * @overload find_features(desc, k, emax) - * @param desc [CvMat] m x d matrix of (row-)vectors to find the nearest neighbors of. - * @param k [Integer] The number of neighbors to find. - * @param emax [Integer] The maximum number of leaves to visit. - * @return [Array] Array of [results, dist] - * - results: m x k set of row indices of matching vectors (referring to matrix passed to cvCreateFeatureTree). Contains -1 in some columns if fewer than k neighbors found. - * - dist: m x k matrix of distances to k nearest neighbors. - * @opencv_func cvFindFeatures - */ -VALUE -rb_find_features(VALUE self, VALUE desc, VALUE k, VALUE emax) -{ - CvMat* desc_mat = CVMAT_WITH_CHECK(desc); - int _k = NUM2INT(k); - VALUE results = cCvMat::new_object(desc_mat->rows, _k, CV_32SC1); - VALUE dist = cCvMat::new_object(desc_mat->rows, _k, CV_64FC1); - try { - cvFindFeatures(CVFEATURETREE(self), desc_mat, CVMAT(results), CVMAT(dist), _k, NUM2INT(emax)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return rb_assoc_new(results, dist); -} - -void -init_ruby_class() -{ -#if 0 - // For documentation using YARD - VALUE opencv = rb_define_module("OpenCV"); -#endif - - if (rb_klass) - return; - - VALUE opencv = rb_module_opencv(); - rb_klass = rb_define_class_under(opencv, "CvFeatureTree", rb_cObject); - rb_define_alloc_func(rb_klass, rb_allocate); - rb_define_method(rb_klass, "initialize", RUBY_METHOD_FUNC(rb_initialize), 1); - - rb_define_method(rb_klass, "find_features", RUBY_METHOD_FUNC(rb_find_features), 3); -} - -__NAMESPACE_END_OPENCV -__NAMESPACE_END_CVFEATURETREE - diff --git a/ext/opencv/cvfeaturetree.h b/ext/opencv/cvfeaturetree.h deleted file mode 100644 index 9ddd012..0000000 --- a/ext/opencv/cvfeaturetree.h +++ /dev/null @@ -1,55 +0,0 @@ -/************************************************************ - - cvfeaturetree.h - - - $Author: ser1zw $ - - Copyright (C) 2011 ser1zw - -************************************************************/ -#ifndef RUBY_OPENCV_CVFEATURETREE_H -#define RUBY_OPENCV_CVFEATURETREE_H - -#include "opencv.h" - -#define __NAMESPACE_BEGIN_CVFEATURETREE namespace cCvFeatureTree { -#define __NAMESPACE_END_CVFEATURETREE } - -__NAMESPACE_BEGIN_OPENCV -__NAMESPACE_BEGIN_CVFEATURETREE - -VALUE rb_class(); -void init_ruby_class(); -VALUE rb_allocate(VALUE klass); -VALUE rb_initialize(VALUE self, VALUE desc); -VALUE rb_find_features(VALUE self, VALUE desc, VALUE k, VALUE emax); - -__NAMESPACE_END_CVFEATURETREE - -typedef struct _CvFeatureTreeWrap { - CvFeatureTree* feature_tree; - VALUE desc; -} CvFeatureTreeWrap; - -inline CvFeatureTree* -CVFEATURETREE(VALUE object) -{ - CvFeatureTreeWrap* ptr; - Data_Get_Struct(object, CvFeatureTreeWrap, ptr); - return ptr->feature_tree; -} - -inline CvFeatureTree* -CVFEATURETREE_WITH_CHECK(VALUE object) -{ - if (!rb_obj_is_kind_of(object, cCvFeatureTree::rb_class())) - raise_typeerror(object, cCvFeatureTree::rb_class()); - return CVFEATURETREE(object); -} - -__NAMESPACE_END_OPENCV - -#endif // RUBY_OPENCV_CVFEATURETREE - - - diff --git a/ext/opencv/cvfont.cpp b/ext/opencv/cvfont.cpp deleted file mode 100644 index 236593a..0000000 --- a/ext/opencv/cvfont.cpp +++ /dev/null @@ -1,228 +0,0 @@ -/************************************************************ - - cvfont.cpp - - - $Author: lsxi $ - - Copyright (C) 2005-2006 Masakazu Yonekura - -************************************************************/ -#include "cvfont.h" -/* - * Document-class: OpenCV::CvFont - * - * Font structure that can be passed to text rendering functions. - * see CvMat#put_text, CvMat#put_text! - */ - -__NAMESPACE_BEGIN_OPENCV -__NAMESPACE_BEGIN_CVFONT - -VALUE rb_klass; - -int -rb_font_option_line_type(VALUE font_option) -{ - VALUE line_type = LOOKUP_HASH(font_option, "line_type"); - if (FIXNUM_P(line_type)) { - return FIX2INT(line_type); - } - else if (line_type == ID2SYM(rb_intern("aa"))) { - return CV_AA; - } - return 0; -} - -VALUE -rb_class() -{ - return rb_klass; -} - -VALUE -rb_allocate(VALUE klass) -{ - CvFont *ptr; - return Data_Make_Struct(klass, CvFont, 0, -1, ptr); -} - -/* - * Create font object - * @overload new(face, font_option = nil) - * @param face [Symbol] Font name identifier. Only a subset of Hershey fonts (http://sources.isc.org/utils/misc/hershey-font.txt) are supported now: - * - :simplex - normal size sans-serif font - * - :plain - small size sans-serif font - * - :duplex - normal size sans-serif font (more complex than :simplex) - * - :complex - normal size serif font - * - :triplex - normal size serif font (more complex than :complex) - * - :complex_small - smaller version of :complex - * - :script_simplex - hand-writing style font - * - :script_complex - more complex variant of :script_simplex - * - * @param font_option [Hash] should be Hash include these keys. - * @option font_option [Number] :hscale Horizontal scale. If equal to 1.0, the characters have the original width depending on the font type. If equal to 0.5, the characters are of half the original width. - * @option font_option [Number] :vscale Vertical scale. If equal to 1.0, the characters have the original height depending on the font type. If equal to 0.5, the characters are of half the original height. - * @option font_option [Number] :shear Approximate tangent of the character slope relative to the vertical line. Zero value means a non-italic font, 1.0f means ~45 degree slope, etc. - * @option font_option [Number] :thickness Thickness of the text strokes. - * @option font_option [Number] :line_type Type of the strokes, see CvMat#Line description. - * @option font_option [Number] :italic If value is not nil or false that means italic or oblique font. - * - * @example Create Font - * OpenCV::CvFont.new(:simplex, :hscale => 2, :vslace => 2, :italic => true) - * # create 2x bigger than normal, italic type font. - * - * @opencv_func cvInitFont - */ -VALUE -rb_initialize(int argc, VALUE *argv, VALUE self) -{ - VALUE face, font_option; - rb_scan_args(argc, argv, "11", &face, &font_option); - Check_Type(face, T_SYMBOL); - face = rb_hash_lookup(rb_const_get(cCvFont::rb_class(), rb_intern("FACE")), face); - if (NIL_P(face)) { - rb_raise(rb_eArgError, "undefined face."); - } - font_option = FONT_OPTION(font_option); - - int font_face = NUM2INT(face); - if (FO_ITALIC(font_option)) { - font_face |= CV_FONT_ITALIC; - } - try { - cvInitFont(CVFONT(self), - font_face, - FO_HSCALE(font_option), - FO_VSCALE(font_option), - FO_SHEAR(font_option), - FO_THICKNESS(font_option), - FO_LINE_TYPE(font_option)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - - return self; -} - -/* - * Returns font face - * @overload face - * @return [Fixnum] Font face - */ -VALUE -rb_face(VALUE self) -{ - return INT2FIX(CVFONT(self)->font_face); -} - -/* - * Returns hscale - * @overload hscale - * @return [Number] hscale - */ -VALUE -rb_hscale(VALUE self) -{ - return rb_float_new(CVFONT(self)->hscale); -} - -/* - * Returns vscale - * @overload vscale - * @return [Number] vscale - */ -VALUE -rb_vscale(VALUE self) -{ - return rb_float_new(CVFONT(self)->vscale); -} - -/* - * Returns shear - * @overload shear - * @return [Number] shear - */ -VALUE -rb_shear(VALUE self) -{ - return rb_float_new(CVFONT(self)->shear); -} - -/* - * Returns thickness - * @overload thickness - * @return [Fixnum] thickness - */ -VALUE -rb_thickness(VALUE self) -{ - return INT2FIX(CVFONT(self)->thickness); -} - -/* - * Returns line type - * @overload line_type - * @return [Fixnum] line_type - */ -VALUE -rb_line_type(VALUE self) -{ - return INT2FIX(CVFONT(self)->line_type); -} - -/* - * Returns italic or not - * @overload italic - * @return [Boolean] self is italic or not - */ -VALUE -rb_italic(VALUE self) -{ - return ((CVFONT(self)->font_face & CV_FONT_ITALIC) > 0) ? Qtrue : Qfalse; -} - -void -init_ruby_class() -{ -#if 0 - // For documentation using YARD - VALUE opencv = rb_define_module("OpenCV"); -#endif - - if (rb_klass) - return; - - VALUE opencv = rb_module_opencv(); - rb_klass = rb_define_class_under(opencv, "CvFont", rb_cObject); - rb_define_alloc_func(rb_klass, rb_allocate); - VALUE face = rb_hash_new(); - rb_define_const(rb_klass, "FACE", face); - rb_hash_aset(face, ID2SYM(rb_intern("simplex")), INT2FIX(CV_FONT_HERSHEY_SIMPLEX)); - rb_hash_aset(face, ID2SYM(rb_intern("plain")), INT2FIX(CV_FONT_HERSHEY_PLAIN)); - rb_hash_aset(face, ID2SYM(rb_intern("duplex")), INT2FIX(CV_FONT_HERSHEY_DUPLEX)); - rb_hash_aset(face, ID2SYM(rb_intern("triplex")), INT2FIX(CV_FONT_HERSHEY_TRIPLEX)); - rb_hash_aset(face, ID2SYM(rb_intern("complex_small")), INT2FIX(CV_FONT_HERSHEY_COMPLEX_SMALL)); - rb_hash_aset(face, ID2SYM(rb_intern("script_simplex")), INT2FIX(CV_FONT_HERSHEY_SCRIPT_SIMPLEX)); - rb_hash_aset(face, ID2SYM(rb_intern("script_complex")), INT2FIX(CV_FONT_HERSHEY_SCRIPT_COMPLEX)); - - VALUE default_option = rb_hash_new(); - rb_define_const(rb_klass, "FONT_OPTION", default_option); - rb_hash_aset(default_option, ID2SYM(rb_intern("hscale")), rb_float_new(1.0)); - rb_hash_aset(default_option, ID2SYM(rb_intern("vscale")), rb_float_new(1.0)); - rb_hash_aset(default_option, ID2SYM(rb_intern("shear")), INT2FIX(0)); - rb_hash_aset(default_option, ID2SYM(rb_intern("thickness")), INT2FIX(1)); - rb_hash_aset(default_option, ID2SYM(rb_intern("line_type")), INT2FIX(8)); - - rb_define_method(rb_klass, "initialize", RUBY_METHOD_FUNC(rb_initialize), -1); - rb_define_method(rb_klass, "face", RUBY_METHOD_FUNC(rb_face), 0); - rb_define_method(rb_klass, "hscale", RUBY_METHOD_FUNC(rb_hscale), 0); - rb_define_method(rb_klass, "vscale", RUBY_METHOD_FUNC(rb_vscale), 0); - rb_define_method(rb_klass, "shear", RUBY_METHOD_FUNC(rb_shear), 0); - rb_define_method(rb_klass, "thickness", RUBY_METHOD_FUNC(rb_thickness), 0); - rb_define_method(rb_klass, "line_type", RUBY_METHOD_FUNC(rb_line_type), 0); - rb_define_method(rb_klass, "italic", RUBY_METHOD_FUNC(rb_italic), 0); -} - -__NAMESPACE_END_CVFONT -__NAMESPACE_END_OPENCV diff --git a/ext/opencv/cvfont.h b/ext/opencv/cvfont.h deleted file mode 100644 index f208303..0000000 --- a/ext/opencv/cvfont.h +++ /dev/null @@ -1,64 +0,0 @@ -/************************************************************ - - cvfont.h - - - $Author: lsxi $ - - Copyright (C) 2005-2006 Masakazu Yonekura - -************************************************************/ -#ifndef RUBY_OPENCV_CVFONT_H -#define RUBY_OPENCV_CVFONT_H - -#include "opencv.h" - -#define __NAMESPACE_BEGIN_CVFONT namespace cCvFont { -#define __NAMESPACE_END_CVFONT } - -__NAMESPACE_BEGIN_OPENCV -__NAMESPACE_BEGIN_CVFONT - -#define FONT_OPTION(op) rb_get_option_table(rb_klass, "FONT_OPTION", op) -#define FO_ITALIC(op) TRUE_OR_FALSE(LOOKUP_HASH(op, "italic")) -#define FO_HSCALE(op) NUM2DBL(LOOKUP_HASH(op, "hscale")) -#define FO_VSCALE(op) NUM2DBL(LOOKUP_HASH(op, "vscale")) -#define FO_SHEAR(op) NUM2DBL(LOOKUP_HASH(op, "shear")) -#define FO_THICKNESS(op) NUM2INT(LOOKUP_HASH(op, "thickness")) -#define FO_LINE_TYPE(op) rb_font_option_line_type(op) - -VALUE rb_class(); - -void init_ruby_class(); - -VALUE rb_allocate(VALUE klass); -VALUE rb_initialize(int argc, VALUE *argv, VALUE self); - -VALUE rb_face(VALUE self); -VALUE rb_hscale(VALUE self); -VALUE rb_vscale(VALUE self); -VALUE rb_shear(VALUE self); -VALUE rb_thickness(VALUE self); -VALUE rb_line_type(VALUE self); -VALUE rb_italic(VALUE self); - -__NAMESPACE_END_CVFONT - -inline CvFont* -CVFONT(VALUE object) -{ - CvFont *ptr; - Data_Get_Struct(object, CvFont, ptr); - return ptr; -} - -inline CvFont* -CVFONT_WITH_CHECK(VALUE object) -{ - if (!rb_obj_is_kind_of(object, cCvFont::rb_class())) - raise_typeerror(object, cCvFont::rb_class()); - return CVFONT(object); -} - -__NAMESPACE_END_OPENCV - -#endif // RUBY_OPENCV_CVFONT_H diff --git a/ext/opencv/cvhaarclassifiercascade.cpp b/ext/opencv/cvhaarclassifiercascade.cpp deleted file mode 100644 index 4a007b6..0000000 --- a/ext/opencv/cvhaarclassifiercascade.cpp +++ /dev/null @@ -1,148 +0,0 @@ -/************************************************************ - - cvhaarclassifercascade.cpp - - - $Author: lsxi $ - - Copyright (C) 2005-2007 Masakazu Yonekura - -************************************************************/ -#include "cvhaarclassifiercascade.h" -/* - * Document-class: OpenCV::CvHaarClassifierCascade - * - * Haar Feature-based Cascade Classifier for Object Detection - */ -__NAMESPACE_BEGIN_OPENCV -__NAMESPACE_BEGIN_CVHAARCLASSIFERCASCADE - -VALUE rb_klass; - -VALUE -rb_class() -{ - return rb_klass; -} - -VALUE -rb_allocate(VALUE klass) -{ - return OPENCV_OBJECT(klass, 0); -} - -void -cvhaarclassifiercascade_free(void* ptr) -{ - if (ptr) { - CvHaarClassifierCascade* cascade = (CvHaarClassifierCascade*)ptr; - cvReleaseHaarClassifierCascade(&cascade); - } -} - -/* - * Load trained cascade of haar classifers from file. - * - * @overload load(filename) - * @param filename [String] Haar classifer file name - * @return [CvHaarClassifierCascade] Object detector - * @scope class - * @opencv_func cvLoad - */ -VALUE -rb_load(VALUE klass, VALUE path) -{ - CvHaarClassifierCascade *cascade = NULL; - try { - cascade = (CvHaarClassifierCascade*)cvLoad(StringValueCStr(path), 0, 0, 0); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - if (!CV_IS_HAAR_CLASSIFIER(cascade)) - rb_raise(rb_eArgError, "invalid format haar classifier cascade file."); - return Data_Wrap_Struct(klass, 0, cvhaarclassifiercascade_free, cascade); -} - -/* - * Detects objects of different sizes in the input image. - * - * @overload detect_objects(image, options = nil) - * @param image [CvMat,IplImage] Matrix of the type CV_8U containing an image where objects are detected. - * @param options [Hash] Options - * @option options [Number] :scale_factor - * Parameter specifying how much the image size is reduced at each image scale. - * @option options [Number] :storage - * Memory storage to store the resultant sequence of the object candidate rectangles - * @option options [Number] :min_neighbors - * Parameter specifying how many neighbors each candidate rectangle should have to retain it. - * @option options [CvSize] :min_size - * Minimum possible object size. Objects smaller than that are ignored. - * @option options [CvSize] :max_size - * Maximum possible object size. Objects larger than that are ignored. - * @return [CvSeq] Detected objects as a list of rectangles - * @opencv_func cvHaarDetectObjects - */ -VALUE -rb_detect_objects(int argc, VALUE *argv, VALUE self) -{ - VALUE image, options; - rb_scan_args(argc, argv, "11", &image, &options); - - double scale_factor; - int flags, min_neighbors; - CvSize min_size, max_size; - VALUE storage_val; - if (NIL_P(options)) { - scale_factor = 1.1; - flags = 0; - min_neighbors = 3; - min_size = max_size = cvSize(0, 0); - storage_val = cCvMemStorage::new_object(); - } - else { - scale_factor = IF_DBL(LOOKUP_HASH(options, "scale_factor"), 1.1); - flags = IF_INT(LOOKUP_HASH(options, "flags"), 0); - min_neighbors = IF_INT(LOOKUP_HASH(options, "min_neighbors"), 3); - VALUE min_size_val = LOOKUP_HASH(options, "min_size"); - min_size = NIL_P(min_size_val) ? cvSize(0, 0) : VALUE_TO_CVSIZE(min_size_val); - VALUE max_size_val = LOOKUP_HASH(options, "max_size"); - max_size = NIL_P(max_size_val) ? cvSize(0, 0) : VALUE_TO_CVSIZE(max_size_val); - storage_val = CHECK_CVMEMSTORAGE(LOOKUP_HASH(options, "storage")); - } - - VALUE result = Qnil; - try { - CvSeq *seq = cvHaarDetectObjects(CVARR_WITH_CHECK(image), CVHAARCLASSIFIERCASCADE(self), CVMEMSTORAGE(storage_val), - scale_factor, min_neighbors, flags, min_size, max_size); - result = cCvSeq::new_sequence(cCvSeq::rb_class(), seq, cCvAvgComp::rb_class(), storage_val); - if (rb_block_given_p()) { - for(int i = 0; i < seq->total; ++i) - rb_yield(REFER_OBJECT(cCvAvgComp::rb_class(), cvGetSeqElem(seq, i), storage_val)); - } - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return result; -} - -void -init_ruby_class() -{ -#if 0 - // For documentation using YARD - VALUE opencv = rb_define_module("OpenCV"); -#endif - - if (rb_klass) - return; - - VALUE opencv = rb_module_opencv(); - rb_klass = rb_define_class_under(opencv, "CvHaarClassifierCascade", rb_cObject); - rb_define_alloc_func(rb_klass, rb_allocate); - rb_define_singleton_method(rb_klass, "load", RUBY_METHOD_FUNC(rb_load), 1); - rb_define_method(rb_klass, "detect_objects", RUBY_METHOD_FUNC(rb_detect_objects), -1); -} - -__NAMESPACE_END_CVHAARCLASSIFERCASCADE -__NAMESPACE_END_OPENCV diff --git a/ext/opencv/cvhaarclassifiercascade.h b/ext/opencv/cvhaarclassifiercascade.h deleted file mode 100644 index 17e504c..0000000 --- a/ext/opencv/cvhaarclassifiercascade.h +++ /dev/null @@ -1,39 +0,0 @@ -/************************************************************ - - cvhaarclassifiercascade.h - - - $Author: lsxi $ - - Copyright (C) 2005-2006 Masakazu Yonekura - -************************************************************/ -#ifndef RUBY_OPENCV_CVHAARCLASSIFIERCASCADE_H -#define RUBY_OPENCV_CVHAARCLASSIFIERCASCADE_H - -#define __NAMESPACE_BEGIN_CVHAARCLASSIFERCASCADE namespace cCvHaarClassifierCascade { -#define __NAMESPACE_END_CVHAARCLASSIFERCASCADE } - -#include "opencv.h" - -__NAMESPACE_BEGIN_OPENCV -__NAMESPACE_BEGIN_CVHAARCLASSIFERCASCADE - -VALUE rb_class(); - -void init_ruby_class(); - -VALUE rb_allocate(VALUE klass); - -VALUE rb_load(VALUE klass, VALUE path); -VALUE rb_detect_objects(int argc, VALUE *argv, VALUE self); - -__NAMESPACE_END_CVHAARCLASSIFERCASCADE -inline CvHaarClassifierCascade* -CVHAARCLASSIFIERCASCADE(VALUE object) { - CvHaarClassifierCascade *ptr; - Data_Get_Struct(object, CvHaarClassifierCascade, ptr); - return ptr; -} -__NAMESPACE_END_OPENCV - -#endif // RUBY_OPENCV_CVHAARCLASSIFIERCASCADE_H diff --git a/ext/opencv/cvhistogram.cpp b/ext/opencv/cvhistogram.cpp deleted file mode 100644 index 1c2449e..0000000 --- a/ext/opencv/cvhistogram.cpp +++ /dev/null @@ -1,717 +0,0 @@ -/************************************************************ - - cvhistogram.cpp - - - $Author: lsxi $ - - Copyright (C) 2005-2008 Masakazu Yonekura - -************************************************************/ -#include "cvhistogram.h" -/* - * Document-class: OpenCV::CvHistogram - * - * Multi-dimensional histogram. - */ -__NAMESPACE_BEGIN_OPENCV -__NAMESPACE_BEGIN_CVHISTOGRAM - -VALUE rb_klass; - -VALUE -rb_class() -{ - return rb_klass; -} - -void -release_hist(void* ptr) -{ - if (ptr) { - try { - cvReleaseHist((CvHistogram**)&ptr); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - } -} - -VALUE -rb_allocate(VALUE klass) -{ - CvHistogram* ptr = NULL; - return Data_Wrap_Struct(klass, 0, release_hist, ptr); -} - -float* -ary2fltptr(VALUE ary, float* buff) -{ - Check_Type(ary, T_ARRAY); - int size = RARRAY_LEN(ary); - VALUE* ary_ptr = RARRAY_PTR(ary); - for (int i = 0; i < size; ++i) { - buff[i] = NUM2DBL(ary_ptr[i]); - } - return buff; -} - -int* -ary2intptr(VALUE ary, int* buff) -{ - Check_Type(ary, T_ARRAY); - int size = RARRAY_LEN(ary); - VALUE* ary_ptr = RARRAY_PTR(ary); - for (int i = 0; i < size; ++i) { - buff[i] = NUM2INT(ary_ptr[i]); - } - return buff; -} - -/* - * Creates a histogram - * @overload new(dims, sizes, type, ranges=nil, uniform=true) - * @param dims [Integer] Number of histogram dimensions - * @param sizes [Array] Array of the histogram dimension sizes - * @param type [Integer] - * Histogram representation format. CV_HIST_ARRAY means that the histogram data is represented - * as a multi-dimensional dense array CvMatND. CV_HIST_SPARSE means that histogram data is - * represented as a multi-dimensional sparse array CvSparseMat. - * @param ranges [Array] - * Array of ranges for the histogram bins. Its meaning depends on the uniform parameter value. - * The ranges are used when the histogram is calculated or backprojected to determine which - * histogram bin corresponds to which value/tuple of values from the input image(s). - * @param uniform [Boolean] Uniformity flag. - * @return [CvHistogram] Histogram - * @opencv_func cvCreateHist - */ -VALUE -rb_initialize(int argc, VALUE *argv, VALUE self) -{ - VALUE _dims, _sizes, _type, _ranges, _uniform; - int uniform; - int* sizes; - float** ranges = NULL; - - rb_scan_args(argc, argv, "32", &_dims, &_sizes, &_type, &_ranges, &_uniform); - int sizes_len = RARRAY_LEN(_sizes); - sizes = ALLOCA_N(int, sizes_len); - - if (NIL_P(_ranges)) { - sizes = ary2intptr(_sizes, sizes); - ranges = NULL; - } - else { - ranges = ALLOCA_N(float*, sizes_len); - VALUE* range_ptr = RARRAY_PTR(_ranges); - int i; - for (i = 0; i < sizes_len; i++) { - sizes[i] = NUM2INT(RARRAY_PTR(_sizes)[i]); - ranges[i] = ary2fltptr(range_ptr[i], ALLOCA_N(float, 2)); - } - } - uniform = TRUE_OR_FALSE(_uniform, 1); - - try { - DATA_PTR(self) = cvCreateHist(NUM2INT(_dims), sizes, NUM2INT(_type), ranges, uniform); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - - return self; -} - -/* - * Returns self is uniform histogram or not - * @overload is_uniform? - * @return [Boolean] Uniform or not - * @opencv_func CV_IS_UNIFORM_HIST - */ -VALUE -rb_is_uniform(VALUE self) -{ - return CV_IS_UNIFORM_HIST(CVHISTOGRAM(self)) ? Qtrue : Qfalse; -} - -/* - * Returns self is sparse histogram or not - * @overload is_sparse? - * @return [Boolean] Sparse or not - * @opencv_func CV_IS_SPARSE_HIST - */ -VALUE -rb_is_sparse(VALUE self) -{ - return CV_IS_SPARSE_HIST(CVHISTOGRAM(self)) ? Qtrue : Qfalse; -} - -/* - * Returns self has range or not - * @overload has_range? - * @return [Boolean] Has range or not - * @opencv_func CV_HIST_HAS_RANGES -*/ -VALUE -rb_has_range(VALUE self) -{ - return CV_HIST_HAS_RANGES(CVHISTOGRAM(self)) ? Qtrue : Qfalse; -} - -/* - * Calculates a histogram of a set of arrays. - * @overload calc_hist(images, accumulate=nil, mask=nil) - * @param images [Array] - * Source arrays. They all should have the same depth, CV_8U or CV_32F, and the same size. - * Each of them can have an arbitrary number of channels. - * @param accumulate [Boolean] - * Accumulation flag. If it is set, the histogram is not cleared in the beginning when it is allocated. - * This feature enables you to compute a single histogram from several sets of arrays, - * or to update the histogram in time. - * @param mask [CvMat] - * Optional mask. If the matrix is not empty, it must be an 8-bit array of the same size as images[i]. - * The non-zero mask elements mark the array elements counted in the histogram. - * @return [CvHistogram] Histogram of a set of arrays - * @opencv_func cvCalcHist - */ -VALUE -rb_calc_hist(int argc, VALUE* argv, VALUE self) -{ - return rb_calc_hist_bang(argc, argv, rb_copy_hist(self)); -} - -/* - * Calculates a histogram of a set of arrays. - * @overload calc_hist!(images, accumulate=nil, mask=nil) - * @see #calc_hist - * @opencv_func cvCalcHist - */ -VALUE -rb_calc_hist_bang(int argc, VALUE* argv, VALUE self) -{ - VALUE images, accumulate, mask; - rb_scan_args(argc, argv, "12", &images, &accumulate, &mask); - Check_Type(images, T_ARRAY); - int num_images = RARRAY_LEN(images); - if (num_images == 0) { - rb_raise(rb_eArgError, "One or more arrays are required."); - } - IplImage** img = ALLOCA_N(IplImage*, num_images); - VALUE* images_ptr = RARRAY_PTR(images); - for (int i = 0; i < num_images; i++) { - img[i] = IPLIMAGE_WITH_CHECK(images_ptr[i]); - } - CvMat* m = NIL_P(mask) ? NULL : CVMAT_WITH_CHECK(mask); - try { - cvCalcHist(img, CVHISTOGRAM(self), TRUE_OR_FALSE(accumulate, 0), m); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return self; -} - -/* - * Queries the value of the histogram bin. - * @overload [](idx0) - * @overload [](idx0, idx1) - * @overload [](idx0, idx1, idx2) - * @overload [](idx0, idx1, idx2, idx3, ...) - * @param idx* [Integer] *-th index - * @return [Number] The value of the specified bin of the 1D, 2D, 3D, or N-D histogram. - * @opencv_func cvQueryHistValue_1D - * @opencv_func cvQueryHistValue_2D - * @opencv_func cvQueryHistValue_3D - * @opencv_func cvQueryHistValue_nD - */ -VALUE -rb_aref(VALUE self, VALUE args) -{ - int num_idx = RARRAY_LEN(args); - int* idx = ALLOCA_N(int, num_idx); - VALUE* args_ptr = RARRAY_PTR(args); - for (int i = 0; i < num_idx; i++) { - idx[i] = NUM2INT(args_ptr[i]); - } - - float value = 0.0; - CvHistogram* self_ptr = CVHISTOGRAM(self); - try { - switch (num_idx) { - case 1: - value = cvQueryHistValue_1D(self_ptr, idx[0]); - break; - case 2: - value = cvQueryHistValue_2D(self_ptr, idx[0], idx[1]); - break; - case 3: - value = cvQueryHistValue_3D(self_ptr, idx[0], idx[1], idx[2]); - break; - default: - value = cvQueryHistValue_nD(self_ptr, idx); - break; - } - } - catch (cv::Exception& e) { - raise_cverror(e); - } - - return rb_float_new((double)value); -} - -/* - * Finds the minimum and maximum histogram bins. - * @overload min_max_value - * @return [Array] - * [min_value, max_value, min_idx, max_idx]: Array of the minimum / maximum value of the histogram - * and their coordinates. - * - min_value: The minimum value of the histogram. - * - max_value: The maximum value of the histogram. - * - min_idx: The array of coordinates for the minimum. - * - max_idx: The array of coordinates for the maximum. - * @opencv_func cvGetMinMaxHistValue - */ -VALUE -rb_min_max_value(VALUE self) -{ - CvHistogram* self_ptr = CVHISTOGRAM(self); - int dims = 0; - float min_value = 0.0, max_value = 0.0; - int *min_idx = NULL; - int *max_idx = NULL; - try { - dims = cvGetDims(self_ptr->bins, NULL); - min_idx = ALLOCA_N(int, dims); - max_idx = ALLOCA_N(int, dims); - cvGetMinMaxHistValue(CVHISTOGRAM(self), &min_value, &max_value, min_idx, max_idx); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - - VALUE _min_idx = rb_ary_new2(dims); - VALUE _max_idx = rb_ary_new2(dims); - for (int i = 0; i < dims; i++) { - rb_ary_store(_min_idx, i, INT2NUM(min_idx[i])); - rb_ary_store(_max_idx, i, INT2NUM(max_idx[i])); - } - - return rb_ary_new3(4, rb_float_new((double)min_value), rb_float_new((double)max_value), - _min_idx, _max_idx); -} - -/* - * Returns number of array dimensions - * @overload [](idx0, idx1, ...) - * @param idx* [Integer] *-th index - * @return [Array>] - * [dims, sizes]: Number of array dimensions and its sizes. - * - dims (Integer): Number of array dimensions - * - sizes (Array): Vector of the array dimension sizes. - * For 2D arrays the number of rows (height) goes first, - * number of columns (width) next. - * @opencv_func cvGetDims - */ -VALUE -rb_dims(VALUE self) -{ - VALUE _sizes = Qnil; - int size[CV_MAX_DIM]; - int dims = 0; - try { - dims = cvGetDims(CVHISTOGRAM(self)->bins, size); - _sizes = rb_ary_new2(dims); - for (int i = 0; i < dims; ++i) { - rb_ary_store(_sizes, i, INT2NUM(size[i])); - } - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return rb_assoc_new(INT2NUM(dims), _sizes); -} - -/* - * Clones histogram - * @overload copy_hist - * @return [CvHistogram] Copy of the histogram - * @opencv_func cvCopyHist - */ -VALUE -rb_copy_hist(VALUE self) -{ - CvHistogram* hist = NULL; - try { - cvCopyHist(CVHISTOGRAM(self), &hist); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return Data_Wrap_Struct(rb_klass, 0, release_hist, hist); -} - -/* - * Sets all histogram bins to 0 in case of dense histogram - * and removes all histogram bins in case of sparse array. - * @overload clear_hist - * @return [CvHistogram] Cleared histogram - * @opencv_func cvClearHist - */ -VALUE -rb_clear_hist(VALUE self) -{ - return rb_clear_hist_bang(rb_copy_hist(self)); -} - -/* - * Sets all histogram bins to 0 in case of dense histogram - * and removes all histogram bins in case of sparse array. - * This method changes self. - * @overload clear_hist! - * @see #clear_hist - * @return [CvHistogram] Cleared histogram - * @opencv_func cvClearHist - */ -VALUE -rb_clear_hist_bang(VALUE self) -{ - try { - cvClearHist(CVHISTOGRAM(self)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return self; -} - -/* - * Returns normalized the histogram bins by scaling them, - * such that the sum of the bins becomes equal to factor. - * @overload normalize(factor) - * @param factor [Number] Normalization factor. The sum of the bins becomes equal to this value. - * @return [CvHistogram] Normalized histogram - * @opencv_func cvNormalizeHist - */ -VALUE -rb_normalize_hist(VALUE self, VALUE factor) -{ - return rb_normalize_hist_bang(rb_copy_hist(self), factor); -} - -/* - * Returns normalized the histogram bins by scaling them, - * such that the sum of the bins becomes equal to factor. - * This method changes self. - * @overload normalize!(factor) - * @param factor [Number] Normalization factor. The sum of the bins becomes equal to this value. - * @return [CvHistogram] Normalized histogram - * @see #normalize - * @opencv_func cvNormalizeHist - */ -VALUE -rb_normalize_hist_bang(VALUE self, VALUE factor) -{ - try { - cvNormalizeHist(CVHISTOGRAM(self), NUM2DBL(factor)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return self; -} - -/* - * Returns cleared histogram bins that are below the specified threshold. - * @overload thresh_hist(threshold) - * @param threshold [Number] Threshold value - * @return [CvHistogram] Cleared histogram - * @opencv_func cvThreshHist - */ -VALUE -rb_thresh_hist(VALUE self, VALUE threshold) -{ - return rb_thresh_hist_bang(rb_copy_hist(self), threshold); -} - -/* - * Cleares histogram bins that are below the specified threshold. - * This method changes self. - * @overload thresh_hist!(threshold) - * @param threshold [Number] Threshold value - * @return [CvHistogram] Cleared histogram - * @see #thresh_hist - * @opencv_func cvThreshHist - */ -VALUE -rb_thresh_hist_bang(VALUE self, VALUE threshold) -{ - try { - cvThreshHist(CVHISTOGRAM(self), NUM2DBL(threshold)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return self; -} - -/* - * Sets the bounds of the histogram bins. - * @overload set_hist_bin_ranges(ranges, uniform=true) - * @param ranges [Array] - * Array of ranges for the histogram bins. Its meaning depends on the uniform parameter value. - * The ranges are used when the histogram is calculated or backprojected to determine - * which histogram bin corresponds to which value/tuple of values from the input image(s). - * @param uniform [Boolean] - * Uniformity flag. - * @return [CvHistogram] - * Histogram - * @opencv_func cvSetHistBinRanges - */ -VALUE -rb_set_hist_bin_ranges(int argc, VALUE* argv, VALUE self) -{ - return rb_set_hist_bin_ranges_bang(argc, argv, rb_copy_hist(self)); -} - -/* - * Sets the bounds of the histogram bins. This method changes self. - * @overload set_hist_bin_ranges!(ranges, uniform=true) - * @param ranges [Array] - * Array of ranges for the histogram bins. Its meaning depends on the uniform parameter value. - * The ranges are used when the histogram is calculated or backprojected to determine - * which histogram bin corresponds to which value/tuple of values from the input image(s). - * @param uniform [Boolean] - * Uniformity flag. - * @return [CvHistogram] - * Histogram - * @see #set_hist_bin_ranges - * @opencv_func cvSetHistBinRanges - */ -VALUE -rb_set_hist_bin_ranges_bang(int argc, VALUE* argv, VALUE self) -{ - VALUE _ranges, _uniform; - rb_scan_args(argc, argv, "11", &_ranges, &_uniform); - Check_Type(_ranges, T_ARRAY); - - int ranges_size = RARRAY_LEN(_ranges); - float** ranges = ALLOCA_N(float*, ranges_size); - VALUE* range_ptr = RARRAY_PTR(_ranges); - for (int i = 0; i < ranges_size; ++i) { - ranges[i] = ary2fltptr(range_ptr[i], ALLOCA_N(float, 2)); - } - int uniform = TRUE_OR_FALSE(_uniform, 1); - - try { - cvSetHistBinRanges(CVHISTOGRAM(self), ranges, uniform); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - - return self; -} - -/* - * Calculates the back projection of a histogram. - * @overload calc_back_project(images) - * @param images [Array] - * Source arrays. They all should have the same depth, CV_8U or CV_32F, and the same size. - * Each of them can have an arbitrary number of channels. - * @return [CvMat,IplImage] - * Destination back projection array that is a single-channel array of the same size and depth - * as the first element of images - * @opencv_func cvCalcBackProject - */ -VALUE -rb_calc_back_project(VALUE self, VALUE image) -{ - Check_Type(image, T_ARRAY); - int num_images = RARRAY_LEN(image); - if (num_images == 0) { - return Qnil; - } - - IplImage** img = ALLOCA_N(IplImage*, num_images); - VALUE* image_ptr = RARRAY_PTR(image); - for (int i = 0; i < num_images; ++i) { - img[i] = IPLIMAGE_WITH_CHECK(image_ptr[i]); - } - - CvSize size; - size.width = img[0]->width; - size.height = img[0]->height; - VALUE back_project = cCvMat::new_mat_kind_object(size, image_ptr[0]); - try { - cvCalcBackProject(img, CVARR(back_project), CVHISTOGRAM(self)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - - return back_project; -} - -/* - * Locates a template within an image by using a histogram comparison. - * @overload calc_back_project_patch(images, patch_size, method, factor) - * @param images [Array] Source arrays. - * @param pach_size [CvSize] Size of the patch slid though the source image. - * @param method [Integer] - * Comparison method that could be one of the following: - * - CV_COMP_CORREL: Correlation - * - CV_COMP_CHISQR: Chi-Square - * - CV_COMP_INTERSECT: Intersection - * - CV_COMP_BHATTACHARYYA: Bhattacharyya distance - * - CV_COMP_HELLINGER: Synonym for CV_COMP_BHATTACHARYYA - * @param factor [Number] - * Normalization factor for histograms that affects the normalization scale - * of the destination image. Pass 1 if not sure. - * @return [CvMat,IplImage] Destination image. - * @opencv_func cvCalcBackProject - */ -VALUE -rb_calc_back_project_patch(VALUE self, VALUE image, VALUE patch_size, VALUE method, VALUE factor) -{ - Check_Type(image, T_ARRAY); - int num_images = RARRAY_LEN(image); - if (num_images == 0) { - return Qnil; - } - - IplImage** img = ALLOCA_N(IplImage*, num_images); - VALUE* image_ptr = RARRAY_PTR(image); - for (int i = 0; i < num_images; ++i) { - img[i] = IPLIMAGE_WITH_CHECK(image_ptr[i]); - } - - CvSize patchsize = VALUE_TO_CVSIZE(patch_size); - CvSize dst_size; - dst_size.width = img[0]->width - patchsize.width + 1; - dst_size.height = img[0]->height - patchsize.height + 1; - - VALUE dst = cCvMat::new_mat_kind_object(dst_size, image_ptr[0], CV_32F, 1); - try { - cvCalcBackProjectPatch(img, CVARR(dst), patchsize, CVHISTOGRAM(self), - NUM2INT(method), NUM2DBL(factor)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - - return dst; -} - -/* - * Compares two histograms. - * @overload compare_hist(hist1, hist2, method) - * @param hist1 [CvHistogram] First compared histogram. - * @param hist2 [CvHistogram] Second compared histogram of the same size as hist1. - * @param method [Integer] - * Comparison method that could be one of the following: - * - CV_COMP_CORREL: Correlation - * - CV_COMP_CHISQR: Chi-Square - * - CV_COMP_INTERSECT: Intersection - * - CV_COMP_BHATTACHARYYA: Bhattacharyya distance - * - CV_COMP_HELLINGER: Synonym for CV_COMP_BHATTACHARYYA - * @return [Number] Distance of the two histograms. - * @scope class - * @opencv_func cvCompareHist - */ -VALUE -rb_compare_hist(VALUE self, VALUE hist1, VALUE hist2, VALUE method) -{ - double result = 0; - try { - result = cvCompareHist(CVHISTOGRAM_WITH_CHECK(hist1), CVHISTOGRAM_WITH_CHECK(hist2), - NUM2INT(method)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - - return rb_float_new(result); -} - -/* - * Divides one histogram by another. - * @overload calc_prob_density(hist1, hist2, scale=255) - * @param hist1 [CvHistogram] First histogram (the divisor). - * @param hist2 [CvHistogram] Second histogram. - * @param scale [Number] Scale factor for the destination histogram. - * @return [CvHistogram] Destination histogram. - * @opencv_func cvCalcProbDensity - */ -VALUE -rb_calc_prob_density(int argc, VALUE* argv, VALUE self) -{ - VALUE hist1, hist2, scale; - rb_scan_args(argc, argv, "21", &hist1, &hist2, &scale); - double s = NIL_P(scale) ? 255 : NUM2DBL(scale); - - CvHistogram* hist1_ptr = CVHISTOGRAM_WITH_CHECK(hist1); - VALUE dst_hist = rb_allocate(rb_klass); - try { - cvCopyHist(hist1_ptr, (CvHistogram**)&(DATA_PTR(dst_hist))); - cvCalcProbDensity(hist1_ptr, CVHISTOGRAM_WITH_CHECK(hist2), CVHISTOGRAM(dst_hist), s); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - - return dst_hist; -} - -void -init_ruby_class() -{ -#if 0 - // For documentation using YARD - VALUE opencv = rb_define_module("OpenCV"); -#endif - - if (rb_klass) - return; - - VALUE opencv = rb_module_opencv(); - rb_klass = rb_define_class_under(opencv, "CvHistogram", rb_cObject); - rb_define_alloc_func(rb_klass, rb_allocate); - rb_define_method(rb_klass, "initialize", RUBY_METHOD_FUNC(rb_initialize), -1); - rb_define_method(rb_klass, "is_uniform?", RUBY_METHOD_FUNC(rb_is_uniform), 0); - rb_define_method(rb_klass, "is_sparse?", RUBY_METHOD_FUNC(rb_is_sparse), 0); - rb_define_method(rb_klass, "has_range?", RUBY_METHOD_FUNC(rb_has_range), 0); - rb_define_method(rb_klass, "dims", RUBY_METHOD_FUNC(rb_dims), 0); - rb_define_method(rb_klass, "calc_hist", RUBY_METHOD_FUNC(rb_calc_hist), -1); - rb_define_method(rb_klass, "calc_hist!", RUBY_METHOD_FUNC(rb_calc_hist_bang), -1); - rb_define_method(rb_klass, "[]", RUBY_METHOD_FUNC(rb_aref), -2); - rb_define_alias(rb_klass, "query_hist_value", "[]"); - rb_define_method(rb_klass, "min_max_value", RUBY_METHOD_FUNC(rb_min_max_value), 0); - rb_define_method(rb_klass, "copy_hist", RUBY_METHOD_FUNC(rb_copy_hist), 0); - - rb_define_method(rb_klass, "clear_hist", RUBY_METHOD_FUNC(rb_clear_hist), 0); - rb_define_alias(rb_klass, "clear", "clear_hist"); - rb_define_method(rb_klass, "clear_hist!", RUBY_METHOD_FUNC(rb_clear_hist_bang), 0); - rb_define_alias(rb_klass, "clear!", "clear_hist!"); - - rb_define_method(rb_klass, "normalize_hist", RUBY_METHOD_FUNC(rb_normalize_hist), 1); - rb_define_alias(rb_klass, "normalize", "normalize_hist"); - rb_define_method(rb_klass, "normalize_hist!", RUBY_METHOD_FUNC(rb_normalize_hist_bang), 1); - rb_define_alias(rb_klass, "normalize!", "normalize_hist!"); - - rb_define_method(rb_klass, "thresh_hist", RUBY_METHOD_FUNC(rb_thresh_hist), 1); - rb_define_alias(rb_klass, "thresh", "thresh_hist"); - rb_define_method(rb_klass, "thresh_hist!", RUBY_METHOD_FUNC(rb_thresh_hist_bang), 1); - rb_define_alias(rb_klass, "thresh!", "thresh_hist!"); - - rb_define_method(rb_klass, "set_hist_bin_ranges", RUBY_METHOD_FUNC(rb_set_hist_bin_ranges), -1); - rb_define_method(rb_klass, "set_hist_bin_ranges!", RUBY_METHOD_FUNC(rb_set_hist_bin_ranges_bang), -1); - - rb_define_method(rb_klass, "calc_back_project", RUBY_METHOD_FUNC(rb_calc_back_project), 1); - rb_define_method(rb_klass, "calc_back_project_patch", RUBY_METHOD_FUNC(rb_calc_back_project_patch), 4); - - rb_define_singleton_method(rb_klass, "calc_prob_density", RUBY_METHOD_FUNC(rb_calc_prob_density), -1); - rb_define_singleton_method(rb_klass, "compare_hist", RUBY_METHOD_FUNC(rb_compare_hist), 3); -} - -__NAMESPACE_END_CVHISTOGRAM -__NAMESPACE_END_OPENCV diff --git a/ext/opencv/cvhistogram.h b/ext/opencv/cvhistogram.h deleted file mode 100644 index 2ef3ad5..0000000 --- a/ext/opencv/cvhistogram.h +++ /dev/null @@ -1,73 +0,0 @@ -/************************************************************ - - cvhistogram.h - - - $Author: lsxi $ - - Copyright (C) 2005-2008 Masakazu Yonekura - -************************************************************/ -#ifndef RUBY_OPENCV_CVHISTOGRAM_H -#define RUBY_OPENCV_CVHISTOGRAM_H - -#include "opencv.h" - -#define __NAMESPACE_BEGIN_CVHISTOGRAM namespace cCvHistogram { -#define __NAMESPACE_END_CVHISTOGRAM } - -__NAMESPACE_BEGIN_OPENCV -__NAMESPACE_BEGIN_CVHISTOGRAM - -VALUE rb_class(); -VALUE rb_allocate(VALUE klass); -void init_ruby_class(); - -VALUE rb_initialize(int argc, VALUE *argv, VALUE self); -VALUE rb_is_uniform(VALUE self); -VALUE rb_is_sparse(VALUE self); -VALUE rb_has_range(VALUE self); -VALUE rb_calc_hist(int argc, VALUE* argv, VALUE self); -VALUE rb_calc_hist_bang(int argc, VALUE* argv, VALUE self); -VALUE rb_aref(VALUE self, VALUE args); -VALUE rb_min_max_value(VALUE self); -VALUE rb_dims(VALUE self); -VALUE rb_copy_hist(VALUE self); - -VALUE rb_clear_hist(VALUE self); -VALUE rb_clear_hist_bang(VALUE self); - -VALUE rb_normalize_hist(VALUE self, VALUE factor); -VALUE rb_normalize_hist_bang(VALUE self, VALUE factor); -VALUE rb_thresh_hist(VALUE self, VALUE threshold); -VALUE rb_thresh_hist_bang(VALUE self, VALUE threshold); - -VALUE rb_set_hist_bin_ranges(int argc, VALUE* argv, VALUE self); -VALUE rb_set_hist_bin_ranges_bang(int argc, VALUE* argv, VALUE self); - -VALUE rb_calc_back_project(VALUE self, VALUE image); -VALUE rb_calc_back_project_patch(VALUE self, VALUE image, VALUE patch_size, VALUE method, VALUE factor); - -VALUE rb_compare_hist(VALUE self, VALUE hist1, VALUE hist2, VALUE method); -VALUE rb_calc_prob_density(int argc, VALUE* argv, VALUE self); - -__NAMESPACE_END_CVHISTOGRAM - -inline CvHistogram* -CVHISTOGRAM(VALUE object) -{ - CvHistogram* ptr; - Data_Get_Struct(object, CvHistogram, ptr); - return ptr; -} - -inline CvHistogram* -CVHISTOGRAM_WITH_CHECK(VALUE object) -{ - if (!rb_obj_is_kind_of(object, cCvHistogram::rb_class())) - raise_typeerror(object, cCvHistogram::rb_class()); - return CVHISTOGRAM(object); -} - -__NAMESPACE_END_OPENCV - -#endif // RUBY_OPENCV_CVHISTOGRAM_H diff --git a/ext/opencv/cvhumoments.cpp b/ext/opencv/cvhumoments.cpp deleted file mode 100644 index 1930c8b..0000000 --- a/ext/opencv/cvhumoments.cpp +++ /dev/null @@ -1,178 +0,0 @@ -/************************************************************ - - cvhumoments.cpp - - - $Author: ser1zw $ - - Copyright (C) 2011 ser1zw - -************************************************************/ -#include "cvhumoments.h" - -/* - * Document-class: OpenCV::CvHuMoments - * - * Hu invariants - */ -__NAMESPACE_BEGIN_OPENCV -__NAMESPACE_BEGIN_CVHUMOMENTS - -VALUE rb_klass; - -VALUE -rb_class() -{ - return rb_klass; -} - -VALUE -rb_allocate(VALUE klass) -{ - CvHuMoments *ptr; - return Data_Make_Struct(klass, CvHuMoments, 0, -1, ptr); -} - -/* - * Calculates the seven Hu invariants - * @overload new(src_moments) - * @param src_moments [CvMoment] Input moments - * @return [CvHuMoments] Output Hu invariants - * @opencv_func cvGetHuMoments - * @see http://en.wikipedia.org/wiki/Image_moment#Rotation_invariant_moments - */ -VALUE -rb_initialize(VALUE self, VALUE src_moments) -{ - try { - cvGetHuMoments(CVMOMENTS(src_moments), CVHUMOMENTS(self)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return self; -} - -/* - * Returns hu1 invariant - * @overload hu1 - * @return [Number] hu1 invariant - */ -VALUE rb_hu1(VALUE self) { - return DBL2NUM(CVHUMOMENTS(self)->hu1); -} - -/* - * Returns hu2 invariant - * @overload hu2 - * @return [Number] hu2 invariant - */ -VALUE rb_hu2(VALUE self) { - return DBL2NUM(CVHUMOMENTS(self)->hu2); -} - -/* - * Returns hu3 invariant - * @overload hu3 - * @return [Number] hu3 invariant - */ -VALUE rb_hu3(VALUE self) { - return DBL2NUM(CVHUMOMENTS(self)->hu3); -} - -/* - * Returns hu4 invariant - * @overload hu4 - * @return [Number] hu4 invariant - */ -VALUE rb_hu4(VALUE self) { - return DBL2NUM(CVHUMOMENTS(self)->hu4); -} - -/* - * Returns hu5 invariant - * @overload hu5 - * @return [Number] hu5 invariant - */ -VALUE rb_hu5(VALUE self) { - return DBL2NUM(CVHUMOMENTS(self)->hu5); -} - -/* - * Returns hu6 invariant - * @overload hu6 - * @return [Number] hu6 invariant - */ -VALUE rb_hu6(VALUE self) { - return DBL2NUM(CVHUMOMENTS(self)->hu6); -} - -/* - * Returns hu7 invariant - * @overload hu7 - * @return [Number] hu7 invariant - */ -VALUE rb_hu7(VALUE self) { - return DBL2NUM(CVHUMOMENTS(self)->hu7); -} - -/* - * Returns hu invaliants as an Array - * @overload to_ary - * @return [Array] Hu invaliants - */ -VALUE -rb_to_ary(VALUE self) -{ - CvHuMoments *hu_moments = CVHUMOMENTS(self); - return rb_ary_new3(7, - rb_float_new(hu_moments->hu1), - rb_float_new(hu_moments->hu2), - rb_float_new(hu_moments->hu3), - rb_float_new(hu_moments->hu4), - rb_float_new(hu_moments->hu5), - rb_float_new(hu_moments->hu6), - rb_float_new(hu_moments->hu7)); -} - -VALUE -new_object(CvMoments *src_moments) -{ - VALUE object = rb_allocate(rb_klass); - try { - cvGetHuMoments(src_moments, CVHUMOMENTS(object)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return object; -} - -void -init_ruby_class() -{ -#if 0 - // For documentation using YARD - VALUE opencv = rb_define_module("OpenCV"); -#endif - - if (rb_klass) - return; - VALUE opencv = rb_module_opencv(); - - rb_klass = rb_define_class_under(opencv, "CvHuMoments", rb_cObject); - rb_define_alloc_func(rb_klass, rb_allocate); - rb_define_method(rb_klass, "initialize", RUBY_METHOD_FUNC(rb_initialize), 1); - rb_define_method(rb_klass, "to_ary", RUBY_METHOD_FUNC(rb_to_ary), 0); - rb_define_alias(rb_klass, "to_a", "to_ary"); - - rb_define_method(rb_klass, "hu1", RUBY_METHOD_FUNC(rb_hu1), 0); - rb_define_method(rb_klass, "hu2", RUBY_METHOD_FUNC(rb_hu2), 0); - rb_define_method(rb_klass, "hu3", RUBY_METHOD_FUNC(rb_hu3), 0); - rb_define_method(rb_klass, "hu4", RUBY_METHOD_FUNC(rb_hu4), 0); - rb_define_method(rb_klass, "hu5", RUBY_METHOD_FUNC(rb_hu5), 0); - rb_define_method(rb_klass, "hu6", RUBY_METHOD_FUNC(rb_hu6), 0); - rb_define_method(rb_klass, "hu7", RUBY_METHOD_FUNC(rb_hu7), 0); -} - -__NAMESPACE_END_CVHUMOMENTS -__NAMESPACE_END_OPENCV diff --git a/ext/opencv/cvhumoments.h b/ext/opencv/cvhumoments.h deleted file mode 100644 index 580f670..0000000 --- a/ext/opencv/cvhumoments.h +++ /dev/null @@ -1,51 +0,0 @@ -/************************************************************ - - cvhumoments.h - - - $Author: ser1zw $ - - Copyright (C) 2011 ser1zw - -************************************************************/ -#ifndef RUBY_OPENCV_CVHUMOMENTS_H -#define RUBY_OPENCV_CVHUMOMENTS_H - -#include "opencv.h" - -#define __NAMESPACE_BEGIN_CVHUMOMENTS namespace cCvHuMoments { -#define __NAMESPACE_END_CVHUMOMENTS } - -__NAMESPACE_BEGIN_OPENCV -__NAMESPACE_BEGIN_CVHUMOMENTS - -VALUE rb_class(); - -void init_ruby_class(); - -VALUE rb_allocate(VALUE klass); -VALUE rb_initialize(VALUE src_moments, VALUE self); - -VALUE rb_hu1(VALUE self); -VALUE rb_hu2(VALUE self); -VALUE rb_hu3(VALUE self); -VALUE rb_hu4(VALUE self); -VALUE rb_hu5(VALUE self); -VALUE rb_hu6(VALUE self); -VALUE rb_hu7(VALUE self); -VALUE rb_to_ary(VALUE self); - -VALUE new_object(CvMoments *cvmoments); - -__NAMESPACE_END_CVHUMOMENTS - -inline CvHuMoments* -CVHUMOMENTS(VALUE object) -{ - CvHuMoments *ptr; - Data_Get_Struct(object, CvHuMoments, ptr); - return ptr; -} - -__NAMESPACE_END_OPENCV - -#endif // RUBY_OPENCV_CVHUMOMENTS_H diff --git a/ext/opencv/cvline.cpp b/ext/opencv/cvline.cpp deleted file mode 100644 index 20e3398..0000000 --- a/ext/opencv/cvline.cpp +++ /dev/null @@ -1,159 +0,0 @@ -/************************************************************ - - cvline.cpp - - - $Author: lsxi $ - - Copyright (C) 2005-2006 Masakazu Yonekura - -************************************************************/ -#include "cvline.h" -/* - * Document-class: OpenCV::CvLine - * - * Line parameters represented by a two-element (rho, theta) - * for CvMat#hough_lines - */ -__NAMESPACE_BEGIN_OPENCV -__NAMESPACE_BEGIN_CVLINE - -VALUE rb_klass; - -VALUE -rb_class() -{ - return rb_klass; -} - -VALUE -rb_allocate(VALUE klass) -{ - CvLine *ptr; - return Data_Make_Struct(klass, CvLine, 0, -1, ptr); -} - -/* - * Returns distance from the coordinate origin (0, 0) - * @overload rho - * @return [Number] Distance from the coordinate origin - */ -VALUE -rb_rho(VALUE self) -{ - return rb_float_new(CVLINE(self)->rho); -} - -/* - * Set distance from the coordinate origin (0, 0) - * @overload rho=(value) - * @param value [Number] Distance from the coordinate origin - */ -VALUE -rb_set_rho(VALUE self, VALUE rho) -{ - CVLINE(self)->rho = NUM2DBL(rho); - return self; -} - -/* - * Returns line rotation angle in radians - * @overload theta - * @return [Number] Line rotation angle in radians - */ -VALUE -rb_theta(VALUE self) -{ - return rb_float_new(CVLINE(self)->theta); -} - -/* - * Set line rotation angle in radians - * @overload theta=(value) - * @param value [Number] Line rotation angle - */ -VALUE -rb_set_theta(VALUE self, VALUE theta) -{ - CVLINE(self)->theta = NUM2DBL(theta); - return self; -} - -/* - * Returns value of rho, theta - * @overload [](index) - * @param index [Integer] Index - * @return [Number] If index = 0, returns rho, else if index = 1, returns theta. - */ -VALUE -rb_aref(VALUE self, VALUE index) -{ - switch (NUM2INT(index)) { - case 0: - return DBL2NUM(CVLINE(self)->rho); - break; - case 1: - return DBL2NUM(CVLINE(self)->theta); - break; - default: - rb_raise(rb_eIndexError, "index should be 0...2"); - break; - } - return Qnil; -} - -/* - * Set value of rho, theta - * @overload []=(index, value) - * @param index [Integer] Index - * @param value [Number] Value - * @return [Number] If index = 0, set rho, else if index = 1, set theta. - */ -VALUE -rb_aset(VALUE self, VALUE index, VALUE value) -{ - switch (NUM2INT(index)) { - case 0: - CVLINE(self)->rho = NUM2DBL(value); - break; - case 1: - CVLINE(self)->theta = NUM2DBL(value); - break; - default: - rb_raise(rb_eIndexError, "index should be 0...2"); - break; - } - return value; -} - -VALUE -new_object(CvLine line) -{ - VALUE object = rb_allocate(rb_klass); - *CVLINE(object) = line; - return object; -} - -void -init_ruby_class() -{ -#if 0 - // For documentation using YARD - VALUE opencv = rb_define_module("OpenCV"); -#endif - - if (rb_klass) - return; - VALUE opencv = rb_module_opencv(); - - rb_klass = rb_define_class_under(opencv, "CvLine", rb_cObject); - rb_define_alloc_func(rb_klass, rb_allocate); - rb_define_method(rb_klass, "rho", RUBY_METHOD_FUNC(rb_rho), 0); - rb_define_method(rb_klass, "rho=", RUBY_METHOD_FUNC(rb_set_rho), 1); - rb_define_method(rb_klass, "theta", RUBY_METHOD_FUNC(rb_theta), 0); - rb_define_method(rb_klass, "theta=", RUBY_METHOD_FUNC(rb_set_theta), 1); - rb_define_method(rb_klass, "[]", RUBY_METHOD_FUNC(rb_aref), 1); - rb_define_method(rb_klass, "[]=", RUBY_METHOD_FUNC(rb_aset), 2); -} - -__NAMESPACE_END_CVLINE -__NAMESPACE_END_OPENCV diff --git a/ext/opencv/cvline.h b/ext/opencv/cvline.h deleted file mode 100644 index a5618a9..0000000 --- a/ext/opencv/cvline.h +++ /dev/null @@ -1,54 +0,0 @@ -/************************************************************ - - cvline.h - - - $Author: lsxi $ - - Copyright (C) 2007 Masakazu Yonekura - -************************************************************/ -#ifndef RUBY_OPENCV_CVLINE_H -#define RUBY_OPENCV_CVLINE_H - -#include "opencv.h" - -#define __NAMESPACE_BEGIN_CVLINE namespace cCvLine { -#define __NAMESPACE_END_CVLINE } - -__NAMESPACE_BEGIN_OPENCV - -typedef struct CvLine { - float rho; - float theta; -} CvLine; - -__NAMESPACE_BEGIN_CVLINE - -VALUE rb_class(); - -void init_ruby_class(); - -VALUE rb_allocate(VALUE klass); -VALUE rb_initialize(int argc, VALUE *argv, VALUE self); -VALUE rb_rho(VALUE self); -VALUE rb_set_rho(VALUE self, VALUE rho); -VALUE rb_theta(VALUE self); -VALUE rb_set_theta(VALUE self, VALUE theta); -VALUE rb_aref(VALUE self, VALUE index); -VALUE rb_aset(VALUE self, VALUE index, VALUE value); - -VALUE new_object(CvLine line); - -__NAMESPACE_END_CVLINE - -inline CvLine* -CVLINE(VALUE object) -{ - CvLine *ptr; - Data_Get_Struct(object, CvLine, ptr); - return ptr; -} - -__NAMESPACE_END_OPENCV - -#endif // RUBY_OPENCV_CVLINE_H diff --git a/ext/opencv/cvmat.cpp b/ext/opencv/cvmat.cpp deleted file mode 100644 index 8129dbe..0000000 --- a/ext/opencv/cvmat.cpp +++ /dev/null @@ -1,6086 +0,0 @@ -/************************************************************ - - cvmat.cpp - - - $Author: lsxi $ - - Copyright (C) 2005-2008 Masakazu Yonekura - -************************************************************/ -#include "cvmat.h" -/* - * Document-class: OpenCV::CvMat - * - */ -__NAMESPACE_BEGIN_OPENCV -__NAMESPACE_BEGIN_CVMAT - -#define DRAWING_OPTION(opt) rb_get_option_table(rb_klass, "DRAWING_OPTION", opt) -#define DO_COLOR(opt) VALUE_TO_CVSCALAR(LOOKUP_HASH(opt, "color")) -#define DO_THICKNESS(opt) NUM2INT(LOOKUP_HASH(opt, "thickness")) -#define DO_LINE_TYPE(opt) rb_drawing_option_line_type(opt) -#define DO_SHIFT(opt) NUM2INT(LOOKUP_HASH(opt, "shift")) -#define DO_IS_CLOSED(opt) TRUE_OR_FALSE(LOOKUP_HASH(opt, "is_closed")) - -#define GOOD_FEATURES_TO_TRACK_OPTION(opt) rb_get_option_table(rb_klass, "GOOD_FEATURES_TO_TRACK_OPTION", opt) -#define GF_MAX(opt) NUM2INT(LOOKUP_HASH(opt, "max")) -#define GF_MASK(opt) MASK(LOOKUP_HASH(opt, "mask")) -#define GF_BLOCK_SIZE(opt) NUM2INT(LOOKUP_HASH(opt, "block_size")) -#define GF_USE_HARRIS(opt) TRUE_OR_FALSE(LOOKUP_HASH(opt, "use_harris")) -#define GF_K(opt) NUM2DBL(LOOKUP_HASH(opt, "k")) - -#define FLOOD_FILL_OPTION(opt) rb_get_option_table(rb_klass, "FLOOD_FILL_OPTION", opt) -#define FF_CONNECTIVITY(opt) NUM2INT(LOOKUP_HASH(opt, "connectivity")) -#define FF_FIXED_RANGE(opt) TRUE_OR_FALSE(LOOKUP_HASH(opt, "fixed_range")) -#define FF_MASK_ONLY(opt) TRUE_OR_FALSE(LOOKUP_HASH(opt, "mask_only")) - -#define FIND_CONTOURS_OPTION(opt) rb_get_option_table(rb_klass, "FIND_CONTOURS_OPTION", opt) -#define FC_MODE(opt) NUM2INT(LOOKUP_HASH(opt, "mode")) -#define FC_METHOD(opt) NUM2INT(LOOKUP_HASH(opt, "method")) -#define FC_OFFSET(opt) VALUE_TO_CVPOINT(LOOKUP_HASH(opt, "offset")) - -#define OPTICAL_FLOW_HS_OPTION(opt) rb_get_option_table(rb_klass, "OPTICAL_FLOW_HS_OPTION", opt) -#define HS_LAMBDA(opt) NUM2DBL(LOOKUP_HASH(opt, "lambda")) -#define HS_CRITERIA(opt) VALUE_TO_CVTERMCRITERIA(LOOKUP_HASH(opt, "criteria")) - -#define OPTICAL_FLOW_BM_OPTION(opt) rb_get_option_table(rb_klass, "OPTICAL_FLOW_BM_OPTION", opt) -#define BM_BLOCK_SIZE(opt) VALUE_TO_CVSIZE(LOOKUP_HASH(opt, "block_size")) -#define BM_SHIFT_SIZE(opt) VALUE_TO_CVSIZE(LOOKUP_HASH(opt, "shift_size")) -#define BM_MAX_RANGE(opt) VALUE_TO_CVSIZE(LOOKUP_HASH(opt, "max_range")) - -#define FIND_FUNDAMENTAL_MAT_OPTION(opt) rb_get_option_table(rb_klass, "FIND_FUNDAMENTAL_MAT_OPTION", opt) -#define FFM_WITH_STATUS(opt) TRUE_OR_FALSE(LOOKUP_HASH(opt, "with_status")) -#define FFM_MAXIMUM_DISTANCE(opt) NUM2DBL(LOOKUP_HASH(opt, "maximum_distance")) -#define FFM_DESIRABLE_LEVEL(opt) NUM2DBL(LOOKUP_HASH(opt, "desirable_level")) - -VALUE rb_klass; - -int -rb_drawing_option_line_type(VALUE drawing_option) -{ - VALUE line_type = LOOKUP_HASH(drawing_option, "line_type"); - if (FIXNUM_P(line_type)) { - return FIX2INT(line_type); - } - else if (line_type == ID2SYM(rb_intern("aa"))) { - return CV_AA; - } - return 0; -} - -int* -hash_to_format_specific_param(VALUE hash) -{ - Check_Type(hash, T_HASH); - const int flags[] = { - CV_IMWRITE_JPEG_QUALITY, - CV_IMWRITE_PNG_COMPRESSION, - CV_IMWRITE_PNG_STRATEGY, - CV_IMWRITE_PNG_STRATEGY_DEFAULT, - CV_IMWRITE_PNG_STRATEGY_FILTERED, - CV_IMWRITE_PNG_STRATEGY_HUFFMAN_ONLY, - CV_IMWRITE_PNG_STRATEGY_RLE, - CV_IMWRITE_PNG_STRATEGY_FIXED, - CV_IMWRITE_PXM_BINARY - }; - const int flag_size = sizeof(flags) / sizeof(int); - - int* params = (int*)ALLOC_N(int, RHASH_SIZE(hash) * 2); - for (int i = 0, n = 0; i < flag_size; i++) { - VALUE val = rb_hash_lookup(hash, INT2FIX(flags[i])); - if (!NIL_P(val)) { - params[n] = flags[i]; - params[n + 1] = NUM2INT(val); - n += 2; - } - } - - return params; -} - -VALUE -rb_class() -{ - return rb_klass; -} - -VALUE -rb_allocate(VALUE klass) -{ - return OPENCV_OBJECT(klass, 0); -} - -/* - * Creates a matrix - * @overload new(rows, cols, depth = CV_8U, channels = 3) - * @param row [Integer] Number of rows in the matrix - * @param col [Integer] Number of columns in the matrix - * @param depth [Integer, Symbol] Depth type in the matrix. - * The type of the matrix elements in the form of constant CV_ - * or symbol :cv, where S=signed, U=unsigned, F=float. - * @param channels [Integer] Number of channels in the matrix - * @return [CvMat] Created matrix - * @opencv_func cvCreateMat - * @example - * mat1 = CvMat.new(3, 4) # Creates a 3-channels 3x4 matrix whose elements are 8bit unsigned. - * mat2 = CvMat.new(5, 6, CV_32F, 1) # Creates a 1-channel 5x6 matrix whose elements are 32bit float. - * mat3 = CvMat.new(5, 6, :cv32f, 1) # Same as CvMat.new(5, 6, CV_32F, 1) - */ -VALUE -rb_initialize(int argc, VALUE *argv, VALUE self) -{ - VALUE row, column, depth, channel; - rb_scan_args(argc, argv, "22", &row, &column, &depth, &channel); - - int ch = (argc < 4) ? 3 : NUM2INT(channel); - CvMat *ptr = rb_cvCreateMat(NUM2INT(row), NUM2INT(column), - CV_MAKETYPE(CVMETHOD("DEPTH", depth, CV_8U), ch)); - free(DATA_PTR(self)); - DATA_PTR(self) = ptr; - - return self; -} - -/* - * Load an image from the specified file - * @overload load(filename, iscolor = 1) - * @param filename [String] Name of file to be loaded - * @param iscolor [Integer] Flags specifying the color type of a loaded image: - * - > 0 Return a 3-channel color image. - * - = 0 Return a grayscale image. - * - < 0 Return the loaded image as is. - * @return [CvMat] Loaded image - * @opencv_func cvLoadImageM - * @scope class - */ -VALUE -rb_load_imageM(int argc, VALUE *argv, VALUE self) -{ - VALUE filename, iscolor; - rb_scan_args(argc, argv, "11", &filename, &iscolor); - Check_Type(filename, T_STRING); - - int _iscolor; - if (NIL_P(iscolor)) { - _iscolor = CV_LOAD_IMAGE_COLOR; - } - else { - Check_Type(iscolor, T_FIXNUM); - _iscolor = FIX2INT(iscolor); - } - - CvMat *mat = NULL; - try { - mat = cvLoadImageM(StringValueCStr(filename), _iscolor); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - if (mat == NULL) { - rb_raise(rb_eStandardError, "file does not exist or invalid format image."); - } - return OPENCV_OBJECT(rb_klass, mat); -} - -/* - * Encodes an image into a memory buffer. - * - * @overload encode_image(ext, params = nil) - * @param ext [String] File extension that defines the output format ('.jpg', '.png', ...) - * @param params [Hash] - Format-specific parameters. - * @option params [Integer] CV_IMWRITE_JPEG_QUALITY (95) For JPEG, it can be a quality - * ( CV_IMWRITE_JPEG_QUALITY ) from 0 to 100 (the higher is the better). - * @option params [Integer] CV_IMWRITE_PNG_COMPRESSION (3) For PNG, it can be the compression - * level ( CV_IMWRITE_PNG_COMPRESSION ) from 0 to 9. A higher value means a smaller size - * and longer compression time. - * @option params [Integer] CV_IMWRITE_PXM_BINARY (1) For PPM, PGM, or PBM, it can be a binary - * format flag ( CV_IMWRITE_PXM_BINARY ), 0 or 1. - * @return [Array] Encoded image as array of bytes. - * @opencv_func cvEncodeImage - * @example - * jpg = CvMat.load('image.jpg') - * bytes1 = jpg.encode_image('.jpg') # Encodes a JPEG image which quality is 95 - * bytes2 = jpg.encode_image('.jpg', CV_IMWRITE_JPEG_QUALITY => 10) # Encodes a JPEG image which quality is 10 - * - * png = CvMat.load('image.png') - * bytes3 = mat.encode_image('.png', CV_IMWRITE_PNG_COMPRESSION => 1) # Encodes a PNG image which compression level is 1 - */ -VALUE -rb_encode_imageM(int argc, VALUE *argv, VALUE self) -{ - VALUE _ext, _params; - rb_scan_args(argc, argv, "11", &_ext, &_params); - Check_Type(_ext, T_STRING); - const char* ext = RSTRING_PTR(_ext); - CvMat* buff = NULL; - int* params = NULL; - - if (!NIL_P(_params)) { - params = hash_to_format_specific_param(_params); - } - - try { - buff = cvEncodeImage(ext, CVARR(self), params); - } - catch (cv::Exception& e) { - if (params != NULL) { - free(params); - params = NULL; - } - raise_cverror(e); - } - if (params != NULL) { - free(params); - params = NULL; - } - - const int size = buff->rows * buff->cols; - VALUE array = rb_ary_new2(size); - for (int i = 0; i < size; i++) { - rb_ary_store(array, i, CHR2FIX(CV_MAT_ELEM(*buff, char, 0, i))); - } - - try { - cvReleaseMat(&buff); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - - return array; -} - -CvMat* -prepare_decoding(int argc, VALUE *argv, int* iscolor, int* need_release) -{ - VALUE _buff, _iscolor; - rb_scan_args(argc, argv, "11", &_buff, &_iscolor); - *iscolor = NIL_P(_iscolor) ? CV_LOAD_IMAGE_COLOR : NUM2INT(_iscolor); - - CvMat* buff = NULL; - *need_release = 0; - switch (TYPE(_buff)) { - case T_STRING: - _buff = rb_funcall(_buff, rb_intern("unpack"), 1, rb_str_new("c*", 2)); - case T_ARRAY: { - int cols = RARRAY_LEN(_buff); - *need_release = 1; - try { - buff = rb_cvCreateMat(1, cols, CV_8UC1); - VALUE *ary_ptr = RARRAY_PTR(_buff); - for (int i = 0; i < cols; i++) { - CV_MAT_ELEM(*buff, char, 0, i) = NUM2CHR(ary_ptr[i]); - } - } - catch (cv::Exception& e) { - raise_cverror(e); - } - break; - } - case T_DATA: - if (rb_obj_is_kind_of(_buff, cCvMat::rb_class()) == Qtrue) { - buff = CVMAT(_buff); - break; - } - default: - raise_typeerror(_buff, "CvMat, Array or String"); - } - - return buff; -} - -/* - * Reads an image from a buffer in memory. - * @overload decode_image(buf, iscolor = 1) - * @param buf [CvMat, Array, String] Input array of bytes - * @param iscolor [Integer] Flags specifying the color type of a decoded image (the same flags as CvMat#load) - * @return [CvMat] Loaded matrix - * @opencv_func cvDecodeImageM - */ -VALUE -rb_decode_imageM(int argc, VALUE *argv, VALUE self) -{ - int iscolor, need_release; - CvMat* buff = prepare_decoding(argc, argv, &iscolor, &need_release); - CvMat* mat_ptr = NULL; - try { - mat_ptr = cvDecodeImageM(buff, iscolor); - if (need_release) { - cvReleaseMat(&buff); - } - } - catch (cv::Exception& e) { - raise_cverror(e); - } - - return OPENCV_OBJECT(rb_klass, mat_ptr); -} - -/* - * nodoc - */ -VALUE -rb_method_missing(int argc, VALUE *argv, VALUE self) -{ - VALUE name, args, method; - rb_scan_args(argc, argv, "1*", &name, &args); - method = rb_funcall(name, rb_intern("to_s"), 0); - if (RARRAY_LEN(args) != 0 || !rb_respond_to(rb_module_opencv(), rb_intern(StringValuePtr(method)))) - return rb_call_super(argc, argv); - return rb_funcall(rb_module_opencv(), rb_intern(StringValuePtr(method)), 1, self); -} - -/* - * @overload to_s - * @return [String] String representation of the matrix - */ -VALUE -rb_to_s(VALUE self) -{ - const int i = 6; - VALUE str[i]; - str[0] = rb_str_new2("<%s:%dx%d,depth=%s,channel=%d>"); - str[1] = rb_str_new2(rb_class2name(CLASS_OF(self))); - str[2] = rb_width(self); - str[3] = rb_height(self); - str[4] = rb_depth(self); - str[5] = rb_channel(self); - return rb_f_sprintf(i, str); -} - -/* - * Tests whether a coordinate or rectangle is inside of the matrix - * @overload inside?(point) - * @param obj [#x, #y] Tested coordinate - * @overload inside?(rect) - * @param obj [#x, #y, #width, #height] Tested rectangle - * @return [Boolean] If the point or rectangle is inside of the matrix, return true. - * If not, return false. - */ -VALUE -rb_inside_q(VALUE self, VALUE object) -{ - if (cCvPoint::rb_compatible_q(cCvPoint::rb_class(), object)) { - CvMat *mat = CVMAT(self); - int x = NUM2INT(rb_funcall(object, rb_intern("x"), 0)); - int y = NUM2INT(rb_funcall(object, rb_intern("y"), 0)); - if (cCvRect::rb_compatible_q(cCvRect::rb_class(), object)) { - int width = NUM2INT(rb_funcall(object, rb_intern("width"), 0)); - int height = NUM2INT(rb_funcall(object, rb_intern("height"), 0)); - return (x >= 0) && (y >= 0) && (x < mat->width) && ((x + width) < mat->width) - && (y < mat->height) && ((y + height) < mat->height) ? Qtrue : Qfalse; - } - else { - return (x >= 0) && (y >= 0) && (x < mat->width) && (y < mat->height) ? Qtrue : Qfalse; - } - } - rb_raise(rb_eArgError, "argument 1 should have method \"x\", \"y\""); - return Qnil; -} - -/* - * Creates a structuring element from the matrix for morphological operations. - * @overload to_IplConvKernel(anchor) - * @param anchor [CvPoint] Anchor position within the element - * @return [IplConvKernel] Created IplConvKernel - * @opencv_func cvCreateStructuringElementEx - */ -VALUE -rb_to_IplConvKernel(VALUE self, VALUE anchor) -{ - CvMat *src = CVMAT(self); - CvPoint p = VALUE_TO_CVPOINT(anchor); - IplConvKernel *kernel = rb_cvCreateStructuringElementEx(src->cols, src->rows, p.x, p.y, - CV_SHAPE_CUSTOM, src->data.i); - return DEPEND_OBJECT(cIplConvKernel::rb_class(), kernel, self); -} - -/* - * Creates a mask (1-channel 8bit unsinged image whose elements are 0) from the matrix. - * The size of the mask is the same as source matrix. - * @overload create_mask - * @return [CvMat] Created mask - */ -VALUE -rb_create_mask(VALUE self) -{ - VALUE mask = cCvMat::new_object(cvGetSize(CVARR(self)), CV_8UC1); - try { - cvZero(CVARR(self)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return mask; -} - -/* - * Returns number of columns of the matrix. - * @overload width - * @return [Integer] Number of columns of the matrix - */ -VALUE -rb_width(VALUE self) -{ - return INT2NUM(CVMAT(self)->width); -} - -/* - * Returns number of rows of the matrix. - * @overload rows - * @return [Integer] Number of rows of the matrix - */ -VALUE -rb_height(VALUE self) -{ - return INT2NUM(CVMAT(self)->height); -} - -/* - * Returns depth type of the matrix - * @overload depth - * @return [Symbol] Depth type in the form of symbol :cv, - * where s=signed, u=unsigned, f=float. - */ -VALUE -rb_depth(VALUE self) -{ - return rb_hash_lookup(rb_funcall(rb_const_get(rb_module_opencv(), rb_intern("DEPTH")), rb_intern("invert"), 0), - INT2FIX(CV_MAT_DEPTH(CVMAT(self)->type))); -} - -/* - * Returns number of channels of the matrix - * @overload channel - * @return [Integer] Number of channels of the matrix - */ -VALUE -rb_channel(VALUE self) -{ - return INT2FIX(CV_MAT_CN(CVMAT(self)->type)); -} - -/* - * @overload data - * @deprecated This method will be removed. - */ -VALUE -rb_data(VALUE self) -{ - IplImage *image = IPLIMAGE(self); - return rb_str_new((char *)image->imageData, image->imageSize); -} - -/* - * Makes a clone of an object. - * @overload clone - * @return [CvMat] Clone of the object - * @opencv_func cvClone - */ -VALUE -rb_clone(VALUE self) -{ - VALUE clone = rb_obj_clone(self); - try { - DATA_PTR(clone) = cvClone(CVARR(self)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return clone; -} - -/* - * Copies one array to another. - * - * The function copies selected elements from an input array to an output array: - * dst(I) = src(I) if mask(I) != 0 - * - * @overload copy(dst = nil, mask = nil) - * @param dst [CvMat] The destination array. - * @param mask [CvMat] Operation mask, 8-bit single channel array; - * specifies elements of the destination array to be changed. - * @return [CvMat] Copy of the array - * @opencv_func cvCopy - */ -VALUE -rb_copy(int argc, VALUE *argv, VALUE self) -{ - VALUE _dst, _mask; - rb_scan_args(argc, argv, "02", &_dst, &_mask); - - CvMat* mask = MASK(_mask); - CvArr *src = CVARR(self); - if (NIL_P(_dst)) { - CvSize size = cvGetSize(src); - _dst = new_mat_kind_object(size, self); - } - - try { - cvCopy(src, CVARR_WITH_CHECK(_dst), mask); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - - return _dst; -} - -VALUE -copy(VALUE mat) -{ - return rb_clone(mat); -} - -inline VALUE -rb_to_X_internal(VALUE self, int depth) -{ - CvMat *src = CVMAT(self); - VALUE dest = new_object(src->rows, src->cols, CV_MAKETYPE(depth, CV_MAT_CN(src->type))); - try { - cvConvert(src, CVMAT(dest)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return dest; -} - -/* - * Converts the matrix to 8bit unsigned. - * @overload to_8u - * @return [CvMat] Converted matrix which depth is 8bit unsigned. - * The size and channels of the new matrix are same as the source. - * @opencv_func cvConvert - */ -VALUE -rb_to_8u(VALUE self) -{ - return rb_to_X_internal(self, CV_8U); -} - -/* - * Converts the matrix to 8bit signed. - * @overload to_8s - * @return [CvMat] Converted matrix which depth is 8bit signed. - * The size and channels of the new matrix are same as the source. - * @opencv_func cvConvert - */ -VALUE -rb_to_8s(VALUE self) -{ - return rb_to_X_internal(self, CV_8S); -} - -/* - * Converts the matrix to 16bit unsigned. - * @overload to_16u - * @return [CvMat] Converted matrix which depth is 16bit unsigned. - * The size and channels of the new matrix are same as the source. - * @opencv_func cvConvert - */ -VALUE rb_to_16u(VALUE self) -{ - return rb_to_X_internal(self, CV_16U); -} - -/* - * Converts the matrix to 16bit signed. - * @overload to_16s - * @return [CvMat] Converted matrix which depth is 16bit signed. - * The size and channels of the new matrix are same as the source. - * @opencv_func cvConvert - */ -VALUE -rb_to_16s(VALUE self) -{ - return rb_to_X_internal(self, CV_16S); -} - -/* - * Converts the matrix to 32bit signed. - * @overload to_32s - * @return [CvMat] Converted matrix which depth is 32bit signed. - * The size and channels of the new matrix are same as the source. - * @opencv_func cvConvert - */ -VALUE -rb_to_32s(VALUE self) -{ - return rb_to_X_internal(self, CV_32S); -} - -/* - * Converts the matrix to 32bit float. - * @overload to_32f - * @return [CvMat] Converted matrix which depth is 32bit float. - * The size and channels of the new matrix are same as the source. - * @opencv_func cvConvert - */ -VALUE -rb_to_32f(VALUE self) -{ - return rb_to_X_internal(self, CV_32F); -} - -/* - * Converts the matrix to 64bit float. - * @overload to_64f - * @return [CvMat] Converted matrix which depth is 64bit float. - * The size and channels of the new matrix are same as the source. - * @opencv_func cvConvert - */ -VALUE -rb_to_64f(VALUE self) -{ - return rb_to_X_internal(self, CV_64F); -} - -/* - * Returns whether the matrix is a vector. - * @overload vector? - * @return [Boolean] If width or height of the matrix is 1, returns true. - * if not, returns false. - */ -VALUE -rb_vector_q(VALUE self) -{ - CvMat *mat = CVMAT(self); - return (mat->width == 1|| mat->height == 1) ? Qtrue : Qfalse; -} - -/* - * Returns whether the matrix is a square. - * @overload square? - * @return [Boolean] If width = height, returns true. - * if not, returns false. - */ -VALUE -rb_square_q(VALUE self) -{ - CvMat *mat = CVMAT(self); - return mat->width == mat->height ? Qtrue : Qfalse; -} - -/************************************************************ - cxcore function -************************************************************/ -/* - * Converts an object to CvMat - * @overload to_CvMat - * @return [CvMat] Converted matrix - */ -VALUE -rb_to_CvMat(VALUE self) -{ - // CvMat#to_CvMat aborts when self's class is CvMat. - if (CLASS_OF(self) == rb_klass) - return self; - - CvMat *mat = NULL; - try { - mat = cvGetMat(CVARR(self), RB_CVALLOC(CvMat)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return DEPEND_OBJECT(rb_klass, mat, self); -} - -/* - * Returns matrix corresponding to the rectangular sub-array of input image or matrix - * - * @overload sub_rect(rect) - * @param rect [CvRect] Zero-based coordinates of the rectangle of interest. - * @overload sub_rect(topleft, size) - * @param topleft [CvPoint] Top-left coordinates of the rectangle of interest - * @param size [CvSize] Size of the rectangle of interest - * @overload sub_rect(x, y, width, height) - * @param x [Integer] X-coordinate of the rectangle of interest - * @param y [Integer] Y-coordinate of the rectangle of interest - * @param width [Integer] Width of the rectangle of interest - * @param height [Integer] Height of the rectangle of interest - * @return [CvMat] Sub-array of matrix - * @opencv_func cvGetSubRect - */ -VALUE -rb_sub_rect(VALUE self, VALUE args) -{ - CvRect area; - CvPoint topleft; - CvSize size; - switch(RARRAY_LEN(args)) { - case 1: - area = VALUE_TO_CVRECT(RARRAY_PTR(args)[0]); - break; - case 2: - topleft = VALUE_TO_CVPOINT(RARRAY_PTR(args)[0]); - size = VALUE_TO_CVSIZE(RARRAY_PTR(args)[1]); - area.x = topleft.x; - area.y = topleft.y; - area.width = size.width; - area.height = size.height; - break; - case 4: - area.x = NUM2INT(RARRAY_PTR(args)[0]); - area.y = NUM2INT(RARRAY_PTR(args)[1]); - area.width = NUM2INT(RARRAY_PTR(args)[2]); - area.height = NUM2INT(RARRAY_PTR(args)[3]); - break; - default: - rb_raise(rb_eArgError, "wrong number of arguments (%ld of 1 or 2 or 4)", RARRAY_LEN(args)); - } - - CvMat* mat = NULL; - try { - mat = cvGetSubRect(CVARR(self), RB_CVALLOC(CvMat), area); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return DEPEND_OBJECT(rb_klass, mat, self); -} - -void -rb_get_range_index(VALUE index, int* start, int *end) { - if (rb_obj_is_kind_of(index, rb_cRange)) { - *start = NUM2INT(rb_funcall3(index, rb_intern("begin"), 0, NULL)); - *end = NUM2INT(rb_funcall3(index, rb_intern("end"), 0, NULL)); - if (rb_funcall3(index, rb_intern("exclude_end?"), 0, NULL) == Qfalse) { - (*end)++; - } - } - else { - *start = NUM2INT(index); - *end = *start + 1; - } -} - -/* - * Returns array of row or row span. - * @overload get_rows(index, delta_row = 1) - * @param index [Integer] Zero-based index of the selected row - * @param delta_row [Integer] Index step in the row span. - * @return [CvMat] Selected row - * @overload get_rows(range, delta_row = 1) - * @param range [Range] Zero-based index range of the selected row - * @param delta_row [Integer] Index step in the row span. - * @return [CvMat] Selected rows - * @opencv_func cvGetRows - */ -VALUE -rb_get_rows(int argc, VALUE* argv, VALUE self) -{ - VALUE row_val, delta_val; - rb_scan_args(argc, argv, "11", &row_val, &delta_val); - - int start, end; - rb_get_range_index(row_val, &start, &end); - int delta = NIL_P(delta_val) ? 1 : NUM2INT(delta_val); - CvMat* submat = RB_CVALLOC(CvMat); - try { - cvGetRows(CVARR(self), submat, start, end, delta); - } - catch (cv::Exception& e) { - cvFree(&submat); - raise_cverror(e); - } - - return DEPEND_OBJECT(rb_klass, submat, self); -} - -/* - * Returns array of column or column span. - * @overload get_cols(index) - * @param index [Integer] Zero-based index of the selected column - * @return [CvMat] Selected column - * @overload get_cols(range) - * @param range [Range] Zero-based index range of the selected column - * @return [CvMat] Selected columns - * @opencv_func cvGetCols - */ -VALUE -rb_get_cols(VALUE self, VALUE col) -{ - int start, end; - rb_get_range_index(col, &start, &end); - CvMat* submat = RB_CVALLOC(CvMat); - try { - cvGetCols(CVARR(self), submat, start, end); - } - catch (cv::Exception& e) { - cvFree(&submat); - raise_cverror(e); - } - - return DEPEND_OBJECT(rb_klass, submat, self); -} - -/* - * Calls block once for each row in the matrix, passing that - * row as a parameter. - * @yield [row] Each row in the matrix - * @return [CvMat] self - * @opencv_func cvGetRow - * @todo To return an enumerator if no block is given - */ -VALUE -rb_each_row(VALUE self) -{ - int rows = CVMAT(self)->rows; - CvMat* row = NULL; - for (int i = 0; i < rows; ++i) { - try { - row = cvGetRow(CVARR(self), RB_CVALLOC(CvMat), i); - } - catch (cv::Exception& e) { - if (row != NULL) - cvReleaseMat(&row); - raise_cverror(e); - } - rb_yield(DEPEND_OBJECT(rb_klass, row, self)); - } - return self; -} - -/* - * Calls block once for each column in the matrix, passing that - * column as a parameter. - * @yield [col] Each column in the matrix - * @return [CvMat] self - * @opencv_func cvGetCol - * @todo To return an enumerator if no block is given - */ -VALUE -rb_each_col(VALUE self) -{ - int cols = CVMAT(self)->cols; - CvMat *col = NULL; - for (int i = 0; i < cols; ++i) { - try { - col = cvGetCol(CVARR(self), RB_CVALLOC(CvMat), i); - } - catch (cv::Exception& e) { - if (col != NULL) - cvReleaseMat(&col); - raise_cverror(e); - } - rb_yield(DEPEND_OBJECT(rb_klass, col, self)); - } - return self; -} - -/* - * Returns a specified diagonal of the matrix - * @overload diag(val = 0) - * @param val [Integer] Index of the array diagonal. Zero value corresponds to the main diagonal, - * -1 corresponds to the diagonal above the main, 1 corresponds to the diagonal below the main, - * and so forth. - * @return [CvMat] Specified diagonal - * @opencv_func cvGetDiag - */ -VALUE -rb_diag(int argc, VALUE *argv, VALUE self) -{ - VALUE val; - if (rb_scan_args(argc, argv, "01", &val) < 1) - val = INT2FIX(0); - CvMat* diag = NULL; - try { - diag = cvGetDiag(CVARR(self), RB_CVALLOC(CvMat), NUM2INT(val)); - } - catch (cv::Exception& e) { - cvReleaseMat(&diag); - raise_cverror(e); - } - return DEPEND_OBJECT(rb_klass, diag, self); -} - -/* - * Returns size of the matrix - * @overload size - * @return [CvSize] Size of the matrix - * @opencv_func cvGetSize - */ -VALUE -rb_size(VALUE self) -{ - CvSize size; - try { - size = cvGetSize(CVARR(self)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return cCvSize::new_object(size); -} - -/* - * Returns array dimensions sizes - * @overload dims - * @return [Array] Array dimensions sizes. - * For 2d arrays the number of rows (height) goes first, number of columns (width) next. - * @opencv_func cvGetDims - */ -VALUE -rb_dims(VALUE self) -{ - int size[CV_MAX_DIM]; - int dims = 0; - try { - dims = cvGetDims(CVARR(self), size); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - VALUE ary = rb_ary_new2(dims); - for (int i = 0; i < dims; ++i) { - rb_ary_store(ary, i, INT2NUM(size[i])); - } - return ary; -} - -/* - * Returns array size along the specified dimension. - * @overload dim_size(index) - * @param index [Intger] Zero-based dimension index - * (for matrices 0 means number of rows, 1 means number of columns; - * for images 0 means height, 1 means width) - * @return [Integer] Array size - * @opencv_func cvGetDimSize - */ -VALUE -rb_dim_size(VALUE self, VALUE index) -{ - int dimsize = 0; - try { - dimsize = cvGetDimSize(CVARR(self), NUM2INT(index)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return INT2NUM(dimsize); -} - -/* - * Returns a specific array element. - * @overload [](idx0) - * @overload [](idx0, idx1) - * @overload [](idx0, idx1, idx2) - * @overload [](idx0, idx1, idx2, ...) - * @param idx-n [Integer] Zero-based component of the element index - * @return [CvScalar] Array element - * @opencv_func cvGet1D - * @opencv_func cvGet2D - * @opencv_func cvGet3D - * @opencv_func cvGetND - */ -VALUE -rb_aref(VALUE self, VALUE args) -{ - int index[CV_MAX_DIM]; - for (int i = 0; i < RARRAY_LEN(args); ++i) - index[i] = NUM2INT(rb_ary_entry(args, i)); - - CvScalar scalar = cvScalarAll(0); - try { - switch (RARRAY_LEN(args)) { - case 1: - scalar = cvGet1D(CVARR(self), index[0]); - break; - case 2: - scalar = cvGet2D(CVARR(self), index[0], index[1]); - break; - default: - scalar = cvGetND(CVARR(self), index); - break; - } - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return cCvScalar::new_object(scalar); -} - -/* - * Changes the particular array element - * @overload []=(idx0, value) - * @overload []=(idx0, idx1, value) - * @overload []=(idx0, idx1, idx2, value) - * @overload []=(idx0, idx1, idx2, ..., value) - * @param idx-n [Integer] Zero-based component of the element index - * @param value [CvScalar] The assigned value - * @return [CvMat] self - * @opencv_func cvSet1D - * @opencv_func cvSet2D - * @opencv_func cvSet3D - * @opencv_func cvSetND - */ -VALUE -rb_aset(VALUE self, VALUE args) -{ - CvScalar scalar = VALUE_TO_CVSCALAR(rb_ary_pop(args)); - int index[CV_MAX_DIM]; - for (int i = 0; i < RARRAY_LEN(args); ++i) - index[i] = NUM2INT(rb_ary_entry(args, i)); - - try { - switch (RARRAY_LEN(args)) { - case 1: - cvSet1D(CVARR(self), index[0], scalar); - break; - case 2: - cvSet2D(CVARR(self), index[0], index[1], scalar); - break; - default: - cvSetND(CVARR(self), index, scalar); - break; - } - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return self; -} - -/* - * Assigns user data to the array header - * @overload set_data(data) - * @param data [Array] User data - * @return [CvMat] self - * @opencv_func cvSetData - */ -VALUE -rb_set_data(VALUE self, VALUE data) -{ - data = rb_funcall(data, rb_intern("flatten"), 0); - const int DATA_LEN = RARRAY_LEN(data); - CvMat *self_ptr = CVMAT(self); - int depth = CV_MAT_DEPTH(self_ptr->type); - void* array = NULL; - - switch (depth) { - case CV_8U: - array = rb_cvAlloc(sizeof(uchar) * DATA_LEN); - for (int i = 0; i < DATA_LEN; ++i) - ((uchar*)array)[i] = (uchar)(NUM2INT(rb_ary_entry(data, i))); - break; - case CV_8S: - array = rb_cvAlloc(sizeof(char) * DATA_LEN); - for (int i = 0; i < DATA_LEN; ++i) - ((char*)array)[i] = (char)(NUM2INT(rb_ary_entry(data, i))); - break; - case CV_16U: - array = rb_cvAlloc(sizeof(ushort) * DATA_LEN); - for (int i = 0; i < DATA_LEN; ++i) - ((ushort*)array)[i] = (ushort)(NUM2INT(rb_ary_entry(data, i))); - break; - case CV_16S: - array = rb_cvAlloc(sizeof(short) * DATA_LEN); - for (int i = 0; i < DATA_LEN; ++i) - ((short*)array)[i] = (short)(NUM2INT(rb_ary_entry(data, i))); - break; - case CV_32S: - array = rb_cvAlloc(sizeof(int) * DATA_LEN); - for (int i = 0; i < DATA_LEN; ++i) - ((int*)array)[i] = NUM2INT(rb_ary_entry(data, i)); - break; - case CV_32F: - array = rb_cvAlloc(sizeof(float) * DATA_LEN); - for (int i = 0; i < DATA_LEN; ++i) - ((float*)array)[i] = (float)NUM2DBL(rb_ary_entry(data, i)); - break; - case CV_64F: - array = rb_cvAlloc(sizeof(double) * DATA_LEN); - for (int i = 0; i < DATA_LEN; ++i) - ((double*)array)[i] = NUM2DBL(rb_ary_entry(data, i)); - break; - default: - rb_raise(rb_eArgError, "Invalid CvMat depth"); - break; - } - - try { - cvSetData(self_ptr, array, self_ptr->step); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - - return self; -} - -/* - * Returns a matrix which is set every element to a given value. - * The function copies the scalar value to every selected element of the destination array: - * mat[I] = value if mask(I) != 0 - * - * @overload set(value, mask = nil) Fill value - * @param value [CvScalar] Fill value - * @param mask [CvMat] Operation mask, 8-bit single channel array; - * specifies elements of the destination array to be changed - * @return [CvMat] Matrix which is set every element to a given value. - * @opencv_func cvSet - */ -VALUE -rb_set(int argc, VALUE *argv, VALUE self) -{ - return rb_set_bang(argc, argv, copy(self)); -} - -/* - * Sets every element of the matrix to a given value. - * The function copies the scalar value to every selected element of the destination array: - * mat[I] = value if mask(I) != 0 - * - * @overload set!(value, mask = nil) - * @param (see #set) - * @return [CvMat] self - * @opencv_func cvSet - */ -VALUE -rb_set_bang(int argc, VALUE *argv, VALUE self) -{ - VALUE value, mask; - rb_scan_args(argc, argv, "11", &value, &mask); - try { - cvSet(CVARR(self), VALUE_TO_CVSCALAR(value), MASK(mask)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return self; -} - -/* - * Saves an image to a specified file. - * The image format is chosen based on the filename extension. - * @overload save_image(filename) - * @param filename [String] Name of the file - * @return [CvMat] self - * @opencv_func cvSaveImage - */ -VALUE -rb_save_image(int argc, VALUE *argv, VALUE self) -{ - VALUE _filename, _params; - rb_scan_args(argc, argv, "11", &_filename, &_params); - Check_Type(_filename, T_STRING); - int *params = NULL; - if (!NIL_P(_params)) { - params = hash_to_format_specific_param(_params); - } - - try { - cvSaveImage(StringValueCStr(_filename), CVARR(self), params); - } - catch (cv::Exception& e) { - if (params != NULL) { - free(params); - params = NULL; - } - raise_cverror(e); - } - if (params != NULL) { - free(params); - params = NULL; - } - - return self; -} - -/* - * Returns cleared array. - * @overload set_zero - * @return [CvMat] Cleared array - * @opencv_func cvSetZero - */ -VALUE -rb_set_zero(VALUE self) -{ - return rb_set_zero_bang(copy(self)); -} - -/* - * Clears the array. - * @overload set_zero! - * @return [CvMat] self - * @opencv_func cvSetZero - */ -VALUE -rb_set_zero_bang(VALUE self) -{ - try { - cvSetZero(CVARR(self)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return self; -} - -/* - * Returns a scaled identity matrix. - * arr(i, j) = value if i = j, 0 otherwise - * @overload identity(value) - * @param value [CvScalar] Value to assign to diagonal elements. - * @return [CvMat] Scaled identity matrix. - * @opencv_func cvSetIdentity - */ -VALUE -rb_set_identity(int argc, VALUE *argv, VALUE self) -{ - return rb_set_identity_bang(argc, argv, copy(self)); -} - -/* - * Initializes a scaled identity matrix. - * arr(i, j) = value if i = j, 0 otherwise - * @overload identity!(value) - * @param (see #identity) - * @return [CvMat] self - * @opencv_func cvSetIdentity - */ -VALUE -rb_set_identity_bang(int argc, VALUE *argv, VALUE self) -{ - VALUE val; - CvScalar value; - if (rb_scan_args(argc, argv, "01", &val) < 1) - value = cvRealScalar(1); - else - value = VALUE_TO_CVSCALAR(val); - - try { - cvSetIdentity(CVARR(self), value); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return self; -} - -/* - * Returns initialized matrix as following: - * arr(i,j)=(end-start)*(i*cols(arr)+j)/(cols(arr)*rows(arr)) - * @overload range(start, end) - * @param start [Number] The lower inclusive boundary of the range - * @param end [Number] The upper exclusive boundary of the range - * @return [CvMat] Initialized matrix - * @opencv_func cvRange - */ -VALUE -rb_range(VALUE self, VALUE start, VALUE end) -{ - return rb_range_bang(copy(self), start, end); -} - -/* - * Initializes the matrix as following: - * arr(i,j)=(end-start)*(i*cols(arr)+j)/(cols(arr)*rows(arr)) - * @overload range!(start, end) - * @param (see #range) - * @return [CvMat] self - * @opencv_func cvRange - */ -VALUE -rb_range_bang(VALUE self, VALUE start, VALUE end) -{ - try { - cvRange(CVARR(self), NUM2DBL(start), NUM2DBL(end)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return self; -} - -/* - * Changes shape of matrix/image without copying data. - * @overload reshape(cn, rows=0) - * @param cn [Integer] New number of channels. If the parameter is 0, the number of channels remains the same. - * @param rows [Integer] New number of rows. If the parameter is 0, the number of rows remains the same. - * @return [CvMat] Changed matrix - * @opencv_func cvReshape - * @example - * mat = CvMat.new(3, 3, CV_8U, 3) #=> 3x3 3-channel matrix - * vec = mat.reshape(:rows => 1) #=> 1x9 3-channel matrix - * ch1 = mat.reshape(:channel => 1) #=> 9x3 1-channel matrix - */ -VALUE -rb_reshape(int argc, VALUE *argv, VALUE self) -{ - VALUE cn, rows; - CvMat *mat = NULL; - rb_scan_args(argc, argv, "11", &cn, &rows); - try { - mat = cvReshape(CVARR(self), RB_CVALLOC(CvMat), NUM2INT(cn), IF_INT(rows, 0)); - } - catch (cv::Exception& e) { - if (mat != NULL) - cvReleaseMat(&mat); - raise_cverror(e); - } - return DEPEND_OBJECT(rb_klass, mat, self); -} - -/* - * Fills the destination array with repeated copies of the source array. - * - * @overload repeat(dst) - * @param dst [CvMat] Destination array of the same type as self. - * @return [CvMat] Destination array - * @opencv_func cvRepeat - */ -VALUE -rb_repeat(VALUE self, VALUE object) -{ - try { - cvRepeat(CVARR(self), CVARR_WITH_CHECK(object)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return object; -} - -/* - * Returns a fliped 2D array around vertical, horizontal, or both axes. - * - * @overload flip(flip_mode) - * @param flip_mode [Symbol] Flag to specify how to flip the array. - * - :x - Flipping around the x-axis. - * - :y - Flipping around the y-axis. - * - :xy - Flipping around both axes. - * @return [CvMat] Flipped array - * @opencv_func cvFlip - */ -VALUE -rb_flip(int argc, VALUE *argv, VALUE self) -{ - return rb_flip_bang(argc, argv, copy(self)); -} - -/* - * Flips a 2D array around vertical, horizontal, or both axes. - * - * @overload flip!(flip_mode) - * @param (see #flip) - * @return (see #flip) - * @opencv_func (see #flip) - */ -VALUE -rb_flip_bang(int argc, VALUE *argv, VALUE self) -{ - VALUE format; - int mode = 1; - if (rb_scan_args(argc, argv, "01", &format) > 0) { - Check_Type(format, T_SYMBOL); - ID flip_mode = rb_to_id(format); - if (flip_mode == rb_intern("x")) { - mode = 1; - } - else if (flip_mode == rb_intern("y")) { - mode = 0; - } - else if (flip_mode == rb_intern("xy")) { - mode = -1; - } - } - try { - cvFlip(CVARR(self), NULL, mode); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return self; -} - -/* - * Divides a multi-channel array into several single-channel arrays. - * - * @overload split - * @return [Array] Array of single-channel arrays - * @opencv_func cvSplit - * @see merge - * @example - * img = CvMat.new(640, 480, CV_8U, 3) #=> 3-channel image - * a = img.split #=> [img-ch1, img-ch2, img-ch3] - */ -VALUE -rb_split(VALUE self) -{ - CvArr* self_ptr = CVARR(self); - int type = cvGetElemType(self_ptr); - int depth = CV_MAT_DEPTH(type), channel = CV_MAT_CN(type); - VALUE dest = rb_ary_new2(channel); - try { - CvArr *dest_ptr[] = { NULL, NULL, NULL, NULL }; - CvSize size = cvGetSize(self_ptr); - for (int i = 0; i < channel; ++i) { - VALUE tmp = new_mat_kind_object(size, self, depth, 1); - rb_ary_store(dest, i, tmp); - dest_ptr[i] = CVARR(tmp); - } - cvSplit(self_ptr, dest_ptr[0], dest_ptr[1], dest_ptr[2], dest_ptr[3]); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - - return dest; -} - -/* - * Composes a multi-channel array from several single-channel arrays. - * - * @overload merge(src1 = nil, src2 = nil, src3 = nil, src4 = nil) - * @param src-n [CvMat] Source arrays to be merged. - * All arrays must have the same size and the same depth. - * @return [CvMat] Merged array - * @opencv_func cvMerge - * @see split - * @scope class - */ -VALUE -rb_merge(VALUE klass, VALUE args) -{ - int len = RARRAY_LEN(args); - if (len <= 0 || len > 4) { - rb_raise(rb_eArgError, "wrong number of argument (%d for 1..4)", len); - } - CvMat *src[] = { NULL, NULL, NULL, NULL }, *prev_src = NULL; - for (int i = 0; i < len; ++i) { - VALUE object = rb_ary_entry(args, i); - if (NIL_P(object)) - src[i] = NULL; - else { - src[i] = CVMAT_WITH_CHECK(object); - if (CV_MAT_CN(src[i]->type) != 1) - rb_raise(rb_eArgError, "image should be single-channel CvMat."); - if (prev_src == NULL) - prev_src = src[i]; - else { - if (!CV_ARE_SIZES_EQ(prev_src, src[i])) - rb_raise(rb_eArgError, "image size should be same."); - if (!CV_ARE_DEPTHS_EQ(prev_src, src[i])) - rb_raise(rb_eArgError, "image depth should be same."); - } - } - } - // TODO: adapt IplImage - VALUE dest = Qnil; - try { - dest = new_object(cvGetSize(src[0]), CV_MAKETYPE(CV_MAT_DEPTH(src[0]->type), len)); - cvMerge(src[0], src[1], src[2], src[3], CVARR(dest)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return dest; -} - -/* - * Returns shuffled matrix by swapping randomly chosen pairs of the matrix elements on each iteration - * (where each element may contain several components in case of multi-channel arrays) - * - * @overload rand_shuffle(seed = -1, iter_factor = 1) - * @param seed [Integer] Integer value used to initiate a random sequence - * @param iter_factor [Integer] The relative parameter that characterizes intensity of - * the shuffling performed. The number of iterations (i.e. pairs swapped) is - * round(iter_factor*rows(mat)*cols(mat)), so iter_factor = 0 means that no shuffling is done, - * iter_factor = 1 means that the function swaps rows(mat)*cols(mat) random pairs etc - * @return [CvMat] Shuffled matrix - * @opencv_func cvRandShuffle - */ -VALUE -rb_rand_shuffle(int argc, VALUE *argv, VALUE self) -{ - return rb_rand_shuffle_bang(argc, argv, copy(self)); -} - -/* - * Shuffles the matrix by swapping randomly chosen pairs of the matrix elements on each iteration - * (where each element may contain several components in case of multi-channel arrays) - * - * @overload rand_shuffle!(seed = -1, iter_factor = 1) - * @param (see #rand_shuffle) - * @return (see #rand_shuffle) - * @opencv_func (see #rand_shuffle) - */ -VALUE -rb_rand_shuffle_bang(int argc, VALUE *argv, VALUE self) -{ - VALUE seed, iter; - rb_scan_args(argc, argv, "02", &seed, &iter); - try { - if (NIL_P(seed)) - cvRandShuffle(CVARR(self), NULL, IF_INT(iter, 1)); - else { - CvRNG rng = cvRNG(rb_num2ll(seed)); - cvRandShuffle(CVARR(self), &rng, IF_INT(iter, 1)); - } - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return self; -} - -/* - * Performs a look-up table transform of an array. - * - * @overload lut(lut) - * @param lut [CvMat] Look-up table of 256 elements. In case of multi-channel source array, - * the table should either have a single channel (in this case the same table is used - * for all channels) or the same number of channels as in the source array. - * @return [CvMat] Transformed array - * @opencv_func cvLUT - */ -VALUE -rb_lut(VALUE self, VALUE lut) -{ - VALUE dest = copy(self); - try { - cvLUT(CVARR(self), CVARR(dest), CVARR_WITH_CHECK(lut)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return dest; -} - -/* - * Converts one array to another with optional linear transformation. - * - * @overload convert_scale(params) - * @param params [Hash] Transform parameters - * @option params [Integer] :depth (same as self) Depth of the destination array - * @option params [Number] :scale (1.0) Scale factor - * @option params [Number] :shift (0.0) Value added to the scaled source array elements - * @return [CvMat] Converted array - * @opencv_func cvConvertScale - */ -VALUE -rb_convert_scale(VALUE self, VALUE hash) -{ - Check_Type(hash, T_HASH); - CvMat* self_ptr = CVMAT(self); - VALUE depth = LOOKUP_HASH(hash, "depth"); - VALUE scale = LOOKUP_HASH(hash, "scale"); - VALUE shift = LOOKUP_HASH(hash, "shift"); - - VALUE dest = Qnil; - try { - dest = new_mat_kind_object(cvGetSize(self_ptr), self, - CVMETHOD("DEPTH", depth, CV_MAT_DEPTH(self_ptr->type)), - CV_MAT_CN(self_ptr->type)); - cvConvertScale(self_ptr, CVARR(dest), IF_DBL(scale, 1.0), IF_DBL(shift, 0.0)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return dest; -} - -/* - * Scales, computes absolute values, and converts the result to 8-bit. - * - * @overload convert_scale_abs(params) - * @param params [Hash] Transform parameters - * @option params [Number] :scale (1.0) Scale factor - * @option params [Number] :shift (0.0) Value added to the scaled source array elements - * @return [CvMat] Converted array - * @opencv_func cvConvertScaleAbs - */ -VALUE -rb_convert_scale_abs(VALUE self, VALUE hash) -{ - Check_Type(hash, T_HASH); - CvMat* self_ptr = CVMAT(self); - VALUE scale = LOOKUP_HASH(hash, "scale"); - VALUE shift = LOOKUP_HASH(hash, "shift"); - VALUE dest = Qnil; - try { - dest = new_mat_kind_object(cvGetSize(self_ptr), self, CV_8U, CV_MAT_CN(CVMAT(self)->type)); - cvConvertScaleAbs(self_ptr, CVARR(dest), IF_DBL(scale, 1.0), IF_DBL(shift, 0.0)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return dest; -} - -/* - * Computes the per-element sum of two arrays or an array and a scalar. - * - * @overload add(val, mask = nil) - * @param val [CvMat, CvScalar] Array or scalar to add - * @param mask [CvMat] Optional operation mask, 8-bit single channel array, - * that specifies elements of the destination array to be changed. - * @return [CvMat] Result array - * @opencv_func cvAdd - * @opencv_func cvAddS - */ -VALUE -rb_add(int argc, VALUE *argv, VALUE self) -{ - VALUE val, mask, dest; - rb_scan_args(argc, argv, "11", &val, &mask); - dest = copy(self); - try { - if (rb_obj_is_kind_of(val, rb_klass)) - cvAdd(CVARR(self), CVARR(val), CVARR(dest), MASK(mask)); - else - cvAddS(CVARR(self), VALUE_TO_CVSCALAR(val), CVARR(dest), MASK(mask)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return dest; -} - -/* - * Calculates the per-element difference between two arrays or array and a scalar. - * - * @overload sub(val, mask = nil) - * @param val [CvMat, CvScalar] Array or scalar to subtract - * @param mask [CvMat] Optional operation mask, 8-bit single channel array, - * that specifies elements of the destination array to be changed. - * @return [CvMat] Result array - * @opencv_func cvSub - * @opencv_func cvSubS - */ -VALUE -rb_sub(int argc, VALUE *argv, VALUE self) -{ - VALUE val, mask, dest; - rb_scan_args(argc, argv, "11", &val, &mask); - dest = copy(self); - try { - if (rb_obj_is_kind_of(val, rb_klass)) - cvSub(CVARR(self), CVARR(val), CVARR(dest), MASK(mask)); - else - cvSubS(CVARR(self), VALUE_TO_CVSCALAR(val), CVARR(dest), MASK(mask)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return dest; -} - -/* - * Calculates the per-element scaled product of two arrays. - * - * @overload mul(val, scale = 1.0) - * @param val [CvMat, CvScalar] Array or scalar to multiply - * @param scale [Number] Optional scale factor. - * @return [CvMat] Result array - * @opencv_func cvMul - */ -VALUE -rb_mul(int argc, VALUE *argv, VALUE self) -{ - VALUE val, scale, dest; - if (rb_scan_args(argc, argv, "11", &val, &scale) < 2) - scale = rb_float_new(1.0); - dest = new_mat_kind_object(cvGetSize(CVARR(self)), self); - try { - if (rb_obj_is_kind_of(val, rb_klass)) - cvMul(CVARR(self), CVARR(val), CVARR(dest), NUM2DBL(scale)); - else { - CvScalar scl = VALUE_TO_CVSCALAR(val); - VALUE mat = new_object(cvGetSize(CVARR(self)), cvGetElemType(CVARR(self))); - cvSet(CVARR(mat), scl); - cvMul(CVARR(self), CVARR(mat), CVARR(dest), NUM2DBL(scale)); - } - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return dest; -} - -/* - * Calculates the product of two arrays. - * dst = self * val + shiftvec - * - * @overload mat_mul(val, shiftvec = nil) - * @param val [CvMat] Array to multiply - * @param shiftvec [CvMat] Optional translation vector - * @return [CvMat] Result array - * @opencv_func cvMatMul - * @opencv_func cvMatMulAdd - */ -VALUE -rb_mat_mul(int argc, VALUE *argv, VALUE self) -{ - VALUE val, shiftvec, dest; - rb_scan_args(argc, argv, "11", &val, &shiftvec); - CvArr* self_ptr = CVARR(self); - dest = new_mat_kind_object(cvGetSize(self_ptr), self); - try { - if (NIL_P(shiftvec)) - cvMatMul(self_ptr, CVARR_WITH_CHECK(val), CVARR(dest)); - else - cvMatMulAdd(self_ptr, CVARR_WITH_CHECK(val), CVARR_WITH_CHECK(shiftvec), CVARR(dest)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return dest; -} - -/* - * Performs per-element division of two arrays or a scalar by an array. - * - * @overload div(val, scale = 1.0) - * @param val [CvMat, CvScalar] Array or scalar to divide - * @param scale [Number] Scale factor - * @return [CvMat] Result array - * @opencv_func cvDiv - */ -VALUE -rb_div(int argc, VALUE *argv, VALUE self) -{ - VALUE val, scale; - if (rb_scan_args(argc, argv, "11", &val, &scale) < 2) - scale = rb_float_new(1.0); - CvArr* self_ptr = CVARR(self); - VALUE dest = Qnil; - try { - dest = new_mat_kind_object(cvGetSize(self_ptr), self); - if (rb_obj_is_kind_of(val, rb_klass)) - cvDiv(self_ptr, CVARR(val), CVARR(dest), NUM2DBL(scale)); - else { - CvScalar scl = VALUE_TO_CVSCALAR(val); - VALUE mat = new_mat_kind_object(cvGetSize(self_ptr), self); - CvArr* mat_ptr = CVARR(mat); - cvSet(mat_ptr, scl); - cvDiv(self_ptr, mat_ptr, CVARR(dest), NUM2DBL(scale)); - } - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return dest; -} - -/* - * Computes the weighted sum of two arrays. - * This function calculates the weighted sum of two arrays as follows: - * dst(I) = src1(I) * alpha + src2(I) * beta + gamma - * - * @overload add_weighted(src1, alpha, src2, beta, gamma) - * @param src1 [CvMat] The first source array. - * @param alpha [Number] Weight for the first array elements. - * @param src2 [CvMat] The second source array. - * @param beta [Number] Weight for the second array elements. - * @param gamma [Number] Scalar added to each sum. - * @return [CvMat] Result array - * @opencv_func cvAddWeighted - */ -VALUE -rb_add_weighted(VALUE klass, VALUE src1, VALUE alpha, VALUE src2, VALUE beta, VALUE gamma) -{ - CvArr* src1_ptr = CVARR_WITH_CHECK(src1); - VALUE dst = new_mat_kind_object(cvGetSize(src1_ptr), src1); - try { - cvAddWeighted(src1_ptr, NUM2DBL(alpha), - CVARR_WITH_CHECK(src2), NUM2DBL(beta), - NUM2DBL(gamma), CVARR(dst)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return dst; -} - -/* - * Calculates the per-element bit-wise conjunction of two arrays or an array and a scalar. - * - * @overload and(val, mask = nil) - * @param val [CvMat, CvScalar] Array or scalar to calculate bit-wise conjunction - * @param mask [CvMat] Optional operation mask, 8-bit single channel array, that specifies - * elements of the destination array to be changed. - * @return [CvMat] Result array - * @opencv_func cvAnd - * @opencv_func cvAndS - */ -VALUE -rb_and(int argc, VALUE *argv, VALUE self) -{ - VALUE val, mask, dest; - rb_scan_args(argc, argv, "11", &val, &mask); - dest = copy(self); - try { - if (rb_obj_is_kind_of(val, rb_klass)) - cvAnd(CVARR(self), CVARR(val), CVARR(dest), MASK(mask)); - else - cvAndS(CVARR(self), VALUE_TO_CVSCALAR(val), CVARR(dest), MASK(mask)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return dest; -} - -/* - * Calculates the per-element bit-wise disjunction of two arrays or an array and a scalar. - * - * @overload or(val, mask = nil) - * @param val [CvMat, CvScalar] Array or scalar to calculate bit-wise disjunction - * @param mask [CvMat] Optional operation mask, 8-bit single channel array, that specifies - * elements of the destination array to be changed. - * @return [CvMat] Result array - * @opencv_func cvOr - * @opencv_func cvOrS - */ -VALUE -rb_or(int argc, VALUE *argv, VALUE self) -{ - VALUE val, mask, dest; - rb_scan_args(argc, argv, "11", &val, &mask); - dest = copy(self); - try { - if (rb_obj_is_kind_of(val, rb_klass)) - cvOr(CVARR(self), CVARR(val), CVARR(dest), MASK(mask)); - else - cvOrS(CVARR(self), VALUE_TO_CVSCALAR(val), CVARR(dest), MASK(mask)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return dest; -} - -/* - * Calculates the per-element bit-wise "exclusive or" operation on two arrays or an array and a scalar. - * - * @overload xor(val, mask = nil) - * @param val [CvMat, CvScalar] Array or scalar to calculate bit-wise xor operation. - * @param mask [CvMat] Optional operation mask, 8-bit single channel array, that specifies - * elements of the destination array to be changed. - * @return [CvMat] Result array - * @opencv_func cvXor - * @opencv_func cvXorS - */ -VALUE -rb_xor(int argc, VALUE *argv, VALUE self) -{ - VALUE val, mask, dest; - rb_scan_args(argc, argv, "11", &val, &mask); - dest = copy(self); - try { - if (rb_obj_is_kind_of(val, rb_klass)) - cvXor(CVARR(self), CVARR(val), CVARR(dest), MASK(mask)); - else - cvXorS(CVARR(self), VALUE_TO_CVSCALAR(val), CVARR(dest), MASK(mask)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return dest; -} - -/* - * Returns an array which elements are bit-wise invertion of source array. - * - * @overload not - * @return [CvMat] Result array - * @opencv_func cvNot - */ -VALUE -rb_not(VALUE self) -{ - return rb_not_bang(copy(self)); -} - -/* - * Inverts every bit of an array. - * - * @overload not! - * @return [CvMat] Result array - * @opencv_func cvNot - */ -VALUE -rb_not_bang(VALUE self) -{ - try { - cvNot(CVARR(self), CVARR(self)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return self; -} - -VALUE -rb_cmp_internal(VALUE self, VALUE val, int operand) -{ - CvArr* self_ptr = CVARR(self); - VALUE dest = new_mat_kind_object(cvGetSize(self_ptr), self, CV_8U, 1); - try { - if (rb_obj_is_kind_of(val, rb_klass)) - cvCmp(self_ptr, CVARR(val), CVARR(dest), operand); - else if (CV_MAT_CN(cvGetElemType(self_ptr)) == 1 && rb_obj_is_kind_of(val, rb_cNumeric)) - cvCmpS(self_ptr, NUM2DBL(val), CVARR(dest), operand); - else { - VALUE mat = new_mat_kind_object(cvGetSize(CVARR(self)), self); - cvSet(CVARR(mat), VALUE_TO_CVSCALAR(val)); - cvCmp(self_ptr, CVARR(mat), CVARR(dest), operand); - } - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return dest; -} - -/* - * Performs the per-element comparison "equal" of two arrays or an array and scalar value. - * - * @overload eq(val) - * @param val [CvMat, CvScalar, Number] Array, scalar or number to compare - * @return [CvMat] Result array - * @opencv_func cvCmp - * @opencv_func cvCmpS - */ -VALUE -rb_eq(VALUE self, VALUE val) -{ - return rb_cmp_internal(self, val, CV_CMP_EQ); -} - -/* - * Performs the per-element comparison "greater than" of two arrays or an array and scalar value. - * - * @overload gt(val) - * @param val [CvMat, CvScalar, Number] Array, scalar or number to compare - * @return [CvMat] Result array - * @opencv_func cvCmp - * @opencv_func cvCmpS - */ -VALUE -rb_gt(VALUE self, VALUE val) -{ - return rb_cmp_internal(self, val, CV_CMP_GT); -} - -/* - * Performs the per-element comparison "greater than or equal" of two arrays or an array and scalar value. - * - * @overload ge(val) - * @param val [CvMat, CvScalar, Number] Array, scalar or number to compare - * @return [CvMat] Result array - * @opencv_func cvCmp - * @opencv_func cvCmpS - */ -VALUE -rb_ge(VALUE self, VALUE val) -{ - return rb_cmp_internal(self, val, CV_CMP_GE); -} - -/* - * Performs the per-element comparison "less than" of two arrays or an array and scalar value. - * - * @overload lt(val) - * @param val [CvMat, CvScalar, Number] Array, scalar or number to compare - * @return [CvMat] Result array - * @opencv_func cvCmp - * @opencv_func cvCmpS - */ -VALUE -rb_lt(VALUE self, VALUE val) -{ - return rb_cmp_internal(self, val, CV_CMP_LT); -} - -/* - * Performs the per-element comparison "less than or equal" of two arrays or an array and scalar value. - * - * @overload le(val) - * @param val [CvMat, CvScalar, Number] Array, scalar or number to compare - * @return [CvMat] Result array - * @opencv_func cvCmp - * @opencv_func cvCmpS - */ -VALUE -rb_le(VALUE self, VALUE val) -{ - return rb_cmp_internal(self, val, CV_CMP_LE); -} - -/* - * Performs the per-element comparison "not equal" of two arrays or an array and scalar value. - * - * @overload ne(val) - * @param val [CvMat, CvScalar, Number] Array, scalar or number to compare - * @return [CvMat] Result array - * @opencv_func cvCmp - * @opencv_func cvCmpS - */ -VALUE -rb_ne(VALUE self, VALUE val) -{ - return rb_cmp_internal(self, val, CV_CMP_NE); -} - -/* - * Checks if array elements lie between the elements of two other arrays. - * - * @overload in_range(min, max) - * @param min [CvMat, CvScalar] Inclusive lower boundary array or a scalar. - * @param max [CvMat, CvScalar] Inclusive upper boundary array or a scalar. - * @return [CvMat] Result array - * @opencv_func cvInRange - * @opencv_func cvInRangeS - */ -VALUE -rb_in_range(VALUE self, VALUE min, VALUE max) -{ - CvArr* self_ptr = CVARR(self); - CvSize size = cvGetSize(self_ptr); - VALUE dest = new_object(size, CV_8UC1); - try { - if (rb_obj_is_kind_of(min, rb_klass) && rb_obj_is_kind_of(max, rb_klass)) - cvInRange(self_ptr, CVARR(min), CVARR(max), CVARR(dest)); - else if (rb_obj_is_kind_of(min, rb_klass)) { - VALUE tmp = new_object(size, cvGetElemType(self_ptr)); - cvSet(CVARR(tmp), VALUE_TO_CVSCALAR(max)); - cvInRange(self_ptr, CVARR(min), CVARR(tmp), CVARR(dest)); - } - else if (rb_obj_is_kind_of(max, rb_klass)) { - VALUE tmp = new_object(size, cvGetElemType(self_ptr)); - cvSet(CVARR(tmp), VALUE_TO_CVSCALAR(min)); - cvInRange(self_ptr, CVARR(tmp), CVARR(max), CVARR(dest)); - } - else - cvInRangeS(self_ptr, VALUE_TO_CVSCALAR(min), VALUE_TO_CVSCALAR(max), CVARR(dest)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return dest; -} - -/* - * Computes the per-element absolute difference between two arrays or between an array and a scalar. - * - * @overload abs_diff(val) - * @param val [CvMat, CvScalar] Array or scalar to compute absolute difference - * @return [CvMat] Result array - * @opencv_func cvAbsDiff - * @opencv_func cvAbsDiffS - */ -VALUE -rb_abs_diff(VALUE self, VALUE val) -{ - CvArr* self_ptr = CVARR(self); - VALUE dest = new_mat_kind_object(cvGetSize(self_ptr), self); - try { - if (rb_obj_is_kind_of(val, rb_klass)) - cvAbsDiff(self_ptr, CVARR(val), CVARR(dest)); - else - cvAbsDiffS(self_ptr, CVARR(dest), VALUE_TO_CVSCALAR(val)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return dest; -} - -/* - * Normalizes the norm or value range of an array. - * - * @overload normalize(alpha = 1.0, beta = 0.0, norm_type = NORM_L2, dtype = -1, mask = nil) - * @param alpha [Number] Norm value to normalize to or the lower range boundary - * in case of the range normalization. - * @param beta [Number] Upper range boundary in case of the range normalization. - * It is not used for the norm normalization. - * @param norm_type [Integer] Normalization type. - * @param dtype [Integer] when negative, the output array has the same type as src; - * otherwise, it has the same number of channels as src and the depth - * @param mask [CvMat] Optional operation mask. - * @return [CvMat] Normalized array. - * @opencv_func cv::normalize - */ -VALUE -rb_normalize(int argc, VALUE *argv, VALUE self) -{ - VALUE alpha_val, beta_val, norm_type_val, dtype_val, mask_val; - rb_scan_args(argc, argv, "05", &alpha_val, &beta_val, &norm_type_val, &dtype_val, &mask_val); - - double alpha = NIL_P(alpha_val) ? 1.0 : NUM2DBL(alpha_val); - double beta = NIL_P(beta_val) ? 0.0 : NUM2DBL(beta_val); - int norm_type = NIL_P(norm_type_val) ? cv::NORM_L2 : NUM2INT(norm_type_val); - int dtype = NIL_P(dtype_val) ? -1 : NUM2INT(dtype_val); - VALUE dst; - - try { - cv::Mat self_mat(CVMAT(self)); - cv::Mat dst_mat; - - if (NIL_P(mask_val)) { - cv::normalize(self_mat, dst_mat, alpha, beta, norm_type, dtype); - } - else { - cv::Mat mask(MASK(mask_val)); - cv::normalize(self_mat, dst_mat, alpha, beta, norm_type, dtype, mask); - } - dst = new_mat_kind_object(cvGetSize(CVARR(self)), self, dst_mat.depth(), dst_mat.channels()); - - CvMat tmp = dst_mat; - cvCopy(&tmp, CVMAT(dst)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - - return dst; -} - -/* - * Counts non-zero array elements. - * - * @overload count_non_zero - * @return [Integer] The number of non-zero elements. - * @opencv_func cvCountNonZero - */ -VALUE -rb_count_non_zero(VALUE self) -{ - int n = 0; - try { - n = cvCountNonZero(CVARR(self)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return INT2NUM(n); -} - -/* - * Calculates the sum of array elements. - * - * @overload sum - * @return [CvScalar] The sum of array elements. - * @opencv_func cvSum - */ -VALUE -rb_sum(VALUE self) -{ - CvScalar sum; - try { - sum = cvSum(CVARR(self)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return cCvScalar::new_object(sum); -} - -/* - * Calculates an average (mean) of array elements. - * @overload avg(mask = nil) - * @param mask [CvMat] Optional operation mask. - * @return [CvScalar] The average of array elements. - * @opencv_func cvAvg - */ -VALUE -rb_avg(int argc, VALUE *argv, VALUE self) -{ - VALUE mask; - rb_scan_args(argc, argv, "01", &mask); - CvScalar avg; - try { - avg = cvAvg(CVARR(self), MASK(mask)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return cCvScalar::new_object(avg); -} - -/* - * Calculates a mean and standard deviation of array elements. - * @overload avg_sdv(mask = nil) - * @param mask [CvMat] Optional operation mask. - * @return [Array] [mean, stddev], - * where mean is the computed mean value and stddev is the computed standard deviation. - * @opencv_func cvAvgSdv - */ -VALUE -rb_avg_sdv(int argc, VALUE *argv, VALUE self) -{ - VALUE mask, mean, std_dev; - rb_scan_args(argc, argv, "01", &mask); - mean = cCvScalar::new_object(); - std_dev = cCvScalar::new_object(); - try { - cvAvgSdv(CVARR(self), CVSCALAR(mean), CVSCALAR(std_dev), MASK(mask)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return rb_ary_new3(2, mean, std_dev); -} - -/* - * Calculates a standard deviation of array elements. - * @overload sdv(mask = nil) - * @param mask [CvMat] Optional operation mask. - * @return [CvScalar] The standard deviation of array elements. - * @opencv_func cvAvgSdv - */ -VALUE -rb_sdv(int argc, VALUE *argv, VALUE self) -{ - VALUE mask, std_dev; - rb_scan_args(argc, argv, "01", &mask); - std_dev = cCvScalar::new_object(); - try { - cvAvgSdv(CVARR(self), NULL, CVSCALAR(std_dev), MASK(mask)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return std_dev; -} - -/* - * Finds the global minimum and maximum in an array. - * - * @overload min_max_loc(mask = nil) - * @param mask [CvMat] Optional mask used to select a sub-array. - * @return [Array] [min_val, max_val, min_loc, max_loc], where - * min_val, max_val are minimum, maximum values as Number and - * min_loc, max_loc are minimum, maximum locations as CvPoint, respectively. - * @opencv_func cvMinMaxLoc - */ -VALUE -rb_min_max_loc(int argc, VALUE *argv, VALUE self) -{ - VALUE mask, min_loc, max_loc; - double min_val = 0.0, max_val = 0.0; - rb_scan_args(argc, argv, "01", &mask); - min_loc = cCvPoint::new_object(); - max_loc = cCvPoint::new_object(); - try { - cvMinMaxLoc(CVARR(self), &min_val, &max_val, CVPOINT(min_loc), CVPOINT(max_loc), MASK(mask)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return rb_ary_new3(4, rb_float_new(min_val), rb_float_new(max_val), min_loc, max_loc); -} - -/* - * Calculates an absolute array norm, an absolute difference norm, or a relative difference norm. - * - * @overload norm(src1, src2=nil, norm_type=NORM_L2, mask=nil) - * @param src1 [CvMat] First input array. - * @param src2 [CvMat] Second input array of the same size and the same type as src1. - * @param norm_type [Integer] Type of the norm. - * @param mask [CvMat] Optional operation mask; it must have the same size as src1 and CV_8UC1 type. - * @return [Number] The norm of two arrays. - * @opencv_func cvNorm - * @scope class - */ -VALUE -rb_norm(int argc, VALUE *argv, VALUE self) -{ - VALUE src1, src2, norm_type_val, mask_val; - rb_scan_args(argc, argv, "13", &src1, &src2, &norm_type_val, &mask_val); - - CvMat *src1_ptr = NULL; - CvMat *src2_ptr = NULL; - int norm_type = NIL_P(norm_type_val) ? cv::NORM_L2 : NUM2INT(norm_type_val); - CvMat *mask = NULL; - double norm = 0.0; - - try { - src1_ptr = CVMAT_WITH_CHECK(src1); - if (!NIL_P(src2)) { - src2_ptr = CVMAT_WITH_CHECK(src2); - } - if (!NIL_P(mask_val)) { - mask = CVMAT_WITH_CHECK(mask_val); - } - norm = cvNorm(src1_ptr, src2_ptr, norm_type, mask); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - - return DBL2NUM(norm); -} - -/* - * Calculates the dot product of two arrays in Euclidean metrics. - * - * @overload dot_product(mat) - * @param mat [CvMat] An array to calculate the dot product. - * @return [Number] The dot product of two arrays. - * @opencv_func cvDotProduct - */ -VALUE -rb_dot_product(VALUE self, VALUE mat) -{ - double result = 0.0; - try { - result = cvDotProduct(CVARR(self), CVARR_WITH_CHECK(mat)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return rb_float_new(result); -} - -/* - * Calculates the cross product of two 3D vectors. - * - * @overload cross_product(mat) - * @param mat [CvMat] A vector to calculate the cross product. - * @return [CvMat] The cross product of two vectors. - * @opencv_func cvCrossProduct - */ -VALUE -rb_cross_product(VALUE self, VALUE mat) -{ - CvArr* self_ptr = CVARR(self); - VALUE dest = Qnil; - try { - dest = new_mat_kind_object(cvGetSize(self_ptr), self); - cvCrossProduct(self_ptr, CVARR_WITH_CHECK(mat), CVARR(dest)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return dest; -} - -/* - * Performs the matrix transformation of every array element. - * - * @overload transform(transmat, shiftvec = nil) - * @param transmat [CvMat] Transformation 2x2 or 2x3 floating-point matrix. - * @param shiftvec [CvMat] Optional translation vector. - * @return [CvMat] Transformed array. - * @opencv_func cvTransform - */ -VALUE -rb_transform(int argc, VALUE *argv, VALUE self) -{ - VALUE transmat, shiftvec; - rb_scan_args(argc, argv, "11", &transmat, &shiftvec); - CvArr* self_ptr = CVARR(self); - VALUE dest = Qnil; - try { - dest = new_mat_kind_object(cvGetSize(self_ptr), self); - cvTransform(self_ptr, CVARR(dest), CVMAT_WITH_CHECK(transmat), - NIL_P(shiftvec) ? NULL : CVMAT_WITH_CHECK(shiftvec)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return dest; -} - -/* - * Performs the perspective matrix transformation of vectors. - * - * @overload perspective_transform(mat) - * @param mat [CvMat] 3x3 or 4x4 floating-point transformation matrix. - * @return [CvMat] Transformed vector. - * @opencv_func cvPerspectiveTransform - */ -VALUE -rb_perspective_transform(VALUE self, VALUE mat) -{ - CvArr* self_ptr = CVARR(self); - VALUE dest = Qnil; - try { - dest = new_mat_kind_object(cvGetSize(self_ptr), self); - cvPerspectiveTransform(self_ptr, CVARR(dest), CVMAT_WITH_CHECK(mat)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return dest; -} - -/* - * Calculates the product of a matrix and its transposition. - * - * This function calculates the product of self and its transposition: - * if :order = 0 - * dst = scale * (self - delta) * (self - delta)T - * otherwise - * dst = scale * (self - delta)T * (self - delta) - * - * @overload mul_transposed(options) - * @param options [Hash] Options - * @option options [Integer] :order (0) Flag specifying the multiplication ordering, should be 0 or 1. - * @option options [CvMat] :delta (nil) Optional delta matrix subtracted from source before the multiplication. - * @option options [Number] :scale (1.0) Optional scale factor for the matrix product. - * @return [CvMat] Result array. - * @opencv_func cvMulTransposed - */ -VALUE -rb_mul_transposed(int argc, VALUE *argv, VALUE self) -{ - VALUE options = Qnil; - VALUE _delta = Qnil, _scale = Qnil, _order = Qnil; - - if (rb_scan_args(argc, argv, "01", &options) > 0) { - Check_Type(options, T_HASH); - _delta = LOOKUP_HASH(options, "delta"); - _scale = LOOKUP_HASH(options, "scale"); - _order = LOOKUP_HASH(options, "order"); - } - - CvArr* delta = NIL_P(_delta) ? NULL : CVARR_WITH_CHECK(_delta); - double scale = NIL_P(_scale) ? 1.0 : NUM2DBL(_scale); - int order = NIL_P(_order) ? 0 : NUM2INT(_order); - CvArr* self_ptr = CVARR(self); - VALUE dest = new_mat_kind_object(cvGetSize(self_ptr), self); - try { - cvMulTransposed(self_ptr, CVARR(dest), order, delta, scale); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - - return dest; -} - - -/* - * Returns the trace of a matrix. - * - * @overload trace - * @return [CvScalar] The trace of a matrix. - * @opencv_func cvTrace - */ -VALUE -rb_trace(VALUE self) -{ - CvScalar scalar; - try { - scalar = cvTrace(CVARR(self)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return cCvScalar::new_object(scalar); -} - -/* - * Transposes a matrix. - * - * @overload transpose - * @return [CvMat] Transposed matrix. - * @opencv_func cvTranspose - */ -VALUE -rb_transpose(VALUE self) -{ - CvMat* self_ptr = CVMAT(self); - VALUE dest = new_mat_kind_object(cvSize(self_ptr->rows, self_ptr->cols), self); - try { - cvTranspose(self_ptr, CVARR(dest)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return dest; -} - -/* - * Returns the determinant of a square floating-point matrix. - * - * @overload det - * @return [Number] The determinant of the matrix. - * @opencv_func cvDet - */ -VALUE -rb_det(VALUE self) -{ - double det = 0.0; - try { - det = cvDet(CVARR(self)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return rb_float_new(det); -} - -/* - * Finds inverse or pseudo-inverse of matrix. - * - * @overload invert(inversion_method = :lu) - * @param inversion_method [Symbol] Inversion method. - * * :lu - Gaussian elimincation with optimal pivot element chose. - * * :svd - Singular value decomposition(SVD) method. - * * :svd_sym - SVD method for a symmetric positively-defined matrix. - * @return [Number] Inverse or pseudo-inverse of matrix. - * @opencv_func cvInvert - */ -VALUE -rb_invert(int argc, VALUE *argv, VALUE self) -{ - VALUE symbol; - rb_scan_args(argc, argv, "01", &symbol); - int method = CVMETHOD("INVERSION_METHOD", symbol, CV_LU); - VALUE dest = Qnil; - CvArr* self_ptr = CVARR(self); - try { - dest = new_mat_kind_object(cvGetSize(self_ptr), self); - cvInvert(self_ptr, CVARR(dest), method); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return dest; -} - -/* - * Solves one or more linear systems or least-squares problems. - * - * @overload solve(src1, src2, inversion_method = :lu) - * @param src1 [CvMat] Input matrix on the left-hand side of the system. - * @param src2 [CvMat] Input matrix on the right-hand side of the system. - * @param inversion_method [Symbol] Inversion method. - * * :lu - Gaussian elimincation with optimal pivot element chose. - * * :svd - Singular value decomposition(SVD) method. - * * :svd_sym - SVD method for a symmetric positively-defined matrix. - * @return [Number] Output solution. - * @scope class - * @opencv_func cvSolve - */ -VALUE -rb_solve(int argc, VALUE *argv, VALUE self) -{ - VALUE src1, src2, symbol; - rb_scan_args(argc, argv, "21", &src1, &src2, &symbol); - VALUE dest = Qnil; - CvArr* src2_ptr = CVARR_WITH_CHECK(src2); - try { - dest = new_mat_kind_object(cvGetSize(src2_ptr), src2); - cvSolve(CVARR_WITH_CHECK(src1), src2_ptr, CVARR(dest), CVMETHOD("INVERSION_METHOD", symbol, CV_LU)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return dest; -} - -/* - * Performs SVD of a matrix - * @overload svd(flag = 0) - * @param flag [Integer] Operation flags. - * * CV_SVD_MODIFY_A - Use the algorithm to modify the decomposed matrix. It can save space and speed up processing. - * * CV_SVD_U_T - Indicate that only a vector of singular values w is to be computed, while u and v will be set to empty matrices. - * * CV_SVD_V_T - When the matrix is not square, by default the algorithm produces u and v matrices of sufficiently large size for the further A reconstruction. If, however, CV_SVD_V_T flag is specified, u and v will be full-size square orthogonal matrices. - * @return [Array] Array of the computed values [w, u, v], where - * * w - Computed singular values - * * u - Computed left singular vectors - * * v - Computed right singular vectors - * @opencv_func cvSVD - */ -VALUE -rb_svd(int argc, VALUE *argv, VALUE self) -{ - VALUE _flag = Qnil; - int flag = 0; - if (rb_scan_args(argc, argv, "01", &_flag) > 0) { - flag = NUM2INT(_flag); - } - - CvMat* self_ptr = CVMAT(self); - VALUE w = new_mat_kind_object(cvSize(self_ptr->cols, self_ptr->rows), self); - - int rows = 0; - int cols = 0; - if (flag & CV_SVD_U_T) { - rows = MIN(self_ptr->rows, self_ptr->cols); - cols = self_ptr->rows; - } - else { - rows = self_ptr->rows; - cols = MIN(self_ptr->rows, self_ptr->cols); - } - VALUE u = new_mat_kind_object(cvSize(cols, rows), self); - - if (flag & CV_SVD_V_T) { - rows = MIN(self_ptr->rows, self_ptr->cols); - cols = self_ptr->cols; - } - else { - rows = self_ptr->cols; - cols = MIN(self_ptr->rows, self_ptr->cols); - } - VALUE v = new_mat_kind_object(cvSize(cols, rows), self); - - cvSVD(self_ptr, CVARR(w), CVARR(u), CVARR(v), flag); - - return rb_ary_new3(3, w, u, v); -} - -/* - * Computes eigenvalues and eigenvectors of symmetric matrix. - * self should be symmetric square matrix. self is modified during the processing. - * - * @overload eigenvv - * @return [Array] Array of [eigenvalues, eigenvectors] - * @opencv_func cvEigenVV - */ -VALUE -rb_eigenvv(int argc, VALUE *argv, VALUE self) -{ - VALUE epsilon, lowindex, highindex; - rb_scan_args(argc, argv, "03", &epsilon, &lowindex, &highindex); - double eps = (NIL_P(epsilon)) ? 0.0 : NUM2DBL(epsilon); - int lowidx = (NIL_P(lowindex)) ? -1 : NUM2INT(lowindex); - int highidx = (NIL_P(highindex)) ? -1 : NUM2INT(highindex); - VALUE eigen_vectors = Qnil, eigen_values = Qnil; - CvArr* self_ptr = CVARR(self); - try { - CvSize size = cvGetSize(self_ptr); - int type = cvGetElemType(self_ptr); - eigen_vectors = new_object(size, type); - eigen_values = new_object(size.height, 1, type); - // NOTE: eps, lowidx, highidx are ignored in the current OpenCV implementation. - cvEigenVV(self_ptr, CVARR(eigen_vectors), CVARR(eigen_values), eps, lowidx, highidx); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return rb_ary_new3(2, eigen_vectors, eigen_values); -} - - -/* - * Performs a forward or inverse Discrete Fourier transform of a 1D or 2D floating-point array. - * - * @overload dft(flags = CV_DXT_FORWARD, nonzero_rows = 0) - * @param flags [Integer] transformation flags, representing a combination of the following values: - * * CV_DXT_FORWARD - Performs a 1D or 2D transform. - * * CV_DXT_INVERSE - Performs an inverse 1D or 2D transform instead of the default forward transform. - * * CV_DXT_SCALE - Scales the result: divide it by the number of array elements. - * Normally, it is combined with CV_DXT_INVERSE. - * * CV_DXT_INV_SCALE - CV_DXT_INVERSE + CV_DXT_SCALE - * @param nonzero_rows [Integer] when the parameter is not zero, the function assumes that only - * the first nonzero_rows rows of the input array (CV_DXT_INVERSE is not set) - * or only the first nonzero_rows of the output array (CV_DXT_INVERSE is set) contain non-zeros. - * @return [CvMat] Output array - * @opencv_func cvDFT - */ -VALUE -rb_dft(int argc, VALUE *argv, VALUE self) -{ - VALUE flag_value, nonzero_row_value; - rb_scan_args(argc, argv, "02", &flag_value, &nonzero_row_value); - - int flags = NIL_P(flag_value) ? CV_DXT_FORWARD : NUM2INT(flag_value); - int nonzero_rows = NIL_P(nonzero_row_value) ? 0 : NUM2INT(nonzero_row_value); - CvArr* self_ptr = CVARR(self); - VALUE dest = Qnil; - try { - dest = new_mat_kind_object(cvGetSize(self_ptr), self); - cvDFT(self_ptr, CVARR(dest), flags, nonzero_rows); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return dest; -} - -/* - * Performs forward or inverse Discrete Cosine Transform(DCT) of 1D or 2D floating-point array. - * - * @overload dct(flags = CV_DXT_FORWARD) - * @param flags [Integer] transformation flags, representing a combination of the following values: - * * CV_DXT_FORWARD - Performs a 1D or 2D transform. - * * CV_DXT_INVERSE - Performs an inverse 1D or 2D transform instead of the default forward transform. - * * CV_DXT_ROWS - Performs a forward or inverse transform of every individual row of the input matrix. - * This flag enables you to transform multiple vectors simultaneously and can be used to decrease - * the overhead (which is sometimes several times larger than the processing itself) to perform 3D - * and higher-dimensional transforms and so forth. - * @return [CvMat] Output array - * @opencv_func cvDCT - */ -VALUE -rb_dct(int argc, VALUE *argv, VALUE self) -{ - VALUE flag_value; - rb_scan_args(argc, argv, "01", &flag_value); - - int flags = NIL_P(flag_value) ? CV_DXT_FORWARD : NUM2INT(flag_value); - CvArr* self_ptr = CVARR(self); - VALUE dest = Qnil; - try { - dest = new_mat_kind_object(cvGetSize(self_ptr), self); - cvDCT(self_ptr, CVARR(dest), flags); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return dest; -} - -/* - * Returns an image that is drawn a line segment connecting two points. - * - * @overload line(p1, p2, options = nil) - * @param p1 [CvPoint] First point of the line segment. - * @param p2 [CvPoint] Second point of the line segment. - * @param options [Hash] Drawing options - * @option options [CvScalar] :color Line color. - * @option options [Integer] :thickness Line thickness. - * @option options [Integer] :line_type Type of the line. - * * 8 - 8-connected line. - * * 4 - 4-connected line. - * * CV_AA - Antialiased line. - * @option options [Integer] :shift Number of fractional bits in the point coordinates. - * @return [CvMat] Output image - * @opencv_func cvLine - */ -VALUE -rb_line(int argc, VALUE *argv, VALUE self) -{ - return rb_line_bang(argc, argv, rb_clone(self)); -} - -/* - * Draws a line segment connecting two points. - * - * @overload line!(p1, p2, options = nil) - * @param p1 [CvPoint] First point of the line segment. - * @param p2 [CvPoint] Second point of the line segment. - * @param options [Hash] Drawing options - * @option options [CvScalar] :color Line color. - * @option options [Integer] :thickness Line thickness. - * @option options [Integer] :line_type Type of the line. - * * 8 - 8-connected line. - * * 4 - 4-connected line. - * * CV_AA - Antialiased line. - * @option options [Integer] :shift Number of fractional bits in the point coordinates. - * @return [CvMat] self - * @opencv_func (see #line) - */ -VALUE -rb_line_bang(int argc, VALUE *argv, VALUE self) -{ - VALUE p1, p2, drawing_option; - rb_scan_args(argc, argv, "21", &p1, &p2, &drawing_option); - drawing_option = DRAWING_OPTION(drawing_option); - try { - cvLine(CVARR(self), VALUE_TO_CVPOINT(p1), VALUE_TO_CVPOINT(p2), - DO_COLOR(drawing_option), - DO_THICKNESS(drawing_option), - DO_LINE_TYPE(drawing_option), - DO_SHIFT(drawing_option)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return self; -} - -/* - * Returns an image that is drawn a simple, thick, or filled up-right rectangle. - * - * @overload rectangle(p1, p2, options = nil) - * @param p1 [CvPoint] Vertex of the rectangle. - * @param p2 [CvPoint] Vertex of the rectangle opposite to p1. - * @param options [Hash] Drawing options - * @option options [CvScalar] :color Line color. - * @option options [Integer] :thickness Line thickness. - * @option options [Integer] :line_type Type of the line. - * * 8 - 8-connected line. - * * 4 - 4-connected line. - * * CV_AA - Antialiased line. - * @option options [Integer] :shift Number of fractional bits in the point coordinates. - * @return [CvMat] Output image - * @opencv_func cvRectangle - */ -VALUE -rb_rectangle(int argc, VALUE *argv, VALUE self) -{ - return rb_rectangle_bang(argc, argv, rb_clone(self)); -} - -/* - * Draws a simple, thick, or filled up-right rectangle. - * - * @overload rectangle!(p1, p2, options = nil) - * @param p1 [CvPoint] Vertex of the rectangle. - * @param p2 [CvPoint] Vertex of the rectangle opposite to p1. - * @param options [Hash] Drawing options - * @option options [CvScalar] :color Line color. - * @option options [Integer] :thickness Line thickness. - * @option options [Integer] :line_type Type of the line. - * * 8 - 8-connected line. - * * 4 - 4-connected line. - * * CV_AA - Antialiased line. - * @option options [Integer] :shift Number of fractional bits in the point coordinates. - * @return [CvMat] self - * @opencv_func cvRectangle - */ -VALUE -rb_rectangle_bang(int argc, VALUE *argv, VALUE self) -{ - VALUE p1, p2, drawing_option; - rb_scan_args(argc, argv, "21", &p1, &p2, &drawing_option); - drawing_option = DRAWING_OPTION(drawing_option); - try { - cvRectangle(CVARR(self), VALUE_TO_CVPOINT(p1), VALUE_TO_CVPOINT(p2), - DO_COLOR(drawing_option), - DO_THICKNESS(drawing_option), - DO_LINE_TYPE(drawing_option), - DO_SHIFT(drawing_option)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return self; -} - -/* - * Returns an image that is drawn a circle - * - * @overload circle(center, radius, options = nil) - * @param center [CvPoint] Center of the circle. - * @param radius [Integer] Radius of the circle. - * @param options [Hash] Drawing options - * @option options [CvScalar] :color Line color. - * @option options [Integer] :thickness Line thickness. - * @option options [Integer] :line_type Type of the line. - * * 8 - 8-connected line. - * * 4 - 4-connected line. - * * CV_AA - Antialiased line. - * @option options [Integer] :shift Number of fractional bits in the point coordinates. - * @return [CvMat] Output image - * @opencv_func cvCircle - */ -VALUE -rb_circle(int argc, VALUE *argv, VALUE self) -{ - return rb_circle_bang(argc, argv, rb_clone(self)); -} - -/* - * Draws a circle - * - * @overload circle!(center, radius, options = nil) - * @param center [CvPoint] Center of the circle. - * @param radius [Integer] Radius of the circle. - * @param options [Hash] Drawing options - * @option options [CvScalar] :color Line color. - * @option options [Integer] :thickness Line thickness. - * @option options [Integer] :line_type Type of the line. - * * 8 - 8-connected line. - * * 4 - 4-connected line. - * * CV_AA - Antialiased line. - * @option options [Integer] :shift Number of fractional bits in the point coordinates. - * @return [CvMat] self - * @opencv_func cvCircle - */ -VALUE -rb_circle_bang(int argc, VALUE *argv, VALUE self) -{ - VALUE center, radius, drawing_option; - rb_scan_args(argc, argv, "21", ¢er, &radius, &drawing_option); - drawing_option = DRAWING_OPTION(drawing_option); - try { - cvCircle(CVARR(self), VALUE_TO_CVPOINT(center), NUM2INT(radius), - DO_COLOR(drawing_option), - DO_THICKNESS(drawing_option), - DO_LINE_TYPE(drawing_option), - DO_SHIFT(drawing_option)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return self; -} - -/* - * Returns an image that is drawn a simple or thick elliptic arc or fills an ellipse sector. - * - * @overload ellipse(center, axes, angle, start_angle, end_angle, options = nil) - * @param center [CvPoint] Center of the ellipse. - * @param axes [CvSize] Length of the ellipse axes. - * @param angle [Number] Ellipse rotation angle in degrees. - * @param start_angle [Number] Starting angle of the elliptic arc in degrees. - * @param end_angle [Number] Ending angle of the elliptic arc in degrees. - * @param options [Hash] Drawing options - * @option options [CvScalar] :color Line color. - * @option options [Integer] :thickness Line thickness. - * @option options [Integer] :line_type Type of the line. - * * 8 - 8-connected line. - * * 4 - 4-connected line. - * * CV_AA - Antialiased line. - * @option options [Integer] :shift Number of fractional bits in the point coordinates. - * @return [CvMat] Output image - * @opencv_func cvEllipse - */ -VALUE -rb_ellipse(int argc, VALUE *argv, VALUE self) -{ - return rb_ellipse_bang(argc, argv, rb_clone(self)); -} - -/* - * Draws a simple or thick elliptic arc or fills an ellipse sector. - * - * @overload ellipse!(center, axes, angle, start_angle, end_angle, options = nil) - * @param center [CvPoint] Center of the ellipse. - * @param axes [CvSize] Length of the ellipse axes. - * @param angle [Number] Ellipse rotation angle in degrees. - * @param start_angle [Number] Starting angle of the elliptic arc in degrees. - * @param end_angle [Number] Ending angle of the elliptic arc in degrees. - * @param options [Hash] Drawing options - * @option options [CvScalar] :color Line color. - * @option options [Integer] :thickness Line thickness. - * @option options [Integer] :line_type Type of the line. - * * 8 - 8-connected line. - * * 4 - 4-connected line. - * * CV_AA - Antialiased line. - * @option options [Integer] :shift Number of fractional bits in the point coordinates. - * @return [CvMat] self - * @opencv_func cvEllipse - */ -VALUE -rb_ellipse_bang(int argc, VALUE *argv, VALUE self) -{ - VALUE center, axis, angle, start_angle, end_angle, drawing_option; - rb_scan_args(argc, argv, "51", ¢er, &axis, &angle, &start_angle, &end_angle, &drawing_option); - drawing_option = DRAWING_OPTION(drawing_option); - try { - cvEllipse(CVARR(self), VALUE_TO_CVPOINT(center), - VALUE_TO_CVSIZE(axis), - NUM2DBL(angle), NUM2DBL(start_angle), NUM2DBL(end_angle), - DO_COLOR(drawing_option), - DO_THICKNESS(drawing_option), - DO_LINE_TYPE(drawing_option), - DO_SHIFT(drawing_option)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return self; -} - -/* - * Returns an image that is drawn a simple or thick elliptic arc or fills an ellipse sector. - * - * @overload ellipse_box(box, options = nil) - * @param box [CvBox2D] Alternative ellipse representation via CvBox2D. This means that - * the function draws an ellipse inscribed in the rotated rectangle. - * @param options [Hash] Drawing options - * @option options [CvScalar] :color Line color. - * @option options [Integer] :thickness Line thickness. - * @option options [Integer] :line_type Type of the line. - * * 8 - 8-connected line. - * * 4 - 4-connected line. - * * CV_AA - Antialiased line. - * @option options [Integer] :shift Number of fractional bits in the point coordinates. - * @return [CvMat] Output image - * @opencv_func cvEllipseBox - */ -VALUE -rb_ellipse_box(int argc, VALUE *argv, VALUE self) -{ - return rb_ellipse_box_bang(argc, argv, rb_clone(self)); -} - -/* - * Draws a simple or thick elliptic arc or fills an ellipse sector. - * - * @overload ellipse_box!(box, options = nil) - * @param box [CvBox2D] Alternative ellipse representation via CvBox2D. This means that - * the function draws an ellipse inscribed in the rotated rectangle. - * @param options [Hash] Drawing options - * @option options [CvScalar] :color Line color. - * @option options [Integer] :thickness Line thickness. - * @option options [Integer] :line_type Type of the line. - * * 8 - 8-connected line. - * * 4 - 4-connected line. - * * CV_AA - Antialiased line. - * @option options [Integer] :shift Number of fractional bits in the point coordinates. - * @return [CvMat] self - * @opencv_func cvEllipseBox - */ -VALUE -rb_ellipse_box_bang(int argc, VALUE *argv, VALUE self) -{ - VALUE box, drawing_option; - rb_scan_args(argc, argv, "11", &box, &drawing_option); - drawing_option = DRAWING_OPTION(drawing_option); - try { - cvEllipseBox(CVARR(self), VALUE_TO_CVBOX2D(box), - DO_COLOR(drawing_option), - DO_THICKNESS(drawing_option), - DO_LINE_TYPE(drawing_option), - DO_SHIFT(drawing_option)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return self; -} - -/* - * Returns an image that is filled the area bounded by one or more polygons. - * - * @overload fill_poly(points, options = nil) - * @param points [Array] Array of polygons where each polygon is represented as an array of points. - * @param options [Hash] Drawing options - * @option options [CvScalar] :color Line color. - * @option options [Integer] :thickness Line thickness. - * @option options [Integer] :line_type Type of the line. - * * 8 - 8-connected line. - * * 4 - 4-connected line. - * * CV_AA - Antialiased line. - * @option options [Integer] :shift Number of fractional bits in the point coordinates. - * @return [CvMat] Output image - * @opencv_func cvFillPoly - */ -VALUE -rb_fill_poly(int argc, VALUE *argv, VALUE self) -{ - return rb_fill_poly_bang(argc, argv, self); -} - -/* - * Fills the area bounded by one or more polygons. - * - * @overload fill_poly!(points, options = nil) - * @param points [Array] Array of polygons where each polygon is represented as an array of points. - * @param options [Hash] Drawing options - * @option options [CvScalar] :color Line color. - * @option options [Integer] :thickness Line thickness. - * @option options [Integer] :line_type Type of the line. - * * 8 - 8-connected line. - * * 4 - 4-connected line. - * * CV_AA - Antialiased line. - * @option options [Integer] :shift Number of fractional bits in the point coordinates. - * @return [CvMat] self - * @opencv_func cvFillPoly - */ -VALUE -rb_fill_poly_bang(int argc, VALUE *argv, VALUE self) -{ - VALUE polygons, drawing_option; - VALUE points; - int i, j; - int num_polygons; - int *num_points; - CvPoint **p; - - rb_scan_args(argc, argv, "11", &polygons, &drawing_option); - Check_Type(polygons, T_ARRAY); - drawing_option = DRAWING_OPTION(drawing_option); - num_polygons = RARRAY_LEN(polygons); - num_points = ALLOCA_N(int, num_polygons); - - p = ALLOCA_N(CvPoint*, num_polygons); - for (j = 0; j < num_polygons; ++j) { - points = rb_ary_entry(polygons, j); - Check_Type(points, T_ARRAY); - num_points[j] = RARRAY_LEN(points); - p[j] = ALLOCA_N(CvPoint, num_points[j]); - for (i = 0; i < num_points[j]; ++i) { - p[j][i] = VALUE_TO_CVPOINT(rb_ary_entry(points, i)); - } - } - try { - cvFillPoly(CVARR(self), p, num_points, num_polygons, - DO_COLOR(drawing_option), - DO_LINE_TYPE(drawing_option), - DO_SHIFT(drawing_option)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return self; -} - -/* - * Returns an image that is filled a convex polygon. - * - * @overload fill_convex_poly(points, options = nil) - * @param points [Array] Polygon vertices. - * @param options [Hash] Drawing options - * @option options [CvScalar] :color Line color. - * @option options [Integer] :thickness Line thickness. - * @option options [Integer] :line_type Type of the line. - * * 8 - 8-connected line. - * * 4 - 4-connected line. - * * CV_AA - Antialiased line. - * @option options [Integer] :shift Number of fractional bits in the point coordinates. - * @return [CvMat] Output image - * @opencv_func cvFillConvexPoly - */ -VALUE -rb_fill_convex_poly(int argc, VALUE *argv, VALUE self) -{ - return rb_fill_convex_poly_bang(argc, argv, rb_clone(self)); -} - -/* - * Fills a convex polygon. - * - * @overload fill_convex_poly!(points, options = nil) - * @param points [Array] Polygon vertices. - * @param options [Hash] Drawing options - * @option options [CvScalar] :color Line color. - * @option options [Integer] :thickness Line thickness. - * @option options [Integer] :line_type Type of the line. - * * 8 - 8-connected line. - * * 4 - 4-connected line. - * * CV_AA - Antialiased line. - * @option options [Integer] :shift Number of fractional bits in the point coordinates. - * @return [CvMat] self - * @opencv_func cvFillConvexPoly - */ -VALUE -rb_fill_convex_poly_bang(int argc, VALUE *argv, VALUE self) -{ - VALUE points, drawing_option; - int i, num_points; - CvPoint *p; - - rb_scan_args(argc, argv, "11", &points, &drawing_option); - Check_Type(points, T_ARRAY); - drawing_option = DRAWING_OPTION(drawing_option); - num_points = RARRAY_LEN(points); - p = ALLOCA_N(CvPoint, num_points); - for (i = 0; i < num_points; ++i) - p[i] = VALUE_TO_CVPOINT(rb_ary_entry(points, i)); - - try { - cvFillConvexPoly(CVARR(self), p, num_points, - DO_COLOR(drawing_option), - DO_LINE_TYPE(drawing_option), - DO_SHIFT(drawing_option)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return self; -} - -/* - * Returns an image that is drawn several polygonal curves. - * - * @overload poly_line(points, options = nil) - * @param points [Array] Array of polygonal curves. - * @param options [Hash] Drawing options - * @option options [CvScalar] :color Line color. - * @option options [Integer] :thickness Line thickness. - * @option options [Integer] :line_type Type of the line. - * * 8 - 8-connected line. - * * 4 - 4-connected line. - * * CV_AA - Antialiased line. - * @option options [Boolean] :is_closed - * Indicates whether the polylines must be drawn closed. - * If closed, the method draws the line from the last vertex - * of every contour to the first vertex. - * @option options [Integer] :shift Number of fractional bits in the point coordinates. - * @return [CvMat] Output image - * @opencv_func cvPolyLine - */ -VALUE -rb_poly_line(int argc, VALUE *argv, VALUE self) -{ - return rb_poly_line_bang(argc, argv, rb_clone(self)); -} - -/* - * Draws several polygonal curves. - * - * @overload poly_line!(points, options = nil) - * @param points [Array] Array of polygonal curves. - * @param options [Hash] Drawing options - * @option options [CvScalar] :color Line color. - * @option options [Integer] :thickness Line thickness. - * @option options [Integer] :line_type Type of the line. - * * 8 - 8-connected line. - * * 4 - 4-connected line. - * * CV_AA - Antialiased line. - * @option options [Boolean] :is_closed - * Indicates whether the polylines must be drawn closed. - * If closed, the method draws the line from the last vertex - * of every contour to the first vertex. - * @option options [Integer] :shift Number of fractional bits in the point coordinates. - * @return [CvMat] self - * @opencv_func cvPolyLine - */ -VALUE -rb_poly_line_bang(int argc, VALUE *argv, VALUE self) -{ - VALUE polygons, drawing_option; - VALUE points; - int i, j; - int num_polygons; - int *num_points; - CvPoint **p; - - rb_scan_args(argc, argv, "11", &polygons, &drawing_option); - Check_Type(polygons, T_ARRAY); - drawing_option = DRAWING_OPTION(drawing_option); - num_polygons = RARRAY_LEN(polygons); - num_points = ALLOCA_N(int, num_polygons); - p = ALLOCA_N(CvPoint*, num_polygons); - - for (j = 0; j < num_polygons; ++j) { - points = rb_ary_entry(polygons, j); - Check_Type(points, T_ARRAY); - num_points[j] = RARRAY_LEN(points); - p[j] = ALLOCA_N(CvPoint, num_points[j]); - for (i = 0; i < num_points[j]; ++i) { - p[j][i] = VALUE_TO_CVPOINT(rb_ary_entry(points, i)); - } - } - - try { - cvPolyLine(CVARR(self), p, num_points, num_polygons, - DO_IS_CLOSED(drawing_option), - DO_COLOR(drawing_option), - DO_THICKNESS(drawing_option), - DO_LINE_TYPE(drawing_option), - DO_SHIFT(drawing_option)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - - return self; -} - - -/* - * Returns an image which is drawn a text string. - * - * @overload put_text(text, org, font, color = CvColor::Black) - * @param text [String] Text string to be drawn. - * @param org [CvPoint] Bottom-left corner of the text string in the image. - * @param font [CvFont] CvFont object. - * @param color [CvScalar] Text color. - * @return [CvMat] Output image - * @opencv_func cvPutText - */ -VALUE -rb_put_text(int argc, VALUE* argv, VALUE self) -{ - return rb_put_text_bang(argc, argv, rb_clone(self)); -} - -/* - * Draws a text string. - * - * @overload put_text!(text, org, font, color = CvColor::Black) - * @param text [String] Text string to be drawn. - * @param org [CvPoint] Bottom-left corner of the text string in the image. - * @param font [CvFont] CvFont object. - * @param color [CvScalar] Text color. - * @return [CvMat] self - * @opencv_func cvPutText - */ -VALUE -rb_put_text_bang(int argc, VALUE* argv, VALUE self) -{ - VALUE _text, _point, _font, _color; - rb_scan_args(argc, argv, "31", &_text, &_point, &_font, &_color); - CvScalar color = NIL_P(_color) ? CV_RGB(0, 0, 0) : VALUE_TO_CVSCALAR(_color); - try { - cvPutText(CVARR(self), StringValueCStr(_text), VALUE_TO_CVPOINT(_point), - CVFONT_WITH_CHECK(_font), color); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return self; -} - -/* - * Calculates the first, second, third, or mixed image derivatives using an extended Sobel operator. - * - * @overload sobel(xorder, yorder, aperture_size = 3) - * @param xorder [Integer] Order of the derivative x. - * @param yorder [Integer] Order of the derivative y. - * @param aperture_size [Integer] Size of the extended Sobel kernel; it must be 1, 3, 5, or 7. - * @return [CvMat] Output image. - * @opencv_func cvSovel - */ -VALUE -rb_sobel(int argc, VALUE *argv, VALUE self) -{ - VALUE xorder, yorder, aperture_size, dest; - if (rb_scan_args(argc, argv, "21", &xorder, &yorder, &aperture_size) < 3) - aperture_size = INT2FIX(3); - CvMat* self_ptr = CVMAT(self); - switch(CV_MAT_DEPTH(self_ptr->type)) { - case CV_8U: - dest = new_mat_kind_object(cvGetSize(self_ptr), self, CV_16S, 1); - break; - case CV_32F: - dest = new_mat_kind_object(cvGetSize(self_ptr), self, CV_32F, 1); - break; - default: - rb_raise(rb_eArgError, "source depth should be CV_8U or CV_32F."); - break; - } - - try { - cvSobel(self_ptr, CVARR(dest), NUM2INT(xorder), NUM2INT(yorder), NUM2INT(aperture_size)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return dest; -} - -/* - * Calculates the Laplacian of an image. - * - * @overload laplace(aperture_size = 3) - * @param aperture_size [Integer] Aperture size used to compute the second-derivative filters. - * The size must be positive and odd. - * @return Output image. - * @opencv_func cvLaplace - */ -VALUE -rb_laplace(int argc, VALUE *argv, VALUE self) -{ - VALUE aperture_size, dest; - if (rb_scan_args(argc, argv, "01", &aperture_size) < 1) - aperture_size = INT2FIX(3); - CvMat* self_ptr = CVMAT(self); - switch(CV_MAT_DEPTH(self_ptr->type)) { - case CV_8U: - dest = new_mat_kind_object(cvGetSize(self_ptr), self, CV_16S, 1); - break; - case CV_32F: - dest = new_mat_kind_object(cvGetSize(self_ptr), self, CV_32F, 1); - break; - default: - rb_raise(rb_eArgError, "source depth should be CV_8U or CV_32F."); - } - - try { - cvLaplace(self_ptr, CVARR(dest), NUM2INT(aperture_size)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return dest; -} - -/* - * Finds edges in an image using the [Canny86] algorithm. - * - * Canny86: J. Canny. A Computational Approach to Edge Detection, IEEE Trans. on Pattern Analysis - * and Machine Intelligence, 8(6), pp. 679-698 (1986). - * - * @overload canny(thresh1, thresh2, aperture_size = 3) - * @param thresh1 [Number] First threshold for the hysteresis procedure. - * @param thresh2 [Number] Second threshold for the hysteresis procedure. - * @param aperture_size [Integer] Aperture size for the sobel operator. - * @return [CvMat] Output edge map - * @opencv_func cvCanny - */ -VALUE -rb_canny(int argc, VALUE *argv, VALUE self) -{ - VALUE thresh1, thresh2, aperture_size; - if (rb_scan_args(argc, argv, "21", &thresh1, &thresh2, &aperture_size) < 3) - aperture_size = INT2FIX(3); - CvArr* self_ptr = CVARR(self); - VALUE dest = new_mat_kind_object(cvGetSize(self_ptr), self); - - try { - cvCanny(self_ptr, CVARR(dest), NUM2INT(thresh1), NUM2INT(thresh2), NUM2INT(aperture_size)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return dest; -} - -/* - * Calculates a feature map for corner detection. - * - * @overload pre_corner_detect(aperture_size = 3) - * @param aperture_size [Integer] Aperture size for the sobel operator. - * @return [CvMat] Output image - * @opencv_func cvPreCornerDetect - */ -VALUE -rb_pre_corner_detect(int argc, VALUE *argv, VALUE self) -{ - VALUE aperture_size, dest = Qnil; - if (rb_scan_args(argc, argv, "01", &aperture_size) < 1) - aperture_size = INT2FIX(3); - - CvArr *self_ptr = CVARR(self); - try { - dest = new_object(cvGetSize(self_ptr), CV_MAKETYPE(CV_32F, 1)); - cvPreCornerDetect(self_ptr, CVARR(dest), NUM2INT(aperture_size)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return dest; -} - -/* - * Calculates eigenvalues and eigenvectors of image blocks for corner detection. - * - * @overload corner_eigenvv(block_size, aperture_size = 3) - * @param block_size [Integer] Neighborhood size. - * @param aperture_size [Integer] Aperture parameter for the sobel operator. - * @return [CvMat] Result array. - * @opencv_func cvCornerEigenValsAndVecs - */ -VALUE -rb_corner_eigenvv(int argc, VALUE *argv, VALUE self) -{ - VALUE block_size, aperture_size, dest; - if (rb_scan_args(argc, argv, "11", &block_size, &aperture_size) < 2) - aperture_size = INT2FIX(3); - CvMat* self_ptr = CVMAT(self); - dest = new_object(cvSize(self_ptr->cols * 6, self_ptr->rows), CV_MAKETYPE(CV_32F, 1)); - try { - cvCornerEigenValsAndVecs(self_ptr, CVARR(dest), NUM2INT(block_size), NUM2INT(aperture_size)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return dest; -} - -/* - * Calculates the minimal eigenvalue of gradient matrices for corner detection. - * - * @overload corner_min_eigen_val(block_size, aperture_size = 3) - * @param block_size [Integer] Neighborhood size. - * @param aperture_size [Integer] Aperture parameter for the sobel operator. - * @return [CvMat] Result array. - * @opencv_func cvCornerMinEigenVal - */ -VALUE -rb_corner_min_eigen_val(int argc, VALUE *argv, VALUE self) -{ - VALUE block_size, aperture_size, dest; - if (rb_scan_args(argc, argv, "11", &block_size, &aperture_size) < 2) - aperture_size = INT2FIX(3); - CvArr* self_ptr = CVARR(self); - dest = new_object(cvGetSize(self_ptr), CV_MAKETYPE(CV_32F, 1)); - try { - cvCornerMinEigenVal(self_ptr, CVARR(dest), NUM2INT(block_size), NUM2INT(aperture_size)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return dest; -} - -/* - * Harris edge detector. - * - * @overload corner_harris(block_size, aperture_size = 3, k = 0.04) - * @param block_size [Integer] Neighborhood size. - * @param aperture_size [Integer] Aperture parameter for the sobel operator. - * @param k [Number] Harris detector free parameter. - * @return [CvMat] The Harris detector responses. - * @opencv_func cvCornerHarris - */ -VALUE -rb_corner_harris(int argc, VALUE *argv, VALUE self) -{ - VALUE block_size, aperture_size, k, dest; - rb_scan_args(argc, argv, "12", &block_size, &aperture_size, &k); - CvArr* self_ptr = CVARR(self); - dest = new_object(cvGetSize(self_ptr), CV_MAKETYPE(CV_32F, 1)); - try { - cvCornerHarris(self_ptr, CVARR(dest), NUM2INT(block_size), IF_INT(aperture_size, 3), IF_DBL(k, 0.04)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return dest; -} - -/* - * Finds the positions of internal corners of the chessboard. - * - * @overload find_chessboard_corners(pattern_size, flag = CV_CALIB_CB_ADAPTIVE_THRESH) - * @param pattern_size [CvSize] Number of inner corners per a chessboard row and column. - * @param flags [Integer] Various operation flags that can be zero or a combination of the following values. - * * CV_CALIB_CB_ADAPTIVE_THRESH - * * Use adaptive thresholding to convert the image to black and white, rather than - * a fixed threshold level (computed from the average image brightness). - * * CV_CALIB_CB_NORMALIZE_IMAGE - * * Normalize the image gamma with CvMat#equalize_hist() before applying fixed or adaptive thresholding. - * * CV_CALIB_CB_FILTER_QUADS - * * Use additional criteria (like contour area, perimeter, square-like shape) to - * filter out false quads extracted at the contour retrieval stage. - * * CALIB_CB_FAST_CHECK - * * Run a fast check on the image that looks for chessboard corners, and shortcut the call - * if none is found. This can drastically speed up the call in the degenerate condition - * when no chessboard is observed. - * @return [Array, Boolean>] An array which includes the positions of internal corners - * of the chessboard, and a parameter indicating whether the complete board was found or not. - * @opencv_func cvFindChessboardCorners - * @example - * mat = CvMat.load('chessboard.jpg', 1) - * gray = mat.BGR2GRAY - * pattern_size = CvSize.new(4, 4) - * corners, found = gray.find_chessboard_corners(pattern_size, CV_CALIB_CB_ADAPTIVE_THRESH) - * - * if found - * corners = gray.find_corner_sub_pix(corners, CvSize.new(3, 3), CvSize.new(-1, -1), CvTermCriteria.new(20, 0.03)) - * end - * - * result = mat.draw_chessboard_corners(pattern_size, corners, found) - * w = GUI::Window.new('Result') - * w.show result - * GUI::wait_key - */ -VALUE -rb_find_chessboard_corners(int argc, VALUE *argv, VALUE self) -{ - VALUE pattern_size_val, flag_val; - rb_scan_args(argc, argv, "11", &pattern_size_val, &flag_val); - - int flag = NIL_P(flag_val) ? CV_CALIB_CB_ADAPTIVE_THRESH : NUM2INT(flag_val); - CvSize pattern_size = VALUE_TO_CVSIZE(pattern_size_val); - CvPoint2D32f* corners = ALLOCA_N(CvPoint2D32f, pattern_size.width * pattern_size.height); - int num_found_corners = 0; - int pattern_was_found = 0; - try { - pattern_was_found = cvFindChessboardCorners(CVARR(self), pattern_size, corners, &num_found_corners, flag); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - - VALUE found_corners = rb_ary_new2(num_found_corners); - for (int i = 0; i < num_found_corners; i++) { - rb_ary_store(found_corners, i, cCvPoint2D32f::new_object(corners[i])); - } - - VALUE found = (pattern_was_found > 0) ? Qtrue : Qfalse; - return rb_assoc_new(found_corners, found); -} - -/* - * Refines the corner locations. - * - * @overload find_corner_sub_pix(corners, win_size, zero_zone, criteria) - * @param corners [Array] Initial coordinates of the input corners. - * @param win_size [CvSize] Half of the side length of the search window. - * @param zero_zone [CvSize] Half of the size of the dead region in the middle of the search zone over - * which the summation in the formula below is not done. - * @param criteria [CvTermCriteria] Criteria for termination of the iterative process of corner refinement. - * @return [Array] Refined corner coordinates. - * @opencv_func cvFindCornerSubPix - */ -VALUE -rb_find_corner_sub_pix(VALUE self, VALUE corners, VALUE win_size, VALUE zero_zone, VALUE criteria) -{ - Check_Type(corners, T_ARRAY); - int count = RARRAY_LEN(corners); - CvPoint2D32f* corners_buff = ALLOCA_N(CvPoint2D32f, count); - VALUE* corners_ptr = RARRAY_PTR(corners); - - for (int i = 0; i < count; i++) { - corners_buff[i] = *(CVPOINT2D32F(corners_ptr[i])); - } - - try { - cvFindCornerSubPix(CVARR(self), corners_buff, count, VALUE_TO_CVSIZE(win_size), - VALUE_TO_CVSIZE(zero_zone), VALUE_TO_CVTERMCRITERIA(criteria)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - - VALUE refined_corners = rb_ary_new2(count); - for (int i = 0; i < count; i++) { - rb_ary_store(refined_corners, i, cCvPoint2D32f::new_object(corners_buff[i])); - } - - return refined_corners; -} - -/* - * Determines strong corners on an image. - * - * @overload good_features_to_track(quality_level, min_distance, good_features_to_track_option = {}) - * @param quality_level [Number] Parameter characterizing the minimal accepted quality of image corners. - * The parameter value is multiplied by the best corner quality measure, which is the minimal eigenvalue - * or the Harris function response. - * @param min_distance [Number] Minimum possible Euclidean distance between the returned corners. - * @param good_features_to_track_option [Hash] Options. - * @option good_features_to_track_option [CvMat] :mask (nil) Optional region of interest. - * If the image is not empty (it needs to have the type CV_8UC1 and the same size as image), - * it specifies the region in which the corners are detected. - * @option good_features_to_track_option [Integer] :block_size (3) Size of an average block for computing - * a derivative covariation matrix over each pixel neighborhood. - * @option good_features_to_track_option [Boolean] :use_harris (false) Parameter indicating whether - * to use a Harris detector. - * @option good_features_to_track_option [Number] :k (0.04) Free parameter of the Harris detector. - * @return [Array] Output vector of detected corners. - * @opencv_func cvGoodFeaturesToTrack - */ -VALUE -rb_good_features_to_track(int argc, VALUE *argv, VALUE self) -{ - VALUE quality_level, min_distance, good_features_to_track_option; - rb_scan_args(argc, argv, "21", &quality_level, &min_distance, &good_features_to_track_option); - good_features_to_track_option = GOOD_FEATURES_TO_TRACK_OPTION(good_features_to_track_option); - int np = GF_MAX(good_features_to_track_option); - if (np <= 0) - rb_raise(rb_eArgError, "option :max should be positive value."); - - CvMat *self_ptr = CVMAT(self); - CvPoint2D32f *p32 = (CvPoint2D32f*)rb_cvAlloc(sizeof(CvPoint2D32f) * np); - int type = CV_MAKETYPE(CV_32F, 1); - CvMat* eigen = rb_cvCreateMat(self_ptr->rows, self_ptr->cols, type); - CvMat* tmp = rb_cvCreateMat(self_ptr->rows, self_ptr->cols, type); - try { - cvGoodFeaturesToTrack(self_ptr, &eigen, &tmp, p32, &np, NUM2DBL(quality_level), NUM2DBL(min_distance), - GF_MASK(good_features_to_track_option), - GF_BLOCK_SIZE(good_features_to_track_option), - GF_USE_HARRIS(good_features_to_track_option), - GF_K(good_features_to_track_option)); - } - catch (cv::Exception& e) { - if (eigen != NULL) - cvReleaseMat(&eigen); - if (tmp != NULL) - cvReleaseMat(&tmp); - if (p32 != NULL) - cvFree(&p32); - raise_cverror(e); - } - VALUE corners = rb_ary_new2(np); - for (int i = 0; i < np; ++i) - rb_ary_store(corners, i, cCvPoint2D32f::new_object(p32[i])); - cvFree(&p32); - cvReleaseMat(&eigen); - cvReleaseMat(&tmp); - return corners; -} - -/* - * Retrieves a pixel rectangle from an image with sub-pixel accuracy. - * - * @overload rect_sub_pix(center, size = self.size) - * @param center [CvPoint2D32f] Floating point coordinates of the center of the extracted rectangle within - * the source image. The center must be inside the image. - * @param size [CvSize] Size of the extracted patch. - * @return [CvMat] Extracted patch that has the size size and the same number of channels as self. - * @opencv_func cvGetRectSubPix - */ -VALUE -rb_rect_sub_pix(int argc, VALUE *argv, VALUE self) -{ - VALUE center, size; - VALUE dest = Qnil; - CvSize _size; - CvArr* self_ptr = CVARR(self); - try { - if (rb_scan_args(argc, argv, "11", ¢er, &size) < 2) - _size = cvGetSize(self_ptr); - else - _size = VALUE_TO_CVSIZE(size); - dest = new_mat_kind_object(_size, self); - cvGetRectSubPix(self_ptr, CVARR(dest), VALUE_TO_CVPOINT2D32F(center)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return dest; -} - -/* - * Applies an affine transformation to an image. - * - * @overload quadrangle_sub_pix(map_matrix, size = self.size) - * @param map_matrix [CvMat] 2x3 transformation matrix. - * @param size [CvSize] Size of the output image. - * @return [CvMat] Output image that has the size size and the same type as self. - * @opencv_func cvGetQuadrangleSubPix - * @note CvMat#quadrangle_sub_pix is similar to CvMat#warp_affine, but the outliers are - * extrapolated using replication border mode. - */ -VALUE -rb_quadrangle_sub_pix(int argc, VALUE *argv, VALUE self) -{ - VALUE map_matrix, size; - VALUE dest = Qnil; - CvSize _size; - CvArr* self_ptr = CVARR(self); - try { - if (rb_scan_args(argc, argv, "11", &map_matrix, &size) < 2) - _size = cvGetSize(self_ptr); - else - _size = VALUE_TO_CVSIZE(size); - dest = new_mat_kind_object(_size, self); - cvGetQuadrangleSubPix(self_ptr, CVARR(dest), CVMAT_WITH_CHECK(map_matrix)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return dest; -} - -/* - * Resizes an image. - * - * @overload resize(size, interpolation = :linear) - * @param size [CvSize] Output image size. - * @param interpolation [Symbol] Interpolation method: - * * CV_INTER_NN - A nearest-neighbor interpolation - * * CV_INTER_LINEAR - A bilinear interpolation (used by default) - * * CV_INTER_AREA - Resampling using pixel area relation. It may be a preferred method for - * image decimation, as it gives moire'-free results. But when the image is zoomed, - * it is similar to the :nn method. - * * CV_INTER_CUBIC - A bicubic interpolation over 4x4 pixel neighborhood - * * CV_INTER_LANCZOS4 - A Lanczos interpolation over 8x8 pixel neighborhood - * @return [CvMat] Output image. - * @opencv_func cvResize - */ -VALUE -rb_resize(int argc, VALUE *argv, VALUE self) -{ - VALUE size, interpolation; - rb_scan_args(argc, argv, "11", &size, &interpolation); - VALUE dest = new_mat_kind_object(VALUE_TO_CVSIZE(size), self); - int method = NIL_P(interpolation) ? CV_INTER_LINEAR : NUM2INT(interpolation); - - try { - cvResize(CVARR(self), CVARR(dest), method); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return dest; -} - -/* - * Applies an affine transformation to an image. - * - * @overload warp_affine(map_matrix, flags = CV_INTER_LINEAR | CV_WARP_FILL_OUTLIERS, fillval = 0) - * @param map_matrix [CvMat] 2x3 transformation matrix. - * @param flags [Integer] Combination of interpolation methods (#see resize) and the optional - * flag WARP_INVERSE_MAP that means that map_matrix is the inverse transformation. - * @return [CvMat] Output image that has the size size and the same type as self. - * @param fillval [Number, CvScalar] Value used in case of a constant border. - * @opencv_func cvWarpAffine - */ -VALUE -rb_warp_affine(int argc, VALUE *argv, VALUE self) -{ - VALUE map_matrix, flags_val, fill_value; - VALUE dest = Qnil; - if (rb_scan_args(argc, argv, "12", &map_matrix, &flags_val, &fill_value) < 3) - fill_value = INT2FIX(0); - CvArr* self_ptr = CVARR(self); - int flags = NIL_P(flags_val) ? (CV_INTER_LINEAR | CV_WARP_FILL_OUTLIERS) : NUM2INT(flags_val); - try { - dest = new_mat_kind_object(cvGetSize(self_ptr), self); - cvWarpAffine(self_ptr, CVARR(dest), CVMAT_WITH_CHECK(map_matrix), - flags, VALUE_TO_CVSCALAR(fill_value)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return dest; -} - -/* - * Finds a perspective transformation between two planes. - * - * @overload find_homography(src_points, dst_points, method = :all, ransac_reproj_threshold = 3, get_mask = false) - * @param src_points [CvMat] Coordinates of the points in the original plane. - * @param dst_points [CvMat] Coordinates of the points in the target plane. - * @param method [Symbol] Method used to computed a homography matrix. The following methods are possible: - * * :all - a regular method using all the points - * * :ransac - RANSAC-based robust method - * * :lmeds - Least-Median robust method - * @param ransac_reproj_threshold [Number] Maximum allowed reprojection error to treat a point pair as - * an inlier (used in the RANSAC method only). - * @param get_mask [Boolean] If true, the optional output mask set by - * a robust method (:ransac or :lmeds) is returned additionally. - * @return [CvMat, Array] The perspective transformation H between the source and the destination - * planes in CvMat. - * If method is :ransac or :lmeds and get_mask is true, the output mask - * is also returned in the form of an array [H, output_mask]. - * @scope class - * @opencv_func cvFindHomography - */ -VALUE -rb_find_homography(int argc, VALUE *argv, VALUE self) -{ - VALUE src_points, dst_points, method, ransac_reproj_threshold, get_status; - rb_scan_args(argc, argv, "23", &src_points, &dst_points, &method, &ransac_reproj_threshold, &get_status); - - VALUE homography = new_object(cvSize(3, 3), CV_32FC1); - int _method = CVMETHOD("HOMOGRAPHY_CALC_METHOD", method, 0); - double _ransac_reproj_threshold = NIL_P(ransac_reproj_threshold) ? 0.0 : NUM2DBL(ransac_reproj_threshold); - - if ((_method != 0) && (!NIL_P(get_status)) && IF_BOOL(get_status, 1, 0, 0)) { - CvMat *src = CVMAT_WITH_CHECK(src_points); - int num_points = MAX(src->rows, src->cols); - VALUE status = new_object(cvSize(num_points, 1), CV_8UC1); - try { - cvFindHomography(src, CVMAT_WITH_CHECK(dst_points), CVMAT(homography), - _method, _ransac_reproj_threshold, CVMAT(status)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return rb_assoc_new(homography, status); - } - else { - try { - cvFindHomography(CVMAT(src_points), CVMAT(dst_points), CVMAT(homography), - _method, _ransac_reproj_threshold, NULL); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return homography; - } -} - -/* - * Calculates an affine matrix of 2D rotation. - * - * @overload rotation_matrix2D(center, angle, scale) - * @param center [CvPoint2D32f] Center of the rotation in the source image. - * @param angle [Number] Rotation angle in degrees. Positive values mean counter-clockwise rotation - * (the coordinate origin is assumed to be the top-left corner). - * @param scale [Number] Isotropic scale factor. - * @return [CvMat] The output affine transformation, 2x3 floating-point matrix. - * @scope class - * @opencv_func cv2DRotationMatrix - */ -VALUE -rb_rotation_matrix2D(VALUE self, VALUE center, VALUE angle, VALUE scale) -{ - VALUE map_matrix = new_object(cvSize(3, 2), CV_MAKETYPE(CV_32F, 1)); - try { - cv2DRotationMatrix(VALUE_TO_CVPOINT2D32F(center), NUM2DBL(angle), NUM2DBL(scale), CVMAT(map_matrix)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return map_matrix; -} - -/* - * Calculates a perspective transform from four pairs of the corresponding points. - * - * @overload get_perspective_transform(src, dst) - * @param src [Array] Coordinates of quadrangle vertices in the source image. - * @param dst [Array] Coordinates of the corresponding quadrangle vertices in the destination image. - * @return [CvMat] Map matrix - * @scope class - * @opencv_func cvGetPerspectiveTransform - */ -VALUE -rb_get_perspective_transform(VALUE self, VALUE source, VALUE dest) -{ - Check_Type(source, T_ARRAY); - Check_Type(dest, T_ARRAY); - - int count = RARRAY_LEN(source); - - CvPoint2D32f* source_buff = ALLOCA_N(CvPoint2D32f, count); - CvPoint2D32f* dest_buff = ALLOCA_N(CvPoint2D32f, count); - - for (int i = 0; i < count; i++) { - source_buff[i] = *(CVPOINT2D32F(RARRAY_PTR(source)[i])); - dest_buff[i] = *(CVPOINT2D32F(RARRAY_PTR(dest)[i])); - } - - VALUE map_matrix = new_object(cvSize(3, 3), CV_MAKETYPE(CV_32F, 1)); - - try { - cvGetPerspectiveTransform(source_buff, dest_buff, CVMAT(map_matrix)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return map_matrix; -} - -/* - * Applies a perspective transformation to an image. - * - * @overload warp_perspective(map_matrix, flags = CV_INTER_LINEAR | CV_WARP_FILL_OUTLIERS, fillval = 0) - * @param map_matrix [CvMat] 3x3 transformation matrix. - * @param flags [Integer] Combination of interpolation methods (CV_INTER_LINEAR or CV_INTER_NEAREST) - * and the optional flag CV_WARP_INVERSE_MAP, that sets map_matrix as the inverse transformation. - * @param fillval [Number, CvScalar] Value used in case of a constant border. - * @return [CvMat] Output image. - * @opencv_func cvWarpPerspective - */ -VALUE -rb_warp_perspective(int argc, VALUE *argv, VALUE self) -{ - VALUE map_matrix, flags_val, option, fillval; - if (rb_scan_args(argc, argv, "13", &map_matrix, &flags_val, &option, &fillval) < 4) - fillval = INT2FIX(0); - CvArr* self_ptr = CVARR(self); - VALUE dest = Qnil; - int flags = NIL_P(flags_val) ? (CV_INTER_LINEAR | CV_WARP_FILL_OUTLIERS) : NUM2INT(flags_val); - try { - dest = new_mat_kind_object(cvGetSize(self_ptr), self); - cvWarpPerspective(self_ptr, CVARR(dest), CVMAT_WITH_CHECK(map_matrix), - flags, VALUE_TO_CVSCALAR(fillval)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return dest; -} - -/* - * Applies a generic geometrical transformation to an image. - * - * @overload remap(mapx, mapy, flags = CV_INTER_LINEAR | CV_WARP_FILL_OUTLIERS, fillval = 0) - * @param mapx [CvMat] The first map of either (x,y) points or just x values having the type - * CV_16SC2, CV_32FC1, or CV_32FC2. - * @param mapy [CvMat] The second map of y values having the type CV_16UC1, CV_32FC1, or none - * (empty map if mapx is (x,y) points), respectively. - * @param flags [Integer] Combination of interpolation methods (CV_INTER_LINEAR or CV_INTER_NEAREST) - * and the optional flag CV_WARP_INVERSE_MAP, that sets map_matrix as the inverse transformation. - * @param fillval [Number, CvScalar] Value used in case of a constant border. - * @return [CvMat] Output image. - * @opencv_func cvRemap - */ -VALUE -rb_remap(int argc, VALUE *argv, VALUE self) -{ - VALUE mapx, mapy, flags_val, option, fillval; - if (rb_scan_args(argc, argv, "23", &mapx, &mapy, &flags_val, &option, &fillval) < 5) - fillval = INT2FIX(0); - CvArr* self_ptr = CVARR(self); - VALUE dest = Qnil; - int flags = NIL_P(flags_val) ? (CV_INTER_LINEAR | CV_WARP_FILL_OUTLIERS) : NUM2INT(flags_val); - try { - dest = new_mat_kind_object(cvGetSize(self_ptr), self); - cvRemap(self_ptr, CVARR(dest), CVARR_WITH_CHECK(mapx), CVARR_WITH_CHECK(mapy), - flags, VALUE_TO_CVSCALAR(fillval)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return dest; -} - -/* - * Remaps an image to log-polar space. - * - * @overload log_polar(size, center, magnitude, flags = CV_INTER_LINEAR | CV_WARP_FILL_OUTLIERS) - * @param size [CvSize] Size of the destination image. - * @param center [CvPoint2D32f] The transformation center; where the output precision is maximal. - * @param magnitude [Number] Magnitude scale parameter. - * @param flags [Integer] A combination of interpolation methods and the following optional flags: - * * CV_WARP_FILL_OUTLIERS - fills all of the destination image pixels. If some of them - * correspond to outliers in the source image, they are set to zero. - * * CV_WARP_INVERSE_MAP - performs inverse transformation. - * @return [CvMat] Destination image. - * @opencv_func cvLogPolar - */ -VALUE -rb_log_polar(int argc, VALUE *argv, VALUE self) -{ - VALUE dst_size, center, m, flags; - rb_scan_args(argc, argv, "31", &dst_size, ¢er, &m, &flags); - int _flags = NIL_P(flags) ? (CV_INTER_LINEAR | CV_WARP_FILL_OUTLIERS) : NUM2INT(flags); - VALUE dest = new_mat_kind_object(VALUE_TO_CVSIZE(dst_size), self); - try { - cvLogPolar(CVARR(self), CVARR(dest), VALUE_TO_CVPOINT2D32F(center), NUM2DBL(m), _flags); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return dest; -} - -/* - * call-seq: - * erode([element = nil, iteration = 1]) -> cvmat - * - * Create erodes image by using arbitrary structuring element. - * element is structuring element used for erosion. - * element should be IplConvKernel. If it is nil, a 3x3 rectangular structuring element is used. - * iterations is number of times erosion is applied. - */ -VALUE -rb_erode(int argc, VALUE *argv, VALUE self) -{ - return rb_erode_bang(argc, argv, rb_clone(self)); -} - -/* - * call-seq: - * erode!([element = nil][,iteration = 1]) -> self - * - * Erodes image by using arbitrary structuring element. - * see also #erode. - */ -VALUE -rb_erode_bang(int argc, VALUE *argv, VALUE self) -{ - VALUE element, iteration; - rb_scan_args(argc, argv, "02", &element, &iteration); - IplConvKernel* kernel = NIL_P(element) ? NULL : IPLCONVKERNEL_WITH_CHECK(element); - try { - cvErode(CVARR(self), CVARR(self), kernel, IF_INT(iteration, 1)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return self; -} - -/* - * call-seq: - * dilate([element = nil][,iteration = 1]) -> cvmat - * - * Create dilates image by using arbitrary structuring element. - * element is structuring element used for erosion. - * element should be IplConvKernel. If it is nil, a 3x3 rectangular structuring element is used. - * iterations is number of times erosion is applied. - */ -VALUE -rb_dilate(int argc, VALUE *argv, VALUE self) -{ - return rb_dilate_bang(argc, argv, rb_clone(self)); -} - -/* - * call-seq: - * dilate!([element = nil][,iteration = 1]) -> self - * - * Dilate image by using arbitrary structuring element. - * see also #dilate. - */ -VALUE -rb_dilate_bang(int argc, VALUE *argv, VALUE self) -{ - VALUE element, iteration; - rb_scan_args(argc, argv, "02", &element, &iteration); - IplConvKernel* kernel = NIL_P(element) ? NULL : IPLCONVKERNEL_WITH_CHECK(element); - try { - cvDilate(CVARR(self), CVARR(self), kernel, IF_INT(iteration, 1)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return self; -} - -/* - * Performs advanced morphological transformations using erosion and dilation as basic operations. - * - * @overload morphology(operation, element = nil, iteration = 1) - * @param operation [Integer] Type of morphological operation. - * * CV_MOP_OPEN - Opening - * * CV_MOP_CLOSE - Closing - * * CV_MOP_GRADIENT - Morphological gradient - * * CV_MOP_TOPHAT - Top hat - * * CV_MOP_BLACKHAT - Black hat - * @param element [IplConvKernel] Structuring element. - * @param iteration [Integer] Number of times erosion and dilation are applied. - * @return [CvMat] Result array - * @opencv_func cvMorphologyEx - */ -VALUE -rb_morphology(int argc, VALUE *argv, VALUE self) -{ - VALUE element, iteration, operation_val; - rb_scan_args(argc, argv, "12", &operation_val, &element, &iteration); - - int operation = CVMETHOD("MORPHOLOGICAL_OPERATION", operation_val, -1); - CvArr* self_ptr = CVARR(self); - CvSize size = cvGetSize(self_ptr); - VALUE dest = new_mat_kind_object(size, self); - IplConvKernel* kernel = NIL_P(element) ? NULL : IPLCONVKERNEL_WITH_CHECK(element); - try { - if (operation == CV_MOP_GRADIENT) { - CvMat* temp = rb_cvCreateMat(size.height, size.width, cvGetElemType(self_ptr)); - cvMorphologyEx(self_ptr, CVARR(dest), temp, kernel, CV_MOP_GRADIENT, IF_INT(iteration, 1)); - cvReleaseMat(&temp); - } - else { - cvMorphologyEx(self_ptr, CVARR(dest), 0, kernel, operation, IF_INT(iteration, 1)); - } - } - catch (cv::Exception& e) { - raise_cverror(e); - } - - return dest; -} - -/* - * call-seq: - * smooth_blur_no_scale([p1 = 3, p2 = 3]) -> cvmat - * - * Smooths the image by simple blur with no scaling. - * * 8bit unsigned -> return 16bit unsigned - * * 32bit floating point -> return 32bit floating point - * support single-channel image only. - */ -VALUE -rb_smooth_blur_no_scale(int argc, VALUE *argv, VALUE self) -{ - VALUE p1, p2, dest; - rb_scan_args(argc, argv, "02", &p1, &p2); - CvArr* self_ptr = CVARR(self); - int type = cvGetElemType(self_ptr), dest_type; - switch (CV_MAT_DEPTH(type)) { - case CV_8U: - dest_type = CV_16U; - break; - case CV_32F: - dest_type = CV_32F; - break; - default: - rb_raise(rb_eNotImpError, "unsupport format. (support 8bit unsigned/signed or 32bit floating point only)"); - } - dest = new_mat_kind_object(cvGetSize(self_ptr), self, dest_type, CV_MAT_CN(type)); - cvSmooth(self_ptr, CVARR(dest), CV_BLUR_NO_SCALE, IF_INT(p1, 3), IF_INT(p2, 3)); - return dest; -} - -/* - * call-seq: - * smooth_blur([p1 = 3, p2 = 3]) -> cvmat - * - * Smooths the image by simple blur. - * Summation over a pixel p1 x p2 neighborhood with subsequent scaling by 1 / (p1*p2). - */ -VALUE -rb_smooth_blur(int argc, VALUE *argv, VALUE self) -{ - VALUE p1, p2, dest; - rb_scan_args(argc, argv, "02", &p1, &p2); - CvArr* self_ptr = CVARR(self); - dest = new_mat_kind_object(cvGetSize(self_ptr), self); - cvSmooth(self_ptr, CVARR(dest), CV_BLUR, IF_INT(p1, 3), IF_INT(p2, 3)); - return dest; -} - -/* - * call-seq: - * smooth_gaussian([p1 = 3, p2 = 3, p3 = 0.0, p4 = 0.0]) -> cvmat - * - * Smooths the image by gaussian blur. - * Convolving image with p1 x p2 Gaussian kernel. - * - * p3 may specify Gaussian sigma (standard deviation). - * If it is zero, it is calculated from the kernel size: - * sigma = (n/2 - 1)*0.3 + 0.8, where n = p1 for horizontal kernel, - * n = p2 for vertical kernel. - * - * p4 is in case of non-square Gaussian kernel the parameter. - * It may be used to specify a different (from p3) sigma in the vertical direction. - */ -VALUE -rb_smooth_gaussian(int argc, VALUE *argv, VALUE self) -{ - VALUE p1, p2, p3, p4, dest; - rb_scan_args(argc, argv, "04", &p1, &p2, &p3, &p4); - CvArr* self_ptr = CVARR(self); - dest = new_mat_kind_object(cvGetSize(self_ptr), self); - cvSmooth(self_ptr, CVARR(dest), CV_GAUSSIAN, IF_INT(p1, 3), IF_INT(p2, 3), IF_DBL(p3, 0.0), IF_DBL(p4, 0.0)); - return dest; -} - -/* - * call-seq: - * smooth_median([p1 = 3]) -> cvmat - * - * Smooths the image by median blur. - * Finding median of p1 x p1 neighborhood (i.e. the neighborhood is square). - */ -VALUE -rb_smooth_median(int argc, VALUE *argv, VALUE self) -{ - VALUE p1, dest; - rb_scan_args(argc, argv, "01", &p1); - CvArr* self_ptr = CVARR(self); - dest = new_mat_kind_object(cvGetSize(self_ptr), self); - cvSmooth(self_ptr, CVARR(dest), CV_MEDIAN, IF_INT(p1, 3)); - return dest; -} - -/* - * call-seq: - * smooth_bilateral([p1 = 3][p2 = 3]) -> cvmat - * - * Smooths the image by bilateral filter. - * Applying bilateral 3x3 filtering with color sigma=p1 and space sigma=p2. - */ -VALUE -rb_smooth_bilateral(int argc, VALUE *argv, VALUE self) -{ - VALUE p1, p2, dest; - rb_scan_args(argc, argv, "02", &p1, &p2); - CvArr* self_ptr = CVARR(self); - dest = new_mat_kind_object(cvGetSize(self_ptr), self); - cvSmooth(self_ptr, CVARR(dest), CV_BILATERAL, IF_INT(p1, 3), IF_INT(p2, 3)); - return dest; -} - -/** - * Smooths the image in one of several ways. - * - * @overload smooth(smoothtype, size1 = 3, size2 = 0, sigma1 = 0, sigma2 = 0) - * @param smoothtype [Integer] Type of the smoothing. - * * CV_BLUR_NO_SCALE - linear convolution with size1 x size2 box kernel (all 1's). - * If you want to smooth different pixels with different-size box kernels, - * you can use the integral image that is computed using CvMat#integral. - * * CV_BLUR - linear convolution with size1 x size2 box kernel (all 1's) - * with subsequent scaling by 1 / (size1 x size1). - * * CV_GAUSSIAN - linear convolution with a size1 x size2 Gaussian kernel. - * * CV_MEDIAN - median filter with a size1 x size1 square aperture - * * CV_BILATERAL - bilateral filter with a size1 x size1 square aperture, - * color sigma = sigma1 and spatial sigma = sigma2. - * If size1 = 0, the aperture square side is set to CvMat#round(sigma2 * 1.5) * 2 + 1. - * @param size1 [Integer] The first parameter of the smoothing operation, the aperture width. - * Must be a positive odd number (1, 3, 5, ...) - * @param size2 [Integer] The second parameter of the smoothing operation, the aperture height. - * Ignored by CV_MEDIAN and CV_BILATERAL methods. In the case of simple - * scaled/non-scaled and Gaussian blur if size2 is zero, it is set to size1. - * Otherwise it must be a positive odd number. - * @param sigma1 [Integer] In the case of a Gaussian parameter this parameter may specify - * Gaussian sigma (standard deviation). If it is zero, it is calculated from the kernel size. - * @return [CvMat] The destination image. - * @opencv_func cvSmooth - */ -VALUE -rb_smooth(int argc, VALUE *argv, VALUE self) -{ - VALUE smoothtype, p1, p2, p3, p4; - rb_scan_args(argc, argv, "14", &smoothtype, &p1, &p2, &p3, &p4); - int _smoothtype = CVMETHOD("SMOOTHING_TYPE", smoothtype, -1); - - VALUE (*smooth_func)(int c, VALUE* v, VALUE s); - argc--; - switch (_smoothtype) { - case CV_BLUR_NO_SCALE: - smooth_func = rb_smooth_blur_no_scale; - argc = (argc > 2) ? 2 : argc; - break; - case CV_BLUR: - smooth_func = rb_smooth_blur; - argc = (argc > 2) ? 2 : argc; - break; - case CV_GAUSSIAN: - smooth_func = rb_smooth_gaussian; - break; - case CV_MEDIAN: - smooth_func = rb_smooth_median; - argc = (argc > 1) ? 1 : argc; - break; - case CV_BILATERAL: - smooth_func = rb_smooth_bilateral; - argc = (argc > 2) ? 2 : argc; - break; - default: - smooth_func = rb_smooth_gaussian; - break; - } - VALUE result = Qnil; - try { - result = (*smooth_func)(argc, argv + 1, self); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return result; -} - -/* - * call-seq: - * filter2d(kernel[,anchor]) -> cvmat - * - * Convolves image with the kernel. - * Convolution kernel, single-channel floating point matrix (or same depth of self's). - * If you want to apply different kernels to different channels, - * split the image using CvMat#split into separate color planes and process them individually. - */ -VALUE -rb_filter2d(int argc, VALUE *argv, VALUE self) -{ - VALUE _kernel, _anchor; - rb_scan_args(argc, argv, "11", &_kernel, &_anchor); - CvMat* kernel = CVMAT_WITH_CHECK(_kernel); - CvArr* self_ptr = CVARR(self); - VALUE _dest = Qnil; - try { - _dest = new_mat_kind_object(cvGetSize(self_ptr), self); - cvFilter2D(self_ptr, CVARR(_dest), kernel, NIL_P(_anchor) ? cvPoint(-1,-1) : VALUE_TO_CVPOINT(_anchor)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return _dest; -} - -/* - * call-seq: - * copy_make_border(border_type, size, offset[,value = CvScalar.new(0)]) - * - * Copies image and makes border around it. - * border_type: - * - IPL_BORDER_CONSTANT, :constant - * border is filled with the fixed value, passed as last parameter of the function. - * - IPL_BORDER_REPLICATE, :replicate - * the pixels from the top and bottom rows, the left-most and right-most columns are replicated to fill the border - * size: The destination image size - * offset: Coordinates of the top-left corner (or bottom-left in the case of images with bottom-left origin) of the destination image rectangle. - * value: Value of the border pixels if bordertype is IPL_BORDER_CONSTANT or :constant. - */ -VALUE -rb_copy_make_border(int argc, VALUE *argv, VALUE self) -{ - VALUE border_type, size, offset, value, dest; - rb_scan_args(argc, argv, "31", &border_type, &size, &offset, &value); - dest = new_mat_kind_object(VALUE_TO_CVSIZE(size), self); - - int type = 0; - if (SYMBOL_P(border_type)) { - ID type_id = rb_to_id(border_type); - if (type_id == rb_intern("constant")) - type = IPL_BORDER_CONSTANT; - else if (type_id == rb_intern("replicate")) - type = IPL_BORDER_REPLICATE; - else - rb_raise(rb_eArgError, "Invalid border_type (should be :constant or :replicate)"); - } - else - type = NUM2INT(border_type); - - try { - cvCopyMakeBorder(CVARR(self), CVARR(dest), VALUE_TO_CVPOINT(offset), type, - NIL_P(value) ? cvScalar(0) : VALUE_TO_CVSCALAR(value)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return dest; -} - -/* - * call-seq: - * integral(need_sqsum = false, need_tilted_sum = false) -> [cvmat, cvmat or nil, cvmat or nil] - * - * Calculates integral images. - * If need_sqsum = true, calculate the integral image for squared pixel values. - * If need_tilted_sum = true, calculate the integral for the image rotated by 45 degrees. - * - * sum(X,Y)=sumxCV_THRESH_BINARY - * and CV_THRESH_BINARY_INV thresholding types. - * @param threshold_type [Integer] Thresholding type - * * CV_THRESH_BINARY - * * CV_THRESH_BINARY_INV - * * CV_THRESH_TRUNC - * * CV_THRESH_TOZERO - * * CV_THRESH_TOZERO_INV - * @return [CvMat] Output array of the same size and type as self. - * @overload threshold(threshold, max_value, threshold_type, use_otsu) - * @param threshold [Number] Threshold value. - * @param max_value [Number] Maximum value to use with the CV_THRESH_BINARY - * and CV_THRESH_BINARY_INV thresholding types. - * @param threshold_type [Integer] Thresholding type - * * CV_THRESH_BINARY - * * CV_THRESH_BINARY_INV - * * CV_THRESH_TRUNC - * * CV_THRESH_TOZERO - * * CV_THRESH_TOZERO_INV - * @param use_otsu [Boolean] Determines the optimal threshold value using the Otsu's algorithm - * @return [Array] Output array and Otsu's threshold. - * @opencv_func cvThreshold - * @example - * mat = CvMat.new(3, 3, CV_8U, 1) - * mat.set_data([1, 2, 3, 4, 5, 6, 7, 8, 9]) - * mat #=> [1, 2, 3, - * 4, 5, 6, - * 7, 8, 9] - * result = mat.threshold(4, 7, CV_THRESH_BINARY) - * result #=> [0, 0, 0, - * 0, 7, 7, - * 7, 7, 7] - */ -VALUE -rb_threshold(int argc, VALUE *argv, VALUE self) -{ - VALUE threshold, max_value, threshold_type, use_otsu; - rb_scan_args(argc, argv, "31", &threshold, &max_value, &threshold_type, &use_otsu); - const int INVALID_TYPE = -1; - int type = CVMETHOD("THRESHOLD_TYPE", threshold_type, INVALID_TYPE); - if (type == INVALID_TYPE) - rb_raise(rb_eArgError, "Invalid threshold type."); - - return rb_threshold_internal(type, threshold, max_value, use_otsu, self); -} - -/* - * Applies an adaptive threshold to an array. - * - * @overload adaptive_threshold(max_value, options) - * @param max_value [Number] Non-zero value assigned to the pixels for which the condition is satisfied. - * @param options [Hash] Threshold option - * @option options [Integer, Symbol] :threshold_type (CV_THRESH_BINARY) Thresholding type; - * must be one of CV_THRESH_BINARY or :binary, CV_THRESH_BINARY_INV or :binary_inv. - * @option options [Integer, Symbol] :adaptive_method (CV_ADAPTIVE_THRESH_MEAN_C) Adaptive thresholding algorithm to use: - * CV_ADAPTIVE_THRESH_MEAN_C or :mean_c, CV_ADAPTIVE_THRESH_GAUSSIAN_C or :gaussian_c. - * @option options [Integer] :block_size (3) The size of a pixel neighborhood that is used to calculate a threshold value - * for the pixel: 3, 5, 7, and so on. - * @option options :param1 [Number] (5) The method-dependent parameter. For the methods CV_ADAPTIVE_THRESH_MEAN_C - * and CV_ADAPTIVE_THRESH_GAUSSIAN_C it is a constant subtracted from the mean or weighted mean, though it may be negative - * @return [CvMat] Destination image of the same size and the same type as self. - * @opencv_func cvAdaptiveThreshold - * @example - * mat = CvMat.new(3, 3, CV_8U, 1) - * mat.set_data([1, 2, 3, 4, 5, 6, 7, 8, 9]) - * mat #=> [1, 2, 3, - * 4, 5, 6, - * 7, 8, 9] - * result = mat.adaptive_threshold(7, threshold_type: CV_THRESH_BINARY, - * adaptive_method: CV_ADAPTIVE_THRESH_MEAN_C, - * block_size: 3, param1: 1) - * result #=> [0, 0, 0, - * 7, 7, 7, - * 7, 7, 7] - */ -VALUE -rb_adaptive_threshold(int argc, VALUE *argv, VALUE self) -{ - VALUE max_value, options; - rb_scan_args(argc, argv, "11", &max_value, &options); - - int threshold_type = CV_THRESH_BINARY; - int adaptive_method = CV_ADAPTIVE_THRESH_MEAN_C; - int block_size = 3; - double param1 = 5; - if (!NIL_P(options)) { - Check_Type(options, T_HASH); - threshold_type = CVMETHOD("THRESHOLD_TYPE", LOOKUP_HASH(options, "threshold_type"), - CV_THRESH_BINARY); - adaptive_method = CVMETHOD("ADAPTIVE_METHOD", LOOKUP_HASH(options, "adaptive_method"), - CV_ADAPTIVE_THRESH_MEAN_C); - VALUE _block_size = LOOKUP_HASH(options, "block_size"); - if (!NIL_P(_block_size)) { - block_size = NUM2INT(_block_size); - } - VALUE _param1 = LOOKUP_HASH(options, "param1"); - if (!NIL_P(_param1)) { - param1 = NUM2INT(_param1); - } - } - CvArr* self_ptr = CVARR(self); - VALUE dst = new_mat_kind_object(cvGetSize(self_ptr), self); - try { - cvAdaptiveThreshold(self_ptr, CVARR(dst), NUM2DBL(max_value), adaptive_method, threshold_type, - block_size, param1); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - - return dst; -} - -/* - * call-seq: - * pyr_down([filter = :gaussian_5x5]) -> cvmat - * - * Return downsamples image. - * - * This operation performs downsampling step of Gaussian pyramid decomposition. - * First it convolves source image with the specified filter and then downsamples the image - * by rejecting even rows and columns. - * - * note: filter - only :gaussian_5x5 is currently supported. - */ -VALUE -rb_pyr_down(int argc, VALUE *argv, VALUE self) -{ - int filter = CV_GAUSSIAN_5x5; - if (argc > 0) { - VALUE filter_type = argv[0]; - switch (TYPE(filter_type)) { - case T_SYMBOL: - // currently suport CV_GAUSSIAN_5x5 only. - break; - default: - raise_typeerror(filter_type, rb_cSymbol); - } - } - CvArr* self_ptr = CVARR(self); - VALUE dest = Qnil; - try { - CvSize original_size = cvGetSize(self_ptr); - CvSize size = { original_size.width >> 1, original_size.height >> 1 }; - dest = new_mat_kind_object(size, self); - cvPyrDown(self_ptr, CVARR(dest), filter); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return dest; -} - -/* - * call-seq: - * pyr_up([filter = :gaussian_5x5]) -> cvmat - * - * Return upsamples image. - * - * This operation performs up-sampling step of Gaussian pyramid decomposition. - * First it upsamples the source image by injecting even zero rows and columns and - * then convolves result with the specified filter multiplied by 4 for interpolation. - * So the destination image is four times larger than the source image. - * - * note: filter - only :gaussian_5x5 is currently supported. - */ -VALUE -rb_pyr_up(int argc, VALUE *argv, VALUE self) -{ - VALUE filter_type; - rb_scan_args(argc, argv, "01", &filter_type); - int filter = CV_GAUSSIAN_5x5; - if (argc > 0) { - switch (TYPE(filter_type)) { - case T_SYMBOL: - // currently suport CV_GAUSSIAN_5x5 only. - break; - default: - raise_typeerror(filter_type, rb_cSymbol); - } - } - CvArr* self_ptr = CVARR(self); - VALUE dest = Qnil; - try { - CvSize original_size = cvGetSize(self_ptr); - CvSize size = { original_size.width << 1, original_size.height << 1 }; - dest = new_mat_kind_object(size, self); - cvPyrUp(self_ptr, CVARR(dest), filter); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return dest; -} - -/* - * Fills a connected component with the given color. - * - * @overload flood_fill(seed_point, new_val, lo_diff = CvScalar.new(0), up_diff = CvScalar.new(0), flood_fill_option = nil) - * @param seed_point [CvPoint] Starting point. - * @param new_val [CvScalar] New value of the repainted domain pixels. - * @param lo_diff [CvScalar] Maximal lower brightness/color difference between the currently observed pixel - * and one of its neighbor belong to the component or seed pixel to add the pixel to component. - * In case of 8-bit color images it is packed value. - * @param up_diff [CvScalar] Maximal upper brightness/color difference between the currently observed pixel and - * one of its neighbor belong to the component or seed pixel to add the pixel to component. - * In case of 8-bit color images it is packed value. - * @param flood_fill_option [Hash] - * @option flood_fill_option [Integer] :connectivity (4) - * Connectivity determines which neighbors of a pixel are considered (4 or 8). - * @option flood_fill_option [Boolean] :fixed_range (false) - * If set the difference between the current pixel and seed pixel is considered, otherwise difference between - * neighbor pixels is considered (the range is floating). - * @option flood_fill_option [Boolean] :mask_only (false) - * If set, the function does not fill the image(new_val is ignored), but the fills mask. - * @return [Array] Array of output image, connected component and mask. - * @opencv_func cvFloodFill - */ -VALUE -rb_flood_fill(int argc, VALUE *argv, VALUE self) -{ - return rb_flood_fill_bang(argc, argv, copy(self)); -} - -/* - * Fills a connected component with the given color. - * - * @overload flood_fill!(seed_point, new_val, lo_diff = CvScalar.new(0), up_diff = CvScalar.new(0), flood_fill_option = nil) - * @param (see #flood_fill) - * @return (see #flood_fill) - * @opencv_func (see #flood_fill) - */ -VALUE -rb_flood_fill_bang(int argc, VALUE *argv, VALUE self) -{ - VALUE seed_point, new_val, lo_diff, up_diff, flood_fill_option; - rb_scan_args(argc, argv, "23", &seed_point, &new_val, &lo_diff, &up_diff, &flood_fill_option); - flood_fill_option = FLOOD_FILL_OPTION(flood_fill_option); - int flags = FF_CONNECTIVITY(flood_fill_option); - if (FF_FIXED_RANGE(flood_fill_option)) { - flags |= CV_FLOODFILL_FIXED_RANGE; - } - if (FF_MASK_ONLY(flood_fill_option)) { - flags |= CV_FLOODFILL_MASK_ONLY; - } - CvArr* self_ptr = CVARR(self); - VALUE comp = cCvConnectedComp::new_object(); - VALUE mask = Qnil; - try { - CvSize size = cvGetSize(self_ptr); - // TODO: Change argument format to set mask - mask = new_object(size.height + 2, size.width + 2, CV_MAKETYPE(CV_8U, 1)); - CvMat* mask_ptr = CVMAT(mask); - cvSetZero(mask_ptr); - cvFloodFill(self_ptr, - VALUE_TO_CVPOINT(seed_point), - VALUE_TO_CVSCALAR(new_val), - NIL_P(lo_diff) ? cvScalar(0) : VALUE_TO_CVSCALAR(lo_diff), - NIL_P(up_diff) ? cvScalar(0) : VALUE_TO_CVSCALAR(up_diff), - CVCONNECTEDCOMP(comp), - flags, - mask_ptr); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return rb_ary_new3(3, self, comp, mask); -} - -/* - * Finds contours in binary image. - * - * @overload find_contours(find_contours_options) - * @param find_contours_options [Hash] Options - * @option find_contours_options [Symbol] :mode (:list) Retrieval mode. - * * :external - retrive only the extreme outer contours - * * :list - retrieve all the contours and puts them in the list. - * * :ccomp - retrieve all the contours and organizes them into two-level hierarchy: - * top level are external boundaries of the components, second level are bounda boundaries of the holes - * * :tree - retrieve all the contours and reconstructs the full hierarchy of nested contours - * Connectivity determines which neighbors of a pixel are considered. - * @option find_contours_options [Symbol] :method (:approx_simple) Approximation method. - * * :code - output contours in the Freeman chain code. All other methods output polygons (sequences of vertices). - * * :approx_none - translate all the points from the chain code into points; - * * :approx_simple - compress horizontal, vertical, and diagonal segments, that is, the function leaves only their ending points; - * * :approx_tc89_l1, :approx_tc89_kcos - apply one of the flavors of Teh-Chin chain approximation algorithm. - * @option find_contours_options [CvPoint] :offset (CvPoint.new(0, 0)) Offset, by which every contour point is shifted. - * @return [CvContour, CvChain] Detected contours. If :method is :code, - * returns as CvChain, otherwise CvContour. - * @opencv_func cvFindContours - */ -VALUE -rb_find_contours(int argc, VALUE *argv, VALUE self) -{ - return rb_find_contours_bang(argc, argv, copy(self)); -} - -/* - * Finds contours in binary image. - * - * @overload find_contours!(find_contours_options) - * @param (see #find_contours) - * @return (see #find_contours) - * @opencv_func (see #find_contours) - */ -VALUE -rb_find_contours_bang(int argc, VALUE *argv, VALUE self) -{ - VALUE find_contours_option, klass, element_klass, storage; - rb_scan_args(argc, argv, "01", &find_contours_option); - CvSeq *contour = NULL; - find_contours_option = FIND_CONTOURS_OPTION(find_contours_option); - int mode = FC_MODE(find_contours_option); - int method = FC_METHOD(find_contours_option); - int header_size; - if (method == CV_CHAIN_CODE) { - klass = cCvChain::rb_class(); - element_klass = T_FIXNUM; - header_size = sizeof(CvChain); - } - else { - klass = cCvContour::rb_class(); - element_klass = cCvPoint::rb_class(); - header_size = sizeof(CvContour); - } - storage = cCvMemStorage::new_object(); - - int count = 0; - try { - count = cvFindContours(CVARR(self), CVMEMSTORAGE(storage), &contour, header_size, - mode, method, FC_OFFSET(find_contours_option)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - if (count == 0) - return Qnil; - else - return cCvSeq::new_sequence(klass, contour, element_klass, storage); -} - -/* - * call-seq: - * draw_contours(contour, external_color, hole_color, max_level, options) -> cvmat - * - * Draws contour outlines or interiors in an image. - * - * * contour (CvContour) - Pointer to the first contour - * * external_color (CvScalar) - Color of the external contours - * * hole_color (CvScalar) - Color of internal contours (holes) - * * max_level (Integer) - Maximal level for drawn contours. If 0, only contour is drawn. If 1, the contour and all contours following it on the same level are drawn. If 2, all contours following and all contours one level below the contours are drawn, and so forth. If the value is negative, the function does not draw the contours following after contour but draws the child contours of contour up to the |max_level| - 1 level. - * * options (Hash) - Drawing options. - * * :thickness (Integer) - Thickness of lines the contours are drawn with. If it is negative, the contour interiors are drawn (default: 1). - * * :line_type (Integer or Symbol) - Type of the contour segments, see CvMat#line description (default: 8). - */ -VALUE -rb_draw_contours(int argc, VALUE *argv, VALUE self) -{ - return rb_draw_contours_bang(argc, argv, copy(self)); -} - -/* - * call-seq: - * draw_contours!(contour, external_color, hole_color, max_level, options) -> cvmat - * - * Draws contour outlines or interiors in an image. - * - * see CvMat#draw_contours - */ -VALUE -rb_draw_contours_bang(int argc, VALUE *argv, VALUE self) -{ - VALUE contour, external_color, hole_color, max_level, options; - rb_scan_args(argc, argv, "41", &contour, &external_color, &hole_color, &max_level, &options); - options = DRAWING_OPTION(options); - try { - cvDrawContours(CVARR(self), CVSEQ_WITH_CHECK(contour), VALUE_TO_CVSCALAR(external_color), - VALUE_TO_CVSCALAR(hole_color), NUM2INT(max_level), - DO_THICKNESS(options), DO_LINE_TYPE(options)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return self; -} - -/* - * call-seq: - * draw_chessboard_corners(pattern_size, corners, pattern_was_found) -> nil - * - * Returns an image which is rendered the detected chessboard corners. - * - * pattern_size (CvSize) - Number of inner corners per a chessboard row and column. - * corners (Array) - Array of detected corners, the output of CvMat#find_chessboard_corners. - * pattern_was_found (Boolean)- Parameter indicating whether the complete board was found or not. - */ -VALUE -rb_draw_chessboard_corners(VALUE self, VALUE pattern_size, VALUE corners, VALUE pattern_was_found) -{ - return rb_draw_chessboard_corners_bang(copy(self), pattern_size, corners, pattern_was_found); -} - -/* - * call-seq: - * draw_chessboard_corners!(pattern_size, corners, pattern_was_found) -> self - * - * Renders the detected chessboard corners. - * - * pattern_size (CvSize) - Number of inner corners per a chessboard row and column. - * corners (Array) - Array of detected corners, the output of CvMat#find_chessboard_corners. - * pattern_was_found (Boolean)- Parameter indicating whether the complete board was found or not. - */ -VALUE -rb_draw_chessboard_corners_bang(VALUE self, VALUE pattern_size, VALUE corners, VALUE pattern_was_found) -{ - Check_Type(corners, T_ARRAY); - int count = RARRAY_LEN(corners); - CvPoint2D32f* corners_buff = ALLOCA_N(CvPoint2D32f, count); - VALUE* corners_ptr = RARRAY_PTR(corners); - for (int i = 0; i < count; i++) { - corners_buff[i] = *(CVPOINT2D32F(corners_ptr[i])); - } - - try { - int found = (pattern_was_found == Qtrue); - cvDrawChessboardCorners(CVARR(self), VALUE_TO_CVSIZE(pattern_size), corners_buff, count, found); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - - return self; -} - -/* - * call-seq: - * pyr_mean_shift_filtering(sp, sr[,max_level = 1][termcrit = CvTermCriteria.new(5,1)]) -> cvmat - * - * Does meanshift image segmentation. - * - * sp - The spatial window radius. - * sr - The color window radius. - * max_level - Maximum level of the pyramid for the segmentation. - * termcrit - Termination criteria: when to stop meanshift iterations. - * - * This method is implements the filtering stage of meanshift segmentation, - * that is, the output of the function is the filtered "posterized" image with color gradients and fine-grain texture flattened. - * At every pixel (X,Y) of the input image (or down-sized input image, see below) - * the function executes meanshift iterations, that is, the pixel (X,Y) neighborhood in the joint space-color hyperspace is considered: - * {(x,y): X-sp≤x≤X+sp && Y-sp≤y≤Y+sp && ||(R,G,B)-(r,g,b)|| ≤ sr}, - * where (R,G,B) and (r,g,b) are the vectors of color components at (X,Y) and (x,y), - * respectively (though, the algorithm does not depend on the color space used, - * so any 3-component color space can be used instead). - * Over the neighborhood the average spatial value (X',Y') - * and average color vector (R',G',B') are found and they act as the neighborhood center on the next iteration: - * (X,Y)~(X',Y'), (R,G,B)~(R',G',B'). - * After the iterations over, the color components of the initial pixel (that is, the pixel from where the iterations started) - * are set to the final value (average color at the last iteration): - * I(X,Y) <- (R*,G*,B*). - * Then max_level > 0, the gaussian pyramid of max_level+1 levels is built, - * and the above procedure is run on the smallest layer. - * After that, the results are propagated to the larger layer and the iterations are run again - * only on those pixels where the layer colors differ much (>sr) from the lower-resolution layer, - * that is, the boundaries of the color regions are clarified. - * - * Note, that the results will be actually different from the ones obtained by running the meanshift procedure on the whole original image (i.e. when max_level==0). - */ -VALUE -rb_pyr_mean_shift_filtering(int argc, VALUE *argv, VALUE self) -{ - VALUE spatial_window_radius, color_window_radius, max_level, termcrit; - rb_scan_args(argc, argv, "22", &spatial_window_radius, &color_window_radius, &max_level, &termcrit); - CvArr* self_ptr = CVARR(self); - VALUE dest = Qnil; - try { - dest = new_mat_kind_object(cvGetSize(self_ptr), self); - cvPyrMeanShiftFiltering(self_ptr, CVARR(dest), - NUM2DBL(spatial_window_radius), - NUM2DBL(color_window_radius), - IF_INT(max_level, 1), - NIL_P(termcrit) ? cvTermCriteria(CV_TERMCRIT_ITER + CV_TERMCRIT_EPS, 5, 1) - : VALUE_TO_CVTERMCRITERIA(termcrit)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return dest; -} - -/* - * Performs a marker-based image segmentation using the watershed algorithm. - * - * @overload watershed(markers) - * @param markers [CvMat] Input 32-bit single-channel image of markers. It should have the same size as self - * @return [CvMat] Output image - * @opencv_func cvWatershed - */ -VALUE -rb_watershed(VALUE self, VALUE markers) -{ - try { - cvWatershed(CVARR(self), CVARR_WITH_CHECK(markers)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return markers; -} - -/* - * call-seq: - * moments -> cvmoments - * - * Calculates moments. - */ -VALUE -rb_moments(int argc, VALUE *argv, VALUE self) -{ - VALUE is_binary; - rb_scan_args(argc, argv, "01", &is_binary); - CvArr *self_ptr = CVARR(self); - VALUE moments = Qnil; - try { - moments = cCvMoments::new_object(self_ptr, TRUE_OR_FALSE(is_binary, 0)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return moments; -} - -/* - * Finds lines in binary image using a Hough transform. - * - * @overload hough_lines(method, rho, theta, threshold, param1, param2) - * @param method [Integer] The Hough transform variant, one of the following: - * * CV_HOUGH_STANDARD - classical or standard Hough transform. - * * CV_HOUGH_PROBABILISTIC - probabilistic Hough transform (more efficient in case if picture contains a few long linear segments). - * * CV_HOUGH_MULTI_SCALE - multi-scale variant of the classical Hough transform. The lines are encoded the same way as CV_HOUGH_STANDARD. - * @param rho [Number] Distance resolution in pixel-related units. - * @param theta [Number] Angle resolution measured in radians. - * @param threshold [Number] Threshold parameter. A line is returned by the function if the corresponding - * accumulator value is greater than threshold. - * @param param1 [Number] The first method-dependent parameter: - * * For the classical Hough transform it is not used (0). - * * For the probabilistic Hough transform it is the minimum line length. - * * For the multi-scale Hough transform it is the divisor for the distance resolution. - * (The coarse distance resolution will be rho and the accurate resolution will be (rho / param1)). - * @param param2 [Number] The second method-dependent parameter: - * * For the classical Hough transform it is not used (0). - * * For the probabilistic Hough transform it is the maximum gap between line segments lying - * on the same line to treat them as a single line segment (i.e. to join them). - * * For the multi-scale Hough transform it is the divisor for the angle resolution. - * (The coarse angle resolution will be theta and the accurate resolution will be (theta / param2).) - * @return [CvSeq] Output lines. If method is CV_HOUGH_STANDARD or CV_HOUGH_MULTI_SCALE, - * the class of elements is CvLine, otherwise CvTwoPoints. - * @opencv_func cvHoughLines2 - */ -VALUE -rb_hough_lines(int argc, VALUE *argv, VALUE self) -{ - const int INVALID_TYPE = -1; - VALUE method, rho, theta, threshold, p1, p2; - rb_scan_args(argc, argv, "42", &method, &rho, &theta, &threshold, &p1, &p2); - int method_flag = CVMETHOD("HOUGH_TRANSFORM_METHOD", method, INVALID_TYPE); - if (method_flag == INVALID_TYPE) - rb_raise(rb_eArgError, "Invalid method: %d", method_flag); - VALUE storage = cCvMemStorage::new_object(); - CvSeq *seq = NULL; - try { - seq = cvHoughLines2(CVARR(copy(self)), CVMEMSTORAGE(storage), - method_flag, NUM2DBL(rho), NUM2DBL(theta), NUM2INT(threshold), - IF_DBL(p1, 0), IF_DBL(p2, 0)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - switch (method_flag) { - case CV_HOUGH_STANDARD: - case CV_HOUGH_MULTI_SCALE: - return cCvSeq::new_sequence(cCvSeq::rb_class(), seq, cCvLine::rb_class(), storage); - break; - case CV_HOUGH_PROBABILISTIC: - return cCvSeq::new_sequence(cCvSeq::rb_class(), seq, cCvTwoPoints::rb_class(), storage); - break; - default: - break; - } - - return Qnil; -} - -/* - * Finds circles in a grayscale image using the Hough transform. - * - * @overload hough_circles(method, dp, min_dist, param1, param2, min_radius = 0, max_radius = 0) - * @param method [Integer] Detection method to use. Currently, the only implemented method is CV_HOUGH_GRADIENT. - * @param dp [Number] Inverse ratio of the accumulator resolution to the image resolution. - * For example, if dp=1, the accumulator has the same resolution as the input image. - * If dp=2, the accumulator has half as big width and height. - * @param min_dist [Number] Minimum distance between the centers of the detected circles. - * If the parameter is too small, multiple neighbor circles may be falsely detected - * in addition to a true one. If it is too large, some circles may be missed. - * @param param1 [Number] First method-specific parameter. In case of CV_HOUGH_GRADIENT, - * it is the higher threshold of the two passed to the #canny detector (the lower one is twice smaller). - * @param param2 [Number] Second method-specific parameter. In case of CV_HOUGH_GRADIENT, - * it is the accumulator threshold for the circle centers at the detection stage. The smaller it is, - * the more false circles may be detected. Circles, corresponding to the larger accumulator values, - * will be returned first. - * @return [CvSeq] Output circles. - * @opencv_func cvHoughCircles - */ -VALUE -rb_hough_circles(int argc, VALUE *argv, VALUE self) -{ - const int INVALID_TYPE = -1; - VALUE method, dp, min_dist, param1, param2, min_radius, max_radius, storage; - rb_scan_args(argc, argv, "52", &method, &dp, &min_dist, ¶m1, ¶m2, - &min_radius, &max_radius); - storage = cCvMemStorage::new_object(); - int method_flag = CVMETHOD("HOUGH_TRANSFORM_METHOD", method, INVALID_TYPE); - if (method_flag == INVALID_TYPE) - rb_raise(rb_eArgError, "Invalid method: %d", method_flag); - CvSeq *seq = NULL; - try { - seq = cvHoughCircles(CVARR(self), CVMEMSTORAGE(storage), - method_flag, NUM2DBL(dp), NUM2DBL(min_dist), - NUM2DBL(param1), NUM2DBL(param2), - IF_INT(min_radius, 0), IF_INT(max_radius, 0)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return cCvSeq::new_sequence(cCvSeq::rb_class(), seq, cCvCircle32f::rb_class(), storage); -} - -/* - * call-seq: - * inpaint(inpaint_method, mask, radius) -> cvmat - * - * Inpaints the selected region in the image - * The radius of circlular neighborhood of each point inpainted that is considered by the algorithm. - */ -VALUE -rb_inpaint(VALUE self, VALUE inpaint_method, VALUE mask, VALUE radius) -{ - const int INVALID_TYPE = -1; - VALUE dest = Qnil; - int method = CVMETHOD("INPAINT_METHOD", inpaint_method, INVALID_TYPE); - if (method == INVALID_TYPE) - rb_raise(rb_eArgError, "Invalid method"); - try { - CvArr* self_ptr = CVARR(self); - dest = new_mat_kind_object(cvGetSize(self_ptr), self); - cvInpaint(self_ptr, MASK(mask), CVARR(dest), NUM2DBL(radius), method); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return dest; -} - -/* - * call-seq: - * equalize_hist -> cvmat - * - * Equalize histgram of grayscale of image. - * - * equalizes histogram of the input image using the following algorithm: - * 1. calculate histogram H for src. - * 2. normalize histogram, so that the sum of histogram bins is 255. - * 3. compute integral of the histogram: - * H’(i) = sum0≤j≤iH(j) - * 4. transform the image using H’ as a look-up table: dst(x,y)=H’(src(x,y)) - * The algorithm normalizes brightness and increases contrast of the image. - * - * support single-channel 8bit image (grayscale) only. - */ -VALUE -rb_equalize_hist(VALUE self) -{ - VALUE dest = Qnil; - try { - CvArr* self_ptr = CVARR(self); - dest = new_mat_kind_object(cvGetSize(self_ptr), self); - cvEqualizeHist(self_ptr, CVARR(dest)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return dest; -} - -/* - * call-seq: - * apply_color_map(colormap) -> cvmat - * - * Applies a GNU Octave/MATLAB equivalent colormap on a given image. - * - * Parameters: - * colormap - The colormap to apply. - */ -VALUE -rb_apply_color_map(VALUE self, VALUE colormap) -{ - VALUE dst; - try { - cv::Mat dst_mat; - cv::Mat self_mat(CVMAT(self)); - - cv::applyColorMap(self_mat, dst_mat, NUM2INT(colormap)); - CvMat tmp = dst_mat; - dst = new_object(tmp.rows, tmp.cols, tmp.type); - cvCopy(&tmp, CVMAT(dst)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - - return dst; -} - -/* - * Compares template against overlapped image regions. - * - * @overload match_template(template, method = CV_TM_SQDIFF) - * @param template [CvMat] Searched template. It must be not greater than the source image and have the same data type. - * @param method [Integer] Parameter specifying the comparison method. - * * CV_TM_SQDIFF - * * CV_TM_SQDIFF_NORMED - * * CV_TM_CCORR - * * CV_TM_CCORR_NORMED - * * CV_TM_CCOEFF - * * CV_TM_CCOEFF_NORMED - * @opencv_func cvMatchTemplate - * - * After the match_template finishes comparison, the best matches can be found as global - * minimums (CV_TM_SQDIFF) or maximums(CV_TM_CCORR or CV_TM_CCOEFF) using CvMat#min_max_loc. - * In case of color image and template summation in both numerator and each sum in denominator - * is done over all the channels (and separate mean values are used for each channel). - */ -VALUE -rb_match_template(int argc, VALUE *argv, VALUE self) -{ - VALUE templ, method; - int method_flag; - if (rb_scan_args(argc, argv, "11", &templ, &method) == 1) - method_flag = CV_TM_SQDIFF; - else - method_flag = CVMETHOD("MATCH_TEMPLATE_METHOD", method); - - CvArr* self_ptr = CVARR(self); - CvArr* templ_ptr = CVARR_WITH_CHECK(templ); - VALUE result = Qnil; - try { - CvSize src_size = cvGetSize(self_ptr); - CvSize template_size = cvGetSize(templ_ptr); - result = cCvMat::new_object(src_size.height - template_size.height + 1, - src_size.width - template_size.width + 1, - CV_32FC1); - cvMatchTemplate(self_ptr, templ_ptr, CVARR(result), method_flag); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return result; -} - -/* - * call-seq: - * match_shapes(object, method) -> float - * - * Compares two shapes(self and object). object should be CvMat or CvContour. - * - * A - object1, B - object2: - * * method=CV_CONTOURS_MATCH_I1 - * I1(A,B)=sumi=1..7abs(1/mAi - 1/mBi) - * * method=CV_CONTOURS_MATCH_I2 - * I2(A,B)=sumi=1..7abs(mAi - mBi) - * * method=CV_CONTOURS_MATCH_I3 - * I3(A,B)=sumi=1..7abs(mAi - mBi)/abs(mAi) - */ -VALUE -rb_match_shapes(int argc, VALUE *argv, VALUE self) -{ - VALUE object, method, param; - rb_scan_args(argc, argv, "21", &object, &method, ¶m); - int method_flag = CVMETHOD("COMPARISON_METHOD", method); - if (!(rb_obj_is_kind_of(object, cCvMat::rb_class()) || rb_obj_is_kind_of(object, cCvContour::rb_class()))) - rb_raise(rb_eTypeError, "argument 1 (shape) should be %s or %s", - rb_class2name(cCvMat::rb_class()), rb_class2name(cCvContour::rb_class())); - double result = 0; - try { - result = cvMatchShapes(CVARR(self), CVARR(object), method_flag); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return rb_float_new(result); -} - -/* - * call-seq: - * mean_shift(window, criteria) -> comp - * - * Implements CAMSHIFT object tracking algrorithm. - * First, it finds an object center using mean_shift and, after that, - * calculates the object size and orientation. - */ -VALUE -rb_mean_shift(VALUE self, VALUE window, VALUE criteria) -{ - VALUE comp = cCvConnectedComp::new_object(); - try { - cvMeanShift(CVARR(self), VALUE_TO_CVRECT(window), VALUE_TO_CVTERMCRITERIA(criteria), CVCONNECTEDCOMP(comp)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return comp; -} - -/* - * call-seq: - * cam_shift(window, criteria) -> [comp, box] - * - * Implements CAMSHIFT object tracking algrorithm. First, it finds an object center using cvMeanShift and, - * after that, calculates the object size and orientation. The function returns number of iterations made - * within cvMeanShift. - */ -VALUE -rb_cam_shift(VALUE self, VALUE window, VALUE criteria) -{ - VALUE comp = cCvConnectedComp::new_object(); - VALUE box = cCvBox2D::new_object(); - try { - cvCamShift(CVARR(self), VALUE_TO_CVRECT(window), VALUE_TO_CVTERMCRITERIA(criteria), - CVCONNECTEDCOMP(comp), CVBOX2D(box)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return rb_ary_new3(2, comp, box); -} - -/* - * call-seq: - * snake_image(points, alpha, beta, gamma, window, criteria[, calc_gradient = true]) -> array(pointset) - * - * Updates snake in order to minimize its total energy that is a sum of internal energy - * that depends on contour shape (the smoother contour is, the smaller internal energy is) - * and external energy that depends on the energy field and reaches minimum at the local energy - * extremums that correspond to the image edges in case of image gradient. - - * The parameter criteria.epsilon is used to define the minimal number of points that must be moved - * during any iteration to keep the iteration process running. - * - * If at some iteration the number of moved points is less than criteria.epsilon or - * the function performed criteria.max_iter iterations, the function terminates. - * - * points - * Contour points (snake). - * alpha - * Weight[s] of continuity energy, single float or array of length floats, one per each contour point. - * beta - * Weight[s] of curvature energy, similar to alpha. - * gamma - * Weight[s] of image energy, similar to alpha. - * window - * Size of neighborhood of every point used to search the minimum, both win.width and win.height must be odd. - * criteria - * Termination criteria. - * calc_gradient - * Gradient flag. If not 0, the function calculates gradient magnitude for every image pixel and consideres - * it as the energy field, otherwise the input image itself is considered. - */ -VALUE -rb_snake_image(int argc, VALUE *argv, VALUE self) -{ - VALUE points, alpha, beta, gamma, window, criteria, calc_gradient; - rb_scan_args(argc, argv, "61", &points, &alpha, &beta, &gamma, &window, &criteria, &calc_gradient); - CvPoint *pointset = 0; - int length = CVPOINTS_FROM_POINT_SET(points, &pointset); - int coeff = (TYPE(alpha) == T_ARRAY && TYPE(beta) == T_ARRAY && TYPE(gamma) == T_ARRAY) ? CV_ARRAY : CV_VALUE; - float *a = 0, *b = 0, *c = 0; - IplImage stub; - int i; - if (coeff == CV_VALUE) { - float buff_a, buff_b, buff_c; - buff_a = (float)NUM2DBL(alpha); - buff_b = (float)NUM2DBL(beta); - buff_c = (float)NUM2DBL(gamma); - a = &buff_a; - b = &buff_b; - c = &buff_c; - } - else { // CV_ARRAY - if ((RARRAY_LEN(alpha) != length) || - (RARRAY_LEN(beta) != length) || - (RARRAY_LEN(gamma) != length)) - rb_raise(rb_eArgError, "alpha, beta, gamma should be same size of points"); - a = ALLOCA_N(float, length); - b = ALLOCA_N(float, length); - c = ALLOCA_N(float, length); - for (i = 0; i < length; ++i) { - a[i] = (float)NUM2DBL(RARRAY_PTR(alpha)[i]); - b[i] = (float)NUM2DBL(RARRAY_PTR(beta)[i]); - c[i] = (float)NUM2DBL(RARRAY_PTR(gamma)[i]); - } - } - CvSize win = VALUE_TO_CVSIZE(window); - CvTermCriteria tc = VALUE_TO_CVTERMCRITERIA(criteria); - try { - cvSnakeImage(cvGetImage(CVARR(self), &stub), pointset, length, - a, b, c, coeff, win, tc, IF_BOOL(calc_gradient, 1, 0, 1)); - } - catch (cv::Exception& e) { - if (pointset != NULL) - cvFree(&pointset); - raise_cverror(e); - } - VALUE result = rb_ary_new2(length); - for (i = 0; i < length; ++i) - rb_ary_push(result, cCvPoint::new_object(pointset[i])); - cvFree(&pointset); - - return result; -} - -/* - * call-seq: - * optical_flow_hs(prev[,velx = nil][,vely = nil][,options]) -> [cvmat, cvmat] - * - * Calculates optical flow for two images (previous -> self) using Horn & Schunck algorithm. - * Return horizontal component of the optical flow and vertical component of the optical flow. - * prev is previous image - * velx is previous velocity field of x-axis, and vely is previous velocity field of y-axis. - * - * options - * * :lambda -> should be Float (default is 0.0005) - * Lagrangian multiplier. - * * :criteria -> should be CvTermCriteria object (default is CvTermCriteria(1, 0.001)) - * Criteria of termination of velocity computing. - * note: option's default value is CvMat::OPTICAL_FLOW_HS_OPTION. - * - * sample code - * velx, vely = nil, nil - * while true - * current = capture.query - * velx, vely = current.optical_flow_hs(prev, velx, vely) if prev - * prev = current - * end - */ -VALUE -rb_optical_flow_hs(int argc, VALUE *argv, VALUE self) -{ - VALUE prev, velx, vely, options; - int use_previous = 0; - rb_scan_args(argc, argv, "13", &prev, &velx, &vely, &options); - options = OPTICAL_FLOW_HS_OPTION(options); - CvMat *velx_ptr, *vely_ptr; - CvArr* self_ptr = CVARR(self); - try { - if (NIL_P(velx) && NIL_P(vely)) { - CvSize size = cvGetSize(self_ptr); - int type = CV_MAKETYPE(CV_32F, 1); - velx = cCvMat::new_object(size, type); - vely = cCvMat::new_object(size, type); - velx_ptr = CVMAT(velx); - vely_ptr = CVMAT(vely); - } - else { - use_previous = 1; - velx_ptr = CVMAT_WITH_CHECK(velx); - vely_ptr = CVMAT_WITH_CHECK(vely); - } - cvCalcOpticalFlowHS(CVMAT_WITH_CHECK(prev), self_ptr, use_previous, velx_ptr, vely_ptr, - HS_LAMBDA(options), HS_CRITERIA(options)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return rb_ary_new3(2, velx, vely); -} - -/* - * call-seq: - * optical_flow_lk(prev, win_size) -> [cvmat, cvmat] - * - * Calculates optical flow for two images (previous -> self) using Lucas & Kanade algorithm - * Return horizontal component of the optical flow and vertical component of the optical flow. - * - * win_size is size of the averaging window used for grouping pixels. - */ -VALUE -rb_optical_flow_lk(VALUE self, VALUE prev, VALUE win_size) -{ - VALUE velx = Qnil; - VALUE vely = Qnil; - try { - CvArr* self_ptr = CVARR(self); - CvSize size = cvGetSize(self_ptr); - int type = CV_MAKETYPE(CV_32F, 1); - velx = cCvMat::new_object(size, type); - vely = cCvMat::new_object(size, type); - cvCalcOpticalFlowLK(CVMAT_WITH_CHECK(prev), self_ptr, VALUE_TO_CVSIZE(win_size), - CVARR(velx), CVARR(vely)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return rb_ary_new3(2, velx, vely); -} - -/* - * call-seq: - * optical_flow_bm(prev[,velx = nil][,vely = nil][,option]) -> [cvmat, cvmat] - * - * Calculates optical flow for two images (previous -> self) using block matching method. - * Return horizontal component of the optical flow and vertical component of the optical flow. - * prev is previous image. - * velx is previous velocity field of x-axis, and vely is previous velocity field of y-axis. - * - * options - * * :block_size -> should be CvSize (default is CvSize(4,4)) - * Size of basic blocks that are compared. - * * :shift_size -> should be CvSize (default is CvSize(1,1)) - * Block coordinate increments. - * * :max_range -> should be CvSize (default is CVSize(4,4)) - * Size of the scanned neighborhood in pixels around block. - * note: option's default value is CvMat::OPTICAL_FLOW_BM_OPTION. - * - * Velocity is computed for every block, but not for every pixel, - * so velocity image pixels correspond to input image blocks. - * input/output velocity field's size should be (self.width / block_size.width)x(self.height / block_size.height). - * e.g. image.size is 320x240 and block_size is 4x4, velocity field's size is 80x60. - * - */ -VALUE -rb_optical_flow_bm(int argc, VALUE *argv, VALUE self) -{ - VALUE prev, velx, vely, options; - rb_scan_args(argc, argv, "13", &prev, &velx, &vely, &options); - options = OPTICAL_FLOW_BM_OPTION(options); - CvArr* self_ptr = CVARR(self); - CvSize block_size = BM_BLOCK_SIZE(options); - CvSize shift_size = BM_SHIFT_SIZE(options); - CvSize max_range = BM_MAX_RANGE(options); - - int use_previous = 0; - try { - CvSize image_size = cvGetSize(self_ptr); - CvSize velocity_size = cvSize((image_size.width - block_size.width + shift_size.width) / shift_size.width, - (image_size.height - block_size.height + shift_size.height) / shift_size.height); - CvMat *velx_ptr, *vely_ptr; - if (NIL_P(velx) && NIL_P(vely)) { - int type = CV_MAKETYPE(CV_32F, 1); - velx = cCvMat::new_object(velocity_size, type); - vely = cCvMat::new_object(velocity_size, type); - velx_ptr = CVMAT(velx); - vely_ptr = CVMAT(vely); - } - else { - use_previous = 1; - velx_ptr = CVMAT_WITH_CHECK(velx); - vely_ptr = CVMAT_WITH_CHECK(vely); - } - cvCalcOpticalFlowBM(CVMAT_WITH_CHECK(prev), self_ptr, - block_size, shift_size, max_range, use_previous, - velx_ptr, vely_ptr); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return rb_ary_new3(2, velx, vely); -} - -/* - * call-seq: - * CvMat.find_fundamental_mat(points1, points2[,options = {}]) -> fundamental_matrix(cvmat) or nil - * - * Calculates fundamental matrix from corresponding points. - * Size of the output fundamental matrix is 3x3 or 9x3 (7-point method may return up to 3 matrices) - * - * points1 and points2 should be 2xN, Nx2, 3xN or Nx3 1-channel, or 1xN or Nx1 multi-channel matrix. - * method is method for computing the fundamental matrix - * - CV_FM_7POINT for a 7-point algorithm. (N = 7) - * - CV_FM_8POINT for an 8-point algorithm. (N >= 8) - * - CV_FM_RANSAC for the RANSAC algorithm. (N >= 8) - * - CV_FM_LMEDS for the LMedS algorithm. (N >= 8) - * option should be Hash include these keys. - * :with_status (true or false) - * If set true, return fundamental_matrix and status. [fundamental_matrix, status] - * Otherwise return fundamental matrix only(default). - * :maximum_distance - * The parameter is used for RANSAC. It is the maximum distance from point to epipolar line in pixels, beyond which the point is considered an outlier and is not used for computing the final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the point localization, image resolution and the image noise. - * :desirable_level - * The optional output array of N elements, every element of which is set to 0 for outliers and to 1 for the other points. The array is computed only in RANSAC and LMedS methods. For other methods it is set to all 1's. - * - * note: option's default value is CvMat::FIND_FUNDAMENTAL_MAT_OPTION. - */ -VALUE -rb_find_fundamental_mat(int argc, VALUE *argv, VALUE klass) -{ - VALUE points1, points2, method, option, fundamental_matrix, status; - int num = 0; - rb_scan_args(argc, argv, "31", &points1, &points2, &method, &option); - option = FIND_FUNDAMENTAL_MAT_OPTION(option); - int fm_method = FIX2INT(method); - CvMat *points1_ptr = CVMAT_WITH_CHECK(points1); - if (fm_method == CV_FM_7POINT) - fundamental_matrix = cCvMat::new_object(9, 3, CV_MAT_DEPTH(points1_ptr->type)); - else - fundamental_matrix = cCvMat::new_object(3, 3, CV_MAT_DEPTH(points1_ptr->type)); - - if (FFM_WITH_STATUS(option)) { - int status_len = (points1_ptr->rows > points1_ptr->cols) ? points1_ptr->rows : points1_ptr->cols; - status = cCvMat::new_object(1, status_len, CV_8UC1); - try { - num = cvFindFundamentalMat(points1_ptr, CVMAT_WITH_CHECK(points2), CVMAT(fundamental_matrix), fm_method, - FFM_MAXIMUM_DISTANCE(option), FFM_DESIRABLE_LEVEL(option), CVMAT(status)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return num == 0 ? Qnil : rb_ary_new3(2, fundamental_matrix, status); - } - else { - try { - num = cvFindFundamentalMat(points1_ptr, CVMAT_WITH_CHECK(points2), CVMAT(fundamental_matrix), fm_method, - FFM_MAXIMUM_DISTANCE(option), FFM_DESIRABLE_LEVEL(option), NULL); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return num == 0 ? Qnil : fundamental_matrix; - } -} - - -/* - * call-seq: - * CvMat.compute_correspond_epilines(points, which_image, fundamental_matrix) -> correspondent_lines(cvmat) - * - * For points in one image of stereo pair computes the corresponding epilines in the other image. - * Finds equation of a line that contains the corresponding point (i.e. projection of the same 3D point) - * in the other image. Each line is encoded by a vector of 3 elements l=[a,b,c]T, so that: - * lT*[x, y, 1]T=0, - * or - * a*x + b*y + c = 0 - * From the fundamental matrix definition (see cvFindFundamentalMatrix discussion), line l2 for a point p1 - * in the first image (which_image=1) can be computed as: - * l2=F*p1 - * and the line l1 for a point p2 in the second image (which_image=1) can be computed as: - * l1=FT*p2 - * Line coefficients are defined up to a scale. They are normalized (a2+b2=1) are stored into correspondent_lines. - */ -VALUE -rb_compute_correspond_epilines(VALUE klass, VALUE points, VALUE which_image, VALUE fundamental_matrix) -{ - VALUE correspondent_lines; - CvMat* points_ptr = CVMAT_WITH_CHECK(points); - int n; - if (points_ptr->cols <= 3 && points_ptr->rows >= 7) - n = points_ptr->rows; - else if (points_ptr->rows <= 3 && points_ptr->cols >= 7) - n = points_ptr->cols; - else - rb_raise(rb_eArgError, "input points should 2xN, Nx2 or 3xN, Nx3 matrix(N >= 7)."); - - correspondent_lines = cCvMat::new_object(n, 3, CV_MAT_DEPTH(points_ptr->type)); - try { - cvComputeCorrespondEpilines(points_ptr, NUM2INT(which_image), CVMAT_WITH_CHECK(fundamental_matrix), - CVMAT(correspondent_lines)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return correspondent_lines; -} - -/* - * Extracts Speeded Up Robust Features from an image - * - * @overload extract_surf(params, mask = nil) -> [cvseq(cvsurfpoint), array(float)] - * @param params [CvSURFParams] Various algorithm parameters put to the structure CvSURFParams. - * @param mask [CvMat] The optional input 8-bit mask. The features are only found - * in the areas that contain more than 50% of non-zero mask pixels. - * @return [Array, Array>] Output vector of keypoints and descriptors. - * @opencv_func cvExtractSURF - */ -VALUE -rb_extract_surf(int argc, VALUE *argv, VALUE self) -{ - VALUE _params, _mask; - rb_scan_args(argc, argv, "11", &_params, &_mask); - - // Prepare arguments - CvSURFParams params = *CVSURFPARAMS_WITH_CHECK(_params); - CvMat* mask = MASK(_mask); - VALUE storage = cCvMemStorage::new_object(); - CvSeq* keypoints = NULL; - CvSeq* descriptors = NULL; - - // Compute SURF keypoints and descriptors - try { - cvExtractSURF(CVARR(self), mask, &keypoints, &descriptors, CVMEMSTORAGE(storage), - params, 0); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - VALUE _keypoints = cCvSeq::new_sequence(cCvSeq::rb_class(), keypoints, cCvSURFPoint::rb_class(), storage); - - // Create descriptor array - const int DIM_SIZE = (params.extended) ? 128 : 64; - const int NUM_KEYPOINTS = keypoints->total; - VALUE _descriptors = rb_ary_new2(NUM_KEYPOINTS); - for (int m = 0; m < NUM_KEYPOINTS; ++m) { - VALUE elem = rb_ary_new2(DIM_SIZE); - float *descriptor = (float*)cvGetSeqElem(descriptors, m); - for (int n = 0; n < DIM_SIZE; ++n) { - rb_ary_store(elem, n, rb_float_new(descriptor[n])); - } - rb_ary_store(_descriptors, m, elem); - } - - return rb_assoc_new(_keypoints, _descriptors); -} - - -/* - * call-seq: - * subspace_project(w, mean) -> cvmat - */ -VALUE -rb_subspace_project(VALUE self, VALUE w, VALUE mean) -{ - VALUE projection; - try { - cv::Mat w_mat(CVMAT_WITH_CHECK(w)); - cv::Mat mean_mat(CVMAT_WITH_CHECK(mean)); - cv::Mat self_mat(CVMAT(self)); - cv::Mat pmat = cv::subspaceProject(w_mat, mean_mat, self_mat); - projection = new_object(pmat.rows, pmat.cols, pmat.type()); - CvMat tmp = pmat; - cvCopy(&tmp, CVMAT(projection)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - - return projection; -} - -/* - * call-seq: - * subspace_reconstruct(w, mean) -> cvmat - */ -VALUE -rb_subspace_reconstruct(VALUE self, VALUE w, VALUE mean) -{ - VALUE result; - try { - cv::Mat w_mat(CVMAT_WITH_CHECK(w)); - cv::Mat mean_mat(CVMAT_WITH_CHECK(mean)); - cv::Mat self_mat(CVMAT(self)); - cv::Mat rmat = cv::subspaceReconstruct(w_mat, mean_mat, self_mat); - result = new_object(rmat.rows, rmat.cols, rmat.type()); - CvMat tmp = rmat; - cvCopy(&tmp, CVMAT(result)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - - return result; -} - -VALUE -new_object(int rows, int cols, int type) -{ - return OPENCV_OBJECT(rb_klass, rb_cvCreateMat(rows, cols, type)); -} - -VALUE -new_object(CvSize size, int type) -{ - return OPENCV_OBJECT(rb_klass, rb_cvCreateMat(size.height, size.width, type)); -} - -VALUE -new_mat_kind_object(CvSize size, VALUE ref_obj) -{ - VALUE return_type = CLASS_OF(ref_obj); - if (rb_obj_is_kind_of(ref_obj, cIplImage::rb_class())) { - IplImage* img = IPLIMAGE(ref_obj); - return OPENCV_OBJECT(return_type, rb_cvCreateImage(size, img->depth, img->nChannels)); - } - else if (rb_obj_is_kind_of(ref_obj, rb_klass)) // CvMat - return OPENCV_OBJECT(return_type, rb_cvCreateMat(size.height, size.width, cvGetElemType(CVMAT(ref_obj)))); - else - rb_raise(rb_eNotImpError, "Only CvMat or IplImage are supported"); - - return Qnil; -} - -VALUE -new_mat_kind_object(CvSize size, VALUE ref_obj, int cvmat_depth, int channel) -{ - VALUE return_type = CLASS_OF(ref_obj); - if (rb_obj_is_kind_of(ref_obj, cIplImage::rb_class())) { - return OPENCV_OBJECT(return_type, rb_cvCreateImage(size, CV2IPL_DEPTH(cvmat_depth), channel)); - } - else if (rb_obj_is_kind_of(ref_obj, rb_klass)) // CvMat - return OPENCV_OBJECT(return_type, rb_cvCreateMat(size.height, size.width, - CV_MAKETYPE(cvmat_depth, channel))); - else - rb_raise(rb_eNotImpError, "Only CvMat or IplImage are supported"); - - return Qnil; -} - -void -init_ruby_class() -{ -#if 0 - // For documentation using YARD - VALUE opencv = rb_define_module("OpenCV"); -#endif - - if (rb_klass) - return; - VALUE opencv = rb_module_opencv(); - - rb_klass = rb_define_class_under(opencv, "CvMat", rb_cObject); - rb_define_alloc_func(rb_klass, rb_allocate); - - VALUE drawing_option = rb_hash_new(); - rb_define_const(rb_klass, "DRAWING_OPTION", drawing_option); - rb_hash_aset(drawing_option, ID2SYM(rb_intern("color")), cCvScalar::new_object(cvScalarAll(0))); - rb_hash_aset(drawing_option, ID2SYM(rb_intern("thickness")), INT2FIX(1)); - rb_hash_aset(drawing_option, ID2SYM(rb_intern("line_type")), INT2FIX(8)); - rb_hash_aset(drawing_option, ID2SYM(rb_intern("shift")), INT2FIX(0)); - - VALUE good_features_to_track_option = rb_hash_new(); - rb_define_const(rb_klass, "GOOD_FEATURES_TO_TRACK_OPTION", good_features_to_track_option); - rb_hash_aset(good_features_to_track_option, ID2SYM(rb_intern("max")), INT2FIX(0xFF)); - rb_hash_aset(good_features_to_track_option, ID2SYM(rb_intern("mask")), Qnil); - rb_hash_aset(good_features_to_track_option, ID2SYM(rb_intern("block_size")), INT2FIX(3)); - rb_hash_aset(good_features_to_track_option, ID2SYM(rb_intern("use_harris")), Qfalse); - rb_hash_aset(good_features_to_track_option, ID2SYM(rb_intern("k")), rb_float_new(0.04)); - - VALUE flood_fill_option = rb_hash_new(); - rb_define_const(rb_klass, "FLOOD_FILL_OPTION", flood_fill_option); - rb_hash_aset(flood_fill_option, ID2SYM(rb_intern("connectivity")), INT2FIX(4)); - rb_hash_aset(flood_fill_option, ID2SYM(rb_intern("fixed_range")), Qfalse); - rb_hash_aset(flood_fill_option, ID2SYM(rb_intern("mask_only")), Qfalse); - - VALUE find_contours_option = rb_hash_new(); - rb_define_const(rb_klass, "FIND_CONTOURS_OPTION", find_contours_option); - rb_hash_aset(find_contours_option, ID2SYM(rb_intern("mode")), INT2FIX(CV_RETR_LIST)); - rb_hash_aset(find_contours_option, ID2SYM(rb_intern("method")), INT2FIX(CV_CHAIN_APPROX_SIMPLE)); - rb_hash_aset(find_contours_option, ID2SYM(rb_intern("offset")), cCvPoint::new_object(cvPoint(0,0))); - - VALUE optical_flow_hs_option = rb_hash_new(); - rb_define_const(rb_klass, "OPTICAL_FLOW_HS_OPTION", optical_flow_hs_option); - rb_hash_aset(optical_flow_hs_option, ID2SYM(rb_intern("lambda")), rb_float_new(0.0005)); - rb_hash_aset(optical_flow_hs_option, ID2SYM(rb_intern("criteria")), cCvTermCriteria::new_object(cvTermCriteria(CV_TERMCRIT_ITER+CV_TERMCRIT_EPS, 1, 0.001))); - - VALUE optical_flow_bm_option = rb_hash_new(); - rb_define_const(rb_klass, "OPTICAL_FLOW_BM_OPTION", optical_flow_bm_option); - rb_hash_aset(optical_flow_bm_option, ID2SYM(rb_intern("block_size")), cCvSize::new_object(cvSize(4, 4))); - rb_hash_aset(optical_flow_bm_option, ID2SYM(rb_intern("shift_size")), cCvSize::new_object(cvSize(1, 1))); - rb_hash_aset(optical_flow_bm_option, ID2SYM(rb_intern("max_range")), cCvSize::new_object(cvSize(4, 4))); - - VALUE find_fundamental_matrix_option = rb_hash_new(); - rb_define_const(rb_klass, "FIND_FUNDAMENTAL_MAT_OPTION", find_fundamental_matrix_option); - rb_hash_aset(find_fundamental_matrix_option, ID2SYM(rb_intern("with_status")), Qfalse); - rb_hash_aset(find_fundamental_matrix_option, ID2SYM(rb_intern("maximum_distance")), rb_float_new(1.0)); - rb_hash_aset(find_fundamental_matrix_option, ID2SYM(rb_intern("desirable_level")), rb_float_new(0.99)); - - rb_define_private_method(rb_klass, "initialize", RUBY_METHOD_FUNC(rb_initialize), -1); - rb_define_singleton_method(rb_klass, "load", RUBY_METHOD_FUNC(rb_load_imageM), -1); - // Ruby/OpenCV original functions - rb_define_method(rb_klass, "method_missing", RUBY_METHOD_FUNC(rb_method_missing), -1); - rb_define_method(rb_klass, "to_s", RUBY_METHOD_FUNC(rb_to_s), 0); - rb_define_method(rb_klass, "inside?", RUBY_METHOD_FUNC(rb_inside_q), 1); - rb_define_method(rb_klass, "to_IplConvKernel", RUBY_METHOD_FUNC(rb_to_IplConvKernel), 1); - rb_define_method(rb_klass, "create_mask", RUBY_METHOD_FUNC(rb_create_mask), 0); - - rb_define_method(rb_klass, "width", RUBY_METHOD_FUNC(rb_width), 0); - rb_define_alias(rb_klass, "columns", "width"); - rb_define_alias(rb_klass, "cols", "width"); - rb_define_method(rb_klass, "height", RUBY_METHOD_FUNC(rb_height), 0); - rb_define_alias(rb_klass, "rows", "height"); - rb_define_method(rb_klass, "depth", RUBY_METHOD_FUNC(rb_depth), 0); - rb_define_method(rb_klass, "channel", RUBY_METHOD_FUNC(rb_channel), 0); - rb_define_method(rb_klass, "data", RUBY_METHOD_FUNC(rb_data), 0); - - rb_define_method(rb_klass, "clone", RUBY_METHOD_FUNC(rb_clone), 0); - rb_define_method(rb_klass, "copy", RUBY_METHOD_FUNC(rb_copy), -1); - rb_define_method(rb_klass, "to_8u", RUBY_METHOD_FUNC(rb_to_8u), 0); - rb_define_method(rb_klass, "to_8s", RUBY_METHOD_FUNC(rb_to_8s), 0); - rb_define_method(rb_klass, "to_16u", RUBY_METHOD_FUNC(rb_to_16u), 0); - rb_define_method(rb_klass, "to_16s", RUBY_METHOD_FUNC(rb_to_16s), 0); - rb_define_method(rb_klass, "to_32s", RUBY_METHOD_FUNC(rb_to_32s), 0); - rb_define_method(rb_klass, "to_32f", RUBY_METHOD_FUNC(rb_to_32f), 0); - rb_define_method(rb_klass, "to_64f", RUBY_METHOD_FUNC(rb_to_64f), 0); - rb_define_method(rb_klass, "vector?", RUBY_METHOD_FUNC(rb_vector_q), 0); - rb_define_method(rb_klass, "square?", RUBY_METHOD_FUNC(rb_square_q), 0); - - rb_define_method(rb_klass, "to_CvMat", RUBY_METHOD_FUNC(rb_to_CvMat), 0); - rb_define_method(rb_klass, "sub_rect", RUBY_METHOD_FUNC(rb_sub_rect), -2); - rb_define_alias(rb_klass, "subrect", "sub_rect"); - rb_define_method(rb_klass, "get_rows", RUBY_METHOD_FUNC(rb_get_rows), -1); - rb_define_method(rb_klass, "get_cols", RUBY_METHOD_FUNC(rb_get_cols), 1); - rb_define_method(rb_klass, "each_row", RUBY_METHOD_FUNC(rb_each_row), 0); - rb_define_method(rb_klass, "each_col", RUBY_METHOD_FUNC(rb_each_col), 0); - rb_define_alias(rb_klass, "each_column", "each_col"); - rb_define_method(rb_klass, "diag", RUBY_METHOD_FUNC(rb_diag), -1); - rb_define_alias(rb_klass, "diagonal", "diag"); - rb_define_method(rb_klass, "size", RUBY_METHOD_FUNC(rb_size), 0); - rb_define_method(rb_klass, "dims", RUBY_METHOD_FUNC(rb_dims), 0); - rb_define_method(rb_klass, "dim_size", RUBY_METHOD_FUNC(rb_dim_size), 1); - rb_define_method(rb_klass, "[]", RUBY_METHOD_FUNC(rb_aref), -2); - rb_define_alias(rb_klass, "at", "[]"); - rb_define_method(rb_klass, "[]=", RUBY_METHOD_FUNC(rb_aset), -2); - rb_define_method(rb_klass, "set_data", RUBY_METHOD_FUNC(rb_set_data), 1); - rb_define_method(rb_klass, "set", RUBY_METHOD_FUNC(rb_set), -1); - rb_define_alias(rb_klass, "fill", "set"); - rb_define_method(rb_klass, "set!", RUBY_METHOD_FUNC(rb_set_bang), -1); - rb_define_alias(rb_klass, "fill!", "set!"); - rb_define_method(rb_klass, "set_zero", RUBY_METHOD_FUNC(rb_set_zero), 0); - rb_define_alias(rb_klass, "clear", "set_zero"); - rb_define_alias(rb_klass, "zero", "set_zero"); - rb_define_method(rb_klass, "set_zero!", RUBY_METHOD_FUNC(rb_set_zero_bang), 0); - rb_define_alias(rb_klass, "clear!", "set_zero!"); - rb_define_alias(rb_klass, "zero!", "set_zero!"); - rb_define_method(rb_klass, "identity", RUBY_METHOD_FUNC(rb_set_identity), -1); - rb_define_method(rb_klass, "identity!", RUBY_METHOD_FUNC(rb_set_identity_bang), -1); - rb_define_method(rb_klass, "range", RUBY_METHOD_FUNC(rb_range), 2); - rb_define_method(rb_klass, "range!", RUBY_METHOD_FUNC(rb_range_bang), 2); - - rb_define_method(rb_klass, "reshape", RUBY_METHOD_FUNC(rb_reshape), -1); - rb_define_method(rb_klass, "repeat", RUBY_METHOD_FUNC(rb_repeat), 1); - rb_define_method(rb_klass, "flip", RUBY_METHOD_FUNC(rb_flip), -1); - rb_define_method(rb_klass, "flip!", RUBY_METHOD_FUNC(rb_flip_bang), -1); - rb_define_method(rb_klass, "split", RUBY_METHOD_FUNC(rb_split), 0); - rb_define_singleton_method(rb_klass, "merge", RUBY_METHOD_FUNC(rb_merge), -2); - rb_define_method(rb_klass, "rand_shuffle", RUBY_METHOD_FUNC(rb_rand_shuffle), -1); - rb_define_method(rb_klass, "rand_shuffle!", RUBY_METHOD_FUNC(rb_rand_shuffle_bang), -1); - rb_define_method(rb_klass, "lut", RUBY_METHOD_FUNC(rb_lut), 1); - rb_define_method(rb_klass, "convert_scale", RUBY_METHOD_FUNC(rb_convert_scale), 1); - rb_define_method(rb_klass, "convert_scale_abs", RUBY_METHOD_FUNC(rb_convert_scale_abs), 1); - rb_define_method(rb_klass, "add", RUBY_METHOD_FUNC(rb_add), -1); - rb_define_alias(rb_klass, "+", "add"); - rb_define_method(rb_klass, "sub", RUBY_METHOD_FUNC(rb_sub), -1); - rb_define_alias(rb_klass, "-", "sub"); - rb_define_method(rb_klass, "mul", RUBY_METHOD_FUNC(rb_mul), -1); - rb_define_method(rb_klass, "mat_mul", RUBY_METHOD_FUNC(rb_mat_mul), -1); - rb_define_alias(rb_klass, "*", "mat_mul"); - rb_define_method(rb_klass, "div", RUBY_METHOD_FUNC(rb_div), -1); - rb_define_alias(rb_klass, "/", "div"); - rb_define_singleton_method(rb_klass, "add_weighted", RUBY_METHOD_FUNC(rb_add_weighted), 5); - rb_define_method(rb_klass, "and", RUBY_METHOD_FUNC(rb_and), -1); - rb_define_alias(rb_klass, "&", "and"); - rb_define_method(rb_klass, "or", RUBY_METHOD_FUNC(rb_or), -1); - rb_define_alias(rb_klass, "|", "or"); - rb_define_method(rb_klass, "xor", RUBY_METHOD_FUNC(rb_xor), -1); - rb_define_alias(rb_klass, "^", "xor"); - rb_define_method(rb_klass, "not", RUBY_METHOD_FUNC(rb_not), 0); - rb_define_method(rb_klass, "not!", RUBY_METHOD_FUNC(rb_not_bang), 0); - rb_define_method(rb_klass, "eq", RUBY_METHOD_FUNC(rb_eq), 1); - rb_define_method(rb_klass, "gt", RUBY_METHOD_FUNC(rb_gt), 1); - rb_define_method(rb_klass, "ge", RUBY_METHOD_FUNC(rb_ge), 1); - rb_define_method(rb_klass, "lt", RUBY_METHOD_FUNC(rb_lt), 1); - rb_define_method(rb_klass, "le", RUBY_METHOD_FUNC(rb_le), 1); - rb_define_method(rb_klass, "ne", RUBY_METHOD_FUNC(rb_ne), 1); - rb_define_method(rb_klass, "in_range", RUBY_METHOD_FUNC(rb_in_range), 2); - rb_define_method(rb_klass, "abs_diff", RUBY_METHOD_FUNC(rb_abs_diff), 1); - rb_define_method(rb_klass, "normalize", RUBY_METHOD_FUNC(rb_normalize), -1); - rb_define_method(rb_klass, "count_non_zero", RUBY_METHOD_FUNC(rb_count_non_zero), 0); - rb_define_method(rb_klass, "sum", RUBY_METHOD_FUNC(rb_sum), 0); - rb_define_method(rb_klass, "avg", RUBY_METHOD_FUNC(rb_avg), -1); - rb_define_method(rb_klass, "avg_sdv", RUBY_METHOD_FUNC(rb_avg_sdv), -1); - rb_define_method(rb_klass, "sdv", RUBY_METHOD_FUNC(rb_sdv), -1); - rb_define_method(rb_klass, "min_max_loc", RUBY_METHOD_FUNC(rb_min_max_loc), -1); - rb_define_singleton_method(rb_klass, "norm", RUBY_METHOD_FUNC(rb_norm), -1); - rb_define_method(rb_klass, "dot_product", RUBY_METHOD_FUNC(rb_dot_product), 1); - rb_define_method(rb_klass, "cross_product", RUBY_METHOD_FUNC(rb_cross_product), 1); - rb_define_method(rb_klass, "transform", RUBY_METHOD_FUNC(rb_transform), -1); - rb_define_method(rb_klass, "perspective_transform", RUBY_METHOD_FUNC(rb_perspective_transform), 1); - rb_define_method(rb_klass, "mul_transposed", RUBY_METHOD_FUNC(rb_mul_transposed), -1); - rb_define_method(rb_klass, "trace", RUBY_METHOD_FUNC(rb_trace), 0); - rb_define_method(rb_klass, "transpose", RUBY_METHOD_FUNC(rb_transpose), 0); - rb_define_alias(rb_klass, "t", "transpose"); - rb_define_method(rb_klass, "det", RUBY_METHOD_FUNC(rb_det), 0); - rb_define_alias(rb_klass, "determinant", "det"); - rb_define_method(rb_klass, "invert", RUBY_METHOD_FUNC(rb_invert), -1); - rb_define_singleton_method(rb_klass, "solve", RUBY_METHOD_FUNC(rb_solve), -1); - rb_define_method(rb_klass, "svd", RUBY_METHOD_FUNC(rb_svd), -1); - rb_define_method(rb_klass, "eigenvv", RUBY_METHOD_FUNC(rb_eigenvv), -1); - - /* drawing function */ - rb_define_method(rb_klass, "line", RUBY_METHOD_FUNC(rb_line), -1); - rb_define_method(rb_klass, "line!", RUBY_METHOD_FUNC(rb_line_bang), -1); - rb_define_method(rb_klass, "rectangle", RUBY_METHOD_FUNC(rb_rectangle), -1); - rb_define_method(rb_klass, "rectangle!", RUBY_METHOD_FUNC(rb_rectangle_bang), -1); - rb_define_method(rb_klass, "circle", RUBY_METHOD_FUNC(rb_circle), -1); - rb_define_method(rb_klass, "circle!", RUBY_METHOD_FUNC(rb_circle_bang), -1); - rb_define_method(rb_klass, "ellipse", RUBY_METHOD_FUNC(rb_ellipse), -1); - rb_define_method(rb_klass, "ellipse!", RUBY_METHOD_FUNC(rb_ellipse_bang), -1); - rb_define_method(rb_klass, "ellipse_box", RUBY_METHOD_FUNC(rb_ellipse_box), -1); - rb_define_method(rb_klass, "ellipse_box!", RUBY_METHOD_FUNC(rb_ellipse_box_bang), -1); - rb_define_method(rb_klass, "fill_poly", RUBY_METHOD_FUNC(rb_fill_poly), -1); - rb_define_method(rb_klass, "fill_poly!", RUBY_METHOD_FUNC(rb_fill_poly_bang), -1); - rb_define_method(rb_klass, "fill_convex_poly", RUBY_METHOD_FUNC(rb_fill_convex_poly), -1); - rb_define_method(rb_klass, "fill_convex_poly!", RUBY_METHOD_FUNC(rb_fill_convex_poly_bang), -1); - rb_define_method(rb_klass, "poly_line", RUBY_METHOD_FUNC(rb_poly_line), -1); - rb_define_method(rb_klass, "poly_line!", RUBY_METHOD_FUNC(rb_poly_line_bang), -1); - rb_define_method(rb_klass, "put_text", RUBY_METHOD_FUNC(rb_put_text), -1); - rb_define_method(rb_klass, "put_text!", RUBY_METHOD_FUNC(rb_put_text_bang), -1); - - rb_define_method(rb_klass, "dft", RUBY_METHOD_FUNC(rb_dft), -1); - rb_define_method(rb_klass, "dct", RUBY_METHOD_FUNC(rb_dct), -1); - - rb_define_method(rb_klass, "sobel", RUBY_METHOD_FUNC(rb_sobel), -1); - rb_define_method(rb_klass, "laplace", RUBY_METHOD_FUNC(rb_laplace), -1); - rb_define_method(rb_klass, "canny", RUBY_METHOD_FUNC(rb_canny), -1); - rb_define_method(rb_klass, "pre_corner_detect", RUBY_METHOD_FUNC(rb_pre_corner_detect), -1); - rb_define_method(rb_klass, "corner_eigenvv", RUBY_METHOD_FUNC(rb_corner_eigenvv), -1); - rb_define_method(rb_klass, "corner_min_eigen_val", RUBY_METHOD_FUNC(rb_corner_min_eigen_val), -1); - rb_define_method(rb_klass, "corner_harris", RUBY_METHOD_FUNC(rb_corner_harris), -1); - rb_define_method(rb_klass, "find_chessboard_corners", RUBY_METHOD_FUNC(rb_find_chessboard_corners), -1); - rb_define_method(rb_klass, "find_corner_sub_pix", RUBY_METHOD_FUNC(rb_find_corner_sub_pix), 4); - rb_define_method(rb_klass, "good_features_to_track", RUBY_METHOD_FUNC(rb_good_features_to_track), -1); - - rb_define_method(rb_klass, "rect_sub_pix", RUBY_METHOD_FUNC(rb_rect_sub_pix), -1); - rb_define_method(rb_klass, "quadrangle_sub_pix", RUBY_METHOD_FUNC(rb_quadrangle_sub_pix), -1); - rb_define_method(rb_klass, "resize", RUBY_METHOD_FUNC(rb_resize), -1); - rb_define_method(rb_klass, "warp_affine", RUBY_METHOD_FUNC(rb_warp_affine), -1); - rb_define_singleton_method(rb_klass, "rotation_matrix2D", RUBY_METHOD_FUNC(rb_rotation_matrix2D), 3); - rb_define_singleton_method(rb_klass, "get_perspective_transform", RUBY_METHOD_FUNC(rb_get_perspective_transform), 2); - rb_define_method(rb_klass, "warp_perspective", RUBY_METHOD_FUNC(rb_warp_perspective), -1); - rb_define_singleton_method(rb_klass, "find_homography", RUBY_METHOD_FUNC(rb_find_homography), -1); - rb_define_method(rb_klass, "remap", RUBY_METHOD_FUNC(rb_remap), -1); - rb_define_method(rb_klass, "log_polar", RUBY_METHOD_FUNC(rb_log_polar), -1); - - rb_define_method(rb_klass, "erode", RUBY_METHOD_FUNC(rb_erode), -1); - rb_define_method(rb_klass, "erode!", RUBY_METHOD_FUNC(rb_erode_bang), -1); - rb_define_method(rb_klass, "dilate", RUBY_METHOD_FUNC(rb_dilate), -1); - rb_define_method(rb_klass, "dilate!", RUBY_METHOD_FUNC(rb_dilate_bang), -1); - rb_define_method(rb_klass, "morphology", RUBY_METHOD_FUNC(rb_morphology), -1); - - rb_define_method(rb_klass, "smooth", RUBY_METHOD_FUNC(rb_smooth), -1); - rb_define_method(rb_klass, "copy_make_border", RUBY_METHOD_FUNC(rb_copy_make_border), -1); - rb_define_method(rb_klass, "filter2d", RUBY_METHOD_FUNC(rb_filter2d), -1); - rb_define_method(rb_klass, "integral", RUBY_METHOD_FUNC(rb_integral), -1); - rb_define_method(rb_klass, "threshold", RUBY_METHOD_FUNC(rb_threshold), -1); - rb_define_method(rb_klass, "adaptive_threshold", RUBY_METHOD_FUNC(rb_adaptive_threshold), -1); - - rb_define_method(rb_klass, "pyr_down", RUBY_METHOD_FUNC(rb_pyr_down), -1); - rb_define_method(rb_klass, "pyr_up", RUBY_METHOD_FUNC(rb_pyr_up), -1); - - rb_define_method(rb_klass, "flood_fill", RUBY_METHOD_FUNC(rb_flood_fill), -1); - rb_define_method(rb_klass, "flood_fill!", RUBY_METHOD_FUNC(rb_flood_fill_bang), -1); - rb_define_method(rb_klass, "find_contours", RUBY_METHOD_FUNC(rb_find_contours), -1); - rb_define_method(rb_klass, "find_contours!", RUBY_METHOD_FUNC(rb_find_contours_bang), -1); - rb_define_method(rb_klass, "draw_contours", RUBY_METHOD_FUNC(rb_draw_contours), -1); - rb_define_method(rb_klass, "draw_contours!", RUBY_METHOD_FUNC(rb_draw_contours_bang), -1); - rb_define_method(rb_klass, "draw_chessboard_corners", RUBY_METHOD_FUNC(rb_draw_chessboard_corners), 3); - rb_define_method(rb_klass, "draw_chessboard_corners!", RUBY_METHOD_FUNC(rb_draw_chessboard_corners_bang), 3); - rb_define_method(rb_klass, "pyr_mean_shift_filtering", RUBY_METHOD_FUNC(rb_pyr_mean_shift_filtering), -1); - rb_define_method(rb_klass, "watershed", RUBY_METHOD_FUNC(rb_watershed), 1); - - rb_define_method(rb_klass, "moments", RUBY_METHOD_FUNC(rb_moments), -1); - - rb_define_method(rb_klass, "hough_lines", RUBY_METHOD_FUNC(rb_hough_lines), -1); - rb_define_method(rb_klass, "hough_circles", RUBY_METHOD_FUNC(rb_hough_circles), -1); - - rb_define_method(rb_klass, "inpaint", RUBY_METHOD_FUNC(rb_inpaint), 3); - - rb_define_method(rb_klass, "equalize_hist", RUBY_METHOD_FUNC(rb_equalize_hist), 0); - rb_define_method(rb_klass, "apply_color_map", RUBY_METHOD_FUNC(rb_apply_color_map), 1); - rb_define_method(rb_klass, "match_template", RUBY_METHOD_FUNC(rb_match_template), -1); - rb_define_method(rb_klass, "match_shapes", RUBY_METHOD_FUNC(rb_match_shapes), -1); - - rb_define_method(rb_klass, "mean_shift", RUBY_METHOD_FUNC(rb_mean_shift), 2); - rb_define_method(rb_klass, "cam_shift", RUBY_METHOD_FUNC(rb_cam_shift), 2); - rb_define_method(rb_klass, "snake_image", RUBY_METHOD_FUNC(rb_snake_image), -1); - - rb_define_method(rb_klass, "optical_flow_hs", RUBY_METHOD_FUNC(rb_optical_flow_hs), -1); - rb_define_method(rb_klass, "optical_flow_lk", RUBY_METHOD_FUNC(rb_optical_flow_lk), 2); - rb_define_method(rb_klass, "optical_flow_bm", RUBY_METHOD_FUNC(rb_optical_flow_bm), -1); - - rb_define_singleton_method(rb_klass, "find_fundamental_mat", - RUBY_METHOD_FUNC(rb_find_fundamental_mat), -1); - rb_define_singleton_method(rb_klass, "compute_correspond_epilines", - RUBY_METHOD_FUNC(rb_compute_correspond_epilines), 3); - - rb_define_method(rb_klass, "extract_surf", RUBY_METHOD_FUNC(rb_extract_surf), -1); - - rb_define_method(rb_klass, "subspace_project", RUBY_METHOD_FUNC(rb_subspace_project), 2); - rb_define_method(rb_klass, "subspace_reconstruct", RUBY_METHOD_FUNC(rb_subspace_reconstruct), 2); - - rb_define_method(rb_klass, "save_image", RUBY_METHOD_FUNC(rb_save_image), -1); - rb_define_alias(rb_klass, "save", "save_image"); - - rb_define_method(rb_klass, "encode_image", RUBY_METHOD_FUNC(rb_encode_imageM), -1); - rb_define_alias(rb_klass, "encode", "encode_image"); - rb_define_singleton_method(rb_klass, "decode_image", RUBY_METHOD_FUNC(rb_decode_imageM), -1); - rb_define_alias(rb_singleton_class(rb_klass), "decode", "decode_image"); -} - -__NAMESPACE_END_OPENCV -__NAMESPACE_END_CVMAT - diff --git a/ext/opencv/cvmat.h b/ext/opencv/cvmat.h deleted file mode 100644 index 168c280..0000000 --- a/ext/opencv/cvmat.h +++ /dev/null @@ -1,290 +0,0 @@ -/************************************************************ - - cvmat.h - - - $Author: lsxi $ - - Copyright (C) 2005-2007 Masakazu Yonekura - -************************************************************/ -#ifndef RUBY_OPENCV_CVMAT_H -#define RUBY_OPENCV_CVMAT_H - -#include "opencv.h" - - -#define __NAMESPACE_BEGIN_CVMAT namespace cCvMat { -#define __NAMESPACE_END_CVMAT } - -__NAMESPACE_BEGIN_OPENCV -__NAMESPACE_BEGIN_CVMAT - -VALUE rb_class(); - -void init_ruby_class(); - -VALUE rb_allocate(VALUE klass); -VALUE rb_initialize(int argc, VALUE *argv, VALUE self); -VALUE rb_load_imageM(int argc, VALUE *argv, VALUE self); -VALUE rb_encode_imageM(int argc, VALUE *argv, VALUE self); -VALUE rb_decode_imageM(int argc, VALUE *argv, VALUE self); - -VALUE rb_method_missing(int argc, VALUE *argv, VALUE self); -VALUE rb_to_s(VALUE self); -VALUE rb_inside_q(VALUE self, VALUE object); -VALUE rb_to_IplConvKernel(VALUE self, VALUE anchor); -VALUE rb_create_mask(VALUE self); - -VALUE rb_width(VALUE self); -VALUE rb_height(VALUE self); -VALUE rb_depth(VALUE self); -VALUE rb_channel(VALUE self); -VALUE rb_data(VALUE self); - -VALUE rb_clone(VALUE self); -VALUE rb_copy(int argc, VALUE *argv, VALUE self); -VALUE copy(VALUE mat); - -VALUE rb_to_8u(VALUE self); -VALUE rb_to_8s(VALUE self); -VALUE rb_to_16u(VALUE self); -VALUE rb_to_16s(VALUE self); -VALUE rb_to_32s(VALUE self); -VALUE rb_to_32f(VALUE self); -VALUE rb_to_64f(VALUE self); -VALUE rb_vector_q(VALUE self); -VALUE rb_square_q(VALUE self); -// cxcore function -VALUE rb_to_CvMat(VALUE self); -VALUE rb_to_IplImage(VALUE self); -VALUE rb_sub_rect(VALUE self, VALUE args); -VALUE rb_get_rows(int argc, VALUE* argv, VALUE self); -VALUE rb_get_cols(VALUE self, VALUE col); -VALUE rb_each_row(VALUE self); -VALUE rb_each_col(VALUE self); -VALUE rb_diag(int argc, VALUE *argv, VALUE self); -VALUE rb_size(VALUE self); -VALUE rb_dims(VALUE self); -VALUE rb_dim_size(VALUE self, VALUE index); -VALUE rb_aref(VALUE self, VALUE args); -VALUE rb_aset(VALUE self, VALUE args); -VALUE rb_set_data(VALUE self, VALUE data); -VALUE rb_set(int argc, VALUE *argv, VALUE self); -VALUE rb_set_bang(int argc, VALUE *argv, VALUE self); -VALUE rb_set_zero(VALUE self); -VALUE rb_set_zero_bang(VALUE self); -VALUE rb_set_identity(int argc, VALUE *argv, VALUE self); -VALUE rb_set_identity_bang(int argc, VALUE *argv, VALUE self); -VALUE rb_range(VALUE self, VALUE start, VALUE end); -VALUE rb_range_bang(VALUE self, VALUE start, VALUE end); -/* Transforms and Permutations */ -VALUE rb_reshape(int argc, VALUE *argv, VALUE self); -VALUE rb_repeat(VALUE self, VALUE object); -VALUE rb_flip(int argc, VALUE *argv, VALUE self); -VALUE rb_flip_bang(int argc, VALUE *argv, VALUE self); -VALUE rb_split(VALUE self); -VALUE rb_merge(VALUE klass, VALUE args); -VALUE rb_rand_shuffle(int argc, VALUE *argv, VALUE klass); -VALUE rb_rand_shuffle_bang(int argc, VALUE *argv, VALUE klass); - -VALUE rb_lut(VALUE self, VALUE lut); -VALUE rb_convert_scale(VALUE self, VALUE hash); -VALUE rb_convert_scale_abs(VALUE self, VALUE hash); -VALUE rb_add(int argc, VALUE *argv, VALUE self); -VALUE rb_sub(int argc, VALUE *argv, VALUE self); -VALUE rb_mul(int argc, VALUE *argv, VALUE self); -VALUE rb_mat_mul(int argc, VALUE *argv, VALUE self); -VALUE rb_div(int argc, VALUE *argv, VALUE self); -VALUE rb_and(int argc, VALUE *argv, VALUE self); -VALUE rb_or(int argc, VALUE *argv, VALUE self); -VALUE rb_xor(int argc, VALUE *argv, VALUE self); -VALUE rb_not(VALUE self); -VALUE rb_not_bang(VALUE self); -VALUE rb_cmp_internal(VALUE self, VALUE val, int operand); -VALUE rb_eq(VALUE self, VALUE val); -VALUE rb_gt(VALUE self, VALUE val); -VALUE rb_ge(VALUE self, VALUE val); -VALUE rb_lt(VALUE self, VALUE val); -VALUE rb_le(VALUE self, VALUE val); -VALUE rb_ne(VALUE self, VALUE val); -VALUE rb_in_range(VALUE self, VALUE min, VALUE max); -VALUE rb_abs_diff(VALUE self, VALUE val); -VALUE rb_normalize(int argc, VALUE *argv, VALUE self); -VALUE rb_add_weighted(VALUE klass, VALUE src1, VALUE alpha, VALUE src2, VALUE beta, VALUE gamma); -/* Statistics */ -VALUE rb_count_non_zero(VALUE self); -VALUE rb_sum(VALUE self); -VALUE rb_avg(int argc, VALUE *argv, VALUE self); -VALUE rb_avg_sdv(int argc, VALUE *argv, VALUE self); -VALUE rb_sdv(int argc, VALUE *argv, VALUE self); -VALUE rb_min_max_loc(int argc, VALUE *argv, VALUE self); - -VALUE rb_norm(int argc, VALUE *argv, VALUE self); -VALUE rb_dot_product(VALUE self, VALUE mat); -VALUE rb_cross_product(VALUE self, VALUE mat); -// VALUE rb_gemm(); -VALUE rb_transform(int argc, VALUE *argv, VALUE self); -VALUE rb_perspective_transform(VALUE self, VALUE mat); -VALUE rb_mul_transposed(int argc, VALUE *argv, VALUE self); -VALUE rb_trace(VALUE self); -VALUE rb_transpose(VALUE self); -VALUE rb_det(VALUE self); -VALUE rb_invert(int argc, VALUE *argv, VALUE self); -VALUE rb_solve(int argc, VALUE *argv, VALUE self); -VALUE rb_svd(int argc, VALUE *argv, VALUE self); -VALUE rb_eigenvv(int argc, VALUE *argv, VALUE self); -VALUE rb_eigenvv_bang(int argc, VALUE *argv, VALUE self); - -VALUE rb_dft(int argc, VALUE *argv, VALUE self); -VALUE rb_dct(int argc, VALUE *argv, VALUE self); - -/* drawing function*/ -VALUE rb_line(int argc, VALUE *argv, VALUE self); -VALUE rb_line_bang(int argc, VALUE *argv, VALUE self); -VALUE rb_rectangle(int argc, VALUE *argv, VALUE self); -VALUE rb_rectangle_bang(int argc, VALUE *argv, VALUE self); -VALUE rb_circle(int argc, VALUE *argv, VALUE self); -VALUE rb_circle_bang(int argc, VALUE *argv, VALUE self); -VALUE rb_ellipse(int argc, VALUE *argv, VALUE self); -VALUE rb_ellipse_bang(int argc, VALUE *argv, VALUE self); -VALUE rb_ellipse_box(int argc, VALUE *argv, VALUE self); -VALUE rb_ellipse_box_bang(int argc, VALUE *argv, VALUE self); -VALUE rb_fill_poly(int argc, VALUE *argv, VALUE self); -VALUE rb_fill_poly_bang(int argc, VALUE *argv, VALUE self); -VALUE rb_fill_convex_poly(int argc, VALUE *argv, VALUE self); -VALUE rb_fill_convex_poly_bang(int argc, VALUE *argv, VALUE self); -VALUE rb_poly_line(int argc, VALUE *argv, VALUE self); -VALUE rb_poly_line_bang(int argc, VALUE *argv, VALUE self); -VALUE rb_put_text(int argc, VALUE *argv, VALUE self); -VALUE rb_put_text_bang(int argc, VALUE *argv, VALUE self); - -/* cv function */ -VALUE rb_sobel(int argc, VALUE *argv, VALUE self); -VALUE rb_laplace(int argc, VALUE *argv, VALUE self); -VALUE rb_canny(int argc, VALUE *argv, VALUE self); -VALUE rb_pre_corner_detect(int argc, VALUE *argv, VALUE self); -VALUE rb_corner_eigenvv(int argc, VALUE *argv, VALUE self); -VALUE rb_corner_min_eigen_val(int argc, VALUE *argv, VALUE self); -VALUE rb_corner_harris(int argc, VALUE *argv, VALUE self); -VALUE rb_find_chessboard_corners(int argc, VALUE *argv, VALUE self); -VALUE rb_find_corner_sub_pix(VALUE self, VALUE corners, VALUE win_size, VALUE zero_zone, VALUE criteria); -VALUE rb_good_features_to_track(int argc, VALUE *argv, VALUE self); - -VALUE rb_rect_sub_pix(int argc, VALUE *argv, VALUE self); -VALUE rb_quadrangle_sub_pix(int argc, VALUE *argv, VALUE self); -VALUE rb_resize(int argc, VALUE *argv, VALUE self); -VALUE rb_warp_affine(int argc, VALUE *argv, VALUE self); -VALUE rb_rotation_matrix2D(VALUE self, VALUE center, VALUE angle, VALUE scale); -VALUE rb_get_perspective_transform(VALUE self, VALUE source, VALUE dest); -VALUE rb_warp_perspective(int argc, VALUE *argv, VALUE self); -VALUE rb_find_homography(int argc, VALUE *argv, VALUE self); -VALUE rb_remap(int argc, VALUE *argv, VALUE self); -VALUE rb_log_polar(int argc, VALUE *argv, VALUE self); - -VALUE rb_erode(int argc, VALUE *argv, VALUE self); -VALUE rb_erode_bang(int argc, VALUE *argv, VALUE self); -VALUE rb_dilate(int argc, VALUE *argv, VALUE self); -VALUE rb_dilate_bang(int argc, VALUE *argv, VALUE self); -VALUE rb_morphology(int argc, VALUE *argv, VALUE self); - -VALUE rb_smooth(int argc, VALUE *argv, VALUE self); -VALUE rb_copy_make_border(int argc, VALUE *argv, VALUE self); -VALUE rb_filter2d(int argc, VALUE *argv, VALUE self); -VALUE rb_integral(int argc, VALUE *argv, VALUE self); -VALUE rb_threshold(int argc, VALUE *argv, VALUE self); -VALUE rb_adaptive_threshold(int argc, VALUE *argv, VALUE self); - -VALUE rb_pyr_down(int argc, VALUE *argv, VALUE self); -VALUE rb_pyr_up(int argc, VALUE *argv, VALUE self); - -VALUE rb_flood_fill(int argc, VALUE *argv, VALUE self); -VALUE rb_flood_fill_bang(int argc, VALUE *argv, VALUE self); -VALUE rb_find_contours(int argc, VALUE *argv, VALUE self); -VALUE rb_find_contours_bang(int argc, VALUE *argv, VALUE self); -VALUE rb_draw_contours(int argc, VALUE *argv, VALUE self); -VALUE rb_draw_contours_bang(int argc, VALUE *argv, VALUE self); -VALUE rb_draw_chessboard_corners(VALUE self, VALUE pattern_size, VALUE corners, VALUE pattern_was_found); -VALUE rb_draw_chessboard_corners_bang(VALUE self, VALUE pattern_size, VALUE corners, VALUE pattern_was_found); -VALUE rb_pyr_mean_shift_filtering(int argc, VALUE *argv, VALUE self); -VALUE rb_watershed(VALUE self, VALUE markers); -VALUE rb_moments(int argc, VALUE *argv, VALUE self); - -VALUE rb_hough_lines(int argc, VALUE *argv, VALUE self); -VALUE rb_hough_circles(int argc, VALUE *argv, VALUE self); -VALUE rb_dist_transform(int argc, VALUE *argv, VALUE self); -VALUE rb_inpaint(VALUE self, VALUE inpaint_method, VALUE mask, VALUE radius); - -VALUE rb_equalize_hist(VALUE self); - -VALUE rb_apply_color_map(VALUE self, VALUE colormap); - -/* Matching*/ -VALUE rb_match_template(int argc, VALUE *argv, VALUE self); -VALUE rb_match_shapes(int argc, VALUE *argv, VALUE self); - -/* Object Tracking */ -VALUE rb_mean_shift(VALUE self, VALUE window, VALUE criteria); -VALUE rb_cam_shift(VALUE self, VALUE window, VALUE criteria); -VALUE rb_snake_image(int argc, VALUE *argv, VALUE self); -/* Optical Flow */ -VALUE rb_optical_flow_hs(int argc, VALUE *argv, VALUE self); -VALUE rb_optical_flow_lk(VALUE self, VALUE prev, VALUE win_size); -VALUE rb_optical_flow_bm(int argc, VALUE *argv, VALUE self); -VALUE rb_optical_flow_pyr_lk(int argc, VALUE *argv, VALUE self); - -/* Epipolar Geometory */ -VALUE rb_find_fundamental_mat(int argc, VALUE *argv, VALUE klass); -VALUE rb_compute_correspond_epilines(VALUE klass, VALUE points, VALUE which_image, VALUE fundamental_matrix); - -/* Feature detection and description */ -VALUE rb_extract_surf(int argc, VALUE *argv, VALUE self); - -VALUE rb_subspace_project(VALUE self, VALUE w, VALUE mean); -VALUE rb_subspace_reconstruct(VALUE self, VALUE w, VALUE mean); - -// HighGUI function -VALUE rb_save_image(int argc, VALUE *argv, VALUE self); - -VALUE new_object(int rows, int cols, int type); -VALUE new_object(CvSize size, int type); -VALUE new_mat_kind_object(CvSize size, VALUE ref_obj); -VALUE new_mat_kind_object(CvSize size, VALUE ref_obj, int cvmat_depth, int channel); - -CvMat* prepare_decoding(int argc, VALUE *argv, int* iscolor, int* need_release); - -__NAMESPACE_END_CVMAT - -inline CvMat* -CVMAT(VALUE object) -{ - CvMat *ptr, stub; - Data_Get_Struct(object, CvMat, ptr); - return cvGetMat(ptr, &stub); -} - -inline CvMat* -CVMAT_WITH_CHECK(VALUE object) -{ - if (!rb_obj_is_kind_of(object, cCvMat::rb_class())) - raise_typeerror(object, cCvMat::rb_class()); - return CVMAT(object); -} - -inline CvMat* -MASK(VALUE object) -{ - if (NIL_P(object)) - return NULL; - else { - CvMat* obj_ptr = CVMAT_WITH_CHECK(object); - if (CV_MAT_DEPTH(obj_ptr->type) == CV_8UC1 && - CV_MAT_CN(obj_ptr->type) == 1) - return obj_ptr; - else - rb_raise(rb_eTypeError, "Mask should be 8bit 1-channel matrix."); - } -} - -__NAMESPACE_END_OPENCV - -#endif // RUBY_OPENCV_CVMAT_H diff --git a/ext/opencv/cvmemstorage.cpp b/ext/opencv/cvmemstorage.cpp deleted file mode 100644 index 79c0afa..0000000 --- a/ext/opencv/cvmemstorage.cpp +++ /dev/null @@ -1,73 +0,0 @@ -/************************************************************ - - cvmemstorage.cpp - - - $Author: lsxi $ - - Copyright (C) 2005 Masakazu Yonekura - -************************************************************/ -#include "cvmemstorage.h" -/* - * Document-class: OpenCV::CvMemStorage - * - * Internal memory management class used by CvSeq. - */ -__NAMESPACE_BEGIN_OPENCV -__NAMESPACE_BEGIN_CVMEMSTORAGE - -VALUE rb_klass; - -VALUE -rb_class() -{ - return rb_klass; -} - -VALUE -rb_allocate(VALUE klass) -{ - CvMemStorage *storage = rb_cvCreateMemStorage(0); - return Data_Wrap_Struct(klass, 0, cvmemstorage_free, storage); -} - -void -cvmemstorage_free(void *ptr) -{ - try { - cvReleaseMemStorage((CvMemStorage**)&ptr); - } - catch (cv::Exception& e) { - raise_cverror(e); - } -} - -VALUE -new_object(int blocksize) -{ - CvMemStorage *storage = rb_cvCreateMemStorage(blocksize); - return Data_Wrap_Struct(rb_klass, 0, cvmemstorage_free, storage); -} - -void -init_ruby_class() -{ -#if 0 - // For documentation using YARD - VALUE opencv = rb_define_module("OpenCV"); -#endif - - if (rb_klass) - return; - /* - * opencv = rb_define_module("OpenCV"); - * - * note: this comment is used by rdoc. - */ - VALUE opencv = rb_module_opencv(); - rb_klass = rb_define_class_under(opencv, "CvMemStorage", rb_cObject); -} - -__NAMESPACE_END_CVMEMSTORAGE -__NAMESPACE_END_OPENCV - diff --git a/ext/opencv/cvmemstorage.h b/ext/opencv/cvmemstorage.h deleted file mode 100644 index 9cb7533..0000000 --- a/ext/opencv/cvmemstorage.h +++ /dev/null @@ -1,50 +0,0 @@ -/************************************************************ - - cvmemstorage.h - - - $Author: lsxi $ - - Copyright (C) 2005 Masakazu Yonekura - -************************************************************/ -#ifndef RUBY_OPENCV_CVMEMSTORAGE_H -#define RUBY_OPENCV_CVMEMSTORAGE_H - -#include "opencv.h" - -#define __NAMESPACE_BEGIN_CVMEMSTORAGE namespace cCvMemStorage { -#define __NAMESPACE_END_CVMEMSTORAGE } - -__NAMESPACE_BEGIN_OPENCV -__NAMESPACE_BEGIN_CVMEMSTORAGE - -void init_ruby_class(); - -VALUE rb_class(); -VALUE rb_allocate(VALUE klass); -void cvmemstorage_free(void *ptr); - -VALUE new_object(int blocksize = 0); - -__NAMESPACE_END_CVMEMSTORAGE - -inline CvMemStorage* -CVMEMSTORAGE(VALUE object) -{ - CvMemStorage *ptr; - Data_Get_Struct(object, CvMemStorage, ptr); - return ptr; -} - -inline VALUE -CHECK_CVMEMSTORAGE(VALUE object) -{ - if (rb_obj_is_kind_of(object, cCvMemStorage::rb_class())) { - return object; - } - return cCvMemStorage::new_object(); -} - -__NAMESPACE_END_OPENCV - -#endif // RUBY_OPENCV_CVMEMSTORAGE_H diff --git a/ext/opencv/cvmoments.cpp b/ext/opencv/cvmoments.cpp deleted file mode 100644 index 8ac2c96..0000000 --- a/ext/opencv/cvmoments.cpp +++ /dev/null @@ -1,293 +0,0 @@ -/************************************************************ - - cvmoments.cpp - - - $Author: lsxi $ - - Copyright (C) 2007 Masakazu Yonekura - -************************************************************/ -#include "cvmoments.h" -/* - * Document-class: OpenCV::CvMoments - * - * moments - */ -__NAMESPACE_BEGIN_OPENCV -__NAMESPACE_BEGIN_CVMOMENTS - -#define DEFINE_CVMOMENTS_ACCESSOR(elem) \ - rb_define_method(rb_klass, #elem, RUBY_METHOD_FUNC(rb_##elem), 0) - -#define CVMOMENTS_ACCESSOR(elem) \ - VALUE rb_##elem(VALUE self) { return DBL2NUM(CVMOMENTS(self)->elem); } - -VALUE rb_klass; - -VALUE -rb_class() -{ - return rb_klass; -} - -VALUE -rb_allocate(VALUE klass) -{ - CvMoments *ptr; - return Data_Make_Struct(klass, CvMoments, 0, -1, ptr); -} -/* - * call-seq: - * CvMoments.new(src[,is_binary = nil]) - * - * Calculates all moments up to third order of a polygon or rasterized shape. - * src should be CvMat or CvPolygon. - * - * If is_binary = true, all the zero pixel values are treated as zeroes, all the others are treated as 1's. - */ -VALUE -rb_initialize(int argc, VALUE *argv, VALUE self) -{ - VALUE src, is_binary; - rb_scan_args(argc, argv, "02", &src, &is_binary); - if (!NIL_P(src)) { - if (rb_obj_is_kind_of(src, cCvMat::rb_class()) || rb_obj_is_kind_of(src, cCvSeq::rb_class())) { - try { - cvMoments(CVARR(src), CVMOMENTS(self), TRUE_OR_FALSE(is_binary, 0)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - } - else - rb_raise(rb_eTypeError, "argument 1 (src) should be %s or %s.", - rb_class2name(cCvMat::rb_class()), rb_class2name(cCvSeq::rb_class())); - } - return self; -} - -CVMOMENTS_ACCESSOR(m00); -CVMOMENTS_ACCESSOR(m10); -CVMOMENTS_ACCESSOR(m01); -CVMOMENTS_ACCESSOR(m20); -CVMOMENTS_ACCESSOR(m11); -CVMOMENTS_ACCESSOR(m02); -CVMOMENTS_ACCESSOR(m30); -CVMOMENTS_ACCESSOR(m21); -CVMOMENTS_ACCESSOR(m12); -CVMOMENTS_ACCESSOR(m03); - -CVMOMENTS_ACCESSOR(mu20); -CVMOMENTS_ACCESSOR(mu11); -CVMOMENTS_ACCESSOR(mu02); -CVMOMENTS_ACCESSOR(mu30); -CVMOMENTS_ACCESSOR(mu21); -CVMOMENTS_ACCESSOR(mu12); -CVMOMENTS_ACCESSOR(mu03); - -CVMOMENTS_ACCESSOR(inv_sqrt_m00); - -/* - * call-seq: - * spatial -> float - * - * Retrieves spatial moment. - * - * which in case of image moments is defined as: - * Mx_order,y_order=sumx,y(I(x,y)*xx_order*yy_order) - * where I(x,y) is the intensity of the pixel (x, y). - */ -VALUE -rb_spatial(VALUE self, VALUE x_order, VALUE y_order) -{ - double result = 0; - try { - result = cvGetSpatialMoment(CVMOMENTS(self), NUM2INT(x_order), NUM2INT(y_order)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return rb_float_new(result); -} - -/* - * call-seq: - * central -> float - * - * Retrieves central moment. - * - * which in case of image moments is defined as: - * μx_order,y_order=sumx,y(I(x,y)*(x-xc)x_order*(y-yc)y_order), - * where xc=M10/M00, yc=M01/M00 - coordinates of the gravity center - */ -VALUE -rb_central(VALUE self, VALUE x_order, VALUE y_order) -{ - double result = 0; - try { - result = cvGetCentralMoment(CVMOMENTS(self), NUM2INT(x_order), NUM2INT(y_order)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return rb_float_new(result); -} - -/* - * call-seq: - * normalized_central -> float - * - * Retrieves normalized central moment. - * - * ηx_order,y_order= μx_order,y_order/M00((y_order+x_order)/2+1) - */ -VALUE -rb_normalized_central(VALUE self, VALUE x_order, VALUE y_order) -{ - double result = 0; - try { - result = cvGetNormalizedCentralMoment(CVMOMENTS(self), NUM2INT(x_order), NUM2INT(y_order)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return rb_float_new(result); -} - -/* - * call-seq: - * hu -> cvhumoments - * - * Calculates seven Hu invariants. - * - * seven Hu invariants that are defined as: - * h1=η20+η02 - * h2=(η20-η02)²+4η11² - * h3=(η30-3η12)²+ (3η21-η03)² - * h4=(η30+η12)²+ (η21+η03)² - * h5=(η30-3η12)(η30+η12)[(η30+η12)²-3(η21+η03)²]+(3η21-η03)(η21+η03)[3(η30+η12)²-(η21+η03)²] - * h6=(η20-η02)[(η30+η12)²- (η21+η03)²]+4η11(η30+η12)(η21+η03) - * h7=(3η21-η03)(η21+η03)[3(η30+η12)²-(η21+η03)²]-(η30-3η12)(η21+η03)[3(η30+η12)²-(η21+η03)²] - * where ηi,j are normalized central moments of 2-nd and 3-rd orders. The computed values are proved to be invariant to the image scaling, rotation, and reflection except the seventh one, whose sign is changed by reflection. - */ -VALUE -rb_hu(VALUE self) -{ - return cCvHuMoments::new_object(CVMOMENTS(self)); -} - -/* - * call-seq: - * gravity_center -> cvpoint2d32f - * - * Return gravity center. - */ -VALUE -rb_gravity_center(VALUE self) -{ - CvMoments *moments = CVMOMENTS(self); - CvPoint2D32f point; - double m00 = 0, m01 = 0, m10 = 0; - try { - m00 = cvGetSpatialMoment(moments, 0, 0); - m10 = cvGetSpatialMoment(moments, 1, 0); - m01 = cvGetSpatialMoment(moments, 0, 1); - point = cvPoint2D32f(m10 / m00, m01 / m00); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return cCvPoint2D32f::new_object(point); -} - -/* - * call-seq: - * angle -> float - * - * Return angle. - */ -VALUE -rb_angle(VALUE self) -{ - CvMoments *moments = CVMOMENTS(self); - double m11 = 0, m20 = 0, m02 = 0; - try { - m11 = cvGetCentralMoment(moments, 1, 1); - m20 = cvGetCentralMoment(moments, 2, 0); - m02 = cvGetCentralMoment(moments, 0, 2); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - double mangle = 0.5 * atan(2 * m11 / (m20 - m02)); - if (cvIsNaN(mangle) || cvIsInf(mangle)) - return Qnil; - else - return rb_float_new(mangle); -} - -VALUE -new_object(CvArr *arr, int is_binary = 0) -{ - VALUE object = rb_allocate(rb_klass); - try { - cvMoments(arr, CVMOMENTS(object), is_binary); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return object; -} - -void -init_ruby_class() -{ -#if 0 - // For documentation using YARD - VALUE opencv = rb_define_module("OpenCV"); -#endif - - if (rb_klass) - return; - /* - * opencv = rb_define_module("OpenCV"); - * - * note: this comment is used by rdoc. - */ - VALUE opencv = rb_module_opencv(); - - rb_klass = rb_define_class_under(opencv, "CvMoments", rb_cObject); - rb_define_alloc_func(rb_klass, rb_allocate); - rb_define_method(rb_klass, "initialize", RUBY_METHOD_FUNC(rb_initialize), -1); - rb_define_method(rb_klass, "spatial", RUBY_METHOD_FUNC(rb_spatial), 2); - rb_define_method(rb_klass, "central", RUBY_METHOD_FUNC(rb_central), 2); - rb_define_method(rb_klass, "normalized_central", RUBY_METHOD_FUNC(rb_normalized_central), 2); - rb_define_method(rb_klass, "hu", RUBY_METHOD_FUNC(rb_hu), 0); - rb_define_method(rb_klass, "gravity_center", RUBY_METHOD_FUNC(rb_gravity_center), 0); - rb_define_method(rb_klass, "angle", RUBY_METHOD_FUNC(rb_angle), 0); - - DEFINE_CVMOMENTS_ACCESSOR(m00); - DEFINE_CVMOMENTS_ACCESSOR(m10); - DEFINE_CVMOMENTS_ACCESSOR(m01); - DEFINE_CVMOMENTS_ACCESSOR(m20); - DEFINE_CVMOMENTS_ACCESSOR(m11); - DEFINE_CVMOMENTS_ACCESSOR(m02); - DEFINE_CVMOMENTS_ACCESSOR(m30); - DEFINE_CVMOMENTS_ACCESSOR(m21); - DEFINE_CVMOMENTS_ACCESSOR(m12); - DEFINE_CVMOMENTS_ACCESSOR(m03); - - DEFINE_CVMOMENTS_ACCESSOR(mu20); - DEFINE_CVMOMENTS_ACCESSOR(mu11); - DEFINE_CVMOMENTS_ACCESSOR(mu02); - DEFINE_CVMOMENTS_ACCESSOR(mu30); - DEFINE_CVMOMENTS_ACCESSOR(mu21); - DEFINE_CVMOMENTS_ACCESSOR(mu12); - DEFINE_CVMOMENTS_ACCESSOR(mu03); - - DEFINE_CVMOMENTS_ACCESSOR(inv_sqrt_m00); -} - -__NAMESPACE_END_CVMOMENTS -__NAMESPACE_END_OPENCV - diff --git a/ext/opencv/cvmoments.h b/ext/opencv/cvmoments.h deleted file mode 100644 index 700a248..0000000 --- a/ext/opencv/cvmoments.h +++ /dev/null @@ -1,75 +0,0 @@ -/************************************************************ - - cvmoments.h - - - $Author: lsxi $ - - Copyright (C) 2007 Masakazu Yonekura - -************************************************************/ -#ifndef RUBY_OPENCV_CVMOMENTS_H -#define RUBY_OPENCV_CVMOMENTS_H - -#include "opencv.h" - -#define __NAMESPACE_BEGIN_CVMOMENTS namespace cCvMoments { -#define __NAMESPACE_END_CVMOMENTS } - -__NAMESPACE_BEGIN_OPENCV -__NAMESPACE_BEGIN_CVMOMENTS - -VALUE rb_class(); - -void init_ruby_class(); - -VALUE rb_allocate(VALUE klass); -VALUE rb_initialize(int argc, VALUE *argv, VALUE self); -VALUE rb_spatial(VALUE self, VALUE x_order, VALUE y_order); -VALUE rb_central(VALUE self, VALUE x_order, VALUE y_order); -VALUE rb_normalized_central(VALUE self, VALUE x_order, VALUE y_order); -VALUE rb_hu(VALUE self); -VALUE rb_gravity_center(VALUE self); -VALUE rb_angle(VALUE self); - -VALUE rb_m00(VALUE self); -VALUE rb_m10(VALUE self); -VALUE rb_m01(VALUE self); -VALUE rb_m20(VALUE self); -VALUE rb_m11(VALUE self); -VALUE rb_m02(VALUE self); -VALUE rb_m30(VALUE self); -VALUE rb_m21(VALUE self); -VALUE rb_m12(VALUE self); -VALUE rb_m03(VALUE self); -VALUE rb_mu20(VALUE self); -VALUE rb_mu11(VALUE self); -VALUE rb_mu02(VALUE self); -VALUE rb_mu30(VALUE self); -VALUE rb_mu21(VALUE self); -VALUE rb_mu12(VALUE self); -VALUE rb_mu03(VALUE self); -VALUE rb_inv_sqrt_m00(VALUE self); - -VALUE new_object(CvArr *arr, int is_binary); - -__NAMESPACE_END_CVMOMENTS - -inline CvMoments* -CVMOMENTS(VALUE object) -{ - CvMoments *ptr; - Data_Get_Struct(object, CvMoments, ptr); - return ptr; -} - -inline CvMoments* -CVMOMENTS_WITH_CHECK(VALUE object) -{ - if (!rb_obj_is_kind_of(object, cCvMoments::rb_class())) - raise_typeerror(object, cCvMoments::rb_class()); - return CVMOMENTS(object); -} - -__NAMESPACE_END_OPENCV - -#endif // RUBY_OPENCV_CVMOMENTS_H diff --git a/ext/opencv/cvpoint.cpp b/ext/opencv/cvpoint.cpp deleted file mode 100644 index 99fe431..0000000 --- a/ext/opencv/cvpoint.cpp +++ /dev/null @@ -1,234 +0,0 @@ -/************************************************************ - - cvpoint.cpp - - - $Author: lsxi $ - - Copyright (C) 2005-2006 Masakazu Yonekura - -************************************************************/ -#include "cvpoint.h" -/* - * Document-class: OpenCV::CvPoint - * - * This class means one point on X axis Y axis. - * X and Y takes the value of the Fixnum. see also CvPoint2D32F - * - * C structure is here, very simple. - * typdef struct CvPoint { - * int x; - * int y; - * } - */ -__NAMESPACE_BEGIN_OPENCV -__NAMESPACE_BEGIN_CVPOINT - -VALUE rb_klass; - -VALUE -rb_class() -{ - return rb_klass; -} - -/* - * call-seq: - * combatible?(obj) - * - * Return compatibility to CvPoint. Return true if object have method #x and #y. - * - * For example. - * class MyPoint - * def x - * 1 - * end - * def y - * 2 - * end - * end - * mp = MyPoint.new - * CvPoint.compatible?(mp) #=> true - * CvPoint.new(mp) #=> same as CvPoint(1, 2) - */ -VALUE -rb_compatible_q(VALUE klass, VALUE object) -{ - return (rb_respond_to(object, rb_intern("x")) && rb_respond_to(object, rb_intern("y"))) ? Qtrue : Qfalse; -} - -VALUE -rb_allocate(VALUE klass) -{ - CvPoint *ptr; - return Data_Make_Struct(klass, CvPoint, 0, -1, ptr); -} - -/* - * call-seq: - * new -> CvPoint.new(0, 0) - * new(obj) -> CvPoint.new(obj.x.to_i, obj.y.to_i) - * new(x, y) - * - * Create new 2D-coordinate, (x, y). It is dropped below the decimal point. - * - * new() is same as new(0, 0) - * - * new(obj) is same as new(obj.x.to_i, obj.y.to_i) - */ -VALUE -rb_initialize(int argc, VALUE *argv, VALUE self) -{ - CvPoint* self_ptr = CVPOINT(self); - switch (argc) { - case 0: - break; - case 1: { - CvPoint point = VALUE_TO_CVPOINT(argv[0]); - self_ptr->x = point.x; - self_ptr->y = point.y; - break; - } - case 2: - self_ptr->x = NUM2INT(argv[0]); - self_ptr->y = NUM2INT(argv[1]); - break; - default: - rb_raise(rb_eArgError, "wrong number of arguments (%d for 0..2)", argc); - break; - } - return self; -} - -/* - * Return parameter on x-axis. - */ -VALUE -rb_x(VALUE self) -{ - return INT2NUM(CVPOINT(self)->x); -} - -/* - * call-seq: - * x = val - * - * Set x-axis parameter, return self. - * It is dropped below the decimal point. - * pt = CvPoint.new - * pt.x = 1.1 - * pt.x #=> 1 - * pt.x = 100.9 - * pt.x #=> 100 - */ -VALUE -rb_set_x(VALUE self, VALUE x) -{ - CVPOINT(self)->x = NUM2INT(x); - return self; -} - -/* - * Return parameter on y-axis. - */ -VALUE -rb_y(VALUE self) -{ - return INT2NUM(CVPOINT(self)->y); -} - -/* - * call-seq: - * y = val - * - * Set y-axis parameter, return self. - * It is dropped below the decimal point. - */ -VALUE -rb_set_y(VALUE self, VALUE y) -{ - CVPOINT(self)->y = NUM2INT(y); - return self; -} - -/* - * call-seq: - * to_s -> "" - * - * Return x and y by String. - */ -VALUE -rb_to_s(VALUE self) -{ - const int i = 4; - VALUE str[i]; - str[0] = rb_str_new2("<%s:(%d,%d)>"); - str[1] = rb_str_new2(rb_class2name(CLASS_OF(self))); - str[2] = rb_x(self); - str[3] = rb_y(self); - return rb_f_sprintf(i, str); -} - -/* - * call-seq: - * to_ary -> [x, y] - * - * Return x and y by Array. - */ -VALUE -rb_to_ary(VALUE self) -{ - CvPoint* self_ptr = CVPOINT(self); - return rb_ary_new3(2, INT2NUM(self_ptr->x), INT2NUM(self_ptr->y)); -} - -VALUE -new_object() -{ - VALUE object = rb_allocate(rb_klass); - *CVPOINT(object) = cvPoint(0, 0); - return object; -} - - -VALUE -new_object(CvPoint point) -{ - VALUE object = rb_allocate(rb_klass); - *CVPOINT(object) = point; - return object; -} - -void -init_ruby_class() -{ -#if 0 - // For documentation using YARD - VALUE opencv = rb_define_module("OpenCV"); -#endif - - if (rb_klass) - return; - /* - * opencv = rb_define_module("OpenCV"); - * - * note: this comment is used by rdoc. - */ - VALUE opencv = rb_module_opencv(); - - rb_klass = rb_define_class_under(opencv, "CvPoint", rb_cObject); - rb_define_alloc_func(rb_klass, rb_allocate); - rb_define_singleton_method(rb_klass, "compatible?", RUBY_METHOD_FUNC(rb_compatible_q), 1); - rb_define_method(rb_klass, "initialize", RUBY_METHOD_FUNC(rb_initialize), -1); - rb_define_method(rb_klass, "x", RUBY_METHOD_FUNC(rb_x), 0); - rb_define_method(rb_klass, "x=", RUBY_METHOD_FUNC(rb_set_x), 1); - rb_define_method(rb_klass, "y", RUBY_METHOD_FUNC(rb_y), 0); - rb_define_method(rb_klass, "y=", RUBY_METHOD_FUNC(rb_set_y), 1); - - rb_define_method(rb_klass, "to_s", RUBY_METHOD_FUNC(rb_to_s), 0); - rb_define_method(rb_klass, "to_ary", RUBY_METHOD_FUNC(rb_to_ary), 0); - rb_define_alias(rb_klass, "to_a", "to_ary"); -} - -__NAMESPACE_END_CVPOINT -__NAMESPACE_END_OPENCV - diff --git a/ext/opencv/cvpoint.h b/ext/opencv/cvpoint.h deleted file mode 100644 index d72d43f..0000000 --- a/ext/opencv/cvpoint.h +++ /dev/null @@ -1,64 +0,0 @@ -/************************************************************ - - cvpoint.h - - - $Author: lsxi $ - - Copyright (C) 2005-2006 Masakazu Yonekura - -************************************************************/ -#ifndef RUBY_OPENCV_CVPOINT_H -#define RUBY_OPENCV_CVPOINT_H - -#include "opencv.h" - -#define __NAMESPACE_BEGIN_CVPOINT namespace cCvPoint { -#define __NAMESPACE_END_CVPOINT } - -__NAMESPACE_BEGIN_OPENCV -__NAMESPACE_BEGIN_CVPOINT - -VALUE rb_class(); - -void init_ruby_class(); - -VALUE rb_compatible_q(VALUE klass, VALUE object); - -VALUE rb_allocate(VALUE klass); -VALUE rb_initialize(int argc, VALUE *argv, VALUE self); -VALUE rb_x(VALUE self); -VALUE rb_set_x(VALUE self, VALUE x); -VALUE rb_y(VALUE self); -VALUE rb_set_y(VALUE self, VALUE y); - -VALUE rb_to_s(VALUE self); -VALUE rb_to_ary(VALUE self); - -VALUE new_object(); -VALUE new_object(CvPoint point); - -__NAMESPACE_END_CVPOINT - -inline CvPoint* -CVPOINT(VALUE object){ - CvPoint *ptr; - Data_Get_Struct(object, CvPoint, ptr); - return ptr; -} - -inline CvPoint -VALUE_TO_CVPOINT(VALUE object) -{ - if (cCvPoint::rb_compatible_q(cCvPoint::rb_class(), object)) { - return cvPoint(NUM2INT(rb_funcall(object, rb_intern("x"), 0)), - NUM2INT(rb_funcall(object, rb_intern("y"), 0))); - } - else { - raise_compatible_typeerror(object, cCvPoint::rb_class()); - } - throw "Should never reach here"; -} - -__NAMESPACE_END_OPENCV - -#endif // RUBY_OPENCV_CVPOINT_H diff --git a/ext/opencv/cvpoint2d32f.cpp b/ext/opencv/cvpoint2d32f.cpp deleted file mode 100644 index 836e6ad..0000000 --- a/ext/opencv/cvpoint2d32f.cpp +++ /dev/null @@ -1,216 +0,0 @@ -/************************************************************ - - cvpoint2d32f.cpp - - - $Author: lsxi $ - - Copyright (C) 2005 Masakazu Yonekura - -************************************************************/ -#include "cvpoint2d32f.h" -/* - * Document-class: OpenCV::CvPoint2D32f - * - * This class means one point on X axis Y axis. - * X and Y takes the value of the Float. see also CvPoint - * - * C structure is here, very simple. - * typdef struct CvPoint2D32f { - * float x; - * float y; - * } - */ -__NAMESPACE_BEGIN_OPENCV -__NAMESPACE_BEGIN_CVPOINT2D32F - -VALUE rb_klass; - -VALUE -rb_class() -{ - return rb_klass; -} - -/* - * call-seq: - * combatible?(obj) - * - * Return compatibility to CvPoint2D32f. Return true if object have method #x and #y. - * - * For example. - * class MyPoint2D32f - * def x - * 95.7 - * end - * def y - * 70.2 - * end - * end - * mp = MyPoint2D32f.new - * CvPoint2D32f.compatible?(mp) #=> true - * CvPoint2D32f.new(mp) #=> same as CvPoint2D32f(95.7, 70.2) - */ -VALUE -rb_compatible_q(VALUE klass, VALUE object) -{ - return (rb_respond_to(object, rb_intern("x")) && rb_respond_to(object, rb_intern("y"))) ? Qtrue : Qfalse; -} - -VALUE -rb_allocate(VALUE klass) -{ - CvPoint2D32f *ptr; - return Data_Make_Struct(klass, CvPoint2D32f, 0, -1, ptr); -} - -/* - * call-seq: - * new - * new(obj) - * new(x, y) - * - * Create new 2D-coordinate, (x, y). - * - * new() is same as new(0.0, 0.0) - * - * new(obj) is same as new(obj.x.to_f, obj.y.to_f) - */ -VALUE -rb_initialize(int argc, VALUE *argv, VALUE self) -{ - CvPoint2D32f *self_ptr = CVPOINT2D32F(self); - switch (argc) { - case 0: - break; - case 1: { - CvPoint2D32f point = VALUE_TO_CVPOINT2D32F(argv[0]); - self_ptr->x = point.x; - self_ptr->y = point.y; - break; - } - case 2: - self_ptr->x = NUM2DBL(argv[0]); - self_ptr->y = NUM2DBL(argv[1]); - break; - default: - rb_raise(rb_eArgError, "wrong number of arguments (%d for 0..2)", argc); - break; - } - return self; -} - -/* - * Return parameter on x-axis. - */ -VALUE -rb_x(VALUE self) -{ - return rb_float_new(CVPOINT2D32F(self)->x); -} - -/* - * call-seq: - * x = val - * - * Set x-axis parameter, return self. - */ -VALUE -rb_set_x(VALUE self, VALUE x) -{ - CVPOINT2D32F(self)->x = NUM2DBL(x); - return self; -} - -/* - * Return parameter on y-axis. - */ -VALUE -rb_y(VALUE self) -{ - return rb_float_new(CVPOINT2D32F(self)->y); -} - -/* - * call-seq: - * y = val - * - * Set y-axis parameter, return self. - */ -VALUE -rb_set_y(VALUE self, VALUE y) -{ - CVPOINT2D32F(self)->y = NUM2DBL(y); - return self; -} - -/* - * call-seq: - * to_s -> "" - * - * Return x and y by String. - */ -VALUE -rb_to_s(VALUE self) -{ - const int i = 4; - VALUE str[i]; - str[0] = rb_str_new2("<%s:(%g,%g)>"); - str[1] = rb_str_new2(rb_class2name(CLASS_OF(self))); - str[2] = rb_x(self); - str[3] = rb_y(self); - return rb_f_sprintf(i, str); -} - -/* - * call-seq: - * to_ary -> [x, y] - * - * Return x and y by Array. - */ -VALUE -rb_to_ary(VALUE self) -{ - return rb_ary_new3(2, rb_x(self), rb_y(self)); -} - -VALUE -new_object(CvPoint2D32f point) -{ - VALUE object = rb_allocate(rb_klass); - *CVPOINT2D32F(object) = point; - return object; -} - -void -init_ruby_class() -{ -#if 0 - // For documentation using YARD - VALUE opencv = rb_define_module("OpenCV"); -#endif - - if (rb_klass) - return; - /* - * opencv = rb_define_module("OpenCV"); - * - * note: this comment is used by rdoc. - */ - VALUE opencv = rb_module_opencv(); - - rb_klass = rb_define_class_under(opencv, "CvPoint2D32f", rb_cObject); - rb_define_alloc_func(rb_klass, rb_allocate); - rb_define_singleton_method(rb_klass, "compatible?", RUBY_METHOD_FUNC(rb_compatible_q), 1); - rb_define_method(rb_klass, "initialize", RUBY_METHOD_FUNC(rb_initialize), -1); - rb_define_method(rb_klass, "x", RUBY_METHOD_FUNC(rb_x), 0); - rb_define_method(rb_klass, "x=", RUBY_METHOD_FUNC(rb_set_x), 1); - rb_define_method(rb_klass, "y", RUBY_METHOD_FUNC(rb_y), 0); - rb_define_method(rb_klass, "y=", RUBY_METHOD_FUNC(rb_set_y), 1); - - rb_define_method(rb_klass, "to_s", RUBY_METHOD_FUNC(rb_to_s), 0); - rb_define_method(rb_klass, "to_ary", RUBY_METHOD_FUNC(rb_to_ary), 0); - rb_define_alias(rb_klass, "to_a", "to_ary"); -} - -__NAMESPACE_END_CVPOINT2D32F -__NAMESPACE_END_OPENCV diff --git a/ext/opencv/cvpoint2d32f.h b/ext/opencv/cvpoint2d32f.h deleted file mode 100644 index 7635c1f..0000000 --- a/ext/opencv/cvpoint2d32f.h +++ /dev/null @@ -1,63 +0,0 @@ -/************************************************************ - - cvpoint2d32f.h - - - $Author: lsxi $ - - Copyright (C) 2005 Masakazu Yonekura - -************************************************************/ -#ifndef RUBY_OPENCV_CVPOINT2D32F_H -#define RUBY_OPENCV_CVPOINT2D32F_H - -#define __NAMESPACE_BEGIN_CVPOINT2D32F namespace cCvPoint2D32f { -#define __NAMESPACE_END_CVPOINT2D32F } - -#include "opencv.h" - -__NAMESPACE_BEGIN_OPENCV -__NAMESPACE_BEGIN_CVPOINT2D32F - -VALUE rb_class(); - -void init_ruby_class(); - -VALUE rb_compatible_q(VALUE klass, VALUE object); - -VALUE rb_allocate(VALUE klass); -VALUE rb_initialize(int argc, VALUE *argv, VALUE self); -VALUE rb_x(VALUE self); -VALUE rb_set_x(VALUE self, VALUE x); -VALUE rb_y(VALUE self); -VALUE rb_set_y(VALUE self, VALUE y); - -VALUE rb_to_s(VALUE self); -VALUE rb_to_ary(VALUE self); - -VALUE new_object(CvPoint2D32f point); - -__NAMESPACE_END_CVPOINT2D32F - -inline CvPoint2D32f* -CVPOINT2D32F(VALUE object) -{ - CvPoint2D32f *ptr; - Data_Get_Struct(object, CvPoint2D32f, ptr); - return ptr; -} - -inline CvPoint2D32f -VALUE_TO_CVPOINT2D32F(VALUE object) -{ - if (cCvPoint2D32f::rb_compatible_q(cCvPoint2D32f::rb_class(), object)) { - return cvPoint2D32f(NUM2DBL(rb_funcall(object, rb_intern("x"), 0)), - NUM2DBL(rb_funcall(object, rb_intern("y"), 0))); - } - else { - raise_compatible_typeerror(object, cCvPoint2D32f::rb_class()); - } - throw "Should never reach here"; -} - -__NAMESPACE_END_OPENCV -#endif // RUBY_OPENCV_CVPOINT2D32F_H diff --git a/ext/opencv/cvpoint3d32f.cpp b/ext/opencv/cvpoint3d32f.cpp deleted file mode 100644 index 5a3f646..0000000 --- a/ext/opencv/cvpoint3d32f.cpp +++ /dev/null @@ -1,252 +0,0 @@ -/************************************************************ - - cvpoint3d32f.cpp - - - $Author: lsxi $ - - Copyright (C) 2005-2008 Masakazu Yonekura - -************************************************************/ -#include "cvpoint3d32f.h" -/* - * Document-class: OpenCV::CvPoint3D32f - * - * This class means one point on X axis Y axis. - * X and Y takes the value of the Float. see also CvPoint - * - * C structure is here, very simple. - * typdef struct CvPoint3D32f { - * float x; - * float y; - * float z; - * } - */ -__NAMESPACE_BEGIN_OPENCV -__NAMESPACE_BEGIN_CVPOINT3D32F - -VALUE rb_klass; - -VALUE -rb_class() -{ - return rb_klass; -} - -/* - * call-seq: - * combatible?(obj) - * - * Return compatibility to CvPoint3D32f. Return true if object have method #x and #y and #z. - * - * For example. - * class MyPoint3D32f - * def x - * 95.7 - * end - * def y - * 70.2 - * end - * def z - * 10.0 - * end - * end - * mp = MyPoint3D32f.new - * CvPoint3D32f.compatible?(mp) #=> true - * CvPoint3D32f.new(mp) #=> same as CvPoint3D32f(95.7, 70.2) - */ -VALUE -rb_compatible_q(VALUE klass, VALUE object) -{ - return (rb_respond_to(object, rb_intern("x")) && - rb_respond_to(object, rb_intern("y")) && - rb_respond_to(object, rb_intern("z"))) ? Qtrue : Qfalse; -} - -VALUE -rb_allocate(VALUE klass) -{ - CvPoint3D32f *ptr; - return Data_Make_Struct(klass, CvPoint3D32f, 0, -1, ptr); -} - -/* - * call-seq: - * new - * new(obj) - * new(x, y, z) - * - * Create new 3D-coordinate, (x, y, z). - * - * new() is same as new(0.0, 0.0, 0.0) - * - * new(obj) is same as new(obj.x.to_f, obj.y.to_f, obj.z.to_f) - */ -VALUE -rb_initialize(int argc, VALUE *argv, VALUE self) -{ - CvPoint3D32f *self_ptr = CVPOINT3D32F(self); - switch (argc) { - case 0: - break; - case 1: { - CvPoint3D32f point = VALUE_TO_CVPOINT3D32F(argv[0]); - self_ptr->x = point.x; - self_ptr->y = point.y; - self_ptr->z = point.z; - break; - } - case 3: - self_ptr->x = NUM2DBL(argv[0]); - self_ptr->y = NUM2DBL(argv[1]); - self_ptr->z = NUM2DBL(argv[2]); - break; - default: - rb_raise(rb_eArgError, "wrong number of arguments (%d for 0..2)", argc); - break; - } - return self; -} - -/* - * Return parameter on x-axis. - */ -VALUE -rb_x(VALUE self) -{ - return rb_float_new(CVPOINT2D32F(self)->x); -} - -/* - * call-seq: - * x = val - * - * Set x-axis parameter, return self. - */ -VALUE -rb_set_x(VALUE self, VALUE x) -{ - CVPOINT2D32F(self)->x = NUM2DBL(x); - return self; -} - -/* - * Return parameter on y-axis. - */ -VALUE -rb_y(VALUE self) -{ - return rb_float_new(CVPOINT2D32F(self)->y); -} - -/* - * call-seq: - * y = val - * - * Set y-axis parameter, return self. - */ -VALUE -rb_set_y(VALUE self, VALUE y) -{ - CVPOINT2D32F(self)->y = NUM2DBL(y); - return self; -} - -/* - * Return parameter on z-axis. - */ -VALUE -rb_z(VALUE self) -{ - return rb_float_new(CVPOINT3D32F(self)->z); -} - -/* - * call-seq: - * z = val - * - * Set z-axis parameter, return self. - */ -VALUE -rb_set_z(VALUE self, VALUE z) -{ - CVPOINT3D32F(self)->z = NUM2DBL(z); - return self; -} - -/* - * call-seq: - * to_s -> "" - * - * Return x and y by String. - */ -VALUE -rb_to_s(VALUE self) -{ - const int i = 5; - VALUE str[i]; - str[0] = rb_str_new2("<%s:(%g,%g,%g)>"); - str[1] = rb_str_new2(rb_class2name(CLASS_OF(self))); - str[2] = rb_x(self); - str[3] = rb_y(self); - str[4] = rb_z(self); - return rb_f_sprintf(i, str); -} - -/* - * call-seq: - * to_ary -> [x, y, z] - * - * Return x and y by Array. - */ -VALUE -rb_to_ary(VALUE self) -{ - return rb_ary_new3(3, rb_x(self), rb_y(self), rb_z(self)); -} - -VALUE -new_object(CvPoint3D32f point) -{ - VALUE object = rb_allocate(rb_klass); - *CVPOINT3D32F(object) = point; - return object; -} - -void -init_ruby_class() -{ -#if 0 - // For documentation using YARD - VALUE opencv = rb_define_module("OpenCV"); - VALUE cvpoint2d32f = rb_define_class_under(opencv, "CvPoint2D32f", rb_cObject); -#endif - - if (rb_klass) - return; - /* - * opencv = rb_define_module("OpenCV"); - * cvpoint2d32f = rb_define_class_under(opencv, "CvPoint2D32f", rb_cObject); - * - * note: this comment is used by rdoc. - */ - VALUE opencv = rb_module_opencv(); - VALUE cvpoint2d32f = cCvPoint2D32f::rb_class(); - rb_klass = rb_define_class_under(opencv, "CvPoint3D32f", cvpoint2d32f); - rb_define_alloc_func(rb_klass, rb_allocate); - rb_define_singleton_method(rb_klass, "compatible?", RUBY_METHOD_FUNC(rb_compatible_q), 1); - rb_define_method(rb_klass, "initialize", RUBY_METHOD_FUNC(rb_initialize), -1); - rb_define_method(rb_klass, "x", RUBY_METHOD_FUNC(rb_x), 0); - rb_define_method(rb_klass, "x=", RUBY_METHOD_FUNC(rb_set_x), 1); - rb_define_method(rb_klass, "y", RUBY_METHOD_FUNC(rb_y), 0); - rb_define_method(rb_klass, "y=", RUBY_METHOD_FUNC(rb_set_y), 1); - rb_define_method(rb_klass, "z", RUBY_METHOD_FUNC(rb_z), 0); - rb_define_method(rb_klass, "z=", RUBY_METHOD_FUNC(rb_set_z), 1); - - rb_define_method(rb_klass, "to_s", RUBY_METHOD_FUNC(rb_to_s), 0); - rb_define_method(rb_klass, "to_ary", RUBY_METHOD_FUNC(rb_to_ary), 0); - rb_define_alias(rb_klass, "to_a", "to_ary"); -} - -__NAMESPACE_END_CVPOINT3D32F -__NAMESPACE_END_OPENCV - diff --git a/ext/opencv/cvpoint3d32f.h b/ext/opencv/cvpoint3d32f.h deleted file mode 100644 index 3d225cf..0000000 --- a/ext/opencv/cvpoint3d32f.h +++ /dev/null @@ -1,66 +0,0 @@ -/************************************************************ - - cvpoint3d32f.h - - - $Author: lsxi $ - - Copyright (C) 2005-2008 Masakazu Yonekura - -************************************************************/ -#ifndef RUBY_OPENCV_CVPOINT3D32F_H -#define RUBY_OPENCV_CVPOINT3D32F_H - -#define __NAMESPACE_BEGIN_CVPOINT3D32F namespace cCvPoint3D32f { -#define __NAMESPACE_END_CVPOINT3D32F } - -#include "opencv.h" - -__NAMESPACE_BEGIN_OPENCV -__NAMESPACE_BEGIN_CVPOINT3D32F - -VALUE rb_class(); - -void init_ruby_class(); - -VALUE rb_compatible_q(VALUE klass, VALUE object); - -VALUE rb_allocate(VALUE klass); -VALUE rb_initialize(int argc, VALUE *argv, VALUE self); -VALUE rb_x(VALUE self); -VALUE rb_set_x(VALUE self, VALUE x); -VALUE rb_y(VALUE self); -VALUE rb_set_y(VALUE self, VALUE y); -VALUE rb_z(VALUE self); -VALUE rb_set_z(VALUE self, VALUE z); - -VALUE rb_to_s(VALUE self); -VALUE rb_to_ary(VALUE self); - -VALUE new_object(CvPoint3D32f point); - -__NAMESPACE_END_CVPOINT3D32F - -inline CvPoint3D32f* -CVPOINT3D32F(VALUE object) -{ - CvPoint3D32f *ptr; - Data_Get_Struct(object, CvPoint3D32f, ptr); - return ptr; -} - -inline CvPoint3D32f -VALUE_TO_CVPOINT3D32F(VALUE object) -{ - if (cCvPoint3D32f::rb_compatible_q(cCvPoint3D32f::rb_class(), object)) { - return cvPoint3D32f(NUM2DBL(rb_funcall(object, rb_intern("x"), 0)), - NUM2DBL(rb_funcall(object, rb_intern("y"), 0)), - NUM2DBL(rb_funcall(object, rb_intern("z"), 0))); - } - else { - raise_compatible_typeerror(object, cCvPoint3D32f::rb_class()); - } - throw "Should never reach here"; -} - -__NAMESPACE_END_OPENCV -#endif // RUBY_OPENCV_CVPOINT3D32F_H diff --git a/ext/opencv/cvrect.cpp b/ext/opencv/cvrect.cpp deleted file mode 100644 index 47846b0..0000000 --- a/ext/opencv/cvrect.cpp +++ /dev/null @@ -1,338 +0,0 @@ -/************************************************************ - - cvrect.cpp - - - $Author: lsxi $ - - Copyright (C) 2005-2006 Masakazu Yonekura - -************************************************************/ -#include "cvrect.h" -/* - * Document-class: OpenCV::CvRect - * - * This class have coordinate of top-left point(x, y) and size, width and height. - * - * - * C stracture is here, very simple. - * typdef struct CvRect { - * int x; - * int y; - * int width; - * int height; - * } - * - */ -__NAMESPACE_BEGIN_OPENCV -__NAMESPACE_BEGIN_CVRECT - -VALUE rb_klass; - -VALUE -rb_class() -{ - return rb_klass; -} - -/* - * call-seq: - * combatible?(obj) - * - * Return compatibility to CvRect. Return true if object have method #x and #y and #width and #height. - * - * For example. - * class MyRect - * def x - * 1 - * end - * def y - * 2 - * end - * def width - * 10 - * end - * def height - * 20 - * end - * end - * mr = MyRect.new - * CvRect.compatible?(mp) #=> true - * CvRect.new(mp) #=> same as CvRect(1, 2, 10, 20) - */ -VALUE -rb_compatible_q(VALUE klass, VALUE object) -{ - return (rb_respond_to(object, rb_intern("x")) && - rb_respond_to(object, rb_intern("y")) && - rb_respond_to(object, rb_intern("width")) && - rb_respond_to(object, rb_intern("height"))) ? Qtrue : Qfalse; -} - -/* - * call-seq: - * max_rect(rect1, rect2) -> cvrect - * - * Finds bounding rectangle for given rectangles. - */ -VALUE -rb_max_rect(VALUE klass, VALUE rect1, VALUE rect2) -{ - return cCvRect::new_object(cvMaxRect(CVRECT(rect1), CVRECT(rect2))); -} - -VALUE -rb_allocate(VALUE klass) -{ - CvRect *ptr; - return Data_Make_Struct(klass, CvRect, 0, -1, ptr); -} - -/* - * call-seq: - * new -> CvRect.new(0, 0, 0, 0) - * new(obj) -> CvRect.new(obj.x.to_i, obj.y.to_i, obj.width.to_i, obj.height.to_i) - * new(x, y, width, height) - * - * Create new rectangle area. (x, y) is top-left point, and width, height is size of area. - * It is dropped below the decimal point. - * - * new() is same as new(0, 0, 0, 0) - * - * new(obj) is same as new(obj.x.to_i, obj.y.to_i, obj.width.to_i, obj.height.to_i) - */ -VALUE -rb_initialize(int argc, VALUE *argv, VALUE self) -{ - CvRect *self_ptr = CVRECT(self); - switch (argc) { - case 0: - break; - case 1: { - CvRect rect = VALUE_TO_CVRECT(argv[0]); - self_ptr->x = rect.x; - self_ptr->y = rect.y; - self_ptr->width = rect.width; - self_ptr->height = rect.height; - break; - } - case 4: - self_ptr->x = NUM2INT(argv[0]); - self_ptr->y = NUM2INT(argv[1]); - self_ptr->width = NUM2INT(argv[2]); - self_ptr->height = NUM2INT(argv[3]); - break; - default: - rb_raise(rb_eArgError, "wrong number of arguments (%d for 0..2)", argc); - break; - } - return self; -} - -/* - * Return parameter on x-axis of top-left point. - */ -VALUE -rb_x(VALUE self) -{ - return INT2NUM(CVRECT(self)->x); -} - -/* - * call-seq: - * x = val - * - * Set x-axis parameter of top-left point, return self. - * It is dropped below the decimal point. - */ -VALUE -rb_set_x(VALUE self, VALUE x) -{ - CVRECT(self)->x = NUM2INT(x); - return self; -} - -/* - * Return parameter on y-axis of top-left point. - */ -VALUE -rb_y(VALUE self) -{ - return INT2NUM(CVRECT(self)->y); -} - -/* - * call-seq: - * y = val - * - * Set y-axis parameter of top-left point, return self. - * It is dropped below the decimal point. - */ -VALUE -rb_set_y(VALUE self, VALUE y) -{ - CVRECT(self)->y = NUM2INT(y); - return self; -} - -/* - * Return size of x-axis. - */ -VALUE -rb_width(VALUE self) -{ - return INT2NUM(CVRECT(self)->width); -} - -/* - * call-seq: - * width = val - * - * Set x-axis size, return self. - * It is dropped below the decimal point. - */ -VALUE -rb_set_width(VALUE self, VALUE x) -{ - CVRECT(self)->width = NUM2INT(x); - return self; -} - -/* - * Return size of y-axis. - */ -VALUE -rb_height(VALUE self) -{ - return INT2NUM(CVRECT(self)->height); -} - -/* - * call-seq: - * height = val - * - * Set y-axis size, return self. - * It is dropped below the decimal point. - */ -VALUE -rb_set_height(VALUE self, VALUE y) -{ - CVRECT(self)->height = NUM2INT(y); - return self; -} - -/* - * Return center point of rectangle. - */ -VALUE -rb_center(VALUE self) -{ - CvRect *rect = CVRECT(self); - return cCvPoint2D32f::new_object(cvPoint2D32f((float)rect->x + (float)rect->width / 2.0, - (float)rect->y + (float)rect->height / 2.0)); -} - -/* - * Return 4 points (top-left, bottom-left, bottom-right, top-right) - */ -VALUE -rb_points(VALUE self) -{ - CvRect *rect = CVRECT(self); - return rb_ary_new3(4, - cCvPoint::new_object(cvPoint(rect->x, rect->y)), - cCvPoint::new_object(cvPoint(rect->x, rect->y + rect->height)), - cCvPoint::new_object(cvPoint(rect->x + rect->width, rect->y + rect->height)), - cCvPoint::new_object(cvPoint(rect->x + rect->width, rect->y)) - ); -} - -/* - * Return top-left point of rectangle. - */ -VALUE -rb_top_left(VALUE self) -{ - CvRect* rect = CVRECT(self); - return cCvPoint::new_object(cvPoint(rect->x, rect->y)); -} - -/* - * Return top-right point of rectangle. - */ -VALUE -rb_top_right(VALUE self) -{ - CvRect* rect = CVRECT(self); - return cCvPoint::new_object(cvPoint(rect->x + rect->width, rect->y)); -} - -/* - * Return bottom-left point of rectangle. - */ -VALUE -rb_bottom_left(VALUE self) -{ - CvRect* rect = CVRECT(self); - return cCvPoint::new_object(cvPoint(rect->x, - rect->y + rect->height)); -} - -/* - * Return bottom-right point of rectangle. - */ -VALUE -rb_bottom_right(VALUE self) -{ - CvRect* rect = CVRECT(self); - return cCvPoint::new_object(cvPoint(rect->x + rect->width, - rect->y + rect->height)); -} - -VALUE -new_object(CvRect rect) -{ - VALUE object = rb_allocate(rb_klass); - *CVRECT(object) = rect; - return object; -} - -void -init_ruby_class() -{ -#if 0 - // For documentation using YARD - VALUE opencv = rb_define_module("OpenCV"); -#endif - - if (rb_klass) - return; - /* - * opencv = rb_define_module("OpenCV"); - * - * note: this comment is used by rdoc. - */ - VALUE opencv = rb_module_opencv(); - rb_klass = rb_define_class_under(opencv, "CvRect", rb_cObject); - rb_define_alloc_func(rb_klass, rb_allocate); - rb_define_singleton_method(rb_klass, "compatible?", RUBY_METHOD_FUNC(rb_compatible_q), 1); - rb_define_singleton_method(rb_klass, "max_rect", RUBY_METHOD_FUNC(rb_max_rect), 2); - rb_define_method(rb_klass, "initialize", RUBY_METHOD_FUNC(rb_initialize), -1); - - rb_define_method(rb_klass, "x", RUBY_METHOD_FUNC(rb_x), 0); - rb_define_method(rb_klass, "x=", RUBY_METHOD_FUNC(rb_set_x), 1); - rb_define_method(rb_klass, "y", RUBY_METHOD_FUNC(rb_y), 0); - rb_define_method(rb_klass, "y=", RUBY_METHOD_FUNC(rb_set_y), 1); - rb_define_method(rb_klass, "width", RUBY_METHOD_FUNC(rb_width), 0); - rb_define_method(rb_klass, "width=", RUBY_METHOD_FUNC(rb_set_width), 1); - rb_define_method(rb_klass, "height", RUBY_METHOD_FUNC(rb_height), 0); - rb_define_method(rb_klass, "height=", RUBY_METHOD_FUNC(rb_set_height), 1); - rb_define_method(rb_klass, "center", RUBY_METHOD_FUNC(rb_center), 0); - rb_define_method(rb_klass, "points", RUBY_METHOD_FUNC(rb_points), 0); - rb_define_method(rb_klass, "top_left", RUBY_METHOD_FUNC(rb_top_left), 0); - rb_define_method(rb_klass, "top_right", RUBY_METHOD_FUNC(rb_top_right), 0); - rb_define_method(rb_klass, "bottom_left", RUBY_METHOD_FUNC(rb_bottom_left), 0); - rb_define_method(rb_klass, "bottom_right", RUBY_METHOD_FUNC(rb_bottom_right), 0); -} - -__NAMESPACE_END_CVRECT -__NAMESPACE_END_OPENCV diff --git a/ext/opencv/cvrect.h b/ext/opencv/cvrect.h deleted file mode 100644 index 8f54b2c..0000000 --- a/ext/opencv/cvrect.h +++ /dev/null @@ -1,79 +0,0 @@ -/************************************************************ - - cvrect.h - - - $Author: lsxi $ - - Copyright (C) 2005-2006 Masakazu Yonekura - -************************************************************/ -#ifndef RUBY_OPENCV_CVRECT_H -#define RUBY_OPENCV_CVRECT_H - -#include "opencv.h" - -#define __NAMESPACE_BEGIN_CVRECT namespace cCvRect { -#define __NAMESPACE_END_CVRECT } - -__NAMESPACE_BEGIN_OPENCV -__NAMESPACE_BEGIN_CVRECT - -VALUE rb_class(); - -void init_ruby_class(); - -VALUE rb_compatible_q(VALUE klass, VALUE object); -VALUE rb_max_rect(VALUE klass, VALUE rect1, VALUE rect2); - -VALUE rb_allocate(VALUE klass); -VALUE rb_initialize(int argc, VALUE *argv, VALUE self); -VALUE rb_x(VALUE self); -VALUE rb_set_x(VALUE self, VALUE x); -VALUE rb_y(VALUE self); -VALUE rb_set_y(VALUE self, VALUE y); -VALUE rb_width(VALUE self); -VALUE rb_set_width(VALUE self, VALUE width); -VALUE rb_height(VALUE self); -VALUE rb_set_height(VALUE self, VALUE height); - -VALUE rb_center(VALUE self); -VALUE rb_points(VALUE self); -VALUE rb_top_left(VALUE self); -VALUE rb_set_top_left(VALUE self, VALUE point); -VALUE rb_top_right(VALUE self); -VALUE rb_set_top_right(VALUE self, VALUE point); -VALUE rb_bottom_left(VALUE self); -VALUE rb_set_bottom_left(VALUE self, VALUE point); -VALUE rb_bottom_right(VALUE self); -VALUE rb_set_bottom_right(VALUE self, VALUE point); - -VALUE new_object(CvRect rect); - -__NAMESPACE_END_CVRECT - -inline CvRect* -CVRECT(VALUE object) -{ - CvRect *ptr; - Data_Get_Struct(object, CvRect, ptr); - return ptr; -} - -inline CvRect -VALUE_TO_CVRECT(VALUE object) -{ - if (cCvRect::rb_compatible_q(cCvRect::rb_class(), object)) { - return cvRect(NUM2INT(rb_funcall(object, rb_intern("x"), 0)), - NUM2INT(rb_funcall(object, rb_intern("y"), 0)), - NUM2INT(rb_funcall(object, rb_intern("width"), 0)), - NUM2INT(rb_funcall(object, rb_intern("height"), 0))); - } - else { - raise_compatible_typeerror(object, cCvRect::rb_class()); - } - throw "Should never reach here"; -} - -__NAMESPACE_END_OPENCV - -#endif // RUBY_OPENCV_CVRECT_H diff --git a/ext/opencv/cvscalar.cpp b/ext/opencv/cvscalar.cpp deleted file mode 100644 index 55565a5..0000000 --- a/ext/opencv/cvscalar.cpp +++ /dev/null @@ -1,241 +0,0 @@ -/************************************************************ - - cvscalar.cpp - - - $Author: lsxi $ - - Copyright (C) 2005 Masakazu Yonekura - -************************************************************/ -#include "cvscalar.h" -/* - * Document-class: OpenCV::CvScalar - * - * Element-value of one pixel. - * OpenCV supports the image of 4-channels in the maximum. - * Therefore, CvScalar has 4-values. - * - * C structure is here, very simple. - * typdef struct CvScalar { - * double val[4]; - * } CvScalar; - * - * If obtain CvScalar-object from the method of CvMat(or IplImage), - * the channel outside the range is obtained as all 0. - * - * image = IplImage::load("opencv.jpg") #=> 3-channel 8bit-depth BGR image - * pixel = image[10, 20] #=> Get pixel value of (10, 20) of image. pixel is CvScalar-object. - * blue, green, red = pixel[0], pixel[1], pixel[2] - * # pixel[3] always 0. - * - * CvColor is alias of CvScalar. - */ -__NAMESPACE_BEGIN_OPENCV -__NAMESPACE_BEGIN_CVSCALAR - - -VALUE rb_klass; - -VALUE -rb_class() -{ - return rb_klass; -} - -VALUE -rb_allocate(VALUE klass) -{ - CvScalar *ptr; - return Data_Make_Struct(klass, CvScalar, 0, -1, ptr); -} - -/* - * call-seq: - * new([d1][,d2][,d3][,d4]) - * - * Create new Scalar. Argument should be Fixnum (or nil as 0). - */ -VALUE -rb_initialize(int argc, VALUE *argv, VALUE self) -{ - VALUE val[4]; - rb_scan_args(argc, argv, "04", &val[0], &val[1], &val[2], &val[3]); - CvScalar* self_ptr = CVSCALAR(self); - for (int i = 0; i < 4; ++i) { - self_ptr->val[i] = NIL_P(val[i]) ? 0 : NUM2DBL(val[i]); - } - return self; -} - -/* - * call-seq: - * [index] - * - * Return value of index dimension. - */ -VALUE -rb_aref(VALUE self, VALUE index) -{ - int idx = NUM2INT(index); - if (idx < 0 || idx >= 4) { - rb_raise(rb_eIndexError, "scalar index should be 0...4"); - } - return rb_float_new(CVSCALAR(self)->val[idx]); -} - -/* - * call-seq: - * [index] = value - * - * Set value of index dimension to value - */ -VALUE -rb_aset(VALUE self, VALUE index, VALUE value) -{ - int idx = NUM2INT(index); - if (idx < 0 || idx >= 4) { - rb_raise(rb_eIndexError, "scalar index should be 0...4"); - } - CVSCALAR(self)->val[idx] = NUM2DBL(value); - return self; -} - -/* - * call-seq: - * sub(val[,mask]) - * - * Return new CvScalar if val is CvScalar or compatible object. - * self[I] - val[I] - * Or return new CvMat if val is CvMat or subclass. - */ -VALUE -rb_sub(int argc, VALUE *argv, VALUE self) -{ - VALUE val, mask; - rb_scan_args(argc, argv, "11", &val, &mask); - if (rb_obj_is_kind_of(val, cCvMat::rb_class())) { - CvArr *val_ptr = CVARR(val); - VALUE dest = Qnil; - try { - dest = cCvMat::new_object(cvGetSize(val_ptr), cvGetElemType(val_ptr)); - cvSubRS(val_ptr, *CVSCALAR(self), CVARR(dest), MASK(mask)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return dest; - } - else { - CvScalar *src = CVSCALAR(self); - CvScalar scl = VALUE_TO_CVSCALAR(val); - return new_object(cvScalar(src->val[0] - scl.val[0], - src->val[1] - scl.val[1], - src->val[2] - scl.val[2], - src->val[3] - scl.val[3])); - } -} - -/* - * call-seq: - * to_s -> "" - * - * Return values by String. - */ -VALUE -rb_to_s(VALUE self) -{ - const int i = 6; - VALUE str[i]; - str[0] = rb_str_new2("<%s:%g,%g,%g,%g>"); - str[1] = rb_str_new2(rb_class2name(CLASS_OF(self))); - str[2] = rb_aref(self, INT2FIX(0)); - str[3] = rb_aref(self, INT2FIX(1)); - str[4] = rb_aref(self, INT2FIX(2)); - str[5] = rb_aref(self, INT2FIX(3)); - return rb_f_sprintf(i, str); -} - -/* - * call-seq: - * to_ary -> [self[0],self[1],self[2],self[3]] - * - * Return values by Array. - */ -VALUE -rb_to_ary(VALUE self) -{ - return rb_ary_new3(4, - rb_aref(self, INT2FIX(0)), - rb_aref(self, INT2FIX(1)), - rb_aref(self, INT2FIX(2)), - rb_aref(self, INT2FIX(3))); -} - -VALUE -new_object() -{ - VALUE object = rb_allocate(rb_klass); - *CVSCALAR(object) = cvScalar(0); - return object; -} - -VALUE -new_object(CvScalar scalar) -{ - VALUE object = rb_allocate(rb_klass); - *CVSCALAR(object) = scalar; - return object; -} - -void -init_ruby_class() -{ -#if 0 - // For documentation using YARD - VALUE opencv = rb_define_module("OpenCV"); -#endif - - if (rb_klass) - return; - /* - * opencv = rb_define_module("OpenCV"); - * - * note: this comment is used by rdoc. - */ - VALUE opencv = rb_module_opencv(); - - rb_klass = rb_define_class_under(opencv, "CvScalar", rb_cObject); - /* CvScalar: class */ - rb_define_const(opencv, "CvColor", rb_klass); - rb_define_alloc_func(rb_klass, rb_allocate); - rb_define_method(rb_klass, "initialize", RUBY_METHOD_FUNC(rb_initialize), -1); - rb_define_method(rb_klass, "[]", RUBY_METHOD_FUNC(rb_aref), 1); - rb_define_method(rb_klass, "[]=", RUBY_METHOD_FUNC(rb_aset), 2); - rb_define_method(rb_klass, "sub", RUBY_METHOD_FUNC(rb_sub), -1); - rb_define_alias(rb_klass, "-", "sub"); - - rb_define_method(rb_klass, "to_s", RUBY_METHOD_FUNC(rb_to_s), 0); - rb_define_method(rb_klass, "to_ary", RUBY_METHOD_FUNC(rb_to_ary), 0); - rb_define_alias(rb_klass, "to_a", "to_ary"); - - rb_define_const(rb_klass, "Black", cCvScalar::new_object(cvScalar(0x0,0x0,0x0))); - rb_define_const(rb_klass, "Silver", cCvScalar::new_object(cvScalar(0x0c,0x0c,0x0c))); - rb_define_const(rb_klass, "Gray", cCvScalar::new_object(cvScalar(0x80,0x80,0x80))); - rb_define_const(rb_klass, "White", cCvScalar::new_object(cvScalar(0xff,0xff,0xff))); - rb_define_const(rb_klass, "Maroon", cCvScalar::new_object(cvScalar(0x0,0x0,0x80))); - rb_define_const(rb_klass, "Red", cCvScalar::new_object(cvScalar(0x0,0x0,0xff))); - rb_define_const(rb_klass, "Purple", cCvScalar::new_object(cvScalar(0x80,0x0,0x80))); - rb_define_const(rb_klass, "Fuchsia", cCvScalar::new_object(cvScalar(0xff,0x0,0xff))); - rb_define_const(rb_klass, "Green", cCvScalar::new_object(cvScalar(0x0,0x80,0x0))); - rb_define_const(rb_klass, "Lime", cCvScalar::new_object(cvScalar(0x0,0xff,0x0))); - rb_define_const(rb_klass, "Olive", cCvScalar::new_object(cvScalar(0x0,0x80,0x80))); - rb_define_const(rb_klass, "Yellow", cCvScalar::new_object(cvScalar(0x0,0xff,0xff))); - rb_define_const(rb_klass, "Navy", cCvScalar::new_object(cvScalar(0x80,0x0,0x0))); - rb_define_const(rb_klass, "Blue", cCvScalar::new_object(cvScalar(0xff,0x0,0x0))); - rb_define_const(rb_klass, "Teal", cCvScalar::new_object(cvScalar(0x80,0x80,0x0))); - rb_define_const(rb_klass, "Aqua", cCvScalar::new_object(cvScalar(0xff,0xff,0x0))); -} - -__NAMESPACE_END_CVSCALAR -__NAMESPACE_END_OPENCV - diff --git a/ext/opencv/cvscalar.h b/ext/opencv/cvscalar.h deleted file mode 100644 index fcdcc81..0000000 --- a/ext/opencv/cvscalar.h +++ /dev/null @@ -1,71 +0,0 @@ -/************************************************************ - - cvscalar.h - - - $Author: lsxi $ - - Copyright (C) 2005 Masakazu Yonekura - -************************************************************/ -#ifndef RUBY_OPENCV_CVSCALAR_H -#define RUBY_OPENCV_CVSCALAR_H - -#include "opencv.h" - -#define __NAMESPACE_BEGIN_CVSCALAR namespace cCvScalar { -#define __NAMESPACE_END_CVSCALAR } - -__NAMESPACE_BEGIN_OPENCV -__NAMESPACE_BEGIN_CVSCALAR - -VALUE rb_class(); - -void init_ruby_class(); - -VALUE rb_compatible_q(VALUE klass, VALUE object); - -VALUE rb_allocate(VALUE klass); -VALUE rb_initialize(int argc, VALUE *argv, VALUE self); - -VALUE rb_aref(VALUE self, VALUE index); -VALUE rb_aset(VALUE self, VALUE index, VALUE value); -VALUE rb_sub(int argc, VALUE *argv, VALUE self); - -VALUE rb_to_s(VALUE self); -VALUE rb_to_ary(VALUE self); - -VALUE new_object(); -VALUE new_object(CvScalar scalar); - -__NAMESPACE_END_CVSCALAR - -inline CvScalar* -CVSCALAR(VALUE object) -{ - CvScalar *ptr; - Data_Get_Struct(object, CvScalar, ptr); - return ptr; -} - -inline CvScalar -VALUE_TO_CVSCALAR(VALUE object) -{ - ID aref_id; - if (FIXNUM_P(object)) { - return cvScalarAll(FIX2INT(object)); - } - else if (rb_respond_to(object, (aref_id = rb_intern("[]")))) { - return cvScalar(NUM2DBL(rb_funcall(object, aref_id, 1, INT2FIX(0))), - NUM2DBL(rb_funcall(object, aref_id, 1, INT2FIX(1))), - NUM2DBL(rb_funcall(object, aref_id, 1, INT2FIX(2))), - NUM2DBL(rb_funcall(object, aref_id, 1, INT2FIX(3)))); - } - else { - raise_compatible_typeerror(object, cCvScalar::rb_class()); - } - throw "Should never reach here"; -} - -__NAMESPACE_END_OPENCV - -#endif // RUBY_OPENCV_CVSCALAR_H diff --git a/ext/opencv/cvseq.cpp b/ext/opencv/cvseq.cpp deleted file mode 100644 index 3d9cb14..0000000 --- a/ext/opencv/cvseq.cpp +++ /dev/null @@ -1,648 +0,0 @@ -/************************************************************ - - cvseq.cpp - - - $Author: lsxi $ - - Copyright (C) 2005-2006 Masakazu Yonekura - -************************************************************/ -#include "cvseq.h" -/* - * Document-class: OpenCV::CvSeq - */ -__NAMESPACE_BEGIN_OPENCV -__NAMESPACE_BEGIN_CVSEQ - -VALUE rb_allocate(VALUE klass); -void cvseq_free(void *ptr); - -VALUE rb_klass; -// contain sequence-block class -st_table *seqblock_klass_table = st_init_numtable(); - -VALUE -rb_class() -{ - return rb_klass; -} - -VALUE -seqblock_class(void *ptr) -{ - VALUE klass; - if (!st_lookup(seqblock_klass_table, (st_data_t)ptr, (st_data_t*)&klass)) { - rb_raise(rb_eTypeError, "Invalid sequence error."); - } - return klass; -} - -void -register_elem_class(CvSeq *seq, VALUE klass) -{ - st_insert(seqblock_klass_table, (st_data_t)seq, (st_data_t)klass); -} - -void -unregister_elem_class(void *ptr) -{ - if (ptr) { - st_delete(seqblock_klass_table, (st_data_t*)&ptr, NULL); - unregister_object(ptr); - } -} - -VALUE -rb_allocate(VALUE klass) -{ - CvSeq *ptr = ALLOC(CvSeq); - return Data_Wrap_Struct(klass, mark_root_object, unregister_elem_class, ptr); -} - -CvSeq* -create_seq(int seq_flags, size_t header_size, VALUE storage_value) -{ - VALUE klass = Qnil; - int eltype = seq_flags & CV_SEQ_ELTYPE_MASK; - storage_value = CHECK_CVMEMSTORAGE(storage_value); - - switch (eltype) { - case CV_SEQ_ELTYPE_POINT: - klass = cCvPoint::rb_class(); - break; - case CV_32FC2: - klass = cCvPoint2D32f::rb_class(); - break; - case CV_SEQ_ELTYPE_POINT3D: - klass = cCvPoint3D32f::rb_class(); - break; - case CV_SEQ_ELTYPE_CODE: - case CV_SEQ_ELTYPE_INDEX: - klass = rb_cFixnum; - break; - case CV_SEQ_ELTYPE_PPOINT: // or CV_SEQ_ELTYPE_PTR: - // Not supported - rb_raise(rb_eArgError, "seq_flags %d is not supported.", eltype); - break; - default: - seq_flags = CV_SEQ_ELTYPE_POINT | CV_SEQ_KIND_GENERIC; - klass = cCvPoint::rb_class(); - break; - } - - int mat_type = CV_MAT_TYPE(seq_flags); - size_t elem_size = (size_t)(CV_ELEM_SIZE(mat_type)); - CvSeq* seq = NULL; - try { - seq = cvCreateSeq(seq_flags, header_size, elem_size, CVMEMSTORAGE(storage_value)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - register_elem_class(seq, klass); - register_root_object(seq, storage_value); - - return seq; -} - -VALUE -class2seq_flags_value(VALUE klass) { - int seq_flags; - if (klass == cCvPoint::rb_class()) { - seq_flags = CV_SEQ_ELTYPE_POINT; - } - else if (klass == cCvPoint2D32f::rb_class()) { - seq_flags = CV_32FC2; - } - else if (klass == cCvPoint3D32f::rb_class()) { - seq_flags = CV_SEQ_ELTYPE_POINT3D; - } - else if (klass == rb_cFixnum) { - seq_flags = CV_SEQ_ELTYPE_INDEX; - } - else { - rb_raise(rb_eTypeError, "unexpected type: %s", rb_class2name(klass)); - } - - return INT2NUM(seq_flags | CV_SEQ_KIND_GENERIC); -} - -/* - * Constructor - * - * @overload new(seq_flags, storage = nil) - * @param [Fixnum] seq_flags Flags of the created sequence, which are combinations of - * the element types and sequence types. - * - Element type: - * - CV_SEQ_ELTYPE_POINT: {CvPoint} - * - CV_32FC2: {CvPoint2D32f} - * - CV_SEQ_ELTYPE_POINT3D: {CvPoint3D32f} - * - CV_SEQ_ELTYPE_INDEX: Fixnum - * - CV_SEQ_ELTYPE_CODE: Fixnum (Freeman code) - * - Sequence type: - * - CV_SEQ_KIND_GENERIC: Generic sequence - * - CV_SEQ_KIND_CURVE: Curve - * @param [CvMemStorage] storage Sequence location - * @return [CvSeq] self - * @opencv_func cvCreateSeq - * @example - * seq1 = CvSeq.new(CV_SEQ_ELTYPE_INDEX) - * seq1 << 1 - * seq1 << CvPoint.new(1, 2) #=> TypeError - * - * seq2 = CvSeq.new(CV_SEQ_ELTYPE_POINT | CV_SEQ_KIND_CURVE) - * seq2 << CvPoint.new(1, 2) - * seq2 << 3 #=> TypeError - */ -VALUE -rb_initialize(int argc, VALUE *argv, VALUE self) -{ - VALUE seq_flags_value, storage_value; - rb_scan_args(argc, argv, "11", &seq_flags_value, &storage_value); - int seq_flags = 0; - - if (TYPE(seq_flags_value) == T_CLASS) { // To maintain backward compatibility - seq_flags_value = class2seq_flags_value(seq_flags_value); - } - Check_Type(seq_flags_value, T_FIXNUM); - seq_flags = FIX2INT(seq_flags_value); - - DATA_PTR(self) = create_seq(seq_flags, sizeof(CvSeq), storage_value); - - return self; -} - -/* - * call-seq: - * total -> int - * - * Return total number of sequence-block. - */ -VALUE -rb_total(VALUE self) -{ - return INT2NUM(CVSEQ(self)->total); -} - -/* - * call-seq: - * empty? -> true or false. - * - * Return true if contain no object, otherwize return false. - */ -VALUE -rb_empty_q(VALUE self) -{ - return CVSEQ(self)->total == 0 ? Qtrue : Qfalse; -} - -/* - * call-seq: - * [index] -> obj or nil - * - * Return sequence-block at index. - */ -VALUE -rb_aref(VALUE self, VALUE index) -{ - CvSeq *seq = CVSEQ(self); - int idx = NUM2INT(index); - if (seq->total == 0) { - return Qnil; - } - if (idx >= seq->total) { - rb_raise(rb_eIndexError, "index %d out of sequence", idx); - } - - VALUE result = Qnil; - try { - VALUE klass = seqblock_class(seq); - if (RTEST(rb_class_inherited_p(klass, rb_cInteger))) { - result = INT2NUM(*CV_GET_SEQ_ELEM(int, seq, idx)); - } - else { - result = REFER_OBJECT(klass, cvGetSeqElem(seq, idx), self); - } - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return result; -} - -/* - * call-seq: - * first -> obj or nil - * - * Return first sequence-block. - */ -VALUE -rb_first(VALUE self) -{ - return rb_aref(self, INT2FIX(0)); -} - -/* - * call-seq: - * last -> obj or nil - * - * Return last sequence-block. - */ -VALUE -rb_last(VALUE self) -{ - return rb_aref(self, INT2FIX(-1)); -} - -/* - * call-seq: - * h_prev -> seq or nil - * - * Return the sequence horizontally located in previous. - * Return nil if not existing. - */ -VALUE -rb_h_prev(VALUE self) -{ - CvSeq *seq = CVSEQ(self); - if (seq->h_prev) - return new_sequence(CLASS_OF(self), seq->h_prev, seqblock_class(seq), lookup_root_object(seq)); - else - return Qnil; -} - -/* - * call-seq: - * h_next -> seq or nil - * - * Return the sequence horizontally located in next. - * Return nil if not existing. - */ -VALUE -rb_h_next(VALUE self) -{ - CvSeq *seq = CVSEQ(self); - if (seq->h_next) - return new_sequence(CLASS_OF(self), seq->h_next, seqblock_class(seq), lookup_root_object(seq)); - else - return Qnil; -} - -/* - * call-seq: - * v_prev -> seq or nil - * - * Return the sequence vertically located in previous. - * Return nil if not existing. - */ -VALUE -rb_v_prev(VALUE self) -{ - CvSeq *seq = CVSEQ(self); - if (seq->v_prev) - return new_sequence(CLASS_OF(self), seq->v_prev, seqblock_class(seq), lookup_root_object(seq)); - else - return Qnil; -} - -/* - * call-seq: - * v_next -> seq or nil - * - * Return the sequence vertically located in next. - * Return nil if not existing. - */ -VALUE -rb_v_next(VALUE self) -{ - CvSeq *seq = CVSEQ(self); - if (seq->v_next) - return new_sequence(CLASS_OF(self), seq->v_next, seqblock_class(seq), lookup_root_object(seq)); - else - return Qnil; -} - -VALUE -rb_seq_push(VALUE self, VALUE args, int flag) -{ - CvSeq *seq = CVSEQ(self); - VALUE klass = seqblock_class(seq); - volatile void *elem = NULL; - int len = RARRAY_LEN(args); - for (int i = 0; i < len; i++) { - VALUE object = RARRAY_PTR(args)[i]; - if (rb_obj_is_kind_of(object, klass)) { - if (rb_obj_is_kind_of(object, rb_cInteger)) { - volatile int int_elem = NUM2INT(object); - elem = &int_elem; - } - else if (rb_obj_is_kind_of(object, rb_cNumeric)) { - volatile double double_elem = NUM2DBL(object); - elem = &double_elem; - } - else { - elem = (void*)DATA_PTR(object); - } - try { - if (flag == CV_FRONT) - cvSeqPushFront(seq, (const void*)elem); - else - cvSeqPush(seq, (const void*)elem); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - } - else if ((rb_obj_is_kind_of(object, rb_klass) == Qtrue) && - RTEST(rb_class_inherited_p(seqblock_class(CVSEQ(object)), klass))) { // object is CvSeq - void *buffer = NULL; - try { - buffer = cvCvtSeqToArray(CVSEQ(object), rb_cvAlloc(CVSEQ(object)->total * CVSEQ(object)->elem_size)); - cvSeqPushMulti(seq, buffer, CVSEQ(object)->total, flag); - cvFree(&buffer); - } - catch (cv::Exception& e) { - if (buffer != NULL) - cvFree(&buffer); - raise_cverror(e); - } - } - else { - rb_raise(rb_eTypeError, "arguments should be %s or %s which includes %s.", - rb_class2name(klass), rb_class2name(rb_klass), rb_class2name(klass)); - } - } - - return self; -} - -/* - * call-seq: - * push(obj, ...) -> self - * - * Append - Pushes the given object(s) on the end of this sequence. This expression return the sequence itself, - * so several append may be chained together. - */ -VALUE -rb_push(VALUE self, VALUE args) -{ - return rb_seq_push(self, args, CV_BACK); -} - -/* - * call-seq: - * pop -> obj or nil - * - * Remove the last sequence-block from self and return it, - * or nil if the sequence is empty. - */ -VALUE -rb_pop(VALUE self) -{ - CvSeq *seq = CVSEQ(self); - if (seq->total == 0) - return Qnil; - - VALUE object = Qnil; - VALUE klass = seqblock_class(seq); - try { - if (klass == rb_cFixnum) { - int n = 0; - cvSeqPop(seq, &n); - object = INT2FIX(n); - } - else { - object = GENERIC_OBJECT(klass, malloc(seq->elem_size)); - cvSeqPop(seq, DATA_PTR(object)); - } - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return object; -} - -/* - * call-seq: - * clear -> self - * - * Clears sequence. Removes all elements from the sequence. - */ -VALUE -rb_clear(VALUE self) -{ - try { - cvClearSeq(CVSEQ(self)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return self; -} - -/* - * call-seq: - * unshift -> self - * - * Prepends objects to the front of sequence. other elements up one. - */ -VALUE -rb_unshift(VALUE self, VALUE args) -{ - VALUE result = Qnil; - try { - result = rb_seq_push(self, args, CV_FRONT); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return result; -} - -/* - * call-seq: - * shift -> obj or nil - * - * Returns the first element of self and removes it (shifting all other elements down by one). Returns nil if the array is empty. - */ -VALUE -rb_shift(VALUE self) -{ - CvSeq *seq = CVSEQ(self); - if (seq->total == 0) - return Qnil; - - VALUE object = Qnil; - try { - if (seqblock_class(seq) == rb_cFixnum) { - int n = 0; - cvSeqPopFront(seq, &n); - object = INT2NUM(n); - } - else { - object = GENERIC_OBJECT(seqblock_class(seq), malloc(seq->elem_size)); - cvSeqPopFront(seq, DATA_PTR(object)); - } - } - catch (cv::Exception& e) { - raise_cverror(e); - } - - return object; -} - -/* - * call-seq: - * each {|obj| ... } -> self - * - * Calls block once for each sequence-block in self, - * passing that sequence-block as a parameter. - * seq = CvSeq.new(CvIndex) - * seq.push(5, 6, 7) - * seq.each {|x| print x, " -- " } - * produces: - * 5 -- 6 -- 7 -- - */ -VALUE -rb_each(VALUE self) -{ - CvSeq *seq = CVSEQ(self); - if (seq->total > 0) { - VALUE klass = seqblock_class(seq); - try { - if (klass == rb_cFixnum) - for (int i = 0; i < seq->total; ++i) - rb_yield(INT2NUM(*CV_GET_SEQ_ELEM(int, seq, i))); - else - for (int i = 0; i < seq->total; ++i) - rb_yield(REFER_OBJECT(klass, cvGetSeqElem(seq, i), self)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - } - return self; -} - -/* - * call-seq: - * each_index {|index| ... } -> self - * - * Same as CvSeq#each, but passes the index of the element instead of the element itself. - */ -VALUE -rb_each_index(VALUE self) -{ - CvSeq *seq = CVSEQ(self); - for(int i = 0; i < seq->total; ++i) - rb_yield(INT2NUM(i)); - return self; -} - - -/* - * call-seq: - * insert(index,obj) -> self - * - * Inserts the given values before element with the given index (which may be negative). - */ -VALUE -rb_insert(VALUE self, VALUE index, VALUE object) -{ - Check_Type(index, T_FIXNUM); - CvSeq *seq = CVSEQ(self); - VALUE klass = seqblock_class(seq); - if (CLASS_OF(object) != klass) - rb_raise(rb_eTypeError, "arguments should be %s.", rb_class2name(klass)); - try { - if (klass == rb_cFixnum) { - int n = NUM2INT(object); - cvSeqInsert(seq, NUM2INT(index), &n); - } - else - cvSeqInsert(seq, NUM2INT(index), DATA_PTR(object)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return self; -} - -/* - * call-seq: - * remove(index) -> obj or nil - * - * Deletes the elements at the specified index. - */ -VALUE -rb_remove(VALUE self, VALUE index) -{ - try { - cvSeqRemove(CVSEQ(self), NUM2INT(index)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return self; -} - -VALUE -new_sequence(VALUE klass, CvSeq *seq, VALUE element_klass, VALUE storage) -{ - register_root_object(seq, storage); - if (!NIL_P(element_klass)) - register_elem_class(seq, element_klass); - return Data_Wrap_Struct(klass, mark_root_object, unregister_elem_class, seq); -} - -void -init_ruby_class() -{ -#if 0 - // For documentation using YARD - VALUE opencv = rb_define_module("OpenCV"); -#endif - - if (rb_klass) - return; - /* - * opencv = rb_define_module("OpenCV"); - * - * note: this comment is used by rdoc. - */ - VALUE opencv = rb_module_opencv(); - rb_klass = rb_define_class_under(opencv, "CvSeq", rb_cObject); - rb_include_module(rb_klass, rb_mEnumerable); - rb_define_alloc_func(rb_klass, rb_allocate); - rb_define_method(rb_klass, "initialize", RUBY_METHOD_FUNC(rb_initialize), -1); - rb_define_method(rb_klass, "total", RUBY_METHOD_FUNC(rb_total), 0); - rb_define_alias(rb_klass, "length", "total"); - rb_define_alias(rb_klass, "size", "total"); - rb_define_method(rb_klass, "empty?", RUBY_METHOD_FUNC(rb_empty_q), 0); - rb_define_method(rb_klass, "[]", RUBY_METHOD_FUNC(rb_aref), 1); - rb_define_method(rb_klass, "first", RUBY_METHOD_FUNC(rb_first), 0); - rb_define_method(rb_klass, "last", RUBY_METHOD_FUNC(rb_last), 0); - - rb_define_method(rb_klass, "h_prev", RUBY_METHOD_FUNC(rb_h_prev), 0); - rb_define_method(rb_klass, "h_next", RUBY_METHOD_FUNC(rb_h_next), 0); - rb_define_method(rb_klass, "v_prev", RUBY_METHOD_FUNC(rb_v_prev), 0); - rb_define_method(rb_klass, "v_next", RUBY_METHOD_FUNC(rb_v_next), 0); - - rb_define_method(rb_klass, "push", RUBY_METHOD_FUNC(rb_push), -2); - rb_define_alias(rb_klass, "<<", "push"); - rb_define_method(rb_klass, "pop", RUBY_METHOD_FUNC(rb_pop), 0); - rb_define_method(rb_klass, "unshift", RUBY_METHOD_FUNC(rb_unshift), -2); - rb_define_alias(rb_klass, "push_front", "unshift"); - rb_define_method(rb_klass, "shift", RUBY_METHOD_FUNC(rb_shift), 0); - rb_define_alias(rb_klass, "pop_front", "shift"); - rb_define_method(rb_klass, "each", RUBY_METHOD_FUNC(rb_each), 0); - rb_define_method(rb_klass, "each_index", RUBY_METHOD_FUNC(rb_each_index), 0); - rb_define_method(rb_klass, "insert", RUBY_METHOD_FUNC(rb_insert), 2); - rb_define_method(rb_klass, "remove", RUBY_METHOD_FUNC(rb_remove), 1); - rb_define_alias(rb_klass, "delete_at", "remove"); - rb_define_method(rb_klass, "clear", RUBY_METHOD_FUNC(rb_clear), 0); -} - -__NAMESPACE_END_CVSEQ -__NAMESPACE_END_OPENCV - diff --git a/ext/opencv/cvseq.h b/ext/opencv/cvseq.h deleted file mode 100644 index d4e4172..0000000 --- a/ext/opencv/cvseq.h +++ /dev/null @@ -1,75 +0,0 @@ -/************************************************************ - - cvseq.h - - - $Author: lsxi $ - - Copyright (C) 2005-2006 Masakazu Yonekura - -************************************************************/ -#ifndef RUBY_OPENCV_CVSEQ_H -#define RUBY_OPENCV_CVSEQ_H - -#include "opencv.h" - -#define __NAMESPACE_BEGIN_CVSEQ namespace cCvSeq { -#define __NAMESPACE_END_CVSEQ } - -__NAMESPACE_BEGIN_OPENCV -__NAMESPACE_BEGIN_CVSEQ - -VALUE rb_class(); -void init_ruby_class(); - -VALUE seqblock_class(void *ptr); -void register_elem_class(CvSeq *seq, VALUE klass); -void unregister_elem_class(void *ptr); -CvSeq* create_seq(int seq_flags, size_t header_size, VALUE storage_value); - -VALUE rb_allocate(VALUE klass); - -VALUE rb_initialize(int argc, VALUE *argv, VALUE self); -VALUE rb_total(VALUE self); -VALUE rb_empty_q(VALUE self); -VALUE rb_aref(VALUE self, VALUE index); -VALUE rb_first(VALUE self); -VALUE rb_last(VALUE self); -VALUE rb_h_prev(VALUE self); -VALUE rb_h_next(VALUE self); -VALUE rb_v_prev(VALUE self); -VALUE rb_v_next(VALUE self); -VALUE rb_push(VALUE self, VALUE args); -VALUE rb_pop(VALUE self); -VALUE rb_unshift(VALUE self, VALUE args); -VALUE rb_shift(VALUE self); -VALUE rb_each(VALUE self); -VALUE rb_each_index(VALUE self); -VALUE rb_insert(VALUE self, VALUE index, VALUE object); -VALUE rb_remove(VALUE self, VALUE index); -VALUE rb_clear(VALUE self); - -VALUE new_object(CvSeq *seq, VALUE klass); -VALUE new_object(CvSeq *seq, VALUE klass, VALUE storage); -VALUE new_sequence(VALUE klass, CvSeq *seq, VALUE element_klass, VALUE storage); - -__NAMESPACE_END_CVSEQ - -inline CvSeq* -CVSEQ(VALUE object) -{ - CvSeq *ptr; - Data_Get_Struct(object, CvSeq, ptr); - return ptr; -} - -inline CvSeq* -CVSEQ_WITH_CHECK(VALUE object) -{ - if (!rb_obj_is_kind_of(object, cCvSeq::rb_class())) - raise_typeerror(object, cCvSeq::rb_class()); - return CVSEQ(object); -} - -__NAMESPACE_END_OPENCV - -#endif // RUBY_OPENCV_CVSEQ_H diff --git a/ext/opencv/cvsize.cpp b/ext/opencv/cvsize.cpp deleted file mode 100644 index bf88a77..0000000 --- a/ext/opencv/cvsize.cpp +++ /dev/null @@ -1,227 +0,0 @@ -/************************************************************ - - cvsize.cpp - - - $Author: lsxi $ - - Copyright (C) 2005 Masakazu Yonekura - -************************************************************/ -#include "cvsize.h" -/* - * Document-class: OpenCV::CvSize - * - * This class means one size on X axis Y axis. - * X and Y takes the value of the Fixnum. - * - * C structure is here, very simple. - * typdef struct CvSize { - * int width; - * int height; - * } - */ -__NAMESPACE_BEGIN_OPENCV -__NAMESPACE_BEGIN_CVSIZE - -VALUE rb_klass; - -VALUE -rb_class() -{ - return rb_klass; -} - -/* - * call-seq: - * compatible?(obj) - * - * Return compatibility to CvSize. Return true if object have method #width and #height. - * - * For example. - * class MySize - * def width - * 10 - * end - * def height - * 20 - * end - * end - * mp = MySize.new - * CvSize.compatible?(mp) #=> true - * CvSize.new(mp) #=> same as CvSize(10, 20) - */ -VALUE -rb_compatible_q(VALUE klass, VALUE object) -{ - return (rb_respond_to(object, rb_intern("width")) && rb_respond_to(object, rb_intern("height"))) ? Qtrue : Qfalse; -} - -VALUE -rb_allocate(VALUE klass) -{ - CvSize *ptr; - return Data_Make_Struct(klass, CvSize, 0, -1, ptr); -} - -/* - * call-seq: - * new - * new(obj) - * new(width, height) - * - * Create new size of 2D, (width, height). It is dropped below the decimal point. - * - * new() is same as new(0, 0) - * - * new(obj) is same as new(obj.x.to_i, obj.y.to_i) - */ -VALUE -rb_initialize(int argc, VALUE *argv, VALUE self) -{ - CvSize *self_ptr = CVSIZE(self); - switch (argc) { - case 0: - break; - case 1: { - CvSize size = VALUE_TO_CVSIZE(argv[0]); - self_ptr->width = size.width; - self_ptr->height = size.height; - break; - } - case 2: - self_ptr->width = NUM2INT(argv[0]); - self_ptr->height = NUM2INT(argv[1]); - break; - default: - rb_raise(rb_eArgError, "wrong number of arguments (%d for 0..2)", argc); - break; - } - return self; -} - -/* - * Return size of x-axis. - */ -VALUE -rb_width(VALUE self) -{ - return INT2NUM(CVSIZE(self)->width); -} - -/* - * call-seq: - * width = val - * - * Set x-axis size, return self. - * It is dropped below the decimal point. - */ -VALUE -rb_set_width(VALUE self, VALUE x) -{ - CVSIZE(self)->width = NUM2INT(x); - return self; -} - -/* - * Return size of yaxis. - */ -VALUE -rb_height(VALUE self) -{ - return INT2NUM(CVSIZE(self)->height); -} - -/* - * call-seq: - * height = val - * - * Set y-axis size, return self. - * It is dropped below the decimal point. - */ -VALUE -rb_set_height(VALUE self, VALUE y) -{ - CVSIZE(self)->height = NUM2INT(y); - return self; -} - -/* - * call-seq: - * to_s -> "" - * - * Return width and height by String. - */ -VALUE -rb_to_s(VALUE self) -{ - const int i = 4; - VALUE str[i]; - str[0] = rb_str_new2("<%s:%dx%d>"); - str[1] = rb_str_new2(rb_class2name(CLASS_OF(self))); - str[2] = rb_width(self); - str[3] = rb_height(self); - return rb_f_sprintf(i, str); -} - -/* - * call-seq: - * to_ary -> [width, height] - * - * Return width and height by Array. - */ -VALUE -rb_to_ary(VALUE self) -{ - return rb_ary_new3(2, rb_width(self), rb_height(self)); -} - -VALUE -new_object() -{ - VALUE object = rb_allocate(rb_klass); - *CVSIZE(object) = cvSize(0, 0); - return object; -} - -VALUE -new_object(CvSize size) -{ - VALUE object = rb_allocate(rb_klass); - *CVSIZE(object) = size; - return object; -} - -void -init_ruby_class() -{ -#if 0 - // For documentation using YARD - VALUE opencv = rb_define_module("OpenCV"); -#endif - - if (rb_klass) - return; - /* - * opencv = rb_define_module("OpenCV"); - * - * note: this comment is used by rdoc. - */ - VALUE opencv = rb_module_opencv(); - - rb_klass = rb_define_class_under(opencv, "CvSize", rb_cObject); - rb_define_alloc_func(rb_klass, rb_allocate); - rb_define_singleton_method(rb_klass, "compatible?", RUBY_METHOD_FUNC(rb_compatible_q), 1); - rb_define_method(rb_klass, "initialize", RUBY_METHOD_FUNC(rb_initialize), -1); - rb_define_method(rb_klass, "width", RUBY_METHOD_FUNC(rb_width), 0); - rb_define_method(rb_klass, "width=", RUBY_METHOD_FUNC(rb_set_width), 1); - rb_define_method(rb_klass, "height", RUBY_METHOD_FUNC(rb_height), 0); - rb_define_method(rb_klass, "height=", RUBY_METHOD_FUNC(rb_set_height), 1); - - rb_define_method(rb_klass, "to_s", RUBY_METHOD_FUNC(rb_to_s), 0); - rb_define_method(rb_klass, "to_ary", RUBY_METHOD_FUNC(rb_to_ary), 0); - rb_define_alias(rb_klass, "to_a", "to_ary"); -} - -__NAMESPACE_END_CVSIZE -__NAMESPACE_END_OPENCV - diff --git a/ext/opencv/cvsize.h b/ext/opencv/cvsize.h deleted file mode 100644 index a0b0c76..0000000 --- a/ext/opencv/cvsize.h +++ /dev/null @@ -1,65 +0,0 @@ -/************************************************************ - - cvsize.h - - - $Author: lsxi $ - - Copyright (C) 2005-2006 Masakazu Yonekura - -************************************************************/ -#ifndef RUBY_OPENCV_CVSIZE_H -#define RUBY_OPENCV_CVSIZE_H - -#include "opencv.h" - -#define __NAMESPACE_BEGIN_CVSIZE namespace cCvSize { -#define __NAMESPACE_END_CVSIZE } - -__NAMESPACE_BEGIN_OPENCV -__NAMESPACE_BEGIN_CVSIZE - -VALUE rb_class(); - -void init_ruby_class(); - -VALUE rb_compatible_q(VALUE klass, VALUE object); - -VALUE rb_allocate(VALUE klass); -VALUE rb_initialize(int argc, VALUE *argv, VALUE self); -VALUE rb_width(VALUE self); -VALUE rb_set_width(VALUE self, VALUE width); -VALUE rb_height(VALUE self); -VALUE rb_set_height(VALUE self, VALUE height); - -VALUE rb_to_s(VALUE self); -VALUE rb_to_ary(VALUE self); - -VALUE new_object(); -VALUE new_object(CvSize size); - -__NAMESPACE_END_CVSIZE - -inline CvSize* -CVSIZE(VALUE object) -{ - CvSize *ptr; - Data_Get_Struct(object, CvSize, ptr); - return ptr; -} - -inline CvSize -VALUE_TO_CVSIZE(VALUE object) -{ - if (cCvSize::rb_compatible_q(cCvSize::rb_class(), object)) { - return cvSize(NUM2INT(rb_funcall(object, rb_intern("width"), 0)), - NUM2INT(rb_funcall(object, rb_intern("height"), 0))); - } - else { - raise_compatible_typeerror(object, cCvSize::rb_class()); - } - throw "Should never reach here"; -} - -__NAMESPACE_END_OPENCV - -#endif // RUBY_OPENCV_CVSIZE_H diff --git a/ext/opencv/cvsize2d32f.cpp b/ext/opencv/cvsize2d32f.cpp deleted file mode 100644 index 5b7a327..0000000 --- a/ext/opencv/cvsize2d32f.cpp +++ /dev/null @@ -1,215 +0,0 @@ -/************************************************************ - - cvsize2d32f.cpp - - - $Author: lsxi $ - - Copyright (C) 2005-2006 Masakazu Yonekura - -************************************************************/ -#include "cvsize2d32f.h" -/* - * Document-class: OpenCV::CvSize2D32f - * - * This class means one size on X axis Y axis. - * X and Y takes the value of the Float. - * - * C structure is here, very simple. - * typdef struct CvSize2D32f { - * float width; - * float height; - * } CvSize2D32f; - */ -__NAMESPACE_BEGIN_OPENCV -__NAMESPACE_BEGIN_CVSIZE2D32F - -VALUE rb_klass; - -VALUE -rb_class() -{ - return rb_klass; -} - -/* - * call-seq: - * compatible?(obj) - * - * Return compatibility to CvSize2D32f. Return true if object have method #width and #height. - * - * For example. - * class MySize - * def width - * 10.1 - * end - * def height - * 20.2 - * end - * end - * mp = MySize.new - * CvSize2D32f.compatible?(mp) #=> true - * CvSize2D32f.new(mp) #=> same as CvSize2D32f.new(10.1, 20.2) - */ -VALUE -rb_compatible_q(VALUE klass, VALUE object) -{ - return (rb_respond_to(object, rb_intern("width")) && rb_respond_to(object, rb_intern("height"))) ? Qtrue : Qfalse; -} - -VALUE -rb_allocate(VALUE klass) -{ - CvSize2D32f *ptr; - return Data_Make_Struct(klass, CvSize2D32f, 0, -1, ptr); -} - -/* - * call-seq: - * new - * new(obj) - * new(width, height) - * - * Create new size of 2D, (width, height). - * - * new() is same as new(0.0, 0.0) - * - * new(obj) is same as new(obj.x.to_f, obj.y.to_f) - */ -VALUE -rb_initialize(int argc, VALUE *argv, VALUE self) -{ - CvSize2D32f *self_ptr = CVSIZE2D32F(self); - switch(argc){ - case 0: - break; - case 1: { - CvSize2D32f size = VALUE_TO_CVSIZE2D32F(argv[0]); - self_ptr->width = size.width; - self_ptr->height = size.height; - break; - } - case 2: - self_ptr->width = NUM2DBL(argv[0]); - self_ptr->height = NUM2DBL(argv[1]); - break; - default: - rb_raise(rb_eArgError, "wrong number of arguments (%d for 0..2)", argc); - } - return self; -} - -/* - * Return size of x-axis. - */ -VALUE -rb_width(VALUE self) -{ - return rb_float_new(CVSIZE2D32F(self)->width); -} - -/* - * call-seq: - * width = val - * - * Set x-axis size, return self. - */ -VALUE -rb_set_width(VALUE self, VALUE x) -{ - CVSIZE2D32F(self)->width = NUM2DBL(x); - return self; -} - -/* - * Return size of yaxis. - */ -VALUE -rb_height(VALUE self) -{ - return rb_float_new(CVSIZE2D32F(self)->height); -} - -/* - * call-seq: - * height = val - * - * Set y-axis size, return self. - */ -VALUE -rb_set_height(VALUE self, VALUE y) -{ - CVSIZE2D32F(self)->height = NUM2DBL(y); - return self; -} - -/* - * call-seq: - * to_s -> "" - * - * Return width and height by String. - */ -VALUE -rb_to_s(VALUE self) -{ - const int i = 4; - VALUE str[i]; - str[0] = rb_str_new2("<%s:%gx%g>"); - str[1] = rb_str_new2(rb_class2name(CLASS_OF(self))); - str[2] = rb_width(self); - str[3] = rb_height(self); - return rb_f_sprintf(i, str); -} - -/* - * call-seq: - * to_ary -> [width, height] - * - * Return width and height by Array. - */ -VALUE -rb_to_ary(VALUE self) -{ - return rb_ary_new3(2, rb_width(self), rb_height(self)); -} - -VALUE -new_object(CvSize2D32f size) -{ - VALUE object = rb_allocate(rb_klass); - *CVSIZE2D32F(object) = size; - return object; -} - -void -init_ruby_class() -{ -#if 0 - // For documentation using YARD - VALUE opencv = rb_define_module("OpenCV"); -#endif - - if (rb_klass) - return; - /* - * opencv = rb_define_module("OpenCV"); - * - * note: this comment is used by rdoc. - */ - VALUE opencv = rb_module_opencv(); - - rb_klass = rb_define_class_under(opencv, "CvSize2D32f", rb_cObject); - rb_define_alloc_func(rb_klass, rb_allocate); - rb_define_singleton_method(rb_klass, "compatible?", RUBY_METHOD_FUNC(rb_compatible_q), 1); - rb_define_method(rb_klass, "initialize", RUBY_METHOD_FUNC(rb_initialize), -1); - rb_define_method(rb_klass, "width", RUBY_METHOD_FUNC(rb_width), 0); - rb_define_method(rb_klass, "width=", RUBY_METHOD_FUNC(rb_set_width), 1); - rb_define_method(rb_klass, "height", RUBY_METHOD_FUNC(rb_height), 0); - rb_define_method(rb_klass, "height=", RUBY_METHOD_FUNC(rb_set_height), 1); - rb_define_method(rb_klass, "to_s", RUBY_METHOD_FUNC(rb_to_s), 0); - rb_define_method(rb_klass, "to_ary", RUBY_METHOD_FUNC(rb_to_ary), 0); - rb_define_alias(rb_klass, "to_a", "to_ary"); -} - -__NAMESPACE_END_CVSIZE2D32F -__NAMESPACE_END_OPENCV - diff --git a/ext/opencv/cvsize2d32f.h b/ext/opencv/cvsize2d32f.h deleted file mode 100644 index d025e89..0000000 --- a/ext/opencv/cvsize2d32f.h +++ /dev/null @@ -1,64 +0,0 @@ -/************************************************************ - - cvsize2d32f.h - - - $Author: lsxi $ - - Copyright (C) 2005-2006 Masakazu Yonekura - -************************************************************/ -#ifndef RUBY_OPENCV_CVSIZE2D32F_H -#define RUBY_OPENCV_CVSIZE2D32F_H - -#include "opencv.h" - -#define __NAMESPACE_BEGIN_CVSIZE2D32F namespace cCvSize2D32f { -#define __NAMESPACE_END_CVSIZE2D32F } - -__NAMESPACE_BEGIN_OPENCV -__NAMESPACE_BEGIN_CVSIZE2D32F - -VALUE rb_class(); - -void init_ruby_class(); - -VALUE rb_compatible_q(VALUE klass, VALUE object); - -VALUE rb_allocate(VALUE klass); -VALUE rb_initialize(int argc, VALUE *argv, VALUE self); -VALUE rb_width(VALUE self); -VALUE rb_set_width(VALUE self, VALUE width); -VALUE rb_height(VALUE self); -VALUE rb_set_height(VALUE self, VALUE height); - -VALUE rb_to_s(VALUE self); -VALUE rb_to_ary(VALUE self); - -VALUE new_object(CvSize2D32f size); - -__NAMESPACE_END_CVSIZE2D32F - -inline CvSize2D32f* -CVSIZE2D32F(VALUE object) -{ - CvSize2D32f *ptr; - Data_Get_Struct(object, CvSize2D32f, ptr); - return ptr; -} - -inline CvSize2D32f -VALUE_TO_CVSIZE2D32F(VALUE object) -{ - if (cCvSize2D32f::rb_compatible_q(cCvSize2D32f::rb_class(), object)) { - return cvSize2D32f(NUM2DBL(rb_funcall(object, rb_intern("width"), 0)), - NUM2DBL(rb_funcall(object, rb_intern("height"), 0))); - } - else { - raise_compatible_typeerror(object, cCvSize2D32f::rb_class()); - } - throw "Should never reach here"; -} - -__NAMESPACE_END_OPENCV - -#endif // RUBY_OPENCV_CVSIZE2D32F_H diff --git a/ext/opencv/cvslice.cpp b/ext/opencv/cvslice.cpp deleted file mode 100644 index 29e85b8..0000000 --- a/ext/opencv/cvslice.cpp +++ /dev/null @@ -1,126 +0,0 @@ -/************************************************************ - - cvslice.cpp - - - $Author: lsxi $ - - Copyright (C) 2005-2006 Masakazu Yonekura - -************************************************************/ -#include "cvslice.h" -/* - * Document-class: OpenCV::CvSlice - * - * C structure is here, very simple. - * typdef struct CvSlice { - * int start_index; - * int end_index; - * } CvSlice; - */ -__NAMESPACE_BEGIN_OPENCV -__NAMESPACE_BEGIN_CVSLICE - -VALUE rb_klass; - -VALUE -rb_class() -{ - return rb_klass; -} - -VALUE -rb_allocate(VALUE klass) -{ - CvSlice *ptr; - return Data_Make_Struct(klass, CvSlice, 0, -1, ptr); -} - -/* - * call-seq: - * new(start, end) - * - * Create new slice object. - */ -VALUE -rb_initialize(VALUE self, VALUE start, VALUE end) -{ - CvSlice *self_ptr = CVSLICE(self); - self_ptr->start_index = NUM2INT(start); - self_ptr->end_index = NUM2INT(end); - return self; -} - -/* - * call-seq: - * start_index - * - */ -VALUE -rb_start_index_aref(VALUE self) -{ - return INT2NUM(CVSLICE(self)->start_index); -} - -/* - * call-seq: - * end_index - * - */ -VALUE -rb_end_index_aref(VALUE self) -{ - return INT2NUM(CVSLICE(self)->end_index); -} - -/* - * call-seq: - * start_index = index - * - */ -VALUE -rb_start_index_aset(VALUE self, VALUE index) -{ - CVSLICE(self)->start_index = NUM2INT(index); - return self; -} - -/* - * call-seq: - * end_index = index - * - */ -VALUE -rb_end_index_aset(VALUE self, VALUE index) -{ - CVSLICE(self)->end_index = NUM2INT(index); - return self; -} - -void -init_ruby_class() -{ -#if 0 - // For documentation using YARD - VALUE opencv = rb_define_module("OpenCV"); -#endif - - if (rb_klass) - return; - /* - * opencv = rb_define_module("OpenCV"); - * - * note: this comment is used by rdoc. - */ - VALUE opencv = rb_module_opencv(); - rb_klass = rb_define_class_under(opencv, "CvSlice", rb_cObject); - rb_define_alloc_func(rb_klass, rb_allocate); - rb_define_method(rb_klass, "initialize", RUBY_METHOD_FUNC(rb_initialize), 2); - rb_define_method(rb_klass, "start_index", RUBY_METHOD_FUNC(rb_start_index_aref), 0); - rb_define_method(rb_klass, "end_index", RUBY_METHOD_FUNC(rb_end_index_aref), 0); - rb_define_method(rb_klass, "start_index=", RUBY_METHOD_FUNC(rb_start_index_aset), 1); - rb_define_method(rb_klass, "end_index=", RUBY_METHOD_FUNC(rb_end_index_aset), 1); -} - -__NAMESPACE_END_CVSLICE -__NAMESPACE_END_OPENCV - diff --git a/ext/opencv/cvslice.h b/ext/opencv/cvslice.h deleted file mode 100644 index f4851ec..0000000 --- a/ext/opencv/cvslice.h +++ /dev/null @@ -1,61 +0,0 @@ -/************************************************************ - - cvslice.h - - - $Author: lsxi $ - - Copyright (C) 2005-2006 Masakazu Yonekura - -************************************************************/ -#ifndef RUBY_OPENCV_CVSLICE_H -#define RUBY_OPENCV_CVSLICE_H - -#include "opencv.h" - -#define __NAMESPACE_BEGIN_CVSLICE namespace cCvSlice { -#define __NAMESPACE_END_CVSLICE } - -__NAMESPACE_BEGIN_OPENCV -__NAMESPACE_BEGIN_CVSLICE - -VALUE rb_class(); - -void init_ruby_class(); - -VALUE rb_allocate(VALUE klass); -VALUE rb_initialize(VALUE self, VALUE start, VALUE end); -VALUE rb_start_index_aref(VALUE self); -VALUE rb_end_index_aref(VALUE self); -VALUE rb_start_index_aset(VALUE self, VALUE index); -VALUE rb_end_index_aset(VALUE self, VALUE index); - -__NAMESPACE_END_CVSLICE - -inline CvSlice* -CVSLICE(VALUE object) -{ - CvSlice *ptr; - Data_Get_Struct(object, CvSlice, ptr); - return ptr; -} - -inline CvSlice -VALUE_TO_CVSLICE(VALUE object) -{ - if (rb_obj_is_kind_of(object, cCvSlice::rb_class())) { - CvSlice* ptr = CVSLICE(object); - return *ptr; - } - else if (rb_obj_is_kind_of(object, rb_cRange)) { - return cvSlice(NUM2INT(rb_funcall(object, rb_intern("begin"), 0)), - rb_funcall(object, rb_intern("exclude_end?"), 0) ? NUM2INT(rb_funcall(object, rb_intern("end"), 0)) : NUM2INT(rb_funcall(object, rb_intern("end"), 0)) - 1); - } - else { - raise_compatible_typeerror(object, cCvSlice::rb_class()); - } - throw "Should never reach here"; -} - -__NAMESPACE_END_OPENCV - -#endif // RUBY_OPENCV_CVSLICE_H diff --git a/ext/opencv/cvsurfparams.cpp b/ext/opencv/cvsurfparams.cpp deleted file mode 100644 index 3101789..0000000 --- a/ext/opencv/cvsurfparams.cpp +++ /dev/null @@ -1,208 +0,0 @@ -/************************************************************ - - cvsurfparams.cpp - - - $Author: ser1zw $ - - Copyright (C) 2011 ser1zw - -************************************************************/ -#include "cvsurfparams.h" -/* - * Document-class: OpenCV::CvSURFParams - * - * C structure is here. - * typedef struct CvSURFParams { - * int extended; - * double hessianThreshold; - * int nOctaves; - * int nOctaveLayers; - * } CvSURFParams; - */ -__NAMESPACE_BEGIN_OPENCV -__NAMESPACE_BEGIN_CVSURFPARAMS - -VALUE rb_klass; - -VALUE -rb_class() -{ - return rb_klass; -} - -VALUE -rb_allocate(VALUE klass) -{ - CvSURFParams *ptr; - return Data_Make_Struct(klass, CvSURFParams, 0, -1, ptr); -} - -/* - * Create a CvSURFParams - * - * @overload CvSURFParams.new(hessian_threshold, extended = false, n_octaves = 3, n_octave_layers = 4) - * @param hessian_threshold [Number] - * @param extended [Boolean] If true, exteneded descriptors (128 elements each), - * otherwise basic descriptors (64 elements each) - * @param n_octaves [Integer] Number of octaves to be used for extraction - * @param n_octave_layers [Integer] Number of layers within each octave - */ -VALUE -rb_initialize(int argc, VALUE *argv, VALUE self) -{ - CvSURFParams *self_ptr = CVSURFPARAMS(self); - VALUE h_thresh, ext, noct, noctl; - rb_scan_args(argc, argv, "13", &h_thresh, &ext, &noct, &noctl); - - self_ptr->hessianThreshold = NUM2DBL(h_thresh); - self_ptr->extended = NIL_P(ext) ? 0 : BOOL2INT(ext); - self_ptr->nOctaves = NIL_P(noct) ? 3 : NUM2INT(noct); - self_ptr->nOctaveLayers = NIL_P(noctl) ? 4 : NUM2INT(noctl); - - return self; -} - -/* - * call-seq: - * hessian_threshold -> number - * Return threshold of hessian - */ -VALUE -rb_get_hessian_threshold(VALUE self) -{ - return DBL2NUM(CVSURFPARAMS(self)->hessianThreshold); -} - -/* - * call-seq: - * hessian_threshold = value - * - * Set threshold of hessian to value - */ -VALUE -rb_set_hessian_threshold(VALUE self, VALUE value) -{ - CVSURFPARAMS(self)->hessianThreshold = NUM2DBL(value); - return self; -} - -/* - * call-seq: - * extended -> bool - * Return the type of descripters - * false: basic descriptors (64 elements each) - * true : exteneded descriptors (128 elements each) - */ -VALUE -rb_get_extended(VALUE self) -{ - return INT2BOOL(CVSURFPARAMS(self)->extended); -} - -/* - * call-seq: - * extended = value - * Set the type of descripters - * false: basic descriptors (64 elements each) - * true : exteneded descriptors (128 elements each) - */ -VALUE -rb_set_extended(VALUE self, VALUE value) -{ - CVSURFPARAMS(self)->extended = BOOL2INT(value); - return self; -} - -/* - * call-seq: - * n_octaves -> fixnum - * Return the number of octaves to be used for extraction - */ -VALUE -rb_get_n_octaves(VALUE self) -{ - return INT2NUM(CVSURFPARAMS(self)->nOctaves); -} - -/* - * call-seq: - * n_octaves = value - * Set the number of octaves to be used for extraction - */ -VALUE -rb_set_n_octaves(VALUE self, VALUE value) -{ - CVSURFPARAMS(self)->nOctaves = NUM2INT(value); - return self; -} - -/* - * call-seq: - * n_octave_layers -> fixnum - * Return the number of layers within each octave - */ -VALUE -rb_get_n_octave_layers(VALUE self) -{ - return INT2NUM(CVSURFPARAMS(self)->nOctaveLayers); -} - -/* - * call-seq: - * n_octave_layers = value - * Set the number of layers within each octave - */ -VALUE -rb_set_n_octave_layers(VALUE self, VALUE value) -{ - CVSURFPARAMS(self)->nOctaveLayers = NUM2INT(value); - return self; -} - -VALUE -new_object() -{ - return rb_allocate(rb_klass); -} - -VALUE -new_object(CvSURFParams* cvsurfparams) -{ - VALUE object = rb_allocate(rb_klass); - CvSURFParams *ptr = CVSURFPARAMS(object); - ptr = cvsurfparams; - return object; -} - -void -init_ruby_class() -{ -#if 0 - // For documentation using YARD - VALUE opencv = rb_define_module("OpenCV"); -#endif - - if (rb_klass) - return; - /* - * opencv = rb_define_module("OpenCV"); - * - * note: this comment is used by rdoc. - */ - VALUE opencv = rb_module_opencv(); - rb_klass = rb_define_class_under(opencv, "CvSURFParams", rb_cObject); - rb_define_alloc_func(rb_klass, rb_allocate); - rb_define_method(rb_klass, "initialize", RUBY_METHOD_FUNC(rb_initialize), -1); - rb_define_method(rb_klass, "hessian_threshold", RUBY_METHOD_FUNC(rb_get_hessian_threshold), 0); - rb_define_method(rb_klass, "hessian_threshold=", RUBY_METHOD_FUNC(rb_set_hessian_threshold), 1); - rb_define_method(rb_klass, "extended", RUBY_METHOD_FUNC(rb_get_extended), 0); - rb_define_method(rb_klass, "extended=", RUBY_METHOD_FUNC(rb_set_extended), 1); - rb_define_method(rb_klass, "n_octaves", RUBY_METHOD_FUNC(rb_get_n_octaves), 0); - rb_define_method(rb_klass, "n_octaves=", RUBY_METHOD_FUNC(rb_set_n_octaves), 1); - rb_define_method(rb_klass, "n_octave_layers", RUBY_METHOD_FUNC(rb_get_n_octave_layers), 0); - rb_define_method(rb_klass, "n_octave_layers=", RUBY_METHOD_FUNC(rb_set_n_octave_layers), 1); -} - -__NAMESPACE_END_CVSURFPARAMS -__NAMESPACE_END_OPENCV - diff --git a/ext/opencv/cvsurfparams.h b/ext/opencv/cvsurfparams.h deleted file mode 100644 index ae4d008..0000000 --- a/ext/opencv/cvsurfparams.h +++ /dev/null @@ -1,58 +0,0 @@ -/************************************************************ - - cvsurfparams.h - - - $Author: ser1zw $ - - Copyright (C) 2011 ser1zw - -************************************************************/ -#ifndef RUBY_OPENCV_CVSURFPARAMS_H -#define RUBY_OPENCV_CVSURFPARAMS_H - -#include "opencv.h" - -#define __NAMESPACE_BEGIN_CVSURFPARAMS namespace cCvSURFParams { -#define __NAMESPACE_END_CVSURFPARAMS } - -__NAMESPACE_BEGIN_OPENCV -__NAMESPACE_BEGIN_CVSURFPARAMS - -VALUE rb_class(); - -void init_ruby_class(); - -VALUE rb_allocate(VALUE klass); -VALUE rb_initialize(int argc, VALUE *argv, VALUE self); -VALUE rb_get_hessian_threshold(VALUE self); -VALUE rb_set_hessian_threshold(VALUE self, VALUE value); -VALUE rb_get_extended(VALUE self); -VALUE rb_set_extended(VALUE self, VALUE value); -VALUE rb_get_n_octaves(VALUE self); -VALUE rb_set_n_octaves(VALUE self, VALUE value); -VALUE rb_get_n_octave_layers(VALUE self); -VALUE rb_set_n_octave_layers(VALUE self, VALUE value); - -VALUE new_object(CvSURFPoint *cvsurfparams); - -__NAMESPACE_END_CVSURFPARAMS - -inline CvSURFParams* -CVSURFPARAMS(VALUE object) -{ - CvSURFParams* ptr; - Data_Get_Struct(object, CvSURFParams, ptr); - return ptr; -} - -inline CvSURFParams* -CVSURFPARAMS_WITH_CHECK(VALUE object) -{ - if (!rb_obj_is_kind_of(object, cCvSURFParams::rb_class())) - raise_typeerror(object, cCvSURFParams::rb_class()); - return CVSURFPARAMS(object); -} - -__NAMESPACE_END_OPENCV - -#endif // RUBY_OPENCV_CVSURFPARAMS_H diff --git a/ext/opencv/cvsurfpoint.cpp b/ext/opencv/cvsurfpoint.cpp deleted file mode 100644 index 4564270..0000000 --- a/ext/opencv/cvsurfpoint.cpp +++ /dev/null @@ -1,246 +0,0 @@ -/************************************************************ - - cvsurfpoint.cpp - - - $Author: ser1zw $ - - Copyright (C) 2011 ser1zw - -************************************************************/ -#include "cvsurfpoint.h" -/* - * Document-class: OpenCV::CvSURFPoint - * - * C structure is here. - * typedef struct CvSURFPoint { - * CvPoint2D32f pt; // position of the feature within the image - * int laplacian; // -1, 0 or +1. sign of the laplacian at the point. - * // can be used to speedup feature comparison - * // (normally features with laplacians of different - * // signs can not match) - * int size; // size of the feature - * float dir; // orientation of the feature: 0..360 degrees - * float hessian; // value of the hessian (can be used to - * // approximately estimate the feature strengths) - * } CvSURFPoint; - */ -__NAMESPACE_BEGIN_OPENCV -__NAMESPACE_BEGIN_CVSURFPOINT - -VALUE rb_klass; - -VALUE -rb_class() -{ - return rb_klass; -} - -VALUE -rb_allocate(VALUE klass) -{ - CvSURFPoint *ptr; - return Data_Make_Struct(klass, CvSURFPoint, 0, -1, ptr); -} - -/* - * Create a CvSURFPoint - * - * @overload new(pt, laplacian, size, dir, hessian) - * @param pt [CvPoint2D32f] Position of the feature within the image - * @param laplacian [Integer] -1, 0 or +1. sign of the laplacian at the point. - * Can be used to speedup feature comparison - * (normally features with laplacians of different signs can not match) - * @param size [Integer] Size of the feature - * @param dir [Number] Orientation of the feature: 0..360 degrees - * @param hessian [Number] Value of the hessian (can be used to - * approximately estimate the feature strengths) - * @return [CvSURFPoint] self - */ -VALUE -rb_initialize(VALUE self, VALUE pt, VALUE laplacian, VALUE size, VALUE dir, VALUE hessian) -{ - CvSURFPoint *self_ptr = CVSURFPOINT(self); - self_ptr->pt = VALUE_TO_CVPOINT2D32F(pt); - self_ptr->laplacian = NUM2INT(laplacian); - self_ptr->size = NUM2INT(size); - self_ptr->dir = (float)NUM2DBL(dir); - self_ptr->hessian = (float)NUM2DBL(hessian); - - return self; -} - -/* - * Return position of the feature as CvPoint2D32f. - * - * @overload pt - * @return [CvPoint2D32f] Position of the feature. - */ -VALUE -rb_get_pt(VALUE self) -{ - return REFER_OBJECT(cCvPoint2D32f::rb_class(), &CVSURFPOINT(self)->pt, self); -} - -/* - * Set position of the feature. - * - * @overload pt=(value) - * @param value [CvPoint2D32f] Valuet to set. - */ -VALUE -rb_set_pt(VALUE self, VALUE value) -{ - CVSURFPOINT(self)->pt = VALUE_TO_CVPOINT2D32F(value); - return self; -} - -/* - * Return sign of the laplacian at the point (-1, 0 or +1) - * - * @overload laplacian - * @return [Integer] Sign of the laplacian at the point. - */ -VALUE -rb_get_laplacian(VALUE self) -{ - return INT2NUM(CVSURFPOINT(self)->laplacian); -} - -/* - * Set sign of the laplacian at the point - * - * @overload laplacian=(value) - * @param value [Integer] Value to set. - */ -VALUE -rb_set_laplacian(VALUE self, VALUE value) -{ - int val = NUM2INT(value); - CVSURFPOINT(self)->laplacian = (val > 0) ? 1 : (val < 0) ? -1 : 0; - return self; -} - -/* - * Returns size of feature. - * - * @overload size - * @return [Integer] Size of feature. - */ -VALUE -rb_get_size(VALUE self) -{ - return INT2NUM(CVSURFPOINT(self)->size); -} - -/* - * Return size of feature - * - * @overload size=(value) - * @param [Integer] Value to set. - */ -VALUE -rb_set_size(VALUE self, VALUE value) -{ - CVSURFPOINT(self)->size = NUM2INT(value); - return self; -} - -/* - * Return orientation of the feature: 0..360 degrees - * - * @overload dir - * @return [Number] Orientation of the feature. - */ -VALUE -rb_get_dir(VALUE self) -{ - return DBL2NUM((double)(CVSURFPOINT(self)->dir)); -} - -/* - * Set orientation of the feature: 0..360 degrees. - * - * @overload dir=(value) - * @param [Number] Value to set. - */ -VALUE -rb_set_dir(VALUE self, VALUE value) -{ - CVSURFPOINT(self)->dir = (float)NUM2DBL(value); - return self; -} - -/* - * Return value of the hessian - * - * @overload hessian - * @return [Number] Hessian - */ -VALUE -rb_get_hessian(VALUE self) -{ - return DBL2NUM((double)(CVSURFPOINT(self)->hessian)); -} - -/* - * Set value of the hessian - * - * @overload hessian=(value) - * @param [Number] Value to set. - */ -VALUE -rb_set_hessian(VALUE self, VALUE value) -{ - CVSURFPOINT(self)->hessian = (float)NUM2DBL(value); - return self; -} - -VALUE -new_object() -{ - return rb_allocate(rb_klass); -} - -VALUE -new_object(CvSURFPoint* cvsurfpoint) -{ - VALUE object = rb_allocate(rb_klass); - CvSURFPoint *ptr = CVSURFPOINT(object); - ptr = cvsurfpoint; - return object; -} - -void -init_ruby_class() -{ -#if 0 - // For documentation using YARD - VALUE opencv = rb_define_module("OpenCV"); -#endif - - if (rb_klass) - return; - /* - * opencv = rb_define_module("OpenCV"); - * - * note: this comment is used by rdoc. - */ - VALUE opencv = rb_module_opencv(); - rb_klass = rb_define_class_under(opencv, "CvSURFPoint", rb_cObject); - rb_define_alloc_func(rb_klass, rb_allocate); - rb_define_method(rb_klass, "initialize", RUBY_METHOD_FUNC(rb_initialize), 5); - rb_define_method(rb_klass, "pt", RUBY_METHOD_FUNC(rb_get_pt), 0); - rb_define_method(rb_klass, "pt=", RUBY_METHOD_FUNC(rb_set_pt), 1); - rb_define_method(rb_klass, "laplacian", RUBY_METHOD_FUNC(rb_get_laplacian), 0); - rb_define_method(rb_klass, "laplacian=", RUBY_METHOD_FUNC(rb_set_laplacian), 1); - rb_define_method(rb_klass, "size", RUBY_METHOD_FUNC(rb_get_size), 0); - rb_define_method(rb_klass, "size=", RUBY_METHOD_FUNC(rb_set_size), 1); - rb_define_method(rb_klass, "dir", RUBY_METHOD_FUNC(rb_get_dir), 0); - rb_define_method(rb_klass, "dir=", RUBY_METHOD_FUNC(rb_set_dir), 1); - rb_define_method(rb_klass, "hessian", RUBY_METHOD_FUNC(rb_get_hessian), 0); - rb_define_method(rb_klass, "hessian=", RUBY_METHOD_FUNC(rb_set_hessian), 1); -} - -__NAMESPACE_END_CVSURFPOINT -__NAMESPACE_END_OPENCV - diff --git a/ext/opencv/cvsurfpoint.h b/ext/opencv/cvsurfpoint.h deleted file mode 100644 index b652ae3..0000000 --- a/ext/opencv/cvsurfpoint.h +++ /dev/null @@ -1,52 +0,0 @@ -/************************************************************ - - cvsurfpoint.h - - - $Author: ser1zw $ - - Copyright (C) 2011 ser1zw - -************************************************************/ -#ifndef RUBY_OPENCV_CVSURFPOINT_H -#define RUBY_OPENCV_CVSURFPOINT_H - -#include "opencv.h" - -#define __NAMESPACE_BEGIN_CVSURFPOINT namespace cCvSURFPoint { -#define __NAMESPACE_END_CVSURFPOINT } - -__NAMESPACE_BEGIN_OPENCV -__NAMESPACE_BEGIN_CVSURFPOINT - -VALUE rb_class(); - -void init_ruby_class(); - -VALUE rb_allocate(VALUE klass); -VALUE rb_initialize(VALUE self, VALUE pt, VALUE laplacian, VALUE size, VALUE dir, VALUE hessian); -VALUE rb_get_pt(VALUE self); -VALUE rb_set_pt(VALUE self, VALUE value); -VALUE rb_get_laplacian(VALUE self); -VALUE rb_set_laplacian(VALUE self, VALUE value); -VALUE rb_get_size(VALUE self); -VALUE rb_set_size(VALUE self, VALUE value); -VALUE rb_get_dir(VALUE self); -VALUE rb_set_dir(VALUE self, VALUE value); -VALUE rb_get_hessian(VALUE self); -VALUE rb_set_hessian(VALUE self, VALUE value); - -VALUE new_object(CvSURFPoint *cvsurfpoint); - -__NAMESPACE_END_CVSURFPOINT - -inline CvSURFPoint* -CVSURFPOINT(VALUE object) -{ - CvSURFPoint* ptr; - Data_Get_Struct(object, CvSURFPoint, ptr); - return ptr; -} - -__NAMESPACE_END_OPENCV - -#endif // RUBY_OPENCV_CVSURFPOINT_H diff --git a/ext/opencv/cvtermcriteria.cpp b/ext/opencv/cvtermcriteria.cpp deleted file mode 100644 index ef2e02a..0000000 --- a/ext/opencv/cvtermcriteria.cpp +++ /dev/null @@ -1,198 +0,0 @@ -/************************************************************ - - cvtermcriteria.cpp - - - $Author: lsxi $ - - Copyright (C) 2005-2006 Masakazu Yonekura - -************************************************************/ -#include "cvtermcriteria.h" -/* - * Document-class: OpenCV::CvTermCriteria - * - * CvTermCriteria has parameter "max" and "eps". - * "max" is the maximum repetition frequency. - * "eps" is a minimum difference value during current and previous state - * (It is different to which state "eps" refer depending on the method). - * - * Because the name of CvTermCriteria seems to be very long, it has alias named CvTerm. - */ -__NAMESPACE_BEGIN_OPENCV -__NAMESPACE_BEGIN_CVTERMCRITERIA - -VALUE rb_klass; - -VALUE -rb_class() -{ - return rb_klass; -} - -VALUE -rb_allocate(VALUE klass) -{ - CvTermCriteria *ptr; - return Data_Make_Struct(klass, CvTermCriteria, 0, -1, ptr); -} - -/* - * call-seq: - * CvTermCriteria.new([max = 0][,eps = 0.0]) -> obj - * CvTermCriteria.new(int) = CvTermCriteria.new(int, 0.0) - * CvTermCriteria.new(float) = CvTermCriteria.new(0, float) - * - * Create new term criteria. - */ -VALUE -rb_initialize(int argc, VALUE *argv, VALUE self) -{ - VALUE max, eps; - rb_scan_args(argc, argv, "02", &max, &eps); - int type = 0; - if (!NIL_P(max)) - type |= CV_TERMCRIT_ITER; - if (!NIL_P(eps)) - type |= CV_TERMCRIT_EPS; - try { - *CVTERMCRITERIA(self) = cvTermCriteria(type, IF_INT(max, 0), IF_DBL(eps, 0.0)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return self; -} - -/* - * call-seq: - * type -> int - * - * Return a combination of CV_TERMCRIT_ITER and CV_TERMCRIT_EPS - */ -VALUE -rb_type(VALUE self) -{ - return INT2NUM(CVTERMCRITERIA(self)->type); -} - -/* - * call-seq: - * max -> int or nil - * - * Return the maximum repetition frequency. - */ -VALUE -rb_max(VALUE self) -{ - CvTermCriteria *ptr = CVTERMCRITERIA(self); - if (ptr->type & CV_TERMCRIT_ITER) - return INT2NUM(ptr->max_iter); - else - return Qnil; -} - -/* - * call-seq: - * max = val -> self - * - * Set the maximum repetition frequency. - * If val is 0 (or negative value), repetition frequency is disregarded. - */ -VALUE -rb_set_max(VALUE self, VALUE max_value) -{ - CvTermCriteria *ptr = CVTERMCRITERIA(self); - int max = NUM2INT(max_value); - if (max > 0) { - ptr->type |= CV_TERMCRIT_ITER; - ptr->max_iter = max; - } - else { - ptr->type ^= CV_TERMCRIT_ITER; - ptr->max_iter = 0; - } - return self; -} - -/* - * call-seq: - * eps -> float or nil - * - * Return the minimum difference value during current and previous state. - */ -VALUE -rb_eps(VALUE self) -{ - CvTermCriteria *ptr = CVTERMCRITERIA(self); - if (ptr->type & CV_TERMCRIT_EPS) - return rb_float_new(ptr->epsilon); - else - return Qnil; -} - -/* - * call-seq: - * eps = val -> self - * - * Set the minimum difference value during current and previous state. - * If val is 0.0 (or negative value), the minimum difference value - * during current and previous state is disregarded. - */ -VALUE -rb_set_eps(VALUE self, VALUE eps_value) -{ - CvTermCriteria *ptr = CVTERMCRITERIA(self); - double eps = NUM2DBL(eps_value); - if (eps > 0) { - ptr->type = ptr->type | CV_TERMCRIT_EPS; - ptr->epsilon = eps; - } - else { - ptr->type = ptr->type ^ CV_TERMCRIT_EPS; - ptr->epsilon = 0; - } - return self; -} - -VALUE -new_object(CvTermCriteria criteria) -{ - VALUE object = rb_allocate(rb_klass); - *CVTERMCRITERIA(object) = criteria; - return object; -} - -void -init_ruby_class() -{ -#if 0 - // For documentation using YARD - VALUE opencv = rb_define_module("OpenCV"); -#endif - - if (rb_klass) - return; - /* - * opencv = rb_define_module("OpenCV"); - * - * note: this comment is used by rdoc. - */ - VALUE opencv = rb_module_opencv(); - - rb_klass = rb_define_class_under(opencv, "CvTermCriteria", rb_cObject); - /* CvTermCriteria: class */ - rb_define_const(opencv, "CvTerm", rb_klass); - rb_define_alloc_func(rb_klass, rb_allocate); - rb_define_method(rb_klass, "initialize", RUBY_METHOD_FUNC(rb_initialize), -1); - rb_define_method(rb_klass, "type", RUBY_METHOD_FUNC(rb_type), 0); - rb_define_method(rb_klass, "max", RUBY_METHOD_FUNC(rb_max), 0); - rb_define_method(rb_klass, "max=", RUBY_METHOD_FUNC(rb_set_max), 1); - rb_define_method(rb_klass, "eps", RUBY_METHOD_FUNC(rb_eps), 0); - rb_define_method(rb_klass, "eps=", RUBY_METHOD_FUNC(rb_set_eps), 1); - rb_define_alias(rb_klass, "epsilon", "eps"); - rb_define_alias(rb_klass, "epsilon=", "eps="); -} - -__NAMESPACE_END_CVTERMCRITERIA -__NAMESPACE_END_OPENCV - diff --git a/ext/opencv/cvtermcriteria.h b/ext/opencv/cvtermcriteria.h deleted file mode 100644 index b780168..0000000 --- a/ext/opencv/cvtermcriteria.h +++ /dev/null @@ -1,71 +0,0 @@ -/************************************************************ - - cvtermcriteria.h - - - $Author: lsxi $ - - Copyright (C) 2005-2006 Masakazu Yonekura - -************************************************************/ -#ifndef RUBY_OPENCV_CVTERMCRITERIA_H -#define RUBY_OPENCV_CVTERMCRITERIA_H - -#include "opencv.h" - -#define __NAMESPACE_BEGIN_CVTERMCRITERIA namespace cCvTermCriteria { -#define __NAMESPACE_END_CVTERMCRITERIA } - -__NAMESPACE_BEGIN_OPENCV -__NAMESPACE_BEGIN_CVTERMCRITERIA - -VALUE rb_class(); - -void init_ruby_class(); - -VALUE rb_allocate(VALUE klass); -VALUE rb_initialize(int argc, VALUE *argv, VALUE self); - -VALUE rb_type(VALUE self); -VALUE rb_max(VALUE self); -VALUE rb_set_max(VALUE self, VALUE max_value); -VALUE rb_eps(VALUE self); -VALUE rb_set_eps(VALUE self, VALUE eps_value); - -VALUE new_object(CvTermCriteria criteria); - -__NAMESPACE_END_CVTERMCRITERIA - -inline CvTermCriteria* -CVTERMCRITERIA(VALUE object) -{ - CvTermCriteria *ptr; - Data_Get_Struct(object, CvTermCriteria, ptr); - return ptr; -} - -inline CvTermCriteria -VALUE_TO_CVTERMCRITERIA(VALUE object) -{ - if (rb_obj_is_kind_of(object, cCvTermCriteria::rb_class())) { - return *CVTERMCRITERIA(object); - } - switch (TYPE(object)) { - case T_NIL: - return cvTermCriteria(CV_TERMCRIT_ITER, 0, 0); - case T_FIXNUM: - return cvTermCriteria(CV_TERMCRIT_ITER, NUM2INT(object), 0); - case T_FLOAT: - return cvTermCriteria(CV_TERMCRIT_EPS, 0, NUM2DBL(object)); - case T_ARRAY: - if (RARRAY_LEN(object) == 2) { - return cvTermCriteria(CV_TERMCRIT_ITER | CV_TERMCRIT_EPS, - NUM2INT(rb_ary_entry(object, 0)), - NUM2DBL(rb_ary_entry(object, 1))); - } - } - rb_raise(rb_eTypeError, "Invalid type"); -} - -__NAMESPACE_END_OPENCV - -#endif // RUBY_OPENCV_CVTERMCRITERIA_H diff --git a/ext/opencv/cvtwopoints.cpp b/ext/opencv/cvtwopoints.cpp deleted file mode 100644 index cc70201..0000000 --- a/ext/opencv/cvtwopoints.cpp +++ /dev/null @@ -1,122 +0,0 @@ -/************************************************************ - - cvtwopoints.cpp - - - $Author: lsxi $ - - Copyright (C) 2005-2006 Masakazu Yonekura - -************************************************************/ -#include "cvtwopoints.h" -/* - * Document-class: OpenCV::CvTwoPoints - * - * This class means one twopoints on X axis Y axis. - * X and Y takes the value of the Fixnum. see also CvTwopoints2D32F - * - * C structure is here, very simple. - * typdef struct CvTwopoints { - * int x; - * int y; - * } - */ -__NAMESPACE_BEGIN_OPENCV -__NAMESPACE_BEGIN_CVTWOPOINTS - -VALUE rb_klass; - -VALUE -rb_class() -{ - return rb_klass; -} - -VALUE -rb_allocate(VALUE klass) -{ - CvTwoPoints *ptr; - return Data_Make_Struct(klass, CvTwoPoints, 0, -1, ptr); -} - -/* - * Return point 1. - */ -VALUE -rb_point1(VALUE self) -{ - return cCvPoint::new_object(CVTWOPOINTS(self)->p1); -} - -/* - * Return point2. - */ -VALUE -rb_point2(VALUE self) -{ - return cCvPoint::new_object(CVTWOPOINTS(self)->p2); -} - -/* - * call-seq: - * [index] - * - * Return value of index dimension. - */ -VALUE -rb_aref(VALUE self, VALUE index) -{ - switch (NUM2INT(index)) { - case 0: - return cCvPoint::new_object(CVTWOPOINTS(self)->p1); - break; - case 1: - return cCvPoint::new_object(CVTWOPOINTS(self)->p2); - break; - default: - rb_raise(rb_eIndexError, "index should be 0...2"); - break; - } - return Qnil; -} - -/* - * call-seq: - * to_ary -> [self.point1, self.point2] - * - * Return 2 point by Array. - */ -VALUE -rb_to_ary(VALUE self) -{ - return rb_ary_new3(2, rb_point1(self), rb_point2(self)); -} - -void -init_ruby_class() -{ -#if 0 - // For documentation using YARD - VALUE opencv = rb_define_module("OpenCV"); -#endif - - if (rb_klass) - return; - /* - * opencv = rb_define_module("OpenCV"); - * - * note: this comment is used by rdoc. - */ - VALUE opencv = rb_module_opencv(); - - rb_klass = rb_define_class_under(opencv, "CvTwoPoints", rb_cObject); - rb_define_alloc_func(rb_klass, rb_allocate); - rb_define_method(rb_klass, "point1", RUBY_METHOD_FUNC(rb_point1), 0); - rb_define_method(rb_klass, "point2", RUBY_METHOD_FUNC(rb_point2), 0); - rb_define_method(rb_klass, "[]", RUBY_METHOD_FUNC(rb_aref), 1); - rb_define_method(rb_klass, "to_ary", RUBY_METHOD_FUNC(rb_to_ary), 0); - rb_define_alias(rb_klass, "to_a", "to_ary"); -} - -__NAMESPACE_END_CVTWOPOINTS -__NAMESPACE_END_OPENCV - diff --git a/ext/opencv/cvtwopoints.h b/ext/opencv/cvtwopoints.h deleted file mode 100644 index 2a1787a..0000000 --- a/ext/opencv/cvtwopoints.h +++ /dev/null @@ -1,51 +0,0 @@ -/************************************************************ - - cvtwopoints.h - - - $Author: lsxi $ - - Copyright (C) 2005-2006 Masakazu Yonekura - -************************************************************/ -#ifndef RUBY_OPENCV_CVTWOPOINTS_H -#define RUBY_OPENCV_CVTWOPOINTS_H - -#include "opencv.h" - -#define __NAMESPACE_BEGIN_CVTWOPOINTS namespace cCvTwoPoints { -#define __NAMESPACE_END_CVTWOPOINTS } - -__NAMESPACE_BEGIN_OPENCV - -typedef struct CvTwoPoints { - CvPoint p1; - CvPoint p2; -} CvTwoPoints; - -__NAMESPACE_BEGIN_CVTWOPOINTS - -VALUE rb_class(); - -void init_ruby_class(); - -VALUE rb_allocate(VALUE klass); - -VALUE rb_point1(VALUE self); -VALUE rb_point2(VALUE self); -VALUE rb_aref(VALUE self, VALUE index); -VALUE rb_to_ary(VALUE self); - -VALUE new_object(CvTwoPoints twopoints); - -__NAMESPACE_END_CVTWOPOINTS - -inline CvTwoPoints* -CVTWOPOINTS(VALUE object) { - CvTwoPoints *ptr; - Data_Get_Struct(object, CvTwoPoints, ptr); - return ptr; -} - -__NAMESPACE_END_OPENCV - -#endif // RUBY_OPENCV_CVTWOPOINTS_H diff --git a/ext/opencv/cvutils.cpp b/ext/opencv/cvutils.cpp deleted file mode 100644 index 3f5342a..0000000 --- a/ext/opencv/cvutils.cpp +++ /dev/null @@ -1,192 +0,0 @@ -/************************************************************ - - cvutils.cpp - - - $Author: ser1zw $ - - Copyright (C) 2011 ser1zw - -************************************************************/ -#include "cvutils.h" - -void -raise_typeerror(VALUE object, VALUE expected_class) -{ - raise_typeerror(object, rb_class2name(expected_class)); -} - -void -raise_typeerror(VALUE object, const char* expected_class_name) -{ - rb_raise(rb_eTypeError, "wrong argument type %s (expected %s)", - rb_obj_classname(object), expected_class_name); -} - -void -raise_compatible_typeerror(VALUE object, VALUE expected_class) -{ - raise_compatible_typeerror(object, rb_class2name(expected_class)); -} - -void -raise_compatible_typeerror(VALUE object, const char* expected_class_name) -{ - rb_raise(rb_eTypeError, "wrong argument type %s (expected %s or compatible object)", - rb_obj_classname(object), expected_class_name); -} - -/* - * Allocates a memory buffer - * see cv::fastMalloc() - */ -void* -rbFastMalloc(size_t size) -{ - uchar* udata = (uchar*)xmalloc(size + sizeof(void*) + CV_MALLOC_ALIGN); - if(!udata) { - rb_raise(rb_eNoMemError, "Failed to allocate memory"); - } - uchar** adata = cv::alignPtr((uchar**)udata + 1, CV_MALLOC_ALIGN); - adata[-1] = udata; - return adata; -} - -/* - * Allocates a memory buffer - * When memory allocation is failed, run GC and retry it - */ -void* -rb_cvAlloc(size_t size) -{ - return rbFastMalloc(size); -} - -/* - * Creates CvMat and underlying data - * When memory allocation is failed, run GC and retry it - */ -CvMat* -rb_cvCreateMat(int rows, int cols, int type) -{ - CvMat* mat = NULL; - try { - mat = cvCreateMatHeader(rows, cols, type); - if (mat) { - // see OpenCV's cvCreateData() - size_t step = mat->step; - size_t total_size = step * mat->rows + sizeof(int) + CV_MALLOC_ALIGN; - - mat->refcount = (int*)rbFastMalloc(total_size); - mat->data.ptr = (uchar*)cvAlignPtr(mat->refcount + 1, CV_MALLOC_ALIGN); - *mat->refcount = 1; - } - else { - rb_raise(rb_eRuntimeError, "Failed to create mat header"); - } - } - catch(cv::Exception& e) { - if (mat) { - cvReleaseMat(&mat); - } - rb_raise(rb_eRuntimeError, "%s", e.what()); - } - return mat; -} - -/* - * Create IplImage header and allocate underlying data - * When memory allocation is failed, run GC and retry it - */ -IplImage* -rb_cvCreateImage(CvSize size, int depth, int channels) -{ - IplImage* ptr = NULL; - try { - ptr = cvCreateImageHeader(size, depth, channels); - if (ptr) { - // see OpenCV's cvCreateData() - ptr->imageData = ptr->imageDataOrigin = (char*)rbFastMalloc((size_t)ptr->imageSize); - } - else { - rb_raise(rb_eRuntimeError, "Failed to create image header"); - } - } - catch(cv::Exception& e) { - if (ptr) { - cvReleaseImage(&ptr); - } - rb_raise(rb_eRuntimeError, "%s", e.what()); - } - return ptr; -} - -/* - * Creates a structuring element - * When memory allocation is failed, run GC and retry it - */ -IplConvKernel* -rb_cvCreateStructuringElementEx(int cols, int rows, - int anchorX, int anchorY, - int shape, int *values) -{ - IplConvKernel* ptr = NULL; - try { - ptr = cvCreateStructuringElementEx(cols, rows, anchorX, anchorY, shape, values); - } - catch(cv::Exception& e) { - if (e.code != CV_StsNoMem) - rb_raise(rb_eRuntimeError, "%s", e.what()); - - rb_gc_start(); - try { - ptr = cvCreateStructuringElementEx(cols, rows, anchorX, anchorY, shape, values); - } - catch (cv::Exception& e) { - if (e.code == CV_StsNoMem) - rb_raise(rb_eNoMemError, "%s", e.what()); - else - rb_raise(rb_eRuntimeError, "%s", e.what()); - } - } - return ptr; -} - -/* - * Creates memory storage - * When memory allocation is failed, run GC and retry it - */ -CvMemStorage* -rb_cvCreateMemStorage(int block_size) -{ - CvMemStorage* ptr = NULL; - try { - ptr = cvCreateMemStorage(block_size); - } - catch(cv::Exception& e) { - if (e.code != CV_StsNoMem) - rb_raise(rb_eRuntimeError, "%s", e.what()); - - rb_gc_start(); - try { - ptr = cvCreateMemStorage(block_size); - } - catch (cv::Exception& e) { - if (e.code == CV_StsNoMem) - rb_raise(rb_eNoMemError, "%s", e.what()); - else - rb_raise(rb_eRuntimeError, "%s", e.what()); - } - } - return ptr; -} - -VALUE -rb_get_option_table(VALUE klass, const char* table_name, VALUE option) -{ - VALUE table = rb_const_get(klass, rb_intern(table_name)); - if (NIL_P(option)) - return table; - else - return rb_funcall(table, rb_intern("merge"), 1, option); -} - diff --git a/ext/opencv/cvutils.h b/ext/opencv/cvutils.h deleted file mode 100644 index dad9e35..0000000 --- a/ext/opencv/cvutils.h +++ /dev/null @@ -1,30 +0,0 @@ -/************************************************************ - - cvutils.h - - - $Author: ser1zw $ - - Copyright (C) 2011 ser1zw - -************************************************************/ - -#include -#include "opencv2/core/core_c.h" -#include "opencv2/core/core.hpp" -#include "opencv2/core/internal.hpp" -#include "opencv2/imgproc/imgproc_c.h" -#include "opencv2/imgproc/imgproc.hpp" - -#define raise_cverror(e) cCvError::raise(e) - -void raise_typeerror(VALUE object, VALUE expected_class); -void raise_typeerror(VALUE object, const char* expected_class_name); -void raise_compatible_typeerror(VALUE object, VALUE expected_class); -void raise_compatible_typeerror(VALUE object, const char* expected_class_name); -void* rb_cvAlloc(size_t size); -CvMat* rb_cvCreateMat(int height, int width, int type); -IplImage* rb_cvCreateImage(CvSize size, int depth, int channels); -IplConvKernel* rb_cvCreateStructuringElementEx(int cols, int rows, int anchorX, int anchorY, int shape, int *values); -CvMemStorage* rb_cvCreateMemStorage(int block_size); -VALUE rb_get_option_table(VALUE klass, const char* table_name, VALUE option); - diff --git a/ext/opencv/cvvideowriter.cpp b/ext/opencv/cvvideowriter.cpp deleted file mode 100644 index dcd5531..0000000 --- a/ext/opencv/cvvideowriter.cpp +++ /dev/null @@ -1,142 +0,0 @@ -/************************************************************ - - cvvideowriter.cpp - - - $Author: lsxi $ - - Copyright (C) 2005-2006 Masakazu Yonekura - -************************************************************/ -#include "cvvideowriter.h" -/* - * Document-class: OpenCV::CvVideoWriter - * - * Create video stream from images. - * - * C structure is "black box". - */ -__NAMESPACE_BEGIN_OPENCV -__NAMESPACE_BEGIN_CVVIDEOWRITER - -VALUE rb_klass; - -VALUE -rb_class() -{ - return rb_klass; -} - -/* - * call-seq: - * CvVideoWriter.new(filname, fourcc, fps, size[, is_color]) -> cvvideowriter - * CvVideoWriter.new(filname, fourcc, fps, size[, is_color]){|vw| ... } -> nil - * - * Open new video writer. If block given, writer is closed automatically when end of block. - * - * note: if fourcc is nil, popup codec select dialog (Windows only). - */ -VALUE -rb_initialize(int argc, VALUE *argv, VALUE self) -{ - VALUE filename, fourcc, fps, size, is_color_val; - rb_scan_args(argc, argv, "41", &filename, &fourcc, &fps, &size, &is_color_val); - char codec[4] = {' ', ' ', ' ', ' '}; - int codec_number; - Check_Type(filename, T_STRING); - if (RSTRING_LEN(filename) == 0) - rb_raise(rb_eArgError, "argument 1 (file name) dose not given"); - if (NIL_P(fourcc)) - codec_number = -1; - else { - Check_Type(fourcc, T_STRING); - if (RSTRING_LEN(fourcc) > 4) - rb_raise(rb_eStandardError, "argument 2 (fourcc) should be specific 4-character. (i.e \"PIM1\",\"MJPG\")"); - else { - int len = RSTRING_LEN(fourcc); - for (int i = 0; i < len; ++i) - codec[i] = RSTRING_PTR(fourcc)[i]; - codec_number = CV_FOURCC(codec[0], codec[1], codec[2], codec[3]); - } - } - int is_color; - if (NIL_P(is_color_val)) - is_color = 1; - else - is_color = (is_color_val == Qtrue) ? 1 : 0; - try { - DATA_PTR(self) = cvCreateVideoWriter(StringValueCStr(filename), codec_number, - NUM2DBL(fps), VALUE_TO_CVSIZE(size), is_color); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - if (rb_block_given_p()) { - rb_yield(self); - rb_close(self); - return Qnil; - } - else - return self; -} - -/* - * call-seq: - * write(frame) - * - * Write image as frame of video stream. - * frame should be IplImage - */ -VALUE -rb_write(VALUE self, VALUE frame) -{ - try { - cvWriteFrame(CVVIDEOWRITER(self), IPLIMAGE_WITH_CHECK(frame)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return self; -} - -/* - * Close vidoe writer. - */ -VALUE -rb_close(VALUE self) -{ - CvVideoWriter *writer = CVVIDEOWRITER(self); - try { - if (writer) - cvReleaseVideoWriter(&writer); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return Qnil; -} - -void -init_ruby_class() -{ -#if 0 - // For documentation using YARD - VALUE opencv = rb_define_module("OpenCV"); -#endif - - if (rb_klass) - return; - /* - * opencv = rb_define_module("OpenCV"); - * - * note: this comment is used by rdoc. - */ - VALUE opencv = rb_module_opencv(); - rb_klass = rb_define_class_under(opencv, "CvVideoWriter", rb_cObject); - rb_define_method(rb_klass, "initialize", RUBY_METHOD_FUNC(rb_initialize), -1); - rb_define_method(rb_klass, "write", RUBY_METHOD_FUNC(rb_write), 1); - rb_define_method(rb_klass, "close", RUBY_METHOD_FUNC(rb_close), 0); -} - -__NAMESPACE_END_CVVIDEOWRITER -__NAMESPACE_END_OPENCV - diff --git a/ext/opencv/cvvideowriter.h b/ext/opencv/cvvideowriter.h deleted file mode 100644 index 9e99daf..0000000 --- a/ext/opencv/cvvideowriter.h +++ /dev/null @@ -1,43 +0,0 @@ -/************************************************************ - - cvvideowriter.h - - - $Author: lsxi $ - - Copyright (C) 2005-2006 Masakazu Yonekura - -************************************************************/ -#ifndef RUBY_OPENCV_CVVIDEOWRITER_H -#define RUBY_OPENCV_CVVIDEOWRITER_H - -#include "opencv.h" - -#define __NAMESPACE_BEGIN_CVVIDEOWRITER namespace cCvVideoWriter { -#define __NAMESPACE_END_CVVIDEOWRITER } - -__NAMESPACE_BEGIN_OPENCV -__NAMESPACE_BEGIN_CVVIDEOWRITER - -VALUE rb_class(); - -void init_ruby_class(); - -VALUE rb_initialize(int argc, VALUE *argv, VALUE self); -VALUE rb_write(VALUE self, VALUE frame); -VALUE rb_close(VALUE self); - -__NAMESPACE_END_CVVIDEOWRITER - -inline CvVideoWriter* -CVVIDEOWRITER(VALUE object) -{ - // CvVideoWriter is - // CvVideoWriter *ptr; - // Data_Get_Struct(object, CvVideoWriter, ptr); - // return ptr; - return (CvVideoWriter*)DATA_PTR(object); -} - -__NAMESPACE_END_OPENCV - -#endif // RUBY_OPENCV_CVVIDEOWRITER_H diff --git a/ext/opencv/eigenfaces.cpp b/ext/opencv/eigenfaces.cpp deleted file mode 100644 index 69beb79..0000000 --- a/ext/opencv/eigenfaces.cpp +++ /dev/null @@ -1,75 +0,0 @@ -/************************************************************ - - eigenfaces.cpp - - - $Author: ser1zw $ - - Copyright (C) 2013 ser1zw - -************************************************************/ -#include -#include "eigenfaces.h" -/* - * Document-class: OpenCV::EigenFaces - * - */ -__NAMESPACE_BEGIN_OPENCV -__NAMESPACE_BEGIN_EIGENFACES - -VALUE rb_klass; - -VALUE -rb_class() -{ - return rb_klass; -} - -/* - * call-seq: - * EigenFaces.new(num_components=0, threshold=DBL_MAX) - */ -VALUE -rb_initialize(int argc, VALUE argv[], VALUE self) -{ - VALUE num_components_val, threshold_val; - rb_scan_args(argc, argv, "02", &num_components_val, &threshold_val); - - int num_components = NIL_P(num_components_val) ? 0 : NUM2INT(num_components_val); - double threshold = NIL_P(threshold_val) ? DBL_MAX : NUM2DBL(threshold_val); - - free(DATA_PTR(self)); - cv::Ptr ptr = cv::createEigenFaceRecognizer(num_components, threshold); - DATA_PTR(self) = ptr; - - cFaceRecognizer::guard_facerecognizer(DATA_PTR(self), ptr); - - return self; -} - -void -init_ruby_class() -{ -#if 0 - // For documentation using YARD - VALUE opencv = rb_define_module("OpenCV"); - VALUE alghorithm = rb_define_class_under(opencv, "Algorithm", rb_cObject); - VALUE face_recognizer = rb_define_class_under(opencv, "FaceRecognizer", alghorithm); -#endif - - if (rb_klass) - return; - /* - * opencv = rb_define_module("OpenCV"); - * - * note: this comment is used by rdoc. - */ - VALUE opencv = rb_module_opencv(); - VALUE face_recognizer = cFaceRecognizer::rb_class(); - rb_klass = rb_define_class_under(opencv, "EigenFaces", face_recognizer); - rb_define_alloc_func(rb_klass, cFaceRecognizer::allocate_facerecognizer); - rb_define_private_method(rb_klass, "initialize", RUBY_METHOD_FUNC(rb_initialize), -1); -} - -__NAMESPACE_END_EIGENFACES -__NAMESPACE_END_OPENCV - diff --git a/ext/opencv/eigenfaces.h b/ext/opencv/eigenfaces.h deleted file mode 100644 index 2884808..0000000 --- a/ext/opencv/eigenfaces.h +++ /dev/null @@ -1,30 +0,0 @@ -/************************************************************ - - eigenfaces.h - - $Author: ser1zw $ - - Copyright (C) 2013 ser1zw - -************************************************************/ -#ifndef RUBY_OPENCV_EIGENFACES_H -#define RUBY_OPENCV_EIGENFACES_H - -#include "opencv.h" - -#define __NAMESPACE_BEGIN_EIGENFACES namespace cEigenFaces { -#define __NAMESPACE_END_EIGENFACES } - -__NAMESPACE_BEGIN_OPENCV -__NAMESPACE_BEGIN_EIGENFACES - -VALUE rb_class(); - -void init_ruby_class(); -VALUE rb_initialize(int argc, VALUE argv[], VALUE self); - -__NAMESPACE_END_EIGENFACES -__NAMESPACE_END_OPENCV - -#endif // RUBY_OPENCV_EIGENFACES_H - diff --git a/ext/opencv/error.cpp b/ext/opencv/error.cpp new file mode 100644 index 0000000..ead656f --- /dev/null +++ b/ext/opencv/error.cpp @@ -0,0 +1,92 @@ +// -*- mode: c++; coding: utf-8 -*- +#include +#include "error.hpp" + +namespace rubyopencv { + namespace Error { + VALUE rb_klass; + std::map error_code_map; + + inline void REGISTER_CVERROR(const char* object_name, int error_code) { + VALUE klass = rb_define_class_under(rb_klass, object_name, rb_klass); + error_code_map[error_code] = klass; + } + + VALUE rb_class() { + return rb_klass; + } + + VALUE find_error_by_code(int error_code) { + VALUE klass = Qnil; + if (error_code_map.find(error_code) != error_code_map.end()) { + klass = error_code_map[error_code]; + } + return NIL_P(klass) ? rb_eStandardError : klass; + } + + void raise(cv::Exception e) { + rb_raise(find_error_by_code(e.code), "%s", e.what()); + } + + void init() { + VALUE opencv = rb_define_module("OpenCV"); + rb_klass = rb_define_class_under(opencv, "Error", rb_eStandardError); + + REGISTER_CVERROR("StsOk", cv::Error::StsOk); + REGISTER_CVERROR("StsBackTrace", cv::Error::StsBackTrace); + REGISTER_CVERROR("StsError", cv::Error::StsError); + REGISTER_CVERROR("StsInternal", cv::Error::StsInternal); + REGISTER_CVERROR("StsNoMem", cv::Error::StsNoMem); + REGISTER_CVERROR("StsBadArg", cv::Error::StsBadArg); + REGISTER_CVERROR("StsBadFunc", cv::Error::StsBadFunc); + REGISTER_CVERROR("StsNoConv", cv::Error::StsNoConv); + REGISTER_CVERROR("StsAutoTrace", cv::Error::StsAutoTrace); + REGISTER_CVERROR("HeaderIsNull", cv::Error::HeaderIsNull); + REGISTER_CVERROR("BadImageSize", cv::Error::BadImageSize); + REGISTER_CVERROR("BadOffset", cv::Error::BadOffset); + REGISTER_CVERROR("BadDataPtr", cv::Error::BadDataPtr); + REGISTER_CVERROR("BadStep", cv::Error::BadStep); + REGISTER_CVERROR("BadModelOrChSeq", cv::Error::BadModelOrChSeq); + REGISTER_CVERROR("BadNumChannels", cv::Error::BadNumChannels); + REGISTER_CVERROR("BadNumChannel1U", cv::Error::BadNumChannel1U); + REGISTER_CVERROR("BadDepth", cv::Error::BadDepth); + REGISTER_CVERROR("BadAlphaChannel", cv::Error::BadAlphaChannel); + REGISTER_CVERROR("BadOrder", cv::Error::BadOrder); + REGISTER_CVERROR("BadOrigin", cv::Error::BadOrigin); + REGISTER_CVERROR("BadAlign", cv::Error::BadAlign); + REGISTER_CVERROR("BadCallBack", cv::Error::BadCallBack); + REGISTER_CVERROR("BadTileSize", cv::Error::BadTileSize); + REGISTER_CVERROR("BadCOI", cv::Error::BadCOI); + REGISTER_CVERROR("BadROISize", cv::Error::BadROISize); + REGISTER_CVERROR("MaskIsTiled", cv::Error::MaskIsTiled); + REGISTER_CVERROR("StsNullPtr", cv::Error::StsNullPtr); + REGISTER_CVERROR("StsVecLengthErr", cv::Error::StsVecLengthErr); + REGISTER_CVERROR("StsFilterStructContentErr", cv::Error::StsFilterStructContentErr); + REGISTER_CVERROR("StsKernelStructContentErr", cv::Error::StsKernelStructContentErr); + REGISTER_CVERROR("StsFilterOffsetErr", cv::Error::StsFilterOffsetErr); + REGISTER_CVERROR("StsBadSize", cv::Error::StsBadSize); + REGISTER_CVERROR("StsDivByZero", cv::Error::StsDivByZero); + REGISTER_CVERROR("StsInplaceNotSupported", cv::Error::StsInplaceNotSupported); + REGISTER_CVERROR("StsObjectNotFound", cv::Error::StsObjectNotFound); + REGISTER_CVERROR("StsUnmatchedFormats", cv::Error::StsUnmatchedFormats); + REGISTER_CVERROR("StsBadFlag", cv::Error::StsBadFlag); + REGISTER_CVERROR("StsBadPoint", cv::Error::StsBadPoint); + REGISTER_CVERROR("StsBadMask", cv::Error::StsBadMask); + REGISTER_CVERROR("StsUnmatchedSizes", cv::Error::StsUnmatchedSizes); + REGISTER_CVERROR("StsUnsupportedFormat", cv::Error::StsUnsupportedFormat); + REGISTER_CVERROR("StsOutOfRange", cv::Error::StsOutOfRange); + REGISTER_CVERROR("StsParseError", cv::Error::StsParseError); + REGISTER_CVERROR("StsNotImplemented", cv::Error::StsNotImplemented); + REGISTER_CVERROR("StsBadMemBlock", cv::Error::StsBadMemBlock); + REGISTER_CVERROR("StsAssert", cv::Error::StsAssert); + REGISTER_CVERROR("GpuNotSupported", cv::Error::GpuNotSupported); + REGISTER_CVERROR("GpuApiCallError", cv::Error::GpuApiCallError); + REGISTER_CVERROR("OpenGlNotSupported", cv::Error::OpenGlNotSupported); + REGISTER_CVERROR("OpenGlApiCallError", cv::Error::OpenGlApiCallError); + REGISTER_CVERROR("OpenCLApiCallError", cv::Error::OpenCLApiCallError); + REGISTER_CVERROR("OpenCLDoubleNotSupported", cv::Error::OpenCLDoubleNotSupported); + REGISTER_CVERROR("OpenCLInitError", cv::Error::OpenCLInitError); + REGISTER_CVERROR("OpenCLNoAMDBlasFft", cv::Error::OpenCLNoAMDBlasFft); + } + } +} diff --git a/ext/opencv/error.hpp b/ext/opencv/error.hpp new file mode 100644 index 0000000..8560374 --- /dev/null +++ b/ext/opencv/error.hpp @@ -0,0 +1,16 @@ +// -*- mode: c++; coding: utf-8 -*- +#ifndef RUBY_OPENCV_ERROR_H +#define RUBY_OPENCV_ERROR_H + +#include "ruby.h" +#include "opencv2/core.hpp" + +namespace rubyopencv { + namespace Error { + void init(); + VALUE by_code(int error_code); + void raise(cv::Exception e); + } +} + +#endif // RUBY_OPENCV_ERROR_H diff --git a/ext/opencv/extconf.rb b/ext/opencv/extconf.rb index 1500fa5..36aaee9 100755 --- a/ext/opencv/extconf.rb +++ b/ext/opencv/extconf.rb @@ -1,13 +1,11 @@ #!/usr/bin/env ruby -CC = RbConfig::CONFIG['CC'] -if CC =~ /clang/ - RbConfig::MAKEFILE_CONFIG['try_header'] = :try_cpp - RbConfig::CONFIG['CPP'] = "#{CC} -E" +if RbConfig::CONFIG['CC'] =~ /gcc|clang/ + RbConfig::CONFIG['CPP'] = "#{RbConfig::CONFIG["CXX"]} -E" elsif RbConfig::CONFIG['arch'] =~ /mswin32/ - RbConfig::MAKEFILE_CONFIG['try_header'] = :try_cpp RbConfig::CONFIG['CPP'] = "#{CC} /P" end +RbConfig::MAKEFILE_CONFIG['try_header'] = :try_cpp require "mkmf" @@ -23,23 +21,10 @@ def cv_version_suffix(incdir) major + minor + subminor end -# Quick fix for 2.0.0 -# @libdir_basename is set to nil and dir_config() sets invalid libdir '${opencv-dir}/' when --with-opencv-dir option passed. -@libdir_basename ||= 'lib' incdir, libdir = dir_config("opencv", "/usr/local/include", "/usr/local/lib") -dir_config("libxml2", "/usr/include", "/usr/lib") -opencv_headers = ["opencv2/core/core_c.h", "opencv2/core/core.hpp", "opencv2/imgproc/imgproc_c.h", - "opencv2/imgproc/imgproc.hpp", "opencv2/video/tracking.hpp", "opencv2/features2d/features2d.hpp", - "opencv2/flann/flann.hpp", "opencv2/calib3d/calib3d.hpp", "opencv2/objdetect/objdetect.hpp", - "opencv2/legacy/compat.hpp", "opencv2/legacy/legacy.hpp", "opencv2/highgui/highgui_c.h", - "opencv2/highgui/highgui.hpp", "opencv2/photo/photo.hpp"] -opencv_headers_opt = ["opencv2/nonfree/nonfree.hpp"] - -opencv_libraries = ["opencv_calib3d", "opencv_contrib", "opencv_core", "opencv_features2d", - "opencv_flann", "opencv_highgui", "opencv_imgproc", "opencv_legacy", - "opencv_ml", "opencv_objdetect", "opencv_video", "opencv_photo"] -opencv_libraries_opt = ["opencv_gpu", "opencv_nonfree"] +opencv_headers = ["opencv2/core.hpp", "opencv2/highgui.hpp", "opencv2/imgcodecs.hpp", "opencv2/imgproc.hpp", "opencv2/objdetect.hpp", "opencv2/videoio.hpp"] +opencv_libraries = ["opencv_core", "opencv_highgui", "opencv_imgcodecs", "opencv_imgproc", "opencv_objdetect", "opencv_videoio"] puts ">> Check the required libraries..." if $mswin or $mingw @@ -56,22 +41,15 @@ else end opencv_libraries.each { |lib| raise "#{lib} not found." unless have_library(lib) } -opencv_libraries_opt.each { |lib| warn "#{lib} not found." unless have_library(lib) } # Check the required headers puts ">> Check the required headers..." opencv_headers.each { |header| raise "#{header} not found." unless have_header(header) } -opencv_headers_opt.each { |header| warn "#{header} not found." unless have_header(header) } -have_header("stdarg.h") if $warnflags $warnflags.slice!('-Wdeclaration-after-statement') $warnflags.slice!('-Wimplicit-function-declaration') end -# Quick fix for 1.8.7 -$CFLAGS << " -I#{File.dirname(__FILE__)}/ext/opencv" - # Create Makefile create_makefile('opencv') - diff --git a/ext/opencv/facerecognizer.cpp b/ext/opencv/facerecognizer.cpp deleted file mode 100644 index 952ee8a..0000000 --- a/ext/opencv/facerecognizer.cpp +++ /dev/null @@ -1,219 +0,0 @@ -/************************************************************ - - facerecognizer.cpp - - - $Author: ser1zw $ - - Copyright (C) 2013 ser1zw - -************************************************************/ -#include -#include "facerecognizer.h" -/* - * Document-class: OpenCV::FaceRecognizer - * - */ -__NAMESPACE_BEGIN_OPENCV -__NAMESPACE_BEGIN_FACERECOGNIZER - -VALUE rb_klass; - -std::map > ptr_guard_map; - -void -guard_facerecognizer(void* data_ptr, cv::Ptr ptr) -{ - ptr_guard_map[data_ptr] = ptr; -} - -void -release_facerecognizer(void *data_ptr) -{ - ptr_guard_map[data_ptr].release(); - ptr_guard_map.erase(data_ptr); -} - -VALUE -allocate_facerecognizer(VALUE klass) -{ - return Data_Wrap_Struct(klass, 0, release_facerecognizer, NULL); -} - - -VALUE -rb_class() -{ - return rb_klass; -} - -/* - * call-seq: - * train(src, labels) - * - * Trains a FaceRecognizer with given data and associated labels. - */ -VALUE -rb_train(VALUE self, VALUE src, VALUE labels) -{ - Check_Type(src, T_ARRAY); - Check_Type(labels, T_ARRAY); - - VALUE *src_ptr = RARRAY_PTR(src); - int src_size = RARRAY_LEN(src); - std::vector images; - for (int i = 0; i < src_size; i++) { - images.push_back(cv::Mat(CVMAT_WITH_CHECK(src_ptr[i]))); - } - - VALUE *labels_ptr = RARRAY_PTR(labels); - int labels_size = RARRAY_LEN(labels); - std::vector local_labels; - for (int i = 0; i < labels_size; i++) { - local_labels.push_back(NUM2INT(labels_ptr[i])); - } - - cv::FaceRecognizer *self_ptr = FACERECOGNIZER(self); - try { - self_ptr->train(images, local_labels); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - - return Qnil; -} - -/* - * call-seq: - * udpate(src, labels) - * - * Updates a FaceRecognizer with given data and associated labels. Only valid on LBPH models. - */ -VALUE -rb_update(VALUE self, VALUE src, VALUE labels) -{ - Check_Type(src, T_ARRAY); - Check_Type(labels, T_ARRAY); - - VALUE *src_ptr = RARRAY_PTR(src); - int src_size = RARRAY_LEN(src); - std::vector images; - for (int i = 0; i < src_size; i++) { - images.push_back(cv::Mat(CVMAT_WITH_CHECK(src_ptr[i]))); - } - - VALUE *labels_ptr = RARRAY_PTR(labels); - int labels_size = RARRAY_LEN(labels); - std::vector local_labels; - for (int i = 0; i < labels_size; i++) { - local_labels.push_back(NUM2INT(labels_ptr[i])); - } - - cv::FaceRecognizer *self_ptr = FACERECOGNIZER(self); - try { - self_ptr->update(images, local_labels); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - - return Qnil; -} - -/* - * call-seq: - * predict(src) - * - * Predicts a label and associated confidence (e.g. distance) for a given input image. - */ -VALUE -rb_predict(VALUE self, VALUE src) -{ - cv::Mat mat = cv::Mat(CVMAT_WITH_CHECK(src)); - cv::FaceRecognizer *self_ptr = FACERECOGNIZER(self); - int label; - double confidence; - try { - self_ptr->predict(mat, label, confidence); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - - return rb_ary_new3(2, INT2NUM(label), DBL2NUM(confidence)); -} - - -/* - * call-seq: - * save(filename) - * - * Saves this model to a given filename, either as XML or YAML. - */ -VALUE -rb_save(VALUE self, VALUE filename) -{ - Check_Type(filename, T_STRING); - cv::FaceRecognizer *self_ptr = FACERECOGNIZER(self); - try { - char* s = StringValueCStr(filename); - self_ptr->save(std::string(s)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - - return Qnil; -} - -/* - * call-seq: - * load(filename) - * - * Loads a FaceRecognizer and its model state. - */ -VALUE -rb_load(VALUE self, VALUE filename) -{ - Check_Type(filename, T_STRING); - cv::FaceRecognizer *self_ptr = FACERECOGNIZER(self); - try { - char* s = StringValueCStr(filename); - self_ptr->load(std::string(s)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - - return Qnil; -} - -void -init_ruby_class() -{ -#if 0 - // For documentation using YARD - VALUE opencv = rb_define_module("OpenCV"); - VALUE alghorithm = rb_define_class_under(opencv, "Algorithm", rb_cObject); -#endif - - if (rb_klass) - return; - /* - * opencv = rb_define_module("OpenCV"); - * - * note: this comment is used by rdoc. - */ - VALUE opencv = rb_module_opencv(); - VALUE alghorithm = cAlgorithm::rb_class(); - rb_klass = rb_define_class_under(opencv, "FaceRecognizer", alghorithm); - rb_define_method(rb_klass, "train", RUBY_METHOD_FUNC(rb_train), 2); - rb_define_method(rb_klass, "update", RUBY_METHOD_FUNC(rb_update), 2); - rb_define_method(rb_klass, "predict", RUBY_METHOD_FUNC(rb_predict), 1); - rb_define_method(rb_klass, "save", RUBY_METHOD_FUNC(rb_save), 1); - rb_define_method(rb_klass, "load", RUBY_METHOD_FUNC(rb_load), 1); -} - -__NAMESPACE_END_FACERECOGNIZER -__NAMESPACE_END_OPENCV - diff --git a/ext/opencv/facerecognizer.h b/ext/opencv/facerecognizer.h deleted file mode 100644 index 2d17059..0000000 --- a/ext/opencv/facerecognizer.h +++ /dev/null @@ -1,46 +0,0 @@ -/************************************************************ - - facerecognizer.h - - $Author: ser1zw $ - - Copyright (C) 2013 ser1zw - -************************************************************/ -#ifndef RUBY_OPENCV_FACERECOGNIZER_H -#define RUBY_OPENCV_FACERECOGNIZER_H - -#include "opencv.h" - -#define __NAMESPACE_BEGIN_FACERECOGNIZER namespace cFaceRecognizer { -#define __NAMESPACE_END_FACERECOGNIZER } - -__NAMESPACE_BEGIN_OPENCV -__NAMESPACE_BEGIN_FACERECOGNIZER - -VALUE rb_class(); - -void init_ruby_class(); -VALUE rb_train(VALUE self, VALUE src, VALUE labels); -VALUE rb_predict(VALUE self, VALUE src); -VALUE rb_save(VALUE self, VALUE filename); -VALUE rb_load(VALUE self, VALUE filename); - -void guard_facerecognizer(void* data_ptr, cv::Ptr ptr); -void release_facerecognizer(void *data_ptr); -VALUE allocate_facerecognizer(VALUE klass); - -__NAMESPACE_END_FACERECOGNIZER - -inline cv::FaceRecognizer* -FACERECOGNIZER(VALUE object) -{ - cv::FaceRecognizer *ptr; - Data_Get_Struct(object, cv::FaceRecognizer, ptr); - return ptr; -} - -__NAMESPACE_END_OPENCV - -#endif // RUBY_OPENCV_FACERECOGNIZER_H - diff --git a/ext/opencv/fisherfaces.cpp b/ext/opencv/fisherfaces.cpp deleted file mode 100644 index 503afe4..0000000 --- a/ext/opencv/fisherfaces.cpp +++ /dev/null @@ -1,75 +0,0 @@ -/************************************************************ - - fisherfaces.cpp - - - $Author: ser1zw $ - - Copyright (C) 2013 ser1zw - -************************************************************/ -#include -#include "fisherfaces.h" -/* - * Document-class: OpenCV::FisherFaces - * - */ -__NAMESPACE_BEGIN_OPENCV -__NAMESPACE_BEGIN_FISHERFACES - -VALUE rb_klass; - -VALUE -rb_class() -{ - return rb_klass; -} - -/* - * call-seq: - * FisherFaces.new(num_components=0, threshold=DBL_MAX) - */ -VALUE -rb_initialize(int argc, VALUE argv[], VALUE self) -{ - VALUE num_components_val, threshold_val; - rb_scan_args(argc, argv, "02", &num_components_val, &threshold_val); - - int num_components = NIL_P(num_components_val) ? 0 : NUM2INT(num_components_val); - double threshold = NIL_P(threshold_val) ? DBL_MAX : NUM2DBL(threshold_val); - - free(DATA_PTR(self)); - cv::Ptr ptr = cv::createFisherFaceRecognizer(num_components, threshold); - DATA_PTR(self) = ptr; - - cFaceRecognizer::guard_facerecognizer(DATA_PTR(self), ptr); - - return self; -} - -void -init_ruby_class() -{ -#if 0 - // For documentation using YARD - VALUE opencv = rb_define_module("OpenCV"); - VALUE alghorithm = rb_define_class_under(opencv, "Algorithm", rb_cObject); - VALUE face_recognizer = rb_define_class_under(opencv, "FaceRecognizer", alghorithm); -#endif - - if (rb_klass) - return; - /* - * opencv = rb_define_module("OpenCV"); - * - * note: this comment is used by rdoc. - */ - VALUE opencv = rb_module_opencv(); - VALUE face_recognizer = cFaceRecognizer::rb_class(); - rb_klass = rb_define_class_under(opencv, "FisherFaces", face_recognizer); - rb_define_alloc_func(rb_klass, cFaceRecognizer::allocate_facerecognizer); - rb_define_private_method(rb_klass, "initialize", RUBY_METHOD_FUNC(rb_initialize), -1); -} - -__NAMESPACE_END_FISHERFACES -__NAMESPACE_END_OPENCV - diff --git a/ext/opencv/fisherfaces.h b/ext/opencv/fisherfaces.h deleted file mode 100644 index dea9e6f..0000000 --- a/ext/opencv/fisherfaces.h +++ /dev/null @@ -1,30 +0,0 @@ -/************************************************************ - - fisherfaces.h - - $Author: ser1zw $ - - Copyright (C) 2013 ser1zw - -************************************************************/ -#ifndef RUBY_OPENCV_FISHERFACES_H -#define RUBY_OPENCV_FISHERFACES_H - -#include "opencv.h" - -#define __NAMESPACE_BEGIN_FISHERFACES namespace cFisherFaces { -#define __NAMESPACE_END_FISHERFACES } - -__NAMESPACE_BEGIN_OPENCV -__NAMESPACE_BEGIN_FISHERFACES - -VALUE rb_class(); - -void init_ruby_class(); -VALUE rb_initialize(int argc, VALUE argv[], VALUE self); - -__NAMESPACE_END_FISHERFACES -__NAMESPACE_END_OPENCV - -#endif // RUBY_OPENCV_FISHERFACES_H - diff --git a/ext/opencv/gui.cpp b/ext/opencv/gui.cpp deleted file mode 100644 index bff86f5..0000000 --- a/ext/opencv/gui.cpp +++ /dev/null @@ -1,71 +0,0 @@ -/************************************************************ - - gui.cpp - - - $Author: lsxi $ - - Copyright (C) 2005-2006 Masakazu Yonekura - -************************************************************/ -#include "gui.h" -/* - * Document-module: OpenCV::GUI - */ -__NAMESPACE_BEGIN_OPENCV -__NAMESPACE_BEGIN_GUI - -VALUE rb_module; - -VALUE -rb_module_GUI() -{ - return rb_module; -} - -/* - * Waits for a pressed key. - * - * @overload wait_key(delay = 0) - * @param delay [Integer] Delay in milliseconds. 0 is the special value that means "forever". - * @return [Number] The code of the pressed key or nil if no key was pressed - * before the specified time had elapsed. - * @opencv_func cvWaitKey - */ -VALUE -rb_wait_key(int argc, VALUE *argv, VALUE self) -{ - VALUE delay; - rb_scan_args(argc, argv, "01", &delay); - int keycode = 0; - try { - keycode = cvWaitKey(IF_INT(delay, 0)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return (keycode < 0) ? Qnil : INT2NUM(keycode); -} - -void -init_ruby_module() -{ -#if 0 - // For documentation using YARD - VALUE opencv = rb_define_module("OpenCV"); -#endif - - if (rb_module) - return; - /* - * opencv = rb_define_module("OpenCV"); - * - * note: this comment is used by rdoc. - */ - VALUE opencv = rb_module_opencv(); - rb_module = rb_define_module_under(opencv, "GUI"); - rb_define_singleton_method(rb_module, "wait_key", RUBY_METHOD_FUNC(rb_wait_key), -1); -} - -__NAMESPACE_END_GUI -__NAMESPACE_END_OPENCV - diff --git a/ext/opencv/gui.h b/ext/opencv/gui.h deleted file mode 100644 index 486c076..0000000 --- a/ext/opencv/gui.h +++ /dev/null @@ -1,30 +0,0 @@ -/************************************************************ - - gui.h - - - $Author: lsxi $ - - Copyright (C) 2005-2006 Masakazu Yonekura - -************************************************************/ -#ifndef RUBY_OPENCV_GUI_H -#define RUBY_OPENCV_GUI_H - -#define __NAMESPACE_BEGIN_GUI namespace mGUI { -#define __NAMESPACE_END_GUI } - -#include "opencv.h" - -__NAMESPACE_BEGIN_OPENCV -__NAMESPACE_BEGIN_GUI - -VALUE rb_module_GUI(); -void init_ruby_module(); - -VALUE rb_wait_key(int argc, VALUE *argv, VALUE self); - -__NAMESPACE_END_GUI -__NAMESPACE_END_OPENCV - -#endif // RUBY_OPENCV_GUI_H - diff --git a/ext/opencv/iplconvkernel.cpp b/ext/opencv/iplconvkernel.cpp deleted file mode 100644 index 8438728..0000000 --- a/ext/opencv/iplconvkernel.cpp +++ /dev/null @@ -1,198 +0,0 @@ -/************************************************************ - - iplconvkernel.cpp - - - $Author: lsxi $ - - Copyright (C) 2005-2006 Masakazu Yonekura - -************************************************************/ -#include "iplconvkernel.h" -/* - * Document-class: OpenCV::IplConvKernel - * - * Structuring element can be used in the morphological operations. - * - * CvMat#erode, CvMat#dilate, CvMat#morphology_open, CvMat#morphology_close, - * CvMat#morphology_gradient, CvMat#morphology_tophat, CvMat#morphology_blackhat - * - * Create by IplConvKernel.new or CvMat#to_IplConvKernel - */ -__NAMESPACE_BEGIN_OPENCV -__NAMESPACE_BEGIN_IPLCONVKERNEL - -VALUE rb_klass; - -VALUE -rb_class() -{ - return rb_klass; -} - -VALUE -rb_allocate(VALUE klass) -{ - return IPLCONVKERNEL_OBJECT(klass, 0); -} - -/* - * call-seq: - * IplConvKernel.new(cols, rows, anchor_x, anchor_y, shape [,values = nil]) - * - * Creates structuring element. - * cols - * Number of columns in the structuring element. - * rows - * Number of rows in the structuring element. - * anchor_x - * Relative horizontal offset of the anchor point. - * anchor_y - * Relative vertical offset of the anchor point. - * shape - * Shape of the structuring element; may have the following values: - * :rect - * :cross - * :ellipse - * :custom - * - */ -VALUE -rb_initialize(int argc, VALUE *argv, VALUE self) -{ - VALUE shape, rows, cols, anchor_x, anchor_y, values; - rb_scan_args(argc, argv, "51", &cols, &rows, &anchor_x, &anchor_y, &shape, &values); - int shape_type; - int _cols = NUM2INT(cols); - int _rows = NUM2INT(rows); - int num_values; - int *_values = NULL; - const int INVALID_SHAPE = -1; - - shape_type = CVMETHOD("STRUCTURING_ELEMENT_SHAPE", shape, INVALID_SHAPE); - if (shape_type == INVALID_SHAPE) - rb_raise(rb_eTypeError, "argument 1 (shape) should be :rect or :cross or :ellipse or :custom."); - if (shape_type == CV_SHAPE_CUSTOM) { - if (NIL_P(values)) - rb_raise(rb_eArgError, "argument 6 (values) should not be nil when the shape is :custom."); - num_values = RARRAY_LEN(values); - _values = ALLOCA_N(int, num_values); - VALUE *values_ptr = RARRAY_PTR(values); - for (int i = 0; i < num_values; ++i) - _values[i] = NUM2INT(values_ptr[i]); - } - try { - DATA_PTR(self) = rb_cvCreateStructuringElementEx(_cols, _rows, NUM2INT(anchor_x), NUM2INT(anchor_y), - shape_type, _values); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return self; -} - -/* - * call-seq: - * size -> cvsize - * - * Return the structuring element's size. - */ -VALUE -rb_size(VALUE self) -{ - IplConvKernel *kernel = IPLCONVKERNEL(self); - return cCvSize::new_object(cvSize(kernel->nCols, kernel->nRows)); -} - -/* - * call-seq: - * cols -> int - * - * Return number of columns in the structuring element. - */ -VALUE -rb_cols(VALUE self) -{ - return INT2NUM(IPLCONVKERNEL(self)->nCols); -} - -/* - * call-seq: - * rows -> int - * - * Return number of rows in the structuring element. - */ -VALUE -rb_rows(VALUE self) -{ - return INT2NUM(IPLCONVKERNEL(self)->nRows); -} - -/* - * call-seq: - * anchor -> cvpoint - * - * Return anchor of the structuring element. - */ -VALUE -rb_anchor(VALUE self) -{ - IplConvKernel *kernel = IPLCONVKERNEL(self); - return cCvPoint::new_object(cvPoint(kernel->anchorX, kernel->anchorY)); -} - -/* - * call-seq: - * anchor_x -> int - * - * Return relative horizontal offset of the anchor point. - */ -VALUE -rb_anchor_x(VALUE self) -{ - return INT2NUM(IPLCONVKERNEL(self)->anchorX); -} - -/* - * call-seq: - * anchor_y -> int - * - * Return relative vertical offset of the anchor point. - */ -VALUE -rb_anchor_y(VALUE self) -{ - return INT2NUM(IPLCONVKERNEL(self)->anchorY); -} - -void -init_ruby_class() -{ -#if 0 - // For documentation using YARD - VALUE opencv = rb_define_module("OpenCV"); -#endif - - if (rb_klass) - return; - /* - * opencv = rb_define_module("OpenCV"); - * - * note: this comment is used by rdoc. - */ - VALUE opencv = rb_module_opencv(); - rb_klass = rb_define_class_under(opencv, "IplConvKernel", rb_cObject); - rb_define_alloc_func(rb_klass, rb_allocate); - - rb_define_method(rb_klass, "initialize", RUBY_METHOD_FUNC(rb_initialize), -1); - rb_define_method(rb_klass, "size", RUBY_METHOD_FUNC(rb_size), 0); - rb_define_method(rb_klass, "cols", RUBY_METHOD_FUNC(rb_cols), 0); - rb_define_alias(rb_klass, "columns", "cols"); - rb_define_method(rb_klass, "rows", RUBY_METHOD_FUNC(rb_rows), 0); - rb_define_method(rb_klass, "anchor", RUBY_METHOD_FUNC(rb_anchor), 0); - rb_define_method(rb_klass, "anchor_x", RUBY_METHOD_FUNC(rb_anchor_x), 0); - rb_define_method(rb_klass, "anchor_y", RUBY_METHOD_FUNC(rb_anchor_y), 0); -} - -__NAMESPACE_END_IPLCONVKERNEL -__NAMESPACE_END_OPENCV - diff --git a/ext/opencv/iplconvkernel.h b/ext/opencv/iplconvkernel.h deleted file mode 100644 index 5953196..0000000 --- a/ext/opencv/iplconvkernel.h +++ /dev/null @@ -1,71 +0,0 @@ -/************************************************************ - - iplconvkernel.h - - - $Author: lsxi $ - - Copyright (C) 2005-2006 Masakazu Yonekura - -************************************************************/ -#ifndef RUBY_OPENCV_IPLCONVKERNEL_H -#define RUBY_OPENCV_IPLCONVKERNEL_H - -#include "opencv.h" - -#define __NAMESPACE_BEGIN_IPLCONVKERNEL namespace cIplConvKernel { -#define __NAMESPACE_END_IPLCONVKERNEL } - -__NAMESPACE_BEGIN_OPENCV -__NAMESPACE_BEGIN_IPLCONVKERNEL - -VALUE rb_class(); -VALUE rb_allocate(VALUE klass); - -void init_ruby_class(); -VALUE rb_initialize(int argc, VALUE *argv, VALUE self); -VALUE rb_size(VALUE self); -VALUE rb_cols(VALUE self); -VALUE rb_rows(VALUE self); -VALUE rb_anchor(VALUE self); -VALUE rb_anchor_x(VALUE self); -VALUE rb_anchor_y(VALUE self); - -__NAMESPACE_END_IPLCONVKERNEL - -inline IplConvKernel* -IPLCONVKERNEL(VALUE object) -{ - IplConvKernel *ptr; - Data_Get_Struct(object, IplConvKernel, ptr); - return ptr; -} - -inline IplConvKernel* -IPLCONVKERNEL_WITH_CHECK(VALUE object) -{ - if (!rb_obj_is_kind_of(object, cIplConvKernel::rb_class())) - raise_typeerror(object, cIplConvKernel::rb_class()); - return IPLCONVKERNEL(object); -} - -/* -inline IplConvKernel* -IPLCONVKERNEL(VALUE object) -{ - IplConvKernel *ptr; - if (NIL_P(object)) - return NULL; - else if (rb_obj_is_kind_of(object, cIplConvKernel::rb_class())) { - Data_Get_Struct(object, IplConvKernel, ptr); - return ptr; - } - else { - rb_warn("invalid kernel. use default kernel (3x3 rectangle)."); - return NULL; - } -} -*/ - -__NAMESPACE_END_OPENCV - -#endif // RUBY_OPENCV_IPLCONVKERNEL_H diff --git a/ext/opencv/iplimage.cpp b/ext/opencv/iplimage.cpp deleted file mode 100644 index e5998a3..0000000 --- a/ext/opencv/iplimage.cpp +++ /dev/null @@ -1,651 +0,0 @@ -/************************************************************ - - iplimage.cpp - - - $Author: lsxi $ - - Copyright (C) 2005-2006 Masakazu Yonekura - -************************************************************/ -#include "iplimage.h" -/* - * Document-class: OpenCV::IplImage - * - * IPL(Intel Image Processing Library) Image class. - * - * IplImage is subclass of CvMat. IplImage support ROI(region of interest) and COI(color of interest). - * Most of CvMat method support ROI, and some of CvMat method support COI. - * - * =What is ROI? - * region of interest. - * - * =What is COI? - * color of interest. - */ -__NAMESPACE_BEGIN_OPENCV -__NAMESPACE_BEGIN_IPLIMAGE - -VALUE rb_klass; - -VALUE -rb_class() -{ - return rb_klass; -} - -VALUE -rb_allocate(VALUE klass) -{ - return OPENCV_OBJECT(rb_klass, 0); -} - -/* - * call-seq: - * new(width, height[, depth = CV_8U][, channel = 3]) - * - * Create width * height image. Each element-value set 0. - * - * Each element possigle range is set by depth. Default is unsigned 8bit. - * - * Number of channel is set by channel. channel should be 1..4. - * - * note: width = col, height = row, on CvMat. It is noted not to make a mistake - * because the order of argument is differenct to CvMat. - */ -VALUE -rb_initialize(int argc, VALUE *argv, VALUE self) -{ - VALUE width, height, depth, channel; - rb_scan_args(argc, argv, "22", &width, &height, &depth, &channel); - int _depth = CVMETHOD("DEPTH", depth, CV_8U); - int _channel = argc < 4 ? 3 : NUM2INT(channel); - DATA_PTR(self) = rb_cvCreateImage(cvSize(NUM2INT(width), NUM2INT(height)), cvIplDepth(_depth), _channel); - return self; -} - -/* - * call-seq: - * IplImage::load(filename[,iscolor = CV_LOAD_IMAGE_COLOR]) - * - * Load an image from file. - * iscolor = CV_LOAD_IMAGE_COLOR, the loaded image is forced to be a 3-channel color image - * iscolor = CV_LOAD_IMAGE_GRAYSCALE, the loaded image is forced to be grayscale - * iscolor = CV_LOAD_IMAGE_UNCHANGED, the loaded image will be loaded as is. - * Currently the following file format are supported. - * * Windows bitmaps - BMP,DIB - * * JPEG files - JPEG,JPG,JPE - * * Portable Network Graphics - PNG - * * Portable image format - PBM,PGM,PPM - * * Sun rasters - SR,RAS - * * TIFF files - TIFF,TIF - */ -VALUE -rb_load_image(int argc, VALUE *argv, VALUE self) -{ - VALUE filename, iscolor; - rb_scan_args(argc, argv, "11", &filename, &iscolor); - Check_Type(filename, T_STRING); - - int _iscolor; - if (TYPE(iscolor) == T_NIL) { - _iscolor = CV_LOAD_IMAGE_COLOR; - } - else { - Check_Type(iscolor, T_FIXNUM); - _iscolor = FIX2INT(iscolor); - } - - IplImage *image; - if ((image = cvLoadImage(StringValueCStr(filename), _iscolor)) == NULL) { - rb_raise(rb_eStandardError, "file does not exist or invalid format image."); - } - return OPENCV_OBJECT(rb_klass, image); -} - -/* - * call-seq: - * decode_image(buf[, iscolor=CV_LOAD_IMAGE_COLOR]) -> IplImage - * - * Reads an image from a buffer in memory. - * - * Parameters: - * buf - Input array - * iscolor - Flags specifying the color type of a decoded image (the same flags as CvMat#load) - */ -VALUE -rb_decode_image(int argc, VALUE *argv, VALUE self) -{ - int iscolor, need_release; - CvMat* buff = cCvMat::prepare_decoding(argc, argv, &iscolor, &need_release); - IplImage* img_ptr = NULL; - try { - img_ptr = cvDecodeImage(buff, iscolor); - if (need_release) { - cvReleaseMat(&buff); - } - } - catch (cv::Exception& e) { - raise_cverror(e); - } - - return OPENCV_OBJECT(rb_klass, img_ptr); -} - -/* - * Get ROI as CvRect. - */ -VALUE -rb_get_roi(VALUE self) -{ - CvRect rect; - try { - rect = cvGetImageROI(IPLIMAGE(self)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return cCvRect::new_object(rect); -} - -/* - * call-seq: - * set_roi(rect) - * set_roi(rect){|image| ...} - * - * Set ROI. rect should be CvRect or compatible object. - * Return self. - */ -VALUE -rb_set_roi(VALUE self, VALUE roi) -{ - VALUE block = rb_block_given_p() ? rb_block_proc() : 0; - try { - if (block) { - CvRect prev_roi = cvGetImageROI(IPLIMAGE(self)); - cvSetImageROI(IPLIMAGE(self), VALUE_TO_CVRECT(roi)); - rb_yield_values(1, self); - cvSetImageROI(IPLIMAGE(self), prev_roi); - } - else { - cvSetImageROI(IPLIMAGE(self), VALUE_TO_CVRECT(roi)); - } - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return self; -} - - -/* - * Reset ROI setting. Same as IplImage#roi = nil. Return self. - */ -VALUE -rb_reset_roi(VALUE self) -{ - try { - cvResetImageROI(IPLIMAGE(self)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return self; -} - -/* - * Return COI as Fixnum. - */ -VALUE -rb_get_coi(VALUE self) -{ - int coi = 0; - try { - coi = cvGetImageCOI(IPLIMAGE(self)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return INT2FIX(coi); -} - -/* - * call-seq: - * set_coi(coi) - * set_coi(coi){|image| ...} - * - * Set COI. coi should be Fixnum. - * Return self. - */ -VALUE -rb_set_coi(VALUE self, VALUE coi) -{ - VALUE block = rb_block_given_p() ? rb_block_proc() : 0; - try { - if (block) { - int prev_coi = cvGetImageCOI(IPLIMAGE(self)); - cvSetImageCOI(IPLIMAGE(self), NUM2INT(coi)); - rb_yield_values(1, self); - cvSetImageCOI(IPLIMAGE(self), prev_coi); - } - else { - cvSetImageCOI(IPLIMAGE(self), NUM2INT(coi)); - } - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return self; -} - -/* - * Reset COI setting. Same as IplImage#coi = 0. Return self. - */ -VALUE -rb_reset_coi(VALUE self) -{ - try { - cvSetImageCOI(IPLIMAGE(self), 0); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return self; -} - -/* - * call-seq: - * IplImage.smoothness(lowFreqRatio, blankDensity, messyDensity, highFreqRatio) -> [ symbol, float, float ] - * - * Determines if the image's smoothness is either, :smooth, :messy, or :blank. - * - * Original Author: yuhanz@gmail.com - */ -VALUE -rb_smoothness(int argc, VALUE *argv, VALUE self) -{ - VALUE lowFreqRatio, blankDensity, messyDensity, highFreqRatio; - rb_scan_args(argc, argv, "04", &lowFreqRatio, &blankDensity, &messyDensity, &highFreqRatio); - - double f_lowFreqRatio, f_blankDensity, f_messyDensity, f_highFreqRatio; - double outLowDensity, outHighDensity; - if (TYPE(lowFreqRatio) == T_NIL) { - f_lowFreqRatio = 10 / 128.0f; - } - else { - Check_Type(lowFreqRatio, T_FLOAT); - f_lowFreqRatio = NUM2DBL(lowFreqRatio); - } - if (TYPE(blankDensity) == T_NIL) { - f_blankDensity = 1.2f; - } - else { - Check_Type(blankDensity, T_FLOAT); - f_blankDensity = NUM2DBL(blankDensity); - } - if (TYPE(messyDensity) == T_NIL) { - f_messyDensity = 0.151f; - } - else { - Check_Type(messyDensity, T_FLOAT); - f_messyDensity = NUM2DBL(messyDensity); - } - if (TYPE(highFreqRatio) == T_NIL) { - f_highFreqRatio = 5 / 128.0f; - } - else { - Check_Type(highFreqRatio, T_FLOAT); - f_highFreqRatio = NUM2DBL(highFreqRatio); - } - - IplImage *pFourierImage; - IplImage *p64DepthImage; - - // the image is required to be in depth of 64 - if (IPLIMAGE(self)->depth == 64) { - p64DepthImage = NULL; - pFourierImage = create_fourier_image(IPLIMAGE(self)); - } - else { - p64DepthImage = rb_cvCreateImage(cvGetSize(IPLIMAGE(self)), IPL_DEPTH_64F, 1); - cvConvertScale(CVARR(self), p64DepthImage, 1.0, 0.0); - pFourierImage = create_fourier_image(p64DepthImage); - } - - Smoothness result = compute_smoothness(pFourierImage, f_lowFreqRatio, f_blankDensity, f_messyDensity, - f_highFreqRatio, outLowDensity, outHighDensity); - - cvReleaseImage(&pFourierImage); - if (p64DepthImage != NULL) - cvReleaseImage(&p64DepthImage); - - switch(result) { - case SMOOTH: - return rb_ary_new3(3, ID2SYM(rb_intern("smooth")), rb_float_new(outLowDensity), rb_float_new(outHighDensity)); - case MESSY: - return rb_ary_new3(3, ID2SYM(rb_intern("messy")), rb_float_new(outLowDensity), rb_float_new(outHighDensity)); - case BLANK: - return rb_ary_new3(3, ID2SYM(rb_intern("blank")), rb_float_new(outLowDensity), rb_float_new(outHighDensity)); - default: - return rb_ary_new3(3, NULL, rb_float_new(outLowDensity), rb_float_new(outHighDensity)); - } -} - -/** - * Note: if lowDensity < blankDensityThreshold -> blank; - * else if highDensity > messyDensityThreshold -> messy; - * else -> good; - */ -Smoothness -compute_smoothness(const IplImage *pFourierImage, const double lowFreqRatio, const double blankDensity, - const double messyDensity, const double highFreqRatio, double &outLowDensity, - double &outHighDensity) -{ - int low, high; - IplImage *filteredFourierImage; - int totalIntensity; - double den, totalArea; - CvScalar scalar; - - if (!(pFourierImage->nChannels == 1 && pFourierImage->depth == 64) ) { - cvError(CV_StsUnmatchedSizes, "compute_smoothness", "input image must contain only 1 channel and a depth of 64", - __FILE__, __LINE__ ); - } - - high_pass_range(pFourierImage, lowFreqRatio, low, high ); - totalArea = M_PI * (high * high - low * low); - - filteredFourierImage = create_frequency_filtered_image(pFourierImage, low, high); - scalar = cvSum(filteredFourierImage); - totalIntensity = (int)scalar.val[0]; - cvReleaseImage(&filteredFourierImage); - outLowDensity = den = totalIntensity / totalArea; - - if (den <= blankDensity) { - return BLANK; - } - - low = (int)(high * (1.0 - highFreqRatio)); - - filteredFourierImage = create_frequency_filtered_image(pFourierImage, low, high); - scalar = cvSum(filteredFourierImage); - totalIntensity = (int)scalar.val[0]; - cvReleaseImage(&filteredFourierImage); - outHighDensity = den = totalIntensity / totalArea; - - if (den >= messyDensity) { - return MESSY; - } - - return SMOOTH; -} - -// Rearrange the quadrants of Fourier image so that the origin is at -// the image center -// src & dst arrays of equal size & type -void -cvShiftDFT(CvArr *src_arr, CvArr *dst_arr ) -{ - CvMat *tmp = NULL; - CvMat q1stub, q2stub; - CvMat q3stub, q4stub; - CvMat d1stub, d2stub; - CvMat d3stub, d4stub; - CvMat *q1, *q2, *q3, *q4; - CvMat *d1, *d2, *d3, *d4; - - CvSize size = cvGetSize(src_arr); - CvSize dst_size = cvGetSize(dst_arr); - int cx, cy; - - if (dst_size.width != size.width || - dst_size.height != size.height) { - cvError( CV_StsUnmatchedSizes, "cvShiftDFT", "Source and Destination arrays must have equal sizes", - __FILE__, __LINE__ ); - } - - if (src_arr == dst_arr) { - tmp = rb_cvCreateMat(size.height / 2, size.width / 2, cvGetElemType(src_arr)); - } - - cx = size.width / 2; - cy = size.height / 2; // image center - - q1 = cvGetSubRect(src_arr, &q1stub, cvRect(0,0,cx, cy)); - q2 = cvGetSubRect(src_arr, &q2stub, cvRect(cx,0,cx,cy)); - q3 = cvGetSubRect(src_arr, &q3stub, cvRect(cx,cy,cx,cy)); - q4 = cvGetSubRect(src_arr, &q4stub, cvRect(0,cy,cx,cy)); - d1 = cvGetSubRect(src_arr, &d1stub, cvRect(0,0,cx,cy)); - d2 = cvGetSubRect(src_arr, &d2stub, cvRect(cx,0,cx,cy)); - d3 = cvGetSubRect(src_arr, &d3stub, cvRect(cx,cy,cx,cy)); - d4 = cvGetSubRect(src_arr, &d4stub, cvRect(0,cy,cx,cy)); - - if (src_arr != dst_arr) { - if (!CV_ARE_TYPES_EQ(q1, d1)) { - cvError(CV_StsUnmatchedFormats, "cvShiftDFT", "Source and Destination arrays must have the same format", - __FILE__, __LINE__ ); - } - cvCopy(q3, d1, 0); - cvCopy(q4, d2, 0); - cvCopy(q1, d3, 0); - cvCopy(q2, d4, 0); - } - else { - cvCopy(q3, tmp, 0); - cvCopy(q1, q3, 0); - cvCopy(tmp, q1, 0); - cvCopy(q4, tmp, 0); - cvCopy(q2, q4, 0); - cvCopy(tmp, q2, 0); - } - - if (tmp != NULL) { - cvReleaseMat(&tmp); - } -} - -IplImage* -create_fourier_image(const IplImage *im) -{ - IplImage *realInput; - IplImage *imaginaryInput; - IplImage *complexInput; - int dft_M, dft_N; - CvMat *dft_A, tmp; - IplImage *image_Re; - IplImage *image_Im; - - realInput = rb_cvCreateImage(cvGetSize(im), IPL_DEPTH_64F, 1); - imaginaryInput = rb_cvCreateImage(cvGetSize(im), IPL_DEPTH_64F, 1); - complexInput = rb_cvCreateImage(cvGetSize(im), IPL_DEPTH_64F, 2); - - cvScale(im, realInput, 1.0, 0.0); - cvZero(imaginaryInput); - cvMerge(realInput, imaginaryInput, NULL, NULL, complexInput); - - dft_M = cvGetOptimalDFTSize(im->height - 1); - dft_N = cvGetOptimalDFTSize(im->width - 1); - - dft_A = rb_cvCreateMat(dft_M, dft_N, CV_64FC2); - image_Re = rb_cvCreateImage(cvSize(dft_N, dft_M), IPL_DEPTH_64F, 1); - image_Im = rb_cvCreateImage(cvSize(dft_N, dft_M), IPL_DEPTH_64F, 1); - - // copy A to dft_A and pad dft_A with zeros - cvGetSubRect(dft_A, &tmp, cvRect(0,0, im->width, im->height)); - cvCopy(complexInput, &tmp, NULL); - if (dft_A->cols > im->width) { - cvGetSubRect(dft_A, &tmp, cvRect(im->width,0, dft_A->cols - im->width, im->height)); - cvZero(&tmp); - } - - // no need to pad bottom part of dft_A with zeros because of - // use nonzero_rows parameter in cvDFT() call below - - cvDFT(dft_A, dft_A, CV_DXT_FORWARD, complexInput->height); - - // Split Fourier in real and imaginary parts - cvSplit(dft_A, image_Re, image_Im, 0, 0); - - // Compute the magnitude of the spectrum Mag = sqrt(Re^2 + Im^2) - cvPow(image_Re, image_Re, 2.0); - cvPow(image_Im, image_Im, 2.0); - cvAdd(image_Re, image_Im, image_Re, NULL); - cvPow(image_Re, image_Re, 0.5); - - // Compute log(1 + Mag) - cvAddS(image_Re, cvScalarAll(1.0), image_Re, NULL); // 1 + Mag - cvLog(image_Re, image_Re); // log(1 + Mag) - - // Rearrange the quadrants of Fourier image so that the origin is at - // the image center - cvShiftDFT(image_Re, image_Re); - - cvReleaseImage(&realInput); - cvReleaseImage(&imaginaryInput); - cvReleaseImage(&complexInput); - cvReleaseImage(&image_Im); - - cvReleaseMat(&dft_A); - - return image_Re; -} - -IplImage* -create_frequency_filtered_image(const IplImage *pImage, int low, int high) -{ - - CvPoint2D32f center; - center.x = (float)(pImage->width / 2); - center.y = (float)(pImage->height / 2); - CvBox2D box; - box.center = center; - - box.size.width = (float)high; - box.size.height = (float)high; - - IplImage *pFilterMask = rb_cvCreateImage(cvGetSize(pImage), IPL_DEPTH_64F, 1); - IplImage *pFiltered = rb_cvCreateImage(cvGetSize(pImage), IPL_DEPTH_64F, 1); - - cvZero(pFilterMask); - cvZero(pFiltered); - - if (high > 0) - cvEllipseBox(pFilterMask, box, cvScalar(255, 255, 255, 255), CV_FILLED, 8, 0); - - box.size.width = (float)low; - box.size.height = (float)low; - if (low > 0) - cvEllipseBox(pFilterMask, box, cvScalar(0, 0, 0, 0), CV_FILLED, 8, 0); - - cvAnd(pImage, pFilterMask, pFiltered, NULL); - - cvReleaseImage(&pFilterMask); - - return pFiltered; -} - -void -high_pass_range(const IplImage *pImage, float lostPercentage, int &outLow, int &outHigh) -{ - if (lostPercentage > 1.0f) { - lostPercentage = 1; - } - else if (lostPercentage < 0.0f) { - lostPercentage = 0; - } - - outHigh = (int)MIN(pImage->width, pImage->height); - outLow = (int)(lostPercentage * outHigh); -} - -/* - * call-seq: - * pyr_segmentation(level, threshold1, threshold2) -> [iplimage, cvseq(include cvconnectedcomp)] - * - * Does image segmentation by pyramids. - * The pyramid builds up to the level level. - * The links between any pixel a on leveli and - * its candidate father pixel b on the adjacent level are established if - * p(c(a),c(b)) < threshold1. After the connected components are defined, they are joined into several clusters. Any two segments A and B belong to the same cluster, if - * p(c(A),c(B)) < threshold2. The input image has only one channel, then - * p(c^2,c^2)=|c^2-c^2|. If the input image has three channels (red, green and blue), then - * p(c^2,c^2)=0,3*(c^2 r-c^2 r)+0.59*(c^2 g-c^2 g)+0,11*(c^2 b-c^2 b) . There may be more than one connected component per a cluster. - * - * Return segmented image and sequence of connected components. - * support single-channel or 3-channel 8bit unsigned image only - */ -VALUE -rb_pyr_segmentation(VALUE self, VALUE level, VALUE threshold1, VALUE threshold2) -{ - IplImage* self_ptr = IPLIMAGE(self); - CvSeq *comp = NULL; - VALUE storage = cCvMemStorage::new_object(); - VALUE dest = Qnil; - try { - dest = cIplImage::new_object(cvGetSize(self_ptr), cvGetElemType(self_ptr)); - cvPyrSegmentation(self_ptr, IPLIMAGE(dest), CVMEMSTORAGE(storage), &comp, - NUM2INT(level), NUM2DBL(threshold1), NUM2DBL(threshold2)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - if (!comp) { - comp = cvCreateSeq(CV_SEQ_CONNECTED_COMP, sizeof(CvSeq), sizeof(CvConnectedComp), CVMEMSTORAGE(storage)); - } - return rb_ary_new3(2, dest, cCvSeq::new_sequence(cCvSeq::rb_class(), comp, cCvConnectedComp::rb_class(), storage)); -} - -VALUE -new_object(int width, int height, int type) -{ - return OPENCV_OBJECT(rb_klass, rb_cvCreateImage(cvSize(width, height), cvIplDepth(type), CV_MAT_CN(type))); -} - -VALUE -new_object(CvSize size, int type) -{ - return OPENCV_OBJECT(rb_klass, rb_cvCreateImage(size, cvIplDepth(type), CV_MAT_CN(type))); -} - -void -init_ruby_class() -{ -#if 0 - // For documentation using YARD - VALUE opencv = rb_define_module("OpenCV"); - VALUE cvmat = rb_define_class_under(opencv, "CvMat", rb_cObject); -#endif - - if (rb_klass) - return; - /* - * opencv = rb_define_module("OpenCV"); - * cvmat = rb_define_class_under(opencv, "CvMat", rb_cObject); - * - * note: this comment is used by rdoc. - */ - VALUE opencv = rb_module_opencv(); - VALUE cvmat = cCvMat::rb_class(); - rb_klass = rb_define_class_under(opencv, "IplImage", cvmat); - rb_define_alloc_func(rb_klass, rb_allocate); - rb_define_singleton_method(rb_klass, "load", RUBY_METHOD_FUNC(rb_load_image), -1); - rb_define_method(rb_klass, "initialize", RUBY_METHOD_FUNC(rb_initialize), -1); - rb_define_method(rb_klass, "get_roi", RUBY_METHOD_FUNC(rb_get_roi), 0); - rb_define_alias(rb_klass, "roi", "get_roi"); - rb_define_method(rb_klass, "set_roi", RUBY_METHOD_FUNC(rb_set_roi), 1); - rb_define_alias(rb_klass, "roi=", "set_roi"); - rb_define_method(rb_klass, "reset_roi", RUBY_METHOD_FUNC(rb_reset_roi), 0); - rb_define_method(rb_klass, "get_coi", RUBY_METHOD_FUNC(rb_get_coi), 0); - rb_define_alias(rb_klass, "coi", "get_coi"); - rb_define_method(rb_klass, "set_coi", RUBY_METHOD_FUNC(rb_set_coi), 1); - rb_define_alias(rb_klass, "coi=", "set_coi"); - rb_define_method(rb_klass, "reset_coi", RUBY_METHOD_FUNC(rb_reset_coi), 0); - rb_define_method(rb_klass, "pyr_segmentation", RUBY_METHOD_FUNC(rb_pyr_segmentation), 3); - rb_define_method(rb_klass, "smoothness", RUBY_METHOD_FUNC(rb_smoothness), -1); - - rb_define_singleton_method(rb_klass, "decode_image", RUBY_METHOD_FUNC(rb_decode_image), -1); - rb_define_alias(rb_singleton_class(rb_klass), "decode", "decode_image"); -} - -__NAMESPACE_END_IPLIMAGE -__NAMESPACE_END_OPENCV - diff --git a/ext/opencv/iplimage.h b/ext/opencv/iplimage.h deleted file mode 100644 index e7a77f4..0000000 --- a/ext/opencv/iplimage.h +++ /dev/null @@ -1,73 +0,0 @@ -/************************************************************ - - iplimage.h - - - $Author: lsxi $ - - Copyright (C) 2005-2006 Masakazu Yonekura - -************************************************************/ -#ifndef RUBY_OPENCV_IPLIMAGE_H -#define RUBY_OPENCV_IPLIMAGE_H - -#include "opencv.h" - -#define __NAMESPACE_BEGIN_IPLIMAGE namespace cIplImage { -#define __NAMESPACE_END_IPLIMAGE } - -__NAMESPACE_BEGIN_OPENCV -__NAMESPACE_BEGIN_IPLIMAGE - -VALUE rb_class(); - -void init_ruby_class(); - -VALUE rb_allocate(VALUE klass); -VALUE rb_initialize(int argc, VALUE *argv, VALUE self); - -VALUE rb_load_image(int argc, VALUE *argv, VALUE self); -VALUE rb_decode_image(int argc, VALUE *argv, VALUE self); - -VALUE rb_color_model(VALUE self); - -VALUE rb_get_roi(VALUE self); -VALUE rb_set_roi(VALUE self, VALUE roi); -VALUE rb_reset_roi(VALUE self); - -VALUE rb_get_coi(VALUE self); -VALUE rb_set_coi(VALUE self, VALUE coi); -VALUE rb_reset_coi(VALUE self); - -VALUE rb_pyr_segmentation(VALUE self, VALUE level, VALUE threshold1, VALUE threshold2); - -VALUE rb_smoothness(int argc, VALUE *argv, VALUE self); -typedef enum { SMOOTH = 1, BLANK = 2, MESSY = 3 } Smoothness; -Smoothness compute_smoothness(const IplImage *pFourierImage, const double lowFreqRatio, const double blankDensity, const double messyDensity, const double highFreqRatio, double &outLowDensity, double &outHighDensity); -void cvShiftDFT(CvArr *src_arr, CvArr *dst_arr ); -IplImage* create_fourier_image(const IplImage *im); -IplImage* create_frequency_filtered_image(const IplImage *pImage, int low, int high); -void high_pass_range(const IplImage *pImage, float lostPercentage, int &outLow, int &outHigh); - -VALUE new_object(int width, int height, int type); -VALUE new_object(CvSize size, int type); -__NAMESPACE_END_IPLIMAGE - -inline IplImage* -IPLIMAGE(VALUE object) -{ - IplImage *ptr, stub; - Data_Get_Struct(object, IplImage, ptr); - return cvGetImage(ptr, &stub); -} - -inline IplImage* -IPLIMAGE_WITH_CHECK(VALUE object) -{ - if (!rb_obj_is_kind_of(object, cIplImage::rb_class())) - raise_typeerror(object, cIplImage::rb_class()); - return IPLIMAGE(object); -} - -__NAMESPACE_END_OPENCV - -#endif // RUBY_OPENCV_IPLIMAGE_H diff --git a/ext/opencv/lbph.cpp b/ext/opencv/lbph.cpp deleted file mode 100644 index 895fe32..0000000 --- a/ext/opencv/lbph.cpp +++ /dev/null @@ -1,78 +0,0 @@ -/************************************************************ - - lbph.cpp - - - $Author: ser1zw $ - - Copyright (C) 2013 ser1zw - -************************************************************/ -#include -#include "lbph.h" -/* - * Document-class: OpenCV::LBPH - * - */ -__NAMESPACE_BEGIN_OPENCV -__NAMESPACE_BEGIN_LBPH - -VALUE rb_klass; - -VALUE -rb_class() -{ - return rb_klass; -} - -/* - * call-seq: - * LBPH.new(radius=1, neighbors=8, grid_x=8, grid_y=8, threshold=DBL_MAX) -> cvmat - */ -VALUE -rb_initialize(int argc, VALUE argv[], VALUE self) -{ - VALUE radius_val, neighbors_val, grid_x_val, grid_y_val, threshold_val; - rb_scan_args(argc, argv, "05", &radius_val, &neighbors_val, &grid_x_val, &grid_y_val, &threshold_val); - - int radius = NIL_P(radius_val) ? 1 : NUM2INT(radius_val); - int neighbors = NIL_P(neighbors_val) ? 8 : NUM2INT(neighbors_val); - int grid_x = NIL_P(grid_x_val) ? 8 : NUM2INT(grid_x_val); - int grid_y = NIL_P(grid_y_val) ? 8 : NUM2INT(grid_y_val); - double threshold = NIL_P(threshold_val) ? DBL_MAX : NUM2INT(threshold_val); - - free(DATA_PTR(self)); - cv::Ptr ptr = cv::createLBPHFaceRecognizer(radius, neighbors, grid_x, grid_y, threshold); - DATA_PTR(self) = ptr; - - cFaceRecognizer::guard_facerecognizer(DATA_PTR(self), ptr); - - return self; -} - -void -init_ruby_class() -{ -#if 0 - // For documentation using YARD - VALUE opencv = rb_define_module("OpenCV"); - VALUE alghorithm = rb_define_class_under(opencv, "Algorithm", rb_cObject); - VALUE face_recognizer = rb_define_class_under(opencv, "FaceRecognizer", alghorithm); -#endif - - if (rb_klass) - return; - /* - * opencv = rb_define_module("OpenCV"); - * - * note: this comment is used by rdoc. - */ - VALUE opencv = rb_module_opencv(); - VALUE face_recognizer = cFaceRecognizer::rb_class(); - rb_klass = rb_define_class_under(opencv, "LBPH", face_recognizer); - rb_define_alloc_func(rb_klass, cFaceRecognizer::allocate_facerecognizer); - rb_define_private_method(rb_klass, "initialize", RUBY_METHOD_FUNC(rb_initialize), -1); -} - -__NAMESPACE_END_LBPH -__NAMESPACE_END_OPENCV - diff --git a/ext/opencv/lbph.h b/ext/opencv/lbph.h deleted file mode 100644 index 2903af5..0000000 --- a/ext/opencv/lbph.h +++ /dev/null @@ -1,30 +0,0 @@ -/************************************************************ - - lbph.h - - $Author: ser1zw $ - - Copyright (C) 2013 ser1zw - -************************************************************/ -#ifndef RUBY_OPENCV_LBPH_H -#define RUBY_OPENCV_LBPH_H - -#include "opencv.h" - -#define __NAMESPACE_BEGIN_LBPH namespace cLBPH { -#define __NAMESPACE_END_LBPH } - -__NAMESPACE_BEGIN_OPENCV -__NAMESPACE_BEGIN_LBPH - -VALUE rb_class(); - -void init_ruby_class(); -VALUE rb_initialize(int argc, VALUE argv[], VALUE self); - -__NAMESPACE_END_LBPH -__NAMESPACE_END_OPENCV - -#endif // RUBY_OPENCV_LBPH_H - diff --git a/ext/opencv/mat.cpp b/ext/opencv/mat.cpp new file mode 100644 index 0000000..4920a2a --- /dev/null +++ b/ext/opencv/mat.cpp @@ -0,0 +1,834 @@ +// -*- mode: c++; coding: utf-8 -*- +#include +#include "opencv2/highgui.hpp" + +#include "mat.hpp" +#include "mat_imgproc.hpp" +#include "mat_drawing.hpp" +#include "scalar.hpp" + +#include "error.hpp" + +/* + * Document-class: OpenCV::Mat + */ +namespace rubyopencv { + namespace Mat { + void free_mat(void* ptr); + size_t memsize_mat(const void *ptr); + + VALUE rb_klass = Qnil; + RubyMatAllocator allocator; + rb_data_type_t opencv_mat_type = { + "Mat", + { 0, free_mat, memsize_mat, 0 }, + 0, + 0, + 0 + }; + + cv::Mat* obj2mat(VALUE obj) { + cv::Mat* dataptr = NULL; + TypedData_Get_Struct(obj, cv::Mat, &opencv_mat_type, dataptr); + return dataptr; + } + + VALUE mat2obj(cv::Mat* ptr, VALUE klass) { + return TypedData_Wrap_Struct(klass, &opencv_mat_type, (void*)ptr); + } + + VALUE mat2obj(cv::Mat* ptr) { + return mat2obj(ptr, rb_klass); + } + + cv::Mat* empty_mat() { + cv::Mat* m = new cv::Mat(); + m->allocator = &allocator; + return m; + } + + void free_mat(void* ptr) { + if (ptr) { + cv::Mat* dataptr = (cv::Mat*)ptr; + dataptr->release(); + } + } + + size_t memsize_mat(const void *ptr) { + size_t size = 0; + if (ptr) { + cv::Mat* m = (cv::Mat*)ptr; + size += sizeof(*m); + if (m->u) { + size += m->u->size; + } + } + return size; + } + + VALUE rb_allocate(VALUE klass) { + return TypedData_Wrap_Struct(klass, &opencv_mat_type, 0); + } + + /* + * Creates a matrix + * + * @overload new(rows, cols, type) + * @param row [Integer] Number of rows in the matrix + * @param col [Integer] Number of columns in the matrix + * @param type [Integer] + * The type of the matrix elements in the form of constant CV_. + * @return [Mat] Created matrix + * @opencv_func cv::Mat + * @example + * mat1 = Mat.new(3, 4) # Creates a 3-channels 3x4 matrix whose elements are 8bit unsigned. + * mat2 = Mat.new(5, 6, CV_32F) # Creates a 1-channel 5x6 matrix whose elements are 32bit float. + */ + VALUE rb_initialize(int argc, VALUE *argv, VALUE self) { + VALUE row, column, type; + rb_scan_args(argc, argv, "21", &row, &column, &type); + + cv::Mat* dataptr = NULL; + try { + cv::Mat tempdata(NUM2INT(row), NUM2INT(column), (NIL_P(type) ? CV_8UC1 : NUM2INT(type))); + if (tempdata.empty()) { + rb_raise(rb_eNoMemError, "Failed to create matrix"); + return Qnil; + } + + dataptr = empty_mat(); + tempdata.copyTo(*dataptr); + + RTYPEDDATA_DATA(self) = dataptr; + } + catch (cv::Exception& e) { + delete dataptr; + Error::raise(e); + } + + return self; + } + + /** + * Returns a zero array of the specified size and type. + * + * @overload zeros(rows, cols, type) + * @param row [Integer] Number of rows in the matrix + * @param col [Integer] Number of columns in the matrix + * @param type [Integer] + * The type of the matrix elements in the form of constant CV_. + * @return [Mat] Zero array + */ + VALUE rb_zeros(VALUE self, VALUE rows, VALUE cols, VALUE type) { + cv::Mat* destptr = NULL; + try { + destptr = empty_mat(); + cv::Mat z = cv::Mat::zeros(NUM2INT(rows), NUM2INT(cols), NUM2INT(type)); + z.copyTo(*destptr); + } + catch (cv::Exception& e) { + delete destptr; + Error::raise(e); + } + + return mat2obj(destptr); + } + + /** + * Returns an array of all 1's of the specified size and type. + * + * @overload ones(rows, cols, type) + * @param row [Integer] Number of rows in the matrix + * @param col [Integer] Number of columns in the matrix + * @param type [Integer] + * The type of the matrix elements in the form of constant CV_. + * @return [Mat] Array of all 1's + */ + VALUE rb_ones(VALUE self, VALUE rows, VALUE cols, VALUE type) { + cv::Mat* destptr = NULL; + try { + destptr = empty_mat(); + cv::Mat z = cv::Mat::ones(NUM2INT(rows), NUM2INT(cols), NUM2INT(type)); + z.copyTo(*destptr); + } + catch (cv::Exception& e) { + delete destptr; + Error::raise(e); + } + + return mat2obj(destptr); + } + + /** + * Returns an identity matrix of the specified size and type. + * + * @overload eye(rows, cols, type) + * @param row [Integer] Number of rows in the matrix + * @param col [Integer] Number of columns in the matrix + * @param type [Integer] + * The type of the matrix elements in the form of constant CV_. + * @return [Mat] Identity matrix + */ + VALUE rb_eye(VALUE self, VALUE rows, VALUE cols, VALUE type) { + cv::Mat* destptr = NULL; + try { + destptr = empty_mat(); + cv::Mat z = cv::Mat::eye(NUM2INT(rows), NUM2INT(cols), NUM2INT(type)); + z.copyTo(*destptr); + } + catch (cv::Exception& e) { + delete destptr; + Error::raise(e); + } + + return mat2obj(destptr); + } + + /* + * Makes a clone of an object. + * + * @overload clone + * @return [Mat] Clone of the object + */ + VALUE rb_clone(VALUE self) { + VALUE clone = rb_obj_clone(self); + cv::Mat* selfptr = obj2mat(self); + cv::Mat* dataptr = NULL; + try { + dataptr = empty_mat(); + selfptr->copyTo(*dataptr); + RTYPEDDATA_DATA(clone) = dataptr; + } + catch (cv::Exception& e) { + delete dataptr; + Error::raise(e); + } + + return clone; + } + + VALUE rb_imread_internal(VALUE self, VALUE filename, VALUE flags, VALUE klass) { + cv::Mat* dataptr = NULL; + try { + cv::Mat tmp = cv::imread(StringValueCStr(filename), NUM2INT(flags)); + if (tmp.empty()) { + rb_raise(rb_eStandardError, "Failed to load image"); + return Qnil; + } + + dataptr = empty_mat(); + tmp.copyTo(*dataptr); + } + catch (cv::Exception& e) { + delete dataptr; + Error::raise(e); + } + + return mat2obj(dataptr, klass); + } + + /* + * Loads an image from a file. + * + * @overload imread(filename, flags) + * @param filename [String] Name of file to be loaded. + * @param flags [Integer] Flags specifying the color type of a loaded image: + * - CV_LOAD_IMAGE_ANYDEPTH - If set, return 16-bit/32-bit image when the input has the corresponding depth, otherwise convert it to 8-bit. + * - CV_LOAD_IMAGE_COLOR - If set, always convert image to the color one + * - CV_LOAD_IMAGE_GRAYSCALE - If set, always convert image to the grayscale one + * - >0 Return a 3-channel color image. + * - \=0 Return a grayscale image. + * - <0 Return the loaded image as is (with alpha channel). + * @return [Mat] Loaded image + * @opencv_func cv::imread + */ + VALUE rb_imread(VALUE self, VALUE filename, VALUE flags) { + return rb_imread_internal(self, filename, flags, rb_klass); + } + + VALUE rb_imread_as(VALUE self, VALUE filename, VALUE flags, VALUE klass) { + return rb_imread_internal(self, filename, flags, klass); + } + + VALUE rb_imwrite_internal(VALUE filename, VALUE img, VALUE params) { + std::vector params_value; + + if (!NIL_P(params)) { + Check_Type(params, T_ARRAY); + int size = RARRAY_LEN(params); + for (long i = 0; i < size; i++) { + VALUE n = rb_ary_entry(params, i); + params_value.push_back(NUM2INT(n)); + } + } + + cv::Mat* m = obj2mat(img); + bool ret = false; + try { + ret = cv::imwrite(StringValueCStr(filename), *m, params_value); + } + catch (cv::Exception& e) { + Error::raise(e); + } + + return ret ? Qtrue : Qfalse; + } + + /* + * Saves an image to a specified file. + * The image format is chosen based on the filename extension. + * + * @overload save(filename, params = []) + * @param filename [String] Name of the file + * @return [Boolean] + * @opencv_func cv::imwrite + */ + VALUE rb_save(int argc, VALUE* argv, VALUE self) { + VALUE filename, params; + rb_scan_args(argc, argv, "11", &filename, ¶ms); + return rb_imwrite_internal(filename, self, params); + } + + VALUE rb_imencode_internal(VALUE ext, VALUE img, VALUE params) { + cv::Mat* dataptr = obj2mat(img); + std::vector buf; + std::vector params_vector; + + if (!NIL_P(params)) { + Check_Type(params, T_ARRAY); + size_t param_size = RARRAY_LEN(params); + for (size_t i = 0; i < param_size; i++) { + params_vector.push_back(NUM2INT(RARRAY_AREF(params, i))); + } + } + + try { + cv::imencode(StringValueCStr(ext), *dataptr, buf, params_vector); + } + catch (cv::Exception& e) { + Error::raise(e); + } + + const size_t size = buf.size(); + VALUE array = rb_ary_new2(size); + for (size_t i = 0; i < size; i++) { + rb_ary_push(array, CHR2FIX(buf[i])); + } + return array; + } + + VALUE rb_imencode(int argc, VALUE* argv, VALUE self) { + VALUE ext, params; + rb_scan_args(argc, argv, "11", &ext, ¶ms); + return rb_imencode_internal(ext, self, params); + } + + VALUE rb_imdecode_internal(VALUE self, VALUE buf, VALUE flags, VALUE klass) { + Check_Type(buf, T_ARRAY); + + const size_t size = RARRAY_LEN(buf); + std::vector data(size); + for (size_t i = 0; i < size; i++) { + data[i] = (uchar)(NUM2INT(RARRAY_AREF(buf, i)) & 0xff); + } + + cv::Mat* dstptr = empty_mat(); + try { + cv::imdecode(data, NUM2INT(flags), dstptr); + } + catch (cv::Exception& e) { + delete dstptr; + Error::raise(e); + } + + return mat2obj(dstptr, klass); + } + + /* + * Reads an image from a buffer in memory. + * @overload decode(buf, flags) + * @param buf [Array] Input array of bytes + * @param flags [Integer] Flags specifying the color type of a decoded image (the same flags as imread) + * @return [CvMat] Loaded matrix + * @opencv_func cvDecodeImageM + */ + VALUE rb_imdecode(VALUE self, VALUE buf, VALUE flags) { + return rb_imdecode_internal(self, buf, flags, rb_klass); + } + + VALUE rb_imdecode_as(VALUE self, VALUE buf, VALUE flags, VALUE klass) { + return rb_imdecode_internal(self, buf, flags, klass); + } + + /* + * Returns number of rows of the matrix. + * + * @overload rows + * @return [Integer] Number of rows of the matrix + */ + VALUE rb_rows(VALUE self) { + const cv::Mat* dataptr = obj2mat(self); + return INT2NUM(dataptr->rows); + } + + /* + * Returns number of columns of the matrix. + * + * @overload cols + * @return [Integer] Number of columns of the matrix + */ + VALUE rb_cols(VALUE self) { + const cv::Mat* dataptr = obj2mat(self); + return INT2NUM(dataptr->cols); + } + + /* + * Returns number of dimensions of the matrix. + * + * @overload dims + * @return [Integer] Number of dimensions of the matrix + */ + VALUE rb_dims(VALUE self) { + const cv::Mat* dataptr = obj2mat(self); + return INT2NUM(dataptr->dims); + } + + /* + * Returns depth of the matrix. + * + * @overload depth + * @return [Integer] Depth of the matrix + */ + VALUE rb_depth(VALUE self) { + const cv::Mat* dataptr = obj2mat(self); + return INT2NUM(dataptr->depth()); + } + + /* + * Returns number of channels of the matrix. + * + * @overload channels + * @return [Integer] Number of channels of the matrix + */ + VALUE rb_channels(VALUE self) { + const cv::Mat* dataptr = obj2mat(self); + return INT2NUM(dataptr->channels()); + } + + /* + * @overload to_s + * @return [String] String representation of the matrix + */ + VALUE rb_to_s(VALUE self) { + std::stringstream s; + cv::Mat* selfptr = obj2mat(self); + s << *selfptr; + + VALUE param[7]; + param[0] = rb_str_new2("<%s:%dx%d,depth=%s,channels=%d,\n%s>"); + param[1] = rb_str_new2(rb_class2name(CLASS_OF(self))); + param[2] = INT2NUM(selfptr->rows); + param[3] = INT2NUM(selfptr->cols); + param[4] = INT2NUM(selfptr->depth()); + param[5] = INT2NUM(selfptr->channels()); + param[6] = rb_str_new2(s.str().c_str()); + + int n = sizeof(param) / sizeof(param[0]); + return rb_f_sprintf(n, param); + } + + /** + * Returns the specified array element. + * + * @overload [](i) + * @param i [Integer] Zero-based component of the element index + * @overload [](i, j) + * @param i [Integer] Zero-based component of the element index + * @param j [Integer] Zero-based component of the element index + * @overload [](i, j, k) + * @param i [Integer] Zero-based component of the element index + * @param j [Integer] Zero-based component of the element index + * @param k [Integer] Zero-based component of the element index + * @overload [](i, j, k, ...) + * @param i [Integer] Zero-based component of the element index + * @param j [Integer] Zero-based component of the element index + * @param k [Integer] Zero-based component of the element index + * @return [Scalar] Array element + * @opencv_func cv::Mat.at + */ + VALUE rb_aref(VALUE self, VALUE args) { + int index[CV_MAX_DIM]; + const size_t length = RARRAY_LEN(args); + for (size_t i = 0; i < length; i++) { + index[i] = NUM2INT(rb_ary_entry(args, i)); + } + cv::Mat* selfptr = obj2mat(self); + cv::Scalar* scalar = NULL; + try { + switch (selfptr->depth()) { + case CV_8U: + scalar = new cv::Scalar(selfptr->at< cv::Scalar_ >(index)); + break; + case CV_8S: + scalar = new cv::Scalar(selfptr->at< cv::Scalar_ >(index)); + break; + case CV_16U: + scalar = new cv::Scalar(selfptr->at< cv::Scalar_ >(index)); + break; + case CV_16S: + scalar = new cv::Scalar(selfptr->at< cv::Scalar_ >(index)); + break; + case CV_32F: + scalar = new cv::Scalar(selfptr->at< cv::Scalar_ >(index)); + break; + case CV_32S: + scalar = new cv::Scalar(selfptr->at< cv::Scalar_ >(index)); + break; + case CV_64F: + scalar = new cv::Scalar(selfptr->at< cv::Scalar_ >(index)); + break; + default: + rb_raise(rb_eStandardError, "Invalid depth: %d", selfptr->depth()); + break; + } + } + catch (cv::Exception& e) { + delete scalar; + Error::raise(e); + } + return Scalar::scalar2obj(scalar); + } + + /* + * Changes the particular array element + * + * @overload []=(row, col, value) + * @param row [Integer] Row + * @param col [Integer] Column + * @param value [Scalar] The assigned value + * @return [Mat] self + * @opencv_func cv::Mat::at + */ + VALUE rb_aset(VALUE self, VALUE row, VALUE col, VALUE value) { + cv::Scalar* scalar = Scalar::obj2scalar(value); + cv::Mat* selfptr = obj2mat(self); + int y = NUM2INT(row); + int x = NUM2INT(col) * selfptr->channels(); + try { + switch (selfptr->depth()) { + case CV_8U: { + uchar* p = &(selfptr->ptr(y)[x]); + for (int i = 0; i < selfptr->channels(); i++) { + p[i] = (uchar)((*scalar)[i]); + } + break; + } + case CV_8S: { + char* p = &(selfptr->ptr(y)[x]); + for (int i = 0; i < selfptr->channels(); i++) { + p[i] = (char)((*scalar)[i]); + } + break; + } + case CV_16U: { + ushort* p = &(selfptr->ptr(y)[x]); + for (int i = 0; i < selfptr->channels(); i++) { + p[i] = (ushort)((*scalar)[i]); + } + break; + } + case CV_16S: { + short* p = &(selfptr->ptr(y)[x]); + for (int i = 0; i < selfptr->channels(); i++) { + p[i] = (short)((*scalar)[i]); + } + break; + } + case CV_32F: { + float* p = &(selfptr->ptr(y)[x]); + for (int i = 0; i < selfptr->channels(); i++) { + p[i] = (float)((*scalar)[i]); + } + break; + } + case CV_32S: { + int* p = &(selfptr->ptr(y)[x]); + for (int i = 0; i < selfptr->channels(); i++) { + p[i] = (int)((*scalar)[i]); + } + break; + } + case CV_64F: { + double* p = &(selfptr->ptr(y)[x]); + for (int i = 0; i < selfptr->channels(); i++) { + p[i] = (double)((*scalar)[i]); + } + break; + } + default: + rb_raise(rb_eStandardError, "Invalid depth: %d", selfptr->depth()); + break; + } + } + catch (cv::Exception& e) { + Error::raise(e); + } + + return self; + } + + VALUE rb_add(VALUE self, VALUE other) { + cv::Mat* selfptr = obj2mat(self); + cv::Mat* retptr = empty_mat(); + cv::Mat tmp; + + try { + if (rb_obj_is_kind_of(other, rb_klass)) { + cv::Mat* mat = obj2mat(other); + tmp = (*selfptr) + (*mat); + } + else if (rb_obj_is_kind_of(other, Scalar::klass())) { + cv::Scalar* s = Scalar::obj2scalar(other); + tmp = (*selfptr) + (*s); + } + else { + double scale = NUM2DBL(other); + tmp = (*selfptr) + scale; + } + tmp.copyTo(*retptr); + } + catch (cv::Exception& e) { + delete retptr; + Error::raise(e); + } + + return mat2obj(retptr, CLASS_OF(self)); + } + + VALUE rb_sub(VALUE self, VALUE other) { + cv::Mat* selfptr = obj2mat(self); + cv::Mat* retptr = empty_mat(); + cv::Mat tmp; + + try { + if (rb_obj_is_kind_of(other, rb_klass)) { + cv::Mat* mat = obj2mat(other); + tmp = (*selfptr) - (*mat); + } + else if (rb_obj_is_kind_of(other, Scalar::klass())) { + cv::Scalar* s = Scalar::obj2scalar(other); + tmp = (*selfptr) - (*s); + } + else { + double scale = NUM2DBL(other); + tmp = (*selfptr) - scale; + } + tmp.copyTo(*retptr); + } + catch (cv::Exception& e) { + delete retptr; + Error::raise(e); + } + + return mat2obj(retptr, CLASS_OF(self)); + } + + VALUE rb_mul(VALUE self, VALUE other) { + cv::Mat* selfptr = obj2mat(self); + cv::Mat* retptr = empty_mat(); + cv::Mat tmp; + + try { + if (rb_obj_is_kind_of(other, rb_klass)) { + cv::Mat* mat = obj2mat(other); + tmp = (*selfptr) * (*mat); + } + else { + double scale = NUM2DBL(other); + tmp = (*selfptr) * scale; + } + tmp.copyTo(*retptr); + } + catch (cv::Exception& e) { + delete retptr; + Error::raise(e); + } + + return mat2obj(retptr, CLASS_OF(self)); + } + + VALUE rb_div(VALUE self, VALUE other) { + cv::Mat* selfptr = obj2mat(self); + cv::Mat* retptr = empty_mat(); + cv::Mat tmp; + + try { + if (rb_obj_is_kind_of(other, rb_klass)) { + cv::Mat* mat = obj2mat(other); + tmp = (*selfptr) / (*mat); + } + else { + double scale = NUM2DBL(other); + tmp = (*selfptr) / scale; + } + tmp.copyTo(*retptr); + } + catch (cv::Exception& e) { + delete retptr; + Error::raise(e); + } + + return mat2obj(retptr, CLASS_OF(self)); + } + + /* + * Sets all or some of the array elements to the specified value. + * + * @overload set_to(value, mask = nil) + * @param value [Scalar] Assigned scalar converted to the actual array type. + * @param mask [Mat] Operation mask of the same size as self. + * @return [Mat] Output array + */ + VALUE rb_set_to(int argc, VALUE *argv, VALUE self) { + VALUE value, mask; + rb_scan_args(argc, argv, "11", &value, &mask); + cv::Mat* selfptr = obj2mat(self); + cv::Mat* dstptr = empty_mat(); + try { + cv::Mat tmp; + cv::Scalar* s = Scalar::obj2scalar(value); + if (NIL_P(mask)) { + tmp = selfptr->setTo(*s); + } + else { + cv::Mat* maskptr = obj2mat(mask); + tmp = selfptr->setTo(*s, *maskptr); + } + tmp.copyTo(*dstptr); + } + catch (cv::Exception& e) { + delete dstptr; + Error::raise(e); + } + + return mat2obj(dstptr, CLASS_OF(self)); + } + + /* + * Computes the weighted sum of two arrays. + * This function calculates the weighted sum of two arrays as follows: + * dst(I) = src1(I) * alpha + src2(I) * beta + gamma + * + * @overload add_weighted(src1, alpha, src2, beta, gamma, dtype = -1) + * @param src1 [Mat] The first source array. + * @param alpha [Number] Weight for the first array elements. + * @param src2 [Mat] The second source array. + * @param beta [Number] Weight for the second array elements. + * @param gamma [Number] Scalar added to each sum. + * @param dtype [Number] optional depth of the output array; when both input arrays have the same depth, + * dtype can be set to -1, which will be equivalent to src1.depth. + * @return [Mat] Output array + * @opencv_func cv::addWeighted + */ + VALUE rb_add_weighted(int argc, VALUE *argv, VALUE self) { + VALUE src1, alpha, src2, beta, gamma, dtype; + rb_scan_args(argc, argv, "51", &src1, &alpha, &src2, &beta, &gamma, &dtype); + int dtype_value = NIL_P(dtype) ? -1 : NUM2INT(dtype); + + cv::Mat* src1ptr = obj2mat(src1); + cv::Mat* src2ptr = obj2mat(src2); + cv::Mat* dstptr = empty_mat(); + try { + cv::addWeighted(*src1ptr, NUM2DBL(alpha), *src2ptr, NUM2DBL(beta), NUM2DBL(gamma), *dstptr, dtype_value); + } + catch (cv::Exception& e) { + delete dstptr; + Error::raise(e); + } + + return mat2obj(dstptr, CLASS_OF(src1)); + } + + /* + * Scales, computes absolute values, and converts the result to 8-bit. + * + * @overload convert_scale_abs(alpha = 1, beta = 0) + * @return [Mat] Output array + * @opencv_func cv::convertScaleAbs + */ + VALUE rb_convert_scale_abs(int argc, VALUE *argv, VALUE self) { + VALUE alpha, beta; + rb_scan_args(argc, argv, "02", &alpha, &beta); + double alpha_value = NIL_P(alpha) ? 1.0 : NUM2DBL(alpha); + double beta_value = NIL_P(beta) ? 0 : NUM2DBL(beta); + + cv::Mat* selfptr = obj2mat(self); + cv::Mat* dstptr = empty_mat(); + try { + cv::convertScaleAbs(*selfptr, *dstptr, alpha_value, beta_value); + } + catch (cv::Exception& e) { + delete dstptr; + Error::raise(e); + } + + return mat2obj(dstptr, CLASS_OF(self)); + } + + void init() { + VALUE opencv = rb_define_module("OpenCV"); + + rb_klass = rb_define_class_under(opencv, "Mat", rb_cData); + rb_define_alloc_func(rb_klass, rb_allocate); + + rb_define_private_method(rb_klass, "initialize", RUBY_METHOD_FUNC(rb_initialize), -1); + rb_define_singleton_method(rb_klass, "zeros", RUBY_METHOD_FUNC(rb_zeros), 3); + rb_define_singleton_method(rb_klass, "ones", RUBY_METHOD_FUNC(rb_ones), 3); + rb_define_singleton_method(rb_klass, "eye", RUBY_METHOD_FUNC(rb_eye), 3); + + rb_define_method(rb_klass, "+", RUBY_METHOD_FUNC(rb_add), 1); + rb_define_method(rb_klass, "-", RUBY_METHOD_FUNC(rb_sub), 1); + rb_define_method(rb_klass, "*", RUBY_METHOD_FUNC(rb_mul), 1); + rb_define_method(rb_klass, "/", RUBY_METHOD_FUNC(rb_div), 1); + + rb_define_method(rb_klass, "clone", RUBY_METHOD_FUNC(rb_clone), 0); + + rb_define_method(rb_klass, "rows", RUBY_METHOD_FUNC(rb_rows), 0); + rb_define_alias(rb_klass, "height", "rows"); + rb_define_method(rb_klass, "cols", RUBY_METHOD_FUNC(rb_cols), 0); + rb_define_alias(rb_klass, "width", "cols"); + + rb_define_method(rb_klass, "dims", RUBY_METHOD_FUNC(rb_dims), 0); + rb_define_method(rb_klass, "depth", RUBY_METHOD_FUNC(rb_depth), 0); + rb_define_method(rb_klass, "channels", RUBY_METHOD_FUNC(rb_channels), 0); + + rb_define_method(rb_klass, "[]", RUBY_METHOD_FUNC(rb_aref), -2); + rb_define_alias(rb_klass, "at", "[]"); + rb_define_method(rb_klass, "[]=", RUBY_METHOD_FUNC(rb_aset), 3); + rb_define_method(rb_klass, "set_to", RUBY_METHOD_FUNC(rb_set_to), -1); + + rb_define_method(rb_klass, "to_s", RUBY_METHOD_FUNC(rb_to_s), 0); + + rb_define_method(rb_klass, "sobel", RUBY_METHOD_FUNC(rb_sobel), -1); // in ext/opencv/mat_imgproc.cpp + rb_define_method(rb_klass, "canny", RUBY_METHOD_FUNC(rb_canny), -1); // in ext/opencv/mat_imgproc.cpp + rb_define_method(rb_klass, "laplacian", RUBY_METHOD_FUNC(rb_laplacian), -1); // in ext/opencv/mat_imgproc.cpp + + rb_define_method(rb_klass, "line", RUBY_METHOD_FUNC(rb_line), -1); // in ext/opencv/mat_drawing.cpp + rb_define_method(rb_klass, "line!", RUBY_METHOD_FUNC(rb_line_bang), -1); // in ext/opencv/mat_drawing.cpp + + rb_define_method(rb_klass, "rectangle", RUBY_METHOD_FUNC(rb_rectangle), -1); // in ext/opencv/mat_drawing.cpp + rb_define_method(rb_klass, "rectangle!", RUBY_METHOD_FUNC(rb_rectangle_bang), -1); // in ext/opencv/mat_drawing.cpp + + rb_define_method(rb_klass, "resize", RUBY_METHOD_FUNC(rb_resize), -1); // in ext/opencv/mat_imgproc.cpp + rb_define_method(rb_klass, "cvt_color", RUBY_METHOD_FUNC(rb_cvt_color), -1); // in ext/opencv/mat_imgproc.cpp + + rb_define_method(rb_klass, "save", RUBY_METHOD_FUNC(rb_save), -1); + + rb_define_method(rb_klass, "imencode", RUBY_METHOD_FUNC(rb_imencode), -1); + rb_define_singleton_method(rb_klass, "imread_as", RUBY_METHOD_FUNC(rb_imread_as), 3); + rb_define_singleton_method(rb_klass, "imdecode_as", RUBY_METHOD_FUNC(rb_imdecode_as), 3); + + rb_define_method(rb_klass, "convert_scale_abs", RUBY_METHOD_FUNC(rb_convert_scale_abs), -1); + } + } +} diff --git a/ext/opencv/mat.hpp b/ext/opencv/mat.hpp new file mode 100644 index 0000000..e9bacd2 --- /dev/null +++ b/ext/opencv/mat.hpp @@ -0,0 +1,72 @@ +// -*- mode: c++; coding: utf-8 -*- +#ifndef RUBY_OPENCV_MAT_H +#define RUBY_OPENCV_MAT_H +// #include + +#include "ruby.h" +#include "opencv2/core.hpp" + +namespace rubyopencv { + namespace Mat { + void init(); + VALUE rb_imread(VALUE self, VALUE filename, VALUE flags); + VALUE rb_imdecode(VALUE self, VALUE buf, VALUE flags); + VALUE rb_imwrite_internal(VALUE filename, VALUE img, VALUE params); + VALUE rb_clone(VALUE self); + VALUE rb_add_weighted(int argc, VALUE *argv, VALUE self); + cv::Mat* obj2mat(VALUE obj); + VALUE mat2obj(cv::Mat* ptr); + VALUE mat2obj(cv::Mat* ptr, VALUE klass); + cv::Mat* empty_mat(); + + class RubyMatAllocator: public cv::MatAllocator { + public: + RubyMatAllocator() {} + virtual ~RubyMatAllocator() {} + + cv::UMatData* allocate(int dims, const int* sizes, int type, void* data, + size_t* step, int flags, cv::UMatUsageFlags usageFlags) const { + size_t total = CV_ELEM_SIZE(type); + for (int i = dims - 1; i >= 0; i--) { + if (step) { + if (data && step[i] != CV_AUTOSTEP) { + total = step[i]; + } + else { + step[i] = total; + } + } + total *= sizes[i]; + } + + cv::UMatData* u = new cv::UMatData(this); + u->data = u->origdata = data ? (uchar*)data : (uchar*)xmalloc(total); + u->size = total; + if (data) { + u->flags |= cv::UMatData::USER_ALLOCATED; + } + + return u; + } + + bool allocate(cv::UMatData* u, int accessFlags, cv::UMatUsageFlags usageFlags) const { + return (u) ? true : false; + } + + void deallocate(cv::UMatData* u) const { + // std::cout << "[DEBUG] deallocate" << std::endl; + if (u == NULL) { + return; + } + + if (u->refcount == 0) { + // std::cout << "[DEBUG] delete" << std::endl; + xfree(u->origdata); + delete u; + } + } + }; + } +} + +#endif // RUBY_OPENCV_MAT_H diff --git a/ext/opencv/mat_drawing.cpp b/ext/opencv/mat_drawing.cpp new file mode 100644 index 0000000..26a52bc --- /dev/null +++ b/ext/opencv/mat_drawing.cpp @@ -0,0 +1,158 @@ +#include "ruby.h" + +#include "opencv2/imgproc.hpp" +#include "opencv2/highgui.hpp" + +#include "mat.hpp" +#include "mat_drawing.hpp" +#include "scalar.hpp" +#include "point.hpp" +#include "error.hpp" + +/* + * Document-class: OpenCV::Mat + */ +namespace rubyopencv { + namespace Mat { + typedef struct _drawing_option { + int thickness; + int line_type; + int shift; + } drawing_option_t; + const drawing_option_t DEFAULT_DRAWING_OPTION = { 1, 8, 0 }; + + drawing_option_t drawing_option(VALUE option) { + drawing_option_t opt = DEFAULT_DRAWING_OPTION; + + if (!NIL_P(option)) { + Check_Type(option, T_HASH); + + VALUE tmp = Qnil; + tmp = rb_hash_lookup(option, ID2SYM(rb_intern("thickness"))); + if (!NIL_P(tmp)) { + opt.thickness = NUM2INT(tmp); + } + tmp = rb_hash_lookup(option, ID2SYM(rb_intern("line_type"))); + if (!NIL_P(tmp)) { + opt.line_type = NUM2INT(tmp); + } + tmp = rb_hash_lookup(option, ID2SYM(rb_intern("shift"))); + if (!NIL_P(tmp)) { + opt.shift = NUM2INT(tmp); + } + } + + return opt; + } + + /* + * Draws a line segment connecting two points. + * + * @overload line!(p1, p2, color, options = nil) + * @param p1 [Point] First point of the line segment. + * @param p2 [Point] Second point of the line segment. + * @param color [Scalar] Line color. + * @param options [Hash] Drawing options + * @option options [Integer] :thickness Line thickness. + * @option options [Integer] :line_type Type of the line. + * * 8 - 8-connected line. + * * 4 - 4-connected line. + * * CV_AA - Antialiased line. + * @option options [Integer] :shift Number of fractional bits in the point coordinates. + * @return [Mat] self + * @opencv_func (see #line) + */ + VALUE rb_line_bang(int argc, VALUE *argv, VALUE self) { + VALUE p1, p2, color, option; + rb_scan_args(argc, argv, "31", &p1, &p2, &color, &option); + + drawing_option_t opt = drawing_option(option); + try { + cv::Point pt1 = Point::conpatible_obj2point(p1); + cv::Point pt2 = Point::conpatible_obj2point(p2); + cv::line(*(obj2mat(self)), pt1, pt2, *(Scalar::obj2scalar(color)), opt.thickness, opt.line_type, opt.shift); + } + catch (cv::Exception& e) { + Error::raise(e); + } + return self; + } + + /* + * Returns a line segment connecting two points. + * + * @overload line!(p1, p2, color, options = nil) + * @param p1 [Point] First point of the line segment. + * @param p2 [Point] Second point of the line segment. + * @param color [Scalar] Line color. + * @param options [Hash] Drawing options + * @option options [Integer] :thickness Line thickness. + * @option options [Integer] :line_type Type of the line. + * * 8 - 8-connected line. + * * 4 - 4-connected line. + * * CV_AA - Antialiased line. + * @option options [Integer] :shift Number of fractional bits in the point coordinates. + * @return [Mat] Image + * @opencv_func cv::line + */ + VALUE rb_line(int argc, VALUE *argv, VALUE self) { + VALUE dst = rb_clone(self); + return rb_line_bang(argc, argv, dst); + } + + /* + * Returns a simple, thick, or filled up-right rectangle. + * + * @overload rectangle(p1, p2, color, options = nil) + * @param p1 [Point] Vertex of the rectangle. + * @param p2 [Point] Vertex of the rectangle opposite to p1. + * @param color [Scalar] Line color. + * @param options [Hash] Drawing options + * @option options [Integer] :thickness Line thickness. + * @option options [Integer] :line_type Type of the line. + * * 8 - 8-connected line. + * * 4 - 4-connected line. + * * CV_AA - Antialiased line. + * @option options [Integer] :shift Number of fractional bits in the point coordinates. + * @return [Mat] self + * @opencv_func cv::rectangle + */ + VALUE rb_rectangle(int argc, VALUE *argv, VALUE self) { + VALUE dst = rb_clone(self); + return rb_rectangle_bang(argc, argv, dst); + } + + /* + * Draws a simple, thick, or filled up-right rectangle. + * + * @overload rectangle!(p1, p2, color, options = nil) + * @param p1 [Point] Vertex of the rectangle. + * @param p2 [Point] Vertex of the rectangle opposite to p1. + * @param color [Scalar] Line color. + * @param options [Hash] Drawing options + * @option options [Integer] :thickness Line thickness. + * @option options [Integer] :line_type Type of the line. + * * 8 - 8-connected line. + * * 4 - 4-connected line. + * * CV_AA - Antialiased line. + * @option options [Integer] :shift Number of fractional bits in the point coordinates. + * @return [Mat] self + * @opencv_func cv::rectangle + */ + VALUE rb_rectangle_bang(int argc, VALUE *argv, VALUE self) { + VALUE p1, p2, color, option; + rb_scan_args(argc, argv, "31", &p1, &p2, &color, &option); + + drawing_option_t opt = drawing_option(option); + try { + cv::Point pt1 = Point::conpatible_obj2point(p1); + cv::Point pt2 = Point::conpatible_obj2point(p2); + cv::rectangle(*(obj2mat(self)), pt1, pt2, *(Scalar::obj2scalar(color)), opt.thickness, opt.line_type, opt.shift); + } + catch (cv::Exception& e) { + Error::raise(e); + } + return self; + } + } +} diff --git a/ext/opencv/mat_drawing.hpp b/ext/opencv/mat_drawing.hpp new file mode 100644 index 0000000..21f27b9 --- /dev/null +++ b/ext/opencv/mat_drawing.hpp @@ -0,0 +1,11 @@ +#include "ruby.h" + +namespace rubyopencv { + namespace Mat { + VALUE rb_line(int argc, VALUE *argv, VALUE self); + VALUE rb_line_bang(int argc, VALUE *argv, VALUE self); + + VALUE rb_rectangle(int argc, VALUE *argv, VALUE self); + VALUE rb_rectangle_bang(int argc, VALUE *argv, VALUE self); + } +} diff --git a/ext/opencv/mat_imgproc.cpp b/ext/opencv/mat_imgproc.cpp new file mode 100644 index 0000000..995dcd0 --- /dev/null +++ b/ext/opencv/mat_imgproc.cpp @@ -0,0 +1,181 @@ +// -*- mode: c++; coding: utf-8 -*- +#include "opencv2/imgproc.hpp" + +#include "mat.hpp" +#include "size.hpp" +#include "error.hpp" + +/* + * Document-class: OpenCV::Mat + */ +namespace rubyopencv { + namespace Mat { + /* + * Calculates the first, second, third, or mixed image derivatives using an extended Sobel operator. + * + * @overload sobel(ddepth, dx, dy, ksize = 3, scale = 1, delta = 0, border_type = BORDER_DEFAULT) + * @param ddepth [Integer] Output image depth + * @param dx [Integer] Order of the derivative x. + * @param dy [Integer] Order of the derivative y. + * @param ksize [Integer] Size of the extended Sobel kernel; it must be 1, 3, 5, or 7. + * @param scale [Number] Optional scale factor for the computed derivative values; by default, no scaling is applied. + * @param delta [Number] Optional delta value that is added to the results prior to storing them in the output image. + * @param border_type [Integer] Pixel extrapolation method. + * @return [Mat] Output image. + * @opencv_func cv::Sovel + */ + VALUE rb_sobel(int argc, VALUE *argv, VALUE self) { + VALUE ddepth, dx, dy, ksize, scale, delta, border_type; + rb_scan_args(argc, argv, "34", &ddepth ,&dx, &dy, &ksize, &scale, &delta, &border_type); + int ksize_value = NIL_P(ksize) ? 3 : NUM2INT(ksize); + double scale_value = NIL_P(scale) ? 1.0 : NUM2DBL(scale); + double delta_value = NIL_P(delta) ? 0.0 : NUM2DBL(delta); + int border_type_value = NIL_P(border_type) ? cv::BORDER_DEFAULT : NUM2INT(border_type); + + cv::Mat* selfptr = obj2mat(self); + cv::Mat* destptr = empty_mat(); + try { + cv::Sobel(*selfptr, *destptr, NUM2INT(ddepth), NUM2INT(dx), NUM2INT(dy), + ksize_value, scale_value, delta_value, border_type_value); + } + catch (cv::Exception& e) { + delete destptr; + Error::raise(e); + } + + return mat2obj(destptr, CLASS_OF(self)); + } + + /** + * Finds edges in an image using the [Canny86] algorithm. + * + * @overload canny(threshold1, threshold2, aperture_size = 3, l2gradient = false) + * @param threshold1 [Number] First threshold for the hysteresis procedure. + * @param threshold2 [Number] Second threshold for the hysteresis procedure. + * @param aperture_size [Integer] Aperture size for the Sobel operator. + * @param l2gradient [Boolean] a flag, indicating whether a more accurate L_2 =\sqrt{ (dI/dx)^2 + (dI/dy)^2 } norm + * should be used to calculate the image gradient magnitude (l2gradient=true), + * or whether the default L_1 norm =|dI/dx|+|dI/dy| is enough (l2gradient=false). + * @opencv_func cv::Canny + */ + VALUE rb_canny(int argc, VALUE *argv, VALUE self) { + VALUE threshold1, threshold2, aperture_size, l2gradient; + rb_scan_args(argc, argv, "22", &threshold1, &threshold2, &aperture_size, &l2gradient); + + int aperture_size_value = NIL_P(aperture_size) ? 3 : NUM2INT(aperture_size); + bool l2gradient_value = RTEST(l2gradient) ? true : false; + + cv::Mat* selfptr = obj2mat(self); + cv::Mat* destptr = empty_mat(); + try { + cv::Canny(*selfptr, *destptr, NUM2DBL(threshold1), NUM2DBL(threshold2), + aperture_size_value, l2gradient_value); + } + catch (cv::Exception& e) { + delete destptr; + Error::raise(e); + } + + return mat2obj(destptr, CLASS_OF(self)); + } + + /* + * Calculates the Laplacian of an image. + * + * @overload laplacian(ddepth, ksize = 1, scale = 1, delta = 0, border_type = BORDER_DEFAULT) + * @param ddepth [Integer] Desired depth of the destination image. + * @param ksize [Integer] Aperture size used to compute the second-derivative filters. + * The size must be positive and odd. + * @param scale [Number] Optional scale factor for the computed Laplacian values. By default, no scaling is applied. + * @param delta [Number] Optional delta value that is added to the results prior to storing them in the output image. + * @param border_type [Integer] Pixel extrapolation method. + * @return [Mat] Output image. + * @opencv_func cv::Laplacian + */ + VALUE rb_laplacian(int argc, VALUE *argv, VALUE self) { + VALUE ddepth, ksize, scale, delta, border_type; + rb_scan_args(argc, argv, "14", &ddepth, &ksize, &scale, &delta, &border_type); + int ksize_value = NIL_P(ksize) ? 3 : NUM2INT(ksize); + double scale_value = NIL_P(scale) ? 1.0 : NUM2DBL(scale); + double delta_value = NIL_P(delta) ? 0.0 : NUM2DBL(delta); + int border_type_value = NIL_P(border_type) ? cv::BORDER_DEFAULT : NUM2INT(border_type); + + cv::Mat* selfptr = obj2mat(self); + cv::Mat* destptr = empty_mat(); + try { + cv::Laplacian(*selfptr, *destptr, NUM2INT(ddepth), ksize_value, scale_value, + delta_value, border_type_value); + } + catch (cv::Exception& e) { + delete destptr; + Error::raise(e); + } + + return mat2obj(destptr, CLASS_OF(self)); + } + + /** + * Converts an image from one color space to another. + * + * @overload cvt_color(code, dcn = 0) + * @param code [Integer] Color space conversion code + * @param dcn [Integer] Number of channels in the destination image; if the parameter is 0, + * the number of the channels is derived automatically from src and code + * @return [Mat] Output image + * @opencv_func cv::cvtColor + */ + VALUE rb_cvt_color(int argc, VALUE *argv, VALUE self) { + VALUE code, dcn; + rb_scan_args(argc, argv, "11", &code, &dcn); + int dcn_value = NIL_P(dcn) ? 0 : NUM2INT(dcn); + + cv::Mat* destptr = empty_mat(); + cv::Mat* selfptr = obj2mat(self); + try { + cv::cvtColor(*selfptr, *destptr, NUM2INT(code), dcn_value); + } + catch (cv::Exception& e) { + delete destptr; + Error::raise(e); + } + + return mat2obj(destptr, CLASS_OF(self)); + } + + /* + * Resizes an image. + * + * @overload resize(size, interpolation = INTER_LINEAR) + * @param size [Size] Output image size. + * @param interpolation [Integer] Interpolation method: + * * INTER_NEAREST - A nearest-neighbor interpolation + * * INTER_LINEAR - A bilinear interpolation (used by default) + * * INTER_AREA - Resampling using pixel area relation. It may be a preferred method for + * image decimation, as it gives moire'-free results. But when the image is zoomed, + * it is similar to the INTER_NEAREST method. + * * INTER_CUBIC - A bicubic interpolation over 4x4 pixel neighborhood + * * INTER_LANCZOS4 - A Lanczos interpolation over 8x8 pixel neighborhood + * @return [Mat] Output image. + * @opencv_func cv::Resize + */ + VALUE rb_resize(int argc, VALUE *argv, VALUE self) { + VALUE size, inv_scale_x, inv_scale_y, interpolation; + rb_scan_args(argc, argv, "13", &size, &inv_scale_x, &inv_scale_y, &interpolation); + cv::Size* sizeptr = Size::obj2size(size); + cv::Mat* selfptr = obj2mat(self); + cv::Mat* destptr = empty_mat(); + double sx = NIL_P(inv_scale_x) ? 0 : NUM2DBL(inv_scale_x); + double sy = NIL_P(inv_scale_y) ? 0 : NUM2DBL(inv_scale_y); + int method = NIL_P(interpolation) ? CV_INTER_LINEAR : NUM2INT(interpolation); + + try { + cv::resize(*selfptr, *destptr, *sizeptr, sx, sy, method); + } + catch (cv::Exception& e) { + Error::raise(e); + } + + return mat2obj(destptr, CLASS_OF(self)); + } + } +} diff --git a/ext/opencv/mat_imgproc.hpp b/ext/opencv/mat_imgproc.hpp new file mode 100644 index 0000000..835cc4d --- /dev/null +++ b/ext/opencv/mat_imgproc.hpp @@ -0,0 +1,17 @@ +// -*- mode: c++; coding: utf-8 -*- +#ifndef RUBY_OPENCV_MAT_IMGPROC_H +#define RUBY_OPENCV_MAT_IMGPROC_H + +#include "ruby.h" + +namespace rubyopencv { + namespace Mat { + VALUE rb_sobel(int argc, VALUE *argv, VALUE self); + VALUE rb_canny(int argc, VALUE *argv, VALUE self); + VALUE rb_laplacian(int argc, VALUE *argv, VALUE self); + VALUE rb_cvt_color(int argc, VALUE *argv, VALUE self); + VALUE rb_resize(int argc, VALUE *argv, VALUE self); + } +} + +#endif // RUBY_OPENCV_MAT_IMGPROC_H diff --git a/ext/opencv/mouseevent.cpp b/ext/opencv/mouseevent.cpp deleted file mode 100644 index 4b40936..0000000 --- a/ext/opencv/mouseevent.cpp +++ /dev/null @@ -1,186 +0,0 @@ -/************************************************************ - - mouseevent.cpp - - - $Author: lsxi $ - - Copyright (C) 2005-2007 Masakazu Yonekura - -************************************************************/ -#include "mouseevent.h" -/* - * Document-module: OpenCV::GUI::MouseEvent - * - * MouseEvent object. - */ -__NAMESPACE_BEGIN_OPENCV -__NAMESPACE_BEGIN_GUI -__NAMESPACE_BEGIN_MOUSEEVENT - -VALUE rb_klass; - -VALUE -rb_class() -{ - return rb_klass; -} - -VALUE -rb_allocate(VALUE klass) -{ - MouseEvent *ptr; - return Data_Make_Struct(klass, MouseEvent, 0, 0, ptr); -} - -/* - * call-seq: - * event -> symbol - * - * Return Symbol about mouse event. - * - * Currently, return these symbol: - * :move - * When mouse move. - * :right_button_down - * When mouse right button down. - * :left_button_down - * When mosue left button down. - * :middle_button_down - * When mosue middle button down. - * :left_button_up - * When mouse left button down. - * :right_button_up - * When mouse right button down. - * :middle_button_up - * When mouse middle button down. - * - * note: original OpenCV define "double-click" event(e.g. CV_EVENT_LBUTTONDBLCLK). - * But never call these event. Is it bug? - */ -VALUE rb_event(VALUE self) -{ - switch(MOUSEEVENT(self)->event) { - case CV_EVENT_MOUSEMOVE: - return ID2SYM(rb_intern("move")); - case CV_EVENT_LBUTTONDOWN: - return ID2SYM(rb_intern("left_button_down")); - case CV_EVENT_RBUTTONDOWN: - return ID2SYM(rb_intern("right_button_down")); - case CV_EVENT_MBUTTONDOWN: - return ID2SYM(rb_intern("middle_button_down")); - case CV_EVENT_LBUTTONUP: - return ID2SYM(rb_intern("left_button_up")); - case CV_EVENT_RBUTTONUP: - return ID2SYM(rb_intern("right_button_up")); - case CV_EVENT_MBUTTONUP: - return ID2SYM(rb_intern("middle_button_up")); - case CV_EVENT_LBUTTONDBLCLK: - return ID2SYM(rb_intern("left_button_double_click")); - case CV_EVENT_RBUTTONDBLCLK: - return ID2SYM(rb_intern("right_button_double_click")); - case CV_EVENT_MBUTTONDBLCLK: - return ID2SYM(rb_intern("middle_button_double_click")); - } - return Qnil; -} - -/* - * Return true when mouse left button is pushed. Otherwise return false. - */ -VALUE -rb_left_button_q(VALUE self) -{ - return MOUSEEVENT(self)->flags & CV_EVENT_FLAG_LBUTTON ? Qtrue : Qfalse; -} - -/* - * Return true when mouse right button is pushed. Otherwise return false. - */ -VALUE -rb_right_button_q(VALUE self) -{ - return MOUSEEVENT(self)->flags & CV_EVENT_FLAG_RBUTTON ? Qtrue : Qfalse; -} - -/* - * Return true when mouse middle button is pushed. Otherwise return false. - */ -VALUE -rb_middle_button_q(VALUE self) -{ - return MOUSEEVENT(self)->flags & CV_EVENT_FLAG_MBUTTON ? Qtrue : Qfalse; -} - -/* - * Return true when CTRL key is pushed. Otherwise return false. - */ -VALUE -rb_ctrl_key_q(VALUE self) -{ - return MOUSEEVENT(self)->flags & CV_EVENT_FLAG_CTRLKEY ? Qtrue : Qfalse; -} - -/* - * Return true when shift key is pushed. Otherwise return false. - */ -VALUE -rb_shift_key_q(VALUE self) -{ - return MOUSEEVENT(self)->flags & CV_EVENT_FLAG_SHIFTKEY ? Qtrue : Qfalse; -} - -/* - * Return true when ALT key is pushed. Otherwise return false. - */ -VALUE -rb_alt_key_q(VALUE self) -{ - return MOUSEEVENT(self)->flags & CV_EVENT_FLAG_ALTKEY ? Qtrue : Qfalse; -} - -VALUE -new_object(int event, int x, int y, int flags) -{ - VALUE object = rb_allocate(rb_class()); - MouseEvent *mouseevent = MOUSEEVENT(object); - mouseevent->point.x = x; - mouseevent->point.y = y; - mouseevent->event = event; - mouseevent->flags = flags; - return object; -} - -void -init_ruby_class() -{ -#if 0 - // For documentation using YARD - VALUE opencv = rb_define_module("OpenCV"); - VALUE GUI = rb_define_module_under(opencv, "GUI"); - VALUE cvpoint = rb_define_class_under(opencv, "CvPoint", rb_cObject); -#endif - - if (rb_klass) - return; - /* - * opencv = rb_define_module("OpenCV"); - * GUI = rb_define_module_under(opencv, "GUI"); - * cvpoint = rb_define_class_under(opencv, "CvPoint", rb_cObject); - */ - VALUE GUI = rb_module_GUI(); - VALUE cvpoint = cCvPoint::rb_class(); - rb_klass = rb_define_class_under(GUI, "MouseEvent", cvpoint); - rb_define_alloc_func(rb_klass, rb_allocate); - rb_define_method(rb_klass, "event", RUBY_METHOD_FUNC(rb_event), 0); - rb_define_method(rb_klass, "left_button?", RUBY_METHOD_FUNC(rb_left_button_q), 0); - rb_define_method(rb_klass, "right_button?", RUBY_METHOD_FUNC(rb_right_button_q), 0); - rb_define_method(rb_klass, "middle_button?", RUBY_METHOD_FUNC(rb_middle_button_q), 0); - rb_define_method(rb_klass, "ctrl_key?", RUBY_METHOD_FUNC(rb_ctrl_key_q), 0); - rb_define_method(rb_klass, "shift_key?", RUBY_METHOD_FUNC(rb_shift_key_q), 0); - rb_define_method(rb_klass, "alt_key?", RUBY_METHOD_FUNC(rb_alt_key_q), 0); -} - -__NAMESPACE_END_MOUSEEVENT -__NAMESPACE_END_GUI -__NAMESPACE_END_OPENCV - diff --git a/ext/opencv/mouseevent.h b/ext/opencv/mouseevent.h deleted file mode 100644 index 8ad4948..0000000 --- a/ext/opencv/mouseevent.h +++ /dev/null @@ -1,56 +0,0 @@ -/************************************************************ - - mouseevent.h - - - $Author: lsxi $ - - Copyright (C) 2005-2006 Masakazu Yonekura - -************************************************************/ -#define __NAMESPACE_BEGIN_MOUSEEVENT namespace cMouseEvent { -#define __NAMESPACE_END_MOUSEEVENT } - -#ifndef RUBY_OPENCV_GUI_MOUSEEVENT_H -#define RUBY_OPENCV_GUI_MOUSEEVENT_H - -#include "opencv.h" - -__NAMESPACE_BEGIN_OPENCV -__NAMESPACE_BEGIN_GUI -__NAMESPACE_BEGIN_MOUSEEVENT - -typedef struct MouseEvent { - CvPoint point; - int event; - int flags; -} MouseEvent; - -VALUE rb_class(); - -void init_ruby_class(); - -VALUE rb_allocate(VALUE klass); - -VALUE rb_event(VALUE self); - -VALUE rb_left_button_q(VALUE self); -VALUE rb_right_button_q(VALUE self); -VALUE rb_middle_button_q(VALUE self); -VALUE rb_ctrl_key_q(VALUE self); -VALUE rb_shift_key_q(VALUE self); -VALUE rb_alt_key_q(VALUE self); - -VALUE new_object(int event, int x, int y, int flag); - -inline MouseEvent *MOUSEEVENT(VALUE object) { - MouseEvent *ptr; - Data_Get_Struct(object, MouseEvent, ptr); - return ptr; -} - -__NAMESPACE_END_MOUSEEVENT -__NAMESPACE_END_GUI -__NAMESPACE_END_OPENCV - -#endif // RUBY_OPENCV_GUI_MOUSEEVENT_H - diff --git a/ext/opencv/opencv-3.1.0 b/ext/opencv/opencv-3.1.0 new file mode 120000 index 0000000..e81b66a --- /dev/null +++ b/ext/opencv/opencv-3.1.0 @@ -0,0 +1 @@ +/home/seri/src/opencv-3.1.0 \ No newline at end of file diff --git a/ext/opencv/opencv.cpp b/ext/opencv/opencv.cpp index e02bbdb..6486ecb 100644 --- a/ext/opencv/opencv.cpp +++ b/ext/opencv/opencv.cpp @@ -1,819 +1,79 @@ -/************************************************************ +// -*- mode: c++; coding: utf-8 -*- +#include "ruby.h" +#include "opencv2/core.hpp" +#include "opencv2/imgproc.hpp" - opencv.cpp - +#include "opencv.hpp" +#include "opencv_const.hpp" +#include "mat.hpp" +#include "point.hpp" +#include "rect.hpp" +#include "size.hpp" +#include "scalar.hpp" - $Author: lsxi $ +#include "cascadeclassifier.hpp" +#include "videocapture.hpp" - Copyright (C) 2005-2008 Masakazu Yonekura +#include "error.hpp" +#include "window.hpp" +#include "trackbar.hpp" -************************************************************/ -/* - * Document-module: OpenCV - * - * =What is OpenCV? - * - * OpenCV is "Open Source Computer Vision Library". - * OpenCV is developed by Intel and many opensource developers. - * This library include many useful function for computer vision, such as object-detection. - * - * OpenCV is developed at - * sourceforge.net[http://sourceforge.net/projects/opencvlibrary] - * - * =What is Ruby/OpenCV? - * Ruby/OpenCV is manual Wrapper of OpenCV (not use SWIG). - * This library seem to be *Ruby*. - * * object-oriented - * * support Garbage Collection by Ruby - * Ruby/OpenCV is developed - * http://rubyforge.org/projects/opencv (Official) - * and - * http://blueruby.mydns.jp/pages/opencv (Japanese) - * - * =How to install - * - * Show INSTALL - * - * =How to generate this documentation? - * This document created by rdoc. - * If you have Ruby 1.8 or later, you might use rdoc command. - * for example - * > cd opencv - * > rdoc - * and show "./doc/index.html" - */ -#include "opencv.h" +namespace rubyopencv { + VALUE rb_module = Qnil; -__NAMESPACE_BEGIN_OPENCV - - -/* - * Hashtable for protect from GC - */ -st_table *root_table = st_init_numtable(); - -/* - * Mark root object. (protect from GC) - */ -void -mark_root_object(void *ptr) -{ - VALUE value; - if (ptr && st_lookup(root_table, (st_data_t)ptr, (st_data_t*)&value)) { - rb_gc_mark(value); - } -} - -/* - * Look-up Root root object. - */ -VALUE -lookup_root_object(void *ptr) -{ - VALUE value = 0; - if (ptr) - st_lookup(root_table, (st_data_t)ptr, (st_data_t*)&value); - return value; -} - -/* - * Register root object. - */ -void -register_root_object(void *ptr, VALUE root) -{ - st_insert(root_table, (st_data_t)ptr, (st_data_t)root); -} - -/* - * Delete mark symbol from hashtable only, not free memory. - */ -void -unregister_object(void *ptr) -{ - st_delete(root_table, (st_data_t*)&ptr, 0); -} - -/* - * Delete mark symbol from hash table, then free memory. - */ -void -free_object(void *ptr) -{ - if (ptr) { - unregister_object(ptr); - try { - cvFree(&ptr); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - } -} - -/* - * Release OpenCV specific structure(i.e CvMat, IplImage..) from memory and delete from hashtable. - */ -void -release_object(void *ptr) -{ - if (ptr) { - unregister_object(ptr); - try { - cvRelease(&ptr); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - } -} - -/* - * Release IplConvKernel object from memory and delete from hashtable. - */ -void -release_iplconvkernel_object(void *ptr) -{ - if (ptr) { - unregister_object(ptr); - try { - cvReleaseStructuringElement((IplConvKernel**)(&ptr)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - } -} - -VALUE rb_module; -VALUE rb_opencv_constants; - -VALUE -rb_module_opencv() -{ - return rb_module; -} - -void -init_ruby_module() -{ - if (rb_module) - return; - rb_module = rb_define_module("OpenCV"); - - /* OpenCV version */ - rb_define_const(rb_module, "CV_VERSION", rb_str_new2(CV_VERSION)); - rb_define_const(rb_module, "CV_MAJOR_VERSION", INT2FIX(CV_MAJOR_VERSION)); - rb_define_const(rb_module, "CV_MINOR_VERSION", INT2FIX(CV_MINOR_VERSION)); - rb_define_const(rb_module, "CV_SUBMINOR_VERSION", INT2FIX(CV_SUBMINOR_VERSION)); - - rb_define_const(rb_module, "CV_VERSION_EPOCH", INT2FIX(CV_VERSION_EPOCH)); - rb_define_const(rb_module, "CV_VERSION_MAJOR", INT2FIX(CV_VERSION_MAJOR)); - rb_define_const(rb_module, "CV_VERSION_MINOR", INT2FIX(CV_VERSION_MINOR)); - rb_define_const(rb_module, "CV_VERSION_REVISION", INT2FIX(CV_VERSION_REVISION)); - - /* 0: 8bit unsigned */ - rb_define_const(rb_module, "CV_8U", INT2FIX(CV_8U)); - /* 1: 8bit signed */ - rb_define_const(rb_module, "CV_8S", INT2FIX(CV_8S)); - /* 2: 16bit unsigned */ - rb_define_const(rb_module, "CV_16U", INT2FIX(CV_16U)); - /* 3: 16bit signed */ - rb_define_const(rb_module, "CV_16S", INT2FIX(CV_16S)); - /* 4: 32bit signed */ - rb_define_const(rb_module, "CV_32S", INT2FIX(CV_32S)); - /* 5: 32bit floating-point */ - rb_define_const(rb_module, "CV_32F", INT2FIX(CV_32F)); - /* 6: 64bit floating-point */ - rb_define_const(rb_module, "CV_64F", INT2FIX(CV_64F)); - - /* Other depth */ - rb_define_const(rb_module, "CV_8UC1", INT2FIX(CV_8UC1)); - rb_define_const(rb_module, "CV_8UC2", INT2FIX(CV_8UC2)); - rb_define_const(rb_module, "CV_8UC3", INT2FIX(CV_8UC3)); - rb_define_const(rb_module, "CV_8UC4", INT2FIX(CV_8UC4)); - rb_define_const(rb_module, "CV_8SC1", INT2FIX(CV_8SC1)); - rb_define_const(rb_module, "CV_8SC2", INT2FIX(CV_8SC2)); - rb_define_const(rb_module, "CV_8SC3", INT2FIX(CV_8SC3)); - rb_define_const(rb_module, "CV_8SC4", INT2FIX(CV_8SC4)); - rb_define_const(rb_module, "CV_16UC1", INT2FIX(CV_16UC1)); - rb_define_const(rb_module, "CV_16UC2", INT2FIX(CV_16UC2)); - rb_define_const(rb_module, "CV_16UC3", INT2FIX(CV_16UC3)); - rb_define_const(rb_module, "CV_16UC4", INT2FIX(CV_16UC4)); - rb_define_const(rb_module, "CV_16SC1", INT2FIX(CV_16SC1)); - rb_define_const(rb_module, "CV_16SC2", INT2FIX(CV_16SC2)); - rb_define_const(rb_module, "CV_16SC3", INT2FIX(CV_16SC3)); - rb_define_const(rb_module, "CV_16SC4", INT2FIX(CV_16SC4)); - rb_define_const(rb_module, "CV_32SC1", INT2FIX(CV_32SC1)); - rb_define_const(rb_module, "CV_32SC2", INT2FIX(CV_32SC2)); - rb_define_const(rb_module, "CV_32SC3", INT2FIX(CV_32SC3)); - rb_define_const(rb_module, "CV_32SC4", INT2FIX(CV_32SC4)); - rb_define_const(rb_module, "CV_32FC1", INT2FIX(CV_32FC1)); - rb_define_const(rb_module, "CV_32FC2", INT2FIX(CV_32FC2)); - rb_define_const(rb_module, "CV_32FC3", INT2FIX(CV_32FC3)); - rb_define_const(rb_module, "CV_32FC4", INT2FIX(CV_32FC4)); - rb_define_const(rb_module, "CV_64FC1", INT2FIX(CV_64FC1)); - rb_define_const(rb_module, "CV_64FC2", INT2FIX(CV_64FC2)); - rb_define_const(rb_module, "CV_64FC3", INT2FIX(CV_64FC3)); - rb_define_const(rb_module, "CV_64FC4", INT2FIX(CV_64FC4)); - - /* Color types of loaded images */ - rb_define_const(rb_module, "CV_LOAD_IMAGE_UNCHANGED", INT2FIX(CV_LOAD_IMAGE_UNCHANGED)); - rb_define_const(rb_module, "CV_LOAD_IMAGE_GRAYSCALE", INT2FIX(CV_LOAD_IMAGE_GRAYSCALE)); - rb_define_const(rb_module, "CV_LOAD_IMAGE_COLOR", INT2FIX(CV_LOAD_IMAGE_COLOR)); - rb_define_const(rb_module, "CV_LOAD_IMAGE_ANYDEPTH", INT2FIX(CV_LOAD_IMAGE_ANYDEPTH)); - rb_define_const(rb_module, "CV_LOAD_IMAGE_ANYCOLOR", INT2FIX(CV_LOAD_IMAGE_ANYCOLOR)); - - /* Format-specific save parameters */ - rb_define_const(rb_module, "CV_IMWRITE_JPEG_QUALITY", INT2FIX(CV_IMWRITE_JPEG_QUALITY)); - rb_define_const(rb_module, "CV_IMWRITE_PNG_COMPRESSION", INT2FIX(CV_IMWRITE_PNG_COMPRESSION)); - rb_define_const(rb_module, "CV_IMWRITE_PNG_STRATEGY", INT2FIX(CV_IMWRITE_PNG_STRATEGY)); - rb_define_const(rb_module, "CV_IMWRITE_PNG_STRATEGY_DEFAULT", INT2FIX(CV_IMWRITE_PNG_STRATEGY_DEFAULT)); - rb_define_const(rb_module, "CV_IMWRITE_PNG_STRATEGY_FILTERED", INT2FIX(CV_IMWRITE_PNG_STRATEGY_FILTERED)); - rb_define_const(rb_module, "CV_IMWRITE_PNG_STRATEGY_HUFFMAN_ONLY", INT2FIX(CV_IMWRITE_PNG_STRATEGY_HUFFMAN_ONLY)); - rb_define_const(rb_module, "CV_IMWRITE_PNG_STRATEGY_RLE", INT2FIX(CV_IMWRITE_PNG_STRATEGY_RLE)); - rb_define_const(rb_module, "CV_IMWRITE_PNG_STRATEGY_FIXED", INT2FIX(CV_IMWRITE_PNG_STRATEGY_FIXED)); - rb_define_const(rb_module, "CV_IMWRITE_PXM_BINARY", INT2FIX(CV_IMWRITE_PXM_BINARY)); - - /* Types of morphological operations */ - rb_define_const(rb_module, "CV_MOP_OPEN", INT2FIX(CV_MOP_OPEN)); - rb_define_const(rb_module, "CV_MOP_CLOSE", INT2FIX(CV_MOP_CLOSE)); - rb_define_const(rb_module, "CV_MOP_GRADIENT", INT2FIX(CV_MOP_GRADIENT)); - rb_define_const(rb_module, "CV_MOP_TOPHAT", INT2FIX(CV_MOP_TOPHAT)); - rb_define_const(rb_module, "CV_MOP_BLACKHAT", INT2FIX(CV_MOP_BLACKHAT)); - - /* Shape of the structuring elements */ - rb_define_const(rb_module, "CV_SHAPE_RECT", INT2FIX(CV_SHAPE_RECT)); - rb_define_const(rb_module, "CV_SHAPE_CROSS", INT2FIX(CV_SHAPE_CROSS)); - rb_define_const(rb_module, "CV_SHAPE_ELLIPSE", INT2FIX(CV_SHAPE_ELLIPSE)); - rb_define_const(rb_module, "CV_SHAPE_CUSTOM", INT2FIX(CV_SHAPE_CUSTOM)); - - /* Types of the smoothing */ - rb_define_const(rb_module, "CV_BLUR_NO_SCALE", INT2FIX(CV_BLUR_NO_SCALE)); - rb_define_const(rb_module, "CV_BLUR", INT2FIX(CV_BLUR)); - rb_define_const(rb_module, "CV_GAUSSIAN", INT2FIX(CV_GAUSSIAN)); - rb_define_const(rb_module, "CV_MEDIAN", INT2FIX(CV_MEDIAN)); - rb_define_const(rb_module, "CV_BILATERAL", INT2FIX(CV_BILATERAL)); - - /* Thresholding types */ - rb_define_const(rb_module, "CV_THRESH_BINARY", INT2FIX(CV_THRESH_BINARY)); - rb_define_const(rb_module, "CV_THRESH_BINARY_INV", INT2FIX(CV_THRESH_BINARY_INV)); - rb_define_const(rb_module, "CV_THRESH_TRUNC", INT2FIX(CV_THRESH_TRUNC)); - rb_define_const(rb_module, "CV_THRESH_TOZERO", INT2FIX(CV_THRESH_TOZERO)); - rb_define_const(rb_module, "CV_THRESH_TOZERO_INV", INT2FIX(CV_THRESH_TOZERO_INV)); - rb_define_const(rb_module, "CV_THRESH_OTSU", INT2FIX(CV_THRESH_OTSU)); - - /* Adaptive methods */ - rb_define_const(rb_module, "CV_ADAPTIVE_THRESH_MEAN_C", INT2FIX(CV_ADAPTIVE_THRESH_MEAN_C)); - rb_define_const(rb_module, "CV_ADAPTIVE_THRESH_GAUSSIAN_C", INT2FIX(CV_ADAPTIVE_THRESH_GAUSSIAN_C)); - - /* Border type */ - rb_define_const(rb_module, "IPL_BORDER_CONSTANT", INT2FIX(IPL_BORDER_CONSTANT)); - rb_define_const(rb_module, "IPL_BORDER_REPLICATE", INT2FIX(IPL_BORDER_REPLICATE)); - - /* Retrieval mode */ - rb_define_const(rb_module, "CV_RETR_EXTERNAL", INT2FIX(CV_RETR_EXTERNAL)); - rb_define_const(rb_module, "CV_RETR_LIST", INT2FIX(CV_RETR_LIST)); - rb_define_const(rb_module, "CV_RETR_CCOMP", INT2FIX(CV_RETR_CCOMP)); - rb_define_const(rb_module, "CV_RETR_TREE", INT2FIX(CV_RETR_TREE)); - - /* Approximation method */ - rb_define_const(rb_module, "CV_CHAIN_CODE", INT2FIX(CV_CHAIN_CODE)); - rb_define_const(rb_module, "CV_CHAIN_APPROX_NONE", INT2FIX(CV_CHAIN_APPROX_NONE)); - rb_define_const(rb_module, "CV_CHAIN_APPROX_SIMPLE", INT2FIX(CV_CHAIN_APPROX_SIMPLE)); - rb_define_const(rb_module, "CV_CHAIN_APPROX_TC89_L1", INT2FIX(CV_CHAIN_APPROX_TC89_L1)); - rb_define_const(rb_module, "CV_CHAIN_APPROX_TC89_KCOS", INT2FIX(CV_CHAIN_APPROX_TC89_KCOS)); - rb_define_const(rb_module, "CV_LINK_RUNS", INT2FIX(CV_LINK_RUNS)); - - /* Termination criteria for iterative algorithms */ - rb_define_const(rb_module, "CV_TERMCRIT_ITER", INT2FIX(CV_TERMCRIT_ITER)); - rb_define_const(rb_module, "CV_TERMCRIT_NUMBER", INT2FIX(CV_TERMCRIT_NUMBER)); - rb_define_const(rb_module, "CV_TERMCRIT_EPS", INT2FIX(CV_TERMCRIT_EPS)); - - /* Hough transform method */ - rb_define_const(rb_module, "CV_HOUGH_STANDARD", INT2FIX(CV_HOUGH_STANDARD)); - rb_define_const(rb_module, "CV_HOUGH_PROBABILISTIC", INT2FIX(CV_HOUGH_PROBABILISTIC)); - rb_define_const(rb_module, "CV_HOUGH_MULTI_SCALE", INT2FIX(CV_HOUGH_MULTI_SCALE)); - rb_define_const(rb_module, "CV_HOUGH_GRADIENT", INT2FIX(CV_HOUGH_GRADIENT)); - - /* Inpaint method */ - rb_define_const(rb_module, "CV_INPAINT_NS", INT2FIX(CV_INPAINT_NS)); - rb_define_const(rb_module, "CV_INPAINT_TELEA", INT2FIX(CV_INPAINT_TELEA)); - - /* Match template method */ - rb_define_const(rb_module, "CV_TM_SQDIFF", INT2FIX(CV_TM_SQDIFF)); - rb_define_const(rb_module, "CV_TM_SQDIFF_NORMED", INT2FIX(CV_TM_SQDIFF_NORMED)); - rb_define_const(rb_module, "CV_TM_CCORR", INT2FIX(CV_TM_CCORR)); - rb_define_const(rb_module, "CV_TM_CCORR_NORMED", INT2FIX(CV_TM_CCORR_NORMED)); - rb_define_const(rb_module, "CV_TM_CCOEFF", INT2FIX(CV_TM_CCOEFF)); - rb_define_const(rb_module, "CV_TM_CCOEFF_NORMED", INT2FIX(CV_TM_CCOEFF_NORMED)); - - /* Comparison method */ - rb_define_const(rb_module, "CV_CONTOURS_MATCH_I1", INT2FIX(CV_CONTOURS_MATCH_I1)); - rb_define_const(rb_module, "CV_CONTOURS_MATCH_I2", INT2FIX(CV_CONTOURS_MATCH_I2)); - rb_define_const(rb_module, "CV_CONTOURS_MATCH_I3", INT2FIX(CV_CONTOURS_MATCH_I3)); - - /* Fundamental matrix computing methods */ - rb_define_const(rb_module, "CV_FM_7POINT", INT2FIX(CV_FM_7POINT)); - rb_define_const(rb_module, "CV_FM_8POINT", INT2FIX(CV_FM_8POINT)); - rb_define_const(rb_module, "CV_FM_RANSAC", INT2FIX(CV_FM_RANSAC)); - rb_define_const(rb_module, "CV_FM_LMEDS", INT2FIX(CV_FM_LMEDS)); - - /* Flags of window */ - rb_define_const(rb_module, "CV_WINDOW_AUTOSIZE", INT2FIX(CV_WINDOW_AUTOSIZE)); - rb_define_const(rb_module, "CV_WINDOW_NORMAL", INT2FIX(CV_WINDOW_NORMAL)); - rb_define_const(rb_module, "CV_WINDOW_OPENGL", INT2FIX(CV_WINDOW_OPENGL)); - - /* Object detection mode */ - rb_define_const(rb_module, "CV_HAAR_DO_CANNY_PRUNING", INT2FIX(CV_HAAR_DO_CANNY_PRUNING)); - - /* Interpolation methods */ - rb_define_const(rb_module, "CV_INTER_NN", INT2FIX(CV_INTER_NN)); - rb_define_const(rb_module, "CV_INTER_LINEAR", INT2FIX(CV_INTER_LINEAR)); - rb_define_const(rb_module, "CV_INTER_AREA", INT2FIX(CV_INTER_AREA)); - rb_define_const(rb_module, "CV_INTER_CUBIC", INT2FIX(CV_INTER_CUBIC)); - rb_define_const(rb_module, "CV_INTER_LANCZOS4", INT2FIX(CV_INTER_LANCZOS4)); - - /* Warp affine optional flags */ - rb_define_const(rb_module, "CV_WARP_FILL_OUTLIERS", INT2FIX(CV_WARP_FILL_OUTLIERS)); - rb_define_const(rb_module, "CV_WARP_INVERSE_MAP", INT2FIX(CV_WARP_INVERSE_MAP)); - - /* SVD optional flags */ - rb_define_const(rb_module, "CV_SVD_MODIFY_A", INT2FIX(CV_SVD_MODIFY_A)); - rb_define_const(rb_module, "CV_SVD_U_T", INT2FIX(CV_SVD_U_T)); - rb_define_const(rb_module, "CV_SVD_V_T", INT2FIX(CV_SVD_V_T)); - - /* Norm types */ - rb_define_const(rb_module, "CV_NORM_INF", INT2FIX(cv::NORM_INF)); - rb_define_const(rb_module, "CV_NORM_L1", INT2FIX(cv::NORM_L1)); - rb_define_const(rb_module, "CV_NORM_L2", INT2FIX(cv::NORM_L2)); - rb_define_const(rb_module, "CV_NORM_MINMAX", INT2FIX(cv::NORM_MINMAX)); - - /* Histogram representation format */ - rb_define_const(rb_module, "CV_HIST_ARRAY", INT2FIX(CV_HIST_ARRAY)); - rb_define_const(rb_module, "CV_HIST_SPARSE", INT2FIX(CV_HIST_SPARSE)); - rb_define_const(rb_module, "CV_HIST_TREE", INT2FIX(CV_HIST_TREE)); - rb_define_const(rb_module, "CV_HIST_UNIFORM", INT2FIX(CV_HIST_UNIFORM)); - - /* Histogram comparison method */ - rb_define_const(rb_module, "CV_COMP_CORREL", INT2FIX(CV_COMP_CORREL)); - rb_define_const(rb_module, "CV_COMP_CHISQR", INT2FIX(CV_COMP_CHISQR)); - rb_define_const(rb_module, "CV_COMP_INTERSECT", INT2FIX(CV_COMP_INTERSECT)); - rb_define_const(rb_module, "CV_COMP_BHATTACHARYYA", INT2FIX(CV_COMP_BHATTACHARYYA)); - - /* DFT and DCT flags */ - rb_define_const(rb_module, "CV_DXT_FORWARD", INT2FIX(CV_DXT_FORWARD)); - rb_define_const(rb_module, "CV_DXT_INVERSE", INT2FIX(CV_DXT_INVERSE)); - rb_define_const(rb_module, "CV_DXT_SCALE", INT2FIX(CV_DXT_SCALE)); - rb_define_const(rb_module, "CV_DXT_INV_SCALE", INT2FIX(CV_DXT_INV_SCALE)); - rb_define_const(rb_module, "CV_DXT_INVERSE_SCALE", INT2FIX(CV_DXT_INVERSE_SCALE)); - rb_define_const(rb_module, "CV_DXT_ROWS", INT2FIX(CV_DXT_ROWS)); - - /* FindChessboardCorners flags */ - rb_define_const(rb_module, "CV_CALIB_CB_ADAPTIVE_THRESH", INT2FIX(CV_CALIB_CB_ADAPTIVE_THRESH)); - rb_define_const(rb_module, "CV_CALIB_CB_NORMALIZE_IMAGE", INT2FIX(CV_CALIB_CB_NORMALIZE_IMAGE)); - rb_define_const(rb_module, "CV_CALIB_CB_FILTER_QUADS", INT2FIX(CV_CALIB_CB_FILTER_QUADS)); - rb_define_const(rb_module, "CV_CALIB_CB_FAST_CHECK", INT2FIX(CV_CALIB_CB_FAST_CHECK)); - - /* Color map for cv::applyColorMap */ - rb_define_const(rb_module, "COLORMAP_AUTUMN", INT2FIX(cv::COLORMAP_AUTUMN)); - rb_define_const(rb_module, "COLORMAP_BONE", INT2FIX(cv::COLORMAP_BONE)); - rb_define_const(rb_module, "COLORMAP_JET", INT2FIX(cv::COLORMAP_JET)); - rb_define_const(rb_module, "COLORMAP_WINTER", INT2FIX(cv::COLORMAP_WINTER)); - rb_define_const(rb_module, "COLORMAP_RAINBOW", INT2FIX(cv::COLORMAP_RAINBOW)); - rb_define_const(rb_module, "COLORMAP_OCEAN", INT2FIX(cv::COLORMAP_OCEAN)); - rb_define_const(rb_module, "COLORMAP_SUMMER", INT2FIX(cv::COLORMAP_SUMMER)); - rb_define_const(rb_module, "COLORMAP_SPRING", INT2FIX(cv::COLORMAP_SPRING)); - rb_define_const(rb_module, "COLORMAP_COOL", INT2FIX(cv::COLORMAP_COOL)); - rb_define_const(rb_module, "COLORMAP_HSV", INT2FIX(cv::COLORMAP_HSV)); - rb_define_const(rb_module, "COLORMAP_PINK", INT2FIX(cv::COLORMAP_PINK)); - rb_define_const(rb_module, "COLORMAP_HOT", INT2FIX(cv::COLORMAP_HOT)); - - /* Sequence types */ - rb_define_const(rb_module, "CV_SEQ_ELTYPE_BITS", INT2FIX(CV_SEQ_ELTYPE_BITS)); - rb_define_const(rb_module, "CV_SEQ_ELTYPE_MASK", INT2FIX(CV_SEQ_ELTYPE_MASK)); - rb_define_const(rb_module, "CV_SEQ_ELTYPE_POINT", INT2FIX(CV_SEQ_ELTYPE_POINT)); - rb_define_const(rb_module, "CV_SEQ_ELTYPE_CODE", INT2FIX(CV_SEQ_ELTYPE_CODE)); - rb_define_const(rb_module, "CV_SEQ_ELTYPE_GENERIC", INT2FIX(CV_SEQ_ELTYPE_GENERIC)); - rb_define_const(rb_module, "CV_SEQ_ELTYPE_PTR", INT2FIX(CV_SEQ_ELTYPE_PTR)); - rb_define_const(rb_module, "CV_SEQ_ELTYPE_PPOINT", INT2FIX(CV_SEQ_ELTYPE_PPOINT)); - rb_define_const(rb_module, "CV_SEQ_ELTYPE_INDEX", INT2FIX(CV_SEQ_ELTYPE_INDEX)); - rb_define_const(rb_module, "CV_SEQ_ELTYPE_GRAPH_EDGE", INT2FIX(CV_SEQ_ELTYPE_GRAPH_EDGE)); - rb_define_const(rb_module, "CV_SEQ_ELTYPE_GRAPH_VERTEX", INT2FIX(CV_SEQ_ELTYPE_GRAPH_VERTEX)); - rb_define_const(rb_module, "CV_SEQ_ELTYPE_TRIAN_ATR", INT2FIX(CV_SEQ_ELTYPE_TRIAN_ATR)); - rb_define_const(rb_module, "CV_SEQ_ELTYPE_CONNECTED_COMP", INT2FIX(CV_SEQ_ELTYPE_CONNECTED_COMP)); - rb_define_const(rb_module, "CV_SEQ_ELTYPE_POINT3D", INT2FIX(CV_SEQ_ELTYPE_POINT3D)); - rb_define_const(rb_module, "CV_SEQ_KIND_BITS", INT2FIX(CV_SEQ_KIND_BITS)); - rb_define_const(rb_module, "CV_SEQ_KIND_MASK", INT2FIX(CV_SEQ_KIND_MASK)); - rb_define_const(rb_module, "CV_SEQ_KIND_GENERIC", INT2FIX(CV_SEQ_KIND_GENERIC)); - rb_define_const(rb_module, "CV_SEQ_KIND_CURVE", INT2FIX(CV_SEQ_KIND_CURVE)); - rb_define_const(rb_module, "CV_SEQ_KIND_BIN_TREE", INT2FIX(CV_SEQ_KIND_BIN_TREE)); - rb_define_const(rb_module, "CV_SEQ_KIND_GRAPH", INT2FIX(CV_SEQ_KIND_GRAPH)); - rb_define_const(rb_module, "CV_SEQ_KIND_SUBDIV2D", INT2FIX(CV_SEQ_KIND_SUBDIV2D)); - rb_define_const(rb_module, "CV_SEQ_FLAG_SHIFT", INT2FIX(CV_SEQ_FLAG_SHIFT)); - rb_define_const(rb_module, "CV_SEQ_FLAG_CLOSED", INT2FIX(CV_SEQ_FLAG_CLOSED)); - rb_define_const(rb_module, "CV_SEQ_FLAG_SIMPLE", INT2FIX(CV_SEQ_FLAG_SIMPLE)); - rb_define_const(rb_module, "CV_SEQ_FLAG_CONVEX", INT2FIX(CV_SEQ_FLAG_CONVEX)); - rb_define_const(rb_module, "CV_SEQ_FLAG_HOLE", INT2FIX(CV_SEQ_FLAG_HOLE)); - rb_define_const(rb_module, "CV_GRAPH_FLAG_ORIENTED", INT2FIX(CV_GRAPH_FLAG_ORIENTED)); - rb_define_const(rb_module, "CV_GRAPH", INT2FIX(CV_GRAPH)); - rb_define_const(rb_module, "CV_ORIENTED_GRAPH", INT2FIX(CV_ORIENTED_GRAPH)); - rb_define_const(rb_module, "CV_SEQ_POINT_SET", INT2FIX(CV_SEQ_POINT_SET)); - rb_define_const(rb_module, "CV_SEQ_POINT3D_SET", INT2FIX(CV_SEQ_POINT3D_SET)); - rb_define_const(rb_module, "CV_SEQ_POLYLINE", INT2FIX(CV_SEQ_POLYLINE)); - rb_define_const(rb_module, "CV_SEQ_POLYGON", INT2FIX(CV_SEQ_POLYGON)); - rb_define_const(rb_module, "CV_SEQ_CONTOUR", INT2FIX(CV_SEQ_CONTOUR)); - rb_define_const(rb_module, "CV_SEQ_SIMPLE_POLYGON", INT2FIX(CV_SEQ_SIMPLE_POLYGON)); - rb_define_const(rb_module, "CV_SEQ_CHAIN", INT2FIX(CV_SEQ_CHAIN)); - rb_define_const(rb_module, "CV_SEQ_CHAIN_CONTOUR", INT2FIX(CV_SEQ_CHAIN_CONTOUR)); - rb_define_const(rb_module, "CV_SEQ_POLYGON_TREE", INT2FIX(CV_SEQ_POLYGON_TREE)); - rb_define_const(rb_module, "CV_SEQ_CONNECTED_COMP", INT2FIX(CV_SEQ_CONNECTED_COMP)); - rb_define_const(rb_module, "CV_SEQ_INDEX", INT2FIX(CV_SEQ_INDEX)); - - VALUE inversion_method = rb_hash_new(); - /* {:lu, :svd, :svd_sym(:svd_symmetric)}: Inversion method */ - rb_define_const(rb_module, "INVERSION_METHOD", inversion_method); - REGISTER_HASH(inversion_method, "lu", CV_LU); - REGISTER_HASH(inversion_method, "svd", CV_SVD); - REGISTER_HASH(inversion_method, "svd_sym", CV_SVD_SYM); - REGISTER_HASH(inversion_method, "svd_symmetric", CV_SVD_SYM); - - VALUE homography_calc_method = rb_hash_new(); - /* {:all, :ransac, :lmeds}: Methods used to computed homography matrix */ - rb_define_const(rb_module, "HOMOGRAPHY_CALC_METHOD", homography_calc_method); - REGISTER_HASH(homography_calc_method, "all", 0); - REGISTER_HASH(homography_calc_method, "ransac", CV_RANSAC); - REGISTER_HASH(homography_calc_method, "lmeds", CV_LMEDS); - - VALUE depth = rb_hash_new(); - /* {:cv8u, :cv8s, :cv16u, :cv16s, :cv32s, :cv32f, :cv64f}: Depth of each pixel. */ - rb_define_const(rb_module, "DEPTH", depth); - REGISTER_HASH(depth, "cv8u", CV_8U); - REGISTER_HASH(depth, "cv8s", CV_8S); - REGISTER_HASH(depth, "cv16u", CV_16U); - REGISTER_HASH(depth, "cv16s", CV_16S); - REGISTER_HASH(depth, "cv32s", CV_32S); - REGISTER_HASH(depth, "cv32f", CV_32F); - REGISTER_HASH(depth, "cv64f", CV_64F); - - VALUE connectivity = rb_hash_new(); - /* {:aa(:anti_alias)}: Determined by the closeness of pixel values */ - rb_define_const(rb_module, "CONNECTIVITY", connectivity); - REGISTER_HASH(connectivity, "aa", CV_AA); - REGISTER_HASH(connectivity, "anti_alias", CV_AA); - - VALUE structuring_element_shape = rb_hash_new(); - /* {:rect, :cross, :ellipse, :custom}: Shape of the structuring elements */ - rb_define_const(rb_module, "STRUCTURING_ELEMENT_SHAPE", structuring_element_shape); - REGISTER_HASH(structuring_element_shape, "rect", CV_SHAPE_RECT); - REGISTER_HASH(structuring_element_shape, "cross", CV_SHAPE_CROSS); - REGISTER_HASH(structuring_element_shape, "ellipse", CV_SHAPE_ELLIPSE); - REGISTER_HASH(structuring_element_shape, "custom", CV_SHAPE_CUSTOM); - - VALUE retrieval_mode = rb_hash_new(); - /* {:external, :list, :ccomp, :tree}: Retrieval mode */ - rb_define_const(rb_module, "RETRIEVAL_MODE", retrieval_mode); - REGISTER_HASH(retrieval_mode, "external", CV_RETR_EXTERNAL); - REGISTER_HASH(retrieval_mode, "list", CV_RETR_LIST); - REGISTER_HASH(retrieval_mode, "ccomp", CV_RETR_CCOMP); - REGISTER_HASH(retrieval_mode, "tree", CV_RETR_TREE); - - VALUE approx_chain_method = rb_hash_new(); - /* {:code, :approx_none, :approx_simple, :apporx_tc89_11, :approx_tc89_kcos}: Approximation method */ - rb_define_const(rb_module, "APPROX_CHAIN_METHOD", approx_chain_method); - REGISTER_HASH(approx_chain_method, "code", CV_CHAIN_CODE); - REGISTER_HASH(approx_chain_method, "approx_none", CV_CHAIN_APPROX_NONE); - REGISTER_HASH(approx_chain_method, "approx_simple", CV_CHAIN_APPROX_SIMPLE); - REGISTER_HASH(approx_chain_method, "approx_tc89_l1", CV_CHAIN_APPROX_TC89_L1); - REGISTER_HASH(approx_chain_method, "approx_tc89_kcos", CV_CHAIN_APPROX_TC89_KCOS); - - VALUE approx_poly_method = rb_hash_new(); - /* {:dp}: Approximation method (polygon) */ - rb_define_const(rb_module, "APPROX_POLY_METHOD", approx_poly_method); - REGISTER_HASH(approx_poly_method, "dp", CV_POLY_APPROX_DP); - - VALUE match_template_method = rb_hash_new(); - /* {:sqdiff, :sqdiff_normed, :ccorr, :ccorr_normed, :ccoeff, :ccoeff_normed}: Match template method */ - rb_define_const(rb_module, "MATCH_TEMPLATE_METHOD", match_template_method); - REGISTER_HASH(match_template_method, "sqdiff", CV_TM_SQDIFF); - REGISTER_HASH(match_template_method, "sqdiff_normed", CV_TM_SQDIFF_NORMED); - REGISTER_HASH(match_template_method, "ccorr", CV_TM_CCORR); - REGISTER_HASH(match_template_method, "ccorr_normed", CV_TM_CCORR_NORMED); - REGISTER_HASH(match_template_method, "ccoeff", CV_TM_CCOEFF); - REGISTER_HASH(match_template_method, "ccoeff_normed", CV_TM_CCOEFF_NORMED); - - VALUE morphological_operation = rb_hash_new(); - /* {:open, :close, :gradient, :tophat, :blackhat}: Types of morphological operations */ - rb_define_const(rb_module, "MORPHOLOGICAL_OPERATION", morphological_operation); - REGISTER_HASH(morphological_operation, "open", CV_MOP_OPEN); - REGISTER_HASH(morphological_operation, "close", CV_MOP_CLOSE); - REGISTER_HASH(morphological_operation, "gradient", CV_MOP_GRADIENT); - REGISTER_HASH(morphological_operation, "tophat", CV_MOP_TOPHAT); - REGISTER_HASH(morphological_operation, "blackhat", CV_MOP_BLACKHAT); - - VALUE smoothing_type = rb_hash_new(); - /* {:blur_no_scale, :blur, :gaussian, :median, :bilateral}: Types of smoothing */ - rb_define_const(rb_module, "SMOOTHING_TYPE", smoothing_type); - REGISTER_HASH(smoothing_type, "blur_no_scale", CV_BLUR_NO_SCALE); - REGISTER_HASH(smoothing_type, "blur", CV_BLUR); - REGISTER_HASH(smoothing_type, "gaussian", CV_GAUSSIAN); - REGISTER_HASH(smoothing_type, "median", CV_MEDIAN); - REGISTER_HASH(smoothing_type, "bilateral", CV_BILATERAL); - - VALUE adaptive_method = rb_hash_new(); - /* {:mean_c, :gaussian_c}: Adaptive thresholding algorithm */ - rb_define_const(rb_module, "ADAPTIVE_METHOD", adaptive_method); - REGISTER_HASH(adaptive_method, "mean_c", CV_ADAPTIVE_THRESH_MEAN_C); - REGISTER_HASH(adaptive_method, "gaussian_c", CV_ADAPTIVE_THRESH_GAUSSIAN_C); - - VALUE threshold_type = rb_hash_new(); - /* {:binary, :binary_inv, :trunc, :tozero, :tozero_inv, :otsu} : Thresholding types */ - rb_define_const(rb_module, "THRESHOLD_TYPE", threshold_type); - REGISTER_HASH(threshold_type, "binary", CV_THRESH_BINARY); - REGISTER_HASH(threshold_type, "binary_inv", CV_THRESH_BINARY_INV); - REGISTER_HASH(threshold_type, "trunc", CV_THRESH_TRUNC); - REGISTER_HASH(threshold_type, "tozero", CV_THRESH_TOZERO); - REGISTER_HASH(threshold_type, "tozero_inv", CV_THRESH_TOZERO_INV); - REGISTER_HASH(threshold_type, "otsu", CV_THRESH_OTSU); - - VALUE hough_transform_method = rb_hash_new(); - /* {:standard, :probabilistic, :multi_scale} : Hough transform method */ - rb_define_const(rb_module, "HOUGH_TRANSFORM_METHOD", hough_transform_method); - REGISTER_HASH(hough_transform_method, "standard", CV_HOUGH_STANDARD); - REGISTER_HASH(hough_transform_method, "probabilistic", CV_HOUGH_PROBABILISTIC); - REGISTER_HASH(hough_transform_method, "multi_scale", CV_HOUGH_MULTI_SCALE); - REGISTER_HASH(hough_transform_method, "gradient", CV_HOUGH_GRADIENT); - - VALUE inpaint_method = rb_hash_new(); - /* {:ns, :telea} : Inpaint method */ - rb_define_const(rb_module, "INPAINT_METHOD", inpaint_method); - REGISTER_HASH(inpaint_method, "ns", CV_INPAINT_NS); - REGISTER_HASH(inpaint_method, "telea", CV_INPAINT_TELEA); - - VALUE comparison_method = rb_hash_new(); - /* Comparison method */ - rb_define_const(rb_module, "COMPARISON_METHOD", comparison_method); - REGISTER_HASH(comparison_method, "i1", CV_CONTOURS_MATCH_I1); - REGISTER_HASH(comparison_method, "i2", CV_CONTOURS_MATCH_I2); - REGISTER_HASH(comparison_method, "i3", CV_CONTOURS_MATCH_I3); - - /* color convert methods */ - rb_define_module_function(rb_module, "BGR2BGRA", RUBY_METHOD_FUNC(rb_BGR2BGRA), 1); - rb_define_module_function(rb_module, "RGB2RGBA", RUBY_METHOD_FUNC(rb_RGB2RGBA), 1); - rb_define_module_function(rb_module, "BGRA2BGR", RUBY_METHOD_FUNC(rb_BGRA2BGR), 1); - rb_define_module_function(rb_module, "RGBA2RGB", RUBY_METHOD_FUNC(rb_RGBA2RGB), 1); - rb_define_module_function(rb_module, "BGR2RGBA", RUBY_METHOD_FUNC(rb_BGR2RGBA), 1); - rb_define_module_function(rb_module, "RGB2BGRA", RUBY_METHOD_FUNC(rb_RGB2BGRA), 1); - rb_define_module_function(rb_module, "RGBA2BGR", RUBY_METHOD_FUNC(rb_RGBA2BGR), 1); - rb_define_module_function(rb_module, "BGRA2RGB", RUBY_METHOD_FUNC(rb_BGRA2RGB), 1); - rb_define_module_function(rb_module, "BGR2RGB", RUBY_METHOD_FUNC(rb_BGR2RGB), 1); - rb_define_module_function(rb_module, "RGB2BGR", RUBY_METHOD_FUNC(rb_RGB2BGR), 1); - rb_define_module_function(rb_module, "BGRA2RGBA", RUBY_METHOD_FUNC(rb_BGRA2RGBA), 1); - rb_define_module_function(rb_module, "RGBA2BGRA", RUBY_METHOD_FUNC(rb_RGBA2BGRA), 1); - rb_define_module_function(rb_module, "BGR2GRAY", RUBY_METHOD_FUNC(rb_BGR2GRAY), 1); - rb_define_module_function(rb_module, "RGB2GRAY", RUBY_METHOD_FUNC(rb_RGB2GRAY), 1); - rb_define_module_function(rb_module, "GRAY2BGR", RUBY_METHOD_FUNC(rb_GRAY2BGR), 1); - rb_define_module_function(rb_module, "GRAY2RGB", RUBY_METHOD_FUNC(rb_GRAY2RGB), 1); - rb_define_module_function(rb_module, "GRAY2BGRA", RUBY_METHOD_FUNC(rb_GRAY2BGRA), 1); - rb_define_module_function(rb_module, "GRAY2RGBA", RUBY_METHOD_FUNC(rb_GRAY2RGBA), 1); - rb_define_module_function(rb_module, "BGRA2GRAY", RUBY_METHOD_FUNC(rb_BGRA2GRAY), 1); - rb_define_module_function(rb_module, "RGBA2GRAY", RUBY_METHOD_FUNC(rb_RGBA2GRAY), 1); - rb_define_module_function(rb_module, "BGR2BGR565", RUBY_METHOD_FUNC(rb_BGR2BGR565), 1); - rb_define_module_function(rb_module, "RGB2BGR565", RUBY_METHOD_FUNC(rb_RGB2BGR565), 1); - rb_define_module_function(rb_module, "BGR5652BGR", RUBY_METHOD_FUNC(rb_BGR5652BGR), 1); - rb_define_module_function(rb_module, "BGR5652RGB", RUBY_METHOD_FUNC(rb_BGR5652RGB), 1); - rb_define_module_function(rb_module, "BGRA2BGR565", RUBY_METHOD_FUNC(rb_BGRA2BGR565), 1); - rb_define_module_function(rb_module, "RGBA2BGR565", RUBY_METHOD_FUNC(rb_RGBA2BGR565), 1); - rb_define_module_function(rb_module, "BGR5652BGRA", RUBY_METHOD_FUNC(rb_BGR5652BGRA), 1); - rb_define_module_function(rb_module, "BGR5652RGBA", RUBY_METHOD_FUNC(rb_BGR5652RGBA), 1); - rb_define_module_function(rb_module, "GRAY2BGR565", RUBY_METHOD_FUNC(rb_GRAY2BGR565), 1); - rb_define_module_function(rb_module, "BGR5652GRAY", RUBY_METHOD_FUNC(rb_BGR5652GRAY), 1); - rb_define_module_function(rb_module, "BGR2BGR555", RUBY_METHOD_FUNC(rb_BGR2BGR555), 1); - rb_define_module_function(rb_module, "RGB2BGR555", RUBY_METHOD_FUNC(rb_RGB2BGR555), 1); - rb_define_module_function(rb_module, "BGR5552BGR", RUBY_METHOD_FUNC(rb_BGR5552BGR), 1); - rb_define_module_function(rb_module, "BGR5552RGB", RUBY_METHOD_FUNC(rb_BGR5552RGB), 1); - rb_define_module_function(rb_module, "BGRA2BGR555", RUBY_METHOD_FUNC(rb_BGRA2BGR555), 1); - rb_define_module_function(rb_module, "RGBA2BGR555", RUBY_METHOD_FUNC(rb_RGBA2BGR555), 1); - rb_define_module_function(rb_module, "BGR5552BGRA", RUBY_METHOD_FUNC(rb_BGR5552BGRA), 1); - rb_define_module_function(rb_module, "BGR5552RGBA", RUBY_METHOD_FUNC(rb_BGR5552RGBA), 1); - rb_define_module_function(rb_module, "GRAY2BGR555", RUBY_METHOD_FUNC(rb_GRAY2BGR555), 1); - rb_define_module_function(rb_module, "BGR5552GRAY", RUBY_METHOD_FUNC(rb_BGR5552GRAY), 1); - rb_define_module_function(rb_module, "BGR2XYZ", RUBY_METHOD_FUNC(rb_BGR2XYZ), 1); - rb_define_module_function(rb_module, "RGB2XYZ", RUBY_METHOD_FUNC(rb_RGB2XYZ), 1); - rb_define_module_function(rb_module, "XYZ2BGR", RUBY_METHOD_FUNC(rb_XYZ2BGR), 1); - rb_define_module_function(rb_module, "XYZ2RGB", RUBY_METHOD_FUNC(rb_XYZ2RGB), 1); - rb_define_module_function(rb_module, "BGR2YCrCb", RUBY_METHOD_FUNC(rb_BGR2YCrCb), 1); - rb_define_module_function(rb_module, "RGB2YCrCb", RUBY_METHOD_FUNC(rb_RGB2YCrCb), 1); - rb_define_module_function(rb_module, "YCrCb2BGR", RUBY_METHOD_FUNC(rb_YCrCb2BGR), 1); - rb_define_module_function(rb_module, "YCrCb2RGB", RUBY_METHOD_FUNC(rb_YCrCb2RGB), 1); - rb_define_module_function(rb_module, "BGR2HSV", RUBY_METHOD_FUNC(rb_BGR2HSV), 1); - rb_define_module_function(rb_module, "RGB2HSV", RUBY_METHOD_FUNC(rb_RGB2HSV), 1); - rb_define_module_function(rb_module, "BGR2Lab", RUBY_METHOD_FUNC(rb_BGR2Lab), 1); - rb_define_module_function(rb_module, "RGB2Lab", RUBY_METHOD_FUNC(rb_RGB2Lab), 1); - rb_define_module_function(rb_module, "BayerBG2BGR", RUBY_METHOD_FUNC(rb_BayerBG2BGR), 1); - rb_define_module_function(rb_module, "BayerGB2BGR", RUBY_METHOD_FUNC(rb_BayerGB2BGR), 1); - rb_define_module_function(rb_module, "BayerRG2BGR", RUBY_METHOD_FUNC(rb_BayerRG2BGR), 1); - rb_define_module_function(rb_module, "BayerGR2BGR", RUBY_METHOD_FUNC(rb_BayerGR2BGR), 1); - rb_define_module_function(rb_module, "BayerBG2RGB", RUBY_METHOD_FUNC(rb_BayerBG2RGB), 1); - rb_define_module_function(rb_module, "BayerGB2RGB", RUBY_METHOD_FUNC(rb_BayerGB2RGB), 1); - rb_define_module_function(rb_module, "BayerRG2RGB", RUBY_METHOD_FUNC(rb_BayerRG2RGB), 1); - rb_define_module_function(rb_module, "BayerGR2RGB", RUBY_METHOD_FUNC(rb_BayerGR2RGB), 1); - rb_define_module_function(rb_module, "BGR2Luv", RUBY_METHOD_FUNC(rb_BGR2Luv), 1); - rb_define_module_function(rb_module, "RGB2Luv", RUBY_METHOD_FUNC(rb_RGB2Luv), 1); - rb_define_module_function(rb_module, "BGR2HLS", RUBY_METHOD_FUNC(rb_BGR2HLS), 1); - rb_define_module_function(rb_module, "RGB2HLS", RUBY_METHOD_FUNC(rb_RGB2HLS), 1); - rb_define_module_function(rb_module, "HSV2BGR", RUBY_METHOD_FUNC(rb_HSV2BGR), 1); - rb_define_module_function(rb_module, "HSV2RGB", RUBY_METHOD_FUNC(rb_HSV2RGB), 1); - rb_define_module_function(rb_module, "Lab2BGR", RUBY_METHOD_FUNC(rb_Lab2BGR), 1); - rb_define_module_function(rb_module, "Lab2RGB", RUBY_METHOD_FUNC(rb_Lab2RGB), 1); - rb_define_module_function(rb_module, "Luv2BGR", RUBY_METHOD_FUNC(rb_Luv2BGR), 1); - rb_define_module_function(rb_module, "Luv2RGB", RUBY_METHOD_FUNC(rb_Luv2RGB), 1); - rb_define_module_function(rb_module, "HLS2BGR", RUBY_METHOD_FUNC(rb_HLS2BGR), 1); - rb_define_module_function(rb_module, "HLS2RGB", RUBY_METHOD_FUNC(rb_HLS2RGB), 1); - - rb_define_module_function(rb_module, "build_information", RUBY_METHOD_FUNC(rb_build_information), 0); -} - -#define CREATE_CVTCOLOR_FUNC(rb_func_name, c_const_name, src_cn, dest_cn) \ - VALUE rb_func_name(VALUE klass, VALUE image) \ - { \ - VALUE dest = Qnil; \ - CvArr* img_ptr = CVARR(image); \ - try { \ - int type = cvGetElemType(img_ptr); \ - if (CV_MAT_CN(type) != src_cn) \ - rb_raise(rb_eArgError, "argument 1 should be %d-channel.", src_cn); \ - dest = cCvMat::new_mat_kind_object(cvGetSize(img_ptr), image, CV_MAT_DEPTH(type), dest_cn); \ - cvCvtColor(img_ptr, CVARR(dest), c_const_name); \ - } \ - catch (cv::Exception& e) { \ - raise_cverror(e); \ - } \ - return dest; \ + VALUE rb_module_opencv() { + return rb_module; } -CREATE_CVTCOLOR_FUNC(rb_BGR2BGRA, CV_BGR2BGRA, 3, 4); -CREATE_CVTCOLOR_FUNC(rb_RGB2RGBA, CV_RGB2RGBA, 3, 4); -CREATE_CVTCOLOR_FUNC(rb_BGRA2BGR, CV_BGRA2BGR, 4, 3); -CREATE_CVTCOLOR_FUNC(rb_RGBA2RGB, CV_RGBA2RGB, 4, 3); -CREATE_CVTCOLOR_FUNC(rb_BGR2RGBA, CV_BGR2RGBA, 3, 4); -CREATE_CVTCOLOR_FUNC(rb_RGB2BGRA, CV_RGB2BGRA, 3, 4); -CREATE_CVTCOLOR_FUNC(rb_RGBA2BGR, CV_RGBA2BGR, 4, 3); -CREATE_CVTCOLOR_FUNC(rb_BGRA2RGB, CV_BGRA2RGB, 4, 3); -CREATE_CVTCOLOR_FUNC(rb_BGR2RGB, CV_BGR2RGB, 3, 3); -CREATE_CVTCOLOR_FUNC(rb_RGB2BGR, CV_RGB2BGR, 3, 3); -CREATE_CVTCOLOR_FUNC(rb_BGRA2RGBA, CV_BGRA2RGBA, 4, 4); -CREATE_CVTCOLOR_FUNC(rb_RGBA2BGRA, CV_RGBA2BGRA, 4, 4); -CREATE_CVTCOLOR_FUNC(rb_BGR2GRAY, CV_BGR2GRAY, 3, 1); -CREATE_CVTCOLOR_FUNC(rb_RGB2GRAY, CV_RGB2GRAY, 3, 1); -CREATE_CVTCOLOR_FUNC(rb_GRAY2BGR, CV_GRAY2BGR, 1, 3); -CREATE_CVTCOLOR_FUNC(rb_GRAY2RGB, CV_GRAY2RGB, 1, 3); -CREATE_CVTCOLOR_FUNC(rb_GRAY2BGRA, CV_GRAY2BGRA, 1, 4); -CREATE_CVTCOLOR_FUNC(rb_GRAY2RGBA, CV_GRAY2RGBA, 1, 4); -CREATE_CVTCOLOR_FUNC(rb_BGRA2GRAY, CV_BGRA2GRAY, 4, 1); -CREATE_CVTCOLOR_FUNC(rb_RGBA2GRAY, CV_RGBA2GRAY, 4, 1); -CREATE_CVTCOLOR_FUNC(rb_BGR2BGR565, CV_BGR2BGR565, 3, 3); -CREATE_CVTCOLOR_FUNC(rb_RGB2BGR565, CV_RGB2BGR565, 3, 3); -CREATE_CVTCOLOR_FUNC(rb_BGR5652BGR, CV_BGR5652BGR, 3, 3); -CREATE_CVTCOLOR_FUNC(rb_BGR5652RGB, CV_BGR5652RGB, 3, 3); -CREATE_CVTCOLOR_FUNC(rb_BGRA2BGR565, CV_BGRA2BGR565, 4, 3); -CREATE_CVTCOLOR_FUNC(rb_RGBA2BGR565, CV_RGBA2BGR565, 4, 3); -CREATE_CVTCOLOR_FUNC(rb_BGR5652BGRA, CV_BGR5652BGRA, 3, 4); -CREATE_CVTCOLOR_FUNC(rb_BGR5652RGBA, CV_BGR5652RGBA, 3, 4); -CREATE_CVTCOLOR_FUNC(rb_GRAY2BGR565, CV_GRAY2BGR565, 1, 3); -CREATE_CVTCOLOR_FUNC(rb_BGR5652GRAY, CV_BGR5652GRAY, 3, 1); -CREATE_CVTCOLOR_FUNC(rb_BGR2BGR555, CV_BGR2BGR555, 3, 3); -CREATE_CVTCOLOR_FUNC(rb_RGB2BGR555, CV_RGB2BGR555, 3, 3); -CREATE_CVTCOLOR_FUNC(rb_BGR5552BGR, CV_BGR5552BGR, 3, 3); -CREATE_CVTCOLOR_FUNC(rb_BGR5552RGB, CV_BGR5552RGB, 3, 3); -CREATE_CVTCOLOR_FUNC(rb_BGRA2BGR555, CV_BGRA2BGR555, 4, 3); -CREATE_CVTCOLOR_FUNC(rb_RGBA2BGR555, CV_RGBA2BGR555, 4, 3); -CREATE_CVTCOLOR_FUNC(rb_BGR5552BGRA, CV_BGR5552BGRA, 3, 4); -CREATE_CVTCOLOR_FUNC(rb_BGR5552RGBA, CV_BGR5552RGBA, 3, 4); -CREATE_CVTCOLOR_FUNC(rb_GRAY2BGR555, CV_GRAY2BGR555, 1, 3); -CREATE_CVTCOLOR_FUNC(rb_BGR5552GRAY, CV_BGR5552GRAY, 3, 1); -CREATE_CVTCOLOR_FUNC(rb_BGR2XYZ, CV_BGR2XYZ, 3, 3); -CREATE_CVTCOLOR_FUNC(rb_RGB2XYZ, CV_RGB2XYZ, 3, 3); -CREATE_CVTCOLOR_FUNC(rb_XYZ2BGR, CV_XYZ2BGR, 3, 3); -CREATE_CVTCOLOR_FUNC(rb_XYZ2RGB, CV_XYZ2RGB, 3, 3); -CREATE_CVTCOLOR_FUNC(rb_BGR2YCrCb, CV_BGR2YCrCb, 3, 3); -CREATE_CVTCOLOR_FUNC(rb_RGB2YCrCb, CV_RGB2YCrCb, 3, 3); -CREATE_CVTCOLOR_FUNC(rb_YCrCb2BGR, CV_YCrCb2BGR, 3, 3); -CREATE_CVTCOLOR_FUNC(rb_YCrCb2RGB, CV_YCrCb2RGB, 0, 3); -CREATE_CVTCOLOR_FUNC(rb_BGR2HSV, CV_BGR2HSV, 3, 3); -CREATE_CVTCOLOR_FUNC(rb_RGB2HSV, CV_RGB2HSV, 3, 3); -CREATE_CVTCOLOR_FUNC(rb_BGR2Lab, CV_BGR2Lab, 3, 3); -CREATE_CVTCOLOR_FUNC(rb_RGB2Lab, CV_RGB2Lab, 3, 3); -CREATE_CVTCOLOR_FUNC(rb_BayerBG2BGR, CV_BayerBG2BGR, 3, 3); -CREATE_CVTCOLOR_FUNC(rb_BayerGB2BGR, CV_BayerGB2BGR, 3, 3); -CREATE_CVTCOLOR_FUNC(rb_BayerRG2BGR, CV_BayerRG2BGR, 3, 3); -CREATE_CVTCOLOR_FUNC(rb_BayerGR2BGR, CV_BayerGR2BGR, 3, 3); -CREATE_CVTCOLOR_FUNC(rb_BayerBG2RGB, CV_BayerBG2RGB, 3, 3); -CREATE_CVTCOLOR_FUNC(rb_BayerGB2RGB, CV_BayerGB2RGB, 3, 3); -CREATE_CVTCOLOR_FUNC(rb_BayerRG2RGB, CV_BayerRG2RGB, 3, 3); -CREATE_CVTCOLOR_FUNC(rb_BayerGR2RGB, CV_BayerGR2RGB, 3, 3); -CREATE_CVTCOLOR_FUNC(rb_BGR2Luv, CV_BGR2Luv, 3, 3); -CREATE_CVTCOLOR_FUNC(rb_RGB2Luv, CV_RGB2Luv, 3, 3); -CREATE_CVTCOLOR_FUNC(rb_BGR2HLS, CV_BGR2HLS, 3, 3); -CREATE_CVTCOLOR_FUNC(rb_RGB2HLS, CV_RGB2HLS, 3, 3); -CREATE_CVTCOLOR_FUNC(rb_HSV2BGR, CV_HSV2BGR, 3, 3); -CREATE_CVTCOLOR_FUNC(rb_HSV2RGB, CV_HSV2RGB, 3, 3); -CREATE_CVTCOLOR_FUNC(rb_Lab2BGR, CV_Lab2BGR, 3, 3); -CREATE_CVTCOLOR_FUNC(rb_Lab2RGB, CV_Lab2RGB, 3, 3); -CREATE_CVTCOLOR_FUNC(rb_Luv2BGR, CV_Luv2BGR, 3, 3); -CREATE_CVTCOLOR_FUNC(rb_Luv2RGB, CV_Luv2RGB, 3, 3); -CREATE_CVTCOLOR_FUNC(rb_HLS2BGR, CV_HLS2BGR, 3, 3); -CREATE_CVTCOLOR_FUNC(rb_HLS2RGB, CV_HLS2RGB, 3, 3); + int error_callback(int status, const char *function_name, const char *error_message, + const char *file_name, int line, void *user_data) { + return 0; + } -VALUE -rb_build_information(VALUE klass) -{ - const char* ptr = cv::getBuildInformation().c_str(); - return rb_str_new(ptr, strlen(ptr)); -} + VALUE rb_build_information(VALUE klass) { + const char* ptr = cv::getBuildInformation().c_str(); + return rb_str_new(ptr, strlen(ptr)); + } + VALUE rb_imwrite(int argc, VALUE* argv, VALUE self) { + VALUE filename, img, params; + rb_scan_args(argc, argv, "21", &filename, &img, ¶ms); + return Mat::rb_imwrite_internal(filename, img, params); + } -int -error_callback(int status, const char *function_name, const char *error_message, - const char *file_name, int line, void *user_data) -{ - // dummy - return 0; -} + VALUE rb_maketype(VALUE self, VALUE depth, VALUE channels) { + int type = CV_MAKETYPE(NUM2INT(depth), NUM2INT(channels)); + return INT2NUM(type); + } -__NAMESPACE_END_OPENCV + extern "C" + void Init_opencv() { + cv::redirectError(error_callback, NULL, NULL); -extern "C" { - void - Init_opencv() - { - cvRedirectError((CvErrorCallback)mOpenCV::error_callback); + rb_module = rb_define_module("OpenCV"); - mOpenCV::init_ruby_module(); - - mOpenCV::cCvError::init_ruby_class(); - mOpenCV::cCvPoint::init_ruby_class(); - mOpenCV::cCvPoint2D32f::init_ruby_class(); - mOpenCV::cCvPoint3D32f::init_ruby_class(); - mOpenCV::cCvSize::init_ruby_class(); - mOpenCV::cCvSize2D32f::init_ruby_class(); - mOpenCV::cCvRect::init_ruby_class(); - mOpenCV::cCvScalar::init_ruby_class(); - mOpenCV::cCvSlice::init_ruby_class(); - mOpenCV::cCvTermCriteria::init_ruby_class(); - mOpenCV::cCvBox2D::init_ruby_class(); - mOpenCV::cCvFont::init_ruby_class(); - mOpenCV::cIplConvKernel::init_ruby_class(); - mOpenCV::cCvMoments::init_ruby_class(); - mOpenCV::cCvHuMoments::init_ruby_class(); - mOpenCV::cCvConvexityDefect::init_ruby_class(); + define_const(rb_module); - mOpenCV::cCvSURFPoint::init_ruby_class(); - mOpenCV::cCvSURFParams::init_ruby_class(); - - mOpenCV::cCvMemStorage::init_ruby_class(); + Mat::init(); + Point::init(); + Rect::init(); + Size::init(); + Scalar::init(); + CascadeClassifier::init(); + VideoCapture::init(); + Window::init(); + Trackbar::init(); + Error::init(); - mOpenCV::cCvSeq::init_ruby_class(); - mOpenCV::mCurve::init_ruby_module(); - mOpenCV::mPointSet::init_ruby_module(); - mOpenCV::cCvChain::init_ruby_class(); - mOpenCV::cCvContour::init_ruby_class(); - mOpenCV::cCvContourTree::init_ruby_class(); + rb_define_module_function(rb_module, "build_information", RUBY_METHOD_FUNC(rb_build_information), 0); - mOpenCV::cCvMat::init_ruby_class(); - mOpenCV::cIplImage::init_ruby_class(); - mOpenCV::cCvHistogram::init_ruby_class(); - mOpenCV::cCvCapture::init_ruby_class(); - mOpenCV::cCvVideoWriter::init_ruby_class(); + rb_define_singleton_method(rb_module, "imread", RUBY_METHOD_FUNC(Mat::rb_imread), 2); // in ext/opencv/mat.cpp + rb_define_singleton_method(rb_module, "imwrite", RUBY_METHOD_FUNC(rb_imwrite), -1); + rb_define_singleton_method(rb_module, "imdecode", RUBY_METHOD_FUNC(Mat::rb_imdecode), 2); // in ext/opencv/mat.cpp + rb_define_singleton_method(rb_module, "wait_key", RUBY_METHOD_FUNC(Window::rb_wait_key), -1); // in ext/opencv/window.cpp - mOpenCV::cCvLine::init_ruby_class(); - mOpenCV::cCvTwoPoints::init_ruby_class(); - mOpenCV::cCvCircle32f::init_ruby_class(); + rb_define_singleton_method(rb_module, "add_weighted", RUBY_METHOD_FUNC(Mat::rb_add_weighted), -1); // in ext/opencv/mat.cpp - mOpenCV::cCvFeatureTree::init_ruby_class(); - - mOpenCV::cCvConnectedComp::init_ruby_class(); - mOpenCV::cCvAvgComp::init_ruby_class(); - mOpenCV::cCvHaarClassifierCascade::init_ruby_class(); - - mOpenCV::cAlgorithm::init_ruby_class(); - mOpenCV::cFaceRecognizer::init_ruby_class(); - mOpenCV::cEigenFaces::init_ruby_class(); - mOpenCV::cFisherFaces::init_ruby_class(); - mOpenCV::cLBPH::init_ruby_class(); - - mOpenCV::mGUI::init_ruby_module(); - mOpenCV::mGUI::cWindow::init_ruby_class(); - mOpenCV::mGUI::cTrackbar::init_ruby_class(); - mOpenCV::mGUI::cMouseEvent::init_ruby_class(); - -#ifdef HAVE_ML_H - /* feature support. - mOpenCV::mMachineLearning::init_ruby_module(); - */ -#endif - -#ifdef HAVE_OPENCV2_NONFREE_NONFREE_HPP - cv::initModule_nonfree(); -#endif + rb_define_singleton_method(rb_module, "CV_MAKETYPE", RUBY_METHOD_FUNC(rb_maketype), 2); } } diff --git a/ext/opencv/opencv.h b/ext/opencv/opencv.h deleted file mode 100644 index 97dc19f..0000000 --- a/ext/opencv/opencv.h +++ /dev/null @@ -1,405 +0,0 @@ -/************************************************************ - - opencv.h - - - $Author: lsxi $ - - Copyright (C) 2005-2007 Masakazu Yonekura - -************************************************************/ -#ifndef RUBY_OPENCV_H -#define RUBY_OPENCV_H - -#define __NAMESPACE_BEGIN_OPENCV namespace mOpenCV { -#define __NAMESPACE_END_OPENCV } - -/* include headers */ -#include -#ifdef HAVE_RUBY_VERSION_H -#include -#else -#include -#endif - -#ifdef RUBY_WIN32_H -#ifdef write -#undef write -#endif // write -#endif // RUBY_WIN32_H - -#ifndef ANYARGS -#define ANYARGS () -#endif - -extern "C" { -#ifdef HAVE_RUBY_ST_H -#include -#else -#include -#endif - -#ifdef HAVE_STDARG_H -#include -#define va_init_list(a,b) va_start(a,b) -#else -#include -#define va_init_list(a,b) va_start(a) -#endif -} - -// standard c headers -#define _USE_MATH_DEFINES // for VC++ -#include -#include -#include -#include - -// OpenCV headers -#include "opencv2/core/core_c.h" -#include "opencv2/core/core.hpp" -#include "opencv2/imgproc/imgproc_c.h" -#include "opencv2/imgproc/imgproc.hpp" -#include "opencv2/video/tracking.hpp" -#include "opencv2/video/background_segm.hpp" -#include "opencv2/features2d/features2d.hpp" -#include "opencv2/flann/flann.hpp" -#include "opencv2/calib3d/calib3d.hpp" -#include "opencv2/objdetect/objdetect.hpp" -#include "opencv2/legacy/compat.hpp" -#include "opencv2/legacy/legacy.hpp" -#include "opencv2/legacy/blobtrack.hpp" -#include "opencv2/contrib/contrib.hpp" -#include "opencv2/highgui/highgui_c.h" -#include "opencv2/highgui/highgui.hpp" -#include "opencv2/core/internal.hpp" -#include "opencv2/photo/photo.hpp" - -#ifdef HAVE_ML_H -#include "opencv2/ml/ml.hpp" -#endif - -#ifdef HAVE_OPENCV2_NONFREE_NONFREE_HPP -#include "opencv2/nonfree/nonfree.hpp" -#endif - -// Ruby/OpenCV headers -#include "cvutils.h" -#include "cverror.h" -#include "cvpoint.h" -#include "cvpoint2d32f.h" -#include "cvsize.h" -#include "cvsize2d32f.h" -#include "cvrect.h" -#include "cvscalar.h" -#include "cvslice.h" -#include "cvtermcriteria.h" -#include "cvbox2d.h" -#include "cvfont.h" -#include "iplconvkernel.h" -#include "cvmoments.h" -#include "cvhumoments.h" -#include "cvconvexitydefect.h" -#include "cvpoint3d32f.h" - -#include "cvmemstorage.h" - -#include "cvseq.h" -#include "curve.h" -#include "pointset.h" -#include "cvchain.h" -#include "cvcontour.h" -#include "cvcontourtree.h" - -#include "cvmat.h" -#include "iplimage.h" -#include "cvhistogram.h" -#include "cvcapture.h" -#include "cvvideowriter.h" - -#include "cvline.h" -#include "cvtwopoints.h" -#include "cvcircle32f.h" - -#include "cvconnectedcomp.h" -#include "cvavgcomp.h" -#include "cvhaarclassifiercascade.h" - -#include "cvsurfpoint.h" -#include "cvsurfparams.h" - -#include "cvfeaturetree.h" - -#include "algorithm.h" -#include "facerecognizer.h" -#include "eigenfaces.h" -#include "fisherfaces.h" -#include "lbph.h" - -// GUI -#include "gui.h" -#include "window.h" -#include "trackbar.h" -#include "mouseevent.h" - -// memory management wrapper -#define RB_CVALLOC(type) (type*)rb_cvAlloc(sizeof(type)) - -// useful macros -#define IF_INT(val, ifnone) NIL_P(val) ? ifnone : NUM2INT(val) -#define IF_DBL(val, ifnone) NIL_P(val) ? ifnone : NUM2DBL(val) -#define IF_STRING(str) NIL_P(str) ? NULL : TYPE(str) == T_STRING ? rb -#define IF_BOOL(val, t, f, ifnone) val == Qtrue ? t : val == Qfalse ? f : ifnone - -#define IF_DEPTH(val, ifnone) NIL_P(val) ? ifnone : NUM2INT(val) - -#define REGISTER_HASH(hash, str, value) rb_hash_aset(hash, ID2SYM(rb_intern(str)), INT2FIX(value)) -#define LOOKUP_HASH(hash, key_as_cstr) (rb_hash_lookup(hash, ID2SYM(rb_intern(key_as_cstr)))) - -#define maxint(a,b) ({int _a = (a), _b = (b); _a > _b ? _a : _b; }) - -#ifndef BOOL2INT -#define BOOL2INT(x) ((x == Qtrue) ? 1 : 0) -#endif - -#ifndef INT2BOOL -#define INT2BOOL(x) (x ? Qtrue : Qfalse) -#endif - -// wrapper for <= 1.8 -#ifndef RARRAY_LEN -#define RARRAY_LEN(arg) (RARRAY(arg)->len) -#endif - -#ifndef RARRAY_PTR -#define RARRAY_PTR(arg) (RARRAY(arg)->ptr) -#endif - -#ifndef RSTRING_LEN -#define RSTRING_LEN(arg) (RSTRING(arg)->len) -#endif - -#ifndef RSTRING_PTR -#define RSTRING_PTR(arg) (RSTRING(arg)->ptr) -#endif - -#ifndef DBL2NUM -#define DBL2NUM(dbl) (rb_float_new(dbl)) -#endif - - -// OpenCV module -__NAMESPACE_BEGIN_OPENCV - -void mark_root_object(void *ptr); -VALUE lookup_root_object(void *ptr); -void register_root_object(void *ptr, VALUE root); -void unregister_object(void *ptr); -void free_object(void *ptr); -void release_object(void *ptr); -void release_iplconvkernel_object(void *ptr); - -VALUE rb_module_opencv(); -void init_ruby_module(); - -// Ruby/OpenCV inline functions -inline CvArr* -CVARR(VALUE object) -{ - CvArr *ptr; - Data_Get_Struct(object, CvArr, ptr); - return ptr; -} - -inline CvArr* -CVARR_WITH_CHECK(VALUE object) -{ - Check_Type(object, T_DATA); - void *ptr = DATA_PTR(object); - if (CV_IS_IMAGE(ptr) || CV_IS_MAT(ptr) || CV_IS_SEQ(ptr) || - CV_IS_MATND(ptr) || CV_IS_SPARSE_MAT(ptr)) { - return CVARR(object); - } - else { - raise_compatible_typeerror(object, (char*)"CvArr"); - } - return NULL; -} - -inline VALUE -OPENCV_OBJECT(VALUE klass, void *ptr) -{ - return Data_Wrap_Struct(klass, 0, release_object, ptr); -} - -inline VALUE -IPLCONVKERNEL_OBJECT(VALUE klass, void *ptr) -{ - return Data_Wrap_Struct(klass, 0, release_iplconvkernel_object, ptr); -} - -inline VALUE -GENERIC_OBJECT(VALUE klass, void *ptr) -{ - return Data_Wrap_Struct(klass, 0, -1, ptr); -} - -inline VALUE -DEPEND_OBJECT(VALUE klass, void *ptr, VALUE root) -{ - register_root_object(ptr, root); - return Data_Wrap_Struct(klass, mark_root_object, free_object, ptr); -} - -inline VALUE -REFER_OBJECT(VALUE klass, void *ptr, VALUE root) -{ - register_root_object(ptr, root); - return Data_Wrap_Struct(klass, mark_root_object, unregister_object, ptr); -} - -inline int -CVMETHOD(const char *name, VALUE method, int ifnone = 0) -{ - VALUE value; - switch (TYPE(method)) { - case T_NIL: - return ifnone; - case T_FIXNUM: - return FIX2INT(method); - case T_STRING: - method = rb_str_intern(method); - case T_SYMBOL: - value = rb_hash_lookup(rb_const_get(rb_module_opencv(), rb_intern(name)), method); - return NIL_P(value) ? ifnone : FIX2INT(value); - default: - raise_typeerror(method, rb_cSymbol); - } - return ifnone; -} - -inline int -TRUE_OR_FALSE(VALUE object, int ifnone = 0) -{ - int value = ifnone; - switch (TYPE(object)) { - case T_TRUE: - value = 1; - break; - case T_FALSE: - value = 0; - break; - case T_NIL: - break; - default: - break; - } - return value; -} - -inline int -CV2IPL_DEPTH(int depth) -{ - switch (depth) { - case CV_8U: - return IPL_DEPTH_8U; - break; - case CV_8S: - return IPL_DEPTH_8S; - break; - case CV_16U: - return IPL_DEPTH_16U; - break; - case CV_32F: - return IPL_DEPTH_32F; - break; - case CV_32S: - return IPL_DEPTH_32S; - break; - case CV_64F: - return IPL_DEPTH_64F; - break; - default: - rb_raise(rb_eArgError, "Invalid depth: %d", depth); - break; - } - return 0; -} - -VALUE rb_BGR2BGRA(VALUE klass, VALUE image); -VALUE rb_RGB2RGBA(VALUE klass, VALUE image); -VALUE rb_BGRA2BGR(VALUE klass, VALUE image); -VALUE rb_RGBA2RGB(VALUE klass, VALUE image); -VALUE rb_BGR2RGBA(VALUE klass, VALUE image); -VALUE rb_RGB2BGRA(VALUE klass, VALUE image); -VALUE rb_RGBA2BGR(VALUE klass, VALUE image); -VALUE rb_BGRA2RGB(VALUE klass, VALUE image); -VALUE rb_BGR2RGB(VALUE klass, VALUE image); -VALUE rb_RGB2BGR(VALUE klass, VALUE image); -VALUE rb_BGRA2RGBA(VALUE klass, VALUE image); -VALUE rb_RGBA2BGRA(VALUE klass, VALUE image); -VALUE rb_BGR2GRAY(VALUE klass, VALUE image); -VALUE rb_RGB2GRAY(VALUE klass, VALUE image); -VALUE rb_GRAY2BGR(VALUE klass, VALUE image); -VALUE rb_GRAY2RGB(VALUE klass, VALUE image); -VALUE rb_GRAY2BGRA(VALUE klass, VALUE image); -VALUE rb_GRAY2RGBA(VALUE klass, VALUE image); -VALUE rb_BGRA2GRAY(VALUE klass, VALUE image); -VALUE rb_RGBA2GRAY(VALUE klass, VALUE image); -VALUE rb_BGR2BGR565(VALUE klass, VALUE image); -VALUE rb_RGB2BGR565(VALUE klass, VALUE image); -VALUE rb_BGR5652BGR(VALUE klass, VALUE image); -VALUE rb_BGR5652RGB(VALUE klass, VALUE image); -VALUE rb_BGRA2BGR565(VALUE klass, VALUE image); -VALUE rb_RGBA2BGR565(VALUE klass, VALUE image); -VALUE rb_BGR5652BGRA(VALUE klass, VALUE image); -VALUE rb_BGR5652RGBA(VALUE klass, VALUE image); -VALUE rb_GRAY2BGR565(VALUE klass, VALUE image); -VALUE rb_BGR5652GRAY(VALUE klass, VALUE image); -VALUE rb_BGR2BGR555(VALUE klass, VALUE image); -VALUE rb_RGB2BGR555(VALUE klass, VALUE image); -VALUE rb_BGR5552BGR(VALUE klass, VALUE image); -VALUE rb_BGR5552RGB(VALUE klass, VALUE image); -VALUE rb_BGRA2BGR555(VALUE klass, VALUE image); -VALUE rb_RGBA2BGR555(VALUE klass, VALUE image); -VALUE rb_BGR5552BGRA(VALUE klass, VALUE image); -VALUE rb_BGR5552RGBA(VALUE klass, VALUE image); -VALUE rb_GRAY2BGR555(VALUE klass, VALUE image); -VALUE rb_BGR5552GRAY(VALUE klass, VALUE image); -VALUE rb_BGR2XYZ(VALUE klass, VALUE image); -VALUE rb_RGB2XYZ(VALUE klass, VALUE image); -VALUE rb_XYZ2BGR(VALUE klass, VALUE image); -VALUE rb_XYZ2RGB(VALUE klass, VALUE image); -VALUE rb_BGR2YCrCb(VALUE klass, VALUE image); -VALUE rb_RGB2YCrCb(VALUE klass, VALUE image); -VALUE rb_YCrCb2BGR(VALUE klass, VALUE image); -VALUE rb_YCrCb2RGB(VALUE klass, VALUE image); -VALUE rb_BGR2HSV(VALUE klass, VALUE image); -VALUE rb_RGB2HSV(VALUE klass, VALUE image); -VALUE rb_BGR2Lab(VALUE klass, VALUE image); -VALUE rb_RGB2Lab(VALUE klass, VALUE image); -VALUE rb_BayerBG2BGR(VALUE klass, VALUE image); -VALUE rb_BayerGB2BGR(VALUE klass, VALUE image); -VALUE rb_BayerRG2BGR(VALUE klass, VALUE image); -VALUE rb_BayerGR2BGR(VALUE klass, VALUE image); -VALUE rb_BayerBG2RGB(VALUE klass, VALUE image); -VALUE rb_BayerGB2RGB(VALUE klass, VALUE image); -VALUE rb_BayerRG2RGB(VALUE klass, VALUE image); -VALUE rb_BayerGR2RGB(VALUE klass, VALUE image); -VALUE rb_BGR2Luv(VALUE klass, VALUE image); -VALUE rb_RGB2Luv(VALUE klass, VALUE image); -VALUE rb_BGR2HLS(VALUE klass, VALUE image); -VALUE rb_RGB2HLS(VALUE klass, VALUE image); -VALUE rb_HSV2BGR(VALUE klass, VALUE image); -VALUE rb_HSV2RGB(VALUE klass, VALUE image); -VALUE rb_Lab2BGR(VALUE klass, VALUE image); -VALUE rb_Lab2RGB(VALUE klass, VALUE image); -VALUE rb_Luv2BGR(VALUE klass, VALUE image); -VALUE rb_Luv2RGB(VALUE klass, VALUE image); -VALUE rb_HLS2BGR(VALUE klass, VALUE image); -VALUE rb_HLS2RGB(VALUE klass, VALUE image); - -VALUE rb_build_information(VALUE klass); - -__NAMESPACE_END_OPENCV - -#endif // RUBY_OPENCV_H diff --git a/ext/opencv/opencv.hpp b/ext/opencv/opencv.hpp new file mode 100644 index 0000000..7df1053 --- /dev/null +++ b/ext/opencv/opencv.hpp @@ -0,0 +1,25 @@ +/** + * opencv.hpp + */ +#ifndef RUBY_OPENCV_H +#define RUBY_OPENCV_H + +#include "ruby.h" + +namespace rubyopencv { + inline int NUM2INT_DEFAULT(VALUE value, int default_value) { + return NIL_P(value) ? (default_value) : NUM2INT(value); + } + + inline double NUM2DBL_DEFAULT(VALUE value, double default_value) { + return NIL_P(value) ? (default_value) : NUM2DBL(value); + } + + inline VALUE HASH_LOOKUP(VALUE hash, std::string key) { + return rb_hash_lookup(hash, ID2SYM(rb_intern(key.c_str()))); + } + + VALUE rb_module_opencv(); +} + +#endif // RUBY_OPENCV_H diff --git a/ext/opencv/opencv_const.cpp b/ext/opencv/opencv_const.cpp new file mode 100644 index 0000000..b28f6ce --- /dev/null +++ b/ext/opencv/opencv_const.cpp @@ -0,0 +1,381 @@ +// -*- mode: c++; coding: utf-8 -*- +#include "ruby.h" +#include "opencv2/core.hpp" +#include "opencv2/imgproc.hpp" +#include "opencv2/imgcodecs.hpp" +#include "opencv2/highgui.hpp" + +#include "opencv_const.hpp" + +namespace rubyopencv { + void define_const(VALUE rb_module) { + rb_define_const(rb_module, "CV_VERSION", rb_str_new2(CV_VERSION)); + rb_define_const(rb_module, "CV_MAJOR_VERSION", INT2FIX(CV_MAJOR_VERSION)); + rb_define_const(rb_module, "CV_MINOR_VERSION", INT2FIX(CV_MINOR_VERSION)); + rb_define_const(rb_module, "CV_SUBMINOR_VERSION", INT2FIX(CV_SUBMINOR_VERSION)); + + rb_define_const(rb_module, "CV_8U", INT2FIX(CV_8U)); + rb_define_const(rb_module, "CV_8S", INT2FIX(CV_8S)); + rb_define_const(rb_module, "CV_16U", INT2FIX(CV_16U)); + rb_define_const(rb_module, "CV_16S", INT2FIX(CV_16S)); + rb_define_const(rb_module, "CV_32S", INT2FIX(CV_32S)); + rb_define_const(rb_module, "CV_32F", INT2FIX(CV_32F)); + rb_define_const(rb_module, "CV_64F", INT2FIX(CV_64F)); + + rb_define_const(rb_module, "CV_8UC1", INT2FIX(CV_8UC1)); + rb_define_const(rb_module, "CV_8UC2", INT2FIX(CV_8UC2)); + rb_define_const(rb_module, "CV_8UC3", INT2FIX(CV_8UC3)); + rb_define_const(rb_module, "CV_8UC4", INT2FIX(CV_8UC4)); + rb_define_const(rb_module, "CV_8SC1", INT2FIX(CV_8SC1)); + rb_define_const(rb_module, "CV_8SC2", INT2FIX(CV_8SC2)); + rb_define_const(rb_module, "CV_8SC3", INT2FIX(CV_8SC3)); + rb_define_const(rb_module, "CV_8SC4", INT2FIX(CV_8SC4)); + rb_define_const(rb_module, "CV_16UC1", INT2FIX(CV_16UC1)); + rb_define_const(rb_module, "CV_16UC2", INT2FIX(CV_16UC2)); + rb_define_const(rb_module, "CV_16UC3", INT2FIX(CV_16UC3)); + rb_define_const(rb_module, "CV_16UC4", INT2FIX(CV_16UC4)); + rb_define_const(rb_module, "CV_16SC1", INT2FIX(CV_16SC1)); + rb_define_const(rb_module, "CV_16SC2", INT2FIX(CV_16SC2)); + rb_define_const(rb_module, "CV_16SC3", INT2FIX(CV_16SC3)); + rb_define_const(rb_module, "CV_16SC4", INT2FIX(CV_16SC4)); + rb_define_const(rb_module, "CV_32SC1", INT2FIX(CV_32SC1)); + rb_define_const(rb_module, "CV_32SC2", INT2FIX(CV_32SC2)); + rb_define_const(rb_module, "CV_32SC3", INT2FIX(CV_32SC3)); + rb_define_const(rb_module, "CV_32SC4", INT2FIX(CV_32SC4)); + rb_define_const(rb_module, "CV_32FC1", INT2FIX(CV_32FC1)); + rb_define_const(rb_module, "CV_32FC2", INT2FIX(CV_32FC2)); + rb_define_const(rb_module, "CV_32FC3", INT2FIX(CV_32FC3)); + rb_define_const(rb_module, "CV_32FC4", INT2FIX(CV_32FC4)); + rb_define_const(rb_module, "CV_64FC1", INT2FIX(CV_64FC1)); + rb_define_const(rb_module, "CV_64FC2", INT2FIX(CV_64FC2)); + rb_define_const(rb_module, "CV_64FC3", INT2FIX(CV_64FC3)); + rb_define_const(rb_module, "CV_64FC4", INT2FIX(CV_64FC4)); + + rb_define_const(rb_module, "COLOR_BGR2BGRA", INT2FIX(cv::COLOR_BGR2BGRA)); + rb_define_const(rb_module, "COLOR_RGB2RGBA", INT2FIX(cv::COLOR_RGB2RGBA)); + rb_define_const(rb_module, "COLOR_BGRA2BGR", INT2FIX(cv::COLOR_BGRA2BGR)); + rb_define_const(rb_module, "COLOR_RGBA2RGB", INT2FIX(cv::COLOR_RGBA2RGB)); + rb_define_const(rb_module, "COLOR_BGR2RGBA", INT2FIX(cv::COLOR_BGR2RGBA)); + rb_define_const(rb_module, "COLOR_RGB2BGRA", INT2FIX(cv::COLOR_RGB2BGRA)); + rb_define_const(rb_module, "COLOR_RGBA2BGR", INT2FIX(cv::COLOR_RGBA2BGR)); + rb_define_const(rb_module, "COLOR_BGRA2RGB", INT2FIX(cv::COLOR_BGRA2RGB)); + rb_define_const(rb_module, "COLOR_BGR2RGB", INT2FIX(cv::COLOR_BGR2RGB)); + rb_define_const(rb_module, "COLOR_RGB2BGR", INT2FIX(cv::COLOR_RGB2BGR)); + rb_define_const(rb_module, "COLOR_BGRA2RGBA", INT2FIX(cv::COLOR_BGRA2RGBA)); + rb_define_const(rb_module, "COLOR_RGBA2BGRA", INT2FIX(cv::COLOR_RGBA2BGRA)); + rb_define_const(rb_module, "COLOR_BGR2GRAY", INT2FIX(cv::COLOR_BGR2GRAY)); + rb_define_const(rb_module, "COLOR_RGB2GRAY", INT2FIX(cv::COLOR_RGB2GRAY)); + rb_define_const(rb_module, "COLOR_GRAY2BGR", INT2FIX(cv::COLOR_GRAY2BGR)); + rb_define_const(rb_module, "COLOR_GRAY2RGB", INT2FIX(cv::COLOR_GRAY2RGB)); + rb_define_const(rb_module, "COLOR_GRAY2BGRA", INT2FIX(cv::COLOR_GRAY2BGRA)); + rb_define_const(rb_module, "COLOR_GRAY2RGBA", INT2FIX(cv::COLOR_GRAY2RGBA)); + rb_define_const(rb_module, "COLOR_BGRA2GRAY", INT2FIX(cv::COLOR_BGRA2GRAY)); + rb_define_const(rb_module, "COLOR_RGBA2GRAY", INT2FIX(cv::COLOR_RGBA2GRAY)); + rb_define_const(rb_module, "COLOR_BGR2BGR565", INT2FIX(cv::COLOR_BGR2BGR565)); + rb_define_const(rb_module, "COLOR_RGB2BGR565", INT2FIX(cv::COLOR_RGB2BGR565)); + rb_define_const(rb_module, "COLOR_BGR5652BGR", INT2FIX(cv::COLOR_BGR5652BGR)); + rb_define_const(rb_module, "COLOR_BGR5652RGB", INT2FIX(cv::COLOR_BGR5652RGB)); + rb_define_const(rb_module, "COLOR_BGRA2BGR565", INT2FIX(cv::COLOR_BGRA2BGR565)); + rb_define_const(rb_module, "COLOR_RGBA2BGR565", INT2FIX(cv::COLOR_RGBA2BGR565)); + rb_define_const(rb_module, "COLOR_BGR5652BGRA", INT2FIX(cv::COLOR_BGR5652BGRA)); + rb_define_const(rb_module, "COLOR_BGR5652RGBA", INT2FIX(cv::COLOR_BGR5652RGBA)); + rb_define_const(rb_module, "COLOR_GRAY2BGR565", INT2FIX(cv::COLOR_GRAY2BGR565)); + rb_define_const(rb_module, "COLOR_BGR5652GRAY", INT2FIX(cv::COLOR_BGR5652GRAY)); + rb_define_const(rb_module, "COLOR_BGR2BGR555", INT2FIX(cv::COLOR_BGR2BGR555)); + rb_define_const(rb_module, "COLOR_RGB2BGR555", INT2FIX(cv::COLOR_RGB2BGR555)); + rb_define_const(rb_module, "COLOR_BGR5552BGR", INT2FIX(cv::COLOR_BGR5552BGR)); + rb_define_const(rb_module, "COLOR_BGR5552RGB", INT2FIX(cv::COLOR_BGR5552RGB)); + rb_define_const(rb_module, "COLOR_BGRA2BGR555", INT2FIX(cv::COLOR_BGRA2BGR555)); + rb_define_const(rb_module, "COLOR_RGBA2BGR555", INT2FIX(cv::COLOR_RGBA2BGR555)); + rb_define_const(rb_module, "COLOR_BGR5552BGRA", INT2FIX(cv::COLOR_BGR5552BGRA)); + rb_define_const(rb_module, "COLOR_BGR5552RGBA", INT2FIX(cv::COLOR_BGR5552RGBA)); + rb_define_const(rb_module, "COLOR_GRAY2BGR555", INT2FIX(cv::COLOR_GRAY2BGR555)); + rb_define_const(rb_module, "COLOR_BGR5552GRAY", INT2FIX(cv::COLOR_BGR5552GRAY)); + rb_define_const(rb_module, "COLOR_BGR2XYZ", INT2FIX(cv::COLOR_BGR2XYZ)); + rb_define_const(rb_module, "COLOR_RGB2XYZ", INT2FIX(cv::COLOR_RGB2XYZ)); + rb_define_const(rb_module, "COLOR_XYZ2BGR", INT2FIX(cv::COLOR_XYZ2BGR)); + rb_define_const(rb_module, "COLOR_XYZ2RGB", INT2FIX(cv::COLOR_XYZ2RGB)); + rb_define_const(rb_module, "COLOR_BGR2YCrCb", INT2FIX(cv::COLOR_BGR2YCrCb)); + rb_define_const(rb_module, "COLOR_RGB2YCrCb", INT2FIX(cv::COLOR_RGB2YCrCb)); + rb_define_const(rb_module, "COLOR_YCrCb2BGR", INT2FIX(cv::COLOR_YCrCb2BGR)); + rb_define_const(rb_module, "COLOR_YCrCb2RGB", INT2FIX(cv::COLOR_YCrCb2RGB)); + rb_define_const(rb_module, "COLOR_BGR2HSV", INT2FIX(cv::COLOR_BGR2HSV)); + rb_define_const(rb_module, "COLOR_RGB2HSV", INT2FIX(cv::COLOR_RGB2HSV)); + rb_define_const(rb_module, "COLOR_BGR2Lab", INT2FIX(cv::COLOR_BGR2Lab)); + rb_define_const(rb_module, "COLOR_RGB2Lab", INT2FIX(cv::COLOR_RGB2Lab)); + rb_define_const(rb_module, "COLOR_BGR2Luv", INT2FIX(cv::COLOR_BGR2Luv)); + rb_define_const(rb_module, "COLOR_RGB2Luv", INT2FIX(cv::COLOR_RGB2Luv)); + rb_define_const(rb_module, "COLOR_BGR2HLS", INT2FIX(cv::COLOR_BGR2HLS)); + rb_define_const(rb_module, "COLOR_RGB2HLS", INT2FIX(cv::COLOR_RGB2HLS)); + rb_define_const(rb_module, "COLOR_HSV2BGR", INT2FIX(cv::COLOR_HSV2BGR)); + rb_define_const(rb_module, "COLOR_HSV2RGB", INT2FIX(cv::COLOR_HSV2RGB)); + rb_define_const(rb_module, "COLOR_Lab2BGR", INT2FIX(cv::COLOR_Lab2BGR)); + rb_define_const(rb_module, "COLOR_Lab2RGB", INT2FIX(cv::COLOR_Lab2RGB)); + rb_define_const(rb_module, "COLOR_Luv2BGR", INT2FIX(cv::COLOR_Luv2BGR)); + rb_define_const(rb_module, "COLOR_Luv2RGB", INT2FIX(cv::COLOR_Luv2RGB)); + rb_define_const(rb_module, "COLOR_HLS2BGR", INT2FIX(cv::COLOR_HLS2BGR)); + rb_define_const(rb_module, "COLOR_HLS2RGB", INT2FIX(cv::COLOR_HLS2RGB)); + rb_define_const(rb_module, "COLOR_BGR2HSV_FULL", INT2FIX(cv::COLOR_BGR2HSV_FULL)); + rb_define_const(rb_module, "COLOR_BGR2HLS_FULL", INT2FIX(cv::COLOR_BGR2HLS_FULL)); + rb_define_const(rb_module, "COLOR_RGB2HLS_FULL", INT2FIX(cv::COLOR_RGB2HLS_FULL)); + rb_define_const(rb_module, "COLOR_HSV2BGR_FULL", INT2FIX(cv::COLOR_HSV2BGR_FULL)); + rb_define_const(rb_module, "COLOR_HSV2RGB_FULL", INT2FIX(cv::COLOR_HSV2RGB_FULL)); + rb_define_const(rb_module, "COLOR_HLS2BGR_FULL", INT2FIX(cv::COLOR_HLS2BGR_FULL)); + rb_define_const(rb_module, "COLOR_HLS2RGB_FULL", INT2FIX(cv::COLOR_HLS2RGB_FULL)); + rb_define_const(rb_module, "COLOR_LBGR2Lab", INT2FIX(cv::COLOR_LBGR2Lab)); + rb_define_const(rb_module, "COLOR_LRGB2Lab", INT2FIX(cv::COLOR_LRGB2Lab)); + rb_define_const(rb_module, "COLOR_LBGR2Luv", INT2FIX(cv::COLOR_LBGR2Luv)); + rb_define_const(rb_module, "COLOR_LRGB2Luv", INT2FIX(cv::COLOR_LRGB2Luv)); + rb_define_const(rb_module, "COLOR_Lab2LBGR", INT2FIX(cv::COLOR_Lab2LBGR)); + rb_define_const(rb_module, "COLOR_Lab2LRGB", INT2FIX(cv::COLOR_Lab2LRGB)); + rb_define_const(rb_module, "COLOR_Luv2LBGR", INT2FIX(cv::COLOR_Luv2LBGR)); + rb_define_const(rb_module, "COLOR_Luv2LRGB", INT2FIX(cv::COLOR_Luv2LRGB)); + rb_define_const(rb_module, "COLOR_BGR2YUV", INT2FIX(cv::COLOR_BGR2YUV)); + rb_define_const(rb_module, "COLOR_RGB2YUV", INT2FIX(cv::COLOR_RGB2YUV)); + rb_define_const(rb_module, "COLOR_YUV2BGR", INT2FIX(cv::COLOR_YUV2BGR)); + rb_define_const(rb_module, "COLOR_YUV2RGB", INT2FIX(cv::COLOR_YUV2RGB)); + rb_define_const(rb_module, "COLOR_YUV2RGB_NV12", INT2FIX(cv::COLOR_YUV2RGB_NV12)); + rb_define_const(rb_module, "COLOR_YUV2BGR_NV12", INT2FIX(cv::COLOR_YUV2BGR_NV12)); + rb_define_const(rb_module, "COLOR_YUV2RGB_NV21", INT2FIX(cv::COLOR_YUV2RGB_NV21)); + rb_define_const(rb_module, "COLOR_YUV2BGR_NV21", INT2FIX(cv::COLOR_YUV2BGR_NV21)); + rb_define_const(rb_module, "COLOR_YUV420sp2RGB", INT2FIX(cv::COLOR_YUV420sp2RGB)); + rb_define_const(rb_module, "COLOR_YUV420sp2BGR", INT2FIX(cv::COLOR_YUV420sp2BGR)); + rb_define_const(rb_module, "COLOR_YUV2RGBA_NV12", INT2FIX(cv::COLOR_YUV2RGBA_NV12)); + rb_define_const(rb_module, "COLOR_YUV2BGRA_NV12", INT2FIX(cv::COLOR_YUV2BGRA_NV12)); + rb_define_const(rb_module, "COLOR_YUV2RGBA_NV21", INT2FIX(cv::COLOR_YUV2RGBA_NV21)); + rb_define_const(rb_module, "COLOR_YUV2BGRA_NV21", INT2FIX(cv::COLOR_YUV2BGRA_NV21)); + rb_define_const(rb_module, "COLOR_YUV420sp2RGBA", INT2FIX(cv::COLOR_YUV420sp2RGBA)); + rb_define_const(rb_module, "COLOR_YUV420sp2BGRA", INT2FIX(cv::COLOR_YUV420sp2BGRA)); + rb_define_const(rb_module, "COLOR_YUV2RGB_YV12", INT2FIX(cv::COLOR_YUV2RGB_YV12)); + rb_define_const(rb_module, "COLOR_YUV2BGR_YV12", INT2FIX(cv::COLOR_YUV2BGR_YV12)); + rb_define_const(rb_module, "COLOR_YUV2RGB_IYUV", INT2FIX(cv::COLOR_YUV2RGB_IYUV)); + rb_define_const(rb_module, "COLOR_YUV2BGR_IYUV", INT2FIX(cv::COLOR_YUV2BGR_IYUV)); + rb_define_const(rb_module, "COLOR_YUV2RGB_I420", INT2FIX(cv::COLOR_YUV2RGB_I420)); + rb_define_const(rb_module, "COLOR_YUV2BGR_I420", INT2FIX(cv::COLOR_YUV2BGR_I420)); + rb_define_const(rb_module, "COLOR_YUV420p2RGB", INT2FIX(cv::COLOR_YUV420p2RGB)); + rb_define_const(rb_module, "COLOR_YUV420p2BGR", INT2FIX(cv::COLOR_YUV420p2BGR)); + rb_define_const(rb_module, "COLOR_YUV2RGBA_YV12", INT2FIX(cv::COLOR_YUV2RGBA_YV12)); + rb_define_const(rb_module, "COLOR_YUV2BGRA_YV12", INT2FIX(cv::COLOR_YUV2BGRA_YV12)); + rb_define_const(rb_module, "COLOR_YUV2RGBA_IYUV", INT2FIX(cv::COLOR_YUV2RGBA_IYUV)); + rb_define_const(rb_module, "COLOR_YUV2BGRA_IYUV", INT2FIX(cv::COLOR_YUV2BGRA_IYUV)); + rb_define_const(rb_module, "COLOR_YUV2RGBA_I420", INT2FIX(cv::COLOR_YUV2RGBA_I420)); + rb_define_const(rb_module, "COLOR_YUV2BGRA_I420", INT2FIX(cv::COLOR_YUV2BGRA_I420)); + rb_define_const(rb_module, "COLOR_YUV420p2RGBA", INT2FIX(cv::COLOR_YUV420p2RGBA)); + rb_define_const(rb_module, "COLOR_YUV420p2BGRA", INT2FIX(cv::COLOR_YUV420p2BGRA)); + rb_define_const(rb_module, "COLOR_YUV2GRAY_420", INT2FIX(cv::COLOR_YUV2GRAY_420)); + rb_define_const(rb_module, "COLOR_YUV2GRAY_NV21", INT2FIX(cv::COLOR_YUV2GRAY_NV21)); + rb_define_const(rb_module, "COLOR_YUV2GRAY_NV12", INT2FIX(cv::COLOR_YUV2GRAY_NV12)); + rb_define_const(rb_module, "COLOR_YUV2GRAY_YV12", INT2FIX(cv::COLOR_YUV2GRAY_YV12)); + rb_define_const(rb_module, "COLOR_YUV2GRAY_IYUV", INT2FIX(cv::COLOR_YUV2GRAY_IYUV)); + rb_define_const(rb_module, "COLOR_YUV2GRAY_I420", INT2FIX(cv::COLOR_YUV2GRAY_I420)); + rb_define_const(rb_module, "COLOR_YUV420sp2GRAY", INT2FIX(cv::COLOR_YUV420sp2GRAY)); + rb_define_const(rb_module, "COLOR_YUV420p2GRAY", INT2FIX(cv::COLOR_YUV420p2GRAY)); + rb_define_const(rb_module, "COLOR_YUV2RGB_UYVY", INT2FIX(cv::COLOR_YUV2RGB_UYVY)); + rb_define_const(rb_module, "COLOR_YUV2BGR_UYVY", INT2FIX(cv::COLOR_YUV2BGR_UYVY)); + rb_define_const(rb_module, "COLOR_YUV2RGB_Y422", INT2FIX(cv::COLOR_YUV2RGB_Y422)); + rb_define_const(rb_module, "COLOR_YUV2BGR_Y422", INT2FIX(cv::COLOR_YUV2BGR_Y422)); + rb_define_const(rb_module, "COLOR_YUV2RGB_UYNV", INT2FIX(cv::COLOR_YUV2RGB_UYNV)); + rb_define_const(rb_module, "COLOR_YUV2BGR_UYNV", INT2FIX(cv::COLOR_YUV2BGR_UYNV)); + rb_define_const(rb_module, "COLOR_YUV2RGBA_UYVY", INT2FIX(cv::COLOR_YUV2RGBA_UYVY)); + rb_define_const(rb_module, "COLOR_YUV2BGRA_UYVY", INT2FIX(cv::COLOR_YUV2BGRA_UYVY)); + rb_define_const(rb_module, "COLOR_YUV2RGBA_Y422", INT2FIX(cv::COLOR_YUV2RGBA_Y422)); + rb_define_const(rb_module, "COLOR_YUV2BGRA_Y422", INT2FIX(cv::COLOR_YUV2BGRA_Y422)); + rb_define_const(rb_module, "COLOR_YUV2RGBA_UYNV", INT2FIX(cv::COLOR_YUV2RGBA_UYNV)); + rb_define_const(rb_module, "COLOR_YUV2BGRA_UYNV", INT2FIX(cv::COLOR_YUV2BGRA_UYNV)); + rb_define_const(rb_module, "COLOR_YUV2RGB_YUY2", INT2FIX(cv::COLOR_YUV2RGB_YUY2)); + rb_define_const(rb_module, "COLOR_YUV2BGR_YUY2", INT2FIX(cv::COLOR_YUV2BGR_YUY2)); + rb_define_const(rb_module, "COLOR_YUV2RGB_YVYU", INT2FIX(cv::COLOR_YUV2RGB_YVYU)); + rb_define_const(rb_module, "COLOR_YUV2BGR_YVYU", INT2FIX(cv::COLOR_YUV2BGR_YVYU)); + rb_define_const(rb_module, "COLOR_YUV2RGB_YUYV", INT2FIX(cv::COLOR_YUV2RGB_YUYV)); + rb_define_const(rb_module, "COLOR_YUV2BGR_YUYV", INT2FIX(cv::COLOR_YUV2BGR_YUYV)); + rb_define_const(rb_module, "COLOR_YUV2RGB_YUNV", INT2FIX(cv::COLOR_YUV2RGB_YUNV)); + rb_define_const(rb_module, "COLOR_YUV2BGR_YUNV", INT2FIX(cv::COLOR_YUV2BGR_YUNV)); + rb_define_const(rb_module, "COLOR_YUV2RGBA_YUY2", INT2FIX(cv::COLOR_YUV2RGBA_YUY2)); + rb_define_const(rb_module, "COLOR_YUV2BGRA_YUY2", INT2FIX(cv::COLOR_YUV2BGRA_YUY2)); + rb_define_const(rb_module, "COLOR_YUV2RGBA_YVYU", INT2FIX(cv::COLOR_YUV2RGBA_YVYU)); + rb_define_const(rb_module, "COLOR_YUV2BGRA_YVYU", INT2FIX(cv::COLOR_YUV2BGRA_YVYU)); + rb_define_const(rb_module, "COLOR_YUV2RGBA_YUYV", INT2FIX(cv::COLOR_YUV2RGBA_YUYV)); + rb_define_const(rb_module, "COLOR_YUV2BGRA_YUYV", INT2FIX(cv::COLOR_YUV2BGRA_YUYV)); + rb_define_const(rb_module, "COLOR_YUV2RGBA_YUNV", INT2FIX(cv::COLOR_YUV2RGBA_YUNV)); + rb_define_const(rb_module, "COLOR_YUV2BGRA_YUNV", INT2FIX(cv::COLOR_YUV2BGRA_YUNV)); + rb_define_const(rb_module, "COLOR_YUV2GRAY_UYVY", INT2FIX(cv::COLOR_YUV2GRAY_UYVY)); + rb_define_const(rb_module, "COLOR_YUV2GRAY_YUY2", INT2FIX(cv::COLOR_YUV2GRAY_YUY2)); + rb_define_const(rb_module, "COLOR_YUV2GRAY_Y422", INT2FIX(cv::COLOR_YUV2GRAY_Y422)); + rb_define_const(rb_module, "COLOR_YUV2GRAY_UYNV", INT2FIX(cv::COLOR_YUV2GRAY_UYNV)); + rb_define_const(rb_module, "COLOR_YUV2GRAY_YVYU", INT2FIX(cv::COLOR_YUV2GRAY_YVYU)); + rb_define_const(rb_module, "COLOR_YUV2GRAY_YUYV", INT2FIX(cv::COLOR_YUV2GRAY_YUYV)); + rb_define_const(rb_module, "COLOR_YUV2GRAY_YUNV", INT2FIX(cv::COLOR_YUV2GRAY_YUNV)); + rb_define_const(rb_module, "COLOR_RGBA2mRGBA", INT2FIX(cv::COLOR_RGBA2mRGBA)); + rb_define_const(rb_module, "COLOR_mRGBA2RGBA", INT2FIX(cv::COLOR_mRGBA2RGBA)); + rb_define_const(rb_module, "COLOR_RGB2YUV_I420", INT2FIX(cv::COLOR_RGB2YUV_I420)); + rb_define_const(rb_module, "COLOR_BGR2YUV_I420", INT2FIX(cv::COLOR_BGR2YUV_I420)); + rb_define_const(rb_module, "COLOR_RGB2YUV_IYUV", INT2FIX(cv::COLOR_RGB2YUV_IYUV)); + rb_define_const(rb_module, "COLOR_BGR2YUV_IYUV", INT2FIX(cv::COLOR_BGR2YUV_IYUV)); + rb_define_const(rb_module, "COLOR_RGBA2YUV_I420", INT2FIX(cv::COLOR_RGBA2YUV_I420)); + rb_define_const(rb_module, "COLOR_BGRA2YUV_I420", INT2FIX(cv::COLOR_BGRA2YUV_I420)); + rb_define_const(rb_module, "COLOR_RGBA2YUV_IYUV", INT2FIX(cv::COLOR_RGBA2YUV_IYUV)); + rb_define_const(rb_module, "COLOR_BGRA2YUV_IYUV", INT2FIX(cv::COLOR_BGRA2YUV_IYUV)); + rb_define_const(rb_module, "COLOR_RGB2YUV_YV12", INT2FIX(cv::COLOR_RGB2YUV_YV12)); + rb_define_const(rb_module, "COLOR_BGR2YUV_YV12", INT2FIX(cv::COLOR_BGR2YUV_YV12)); + rb_define_const(rb_module, "COLOR_RGBA2YUV_YV12", INT2FIX(cv::COLOR_RGBA2YUV_YV12)); + rb_define_const(rb_module, "COLOR_BGRA2YUV_YV12", INT2FIX(cv::COLOR_BGRA2YUV_YV12)); + rb_define_const(rb_module, "COLOR_BayerBG2BGR", INT2FIX(cv::COLOR_BayerBG2BGR)); + rb_define_const(rb_module, "COLOR_BayerGB2BGR", INT2FIX(cv::COLOR_BayerGB2BGR)); + rb_define_const(rb_module, "COLOR_BayerRG2BGR", INT2FIX(cv::COLOR_BayerRG2BGR)); + rb_define_const(rb_module, "COLOR_BayerGR2BGR", INT2FIX(cv::COLOR_BayerGR2BGR)); + rb_define_const(rb_module, "COLOR_BayerBG2RGB", INT2FIX(cv::COLOR_BayerBG2RGB)); + rb_define_const(rb_module, "COLOR_BayerGB2RGB", INT2FIX(cv::COLOR_BayerGB2RGB)); + rb_define_const(rb_module, "COLOR_BayerRG2RGB", INT2FIX(cv::COLOR_BayerRG2RGB)); + rb_define_const(rb_module, "COLOR_BayerGR2RGB", INT2FIX(cv::COLOR_BayerGR2RGB)); + rb_define_const(rb_module, "COLOR_BayerBG2GRAY", INT2FIX(cv::COLOR_BayerBG2GRAY)); + rb_define_const(rb_module, "COLOR_BayerGB2GRAY", INT2FIX(cv::COLOR_BayerGB2GRAY)); + rb_define_const(rb_module, "COLOR_BayerRG2GRAY", INT2FIX(cv::COLOR_BayerRG2GRAY)); + rb_define_const(rb_module, "COLOR_BayerGR2GRAY", INT2FIX(cv::COLOR_BayerGR2GRAY)); + rb_define_const(rb_module, "COLOR_BayerBG2BGR_VNG", INT2FIX(cv::COLOR_BayerBG2BGR_VNG)); + rb_define_const(rb_module, "COLOR_BayerGB2BGR_VNG", INT2FIX(cv::COLOR_BayerGB2BGR_VNG)); + rb_define_const(rb_module, "COLOR_BayerRG2BGR_VNG", INT2FIX(cv::COLOR_BayerRG2BGR_VNG)); + rb_define_const(rb_module, "COLOR_BayerGR2BGR_VNG", INT2FIX(cv::COLOR_BayerGR2BGR_VNG)); + rb_define_const(rb_module, "COLOR_BayerBG2RGB_VNG", INT2FIX(cv::COLOR_BayerBG2RGB_VNG)); + rb_define_const(rb_module, "COLOR_BayerGB2RGB_VNG", INT2FIX(cv::COLOR_BayerGB2RGB_VNG)); + rb_define_const(rb_module, "COLOR_BayerRG2RGB_VNG", INT2FIX(cv::COLOR_BayerRG2RGB_VNG)); + rb_define_const(rb_module, "COLOR_BayerGR2RGB_VNG", INT2FIX(cv::COLOR_BayerGR2RGB_VNG)); + rb_define_const(rb_module, "COLOR_BayerBG2BGR_EA", INT2FIX(cv::COLOR_BayerBG2BGR_EA)); + rb_define_const(rb_module, "COLOR_BayerGB2BGR_EA", INT2FIX(cv::COLOR_BayerGB2BGR_EA)); + rb_define_const(rb_module, "COLOR_BayerRG2BGR_EA", INT2FIX(cv::COLOR_BayerRG2BGR_EA)); + rb_define_const(rb_module, "COLOR_BayerGR2BGR_EA", INT2FIX(cv::COLOR_BayerGR2BGR_EA)); + rb_define_const(rb_module, "COLOR_BayerBG2RGB_EA", INT2FIX(cv::COLOR_BayerBG2RGB_EA)); + rb_define_const(rb_module, "COLOR_BayerGB2RGB_EA", INT2FIX(cv::COLOR_BayerGB2RGB_EA)); + rb_define_const(rb_module, "COLOR_BayerRG2RGB_EA", INT2FIX(cv::COLOR_BayerRG2RGB_EA)); + rb_define_const(rb_module, "COLOR_BayerGR2RGB_EA", INT2FIX(cv::COLOR_BayerGR2RGB_EA)); + rb_define_const(rb_module, "COLOR_COLORCVT_MAX", INT2FIX(cv::COLOR_COLORCVT_MAX)); + + rb_define_const(rb_module, "CV_LOAD_IMAGE_UNCHANGED", INT2FIX(CV_LOAD_IMAGE_UNCHANGED)); + rb_define_const(rb_module, "CV_LOAD_IMAGE_GRAYSCALE", INT2FIX(CV_LOAD_IMAGE_GRAYSCALE)); + rb_define_const(rb_module, "CV_LOAD_IMAGE_COLOR", INT2FIX(CV_LOAD_IMAGE_COLOR)); + rb_define_const(rb_module, "CV_LOAD_IMAGE_ANYDEPTH", INT2FIX(CV_LOAD_IMAGE_ANYDEPTH)); + rb_define_const(rb_module, "CV_LOAD_IMAGE_ANYCOLOR", INT2FIX(CV_LOAD_IMAGE_ANYCOLOR)); + + rb_define_const(rb_module, "CV_IMWRITE_JPEG_QUALITY", INT2FIX(CV_IMWRITE_JPEG_QUALITY)); + rb_define_const(rb_module, "CV_IMWRITE_JPEG_PROGRESSIVE", INT2FIX(CV_IMWRITE_JPEG_PROGRESSIVE)); + rb_define_const(rb_module, "CV_IMWRITE_JPEG_OPTIMIZE", INT2FIX(CV_IMWRITE_JPEG_OPTIMIZE)); + rb_define_const(rb_module, "CV_IMWRITE_JPEG_RST_INTERVAL", INT2FIX(CV_IMWRITE_JPEG_RST_INTERVAL)); + rb_define_const(rb_module, "CV_IMWRITE_JPEG_LUMA_QUALITY", INT2FIX(CV_IMWRITE_JPEG_LUMA_QUALITY)); + rb_define_const(rb_module, "CV_IMWRITE_JPEG_CHROMA_QUALITY", INT2FIX(CV_IMWRITE_JPEG_CHROMA_QUALITY)); + rb_define_const(rb_module, "CV_IMWRITE_PNG_COMPRESSION", INT2FIX(CV_IMWRITE_PNG_COMPRESSION)); + rb_define_const(rb_module, "CV_IMWRITE_PNG_STRATEGY", INT2FIX(CV_IMWRITE_PNG_STRATEGY)); + rb_define_const(rb_module, "CV_IMWRITE_PNG_BILEVEL", INT2FIX(CV_IMWRITE_PNG_BILEVEL)); + rb_define_const(rb_module, "CV_IMWRITE_PNG_STRATEGY_DEFAULT", INT2FIX(CV_IMWRITE_PNG_STRATEGY_DEFAULT)); + rb_define_const(rb_module, "CV_IMWRITE_PNG_STRATEGY_FILTERED", INT2FIX(CV_IMWRITE_PNG_STRATEGY_FILTERED)); + rb_define_const(rb_module, "CV_IMWRITE_PNG_STRATEGY_HUFFMAN_ONLY", INT2FIX(CV_IMWRITE_PNG_STRATEGY_HUFFMAN_ONLY)); + rb_define_const(rb_module, "CV_IMWRITE_PNG_STRATEGY_RLE", INT2FIX(CV_IMWRITE_PNG_STRATEGY_RLE)); + rb_define_const(rb_module, "CV_IMWRITE_PNG_STRATEGY_FIXED", INT2FIX(CV_IMWRITE_PNG_STRATEGY_FIXED)); + rb_define_const(rb_module, "CV_IMWRITE_PXM_BINARY", INT2FIX(CV_IMWRITE_PXM_BINARY)); + rb_define_const(rb_module, "CV_IMWRITE_WEBP_QUALITY", INT2FIX(CV_IMWRITE_WEBP_QUALITY)); + + rb_define_const(rb_module, "IMREAD_UNCHANGED", INT2FIX(cv::IMREAD_UNCHANGED)); + rb_define_const(rb_module, "IMREAD_GRAYSCALE", INT2FIX(cv::IMREAD_GRAYSCALE)); + rb_define_const(rb_module, "IMREAD_COLOR", INT2FIX(cv::IMREAD_COLOR)); + rb_define_const(rb_module, "IMREAD_ANYDEPTH", INT2FIX(cv::IMREAD_ANYDEPTH)); + rb_define_const(rb_module, "IMREAD_ANYCOLOR", INT2FIX(cv::IMREAD_ANYCOLOR)); + rb_define_const(rb_module, "IMREAD_LOAD_GDAL", INT2FIX(cv::IMREAD_LOAD_GDAL)); + rb_define_const(rb_module, "IMREAD_REDUCED_GRAYSCALE_2", INT2FIX(cv::IMREAD_REDUCED_GRAYSCALE_2)); + rb_define_const(rb_module, "IMREAD_REDUCED_COLOR_2", INT2FIX(cv::IMREAD_REDUCED_COLOR_2)); + rb_define_const(rb_module, "IMREAD_REDUCED_GRAYSCALE_4", INT2FIX(cv::IMREAD_REDUCED_GRAYSCALE_4)); + rb_define_const(rb_module, "IMREAD_REDUCED_COLOR_4", INT2FIX(cv::IMREAD_REDUCED_COLOR_4)); + rb_define_const(rb_module, "IMREAD_REDUCED_GRAYSCALE_8", INT2FIX(cv::IMREAD_REDUCED_GRAYSCALE_8)); + rb_define_const(rb_module, "IMREAD_REDUCED_COLOR_8", INT2FIX(cv::IMREAD_REDUCED_COLOR_8)); + rb_define_const(rb_module, "IMWRITE_JPEG_QUALITY", INT2FIX(cv::IMWRITE_JPEG_QUALITY)); + rb_define_const(rb_module, "IMWRITE_JPEG_PROGRESSIVE", INT2FIX(cv::IMWRITE_JPEG_PROGRESSIVE)); + rb_define_const(rb_module, "IMWRITE_JPEG_OPTIMIZE", INT2FIX(cv::IMWRITE_JPEG_OPTIMIZE)); + rb_define_const(rb_module, "IMWRITE_JPEG_RST_INTERVAL", INT2FIX(cv::IMWRITE_JPEG_RST_INTERVAL)); + rb_define_const(rb_module, "IMWRITE_JPEG_LUMA_QUALITY", INT2FIX(cv::IMWRITE_JPEG_LUMA_QUALITY)); + rb_define_const(rb_module, "IMWRITE_JPEG_CHROMA_QUALITY", INT2FIX(cv::IMWRITE_JPEG_CHROMA_QUALITY)); + rb_define_const(rb_module, "IMWRITE_PNG_COMPRESSION", INT2FIX(cv::IMWRITE_PNG_COMPRESSION)); + rb_define_const(rb_module, "IMWRITE_PNG_STRATEGY", INT2FIX(cv::IMWRITE_PNG_STRATEGY)); + rb_define_const(rb_module, "IMWRITE_PNG_BILEVEL", INT2FIX(cv::IMWRITE_PNG_BILEVEL)); + rb_define_const(rb_module, "IMWRITE_PXM_BINARY", INT2FIX(cv::IMWRITE_PXM_BINARY)); + rb_define_const(rb_module, "IMWRITE_WEBP_QUALITY", INT2FIX(cv::IMWRITE_WEBP_QUALITY)); + rb_define_const(rb_module, "IMWRITE_PNG_STRATEGY_DEFAULT", INT2FIX(cv::IMWRITE_PNG_STRATEGY_DEFAULT)); + rb_define_const(rb_module, "IMWRITE_PNG_STRATEGY_FILTERED", INT2FIX(cv::IMWRITE_PNG_STRATEGY_FILTERED)); + rb_define_const(rb_module, "IMWRITE_PNG_STRATEGY_HUFFMAN_ONLY", INT2FIX(cv::IMWRITE_PNG_STRATEGY_HUFFMAN_ONLY)); + rb_define_const(rb_module, "IMWRITE_PNG_STRATEGY_RLE", INT2FIX(cv::IMWRITE_PNG_STRATEGY_RLE)); + rb_define_const(rb_module, "IMWRITE_PNG_STRATEGY_FIXED", INT2FIX(cv::IMWRITE_PNG_STRATEGY_FIXED)); + + rb_define_const(rb_module, "CV_AA", INT2FIX(CV_AA)); + + rb_define_const(rb_module, "INTER_NEAREST", INT2FIX(cv::INTER_NEAREST)); + rb_define_const(rb_module, "INTER_LINEAR", INT2FIX(cv::INTER_LINEAR)); + rb_define_const(rb_module, "INTER_AREA", INT2FIX(cv::INTER_AREA)); + rb_define_const(rb_module, "INTER_CUBIC", INT2FIX(cv::INTER_CUBIC)); + rb_define_const(rb_module, "INTER_LANCZOS4", INT2FIX(cv::INTER_LANCZOS4)); + + rb_define_const(rb_module, "BORDER_CONSTANT", INT2FIX(cv::BORDER_CONSTANT)); + rb_define_const(rb_module, "BORDER_REPLICATE", INT2FIX(cv::BORDER_REPLICATE)); + rb_define_const(rb_module, "BORDER_REFLECT", INT2FIX(cv::BORDER_REFLECT)); + rb_define_const(rb_module, "BORDER_WRAP", INT2FIX(cv::BORDER_WRAP)); + rb_define_const(rb_module, "BORDER_REFLECT_101", INT2FIX(cv::BORDER_REFLECT_101)); + rb_define_const(rb_module, "BORDER_TRANSPARENT", INT2FIX(cv::BORDER_TRANSPARENT)); + rb_define_const(rb_module, "BORDER_REFLECT101", INT2FIX(cv::BORDER_REFLECT101)); + rb_define_const(rb_module, "BORDER_DEFAULT", INT2FIX(cv::BORDER_DEFAULT)); + rb_define_const(rb_module, "BORDER_ISOLATED", INT2FIX(cv::BORDER_ISOLATED)); + + rb_define_const(rb_module, "EVENT_MOUSEMOVE", INT2FIX(cv::EVENT_MOUSEMOVE)); + rb_define_const(rb_module, "EVENT_LBUTTONDOWN", INT2FIX(cv::EVENT_LBUTTONDOWN)); + rb_define_const(rb_module, "EVENT_RBUTTONDOWN", INT2FIX(cv::EVENT_RBUTTONDOWN)); + rb_define_const(rb_module, "EVENT_MBUTTONDOWN", INT2FIX(cv::EVENT_MBUTTONDOWN)); + rb_define_const(rb_module, "EVENT_LBUTTONUP", INT2FIX(cv::EVENT_LBUTTONUP)); + rb_define_const(rb_module, "EVENT_RBUTTONUP", INT2FIX(cv::EVENT_RBUTTONUP)); + rb_define_const(rb_module, "EVENT_MBUTTONUP", INT2FIX(cv::EVENT_MBUTTONUP)); + rb_define_const(rb_module, "EVENT_LBUTTONDBLCLK", INT2FIX(cv::EVENT_LBUTTONDBLCLK)); + rb_define_const(rb_module, "EVENT_RBUTTONDBLCLK", INT2FIX(cv::EVENT_RBUTTONDBLCLK)); + rb_define_const(rb_module, "EVENT_MBUTTONDBLCLK", INT2FIX(cv::EVENT_MBUTTONDBLCLK)); + rb_define_const(rb_module, "EVENT_MOUSEWHEEL", INT2FIX(cv::EVENT_MOUSEWHEEL)); + rb_define_const(rb_module, "EVENT_MOUSEHWHEEL", INT2FIX(cv::EVENT_MOUSEHWHEEL)); + rb_define_const(rb_module, "EVENT_FLAG_LBUTTON", INT2FIX(cv::EVENT_FLAG_LBUTTON)); + rb_define_const(rb_module, "EVENT_FLAG_RBUTTON", INT2FIX(cv::EVENT_FLAG_RBUTTON)); + rb_define_const(rb_module, "EVENT_FLAG_MBUTTON", INT2FIX(cv::EVENT_FLAG_MBUTTON)); + rb_define_const(rb_module, "EVENT_FLAG_CTRLKEY", INT2FIX(cv::EVENT_FLAG_CTRLKEY)); + rb_define_const(rb_module, "EVENT_FLAG_SHIFTKEY", INT2FIX(cv::EVENT_FLAG_SHIFTKEY)); + rb_define_const(rb_module, "EVENT_FLAG_ALTKEY", INT2FIX(cv::EVENT_FLAG_ALTKEY)); + + rb_define_const(rb_module, "CAP_PROP_POS_MSEC", INT2FIX(cv::CAP_PROP_POS_MSEC)); + rb_define_const(rb_module, "CAP_PROP_POS_FRAMES", INT2FIX(cv::CAP_PROP_POS_FRAMES)); + rb_define_const(rb_module, "CAP_PROP_POS_AVI_RATIO", INT2FIX(cv::CAP_PROP_POS_AVI_RATIO)); + rb_define_const(rb_module, "CAP_PROP_FRAME_WIDTH", INT2FIX(cv::CAP_PROP_FRAME_WIDTH)); + rb_define_const(rb_module, "CAP_PROP_FRAME_HEIGHT", INT2FIX(cv::CAP_PROP_FRAME_HEIGHT)); + rb_define_const(rb_module, "CAP_PROP_FPS", INT2FIX(cv::CAP_PROP_FPS)); + rb_define_const(rb_module, "CAP_PROP_FOURCC", INT2FIX(cv::CAP_PROP_FOURCC)); + rb_define_const(rb_module, "CAP_PROP_FRAME_COUNT", INT2FIX(cv::CAP_PROP_FRAME_COUNT)); + rb_define_const(rb_module, "CAP_PROP_FORMAT", INT2FIX(cv::CAP_PROP_FORMAT)); + rb_define_const(rb_module, "CAP_PROP_MODE", INT2FIX(cv::CAP_PROP_MODE)); + rb_define_const(rb_module, "CAP_PROP_BRIGHTNESS", INT2FIX(cv::CAP_PROP_BRIGHTNESS)); + rb_define_const(rb_module, "CAP_PROP_CONTRAST", INT2FIX(cv::CAP_PROP_CONTRAST)); + rb_define_const(rb_module, "CAP_PROP_SATURATION", INT2FIX(cv::CAP_PROP_SATURATION)); + rb_define_const(rb_module, "CAP_PROP_HUE", INT2FIX(cv::CAP_PROP_HUE)); + rb_define_const(rb_module, "CAP_PROP_GAIN", INT2FIX(cv::CAP_PROP_GAIN)); + rb_define_const(rb_module, "CAP_PROP_EXPOSURE", INT2FIX(cv::CAP_PROP_EXPOSURE)); + rb_define_const(rb_module, "CAP_PROP_CONVERT_RGB", INT2FIX(cv::CAP_PROP_CONVERT_RGB)); + rb_define_const(rb_module, "CAP_PROP_WHITE_BALANCE_BLUE_U", INT2FIX(cv::CAP_PROP_WHITE_BALANCE_BLUE_U)); + rb_define_const(rb_module, "CAP_PROP_RECTIFICATION", INT2FIX(cv::CAP_PROP_RECTIFICATION)); + rb_define_const(rb_module, "CAP_PROP_MONOCHROME", INT2FIX(cv::CAP_PROP_MONOCHROME)); + rb_define_const(rb_module, "CAP_PROP_SHARPNESS", INT2FIX(cv::CAP_PROP_SHARPNESS)); + rb_define_const(rb_module, "CAP_PROP_AUTO_EXPOSURE", INT2FIX(cv::CAP_PROP_AUTO_EXPOSURE)); + rb_define_const(rb_module, "CAP_PROP_GAMMA", INT2FIX(cv::CAP_PROP_GAMMA)); + rb_define_const(rb_module, "CAP_PROP_TEMPERATURE", INT2FIX(cv::CAP_PROP_TEMPERATURE)); + rb_define_const(rb_module, "CAP_PROP_TRIGGER", INT2FIX(cv::CAP_PROP_TRIGGER)); + rb_define_const(rb_module, "CAP_PROP_TRIGGER_DELAY", INT2FIX(cv::CAP_PROP_TRIGGER_DELAY)); + rb_define_const(rb_module, "CAP_PROP_WHITE_BALANCE_RED_V", INT2FIX(cv::CAP_PROP_WHITE_BALANCE_RED_V)); + rb_define_const(rb_module, "CAP_PROP_ZOOM", INT2FIX(cv::CAP_PROP_ZOOM)); + rb_define_const(rb_module, "CAP_PROP_FOCUS", INT2FIX(cv::CAP_PROP_FOCUS)); + rb_define_const(rb_module, "CAP_PROP_GUID", INT2FIX(cv::CAP_PROP_GUID)); + rb_define_const(rb_module, "CAP_PROP_ISO_SPEED", INT2FIX(cv::CAP_PROP_ISO_SPEED)); + rb_define_const(rb_module, "CAP_PROP_BACKLIGHT", INT2FIX(cv::CAP_PROP_BACKLIGHT)); + rb_define_const(rb_module, "CAP_PROP_PAN", INT2FIX(cv::CAP_PROP_PAN)); + rb_define_const(rb_module, "CAP_PROP_TILT", INT2FIX(cv::CAP_PROP_TILT)); + rb_define_const(rb_module, "CAP_PROP_ROLL", INT2FIX(cv::CAP_PROP_ROLL)); + rb_define_const(rb_module, "CAP_PROP_IRIS", INT2FIX(cv::CAP_PROP_IRIS)); + rb_define_const(rb_module, "CAP_PROP_SETTINGS", INT2FIX(cv::CAP_PROP_SETTINGS)); + rb_define_const(rb_module, "CAP_PROP_BUFFERSIZE", INT2FIX(cv::CAP_PROP_BUFFERSIZE)); + rb_define_const(rb_module, "CAP_PROP_AUTOFOCUS", INT2FIX(cv::CAP_PROP_AUTOFOCUS)); + } +} diff --git a/ext/opencv/opencv_const.hpp b/ext/opencv/opencv_const.hpp new file mode 100644 index 0000000..ed8a8d8 --- /dev/null +++ b/ext/opencv/opencv_const.hpp @@ -0,0 +1,5 @@ +#include "ruby.h" + +namespace rubyopencv { + void define_const(VALUE rb_module); +} diff --git a/ext/opencv/point.cpp b/ext/opencv/point.cpp new file mode 100644 index 0000000..311729f --- /dev/null +++ b/ext/opencv/point.cpp @@ -0,0 +1,167 @@ +#include "ruby.h" +#include "opencv2/core.hpp" + +#include "point.hpp" + +namespace rubyopencv { + namespace Point { + void free_point(void* ptr); + size_t memsize_point(const void* ptr); + + VALUE rb_klass = Qnil; + rb_data_type_t opencv_point_type = { + "Point", + { 0, free_point, memsize_point, 0 }, + 0, + 0, + 0 + }; + + size_t memsize_point(const void* ptr) { + return sizeof(cv::Point); + } + + cv::Point* obj2point(VALUE obj) { + cv::Point* ptr = NULL; + TypedData_Get_Struct(obj, cv::Point, &opencv_point_type, ptr); + return ptr; + } + + VALUE point2obj(cv::Point* ptr) { + return TypedData_Wrap_Struct(rb_klass, &opencv_point_type, (void*)ptr); + } + + cv::Point conpatible_obj2point(VALUE obj) { + if (rb_respond_to(obj, rb_intern("x")) && rb_respond_to(obj, rb_intern("y"))) { + return cv::Point(NUM2INT(rb_funcall(obj, rb_intern("x"), 0)), + NUM2INT(rb_funcall(obj, rb_intern("y"), 0))); + } + rb_raise(rb_eArgError, "x y"); + } + + void free_point(void* ptr) { + xfree(ptr); + } + + VALUE rb_allocate(VALUE klass) { + cv::Point* ptr = NULL; + return TypedData_Make_Struct(klass, cv::Point, &opencv_point_type, ptr); + } + + /* + * call-seq: + * new -> OpenCV::Point.new(0, 0) + * new(obj) -> OpenCV::Point.new(obj.x.to_i, obj.y.to_i) + * new(x, y) + * + * Create new 2D-coordinate, (x, y). It is dropped below the decimal point. + * + * new() is same as new(0, 0) + * + * new(obj) is same as new(obj.x.to_i, obj.y.to_i) + */ + VALUE rb_initialize(int argc, VALUE *argv, VALUE self) { + VALUE v1, v2; + rb_scan_args(argc, argv, "02", &v1, &v2); + cv::Point* selfptr = obj2point(self); + switch (argc) { + case 0: + selfptr->x = 0; + selfptr->y = 0; + break; + case 1: { + // cv::Point point = VALUE_TO_CVPOINT(argv[0]); + // selfptr->x = point.x; + // selfptr->y = point.y; + break; + } + case 2: + selfptr->x = NUM2INT(v1); + selfptr->y = NUM2INT(v2); + break; + default: + rb_raise(rb_eArgError, "wrong number of arguments (%d for 0..2)", argc); + break; + } + + return self; + } + + /* + * Return parameter on x-axis. + */ + VALUE rb_x(VALUE self) { + return INT2NUM(obj2point(self)->x); + } + + /* + * call-seq: + * x = val + */ + VALUE rb_set_x(VALUE self, VALUE x) { + obj2point(self)->x = NUM2INT(x); + return self; + } + + /* + * Return parameter on y-axis. + */ + VALUE rb_y(VALUE self) { + return INT2NUM(obj2point(self)->y); + } + + /* + * call-seq: + * y = val + */ + VALUE rb_set_y(VALUE self, VALUE y) { + obj2point(self)->y = NUM2INT(y); + return self; + } + + /* + * call-seq: + * to_s -> string + * + * Return x and y by String. + */ + VALUE rb_to_s(VALUE self) { + const int i = 4; + VALUE str[i]; + str[0] = rb_str_new2("<%s:(%d,%d)>"); + str[1] = rb_str_new2(rb_class2name(CLASS_OF(self))); + str[2] = rb_x(self); + str[3] = rb_y(self); + return rb_f_sprintf(i, str); + } + + /* + * call-seq: + * to_a -> [x, y] + * + * Return x and y by Array. + */ + VALUE rb_to_a(VALUE self) { + cv::Point* selfptr = obj2point(self); + return rb_ary_new3(2, INT2NUM(selfptr->x), INT2NUM(selfptr->y)); + } + + void init() { + VALUE opencv = rb_define_module("OpenCV"); + + rb_klass = rb_define_class_under(opencv, "Point", rb_cData); + rb_define_alloc_func(rb_klass, rb_allocate); + // rb_define_singleton_method(rb_klass, "compatible?", RUBY_METHOD_FUNC(rb_compatible_q), 1); + rb_define_method(rb_klass, "initialize", RUBY_METHOD_FUNC(rb_initialize), -1); + rb_define_method(rb_klass, "x", RUBY_METHOD_FUNC(rb_x), 0); + rb_define_method(rb_klass, "x=", RUBY_METHOD_FUNC(rb_set_x), 1); + rb_define_method(rb_klass, "y", RUBY_METHOD_FUNC(rb_y), 0); + rb_define_method(rb_klass, "y=", RUBY_METHOD_FUNC(rb_set_y), 1); + + rb_define_method(rb_klass, "to_s", RUBY_METHOD_FUNC(rb_to_s), 0); + rb_define_method(rb_klass, "to_a", RUBY_METHOD_FUNC(rb_to_a), 0); + // rb_define_alias(rb_klass, "to_a", "to_ary"); + } + } +} + diff --git a/ext/opencv/point.hpp b/ext/opencv/point.hpp new file mode 100644 index 0000000..7d1ef7c --- /dev/null +++ b/ext/opencv/point.hpp @@ -0,0 +1,11 @@ +#ifndef RUBY_OPENCV_POINT_H +#define RUBY_OPENCV_POINT_H + +namespace rubyopencv { + namespace Point { + void init(); + cv::Point conpatible_obj2point(VALUE obj); + } +} + +#endif // RUBY_OPENCV_POINT_H diff --git a/ext/opencv/pointset.cpp b/ext/opencv/pointset.cpp deleted file mode 100644 index 3afbcdd..0000000 --- a/ext/opencv/pointset.cpp +++ /dev/null @@ -1,280 +0,0 @@ -/************************************************************ - - pointset.cpp - - - $Author: lsxi $ - - Copyright (C) 2005-2006 Masakazu Yonekura - -************************************************************/ -#include "pointset.h" -/* - * Document-class: OpenCV::PointSet - */ - -__NAMESPACE_BEGIN_OPENCV -__NAMESPACE_BEGIN_POINT_SET - -VALUE module; - -VALUE -rb_module() -{ - return module; -} - -/* - * call-seq: - * contour_area -> float - * - * Calculates area of the whole contour or contour section. - * - * note: Orientation of the contour affects the area sign, thus the method may return negative result. - */ -VALUE -rb_contour_area(int argc, VALUE *argv, VALUE self) -{ - VALUE slice; - rb_scan_args(argc, argv, "01", &slice); - double area = 0; - try { - area = cvContourArea(CVARR(self), NIL_P(slice) ? CV_WHOLE_SEQ : VALUE_TO_CVSLICE(slice)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return rb_float_new(area); -} - -/* - * call-seq: - * fit_ellipse2 -> cvbox2d - * - * Return fits ellipse to set of 2D points. - */ -VALUE -rb_fit_ellipse2(VALUE self) -{ - CvBox2D box; - try { - box = cvFitEllipse2(CVARR(self)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return cCvBox2D::new_object(box); -} - -/* - * call-seq: - * convex_hull2([orientation_clockwise = true]) -> cvcontour - * - * Finds convex hull of 2D point set using Sklansky's algorithm. - * - * orientation_clockwise: Desired orientation of convex hull (true: clockwise, false: counter clockwise). - */ -VALUE -rb_convex_hull2(int argc, VALUE *argv, VALUE self) -{ - VALUE clockwise, return_points; - rb_scan_args(argc, argv, "02", &clockwise, &return_points); - VALUE storage = cCvMemStorage::new_object(); - CvSeq *hull = NULL; - int return_pts = TRUE_OR_FALSE(return_points, 1); - try { - hull = cvConvexHull2(CVSEQ(self), CVMEMSTORAGE(storage), - TRUE_OR_FALSE(clockwise, 1) ? CV_CLOCKWISE : CV_COUNTER_CLOCKWISE, - return_pts); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return cCvSeq::new_sequence(cCvContour::rb_class(), hull, cCvPoint::rb_class(), storage); -} - -/* - * call-seq: - * check_contour_convexity -> true or false - * - * Tests whether the input contour is convex or not. The contour must be simple, i.e. without self-intersections. - */ -VALUE -rb_check_contour_convexity(VALUE self) -{ - int convexity = 0; - try { - convexity = cvCheckContourConvexity(CVARR(self)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return convexity ? Qtrue : Qfalse; -} - -/* - * call-seq: - * convexity_defects(hull) -> cvseq(include CvConvexityDefect) - * - * Finds convexity defects of contour. - */ -VALUE -rb_convexity_defects(VALUE self, VALUE hull) -{ - CvSeq *defects = NULL; - CvSeq *hull_seq = CVSEQ_WITH_CHECK(hull); - VALUE storage = cCvMemStorage::new_object(); - CvMemStorage *storage_ptr = CVMEMSTORAGE(storage); - try { - defects = cvConvexityDefects(CVSEQ(self), hull_seq, storage_ptr); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return cCvSeq::new_sequence(cCvSeq::rb_class(), defects, cCvConvexityDefect::rb_class(), storage); -} - -/* - * call-seq: - * min_area_rect2 -> cvbox2d - * - * Finds circumscribed rectangle of minimal area for given 2D point set. - */ -VALUE -rb_min_area_rect2(VALUE self) -{ - VALUE storage = cCvMemStorage::new_object(); - CvBox2D rect; - try { - rect = cvMinAreaRect2(CVARR(self), CVMEMSTORAGE(storage)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return cCvBox2D::new_object(rect); -} - -/* - * call-seq: - * min_enclosing_circle -> cvcircle32f - * - * Finds circumscribed circle of minimal area for given 2D point set. - */ -VALUE -rb_min_enclosing_circle(VALUE self) -{ - VALUE circle = cCvCircle32f::rb_allocate(cCvCircle32f::rb_class()); - int success = 0; - try { - success = cvMinEnclosingCircle(CVARR(self), &CVCIRCLE32F(circle)->center, - &CVCIRCLE32F(circle)->radius); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return success ? circle : Qnil; -} - -void -init_ruby_module() -{ -#if 0 - // For documentation using YARD - VALUE opencv = rb_define_module("OpenCV"); -#endif - - if (module) - return; - /* - * opencv = rb_define_module("OpenCV"); - * - * note: this comment is used by rdoc. - */ - VALUE opencv = rb_module_opencv(); - module = rb_define_module_under(opencv, "PointSet"); - rb_define_method(module, "contour_area", RUBY_METHOD_FUNC(rb_contour_area), -1); - rb_define_method(module, "fit_ellipse2", RUBY_METHOD_FUNC(rb_fit_ellipse2), 0); - - rb_define_method(module, "convex_hull2", RUBY_METHOD_FUNC(rb_convex_hull2), -1); - rb_define_method(module, "check_contour_convexity", RUBY_METHOD_FUNC(rb_check_contour_convexity), 0); - rb_define_alias(module, "convexity?", "check_contour_convexity"); - rb_define_method(module, "convexity_defects", RUBY_METHOD_FUNC(rb_convexity_defects), 1); - rb_define_method(module, "min_area_rect2", RUBY_METHOD_FUNC(rb_min_area_rect2), 0); - rb_define_method(module, "min_enclosing_circle", RUBY_METHOD_FUNC(rb_min_enclosing_circle), 0); -} - -__NAMESPACE_END_POINT_SET - -int -CVPOINTS_FROM_POINT_SET(VALUE object, CvPoint **pointset) -{ - if (rb_obj_is_kind_of(object, cCvSeq::rb_class())) { - if (CV_IS_SEQ_POINT_SET(CVSEQ(object))) { - *pointset = (CvPoint*)cvCvtSeqToArray(CVSEQ(object), - rb_cvAlloc(CVSEQ(object)->total * CVSEQ(object)->elem_size)); - return CVSEQ(object)->total; - } - else { - rb_raise(rb_eTypeError, "sequence does not contain %s or %s.", - rb_class2name(cCvPoint::rb_class()), rb_class2name(cCvPoint2D32f::rb_class())); - } - } - else if (rb_obj_is_kind_of(object, cCvMat::rb_class())) { - /* to do */ - rb_raise(rb_eNotImpError, "CvMat to CvSeq conversion not implemented."); - } - else if (rb_obj_is_kind_of(object, rb_cArray)) { - int len = RARRAY_LEN(object); - *pointset = (CvPoint*)rb_cvAlloc(len * sizeof(CvPoint)); - ID id_x = rb_intern("x"); - ID id_y = rb_intern("y"); - for (int i = 0; i < len; ++i) { - (*pointset)[i].x = NUM2INT(rb_funcall(rb_ary_entry(object, i), id_x, 0)); - (*pointset)[i].y = NUM2INT(rb_funcall(rb_ary_entry(object, i), id_y, 0)); - } - return len; - } - else { - rb_raise(rb_eTypeError, "Can't convert CvSeq(PointSet)."); - } -} - -CvSeq* -VALUE_TO_POINT_SET(VALUE object) -{ - CvSeq *seq = 0; - VALUE tmp, storage; - int length; - CvPoint2D32f p32; - if (rb_obj_is_kind_of(object, cCvSeq::rb_class())) { - seq = CVSEQ(object); - if (CV_IS_SEQ_POINT_SET(seq)) { - return seq; - } - else { - rb_raise(rb_eTypeError, "sequence is not contain %s or %s.", rb_class2name(cCvPoint::rb_class()), rb_class2name(cCvPoint2D32f::rb_class())); - } - } - else if (rb_obj_is_kind_of(object, cCvMat::rb_class())) { - /* to do */ - rb_raise(rb_eNotImpError, "CvMat to CvSeq conversion not implemented."); - } - else if (rb_obj_is_kind_of(object, rb_cArray)) { - //pointset = cCvSeq::new_sequence(cCvSeq::rb_class(), ) - length = RARRAY_LEN(object); - storage = cCvMemStorage::new_object(); - seq = cvCreateSeq(CV_SEQ_POINT_SET, sizeof(CvSeq), sizeof(CvPoint), CVMEMSTORAGE(storage)); - for (int i = 0; i < RARRAY_LEN(object); i++) { - p32.x = NUM2DBL(rb_funcall(rb_ary_entry(object, i), rb_intern("x"), 0)); - p32.y = NUM2DBL(rb_funcall(rb_ary_entry(object, i), rb_intern("y"), 0)); - cvSeqPush(seq, &p32); - } - tmp = cCvSeq::new_sequence(cCvSeq::rb_class(), seq, cCvPoint2D32f::rb_class(), storage); - return seq; - } - else { - rb_raise(rb_eTypeError, "Can't convert CvSeq(PointSet)."); - } -} - -__NAMESPACE_END_OPENCV - diff --git a/ext/opencv/pointset.h b/ext/opencv/pointset.h deleted file mode 100644 index 99c38f7..0000000 --- a/ext/opencv/pointset.h +++ /dev/null @@ -1,68 +0,0 @@ -/************************************************************ - - pointset.h - - - $Author: lsxi $ - - Copyright (C) 2005-2006 Masakazu Yonekura - -************************************************************/ -#ifndef RUBY_OPENCV_POINTSET_H -#define RUBY_OPENCV_POINTSET_H - -#define __NAMESPACE_BEGIN_POINT_SET namespace mPointSet { -#define __NAMESPACE_END_POINT_SET } - -#include "opencv.h" - -__NAMESPACE_BEGIN_OPENCV -__NAMESPACE_BEGIN_POINT_SET - -VALUE rb_module(); - -void init_ruby_module(); -VALUE rb_contour_area(int argc, VALUE *argv, VALUE self); -VALUE rb_fit_ellipse2(VALUE self); -VALUE rb_convex_hull2(int argc, VALUE *argv, VALUE self); -VALUE rb_fit_line(int argc, VALUE *argv, VALUE self); -VALUE rb_check_contour_convexity(VALUE self); -VALUE rb_convexity_defects(VALUE self, VALUE hull); -VALUE rb_min_area_rect2(VALUE self); -VALUE rb_min_enclosing_circle(VALUE self); - -__NAMESPACE_END_POINT_SET - -#define POINT_SET_P(object) rb_obj_is_kind_of(object, cCvSeq::rb_class()) && CV_IS_SEQ_POINT_SET(CVSEQ(object)) - -/* -inline CvPoint* -POINTSET(VALUE object) -{ - CvPoint *pointset = (CvPoint*)cvAlloc(CVSEQ(object)->total * sizeof(CvPoint)); - cvCvtSeqToArray(CVSEQ(object), pointset, CV_WHOLE_SEQ); - if (cCvSeq::seqblock_class(CVSEQ(object)) == cCvPoint2D32f::rb_class()) { - for(int i =0; i < CVSEQ(object)->total; i++) - pointset[i] = cvPointFrom32f(((CvPoint2D32f*)pointset)[i]); - } - return pointset; -} - -inline CvPoint2D32f* -POINTSET2D32f(VALUE object) -{ - CvPoint2D32f *pointset = (CvPoint2D32f*)cvAlloc(CVSEQ(object)->total * sizeof(CvPoint2D32f)); - cvCvtSeqToArray(CVSEQ(object), pointset, CV_WHOLE_SEQ); - if (cCvSeq::seqblock_class(CVSEQ(object)) == cCvPoint::rb_class()) { - for(int i = 0; i < CVSEQ(object)->total; i++) - pointset[i] = cvPointTo32f(((CvPoint*)pointset)[i]); - } - return pointset; -} -*/ - -int CVPOINTS_FROM_POINT_SET(VALUE object, CvPoint **pointset); -CvSeq* VALUE_TO_POINT_SET(VALUE object); - -__NAMESPACE_END_OPENCV - -#endif // RUBY_OPENCV_POINTSET_H diff --git a/ext/opencv/rect.cpp b/ext/opencv/rect.cpp new file mode 100644 index 0000000..5f044a9 --- /dev/null +++ b/ext/opencv/rect.cpp @@ -0,0 +1,158 @@ +#include "ruby.h" +#include "opencv2/core.hpp" + +#include "error.hpp" + +/* + * Document-class: OpenCV::Rect + */ +namespace rubyopencv { + namespace Rect { + void free_rect(void* ptr); + size_t memsize_rect(const void* ptr); + + VALUE rb_klass = Qnil; + rb_data_type_t opencv_rect_type = { + "Rect", + { 0, free_rect, memsize_rect, 0 }, + 0, + 0, + 0 + }; + + void free_rect(void* ptr) { + delete (cv::Rect*)ptr; + } + + size_t memsize_rect(const void* ptr) { + return sizeof(cv::Rect); + } + + cv::Rect* obj2rect(VALUE obj) { + cv::Rect* ptr = NULL; + TypedData_Get_Struct(obj, cv::Rect, &opencv_rect_type, ptr); + return ptr; + } + + VALUE rect2obj (cv::Rect rect) { + cv::Rect* ptr = new cv::Rect(rect); + return TypedData_Wrap_Struct(rb_klass, &opencv_rect_type, ptr); + } + + VALUE rb_allocate(VALUE klass) { + cv::Rect* ptr = new cv::Rect(); + return TypedData_Wrap_Struct(klass, &opencv_rect_type, ptr); + } + + VALUE rb_initialize(int argc, VALUE *argv, VALUE self) { + const int SIZE = 4; + VALUE values[SIZE]; + rb_scan_args(argc, argv, "04", &values[0], &values[1], &values[2], &values[3]); + + cv::Rect* selfptr = obj2rect(self); + switch (argc) { + case 0: + selfptr->x = 0; + selfptr->y = 0; + selfptr->width = 0; + selfptr->height = 0; + break; + case 4: + selfptr->x = NUM2INT(values[0]); + selfptr->y = NUM2INT(values[1]); + selfptr->width = NUM2INT(values[2]); + selfptr->height = NUM2INT(values[3]); + break; + } + + return self; + } + + /* + * Return parameter on x-axis. + */ + VALUE rb_x(VALUE self) { + return INT2NUM(obj2rect(self)->x); + } + + /* + * call-seq: + * x = val + */ + VALUE rb_set_x(VALUE self, VALUE x) { + obj2rect(self)->x = NUM2INT(x); + return self; + } + + /* + * Return parameter on y-axis. + */ + VALUE rb_y(VALUE self) { + return INT2NUM(obj2rect(self)->y); + } + + /* + * call-seq: + * y = val + */ + VALUE rb_set_y(VALUE self, VALUE y) { + obj2rect(self)->y = NUM2INT(y); + return self; + } + + VALUE rb_width(VALUE self) { + return INT2NUM(obj2rect(self)->width); + } + + VALUE rb_set_width(VALUE self, VALUE width) { + obj2rect(self)->width = NUM2INT(width); + return self; + } + + VALUE rb_height(VALUE self) { + return INT2NUM(obj2rect(self)->height); + } + + VALUE rb_set_height(VALUE self, VALUE height) { + obj2rect(self)->height = NUM2INT(height); + return self; + } + + /* + * @overload to_s + * @return [String] String representation of the rectangle + */ + VALUE rb_to_s(VALUE self) { + std::stringstream s; + cv::Rect* selfptr = obj2rect(self); + s << *selfptr; + + VALUE param[3]; + param[0] = rb_str_new2("#<%s:%s>"); + param[1] = rb_str_new2(rb_class2name(CLASS_OF(self))); + param[2] = rb_str_new2(s.str().c_str()); + + int n = sizeof(param) / sizeof(param[0]); + return rb_f_sprintf(n, param); + } + + void init() { + VALUE opencv = rb_define_module("OpenCV"); + + rb_klass = rb_define_class_under(opencv, "Rect", rb_cData); + rb_define_alloc_func(rb_klass, rb_allocate); + + rb_define_private_method(rb_klass, "initialize", RUBY_METHOD_FUNC(rb_initialize), -1); + rb_define_method(rb_klass, "to_s", RUBY_METHOD_FUNC(rb_to_s), 0); + rb_define_method(rb_klass, "x", RUBY_METHOD_FUNC(rb_x), 0); + rb_define_method(rb_klass, "x=", RUBY_METHOD_FUNC(rb_set_x), 1); + rb_define_method(rb_klass, "y", RUBY_METHOD_FUNC(rb_y), 0); + rb_define_method(rb_klass, "y=", RUBY_METHOD_FUNC(rb_set_y), 1); + + rb_define_method(rb_klass, "width", RUBY_METHOD_FUNC(rb_width), 0); + rb_define_method(rb_klass, "width=", RUBY_METHOD_FUNC(rb_set_width), 1); + rb_define_method(rb_klass, "height", RUBY_METHOD_FUNC(rb_height), 0); + rb_define_method(rb_klass, "height=", RUBY_METHOD_FUNC(rb_set_height), 1); + } + } +} diff --git a/ext/opencv/rect.hpp b/ext/opencv/rect.hpp new file mode 100644 index 0000000..f32c923 --- /dev/null +++ b/ext/opencv/rect.hpp @@ -0,0 +1,13 @@ +#ifndef RUBY_OPENCV_RECT_H +#define RUBY_OPENCV_RECT_H +/* + * Document-class: OpenCV::Rect + */ +namespace rubyopencv { + namespace Rect { + void init(); + VALUE rect2obj (cv::Rect rect); + } +} + +#endif // RUBY_OPENCV_RECT_H diff --git a/ext/opencv/scalar.cpp b/ext/opencv/scalar.cpp new file mode 100644 index 0000000..02a0860 --- /dev/null +++ b/ext/opencv/scalar.cpp @@ -0,0 +1,120 @@ +// -*- mode: c++; coding: utf-8 -*- +#include "ruby.h" +#include "opencv2/core.hpp" + +namespace rubyopencv { + namespace Scalar { + void free_scalar(void* ptr); + size_t memsize_scalar(const void* ptr); + + VALUE rb_klass = Qnil; + rb_data_type_t opencv_scalar_type = { + "Scalar", + { 0, free_scalar, memsize_scalar, 0 }, + 0, + 0, + 0 + }; + + void free_scalar(void* ptr) { + delete (cv::Scalar*)ptr; + } + + size_t memsize_scalar(const void* ptr) { + return sizeof(cv::Scalar); + } + + VALUE klass() { + return rb_klass; + } + + cv::Scalar* obj2scalar(VALUE obj) { + cv::Scalar* ptr = NULL; + TypedData_Get_Struct(obj, cv::Scalar, &opencv_scalar_type, ptr); + return ptr; + } + + VALUE scalar2obj(cv::Scalar* ptr) { + return TypedData_Wrap_Struct(rb_klass, &opencv_scalar_type, ptr); + } + + VALUE rb_allocate(VALUE klass) { + cv::Scalar* ptr = NULL; + return TypedData_Make_Struct(klass, cv::Scalar, &opencv_scalar_type, ptr); + } + + VALUE rb_initialize(int argc, VALUE *argv, VALUE self) { + const int SIZE = 4; + VALUE values[SIZE]; + rb_scan_args(argc, argv, "04", &values[0], &values[1], &values[2], &values[3]); + + cv::Scalar* selfptr = obj2scalar(self); + for (int i = 0; i < SIZE; i++) { + (*selfptr)[i] = NIL_P(values[i]) ? 0.0 : NUM2DBL(values[i]); + } + + return self; + } + + VALUE rb_aref(VALUE self, VALUE index) { + cv::Scalar* selfptr = obj2scalar(self); + int i = NUM2INT(index); + if (i < 0 || i >= 4) { + rb_raise(rb_eIndexError, "index should be 0...4"); + } + + return rb_float_new((*selfptr)[i]); + } + + VALUE rb_aset(VALUE self, VALUE index, VALUE value) { + int i = NUM2INT(index); + if (i < 0 || i >= 4) { + rb_raise(rb_eIndexError, "index should be 0...4"); + } + cv::Scalar* selfptr = obj2scalar(self); + (*selfptr)[i] = NUM2DBL(value); + + return self; + } + + /* + * @overload to_s + * @return [String] String representation of the scalar + */ + VALUE rb_to_s(VALUE self) { + const int i = 6; + VALUE str[i]; + str[0] = rb_str_new2("<%s: [%g,%g,%g,%g]>"); + str[1] = rb_str_new2(rb_class2name(CLASS_OF(self))); + str[2] = rb_aref(self, INT2FIX(0)); + str[3] = rb_aref(self, INT2FIX(1)); + str[4] = rb_aref(self, INT2FIX(2)); + str[5] = rb_aref(self, INT2FIX(3)); + + return rb_f_sprintf(i, str); + } + + /* + * @overload to_a + * @return [Array] Values in Array + */ + VALUE rb_to_a(VALUE self) { + return rb_ary_new3(4, rb_aref(self, INT2FIX(0)), rb_aref(self, INT2FIX(1)), + rb_aref(self, INT2FIX(2)), rb_aref(self, INT2FIX(3))); + } + + void init() { + VALUE opencv = rb_define_module("OpenCV"); + + rb_klass = rb_define_class_under(opencv, "Scalar", rb_cData); + rb_define_alloc_func(rb_klass, rb_allocate); + + rb_define_private_method(rb_klass, "initialize", RUBY_METHOD_FUNC(rb_initialize), -1); + + rb_define_method(rb_klass, "to_s", RUBY_METHOD_FUNC(rb_to_s), 0); + rb_define_method(rb_klass, "to_a", RUBY_METHOD_FUNC(rb_to_a), 0); + rb_define_method(rb_klass, "[]", RUBY_METHOD_FUNC(rb_aref), 1); + rb_define_method(rb_klass, "[]=", RUBY_METHOD_FUNC(rb_aset), 2); + } + } +} diff --git a/ext/opencv/scalar.hpp b/ext/opencv/scalar.hpp new file mode 100644 index 0000000..47c80fb --- /dev/null +++ b/ext/opencv/scalar.hpp @@ -0,0 +1,14 @@ +// -*- mode: c++; coding: utf-8 -*- +#ifndef RUBY_OPENCV_SCALAR_H +#define RUBY_OPENCV_SCALAR_H + +namespace rubyopencv { + namespace Scalar { + void init(); + VALUE klass(); + cv::Scalar* obj2scalar(VALUE obj); + VALUE scalar2obj(cv::Scalar* ptr); + } +} + +#endif // RUBY_OPENCV_SCALAR_H diff --git a/ext/opencv/size.cpp b/ext/opencv/size.cpp new file mode 100644 index 0000000..422cf2f --- /dev/null +++ b/ext/opencv/size.cpp @@ -0,0 +1,94 @@ +// -*- mode: c++; coding: utf-8 -*- +#include "ruby.h" +#include "opencv2/core.hpp" + +#include "size.hpp" + +namespace rubyopencv { + namespace Size { + void free_size(void* ptr); + size_t memsize_size(const void* ptr); + + VALUE rb_klass = Qnil; + rb_data_type_t opencv_size_type = { + "Size", + { 0, free_size, memsize_size, 0 }, + 0, + 0, + 0 + }; + + void free_size(void* ptr) { + delete (cv::Size*)ptr; + } + + size_t memsize_size(const void* ptr) { + return sizeof(cv::Size); + } + + cv::Size* obj2size(VALUE obj) { + cv::Size* ptr = NULL; + TypedData_Get_Struct(obj, cv::Size, &opencv_size_type, ptr); + return ptr; + } + + VALUE size2obj(cv::Size* ptr) { + return TypedData_Wrap_Struct(rb_klass, &opencv_size_type, (void*)ptr); + } + + VALUE rb_allocate(VALUE klass) { + cv::Size* ptr = new cv::Size(); + return TypedData_Wrap_Struct(klass, &opencv_size_type, ptr); + } + + VALUE rb_width(VALUE self) { + return INT2NUM(obj2size(self)->width); + } + + VALUE rb_set_width(VALUE self, VALUE width) { + obj2size(self)->width = NUM2INT(width); + return self; + } + + VALUE rb_height(VALUE self) { + return INT2NUM(obj2size(self)->height); + } + + VALUE rb_set_height(VALUE self, VALUE height) { + obj2size(self)->height = NUM2INT(height); + return self; + } + + VALUE rb_initialize(int argc, VALUE *argv, VALUE self) { + VALUE v1, v2; + rb_scan_args(argc, argv, "02", &v1, &v2); + + cv::Size* selfptr = obj2size(self); + switch (argc) { + case 0: + selfptr->width = 0; + selfptr->height = 0; + break; + case 2: + selfptr->width = NUM2INT(v1); + selfptr->height = NUM2INT(v2); + break; + } + + return self; + } + + void init() { + VALUE opencv = rb_define_module("OpenCV"); + + rb_klass = rb_define_class_under(opencv, "Size", rb_cData); + rb_define_alloc_func(rb_klass, rb_allocate); + rb_define_method(rb_klass, "initialize", RUBY_METHOD_FUNC(rb_initialize), -1); + + rb_define_method(rb_klass, "width", RUBY_METHOD_FUNC(rb_width), 0); + rb_define_method(rb_klass, "width=", RUBY_METHOD_FUNC(rb_set_width), 1); + rb_define_method(rb_klass, "height", RUBY_METHOD_FUNC(rb_height), 0); + rb_define_method(rb_klass, "height=", RUBY_METHOD_FUNC(rb_set_height), 1); + } + } +} diff --git a/ext/opencv/size.hpp b/ext/opencv/size.hpp new file mode 100644 index 0000000..b283dff --- /dev/null +++ b/ext/opencv/size.hpp @@ -0,0 +1,11 @@ +// -*- mode: c++; coding: utf-8 -*- +#ifndef RUBY_OPENCV_SIZE_H +#define RUBY_OPENCV_SIZE_H + +namespace rubyopencv { + namespace Size { + void init(); + cv::Size* obj2size(VALUE obj); + } +} +#endif // RUBY_OPENCV_SIZE_H diff --git a/ext/opencv/trackbar.cpp b/ext/opencv/trackbar.cpp index 360091f..031f495 100644 --- a/ext/opencv/trackbar.cpp +++ b/ext/opencv/trackbar.cpp @@ -1,127 +1,129 @@ -/************************************************************ +#include "opencv2/highgui.hpp" +#include "ruby.h" - trackbar.cpp - - - $Author: lsxi $ - - Copyright (C) 2005 Masakazu Yonekura - -************************************************************/ -#include "trackbar.h" -/* - * Document-class: OpenCV::GUI::Trackbar - * - * Simple Trackbar wedget. OpenCV::GUI::Window can treat trackbar. - * Trackbar can treat only positive-integer value. - */ - -__NAMESPACE_BEGIN_OPENCV -__NAMESPACE_BEGIN_GUI -__NAMESPACE_BEGIN_TRACKBAR - -VALUE rb_klass; - -VALUE rb_class() { - return rb_klass; -} - -VALUE rb_allocate(VALUE klass) { - Trackbar *ptr; - return Data_Make_Struct(klass, Trackbar, trackbar_mark, trackbar_free, ptr); -} - -void trackbar_mark(void *ptr) { - rb_gc_mark(((Trackbar*)ptr)->block); -} - -void trackbar_free(void *ptr) { - Trackbar *trackbar = (Trackbar*)ptr; - free(trackbar->name); - free(trackbar); -} +#include "trackbar.hpp" /* - * call-seq: - * new(name,maxval[,val],&block) - * new(name,maxval[,val]){|value| ... } - * - * Create new Trackbar. - * name should be String. - * maxval and val should be Fixnum. - * When Trackbar adjuster changed, block will be called. + * Document-class: OpenCV::Trackbar */ -VALUE rb_initialize(int argc, VALUE *argv, VALUE self) { - VALUE name, maxval, val, block; - rb_scan_args(argc, argv, "21&", &name, &maxval, &val, &block); - if (NIL_P(block)) - rb_raise(rb_eArgError, "block not given."); - Check_Type(name, T_STRING); - Trackbar *trackbar = TRACKBAR(self); - trackbar->name = strcpy(ALLOC_N(char, RSTRING_LEN(name) + 1), StringValueCStr(name)); - trackbar->maxval = NUM2INT(maxval); - trackbar->val = IF_INT(val, 0); - trackbar->block = block; - return self; +namespace rubyopencv { + namespace Trackbar { + void mark_trackbar(void *ptr); + void free_trackbar(void *ptr); + + VALUE rb_klass = Qnil; + rb_data_type_t opencv_trackbar_type = { + "Trackbar", + { mark_trackbar, free_trackbar, 0, 0 }, + 0, + 0, + 0 + }; + + void mark_trackbar(void *ptr) { + trackbar_t* trackbar_ptr = (trackbar_t*)ptr; + rb_gc_mark(trackbar_ptr->block); + } + + void free_trackbar(void *ptr) { + xfree(((trackbar_t*)ptr)->name); + xfree(ptr); + } + + VALUE rb_allocate(VALUE klass) { + trackbar_t* ptr = NULL; + return TypedData_Make_Struct(klass, trackbar_t, &opencv_trackbar_type, ptr); + } + + void trackbar_mark(void *ptr) { + rb_gc_mark(((trackbar_t*)ptr)->block); + } + + trackbar_t* obj2trackbar(VALUE obj) { + trackbar_t* ptr = NULL; + TypedData_Get_Struct(obj, trackbar_t, &opencv_trackbar_type, ptr); + return ptr; + } + + /* + * Creates a new Trackbar. + * + * @overload new(name, count, value = 0, callback = nil) + * @param name [String] Name of the created trackbar. + * @param count [Integer] Maximal position of the slider. The minimal position is always 0. + * @param value [Integer] Optional value to an integer variable whose value reflects the position of the slider. + * Upon creation, the slider position is defined by this variable. + * @param [Proc] Function to be called every time the slider changes position. + * @return [Trackbar] Trackbar + * + * @overload new(name, count, value = 0) { |value| ... } + * @param name [String] Name of the created trackbar. + * @param count [Integer] Maximal position of the slider. The minimal position is always 0. + * @param value [Integer] Optional value to an integer variable whose value reflects the position of the slider. + * Upon creation, the slider position is defined by this variable. + * @yield [value] Function to be called every time the slider changes position. + * @yieldparam value [Integer] The trackbar position. + * @return [Trackbar] Trackbar + */ + VALUE rb_initialize(int argc, VALUE *argv, VALUE self) { + VALUE name, maxval, value, block; + rb_scan_args(argc, argv, "21&", &name, &maxval, &value, &block); + Check_Type(name, T_STRING); + trackbar_t* selfptr = obj2trackbar(self); + selfptr->name = strcpy(ALLOC_N(char, RSTRING_LEN(name) + 1), StringValueCStr(name)); + selfptr->maxval = NUM2INT(maxval); + selfptr->value = NIL_P(value) ? 0 : NUM2INT(value); + selfptr->block = block; + + return self; + } + + VALUE newobj(int argc, VALUE *argv) { + VALUE obj = rb_allocate(rb_klass); + return rb_initialize(argc, argv, obj); + } + + /* + * Return trackbar name. + */ + VALUE rb_name(VALUE self) { + return rb_str_new2(obj2trackbar(self)->name); + } + + /* + * Return the maximum value that can be taken this trackbar. + */ + VALUE rb_max(VALUE self) { + return INT2NUM(obj2trackbar(self)->maxval); + } + + /* + * Return the value of this trackbar. + */ + VALUE rb_value(VALUE self) { + return INT2NUM(obj2trackbar(self)->value); + } + + /* + * call-seq: + * value = val + * + * Set trackbar value. + */ + VALUE rb_set_value(VALUE self, VALUE value) { + obj2trackbar(self)->value = NUM2INT(value); + return self; + } + + void init() { + VALUE opencv = rb_define_module("OpenCV"); + rb_klass = rb_define_class_under(opencv, "Trackbar", rb_cData); + rb_define_alloc_func(rb_klass, rb_allocate); + rb_define_method(rb_klass, "initialize", RUBY_METHOD_FUNC(rb_initialize), -1); + rb_define_method(rb_klass, "name", RUBY_METHOD_FUNC(rb_name), 0); + rb_define_method(rb_klass, "max", RUBY_METHOD_FUNC(rb_max), 0); + rb_define_method(rb_klass, "value", RUBY_METHOD_FUNC(rb_value), 0); + rb_define_method(rb_klass, "value=", RUBY_METHOD_FUNC(rb_set_value), 1); + } + } } - -/* - * Return trackbar name. - */ -VALUE rb_name(VALUE self) { - return rb_str_new2(TRACKBAR(self)->name); -} - -/* - * Return the maximum value that can be taken this trackbar. - */ -VALUE rb_max(VALUE self) { - return INT2NUM(TRACKBAR(self)->maxval); -} - -/* - * Return the value of this trackbar. - */ -VALUE rb_value(VALUE self) { - return INT2NUM(TRACKBAR(self)->val); -} - -/* - * call-seq: - * value = val - * - * Set trackbar value. - */ -VALUE rb_set_value(VALUE self, VALUE val) { - TRACKBAR(self)->val = NUM2INT(val); - return self; -} - -void init_ruby_class() { -#if 0 - // For documentation using YARD - VALUE opencv = rb_define_module("OpenCV"); - VALUE GUI = rb_define_module_under(opencv, "GUI"); -#endif - - if (rb_klass) - return; - /* - * opencv = rb_define_module("OpenCV"); - * GUI = rb_define_module_under(opencv, "GUI"); - * - * note: this comment is used by rdoc. - */ - VALUE GUI = rb_module_GUI(); - rb_klass = rb_define_class_under(GUI, "Trackbar", rb_cObject); - rb_define_alloc_func(rb_klass, rb_allocate); - rb_define_method(rb_klass, "initialize", RUBY_METHOD_FUNC(rb_initialize), -1); - rb_define_method(rb_klass, "name", RUBY_METHOD_FUNC(rb_name), 0); - rb_define_method(rb_klass, "max", RUBY_METHOD_FUNC(rb_max), 0); - rb_define_method(rb_klass, "value", RUBY_METHOD_FUNC(rb_value), 0); - rb_define_method(rb_klass, "value=", RUBY_METHOD_FUNC(rb_set_value), 1); -} - -__NAMESPACE_END_TRACKBAR -__NAMESPACE_END_GUI -__NAMESPACE_END_OPENCV - diff --git a/ext/opencv/trackbar.h b/ext/opencv/trackbar.h deleted file mode 100644 index 1ed87bf..0000000 --- a/ext/opencv/trackbar.h +++ /dev/null @@ -1,69 +0,0 @@ -/************************************************************ - - trackbar.h - - - $Author: lsxi $ - - Copyright (C) 2005 Masakazu Yonekura - -************************************************************/ -#ifndef RUBY_OPENCV_GUI_H -#include "gui.h" -#endif - -#ifndef RUBY_OPENCV_GUI_TRACKBAR_H -#define RUBY_OPENCV_GUI_TRACKBAR_H - -#include "opencv.h" - -#define __NAMESPACE_BEGIN_TRACKBAR namespace cTrackbar { -#define __NAMESPACE_END_TRACKBAR } - -__NAMESPACE_BEGIN_OPENCV -__NAMESPACE_BEGIN_GUI - -typedef struct Trackbar { - char *name; - int maxval; - int val; - VALUE block; -} Trackbar; - -__NAMESPACE_BEGIN_TRACKBAR - -VALUE rb_class(); - -void init_ruby_class(); -VALUE rb_allocate(VALUE klass); - -void trackbar_mark(void *ptr); -void trackbar_free(void *ptr); - -VALUE rb_initialize(int argc, VALUE *argv, VALUE self); -VALUE rb_name(VALUE self); -VALUE rb_max(VALUE self); -VALUE rb_value(VALUE self); -VALUE rb_set_value(VALUE self, VALUE val); - -__NAMESPACE_END_TRACKBAR - -inline Trackbar* -TRACKBAR(VALUE object) { - Trackbar *ptr; - Data_Get_Struct(object, Trackbar, ptr); - return ptr; -} - -inline Trackbar* -TRACKBAR_WITH_CHECK(VALUE object) { - if (!rb_obj_is_kind_of(object, cTrackbar::rb_class())) { - raise_typeerror(object, cTrackbar::rb_class()); - } - return TRACKBAR(object); -} - -__NAMESPACE_END_GUI -__NAMESPACE_END_OPENCV - -#endif // RUBY_OPENCV_GUI_TRACKBAR_H - diff --git a/ext/opencv/trackbar.hpp b/ext/opencv/trackbar.hpp new file mode 100644 index 0000000..edac048 --- /dev/null +++ b/ext/opencv/trackbar.hpp @@ -0,0 +1,20 @@ +#ifndef RUBY_OPENCV_TRACKBAR_H +#define RUBY_OPENCV_TRACKBAR_H + +#include "ruby.h" + +namespace rubyopencv { + namespace Trackbar { + typedef struct _trackbar { + char *name; + int maxval; + int value; + VALUE block; + } trackbar_t; + + void init(); + trackbar_t* obj2trackbar(VALUE obj); + VALUE newobj(int argc, VALUE* argv); + } +} +#endif // RUBY_OPENCV_TRACKBAR_H diff --git a/ext/opencv/videocapture.cpp b/ext/opencv/videocapture.cpp new file mode 100644 index 0000000..eaa6a46 --- /dev/null +++ b/ext/opencv/videocapture.cpp @@ -0,0 +1,207 @@ +// -*- mode: c++; coding: utf-8 -*- +#include "ruby.h" +#include "opencv2/core.hpp" +#include "opencv2/videoio.hpp" + +#include "videocapture.hpp" +#include "mat.hpp" +#include "error.hpp" + +/* + * Document-class: OpenCV::VideoCapture + */ +namespace rubyopencv { + namespace VideoCapture { + void free_videocapture(void* ptr); + size_t memsize_videocapture(const void* ptr); + + VALUE rb_klass = Qnil; + rb_data_type_t opencv_videocapture_type = { + "VideoCapture", + { 0, free_videocapture, memsize_videocapture, 0 }, + 0, + 0, + 0 + }; + + void free_videocapture(void* ptr) { + delete (cv::VideoCapture*)ptr; + } + + size_t memsize_videocapture(const void* ptr) { + return sizeof(cv::VideoCapture); + } + + cv::VideoCapture* obj2videocapture(VALUE obj) { + cv::VideoCapture* ptr = NULL; + TypedData_Get_Struct(obj, cv::VideoCapture, &opencv_videocapture_type, ptr); + return ptr; + } + + VALUE rb_allocate(VALUE klass) { + cv::VideoCapture* ptr = new cv::VideoCapture(); + return TypedData_Wrap_Struct(klass, &opencv_videocapture_type, ptr); + } + + /* + * Open video file or a capturing device for video capturing + * @scope class + * @overload new(device = 0) + * @param device [String, Fixnum, nil] Video capturing device + * * If dev is a string (i.e "stream.avi"), reads video stream from a file. + * * If dev is a number, reads video stream from a device. + * @return [VideoCapture] Opened capture instance + * @opencv_func cv::VideoCapture::open + */ + VALUE rb_initialize(int argc, VALUE *argv, VALUE self) { + VALUE value; + rb_scan_args(argc, argv, "01", &value); + + cv::VideoCapture* selfptr = obj2videocapture(self); + try { + if (TYPE(value) == T_STRING) { + char* filename = StringValueCStr(value); + selfptr->open(filename); + } + else { + int device = NIL_P(value) ? 0 : NUM2INT(value); + selfptr->open(device); + } + } + catch (cv::Exception& e) { + Error::raise(e); + } + + return self; + } + + /* + * Grabs, decodes and returns the next video frame. + * @overload query + * @return [Mat] Next video frame + * @opencv_func cv::VideoCapture::operator>> + */ + VALUE rb_read(VALUE self) { + cv::VideoCapture* selfptr = obj2videocapture(self); + cv::Mat* m = Mat::empty_mat(); + + try { + (*selfptr) >> (*m); + } + catch (cv::Exception& e) { + delete m; + Error::raise(e); + } + + return Mat::mat2obj(m); + } + + VALUE rb_is_opened(VALUE self) { + cv::VideoCapture* selfptr = obj2videocapture(self); + bool is_opened = false; + try { + is_opened = selfptr->isOpened(); + } + catch (cv::Exception& e) { + Error::raise(e); + } + + return is_opened ? Qtrue : Qfalse; + } + + /* + * Returns the specified VideoCapture property. + */ + VALUE rb_get(VALUE self, VALUE prop_id) { + cv::VideoCapture* selfptr = obj2videocapture(self); + double ret = 0; + try { + ret = selfptr->get(NUM2INT(prop_id)); + } + catch (cv::Exception& e) { + Error::raise(e); + } + + return DBL2NUM(ret); + } + + /* + * Sets a property in the VideoCapture. + */ + VALUE rb_set(VALUE self, VALUE prop_id, VALUE value) { + cv::VideoCapture* selfptr = obj2videocapture(self); + double ret = 0; + try { + ret = selfptr->set(NUM2INT(prop_id), NUM2DBL(value)); + } + catch (cv::Exception& e) { + Error::raise(e); + } + + return ret ? Qtrue : Qfalse; + } + + /* + * Grabs the next frame from video file or capturing device. + * @overload grab + * @return [Boolean] If grabbing a frame successed, returns true, otherwise returns false. + * @opencv_func cv::VideCapture.grab + */ + VALUE rb_grab(VALUE self) { + cv::VideoCapture* selfptr = obj2videocapture(self); + bool ret = false; + try { + ret = selfptr->grab(); + } + catch (cv::Exception& e) { + Error::raise(e); + } + + return ret ? Qtrue : Qfalse; + } + + /* + * Decodes and returns the grabbed video frame. + * @overload retrieve + * @return [Mat] Grabbed video frame + * @return [nil] Failed to grabbing a frame + * @opencv_func cv::VideCapture::retrieve + */ + VALUE rb_retrieve(int argc, VALUE *argv, VALUE self) { + VALUE flag; + rb_scan_args(argc, argv, "01", &flag); + int flag_value = NIL_P(flag) ? 0 : NUM2INT(flag); + + cv::VideoCapture* selfptr = obj2videocapture(self); + bool ret = false; + cv::Mat* dstptr = Mat::empty_mat(); + try { + ret = selfptr->retrieve(*dstptr, flag_value); + if (!ret) { + delete dstptr; + } + } + catch (cv::Exception& e) { + delete dstptr; + Error::raise(e); + } + + return (ret) ? Mat::mat2obj(dstptr) : Qnil; + } + + void init() { + VALUE opencv = rb_define_module("OpenCV"); + + rb_klass = rb_define_class_under(opencv, "VideoCapture", rb_cData); + rb_define_alloc_func(rb_klass, rb_allocate); + + rb_define_private_method(rb_klass, "initialize", RUBY_METHOD_FUNC(rb_initialize), -1); + rb_define_method(rb_klass, "read", RUBY_METHOD_FUNC(rb_read), 0); + rb_define_method(rb_klass, "opened?", RUBY_METHOD_FUNC(rb_is_opened), 0); + rb_define_method(rb_klass, "get", RUBY_METHOD_FUNC(rb_get), 1); + rb_define_method(rb_klass, "set", RUBY_METHOD_FUNC(rb_set), 2); + rb_define_method(rb_klass, "grab", RUBY_METHOD_FUNC(rb_grab), 0); + rb_define_method(rb_klass, "retrieve", RUBY_METHOD_FUNC(rb_retrieve), -1); + } + } +} diff --git a/ext/opencv/videocapture.hpp b/ext/opencv/videocapture.hpp new file mode 100644 index 0000000..5bcb44b --- /dev/null +++ b/ext/opencv/videocapture.hpp @@ -0,0 +1,10 @@ +#ifndef RUBY_OPENCV_VIDEOCAPTURE_H +#define RUBY_OPENCV_VIDEOCAPTURE_H + +namespace rubyopencv { + namespace VideoCapture { + void init(); + } +} + +#endif // RUBY_OPENCV_VIDEOCAPTURE_H diff --git a/ext/opencv/window.cpp b/ext/opencv/window.cpp index 8dd64bf..2acba7d 100644 --- a/ext/opencv/window.cpp +++ b/ext/opencv/window.cpp @@ -1,377 +1,275 @@ -/************************************************************ +#include "opencv2/highgui.hpp" +#include "window.hpp" +#include "trackbar.hpp" +#include "error.hpp" +#include "mat.hpp" - window.cpp - +namespace rubyopencv { + namespace Window { + void mark_window(void *ptr); + void free_window(void *ptr); - $Author: lsxi $ + VALUE rb_klass; + rb_data_type_t opencv_window_type = { + "Window", + { mark_window, free_window, 0, 0 }, + 0, + 0, + 0 + }; - Copyright (C) 2005-2006 Masakazu Yonekura - -************************************************************/ -#include "window.h" - -/* - * Document-class: OpenCV::GUI::Window - * - * Simple Window wedget to show images(CvMat/IplImage). - * - * Sample: - * image = OpenCV::IplImage::load("opencv.bmp") #=> load image - * window = OpenCV::GUI::Window.new("simple viewer")#=> create new window named "simaple viewer" - * window.show(image) #=> show image - */ -__NAMESPACE_BEGIN_OPENCV -__NAMESPACE_BEGIN_GUI -__NAMESPACE_BEGIN_WINDOW - -int num_windows = 0; -VALUE rb_klass; - -VALUE -rb_class() -{ - return rb_klass; -} - -VALUE -rb_allocate(VALUE klass) -{ - Window *ptr; - return Data_Make_Struct(klass, Window, window_mark, window_free, ptr); -} - -void -window_mark(void *ptr) -{ - Window* window_ptr = (Window*)ptr; - rb_gc_mark(window_ptr->name); - rb_gc_mark(window_ptr->image); - rb_gc_mark(window_ptr->trackbars); - rb_gc_mark(window_ptr->blocks); -} - -void -window_free(void *ptr) -{ - free(ptr); -} - -/* - * Creates a window. - * - * @overload new(name, flags = CV_WINDOW_AUTOSIZE) - * @param name [String] Name of the window in the window caption that may be used as a window identifier. - * @param flags [Integer] Flags of the window. The supported flags are: - * * CV_WINDOW_AUTOSIZE - If this is set, the window size is automatically adjusted - * to fit the displayed image, and you cannot change the window size manually. - * * CV_WINDOW_NORMAL - If this is set, the user can resize the window (no constraint). - * * CV_WINDOW_OPENGL - If this is set, the window will be created with OpenGL support. - * @opencv_func cvNamedWindow - */ -VALUE -rb_initialize(int argc, VALUE *argv, VALUE self) -{ - VALUE name, flags; - rb_scan_args(argc, argv, "11", &name, &flags); - Check_Type(name, T_STRING); - char* name_str = StringValueCStr(name); - if (cvGetWindowHandle(name_str) != NULL) { - rb_raise(rb_eStandardError, "window name should be unique."); - } - - int mode = CV_WINDOW_AUTOSIZE; - if (argc == 2) { - Check_Type(flags, T_FIXNUM); - mode = FIX2INT(flags); - } - - Window* self_ptr = WINDOW(self); - self_ptr->name = name; - self_ptr->trackbars = rb_ary_new(); - self_ptr->blocks = rb_ary_new(); - try { - cvNamedWindow(name_str, mode); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - num_windows++; - return self; -} - -/* - * Return alive status of window. Return true if alive, otherwise return false. - */ -VALUE -rb_alive_q(VALUE self) -{ - const char* name_str = GET_WINDOW_NAME(self); - return (cvGetWindowHandle(name_str) == NULL) ? Qfalse : Qtrue; -} - -/* - * Destroys a window. alive status of window be false. - */ -VALUE -rb_destroy(VALUE self) -{ - const char* name_str = GET_WINDOW_NAME(self); - try { - cvDestroyWindow(name_str); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - num_windows--; - return self; -} - -/* - * Destorys all the windows. - */ -VALUE -rb_destroy_all(VALUE klass) -{ - if (num_windows > 0) { - try { - cvDestroyAllWindows(); + void mark_window(void *ptr) { + window_t* window_ptr = (window_t*)ptr; + rb_gc_mark(window_ptr->name); + rb_gc_mark(window_ptr->trackbars); } - catch (cv::Exception& e) { - raise_cverror(e); + + void free_window(void *ptr) { + xfree(ptr); } - num_windows = 0; - } - return Qnil; -} -/* - * Resizes window to the specified size. - * - * @overload resize(size) - * @param size [CvSize] The new window size. - * @overload resize(width, height) - * @param width [Integer] The new window width. - * @param height [Integer] The new window height. - * @opencv_func cvResizeWindow - */ -VALUE -rb_resize(int argc, VALUE *argv, VALUE self) -{ - int width = 0; - int height = 0; - switch (argc) { - case 1: { - CvSize size = VALUE_TO_CVSIZE(argv[0]); - width = size.width; - height = size.height; - break; - } - case 2: - width = NUM2INT(argv[0]); - height = NUM2INT(argv[1]); - break; - default: - rb_raise(rb_eArgError, "wrong number of arguments (1 or 2)"); - break; - } - try { - cvResizeWindow(GET_WINDOW_NAME(self), width, height); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return self; -} + VALUE rb_allocate(VALUE klass) { + window_t* ptr = NULL; + return TypedData_Make_Struct(klass, window_t, &opencv_window_type, ptr); + } -/* - * Moves window to the specified position. - * - * @overload move(point) - * @param point [CvPoint] The new coordinate of the window. - * @overload move(x, y) - * @param x [Integer] The new x-coordinate of the window. - * @param y [Integer] The new y-coordinate of the window. - * @opencv_func cvMoveWindow - */ -VALUE -rb_move(int argc, VALUE *argv, VALUE self) -{ - int x = 0; - int y = 0; - switch (argc) { - case 1: { - CvPoint point = VALUE_TO_CVPOINT(argv[0]); - x = point.x; - y = point.y; - break; - } - case 2: - x = NUM2INT(argv[0]); - y = NUM2INT(argv[1]); - break; - default: - rb_raise(rb_eArgError, "wrong number of arguments (1 or 2)"); - break; - } - try { - cvMoveWindow(GET_WINDOW_NAME(self), x, y); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return self; -} - -/* - * Displays an image in the specified window. - * - * @overload show_image(image) - * @param image [CvMat] Image to be shown. - * @opencv_func cvShowImage - */ -VALUE -rb_show_image(VALUE self, VALUE img) -{ - CvArr* image = CVARR_WITH_CHECK(img); - WINDOW(self)->image = img; - try { - cvShowImage(GET_WINDOW_NAME(self), image); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - return self; -} + window_t* obj2window(VALUE obj) { + window_t* ptr = NULL; + TypedData_Get_Struct(obj, window_t, &opencv_window_type, ptr); + return ptr; + } -void -trackbar_callback(int value, void* block) -{ - rb_funcall((VALUE)block, rb_intern("call"), 1, INT2NUM(value)); -} - -/* - * Creates or sets a trackbar and attaches it to the specified window. - * - * @overload set_trackbar(trackbar) - * @param trackbar [TrackBar] The trackbar to set. - * - * @overload set_trackbar(name, count, value = nil) { |value| ... } - * @param name [String] Name of the created trackbar. - * @param count [Integer] Maximal position of the slider. The minimal position is always 0. - * @param value [Integer] Optional value to an integer variable whose value reflects the position of the slider. - * Upon creation, the slider position is defined by this variable. - * @yield [value] Function to be called every time the slider changes position. - * @yieldparam value [Integer] The trackbar position. - * @opencv_func cv::createTrackbar - */ -VALUE -rb_set_trackbar(int argc, VALUE *argv, VALUE self) -{ - VALUE trackbar; - if (argc == 1) { - trackbar = argv[0]; - } - else { - trackbar = cTrackbar::rb_initialize(argc, argv, cTrackbar::rb_allocate(cTrackbar::rb_class())); - } - Trackbar *trackbar_ptr = TRACKBAR_WITH_CHECK(trackbar); - try { - cv::createTrackbar(trackbar_ptr->name, GET_WINDOW_NAME(self), &(trackbar_ptr->val), trackbar_ptr->maxval, - (cv::TrackbarCallback)trackbar_callback, (void*)(trackbar_ptr->block)); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - rb_ary_push(WINDOW(self)->trackbars, trackbar); + inline char* GET_WINDOW_NAME(VALUE obj) { + window_t* w = obj2window(obj); + return StringValueCStr(w->name); + } + + /* + * Creates a window. + * + * @overload new(name, flags = CV_WINDOW_AUTOSIZE) + * @param name [String] Name of the window in the window caption that may be used as a window identifier. + * @param flags [Integer] Flags of the window. The supported flags are: + * * CV_WINDOW_AUTOSIZE - If this is set, the window size is automatically adjusted + * to fit the displayed image, and you cannot change the window size manually. + * * CV_WINDOW_NORMAL - If this is set, the user can resize the window (no constraint). + * * CV_WINDOW_OPENGL - If this is set, the window will be created with OpenGL support. + * @opencv_func cv::namedWindow + */ + VALUE rb_initialize(int argc, VALUE *argv, VALUE self) { + VALUE name, flags; + rb_scan_args(argc, argv, "11", &name, &flags); + Check_Type(name, T_STRING); + char* name_str = StringValueCStr(name); + if (cvGetWindowHandle(name_str) != NULL) { + rb_raise(rb_eStandardError, "window name should be unique."); + } - return trackbar; -} + int mode = CV_WINDOW_AUTOSIZE; + if (argc == 2) { + Check_Type(flags, T_FIXNUM); + mode = FIX2INT(flags); + } -void -on_mouse(int event, int x, int y, int flags, void* param) -{ - VALUE block = (VALUE)param; - if (rb_obj_is_kind_of(block, rb_cProc)) { - rb_funcall(block, rb_intern("call"), 1, cMouseEvent::new_object(event, x, y, flags)); + window_t* self_ptr = obj2window(self); + self_ptr->name = name; + self_ptr->trackbars = rb_ary_new(); + + try { + cv::namedWindow(name_str, mode); + } + catch (cv::Exception& e) { + Error::raise(e); + } + + return self; + } + + /* + * Displays an image in the specified window. + * + * @overload show(image) + * @param image [Mat] Image to be shown. + * @opencv_func cv::imshow + */ + VALUE rb_show(VALUE self, VALUE img) { + try { + cv::Mat* m = Mat::obj2mat(img); + cv::imshow(GET_WINDOW_NAME(self), *m); + } + catch (cv::Exception& e) { + Error::raise(e); + } + + return self; + } + + VALUE rb_wait_key(int argc, VALUE* argv, VALUE self) { + VALUE delay; + rb_scan_args(argc, argv, "01", &delay); + + int ret = 0; + int delay_value = NIL_P(delay) ? 0 : NUM2INT(delay); + try { + ret = cv::waitKey(delay_value); + } + catch (cv::Exception& e) { + Error::raise(e); + } + + return INT2NUM(ret); + } + + /* + * Destroys a window. alive status of window be false. + */ + VALUE + rb_destroy(VALUE self) { + try { + cv::destroyWindow(GET_WINDOW_NAME(self)); + } + catch (cv::Exception& e) { + Error::raise(e); + } + + return self; + } + + /* + * Destorys all the windows. + */ + VALUE rb_destroy_all(VALUE klass) { + try { + cv::destroyAllWindows(); + } + catch (cv::Exception& e) { + Error::raise(e); + } + + return Qnil; + } + + /* + * Resizes window to the specified size. + * + * @overload resize(width, height) + * @param width [Integer] The new window width. + * @param height [Integer] The new window height. + * @opencv_func cv::resizeWindow + */ + VALUE rb_resize(VALUE self, VALUE width, VALUE height) { + try { + cv::resizeWindow(GET_WINDOW_NAME(self), NUM2INT(width), NUM2INT(height)); + } + catch (cv::Exception& e) { + Error::raise(e); + } + return self; + } + + /* + * Moves window to the specified position. + * + * @overload move(x, y) + * @param x [Integer] The new x-coordinate of the window. + * @param y [Integer] The new y-coordinate of the window. + * @opencv_func cvMoveWindow + */ + VALUE rb_move(VALUE self, VALUE x, VALUE y) { + try { + cv::moveWindow(GET_WINDOW_NAME(self), NUM2INT(x), NUM2INT(y)); + } + catch (cv::Exception& e) { + Error::raise(e); + } + return self; + } + + void trackbar_callback(int value, void* block) { + rb_funcall((VALUE)block, rb_intern("call"), 1, INT2NUM(value)); + } + + /* + * Creates or sets a trackbar and attaches it to the specified window. + * + * @overload set_trackbar(trackbar) + * @param trackbar [TrackBar] The trackbar to set. + * + * @overload set_trackbar(name, count, value = nil) { |value| ... } + * @param name [String] Name of the created trackbar. + * @param count [Integer] Maximal position of the slider. The minimal position is always 0. + * @param value [Integer] Optional value to an integer variable whose value reflects the position of the slider. + * Upon creation, the slider position is defined by this variable. + * @yield [value] Function to be called every time the slider changes position. + * @yieldparam value [Integer] The trackbar position. + * @opencv_func cv::createTrackbar + */ + VALUE rb_set_trackbar(int argc, VALUE *argv, VALUE self) { + VALUE trackbar; + if (argc == 1) { + trackbar = argv[0]; + } + else { + trackbar = Trackbar::newobj(argc, argv); + } + Trackbar::trackbar_t *trackbar_ptr = Trackbar::obj2trackbar(trackbar); + try { + cv::TrackbarCallback callback = NULL; + void* block_ptr = NULL; + if (!NIL_P(trackbar_ptr->block)) { + block_ptr = (void*)(trackbar_ptr->block); + callback = (cv::TrackbarCallback)trackbar_callback; + } + cv::createTrackbar(trackbar_ptr->name, GET_WINDOW_NAME(self), &(trackbar_ptr->value), + trackbar_ptr->maxval, callback, block_ptr); + } + catch (cv::Exception& e) { + Error::raise(e); + } + rb_ary_push(obj2window(self)->trackbars, trackbar); + + return trackbar; + } + + void onMouse(int event, int x, int y, int flags, void* param) { + rb_funcall((VALUE)param, rb_intern("call"), 4, INT2FIX(event), INT2NUM(x), INT2NUM(y), INT2FIX(flags)); + } + + /* + * Sets mouse handler for the specified window. + * + * @overload set_mouse_callback { |event, x, y, flags| ... } + */ + VALUE rb_set_mouse_callback(int argc, VALUE* argv, VALUE self) { + window_t* selfptr = obj2window(self); + VALUE block = Qnil; + rb_scan_args(argc, argv, "0&", &block); + try { + if (rb_respond_to(block, rb_intern("call"))) { + cv::setMouseCallback(StringValueCStr(selfptr->name), onMouse, (void*)block); + } + } + catch (cv::Exception& e) { + Error::raise(e); + } + + return block; + } + + void init() { + VALUE opencv = rb_define_module("OpenCV"); + + rb_klass = rb_define_class_under(opencv, "Window", rb_cData); + rb_define_alloc_func(rb_klass, rb_allocate); + rb_define_method(rb_klass, "initialize", RUBY_METHOD_FUNC(rb_initialize), -1); + rb_define_method(rb_klass, "show", RUBY_METHOD_FUNC(rb_show), 1); + rb_define_method(rb_klass, "destroy", RUBY_METHOD_FUNC(rb_destroy), 0); + rb_define_singleton_method(rb_klass, "destroy_all", RUBY_METHOD_FUNC(rb_destroy_all), 0); + rb_define_method(rb_klass, "resize", RUBY_METHOD_FUNC(rb_resize), 2); + rb_define_method(rb_klass, "move", RUBY_METHOD_FUNC(rb_move), 2); + rb_define_method(rb_klass, "set_trackbar", RUBY_METHOD_FUNC(rb_set_trackbar), -1); + rb_define_method(rb_klass, "set_mouse_callback", RUBY_METHOD_FUNC(rb_set_mouse_callback), -1); + rb_define_alias(rb_klass, "on_mouse", "set_mouse_callback"); + } } } - -/* - * Sets mouse handler for the specified window. - * - * @overload set_mouse_callback { |mouse_event| ... } - * @yield [mouse_event] Mouse callback. - * @yieldparam mouse_event [MouseEvent] Mouse event - * - * @example display mouse event on console - * window = OpenCV::GUI::Window.new "sample window" - * image = OpenCV::IplImage::load "sample.png" - * window.show(image) - * window.set_mouse_callback {|mouse| - * e = "#{mouse.x}, #{mouse.y} : #{mouse.event} : " - * e << "" if mouse.left_button? - * e << "" if mouse.right_button? - * e << "" if mouse.middle_button? - * e << "[CTRL]" if mouse.ctrl_key? - * e << "[SHIFT]" if mouse.shift_key? - * e << "[ALT]" if mouse.alt_key? - * puts e - * } - * OpenCV::GUI::wait_key - */ -VALUE -rb_set_mouse_callback(int argc, VALUE* argv, VALUE self) -{ - if (!rb_block_given_p()) { - rb_raise(rb_eArgError, "block not given."); - } - - VALUE block = Qnil; - rb_scan_args(argc, argv, "0&", &block); - try { - cvSetMouseCallback(GET_WINDOW_NAME(self), on_mouse, (void*)block); - } - catch (cv::Exception& e) { - raise_cverror(e); - } - - rb_ary_push(WINDOW(self)->blocks, block); - return block; -} - -void -init_ruby_class() -{ -#if 0 - // For documentation using YARD - VALUE opencv = rb_define_module("OpenCV"); - VALUE GUI = rb_define_module_under(opencv, "GUI"); -#endif - - if (rb_klass) - return; - /* - * opencv = rb_define_module("OpenCV"); - * GUI = rb_define_module_under(opencv, "GUI"); - * - * note: this comment is used by rdoc. - */ - VALUE GUI = rb_module_GUI(); - rb_klass = rb_define_class_under(GUI, "Window", rb_cObject); - rb_define_alloc_func(rb_klass, rb_allocate); - rb_define_method(rb_klass, "initialize", RUBY_METHOD_FUNC(rb_initialize), -1); - rb_define_method(rb_klass, "alive?", RUBY_METHOD_FUNC(rb_alive_q), 0); - rb_define_method(rb_klass, "destroy", RUBY_METHOD_FUNC(rb_destroy), 0); - rb_define_singleton_method(rb_klass, "destroy_all", RUBY_METHOD_FUNC(rb_destroy_all), 0); - rb_define_method(rb_klass, "resize", RUBY_METHOD_FUNC(rb_resize), -1); - rb_define_method(rb_klass, "move", RUBY_METHOD_FUNC(rb_move), -1); - rb_define_method(rb_klass, "show_image", RUBY_METHOD_FUNC(rb_show_image), 1); - rb_define_alias(rb_klass, "show", "show_image"); - rb_define_method(rb_klass, "set_trackbar", RUBY_METHOD_FUNC(rb_set_trackbar), -1); - rb_define_method(rb_klass, "set_mouse_callback", RUBY_METHOD_FUNC(rb_set_mouse_callback), -1); - rb_define_alias(rb_klass, "on_mouse", "set_mouse_callback"); -} - -__NAMESPACE_END_WINDOW -__NAMESPACE_END_GUI -__NAMESPACE_END_OPENCV - diff --git a/ext/opencv/window.h b/ext/opencv/window.h deleted file mode 100644 index 93cf20c..0000000 --- a/ext/opencv/window.h +++ /dev/null @@ -1,66 +0,0 @@ -/************************************************************ - - window.h - - - $Author: lsxi $ - - Copyright (C) 2005-2006 Masakazu Yonekura - -************************************************************/ -#ifndef RUBY_OPENCV_GUI_H -#include "gui.h" -#endif - -#ifndef RUBY_OPENCV_GUI_WINDOW_H -#define RUBY_OPENCV_GUI_WINDOW_H - -#include "opencv.h" -#define __NAMESPACE_BEGIN_WINDOW namespace cWindow { -#define __NAMESPACE_END_WINDOW } - -__NAMESPACE_BEGIN_OPENCV -__NAMESPACE_BEGIN_GUI - -typedef struct Window { - VALUE name; - VALUE image; - VALUE trackbars; - VALUE blocks; -} Window; - -__NAMESPACE_BEGIN_WINDOW - -void init_ruby_class(); - -VALUE rb_allocate(VALUE klass); - -void window_mark(void *ptr); -void window_free(void *ptr); -VALUE rb_alive_q(VALUE self); -VALUE rb_initialize(int argc, VALUE *argv, VALUE self); -VALUE rb_destroy(VALUE self); -VALUE rb_destroy_all(VALUE klass); -VALUE rb_resize(int argc, VALUE *argv, VALUE self); -VALUE rb_move(int argc, VALUE *argv, VALUE self); -VALUE rb_show_image(VALUE self, VALUE img); -VALUE rb_set_trackbar(int argc, VALUE *argv, VALUE self); -VALUE rb_set_mouse_callback(int argc, VALUE* argv, VALUE self); - -inline Window* -WINDOW(VALUE object) { - Window *ptr; - Data_Get_Struct(object, Window, ptr); - return ptr; -} - -inline const char* -GET_WINDOW_NAME(VALUE object) { - return StringValueCStr(WINDOW(object)->name); -} - -__NAMESPACE_END_WINDOW -__NAMESPACE_END_GUI -__NAMESPACE_END_OPENCV - -#endif // RUBY_OPENCV_GUI_WINDOW_H - diff --git a/ext/opencv/window.hpp b/ext/opencv/window.hpp new file mode 100644 index 0000000..1f71a26 --- /dev/null +++ b/ext/opencv/window.hpp @@ -0,0 +1,21 @@ +#ifndef RUBY_OPENCV_WINDOW_H +#define RUBY_OPENCV_WINDOW_H + +#include "ruby.h" +#include "opencv2/core.hpp" +#include "opencv2/highgui.hpp" + +namespace rubyopencv { + namespace Window { + + typedef struct _window { + VALUE name; + VALUE trackbars; + } window_t; + + void init(); + VALUE rb_wait_key(int argc, VALUE* argv, VALUE self); + } +} +#endif // RUBY_OPENCV_WINDOW_H + diff --git a/images/CvMat_sobel.png b/images/CvMat_sobel.png deleted file mode 100644 index aa42fcfa41d94791ce9fed2923284fc787e41c65..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 198319 zcmXtg1yq&Y^EF*kf=Y)-D~NQ5Al(hpB3;s*0@6|<-Cfe%0q{&Q_?M}IggzsQG$?CZvA>j|h-x*}eh_6)eO-xrgr5Bhp$oK?Ud{x}99wQ;qBFRZf zXnHPGbm&DFY`XmjD6{>u&{VbMX5r22Y#|%Ntp4G%Z0!^2qWErYO0;LVgU=l@x)t8j zk|^VnIuW6@UEhwT27Io@tCiTRy6mOVzlAAkP5w|8|}m7nnq$?d<` z?EQ2`Dm)FOXMKOR%JzM_&P0Y?vW_$U+Z4OK==T+Evf{Rxu=-XsRoZX%Y}-}vgK}}@ z?6%&M2X(UaX2%!bA4G+wrm{VK`cjyhkE^b*km03~QRAVfU5)Nni@H?2a7o*yMPBN- z-QU0e!zUoH=S|lWrf!@bGX*}`fG|9Y2NHHdoQnfxFGzTiwp4^@NUWS z^Cldh;N8=ei*GV59yE9Lo88qN`(plc7JeMF+3R9*&6pSgw;gb6&ROFr?67t?m;Iu8 z_W0yiiv=ec;=57bgG4RZI7^v{f{$jAIW;Gwh zie>44j)nQG&JUP9gO?*7tVUN?nELGGk9F}Z;VIeJf`1RwIVZ=&3h|+_{_V03R z&>u1KTtycW5IDU4IK2MPd-6|xjP#@Q5sS`&3hXOd>bOO-nu7pX6y8i_du!`2aOZ3f z?!fAGy2H->JZ$DkSL&L91)QxmZqj6Z4Hvu_UA_>y>+@NMo=8tBU#(n|)!oz6%EDsW zW;!-5&fdpoac`+@@ajpb;(`@-?epA~tEy?6`Jtgm*y-&P@5`3Pni|uqtE*1NA`g@Nq z+8Y+_+k7u-r)_v_dD9VBJlk8UW6JiO{NcHVr$A3+Ve#RM`OdFj^iEyAPsh@Ac+(pk znzpZ4GnE(3IS(y4v&RrS=_+`_)!m|0JT$h!p3b=nHrVmn!p#e2##XN;Ki1jVZCXC<7_mGYT6ezj_tPrZLPT`- zSf%chg~P*|02R^fCjYMetGI1Zxblg&$l}66?b4DVMAVE!6a1Eb@l*|*l}hd5UA(iv zn6KuXH=SlRR!mGxotDjG@RLIIFAKYkuzYxF!}S zMR)p5LuJ0ax^v6tgI`s(0lOv5)!g9D7pCm`+jE-RN20&NMMEa6TywX>V>Z6O%I-Uh zUS2brr#P4MkF{Uz=UQv&Uwd=gvL|Es()X^v8E<+^_J)U-3SIoCdAp6qk6dFue?>2p zJJ|PPmI=gA8>+u&-%$FDiIT?+Iyj!_d(qgIEcY+ZE1bXbH{O+oq@nx7qHlFP8#O!1 zQD9fV$=-LsRnYH0>NhdM8d=qs_P#W;qx;(~-%d6?TBQH+)x6y+{$%`%t9MLkU!hCq zEL8MW=S#7~Gpmf=tG_-irx(5skVnG$9&Qsq<9hki;v#Wm6cfVsHr1i`;Aic@s*-T} z2+IB}Udgfud?8Utt=_>-&5n%Jr7&JJAk&qO`l-JD*PZe^QsR{aBEFw`)8+Q{_?)@P zPkiV}CrNC})1_nNJW;bO2zBEQ^fMY)=lRJGLiv_`Mb9jAmItp7e2V?z{HbrN&c0f1 zW8fPXlbeYUdgolUkt@zT7YpCa!ROxLI1gCj66WG*u3!^eBiGfzt6G*3|1=tSlYYBraF+4ns9MDrf^#_fzK6M`65G}4lny7j-l8fBv zKD|4J0`_61#h_t-uD$u86*ClLdUIi~k$$UjRmSDtLoQ^pN;p6P|d?cENL zmyPHwBaIiht7JeI!0{{Ff}{mmsEj+lSk)%1CAN0^e($Z2gCH`#<` zboCV17rjw)PUL`=0!MQEaNhKhirMXXr~q*CtrDpdpr&lQw>f-jjz0+MJ5LZ<37igu z11<9pQZA$fV=LZ9>H>4lKeK%vbq~G7_SeSmuGi^tJFRUhC@A=UI`_agnv=6e%E!V9 zsCCF`^u@I8^$tl(hzODo=5R8spjjS%IEmZ1ypKq4;hD1Z|BU9vbE53bcxTNyvC-zQ z{g?5Gt&04W850ljgfo?CT8o`}CEoWmz&8T9ezodJs&cx$%W=8z{Xy-s^Gt^1SvM)+ zh^D~b%M1ZpI6<=psIDXYJntaR8r$3LAp6zMS3pr;Ty*TRH@=)q*=Y*6YFgG2$JW=c zo~_ic)EB1q7+kbzfUo`+$dqzf|(1$PrG(Tb2VA# zM@M53Afb5baDQ6dC?pFO%y??C$q`^flXm%Qs2EVNccD5s5CEcp#1HB7!-&Pw?_k%k zL>yJOQ)DaLAe`CmR7+zs4Sr18T}XT%K72sbp)X$|UUQP&Mr*RJzuN>1;oPz#rc>O~ z*l4leeyqHb1+^IQC>t9^*%40a_7;$pQ8yz_n8v^9bS*bQLOR=DZaO(}YxBEmydU)f zl4xUX?a!W6j5!MnSTG16<31A(Cv)Rn2f<8yGsAx(apjXqgvb9s`;(0GEAyf z+X3lfbrz_tv2Uv?Dm*#S()zvVkr7}Bsu~O zK*2tZarEuGnHRgVBw)xD`>H@Z;PiqagL#X~Vgy^bdDO`*hE`qz3ooPhzl_WFsf4sI z=4KE$ut1gSrMm1XcXE2$#rF=y00`lP1}6`%BXJJ+V=C)`r-rz0{ zrTtu#orB^>`|#Td-GD4Tk`roI|a4Yu)KKV^4>d*)9znWur63g^5I+%prvs74S3X+uQ^$!Qn>gA$D7MXwxQnldcUKxf2qLKa`XsMLJvv`i zcipt6oKTQks*%8!CW_o=1j z&%Jm3W~&1hXmlj-4U)vIq{s=I?X;&eBeCkE| zV*Tdm!nfPnRgkKQI8%8LqDzRDnI&Taf*Wv@(ap3}^m32%r$NZG)oOrBAP%;N8dw)T zZ#s!8KQ6At#B$0-c2e@*ZwEZ`nllw?=qne%CkJC$=i;eSI2#^CiC;ed!OWe-!P+2gP8CUsWzEpEaZQr@Y4w6%R0|#e> z{oCF?BUlr_K-6Uh-)wjQ^H{t&lp~>n6}aDFd|S526znzs%a3-mmVGM_WLXL zlsZTUwz=JyV{Oa(SE7)$vvT5_xykVYipa-_tZMKhFOfw7&O-uo*qkP@eUS&h=7N=< zld~oK>a=PPvr1)*P?gZfjMFRg9x% z#qXPA!;2Z7cKabEW%t*w&j6hy#GKttXjj0(pb1N`Uh0Thilu z^Ha_k$imW(Qx!4r3(2=QFhc|So|T)LcDy-ABPDc78h+j8d6;LJ+m89`-L;gQ_%M@j zU5^RjoI<3&t%=;hm!25u{KlpxOOO2@4Iv>R;X|5nk*ch592xekI#7c3>*oJj_Fwd^ zbf&mWEBXU1!;8-I4G#}TQ~=TqXMyE#sO0j6>PSmJ)6V${-PiJBCK#4R>goH zmh;xHNTQfdvOOhmqrSkJGZg|3i?lZ}kyuOvN+Z=@penG6vXK&rGWqe30!jA{77_`| zHB^64No1?vfk)ll-(LjU2_@uvKa_Orfb(N!k)WT<3|avvIdxOdtukTa&Z^ILGrKAsOUL>`i(z*|HWK*-oVhX z0jO!{^PUj$A9Ya7ZU(+qK%vN0#X4|G{8GRqJV)I?f>tIR1u;2qH|os6eC}J34k7Q_pzF@y>RKM2wA$PJc;Xb8kn+*){0< zcYex+A`8qFN(Cmyy^?WTLpo3TMWi9d#c_%Oe!}|0Gba}5FLkC;9N&HO@M!^XNSo$D z25Zo-6sPTft}3s7&k}aLX%UZm+Um4euhE(G+1n>iV#QGfQJ&QLv$Y(VaHd96xXq{v z_wGa;Qy@SN|yb^1y%Hk;OP+QWA1D)I=-74%f@zRo8yImmD#3tB;i~!@!6!I9YGVY>gZb-!XM3aN=WbFNZEmf+BxV-G4X%D2o zQ2h`|i})Ro$ADN^6u>tX^L7hB{-?Lyggo{Px=TRg7~VYY)Cud$eMFvA)3@&R!W!5g z6H~H$|JfvPSM}0+P8gcF5Yj2F5=qRj4u$W3>7KcZ>AeDp%A{as4yu>4Jue$m^FcUm`d<1QId&i{YBw80o&q{-2TzN;hb16C3TmqWfd- zx1TMS=_3v;BsnW~#>@6gJ844K{Wo2I~iS-tO7tG1jg@L%+KC8Xx!0|tf zZFZzq=~rHQF_M063Ur6Ou5$Tl6AewCjP{G>_(nY=UD`C3&A~7d(`qLMiXOU%RqXmj zX@??X;>;gc1geK~ws6nAbixWvJViSH?g|Yx4b37XRCvy68$!a`BAmU0f8t~0F=0?l zh4}eD8C6@tnVI+xPL~92G6{balv)774f<@wT-IbdsPcPVnyg+8PqN2e(#2z;{XzTa zT}fVTl~42xBU>ey3IpYnOOxYrW1GkR!jy`b{r2|u&5ct_23kyWXkF#(i`U@^{HIaN zBNlZ=rb|mpC+6q>E{>smX2`E07g`9Ds%I1@crU2Y zJ;fGk3ri#sQac9+9Nl=+mRTbfyF2rB)V~7XS><54639y*m!Aa`7t}8JQsbv$Nw##`h325{6BSZkRzeL1(>2w1j1|+c!JQcXH9zEvfWq_E0VR z+)O!`iHW5kB|J`+hmzQS>@Ax8k~jTivXJqODYrY6fG*4*+ym~Q@j(sOuYBP7z%^>~ z*sDovbx)F+LchqO!}ByrQvh}R4x9zZ9WV9t-fS9`YG#ZLx59A=ut;(OoH?abQu5@% zolS?@JyX_Tbs6ypfb+Y1d%$9#K$(y{HLBMxUmqo*k3q_6(DgFF%@J%B<{?<$~8Q5>wwGFSKvl%dyJ4wdYi)1kLpd;vh6FieP+WbQ6{d= z_7_Le`F3B?TaJBVLtmDSZgIf~BZhoc=nXQ0x3 zF0Vw!FLZCUeo$@LWB!8QGRAfO$-h#=8d8#Rv0!{WLZ?Wav)-P`+DFKW=MO^;tOzj# zLm$q@zQ(Pk3)E+vba1J9ksrV&!HN^vL*T(uJ~d_gO+AYjzvo5BqX@2FB1v9OMCQ^9 z*ChJ_U0RDIRJ`UIW$=( zZ`dGE>6ZDpGY{;xPg(=m@fGB*(Kz(gKTi<)vZ9PFOFVCEZ2Z2e!A^mTVdPMuT|Rod zdOJO{8i=T1E~m`uf;$A{&zWDT(b+WU-=uP{jsNPKe=Z-5WSEV;F29~j0CGETI<;$M zWhMG=(#V|0+2lgG5zQF(PJ}g76`juBWL zxXV^k_rocyCW4&Q#p2rlpb4L!5llOmC)Jgx3NS`j6Iv%lA!lhsHphbC3>E97 zLhSzYQPCi}2y6BfF0Q(Uh6bc2q7{?Zulqxc-%oPH1;A6n-RkU#ceX86!Fk6}6&885 zQ1HU7YH`;aUF+HxcsSh5p*Z9L?+)r5|G>W*atx~G%PVbiAMg2PC^AA)LI|-xe2li}t@>NXr2$o3f%Q``evYYw^O?TA(RGKH9M3~G zaxYLbQ~PqJ!Uysns9K<%i-qvpoW6z?92rp}h~(wv%?K#_c7L7w`H5;O@hIC>=&uBk zLD4C3^n8_C8ILPy#pIiOe}v}AKl`0{tZ2!>hb-Qw$H9t2s&CnZ1IucOwYIsTVSPKq z;k9mS_{r}R?<`WQlVFpqWi3|Ou4RIQhp?A`0wB{L<|HFAS0tCn27UOW_joS_iF#2& z&mcs~e&^iyb~|7mQGG$|3-M3J`RR7Dr4>L8a?xm($aWArGO?9IuBy`}MpNu(s7o#R z)cD~>S%d7p2O%_niPk{QWWSNA#4jns^z8!<567uf8ptRR%XMb~z+T7{)pERF`1H%4 zcKxgExVhX0Ub7i-@3kF@shv;T68=u6Lz68apu`mSw%vD26BBBI)Xxt}GsJdfOvXS0 z==Sct)hK1D91T=uQ366GI62t)uo=ORIy12W=YCKm>ScY)s(H+z?H^XJe7eu}7Os9(Y97 z+CAi^CTooTpMYYQgd@$KjHt_O}j-hWbo zA?{vY65;+mtdw}w!Dhw_5IxjdD3aLOL)rj2Hnpg!sl5;U_kW1oX1WU6)0}r>qSR^t zaz`~Sv}BgqhtenXQA--r^6S;`dMzd;nnb2D6QP~UMqFGRl>q&)^Z~W&ebHQJ4Q%IU zMSwgLr3Cw?=f*Z&NG>e`)EK%kRt&f$RxXl2&kLZSXZdcgh~jg5<5x@;`1kH_=dPR_ z*lAE|QYzfWn9bx!8h9nlXfQ$~Xy0va`uO-DGFW2vzXFfPQ7KNtkM6o5 zVSc-B?#Nsjl0f82{FNmc1^L%BX8cJkJD|vBdWmTn+`zh zNP)0(Pyw~8XKA*qn|;ozV6lP!WaOWgQKEXk>niZ2@$cE(Jk}dCU?-8~?jvuRQ^}HO zChG3oJ-a#`arB=8=}YAJE0=%F`BFmz4`jVM`NE&>k$yc5rmw7|>E*_Cqb99}7QA89|t#J#z5EW;6PC%=x#I-gA| zP4KV~XE$~xjNoR}LTfZ(>rFga(UkSmT~^B|A12SY+2}{uNB?E#@Uo8NOT5vo3Q>{} zFBpBPFg}#rV`7am0eW7_@P#Eyb+XSiyX*^Zffdt^#;JEbW$UEU(OMb8PjKSmp_R)1 zs6b9{2Sx-}|TA)h0StDJ;06YL*8yauWzqNVDw_q_%l^y&Uj&%VOQ zvt#vo%J{_t|Dr|wkaFTj-;gcp<^%sbv#y5U@gRrS47ZyXkb21OffzY6GlPOW1UuQ$ zAtF{s_~%U#=|lbzv_YVA=~VR(!)RHaBp5t-utehO1?bQrRH}AL|qS3g$2jFUZB|TKbhA_(t!x*I|Ns znG)I1o2L|~KQmpRI6*MlZnL%3;(vWI3kb4J*+!UJEZGQ|obrK1aYfm0Y$bLOGcT|G z#g~;)S=aqtmXc7T`tu5>tO>sTAlNOKw#h7OQ79HU>-J^|?mr2#Gu=OFDS6+1)T(tC zDcXou*)Gz$X^u`65^=7u+WVo@VWZNYuQr$I~@3jXdT}zAq*V+4H;%nY_@w7+r zr4w6P^h9qMaO_tKzgPVWD8w&)IzVIH|DrHVQ%(x?;V4y%a{=Eh`HPaf+VR@K()W3F zjP9*#GMu{Xt~yBVa^l^Y+L^Mjs@De&O)w2TM7-=3yrd~zwD8Z@SvDf6P<3*%q(l{er)4*{D}N8oIr zKVJVA_wOAr0L&p0QgU2kD}o>l2@6QZpsmdMIysp@>!V)ms!ps9u_}(CO!MvOSu6QY z&HNNYJ(G+SGf`(XV)eFai9sHZE7MauE;iELH@=c>)>BbZHh(H2 z?^;204r2E$Zmpg)FA)-9bNTl>+$j9UkQSl9359UjqqIp*p-8Cf;*y~emB|Wbo}Sq> zNQU!)U|Bx9ZPW<%hS57(=2AQ=aj~(&zeOq!qq&@R7kG-x4!n{!n;lCY_`0_kG(sh} z!9}y7mDcp+{z5mQdQWZr$K2zz-*uy_0h>l$CzX!#3Qs%CRYXpb#Q4bH_cAvx(4kQ9 zznha51;OBgD?f4yR9^G@38M#-u%$#T?rflCpz6Ps7h{!t5b3I8u z4^S!phyXO-``+>jgpNeE=8s!ZSPKpF+PkId$nO%lyKx5v%kqNgP~-|PZU41Rs`a+6 z5Ks$$qWQOi$x9xyj zl#ERIQM97-F4mJd~U z%kMEAqbY^I%f@zWLzpvyWu6`>OW4g^TlgQEe zLMOkf)fMiq#OvPmZN`ZS91C*p6%wV4=&NcvJSMB1xzCx0(6YHJGQZH{lD8@o6K>j( zM7`Lw0wM>3>5Lt($a{L17u{r{@AtflntoR}h+@j!qZBK7wTKZ*g<~7<`+9&H{g1i%Q)liwKum*O4+2wy5e7lE(G>AUt zEZMiWy6Z#C)siyf@gLAWBn?_u1zF@NYoRywO(ASAyE{A3Gps|LLZ4rCGQ>EWWEAnk z>yX&>1T!0f|093Q3TW8%{lMr0a&H3#fF(G6o{8kl`f!5w4A72q(FvVc#f)Xrf?bKE zOslz4qw_D3sDFo+5zt|o5fHYsETP>#KMJ?|fFccaG6MZ3VzXZ`|IHn`*p0_ai-JXJ zEDT9k4RWsm&;mfti5xQ05VwGK@sA%_Cs)_vv|m+8$g$#0fJa}z>Cu0xY+}jwYWZZ;ZU6mTd&_U&kFgZo)!S_kp6ePtp z@VUDrR>-7UHR*6JlliDZE){2uF8TSVpqhi}=ZQJc>fJ>t)7LwktG*CWL4*R}k!eW4S4DL9CGtFTS)2%6jWA!#{hRE$-0yEnu zfhC=%Xv{LPSGe0xZIUrA=*d4ZhfXr*%OfE@jI>(aUnvYDrkZ(4OmO;unOH7u=#h1T z%37#)3-iSzKQyfnkqTCJ&6p(Kfd=Ndl;eV)4u6c_bcf+(HlQ6oeh`%`x(H4b^yvsu;fM zo@@$#aiT5ZGT|}7C8(dRFvcr5y3d1^n`vl!mg6jJ*Qp`k*~*f9UZu*vJY4imU2s(V zB5^fn(L*kx$sq@(X#{r+Y(*$f5Nyhn-%>MSkm#jcY(2^dZ)SObSpNkCqfIT3`fiUuVw1D}WX~haXsj zkiXVFeT4%9;@ao?T0enVBP4$7pDQc091+FZ&`(1A!=FV zuG_djpxvxfWpK#J{8~`n4FQl?%YKSCEuN@93yPdHI~Vey3i;|9`8@aFeX}6`doFO0 z`ej?`@K_qD*(T%WsYwf2f);#?zDmKe8OIgVNn@F>Unv*|RSJzf%C+?YR(xI>8ab`~ zLP3Zj(t7A4xUWj>a`a~JgIfML<9|O%Dxr$|i!*6c>3pQ_=9gHHpIY|^n2`OLW}_Rr zW1wLpx|>2mLI|wV=C=KTPrj#G@@Px#uKfA{6m$YntnrU1#2;ofIB35@R7&3^pz}M3NcyMBH{fW6w90fSK=0ZR&p#v2nx- zt5=saMjj(sG+%>7i2mL4)8Xl9uz4$q2cNDI|ln)iE%$|J@#U6bE zvnhK-h~Z|NYi~RXUmEFKHx-EyITTrGEsPj69Gnj*Qe_)?tn^4YJB0@VYXZyQjqLol z{&aCr^z_-)cEEKtCbxP+aQA0=&jYLEBY!+bSW9q0rX-r>5#5llUL%F8zh&mQYCB5CP8+hKvF^^i zUDKmS5=@uOGC4NGqb{W&W2?kSoUKbZWBKif)3yp(a5UCObF;LEK1_W5r7OPYN2l^s zLgc&;5%&$hxlNMo7R!CJs*~`PwrLj9yQobvNQ!%*>hJ3Mi{hm~DeV-ZH3dc>$Z*5h zm%jHyE&YIebR3TgonCHNi+v7>99)AEj{1n!&EJck!z+no>>0RbVKE=^Wb}hai6D(T zXWT7(cA&+pdQz~}{s89>T_Fqly|B&ya!@U%Y-uIOr8!ELK0`9iWKZ(+0nwNaH2sb3{9mrY0KIW!NBGa@-F+RU4gD%9gER1SahPFcX+id44kI(76 zrJp`lM5B6v=fuOWH-(SDo^pQP3xekFdkku{??TQZ%%d^Z_`A*~jjyBbJvdiXB~M-q z!g(HCX+y5q^~IbM;ULmvMQ{GdZ$FxUiL;Jjqa*5{K#S;^?WlAZH33S&qtMq2sVk#e z0;mWAP|9`#D~hwsTE@^?5boyjMK|+ntB3ze7fNX(4W8oZgFmE!GYbzoRQvYTI(`NE9PZJ;BInVSiQ=h0Na_J_R+`FXqeIh8>xo6|#KePZj6Y*$_>^JH zF;YbnIduN=x8l{XA9o5>E!T#wHv*@sh+deREa2NpuRUb&ljcDo%Gn+2temz%WY@0c z%1SmzBv8%$iyDsV3f72|OGckt>nZV3BFBCZ79bpYJ?`~Y-{EbW#6eMJAF1HT=b-pE z?@V*;P;lv)0v)Z-Cmi(IFiZ2q&dS&Cy(b>>8It?vOr^&@D=!yJL}PPpZpp91Yu3zN z*s5vzNCh9_d9dz(#6*H!w+KY25!zI>@> zpC@x8JRT3^Gk0I#o!92Un4^ZC&#{p|4vmOwcr|sqfyfPBBq}PZmTtawhIPDCHJn09?5xlq zf{CSB<~K^lQ*NP=ub?Q9p)UY~U5Do)yjKP}2_Vm2GlGn@eAubD-$G5ISwv0zgmA*TA9`&@-YPQO- z4lHwCO;)-@VckKN8qD{e#LG5^WGgcM&!-H1=jz9eG8AN~X?eaJyMG5BNX&XB)fJB= zaN(uki6P|`1eK$Z@47F#J=Q9UzIraEOMC^AhLFofbafqL$AUza=!ZxoO;i;1U%stN z4mr`}8)_lV&W)dh{u`oYD!#_CNlC^iULks|y@M4&{BsFSlY8|oi}7ddA-wfVWb)<* zT9(}bDEx}W8VHfu4f&dJL)GTaHaB@pyFj=(fl%>%5&P5EeiwXHA_^!KAcx z1$a^d-<4z3)--;yb*A4RC3Z(AY0<*VmUI`GpKH^wZ@&$>^MYxPv}~fl&~z0WeMrl^ z=kKjnwt9Hlww)nrN4y!*R-wFFMrY#FK zLh3cLN2*Z%@@xB1vzAmz>sLz_6NV~G`LY`@UoU-<7bo?e4WmgmQ+;%|^T8eqs3jdn zXGn&1F8D8?<9NI|b|tFiN~w?TlVeo9xYXvMk{pjhHEVrmp(I4YuZy{m_c=2OU$Q)U zJ&u-E;0d~$y1cAz2)n@%5Grb^Bc|`FxL2So4O06&3G98msi#m9dGA?*G7Ad~1cV5S z%qHoBkpt++Ihl4DDphsPWDaNAx6&Qr%I} z(5AgbPZ#eamt|zIMtOdU?T*HZT7Rbuwc@FjUyA`gcd&E7IkwbX!y~fJ)(@9jHW7Mz z+yT#cVop>Sw3_e67GQoexNDl}EaNohZyBr#_GZY!U$&t$5%^#+cSKY1V;??!qMWgU z{EQ$Tv*PUJhHOk|{k%?j9W<=%LofO97WktAA1vey{J>?B!g=u7>=`%`vX-;e?|sq| zj5D;30s#lE9N53_#UPcU)tG<0L zoMc;?`Bh)K|KZfSl$=UiXCK?eLT1d`Wa=>aKc{OuaW+HSKctdbW1AvZ(*syl={p9~ z`^h`Qm+xD0lLxMQXd+<}0nBiV*H>q|N9)7xpqUfYIxe-|x5E1QgFBr;^%uvM)mM(? zgfm+t87C$8((j7Vufa>Go53>^!65vY2shcv)UY8VcMPpG@!-tN_rxho;n6}%)Xo_A za54h!>`MPV|edSs46j3CE|9ZD~=I_ zB+%aJs{>n#=&*jZ%-B1NOte(cJX@Fc+Axy90X?*im_ONciC215_8kl*wzh~#46+<< z&2p_a(4;9$YV}&}zTyP8DAFqxQ6 zuK(uQ^2bR&Ug=~?&ABwo4sd5d!`&UWZZj$OnQT7RsNvv`P=#edLwQuIp?TLOb@!Q* z5>3{iH%W7)PkmSKAo!lx?Xj3+*U8JS`#FbB1g2FKUD?pip2R?Y>hpe+2Qu8T7O`m( z_PE6_#ju9s8%JY#Vzu|d+ju&8p1f#z^nCAHBo$1SfBUJS;~X!+3EY9Z2Q99HOEmEd zzoS|y1Fge?aG4x+P?P*Vq2jM&FBMO$PdTousB4GK2rp!n2u_+DZP~YHs-~G-Vx+i; z1ubsc+1;IwyFHJ)I*8fK4)_7x3`AcFh8aW-KNBN57_haL;G zR1S3b<$mA00+zv6wUex4RD+nX>AXe&T-4K`j&jQYaG*5kH$cSD@F;w0uB#)KmG%^K z{lwA4E4`8X+H`&Hlh<4lz>h!wg`nT<{^;D3^k4m(F!5*;Bvd8oy!aMnZ(5`o+wr4M z?tC>5X-Dfy&%cAYWLYKfv+1KbH9>LKWM@nnvd9pX6@l!rU10U#L>D<%ES^HNWD&f7 zch?@lieR* zXAHR0Z#9+Vh){PYwF(0=gYydQ?ETeaUwcY7TX+o_zg2MuK&)X{e-ByT8EDJZOjGCj z(t!R=7o>%ycCV?J*I*&%R{#ACD}&MsEvO++a6d&7yd!=$74Ab>ybJLiBV5xtnp~q( z<8tG8@>}c9^Rv%jzzXCVHa52Ty*&qUenXjIQ-iW;n;dI}770?5&JYu|{*wz|^LL)m z+h0sn5hZhqp`GS0g1&0h;M(bTm$7*SDiAx-5PKc)S0>bmmC^gvf1 zbipCW&^0!0g3cbwPeFRgSxGh8qTg2CbKpyoP~2V3Z+Ds#G$Jlw6?VDgzUzS}d+$)o zd*t%6HNS-0DRj_Yop+NgKSoxDukqy=&otL5<&|o>uImv+=JHMxKvHm)IeC-bkDoR2 z8L3uMSj|avwIo(FfR+KsSO^aWIDpu|YH`+e>jzU0r^I51#O_z8_TX?v%nD@R{@X;1 zbiw=r^xTUT{*CVciv`d(kFerI8UM?>KBT#=p`xb72$shiZ4v8cMKL%JGhmvkuK$^f zgR*+Dw(}T8)V^2U$W7PPIEcfSaZ|$YqqaaFb3RT^c)BjKdy@CP8xgx(fG*Hex%$i` zYMOoV)pAGW_OD9E7w+%r-3>G}G;IZxoVL*1K&DSLNn|ztNVmq|$V)mZ@tROP-*rgA zlegC0@o}7bjPys_V#9X}RE6st(e|EsA@26pWJ)hDo^^L`p!x7438Ja25tg#2j~@4z zOjcrDit{Z19z|FwTMVMh^uZ4;oxiFd4a^7p1Umpk5vKtf)~v~qFY?uVZZ0-=iL=k& z`mLbSc$OUNpgT3Zkr0Tg5F~RAN>s$RoENrYWp1AZyAR zGDOd!UW)wQqFBD#gfgG#kANoh^+z)VUV#hj?@IcQUHm=x#eF~hO(ihD8aYP0qoryf=4Bgk%KyHJ&x zbRN_&2pDKZvsWHMtfq{pHegI^d@d^e@i4X(h6Bj^>hBQA?|jTl{CyURzMb53uZWwl zyOe#&iu-6!QPpLfxwZK&xfmPrXNR}tSpO(B6-w{f4Ci7^NF~EuA%LTs^SIkN&?*dv zHU8kNj&7@$nnO!qLW^ov-bIBy<+x$Xy^WozU>b$$GKXuOra>@gJGY)9laNR{WKKw* zK~1ReZy@vuAz3-!A|EL@<-cP;!(jTjz1BwhM3p@Swda?$gaGz4UiEam7WSfOYg$RK zG?Tm8*jteS;LAMycRYqj1=b+uK$WzhprAOt-Vay?2cO9G-zi9kyIt2!w}`o&SikFS z<0b%(Um;!FIXaFxEVaHiz8KQkp;$f-15t62YfShRLh&`eo;GfP6ghqKMeKsf{rd7G zaF^i9(_VJhRWPe_XeTdHczRE7 zcgE#sCu8*4zYdSY8d_SxSiQQMd%fQEF9k753NZ@PJ80fQb9ZP*oaRcY-#e8?o6S{y zUOS`>SKs8^=J4cs4=MxSV`r2y$pT;b>FA%PiEgDm4C0e}jU2}B)%h8C?<;S1Y>i8N zbd6Ti{X`NQFPLyp;T#&=XE@^f18j59Q9vLum{*vj6?|p|HX9nz%vV6DLBa5)oP;w% z$&|oi;CdI^7eI0!sX_@P03iJdsC{Bp!p5 zbVPQQUX%&uMxXU$ot>@e^3iy6#r0G!%blJOOhn=8abQnzp_u*S+Kx*a)xU#Ea~_DO zI`egwR6T0DlUCeYvX7UlT}`Gw7vf3K*U|ps_F4IUVVHI29Y&BgoKfL^ovla_&{!JWN+{FNKl(e=h)7d*<&vZ8v$^eh}<;Qf>?uT%VE7 z(}wDKK)g{TPcOUbWWaFJaWeCgI>*7mK`=++{;^KLiOz0maaJu5=Bw)4ldgs3f9U~J zv9Yl`{UpYJhltN4wd9z}tn8Fc>@W|isrYj)|R*JFzJRE1ge`_>QPfZ{x7Sol{)>eSMz22sQ zTwE^V4rsiCqTFIET6S_`229G#$oGxDTKCSFf0Hknbr6`A{Z{3qH9p(u&hy-xBU$I3 z!>@5=*L4jm0d=`^Q#^i79M^Vn^}ZN!N`3t!%#a|<=akybj6>Ufskq^i#pvB_$PDY` zR(3fB39|G%z%))%$9xCsw4+gbYB1Kx1Ff+!t0F9n{u9Qr?L{_O=+Rw#II4)>G znMgBjf-4!TArd{-7Lt#nFtv~PsekAQHu?CKH{UlGfVgMbI27TR{PiyF=hj^T@rXbN0*o0 z-50L{2yYnrWS&1Fia4i#$cBCQZK6TqTxo1}nr z#2ND+++xU)yK?>j^4E zWfR8aR;=hxwXzh%q9%55YG=Je^k7e!o(RDaz0S`r<;p|D$7DLlF!f+s};JJttULK62s_FXJ_XawekGSYf z6?08Tz>JXND*wEqF=1OrkGi?!oaVh7BQuOIoUyFx{pGf|YCz|BhyA21p!7=^uVlO{ z0=_l-oz`VHsQ4cx;@1hZJ3h6#t75(aVXr1<;q?s`fB3qO4-dN+A=<3f6NDT&{67 zs22v}h~v{8&WThyS&NsmGPkBA>F0~TKk{<>6pkO({eXqx+1J#Wn?%5cZO{u`0xcVg z2CX)XR3e0HbvH%!;BXjrg;8aM4r18lzhplEgXOz97!iS0Q$!djeez_Bp&dmIR}vptP0m-4ER96%XlUs0%-+^) zGf(vif;djq z|4TH1sTZPO;zIJHji^zLcHTd%o|%0A5LMj!$=mq#2bqr|yQ3ENaq4O_79NI8*T3VP zlPVcjeW^>8oL&61pHVkTkzx|Z)|<*{Ujxh4ZFkXGV)fpJT^Wc#0og>=!7*t>j?InK z3x1n`nf$vNkEO_{2rbiaEDg+XVD5c1%#1BbzkSn6K!(!yd~N7V!*C#echf+bEKx!Y z!*0HeFdQ8)}34Om4?q(O7zN3pSQu`Xgytu{v8uo z*#vkN?0(vU?oF8zx15kQopkVOBnD&*qzrzE3?RpWa~Zx*I8_K|Jnh-;tbsoh=e=Sz z90u!Y`5|e{@;4K>@5$GBF;`DMd^&Any+Dwr|ADM1>>Kt2Sbk*4g?bt_U0_m=~>X#48IO-hE$4Dd>3nCf0F8LB3b*b#Gi4 z3yEwJX}@6<@=b9Rl6Zf_PCLb2b3>V={c(w%&(??-obU-FP*Tt2T=wUnsokMK%fPQo z(k`hCywtgkVZ5e&n!K~tZT4g!W)V;3@v!7U4E8{=$W(g`MJQY z;1e>?f(3jmMkGzNH>^ADc!+Nmi7CDkG8(VVd(_V04q|W+*n*vI1i&8B=Dm6> z>Ie{&jOERu%q7Of_xVfBwcGmJ(vp%MRG1e?8A#Hq#INC%0np+Ss8u0wnEzBx&)+q&9;Se+@sbsz(ej8SQHFO?bZwhc#I;=iDPAcAXnJ41}YVR1zo z@yAuvue7{KvkAuPoTq@VF64tjQ(zaI3$jA5r!|tY;bhAIuJYq|z{NALBL5aWA&@Kk zm7h_$Bv~(@(y}-)!cH^DsB@V{ZM1gUYa zE|)<7^I1J+Uwl=hir%^pxyVWRQd==DLAWq%5U%UbqP=nW9MjxNcUH1G_s+ z1o19p61-WxTJu`MLJ`BRV%P~>JV z9{DAcPsKE3GqumCo9;4X|)L*ULT;^aX{o;65Y{qR0PBu7C%YqxbQ!61ui{KCv%@Bdm z9Dn~`)E2N3Bi6yNwW}{b!q(Yzhtfb56?G?peKtI5AYPqlRd#j`)E>$ z?(Oa)+_6p`lpvma=C_@{ppw(hg`LAE$UJEoL?U3Um?Pt*M?Jtk&)2;sn6(Jy2VTZE z?xE&9t%r%8Esx-Y?H9@oOFsGpJse)Dg6aW#_!ztOUD?6G_AFukHTCsRp<>1P9m6jc z7mvgC`1}U&M9?nm2oyPfXt?WM6`SSIwl3~0{4U6Njlrf|FDOv(^A)d1b`J?VGlSjq zoyH#wD|f%%O1%0eFg!hf;rnXGz-_Chf-q4QekSa1JEUlX_v5h;8DakaOy~D)l@?Bh zBzC63Tnu(WQH=AGS2rgJ+z5furrTzJfJiZfauyL61FuU+2r9nK4m4%}(jWV72_al6 zznVP6J9Fgs%o((Zt>QFYg)`A+icwEZp;p$bA?6Nk9-Z9LZA1|tL)dfOdn5SM; zqDJ9Q#6K;b);`MWqt?Ct;}?z@dL372OQhJ`cY-pwDfcbQfUZ;XzF=wm1|uU6-bYA>%J+C|I37~b2voj*tAl7jUiG% zi6jxH=QH1U-Q#KuyorL(m}9@A*NzafLbd{i``vyISJ|FlEiNKO2`8XIP7G)wAxgx| zfbt2ppj3+5OV)2v5M#9V3BIouVCev0ykI5{=A@-8CdGPY0lu$e^|nKG8yke02m-Kv zGk$JrvPV2pgri~wA=AuEd!yn8k{Q@kY;0gxsX^dQ!)p-lu=%^y7u>N31h@twO`saV znB~8SZN6JiffqjX5MhCaU z<>pd%G-9Tw>nVIYIOUBPM%HZQioH&-=0!K6QS z1=DkDLLO-9;wns*g(t}o`8ZL1Cy2oajZ>Xc?*xSxx-GyQ?F@=c1Hi@w zj|mL;NS?8d1sgn^>}@cUs~Vj;ah7>eX<;;8|P~z-d754N{IJ+xZDbQK} zp7;wEh614h-KM>Qkuc$qx^m72!3$9(5Zqk%-kj23Q_e8(Q^jWDe7`^Lj$h=y9jEmZ zB*%b(IitCex$^X{*jX{ChZ(d28w>x%F+yFl=&^^T1^H4oPL< zU_GqlRMaKKkfg+@2k}NHLHSg7dvmjT8SbCY)mz8PS54)!XE`w6Emv*#26JFh4Eba4 zuU~e0lWR-49rlYc29us*{)0DbwfDZw1Txz6j)|MBKQKf z+b&aYh~jBcUow?VLkEGA4*5uQoOh&9jurqrJwhrq;uIe<0@omz48C0a+L-|eiwl%> z^^Q}L9~6l9|9pREV*?Gf;+L}oQ?C?gC(zImY-`goK5yC{6ZR#tnl)$t_4s)+V9va^ zYU|oJ`f-v~?U#fZb&;QF^r9@5=A+|OEfdDCV~GwFt=7l<4eXE$!W_>#OdN)S&R$Vf zg}}&W(?AXGa?ZQ}@>@jG63=K?81M1*b%1QrkuLR8U6~+_0a0J+uJj}gX?|R{m2~x` zp#9rjb~9E_-EKHpzb_;AQS2rGXl|W213G4>gLO|X;t>b_xg3#d!XS)5uyZ1}sXxWJ zD-U8+1#ZYN?T#i#eCEM(kUAYm#RJ2hKL+61>^N+g2&X=Xeo&8ls9jFi@Bb)+wH*Ny zZEv6V^}%WZlC0w{V(sbwlv35^FJikOuF@B{U`etvkZ=R=pZe-7b&LGf9{HBU{Mj4- zl{@rU>{yw_lch++lU)i-mH;3FiPB0Xzly)5rq*XLkbBhn&V#0b(lvJ43h7L zJ&s9qDj&!29$W)nd9lJSzSUU`J`JQPL3lv$oLZCV=#Ibvjc_vq3FicBBLu-fMiS(8 z)d0FIUN4XQUN-d;dL+d#P^Nc!JBG|{9m`SmHTk5xEnDR$@e3x>- z_(wCjTS(8Pd$*Us1Mlf80-5Gd976YY;)QZw%AUDscvx_$7bRk33JNMP5hAn@2!kuZ z=pU5duV+(Kn4RG3RCkf2PI0;)jJZvMJY*|4c~>m%R*#`mFcyiD2rR z>aK;4Y{}6@%b(XjPU87yS4Rc23{)RSPO!%?jjToVPV!E(h$KD zkjSuz3|j_l1(!{M3qa|LbjX|+$T$Fd1P(d)uMt};$Qcnm=ZC3_F$|P2Q+S_Ee50{s z#O^gFNOQojg|Q5#%uiTR?K@jr#-Lh&$daYMxwshw2?l|uVZ^w!47rEsxXfow`y(Ba zJjWcWX>XXNVom#uR8h2^_31v-oLmtQxEPnY()ZmcN<|SCfOTkly9$ExTF~!G%lc#Y z&ne5C>%vs8C4}^K+p7hkZ2q)Xu`F{LezTiEz0{%UXZf=d)}8h!_u>!l=TPsk-Y@ic z!uth_0Odj`T?4^39v>e=fKBu8)7DfV@xVY_W}BQcyVU^JTM*{@s;E4^;zPzRP=J41 zF}@+HcZ)!;(y%qsfE3-%uoXlAh?rIYE?T>qp+lHGCEA7V2?Ll=;5@kUqm>E}B3_K( z4#?viZ;C*0fjQS3ISpXs$+FikJ1(6(O7rfIBZzhSA+lqrawQCX6@YrgoUYX^S3)6<=e4l* z>U!^8|$WSfj+lFw(;ZlXq)feb(cG_6zkmTnv!kJaBWwHM+m$ z8lg5}xW#-O>Jo83Yk2K=vvzm}2Fk0ipy=B9%u2k73;`DOgUKq)bI79~)XF4?B4J;w zQ7W*6xl)Aj1_GhrBvuLZwQX=dC&gz|pGxq_(5y+XH}3wn$#YfI_T*-P{u0$?&aU3% z$CekWq&n%J$x%awcj8{!Vxlvl1)0X#LRs-TXzSTO_Unb)>?oDGms1?c$i_-=-haQt zpaR_Ff3$Vm#fzIEF=n(WKQi<1DF^Vr#M(!1FjDO=ibPL|bYE=Rn@SL^&R~R}Jo_=LUrU;w+zeG5pK$8VaAv_WP7_dGa`&!I14a%4B4970G ze=wQ`ts2E5w@<1*bmt;gIdU zUtVTX*~}nvvcJmn>gRQL+bMa1atf}v=7amgq%+AGg2c(;7)*9ndE-Bm-)r%f%_NL) z5e$YeDeMnj-1(52vYksLH2qv{?B+1%S|5SM&UfMm?4p)nL$v}?LAC}| z7vF>LB3C%>4Vau*@$V#vbT1yRPObLOJjVsw4 z(HO0N0eU}~wy^^P4+e33Te&ygC^SQVbk{prh@KEpl#6nY@h00(?79bf_|f#3kLr%l63G1tCsr9%=wPM6LFfL99YnL_4Lup2 zE}T*X=E%GNO%w_-Y{xLT!b}7Dctr34B08eTtuS<*7o$FiE_Zp8U2)x8U6B>bbpgw! z*7zdK{PfmExA~--1Z~3No)cmlYC+=b$RrRE#qU^6C7%y_GwK z_v)G8C{hwTkK`VKvZAzBf3BZP$+ zfwYaQl6aORj(`vf2UGhWf{@=BV*%e|)kqB>!42U@hM`PJ{Xn=NSY^bAZwaH-&6oPh z7lgSc{%uvCiYNqMRNKUJr0Th*q$ib8+x&~F5_AK!!A1Vhe}^30d#QB4>z>i#4tc2k z0KJ7`!RSp~Jx`qTLDg6Qr+R~v>JJ;Px1S{%tl8W$DmAG}xKvGN?Cm*lM)XW9)CRq5 zZa=4J;OK1UC0UmZ(q|9v$isG=4WcYg_Mlpqn-O#*?scQtdFQ15!^-qG%g=fG`IEV( z>I`0i? z7gDVf{q4z-5rW@GRWB^9tmG=9eSLhG_aJT@WdsKYC%3E&3xJgMfB)opDM-X*o_QKQ zevHtdqk3P=&f|TWjlI}z!3Uc~Zr=N038{+CH`qyjIm2vCxH~WJrVx2duDYv!%O?ym z#B3zU0VM7&&*xOM>izFXY3%&?cU0slm6<}t>BkOkq4`d$zArDA)71PZg$Df?p036?_v5Wop1$cZweTz7dB2@3fO}6J_Xxy{lH0wyrMW8+sY%5gBWD)vE@- zN31sIGx-VO3BR0`ImwcKi0sfNA^*Ka^m4Ur^`yp#Q?7@_mMKdMJ1$95Y0E3A|4A1= zoaVf|Jmf`JqZNa+nB>&d*}`C-cyY$MU*A*qV{TkL*^kv@%i^5|KJEtUo2dcWum2WJip}{@ z#Z+hL;*>|YO2#7_8ieZ_8mMM&kzb5e`hS|`n)Fjt3}dKtN{H`N^oYJV@}uiIUs&PA zi>4)GGIMca5y<5?Udmu@k|v5|Ai$(R+YW#IT1Q|1&PNSSvP0R_sej$DP(97!YpAQM zi;z7#J#8exnv3>B_?j*5^q>aMhhx!%r!_Y>hZZP^QIlCIBvafQ+YqFprvA{}90eN@ z8Vd5+h3CH?lte1~qrqPpg~kLl%@#aQ@J1KDJi zY^rD?N&ObH4bR4K7oJaHdf&f~OhrY7R+gQe{r1Ap%q)gh!YlW~2i*#!=%}dOsu!); zIhQMJdx+Y9dQ|<&U-yFhRXN;jVBzkrXGLzBkN#!)Cdr+VE9l})7JK%qO&$BLSXJ9E z-1c9xJ_zqy5Dqg{=jI|UFE6w6@F=sB@R!EB&f9C1{Av4#moLpzTvCEdOG`GW{D$Vf zynG0AB0N|-8Izip)>c~9BrHgW5eJn4yo1bCQJj50ai4t9F*S|WU=8UE$5-#|a;We4 zchq51t7@fYdyn;9SXkI;pR#nYV^tG69FjKRqxS%cU4*RY4iK!}@%vuwzvU?Ey}Ljy zS=-d$?MyfV7Bqg&6q$%_yp*@?kRR$EkfY7QkfYYIR!E9cN0MDkwd=d@H1;pl?G3-G z$>!sKfwibz%xSiu)*?K|eBSOY$xVyl5Km4{UQkqYtDvBOpW+0e^*M!QksQ7_nXmAJ z56pe#@L33O7h<30vL$wg#)Tt^V4d0e$cAt+8cu7N)k(%T+%6<<_;c~$QF*uV%Sw%* zI)9QRI%l6)o&77()}HU(A?cI+?`5=_LHa$g=J*>gOKM-SxJf0Q*Fn9rxmo9@=|(kr}=xg`JparLT6R@-A2J^Iu?5FLXUMJD9vUGpl#0 zdaFIs-$2&>=lRlNU#_@-z@0h1t!MA&MRNXitW{^d^_C@U`Y|WfP!HQJpP1Oo-(I}< zBF}L9hAqO%6Fku$4IHL5gf09_8py#@HaMYFUh2Nq?CyWghgqO{ZB zoGSmkhm!$kC!bWgSpf>?-tLDFeBP~(VFXw0VJ9^(H;?=I(|E4}R90lM;tju^H_`O; z_Cn#_ef#ONqE-Lp<>%e6<>loBalMOs-V5$cBje*CJv~Y!BqR&Fi=9LvQPI)54<3Zc zGBD7HN*(oerW?99Pr`>`>q8;F-Mp~A^173fQz?C2Ctp>DdOy>HO_iJjFC0}mXP8%` zkXU8Fo{w>i*`JB*{A@h>my@vid&4$Ky11b5mzSq*r&j?Se@iKHTL_&N|1!Pnm&W%C z7y^7Iwq?5+n@u~rD+m?i_hI1+=||CFRSoKebpJLtD=fWLC7j%z{X^5*QEt9VN>1Ln zyoYJmzGMS$tjoyRQ<|~PnC1}(!%utnuJhYB9LUeEYlA}(S|9?ywMTelB$m8L;QTL} z+ON)^I@b;&uNV%t3zXxm;K%Ozw5qTsH9|ts>ZbKaf8hK>3P#|5nwOiipYY?P&)MNm z2R`BF@CfvKvx#73DNXu$zId~K;I;aelateXcv#2Y&uczk(H$g6U67o)g-Ir zOM}DTzefsl91u$D|Dv_vlfQO?e@BCdk*QU}TofcLJ92qI`c_dM7XLsOf>@HhIG;3oC!-OjD| zO~O7*CXVWVTx^`x&Y1-IC&D>rpE(iMh)+rPD2P&er&|!_J<)^j@iqJudkI&nckD=} zt`+S&TidkfP0zB8Crn$uZuNcrCx)z{{VZe<||WoRpMQZe;ZZ6&&q} z2@*I|gm~e)`ueCP;~bU74IJsRJe-^=Oxj%*z%w+S|9#&*5Se(pBC!59Qv)uOv6yWo22liMMqj+w~ zl2}B(VrjY=u`X-yH(a>32F^Fmu_t1y@!FhbTxTp923H9P#TPs9G~pDMlg9HiLSBjEy#RkR?KafgqkKx1s{)gAoqo|5@A=C)i%c41ZhR zi&#xnV#B_DTj$XuF2~dcb8zUi6aQKG*3}iN!SiEc!otErwlNcDA5K+TMn>>YrykHi z@CggQ1|=A&O)X`Kc8(IvF<1g*>>8U8cud0M@9!Ucyz{db0~Z%JEjzmhu9NZc^}Y3T zEqnEl<;Xg6g^y9f@01tx#{_ucmh~nqZY9hqhW;ab2`7vMm@1q$9p`Hm7=Z4M&dl6? z_Z_ar2-9I_PNt@l6DM5yT15L~T9c7!=pg7)_fa1T0Y(9cI0sKuS(DPz(g>)KtyLa9 zqIGYg(aMqLa%*37?K_0)h{SAcZCTRyF0Q6OxzGn(ALJ|p&W8t!YGduCi}@MKABDW> z4aVCQN#;GwWItAh?Js0$hu6RKtOTiWC*(m>B4*Q~5F`Ly^`d*zikMx~T{0^TW^b+a z)3Os9p?FB1B@tOM8*6{!?2HF}j`bh>$tar{y2u<_~L(g`FKHBvif*(yny*meysZdn5H6 zxBS~~tLm$9HSXqhQS-~m!z#dTkqhhI2otIfJ=6(~`_~PvcFRk>Dt99y=8jegFvBFL>A-v~qIF=asJ#rjkDZ@`wX7G{A%bC+xhF`kch2uA@db&=`RryuB zNX-?9Ag--q=FuQa+jMMVYz^?{!ufsPCLXjp&&AEXbht6TU!fvok=Nd@o0!nFXJcc- z%u%3$j*SoTgQ=ZemCn;A0c23r~2X+2A&N`YFr8_NA^>;pe8?rxbu&n?%ln+V*EBG zr9U~pclkblda{(l3PbAP;!1y#-Lq$5znoJC8Vd^*W=1_dJ$c`K7Y(>=^keryY6IWQnxR14Zsf%J}&B zM`el=4<~EFx5LX5mAZH=iMR6-bn_p=Ng*aC-u0G57eMh+tJ5G%kp}d2;p74?oIrFR zIBA)ZFZHaJ8lKI%_R_vsSoj*^4PtaOwQU4vQF&e*_!`H=cM*A(4o243fe zbK5*m6gHY*8p%iA1u>}5ZVT9czxQj=l_5nfuc}JRyU%tgGiY$N0~ELS zHfq3%6)MMwgNLVPIn*G?)>QW5B87}XfWFBG)2DYXv{xci${+Cb5zQZl~J2~Tyws|A;M`Has9{|TSH zHFx1NdizIZCuA+*nduf7D&xcK)!nBPv$OZsJ>A?sR6K0G!F;=$9VW+U<~jMGW_D|R zbF*uDnxd-h+NT1-(1)cjIH6vRT;fDXri|F%@4~hYT)yA_O~|}g=OB^-O=#}h$x^K4 zzcehYTK9&Z#wm7KRjt2W7l&zt3iv zn>oCSv!Loo?rv_j{+x`Q99K)2M#nOKZCFrQ zmyJ?9V(mSr>tCa!!IuiVqzlVc4z~7;cw0> zJ4ioav1CmYmyzMIL3!}t0b=M-A#{rZv6lI1Tz7Z3Ys;_vSLuVRuFJ6^`LGcnHW-N4 zH$vw(!azahW|V1vDkx8A*ofN@I&`eP4=F)ZFJz3E6X z_Z3XY%;9dkbcZU4gO5KL)FXFkHAxyFtcM*x?BnA@Rc4@uE_|4aI{f+LM}E|2YP}Cw z8Db_g9IMJqNY2;V?s0MXhjfH1(UviHth`+Zy5Kd`c9YQlCqygnY=t;zVK`xW+S?$S zq{SKu!M`8zN=iz?^m-@|-?hcJ%}q`k$QJ3jy1JVF;@@I<8eWS&YDWUKaL=0t#sKgq zG~Jij|7U(9{(JAuiv_p{t!wzz_484Rp`F*OvqJjndM|V!f#l2eQMI*?kBQ07+1ugG zX}B24jc`26P^$Eghd7I&gGql^7a9crA&U+1?5hxuy-kY=iE;Tx3ymNuDhkFRh0l-i zdma9wSYw23Lm;YyqvPuN^!MdftEI|l9Do2`zea~rad|$~*0a9O4tfBR1*m?VAnF?# z9kq0IN(@bWD+^wd+`R722cM)xX*zDJ-my4;VYKl7wIQ+g#nZAm{dJ9> zNd9XLowNu6J_|j?&!F^YkPstPY{#lQBMqLlg$0s? z*JeA6Xj)F-3`hJK#C?o}_%`ipxmKKH#6NlI)TDFp1q1|wPoJ~jF;4}C7&24_l7)y> zdNKj|GU9ygD$2QDxgAr31ljH%>3I$T3X${l6uNu&u7c4^plo?Hzaw+9ib_Vn?Ul@E z$pTGqxODqx9Ly-} z?CkAuMPZZ$Zvs zP=Xa_1+%mUjVq@Jkp)=OlUMS^)L_&_)}35$gqFL$UfP!eh4rgVt);6g0br&~rRF9k zQLwZ_JzE~hlefA?LW1P3=|;EZSN=R5S)bXTZIuXUvue&%DyR?HNoQo278Qp7dHA=x zi104gn~IW%bR*uMBPOO!s2}TxV1O4^ z=rMs6OFi%8_2HQrDk$7EJv8Nchd8v#O3KO~tb6gG8>r}ve?-yX>?>JZEGY6RrBs#1 zCieLL3o8F~!?Smsyy&8jHte^!wfO#8Qte+H7C$K}sQm362Mn}E*Ty2vBR9v}$oF)v zvz#SrRE$hbJDZ-bJ?YGpc!381?dyRgWSxt|TKJr|R#S}*Ygqc$HoRICPah7_0*!=* z5+p*fH_xfo?@Nmpj?2`TnO*FMwF7BUCQ2&!{EzISGAl{<9R$Auo~`<{f^GB2LuM*3 zAmD6BTVs=Q1bzh_%Ga{j~OM9#1Vl zFBr(QaKWqnPWV~JAWs`-_8-^^QBhIZIXLbE4h|+18QA)e9zA-*e(xT!lmy*G;T&&} zt@}_&8s-aC)kvdYy=(QI0-$%GGBy5kUNnUb^hvGp{hr9}kFw*mbgbSpv47fXyMKHLl}|0?zB)-O^&ZYhV;@G>)sGS?%RI_qybB{ z-w_rP>bG6LkEg~4tp#wJknPep2^t-OMbVD&Ll1o@QZk1V6NwOSE{yxYO2AQuQN!w? zS`uo5tfPa&$OMEuaeJDv76e*Y)34!cB_KJy#v4GxnTdwD$lW=q_wa60W z9V84d9M*JOeGQknw3OU!M?Hn!2U!vSZD&qxZEYjuyDDZ!@mpT{RZra; zz(%rw7(_i!z98%Uz7X>}EDAW0cto*dg%;m^pWM>&h!qJVS9lZUTSCPwY(=mkv|oFY?_llu;Z zv&7*37N{%>M?Q#G3X3L#Nmh#utI?-4*iXFW7dN)Qy}fGJ2B0xd;v+utfFQu-)y1sa zxTZ+|;#Wor!x<=OuXEF1?RZ+{?0g+!P*Tnu8`IPMH^nvX7fHyPu3>nFvv1l=gC^>K zE(kmQ>WDRV+)2#RC-HO!Dpl3jWn~A_1J z^ zeQ&YmJAz1sl{437eYVt?PnkWeDS=_=o@PI1tl9biL`Qi5=uUs=8^)Q~kgczq((9tnci+()WdLx|Cp2 z>Xh>E*HEhCX#NamX`OO2o!qkY!bH_iCna<9oHQ&b35yf@)NqLf16eedPqJ3YQ}3iG zOdr>fy+Gm5{ZI5pthRl9!pHX$t)>qS4$$q(VO({ZZNLS6eph>YAW4G8Zr{yQMkrs5 zSp9%7*2z}`;D96x+y3Gu#F{AT>nF{%078O6??(U%o-Xn)ySFmMJ#WJ}V1?gbTU1@G zJz~LX401;P(_2W@t;bYAGe-m85?QGbj10e3UP}x0{MGi0(aFg$$k>1!&~e_d@AX68 z*7ffM zNB=9Nc0mCF>$G*2rQVe{*l`$?0*41j!}XUaA}qwHTb%N5VzVDF7x$%p8DW|x!LwBy zR7g=R&~m6NM5hlNTup?QXL?!#xHundEi~-=P18SEWkM^Jr5S2}au(X>JJx+#N+!{j zMaR4C+PmxqLsnjMv&mfsJ!~V6=WaEBS6hLreBHZDNb-h@NV)`GHProL{5g0aW-oqu zHUe>p7#E4FO|q4>V^^^|`4??b-j6!wHzrpwoVB#I&Aa-W1i!|*J4HOjl*FcYFU^T~ zXljT>!>e<#hM@Eai4b4v>azYR87h9sDR54J3@m!J6fsQ>sXJ+!SEP#Q`u@h|`qv?I zaTTx^JVm@cH+Oz=LvtHyeiTe_KYkb{1i>Xc=vPu#oMM*(Ff(Fshj7kHQZX*hJTVP` z*DiP>fx3j){P7Ne7`yaGLEnys9Pk63Hfjqs%uNvPa2nKoJ5JVs`^jf`+zsv@rMCcE*qUp)n^LevS#w zEWmyR4X?>-YR1~>Hk)yWq*N%eH%-~Kmj04H^c7G7T@qrLD@-<$UD4J@P)#2{>W$!K z^O>2i_~~Q%cfQ6=%gj`ODe5cIa{2qJj-@50{L%FsTBVDe^)K%0s@j8aLm_r~aT4-a z?cw#Lnay|9CsxXVudy7ZbKV68ao;`M)wHzCvqRxW-^;Yn?O1s&xdAMxd}^cs8u$|u z>vlgg_SL>Tuz@?#Jzl(6?n}4>AQJ@zMLWQdd{RbrV^=e7u$2oeHX7EA+P zZyBS0R$5ZkX;~WegvN-&A&Q%@hV(myAc(pKX1@wj!aLp2aC-X1f+WOmohxsr2Fk(Q*@70*(7`Lbz62cQ~&IYhzmMxs7(4Ax)Z?EhN~r>4T8LnNqMGYwr>3%?uv z@q_i!&au^-@&B~|QWmyj%;%ROhAyHF{?XCVPmvuOvoOA}=6!7bbHDS1NzCl|b()18 zT{fA^pU#mdubjoXE%G1EaXLl2c5eLON;0^5)E`tx2dPfP_f4NY>|>DsQuNE2{FOFS zgobdxrYb0Yw%N3QRzH<$VOxK7*hJu?`ti$CH+0i z*=Ij{3`8A3QtmPwCwjWNmboS?jy@o!$M%2CTJ^j+L4`WuG2V=;RBB2Jme1b&>5 z$#vnWM!G30hX)}IBMo*9+0-rqlAr)o_Lsd_m)w#PjCqJ13myOLwygA0=2;I2fy3TU z!OWJ#rVS`|CyZs8x?c)$lI-z}*BN7ASwiq%aS4+BkcW-Hd#*PI25v)VW#*g6n`o$; z*}3++HMrOruB)RHC*@ zq(mz#u{J@Grsx@f;K&qKoRaWkfMpr60u*eOW_5;}hbPt7ZGT18;Ne4T?Zke9AZjm4 zkagnj>jEm%c5}6}S0ZzT1?8L^x}c+LPW~auC=Z_Dxt}ylv%m;xxJSc44ByhA4&f0y z$Bp9OjK{M;(92wHXajn&2hlRiUoq&D^B>;1YJOLQ5#-4ScVQ~b8{%t^KH{1u5|HHAYkMr{6yJ0L5`V-L-5A z2R^Cv{rgUkRCr+GX0NSLmoNPJVJvkIzhgoH_2sGE1{GIoZao7>+TbyrrDH=#9a$2@ z_(a_NJq}i?HTtz@@q}O3z~IR)@l%#!wm~thZ{LUQdH&|=Y6bDQ6HOQ2nP~(S5OlOf zBHsH}9qPu(Fq~CXR_48bj}6iz0LW3?h^1ER=$js2-ekOKFMLgklBMOr|Gn_deENKB zvu=}_R;UYHqlF1oecjd=PUN;A_(Piu`qra|THZjz`X zgHPA<`7KN)RaM*?8XA4IPwwX@F&L(sBnCM~+3}zXO$Cy1(T}3A$~5yf zO@}5*^2bhZ)PFCVfj2huE>pOPM*79_Fk>=nl4@~AIwr^@?vO>p+8h}uabyrFMFw0E_E$Veyr7zwCo6o)#-x$6AgJecLx4R5Z&E{ z;`H?Ctvh$_bR3`t4h*QJX|M_k3*R=;YGMc8^J1rs9zpq@pP#S%hG{;xwpO3uE}3C6 zIu#8KiPpWQ37^E&S3gS0W@|Z}r-f~L0dVP9JLs=HxwwJ=kB`^vcZ!nuX}dfLQ*V}L zEao7ctQS^(S5x^sf}UFQbMrt`tvq`&TdcXeo}l%f0&C_@}mj; z>~|ebRYiq@zkh3Pf1w*p10G&ppkFG00`u^ZCn=2NP`TXJM;Pthp3l4!yAK5j#yJG> z1|dfk6&1NaCR7bO2_s$&5}7^Nv*GWEymQ9G6(S%c6jof!xk)o*ue7 zi~XFQ-_Q@@TY8~B>;dLC;u_$1Ch;qM-0vw~|GHnWVb(Sy-))Z(q)eGW zb{Afrj*89&IH)6iiFT;ZRzVf{I+!>zbeA0rzD20L!=`NkQZuu&Zinl-hsVdDn4#RP zv^PqWQAS2$ZK&A~cc-AK3yu6@tWZfY9dS(nakrhaN*$k%HUF$_Y&_fF^Wbl9FMS4* zI$q<&n>5im@8#Ins^Ez1&sE;9lSYb=(^Yp02%v*e9bgdt(f98)@=I5=c6TZ=v*juaF#iPU)AU3fm8U#bxp$-nQProzR^ z34M7HVRd6*KbQXZ_u)+z>&(AMuV=A+sG6PUfR*&Ex>Hb7Ct17~%TP#qX&w;|-~v>u zh10!dbZo)I{&W&0OVzqU+Z)||5lATuMse#N?q#z1N?;L~SjhA01~s+D0b z8S#Sooe&d^S4ij<&{+KiN_$O8FSUDndTKoX8Iq8a0%=iDSlAWM3uM`%``*k!3-QVo zKOOPUL1o#)C%ilTk;H5Z2WL8^F2v$21!%tUDX5OyjBO-)>Y$V6Q?$PR9f zyDv%!1wXA7XA*D<^RP=;AgeS*NxlE2?K&)#8z z?Axll_m1!UJwN##6g(^Ygc`AXlm_da z>nY%{mtx>GVxb+*%VTt!|3V8ERU+rME3Y}FA_X`MUiNn+igko710d8)$vjjOcp)FN9X38ay{1%Vgsp9%9MVm@4B(4 z4a0KW&&!6rexR#Y_ve$Bn>C)Hv9Y~tvb6|5Q6vSreVM&F)$ecLViuh&!^?|{mEyhk zzhh%#y8(-71x_RiDyj|uI^fx{oauq?0EB;pu}Z6-e~{cl;$j~Ts$Ak|MY#z+K3cXBk@;F9`2m(^epLFjS)?Rw;*(0V_;hG=Z+@q|x)PNaw~ zr8u17ju5u_H<||ywzjrUJM`JW^!e~Mox5YYx1F{N9gUg14{8xz##g#C zktqd#nzHdJ&*wkaiKEQAMk>gm;Iaku3l!I4@7!xa(~#z2rYI&SiUqO35B73 z>pv$Tk(|9w*o+~ACY+IhIABe4c9nZ~W=G}TP_PH=!XP`JYSGLh5W4?PO zD+JX<5#(6(pop`xvupq2e=!0ZhIQ|o{tF~oM@NJ}6p+O_i^$DZV>$sb2d7a(1A}(p z@OhGw?{G18Np&6bnEr|(^!uS;8~K;mf6^y#g%kjfNP9GAJDGmeEY$c*e;{=NBbD@E z(Pj=YAkXtKg*UKOqbN*)2{~sN13tG7`xB%@2L}gNXkvha>e5(l{%rLXfzdGRoCq&` zbaa%_*VfaM6xJnnPEG|V0o#qsc#wdHfuNcJqLRyt&lC{6YvJ@G1ACt=ys3ci z!T9Ns*XWhlze2s~0WjyP-=g@W$$$ahLIp^myZldng~P5l$g2yvuQ@I=`(oxwQAjwn zH7YIR(lh7X+iwhwM@l84HL@OlDCOqnR(kX(izIm>mGw$J=ecCdx>f4n>XXyRTXbB! z0_iv)BUOBm5499pArN^2)8uR8ni?kPD!$A~raj+s!s&E*Y>J#h{@OpnJrkg0$Q%-8 zZ4)KNM>mmT`QB;p57R+}E-U3gR_NXL>5osNk^eNzZsiyBlHlaZDt3(L8N z(4GVjH@6kYyK}whoJk6w^7qOIooB;nj~+mmgwVjv=qu18R==pY2V^3sv+E|A@AAtP z$b|CJFfd=4YomW`UaK8=!rus+Z#S7{0rr|a`%8RJ$JpUFnWpHHc)kQeF}=$jZi`*q zWrVA%tFP5!9Y4a(2jf_xr2b6!GkL=(C*s`;fiplJ^#+4O+pIzM1%Sz(cUO4=7WXX5 z+5v5wQF3B<3Y`W+4qNIV41`!?Uw<$YIx#6Vvp2{02~;NqIYS2m;s^bastGB-th)=W z2iPduuWabzC8rxxZy-Va{^w?~TnLX~?k|aDd>O_`bCfaucpC6YO!N>S0KNjz`#L;a z(eG5G?F{!aKqlLFTdczLlUCm!1FQAFf92o_lee8JCMcXuy}Eh`W!#ig?`#L|3xu5< z@NB}k-Vgp4UP!WlpToj&ubURzAeNgCYkhnBt(+FQBWKU484$~g*$$wG%hSOG0NXWi z^z9q3cPrS>?ZTc3N`;=zb71W<0MgeDoh{S`=t8%jPgC=Xi+kb=|8hKT5T<}Sx*EilKP1-IH8*q@=6Z`Td-Zy!X zSouQAyC59TNOZhG392i#HsGfYme2EvvQ;t!BE^^O)O zD>6m(C-*KVw0;3N4C3aRO2o6>O8d9G3IM}1*~u{MtQX_sv$WGZ$UMHdLif-cHvd1G zzB``Fz73l)QXwN!_NI)CY-MKeWF@O?NfHv-dy_p=Xe%?4j53m$N@PUpmdrv_?{Piv z`#zukc<#IW?qApS9p`zh(?vL&Nph~Ql3s0iD~KM+0Pf)G6$<^QsZbiCy#0)cKpYTM z5mpB6(C&ZBK~BaK6BA;JUXVOOV;8A~f@F+AnU-e8^%d(NBTgzJ_8Ta()|>sG=Fv?H zsaEql+fIA>)=#QAiu0CLrXIMz^oBQsGT}zRKzhrj;z?yz{$n%F|M|H#kEFAc3~uYu zPyrJs&K1}|(gtvjsaQ9Z)PLA`CiJSst}j+1E+S1#MovyhE0l?YFRml8cVv8UkRH{x zH}uR@&QW7B{OPRci~ml+_fdV__fWhiHGgTYbGg8moUf=QwcNwI7S%vd$;JBO07lAbu{_gxhqMC-0X0Qc4*9)6FPiYQp@3M`|NYIa|gc1n48i^ zkI5A9UVUaO$2d1PcP{yHhdw*=#FiSz?|tYC1O%zAwUmnt^UbTZ#DsRE5aRY`kMD@k z#iT#XGr2|mx-3Vdb8Sru61TG6S2aNGmTT*tQ5S8r3oPBgaBUBPb`!4*euYVbo1$7m zFRGmpYkt=6!?{wWE+LbZ6xY;p&mTm^m2^Dcsa)@XweFGXm^=MmgC56t*pm;HokF#` zG#xLtdm{79&J|Bf*%eELf;X$Xzt8U|I2vEIjVfIB$`97&^=FGyXwqU{ea0^et{-@g zamp126gAZh6Q^}Q80qfccy2pyGm){YR5$*I!vfw6q0S42EoK@xqt8QN0R-KK8ZX?5 z)sZxEeBw1C8(7BjHWULEzLOl?yg7PZv#5sRiDqu)neWT~Mz*$IDc2o5rk~G!a@4c7 zut>3|{%Zg`$^+HlsuOmT#0!1?Z|nJ?^9)jAc^VflU#_XnMw>K%>$jsr1I1MrOWSl! zW1}@ifM~-EJqmH)9**bEX^e;%oBj9+%$WcoC;tAb1K1R_6MI#LApD;=_r={ieeIgk zcJOoF3g}$`Q*OjR-`E2U!1i)-2%{yBiAlDj_jG|>8yJj|Rqa4Bz95rIMjVOa3JUI> zY}H%VKp}A?5*cG$jJv5OQ}p=BtGoN$R~q%2lou%4Yg+2>D(pb`kSu7ei*HYzo*FpG z(ed>1yj|VLs*r!d-zT1P_%*T}2X8dfh)o3b6xN@Li)ytn8#{XxU}zlN_o*5X3o1-PBmqo# z)#>Jiw^8i1!Ungnv4NUDBb=8#Sywm0iw)P?;}pTicWT;Vo~AUKgOUb9XCxQ_Fy?h% zUwn9^m;Ha={FPm5ZEDOpH%l1*`?VPq6&s{KHYa&5t=Cz_lEUEBypGIq`vK3YZK0q+ zDk)X%neaVN0FAAGx+(@?VU(S?;8z&#nFILmzKtW+AY(t0jL5XPAIjI8>Jxa%N$2x@X&S zH?1?7Rqt&4iSb!lj}`pJYy6PzzlyY>@@O?#r{zIiF_tvXS_V1ZI)IU=M-S1@IZ4D8 z7P7xz@KedsHsyM(RpdqC%Y6cLZ|P@9Pq{BTgG#7)@Ze>+@=u{LzmJ|_j|Qwa@IlhM z1elqa;@jnYQ=88noyc-mk) zh?2_*ylt4+99!Er8W~k3nEhIIes$A(uHcHp&~5$tnKa#q2t)RZo}MB^9L~=17nmUKE@%R&DZKW} zvZM?uPAZL8pO;Zt_b3fAd>^BPWC;I~+ph>RoB1>NiWf6NMs_~O^-CP~7;wFOOYB-7UQl_e zOC8MIaILX2wzL%5Sv_2HzNCZn>`sdpy)CpuB1)w(R-LEC4EQNW*-kPHNSCUag=w?N zT@K{VkEP+L=1*JM=M>h(wSVF8>#|#Qb*E)xN7vIkDU9i(+ejP7y|PDVk;iD*(3;-NRE!0Th?Pi6wG(kw1-304vfCa>oOJ2Osmn^G7>p_vmoK?R(_F<_Zhs; z*hBG}f25Z4A2aYSUwY`Xa`pUqC=<<6rqMJ*5`t3AZld|x$_GWrOUf(A0rZtNH-9Rg zeYxZM{mV?@&_BXg@$FC))1A9_HMUX zAN%5k%4YtTFXvMm20QnyOZN%de*X7s|L({c+j&WMkYuS^WPXijc3bF}yB3^#$yOMf zV5#?1I#>Jol|d+10(XKCt0Det?mEMnSSc-Trz4C0BnmP!fh|E=>ti2M-|; zkq)RVg%2N|-TPVYKW|yo>XCP~`h5B6zrVH#-kb$6e1L`J1?oA-@6g~Mg-GJig(kX* ze}C8E{8;|G{`_oQ5}v68f8afJ+Bxq zC-dUPG@hyPJ`{9qh;9!~NJ^S+k7Y3N-FX7;H5PTBoS!+R_aDqA*x%~xPN&TkF;h$|vmhY~f<9kjV56|0zj<(5EZ!%<%c1F78g+M1eEg>1&Iy<7G^-R}0@ zLrk$pWb1RXGmr|kP(S~mkuYFFL4!Jhj1T~q)coN)XYPM?Nw1GPDB@`t6wsFPD%UsPm3jN&Sd zSb;|{&+yq;{q9=QRXzdv z-~SPq3ks}`-iX|k(X9N1%Wk}BhkAd)R48_vdgd9uQZeTxuqA~^i(RqHc+Ti(3J>=xiIKM3azLJD7nw4)!^AHx=V%#0yRiIBzbrKYyGw^#A? z|8QzBHzq;4ELq&35PpH;kh==JFYJs`WZ7G0o}V%|F9qiWF&#x>Cq!=eDQ$Oaf!c#5 zK~K)?;4V>5XqyuEICcoN+uoGNU#B^FzL_SBCkV{EADW7pE7J63u_jCvzVaGNxxT_8 z>!obgTJsJz#iL}Taaz3G+E4rD!to2woOBa784RMh3+-_GLxC>f7p5)1A zi`O1K~%@KS6Q8Z857XWTWw}pbM4<{FY$J*!rL#goD5pSwaV$&1Y1$f+Z zqj{12)6>(3QZCbox?APh3r2Ii6nh3Hj$Dtix@PJ6cu&olSqD>tQc z+u8O~P&aYcPS&T!*gej?qtR@6K>UE|`+U-QgcEfDa`v!Yuq)xaUEOl`wu(_q_9+uc zih`HIIVJ&ns=)>Um5jKYTr8qkbeDL`lk=%*k{Owq9U&P>EAx>|H#3ykK_hz9$XmZ^ zyu85%o(C5Xj|{blig2$wiOT6G{Yff;Pk%Xpi|4>*m(aI{NTUca`K{RwvfS2bb$?%z zyV1U)GdI+7I0F5)f(Ut~iW19Gj(A$MZgrZw*`;qpy4oS(;8Fo#h%3(QEqXLx?@W8k zLP18{P;!&9L8fMA5#Wf3rW_Ii*t3hPW98_)ByyJE9or9}Y6Gf~>t`DM>|I@{PA0Qw zUe3|tB{T@TX0a@*AYwpPO#F{~fI-xb(8umd_Lv{JpC+ZJuTK>MimoUSC zg7E9M(H>7gvriADr;5};X{{OYLL4tTK5g6?ktCGk7UC`{?xPLZhdRdh8HUkhOam5s zK~#)I|2B&rYeG1RSc!r0aghSr`*k|XvYU@Dn7_~8H3eawokR{9-Feo*3gtdIr5A=u zTD>=iepOhRKEn6MDbYe*dd2Et#u_<)cf!L_l?1BIl@$q~A9ht1kL=qh=*Ek(vs+-H zL_10N6>oWqUGzsVeXQ*{&V4QDfA%sm@n@mK*cdKXj>M^?xIT7?;@eG_T?tzul%;C2 ztS>JFuO3QBOq_z|722MZ%Yd;WB#$G70M$nE?c0Qt167Da-M95E*cN$)_hOp?3ICAQ zWcYst**pl&AQ&v1INMrE72Uj6ccZ))Ygol629Zb<}Gg!Dbp}7w9>s1qkw1)i&}k| zKV&1#m-~L=J-$a$yE?ge?s$M?Bpi}$gei5&wBf`Ra^F`O6Nit7kdQD?eF=1k)~5XT znxv(rd^7zw>3?LBXP*^Orrc1TB2O!R9e%d%lC+G$e5LWQ zTcgeITD^E>`O93t50;jeD(D)`GGZ1Zx2sqtV~qYIFBka5(v&?WCMM9*GbP|i(A+c+Hc=X&Dt<{C37vUl6=cSj{4j)YH9_C4vFcJH@ zFSYkP3I`{xq%Faap*fxkK-7*Oqq<1Kc^KUI_t?nfTb;|x9Qru(CP$Ay2ytC6AqV%U zPx3f+xb!RhL~DDmUcDN*s%3Tyyg0NFJ{;BYYB+}AG!WGG!WHp{oaD;bMM@-vB<-Z6 zL2v{;c2mZpJJv2vfFmLz_D)V@*s^Nw?sxa@!dv8q4-eg6tojZZMy5|lD=ATft3W5$ z)jaz%P>~%^_CWnOFbcRG>Azbpr8L5G$8BRKOy%NQixml{09>&hoT-{ZcL_mm=KQsd zx!t?cyCM+a^%?#`K-8_+bWYFDK=QJI+^1Ngx};}SYI*YbF&;7RRh1AXhD$#vcMGq+ zwmaD|+s&U!HP@y(zQ4fLgOy9PobSRX zcQ)GCs3|sm2=W`T(wpij#)KVZ@<|?gnKfoW zGAIp6@%&K# zJw2)aXWhU^Ck_niojEjS`Topif3$K0v?jWu4P+3O$|0HUxV^u>g-3wU+x>{UIoHF~ zwbQpT?;(*%fC4h=`A`=tTe6nnYTz^Q>nryx-VaE}NFEC8!)uy?c%7>m->v)UXL;x7 z=o7=>w!EdKefsh%z`X#ahF8BH(e32lH{V=oCNeq*sUU@d8)W?-K;#i_xr)4f+r>i+ zvs9~WR3BDka`fOAhwDQSK?W{S5)bV{4Xs$5)!tlrAYRl@A>-4WVyd+({ooZ=e>_4H zQXj@Mm#8+*>y7!6zamqsySMqMLgr*NTkilbb0lrb*IgW?1`Yw7CKl3}IsnjOukMv$ zJ}ms(9&c@Vlb61uC@Ujlm&q$vp;CD?HZvUN=H>`;2}k5fOgq_5(z`5ibcTk8JO}n7 zRzznHSAhXwhPaV)5;^UNT7a{yS}BIn_;LHJPpmuTBGuwWfM=MeQzAUjB+oyixAyh! z{Xgyjv>ST~7Md%3zB^-2fwmmgtZ(HM1{wp!WWj6IXb~EI z#)G8I?@L&j?3;d}FI4B|a-VRLu*V*Q!w?6PjNVmAS+}JANX3H9YcRYMknoAp)m`yY zpLl9JrRQ?Usnf^(6}`N}8dkawQ%g8NNs=bzX0>t+8G)exh*ApG{>8j$#sEe3lc@Pn zRPYN3AY+3dP)=~#x%36C=1ma52>ky19XpKQ;E2Ms$WrL15yFD90sSGNr(DXfy)Z!o z5fR)DcA&*kyuGh+&uTwW>pJvJYUJTrF+myWWdNHRCsWcapuI8?Jo@r0Re(<>A~jqX zBvLu$dz3IsY8m^L1#)wf?3I?`tJVTpHl`#?4Sm;WAQNa)qg9H4baicQ&91Ld>3{7q z&PtZjL6_Z*F&`I>$=?6!_XL2(#|2GX;TsoC4-_7}DJ52XiH>d(X>H+zv~n2}qAl(n zklT;wxS7qbmn&UQ_)77xed%q^ju4M6t3HFDthoNDp7(96Gu7;)_ooKsQ@;m!yKo=a z+x>yi8hW)}Mz9_AI4Pp1D}6enBNg9ezMIeFg=720tj~-2pWRnJi!-iw=*x`r=8prI zlIwd9&&8a#toPES3ffkikUu}MNHk8L&dL`#zV)GRX>G`G4`p3l-MdNEA+$6Ao2M~% zO6}Y^K7#`JNVRAh?P*g~L_bb~T0g?`C-^uRF7@pRw;BTC!`9gV0-XSgOZyE3Fa%oc zH7+kFR^iz7&EM@@T5C;pHCghja7b;359(hey-on+CsCFvqx9jt3)we2Tc*3Bm99z&7a+oJ0kOaN?pg)2-5U+!5x= zYWL-@-O(5JtTeyqay&0wKpK!LG@Oj`<(^6vLl6Pi1D1vrIv!?bMSbqpG{-TeoRl@1{n~%D{B&%T*gr589Q<0_dPQ z_ldjcpy+_d02phk@bYF*tA6o*wrKqd>)G|K$feh$Of+M_d06hA1rQBlIn=sL;8f*8 z`=W+6o%z4vo}nPx75xg`S7libqF*$WI_10tm>c zFtms5_S}=mGDar3aJ{eJzP#wW<$QF}8A2S;vD9XaOy-*-SAzVS=1{((vu;Vgip2j! z;$9HX(IaR+8a8>}CQs!(wYDe~vDfH!NAkK#<>;Zqs{fMf?hTD7gljN%wHUcRw63FZ z?km*bPCWs`7mUS3)>p+6hIPcDT-Wx;XOZD}z~Y-q(-nR3ZKz!1D@3|%xP5q=Y{dXa z!{O5rlDF^_CkWl1^W3WI9Lnz?KO*ku2M=hllv-IHR931O8YZh8)S+#{^+q&CCluMU zLRt7FQRz}UL3}`jhoGLou#NVqvf5fEko?C%S?v849OQ=^2SwuacAIl?jXkPUgbKht zaLzkk<0mc^8__J;-zkNXii$_(mq*YjaA#GebG&)P)^9u`^yadzP{8+2y$QjgE zey>T1dan8Fm$_i@!iORCc5MZ20e?s+WyXCOfM(O8UY$>9gXCq$1*Fw4BQ*6hqK8bp z&tCiab^}Qn&YcYG0W)-ng5wakX*9S4voc{h!661d*jTp8;z-4vJ7GW*VVq$UK{rIy z<`!)~K47*CWJKrw_?+EGLKWSHdzAPiogVszhCSZgeeMtbV9_3>=`4zQM{^n{@uL4L z1@Ys@lkv%fLTY8)SKxF{?YGqe=V7!_%kZeid~$+3hTVUXl*QXA6zQ9UCjXr@_~V#~ zz+++a>BT!5z9P>7SIZ7naT@oJ9yAwmE0pZ{Cabn|{a;Z);m|i&#nY|^G(U*Zu3Pe# zq*`?QYLou7<}VlRnKKO%4NmhZteOQLZkIQMN-k2r`%ll}AI(J3hohT}=ni3GU=+N9 z5}RIy-DBFfAsJ3W z)tQkyz~rLnEhMUEqIlQRye>m(ATyhWW;0}DA^9Ii>zBQH887-3S=hO)jBbRp;{_m6 zXWuSqlYnM2)2(}_Po1Jt)n2=yZHNk4J+hPAy7_7GP$4=5HUju{&t zDuS!s`~;T>oyr0zNC$!m}JT4%?sLCiqR9-P7)uMN0%qlj8YH?#MA8&I;@VCiGW z99&$qZb!%Z?r4Ef0=E<4Hzb~F;n*YlaIH%jnVBW9nEk^TTdqiPA(o82_CAxqXnh(U zK^l$9K%4^sP{g&U;RSKjF6MpLi=PDg6VlcZLS}{Qhp&34@*Y2y70O4%(m~q|vTx7s zDhLx%+E5W>Gqw@$DVvGvcf(1dR$=k;F&dp{(w2&pkd;N#?!G6wEs9GAM+q9kXXsgo zid@Krr@$E=|D|Wr7B7Cp*v^&NrWkIY*CVg~;RxSBanh((xQ6f|%OdG1aoMA~2K*DI z%!%7|=tttpAnTBe{<@;^-09`9AC@SZmW##@6?Tl>9gPSdmw4%q8sys6uc^A{f9_Xj z)I>0_6%qOs=zrssyiw~BQE^+!dA-v_{7+%fiZE|I0!_I+#7nt%C#!WC@;eotr zz7gX1r+cvw(Fh{iEUIm)1rh{bP2hEe*E?1wl#-gno7&`Gnt9?8pN&8`6QXl+SWC_%=SXJT7B~@pV7?9Eaet258;E73 zL)kiJ+C1`Bh6yZ|iKZJ$g{ubN)nU1=(tRjX<#jpj)?>$HRB=jl5-UhF(|`p)kX zSBuQA+yeELA2gEq1@2vr&$!R^zq}=KB&JtrFr57ShH)x5D<#pgM?;%g|6UqlX zPj33y7$+^^%vSi)Q9fI|K|f~?Z!D)ruQN|v#Th>eN=o}G3kY)6c?+73EAe%a+*Rt3 z%t;`t1xSGocUPtDRqMGrO}T+ix2WhHH4>;wBhS8y>{LrM&CblstOvilOyDzM?bz7Z z!psP*I{j^t((Lb-L@v5194`sN(Bh8Xn9#_sn!=YO_jj>J^=Y@Z5mT(3^X{)b=K=C5naWVYE6_v+p0 zE0_XxV`|@nv;T=pT(1(JB%2|+VsR}_iMGYz{(cfXqNF4m*K|=4krJ3!aJ+%i)r0|` zpP!%Cwfqvr#}`mbyLfrMB!p6gyKGSP9|}*w1sD7%S|>*|#aURd%AR>Yf;VChP8BScw(V_2BKu%@i0@&}P9dVTaeyyvTTg(u(QiQ&T?(8U4!u_PgUgZI zF|GF4+sA6G7SklV-__mtIF zmmIKz=+&@vyo*Wyr|~%5ys|$CDw3B3It*5(WKaKU^Ua$(@g^*wh9?SGEHH4Ko!E3zopS)%5p+ z>W1d?syNfTI-8={-&p-$d*#0C8lks^5|fi1khr5ajz=c3^mo)F9RS zKSj6a+7tr(d3u~RLzFuiXLsOb@X|Tn&9F*W%&4S4j;<|QB2|H3ZY)1&$wO>NU~F!c zC9KJ7C@o7%NsIr@upM&Bh$RL+s#)viNGz^gK$83HMLlY3bGFk@cTzd6{6=|*%+iPp zZNC&443xxQgzoWltsJ*|-wc-+okab}u!A)pf=AK!!M>4P-6rUwub`o<#-E}tcv+(B zpM>{PKjD4{r0uO&<5zkkWb!HRK(=aqnJ3;am&9u0D#^?xfr0E!5^IydQInfm%<)DN zDN89MgVaF=_slo1`A-`E%ZMSD*@{fFQ4-NDOUOTZrr3L2a*|NTr)ur8>Z?4-zZ0i4 z_nrK+6<|Qn0YHxtZ)*otE6P>WT|{x#=1>*Guq&R1f7I8F(5V1FCDPZnIYvGyK3!PR z;Rrdh_}IfTjjyM1R{GO)d(xAXD6-DMeViqp{I{Y94fc3i-M&O2U)^Rzqn2f_qu~7X zwVtj*wfGUfh}wF4p_F}TQd|c4?~@kZC#|2Ub?UjXern=)^R*uh^xw9dcOEYo+DV=C z(-L#-)|J--3b*c_{j(dy6U@O`mj@wzM`PWJsn6sGssdN)bMR?8A?x^$Fi0{f(D0&7l}?LQ1Q+L;~D(X5ABaI>cv2Rs|W$N)iT_ z&OT|eH}1Hi^GV^INF(Rd$#;rD1-#7r_m_Z0Li3MfEB%e3zrSo$R1~lA$PUVv7B8u; zO;nryesndZv$*incCWe-EO zJu2eEMLFU7Abf07L!O_SEFG+^ta7tW-Tyn`CR8d=N{*qRJ zkFTr$ItHJ#+KEp-|2zLY%xZg0?3Vc?p#pJpyHh-kQ0O3ImA||YiM+_AS{WS>H)kFi91x1`hRFcsPgIB`WYgN5v2TJ?OSutgW9(z;{uXu zU%BH*AFXi@PiSq>3|UDpDn`690yR$r1t}6z*RAh32B0KCqu9tBqZiz8+eJ((#IA7F zx8E+fs;TM7=aWBqmBQS{l3zDEI66YvyN{hciJ-&rAuULlhI=49#eKY+X20tE0nPrT z3AJ2ZqaJH9Gye47c6PsBN8e+hR7KGSQ~`7)m$0zTz3W75F~WM=y$tlGlt2f`y*^;(8e||H zfP~hRa?Wcj^>QENow@Jb_dd{B4!M$3eoD%|40W_DJPHbj>c)KbfWSgq%$u@gyYVCT z#1r}9T@jkTQlzrOV};W^rHP|)d}e1V6Z@eILIZ6K`@dFA?Lz+#GMh^_$44om-GzK7 zf--1Bj$1p79*of9Jbb~ns4(TGlFdJXNSO($^jb&*SX?`uHEV>&_xV>;kxc)dRG0}4 zfvc3TTP;1UWtMWeeS89CHMWgrKitY(bLnT zP9`D2{6QK5@;i{INf48SMv8#5n#wXV7%hj^j`O}ddgRF7EU~jM$FEEz!nFapNikv@ z<)zFr)9cjT%fV1D=X&7SpXQr@;0xUf5nX|E8vG8g_Du(WpwIRC@;UuC^}7aU>|d8L zkr1LbVm-qUvV*8mfiu$x?vAeJD)yzy8qddx(&Ym8SHe|40R5|ytW5<GSD;mpg7F+7!d<(a%^|S*gOSJ4P$;j*e}_F@`GetE2$r zPT=urb)u*#cCuevBb>mK7&K0#nYurG7WMkIp1P*yH0T3(1okAc%7vjfoM&49zJqRf zs>bIL8D*_YN+=_In}T$kKI0e9LU#c<6Rw%Eva;f`GBUXCK=1l5#R@@vA>qjwF{3#bC3X-MCNQT4hG@3?NHQ5-cToqy+Uh^OiUWBzf2 zxffmT4p(pRKdz=itUBR>`<@dkD3azI?}n9

Nh`U}#9(WTkGXwufEDiuGD$mG8p> zDs0M5#yH=9{)FLaZ36>MJcE?VocG_hoOkHyvaXEF-csd}%WwPm;X^Dio6R3ss~bVe z#oh||*7*9ZwY-rCj%4lfq|DJdBl9&BSk zDPg&@b91_b0m!f-8fcUJGxgpo{`t6Yi6{rvn}D!^Nlo8n+C}CKn;tU#KJB6xhG2L1 z!%G1HmR4bVN3l%li?Yi=jX60xf5!gapDdeXWxc$M>i=s2Zdnr-4evg6(wbzEqV%C} z?Wm<7J}8r(#o^AzmPn9dh=g5yw$6_5A7>J&@(GA5P+NPmLMcoVdGw~>k1Om7UHVq;n|5bjYt>`E31PK&NT9O zjDS@mNTr+#6NEQlX=COh)w39?E0Au+s4X@wDiiwRH%TD#V>LKJuM_L*PcVXAM6^Vx zi99z1xa zeH&5joVQ$0xxs+TQY>g{kNAPT?;Ec?Owi;#i{WA6uvqQ#5#to@RpIs39NVYd58RR>lvsIl*HTIjh6jg~O8_NoA<;#Ace254#4*~GzLfLe!0 zW7X7*dM~;3bneTS_PIEbOZ>%fvY}7`Y84F@BQQ{YaA>IGSM(T7t=ZRyoo)%4V$^3{ zo92DxiKD+Uff7}0zQ=*uQ!!-AS62E5(l35xc>3rO=fW3AAMaT{p&*=`>gr@@#c%yQ zd3cv_%1_?gM(*UEjQ2XoZN#k9TSv$~HXbqYjbuUhuI|YB^ws6uq9R&=A5_A|a-L*& zA4b1py|XsbDv@|F=shiiRr6UT>agb@7uVaIB*^tCViOZPaME)g`aSx0Fgg~YDKWgs zqnDCZY!AJcAmuXYVxoMQxt45H785H=%RnJ<@El>Xf(Q|nuxKb~@KVSJti1m-s%J=&KgdPWtC805Qp{Rs{Jh1Bf)A)i+`rRIOa z@3jM~KucGbA(GEgSji(GMm&@|s{u$i3Zs>#0 zha+Rx$9?nUx54g+qmfi9UypdyeWb>4+UPc}=gwfQVq#;7F#!w_?Zy$R zWjCs{Rz({q*M3I()hfR}84lMZyinxl;u911$1C`~{A!`XUS<&FvZwuhT6VTzCyRh0 z>L*>Ut{)7~4`=k8{NW+UVZ~gyZP_gI->&z+Zk2zYfB2l{=0FT2QMidF5w9{WBZuq> z9EET;5OFIA__;B&KzO-`M*Vy4^DW%kF>!H3km}#h$N%oEtgIyXDAcf@0_F&LmiBU5 zT3Q%(Af#V}V5IZSn;Y5B&i5X)Y4SIg=g9qZf>%yLf}Wh599;?bkLE3}D&Ege%lh9y z`-E<#6SsfCl}{{X)9g@w0&(Z;8QrhKTrHpUO+^HDnR;~6P%&+jU@i|6`_=D9CmTutEYnJPNg~RNOotyUbZW}6D562BDNz3ss3&w!6)qe>-Dv@&W6+*H=>}z zLA-G(E`DuoZP?40NSRkzdIN6XxW1-&ux^$0d|rXvP8InNhNA}~X%@{k9{pF+b@Z&b z2E%Az^w|fQCikA!({1k9v=h4g?morB+M6=9tGths`|NrmObpxXRrPG?$)$3?>wV2O z*pyN}Hw|4qLb0MyiWSQ}RbTqLDXXk3%CNgL93|b3Sji>C3ByRLrkyP)vGV(A@)6j=&?)~jEOf%-FNlo?qFPI^e!Tu13Tj8D?=)I%j?4^C3|z# z7Nh%OTm%O+9HsaVZHebSIhY31_9$i&+$D5+#$xBP#L@G$Ogo!hj4w0rb^W}?< zuJNT7xB>|~LDjJw9CXMiuJsz<9sc6F%qRbyxD+zW8USDAw()429~dExU0Zm5wjx*;Mjii3S#WSg@Y+B-=F47%gM-y0H&Ig zfJB^dY>w(90hwO_UDE+wArG5;+)$1u4!%NKDl zyr#8&y=*hB?DX1c;0sKc>szyvWr-QU-Vye+Bu+)*vR{@?j!Be?iYhIielO?mj)AIC zH$&Q@{vY()>>} z+~XYo&Fv+@o7otB*Bk{y4!!{=H}?*Nzn{S2fb+7<`u4|JtA0HN6(#cI#jG>Cuh~k5 z&TQ`6zdsVk0|{ZA^>x4eBO@;_9!xipwS_N7oYJ`7jEpru$^0?P`6^L4x2Y%0+SrnN zNl!k%owm2CKdN}tEZ>EbPVCyF$nJ%oMODuZ-Ra&_;IB4x>VEK`q)b5lB`$IMDe55u z6}1M08O9_hGfxP`v3Dvt`g~s9d{kY{`{H`U8gb~Am+$$n)444?FZy(FaB#m%Gnx>V ztDSD|zqa?r_CHn@&9hR< zj`ZIupE{oF@>BEhxVOtetD?M|WA5sImLGp#n^!yR8&1Fc)<(M*$>cVWeG8DW_3y~V z7kJ&<3(}vWru;z6=Dnf8K{898(877`A<=3#!$UvkmrDbmxJS;OJZk=>aPSx->z_&u z3y-_Y*Ca~bmQt~`Jb3kPhU<>Ct6sM2{j$tgGppX}Jc~t9G6P)>P-lII7wGN?R~IluEa-2!sI>IyS&+&LI~|ckrhgI&0urLwfz1RJ zi3YYcHcePQ)5tx`aKv>`BiIW$X~**D7#PAaMOEiy=<*}ne7F#BC&Y%@zr8zUou-=5Lu8CPt1exsjcW61F6;{xK9{u%o}*=8O?&#pRnb%83aH>Zov#WTh@k^mXuVRvmZq^187T zF6tNX?2zoJHIcqza+P&Op*sC~q4Pg`=@I9#A2J~Ai0?COGM8=Y@dTH>vNd@gfSFxIC_G9Jt^t{gGfm--HE)7vi;A1 z;L5$a{F;Vr2LU?+R3K#4+BaN2^`1YVmOx-9;2+xP=C9%$4-GX`Yqbv-g>D_C6mGqfKSFkwk2ilpK&nbNYb|-2>iK zQ;O{G-#seFV#J~B0xf2b-xAH*1I{?1t+LQD^W{%XUZXlUmVHuxRC&k)$AgEH&8H<} zKR?X_(VzBQbI&*SVwugeCIOco4$c&klMj5yhCZru+dpC}yCMYtGg=ShfBSTnic^c! z0AuENV+IsAFUWX$XOe3ixZpOXnV-iH)IUsvOmru(!B$pQmVPuYI>2!BzS@=Hf$cNl z{O0Cn<)dqFy1GLDUqt4y)eo3fOQ>XDj}!%bVF3rpee|d?%|#zkSHZrKYdG4mmfCY8 zHDqYne?Limu4{Jv&HmiHO6ZLxRljll(O~|L zdZ*(4eGMNU3G|` zI`n&#e}wQiv)bS5Xt#Ms=9n$B&nZ2^4NV&C9zwH zVgNZAd@N3_DzuWe490rEZs9{+F5t;2>Js0nZ)TQZBe@x|9jwF>KC*ZF%AHN5Mv`ZK zCb{ZKuBx6@=v_vOW{C&zFy2_$qZMblAHt{v@DHkVb}KL4IpaE8)%H|Mara(to4!sO z+P(n}x8wx+d;A!79%0rTME9#ts$yYr0109dYj2#ct6*#v4;FTRkr9ovOP+aOjq~JS z(6Pkd|7~pxa`4~cwOD0$+25vPn63}co2>UQDvbEo1r^S8>mKW6Ef$(E=I z#OSrhEZ~m>$%#1dB)XD-#$Qrs7y?yF)5=HNsNzg zdwch^hMqYbKU66O3E%w`pls~O3~j#o{V^bsX-rp9(a?Y|7Tx4b|M`K|d7lOwiQR)h zu5?~Y+t+>UXew}T^QxodIz8$x4dMaHFbEU5lQ^wfD>(`4F^(`oUjlT0hZh!IZz3XEsw6puUU1Atg74x3!BJVJR1X{&xysvdXLKa`9B@zj6#h zcRVq4aOOl`PY=VI>D4h;UUkD)0~G5Z@fUx${ZM%j;`!;dt5j*J$PDTH==Zv8?c2B>d;wx;o!=R2)J^_i(@l1Azv`123 zdg&mHxoG@w#1cV%a7*$TptN)X=;5F~UxCQ8D)Q;<&p_cD{NTW-lEtTjR3Ieu;5HzL z4!ifyh3SD@cgXLdq7e}@$zA!D4RqsfN*XWb^LYkJJf5Zg}L7V=)_R2=0zWn5H!GJwR z6LP~N+fAdO{%dVRE%)FtwbyBz&g$fZiVH>7|5JC@v+J2;t1ovL=<9Qdh)^T4+ClLR z6Du<}tygI>5f|Q97}?=K`FDxT>*5XM_Ftr z5Kt~v%3pPCnDPyV%=O=jRbb#VKX9+vwYdA((SbZ5)5I2op)@Og+psn#Cdi2V9ywP~ z$kX5Nj+yBld0^AP?P3ks4+I{JCXj!2#INE8VzSynOYc)&e|ux>XTD!vF9ohxR9Gru zmFM4vahRW1|MZno%V7VzykFacU9%9P5aREsYY`C=Kw=VRW}J){CF*^A7`pmkZHP%q z(u9zYbJfFf$>^NX(?XI^k-h9T_mnNipDdNiaHldb3A47nYUr4mmRMRHN8&;cmufR- zy0KDb=(Yg&5JCRnW>=S{I?;3%j590=#9afdVG6owp?m`YB&=)<576I%gPHz2bfur6 z=F zM3BQ0CNqh1NoD?2of<0hb_4Cz&F-F_$SdX+7BNKpGyD^sy}eN4GUE`~hfea%n>WQ_ z#&u3|vAP@?%gf6S%(r@*F4NoM&%;mH zG=Nl!-i_Px*`J*O^YGCbXld2mB_N7>7*M#jdZXux4y{ZKS4NI0G^UZis$xu;@d!wL_2$Ki~y+i2%K zK0GD|(LxiLG_Bbu}NMQQp_=GpwuDS{v7y$A>Q(q<5zBAkZY1k9LCyZ`)uNjKP!_gvyx8<(u? z>FQDer3$zF1o-*;Q<3BiGNUgJf7E-v3{lbA6*-HpPpqlt#C*I;vwX6Q} zGcTrp2}jkg{8xQDlInL+e3dwfcnaCWuD@e~W4mTLy-kjtjrE72e6qY>gyDhBMgqsWCow7HV*TT=1c1so>0d0 znktPlYf|-a+>hrp1=9};x70`!M(g_eRvVEc>~CdtH8nRk4sMm4)A#Isxc84*C^Oy~ zVx(j{U|~tm_I+`Y`7nR&0z|aLR0{0|zeAkPT~pq>_N!f@sE%DooD%vp@Llf-4;7{ ze*Wd2h(I^D-G~p3kjZ6yb45{34uJhZbynmZ4H_IfnAq9f-8wmmW}h2+z##TFHy#GCqR2`*`8GNUhwF6w$NI2}EeTnVFrhFJs^Fe@#n4E)Ugy3Z-iY z4mN`qg$&*2Av#kP${&C{`UQJ%F~MlRJ8m9|-M#a0v=MGaIC+-KF@W~YZ}{rL7ES+I zpLhi^r5or6)!t2SSi!ypNfg5OmlzW?Cn=oVKe(7Q}hhLYJm@)Gsd8#eJani($D4!z@b1_TQw6yUS%VGiDQAuT= zH#^m1=C7Mt#mHC5jwl`v45p79)Lca`0JZMEp4%`7f6mUydC`YqM^m;KztV&#afu1U z8jExW?2A4Eu*xr+0>uAZp9U$44AHHLGX;%(Z7QT7ifhe)~37 znyy1s@sLp9+o3brleUK6p5w+RWc;+px5YpCf2P*f)An?Ab5jKXg~b;(Qb^oVcd6Jm zdn^pn18c_uiUI-xI$ytTCju-`!`?g7X#S<(Nd?rqMCJzeHxcc1vCw|`I7(!6Yy{3g za~u383U7|d15b2y1DPE?DxT(3-T9^b*7V7HFWUdu-T!i*{2Rf3LtQA_(_O>3qEof5 z=L6Gh&#=qQ!auKPP9?7m-S>LNQZpsC8DA~Mf?nb6yQL*qqVtx%R$D+uM}srIRW2WH zV2CgHa_oNf4rqa!!?6$2iuoshgQuQPOdQlzJSf&H{=6PJOj(zlkPx#2bKg20cyo0) zj*V6tB@DfLM~S+G*N?weQLw^m=&NugWqw~z`!!6`#oBieNh>HwJmghR3KJk9%5jTv zVc29+*Ad#DT69*uyHG0iJpF~0;dA_6^jo(`s6lb*KsTSXw&sf$Kz9V$0WmxB`#Ld9 zafxq7w^Qh1=x1(I6BAyN^dZ&iNK!S9uLsY)`=#=9pc#z2n!E`K=05Qiwai_wwZ~vP>YJ+y9+@o>o-^Zl@k-qSL58@D_lE-m~2V z^{bK!(q2$S5tk@(e=901H-A9sb?m~Ygu02~LumgVJEKjbV`7Rzgp}pkvMzM?oM;h1 z$uo4H3=VGYKZ~;Ze;P(2(6}%aWcr6E&XERf8#$?|T+2VPrA4F;ehT?_ z&8E?h8u(I1sv*mj_k77Cbkfh}Z)5*0f7xOX1;)Zm0 zdjbugo`b*Wqr>f6!yPsT21$Ec5s}!A4l^96GQz(tBCOzsfIdjezyK4EcVR3nT82n| zKl~+2AqhPWV{~{6Y2i5bGdSwZnamF6fj>AwtLy4?2UMTGN2?wq`nj^aP*q1KF5fdX zH5JMQ?k~f3>TYhrI1!`Ky$Ka|8aJ)JQ6Q4Zd$Pp#{HGa+U1(!8-RbNF;bBN;YG~lI zG4Nvk8&lC2e~ig(uO9y=iTPH*#Sx<(hN#~ zCr?gHKbdAxwMx@8tr4qM{=E4hyDoBcn5DXg-1=$0?*VYS4)-(C(Vbi+VC#^C=csHdnt}S|HAIL1V;`5A@LS=6|)-$ zK5Mx?I*8n46wqkwL^R=W}ry|upi?oUv)(S~e<@0;B8LT@W7GLoO4U%Xk5C!?jU z9g4uOa9ZVESv`@uS)$~XZz+Ko-TR1JL`H@gjAz);H+9rI7UmbzsOI=X{%uWUF}Z>Y z22~S>tCg5__0AqgE1EfkkKpgq5CsZ63c@%Ej(ENTu&?qFvk|M1MFTBZ zSLn+JFTjB`nI>fo^JwBitGcpii`9W~q-G;>jz0wBKzt zJvDc%6Tzrr;6gaUS#gXL$Tce8|2cLE04Id!ilnG04elR+4{~z!l=sXJLzS>ZOe!$jB&rC54n( z&UOFJIp_8KbDpQ=`~7_G`~AKqH6}7u{sZjEDMmH6A$NGDx97iL%e~^79rJI2@fR@p z+FN^0Y-k!1R#fV|Rm1n{fDnVr!qci8dy&>-yDK6n>fXNP$H|3*ef<^Jk-d>_>=vSI zONun@0MAwRyiE|t2M~_Dxk%<5GEM=#3_}1?FE@j6!8D=@Hw1v{0ThiRj1nn_@DiVs<9|_VNUSq;RV>nDBupD823YNjbQ~6?(|110zBs{SBBcAOkKA5|)+Vx>4pa$pY)Z2bPXw zDmv%4LpX_>%*#(xLnGWLO<4Hn9n0sSnFxuuf!m7l1_ll;VBqZht=cJVk`g1n;ZPqS z&`Q+xEB)WecqtP4V=8j=&?&2J)&=@0DAa29?S8@jGs1(7Xe z#6l7gb!1%-$P$TTh|k2Bp#?1ha#+xjC^*^iO!tzFda(1?!ltw8SfV7Qq~f5n)!C$d z^4f0g+aV{L)k4E=jUAg~vU$N<%)9&~!5uqfZFEp|pn#jZgY0ZLEoXn|W-9sEe}X&h z;S+18{dz#|nC1J2UQ1siu1krZWV|bo^5zn00pbgjdV+bo;dm{`=_~pDdJg40Cn4F%zg}%oPZSR=zfG$J|ht)SBFd6-kqB)`s z-q{NU{XexK&oEU*5D)nm;SJn%BrSITOV4R@#7JOh?9DIMot&CV@Ga_{R@LfWH7h-1 zX4x_n5^(}sJJ_mNEI?R)Ni;Xa6SBxr2LLn!^N(D(ua=e43t=2QAo}^s9332D{lDR@ z!goSuW8(A$rHs|2Hn?@#lbTOZG;`uxb@s`Xr{7Mq^<`*Om((l;tejpI=*bOJYLQKy zP+ZfEloIpgZ{tSN!6~=b$SDCUhlm<}Ved~<$pJ}U1N(gaE@*T+9<5t2g0mUgHZ&mt zx;b2S6HYTSjiZaiZLnseh#H9RefAUZ-;w@e5=-zb8e0XCk4#O)VLk*++DF1_V0ZV> z14eH4T^-ux`w)Ai9Ln3%O{TBb+(@&hvNT^@X+|5|BJFdU^{`IchFVx{5oPR4>C}gD` zPTdo5{MLbUT*BO+SmPZ$nyP9uc5-Rnj8`2ENI6#tN)z8`_s>;1_vvstH_tu6d8Hbs z#XB0LheJ&mjrM>0?PG`t!arLWN-=LMK&58Oe+1AK-e^O-h}3Vfpr5ap6e6O350B&b zj=AkC|8gGW4G|=5-D^q1LJL`j-uv`BY(i7Wt%>_vrM7^H+5H?wQ_>PnbInu-V}3bl zaK?N^y_72HCTJXLV)tLJT=_MkrTg#7!FP_Q5OPoBSb26cuBPGBTCa_Te2>c~gcrVJ zaoWS8^dMG4Q&87XS>-4!a}reK&W2# zASvP5yl@k~?AmwlazM=w5!ej^@|ovwOA$vssgQ{DsyqLjlusi+75nr}MIm{4^LsNR zqocHcgX);iZG{Lh_k~(k7SD&8XDPm&wvvOOtN$+wT9C8p{d;v{D;R7K!*}IP1!*-1 zv^oGQFt-S1%p%hRzXA*-kks#n@(ME#PxIAYjHKAHka#b_@erT?*b}c!cR4tU8q4<=niCr#D1MDu}9hqZhSl-gJNRH8~+JxMBU3mvHkCr*QUM( zE=bz&Qbb2F5rE?GYeDC^roPKOFgb zwEs@HS^99BI7HqNrn|Lf{=48o_*zvtX7 z=dZk@^YO{Zo!Zg70KkMJaH`hO@2ljk_d~e=WNmKC^Nt)0R6wGsySuwtE_+c()g!h# z6UxM``>aC138PW1(oXNUr=%sk0ERB6E09OQ$v{O~O92V0A>aT}fakhdF*OkG*T1n=9=keVPC(^4 zM~}WkR0_a2!jEEstxrFsug@^_RH`$?r+V&dME%qT(fN$;#qekhZ%|+v**912reAPG z8cwCq9eH`jCuvW#@0?-awNL6-|0>`en!DFAWm5tLzg3#|N9W-y?*YXFm?D{CXOMA% z^B$y=Iv6@)kwwMQb%P=V1W*`Y8^(EQ(Xx-dKv5l^@7-I68k4OosDjrKoWtk${j_r< zYCrL5LpX$`ny9@s4()u(aNL9xz;nr%uISZ6{TMGO3%OJ6JlXm~&|WLTTW9&AjAdZAx0 z``+?cxXvj4jyf>uB-MIi!a-VEx_oSX9TIC4zfGM(Bdph2y2i_cxybo<$N0$f}1?$I)?NVd2n|(aWIr!z(OK zOljDfb#!%fWZ{a0(u}A(bBV0OJYQP$EWH5WZ=9+$^z@)nN-NW#y<^zC8JRi%l^|~0 z#=0SHg70S$elKCOJmP37fncVkacgL61ARNzQw#wP`11dck^v*$_#GM;QY{G6q|I07 zXWj7C*w(he+X4}s-3Ja$t*%4S$@U}UT!N5T?wqAJ=`|7 zGRnu}lu_Hs1W%FfvMh1=!f8TafgfN|NptxS7thH2r{1D7)F@#CP7q`eSy`zFyt~mK z&mfGm7lbE+C3Z!5;$ z`LDm`<`4{b9hwpHGJ6q=^I8X>fV!=xYLyoHf&s6CV$yr@Cr+EEdT~+q3R1gh^fZYs_jZz&>KQ&yaN<(10c1ANVw|NFhTyW)?Skg-5}kiPHS zoTyC_pNvf60>7?^#fuSd$*ZTg-ToHv>JyGX%qV9d<3_Z6T4n)W-u1aHmlN4NM5AHv zh{Hw>yjgXuz#CiNmMd-;lrV@AQ7Dc*HpKv5OWUy7vns8fm|X|MP^ z-h#=vflV86cQiH?=XzxjtIM-C!??y|+kQcu;|XAG0buj{_isVMiERt-P1w6guqZk7 z>{V9Gn0=T2URj;cR;fXR9bfS?{H1ce_y>eOf3T%lBeh_D*Z%0}om?9}efl^rdsr-4 z@LNF%(Zbe2w@2(;AXF{OT-QPJ+(~UoHGeP&d?MjT1ku-p`dAulL!>PRY1fhazcRjv z_G!Gy)1`ZP+uFHN!>1q`1v-`0=k zXzb6KW+}G5rV~F_?x=1N{X!39qq{%!@`OH#Co+9ku@^61Fz?vGi256?Mh%LxIMAY` zV#K|Cq}oXKjjq)E#F==tSKA&irBwSW@?eY7?KoH*H9ZU86HWmtx2o`-&5Vq1z*TX2 z!em(Z`d>wC8g6_137DZt#y&GIa9O(DZP=b5dvJ8a2CowfUNzAvjy5qJ9-(xqsg&c* z0;+qEE*s6WrQx8sgv3=m?bt)<*V`4D+Ip5lL%mdnX`VQ$H*6Xmtf@769#AfmADF|) z*CpLW|3I4Gzh_m^gN`jA-8Xpc@V48(e!BOxXfHVwr?Upv-$+GL5L~11@!5$<#f?4d zFj4Js`LmBRjYRP|Iq9w6W!$j3m)%DClu%w$!u?{iS0+od-Qw%cGW-`Rm7^VFgDupi z9>RWcz5?ul55w= z%MDqdafO_)^4^H6gFJIrVW%PH^x!vxNbE`Fro%x))C#uokHoX-{9=}4hX(89`aRCK zn4C!Y)j$~)Ot0oo-Tg|2gMq{Y!PSNZmTY%&2k|-ydID9^bwNen){nwrn{)5pJ&h1{ zVlvi$J+$y^*(=et`IApLtz_5c$YbsTj%^<=H7dQ?+!*#(TrSs+buFqryu~d+5ko_m4Mc zXrDj77sNDh>Gd$1tk-$lIy>t&ssF^;0D>Lg_@M&8M_Clmo72_c_`de_s}+zs+%Xs> z>ApFNbIdedxWbAhs0!}ct5BG`B_axgrN0q@RXd19xCGxs@OZlKW>Q`Ybp&QjfOj*9 zJRgQPf!3+ospu?T4a6Y~@NMz~-bMG~YiL zB^)wO|B*Yl_Q^QZM*i`Z!%4$SPJn0P;;w>m0pyT-@16}fSM+t#t#1ye`V?@{&Q4R~ z=yx{pd$HFte{ESW!*<2|k%>sL?v0jwiQ!FmM4}LqR#7xz|3m9U1aCkyl%)r%=yx$5 zvd9rH81@LkT+BJCITAmyB~H#HW#nS)Lj~CRx!K&SJ*-I#$hpS8p_HT&TG@^A`%gv8#OJ(7~P&3Lin}=0N zAVJ?2gDga3;QVi3k}nbg>4tSZ6q0v1*Xm-^?teqN5@rba`!bQWfF8oAgstrCx!Jj! zm=gF(k3N0&Y<3`+u?F6tY0sT4#m==8R@Ev%-dDIXhe1@W5-rw672CveQ?F7A`I$V;{fl+_=L%D-_V4JAR)H zeFJDeg?5VItjY_0o0%1Rgcq{CS@Hv))ut^tZ$g5 zj;NJP?s1X9a(B8ZW&h&OwSPY|J1dTSgsw>o@Jc2)aF%9VM^NMdi9+;!;|DkM@HAPs z^$7J~87V=7`B>CcV@Ca!1h>aUxI7#srueVTrszZ=SzlML%h|XnnAi)UQXD$7V}%2& ztptM0$y{u+H;=QZ&J-;*_dXM6MQT&f5&voDQw01a@yhs1)H?g2YId7!yPLVxP^_JE zH$rPUJejFG$BwbkET(moYvtF<@~NMgE*2>Qw$@p$`itJrUp@Q1C7d(vjsaU(Gh`Y% zFEVtptu7Z86-f#nK4!!~rEU;(zwQy+^TR-o!W=MylG_ic{1YtLm5ANgF%a=B`Q4EG zo;~y!>%ya=Y7x^yL^L1Qr}5Vcd_!*=sVlV>=g5t$w&@&o*Bz|OjpAB&_$aUW^8oap ze0{lX4KXIyNG2IlZRyos)^D?)V}U6U7HbT7Bp)_mzv}$)-lIiT-U#I&X-Gd&ctjCM z&ErJ@U>+$;w35qbRU02?%jAszy8AMl$0uvrFTb&Cb-BebS>ushfS0aKD>SI?Rs~SWCC&@9sQy zO1e<1*?aUX((mK%CtlxYQUR)S^Ejww%W`+k$5(kSKpWxiHI>NU>o5Iul(PLg($z#% zbsAC$ar5GfQ3;k`8#Et4XOC4b-j+0^fQeAW^#zs|eWs)r6S7}yGtj>@QawVUJq1CN z5WI}?uk~kQ5M7F(Z}SOwBehts{J5C$1{wwAGrCGod#+F)x2oK6&ggNSiFs(D*rj6Q zh$A1%43NVZi3t`FD=bg|Jk=@-7rD0^Io$Y-@N~h=+4A-4-dlS&1#sF%+;__ncZ-UM zPzB>@dEkIzM2m|rt6Nu2VR(;I?*^*}=Y1!uG7l_jkGeTtI*DiwoOjxz`K(gt+^{Qi|Ee2bvy_MKXcFmYbIg< zIdR9t{%)d-AL11Af-yoBN?XuATU|nD?e!YRl^5jj{$`=KLg_wJDb`C|PP7`DX zo>>YCMx}WsfW&a=?E7RdeJiL-Cz6@HM}M&-KH1F^A3V+^)m3XcVfD~cS=YYc&&Qtq z`T2z%d#x(Najh`x7=G98w=hcAq0Xd1S=`aZE@Xey^q=WNLc8iCpGOXzRHIp|{x^!9 zinjX4MtqG=T|6D?rr`#ytKijP7svZ8wClykT-!w*`IfoV^Vrb|9A1&Sayy|~_&mH@ zx7bB3@_c+a82w6}K!^wK!q7#WA`omrR~WSN;{_uw(|34L1!nh%iryTDH#`EDgYMg6 z#_t$+>}t0C3~R6jIR>h(mNnswO~d=~&o+=q`;ua5n*tc3RbVoNXKsC}%()tTCNtk2 z6x#UsaK$M7F>T4+*E0~e^)=R=jKAOQ^9u^9Blo=$<~B}k5|Vxiy;`5!yX~+Oy&(#_ zb^nqAmbMa?K8fy1NlBUM?f++DV0OcHE^W+wAX zhnx#KuZ!qFB;)+zr;L9g;7k1j&&ooTN*{luHUbbI7gk>)f22%=57{@sN=qx*vCz zu0Iyuyd9I`Kt$DW)?<9VM|MxW?g{vm>Tp0FXr8hVlkc z9XgA7s<9WX$GoMhGiWpaYy!`^X^z@1+wkPc8&G|8%i_}j?Aj(YbO{3vKlUR>M@OQ` z@bHknviN4le>&>7ixorm?|U7j8=vvN%*4&hbV2Es_JbF{2mO_fDl6HkKA-yShZ8o+ z{N|t2Dm}-dHEEfnYHKxc4uR%T>+#2^fmxQ_>L&ZS8Gp;>@3&X>1BM`YEcm`62bUP9 zezVe@5ycYBqZdaM7Ms^rj}pkrYo?ky4&qe+O(@qThCa_s z9u43kuQ68tRzxS@`0RtUli)rnR|5^Z>t?;np^JDH317Hfl zDjCF(le@uP$=sw+$$g924E_f?6+??j@i-g$46$QM5gGxOdruhjdce{QM=APD>lzYv z;d>BEJAdOo<}MxIB#FfP#_ZjYDnpD;_+l8I@4h_pk6q!|h?08+i(Ec5t7xvPp*%Yk z-Icjzkn8Rz{uD-wc683@GISdcDraAic;S?5H*3ioo3->=f5Myn8|_Jrp`}-}14yZe zcrD&){Z=LB9qUMh-qobN?hu>7!E&7>)V%)pyO1P_+uUe%AVH`<%Ex&CZ}EbdLbwj< z2(oBYFag%pYBzd_{m5$ky0Fo=sfp_*=2_?ylLQ%yB6pnl}NE5MBeZ2{O;z!Xh|OeEa1~ zlG;~)BKaYl{D_!kyvA(k>- zS_H9(4mrftPYs30Z{ii-N565G&d;1dWqST{&qq}q*ODH#sJ+v0v`f^wU%dOU1@$Dw zUE^-Wfu-z4dsJTCaIV`~7-y#Zjs+_v?a*gv({OA`T|s$l0&x`QYvj%Q=c7? zF&9nb)!a88O>M@ty2R8rbt319{OR^wzb2*jbrWlh9!9?cP5VOU`cO5?y_uSbhaY|L z<(R)qqHb(E zFa&V@MmS@#>C-a{BT^2rE8R;iy@LR7;~4=~@iF1y zG>VG@!O)!&EiJ%I5;})9kQ@&28nep9Cqy+*6enfTN}fw8ei9s{uAB#{0W_~v-60SQ zI%c@}$G!geS7&5~+aZ!1n2}k3;ey~Q6`efIittNl2E;p3-M3)N`4Kp-hVel@$!EON2pHPD>gdsGA z_}^<8Z+4ORA#CAA;-88ie_wrn^5GeTn>b#Y`RX`lB@i`; z^#>6WzkavUzeUm*nYQ>2s}|w10j8=pj9}6JuYlwE7td71U!++IL4PFXn@xH^O`$!6 zzgP6Tx7AbA(+kp&29c!qm4RX6E#>ZlVUcDYLAHH50PJfuXv{r+?--^zgR1#cGOJ^nS<-pMUo0U8hVl z%OmgBV?XD;d8dMmcQI=5e6}=AIhuV#x#aHk^QWZ@+iA8kv%V7Ll9`(18TmO&<)QXq zynN2uevdGIa3YUrb-=%|zP>&XEcc&vTkJm6MjS`Y7uvicP*9A!Q4-@^KJ z{5M`8;D35HjTG8;Rya>_B9U=pp}@F&a~LJg@iOd8ZqQ2-doNNDfB!xW8;+#hE`-In zxP?dIzaw`!Ngspg1prkD_AT)GYVnj-D?le(=C}S+=znyjQ$En?l;Z9$x??=310ox0 zfhnio?=%OV&uP_MU`jD1%(mD*2vogBTRArIZFg+-9(j2#F!I;eL$-E?b+Y4F+PrUj zscIJOgRy#7Mu*V~tyV}^#iY+2s(tw;kt5=zE|6nZc=E+H z(8+Rsi|I-{j37)glZZOs38jfVwCo}&(*5G{K76}|h;X-8BLeq)DY@g0amIf+Cbc=;p=>W$ZV)_ThJ)!gc^W4?77h9wfLu-a^b0%#?@!8oa^v z73wYzJTRcHHeBtT-G_k=nrS21IqrV^GclhNq`Lb|alK7tA0ox!Jq&-OFT~2@Gr_lt zNvMWQOp1d5+#oj}1n8*=rkmtxu|c?kbO$I82>AnA5J%!n&W^t{$QBIjJ7H$ViSRc! zOyPKtHZ`=px5_R1U@VcCXd(XTQw=j?H~mpA#DWoF1#ozb*sNJ3Hk?; zTkfty)W?dD(d&zNm_PgobXgZsaS^Yf#WF}q$h*r0R#MKVtcW_>i78eghIUnhe!`NA~69X`FkV2jw z(cD9HhzXBiq?a!rIFhayfgT9~0fB*+3tw4tAzWp{h9Bf<5W4caFkn0IF-egT82m!? ze`U&>?vT}p<5Ud)z#=9zclX>a58u>tiMX$Lj;j2X))z`BeqK-p(^?%)c#_6O{wj>~ zfB}ILJv~Bhu+_i)Yf3~;jkw?FkgKTN@(>dF&C;U)=F~971ujlmB?Vc7=rOvFwz6cjq{JwCLzB5dPX&ao9r4 z1q(!kR+mWc2v&4eS`*03WL!Q65@|UqU+CmpIHg~&eEB(q2u6}H6BNFT$A4*Q37u2C zKVB|a5!`F2Wn5*=d&By5Bp(CXTJ@GoB(wtg2wuyRc?g%+Y`+O#qEL^^$!Gr19EIu} z{U_eFb;-zF?r=y5)u$el$TdZeiCEbkm1ubfJstdRSd~EcFF282f>>{_dH6puJka&% zr|(|y)Y75?24X8lxPQ>cB<1_25)83gS}e@8n&sg~+BgGgpZ@SGqR;+oyWi>la8KA0 zME2Hbkg2$!|JgL$S&zZ{bIKS?qlM7(s8HTbBf6LHRjJ;2ZlGeXR2-mv@c!Sk5|$F#u`Y-Iny&OUQx7kbO;{b zJH0|fflZ6(AMuB|4m!Tyg3JH9Q;OFy0XCWq8}8(k^j?0wa#C@1=FR6y?~4W}9B@mM zvbL{&zYhD2No7=@iBS@&`-=Kuz+*zeviZBI1A(_dCeLwH>G#c5GyJ)VNiE|a|9;30 zS-W$bdQ9SbkmI2eFd7iu)}ZV1?%j>#--vUG8AT>h^FAT}c-hCuj4?K)Gqwp>^S zy{v&v*;%kJkl|{&9P-`!C1nBoPJzGx`;HwkKvQwN=o-HLT@{iXdIT{Z#dBs49UtdX z$u1u4QTZm_ACx&hYpD__*!IskXjW!>3G}o+BpX^J%`VYuZ|@iWQjj}lzW$( zjl$OhW~HKLPb(Xq1_az$={uTxhm%8z@u(Whp^R4qi2O+!tTt%uG)j5Hs$`t6Jy|lM zF2E9ZxIXX&LRdU`L?I<3mTUP#%Pk&%p^{QD-pu0uMx*+VkV-iW)e)A!8umFyKOTNS_*! zCa(?dE4%~5y_#`lxnP1#i=R2|Ql}YYW3nGr*8D)!T<N(1{#9{JOw z`Wu2AZeBSb@&GRPe&3)^j|!P-P6ea0`7^>54A-As(Nmj*QZj`ux?Li z5ZJs8OEvV*?k!kF@SlQsGe2?W4i?7NhSV|5Z>K4yWos@yEPrL0+REi~YT@oAkB?qz z^|iV~;JNCl9SgGIxsXd+YxOv=rpQDCk$7DSw2>jJaxl^!M){k(3z)d z0WM8@x^!-j6>9(T0|^&Ntjyg{?b;fT>XT4PD$FYzVSz=GJRd|*R)r@-`$&`Wz_nI; zStu^5gL{Bkk)bq(|KB}})&=QMd_ROyv>J=PV9HD3y@Y)5ZPgiQa= z<*22Ky~f{@-BcD(q3Y$od|S$`bxtWNweNMM$#vI@fm-xhQ>FX7KWH#Ol-1hX>pYM$ z7udB?c@zI)8nT&+Y#Ug}iADf^%mYE>qsKr`+K@3&5r-HF=R~<3H6st(x?h+ERg1#) zAwtQ4Y6NHiRo*SKdXaYej}2*Z7qME4G}6icvqVEZwv(a!oSzSRr?uevQC?fUNKpl1 zY?qij0$R{eNdrLMwA6)@)Fwnsf!_dbgzocOrBip4tmr5{m!8{3ju4UqK$UX~$kj2u zYmV}vTJIfA)dblpOf{Rg!?QMw!a18Ou2YYmN^_rnng0EhxnCr_Y ztata{xxMBf=J>KXyv^xQ=Y(pLsfk_B)q^<+6?!|LOZIFEbKly!y1QoFCqF2kiF$uo zfoyo@uGdQ&J@(w8mRmZgZzbGO{W?#@9)BD1<9B`Jz@mkpRSVDbI!7ohvFqU4W04d1 z>i17Uc>q!(WOdOmTy-!-rUoQ3QSdJm7Z+Dedf5EvD-V(ZA{;sBFV0bmW13yed;@$V zm@5Vo>i~VO{%Y1nXZxGAPe)Y{_n1;V!nj>N1XB~iU-@gyO-!hg-rG6EIkrbH#PlSZ zAKO!L?!kVQaw-y(N=|6RAr#ghZ%Iv_c68E(SvXjkyWAUhFSJGf#j6r@mw&6K^xK~c zkuvP87fSaO|CH;0hUBXwdB@o0y!Tq3u%vIb6ll_Jd*poQ;N0K&+!sPh&fD59EDuqQ zuG0?*?hN6!qTR4Q=;^VT*aa~al~YjXY2Bki21`xO@a3$peXyhmF!qFoIju*5)|2sd zU?P>Pp!OW?fk|B8wr$JuL{1FTwr!CRvhcz}0mlu&+AA*Yfo|WHcPQ=RM^$jrB>ob= zLPzu)B&Z_^xmWNxfyBDLPbrLFo5?DE{$ir!+e^!?^HD4Cg@g3wo)6 z^t2-WsZ`3M)Su^(Z>INln~{H6=RC!BX1bFTKuihA3?V897gr4=K~b8K?A8BE$RfN1 zl#!(ZRukCK1izAAV4t0Bb~34uvY#J#<-9hC_O4)RM)D_stqF490ptwQBw!e%I~7_Y zkUe~lWBc{h-pOjs$53xSGueOf+;T=`S-SU0d9zN|=N{JlHqFnjMhIBs zRBX!=+36F0Yfe(%dY*}OTI)9(jy!o1a0bJ~Hy)Q~&MSjk_Lz{)F4?Jv&t~x95uFV& zIgsZEn4LvhZZdD7c?lg!cFpJ799Gw!g9N$FVd@8&f4m?PBpjr%>&nkLJ4>0~cMtzT zT=zurxGTfYsO$v<+ePc9{b7Qe1xCnq#k21E7RbilUEi{YfQP4letk(&7@>w_#5oGq zmE89C&V$DlbQfO#l_6Im#1?f1^;kVs)pHVf-_mVnwzsq6l#bDDY9%BAmqwFvPv|L%}MC>{hptQGgMy(H#HC`*z&n3jgdH+O^L#o0~sHF;Lq>hL%^v+^9k3R!OMylF9v`6jEY`FHo1EuJ}&1Ihp6IM3!0Six^ArG`}W@c zo|xs*2k#xU%Jp*h4pjbW6v_y!r)AwkB_;MUyEho6;7tvg)uQGX#h3mu@G|5ttCXIW zj=RYkF(R;C-b2UlL~u1Pt~S80HG|>^+7!3{$X%rS>4%uU2U3JkSqcHOU__=<U z?D47BRtEWa6bHXQYu1A76;A-sX+q^v9;46E@VYfT<;oF(c&X~HX|XRKzfVus4acZN zqf7MII2>P+MJkA~S|`a>0zqjAlHom@iN+sFERFolma*o&H@Y77R`{Ko-uW>xB=KU) z)Q#6&Gy(zXw}dHQ{-KXy_lZ%aSz~5dykynREmh2TbHNW&RjpaCv0NWULIvi3bnfTdUR&jeL-5zIjRCw-##L*@UqYOYhNJ5U1UmJmT*U zCGZesCF)y=%4f^gRQ$aUEz4O*>4yvqu~5#N{iwt0S9gaL!B9|;-%FI@_?8}5eB0fJ z>4N2Qu@r0FLr!foY3KKbVxOB9HRxis=uTm-r-=R02tk_|^`1y^_Hy&#BwAlIR-Vp` za^Mq@)(q!1v&&Xe z_o&yyxz63~gMue7-KR0r0v6W;M79%G zVvL7s&*L(+Kc1i{_rCZpiG>;dwljdn2-*v6TMS}&_B=HqHu` zYHKFUPgSwNIIw!_xwHpv{dq}%Mb*TF9q}X(2#rLI`n0ny*{8Wt{imx0dP%MbWC*&U zy-!!ZdwS4!mw*6C{ElQ7tHH=X_GmMt9n=Z$-pvvSsE;-fKNwoR1fAm?=8=1YR}W_) z1ac&y3p>AAlK%RLZx^eQBOGznGMGuqw0unPP5q*~n`0t+^DxaYt7Bxmfm6HY^P<~c zac?;MGbIfsN+}st9!=# z5;g`>i$jT`s#aF%RewfaPOJ}fDB@W^s5LHSOELZ|LW3U{uh;7AyCUyjXKUZS&BnSA zUk3R+D2fIcLf9^4t9{)P+)1!qB#NrDoXq}Uu5!~M_c8y{4#opc*HW6!nx(e44Nr~P>u&F#K_o}Ob_C@teDZ9|obfFvvpsy{}J>YL;+{H*Z>x zHs0cwQ`=JyK{R4Z*FlWH@}c1`ej0Mpd;aJXVXfD{{%aI1nyT7lP0C(F!g`a= zsjiDlqe*85YeKW_A-&!Rc94*kLGeF67ZI@6>wD3=ClI;d;~>n1(co*KzyB2=p#^pT z*B!D;6mh6BR799_o4x3deV%7`b@6A(ahe1I+I@-sbVT9sYBMs(TtS)r*G;|UgymHT zwjc^_{F_7JgHsK+P2KvWaH?Su!vm3ZHl_;4%QN3|uokVZ`jOsSWNPojVzF<<3FYpK zet7Y-OAqdSF_xjp7&rMQotCF->)MgR3yW+TN~x`&{$g_7;P z(JqhiqZW48)cAr~865>R+LCGFxAEN2rwUdDAlXpSrYD9)kVJP26yW0{bU#i&Vp$_m zbiJv2UEq%(K6}6j;B&Ntue@OYHX`R+mCtLr#1yQ_W)3|&F05Acybap_CAZigYe zy5*%1@XrrK?6wL?P+;U7m~ByKY~cM8w^Q2{xXyo7TUb(}p{*Q3k!2W6UpP%7`d7ye zEG`bm%%Z5CaYw*v5!)w4b+421iBn1qz9X|B!yYaiX25{TJ>N59B%iArf}0radET4+2gFehsQK5LBzK{Iur_KGjorkRbrH zW4fww3ch0_4QL`Yp&CO5(^dScv@6S#R821??q_VKP&D0tAbuf%K3p}TKVu;WyBG-P_k#e;H9sDt zKE=ZiNny~l^J^2difwYmH3y}ePaM7c>%^DF=s)uv9&}ZioAEiSMDx(Zte^8*9&_Hz_GxWO+c% zt7NUlb8>C9dOt$cMp!E3>8iG60dfuI5a|PSHhhv2xHY1H?)ij75`1v9!m43(L z%YZ(jEQ62mw2{1lHwJy14)j@bwC&_j{{iuqB0k{LEhW*Bk?NSAg-gJ~RB7tPYy9b>Tw93cR9%5>?6~j_X{w5?O)G)`y#DoF&L0-#D9I`bWoSGrGEiX4q zS7X)xb!u>y(;kjOo_dI1?SVF`o?NLyV!c;@Up6Lqg9_w_9IS4W(PBO3=TF0bN} zlK(9#Mo)QPX8!>!EYue;00Gu|;=6F(OfgOWObxoUL*OH(H?ONB?NQi($rlP!QG%(q zm{lbQ)xb3H?9{sZ@$EAC>W%-d);fPa(0MaB$s%Q@#gc}2?kUI=K*-! zLC-EK&XoT9i6#$Qs?93n)k6y_b@vmdosT@4lVfrd)Z2EW)LBH} zQOtc-^*g*;7t7{(HzaU;O}$Xlf4$WB41bkcsIE$0z`J+v>S9v1Q`|^%RuDf~qGjQT z1VGvy@#(KX1Cb<9=a$FY6+d*#3@X{If47oz=`7@b(Dc?`xp8cy{d^iEa6fB)cOwK9 zXovS#{Z+^U-3XEgO^CSZoyn~U-$}eH5!#HJNnC@rXc(%{tUfa7V81?teSzx8(GT)eoOAabWpS~2>gA!$z#h1SJ^0p6oUieHSPCy^Vq#B@{gV?E-gM2nw zS_9cY_#r$Yx#b`tV9bEmDI6v?B21b3osDDzys5y@oC4oc9px2>Rp*^=D-Z_;3Z@{|l>67ewh~Z=GaKW!t>h}9f{=S8@ObjH z9{&%QVfRcS=m?+{!YtetF)FoFR#W^N23la#MCJj(M{8eS6lqi@BAR%?LnEs@?JLnQ zkm3J_lkmjXw-lJo?y8LzqfT6XVajhW(f&IHXi=Io5yW9uZsB~07Sq&AGE zEBR{d4q6j}BtiBHuvpY+1Y_a|_}dk58X-~HhPpgV8QTS!vX!1Shz-@)8Q5Eo4=_?H zie-gAoud6c@sq2`xUFxm&}@a^$Cdov@s!t#0o8X${tf*d6GCyh@5A7|3p;{0gu02e zar>YAE;G|@RBQI&09LmeL}hMETS$B)Att63a_HAX?+k>jUBi@;b@0iiD_Bc7*|z1U zRqYP&^fa-xEVlhfd?IjE;H7+5CGleR?Y6pikXo59hE^tm8OKGk+WY$NHu9q0UVep# zh9E}`&zfN4ffg%Q6QPxnKr=)>5|Wgn>ex}GjTEwLtH0a^s@AQJ2mH&+q;)y;O+#e= zeq+%coSB!_X=d3RrU$ZyLr7X@WFle;s6Ph~joi=2l%Z@RfY!raT`))q=I7Yhn|Tzcwn#XiWqk#S#GpEpx6sdbN4x3uxLIPzK`?`E(n+Up-{@S|4m@KxE@ap`PL(gNLYP850pDOior~ zPr{!`d_jOgQBs7mS}v3@LqQW89XQ4dIEk$@uY#2WlhnT?LbeMOngN2W;f$*8B4H3~%f76dp#m zb1gP~^3Hbm3b)=beLXyM=Dj}sf>ShItNg$8p)YAi_>D9*!YmKgJjpVkLA0?Z9Jj9e z;dFQ=^z06`hluaB`02;-@VFQ|Jp^)NA8zlIHz3Qpz!8NSCT3gSdyJR#^`rE?S<7>5 zl&A%8DiYj*`bmRr4Wy%jW@!k>g94k>uN7K}&26bvQJk^2x7XB)2-6T|i+4(HkTO&% zHH0ugK;))icAP)57V*P|>^`_P5|%X*&jjh4bn!z1`XK`!kM9OFYuTtaY}Cy%7IGG~ zlHPZe(Nlt#MH5GUY~$g`C!eCDsgsVR?H}Tp7JXBa$INnvW8%-PF`1`#eg{a5K9civ z`T5KI_UETuO&>mlK#Pe^a>SNwGLq8oJbJ1ATZ9()LLF7$$I#+zn$Dj16X(g^W`5JM zzd{LVK}L>YQarAV>6gEHyDPa!b+)(HbB$hN+`O3|LESijp30!m3Qw$nC-f+TNEWUG zII)+Kw(nELB@;kLr~b_)WveH}$MdVJMC}JCLY65^lF5v)-kTlJw<3~eemLHdaH$A< z;|cN;RsYN@?OblQzqi0um~oHV<**c=og_TJ0!vYy@_+w4e|_Wi-{}i;Yj90m^C2Q( zd{7ANQEyd`7NQ>omk@3urunLbQ6hnT_oW#H9J+LCH_jdVA@b;EX8Da)KeclQtCBNM zx|)_viTrSIK7Pb_%4RHJW$3i;ZoWl_f6^+E{A(V&2Ve32yb(cnw_LhIfP3?y%TX+5 zt@pN99$=5GGx%^fH<#wRRz7dNFz}9Pv z#GDSp<)GWslRkJIX@0w4Ka$0vv`M{m^*Jf(0sw+64v!eq@5Gaf=HGDSX=7KHfM)(V zfbM9JQKYk&l2I`bQIRjo<{J0RLXOW4I(6Tx#cai1pm2vIeQ<_mJ%8Tyq~GJjH5xmQ zs|P9B4*y0KELlIHKq5;%n<&EBC@rufV)JJ+d%e8uLs%yS3dY*sOOQ&xu*zM!iuf@Y zfJrH}0r{2HRaJpkpWaGO-)r>)KNRMDWK)n(xc8%ywHw?`ej7aN%(m6%Gkt4D>3&tN z`#i3^5_3Tlhdpl{DA|-g@3dzy+$Q$5u~hidg7jd*jvC(DP}L#7;$-PH{heAp7m_2c zCC0Qg2vD*eQ0fm3-xeoQGlEGDwTqhK90Z@%kig}LC}0_y+pxoe%`j#$qzVA2gDXNe z8Wzv%hzVluJ)6x<7YZkWD_Tu;y^=rAxR#hdn%k}$B_v_u>&EI$7pmsq=*axCjM%_{ zD`J2Y^=MU$lAKW`O zL3`p#wATCI%??(N5?^0G;`RE+ds|6PzvJFwt6wXvHXAUl%bTJ%R5Q8nS9q*jVJ_3= ziATAmjdy_ph08B@x>VKVN6(=qAnr_UT?Hn$45*MeU8KA>fmD<1zJuf^IBDMdj1KzX z0O$1h%pXTXwDQ53(shXuR`Khz%JcQF^Z3oE5>3fa;IAEMsHgfm1JyFH05B*N0JOkW zOIm@F5roqB6m8=(j8$Z}LjYQOaTEreJ>NF@B#TzW?%b8OFd8NGktxQOou#!n>h*$o zk6vN{Gnn7OJ%qE~)$;PMv=U;Q_dQkYz>I)5 z68NW@iyS10%RelMmSiP5ltw|f=X+2CTbziyY=K5rq{3T&9@i8fwcCPCFIVKBs#>P@ z+ze(BTkab=-Sk&e{NS$NitiV#G`xxj6sW)D3*H9o3v6|;GvUhJW&t6p@7acG=RpVJ zv%+`)ng1w8FB(!C4&ikqPI5?n30B8`qz{R1*yACn0b7LBn_72 zch;gNuEoG0)=KqeFV4Z1042L~MW+8Lg0}Uf#Iu}z-aCu)lemJhJ(GSgXvBe$&(!aX z0a0Q$?-^X3DPRl0F8=$mk&I70?2#M6uC)&mq5d1MqL3r=>N7$jm1SIPSph6PuI z=@M5DMHiei!MnH`Ie#{nTT64 zopwW4n>>ZXwk10}>G+TvK}*T1zSrbzDHpBXAz7cNw{FWYhE6!zTBSmQQfoA|NiueF zQg2RBEh|=_4jq=8FAAONb5OM8)Ih>1SVw*nJAh3>KQOvW$jXL;=ur)qO?#u~4#oq& zT$losRtXtnL}l z(APuD-(#L2;3%f0e>=xoTv&|3WU^1AVzlbb)#jvxhd8jnjH{VtolDH*@$bVq7Q@R2#}~R}qAeGCcF#_|DpqF};TzfKe!=w_Z21UV9Q-iX z?WBzqd^J z`V-L2++aLM|7pe1Ax{cUFfPCXO(NPAew0ya$MBGZ4w8ur3371$ftP-WG_gJT^vyF& zg=R@aF@o--TqeP!<2lu9U!1FhHk!Wl*-tTmg^!t&X>*6eNaWBY8p!39EmidOlUts7 z@#Rh zSi3b##Tsc}J$R6XH)yBd53EKwpkbjb@Svoyc5u*fu!Ji-=~rw*AG$-mP%I3E$yJC$ zLf)K~OZCcV;1t>tv2f#v=nnsRW}u2KP;}2C?t;DWS@n6uxmh1i_0!({nU82{aygGpo%x$=>$+g8WQj|Pnfak zj;GjURju0!BO7o&2+D16S!WBYjznkn;5Y@splKh^yO}xzvuSH*=QW}^#cC%d#R|L@ ziA+$cZ<#rCjG0p%BcAQSMEf1T9%1s!k}T3``?C3@^sHqT-v(nk(~+WlTLAPreF5g$ zw>HKI+?0203ErpSXZpom!cm!aUwUN3)kude7ldCc9uQ-s<)>xfXHa}-sjlww`xtq81<}th1qJLM;2@qIC`T?21SK{G{8T!cIU`!3)@K44-jNp9{=f>@pcm{ z0~LbMTpTW5WPMhVOEU{Tzt&CLS?wuW;ciE~-}{0A4W*C_m_9qZi7QexTUaXx<(@8JOy8&Ob+31|{Sh z@l1xCRpY-n^{K+yBpWiR3bfpF!bBl8gU3n(bsQ4RTTgm0Bg^aRP?dd&OSdHDT>fv+ zkoK*B?BPQq$oTJpeI_wikf&XMzPLaM6{g7`mlyg zhA;865Wy?XAP`e(;DkU8^Y*{SlLi7o)_sHqM>eVGe)3dM9;Ogr4Y=gFDlejpJy%%K zeI(qqAh|a7Q=RQ~Y737;Cw5tFwRBxal-;B;>;1mhwQyH#I#yczNucI~$Wc!tS+^tF zTdfr2PH4oNem{As!x-x@+xAy@W3ZLLNTvBFl7}sVUAL>^%1FJlG9Rlk&-cpnJT@sp zcP&CrjcX3mG>zM)@u$3BJb1(8Z9m{k&U(b2W~(Cis@P+5f_tbl#D53Uc4E`9*yZ-$aIjKNqXx)*KZE8y2$ov%%AtE z-bkYF?IZFS@krtnxJ-CnU@e4WeOG$bQ@i&e>087k%KnF@?~doX-Tx;=B0DR|9z{_S z8D;O0mPE-26`5rvL5WnYjpWpX9&OhheBR-$^`?_AQ z=R|-Har~4*@RUasaDX(=`27{e)IfG4yR@sv&4(~KyxDVd`nsXMK5}?_+YL~KO%N|| zEwlX>o)b3=ggY#$FZ(XaPFgHfwk7Rn#2re+&v?N%eEA|@{o4<(h(k`w4ZIdQ5cusC z=C{eb8y9D7YytL+G{%bU!Etl)?l(EWh8YC~CNDRQJqA9FZ_3KvzJV`a!>~Yhsolr0 z{L5@bcWs!&P-u_OtJBv7=!6;WO>+jdl-=96^4xa&PktW9QFbNc+9r()ThABBdAwen zx#zer+sU%y=C?nWchI6$osff{qf>7g|&z+a=qx9OemshcqK5_ zDt_6?H_|F!uKkmONbi_~OK#qGn?3hP1Jmg#3BQIo+cz3TQ5Q5=!}gs>_@rf6JKeK~ z@zB4BeX*)R<`<4o#l3ve=j5dML0o<9hwlJ z8hk&W*yea{qc`CR%GA8zF7Rk(PJ_cj=-4i*_W;01kB#)3nLmOoVMG-`vVSiv+kaOP zxvk!_Z)ETPT!VeP_0hO`lL_(!_!70X7s--kZ9RHIF`?`Vt|0~y6IcrK45;`@POuwcLEq4THYFAG2wjK3CqfCOK{{)+0J zvJzm%_cTQ}HBlLK=`Fr%*fzSn_lNVDLT#%(Ss~qG*E7Z0KHIDv&P$e#vRfCh*+h>h zARTNjrq`^y7N5fGCmQ+GB-EUWcZo;%1x}G8W|``?B3D@6daZcKVvc1LQn z*?h>gHg%-rZGw*c`p56G?hi|~NXb`NyToI`lOTtHp z;pzVU`*`BOu#^p(<85Tj!`b-s^eb-Ao1Rz>qESVOojV=rC%^0Pw3r?*@a#+x$@G24 z3ILZx4UsT1509`IDr?F2$36(;+?htsCYe}p6XAN!0wRio08r-gP5K_7P9R!=iwaY2 zMcG4kQW>e17kVjkii?LQ2)KXCnan0Ey~yQ#`0N?+yKf9%@xj}I!!p3W{( zY?Rk>^TD5c|KB54-be}QM;)|6`(-#bT-(OQr2>nE^JWDFg$=YBo;mF9wn?&ZON07m zF^B)iFj{zod9pMD!GnLiktO!bWp;(0{tiW1-*6E7uJxK z5C}#J8QyH0d-G5HH`8WK+frL)G z8@0p!C|Oh%?$rlyfJX}m3?k?^D0Q1lDT@jmQBNv9ZV3~|MYegdvR(G!caoBJ&cFu2 z-=pA+KK5g8{7h{?7yamDJ{U&xF$p`$3gE(IY)#D@l<24Mt9rH46g zEfUEkTdLAV%@mHLCbMMdi^kI3Vy1UtM1KxS0CN~+(I1JcC?ErVa!cL-2a zLEj~Iol8G3l)}X%HS9P#Q=PXos+@PPl`-!}z>!1*wr)^nB6` zT?|pu`}z4*qEA8pIbO<8)Z>60BfNAll7)cH0RXG5a7(#0qMC>f*{y@qY#X$OuL2($!w7)C*95^N2?hX0q)NC#G2zGX?2wf`ej}pvjM0{bGDBQ&8meIj>LT{_HythSnfl9R zp*Mc%oPQ;j6#=~U53W_j3PpWUMt8) zo42pXL+}y8^V%9S=)6y65Tk(rhdzX*5)I?H$<WSL%cvIIu8jAMxP{3KK|p>Y*2i5^3M1&|${#=3#+`W>k8jJ-j)aU=3olK) z#K}Maa`!TMP%#96g^jr0I;A^qv$n)3y;sSwFvq}0^6QX41evdHf2n?Qqp-C=z3NVs zDF8DKOrEzZWso!1Qb$KyR!)xA&D}fflAC6cbtQ;bRIW686=Xh_O-ATY^phMq$+z}{ z7p^Y4UHZDKuGh=qmgqp`Vx@#`u^?m4xxe@H4~Q{x{7Wuh z^7<}fREl$x0~2A!!^%npBn(N}$u4iXsP#HQ%n{EcJw-6;=oRUV25a?pzhZ+OGBDY? zgW=T5`*VdE`T27@1LyHG%fSNihU?~T_7sX)s04opfVL`k{9#0Y8+=RX5i zM$fGMIx|Onnm{v%2QJ@p&Psg5S9v?u2q|D-;9}9O-C)Tw+JxlCI(m^=IK0WniaV%b zCo&O9sA$tV>#b7^w|mY`M4Q7`P5N*^sKI6jzcnZIcT+@`@N#{#fYef)!lP{B|TW26!FHj@ce_ukT2CJee8J;Mcz%;zLl9wN+7H zyjUVB3cutY_Mr%UKYwVcs#{V@Br$n){Pl3g{V%3PU6dcaZWniaVp2-ZI`whPiG{zz zZ{(sVVS-@5i#aZ~Ciz-ugPAxdPwrlAdu0WMQ$@*GVMt>abQCAEfo%iwA_h17v{)zt znyrh?zWBr}urY*S1sBfRj&xoqun;{9R2cx5K!v!7IX*wR(TKfyIPytGnpM8#>dIft z`mr-_XQrIxgkl8G*IDXK#DVfdb~O?dwG|>KrC+~xvbdmbX!LE*NlV-0*jTGPSs^Bj6^xlZ4+-dR>hKGyj3tG}!9 z{%IfYP04B7UKzfg3V-J;bfj`O~QF9 zb@g9E%xPahbJumftf(+&a#X6?LQhR#0;maFm_B`Yrl+l4g&W|$@Vg#9x&XYP*9Rqk z@$2d8X4?Z0j&;5QzySg;FzPTrXp!??*pPQ`?E3y>Dchtw%X$kg#T&BXxBt}&T>#fl zLQ=_G26Z-ERm!l8k1aE9-pqA?61b;pC>CoK*CKI>`z{|0A?J95ErV&}`s@LN#%)Sd z?}Ebr#J5Ge=$2o0dF8--ZQ$nUGRxoY)dp{F#r~SPYYUmVLe}y#hkqKgQL_B|(_egp z$4;rc>9P{zG;F&0#>g^L2PXz;3~JH{U>SCpLi9BZ< zE2^|}o{E7iD7hnXu!W}~1ycU^^T^+1WI2p{Ui9o~uS4+WrlAzjsK_caz9~YoXvvmE=fV(lV_rXS`+{2T9GC((J!@O` z8Wi#pGjWCkm03x@>T`y6E;X8CQYGHy|-7Z ze?PshISo?Sa0Ngk6H-4aZNCXJXDIfNvND7?@%0oibA{R_i~Kv%bHnVG`88mq?w^TU z2{Gy9dRT;%?RAagR;(q>Uus~9;qMxH+7y2CCUMcCu2nB|87H@Dyy)|%073BVU|HfF z^qSa)%X0{7Sm~qlsOxwOH_py!FUXoor=OLREY92Pye7~)2BK~V_*>A9x_{cr5Q*H@ z_KM!ax^X@Bt)1F5`{a~(qlQ!z!knOXmd2jW@GAxNJ&xs`NbZB|i+u@xqo z7cWj^TjOlU-5kuYs(U+lj*yR~-wK+Ecq$X21-J_n6t3*TcNBDe`Hx)rCpSecIdv6r zHe4)tDKp&E!$aLR7nItr%ZZ75{_*#?+ZQ%J_rp&fiKw^j`*X_eT$pj}5u>`hU&V_& zgaWm)!~P_+B~;No()~0IaU9N7A}*k3{mj#l6?FIVJqW+5p`)>FxQK%c->HfFVc%t# zQ{L8Zza}Bs4sD3^R_KFF=y44a+!SR=i%@ft+)wZt!>jTsh5%k5#-hXzZd!bP%W2;^ z4U%^#hizaEb8TqeA2`DN0rXz{Txs!pgg7R#-0PTUQ;>`_e{Nj?7pAyYt8etqyX}w0 zx81c%8t40(aWZ#ft)2d1uXzDS*{zsjgJWxxgM76lHMIJ-(s@2x1OAN*_TI<#0jZE$ z{^cpa_4k`OSF? z4Og)uh7=K>0;>@khtv1i{d=m-1e3qkL3vi ztw(pW@l2z^$a3MUZk#*7id}Bv?SL+lWDq)HAb=wS&f>5)na?gZ7&NrCaU^`2`2&>o zh~*59C9I(tuoxgw{^8T7bp+;uc?NLSyQKX_?VCj&n5}C1RLAaq{3Z_}>_JzucJ5E% z%YWHBvd}T|dBvw>$+RP1IM?gRSU(u0tc(nmKr$@DL#-1MmzKR+n=>dZc)=n%d%Vfl0JL72@tzkYeyt=tTJU?d%*{RJ_T z4?CK0D#ImQxiYWkK&h2=>60G*GI44`+JJ=%wQ%_;HSU{G-~7+-AZ7-_Z&Hwjl4NR- zN8-jW_X5^1_1WQ&?M*>{$oT~cDlK#t@WR%(*f1}US8gdo`y zW0`rj!U*sB4aneeqdFa85Z}HfW$Y^@Q%Q?lRn5Md;y0X{-R2kS=FLZVJI-;Njf_oK zE)MK#(U=Lr^s@NRkK{-G<14-qSH0eZ(@1+F3P{`;DOmVp2MEr-Q|R4TokDr({uYVE?1=VD3w0H-a57FHex!W)xf(0b^3pkdvHG#R zd$1_lTLRohen`-c>V?SuaBQt3E-galT{mPdooFs}X&5^y+YO%!fQP*e^i%xok)6zC zS>g@<3mvgJ6s2~wyVCZ8JpA$K^a-R!ZBE&9B(C8rLGoLWvx0nB%NU+?(#yQL%IO8+ z)SyASckdpu`GN+V?!K}u?4ws~J+j57e_5fw;f6drji=4$=`cG1X8K(hC-%e$9eo}b zWv_C$vylG%$)yb!c3XZ-!gPI^^o=w3_C@)d-`|-3`9s)Qi>S`jeN+~_C8My z&m+;#bJ&&9&+rzo23RBWU3c|!j_|~vE}@U+kr@fd5PjZgn;{CaKy=0LAaIX-U}PW- z&B58ZI>TqF+rRBV!x6XlgmqQ{-TSc7s2;aw5wEo4% z%`k_Jg4p&m5goAIZ;?OQFvs~pW=IZ65`jn!ObZ9K1Mlf_ z<&~4hluY3V*}qAwPO7!4?ZV>r`QE3IYjw;*^4E~P0djr!>yQDcj7u!LdVVI~<^yeT_YXk8U3no2v6{yTwGe&0+|_4ATDab?s}Ah&l80 zySgNrqG~Uhy*r$_v!6@v3I!Iqpcxd51>LI7)}-2G<`N{cL+RVwM}C9*FVo6w$}aaG z`y$;6c8{nG=j9V=I2l3^?sC}7j9634)^MNU{5CDWEJ@m*AS!_*m$P-(vn>qiSK-9- z{Q4+|RFENpLXTw$F??_Mo__A^Tt_i~6=xYy@j@HEsXkHT;2C6@Ld~${#Xb1-IpF`Q z26I9$^BlM>S%~2L7TH_wnw-)uuYo)e&&VWw(rm=p-@xr6xT8`1`N|M@`Ix&ifdC9 zmK1r>gd))7hg5cq^<763B z?N6rJGoNmGBWR{Q7V=3=(x2Dy(*0K{@_Ct}S09~4U5^CSfiWFixUf+G80~O|K_M<) z&V$9x)io$c0X$}$s1YRc7B|iTFD8)>unVH0BlF=y?RJA*5m01+=G9{wzOwJ0e&-IT zs)*Jbd5OVytHWO7Ui6*u`HU>jgB7QDgDX-$Z|UuAX1>$3!;R&{f|;jreoJQLM~~^m zBTF5>ZPowEy!X##qt@T{vut+pUt?SMF5P4{K}Y`?EyGPYd^pzbAL=Mj=~oG%6<0c5 zrXo{+#I1L6C!;m=jddM{hh84)Fwyl+5BYs7`9PFY^V%8uFO$bP_ItT!zB}|zNnS=~ zJu;QX{6yA#Wv?;P+AiC{`0?PR&S39b%539V%+*CsAT2v>-x6YTg# zVul9Sn7!ozBZsnGW&M@Pg>AHhC>oo;g!t@ew5P#SFp4(~tKyc`skBvE0=ll(C~xP7l3(|0eI6L{&u&AhSTAo z+qTMuCoaFW;R8PpZ90G~q~tfBV4_#j&YC)cr^GK%6`Tlog;<1p3G0q`xEiYhvssTX{Ai|px_ zjhWop76(f)wEAipZGW%_71u87Yh{6rkTA`wO4rbR6NO2L1ZPxMuI^-j6yq52rfse` z4A(LuK^pgxTNVXMP{H0xQMjVZGv)#J5kg9t5oJcYTI`vgBhQJrELJ|^bliN#cWwhQ zu9AHdNOYCJDCEMXD%8kq!^YNsgH7fex&rs`o3mmaU%Vn zjpB?F;}DG72q^Zi>qey-+IO&`6x`LhJ~VsQ-A5iC1T0h%NB<^6mu{EW-GbG=Q0EHO z;@UfF(~C?pLKZE!Au(BzAh)31GF8An{$I76=*!%xx1vtYi_Bn?}?po8(+>GLO1=;>m$C~pa%Dd5K9{9P<=Ag(0gW0R+xG7s&(c`q zmh8I^GZxr8YUTz!q&bGPG?jJQrMv7IqT3@cGRtY-Bak>m&R(=w-LFg zUJyJ2O0PJfQn342_kr3oJ-*>oMoLU#eT>+S`rQ0@QI^=X5z$6LNDH+?wy~}Vq986q z0@i3mETKm*Q%XunX)_>ZU==HnyS{OJF+kiTq7GyTe=RNO<$~qmx(Hj^wp1oW0>MT`l25XXic7#|2W|LvqOt)d!&qr^((Y|qzD=sgY1nG;^G0oArL(>hmCdwg9pj0A&CNb z*GW2P!v0IVB#7Vq+P`09KWbMm*T;k##w#@C5-|rRaSvNl>nNt9qM_mu{ht^8^@qv zEY*IN@G}WwH`znpo9m0*@J;Z(dGw(6X``P<dDYX z%HBKyJGW!61Q3g3@z6IOk32h%YQFk-z~h?uUXH#CI8@cXuG9SB>cO%op=}HD_5qf! zEPtlQYo--VDSiYQP&1_8$vIT|q2*kme)68P`~fK-;|D$oC9jNnTl2f@c#>=XLX>)= zBW2Scf%98i(yXf9SD3fhW&YqPd%Y$Wu>ASM>#6HOZ+f9I4(*x0XPlm@5nR$0!Tv<) z{qQ5n8ocB7+Y?1X1ETOl>B4tWv{;M43JZ$VGSO-D`vW{hM%_W1K=; zBUvpI2M``&t|4-OVis<2N(z8tk}PL1bu9jEyGDXPaq3&It^OiS*s%@e15T5- zJKhAl??`JC9h~!Zs6UW;0skssZ>srxx=$@EJl8hzsb@_t{qb$Z!KsZ*63FC~g{I_y zI70-!#W~PW1G=-3MnlOX&qNPo2_q2#*9yh%R7ad)yY4ny4kX6MpBwt->WCSz$t_&A zcBs$b1fL0vxk>(~#%M1194Q$UXUrDn{H3&fli_}~&CLtG#Y$ zL?u0CE%4~$`j<*N!^fRWM3l^w)kSHR@(9cgUjwPVzyv*n;Hw&7e-Y(BUeY05OJLg} z1KH!uiu8!16!Hh_S&c{+EF#!VV=a+hLOhF*>M#uo{E`FkI}4Ss&avzq9(mzZU|K}Y z|DpH-2WpwkcQV?}%X>YSS%+sU4EiQ^LfL|@!_GzOz|x_d!=G34s9SYPe>^PD#Z7u> zI-NU3&O|*yM-L(<+*lWRGsDNU-eRi3ZG^9+Q#Difphl{AXluGQdT1^Qu`u5j!L#(U zk5lS{>jZ!8?}w?MdY0n4cfDtIJzzQ+6dFp&NL{j6Y##PIal-8V>NrGUdIwtuh6{UH z-OVSUKT_qed*>Jgk^rD|D9$En>J>2E$tZcu-eD`s4+a`x&zn&R zk0OkSGw|}0BO4$B1o}kx+%@WcX9ks7mDHhWo6z~={jst6Vx07Tw%d{)o5G!U zJ1FS-7V`-}40ua2jZT`G?NDz2X5-AK#>ffQ6xgICQhQWe6873LAVOwod3iJ6I-299 zqW9DtghMCS>$~L@^<>{V+i~5++wlnXx1^$qUw<>oMaFiS7>0)IkX%~aroF$jAue8M zG>`f4UiRM=m&~akgY}%fSiZpht9@(Ce#t2s3its{p$x`;Q#oQef<7hWEDSg8e13Z* zC~$4-ey6&eG`}6REjX~8V1^ez2Y0mZU5G1mHytYMi-5}kv><-mn5-srl|mLrR?dEh z90Ze7k+eL>;FXuZ?Iosr3V*v)FHL*lh`;^EZnD1Dufm_n1nDt+w`zwo!|e}vN{hHr zU@G0D%az-_HPUHXRn%i&cbA8yeI6tNVhW+0}E&k={cJnAI zX>7gP!A;xs^2pLztyA4Dr6G4j_F(8If?ue_RQ`0G2~wdfSNkZEOL) zEiB0{jly@+F+0QII;qfO*Y$r|03@3Np#k?*cd#6adLaQ^EkaylZ83UpeN?=d46Cu) zXQFtJ3>Uh(u?C%=K1md?z};WzmIfGCjXG1&G45aQb)NT(cbTZFKL-IzRLh7p8D5y>jqz39w~v(F)7~c1D(_c7 z0|M#Yj@ajFJmcRs7RKpti>>#%rc`O!zL2Qtz+89bEc?NDP4{2xlS*p40yG#UHH@mS z4sbB1L1csvK)j)dhf!WOna5T^n@(7Zu|8!}WJa1hG0PW0#{o2I17#%d_>hvwQdMSj zEC<{32W^FZvM8~_`CE#{5z;?}Y$JP#vGWpFVWz;p0d8*8uNYnA9%tk^@BXkHC(jNcnY3n`gxxw56 zEUP|8slRVYfxCl*IsI;e9w4V_jgtFZ9}I@Y=DYI#6m?U z%VD!ER<5ol-)K%UxjGuB-Ibv)A6UH;uro9MQ?Fr8mz2GB>VX(R*S$wfObGOFaj@cK z&l142=(xD+21&9RkS3Cx%OcH_W4?fO2)ko5lZ&(pG*VFmaj5e~o)0x)fRM#|KY`>( zpy>uLo%*q1%*Jm3ORGx;%Yna*c5z_FFNAzR=eA~QRCs(6x^(zR#^NUry%Se#48O>-DS7HI#iyR(+o<+K_VqFu zpnv5aV*scL{wG_lN!3Dcn>VzpMNE_%0(n1OdMVlJwP7IREah9%7N6RTbbw1ShqG15 zX$q#^^knLeADlnZN_acFUU194r_I)ME(+Qlw_jPTB+31Kb4cT(gCbj=2FgS{ZCrY~ z@}aVu`cFsfR`^4SA`Fy1w7l>{+`!BLgk}^&+#xYG7ROwS-42&9k5XVR5g@ie=V4Wc z{nF9KS`rwjKq=u_L4L06`Yx!7h)59{GsHouf&suI5042%-LtuuuF?^yFH&|45B_uS zYiF~b5V5>}5Ryc)oZ{U0ShATUC#1AeC@Ct^1M^yI>rblJvN$t6YIIIy*(UAVGVeyF z`1LGI>)F7hW)_#2JS#tO;n?|OPVf7BHn`M&ykPO@{b`r-f-o^YfhOJ_iS-4s964AnNXbY`ug>&<%^F*T#niuq)n3u z;-3Yjo}OnK_jQ=vTG{10o_u)C?)h9V(1Kcw1LYn`UosWs=wHgMiN z*XA(y(8!|yd&rn$rkfeHRvMp2%uw#mM)qxM$$yStI>er37G%L1do4mQB$a17ig|l( zlt^?BtiyJRwp=ir4QQPX_%pvdkOQsaS&lf?bGkk&_!k20x^<=UAm4g`WZ4 zfdXb(I2}EQgE?#t+7I+QbUheG|3e)pwvqgv(p!+mKPw&C z^dBUt!D<_fw*jYYqnn|T(Os*WkH4Rz2x|Q*eC0$SPSS6X+!E{D7v^x`f|`|8W;&bx zI`uyB18w^GFsm3W#xBAH0^#Bqus-kSP) zEo$c6<4-=Z3Pcaes|X59^go(UKjm@p&pfwhluTy!)o=2%nF}q9_fyc2sCOcSM)2Ul zgN<4e5wG6ww%2Q{mKorFUn_+xj@URcl~trYNSS?!*$F`aW5yYGC__V8rSE%DGIBv2 z4;vf! z)ZceU%@d@psmUk=C-!jhUXIs`BjKeu#+^|jGC~4yaW2()eT5W^-7AlDOkw9;$L;)} zy1t$UQ)&Tk=^q0T)@QGNn~`;yB!EMFaIQ5uY;7@WtqPzG82wocz~1^=(}Bhd>u8TM zcMIHX`0(fv`#YM!b6iMfQ$={}?;iuv@*R(fi6ONS@8TDimkCj6RrrJb!p@6VB@>+*IBVpY$34dlGVk2xwRw_EBdJ8A zwvYR2!ruJzcK)I{kvjJ-U#I6D6Q8BDZx#HU;7GfAx|veiI4}DBaqpMH8mXI(jXw&n z?-6<8nyF*XMvCviHxqNVnDM!E@Rt(F_L1yNO#W3>hloZ7-Et=Sym%-HFq*#IJfX;# zZqp{!vuF8XD*ei=FCR*zj4MdN*TVmY_&FL(m8dz&LUI|zxR?_HYloQvobhhq;h7VP z3=KVGY|I4F4DxXVD-MXb!VjtwC!&+I8yTn=Mc2jjc6XCb2DBKe06XCG5E5`J)i@Q( zEIIt|0Gdu=cza_I+|`Mri$sKR%c*(MR$x z{$idQS?UO3|6ZK?k#*%XM`7&PgagCw-bX#>#u9DH?|wF#p899H`_flsNCl9rc(~|m zL)I6!VZIhTm!S<;JUqPUH_lbnQ{CPFBI3wzcQebtOMu!NZ7wr;o++{w`0@e+Q*?a1 zh`?vfEatRptN(Qx5-5eBr5auB=Zi_o!Ic4zyH5*|Iy!_mmBJr4;PBG)bB?c#km(Yw zWYh@Gxb;LnGveHttwXvtz=-T{)W&j2v@~-gZxELE2A>OoPaE8Fwm(D3I%Ku-H4)!6uFXs z!dnVIs!(+_htn!l(GZ1oxbZLy2m95=-+S>;QD+%>${ROrswr~lazV>Vz9XrZ3H zUiBukO6k;tBt-_H6|PKyey4UHxf>z<@C4mk`4Z%S9LV%9{nTCM4@a+VN6Xlpt7Kt~ zYJfkb^#N8Z7(TV8<1fUTpW!WaSNZe2QcR+)f`f^PPvDnCx0n5w!i@E?n!#R^0`<3L z3c$Dk%Ajq#rKmf!R;Vdt5a1HCq2$(XMdQ7@r&SU$i6au3Ph<*cUslvI9y=M&(7m)$gBI4N^a&Z7q`2>)ExX-kGof#RKy+`MU1e zrN&$cyLAg8qFL_T=n%wPOoykL%o3ruZrwn%0amuUHBc@*fL5|S!J%kO99~W8(VC%NeN&EW>l-{N8H-CXx?$Y{CVuy{Lv{TE{ijdg z_BD0$eqwvklWQ+>K~lS!RVF8?$d|t5+oK~7mluTg7k=2r!}D`!lN6^0y482=&^4Al zbLI>QEq5D#S52CTAXnXV2A#%?xS5D^>BI>RYHI4bt@|*_@$>Uzzh&?8f_Mzy3S58M zJ3GY2A=tgJnY^dXX;OAJa_ zD(`OW@1)}!~<~jC>#EUFXb!__r-S1+~Yld*5?6$Ns#=r z3kzz5vtl zS2xO9J$A-xC-fwB`&y(f%4z8D5@Rj>L($H7HHNoJg|>yJ6P7W4l^X=?PP6#Mf zpYl?9jnBX`-?VZ+pVn5BA37!7#pdh(NQ=_}u_5_G(2LZk-%Qmfo`-c5u%XP`i@!AA zg?pTT-@YyQd3mXPkuQp4sd|snmsrNIHZ7XGCHv`ZYOjuf>B5vSp{-r&@Q^& z*ZB81$pVGYBMghIG$LDKE~MfX#KB7%FmsI)nW2T%rhE+(8QDtkH0*K239-sXfy0dO zo8*WBR-E~{iTybm*3gMV3_470XSu$+s;Aoe`d09`g8pQa8I+;vTu;_y#?(03n>e=T z#Ey$aw_H{EVS^-kP~yQCw7kjdQ-9Wwk!t?W;6tSjQ40zawL34bD!x11r#9oWS~fnm zX6muwnY@U3<~+iXOw8N+!hHs;^0m!3($dbQdq`KdUkwc@0X~P$n5HF2;7rsJOQ)OB zaGm+J;K!)3UK5|Y%TeE(5#*kkpU(^p2{Qds_x2`Q`r}P4T|J9HvaZG<8KS-{xqLiWx*FAiV@oB z<&=moz)8&6&{y1UJlD^!rLJCeuCTGF^!LtQvrup6gngvq5O2P)>@KsS$xKPJw@PNL zM+CwPEFvcG1O1oo1Y{Y>a8ywTSLKL`5b{fOX(>|7R8i7* z5jtlMX*Wqhjqkc|J(NziwqD;A-#47@_oV0i`17#yu3~qVZ@rPF5vA<`D#OpmcjzGv zzI+T>*WXx?mQ&v|6jBaclu9m|+9?g`J-@s9^#{!iz2yScs1mgv#mQ#ar8a#qvuqB2 zzb7v1cll;q9_P#>@==yzw)0 zW%>U&*w}=W$LaINBBb&+(9nca$kT*r+onJFL@^7LqD))11mC*Fpz`vkThDh%!xyO7 zY@m(!PV=hAo%v01291-<{9|#BM1==&8Os0i#lF1i`7U2F7Fx5mR+g}G>C*wcVQ38{ z25K=0$(I$Zd}XaTkVbu0_u81eCfiEBDRiLzP>zmVDSuN%9avun8uL*uyGZWMRlHq*PW`MhzwD5X?jJvyh00 z0ER3)8YT^0Or)A?F%UC2V2&EDFa3!8F8$SW>Z}we%3-76mM00~U^!}Ze*O7V4`U%Q z3u5tPrkj}6hn8uVc`4uWAyN8gyKz{6Mh_P}hL;H!BtjXmxsk%Q-tBB`K>*oM>(eUO zS6~mFb`5$glu}P;*iEH5<&2AygW-$g!di1SJ9!4-L>fqzh= zY^biTUPPdNC=O*7qCtn-W98q!j?T_NG@M|b7sTy|0}iC(?TIH}N`Hn+Ua`1?=G2=F?*H~ zT1!INx$jTcpekPAr-gMQcpYDzXdcz!)@;UuV24D z2tVU4D!FbC>u7nec_H)^>@sJa-}^HY?!juzlb{+f{{WE+uCQ!j!x=mFvtxSpe}#9k`<>WS)6?5)4RV>3%tUAWD&h>A zq&Ma{*Z%UX*;@FdaK^RRV6V+ZsRI34k2i1}e9gFaT7iXWGk@mO*jJ;cptR)1B zSD3=Jsjt3@anE=n`tH^KFN~66Q}XOxF&gC zZBwvQ8Y^vwuRU+~B2Qpo;B5Kle}*eIQ{U<`1Hz!gqZ4@0k&U;8R49=Az{yE5M27PJ z*{!TRNL77~E^=99@7^w|7+-`0+Zyfh!`TsPZRG4MMcjR)UgR|@q_X`#k^-^LPW7c5 zgH80YWQ70KSo;n`K(^S(sv!!raM=g%wkw6BjpnxZ7bsOOj#$U;^G;IMVb7 zLw?Bj8wW^7JS?QQZk;K#Z;#A4 z%wkqoVZAp|G_iN!RKo4Qe|UZj7YPLpfaVE=&7rx^%^YkPY+{uj&UDo5!LLigy26F$zvzy9@Fv;!Lr z3JI}Bq_%4K=n_WzHX^rx_YzZ>*E_Gg@u7w0ckk3u;N&kd=x7Brg8&K z3=|_?UjyxEBrgKcL->Kv(_K8>&CSgVrkAjrVepNgfqOd$$7-2h;MQ*y(tcOm-8WWc zE4|X;A7hh`apN6&XxFry=_X*e-95s_$NWOpI{&lyWDu(%v%WZV@6MAJRkJn4E7#+b zI;gh3ysu-hU&(wlCE=H8WqgvQ(Lppmk{xr=c%E{Oe*-l&5rCsggP4FXT-b>?aN=_( zElR~^7{$ylL5~74@EhI3r?@&cU2M87j*UXy-MxrSoxV!p%8$Bioj7M)HG-%^Ha=~5 zId-S!(K|W4I9K>z#WL{%AOKEcq+NcrsQ1&M)DbmRRVjx~A>w-mP(}Kq56>ao=;oxn zm#0LH`{Bmp9H$yV){ud$a&_rK1}8-oa9t8=R3=Iv@8{=-(dN(4p*?eRy_d@eY73Ki zAK)VSV8vOb3_0oC7SQ#c&@*>MC^nUzhNR{pcsR*enZ2Xrs)`a>fUeULIUxk?#n%Y!B zED1|#&RM5Oj4e=}?MQq_C_{3M{@4l{!Gg1yC#Q|BSg0aoCJ}-S|+n*K> zRuoS?6f6hcPm16+2{sAClK!7zp2V|LreqF(``vyCx}Bqw)Gz&Q(jQcQd0>zV=aAW*CS=gzKZP5D1hg zSx9XX8Hhi5^jgGDc*@yUObmXJ;$qBM>RUK1DlB{!IX$GELV0!3nuN^YM{*t7dru$J zj%(;#Jh#n$|JLJpsy=5$&z4^rtl&ZnLI7^MUE#c)9oNky#{N#QIiLVa%hpy{RZT6} zFNf|6b_@wI-8ri_D zt7CfzIgxwWxKm6_I5gDnlmt7YpigFw`h@*HExm&Fc4P2vHNU)TPQCaf!*P_Z+6`2Z z+NA@^+rJ-sZlS(-I&n>BeQ;x3Lrc`v;Gm$;Au@OP=Z0@*e<7p;u^&Lun+NT0mOb8%j=A*mvsKzZPd3};Ev|uX%eM7F{1YF10~d_|$%5%VsMD_OHJ>f? zm9(mAV%nk@!cwtiDh-OT3Y<}&7dAo9L6DlLC`J-%ffN(ys&EoEiT7DbS-yXK440q= zLTPx>r8F!bg$7Il*`uy4ifivV?RSkWEgI;3)8AcSDcY&Ei?y7kE60e80QLWt0eeP~ zIU5VnGVhxa5YKgBTcq$M4v%+42C~~nqw|2%!xU^Ru; zyZ!p5u}fdq`M33)s?^OYR?oRc|0QUgE#h7xN7Jik)}nY`BP!3OG`xDx-Vk;R`QVtr z&?pQ2p_oSW<%=2YLZkY?VFB^YeXx!iCK=1WZ@`~sn|}SVU`9p;9z+f^o*7$w?m%sJ&j3-2Lb%=r9J{4IJM}c)`QmUR{z8Pu zmt5=%L`umESy6-5yuSK{`ItJI7`3b&3o8`9Cdy{vzV$p+X7H%ag+1M0?X5qEzfkxL=4G z6C)SzjM_=QXOv&Jx+b3lc?5+vG9j06n^->`}H?+eU4Wr1f=4DdJzkR3Fiu=${QE9`Xc3ytI+ zwUxd$Kasg%gw(P%#r&XlkO?s>2Y7-wN?t0>15-F$h@C&$XVs@EgjwSqati#me&5dZ z!ed47`5kGq7dwh8MVK`P0(+?Jd#7UZ1<=PpuK0_woP(6iNTu3`%|GE zW6#r*f}uP!Z9pN!SN4O43pNA0uy8$SdbLJvlv?77MXuxuKS1)KfZND9@Ii95lNb4I$flbS~k+rsX@0y zdIzrRrzu;MHcR-eqoN}C1)QXH_4U>RFFiabGeSs8&Qw>hRd}&AU0nvNO%E&YX2tZtq#iyoNWHQq_YW&CEne$JqB6+-9h$jMOXvk-YS0gUy$?o%0^gToF-xWy79ZtLa#6kaRNK93V1_UC-WUY$}TP~K@iFe6IaMI`-@9CT3%h>R?xHdx5>Swl4TGsgJdB>wA zNivaY%a<1py}6wAJ0l7X1y|Sks2yTq>~6ISUJe;9l70q3G1V%JGV1BHV_pjU_&uII+eu?H0-hnpM*Or8g=I|;E%L@l)|0xS*77J` zks+L&ZzH(&&f>jjG=_#FkuMZ7ej8E~py68g#g))`BrD3;)N~_$G)PkjCocD2Mf5N!Nw|xzYx~e<_m&|> z^S#Uq-7b0eaO125?tpJIGj}s@y~)~dV)&>OzXe`5I+Nw+mD;_Q%}1{Dcl(Yhj~3f2 zA7E9WTW2_8GLxWv1yPxJ_nBB&1oDGeU-Cp-KOLQbr-LrU%;+Ub<=IK40jbpj6VFa` zUp}w!B>yeLNL7Krdi08E-y zD1kn43z`yiLSc$DSM?e!KM&TgxeIbH_8FK=uds zi5?dJgKK}=Na!Vr$^bOri)dQpWYyx`2q)DoD0^m0MK3!<6-OU*-$m#OgcvL&<7Lou zbhE^nN*;vL;~!Ws4d=c}Bomx*_!j~8z==*&&?H5g7`fEd)rU$xI;kN{3ZP&VGAqH! zsRVenuT7s>yNOnw;RwR^eMIiDS`wST^A3y{}H|%dU>org;`YOLpX=ooNDWEbl z{J#fXz1PochX{&kCMHlHu4p;5=m-1zUb|KjRw!ITW{EqKH!jN!X`H_uxK%exy?>V> zYwkV&3Sp7OD?EpW+NLgNrKN4hHi2<26zo-gnF5j$9~h?G6xNGRM^Pm{qC*fI5Xl36 zI{vit3U3}i-T`V+H!uAJ=~h{{ZXLvnf|4g%vTT+^lBO|8pvbCZm(c?uIND50o%zWD zgiuQWH3T+>sRu*?Z_XXOHl($0BrzIi4dfK~cS3-qnXQMs1QKe1sT-rb6{czoS95t9 zJV*yagpZs{^m6tFi+z7WCNrT2PdW%uA7W zzAe;mfl2kx#z982ov|NPeh4*=uNWEiS-k7eDUYyUSA65^y$>>X?`Yre`8q#%6w_p2 zCcHLHwEyb0?@Gz#E9uvTh-$jBVt!L9lCQ0)S)bCe@#dACs;?Wa7kvB(`23ZJZAYp%&9eSZ{!FL0fgIM=w?WrABgUVo{oV zRWHp61OOlquGUft(TXQh#cBLyxV_<>ym?~o)t|v|e4%8!5IBLYQlyARgeR$Ge3i+!mLPplj_^&c#g%L<;vRpTZXF|8nm-fQUqRi)e#*` z(C1Q65G{PMO5uh}Q#;vrCR)`ou+nin%fb82sAs}{0c%C)Qr6p1tRco07LvNmik@Es zR3GaxJ+eA&nc80Y<6F?I*{@Y=*RG=inO%bnvWk{5*P2TISyPYVBUB$t`4c}Gt+|AH zj&HOk>~aIS);p~?f4Q4*3FMBgW#ExjMH_JNjd^qm44^LwB3_gX>C+s9?))Is@yCJ{{Zlb;F3d2+Teb8t)yGXOM|hEDacDm<-QvKZfL zuv?OO*dzV!Z=~~cD9$$smVSNw&30ycZ?fgnu62AE!)fFJ}P}<4QQUB&mqj^-Xtnf(W{SQv@SKI&!LbF3QBJ z7u|U%@cLk5qb~z)cu-74IBRb&#=gru6uagp=i1F!kz#aA4YSJzobLHre>^%}E6wRf z#oS?IWlO1>DjcFasa~UV&M#hbX3>x5ZDydqCLgkLg}w6SMrqF&_01`jdYLN5UVHqW z`r#?fIt2)5aeM(!;Z6D%qI);GyyjPi*FkU35O#~B29_~~FIYu1B6oPYg_(Y1RT8m! zE7X`7e!v?FBa*Eu<=8Ld`|nrp;-714SBAA6Kb0OfEFSxdlg|oDo&U%loB}9ZHoTce zdZpnxeuL5EFrr1FAw=k5Gaqf-?+=K6d~@vh@l86b@JGbH%AS&ax%mJDALP;^!yoQm z@&RB8B!Rg2ZGdHw!YIxc0M}w@&R@LvlkYP;$`z|i)6lQ&Cdu&lq6P4~VZ9)CFRV(6 zH#|7EhaCrMt#kK2vP%fA{w!(0iDP6HY8}!ik23WCN7H+NbKUR%<5otLnNs;44=f2L}&FAxe zzh2MhW8zUc`@54EHsCU3UgE*@gnPql*15bA)zr!#WH19*NpsI)`4K>z;7$`)-sf-< zuc_E()D2aGz$3UGG+Q+gyE|mY2B>gU)9AcQJj}`CTT!5{_~ia8i<{P?Z1c$=7l{J8 zbZhUIvggmQ6_qVj`J);lyn>n8vESX~C8JgY^-Rq{5wABE&t88v{W(3IP^O})D)oIk zo=D78!`mLvQ3K{7G4CXjAK?gfSa4y$zJXhhh?z0QV%^&dhYcC=Qd76#vKmIdAxqm3 z2v=g_Awk#peMm4Jq#i*1$%sxCf0TaV#6yqDO?*qF-WCrc)Rb}5A; zE-a_TqCwEe06+>LQK+GVqS_Ukeoi(?+V}SbW~n)>Ex9Q*i7hUc*prBb>hEW~H6~%` zCSxbDj8$vDipT*%s!g5ab)Jm5c1gwAe8+Xed8)uPl$b35gOX7a`zX!pPa&chzk~ha zmg_3sgzTvi^LepgSna}TyUzp3(FpXs$yDk-ZMfL~#qVHyrbF*ZNcMq3v+(ln`nAng zb)oQC?6;1xpA-}83+Jni@R5thZ2M=CZ;J|yM*-j%=jmJ9*=auBj1(ExEn5g|LZVWjRz#+h7tU33AfkBq zsHq8=Tuz?02ql5&Xrr7bZV#;|@qOiZmWh8DW(vf=9lG#QHJ{_xsQ9f=76UsRaJ^eD zgtlW}C;l%R2?+@%Yin!S1_f~F|F0T2Q9=AzKh?)YT;ar*0!0~4mq7&Z0T$hIb{ZoM z#2}GPzHV;CrSv8&ZU=)XW3<@f;~Q*9f{q)Uqu%^%cNSo<&<3{(^*V9#L3?CE%@kPb zJGvnhf%qr%4Mg==#9|NW6#r1!*?RLhPEa;1pN%RwE32!yca+XzmgI!)csyS z!c|u75!*N$b#|2sR|LlB;!I0&%MM3~=A3LC{WV+1d^Fa1FR#|VmiBgL(r^fF9gbiW zhy4ihdksdPq=Mxj>&zK$jP_bNX*xIbKfsqUKXaz%>4zOdZkXGsvD zyVpsdB(#Pkz1HOEx#pK8D3ow^4#A*>ci8UrCFI1P_5YP%NVj-dp_?J9XGZsim=?2z z-P73)HjBO#zfY~ZSNlz0SL0Fw5&@9#p4TTRE{-ezIPx#1n~0tu_zh_AyYb_hTalZ? ztqs!oN~8HQE-VobHthTr6>)}#i57clgpL|(fS^gK2u&b%fvu#;=+Gf5ye6~AIisW? zj`gL1YiH9ph@Zt>{|6rpDc1P|a07kMeAW6`#F_Yv@<;JB<56p{jaIn<&=)$)?Ps35 zY$q$l(C~3C7{`ERjpre#!A>^9^FaVkUee=&hlhNR z5N;5;tjNe^C9MNjy}YZ5z@WL%?N2ngcZj^aUeW8?q1G|0Q?qf`I#-j6B&>-+nAS{q~TKgS%<3qp^Xj zvn6ko)^-kt_a(V4kuNhdDe#ctrg~QW><+cyhtI0@VvuC+4FBM z0MS4j-Rs%aGK%hQ>kO@O`Bx4Z-~Ro+JqMhc`JdhU^@NL^u1d{p_Kv4u`@IlGQ>*pH zUMZidri*CL+po&7f|C_|?cKVJyXnj4yX&1r*5lf5wa5JSx}1kQp$3HM9L|A5G4GLb z1*V5zLPF1Udqo&w+la@AsA%wNb_GaDN+wXokO3TSW>T)=)b?*_AezLWz}HQ}%tZ7O zDInBVLm3S?B?2vhD?<4$zxy@_S|GWLeNmG`h8|n2!K4cfDmr>#^u%@Uu-68>Gz>{y zH^?kvWMM&Qc{d(MU~K^+X8|i^FG0(pj~$sT-m6|;U7o*a?|2xrlq_p6A%TAoN`lEr z4A?-N_Kzy21h8LElo#L>PI`<%pO7)+6(u!ReC-LG_fU3U3*JFYCXtRdJB?I@D0>KA zyj%-e?u{?ghtHqS>*?zhjNZ%7DO6#3ap+CeBV^XDWXkLQI(U1DQeRX?Fd6bST>7l0 zdf=2wyXA-fw$pa5?Z3?4n>_#Wa$e|!3Zu`P;}(WEhrR0!_(~$u-9!R?6K?C|?7$=2 zZ21f-Dg@8`XD>u7)*HOZ(#Y8iPYl??#RZ4*2~-N=Aubaga{Zq=mF&>f*C!RZeHDI;jgO0JJ@5<{+_()QukY-o)xT+vFJ9Ofb&)rC z_JG?puc>h7>NhLxToPyaPgG(KGbb0t(}(K$Gj3ug60D9Rmzk@CE^YqnY#OG=6~n~a zU%+z9@VnImhIe}I#C#7shUQKe98ScZgq;wQe?k=pxHBSf- zfS!V?s+KezFxU`x6S@(hA;Rk1bZaA?<@`pdv5x;?NPS~h%`X}>kd{4#c8QW8f}mi@ zA(y-&vEgDsgrVw?{yqtxiOGD6Ev0JGbm3klcmlL8U)~FC7Bqyy7j1YuJcitwA{f2V z_xU1PqJ-xJH5HZSy}0mH3}`1#+-cf5yIwjt>>;!xD*F-6kmIv-prt@5E!M!lMk6y; zFJs_fI+1qDPS48R%qR2kBRa3TU%l~`sK^Y7aS2)Qo;?qge1pnZO|6;qpA5Gx>(BS- zCps}oTCy{5)yp>Z4>EqHoa*MK`&_=ltiQBkXH{amfRd7_A$_(n)O~OXmg(6zzuT1; zz>}K)ZJ9*s5>T3nHblo`GUOaGTL@MJT|<;+3`B^4J_&$^8}2?<27vhSUe#VX4WG(H z#B2?~&0BhZ+d?X`A$BEu**@Vg4KG8H+G-7nd{vNF*rtP1C$H45FjGMAwj?$R0?WJ8 zZRGNvu)roYk5^ygwt0mwczVx`RXN>O%Ef-T|C$sST-wyVYKeZkvU_@Et`E=YmEtBs zCjs!+1atQ8@Jdxrp3=ko>8N+04+9OOb5O0a~jY464i?G8e zNyP&cEdbXM9uEu&T4?Ej4alzd%vJHpP(EmVz=Uik)yJ5}kO8hGDc7Q zg1B#vZB-oQ83#XC)1aOQ0TRj91Xv0hmOS&wVumJy6%J#ZrKo9%Vx#p)2&n9v>Z5}& z2Hyh)7fMp32k#D}g*`?SF9;aPe3ONH76wRw{lo`hXO}Z!8~^gqlZXvFrsXGfg znOhNe!wirtxH4VQgBCkHioY75sC8YOFw!;cpH2oP89fXHlJ@95sRpd3tl*J>Aqd=s z@EATdI?^hGlqN9G8+bl&P!#-X^kngt7Wz=~qEqmrge=iJAg~7jUEU5_h3}U0ijEfI z*d!l56f4)(%;gbtoO=^k`%G~ldTacH-*`gZBZm(2UkX1#hh{E#QM#IavpaQZuVzQ} z>G*g|Xy&H5mEPP^l%nLOyv;$Jjh0$J>8XFyb-&{J^=m_-k3;KBB%G531J3fD!RLsZ zQ_{H-Rm1pm$&e^m)4vkG^cd=Ol3a#JYh>$U=(ax?wJnpt*vrhiK?;1?q!pMz zTe2KE5d+FB=yzjYrZH3b5R;;F1I8N4g{-GZ>bVzw-SAP+A+{dxZFMsru&$ z+y;}*@ad}M1deM2Aj9ws)h!b(^?!M)&?A!gJ}5;bN*_R@kH7oK+E5420>6j0xp^wb zCpZT(bkDi;9S!5u+a`3&8>) z52oL|nXLNTeop@HE*Lu`uH$roPK*ja39&ju{IlCTR>K;OBSY_ke4Uu4A=mKN?r;nk z?$DvLRo!_AJp@u5v_Dx3>@vSJzdWF=sPN{*n(tmy3UW=h=AUcM`vGsvwXnx1cq@03x~1cFL5j zp>`>8O(~y>-s=QEGZ=ZwNKeo5?nWhDzk1>`y^7nQ^M~#@EynBK7&ykIr>C#kr%Ff1Tm%bmVKhXI%Y7_g!Q0b1AtPfiMI~-8Dn~IUD zFbR?<#}Qfag_tbS*L!XlqT8eH+*1LJ?7>-lPDl$NnbF4x26^QE^g4XMB0&gQCFwCK-Fk*lY4Atf=#GGR3 z|LY{4YXGoj`ctMk>CSiCzYGlQK)?d#-x?g9*Pm};WevioQEc_zT}L?(CJ!*BEtNxS zIsJU>$x>qBf$^O6uhkc*C5!6H3Ol9re>`RMD87=DcKUKn?pfr?04K>7s*!L0RZU5$ zB9Y0u;o{#jD6qswSL`XocF0lsmc%^84~w4Ss7%EU8c_wm2P5H2RS`FDYPz^cA!s9% zH`61sKcwP(vH=`_Ql}K0Dn+}W-_|m{Z_v{DWV)b+gERPM`|@my%RLm@EXQNSN68eO zTC7+XkrCSKCVhI5fnz9B@B zpm6o)HcWX>0I^iSI$TSad%zs8YU9;$!z6f15Gf92+^3?m(YR4<0ht{SCo3-ASw8A$ z@UCH?+=$re>1Vs91jSCgZ?|RTW8iazyMweMU_QVJ2M-_)rqsZUjEvcpMIn@^Jh@D- zqd4M`^PTu5fgplFXTbLj!p5y)IJxlQ!-GeUMr|tu_y_0sE^mg_JD6M>l3 zkw@OHEb-pAWWwD-*z~sD_{LI5YgF2!wvg9$Zec>~ds*R^NoDQ@A1HOf$w|lt!w`_| zR3oqTBzU{PC1YA@?`=v}lUB7U`nPmwb=I~$3YZpcUV2}1%;5X?sFCXMyBCM3vhIF@ zFum~Q_g#;Xz<@JG;o4dSzYRzG7>x^nc{p5g_!}7-@(Y>Meg#~L{eYozz;9s_uBT3H zasXb5TLiQk$8EZTM_#5QOTxWx?UW&eONDX~P>!GtMk1l+ZvYLs{%(bBFlo)EyZ`OcxWQS*t54eSWV-@$)hSVna8EV)FVX?i!4G^&OFZ9 zf8beJxl7Lj>!5cv6kQT8&XuMKc8fDBuSQQFy)<-cTD<7WXpd)Ca4QoP(=w(cSs^XO z-IpFoY*$#@V|e6}$xfBb`|(xi2P)iYw$Pg!`7(EXLT<01zAA6nNw4+tLXwUT23l{k zAO}+IeV=EZC8Lj`hX}Yrl4wFq7r0l0n_^j9&ipbZ*`SIGyzO>8=&u^6^wxcfdb36W#W zgaZoc`p^>wmuBoh0Hz;Y2eJod<1`xC#C*V^B4d&AN0sx^6} zC5p=2lpNoFz!Ulh)#~64jI$YN^&}q{q{0MA0JcQx!bk)=;goP)^N^MH6C3C{>olF8 z0gwxjmBg*O7b6d}MarWUNE~kR`U|%_5`^*myBj{pP^1g+Is-(OIF9C^C#rGSn~mT> z$Xj5k1SCupkx;;Yo7LV39a%=ti;|<&lv}?3wWe#p{}YsJ>H^G6B+(bs;o!}$F4|ay z1O)}_?Sg$;TVJKNcYNJ&yhChU>rTA4khHX+`NYHD!!t8P9nh&W#`mq=@ctJt!@#X7 z2SEO`?wXjqTrlu<`QTMqRKDVi55@0F1o=)kAEY=ItpE=|mx^zA4t1dJeZ~G%xwH@R z;~^iPbDDn?Remia@2>eGV^!tpX9;6ld>llx3jHQz6Ij`W@+$BI5x9ofy)n{f>h=ai zy>!NA0@Jt_M6o1#0IIeo`qwby=xGCtFncqFcsOV-pr#8UB5k~+XV5u}bBG1cG2jM% z1%)0BsgQVM05plR_8XCuL*yGk1z;oB&N+m(3_@T)^`w_5t$yP`1$Cz9rJ*-AHE*6# z(cNi^7CalJp7D^MQE^_dTw3AEu`n)9N56N=Pb0R?&omheDjjW;?2iUIfHhqwr55Mu z)mMD0gN_#v^zmQ}tPj4~QI6JQ4{|qoi4ET92$<{LVaXM3x=Z_c$)Bga@q3|30ICyA zF{LhUk?0h`SvbBU$`F)}AU5Ip03PLv23PbZvGVe6#2bb~3p(+QdBU=?UAEba8L#&? zMh!HgI|s`WU_&gPwMla4W8&h1u@*DFU4``Zt?v{1X>@KuxlW3tMAN;fNGj{5O$~^n zAhXP=YaIQ2prkGZENmqqD=>Qlx7|auC4|BwDV8L43e);mSv?eY`1`-k{CXh|v3i35 zZdqrhfI;uTuK=PCmA-H0MjD~ZkAkQ|*BmPkH>!a!tD{O&7~nl*bVDRX4pK%0tK@cNDTP9 z0h=Dw&-huz_>#)bG@*oqg}$hmd%K`O)S-$c(xk&q&d2?y-re zY{2TzJrZrI{j&~=BPzBU(m?xTP;Qg@Ga?Zt!kl8g3(n5$-a9#^%|&;gF04oU&~3ahSPFvtb#{^~*dOz*j2_dL zH5uKtA5BB#F*1*;SHx=n-1IfTF00_1XTU_1^3$lYfyIpCo^N}t9ULC&^cn8H?R)(G z*M7+>1*eEn6`vCgE$uMkVuz)3y@POs!I&O|!*BMcua6JuN5zyk0%x z=;BETtyUB#(I(2)k9oe5v96^-a(Q?Og%KST%?!bpDSw`38)@E;o;_`R3ryV(OB*lc zByV#q%)^y|51`tqOi)hFSmElrgV)=wp%vU!(P}A>I;U;@Ifb*E=nS)so60INzh=pF z3}1m~YhrS;2K@6kIq_(%6L+_n>KBwev^C15+jwQDA>v#?!P`G=?a2UbfQcemN0ZA~ zRPEA=R)N#t_V;TizZmn;?v1SLIl9+;p{t4Ko9g?$^wV_ud!xDz(p*do2d3%TxczE1 z;C|$u@ojkgU;_44+h5;55=9B1Q=vSEq=$rsBKJ6y<&gvbeqIHR0c|~2w|h0ofT^RM zb@lY>Z*1CXR{-0#0FG=D0!?lsK(_w{z^lMwWAA$1col2%bB<-av%vQ$(Vpjq{a8`Y zonIJ&T@ao&XPeB`Uzt<=Ou>y2+fPp5(CN(~S)xof;9O?2k z;bY)Ni~2v0%i1g2&c%tLrtXWn-b`aZV zg}GjXY9`g}J->`wprk=k$PHZd>+VT6F)2reI7qoH*jsI|g; zr2ZR!CkvK!SM_&lr7ZxJz!~7sn z>TY^h$p{l?i8_Ng=mjf;!H`h#S^9;Ag)2cU%NqxHjCd-KONPuP&t+P$gI5L zZ13HurtP7p=JR$Z}50s&Z5cObm`lSw~F~0JthfFlbA`)?XjoQZ{z)F z$hfPX5-Kme^Tn(Qg_D7U1-H}L<1=^p4PGk;#d1AnHmHc^P5Tf@!<%L|JGA1sD{O!F z+*$vmwsVeUu9srnv(A!)(zHjCC0=Pzx40MW`E+A^3C_sFu#M<>5quBqbr_O+p-hp| z--t5^&dILL0RQ8iA-H{mO^m!$kD)^)j8|E=WfTlLB=3a;qSjcUSbA;g`lyK&DMAMD z8U|G_@B^VN;_ilcOq>rz9nmUqx9_?B2l5r-t^~nA)<+h6_qaPw^l45U&@=i405Nt) z{-a0n@v7aD?70m#tZSTky8)=G{BcXxyH?Cu^sM8<`^F2CPsJQvTz)%z^!5pa$6Y~7AmoW7`4wu2!HhY+bn?&CJ6>?UMR)narOHw`3FSs?c37T+6;;IFW1 zCt{cA0~rY3m)L6v5(#q$s*Fm@%Ao0aYu$_i7>hJ~4iC*Q;rTATqnKFk@>MB;0X=a~{|6odd;WXR9-r_Q&=SFH?Id2;ULDaJ(Huf3}}l*~G*|FRQCXE!e%x$6b0i?zhI6=5tSqK{}btCuctFJHqQ?pM8J7 zu-ON{Oxh52D;HHmoZ8Ac(6b_eM$x2LR@D2hpNjhts0zU!fMAckd-u1BnuCRybJHux zknma5Y6x9zyRZ+4R%eKE+e|ARY8r0hYzO;5>ZI@6|Au?A4v}BL`_O>HSKy$^K`Yfy z=OPlYIf|dwh*nfYBKu^rM9c5zQa3Ko+8Gu7O)w9v=E|O^szt8~AEO+6*(GW5R@_l2b{qQbbeL81mT2+?_wAWZ@9?#PzAB+>X!B@W$^O>_h+g9^pa9h3Caluo9aHBEoW{;d~CyfIjtNP2nn3egQ= zN&>&+JG&Sz(pg0MI)sVO4s+Zp3gc@t)>qFbMdCRL#5M+IShFR1CH`edMUk@dcWe5B zSOqlaq_#o$Q!esT{8ErFt=(7Q%x;-YtO|kS)31Gthr?$IqPAGH5^Fvx(D13U<)!K8 zaop+64HfK4J-nZriFj22I;lLKRPb;4XAd-xVi0R&*jR3HxQLUUo2$yrY_kDyN(fR8 zZ9BJOS(Cp+!5o3_lkbkWq{WhkUC3qYcjsGw-7j~}88ZBS%=mCqyxr!VqUl;P@yeY- zW15>2zPp6q?LmMBnPEv07i```)$cI!I(HXt@$bfHh@}=WMvTb#s0EZhx(q28qR2J) zS{twZsoS9(<0UyG=RI#nGG(w?vlSd~n=vpjXhaX1_>B#uQ1hXlVXcUO03|j70!2f} ziKc*Duf5z%$XHwEv&!tg@hO@QVq4VtDm1d%FWoh@<+D~5-Eq(1)!~=kP4>rZ_NA!& z2_LO=qEq_$7fC45ubWd_epT1#B4P|l@Gx-+;?IXxCgF8$&~x0VSeT9oe0NpId13qG z#hG-0;g+iNe%*t7vD&Y%dbc5Bt*q~&$eaF}!Q^1drr%yVS zydEFlbIQDvP3Kj~?1$XEmwy-ZoFtBj>yk=Gd`9FG0pUFyF+DTG3{nc`E)jS^vct~D zXE1}Yij1(tXO$OM9Vw*k5mVp)*!&3wv*)8s21x$gFL^(@oq1SMsFYIlABN`TNEzKM{} zvDk2-`w>$2rnA44E@d#16Ny{ji+=&P=JS?_dqHkh9XZk` zeoa3gkfKwEZjwc)?|JoV%UWK{vl^=y&(9dS2+$cl)xC=yl}f|}^IyCf z)=eTfp9T2xc3Bnr7!b`wC?_B!q^U%LM{9YaV9gl9kLc!j$ylQhfC}C!*;{QkF%K)p zynUZ%Un#M^8e;hapctu!hYTmPyniC+YV~hE&Y`L-)&6zc>9+g#AGhxtbS^29OG?uF zt;b2lAaFrlnwHXJ1FNJ|!O6#YQU#_f|2w(c^jE^Nshj$Rul=@VC(Ky4T#wvZDkUcN zN+Kv`LzC=hxuj;HB#HQMDhshJhoGjp zq7J|DJ`&|P5(cd)>Su`J8*wZ)dzSQ|@~rO%90U(b%{O=5LMy%(A3`jYyBE`~Yx5>q z^tyDiI;<$a^j=O9c%t!HRWPjLZ0prU`8m@ozRCaFxGg40!7ZDKN4Ao^K{PLgLLaLN zM;DFv-WT^TK9Nr|Z0DFgPnaOJKjul&cR`z5ABFrT^Ir0)H?JR$Z-2q1@a>X=_tcS; z0!vk^XD7Vr-Q=dWK78siPhIw>^lwf4O+AiC-Hl%!VwfWC8mIyLg&1^zT1kgvFN+9NWH;{DWOJ7I7yyEyaoP(d+p1F(>d%u+5Q%h$WjOie+( zIO+tHxl=G7l3Z>b=nSzlO+0H%ReG7R`Ge`+udS~>yq{P#p3+(~wDzzFoUH3i%|t$a z_y^{0#<1K!5_LK-gNv>-7I zU-@M;a-85unP0n503FDu@Cb4D=#C`gt2SUvS)h=--<8(^bEW_Apd19nt=VZ;#kEIihdw z##d3heN*Tm648#c4!QPrZ__jkUZ&|yTP(=4@pQXLE1zz?%=7x0hldBjA@MM)+qH&J zyi93$CSzn&7_p;dU2IRCU@W!Es;aV8NKK{?x4E%|PFZ`I$>|gKKaKu<{_NQ>kwroD z`0dp#BzPh+k0`H6Efbpmtl=-k+r>Gs0&#LCjss!|!v`1eZ|bZq`e~1E^9O25f_YLE zJw|`nXXTH`orMe!e}(JYZE$kLtpdsm0bJWDi1U@$KTu~VbOUKFO@0*J6S&QZix15W z%Evv~jE#*E!z+BAKkR@`dDd;I@!dVUM4PNRMfbnjHJKfFKKj|IkJWF>#g62xIv(L0 zk(}g84#=Gp!SsP0hGSZ9nxdh8H!d*3t&m8J-~Wl|?WggZ+4Q|2E{z%z0{lTFEoxGs zX*lemKv717NT(~6zET##ekdr4x}9}I@rJs430t?H1Odq;mW!PW#tyfd4P1lxeTiUzh*(J=4*r=)U?+Vs`e>{o zAv)-h23R-$7snRlC0r`X?iYH}trA+p+9>bh?86;KZ;Dy~`yNqfm`S*Yr6u23Ym)7Y za&XnFB^1V|7J_tw>kv zrU$zZaMJej>OE(Ap;MZ$b6u*N#-6e1(eSy^mjdp(ISE_iQhZ>*>2voojA?Y>E9q3q zPv$(Bo?OV(yhr|(oTC(H2*+-Pfc=G{ZE2k^1D1C@P5;L1&ALTq%ED=!WAnopt9Ny# z&-3BR&7GAtlXkkzZSUeW0pX^ENeKK)SAIPG|8s{UfesCIWNF}q ztO?r@5DrEI=};RHR1-I-^1H_t^*yYyQ8|orbM@>7s9c$2KdiyWo2vlU3MHKwD3)&RAyoA%QkCJA3#*h=pnPTfelIJ;PT8)>HRI{`sHO zm;a{)IG6U32)i@mJs-B60xwrsQi+uGJh$L2zy2Rg-_65(tDxDzRYpt}ppy7+ zbL<`G-9#ILgqp;Mb*>J(p%O#*k>Jpqr+2U2liPY{mms(HekoP zTM~Z#@z9q}qcid>^g7P+uxf&{9db%dPFc>0k{!$e%YdJc0nXzknxqWd7o zI1-lA*Fn^)_)@uk8Uit(;go!yWn{Ve<}Ba5rTEEs;}9Hk!fS zYCZe1Yb#CIV|8~AgfLvdynf>1<7G&x{kTrODXkkF%bizaoxvo7GbMa*51so9mqp5K zRvj1KfB(E^C%zxssp!Ld?^Fo#qN;Cw=&xOtwypIk{N1u1x>>lJ(%V$Yts|qkz7ZL0 zbOx6kzyT3vu48Wt&s>#apT?~w+_9`+>ya*b7|hJ$T+)RCcgFuRV~O4vc&=%bV2F00zZl^J7=z#uTz z)v4<0>+f^*OOjq+@8mwyW5|53NgZ*P(0MVf?p>%#8IfSu64?wk8c`{4kO60ZERJgn z0u|w+oYBizP+3`Cw)61>V+%O{#?RXF%UjD_%PS2`v!mLh-FKNv+F+uH80e58LAAEkuBqB)!01{f{%D>$;6Y9rwn}yo& zfT|rJboru5Rr#!!GHsTR6C;od!QH!CD2~j&4zA%3uF0%d@k}q}i7d};8xG10{`nJ< zs}{bGV^qrVrTnVxCh1Y2v#B&^|Mlp8*e=l~Cz2K@!W>X_*1@TdQO`@Bzt-c%^7B=f zm*E0!1rY1u|9o7?^U9ToSGP_DbgTq5z1qh*6!rB)bmPv;(*FHUwsgVz6||P@wv=>n z!iOjKNjDrx3UX3&P{}=dN7s4HQ8nUlP3dmNYx_Ai4&l~?pfU8L6HzYpgrlrFmMvM) zq%h&Xy1RBAx0r*VIBeD2?C+bTP@X`ib1sr#Oj z(SF)_Ux^j}wFIhBB>}ku$6Z6{Lex7~Y@)QIdgI5NwTiy+m-cgVsXEe_Yd>b;X~Gbe z<=$1tzRcehyt2CXQZmyl;IhPUO;-Gg$_#y>Hm!IUwM4U)^~tC$yG3ue@fP~TV45=c zZG{(HJtcZCv&vt8snan~nG@9jK_(I6A4zl*;9*IgF1Ul03;4p}@}s8PJoxUw%zxfp zT|Yvm5}WJ#zkzj0n#&aAiD~k5tuj(O&isnF0ZU5Qz|h8dkw|KsQv!%8pu>BQ>z4Nh zRrxiL`o)kve%1!>s+R6G%z%ZgIXRDwdK05pRnry>s*o~6b8|09k~0;MC;*`Z$KyXG zyF4e@4&4cC7%FGm)}{+udnG;00H*fY(qH}WwO%C|Hx1uu-_1gwiKhd{dec04U*bnu0tkMzI^La)tZ}ii`J2uBWE8aF{7kuy+Md2lp)SKOam>OU= z-|ZPxW5oi-pENF2{uyQ@CGbf7pok+)5s(a@DY0XyT>ifMF%E8+H|BppVT_aeCa&a& zO@fSV09Zo4n8N4v`^V=HIzBH7yjz6ACJk~#Df*x16p#YZWZO9%$BaUo5)BK(6zNBl+x4fp z>t26=9}4(l-Fc8XZ!2gtHw{;U+L2@p#$j&9D5c zJ!!v|v-Ik({qryOdt4g#QK{i1O0w=%uhR(R7Q@vIF)_}u^^YOFmY8jK*A zBu2upB7UBP@ZP+2iyU0Yi^Q`|j$Yg!^~-L=r2c;$ye{S6IK3yXk9Y?<@=^aiqbdLE zvdX&JZYz<$7tR|$yRP;=RYz*`d`8bXg?mvO_Ft9ezH==7&Yi{WCVaGRlDGNjX>xAq zZkG@&W;%7J)yl1w!T#AM@kKqpP0TxP$;w)P68vBCS*LW>ZaP_Sao$dQmaLSZ&6=kC z$x}&U33sJB)s3Fl1Wer7ul8P9{1NqTh7QxHgbkeD%E=20Gv?}vH2=j8s|8eK*=ue; zq)J!#itqq{S{^=pSPfU&ERr+-yDRbAlHwZB0#<9Qe~-_V^j>-OmCPWJ9?T|$#}UIE zIGRQPF9e!Fv=g#B8KM1J2;-(FZpLYR?KFkpLBe@1?n77oXzYv?=$O0w~6 z$M^!iV*wSFe+M-9&(WAaFX&lT0uTmEO#P(h`*;OMvs0%;+z-Ny`Uk&_R-G$q2}zi} zmevMXKwub_V4w9#)I4DOguaVfrZ+3X?MO@FckZ|l-g)77^kH#Z;~iMd5+Cc7(p>l4WF2*I zr?_6xe7wt$K&hlpmwjF%6_Z^*qKw(^g7=3@_e9DkY>NZ zM;{2XtxiB=iC*N^V&2$;Zb>Bqw0m_&)|LY>(yg4#w)1yn-!6Zcwhpi#@p$xRklFnE# zfNn5%(wFoA1H~6$`YGxu#_d{e=|ylRX#L?-&^#OO5ajYTjq$JDRz-|Ku)JZ|y*tFz z);#v_n~=fX-Qr5|N5ISgYRO0e{+Z4o7T6CH+T1D204dcH2G>` zqb6gQ5pP4^UQ^uEtBq{j|$um0osLe|Tdyd?4hTf#PQ!>fzLW0RvHnNf z+`U=&4KFedjg9-I&cyKyd+)BM#<%mzy@(yL|la+w{K>wGo^1#|!gBFNeP7I#vn&5@I9Z6EyWkBpE*tU6n7058!mUwz{@Y93=D|1JjGTpn>B98`%JsdA zO53tcN{%e(LI&rpR7!GgUnvkdbf zfmEMP@;_pY@%j+FO=&Z0P>lLPad4<49cQHIqEqpE@E~UAzBaY;s+HtDVg$?m9JXDUR z^~fmVXNE&RIOqu31+a|rvT*(kgFl$SuNVf>`JW(3RE~)TJ|*=I#bzhVSAF|2(;hOG zF^ek+C*j**0U&>~%WO#Xn(ttup`vnfII^W(;PuQkokNagrcm8GvOKE?4-7l*mp(@BEP7-eHj`scEYDEwp~&3RMEw~S5}26>eS?W>dx1D zDn#*d-Uc+8EvW<`6Gv8*zb$ma9YoVERC#3y~Y z)qb9YKcBNjP22dt;DK)5^(EBDE0i(r;-&BPjxVVnowQ^g@_hSs;uFK8orOkEuSe_u zES=uEpJRrrd-s>VUM1uA%3dm_0Yl~m+P7?y|5^`lWzhs8UO9`;L7$DW7)uL;fZX*h z%~3;@LrZF0JSm5s;ov}+*nT?FvWLcnj@_gSO=bXFPtOqCekN}*9-T9WQiaJ zSsuibFFPAEC$Ro~wL0G-3{%;E3Ii?dCEzsB;0qsHw zq3Xwh(ty^@92%UHg7<5hC!u8>I*218a!}?Kw}eFEL1Y66u+Z~MO15=SeXBX7d8}wd z)j%}94sp*b*)zX{ zc{#QwN}vlf8zvkOH7FM7vwBfPL*1&p4BrT;5=fM`rb2lHjqb=`f>gHHv$M$l0f;XE zAO@a(PO}rx*OG+=6l*}$fNRwYDM(4`6&`)uh}^+L-=2T<+)CbNd<6J$`h2De$O%bc z3WzDZPjNgPPl`hi+`(gLo zyjdrg?EG*kUW!fOPlH|awgHoalb`7%@ArT}GC#MmUGDEl@-3ufLY)ehAm@OdYW{;a zv8tI`OOw(~cB#HvUpk!z8)lXeB%(cW_D9!u0fB<9O!>TsCvw_^!>74peymRQ+}I;; zapgPV-(zBqO`I^ucDjB%%0Mn&lsSm~7`ja~0X)r0Gc1*uLT}D8(0-7gBCJjzqvgjM zaXy}){_tB+p!eKUYbal5|N13jqIbQ9x9i&w`$ZL80~hvf#fD4*nMn8qLZ78DiEXlZ zgqfM(5bzjQ_km6$@_L|?a|p-|FZ?z!@i6@Gl#!qN{_>u-ktMysLQh-@-?U6yA*oxaMgM_)Jm z`P=If6%?)$$dk676_KO*0q+Ej+j*NjYSE?m!oCPGXBD|4*JLPCj0!NLV3#2K&4WF7 z6$XF#Yy>{Zi&@uIq+dg##RN@C@K={c5?hIC zt>%BE@go+ow{Vg&18nc9^gn?7FR`Vx&4*8T^4ItQS-J6B)o3@L9!eVLEgl-6VUFql zq&m7|`WdR5U`5Y+FTN6SF#x|NVCw%%bPHeF?|(;pwV*q$d`s(Zh1d|XHR8l0zE&`b zB&e@>Vcd0-EwAvQ)>YltQstu1$ko#*jZpj-DPOhvZO;Jf(Q*HmP#(-d$HgFP33Fdv z81vR%-@ZMIC%b)WUp~zYt2+~pjaspy{CxhQ%zy8_*S)yo=-w@8`HDK5hKzmnAGjVD zvAxsKGT!7jjPIKP5#TzEn{ZWo^6jlqNOxmxvhpAD4TFS`RoR9S5RaV}gKZBP74P1? zL9Wcp?~m2S<{W(oJ?Lf%f(*8{a%d6TC@B+uR|xU8WqK}(4k~kb>@DG@B!0Au*hHUek|#b zLt~?+?ziCWAS^RZQg_eq<_D+L=eG%N32dGR8`i4lI;(%Q$4Fjd{Ji;7OpS4S92R4p zgZWw1GMtm|Y@o6`*ET-mD&}qEM=j;0@+9kIcN@E>kAwPAMj0_XXXRbD6BMlY!%Gf1@xQ8LC_GSeN@30BOV4~nQd|l^c zjNQA4D)1Z!MJN=7^_HkaPFL(f(_mbMEXv^Pu%`qdLpl0ed55zUa(8 zp*(b=;W|0S=36K;?UX56S@xoQ%riDJ>z7PK>g*DaVR;01=Hg7^mBrF`8DlJtQPOgU z=C5_me`-%Js05QKgrSkLUC2~)H96z56kkeG$F!@0P=wWdy*v{Ikw{nz{z9(u-KmvH zgKLp6BCX;-gAwk7?m*Jtf*2NR0uqvBQTnL@xFa3Ohgk@0X zX7;Fzyl>f4C9&*+!j;YTw0a^Lrfz|h@l!YYs!@guey~X{=O&BjP7inY9IuNG4lJT6 z2l@FU{`Z^alh11`_W}}xo9_SH#DohhsbHIybnucNzF)%j1GvB`hy>AF zcoB)=k;ETQ*Eo#8# zVEP%stlUWC>!_XMroHhODBaC0db_J}cQadc-`v_N8hQe)6k>b5l=(h~DBDJSf2u<+ z9SFu_p{?{_03%C!>Q!vVLb}#s%Q@S(X_D`#|AKHTh*|O+#hlyuSe&7A5lViJA zCF_wIc@A6D^)$Mcni&^@nBAWsBy8`{6E32h0M zJT#q{6Ls4oB5%PvR!m=Ut51dTkr7zvFpdTHrGPgz?njyEMiP?%RYWlgaUlE7MiR|= zRI&bQdO;fF2|hd!uu_nDXZ0tM`u(h2adAw#i#-d&8XE5o!u&>Ig{Ui{^CzViq^Ji0 zLDD@rXw^BAdCAEsxNb;Vr^2;FRz>COU~_@E(jtrK`DA*fysN+V7PpUU;CFv~rQi4B zwNq#nNDjhtOmg9b{xZ-|fs*3dF#s}(`$prtkMHas!*wo`$%s&yTK^mxGbkxAeuFl# zWf?x-Y9$i@(SmNZyg^h%iImut?B=?Y3zG5|b$6ehmB+q<;RJbX$9@*`t&NON*n|&i zAn0LLtxK_V@(r`DSlN{vPbz1$7nvw+HpL!9^rFznAn$xXv~-HuLOhb%;wQBmSeHB4 zt%eS2gHeL+J|;^&>A*|{JGNvEF^*cCf6yguCSsh>sCME>8onS8!x`4}=4#F`9dIIq5h{|PD{HOlh#FjDpg2i)8Y4Dky%bcxZzHWvUl|NS5Z1} zV1whxO0muuMLg~1KL;vAU(yfq3aR8`3=I^e@WQ%oh=GBml92AQCvGE$K}FfX{7m8u zi+z4Mh0u~}OLY<5s~g4G&YGDqf;)-7LIoPf=+KKfAhihh51jZ zJW^t9XKfpf{<>Bm+E^bVU1jO2-1O_3T=*=%op1csQmoz}OiQE_72Y&73}r`2)si@2 z$U>~Ky%Wq6!w3rxkN8E2BZ;l4itGsq34lq8Ul_Zxa&mD+HD1QPPm%`6(+MR3Y(pSr z&pffBBtfp&EOb-Qyw0nd!Ho0OYpUS6E1Z_tU36>J1x{zvnEtrCRlS8f=3q;`(HA}^ z!2`mErO$F)Ud>mE2no@*3qa3~5`)^SIS(%b;ly(M1VOOGm_E9>)hGL0OBqyrI-!Sd zDT&BxUWNn6eplbrFF{$^RDt;=Y&*<1uY3J6-;ZO$2N0MLXKOAQ< zwNh15>V2Y{bRzk0%sGL}l9yfXc6U)OhRut;wk)!CPmFkmI0W!+kfaifXI1(5CNBrb zw$z2*HDry-{r>A$qW^aWryE&WahQ2d_ig~yiDm&}4=0j#!u|kfXi>==SVmO`>&8%0 zgV5~p4{;1T8FY>xkIQ_2C$JnQ@6n{NLjuH);x!b?<%%~Kk|m~l=I#vV+S6|li!2`M zI%2Q8_~n`Ip=W4&Al3o4y@B&mz1Nb0(u3>#ECFpmfUAi=mH$aayQx%Eh}Nj)f=4(v z%$J$vxNu)C_M?j23H+<&+QaO%-{dz9kPA=6KRN=fqd2Y zBLV-f7tI`qpTI0a9Ua$Yg71THLc&Ql!+Lb$&uHaO8!VW8X0uaopIW(`!(}4?NcRt!=`-y2nf8hO0d;| z1_w|N$v?rWsk1GW_I~-vt~|3{{(<}W6+^?07YXH_-_((cS%e!KL+p>tpwUGXQA(@B z!uX-^Ji4Yp5S2j#!NkEK(jI;^LK1XIY_#b##P|Zce*=VuvX&cY?S2Gy5WiaCNz&Fn zcVqR!rI{9wDEFkp$DJG`}~x@muYQUB=NUi z5P$&K+vUIT?J09*yTBhYHHxjl`e-TH$eAT1qg-K@JBU3Nw;b{-HGvxn2IIF+)u_(y zYtwq7b;WkEJNH!U?=m%3T8fnBmxmbnl16!zZOmL!t{SxM_j&lGwIx|gew>zv$~RKd zA!%Erp>+9}R{K*oQMTCEej&8$O`(|~k%x%6*`kAhq1nHL$Hh+5Jm!fuyh#b9_`$Zr zj0c+NxRDru*?|%%xHxLCDr_3e1!aqmgJp{s{$)Yc8oAiQG}{D~A!*PGkq z8St`W!7no;?g)E(O(Zx$7iS$FKFR$nTQvRMwzl=hc+WZgVs#Mt*0z#AMZwkD*{3dE zReiN3sJ3Po71P&C^X{SAcFqU$c7Xf{2kXpbrLmRm?P8V{lZbxl5y~fSZZ62f6*Rsl zACc}3Qya3l zpY4>8#5(gGQKEUrpB&BlDbQ2jU*2vku)DiBi;mnIn~yyl7bD3Qo3d~(pltCie_JiT zgoNRky;lLeYh-3Yr-1&wy_*5c6{+l*5&DN9G|-2mBp8uYFOZD2GOV>yjy+oRdmmjtbD{jYAy4BI_4lmSL{cjET;0oD-XT8OgZHt zxTWalxwz~FpLf7C1??1`Sb~MS*tTYVQJU+bO}Zl5g4G9Q7*rB6tcnc|>;`Oa#?3qx zxFK4V7SyyCw9<05zbUD%7VXR$+Isg3u z80Z3aK-Egb%N|jH!U4K$cqzEcATE$dBl_?Ew(6Ofz#>;BUAR#FBfIJdYW`;b>7M1| zP5YF4_mYgP>;^~>f#uQ?)B;Z&ppY*E(DcAPo`De$B44+H#BLmh9GH)=K9Mp|Aa=8a z_#w%WP-M>*r~ReJHB-AA?tnM2IMN{(QvL6g(N=Emz~(RefZ2Y~bKAqK>fOy(zW?>@ zl~`8-|7eK#?>(y5@s+3Vd{*$`SBA>DK|q#YzU*)Bhv^%7@ht}9fBtxP_x6&89irrL zfgizi{n&u}#kp@?Qqc{(+6Sg`JZ6V9r@sCE{d)xQOITsn?RCA#;s>`gIEsxp2R0T? zjFt3XkWZe|zEOJqw6^vJu$zKupMpDoEYdZ#E<^{*l6AhhIewvU{R5TrEQL)e6Z4jydm4CCaj-V$4Xw%8dcv~PgL|j269EyN5 zz?c$0D@6BDxZw;7zTE<11B~X}uimpekXeigu^vTMq<8{H5Ycs=ypE#~A0C3AvLb7C z&I7TruVH6r*W0MQ@lWrWs|M_(Zk9A#5c1P23YbnLjg)z{W-Qr?{t{Gza*pG1sdTtrAOVrPyVU4plfQ`INH|I)ou#@{kt0%r+ARg{{2DpRfIqR0L3lwYROXbEvZz5%J&>H z9$_kZgXSy}EsEGEYV0w0*wca9BVUvnXPj;76)GeuXcNgOuHokc-pzc2aJ2Lep|>Fb zpvwudXAF(oG9~V(mh@!yW>Fb0+%92apqS)WP~*s7FT5Yaaj@rssF(*UlkXU*w>{Fv zB|-vbdmpjx5*GN>AK`ej&x~QWu!zWgfE1X!)JUJ)vNB$c4<+_-D*r&Bk~}5k$q2x{ zE(LQO!cs;c8NMSJvi@}62^9`6ai6$Uju!CidW-fdxf`|gg%|w zw4aFZ+?c(zaN@N$|5!h!)`|67M`isFeHZWb z>nR$$d>1LXL=}Vxpi`m>KI6#Ol3bgvT5HyLZ(%;6!7R>!905E>P}2tBJcLz;6d+^J zBjIWPE2vPxl7GRW#WB>m{~8=q$_K|0qu zdNE9_!{-GrxZ-E8>oNCpQrw`7Mgg}g*d(ptoV?&)Kh-;~3r9_?llwU&sw`J&(;%T| zTA0u_asJtbo?`k{vF|c@TDo%VYK(Q4IRWIPs!}VKl}H~7cbc9c+t3(T3<&ey3KY=t9t46yW{N+V~FE42&e47 zZF%oj(MD}uQ%ZM}lu$-iQ#b39sO$^8jvrELj=2|>+-Fihc%snhpTn7i9@bG?$Ee#3 zPBu|bKb|sW+`npk*!tB6oAcQ^YDuXALcFG*#ib{Uw%A^1yT^DfzxdlXCq&OT$ta*I zxa$0^k5FEtMvjCDE`gJdfJ)+u#8ImBp3~5lfry1TJFDIYn-K&G=a8s8U+(eaLy>jF zh6$uM?0}0Yx&`(DVypnW4R9Z`AdWxSBM&iTLytjHf?hdTSY(vE^kB)$Q&QaeFraGu z{9%Ec^}Ii-#<`fCEyT_XH2HqmGISNY1IoTQfC}w19kO`Pf4QZJv*LZjv#ka9VLQg+ zO3Jjg55Dl53h-NhQ~w=_62G?cdl`!I6h_h}Xw22`MILryX{5d{XwtH1D{UzQAIP&W<0HZI-E0@$dD}>%2_I zZpH1BJ*d)l+PS0IN6Yb+<3*2RH_HB6*%L`!OP`!H7Ub%dZ0Mh=BqiHIIa41 zr!vo)_HIv>^v?s{N-p5ZYD>=r4?xP>-F?)`+ByT9DWshK2c#&WgNVJMQ@V_loMF5; z0&_%*k8_N?chH+2d7!U(?AR8J8o<10F@KOL>rCZV4Emag>(Q8mjP1W{G6cy2!X=Jd zH00gh`w>JM-yZLi{^nAua$7eAp+|4*M&~g~`HgWds{M^u-!*EwA3AAdIc>YoBeCta z)fI;BrzvkHTGbWB3phpq&vPhO7xikHXzNjk`-;giAU!W> z#}x@$K7*?E04WuZL_3+~&LVYs2l^$Oj~f@da}+bWSx)`qI5J?qN81Z$>8ta1rslj} zSD1*%ne&cSfMU~CYYmeaEXGfH{K>IkMVK6Td{7C7OaRM^?LXo z@pNG+usrdm@qFvbxQva{xBn_PWN@Ty?&JUZW}ZoetNH?C1cpS3AdbcC<)IF<)UiOf zG6U*s3??z_wAZQ9*<&!HPpO(5RW06X?_5Up)yJIf`^1=zo@$US*wR-!6dJ7 zw`1W+$@2~L0fysX97uFKetGBr{`r;pMj2~9nfFQm4A0eXQbZk$_ec85E8srMQ3yIO z*YTUXUVN=-uXsc$@;bl=Y{rlXGRQyGVeQFnQ%ffqchPeBGWj++{cLw8=P+fMv_b0K zgvbVBVhE~{4TsS##6#5d16Uc(96GN4?oAuMU4ROSUq*%%lLnQn8nzl1rBwTh2xWv0 z+MgyGcAp-%8(f>SDtST@beXgA_a+E`P_#IqIenx!PG>f>pHnrYrl<1Km_<#KLRQMR zlBensw*3aQUDsUnyj^4@r}(NO?YQF%RjboCwt4Pvs6HSYrWxh@6HJ@tmZY0s#>bl? z^9u^@RHI^(7#9gy5xw!r3y|5scq~9IfiNX9k73Hw9v%B3%hv|Nip)O@(xmsCKh73% z)IA6V9mc1;?zF9y61u*;wAt z$Zz_!@u5}89LH|0xB zl^!mkwxk@6`e*C?C|0jm(Q6*AOzS)C@CtepI&ZsI5(5X_7O}jj{8w_WzBb2*kLeIy zGi2ce?Hfg^r`h!A`>LD*rRCl{7b3v1__IG8!uK(MJ z15Uqw<~{ICl#^)cG*URf18=9hh1lklX+@0%46T`@;~8Wv14n7 z^+JwuW}I^5?XP#rU3!*j%7;JAh~lLqX=`XJ+<)ir8_(jK+u8)+vw)5tFKu`e{g+!g z=%3)#wZMpt{->^;!@s8bv2*cT&2}zb z?^tOhL=g%4qeoISd*S|pPIDLwY-WW~&1Y=A!#koPBO$Rn)Mt@6R{HFjC32@=M}lG< z)Cdoz4ifhsxlP^@LMxml1i!^YMsQtFDEwe1Fty%5b`uJ^h;>n?0WqFdEUXle6=vsI zJyY6*L~C6`VWo=B&V6r`_+-Mmn4|-8E>JF{^KsQ!9aC3dQ%~tTqE!qZ07gFqCNKe2 z71GT}-BJ*8j7MH>{muN)ldViC>95y?_?0vpAd{BwqBgJW*%J}2jvMyz-t;yG<;qcN zn$_cUIGdGT_zu(y(MkQTEwovN8p|(R&1?owR0O`~{}Fk{s9OvJgMZgl{Jtn1!9~Un zxp~o6M623rkC3SFgFIKXe^1v0P=7Ha2`wrxTGooIc>ff|DNptV2;@P*tUqDyy0N07 z!YWn{J2q0s-@qbzuJ9!Ba^;?_I@4Z`t(vpCVlp#=iDrYK!jXnIKNd&xo)1WK|3)!` zoX;H%KGHkI#X{k2d@Aoa1{zM5Vtf*`WhgHULh*Y*bZw{LO0iBxOC#nGoj%DV+s`5U zrp@kZ6|_Q~ja)oj|2Q4a_vW9*O@Rd=5DzXgEnaJ#=8&OZs-$Lf9OoIEK%Rz9bNJP; z!u|J^Ko5z-7e|m);!s^Nd3Za7A#TFg*3-5}>HP$y@2&0JDLIFelR8iIJ-N$e{r!4U zgt+jsO-Xpp_~JEt54|T;l2@!vUjHzXJ>V#>U9QMT_$XA7(+#WETg#mLY)_xx*J-_aHnVj3lO!dM5fNDomz?yp(wHO}fr3i%~g7Vb@{MHF$2Djic>S90wfN zlAEO1uJ^uucKb&M%RZIMvK1|Y5fd@}7w!}%n;&7gdqstZte~hqOiGsjGvFBCW?9Im zs(Lz=^RRA1A3hS`ZWxQD_CWcifrr^#qW7{`;M9hO+j8fbj+x62ruAK5w9{s`ePeM^5#$}hA;NJ92x1{Ub(wpC z%0rA9vw7Hn)XIaPhM|xbeHmK-gb<`VkeipD3N%D8a5%A(PbrAw6~d!eYkwR`FMawr zN}-3*)v)ixi96MA{4_L#9cYD=Qw*6+dX+*j|B_4zfIIYDa~6_Uy14~EsZCvN+_+Cb zL7sbt&opD<%3Sq*eNCv;khK|%b9V^BJ5s>_IbkTSA2fDv0zC2tis|g|FAsY1ne|Wp zti{gBbio#g6&4Be7p8&le=I_V!KbYJS#opZhH$&}y|nT)z1ch^9jrD=<@fnsaK@b9 z@?<^hj~6|9?^T#((qh93$G^}1_#3_6KqOwDdlAKFVEzt(BB3qV^u2-G>U#-54+kV+RuqsThSJ zgmlfp>LL0&55Z~77f&@Hv2Te&{ZGd&^0ic8J16<0B#Y_Whr;y$)wc9k5*!oOSoV@z zju=LpT=GZ;XseADvMm*kNZy7%I4oW9niCzu_>osUDacGA(~(TG;b}~8 zx*GsrA!>0KwFkU^uZ0<&Bv~H;{QA`4{Vw}Au8%=i;i#q+Xg)qn1l?G4lL19R%n;jd zCdN*p^U;I}mjLYWn5@aa*KkjPl`f!lcNOpXQufx~0H05Fceb-x*TwGD{=`-%Cfex;i{bSJXHwx6&Gm(wq)(mrzi{&%p^<+A~7R2OBIYh zulg%aymq9+kvO0r95z04CJL9Z%Ad*mW&hSz&}X%~u816{1cA$NBYnA$q!1nk*R3F} zh4gj~4(eNP&Ts7zs(8ncD6u!RI%zch!IS8K7QfqMj|zt0w|8&PxtFaIdQU?eUnH%6l5(du zbl;qxjLT$XLvGT{rW9?r4}PZe<=o0kjJ$@&kGr1x8S{Ty0Cw`wVSC3z2YPJ>q?s)K z&^+L)4gs<|2y)$=b>{vD!^rS(|5h7TQwF7Spc)7grp5~g-i`$`U~KAhe(ItpV(s(a>naiH-(3CWn6Zi(D@#H={bK^ zuE=nxx&7;0m_Y$^Y9U-*XA6Sd>DGPh=-^L|fuaHf5@J~1roqXJ0$V!!a{ucM=R{I|G?KP^&JnEGnj8PU?}tJUml)vFHZOTnPLd#iF=@LgnwzE&<-75QULM1vut%9zTwqXgNLvgjjUC3a*&; zD=EgoK|y3RLViKbe^Y>t-?G56gTgS4-R8JtqF*6$gP~@L6e0`j41tA2U1Zx3V5QsQ=NNC?L zz3ZYvZ4~4x>QPaAYQBJ*<>&OzUtJ~%D+x0`Jl$MYk_$=yQWzEE_RbfSu+e@V2t=kFF0+6Z9HZ7r^% z;gT=pHpZ{)TGCHF`}F6QcVp!VwwVX-q&x+#fhtk>vz*eLdNg3&>YLp2O(RMeTuE;Y z21@O?BOJ=++whR%X@F{p!I2RNvU<-uiw9$Jh2MbaR+>7w=>(;#>DQ<{VE}U zBeTe9+TXu^(Z;tL+~3aEvMS~NqT}Y0%X+-KXftEOiAy>YA#dPjpa#}~k5ou;7vdnG zzSS3lLl>=f&9ZXKx@=P@Fo>S^K*^KFCzKFFB;osSWe{fl9SjU(^ww5ZI@MT%m*$)I zkcuf>RaUmP=i#y|LowxMX}OAx%^}*nCtJ(YkEb7hK9SK<7eSf8`RX>+kieI~XZgqR zlWuggU3YMs63?cwoenS5oHrjoc`_7y3;(edA2mFb7!9Ilf^ch*JeZ1x5oY?sSp${64{xw#o1KFohi>Dq-~ z(d-eszF!l6=CiuwT34KgvJoP&-r3Qqh2VqWC1}$&w%QIidA>khaNY1ht5Rqvjc2vQnZbn_in@2$sX#Ru{GE}bnWZZ6mxuF zC_nY4RxO#nW^I1X-W(Rq?!$*lBzvUQ=AAkpvnhqGzG}>pnDlru07*tA)=&~{1y>5a zk4b+~?|KHCd&h;tupN^;Q>3Pc0qWD+79V@+<{tQemKM_fiM73g;uaFa&P{*>$Oiq? zzDt+{u*0+EUzvsxh!9z(rknstr7jMrBxR!0;s*8!?5~ADsm!4}A(6%yt&EM0Z$SP- z8{Lih3ClklCi{5P5HL9FZxvt^01jzGufPVUc;M~Z>_q*D`&RHJO{$B5)ZW4!4tj6nKu02+ZP5M$|BAIvNJi=eJZ)}xJ8Ro`b} z;iWZ7XjIUYGdWsz=R-~VF52$5)*Oj^QQy_RE?QF>q#rD>e_0@>YQmx?aE?DBoV6H_r^`_;QsIc3x7n~+3 zO$HP}XZZo0#*FTe;6bk8X7J+jj{{&|i6|dKD}Hc3MMX|veft;;_4H7xxt?U%Ukb!M zgYKJ@56aStqX7>B4`XV#)0bLeS;m~sGHB_>8rmtvY_TQlvltX$H~rgQ#~`d;MQ92cNFw~WaPOB3y;1KkOs>lx{x_wb** zYoZy(+1)KXf zuB|}XScsSeifZu8E@N+*A;f|yF|3sD#|+-m{S3B<9j-ZN9NP#vGUPe65KaJOCWRCb zF5^$Q;=duOe zPNfIDV{e;`q_>rKZw&n-{p@glkh;kH>&z3)>*mBPJMCZn7(YJcJ1G#gulb*5(aU;dhXlJXeUK~8*XoAdMa16 zzG-p)T=@&`j1C@Vvc2F%H(&Eb6&g7PA^7Ifeh8B3fXZT@yVrc9$XugHS~_Y!V0GC* z0UK8Og9isRB49TohM*7S?hn5m9A6**e&pK7;!iIX$fcPN=~leAyEgy{9fE%$=jQ5( zkVq~O;-g&WX3P0dMq0WZGz}U(N!S~D}?oN z(>%s_(Ki3NA{-!ijx8-s4j;Cd)RFq`mgb2(as{-x@)x4QSxBf}GUs(^Tc5`B>?^`W z#vLX{#I7gajAMAX*)Wj}+UPK|;M+7K3q5>%pJ!Lkc%M7iCb6m0|Slxg<8>Xs+!Ni{QsstAUxXbzz&oLPW zwj?P?R?qGqQN2P5OSS-y3NS^4v0{2pFDNi#N7J7&4$t9*<)`R%#SMNR#5`Fap+O6Q zjBTqKzf$qU&jg-l9es4dpPf#`B6pWcD6!~RZIFhVK#YZOzf!vUVVApyUeLJ26c*{| z=m1a)0j364nEN=O4@kyYR#{nD_g5~WsaAgW-jYhFge22!^~h72Yl)^G=b}4j6<9Zm z%Vd7;HnWXtOIq}gyHPQ7S)yNUray1@-qwlkJkw%^htGb-^>a08S^5nM<^u`SPbo7$HP+Mnx&&mN9pb37~@MpK=D($ z3}Q*;_LwFyT`1uu+F1qru!vF!5~o;>2p`qY{57D=As1MwSDfSP;P9BOdBSbgBG-nc zrta*0qq}>Y&%7}E@F`hmEjmM?>E+aqoEJpcM%1WRduNPKzhjcdrd2b%I^^cwm# z;kM%?xzPjH7EkL6lc(UK8}<>>1Pf84E2gKRB-_*&g-=i#!ifwN2wck!Ou4cA4Ds)K zd+DU@ia!!miQD(m{gMNj%fc4d(_sJ&Tsg~+cTi7 z^lttW*PzVTYc_(dIg2C0i<_b%ovZiO$cmK6vNW9z+!hi$OG&$1@D59v;2pY*!0TFc zx^{c_)^C+O7vO9vQ4}tI>gCM`cCz;eY_9wIR9)-2ayG(;@_TN=7O{^q3$K1GBu^wG z!}qEej%!Y78L0U~h@ytbTu31>4pa*e<5teuK-MLH1`&`5>T78eOZ$P>Zf9#08S!r~4S7yjS znf%AUmT!V+1+1BWU3u&IZZ%-yPgQ4FG0P{xzE(m1E=})GExFwnek<(#oaj2=h$s~B z0|YcINfTp_$Z09g^Bj3i3xSa(MpoeDme)2?Kz;?q2JCAb?|A=up{QAV$Jfb@`^aH9 zpsO3Evjk21`E%zq$_#TuaW5RkgiZh^cp7ln>PZo z%oi9KOlSROQ%$7(B(~{)m!&?ayk+iX>w0PZb!F*qKaXwT{Oka3AlLYr?!rvqhsWp?b)Qm}yHvIKWksQ%=XqGTuElG&(qa^OJ>`w}PflzzKZUwi`d%Ign@O20{0fM_NE<%W z+ucnwI9c4LR)_hL8Afx^s;5}GNE=-Q$DRfF(XwcY!@@$WBod_v@%rplsOp~(YGR$zq!HfdtzopDNvxgoysT)=LZjHRtQWL{W7+i! za&p@4vMVbqn`vTi^PcYw3NZaPWb6hqneN1yD?)0^W2^z|!offUo~7%#g|s86g9xDq zFX&0>qR_Ij*h3T)By?DPRy%;fdFNX>qw@PeugD4uMwjHpcrXE! zB7p=jfI$w>cmldY1d`B)@oqT>N4(IZ9bcPQG{X3t-%6^fNn9`#TeY{<4ca!YHFp2& zupB(Y+bN2ZxhN&BtDU}*v+R8ROxKo(;J{dC%}9w@*0e; z(9%-ie|}sNoJR^A0G5SDMKyrE!Qw}W6&T${Ff6Xe_^F+VjtOEYfNpyTuQI_ZH#XT= z?jN)ge&o%S_+4HpX|#LCZf}RZm^?TY!p8O)hlID?2o>XC(=GP)HfKzk+_~@NPH-Gn zT~9}{9IARUFqo0=|3_<<$--tFTjJ34X z(JwVwFy?GThGQ7_TCz?KkAURGO~r?z82o*X=kEPDzcM&v94i5W3E4h&cA7*XS^^g6 z03_+)rpD5<8+dk|;^bz{qjy$F(0<2`dQK2RW+h8xS5x0L_Wis|-7L?i}%j z@ol21#1W~Q=x!6*e*$?nG;ctnD^OWg;CpT>}t8)E&_>Bj2X2epB+fnFaKQdFdGC-)kRdxbioou>Vepa_; z&pQrEx&o@^wmh-td_arE{>nN1z^fmEpSIM0&JUdI_#GEY7JIMQZ_p1A5tB&Dbu`xS z73mEBS)+fo8wU=-C1GpH^*NYd54-Yk%t0Pa#BJHVm{*RTz6U4=h$%pi{YzKLyNj2f zC>t?f^9c)65nmxOXn~xeh3HF_f@ntT==N0JAYoy+6~IOlO_ETCN4Yt)di9tZ!U*q= zCz}W+e4ZVzCx$enO(Vxrd;OhBM{n|V zWK&CAHp>Cn4ky*o4%%VWeY$JPtOP4Oo4rb_rxj1FI}Q_)uM0QxzKdk@#w6Yl>fLqgS{$1qtqHU!PYoW0-fk zp=v64TJ~hd=ShllUw(2b%CvYb`&I6wZ@1BOzQC4p)Zy&$O!H60-jGBD&-p z+(2XNKpPWpDyEo6UW(WHFw;OtSvZf<4HA?<8ogmUz$J+zpCsOZ{~*u@bT`BnP4FbR z!Jx2-^;=(!Igm72Ar|vIB9o`|;(KOn# zju)NR25v^%7dkt17b;m;!qy9^@8+~N>Z-v#J-5NJ6eWQqAX5^IXQBB*A}>OP?F8dy zTp8q{t~+OEr^8|szF0JpvG*SP8C#PFFN=Q#mJYP{`IzNvDECipY|FZr_Ne@xev}+_ zL$dzYe-qxl;tJcHmY2_-D0*$a^T>q3MPqg&?T_HxQKK4I5ra%%yMI&cTUmE)zq#y$ znCO6Q7b`o?y?FC4AHlS^DtBHG#$ilKX6EX6*NlyGP>4W^NHU|V1w*ecAw0BpkMHuK zK7=C?OdINOgmVW&3(iS(J~|~aQ3H4ckvOk>e_ugx+t-?cMH4x;DKm-lE?Kt#t*ng?+bhCpsI61Xt7lo4R`{|e< z?hy75!F{NpM7wdId*1RG_TgY?@!o|kGIn<$~_Vs z&)8S&?e{<lf2NubuZ6c7s&;LDbB)!VQZ=LPwduX1?NT9m zwNp8}?*6WQeTw7N*j;{x_s}Cy4%+P9e4g`Qu~CQepUFT0k@K zeK0|%SRcVb=bh8G@zU4OrTN^^Pr~brx;7Y|bKf&QHpaJSPuq~q{eRG%9nVpO-E{oS z(%;tkTO0g6Y=ad2lA3bpwDU)yNZrX&x<`rPLMmrI&};T%j#~ z_Q14z`JTgJxA}ySEIiSsv?(VgIY-?)6Qo(0uSq(vk&-#2Md1V{OfhaoSbFAQ+*wCK z8c8AA7y(}tZS_W9z;`4}#AT+mSFieBa`I~;8ba{PCiRGX39`j_dwXZOTtTAm#=-|w zXTg}DkjyDv(D+o`VA@=$W>n3`FK)v?Dg8&tWAwjbhyN51A|kG^$HEdro=j;uRmci) zZP55PWr(l~n60L+HySHp(d>ClIlgz#m%@D+(UZ0fuV0hg0T94TNH3)49>Kv+%&x>` z9NuCP1JIAay+jpdX2yjHE$i45dqMn&Me-j<< zVX;t-3cee77l=0xWd|%5PfD_6{95**(mM(*mAs0P9CX}bd2h^!pwAAT8H%ro<`xj;$yKTQn8W3p`5sYO7 z>`A89L&hk9Q~TcCt`;*CtK(sKm6cq|baV`JH(C*tytT=9a0Y+gOiuJK~Mt7%zjz3dPvF z(*^++LJIL{-<34EG^dKa&)2veUd&xa%3b^*7B@JtUPV{8Sys`qa zgxJf!bDmEOc}nqKmNoTXB{lgrWa})rOgw2eISd6ab0`~_srTt`lVZ%W=hG{&^>>DP zbY!dW#ID0C&Qn@d7Z{QyV>E)MhkKK6~) zE;Mqi%=Z`VVK~fLyb~WEIgU-6=_O~ zeXlPeo9PCP!Ss!+klm9<40&)L3*y4ib~Ly(?f6%3yNBGKXu8n4brt^Y>N}`|IvMFt zju}SJHU~ym>hbXD=X#Yn@Y|_5ezNN52#q_RY%^LsQ9NeT(a6mz8!5q3_`Y`3#^M@} zzsI&ANlt3BvZP-nxjf08IU+w^tkLJyWrwi;jGvI-PT%g#;rxCJD1Io-G+7l4^f#m= zj6!c%(-XO}-24haO}tK=9Zxd)9Yb~w9Qp36rw_uKf&v5MIgR_+|3cub)0mVYx4-vG z0+$!Ue4cxkMdtn;9wv_rtUh284vgF`R#dj%dEecZ{PtwVRtG0TM4Yg};g$*Z@+ zwsZQQKR|gIu)-A~e%+{lM)HtuVR7wF>$T*HFr{Te{liV-)idqcCii||K*BBq<0LZM zEz52ZDFt(wHqq=6Cjs>OBp(tgzSkcg<3$0BT9V!dYVbd6FcDjjaJHo-1^fiWw}}+G z!yC?Znm`{ODxQ2435~%F;ik=ZR*oCJGE&~2OC{OrAvpgtF@C}HX>+4R$)iU*31jg7h);&usaYQ=kw z?6k<&TvJ$1`o=RoVfFUcQo84{dOeLjEW!u9Ymd6yZ=L*AWkK;Jh`E34D7)uS<(UGN z9Qb2mxQBx+E~feDIn2rJ-D`>O3)3-9SOPJ*oSAF~Bo~9IT|lF#Ha*@hgUmgI!jSU_ zl%o7mQ+;-?Ay=;u`B=>m7QSR@n=cQXHz)=@j^i|#g#UnJ_&s@MZk^1Vew@}`em#9m zk|||ue23*D#?ywa_JK2mK@?0@lCsfg4=~l=+SS=9IF&IYV4ae<3MMwJm@aSEm7xdO z*_^^3t~i^0I!Ko`{pd)ZOk-9|W|O&X<)AsWP3Tz;WB3qCwVqG5su;;sX+P(9b%CU6 zW=A$oXqr(TKFe>1@ef&W<$bL57b&+D!@!Nr0@j8cW#F>o8VQ>;%EUSZV<}wGfqneL;-2 z3x@pd7`u_0dNA0%>;bkyZW{WxICe)q?SI6HXDLrZSl8^i;hSdieIvJ@jrpXHTYAXG zE>7EIN)W+?^7v1Cc9q`|W51@xOQHl|$hz_%UbgV07)k@S@Ln2-0|*JlP$LCv?*k-D zdu6hU3LD)NAHT#^&^mJ|V(%lxD?)oxRtCi^GB+l8j$}mSTomZ9w{(Y&&+IR;hdVgL zTI_Qkb-1v2Z;Mgco)T3@1@7BDZXj!P6g@9p3a6R{VzMjD04qujXH=UoOIWDEjvpt` z3z=UzuNU*O356hxzDrtUnFVn(pORlb&b2e=q?qH^0HA1>FUy13cLmZvoVCZSzog+^P51&-Qo>cf~T#RoYU>J7Uich6hTqM&M1To2i zgsvR`)>0I>C9~#|Yp9_jyZ}BaOyX8cZC~6P|2`@xIEZi5qYgDo8~^Tbc&lh7m> zvn_%Bs@I=gkXlGJId-Eh(a{-b3Aj0`^QCGULRnoAtK&xW5e=^X)p53o8ga@1AhF zIB|6|{uoD+V}|_~k|CVRhge2XF9+c#UQuxLw83~KK|_wT>Ymu%?@)?Twy5pAylBxW zEL$LO&`;sUa=wZ;O${omnzGTl57_yTdWrv_vnPA~#uTxoA=v`|MhTA1apv1Ud|Z34 zl%OKIoU*)z>gtj3^!4kQ81P0<9)rfBc#+Clvi+H`#6@6=YD0vK!+xEnxX zhLda+(xi+-G_V;>IS!>G$?orBHjJyUjjFqJ?B@uJU3W^wd)=ME!qU?BH+p1vm>=58;q4dSiF*@%|9c=fNgMVmt_5BJ-n` zms3C-%l%W&%w7dACQ_!|Em8SdJ1j{IM8ogv5n-EW4^sFP{ln` z3~FHJ&R#8fvCa?21RUC?-*aoK`3l@LJEqBd6tAtoqUG;B@*FBE>auAal?Q*FYxhW7 zJa$GqDT!V(Y-W0zRbn^w8;{K9bvNsk<5a~@H+ZJR#tJwF=p^wdp-Q6YI|t%=Ahku` zDRDo5)GzwM`G$d4%}LZjL_}l`r0*f+qRh;7#7K`}n7m-Xdc{sx9DVl{?HcdSxtoHj zxQgXMn<{}ukH`$Fs?G{ma-Le+4jY&8JugNYOGr+)W({#OgwS`p%_KciRO+yJb3gnyoShR4@0e=cwxx{VHQ_4t3*q_RF>%{;_;pi+g|v27tZpslxSC5w&&%Xu zAM9z!y_|JQrP5en8^qsGq(Pq4fGAIg7~90CmlAD!HR@mR zsy{+(bc;MzK1?h$vh6;$tgNhzQMkRgSETCvlQgCmJ)!5<9k?JAcj-6_8)Hv`SX>Qs zu^`cMJouQH*n()~1_Ne}x&8j>e>XWfe$eqbyFqL!{;4jCW)mZy**+=01+LN?Wl6m` zy%`@*oKn`FAMpsxF=C3V~h=A{=$;0W z8$WHlIr7EqX39`N(w!E^;Whaxh~Ok@EL6T3A>N|FYkQPzBR@--rLPAZ+VucDrTqMyKr_WQbImGOetn;3E-Dx8Bfn#@EvxN5IVq=b-aAgpLLwLx@+@DsRJTKadRLkk~$ ziV8cwhf!zuw(lGDobByJ9JspPM=n$D1Vto8Omerp7fPzGgrDWuo_uhKa{!Ohk%=2D+0L)Uw~5*k>>qa#QDL6Z-mO)SJ-ciy3oWbv!REY_tk|I7k(+uw8X^d zDTm{xP!obPWZ{Mgxulm^IloFOX1_PV%xe`ssCBQz@zM7FB5R6q->!YPdTmqPx|`O< z8eA()q`7x$*SPM*8Jnysj)2spd*^Ro zTP|9Ekh%<`Y=_`CNVJ1S&O3!s`qh=He=h{h>6hZAEuPo_KZ=bGs2sBH=p&H3-V*%cU4z7pZD6&814$lU?o2|c2WlDF?^$v;fs+EZh>vxObW+ZYs32V5btqLQZ!%QOf7QeXuf7% z;Z}x_FN4v)tL56X6Q^IozyNv&;4lc-JKt~J&g-b75)%vkR>*~hNb zwE7L2ytDsWN*|=B6S&^ePcg+R+K{c4HhZA=-{%4V4dnKOhC<;3zTUcXlM6A_Di1A7 zWn0F^veLB?Qfoef=Lh)T>OV1Ve;v_P^l;v@E; zZXUF_AIPGQIbf@C7Hvtzg(ivxWB>QyW9wsDa2Ww24c&Xnz+f{dPV3B=oJn9yk!VH1 zJ4(7hK2-Tu9X;ceX5Y)6={Y7Y`PSjq#b*FEl5J!v1e z1Vu10ipv#mu6Kl}k#%6p=g-L%J)t27^3euE&+4i|0m&(dF~Ri`+!dS{K!MX?=;w>* zeomO<&q`}Ii*&u4ZtCv7V#z(;F*22W`#tN8ivHa4<9F5fHTn1aLaw8ng2bf#G4c7P z#gUht&R);Vkez`4;R~RuNA$vGo4m?`9h}-$F`9z->;M@M78Y_9XmLfRGx3N5ql?XT zt?D?N>er^S+_XUmxLvQg`{oNTX7=iyf%MV^(dVNCyu9HJQ*?$V6LVJeKV(j73nmqS zMF_t*3#5$^wH`o-zV(%}qE~+-tYaCN4SC)A~_I*OE1=b zA}McY1FO;(sHO3{(@NbvvqQHEb2bWc!*V&4)v>5!N8Jx{ofu|x74mpI=d#nvQ+Xvt)NKBa`0kB=JCV7u=}JMV zL;)1Z=y&%se2<^TEFW+R%N}JVC1SCKjcQJ2!buaxE_#7!euV|I-jP{vyT~wwDgDYl zS*In1B?snSj89CE6tY>)%7ZOZ5AI!)x}QEim^5RwnY#(yMm6Ev%tV;SVrJ7P0%V%= zX9JR$q$x)=b?+6Ug@aE*g6J+xVpjfMFK1?R=HcenhTmsaMs!Z|GI^>Ct7dq+QU3yk0O+zh%-`BmPFHko*MLWT>RG_tyxf4&FHm!&M-%ADHcg9>!6I zwwbJ4cI3b0#@qN@P~0zJSH}SpR{Y^F%hEeXsj_F4m`$(q!U|=a?Ekf*_WYMD>hp>8 z)9Zqr8>ezvdO9aE}Mp{PJShA=g(Koo&@iq z>OtPi>Z0#Ic^oW&pDBUpz^O@mu~_`^l`sKCd$wA{K|p@kPT|VD zAkNi5nP1lH2D~e-|6BVjaIYaTBSA1U5iArRH$(G=0z;RwU?i>VrX5FbvgmfM$ak~e z%RG=D!1Z#c@i5Oh{A1^D>*0s>cjYQBrv4OaQpJ74d`bR(;$7-TdCvbhRkeMEUof7% z+;p#>QO5N4_XcS+|U6ze>7n(7suHDxMiZEyD-TxA*SLUUrEeiO3K3JV`ld6#4^ zeX;2C3>LQAGKsx;a@+rz9)6uK`oi<30iY((+WStAp4-;DQ~9p<4cm%mW#!vu3%;qM zZffT`irtKiGO;=vbhpLa3rpi_vK7u_RQ!7xD?KbO5>=~iPJLy})C}A}7oIci|Hy(n zEdV@*c1#{G&*L#`<4vTEn1lknmBmxtFuzyT^U!-=wY z>^Ix~_4n==G3WeuV{e>R4*oP4e1Zuq`QS`VV*nrSA>ac8n} zJlAXgzp^4xhzQA6l$nu{84=P#l08dSLb7KnGnvVzp_D|CEhAf$R7j+zOL8nIZ5#>s2gbJ_8xUo+5jbiz)ri~wpp9UZ}U#4A)y6#KfXe; z-$RiLPAH)zZlS1Yio^1WPPyyN#0RaHYF+H4T1RQw*vf)!soN)25m*{6G(ClZ>T`fo zAw7?`{Ym=ApSM$9V{>wNRCHJRu?>@)q{11JRO~Z%o7bhE-sW4PW0PFZ?S65|e>qgi z2s%)Ym5IfEORyf}b5G2u1qZBOEAkS0&*ZuH{d=#m=ooYtB8G(IDhxP)kb~jQ`}>=n zCoI!mbq+$z0*m5qxO z%o*X&RDv(AKKildhay4phT=RV%%gJ7wa;F(cX);chU{-~4lYGLASoU^>yaQLi*txd zjJMw5={st7hk330XF}*#TnT2(<2$~k3Z_CDuL@+ff)~TB(0u&lX==O+nAf7GF_is& z_i;6XWTl{$=D(pAzb;-9PDL{=*X^**p;`#ew@nV8ap|$TX1ETdC0996ai-jsdYhS% zp$XcHsEhLTZj!`192g`ExHNDrpbGjVWcWm?tqZ=xO^z9oVFyeauQ-N}sN~(Wi`dnA z`uoFhhrl{Af?&@E%o|7G*2URQI=d03R6l>t)pZ{O+tH^tzsNkl!sVPl6oWuU+-q># z#-*pbxW&=YgaXpOX@1Cap~G=R_0$s8N)d%RJ-y9UU*lV+4}a}gJ^uob8Y(o6&|#Tz zk>a7Tbx68NjLnZRg(r6lBcnIW8997QT6e@yhq<5z&{a2-XvAi0q;iPnh*I*6&6PT^ zK-42~MNI3JQ&S7WWgxQHSH`5PperbT$OJ7FdKLio5tlX?R38+CNqA1^4|~5mN797F z)Rm|1(65zz!$O^DWmsQ5lQva$L%XY2zXx7C-L`DV1G2Yq}e zbCLvVFX{uwwe3D9A@`rJV_b-4{W`U~rX9VEvFiu^Jl_)iT1nBvd`j-F+->diz9~+{ z%od2`Mqd&Me1I6cZOJ;O$Mq>81cV}MW@1_!z52$8W(5G*iC$QG>^`~~Cp2x+T5R31 zPp^0wI}&-6gl6O!6vcL_{vM$m_W5*;ulN4@jDWe&9r~BvoDyRrxATAS&DyWokFkii zW=E({B}4YS;_UNTm0^!|aR^%Ek-cJpz!2izCT;OMA9|dI^qz=!k>CfkBF@2UD*q;@ zZN(RhCdymW4i@}{6;LM;^EJS1JUoDWFc|P-%LB+m%*5EaB?DLevlSdud3XedI)pG1 z&j`zIRH$x$g4FUz*osLA!QQ=0I7p==8mMBwC{;Rg1t~zHxFM3|#?B{s2&=`72!(hr zCpVB-bh%nSF$3&I2EQFphynZy@pks=a($YM#69M%kUG1BbOp`(dwCuE(D0p+L%i|- zv;c9^+&8B&<~JklfQmvwIKW=-xH7{pJCSIxu3>j>-yYFpsR%s&=q^V6uo}@Z{Y-Un zTHA?Qr^e(#JzLWq-_av}0P7ctXFK%Vczb}+q1X%qPCWv0ZE}Q%g2qBT<}luIOiv@| zi;#Q6a6LBmQ$f0GyIyb|?o!Gt9+XwM&1r%JD0Ob+$4RA768Z3P{RjIQjh!yU2bRxV@Nk`ITCn($DmhCK z;-Pjg57PLW{<00MDkOET^ur%mBledr{c_tPBLjbez>i24-Q=t zL_uyKA3Ruj)Y1@OIZZp2&@C(7bHv(5ZqV^RK*M1UGXE5s0IijiHaZ5qzqitSE8kYZTBC^EiBWqu`X07 z;8fNFDwucNFh$6P2)~$udYVp?0U3!DQkWgRsPN)D}#k;_-*xJ6rd@OqPE) zlcuM^8k&{+M7ZPi&QmR#Do^ZABV3%fxQs^+_QQSAJP&_AqZ4G=>KP-$N*|p(+1MEN zoleM`VSG5zJaJ;&3&HauVq%R%b<)|W?dzbD>EI+(LL+3^jeN>M^ z-pi0{JDpiLkgH?_h9#JiHgDTM_`pbp3?CQcr(V6iXnJqz&DYBp%>Nt@Pp1*sP>hx! z68bk^EMm;wqEd2D`Hk(5Wag zaf1Xd;F5_5)(-eM>p!{Q2b#ojb0268j-X-!Zcmcg1!o#aNpRWBHKK2zuL#3(2rvy* zb~+3kXc2{#!tS8}@NF}4rkkL7l`lTZ@jRq@xW+&P@`E~ksG1oNHSUtCqT=A(|Td#!J^+9M{WiFxhOcS{ce-9$w2C$U&C2XOwZjcQ7d0(|Jg-<@G9HVrtKt<&N4YsA6uF+ zuk(({@L(%n&1D!0Ndy^gCq`~X0U6%q=kOmg=cQbAyi^Tva@4bXTgGOky?%;aHZ(sW z*daE%2QU8YQdwK^?D0h}C`YoGX$aVZU?l^g@>f2o0ut>{-<}QW2W?AmgbKuVA?=e` zlS%0wAUSouy}NcLgg%6h3!n^gwu$l?etDIDi$~2bygrVD?*LF|*ujWAdkbdK3`c9` z*VZ8#$M!(ChzpxwXSO#s-q6^i`KzUM{2vJCEqkcLEfNzF@|tXa6%KHw`qf)NMETFE z{3HL#nDoA?&9a4gnA<^1)MC#z$dC^fzU8BSi}tP&YHx7-ga#^}5*UB)78iNK`z&3r zOVYQ<;NZTXwA&A+seWEEZp=Kl{c)F)T!Qwyw*`YbkAEF|9ZB7EGqjEuYHVV+10#>4 z6VT*Q#-ogPr^aW}b#6NDb^SMtOd>bX-fBTEE-oaY-l@2kD`+WrNmp0|R<$?f=eA@1 zUPnPbra7QAqmU6qlslnR1-|H$BrAZZ5TVFIS`8)Y*sz!@t^WR0@oUJ1AjpUXFh|-W zBCJ_RyvquD7#jck4+EAz6NUQarT39YxJ4k=*v#|UWR1nZ)yY5tL#Devqg#XbT2L_@ z`;hFhPJu;e6d)b4!2-xkh2ZfphhkZh<3PS%l6a_c>c2e6J3hlm!oYIHkKG7!J5dWl zS&hS20zsPC%Hyqbk|J*T%NTO@eKQeG7mHF5&qP)%WF}a|;)BL&nYWzhq<8G{Xdb|x zm2ePj74&Bfh@&BK2q1~qWZv>z^FyLDNfrcr07Khz-ci6SSP{t3LP3*c-kUR~Xgc;& zGT4^EHn?@ljN5_e6Hh<)jy^dxhiv9YlSPnKLOMrm-- zY-mDyaLYO;ENh92cF`pU2~WQG;TXWnMKHOQQKrDSkTC8v*rBpZQa0)~%kjO#4gKcn z`5hplh&;|q5!fXy#qZyrV(mJR{;K*C`8G!ov4-((3;{X#7KMos7x*ho_c@4w!FYqD zM}!eIP%;>SN!Ov$YS@)`=F9lO1*2t$TUm-~y?<&IuY0Ud3#Z-4evKEEwPZ)e5k;b7Fw2G# z^EhlW4q2D?p*Q8ikfn`0mo{Q|)U1M)?3GPC;iPe|9{ZSYS_d>5-y?=ShQ49VHrPkP z{OT`Dy?+=_^Gn7sHA!n>B*D90y6?m*4fXHGj_!*Iy)LtVDCK0NkAd$H*D9Ou*+1tvm@$|MB_86G49Af_YMw$`Ukm;_6`n( zycY%T;OPR&c<3*wSAt-2-!Vy$D_fw<)<6B@HUJ1f2bf&--wSbFypK6>@{(=w$DbC#}J~vR#~t{qDaB*7d($PVq|2r zUR_y^NY+Cb0@=Pv&k=3~%=QWtmeWH|9=<(WvDm9eJx@j~IOgXNQNjg;o!H9r(fsVOT5gy_(7DFZl(^`m0F|&@U!PL&-4bQ6K_Jek8H+lSP((o#Z%TGP$cgKo46S% z^Ui?5j=1l@cj*jn4*xsw^hG%4NeIYB_J3SvB%w|?;H z-LQijnKv7$Xh4%PhV`4XeG2vj3-f!P}e~N0f!`$V4bYJwER{^`9>er<`;^Iw!`13Yk zgU8seD4t41aTlPo)+&w}jxoZM-wG;s$WuvBXn1|AT)(sEUrTl{R6-=(ifnc01G);B zNI_(q4(>SQ8ti%Yg^$BJ6&5EX!UPS6m;=HoibsTN64#wEob{{-p7yHVfKs3N+#UZm zKd3)jwqAQr50K`kJvct1efbwS0t~|?y?DWJ^9s| z9|}hl5!FNXV5g&&drFMY$H-GYD3e}%$pfIWnu+X5BX;>eo2~1=&-*aAxF9P3QGv`4 zwNn3PI*&ftdZo+@IZf7TFj11EZ!90sk8m=|cprwRGHmbP<7Yr4H=tQ{&!t`Xok$nv z9FSArThF$Fi#*?b&UPtG${PBg|C-R3&I8;fP4u`ac6v+K^@NW?6U_IXs`@ENOrqEz z2sJ=Q5^smi8#66hfFnr)R?VN+4@j{ekx$jex8t8f95aWQm;c?c(}r;oxy6V`vjKx_9T0c(rf^V@N+iBO zVo<@sR)=nmjP7Hbo832AeEFE(Rl0Te3DQEiS>Yx0+g=wh#=I6PT-kKrk7k<(AByJEXunuabrm4KP=(@}}M8aRdtZfsz z^V=;|XW@n0ke=tGsFE$s6W07WTD#SR{LPijJQK`Srk~xW)_L-@z}N5S{zG%pK1@%B z6H^})ypQ!V)-}y0DkUfi5*?c89C_lP;tFv-su)eDfv76p_f`9NcIi{3ify5rSl5{> zzs9wFyUW~>&ws2fg|foCP8jw(yIWRA#B_ zJrjeODW67d1AZ&=r`i4HK{Q&@~fxiPiwFDK0)%T@o7+R8m>R<@Kqt zpnSjG-3vZGCQ27XsjZ)w+1) zAqR0Z(8|e)u*WgI;_J76yb}^K44t*lC+Z&b(DTLWn_cL+H<;jS*z@Rmk?>MhGN1KT zfsfzMsLkN01%iA&u9~kfBT{O4^32IdDa@64J29pucSa)R0E9rW*rA(}0nA%o>u`6` ztQQzM?1-lo2W1`R&j^g7+Z;Ldhv6tFKl?Uh2X=6Iw~-+I&4_ItzA$*2jQ0X6FN$B&d_zo6t#EVsjs?GW54eSQmx25iTBIh30Ox`y%bKD zV+I=r+-Slo+r6rECpKY*$A=4+?)jW85D%q7;I9}_Dqq3^J~5~m&ALTMQ~$4s&<6Wz zahikY!e5R@(H#fXLXu2%hqn2fTz*r(=g!SL7VT#m5ID{uJtD zXwG-wV<9XTg60M1akG)F4q-|9jtMLW!icuwCDMi@kwb?Aml+(tNtt83{tlP-B8OZa zI@=o8(`xBt&}~ZeSXK6j`r=$~d$lFE&BgePRUy_oy@cn$F0zHrn)0S*IylTjnOwDc{1kwi3pVs=38z(KI z$#x8?k|b;?FAejr{R*b#skMn!j=(p7C6kTaS5wL9=forf7Y?D< z=<`>)aj?xH zMSSqs>oLzPENj|dZ4$d&pQ@P{s<-Fif2r^f)^Q9Boz?H=W~2?NyWMCgAmf1Wvh+|Kc&bBR>qsTnKfYxf=`hSIF~o;bmV zJD6&VHS;Tn9N8Z!md=aKE8vi8fohXXS5EUw@&~j!%=iqwIRD()+q)i`wQw37qfJ8z ziZ_Pr!Y66oS8w~|`wK{zu6oBH-oA%OZ;ZYO!z@y5N%GR>WQpE6TxxDeliZywcVz?P7Nw;LPwyZhKQu_uSr$1G0*^|4LTqA_Z>M+K|kY^ zTMx9RX6@gs$8A^M~)>Ui`d&o-Rw4Ihtgu zn04YZC)sKQa3UW$x-Up#1_{CNB{R9q= z+c;*!GKqyj%K;#wwk~)bM;4az4p$&22FSkBTrDNvtB&g2cS~lj#BQTyi|HLgd`;J@ zgFEQM-I_TZh|X-d%!`>629!#V|G~PS_)iiQIcQ~a|2k@POn`aI>b7EbJQ9%XjxnfH zrD(XAZ4FUxv(w?Yg zg~^OiFl4$)@}A(LV_x!HVj$K&h83v72&_!A>lp85V%i`L281r72txKU#r}&kGV(e{ z%$xucKpTL;q?wRrIFiYaLyWZydE~r6)8&kB~zcIv$P>UR#qq1)R@AE|P9n&hO`9^#3ze zhyl2se^i3vouYpht|^?JIgl}s!3*SP{pdsePg_}8Eq{J}jT)CmpfZA%C0OQHuUmNG zK?07cjxC?W%05aso`aAaxUb+6G2g?ESca=eiYK}Lu=+@DI4dn`wK1$Na$1$ov&_kc zf`^-1_V;41^A)NKIlh|vOa+k&t-HP;@IkyJ&lP)*8pby(+^5RUK54-?rO^x+6|iULNCA;+n5j>mavYfi4FZS?o_=+-kokK@>boeADf4s+U9jNCx- zpmt!-U;lys$ImjwAnllSBPjl4@0!O@&Ovp3s@>&@S<~Bb1W8~`YkXwaj{Z2lx|g5k zNyraa6LM1#L6`3XbP-b$U$rJ5_@5_58vYm-2;4zIfh1yu>TeVQqKWN{?UfcLXZXp1 z3lf!xk%;ZchUlcNY}IE4A1!1%@s681PqMJpj<0(ZWn=DOjt2xymD2a#qGNjm!5U;TU-xg> zL3{?(lNcUBNM7DNc8Fbf!S0=*p|&vM{N>~ZyS@MJ+S{9|qdM{v5iTT;7q2V4=FBCx zEj)37VDd)QUGm=!H;SSr4Wd#7fkH#=k%6Ey_JgXzRvpq;ome#;Ut6ut3Hq>2v;&{ zvs(T7mqHypkOzi@zMu_WZ+k7i*$Ws@?!|q;tl@QbJYbyX6YIa&z!e)Z=R_!lhVFx} zij>Lx&oqGlEL*(mQeoZt5N1SBV*IH;@(Ovgm}5vt$X#dwEWa>63bNdoxxh=*5O%x{ zrwpGOK3yYUFg|u{La5{9-@RLp*}SdTNkzscsfzZo$%$5_4Ez~j%_4ROxT;I{_6@J& zu?)+;pkDm1>TQGY$x!}zj1yx~kf)8WN7Ep&aruj=4d<5KW`Lb{Gh7FuLNlt{xgMPXc3E`!W&A_%3N3->$enqMyc&}(>?og%O{`Rw) zFU#14cmBa=JQ~C-st30Uqv*SbE2(UU2UlO4xm=G{Jz}dY+hN(E)#RMD@f1tg&!h_1 z_NnqA!JFnGsNv)W{p#@sLZ)0;Gq6q9OLGDq#z1FfmOv-@PF>URLe8s8`e8R)(+83S zgd-vaPTA=@7N2tV9_v#h4G9^;=?4?aT6&1CN7&T~g>r46| zL+%J-+i|EuMuUenW{(Au3_*_aA04S(`>8Pt!=bJqD#)U36VO|e|AuSZw#}=l<=hBu zj2~4h*YeHeTD9uU-FO+*&QPsH&B<&P!v2jP!FJmC%C!?0&5mVi*%=sgI{B4w3JUVo zQ%0o4nBTnW;{Wk+r{aIGGor$E?#?UtzunAu-{Io)P&kM?kE3icT1Ixty6qY_8iLOJ z%ol#+JNst6!>fs9X(c7GD@+sXHVfHM=|p|Ohl%2yXzC9{A)`A1EhjoN^eLdQO=G;+qjfKo0F+Y7q7V2os=%~BJ2iID=TUG-(Sb2T9 z8|T3%eljw^lZ;=5A)uejA5{3iHIqvVbNkwNpIb>DKV4qcnozah;*-4luehWz8v3N^ zkOSFH!QPxh>XnN6*?k848_ITw=i3b#6iVmUQsj4s?+#A(7KsagXumVAqfwV@Hb(5c znV8&K{H^W12{fA5%Zyc* z!}RHC(QT$90AGQ4V*0V<*d}X??l&ov6cp$%p}c)-T3HN{8A)B&Qz^IinVe9Yp&c3#tl3`;IR9)`8kbg(a)?ZjXVu2iFpwwG>rMV@_ zR?`@%G=D|^N!!Zq)qZVlbv)7VinmzeS)m*K4mKgx$ZytVB*uDs}ZS*4n_{rQgX1)DEhhSXbMp$$zHet%f2-;;Xgoc8{pL$|5sKuv}_R*69b`R69{tK!*dRZ zVnac@C>?do;b%ks-IrEnL*4b|vF{7~&T#&Gu`qwfI;!TqmkpeGo@&>LJa0--KcN2Y z@b#-#DT2P}J8OF3#e#q!q3EG}6)>Ig%S0AO#G%Hluti(qg~x9PyIjRc$i}<{mT1k9 zc^|je$4}Bd3G4F4RQ`j5APVbzg?zB}Fo426%eFr+X{tU}*9d*)w@b^o3*2e4?C{Bc z@LxDAwr3B7jE2wFr_HwP;h8>O%zy8&RvCI+7&48R`4FCO$zSAt3>_E#_QYTuF7d;*#=GQr4UIJ@vkL5k92)5oz!`;^H$f^FiOiDWJXW zY*|2Jgx7^|^-c}IJ7nv0lNYn79?H3LG*KYL_|kQQtsoMiD2vk0HF;zkU0V};fCPeB z%eFKci0`8H?)3~FTH#aBoaD%n7g!9~^q5EKmV&-2K+ zHteHV%oy3w>(`z5F3DzWRQCn%{fP~teaUfj3bVqhCoheB{Ti{>IhlQKyKkIl{QPWd z*Lc@AE3SX5W;?Fx4nYq=0ZAwAV-S>Qj_t8l{;m<0bl<7`k4&3hnD&CQ&t93Oc#+++ zI|BE@zyO-T_*z=w!165i0+cjppjr-yNWNC*H@o!o@U8JC7PMJ^58l|+hQ8jfukS+J zb_E(#JPq5t^e#MV;mav1(ivdLqGqCe-0dfo+K3$--uC?WY5GE1M)IumRt*uGz^eOT zOLG6xy%TbgmdhAIP)63^p!(O;_d0nqKR<^pG(O(S&s^K>gCw5pqrIYYMq`Cf#2R8%4l zmCVBHG8vA*2wf^By=L7XHpSbE6XO?J?VOeqArg<;WC==3#Z7=Y-k~Gx859XJj;dc{ z9MV3{vj02Ax8P^^s4rJ|LYMY-(NmseB>eyGy!e82MdRKw_nXSkscw056O=}m|AaI% zt?1o`zejOY!1#HHVK4Tq&S4@>k#!kp`S)*V@I?gNecNz9;LK~ryqm}3F*B^NW#x>y zdE=Wm+lX-u$}?k{X^bwbqdQjBXjDa}a}SGw*80p~FZtlenXl;s2=+U!BYXfN5$rB3 zSC~#c#z#!DpHH98WEg$4!A5C-mH$qSk(ye1;FsTp%L%VkTQvI3S~&ARFBH-|nwfx9 z(5ma!e?2c(!RNR6=1201|F2@|cHG}S{o^}lGb_UivNv0OUT(}*^?oT5o;S!Jc^M@t zVIc(ydG^mzfuR8U*nCYpTv1&`wYoL>mCM&t=rPh+)m2weRu&I4v|qk=#dqXev8#|Y z=hP@=-wgjyUAXBCpi(PNgXimBy?S-Ky!=GiLoENJOFvmHzv@%{z%~=j1*~$(V#%z+AdV|%UR;DUBS2Bo4bh53Td-`68 zcIPR8c5VpL-LND1TM-)Pu#=^vrPTv#hkkQKE#VFpu1^RJ zl?r}_iWD^+QoW6ry~XqI*ON6@P%AifnPnQgcu4P;R_hN75MGJ4=!^-soq_VYQxxwE z%|#{(lS&UkXo@z`Zd&pLcMgof4Nsp_E=E^VVJ;D?{fX2YH*)<*DH1KN^kP`N%AqON zswd#_;N9f-(v;KLp^DCq4vt$Wy+{m6H8!Jo=(}L={&Pg8#Cu@WY&$2X;sc&L7J>dW z`drZ_-HVVipBy+R#+E2+U0x-#v8d2k6tYkfXy4DO;{v^L-S6KOw=WL2NTExyi50&nN*;$J(n`R|Td%{{66I1eI#m%DAx4zn_DG z%T|19A9j8ce0>nxWn*7DOMUN2*hl(`9o@>h`xNePaF;fPBEkMVYbr z3Z31O1%0a32$Q_BgRzZSMCs!J=C$Xre)67XXN(kl!2@6#lYVEwk5tnjm!YT|>glLe z)W%6h-Fe6S+tyOS<~uhc_n#_wCMCSsAuuwjx~8D=t2CCwY&)YKH+K%^*>>oSH;>fY zJ-W+s;QcPShN&InN!d*aPx9ilFp z&Hn%&b(OsVJI+8tMH^eWUrVF@Q>h(Q5`R-W?3RJ_SqBg4$MoYroeJ}q{zC9iY@j5g z$w~G|Pp#N_vV)NyWBpOgeN;QjJ$2H%ohe{0NLcd2qY|$pK+@YwDY&_~8n>P_4~F2E z&P>Z%iL!Kp8$!1eC4aF9*FSynQ=AltQ3OGPwUJ_OvCohcji{pw)+q5Qeeh+4kk?S7R*`0yvpap0OvTqKo5b z<*jHLPn}4YSUL_S3dR}7EVt%p(64HzOd6LK7cCKmv(owa@nfL#yOug2Pus@8*?4>T z@|zCHOKXo<@;@J!2@jjC#vy|^2-3d*M;6fqNJ9H}T1aTOeWlc{O%O_qpcoA@eoYAY zTQkz9|IpSywM_ix;Cy0uD|TeHAqnIP=*qzQ4eZ zi5lusNmbRo(S|UfSzMZyb*lU}t3eNEenRoe@w+E<88G)Xp=D$aaI&?x_X(pKq6#GL zC`g4d%gjH{`ls*HVV;hQp?9Zcf*&vhQlUdcg8@Ghvk0CSF_tVjIORpJu0?%)YRU-} z@}nblp$S2K{viiKy|4BBYHPJ+1|A%j${@7s&x+N2t(7|WB-(9=VPhBlc#ZR*;(hJh zQy=`|t~(T;FzRt&U)#@ltqG{81Eta%L1OFdFwr*=$7xVZ!S#<_`!5 z9!%GJxUIV>%yWM4bk|*v?(P>?i_@R-)I^R8z7IOBRZ?(nSAfy5f<=`D$ztv^G zPk2L??u-NVX?=ywR7O84RY^`0F`y+4IC0LzqYB2y&M|)bJ9VP!`_;i|$?255 zcQz{)X^-2MMy%8iX@aXmFNIyV9xbD?NuzTtD`kl<xaq$WdwHJcpSNFId!yKc1jVuK!u97`A=~ zI(-P?CJ5T{r5F8Y&|JjMyouYGp+Q<56;P} zxykc;Y-ymD;#7!!_l29Gr6iJppvpU)h1!)QI?B=Y%!_C5-yS3}Uf&$!%>A^*cTh1^ z(`IexB;s_x=Xm7NH#IXl>M~io$lgOej>i_y`tt7B@2%hXxAMGA={AHK zfHDvf;xyY5>Qa)Q-(<B4;Ev1^H#jLoLq0%Gv1|ndI z_*I4hkbs%M2Kf*4+d^TGe8Cb%|?S=kLTj zK9%#_9te6zT~rAc`s+N(yC!eYG|0GVCZ+NG>R-=96FL^4*?!W3C6kpd?;*6)BB}Fz z_R;sZl~)%lv}`&kb2wL3-_lF4l`7HnCuHLYTZhqSv>?Zeu7>Nbl8`%80rhrKP1X@= zbd1`N*lfs()xA6TZR_?LU=2>(-86^!x8dgpqYVFc1Gp4?hyuEHmRDbXs<+Dt=Z!A| zs4{xg-AXc=gz@$mo9W{P4vm#fWS#D;-&E^RuNisYxlsjG zg_>Hh4y*h0kLPK$Nhwh{KNPlo_udah`p1|2pB{gn5U_68DO7Hz(zYAnH#o{j78w*- zbBrDLU1n+kLmgf8_nz>6!5A^*;eo7yMtWP{P*56HHaknFhYW9#Gs3AmZ9T400$PC{Bbl#nAKAE0?~cC+qf zz3QWM9W}T7Hx7-$XOLvY$tHvRnqK z;_lsJ<<;1}?@L(nrC$w<&4?%8CeR+moA~XH4T~DxD%Yt(zc)JVmF~M#vE&l52O&pc zSj#Rh*1hrxc&yr{<&2^yx_hVb_dN&gq*Aa)!g~6uvvX{?((_Rb$^@)P`3c-o1ZrbV z7<{=?G{>S#bxjFBK2S(_-F7XkXHuG@pcpX>{FB)D4f+$&XZT1rM{72I*@=<#*Fjv- zJ0&kcmEuSBGuDChV zs=HrGYG}V1t(*}3c$WB{Jw(C>jSQL1A`eS?)K@(l>)xt{FCK+VcH1Jv`Gjt8bs`g! zSOVQ9UUB%I;kk-u7BdNmD7c><){bDN!X!@MMZWl2v|3!LtW<#7y#dc2jJkm3;~TI4 zaUb`b(>}_7EwS_2YyDevv!h_!5l4uRP(V~j^S&(AlVj^UL~5ON4T_j>QMIEw4mlDC`k?_&)Zpc7(Z%oOolaMI01 zs|q1CF`*a~_66yuU3giRIf@Wg=$ffGbGYr(k9;^I9n!|eF8BAKZ%1cm4jw&+&WtSz zykB>IJ&Dg3;x@=owK6d$ycs$C%}t)FTJCSze*xT3bBWTGbxmqOeS_;1QLaw6jYu}l zIi5)RTLFKZd}|OFVTIjBM=0@kf1!$C)@39NHCjXLCIfc1W-Y)U+{4y7s~5;%4#5aM z#gk_&+VgUpmyXHqzOX5@90LO<+|LpnBk!nLOcJFsKnKFM(fsH?YDoNCWa!6-yi4`q z_7`{`@vjrk*^3_LSnE=x#pJrg@Z?yjw>6*==frQX)*NT58}uXrMg8b@J_!}i`jl@W z-+HPBL=~j>?~ehUO?fj$B-UHDuZbn=>8-DJ$iC&`QHLKJx~fT#MU2QnLSWAFSr4t& z$1A+8%+;L;zLEfL3vD&1aD4*<&TjA6my|%wX?c4@bMEf&UUNFgb?$!4q(++>K=?}< zYL}XIo0X+!{k^@}*v;M6k(q!f7d1zKo0C+hhQ0cWDVm7U0y0lLfe2$T7E{bLfb0^1 z%3B8VJG@wVroIe!J#dOj>ka1O!7PM zO95|8+C#t9prEiY-y{`b2-r$Q_~U+E`1ReCh!wE;MNk!6*Z*yGP{61xlKI{hvh1*X z{FhbIBAd(1sIqdkf0&FXsLwrsg!DT~4>|N^ z7p|5u&~MQzH}sk77S6PuVfD)|l&dVRGT3wW@`Elp(N>M{D8{>{3)0rNg(I7*6rRk< z%f;N9=+6)p=ZC=;y4}5Wavx)o&z|i{O|(26_NBb)*5brZ$3eka7KYGf1#b%+f5ZF)+_C;JBm+5~bj8l5^{E%=8-J0X0B zo$(I-AL8CwDo4Tv&T_Kl-HQoaz8NUV+htA}t+}2AR}#aki5LM0O@>C38h~FT+oo=K zmgLKMrKKX3^>Hlc~1T0__? zq?&E?h5rJb&NYd^rpxX2>i16Ey}eR(5%1CF1|V2RYfYEB1ySx_~fh76k52M8@sJ+Jig8Q;A)0sX&v&RU}i=0 z6E9C}j4>mN@h1Azt(#;ruNNsSF$bQ!_!NwYmcxzmfuYfZ86Llb{cAb5_Q}QHH+xL+ zgpn<+=rGk)|2iZi>|~2+4dasixUJi#kK<}_S`FC3QOCJv4`~NGyJ-GRk*fHHF;b=xP=hZ{v9bk_hkFmUYMf>=aJaC1x)yN&pN+kz416p@452!`QboYl=j0!cp7P zpflb*SKaDs8Q!jW^V~-9jdkI7J`1L3CK%di*DQ8TiSAWqZKCd?Em2_qW8o6$@?LR} z?jA>~jOT;Jo$A{)g}&+U`Mn(0oyz;QUhAaM3gffS2O1-5+DG%D-6}q-aHF~W*&dIS z6)40Z@}@s|ZT6s-`HrCRXU-0c)sk=dB>$dUd$N~jXwhHrVhZhjgCC}&axyYHF;`i9 zpM{smDKOn3Niz{&vD9Cg*rt_fO2MrfU_O9Qk0OEV6IOg+|7Qc1o_o|(ETym#`xSG4 zPEV0eoRQL>w%rd{1BNhQ?g}MIJcPj@W@3ou@GI8D?*VRBhgl*{Ux?Zlxi#@tR36)4 z?$77m5!3Y0s(}Xk3Ngl`dOO0QGT@&d$A*-Yl+Ep>n7B;;E`FH^=xe6YY->rK@O!Nh z<@X4IRhuyS0|yjATh;Y#?>?Iy%joJuANyEwc$dO$8}GA+uw?;SA?j#%6Fx2V9k0Y1 zMIPrVytC&%mh-XfDk2)SNI=3#zb_GonAS2i3~)a%9NQxMNv8UQ@5tLRFGZ4hbu~6N zhB7*pZQhFc(7)aSb}%0xX^M)9HrJiY(MM+pjb18+^C1QWXEVE8Wb@%d<7Qjdp zZ|d8wfR>ntw0%VH%pYbn$`A!9N$?<*L;+})(bE^KiKQ&Vx{PD+Aaa24?{Av?jg{Q( z1#|$|-3VTewA<_mL1wyRCr@toc}}J6$aR2|I>z?g;}&y1wipi0r@pHXJ?lB5mV6EG z{(73aFZ-}cR2hp%&fSCpOJ(3}zkfamyoM_uwBDhr5mPm{uy8?&(rUre5np8~$eJq| zG--+f5c?Z6L3URzL33DDZkhp-oBxhqCd)(XknJ0&#;f?vTy8mDl;=t~%aYgaC`Mso zYU)JCPQ&${erHv2Xy(k6=fXm@Pn2})*dpuaO(KSxR8em)LbGF%0TJN{Nn_dlpeh78 zJ}`9aDwVz8*<(cW$yQ2K++Y2TW&zTJU~P&dV~uH+e=8K22oR0B3%qh%Jb; z_5yt2Yd;`)`ol)%m%8#3OShBa16nwzZJHV{bvPe9#pT4B5GThj5NIeIGR#n=@{h~3 z+R2qK@sy|g?e|h;M;Q|(IxdaRo`$2IId1v%Tkr0Wxo6Y2r*|x0Ugk)v&=1(wlv{aQ z)}uthiqmS0b7U??<+vlz4Eztn66X3Ewki zf?UGaE?hWgKwuvpv0)@>rqkx>8I`G~9U&PC<8wr=SievGq8A$kFH;YV^ z;zTS*Bc>;$4+tOq(I4LbEgvyHgxqbimcKZYAyAmt{AIoR4kaa{qK$=4d(vD=EN;i4A5;+Cr z7hHFFlxIL`c0thp?Bu-XwD*>fWxn>o{|#Cy+2DO`To=Nep(LCi zY^;4XoONtK{PMYo+EFg=9LSfAfDMw&Wn%n;?q%m_p1`(GuK*h6U#fLD5RmiQS&R5| zl0Z}=K%7}6C(eH&ec!oy0RNxLB*|wy!7^c)Qut&orG)A%hXTI88IUDEgWVu^QuhX$V;*3edd(P5caeC$Z9rPK&*Gp&>6YaMe)(v49 z{*Fr@%me6V$dwKT1iV-mp2NnbdT^tvv|C?E$^YWiTn0IG zcO`{NMr*1UeD7f1thuY~dYWsXw7kb{Ezd|_%PrC4**Q#?&T+Jc1iP&rJmDYC4Q z6nFH)pNBgj5v|UTx>#3SmH70@&fq-gT1Zw9qyR9@?!M*!Ll*@t z`cw(Nfe=l&lk}?Y&zKfL03c6+?&}&*l3H|kpxg34AsGU*2tne5K-u}}^MTuuF+(11 zs?Uh7F!yK`teAcAH!lHl2BbY?@rIK7@R8j{yvug=Pai+-dw3mbE+$VNy#ZvoS@R@& zK0fQMJOaKBnv_093kq>eZR3$G%tuZ#9yf|j$Yf)S)s&~9r6p>nFE+5Ifb|>8jFQ~w zH|?r*g(gzuEziIs-aJ*(;T}=GpM|}Iy4s;=Z&8fbYT}3HtJDC-ksSy#*3CC{dk`Jl zasQy_%kVBapim@)2X+iGHfbY99XTkhm|aq$R?j=udempm>INt=IU8*1W4lorGOw0( zd1!CuVC~oi;Fq{{|Eo3AQXOReimwiE#w7*3?m5Vv~jmA8oZ#IlZ*;yREQ9} zsxZ>_&jao8N48ady1pL16LCt{N5X(8A^&Lz4Js@Ki9$^tHUMq zUI>3s=u09P(`H<^Sm6o*I*h*(^wCVinPCk@tbTmorHs3Vj}9lMv6m32^zjfKY+;lN*!dM_s@+-QG-H6x6FvBvMGGj^C9#D=Yx zRuF)(NQ@blJYLF`7yc5gIf6_P7JZN%5FWalu%l^am@bq~A-xtR>}W*ZQOmveVj*@$ z-y#Obv+dHA{g1fJjCDOTygW{TiOwm#r&FQe6EvTtSUMUqMmfM@#mOOaa@uSu-v7iN zBUjCwJWZ2jZW;P|jr6X#EWLl~ZHC>7#u|T=7&?lg2Hg40I(8+tZcp^K*c~c48_Z+e z-73)2=_s>n^@}E-tY2GDr>+W5Nm_f`C<9+q|I3x4M{4*34!M-Av$HOtjDSTO7Mr-& z7hcn3?}KWQTarkR)7!1ckzzS7gpY8%_)HgojrBothG__}zBYkI$EQ^Dzg zmRLT&m-P`|!SHV4yx-81*~VnPWOgFP9l!gj0~9>2=Iu!*a;Al1ZsO<9kTY2KEwA?M z;lho^r_Ga-lD6qHM6q6u8>zYVeIRnj7CXhtFP_n~{%BssILynZS@cTe)tLppM{QvT za!+GJ%VC*X`b&Mf*ZkmN(cbbWTtmIdSM#3CJ%@S`;Sh(8v0+;P=hibke3k5~eE$D1 zPFuRWA7Or|$rt?d+hDumUUBgo)$Jkg@V3Bl&gK@Haq#}ec26)> zL>^oUawN_Ury&C3(SGd_MD zEQJl{_49C<@xEsLKCvp>7rgk4uPf7`%=@M_!)G4euZ4o{uOc`(cMdj4XY3ginZpWA zgf+zXZen6mi>R~@ zEhxx9n@J5H4G@aq7J4$Ca&#sxJg9M_>xqEPbRYe4A5yo5n&zJQe>A-ZIM@CDKQ57q z>>aX4MrKB`G9wC=9g^9w8nk4O?8wemcSeasBr+TJs7M(ZDat6C|Hte6{@-(*>pIuf zx$n~F^M1cx&*x)i6cmd{MOJzrlC?PZ_+9vr42_-Df#ggr392tbFZM-@Mq%7DQjF|l zTykRsvWLIYK4fT^v?d`eV)kY-x{hvrUe`qPBtQQ7bryC-1UDmGc$S%K}K=qUzOaFXv&7} z4an%#m)P9P@=9MUYly1eJ-tqEGIo@2$=|Q1e*2O5`ZM(v)1C{@=stc;$3?y6-$B|; z1zBX*1Min;i?ms0?CH#}mH!y{=8;bUtKIKE7%xJ$w*lVRj6<|L=18>KJ)42;92XH35b350kwz&0B?=l<9<`GUnv{Tj(RAdyaCpy$+=Un-Du z-W#y<i2D-*V1m!HZAPZkW)Y0pky5y4`tg%S7`$xCR~!ut%Nj#^q={-np9h zn0CgP|Lpkfu-E{VpMS0ZW!*yktp58;_FUJTd{b}3@5A{MIFhXx806DuF0YC2TCS4Y zqdE18rNPN$c!lcWe5b-B#eRrNo{|HExJ&4wlIosyFTjZKydD0qh_Enf`0ex;&f~1X zQ~$wVttdgHg9J|jGqZMsP5|Cy6rCxP_!bDMI=Efw(zCPmjvnP8Sqtze60b8d1QzF6 z_3&-nhPaCuaL8|Z;T!-c5D4{6{TaXFLXrsTi6==Gw}8#?)Gt(gW6u?2-MVFM5`V0f ztK4?9lrmHvwzINwpY>)=L3*})RYL%SwYcw}O6ga-_t5yhwAVTyHm=}C`|hQg@Qz3M z`OQIDOX}P^c5u{cm7RJ{sozf%#rG*V?yA{FrZ#T-DfyhthQ~^QrdtJ1<>GuPN~w_M zTD`|tktiQufBvUJ>Dz+L9r+QAuN|BpA37r{t@dhrK8@f?l{4l#h~k+xQ|aDJEaMkt zR=*9?DN}rVScP^WKn=@-+gXbiZ^%8dAd$O`9vZKaG(1CQ!TZvp@)Zr zFi1O7bP(2_-z!cIa{y6J;Iqg_IuSJ~KUtTgR+c-K19lo^txAnt;sA=ZxfsIE>Evs3>-xR#7fAngfI!_f2v2dy| zlt5C5?o%HK=&nlJ-CCf;akE3}kfZdS++KA-VV;aFVLHv{`_85FTyVUXPqpbsNUCgK zB-QYZbA~^~cllPp61)-0`_@)H?8uFaGq(pz61^Vk`BUE6@+rd^X#jdRvVLTC(j}*1 z1Sf7)h$Q;H2f&`OjdHEi#k@+q_Fq6Z?6^L_{C!@j!T^iZhAY@P1^MDh_K%tRH!2e7 zf+r_E^dxNh5)+^c#&7+dyG2snNJby&*TtMo6@`j#4r7CdSKc@jzBGdvkL2ln_k!z5 z(5aa!vH}iCgLpjmMZx z*^j0a2dkmcIS1^`P-)0jUy!>3prhQKK_6I)?$*Ous5`^Et5W= z#Rb6O5vxu~6*9kJC&IvXZedhn%V!7(!((LXHY4?h@&e%jh&BzX9|(!*e?y&@iKP z4uNfoPLc2vdLq`S%)49_5W{t9c%!lFktI zWt*smiSX^cbIa>3$I{AtO)oySlNmR=ue7ilNK)nmvcq)*N^PpQ0yl#x0tyrkf;65S ztGDKpQV!A=?x^?%8X`Tt$#_>oC@7NXi*e@;Iz7%zsY!j>+dRp$Cd(35E30@brMb@J zoZ`T%*rJhoo3xvmhAcDbj-H{0N5?|Pm3CPkHMdDlq)lU{uRqPsZPMcJ{BqkJWs$os zf3g*~KBLO=N)eBL=sge>&#oZmc0G!pg-L^jc`hp2^VC6hb=Na1@t=fBV-j)MAgYQW z8&(w>-tei=Ju}Ukow+>qw$Go6`B`#jVZy{N;K=(#%q(M=^#l3mfc}R&J}XT9k-Ufu z<~Te<-)6v3H@{QA_`TG!2FK6;Lc}+(BRGJNwH70nE`L70Be^?o!39DSWCFzjx`O{@ zJk|EJ+=T;2EiE0P%2MBHNp?8(4n7{bdn z%%d8wd-K(=P?uj?{EqxR7uET`HRWVxCQmtd>ETf#5dhG80TJ}oyzul}qmo;6XZL@H z?-p*~7n&ADBjOfWwS4*IzSGwa>qg$*QitGe(k@BQw!pQ&IcrhRA)U{4T-!(%GD$kT zx6X4VDWZ`JiO1HRzHq$J6R2x@`tJjoyNN77^WS=RSnvQU zQGYc)dBTT$SX7!oG$Pr69uX6b@FSadvC7*c#qhKkQs{K$X=V`4|G5qT)%l;z~p&`}PoVJ1{uU}r% z5mOKReCt|5a`b2^Inyq__%WCu$02n!F4{35l_XU3x!T*Ke!<^5l2kj3z!3Gz~Cw1Zki8ZB4xE`}W% z*Copz=?t)?c|$cYk@^0&sQDe%D=P&%#!=zYe)V_zRpRi*oW*c%aqN`4SObJjYbe0F zNR;+1gB$*rjtgA@X^&4lf>|iI)%hAGbfgv0^Qnt_<%kQ=EaIUe4hZoejgtVn$q9y| z7_vQBYoFJ-joAMBQOSw6j7z()p0s9K+ud5^qT94BH6!bJH+1Y6_O?jv+zZD*-m3R2 zuWeSQq7RY_PtC8LjC}au!*JHFeAnwjx?gMC?i_5IX;Baa>I3u(F8@%htmyk=)dzlq z*aMd8IEMUyG$sGeevx->_`aJ<`ajVUd|fnIKFaLoU54eQ^-KA?^I6=Z_xP2OgY1-4 zyu@@E#v6$+aH};0Y2~>qA`*9w%h{6ySx& zi#P6V75WSPfMIpt5bNZ8`ZPV3TV>)k{-1#n!FVM7iS(s|4S7l=VW1~H#!tV0!b>)4 z{5u+Ov~iO$lOmE{WY8o{*UKed+z~2?3l}(8SvS8=dPgsM!ek)rWv_w#;ucC17}S?? zJ{K-2Y@zeMoRMW4`lEa}U*ng*V9_03^%wq2ce}+O$S5RspC1dLAsND1lDc-Q{wi*w ziuZKRt2}7)gQO59ayhsVq`k{ro%lF^UQOxiJ8fpOPDuftlf>D`$~u0%J)D6=(*8|> zOcYjU8L~End9SShT(mO@G(U1tFT+-c`xI$6^i0T%Oj&&Sk`7K%()R+l%aV*gg=0eA zqHq9>Nu;V`i@=VuShmenBp(;7C7B_}-yG~aS@y>_5YYz|<2-b5ttBF;6=%K!v%z!v zZ@Imf3|zn2g`WJ8RB!BJ{P+cA20rKWgu~WzK52574fGkgT1Fe?oc3Ur9=QGBbbz0e z@3@8CQNMcs*5X8y%L#t=xL5ZVm(S_#r@WuT>gMEh+RL4u!)SCgchsHexg(yDP9g+I zAX?C_VCb>1TIW>EaLEb5w3E!$B4_vc%{(f%vSX6dd@uar*xitJs`&S1|NZx={x&VG zqGt~*52TSn98F|&z_%o?1x||8y~8perKQ-AfL}{Q(j8PLpj+~qrKF@Hb<(E_hwH`utCks=p1JK+66th6$;u;hL}!0OW%* z9_z#notTKpbqBTH;=qXMASNfDT05c&T%cfjj5NSRh4p*((|+^goYH%i$1W~9fnz5H#hq5?MoDZKS#wfS^$*Sp+P1Hd|hvW0c?NwPL1p)>;A7Fiw0M(Hs;0F zBFBhK_Komml7O$RuY%kjw@=DhF)dw8;)a<;(Chq_D|{Gh7c=9gx$c4TWV$|cdHTtA zC_0|AN4T!~P2Uq;WVmB*QyZ*lmJuQI&?;zd!*1!4_PvDx{ZbuO6VVzpwbNLvXd|8p z{7Q0@uejyMVdM8I!B23oWnSZb#?0BvJ;uwiwYS_OI@c^MEQEgC)XOvV z-ct4Tw~{dKr=Y?kr}nn)GP>om_tby??7g-x$xdvzEykK{Dh5tb#MUjQw62aDot#84 zbtCpzhH^Sb>p2Rs>mAxVckMC&YzL1md8iPSlbFbKp}_%o9V-V%0s6AzHGYbdC{JjK zi~@iD{7L9@B0Xe}aYCv38p11gmG3^e3k3+q7wyGP58OST|Ew@+voMDw$EUS56^vL| z(DmM1#9a4EJf&gxMee`OCOVhjCDR_Cb}KL(K6RobSx@wQ9d~brz3a#UUc0kNMveYI z?->X(aYe#9%%OP5?2C_&g3~}&86b`Hm&FG1VL?X4eB9hg&ukeKdecL@BRc5rY76#e ztrQJ$?d{;Ac-=L%crYs?-Ei1xaQbzZa{ z;DBDf;dwgo@%)hjsn54u}34(fw_KWZ`_|y@D)FSt3JYvUg z*1L!@evMGog@zvvzt_93>cax0(5)VVm-{y|K~tM=g?%4>@?9ya5oDpw{m+!}E$#Qp zrnXY&115z(1{#F>tb^i>`kw>niy0=<0W295QUWCknQ+cBq3lyL7 z4t)9DrhBL+aot{#TCY)gSeo|E`g#Bl(#sfKww+EphE?A8)pg~Q5(?I0OP%ycj*D{F zmmhX?dgW)%Fg#0@v_c`>U9u<6-y){fnfd7IlM^*oVoTw9JO}(wB(-@TGn(c}MzYZ*mMAKivWPbqvF0C?8`op0b_w#_80k?h4v`#2uo0<_!EnID4KUHDUt= z@s&f{Yk_ZQGoh2AB#RWsT$x!M*+~;Vm5lL8b>}j4@ z*-0`rC0y7g-%?K!B@7>TBKKB#%z#GCDvwSS2hQqb4CKO`i)&GvO`;<2M-OHmz$U1K z5N77{j})*e{9^THVfrV4Wv9LN-o6YFCR;8r(4>mT>)c^&`-o@AItJzk8@J5ZUq^N* z-ta^Q7E@ry`qZT=Cdx9^vrC;*L1Em(wS1dgUKUh7H7Lr4pF1B1F#dxG!sHD+Ul?5> zJaOzFjq2xqkzv-AC)1XIhZ{eVoL4S;Zoq|LN6Okz45j4ELR$0aX=O}hg%|s=Cfkk9nMuN}w?a3ENc@hO3+omf2!#Ev*#iBwo6xsB@gb=z+*SD`o zNW)b^5QoA9e%6h@FLKOXw_ zU*Z2WZa?kgZC>VLg#Zast;l$_)kEn9_m2aQl$@BI7L2)S@O(q>NyU#^PvalCkTVu(2Q2o3Xr% z#}6~}HKiGrt)yHzg?-hsiGcUg51d38$Z)&~BpMlMM90cn6w0IZTiBtA7hYdo%9(ubA|XUSCT{1>Eh)^|KOs#!e92c z{3=USI$+Qv`1!4LNT&z~Pe^vo)bvHqFUDn29)GXk>ytcM9@;$FKt27ZlLMU^AZ}#6VUZxZBe;^i!<1fy${#JQdi5}K+O64T=Ka4v zP^*xH*eWe(s<-)5h>9Vsh-5VZ93|?3IeH9hwDAdLNjQzHBS>0!=9wo^NRfDzsr;f_ z+P;nzF**Vy{Wo^I^7Fd7g}QkXxzK4j{_gzySPc1mP=9TDQG;>g%@3QdaQBhVpQVme zIFKL;5IiJ;oX8dV-@et3^g4@|oMdQyt>nC!COo^vINv?P;ErVbTVmr%tz{q|M`l-yC~wO4TGtK*4DtH61t3ht-{CF2jy6 z&h;FAa!d3p(m_ej25BLIK~%TrlK3|sfe0xG;W0BMUbMEb2+7Fc#2l!Uh}|GGLlo|0JskkjY4)wCpHkyP-J zm^##@^!ZFtox`BI_Vnua2e;VhcRvm-96oqC#87$Fkb|9_gp!#`Ssq2uxVeh^`E)D- ziNoVhllA{#KL@VbG<}mlE>%hJL+<(q6Gv5s{N$YnY9iYwb?(USY4Zt+815Ji%~m#F zSbO>AM6P+*o7w+V*l@Px5Un!!TocJ z{#^er&tnUg!D$A-TuC&(oEa2bH!!?&uK9H5)KAl0m~$ZBX5P59)O_apwb;(~_1xp4 z``%h+Z@AvM^KLMK?$VU*GJmpQD*m_+b8z^aJ9BjB4k$IXotzL>OofQ=5bQd6=$6KL z1gq2CgfI+R#L9`JYV16TjwFB)5qa0ppQ^oZ`?#To@F6?V`)Y4or_0}kUU+Zy&Brso zoW_PBcCn<0V)Ie2S9%XZnDV>?ix4T%{7vZotu6OVbytdePi0!H1X}&(T-pHy*E+KGtJ`)zgUHJZ*of+??huLs?^a@m!QljIS;MOBzz3P#lG2I?+is<)gC71=oH@Ckox6ln_%0v zrRJ)#owiW}Ehn<3HgpZ02ZQ@t>9<+-}fHhX{1xa-6u3|Dmf)bWq%)Z{C$=#Abf z&842K=3z?KUzh}2xbcrG_#HAE5ck_f7evKeT~@vtLURAXyvp-`$J@-@kF={*js0;) z0($R9$VHuNF`wO$OX$6MgwCvwoMF#3bJ! z@4j-Oy>jKXzg*ury-NR>{_J!S`}9l#TcT}w48B=11{W9WC!G9~z3P_n=VA5yVU(L8 zfPf%Rf-B&G`;;7KhD$X)*msvqF&5o6bP|jWw>P-Fmr5Q=B>#h5CDD$9yN~$WIr2}B zAK=VxI?Ryf&fxjb4%E#S#*ZXdChYOEFnJu7-ag}@ym_{pE^OjF^5tz{bc*8LJxO-) zJgS0kjaDYcU>YRJkFm9OGDtKw64d~$3Sx%1KFa-kefx4H+jp}j?l(2M|IUz}kzvPJ z3FZ$>RMEG08r9aDei?uDt8-&$#0F&tMQ){8%}-SEP2p_3tE>JaW?pl18>3?4A|p;W zcz!Y3n|F8Q%cXeSs9Wgkk4f>lKj7F*1r5cCeZ)?pBY@W!v9m;tjl2^^?kl2qbwO7P z&b)1nN`A5u`7t9mCb@X)K|z$;Yvpj!W?L=$B1<>|((e z52KL}+#jDDj|kl&aP?NbopjB!-L)DAJ1{;v8ibxY^T0Ok;m1jhVojy9OcGk%slQN^ zhi~mGRqcC~Z*!<60z{BApuTZ-7*!U*0E6+7&TY=BV0&d{ko^`{)m$^a+$PUz=L;8J z^IPcqzx1r0fI}eMCH;rt3-&+NqbJG*7A6t%k1bC-b)?cK@MkYME*Gg+oXPX%4}=NJGy>0-H| z2LQ|yLzVjaR5H$ONdj*f`;wTs;zOX|t_;+?uhWhHE zZUmT9{`OZ?8HPo*A^Angobg;2Ra=b5PidU7@%}U}z1REs;$798pXx$=FUs$nV^uIi z0m?fQNx7P0CBav!QC{V>n@}*J<_~Ksf*JOLV|hP3IB4I<5J*kA0WNb#Xhe_wUAjr; zUlO7szG=oQb3TqPxd+E<$ZxhuJ!qs@&FaOZ1g)(yR`a(>pOJAnCE`BKldz}wY;)D_ z9e2I{2$c4$=X&sTe@^8vP)wq+7fjUh@Q?sYDbRZ&$d&Qqiek#do4*3->C%ruI)K## zSnq_YI~c}pqciA$^1D#%3s}cdFX24d7K@9S6oHVF4orZNjkw}xZhW2%v6?OD8AcaK)IkznwU61kF<^NVBBr&Kl_ zLb5hX`anegJmy={n}C0g5MCe%Ya0KYBAG_$yw)IC`la<3$B2d|5^gK#$TkrGyu<0z zyzP5R3ZJt7pneSqsJ*=leUWC-wq^7C574zhD^V-;tCvKd9$4kkNk-FQB zK~YQB6k^m}Ko+UPCZF{0E>^d|l5hwtelGpvMBNRl-gmWkn(w&aI(y;HVV&1T_*0UD zBfpLCaIC7jr#_gd>$BGq?EbyiPrGbAL(#w*`6v_&SsZ!OC(#fCAsx}O%b)ni5*D)0 z3oM2h8eB+K9~$6n{p(jXWN#UN=DT0ea@N}3ejA=yxzvks-$KPtKv)aQnLFR|nEP0D zN|{bvaPqEVdmpPUj6MTHc660$FNV0($9?wayYnhPq?&Cqrb-OiLwBQY8?2(C$2<0E zBGfJ1Z!O)<#k9o2MH}a-VI-qAe!9H~nD+rZMhG!R>alph?qoEQ6MSQ1tmfVlY^V82 zH|a6_ zWi7Qgr=;h!_DzNDqk5YcwPiz?TkR92WBPucj~>?c&Ysh9Ui;T3si}F4QqgFfJ4)eV zmcl`E*J$T|+#ZTFtQyKojGZCQPS*InaAT2Rbn|cXPwOF{1GLW-&bG!4^|f%y7O@fU zf4{r`T}R2n2Sh9hkyKu^=g<>_6cz~rs9=1-tZ024!dD>uEl8ZO9DBl6Iv5cSimHnh?>I8|r zd6l6=DiKkQCBS2fv`MVZ&#tJvA4h(YC*0!}1K;l-(MZ@ymq zS6x9;?oiN&ub~x}II&6^ZJ_S&jE&b7lux$@%2RLj?u27->Er!BPYS05`)};ypPrc^ zUj~p9XXKAMTV$oCiW=U6k9+PbPIWA?y_~W71t5m>aQ-WDx9V}&lR?$!GiJ?bthxB{ zE=_KK|CIOq=(Wb*A9p=MIQhq4*+>>e1kBBAYHTsBEvMpsg;a62*}a=~)ozNTp=nZl zPZA3uyhI2&(_lOpwSWbi%tW8?cLFvVzCocK(zJSC%*u+ML{7`s2#8FFJc_-3Co7=G z%QW+HT1iv2AkAYZXr3ug1abl^5G5mIUc`D^< z<3&t@T%VkL9>e1WgCN)xr1BnfSFBq$dV1!{m9ZXCH|8?UVHp4D5hID28e$-%HgDCo zkE!pgJhp_sCN9|S5WnU|DZL4raA&B5zVdBGz$Hz>z9_sRvM?OR5U}jr=@U> zh_M!}>YcF5t#;pu1BH`8pnulp7uk(T#aS49$2 z?Fz{^s|&yys8 z2%&(TON&1U3TE#7s!zf?g<>>s9P%oZZ|xZ2J2`y6a_Ft!j_=jbjDu)S{9i>TKO^J% zcIo%1>1lPi(G>M7Hha^RiskAFuF}^zBHDZS;?dmB4}1rl5OlT8OCMk8S)74Y6S`b9 zs@*lY(Wies`2&y`+&=^=BRm*%L8OEb0e9h`z3{L2K;e*&mQz?5WQed=+vG^8)iul$ z{|hk`^=zF8?@ybGto)LZogF(p?TU^HLq_DZrop-i_jJz&&KsJ`>D^D~{K+bLzVTPK z@W<;;HjQTQZAC{-RLVOmXJ3MIYETf@#Behb+p}7RU09W!e{?9FhI9AGimx(vwkZ?ZvUb!6ff=B2H&64+D-z zdPdlj^%5YJxQq4yc!XjBBm|+7a8%!Vp`y27kA-^l?y^WStR=!%|GvFB@}&*JSed#g z-N`6U;6l+BmPiktjWj=hxZq!1W+Ckk`sjy9ag?I$HGRmxt9FVRy4lDEqVfk7${&oL z%%FFtZ?=SXS3G&*a5DVO0SIQuhoqOXYlUwhMiB^>r;Hel~b4}QTf)kFe~ zF*_S{*`M=t4|qvAviRf0SECarL=bi*JQMj)e6U>mcNRLZ9EpIp$Q-dDsS@YfR1PSN zXNWOZeDv;^>kpph$vQ5dmXadUQKC;DHC1`}%qA*BvtIGtiH8*2lAopwogZ4TCcze9 z$&2vNr)D9#sr2RlDgNG=kN2QPl6HiWS#Q`1l%Q!Te+3f!7+}T zS&5t}9n1~WTg?Rq{{7zvG*&&R7v`n{FJ}(~R;$ReEuR0Wn0pB!R zjT&t>ptWeWg}{9(jz>`7)DF=C?rnmCZ8UlzXZN}na_kN8L@kIf!@JWpxvW!ivxlza zv(}w0$~!CLD4IX2#a-LCag)i~1#kBTxo!6IA)&Ly548rUTp{LmYzyg8$U$T-TxonSn_C5>?v9=2>K!v9fi*+}Q6rQjaktRb_}M?` zmy^=lk4%MCB~8tED0_Yuo5<+oF=~8^GIPX4i(IS9wvMo!GBT+_FQ}$r8pS!*4!iBt zm4g)7mrm}j_F~`Tda1`KIdyQn>BYE!=+9Au(%(u^Ilr#6`<{I4Wu(krJNjTnbf(%T z$k;f*W6u$D_1VVNZPq4mBADvc_9D=ngjaw2xLl_C@E%B|3lR?@ zg*^)s<=QBGe*m@Wk@VMo?Kg5cxGKxpb{eVh zq^>5Lh<-yb90pUHN6ADi-~;W1)1QCCV>bE{<=c+0w({#2#6^k)6$ z>utMpTx^FvTvU2nIo+Fda;{#}zp?CcT>14A8n?IqpB6xUBJ{zq8m*Ll_Qmk`_kLih z_>v-t0vy35ZC1ZwYH5>053bfu%bRObZm)0Z^ zW0xxr=tBlXck`(DOi-aEO^CN|Vses9(-%25zCglW9-{H^tz9_^RYq4=S5RQbO1t5B zZ&L@(dW6Ig8)@>r+TuT09S#h1U3QUUTBqRjkfapyZ;&Nd59Hm0cbI(hDo%Q_7 zc(H$}70Di<;o*Y2cOS_L0;if-X^o}^U`uj989>Gk3=bPOIvf#JDAOI=y!uO=`Q@*1 z(Q+}c3=AYRF>CKdcCvds@)k%+PCk&OuV(#Lwck`N+fpswpQ<*%Q`;xowKp;83PW8r zOaCYCq7R#%Q=9DjYjf4?1-p+xkB3ol-5Hb&vDoCVe(|?#7mv|9fVQOx9_(G`pDriF zJa2jr!!-E#2{d*X071jws>oMbLu0J)eHuD2Mw9Utr@!t0_7lSd6Z%8CGZ#Zr?&+%R zYJW{Br><_Nrb9Y9g4gD%yxiTzah#H|Kj6twm(dX$o!rxV>f=#r10SK057j?WDJeP< zjdy<;YQkr-bO2PgR6hH5;-gnNG&vMR^FyHewWXVlCw2C{c=6&}&pw86qUj+?-_L&s zVxj+v`j(jE#k{O>_U~kp7G=c6Hv@mQs`Dr51ISlVk*?O1le>m^Tr%5|pcH8Iq-pcI z+^tTa^Ft>zuIYZ6GOKg}%olE+2b7Tv{olbEQT(r<$LPR-rA4M<{*u3E^@jlTBfV7E zlwU6+sA%c8`NrRgO}bsF`a`A5@88}F?vk1DLH*kGqJ#uSti}vP*TX#E`T6K*PY*v^ zJIEInw{J)UP5tq56%qwH0J)XZ5B9~e9qK#0z~M!xScqsac3(q(8pa8J35m|a`y5P6 z0%2YzSN* zhXSR@>g6^%aSscu+@k+&{UP^PdM5ucg`HnI*MRk)iDG22>W$IuD)fq%i*dA3wXgdv zojcp=@9DV{4+;|>pG@7Ym(Ilia&XP-Y;cy%&d7)c_qBh|TiW!q|DxmL4J<5@UD*8f zljgP2*8)VbXK?Vuggpe|q@J%A3ZTfON216UdzlC>Xpxi#snp)g2pOHeJ4fcu741xq+e;I@@bKA&?#<>$%YBl2E?G7B*xDxE|9Oz((`;(YlpoWz z-i-=aVp~`SlXO`_Lz1yfvAO3g`UiFb>J- z3152~@>yoz*zMHdi9J2yn5W$Iq<)!?Jej+(RqQ{RO8%XN1()6#q_whsE^W@;&*3m@ zm=(vz;k@6>yWW$zzPQvXU@x&ByT6N#kDn}myr5%em&I?05Fx84msEp;gTF#SmucQr z^X}YsvVLLi{XO6KSJDBt4vMEFu@r23G(F$@ABa1FxQptYSa1qLAF)!9YG%Tyv&+~; zVyR;aDdrPaPQ}|ry4&;j1>%U{nv}U|94sd7Xm*+}Aaqo?$}m7jC)lWMzwsF#KA)F9 z5B$}#^OyBYQa2~FOBTyhN+{~ib)G$6YnPNXlpT9}`l-~`VR1oqDVLtB&)iJgZ#2#{ zBwDP&b`z!0@)@SgUF7&otRH{Rs0WBL^u#`S+O|t#7oLI5+qR{g z7J}8b|KK@?^Hx@A9k%wRamkj`cj%x%8Tl?`HZiI~!|TIsWo7uE5$r|(`&>@CyC>AzL(JJ4!$F1u(v3#+ zu34H_`M_M?@cX?|qS*?cp6J|_VDkIwh!Ab0>n6Nbq>s)eW=(^TE%_tAYn?bBeN46e zN)ob&<-_{}1(XLRY-PTqvopDK40JA>quX?1Qr*^o;ur`H=j)E|mdNL;N&_CoT7!UtxD`8FxjvP&hbQd0!4OgFWfa|n7< zdUfTPhAcVFk9BcxIsQCz&hvZr$BiGG4QM1}WK3Q5RS9oeUcWKJ?+LSL6e@|5Pjg!g zPHhFk856BxYq(oUsp-o(Az@)E#HyjmMh!YMk?lLfBIk1D2emCjw{PQMKP`1~hZ2Au zl)@3#1H=PbgKn&d@G96hcpWgay<1sUNnJ;&o=|!%Cu>wi>Cmwk3hp#X$<`$aZ*<}$ zoL=QsGk2HSINsRk^lgLcZtg9U!P;(iHNS-xCHL;N53F7O*-^m-)yCGpP`PJpHBxyJ zng7XQiM8Cdg@cPr;*LvfD$;UxCdun$n{i}DLsrA zesAcd5BFHrD6vK~lbDCCw} z2M;n5n0DOm2~_43L1g<&ii5-?CEC({>ghkR3~h%aCMI-v)x>S$@KHi;klRt_J?`q3 zL)x@(K+4i>BnQ-wJCc<~?Y+EaYf}D?E$lH=E)QE0`Vil26Fp*HR@lvvY)E$$I`Ib;v_xb%GAD+U@mM zI%cP$d>1|6XXa;0YD!9MiHV7kF)`1Oa6A>jQpB)ji?*{f=`bf?iNw(HggZ)FXN_MP z%dvOL9=M3a8KYaD=sghdxAfQl)4)!hvOSh~CqY#kj4A&RE$^(`pY<*qy$pg){EPFr z#gLn-1NqGV-+0xzSXo&~x*ACgVqoubM&nA+uBaT5A04D9cP+DVeLIPN__ws{pWrF0 z#_!b?c}V;~Nxb|y$Pu2w8|ob@ z=B#Bm7O7m238Qi(N{;!T#`HHU^SL=NLX;){F zxFEEj#{OvR@*hu?Tgf4JsP7&rI<0)?V{jEqDN{90*ix(e&5GVpPklEQJkz_``pv?A_j;pTs+qAJ{f7Anjob<%b^ zL2M#NpDeKv5eigC{|gj@f}dqq{ny~@_fdQ(Wpz(Wo+&E^pp@X>F(|-5XFEe0i#md4 zxcprBq;Z2H7=RSAL$w_b9Rv30BZ}0j47FUIR5`tBA2naQ)nKSPm{?V%Xx&~_wfQ|0 z@1~`mNU7ED-?tviF1)zY{+=xhQ{AISDnyl~ruJ4b^-Xp7{C)Z-*7f_S;xg4M!ZLhK z445})ppS-Z7xdi2C(7F)K3RLWcqIbLVV3>34^urlt*ficFCs#XI&WgPGdE`@N)p`i z7+XI;1KcmJRwzM`p>roMUVL1-ue84S#)19&qwmllLwV*5eC3xkcBrYTwWJR zMF`?2=23=@ZZ`_E6xP4l{d25ucp6L}?0bPdkzLA)|I$}*sN;WStnN{uA(Z*=Idm%$ zBLK_$46oOS+i>(vK(fj8tG{ZlCg%nqoTKu{KQLMp6u;MR{Zr+;@L>al*qPrsct5kK z3%m;%UBPDnwZYSmzT-d@Zt!OwC*dY7By{b6mJ@I&xL!T`lm}LrvQzp`>AulV|FwBf zirjW)Y&>13alB$2(#=R{qIqwus~h^czfR>)&C)i@v|^>4jlI$ZcD= z?>g3{4i;US(To1wt&-9rN`H{w!cp7ICk)dHjDLre@Endb0MFmB%-1K8iO zDVQ2#_XPhOwTXdlMsiVWQ|Dael8VY9e=n&gnqLfU0&ZN_kCgqoJ|7vqQGbWYyzjG~ z$*|sPePLB6e+Gw|kyBgE{i)U38I)QsysJO|{m9U5nGj~v>mZCR{!7r_vKX_0LbdwR z_fgJ{Urw#c*|wkl%{{y^;3dNK{%y<;=h(T^`tJum3Q;PeI?jUoknxIaWyymgkz1wj zT>OP!_|v{;(CqekjqM7bol!udc@l72^ei|7RSkYVM_G^1ENtZyG@5H000;~I{($S6 zIBQ8ghRZWf)CQIBt-AVm=4$Hw7PnX5b}%t*pa6l_4vU0tz6%DT+0UO9qdcx+In}~F zr15iBh#2Ja^78P1u(lf-C;3RpU(8({tMV&4Y*!4Z;CcM#&mRB<%1Tx}c8IMt#XCqc^vMXs*Zo_ned9=wdE1olbWSy+ z(f0l!I)Aeqbq~*`JHrZsrFAS@^*UG2`(z#Tu7^Y;+=;y5xPS9$MsOP8eGwKD6GG84 z7Rr3r=Jj(hEsqZZ6M>CONKw(UuC=q5A#VP4ihnyhb$sC7e-4K?l*~xZk7O zGFu%hJd(WLOy1s2_O{<9YL#|0CQyDRN2&Cc|Cz)BV;YD|yM zi}G`SsB~SpUGGF~efz*(OkohRk(R|t>1?opd(R!(L2=GlR!e z%=oCbuSK6YcXlvlSjcZCkt4qJVRk(p?vA1zhs0xTa?rmfth(Iw*zJO?f%GYuqhet*v z1^DNLib<&pGCf)`uOOB5^e5UEKXebssWsSzMpjYxeH8j>$W7VHSN!+U z(?esBOS6z`l!5{y8qqJJq*S7snThGzzqR;(PoY(CpD4h1I6mC?w_55pfWFY=<)x*s zX8%^q#HFQM$$PtX=NyVpn`m~VF)rXi!cOL4qO}KT5P4PKj3y@~-E(ZBWMySVAOHut zWl6T7>F%PAM;(0|gwO0DC$&^5_bGRGMjyW=_Os(L3sx+=ywWiZr?0lH|99y4yRYL& z2bn1Ss^p>}_L#FKbxmaa6FR%h6UvPN%CW#5u*D&RX*q)bv+;aBf;D3h&7h8b}Nk6%FPgcU@ z{@5f^qK?$E#yZ5t#YL}O#3ke|>nT&F^tk0u@TgHXpIA!70PT|k%!gp3w|r&9N(FTn z$!q4^t#H=nyx+Hp*1nc;ctiBDN=?7Yj6grF;jO?U0XJ{nL>THuY!2@D+gjg+I9Yvl zz+y8!eX6I^x!VwUFTKYXj`x!^q0611TdbYoyR>-m{WH?oniv*{SbkLNL=rW84Ja0F zc%u7a!zib3i1l64>r!2MTst$Ds~2-!VX`RE_U_hg5BBoR_;2NE@%tn4RA)bJ_Q?Yh z{mfUgCIc5ga!zog>dK>!dU~ugH#JUj@Px|IEgFZeuIOC)W2UjLdz*!ZfsZv}55{Ml zeeNC}O~}7HQC8D+4QLl8Mx8NQrK4pT|6zqj3)~~BHc_{%&D)R37M#z1KCsuZQ?fv; zTrB_aX!5R1?qes{^;n}K8EUC?uUm1paCB`M85@g3NCoWT{Vh&HzMakV-*26$E4qLG zP){?y1_2H+oQcTbG(d?P&OJJ4>vqNJ@wj#8u&Hhr+%P4tr>jeDM$#tkH}CM4b#eN^ z_#fH93fqr9OhXMCT$ksX8F|^}{N|s_^ZG2?_j>f*8l0H6F+1dU#7ehyvG>veFFkQ( z_E!&j_7AZ-HjKBuv{Y3#km-N~D%iv~ z{~$-~afgyd!>w*NdDWIP7SBt-0uzGpcVr@OuHAzl93qWCC0k|fCI7S07U$!(48)o4 z@ieJOaO=lSiPOu6;x&^PpeV&5@Qi}yR+kz{rOctjhea-Fsb^!2d4G?`5@`iGgJE9=X8(wVfhkEg_;d~;^MKe3(#+Mu1qhc-Y^i$K;TaKO1u*#d_)KhOK2dT; z_RN?%@$+;kqg1^fdJMsJHeOybu@GFg2}23=AbKI+@cm;$NMco*$?gi46L+Sy_I+Hd z`M@yrqRjduZq5%Hh%4X8C9}UZ@$Q`m$LToNPx_xwofq^U&el3SU{kAWk^I`<8RU4e z#)z7vZi2|po%;{I`TEs+E^q+H^^g3Gl6^nmX$;5PL`rjKmeX&aHHlfawyAb|^Hvd1 z4A2C3gt?qe)_cXBU1(aN|LuUpnc~LVHF`7_el>>SqPrs9**K=OY{Kn=l;qoIuOCz{ z3Y*nZ$u_-nj}N;I_?M4GqQb(4TeD~pNGFLPYJj>4H*OHuK4P-B++6tkYw@Py8}xpV zJ#@|jA9)1E1Cm^*qGF|XlCh~Exjml&n=e!Kyg#-Y|fEk5FMAEZ# z*jYXLR0H(iCgv-cjr(5-7d|Uf?w>K+Gaq)-J=`?q+q$i4iH&Ub?ff{(JDNqdpFDcc z+HWgAWbsPi!G584z{i^#`8iUK>&~As-xRh&^RA1Y0#vdO5DbsZ4kJEXxuKy{Q5vd; zN^S0_={3(3j_~v)VpA*Cb($Jl(s;wALwoSpe|q}*`AD1~uxgciqW3rm7Liw;gRAqi zvk4{}IIg^#K2RV!6t)ZeQqLp&O?x>81nYDiXA@*Q6zDdZ?Ona`)s>iwTsoP5!#UdC zef6(j|M|ZN7;YjfrqMWA72p3Hs=0@B7?R_;K69)6*q^~;%=VJpSfCffE+8SX1v4J$zAD_03G-0- z7xG!5$5L3fkb4ns%bpQN#e^Z~V^w69p zgH-Su+MP}n1j&uauiLiPp4^{YzRK_2qQku10S0*ZW=}c{n z*B__saIxIu+g{FbP$xO}-=N%kj*GF}p}|I_PyObR`0>ZC;hzEKPjs9^#}MZE{#g+m zTE$wckeuZ+)M4;T-(J^|q(8R{<(K5tUcmj07yyxLD(mll)0bUh!Re|UQRPr5_TrPM zv`ArVG5&#)s5CF(q?pKs5H)pmI@nC!CYf-_u6A;C$KHnbUM9^>Nq+&c!6<-Cj(XW7 z>(<2su2x7zg%d+qC1d{v6oc!)csuoL@zEqb>5vAEi|I6<;(MTLMvP#q@ayD|rz`4W zbdMj-vdYp(8jXx5tb|vHq|a*gIl1T>m&B+u*mITN-7}Zgb3gZ4Nx-c-y@FJzAcWkv zi0hmAa|gt$HI#(CEZf_({u@Lcna|P_OrFgz=J|Ds-#DCS=dHxt;r8;%JaC@Mrmw2s z-Y~Yh9y{a7)#u@KeFBr! z!RQS=H+$DD&0RKr;QadPu3K_$rRoO{EBIDRjUnLvrEaWH0NGRBv`t;Sy=7q=4Exz! zdt2#@l0o`4<^EST3i0WDUsT)|9u091_~X)bRoduAkNS@QdAyPDdu!b9JFS=+s!xS=hw@yNTxh~+fDgKi$R$NFjd z{AJ559aE+!9ds;j&F|W?-NQ0VQS#HyWQ)74-<3-C;7|b6idm9rD#7$ONZF$AA(b|2 znNMA12X^hf`nNuJ=B1YP55|Q*HqFlm*kasSqB1}nnTup*Wnl!Q#!ZCH3o}-SXt~JM zQfkgiYb$lOHa5Z;j%?dGj=akb>XM@AgPsS6c$fhbc1f^6##I%(HpW*SBFK}e%;b2ClULyFtb!jOkQ(<8ySA7)+b52Sz@FOp-H#4)5cmU zu9O6MKCZL-@VeH={` zH%oPEulPc43M}x4z?p!uGGclGXetwM>MC&H)V150l~#|UOW|dh-D!wf9z6dAjeY8L ziV<~Cx?j^yANk{Gzjnix&#`6-(KEi0=6HdBxcMkkklui^&C-;eyxxUKV5AgyPUJBG z20?(<$rQbH2(hp&`q&jg4*>3bJkL@a0alFpTzig3f*$_fEy)Z)(Ykghj*vjSL~hdF z)+UEdtVo7IXH)B& zm&Y;biRvqpjQXDW`3kMYeEDgR&oLpQU;<|luwVWW+UUiB%pf5dPvkhc0owP{2Cd@- zvfGUTUwXEso&s{uk5}2@#jc0rW~Jc4coNZoIcw;E!i+-nOX&7S5@tki4sgJ(8Z%Q5 zMA;a!Z0-CgXqJL@Gwyuym+h}=&rD^kZlS&H_3;s;R)3B+axj28#@1vf|f zy-Z;VK$z`!T4ozJ5L9bM5DclXnnzP*V9I3PdU_fc*^{YW79g5GbAdCbW>$B@kHF2KPR5*c+M=| zFVofj>i9$CBkeVIwa+PX1oVlS-9#3tp>$bFDfVJ0OfU|D6d4;M7UaAntG2dR*$09c zxVQzEra-0RXAP8%5t%eN1VHm}>3YS_u`y!#$4mlbV%#}==>m|qAj%t%QozRN3j%q~ zOZEtVHd=%MicA#7Ku&p3!~wiIXB*wa;7(HzRuYndlp2=fP7BO>Z`Q51#J;ssK~?)_daMtg+ML$S)CFbVqjn$9XyB5y!B8wBXs5a zTp*nawCY0Z!iiYa3}h7uV!WJW(+*XltZz_I%i+3SFdl}|KWy*#wcxA%fijiz z`bnRSH**BmSPK%y+SDDyaS#D4NQeksUH91J0dREzqHM5YY@TZgQvAWB`}lEC-fcuY z1wy@fDX4uXJX-tK!1L)Pv0h&TK#3i&OUN}z6Kd*q1vDl7xzl$xyuAr;q1MI(+1Jf^j=c@4XZK@vk8mJW0v%kguakaI*U@3*Sn6=B zn=ZKT+WKM!_*tFkZg(sOifEF?-8e9e!zZRha15k?3v9c4Vq%$X-hW^b7S`cTB~@{e7@8y#iGx5bnjnLXO3-^w$?03ly46U-YGjQh`Q8hK3w_C>aBT8qmlsY?^x!8&|L&Ab?X9n)o3JMFc8<{sz5> zQm`*k-ZcyZ90nlhr;OHB2AS+it&e*8S1EW(LOmb#4Gq>l;G!)iV@3nrz+zvE8CSC- z#y|R&c#7dC=S)h5QT+Rk9QTt;CW^_FRw{MeqIECmQ1O}5zHOP40vkh$8@4ycA_Ops z+*E@6DZDp3qON{`m7Me1jcTvzSBar0-eOy+yOB-m`CZf7zcv!N9)ZC6`}laFBB_NJ z;bUE99axBHJ8%^)=K18@88|pMCGsQZA8l9?f`+-P+*+_2p*7v?0U?6=zB>h?stM0G zP_9NK?pG9`$Q-bOh*w`0oO}x>2hluw8-w14w(+)tXC9y&@et~0aQ5tiKsuwhNA&5^hR7{GPWu2kAIPeIWlN1ll@uRFEHd@4W>^ z+!cV|VW+qO`4H@9lrLVsl-UTu1q6u*eh(ldQa0}bMJ+oox2A>;bVU$U%%4<(V{1{n zFjI8y3K{cxPn-YIr?d6-eA7Og;n-2#k&uD+o!Qq-=qq$v6d!kG(U_B@M{qmhH^|a< zMlRx2IM>c$Ey!APRS$9Grgn~2Mc=%66PRh=o=DoMMTUi4XnxR79DL$P-dV|V^sZJe zLj

)p?sTwHok%YM!8Vu;_pVeV-BXY414xyZa$NJC8lfEy}1u|%yGNR|K@KQe0I z1o9BYP&C9e^0oFZ)6OH`LW8TTS$Kqm3qYBS*31Ip!@KZs8Te%>CJ;6*w6utr0X>2V z#CrkhjsWq)gaz*=w4{Xleja4Z8XC```xL8@>7Stf6wx3^W`G_s4@XYBOFfDKY#th< zfF~9fjvrHUFFX8z$q-dDy@fcyy}jtA|&08(OM0oCNY5b`<0xE`LK z`b6Hy(K_j|UH7ZXnhq$|rO-zNNZ?IzaRwmUybBA9nH6PX!hz*dwsKW`<*%L5oY>9z z5{--1AHl?I0p>gt=fH2mS1lFGl>`z({i{2AN4kGJetgQ}>vPFIFguy9eAveAI_Xd; zTbz?+UY~V;mA$cv#2oa1-c|@MN_19+tb_te0);bJ9z!4u2frjFZm?!FXpI0+%>dq^ z-?Q+r^&7l^_MO&^C_@n)LWULy0uUi>p#3L0-Z9HJ-dC_2nv~;5!l` z2Kqg@C&g8VJ~`(BqmMGKwuBDpK8KpKy+oZwP+*|E%-2z6mgZI>!TR3gV^_p|3(@9z z=S@OFlK4oYs|hTCNTWV}WH(>}ItH?V0}}=5)Pm|B@U_U7A|fK@0dPVhETnrBN(XB? z{ph^KHkGq*5l3B{4`ao0hu`rNN1Yd!bBUijhG=hyTF}r<@kR~B$5qeHtV`z~Wb*&+ z1#OB?v9l#ZDtEe{Tg$ZJ`!@wGM_k!@?z9gPi{j7I^K&42Kxv!hc=kAbpQCzzmZ)*F0dBl?Va_EtD=VJG zqHyx5Y}h47$2O)J4PeS?f^eMg)if6vJcO+P85M-?2-W$CqGB6lp|+4pS5#KY$#X); zkF*SiN!O1-yF4rbNeS375pCC2*tgyx#4%_Wj0$;?(VLtJEDk7+H5#}~u`ZZE+&v(M z3S;KrcoO1`xIft?0xS$&*&ra}2bKgt=_eit4#54s!b#RDMSjn5_5?F|!_nzh=ng+) z@`4}AA7AtmOXZ;0Pkd0DH?>}*e@PpQ3L-I8Pzb||iXnbU6oc|#B^88Ts%IaKW!MT_ z*UZhmL>XABzJBeQ1Pn{Y(UBj-6zo77E`&4mk6SMjliJlh9gC^f!Y#h?va&(g?>5Gu zj|uP?#10J#fiS<5OpmsEf}i}Im0Vrxy3KpI%%pBcAWzksTB$DgB4&h0fN>y<<6}YGcGV; zRo?fXo2r4Y_~Vg{|K|aLiS&y9dg?!qIdfS5_bZXR4D$c;k8n3=_}~AA-2HG8ws%0% z616Hh`jJkek$dawR-(4X=N4Nb*BDxjkK%{i&SF|L*(6?<*R>nQkI{^+lkv438tBZ5 z_1Dw>m=i+RRIMYA|9oP4#TH+cW^K)Yf0-9Sn3w6!rUzBg;lt7`+VLirx6$&rfvUme zwf_ENu3}oT#VwjKpVTZ`X#%lZ^auv(T~thk$IyERwnAm$T?_I;jbqIT$+aEZbOiNA zIJFKtuf0AFa2Tb9&l8b$*DkN<=-^lxti0WN_WM=RmI~ZJG;UX5IgEMzV9GRYmw)~A z-r6z^*6F(KDGteC#FmuY5+wz}`ClD=z5WCAA(3nM?dQ}D)elH^H296al}<|sxvgJM zS}z_Q6JK{>bIItmMjOmgio|B;mGRveV~hDRgejmF@*3qhuk021MUrh@UgcK(QU*Un zOK4VGH7w+si*f2-6{|CS?K}C(9`9EO-rkNmtuY1X5TUYA)lw$X=Wz|@pRxBGCbb5! z>)n&WnQN%8rSiIlC(tk7sp&$mW9o60$E)PbhP5INJma!8ymQOQS$~D3X^t~*>&Azp zjkwJA%4O$DOh=oXIZC9m>LhHRnbI!uJ-+o}XjEZH|5MtTPuvzJVa;2 z^F)MCqT>VZw}txYb}AaLh3LO#zW68CTI#+J6-gsL)-rlk=m^{J0Ka;AIA14XKsjk8 z-VJ>`@LV>9zI`Ek<8l!5kk1Z1;Vy~bUW$xuOVHk4eyD57C<_1kp-_+6;jCnV_%GY9 z9>c=9e4^iaUU+>YmAd(d3p?NWc=Mv;U!Rmh2JK%X4HYtYt5_@4;>E5 zA#$8D%173tZs}=k8qvob<7Fp z%o66ha)Qe`A8TwN&(^MMPHKt%*MsR=Ssl5AxdWf+gP8_5nj^f&jnvvygT*mqSD`|ZL=9%s_Io>9V_-8I^iQ++-!o2GUc zIpRK4c6+&@Q%WqW`q+x(<1Pm@raSVv*rpv#YFC$KjGKOY&e5fod#QYyrz`$W+?sKX zPtfbVsMfPhHH?#6I4^0~dEa!`fTo0mlTR$`NW;ik_1rxDejLs9LSDn=De*ti+edM3 zmkQm-Q**~=kMk|wu+kaTZ64Uwl)e&h=xHc%Z5Cz}iu^g})?7VqUracqb?RQSKX+eX zrNBvfl(}w9aeAY@`;OPvI*mKqQTu1s zqoRw-Tx~tgEw{f1TXexi(R(1@w7fR8i|*`)Omj;>r{1d={ND~wajcRjIrkU^uam4= zX-gi(l)7!@8XPT}J$!L@1--fOJ(XEiJ?V+*QtwL3!d)6u%e!XN23Zf+xcJ0wy2<{r zqVJ9$j~FoHzBhmh@6!w#o)=3L;Kpp@ipG4HSvh1(b&{i+Q(5k=bL|l$uot8=Y`J$^ zFfnD=V&){ZIm*@qb7}raUOOj%;2}h-szZ$yQBdPCi^q< zDu!0b?j+gLSJp^@j~B7|0Ecr^ox?A}n7b`K`MlrM)X;(UmWup%8BHI>_&WcC;G-Ax z@;-|dRlPgzX}rt$Vg1*uteQ{SecHmv=6_^Rkz2}g6Rf699PN~x||X> z5TM^G6mPBDFLKC5vRL7>@oi4Ir>^#psrb%lJe7H>k8Wa5g>Zqe@WkvId_s$*SPex^ z_}!!3vmAOohgkvB5&CY%aguDf{^xN0-2b_Lqayr|(N5K=5d%7^{q}|JnpWKG7PVLO zdh^;@1ZO@F3S!L^Z{@`wDY|~8IF|hsO|s;<#*d z@`0ncQ>qJd$InCe=V0u;uP+w_H8V1f+4KD9Tx@ne9cGXDMti7se*3-~ycR%tO9>Bk zN%*93ZT<5}O-HB%#uW?eQT3(;MKw2FkcyuNF_*@k+AYZw3HL)RR^@Ao5(D|ep9h5K z(ROO@xMEow--j_%P$p_zVhhch&aymqSB@}>mNVBK8sgy;) z9reBUEL3(+2BRoMK1t;eZnmQr^U2;UN}=j=fU!M}Prfky*bdsN=FRd2Te-BezooXl z2|wwFcTKslRaxAgC* z*)_3u;^xHh`!3-ay~?`Ih5pO4_Y)T1+x$ zt;@R2+{2U8TNfE^##8b*yw$w^P%F6$%)U8V)J-waf9`w`QqImGJ|cX#;*pgdb-Od) z;Faj0$@j!tZkDq=T+?00>phmfI!0Re-IoM4j^*s|<6_;O!$|$oS^Pp^6!S$_OLxg< zR8QpsV|N;-Y};>MWX0gNl3+@&$^?J>##kdb-}CgZblKS(tDPSi=ZrpYwT>kUoQ>}Y zWZ3VCG6a^6s4k*gbO|JlNU}>NUDXJ-Oj`M`k)5R6JevCTwku%7>xjTrSCDyvl<`^Y ztA%k*d9z~`^_w?E_f*5-Tvx3}Tjt41*iV*MU$1;p&oHOt7X zZ_d`3S9?F#1sTHIDho;a)aZ;}|CY9|XZH(V-QwRg47zqc-OR<5EW)b2X=HLClWMEA zqVS)r)H|wvm#fFTwo*;!>O^D(HeSu?3#t7b3vcGyAwQU}vsP7J6{%|&C@>fo=3P>u z+}h71z?S@q_eUqvzrbvWjFRwpqvq}l&uPEvagPtOCz)-o9qNJBGH*VuvvW-AhNV4& ziEPb*s`a0L+_Q@g`yTaC*o9rZyDNPAv&UQ@X-$>Z4Hp!~uf|iHKH?EZI_8w}oGRlk zM=PZbjo7ue&O>H%QFbF1XDj?a73^zaN)ZqS=NsVeV~9TOeEbJJL9(=6s-eLB`@_9K zosElFSorjEkEEYfM+8=X`-|6hP5qph;?2b?JSQskZg<`-Tc~ zvNgjGN#jg=v{#k4k#4-ZTqL!ADJ^QC)Uv7a%LRn{d=x7g@?x&?B&|taLR~PVDz*uw#Dkt+VQf*aA`L7hHBI$$J(9P3N1PV_`$@X_4uh2 z27-yBACoc>+h?kc2iUUDG(M+s=y)Rv(MZ(p1S7B zttU;*+L(qVvk#$;L&WGOKD3xGMA_%5S|ei&#hNXW6PYk6q zW0ITEM7LPE-lx8+vkOGoyLIJqaAL^)w@>6?P&2rpJS zSx#N!f&Q1!-u-Rw&n$y8{f^o2o)T5JjI3~drR-i`01+N~iGKZ?FIVr377m@v%4GQ6o+qxEpW1^Z)5v z_|i#u;)LQZ^b$rn#7`Z0N08bilQPdLTqB{qk+} zsb_!TMVi66eQG*l9P@I5D^h|bO}@$5pLwDf>GD!+XGcSqtRV9SwSR^xRzacAx}=& zGDywB3z8V^lVnKPgSh5JL(M%kjDNIAY_>=gH}4KVdwji4wfOsmn@(qtZA+T(W9(sK z%V6#bZWxOqUnH`93q5)GoN;V4J$d^2u#(n9kk_wO%+hs|mU~t?71mm%U+n6l#2>C1 z%Vqm=1qk@g2uu{uh4FWfB^9`dn;JqqHh~%xnBeX)6c`mfT)36(s;05t_o=Do~duI{u^bf;e@&N?+41a$~Zf{@v6oVB;vnr03`U= z-G>(c^Thuk7XSTX(U^a|Zv55%efR(SUH&%=^8b2MgN8#4_JvTF#FXoJ5m@jiC!_SJ J_<^zC{{k}0fdc>l diff --git a/images/CvMat_sub_rect.png b/images/CvMat_sub_rect.png deleted file mode 100644 index f0e162e5c63e6cabc6f0d2ce5ab2063eacd4f29d..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 186386 zcmV(*K;FNJP)s#L+_pjSvBXu~vtLlB9=l9gEedxiT-NA*AVriw7?&GIkIMiO$;KQ|4+QND|BUp$K z(lLz%H+3sw0mj6nIO0+;Zkndo@Ta*prz7ijJJMr9`AR8bq&wCu*zxyWQ@hI=GA%8j z|NY@$s>PF32rebDi}Can#i6NLNE1kCMAJpHq3gOv5EelSo4)4}%q7+pd{H7I6pOfF z*;YN+f6zOoWMZ9|QfKhlh)sR8ciH93p8fW-uFjCDBO$3FfA#nfl?dxpGty>Ut?8zQ z7?&y*0#kw+k|rTSDy)zeYq5*rFYvb$?tk$4(@J+<|Iv##B2An5;kDNo6bF99nQl>q zbxcr7DeN5zS);jh-JF3}4=N?xl=X|J4mmWUm?+}9qB==Ui^T#-6o(8GxD4IUh-91) zm{JB4i-X9ZXd=LC5ZXRI_0papg!=ThGYDLeP|3yBnxWJw(J1C97FsM0JhE}t7uRh1 z+urUOtv`QkkLl8&5mPJ>3Yt@UsvRr4WK9H7ESbr9giTB|GvwS7IFzE^-OHo6wY!5@ z`giNk>XSlp&x?>jb*#a<8z|x-;z%%oG^LG>U4GYRuUK|hAx#2! zZAxgWklp>(9>+E`%|W~x#DTI3g!@gdWHm_HBw$TnT4b`Sr_G7|2YDt}nwcYc!@|Mb zZ+_MYr+5Fyv&=T5ATp`qikA;Jifs;}3UQ6<`uOWZ-@Et4jD;$7cx7EkMEye}I|e3K zENK(MlbE=M(&=!hV)G>%^19x3NzPo{g3`p``cdw745D>-?;O-MqOdU6fyC_x^6p;V-p-(P}LEp zmO%+pjxMpLkZDj8rV+(4Hw@Z&T5I>W`J3wJ)e9~kz4K3Jy}lNq59iNby#9sTmwe^k zz3b~N$VrB%>9Fx~L`=T=eBL;G`y-cy0Y_Y!nT*0*AU)@#zj)OWn!_=JzK-DciAZYD z#FAnSaV#`g0TX%>)2YFILw6|Xz8SN7x_|qf$X#~se}4SfSJ)Xpe{`pOAzjlHOaTZZ z)hUlz6b1x-d9zuZeMV)XKe*uP)a({rM570z2QTe;`}OIKpL*~Qmn`D-`ts>B{_!ur zxO;TLo1aI4a^RSaOpB#yj>EnFxO34_E4b4(egT+}O}-l{YvnPa3=X*URc zlah1+x1PWB-Jfquo7Pyl`SPAA$0=Ml`-qpPP8vrE^lXxbQF%dR&wEqSOlV$l4&8Dp>PNSpa|%2tWDS=}v2 zH&MOH!DX_p3pOmdq8zFmxZ&DN{v> zWn6UX{Ce0-WlKli+cjfW7XpD4M1ke?hBAC`^oT~j zMgtiUsk=c$G#*O~Di8$?OCjr&^NR7v%KhORjo#_XgqbUq%hfFP|Hqdu^*geDv;M(T zA7qP#$>Fg=A(P7IUVr*S#5u^am2%_2chb&<=g+cT6gOiS5TeM`Ob(`|6N;%3hdh)R zDwdd5*2P6P_t!TM-2Mgahd&!wvHG&n?K^r;T=L0Zw|C{7LlaTeI~a}5%rHEsv!!Ka zoA>cy(Fmkt&s?&w+24OSkUWkAlR;dsmz&fuK-oA5X(Z}#9K_nZ<6Np@RrVurO+~<5 zLlh^obJa~Z{_f6CY}`7zclXR==EqJxW$8_f{^{I4qq9$q2ehr&IxnrJq?ya`Y8~|d zTQ}Z*_s?%WJXld+@B(FQqopSw`-wa8NC<>;o#wIgoj8o>kjLZL$Qw+Bk_%k*Sa%qI zcwkr0af^qCr}l5#uz%Y}LEwG=$LB5j>g_NS_YI-huitn4m6!BC^>0L5wcz@5(9w^? zQV0eC8ylM#uSEa+jT4FVK#f7$U^vs$-m#};LL`iq4(d<@e%$mFL&Aja!)9P~j}He2 zC-y+=C`POGsZXC!`u=UtT=~k=S3LI#y!s-9cHVST|6g90SZw^+quD~%=<9s&zHc5l zST-H~VEWcv`0akt2 zeMj$i_S^BZ1xga}Pc||Jc(e4;;Sg+RNvdlh)>q-~P>Z z5JsCax1+5db6Z01={nU>7#UW{x8f}Wle#8jAXba6ST>`AL0LekVOC|}b1jua3Yb-~ z<^-)wSAuNGB?+uj%>xvCr+-R!v(=H2B^RBuapUe+rgj}Va>S7_2%+!sz55UKRpT}b z8McEghvZC9u+1L~f}~{AmIK#N^#W)__(KD9gD?VFK!GvFiDEFK+fd$SrBSbxZ3%de z)wPe@amNjJx8_piT5af~_oUIX=)8567oX{9OgBQ0N$tUj_y6$C`&zPDAV39w2j8*r zoKuh8_QBqoADUSs>*jRo^lv;sv-wP`8*;qr%s%N=v6P$tw(}2nZ=&blw6?Nk_s4sN zPLAdRAp5V6S4PGUA$01}rPXS++&nxzn!DnP%U=BbJ(+x_IvstX=iGaTUq%1hkJta{ zYo)%KH5*yCSvMO5B*jdfm zw)GPu-2%{(OJ`zAZ@u$dcmDIQ03jNU;DvST(ptKsJqIF2(-tY(q&4SsrO#l*>9&u$DwAEo8A5TWN+FNGno-H>VUwL}!5qK`X5>Etocm6<2h4ZP&IZ zeMTvgjj4KTs|D<%W0h}7dDDO?qP@GlIzBahU@Tndy-HUpaWSXweKW47C<8TzlwdryYhq5wu`~~YuxoFeIy@9}I%(O=;&42t`a-QMOo$jvQWf=Gp6Cee>-npM_D_=^SoWhAQZ!Svjr<3mcB*q9pBx z1Zmv&HQkJ-CNC!*Zwve;J^UZvi)2;CDAQ{1 zT3?-RL{PVyj9Ob<+n^9>VYWexC8#4HqMc*SCP*ohAhU_3^G4`Ptx~BiKBX6jp_$6@ zumTepYi!=dCq8$_TNaK?L_mhXq#&U?DWAsSBn8$>xheudu3Df~3J@1S27V2oCef9E z4B-pJ3Dtup*CGH8OE+SHRSIe`EHv_MQ9a_iS0t-hyTMC)%|eA~dz z4Nq^n_H#%xY)#asDnktoY@O1<^ zR95T6FarjuMT?^d8W9WdG6l$N=r*J{U_^~Eu!h43tw-pLz6Cq?ZMXu&osuYu5wTSi zdyUX?fyap^0^l1{=&Dja=R2po{_9Vk+i)mGNhD}a*Qnv@wNDP&vr3kZsDP4(1jfOE zC5r`D%7Q{czB@bLM~Mk~_VPe=`68Z53-ItS{%S)<-mQ3%ig`9=tUkGm6bSX>NO8z1 z6f-F#iWr0jY}#h*@uipde)88th$HHfw2^~AiQ3!SmUPrdM&*p0Nk|NQA4ScOe)YBA zZoBmt27(^eZO!`Q_R6>K{QCHj!`TORLZBuIWf|98ve3vW_}w&{G9g-m*+?3L&BGd` zb!Im9dim9f|Iw+sS zUH?N(C37%;*Ig>$%U(diLDyf3g)Aeyz{in=lw5M%O zApqcOR$lV<*6AKKq0H19$6xmQ>u3Jv;u}x*PTwadkdxK1Zo1|>zk2q9AKgO!=LQIx z*Il{<6-mfK!!RPjeGvfQ0nC#mPlE7h1Y#$KziHS?YprK3Zaz6uAMsne98bpCKnE9m zcZ(v{azrvbzi^Yt7rYdz_@}OrU^^e!5kuq zHIN5sCwrhZzp0Z}Xw{T$9MNLvTA1?Ot0kOhT8e(; z6R3uiVPlDBEt&oLbDL9H`%7Q>b4OcYvQowxywuT*AXrkGO4Athhz91xpfgxPYQP;7 z{vX`ebu!?UY8;7_O(OK$SNcl}mb!xn5A4~8wBiLfuQGEczyp>vg+rRnf|g+?Ju7Pu z4vsLPbR80yGjrbTzImy7B@V!&sIXj{NaBi^GDzErLb?PS83PXsa28##SXZ=6huEwu z{{GMlGS@S4Xjr3U_M#O9XUIyQiLC6zM<1u1bY@{EihK}vNau|xwus%4&l5v}^qg^0 zNiYt7&Nv2Su!b*0$fd`q)MOY#J_-$z0^deFL;)xgrVDV7zWSzLKYHG2XMgnZhLlTA zUvtslpMBz~*JejbSkd~6bMCWfL^8qhIk3S1r} z3{yrl4~8cduZ4;51C>G;%%?HQSgg3P`%B$lTJ`swVT@F(%NH&f7~1{Tvrk^UB$b-C zVru99dGouiQo$vpet1N)ojn@{PB?SfCvR`dlyYH5`{>BjMQayj+LPc8y(FWiiZq|a zP601IsfBuh)@(#lB1!=?Kxl)4>Y1K>>W?mYcAd5H0L^2m-&HuP;^Y`wW zef`&+yrU6q_QflA{P9KEjApNxwd$v%e?D8U$Kl|C19pnc=&}Q^2@<3EK{JqEs7_wj zq5!Xvq~pG*K?*~5Q1dCYV{YNJ*^BoM&_Z#?{_PZbJu_&#HS-^L&ADyCF9t4pICIhJ z57y3Hb=~@R?p-zSVzv0@wJ<~K&2J%eX1N|oQ-1ck)9<OUNLcOOb?KvQJtye<7IkZ`Cq|>^v(;#^;v3ovzYjD_1EnaBF(=7`MboAgKo*OuS)oE?Hvmd+pfpd!| z44?m-?Z5r0CV?=4mQBGzb4Eur*{H-yGjxEDOh@jF6H{?4B!fNXk|Y8bv3xP3*+mN7PaF+18pbkJbP*4z zYlNAZ7KCv(ThUm4){MsHk4Eb`3ff`Cm1 z5+V&&Sfg_DCqpMM%RrYS0b0W&F3hfi1kRw2#%eMQX`N{&^kkXuA+9@(;k`99Z&7zM zBwIiDXx_5rt=m7E_8cW_9c-7gP&P4j4o^4x+8|lzc3UeqG^0Td42H zF6%QiLTr;ktx8UFZQxgcP()&&Rf;WR|ADcSj%^d6EZ4|}ZM)oDYpv=npEG~+tFI5F zi0tss9on0+cJ0^*n(lVBr%0PUV zyh%W3Co5mR=9#%AjjsC4$pf#v*PLvmT3t79PE3oH$ILCu{ck+^`0^_*LfCK(x$5L& zKKO7aHWH{0eSY!nSO0G|3ikf?HxrYSjb_xWHur8mU`Rr|IiW<~zWULXbK4xDsOPJB zYnGv)t^i3=fP&GMPu>=ZT%dusK6FzV`?!T4ZP*?%o&jz$jGipLws72Smz|(N00Z90 z+q5%7iz%z6&CIud?W}LtMh38*vR#BoW^pl-js}q9K6lF#rybu1AdqZ`fAZ$GHJ?9O z43A18vI>^i2kTVdgplxg&6WxOWFoTYmmY~N;H!~ za!~<~0e|!T=wP&zw&*-pYLOoC!$BM&9i6~>RNfgR|Xkh=!3on1`$%h;v7k3xB^2XyIjNEW;AJGgg+2e?z&onHsVQO9=f-p2fC+*m_ zx$XS}AMTs}^$&V$n>Ky4ztPcM7@ur9Sq*BKLVE{M+!U1RD%0AcN#8cDdc7HOjO}dS zv2&SUhOV?R-#lDBrO&?l>0VHEx+3U2qMzXGQrb!CR@nW8`Xu&R_xxk zS&Vo*)XrUy?rk-l6i_izUM)2AWUXzT*&OHwAPSO#=6gZIbF*$NL|0p`oi~9FCX3mL zNES<(reI^E<+B&hpo2g93c;p^fH9$j0V!FbR8TbZ4~M&UOdT0x9gq#QWS3FK5ryhE zElLCM9{~$w>tVq3gl~aE;8hgRID8{8DO?b&4g?P%P2@Q6dYGCp8Ohe9)chy{Bqj(X zScB9o6##`@t$Tsbdb&zZhht|b^E}-kD7n+kk}XXzB?2MM;EH#hJ_qzed z03Rob#~=jt4!=zU;iZN`Ok#KFP~-LOV>BU42?-y3Ml&s9WbJ_atOj_=iD^*En?c#K zECa5`Ac{wZDX>Vk#IOeXC-fw`0zLt+!RU@|nlND)nqS2n)ip4B|WT!$3Od??& z5Y+qfd++#3%gle7LYqH#H3*Eyl;b!Yv4O*r3+#4Eso|suOg%&;+mJp#`f(JlBs%ce z_U`lM}4e{$mAcZ2x0Xtz$PpTi$+)mmVXTboF4JssFv#GJrdC7dL4y3IYsU9M{sCX>k+ z>)<~+hH`~Wt%Od^(A7uY9_v`9%q4R#{`U)?{ob>LOR#0jHZzub=&AlAv7WXvMOqP1 zqJUQvvKAM1$qt6gkuPb+)YFhzHPNVncEa#j5V{!~pu&b)tc+m-TbFF-FtVWf{o8F?tkvFgAcrT(KTmpyza-} zzVha8$6?Ibe~%O5v?26{5+Vvzs5K?Gpc70zx&5E)-o?p1UM_+-6p2fs;kWDh{^7n0 zPX5dO?^_VqqMI8UUa| zkrs=jG|VK00(d~p5h$@qap1xCX5MgS&!U!ZefK@v)>{A_ken!2Y}*DWLz?n~233qV z_cdR7Zz#EWVW)6%_uGm^C~%VGljA!yt4XkNDk9De08|3%0?wSI3X{SJGX;11rbCi~ z*jgr77Uw|?uGs^NVBVOMHdSlELQPCc8fyxZn=H-zCYf=}(y#VmOmk-Ho-4oBmdjZb zWDH`j2^LneA%O`DGdoe)KH$xpSGBH65o%KCK*_A8cwP1Pk z`K(tRlXk`^&ZKuvnpL4p;BTn zoDjm)^sYhOY{{lb%Cwtt9lN&W;-IOCu$hX;;oVcS&N?<{8)~{?wYLY&3IUx3adHyR z^9KjB9W&sHU}3V$=g;!4?@VCarV|2-ESC@ftJ zhDV8I7cB4IZ?qdn&!}ePIAXlx~_w`K#-?cz-3KJ+f}0w&%4quikN1-_U()@A}r7_k63=3xz8J1nH}?d%wM8k}{ToX0kJqNhRuU3hbHg%+#;FxOv z>mSGnO&@sskv$_}U^{6|U~ulJtE2SAYiCArY!#9-XcBP*X0Cw=av)ad32GZe(_wN^ z!2q}f2Z@OeuL!jsLE>X9*{W0!?J!qD6EHPgg0kwS>vZ_uV2D!MJ|_i;?}d6n_e-7G z`XsYb)TKsLt@)^H(Ldk*^i|)y_~BpvFXCq(8b9N||8(R3dD7$OXZ$a7>fNWD&s3Dl zmQMfD+B<*r=OagylXe@^fkf=o74uG6*#^jkAp|jwb&YWy=!d`%5+sWu`%x>E3O&z6 zDqyS`YmUkRjYhH15tRreGZ~l)nQQCVvAlYN+K!cyR2IggsAc8xLmv$)e>~lqj|h+b zMBbT@tm)*kV*g=;Scd>} zC3hnwv47|M?4DYZln^=-9|uOFFgZaJ8+i?ZC*`!kII-2L85p4)*l4 zYMJ~W2Yw6daDDr^D?j_00F#riyDH-7_)D+7a89AU1RY7H8N+D`^&=e|W8%=GJL{4S ze&j7Y|D5THcPQJDLe<~g@=M(zmS!4`(lu0%7$`+5({}pm?$~rqAbBoa!!!dFrj#K)uIs47${u=j z@8Sn8izhx&mRK-%X06p^U6){EAy|+mfCw4FO4Dr)^qXsv!s~{ zYmsn`C=MWbLE<-?H8bbxZdy`EY!K3teU84FEjxFQ#gPOl9qb3fj!XF#F9>a$)T&`B zMLnMRhs)+E2w0dkCIy6eBW*AY1B4f_Vh+ZiTqjC=kW&J_MRC~h!22<_z_bvh5_5zI z!y=b)z*!KnVC}Osg@B<;fVHwFV?7)E`MP`Ow&iGP$(Hf@6Yus%<$5vOGBNn^s`J)- z^2TdIw_MXYFt~5JJpQBWJ|iK=0|}>yUQ8t$C)1vVsRJdNNx|}g{3Rny&g8;B)S21U za(Lo!Jsv$c+1cF!$l*1bR>qm0EIXD3$@}W77Dmmub+#LYT+!s58%!9AaJd<3;OrWe zaR9soEdZGmqLbnPK2QfTIr;z#t|1OdRss8%CKE7=M%HyAzfrH&ESrK%0hP~PHmgjt zV|&Wrk00;YF(h&+S#+|wT4TJeqcx~jV;KT{bsaaq|H-}ov~Ff56O+~sZ=?!^73>_Q zj&3`8b)-C9ZDz7gOHT{nF>)QnL+;1@dqy)30=X9a~2*$VZx7|`ga_cOL6f9 z$AbctW~Q_VAOb!Cxif<6f*DHbLId0cFK}`YYswWbjs)e&(Rs}eg1X1@86AurG)X3V z!;s;*26Yx_9`>cuQfX_dS()+ab;fkvK+(?kwmtps_{>?|5a+{iy63o=!&|mN)Le7v zC6C;5Un-Z@s6D)O_m6*lo$Um?y;DZbk!^cN%5g611W2BI;hJpgl)im{u~3#hqb+CT zQyZVzJX!JVv>gWCXxRs^OH!_7&Ym}W^w8l5ikqrZp)jMQ?0iZDA_fLaZrmnSknAr* zBO*P5kfso1jL-`sp`5G(QCI~sSwi?8$Vv=?JEl;;U@*3c4Nc^8PA*A`qW$zU4;}2k z>sK46YSWa_tA6m^^JgD<>xsv*g^p#%&oNvB&zj%A_5GLr`mp1g4L|zE4J#L}S~ki3 zcmDkPlCyfPOnUa5p4p%Ui~-Qa1O2*X0(zRho@@#$9pd)<#a*+@bsn=u5JMjgSGb$j z!@55;JkqEq!3axZ-J1C{1@#2ht@Ak2lCVu6HYlkDF$7!cZpKA&Pk(gE z(~^~zlhv@8av?G%_eYS95>>#0>MV-6V|!i4eDJ|kwN62umaSRWl`p(-@7)%(7V|i( z?A`itd9t?d?DmqgJ*$|Ey^e{O+1Res*!20o)fyBeiO8-%QiW&RVlP zxvinpdW2Rde|Yo0p%pjH)YO4{wV6*K^wPH9J?(pj?NW+3B-c-^S^Bq!HtJb&*2%qs z)o{LrdtiWI1}2uW5kz3^uuc$pfpY~UOc*5_GSKmjgSHG!-+(U1PgF}^D`_B0Jo9=yg290mwDEfckz<+=IUkuQ9 zb|B8t!TzBW7R~u1daD@Gd9%{#&H@l71Dt_Q6`Xde7>*S z=vbsH5eaGHLR)f90@M_Q)X)jYxde*Kk@l7xco*m{MUbx<)-x)a-um`CZEamcRk{70 zO$btIYWD&RoaBKV5$5ZCduk zdyChdxAtmr=FPU(?35GNg-Hfqh9r@UNcL1*@Y)pJ08ll_ty3_>O+jsR33F(qe$aBD`+ zSYk`T^;`$ns6b$-Ft(!y6@nlzA%4UWilGWh5WECWc5AR9u@N6V1!D#&ck`x!<1aq< z-M>CP_Q3sfd*(&W=;POFeJfUsz4v-v*L&MD`9kW}dv4hJ>u2BJuyfPxuVzi&-P18V zT;qnFGD{k8p_Ux9hYk@4a$IsN9b`ph0l!do-ppWp8fENYa1=7(`u-`nT+&|PvRDYAdxZ}J;41mR1hP}Wh3uXWEf$huF8}~eP8>5tL9QjzEjn0{Days@2A$G(A4M*?Wd(5hZL+>9F@BL**2?)}V zp+X_078k9ZMaTgASTw59#0);$?z#Us!m2L@+lIM`(003G5RZts4 z$W|JF8i4{1YmIzcs}9Wybi)$K!%B;iOXEYM6Fq*z)%EIRB?-`BF!b8nsn%j)QI9xW zZ6y%v!bCCF8C7 ztg{#K*LG$)`l=&`4Wc@-)<=JPrEl)66Xt$OZ$aB`d-C^pwsmy3^mcTXT15tZv}NF=RmUGXxL2EKBq(9gnh@Qk;uKVX zXimNKmjNz17Z$h;2?@Rq!Y)ie;uO{MY0cAd*`g^^S)|}tH(XvIG`n-O`p_+ZNT+N_ z6Q_Um>;uCMqMM+mwx%*7*^CB)z>S~{kJraUsy#VW23%0vzWmz`3GM;=Gb|ky5WpD=d5^l!=u!OrT|Gz?){{u4^K*`iTn&P#>Pg$PIGC}Xf(W_ znJ>!aE0*rgvFO*X|iOd1-szp@0cT#=TtL4fQnj!sel& zQ4s>pQ78&qMdw2JgOfA80OHPjqPG%bQg}pPYb!(1BEC@!JBuN!%5mOG~ zM{ScCutfD3ry-5#%)}_-AUp)jt4V+R=67#6;oFT`a)t(akS8EPf`rC^^n+th?kp~E z2l*ig$3uHRzJISvc_wYfNKID4Tx)RxmSk*#x@o6TY4Rwx(oU(^DgvMgP$L^A8oeIA49UYfzuqMq$d@DI3MWn z9Td_~`m%Etj8vu!CrxN_=mQBzh#;)0J*Q3X+RrKnde1w9HAZ&)d2dvUB8?7?1;jB@ zZhEZR0NC*nv=1X*-~lz;Esm9qYhKV2aT9(UAt^1MIdATkBb)r77IVPZcfwB6Lt8(U;VhVROC|Cry3R|C(OyNoZ%t^J^0#z6P9-#+ioVd zlW6JY4)nlnI2xa5;260S}cERmm_0bI7E0!-+$>`sNGXe(>c?-s~m?sqA{)Yfc7T%a#>q z;)Bm__`_c&DKT7(oKlG>wRdm=B)4@&_f)M?Z-fx3>7iOw*}V4{-I=?5PNp;GjU1uG z#E?sfYVB+JaPu?-jZ`Y#3_QXO(4=f3*W5lh_n2h^d-k1p&dT>+ez(0{E4Ac?c6`)~ zS&FdPuC}~4)0Km|(!RcSv27BFdHa9`w9I~Jz7h(d_G<gQOxOg+GeC9V2dTgzSPejSs7+St?FGHiSu%1w zsx!+3$Tp4SU~rN%AWsQpXo}@d>T?k69=?A_IYd5h6d#3N zgBli1&QMU5XgA2UMa)LnxbN>HA>~QAN{~_TAJf%hcnv*0u zK!1_pH+3)}X?7)bxMv=%D*v&>CBhio!w(kxs`n1Z;uW8cM?!K14ztqET|^ zJUO?)B*;CoB1p=~T>uFPCZ;{nRqQ)&!IoDB2{JG!0$dRW5B5W${qot}X#ji}t2(-p z0tNuZBsFTmL?ve{bZSDl2Ht|0;Fu1Tkg=1!ABY1ItK_RJ)HFSLSc2**3Yvj$nNSQM zApkQO!UGXRAOO(b$usg$w`=b^x(%snU1ha#k2yb(rt;NCSu2+cgYNtX;$J9^^+ zL)lZVk^`zN2;eixd$7Pr{J^j+NV$;uq0ppYno3UW3xLijB2rmO1G{!s%y)bGGRJJM z4MY>-Oc+)85ucezWVv2U(!; z7oK?a8@Imqna@3a1tM8Z%#1QZm16+gGgsKD<*W;KcZ(&1Ka&$l@1(!5c z@@^q2g5J~V^!9P5rzmFhoc8(CU%ma!149$9@A5$Gp!z^NeGoLp$qZ84A&NGUMY(g?zsm`2d>ZJmS(SL(*xxrYwy zE4H;#B7!bg$0}TmQ14|jRz%tyUN}%b$LSWWX+xgggi@sbW>HP95X5atiBN2;Q3t28g z+jN={r$i6qqbq4=ta!5OjR*VpH%fh-6mmhFxSnNDFNW-AGJ}TjdRlUX1#}nMhJ$NG zO=3G5M+^!(il+P~OSj;m{^TKaf}54da-g+>2sgp2$JWG*Tgt5RV~o=q`j3h$uKx0hm^DS0j0k2FSwL){60# z{r0Dh`}(y{BD2*=&ef?fwwG)l3P4`a?7Ar53oh`G^tLEp_CIIsj_^FoA+QU z%HtKglnKEbjTx4UKp>-PJ?)qaZ~g2`-@7YqC2yMJP)jL-F^w1_uz=DxEGzI}p0%jv zWjZqwssbfvv=vhrtSDK21=-l!U;XMWzhqY4HG~Q69Y>I#l6#VrwiH@-3|5js@=<^P z5EC@vtbnLFvC%7wD(MpjTG9lRnCe4Q<82` z;4#w%7oZ)TtvmaNe{jpm$snr}Q~L+&nPLXii6k_t0w0pQ0l>q2VY!Ba{sSMgG6A z%BUeZL% zj65FW>Z4Q8wrg|iKz~Vxxg++C+Oq1Gi@(>>~3>*sPGOZdY6Ez*D>1jOvbqVO9zvz1I~-=j zv2ZvL7*jKO!w01~n!%H!1xE4=AV%14a>pTt5yf%Jv4O83Ljb+PWl9xzHQ}Tj zFN&}v&~gZaVB{jKQqZ0#)rQ=C|!RvY=$mo0m0`qr*@%6pHJP-@gyg zYSZLV6>!>I+N$|Hd0#0;PF`Bbn8|}8r5UMYkQU4W0IK52n_7YYiR6GX(oI1qG%|-0 zWs#|4)3zbJz|1D^6@f57N~u$yuJC5S9n+{bp)5G?Hu*W|G9cdv62&tgg}wz=s>ZPHqN;WDQ$?;RK=UA-`Eq3$`39YF^1W94XJ80HHZFc~N1 z0!u)`yYkMj|8ed2V1$5~2y$z3f*Sl>u&B9@7~S9hCp0}y-GZHoAO5djrETQewld6W ztpWX<%Q!=a4xhAq*@9V4qY-DibQUn^nxiXe>d7HekpMsB9xZtkLW_BFY&C`ohG7?z zr<|Rm@8Sd1mBQd+sWZR+sW)$XnK;A?Jp)isa@&fhrvx{Rwt@_seoLvR^VBZV463_4 zu((XE=2_Ii>E`$_N|&Nq62USS4eQPL|Df$X!!@g_bkVuiTseGs=Uh1#1r#|$3nf8< zV8j4ui=hn-+6wBi)iyw@-K`C_pxD?d3Mkq@p+c49RD{ZT?_E2GFRwh;TJw&vigVA8 zbAH_W+~+C}6q~*Gx7M6vj`6-@j`5C|>4FphkCr8$>+3#rMYR8A$tZ%G0IU_qtOWIYV(8Z52YH#-|q^V3SwP@BY)<#Yol6jE2%B}@VkUZei?Y7tFL?8k3TTK z_lVTfpZHGbF<=IgX~HpPBxe`RM$6+#0&c>M!c*6b3=CR`9srer&1E5-91kIqh|v+; zp&8v@-O$tI6tG%`*n!O832ck;;>7&_z^1L=y#0=Cw+iROpRRiE z4G9S@{q3)AA(wpkCiuespP#dJ*VE+AwPmuWhmhU3uiaYy@=q>Wtjd-m7zHKrW4B$C zHAOZew*}ZSb|_P@2Qh3d*lSKLt?3~X3u)WW^>l=77h*r~PCs-Cng(70h!6K;8DMh= zyh$GD>bzph`exm+yHwx_cu$7BjDyF=mkhA$B{pR}0@?_uT03uANd0Dv_V(BKQ#7`1EVHpP$lZ5BWfJ$S(adKC?^3eI8TDtu5OI8&M z-Fk(7YWv5+*3Rf(Z$GJ3_c}L_tM;AxhlhXush5{L{nr=yAAfq_fhmX@NkIs*Xy#M&6`_Xq?cIF3qbC*BkB&l=+`Q?;;cgnFx(Kv4z%t|@jVM?o9?iGBtKqqBnD8=K5p#)<$vlav z2!1DsQ(MK3Qx3jW#x?JH^=n6fI7C5s z()Yjj#^*n;TKu{jZ@e+bCJ%S-{!MHd5L$`mMb1;-y6xRN-+AHiQZjz{cb~rSqgQwf z3;Ujb0$9bch%KY$S)yDP>4fRwP8pr0En>Q@0F3jpi(Fxe|AN$xDci;WWr@u1ZO5NIy zo}OY@U3le9|I|}-Mbv{0xBWZ0dF)49$sJ=i-gOTq1P<-%y7~{~;p?41;f4k~m=btL z6*xMqwu+Sw!mCdlan99GKXsiHg_3EQ5%<$zpu1Em@JO(LbYq7b!6*n|ElD|?tn{rM z4_GIlI7)Ra76D)!!&!t4#=1eQSj3tcL!v1|^aQX#m*VD|N3;rcC)LB--l!5Izp$|2 zCa0aauHCHpKIIVeVO7-J_V<7OykC6x<-hs(C;t4C-@m#3S~i=8p?}V`7Y<*r;>vSx>o;UCVtIwmHKdPUyt3X(a=jGKEkXPZ78-_( zP>77FEM#XA?<&FwuxO%T`ZrBbyMn|XO#?s$sLPuGae+stQQ!jwiDdfgyPo;myWf#6 zjt;C_In-qP4laxgl#_%VTXa?oceni*a3fHG)TBSY|U z`f?jqeE94y_h_bo+BdN;n=1xwTO&eF7Z8}jOVEViRk@_fuwSAq#W6XacSZTcREWTH zih`UVrpmG^f(STPz*|!Zcq6bN00yxinu^+tnr$Z_oje!!9Glo9=1tR9cfEeNqqjIW z)0$zhxi;Y4$DTPluzbz6#q;1)>$y%|9o=)ZY8Q(~-+VK%^!t8zQL~v8mg#j*Cz79p zRHI4^&Mu+4rr-A7+ecQPxNhU{1y^m5NzC;QdsW|u&izN#tq($G zn;6N(Y)i18D`g48jll|!>@Cr|f(w!ft$AKwoJg1kB$xms*d$1>mX29+R;ov^Zyp$R zPj^mA47Fp$-0b1~W9@aTR!l6+^$m5lecEdnot^1V9@=g94dzOHpMLnO=KF2G($U$| z;no_bu1!P6yH47)d0kgHG7O*WUK`lBwl+5hj04*PHG2B0&8Ah0kmgHC1pE&EsX%no37|<) zFqD%w47_o$?)lRl13dstzVpq;7Zbar>AFRcCpi(|)kZUT_a&R^zTeYX!L%G!VL|W{ zV{*J)Nkp|AIHt$>r0+3VRTxkZQB6~%Kj1Ww1b{OD4}~NE*npe@Bp`B%pdB?WP) z%#=y}!|~iPy9DSxdGQyA6+&BnW2j<1_3F`M3qc*Q7pWUu^u2}yK((u{&4S+kfvJfj z`Fy^j$Cbh2cvCFEY6DXT7zIn-as?afP_R%A0=TRsqMcI+u(sx0ePrpfRHOqrtM2-R zg5foNT}m1OyY#%F!1ab#cXvZZ274wSvezR z9+k_Il;Z6iFlXJ01K-eXnM6P_cql{~OQsfV9r@m4U;dqGa@I_HN|qw&up@QBU8pVK zU0TXC)vPZrRP0VeRtHwCoSU9n(_6F#a=>hLKb1^9sAwCs=lFJ(Wj0j8zP#0cE zs8-%o7FZC5QJ9#TSPKvj#6j3_977jai;N7HVOt2inlAc5+6L^N(8vo_g@^zluv?m7 z1Cx0CRtv1zz^iQs5Iq6hD*@A#DL_9#iG6_zUKHA@#If5VHWc7wQN*~<;uR}hQbun3lw`gr*XMAZi-+4u--e}cd*5|- zDJMVoYOPjVy>8|7;X`Jn+-NsG{^3&!%Z7k(`%PExFV|jpwP0A2PPJ4voJMPYy1Ha# zFSt-3tUzI7H=5XYAQ7!@i}vS~!_CBL2g{ZZ&A)cUl%z(KfISs*k}O4)QXX${u-7>S zpiOyJ#vMo4SgK%uT~5**mjzxHLa_Zi5k1B{Kc)z1ktc)zjgka5GL9TzCpklhRfCWg zvBH*H&YgLDN2=*d%N;N6-(y~Ql{~vJdGy%IE_?dTeXYUY4enWRA(~J7iQuQFtm_6JtL02=3DM<)FYTReFdj9=WlckR#KGOgUb{J0 zjgZrlL?Ag!X1=HPnF%TdNhD4b84!4s(Lm(NnCs_p5W$I~ik`h>62b8mqDXRlk7Mhp z06_vmKKKAJ3V>Bw@Jpje*0r=s#{F5R&74Tty?gGJy<=xx`K}lKv^|%{Lae`TeWWor zO;d4TuxIkv5k*KEk$&S9{Uc{~hguHys`lK`Mi6!P=2FpawwzNgKW*2;TfqfF=cX4on=KgvSe*a?TkmG!6U)s@{dJ1EvS> z35X6nt1M8w3PN>eA&3$NbSTQas|?H^q6UQkYT#8Tyt0vr2JHW!j%UG& zH-7ZeaF+bnYkPO^Evz~79WOuq%&JpP3m0og8;!x$%O{QL5M{}VywNDvYI`!lmg>p`|40!NjCngx!Lc`T9 zv1BII7?m%;Be0}%b$>KHm(*w4O&0?1)FK0B2a&yFqyxN0rPArg{_5eL&<*TPC2&)b zQxz+{11yP9Flu=4CS3Nsc;!h}p#xJJ$H|T4h5)dzz8O3f-pNNXhX?{t0l6xVy)?CL zK~i_U2}f)2g3Gr&`m^7z+OVmzwEyVqFHeq*#$6G(yw#gG=es)wdvoCXZH5s;zF9QG&`RZ;lbhfmvj()Pc;i(+3c)&-#OzGxfkuQ_wq zU5~bXlFa1HGf9Cnd*r=oxkIm1oecPr- ze*AzbCtho=)mrQ~Cmwm|$VKO^{pAyTG?G|E8QnFv=IZWSuKea^6#GTR7Q7OV!A8`T z?|A4Ea_8fmm)EUcv-GkpM?NvR{oA|NJ#(vYN8|UW{^XjMzIRak_^^x`^)~sa$taJu3BFzW(%rX<)f75mZ!qP)&TvTFk&l1#SSr zo2J779BmQ(5tu1sx+hz$`Kg>%s=WQ`*MEF>-K4SGl(~9j@7Pdho{0I`iD_42+n$~+ zTZOrUyEm-qfBQ$b9C`4jKY!@Y-`^taQOU1Ixh~x5^E>VxBR75Gdxvg1^`6l?F5G?X z^<|+}yM>&0$K&UbTW@-5?EZsy5OVf!Zh>d|>@tXGVi2c>E+#H2^TYEPMxnn?4#QX| z6P<}+3U9)3mVh9)BUca=Aj(}mR=z?g@_w0{;O%ro0SN0P$ww(9$>$hOC}43SD%pU6 zH1TMoJ5LYM5xR{ z1CD+K2P<$kxK<`SQ|qt`0uTsbkjK5Nsmh#roWt>j#es8~%908Q2OClo+PP{|W6vA8 z;-IQWLax+0xNpFGBN3fq2?-TrmJ%9iELwZPlbhgNOm`#>##Q2?UVh# z>^ZzReSfaEw{d9Um8bu-I5n}d-#9ec-gM#_k3ai{spS9e?=IhP@=c?o;dgHPPg`Us zow^}EeR%bUZYHX_MNux-RHUp(+r_L53MhFnjjB0mKA9u=T$-(ohx8Vr7jpwx>ty0! zb=9W+jU%0?C0Z~-h!L1*lv0GF+zWziP*2*`t70vTsBziEA{mfIK_JxUMtNR3&ODzjr+saeVXgv0ZGfr3+v15A= z@4EPc^(S9>;w$$(vgX1YzW?nX_xF_A?KUt$t|^L)3T#Q7kSM}mD8eHGqfOyW5@PkK z5iJ*$&O%acWlhNO&KUPqa=hp;C~~q)WGM4tz=U45kMV7S3)sG+T!ry@S3_G*s3lX?ITmO zg9Ry`Zdj|A5C}pPhXP=8s&x81b0++IZ1r%63 z5J+a%%p0%towKDCN41G|N3q1X*gr7*>eDZ1aCQd=_WH%QZ>U^)>(#p+d$>~{`sE+? z^d;O6f?Q7T?5k9p&9G1epii^DOrGW7fqsWhGtG491m*{gmRN1kB(8i20jvbjLWpTBBatCU0h;8+>%lCslYSaZgO2gZ+dbeOeS*HpBbMR(GFTf{fZ<*x;8OhjmN=dI3ZSKzhmugD41uPKw1|$(WQ~eeBS_-Lv5Z*IxNw zKlthFV%6;G^?9u7dhbAgBG{!Rt=Yf4vGeQqocpO0pZv_9N;y+?us*Ee0!B4tyi~Mm zE`zWPtQXFRCV|5csE#eZECD+2gF{Fs+k&NdK{C^d0iCH?FFtCIaRIBP0-r#rWTYJn zcxMVe7oJ{35ffC4<|qwjSUN;S5sd{%ITjoyK^;KhTQ3;^jKiuxW);-9?!-Nc4DJSn za25o|kxKokqRmzp|MJiyfV6rF_Ldv2o!dF74%)580tp)X=gKLqTzY-?XFm13BuSKc zS;3`lC~D~N!12asq9UgaFUCq!nrV57n3xb{%HiK6S)@!bQNI1Pz0(mUgavRop5yd) z^>{d{#!+Qz6t!rA7&!&_2J8^leo8a~z=F~VauoRquzE$}QNqE9c^rCJjt%iqz@Ar3 zf24s(2RdwnW>%UoF_A+a0fjd-(|4L;sdJ#WYjkE3jDvZ>*v>ci?Os^Eaf!mjfb!m) zHqq7h(T{930Ue?~oE&*=6bcJcONrr7WvVaXbUW-T8-Vz+gOUqa>JFz~mJ~~cHI4y= z@F17B{FaX@fpLtWO9GbI)>OTtQk1AtV@wqT*yb=u-NaRN74|a-u~QVtv)$8&_s-~? zy#y~ku>KkV_*(^p0R)pcUUWqO@PZ1@pkW^kH9WppPtxf$J^b3PN@W&xBEcn$nv3+PECXbukH}trZfh3*kM_E-8c-uI{HqM(+hPD{=0KQeK{tvB8E<$o<} z#LCfN5)OG{TD0w9gSM<S#ST(t_3TgM@Ba6lu!x@YmO zZ#*>`NJ~u|?IjHl7lau6ADx(Pwik%qM_{MguFD`qz<&T*96B9K z2MdbSY=utS_gd9yH?WF%oQEc439X_>#-cIjLuG zdj9CKLkDLUTfuTnm0*9q*f_j&?Z!>3$_M^=R*2O8Wh-{Pa$wWujeEzQd*P4&ZI_Eq zYcX_MWov+T4?gqLpFj2Nk-lY>(PI-30kXnp7*cWB_)!YI2YV5zx& z`EXII&9{N_G3>HXflP)>xaiYw|H#E(?$h&uF3e8MoUpp{^;dTc_jT148<%|WJ&*qE zLD|%%W@eXkl!mUlX5+;NfAODxXyM(aQIdHJVgOacI9R>3|GxFtKKbVSHD?X=$_a$3 zaxtF`q$4;gGp|!aR!TXdD}q6=_d!#skplvK+dJ9Qn<`C!u3g)F&z==nXTUU!kPere^6F^JpX z3-A_NWwMw&@yLr&tj#!Wi2C_b$N2Q(ndhIo>xJh_U6s4OapwhRo#RJLEf(hY?g=39 z?|Suu)2{gG{`(E;7^c-|0f$j#UG|#Q;qFqG8o4Ovpdge&WqlMHT3xK?8u*)oD!5x*c6*e93)pj-PZ@DCE^Zrh%6w^(d17S?jd1{dK%w7Ffx&-DZP| zaNK08VoZ$AoW1$v*Is?a?&;~3>EePjaB}hC7Y?1(GYC*nG^FnC;%vRnV;7)~pHL|d zOo7L(x?C=z>J1O!MG_!=W-f>WQIJrSD#UTAQXb%PCUC%+N{o%C4!!aG-V;}4jg;Bj zVU1%f#8`?%#56R-boqH3m2w$E4vV~lPwcJa1x=H3rZT$_TB_KJj)#ySA~^OzWGrMX z!9)e%IswpAa{fEd*?#a*Sy2KMa#L%8Qk|Kq)!g-KM)n@q50*1B(BEj)n(e@8&VKqk z-#B!1^!>MgarEI|RjW>=q^7Crhe?+etA<%AvqtC``s8 zlB$T=62#^JRDdo1?Z3VEJ!@_`=d805TLPyG7zdcH3r-P-zKSYKPrQDUlCvP<0fY@k zCyyO$3EU{z)QjQwMUrVjTs@v#PD00%M6;v6%iDV>5fhcmvBXHK?0E7(sgyr9HLg$< z$O4ILanb>nIXg22xVlvC+V%VkD^EFT(?uKYGTDFR%??d}>}NmgFXpG`7fW5e?qYMW zWSzFm1{gQna(W^~5Nsk->_SNq5zvUmnnth(j4Fzb`Kg$q>Me>WBJef@%}e|=^rAq6 zAdc(>2X@I2kReVMbS}g3j_QKc#k{%k=cdc1)eaI7B2F^}07El$^}p6hMpqQ@$m^*0@bwQYHM*~-W8MTcvbH0oO~6i?BZju zY$pMMFjwxZh^YO?M>?qqv`~@VKp5=lkio;JI0k`A5*Fuj0nQ}Q2N?+`hoCMhgzIAL zGu_sJe}ezKfBPLre(|6{EgYWv-Yp8<=kbrY+-kJ4Kd?QU4nhZ|5 zRxCLILj_UH5^BoKvFX8016|#f8O6xdf+@Iuf$_CViV9UcQCYF1@6e$`T-M<%RJtlN zwQ8|g?&#~ApBmpgcC>Kf8c}E$*RER{761#2G5(XB9&mPHn7Dj=jsDK%iJTF-4c-_tCi(CPm3WpPzjHW7~ z6l;eb+P>^>PG+&+JT&b`yxIsPLpwI<46m%rRoet77Rhg&N$l89!&pUK;~-&jg7PMb zq&CLqD+PO^-aa%s7N>%3iGX3+?Pl0?5+Pb#oG(;{R-I7U{fFPLIeVSt`KPWQ**P;= z^<2+SiQn4L1II%JAo0f0#;^fTW?&m61w+z!gtDWk9YYdDrPyTzfjmvs{)X)rx84VXPwDNTeC^Rq@U940Hg{K}Euq5g&TfjHs4eLaiS2C7F(av^79 zW4WYNIy-uou33N5DM$Ce_{wj8ip?Czv_oL417&+nKSTv72)!2$RzG*yQY=9PUj*+H z9oOT*L0OV$38Bvgy#3^%L6kW4xM0K*;7}TaivkWWu3WFyc12ZpalAgeZ<>l?p_D&m zO?l;6gNx(S)V3C1-TB&1x9Kohqf*|QuQyH8mQ}eGCbe1%U-EBG=!qcr$3H@#bBl~d2(^6K+X zvM^I=5#nBpbO7rRq91OZzTx6!5aEF-qUJ7OYV5wkn|Vx5pfGnpiIJ)yNw9Jm7QTU_u{sFftD~HYofAlNo7qrX)^V`r;pxv&QPb4 zMp2~ajL7wvi~`jHCxT2RRbdbz6M*Ur`BD@z)nrZxn1&l63u4hkO-)r+y@qEfm@UyM z9T+Hf0QUDnPK#El@n4_(^P6L|Qo;*}k!1r14^E~r>m6BATWkjCytS;Sd8Sn$T94B< zO^QnOERwM*0>^>xcw<}zj4UCdqH=%1*oImh+uEQ6}9|C2IgHFIqkyppT*nr zy2qL_iTBNT(=Fqo;pB4{jwqUz;>@d!#aU-~a@; zWvkagP~G;2C;XtfZo|g0(fzr+dUX7#VQ9IOcW7+=GOfEHfO|C*32Ylj_yCd-P*)W7 z+7sM7iV9b#1tex_m4YJSOwS|+keaqUtdNj3CP%Uo1fg)%mp=51uigjYUs7nfk}GqM z3ep=}7dvd*Qt8p@sM1k9d}Im?MmMNlu^iu-pPHeu(umsGt(NOM?)<8i6{>T)3mXSx zh`)i<@)#A;oF+E>R>dsZx_aR7K2Z<>Mdu2I18=+;c+Q#UocHF7&#YX#cH-F4E!Vw& z`)~hqS*Nn18)&0wX=)mKAv_cgNK~^S1_?$uio<+h6|o&#LWd(L8fsg@S||z*71CsU zX$BDjR!5J*P*GK`lWMJL<~lhOOSWP}J`>WC7LRnvho;g}f8Sy|kR&N($+C^hLqVv| zEl$t10EDjSw(%u@Hn#nLX^)+C_5c0nPD1|WGym^6(cj+viU0p}2EP5q<^RX8pY;Dk zXW-bKU*%a1HWqpS7vwR{Jr-0r6SScEWjsvj?0~m$7FX5DmwISQ0W*jSH^(C3a&ss|}R0NyJ#2fVE!OvM*!OkVUDIbe=Sz6)K{xfg|;s^?grI?EmYG zp@~$*T18c+z;VG6Syl}QYbj%sH1?Zga$Uf24^)z4j#WDFJH5cCi5d!VS8r};sPpwV z-#GuChov;Aq3%P#RA8_q!PtvQ=TJtanm|@G1&1VyfNQA`#j)hI8(|asin$*mM)M_9 zgwLdnQRs;Rn)EQnVux^f-3xgT;)^)f&~bcaqQH?yQY+9pBlr@fDNG< z19rNDLr-Naj>kI%O_0Hb!B%2%E^HaYiaNY4=V(5#9ZG~b`UFBN$7%FgPjd?NHE?S1 zjiRK$_FyM=9BZnYgdV220ink}JS^IwNC9es>mxWblBI1r&LMn5yY*KZ4j7;fRM+19S`4z)<-dT{oZ>Q==q3Jm)|7>(Pdf z%^>IBL$Kv7O+SvGjWPDbFk>y6#-7?UaPo*T zRFFuCtHqUDmUj$Qw*7iX;3JzV*cL3BgkzjUMWL{35M4D*2lwHJSp7pq{53M(BM5(f zY4Y{4mY|zN1aBF_IY-wD+YaQBQdL#N808F5Dh|*mjvmMWCeHf|q6j5R(4(X@l_i{s zz32jnNL3(833jmQqK@B$lIaN;1eVmK2<5O|&Cs#F5*ueEaN>p}z;~vof09xvXK#yz z?jl~6#9&acACjWMc4}gFXO+MwY7q*zCYW1+2+B}pAx`k7^SHc<*gky1eP{BwCXooU zZ+qV-dzI7f``JCC95##KMg2{$e(3tS%m~JJ{eHvYg~zi$-#YRS@B82uaPX;^UFibK zBa)dfx-A?!6MHcr&mfEvUt=^NiXme%m>`+_N*9V=eF&V#H+&4pr!Q*=#O36Dv*N zEGXHSH0H5;A3t1^tahylVMGmmO{PFXAP(S0W`kb*P*H?Ll@un*0{n%ZCkjFw z`~}-XGNn0=r6X~Ob8x^Hs}h!2f+tHeu#HkK;O$Y4OoOl)bBF;rH~?%ML!%HxAp|bG zTm!EZ;e|emxMTt**u0U7*#t+fsyeI!yh%jxq7=mv!3AVCbLtU@IXQ-9TY*3 zk@-t1*3xH_>QWAoSAwrbkw4>1{dIKk)De;gC?{*39cO%U6cD-~1O&IkxK3Id71vt}Y3GKw%_ zyC*nWTzw4!qX0fSm8k-rG)t7i2}l6{0}%Ctz{=~e6A{=SR*K8nKs^b^(1D9dBTL3i zFmQjLp-<*iVW}9qK14)WQ++sUfKhPpPK3pb3YLDO5vD1)Q1~JQJy@W~Mr`yD2gb9Y?5YGTiSkAMU3 zIioUjTyP{l-eiMm82npGv$Pr@4=k@|NfGtU~Q6-^Zk894z$JUnplO@^(eV7IQTXjD^_EQQDwMU{1} z<)HXo)|QB6bbf^1SRo865pjnBI>tm*5>CP(woMxxX&fiIp}-M<9h3=bMTjUW0~AmO zzZQo9EYER7%(N`*6YRi|`?{Ja{7S_f9qH-*@tO99&&_`3FOPo){pc3q?Oj_xH~?D< zuJy!Wav~Wc!pN?RSHJr{+`a)T*O$XTU>7ySg%mqUu_gmPnqy}yRdGlWys+oC3Ai3b zh0j;<))-sA+KnbeFBT_~hUIp@UgCQXB^MM^>?Ey5KE77mf8 zB&!TgGe$@rrESD@#tb?YeD)C6UxBcXb1{ZVTKT zI&bfT_Ky4R4Y+UXSMK<_DJ9i6ulf`Pgfc+Gyg^yN9@OQsgep-e;ugZ$;3(^$0z7KR4qyz1qFjvXnioW`z#aIzY@|gZ;V@`8G!SRtcVO{Sii`-` zWh4n~9h|}9tL?D5r|*=NaitRlWcs=VOZm^=jtVI113q0a6hW2bFeAUfOq?K5G#SD; z_x(`dSYi%QPztlA^n!w|<}H^uV|URXA9weTI(bv->yMH^(rj#81A3TdC4I;9+c;ei zp{5x4t`SNy-ijhCkg(b$>r(`}2F{A(5T}ghVc`SD63pQ$A?M8JIBx{v2%rYf2Y(UB zq(q|eTA%|2hxi*aOD}d2;?B(|ufLcK_6V$0{H=Y&4qw^@Etr5F?ZyK(B`#YT&oR z6nQ7X?mH<8V@)%%+zD#?U><`lb(ds?HA$vf zh)D~eNwSI>U+@ue1iuQFE|^P4AAe)yvSrP~)qncZ(?{yEprOP8AO=mMz+%PBiTQY0 zs~85XeTw5WWMWY)@t$62xM5aaFDHuc)Z-d!&$W+^yHm|XQdBFa6Kn`WaX>)SF~o0d zbO$elwZQN@eU^GofNfh0aW*kgD_<3*48n^Hm5NjW8)0SpQ_Hg2*& znCD|IPShejH7qZfu&BT2ahx>+ZXj}NB7vix&@jR$H_f^E$&zjWss>}1ViLp^Ql5iAh&vI$5Rc(87C#K6~tBn+Aot;FD)TTB}nI_*3EBhsa) z?!57Dzepw~EmKwmtc>C4Ha!WzbBY6xVI$y`v3dm_o`jk%W4&LB>CMm$n(Yua%>Z}` z6voOjR#*g&xehQp>{NuOghLDz4gO0u3N0mEMX)9@k(nZgNb-p-f2_jpCpc^h9HwcY zoSJ}RvsI@JR-zdy_6;_$q7CpyTIncEFIKCw;mNCdKKX%6PAT&IxEfSv+xw0N4z@?( zYyx24RI#xHkzuuLhRA@fTLfF20y!2m;4dmbTdc;{0U|NfEe3W0SQJNXf?vYgUqMr` zw4Nt1HVXl*$*>Jrdn#fIS*Lo8ww$_kzd8|Wrb=~FR{`jXK@dQY3L0$+0SF4(Rc1c1mETD;3-?tJK4p-?FHb=sX3 z5lcRFy9|v9z+%|LvRh{O*MvKmEO7$|wZ|aX=8G2ul{xq@ij_ zapYs0EtgR3MOBEyUOzAcyk*rA)>A3KH&8{zd}k2pR0*(ONer=E%m?HMC@I1}V;?Jo zWJA@Te_`gKmnS3mLfnL{wM<>Xd;@ji9k92P8XBAzw&+H13V~^_*aCCBxADMO&89oN%aY#}4!*4mZSpW(EzJ^L7@>=d9lyuT|);XJ9g9`}G zk#mCQ$6y1&-7-xEY${DN*-6CTSXG9Zt589iWiig6F~CDXr7nvW+A(auma_pU1}rUB zjC#F}HzJa@=r;#)R!V|gv17i`NHuLCXaj}fv0|wx7@5#iurvzMwiOzh5&)fd+prJ? zl1@K8+Ijv7rXDK;7M1mo2qN(lA5I%)F<~VkwBrK{V#|${Sl)2$c}p%i@xj}F)Z9Od z(xC8vC6gcINSv|QB25e>hYSge1mR#MV5VTRB8|ADzjAnfw$@y~l=XMp1Kk#`dN#lk zxejIvbRjF2MA;`1RVo4P&&*bT^dI{Q>o@7W37MT%3>(4<<{T-lK`>0f#PCQq9j0oA z7$%lwc9fGFJRWIJ>~o_v3?p-^hs zYTX0VmWrzE#h5P8m*(0>C#R>CQeJa&xzHbf5Xa^7>oG{(CU ztR^7XI?2MgG1mf^^RBPoA{l(|>!VM6`k!)E-qsLHgGUyaELl1@DpaDt=5Fx!00+Qg z0ko$EO1evRv$AdH_?fI<5|ca_T0zFk0Qg{zIOh>bbFppPK=GHTTME zwr!Skg(!s0!|qha4W)$jl}b(!EHnelG%#6aT8g4~+46?EydZZ8tfm=GZGWe6R`SQ!ODN?cvU_)So-Xrzjx>_2mkQh z`|=tDk$@#SoJ(EQvMP3L5(aA%vHl$;3?!W9C^+*Auoutoo2xb2CoC=Y2?aryIJh_P zN|zrw%@QEG8y8xPk-_9&7__Emcg_bFgKCb23xI85uG}XbuagwG{Y?E?Z@MPGu2kqS#iMiWR%kb>Y|o2d|F2`UI8^15 zri%t5ADmYpa;oHWPOF`>%s2+7DQlRWiJOAjXhavDzv6^-HsC3*0ng}n4wWEkg4YdO z9^UI5S5hLH34x8E@&f~yoQAF}iYyAiSK??xKw1JtwOlOe#{8QfVv!_J2%LQZ&Nc+^ ziuw&aOZot-!N(%l28dUQvK)n(+C)3y7Nf4Y`ID#5zxI06NSua`6{vy&Za0qF5aUCZ zgoNq3W)+GlX~GeegnX^qB0xPP-GVdjCW~S_oUQqx(s$vS^4b;Z5@TVsD)*?1(>0E= zp#Y`9Qvf~+?MgvoF>!%C6TAQgYYH_L5DOr&0O#6r?D+u@D5;2Y0{~Oth2X6KCrMc~ zpQzehL%r|)=~sXInSX3G^@6QLm^4;WyzE0J;du_W5{JM!8T^JgjcZ;IE868BxaxwN zPcDY_g#&dhR}y8puq@Z3qs(mdw$tW*@g)UdTAUh)KdIYtBonnR630_$+G@8|185av z5l-kWn8r1iov>sm@3&j7!*U(@id_^a&@VZ`JR?WeemrTerxFPa~%ne zJ&!{rkfc0?Z3K{lst^g&z#f5OC^QaTI4=M(aCVfGfOF0U+{a4R-GwC&QHa-!GR{;J zWzqLUwTBi8-n=i=+l^GUoG8{+F&Fd2R*20Cwpdmqm%;YyK<4TWl~kc@TgPVSdkf0M zyqC12!HYH)mJYI_jcUEMR_j>WU+S1TIBu+7ZZsSjfUaI9m_w8n+Ncr`wOd4EZbQkL zme~s~DF?nWZyKm4->6HZf){*g1gyB`032d(*GN2{Fq8=C>{l+K$_|H#&<~wfK z)@UB@2T+JXNVu0~!VGT64$oC5T;rP0y#H<2pUUe~ho0P}hIwwL9UF223!C+J%F;HV zdz+a#4NFga)lf~}aRJj&nR;!dheEG*WU>9jQ+r;GRu9EP6Cc{|~H;!g)AEG$m02w*L>LIuJ(#E95) zMqk;z3vfB83pUYl;v?NT-0Xs^Fv2OiF#->fi6Gip`=4nptnaQ($09`<$zngBm<&n!DTt}YYo!vontsrv;kKYbn z_Mt6mxFGQN{Hp(sOYZ#BR`S4GB`KGTzW23}o5;3Xwx0i+(zfx3&RTu`(f#BjAAA2# z?*0W?_x{&z7&`IG-y|c~J#pIJi|?7Y$p^lF$(?6h{r#M#xN+N%dxPczb(AFW6IUR; zh6ejQRZqYd%({tBc=Kt}(6N%QW z?#h`b_kexuKT_x(@)vx=?xeC41uSeknA;JA<1&ttqM@7^A|l`bi5!cJ6!Zd4M*_F( zH0sRpP;uF`Bmrl?kyu>WYhJqLgmOuX+8zEeHibO?2aA#&yz6I?!z*S6xC@k z*Baw3GHPs75m{4K+X4{VN6qc5y;4dc3d$;ca)>DzhEJ)YK1~c!Ee?FxYk;Xh>xeF6 zu~>|*Co6Rpn8#9uV#?Uz)^Lt{byp2f%4+{Fx&6P%O(%ck!c{Nc{>|UGwVCC2iN4A{*uDf498XjQB4WkE>%$$ zgClX06rmKQzEK41%@yDzv$GIHX)!Mnh4@j*TL8_y#YUPh`$|%I$K}LdEX8IR0`o3( zt~@ag+YH{X-9XhT#DoA4G@J&Fw<4jRM0TkQd*rZo&;P?Oo{^#u!feEST~}Man`Jf$ z0#~B@fw*Q_=jIcKDn)>eEiTJ?(IQwIAYqeiCKnk+iJUc?iP^9pj+J{^BRbfHtZ10L zhwTl(-=)9;IeHI>QwoAAv@Uo-kpip5UPK(s5a8Tng%YM&CZ_IEp6OBIm~o&>c#bI! z>y=RSF;fx~ z<&TiZ?%O&zyHvRSC~oA&67eMRua^v;2S3>PlckSuJFDybDMIf1*Bc3GuKMJsN4MQ_ z>N~$TvgO`ew%#;$*Y{4mdGmK$=YQ>8|DrM8T&Q_&Qd!dN9Gjq)0)P_;SUy*DB(9rE z*l6hh3jn3p9U)+2VUUt|NwM2mSd?_5)oOrg_HJB}Z%(wGdd}!>12nOFF?Y&UB}-qQ6^M@E*MTDU|EPizc~+MW3d?9g)CU zCZ?(OSM+nvTw)s#z?o{>q7Ew`}*OXHnLFca;C?%1~GQ0jKxf( zD$6SJeJ7N3O$BU>)yg76r3~zmL*eX9=nPJ$z`-@+Y``Rp)vSyZD{8VDD#meg8*D8A z!iZrt5h`l<@wzis&P}{rP|GXVoVV{wZ_}K#-9Evqdke0>E`8tj%irsW5n6sx(kN@@7Z>8;^dd%7RmD?f4H(s(y zd*PLHn#K40o3~JV{#ylEyCZR#7dqw6p5~52ExRUa*4v^M~%dGUX91^%V*%ju_>Pd2)yb zok-}WPy-vH40b{wJjMhyWv#hwd#ygpPp9HJ(N%P&rAB0Y{MxTT#MN;eO$2N>bRyg2 zRMrK_T+-Wp!s@Q&D=gM-cpjAt2Dnp>?IQ$bOk!++h;alg791Q`7@{KHWS~f$oYm~$ zfk_2b*1`aDajGC#HqLmIaqtw%o@Z4%46Eeu++hw~K%|!qC1v1kQGP63odZk)xcJHFSvahR9j3OSpoNBo# zcaa@iT)lE>96BWN!;qU+X?(t2|J3JtdwYhzcOTOg#O(ZyPtl?*ms37GPLdPv2720wg7PC+4HxZ zHlpwR;u`W#58pdJbn{0a{nNoaPJQPe=0|e3?Ee!dmj#U`rba~-)%lMHBt<4TW=!H) z5goia#3Nb7$yF8;4!u0;dW+uf0~32gMQs+AbPk-k_WDhqf_*R)1yD%r;+00e)0Tl! zdAz78r)=yP9#$f^#Q^zOfVZ-m9{?QS<^as#?R1>!3bNy(1OT&>7{!CJEG{^HjU|H* zCj59-n<5Y;NnmPtCV?8lVU@w-BiJEXZ?!6=E|?`S9#lUiF`#J~t4*;H?0C5zs-SV~ zN+NM6W>@b#aufx^xWb4^0>`p-qfnkcI9*FwS#B6IxBDtAB69!%i}p;lZP{$;l5UMe zVWTSP_UP2Kjn$O!!YY{4o45=h0!^eCA8V9%X;6z zx#=J5_&L1W{qMWu(88b_rPDJDhu(O3xZ9$#_1I^I_YpEhG(!5mbLq+N`TY7XeEMtO zA;F#BdM*F0Q<`KRe(*Db@Q&~N@+V*T+@0jyk17Vd3&XloaDggjMnrM=+_%HGO}_kR zlGVw{VBnhK&x|(S*tP5VgYy%9u`>@&ab)9))mu*1mKQ&K!h2a*vC0NuXS}(I0z+0r zBDp>eL%8Vt^(%%oH-w#0a~&pw6N?EOj;-j~6<~}CkXWW9WQChZA7jis;%eh;*i7Ps z;uSYGW-u>-=m|~~lkEXePGS@*!2bj+NlaklWB{xHodhLGn=zpY&g{l88?Xq%jDY=k zsJa0dHUct+-i8wtBB6$=Iez-cKR&YI|yX0b&XQ}Yo!S+T%uDtil@BpXZ^_{&}+}1PP z*En+Q;Mn*N_WbfV(wz#@U5`FXv8b~tsMgt@-%CQ9!C?E_55iG`lB+QS&*ciMVe#XB&_7B*A6WB6A1`NU?TPO#V zTP<}AYz8vT5Tbfz3)`*2db=6nz-Ehu6_wKWIw(W-Np1fgXac=SMpZ&}- zL)Yf?P>m?uz~n6d)5rf7kPSi<3=Pr_34C4?V?JH|{DI4FKJ~4?J@Cty9A8s%PM1_K zaLl5i=hJBMC4G7%IYKul2|wGw$sdUmJW6{ z)gwYNo;w-X#m#B+44>MO#8>-D?bPor^>(b|-gy3;84GH+Rsah;3vzREW~r}CE7&kp z(U&u4cClxuBc=dRZ#n#+>*_~6o#oOC6;MAiEQcWJNIrL8q{K+U`M7` zl?XD4xM%=dk+we7xCvoTjmg^yXr-WyrfM`L$c~Z-!nmS_tDzM#E&^-m%d%P+6ct>a zNlXn!BJe4x9AljdV0ELu1tEoz2L*8D645lkwgG$!AWf`-9_e`=#RjUpk~pNrA?K-0 zDZ4ZM;HOhv@pT<$o!f{I=f1>MmCe#ljmxEUG*nke_1vveSLlZG4qo@9KGwv{sW&}bH}a^d{{tdc(Jv# zP%umDZ@y!TWmUR67p5-O-Qd0N{EO+aGutoOv}ea3ak;)+SU2)}d*}^XA;fEP6WvmT z3j^Fa@dV>k%VIQgU;&t9=kXiQ9H3z-R{NUE(dc_F1CBSu&TYnk;A$#oPCu#0hT7e& zba#C0y1%wM)|)z&2`V8_`rJ6psKTTwtY8?Ls09I3$#1-BbaahHc#IZIrK*NFIgzNK zQxxX42-W9A1R07720o3zg-^s7A`=LQLduX%0==`qVUc z_()Q2@bqbr1mkgLAc(Yu12=+DNI-E~iQ|ZNw9HX(HGSV>=ME{(&{NE~!ov_9#0eRl zsP$Ixqfb2WiC=umpPB96W$%5sj+P!5#^l}m<{bk9L35UGQNI5uSYOZ);08g6Z(!4 z1A>RS=%gdXuCsG(wJ$GJI@DB4ax++tZ zO)*krz7~YnXjRa!@)AW>)t%dVhSpW*n;zAAgCiwh2o+w%MRLxEZbZXK0WzWr5cmavb`(r0WV~AQV+~d|y>ne${@G6Esobbw2mgiV?I0<%NHG z?DBgqPYt`Uk_>Jup8ic;EOeYdy-@8c+M4Xv{Y(r>dTQFfsTo0iv0|EUTwFXk*N&r< zOWJGJ4ts8(XHqK{{>SV(u$v!ls5W2GwD<+O@uu3&Vxkiz~iX zE}Pj>(mm9}t0E!3*;6zB_V?ev*ixyokYyZKGgWGer=k=3slQ5G=8CqFf(EYkb!i($ zs)WVk(CuE=!;8pwRHx+fFA zF*Mrr^zyViCAAQQF6==ly(tz&OxoWx=MhAhL85}^b{vB}o};x{!ryX{suj4E$A+fU z;*7!Jl+Y0YkOez3T82U<>k24E2A2f0vz%HgA^=d>=fwqq8SvbZ5 z@`LzI7Oviev$ho6^U)@tg=!X6GfL{QGdu71_mrnETwJqZ4X26At!#<1ipbgi<2flnE0j5_k}_I_LqyG!R4s`5uQs0_#$Z z(bPz2N>X6Ar5L;#qxFqTPzJ-GT7dB$LaQ1I0hEA4xjIsGR%Xr2c7o6}IMXOJ&6-Htir>$r>6DvNebI7tz{8$$+XeygrDyJa6WOK6-#z8q@Js zGCRB6S?yR_s1L2}G>WAZwpL1614n|FwKONJj-sXALT?(3#zY-#s4Tno>NOxWWLob~ zSuuprfhDQ$yj252q6O`+;5uhnBxURb4l+%MpS-H3tOrtf>j+xLsVW!0C3_(Wa^ME6 zqU0eSO^YQ?Wp;3Y&mhc&W|~xlhgcT-8S8%#(P@Ydbvpu&Js~Wt;;IBPKq>9R+~l}e zvhw;=T@uV#ifm2DDUNYrMH0iM=;)Up6csAA=EA1jqMot~I^ z`|UUF`^}4d5+2yMfA8CFeC^?)w!kfoW zs*-fWRcl(4%Y3!FL#}6BOu<3ai>V7k`f7J4WbYe}91$)}bxx$EEEEbE8z_boBS_i+ z-9Yjl{RA0n^g`Ls^BTBcM#(b0#PHH~BCRx!v+wBPC zARZ${>1U-C7@GRdn>L$9`i(_5@~Ulja_xAWqR0s{A@+Gv&d{1D}&7ilTHv z%O;}Gs!}4u9F<~b^B21P!s%2DKIC)HQN@nQV_S4dPMi&oW z-0(Xa4*%r*i_M{-V#}Snn5?9aJU`ui?cS5mzebB9O3~3sp_b}1${%aj4xc@Jl46Bo z7>-*%eQK;+>1es$wyXCXdv(8J8AIKM5qf?oS4O&c%1fG(v?H;kf$yXV!)r?ff!wKO z!!!}_afl4{ZEQE5Ib|nMhvA^=55ax`9g{G+MZ+(xO&F!n=g4xwkXKv-va(SwiLT== z&aZS+oGn^<(G(3~X>L*H(n48pH9bn|VH#J<#fB4fbah{O}B4lnupJx==6t+`IvUhr0GEyCm_+vpwYDwHjHomG8K(Av@G zC^5K!-GB-*&Z#bP7h5w^%UsI)UKC}F43kS#$(=oW;kvy$*NzS!J~UC#w1KV)ZS8tH z;6%!@t|5wk7^Gpgd1uGEK|S@UD$}bK6$+P3mkz`#biIK-L|8iHQ-$#{DeO^6NU>hm zWw5+?nMOR#RM8 zAKbj>_Fk#p^YUYdp1S`RuTHj>Be}P)X~r7NszsbDBU zv*EO2%B6d*zk1)ZFNmR2EEU>K|BaWQs(akl0q%ExdrN7sTPSr?k`br~rLkLSn4O(j z;?BH$(m-dEFxmEbp;2qp*7Q{`&a`zy+PJ=7%*3eHY}DI&!J-m^a1CWPG@7G1hsw!3 z_Pus32tsdZak<${aik)kA5sGiQ(tx?#2K`GN*$&Wq#obMRb5SJwY7bkBuz#CRHN?q z^mL7GDFuEM2EpKPHG>5d&u9j;PiRf>3L3R&hZ96fvN(*v2uC9?F2>MTN(+q&-JBlI zPeK}GN!OqjE8qf=TeWzL;kL|sL8Pmy8$|SHZUR!e3!;>X7Hhao<}yL^6irnLPH7#8 zWGS$$r-f|mYLK+DkX>Z4>&!Nl94%Vk>YBH8c3isFJFs5~`Xx=Ygz%Z8^?BER>A>u< zvnL}h9o=|&BpuOBnt|xyhabKA)|=DVId}9}xx-$ZxIm9qZ^xHjd&SZHuQlhV4mX#J zCC&Hw;mtb^9(+A;ldu2TEl2ks-F(Llt?{WuQH@fSbw0&YXC_o9Uv@$&h!sN$0$9V> zgQ(Li^<96B;WVd@O`jNBRC!_3+Hw}g@Fa@B9ushrpzt8JhDV<~Hd&+Mnb#?+Sn9^h zHjEuO=Eal(d5UZlbut<_Dg%>Dmc)gX5=R8clPuOhP1Bhi@){7vH61Z%6yXg>-Ss|OpY(l z*Vb&iWNG}2p_v=jb(y*qn4&vzk@u2%(khk9?RI-|d|Y$`0tH}ZczM|L4jeeBm+U|L z+-+lX?%MZUJ2Nw9cJ*n+O2GNiVlBMb>^DroRINg5av|t0f=k<=GQ1TIU$ULhb+2i6 z?&=TDi9uM4{7Ba{-2b8FRuVN;E*c@1O+Iy^+*^$KG?PN#&9+^+M-5t4OU+ueK@%!j za2BU3g<{F4`3d6<+qV1JG-a`g^W&c5Xu4+DYQ5GZ5PH?+8#ZmO(BK+{A|d?*=L}rN z^a3bZ1POsBo2Z8)TggdmJbu$VP>unvu2Vwk0pgGR}EdyJ1UH` zBSFR0q=`+c+0~F-%zb! z_YJ#T-ziz8D4=pmmla*iwVOYA&(q)iR%@x2hRW*5~;k1)jPtwnSVB6%y zxuGp~89K$~RFhg$Q^`fbGKQ>EK@R&QTQ2S_SCSYa5(d@DRIJrzmlp`LQpvAaJ;kgp z%gr_%L#TB1V@W221uXzcQhP=Q(l9CX#kHC!ba2auj^or`S31hM@6j^jXqRi2!FV)z z>iTM5Vd1HXs%^#a*AY_sl9TC_%8Sazk!ld2eYjLnC=@4I1b~&GUD1njF^y=j!;I5K zLL8X{d`zH__9!gw6Yvz{kafaQ>=ZSLKBUr>sT4C*g2byA%i^k2A0POuoQ;?Xgl0`I zX!|iOQmR<8L`F1M1vtIIl^JoH28I`sAaH2wrzr(~Rmyx$^|i3PaC+tUF5A#GJaX{J zsgtSo@|$DZw{Cm$gjEX~GMap~h0_z4UwO@;W5*ZjbE>6fUbz49C%gIvj-NVp%e(Jv zw`%9l9BIUD+6It(383IWuU&WBsVqmCm`KH4>(cjJH&R#3ojV7Dj{|8>0TbKfdD2=kx6!f8~MeQo+x~%8}@CmjyWjC?z0D*^#gyw5tUi{)keR`w5c)2OkPw zpgLwGVya zYhVB774N%qOWE_*?!MgES zpZ@WmxPbfo>X9kOFZ{=bFO7fq@C%Q;I)JNln2j`_`ttuzEn?_n<1~xU^UQ{r{<`pi zhc8iXJrq6OdE?{HypLy!>Ri*IdV)tkB|*Oc;m>tFOH^)u_f=p2>Q8ym>giOPtxy-k zt1s)4xKQmXNtVo|A)y>v2ZG4jxHz<=)4Ga)Za{m3kwk=cwHRmhDct<>aN8B#Mn#a- z7&pB!Q_T>f3}PmPYV=%`VZppAXzCM2&Cp^*&6%JZv+;o}_;6VGt|0`(5^?&BrU)((R%3nb(V*QOztfhJV z$m*Zb_Ptf7&8e^IMnFO*%^g2(?AOGA1f|7At%A zZZ4M;AC6u$GoB*qF|$#iv>HQsh;3`M*ASXSI3>h{8V;mqA&+C*6o+?o7#*1+Woek_ zOn^0)41!p)Vo{Ax`#wuTxV+~qM;cIVe1J%^}EN89vB$xCSX~q^!E4lyteO%q!^7_xOvOYiMewoEggkF z_|U`GeB_pgzww|*RTrgVJ}cS?tS9K!~f6Be6+X1LCp+vzxlx< zr$4kK#VtYQ6Z8MP_TDG*d{tcsb~+nB{D-S*5!;8k?Z3Z+dtmM1KlsdN{^+@nkN@zV z;UBW8D2Z{04C5}55Di#VJo-|&Oe%LP zL!$+&O4Ws*A>pcMe^v{kZd1X@v29Cxj}vrJ!I>0enj3uJrUg~=ydX`P7PFyJe$8YK z_taE-z>kv3Ca^~cx(dARCas9mR7EchTUoFy(t?{i+EMAw7p2Jy%ZRsnrGLm+zBrb( zgSnNtN>9a|bn2N`FiH#KlO5%*-8WwH?5`e6n~tA5!$alqS>@vVOyYTmFVv>ek&Y<7 zaDFUgGEa+PYu~rmm(A~HJEF;7p1$wi-@j|?zuu~D{YdG~gjcVlH`x1C+I+Vv{3~C7 zP?mqjtySLqX6x~P`28rC&)kWcT3|UXO}Cu+@w4Y1e4a4EsUQF5FCvYsJA*8yK*7H`i(|}%i?6q@&KETv+s%_+I7uvkRBm`wL$>3c^DU#A8q^iLQ zPhnO{5fgVF5sc2WV0ffkD?uwXkJ$O4p>h%&F`zY(;~D2nmAbAN ze!T@pFhK$L+S0nKox=kawNxdbit`y9U;s+sZd#0~LQwT6i)zbLQ^j(TS2Im8Y{hKG z_0wn1tCd2lK0A4F@xq0r5B-mi9(wsDG3>N-t(X`_#ZK$eEqC8}@HM{(wd5Q{^*6rUy|1K8Uush`oe>J zBv#j~723-gx+InN-|@*G-u4k;cJ424`Yl4J9Baye*$EnNGlAVQa*Uh}s~k8k$g9*| zgeH!&yDJdd@^VWx2=Mw*q<0NS^hGL^W)}reeJSB0^u<|vVxkR~JP9V_R8T9L2x9~q z(1`Ys`oa?j-*?YmTTw2(a<|)F*|V!N4nnb@3mOOU1az5FRiglKq^Rn`Fi@d=!Y9xX zN#PzrRihURNj5NIn-vh`2-O~RT4$j6@XUYRwhZoOv!;`MQGGPss~5EAv&|mL)}XgD@I3^W_Z5l zT=UL%4h)?5+5O)UlyYBJBC0}1xiWKctaG^Ug$FN=Ub@lls$O-;OS@mL%PemgdVvp=s$^l+Mg7 zY}?S?n1#1A#zMtS0(22W)UsK%+*eW@R3LpDn}I2XpD#ZXpwU+ z$Yt8r<13uCBlpfK}Il~ihl6_VPGPuito5QxKoL3h<1sliMA_c1TC{F8Kp)% zFjXrUe_>U_NL1OmH-%#TVJ&|GsHgmNC#J03PI8rG;1 zDGC-5t;V43YJx5G^*d5N_WA+4W6-oaifK~Z*!R?b{lv7b4gKpQRU^=prJj~6x}1e> zZDqlI^_i)6f9S)d?Q6D`oPYSzf2qaF?Kf`k?q0vJFfRISZLr|hrVf1nMY&jL49cH> z?^n}YUNa!o7elJ)y(B1_G>V1#Vsmk3uHI{!)xMQRqZ_?qFu;-(m7X8mGPHfe*bP*r zR9GEQN)YIJM_~-_a6twb7GTvw)PqT6~1 zLr!=_i4Zgi13zijorRfMuT|?R6mZIESWJ;IpyWnB5+@?^g&rHC^o-(*^R=7W`Kii9$9YI>P@-TyLRZ<;p69zzRvHx>B_fVe#_e~Ieqfn zrdxJi(znB#nA-oXUrD^U`UIZzVmBQq7Gf6))xwrxhS5XY`4;e52Y zl$P!C(DhqHIiQHh@kYckoomPp(i(!;YKGbn7rHzoiJ3MyQx+vW>jt3Z+m?zm4J5@9 zq(q=v3W@-f_XMUB3z|pDGtH|^#C0^svHQpt!I>m3!tDs9B$XL_Rkdw{k5jA#Tv^j& z(}(b}L>toJ9746FR;-O)HPk+O;Kg4)Bx(BI_rCYsOZ%FN+1K4=*jCB3=N4wUR-tT{ zqR4aoym!Z%$24O9a-3O zb*Fmi&cFD~PYkg`Q5tO=a#k-))~aQ@?FY0xtK}ZY4Jw^R&P%c`j9oaLgn54uRYb*e zdCJ?wdrZUspU!{G)MLL%$D)+DCwl?kd^j)eNcGPK5IK1{-W zho@*|^XRtE!X($xiN^VEtdmrI%aDl}YI^=dNQ3JP+mAevSBsf_&v$tC#Vv6FO2!m<`k+UU4( zOPK5iL#>jc$Dv;j9SAsp`XLq!$hb#dGY=$AQMgzYH7Jllj#$9kXI#@%mX1DiXl5zz z932|jwE5&q&n1P@b1$9gT-VprTYaO|@N((;>#sU`@C`wdue{~ju@k3HA3V4HmK!N~ zy!Pm0UQ2xY?|;00;I)lIxhi#>@OS6jiQV0Wfm}B4x%}>r{XG2Mm?DZM_$5Njr9tE? zMa#)D)zV~5aePNbS#2zPeot3t961X?qaD)VMK*4cLUb|U1T7J9VVk8)=MSq{6mwNX zqcsPurXY*crA5L<6nStMqiI5^K#`BC_v2^AoLJ9UCn@xp1b!bEt+p7oZ`ZjM@uQ3iZYD6L}Wbh!y!3FNs<>8ISqW2C+L#`MJ0&TFokA0OX(#qK?CzhQA~{=!SIUvk-+^x1u_Yp}!c zuOB>ljPgb}DEAQB%3~?^WBNP-BW}xYx1w^f#g?0F`pF!Mrb` zT+rp55S;*5P_&g%C<6h2drOoVgeDbuC576$An5ciLK;P|D$Z#E2b|1J&b1pMm2S*3 z2z_e;RpFFE+d+U62AGqn6c{|uh1Lob%s49S=4R${X?vWBPP3^G^g@mVm+ERll^`Lg z1ez{j1u=&V5U~Z735H8B6c1qlo^py@FeS-~P~@|~n{x~_*EyO|T({E9nmkf|xZ0zU z#nGycGod|ER%D6-L6YjGp38|J=RqEIeF4-m1al^*)5`BXgx3yH2)9lD|PYaq6I{xStyVUMtQO-$Q%TTZ*>*_IVk z{vmMBYl^P}QWW@Z;@!uYKmB7lsB)$DVzy$5b6Z+A!2JIX#J^MM*t9 zGu^*o^wRef+>49j6N^c$Hn67WjmLf^Rr@+G-QFncqH1p)SwDE$%=f?b0G3zELcSna zQr1ycW*SQ{T9%Z+MQ%52)AM{Mzy-qnGq4Z%%-Xk^x~A(U0USdSOP1~gVI#>~?M!lg z+vedPM`%_~bO9HR5s$`fkzyjj76}$ijM2dP6oI6)RSOe^HeXB-2k-_GvJsBYB;?%; zB0>0ihD0n-b(TUQLb518*|ro0lBO(AM&VSAAQfRxNjGu=`~m$&sz@kP$|1#4!jPg8 z1Oe?%+7DhRh`a_vFr>5Fz zil+3!Pd?5`-8LVpYT$)nj!0sw*=p9ZD1=dCM@L3TMYc-}?21B$R#}I zYtP^P#h?GpS63(y9GXrQd2)V!`^Ghki_4a+Q*7$(@2jsgxI}E6o9OQz^p&>N!ndWjUrYDG^`9{-i2s)Q+8|_I-1Q`TowUCFf2+~zcHRdin_yG~&m(*KGN&8=(aUC16j*;8K5K zqD4>XUs*2nNvz>YgH{K$^|Qch$&PgKwTnOg*}+yz+c;F*vbK=ryeT84Q_|7+ReNxP zMwV3`=&{xfg$v7JeW`JN&Yy49BAlYfB2*zL7(;lDOCZGLIAYAZoN?3N-0|;!`px_P za+WU)arFyX7-m{gRQUSx%ndhRGrE3cc5-HAVPU@3Z2R(+@7P<&!YBUy{$0QI&hz7^ zty+zb_}Q~(7wb#gFW;$9+U~8)rYp-YUpRR5BdXH8o#*c=7p`pre2Y0>lQWaMB2o(6bu8L z2Eu3|m+68M2hcyvL>doG(p8SCIz!US1wj>~G|~((uj#ufZW)FV5^hrLp*=!!RmZvM z_P>1Udu5yI(x_l*?G<-mz^EU!zhr0rz*& zD)6eRhk?;}<8p6l4 ztRtamTX{4a3eE84`e{8kDCm_cb{6ry9VO5A-aK;p+{x)i!@1#xYo=x<-CE<=D;F=_ zbET7U=MEg(xM|CgLr2RN+NLVS%GBwJp*6jFSG5>w%klE)p3TAW$?HFO^FROjH~#m3 ze(g{0`U^}z8hWu>ELbf!5E->apo&7sLobADM+|}gzJk!Vsr!*vr!HJ*t?d}D=;A^> z?CmK_iAVWUmOPn>V`^~wu#k*XTHMR|F_cLT*PND|kEPLqU_rr6^Z z6?&-xJ3bV6+0+#aN^+WB=JPgHBy#4CZd5kkx95`l|$ldwcuJrB1tA4B}+${6w{@d;Hl~He9i%V`zB8#$5*< zdG*OBU;Fs)-xV~MQmQ<1!Hy}aMrE_))I<7BifPdB$6TV9bZ5C4#>V!+LXV-fo#hTS zpQ`x*Wwjt!(tST$@M%(q!%2T#zIVyh62+E1Tc^)@&adCaSW!M#7O0_~^(K+W5a1K&vSb`ow z(@5YJOyyLS;2bMU-9y{nHQ>(9?$6sURb#59j7^-wF$9&Ey0O$uw_moS-B=-@+&9=a zIX%C2caDqb!|0b9CL_TR|<7 z&9a?2L4D0gX}Z+Ky zOru9*o5swO0)q2V66X+Oq=Dw+AYoUvOo1ecneD4A(D%Rx1zpPm9s|1bDN`#^Gf9`# ze}Ck!KY9JEX$iCx?882tCmPfx$@LBUlb-%Bw>imA9*sb zXyo|S9GSR|(^#k_9=%$uLMM?c6;y>+gE$JKpaf+AKtBR#8T>>tFu}OIDEt3%-?IbV zJvEtcE;iiASD=C>MHG%@>9+UXzVEq*d5UQr~os4dR7dkY=qoohDTvinE>@U8wXrCkdvnmJvMP8>ZaE4HT4 z<`;uD7QZD+U3#{AZEuGusuhzxVLUX{RW&tbRlh`&fLD`PMGJX~Ie~IX7W)Cjya)qG zGF4J)L8m#TqMVOY#Z-9}#!XcJq^P3_?T8fA1S<6`FPygM=-}kp_ z5N+Jj9YGDjatxteDR~Fj5ZWFZiv zs=xB&2kU~Q!a*LlwLM7S1W_1*!>6tilvR$Ah?)ycz0)jq7jTWKP{2S-TbxNbDD0`I zMmnz=LINN`LT1J-{|h^S)5&>)z}Pt zzvU^4*45Q9yVU5YbPtYhJ$dlx=AGM(M)1bt&uQHqaicc4Vfg)@|Dz{<^g|lUc?Par+#h%I*70VN@;DR zY-|;gry^d-r1yOCZ8I+%&@9Ex=%>`C<7HrKLlaeC$u?s~F@geb6C8r8l0`5&^6KLg zopwaCM_Wg+%app4sM)+QyL6)I2dFV=(5QSQpykKe!eomcx~sp7Qgu6ssDv?13zWM& zQgv2-$fDpxi6Uw9bIUzD)?g*l6kB@HpjS$9qLXAAhfW;|L_$WO$)_BVyUi=E+WGu% z-e`q<>hiS3tK|ZPCR#xg)3ZECUQ&pYJiXO+iq%2}!HKkYeRY0exfw@0ca9!A^oC)V zw_J0XJ5@hAahy|>tG13tmi+urpDgut?zr`~OWt+WKi>Vh-dvvbVq1lssoxA}VA@_Y z4ZPv1ZSmo7cLkm^Aj3qI(2tMTuGuxxp~sZR0o~(7*AyBa&Ct=Gn?w?YI54N!UpWu{ z3Mknr6NyGYzMMe*FooBSnClVe0YoO8D^m8BVnF~0m2zx`bBTm%S?IZC+Pgn=y`0q! zymFi`*p{SACiFY4f+=eniZ&q=MaU!2cGh&Uq~NSmQVXr6bn)Tya#`JU<7Qs7lBmWx zt>&ruupU$1$U<(h>6Jk{j~15s;W_R@IqIXl?!K1uO6DCSt9b> z#i<3E!)2SOh(F(T!^CgU3cShv%cq!tAc06_Qml7 zzx;JyXQ?&R&JIg+N;2pk1b9H%Om7A(0^vEqs1 zEpJlYDNB{2u~=)?TjB8NkgDm+HCR9s=<4XO6H#z|Z+WE^cp;xK1DA?UldbELA?rAH zB)to{=mIYo?>FAhVS~L}n_q`$8eD;xF;Oa;>u6zG&2cLR*AQ9`c6N6>t zm7hL7KT)q#?UvtG3q{?qJh$z)9Kw~Vl=s?&fil0YqDvI#IVI)X*N-p1G9z5EwQ|k6 zq9P=^3STWzQNaz30C2!VRAoqjQN#dXK%c)9nTURd&Tt5+(>GK2Rpg8(WCteyZ$uu0xvowpZKE7~f8j_oRJqG<_ zcG)*AwSQelCQEZmHP{AH%m<;BvI9I-To(>y>|U9Zc8*r5-sO2!?&*r4icd>WR<)pW zWH5SjI!$qsu9gh&TaZ#{6v9yO&rG*EJG&;AT2A0wn%;2QR7yw^c&cjABBbbhL3_Cl z>kr2PZJ(FR-92+lOR8epMbT?{rY@DLmfMP_-#qG!AF2oGwySq^4PJKU)Pbex3*~aL z*$P#?NRWMQW>yuYYQf-BZ*!MjQN6)Z1!|O1_VB(_2Uo;x-IY(it!SHyPWz8`e3Ds| znV^J$w~^7MNy8$;N(Pz?H20ATXXKPnSP}=U5lP|Vn6e-*i%CS`M~VDE)N~xdxlBTl z)_1|A#hB+RT!jUNhm$bY1P^8##5?$EoH>f8B7V}wF(uuN0#h{w&o_0x>7^?*UKX^9 zNyU$22zE<2!zO?LxjTYqvnv2f9 zZb8>*k}@x#kWsF5)M^d2XksGA=jy|wgM^W2u0tQ_)LaggF|BP$ zz@3?t8NA@>x>gWtt@C0YclTB(y)P{-l`5T4>=w$EcD)JD0$H_+702;pT^t!*r|9a` zY z?X33MQr(IEYu`mrs|=dvWt%p>O>p#*t!g0bq`5*6M#e=Tq$>!5)4awJK!+%yPYEhs zIn*#|GGtSW37%vYPv4Px3dp7KN}~BDR1O`e(B~-4;09Yvd@2b;d_0UlBQ9mk31|i2 z;yITzF>ycgzdrq)Kl-O?gO6d!168C-N0DFy#X3c|%4L3Sf6S**r)l_sUNH)s&yBw{ z_S9pi78@S@YC}=%iXJ#^KavMWhs}c4SZRC9?Y2vS!|yEHvZk8Vg5w1lRI3)U*Wt-8*~D zvTg&Y<#BE)s(|)Wg{LWuJYTX30_uK<+Jx+^5{8-+~34e5r1BL-!$^d0ZJ;WrPx zp?CzZl+bNctWq?Y3q;w-O_kGgLE|+yijM#4_<>AXs>fcCNSd&Dq^sR(MPcd&QD=XT zTGZSim_NTjRge=TX(9{{SIv?oD@F{@Saj<-%|<}LGIZi3ZN)6KGSv@pa-7uM z9qap-&n^p5@H_Y1`{RGRPuH|crFeGV>sNmCj#j-fGdXwi=<&X4`Piv9FA?KXf5-IU ziSYwRje(x!xv4d4)}DUzP}uUzMZKcM{Z*}_p!AkZU6rUTXID~C^(NpBaRVyw1kk9U z=)(wQ;0I!V61vf0F_s27_%kpjMZ*PEn{h5GxQoQCG8G?$(rr760xFFt%8E%01;s4W zWPwJC*9h^Vr(33o97Lduav=p;4k9E_|H55~EKz+!^WAsDR{qgfy=LSDf+Eo_u>345 zmt~dbOfKfbEcHX3ikw7F;<&FMn4KoQOruTF9Q#(G$2Zi4*?A5&bdr~al}f3zqgd=I zQBCO7o!0zHv)No)CR~}&3Zb{AjCsXCfuYtUmQyLABFps}wRWYbWs%5OUqYd(3d>A~ z6_t^U{xMwkC4#2ZTFXx0QcP>o?y;ma&HXT>)nZ@?N^-e;VSKvURbF$&)~A2+K+&)Y zx~0g;#Qc=}&~Lie4fL#8clPM(Td&#m`cto57`wQE@=HNGbN-}o`dGQTCN3qrue^Nb zwKul*=>*{^3zbbn7U9mr)Ch2!tI$@VCm`vo9=?rlZGdNwfkw##I zEWfJJjt#INnPy_f5~!*%2P>SdL#iFOl!_{*aCF1zfhZ+j#A!LcS)rxkY7#~MFvltY zzfPwgj3Lo?_n-gX1ONC)60OKW+^E-8L#IT_2|=l#!rKHYE>s(2eZ2+R9)2sFsb@_G z#_uhH)Ujv=X}MgDd`iZ7xnOqoRYglrDV%uG;zEspZQ#XT+ktP6DED^~de@3M^N*bP z%3spzrE&3MAD9jYS}v19E;CudgmxH3En0LaVKOOPY_H74Qwwg*q7*aU4;@Yfq~36%mjWHG9{HD&2?2xeGi_9wi(fgq%@QoK@Ww>+X!mJ z6v&zFC+!cN>Au3TQB$NS$-_9u#^e&(IhfoGeibt8pLm5HUDrb2qo_tun&TDCFq~F{ zUG%4b?@VVr2m;Cz2})$SokkRs2~W0yDDe{dgCGp)U#hlTEa`@AiZ!7_D=ZJLMF8$XbpT4X)U4t6REc)l^_(prshJ z4LK0&0K;esY(hbPyMZ;E#4s+*nO9Dh$3dtSOEfc{(}vQ2%Ee)(sQk$8A$ox7Xa8Da z+MMkA9|DnSj!1-&!R-Y-5MwBbIBSLAPR=u>a(L8BR51&19biUw62}x^bI21gA-;@# zr~$qb5{$@<*TLr(c#!%TVFKMN=#xd?f`CBDv!2vcTIB%aI7EP%BU3v-yEPA1QNBvC zg{~MFpCCqYDBo9gfw7rlMjN2lg4Sui>XrztV2F}Jk_2>6G(6$eI93PJ{|SFGULp=; z#hi--b{PnfU37!;*tpQ6X6k*kRw3C=zk_E&@Itm4qH)=k=d0*P0z764NAwjq4m15F zZZ%?neZ^SP0tdn}TCyk%glGprm_bXN!00@zzlTB%H2zhX+kpqkF{)3*WtxClVA(Nl z$vphJOjV2m$PUJ_0CKwEqg@Yu=#(1eJn?cq5quupUbkJK6u4Z=c}*0-Vxf=3b%6p) zN4~wIvqXiL3L9w9kRWA&Qwf|5 zi|w`#C83;tgF@w9jJl2aKG7Qn9wkLpH91&yzy?Fg6*LJ(p~$qyGOrD?TaqzlzEq`1 z>AM=u4fGZyLJ=m+5>PBsP;r7Vi4s1J^*nAiWdbvuvKC7;V!Uj?37mO^!hJkTU0@-4 zJf=AuQS{FEIEWNQ$v}`|-lyyz^~v1mX-SEh$ zL@%Tjdvn;1q^KS^o^VHEXz*)B-;Jz_OsbL> zm6Xx66b;w6A}|WRT~Smo@Y&5{4lO2nX@S!uAxg5)56YF!<;A5q<(tj0Q_*p@9uwN9 zViKIC9DR+cgj-3%{i(Q0dB%rLW=i~Me&aPk@apI5g)-d4ISom~TGzMZw)DC0 zoWj{)4!hwf&!RYm>b37ZPf`R%5qDK6o9F!nND;uttdaN)dqppj%qxOgw8XzGm=%? z!jxyGS!mxA!2dze0O8rNOsO8GIS%h>mGBbZ-QBk^KMU7aXiCrvpt zErwYz;h12UzR(9#-3$hN5<^=PNsMD5A_IdlO_*&D>j6ec#G?rCWe!})u;_saIXg~U z!SNCwfW1N~g$EBiM}-VzR}b5IL-BxaF^pleR?zz?8I#W77c3MeeV zP{`IeF{DgH$+hNsGcHeWV$kweq@uj#hM}d|1Bqv4LaY;_4#FVKG*b)Q0DQr)Q>Ju0ro&FX> z5CTH0u!eG3Sel#V(ex}uu(U^<1aBKx0%-A;H32ll9Q`vY0uCQV z919d&MCCBeDY6nE38Yg&)JBIBm368l_+A?xvXn6-PDvZEy>@m{EvOvT3X)7eP#UgW{qD;SJa9CY;8JB4Oc=f}18o`wSOTP?-)x#X zB?&OI4;`C*?AW|sDA1D08g-SH9sEPtEaD)7Nk$^ELbsBhkfJ}zGdyDw5*Q&+vU(p) z4^Qhvf}Mw?qDL2(?Top@Q~pojA%W0KWt+e>L7CfI3L|YMAc>tyuN_A+u03El!uo`f z;8FcoCQyq0CywVN#JnMV~6jbN7trd)eOl!gF~( z{@u_1*~{N}^yWPODywg>7ypE|&hL)CHH}}p@lS5gKRtHq+Iye4?<03591~_od4P7w zn2>rL!-ECwNvOkANyV9`t)a>6eRd>NCId*XdQr1FS0oW6WC#+ zUk)$krL7A~oh37emnuOp+a3-QBNjqh0;$)GXnqAM2V?w848Rw&Ztz4_DYi5WBxnu9I?WTiQIOd$5Sfh#;u-)yYlh7sc9diqO7D8Y-Jt_vFM;r;*gRiM^RN!^dO{CJxyXaTh;g3dppg~*KXv$#&Q4WoqNAK z{=NHegD110TDa)+qG%!$bg1Td+A0K!#{d#$g*yj5bp(-Aszadc#-|bI$Bhe~ z)zLQBo0=hKhG6uRuDEOK{-2yryn>~=ltsflQGsq^cJLe9mgzaoqbHZ1I=mvA9h&KI z^c*eTHub;{sQ7=2xk}hIqWhcoH~r(8 zr#h!9RjEoUsSG4Bfk46_37~?akw&z=DZL`vNXzs%Tok2SG%c4#1SDxt22sQTjR`c6 z3WN~IL@IM?9!{P4pT2Q_W3PAr(SGi8?{m+?Ln^7NfB5#^YrSjjcfD^_j^#;Zp)G54 zIl)Bb4f;-+Dt*umjUF;(?;3TT?c9fqkWilhq^E}kMI))+di2uY{ihEt zvzzXzZ)gAhb7bq^l!eEl!uT3l!c9|(u4>XEjSf$g7l`j_<=0gBC1^I&_LWojtjJL* z!IBCwvql%8%2m0$D#ZiH1~t{9<5AXyqF07t%jyP`d-VDlsy4Rtl7(R{#OgXOBk@9$i;7PgJ8u+JH5gn_@cFfL2&EkeY!M zI-o#~Ye@J$(xQ}*vjXBFOiJj>#JrXUtzC^uN~jl=X;H>hWEQ4xMQPIX9R-2BuuMCQ z1DK>it~RGy5ej&Kn{<$MiaXF8H;punDb^F(scI9dw+QAig@Ik(Ogkqw_YPuGlKjI%fTY|eqlH{)M z5c0^zcRg6T0`3Pzqs`oe7i2P#I&87#k~A-RsQU`}Vu)duqZp_sVspq#10zcq&0E zWMjjQ41QfeaA5UNElVLGrow`L4UV=Z;@Eb~m}*nCHgYtx2;ZkM$SB}S$vzw*&>DFi z1_THksEKkZ$cZ5m4XijkE$n8vZ~!-)J$h!va}9e0|0R{X-PTpFy7XV3`<`nyXuIQi z@+#ViA31vAkqu!gTof6>52`?5-ROXpMaU&jVsv0jnHOu^iQ|h>WK<|WLLk84*aLb2Qu$05a`#@+6j5{VMc}u*8PFZ2; z(uhJXAw5czK#1G)aH&WxEz{Iu);rOgob@qcj*DQQ&jeGuXN-&|L5PE+v2T9&)U!Kj zooS_~Xc;u3A&6vKR4%9SNC%A%SXmnzCE=9SU_)}xL^qrODa?^z;h?!FG~snkAF7Ov zvA`KJR%(Jy4pyEHMNrwCq-D%h^n6u({ovK|Lvpc)6cIMZ~5@9I#Dm?Z~2c0r{79A`DZ`# ze?-~>{G&?1rHnqgs^ytfN2w}{!UM#1OaZDP#mSPOa#>}jYQxD()AA(Zwkdf8$WWDv zb~S)vjwgh5tI<=f@R$kbQ;x#@5d|0+;=*EE8=T$ftaa2mS`MD87Vk{IK0oZ@yPWWMHEnN$vq>}Y|m7((IA94V$Bt8;j$^^@`=qS*ZMzrs*#jx!yuTe%Dej< zg#hGhazM69*3AaSst6vZ8PbP^$_AFwCOxClRx#KP#85Ju)}z9w2E1n}g~~$K(*?2t zXaUf}rE^zO?nLv99z1Y|BK3ErxvIwO^~cUEw{68OF>bDNfA`{LH$~5XYva)$o_YEL zDn|(RtAypKn6mI0p~qUJppP)$YnNG6;F4#lt+Wl3pqoiaW~ zy|CZlC}hIORn!>M5ww_svNwS>7||P9QE&*=j62#EY+iNfniDFf?~nolLiC4VcO^%+ z>7ki6r)R|_Es6F|22`eI^iRs#*0i?JPV_YF_mh5vUUM{534f1L!=l4%gmLENPJi=4 zM*Ey6wrPe*nyQ5sZo0GGI%?>NVobKvUf*uH7OSQXT{3so{OYl_@T*TiwMM}eAR$(I zvV?7udhgLcIr4)wDCX;w zGcAki6APDzd7Njq}7hh6;qO0IB;dPw|n&7W6E%^IcAf-rq?;p@*1?QTa?Y|tAj zRQ>Sc!t56x^hc_0_`aQke$Ipt^kfMzOD9N9i>`}706U$89#OWwK59CgYC(_DX|1z7 zF&M_ur4t%RE~pA}$=-yXAfv-UAj(jfX<4WuFs`T5C!nW}F$#zo;siSAGv%}|Ag=^9 zu98Bh&~X>UjUpyU&kRJ({%iwczf@uLDXUkFbbLn={xkDwqNymEZ*3bsbT5)}5iX4k_|uOnTbqNvcj zaBSh=fh?RXl^{`CYJa0MwZM{%oV92nJa@ik8&y3E?{>m&w!i0wi)L@S`sm+%+cz(nN9V7rHgu_JH8B|`zz z0kXM>&Upr(9`u>Vj!U(4FEtH~LYrn4y*NKLG!{mmdEYnheny+@wndUq-1FdKl%uz% zsD#Wd$EBlh8o0;KAeE;(zBNjcje+Fds3>Jc8H#>yw7QW~5U?FRg?J&C#exoiP2i(W zVcUzf(Lrm6;VaSuZ5+>`_@*WR2565eLKM=#lQwpa9-icUP}D3K)T?Xopy0D82e>%c zPOde{2d4;}aS9QMD9WTVxlX6itkps-eb)*41Fh4Xqm@_PfPx-38ZIl>a-*nuw-FXb z@A;GMxn1GLsBw{3j0|&HwbbrND~m|C8+sbFm_w_T$F$6I`w|c_bfYR$@WgRvX_U+)bZS#c2yc1X(sn9hik7qqpppQUVH7L? zB*-ib#5qbI$bU75FgR4Ou^VIp#$rq8Qq{R(o9mC9`|2M&{q1v10{)s12BBT1F+)*f z2sjy;sC;fxPzzC(DvqH|wA-U-u-#`%a~(OUn$@7jCsjD8*0%%GYn6FQu@Q6#4Fc$z zQr^Iw}(?LKSp>9)5KDJ123K#cewbL&xLbbVFc@ zm$LG1xSjz`G}<3j*6ZALhDoy4uV$Od?QgnLq8lMtujp+j=eAPAb_gzlE&=5=*~5fj zBIrEyDtRI4gIZ~#@~s4Jktj!2&?!g?$^trMWh$+xbg8*RtA*~es^_@h0N=u)oUK|K z3_vJH7Gat;8(lgI#~$0RYFdRR6&t$2=pc^5#5G*cck)E|P9v!+JI57XmTp^)*6DV8 zsi-Yw>&)r)+-%)3qrpydmnwQCZ#u*EtdWI5#4Nw!rIt{HfKl`Ia9gjO8L!>ybei%y zKC9GhR&(e6!=XkUKJvMH=)-%i4N4PkH}o=1Vf9^8l@4iJ4UK&;LTbsRvtd76^`l;| zmk*+R_pTYHrH0;yESP4%k17|Gu4)jKN{JDT0(7p53P#Fr4yJQz*Wvd+xb?+{E|dU- z;C*-)7NEBSXb4M1IFdL=ARlE0>ZT+^^F=c_6;E|R>p=*OLZ;(-lp#vSlB_bJ)1%P| zG`R_>R~Y_KtN`{yPf2wki>)XiwX_BI!QMBJ2Nvg zw2d5xFt3@!g_NEx9os5KLlGz4g?7F6|}z54MZPmk6vSdL90g91q=!W=DfHOq5YHK4J^gjC4| zLr3I>X;2C<-R5X>W0b2eoZVhtuvMEIHf)UO=vv$Xi=~kFh0y&I(i#L*FCdJvvTSR+ zAAjSC6ST+lIHPn?ikw~mjd@iOX-0v=_e@$<+|3ylfs$^sNja_`#Z}RN&C4#CY_UQ* zc!S7JY-yDKPIhpld2b7hf;LU2|XD`iTffb5m~yH zMgheEhkLXEt0VzUFOyvd^c2wM;SjF{`@YUn+4$B|FiEvwn1l)V+MH9sG@^Xi^m!0N z#fE^X$9F%LS`l*Tp%_v77$26_gUQZQu+f(MIbPU#U`b|m)m{%1=3OzuiGqm`r zm^9!y4&m!Cj{os%&z&3QTrVjrqd`h=FNa*Jsp?d-)7x3L(%T*=CKU^LcX1{!3);n1 zoc#EYUB9?U;VBD-W3!GOab`8oHE8D0K8Vt&$g5n~v^EvhQm~={1fnIRlmEtO?n2ULHLOpkeD=82h0L`DzqM(8=w!_o>QV~ zBf!fVj$OtvJ*=?MOsm;)oZ2WxG4QlM(YP>3CJoxe4h0G>2g4|GsZr@qX}zkPm~F>N zGN3Bw(X*RN%hNA8L@}9Q@o1PSCjGc@XLR)f#X3c{3e61Opw9(Ubyt1!pS|yM@BXkt zfgTI2gILBW7|?nvPd$x#8qgRp$V z^&^4Xti}ZmRkk)#k*ePFuP2Z8wC2*B5(PyV>6o&kzlVE~C=DncxOzE?N|oR#l}vON zMbWeyo>lMOGqY>X)$0`g!ef8A_3d;s0_<=dd(0(N;gVP21gdpLYeru{u_Om0Q&g~I z80cUnlz3I$rizeJQZ#V+E^j4*Ah2DI*HP(@VOAanKJp%p5~Nz_rfyQ&&~2v|hODLq zHldJ*GQt`&tor?-+w9QZ^&1WW-O(U*T*LB>T;v@^F}a@>5l%{3+d>st=y_hCCdsfD z`+B%F+TMtlUj5Q;+Y^MO1_6DzW~)sVr?iBwhrPbZUD{;+RF`r-+%t2bYBp2N=Cpq6 zFTMF+Kl&v-s9jDm$tXZ&sVE3g2vOyUM6({3TN>3yVl2S-m7`H^@vo zwHug4r5cf-A|&@@_qCQZ8CoUV(}w;0yQiaJp0@K!L!Zw=4@d`+ifI>RMXSLb*B$jo zmSvZ6TF-Gj%8ZLk&0WiWStU9UY%n#~mJI*3L@|B4MAHH70*VNl1`dT(J~p8wNSn99 z6(d-N6@E!o3%JNkgri#ZRM*PUaIIXOCuuA%EEP#cR6&V_Zad7)r8JC$yM*)Q=qRnM z-E4{k(vWm2KxJX-SVAhv5)kZ)RQG*%s!{g)mg&T4TvsOTRKnteG->h{?K6wOE@8cl zQ7$wAh`s9Mc6 zFE1JFtsv$Mr5m9S7n{}3{PDYf@S!_jc=!b>UO`x`!1tuDUSTE@j+caXC;(&;20cMR zGWDkGY;9~3=Ipj?Z;)CBOgzwN1U0ARx>dl&ftip@%^v#U+VdA;mhP_bCif+)(;oJUJYXph(#d1b#C=1UiJQY44b(S?s6!?qO*4z)cA0mlJ9LB^owj2R&6-LE@RV)01#J(J z)V0l37~2WT-`j;b+gf_%ggZ@NOXtmYJzPr@1&^K{k&@JDnN%^C_|t28qtVdy8Zf58 zttzy-b4fys>QvA9AZETVe)NMsf8?59Z8w^}W0jH=4=xPoi<%sHQ{l;(0f3_WWxLrZ zc1&|EO0^T~YToToDlj~?fs$C$A>Et%XjV2Y^TL++#t*ks$Fvobs;su>qgCHWpEC8F;6xHd?FpZIfY7z<08>$z$s1xd2PcZ) zyJVV!->niVWrRrSFsW)q=#(I`Mb$UBx29F6qsX-h~6$^C@j=sOCu=dw2C;PXj|18MJ%u3 z#1Jeq2=m2p=s2wkMvIsZrm#T;5hgrJ`kIge;+!*x(6KlDm&4C}`WwS2X&YtSF#Uq^ zH#RPef+;jJ2Imf>N{S*BzyN-zOzVf@nNypbSIcGL7oN%Mnu2Sch)mb)a&r*>)mNVG z!yl6(Y(a$r3QLMH7HFr83D>jIl%-WQ+3@l@Ti+T|jk0^!#8p?!I&LLGMxTFXc0%Q} zr72KTZ77WZ2v=h+g3_-knH9J{%qdstlPwM0WT{k7fe&iwQVb2_JeaIN;?$T?DU^m2 z;CSIU4i$4@0ApU2Dg?t)6d^~haznFIF^p2Hb^UC3u9vCJ0+G5(MtusQ8mKJ=0WlLQ zr)moOZGy5?wV0Ib&u#>M!z~OtgKE|4XoFr_H=0qhS*oplOUs95;#>)KcHGXaGUx|o z0`mPJ??>9i@|;31XV!7hx7;a6z!TO}9Z6QE^$=7=^?PBn-2$d}>?%p6j5LEtSHrvf z)*H6ZY&`$Bj|?@oOXDT_kZ9tA2EdWZ3BjQv)Z{a&YXqn&i8M1DM$V~G;LN@3@K4%v zU9SpW_@_tPH(aXU^M!{Viq7QBq149hEZpLf50Mq<1jz{t1g0!aT*t}L1uc`foar{N zxO|uEq~V}|{#Co7n6*^ct}sxbO5ROGUx{KKEn_7>L%<{g#;ZW3R2{UQKq15w1XVp0 zb1lhcBA{7hqfA9(a1;h;`zm^Z@jp1vaf1$19!9BWK?6o(kZMy)B`%{MfBh}zzx6O} zKyIKpO;w=b@jOXw?hQm7Q$TbxpF5h=aH9f-<#6>5R?j#1ylR)p*>fi~&B;XHZCv*9 zLsdHB)2`mH#M&C+Zl~4o)aKgx-bBlwilq``f{bRlo>qs56hT^h-IArjXxQ}HWu45- zPr;>t&SZ)nF;#h#$#r^^v7mb3*4tix^e^vYg_jm}Q^ge`EF2ZMef!^dLtbU^TYurpANw7{Xwr#L2?m-Fj-n@= zV@f0ArY>94R6=8Ho1$VEmGjfnFTY{$(wv@#=zsVVj@bZFSBeqBsx^+%F*h78x=@^i z%v)Z{VoJ$%+Gbe2N(#%W^!rqBf(D$TEVV=?V2LeChag;DHGLDU7pabp;G7oB0urMA zN|;kA(*m8?ytz10MWbXpbTzkP0Y%YJWJVZL?qPLCV3VS*t{6E1R2%iBk_xM3Us&7d zw3}Q>kFOVA%QQ~L+1_0j?P;1KDd(H@ND0=@Xq`oqjl$>88oMuEm}|#MT@15U=>{yZ z3xjg4?$M&sbN0%u^OiH|7)`2u3Ek#NW*Iy!QVQca#Xb}DgQ{>sCce^0ow{-je61uc zsWewis!QlWQ3Z_4D>~?`4n{r5IMIV;WlG4;a^Crg_v|{TjGj7~P48-5zBEPaZnzqS z7(JW2de`vzD9KW);o8$)5yYnFH5!dDj4@#XjuKj6RG7vBmehwXTiCVKrjHqAbY2zi zS+JrA4GB`gzTmQ+tCNkT{4G*MQAWy(x8Rw<*nL2HxANjH%yn0di` zP@E={6Mh^AHivDmZ9%NiF$qynfk{a-bzpX;CaM|N+E3i}ifDKy*rD%(6oMN-m8q7M zq?u-N%eBsh+1?pFW!7MG-JhO0eX6%|z?^6rMU-w+p|jmz+vJB{e>FY6=6t&d!t(g` z4n5Xxr`p`MSEj3JHC;QF%*|SjPRchkHL_p?m>FEv1nuuI(X3``0`~ExFe)pJXfLW! z6jD}?MX%xbah7Ym0f*9D9fmn&sbBoW?|%7Le|KfVFLK(M7W`!tDz!{evkZ*`V9R(g z+QPWB_LJ{;>+9cktr2WI{C7`X`s$n87ApG|mF;w*!yQq0^M_u(X!%_6czEWV%Iw^;cns4qwcRbYH*HE(vloeYJ5yuN?PmR9 zp^X|%r@GK9n+;>a^)rhA9>st(BHSn}&jcXg4n`F~z|FzQ4+b@5E2{bu5tOAr$!_`2 zzr694zsqXDDIps2mbDg^<%%+o!*Do?H>=WX&i?kF{rcPo{p5M^=gb!P54gB%Q4y!c|s)y$3zU;w{ZT@O!Q7Q19$XAY7r=nD^sN- zU&`?)%|^|QwxlBGF;$Q~ol=G!4DMnKO1gW&Qn#v&h$U)3pj?iSLzbj6*UqdjU$j^Z zcZ`{t(WvM7eiZ9|gR7nw4P$?1y53sdjzryQ?7M72=dK#{lb)tHlZB}{gKc%`Vy)UL z$|TIyiRngLW0|67>EC}TTZGr&Mj(vVP#j#*vZX*zLlq`~Y;(CMaC;)+3t ze=`_Wh4u2Qcg;`ONi@v!(rZDHvXESm61lU6p(8DRLNH&-HR`IIpn#h;igilqH688@ zx`t3Bfn4a=H86)ssFr~Stz)tYSBucB&(+FMP4KO4ilGW2ccn@&whiG5rIxhaDoat2 z(wAC2cAn*0KMw0sp}KIo!8;2x2+z1MHAVyBdmT!QjkZe}e+N8;Z0$_eTAo?n+g1&8 zcyLivU8N-;8( zoN=$JAj1Lh%nT*3hZnY4QrUavOqAhjA)O%#IwcW-fnMPHYN=m-?PWcORgZj|5@wo* z7|KcVC@RzGi+}pPw^}W>bNtC2#hbtEpso?bAEB2?P_nFC+7nd4z?lq+o{Fel!to`B zV3JXyI5w>bsPB~7C@NTrAb=jRX3YLkk(vBP( z9GO&D*cKP`#+C-*P^x4=0UuKsBE@o{vrF}6hF++JD_;oUV5Agk>L%s`0Ga9>wn+^4 zi@5tKYmq4qkAwi1uT&E~p$$G5Q|Jj?l?H727Iq^K-8V%`lOi#7qt$w%JNaKjR z&kz3MZ$9+O54>;I9Bf7NyBA*Cd_(=do2D0(*S+*zZ%#k6`LQ#1zVn@5{PByTL8x=v zYS>wCG~C&0v@F6VyPv+~mQUXH`|tlxUaMnztO%?!s8nC*dIQ}AQNU8DG-|5i%5r#N z%b}gT$1gA^3(FE*(v&%T4ykISl#+}pK`Y};>|MC%oMu3}QC614;}1TOgWamDSV;?h!vIDgcDg3KIBM1E z`s%e;>~?sOB|x53dD(<6ait5esmkH!v3@cA0{7bZmx}2S@=Pf2K>$M}j)mbZU1|X- z(so{fN~K;}0K^b%rm{Z6w6Lf$C|eRhky9e$v2I*w6XvD#nI~>8mB^H;7id57W0&Nk z`pk3xeB1r?;T2q&e?_(>uaoY>;F+`OM}GEo!c+#^Ta;!mh|Qb7I5xFqcb>Xq>}X4W z@w4nb@BXUyAd8m&k=?}D5&GZ9KJvgP-}O7E*^$5ci<|z#Z&8SPUw!m#Z~fB0yetbh zM62xwK~Ia-bTudz+r?;y&pE|#WairXPSRTJmK0gT6amV`NUcR^D~zakMK^@|Nu1F$ zOF}v~p1SX#e*CGR_S32T6K`B$!GQI5wl{KbVS0+wHWo>g$%#*Sk8eu0xMb4Fc0U>{ zcYon)w5s&z9n4BpSy14qQFYBh!!=ZELNj(RxA*U#qG(BVD|bwTjxOLRZ3_^WEA&D2 zT+T|$XU$&ZhGRlOay=9ZB!)u8KGTh?syT%cX~v|3Tnu|8+FGSS-#W6mn^oY5as+IF ziA%z$RCZzFNFf+awY+8fNXKB;QiRI(+;nB{%wxLw;;_W8)%8~tg}wW}8}GRLq5AcT za&ujO={2wZ%l9|)R?DO!=;(v>sXK3x2F3T?b^3qLKHYihj}O1%EIa!*^1t77WJRHZ zmp09PVSSS_cju|C!z-`3`8}s^`Qn}Rt?$)yLE()hd7-=39BotGom`05&Y`K>=(cwI zbwuaSp&~-}IHmuLs+TyblQ1hiigNL=N9ACW3D@znVPfsMXvkduvZY2A49{Mm1)f>i z-QDdW4iSKpVg?{cQN5y@RB_`vvB0YO$fN9a}fu33}EUoF8jBk6BQmh(@&G z(E2VdP93^($+guuP6?sNarvwoyAt897u-1t*QRDtVMCx3Y6;`BNSP6{j&*G*Rt~W= z9YS2_q@r4olsXvllodw6De=*(P}HC}YQpwWc(%?2B~XPsP@rUaDfb^`j@Wf^+ePP@ z6NsAj#fj|7AAQaLR9MG1ZaQ<<`+oF|-}vaw@3`~MyKcStfgih;mPCKc@~duNW=Gz0 zKV!Gt`HAJ*m;Zfs&6qw&i#~DnReP3C&#$cf!_U4!c@I0a|JK8Q_-B(WecSJTcF(PM zox1Z7`{u2G{l(kf@>eGgvdugmL90q)ZEG;fnjPQPgWitb<0D97T~ZU^&6i#YecN?18cF3T?guLcA5_ z^w4YjWiJJ&lFpt2Z%`Xmm5xRjX2Pkblvx=%7g=FCE|r5(JbQV8;`0hWs@7>DHchp}!^7+sG#e@G-S?@pGz3JEPJ^b<0>?t~nr^Z)8dV~JC z{pe#SPA{)M`@psLd-Z*HzlYs({;+arg0ZEa`s>D5*zNV(mAOCt@RjV~k3Mzpq}lA$ zy@2_u8mXb0Tf>-OcA?cxtuY*q3cEl%TM1ONMNcd5k7)D7+@un|tS~M>PcB{Gu1X~= z#LU6njdFD1_z8V^QS~Nk?wU|cP=>?6upH^@E$vMW8>dCu!f&0vP>;5!mX-(HZ50L2 zwNHQOi=fvj7$LW9O6Tn`-!6;9v0ITSqd2|f;>D%i9>efOr8R8LA@Ct|6hTtxiB*Qw ze4=uvAdI8Zk%x+nWEIOFO36@10A``eLe#oh!u|%czq-!RaaW|bHNvWss~983xH~r-7cI}v+qh&iu-FBR)+8%7TCnlpT z_M443O!QRbS*BzDFkj!=nV+7GH_!I^sneY$1lU-ZU)t5`ojP8&rY81X0trZry#rLo zS*jXR{y=Im$a#0dEjp$IhMVf@W~G@uTD7B(D!VToYU0S(eqc9Rj;U68Qm{H5^lZs> z-5JD|>rZvfJ-a4sO-m`3DhiBIA$EoV9R|NqF1dpkpG%ThE*oY>)v@*zeT*ap&7E_L z5F;(E=eFWRbf=n%>45ixDeek?x>Dshd0}9giVT*^bds6kbB%*@H`W1zWLG754Cn}I zQ4~{V&#Ed;Ggmh#YCZcqZ)by{k!ydLr{`CrcYF;~yx;n%w-l*LaOvVJ7m8tc=db@v znya_{{%=3~_{m*!U9Jh<^5d)Co5%UibANN;Q^^f)|FzFvvy_#${iZ(noxl9x^>2OY zk9@fPxT5^GKmDTv?&oi5UH9ep{wgc-hv_2c~NL;Tuo> z)Gc3{e$y}6p8Hcj_rkkwIr{3KX0N;L;K$#6M{D8#wj8~^cWH3!Ox9Bkf1&mfhm9;@ zm6oQe)FHqGkp{zI=#|r+HFW6=ktO1p)v{KayW2L6 z_G2Qavj9k8YV*_G1AAsxmi(%S%gQjD9I8&0Gy}nSyn>La!=1p?EL*j!I>j^z$~W18 zlZ?g8(4=NpfmyvYj;A_4?M>OUQK4T6s9Hhcmr|;(!OmOP%Pgfbg8~Bs{aHvU0gYaQ zs>xb%q;=462(4M8Br_LGD;R}g#B!!aTej^G4#?@;^2Q(Ebi8=x&3HjWo8L2ClqsP{ zk(a$XGtN@2?>inZN{TX6XbZRDHTJ&%K|sF0aq7>1>(f`YiY&C+zKD(g@*BT4TpLw) z{OMah^1-}fPrFBy_y4*Ezr8wl1l7leEWy#i9CJ#d+Pmn9=iSZyKYr3`sGh7%Nz2%B@HN{+#Qiji-P7Q5hq4Df}Pqp^#>$cifv+=o)|2-8Ho?%6U9mD3a zEF2x%-0Fu7uW4%aMZ0a=ER(QOIFk|xB_>iKb%5EwydEnbP^L@kv3wnd?g{_rQtmbu zxVXm^aBXuZ6T-H+B0bp(#T)BBX>g;%K$~rtXp*Zk7=xH7r`#c?z@Vr_JH@adD^}84 zu{6VBLQaD6hDkIXB$-celR! z&1{MtWX~Ob-+{v)e)hiKynpLADSSr#BFaUqD3)y+IBmd-un$m8!lIadD+r9#&>X3> zB;DE`PS4LBf9Q$jOZKKa!}YE0E816l^P7)5hAUXXYdXrAYC|-S{sO@t#i(~JHf%@D zrINMf>KG%f3%Gw^Mi?Vzx|GU8xP#1~oVLIzW%{^Y)a9Ka7(U2iIpI@Ea$HKKXvl6L z1msNU9DOM$<*3ZiOab34Ow^6y(&k``IhIAyG|Mu>vVd(tR={WvEK1_CJ=x4$TUlE- zyOWC(Ub!x^8rDmWZv;E}C=K>3FQ{DaZ3G0J`Ws1;qF#gE(+>MX!ry6~Zf~ZIxbHM6 za~S8JJHI^NvD@uYMirZ~vBTF2D*C!DpR!&$93`W?^UT99TzQ!@)v^>jXZ(3MLq#=B z&jm#oI#&jsCEAq#CVpw^a-2@1`1tVs5AT_pi7%Xt!<`5JcG%h7z3#S~9{Kh&EK(J- zay0@&yiO<)3xC?_ZT4NeebGYuz`kh}E>+BKSxiGzE9e|i;ZUYy(w8EYbKt@>{#O&d zHCznm<+#$Q2v}0)v>dw@!UPJzfDeAF&Q$693---;idaWCy~+|@q0fS*tk`<`bUG?$T9ixD*3#6Ojk9y@iBVN}ne8?d zPBGd_D2+DU2K0y-*iC28ug^?Q)eVgjv&f6ZT?;{7RGYn>O?|y8Ths35@n?3ngyU)p z^HX$i+cUk(uAF)7k&~BR+*r2kvenqUFi2|e{a1hYr|%&kt-SDw`tnyjte(Vzz30eH z`loLG=&72${Z@)G+j13~lEZ-qt68Wq=y^%Ab*Z_-#-~ArDT*9BMGgUXXXDvp^Nu}Q zKl$x{evX%#J?AaG{7QSa@zJ08t*U5Ic2m)eEJ{%|Y&#te6@xNde$nnO?#&`X%+Lce zC}$N^xKK1TATpyFW05x5T2kS{3sRjz9|xv((nwRM=Prtz@>?9oZNE{Z5oI}zf-20E zw6SCblRPSl8djBBkWLEG4N#I&$!T+P&gIyqf*a~wKngT3Fsr9v1~bb_LIvUKc5Lmj zOU$rW_Nv&3DcD<%7v^EdQyBM(VJ~lRQL~fJoSvO&O?H}9nvI50vpc!Awt@MyA~i>L zk_N3#GtC5T#gkjgEuZ<|WAFOyV<$Fh#Zk?;KPn!0>gms%{RjHk&wk{u&n~)KntAS& z{ru6#^4{7NS00F#-ms)7%l^d5iubD78&9$CefZw__p6Y|xpzgmmidS84d|D@aR>YI zf4#n={PLIX`x8t8fVhq+84Q(R@z~N!Z>6_5|Glr7Oi2|+bu)LJwMQS=eE8TiPplDy zu+6&NY+U;@uk2nnOVx-{v<*yVv79Px%g#i^E&5aN*7%JsSp;1$iXP*Y=q zK0#w8zjSZAR+9lmLC;c5rdu%Sk($1>^z^OAL@11$S5gB?m6}*slNw@9G6R4m0FecS z;yOrunrYEaF?^L`tjW;agI2a`$vzO2mZ5D%K{5fwN;5G}D^oq4$s)=!%QCVcAaDhr z_8N1xVUnsA>#qsdXhS1-u-?3ASJErD9?Q-SqR#Z}MBWPuU-fZs+pyHxNr&DDO4B*L zm&wA|;7&?Aa#XiFF69aO;Kxp9<0TybZ1=W4^OL`$dG7IJXFmA7PmcfNpS>YCP8YmL@ue7SQqj$? zIaRkws7ehEk><8z5ja;YjqBRNb*~%0%U{3owQF0Znh8tMJ;%;iqU%=o;=NZ~x@29% zkA45ayZ-EHTEbSt!$ozPQk{c5$BK$JcT}#-Hm9bXB#JfNvOoZb$#04F7y3KdcsPxq zXqIEVAH^jYqK2ktm>JeEbTGDv2L)I|7{DPfQmHkZt_CP+!O3-R4QkqfGMHELdBo4D6yJZr)$^D zoLN~Yk6jq_Esvn=L<7FkR%;LoUPoNjg$_(z1o7l#2lrbgfBd=i*6h@izxjc1s9t~P z2k1Mz?O*@=w_frq{hg>nd*G23orVU06gcZtMQqpK+7g7gJA#h$O67aDs%};;( zOHbeZ!{BTfZ&xi7ljNb07KB*Thd8 zf8l}cm;Tz1Re2Z&WtuCt4`+_97_41My7+5 z-kx)Z-paD0_0xI~DV>%}xJGZ<_M~#`_zze1?yH~KXzuQ|&|E0voDB!zQnTfmgr&Kl z%`*^dDVuA}cuC|Ke$}xj++iL*M#pv$4Pk2#(f&?+;!bJ^FlByDP81rYMGKoKy7#o$d+- zv5-hM4KUCQi4W1kgt4Qk@nN~T@#s^3|Ap-XE0-pD*x%MB_p}b(&^7Z?HA|@9nw`Ss z*5X7_TTdKM{6Z_d($PGE?qPpaNsbob zr!ngsVkDN-C(jBw2Uy4k8GsMeX$olV%Dh-5AgrUX#HXi2mPhb-$EY1;QSdMnDiCvM zD8V~4lfrg%SV29;C7G5H&P%S^`;xhf_pYBfbMuWioO$-y+dp>K zQ;&ZC;K9rGu9REPulcvU)@iqjI!-|AEfpU#`UxFB2ZYXql8s~0V^v|Mg3CP20T=l< zzp^&B@QTY{n;f|E;*E_hN?-=XXU;rcUi1?;@7(!+8Lm@KPTqU(cR%;(M_Yzl^USFY z$Y1JOv(us&NqI~<2GFszX#Ex@wYs3Jqc=M?!Bs*XWd*vLRFi@m2t9H%vGXdU>I#Hy zS_vdFhz`>uSLpw6?Kf7|r0fm-6Z)uh(xW&9$615uZ$mXO9;~vw5K<6Rfw(@TeJYJM z4lF8h{h^dn9W6~Er^6sL;?l9oVNL~FKwg=aqq=5RWDkGx2iLy+)@pDzQJ7VDwA`n+ zs)lb@%?aZol4)0Gv_PSisBJh`OI8Yf=^q~7H9r|d>C(#l$>V1im**29f>GpwWF%EyooQoH z{q3Lo=z3slqBe0YYk;$AaoaIdk(UXb_DFL*T1mC6=P0L`N*Gs$l_}^#GpNfVewI?u zR2%bMsj8=}1|0`HeTtU39JY|6(wN+naxRFdDs7Rp0$tjQMM@<}k>+`vsSSV|HJ3d* z6{DqPkwZ(Os-+q&be=Us4!KjXPN&uxwz z3U)J%AAJ9@uWWq-tGIjV@qc+l?njnJkeM`Xg4rSn6SLu^gJkj2y;hlCcFiT{jy}Ej zn*Ef)p}35xL=Z+)d9?zrW{$}w0zOck(x8|Pqni?%wvNsBUbJxH`3=fAgJEc>`u4^q zcWue;&{Zf4vh(MTedISENF(2{ON+xHiGIQ$)yp&*;drMB9Lyl~t9$LXxo3Abh@vE~ zmZm!yrgP~t&?AQI9Hy^9$dKJJCPxlo*#jv+!!)2EY3c#*CyU{mJYWrY`x}9H$U~m7vdxv21$E%!sd1*^zHSN^xg|o z?XutjSDzRZkAC;W#MHDJ1oTR#$IqQyYdG#0>;LlS-}8<3-H6(i=xuKjh!X|DLff=8 z-Qgxdc&27C;We>x&3;`f+DY7uEK+9~1LeI`*;oP}eF{}dof%MfQDmqBMNI2>6W&%8 zY1`p;!=H?!v^6A^`^Ha#$5iVc~%mT(7 zI1QpDXem{glc|(2fgUJE&MKJI(eK*aL`YR(4NIUF)GpVps-do07>v_FlB3F!wyK8d z8Gu!l(6Ah`#q_g{Ib)F|rd5MbxtS|7Ep20?v8X(CVI6!Ov_6lr8P^^Rx6 zsd)0aA6~hCeu5sdS@om1#06TZc`?`2VNt(r@h3ia?w{VV|K~5g^13hIcfX-vrU#d# zh7nR|&TBKxmS!hMJKLt;&I}gzL*Alg#9n5!mM}}G6zO>*9bzCXSfrxeXc*EQ3EJ*b z4F-)ijrpFHiXy2x!_lDQwTJ6F{zR)#l`N8ZL@Nz=v|x(Gb2+`V!`%vf&Mb_D3AqXg z!KMkDnsj&VnsjV!xRXvy`LuYnbqI6TrX(duePP@&K*?N}gsDmjxXX!hgf}oip|gX* zUYs$kA{}bP4HKoJ)Fwf;%psfwKA4=XfhI9#aiELI(>gJ9rzj#zaWTPxNok5& zMJVW0l}8?V;n;;_7_)*B_p&zr$s<>IfpQy+wiGo;}ik8RYii5FCK2~ zP?~JE8xxa89AQk=Z4rPkB>NWPDobno`3@qDqTI=&m2fBiw1| zKui>P6~apJ(WuoifkXC-p@3rk>l7D42L@-$e8M|y%~tochs3F z+tg|4bl;`ITn&a1r;5_n1H-6I1L=q{)V2hxrC7N6L{RQe=-N5>U;g6q)I| zQ(I+~RB>Kt+@5Oa6@^NTUX<(kk-vHHmdk%EJ9duSElRsd5#>~nWI7&892wr!L(grj zZViHbwbO3KVz_5{@xcea%fW9^TubZsHY~@hLZ~_83%C|5q1~{#zEvqywG;MauX^Qy z?DR(EPPXP%772aSK zJPw&>+n(u!nS%Q}D=(5$$Io7V&BcZ6M>kxRwk{=?91jiBMABFcxRA;MXfT11YEMoz z7ni(T&<4mR7ba1zR2Ep|QD$*;%b5Y^R@yoiEpM3M|z@(ia4^V{?ST(|S2 z81r6qOUHN_gGC8WZZ5?xvW#*h?tAGNVboYHP1Xo76x}~&Ny!8z~@xYPq;83a*O-g#n zmtMa+J>PRCr+Jq$r4IKUoz^deumI%!3OTK&xP)M~2MGSQC2tH2s0%BSQ%fgRf6;WU zl12+yP>XZVHR_RP8auHtnAK`Sy^A0X;yFPhjf2jF!dtU6lb*)LdJk-T6*`A7RAJfT ztlx0WGz>bE9o=Sykb*QId25u)k~~uc_^cFjgo*(!ItQ4QP^EYk4EfAVYVPRFgzmBW zqM$ugsCz>KG8-WXiaWUFsx{N`pl~K)Rfo3|da3wh zFD|VWI~6Z!jdmUnbhpb0-l;aBLQhvHZJ+(>LyHG5e!+S!4{2}ottNMz-Bms8t*-V) z^@ER{C^%JyQ|qf6so37VcbDI8te!v9@VsCYVt$hlSI!Ce(HD5=$bA>@-Oo<5xuwNZ z$4^{w*`i6P(NOKK4fR+{LphKuETv`06xJ?8pcXZFx=8}+f;x8bfHneE`n3chs&pHK zIXGk{F!+GfPEVSnLj^ox>M2|p71yzT^qY%LZloQo=j+ziL{EV=f3ycY|E}ub+U#uN$}H|zlYJ*x2H(N-O2CabNipx~ic=w8YT3?xs&HRQ`7tQt~_(}D8XeqAk&NUXP99}FrWTdz!{gC%q%&`ttD>Z6W9lZ-#CP%~_cFr7_6k5!pm;{Hx=Vh-F6u34KwMA@j}NU0x9 zqf`g!ABQ%ImgYJ=r0K;jJ+UGyEf+URRmou$QjM(x3Hwzxm=YSp11`~)uGOLh`+`1v zfi}68Cndpr+*X08MsTWrQDXybol-DRJ=8LZ5PJAliRr{7p6O>SoVsmI;m%zdZ8J$ zXQ#5$RMdX|^tv)Rv*+SV9)IxhPFb0*6%K+ylwN(^mGmKxz3^;~&LZ5K7FT9YJ^j@F zYp$g)@WcBb@LLmXz^=Ju`sDG`m)>|#i~`N(c`RKhVH;e-KZQQxFfvAh(eBeLP%ku) zMHwk5k zD7RtGnNe{|n_K=3D@%%%`EJWoDpAH+*_<_{a|5R5;+v`$Qbe} zD%W*vpF3?AsYrUnBAruYEwD|I6(LzzOJNFVouK{@NwU=o!(xXbnxwE`manL|4LWmg zbE7>s+Y6wb4CS!2&~PPBFtAJ$!{P4Ye8Vy7BxauHK^~Acc`j9S(Jg_5b%l(;Taj;iAOC;Mq_+0*vT*S_q35%(T`mYvm==*jt>n=4m!S9MNOcT24- zp@1bM5ex#8J%GW6hs}5}c;@$>pZSd$&pd-1u#K@nf&omlKqG_#5|Ua16kDBhsIKa+ zT(@pKIljHVtMU62p8d0Fx2wDFJ?H!O-fQo**Lvz(-`~1p*V$7?Qc+x5YZhv?QoVfY z)TxrH(_3sd8oXq#+q^SdxIBFZBsR)GA9=?OkN^1f!3`5p+|=}{WGMc^D)OB{d0j}H zb~?YdZgP~qYCsi-7tAj-R$4uJeS-s)>OhHVE4&j*8&M9wY+hn2SY+?4MIxQ?M|m)N{J7-KbV|qDi;Kl8a+SIBx|rnMRgv8v0cGJ zD!tw;Wi8K;8D*nbfoh6?O90X7Vh1wfN!%W%F zr<~yWu4d?3*)EOMg4NZeu_z1<-L+@*M~@ybI?nl)_|!8q0k1T9aci~ys~z=`La#gVa^V(9`aR#6Bt zydkiDNfKtOvvbWxPtppqq!qPTQKg;}t~ikoP7|-GXtuGs(V?K&>Bg3(12cz-p<5ja zt8qp*tXeirQx4+L)N|dCVT8s}`7DQQ3Iwo$G#T-I^(G99>75e7RAa{3K+`4;pd~Dz zO-6|~f-(Uc1ok!j6C}n&mnGb!9K{;0H<)xHJ8hZJmpFoMNg`w_&nX54*l zm(F~e2eOcZPUpGMk)~MC4W&Ul>t;R0@~Z=5Ivs9LEELrw`wt(m1Gm1jdetk>yxa-( zl}aV)sFRyEH|8&G-neO|IXip!U^{KT^Y-_=^2`01q1lE>-?kU|vQ8lLbL^6lqV|(&b(1RR zO3{KtvKQhhvW8@;Qt}u3Oln9^JA|XuN;zF^b(dSA$b`XFN+S}R1jVr;nHUUk+|>H< zBd2F5bgHWC(e0yS5@N(gk27?{b=Q;?J@ebKJ!oS+EsX_PgJ%fzOQ0hJmMbqK1amQ4 zVSCcS5c zKt-G>I^HN8uh1L~vm~T6p2>NThL$WP0ovRE#(Aa#v2ZaJvIIRZhuW@<8?GALJ{qka zn9h7o5o)nmI`u;O)93bY+EV-Z<%ELQO?TeanZ7i&@5++tE?Z5Xv?umcPAP|eWk}T$u zC7*b7KhG7NkU$2EdAZD|W9@e-W@?VpTlLaHo(v9Gv8PAh43h6K45O4J$|^FGn0xb$ zQzw_!x)FuAf+WIyDx#m^309%$O;tZCamXJ6`^)0+;Gi3NaLb8cKuiCqq-cJ`xq&+| zXd4127i0n7njo2P(!mM}T zA>Vi4V+{X5WO7N2o+>(&f2mp$6ptb*6+~I0D>|d3vI$L|O3W1nzRIu}%h>2Cq|yhQ z*6;|0iE1ax3@_^B;@!Wq&9jd(OHt49wfU8v7mE-7@}y#q-h1!0KY!$B z_x|=hKm5kGuHAEGngyd1!>4T#3LTE$={5PaMXe~80?zlEFZ}F>X3^Yn)!vzlm$lff zqm9b#dG9^#mGexhPRn8L67jlp=83};A-Z1Vrb@M>gi+RV;=z%DN=2WzVyZE}c6|Ra zrD}A0p{WW~vttDw_karQlpbZOB-x_#t5@fvFqJiB$JJMwa@M$X`O<~?2)P6%>=HAc zNs_pa`lXzLsBg#u{RJsr#2gO^laplOUXnh5#3-nGgcF_XRpZ!bS{W1vNM# zaExVy00QoyOKBOi2@n+7M~#OWWri^?NL<*?dS%hl^%u(oe5Q@ufm~6 z3`cL~S53KCQ=*QSGJiT4BEyf9#@5 zcXy$)aa;M3M_*X%33_R0@7_(1{q*s@d#^op_-I8fQ23ZWcm9Sgx0;gDYIkI?)YFA? z7ps=-Cm~bQ72HlQPnLV0yK(*Yx7}5zFHoyoPoGSD4&mT23xzTYca+YJ@*GjlMDX*LG zNR8mS0{3QYDNzlGff%9u41zCk7fZOl?G}0>YDl%Ntb}pStR5-8N)b$8xr8d!9ODzF zpvW9;u_~;~0l^cr@Nxn-6i5TuN{CQI%N6LLV6mU?7gT-8P2JQ8Ns>Ys;>lPMWyHH=E8_{z& zOl{nL;|)h&_>Ewht81;HTAfODXQ@GHrl^Q5g>(E+Ra8DqmO4vzeQ^7g%CQ%py^Z7M zRzj@^e;2Hq@X_20Cu^#u82Uh^)C_`|nKe013%0)6^`lg|;*Py?>TyX>wRjl(%1|uE z;id{7#ytdxLbygZ zOwlENy!{U6UT(2=!IOVkz zqC_cV_AsM{AsmlkgD6^Nx7|<}8x4g{fHyejUaUCD-zhY*~_O z5M*blUlk=qmc5*?jVDofk7Gk7{1;+YDW?6kJb)J&oqh18u=<6lLx@Dt4Ml}tTaniy zJ>>jgI%xTd{?7N`dgHz=2Yz+==;3_ZP2!(?@C$Cbu~Mi8UUKKV?|S|DS2_zz`=5Bs zE}F8eI!R;?4ZL>X#nJgqH{SDGSvOE7#>UFl!kIIY0pp08W~?mC>m_6Pa>Gg7oL4?_ z-=0IS9=PlCAI24|*Yye-sx!ZQy=ED3uYeLg@C?grUv5z)Sg2Zt zElG+Ut-+f}L*7lBop4Xw26(?%%hUfb*a9|{oble(a5qbkxSR;t`Y8+b5UlF z+VKD6?7^DoJB`^zm5_u29aTlpD^k2`=di8{fgjqI#3%(~!u-Qvf5%KNl`IN6FYg}9@R7$JMjpg6GcK3%q7&z{m-+SNDr=Mwc{B4_ebiB^^hRx>>AD`I1 zd1>at)X>m@=@|+=6to2oon^|$lp$g$S!;LRytyVNo8R-6)`?@IcmIxLmPG-zeid4t z*h!=Bq)<}Fh7qGSaH&~P4U_(GX4n?2B_xT;7FANHHWRQx2Im=y#}ZJkg1~HO8DX&` zm6D`Zra~dJCEoQT`f(&Gp0(|ACfA&EeHQuH`1t-`JWXhnD)uG@Nh8$ zAtu$WBKV_d&r3NZFJV&;uRy|Ym<(%JX2n)Imt*f!AfO5Td?o?x`H`lpqf>UF#;cUa zSYtcIQ2-|uZ!sj04~_{(05yg1OD~H!iYRGTreZ9KV(7J7D*AZX@fQ*0e58=-T5oyzjrV$pg0Z(DR}#CXpG^px2IG_-2<6)(NCMvc`k>;ROs|Ep@2rv~$6L3T_<|M?t zEWwnJ(uu8AyDrKmOje*_#hS2a9I{$h!V%L|ujA9tqA?7DMF8nl45+BI(b?RTmtu~h zx&V_&fe<8|1{5Wa5*~uDnGX*_J`!u3JofB?^!hulo$kc<{g*oqKKl5j;}>H&D_I4r zT+@cDVbf84e&^MD_domy-LS0Xk8d7Xziq6s-0+;v$mF((p{b_SMHY?u5k1>1escF-3i5qR8|m6vDDp zfg_$l`YcWR<;p%)8GtRkb_gU6bwih}lqu5jL&2fp^_+*dyida(c!2TnR> zA-M`UQz*oUtQ)RtobLzScDrT_5g>P+Na56}$wB&c><6Z$LYx$#G~q!*LlcdobCY0L z&&WlVB*4QldAie(zR{ha93<9YC6A>59ZSOSN_*8 z1gW&vTrJy%nu(=i)oXWU)9QNu)D621J^3hSaCsOhM(NVrj4aEeV^iut@zT;Ef_i(m zZrnDi&0K80dibJ1wLpknk=AN6;iY@uwsrO8*`C zX{oH|p~GPgU%=2Aa~^O?Gv<4kvBgp*$4w_rp>h@leu|zEWnQF)T#}V^bi8QQVYbfN z+SqkQLlIVka>j%k81KgCGB>18Ldj2%w3t3t5P_5hQ2?0LQuRv_7w878f=u8kf2(2Y zWU!aq;Md?&5sAC)pbsHFIh~6=E*vb_foHqG@un_R-(j**-iy zc>T4#UN5$k-ePl{&Qt13g;5q!c~B|g@}w@b8+77E28TEiL|Ojy7rvP1x6VAs^B;f9 z0~eq8J#PPF+>ZY~K`*TT6zG|Lp65Twy@g)tzyHqN{DvpF=?Cw~H++@9?SAg?KPC(( zfC>(2X(!Zm_-JK}WAC@TN=cue4Y-1b;cR9Sey){8P!SbAQP_e7@OZ`?SrEx#T#t*G z2~=JskS>RJJP#jT3L;*R@@cSTXVo4M6iEb0oXKNkEWBVMDMPql5c^K=T;?-fzm&OO zr)*lv=8_b61i4^`-T{?K|^@6~SR7-1N zyCBPRbI$I4>t1~Ah!d~=iF4r{$_?)yQ$`D1w;>zbEJL^c$DL>1^p?N7@;x7uWJ57f*v~!9 zl*qpP;N5RrV*c(2^NSB`nS6+2PVx6Mqj9>jCx8607ugRS``Tk*-g5$+8x%ctJ#-jE zC5|FyEJ}YM+P!Dn^z5sKrkJYYw396x2Epg#h2ro4g?R<;yHrZD>WN7ZQ7KAQ4JFC` zoL2xljk0Wr@ey6tC>|Qutx7Iy^d~&%2f(`#JTCe%NwreQtP(zBGmSQdH4Sntlp-P+ zl!y`LQdoe_uu%nRF^Z*0lRwhmfNm*;fZJIPK}LkxNvrM>wE9g65-IxFBLT{p=2LB8BfVIaAI$Ka(wyX z#hMH|irg;CkufyDfAkY?{g(&+iN5jS=*9Ki3}1Z*7aq-j@=b2$!EbP#>$ncD-<|s} z%{=(v1M>So7l=JFCr7(#p-B?TlhyHwwyBxr(TY?^m0AdX*^#jbom?Kxt)FDvO=$2j|vJ|X{ zW4uA&2A=YSli)RNp_=Acb;Q)(!Q8-ZBGcXBsJf#XN>XEVg!nY}1!0fry; z<>;T5u>}d2qtF^Gu2OQbM=Q5%yYR}3hkpK(b`b5k=9$z;3ze4fbN<(OWrDlo3lFeoJ;}d|``l+f=f3pd zEcdD3*N=XIXX`TJ-old{xBl{v{-f}|Kjn`7)z%N+L_d6ChU31<#~Xh>oMpTIkGIqB zT!p{mC*S}3mp=F(AEdxbxAS{1&Gp|R6m2kRj6*7vsr*H$l=6(yBrAw%y`F0rd?=)b z0C^0{NCyW@Sr9ox(6o$7&5cw4{d;3uWPO0y zIVTit;f9NzoN9`SCc+R<1Qd(|j3|KmRV8CfLmabV=__y0b);HMV$N?OQ`bx)SL9U; z`9(ZJf?!{B(LNQI&)|F(<%3e5fl1_p$P~KDzPa zyDC~-9V^wg-hR!G|LU*p)B^Af0ts|1SW0odJka1_q&JUgH(%>W{DD_zkDP66n-E>ir*o5-;*rZf4K;)Y&Ib_eD->H+_&PWF&7~AU46Lvf}f9_|^w!DAoNZ zp1+Cv+;jPQ=y87hQxE1(Q1XKY8J%gWUp{(2^5WerFaGD>TR-#QLv{V0%j~bZ@{{)- z`Rb#DG@JlkP&&z`CPVB%0M&thpguCtah(KZgxK!+>n2O(q8TS%v1$`u!oqb3Ssanw zGnfMjVAJ=}1(@7W%9Jxc&P9&ksix$1MTeFKH07ai%H^^s>w;#$0taj_@QvAK72BD@ zZdw=#l8Wgd;cLbT5Rwo}R#)qX zm%*w$@K>X|*~rl+^6n;!?KzE2kz;)FJ|e@6my`!yXCVlP4cIoV_nGopQk@X5%u^EDr6q&yGK!i z{AT%UKl|cIp1-^QJ2Ma7J^A>cP)F$^9+Q-}^^D z`S$(4e?RwTj_LkoboP0;@6osT-1mRUEj@esM-*e<`qB95WZPp&5WoJ{(W$RLp7PoC z?|%GxLfC%&_&4sFe*AziSeCB&r$e7TL+|SNH$Qvi>rZ6yEpe93cOntReac*gF+f6k zVj5niWw=W#^{RI6?3$vj?f& zXs(pXCINgreryyo5KK>AGntJHPzkDCG({ywxa>F61d?APLGGVD^sKF@o+wpE)iaB|xy7}5ZLBstrUt!(v$Ih* zz4uceIQWZa#f)!v8s`q4+4;%$6Aayc`weGae4$_z?P}~SbQZb}f5Dl%G^5&jMY+z3 zR)eHu=}|LC{@|ncjgNe&pc!AhuK4u0jw z^hp2Y@4o~SUFG+A#x4bSjS9pFd8N;mX4L}Um#L5`!Q@ygAVjTz;K#w(-4A#_j6xh( zp22XG^&;2xBF9NmnNtLvFaU-}7+*)MEFsiyw9|B?QeUpbsnap)7N7M9(dN9uq<_;q zmheBg3NY-(T?9K2`yB%G*)t}8sra#9soI7Pnm2uXfr?xSJXprRNuZTVFcFKBDziD` z-oT4g|0*f=^b|$w1s+8JQ{(HZVV6p>VKXynw&almW`Lsu>r;i!L1X4TRl25uJxoo^ zI$`Yg+$)9$LLsYaVYAT*mRC2t^(~9X4t5${%De4$Q&+6%#j_(L6C1AC^7=DR)=FaH zh+8+;&&_n{B~ERa+J5DPd*+m{szo)sxEN6-TQvmR6ttQUC)(#f@VAmwk~vM}6UIO< z(JTD=j$0<`fdBMGs0x==I-y*D6N-sq^<|&A{^mu-c$FBE!|_H+0+*gbH&kU#471qj zx&tNCX*F%zio8H%LQm+Gpt;G-E;zX&3JIq$`!qI@qf5z`4U6SqIt^i=q`E!-hHaxV z?=eqF7!D5r?1Q2q6^B&e#;U63&|VaxAk!7P)}gHFApO#r16$4FB?H_I z^c6)+;+f&KEc}0cD5>vTM|oJqzFn*m0;Q8~(K}V4a6})ON2ebPj#3U+XhLB0tE>lm zL=nI-N+Z>*tGuTu@u`LG_H|=NkDYGyJkhROZu7#ax#5wq@uAT)OZ+fy9c$kDfqUm> zra7U&r)CnY{MqN<@tHq;c%hXS2PRG(xwx{}y>`#`ik#kdw>eZZJIBv0osn+-%!fXG z$A98w!!pgOZBwf!POYx?tP;kG^z~F;V!!~cLg){m(+1-i9>iy~Ey1#ckPOucB32N< zW`PY6XJdPQKu;)_h=QzZHFb29FG^JVacqK*HYr%w09FA)G`LN4OLVFV;NFZ~BtS; za}h|>IfQTM?~*Cr!u2kXkwZ~Kr9s!Q?5$gNy>R^5ZV-!^5_<8w{^*`Z9{66-7)Zi+ zc>C7G5XO0Nd3JUC4!1rsvh&*AONS3Cs(S8Nd#qeo4&%Am(}R|F*DY62y*#pQbmP?n z&wb-@OExyX{f2V~epOJ%WSz5xY-RD1FYs2ql8H>CR9AbfYtdIkWA50>8zOBWd7^8` z_(V)Sl3AbeXt-c8mr6Q1h6x2%MO15*wAB+Wbk5M{#Q2>G2|PFoNS9YT1SvSI(nB3Q zNFu@K3x?h8dO5?3-KMJ;s@L@gHL0r0Da4%Q1Uhm|-o0dh{1oEUuVOwdi_?GxtN3(YG&dRNuR z3j>AHfbrA&zi*1XS4r9{OAmZye-;s5mYh6NBED>yt)}1C{iph;AoZBf8IxY(*s3=R zKLXRem%#*N*iH~A{V=$U>Of>3>=d;`UFIxZtl4r5-Zj`p61W(k*^3g@8)1~MIQU7h z)$-g_l@RvXgw{iyf}xMO*wR90)0GpHEGITumepUs#k`PbgD?7TAbm7aT_`1_f+DHV z#7`saO<M*{j?A~+jsUxpvkzAE4VZ?8`cKBys z|K5&k_bse0$1B}l*U>bK&fUo)FZY`6mQA~PU7=9bZO(3c=bk4X`lS%Wv&)@3_pDnV zwg#$IeXLTm_=%$3@}%AG`>j9w?7!H7H8NOgHP$G$fdQ|>*0JkiZP6+Zx&U23qQ6a# zkvehzM5cF*c{-i>1Z**Ucd#{?us62am^%X6C=fcs_z_Er=qzU%T4tEOLk<)h_Ndr7 z`OKvSUexGqh*$3|XRxI{WKgGjZr95Ppbupy!DN$rLPQ<7kS|`5C{#p3_ z(w)Of8U`;|ZbGLz=8Y*a>}aD{ z(=>{!F*7vHCBY3sh)-iTDpg>YE#{&eve_p1mN@c+b`wDrT`#@y_M4Bt{?fM5q2r6o z^}&&)V0r$GrrY-UGiMFK&<2MJDvs>s>1n-MpWHlk@U@q3AA1Y$bHDRP|KV5P{Ogk! zOMCXzK5@_W^X-nrYxz*EW@?Xq&^?8w%%^)(B)vf@&C=rc0fs zTYzBYCAxT>>O%G$K3~ItbK%Y^@79z`(yqpV~sOVXrCyu#14^L*@Kw9+>+%B8?>LyIB`D0fDl zFn;y61HXB`m?!?GZCN<`+Nnb~-18&-@`14B^h(#JZ2lVNq>J-rm9MSQyD$1kQq*JqK+|7 z9%qnt3jL%7!7$yRr-L0;o@yIOYOZ$6gJpW{$Ii}WcnW#wd2|Q}mJ})_dR~;TRE-X? zFSEON=j=aRUc52Y|YTLHxx+b}aG(2PulsR9h3|XgMJfPb2`EtcH=sP=} zGq7P|eCL*6xmhTfot}O8*Dv03?>(LvF3-%jE?)Z7N8gjQ7S^vD>2kcO*uQ?{=jCdJ z9ZJ|Ou(Q{h1UdDO#1EOlZh{FiIx8TrU}G?VwsQ5^NgeW^ltjafv5zfFmJ!Lx1XI1T9RH zqbKHLfzGMOB;H{gVj7m`xRnaz1%X#M&L{vcW(4Z}UKn;vO1J{sQ8L zAmQRTKx0ghnQbCvR%Ap5VdX3iB?C(2JOM<4aezcj9+iH$ufGAx#~T}a;0$2jDd+nt zw@iX4QN+G@oq#n@Kg3WtG`WmodZg$&k|ik6lpQ2hP`q?P)O|Vz2lhW_n1$NZ4Wlm4HYN+`j>;oYzz$_}dp#+pm1oi0K#IRA~3{JDrwaGY#AWGQn<+7m4 zDn0JY%T54s^GsH$JO$54lK4)uOV^T8Grci7K&GlC5oSXK*Ca)c1SZfxaEJaC0n+Vg z8o=@Zmp?&bSJEJ)^n{hAj8KxoTAqx7hpsrJQm`#9s!Wj_i$mB)r?&&R$+nsqzkp98 z=+r`irmq{Gaw=?~up~er2cFhk>V_c#Dvzcc`+Ojdp&KsSF|X@GLfTzA_SkV*FYvN% zkJeTXyxLXj?V$0d5C8W5?|+{v3p%)i6JsN_fiegCW8QHQUUZa#zo?o>H;YFkc_1|AV!-Q+ww`? z3BoRvC@~*T+aaB5jgL5pG|eq{cuB*Wgs6p)Pt_7VZdNtIdLe)V9;!|_l5hZHATVf= zAE-G+ZBq?_>6mCO)T7}e&Od*^je z|K0bhqgrWnyk51Jrx%**)2&-Jm6WBg|Lx!0ckeB6eXwY)yJg>qGHO5m{Gn5`Sko=* zQsnwDz7DZGmWpDKMn&6j-EPsgJJs~~ zn*bz+Yq+dPMp*xggD%KWJ{tT=*~Y7eK39J7)CCI3JZvU;s%un5fja{8eB#AC3WFTg zAwpEnw$~_Hd7ej?xuBUo+n8rlX2d_N)KGm%NLS7&lKCKwN^pL{wW1h+1~1qc1l?dO z#GA4%~ z|1IT%TW`4bmk<5;rhD(nI)=YVQ{&WccY`H={nS>sG#MQ*in>6GC_(M1cUqwr|7; z!aD-Jy$qR^f{Dxt8c>rEDSRGgF_R!LFew9DQDLjj{aqgkqi5`*W|^te+sLgffqbzF zcTNmK8UAN`R>06H)^-TSa&^mY_0n^Pk87oh*L9P~zk1L1U%l`g9l*d3Y`Zjl?(9&- z43eldJ9F{)>8o$QxiD6}xO$wv#L99nYc}3LSv&7{*G``*I*XFtoNeb{|F18@i<&Fw zM&Pys2x#Rz6I}*tq^R+p8#)nXu9#{{K1B;rRixEr;6<0p&@86vl8SL%mXk05jgP9E zoJpL6w}dy!idm5X$y_${oJrTCM8bl$K-neAlna+Hm&#TSRWN*eo^cnkhk|W#3ZaU? z*5CVyN@1|o&{dJ+Rn4H{Jc}aPP(WN1H5P#BD+H1ZnL#GR7BQnXA*ULHPDBDe90AOT zL6D3h9}kmZlun=$~Boob8KcJVdQoR7g>|^mrQT-^ebc3xZ37Tp^ zkdZY-5l;KQLdZLi{}s??&Zr7ubrwDz1X;2ALLez7uoyzP4qI$&Rz*J@>vmbv<&^%f zBz=Rvime=aF&a~UqktH}IS67AxQFV^YEU0ed z;-$7eFd!L9E-SUEjj~Y`s*0g_?&w4DL({DJvjv}d^*Yc#&S{9lG+bkC7ILT6hN`x3| zAG|8lkyI&?OR^q|0ab@oU3htF7tLS3{HiBphAyugs7lN2Mj8&91;5>fg^nbiymgf-OoSqlo|x>nYBzy+pf21$K>?IR$MpseEb8a{^oyGHVB7a=n6)ej!Q2HjAAY4 zLn_NEmCAf?nI1aT9Hwnz^^!iA0Ug_KF8zkSz*lFU`^>~0xQi)FCkWC-skGt{Ad#IU zDa2I1=2oc~!3a%c4(JNdog1P>2dN3lPa&185V2) zQm{Sf4@mmkFamrM{wQXnBJ*!$_u(h9ih4har|udA1MSH?3hX zFBl$LNAC-hZ4d-h5itNw1B{H5h|mS3856pYQMBA@otXK>6VpfMxCie0za_|KMcBtt zRC~?w3bI0_`ch-9Yz^8Xc&;!8;1YDi(@>Qq&!LPHM}gyX^{vzmRm)ufSQl*}(9X+;k z{e5qV32|S1^uk<|@;cUJQdbL{(r77517>Fr9gx_A0v+U7(8!ekoq}kVEbcM~JxEcj z7DX?N7<-!sr<|^Y4%cCNT$Tnyo(LvQm`~)`9Ty?o9Dz4aeu>3K23ZQ9-zmwS*fN@WV>yh_MbP^ex)r#p`z%8sgsFri1d3w;MC@R!=nOU=iAdgjb* z(BYw%g1cDI6$k2leX$|Pi96kH;PKIL4xOT0VJnl&ts@ZOomPV}JRsUiaj8 zzx=@aKm6tw4;*i=wbX)@w%b}ksTT^3=9=Rsx*}+qk}tK6&79o0ciZZ*6U&Rip{IVq zse`E@wN6e;%EZXV4Nv^@xBU4_pZ?kxW>3$3`|rQWf?cdDKnVeybYxvon^E9KfobZh zs!=Emf}sBjKfV68FmU_A*FD##n!(akvt%j~&@)VZs4PPZ8%=8{-qHKT-mJ(>l$my( zoKarXOO~ORb6wxJk-Iq4SiQ7@*F<-R-je`5pq>{Pii*KN&Zf=%78@X$2P2Amz9+HW0LDT10w^2yEYGv7kbk$;0wY|eMpmQS0DN1(?jdW@B7q8 zpLpQksD>g8KzOO!a%E9Q#ULq~A_r7rP^BKY^e#U(a{D(Io|OnZi$$(KVB|p9CG4zG z872WgBv7u&<*1LD1WGDQY>{L7sQLevc?N2DqlC*i+e~*~IS}m}JAG{K()@~sjg$m! z1oYIQVXP?%v`FK`w9HqkBj7mpDj~Cb<@gcE`x}?&n35761Nz5~E2FOxTa!$N%p1Ap?v#rzTn!Qw|>Y^%h zW1|Co#-6lo_hfIi-Aa;H&$TttG>sriT+h2avpiZH;cNqbI)t3j`0?FL<Op3vAy`@kN!2|3lx-396dEWP^O^n1p!@|9a}aZXdhM7@}cLRpZJ5{^JZ4d z8`iz`x*MU3J}f=_4?ozlZj&`sTDrI}GQR!H;Y&M4xB1H}kNn^}H{J1`{Xc&wq)3J# zE$T=JT&FErGNH#tRg7i$ejqZxaW4!^q&k4?H0e7OLNg8ipA4sCsDt|~Gm#KrK8CmZ z%KHe65}i?5U`pala+9uVN@v#Jy{me~o}u{#_r&XGo<_044`A#EG=NR$H8Yecx4AESxx*flKYjF7{!;&6Lx?kEpnY&c7rQy8H0JExLl@ zo~?C(ckKs}t)pXyX_JTqA+j7Oz#WT+GbniVdEb-mZygEYYuirL;a7t*D6T>@xB+`{dBOj zBb_s{FqbI{`W{78s**#f_$-eP)mlz-aoStksEqI0DaAgzIWl-0DNuqRcir~IwTJ)p z;DO_vZDWImng#SGBueTDfkaI+SRYjrB;6R?I2kOjVw4?)g~(c3?g4{kYkt#{M>CUUqUwrj@-}-SB@`frVsS;;msWQ}RtU0NqadK&7B;!s5LRf;7 zd$M+RdVXbT=T+BUb@$CredEUkyIh>8rd_X?=X-Cv=E9LA4Y+1te298jrDB$V zNYr&2uU>lY>66EgI}-!8X@Y@j(B*~qPaZm+kTY(0?59fE5{tHA=@m5(RywH{&WW1i zXLMfDOfV>3$@F$(j*ms1=e<;L1ar&!Oz-s$gvD&=qB2im3Nqqx*jPNjyqdrF-M5*l z_R3?AH^W3e+mVZ7A9(k^pMB>C#cf-b=BJOm@^VC&F^SF{II?5cc6nm#(uGTd6BGQp z`VardKfn8v_r3DKD@T6zL{wCqj@Jgo&tfwiKzG?tf^I@(No#FURmx%5QY|2d|F-Ae zdQm-cc1<IP$$5&0dja$!A2CRWlJLzC0J@q*V~{h zCK19;aIJYow|MA-ssjC`l18zhC&pj?!ylYKGIQPDk@-svRpzTE0sme`pHSsF&kwmk z$qSkW8wPgIW7t>ad>nykgNvTz8YL;yNCJutNl8y^MeN4$fSOdN3cMyk-46`|9v06@ zxORT+v8NUe9F4Yb8XmGV!Ulv&O=vO1q5vyQk4;o0wnztMJ*i}yVU5zQ)9eblOCbRb zL$EXwQGpTwI*OS{!67%KZP)Dj$#?hbh2e#xM{6>DR3pkc)shQ({p_X1l6=|sV#ftY z&{cxp;UkYcvgRar-TbEKANz%_7IaYxJZIOgt1q9wT(H%VTBWf(Cu!Nh)W#ov<2zsc zyFY*B$`=|*264Hp%0(ecj7ptQU?>WxpQ+-7SpeNWg=alzcyuV5 zMpvNQ3l)uvDJIg1g8D2^sI6d#S)H@X1qtKElvz3RQPN9Xr?u=ZTxt{yrEXB548XU{ z62qYKNOwJq&GiCmD{1cZ^yuU|%E?CAGRMbV-LO`h!pUX&=jkA`?o!6aF9L+*q4p+9 zad+v=>0sX5^5!iMzwlyFwA!)bxnU``2-%cM(&-DcNh+>iKb3iFzVEb~-I1};Y(ReE zhd;UbmK&ab{&`!oEZsiw+QF^6_pDsHFv^1#)|p0mV3#kh7_(*bxyDxr8y)a`i6;tvVd_vrnoYrb;2hZ zP7FC4He$|`!52|47810zvOLJamLQa#gmO_!Bg$ei&$*Idzzad~rAW?|D3--9{?E^U z{H{MHM9_9z%7T6nZ<(m~dh_&{a;mms(AoqE#K92D8g!c>)eTNt#>Z$_&{xQKF{kt= z2`)#^Yq%s)VTlGTurkPvZfD`_%F=998!8eK^n*+{OjSyYC8}4bKB0S0>4i!>#zzgk zc=r6I;jNP}pjWk63bmp|rEsU$6@*bX0}=Y5gf1r}HlTdwpL~3O;mRAg*`1eBtd2^%h)cT1O$d%87xTC3!`!rPQP%9MHFL> z76dxv#LHA$VB1%3Y^1Wi3h35Ksw`^3b+_&P^&{#I$(yzq`Yz~S7AkYy;F-A&CQL~1t^r>R7;&?{E43b_jf1VyDS5!IAO;n38 zaH=Un;Ki+W51nAVbOF2iOnXXnx-sK2V}FC7HC_Lv=PJC){NvIr7DWqk_#&9AVj}ap zrmSVsg#*9&^()J!W@4;DQCrBIPL~p-ph}&dr*dj#YETjtzuU^G5Z3kcmoHDPTTexb zp{r+4p4hZw2WP62o5tp5=jg#K&n<7gad(~ua|`oBm694sANtq_qBII!hrW^$hwDZM zF3xp=G|?1;VnS=B75h z5S~(yGbbhlgxsm z3za}Zk}aRQ+*$Anst6`*kkg4$sP4&QF9uIil`_lFIw_NUc!PHnrrmb8>eVz|i@+X; z71d;_98?>}bkRZ6N*Eydz|B;cW>Dyou`2QJ&i?F&+pNjC*&N4 zlz=Tzzy(6ru3!|<#g!q`z{Ks@?gQrK5RX^1cxJhsc$5)@!II^>y~vF@g_jhi+w4)C zxbGux&$Xu zkLc)9HHXg93+3F%UE$FbFVbG}SC+D#c9D7>5<2)qRF}f^s+ZFP~Y| z1glWgTJ3g{#Grp>xkp)7wfFA3^29UGY}z#F!bwAHu64@mhm(-rd8(VnK)rnG^x3ho zu}kNs$2LycwSn~;$BUI}&J*a=cU-x9I5&nr{kx}5zU=odX3;8LuI05hy_BL|ZgpHk zm*K_LY^OmyK2RMHY$N?06xdB_um zaHQr4K>FadA)rbjIL!h)GP{nR$CNsiy2k5fmip{d$c!lLiJ_Y=v{%or=^_?hJOEy|^2Jp=xkqB!)stkWr?r zq;Q!Y^5BRL6vSS+8PM5FB3Th&Zfz6-Cny!QUaL8~IIo#P!B*(aX)=8pk1(-j*-;ca z_&&;pt(#9BJ~eyd_{Qy9c%w)!pg3&4^1~;0?7Pw%GS`n5UVLKZ#LH)Ixp8lEZm!)D zb-2k$lyIWh(LFC`8rXc;8XY%v(2EoaYwSLnognb3yljFH=VzJ?1IZkE2+U(W$z+&^ zM9heu;sT}zP-v#(jd3!tdWzM19@V6R7l!Ys!DnIS%RdlY8u9hnk5tDB_ty!m}7B48nszPL~w|pDjz$Y z=B1|7rF={nUQrCH={!Z!AW;R!h={3gDk&kP&_(6T`hRE($*jdpl{Qst=qVB!wlpQA zsNz8^C)WkRq+1n+Dy+b`9+hiyDh*B!F6Vr2=8~>k35eP$FGf=vN2h1bMXq14Oeq&F zS*NsLwM(6DN0b$Mf(4^oDOTcgfbq4MAAR-pwUzdpfA_w*v*$RWrd7q)UU*^Y?BUJV zTx*4E?|s`X%EZ9!UtN$sf3Fvhjtmc1 zYzjdz-&16^=#IVZH~}Pxn9Lgwt6?586Z8?N0MVq3m8=Y*^C;G2DRv^Eiddv%OnjAx zm~jq`Z#b!PGDpx$;e_{n=y=;}O-dxNv&tn}z*RClcF{ykS8FaD|u~=R@F|#^7 zr)zZjVj<%sy+FxeVYyMQjk%q+CM&I0%a1}`)0Wp7gl$V@tK0D#%~hp90YUKcq~~}O z6Wd1zN8n-V@Znls8{0ZG;I_}4T{kiH_`kh&^vE0+OQlIG>C%x5M=Mj~QzPet70A*h zo~iK#O)>}_;W8CDrM(i1Rg2FeM>GbcEDpkyvabk{uaGbXbHJcNKb27MLv@|?Wgy5% z*+$i&(90z5VyaW24(;(0WMjB6CY%V0Ff(ZYuTIKz^n23W9@gmzuNy2S3K|FyPRI3D zW!V1$NMI%{!go8D*cJ&|&^(n@*w3RfM>HsB3zWm?^8{YxcX}6{)ag5-N{VVYy_T&R zo*T7%FjfgrS%p%-$z9hG7`lU81F9>^C{)qAVN8_@U4Qt05TwXtL!&4Mdk`+66N|m- zq)%iKgCr}KD+878wA$$T4s_?ZyrPvFjpq2oP#U|9Flu!>mI9xSWS9eZN-=6Bw?aB(J_&o}NH9ol={^z8JgSzFBFfx3}8 zzMAv(Qt{-WGpc4paqN0d-Be44Qr6YJ2O(htKM3N~l- zcqF$hqVSaDpm1WTGZ7?Jf-WQWlHt3A&NY>k^!Et#z++y~nde#_#UWjANSjiLtg_|6 z*uV4cYeb$Bt<)DvfJ7BIg_+3C4RZ)i8M_#&@RU$R5bg5N?*vP$`2h1L6R@h6q#=Q$ zpzFmEVHP@ViJL+&KjdO3h}RlUsaCN|1vic&h=b7u%M@MXSZ7p{4VgZ5x9dRQ0ZY`_ zI~lB0<`(B9z~~5KkA$6N%jXhJpaRfU1itAuz0UI0yRUrywO4&gjZ}Fl;tkjCJaqVY z1bYtNE|!C!8}vL%+=YU=+-;vedtTRdLUNUjn@%4&ASuRGH(d41V^5Fm+PUtI+j^eg z?XGr~qxpv}?R)dS$k(UdH~24~{$eV$1I`>OX)$FxvC!^>RB*|>RH$nx1SFaGH_DAgwUdUdW5^5ZK9OstRNLU#hO9k{Bh>WY0te z%Y$?(I1qSZ&WCZKh=hd^6BZVcv~WKy+=KDdAflqtL% z#853_?z_4tCVpeBT&^v9O-0trw#dSRd;Ihn0zE1;U{cp@)k^hwf1y&*-L5}mmjXa2 zWnr;d9`9E;SvT;;M#fi;9-ljPXk^`%J#X53=*+W?u1hdr=k42{fA}ZWs$44BODk($ zkoqAGAmK`lt(ckuH&Ux${T9zsNdI5%-ZNUW^EwYZ^*!$?U%CAbW(G3@5FkN-6`~5M zLP{bDQjAI>Te4(Z%b~JjC4aOm*;$EOoMJD9jF*-bOR?3gVmk~CNft$cB13|rOcJaB zQ3n_drk6XneC^ctv^>u~Gc>6v)AXFo11HniMh2v zRs(uMD!rCS{F{n&>j+ic`~n#DDLvIo=g6*eW|R(xX$a|t z=k&Gkk}$(01BPAtdKb{D&*tgu)-pe8^=1@hZ5VO_(#K8norasQoesF-8gzg$T^Q@$ zI7m&ioAs;iA6eSxoEFgQ!Q5m9PK1JQj*bA)EPs&~ZQUivy?eDP3V>-?4Ki}}y-CH_ z-PX2|T$8)bc)KV`a_Z<5%IB1-Y}=7B-1o?H&#^XByM5m0*|H3gMk3$8vMeH{a*|+i zMGihLV(8X45BHJ7O(vt+;XKQ-DCXltn8JUzHZ~VUHJNT~y<`2Ok6s*i(e?9ZUFXQ3 zMw_@2M+g7*pZ@ampa1gd>G)`l_janB8tIkH+JwrUM&UHDVlE2?z$^&nvowA2O8u&P zqI-|+0A9eYRSh>!nD_&#(7z#b=t&~O#R;ykaE=j3)pOh47aqgfd)q~-8k*mcYo{0fB6rWMXSBkoku$G@%8a)Y~Cnj6C)(` zM7@p`Mg07kCIK1wM*yy*%#Np8V(^{O+qCIz0hu@2uJEFquvo za{Q8a0G8tS_L>fkZBHWZZXf{%rtd!Sg?&Bh$*E$I<4d`k(-#yH7AnO?Cc8bm$a9a8 zsh0t5ual*Frzvb(;R@DO;Q}jhFVbUwNt2DZD>~fEvcvP%w&+gFG(MXvj!eS2mVNS} z2P*61jk|1|QIq#sj_hltIgN~@(sQ*RjYe>iTRWp*JJhjjYTt@S$VaGju{I)kO>yh! z#hZ&u)wR7mE$tPc-1a2T>Qzxrw%6jwS>;tLl5b%caoU5F0q$bH$d;MJMUPXzNaGxi zXVQaEB4ZT#0qHjgcaTrjEoDPxw?P;ly~R9V-@WhF!Rpqv1?=I{<*R-W!do3XcA|jA z<@NTqZkj{9vLjm~xJm~Hhf|Fh6yRJBuU>%fJwDy7_HKOf%G2NXSO3}-PmsbFD_WH<+Z4=s!YzVf#uMTGU)zo_URD5Dh zA$gBHE|_p`k0ReaSEgVxw7Hf%cpbNi$rr@hbL}hLaa)O_Fq|8wJLN_dt^gHtWl@Lp znTmqko<%TX3(d1k?$Gb@R3f)d(-@H}iD6WZt*hEiSNWl-d@t;p)b>}LtW1qpM$VzV zb6+w#Jw7;pdAhsNIi1@TeYUD^b~mn@YYQuz&nMG(vB=0Y1b{o%BwWiDG6QQhb)|z5 zdEQ%-rYXKYpW;^NhLfc2JW?qkQUD8>&I!1G(6SVWSn7rrn~MxKRM4p$rO#cvn!MqG zgIlwrY*Y}ypxd_Dn6Ax_4m%*ez%GhP*;W!q^Z8K{CV4u)Yj=B=W$^6dWE2BXbk0*> z`NC`8^ycW;*3o?Rt{;8Zxi3HS+>4h_z3Jg6KmA$d_sb#++Hf@8SS{!AcvNO(+Z5~L z$;L>XSof%2(zJD8&u96EK6CNZ?%Hd2q7xI{yE2yRa^_|j7{}!#TM5Mzl?AXyB?223 ziAP4QPKOm#l6-kihlkj<0hynv)!8>b!?4yR>myvTMw)EfWkdJ_kmGa2)ZqpeLT|L4 zxV;xn)i_eztjpUVm^g5dPOz-)qr(~r_ocn`!a4o@?>hD7H=M{FlNEv*}XuBSVf;@6(YyI9c_dNH)*(W~xnFk(v;M7~LX9?W!~rwuiCn6>^fD} zxiLSIP7n^L3{Tm?&i8%ch4!iQ*;=C1+E)1foJOTeBl8lDt$kkkmeA2 z<5x%HVz&R{)8m{-w)TJhoKG1C;0K=H^bfS_N%aQkfuO zduTEO46pkB?(HpLg!3<5nwQ28wkB)IY;iN6_mkud^$49^&q+7#-Qe42V zq(a5QBn+i?6uv+dk`NBo(^B7@qx(1!;v#PFvIX5zu0zyBnef8tAO}%I3bFv$7smDg zSP>}+a&1w<;m8ujpKv?;(D!yv?UXZW&b8#2?b*?HNDZN^aI1GFQRUfq%E595JKqX6 zdb=(!edVba|6TFq3ueFY<0KdbUIljok2Q)mj^Ab4X1Q9Cpuo0N7$+O+N(b3ug**+8 zVLnR((%njbv8bDv4QRVOT&-7qTeQq_sn`Mc>hlx;a2rbnF}vj)u|~-04S=$%Qf^`E zVwne;BF3H$n$Ik3RM%S_81RWm8W_)4G}+&G)@v`pzHt zo-cj&&(41Q&&IpE>ESh8-Lqdf`z_!0P=?r(R*bUqBLzqX`(2jnYtwCNtQL=-TU^VL z_l0l2cl-VwXFIeiO`1VUqWBbWA?01iF(e=n206r9tU5gEfc@S z;H(iq>Xt3lp3L68A@54Z+{BJJU7@_%bV{@CW;vznMQkP`;y7+EoYPAAZ~m@t`^<+w zwW@62b^@*z2yMPio!SuDMv@=^_+>Q-kQ;TbY4=}QJo%~llh09cOm%%o(AxquMANZK zyu37X@;xEP>etreh?@%KxJ{(kS%|eIFpc@iHPMlZ_L-f zbUv$^PygZhdFA+#rQC3B+|`^}@1yAmk8m_eu3fy22icUuB!w(_0>rLFO{dQD5v~4%*2yvGcT%j=xObcwA>B3CyTz4kn}ErRz1K zs_YeUv>x$Q`Z`Xa;?dT+e#x(0a>X~9@q`Iswo0STjr8n!-?Fzi)|aU{wRzXx3kJ_k{MbljFqgbidk&*8;CbVhUH$ zc9jfL+ax3+v0K+v4Sa*^5qU8&C(Adx>6FVv63!)h8@UyEFOYyz_J$(MzDwas&K`6F zfi2nBSU2dnDuCz+U*o%XS|4@e`7#>m52EX28@7_>Xq9dzkuZKyFgZz*t`E|z(4jYu zJTp5Q$J4G#U--hoJZ-Bkj8wl)O%fckck3`kJ`;>XB2W_k_T>E_vQyE3Qk7(vUo@=3hH*2ef?{C>dbX4ac#K z&j;r)q~YGXb%mGhDU#li{KfBu9;Yp8s&2Kd3jo}goGQboa~m$~A_@f-K=ouzmAL~z z?{lLj5IxLxycQvtz+rk^#V(r8saKZU*gJ9H224}(v|W_-cw-WHepQ%7k@b|o40IeX zW=ESF;~<$h@Ua=P`X!%7U^g2Dh)MafGT*-?|(8cB9{*Y29d#{>GzEe&!2redl+by8FcSy_;+2CU1E2>%Q>#<6CD= z-Sg`EKKm!7u^9|KxNd!X35Z$Rdd$71|0iqmdVqW?n6qeni3vDiM)Q zn0zE`DX@jqAdQ0+;?|PrVc4hc+<|)vN9^IbG=ca}t_QoaElq3X#we+V2(ifQO=M@Y zf-7`>+;&0?hO6?3rM$K%9Tj!o_r7;O_UON>4W6-|m&N+#79#9KIg#s_Jk^M_q-KM= z$d&7iN8B-4m3`&2+MvRukAnGZwmO`{&PYa4_nTX5YnzD^$i7MIWQXO^tfMgNW1|b z%PKFpvKoeKfwe1QTOO&9fdYCKf-5+U7Cyp34h18u2i-V|o5}2(V+lELbN=$ttwV2p zce=cA4d^0L&f;LPiR@-=Z1=VD)%~YWJ^!_5?md0x;M&#Ia#oh}?C93PY<+7z{^Y;@ zqj&$<`~Ku#{@%&EPCpZVasOzE^WIS2=CO@(zBv2BSF&5Hw|?i_R)>e(*{|$OgCyc$ zw=D}y99FQTG3tt92@nNG3<<%E5hCxtQ69~Oq>&!UxLTwZX<@lREiA<~(THRUh%t4G z$8QN&qa`C94Wg422swR<;5vyY2!-EnbuAe)T$rt#Mo|aJ_9?ba#!kW~;NZye`q6s4 zd17;!;ylx0F^9L-I?PNu86(s1ss#*&e9_cY5v92zw^nIpyU}8vPxBh?k>#u+0-T#k%{yYD_cvJ7pi5(QF|KUqls*}?8lYbm<=C!kq`2vEq@k_dst4f8D&ysSwn_s% zxp@UHzg@11ya0+qo?5T1YYVZb>68b@-)imEJ>Riqg@ujsL1)(!4L8g4Weu+*>nEWn zf{0?8D6GBIp0InLSu;x(NdDk<5a(Gr6Vtmb!PIo5T5n~Gs5bPd71fvlunip&=T{rk z_<_b-)Me?BLx>a%Tr4}IoV`Tn{T?9mK10dK_mlw{2s>qJadIee+ zJRT-l^h~Z_arLO;qFHM2JCV~(CLtaOzKGJkjhxE0{5XJH_o?Q~E`sm)1u%17MT#8m zMBzGYiS3DC8hIlYqH)LC3V-cIhlpxGvWP%m%Uybom$WPf1fod^Oxg;`lq1z)#)gKA zL}vZix_=^3(~;+doRSIxo9ZQQYxQQnDCYU4rw-12d9Nt|>YXSa#M3&`KZ-0YFK}&e zp&g2xB7#Py>+#hLSv%{649fZ&Id~qh*YGyD0?qUxlE@VsWNkHkQ|tJc(||S(P3!-M?kp0^13c5 z`ar2{Ndn8&(sMfiY{YXIQdwm%8jk67oLsTQ_}H0tg|@3TLYmIWY+P=D6{a?!C}RsZ zIzw2G92#e70KI(d@8@P@GU9~ZJCnfm*3YHf`5|T@MX!Lh)2a3>C^@{LgTKm zCMD9`op3;PMnDmOdoC5AUWm%sCNOy+Q|6@k^g0&sNGK;V7>u(uw~gU7YLZ#fHTax~ zuRPx)+a>GOoZl8MB9``gQZ?4{m;rlyQYrxoG4E6OSwm7=#qmCldN(FFWH;!$JI5fC z(w1O#Pqii|g+#~s%cdsRix8!fVNiJhtrdrUy3Uu07LSMS)+FEqX0k|g>2Vavt{TnS zNzM9z=T)^SOrLmMG_nN>!t^`*TOU`_W(r1b5BirNVrC)kUWn{Ed}T7QQ}7O+xa`SV zQp?%}KO%iCNk}Q4F4XTbKLh_pp+jlM*s?hUD8z3-pxHaDgxmT4YO)seL4!;W4he4E zm+NUeb}%CA;<0;1`&SS4F0OD9ih>md&*!W#cXZ&SOQQjuJ&$)tE2pXvC`f2!Nk7)6 z^jO5kqb-0K>ahPy-(*R~qu+en|(w{1vX9WJ(0JBs}OmKAVXjyEth z=f86GXpz5g@$l-w;vK&{sJ)wvSD|+Y-U$lBOOWAJYaEslogQ!5wWI+B;Dad=zPfnK za3rk`10mZPNO(G*1!E*^B+e&V#McDUcc@nGDcj1p#oU=jIOl2JI26mYF8qF0ieZR` zf)IyVevo&AwGkZ#OQ+ugQkSNiLHT9;fT7q^-I!v2W zQwTgPbJmq3ibtHMWIv613b0$D6y-+9pq$i^TZtx(yE2F%%L+hEY6`1U$dN0Kr_X>>0ViGI)1&*q{DTz^zli1-20(3^+r~A|HC^@>n?8C!gXS4UTAQ+dRvlrr8YIJ6fmWbmao)1 zd)9h;ne%qZt;qTVLNz{hRUIwN`RnH8oB1l|46$Y3)&d2t;o6Yg1(N#E#91e#o{oqy z*}}qRi3M_2g^8O>#$6YXiG1~>sbFy6o%1;j3W!s?Lg(5_!NdrSxhd%=~3uH_)#5LIj5Yh z)~4A@)=QmhA{@kF0DfFbzDvL(8c3KLay9gULj`6Q2W8oE@C%NxN%9255C=6K_O#`1 z*qD;@aoObtz$m#1s-!CEvh5?|E4*%1O}M2s0Sc~QsNl6!rD!dc?y_ZRfz+y2HX zCp?L`9a08?Z&e(lN5mv^qAwQ3CXh`b5eoWxvYKxVg9c)>RJv#JTHw0yd$Tgv3ICxy z6xj;w1jEv6G((7F#AWj^Bv`|RnUy!6y}5heF>hRVFGp2w!+0^^l^_#C~fmaXGz1&{pHSad(so`t&ZELhdKw89d zh>LyY4Z9l_@0El>@>26r5y6x2Lhu_Lqvn*TO$L3MtFLUNmon$)ccMnZ+6ZF^OaE{} z_zt9!Vh@v}6994!mke2LSE4IqHHdz0nJ=`C*goH^jBj>v# zEnE0@03(i`nI_SZFeI|ZuXNZk#**Ba57n0Ca1!^z<1kgjbMh^U6bRk8Gkix6{5Af!r!?pEd&(NIDIy$)o{pKbu@e9Q*~$Q`FloZ6C;3pipw;)CfC90|F6!Jhli?m%VMQK%lrEK8@b zmaG5tw?6UPx2prk|L%{y^SwcflelvB6F>a<8{bqqIR4f@eAlawIXFL0It7F^@Fq2P ztl93tNA|3$EsCl3*$E`LXl2ok#=p0JFqupcI=F}ID>4!io6|enB!A(klYHO-=hc!8 z+OSfQXtw3RZJ$Ov_$_M?dgCU)Q2djjNW@EUj5Z5!a8FE63?P_|W3)_fTydq8OIg%6 zp1U;KoKDWHb<>5Vd{@PArzF{TT5sx3-N|@&qJ!kcFJE5nWvUsoIVSZ2(#gZ|nL>y! zh5yPLU@-td@nVfv|WBwihLOGRrAt$y%X=`L6Z3?cRA><&8DZ>zh~Rd$Z!1 z%c~9uuBo%K9>qx#vPjsHit*(`uF1O&#GlmH5EM;2>Zw zxawXI7iATOEQ(ZR!Pc!~m!{UCW~*L#c+9xIA%ET#8hl0|CfQOmHFYji(>6K#L?66ozIAV|Il*t>b1GBdtwoz*Ys}Dx>n&_Qv$+=*aV~{4r&GMW^yTXMX9x z`oYtB|H~i#;dlOF|GBq+gShtJw14n1Mc#C3^Dqud>#`w91r^3>c6!|D)-+GE26+PV zB9fnTp*apiJao#J0RvTKRZ{Jegs)*R=*csrbIYD1-i*~aNVrWIjA5Qm$m5E}6u$-q z?g*7A>ErS*K$$QhA%*h;Ixz|?vkJlqN8!4cA_}P&YCJIC6ShAeH(+)BsO!tkSMAsl zUZj?pqfXXIeKiWZpxu3NTKC!HLU`%L8t2Y;b=O|SD9~@ zL8wiU1D)aZE$a@S|40_Di_LM~OBSR81X(q*kn(BG7(W zrA^yMWOp+h)2CcI*Dmo1mG1>XjO2v}#THP{wo<^+VW1sP@-VBmBM-JhBC5}(+eqeS%?=_}Hkx-nIVpQ$qfKPLa;!C(2QH|;c)sD|RY`l6?X3yA!l)2whlMcFKuOQt|TL3NMI zW2m#^mX+xx+hbwf?X#v6xtCT4k=!UD1@5G_#|9Ghgpl_rs^^uB5sd2e!UH{Qo>`*( zVt4dQ#%0@(3{Vy8B3|!k{#48UxaWt1`=bpLd(nw<5DtbZjb!A<#q|`AYqB}kcUjfg zBH$q@rE7VS6?A&XJ?`&r-dpN*|M}0nf}oCPS|F!PB8vpp4g0}X3)~I|R2v2xd~*)H zFvqWLQHgSfW~jwwH7SgVA?ct;id|LpqJ8k157tP_Y$WaO8sa^g3BN4>lA@-jupo1PgS7g1FEUj0fW)5YIv|$@fRO)iKgqw`(v!A+^<3@T_$SmqEuiozA(V_>LZ77%z50)If+U<-y( zce2%Ov(jQyWfE^@lNZBsXz-rvh<}C44Ul0s73G+i3EDZ}T2TP>=BDypA*Pk;s3S8& zEL+JUgK?|-a+|M25~ z;l;lHcG4Pq;!;FT4G&4wBFG}zv1Z;4l(P6-QajYgfiyUvUcesb zow$f#bG5E-ZmYPnY+yN*J9kvW)pqW5F_UGDyrAQ zu0DOU&#l1MGVW=zrW{Y#@bwYzT@_g*T5-cfmu2o#k1bj(S5Xw=jmnfnS{%i+nESYa ztpjVZU#Bbch376jvtJlD^q2L-3s)AROGi?0szdgHPz2J4;hb?kwf%LS;-SaGU(BWe z$;h1&kmr#+KMZ|ZdotQCDd!*?V@s8mCCI)h%c0%Q_D|=-y6ip;q!l9+L9E&E=aE#< z<8h?LuwHEgp^4Zkiz~>Z90mM4CJDYzraYLghGEn)X9CECFdRoPdL$=EXuTm{;zTJW zHk=*~i5Z$KRj^vFgv7rGq$H~|pFkk_#!v+vGCCx$9G*g?qVR!Bk7H9Wm^=KQh*UVX z%-ghDv!zy+2DcV?q_1k}>?r~kmN;?3Z0Nx#3mAXvl#Ph)Qc}}K>dCqMPU@ycB$U`@ zfFp5f^nmQhJUIb$z-fvOK-8B`q0n3AZGM|3%~a4!++YI?mqgl zeHbi$3a0dq4_Xhs_p5I`dHw7kzwa|w9{IHkkA0xO@S69W`CBji{`;J7v_|{nd!M-Z ztA8mmO%4*>aqbha%Ub3u znd9nZ`M_T$t~t_$W~vB<>KVT-G;z&9NJos~Z;Q zjC{8g!Yj@OySE<}OEMkTU!`!$@j&GIKHV5Yn}<^)?Z4C4a`AXU9V6+*VHsl3q* z0%hc|M-av#b?rb3&77ZP6Lmoc)>NDd6`3AbJ`bAPUOtm3JW9ti*$U62l2#k8YgQKs zbi>pW;#5->t@N{{kU?Tm4gpBBb>Q*wMGrtIy@*I%E)Vmwad@2F+|Cu-?<$@THJwYT!-o@Py$^yVk8VZcDE+%q1zG+VU`1S|i@i%_}=5jl9@z?+M8W^4Z zK>?MIJbC=3_Z|KG@4^)E>+K)t`wt91^ro+89*lec)zAO*5B{-x{F`E<4F7*~xTGY3 z7Ir0Dt_7`*lTO@KVx5l53r)Z@*x+j;K9+goB8e@H6HqW&ITp}Os5C6sssKXWuEibU zG-+Fwe#9D>DGO#mNP}yu6EvcRX+?J+Xy7upY!%{RMSvbnKNQqxx@4MV#-zBr*m`6X zcU)Y3kzltt-tKZ+P8b3RdV*k-7A0abH6y%4WQyASO2c4S*)+lty= zcP>J1uYKzITjyqqiz9VWvQ&;dg#!_MM<-@hLaqqe@+EeKN#VQ3 zVO%=y!L0t`Q{KENQmmQ8sez3Zu2O4bfxIWJIH<^J0@l*nUJ{K zaCeF=DK>U(D!`OYQxC9+sIp=M+JSqkkYD)>GH^3P37)n1re&+ua;mOjom0x5Y@kyR z+-+}5I?D_=Mb|jq&54t;)=@~D=%~IeUHOA-ybSF290It#dc!qj+$zx!mQ9+7+K!fR zM>~q_V7xR=(-uUm$R9-SF=E%QCfy?aw8J4vnbx5UXbkj(er^fR>x8`3dK<(@e?ow4D3f5$B|t_N^-mpu_DFAG~yU1_vF z&WmNwokE*@!lfZ4big7Bu1d{e69iFK`5DZ5=~c>86gnBMIDo>K#~nL(lk*y zS%UYwgY5_J@?0a*i=Hs8RV>j(p4xC!q8|F5Q%_aPy(@=J9V#CHl@7=!`FfvM##26r z_gzx7c*A|NLsJ(Q&Rxs0{;6}by}auK&HC$by4-iILm#=!A&^&YH+GD;lJNdhsj3xn zGKN5)02PFHVq@QmN&!xa-9lCl{h;B1vTFy@#HG!(Y^%W9S#&n?n**?ywHHcZP9~16fM*n z|MKz2#4JyL-;X}Bdd7-B_|Z?pMo+*0SAOl^z#fmk?f2h#|H=KYe9K3lCQ==6?puEI zq&>-A?W zW!wp+e(_8sYiPW1WUF?3xApM5ADms8J@u(q+LCrcNrKk3w5D3741o?kPHLod-K`s| z7cS4wURxFHRcXW*yW-L^(puJ6xq;3`w9T#O#*|b6=!G~$(z@>JJz;$F+G_5^Mu$T- z?6+|9iP3BbK74N}sdkk?Gy_B=7XtB3%MmeFK0IzDI|6k@n2pLU1bEE$g$kYaN7MD) zd|4s6%mu9V-1S6G7$UVpVpipaKMHG(ewj#fqJ=`a{PKiM_{ZsZvRp2G>8T7w6j-I! zG!L1maur(?rvEzfW^&AaG-Bk?7N>j>D}0`yO;_^oEa7?~{WRP91JzhZ_>D`owzigK znX3Z0x{Ad{K4?GE07ETKgVgbyh{264vYZWnKqEypU{?Hjupp-?8*B8wX{+KT-G3houfOGyUp;aB zXWwDlw9jwAvv-i{5HbJCyMAh``usOpBbEK!Z-T15u#k$s=Vk|6%4{{a%=%Pm8b#82 z_9uW=L~4ms_5?wujiRtB3fO}|$}LpbFx#@K19~>5Cd>}``*-Nib@BqYFjL~i2;PCK858=eY`mA?N2|LTWt zJ^ib1u>axHe;#^%&wu$3|EJ&j?XBbE&aD3VkC>xdpZ&Re-|>%M`Ex&Y{O|n7k9_tg zf3k!7v`;=_eeia|X`TFU{!)mK`1Ui_&)oT~@A!_t;8De_@I?#wPAkC6#o)vJTNUxE27!hT!*@?}0EEEg1eHmu*aBNcZXJMA0iVz70<_O;fhelYZ zbZa?qF;t%uTrIG?We;o75}h33n3l3^BjyPA%qfmmCirA!lg0nG9ps_8_T5;GEJ1L9 zfh!O-=OQTuTzAR}mzQSQ{&K5tgJVhSS1L(bm&5K-8cm$Uk9B?jclB%Q$@Lfa4qh(t z2Eo_^n4CsIRg?#NtCuci&t9IF@L5p|Fza?Q77BdC?w{>YZNBpZByM&*9wGT6o>Pj& z2+Lj^%@%piHUgc$qXRCI*&dK^dB++7J?>1+!#jEb&aq`pt1dY{38w}uhNEe%hHNyw ztGVug_j5v-OknBR8OqEuRVP%=Fk`@S1~CrG5ruGW#8?~(<=Cev-ElTWMPX}1aWNpi z#Y6XftClt}FjK>{#gX+3?wvUzZqKPWi)&rT?Uj~!TFxbs;a8-DS=Zsf7pqG0khlcQ zE+o8fTbAU_lx~sCf%I+^Fl|S0qdYo$Y8)MLdZ}bs0yF?YIR?O@VDA$G@ruyBv(MAA zKHS<-fiU7KXLAjoFSp=VeIylnj2KdBH7T+ZkG#%Sz87rlo`BowiCSv4MK zor^lVdT{v6E7jr55o6&JLwA{Ft<_H%8 zbP(CPPjnn4Yda4dzwo)2u6%9J!LzoitNZO&p4ngKR@$qg4|)nka16PV_{J_(&w3~aJ6!h0AJjenvE-Cev+xX{0GJ*&M|RTi!AzC+g3PjKL9Xm zS4XqXN6qhq(isyLrLjCQ8D+ zR)KVf=~3Z_LaCSzGh*<_uF`ec_}rd>zvh-Xrw4tX>pU__hC>u^6FC7l1* z->;l*&8`bFV>|HBePw)Co2+)@u*DPgLucflc;lI!*PhCO`)_1d9{;?P=A)`_>{TgS z|6vdj-8ps;N8|>kyK8-!(q_+7AQKbvhK>{Xv$qYRyDbztw-J;4a=BGfBY)0vd`%5} zi7PT9hr9F`D=JL*lZmeY+B3(rmkjBG&cPn_yKBw~NKY zn&S|hS*j_)&`~p<86@Yo`(X%#6BLpy5o8ZVJd4c+rVNZ%9gDDzuxheSCJ8XEI}%7z zCz$Tw+@ZTaJN59Z*w2ijmV-YYjDRbvLFYNhLcIIF?EzDD=buSX4o@D&A^1EUkg0 z?g++uweQHVRmjNWNw_OmQ6u=ux%g7d>lFVjE9&@m>H6k`n=*kbI$SQ3HYrx)5Ven^ zDJ_=BT3?a`Bo-c9+e{OT%=Ku5j%CUDF?dQH(vg^Y)o}bEz!4L4u(B+>3v3X(4#z~u zaY}MvnSUdRCLTg z_IA+s+09#{=_KPQpOemJp;q%NOELK_+1chKx>Y+(r8nbcQSeG4kd%oxD(6@76Zh?| z@>P~uBN#-vDq4Gf`FgM!E93%M;qb)kgPZ%&=4LoS($&{l=)}6$CE^kX=U6X*mqai_ zb~l=wicbE_k06Iy%*&@f^I~-Qa>)?aG-;}RwZbP$6TR@<#zZwZa+%y)Ksb0X9M!N(tc=IIxQxY`Mr*Kj}4SJW)2;LhNm@QR{N!ewQx!Yt1btkOJ7l7tN$ zQ4GPg^Fv(=!yi6aY3gAOH;@**bRe3-;7VzLt<>d~P0&r8xW4a)UUUAF&&@Agoqs8B z=s1$S7nj`7<6I)wOIk!cAZ;BWdrYR|x&okK+lGOK)2W=F3&XKZJ--q@8`wGW;;H}` zp$-pH?D3e5?X`)w*q@OGX0ftIdbYQpY;GOD=lJ5_R=RhXY;5@$?E6-IaQUf&5HmYPu zVo?9(_bH84A-`kICNI3A><*Us{$UOa*<4FX%N{G`tKpqmChpE{@_#vh&g@f^67L}Q zzGiH+@%K!(WZWkR@POK~%6smPQ1XOQ(J)(0YG|J)Wg~Z_mDfa!xZfp*0dR*4q#bxA z9CMymI*?MH>;b{%OVKG}v%&R>lx>o#GO`)uC{~AsY2VZcgR)ZWv9Z>0ET(OQ-`Fk> zfg@I&2+r2_zvCx=;L(5l;VRYR@v%`G+Cb4v9T7FFAdE}Xg;6LNk4kl{v=;@(z^L_A zD(%n8d}Cu{xy+I846YhEFoMNmo{lE#%Y)P>+oP&2l`d!QSOclUna!p66$`q;?L?Tb8xDb7od?@BQgfYJ=5OX5q8w!jD# zE32lG;mH2Zpgh7bE;fR+--s3QI?0fmreVR9~Q3T-gEZQQ1`gfR?B1(k9M z<$A^DNmVO2C+F7rd3IQCzxkw}VC2RHn>rSPTaUCGcdYZWW$Mt|lcaaptwCI0ffU{OB z%7@*_8{NprogxQ3Fh*IkG|)8Vs=R(ZpU=(J!`$*>KS(+Xn>nocGn}i&Acj;ykOb!J=)hVf4WwQzK2M?ZV&Mu`4*uxOILbv1E zYij^$WN8NJq~Ruvr*+}mQE7*^lk9x#gC8HOO=}83TugdhnAS9KY!z?_<=#mjkw;-n zZVGmW3|A9fZk25_3U@k#ALG!;bR4hJSywM_+?tI>6ML25TBmJ2jl=Bb0p9!M zbZd5WsN*0S>&4AWHh!>cPd8W$54sg=jQt%=^I zep6F)ndLvmwB`QF#v``!op(ti09XD>YQln=mf zm<{?ive8xG$@-^Frc2*L?#-n`m<{r_vOoe;4ofg(8;*j$CNeDNt46jAA`z!S+zoDc z+*};&%^&;l*FJRtup<~*N#HHqN|Eeam0q7%%vf;@tH7ty98gs_N&tMgb5*ftYKP6q z)5m7BneRG9Ms+~MX_%A>B7Bj$T!vwoj7NwT%QU}r^*RZe9cSm*@jFPh=03Qo4A)11 zMiEVmB1;WW?%u-6;coG5JeJh#>AL7y*)k0*)HTFr+@9`OK}FsNe*wJNDMF9lktQvP zUy%Hy`mXcvi% zft~P4s=68cXp~IYP3DgBpq0Whf}$1_CmdSxR(P-+4op^vlO7Tk?Q29GHbL zdfzQ?EsxfAHnPQ0niqgEqqWUA9;NeJ$EL~QY_9rb*5IJ?#jz7*-IepqOOkxC^4txi z>LENy72`DWunNQ8^CxcC7mgS0#z6S2hH<&bRpY*xmwKdC;#kYp?qZS;xP?z9c&=_` z^^6S9fF!P6HY))Oo|ht*YG3p2S3U6V@A#wNc$DefD$VB$uQ6lK8{s9iojXksxSe=0 z?n*SqleEe8d?9`DI2ztN@S+sn7E#t#;vf=6JB&KF_2m+9Yo2_Wq~?MJl7FN#y(}=3 zVZ$)Kl5`8#fICZ^HRFf0Nsr>l5|LmTnXX`>#;QRjs@@(UX;(F+(~Ht(OL}U20%1oP zW&wurDo=L8==_b08NoRKh>?Ma1nivD4m_>e?%I=AKmECj=l51O>KKqM=uK*j)^Y2y zIOB3+qwzx@i6ZV80!9n))mzmv<%q21$-tR6_JY-H3D?Ti$Vr$MB`zMN-yIU(>Geqx zM!4J8Z{9pyvNaJ!>MgH7{@!=K`L;DSxgpg}RXe>~Et)#-kM>QL*B7s(tH#oCG>M|R zC|UI)M2VR&JEEn+VvSc<9>?N&JT zk#P8M{V#CGlL?S_o@O#F3kzbGl5-U@YawwEp_x5w&JZ_TiwGzw)jL6mXUYK%+|ibk zZL(rR@lRM6MeM0B$(7KW9ZRkkbJ$&SAu_9UW#W085AK}*%yWywEDA?$UX&T-7P)wh zAm7$;l2}rOMxaLwXfx#GtGn(wg@k^F0Y3PXI-XavnnIEN$1Nzg^1NSD3y#I z%d90EH?LgYI&%_-i+n0;t>cqPsy*E;`f|BGSzjHjHn&dT)(1K;hwWrH^b*y0tt!{p z4_0pCReLwmU^FI8&9W}4TWYlFDH}O9;=id)IGVJi`17lRV>HT7Oy%Si;Hck+I+$#5 zq+jPD*Ct#99lL9P;_v7vO_viB zb}~20=>t*f!%cHGsGRy2fnZ~1szkTQQ z$?<)sqxJRTPEEC~03!PgrfzT-_vhvQyqV8)TaBqr2KQ4JKEog!uDdejSdEY}#YrR_ zxp-i`47GMtYorDukHJ#0U6GO<&$2Q_Q?;sf0yr7d!-e3FaR7K|*2w@A-~!LLth2=u z7+^dZ9~~XJvNt}Y7CdX|t>YXK?qp8g?uNc1vk>G!GHuMVxU8Yki<9l0d*Zca4SebW z#}f_ZbSgIgS;ylz1D|53FP}SDWqDa3D3`YKLk~$;#my*9F=Nji6y^X)s)+Qla7z{} z(vS3Nz8FVw&A0bvw+^Q38%IT6wOwSjjz7i&NUvXYr_+9Mm`oC{Z1xumyzJPj=0^xt zj=8??YE>X&a;7_X=K5_tI2*5Sm}}_&majR9jjyhJO07X zeExs=$mOq{OB&%a1h2IJt=sFJERzhqKwTN=8$>%XCz3uOmUR)+W@PS&4~7_)j5=O3YyfM`B?7`bKt{GP8RSWNW^^2Kl_Kq) zKY#SGFI>7YuL^%GWxooxlP*^r;C8#k;mz@6B;#0(C$ty@$~MV_O3U$uk^)d}GK!I& zR&{-}Orv-L8><+CuQko+`ctu^B`1oz#${`v<`+y#g0wA{@mE*&Px(u%6^ zg{g~XwyO5_&3xH#(9^R5VSM3IKU_1nhgi13%f*Q-{<91t%hyt0_GB!8FCiSALOpZrO8Xo>6ZwhRk^V}SHwX<{ulWJMKv0QRIgjH=^*}mbt zIF(BrX{Fjj!N9d;E5{`l8(z|vdZ|)j2HWC0l#xu;)o>WB0a&;?$gw*nuXxgUt6(-? z&KH^M>oA^H26v|NhMhynF#u6Zq%oT9NLTrJp5YY`k?@R!zRMMo=u+1q~vGW);=I?4{Y-S}XAXMZ0x;Jewbk>L~(`7wLXc zb(I}Y$7Pz@+~*uSsylsGQj|qkBzBZ}F4B-o-F1CfCyqN#Hpaoo)p0VimLZaSb`%$O z?NwaHAsemaS{{Y=d@iGq_-9_InDg#k);h@;Rx#OjzW;Ck)b-~tJ@yN~6(gz|t8q;f zs4PzhUTEQQp@=NvQd?9U0sw{wptYKaBXA;8ME?#`XNv=(pWm4nQ5G6~=t@szF)2o;zG^M_pYMcOVhBiX>kZJ zAZs9LOJq9K5qHb8?1^GH4Z~cSyAUq(ZKk(s*19HfZwQpuEwCr&6MH}&F>sR4hV zTxdSrCkIn|8MAiB>(kY0i7)QZHt^c)2wVN_I+f`A!Sx!>WFT*hXfVDf49%jZP#Pqh z%qXZl+0m6son1^8Zrk)YNBqmx+| zZnY%eKp2y&3b!TCqa*I{W+kW0rg@*+oQ1M=m^gk`m8*k;$@X}EzMmc~l6q9Mz7+?X z_dkRqIW`%Q)4-4kvT1VoHIr4s6G?!;U2yg#gb7xNXgH~DY7%YYQ<{bueH59a8BS+1 zg*U11e*LNc>^J}GCqDG)=Rf=jWPN~ z8rp}I}bvCkS517(4tuYmc~WS3@Doqi6D~CZR8F7TiUkP6(kIz!SV4xxLT7cF?=^P6!%O%1)yl_z&i#(59kfVA4XJwm>X^d|O zf1g*tG&Q12Xt6e-S+DUM8<}$?sx)4imWc7=>FCs%^^HvxYB!ExM^;*}J&IJv`8 zRV=E)*awSdzA_v;;hYOs5!iv?(q3mc4eT02vR22|Tz4Wy;UKG!p>el;2#@YSd&x2h zpO-7!4@@Yl#&dk_+RHX~DD2g6jNirQ1q9(vVB{0oQyxl_B+ldbG703l`owLpei&?n z?Qy1r`3E}|WmU+`6Dh`OVV)(1@MNalYLv&-Fm_oimdu4GzX`NW$}&!Uct@)RoPXab zsnz2`MzmPc1RFN0;6XhloFl#1FMC{^_bsZdsMFfF8^H8pV}0D)CHea`+-IKETzYSj zHN?o|yMwxj$KxQ;uwz_`Nf<4P98P^>vevtukS%s)m1|CS#qc6{%V@<_@OoWu#L@il z$f`?A+mRDwi=)+xX8*9B?A{x`>G(Ld{knEbV`~SNisNlK7eKj@C>$60Qpi_ve5Elp z%kgaGOPP^mPBuJM7)MAxU=?9Z_@kqkDs+vVBy1^X-Rf;W{w`edbDw{@zP1F!^*mvX z^jV1O*t%&PUr`B|`2=vk&y5SyimuO1>tsEWX>Z()IzHv?iLZT+gaqX8Be^q)o@Ld6t4l&e6mSBEptU8x5Sgq7 z9>7+XaFO720SBi?N(0}%^vcnneERC;tZ9R3iw~GClaS>Nw-uEZT;Zn4%F+{(r#uz; zQNp}oqP?CV36EpE?lQ~ynPkq49d?I=j>AGp5X89ocvVBhvy3@A8_!=O*QgF9d2`7HD!FbaS3A8w0FBo2 zTOTnq*k5M0yJ3f2mM?a9cNRyp&h-n5%s9vlV3}m9_WH_X6FstfGJKRUyUY+Rb?)(F z6Xeqs682Cv%R1WHPG?uSv^H)Kl!JI`n!;)EX}UlHk-~XLglbbgvYIw6405fp2mkBm z%jM46hKNyc8@lKeY<+h#>iNW)o6lTaR<7};$L>FtJaqasRz}(u2N;-L90b0`a8E(W zsJ&HG2 zdwgo#c`d{GLNv-YCNLG!KhC4E;L6!OLLZWh2g-JYP6}BfS;swHSXQOIHTaMVdk0r; zrjLK==B)Jc8o*#4MtT^6#jzxlQOC7(JPV&-4!_^K$Xu31#_p^s$gS?XF>#=Kiy0lR z3azFpQ-S4bygqI^aRH{^*a$b*{qaQOuWO?a$+T<{TL8Lbk#&n?9U;^4wEOi9MeoAO zEz3&j7+(V!IPh`H0R{?oNugPnB?nVwyO-QkX;~sK(=B`vQKU;fHR}30Y_0S{`RX9m zqlU0-KbayUD{a{WmEw&K4)%ON7hqFd=4Ba20qwbU*tE43QoA6D-4=GONg~b7QZhln zx0k?sDv;_8{?jU7JHy;0%)cgcoAdg-xCQ-0ht;jprQsU6mbO&XH3`QO1D?Hlu$<(*t%fqzDlO$x}*HzKRdYA6^ zdQ?`mD?vE>`x zmUAy!(?PhLU$0f{2jy;96#Oggjk{ z$Z%0`i?~qkx*92XTx7*EpV_|7SF0#+*W-A#Je&l<(Y5QIwoPd+y>dB^s7QO)ZgRYK z1KlMgChdY)Ootl+tXr^HK#|8L;L4)anWD8tGN!M65=7XcJ?VPWmCKhdr+@hP`CE&& z3dW^v5Yd?|RwYGd?VfB=k|sD#z}(Lz;6g53adw_7tXq?5;8LS)zC!lhsVM1zDX2VL zYd`uwiF@-nOV6rY^!?^>e|xCfHCJ_4ce*o@kc0#Xk^vABkVBBkBR`O9f*1qHkPxn- zqJY3ja}W>_Nz}t2dO%b-kVc3J2!s#_kaUtx((_dF9=~}!>seoSJjd(#-TU9|A7Xb= zReSI6ec!d7wcckvPtKm%6gW-B<&LfFSg_}3J=2m5T&2Y_&V^1XH>)z+GwnvLH^cy` zI-`q|%0jhJcIXh|EFt60{bF5}W2%yvfsUIV6?)ew{izfuRD)(Ql?MuKcuLc3DW?`t zRW;bmyR6|K8qJDKB~1#tzKlACo{y!_(UP*19Wi-ql3*ytXbQ{FGJmM+RGdUS=8KI| zSLY^`SSU|Xi{R)9v;{QGZxY1K6&U?NzZEJ+xL#u8UMTfYNRE-Sb!lp{b82OUo^V2i zjBdguB268OmIMat=qhoVg$Hd?eJR9d3USIeYo zHd~SuEzG&8oG6Yo_I=%O2>FI-6~&2d+G!FNec3cHJ4UrWTD1wK%#3ncLpDn|rWGfT zuFTFZt{*%k+>W_4cg}Mb(VDsn``N9<+g`PPYV`QKJ`wc%%F^R(48pYH>Q(8;CV^MOH1aHg z9xAkm0EOw?D=^2R&6ClI%%DzKrv7H`hgMbjSDjwxI&Imayj#TdG?2|@osKcRH?Pr9Eq2AqV^&h9(&o&xF&zjL z^r}hd7e*U-B14BJp*2=C!QwL@Zxf24SgzW-0;yH*wUioFRvFauQN@)MpP?dJ7>Yu* z6|N1?tie;^J{QHXglBgsQN5)FNbmA$9I*tS1nKZ4rHQa~; z9Tv;aZ3z{!-`uLB9ETY^s6pTkR8^zEr@9{$5fFtXyX#)|oXa2o@sGz_eNkFkWu&Ta zsybC_1r%kWjexDlL&K;%30l(tRY0o0Z&N9fCAw@BVZkI9TENV0J5`>-Q{7e?v?4~Q zD*Zx=^@f$9`Cievi~S%|E348ead$eC^l5aR3SN(*`)I5iB>oTO$b0{b1h2wOKND2L((NL0Hwp2MS0$lkhvO$R^EUHVk18eD`ihP`~_EPiBpL^e@-}b(E|C+5?RLv1mqr+CkeqkZ-S_T+f zP*>-$Po*gq4qHv*Nk9>Srd+9-U0{fr-m-F4x@phM+J4xqmb zPw-C5ZK&GRgmb}p3zj8KPST?-;{e?CVU+M~M`gE6%f{^wNalsk<17`X_RbI%2vwCV zl2fK>PQjaH4ND%A*WxUMPyoyBAZ#WC{=g;`6n!)_upwcJxo2Q>C_aI#hMNfuY-2 zszyEBTv~p+`B~kyFM8G6*w2QB}gwi;r z4T{9Ai3xkE6GtH^w^9}K*HUD&+?pg@WU3;v8(J8ZMen3yw?aa}j?`LO#>KZx97M*G*2m~^7jpKQ3tbiV& z#3UIM`m9D@50St^M^Y`_mcv+q3QScGCBc72SL32w83bFAnpLi{8g@K|wmV{Y)01?) z=`~7MqAihbu6eOBEW*-qM!VN$a!U|I zhGk*Wh>bKbc|!Z9%IJ`qx?WU*zCnURG&J>XNsvblYvT(ROJ>^|+?#$GL z#a9w}9MJPcC)qHR)`U%Xtzgv?%$C8j2|DGRRd5zgpT-hO^U%7deDt%j`35y$Z%>9MzqAK&aq{6{QxN;3^E}`$Gc7G?>9e!5!^ULk1@>Nud*IH(Z4^W(Z`;tfR`|SK|Oj=Z_L2 zTr1dtOixnGro7;$Yen2&*?(ftmkQORpP-^H4KkB*A5^qp6h%=l$qHN|QkR3MiC0 zUSqVn;g9o5r3_QXY329Rw36NJ3rpMDbY9%KX+p_#h88r`-Pe74!x`tNv_$zm{L~Ru9IP&K9A!BDyjx1T20F}Y$=E% z+5=F96QC9i$DzuOp}fb0X%N_^D3OJfrBtKs(n++ImnP3WXVS8iwp&Odq`VM8yat|g zs-@t5%cxD@qpc1*ME+Pz|AL^oZ$z8J12U zgb+=frBtMYnPICK-{MpT#1BlUW(5#3ferYa;Q~50=$o@xq)5*A5J{0zREZLm@-P(n zp%<3K1wC{E2^xRooGr1D38AzhC~(pGnOu>AiohQ2AZzh!N$}jJ2%PGWZO~#7mkK5q zvays;R_FfWZdr?-_`y%55!FeSpH_-Ph0PFJRRWFj5)y{sOi~C8{EIQ$cp0-`nB9;CP)n)ZwXJX(5D#eJGvUB%6L5F_P8DkOmI(t3W8lH5GKn(LH5R8K_!RY+(XLCD_TBt^%g^(!|R@ z`1ZXY_zR(%PN2x1Bg2m^Fjb36Q^m5FRM9y_{vK7l-yKUpX%`_nB zC^x}>qg`;da{05*`uqbwE4MUU)#U_^Wjq;4qK#HUfj8CI{>XG}mRu5;lcG9{YDHC| zQXk9#3X~dXV76fv>?M(Nol=0%RT3`Vb=J)M%*4*+Zlghk8BTi2(iONSZJJgCt!Ki; zsv%PPbh%vL1+uV9S`TnT%Ct;QpT=-7swbgL6RN?cZPa2GxYfZn7i>19W0ph%Ld0Dw zkOwANSPIX;SR32{n79pX9NDZz(d+3|kj{;)2(Y*n#qOAC?=(k1p_;rp?P&?CR$PY?mH@Fz2wSIOMUA1)Ml}mnxmu;Amt4Mk z`LeU((aD+V#au5ojZ>OeL0Cz(Aux)T8f6MG^y5;))RR{<@*t)XF9PMjAv4i*&2(C5rq{ItfCC;I z1iK;d0N%3!Ayg#@5z?9PiBT&)N4OS^&nVo=wSbUD`_?14sF}(ISDiOLa{bTt-aF3X zG>QCC-kGAa0V69k)kMxi{8XHzJoS=L%?#IO*nb1mA`avJUUqCF2(pY~C#@kx>^PJh zJJ-}k(|yaE->~EIImgy5DGHAq`~H(h+mmzC+jr>>3P2kp=@5gIqJYQ9A%Z385`AKV zRIk1HSN`(%KZh25A-M!I6!-{HElptBz~CN2N*si>VHS)2Aq$!sT*=bB3gU#)ykqGy zZ18l9YrxB%il(&HYHi!rz4Vgpjw!VoVDUomzfiIgnsEfm3`c`>7T~D_=N(+nVeAsa zYRqq`*fgr-!tnHIB;1THD;*7B5I_o*Jtuf}5t=j>F8Ao6QRp@35hg)mG%P@?3KRHr zBow_Knn4}SJ|_^dVAl|KSEXYtv4R(LMIkm*DZ;SSlIPc=C;}6*b`B#5sw=QMq>Kua z%0yFn{Y$>##TWrlG`Q!?3ScP!g?l`d!QlC%Yj%WVCTC%hdt&EHo+hXRi8w9hUDyibEaFEfX)Py0?Rg(~4u73mqG@>r2=NvBnF@~CA00c=3} zyeZNZq$x33N>5(5GE9n8Ff!q({4z~slQNRRv(NWbmYnVKK9;YI+_)XQWJKgqpIfdsLk-eV^ zHg6EzE6ODnYtN`GO$uMPtj*C7HaZ9c3}Vpd&RyFk=I7(i*7AthlJQG%7}obBG;5w!2eanK_uI9o~s$qkeQ z#Y~zeg!RFklGSK17^+Yk9IS87PfxZiTeb+D&`K7vtSL}STn<&!X}gXrk4AnkA)t+TxyEAZr!7w&R#Rc& zH*GiQ4Vr2|$Ym53sWx)Fj;-p3RzfzB>I#K0O9LHp%6>NMrW)>GG%UkvqNSC>B=`wZ zwV>ysXI16cO;-0WELw?pl=xIB%9Yas%LimfwUBcbl25COz;0XynW8wpQDqb6RX4qM z-<|)kHSBp7;TXS^JvwPw*3&J%-6nvOgfjhN=-T*YuA~ue#C(4gN4Y|WI^b-EBDy&i-yH>}KhYrCfsgSiYl-Po@NKM0lPX~xN1YuJ;-We^I zs>211-Gx!5l!8uwEr|(vRnRLqt5y_1bO;VqxQ4+nV*v|C@Xlo=uF_{*|DtHHLFnE; z)n9#L-BcSb!|a3L7guWO4--qb;u01uR1-OtHNA6t>W?51hfIsuOMn{-=#QeJaGOfA zf?~)>mTbMU6c{;D@|I|m+fu0%!Pws%CcUj_;oMz2E^UHbJ{X~kGTG6>toQJdOqR@s zSv4ecV#b?aSU-3mI5`lTeXS!oQ!T1U^&$y^B&cMS0BYNlD>EF7BcG}l^o*-4F)BKC zK}Iogl;aW~oxn612V>8i=uYNo?CONC!ZaAt>JpMERbAGpfGwfm3_}aHWTRR@Zzz!6 zQ;T3jZ#65hAdO^mOHSjXM}O#aXUtBg>`X~H%g;(w9hJ4Cu2LxAg;vmEEFcSB5VVAj zK`K)|D5u-c{oNaA6ONCb^!M)Vl!G!w$qH>hc$kNP1;2|tOZ zmtOH(FKW%Scb(l0Mkj|GC&!Pco006cry8B^c`w`nF#`Dd24PgF81F>=#=|{mq!(B- z$bqW_%eff=Q3)v19|^^dDf2ZWf#u0nl1r#NDO8rTMtT3lge@0dpY}Z;W)@rtxzLs4L6Ae znd@6!P(I;5hugat46rju)v{QAiwi{+bx2yP8&h?Okq1pzAPcS~Wol@$PT?q_aAL%1 zV41cA#rF!89F*-9W+u^V=9nqwu^kw?$!eA{*My301A2!EvNa?nC0bVyeWfTu*GI#h zDqODU_tlEykaz?^o(1VxE}3d%u)x@OBS>N$3VF5bz0idkQ4+{O@)4dQmQ8CYMyE#7 zSgI0jvp=SizX)hMWd<@e5_1Q_!XRUkFP`t^GQxtkh zrQYW4pa0>07%f@Pdg0a2w<@avPq>0&YQHp^t)}*q>wa*b_`w+k)YshhndN+Z^3+(# z6+7JfrBDC2E%=@S>vTbO$jDE-VIjS22)bb|2Q)I5yKERbC~$iMOG~AI?;`n373$3H$?i;ifQH61unzBg`LVFB)9%z{!HI#O3#7(|(^Yb6-H zMa<8%*>v-a%D9-I3bzY&h*I%<0PA=p^;8}Nc6BQS_kc1S_n<)`f>jkIfHVsz&nC?6 z*|vQFh2BcKb-0&jgTMObSEs*LUH5hAclKTX$@3@sy-li4L(FH$quzLGu5GE+`dV*h zYO>wz$h6rKH48@QUAkhnwr`QT}PjLUEO(E2x|H|_hquf4SYwzvGZ{EowSi<{1Q=iVi%ODV!b)67cf z^LdsdoAJmeP!wuewON^QRyE`#AaE|4vz>ra!66|=2d@3l{!fYDeERD@dF#h-ef4gY zcAvjChN6GNfhR%{D*m9#lyDGR-AXo{JZ{BnhgH{vxkyfhqHX9{SpjYw@ux=lqrVTh?mL<-uaXlLkXj?@|}rfETX1M-N_D!Atx z-zg!0R%S)+DmGyv*LDi*p@d?83U-IAo91{FV8EJ1<)S#01@!C%OX_-*b6fJc~DlX_ZWi;gFN zCqzA-I*n+A69P}8Fn~iFyU%7ko@pphNQL5Rj+DwS3l${^4TK|#f&{LpzBiDKsv@T} zF4gMilu1;pR@AE$N_tSbqhqS!{yqf@iAt1$MFHtI;ARohHRvVtoerD!vi6jM30Ia( z(&3hcE+VA9&~#=^{({8?(aVKKnUab$E+ijXJoyzbe^yxZ5=!Ha{{0{QW9zHc`>&#G zRXy=yI9znZEr0)%l_5+oUbsj6_C3`X#hrI9-B9~K!BXwUZ}0q*U%hOqs)j?T607dN znacDZ`P@r?aLYedw_o>fzvRPLvX7g%`mXARd+)vX>Z|z`_tF1y-JilCW9KKOYYyFd zrKo=6kI%dMwB4JituyG=Ui_VRzvDTR{k5;$@!;Gy@47)i!QX!4yUySHUmo~_!*_jP z>Xtt~_1zn{fAXH{XLnq;{JY4jSLd05R#(Bl}jao@T_XX zvn7?vDjtr@43#%*EwdEb)3x?Y3Ht_-Ae0B$IL|C|Xc@NAc3NiVijFbKvUV4(wZ?N;h3b?Yb=0>47Tr11-eBYkGi^*zz+H(d z1o$Uo5D_s-l4!w0i16_c7e-Lot4YE@WJEC>`h9U?IZIL#9%SfgW; z$tkOEkPQvOHaVEx4DO+(LDeaRE<=HBx|DItm!Jry=_*RU6i2ZJ35ANd za%IuB%%~S9k?Xq8eBlfK_?qkf^2l8~|5SR}XH0R+JzJE&B654`vXyYD!h z9=`j|BlI%+Z(No>^4`m~-uu8M^u>GV`0UyLzf0?1S36#ueB(XU?c!ERy5{uP>*IFa zoj2e0g1fKV^#{ER);n*060i8mf4O2YzU8(Xw%>c}p3bvxebZ|ePTX;pbj_|i4%b#2 zbSkAiSHJ1ew_Rx&Rx<1U$_LW7Eld0FsqU(F(t&*+W!oE$&|epljuHtZ-kU<4&u9@n4=5 zwr!51gf>Vx4%_WEEmPdjbVH1ih_Y1ss^>9tOv@i4ouPUM$TFB2+XlUW~))wgUfJ;sKyzGW2Up24X26Rgv)}0jw5}Gre#4a zHaCJSpbzS6m}`}wO$rONLN^+^Vu9@^LkmoUn|CHxah_H@0Zs83m=j^U?H)uzg=Bo=O#=-J`8QF2sSIYus7Hj2kHioCvjg)I}v&g>LI|DC{; zS0hZCo$2BjCLO>iP3uCF4!LD}DBgf5GhF+^k`2E(qw@zJXB;~l=F*s@#$c}vlv}%> zE36w_776~zK139A(m0lCzZrYW%##6X?|`jiZ| zngrUpoTjk`EC5XmaOI(`fy!I1D4wdJA5jh8**2A#h3p6PIQ33r^=x>}eO=}JuHpi(9A#yCm(s$=P@ZQ3HLEX+?4 zmZR#avWLSBDa|F_qS`+v+zCy}BqO{Cf-zhrlkrGo5cD*)vRYSIeJw5ACOjuG=OM)b z3`YBF>yB-vgRBa}{xGDd;7mJK3wSQe#^dpDv=tJxnOfRjTGJY)420KkDc08wLW1XM zk{3y;*fy)5foA}z;NrAt48R_wRhaYv8?eHb!C&cva*T@;%P@FEOH)e$_OnRhJj#=7 z)hKiN#VCr`;^3%bn*=%i_ zpWd~jyJM+E!NoR^f?>Ue`76r77-tX~TK*}Y9nNt~n_;nqS~I$K(AYBeByb*QVv~hsy3NMUZ9y%#yOS}D3mf6 z7;IFb;zk*SR>GF`%VG#Z;2s|i-KHi*b|poaH-cR(<}=v)7ExB7kACjuSLtjZcrd7jBPLOeBsOA zK62OXm47qs?Q6PwZuwGGU47cxiL#S^BO%q>x9_~|p6cqW&wSCnQC$2dzkJU0+K^xj z)n*GjR^IRliKki2U3;#X*mLcFIb7Yf{okM}kS8d0qA|Vw`PEnc?G<<5_+d(#FS%v7 z=kGov66t4;Q0}Yv@@AMU&5%CEnB|M}NkcMkIH@{Nza z>bvi1=E)Q9`r^th_W;B0nZDxQn98KWnsD=>R7DAPzDUESt6OgFhsj`Q*+ykXmg7;$ zuBpX%wNKTXVNxw(=3!pBmDiY{P&*oqOfxebhjuxXZ3$}yA!Q`oVN=Q>TN*+gPSk|hlSX4^Swu|V+#!Qf9fls2sxq_ur(Op5HkIP6CV)MX>bTFoWP@G70 zDH6r})Kub+#%a=UCsAxg1GBQ<`}U8>g=>K(0wL%uNgJ+%%id*i_+T-!_d=~YcFq`+_AmcY4I!ttbz~?EYB4N&qIO*Q}7i9K~yD;QVce$5)2}E zWS6T!sU{)H=z!!buf;ZpywBOFh5{e%@Xp*ff*pN(b} z3)kv`z%(IcT{(Sv0dO_F7GD#!XCkNIQD^*&=dyAn1dxf40@nY%H$bkK9IE^4*kv|g1TNJ#Ys3A(pzjP z_8WfvHSZaIZ2$jtV4^kqxi`PjFV?nR|C)Pa;B_SrpZ5#1pZOj?jIUoa@oU$A;r!HV zHGlc#zw}C39mjd!GQDPVcH6WfP5$jWBjp`?^tspl?M*HQ%>VS(upK-{qX2#e*Sy7M19XqulV?l7yQy4`;OeP@0@q;ec~POxcEZ% z6>ojpt7X}lv8_M-^B+C_U1MG|X-=cr-8or_Q9)Je$tOm7LpLqWYRWbSU_HBu zK0wBNX6&(~pb{m<&>+k?>!u{LQ^Z75|`Zs~jv5zCQ3 z(5W)jc*T<@iEHX22Vws?)$bEC9}9?3PA zQ_wTwAYWY_Qi{Luic9Ad+DS#8j-wo?#x*S6(Ik_wLb#)ZFqW;Mx*{I z!*Np?#D;7pU^u{X9eS|oV7PT)r9F|(?S9s8y+_^r z{Ab0bZ~12S(68N(g<-e17kuf?-#)*8GK(_dZr}SyFI={t_U+r>I4{ZJNzmC^-Hu`? zz0E$QKM{wv?z<~_l9p0pStV$cVD-B<7a=uHp^5fU-O~2-f{YSF8aWyZhT&R zEId`nrcOas^OiK1wucOj#v%jSOk+AwfLF|XH4F=P&^nC4HH{737y*H0iL6*~J;EcV z><6M?W(wil*WAKSmVZ!A|d=!(oF+S9?Qb|z|i9?Bk5$6Y&GRPbz)3iu4=X`xYY;>i~U z3d~$W3K_FfJd;ajk8nOnfSls-W-y4&rhMES%i@@Jq@u8!Cp!=c_-yC}#sxI`q#BcZ z_?+i##fM*kD@w~e&9;ITg%T%(W8+(v^Sxov|XAEc2*p-NH*{T?({6#5Azs;bNX?Bn;m={L&4 zc=@Z|b3J_uOE%*oKecOQ#T>_ubaynq{J;M0+0Aw{*VQPA8&zLe zcChe*hu)xK{?q_Bio%KG>J|LI^WMo7M{BMg>Cvjr?$BG)R)4G4wAxf6^*2Q0L)^=K z;m6Ed?s@Fy?c(m6mT%g7%Rloq%)1}m6mR>-~Y%TeO%53I4cI#QuNHKoZ^0x(92JDr%#3}hUtbuU^{vN3N#Fi8;vIY zM-*YV+gx6nnCuv~r516VCh2KkNI8?08iHZ_qm_Y+^ep9Z!W__)b9=#832+8cYEenf zj=0c(6d*HWnKh1e+t;Dny}5l}*j42dQ+`tc@#79EpTBzp7CLgn=LX zu;K`VR7)6^-N>0RfEj+ig<{oGa1iK(mzrt|Jq0g_Uco3V+1Tj!X-{QQO1af)SgaQ( z3QR46m1~<;p2qOakqGaYaTXVlK2g}f7JAmK|Bs_+=@unif)-H_bMBQz;_rO=1!B%o zPI#f+myId2B~(jl?QV~^hMrMHE`6syKi?V(rL#D*v9|6~D(__yl~$@e9%O@YzVNj9 zmZv7;Wc5_9(`lzwh@t{Yea(j3eEhK|+CehgY8$dP-Dw7?PZ&qj%|>IA)~3HTP!x-v zpEM3n^oQLE`NucEgMR86ANkNvZ~5(s>4{?pwyI7`^_se^R8(OEc`}Hhc#mL0@BK|C8m$Kr7_NIddxyK2EXKXj#p37t{TxC>Rxz*L~WQw=`j&vs@<5`+w_} zpwJCvA}Izf&sE_roTFI`{XOT@`lji+Hs!s_Q(~xt7s5yhBPFR`rRSbKGdbmSrxZiZ zRoq#C(XBZks<8D;jyZ^uE!U(nEg?w^qaE;4pgY3$CG_-D9h%)KYu>XxOu+>h*g*x$ zrZcOSzmBqt5`T22r%EM77={Y^n^F|}4E+emqn%@-2aHaUYg&YjA^QlwA@;Ck?OMvQ z1&@^0#R|dgvTsv3HB`e%>fD{OUjk48MVA;2Gw0T3NfIlr&K^w6q01hfTPN^Rd>SOTpu+{ zX%L3?jvdO@J}{_e)$-8RB^T4mOtgneo&C~|#%(XkyP5oORTRHd@L#vlxI+p%nC zeRI(7AEETs>aQ$^~yVTZol)xpXglwo+lr9^r@_eR_*i8xi;Q&=il#EejZ%= zmhGZCSf53Vy~gEJ->G}uGXiG_p@VUNX1>bZ59_ptv~s!^DuFx=v}KrDb!MMHmlb2> zYCS51&KwVy*VgoG%ZbZws^zE_iiZ7D2agaA&cQHG`UmzOdFbciszmR|nQod5eR^)e z-90n&jNMktk~R5VzxF$$sDXVVZMs&IN|#K6hlj4HghM0iSwa~U_%dH-HDN{NA%2U%i$QxnPeZ8FLxmTTdV~{LwG6iA2{)r)>Z+E|mZ6wI zrD!QK(>BzG*vh@Bg|z?VmIzyC&2H>FFf+fDj)Sl-O;69R4&&~`{N~Yv!g3rbXieIK zve+Dso35c6P8!o52wl$^N9p5_9dg{}!t7F-MD3<&fZ*99cnWH40bMM^agHB7L62^t zJ-IYJTLfdt)+i{<&g~u#`)jBAp5x9fEk1DTyBu9T@53KF{6~9M*8HD5dN3`;JHPk2 z2j25>LlVijFVbSGU)Fv;MP;t`llvb&B;d%MUiXYkrl*=JsK@eUyQPk&jSKx-`)8^+ zQbZDs#>#MO(v@bnwYTk_i6-8t-AfltS1N1&lm3br1QwW9XdLX9R9-b7neWfv)CI4PL0 zJu|~07nz14hxvyn+A6~~xa_VH+&fhos0LJ0B04losz6a0QyB~49DsYhzO=0~ucm8o z;D#=*0sc0W3PV(yWvW>Qj<0R#MZ}5;k^6pFD~P!2?6ndFA^YUB*n4!iv%*Jk2T; z_XN-(zFC=?ndT8ykW^7q@Xb>6Wi?2ORH3Exj`T!;H>@g9SJEl+P3e5>300_p!&iOvQ&*fxF_*pntzUfU+gAKwvg1jmJsu1PgLT?5zrXLF{==KjFWve@Iue-l z>>pb@b=aAhq6Bkrb>K~Q^KrP{mrgyg(pz718`>~D>&<5$`O3Mkj*?&c<%uHsoj1Pr z5Af?aZcXP`DiC& ztFQGasVfA#W;@#XXHR!Kj@P6Om(b~={S@Y@VMv~5XCRj3XnLZL!RC`FWi{ULBCl#w zO1`&1FQcN|UR&HjD5w%TQ$*R2hA(d*h6dme<+)DCGpTz#nW3CvjkD4ss!Ta4_tj7RyB+zT zzxF5J{f*xn1?k2h?o4;jx%A@a?RnGxiFeQ+te)6+#809f+m;R;*%AkF3xClSmrhKz z4jg#$$KSczfHYgtYRrpNJ-L2@9-Qxw2s&A&y*RTtIC-)^h@Shr>)P$$MK8NZSJKT# z9$2R`)p4dSx?G)WfOnNb1Sw5Iz%3vnV2~;+;IssrJt*_4T$?ak73x*+lahH1y;OM6 zoCo>1=^?X{#4##-KIPwt2}~V|_$h%u zg>5ZPkD|cKNHI-2gX3{wqP+y4KHT9bwIN#ug_8uWAqt;|U?u{Cv3u z)+m8A^z}g0ffOGbW2j6jh0=KxJ@rXf?)z&0kpn;b{*QY{hE-uxbT9lZO|zu3K~+fu z-cQ1A%*qNPd%oy&ZVY`kt1HM+vY=7$?zx$O>f3H#>eTGsC6sdLYsc0GER&`gB{V^!G>oHsBD z0nMNk8I_IMKq0_K#?=U&3rv?&kPxiCjV2~{F`%HQaqV1ksABF;4O8J4%70{NWXe2? zUHcuXs{NF=F^u-mangC~Q!ohN@e6q<_MixpSjFvvMBC8TjZqZPVU3n z7|X*HRNzXL391kGcT_2ct1%KCTg?&PLB6&@X~~NCumC$iz!57Du=}mowMV>8R2w4OatgGv4_A!S-E}p?(4&N4c24** z&Ir2`EEfH(LATqrS`AQmlbnKXU7Gu2D2xy^nCyDejGm1XTC=F|MWqdW?Z=NCdgimA zvDmcL3STXR`T6T^Inqlu#$$pUAA97p^ItGdiir6`T0YmQ%9|~ zJ2lgM_}*2*c-g48spP+S?G@+kp1bPu>0^&R6s|t}{Ri{y&pi9-m!2hQRm&COV9hDS zIH>{!1_Uq}1v52+exxL7BPh(5qB>MzWki6`fZ7?Nc1{04jijb|i9s=rtY88dk*zr{*4DKE68L2tCuU0o6hU z^Cab&Cm1Nx&tkk6(|$SYyp<}KlrmS`6}NQiHnN0Cr-E`!TKl(`qKLD9n>Ma#*^p^N zV9Q;v0lz-V*bp&-$(u?kzQR)mZOzgkq^;EArXa_bB|60rh~&%B0)ES23!vu2dDUS= zrP`Fhgj%YWC?hmfq05L4m0WTY6*sD78Tv7^@G2g3#Bb6dTMq7fj)5A3(jlEvTyo;A zV)_K1CugR=uE|+ox@M75jq{^dU9wHKX|;mT_nWPW(V$2F?KrDZnrOS0e*WDDE}NXA z_i*I#gOiKXrQUdK-$|{kpa*Og&Gr<%SR9WbPFI>x!_D)Jt)8mrt!A45Tn=G8g#ZRku|=^yJnkmPY=@iM4)Kf~J4PbFaAl z+TY#kZ5%%GB-Q4&j*)2!t(N83n&qeCOP+mMs#X2XU-F6zE}m@+PHsH# z&HF7-FtFk?-^sF2Odu?)zMS7x|5$a;a6hUZ_jv(q*lTS}^kpdn}`MX5V7 zVbn^(02E;%-K4jgDFnkHMFN@|r#qSU11M|-)E2o)zTqlF6N3kfq*6@#IHJhZ$@} zIL-pBGF!E7f|q<1tk#ZEEP;mXiVve;=?XS86s9b4OSR!dtBI}EX!A#hC$GLllSg?R zmQ6K|M6+}z&)?Z!8Ahpj-gD2d(tPE_sdF#g^_}nT8;|0y+n!%;(7rR>24QN7g-HUdLpQq#~mFWIPH$%+>8GSJEI(%T%AS6~#T&?}y`Z_2gz6B^J}8Qf!3(-1W(SKK;)P@fQz@|Ns9y^#A@XDorb^%oE8$|$@=VRHgpPiy1eU0Q5hE5a=iz@D zVY*$^y%N5@#|~ssQiNwHL)F%?Dsmg_yi1nJ#2(ek`aZB$RYlwa;+L7tbEb=vh7|H^ zm7ctW;||CagvungM#&&gKqn-ZL2)uA%57A4rBr~a=;xv`09eVGy@q0zN6vBz5^%bO zRR^;X&;+OKRmmaL(Q!kZ)BclqSXp7xt|*cmjgVSsqvAJ8pDHD=gm(=7Us*ST`JNS5 zDWIpLrvpDNiXL*Il&<6i1f2V0{p){q-xW!^>qS=t?kUA8n-iTuKMYO`i}ASAZu-rR zzrMQdq8;DZ`}26c@*3V*Gc7_@m1J$M_g%Ld3Uk~a_`$}^!eVE#LdB6pp!HVjupj3k ztu)%-N$I<`?f^?bw7(Um8;A569m|eQWAi8-dH+X;Pd>hpY;FxG;}B}3io~%hOS4;( z?QtAF_T+)Tei8@o6Z`+}*B7oo|7jNsz53~W_t95A`sTl)9WgmI*=#l`Fs+_EiQyPX zg25Hduq+z{OIiX)Xi6F;z4a}6M7y4GQCj5(e)d=qCud!7?$Xk%6tAR%%`Aood~3dI zdaxo^p)-g+1W*mF47)m^gUw;KV>687G$)YdbSB!g@%%6%1Ti}|8wM132;FE&7*M^~Y=ZDYyV|y>Oc6U? z_I%k?UAGlb73Zmr+xY5d|K*4O`tuWOm1$3hzS%L&GRbJa=$N9g*+E@n!@ru|j1&{6 z3G}creU(8eDi=u@X_g&j0p&-kO}EWY?b_CLYyr|<0-2mb%}h^MT}d)Qh}DokbR~9(k1Nh6NdPnch%D7?KAawJOEUCwImKuRsBc7(|l6z(F^b z&OMu_B9ZgGZpn77kPHF6yQH&CpqFJElMA?S)}0Z+T~L>u>dKRh>V7S}B47E_LX^#FniDff$X4RCY|ax<(S)mZ9rf zFNy`Y?3LkpDD0UG=y@K&tF86n;giD*)BJ|s5N2!Q{F%AUz8|HOX}ff)x1Km^SmrtB zoqh1wp^c+!K@fc5*f*X^2+zFgiiwGdFMjC@;W*?wH`z8R%9}-&)T*ZiR3r>JrIL*T zK++re3UrN&sf9U8@3~xAO_xyDzI(ni(QY>u=Nd*nJboY@4ei;f=^ZYukE*HcvMAHz zm08`LPa33=xfzGAQ~5y8P~x6F?gui=G~(`8C0NAdOune#YeVEOU^80bETw`;2faq0 zo1FKQ;p)n!$o0ATY5Khzo4tnTDiVFaa`Nc0>DgH{?J+taMWe_u4G3P8{QG!Z!*rYJ zv{VGr<3Bj`xxfBFzjV^LFQ0b?eTAV<5 zDu_bcw&hBL@RVw|n@*#l%uW$fw}L1FA6?d{j-QxqX$EMhgoxm>L|Iq2xFwS@8=PJvq>j6OmdK$dYgQ^t~OK`PsnDID5ukqo5K(Z=7t<<3{X|2OFTXo)hA zBCBgm5VExN{tr*>zyGma+m|bM0N@f`FXBUAuNOjegX=9{`A+x5IjIEzWW6CvbFsGH8 zQldqum^wt)cI{f2XgL)5M+G4-ZD&~kPw)J&V!B;Tk{oc_Q>T@ zhy((^0K=4}(}oQtMm;1LPVzt~oIA?O^BnrT#X$Ss-o3wY{qxiv7dfX6l;K8cb!hQ? zJzBhUQ5okakNUP_Dux|J5cnASD~8p~s&S^Ge^8BMg;Cjy*OgR@Zu?UaBh-c^)4-wrU$X;hfdA&57A*3Lb`#>Bj|13;Az*-~M;? z5?xuJC{~*Dh-R=GE91U5eDB z{reB>*tMLp&RAT;2JQT`>K`BYBdBce|JiV>M_JacQp|b4k)F1K1}}HkVn&0bVEtt} z5PzR1Eetb_{ubuG4N=c}0~z*e~=Gj;+Bh+*Da_ z0A^m$c`1?XD(2q zSHuHHAu3~Lvi8nUplSLP7bk~j7PpIVy;$oGWjRhhMvpX&APeM@5nDx+#Gd4`0)K=M zmD1C(;ROpBD~U%g1T+b3El=o!(J6&W9GxW$gJqdPh#!h3DdjWZPFl6B4$(mR@Vk`? z-GaRi2S14=C}rKUxK)E%nO-POp-*L)dYD9nZ|PG;RH8sVjH;Im@_q>4m8Ba+CBv{# z7o)XQj!Y^iRaZA!+e6wY;l>1%skSy(=@%GPVM}V5BU;M@J{?!eLNiU{v6hb0$n)Gu z$8H6Y8DEzWm0eSJT2>{+wrD^OBdYojOdXaj?~w5DLu%;_&cp z;Q4W&L_ZGEwJy=XphvQ8VUiF_7?jzVe#C0ebW0H!^chV$f?>;pBs90^X-WB!Vss|q z90*50_%l%ffXB}UQs8Z+VUXZ_=DegB3sMYNS=F3w_9@3Dw8EtnFCm!T<>{;DirpU# zx#2o_5Xvc~Vd0r>QdEyV^2F?H3#6+|-#ETDJ3ogmB_?U%|DdRbDuI_h3=+k0C~-q& zE{stY;synHhs`{Yh4D-ZbWt?NfcIHh#iM}D@NfjEcnPxD)U`B8bi)ZU7=*MsjcrR4 zQ(eu{MI2}JzRFC1THb1FI@?&F142j)gHq4|mmy!tcMUmo2hjD9So|CEBe3+KN0FBd zBEZoFFI?2Kj5<^VHM1pkG@y2~rk-RtS+++KAh zS(4RkxtACl1GXuq1kxac!G7rsDQ3v~%}hdOe)HbU*po~M$-H?nNgxR!3C+fU!8W#W zw)TflNSyaNs72u8LhMhd6fJpYS@Pq|j|3CQdz(^c3F{h6m&a%$SyNCdLJNhyAtP)>fWeca ziOAwrBTCwcaAK;A-q-3c@_fSjpuufB|B?MNJb!*P}=tCei9@va@bTQrKCsYh&w2-#q%=GfAL9 zYptSC8Qk*{17w_{ZJ6Dj+v_zg#h|2Spjt+u6#8h~3399FDw-`6>~@$OJ30OQ>$8*s zX{wQF?!e&i>dJf=bf{e9vx~CWi9NUJ?b@}+GR)O9b;4d*xB6=R(<_Sx&k}~mhmO5@ z>WRm`zwgkYk<0edpVWp%yBq6X;E4>WN|4t?LIN&Z2&rf3U!P3WIYP2bM8D3f2iHjP_0n@+3MhW~fl=0-Q7mizrDWi(XmYRK(Um ze~r%C($d24=rHB6;1P~oUDKN#q&!NwF1VqJ9lA7ADXC5jD(L8?gP3>nu=ffOi6|6G zMc)sZ1w!GSbqI0^6fG(h3iD)cVWPR+xLhUYs`T~Qqhlx<(e9)&*z+0#Rmv(=Q;b3{ z*L^|h2#F_=S(=g@?1>)C7Do?`WIk?812siG54tGOl(GmdyqhGEx8p7igfJ+-k>JOa za7*md;x^9Gl$Ezwl_)Fj}D7=~mPwewnF6M{rD}y- zkGBaXV<^(%C`iM@<^D!#prUOqHH9#vI%?puaeuR!`cX;OTC1C~p_o-G3jpv(3sl#j zQHXjl0bet4&k9Tn_d2CWA%R0$jNP8lbI3OsR2m8Vc1eszpTzoZd01rM&im{bV{;bG zvujkgN{+*Xs!E!W8&_;YFHqW_(1+I~k({6xgfhLjBsflBQBmMJ8|$sX@u4tHOxuba z&+`!v=)bxuN1hMAj*lQQt|bT!MFV{r=sKcFO* z(q@D{1cVgL9@LEqSM^X;f20fM&g57{mSj-EP-5S)4G4sLJhj zHpzXEcf$f_w;g!#aD9+Ipjs$4Muv9p-u=Y)9&28lLu?$VFD@=il<`pVMfX2LGE*!V z*Id0#58Uo%dudi48XnT?RG?AzyQy+cMR~NWf$yGzobOY;LS=IS)gds?SrkAX3AD4| zofrARW!ThS?NWkif%!&Nm!lC*tpL*c!GYrV zSh-M=G_vskmui|?sb;E{oMY&?NzA-%Kz~AgiS8iC+IWwG1*4#F8i@f}DRi}Y)dVmz z$`Vo`LLMiEX~+{0fk%0~DMsc>7O0>oNI}C7OU_u~J5To|Nn=zUljQxdZlw4C3QDNA zqIyd(Jp>3El?BiDko86pPb^am_kmEvRf~*>6+tPaa$gQO0$|uv5G~U)&3Ld8Gu{;o zB9!hy5&=M}gprL!%OsCOnX8JPFqJOQuSCxZik~Vcr3SbafQYBefG#WVtkWY2i`a!D z7adIQn4CFxxl_^4VwMF^6 zLI$d0LA2d$xtkq|gqEp|OpdLuHL2<=TE*7N3fx*Il5IGSL+OlJsnTz#RA{wYxp>%R zmt9t^Rw3xW!D=Cgych(6c99$Ixy(F>*~lbZPZOmA6y31Lp79PXr$`$9qfk%< zo2r=G88^@{mQ)ZgvYafG;|Vi-a|=VvAz*B`Dwfk_$kbzYtU;|lbJ5Hd7}W##7}e)< zvrBvSPcmXGQ@HU+2_~KDLao;Abt|S$o|^IzXz4(V9vExjwqt-m9M=m2gcvD9hZl;@ zX&6M5PLZq8=s>BuTEYUPZ5Jh!Q0R7qR zgNiuv)4Y2orazqi^XHLxcS^`HuDl*2Vc5(&kUr!BQ@-c0aBTdCX^~0w=%qF6uz?c} z$Q6m(sH#L($wagu?GdoDh|jGnmMZl$RZPLR2Yf7r6%999h|xZ!>cT^G6hsWK@HwOa zwG(I%=wW~{fx=#UVZPaZ?pOZ$=BsjcRf$m;zGGd=?$gdWKMmJ{xDXWosDAAoQp5=3sLS)=Vj&J5;kN^ve0Z6`=xP`m|0-8;f`8kE0bb{+D zVGH*U{Je+^&NS#{kc9@w*9w~AA#s9uG#!d|ucuS+PXa|i|C545;Gu4GJMBy>(6yK_ zDD;*v$w2ZZ@pKyGpiJQ_YMMcXO+v9!3^h=q3ASld?$~t%8T4k#w$bX?Sl^CqbxC$9 zCiL7$G;NiFq>+KeG(uNMH5ArS;{{6rNoLM-uyPEx996F2g&*l~q!B+&=IxJh z7pb_<$O8GhOy-~E@VhJseFQylmrxl(?p9?vcY(=Eup!Es46K++1sOfuyp+o|1SpZh zxE6inI5Nm@qurTEU?4}S2-vES=Boi*JF<=s2UW6IyfPGgu~!yy(#3*bm`9VvQ?(`< zm}yWdoppOSH{9Z)=tMT}#p_~B#iv;vsAOrd^88}+_*aB3c29#atkp|&m9}2+<&tk| z&48SY8Ty;+>m6aSdwSZN4!yylF+bB&GQ*Vdl; z_IK!B^$!g?VzzT?XS=g8cVXI46uOh4;nSIklDKbZba`pjkd%pS6UR=U-sHM*cx<>O z$A=DGdF-!`bDbv4p1CkSKK_;)uE-Kc%ADrKdC9cP;{$RUq@E+i%(AA&f`&OOR;(qi znZ=auvEzg>#a7dzw8`squ?2<`mYQ*@@HQP}+f=IV&__r7wi0*Yd8?13A!;gApgHXkQsGR;Sd6SnG1NEA2`NL0d6Wu{w{qSBA@ zaxpGN$3O+_l;Bq7pih;8rb|?6`c4-V=!r-7l4?cICx00gY(te9?oKybNB~XG<=-&Q zQM!&-D%b!z2$Z|J0odJ5g>Mimd;;d9qkN4d^a(JS(F_FwTbU3Cp>COaKt;7uH!7hi z1gW&PuAMk`u{u;5-#Zot;_}g%fnwDOB*Wf4-HxMj#Z5P5u~XPMQ8#qY)>hl@1>f0! z^^Ik_^5ogaRcHXGvaQ!Elk_&dPW$|cvqM88E30eO#ss;%PNy@qYoBxc=*r?;d!y}j zT|>8YP*~}mpcRYB?pCf1dafJHc2X0>v(e==OAIY31m{yiaqSIN&Q!5S z!-j}ZDKhIIWF08G)nh|pa6!V74l!Dmyl}->psd$*=uxgNH~U7ZN~q#WB*C_gsw~pg z7i*=>)&`h60=NL*cgqzU1E0Gx(G;7g!%Qyia?Kb?Ce$#B0_v#FMrnKLpA zv!qy|+7$dsTSC162tw$E=|q_$I|9E3f2NdaqhNVtcNE_9rC)_T7vOlfB}iLEv^|*Z z1`aFY>97)D8H9X?f>Am8kve2%$#>wCl1q#=0}8?#w2+dy)i#c zwRxpj>UCBd6{Av?H#-}(lJw@QKUiN|+XUbtmSjo=V;SR6*D6v?o18s;hKgcWkS6;3 zswMqcvrP}+Z8yK=%&7~uF_Z;vs-ZTx?Yi-erFP_}bR7FHA9h+xQ9G7RgUmFe#}hN3 zAG!qWuTy~)im3FDGSx>C)!v+b>4cI9i6q?LdlPzgL?bB5B&-*GC6~qFipOVn-IJLfk5J{9^=!zVOr9ydWX-Sjx zwu5F+p;&aCu4!trX@w!kn8-H`^pzU5;>chbt!kV!C{*gYP6lQe+*uT)IHV(r`2x0n zq4yavOD|)r(X~hJm){2&umBJH4hlqMavoI0BJ-8VQXveJ=G__{JL&XeVq%zbPMeLz zmvjq>3Nj6A(d2)Q(4|o45_f{Yb1`#QGu|lyF1)(JC^d$xB5Ok9X zr;oTJLh7rM4r!2}ZP*p)ddpiqHy{!K*r2#fxoDC@)CG2_G0VqN4I_b{ozhqgaaCQX z+R3(+97HRl{UfMU^7#}4C0^HnwkjPXvPr7D4BgB>qpFx9`}ur~#@o>l>IOstAC2O( z7|5ZahDN_NaNU%Zd0+qb=~Hj6N@AniE3Ni~3#$BPmi?Q{uFF(;&pWR47G6L7tuvj) z-i7t$!J*NY4=)~H@QS6z?#s3}<973nnfY@wbX({?4%dfA_iR_%YtS8l{I5)jXdFeI zZr3c>lo8b$^`6p)1*QwN1`TZhVFJ;*AF!8ohzDYF>#B?nhO*})0JcA z6PFH_+BZ0c>JCVSu;+S6??c}4&N9<9R5Vp&vuMb=DuHN0VjDr5LzTIY4^qPjh-XwD z!&;Xx=DieVf= zPB#h@C!(mDg@UYO$-7oJbvCWfD;cI}Z50}bhBD@@( zVqF7XOT)|`Tq8WeXSD)>vPE#m0r4Y4R9j-zL;?EL46i``wAEn=Febo~XBaX8kF1Go zyMBbsT2o^Rko4Xm{oo~J9ANEv)YTL}3|R#VyIe8OH7`j};>)-v5VO)Fia?~OD-^jj z2zAgSQ!{$3aqOYeNR^a#tk7@)a*Be3kcD0p2O7Z3;L4-GNT(q~)?$G6K*qn&;AT+| zss|vcp(qKZ_5fIh^rWer2z-aqk`x5wB6`q3<1yE40+b3J!BmJ;ld1%YVRE%vH#8~o z+ulp3!b;(m8xM3hpIK;99bf1?YykHxHvmKT{3h(2!sH#!Dr5#0b8|hUwhLH_R!Syg>x^z{DXa0@23Z_ycF35 zZLli++h4gYUS1X;95B?FtT?T8?6PV$c|i)Wl&?FjUefi+6qSN4*=9_4Ock^+Y@WWD zx?w>v`n95DLnaBGfH+n#&n|F7Tkv{rgo#Pkaa@lMH`P~MVCaTI+5W&_)hwA{vSCY+ z^2QE8{JhMINQH1AF;N&`0X)p5KhL)o!oa11u+!{z*1BlTKrBYVjw^i@+cXLkm85tf2OaMWcwh!87z*!W0kjI(D~fq73_MCQa`zx1 z?Eyjqvc*{k3U~?Sv?V+*)xumw%3E_uE`BPg0+ooesZo%oIO?pq6f_LU4-&GGoQ$omiBu@%Hp#-As3nm0vh^ano>o z%@7>z?D=-z;O?SrGzJHjUp#9nb!#$GOnGwGo+rQYZ9nbFQGDX{!`I(%?a4Pz(1TfB zTCS7|>np2H$LXeVSbZX*-r=M1!>6>ZLIHlA^?YW&do_;blA5Btu&#v2E z`2o0Bwl);Q0M0}+P>9o=?|R6Ruuh_rbJA>?g3g7f zUaN|R%KQkejxU2aE9Ehm>U-JRT6=O^-J-H5iWcUV2Kt7Y&GkmTK{3|%9F^}g5|Ahk zH+o`#9S+sdQi+rhY0ZrC=kju^3ov>n(6cr))p6p0vLq9+vFEPr*w#4w@|%hzFJ4^G z3uc!Ll`_H@OcxZe>FmcoI_==BKup5s&1SPnnTT!ZJEq2m`U*vZOv@ujPT`v>tWpUa z9F&f_bQA?nyC8HG>LT0^WM+7rpm6D&BhmtBPJ)*Tl*G)Jfk6!d5f|S`Gby~v2}@PL zuE1S`IR>5;V1y#qp914o^ARM93f+=et4g9*ipc`OPptwqoTWdSa8TtX07e{bNqhj@ z9fQ47qVw;i+`ZORGX&Q~YN&>oi1b>jWz$=*gk^wP5dBYO5<8K%6REnz08#+GEJb39 zTwc#4Pa!2?7AZ0nv~)o|`fwWAG$r=r0RvZIX*nUprfNQ6?NM7}=7z5+DkV^J{BB1E#-UEf@M z>^#1ksOxdm4N*{25fFizMT#PpV5C$~GfyqLsnB6LQ*EicLN)eAZ<(^TMx$CPY6)Xj z4WLpJFuY()9ZG1dp*63txG$qhGFH>(jar50A5c2=-A`zvHMlt@rn!3|asyzUt~KoDk47|Dxyt;)?Ftc39#BxODvghr7^kW8ee zaOoWbkczAn;1KNb!<)$zftX(>L?aA6B;>l7>B*P)ROx2pOtM}zc4@FON*XMDPrmE zAO4`Xy6U$#-#qe)w|B>mD|Ws3#B&s{N3Pf#_I$Hk>P77g^i;}&IYlOF>X$hbxP_ivuqbB z>Fsm7-SuXx*Ksn4@nU;6g+!p>Va6SS6AcPf2q1I-0^gJAP{&xv0INZJT~p=F<~mh+ zIUyb7E2!!Xg-x%WFetLq*?=7uER-|At7|4uBn&KF}Ps~9HJEkGb z9#o4|=83ZJc)7|Y`7H9=GHw)-W-OXYIkHdY5se7>Fk3 zHzJ6(u1kDXWYj9a>oMi`Xz#MV2Vi;{K#Ax~20nc@?A1_|O=L|kH%flgTWvL0^rUe5 zY5IM!s!>&K&;d2bl;dc6q4)a9rK_&mC3~LPaw>wd((xA0Et>_~>N7_Nw(r}&_rhz> zoj-Arg2#2YT-R>49{;Crwq3d*#;7b!TzznJevysL6EXt-bKAuLFb>Cyn~x(ByD)ZKKuN6n&Y> zgSXtY{q`#n3459Ow)fu@#l3KOLpFd1pn{L?2ZdsE)&gJEKwg`xYASX9d;Rae#K$|lu*WSQ%&Ef`zg#XQ zZWuU$&U0!ZO(+4*89#wV#gYP0m}*Wjs8D9CAv+Tzuifh|ub+Bt){Qm94N!n*mP(0< zGI9CNrMYRd$i&@_yF4{_?TJG;F>Qs_tK6Dw?i!{YQ;tVAqsYARgzTFe!V>-UJZr@UMUrD|5C?hBN#yaS#8_}8 zCvJ?wEgM5j5(D~BflryMf<_KTb~w(!+~w@1TT%yd$Wm0~oxl;Q0^L4UFeNCtiYb?r`7l`4B;H@uppHY|0^$JcJTdQI zfPE(n3Yr=zG1a_^uJqh)iSDjNevWL|GYzzQW8TO#EIb%`GYvwYk!)BLz>{9v^^_Ga zK0VhmH@uy9Ro7RXzxprVI`mVQ@4n&kod+j3PAw;0SL|+XtcNcjIe&V3{=~)2u2|W0 zV%JNnrc^KYPwn4TE@_7!d*<-@v#yx!x#HUS+39m{oT}IBdw1`BQ}sYi721dM@gD!vj^X*Nr?JJ6TaF1A_DzYttaV!9+v>%?kMfUCcBX zp4dwkU%TiB@$lqmVKeX(ury#xm7bEQEuOy6H$GS>7lfcwG8IS1OF@G!$wyi+K7NjB zj5(IdXgI2+J&G8;o?ob8HD`4D=rfPL*ccvew==6~%$=K2DOXo?iV^ggGqmCjiBC6x zWvtzyiOKj-ePpQGKVYV!2PIqbh6YHp5+OvEjb4r-k)2cS#)PO*Ob-QYl&}j$4MD%p zP+Mqd36SxH)xvHA7XQVfZw9)Z9R4P9fle=r?+PNr666H!SETwXVkzBKm0|i>zRVra zH6;}40b@vc96<5ZD$rF*c0n=p;-$I~BnwD(5^S0=eE`I}lbkGvB0$XBrQq_Bu!x4N znaoepa$=5LT!BTuF$>*N+>4o7i^@7l4JFEf1ZMt-AS9FkI*INss5TYD0)3_^1QPqs zUK-n4L6cp}lqu}eaUd_+>jks3b6urCk*zCgHy^qo%GRcCDDB+Vx3qL&V*AMZKK#=o z!{x9bDf@Tz4cbd57ytclJuImcmNYTvL$IEbS2FQxZTO1ouhTT8+gzKyuqf54UM50X zRFwMqYvocc4S*Hef8Bxe7w46deP(fXWq!Fb(HF*1|JcOzM!RU0gKmo+%f$FlXMKZ0 zi0YBgc26ET5?~Y*4%8Z(%?;p*Wz5M8v*JL*f*cWm%%wj4>K)~ud)Ez%)6)y{=YHms zzesm$edbvIcpV}Zx+a%uxPNjMM=m8dt@)*Jp;t4l0nH|V4V64{;I?w`}-c zsFN)?K~Xmk?i!<0M2Q1%Wtv*9Qw1H1v5%P_x$pL7(Cwv8Fga0={E(_XyKF+)3~*FH zGI&(PdkYB#l0>tyIV(}}Vp?2bM7?GkTjHVMZT1EmjYt3%yc-JDVudQLO3jcZUj*l9 z=54kia)^=VQ$U4eE1Rgc)%OcLAFL(eCh>~@@Cp#c~sWzLYJG$hlb{H@wI zu-T|2u!<_$mrjQxmp?{2zeNpWfG#UiG~SOkivs9#sjc5>K3*m*mJ^IlfWD>fMSg4F@i=TfpI_Qly2u%Q_@lwyHC zkxq|AkaaP3$iuKuWRj74RCV&p5)gwFPAO;B@Zhr4#3WWs8oNq=_wDBvmPH{f5BC)< z$++&|WxH>kkmX4_854y{cdgTLmQ_QlPwZV^JM#x`{nYU}s{TC&wTA)~nZC)$e$o>pD{Ck4#KDez14% zmEqiq*jJZom4SL`v(oSN)(_rt>$A^1*<9JcMN>L&Lkb2xFfX7WwApHTu_x(BYYf#` zU0Y_DBHd4g!oHoZefT|hzy95)GD*Mv-+a(x?l)_wViik*X8U#}H8jSlh25Dsccx{_ zdQn#xdLNmTAaEk3GNTdbz!iFnlA}A^cY(};-`ao*VhVvF&C&vjwm{*a{f%PVFhr{% z7@&|KS09>Y)^!)WqE|DHJHC7^&o>SvWY-H&iV&pu4B= za2o?ZLszkd97VjU!qElmmrS&kF{4N5(DSCmmRy1FCz@uuo}aS9kzG8d``B@Vc9Nx_Y}SBg*n9z z#n5lNX{ef|M<03Eu9QCXEBCC;uDp3}Uf1deZv23=u(Yx;JGFCP*8%mz#>R@0IE}{O z`bKMbbhw@k{@~dcuei3-UEX+OwYh!&L3drg`0`v_tY7t!_p~madFIRCEce#|{=^I> z))_WQE(0%-qHEH%*G+ur-3Jdp_Ov~=ZO@^7?ad3C!~Jxt z8e7APPE|~xr4F!ikG@niY|7nD6XRl;a(aqWGCzMF4De73v4UJ$v0z9TaAEJvt`x{* zKq)T+08KSRoQ8rAK2WfjQ8ev>>xnmjAu*N+vJWm?S=X2Z`p2@wgdpR!bSCZ|EKgSJ5wBNwH_GIIwVlckFC5ss*xgzw6P7FVzba7$ub~*N#`!w={{Ylvy!M`}T3KP2Y^mIz%VOsPP797P;5>EBpp&JuV;4_psaOgL#! zHY{e_Kq;)!g~p!NB_EhErEaD~0%fi5xa0ciwWYBgrNoaLwdnNOnTyAy^K_2$$);n(PHP_b8o|ja086SL=66@XjuRitIGp1D=n7VAR zS~z{|4O9!vfd`nLro}uQQVj5I`VQC}Bj~@a@V%<*{5GA78=*S|Hh8n zHrlaJz($`^Y={*((?V~0=I{UgUqN)3;+m$)x=O(i6^qK-;IgREiOi8`OgBtMsY0bR z5qQ@|1>rZhJykhRTd@2K!cB~lkA3N;k376Z_we!0y!h#Tg6jYyN;wrjwR~{_;RURO z0D`j85t9o;YFK4iI8DeC-oEpcvmM+iY-j z&J91nc~IhfXAkXS=6R5FehO|s>Yz1XuqfTaO0`6nzp~n-n^&-ly>7cyF2)!l2RSI6 zZh{+xVj|ZYwrNSGNroKK_f@2`l=T@1dVU0k8-{s-9S=E$8nQ?m6A?4(6k3!?zQxE8 zBfhILGa;h$&r?JO^Mdn^=GJ(9K%Z_%-8Z|+3x*q6^eV^Vy04Eanjj;p53gKbm)2ByJm;ESf zyNPN_fq;Ea%1>3W4nr7(@>zwB4!49^pa&V8s>*crSaXGjERQtl>=;to4Jd&yse*9u z7KWh$ZKbImrDZ@DXfYMUVN}%nHW$SxSnu|-=TFap<3<-wpI+W@v+`wEZJ!(x+}7&! z#fzuUMgn?VfJIP~pDXUh&V*&p&%)uC;p2)rShD!s3O+#g%55 z2(>~)@%QZ@l!x_Y)(#>lZ&dptxbP`RWtT*+F^x&ONK^y?wv_un6no7RM>h1Vc-?z$ zZ}-;8inQ@PiO%dN<#he{@h|?5zZwrmb`6gUXOC)@s&dT&V`B^iC26{BS`@mg6dV*mPwD@8rHbATv{8W%78mfRko8f#dhPfB)2WYN%`Q{An|lE$H2KhMt2Zr%Ocx0N~Ln6 zPqs=JY08F>cd9U*U`UzBt5QO~43p)96(-!tek2&AbV5JVWwTgPd;mu=Y(U2d?l%e< zKFdOUvL*&Tnpn`QrN|mnRbeR1%_eal2E48SjEkIBhj0gATg9p*{edRyeiC38&5H#u zj(GhJ8wHXtgwHAnJs7aPB*AvfioX8D;##?W#ZJhS~ z<+X*S$fFm|w4!R+b{TL$eR9Xn#pRXyz#yd{c0V&$z{0yPLV)lvn@e#*cjM$4Ti7;l6+N75P3%X@2E_k9_9%kN?=7PkiTBZyN>h zL=gQb)n2^+{h$2HpCknT=ocRO_3Ko5;ql+O{m)+#ggf8;Lk{$(-*x5F!pA=O$Zze$ z$tIsnwMmZ>5Rvy>72N|-Qd+Pr&-KV_f(W-8f?*&^w)P{t8^xkn9jq+Ouf{8@lwEcC z8HwP_Q#8{6OfC zFjS`ckeq;|oG9y=q;dckT`DXKdM=2^lp%>k#!9xBL=tbiq0Ye~HCT)!GCUCsG(b3| zO#Kyt9S7M4`TAG?$ZxF0-_<)tcYgn z_(_3kRMik=@<(*p3yX`M8%|A3o_Oi8R1O;hrJ?@nv)_6A@Yi(;Aq73q1|%ajtO!Mvee)k4|L8UE&zf?rR3t~PS2bN{YlJc4wt#U9?0}f+sj{)P_mnfWVMHcy(;GY; z>|#YtJNAFQ^H(0c^TCVX$+Dj`p{JgD>e6qsqYr%exBrr2<+1D!{ss3wg}D6>y#Fu$ zO(&$9dRt>3(ui902k9W+ZEBQHbp zt1#ydI-7at158;mb^|aQK-3ikiU+zWY?~TcUfK}J#}=S?A2}X0c>qs9u)jfCNmd+j zjwlWeRBL5ZlR@i>0SdUzw1oFC6VA7(ypjcQ=I7WMx{(xCa{(z!x4?IXHGHUL$8@yw z)fPbtz>|Q?zk4vuOyAJR8vnl{5%N*{>VMrjRgU)dV z_8m?L6~sNhO0bA*DHhq#=}IuE)@6&5D=HL0h@NONRbOt8Y9CFt6f~3q6cDK<7&)>~YBc=Vae zRuS_+*R@R*lucT;x_mYYnw@T|Xd82HE||UXikxgjo4|X=O4TSfm*+?Iq1Y;3fAiIc zUpV4~n=YCq&dK$oOMEv6%C~G^YnwtcGGu@B7jIrYbxxuTMK|B_%kOPFD{`uY@v;B@ z?ysH_q_e{6puOv(_Y0P+7ptbBqQtOy`v1qD{OO~N#<=PeU%PKNQ!NT&7|cHOryqZC zO}Or+J1?kr{O#Qbm^K3%&wz5^Zwt@=*I#)s&qt>}f7iBqA3gMcKK>uxDSrRH+duab z=c!wd+t*O@$-{Q_dR)rekgyf z_k8K~|0nz7kq`ehzrp<%A3T2hiT6J8$E7bF(w_N^GvC?DR1bgq$)EZ5m#08;2$D2J z5(?^xPZbW9%~5h$x{j3wnG$iU~+F2oVEGBP>o z>nrv=mlvA^vad$P8XlmMAOwF8%Db>qt=JVReYlK6_c=~O5XoeM%1u<{vCt@vLM%6F zDFatvymWd)baG@gqbShnItl~&agbclWvYq1HQ3Bp6`X!9_5!lgVnG|4s8$9P3YnTE zVks(R`Wl|JGph+XYCIk0*3+>MO<`O$0AZkfQq7SAppQ#_$Tc3g;F*oXWJ?tQ9RL}K zoP@bCfq2BcB?U4uC{b_^!q}53!%szB0K+-`hcZ?*W~>8!W~w(JG@da4BU7;OorF}P zu(UWwOM%(RDG{c$UQ^m(ti@u{R_ItmUmJ-p#s8KVJDqj={8C!fiZ{Ley-}6ogK+Yx z7ne`ZPEL$fN>(?kjg8l~jlcZT)6G*YCCJKH824X(>DiIphUZ*cEj*`+s|yyw&R-TR@#lP~3e=brCm_iPFD zWWx>dHt_-c{(YZ4R!cau`|)40h~|KpFTG(*=>vxVe;#-N2vj4W8n96$F$xcP7{Grq zbBG$2=0~novUcy;e&qFYuE)#umR2@RLlk{4qfD%1OXK6UM#BODOs2X)Alh30_6f6M zF3enn@&?GVl$d#6r7VZYur)COcfKDSM--q1#;&CKN*M5WafnPUO?XkBDgi)DbCC}+ z;ecnAEXV~4hVJ0g{QR>LcF&<^)$$!_XIaW02BsP-tXwEU6to=&u(lxnc2r4{(|oW!-GRRc1}#*c;)iK;&U$^zWMgI_fDTae*Tnm_$AFO9lY}T z<>`e=sWLaSSkU#Ac5m{s%Y*jja(8Xdo;?>%oW@Futa@T(O9ncS0#w`*4-BwWWk;FN zT?ak(K%Y`J9YHNga&c{=RZirhUaVD0p={|BbYuH5`W~DWd%DSB3V^KS|GnL(q@@{F={azj^+y$xlA|*r_jN+5h6$BjiaR z0@1HM`mes)y+3~HMb2o^Qo%4ymU9m5e_k3&010547bpD<`(NroGfBETq zKi7HqX7RS?@;~69_(S`}U%v0n$Nu~9PhJ(8t0}KV%4voo#}AM*x-kZJx(2>;g(^iT zOvyYc^`IS-WnK@{9oOyoonD*DaXD@@D(Bq}@Ie{P6g>qA*YaXhFA2Lx~6Ey`pFe zmbX)uM%BX@V4?`Uj+}oe85}hWWwkV5=*5(Gx>zR;{Z}Dpd1U$@vT-$&46IOrCsSu` zeqG4>r`Q5WSXzt82gFO$e_V%YQ2j&ZM0TucM#xlIbVH+v+24R&PPar_$yk7Mih0EX z3*-!oT9&S-p+UChk&|h<&2-n~+dEZx zbX2d8RTrk0&(BP&jybN4w419ZUOZ13@z6lyh7a7_^<60uANq%HRJV^+YSpKocpNlx zAw7)o9S8P$fm@y$3s*bz9B%!B!Ql909HhxsHFewP>}%dQc;djfp1S}3?fZoGqxU_@;pj&pNDwIQd@BE) zgYQy)ckjyhEuU46esbHVwr9Wj&uX*V{`!`$9TV=|zx8VNVGuarysJC^Ym z<6r%~{U7`io8{!~AH4H7|7Il{`f+2F(j2jZcE2A*amP!XSOn8Ph#|!^rUXaQ6%1hM z8K{(?i{Ngh(9mf+458MHa%E^__{_}3fuVsD(`(EsT3Oqqd@Rn=aQjr>&`^~^f-Exk zt|CF{O<@l}NtvMMaVPQvDHnL4qAwbvdr!PU@RRI1=gd?S>(hm zx-U2i)};hAgM+CeN|)x13Wmp0NylbNr{~hq1k_a*AoRl)wz=BOBo?{MG72UUB@c~K zkfa5uWnjBPV)aj~_6wP&GqYE8iCmcy1~H^ul|nD-=O_R*Y-XsKDpEjEL)Y>;!O5fF ztLT=vF?6Qsw#{-}!X{7DgPQH|(9p_KduhG9-t1Bgzj$GO;<5vs%`WAWMMG(JHb=LO zlQUbKow54+>wV>wrH&#QPA6EMogLUVZVcK(LnB}Nn}59irt8kF%~cFD^U)wNMHiGP zs-Vi6?|P9hS+xpPvh}H{=gusR6sR661Y&Z<4F?BCWN&q)Z)4^M-+%t~XTN{*hu+px z+`>@2zB+&6METV>UX9fsN!(c5Zdz;~yY!VR96vuTOd_>>Zs*&jjmO$OPEkMkWNw@I z?(Mtp6drhC{qkVNxpViVke&aRvF2a-1s9mFxPto#7*6bMT=g4&|DXRGC6X|gA31>c z-JJc$FOh+L{;6B?f>}l6=`;``k7PHl-(ljUCY1orw0!I>Wx%-QAOxRX**)24v8E;>pw~4 zq47tMf(}CN{UsbecyA#S3)Ny0JM;ub25TkF#JYX7MP)cpDvtKqwVFY%jn_*;EIz50 z0OnC7o~Vt`)RHJ3TLusJ!Rw3C5?X9X5wl$E5ggep%PWDyDb4v2DO1%HJtwH4h{$10 zNqsPfQkYe(tW>tjL%LL8nQ(A@0e_8sL|(|2A+-`o3Ycv(x+)a}1eh(r`k50N5+B${ zgSi5euVuU!BBqxzRdjto>4yZhXzN}W7&?S)e5WS_=sQtf7Ybr8gs@bmq?#%RP6s%T zP!koX0El!=%(RI(3BuJ&^LBpapKh@qy5G^-l=uE>Ox#yn2GuiUX=;j_a9z6 zdiaO~b%sJH8=J1<1XAsi*);56rB}H0)!^OTd$*aWDYILDEIH(bC3Vlyd$(2YeDJj_ z<09_fPkoAvlZO#oe}AA(&#HdutG<1WN5As;^gZ`{C*1xi@xL8;^F#Z2`j1@*Fj}Ik z-uTd`pZJg{ynMGP{)7bUc0o9QZ=URa?04VsTOWRF=pO(5UAO(`Ge2SHhd%RPKJ(h= zeidV~{g3>#wED$;;vc;Elg{9lPkryRU-&L4l@j51ANbpEd_ole`K07+H&fmbq;fA& z)_NXO_&{wY5wJ0+nLI>iejE@KpsNZo;?@R`aciB9YGj?BSFiWA+lgxUjY|Lg+)}aD zANyWousS?aE!Yy%W}vyqiib+fz)~?Y0I5fNInp#e@UtA+3H@yP=_FtzQw9nE1XVQx zRj~#dG*BD@fUT>Vs;izCq(QEah`~$@Vkb>dqk++qQIISBnxetVP-JorOs|DD4ca(l zkGf)~R#DCw+<5myVDe4O`6Ce<01(3=>raIOU6_O28mghm zKPiTxn|0By*ZPKPYU;Mvo8H2S0E`N%s@P=01+7G-bu$oFJI$61_*Q>vhK7C3Tko*! zWcJMYRFe%YTRe6$RPE}>pgn5MFPz<6X{WvrguR5@Zl$tu_Qk_fS6^11oDxlYZDVz0 zayS-)`X*xZ`mZbw!@HVmAFg>^p?-FLqK9e;TJNbN5^EA9NFhjzwc^c%C4(=-1R zeDbUJoqc)!V>^S#e&MIy*X@EtSki3qx{nSV{ol1;65{Ox-FN>vcWd&t2x1kbr;iH% z`;V@ve(vkS#8>`diXOrPZzS#GeS0C?Y5TbE{lELY_XFFJgh9YOkC_vsvn#zY z5rK=7x46s5MKV{N%yeQAwiB@dC>W*@_@SS$RD&NDOGQb^I<0j#a`sK_SeR>;E47~M zm}yumD}AF?DlEvn(5W$O%_@Se6f+b7LUbG?W$5doX%Xi%Sxh(sT~Jx$HF~mQrj1I0 zIL~8O-kzb0O*|~+QIaE&h+8ri4iS<0Gbuhp#2dk1 zW$rnF_qP?aYI)sR1eqEZ)Btii;VK95qD-4QQMK zmX#&CA;_Ur&}G}eFHtvTwE#>#)rs&v=w~Axk(nA0Td8dJX+$SJhyl~#sA0I# zW_R)I%-ZyY3RbBwfHF))r~48)0ETFGFNu~q-HM@?V|lsV63W)b`jVvkJNFz~o4M%w zF1`D#v#j@tqm$LqZ4-+x9qBBr?ccxuxz}En0gg-!x_Ls>U38SI3RfIBaO}lbUwHcP z6?eS-`G>xh^yr|3qhr;ArL|X=!mJfWT~n<_UN}3mtZT|}-*#Oo_By>i*OcG(&RdSZ ze&UON^^mHAVvs(An5aHB@9>Cke9OK&?z~zxk3T z7yVw6fMbUzxl$;i}UC{yK(3I{9LhW?L4qwov8oufBJmf_UZHW zkJi%m+C+U~sofeHD#u|kI^3w0!ntQ(86Rn^&#cjXu=>-t$ZD^o*Ru!-EA~%x?SsNh}Ru-CoOAR7EDF zk$DS9;3-tjUkXYa)?*jg>cTk8DRi0VEXirym=ru`YGg?pNsJ(K3E3WO-GxdR1L9M) z#2YWKqi2Zp3CrIgG?yelpy#K6Jw7!u5J*#s)Mh48&W|N56Y;)l&g=*hYd;8^UBB5) zLrG1Q7*v2hJVh?iYw21JX4Z5=W)i0)b|D0!>D>h7_v^2p9+*573x2U&^#P9Y#wUhe zJGp%2Wdo!Ah5i9G6}n^ua85=kmO$eq@y@NHV1TKqpqYneDB$|oj7p(+ne(8gxvV|a ztg4~&Rv<_TLCqMXDlSZdo*J(s#XuQHhF0ixyN$YDDobW1lng=C*vFwnrJvHU|Dx%@ z*(f^wo8{WHtki*w0IeO=yUT=|viP^j_oqA@6PL^oqQ z#Y&_U^VC(9bl#GNcmUMc$X|hji4qSjE@eL`gRXFzH{Klt4mXTef^b_KX|Ot4VPCtr@Em#jtyae1SQf`$}%#$(-uyK@- zgOBx01pB`M+YLb@z)XhBTL`^-NvHa}-ViN4qqxXPTpYMEo|g<_V6r|QHu7ve!q*Vk zNP9s#zwUGDOua_QpH_c zQ!u|sYPDKXS}53h-(XcH?;b%kE~E?8BZXIm;s{}ok~j^_NeTJuoHspTI!TF9n6Qcz zB>iLx^x1tE5};8ODzXZ)Mv3y+jOC}&JP+|BP(4wmrbvlu$|5C#mJa-km;*m?cA-m) z){V;LB8b01-EK;`MW zq!$6H@ww%~jBGu}k$m4WHAT`a%S81ls*+{`;|_)CNM>*@)15G&i)W1j(@*n4GJJ9h z0vt^sXQ?Zim4uy5Dsv&2r0U31WkJUXuz=vMSz}{^KqM-QgJbOt2Pc@EQpXj;tW=#C zn;NTsVCVQNFFgC?4_*#Bp{5imcWEv!Xto(i@xt25(D*1N(3J63`)hjD=q#m2pL(vW zDr%*s3yN0M-ucsazyAEu%-twd^m5TW@n-k6m)DEMvK-2LcWx7{%6e!0`ENWm$R%rIM{xq^y!|yms-CfB47#{z*@=3Ke7U`h$ZvP6(0kiFf_JEL0nf z0mydJ6LEW9*QqFWl=2VjShz(>y}jp`B5U0r{|}FbtxflO0z(=n%lLFl~sz14cHMWZ9CesiacP!>fApyZ7DU%;!Ht z?{A-1POnz7oLH`U@7{C%fA4Sa{q65#St>O8`Jy6Y0Y}wGjUTSp8i(G7QinSU4J)Qd zqP-3idOTj<$-)i|6;d5vrg$$3F`Pg(2>}$tH@sNcC}Cb&YPH0}dR~VlL?iQMm5m#F zhm(-%9Eb);0FBru0n1E*QH_Xl%1DHe!!UxZoomN%Xj2W!)s&wYsU8lp@gVLjc8#_@ z3L;S!$z*hVPG4Vg+dgG5q(R94fD3K_IPgwx!A4Oa$iv;0eI?mRu;L9DkRwpe5%#vT zG^-)Zg~eh7K-K|<-5`QV&AL-m<;g(57)J;??|xg;tx7Qpu1*20S)P&ko`g=ZI-~MJ z2$uBG*8$ZIol^D4GXbo?W*<`HDM-aWM2(=n)c6X0D>r6&Nijy(FnojT09eO_u_=xe zD!hcS0%B0yf_|(HX&&ef$P`Q!p5CC9q_DjfLQBb1JQ>oas==Nb6fPl%3iT5eWp7oc z@Usz8oW+)>mZ`8*(vo3|c{-iCZac}d>A`sQ!S%W2`8!vy zzVMYVy#7~pdu2Y1ho7!YSpPC2T7kzW)g=a3F zecRcsjT@4)Hcf+jPM&!6g{OOc|AEKPU3vM{!yr_OQ5@9=qfONwEVjI*)voVZkG}gs z-=Qy-&n~Zci=D!N_UVIiOxUz-k+;7-zps6Nktx|BRC!r z{86$L>7>rOYm0kbNO7u zlP?=&h-fFXEfj-9E+8vrQ?XZC)1rfnpe(b?C+f_*PA3AC6a-C$N5R0aI=i@NMr9dF z%ZEBGmLl@T9#d-OC-^l5b{#8LJ!7wWD5bDH1^xURTl@Qyf`Tl>7O*$O|EENu#oGV4 z6}k%Yhsw%ZxL8oHra}n7GG(MHs%mHZVClGTyYBw}ugh&NKS%rxT{#OOR8_7deG2*w3oVVd|h9NwTm?n6E z1Iuxy3R5gW)wQgf!g2^xXpIIpk}g!K^vZB#-VVd-zy=m$JyhIHRUtPOLd9Jg3@>CD zjI*5(ET|N@*{Nz|s_xDk^Snw#uB)2Gt8OJWyN?J&GLsr0=1QN%RKsv;Sro*5w%6iq z0`Aqa&=Kn(Ye?C^--?W#XcZ-hW@sW4yxa(uGr|>Hg1|WklwBAqOr&aIb+Ny`zH#%W zoKBZIZAu{9hf~9BQSq^`veZAeTsnFf#us0F!>k<7^GAo-$>sZ}K_HuQ90e})1R$wy z*&q_qH>PZF1@ahUCL@`qLS*T5JiE9M3_@L~{@U#PUiY1k-`DfA&%E}s?9S98rSkN? zGp808S6YNS^fF7uaBo*%o%j8&SMF|6T>l9aA`QkXbgh6%9;^JW~T`9FgE2ff|(ym zebgBO+-mffuq>`%5QeLZKSS}DwdYDEQ)1c-bz^}wGSMt0AQ^DhCDSuZa}R+x@32e8v_*8&73R^iQW!x9-|i%0m;RcZ$cjVNi~8vM z-gWcZ^*6r$j7NY>DKptsC2}W1M*C^xpQ~H^20Z(YMJ7NlM*1)}j477>?c z{aYI&ItlbP;xNQ*92^cct+v$QK=?AUB{o7?_m*>Dlj_*Tn$_|(P0iV!iQW%)gAfMG zg3SjT+nb|=35_3JGrrZu5xL;KgsPE+VS{jnUNxr(w2p+7L}EOlmzk@w+3|2$!mt{Y zm|tsHwZRx6OjsjdVyg!!73GzU-5{YqVaTA1)bJw%{}b|_d746dl9DY1tYIXqH8c8J zSeE8_unBW1&Q3)m`AHvdV{`b>x#MXO(WRMNnTe-6Iy!!ZqEQK2ai?Bq=2<4Gbqanr z06hHL;ae0Sa$#yP9iQn(PdX;P)5!-E;u*x)WuA?P|8icSb8p(CKO3k@u6>AXYa19M3J zp(@879s1~C9;i)#Xks)lvJPQ6dW)lA1TW~M^4i`0vAN~rtCwzF&o*y&>3DToYI~-) zd{UYuNqFh7R1&JrTb;elTkFSxdg6F8 zjW6vTD3o)L;6=f7el#kF6|^2T^x<;h`V+j^QZ$`Jep7NZ3^o zc3l@9y-BgVu_Np=7tKv)w)riMyUJ8BFO_ zme_5;B?I}Sswlx|D#eHba{E~BEeykrLrOliC{z0F7LuNtV6{%lGC?I=!c{a?*9Uut zbmH{9B2eR+#?su3Lnu)(=xfpskJ8#C;HavpNE?$MI=naxl*^FbswpXGx)u zei+y(EbPQRSqIhmeP% z4@y;`!UF(UO7cil=0O*sbo$}pG@v8vIBu5G^T^;lDIjRkILTO^p=J2)wMK|U8SL)O z8J*5-n@ZF(XHTf%K7rsO3nU9lGm4p&Xv;v_K(HODX6QVY6S{43TNKf*#0St>%#EsG z)Oy^%VAEoe(eumG*kF}SmE{rXilBAE7m{ZLrP16z0}OcG^eE}eSc8HsO=FJ7yUPqc zz*Lu5G)HTOiWDR;Jz{H2ic@UyTpY1wYPLGAcr{--@^ZbaZfq!(C`{KR_@QwPB60J; z(4di%=Q+eqEtNhK-L(QfQ!dsUSzn}L?GPx}F^*zO1IXA_7M%o3W={~Q&M`QyJz2I2 zIV!Yr?t#;%POj|UxbgHK{AXy%)6aFi-ulV@>61yC?!9<1H&}Y1Up&oAUtt_n| zdL8aQ8juJewE zr?;+r?GK)Hgt9a<@4Ncr|LCo`?e1Pb{D(jKJGQc1YdMAm@GH_vI`pZ~6`i8*XdIXX z_#JCF9JJaly)ddC<0$O)J3%xF#sx}r%Yx<&>-JHYD^+;}6LN*OyCEX3;U1PO)>3q}`{3uFT-j|%{T#LmcO5R6C)mQL|p$Kn+E9%-c zR3UAOaCA>>%gSr)4+s_#mPc_BB>6NhctL>vujvvND8e+2h4lKB-C8yXcu~?~T^_m` zf}Td0=StI$$6%&RlN>^1xhmcy3zJri2^^}2gl|fcQbP21`XzTcmm~J_dQH2 zj|fqUV%RdTZ196;qu>%uAT)$)zGM=kbJh{K>!!;7&qb2Ks*bJ}^vu0^xcXac(sDp6@_ey9fho?^sl)W_ zqy2CE`tQ?UCdkrq{anb4ODpz5e`~Nc-QD$Td23pY(<+)2-T8U%#M0R(9{$E>zqoU0 z6CN?XTf~xKIIG7_UU>C|xmN37H12lWjw1Eu7p8GKnkK#3MccR?AB>Qc4S6sLpLqZK z34?_@d!zl`&fGjf>FpagDc>iP!^QiL*NGIRMXjz(vTFz9@#1^F-Fx)@Z+`mEUi-q! z58iXEx7_yH#`^ue8{4CoUU~8JpWQIsc9n(@v!vwcTSW%$GWL~$#KCXSSd++Zx1&6z z+RBww%W}q}spFv~twI6QJQ%`24dT4DVJjLmP)bGcZKNUu(FdC4qVb(?rW#ZPREOfNV0_k{YIqIPdiEb3q?Ku^cmqr{O{bagRRhx?l)DDK`4VW< zgu7bB(*s#<_+GWGLj#4ra|$2`Q;!O&-stX1aPkFA&_SD_Ge8iUWilWLM5$aPDZK5O zr9>ZqJ}}%W(T3KT*a^vZn5k(>V|uC4U%_}&VO%4#)C`aB6{eRq!w-ow6?Q7vr2`5z zY^6g#wdR%Kn&~;EQ0k+0k1XBo;=q53Ftkz`vMQHIhJtYmo<=MsTaWeGrA|wL2rotw{z} zG7NfvT$v^V#+XXa<=yzbu~L*bVRZID=lFKrEar%FK$PDBtQ z;^jT87o&>?lMHMcRgJKt%3AU@A6ASl`Gl~~8MKZ#fXmRuWkPfb)wcv^yqHdOxNNii zdkLBi9iqI771yuSnvX>RUUgmNmAtzaKe^YP!6pmuxg4%6p#Rh<5+wRtQ-!1 z{3%$eB})>FMm3{p!i&V z3zXJ1o0s6MH+&haA>UQvpa2Z#4={r$oQ8424rO&tppEWPS@|Z2sbGCjc?;Y3I!R&& z8j-r-s#LQ9O3KEnpn~!%{eC!p%k*7KuyFt|^0RZJ%&t1Z*^XXZK!^H;B2 zA8jAZ_I&zlHwMA$mv84u-D|b`t20@6Fx|W(XCf4_s@rsu)>jr+`U{s|d&M@LL2$V9 z;@$%fzV+O@-+uhW%4_@k(;I19b6-T=(iQTKWU>iEqvBpDFm>U;H-4m1ki8%nh z1MSYi%l(DUUw!E%zqJqyb|^;rx+&X=x#~uDc6&4S+~SOSy7RR^e)Xv@p1(3`Rb@!1 zE+a^3V)mq$6*MB0nhKfe{-B6s!l_k~&_SHWi3O(;Ifu|tW!vr1;bER;olb`^Z5RiJ zYDPhnb2gwfm}k}WFfv=MoNH>RF4R&A&vqF~r%E%uV3HHtI4JBy%@YK+g#i9!t*VBz z$|;Z$5!fD-1qqLV`+;&wIubFXyNa?)ra+v+htNpVn#HmykYfEwXVXYzR!aKlKte!Y z)XM9xUjcsw`oNOLqi_{{{AR(J*?e{FwEZNE=+vMAm=~7qhCxUtrPXc|OodY&>?BOn zE&uj{(2AEGw=F>EtqJxEC zM%Jn{I;J`Zag_$UQf{c$4Xu#7p0KJZxU$12wW-6K5fSh2V|^FvRG1p`#nLE=8X&ze z(B;Te^J*d^P5uEY#t=MHsQC(@tDCd2SJ8+J%k01fDKVK{j3oY1Jh_rVW4zl_wH&X= zQ_3?IFKj{e3^|)1Ii<(cG4=VGcCTZ@un`cRR_2{6yz(KG0%-^yl&~n2&%b_MC~mjk+8Iv4LB>DuR-sscQ8WECOQ%PZ1fgM= zR4SXMPJu?#j<%vz_??@nno{Kk5ROVw=Zp%{h{?mZ!|{Ylp27a%>Y094hwXMd7#+5| z_Hbu2Q);I>N7b;7{UE9z4aV(MI!bAgYZc&d!DMktI#muD8m62&rXuWtjlq2;C^)*A z1a&4zZoshuR0aG=tRu?>I;nK6bb6{OrCAG&FS>n|tXE9#RiPh;F$8$$TP z_AX!4=a$uu2UiZ$+t}Qvh_Kk7v3;l2wy$2h;dvg_pLvlBAza_@wEJ;1r89T1H)wku zLwC|N8f@I@8P@)rH}awyPQ&@$f{?_`S1+xcUYlE4fhDd)F;{e#7Nh;~trspl^6igG z`v>p2@65+$oeQNHZ13ON-_{mqqab@ZD3SdQ{4aOt* zI(t+o(z7n0sis>Ld}P%W6#;d}_Wi7oZHF#@&Yjp=E}F4UZI~8!n30FDTVqgpnPJ$d zsk}{AG6RlT4Js5Z=%Pj<=Z%viVpBtlsra6k{DTS5_PZU`b!5XXv8)IV4I6W)Y$X5| zdP7NV&?i$A0hd{c2h20@7P)ovtt(nrtij0>LHu^ER|}Z!+^riWw!%>xwZ*E+vHb)N z8&xT`DcPQBfg-80WHYyC6c4rlbT6?yR;%EznnVsdYWb$> zScen3gls{S<#5&X+^8s$GF@C*Nk;ME{#a2(vbA~Pwez>yJ$l>c-t&$sDP`O0&CJKs zVCk6cCt139Y`D2|`}*zvsgnm$swBawdD}{6uV1^oRVCl{&bL4J)u;T`6O;rNm)yZ1 zF5udtn|@iO6q_ix$T}0j=m49JnNMOIB}q>sGyt^b@mEqNlCn};?Ut68@crbbUl35|2kL8IM7VVsVD-< z+@0bJso>hf0TKpnnuhh_JjcnWoMTwpFY8&pf>be7%q;XoIT z>8X^0DPo#d$yz*=dDBwe8)c4>6t&hE1KEyC2Lf`epkin`+JlV@5SkZ^srAOjr%`dQ z*cA*_wA@%m$}AG5Wh~Go6B0uQu=ag#V}JX?l~>_yZM!>R5J=+QmDTOb*A{!7YukJD zz1o)N8`jRwPB0lwCL^kv6T*vv@RGQ*y>;eo4@IJ$SzYrb`||4-!bv#0urS@&)B6;V z#a?lZYBt@QbLV<$9woJF)a{MUq3d-got~O$iP>Lmd((XM#)b2`HuIbR=F@tnZ0$s# zMmY*a_cTnY5TvU})j*Pmo~F>#sFScougTK(rctI~&j>{`@S&`mHeHY;g|WMZ3JSo5 z9&?t}|7ri3|L-3Cf7<#g{pa6bd!Md3f<4Jp(@aE3SDY}3*KvZ70+}}Pv84|LTDFuoMk<&d%^O&mp zbQ~4qf`az`jlssXjgNc)YDpR&7%clDV5xj!xU|qrOXPyC(0H7CmSuY?bAYQ<6k0)u z!X>0n@te?X!D6ytNY*TlKw#ORqmaR^T48-jwAA#xiVLJRIQoT(e3%xVVJ)n=t!{U+ z=Vw9rz*`@F_Qluo$!K|Tc5Zflq1C#2=`x}GxsID>5bh!%GSl-9_BTuBIwo1@xqU^p zwswbc7Iv1_v%%)ViJ9TRm*}3j^8U_^o!!la8GG^M1Ba6|OAg~VzgaoeeeZt9^;d5x z{(LUWlx5;p>2(b!d}~*?x}K5lou6H3fByMP73AuL2{#KvH_d`-AgOdHmB+d(Q+%#H z!!%niArEnwXu3`LkE;Dbq<+gy;T}U-6G({ub|PXrVN{}zgYaVu@BQTNU;qDwZse+v z8(s$&_Y$^~Y}26=>DjPYXIE+^%^IFGnl);XD=9DnI2Z~=2b)#MRn4R@snn^UPijD` zh==|fHp02;=*R}_F6{E^aRW>?J? z%3P;`Ns5UHz2g|8#ggYHm^V^>HQ6m3>~P&?U1s2HMKHC+vg$nJsTf8Fy3!CeB}rGi z3v*`6HmiD4W~Sj(Sv83gGZ#q|5h|v;f+mb^fYq*Hi<`B~!HCgJ1B+&aUD562;T{Nr z1-vNX0&H*=svD(AUXf?(Z&1ngO46i;&nlo))oy#Oz9X^!HkF}T$a6jlxN> zY3J08huO?Zu$VvS>J>Uy0R&M z=E}2%p_9fGi6scv1qpPVYPxxLoQ(^`@GLC3&?9eokXWZImer+WI7rA?IY1?!XAue( z*(^XJv5FkRjdYIDHxyN#mT5%)X=t6!Ti&t$zCez6cmw*?gxwuWKpfInmR9c6b+OKYkf@?o163>M zdv2ig#35;R&6{qgR5!ANG9qSb*{v*zg#a}dwj~774IcckX8{IkP}isbzscslPS-XZ zlOVH9z{{ZQmuGuBql2AMztf$JqF76q@n;fJXR{9(t~wYj0chfB<57U|-t?|C%TzUk z`xqJ38r2bljlMka8qZVtHsP^VkSkz%P-oU$IoY#)3m!g@h|Q}amhwi_9X%XM(e%42 zNCI;ah-?Vv4c%(We;^;Ed7h+VoQg;ct`DxgacB1+etiSPIZ9J89Hmr8Q7B@1T48v1 znQx&;}j8pu0(zk211V#&Ez&C1q6Ej^ztEfAVARTsY?5{L7bq<;VY7uYYeA9Up}U z7nAs#uU?4~!E2!PcoI+)oawh~k;gd>`~YJ>oWHTP#jQKrIaP6nzkXuv&YfGq6h>n3 zJa_ArnT5&rAkK-r5W(eKREyGc;Pf)nLz&Q>Q-8NlCDzbEbp?BkY1R5C~Sags}5DZne56!bIPU&q~ z5Y?%Ebne~1yZ?0a4l-D}Lyyn5v8WE}N>NfmrcfdosNLxHQ-y$DHf~%qkyaZ4M`)3< zi4FG7Az+Ua%&iOb>mA*M6*wg#Du=SH+0T+$KD5Lnx&eU*00Ikd6%6|<2+>oLDOCY~ zU`d}_X`gvy1>-YC58`SXBnP*rJ9~SD48{(|EEVinC?5lf@nU&VO1vb2EFDKtx6?uU zuEJKA$SMjT0=;o71q4n^n_?OvdsH`r>C|y&x-(w8V-2>pOxX?7B8m!3St`YKy*!8X zP8h~8y3U1d+X>Vfh_&NJ5p_*9E9LV4_1BhYK(~MaqX2a&ny1SzPO~84R*y zAhvGq9}c7QukUT|64ZANvxsVK3KT1z?&@;eGmmDZ#a;i##kuY@jy$Sr($J@eg>Ycd zoApc+CkdQiygqt8IVx)-k8<>8=pohMoM_;T0CG3;E?}OzHfx3b&K)jSBl_aLG8g;C z(%-y)p^CrstN-Qvn^U?Wt`YzVwY}cu{FU=ipt-*}| z{|a-5v1JPL4J>t23B#lu7UlqI=Z+t<1-L`Vo38*XGFz1K0HbDR9BwHq{vN5ZvRe{6 zGy$@LHh@+PN-p}Zpz>fJhj+QSHJ7&?x$T%Mi;HLL#b6@BNxHLnI2?^6s;IH?3O!It z9+JWxfvP}vUsJ<0_FR*0puue_WN$@IQ<#l%+mj9$OdRQdnpvOaHz1_?7 zZKuWiBi)-$|}HhgEv!}0P!YtK;;xgutL$T%w1~HJ-BmcIG9onr3$&4wN(#_jP-2K)8*3l974_%EDZDR z?*Ba>cuSdN`FKKCf3!CYCPCv75(Y^EQ7xlm>%nLuG9!n}20dZQzz73N5Kq;b7BO$T zRiF*P;u3pnm24@sRhaYg@@cDICtEkIH|}hF>gIS9Wd~+iO)S?sao_5_?>@D>wD_ez z`O6ot>=!va>PjwFsgT&dvlEQQCr+FS(?qlE7oYzIJyy@^S(ahdvSa8c)>aRPQ$QX~ zD88}(`o@LxSC5}tfAT#~EZ;vD#=+GuKfOOX==J?>Z}wn+=ibNOS4r{bf9tmv+%;)& z<$ljBrxVFBm(QJ16MeWnQk>r6*$16cHoDHEPj*|j{%2p>6pDT0)h|!;;3xmjAHVg& z_80!>bG}Xin#wBpOwxnT1m=T;OAJ}1n^q)2krt3Gqvwnra;h8YndCAAOv=*M>4U*b zFe^T~@V@`N`(?|qd8*7+OEVu*Sl)7gGPG+-_BSHBJ zClQ>MqO@D}e9Jz0Y*kX$>Bf(y;_Aii@n8~-B8mOCA?6K!x@5YJ$a1XJYoPlPUd4S- zDeG{NQ%Nb+C(IMvzImfavK~RzJZV{0oYu0U_vcnA`{q@ym>@26+B0;MF*@Ry0ZWyR zkIxmSfOR!cn}~C&7!3k_Y)3`UA{H?f85%sm>0e=t0m}^nIIf)+rD|7k7$so>N*TS< z(_Y~#s$lh3@W=%k>6F?jMK$yRxf%SH6$@lBFHsP>iTB2vmqu6K+wo=^f9$9J;8UOd=4%_Nq&k*D$DBS8zMf`;1W;socYJ8r`k6Cp z-+2D31dFH)wjlkarXHPQTihAgp8eQ+o;d&Fd8%s`I_~Jk_A}!zcUI?~c<;O4_Prmf zit74>Yh{wOd$yw5Pk;WaN^EQ&Zl8PilLToZt?148H{Q6gx3l}5KllSzuHRA(yHx9T z-@f{_n|e<@``zF3+#i01a;ei<_}U-88rb9S`+*OB`7@u3;{tKWQ>I}KR!5S7N}T0} zp;53i43lyry33G4D|1jXsDL5x%GyBeP_5bqz37iFzfVUlQ-M`1-9`AE&#Ajk?j@{-~7Ap=*-I+h}9s>!L6pfDb$1g6X) z%L!*@lAw#=*@}-Z8p@`K_9+okwv>uEk}A8XEqX|5EmW|{sRl4|Fk+Po5;yEe&KC0( zMTTjX4aH;_UV1Zl?)ht@X_lAj%sjzu*>N2DYzciBl*TH(VS1T5cAaEqLs*y;i@Wni zdLn5l*`CWfCvvOXr6}P>VK$kh;|T#rL3KREOhbzHs1^sVPC<-zAwg1Wc~&`|L%G{f zc-Aacf(6CsIsyOWnGW`FT4oiMLJ?KTruWd_c+0(KPyFd8|7d;vo?rU8|8oBPwOnyE znNmqb=QxTYP0`bItSfq_+kg1cC+wCNB=Lv;`@cImoD!N{J+zCS;<=;LMQ9zVCZxOnZgSD*WxPnYek-0>fK+XH*MoBP){-~7_k_3p@-omJY_ z&DY;lb!mQOMRUDXbA5SnX?l1-pxt%-$z(Lm6SdHu{rxYx`j?m9_xA7jq3{0mFMn$P zjazb+-F$2Mp^yKa&;0hMD69sVUh0%eE7MfvXi9ifHyqb%XVcO)VEN!WP8?I&OHjmA zpaTSt1k<*#&X;Cb38ic!a@}=o*Co(FAm``KzW>f&{B9{JxAy{7wXsAXg^P>5sj0Md zrB5Xm_7t&Z3Xn&)&d@RRC*W7ZeU<)=gWaLpu*^b*7YD;lNbZC14Qjha7>A0HTBn~- zsRjh>pkhbJjglsnq!`9)ngtPknY{p6+E8wc;G3x${!^nDs~;&0aEqHh2~@JF!tZJK zeVaK_7q)K29XFmWf^n6m(Quk)gHnW^WA5hVIFq{F zHr!fK$taGFMQp>=6ca^`#Hs^a*m7ou-~`HdNinLd)Rq<=d*V^=#Qd-R(_fE9<@n;I zNgU5QtxU6`xKf6(Y)GE&K+XdsAEjj(l(=qf-5HL-Cz3mbQS2ILoKH3l47ehSwD50 zzU*{33P%&&GrR3hffA1r*|?TVtJ_*Ub^LEXbnbV4=|5in{V!ZT{`^1r*B?9o^~qQM z>tAZgi8ro3|Gw{k|I>f|m0%hVp$BNN{D?COq9n;`LTDv8oCJpmJ5T^bUj&oJtVlx7 zbCry8ojnX9-!}6ce$r)@F3m0_^p{22c5T~`Jx43zWH=21isjfu7h#gF9$Ph}L<6y@ za&1?&3_>WQX(ZKj1Z_0BEsF~WsQShP@9CX@Ymw^A0c9B@twK>m=d#2?xu)09Kw|w* zUdffwk7c7z7~$bI(hW9kgH5F{S%fYkWVH=Kq67xOdPm0!YF6M%LOof}rP`9ktYR*l zo`2}qe&XhK`tsM_{L1hCwTSCL%M{hnber&0nx_=HY{NBNt0{|4b!~CUSIbN# z1Zz6eG$f=DM-W567NSVeX!;iY#UP{#1IWfshDGi{HdA!`0n^b%UL-ku4Grk-(D79K zR*RmqBt+NhQku2xk}6!-jjEEN)ICq_JIcw&7G_Si&7O%42Hk&bs<1vY7vA9Cv2uQz zhGHD=UYgv#e)zQ)Hunbb=Q(q%M%5jtc%N(D9`mhY&JM_7bVRGJ=|veNe4oQi-FVW|f5 zKx*{zG*Hazqlqe0>*;luEYS{~gM#pzLJ^tH#n$auF4Xmtt?&BZe&YK-^0NvBJ1HTk z(CN{oHZ{X+IIfOq6!|#QiY}G!XXKdDYyuMPWS*cY|p6o6kc}fRIC{ z-GjtW$Cu1Hp66f=&zWL#Q`GZEw z`-|WBqq??4Av-!^nb-Cm*H_FK)4ntYUqx3;+s?qs6e`q(P?b@bu`v)hj^i$ zV-OgE)af|BYgM)+Ru^U^WlAwCDWrpO*=-xDXUj?IyIvTE(^4*?B1+wJ@;ul&dEALUfZU z4in6!1C9enH&S8qj7BaFEv~9ziqcnhbgN({0hMf+d`sB>%n6QS-8m+VN$1$AA@kPq zpsi0otGnje9oB@QC&mhyHLGGaqG2#hr~e>$GS0@g#s@bh`?n?{mFIhuapkpzmVq5o zL788-90hX|s-LTV8!n}q;U-y$Uka5uDU72=@Q9x2(QSO;OW!nX?c}{DQag1C5WA+| z@huw;>1KCP5@oPAXf4m`j&-;@r9vdmQXL!9tXPI<+o*8xUS-7sFc1R8${AEx}OGGn@Z2f`i|AM zjXR@2nl*O!hLuo)$#A(dyS=@;<~fDX2g7Nvr*(aAw%e=HB%U0AyJwnZV-bZ6Cs@LR zGF~qIx3wJw!<9zJJg-r^K$!y+Vk+LK;w{ruVS*0mI|UUlMveu7jO$8`n@ci81x=G) zqitiAK|(teb2g;Tl2`XjLD^O+M9N$-6)iakI-Y&Y+Q0mRPi);7|K7j)zhg8q-?e>=m{4DXi+B6m%1y)q3!RDZHM0F*38^2#fc78khWJh8V%qWRk~*< zX^6GFZcE%5XB4R_Lc?++ztwb9k90&7rBOOofo4QWV2w)R(vqc!D)2nY-6Bj!w@y8@ z{_=mlQpwJl`yd+F6zC_EB^o0*-Lrej;B;!@N+ z%X4hHSw$32(==W0ttF%Ja2!;*IvvC}E?s^2;fJgA;$SiwA09Z?Lt7hn#^dpmZ-4UU z&5hx3c=mw@D2tDS>2!Q>@Qv-|)2Ad0{$7{A@oE;u3nz}*?M^TpQW$nzSAF2bJu5S> z|LNy~vfjNd{l@?GFFyW5ANkVre|GKG&9{HsV;5ifBk;VVktJg}a2O}9D+i+P`2Ki8 z_zI+|BoB&GWs-pDc&#{3=oI?h_Q7Chrq>NeL0t<%ELEN_c3K|9>|tZq;Zj4dlYlBL zQBC4}X0}r>4Rd8_7Tn}AmTO9KnhpQ7%DiEgDHXa!Y~dt8wUb!v96b!)_E3568QfgD+r04zza#9h zV>$!l0(d1sI?!{}vkxzP^bI5dODH+g*QGi<)6wav8Wy;r6VMQ4vyLP;_6Uu-CA&2?&0~pbX|-UrXrKvOz}j>)%}_*Yu*k41jZ0sxfI`x@yp2U3 z9mGnl9qdj{l_y*MR+>ak%TaY3!B3NI*A+>eQQq^MtS-|a$>Z>Je~~Ha^Z+HLGSyPY z`_drtUSn$-t7QsnS=Bn)^9rnl=)>xpFI@@rjr-nr?}bm@xOHsoZd4IWYp)zPrbT(%5bc;h&yI%_iA@AX>rs_twLMP3be zrk}g>)V=rKbMEYYl+&(UxTo)>K!M8XftjjT=Ty## zR^KB~LDeS}o@pisno)^`F?=3UNVD>+*Y~n;OxOi!i5@6b3{+WINbK0V5efY^*EG{q zV8U;xLKK$D;+|A7ax>PjVGRiXM1@`+B)8E?V)+Ku1fl_Blqr@ul@qpERE?xE${>S^ z2qYUi3Z^I|Om4Vg$7EG-cUb)jlK83&IRuv9ZajQtwxFk1EuVU9;pcw&Cx8A&|Givy z;#@7qAq=ofeK<(?t-U)3`a${zUXGgD=T?HksdwD3|pZF zbMy?s;>8uj5CEjsjy@@2$NtMyYn7~LVC>*gTkk3 z`hJ?`gDJoR7Qf(|f~=^cKZI2{=nCo}bRs%YoBy8GvWk4wNC)ja%0o$6*v{`pMDu zVDrYU5B-mSBT1*1pMO1o*eM-oQ%MU~cMgLfEQ zsS(tVvpmi+=FEX}?OD1=!_(`Fvz9`qgd+Jki+$JBEPc*5!Yonfg!pEZg>fd?CP>&d zd*HA}ZjJUNK`qk~IyzCMn)CD`r|)C{m9meif<-BMOCm+BBJlv5Z5ogbv6%(FC~jr5 z4~Z@aUGOwVr!-AX({2`{WqS9TQDFzUfKH7)mau>h6SZ5wqfJ>DhM`l3abywPOhRVknqlxDxGQDc3YlZ z?dcuMY#A({Ls7;+Bhxf=JYi-?aH7Q;6cwFmQRT&GV|eo$JJY=+j|e(JUzmP<7zd8$ zYbGT_g374_w>3eJWg4aw7J~#MX(~Ml$k?DC2tw4cs3;M_vWn8OV}HxPkr4aXH3=B0 z!6c;jq!elq3CFhCRRC+KaTr68S2K&8lDQ~k=&KWyPqV7iX=&JfESZW0J$UYiLxf0@ znW+rbz5*{khjOH9)K7fy>~mjy@vpveUMObE!pi($udqC6VfjRv<)edLqc*Z>W*c@q z4O^{FmSx>;dk_rh*9?R3%-MVId*p0d=X=B5Or*Zop2o?}_P*nIx<2t+^f%f;8jizg zb$+qR#b|G@EQXW>=w6P3;Mj?i7cN~q_vl*)9MZo$b0b%vlB%~j*ck<*(Q*{l= z+TYmChUxu}KPXM>jY}Kf|Iv^A@uz<8fQcptlbvA_S8@J@-~Y_q%zQjaCUN8|Ro5_D zrb3U?t(4K`ZW+Ywo-3j1QKI3{bIdGB4bw@5)Sj77c6TLu9a-L?k~lc<9bL%+N;itC zyRJLq%~jcy(h-&@)GB-RoxLMEW6-)t8S7pYk*gK)9R}_>j3H<0#=*b#W5Y%ljcT;Ti z_8O*;!i01D?Xqq*t7OG6N>q;pMDwf0HiyndP8qJG^rVP|M;Cr<@niquZ~gDN?@B?Q zuyPw+hZZqxnMeTu3}>I7HVHuiG)T%4S!>k*IIhfa8RJN{No+jBn4?Hk8*Eu-2 zvvccuox=@qZ|~sV$L^2I)NHrAOLMU-#;@;8ukXjc_B}uRk!PQJ_VMrjo9l18C%Bpn z_NPDm3;&!-&p-d=Kb&3~C2FenTXznpc5CJ^O~waPf1#7-MI43mbF%4KR|5+bjZi1@3Oyz%y7@T;CpYBV3XOF zZmya?_=%7Fn@{{kDcfpgP`>ips@H-BoZapxBJ9n!;*bIsJf1WKs}ZtfviqIZnAj(2 z3Ndbx8I9LF7LQbT9B|{RETQg3pFS4g7$N)Bm7bNRD$gyr-LoCpZK)1aWU#M@$}(-V z!Z9S|4Mj~U=t0yNr-?F{jBe~tx2M||26>`rx@OmsNQ;zbn}(^O-=kKxCIKH(jEL${ zkV%@EA)jS*RSnxTT_a9&-S!4aqWi5$oKobaST&hUj&38r`$i_iU>jNpgIEg8Bun(@ z*^mHii_&sU%QmVMq$yB7=vi0_B}ht2WhNvh)yjOyHQkgT=YcT|h2&Dn1*8t8+OV@w z1Y6sbC;P1#3Z4BK@9=Oi4yF*DlXS(BeA`FP#iyzWxKBn?#nf%vee4|%FRd=$xw-r2 zzwtYE&+e)ZjP`~t%TX0Q6fymlL=^pAN7kx1qB3yW>(24AHk^eh3^=|`S$Z&->>nEQ zOUru)hlbP6;__f;;WM)&^Ns_lcbau40xoWjXX*(+~wZERE|13wuiJnxU1v8V|Ur(CIL^Y|xIDCl#G-F|gGkV5%eY{TJ92l$3@) z4UY`WsMu$vL_efRpk61#o6Lj)1=M3|9!#puqAi;i$~g;$gHmf4Pzb0S!z8w{QrMwM zwE&<{RMJPxAA9$i`8j862!(Q6(Oa<0t5{bFd$ueMa%3BTug6vy%tnHcDVL}UIGByp zEDA+6#r?E!+G>htIYp}^i76pfS*lZrDsw}vsfujRwJHN#TK4=UNSm_4agIp|{3aDJ zksx?QzbjMHT+Y&Ddpy|;!a=48s-n=a26>UriOac{uC5B#bjx;yfaO=7NqH_Y+mBuq zCc$_G@bakiW)WqH zFJHK{xwkJTYLE~pq2HFNu9`;_PAbcy4<{!SctrJ<$KOU(&z-H?uYTjD*I#@!7iGKG zKD~D8(#31X*H$l!8%dJF**uF?0*bD8u(#{jt%;hT1Tw8KN_xISugx%BkxhKJMOA3K z>s3jzyT5&LxZCRW=(Rch&b^O3++SUr$>!5Iigxzb&z>G^?4;YH(e9PJD4nI*#kZVX zT%LRO^H1OR&PV>vzy4pR2h+`0Zq1u|5*|MD#TS=nkHuv{L6b7|a1da)s^*L9eTs2g z+lRVpLpr{lI&_k1b_G35g*9A=;;)e-d6%SeP3Rg9jkDUM~^ zAoJwFBDjinQDt&UKhBU$wz*cY!>91_J5GE7#hN@%xycPD8@TwE==-rFjSMu)4)fru zvZE1?98LOv(T@ci6=D*NE_Ti9d#aEN?D(o0eIN^dru5Tn)8TF{l&qmy2nBSReXJ2a z(8uG3r;L?G;9?fpRm_T`NL%~yfA;r&_dk5<=GC!lq{kO~bskhETf@>FE^@;)qeSEp zRg@*RMP*9PB?aw9Rss_Fu;OU;oWM4sydA}{4BIbjPws%b;H*rfFZl zaS?N)x@@=oBB!XA67f91v5 ze&^WwiD{M{o0|MQvhFTWx?>i2x_hyU&0|HO<-=O(`A`T5397g{h!av&6jM5@Sc#W4fJN>h3C@#XoS{gHq06Ti}F zxhGGpiz?A{U&wk^<#bc18n#RmJG>gy*&xydR|1?_wuFLc6z5Im%Cppr$(qshSq!S& zN=S9UrLr!tHe6#Dyx(nkE=0zuhSaeHkJ&qOAoyosNUD}ast~qIgW_;JyuKUnr_pv* zMmiMefX{UpkZV?&P=2B0VF5_jHI)rXDp;wcY-G!ID5A3_1Bh-=h8m2=Fe%Wqa6GNi z^@Yj8x5WSH!Zbu@ibVn<_Hin*I!y|*=jRl8@oq&51f$dMXwCZLt6Lq%Nvou)I`nhs z&FKXjfWqUF4hudY)mvb;8X^Twv3 znb0gz3disYk!glo@>UCBbl+(uQH%v#7*A?Rm{b%+qX=b>Nato24|aAe-=^|rc5$Ab z>dgGyaDSL&DV0W4&#cU}N5hebh1Y6VihOl*!|yF@+}t>}zJBa2_YMyZbW8P0Y3p#P z+OX7qu@DMpm(hYpqt|Onxoa=gcJA{K=5-g1-&?vc; zQETIHkbvX=x=H#bMA3pH#1=UKSil4zESW}XQoYCG(7Vhz6`kirk+ohqJF3fFig&f!25WH3Oy zqE;Ojc{Ilcfj}z0F;i0Y<2yE@ih&%PEU$1M-v4571jfOOGWirWpvice7D=uF{G6yg zYiXfIM&qso2fLagiXyyEWJGnfP|p?A9)dfN2?a7DwKWt8QOZJih9w8tWP7O6{3!Ih z(Uy|7+iUwfyFn0$hK=u|<58vH`Ia`quc&oN_!W5e<;$1Zp&t(B^GTX>Et_!6wD9Qg zXWO<5k_)$^(XpaSh^DFsM`Ik9rA}{>zyLg+9mmMCwy2ECt7IV<{IC4; zf4X!1#)JKV=h&xCKXNph6t&gu=^b02P3PphD3q11pUkFkyg=$n)_&uKAL8>nonEfS z8H2OdajlN01$N!Hlt3w0`rQW3k18l88-zfoO^$b*X2$M8F`A10>XH|7IJ@t;7IptP zg9bylJl~K?rtEIFl0b~KJrx3ykXyxg7?$g#c?KV6%9%J-S_PS`rNXAoDoY_*V#wW8 zHw01noZS?W*PKnwD$SB?9YssNIm%#ZRnFxVAk~_BwYIFmN^wS-E=y9iQd_Q9{bbTW zYL>~kN(Kx`?(44k|y zLl)IeX9Z2lth!5q=Q&9Ja^z>0la^@_Pf6u(bAyBwK4kaNbAA9y}1|fn51AZVTUDm`lV$zid8w1w^GmvBBv-Q zqk`w^IVLPr;4zqmGRxBOVC~$Q8#j(@L)|>TzW>%F=&e-nf2Ppoy5yr5F90s3X*w7j zyz=_1WY^>LG9|%q^}cHY$;Q*^*5;YPU{DsUssa7lnuUK9)-57oQ4}!X3m4AfePn4q z9K}c4_{{d1t+nM>zW05N#EI5nn)s{TOHZAv()1g@{db=C%*W+UC#dC>%Ze$nvsc`0%PX%WCHM9HaXA{ zvXmyLnm2{0gg6$4=u14`v7fGz-+>j%esqr}j? zCr&Q~#-!r~edl3XM#XsrnTKIHsKaDNx+K(i2V#NRL} zQ{`*oX`=drWT$JTN|fwDN(W6i%!F^Dwq4dG4!2smdTVVy89shx+bnX;b(*ByzjLpE zX$|K=OTL5BsXg72r69Us%du6dizau8IR(_nnOWEdZLuV?OjT9@fk--B$Ha61IP!|U{~{^N^@4O=Xqw>RuH<2Z6GU?D3gQrw2s?Z?!Z=5DyBDv|9RB`F0u6#{^JcXt`kHO+Oy zI7ujHg>aV=^-S0hp<+&fc{KE3)%Hht=t+#fr zuD|rvfAo*%S04L=U;mn8w|Kq)Ig{(}JUH0(e&HE)R{r*H{8y*eJBA(vVUbtU^aS~_ z7xrt?oYwQCAje+I(jVJgh8_l9&AhPmJ=->F$54^oP{rO@X27OZ9{W0j!X@5`Ty*d%CQ1N;g%~2JS7nv zXUSO>)lJC~DaR&RYgc4Kt5Jg6l&rr@UO6kR+WL}0M( zvQm;Ho3K=F+c+mSep^6`0PsLqBo7YYVS-pj)jdgZf*U~&Wou?OOB4KXR*1CvNr!_h zsdzD#q*XFZe|#{4-#WWwMw@4t(~HE?Y{LeAD!Ak!b&|_Mk$MUy%kiaa|EL5K@&7O5*X!P*-4 zuHq33*D)PS-`F^XXMJ=$=ym&~QLJjN=BZ>`j*kbVlJqF7yAY8*9w#_O49nymYU((C z>y=mI+=%+2<2mQgUT&LW@4fryE^aq&`^CTi)i?kAmC*9_cID#5jkjL=epl=N?!WyH zitXx6>X{z!!j+Fd{rb1QxwdwCbmK%!_IunMH}QN+rJ1KGUVUe28D~09bFK~=2$6!K zesyItf(h5G`b)jK$RfK1I9lmN9gD;bmL{tR6+Pg5K5caOt-A;Bd@$8o_mS;o&ui9t z&a$TqgH44>mb-x}+1TJf4DgZyki`iOvJk64SfwZ!cw};j$mAG~A!o;BF%#}Jmr@aO z%SLi%a+s#zr*k)#Yig=vyD*!QCDd9Hgf?>8joeLYz0g!viHIL+el%<(GvpXlLuRK< zDOp!BEKM4qlsscO6~B|zY_b#}Ma#KBB8|Ky0yHmfUGT$i{OhkD#W~zAw@p&#WIU_u z+z(tFZO3WWQsDJ=X%X3*il>8cwM{MLG9K3KpS|TTPL*Wd`+ia(0ty`|_{k2iIgXcM$ClaQpvt%w{ z>W?VYS?^NSEKA_LU6Umyle2$H*z-h_At!aCWds>dlGJjk zSvMtmvFfTeNG8z8P695p#`b+Cs0`}59ne;&r;Jh8$+9M{~BuG+3o3gIlL zriq#&aG=*$6x7O z=&ZNws;k?%J@c2mNqO`3{r98E9?Zv9RJ?3lOq!(x##I?b9UMbAQ=-j+#LWr^(U=;P zRk^;}gL&dWcS0vLnzfY<_wNXc40*=M_%?~>_}0zc@mn{lxH2|Ri*U)tJ6sJz8<`cC zbbw0Sii8@KWYm>&i);iC4IRi<%Fui?1gP}Yf){iE0tX>jS~oRGKT#tl{7bsTIO&SDyc9` zirXqg2Q|;4{AH@-GL&?}a^ZGSMbsqA9EZN}+dFH0paR7YSX6*X7_Av4qa&cwItB@JxX^u#H`s_x# z6&HC{3!@2iE$~}pJFdfqOi`$1RgC82Tf=Hx#E1FegM664wA4Ijme}z$}aRMt^f`9PvKvOPhl$`#Rt5UEg*pcgcQXy9rfDwoyx>Hm|JWIH~lZiYR3yyhO zvrst!?DV4fI7N6A%^Wd7d^la9A*^v5)mhZ; z>{<|K)>3+b%eJP4pVeHiOkqClyEk?Y#B$Wv1=*-Iq|{o`Qc1n%><#X#oSY{jh(7Umb(&e2hPRS{+ZBP z>pOl0GbL}Ot=r@%CV#lPNF4zSX_SmpZ0g~SnSj3}{AJf)3Oy`_wX%lGrIrk9x*!Fx zA?3@Zzt)gxmke}8qf_MGWW;3bs%`S3vs;3Ms}YryXJR3TOdpOxg=VQ?isSBtHe7jL z(A&x(1VN2N)>BEG2ei(_QDshKk~_PRV!)al6QKPoG6}Q*A=LWkf9=cv?O**z$M<#W zs5e2^QKhy_BaqL+V+mfaT0~bL-vl-f*mTm%K-wytuVywHr(Iuzcse_gh_O!cSC&`X zkDgmzj;u3X&4)M2=e6ZH++%13f{bqJk^-lq5QUU$;EJg!kM)9Hl?@5P6E3ZjSx%RF z=9-+0;ddyCyBK8oknW7arabJW1D{*YN%yx9B-AxgrXQ}$skmBGsyxY2I8M<3(^iYI zemVGV$_`+ok;b%PhuSn6Ipu<=tja}X7O5!SCKJhe(eS8cg|Z@+t`ycD)H>SIx1W7< z@9jNcycTEAkt1!Ki?5|TD3t|f@mvqhzTXEH@Ips4>UcaeG!JQ`ZALknI*eICqSbmL zj*i;D@$=!vW1VxK=(}A+0Kbg$qv4JrQmeBPuB>Q2$=TtQ0AY*cBt1&+{b+pSdLAe3 z@d;^O@!Yz-j^`q36mW`hl9Q*xPh8SiWq%G$rH*1eN zXKWggWQ>QoIGH4dNquO!=c0ST!&#h1p14reIc!vj%Ekd#ZKv0DJ09R`k!EzawyDTc zHMPVYJ?iQ5`4Kk5xZF=}2iZ-PU0_oaIR_(==H_+1yt;;)I2w#+ zN!DFny|s502#T^q!{hb!H5>>Wsljl7_=ayfCQP^TT{oUggNS=1wrQlv42c$8X(tQ^ z!y~-lD2hBT8MOEarb8-4S4>JrBH*j83k$X3JMZq^d+d=*xXQ^e^fF1&Z=y6bqN$d8M3q2yjx zl(x>xjEQ0zlXVx?B7l=?JhF~!uS7^4W6x|O57?!#EdzN8GilQR44cOKJXZhY)%Qn= zxxOB5spBhK(YX~pa9c+&@lr)4xAH2I@ge$BvS_g@E=iD!ENAb6Wm^h{QbVOI7n<7- zmk%XcmN^M)kKE8;b;oina{IRI#Z@``E>bw6wJAqga5=cu9og=uY6K2U%{iFGIxh@- zG0tkaY%jr8<0O?u#$%xBWE;h&TR_o(xSDM6vnjyOt>r?pC^$8#$VwB-DvcqRQ5Ya; zuNto5Q(ye-*I)imNF^gPM9ko8gexd2sn<00G zA^DR<-L}xP$Z^a51;Q2klD*}~^K8>II2zv8mv9?7fQzWTn5S+lf!&4Zx!2wD+Cv9_oj|{-~_V@TkY`dgREDH|v zX|l4i6oe5h@Yb!{j?G9r9*;IRPTNj^6zt~hJGiPa3eImmGMT>TTDHiQPksKmlhI`O z&ii}H>$dNG`<-iuu4gZvSwFYjKYRIut5>i6=#6GPbx06pRJv6m`?q{NuUR~)$&hPv zu2_<@A$oEv91BM(%E(TvXXGiMkwtDaos;x{Av#xN3_wTMa`9?2-a1vg+2v=%qHvWig(WyE zi4aHXDYMC|4>kLw-XmrF*c^n9=PngDb(rQU@V1;e=X6)zE*2wY)rADY9A#mZ1ozuY z6?(!_U=UUS*>)#Ol*|l`MiujvbrC#XY75XMQvtFRP3uCCf(_()l?ru>*;Q4ln{jfT zQ(s(-*27i*$WgnSSv_xaM5I757PSK+Qp&SxLC4SX(#7*(mmg2tlEJ>xEDwen z1rbg)EC=5U3~w^7NB4`>3$>4w)(X_X+xSRFEi(L@HcO`mgUN#;K51^gH@*J;C@a-e zaH@{$RY+Xnbn-dHZe+o~x72lf*EHFY!u2Ae-~h%mm=(cSDRLwftX{O7>{KJXgnI zE|JIN3zZ(2ZYy=U>VkCSi1$&q+dL%KHTI7t-F_H#e9JT)&m+drW!AyAsw_q~YLUyW zFe!w>cDie3qf#*f^8OeL>{OZhLb_F@NCfekAxYpD`f*Ynx2inLJQ~e59H&Z!Zo3Z- zcMOY80xub1J_!AyC1gVGYuio~c35s&Xt=Y+Kt7wvWCCZyU2IiZU*B?Fmw#@=;Al9{ zGMChBdZ*W=nyk{!(>U}a*Y8Xw$zzXQf?dN<_xJaaBHY`5&|5ime|P`lrAKeyywh1) zUOsoWV2IG4`TWoB?%cihgO^tOz1Lp){<-bVr!HN(`tln%Z@4hmVV2Tr@RY(}nx0vv zgImB+1VHsn)i&Ct4hK)|Hrwd=u!+d7C6PnBzdw5M-NSqHs+BSP;+DI)hn)Hwywdy{bzNd+U;6Q_<`CWq5a*1?;_nguzpD3O6Ii3zl3kl>Mti@3ThIbuX&cUmus2w@Z+7DTV=C$eS z>iV+j`*X!{y^iH_d08p*WSZ1*zPmF#yqnznpokOY;3S`Ou%0DjFJk{Oa41?q35TY2 zJ==nbc&6=}aCo+!+#0XR@M)BaYmy#Pyo=aVG6iIk*h4wPUG&WRV&IYkNX@rf)u1HI1)%7peT+d zxsO^Ez|X2OPSTT0M>f8hcJMW`@vBi^g*CO7ETjG9rNLo*WX=RK5cl*mg>L%*7c8m`l-4~lfkGO95(aj+O7AOx3(S(4k{JV1P3xgBATYD zA4UihmZ2j@u$9VGtF8m++WJ-n@ON;OT-%-HRa2R6irAvmtD%2k?bH)Co}Sk6U;>;o zwm4Vow%q6A!L?kEJLzdskUxPnFhw)q3vr6!6HQ&0`-e4LC%GHz);74cCdb2hm9&g6u)&jR@ufPJ>lhICO5M(}o+F-87Pp zjs3t@D{2RZxwPg#`%BN=efu}#EWuy6y31yaVIbh~#5W{k;W8PLNkG0PS4h-^KbubA zQaigAq3eh|C;b4@2~jk{)@O4u)vGzzN0PnKogeSq-<=Nzxn_Dv#@4*%XgycMQ5PJj zd7hi49LZO0cl58Ws1oU#^oF2>IPsn$9Ux%;y7I`S6~#!@#{j)WN6Li89&MUue^R8w>Ul? zl2Z+^rvV&Eapk7PpqB~ZMiI`$Y@XtOy0&5#9M}z%Oe&)0H?%hK~QXM=T!9w7~OS&t0UN%Tf1IUqrUu<{3b~YvVB1t`9%XE<5r& zJY>uBE4h`(ffY&B#%XMpXn_%IPDbZVX()0rzlfp$R_b}4s0#d)$XM%RsSLqYHz;{q zlx)Fr6^LV{9Eq(fi)*|Z3$Rl6hI6WN+J@8quu|?AldORpN{C#7#D|hyS}!Rq4?`2A zK5rJfP7=;aWf^u07s|ekq)I2@l`Iv&4F~>0AXzHyQtwKZ*iES|Ns^hGZ1$Y9W+T&J z_$C_&`F>$^LRFo{s=`hE@~1Ap`h#nxVJl662cT(T~5VtNvS*ovse`?G4A>2IjBl+GM3J9h;<_+$0eyrD<>r3DrAX|5T`Y)#EIihXgNn95YL7OLIWn;zdEg_P|A~qC%Dd_sA+$Fca zfBOz~WC~?kP97ZIMV5GY|8VQ zfn!J4zyJ1A&z>{Y&dnFDuQaQZ{prQWKLV3DevrNNXMgp28*#3jWE-68?-F60j^$WEywzGF6I93ktisitQj@!ms9tJjnpL z(xFvak>o0Iou*if6$~BHgkZAVA+YQuVNtY}I-F#bDy8sf%UKSpBbJEFfRq-Tr~tB+ z8xBn=IaeF*j`OnQqAgCh>9~MNQmu}|dR3BXuG?^XvZ6r%Msg6IT6LnUtX^IiLp!9@wUk zeKkwt8U%7Om1B1eiC+wgB#8o!r=r_!RBRp(^s9w-9v>J~g^txG6R4hE284jwY zM^5NFu2j6z7Ngjc;}Om^e$I5gmYYU495djOY3cnw5LjTcdZHj-BqfjMPi9k=yWl}G zF;DPfGpY!*W-?2W2OFM~7CHXg!c#Wvhr9olo>!$s(QG{~t7I@V9Ka6JPIk9Cp0A%; z?*W}l$lorlhKIVI98ONGW5eb~jb=2K%f+x(dRsZVEp*ex0Wdkmms8Blgb}*$-ah=^ z|Jcoim59bn=NfrFWiF)g%(Xd!Av+Vk?=uV4jM>TTp;Dl5gJ66xerNQ?Qy=@-)mPta z3)`^N;bhvsaQ4jEM_&H3Zv&YFf$K6#kePZwLogY zrarYj3|tA40#m9bFEq)4ycYbI1pp_V1HuRA4OCgg;xG?oI>;Htnh|RXB^*DFiKB7G zm82LI#Uy2|K+1q{DH(A}kvwz_d^+B~ib*44-qVd`3umw{z?T}ujrXqj9J#}C&) zTy5ncxY=yanjT5IkY(gqF;9}RVB-NfT3aa=Yk@uttm}F>v0*=eUm(n|?37zz?)dm9 z&*oXol69Ha$t;EkrKD*k7UEg6S;9;N8Aihq(}%n`>LK5);c)ludo;;cPaA<^^?;O7<1=;uTUpTbnhuGNK zeEO58lDT^G=I-Hm$g!HHId|^-!NCCsH#9;P*SEpv zfA94tFJF24wKo-VZY$>>f5Hy}-*+dYiDHuot=mC1hX>?t_|a=GzVzfzKeP7unc30N z2g3pU^AErMT|Bs_KJoGU_jWIT^r`#1`|-(Gt4>TKdhvUI{5OB)m*0K;z1_Fo^DJ|4 zI5Pdr>#d$SeX*FQhAQ59`wgyJH5G0;&yFQ=TNWCYZ|l9l$jiAeKP}9nP89l5S$LePdO!f@|W_1S}R1%Fv#9?q`k%$>G5?Ou4@ovb45WHPxmzd>A7e=smQ5y$zWXgnN6L0DuduD#!ZjheGK^CS0Y zG8^vgo;gjPeBD--ee3(*{wC?G;aI?f1X?qoqeTKK9(R8yC;L z_{V<+_;0E9Qm_9DU;WCT{{A1tM%z*MTWE3$Z??78LfXi@Kr)r6$?ml!8A+Rd42aa7>&Wld?2s5FnAW9ZNn~ zAkGSIz07mO2i0-%vL>-agQ%lblGrvYiv`&!^9u?}wo=1JD$^q<7kE)7qoHaLHOn0( z{F_E=ZMpK_l3oTjR zm9;D*-`;2dFp5 zOaee#R%w#sVT_N**}NPLC(;&l6>mk9IGg~dIR`nkeh{p8;mMV*jn|Pptm32v>=oX6 zKA(Fw8(DS3*EyTSh#O_r(?fTG7^xFp6>wUjDB|gfS}0-2e3Umy0&7;QY}YS&i-@nX zqttQ~nUx;hcZ2?P5WAgq)rDO-qsfVB0now=Hqok^WHXk#TV*yLM;n{V%S*jpG#F$! zl*u%ikU-iB!zi9)NKx$2eQbNX|MZ2oe*B~KWKfsQ+Sc~X53ahs&9=z_=w`(vMKmeK z2qp)weQ@v9Yae~~na_Ob%kO;ag?KiLb!~9--6jJz%*>^=ojZF$=o}x8eaq{Iz42@Y ztbcfXgclZT?W5ZlufOy5CA(aE;%hfLWu_h~rLA{sf9)sXN? zk`^0WUf_@xkt>IeO}V|=$PSmRh0p?91O*x?($$EQ*?F4QDvgZj;j$cv&9(z>|XyyuTZ0V;rw?6)n zPb5VUC!?~$>yJ&lImwdH^Q&~u88X97(-JUqZOL;q5%PIce!zr3Z1H;xAgqEVs@4VA zqX-ZaDhc5X)lkMK@hC1_FG@3xeF325(e;{I>vf0aupF!r6>lyKUuy%cy3C% zod|e2QO~d(MSIO~NR(H}P0Db{K<@M^Sj9VmI2X>rh{+5D(bYa04&YM4ef9sgZ|*yM z#ZX0nqoEkA5$X7>z6v3hDqx31uBtY}UL0KQV2B_omLcp$}puNO zk`xa@7lj~2i*uGaQkpaOsdo#MP&9Js$BT2CAc^@UG<`JRJP9h{Xpv5S+eS6 zbr#aP<$QVl0a0AOVmj1j_SXJVkmc0w0x^FbLrI$Y(lqT{K+GKPgPbi#yDqnkid2r` zz0GC@%Kb-1%banI#p790^35=95gm)1!qNzI1vV^s%53km`(qt%wmqKt9xmQoh_69v zod`GwS`Te?`%F$!LZOlq2(FdK8vj6dGgELy#@H){fbLqer3cRSv83s*INX(>i*e1~j-h^0&5{Bij>74Gexu;gMK^S|V zuj3x~S_PBy7Np9R(5A8G!92q7kAKnD%da)_k23*_>OTwXUyBNGb;3hur;LpB+>JIW zxLj>N=yoU!GAr8i;w`t|@aF=mJzA|gx_#txHYRM;Q++TX@1F9|S0zZKL`h0YkE((= zPp_8_UWp}#;1SV=w;7!c*$I45^$=CnT=acQ?YJc0YZQ)*4k{bgcViC#h7xko$=LGg zH_g)NClbpL(dPbuJS;HxcsslsSj+021ERP=E5+J26`1k8fV$POw0H?3_q3OHx#uMr zv!J!Yu5R0!doaAq+9mrOn6Yo0RZgPCRIM(G`|tg?6_-V^7&X5%<&u)*3H$KZhS3h6%xYN~)h5@RqcX9Dv!gI6b$OJ8(u=(0^;&{XB^+7)k zBhE)6(g0yvb;_h zCT9vQPtSPY3IjGUIS_^^W^Kg=FtU6qH4P#dueGz`HLj%y@Ve{)a`RsZWp9oo7nt$# z>+h8AA1ZPogoC?9M8eZ?ht%79c&eS?g!q{m+2EUH3V6(Y|H@Ox5+_;!MFfV1jJB`G z&&N)g1x@TqfNdoGcx6&abs7r@*g zs?ov32xy`ox%`M6RJ8y9*F#H($U6iYqq#>j)C?1hEZd9QNPwe_N+{_gM=C8Ww{V6|F&PolBy6&On*!90~z$K0SheyE6V zBwJhMJcC9d54%g`$^H}5AaV~8rChbH9RC=y@b*=arD{y{V))g z9AOlF)KSB^uzq%jwqWG)T2`~%E(ZyLBVS%6hPs9waji}dPXt(oQ-r3bOIAPjpWeWw zCr-Nb0tWxANBWY7bTuv)`=d(X3IR8=iV}BiGd+kcqud{w?^J3Z%02_{Gi)Bs&7QHW zn>+2j%lbSA;?g_?xLDg0lJk(~>jPt-TA??iBgA%Xo2CF{?QXb_tK7twN%>uV#Abe} z<6Wd_Y;@L#_JT00S-$q&z1W`m>4fIR&-C4*`M9saIp+dS@7 z{Oex?FcmBA?Hj(w>F;jB)b%(Q_vs%6grAZ82DM80xO|MD*3!V3Ca2NsAlJ*(m%xz- zg-kK*Xne8~ykSZ-eu4?>^~_sCg+X$JTv(n42sVcNfLf{5j3~mLob9Fa9;KmJy8$Mp zuCll8h=lbOH)*Oir{)&O;_$8%xzSqi^9T%^>XMJ%7R5uae? z<^GCyQBOGp2(JA|sl)qcedEJ>{}lY5U83wn|1c=>MFZ;0%tIwBXm0$Y9PY?hn_x>P zfI+EHjlKN)9~Bp^gYKzm+zajNHI8p)5Y{O6d+`T>W5M@7oCVcZcGuFRc^NTWl$}*VW{MXIqd=}5&)?KosL3v21b@^K4UVK z;LM?^GECw+Rb&=nM!1@n7$o}+HG;+aPh#%>8;0IANy;YTE~d1CfT~TF1YLzILh|qE4)4H`8~CHOilW? zMC?#|UP}{VV@ELjlm%DQM9$v5tIe56n3m6(AmzQRLAu~B!)9O6xTCbDRLhl@h0vY> zAK%tUZ91 z^~M0WvSObNP!hkYqPpHMADv2s{T|25q$0GeEN&~03tVZgd}v2HOnc(|gLN;fTK&RV z8NoZPo>b{S1@DX{rSsg0NPuMOkDDv!Uy6i{X&IcdpCLtC(D_sRSi`UU2f8QyW z{c&TI#2NHyBENy>E`#GTd_DI{y_JmjmB?f4&-*^fOA8v#;^QC^Lp}OF7UuE0a-_}_ zo9~0cXMhf#eiAE&PjoU#Wd4;-T;7c2Eu`Odx;$wd%_GiNb{c7K7iN{7C)Ch>%+A^#m8FDMdZy<4bQ z23+Yn>3|bJ;9ttq14Jr{?l+r4odhxVkF8jxmO6BjHI=!9Gcwvo&Zx2vEtBb|zL;7? zSiI8?^%rmj055PFt(8clu}`1~opZ(dq03?XA#HX^r894;kjQ{a(+QGv44!yILA;_K zQRf#9yh9{lEyj!2tJLb++D16)-%F?gnoDo)lmvJT-YWJY#jPbE5e-%{4cj$=+||ai zuNCIg0tCd;1qjCbQuSu4pEBb1$M z!u%(9N^r6yi}6(tTZ*rl2fz4amby)o0u-@+QLo3wa{6O7jlX&Jh*GMfVpd4AI>tgg zIr)uzxQ+NgsTF+fVZ}^m)0RiYos6Bw-h$}mho2U6TLN-p_2h;_m*m>vE;)luANk;6 zPA#v%f^fHPms?dDA!TTo} zL4a)X+*z7i(me99^!tWayY&n#T$=Pi!b{`)h)XheTz-ntBzELzqEUcY@lP>8LbI9y z5aqfca|ixgOoe-i0a@?JZJeNmX6Yy($DK4>|900`rpQEC8Km-umK7}(PwWuo{VOhH z<#>zT&ujrmG2ejl1M+3cfWNU~q-6rx@TD?vOJm>dN*k=AfZd#^6R~M%JEu%We%UM7 zK+{c%PaFt?T{m|$f&R87RL7@iS)x8gH|HRbKy&Q0y|^{GMyzZKvb1H_)ah&G|IfkS zo8`lnGUe3RsN>gpAfnhC6S zhM69ag=l|pFo8!3vONEgddqTx7?pvnu=tKzNW>amdAyV;9egtEL2blx zbd)i*D{|x{IxY;x83z#Bj)ZnB|KZDJ^5eL4&VsZ$_u$PE*8w$Xg*DOsdP646T<9fp zbgZ&r{RY8rCcn@5>^UaWK_s%yCP}=bM0GjJk$_4btzrZrggZ2M)5sAO3Ojwz8h0{# z6W_;7#eh0f1i%DD?tH=Cb3COzQ#m$}66OKGHTY0c-zR(aXKiCo z>iRvMTWdEWBj-LC;ci(15S^XPe#ifliI4ik!P5|vP{7B6q?_5s1Bu}h@1vo(D+exp z%nc4EcVc5}lsBypRKp);&bC@GOzi@~^o#~BQ}6<+uJCnrWsOMCBc`7xka2-}a>6c~ zaqN%_)xQ>^Fe?-u;nZIDJl~h(m_x_Hb>|Yo_Of1{p{OXOkH}8h>|I&oqb_U&|3lR4 zxz1_217Wv!i@b%lnp!2yB9>NCb=%idNo((;jH?lRB2Et|cXS-o(;N2ooR_c~)e)t- zd5QiA+p9RQg2B;woYz}s%xL&IOuB(41BgyK29@YS!P{D^QzhSRjt#7)85_fF((8}> z{`^CUOtzj1v3|jG`I9c`%e)9Go;0;USwvjPv+qWv9#8sB(h=7>+x5wYY;+mt-Fm@{ zm&7sv$ni7y2$0CuBsJH-oyCCqd7&jlquP2HYLZ#`F#fM_s^r*!aLGwj7#4$WZ`?s# zJU|MaI-DExj1LL>9_lT|b5^vTZiFGkFT#4fH-=Y&fJ@lf_pDC$rP1{Ju9~k)f?~FX zyw)B*C5eTer=a0sW@Vh!wW3o7U z-M!p)!QKH5hj`AcAPV=UK%V-&VJGvQl?(8KHfnI=us(aFV1H1^#Pna)_X+rTbLxI| z`~K8Qls#%7yW4(#EP+5K<1`~m3esaz1fZu_p|kG@L9WoNRfy9xWh-w4kUoo4JJ>IC zP6UCrPYOe1RdL&B+3P=qR!P zeWU4QR#JJHRQp2=zWk+i+|HnJ87Fl}0&W9!dXNe=z53XmXb0YnCxJV7KH?k-&;uWj zdiONXQvz$tD4NExoRbjZ!)C?S`mIJUugln{`CrNbACRF0%&$PtwS^-J^XDN|kfQ2# znJ|8v;tJHz@vTuBH=o*{xEs%W4HdQ-Q{A-{7u#gz(Uk8Ez{Z2Sf7R6T&!!bOE#$KZXsc?7~v;4bE$|a2c@G~aIiC2IenTF6W-m29+ zuvEIQ&06HvG5`zrDgJS7#_&YPSCYmByV?HDC5gw4jK;Dx7rxIj`aVd}$+J3bQOU0a zuY!HRR>UFEJ9_S)vosTq{s3h(g7nb!f$q|t<+s(Fsm1Z6VvK{D5D|7QcKv@L#JiF} z0ct32>n-A76R5*5&(zm!*_#UMX?sC$=Nx=NZ}u6z@~FrLcxcd5^3IIGjc;@KET!G# z!3bwCoP8*|L3RPuKBqPva6+U?~|hYKp38aQuM- zYBB>u4r8VFhEsX|i}70UfUK$nb@vU0a?DES$4id+Z6UWW-S}C4%TBpq_DWJ<=hhQ| zG0^B^+!t}sX<7C3O=Cim)B#S~9<+=ko|DM4QV3k%8aWABqzCwkwb*G@E|3*~93Wto zsE{;xDO6ofM!+zOH@Xw}J5*d)*#3Lj?fTOAzeC` z-eOcHu*OI4t^hUX#`b(EFC+~}eWU_XAom-aDyxt~hO-TctlU05nWZ_24OzhfWr{sO zDQeoJX~raIKt`CpqrzrJaWtkMg?=3PT|`^SLWXKzxsU)34KYFmAFsDi8;?zoUMwE_ z6FS^8IS6en(g4^XpOf)LS&Y}IixHhui~vLC>8WhhX9ib_S%j}1+)5pYud*4<$bG7A zA(L8Ej5v1;H0W9bDd79ZG(E)S?)%;bn^8)XJZ0$XYn#cf$+K4bZ$C_h^t8mOteym* zjV)F9w`s!AA#t=MWyG(FI-zgN3m~mJ(ey%rIFA80|KU-ZXvY5#Dghc@y8PR|2rzIHDNF|-8z_yFTc7TKtlj_I!vN9Wy|;hi zPkeS0OcWj(nE=g^!D||{zVrI|^xAxQ0b`xW-!{YN34nLec0fA2A3Ep5m%6%J@5XEk z#PofH^Dm--9SyqLqW`vQ;RK{6ou@tQNakYl&C)WHq5i+q@DrAnbix|fZZ(ZU#aX4t zCz*cL+uWKrFf1Ut=q#Yv_Hkipyt8bJhZ*?&Ypa5m*!)gz0MGoX9c`GjBRoT9QHmb~ r*yo>S8r}RwIsYA$A^~E0SVCp?FFG~X-GhA%0zP`$#y6`p9i#sb)1&*X diff --git a/lib/opencv.rb b/lib/opencv.rb old mode 100755 new mode 100644 index d6ba2e1..8a898c1 --- a/lib/opencv.rb +++ b/lib/opencv.rb @@ -1,12 +1,6 @@ -require (File.dirname(__FILE__) + '/opencv/version') +require_relative "opencv/version" +require "opencv.so" +require_relative "opencv/basic_structs" +require_relative "opencv/cvmat" -if RUBY_PLATFORM =~ /mingw|mswin/ - major, minor, subminor = RUBY_VERSION.split('.') - begin - require "#{major}.#{minor}/opencv.so" - rescue LoadError - require 'opencv.so' - end -else - require 'opencv.so' -end +Cv = OpenCV diff --git a/lib/opencv/basic_structs.rb b/lib/opencv/basic_structs.rb new file mode 100644 index 0000000..0d5d50e --- /dev/null +++ b/lib/opencv/basic_structs.rb @@ -0,0 +1,7 @@ +module OpenCV + class CvScalar < Scalar; end + class CvPoint < Point; end + class CvRect < Rect; end + class CvSize < Size; end + class CvError < Error; end +end diff --git a/lib/opencv/cvmat.rb b/lib/opencv/cvmat.rb new file mode 100644 index 0000000..1110975 --- /dev/null +++ b/lib/opencv/cvmat.rb @@ -0,0 +1,95 @@ +module OpenCV + class CvMat < Mat + @@depth_table = { + cv8u: CV_8U, + cv8s: CV_8S, + cv16u: CV_16U, + cv16s: CV_16S, + cv32s: CV_32S, + cv32f: CV_32F, + cv64f: CV_64F + } + @@depth_table2 = @@depth_table.invert + + def initialize(rows, cols, depth = CV_8U, channels = 3) + depth = @@depth_table[depth] if depth.is_a? Symbol + type = OpenCV::CV_MAKETYPE(depth, channels) + super(rows, cols, type) + end + + def depth + @@depth_table2[super] + end + + def channel + self.channels + end + + def save_image(filename, params = {}) + raise TypeError unless params.is_a? Hash + save(filename, params.to_a.flatten) + end + + def line(p1, p2, options = {}) + color = options[:color] || Scalar.new + super(p1, p2, color, options) + end + + def line!(p1, p2, options = {}) + color = options[:color] || Scalar.new + super(p1, p2, color, options) + end + + def self.load(filename, iscolor = 1) + CvMat::imread_as(filename, iscolor, CvMat) + end + + def encode(ext, options = {}) + raise TypeError unless options.is_a? Hash + imencode(ext, options.to_a.flatten) + end + + def self.decode(buf, iscolor = 1) + Mat::imdecode_as(buf, iscolor, CvMat) + end + + def sobel(dx, dy, aperture_size = 3) + depth = (self.depth == :cv8u) ? CV_16S : CV_32F + super(depth, dx, dy, aperture_size) + end + + def laplace(aperture_size = 3) + depth = (self.depth == :cv8u) ? CV_16S : CV_32F + laplacian(depth, aperture_size) + end + + def convert_scale_abs(option = {}) + alpha = option[:scale] || 1.0 + beta = option[:shift] || 0 + super(alpha, beta) + end + + def self.add_weighted(src1, alpha, src2, beta, gamma) + OpenCV::add_weighted(src1, alpha, src2, beta, gamma) + end + + # cv::cvtColor + [:BGR2BGRA, :RGB2RGBA, :BGRA2BGR, :RGBA2RGB, :BGR2RGBA, :RGB2BGRA, + :RGBA2BGR, :BGRA2RGB, :BGR2RGB, :RGB2BGR, :BGRA2RGBA, :RGBA2BGRA, + :BGR2GRAY, :RGB2GRAY, :GRAY2BGR, :GRAY2RGB, :GRAY2BGRA, :GRAY2RGBA, + :BGRA2GRAY, :RGBA2GRAY, :BGR2BGR565, :RGB2BGR565, :BGR5652BGR, + :BGR5652RGB, :BGRA2BGR565, :RGBA2BGR565, :BGR5652BGRA, :BGR5652RGBA, + :GRAY2BGR565, :BGR5652GRAY, :BGR2BGR555, :RGB2BGR555, :BGR5552BGR, + :BGR5552RGB, :BGRA2BGR555, :RGBA2BGR555, :BGR5552BGRA, :BGR5552RGBA, + :GRAY2BGR555, :BGR5552GRAY, :BGR2XYZ, :RGB2XYZ, :XYZ2BGR, :XYZ2RGB, + :BGR2YCrCb, :RGB2YCrCb, :YCrCb2BGR, :YCrCb2RGB, :BGR2HSV, :RGB2HSV, + :BGR2Lab, :RGB2Lab, :BayerBG2BGR, :BayerGB2BGR, :BayerRG2BGR, :BayerGR2BGR, + :BayerBG2RGB, :BayerGB2RGB, :BayerRG2RGB, :BayerGR2RGB, :BGR2Luv, :RGB2Luv, + :BGR2HLS, :RGB2HLS, :HSV2BGR, :HSV2RGB, :Lab2BGR, :Lab2RGB, :Luv2BGR, :Luv2RGB, + :HLS2BGR, :HLS2RGB].each do |method_name| + define_method method_name do + cvt_color(eval("COLOR_#{method_name}"), 0) + end + end + end +end diff --git a/lib/opencv/psyched_yaml.rb b/lib/opencv/psyched_yaml.rb deleted file mode 100644 index 5ee5d5f..0000000 --- a/lib/opencv/psyched_yaml.rb +++ /dev/null @@ -1,22 +0,0 @@ -# -*- mode: ruby; coding: utf-8 -*- -# Psych loader for avoiding loading problem -# (borrowed from Bundler 1.1.rc.7 https://github.com/carlhuda/bundler/blob/v1.1.rc.7/lib/bundler/psyched_yaml.rb ) -# -# See: https://github.com/ruby-opencv/ruby-opencv/pull/6 - -# Psych could be a gem -begin - gem 'psych' -rescue Gem::LoadError -end if defined?(Gem) - -# Psych could be a stdlib -begin - # it's too late if Syck is already loaded - require 'psych' unless defined?(Syck) -rescue LoadError -end - -# Psych might NOT EXIST AT ALL -require 'yaml' - diff --git a/lib/opencv/version.rb b/lib/opencv/version.rb old mode 100755 new mode 100644 index 1abfde2..fe7eb35 --- a/lib/opencv/version.rb +++ b/lib/opencv/version.rb @@ -1,4 +1,3 @@ module OpenCV - VERSION = '0.0.14' + VERSION = '0.0.15' end - diff --git a/ruby-opencv.gemspec b/ruby-opencv.gemspec index bf39b14..f42c8da 100644 --- a/ruby-opencv.gemspec +++ b/ruby-opencv.gemspec @@ -1,45 +1,25 @@ -# -*- encoding: utf-8 -*- -# stub: ruby-opencv 0.0.14.20150125044335 ruby lib -# stub: ext/opencv/extconf.rb +# -*- mode: ruby; coding: utf-8 -*- +lib = File.expand_path('../lib', __FILE__) +$LOAD_PATH.unshift(lib) unless $LOAD_PATH.include?(lib) +require 'opencv/version' -Gem::Specification.new do |s| - s.name = "ruby-opencv" - s.version = "0.0.14.20150125044335" +Gem::Specification.new do |spec| + spec.name = "ruby-opencv" + spec.version = OpenCV::VERSION + spec.authors = ["ser1zw"] + spec.email = ["azariahsawtikes@gmail.com"] - s.required_rubygems_version = Gem::Requirement.new(">= 0") if s.respond_to? :required_rubygems_version= - s.require_paths = ["lib"] - s.authors = ["lsxi", "ser1zw", "pcting"] - s.date = "2015-01-24" - s.description = "ruby-opencv is a wrapper of OpenCV for Ruby. It helps you to write computer vision programs (e.g. detecting faces from pictures) with Ruby." - s.email = ["masakazu.yonekura@gmail.com", "azariahsawtikes@gmail.com", "pcting@gmail.com"] - s.extensions = ["ext/opencv/extconf.rb"] - s.extra_rdoc_files = ["DEVELOPERS_NOTE.md", "History.txt", "License.txt", "Manifest.txt", "README.md", "examples/facerec/readme.md"] - s.files = [".gitignore", ".yardopts", "DEVELOPERS_NOTE.md", "Gemfile", "History.txt", "License.txt", "Manifest.txt", "README.md", "Rakefile", "config.yml", "examples/alpha_blend.rb", "examples/contours/bitmap-contours-with-labels.png", "examples/contours/bitmap-contours.png", "examples/contours/bounding-box-detect-canny.rb", "examples/contours/contour_retrieval_modes.rb", "examples/contours/rotated-boxes.jpg", "examples/convexhull.rb", "examples/face_detect.rb", "examples/facerec/create_csv.rb", "examples/facerec/facerec_eigenfaces.rb", "examples/facerec/facerec_fisherfaces.rb", "examples/facerec/facerec_lbph.rb", "examples/facerec/readme.md", "examples/find_obj.rb", "examples/houghcircle.rb", "examples/images/box.png", "examples/images/box_in_scene.png", "examples/images/inpaint.png", "examples/images/lena-256x256.jpg", "examples/images/lena-eyes.jpg", "examples/images/lenna-rotated.jpg", "examples/images/lenna.jpg", "examples/images/stuff.jpg", "examples/images/tiffany.jpg", "examples/inpaint.rb", "examples/match_kdtree.rb", "examples/match_template.rb", "examples/paint.rb", "examples/snake.rb", "ext/opencv/algorithm.cpp", "ext/opencv/algorithm.h", "ext/opencv/curve.cpp", "ext/opencv/curve.h", "ext/opencv/cvavgcomp.cpp", "ext/opencv/cvavgcomp.h", "ext/opencv/cvbox2d.cpp", "ext/opencv/cvbox2d.h", "ext/opencv/cvcapture.cpp", "ext/opencv/cvcapture.h", "ext/opencv/cvchain.cpp", "ext/opencv/cvchain.h", "ext/opencv/cvcircle32f.cpp", "ext/opencv/cvcircle32f.h", "ext/opencv/cvconnectedcomp.cpp", "ext/opencv/cvconnectedcomp.h", "ext/opencv/cvcontour.cpp", "ext/opencv/cvcontour.h", "ext/opencv/cvcontourtree.cpp", "ext/opencv/cvcontourtree.h", "ext/opencv/cvconvexitydefect.cpp", "ext/opencv/cvconvexitydefect.h", "ext/opencv/cverror.cpp", "ext/opencv/cverror.h", "ext/opencv/cvfeaturetree.cpp", "ext/opencv/cvfeaturetree.h", "ext/opencv/cvfont.cpp", "ext/opencv/cvfont.h", "ext/opencv/cvhaarclassifiercascade.cpp", "ext/opencv/cvhaarclassifiercascade.h", "ext/opencv/cvhistogram.cpp", "ext/opencv/cvhistogram.h", "ext/opencv/cvhumoments.cpp", "ext/opencv/cvhumoments.h", "ext/opencv/cvline.cpp", "ext/opencv/cvline.h", "ext/opencv/cvmat.cpp", "ext/opencv/cvmat.h", "ext/opencv/cvmemstorage.cpp", "ext/opencv/cvmemstorage.h", "ext/opencv/cvmoments.cpp", "ext/opencv/cvmoments.h", "ext/opencv/cvpoint.cpp", "ext/opencv/cvpoint.h", "ext/opencv/cvpoint2d32f.cpp", "ext/opencv/cvpoint2d32f.h", "ext/opencv/cvpoint3d32f.cpp", "ext/opencv/cvpoint3d32f.h", "ext/opencv/cvrect.cpp", "ext/opencv/cvrect.h", "ext/opencv/cvscalar.cpp", "ext/opencv/cvscalar.h", "ext/opencv/cvseq.cpp", "ext/opencv/cvseq.h", "ext/opencv/cvsize.cpp", "ext/opencv/cvsize.h", "ext/opencv/cvsize2d32f.cpp", "ext/opencv/cvsize2d32f.h", "ext/opencv/cvslice.cpp", "ext/opencv/cvslice.h", "ext/opencv/cvsurfparams.cpp", "ext/opencv/cvsurfparams.h", "ext/opencv/cvsurfpoint.cpp", "ext/opencv/cvsurfpoint.h", "ext/opencv/cvtermcriteria.cpp", "ext/opencv/cvtermcriteria.h", "ext/opencv/cvtwopoints.cpp", "ext/opencv/cvtwopoints.h", "ext/opencv/cvutils.cpp", "ext/opencv/cvutils.h", "ext/opencv/cvvideowriter.cpp", "ext/opencv/cvvideowriter.h", "ext/opencv/eigenfaces.cpp", "ext/opencv/eigenfaces.h", "ext/opencv/extconf.rb", "ext/opencv/facerecognizer.cpp", "ext/opencv/facerecognizer.h", "ext/opencv/fisherfaces.cpp", "ext/opencv/fisherfaces.h", "ext/opencv/gui.cpp", "ext/opencv/gui.h", "ext/opencv/iplconvkernel.cpp", "ext/opencv/iplconvkernel.h", "ext/opencv/iplimage.cpp", "ext/opencv/iplimage.h", "ext/opencv/lbph.cpp", "ext/opencv/lbph.h", "ext/opencv/mouseevent.cpp", "ext/opencv/mouseevent.h", "ext/opencv/opencv.cpp", "ext/opencv/opencv.h", "ext/opencv/pointset.cpp", "ext/opencv/pointset.h", "ext/opencv/trackbar.cpp", "ext/opencv/trackbar.h", "ext/opencv/window.cpp", "ext/opencv/window.h", "images/CvMat_sobel.png", "images/CvMat_sub_rect.png", "images/CvSeq_relationmap.png", "lib/opencv.rb", "lib/opencv/psyched_yaml.rb", "lib/opencv/version.rb", "ruby-opencv.gemspec", "test/eigenfaces_save.xml", "test/fisherfaces_save.xml", "test/helper.rb", "test/lbph_save.xml", "test/runner.rb", "test/samples/airplane.jpg", "test/samples/baboon.jpg", "test/samples/baboon200.jpg", "test/samples/baboon200_rotated.jpg", "test/samples/blank0.jpg", "test/samples/blank1.jpg", "test/samples/blank2.jpg", "test/samples/blank3.jpg", "test/samples/blank4.jpg", "test/samples/blank5.jpg", "test/samples/blank6.jpg", "test/samples/blank7.jpg", "test/samples/blank8.jpg", "test/samples/blank9.jpg", "test/samples/cat.jpg", "test/samples/chessboard.jpg", "test/samples/contours.jpg", "test/samples/fruits.jpg", "test/samples/haarcascade_frontalface_alt.xml.gz", "test/samples/inpaint-mask.bmp", "test/samples/lena-256x256.jpg", "test/samples/lena-32x32.jpg", "test/samples/lena-eyes.jpg", "test/samples/lena-inpaint.jpg", "test/samples/lena.jpg", "test/samples/lines.jpg", "test/samples/messy0.jpg", "test/samples/messy1.jpg", "test/samples/movie_sample.avi", "test/samples/one_way_train_0000.jpg", "test/samples/one_way_train_0001.jpg", "test/samples/partially_blank0.jpg", "test/samples/partially_blank1.jpg", "test/samples/smooth0.jpg", "test/samples/smooth1.jpg", "test/samples/smooth2.jpg", "test/samples/smooth3.jpg", "test/samples/smooth4.jpg", "test/samples/smooth5.jpg", "test/samples/smooth6.jpg", "test/samples/str-cv-rotated.jpg", "test/samples/str-cv.jpg", "test/samples/str-ov.jpg", "test/samples/stuff.jpg", "test/test_curve.rb", "test/test_cvavgcomp.rb", "test/test_cvbox2d.rb", "test/test_cvcapture.rb", "test/test_cvchain.rb", "test/test_cvcircle32f.rb", "test/test_cvconnectedcomp.rb", "test/test_cvcontour.rb", "test/test_cvcontourtree.rb", "test/test_cverror.rb", "test/test_cvfeaturetree.rb", "test/test_cvfont.rb", "test/test_cvhaarclassifiercascade.rb", "test/test_cvhistogram.rb", "test/test_cvhumoments.rb", "test/test_cvline.rb", "test/test_cvmat.rb", "test/test_cvmat_drawing.rb", "test/test_cvmat_dxt.rb", "test/test_cvmat_imageprocessing.rb", "test/test_cvmoments.rb", "test/test_cvpoint.rb", "test/test_cvpoint2d32f.rb", "test/test_cvpoint3d32f.rb", "test/test_cvrect.rb", "test/test_cvscalar.rb", "test/test_cvseq.rb", "test/test_cvsize.rb", "test/test_cvsize2d32f.rb", "test/test_cvslice.rb", "test/test_cvsurfparams.rb", "test/test_cvsurfpoint.rb", "test/test_cvtermcriteria.rb", "test/test_cvtwopoints.rb", "test/test_cvvideowriter.rb", "test/test_eigenfaces.rb", "test/test_fisherfaces.rb", "test/test_iplconvkernel.rb", "test/test_iplimage.rb", "test/test_lbph.rb", "test/test_mouseevent.rb", "test/test_opencv.rb", "test/test_pointset.rb", "test/test_preliminary.rb", "test/test_trackbar.rb", "test/test_window.rb", "yard_extension.rb"] - s.homepage = "https://github.com/ruby-opencv/ruby-opencv/" - s.licenses = ["The BSD License"] - s.rdoc_options = ["--main", "README.md"] - s.rubygems_version = "2.4.5" - s.summary = "OpenCV wrapper for Ruby" - s.test_files = ["test/test_trackbar.rb", "test/test_cvhistogram.rb", "test/test_cvpoint.rb", "test/test_cvmat_dxt.rb", "test/test_iplconvkernel.rb", "test/test_cvconnectedcomp.rb", "test/test_curve.rb", "test/test_mouseevent.rb", "test/test_cvsurfpoint.rb", "test/test_eigenfaces.rb", "test/test_cvtwopoints.rb", "test/test_cvbox2d.rb", "test/test_cvmat_imageprocessing.rb", "test/test_cvtermcriteria.rb", "test/test_fisherfaces.rb", "test/test_cvvideowriter.rb", "test/test_cvmoments.rb", "test/test_cvsize2d32f.rb", "test/test_cvsize.rb", "test/test_cvcircle32f.rb", "test/test_cvavgcomp.rb", "test/test_cvscalar.rb", "test/test_cvhaarclassifiercascade.rb", "test/test_cvrect.rb", "test/test_cvfont.rb", "test/test_cvmat_drawing.rb", "test/test_cvhumoments.rb", "test/test_cvmat.rb", "test/test_cvcapture.rb", "test/test_pointset.rb", "test/test_cvcontour.rb", "test/test_opencv.rb", "test/test_cvline.rb", "test/test_lbph.rb", "test/test_iplimage.rb", "test/test_cvcontourtree.rb", "test/test_window.rb", "test/test_cvpoint3d32f.rb", "test/test_cvseq.rb", "test/test_preliminary.rb", "test/test_cvsurfparams.rb", "test/test_cvchain.rb", "test/test_cvfeaturetree.rb", "test/test_cvpoint2d32f.rb", "test/test_cverror.rb", "test/test_cvslice.rb"] + spec.summary = "OpenCV wrapper for Ruby" + spec.description = "ruby-opencv is a wrapper of OpenCV for Ruby. It helps you to write computer vision programs (e.g. detecting faces from pictures) with Ruby." + spec.homepage = "https://github.com/ruby-opencv/ruby-opencv" + spec.license = "MIT" + spec.extensions = ["ext/opencv/extconf.rb"] - if s.respond_to? :specification_version then - s.specification_version = 4 + spec.files = `git ls-files -z`.split("\x0").reject { |f| f.match(%r{^(test|spec|features)/}) } + spec.bindir = "exe" + spec.executables = spec.files.grep(%r{^exe/}) { |f| File.basename(f) } + spec.require_paths = ["lib"] - if Gem::Version.new(Gem::VERSION) >= Gem::Version.new('1.2.0') then - s.add_development_dependency(%q, ["~> 4.0"]) - s.add_development_dependency(%q, ["~> 0"]) - s.add_development_dependency(%q, ["~> 0"]) - s.add_development_dependency(%q, ["~> 3.13"]) - else - s.add_dependency(%q, ["~> 4.0"]) - s.add_dependency(%q, ["~> 0"]) - s.add_dependency(%q, ["~> 0"]) - s.add_dependency(%q, ["~> 3.13"]) - end - else - s.add_dependency(%q, ["~> 4.0"]) - s.add_dependency(%q, ["~> 0"]) - s.add_dependency(%q, ["~> 0"]) - s.add_dependency(%q, ["~> 3.13"]) - end + spec.add_development_dependency "bundler", "~> 1.11" + spec.add_development_dependency "rake", "~> 10.0" end diff --git a/test/eigenfaces_save.xml b/test/eigenfaces_save.xml deleted file mode 100644 index ec3166e..0000000 --- a/test/eigenfaces_save.xml +++ /dev/null @@ -1,7524 +0,0 @@ - - -1 - - 1 - 65536 -
d
- - 162. 162. 162. 163. 164. 162. 158. 155. 158. 157. 156. 156. 155. - 155. 156. 156. 158. 159. 161. 164. 167. 169. 171. 172. 170. 170. - 167. 160. 152. 142. 127. 112. 98. 94. 95. 101. 105. 105. 105. 108. - 109. 109. 108. 107. 107. 108. 108. 109. 111. 107. 105. 108. 110. - 111. 115. 121. 118. 121. 124. 126. 126. 127. 128. 130. 133. 131. - 129. 130. 132. 133. 131. 129. 127. 129. 130. 129. 129. 130. 132. - 134. 133. 133. 133. 134. 134. 135. 135. 135. 134. 133. 132. 132. - 134. 134. 133. 132. 135. 136. 136. 136. 136. 135. 134. 133. 138. - 136. 133. 131. 130. 131. 132. 134. 131. 132. 133. 133. 131. 131. - 132. 133. 135. 135. 135. 134. 134. 134. 133. 133. 142. 136. 130. - 129. 132. 134. 132. 129. 129. 130. 132. 131. 129. 129. 130. 131. - 130. 130. 130. 129. 128. 127. 126. 125. 124. 124. 124. 121. 118. - 113. 108. 105. 109. 116. 127. 135. 141. 146. 151. 155. 161. 160. - 158. 154. 151. 150. 152. 154. 154. 155. 155. 156. 156. 155. 155. - 154. 152. 152. 152. 153. 153. 154. 154. 154. 156. 155. 155. 157. - 158. 158. 156. 153. 148. 170. 192. 203. 211. 220. 219. 212. 215. - 210. 180. 133. 104. 105. 110. 109. 116. 117. 119. 120. 121. 120. - 119. 119. 122. 123. 123. 122. 120. 120. 122. 124. 122. 123. 125. - 126. 125. 123. 121. 119. 126. 126. 126. 126. 126. 126. 126. 126. - 120. 121. 117. 121. 146. 172. 164. 138. 162. 161. 161. 162. 163. - 161. 158. 155. 157. 157. 156. 155. 154. 155. 155. 155. 156. 158. - 160. 163. 166. 169. 171. 172. 171. 171. 167. 159. 151. 141. 126. - 111. 97. 93. 94. 99. 103. 104. 104. 107. 107. 107. 107. 107. 107. - 107. 108. 108. 110. 106. 105. 108. 110. 111. 115. 120. 119. 122. - 124. 126. 126. 126. 127. 129. 133. 131. 129. 130. 132. 133. 131. - 129. 127. 129. 130. 130. 129. 130. 132. 134. 133. 133. 133. 134. - 134. 134. 135. 135. 134. 133. 131. 132. 134. 134. 133. 132. 134. - 135. 135. 135. 135. 134. 133. 132. 137. 135. 133. 131. 130. 130. - 131. 132. 131. 132. 133. 133. 131. 130. 132. 133. 134. 134. 134. - 134. 133. 133. 132. 132. 141. 135. 130. 129. 131. 133. 131. 128. - 128. 130. 131. 130. 129. 128. 129. 131. 129. 130. 130. 129. 128. - 127. 126. 125. 124. 124. 123. 121. 117. 112. 108. 105. 109. 116. - 127. 136. 142. 148. 153. 156. 161. 161. 159. 155. 151. 150. 151. - 153. 153. 154. 155. 155. 155. 155. 154. 153. 152. 152. 152. 153. - 153. 154. 154. 154. 156. 155. 155. 156. 158. 158. 155. 153. 151. - 171. 195. 208. 213. 216. 218. 217. 216. 207. 177. 135. 105. 100. - 105. 108. 116. 117. 119. 120. 121. 121. 120. 119. 122. 122. 123. - 122. 120. 120. 122. 124. 122. 123. 125. 125. 125. 123. 121. 120. - 126. 126. 126. 126. 126. 125. 125. 125. 113. 115. 115. 124. 153. - 179. 173. 150. 160. 159. 159. 160. 161. 160. 157. 154. 156. 156. - 155. 154. 154. 154. 154. 154. 154. 156. 159. 163. 166. 169. 171. - 172. 172. 171. 167. 158. 150. 140. 124. 110. 96. 92. 92. 97. 102. - 102. 103. 106. 105. 105. 105. 106. 106. 107. 107. 108. 109. 106. - 105. 108. 111. 111. 115. 120. 120. 122. 125. 126. 125. 125. 126. - 127. 132. 130. 129. 130. 131. 132. 131. 130. 128. 129. 130. 130. - 129. 129. 132. 134. 133. 133. 133. 133. 134. 134. 134. 135. 134. - 132. 131. 132. 133. 134. 133. 131. 133. 133. 134. 134. 133. 132. - 131. 131. 135. 134. 132. 130. 129. 129. 130. 131. 130. 132. 133. - 132. 131. 130. 131. 133. 133. 133. 133. 132. 132. 132. 131. 131. - 138. 134. 129. 128. 130. 132. 130. 128. 127. 128. 130. 129. 127. - 127. 128. 129. 129. 129. 129. 129. 128. 127. 126. 125. 123. 123. - 122. 119. 116. 111. 107. 105. 107. 114. 125. 135. 143. 149. 154. - 157. 160. 160. 159. 156. 153. 151. 151. 152. 152. 153. 154. 154. - 154. 154. 153. 152. 153. 153. 153. 153. 154. 154. 154. 154. 155. - 155. 154. 155. 157. 157. 155. 153. 151. 167. 191. 209. 213. 211. - 214. 220. 219. 207. 182. 146. 112. 96. 100. 110. 115. 116. 119. 120. - 121. 121. 121. 120. 121. 122. 123. 122. 120. 120. 122. 124. 122. - 123. 124. 125. 125. 123. 122. 120. 125. 125. 125. 125. 125. 125. - 125. 125. 117. 121. 123. 128. 144. 155. 140. 116. 159. 158. 157. - 158. 159. 158. 156. 154. 156. 155. 154. 153. 153. 153. 153. 154. - 153. 155. 159. 163. 167. 169. 171. 171. 172. 171. 166. 157. 148. - 138. 122. 108. 95. 91. 90. 95. 100. 100. 102. 105. 103. 103. 104. - 105. 106. 106. 106. 106. 108. 104. 105. 109. 111. 111. 115. 120. - 121. 123. 125. 126. 125. 124. 125. 126. 130. 129. 129. 130. 131. - 131. 131. 131. 128. 129. 130. 130. 129. 129. 131. 133. 132. 132. - 133. 133. 133. 134. 134. 134. 133. 132. 131. 131. 133. 134. 132. - 131. 132. 132. 132. 132. 132. 131. 130. 129. 133. 132. 131. 129. - 129. 128. 129. 129. 130. 131. 133. 132. 130. 130. 131. 132. 132. - 132. 132. 131. 131. 130. 130. 130. 135. 132. 129. 128. 130. 130. - 129. 127. 126. 127. 128. 128. 126. 126. 127. 128. 129. 129. 129. - 129. 129. 128. 127. 126. 123. 122. 121. 119. 115. 111. 108. 106. - 105. 111. 120. 131. 140. 147. 152. 155. 159. 160. 160. 158. 154. - 152. 152. 152. 152. 153. 153. 154. 154. 153. 153. 152. 153. 154. - 154. 154. 154. 154. 154. 154. 155. 154. 153. 154. 156. 156. 155. - 153. 151. 157. 176. 200. 210. 209. 211. 219. 219. 212. 197. 169. - 129. 99. 97. 111. 114. 115. 117. 120. 121. 121. 121. 121. 121. 122. - 122. 121. 120. 119. 121. 123. 122. 123. 124. 124. 124. 123. 122. - 122. 124. 124. 124. 125. 125. 125. 125. 125. 123. 128. 129. 123. - 115. 102. 80. 58. 158. 157. 156. 156. 158. 158. 156. 154. 156. 155. - 154. 153. 153. 153. 153. 154. 154. 156. 160. 164. 168. 170. 171. - 171. 172. 170. 164. 155. 146. 136. 121. 107. 95. 90. 89. 94. 98. 99. - 101. 105. 102. 103. 104. 106. 106. 106. 105. 105. 106. 103. 104. - 109. 111. 111. 114. 119. 120. 122. 125. 125. 124. 124. 124. 126. - 128. 129. 129. 130. 130. 130. 131. 132. 129. 130. 131. 130. 129. - 129. 131. 133. 132. 132. 132. 133. 133. 133. 134. 134. 133. 132. - 130. 131. 133. 133. 132. 131. 131. 131. 131. 131. 131. 130. 129. - 129. 132. 132. 131. 130. 129. 128. 128. 128. 130. 131. 132. 132. - 130. 129. 131. 132. 132. 132. 131. 131. 130. 130. 130. 130. 133. - 131. 130. 129. 129. 129. 129. 128. 125. 127. 128. 127. 126. 125. - 126. 128. 128. 128. 129. 129. 129. 128. 127. 126. 124. 123. 121. - 118. 115. 112. 109. 108. 103. 107. 114. 123. 134. 142. 148. 151. - 156. 158. 160. 159. 156. 154. 153. 153. 154. 154. 155. 155. 155. - 155. 154. 154. 155. 154. 154. 154. 154. 154. 154. 154. 155. 153. - 152. 152. 154. 155. 154. 153. 153. 150. 160. 185. 205. 211. 213. - 217. 216. 216. 213. 193. 150. 109. 98. 108. 111. 113. 116. 118. 120. - 121. 121. 121. 120. 121. 122. 121. 119. 119. 121. 123. 122. 123. - 123. 123. 124. 123. 123. 123. 124. 124. 124. 125. 125. 126. 126. - 126. 127. 127. 120. 103. 80. 61. 47. 40. 158. 156. 155. 156. 157. - 158. 156. 155. 156. 156. 155. 154. 154. 154. 154. 154. 155. 158. - 162. 166. 169. 170. 170. 170. 170. 169. 162. 153. 144. 135. 121. - 108. 95. 90. 89. 93. 97. 99. 101. 105. 103. 104. 106. 107. 107. 106. - 104. 103. 105. 102. 104. 109. 112. 112. 114. 119. 119. 121. 124. - 125. 124. 124. 125. 126. 126. 128. 130. 130. 129. 129. 131. 132. - 129. 130. 131. 130. 128. 128. 130. 132. 131. 132. 132. 132. 133. - 133. 133. 133. 133. 131. 130. 131. 132. 133. 132. 130. 131. 131. - 131. 131. 131. 130. 129. 128. 132. 132. 131. 130. 130. 129. 128. - 128. 129. 131. 132. 131. 130. 129. 130. 132. 132. 132. 132. 131. - 131. 130. 130. 130. 131. 131. 131. 130. 130. 129. 129. 129. 126. - 127. 128. 128. 126. 126. 127. 128. 127. 128. 128. 129. 129. 128. - 127. 127. 125. 124. 121. 119. 116. 113. 111. 110. 103. 104. 108. - 116. 127. 137. 145. 148. 153. 156. 159. 160. 158. 156. 155. 155. - 156. 156. 157. 158. 158. 157. 156. 156. 155. 155. 155. 155. 154. - 154. 154. 154. 155. 153. 151. 151. 153. 154. 153. 153. 157. 149. - 151. 170. 195. 211. 215. 215. 212. 217. 221. 208. 172. 130. 107. - 104. 108. 110. 113. 116. 119. 120. 120. 120. 120. 121. 121. 120. - 119. 119. 120. 122. 122. 122. 122. 123. 123. 123. 124. 124. 124. - 125. 125. 126. 126. 127. 128. 128. 133. 122. 102. 79. 56. 42. 43. - 50. 158. 157. 155. 155. 157. 158. 157. 156. 157. 157. 156. 155. 154. - 155. 155. 155. 158. 161. 165. 168. 170. 171. 170. 169. 168. 167. - 160. 151. 143. 135. 121. 109. 96. 91. 89. 93. 97. 99. 102. 106. 105. - 106. 108. 108. 107. 105. 103. 102. 103. 101. 103. 109. 112. 112. - 114. 118. 117. 120. 123. 124. 124. 124. 126. 127. 125. 128. 130. - 130. 128. 128. 131. 133. 130. 131. 131. 130. 128. 128. 130. 132. - 131. 131. 132. 132. 132. 133. 133. 133. 132. 131. 130. 130. 132. - 133. 131. 130. 131. 131. 132. 132. 131. 130. 129. 129. 132. 132. - 132. 132. 131. 130. 129. 128. 129. 130. 132. 131. 129. 129. 130. - 131. 133. 132. 132. 132. 131. 131. 131. 131. 130. 131. 132. 132. - 131. 130. 130. 130. 126. 128. 129. 128. 127. 126. 127. 129. 127. - 128. 128. 129. 129. 128. 128. 127. 126. 125. 122. 119. 116. 114. - 113. 112. 105. 104. 105. 111. 122. 134. 142. 146. 150. 154. 158. - 161. 160. 158. 157. 157. 159. 159. 160. 160. 160. 160. 159. 159. - 156. 156. 156. 155. 155. 154. 154. 154. 155. 153. 150. 150. 152. - 153. 153. 152. 157. 151. 148. 157. 180. 203. 213. 212. 215. 217. - 220. 215. 194. 160. 125. 103. 106. 108. 111. 114. 117. 118. 119. - 119. 120. 121. 121. 120. 119. 118. 120. 122. 122. 122. 122. 122. - 123. 123. 124. 125. 125. 125. 126. 127. 128. 129. 129. 130. 122. - 101. 77. 60. 48. 41. 45. 54. 159. 157. 155. 155. 157. 158. 158. 157. - 158. 157. 156. 156. 155. 155. 156. 156. 160. 162. 166. 170. 171. - 171. 169. 168. 167. 166. 159. 150. 143. 135. 122. 109. 97. 91. 89. - 93. 97. 99. 102. 107. 107. 108. 109. 109. 108. 105. 103. 101. 103. - 101. 103. 109. 112. 112. 114. 118. 116. 119. 122. 124. 124. 125. - 126. 128. 124. 127. 130. 130. 128. 128. 131. 133. 130. 131. 131. - 130. 128. 128. 130. 132. 131. 131. 131. 132. 132. 133. 133. 133. - 132. 131. 130. 130. 132. 132. 131. 130. 131. 132. 132. 132. 132. - 131. 130. 129. 132. 133. 133. 132. 131. 130. 129. 128. 129. 130. - 131. 131. 129. 129. 130. 131. 133. 133. 133. 132. 132. 132. 131. - 131. 130. 132. 133. 133. 131. 130. 130. 131. 127. 128. 129. 129. - 127. 127. 128. 129. 127. 127. 128. 129. 129. 129. 128. 128. 127. - 125. 123. 120. 117. 115. 114. 113. 108. 105. 103. 109. 120. 132. - 142. 146. 148. 152. 158. 161. 161. 159. 158. 158. 161. 161. 162. - 162. 162. 162. 161. 161. 156. 156. 156. 155. 155. 154. 154. 154. - 155. 152. 150. 150. 151. 153. 153. 152. 154. 152. 147. 147. 166. - 194. 208. 208. 221. 219. 218. 217. 210. 184. 141. 106. 104. 106. - 109. 113. 116. 117. 118. 118. 120. 121. 121. 120. 118. 118. 120. - 122. 122. 122. 122. 122. 123. 123. 125. 125. 126. 126. 127. 128. - 129. 130. 130. 131. 94. 71. 52. 49. 50. 48. 48. 51. 158. 158. 157. - 157. 157. 157. 157. 157. 155. 159. 161. 159. 154. 152. 156. 160. - 164. 165. 167. 169. 168. 167. 165. 163. 164. 163. 157. 149. 142. - 134. 120. 107. 96. 90. 87. 92. 97. 98. 99. 101. 107. 107. 107. 106. - 106. 106. 105. 105. 101. 102. 103. 106. 109. 112. 115. 116. 119. - 119. 120. 121. 123. 124. 125. 125. 129. 128. 127. 126. 127. 130. - 132. 134. 130. 131. 131. 132. 132. 131. 131. 130. 133. 132. 132. - 131. 131. 132. 132. 133. 136. 136. 135. 134. 133. 133. 133. 134. - 132. 133. 134. 133. 131. 130. 131. 132. 133. 132. 132. 132. 132. - 132. 132. 132. 130. 132. 133. 132. 129. 128. 131. 134. 132. 133. - 133. 134. 133. 132. 130. 129. 132. 132. 133. 132. 131. 130. 129. - 128. 129. 129. 129. 128. 128. 127. 127. 127. 131. 130. 130. 129. - 129. 128. 128. 128. 128. 125. 122. 120. 119. 117. 115. 113. 110. - 108. 106. 106. 111. 122. 136. 146. 146. 150. 155. 159. 160. 160. - 161. 163. 158. 159. 161. 162. 163. 163. 162. 161. 156. 157. 160. - 161. 160. 157. 154. 152. 155. 154. 153. 152. 152. 152. 153. 153. - 151. 151. 146. 144. 154. 176. 197. 207. 214. 217. 217. 217. 217. - 203. 167. 132. 104. 104. 106. 111. 115. 116. 116. 116. 121. 122. - 123. 124. 123. 122. 121. 120. 125. 124. 122. 122. 122. 124. 126. - 127. 127. 131. 132. 131. 133. 131. 117. 98. 56. 51. 45. 44. 45. 47. - 45. 42. 156. 156. 156. 157. 157. 157. 157. 157. 156. 159. 160. 157. - 153. 152. 157. 161. 164. 165. 167. 168. 168. 166. 164. 163. 162. - 161. 157. 150. 144. 137. 124. 111. 97. 91. 88. 93. 98. 99. 100. 103. - 107. 106. 106. 106. 105. 105. 105. 104. 101. 102. 103. 106. 109. - 112. 115. 116. 119. 119. 120. 121. 123. 124. 125. 125. 126. 127. - 128. 129. 130. 130. 131. 131. 130. 131. 131. 132. 132. 131. 131. - 130. 133. 132. 132. 131. 131. 132. 132. 133. 134. 133. 132. 132. - 131. 131. 131. 132. 130. 131. 133. 133. 131. 131. 132. 134. 132. - 132. 132. 132. 131. 131. 131. 131. 130. 131. 132. 131. 129. 128. - 131. 133. 132. 133. 135. 136. 135. 133. 131. 129. 132. 132. 132. - 132. 131. 130. 129. 128. 129. 129. 128. 128. 128. 127. 127. 127. - 130. 129. 129. 129. 128. 128. 127. 127. 127. 125. 122. 121. 120. - 118. 115. 112. 110. 108. 106. 106. 110. 121. 134. 144. 147. 151. - 156. 159. 160. 161. 162. 163. 158. 159. 161. 162. 162. 162. 161. - 161. 157. 158. 159. 159. 159. 157. 154. 153. 154. 154. 153. 152. - 152. 152. 152. 152. 149. 150. 150. 148. 150. 164. 187. 205. 212. - 216. 217. 218. 221. 212. 183. 153. 108. 104. 105. 111. 114. 112. - 113. 117. 120. 121. 123. 124. 125. 124. 123. 123. 123. 123. 124. - 125. 126. 127. 127. 127. 135. 130. 130. 136. 138. 122. 92. 67. 49. - 49. 48. 46. 46. 47. 50. 52. 154. 155. 155. 156. 156. 157. 157. 158. - 157. 158. 158. 155. 152. 153. 158. 163. 165. 166. 167. 167. 167. - 165. 163. 162. 160. 160. 157. 151. 146. 139. 127. 114. 98. 91. 88. - 93. 99. 100. 101. 104. 106. 105. 105. 105. 104. 104. 104. 103. 102. - 102. 104. 106. 109. 112. 114. 116. 119. 119. 120. 121. 123. 124. - 125. 125. 124. 126. 129. 131. 131. 131. 129. 128. 130. 130. 131. - 131. 131. 131. 130. 130. 132. 132. 131. 131. 131. 131. 132. 132. - 132. 131. 130. 129. 129. 129. 130. 130. 129. 130. 132. 132. 131. - 131. 133. 135. 130. 130. 130. 130. 130. 130. 131. 131. 129. 130. - 131. 130. 128. 128. 130. 132. 131. 133. 135. 137. 136. 134. 131. - 129. 132. 132. 132. 132. 131. 130. 128. 128. 129. 128. 128. 128. - 127. 127. 127. 127. 128. 128. 128. 127. 127. 127. 126. 126. 126. - 124. 123. 122. 121. 118. 114. 111. 111. 109. 106. 105. 109. 119. - 131. 140. 147. 151. 156. 159. 161. 162. 163. 164. 159. 160. 160. - 161. 162. 161. 161. 161. 159. 159. 158. 158. 157. 156. 155. 155. - 154. 153. 152. 151. 151. 151. 151. 152. 149. 149. 152. 152. 147. - 150. 172. 198. 207. 212. 215. 217. 221. 220. 202. 180. 125. 111. - 104. 110. 114. 110. 112. 121. 117. 118. 120. 122. 124. 124. 124. - 123. 120. 122. 125. 128. 130. 130. 129. 128. 133. 132. 135. 139. - 127. 97. 64. 44. 45. 49. 51. 49. 46. 47. 52. 57. 153. 153. 154. 155. - 156. 157. 158. 158. 158. 158. 157. 154. 152. 155. 160. 165. 166. - 166. 166. 166. 165. 163. 162. 161. 159. 160. 157. 151. 146. 139. - 125. 113. 96. 90. 87. 92. 98. 100. 101. 103. 105. 105. 104. 104. - 104. 103. 103. 103. 102. 103. 104. 106. 108. 111. 114. 115. 119. - 119. 120. 121. 123. 124. 125. 125. 125. 126. 128. 129. 130. 130. - 129. 128. 129. 130. 131. 131. 131. 131. 130. 129. 132. 132. 131. - 130. 130. 131. 132. 132. 130. 130. 129. 129. 128. 129. 129. 130. - 130. 132. 133. 132. 130. 130. 131. 132. 128. 128. 128. 129. 129. - 129. 129. 130. 129. 129. 129. 128. 128. 128. 129. 130. 129. 131. - 134. 136. 136. 133. 130. 128. 131. 132. 132. 131. 131. 129. 128. - 127. 128. 128. 128. 127. 127. 127. 126. 126. 126. 126. 126. 126. - 126. 126. 126. 126. 125. 124. 123. 123. 122. 119. 114. 110. 111. - 109. 106. 105. 108. 117. 128. 136. 146. 150. 155. 159. 161. 162. - 163. 164. 160. 160. 160. 160. 161. 161. 160. 160. 160. 159. 158. - 156. 155. 155. 156. 156. 154. 153. 152. 151. 151. 151. 151. 151. - 152. 148. 151. 154. 147. 141. 158. 184. 201. 209. 213. 214. 218. - 222. 213. 199. 154. 125. 104. 107. 113. 112. 115. 124. 116. 117. - 119. 121. 121. 121. 121. 120. 120. 121. 124. 127. 129. 130. 131. - 131. 127. 138. 142. 125. 95. 68. 52. 44. 48. 49. 50. 49. 47. 48. 51. - 54. 153. 154. 155. 156. 157. 158. 158. 159. 159. 158. 156. 154. 154. - 157. 162. 166. 167. 167. 166. 165. 163. 162. 160. 159. 160. 161. - 157. 151. 145. 136. 121. 108. 94. 88. 85. 90. 96. 98. 100. 102. 105. - 105. 104. 104. 104. 103. 103. 103. 103. 103. 104. 106. 108. 111. - 113. 115. 119. 119. 120. 121. 123. 124. 125. 125. 128. 128. 127. - 126. 126. 128. 129. 130. 129. 129. 130. 131. 131. 130. 129. 129. - 132. 131. 130. 130. 130. 130. 131. 132. 131. 130. 130. 129. 130. - 130. 131. 131. 134. 134. 134. 132. 129. 127. 127. 128. 126. 126. - 126. 127. 127. 128. 128. 129. 129. 128. 127. 126. 127. 128. 128. - 128. 127. 128. 131. 133. 133. 131. 129. 127. 131. 131. 131. 131. - 130. 129. 128. 127. 128. 128. 127. 127. 127. 126. 126. 126. 125. - 125. 125. 126. 126. 126. 126. 126. 125. 124. 123. 123. 122. 119. - 114. 110. 111. 109. 107. 106. 108. 116. 126. 134. 144. 149. 154. - 158. 160. 161. 163. 164. 160. 160. 160. 160. 159. 159. 160. 160. - 161. 160. 157. 155. 155. 155. 156. 157. 154. 153. 152. 151. 151. - 151. 152. 152. 156. 148. 147. 152. 148. 141. 149. 167. 195. 207. - 214. 214. 216. 221. 218. 210. 184. 144. 108. 101. 109. 112. 115. - 121. 119. 120. 121. 122. 122. 121. 120. 119. 121. 121. 122. 123. - 125. 128. 131. 133. 132. 140. 127. 90. 61. 54. 52. 47. 48. 46. 45. - 46. 50. 52. 51. 50. 155. 156. 156. 157. 157. 158. 159. 159. 160. - 158. 157. 156. 158. 161. 165. 167. 168. 167. 165. 164. 162. 160. - 159. 158. 161. 162. 158. 151. 144. 134. 118. 104. 92. 86. 84. 89. - 95. 97. 99. 102. 106. 105. 105. 105. 104. 104. 104. 103. 103. 104. - 105. 106. 108. 111. 113. 114. 119. 119. 120. 121. 123. 124. 125. - 125. 130. 128. 126. 125. 125. 126. 129. 130. 129. 129. 130. 130. - 130. 130. 129. 129. 131. 131. 130. 130. 130. 130. 131. 131. 131. - 131. 130. 130. 131. 131. 132. 133. 135. 136. 135. 132. 128. 126. - 125. 126. 124. 124. 125. 125. 126. 127. 127. 128. 128. 126. 125. - 125. 126. 127. 127. 126. 126. 127. 129. 130. 130. 130. 129. 128. - 131. 131. 131. 131. 130. 129. 127. 127. 127. 127. 127. 127. 126. - 126. 126. 125. 125. 125. 125. 126. 126. 126. 127. 127. 126. 124. - 123. 122. 121. 118. 114. 111. 111. 110. 108. 106. 109. 116. 126. - 134. 143. 147. 153. 157. 159. 160. 162. 163. 161. 160. 160. 159. - 158. 159. 159. 159. 161. 159. 158. 156. 155. 155. 156. 157. 155. - 154. 153. 153. 152. 152. 153. 153. 157. 149. 147. 150. 149. 144. - 146. 153. 185. 202. 215. 216. 216. 221. 222. 217. 204. 166. 123. - 102. 103. 110. 114. 115. 122. 123. 124. 125. 124. 123. 121. 120. - 122. 122. 121. 122. 124. 128. 131. 134. 138. 122. 89. 56. 47. 54. - 53. 41. 45. 42. 41. 45. 52. 56. 54. 52. 158. 158. 158. 158. 158. - 159. 159. 159. 160. 159. 158. 159. 162. 165. 167. 168. 168. 167. - 165. 163. 161. 159. 158. 157. 162. 163. 160. 153. 145. 135. 119. - 105. 93. 87. 84. 90. 96. 98. 100. 103. 107. 106. 106. 106. 105. 105. - 105. 104. 104. 104. 105. 106. 108. 111. 113. 114. 119. 119. 120. - 121. 123. 124. 125. 125. 128. 127. 127. 127. 127. 127. 127. 127. - 128. 129. 129. 130. 130. 129. 129. 128. 131. 130. 130. 129. 129. - 130. 130. 131. 130. 130. 130. 130. 130. 131. 132. 133. 134. 135. - 134. 132. 128. 126. 126. 126. 122. 123. 123. 124. 125. 126. 126. - 127. 128. 125. 123. 123. 126. 127. 126. 124. 128. 128. 128. 128. - 129. 130. 130. 131. 130. 131. 131. 130. 130. 128. 127. 126. 127. - 127. 127. 126. 126. 126. 125. 125. 125. 126. 126. 126. 127. 127. - 128. 128. 127. 125. 122. 121. 120. 118. 115. 112. 111. 110. 108. - 107. 110. 117. 127. 134. 141. 145. 151. 155. 157. 159. 161. 162. - 162. 161. 159. 158. 158. 158. 159. 159. 160. 159. 158. 157. 156. - 156. 156. 156. 156. 156. 155. 154. 153. 153. 154. 154. 153. 152. - 151. 149. 148. 146. 146. 146. 168. 190. 210. 215. 215. 220. 223. - 221. 216. 190. 148. 114. 103. 108. 113. 113. 119. 120. 122. 123. - 123. 122. 121. 120. 122. 123. 124. 125. 127. 129. 131. 132. 122. 87. - 53. 43. 49. 50. 46. 42. 44. 44. 46. 49. 52. 54. 54. 54. 160. 160. - 160. 159. 159. 159. 159. 159. 160. 159. 159. 161. 164. 167. 168. - 168. 169. 167. 165. 162. 160. 158. 157. 157. 162. 163. 160. 154. - 147. 137. 121. 107. 94. 87. 85. 91. 97. 100. 102. 104. 107. 107. - 107. 106. 106. 106. 105. 105. 104. 104. 105. 106. 108. 110. 112. - 114. 119. 119. 120. 121. 123. 124. 125. 125. 125. 126. 128. 129. - 129. 128. 126. 124. 128. 129. 129. 130. 130. 129. 129. 128. 131. - 130. 130. 129. 129. 130. 130. 131. 129. 129. 129. 129. 130. 131. - 132. 132. 132. 133. 133. 131. 129. 127. 127. 128. 121. 122. 122. - 123. 124. 125. 126. 126. 128. 125. 122. 123. 125. 127. 126. 124. - 130. 129. 128. 128. 129. 130. 132. 133. 130. 130. 130. 130. 129. - 128. 127. 126. 127. 127. 127. 126. 126. 125. 125. 125. 126. 126. - 126. 127. 127. 128. 128. 129. 128. 125. 122. 120. 119. 117. 115. - 113. 110. 110. 108. 108. 111. 118. 128. 135. 139. 144. 150. 154. - 156. 158. 160. 161. 162. 161. 159. 158. 157. 157. 158. 159. 159. - 159. 158. 158. 157. 156. 155. 155. 157. 156. 155. 155. 154. 154. - 155. 155. 149. 155. 156. 150. 146. 146. 146. 144. 152. 178. 203. - 211. 213. 218. 222. 221. 221. 207. 171. 127. 105. 109. 115. 115. - 113. 115. 117. 119. 120. 120. 120. 119. 122. 124. 127. 129. 131. - 131. 131. 130. 94. 57. 36. 47. 53. 41. 39. 52. 46. 50. 54. 53. 50. - 49. 51. 54. 158. 158. 158. 159. 159. 159. 160. 160. 160. 161. 162. - 164. 166. 168. 169. 170. 167. 166. 165. 161. 158. 156. 157. 158. - 162. 163. 160. 153. 146. 136. 120. 105. 95. 91. 90. 94. 98. 98. 100. - 103. 105. 106. 106. 106. 105. 103. 101. 100. 101. 101. 102. 104. - 106. 109. 112. 113. 120. 120. 121. 122. 123. 123. 124. 124. 126. - 127. 128. 129. 129. 129. 129. 128. 128. 127. 126. 126. 127. 129. - 131. 132. 134. 134. 134. 132. 131. 130. 131. 133. 130. 130. 130. - 130. 130. 130. 130. 130. 133. 133. 132. 131. 129. 127. 124. 123. - 122. 121. 119. 118. 118. 120. 122. 123. 126. 125. 125. 124. 123. - 122. 121. 120. 124. 126. 129. 131. 131. 130. 128. 126. 132. 131. - 130. 129. 128. 127. 127. 127. 127. 126. 125. 124. 125. 126. 127. - 128. 126. 126. 126. 126. 126. 126. 126. 126. 128. 127. 125. 122. - 120. 117. 115. 114. 114. 111. 108. 108. 111. 118. 126. 131. 139. - 142. 148. 152. 154. 156. 158. 160. 161. 160. 158. 157. 156. 157. - 158. 158. 155. 156. 156. 157. 157. 158. 158. 159. 155. 155. 154. - 154. 154. 155. 156. 156. 154. 153. 152. 152. 151. 149. 146. 143. - 141. 157. 183. 206. 213. 211. 215. 224. 222. 219. 212. 172. 120. - 109. 118. 111. 114. 116. 118. 119. 120. 120. 120. 119. 119. 124. - 127. 129. 133. 132. 120. 104. 57. 51. 44. 43. 47. 51. 51. 49. 51. - 51. 50. 50. 50. 51. 52. 53. 158. 158. 159. 159. 159. 160. 160. 161. - 160. 161. 162. 164. 166. 167. 168. 168. 166. 166. 164. 161. 157. - 156. 157. 159. 161. 162. 159. 153. 146. 135. 119. 104. 93. 89. 88. - 93. 97. 98. 100. 104. 104. 105. 105. 104. 104. 103. 102. 101. 102. - 102. 103. 105. 108. 110. 113. 114. 119. 120. 120. 121. 122. 123. - 123. 124. 125. 126. 127. 128. 128. 128. 128. 128. 127. 126. 126. - 126. 127. 128. 130. 131. 131. 131. 130. 129. 128. 128. 128. 129. - 130. 130. 130. 130. 130. 130. 130. 130. 132. 132. 131. 130. 128. - 126. 125. 124. 126. 124. 122. 120. 120. 123. 125. 127. 126. 126. - 125. 125. 126. 126. 127. 128. 126. 126. 128. 129. 130. 131. 131. - 131. 133. 132. 131. 129. 128. 127. 127. 127. 129. 128. 126. 125. - 124. 125. 125. 126. 126. 126. 126. 126. 126. 126. 126. 126. 127. - 126. 124. 122. 120. 118. 116. 115. 114. 111. 108. 108. 111. 118. - 126. 131. 138. 142. 147. 151. 153. 155. 158. 160. 160. 159. 158. - 157. 156. 157. 157. 158. 156. 156. 156. 157. 157. 157. 157. 157. - 156. 155. 155. 155. 155. 155. 156. 156. 154. 153. 152. 152. 151. - 150. 146. 143. 140. 151. 172. 196. 210. 213. 217. 222. 225. 220. - 214. 187. 139. 106. 102. 106. 110. 112. 115. 118. 121. 123. 124. - 124. 127. 127. 128. 130. 132. 120. 91. 63. 48. 44. 40. 41. 46. 51. - 51. 49. 52. 51. 51. 50. 50. 50. 51. 51. 160. 159. 159. 159. 159. - 160. 161. 162. 161. 162. 164. 166. 166. 166. 166. 165. 165. 165. - 163. 160. 157. 156. 158. 161. 160. 161. 158. 152. 145. 134. 118. - 104. 90. 86. 86. 92. 96. 98. 100. 104. 104. 103. 102. 102. 102. 102. - 102. 103. 103. 103. 104. 106. 109. 111. 114. 115. 118. 119. 119. - 120. 121. 122. 122. 123. 124. 125. 126. 127. 127. 127. 127. 126. - 125. 125. 125. 125. 126. 127. 129. 130. 130. 129. 128. 127. 127. - 127. 128. 128. 130. 130. 130. 130. 130. 129. 129. 129. 130. 129. - 129. 128. 127. 126. 126. 125. 126. 125. 122. 121. 121. 122. 124. - 126. 127. 126. 124. 121. 120. 120. 120. 120. 128. 127. 127. 128. - 129. 130. 131. 132. 134. 133. 131. 130. 128. 127. 127. 127. 131. - 129. 128. 126. 125. 124. 124. 124. 126. 126. 126. 126. 126. 126. - 126. 126. 125. 124. 123. 121. 120. 118. 117. 116. 114. 111. 108. - 107. 111. 117. 125. 130. 137. 141. 146. 150. 152. 154. 156. 158. - 159. 158. 157. 156. 156. 156. 157. 157. 157. 157. 157. 156. 156. - 156. 156. 156. 156. 156. 156. 156. 156. 155. 156. 156. 154. 153. - 151. 151. 151. 150. 147. 144. 140. 143. 156. 181. 204. 216. 219. - 219. 224. 222. 218. 207. 171. 117. 92. 104. 108. 109. 113. 117. 120. - 123. 125. 126. 124. 130. 134. 130. 117. 92. 60. 35. 45. 43. 42. 46. - 52. 57. 57. 55. 53. 52. 51. 50. 49. 49. 49. 49. 161. 160. 159. 159. - 159. 161. 162. 163. 164. 165. 166. 167. 167. 166. 164. 163. 163. - 163. 162. 159. 157. 157. 159. 162. 160. 160. 158. 151. 144. 134. - 117. 103. 88. 84. 84. 90. 96. 98. 101. 105. 103. 102. 101. 100. 100. - 101. 103. 104. 102. 103. 104. 106. 108. 111. 113. 115. 118. 118. - 119. 119. 120. 121. 122. 122. 123. 124. 125. 126. 126. 126. 126. - 125. 124. 124. 125. 125. 126. 127. 128. 128. 131. 130. 128. 128. - 129. 130. 129. 129. 130. 130. 130. 129. 129. 129. 129. 128. 128. - 128. 127. 127. 126. 126. 126. 127. 126. 126. 125. 124. 123. 122. - 122. 121. 125. 123. 121. 119. 118. 119. 120. 121. 125. 126. 126. - 127. 128. 128. 129. 129. 134. 133. 131. 129. 128. 127. 127. 127. - 129. 129. 128. 127. 126. 125. 125. 125. 126. 126. 126. 126. 126. - 126. 126. 126. 124. 123. 122. 121. 120. 118. 117. 117. 114. 111. - 108. 107. 110. 117. 124. 129. 136. 140. 145. 149. 150. 152. 154. - 156. 157. 157. 156. 156. 156. 156. 156. 156. 157. 157. 156. 156. - 155. 154. 154. 154. 156. 156. 156. 156. 156. 155. 155. 154. 154. - 152. 150. 150. 150. 149. 147. 145. 141. 137. 143. 166. 195. 215. - 220. 218. 219. 226. 222. 218. 201. 147. 103. 102. 108. 109. 112. - 114. 117. 119. 121. 122. 118. 131. 137. 120. 88. 59. 45. 42. 43. 44. - 46. 51. 57. 60. 59. 57. 54. 53. 51. 49. 48. 47. 47. 47. 162. 161. - 160. 159. 160. 161. 163. 164. 167. 168. 168. 167. 166. 164. 162. - 160. 160. 161. 161. 160. 158. 158. 160. 162. 160. 160. 158. 151. - 144. 134. 117. 103. 87. 83. 83. 90. 95. 98. 101. 105. 103. 102. 101. - 100. 100. 101. 103. 104. 101. 101. 102. 104. 107. 110. 112. 113. - 118. 118. 119. 119. 120. 121. 122. 122. 123. 123. 124. 125. 126. - 126. 125. 125. 123. 124. 125. 126. 127. 127. 127. 128. 131. 128. - 126. 127. 129. 130. 130. 128. 130. 130. 130. 129. 129. 128. 128. - 127. 128. 128. 126. 126. 126. 126. 127. 128. 125. 125. 126. 126. - 125. 123. 120. 118. 117. 117. 118. 118. 120. 123. 125. 127. 117. - 119. 122. 125. 128. 129. 129. 129. 132. 131. 130. 128. 127. 127. - 127. 127. 127. 127. 127. 128. 128. 127. 127. 127. 126. 126. 126. - 126. 126. 126. 126. 126. 123. 123. 122. 120. 119. 118. 117. 116. - 114. 112. 108. 107. 110. 116. 123. 128. 135. 139. 144. 147. 149. - 150. 152. 154. 155. 155. 156. 156. 156. 156. 156. 156. 156. 156. - 156. 155. 154. 154. 153. 153. 155. 155. 156. 156. 156. 154. 153. - 152. 153. 151. 149. 148. 148. 148. 147. 145. 143. 137. 138. 154. - 183. 208. 218. 217. 215. 230. 224. 217. 215. 180. 126. 100. 106. - 107. 108. 111. 114. 117. 119. 120. 131. 131. 120. 94. 61. 40. 41. - 51. 41. 43. 47. 51. 55. 56. 54. 52. 53. 52. 50. 49. 47. 46. 46. 45. - 164. 162. 161. 159. 160. 162. 164. 166. 170. 169. 167. 164. 162. - 160. 158. 157. 156. 158. 160. 161. 160. 159. 160. 161. 160. 161. - 158. 152. 145. 134. 118. 104. 87. 84. 84. 90. 96. 98. 101. 105. 104. - 103. 102. 102. 102. 102. 102. 103. 100. 101. 102. 104. 106. 109. - 111. 113. 118. 119. 119. 120. 121. 122. 122. 123. 123. 124. 125. - 126. 126. 126. 125. 125. 124. 124. 126. 127. 128. 128. 128. 128. - 129. 126. 123. 124. 128. 130. 128. 126. 130. 130. 129. 129. 128. - 127. 127. 127. 130. 129. 127. 126. 126. 126. 128. 129. 120. 121. - 121. 122. 122. 122. 122. 121. 120. 120. 119. 118. 117. 116. 114. - 114. 115. 116. 119. 122. 125. 128. 129. 130. 128. 128. 127. 126. - 126. 127. 128. 128. 126. 126. 127. 128. 129. 129. 128. 128. 126. - 126. 126. 126. 126. 126. 126. 126. 124. 123. 122. 120. 119. 117. - 116. 115. 114. 112. 108. 107. 109. 115. 123. 127. 134. 138. 142. - 146. 147. 148. 150. 152. 153. 154. 155. 156. 156. 156. 155. 155. - 154. 154. 154. 154. 154. 153. 153. 153. 153. 154. 155. 155. 155. - 153. 151. 150. 151. 149. 146. 145. 146. 146. 145. 144. 143. 140. - 138. 146. 167. 194. 211. 216. 215. 230. 226. 214. 216. 202. 153. - 107. 102. 103. 105. 109. 113. 117. 121. 123. 143. 119. 88. 63. 48. - 40. 41. 44. 46. 48. 52. 55. 56. 56. 54. 52. 52. 51. 49. 48. 46. 45. - 45. 45. 165. 163. 161. 160. 160. 162. 165. 167. 170. 167. 163. 159. - 156. 154. 154. 154. 152. 156. 160. 163. 162. 161. 160. 160. 161. - 162. 159. 153. 146. 135. 119. 104. 89. 85. 85. 91. 96. 98. 101. 104. - 104. 105. 105. 104. 104. 103. 102. 101. 101. 102. 103. 105. 107. - 110. 112. 114. 119. 120. 120. 121. 122. 123. 123. 124. 124. 124. - 125. 126. 127. 127. 126. 126. 124. 125. 127. 128. 129. 129. 129. - 128. 130. 126. 123. 124. 129. 131. 130. 127. 130. 130. 129. 129. - 128. 127. 126. 126. 132. 131. 128. 127. 126. 127. 128. 129. 128. - 127. 125. 125. 128. 133. 139. 143. 144. 144. 143. 140. 136. 131. - 127. 124. 127. 125. 122. 120. 119. 121. 124. 126. 124. 124. 124. - 125. 125. 127. 128. 129. 127. 128. 129. 129. 129. 128. 127. 126. - 126. 126. 126. 126. 126. 126. 126. 126. 125. 124. 122. 120. 118. - 116. 114. 113. 115. 112. 108. 106. 109. 115. 122. 127. 134. 137. - 142. 144. 146. 147. 149. 150. 152. 153. 154. 155. 156. 155. 155. - 154. 153. 153. 153. 153. 153. 154. 154. 154. 152. 153. 154. 154. - 153. 151. 149. 147. 149. 147. 144. 143. 144. 145. 144. 143. 142. - 144. 142. 140. 152. 177. 201. 214. 218. 224. 226. 219. 216. 214. - 183. 134. 104. 105. 107. 109. 113. 118. 121. 124. 121. 91. 60. 46. - 45. 44. 42. 42. 50. 53. 56. 58. 59. 58. 56. 56. 51. 50. 48. 47. 46. - 45. 45. 45. 165. 164. 161. 160. 160. 162. 165. 167. 169. 166. 160. - 155. 151. 150. 150. 151. 150. 154. 161. 164. 164. 161. 159. 159. - 162. 163. 160. 153. 146. 136. 120. 105. 90. 86. 86. 92. 96. 98. 100. - 104. 105. 106. 106. 106. 105. 103. 101. 100. 103. 103. 104. 106. - 108. 111. 114. 115. 120. 120. 121. 122. 123. 123. 124. 124. 124. - 125. 126. 127. 127. 127. 127. 126. 124. 126. 128. 129. 130. 130. - 129. 129. 133. 129. 125. 127. 132. 134. 133. 129. 130. 130. 129. - 128. 127. 127. 126. 125. 134. 132. 129. 127. 126. 127. 128. 129. - 146. 143. 138. 137. 143. 153. 165. 172. 171. 173. 175. 177. 177. - 174. 171. 169. 144. 137. 128. 119. 114. 114. 117. 120. 122. 122. - 123. 123. 125. 126. 128. 129. 129. 130. 130. 130. 129. 127. 125. - 124. 126. 126. 126. 126. 126. 126. 126. 126. 126. 125. 123. 120. - 118. 115. 113. 112. 115. 112. 108. 106. 109. 115. 122. 126. 133. - 137. 141. 144. 145. 146. 148. 149. 151. 152. 154. 155. 156. 155. - 154. 154. 151. 152. 152. 153. 153. 154. 154. 155. 151. 152. 153. - 154. 153. 150. 148. 146. 148. 146. 143. 142. 143. 144. 143. 142. - 140. 146. 145. 138. 142. 165. 195. 212. 220. 218. 227. 226. 218. - 222. 205. 163. 110. 110. 110. 111. 114. 116. 119. 121. 82. 65. 48. - 43. 44. 43. 46. 50. 47. 50. 53. 55. 55. 54. 54. 54. 50. 49. 48. 46. - 46. 45. 46. 46. 166. 162. 158. 157. 160. 164. 168. 170. 168. 163. - 156. 151. 149. 148. 147. 146. 150. 156. 162. 164. 162. 159. 159. - 160. 165. 164. 159. 152. 146. 138. 122. 107. 93. 86. 83. 88. 94. 95. - 97. 99. 106. 105. 105. 104. 104. 103. 103. 103. 102. 103. 106. 109. - 111. 113. 114. 114. 117. 120. 122. 122. 120. 120. 122. 125. 127. - 127. 126. 126. 126. 127. 128. 129. 122. 129. 132. 130. 130. 133. - 131. 125. 128. 125. 127. 133. 132. 125. 121. 124. 134. 131. 128. - 128. 129. 128. 124. 119. 122. 131. 137. 138. 140. 146. 147. 143. - 144. 143. 149. 159. 163. 163. 167. 174. 176. 173. 173. 176. 183. - 187. 188. 187. 184. 185. 177. 159. 141. 130. 122. 117. 115. 118. - 122. 124. 122. 121. 124. 129. 127. 133. 135. 130. 128. 131. 132. - 128. 130. 129. 129. 128. 128. 127. 127. 127. 126. 124. 121. 119. - 119. 117. 115. 112. 115. 110. 108. 109. 109. 112. 120. 129. 134. - 138. 143. 145. 145. 144. 143. 143. 148. 150. 152. 154. 155. 156. - 155. 155. 150. 153. 155. 155. 152. 151. 153. 156. 155. 154. 152. - 150. 149. 148. 148. 148. 145. 144. 143. 143. 142. 142. 143. 143. - 142. 140. 142. 144. 142. 148. 175. 206. 210. 218. 221. 220. 223. - 226. 213. 195. 140. 112. 104. 111. 115. 127. 120. 89. 49. 46. 43. - 42. 44. 47. 49. 49. 53. 54. 55. 57. 57. 58. 58. 58. 46. 44. 45. 49. - 50. 47. 47. 50. 164. 161. 158. 158. 161. 165. 169. 170. 165. 162. - 155. 149. 144. 143. 143. 144. 149. 155. 162. 164. 162. 160. 160. - 161. 165. 164. 159. 152. 147. 138. 122. 106. 93. 87. 85. 90. 96. 98. - 99. 102. 105. 105. 104. 104. 103. 103. 103. 102. 103. 104. 106. 108. - 111. 113. 115. 116. 118. 120. 122. 122. 121. 121. 123. 125. 127. - 126. 126. 126. 126. 127. 128. 129. 127. 130. 130. 126. 128. 132. - 131. 127. 139. 130. 123. 122. 122. 122. 129. 137. 130. 130. 130. - 128. 128. 128. 129. 131. 136. 144. 149. 147. 146. 149. 149. 147. - 148. 150. 158. 167. 169. 166. 169. 175. 180. 178. 177. 177. 177. - 177. 176. 174. 175. 184. 190. 190. 185. 174. 156. 142. 124. 117. - 112. 115. 122. 124. 121. 117. 128. 132. 133. 131. 130. 131. 126. - 118. 128. 127. 127. 127. 126. 126. 125. 125. 125. 122. 120. 119. - 118. 117. 115. 113. 115. 111. 108. 109. 110. 112. 120. 130. 135. - 138. 143. 146. 145. 144. 143. 143. 148. 149. 151. 153. 155. 155. - 155. 154. 151. 153. 154. 153. 152. 152. 153. 154. 153. 152. 151. - 149. 148. 147. 147. 146. 144. 144. 143. 142. 141. 141. 142. 142. - 143. 140. 141. 143. 140. 143. 164. 188. 208. 215. 218. 218. 224. - 229. 219. 204. 170. 126. 108. 120. 122. 112. 88. 55. 45. 43. 41. 41. - 43. 46. 47. 47. 53. 54. 54. 54. 55. 54. 54. 54. 45. 42. 43. 46. 46. - 43. 42. 45. 161. 159. 158. 159. 163. 167. 169. 170. 162. 159. 154. - 145. 137. 135. 138. 142. 149. 155. 162. 165. 163. 161. 162. 163. - 165. 164. 159. 153. 147. 138. 121. 105. 91. 85. 83. 89. 95. 98. 100. - 102. 104. 103. 103. 103. 103. 102. 102. 102. 105. 105. 106. 107. - 110. 113. 116. 118. 119. 121. 122. 122. 122. 122. 124. 125. 126. - 126. 125. 125. 126. 126. 127. 128. 132. 131. 127. 124. 126. 131. - 131. 127. 133. 129. 127. 128. 128. 126. 128. 132. 125. 127. 128. - 125. 123. 126. 134. 141. 142. 150. 154. 150. 144. 143. 144. 144. - 149. 155. 164. 172. 171. 167. 168. 173. 180. 181. 181. 179. 175. - 171. 168. 167. 180. 183. 184. 187. 192. 195. 189. 180. 167. 151. - 129. 115. 112. 117. 123. 126. 120. 122. 122. 123. 127. 131. 128. - 122. 125. 125. 125. 125. 124. 124. 124. 124. 122. 120. 118. 118. - 118. 117. 115. 113. 115. 111. 108. 109. 110. 113. 121. 130. 135. - 139. 143. 146. 146. 144. 143. 143. 148. 149. 150. 152. 153. 154. - 154. 154. 153. 152. 151. 151. 152. 153. 152. 150. 150. 150. 149. - 148. 147. 146. 145. 144. 143. 142. 141. 141. 140. 140. 141. 141. - 144. 140. 139. 141. 138. 137. 148. 164. 199. 209. 216. 218. 224. - 230. 226. 217. 208. 153. 122. 126. 119. 92. 61. 38. 42. 42. 41. 43. - 46. 49. 49. 48. 54. 53. 53. 52. 51. 50. 49. 49. 50. 47. 47. 49. 48. - 44. 43. 46. 158. 158. 159. 162. 166. 169. 169. 168. 158. 156. 150. - 139. 130. 128. 135. 142. 148. 155. 162. 165. 164. 163. 163. 165. - 165. 164. 160. 153. 147. 138. 120. 104. 87. 81. 79. 85. 92. 95. 97. - 100. 102. 102. 102. 102. 102. 101. 101. 101. 107. 106. 106. 107. - 109. 113. 117. 119. 120. 121. 122. 122. 122. 123. 124. 125. 125. - 125. 124. 124. 125. 126. 127. 127. 133. 130. 125. 124. 128. 131. - 129. 126. 124. 124. 126. 128. 128. 126. 125. 125. 131. 130. 127. - 125. 125. 131. 141. 148. 141. 147. 151. 147. 142. 139. 142. 145. - 145. 153. 162. 166. 164. 162. 166. 171. 173. 177. 181. 180. 176. - 173. 172. 173. 184. 181. 175. 172. 178. 189. 197. 198. 197. 192. - 175. 147. 123. 114. 117. 123. 118. 119. 120. 121. 124. 129. 131. - 132. 124. 124. 124. 124. 124. 124. 124. 124. 120. 119. 117. 116. - 117. 117. 115. 113. 114. 110. 108. 109. 110. 113. 121. 131. 135. - 139. 144. 146. 146. 145. 144. 144. 147. 148. 149. 150. 152. 153. - 153. 153. 154. 151. 149. 149. 152. 152. 150. 147. 147. 147. 147. - 146. 145. 144. 143. 143. 142. 141. 140. 139. 139. 139. 140. 140. - 143. 139. 138. 140. 139. 136. 138. 144. 183. 200. 217. 222. 223. - 226. 228. 227. 223. 183. 144. 120. 94. 67. 50. 43. 43. 43. 45. 48. - 52. 54. 53. 51. 55. 54. 53. 51. 49. 48. 47. 47. 54. 50. 49. 50. 49. - 45. 44. 47. 158. 159. 162. 165. 169. 169. 167. 165. 155. 151. 143. - 130. 122. 124. 134. 144. 149. 155. 163. 166. 165. 164. 164. 165. - 165. 164. 160. 154. 148. 138. 120. 103. 86. 80. 78. 84. 91. 94. 96. - 99. 100. 100. 100. 100. 100. 101. 101. 101. 106. 106. 105. 106. 109. - 112. 116. 119. 120. 120. 120. 121. 123. 124. 124. 124. 124. 124. - 124. 124. 124. 125. 126. 126. 130. 127. 125. 127. 130. 130. 127. - 126. 127. 125. 121. 118. 121. 128. 136. 140. 141. 135. 129. 127. - 131. 139. 145. 149. 141. 144. 147. 148. 145. 144. 149. 154. 144. - 150. 155. 157. 156. 159. 165. 170. 166. 171. 176. 178. 176. 175. - 176. 178. 174. 181. 186. 185. 185. 189. 191. 190. 190. 201. 205. - 190. 164. 138. 116. 102. 119. 122. 127. 129. 127. 125. 126. 129. - 124. 124. 124. 124. 124. 124. 124. 124. 119. 117. 115. 115. 116. - 115. 113. 112. 113. 109. 107. 108. 109. 112. 121. 131. 136. 139. - 144. 147. 146. 145. 144. 144. 147. 147. 147. 148. 150. 151. 152. - 153. 154. 151. 148. 148. 150. 151. 148. 144. 145. 145. 146. 146. - 145. 144. 142. 141. 142. 141. 140. 139. 139. 139. 139. 139. 142. - 139. 139. 141. 141. 138. 136. 137. 164. 189. 215. 224. 221. 220. - 225. 231. 218. 212. 173. 111. 63. 43. 41. 45. 43. 44. 46. 50. 54. - 55. 54. 53. 56. 55. 53. 51. 49. 48. 48. 48. 51. 47. 45. 46. 45. 42. - 42. 45. 160. 161. 165. 169. 171. 169. 164. 159. 152. 144. 131. 119. - 114. 120. 134. 145. 151. 157. 164. 167. 166. 164. 164. 165. 165. - 165. 161. 155. 148. 138. 119. 102. 88. 82. 80. 85. 92. 94. 96. 99. - 98. 99. 99. 99. 99. 100. 100. 100. 104. 104. 105. 106. 109. 112. - 115. 117. 120. 119. 118. 120. 122. 123. 123. 122. 124. 123. 123. - 123. 123. 124. 125. 126. 127. 125. 126. 129. 130. 127. 127. 129. - 126. 130. 134. 136. 141. 147. 149. 148. 137. 131. 123. 123. 128. - 135. 139. 139. 138. 137. 138. 142. 144. 145. 150. 156. 146. 150. - 153. 152. 155. 161. 167. 168. 164. 167. 171. 173. 173. 174. 175. - 176. 174. 184. 191. 190. 188. 189. 190. 190. 191. 197. 200. 198. - 194. 180. 150. 121. 109. 112. 119. 126. 125. 121. 120. 122. 123. - 123. 123. 123. 124. 124. 124. 124. 119. 117. 115. 114. 114. 114. - 112. 110. 111. 107. 105. 106. 108. 111. 120. 130. 136. 140. 145. - 147. 147. 145. 145. 145. 146. 146. 146. 147. 148. 150. 151. 152. - 153. 151. 149. 148. 148. 147. 145. 144. 143. 144. 145. 146. 145. - 144. 142. 141. 142. 141. 140. 139. 139. 139. 139. 140. 141. 140. - 140. 142. 143. 141. 139. 137. 148. 174. 204. 219. 219. 217. 223. - 231. 219. 235. 193. 104. 48. 36. 38. 41. 43. 43. 45. 48. 52. 54. 53. - 52. 56. 54. 52. 50. 49. 50. 50. 51. 51. 47. 45. 47. 47. 45. 46. 50. - 162. 164. 168. 172. 172. 168. 160. 154. 147. 136. 119. 107. 106. - 117. 134. 146. 153. 159. 165. 168. 166. 164. 163. 165. 165. 165. - 161. 155. 149. 138. 118. 101. 88. 82. 79. 85. 90. 92. 94. 97. 97. - 97. 98. 98. 99. 99. 99. 100. 102. 102. 104. 106. 109. 111. 113. 114. - 119. 117. 116. 118. 121. 123. 122. 120. 123. 123. 122. 122. 123. - 124. 124. 125. 125. 124. 126. 129. 126. 123. 128. 136. 121. 133. - 146. 151. 154. 152. 144. 133. 126. 124. 121. 120. 123. 127. 131. - 133. 135. 129. 127. 133. 138. 140. 142. 147. 149. 152. 152. 152. - 157. 164. 165. 161. 168. 167. 168. 170. 173. 176. 176. 175. 184. - 186. 185. 180. 181. 187. 191. 192. 197. 196. 190. 188. 197. 203. - 190. 170. 130. 119. 111. 114. 118. 118. 119. 122. 120. 121. 121. - 121. 122. 122. 123. 123. 119. 117. 115. 114. 113. 112. 110. 107. - 109. 105. 103. 105. 107. 110. 119. 128. 136. 140. 145. 147. 147. - 146. 145. 145. 146. 145. 145. 145. 147. 149. 151. 152. 151. 151. - 151. 149. 146. 144. 143. 144. 143. 144. 145. 146. 146. 144. 142. - 141. 142. 142. 141. 140. 140. 140. 140. 140. 141. 142. 143. 142. - 143. 143. 141. 140. 140. 158. 185. 207. 217. 220. 224. 228. 227. - 236. 177. 83. 40. 40. 42. 41. 45. 45. 46. 48. 52. 54. 54. 52. 53. - 52. 50. 49. 49. 50. 52. 53. 51. 47. 46. 49. 50. 49. 52. 56. 164. - 166. 170. 173. 173. 167. 157. 150. 144. 130. 111. 99. 101. 115. 133. - 145. 154. 160. 166. 168. 166. 163. 163. 164. 165. 165. 162. 156. - 149. 138. 118. 101. 86. 80. 77. 82. 88. 89. 91. 93. 96. 97. 97. 98. - 98. 99. 99. 99. 100. 101. 104. 106. 109. 111. 112. 112. 119. 117. - 115. 117. 121. 122. 121. 119. 123. 122. 122. 122. 122. 123. 124. - 125. 125. 124. 126. 127. 123. 120. 129. 142. 127. 134. 137. 135. - 133. 133. 128. 119. 123. 125. 127. 126. 125. 126. 132. 137. 138. - 128. 124. 130. 137. 137. 139. 142. 150. 152. 152. 153. 159. 165. - 162. 153. 171. 169. 167. 170. 176. 180. 180. 179. 185. 185. 184. - 183. 186. 191. 188. 181. 184. 192. 195. 191. 195. 204. 202. 193. - 181. 151. 120. 109. 112. 115. 119. 122. 118. 119. 119. 120. 120. - 121. 121. 121. 120. 117. 115. 113. 113. 111. 108. 106. 108. 104. - 102. 104. 106. 109. 118. 128. 136. 140. 145. 147. 147. 146. 145. - 145. 145. 145. 144. 145. 146. 148. 150. 152. 150. 152. 152. 149. - 144. 141. 142. 144. 142. 144. 145. 147. 146. 145. 142. 141. 143. - 142. 141. 140. 140. 140. 141. 141. 141. 143. 144. 143. 142. 142. - 142. 141. 137. 148. 170. 196. 215. 224. 226. 227. 229. 218. 142. 52. - 29. 41. 45. 44. 50. 49. 49. 51. 54. 56. 56. 55. 50. 49. 48. 47. 48. - 50. 53. 55. 46. 42. 42. 45. 47. 47. 50. 55. 168. 173. 176. 173. 169. - 164. 155. 145. 131. 121. 101. 85. 92. 117. 136. 141. 155. 162. 167. - 166. 165. 166. 164. 160. 165. 165. 162. 156. 150. 139. 121. 104. 85. - 78. 75. 79. 86. 89. 93. 96. 93. 93. 95. 96. 98. 99. 100. 101. 103. - 103. 103. 105. 106. 108. 110. 111. 119. 116. 114. 116. 119. 121. - 121. 119. 124. 124. 123. 122. 122. 122. 123. 123. 123. 132. 118. - 126. 115. 134. 142. 169. 110. 118. 127. 129. 126. 121. 120. 121. - 123. 123. 122. 122. 124. 127. 132. 135. 127. 128. 129. 132. 135. - 138. 141. 142. 149. 146. 145. 149. 155. 158. 156. 152. 164. 165. - 166. 168. 171. 177. 184. 189. 184. 188. 187. 183. 184. 190. 192. - 189. 188. 189. 192. 194. 195. 195. 195. 195. 198. 189. 160. 122. - 107. 114. 114. 104. 111. 117. 129. 127. 114. 114. 121. 117. 119. - 118. 117. 115. 113. 112. 110. 110. 109. 104. 101. 102. 105. 109. - 120. 131. 136. 140. 146. 149. 149. 147. 146. 146. 144. 144. 145. - 146. 146. 146. 145. 145. 149. 152. 154. 152. 147. 142. 141. 141. - 140. 140. 141. 143. 146. 146. 145. 143. 144. 144. 143. 141. 141. - 141. 141. 141. 141. 142. 143. 144. 145. 144. 143. 142. 143. 141. - 154. 185. 210. 220. 223. 227. 231. 166. 82. 32. 33. 51. 50. 36. 45. - 50. 54. 55. 54. 53. 56. 58. 53. 46. 39. 40. 47. 52. 51. 47. 42. 43. - 43. 44. 50. 55. 50. 41. 167. 172. 173. 169. 165. 160. 150. 140. 126. - 112. 91. 81. 91. 115. 134. 143. 154. 162. 167. 166. 165. 166. 164. - 161. 165. 165. 160. 154. 148. 138. 120. 104. 83. 77. 74. 80. 86. 89. - 92. 95. 95. 95. 96. 97. 98. 99. 100. 101. 102. 102. 103. 104. 105. - 107. 109. 110. 118. 116. 114. 115. 118. 120. 120. 119. 123. 123. - 122. 122. 122. 123. 124. 124. 127. 121. 134. 116. 122. 126. 153. - 143. 99. 107. 117. 122. 121. 119. 118. 119. 124. 122. 121. 122. 125. - 130. 133. 135. 125. 127. 130. 134. 136. 137. 137. 136. 142. 141. - 141. 145. 151. 156. 156. 155. 170. 172. 174. 176. 178. 180. 185. - 188. 181. 185. 186. 183. 184. 189. 191. 188. 188. 190. 192. 194. - 196. 196. 196. 196. 193. 195. 194. 178. 143. 110. 102. 111. 118. - 107. 105. 107. 109. 118. 122. 112. 117. 116. 115. 114. 112. 110. - 109. 108. 109. 104. 101. 102. 104. 109. 119. 130. 138. 143. 148. - 152. 152. 150. 149. 149. 144. 145. 145. 145. 145. 144. 144. 144. - 144. 147. 151. 151. 148. 144. 142. 142. 140. 140. 141. 144. 146. - 146. 145. 143. 144. 143. 142. 141. 141. 141. 142. 142. 141. 142. - 143. 144. 145. 144. 143. 143. 146. 143. 142. 158. 192. 223. 227. - 215. 173. 104. 48. 42. 47. 37. 35. 46. 45. 48. 52. 54. 54. 54. 55. - 55. 49. 46. 45. 46. 50. 51. 48. 44. 48. 46. 46. 51. 55. 52. 42. 34. - 169. 171. 170. 165. 160. 154. 144. 133. 117. 97. 78. 77. 93. 113. - 132. 144. 154. 162. 167. 166. 166. 167. 165. 161. 166. 164. 159. - 151. 145. 136. 120. 104. 81. 75. 74. 80. 87. 89. 91. 93. 98. 98. 98. - 99. 99. 100. 100. 100. 101. 101. 102. 103. 105. 107. 108. 110. 116. - 114. 113. 114. 116. 118. 118. 118. 122. 121. 121. 121. 122. 123. - 124. 125. 126. 117. 134. 117. 121. 127. 146. 115. 103. 109. 117. - 122. 122. 120. 121. 122. 125. 122. 120. 122. 127. 132. 134. 134. - 125. 128. 132. 135. 136. 135. 132. 130. 136. 137. 139. 143. 148. - 154. 159. 161. 169. 172. 175. 177. 177. 177. 178. 180. 178. 182. - 184. 184. 186. 189. 190. 188. 188. 190. 193. 195. 197. 198. 198. - 197. 195. 194. 199. 205. 191. 155. 118. 98. 111. 106. 110. 113. 106. - 109. 118. 117. 115. 115. 113. 112. 110. 109. 108. 107. 110. 105. - 102. 102. 104. 108. 118. 128. 139. 143. 149. 152. 153. 151. 150. - 150. 146. 145. 144. 143. 142. 141. 141. 142. 137. 142. 147. 150. - 149. 146. 144. 143. 141. 141. 142. 144. 146. 147. 145. 142. 143. - 142. 142. 141. 142. 142. 143. 144. 142. 142. 143. 144. 145. 145. - 145. 144. 150. 149. 140. 144. 181. 219. 209. 173. 96. 51. 29. 47. - 54. 34. 31. 50. 47. 47. 49. 52. 54. 54. 52. 50. 46. 48. 51. 53. 53. - 49. 44. 41. 46. 46. 52. 61. 56. 40. 27. 25. 172. 173. 169. 162. 156. - 150. 137. 126. 104. 84. 70. 79. 98. 114. 130. 143. 154. 161. 167. - 167. 166. 167. 166. 162. 166. 163. 157. 149. 143. 135. 119. 104. 79. - 74. 74. 81. 88. 90. 91. 93. 100. 100. 100. 100. 100. 100. 100. 100. - 100. 101. 101. 102. 104. 106. 108. 109. 114. 114. 113. 114. 115. - 116. 117. 118. 120. 120. 120. 121. 122. 123. 125. 126. 120. 126. - 116. 129. 123. 137. 116. 108. 116. 118. 120. 120. 119. 119. 121. - 123. 128. 124. 121. 123. 128. 132. 132. 131. 129. 131. 133. 135. - 135. 134. 131. 129. 136. 138. 141. 144. 147. 153. 160. 165. 165. - 168. 171. 173. 173. 173. 175. 176. 178. 181. 184. 186. 189. 191. - 191. 190. 189. 191. 193. 196. 198. 198. 198. 198. 194. 196. 194. - 198. 212. 208. 164. 113. 98. 93. 103. 112. 105. 104. 111. 114. 114. - 113. 112. 111. 110. 109. 108. 107. 111. 106. 102. 102. 103. 107. - 117. 127. 137. 142. 148. 151. 152. 150. 149. 149. 148. 146. 144. - 141. 139. 137. 137. 137. 134. 138. 144. 149. 150. 148. 145. 143. - 142. 142. 142. 144. 146. 147. 145. 142. 142. 142. 142. 142. 142. - 143. 144. 145. 142. 143. 144. 145. 145. 146. 146. 146. 147. 151. - 149. 153. 175. 187. 152. 102. 46. 44. 42. 44. 46. 46. 46. 47. 51. - 49. 48. 50. 53. 52. 48. 43. 46. 51. 56. 56. 52. 47. 44. 43. 44. 50. - 65. 71. 53. 28. 26. 39. 175. 174. 169. 161. 154. 145. 130. 116. 93. - 77. 71. 84. 103. 117. 130. 141. 154. 161. 167. 167. 167. 168. 167. - 163. 165. 163. 157. 149. 143. 134. 119. 104. 79. 74. 74. 81. 88. 91. - 92. 94. 101. 101. 101. 101. 100. 100. 100. 100. 100. 101. 101. 102. - 104. 106. 108. 109. 113. 113. 114. 114. 114. 115. 117. 118. 120. - 120. 120. 120. 121. 123. 124. 125. 119. 132. 110. 132. 146. 136. 96. - 116. 118. 117. 114. 112. 110. 112. 116. 119. 129. 126. 124. 124. - 127. 129. 129. 127. 134. 134. 134. 134. 134. 134. 133. 133. 138. - 139. 141. 143. 145. 150. 156. 160. 164. 166. 168. 170. 172. 175. - 179. 182. 181. 182. 185. 189. 191. 191. 192. 192. 190. 192. 194. - 196. 197. 198. 197. 197. 189. 201. 204. 197. 199. 205. 195. 175. - 123. 93. 81. 91. 98. 103. 106. 103. 113. 112. 111. 110. 109. 108. - 107. 107. 111. 105. 101. 102. 103. 106. 116. 126. 138. 142. 148. - 152. 153. 152. 151. 151. 150. 148. 144. 140. 136. 133. 131. 129. - 130. 134. 140. 147. 150. 149. 146. 143. 143. 143. 143. 145. 147. - 147. 144. 142. 142. 142. 142. 142. 143. 144. 145. 146. 143. 144. - 144. 145. 146. 147. 148. 148. 144. 148. 156. 162. 159. 134. 86. 45. - 35. 51. 54. 40. 38. 51. 56. 49. 55. 52. 49. 49. 50. 49. 44. 40. 50. - 53. 56. 54. 49. 46. 47. 50. 54. 62. 72. 66. 41. 26. 50. 86. 173. - 172. 166. 158. 150. 139. 120. 104. 86. 78. 77. 87. 104. 119. 132. - 140. 154. 161. 167. 167. 167. 169. 167. 164. 164. 163. 157. 150. - 144. 135. 119. 103. 81. 75. 74. 81. 88. 91. 94. 96. 100. 100. 100. - 100. 100. 100. 100. 100. 101. 101. 102. 103. 105. 107. 108. 110. - 113. 114. 115. 114. 114. 114. 117. 119. 121. 120. 120. 120. 121. - 122. 123. 124. 127. 126. 124. 127. 167. 122. 101. 121. 113. 112. - 109. 108. 109. 113. 117. 120. 126. 126. 125. 125. 125. 126. 127. - 127. 134. 134. 133. 133. 134. 134. 135. 136. 138. 137. 138. 140. - 142. 146. 149. 150. 158. 160. 163. 166. 169. 174. 180. 184. 185. - 183. 185. 190. 192. 191. 191. 194. 192. 193. 195. 196. 196. 196. - 195. 194. 197. 195. 196. 196. 190. 186. 196. 213. 187. 152. 129. - 117. 97. 87. 98. 110. 110. 110. 109. 108. 107. 106. 106. 105. 109. - 104. 101. 101. 102. 106. 117. 127. 141. 145. 152. 156. 156. 156. - 155. 155. 151. 150. 146. 141. 135. 129. 124. 121. 124. 127. 133. - 141. 147. 149. 147. 145. 144. 143. 144. 145. 147. 147. 144. 142. - 144. 143. 143. 143. 143. 144. 144. 145. 144. 144. 144. 145. 146. - 147. 149. 150. 151. 153. 160. 158. 133. 89. 53. 36. 42. 46. 46. 41. - 39. 45. 52. 57. 56. 53. 50. 48. 47. 46. 45. 43. 54. 54. 53. 50. 47. - 48. 52. 57. 66. 65. 59. 44. 28. 39. 86. 134. 168. 166. 160. 152. - 144. 130. 109. 90. 83. 83. 83. 86. 98. 118. 134. 140. 154. 161. 167. - 167. 168. 169. 168. 165. 164. 163. 159. 152. 146. 136. 119. 102. 83. - 77. 75. 81. 88. 92. 96. 99. 99. 99. 99. 99. 100. 100. 100. 100. 102. - 102. 103. 104. 105. 107. 109. 110. 113. 115. 116. 116. 114. 114. - 117. 120. 122. 121. 121. 120. 120. 121. 122. 122. 131. 116. 133. - 137. 148. 116. 114. 112. 109. 109. 110. 113. 116. 118. 120. 120. - 119. 123. 126. 126. 123. 123. 127. 131. 129. 130. 132. 134. 135. - 136. 135. 135. 138. 136. 136. 139. 144. 147. 146. 145. 154. 158. - 163. 168. 172. 176. 180. 183. 187. 184. 184. 189. 190. 188. 189. - 194. 193. 194. 195. 195. 195. 194. 192. 191. 196. 188. 186. 193. - 198. 199. 204. 212. 224. 213. 209. 186. 128. 84. 88. 109. 106. 106. - 105. 105. 104. 103. 103. 102. 108. 103. 100. 100. 102. 107. 117. - 128. 141. 146. 152. 156. 157. 157. 156. 156. 153. 151. 148. 142. - 135. 126. 118. 113. 114. 117. 123. 133. 142. 148. 149. 148. 145. - 144. 144. 146. 147. 147. 144. 142. 145. 145. 144. 143. 143. 143. - 144. 144. 145. 145. 144. 145. 146. 148. 150. 151. 156. 159. 158. - 140. 101. 61. 45. 47. 46. 42. 41. 42. 44. 46. 50. 55. 53. 52. 49. - 46. 44. 45. 49. 52. 55. 53. 50. 47. 47. 51. 57. 61. 72. 61. 44. 32. - 39. 74. 123. 160. 163. 161. 156. 148. 139. 124. 101. 81. 83. 88. 86. - 83. 93. 116. 135. 141. 154. 161. 167. 167. 168. 169. 168. 165. 163. - 163. 160. 154. 148. 137. 119. 102. 84. 78. 75. 81. 88. 93. 97. 101. - 98. 98. 98. 99. 99. 100. 100. 100. 103. 103. 103. 105. 106. 108. - 110. 111. 113. 115. 117. 116. 114. 115. 118. 121. 122. 122. 121. - 120. 120. 120. 121. 121. 130. 112. 128. 156. 111. 120. 120. 100. - 104. 106. 110. 115. 119. 119. 116. 114. 113. 120. 125. 125. 122. - 122. 128. 134. 123. 126. 131. 135. 137. 136. 135. 133. 140. 137. - 136. 140. 147. 151. 148. 144. 157. 163. 171. 177. 181. 183. 185. - 186. 188. 183. 183. 187. 188. 185. 188. 194. 194. 194. 195. 195. - 194. 192. 190. 189. 178. 195. 204. 201. 207. 222. 224. 213. 219. - 219. 234. 228. 170. 106. 83. 86. 103. 103. 103. 102. 101. 101. 100. - 100. 107. 102. 99. 100. 102. 107. 118. 129. 139. 144. 150. 155. 156. - 155. 155. 155. 153. 152. 149. 143. 134. 124. 114. 108. 106. 109. - 116. 127. 139. 147. 150. 150. 145. 144. 145. 146. 147. 147. 144. - 142. 146. 146. 145. 144. 143. 143. 143. 143. 145. 145. 144. 145. - 146. 148. 151. 152. 151. 157. 151. 120. 75. 44. 40. 48. 43. 47. 46. - 42. 47. 57. 55. 45. 49. 50. 49. 45. 43. 46. 52. 58. 54. 51. 48. 47. - 49. 54. 59. 63. 77. 61. 41. 39. 67. 114. 152. 170. 158. 159. 156. - 145. 127. 106. 90. 81. 80. 80. 82. 88. 101. 119. 135. 145. 154. 158. - 164. 168. 168. 167. 166. 166. 161. 162. 159. 152. 144. 133. 116. - 101. 79. 74. 72. 79. 87. 90. 93. 97. 98. 98. 99. 99. 99. 99. 99. 99. - 101. 101. 102. 103. 105. 108. 110. 111. 112. 112. 113. 114. 116. - 118. 121. 122. 118. 121. 124. 123. 120. 119. 120. 121. 124. 130. - 133. 127. 115. 107. 108. 112. 109. 111. 114. 115. 115. 116. 117. - 119. 128. 126. 122. 120. 120. 123. 127. 130. 123. 127. 130. 132. - 133. 133. 134. 135. 128. 134. 140. 142. 141. 142. 147. 152. 156. - 158. 167. 174. 177. 185. 187. 179. 180. 184. 187. 187. 185. 185. - 189. 193. 197. 193. 188. 185. 185. 187. 192. 195. 210. 209. 209. - 210. 211. 212. 214. 214. 218. 216. 221. 239. 219. 139. 81. 87. 84. - 104. 105. 100. 105. 97. 93. 109. 100. 100. 100. 99. 101. 108. 120. - 129. 138. 143. 150. 154. 155. 154. 153. 153. 151. 151. 149. 144. - 138. 128. 109. 92. 94. 92. 100. 118. 130. 135. 142. 151. 147. 145. - 142. 143. 146. 147. 146. 144. 143. 143. 143. 144. 144. 145. 145. - 145. 144. 144. 146. 149. 148. 145. 146. 150. 159. 154. 125. 81. 49. - 43. 47. 47. 42. 44. 47. 49. 51. 52. 52. 52. 49. 53. 50. 41. 41. 52. - 58. 56. 40. 49. 52. 45. 44. 56. 72. 80. 79. 50. 37. 65. 111. 144. - 160. 166. 157. 156. 150. 136. 117. 99. 86. 81. 83. 82. 83. 89. 101. - 118. 135. 145. 153. 158. 164. 168. 168. 167. 166. 166. 163. 163. - 159. 151. 143. 132. 116. 102. 82. 76. 74. 81. 88. 91. 94. 97. 98. - 98. 99. 99. 100. 100. 101. 101. 101. 101. 102. 103. 105. 108. 110. - 111. 114. 114. 114. 115. 116. 117. 119. 120. 119. 122. 123. 123. - 121. 120. 121. 123. 127. 128. 127. 119. 110. 106. 109. 114. 112. - 115. 117. 119. 119. 119. 121. 122. 118. 119. 121. 122. 122. 122. - 122. 121. 123. 126. 130. 131. 131. 131. 132. 133. 134. 137. 140. - 140. 138. 139. 145. 150. 151. 167. 165. 165. 185. 188. 181. 188. - 191. 187. 182. 183. 187. 191. 192. 192. 183. 181. 179. 181. 187. - 198. 209. 216. 212. 211. 210. 210. 210. 210. 210. 211. 208. 219. - 220. 222. 223. 192. 125. 71. 87. 98. 97. 92. 99. 104. 101. 100. 99. - 99. 98. 97. 99. 106. 118. 127. 138. 143. 150. 154. 155. 154. 153. - 153. 153. 153. 150. 145. 138. 127. 108. 91. 81. 80. 90. 111. 128. - 135. 140. 148. 149. 146. 143. 143. 145. 147. 146. 144. 143. 143. - 143. 144. 144. 145. 145. 145. 145. 145. 146. 148. 147. 147. 150. - 155. 157. 133. 92. 54. 36. 35. 37. 36. 45. 46. 49. 51. 52. 53. 53. - 52. 51. 49. 46. 44. 48. 54. 55. 51. 43. 48. 49. 48. 52. 63. 71. 73. - 63. 56. 66. 99. 133. 149. 155. 159. 156. 152. 141. 123. 102. 88. 82. - 82. 86. 85. 85. 90. 102. 118. 134. 144. 153. 158. 164. 167. 168. - 167. 166. 166. 164. 164. 158. 149. 141. 132. 117. 103. 84. 78. 76. - 82. 89. 92. 94. 97. 98. 98. 99. 100. 101. 102. 103. 103. 101. 101. - 102. 103. 105. 108. 110. 111. 116. 116. 115. 115. 115. 116. 117. - 118. 120. 122. 123. 122. 121. 122. 124. 126. 128. 125. 118. 110. - 105. 105. 110. 115. 114. 116. 119. 120. 121. 121. 123. 124. 116. - 117. 118. 119. 120. 121. 121. 121. 129. 132. 135. 136. 136. 135. - 135. 136. 135. 138. 139. 139. 138. 140. 146. 151. 163. 151. 167. - 177. 167. 182. 196. 177. 183. 186. 191. 194. 192. 186. 179. 174. - 171. 178. 190. 201. 209. 212. 211. 210. 211. 210. 209. 209. 208. - 209. 209. 210. 209. 219. 221. 215. 227. 234. 179. 98. 83. 86. 92. - 93. 93. 103. 105. 93. 97. 98. 97. 96. 97. 104. 116. 124. 138. 143. - 150. 154. 155. 154. 153. 153. 155. 155. 152. 146. 139. 127. 107. 90. - 67. 64. 74. 99. 122. 132. 137. 143. 150. 148. 145. 144. 145. 146. - 146. 145. 143. 143. 143. 144. 144. 145. 145. 145. 143. 144. 145. - 144. 145. 149. 154. 157. 154. 113. 65. 41. 39. 43. 45. 44. 48. 49. - 51. 53. 54. 54. 53. 53. 51. 44. 43. 49. 55. 54. 49. 46. 48. 50. 51. - 55. 64. 72. 71. 66. 59. 73. 103. 135. 150. 150. 150. 155. 153. 145. - 130. 109. 90. 80. 81. 85. 89. 87. 87. 90. 101. 117. 133. 144. 153. - 157. 163. 167. 168. 166. 166. 166. 166. 164. 158. 148. 140. 131. - 117. 104. 85. 79. 77. 82. 89. 91. 93. 96. 97. 98. 99. 100. 102. 103. - 104. 105. 101. 101. 102. 103. 105. 108. 110. 111. 115. 115. 115. - 115. 116. 117. 118. 119. 121. 122. 122. 122. 122. 124. 126. 127. - 125. 119. 110. 104. 103. 107. 111. 114. 113. 115. 118. 119. 119. - 119. 121. 122. 122. 119. 116. 114. 116. 121. 127. 130. 132. 135. - 138. 139. 138. 137. 137. 138. 133. 136. 139. 141. 142. 145. 150. - 153. 151. 173. 161. 155. 181. 181. 168. 184. 177. 187. 194. 190. - 177. 168. 168. 173. 190. 198. 209. 217. 218. 212. 202. 195. 207. - 207. 207. 207. 207. 208. 209. 210. 212. 208. 216. 219. 219. 229. - 211. 163. 91. 78. 87. 98. 91. 94. 101. 93. 97. 97. 96. 95. 96. 104. - 115. 124. 138. 143. 150. 154. 155. 154. 153. 153. 154. 155. 152. - 146. 140. 129. 110. 92. 61. 53. 59. 84. 111. 125. 133. 138. 150. - 148. 146. 145. 145. 145. 145. 146. 143. 143. 143. 144. 144. 145. - 145. 145. 140. 143. 143. 141. 145. 153. 155. 152. 115. 77. 42. 34. - 39. 40. 41. 45. 52. 53. 54. 55. 55. 54. 53. 52. 48. 42. 45. 56. 59. - 51. 44. 45. 51. 54. 59. 65. 72. 75. 72. 67. 79. 100. 130. 151. 151. - 144. 145. 153. 147. 136. 118. 98. 84. 80. 84. 89. 91. 89. 87. 90. - 100. 116. 133. 143. 152. 157. 163. 167. 167. 166. 165. 165. 166. - 165. 158. 149. 140. 131. 116. 103. 84. 78. 76. 81. 88. 90. 92. 95. - 97. 98. 99. 100. 102. 103. 104. 105. 101. 101. 102. 103. 105. 108. - 110. 111. 112. 113. 113. 114. 116. 118. 120. 121. 121. 121. 121. - 122. 123. 125. 126. 126. 117. 112. 107. 105. 107. 109. 111. 111. - 114. 116. 119. 119. 118. 118. 119. 120. 119. 118. 116. 116. 118. - 123. 128. 131. 129. 132. 135. 135. 135. 134. 134. 134. 135. 138. - 142. 144. 146. 147. 149. 150. 162. 148. 165. 176. 161. 176. 192. - 169. 187. 182. 173. 162. 159. 168. 186. 200. 218. 216. 211. 207. - 204. 203. 203. 203. 207. 206. 206. 205. 205. 206. 207. 207. 207. - 200. 211. 218. 211. 219. 223. 207. 137. 88. 72. 87. 89. 89. 96. 95. - 96. 96. 96. 95. 97. 104. 116. 125. 138. 143. 150. 154. 155. 154. - 153. 153. 152. 153. 151. 146. 141. 131. 113. 96. 64. 51. 48. 69. 96. - 114. 126. 134. 147. 147. 147. 146. 145. 145. 145. 145. 143. 143. - 143. 144. 144. 145. 145. 145. 140. 145. 146. 143. 150. 158. 152. - 137. 78. 57. 45. 49. 49. 40. 41. 51. 54. 54. 55. 55. 54. 53. 51. 49. - 45. 44. 51. 60. 57. 46. 42. 48. 50. 56. 64. 71. 73. 72. 74. 77. 107. - 123. 144. 153. 147. 139. 140. 147. 138. 125. 106. 90. 83. 84. 88. - 91. 91. 88. 86. 89. 99. 115. 132. 143. 152. 157. 163. 166. 167. 166. - 165. 165. 166. 165. 159. 150. 141. 131. 115. 101. 83. 77. 75. 81. - 88. 91. 93. 96. 98. 98. 99. 100. 101. 102. 103. 103. 101. 101. 102. - 103. 105. 108. 110. 111. 112. 112. 113. 114. 116. 119. 121. 122. - 121. 120. 121. 122. 125. 125. 124. 122. 109. 108. 107. 108. 110. - 112. 112. 111. 117. 119. 121. 120. 118. 117. 117. 118. 109. 112. - 118. 123. 126. 127. 125. 124. 130. 133. 136. 138. 137. 136. 137. - 138. 143. 144. 144. 145. 145. 145. 144. 144. 145. 167. 161. 160. - 184. 183. 170. 181. 178. 167. 158. 162. 179. 196. 206. 209. 209. - 208. 206. 205. 204. 204. 205. 206. 207. 206. 205. 204. 204. 203. - 204. 204. 205. 208. 214. 214. 216. 230. 232. 217. 199. 125. 70. 70. - 84. 90. 92. 93. 93. 94. 94. 94. 96. 105. 117. 127. 138. 143. 150. - 154. 155. 154. 153. 153. 151. 152. 151. 147. 142. 133. 115. 98. 68. - 51. 43. 58. 82. 102. 118. 130. 142. 144. 147. 148. 146. 144. 144. - 144. 143. 143. 143. 144. 144. 145. 145. 145. 143. 150. 151. 148. - 156. 160. 138. 108. 59. 55. 58. 64. 58. 46. 46. 56. 55. 55. 55. 54. - 53. 50. 48. 46. 45. 50. 56. 58. 52. 44. 45. 50. 47. 54. 65. 71. 71. - 73. 84. 97. 126. 137. 150. 153. 147. 140. 140. 143. 128. 113. 94. - 84. 85. 89. 92. 91. 90. 87. 85. 87. 98. 114. 132. 143. 152. 156. - 162. 166. 166. 165. 165. 164. 165. 165. 160. 151. 142. 131. 114. - 100. 83. 77. 76. 82. 89. 93. 95. 98. 98. 98. 99. 99. 100. 100. 101. - 101. 101. 101. 102. 103. 105. 108. 110. 111. 113. 113. 114. 114. - 116. 118. 119. 120. 120. 120. 120. 123. 126. 125. 121. 117. 105. - 107. 109. 111. 112. 113. 114. 114. 118. 119. 120. 119. 116. 113. - 113. 113. 107. 112. 120. 127. 131. 130. 128. 125. 134. 137. 140. - 142. 142. 142. 143. 144. 148. 146. 142. 140. 139. 141. 142. 143. - 151. 148. 165. 175. 169. 176. 179. 160. 157. 163. 175. 192. 207. - 212. 206. 199. 194. 200. 207. 212. 213. 208. 202. 197. 201. 201. - 201. 202. 203. 205. 207. 208. 209. 217. 214. 212. 222. 228. 225. - 224. 228. 174. 106. 74. 78. 83. 83. 89. 89. 90. 91. 92. 95. 104. - 117. 127. 138. 143. 150. 154. 155. 154. 153. 153. 153. 154. 152. - 148. 143. 133. 114. 98. 67. 49. 40. 51. 72. 92. 110. 125. 136. 141. - 146. 149. 147. 144. 143. 143. 143. 143. 143. 144. 144. 145. 145. - 145. 144. 152. 152. 149. 156. 154. 115. 69. 41. 41. 45. 49. 46. 40. - 42. 49. 54. 54. 54. 53. 51. 47. 44. 42. 50. 55. 57. 52. 48. 49. 50. - 50. 51. 54. 63. 71. 75. 84. 103. 122. 137. 145. 150. 149. 144. 143. - 148. 153. 120. 105. 87. 81. 86. 93. 93. 91. 89. 86. 84. 86. 97. 114. - 132. 143. 152. 156. 162. 166. 166. 165. 164. 164. 164. 164. 160. - 152. 143. 131. 114. 98. 83. 78. 77. 83. 91. 95. 97. 101. 98. 98. 99. - 99. 99. 99. 99. 99. 101. 101. 102. 103. 105. 108. 110. 111. 116. - 115. 115. 115. 115. 116. 117. 118. 119. 119. 120. 124. 126. 125. - 119. 114. 104. 107. 110. 111. 112. 113. 115. 118. 115. 117. 117. - 115. 112. 109. 108. 108. 115. 118. 122. 126. 130. 133. 134. 134. - 131. 135. 138. 140. 141. 141. 142. 143. 149. 143. 137. 133. 134. - 139. 144. 147. 146. 158. 164. 166. 173. 169. 157. 150. 153. 175. - 200. 210. 206. 199. 198. 201. 207. 208. 208. 208. 206. 203. 200. - 199. 192. 193. 196. 200. 204. 209. 213. 216. 211. 213. 206. 209. - 217. 204. 205. 234. 225. 209. 151. 92. 74. 71. 72. 86. 86. 87. 88. - 89. 94. 103. 117. 127. 138. 143. 150. 154. 155. 154. 153. 153. 156. - 156. 153. 148. 142. 132. 113. 96. 64. 48. 38. 49. 68. 86. 105. 121. - 132. 138. 146. 149. 148. 144. 143. 142. 143. 143. 143. 144. 144. - 145. 145. 145. 143. 151. 150. 147. 153. 145. 96. 40. 44. 41. 39. 42. - 46. 50. 54. 58. 54. 54. 53. 52. 49. 46. 42. 40. 55. 59. 55. 46. 46. - 53. 54. 48. 56. 57. 62. 72. 82. 96. 120. 142. 145. 149. 149. 142. - 138. 145. 158. 169. 98. 90. 81. 82. 89. 94. 91. 86. 92. 89. 87. 89. - 98. 114. 130. 140. 148. 156. 162. 163. 165. 168. 168. 166. 165. 165. - 159. 150. 142. 133. 118. 104. 86. 79. 77. 84. 92. 95. 95. 96. 102. - 100. 98. 97. 96. 98. 100. 101. 99. 99. 100. 101. 103. 106. 108. 109. - 112. 116. 119. 120. 117. 116. 117. 118. 118. 126. 125. 123. 128. - 124. 117. 118. 118. 114. 111. 109. 110. 113. 114. 115. 118. 116. - 114. 114. 116. 117. 117. 116. 124. 122. 123. 128. 134. 136. 134. - 130. 134. 134. 134. 135. 138. 141. 144. 145. 145. 141. 137. 137. - 141. 145. 147. 147. 160. 148. 159. 179. 165. 133. 137. 169. 192. - 199. 204. 204. 204. 207. 207. 204. 204. 204. 203. 201. 199. 198. - 197. 196. 205. 205. 204. 203. 202. 202. 201. 201. 200. 201. 204. - 207. 209. 211. 211. 211. 215. 222. 209. 167. 117. 85. 75. 74. 81. - 73. 94. 92. 85. 106. 119. 127. 138. 145. 153. 156. 156. 154. 153. - 154. 151. 154. 155. 152. 146. 134. 115. 98. 72. 48. 40. 50. 61. 78. - 98. 105. 124. 131. 141. 147. 148. 146. 143. 141. 140. 135. 136. 143. - 147. 144. 144. 148. 148. 146. 154. 162. 145. 103. 62. 43. 39. 38. - 39. 44. 51. 56. 58. 57. 55. 52. 48. 44. 43. 45. 49. 53. 62. 49. 45. - 54. 55. 48. 48. 57. 64. 64. 60. 72. 102. 124. 135. 145. 148. 146. - 144. 143. 145. 152. 160. 166. 95. 89. 84. 84. 90. 93. 91. 88. 92. - 89. 86. 88. 98. 113. 129. 140. 148. 156. 162. 163. 164. 168. 168. - 166. 164. 164. 159. 150. 142. 132. 117. 104. 86. 78. 75. 82. 90. 93. - 94. 96. 100. 100. 99. 98. 98. 98. 99. 100. 100. 100. 101. 102. 104. - 107. 109. 110. 112. 116. 119. 120. 118. 117. 118. 119. 123. 116. - 119. 130. 131. 118. 111. 116. 115. 114. 112. 111. 111. 112. 114. - 115. 118. 116. 115. 115. 117. 119. 119. 118. 122. 124. 126. 127. - 128. 129. 130. 132. 137. 137. 137. 137. 138. 139. 141. 142. 141. - 138. 134. 135. 139. 142. 144. 144. 148. 165. 170. 152. 137. 147. - 171. 188. 192. 198. 200. 199. 200. 204. 207. 206. 200. 200. 200. - 200. 199. 199. 199. 199. 201. 201. 201. 201. 202. 202. 202. 202. - 204. 205. 208. 210. 212. 212. 212. 212. 223. 215. 220. 228. 200. - 140. 88. 68. 72. 76. 86. 78. 88. 110. 111. 121. 138. 144. 152. 156. - 155. 154. 153. 154. 151. 154. 155. 152. 145. 134. 115. 98. 69. 49. - 41. 46. 47. 61. 84. 96. 120. 127. 138. 144. 146. 145. 144. 144. 150. - 143. 140. 143. 145. 142. 142. 145. 149. 149. 156. 155. 125. 77. 46. - 40. 39. 39. 41. 46. 52. 56. 57. 56. 56. 55. 51. 45. 42. 45. 53. 59. - 56. 47. 45. 51. 55. 53. 54. 59. 60. 64. 65. 82. 115. 136. 141. 148. - 150. 147. 145. 147. 154. 161. 164. 165. 89. 88. 87. 88. 90. 92. 91. - 90. 92. 89. 86. 88. 98. 113. 129. 140. 149. 156. 162. 163. 164. 167. - 167. 165. 163. 163. 158. 149. 141. 132. 116. 102. 86. 78. 73. 79. - 87. 91. 93. 95. 98. 99. 99. 100. 100. 99. 99. 99. 101. 101. 102. - 103. 105. 108. 110. 111. 112. 115. 118. 120. 119. 118. 119. 120. - 126. 109. 118. 137. 129. 109. 105. 111. 110. 113. 115. 114. 111. - 110. 112. 115. 117. 115. 114. 115. 118. 120. 121. 120. 124. 128. - 130. 129. 126. 127. 132. 137. 140. 140. 140. 139. 139. 138. 138. - 138. 135. 133. 133. 135. 138. 141. 142. 142. 142. 157. 152. 134. - 146. 185. 201. 190. 193. 197. 197. 194. 194. 200. 205. 205. 198. - 198. 198. 198. 199. 199. 199. 199. 199. 199. 201. 202. 204. 205. - 206. 207. 207. 208. 209. 210. 211. 211. 211. 211. 213. 216. 219. - 225. 230. 210. 152. 95. 62. 73. 83. 73. 86. 106. 106. 124. 137. 144. - 152. 156. 155. 154. 153. 155. 151. 154. 155. 151. 145. 133. 115. 99. - 69. 51. 45. 43. 35. 43. 67. 82. 107. 117. 131. 141. 145. 146. 148. - 149. 147. 141. 138. 140. 143. 143. 146. 149. 149. 154. 155. 136. 92. - 49. 35. 41. 40. 41. 44. 49. 54. 56. 56. 54. 58. 56. 52. 46. 44. 47. - 56. 63. 48. 46. 46. 49. 55. 58. 58. 57. 55. 67. 79. 102. 133. 147. - 146. 149. 147. 145. 146. 153. 163. 168. 166. 161. 85. 87. 90. 91. - 91. 91. 91. 92. 93. 90. 87. 89. 99. 114. 130. 141. 149. 156. 162. - 162. 164. 166. 167. 164. 162. 162. 157. 149. 141. 131. 115. 101. 88. - 79. 74. 78. 86. 90. 93. 96. 96. 97. 99. 101. 101. 100. 99. 98. 100. - 101. 101. 103. 105. 107. 109. 111. 113. 115. 117. 119. 120. 119. - 119. 119. 120. 115. 129. 137. 118. 103. 104. 105. 107. 112. 116. - 116. 111. 109. 111. 115. 115. 113. 113. 115. 118. 121. 121. 121. - 131. 132. 133. 133. 132. 135. 140. 144. 140. 140. 141. 141. 140. - 139. 138. 137. 131. 132. 134. 137. 139. 140. 139. 138. 132. 135. - 142. 157. 182. 203. 202. 191. 193. 196. 196. 192. 191. 195. 198. - 198. 197. 197. 198. 198. 198. 198. 198. 198. 202. 203. 204. 205. - 207. 208. 209. 210. 207. 207. 208. 208. 208. 208. 207. 207. 210. - 216. 207. 198. 217. 236. 206. 155. 73. 60. 77. 81. 78. 94. 110. 131. - 136. 143. 151. 155. 155. 153. 154. 155. 152. 155. 155. 151. 144. - 133. 115. 99. 72. 54. 47. 44. 35. 38. 56. 67. 91. 104. 123. 137. - 144. 147. 150. 152. 144. 141. 140. 141. 144. 147. 149. 150. 150. - 157. 146. 105. 61. 38. 39. 45. 41. 44. 48. 52. 55. 56. 54. 53. 57. - 53. 48. 47. 49. 53. 57. 58. 43. 48. 50. 50. 54. 58. 56. 50. 54. 79. - 103. 126. 147. 149. 142. 145. 141. 144. 150. 159. 166. 168. 164. - 159. 84. 87. 91. 93. 92. 91. 91. 92. 94. 91. 89. 91. 100. 116. 132. - 142. 149. 156. 162. 162. 163. 166. 166. 163. 161. 161. 158. 150. - 142. 131. 115. 100. 89. 80. 75. 79. 87. 91. 94. 96. 95. 97. 99. 102. - 102. 101. 99. 97. 99. 99. 100. 101. 104. 106. 108. 109. 113. 114. - 116. 118. 119. 119. 118. 117. 112. 135. 147. 127. 103. 102. 107. - 101. 105. 111. 116. 116. 112. 109. 111. 115. 114. 112. 112. 114. - 118. 120. 121. 121. 134. 132. 132. 134. 139. 143. 144. 144. 136. - 138. 140. 141. 141. 140. 138. 137. 132. 133. 135. 136. 135. 133. - 132. 131. 129. 144. 168. 187. 192. 190. 195. 203. 192. 197. 197. - 193. 190. 191. 191. 189. 193. 193. 195. 197. 199. 201. 202. 203. - 205. 205. 206. 206. 207. 207. 208. 208. 208. 208. 207. 206. 206. - 206. 206. 206. 218. 211. 208. 216. 223. 220. 210. 202. 116. 50. 61. - 84. 72. 91. 117. 124. 135. 142. 150. 155. 155. 153. 154. 155. 152. - 155. 155. 150. 144. 133. 116. 100. 73. 53. 45. 46. 40. 41. 49. 51. - 77. 94. 116. 132. 140. 142. 145. 148. 146. 145. 144. 143. 145. 147. - 147. 145. 154. 156. 127. 73. 40. 41. 48. 45. 44. 47. 51. 54. 56. 55. - 54. 53. 56. 49. 44. 47. 55. 59. 54. 48. 44. 51. 55. 52. 51. 52. 51. - 48. 66. 99. 129. 146. 152. 142. 134. 139. 139. 147. 158. 165. 166. - 164. 162. 162. 86. 89. 91. 92. 92. 91. 91. 92. 94. 91. 88. 90. 100. - 116. 132. 142. 149. 156. 162. 162. 162. 165. 165. 162. 161. 162. - 159. 151. 143. 132. 115. 100. 89. 80. 76. 81. 88. 91. 93. 95. 95. - 96. 99. 101. 102. 101. 100. 98. 98. 99. 99. 101. 103. 105. 108. 109. - 114. 114. 114. 116. 118. 118. 116. 113. 113. 160. 160. 113. 94. 105. - 107. 101. 106. 110. 114. 114. 112. 111. 112. 114. 115. 114. 113. - 115. 118. 121. 122. 122. 131. 130. 130. 135. 142. 144. 142. 138. - 133. 135. 138. 141. 142. 140. 138. 136. 134. 133. 131. 128. 126. - 127. 130. 133. 160. 177. 188. 184. 183. 192. 198. 197. 192. 196. - 197. 192. 189. 189. 188. 186. 187. 189. 192. 196. 201. 205. 208. - 210. 204. 204. 204. 204. 204. 204. 204. 203. 210. 209. 208. 207. - 206. 206. 207. 207. 205. 214. 220. 218. 214. 215. 219. 221. 174. 73. - 54. 73. 72. 96. 116. 112. 134. 141. 150. 154. 154. 153. 154. 155. - 153. 155. 154. 149. 143. 133. 116. 101. 74. 50. 41. 45. 43. 42. 44. - 39. 65. 82. 105. 121. 128. 133. 138. 143. 136. 137. 136. 135. 139. - 146. 148. 146. 155. 139. 98. 52. 34. 44. 49. 43. 47. 50. 54. 55. 55. - 54. 53. 54. 53. 47. 44. 49. 57. 59. 51. 42. 49. 53. 56. 53. 47. 46. - 52. 60. 90. 122. 146. 154. 149. 135. 130. 140. 145. 154. 165. 168. - 165. 162. 163. 166. 90. 90. 90. 91. 92. 92. 91. 90. 92. 89. 86. 89. - 98. 114. 130. 140. 149. 156. 162. 162. 162. 164. 164. 162. 162. 163. - 160. 153. 145. 133. 116. 101. 87. 79. 75. 81. 88. 90. 91. 92. 95. - 96. 98. 100. 101. 101. 100. 100. 99. 100. 100. 102. 104. 106. 108. - 110. 115. 113. 113. 114. 116. 116. 113. 110. 124. 180. 161. 100. 96. - 110. 104. 104. 108. 109. 110. 111. 112. 112. 113. 113. 118. 117. - 116. 118. 121. 123. 124. 123. 127. 130. 135. 139. 141. 139. 135. - 131. 131. 134. 138. 141. 141. 139. 136. 133. 132. 129. 123. 118. - 120. 131. 146. 157. 187. 194. 190. 180. 183. 196. 196. 183. 192. - 195. 194. 188. 186. 188. 190. 189. 190. 191. 194. 198. 201. 205. - 208. 209. 203. 203. 203. 203. 203. 203. 203. 203. 208. 207. 206. - 205. 204. 205. 206. 206. 193. 214. 220. 206. 203. 220. 230. 224. - 213. 134. 81. 61. 71. 94. 103. 118. 133. 140. 149. 154. 154. 153. - 154. 155. 154. 155. 154. 149. 143. 133. 116. 101. 77. 53. 43. 46. - 43. 41. 42. 37. 48. 64. 86. 103. 114. 125. 139. 149. 145. 144. 139. - 134. 137. 147. 152. 151. 146. 105. 62. 43. 41. 41. 42. 46. 51. 53. - 56. 56. 54. 52. 53. 55. 51. 49. 48. 51. 54. 54. 49. 45. 55. 54. 54. - 51. 42. 41. 61. 85. 120. 140. 151. 148. 143. 134. 134. 147. 154. - 159. 164. 165. 162. 161. 162. 164. 93. 91. 90. 90. 92. 92. 91. 89. - 90. 87. 85. 87. 96. 112. 128. 138. 149. 156. 161. 162. 162. 164. - 164. 161. 162. 163. 160. 154. 146. 134. 117. 101. 85. 77. 74. 80. - 87. 89. 89. 89. 96. 97. 98. 99. 100. 101. 101. 101. 101. 101. 102. - 103. 105. 108. 110. 111. 115. 113. 112. 113. 115. 115. 111. 107. - 135. 189. 157. 93. 101. 112. 100. 108. 110. 109. 108. 110. 112. 114. - 113. 112. 121. 120. 119. 120. 123. 125. 125. 125. 125. 133. 142. - 145. 141. 135. 130. 129. 132. 134. 138. 141. 141. 137. 133. 130. - 129. 123. 116. 112. 120. 140. 166. 184. 178. 190. 200. 198. 187. - 180. 181. 187. 192. 193. 191. 185. 183. 188. 193. 194. 197. 197. - 198. 199. 201. 202. 203. 204. 204. 204. 204. 205. 205. 206. 206. - 206. 205. 204. 202. 201. 201. 202. 203. 204. 206. 200. 208. 224. - 226. 214. 213. 224. 226. 191. 119. 59. 69. 85. 91. 136. 133. 140. - 149. 154. 154. 153. 154. 155. 154. 155. 154. 149. 142. 132. 116. - 101. 82. 58. 48. 48. 42. 40. 43. 41. 33. 49. 70. 89. 105. 123. 144. - 160. 179. 174. 161. 146. 143. 149. 153. 151. 134. 75. 35. 42. 50. - 37. 36. 53. 53. 55. 57. 56. 53. 51. 53. 56. 51. 53. 54. 53. 50. 48. - 49. 51. 59. 54. 51. 49. 39. 40. 70. 106. 140. 151. 149. 141. 139. - 136. 140. 154. 160. 159. 158. 158. 159. 159. 159. 158. 92. 92. 91. - 90. 90. 91. 91. 92. 87. 85. 84. 86. 95. 112. 131. 144. 150. 154. - 160. 164. 164. 163. 162. 162. 165. 166. 162. 154. 146. 136. 120. - 105. 90. 76. 75. 84. 87. 92. 96. 91. 93. 94. 97. 99. 101. 102. 103. - 103. 100. 102. 104. 107. 109. 109. 109. 109. 103. 123. 110. 116. - 106. 117. 105. 113. 192. 181. 131. 97. 108. 105. 94. 109. 112. 112. - 109. 107. 108. 112. 114. 112. 114. 118. 122. 123. 122. 122. 125. - 128. 133. 137. 137. 134. 134. 138. 137. 132. 144. 132. 130. 141. - 145. 135. 126. 126. 130. 102. 100. 132. 164. 184. 188. 180. 182. - 192. 196. 189. 182. 184. 187. 188. 182. 178. 177. 184. 194. 201. - 200. 196. 193. 195. 197. 195. 194. 197. 204. 210. 204. 204. 204. - 205. 206. 205. 203. 201. 200. 200. 201. 202. 204. 207. 209. 210. - 204. 207. 209. 210. 209. 212. 217. 221. 223. 218. 195. 58. 67. 84. - 97. 123. 131. 141. 149. 150. 149. 152. 152. 151. 154. 155. 154. 150. - 146. 136. 117. 100. 75. 53. 41. 48. 50. 40. 38. 46. 40. 39. 45. 68. - 115. 176. 208. 205. 216. 218. 203. 183. 186. 196. 174. 137. 85. 48. - 49. 27. 50. 50. 39. 58. 59. 56. 52. 53. 56. 58. 58. 57. 48. 52. 55. - 51. 46. 45. 51. 58. 53. 53. 49. 42. 43. 64. 100. 128. 144. 145. 143. - 140. 138. 142. 152. 160. 161. 161. 161. 160. 160. 159. 159. 159. 92. - 91. 90. 90. 90. 90. 91. 91. 87. 85. 84. 86. 95. 111. 130. 143. 150. - 154. 160. 164. 164. 163. 162. 162. 165. 165. 161. 153. 145. 135. - 119. 104. 88. 74. 74. 82. 85. 90. 95. 90. 93. 94. 95. 97. 99. 100. - 100. 100. 100. 101. 104. 106. 108. 108. 108. 108. 106. 119. 111. - 113. 106. 113. 101. 133. 199. 180. 127. 95. 109. 110. 100. 110. 107. - 108. 112. 116. 117. 114. 110. 108. 114. 115. 118. 120. 122. 126. - 131. 135. 135. 127. 133. 148. 146. 130. 127. 138. 124. 143. 150. - 136. 121. 119. 121. 118. 117. 121. 138. 154. 163. 179. 192. 189. - 183. 182. 180. 183. 192. 197. 188. 174. 177. 177. 179. 184. 189. - 194. 195. 196. 199. 197. 195. 194. 196. 198. 200. 201. 206. 204. - 201. 200. 200. 200. 200. 200. 202. 202. 202. 203. 205. 207. 209. - 210. 207. 209. 211. 211. 210. 212. 217. 221. 227. 224. 205. 97. 52. - 77. 104. 115. 133. 143. 151. 152. 152. 154. 155. 154. 152. 154. 153. - 149. 145. 135. 117. 99. 74. 59. 49. 49. 48. 42. 37. 37. 33. 38. 59. - 121. 191. 209. 205. 219. 192. 201. 202. 201. 212. 220. 201. 171. 62. - 32. 53. 37. 49. 51. 43. 52. 58. 56. 53. 54. 56. 57. 56. 54. 51. 52. - 53. 50. 47. 48. 53. 58. 53. 49. 45. 47. 61. 89. 123. 147. 149. 145. - 139. 138. 143. 151. 158. 162. 161. 161. 160. 160. 160. 159. 159. - 159. 91. 90. 89. 89. 89. 90. 90. 91. 88. 86. 84. 85. 94. 110. 128. - 141. 150. 154. 160. 164. 165. 164. 163. 163. 164. 164. 160. 152. - 144. 133. 117. 103. 85. 71. 72. 80. 81. 87. 93. 89. 93. 93. 95. 96. - 97. 97. 97. 97. 99. 100. 102. 104. 106. 107. 107. 107. 109. 112. - 112. 108. 107. 107. 99. 165. 198. 172. 118. 90. 104. 108. 100. 107. - 108. 107. 111. 120. 121. 113. 109. 111. 117. 116. 116. 118. 124. - 130. 134. 136. 138. 130. 134. 145. 141. 127. 127. 139. 132. 142. - 140. 124. 114. 116. 116. 109. 121. 145. 173. 177. 170. 181. 194. - 189. 181. 175. 170. 175. 188. 196. 188. 175. 180. 183. 187. 190. - 190. 192. 196. 200. 201. 197. 193. 194. 197. 199. 197. 194. 201. - 200. 197. 195. 196. 198. 201. 203. 204. 204. 204. 204. 205. 206. - 208. 208. 208. 209. 209. 209. 209. 210. 213. 216. 226. 227. 217. - 150. 53. 67. 106. 110. 132. 142. 150. 152. 153. 155. 156. 154. 152. - 153. 152. 149. 144. 135. 116. 99. 76. 59. 43. 40. 44. 44. 40. 36. - 38. 51. 130. 211. 224. 216. 211. 195. 196. 205. 213. 220. 229. 232. - 218. 200. 68. 25. 55. 45. 43. 48. 51. 51. 57. 56. 55. 55. 56. 55. - 53. 51. 54. 52. 50. 49. 49. 51. 54. 57. 50. 42. 38. 51. 80. 115. - 142. 155. 152. 143. 136. 139. 151. 161. 165. 163. 161. 160. 160. - 160. 159. 159. 159. 159. 90. 89. 89. 89. 89. 90. 91. 91. 89. 87. 85. - 85. 93. 109. 127. 139. 150. 154. 160. 164. 165. 164. 164. 164. 163. - 163. 159. 151. 143. 132. 116. 101. 82. 69. 70. 77. 78. 84. 91. 89. - 94. 95. 96. 97. 97. 97. 96. 96. 99. 99. 101. 103. 104. 106. 106. - 107. 112. 108. 113. 105. 107. 103. 107. 195. 192. 163. 116. 92. 101. - 104. 100. 106. 115. 108. 109. 117. 116. 109. 111. 120. 121. 119. - 118. 122. 127. 131. 131. 130. 137. 140. 135. 123. 123. 134. 137. - 132. 147. 131. 120. 120. 117. 111. 116. 129. 152. 163. 181. 184. - 177. 182. 187. 179. 177. 177. 175. 171. 170. 176. 184. 190. 185. - 187. 190. 192. 192. 194. 196. 199. 197. 195. 193. 194. 196. 197. - 195. 192. 194. 194. 195. 196. 198. 201. 206. 209. 204. 204. 203. - 203. 203. 204. 205. 206. 206. 206. 206. 205. 205. 206. 208. 209. - 218. 227. 225. 189. 92. 62. 96. 113. 128. 138. 148. 150. 151. 153. - 154. 152. 153. 154. 153. 149. 145. 135. 116. 99. 73. 53. 40. 42. 45. - 39. 36. 40. 76. 160. 208. 213. 216. 198. 184. 204. 220. 221. 223. - 226. 228. 228. 224. 220. 121. 35. 49. 47. 40. 44. 56. 56. 56. 56. - 56. 56. 55. 53. 50. 48. 56. 52. 48. 48. 51. 54. 56. 55. 49. 41. 42. - 65. 103. 136. 150. 151. 146. 141. 139. 146. 157. 165. 166. 164. 160. - 160. 160. 159. 159. 159. 158. 158. 90. 89. 89. 89. 90. 90. 92. 92. - 91. 89. 86. 86. 93. 108. 126. 138. 149. 154. 161. 165. 166. 165. - 165. 165. 164. 164. 159. 151. 142. 131. 115. 100. 81. 68. 69. 76. - 76. 82. 91. 90. 97. 97. 98. 99. 99. 98. 98. 97. 99. 99. 100. 102. - 103. 105. 106. 107. 113. 107. 114. 104. 107. 101. 127. 212. 187. - 159. 122. 103. 104. 104. 105. 111. 113. 109. 110. 116. 114. 109. - 112. 121. 120. 120. 122. 127. 131. 132. 128. 124. 131. 132. 125. - 115. 122. 138. 140. 130. 132. 126. 122. 118. 108. 108. 132. 164. - 182. 173. 178. 184. 175. 170. 174. 175. 174. 177. 179. 173. 166. - 167. 179. 191. 187. 186. 185. 187. 190. 191. 191. 190. 194. 196. - 197. 195. 192. 189. 190. 192. 191. 195. 199. 201. 202. 204. 207. - 209. 203. 202. 201. 201. 201. 202. 202. 203. 207. 206. 204. 203. - 204. 205. 206. 206. 212. 226. 228. 206. 153. 74. 77. 113. 126. 137. - 147. 151. 152. 154. 155. 153. 155. 156. 154. 150. 145. 134. 115. 97. - 66. 49. 43. 47. 37. 28. 52. 90. 186. 203. 226. 200. 159. 186. 225. - 213. 222. 221. 221. 222. 223. 225. 230. 236. 180. 48. 38. 46. 45. - 44. 55. 56. 54. 55. 56. 55. 53. 50. 48. 47. 54. 50. 47. 48. 52. 56. - 55. 53. 49. 49. 61. 91. 129. 152. 154. 146. 137. 141. 147. 154. 159. - 162. 163. 162. 160. 160. 159. 159. 159. 158. 158. 158. 90. 90. 90. - 90. 91. 92. 93. 94. 94. 91. 88. 88. 94. 108. 125. 137. 149. 154. - 161. 165. 166. 166. 166. 166. 164. 164. 160. 151. 142. 131. 115. - 100. 80. 69. 70. 77. 76. 82. 92. 92. 98. 98. 99. 100. 100. 100. 100. - 99. 100. 100. 100. 101. 103. 105. 107. 108. 111. 110. 114. 107. 107. - 103. 157. 215. 180. 149. 118. 104. 100. 100. 104. 109. 104. 109. - 115. 117. 115. 113. 113. 114. 116. 119. 124. 130. 132. 131. 126. - 122. 123. 114. 115. 128. 137. 135. 131. 132. 119. 122. 116. 107. - 115. 141. 162. 167. 187. 175. 178. 181. 165. 156. 166. 177. 175. - 174. 175. 179. 179. 176. 175. 176. 191. 189. 187. 188. 190. 191. - 190. 187. 195. 197. 198. 194. 188. 185. 187. 191. 195. 199. 203. - 204. 202. 201. 202. 204. 201. 200. 200. 200. 200. 201. 201. 202. - 210. 207. 205. 205. 206. 207. 208. 207. 210. 224. 225. 213. 200. - 114. 70. 107. 127. 138. 149. 153. 155. 157. 158. 155. 157. 157. 155. - 150. 143. 132. 112. 94. 63. 46. 34. 31. 29. 53. 121. 192. 214. 213. - 180. 166. 198. 213. 211. 226. 213. 216. 218. 218. 219. 223. 229. - 234. 209. 60. 35. 44. 52. 48. 50. 50. 53. 54. 55. 53. 50. 48. 48. - 48. 50. 48. 47. 49. 53. 55. 54. 51. 45. 58. 83. 117. 145. 156. 151. - 142. 135. 144. 155. 160. 159. 158. 158. 160. 159. 159. 159. 159. - 158. 158. 158. 157. 91. 91. 91. 91. 92. 93. 95. 95. 96. 93. 90. 89. - 95. 109. 125. 137. 149. 154. 161. 165. 167. 166. 166. 166. 165. 165. - 161. 152. 143. 132. 115. 100. 81. 70. 72. 78. 77. 83. 94. 95. 97. - 98. 99. 100. 101. 101. 101. 100. 101. 101. 101. 101. 103. 105. 108. - 109. 109. 115. 114. 112. 108. 106. 187. 208. 178. 139. 107. 97. 94. - 96. 102. 103. 100. 112. 117. 111. 109. 114. 116. 113. 119. 123. 128. - 130. 129. 125. 122. 120. 119. 118. 124. 133. 135. 128. 125. 128. - 118. 114. 107. 114. 144. 175. 179. 165. 177. 170. 172. 172. 161. - 162. 171. 172. 176. 173. 175. 183. 186. 181. 175. 175. 191. 193. - 193. 192. 189. 188. 189. 190. 191. 191. 190. 188. 188. 189. 192. - 194. 196. 199. 202. 200. 196. 195. 198. 202. 200. 200. 200. 200. - 200. 202. 203. 203. 210. 207. 204. 204. 207. 208. 208. 207. 207. - 216. 216. 217. 216. 173. 87. 102. 125. 137. 149. 154. 156. 158. 158. - 156. 157. 157. 154. 148. 140. 128. 107. 89. 57. 41. 27. 37. 76. 135. - 194. 231. 196. 166. 172. 203. 216. 222. 219. 203. 210. 216. 216. - 210. 210. 219. 226. 227. 216. 79. 45. 38. 48. 49. 49. 47. 52. 53. - 54. 51. 48. 47. 48. 50. 45. 46. 48. 51. 53. 53. 52. 50. 47. 72. 109. - 139. 152. 152. 145. 139. 142. 149. 158. 160. 158. 156. 157. 159. - 159. 159. 159. 158. 158. 158. 157. 157. 92. 91. 91. 92. 93. 94. 96. - 96. 98. 95. 91. 90. 96. 109. 126. 137. 149. 154. 161. 165. 167. 167. - 167. 167. 166. 166. 161. 152. 143. 132. 115. 100. 82. 71. 73. 79. - 77. 84. 95. 97. 96. 97. 98. 100. 100. 101. 101. 101. 102. 101. 101. - 102. 103. 106. 108. 110. 107. 118. 114. 115. 108. 109. 206. 201. - 184. 137. 102. 94. 93. 99. 106. 103. 104. 116. 116. 101. 98. 112. - 121. 118. 126. 129. 132. 129. 124. 119. 117. 117. 119. 138. 142. - 126. 117. 125. 128. 119. 113. 107. 116. 143. 166. 173. 177. 184. - 171. 165. 163. 161. 165. 180. 181. 161. 175. 176. 180. 184. 180. - 174. 178. 187. 185. 190. 194. 190. 183. 180. 183. 188. 186. 183. - 180. 183. 190. 197. 200. 200. 193. 196. 197. 195. 191. 192. 198. - 204. 201. 200. 200. 201. 202. 203. 204. 205. 208. 204. 201. 202. - 205. 207. 207. 205. 203. 206. 206. 221. 213. 220. 111. 101. 122. - 135. 147. 152. 154. 156. 156. 154. 156. 156. 153. 146. 138. 125. - 104. 85. 45. 38. 39. 78. 156. 219. 217. 182. 164. 179. 198. 216. - 223. 212. 206. 215. 209. 214. 209. 198. 201. 218. 231. 232. 218. 98. - 59. 32. 38. 47. 50. 49. 52. 53. 53. 50. 46. 46. 48. 52. 41. 44. 49. - 52. 53. 52. 50. 49. 59. 91. 132. 157. 160. 151. 144. 142. 150. 154. - 158. 159. 157. 156. 157. 158. 159. 159. 159. 158. 158. 157. 157. - 157. 94. 95. 95. 96. 97. 98. 99. 99. 100. 97. 94. 94. 100. 113. 128. - 139. 148. 154. 162. 168. 170. 169. 167. 167. 166. 167. 164. 156. - 147. 135. 117. 101. 84. 77. 73. 77. 84. 88. 92. 96. 97. 98. 98. 99. - 100. 101. 102. 102. 97. 99. 102. 105. 107. 108. 108. 108. 116. 108. - 116. 102. 100. 126. 212. 198. 177. 141. 108. 99. 103. 104. 106. 110. - 111. 101. 95. 101. 111. 116. 117. 118. 127. 122. 121. 122. 120. 115. - 117. 123. 133. 134. 130. 127. 130. 133. 126. 115. 102. 132. 155. - 158. 163. 178. 181. 171. 170. 158. 156. 168. 175. 172. 170. 174. - 182. 185. 178. 168. 173. 189. 192. 183. 183. 185. 188. 189. 189. - 187. 186. 185. 167. 173. 182. 190. 195. 198. 199. 199. 197. 189. - 194. 207. 206. 191. 186. 194. 204. 201. 199. 201. 205. 206. 204. - 202. 195. 193. 195. 201. 203. 202. 203. 206. 202. 209. 208. 205. - 214. 215. 178. 132. 120. 132. 145. 151. 151. 152. 154. 155. 167. - 154. 144. 141. 136. 119. 97. 82. 46. 67. 118. 183. 221. 213. 183. - 162. 194. 203. 209. 211. 213. 216. 213. 206. 198. 199. 202. 206. - 212. 219. 224. 227. 218. 98. 39. 37. 57. 46. 57. 58. 53. 48. 43. 42. - 45. 46. 46. 44. 46. 49. 51. 51. 47. 43. 42. 44. 68. 117. 152. 157. - 152. 144. 142. 149. 161. 161. 160. 160. 159. 158. 157. 157. 157. - 157. 157. 156. 156. 155. 155. 155. 95. 96. 96. 97. 98. 99. 100. 100. - 99. 97. 94. 94. 100. 112. 128. 139. 148. 154. 162. 167. 169. 168. - 167. 166. 166. 167. 163. 156. 147. 135. 117. 102. 85. 78. 74. 79. - 85. 89. 93. 97. 98. 99. 99. 100. 101. 102. 102. 103. 99. 100. 103. - 105. 108. 109. 109. 109. 115. 113. 115. 105. 100. 142. 216. 200. - 167. 136. 106. 98. 100. 101. 103. 108. 96. 97. 105. 116. 122. 123. - 123. 126. 124. 121. 120. 122. 121. 119. 122. 129. 131. 130. 134. - 138. 132. 118. 110. 109. 132. 140. 157. 171. 171. 161. 157. 160. - 158. 177. 180. 159. 152. 169. 183. 183. 176. 182. 182. 175. 175. - 183. 188. 187. 181. 180. 181. 186. 189. 186. 175. 165. 179. 183. - 187. 187. 185. 187. 194. 201. 208. 196. 190. 193. 194. 192. 197. - 206. 198. 200. 200. 197. 193. 190. 190. 192. 198. 196. 198. 202. - 204. 201. 201. 204. 204. 207. 204. 202. 213. 223. 212. 190. 153. - 141. 137. 146. 153. 153. 154. 159. 151. 150. 151. 150. 136. 108. 80. - 64. 106. 153. 200. 210. 190. 177. 188. 205. 207. 212. 214. 211. 209. - 210. 206. 199. 200. 201. 204. 208. 213. 219. 224. 227. 219. 88. 44. - 40. 51. 45. 53. 59. 54. 51. 47. 45. 45. 46. 47. 47. 49. 51. 54. 53. - 44. 37. 43. 55. 92. 130. 154. 152. 148. 144. 145. 154. 161. 160. - 160. 159. 158. 157. 157. 156. 157. 157. 156. 156. 156. 155. 155. - 155. 97. 97. 98. 99. 99. 100. 100. 101. 98. 96. 94. 94. 100. 112. - 127. 138. 147. 153. 161. 166. 168. 167. 167. 167. 165. 166. 164. - 156. 148. 137. 119. 103. 86. 79. 76. 81. 87. 91. 94. 98. 100. 100. - 100. 101. 102. 103. 103. 103. 100. 101. 103. 106. 108. 109. 110. - 110. 112. 120. 111. 108. 98. 165. 217. 198. 152. 128. 105. 97. 96. - 96. 100. 106. 98. 104. 114. 121. 118. 112. 112. 118. 116. 115. 117. - 120. 121. 121. 124. 130. 130. 125. 129. 137. 126. 106. 106. 121. - 156. 154. 159. 166. 163. 152. 149. 153. 171. 166. 163. 164. 165. - 169. 177. 186. 174. 181. 186. 183. 177. 175. 181. 187. 181. 180. - 180. 180. 179. 175. 169. 164. 182. 187. 191. 188. 182. 182. 189. - 198. 199. 196. 193. 194. 197. 199. 198. 196. 190. 202. 207. 192. - 170. 164. 180. 200. 201. 199. 200. 204. 204. 200. 200. 203. 205. - 204. 200. 197. 203. 213. 218. 218. 203. 167. 141. 145. 154. 152. - 149. 152. 148. 152. 152. 138. 114. 101. 111. 129. 185. 211. 221. - 200. 177. 180. 200. 215. 215. 217. 214. 208. 205. 204. 201. 197. - 203. 204. 206. 210. 215. 219. 223. 226. 220. 71. 48. 44. 45. 46. 48. - 57. 55. 54. 52. 49. 46. 46. 47. 50. 52. 52. 55. 52. 38. 30. 49. 76. - 123. 147. 154. 146. 144. 145. 149. 160. 160. 159. 159. 158. 157. - 156. 156. 155. 157. 156. 156. 156. 155. 155. 155. 155. 99. 99. 99. - 100. 100. 101. 101. 101. 98. 96. 94. 94. 100. 112. 127. 137. 147. - 152. 160. 165. 167. 167. 167. 167. 166. 167. 164. 157. 149. 138. - 120. 104. 86. 79. 76. 81. 88. 91. 94. 98. 101. 101. 101. 102. 102. - 103. 103. 103. 99. 100. 102. 104. 106. 108. 109. 110. 109. 125. 106. - 107. 98. 186. 212. 189. 139. 123. 107. 99. 95. 94. 99. 105. 111. - 111. 113. 112. 106. 102. 107. 116. 112. 115. 120. 124. 125. 125. - 125. 127. 128. 121. 117. 118. 113. 110. 126. 148. 157. 163. 159. - 146. 145. 156. 160. 153. 164. 152. 155. 173. 181. 172. 169. 177. - 178. 180. 184. 184. 178. 171. 175. 184. 182. 185. 184. 174. 164. - 163. 175. 187. 175. 182. 189. 191. 188. 186. 188. 190. 190. 195. - 196. 195. 199. 204. 199. 187. 201. 199. 190. 176. 166. 170. 188. - 204. 201. 199. 200. 203. 204. 200. 200. 202. 200. 196. 195. 198. - 199. 199. 204. 209. 225. 191. 157. 147. 154. 157. 152. 147. 156. - 147. 135. 126. 127. 145. 180. 210. 217. 203. 184. 177. 191. 210. - 213. 205. 212. 211. 207. 203. 201. 202. 202. 202. 206. 207. 209. - 213. 216. 220. 223. 224. 214. 54. 48. 45. 42. 51. 45. 51. 54. 55. - 54. 50. 45. 44. 47. 51. 54. 52. 52. 48. 33. 31. 63. 104. 145. 157. - 152. 142. 144. 148. 153. 163. 159. 159. 158. 157. 156. 156. 155. - 155. 156. 156. 156. 155. 155. 155. 154. 154. 100. 100. 100. 100. - 100. 101. 101. 101. 98. 97. 95. 96. 102. 114. 128. 138. 147. 153. - 160. 165. 167. 168. 168. 169. 167. 168. 165. 158. 150. 138. 120. - 105. 84. 78. 75. 81. 87. 90. 93. 96. 101. 102. 102. 102. 102. 103. - 103. 103. 98. 99. 100. 102. 104. 106. 108. 109. 107. 123. 101. 103. - 101. 200. 203. 175. 135. 124. 111. 103. 98. 96. 101. 106. 110. 106. - 103. 105. 107. 110. 117. 125. 113. 120. 127. 130. 130. 129. 126. - 124. 122. 119. 112. 106. 111. 129. 149. 162. 153. 158. 154. 143. - 142. 153. 157. 152. 135. 162. 179. 172. 167. 175. 179. 173. 179. - 175. 174. 177. 177. 175. 177. 182. 181. 180. 176. 169. 165. 170. - 183. 195. 178. 179. 182. 185. 188. 189. 187. 185. 191. 195. 192. - 185. 190. 203. 207. 200. 207. 185. 164. 165. 183. 199. 198. 191. - 198. 196. 197. 201. 202. 199. 199. 202. 195. 191. 193. 200. 203. - 200. 201. 205. 210. 200. 176. 151. 149. 160. 159. 146. 149. 136. - 134. 157. 188. 207. 210. 207. 196. 184. 180. 194. 209. 214. 212. - 212. 205. 203. 201. 200. 200. 201. 204. 206. 207. 208. 211. 214. - 218. 220. 222. 223. 195. 43. 45. 45. 45. 57. 46. 46. 52. 53. 52. 48. - 44. 43. 46. 50. 54. 51. 49. 45. 36. 45. 86. 130. 152. 157. 149. 142. - 148. 152. 155. 164. 159. 159. 158. 157. 156. 156. 155. 155. 156. - 156. 155. 155. 155. 154. 154. 154. 100. 100. 100. 100. 100. 100. - 100. 100. 99. 98. 97. 98. 104. 115. 129. 139. 149. 153. 160. 165. - 168. 169. 170. 171. 169. 170. 167. 159. 150. 138. 120. 104. 83. 77. - 75. 81. 88. 90. 92. 95. 101. 101. 101. 101. 102. 102. 102. 102. 98. - 98. 99. 100. 102. 105. 107. 108. 105. 117. 97. 99. 112. 210. 196. - 164. 136. 128. 117. 107. 101. 100. 103. 106. 103. 98. 97. 104. 110. - 112. 114. 116. 111. 118. 125. 125. 124. 123. 120. 116. 116. 120. - 119. 117. 127. 145. 156. 156. 155. 146. 147. 157. 153. 139. 138. - 150. 153. 161. 168. 171. 174. 178. 179. 177. 172. 168. 166. 169. - 177. 182. 182. 180. 173. 168. 164. 169. 178. 185. 183. 179. 188. - 182. 176. 175. 180. 184. 184. 183. 180. 188. 191. 190. 194. 201. - 203. 199. 179. 177. 176. 180. 188. 193. 193. 191. 196. 193. 195. - 199. 199. 196. 196. 199. 199. 195. 193. 195. 197. 196. 196. 198. - 197. 209. 196. 159. 142. 151. 153. 142. 140. 152. 177. 202. 212. - 205. 191. 183. 184. 185. 198. 215. 216. 204. 201. 209. 203. 200. - 199. 201. 201. 200. 202. 205. 207. 208. 211. 215. 218. 221. 222. - 223. 162. 41. 44. 46. 51. 57. 50. 44. 51. 50. 48. 46. 44. 44. 46. - 49. 53. 52. 50. 47. 51. 72. 112. 146. 150. 153. 147. 144. 153. 156. - 156. 163. 160. 159. 159. 158. 157. 156. 156. 155. 155. 155. 155. - 155. 154. 154. 154. 153. 100. 100. 100. 99. 99. 99. 99. 99. 100. 99. - 99. 100. 106. 117. 130. 140. 150. 155. 161. 166. 168. 170. 172. 173. - 172. 172. 168. 160. 150. 138. 119. 103. 84. 78. 77. 83. 89. 92. 94. - 96. 101. 101. 101. 101. 100. 100. 100. 100. 99. 99. 99. 100. 103. - 105. 108. 109. 106. 110. 97. 97. 128. 218. 195. 161. 141. 133. 120. - 109. 104. 104. 105. 106. 104. 99. 99. 104. 107. 106. 104. 106. 112. - 118. 120. 116. 115. 118. 118. 115. 114. 118. 128. 139. 146. 149. - 149. 149. 152. 143. 146. 156. 150. 136. 138. 154. 178. 155. 149. - 171. 186. 178. 170. 173. 164. 167. 167. 167. 174. 184. 181. 172. - 161. 163. 169. 176. 181. 181. 177. 172. 186. 182. 177. 174. 175. - 178. 180. 181. 174. 182. 191. 193. 190. 187. 184. 183. 166. 180. - 193. 192. 182. 177. 184. 194. 195. 193. 193. 196. 196. 192. 191. - 193. 195. 197. 196. 191. 187. 187. 187. 187. 194. 211. 205. 170. - 142. 143. 152. 155. 165. 185. 207. 212. 196. 179. 181. 191. 197. - 199. 205. 210. 210. 204. 199. 197. 203. 200. 201. 205. 205. 201. - 201. 204. 205. 207. 211. 215. 218. 221. 222. 223. 124. 45. 46. 49. - 55. 51. 55. 48. 51. 48. 45. 44. 45. 47. 48. 49. 52. 55. 55. 56. 72. - 102. 134. 151. 147. 150. 146. 147. 157. 159. 157. 164. 161. 160. - 160. 159. 158. 157. 157. 156. 155. 155. 155. 154. 154. 154. 153. - 153. 99. 99. 99. 99. 99. 99. 99. 99. 101. 100. 100. 101. 107. 118. - 131. 140. 151. 155. 161. 166. 169. 171. 173. 175. 173. 173. 169. - 161. 151. 137. 118. 102. 85. 80. 78. 85. 91. 93. 95. 97. 100. 100. - 100. 100. 100. 100. 100. 99. 100. 100. 100. 101. 103. 106. 109. 111. - 106. 105. 97. 97. 139. 223. 197. 162. 144. 136. 122. 110. 105. 106. - 106. 104. 108. 104. 102. 105. 106. 106. 110. 116. 120. 124. 123. - 116. 115. 121. 125. 124. 117. 116. 131. 153. 157. 145. 142. 150. - 143. 149. 148. 139. 135. 143. 155. 163. 157. 168. 172. 168. 170. - 176. 172. 161. 161. 171. 174. 169. 172. 181. 176. 162. 151. 168. - 184. 184. 173. 166. 171. 180. 174. 177. 180. 180. 178. 176. 177. - 178. 189. 187. 184. 177. 168. 163. 169. 179. 190. 185. 180. 181. - 185. 187. 184. 180. 196. 193. 192. 195. 193. 188. 187. 189. 179. - 191. 198. 193. 187. 188. 189. 187. 186. 200. 200. 176. 150. 147. - 166. 184. 205. 200. 197. 196. 193. 191. 193. 198. 206. 213. 212. - 201. 198. 205. 207. 201. 202. 199. 202. 209. 209. 204. 202. 205. - 204. 207. 210. 215. 218. 221. 222. 222. 99. 50. 49. 52. 57. 45. 57. - 52. 52. 48. 44. 44. 47. 50. 50. 49. 52. 58. 60. 64. 87. 123. 146. - 150. 146. 150. 146. 149. 159. 160. 157. 164. 161. 161. 160. 160. - 159. 158. 157. 157. 155. 155. 155. 154. 154. 153. 153. 153. 100. - 100. 100. 99. 99. 98. 98. 98. 100. 101. 100. 100. 104. 114. 129. - 140. 150. 158. 165. 168. 170. 173. 173. 171. 172. 173. 171. 163. - 153. 139. 119. 102. 84. 78. 77. 84. 92. 94. 94. 94. 94. 97. 101. - 102. 101. 99. 99. 99. 96. 97. 98. 100. 102. 104. 105. 106. 104. 101. - 96. 86. 190. 209. 189. 166. 148. 139. 125. 112. 104. 103. 105. 107. - 106. 103. 103. 108. 112. 111. 110. 111. 122. 116. 113. 120. 125. - 124. 120. 119. 114. 129. 144. 151. 153. 152. 143. 133. 147. 148. - 138. 128. 139. 161. 164. 151. 154. 164. 165. 156. 153. 163. 170. - 169. 179. 171. 172. 178. 175. 161. 153. 156. 178. 174. 171. 174. - 179. 181. 178. 173. 176. 175. 173. 173. 175. 178. 182. 185. 193. - 190. 181. 173. 173. 181. 186. 187. 192. 184. 177. 180. 189. 195. - 192. 186. 191. 193. 194. 192. 189. 186. 185. 185. 191. 185. 186. - 194. 193. 184. 182. 188. 180. 189. 194. 187. 175. 177. 195. 214. - 198. 190. 183. 185. 195. 204. 209. 209. 206. 205. 203. 202. 201. - 200. 200. 200. 196. 205. 208. 201. 199. 204. 205. 200. 190. 218. - 215. 204. 225. 228. 214. 219. 72. 55. 43. 47. 55. 55. 52. 51. 53. - 50. 46. 45. 45. 47. 48. 49. 57. 57. 62. 79. 109. 137. 150. 149. 142. - 144. 149. 153. 157. 158. 159. 159. 160. 159. 158. 157. 157. 157. - 157. 158. 155. 155. 155. 155. 155. 155. 155. 155. 100. 100. 99. 99. - 99. 98. 98. 98. 100. 100. 100. 100. 104. 114. 129. 140. 149. 158. - 165. 168. 170. 174. 174. 172. 173. 173. 170. 162. 152. 139. 120. - 103. 85. 77. 74. 80. 88. 92. 93. 95. 95. 97. 101. 102. 101. 99. 99. - 99. 97. 97. 99. 100. 102. 103. 105. 105. 102. 98. 93. 92. 197. 209. - 191. 171. 148. 139. 126. 113. 106. 103. 103. 104. 104. 102. 105. - 111. 114. 113. 114. 117. 126. 119. 116. 122. 128. 125. 119. 115. - 132. 140. 151. 156. 148. 139. 141. 151. 142. 133. 131. 140. 147. - 148. 152. 158. 167. 163. 159. 156. 155. 156. 164. 172. 180. 176. - 173. 170. 160. 152. 163. 182. 178. 175. 172. 172. 175. 177. 176. - 174. 171. 170. 170. 171. 175. 180. 186. 189. 183. 184. 182. 178. - 179. 183. 184. 181. 190. 187. 185. 185. 188. 192. 193. 193. 189. - 189. 189. 186. 183. 182. 183. 184. 190. 185. 184. 185. 179. 172. - 178. 192. 181. 182. 186. 192. 197. 200. 199. 197. 194. 192. 192. - 196. 202. 205. 204. 202. 205. 204. 203. 201. 200. 200. 200. 200. - 201. 205. 207. 204. 203. 203. 200. 195. 200. 213. 212. 207. 221. - 219. 221. 205. 50. 43. 39. 44. 47. 46. 46. 49. 53. 49. 45. 44. 48. - 52. 54. 54. 60. 65. 77. 98. 128. 150. 155. 149. 145. 148. 153. 158. - 161. 162. 161. 161. 160. 159. 158. 157. 157. 157. 157. 158. 155. - 155. 155. 155. 155. 155. 155. 155. 100. 99. 99. 99. 98. 98. 98. 98. - 99. 100. 100. 100. 104. 114. 129. 140. 149. 157. 165. 168. 170. 174. - 175. 173. 174. 174. 169. 161. 151. 139. 120. 105. 85. 76. 71. 76. - 84. 89. 92. 95. 95. 98. 101. 101. 100. 99. 99. 100. 97. 98. 99. 100. - 102. 103. 104. 105. 102. 95. 90. 103. 207. 208. 192. 177. 150. 143. - 132. 122. 116. 113. 111. 109. 104. 103. 107. 112. 113. 111. 112. - 117. 123. 122. 124. 127. 124. 118. 118. 123. 146. 152. 152. 144. - 139. 142. 147. 149. 132. 130. 136. 147. 151. 147. 149. 155. 165. - 153. 151. 161. 165. 160. 164. 175. 177. 170. 165. 162. 157. 157. - 171. 189. 175. 174. 173. 173. 173. 173. 174. 174. 174. 172. 170. - 170. 173. 177. 183. 186. 175. 181. 184. 183. 183. 183. 180. 174. - 184. 187. 190. 189. 186. 186. 191. 196. 187. 185. 183. 179. 176. - 177. 180. 184. 185. 177. 176. 183. 185. 176. 168. 166. 177. 186. - 196. 199. 196. 193. 193. 196. 192. 196. 203. 208. 209. 205. 200. - 195. 203. 202. 201. 200. 199. 199. 199. 200. 204. 203. 205. 207. - 205. 197. 192. 191. 205. 203. 209. 212. 220. 211. 224. 165. 36. 38. - 43. 48. 47. 45. 49. 56. 50. 44. 40. 41. 48. 53. 54. 53. 50. 66. 89. - 117. 142. 156. 152. 141. 147. 151. 156. 161. 163. 163. 162. 160. - 160. 159. 158. 157. 157. 157. 157. 158. 155. 155. 155. 155. 155. - 155. 155. 155. 99. 99. 99. 98. 98. 98. 97. 97. 98. 99. 99. 99. 103. - 114. 129. 140. 149. 157. 165. 168. 171. 175. 176. 174. 174. 174. - 169. 159. 150. 138. 121. 106. 85. 76. 72. 78. 86. 90. 92. 94. 96. - 98. 100. 101. 100. 99. 99. 100. 98. 98. 99. 100. 102. 103. 104. 104. - 103. 96. 89. 113. 217. 204. 191. 178. 150. 144. 136. 129. 126. 122. - 118. 115. 106. 105. 107. 110. 108. 104. 106. 111. 117. 122. 127. - 124. 115. 112. 124. 140. 148. 154. 144. 128. 135. 155. 149. 125. - 128. 145. 153. 148. 150. 159. 155. 140. 144. 141. 148. 165. 176. - 175. 172. 173. 166. 156. 153. 163. 173. 174. 171. 170. 169. 172. - 175. 175. 174. 173. 174. 174. 180. 177. 173. 170. 169. 171. 173. - 175. 176. 181. 184. 182. 180. 180. 178. 173. 177. 183. 188. 189. - 186. 184. 185. 188. 186. 184. 180. 175. 173. 174. 179. 183. 183. - 177. 174. 177. 177. 171. 166. 165. 187. 193. 196. 190. 182. 181. - 189. 198. 196. 202. 209. 211. 208. 202. 197. 195. 201. 201. 200. - 199. 199. 199. 200. 200. 202. 201. 204. 207. 198. 183. 181. 188. - 203. 196. 208. 214. 220. 214. 218. 108. 35. 40. 47. 50. 48. 49. 54. - 60. 50. 45. 42. 44. 51. 55. 53. 49. 38. 66. 104. 133. 149. 153. 146. - 137. 148. 151. 156. 161. 163. 162. 160. 158. 160. 159. 158. 157. - 157. 157. 157. 158. 156. 156. 156. 156. 156. 156. 156. 156. 99. 99. - 98. 98. 98. 97. 97. 97. 97. 98. 98. 99. 103. 114. 129. 140. 150. - 158. 166. 168. 171. 175. 176. 173. 173. 173. 168. 159. 150. 139. - 122. 107. 83. 77. 75. 82. 90. 93. 93. 93. 96. 98. 100. 100. 99. 98. - 99. 101. 98. 99. 99. 100. 102. 103. 103. 104. 104. 99. 89. 121. 222. - 199. 189. 175. 151. 145. 137. 131. 128. 123. 116. 110. 108. 105. - 105. 107. 106. 104. 106. 111. 121. 115. 111. 113. 118. 125. 136. - 147. 147. 146. 140. 135. 140. 144. 134. 117. 139. 152. 156. 150. - 153. 161. 151. 132. 138. 145. 152. 159. 172. 181. 176. 165. 154. - 152. 158. 171. 182. 180. 169. 160. 163. 168. 174. 178. 178. 176. - 174. 173. 175. 173. 170. 168. 168. 169. 171. 172. 175. 179. 180. - 176. 175. 179. 182. 183. 177. 180. 184. 188. 189. 187. 181. 177. - 184. 183. 180. 177. 174. 174. 177. 180. 186. 181. 173. 162. 155. - 161. 180. 200. 200. 189. 177. 177. 186. 195. 197. 196. 201. 205. - 208. 206. 201. 198. 198. 200. 200. 200. 199. 199. 199. 200. 201. - 201. 204. 204. 206. 201. 183. 165. 167. 180. 202. 196. 205. 205. - 212. 221. 197. 67. 38. 41. 43. 44. 45. 48. 52. 54. 53. 50. 48. 50. - 55. 56. 52. 48. 42. 80. 124. 149. 153. 150. 147. 146. 151. 154. 158. - 162. 163. 162. 160. 158. 160. 159. 158. 157. 157. 157. 157. 158. - 156. 156. 156. 156. 156. 156. 156. 156. 98. 98. 98. 98. 97. 97. 97. - 96. 96. 97. 97. 98. 103. 114. 129. 140. 152. 160. 167. 169. 171. - 175. 175. 172. 172. 172. 168. 160. 151. 139. 122. 106. 84. 78. 77. - 85. 93. 95. 94. 94. 97. 98. 100. 99. 98. 98. 100. 101. 99. 99. 100. - 101. 101. 102. 103. 103. 102. 103. 89. 123. 222. 195. 188. 170. 161. - 153. 144. 138. 134. 127. 118. 110. 110. 104. 101. 104. 108. 110. - 114. 119. 127. 107. 95. 107. 131. 146. 145. 139. 147. 139. 144. 153. - 141. 118. 117. 136. 154. 146. 146. 154. 157. 149. 141. 139. 150. - 156. 154. 149. 156. 169. 167. 155. 153. 162. 174. 178. 174. 169. - 169. 171. 162. 166. 171. 176. 178. 176. 172. 169. 162. 163. 164. - 166. 168. 170. 172. 173. 169. 173. 174. 171. 171. 179. 187. 190. - 182. 181. 182. 186. 190. 188. 180. 172. 178. 180. 181. 180. 176. - 173. 172. 172. 185. 171. 158. 160. 174. 188. 194. 195. 185. 184. - 185. 189. 195. 202. 206. 208. 202. 203. 202. 199. 195. 195. 199. - 203. 200. 199. 199. 199. 200. 201. 202. 203. 208. 208. 204. 188. - 166. 153. 160. 173. 193. 189. 193. 194. 202. 219. 157. 51. 44. 46. - 45. 44. 46. 51. 51. 48. 47. 46. 46. 47. 50. 51. 52. 51. 62. 99. 139. - 154. 150. 145. 148. 153. 157. 159. 161. 163. 164. 163. 162. 161. - 160. 159. 158. 157. 157. 157. 157. 158. 157. 157. 157. 157. 157. - 157. 157. 157. 98. 98. 98. 97. 97. 97. 96. 96. 96. 96. 97. 98. 103. - 114. 129. 140. 154. 162. 168. 170. 171. 174. 174. 171. 170. 171. - 169. 162. 153. 140. 122. 105. 86. 79. 76. 83. 91. 94. 95. 96. 97. - 99. 100. 99. 98. 98. 100. 102. 99. 99. 100. 101. 101. 102. 103. 103. - 98. 105. 88. 122. 220. 192. 190. 167. 166. 158. 149. 144. 141. 136. - 127. 118. 114. 103. 95. 99. 106. 112. 116. 120. 119. 107. 105. 122. - 143. 150. 142. 133. 141. 142. 146. 143. 127. 116. 128. 150. 152. - 146. 145. 150. 150. 144. 145. 150. 154. 152. 149. 147. 150. 154. - 154. 151. 163. 172. 178. 174. 165. 162. 168. 174. 167. 166. 166. - 169. 173. 172. 168. 164. 160. 161. 164. 166. 167. 167. 166. 165. - 162. 169. 173. 171. 170. 176. 182. 184. 186. 183. 180. 180. 182. - 182. 177. 172. 170. 175. 180. 181. 177. 171. 164. 161. 170. 165. - 166. 180. 199. 205. 193. 176. 178. 192. 204. 205. 198. 195. 202. - 212. 196. 196. 196. 195. 195. 196. 199. 201. 200. 200. 200. 200. - 201. 203. 204. 205. 208. 205. 193. 172. 156. 156. 166. 174. 164. - 165. 175. 193. 198. 205. 99. 44. 45. 51. 53. 50. 50. 53. 52. 47. 42. - 42. 42. 42. 44. 51. 60. 66. 91. 119. 146. 152. 144. 141. 148. 155. - 160. 161. 161. 162. 162. 162. 162. 161. 160. 159. 158. 157. 157. - 157. 157. 158. 157. 157. 157. 157. 157. 157. 157. 157. 98. 98. 98. - 97. 97. 96. 96. 96. 95. 96. 97. 98. 102. 114. 129. 140. 155. 163. - 169. 170. 171. 173. 173. 170. 169. 171. 169. 163. 154. 141. 121. - 105. 88. 80. 75. 80. 88. 93. 95. 98. 98. 99. 99. 99. 98. 98. 100. - 102. 99. 100. 100. 101. 101. 102. 102. 103. 94. 105. 87. 120. 219. - 192. 192. 165. 160. 153. 145. 142. 142. 140. 132. 125. 118. 103. 92. - 94. 103. 109. 113. 115. 102. 112. 129. 143. 146. 139. 135. 137. 132. - 149. 143. 114. 109. 136. 153. 149. 141. 154. 155. 141. 137. 151. - 159. 155. 144. 138. 141. 152. 156. 148. 147. 152. 175. 174. 170. - 166. 165. 166. 165. 163. 172. 167. 163. 163. 167. 168. 165. 160. - 167. 168. 168. 167. 164. 159. 155. 151. 160. 169. 176. 174. 171. - 171. 172. 172. 186. 183. 178. 174. 173. 173. 173. 173. 164. 171. - 179. 182. 177. 168. 158. 152. 152. 176. 199. 200. 186. 178. 184. - 194. 201. 201. 202. 203. 203. 200. 195. 191. 189. 190. 193. 195. - 197. 198. 197. 197. 200. 200. 200. 201. 202. 203. 205. 206. 204. - 199. 181. 159. 153. 166. 178. 180. 133. 140. 162. 199. 200. 192. 52. - 37. 39. 50. 56. 54. 51. 51. 49. 44. 46. 46. 46. 45. 48. 59. 75. 88. - 117. 136. 151. 151. 144. 144. 151. 158. 160. 159. 159. 158. 158. - 158. 159. 160. 160. 159. 158. 157. 157. 157. 157. 158. 157. 157. - 157. 157. 157. 157. 157. 157. 97. 97. 96. 95. 94. 94. 93. 92. 93. - 94. 95. 97. 103. 115. 131. 142. 155. 160. 166. 170. 172. 171. 171. - 171. 172. 171. 166. 159. 152. 142. 123. 107. 87. 78. 74. 79. 87. 92. - 94. 97. 97. 98. 99. 99. 97. 97. 98. 99. 98. 98. 100. 101. 101. 101. - 101. 101. 95. 102. 80. 138. 213. 191. 174. 173. 163. 162. 163. 144. - 139. 143. 145. 124. 107. 99. 92. 94. 105. 113. 109. 101. 104. 127. - 146. 146. 135. 130. 135. 142. 143. 128. 110. 117. 137. 140. 139. - 147. 151. 146. 141. 141. 144. 147. 147. 145. 145. 161. 168. 148. - 136. 157. 170. 156. 161. 158. 160. 167. 170. 168. 167. 169. 170. - 167. 169. 164. 155. 161. 173. 171. 161. 163. 168. 161. 151. 159. - 171. 168. 168. 162. 171. 175. 176. 174. 167. 173. 179. 184. 181. - 169. 165. 171. 175. 174. 166. 171. 175. 173. 167. 162. 162. 164. - 196. 192. 185. 178. 177. 181. 190. 196. 209. 207. 203. 200. 196. - 194. 193. 193. 191. 192. 194. 196. 197. 198. 198. 198. 199. 203. - 203. 199. 200. 206. 208. 205. 205. 194. 168. 147. 158. 179. 170. - 143. 136. 163. 178. 187. 221. 126. 42. 39. 33. 43. 54. 58. 54. 48. - 46. 46. 48. 53. 52. 45. 45. 61. 85. 101. 139. 148. 151. 145. 142. - 148. 157. 161. 162. 162. 161. 161. 160. 159. 158. 158. 159. 159. - 159. 158. 158. 157. 157. 157. 158. 158. 158. 157. 157. 156. 156. - 156. 97. 97. 96. 96. 95. 94. 93. 93. 92. 94. 95. 97. 102. 114. 130. - 141. 155. 160. 166. 170. 172. 171. 171. 171. 172. 171. 166. 160. - 153. 142. 123. 107. 88. 80. 75. 81. 88. 92. 95. 97. 98. 99. 101. - 100. 98. 98. 99. 100. 98. 99. 100. 100. 101. 101. 101. 100. 94. 95. - 80. 146. 208. 189. 177. 171. 159. 161. 149. 151. 127. 143. 133. 123. - 110. 104. 102. 105. 105. 103. 106. 113. 134. 142. 145. 138. 130. - 131. 137. 140. 126. 126. 121. 127. 141. 142. 139. 145. 143. 144. - 144. 142. 139. 139. 141. 144. 161. 149. 147. 148. 144. 150. 165. - 170. 164. 159. 155. 160. 169. 172. 166. 158. 158. 153. 160. 167. - 161. 162. 167. 165. 169. 151. 150. 161. 165. 166. 164. 155. 170. - 166. 172. 175. 174. 168. 160. 163. 165. 163. 168. 175. 176. 169. - 166. 169. 158. 164. 167. 163. 158. 162. 177. 191. 178. 180. 183. - 186. 189. 194. 199. 204. 201. 200. 198. 196. 194. 194. 194. 194. - 193. 194. 195. 197. 198. 199. 199. 199. 200. 201. 203. 204. 204. - 203. 207. 211. 209. 171. 149. 166. 184. 173. 148. 132. 160. 163. - 182. 195. 207. 94. 39. 36. 39. 43. 49. 52. 52. 48. 44. 41. 51. 47. - 48. 51. 54. 65. 91. 117. 145. 151. 151. 146. 144. 150. 157. 159. - 161. 161. 161. 160. 159. 158. 158. 157. 159. 159. 158. 158. 158. - 157. 157. 157. 158. 158. 157. 157. 157. 156. 156. 156. 97. 97. 96. - 96. 95. 94. 94. 94. 92. 94. 95. 97. 103. 114. 129. 140. 154. 159. - 166. 170. 172. 172. 171. 172. 172. 171. 167. 160. 153. 142. 123. - 106. 90. 81. 77. 82. 89. 93. 95. 97. 99. 100. 101. 101. 99. 98. 100. - 101. 98. 99. 99. 100. 101. 100. 100. 100. 94. 88. 84. 161. 204. 189. - 185. 173. 170. 152. 163. 140. 149. 128. 142. 126. 115. 112. 112. - 112. 104. 98. 109. 127. 150. 148. 141. 133. 131. 134. 134. 130. 110. - 127. 135. 138. 146. 146. 140. 142. 138. 140. 140. 137. 134. 137. - 144. 151. 155. 138. 141. 155. 155. 152. 155. 155. 152. 156. 156. - 154. 159. 166. 160. 149. 163. 157. 166. 177. 173. 167. 161. 151. - 150. 139. 152. 173. 172. 164. 171. 179. 156. 157. 161. 169. 172. - 169. 169. 170. 168. 164. 163. 166. 168. 167. 164. 163. 161. 153. - 149. 156. 172. 185. 188. 186. 171. 178. 187. 195. 199. 200. 201. - 201. 191. 191. 191. 191. 192. 193. 195. 195. 195. 196. 197. 199. - 200. 201. 201. 201. 202. 201. 203. 208. 208. 206. 207. 212. 188. - 159. 151. 171. 174. 152. 146. 160. 166. 158. 183. 207. 176. 56. 40. - 40. 47. 47. 47. 49. 51. 50. 46. 42. 53. 44. 44. 56. 63. 72. 103. - 137. 151. 152. 150. 146. 147. 153. 158. 158. 160. 160. 159. 159. - 158. 157. 156. 156. 159. 158. 158. 158. 157. 157. 157. 157. 158. - 157. 157. 157. 156. 156. 156. 156. 97. 97. 97. 96. 96. 95. 95. 94. - 94. 96. 97. 99. 105. 116. 130. 141. 154. 159. 166. 170. 172. 172. - 172. 172. 171. 171. 168. 161. 154. 143. 123. 106. 90. 81. 76. 81. - 88. 92. 93. 95. 98. 99. 100. 100. 98. 98. 99. 100. 98. 99. 99. 100. - 100. 100. 99. 99. 97. 83. 88. 179. 204. 193. 194. 179. 174. 167. - 147. 170. 135. 149. 133. 139. 121. 120. 113. 104. 101. 109. 123. - 134. 137. 138. 137. 135. 136. 135. 126. 116. 112. 134. 142. 141. - 148. 149. 142. 140. 139. 134. 130. 130. 136. 145. 153. 157. 137. - 140. 150. 156. 157. 164. 162. 146. 145. 161. 168. 158. 152. 154. - 151. 141. 154. 154. 159. 159. 157. 165. 162. 143. 162. 157. 168. - 177. 163. 153. 161. 169. 168. 170. 162. 165. 164. 158. 164. 161. - 161. 167. 165. 156. 158. 167. 164. 152. 161. 157. 158. 172. 189. - 194. 183. 170. 185. 190. 196. 199. 198. 194. 190. 188. 187. 187. - 188. 190. 191. 193. 195. 196. 197. 198. 200. 201. 202. 202. 202. - 202. 202. 205. 205. 204. 210. 215. 210. 200. 155. 160. 165. 162. - 154. 150. 155. 165. 144. 157. 189. 218. 129. 34. 44. 47. 53. 52. 51. - 51. 52. 53. 53. 53. 54. 48. 46. 54. 66. 86. 120. 150. 153. 150. 146. - 146. 150. 156. 159. 159. 159. 159. 158. 157. 157. 156. 155. 155. - 158. 158. 158. 157. 157. 157. 156. 156. 157. 157. 157. 156. 156. - 156. 155. 155. 97. 97. 97. 96. 96. 96. 96. 95. 96. 98. 101. 103. - 108. 118. 132. 142. 153. 158. 165. 170. 172. 172. 172. 173. 171. - 171. 168. 162. 155. 144. 124. 106. 87. 79. 74. 79. 86. 90. 92. 94. - 96. 97. 98. 98. 96. 96. 97. 98. 98. 99. 99. 100. 100. 99. 98. 98. - 97. 79. 87. 189. 204. 196. 197. 185. 182. 154. 168. 148. 162. 131. - 149. 140. 128. 124. 107. 90. 101. 128. 139. 132. 122. 130. 136. 136. - 133. 129. 121. 113. 128. 143. 143. 138. 145. 148. 141. 138. 136. - 128. 124. 132. 146. 155. 151. 143. 136. 143. 156. 159. 154. 161. - 165. 156. 144. 158. 162. 155. 152. 155. 147. 132. 128. 134. 130. - 112. 115. 150. 169. 154. 173. 161. 157. 158. 158. 166. 166. 153. - 165. 172. 157. 161. 161. 157. 172. 166. 152. 156. 160. 162. 161. - 158. 153. 148. 160. 175. 188. 189. 179. 173. 179. 187. 199. 200. - 199. 195. 190. 186. 183. 183. 188. 189. 190. 192. 193. 195. 195. - 196. 199. 200. 201. 202. 203. 203. 203. 203. 202. 210. 207. 199. - 209. 223. 209. 179. 153. 161. 162. 155. 150. 147. 134. 119. 127. - 175. 205. 215. 79. 32. 41. 47. 51. 53. 55. 53. 50. 52. 58. 64. 54. - 56. 52. 50. 68. 104. 137. 152. 150. 145. 143. 146. 153. 158. 160. - 160. 159. 158. 158. 157. 156. 155. 155. 155. 158. 158. 157. 157. - 157. 156. 156. 156. 157. 157. 156. 156. 156. 155. 155. 155. 97. 97. - 97. 97. 97. 96. 96. 96. 98. 100. 103. 105. 110. 120. 133. 143. 153. - 158. 165. 170. 172. 172. 173. 173. 171. 172. 169. 163. 156. 144. - 124. 106. 85. 76. 72. 78. 86. 90. 92. 95. 95. 96. 98. 97. 95. 95. - 96. 97. 98. 99. 99. 99. 99. 98. 97. 97. 94. 77. 80. 190. 205. 198. - 194. 188. 180. 172. 154. 174. 144. 157. 145. 151. 137. 126. 104. 90. - 107. 137. 143. 129. 124. 133. 137. 130. 122. 120. 123. 125. 142. - 147. 139. 134. 141. 142. 135. 135. 129. 127. 129. 140. 151. 151. - 139. 126. 142. 141. 158. 170. 153. 133. 130. 130. 126. 124. 122. - 127. 144. 155. 145. 127. 135. 140. 129. 99. 94. 136. 168. 163. 164. - 161. 162. 158. 153. 163. 168. 156. 155. 169. 153. 161. 160. 149. - 164. 149. 173. 159. 157. 163. 154. 138. 147. 171. 181. 185. 186. - 180. 173. 176. 190. 203. 198. 198. 195. 191. 187. 186. 188. 190. - 191. 192. 194. 195. 196. 197. 197. 197. 200. 201. 202. 203. 203. - 203. 203. 203. 203. 210. 207. 200. 209. 219. 197. 162. 170. 158. - 148. 138. 120. 101. 100. 112. 145. 203. 218. 179. 45. 39. 34. 41. - 47. 51. 53. 50. 46. 48. 57. 66. 54. 59. 55. 55. 80. 123. 148. 150. - 147. 143. 143. 149. 156. 158. 159. 161. 159. 159. 158. 157. 157. - 156. 155. 155. 157. 157. 157. 157. 156. 156. 156. 155. 156. 156. - 156. 156. 155. 155. 155. 154. 97. 97. 97. 97. 97. 97. 97. 97. 98. - 100. 103. 106. 110. 120. 132. 142. 152. 158. 165. 170. 172. 173. - 173. 174. 171. 172. 169. 164. 157. 145. 124. 106. 84. 76. 72. 78. - 87. 92. 95. 97. 96. 97. 98. 98. 96. 95. 97. 98. 99. 99. 99. 99. 99. - 98. 97. 96. 93. 79. 74. 189. 208. 202. 191. 194. 183. 166. 172. 157. - 162. 149. 162. 151. 146. 127. 108. 107. 119. 130. 132. 129. 128. - 134. 133. 122. 114. 118. 130. 138. 143. 144. 137. 135. 139. 132. - 125. 131. 127. 134. 141. 144. 141. 137. 135. 135. 146. 145. 154. - 152. 130. 115. 114. 112. 115. 106. 100. 105. 118. 127. 125. 119. - 156. 159. 157. 134. 113. 124. 142. 143. 156. 158. 169. 167. 149. - 140. 144. 144. 151. 172. 155. 163. 151. 122. 123. 92. 146. 154. 158. - 151. 141. 145. 167. 188. 188. 178. 170. 175. 189. 200. 201. 197. - 193. 193. 193. 192. 190. 190. 192. 194. 192. 194. 196. 197. 199. - 199. 199. 198. 201. 201. 202. 203. 203. 203. 203. 202. 206. 206. - 207. 211. 212. 202. 178. 156. 157. 135. 117. 106. 85. 74. 104. 148. - 181. 215. 211. 113. 29. 45. 33. 41. 49. 49. 48. 46. 45. 48. 55. 60. - 54. 54. 55. 69. 102. 137. 152. 150. 147. 144. 147. 155. 159. 158. - 158. 161. 160. 159. 159. 158. 157. 156. 156. 156. 157. 157. 157. - 156. 156. 156. 155. 155. 156. 156. 156. 155. 155. 155. 154. 154. 97. - 97. 97. 97. 97. 97. 97. 97. 97. 100. 103. 105. 110. 119. 131. 141. - 152. 157. 165. 170. 172. 173. 173. 174. 171. 172. 170. 164. 157. - 145. 124. 105. 84. 76. 72. 79. 88. 93. 97. 99. 97. 98. 99. 99. 97. - 97. 98. 99. 99. 99. 99. 99. 99. 97. 96. 96. 95. 83. 72. 189. 213. - 207. 191. 199. 174. 167. 160. 160. 147. 154. 155. 148. 153. 127. - 115. 125. 129. 119. 119. 131. 125. 130. 128. 119. 113. 120. 134. - 144. 139. 139. 136. 138. 139. 125. 118. 128. 130. 142. 149. 142. - 127. 125. 141. 159. 155. 157. 142. 107. 92. 120. 146. 140. 130. 124. - 116. 106. 94. 87. 94. 106. 151. 157. 173. 169. 137. 114. 112. 113. - 119. 108. 123. 152. 159. 154. 152. 150. 106. 139. 134. 155. 150. - 119. 117. 81. 62. 123. 158. 144. 143. 176. 193. 180. 166. 170. 179. - 193. 204. 206. 199. 191. 191. 193. 196. 196. 194. 192. 190. 190. - 192. 193. 196. 198. 200. 200. 200. 200. 201. 201. 202. 203. 203. - 203. 202. 202. 208. 200. 206. 221. 215. 186. 163. 157. 124. 99. 79. - 79. 87. 103. 132. 162. 206. 210. 194. 58. 25. 49. 37. 47. 54. 50. - 45. 44. 47. 51. 54. 55. 55. 47. 53. 83. 120. 144. 152. 152. 148. - 147. 151. 160. 162. 157. 156. 160. 160. 160. 159. 159. 158. 157. - 156. 156. 157. 157. 157. 156. 156. 155. 155. 155. 156. 156. 156. - 155. 155. 154. 154. 154. 96. 96. 96. 97. 97. 97. 98. 98. 98. 100. - 103. 105. 110. 119. 133. 142. 154. 161. 169. 173. 173. 173. 174. - 176. 173. 173. 170. 165. 158. 146. 125. 107. 86. 77. 72. 77. 85. 89. - 92. 95. 95. 97. 98. 98. 98. 98. 99. 101. 99. 100. 100. 100. 99. 97. - 95. 94. 85. 70. 90. 175. 209. 201. 206. 187. 186. 180. 172. 162. - 151. 143. 145. 152. 157. 134. 115. 115. 119. 118. 119. 125. 135. - 121. 108. 109. 124. 139. 144. 143. 137. 136. 134. 128. 123. 123. - 127. 132. 134. 138. 131. 145. 127. 136. 134. 152. 146. 140. 131. - 127. 133. 140. 136. 128. 115. 122. 103. 99. 95. 96. 66. 101. 153. - 169. 165. 159. 131. 131. 124. 128. 129. 105. 106. 88. 102. 113. 133. - 137. 113. 102. 89. 59. 74. 68. 88. 99. 31. 83. 140. 163. 188. 188. - 158. 160. 174. 179. 188. 195. 198. 197. 194. 191. 196. 197. 197. - 195. 193. 193. 194. 196. 192. 194. 199. 203. 203. 200. 199. 200. - 199. 197. 203. 205. 200. 205. 208. 198. 205. 209. 213. 209. 188. - 155. 127. 113. 81. 77. 94. 102. 94. 116. 166. 194. 215. 220. 86. 44. - 42. 40. 51. 48. 41. 46. 46. 41. 42. 50. 55. 54. 46. 44. 65. 109. - 145. 154. 150. 148. 142. 150. 159. 162. 161. 159. 160. 162. 159. - 159. 158. 157. 157. 156. 155. 155. 155. 155. 155. 154. 154. 153. - 153. 153. 154. 154. 154. 154. 154. 154. 154. 154. 97. 98. 99. 99. - 99. 99. 98. 98. 101. 103. 106. 108. 112. 122. 136. 145. 154. 161. - 169. 173. 173. 173. 174. 175. 173. 173. 170. 165. 158. 146. 125. - 107. 86. 77. 72. 77. 85. 89. 93. 95. 95. 97. 98. 98. 98. 98. 99. - 101. 97. 98. 99. 100. 100. 98. 97. 96. 95. 76. 90. 162. 215. 203. - 206. 192. 193. 186. 174. 159. 144. 137. 144. 155. 151. 129. 112. - 114. 121. 122. 124. 129. 116. 113. 113. 123. 136. 142. 139. 133. - 139. 137. 132. 126. 123. 124. 127. 131. 138. 137. 126. 138. 130. - 144. 140. 148. 155. 129. 114. 127. 145. 142. 120. 100. 116. 101. 86. - 79. 73. 66. 60. 105. 144. 147. 171. 142. 152. 118. 123. 105. 106. - 97. 89. 76. 105. 89. 71. 65. 69. 73. 74. 51. 58. 41. 46. 49. 34. 65. - 160. 198. 162. 152. 165. 174. 191. 193. 195. 197. 197. 196. 193. - 191. 196. 196. 196. 195. 193. 192. 194. 196. 199. 196. 195. 197. - 200. 201. 203. 204. 200. 203. 210. 205. 192. 197. 210. 211. 217. - 199. 177. 156. 135. 112. 94. 87. 91. 86. 87. 96. 115. 153. 186. 195. - 227. 144. 54. 37. 41. 44. 41. 48. 45. 48. 47. 44. 45. 51. 53. 51. - 44. 50. 77. 119. 147. 151. 147. 146. 145. 152. 160. 163. 161. 159. - 159. 161. 159. 159. 158. 158. 157. 156. 155. 155. 155. 155. 155. - 154. 154. 154. 153. 153. 154. 154. 154. 154. 154. 154. 154. 154. 98. - 99. 101. 102. 102. 101. 99. 97. 102. 104. 106. 109. 113. 123. 137. - 146. 154. 160. 168. 173. 173. 172. 173. 175. 173. 173. 170. 165. - 158. 146. 125. 107. 86. 77. 72. 77. 85. 90. 93. 96. 95. 97. 98. 98. - 98. 98. 99. 101. 95. 96. 98. 99. 100. 99. 98. 97. 102. 80. 87. 139. - 221. 203. 202. 196. 198. 192. 180. 160. 138. 126. 132. 145. 138. - 119. 105. 109. 117. 120. 121. 123. 103. 109. 119. 133. 142. 143. - 136. 129. 136. 132. 127. 125. 126. 129. 131. 133. 138. 135. 124. - 132. 135. 151. 143. 139. 120. 116. 126. 146. 144. 120. 102. 101. - 104. 84. 100. 106. 105. 83. 87. 122. 119. 137. 127. 144. 109. 113. - 76. 70. 66. 44. 89. 116. 93. 46. 68. 84. 40. 51. 51. 32. 45. 45. 44. - 34. 65. 128. 182. 168. 154. 168. 178. 198. 202. 201. 199. 197. 195. - 193. 193. 192. 195. 195. 196. 194. 192. 192. 194. 195. 200. 198. - 195. 195. 198. 201. 201. 199. 202. 197. 203. 209. 210. 213. 206. - 186. 168. 143. 114. 99. 92. 88. 83. 81. 91. 89. 95. 122. 156. 177. - 200. 229. 194. 66. 44. 38. 42. 56. 45. 51. 50. 50. 48. 47. 50. 53. - 50. 44. 40. 60. 96. 133. 150. 148. 143. 143. 150. 155. 161. 163. - 161. 159. 159. 160. 159. 159. 159. 158. 157. 156. 156. 155. 155. - 155. 155. 155. 154. 154. 154. 153. 154. 154. 154. 154. 154. 154. - 154. 154. 98. 100. 103. 104. 103. 101. 98. 95. 100. 103. 105. 107. - 112. 122. 135. 145. 153. 160. 168. 172. 172. 172. 173. 175. 173. - 173. 170. 165. 158. 146. 125. 107. 86. 77. 72. 77. 85. 90. 93. 96. - 95. 97. 98. 98. 98. 98. 99. 101. 96. 97. 99. 100. 100. 99. 97. 97. - 101. 80. 82. 114. 220. 205. 198. 197. 198. 195. 185. 163. 134. 115. - 117. 129. 131. 117. 108. 111. 117. 118. 114. 113. 107. 114. 125. - 134. 139. 138. 134. 132. 125. 123. 122. 126. 132. 136. 136. 135. - 131. 132. 129. 134. 140. 148. 138. 125. 99. 116. 138. 142. 123. 104. - 111. 130. 126. 105. 134. 131. 124. 89. 82. 90. 94. 99. 113. 103. - 102. 78. 70. 57. 56. 108. 101. 59. 83. 82. 80. 66. 54. 44. 35. 34. - 41. 40. 67. 107. 142. 175. 170. 136. 163. 201. 197. 209. 198. 197. - 195. 194. 192. 192. 192. 192. 193. 194. 195. 193. 192. 192. 193. - 195. 194. 198. 200. 199. 199. 200. 197. 193. 200. 197. 206. 213. - 207. 192. 161. 124. 103. 90. 80. 82. 89. 92. 91. 91. 93. 114. 127. - 150. 187. 196. 188. 192. 107. 32. 57. 41. 44. 58. 55. 51. 52. 50. - 48. 49. 53. 53. 47. 39. 39. 71. 115. 145. 151. 145. 142. 144. 155. - 159. 162. 163. 161. 159. 158. 159. 160. 160. 159. 158. 157. 157. - 156. 156. 156. 156. 155. 155. 155. 154. 154. 154. 155. 155. 154. - 154. 154. 154. 153. 153. 99. 101. 103. 104. 103. 100. 96. 94. 100. - 103. 105. 107. 112. 122. 135. 145. 153. 160. 168. 172. 172. 171. - 173. 174. 173. 173. 170. 165. 158. 146. 125. 107. 87. 78. 73. 78. - 86. 91. 94. 96. 95. 97. 98. 98. 98. 98. 99. 101. 99. 99. 100. 100. - 99. 97. 95. 94. 97. 81. 81. 97. 209. 210. 198. 199. 200. 196. 184. - 160. 130. 112. 119. 134. 137. 129. 122. 122. 122. 118. 112. 108. - 116. 124. 133. 137. 137. 133. 131. 130. 119. 120. 123. 130. 136. - 138. 135. 131. 124. 130. 139. 139. 142. 135. 126. 115. 127. 132. - 128. 116. 112. 121. 130. 131. 120. 97. 110. 87. 84. 68. 66. 63. 72. - 84. 108. 105. 106. 86. 91. 90. 113. 83. 83. 85. 65. 45. 86. 73. 59. - 43. 31. 42. 37. 39. 94. 180. 179. 136. 152. 174. 176. 194. 202. 200. - 193. 193. 193. 193. 193. 192. 190. 189. 192. 193. 193. 193. 191. - 191. 193. 195. 190. 198. 203. 199. 197. 200. 202. 201. 208. 212. - 214. 190. 147. 116. 99. 83. 87. 83. 84. 90. 96. 97. 98. 101. 117. - 156. 168. 172. 202. 199. 135. 73. 40. 36. 53. 39. 52. 46. 51. 47. - 51. 48. 47. 51. 55. 53. 46. 39. 46. 85. 129. 151. 149. 143. 144. - 148. 160. 162. 163. 162. 161. 159. 159. 159. 160. 160. 159. 159. - 158. 157. 156. 156. 156. 156. 156. 155. 155. 155. 154. 154. 155. - 155. 155. 154. 154. 153. 153. 153. 101. 102. 103. 103. 102. 99. 96. - 94. 102. 104. 106. 109. 113. 123. 137. 146. 153. 159. 167. 171. 172. - 171. 172. 174. 173. 173. 170. 165. 158. 146. 125. 107. 87. 78. 73. - 78. 86. 91. 94. 97. 95. 97. 98. 98. 98. 98. 99. 101. 100. 100. 100. - 100. 99. 97. 95. 93. 96. 88. 85. 87. 187. 214. 203. 203. 205. 197. - 181. 156. 129. 119. 132. 151. 142. 138. 131. 124. 117. 111. 108. - 107. 122. 130. 139. 143. 139. 132. 125. 122. 121. 123. 128. 133. - 135. 134. 129. 124. 125. 130. 145. 141. 139. 118. 117. 116. 134. - 140. 134. 118. 116. 123. 115. 97. 86. 73. 72. 50. 57. 64. 63. 68. - 77. 103. 105. 130. 93. 102. 91. 112. 75. 118. 97. 63. 69. 49. 84. - 99. 32. 49. 33. 29. 55. 119. 150. 165. 127. 135. 176. 196. 194. 191. - 182. 190. 193. 194. 195. 195. 193. 191. 187. 185. 191. 192. 192. - 192. 190. 191. 193. 195. 193. 200. 200. 194. 194. 202. 208. 207. - 214. 202. 181. 141. 97. 82. 87. 87. 85. 84. 87. 93. 99. 107. 121. - 134. 152. 169. 195. 215. 200. 136. 65. 31. 37. 52. 37. 44. 65. 40. - 45. 50. 48. 46. 47. 54. 57. 54. 48. 46. 65. 103. 141. 152. 146. 144. - 149. 154. 164. 164. 163. 162. 161. 160. 160. 160. 161. 160. 160. - 159. 158. 157. 157. 157. 157. 156. 156. 156. 155. 155. 155. 155. - 156. 156. 155. 154. 154. 153. 152. 152. 105. 105. 104. 103. 102. 99. - 97. 96. 101. 103. 106. 108. 112. 122. 136. 145. 152. 159. 167. 171. - 171. 171. 172. 174. 173. 173. 170. 165. 158. 146. 125. 107. 87. 79. - 73. 78. 86. 91. 94. 97. 95. 97. 98. 98. 98. 98. 99. 101. 98. 99. - 100. 100. 99. 98. 96. 95. 98. 96. 87. 80. 158. 214. 205. 203. 203. - 196. 182. 160. 136. 126. 137. 153. 144. 142. 134. 120. 107. 104. - 108. 114. 129. 134. 139. 140. 135. 129. 123. 119. 124. 127. 131. - 133. 131. 128. 126. 125. 137. 131. 143. 135. 132. 104. 116. 128. - 124. 133. 132. 116. 99. 90. 86. 81. 88. 83. 68. 55. 56. 61. 47. 73. - 107. 103. 122. 89. 91. 58. 88. 100. 116. 92. 77. 90. 82. 45. 82. 71. - 23. 46. 38. 62. 114. 183. 165. 129. 117. 179. 205. 183. 192. 196. - 173. 187. 192. 193. 193. 192. 191. 189. 186. 185. 190. 191. 192. - 191. 190. 190. 192. 194. 194. 198. 197. 193. 196. 202. 196. 183. - 169. 154. 139. 117. 96. 96. 101. 96. 87. 91. 100. 113. 125. 137. - 153. 166. 177. 173. 199. 212. 149. 59. 33. 54. 48. 58. 38. 55. 61. - 49. 46. 51. 46. 45. 49. 57. 60. 56. 54. 56. 90. 123. 150. 151. 143. - 146. 155. 159. 166. 165. 163. 162. 162. 162. 162. 161. 161. 161. - 160. 159. 158. 158. 157. 157. 157. 157. 156. 156. 156. 155. 155. - 155. 156. 156. 155. 154. 154. 153. 152. 152. 108. 107. 106. 104. - 102. 100. 99. 98. 98. 100. 103. 105. 110. 119. 133. 142. 152. 159. - 167. 171. 171. 171. 172. 174. 173. 173. 170. 165. 158. 146. 125. - 107. 88. 79. 74. 79. 87. 91. 94. 97. 95. 97. 98. 98. 98. 98. 99. - 101. 96. 97. 98. 99. 100. 99. 98. 97. 99. 100. 87. 73. 134. 209. - 203. 201. 196. 193. 185. 169. 146. 130. 131. 140. 149. 148. 138. - 119. 104. 104. 116. 127. 138. 137. 135. 131. 128. 125. 124. 124. - 124. 127. 130. 130. 128. 126. 128. 130. 149. 132. 138. 127. 127. 98. - 119. 140. 139. 124. 102. 79. 62. 60. 75. 93. 83. 77. 51. 49. 50. 60. - 50. 104. 118. 113. 91. 77. 45. 50. 68. 101. 58. 105. 95. 69. 61. 41. - 81. 67. 47. 29. 46. 142. 174. 152. 113. 137. 189. 181. 199. 186. - 166. 181. 187. 184. 189. 188. 188. 187. 187. 187. 187. 187. 189. - 190. 191. 191. 190. 190. 192. 194. 192. 195. 196. 196. 202. 200. - 177. 149. 95. 111. 132. 130. 108. 97. 97. 92. 109. 116. 132. 150. - 162. 165. 167. 171. 188. 192. 194. 150. 73. 37. 43. 46. 39. 51. 51. - 61. 42. 58. 49. 43. 45. 45. 51. 60. 62. 58. 58. 64. 108. 136. 156. - 150. 141. 147. 158. 162. 167. 165. 162. 161. 162. 163. 163. 162. - 161. 161. 160. 159. 159. 158. 157. 157. 157. 157. 157. 156. 156. - 155. 155. 155. 156. 156. 155. 154. 154. 153. 152. 152. 108. 106. - 104. 104. 104. 104. 102. 100. 99. 101. 104. 106. 111. 121. 134. 144. - 153. 160. 167. 171. 170. 169. 168. 169. 171. 172. 169. 163. 157. - 146. 127. 110. 85. 79. 76. 80. 85. 87. 92. 97. 93. 94. 95. 96. 97. - 97. 97. 97. 100. 99. 98. 97. 98. 99. 100. 101. 100. 94. 102. 71. 91. - 201. 199. 210. 198. 199. 184. 172. 160. 133. 128. 156. 136. 152. - 134. 104. 104. 114. 124. 140. 133. 136. 136. 129. 120. 116. 121. - 128. 127. 126. 129. 130. 125. 121. 130. 144. 135. 145. 134. 144. - 134. 87. 140. 134. 113. 89. 70. 54. 67. 98. 93. 69. 45. 70. 50. 49. - 64. 35. 90. 126. 110. 122. 70. 50. 42. 51. 102. 94. 70. 99. 90. 51. - 27. 32. 110. 86. 32. 82. 143. 167. 147. 130. 154. 192. 196. 193. - 188. 183. 180. 180. 183. 186. 185. 187. 188. 188. 187. 185. 185. - 186. 190. 189. 187. 186. 189. 195. 198. 199. 201. 197. 206. 180. - 199. 170. 76. 103. 106. 109. 139. 137. 135. 116. 136. 140. 153. 160. - 166. 169. 169. 168. 168. 167. 184. 202. 151. 63. 33. 46. 50. 45. 52. - 52. 53. 53. 53. 52. 51. 51. 37. 49. 53. 61. 65. 46. 47. 80. 132. - 144. 150. 145. 140. 147. 159. 165. 161. 163. 164. 165. 165. 163. - 161. 159. 161. 161. 160. 159. 159. 158. 157. 157. 159. 158. 156. - 155. 154. 155. 156. 157. 156. 156. 155. 154. 154. 153. 152. 152. - 108. 106. 105. 104. 104. 104. 102. 100. 100. 102. 104. 106. 111. - 121. 134. 144. 153. 160. 167. 171. 171. 169. 169. 170. 171. 172. - 169. 163. 157. 147. 127. 110. 86. 78. 75. 79. 85. 89. 92. 95. 94. - 95. 96. 98. 98. 99. 99. 99. 99. 99. 97. 97. 97. 98. 100. 101. 98. - 95. 94. 80. 83. 169. 216. 196. 188. 196. 194. 185. 173. 154. 136. - 134. 149. 136. 111. 100. 116. 130. 133. 135. 142. 134. 123. 113. - 111. 116. 125. 132. 129. 132. 129. 121. 119. 124. 126. 122. 136. - 133. 134. 152. 153. 109. 122. 97. 80. 61. 65. 85. 93. 75. 51. 46. - 56. 57. 46. 47. 54. 54. 114. 104. 109. 86. 46. 40. 71. 107. 108. 73. - 80. 89. 67. 38. 45. 52. 94. 72. 89. 145. 169. 139. 125. 157. 191. - 196. 190. 188. 185. 181. 179. 181. 184. 187. 183. 184. 185. 184. - 183. 183. 186. 188. 185. 190. 193. 193. 192. 191. 188. 184. 188. - 188. 207. 162. 82. 80. 101. 76. 104. 105. 120. 145. 152. 160. 161. - 160. 163. 159. 161. 168. 168. 166. 177. 192. 222. 156. 71. 30. 36. - 46. 45. 47. 55. 55. 55. 54. 52. 50. 47. 46. 48. 54. 51. 51. 52. 44. - 59. 101. 137. 146. 150. 145. 143. 151. 161. 167. 162. 164. 165. 166. - 165. 164. 162. 160. 161. 161. 160. 160. 159. 158. 157. 157. 159. - 158. 156. 155. 155. 155. 156. 156. 156. 156. 155. 154. 154. 153. - 152. 152. 109. 107. 105. 104. 105. 104. 102. 100. 101. 102. 104. - 106. 110. 121. 134. 144. 153. 159. 168. 172. 171. 169. 169. 170. - 172. 172. 169. 164. 158. 147. 128. 111. 87. 78. 72. 78. 86. 91. 92. - 93. 95. 96. 97. 99. 99. 100. 100. 99. 98. 98. 97. 96. 97. 98. 100. - 101. 100. 100. 90. 91. 79. 126. 225. 194. 200. 202. 199. 184. 171. - 172. 164. 142. 163. 125. 104. 113. 127. 135. 137. 132. 140. 128. - 113. 108. 112. 121. 128. 130. 126. 132. 127. 115. 120. 133. 130. - 113. 92. 97. 128. 140. 129. 94. 90. 83. 58. 72. 76. 76. 75. 61. 44. - 40. 68. 45. 42. 46. 50. 76. 129. 71. 84. 48. 48. 63. 95. 122. 104. - 87. 93. 45. 49. 61. 53. 51. 96. 109. 160. 152. 139. 137. 157. 185. - 200. 199. 185. 183. 181. 179. 179. 182. 185. 187. 181. 181. 180. - 179. 179. 181. 186. 189. 191. 193. 191. 188. 190. 196. 199. 198. - 203. 176. 97. 74. 66. 75. 125. 110. 105. 110. 110. 147. 153. 176. - 163. 164. 167. 170. 171. 169. 170. 180. 198. 212. 160. 82. 30. 35. - 46. 44. 45. 53. 54. 55. 56. 55. 53. 50. 46. 44. 52. 57. 52. 46. 44. - 46. 75. 120. 144. 147. 147. 145. 147. 156. 165. 168. 164. 165. 166. - 166. 166. 165. 163. 162. 161. 161. 161. 160. 159. 158. 158. 157. - 158. 158. 157. 156. 155. 155. 156. 156. 156. 156. 155. 154. 154. - 153. 152. 152. 109. 107. 105. 105. 105. 104. 102. 100. 101. 102. - 103. 105. 109. 120. 134. 144. 153. 159. 168. 172. 171. 170. 170. - 171. 172. 172. 170. 164. 158. 147. 128. 111. 88. 77. 70. 76. 87. 92. - 92. 91. 95. 96. 97. 98. 99. 99. 99. 99. 98. 97. 96. 96. 96. 98. 100. - 101. 105. 104. 96. 96. 87. 94. 200. 209. 210. 200. 195. 180. 164. - 175. 182. 162. 147. 110. 108. 129. 128. 126. 135. 138. 125. 120. - 116. 119. 125. 128. 125. 121. 119. 124. 124. 121. 130. 142. 140. - 127. 130. 91. 97. 103. 113. 109. 71. 50. 69. 94. 82. 62. 54. 52. 62. - 66. 69. 42. 40. 48. 65. 85. 110. 46. 61. 38. 59. 97. 101. 93. 97. - 106. 73. 36. 80. 82. 33. 68. 145. 159. 153. 119. 119. 166. 199. 194. - 188. 198. 184. 182. 180. 179. 180. 182. 184. 184. 178. 177. 176. - 175. 175. 179. 185. 190. 194. 193. 189. 186. 192. 200. 196. 185. - 139. 62. 38. 105. 87. 69. 135. 126. 107. 117. 118. 138. 146. 160. - 156. 164. 170. 174. 170. 169. 188. 207. 194. 164. 63. 35. 38. 54. - 49. 45. 51. 50. 50. 52. 54. 54. 54. 51. 48. 46. 47. 53. 56. 51. 47. - 55. 89. 127. 147. 145. 143. 145. 152. 160. 166. 168. 165. 166. 166. - 167. 166. 165. 164. 163. 162. 162. 161. 160. 159. 159. 158. 158. - 158. 158. 157. 157. 156. 156. 156. 156. 156. 156. 155. 154. 154. - 153. 152. 152. 110. 108. 106. 105. 105. 105. 103. 101. 101. 102. - 102. 103. 107. 118. 132. 143. 152. 159. 168. 172. 172. 171. 171. - 172. 172. 173. 170. 165. 158. 148. 129. 111. 88. 76. 70. 76. 87. 92. - 92. 91. 93. 94. 95. 97. 98. 98. 98. 98. 97. 97. 96. 96. 97. 99. 101. - 102. 107. 103. 104. 93. 97. 81. 148. 218. 206. 195. 196. 187. 167. - 169. 177. 167. 122. 96. 106. 133. 129. 123. 132. 137. 109. 114. 122. - 128. 131. 127. 121. 116. 119. 120. 125. 133. 137. 137. 136. 136. - 102. 79. 96. 86. 70. 79. 67. 85. 85. 87. 68. 72. 62. 44. 70. 93. 52. - 41. 39. 51. 91. 83. 74. 41. 55. 55. 56. 92. 88. 77. 104. 79. 34. 96. - 121. 55. 31. 123. 172. 150. 107. 134. 169. 191. 195. 192. 190. 192. - 186. 184. 181. 180. 182. 183. 181. 180. 175. 175. 174. 174. 175. - 179. 185. 190. 187. 190. 191. 193. 198. 191. 162. 129. 82. 39. 56. - 114. 104. 77. 105. 136. 115. 119. 121. 118. 148. 152. 162. 170. 174. - 168. 169. 187. 203. 186. 129. 75. 48. 32. 39. 48. 42. 46. 54. 46. - 51. 52. 53. 53. 52. 50. 48. 46. 46. 50. 56. 54. 51. 68. 104. 131. - 144. 141. 140. 146. 156. 163. 166. 166. 166. 166. 166. 166. 165. - 165. 164. 164. 162. 162. 161. 161. 160. 159. 158. 158. 158. 158. - 158. 158. 157. 157. 156. 156. 156. 156. 155. 154. 154. 153. 152. - 152. 110. 108. 106. 105. 106. 105. 103. 101. 101. 101. 101. 101. - 105. 115. 130. 141. 152. 159. 168. 172. 173. 171. 172. 173. 173. - 173. 170. 165. 159. 148. 129. 112. 86. 76. 71. 76. 85. 90. 91. 92. - 93. 94. 95. 96. 97. 97. 97. 97. 98. 97. 97. 97. 98. 100. 102. 104. - 106. 101. 106. 94. 100. 83. 103. 189. 213. 208. 202. 187. 168. 168. - 177. 178. 127. 112. 115. 133. 137. 131. 125. 120. 108. 115. 123. - 127. 126. 123. 120. 120. 123. 123. 130. 138. 134. 123. 120. 125. 99. - 63. 57. 61. 65. 93. 75. 76. 79. 80. 55. 54. 47. 57. 99. 89. 34. 40. - 41. 54. 105. 77. 49. 49. 45. 73. 62. 68. 55. 72. 109. 44. 33. 140. - 105. 40. 80. 141. 124. 118. 136. 173. 202. 200. 192. 193. 194. 188. - 187. 184. 181. 181. 182. 182. 179. 175. 172. 174. 175. 176. 177. - 180. 184. 187. 189. 190. 187. 186. 191. 187. 156. 120. 85. 96. 79. - 61. 104. 113. 86. 124. 130. 125. 115. 100. 148. 152. 162. 165. 167. - 173. 195. 209. 172. 100. 51. 40. 51. 37. 40. 51. 46. 40. 49. 60. 57. - 56. 55. 52. 50. 47. 44. 43. 54. 50. 53. 53. 54. 83. 121. 137. 138. - 135. 138. 150. 161. 166. 166. 165. 166. 165. 165. 165. 164. 164. - 164. 164. 163. 162. 162. 161. 160. 159. 159. 159. 158. 158. 159. - 159. 158. 157. 156. 156. 156. 156. 155. 154. 154. 153. 152. 152. - 110. 108. 106. 106. 106. 105. 104. 102. 100. 100. 99. 98. 102. 113. - 128. 139. 152. 159. 168. 173. 173. 172. 172. 174. 173. 173. 171. - 165. 159. 148. 129. 112. 84. 77. 73. 77. 84. 87. 90. 93. 94. 95. 96. - 97. 98. 98. 98. 98. 99. 98. 98. 98. 99. 102. 104. 105. 106. 102. - 105. 105. 96. 93. 87. 130. 204. 219. 209. 183. 175. 181. 182. 180. - 130. 135. 131. 129. 136. 132. 119. 113. 117. 121. 126. 128. 127. - 125. 124. 125. 120. 127. 133. 133. 127. 120. 113. 108. 107. 101. 97. - 94. 61. 71. 72. 88. 63. 69. 44. 34. 32. 80. 128. 69. 33. 40. 50. 57. - 97. 70. 45. 52. 46. 64. 67. 55. 39. 74. 99. 35. 66. 132. 86. 90. - 123. 110. 92. 130. 189. 190. 194. 197. 198. 195. 188. 183. 185. 181. - 178. 179. 182. 182. 177. 172. 170. 174. 178. 181. 182. 182. 183. - 184. 188. 189. 183. 177. 184. 193. 179. 156. 86. 72. 102. 97. 76. - 100. 104. 82. 129. 135. 114. 103. 136. 150. 153. 168. 175. 186. 192. - 165. 99. 39. 28. 48. 36. 42. 49. 57. 57. 45. 47. 65. 59. 57. 54. 50. - 47. 45. 44. 44. 59. 50. 54. 57. 64. 99. 133. 137. 131. 131. 140. - 156. 167. 168. 166. 166. 165. 165. 164. 163. 163. 163. 163. 163. - 163. 163. 162. 161. 160. 160. 159. 159. 158. 158. 159. 159. 159. - 158. 156. 155. 156. 156. 155. 154. 154. 153. 152. 152. 110. 108. - 106. 106. 106. 106. 104. 102. 99. 99. 98. 97. 101. 112. 127. 138. - 152. 159. 168. 173. 173. 172. 173. 174. 173. 174. 171. 165. 159. - 148. 129. 112. 82. 77. 74. 78. 83. 85. 90. 95. 95. 96. 97. 98. 99. - 100. 99. 99. 99. 99. 99. 99. 100. 103. 105. 106. 107. 106. 103. 118. - 93. 102. 92. 81. 166. 209. 211. 188. 192. 197. 176. 156. 106. 134. - 134. 120. 125. 127. 120. 124. 124. 127. 130. 133. 134. 132. 129. - 126. 113. 127. 133. 125. 123. 127. 118. 101. 91. 89. 78. 89. 66. 83. - 90. 100. 55. 40. 27. 55. 57. 86. 126. 59. 41. 42. 60. 58. 82. 65. - 49. 48. 69. 40. 51. 51. 51. 90. 86. 35. 88. 120. 109. 153. 121. 89. - 124. 163. 185. 196. 197. 189. 187. 192. 189. 178. 181. 178. 176. - 178. 181. 181. 176. 171. 169. 174. 180. 184. 185. 184. 183. 183. - 175. 185. 189. 185. 190. 199. 188. 169. 131. 93. 74. 94. 111. 105. - 101. 107. 113. 141. 120. 119. 127. 152. 155. 191. 201. 190. 143. 77. - 40. 43. 49. 42. 42. 56. 48. 42. 59. 63. 50. 48. 56. 54. 51. 48. 47. - 47. 48. 49. 58. 49. 56. 66. 76. 112. 139. 131. 126. 129. 141. 160. - 172. 170. 167. 167. 165. 164. 163. 162. 162. 162. 162. 163. 163. - 163. 162. 161. 161. 160. 159. 159. 157. 158. 159. 160. 159. 158. - 156. 155. 156. 156. 155. 154. 154. 153. 152. 152. 109. 109. 108. - 107. 105. 103. 101. 100. 103. 101. 97. 94. 97. 109. 126. 139. 151. - 158. 166. 171. 171. 170. 170. 171. 175. 176. 174. 167. 158. 147. - 129. 114. 89. 74. 72. 79. 80. 86. 93. 90. 94. 95. 96. 97. 97. 97. - 96. 96. 98. 98. 98. 99. 101. 103. 105. 106. 110. 113. 112. 108. 105. - 102. 95. 86. 106. 202. 206. 196. 193. 193. 196. 129. 139. 129. 121. - 118. 117. 115. 117. 121. 125. 129. 133. 131. 122. 114. 115. 120. - 123. 126. 116. 109. 119. 118. 97. 79. 63. 79. 84. 79. 86. 99. 93. - 72. 57. 50. 50. 27. 57. 100. 109. 50. 37. 61. 84. 48. 51. 46. 59. - 66. 88. 79. 93. 93. 66. 104. 85. 67. 96. 108. 107. 144. 117. 123. - 161. 174. 187. 185. 185. 189. 192. 191. 185. 178. 178. 179. 180. - 179. 178. 176. 175. 174. 172. 178. 184. 185. 183. 181. 181. 183. - 191. 190. 191. 195. 198. 196. 187. 180. 141. 110. 88. 80. 89. 118. - 116. 76. 85. 128. 134. 143. 119. 148. 179. 178. 161. 100. 54. 44. - 41. 40. 45. 48. 45. 45. 52. 59. 58. 52. 53. 59. 58. 54. 48. 44. 44. - 47. 48. 49. 51. 54. 55. 63. 91. 123. 135. 129. 117. 132. 152. 165. - 168. 167. 167. 169. 163. 164. 164. 164. 164. 164. 165. 165. 163. - 163. 163. 163. 163. 162. 160. 160. 159. 159. 158. 158. 158. 157. - 157. 157. 155. 154. 154. 153. 153. 152. 152. 151. 108. 108. 108. - 107. 105. 103. 101. 100. 102. 100. 96. 93. 96. 108. 125. 138. 151. - 158. 166. 171. 171. 170. 170. 172. 175. 176. 173. 167. 158. 147. - 129. 114. 88. 73. 71. 78. 79. 85. 92. 89. 94. 95. 96. 97. 97. 97. - 97. 96. 97. 97. 98. 99. 101. 103. 104. 106. 108. 111. 111. 108. 106. - 104. 98. 89. 95. 191. 208. 204. 196. 190. 199. 153. 139. 128. 121. - 120. 114. 105. 109. 122. 129. 125. 118. 113. 111. 114. 121. 128. - 137. 127. 124. 129. 122. 99. 73. 58. 70. 72. 73. 77. 87. 93. 86. 73. - 52. 47. 51. 40. 67. 80. 86. 60. 58. 61. 74. 53. 57. 47. 52. 48. 46. - 72. 63. 44. 56. 91. 60. 66. 100. 95. 98. 127. 127. 145. 171. 175. - 179. 179. 181. 184. 185. 183. 178. 174. 175. 173. 172. 173. 174. - 174. 173. 172. 179. 177. 175. 176. 180. 185. 190. 193. 192. 191. - 192. 196. 200. 199. 193. 187. 165. 124. 96. 84. 76. 88. 100. 92. 79. - 90. 130. 133. 129. 147. 157. 149. 124. 74. 42. 44. 47. 47. 49. 49. - 49. 49. 53. 59. 57. 52. 53. 58. 56. 51. 46. 43. 44. 48. 51. 52. 52. - 52. 57. 74. 103. 128. 134. 128. 121. 135. 154. 166. 167. 165. 165. - 166. 164. 164. 164. 164. 164. 164. 164. 163. 162. 163. 163. 163. - 163. 162. 161. 160. 160. 159. 159. 159. 158. 158. 158. 157. 155. - 155. 154. 154. 153. 152. 152. 151. 108. 108. 107. 106. 105. 103. - 101. 100. 101. 99. 95. 92. 95. 107. 124. 137. 150. 157. 166. 171. - 171. 170. 171. 172. 175. 176. 173. 166. 159. 147. 130. 114. 87. 72. - 71. 77. 78. 85. 91. 88. 95. 96. 97. 97. 98. 98. 97. 97. 97. 97. 97. - 98. 100. 102. 104. 105. 107. 110. 111. 109. 108. 107. 101. 93. 84. - 178. 213. 212. 200. 192. 199. 172. 134. 125. 122. 122. 114. 103. - 110. 127. 128. 122. 114. 111. 116. 125. 132. 136. 123. 100. 114. - 138. 122. 92. 78. 70. 71. 61. 57. 68. 81. 84. 77. 70. 59. 53. 53. - 50. 75. 60. 69. 89. 91. 59. 44. 35. 41. 39. 51. 47. 40. 52. 40. 34. - 49. 71. 62. 95. 79. 70. 96. 110. 132. 152. 165. 165. 173. 177. 180. - 181. 179. 175. 172. 170. 174. 173. 172. 173. 175. 176. 175. 174. - 178. 173. 171. 175. 184. 193. 198. 198. 194. 193. 193. 197. 201. - 202. 198. 194. 183. 140. 109. 93. 68. 57. 75. 96. 88. 62. 122. 128. - 142. 148. 147. 132. 108. 64. 39. 43. 46. 44. 45. 43. 54. 53. 55. 58. - 57. 54. 54. 58. 54. 50. 44. 42. 44. 48. 52. 55. 52. 50. 62. 91. 121. - 134. 131. 125. 127. 140. 156. 166. 167. 164. 162. 162. 165. 165. - 165. 164. 163. 163. 162. 162. 162. 162. 163. 163. 163. 162. 161. - 160. 161. 160. 160. 160. 159. 159. 159. 158. 156. 155. 155. 154. - 153. 152. 151. 151. 107. 107. 106. 106. 104. 103. 101. 100. 100. 98. - 94. 90. 94. 106. 123. 136. 150. 157. 166. 171. 171. 170. 171. 173. - 174. 175. 173. 166. 159. 147. 130. 115. 88. 73. 72. 78. 79. 86. 92. - 89. 96. 96. 97. 98. 99. 99. 98. 98. 96. 96. 97. 98. 100. 102. 104. - 105. 108. 111. 112. 110. 109. 109. 103. 95. 82. 170. 218. 215. 206. - 203. 190. 162. 121. 124. 124. 121. 116. 116. 121. 125. 112. 117. - 122. 127. 133. 138. 136. 131. 128. 95. 105. 122. 97. 77. 76. 68. 61. - 52. 46. 53. 69. 79. 75. 65. 75. 71. 57. 47. 77. 54. 68. 115. 102. - 64. 41. 50. 55. 49. 57. 46. 55. 40. 46. 46. 38. 76. 107. 105. 79. - 83. 136. 135. 157. 165. 169. 178. 177. 182. 186. 184. 177. 170. 168. - 169. 170. 174. 178. 178. 174. 171. 172. 174. 168. 171. 178. 187. - 196. 199. 198. 195. 196. 194. 194. 197. 200. 200. 199. 196. 183. - 149. 120. 101. 73. 49. 55. 74. 99. 66. 99. 128. 141. 144. 154. 136. - 110. 69. 43. 41. 39. 40. 44. 45. 55. 55. 56. 57. 57. 57. 58. 60. 54. - 49. 44. 42. 44. 48. 52. 54. 50. 49. 68. 107. 135. 136. 126. 122. - 134. 144. 158. 166. 167. 165. 163. 163. 166. 165. 165. 164. 163. - 162. 161. 161. 161. 162. 163. 163. 163. 162. 161. 161. 161. 161. - 161. 160. 160. 160. 159. 159. 157. 156. 155. 154. 153. 152. 151. - 151. 106. 106. 106. 105. 104. 103. 101. 100. 100. 97. 93. 90. 93. - 105. 123. 136. 149. 156. 165. 171. 171. 171. 172. 173. 174. 175. - 173. 166. 159. 148. 131. 115. 90. 75. 73. 80. 81. 87. 94. 91. 97. - 97. 98. 99. 99. 99. 99. 99. 97. 97. 97. 98. 100. 102. 104. 105. 111. - 114. 115. 112. 111. 109. 103. 95. 88. 165. 221. 213. 212. 213. 171. - 129. 109. 122. 125. 115. 116. 129. 127. 113. 98. 114. 129. 137. 139. - 138. 130. 122. 121. 88. 82. 82. 64. 69. 82. 69. 49. 51. 45. 41. 57. - 80. 80. 64. 82. 84. 62. 41. 74. 55. 63. 106. 117. 86. 41. 44. 41. - 37. 52. 50. 45. 41. 44. 40. 55. 104. 126. 82. 108. 113. 159. 153. - 175. 175. 173. 186. 184. 188. 190. 184. 174. 166. 165. 167. 163. - 173. 181. 178. 168. 161. 164. 169. 167. 176. 188. 196. 199. 198. - 197. 196. 197. 196. 196. 197. 198. 198. 197. 196. 179. 156. 124. 98. - 79. 59. 47. 48. 88. 80. 70. 129. 132. 136. 161. 139. 97. 63. 43. 42. - 40. 43. 51. 53. 53. 54. 55. 56. 58. 61. 62. 61. 54. 50. 45. 43. 44. - 47. 49. 50. 48. 53. 79. 119. 141. 134. 123. 122. 140. 148. 157. 164. - 166. 165. 165. 166. 165. 165. 164. 163. 162. 161. 161. 160. 161. - 161. 162. 163. 163. 163. 162. 161. 161. 161. 161. 160. 160. 160. - 159. 159. 158. 157. 156. 155. 154. 152. 151. 151. 105. 105. 105. - 105. 104. 102. 101. 100. 100. 98. 93. 90. 93. 106. 123. 136. 149. - 156. 165. 170. 171. 171. 172. 174. 173. 174. 172. 166. 159. 148. - 131. 116. 90. 76. 74. 81. 82. 88. 95. 92. 97. 98. 99. 100. 100. 100. - 100. 99. 98. 98. 98. 99. 101. 103. 105. 106. 113. 116. 116. 113. - 112. 111. 105. 97. 95. 154. 218. 213. 215. 212. 145. 104. 104. 118. - 121. 110. 114. 127. 122. 104. 108. 122. 132. 133. 132. 132. 128. - 120. 106. 76. 55. 46. 48. 73. 84. 65. 42. 53. 50. 40. 51. 77. 83. - 69. 75. 84. 66. 42. 75. 56. 50. 69. 118. 120. 64. 56. 46. 36. 43. - 43. 38. 35. 26. 61. 124. 109. 97. 96. 147. 137. 144. 149. 178. 180. - 173. 184. 188. 189. 187. 179. 168. 162. 162. 164. 167. 176. 183. - 178. 166. 160. 164. 172. 177. 184. 192. 195. 195. 195. 198. 202. - 198. 199. 199. 200. 199. 199. 198. 197. 183. 167. 127. 92. 81. 67. - 47. 38. 64. 89. 59. 126. 136. 141. 166. 138. 79. 55. 46. 49. 46. 45. - 48. 47. 51. 54. 55. 56. 59. 64. 63. 60. 52. 49. 46. 45. 46. 47. 47. - 47. 50. 64. 96. 130. 141. 132. 126. 129. 146. 150. 155. 159. 161. - 162. 164. 166. 164. 164. 163. 163. 162. 161. 161. 161. 160. 161. - 162. 163. 163. 163. 162. 162. 161. 160. 160. 160. 159. 159. 159. - 158. 159. 158. 157. 155. 154. 152. 151. 151. 104. 104. 105. 104. - 104. 102. 101. 100. 101. 98. 94. 91. 94. 106. 124. 137. 148. 156. - 165. 170. 171. 171. 172. 174. 173. 174. 172. 166. 159. 148. 131. - 116. 90. 75. 74. 80. 81. 88. 94. 91. 98. 99. 99. 100. 101. 101. 100. - 100. 99. 99. 100. 101. 102. 104. 106. 107. 111. 115. 116. 114. 114. - 114. 108. 101. 97. 136. 211. 218. 215. 196. 119. 102. 104. 110. 113. - 113. 114. 117. 117. 114. 125. 130. 128. 120. 120. 126. 124. 115. - 118. 87. 52. 40. 56. 72. 60. 35. 41. 50. 52. 45. 49. 64. 75. 75. 69. - 76. 68. 51. 80. 59. 46. 50. 86. 140. 100. 97. 88. 65. 40. 24. 37. - 37. 55. 116. 159. 99. 106. 148. 174. 160. 131. 158. 187. 188. 182. - 192. 189. 187. 181. 173. 164. 160. 162. 164. 178. 180. 178. 173. - 166. 165. 172. 178. 187. 189. 191. 193. 195. 197. 200. 202. 199. - 201. 204. 205. 205. 204. 204. 204. 191. 178. 137. 100. 87. 66. 44. - 42. 47. 84. 67. 105. 144. 153. 165. 139. 69. 51. 48. 52. 47. 44. 46. - 42. 51. 55. 56. 56. 60. 64. 62. 55. 47. 46. 45. 46. 48. 49. 48. 47. - 55. 79. 115. 139. 140. 131. 132. 141. 152. 152. 153. 153. 154. 156. - 160. 162. 163. 162. 162. 162. 162. 162. 162. 162. 160. 161. 162. - 163. 163. 163. 163. 162. 160. 159. 159. 159. 158. 158. 158. 157. - 159. 159. 157. 156. 154. 152. 151. 151. 104. 104. 104. 104. 103. - 102. 101. 100. 101. 99. 95. 91. 95. 107. 124. 137. 148. 155. 165. - 170. 171. 171. 173. 174. 172. 174. 172. 166. 159. 148. 132. 117. 89. - 74. 72. 79. 80. 86. 93. 90. 98. 99. 100. 101. 101. 101. 101. 100. - 100. 100. 100. 102. 103. 105. 107. 108. 109. 113. 115. 114. 115. - 116. 111. 104. 96. 122. 205. 223. 215. 180. 104. 111. 106. 102. 108. - 119. 117. 110. 116. 133. 130. 128. 117. 106. 108. 117. 114. 101. - 106. 77. 43. 45. 79. 88. 62. 38. 42. 45. 49. 49. 47. 51. 63. 77. 69. - 70. 67. 59. 84. 63. 52. 54. 73. 136. 72. 50. 48. 45. 38. 37. 20. 57. - 123. 150. 129. 100. 164. 178. 160. 156. 115. 158. 178. 173. 171. - 186. 189. 185. 178. 169. 163. 162. 164. 166. 183. 176. 167. 161. - 161. 167. 174. 178. 189. 188. 190. 195. 201. 203. 200. 197. 200. - 203. 207. 210. 210. 210. 210. 210. 194. 185. 148. 114. 95. 63. 39. - 46. 39. 71. 73. 76. 144. 159. 160. 139. 61. 45. 44. 49. 46. 48. 54. - 53. 52. 56. 57. 56. 60. 64. 59. 51. 43. 43. 44. 47. 50. 51. 49. 47. - 59. 91. 128. 145. 140. 132. 138. 150. 155. 154. 151. 149. 149. 151. - 155. 158. 161. 161. 162. 162. 162. 162. 162. 163. 160. 160. 162. - 163. 163. 163. 163. 163. 159. 159. 158. 158. 158. 157. 157. 157. - 160. 159. 158. 156. 154. 152. 151. 150. 100. 101. 104. 105. 106. - 105. 103. 101. 99. 98. 95. 92. 94. 106. 125. 139. 148. 156. 165. - 171. 173. 173. 174. 176. 177. 173. 174. 170. 157. 148. 135. 114. 92. - 76. 72. 77. 79. 86. 95. 93. 95. 97. 100. 102. 103. 102. 101. 100. - 97. 99. 104. 106. 101. 96. 100. 109. 142. 122. 110. 113. 117. 112. - 109. 111. 100. 98. 187. 224. 210. 151. 121. 104. 116. 121. 114. 100. - 102. 120. 131. 128. 132. 120. 105. 94. 63. 92. 81. 64. 78. 81. 59. - 43. 94. 77. 44. 33. 41. 50. 59. 52. 40. 48. 60. 56. 75. 57. 56. 62. - 85. 66. 65. 54. 63. 129. 81. 46. 18. 54. 32. 25. 44. 108. 155. 127. - 105. 162. 197. 160. 159. 173. 134. 150. 168. 155. 180. 189. 183. - 176. 170. 168. 165. 164. 168. 175. 176. 161. 153. 162. 170. 171. - 175. 184. 187. 190. 196. 199. 200. 200. 201. 202. 201. 202. 204. - 206. 207. 209. 209. 209. 202. 189. 161. 126. 95. 72. 53. 40. 38. 50. - 75. 70. 117. 157. 171. 152. 66. 47. 54. 51. 49. 59. 56. 57. 49. 52. - 56. 61. 64. 62. 57. 53. 42. 51. 51. 50. 56. 52. 44. 47. 65. 104. - 139. 144. 131. 128. 142. 157. 159. 156. 153. 150. 148. 148. 149. - 150. 153. 154. 155. 157. 158. 160. 161. 162. 165. 164. 163. 161. - 160. 160. 160. 160. 159. 159. 159. 158. 158. 157. 157. 157. 157. - 157. 156. 156. 154. 152. 151. 150. 102. 102. 104. 104. 104. 103. - 102. 101. 99. 99. 96. 93. 94. 106. 125. 140. 148. 156. 165. 171. - 173. 173. 174. 176. 177. 173. 174. 170. 157. 148. 135. 114. 92. 76. - 73. 78. 80. 87. 96. 94. 97. 99. 101. 103. 104. 103. 102. 101. 103. - 101. 100. 99. 98. 101. 115. 130. 134. 119. 110. 114. 117. 112. 110. - 113. 102. 103. 155. 213. 219. 143. 118. 107. 119. 119. 113. 107. - 111. 124. 130. 128. 126. 114. 98. 95. 77. 92. 70. 49. 63. 56. 51. - 53. 106. 66. 42. 49. 59. 56. 58. 56. 47. 48. 54. 54. 55. 66. 61. 50. - 85. 92. 93. 62. 43. 93. 82. 40. 35. 36. 26. 46. 105. 140. 134. 120. - 151. 176. 172. 171. 163. 171. 132. 150. 177. 168. 186. 186. 189. - 178. 170. 171. 173. 172. 170. 169. 160. 155. 157. 167. 172. 172. - 180. 192. 187. 190. 195. 197. 198. 199. 201. 202. 202. 203. 205. - 207. 208. 209. 210. 210. 205. 194. 170. 136. 104. 79. 57. 41. 31. - 46. 57. 73. 93. 157. 165. 145. 78. 54. 56. 51. 49. 58. 53. 53. 55. - 56. 59. 63. 65. 63. 57. 51. 42. 45. 43. 48. 57. 51. 42. 46. 77. 114. - 143. 142. 130. 133. 148. 160. 158. 157. 154. 151. 149. 148. 148. - 148. 150. 151. 152. 153. 155. 156. 157. 158. 160. 159. 159. 159. - 160. 161. 162. 162. 161. 161. 160. 159. 158. 157. 156. 155. 156. - 156. 156. 155. 154. 152. 151. 150. 104. 104. 104. 103. 102. 102. - 101. 101. 99. 98. 96. 92. 94. 106. 125. 140. 148. 156. 165. 171. - 173. 173. 174. 176. 177. 173. 174. 170. 157. 148. 135. 114. 93. 78. - 75. 80. 81. 89. 97. 95. 99. 100. 102. 104. 105. 105. 104. 103. 105. - 101. 98. 97. 98. 105. 122. 139. 124. 115. 112. 116. 117. 113. 113. - 117. 107. 109. 118. 188. 227. 147. 115. 114. 117. 115. 113. 115. - 121. 126. 129. 128. 139. 133. 114. 112. 93. 85. 61. 49. 58. 37. 44. - 52. 104. 47. 34. 53. 68. 59. 55. 56. 53. 49. 49. 52. 46. 67. 54. 45. - 94. 106. 108. 77. 58. 87. 120. 53. 42. 18. 41. 97. 149. 143. 125. - 142. 182. 181. 165. 179. 167. 176. 141. 152. 177. 173. 188. 190. - 191. 176. 165. 167. 173. 170. 160. 153. 149. 153. 164. 174. 174. - 172. 182. 196. 189. 191. 194. 196. 197. 198. 201. 203. 202. 204. - 205. 207. 209. 210. 211. 211. 208. 200. 178. 146. 113. 84. 59. 42. - 31. 47. 44. 80. 73. 159. 168. 144. 91. 61. 57. 50. 49. 58. 51. 50. - 61. 60. 60. 64. 67. 65. 57. 49. 46. 42. 40. 50. 60. 49. 42. 52. 96. - 128. 148. 139. 130. 141. 157. 163. 159. 158. 156. 154. 152. 150. - 149. 148. 147. 148. 148. 149. 150. 151. 152. 152. 152. 153. 154. - 155. 157. 160. 162. 163. 162. 161. 160. 159. 157. 156. 155. 154. - 156. 156. 156. 155. 154. 152. 151. 150. 106. 105. 104. 102. 101. - 100. 100. 100. 98. 97. 94. 91. 93. 105. 123. 138. 148. 156. 165. - 171. 173. 173. 174. 176. 177. 173. 174. 170. 157. 148. 135. 114. 94. - 78. 76. 82. 83. 90. 98. 95. 99. 100. 102. 103. 104. 104. 104. 103. - 100. 99. 100. 103. 103. 105. 115. 126. 115. 113. 114. 119. 119. 115. - 116. 121. 115. 111. 101. 154. 219. 171. 115. 121. 110. 110. 116. - 124. 127. 125. 126. 131. 127. 125. 105. 98. 76. 55. 54. 59. 56. 36. - 42. 37. 93. 52. 48. 51. 57. 59. 54. 50. 53. 51. 48. 51. 58. 59. 37. - 52. 103. 88. 94. 85. 74. 87. 151. 72. 24. 25. 85. 144. 138. 118. - 143. 179. 176. 175. 184. 178. 171. 183. 154. 151. 167. 168. 186. - 198. 190. 175. 163. 163. 166. 161. 151. 144. 154. 159. 169. 176. - 175. 172. 180. 192. 192. 193. 195. 196. 197. 199. 202. 205. 203. - 204. 206. 208. 210. 211. 211. 212. 210. 203. 183. 151. 117. 87. 62. - 45. 36. 44. 41. 77. 66. 149. 176. 146. 98. 62. 53. 48. 49. 59. 52. - 51. 63. 60. 59. 63. 66. 64. 56. 48. 50. 46. 45. 56. 60. 46. 45. 67. - 115. 139. 149. 135. 131. 148. 163. 165. 161. 161. 160. 158. 156. - 154. 152. 150. 147. 148. 148. 148. 148. 149. 149. 149. 147. 148. - 148. 150. 152. 155. 157. 159. 159. 158. 158. 157. 156. 156. 155. - 155. 155. 155. 155. 155. 154. 152. 151. 150. 107. 105. 104. 102. - 100. 99. 99. 99. 96. 95. 92. 89. 91. 103. 122. 136. 148. 156. 165. - 171. 173. 173. 174. 176. 177. 173. 174. 170. 157. 148. 135. 114. 93. - 78. 77. 83. 84. 91. 98. 95. 99. 100. 101. 102. 102. 103. 103. 103. - 100. 99. 102. 105. 105. 105. 110. 118. 112. 114. 117. 121. 120. 117. - 118. 122. 122. 109. 108. 125. 191. 196. 115. 124. 107. 114. 125. - 133. 131. 126. 127. 134. 114. 100. 74. 70. 61. 48. 76. 82. 43. 41. - 45. 29. 83. 79. 75. 50. 47. 64. 58. 46. 50. 52. 50. 54. 68. 60. 33. - 55. 92. 62. 77. 70. 52. 56. 130. 82. 19. 71. 128. 143. 115. 127. - 165. 182. 167. 177. 193. 180. 182. 184. 150. 139. 161. 176. 189. - 197. 182. 172. 164. 162. 161. 157. 155. 155. 165. 165. 169. 173. - 175. 176. 181. 187. 194. 195. 197. 198. 198. 200. 203. 206. 203. - 204. 206. 208. 210. 211. 211. 212. 213. 207. 188. 156. 122. 92. 68. - 53. 40. 37. 42. 61. 70. 124. 179. 149. 99. 59. 49. 46. 49. 60. 55. - 56. 60. 58. 58. 60. 64. 62. 55. 49. 50. 52. 53. 58. 54. 41. 52. 86. - 129. 143. 145. 133. 134. 153. 166. 165. 163. 163. 163. 162. 160. - 158. 156. 155. 151. 151. 151. 151. 150. 150. 150. 150. 146. 145. - 146. 146. 147. 149. 150. 151. 152. 152. 153. 153. 154. 155. 155. - 156. 154. 154. 154. 154. 153. 152. 151. 150. 105. 104. 103. 102. - 101. 99. 98. 98. 96. 95. 92. 89. 91. 103. 121. 136. 148. 156. 165. - 171. 173. 173. 174. 176. 177. 173. 174. 170. 157. 148. 135. 114. 93. - 78. 77. 83. 84. 91. 97. 94. 99. 100. 100. 101. 102. 103. 103. 104. - 105. 102. 100. 102. 104. 106. 114. 123. 113. 115. 118. 119. 119. - 117. 117. 118. 122. 109. 123. 114. 150. 189. 114. 121. 114. 124. - 134. 137. 133. 129. 128. 130. 115. 83. 54. 56. 56. 53. 98. 82. 35. - 49. 49. 33. 65. 82. 74. 41. 58. 72. 60. 45. 51. 51. 49. 64. 60. 69. - 45. 50. 66. 51. 83. 49. 33. 33. 89. 98. 64. 125. 142. 117. 126. 168. - 170. 155. 174. 188. 183. 188. 190. 179. 140. 129. 166. 193. 189. - 184. 165. 160. 158. 158. 156. 155. 159. 166. 170. 168. 168. 171. - 175. 180. 184. 186. 193. 195. 198. 199. 199. 200. 202. 204. 202. - 204. 205. 207. 209. 210. 211. 211. 215. 212. 196. 165. 131. 102. 78. - 64. 46. 38. 45. 52. 80. 103. 179. 160. 99. 58. 48. 47. 50. 59. 56. - 60. 58. 58. 59. 60. 60. 57. 53. 49. 47. 54. 56. 53. 46. 41. 64. 105. - 138. 141. 138. 134. 141. 157. 165. 164. 164. 163. 163. 162. 161. - 160. 160. 160. 157. 157. 156. 155. 154. 153. 152. 152. 147. 146. - 145. 144. 144. 144. 145. 145. 146. 147. 148. 149. 151. 152. 153. - 154. 153. 153. 153. 153. 153. 152. 151. 150. 102. 103. 103. 103. - 102. 100. 98. 97. 97. 96. 94. 90. 92. 104. 123. 138. 148. 156. 165. - 171. 173. 173. 174. 176. 177. 173. 174. 170. 157. 148. 135. 114. 92. - 77. 76. 83. 84. 90. 96. 93. 101. 101. 101. 102. 103. 104. 105. 105. - 107. 103. 101. 102. 104. 106. 113. 121. 115. 116. 116. 116. 116. - 115. 114. 111. 114. 111. 132. 121. 110. 149. 112. 112. 125. 133. - 136. 132. 131. 131. 124. 114. 91. 61. 50. 54. 41. 36. 94. 59. 45. - 56. 50. 46. 43. 59. 58. 57. 79. 73. 48. 43. 57. 46. 46. 80. 49. 69. - 56. 52. 50. 50. 102. 49. 32. 34. 57. 103. 120. 139. 129. 125. 157. - 178. 162. 147. 171. 185. 181. 190. 187. 181. 152. 137. 170. 195. - 180. 171. 154. 152. 153. 157. 157. 156. 160. 166. 171. 172. 172. - 173. 176. 181. 184. 184. 190. 193. 197. 198. 198. 198. 199. 200. - 202. 203. 205. 207. 208. 209. 210. 210. 213. 213. 201. 174. 141. - 110. 86. 70. 48. 43. 41. 49. 83. 89. 170. 172. 103. 62. 53. 51. 51. - 57. 54. 61. 59. 61. 63. 61. 57. 52. 50. 49. 46. 57. 55. 46. 43. 51. - 82. 123. 142. 136. 132. 138. 150. 160. 164. 164. 163. 162. 161. 160. - 160. 161. 162. 163. 162. 161. 160. 159. 157. 156. 155. 154. 148. - 148. 146. 145. 144. 144. 144. 145. 143. 143. 144. 145. 146. 147. - 148. 149. 152. 153. 153. 153. 153. 152. 151. 150. 100. 102. 103. - 104. 103. 101. 98. 96. 99. 98. 95. 92. 94. 106. 125. 139. 148. 156. - 165. 171. 173. 173. 174. 176. 177. 173. 174. 170. 157. 148. 135. - 114. 91. 77. 76. 83. 84. 90. 96. 92. 103. 103. 103. 103. 104. 105. - 106. 107. 105. 102. 103. 106. 107. 105. 107. 111. 117. 116. 114. - 113. 113. 113. 110. 106. 107. 114. 132. 131. 86. 110. 110. 105. 132. - 137. 133. 125. 126. 131. 118. 98. 66. 55. 70. 77. 44. 33. 105. 67. - 57. 59. 47. 59. 32. 45. 61. 100. 94. 67. 33. 40. 61. 42. 43. 93. 44. - 60. 57. 61. 50. 50. 116. 63. 25. 34. 31. 88. 144. 118. 111. 159. - 178. 153. 157. 164. 156. 171. 193. 186. 177. 188. 176. 153. 169. - 182. 166. 164. 159. 156. 158. 163. 165. 163. 162. 164. 172. 176. - 178. 177. 176. 178. 180. 180. 187. 191. 195. 197. 197. 197. 197. - 197. 201. 202. 204. 206. 207. 209. 209. 209. 208. 211. 203. 179. - 146. 115. 88. 71. 42. 43. 30. 45. 77. 78. 155. 174. 108. 68. 58. 55. - 51. 55. 51. 59. 60. 64. 67. 63. 55. 49. 47. 48. 48. 59. 54. 42. 45. - 62. 97. 135. 145. 132. 129. 141. 156. 162. 163. 164. 161. 160. 158. - 157. 158. 160. 162. 164. 164. 163. 162. 160. 159. 157. 156. 155. - 150. 149. 148. 147. 146. 146. 146. 146. 142. 143. 143. 143. 144. - 144. 144. 144. 152. 152. 153. 153. 153. 152. 151. 151. 102. 102. - 102. 101. 100. 99. 98. 97. 95. 96. 94. 90. 90. 103. 123. 140. 150. - 155. 163. 169. 172. 174. 176. 177. 176. 172. 175. 171. 158. 148. - 134. 113. 91. 79. 73. 79. 84. 86. 91. 98. 98. 100. 102. 103. 103. - 102. 103. 105. 101. 102. 104. 104. 105. 107. 111. 114. 113. 118. - 125. 119. 114. 124. 129. 117. 129. 112. 150. 101. 114. 145. 167. - 117. 117. 126. 125. 134. 122. 119. 132. 100. 53. 60. 107. 53. 34. - 38. 92. 86. 58. 43. 55. 46. 63. 77. 102. 80. 73. 47. 37. 51. 53. 43. - 58. 88. 37. 56. 113. 50. 48. 78. 64. 43. 38. 45. 72. 124. 107. 92. - 152. 176. 158. 167. 164. 151. 156. 178. 191. 187. 167. 204. 176. - 161. 176. 171. 168. 155. 149. 161. 169. 165. 162. 166. 170. 171. - 175. 173. 176. 181. 177. 169. 173. 184. 185. 188. 192. 196. 198. - 197. 196. 195. 200. 200. 202. 204. 207. 210. 212. 212. 207. 211. - 208. 187. 154. 119. 91. 76. 47. 42. 45. 38. 63. 79. 144. 178. 131. - 57. 71. 52. 63. 65. 56. 63. 56. 66. 69. 60. 51. 51. 55. 56. 53. 53. - 49. 44. 47. 70. 108. 139. 142. 130. 129. 143. 155. 157. 160. 166. - 162. 162. 162. 161. 161. 161. 160. 160. 164. 165. 165. 165. 163. - 161. 158. 157. 156. 155. 153. 151. 148. 146. 144. 143. 142. 142. - 143. 144. 144. 143. 142. 142. 146. 146. 147. 148. 149. 150. 151. - 151. 102. 102. 102. 101. 100. 99. 98. 97. 97. 97. 95. 90. 91. 102. - 123. 139. 150. 155. 163. 169. 172. 174. 176. 177. 176. 172. 175. - 171. 158. 148. 135. 113. 90. 79. 73. 80. 85. 86. 90. 98. 98. 100. - 102. 103. 102. 102. 103. 105. 102. 103. 104. 104. 105. 107. 111. - 114. 116. 113. 114. 121. 125. 121. 119. 124. 120. 132. 167. 101. - 124. 157. 163. 132. 120. 133. 127. 133. 127. 115. 106. 66. 54. 69. - 99. 47. 34. 47. 107. 88. 41. 37. 53. 50. 72. 78. 91. 75. 57. 46. 41. - 45. 47. 47. 54. 66. 33. 54. 91. 53. 51. 85. 60. 53. 45. 42. 138. - 139. 83. 146. 193. 158. 172. 180. 174. 158. 157. 174. 186. 185. 194. - 192. 175. 198. 191. 131. 115. 129. 140. 150. 158. 159. 161. 167. - 169. 167. 173. 173. 177. 181. 181. 178. 180. 184. 184. 187. 191. - 195. 196. 196. 194. 193. 195. 199. 203. 205. 205. 206. 209. 211. - 214. 216. 211. 190. 154. 112. 75. 53. 46. 40. 43. 39. 62. 74. 136. - 180. 137. 70. 68. 53. 63. 62. 58. 59. 62. 69. 70. 60. 50. 48. 51. - 51. 50. 52. 49. 45. 54. 83. 118. 140. 138. 130. 132. 146. 158. 159. - 160. 165. 162. 162. 161. 161. 160. 160. 160. 160. 163. 164. 164. - 164. 163. 160. 158. 157. 156. 155. 154. 152. 150. 148. 146. 146. - 144. 144. 145. 145. 144. 143. 142. 142. 142. 142. 143. 144. 144. - 145. 145. 146. 101. 102. 102. 102. 101. 100. 98. 98. 100. 99. 97. - 91. 91. 102. 122. 138. 149. 155. 163. 169. 173. 174. 176. 177. 176. - 173. 175. 171. 158. 149. 135. 114. 89. 78. 74. 81. 87. 87. 90. 97. - 98. 100. 103. 103. 102. 102. 103. 104. 102. 103. 104. 105. 105. 108. - 111. 115. 116. 115. 112. 123. 130. 112. 118. 159. 193. 149. 128. 49. - 55. 55. 72. 124. 128. 140. 122. 115. 121. 112. 92. 59. 67. 87. 85. - 38. 38. 59. 121. 81. 37. 42. 50. 47. 67. 62. 61. 56. 42. 47. 47. 43. - 46. 56. 60. 56. 39. 67. 92. 50. 66. 78. 52. 40. 48. 100. 147. 111. - 118. 184. 182. 160. 178. 181. 173. 158. 158. 175. 190. 193. 191. - 191. 173. 156. 118. 78. 84. 97. 122. 126. 131. 135. 145. 158. 169. - 172. 176. 179. 179. 176. 176. 179. 179. 176. 182. 185. 189. 193. - 195. 194. 192. 190. 196. 198. 200. 200. 199. 200. 204. 208. 202. - 198. 189. 171. 142. 106. 71. 50. 45. 37. 41. 41. 59. 67. 122. 183. - 145. 89. 63. 54. 64. 60. 62. 55. 65. 69. 68. 59. 50. 48. 49. 50. 49. - 53. 49. 46. 64. 101. 131. 141. 133. 130. 136. 152. 161. 160. 159. - 162. 161. 161. 160. 160. 160. 159. 159. 159. 162. 162. 163. 163. - 162. 160. 158. 156. 155. 155. 154. 153. 152. 151. 150. 149. 148. - 148. 147. 147. 146. 144. 143. 142. 140. 140. 140. 140. 140. 140. - 140. 140. 101. 102. 102. 102. 101. 100. 99. 99. 101. 101. 98. 92. - 91. 102. 121. 137. 149. 155. 163. 170. 173. 175. 175. 176. 177. 173. - 176. 172. 158. 149. 135. 114. 88. 78. 75. 83. 88. 88. 90. 96. 99. - 101. 103. 103. 102. 102. 103. 104. 102. 103. 104. 105. 105. 107. - 111. 115. 113. 125. 120. 120. 124. 108. 129. 195. 160. 85. 68. 33. - 37. 27. 60. 143. 176. 173. 130. 95. 93. 84. 62. 48. 88. 101. 66. 32. - 49. 74. 126. 69. 42. 50. 46. 46. 61. 51. 45. 56. 40. 48. 51. 46. 49. - 60. 70. 72. 45. 76. 96. 44. 75. 53. 44. 32. 86. 151. 103. 102. 175. - 177. 162. 174. 187. 178. 162. 151. 159. 179. 194. 197. 198. 192. - 160. 114. 86. 99. 117. 107. 103. 100. 95. 93. 101. 119. 140. 153. - 171. 181. 183. 176. 172. 176. 176. 171. 179. 182. 187. 191. 193. - 192. 189. 187. 195. 194. 195. 197. 201. 205. 208. 209. 210. 192. - 169. 145. 119. 88. 60. 44. 46. 37. 40. 43. 55. 62. 106. 184. 150. - 105. 59. 54. 64. 61. 66. 55. 64. 65. 62. 56. 51. 49. 51. 53. 52. 55. - 49. 46. 72. 116. 140. 140. 129. 131. 142. 157. 164. 162. 159. 159. - 160. 160. 159. 159. 158. 158. 158. 158. 160. 160. 161. 162. 161. - 159. 158. 156. 155. 155. 154. 154. 154. 153. 153. 153. 151. 151. - 151. 149. 148. 146. 144. 143. 141. 141. 140. 140. 139. 138. 138. - 137. 101. 102. 102. 102. 102. 101. 100. 100. 101. 101. 98. 92. 90. - 101. 120. 136. 148. 155. 163. 171. 174. 175. 175. 175. 177. 174. - 176. 172. 159. 150. 136. 115. 89. 79. 76. 83. 89. 88. 90. 96. 99. - 101. 103. 103. 102. 101. 102. 103. 101. 102. 103. 104. 104. 107. - 111. 114. 110. 127. 119. 114. 124. 120. 136. 184. 143. 77. 68. 50. - 40. 57. 111. 152. 169. 158. 120. 81. 76. 70. 55. 61. 95. 92. 45. 36. - 67. 87. 122. 72. 35. 45. 44. 58. 69. 61. 55. 78. 54. 50. 47. 47. 46. - 50. 67. 86. 60. 78. 66. 60. 62. 33. 38. 71. 144. 123. 106. 154. 175. - 164. 184. 180. 202. 180. 156. 152. 168. 188. 195. 192. 194. 148. - 126. 133. 144. 149. 142. 136. 114. 106. 91. 77. 68. 72. 86. 100. - 130. 152. 171. 176. 176. 179. 178. 173. 176. 179. 185. 190. 192. - 191. 188. 186. 189. 189. 193. 200. 206. 204. 193. 183. 155. 135. - 115. 104. 93. 77. 61. 53. 49. 40. 41. 43. 51. 61. 92. 182. 153. 116. - 60. 52. 62. 66. 66. 59. 66. 63. 58. 54. 51. 49. 51. 54. 57. 56. 48. - 49. 80. 125. 143. 136. 128. 134. 148. 160. 165. 162. 158. 158. 158. - 158. 158. 158. 157. 157. 156. 156. 157. 158. 159. 160. 160. 159. - 157. 156. 154. 154. 155. 155. 155. 155. 155. 155. 154. 154. 153. - 152. 150. 148. 146. 144. 142. 142. 140. 139. 137. 136. 134. 134. - 101. 101. 102. 102. 102. 102. 101. 101. 100. 100. 96. 91. 89. 100. - 120. 136. 148. 154. 164. 171. 174. 175. 175. 175. 178. 174. 176. - 173. 159. 150. 136. 115. 90. 79. 76. 83. 88. 88. 91. 98. 100. 102. - 104. 104. 102. 101. 102. 103. 100. 101. 102. 102. 103. 105. 109. - 112. 110. 118. 111. 115. 138. 142. 136. 142. 181. 104. 60. 54. 24. - 28. 102. 131. 119. 102. 91. 75. 73. 74. 68. 87. 85. 70. 38. 54. 82. - 85. 106. 94. 32. 38. 46. 73. 70. 60. 53. 77. 76. 55. 41. 42. 39. 36. - 52. 76. 89. 93. 38. 88. 41. 31. 47. 125. 149. 101. 156. 183. 158. - 175. 188. 191. 198. 173. 154. 162. 186. 199. 192. 180. 143. 117. - 125. 149. 162. 151. 137. 156. 156. 143. 125. 104. 84. 68. 64. 67. - 76. 103. 137. 161. 173. 177. 174. 170. 172. 177. 183. 190. 192. 192. - 189. 187. 190. 191. 192. 193. 186. 166. 140. 120. 94. 84. 82. 93. - 102. 98. 91. 88. 53. 47. 44. 41. 48. 65. 82. 177. 154. 121. 67. 51. - 57. 74. 61. 64. 71. 63. 55. 52. 50. 48. 48. 51. 59. 55. 49. 58. 92. - 130. 142. 133. 129. 139. 153. 162. 164. 161. 158. 157. 157. 157. - 157. 156. 156. 156. 155. 155. 155. 156. 158. 159. 159. 158. 157. - 156. 154. 154. 155. 155. 155. 155. 155. 155. 156. 156. 155. 154. - 152. 150. 148. 147. 143. 142. 140. 138. 135. 133. 131. 130. 101. - 101. 102. 103. 103. 102. 102. 101. 98. 98. 95. 89. 88. 99. 119. 135. - 147. 154. 164. 172. 175. 175. 175. 174. 178. 174. 177. 173. 159. - 150. 136. 115. 92. 80. 75. 81. 87. 88. 92. 99. 100. 102. 104. 104. - 102. 101. 101. 102. 98. 99. 101. 101. 101. 104. 108. 111. 111. 109. - 113. 131. 151. 154. 142. 131. 140. 105. 58. 93. 77. 44. 105. 127. - 128. 88. 82. 73. 62. 63. 66. 92. 76. 57. 54. 83. 87. 61. 71. 112. - 45. 40. 48. 80. 56. 45. 42. 63. 94. 64. 39. 37. 40. 37. 43. 54. 79. - 97. 45. 76. 32. 43. 91. 140. 123. 140. 181. 172. 168. 185. 179. 201. - 183. 165. 158. 176. 195. 190. 163. 140. 110. 122. 140. 133. 134. - 129. 116. 147. 166. 149. 131. 120. 110. 97. 86. 82. 73. 85. 110. - 139. 159. 165. 165. 165. 169. 174. 182. 189. 193. 193. 190. 188. - 192. 190. 183. 170. 148. 124. 102. 89. 114. 104. 104. 116. 120. 110. - 97. 93. 57. 55. 48. 39. 45. 70. 76. 172. 156. 123. 77. 49. 51. 80. - 51. 68. 72. 60. 51. 50. 50. 48. 49. 53. 57. 51. 51. 71. 107. 136. - 140. 130. 132. 144. 156. 162. 161. 159. 158. 158. 156. 156. 156. - 156. 155. 155. 154. 154. 153. 154. 156. 158. 158. 158. 157. 156. - 155. 155. 154. 154. 154. 154. 154. 154. 157. 157. 157. 156. 154. - 153. 151. 150. 147. 145. 143. 140. 137. 134. 132. 131. 101. 101. - 102. 103. 103. 103. 102. 102. 96. 96. 93. 88. 88. 99. 119. 135. 147. - 154. 164. 172. 175. 175. 175. 174. 178. 174. 177. 173. 160. 150. - 137. 115. 93. 81. 75. 81. 86. 88. 93. 101. 100. 102. 104. 104. 102. - 101. 101. 102. 97. 98. 100. 100. 100. 103. 107. 110. 112. 107. 124. - 149. 156. 154. 155. 152. 155. 190. 128. 140. 129. 91. 129. 117. 146. - 82. 71. 64. 51. 63. 81. 117. 76. 56. 75. 107. 85. 34. 39. 117. 61. - 45. 49. 80. 45. 38. 43. 67. 104. 72. 42. 37. 46. 49. 44. 40. 32. 76. - 62. 32. 32. 53. 141. 125. 123. 182. 174. 171. 182. 181. 199. 196. - 181. 168. 168. 185. 192. 166. 121. 88. 110. 105. 108. 103. 119. 106. - 69. 96. 136. 115. 99. 101. 111. 113. 109. 106. 111. 102. 106. 128. - 148. 156. 160. 165. 168. 173. 182. 189. 194. 194. 191. 189. 188. - 184. 171. 149. 126. 111. 109. 113. 105. 94. 92. 100. 101. 88. 76. - 73. 60. 60. 51. 38. 44. 74. 73. 168. 157. 124. 84. 49. 48. 83. 43. - 68. 68. 56. 47. 48. 51. 51. 53. 57. 54. 48. 54. 82. 118. 140. 139. - 129. 135. 146. 158. 162. 159. 157. 157. 158. 156. 156. 155. 155. - 155. 154. 154. 154. 152. 154. 155. 157. 158. 158. 157. 156. 155. - 155. 154. 154. 154. 153. 153. 153. 157. 157. 157. 157. 155. 154. - 152. 151. 151. 150. 147. 144. 141. 137. 135. 134. 99. 102. 103. 100. - 99. 102. 101. 97. 97. 96. 91. 85. 84. 96. 118. 135. 146. 155. 165. - 173. 175. 175. 177. 178. 178. 174. 175. 171. 158. 151. 139. 118. 92. - 77. 75. 81. 83. 90. 97. 95. 99. 100. 102. 104. 104. 102. 100. 99. - 99. 106. 94. 89. 118. 95. 106. 107. 125. 138. 142. 143. 152. 156. - 156. 161. 166. 163. 163. 167. 155. 118. 83. 70. 65. 46. 56. 64. 61. - 92. 114. 88. 63. 78. 76. 114. 60. 37. 34. 80. 90. 36. 46. 87. 47. - 40. 39. 55. 86. 102. 65. 31. 49. 52. 38. 50. 37. 49. 47. 46. 37. - 113. 141. 106. 168. 172. 173. 174. 183. 197. 202. 198. 182. 173. - 193. 198. 145. 94. 84. 89. 81. 103. 72. 50. 72. 60. 40. 67. 84. 54. - 53. 52. 83. 120. 113. 119. 121. 119. 120. 127. 138. 149. 156. 159. - 155. 176. 180. 184. 203. 201. 189. 192. 190. 173. 173. 136. 129. - 119. 66. 79. 60. 52. 50. 59. 66. 66. 65. 67. 70. 55. 44. 32. 47. 75. - 71. 168. 168. 111. 98. 58. 50. 70. 57. 66. 64. 56. 49. 49. 49. 49. - 52. 56. 51. 40. 55. 100. 136. 142. 134. 130. 141. 151. 159. 161. - 159. 159. 156. 152. 155. 155. 155. 155. 155. 155. 155. 155. 155. - 156. 156. 157. 157. 156. 156. 155. 152. 152. 152. 152. 153. 154. - 155. 156. 156. 157. 157. 157. 155. 151. 148. 146. 146. 146. 145. - 143. 141. 139. 137. 136. 97. 101. 101. 98. 98. 100. 99. 96. 96. 94. - 90. 83. 83. 95. 117. 134. 146. 155. 165. 173. 175. 175. 177. 178. - 178. 174. 175. 171. 158. 150. 138. 118. 93. 78. 75. 81. 81. 87. 94. - 92. 98. 99. 101. 102. 102. 101. 99. 98. 102. 95. 90. 95. 104. 84. - 111. 156. 149. 156. 152. 139. 143. 159. 155. 134. 144. 143. 119. - 119. 136. 97. 39. 28. 28. 45. 88. 93. 75. 108. 123. 71. 65. 81. 86. - 118. 61. 39. 38. 83. 65. 52. 49. 100. 38. 45. 33. 39. 59. 106. 98. - 52. 38. 40. 39. 46. 42. 34. 43. 23. 78. 137. 123. 134. 183. 179. - 177. 180. 191. 199. 197. 191. 186. 187. 184. 145. 90. 73. 77. 68. - 62. 50. 55. 59. 50. 54. 58. 43. 52. 38. 45. 48. 50. 65. 101. 152. - 128. 125. 124. 127. 135. 144. 151. 154. 160. 172. 182. 190. 197. - 193. 193. 202. 193. 189. 124. 87. 73. 62. 69. 45. 45. 46. 52. 59. - 60. 57. 60. 66. 61. 50. 44. 34. 47. 72. 65. 161. 171. 116. 98. 63. - 54. 73. 59. 67. 62. 54. 48. 49. 49. 49. 52. 56. 48. 39. 58. 105. - 138. 139. 131. 131. 145. 154. 160. 160. 158. 158. 156. 153. 155. - 155. 155. 155. 155. 155. 155. 155. 155. 155. 156. 157. 157. 156. - 155. 155. 152. 152. 152. 153. 153. 153. 153. 153. 154. 155. 155. - 154. 152. 149. 146. 144. 145. 145. 144. 143. 140. 138. 135. 134. 96. - 99. 99. 96. 96. 98. 97. 93. 94. 92. 87. 81. 80. 93. 115. 133. 146. - 155. 165. 173. 175. 175. 177. 178. 178. 173. 175. 170. 157. 149. - 137. 117. 93. 78. 75. 80. 80. 85. 92. 89. 97. 98. 99. 100. 100. 99. - 98. 97. 89. 102. 105. 93. 87. 118. 143. 172. 221. 150. 126. 152. - 156. 143. 153. 169. 150. 141. 83. 61. 92. 71. 31. 46. 47. 97. 91. - 72. 98. 101. 78. 83. 73. 86. 98. 119. 60. 41. 42. 82. 46. 75. 53. - 114. 37. 53. 37. 35. 40. 75. 108. 108. 76. 42. 36. 50. 48. 34. 34. - 47. 137. 136. 130. 182. 181. 171. 168. 180. 195. 200. 195. 188. 199. - 183. 148. 93. 54. 56. 62. 47. 45. 51. 47. 44. 48. 48. 50. 61. 96. - 83. 58. 45. 29. 29. 72. 109. 134. 131. 128. 129. 134. 141. 147. 150. - 163. 167. 184. 197. 195. 196. 204. 207. 178. 113. 83. 60. 48. 49. - 44. 65. 66. 57. 49. 49. 52. 55. 57. 60. 50. 45. 46. 38. 48. 68. 58. - 153. 172. 119. 95. 68. 57. 75. 60. 66. 58. 51. 47. 48. 50. 49. 51. - 55. 47. 42. 67. 117. 144. 137. 130. 136. 151. 157. 160. 158. 157. - 158. 157. 153. 154. 154. 154. 154. 154. 154. 154. 154. 154. 155. - 156. 156. 156. 156. 155. 154. 152. 152. 153. 154. 154. 152. 151. - 150. 152. 152. 152. 151. 149. 146. 143. 141. 141. 141. 142. 142. - 140. 138. 136. 134. 94. 98. 98. 95. 94. 96. 95. 91. 92. 90. 85. 78. - 78. 91. 114. 132. 146. 155. 165. 173. 175. 175. 177. 178. 178. 173. - 175. 170. 157. 148. 136. 116. 91. 76. 73. 79. 79. 86. 92. 90. 96. - 97. 98. 99. 99. 98. 97. 96. 91. 101. 98. 83. 83. 162. 184. 188. 179. - 135. 129. 149. 153. 159. 149. 114. 127. 120. 80. 55. 62. 45. 27. 44. - 103. 111. 64. 57. 101. 70. 38. 91. 89. 90. 105. 111. 54. 43. 43. 73. - 39. 79. 50. 109. 54. 54. 45. 40. 37. 44. 82. 110. 93. 67. 56. 49. - 34. 32. 21. 102. 148. 99. 153. 192. 176. 167. 167. 182. 196. 199. - 195. 192. 198. 147. 96. 72. 61. 52. 47. 45. 52. 64. 53. 39. 44. 44. - 59. 94. 164. 165. 113. 73. 43. 35. 63. 57. 129. 129. 129. 131. 136. - 141. 145. 148. 159. 163. 185. 199. 200. 212. 211. 186. 118. 40. 54. - 52. 51. 74. 70. 115. 127. 91. 52. 38. 47. 59. 58. 51. 46. 44. 48. - 41. 49. 67. 56. 151. 172. 122. 89. 73. 59. 76. 59. 61. 54. 49. 46. - 49. 51. 50. 50. 53. 49. 52. 83. 131. 151. 138. 133. 145. 157. 160. - 161. 157. 156. 157. 157. 153. 153. 153. 153. 153. 153. 153. 153. - 153. 154. 154. 155. 155. 155. 155. 154. 154. 151. 152. 154. 154. - 153. 151. 148. 147. 151. 150. 150. 149. 147. 144. 142. 140. 136. - 136. 138. 138. 138. 137. 136. 135. 95. 98. 98. 94. 93. 95. 94. 90. - 90. 88. 82. 76. 76. 89. 113. 131. 146. 155. 165. 173. 175. 175. 177. - 178. 179. 174. 175. 171. 157. 149. 136. 116. 89. 74. 72. 79. 81. 88. - 96. 94. 97. 98. 98. 98. 98. 98. 98. 97. 109. 85. 74. 85. 84. 155. - 196. 207. 161. 135. 135. 144. 145. 159. 146. 98. 144. 112. 82. 57. - 38. 41. 57. 61. 102. 55. 53. 84. 75. 46. 49. 70. 108. 92. 107. 98. - 46. 44. 42. 59. 34. 57. 41. 91. 86. 50. 47. 40. 39. 46. 57. 49. 46. - 77. 81. 38. 38. 38. 55. 145. 124. 119. 187. 174. 180. 178. 182. 193. - 201. 201. 196. 194. 156. 107. 68. 66. 66. 47. 41. 57. 77. 50. 60. - 64. 37. 51. 85. 82. 178. 202. 176. 136. 84. 56. 82. 85. 114. 117. - 123. 129. 134. 139. 143. 145. 154. 164. 185. 198. 208. 224. 199. - 138. 58. 56. 40. 45. 46. 74. 126. 121. 170. 126. 72. 43. 45. 55. 55. - 48. 48. 46. 51. 44. 51. 69. 57. 152. 174. 127. 85. 81. 63. 78. 60. - 59. 52. 47. 47. 50. 52. 50. 49. 50. 51. 63. 99. 140. 151. 138. 136. - 150. 160. 162. 160. 155. 155. 157. 156. 153. 153. 153. 153. 153. - 153. 153. 153. 153. 153. 153. 154. 154. 154. 154. 153. 153. 151. - 152. 153. 154. 153. 150. 147. 145. 150. 150. 149. 147. 145. 143. - 141. 140. 133. 133. 133. 133. 132. 132. 131. 131. 96. 99. 99. 95. - 94. 96. 94. 90. 89. 87. 81. 74. 74. 88. 112. 131. 146. 155. 165. - 173. 175. 175. 177. 178. 181. 176. 177. 172. 158. 149. 137. 116. 90. - 75. 74. 81. 83. 91. 99. 97. 100. 100. 100. 100. 100. 100. 100. 100. - 97. 94. 89. 92. 72. 122. 178. 156. 178. 147. 141. 152. 148. 145. - 143. 130. 150. 92. 58. 42. 33. 65. 100. 93. 56. 47. 61. 77. 61. 40. - 51. 73. 119. 92. 111. 89. 41. 46. 43. 49. 37. 40. 42. 76. 115. 56. - 46. 41. 46. 45. 48. 37. 30. 53. 62. 36. 51. 50. 107. 137. 104. 178. - 193. 151. 169. 179. 190. 198. 203. 202. 192. 181. 106. 97. 79. 68. - 60. 44. 45. 67. 98. 81. 73. 74. 71. 69. 70. 71. 192. 202. 202. 189. - 135. 81. 89. 116. 102. 107. 115. 122. 129. 134. 139. 143. 153. 170. - 188. 199. 214. 218. 168. 97. 68. 62. 68. 64. 57. 70. 93. 112. 171. - 142. 97. 59. 44. 45. 49. 49. 50. 47. 51. 45. 54. 71. 58. 150. 179. - 134. 83. 91. 69. 83. 63. 59. 51. 48. 48. 53. 54. 50. 48. 48. 50. 75. - 114. 142. 145. 135. 139. 152. 160. 161. 158. 154. 154. 157. 156. - 151. 152. 152. 152. 152. 152. 152. 152. 152. 152. 152. 153. 154. - 154. 153. 152. 152. 151. 151. 152. 152. 151. 149. 147. 146. 149. - 148. 147. 145. 143. 141. 139. 139. 133. 132. 130. 129. 129. 130. - 131. 132. 98. 101. 101. 97. 96. 97. 95. 91. 89. 86. 80. 73. 74. 88. - 113. 132. 146. 155. 165. 173. 175. 175. 177. 178. 182. 177. 178. - 173. 159. 150. 138. 117. 94. 79. 77. 84. 85. 93. 101. 98. 102. 102. - 102. 101. 101. 102. 102. 102. 90. 104. 95. 80. 53. 88. 164. 100. - 128. 170. 191. 172. 154. 146. 111. 63. 71. 44. 33. 45. 63. 84. 84. - 62. 39. 78. 67. 52. 67. 53. 50. 98. 120. 91. 121. 91. 41. 49. 46. - 46. 51. 42. 45. 58. 114. 64. 44. 50. 49. 39. 48. 59. 47. 33. 36. 43. - 43. 68. 114. 99. 117. 181. 162. 147. 164. 181. 193. 196. 198. 194. - 169. 139. 99. 112. 106. 93. 83. 61. 51. 67. 102. 121. 89. 69. 91. - 76. 70. 121. 214. 199. 207. 202. 162. 111. 89. 113. 103. 108. 113. - 119. 124. 131. 139. 145. 156. 176. 192. 207. 221. 200. 140. 90. 113. - 67. 95. 87. 82. 80. 62. 139. 165. 143. 104. 65. 44. 43. 47. 47. 48. - 44. 48. 45. 56. 73. 55. 143. 180. 138. 80. 96. 72. 85. 63. 58. 52. - 49. 50. 55. 56. 51. 47. 46. 53. 88. 128. 144. 139. 135. 144. 155. - 159. 159. 156. 153. 154. 157. 155. 150. 151. 151. 151. 151. 151. - 151. 151. 151. 151. 152. 153. 153. 153. 153. 152. 151. 151. 151. - 150. 150. 149. 148. 148. 148. 147. 146. 144. 141. 139. 138. 137. - 136. 132. 131. 130. 131. 135. 141. 147. 151. 99. 102. 102. 98. 97. - 98. 96. 92. 89. 86. 80. 73. 73. 88. 113. 132. 146. 155. 165. 173. - 175. 175. 177. 178. 183. 178. 179. 174. 160. 151. 138. 118. 97. 82. - 80. 86. 87. 93. 100. 98. 104. 104. 103. 103. 103. 103. 104. 104. - 115. 89. 56. 59. 43. 56. 163. 115. 159. 190. 215. 214. 178. 114. 59. - 41. 44. 45. 35. 46. 78. 84. 66. 57. 56. 68. 67. 67. 73. 70. 78. 105. - 117. 90. 130. 95. 44. 51. 50. 48. 62. 48. 42. 36. 92. 63. 38. 56. - 42. 48. 52. 47. 39. 38. 42. 44. 47. 109. 111. 97. 168. 161. 153. - 181. 180. 197. 205. 199. 194. 181. 138. 91. 123. 128. 123. 126. 123. - 85. 54. 62. 100. 106. 98. 77. 59. 67. 120. 184. 205. 197. 217. 196. - 161. 132. 102. 118. 112. 114. 117. 119. 123. 131. 141. 149. 158. - 179. 196. 217. 227. 187. 128. 103. 131. 119. 87. 84. 88. 82. 119. - 173. 172. 142. 96. 58. 45. 49. 49. 43. 45. 41. 46. 45. 58. 74. 52. - 137. 179. 138. 76. 97. 71. 84. 61. 54. 52. 50. 51. 56. 57. 51. 46. - 45. 56. 99. 138. 146. 137. 138. 149. 159. 158. 158. 155. 153. 154. - 157. 155. 149. 151. 151. 151. 151. 151. 151. 151. 151. 151. 152. - 152. 153. 153. 152. 152. 151. 151. 150. 149. 148. 148. 148. 149. - 149. 145. 143. 141. 139. 137. 135. 135. 134. 129. 129. 131. 136. - 145. 156. 167. 174. 102. 100. 98. 98. 98. 97. 95. 93. 91. 88. 81. - 73. 72. 87. 112. 132. 145. 157. 168. 172. 174. 178. 180. 178. 179. - 180. 177. 170. 162. 151. 133. 118. 101. 83. 81. 90. 92. 96. 104. - 105. 107. 107. 104. 112. 109. 104. 101. 77. 76. 51. 68. 63. 93. 119. - 150. 162. 171. 201. 233. 214. 151. 41. 67. 46. 41. 31. 49. 82. 93. - 87. 77. 67. 43. 66. 84. 94. 75. 102. 67. 121. 91. 87. 121. 107. 53. - 51. 54. 32. 55. 47. 44. 49. 53. 52. 53. 57. 49. 35. 49. 58. 38. 34. - 46. 39. 90. 143. 94. 154. 183. 155. 170. 183. 198. 193. 191. 200. - 182. 122. 99. 133. 118. 125. 135. 140. 134. 117. 94. 79. 104. 111. - 124. 125. 118. 138. 179. 205. 205. 201. 198. 181. 153. 139. 132. - 120. 135. 121. 114. 122. 129. 129. 133. 142. 158. 177. 200. 221. - 222. 179. 119. 86. 122. 128. 126. 105. 101. 138. 174. 178. 174. 135. - 92. 55. 52. 56. 45. 58. 47. 41. 52. 52. 69. 66. 57. 120. 171. 164. - 88. 80. 98. 71. 66. 54. 45. 53. 48. 44. 53. 53. 44. 41. 66. 112. - 140. 138. 136. 141. 150. 161. 156. 156. 155. 154. 154. 153. 152. - 152. 150. 149. 150. 154. 157. 158. 155. 151. 152. 152. 153. 153. - 153. 152. 151. 151. 148. 152. 151. 146. 145. 148. 145. 138. 137. - 141. 143. 141. 135. 130. 128. 128. 135. 143. 154. 161. 165. 169. - 176. 181. 103. 101. 100. 100. 100. 98. 95. 93. 90. 88. 82. 73. 73. - 87. 112. 132. 145. 156. 167. 172. 175. 178. 180. 179. 180. 181. 178. - 171. 163. 152. 134. 119. 101. 83. 81. 90. 92. 96. 104. 104. 110. - 109. 110. 110. 113. 101. 68. 43. 37. 58. 115. 131. 145. 163. 176. - 181. 180. 203. 169. 77. 49. 63. 104. 42. 58. 71. 101. 122. 114. 87. - 55. 29. 46. 86. 63. 81. 73. 89. 81. 113. 128. 53. 154. 116. 91. 45. - 75. 41. 46. 40. 39. 45. 50. 50. 51. 55. 45. 48. 58. 41. 33. 37. 36. - 58. 135. 113. 132. 187. 165. 160. 189. 180. 202. 196. 203. 173. 116. - 113. 134. 119. 125. 130. 138. 144. 143. 133. 119. 109. 105. 111. - 129. 139. 137. 147. 165. 171. 187. 185. 187. 180. 161. 148. 136. - 117. 131. 121. 117. 124. 128. 128. 132. 141. 158. 178. 200. 218. - 219. 185. 142. 124. 113. 127. 140. 138. 141. 164. 174. 159. 133. - 103. 77. 57. 64. 68. 51. 58. 51. 45. 55. 54. 71. 67. 57. 119. 170. - 166. 93. 81. 96. 71. 64. 52. 46. 49. 45. 46. 55. 53. 50. 56. 80. - 119. 140. 136. 137. 144. 153. 163. 156. 156. 155. 154. 153. 153. - 152. 152. 152. 152. 152. 155. 159. 159. 156. 153. 152. 152. 152. - 153. 152. 152. 151. 150. 147. 150. 148. 143. 142. 146. 145. 140. - 139. 140. 139. 136. 133. 133. 138. 143. 154. 161. 170. 176. 178. - 181. 187. 191. 103. 102. 101. 102. 102. 99. 95. 91. 88. 87. 82. 74. - 73. 86. 111. 131. 145. 156. 167. 172. 175. 178. 180. 179. 181. 182. - 180. 173. 165. 153. 136. 120. 101. 82. 81. 90. 92. 96. 103. 104. - 112. 110. 118. 108. 120. 108. 46. 30. 77. 104. 147. 153. 134. 147. - 147. 156. 178. 118. 70. 45. 41. 46. 84. 104. 102. 89. 84. 87. 76. - 53. 39. 38. 52. 104. 47. 83. 81. 62. 83. 112. 139. 82. 155. 100. 85. - 85. 76. 42. 43. 40. 40. 44. 48. 47. 47. 49. 46. 55. 55. 33. 35. 34. - 39. 101. 142. 92. 163. 196. 165. 171. 194. 192. 201. 210. 175. 114. - 95. 116. 131. 128. 133. 136. 140. 145. 147. 145. 139. 134. 120. 110. - 111. 114. 114. 125. 136. 134. 127. 132. 150. 165. 169. 172. 164. - 145. 127. 121. 122. 127. 128. 126. 131. 140. 153. 177. 202. 219. - 219. 192. 162. 154. 149. 149. 148. 137. 130. 137. 130. 104. 89. 74. - 67. 64. 78. 79. 54. 55. 51. 45. 56. 55. 71. 66. 54. 116. 169. 168. - 103. 83. 93. 69. 59. 50. 48. 45. 42. 51. 59. 52. 54. 74. 101. 128. - 139. 134. 139. 149. 156. 164. 156. 155. 155. 154. 153. 152. 152. - 152. 152. 152. 153. 155. 157. 157. 155. 153. 151. 152. 152. 152. - 151. 150. 149. 149. 146. 147. 145. 140. 139. 142. 143. 141. 138. - 137. 136. 133. 134. 142. 154. 164. 170. 175. 182. 185. 185. 186. - 190. 193. 103. 102. 102. 103. 102. 99. 93. 89. 85. 86. 82. 74. 71. - 84. 109. 130. 144. 156. 167. 172. 175. 179. 181. 179. 183. 184. 181. - 174. 166. 155. 137. 122. 100. 82. 80. 90. 91. 95. 103. 104. 110. - 109. 121. 103. 126. 128. 66. 73. 132. 138. 154. 160. 126. 135. 123. - 137. 111. 70. 56. 58. 48. 46. 67. 115. 111. 83. 73. 93. 95. 59. 32. - 38. 55. 100. 51. 96. 96. 50. 70. 111. 117. 127. 133. 90. 106. 111. - 50. 38. 48. 47. 47. 48. 48. 46. 45. 45. 52. 51. 37. 40. 38. 28. 72. - 139. 111. 115. 172. 170. 183. 176. 179. 205. 202. 177. 116. 88. 114. - 125. 122. 141. 139. 139. 141. 143. 145. 145. 142. 139. 154. 133. - 119. 112. 111. 123. 134. 132. 120. 125. 142. 156. 159. 161. 154. - 136. 124. 124. 127. 131. 128. 125. 129. 138. 147. 173. 201. 222. - 224. 197. 167. 158. 150. 141. 132. 119. 111. 118. 115. 95. 76. 71. - 78. 78. 87. 81. 53. 53. 46. 41. 53. 53. 69. 64. 51. 112. 168. 171. - 114. 85. 89. 68. 55. 49. 50. 43. 43. 57. 62. 47. 53. 85. 119. 135. - 136. 131. 141. 152. 157. 162. 155. 155. 154. 154. 153. 152. 151. - 151. 149. 150. 151. 152. 153. 153. 152. 151. 151. 151. 151. 151. - 150. 149. 148. 147. 144. 145. 145. 141. 139. 138. 137. 137. 131. - 134. 138. 141. 147. 158. 171. 181. 180. 183. 187. 187. 186. 186. - 187. 189. 102. 102. 101. 101. 100. 96. 91. 86. 83. 84. 81. 72. 68. - 81. 107. 129. 144. 155. 167. 172. 175. 179. 181. 180. 184. 185. 182. - 175. 167. 156. 138. 123. 100. 82. 80. 89. 91. 95. 103. 103. 110. - 109. 119. 98. 123. 142. 107. 135. 132. 126. 139. 149. 106. 90. 64. - 79. 84. 71. 61. 47. 39. 44. 48. 73. 137. 124. 108. 111. 113. 85. 61. - 66. 45. 81. 62. 87. 99. 78. 71. 94. 98. 119. 124. 117. 150. 80. 46. - 47. 47. 49. 50. 49. 47. 47. 46. 45. 49. 53. 28. 41. 31. 40. 122. - 139. 104. 157. 174. 155. 186. 178. 190. 203. 179. 106. 84. 110. 118. - 126. 140. 136. 144. 144. 144. 146. 147. 146. 143. 141. 154. 142. - 139. 138. 134. 137. 140. 133. 142. 144. 155. 158. 150. 149. 146. - 132. 125. 128. 133. 134. 129. 125. 128. 135. 147. 170. 195. 218. - 227. 203. 171. 160. 143. 139. 140. 136. 127. 128. 124. 108. 89. 90. - 99. 94. 93. 81. 54. 59. 44. 39. 53. 53. 70. 64. 50. 111. 166. 174. - 125. 86. 83. 66. 51. 50. 50. 44. 46. 61. 61. 41. 50. 89. 131. 139. - 133. 129. 143. 154. 156. 159. 155. 155. 154. 153. 152. 152. 151. - 151. 149. 150. 151. 151. 151. 151. 151. 151. 150. 150. 150. 150. - 149. 147. 146. 145. 143. 144. 145. 144. 139. 134. 131. 132. 128. - 137. 149. 159. 167. 175. 183. 189. 190. 191. 192. 191. 189. 188. - 188. 188. 101. 100. 99. 98. 96. 92. 87. 83. 82. 82. 78. 68. 63. 77. - 105. 129. 143. 155. 166. 172. 175. 179. 182. 181. 184. 185. 182. - 175. 167. 156. 138. 123. 99. 81. 79. 89. 91. 95. 102. 103. 110. 111. - 115. 97. 113. 137. 134. 165. 173. 153. 150. 132. 84. 65. 60. 85. 99. - 60. 32. 42. 65. 42. 40. 56. 85. 124. 139. 134. 132. 101. 56. 36. 33. - 65. 70. 64. 85. 112. 95. 81. 88. 110. 108. 136. 104. 68. 68. 59. 41. - 45. 47. 45. 44. 47. 49. 49. 42. 59. 35. 33. 31. 77. 149. 112. 126. - 171. 172. 170. 178. 189. 222. 181. 113. 90. 89. 112. 124. 128. 135. - 142. 149. 149. 151. 154. 156. 156. 154. 152. 145. 139. 144. 146. - 141. 144. 149. 143. 152. 153. 161. 163. 157. 160. 163. 153. 130. - 133. 137. 135. 130. 126. 128. 132. 152. 168. 187. 209. 224. 209. - 183. 173. 164. 156. 155. 149. 135. 128. 124. 113. 107. 107. 114. - 104. 98. 84. 59. 66. 45. 42. 56. 56. 72. 65. 50. 110. 165. 176. 135. - 86. 77. 65. 48. 53. 49. 45. 48. 60. 57. 37. 52. 96. 135. 138. 131. - 130. 147. 157. 154. 155. 154. 154. 154. 153. 152. 151. 151. 150. - 151. 152. 153. 153. 151. 151. 152. 153. 149. 149. 149. 149. 147. - 146. 144. 143. 143. 143. 144. 144. 138. 131. 130. 133. 137. 149. - 165. 178. 185. 188. 190. 191. 192. 192. 191. 190. 189. 188. 188. - 187. 100. 98. 95. 93. 92. 88. 84. 81. 80. 81. 76. 64. 59. 73. 103. - 129. 143. 154. 166. 171. 175. 180. 182. 181. 183. 184. 182. 175. - 167. 155. 138. 122. 99. 81. 79. 89. 90. 94. 102. 103. 111. 112. 111. - 103. 107. 123. 138. 152. 149. 124. 116. 78. 59. 67. 85. 101. 67. 61. - 38. 39. 84. 65. 82. 70. 92. 105. 90. 79. 89. 72. 45. 47. 37. 62. 77. - 62. 66. 100. 117. 107. 95. 105. 85. 113. 74. 85. 66. 55. 40. 46. 47. - 43. 42. 47. 51. 50. 47. 51. 44. 30. 61. 122. 134. 104. 153. 173. - 172. 191. 183. 201. 203. 126. 72. 106. 106. 106. 131. 130. 124. 149. - 153. 153. 154. 157. 161. 164. 164. 163. 166. 157. 157. 157. 152. - 160. 171. 171. 174. 169. 172. 170. 163. 162. 157. 142. 136. 139. - 139. 136. 131. 128. 128. 129. 151. 166. 184. 206. 223. 211. 190. - 184. 167. 154. 149. 145. 136. 135. 138. 133. 120. 115. 117. 108. - 105. 91. 61. 64. 48. 44. 58. 58. 72. 62. 45. 104. 164. 178. 141. 85. - 72. 64. 47. 56. 46. 46. 48. 55. 50. 38. 61. 110. 134. 137. 131. 134. - 152. 159. 154. 153. 154. 154. 153. 153. 152. 151. 150. 150. 150. - 152. 153. 152. 150. 149. 151. 153. 149. 149. 149. 148. 147. 145. - 143. 142. 143. 141. 141. 140. 135. 129. 133. 141. 157. 167. 182. - 191. 194. 193. 192. 191. 191. 190. 189. 188. 188. 188. 188. 187. - 100. 97. 93. 91. 88. 86. 82. 79. 80. 80. 74. 62. 56. 70. 102. 129. - 142. 154. 166. 171. 175. 180. 182. 181. 183. 184. 181. 174. 166. - 155. 137. 122. 99. 81. 79. 88. 90. 94. 102. 102. 109. 112. 109. 111. - 106. 113. 133. 129. 117. 102. 111. 78. 89. 101. 98. 71. 49. 52. 43. - 57. 98. 49. 101. 122. 115. 86. 56. 76. 104. 67. 27. 41. 50. 66. 82. - 81. 55. 60. 123. 149. 116. 78. 79. 82. 146. 87. 35. 41. 45. 51. 51. - 44. 41. 46. 50. 50. 58. 36. 45. 37. 99. 151. 105. 116. 172. 186. - 176. 200. 200. 202. 142. 63. 86. 93. 118. 127. 117. 128. 145. 138. - 155. 154. 154. 156. 160. 164. 165. 165. 173. 165. 166. 167. 163. - 167. 173. 168. 171. 164. 166. 169. 167. 167. 156. 135. 141. 142. - 140. 135. 131. 129. 128. 127. 144. 164. 186. 210. 224. 211. 189. - 183. 176. 161. 158. 159. 150. 143. 137. 126. 125. 116. 116. 108. - 109. 95. 60. 56. 49. 45. 58. 56. 69. 58. 39. 97. 164. 179. 145. 84. - 69. 64. 47. 58. 44. 46. 47. 50. 46. 41. 71. 122. 133. 136. 132. 137. - 156. 161. 154. 152. 154. 154. 153. 152. 152. 151. 150. 150. 148. - 150. 151. 149. 147. 146. 148. 151. 149. 149. 148. 147. 146. 144. - 143. 142. 144. 140. 137. 136. 132. 129. 137. 149. 173. 181. 191. - 197. 196. 193. 192. 191. 194. 192. 191. 191. 192. 192. 192. 192. 92. - 93. 94. 91. 86. 83. 83. 85. 82. 78. 72. 65. 62. 73. 101. 127. 140. - 152. 164. 169. 173. 178. 180. 179. 182. 183. 180. 173. 166. 156. - 140. 125. 99. 84. 76. 84. 95. 98. 99. 102. 107. 104. 103. 108. 117. - 121. 115. 106. 143. 135. 127. 138. 155. 139. 95. 62. 56. 60. 48. 78. - 104. 74. 121. 107. 111. 78. 73. 115. 92. 36. 40. 44. 45. 58. 106. - 125. 87. 69. 82. 82. 115. 98. 124. 144. 122. 73. 42. 62. 57. 44. 48. - 55. 44. 37. 46. 55. 50. 41. 44. 57. 143. 123. 97. 163. 169. 188. - 186. 194. 205. 166. 60. 77. 91. 105. 118. 121. 121. 127. 135. 141. - 145. 150. 156. 161. 164. 165. 166. 167. 173. 175. 173. 169. 168. - 172. 173. 170. 168. 170. 172. 172. 167. 159. 150. 144. 142. 139. - 135. 132. 130. 129. 128. 127. 141. 157. 184. 211. 221. 212. 192. - 178. 175. 169. 160. 151. 144. 140. 136. 133. 127. 127. 119. 115. - 112. 90. 65. 58. 47. 44. 59. 60. 65. 55. 43. 89. 159. 180. 160. 79. - 73. 46. 42. 63. 47. 44. 53. 56. 40. 47. 91. 131. 137. 130. 132. 146. - 159. 160. 156. 155. 153. 153. 152. 152. 152. 152. 151. 151. 151. - 152. 152. 151. 150. 149. 148. 147. 147. 146. 146. 145. 143. 142. - 142. 141. 138. 139. 137. 132. 130. 138. 155. 169. 189. 191. 195. - 198. 198. 196. 193. 191. 191. 190. 189. 188. 188. 189. 190. 191. 91. - 92. 92. 89. 85. 82. 82. 84. 77. 74. 69. 63. 60. 72. 101. 127. 141. - 153. 165. 170. 173. 178. 180. 179. 182. 183. 180. 173. 166. 155. - 139. 124. 100. 85. 77. 83. 91. 93. 95. 100. 104. 115. 127. 132. 134. - 139. 149. 156. 156. 170. 135. 99. 102. 90. 61. 55. 67. 62. 65. 82. - 93. 86. 125. 93. 89. 110. 110. 101. 61. 29. 40. 34. 56. 37. 50. 82. - 102. 117. 120. 103. 103. 130. 148. 104. 76. 100. 105. 96. 77. 51. - 43. 51. 49. 45. 45. 43. 51. 49. 40. 106. 136. 121. 114. 178. 179. - 186. 193. 197. 186. 68. 61. 73. 94. 107. 119. 122. 122. 127. 135. - 140. 145. 149. 155. 160. 162. 165. 167. 169. 174. 176. 175. 171. - 170. 174. 174. 172. 171. 172. 173. 171. 167. 159. 151. 146. 144. - 141. 137. 134. 131. 130. 128. 127. 137. 153. 181. 209. 221. 214. - 194. 179. 174. 168. 160. 152. 146. 141. 136. 133. 129. 130. 123. - 120. 116. 94. 68. 61. 49. 47. 60. 63. 68. 54. 41. 84. 157. 178. 159. - 94. 69. 46. 42. 58. 44. 44. 54. 53. 42. 57. 101. 134. 136. 132. 135. - 148. 159. 159. 156. 155. 153. 153. 152. 152. 152. 152. 151. 151. - 151. 151. 151. 151. 150. 149. 148. 147. 147. 147. 146. 145. 144. - 143. 142. 141. 138. 136. 133. 132. 137. 152. 170. 183. 190. 192. - 195. 197. 198. 196. 193. 191. 190. 190. 189. 189. 190. 191. 193. - 194. 89. 90. 89. 87. 83. 81. 81. 81. 73. 70. 66. 60. 59. 72. 101. - 128. 142. 154. 165. 171. 174. 178. 181. 180. 183. 183. 180. 173. - 165. 155. 138. 123. 99. 86. 78. 83. 89. 92. 98. 106. 122. 132. 143. - 145. 140. 138. 144. 151. 122. 89. 62. 66. 74. 62. 57. 71. 71. 50. - 75. 91. 86. 85. 114. 105. 114. 133. 102. 59. 42. 45. 52. 36. 39. 45. - 58. 68. 73. 83. 103. 119. 118. 75. 52. 40. 76. 141. 134. 88. 77. 49. - 38. 47. 49. 47. 47. 44. 43. 45. 56. 140. 127. 107. 144. 184. 184. - 200. 198. 197. 110. 29. 52. 88. 98. 111. 122. 123. 123. 128. 135. - 138. 145. 149. 153. 157. 161. 164. 169. 172. 175. 178. 177. 174. - 174. 176. 176. 173. 174. 174. 173. 171. 166. 159. 153. 149. 147. - 144. 140. 136. 132. 130. 129. 129. 133. 150. 178. 206. 222. 217. - 197. 180. 171. 167. 160. 154. 148. 142. 136. 132. 129. 131. 126. - 123. 119. 95. 68. 61. 50. 51. 61. 66. 72. 53. 40. 76. 156. 174. 155. - 116. 61. 46. 41. 52. 43. 47. 53. 47. 43. 70. 114. 137. 136. 135. - 140. 151. 158. 159. 156. 154. 153. 153. 153. 152. 152. 151. 151. - 151. 150. 151. 151. 150. 150. 148. 147. 146. 147. 147. 146. 146. - 144. 143. 141. 140. 139. 134. 130. 135. 149. 168. 184. 193. 192. - 193. 195. 197. 197. 195. 193. 191. 189. 189. 190. 191. 193. 195. - 197. 198. 86. 86. 85. 84. 81. 79. 79. 78. 73. 70. 65. 60. 58. 71. - 100. 127. 143. 155. 166. 171. 174. 178. 180. 179. 183. 183. 180. - 173. 165. 154. 137. 122. 96. 85. 80. 85. 91. 95. 105. 117. 131. 128. - 128. 134. 136. 128. 115. 106. 104. 49. 54. 88. 77. 63. 66. 59. 61. - 66. 93. 79. 79. 105. 116. 124. 121. 113. 68. 38. 49. 58. 52. 48. 51. - 52. 47. 50. 67. 74. 71. 72. 102. 35. 22. 48. 90. 133. 131. 111. 73. - 51. 46. 51. 45. 40. 47. 51. 35. 41. 104. 138. 122. 109. 179. 181. - 182. 207. 202. 133. 38. 53. 54. 100. 103. 114. 124. 125. 125. 129. - 134. 136. 145. 148. 151. 155. 158. 163. 169. 174. 175. 178. 179. - 177. 177. 179. 178. 174. 176. 175. 173. 169. 164. 158. 153. 150. - 148. 147. 143. 138. 133. 130. 129. 130. 134. 150. 177. 204. 222. - 220. 200. 180. 168. 165. 160. 156. 151. 144. 138. 133. 126. 130. - 126. 123. 117. 92. 65. 58. 49. 53. 58. 69. 76. 53. 40. 70. 155. 170. - 148. 135. 54. 43. 41. 48. 47. 51. 51. 39. 42. 83. 126. 139. 135. - 139. 147. 155. 158. 158. 155. 154. 154. 154. 153. 152. 152. 151. - 150. 150. 150. 150. 150. 150. 149. 148. 146. 146. 146. 146. 146. - 146. 144. 142. 140. 139. 138. 133. 132. 143. 162. 180. 191. 194. - 193. 194. 195. 196. 195. 194. 193. 192. 190. 190. 192. 194. 196. - 199. 201. 202. 84. 83. 81. 80. 79. 78. 76. 75. 75. 72. 66. 60. 58. - 70. 98. 125. 143. 155. 166. 171. 174. 178. 179. 178. 182. 182. 179. - 172. 165. 154. 137. 122. 95. 84. 79. 85. 91. 96. 106. 117. 112. 107. - 110. 123. 129. 118. 99. 86. 79. 93. 100. 90. 76. 67. 58. 47. 69. - 104. 104. 53. 79. 143. 125. 120. 70. 78. 69. 52. 52. 45. 37. 54. 53. - 48. 36. 41. 70. 83. 67. 51. 78. 48. 48. 55. 81. 124. 132. 122. 86. - 59. 47. 50. 43. 38. 42. 43. 34. 61. 145. 129. 111. 148. 198. 182. - 189. 197. 172. 43. 32. 55. 75. 91. 106. 116. 124. 125. 126. 130. - 134. 135. 144. 146. 149. 152. 156. 161. 168. 173. 173. 178. 180. - 178. 178. 180. 178. 174. 176. 175. 172. 168. 162. 156. 151. 149. - 147. 147. 144. 139. 133. 129. 129. 131. 137. 152. 175. 201. 221. - 223. 203. 180. 166. 164. 160. 156. 152. 146. 139. 134. 127. 131. - 127. 123. 115. 89. 62. 55. 47. 53. 53. 70. 79. 52. 42. 64. 154. 167. - 142. 146. 55. 40. 40. 45. 55. 55. 49. 35. 45. 93. 134. 138. 135. - 144. 154. 159. 158. 156. 155. 154. 154. 154. 153. 152. 152. 151. - 150. 150. 149. 149. 149. 149. 148. 147. 145. 145. 145. 146. 146. - 145. 144. 141. 138. 136. 130. 131. 138. 155. 175. 189. 193. 192. - 194. 194. 194. 194. 194. 194. 194. 194. 192. 193. 195. 198. 200. - 202. 204. 204. 81. 79. 77. 77. 77. 76. 74. 72. 75. 71. 66. 60. 57. - 69. 97. 124. 143. 154. 165. 170. 172. 176. 178. 177. 180. 181. 178. - 172. 165. 154. 138. 124. 97. 84. 78. 83. 90. 93. 99. 108. 104. 106. - 114. 121. 113. 95. 85. 85. 81. 116. 86. 68. 102. 78. 47. 84. 103. - 98. 70. 53. 91. 138. 107. 110. 58. 70. 75. 51. 42. 48. 44. 55. 43. - 55. 60. 51. 44. 53. 60. 58. 81. 48. 30. 37. 86. 133. 131. 127. 103. - 59. 31. 34. 40. 43. 41. 33. 41. 96. 144. 123. 107. 189. 193. 186. - 199. 185. 90. 32. 45. 51. 81. 85. 108. 117. 124. 125. 126. 130. 133. - 133. 142. 145. 148. 151. 154. 159. 165. 169. 171. 176. 179. 178. - 179. 180. 177. 172. 174. 173. 170. 166. 160. 154. 148. 145. 144. - 145. 143. 138. 131. 127. 128. 131. 138. 152. 172. 195. 217. 224. - 205. 180. 165. 163. 159. 156. 152. 147. 141. 137. 131. 134. 130. - 123. 113. 86. 60. 54. 46. 55. 49. 70. 81. 50. 42. 58. 152. 166. 139. - 153. 68. 40. 40. 43. 60. 56. 48. 39. 55. 104. 139. 137. 134. 148. - 161. 162. 158. 155. 154. 153. 155. 154. 154. 153. 151. 150. 150. - 149. 148. 148. 148. 148. 147. 146. 145. 144. 143. 144. 145. 144. - 142. 139. 135. 133. 123. 132. 148. 168. 186. 195. 196. 194. 194. - 193. 193. 193. 193. 194. 195. 196. 196. 197. 199. 201. 203. 204. - 205. 205. 79. 77. 74. 74. 75. 75. 73. 70. 71. 68. 63. 58. 56. 68. - 97. 124. 142. 153. 164. 169. 171. 175. 176. 175. 178. 179. 177. 171. - 165. 155. 139. 125. 98. 83. 75. 82. 91. 94. 97. 103. 111. 112. 117. - 118. 104. 90. 93. 107. 128. 108. 75. 90. 121. 86. 64. 111. 102. 65. - 45. 65. 75. 110. 103. 101. 92. 70. 66. 44. 40. 60. 55. 55. 59. 52. - 53. 46. 39. 57. 62. 38. 67. 49. 41. 56. 100. 116. 114. 153. 135. 81. - 40. 32. 36. 40. 41. 34. 62. 126. 125. 115. 139. 197. 189. 196. 193. - 131. 31. 58. 48. 57. 71. 91. 108. 116. 123. 124. 126. 131. 133. 133. - 141. 143. 147. 150. 153. 156. 161. 165. 168. 174. 178. 178. 178. - 179. 176. 170. 171. 170. 168. 164. 158. 151. 145. 141. 140. 142. - 141. 136. 129. 126. 128. 131. 136. 148. 165. 187. 213. 224. 208. - 182. 165. 162. 159. 155. 152. 148. 143. 139. 132. 135. 129. 120. - 108. 80. 55. 51. 48. 58. 46. 69. 80. 46. 40. 52. 148. 166. 141. 158. - 90. 43. 41. 41. 61. 54. 49. 49. 71. 116. 143. 137. 134. 151. 166. - 165. 158. 155. 154. 153. 155. 155. 154. 153. 151. 150. 149. 149. - 148. 148. 148. 147. 147. 145. 144. 143. 141. 142. 143. 143. 141. - 137. 133. 131. 127. 142. 163. 182. 192. 196. 197. 197. 193. 192. - 192. 192. 193. 195. 197. 199. 200. 201. 203. 204. 205. 205. 204. - 204. 78. 76. 73. 73. 75. 75. 72. 69. 67. 64. 60. 55. 55. 68. 98. - 125. 141. 152. 163. 168. 170. 174. 175. 174. 177. 178. 176. 171. - 165. 156. 140. 126. 96. 81. 74. 83. 95. 99. 101. 105. 107. 102. 104. - 111. 113. 115. 131. 151. 108. 68. 87. 111. 84. 79. 104. 105. 60. 60. - 65. 63. 33. 109. 139. 88. 102. 58. 63. 60. 50. 56. 47. 51. 44. 38. - 50. 51. 43. 68. 80. 49. 47. 52. 45. 50. 99. 110. 86. 112. 178. 124. - 76. 51. 34. 30. 37. 40. 87. 144. 118. 107. 187. 187. 198. 208. 177. - 50. 36. 45. 57. 51. 68. 93. 108. 116. 122. 124. 126. 131. 133. 132. - 140. 143. 147. 150. 152. 155. 159. 162. 166. 172. 176. 177. 177. - 178. 174. 169. 168. 168. 166. 163. 157. 150. 143. 138. 138. 140. - 140. 135. 128. 124. 127. 131. 132. 144. 160. 182. 210. 224. 209. - 184. 166. 162. 158. 154. 151. 148. 144. 141. 130. 133. 126. 116. - 103. 75. 50. 46. 51. 61. 45. 69. 79. 42. 38. 47. 145. 167. 144. 162. - 106. 47. 41. 39. 59. 51. 50. 58. 84. 125. 146. 136. 133. 153. 169. - 167. 158. 154. 154. 153. 156. 155. 154. 153. 151. 150. 149. 148. - 147. 147. 147. 147. 146. 145. 144. 143. 140. 141. 142. 142. 140. - 136. 132. 129. 137. 154. 176. 191. 195. 194. 195. 197. 192. 192. - 191. 191. 192. 195. 198. 200. 203. 204. 205. 206. 206. 205. 204. - 203. 77. 76. 74. 74. 76. 76. 75. 73. 70. 67. 63. 56. 53. 67. 99. - 128. 143. 152. 161. 167. 171. 175. 174. 169. 176. 177. 174. 168. - 162. 153. 138. 124. 107. 73. 77. 69. 99. 135. 101. 93. 107. 109. - 114. 134. 155. 138. 93. 65. 47. 103. 119. 119. 71. 124. 100. 46. 41. - 105. 58. 83. 51. 122. 139. 105. 131. 63. 53. 40. 72. 58. 65. 41. 59. - 32. 47. 51. 39. 56. 68. 61. 53. 47. 62. 60. 104. 130. 127. 68. 111. - 156. 148. 42. 42. 43. 19. 58. 138. 117. 114. 134. 202. 197. 197. - 216. 76. 45. 37. 50. 64. 47. 81. 91. 102. 109. 119. 125. 127. 129. - 131. 134. 137. 141. 146. 150. 152. 155. 159. 161. 161. 167. 173. - 176. 174. 171. 170. 171. 172. 167. 163. 163. 160. 151. 140. 134. - 136. 134. 133. 131. 127. 123. 124. 127. 134. 138. 157. 183. 205. - 223. 214. 185. 161. 160. 157. 151. 147. 145. 141. 137. 136. 129. - 126. 120. 96. 63. 46. 47. 55. 60. 51. 74. 82. 44. 33. 48. 133. 167. - 135. 141. 130. 54. 34. 45. 55. 55. 39. 52. 106. 138. 137. 136. 144. - 152. 161. 164. 161. 156. 155. 155. 153. 153. 152. 151. 150. 150. - 149. 148. 147. 147. 146. 145. 145. 144. 143. 143. 141. 144. 142. - 137. 136. 136. 133. 126. 146. 169. 188. 192. 192. 197. 196. 189. - 193. 193. 193. 194. 196. 199. 202. 204. 208. 208. 208. 207. 205. - 203. 201. 200. 79. 77. 75. 75. 75. 74. 72. 70. 69. 66. 61. 55. 52. - 65. 97. 127. 142. 152. 161. 167. 171. 175. 174. 170. 176. 177. 175. - 168. 162. 153. 138. 124. 95. 68. 80. 79. 107. 135. 96. 83. 121. 138. - 153. 155. 131. 82. 50. 53. 88. 122. 140. 106. 99. 81. 70. 43. 68. - 98. 86. 79. 80. 131. 128. 115. 105. 96. 53. 58. 63. 46. 63. 45. 41. - 39. 37. 48. 44. 62. 96. 71. 87. 52. 68. 79. 115. 156. 163. 88. 57. - 129. 157. 58. 33. 33. 36. 87. 120. 132. 113. 163. 202. 212. 205. - 141. 53. 33. 36. 57. 73. 49. 74. 80. 102. 109. 119. 125. 127. 128. - 131. 134. 137. 141. 145. 149. 152. 154. 158. 160. 161. 165. 169. - 171. 172. 171. 170. 170. 170. 167. 164. 162. 157. 150. 141. 135. - 135. 134. 133. 131. 127. 123. 123. 125. 133. 138. 157. 181. 203. - 223. 219. 195. 161. 159. 155. 151. 147. 144. 140. 137. 133. 129. - 126. 117. 91. 59. 44. 46. 56. 63. 54. 76. 83. 46. 34. 47. 120. 164. - 143. 147. 131. 55. 34. 47. 53. 50. 42. 64. 115. 141. 136. 135. 147. - 154. 161. 163. 159. 155. 154. 155. 154. 153. 153. 152. 151. 150. - 149. 149. 147. 147. 146. 146. 145. 144. 143. 143. 142. 142. 141. - 139. 136. 133. 132. 133. 155. 175. 191. 193. 193. 197. 196. 191. - 192. 193. 194. 196. 199. 201. 203. 204. 208. 208. 207. 207. 205. - 203. 202. 201. 81. 79. 76. 75. 74. 73. 70. 68. 67. 64. 59. 52. 49. - 63. 96. 125. 141. 151. 162. 167. 171. 175. 174. 171. 176. 177. 175. - 169. 163. 153. 138. 124. 96. 71. 76. 74. 101. 133. 117. 117. 144. - 135. 131. 135. 115. 68. 51. 72. 114. 129. 103. 102. 92. 75. 42. 63. - 91. 95. 115. 71. 108. 133. 114. 129. 85. 131. 52. 68. 60. 47. 62. - 46. 27. 47. 31. 49. 53. 73. 122. 83. 71. 45. 82. 108. 129. 179. 193. - 110. 40. 88. 125. 57. 30. 26. 50. 107. 134. 128. 125. 189. 206. 220. - 153. 43. 37. 26. 36. 61. 81. 53. 71. 79. 102. 109. 118. 125. 127. - 128. 131. 133. 136. 140. 144. 148. 150. 153. 156. 159. 161. 161. - 162. 165. 168. 170. 170. 168. 168. 167. 164. 160. 154. 147. 141. - 136. 132. 133. 133. 130. 126. 123. 122. 122. 130. 135. 154. 176. - 196. 220. 224. 207. 161. 158. 153. 150. 147. 143. 139. 136. 130. - 129. 125. 112. 83. 54. 42. 46. 55. 65. 58. 78. 84. 47. 34. 45. 104. - 160. 154. 153. 133. 60. 35. 48. 49. 44. 46. 80. 127. 143. 136. 136. - 152. 156. 160. 160. 157. 153. 153. 154. 154. 154. 153. 152. 152. - 151. 150. 150. 147. 147. 147. 146. 145. 144. 144. 143. 143. 139. - 139. 141. 135. 129. 133. 144. 168. 183. 195. 195. 193. 196. 196. - 192. 192. 194. 197. 200. 203. 204. 205. 205. 207. 207. 207. 207. - 206. 204. 203. 202. 81. 78. 76. 75. 74. 73. 70. 68. 66. 62. 56. 49. - 46. 61. 94. 124. 140. 151. 162. 167. 171. 174. 174. 172. 176. 177. - 176. 170. 164. 154. 138. 123. 99. 77. 75. 68. 87. 120. 126. 140. - 144. 112. 98. 118. 121. 84. 67. 90. 122. 108. 67. 90. 82. 85. 58. - 84. 88. 104. 119. 66. 113. 119. 110. 143. 77. 130. 54. 48. 56. 55. - 55. 39. 33. 47. 36. 52. 61. 80. 115. 88. 56. 73. 113. 115. 116. 164. - 184. 127. 51. 53. 78. 44. 29. 25. 70. 135. 127. 97. 160. 203. 206. - 194. 81. 38. 37. 31. 37. 60. 84. 56. 74. 88. 101. 109. 118. 124. - 126. 128. 130. 133. 135. 139. 143. 146. 149. 151. 154. 157. 159. - 157. 156. 159. 164. 168. 168. 166. 165. 166. 164. 157. 150. 145. - 140. 134. 127. 131. 132. 129. 125. 123. 121. 118. 129. 134. 151. - 169. 188. 214. 225. 214. 163. 157. 152. 151. 149. 144. 139. 137. - 129. 130. 124. 104. 74. 49. 43. 47. 52. 67. 61. 77. 82. 47. 34. 41. - 94. 157. 160. 154. 135. 70. 38. 45. 46. 39. 52. 96. 135. 142. 137. - 139. 156. 158. 159. 157. 154. 152. 152. 153. 154. 153. 153. 153. - 152. 152. 151. 151. 148. 148. 147. 146. 145. 145. 144. 144. 143. - 137. 138. 141. 135. 127. 138. 158. 180. 190. 196. 195. 192. 194. - 195. 193. 193. 196. 200. 204. 207. 207. 206. 206. 207. 207. 207. - 207. 206. 205. 204. 203. 80. 78. 76. 75. 75. 75. 73. 71. 65. 61. 55. - 47. 44. 59. 92. 123. 138. 151. 163. 168. 170. 173. 175. 174. 176. - 178. 176. 171. 165. 155. 138. 123. 92. 80. 78. 73. 80. 98. 106. 120. - 120. 110. 118. 140. 128. 75. 56. 83. 115. 82. 95. 81. 93. 72. 93. - 80. 74. 120. 98. 69. 102. 99. 116. 153. 75. 98. 74. 23. 46. 50. 45. - 42. 49. 41. 45. 52. 63. 79. 86. 84. 77. 124. 125. 81. 68. 108. 119. - 97. 42. 41. 59. 34. 30. 42. 99. 149. 118. 123. 204. 205. 186. 111. - 25. 51. 40. 37. 40. 62. 91. 60. 73. 89. 101. 108. 118. 124. 126. - 127. 130. 133. 134. 137. 142. 145. 147. 149. 152. 155. 157. 154. - 153. 155. 161. 165. 165. 164. 162. 165. 162. 153. 147. 144. 136. - 128. 122. 129. 133. 129. 126. 125. 122. 116. 131. 136. 151. 167. - 185. 212. 226. 218. 166. 157. 151. 152. 151. 144. 138. 137. 129. - 130. 120. 94. 64. 47. 45. 49. 48. 68. 63. 75. 78. 47. 34. 39. 88. - 153. 162. 150. 138. 85. 43. 41. 43. 38. 62. 109. 137. 140. 140. 144. - 159. 159. 158. 155. 153. 151. 151. 152. 153. 153. 152. 152. 152. - 152. 151. 151. 148. 148. 147. 147. 146. 145. 144. 144. 143. 137. - 136. 140. 134. 130. 146. 171. 188. 193. 196. 194. 191. 192. 193. - 193. 195. 198. 203. 207. 209. 208. 207. 205. 206. 206. 207. 207. - 207. 206. 205. 205. 81. 79. 77. 76. 77. 77. 75. 73. 64. 60. 53. 45. - 43. 58. 92. 122. 137. 151. 164. 168. 170. 173. 175. 175. 175. 178. - 177. 172. 166. 155. 138. 123. 93. 81. 72. 73. 82. 94. 107. 117. 109. - 112. 123. 135. 116. 71. 60. 89. 80. 81. 115. 100. 78. 70. 93. 72. - 79. 124. 70. 75. 100. 83. 120. 156. 85. 70. 107. 29. 43. 46. 48. 58. - 56. 41. 45. 47. 61. 77. 72. 83. 98. 150. 134. 87. 69. 88. 72. 58. - 38. 42. 45. 26. 57. 90. 118. 110. 117. 161. 185. 178. 158. 54. 23. - 27. 37. 39. 42. 66. 102. 66. 68. 81. 100. 108. 117. 123. 126. 127. - 130. 132. 133. 136. 141. 144. 145. 147. 150. 153. 154. 153. 153. - 155. 158. 161. 162. 162. 160. 163. 158. 150. 146. 143. 132. 118. - 119. 129. 135. 132. 130. 131. 126. 119. 133. 137. 151. 167. 185. - 213. 228. 219. 166. 155. 148. 151. 151. 143. 137. 136. 129. 129. - 113. 80. 53. 45. 48. 51. 45. 69. 64. 72. 75. 47. 36. 40. 77. 145. - 163. 148. 142. 101. 49. 40. 38. 41. 77. 122. 138. 139. 144. 147. - 160. 158. 157. 154. 153. 152. 151. 151. 151. 151. 151. 151. 151. - 151. 151. 151. 149. 148. 148. 147. 146. 145. 145. 145. 142. 138. - 135. 135. 133. 138. 158. 181. 193. 195. 195. 194. 192. 191. 192. - 193. 198. 201. 204. 207. 209. 208. 206. 205. 205. 206. 207. 207. - 208. 207. 207. 206. 84. 82. 80. 78. 78. 77. 74. 72. 64. 60. 53. 45. - 42. 57. 92. 123. 136. 150. 164. 169. 169. 172. 175. 176. 175. 178. - 177. 173. 167. 156. 138. 123. 97. 82. 69. 82. 103. 115. 122. 120. - 107. 111. 110. 107. 96. 75. 75. 99. 65. 99. 110. 102. 67. 78. 73. - 66. 106. 108. 46. 75. 113. 77. 114. 149. 106. 56. 116. 52. 48. 51. - 62. 61. 51. 53. 38. 41. 62. 80. 94. 94. 89. 128. 135. 127. 92. 88. - 62. 49. 43. 39. 35. 47. 115. 140. 135. 101. 110. 145. 145. 160. 129. - 55. 49. 34. 39. 42. 41. 67. 109. 72. 68. 80. 100. 108. 117. 123. - 125. 127. 129. 132. 132. 135. 140. 142. 144. 146. 149. 151. 152. - 153. 156. 156. 157. 157. 159. 161. 160. 161. 155. 147. 145. 143. - 128. 108. 119. 132. 139. 136. 135. 138. 133. 124. 129. 131. 145. - 163. 184. 213. 227. 216. 165. 151. 144. 149. 150. 141. 134. 134. - 128. 125. 103. 67. 43. 42. 49. 50. 44. 70. 65. 70. 73. 49. 40. 43. - 59. 136. 167. 150. 147. 113. 55. 42. 33. 46. 93. 136. 141. 141. 149. - 149. 159. 157. 156. 154. 153. 152. 151. 150. 149. 150. 150. 150. - 150. 150. 150. 150. 149. 149. 148. 147. 146. 146. 145. 145. 141. - 139. 135. 131. 133. 147. 170. 188. 196. 195. 195. 195. 194. 193. - 194. 195. 202. 203. 205. 207. 208. 207. 205. 204. 205. 205. 206. - 207. 208. 208. 208. 207. 88. 85. 82. 80. 79. 76. 73. 71. 65. 60. 53. - 45. 42. 57. 92. 123. 136. 150. 164. 169. 169. 172. 175. 176. 175. - 178. 178. 173. 167. 156. 138. 123. 92. 81. 76. 106. 134. 133. 118. - 94. 98. 118. 123. 108. 85. 64. 66. 88. 91. 114. 121. 66. 94. 68. 70. - 56. 132. 87. 34. 71. 127. 75. 103. 140. 120. 46. 99. 64. 52. 58. 69. - 45. 44. 68. 31. 38. 65. 85. 124. 107. 51. 67. 96. 116. 57. 42. 33. - 32. 36. 30. 42. 91. 165. 161. 157. 155. 138. 144. 172. 184. 96. 44. - 28. 45. 46. 46. 40. 64. 110. 76. 72. 87. 100. 107. 117. 123. 125. - 127. 129. 132. 132. 135. 139. 142. 143. 145. 148. 150. 150. 154. - 158. 158. 156. 155. 157. 160. 159. 159. 153. 145. 145. 144. 125. - 102. 120. 134. 142. 140. 140. 143. 138. 128. 123. 124. 139. 158. - 181. 212. 224. 212. 163. 149. 141. 147. 148. 139. 131. 132. 127. - 122. 97. 59. 37. 40. 49. 49. 44. 72. 67. 70. 73. 50. 43. 45. 45. - 130. 170. 154. 151. 120. 59. 45. 29. 50. 105. 145. 144. 144. 153. - 149. 158. 157. 155. 154. 154. 153. 151. 150. 148. 148. 149. 149. - 149. 149. 149. 149. 149. 149. 148. 147. 147. 146. 145. 145. 140. - 140. 135. 128. 132. 153. 177. 191. 197. 196. 196. 197. 196. 195. - 195. 197. 204. 205. 206. 207. 206. 205. 204. 203. 204. 205. 206. - 207. 208. 208. 208. 208. 86. 81. 76. 76. 79. 79. 75. 70. 62. 66. 61. - 46. 43. 66. 101. 125. 142. 150. 161. 168. 170. 170. 171. 173. 176. - 180. 180. 174. 166. 155. 139. 125. 107. 104. 105. 109. 104. 95. 96. - 104. 100. 115. 116. 108. 93. 63. 62. 98. 110. 100. 98. 85. 66. 50. - 59. 104. 120. 75. 54. 42. 119. 82. 86. 142. 143. 53. 94. 124. 44. - 51. 49. 44. 58. 71. 46. 42. 44. 71. 52. 41. 40. 46. 89. 101. 86. 38. - 34. 35. 51. 33. 11. 155. 164. 174. 169. 174. 176. 190. 172. 111. 56. - 37. 37. 35. 44. 41. 40. 67. 96. 83. 68. 85. 101. 109. 119. 126. 128. - 128. 129. 130. 132. 135. 139. 141. 143. 144. 147. 149. 152. 152. - 151. 152. 153. 156. 158. 159. 159. 158. 155. 150. 146. 139. 125. - 111. 125. 138. 139. 124. 118. 128. 136. 133. 115. 125. 133. 145. - 174. 204. 209. 196. 150. 147. 150. 148. 142. 145. 140. 122. 129. - 113. 68. 39. 44. 46. 45. 57. 54. 58. 77. 60. 71. 48. 41. 44. 46. - 116. 169. 159. 138. 134. 61. 43. 38. 45. 115. 149. 143. 145. 144. - 160. 159. 158. 156. 154. 152. 151. 151. 150. 150. 151. 151. 151. - 151. 150. 149. 148. 148. 148. 147. 146. 144. 143. 142. 142. 136. - 138. 133. 127. 138. 165. 185. 190. 199. 197. 194. 192. 192. 195. - 198. 201. 204. 203. 203. 204. 204. 206. 207. 208. 206. 207. 209. - 210. 210. 209. 207. 207. 86. 83. 80. 79. 81. 80. 77. 74. 63. 67. 63. - 51. 49. 71. 104. 127. 144. 152. 162. 169. 171. 171. 172. 174. 176. - 180. 180. 174. 166. 155. 139. 126. 105. 90. 80. 82. 85. 87. 93. 101. - 100. 117. 113. 99. 90. 74. 73. 93. 91. 126. 106. 88. 66. 37. 80. - 148. 86. 71. 67. 48. 109. 97. 85. 130. 172. 82. 67. 133. 49. 48. 51. - 74. 60. 62. 44. 29. 46. 49. 56. 73. 58. 120. 136. 56. 24. 36. 62. - 45. 29. 26. 64. 174. 162. 189. 187. 183. 190. 156. 104. 57. 32. 28. - 36. 43. 47. 43. 41. 68. 98. 86. 73. 90. 100. 108. 117. 123. 124. - 125. 127. 129. 132. 135. 139. 142. 144. 145. 148. 150. 151. 151. - 151. 152. 153. 155. 158. 159. 158. 158. 155. 150. 147. 141. 128. - 116. 135. 130. 106. 72. 61. 77. 95. 101. 121. 125. 126. 135. 162. - 191. 193. 178. 155. 148. 149. 147. 140. 140. 137. 124. 125. 96. 56. - 39. 44. 47. 46. 51. 56. 61. 74. 59. 69. 49. 45. 48. 39. 103. 164. - 160. 133. 136. 69. 41. 49. 63. 126. 150. 141. 145. 146. 159. 159. - 158. 156. 154. 152. 151. 151. 150. 150. 150. 151. 151. 150. 150. - 149. 148. 148. 148. 147. 145. 144. 143. 142. 142. 138. 139. 133. - 130. 144. 171. 189. 192. 199. 197. 195. 194. 194. 197. 201. 203. - 204. 204. 204. 204. 205. 206. 208. 209. 207. 208. 209. 210. 209. - 208. 207. 206. 84. 83. 82. 80. 79. 78. 76. 76. 64. 68. 66. 58. 59. - 79. 109. 130. 146. 154. 164. 170. 171. 172. 173. 175. 176. 180. 180. - 175. 167. 156. 140. 126. 105. 83. 66. 70. 83. 91. 97. 102. 104. 119. - 112. 93. 86. 84. 84. 91. 92. 141. 109. 79. 42. 32. 104. 128. 66. 77. - 85. 58. 94. 115. 86. 123. 160. 113. 53. 143. 62. 44. 43. 69. 57. 72. - 62. 21. 42. 31. 47. 68. 72. 129. 133. 59. 43. 44. 48. 29. 30. 40. - 96. 164. 172. 195. 180. 188. 191. 120. 49. 26. 33. 37. 39. 43. 49. - 44. 43. 71. 102. 92. 78. 95. 103. 109. 117. 121. 123. 124. 127. 130. - 132. 135. 139. 142. 144. 146. 149. 152. 150. 150. 150. 151. 153. - 155. 157. 158. 157. 158. 156. 152. 149. 145. 134. 123. 135. 133. - 116. 93. 86. 98. 106. 105. 107. 109. 111. 122. 152. 180. 182. 167. - 160. 148. 147. 147. 138. 135. 135. 128. 116. 74. 45. 43. 46. 49. 51. - 48. 58. 67. 72. 60. 66. 49. 49. 51. 34. 87. 160. 165. 130. 140. 82. - 40. 61. 87. 139. 151. 140. 146. 150. 157. 158. 157. 155. 154. 152. - 151. 151. 150. 150. 150. 151. 151. 150. 149. 148. 148. 148. 147. - 146. 145. 144. 143. 142. 141. 140. 138. 132. 134. 152. 179. 193. - 194. 198. 197. 196. 196. 198. 201. 204. 206. 206. 205. 205. 206. - 206. 208. 209. 210. 209. 209. 210. 210. 209. 208. 207. 206. 79. 80. - 80. 79. 76. 74. 74. 75. 65. 68. 68. 66. 70. 88. 114. 134. 148. 155. - 164. 169. 170. 171. 172. 174. 176. 180. 180. 175. 167. 157. 141. - 127. 102. 82. 70. 79. 93. 99. 100. 101. 110. 117. 113. 96. 82. 77. - 82. 92. 75. 94. 75. 53. 37. 83. 141. 92. 71. 85. 90. 63. 78. 119. - 83. 121. 128. 142. 70. 138. 73. 35. 39. 49. 51. 111. 112. 49. 40. - 32. 33. 40. 119. 103. 66. 34. 67. 60. 56. 63. 64. 87. 106. 131. 161. - 162. 163. 195. 138. 79. 31. 34. 58. 63. 51. 41. 47. 44. 44. 74. 108. - 97. 81. 96. 109. 114. 119. 123. 123. 125. 129. 133. 130. 133. 138. - 141. 143. 145. 148. 151. 148. 148. 149. 151. 153. 155. 157. 158. - 157. 158. 157. 153. 151. 149. 141. 132. 116. 124. 128. 126. 129. - 133. 127. 114. 101. 110. 121. 136. 160. 180. 179. 166. 163. 148. - 145. 147. 138. 133. 134. 130. 102. 57. 41. 51. 49. 49. 56. 52. 59. - 75. 72. 66. 66. 50. 51. 49. 34. 74. 156. 171. 130. 144. 93. 43. 65. - 105. 147. 150. 141. 148. 154. 155. 157. 156. 155. 153. 152. 151. - 151. 151. 149. 150. 150. 150. 150. 149. 148. 147. 147. 147. 146. - 145. 144. 142. 142. 141. 139. 135. 131. 138. 160. 185. 196. 194. - 195. 195. 196. 197. 200. 203. 206. 208. 207. 207. 206. 207. 208. - 209. 210. 211. 210. 210. 210. 209. 209. 208. 207. 207. 78. 79. 80. - 78. 75. 74. 74. 75. 67. 68. 69. 72. 79. 96. 119. 138. 149. 155. 163. - 168. 169. 169. 171. 173. 176. 180. 180. 175. 168. 157. 142. 128. 97. - 81. 73. 81. 91. 94. 95. 98. 111. 111. 115. 105. 75. 56. 69. 92. 72. - 67. 51. 42. 77. 121. 110. 69. 79. 84. 80. 73. 80. 115. 82. 119. 118. - 153. 101. 128. 92. 23. 42. 55. 45. 137. 157. 106. 45. 33. 31. 54. - 113. 89. 46. 21. 74. 88. 99. 112. 118. 132. 116. 113. 119. 134. 185. - 173. 60. 42. 30. 41. 63. 72. 61. 46. 44. 42. 44. 78. 113. 101. 81. - 93. 111. 115. 120. 123. 123. 125. 129. 133. 128. 132. 136. 139. 141. - 143. 146. 148. 146. 147. 149. 151. 153. 155. 156. 157. 156. 159. - 158. 154. 153. 152. 147. 140. 131. 132. 128. 123. 127. 134. 133. - 125. 125. 142. 162. 174. 183. 185. 175. 162. 161. 147. 144. 145. - 138. 134. 132. 123. 81. 47. 43. 55. 48. 46. 57. 59. 60. 84. 72. 74. - 67. 52. 51. 44. 36. 63. 146. 173. 131. 143. 96. 48. 66. 116. 147. - 148. 144. 149. 157. 154. 156. 156. 154. 153. 151. 151. 151. 151. - 149. 149. 150. 150. 149. 149. 148. 147. 147. 146. 146. 144. 143. - 142. 141. 141. 137. 132. 130. 142. 166. 188. 196. 193. 193. 194. - 196. 198. 201. 204. 206. 208. 207. 207. 207. 207. 208. 209. 210. - 211. 211. 210. 210. 209. 209. 208. 208. 208. 81. 80. 80. 79. 78. 77. - 77. 76. 68. 66. 68. 75. 85. 101. 123. 141. 150. 156. 164. 167. 168. - 168. 170. 172. 176. 179. 180. 175. 168. 158. 143. 129. 100. 84. 73. - 77. 84. 87. 94. 102. 108. 109. 122. 113. 67. 39. 58. 88. 75. 79. 53. - 57. 119. 100. 35. 63. 79. 81. 74. 91. 100. 114. 94. 122. 103. 129. - 124. 133. 129. 34. 37. 59. 42. 120. 156. 135. 50. 26. 38. 88. 56. - 68. 79. 75. 104. 101. 121. 145. 168. 135. 105. 112. 105. 161. 216. - 102. 34. 40. 41. 40. 48. 59. 59. 51. 45. 42. 44. 79. 115. 103. 82. - 93. 110. 114. 119. 121. 121. 122. 126. 130. 128. 132. 135. 138. 139. - 141. 143. 145. 144. 145. 148. 151. 153. 155. 156. 156. 156. 159. - 159. 155. 153. 153. 151. 146. 154. 148. 138. 129. 132. 143. 151. - 151. 143. 165. 188. 199. 197. 188. 174. 162. 157. 146. 144. 142. - 137. 136. 126. 104. 60. 44. 44. 52. 47. 44. 53. 63. 59. 91. 71. 79. - 67. 54. 54. 44. 38. 53. 132. 168. 133. 137. 91. 57. 75. 127. 145. - 146. 148. 149. 159. 156. 156. 155. 153. 152. 151. 151. 151. 151. - 149. 149. 149. 149. 149. 148. 147. 147. 147. 146. 145. 144. 143. - 142. 141. 140. 134. 130. 132. 146. 170. 189. 195. 193. 192. 194. - 197. 200. 203. 205. 207. 207. 207. 207. 207. 207. 208. 209. 210. - 211. 210. 210. 209. 209. 209. 209. 210. 211. 82. 79. 77. 77. 79. 80. - 77. 74. 68. 64. 66. 76. 88. 104. 125. 143. 153. 158. 165. 168. 168. - 169. 171. 173. 175. 179. 180. 176. 169. 159. 143. 130. 105. 87. 74. - 77. 86. 91. 97. 104. 106. 117. 137. 121. 65. 40. 63. 85. 58. 75. 68. - 93. 115. 66. 36. 69. 73. 83. 70. 97. 108. 103. 108. 122. 85. 103. - 136. 128. 147. 76. 44. 57. 58. 90. 124. 114. 57. 37. 54. 73. 50. 67. - 105. 113. 124. 116. 151. 182. 156. 111. 88. 122. 144. 187. 166. 47. - 47. 53. 54. 49. 48. 53. 56. 55. 50. 45. 44. 77. 113. 103. 84. 96. - 110. 115. 120. 123. 122. 123. 125. 128. 131. 133. 137. 139. 139. - 140. 142. 144. 142. 144. 147. 150. 153. 154. 155. 155. 156. 159. - 159. 155. 153. 154. 153. 150. 145. 143. 140. 138. 145. 159. 170. - 175. 152. 170. 190. 200. 198. 189. 175. 164. 152. 147. 144. 138. - 134. 136. 116. 80. 48. 49. 46. 46. 50. 48. 52. 66. 59. 95. 67. 79. - 65. 57. 61. 49. 40. 47. 119. 164. 138. 135. 88. 71. 94. 141. 144. - 145. 151. 148. 160. 159. 155. 154. 153. 152. 151. 151. 151. 151. - 148. 149. 149. 149. 149. 148. 147. 146. 146. 146. 145. 144. 143. - 141. 140. 140. 133. 130. 135. 152. 173. 189. 195. 195. 194. 196. - 199. 203. 206. 207. 208. 208. 206. 206. 206. 206. 207. 208. 210. - 210. 209. 209. 208. 208. 209. 210. 212. 213. 81. 76. 73. 74. 78. 79. - 75. 71. 68. 63. 65. 76. 90. 105. 126. 144. 155. 160. 167. 170. 169. - 170. 172. 174. 175. 179. 180. 176. 169. 159. 144. 130. 102. 84. 73. - 80. 92. 96. 97. 99. 106. 127. 151. 126. 68. 51. 73. 84. 76. 87. 104. - 134. 80. 37. 68. 37. 65. 82. 62. 86. 97. 84. 110. 117. 87. 103. 139. - 104. 134. 118. 69. 68. 83. 79. 102. 81. 68. 64. 72. 29. 50. 83. 131. - 133. 149. 163. 187. 174. 97. 95. 91. 139. 186. 169. 74. 46. 49. 51. - 55. 60. 62. 62. 62. 62. 56. 48. 44. 75. 112. 103. 87. 100. 112. 117. - 123. 126. 125. 125. 127. 129. 133. 135. 138. 140. 140. 140. 142. - 144. 142. 144. 147. 150. 153. 154. 155. 155. 156. 160. 160. 155. - 152. 154. 154. 151. 147. 146. 144. 145. 155. 173. 191. 201. 168. - 178. 190. 197. 196. 188. 174. 163. 149. 147. 144. 135. 132. 134. - 108. 62. 45. 56. 48. 43. 55. 56. 54. 68. 58. 96. 63. 78. 62. 58. 66. - 55. 42. 46. 113. 163. 144. 136. 88. 83. 111. 153. 144. 144. 152. - 146. 160. 162. 154. 154. 153. 151. 151. 151. 151. 151. 148. 149. - 149. 149. 149. 148. 147. 146. 146. 146. 145. 144. 142. 141. 140. - 140. 133. 132. 138. 155. 176. 189. 195. 196. 195. 198. 201. 205. - 208. 209. 209. 208. 206. 205. 205. 206. 207. 208. 209. 210. 209. - 208. 208. 208. 209. 211. 213. 215. 76. 74. 71. 71. 72. 74. 74. 73. - 64. 61. 62. 72. 87. 105. 127. 143. 155. 159. 164. 168. 169. 170. - 171. 173. 173. 177. 178. 174. 169. 160. 143. 128. 102. 87. 73. 80. - 93. 89. 87. 101. 130. 146. 114. 108. 80. 69. 58. 72. 92. 141. 85. - 67. 72. 45. 58. 51. 77. 64. 79. 60. 86. 70. 100. 106. 86. 85. 121. - 109. 158. 111. 72. 84. 107. 97. 75. 94. 49. 43. 59. 41. 81. 137. - 160. 166. 139. 182. 201. 135. 93. 85. 96. 126. 199. 71. 38. 46. 49. - 47. 51. 50. 47. 59. 68. 61. 49. 51. 36. 58. 115. 102. 95. 94. 109. - 116. 120. 121. 122. 126. 128. 126. 130. 132. 136. 139. 141. 140. - 139. 137. 136. 140. 144. 145. 146. 149. 153. 154. 153. 153. 154. - 154. 153. 151. 148. 147. 146. 153. 153. 149. 158. 181. 198. 202. - 181. 175. 193. 207. 196. 188. 178. 152. 152. 131. 155. 145. 127. - 129. 85. 42. 50. 50. 43. 47. 44. 49. 67. 57. 71. 86. 63. 78. 64. 59. - 47. 50. 39. 37. 93. 157. 144. 147. 76. 107. 124. 143. 146. 142. 149. - 156. 154. 154. 153. 153. 152. 151. 149. 148. 147. 147. 145. 147. - 148. 147. 143. 141. 143. 145. 148. 147. 145. 143. 142. 140. 140. - 139. 134. 129. 137. 162. 184. 192. 194. 196. 198. 202. 206. 209. - 209. 208. 208. 208. 206. 207. 208. 209. 209. 209. 208. 208. 211. - 211. 211. 211. 211. 211. 211. 211. 76. 73. 71. 70. 71. 73. 73. 72. - 66. 62. 63. 73. 87. 105. 126. 143. 154. 158. 164. 167. 169. 170. - 171. 173. 174. 178. 178. 175. 170. 161. 144. 128. 104. 82. 72. 80. - 82. 82. 96. 115. 138. 121. 115. 117. 64. 54. 66. 99. 118. 117. 55. - 46. 68. 59. 59. 46. 72. 64. 79. 68. 82. 70. 99. 114. 74. 85. 124. - 107. 139. 120. 97. 58. 126. 71. 62. 59. 39. 37. 61. 71. 99. 139. - 161. 142. 187. 188. 183. 98. 93. 103. 92. 178. 104. 43. 49. 41. 52. - 49. 51. 50. 47. 58. 68. 62. 49. 51. 38. 55. 112. 102. 98. 92. 108. - 115. 120. 121. 123. 127. 129. 127. 130. 133. 136. 139. 141. 141. - 139. 138. 141. 143. 145. 145. 147. 150. 152. 153. 147. 148. 149. - 150. 151. 151. 151. 151. 147. 154. 154. 151. 161. 185. 203. 209. - 182. 173. 189. 207. 198. 185. 173. 154. 148. 144. 144. 137. 134. - 113. 67. 43. 49. 51. 45. 49. 44. 49. 68. 59. 76. 90. 67. 77. 65. 64. - 55. 52. 42. 38. 90. 156. 146. 142. 80. 115. 126. 143. 146. 142. 150. - 156. 154. 154. 154. 154. 153. 152. 151. 149. 148. 148. 146. 148. - 149. 147. 144. 142. 143. 145. 145. 146. 146. 146. 144. 141. 138. - 137. 134. 130. 139. 164. 185. 193. 195. 198. 199. 202. 207. 209. - 209. 208. 208. 208. 207. 207. 207. 208. 208. 209. 209. 209. 211. - 211. 211. 211. 211. 211. 211. 211. 75. 72. 69. 68. 69. 71. 70. 70. - 66. 63. 65. 73. 87. 104. 125. 143. 153. 157. 163. 167. 169. 170. - 171. 173. 176. 179. 180. 176. 171. 161. 144. 129. 108. 78. 72. 79. - 73. 84. 114. 129. 124. 109. 132. 106. 45. 72. 91. 100. 129. 83. 40. - 44. 69. 76. 68. 60. 65. 64. 74. 72. 71. 63. 84. 107. 59. 68. 110. - 119. 132. 113. 128. 91. 165. 71. 61. 35. 50. 71. 95. 105. 98. 144. - 127. 168. 187. 195. 124. 84. 94. 91. 159. 133. 44. 31. 50. 52. 55. - 50. 51. 50. 47. 58. 68. 65. 49. 50. 41. 51. 108. 100. 102. 88. 105. - 112. 119. 121. 124. 128. 130. 128. 131. 133. 136. 139. 141. 141. - 140. 140. 141. 139. 138. 140. 143. 145. 145. 146. 150. 150. 149. - 149. 148. 148. 147. 147. 148. 154. 155. 154. 166. 189. 208. 216. - 187. 178. 190. 206. 200. 185. 170. 155. 141. 153. 133. 134. 136. 88. - 47. 43. 48. 53. 48. 52. 46. 49. 70. 62. 75. 86. 67. 71. 62. 63. 60. - 47. 45. 38. 83. 156. 149. 135. 88. 125. 129. 144. 146. 143. 151. - 156. 154. 155. 155. 154. 154. 152. 151. 150. 149. 149. 148. 149. - 149. 148. 146. 144. 145. 146. 143. 144. 147. 148. 146. 142. 137. - 134. 133. 130. 140. 165. 186. 194. 196. 199. 200. 204. 208. 210. - 209. 208. 208. 208. 209. 208. 207. 207. 207. 208. 210. 211. 211. - 211. 211. 211. 211. 211. 211. 211. 72. 70. 67. 66. 67. 68. 68. 68. - 65. 63. 65. 73. 85. 101. 123. 141. 153. 157. 163. 167. 169. 170. - 172. 173. 177. 180. 180. 177. 172. 162. 145. 129. 111. 78. 72. 76. - 74. 102. 132. 125. 108. 101. 135. 97. 56. 89. 90. 97. 114. 54. 49. - 60. 67. 76. 69. 81. 68. 72. 76. 79. 66. 60. 70. 90. 79. 60. 69. 112. - 140. 106. 137. 142. 104. 34. 32. 45. 86. 121. 123. 94. 108. 128. - 155. 177. 194. 135. 98. 94. 94. 117. 177. 46. 44. 38. 60. 71. 55. - 48. 49. 50. 48. 59. 71. 70. 53. 48. 44. 47. 104. 96. 105. 84. 100. - 109. 117. 121. 125. 129. 131. 128. 131. 133. 136. 139. 140. 141. - 141. 141. 139. 135. 134. 138. 142. 142. 142. 144. 146. 145. 145. - 144. 144. 144. 144. 144. 149. 154. 156. 157. 167. 185. 200. 206. - 193. 194. 198. 199. 196. 189. 171. 150. 134. 149. 132. 141. 122. 60. - 42. 42. 48. 54. 50. 54. 47. 50. 71. 64. 74. 81. 69. 70. 62. 63. 65. - 42. 42. 36. 74. 154. 154. 127. 96. 130. 133. 146. 146. 144. 153. - 156. 153. 156. 154. 154. 153. 152. 150. 149. 148. 148. 150. 150. - 150. 149. 147. 146. 146. 146. 143. 144. 146. 146. 144. 141. 137. - 135. 131. 129. 140. 166. 187. 194. 197. 201. 203. 206. 209. 210. - 209. 208. 208. 208. 210. 209. 207. 206. 206. 208. 211. 212. 212. - 212. 212. 212. 212. 212. 212. 212. 69. 66. 64. 63. 65. 66. 67. 66. - 63. 62. 65. 72. 83. 99. 121. 141. 153. 157. 163. 168. 170. 171. 173. - 175. 178. 180. 181. 177. 171. 161. 144. 129. 108. 77. 69. 73. 84. - 121. 135. 103. 106. 93. 122. 100. 79. 65. 57. 113. 105. 47. 59. 66. - 58. 63. 59. 79. 74. 82. 88. 88. 78. 73. 73. 80. 100. 87. 51. 70. - 122. 110. 129. 143. 88. 40. 20. 82. 111. 149. 178. 167. 145. 159. - 197. 188. 156. 101. 93. 104. 121. 168. 88. 32. 43. 39. 82. 83. 53. - 44. 47. 50. 50. 59. 72. 74. 59. 45. 45. 45. 102. 89. 106. 81. 94. - 104. 114. 120. 125. 130. 131. 128. 130. 132. 134. 137. 139. 140. - 141. 141. 142. 137. 138. 143. 145. 141. 141. 144. 135. 136. 138. - 140. 143. 145. 146. 147. 150. 153. 155. 154. 157. 165. 173. 176. - 183. 195. 189. 172. 173. 178. 160. 133. 129. 135. 137. 146. 96. 42. - 49. 41. 49. 53. 50. 55. 49. 53. 72. 64. 77. 79. 77. 77. 70. 65. 72. - 45. 38. 35. 65. 149. 158. 122. 107. 130. 138. 147. 146. 145. 155. - 157. 153. 157. 152. 152. 151. 150. 148. 147. 146. 146. 151. 150. - 149. 148. 148. 148. 147. 146. 146. 145. 144. 143. 141. 140. 138. - 137. 128. 128. 141. 167. 187. 194. 197. 202. 205. 208. 210. 210. - 209. 208. 208. 209. 211. 209. 208. 206. 207. 209. 211. 213. 212. - 212. 212. 212. 212. 212. 212. 212. 64. 62. 60. 61. 63. 65. 66. 66. - 62. 62. 65. 73. 83. 98. 122. 142. 154. 158. 164. 169. 171. 173. 175. - 177. 177. 180. 180. 177. 171. 160. 143. 127. 104. 75. 66. 81. 101. - 124. 119. 86. 97. 114. 133. 85. 62. 45. 52. 104. 111. 60. 63. 64. - 57. 62. 54. 63. 66. 85. 102. 93. 91. 85. 85. 75. 68. 111. 83. 47. - 78. 101. 117. 128. 106. 68. 44. 112. 100. 111. 169. 202. 188. 208. - 201. 174. 97. 108. 91. 106. 173. 124. 41. 39. 37. 40. 72. 92. 51. - 42. 45. 52. 51. 59. 71. 73. 68. 41. 45. 45. 101. 79. 103. 79. 88. - 99. 111. 118. 124. 130. 130. 128. 129. 130. 132. 135. 137. 139. 140. - 141. 141. 137. 139. 143. 138. 127. 124. 129. 137. 139. 140. 142. - 142. 141. 140. 139. 142. 142. 141. 138. 136. 137. 140. 142. 151. - 164. 149. 126. 134. 145. 130. 109. 129. 130. 141. 130. 69. 37. 53. - 44. 50. 52. 47. 54. 52. 56. 73. 62. 78. 71. 78. 80. 71. 57. 74. 49. - 36. 37. 56. 139. 159. 120. 120. 130. 142. 148. 145. 146. 156. 157. - 153. 157. 151. 151. 150. 149. 148. 146. 146. 145. 151. 150. 148. - 148. 148. 148. 147. 145. 146. 145. 143. 141. 140. 139. 138. 138. - 127. 128. 143. 169. 188. 195. 199. 204. 208. 210. 211. 211. 209. - 208. 208. 209. 210. 209. 208. 208. 208. 210. 211. 212. 213. 213. - 213. 213. 213. 213. 213. 213. 60. 59. 57. 58. 62. 65. 66. 66. 62. - 62. 67. 75. 84. 100. 125. 146. 155. 160. 166. 170. 173. 175. 177. - 179. 177. 180. 180. 176. 170. 159. 142. 126. 103. 74. 71. 102. 122. - 111. 94. 89. 103. 138. 147. 73. 43. 51. 77. 64. 93. 67. 64. 65. 66. - 69. 59. 53. 54. 86. 121. 97. 104. 93. 98. 74. 52. 90. 105. 79. 75. - 91. 97. 115. 103. 94. 125. 163. 139. 131. 167. 191. 213. 202. 189. - 103. 105. 92. 110. 134. 163. 46. 56. 33. 48. 43. 45. 89. 52. 42. 46. - 53. 51. 56. 67. 69. 77. 37. 44. 46. 102. 71. 100. 78. 83. 95. 108. - 117. 123. 129. 130. 127. 127. 128. 130. 133. 135. 138. 139. 140. - 141. 139. 140. 140. 126. 106. 99. 104. 120. 122. 125. 127. 127. 125. - 122. 119. 119. 117. 114. 112. 111. 114. 119. 125. 127. 129. 108. 95. - 111. 118. 109. 107. 132. 138. 139. 95. 52. 44. 44. 49. 51. 51. 44. - 52. 53. 59. 73. 59. 82. 64. 75. 79. 67. 45. 73. 56. 40. 43. 49. 128. - 157. 121. 135. 133. 146. 149. 145. 147. 158. 157. 153. 158. 152. - 152. 151. 149. 148. 147. 146. 146. 151. 149. 147. 147. 148. 148. - 146. 144. 144. 144. 144. 143. 141. 139. 137. 136. 128. 130. 146. - 172. 191. 198. 202. 208. 210. 211. 212. 211. 209. 208. 208. 209. - 209. 209. 209. 210. 210. 210. 211. 211. 213. 213. 213. 213. 213. - 213. 213. 213. 58. 56. 56. 57. 61. 65. 66. 67. 63. 64. 69. 77. 86. - 103. 128. 149. 156. 160. 167. 171. 174. 176. 178. 180. 176. 179. - 179. 175. 169. 158. 141. 125. 105. 76. 78. 122. 137. 98. 77. 100. - 134. 134. 136. 87. 55. 57. 87. 37. 52. 57. 62. 68. 71. 70. 63. 50. - 52. 95. 142. 106. 115. 99. 109. 78. 91. 53. 85. 121. 115. 97. 72. - 91. 80. 79. 137. 121. 121. 156. 196. 204. 210. 195. 136. 93. 99. - 110. 104. 191. 93. 38. 45. 45. 62. 40. 39. 76. 54. 43. 47. 54. 51. - 54. 63. 65. 82. 35. 44. 48. 103. 65. 98. 77. 80. 93. 107. 116. 123. - 128. 129. 126. 126. 127. 129. 132. 134. 137. 138. 139. 147. 145. - 146. 142. 121. 94. 85. 90. 78. 83. 91. 99. 105. 107. 107. 107. 96. - 93. 91. 92. 95. 102. 114. 123. 126. 116. 92. 92. 114. 114. 109. 126. - 135. 150. 134. 65. 45. 52. 33. 54. 52. 50. 42. 51. 54. 61. 74. 57. - 90. 66. 78. 82. 68. 42. 78. 67. 44. 48. 46. 120. 154. 123. 145. 137. - 147. 150. 145. 148. 158. 158. 153. 158. 153. 153. 152. 151. 149. - 148. 147. 147. 151. 148. 146. 146. 148. 148. 146. 143. 141. 143. - 145. 146. 144. 140. 136. 133. 129. 132. 148. 175. 194. 200. 205. - 211. 211. 212. 213. 211. 209. 208. 208. 209. 208. 209. 210. 211. - 211. 211. 211. 210. 213. 213. 213. 213. 213. 213. 213. 213. 54. 54. - 55. 57. 59. 62. 64. 66. 64. 61. 72. 86. 91. 107. 130. 142. 155. 160. - 168. 173. 175. 176. 176. 177. 178. 178. 182. 177. 164. 159. 145. - 121. 107. 70. 129. 141. 96. 78. 79. 122. 147. 138. 118. 79. 52. 82. - 54. 50. 33. 73. 56. 67. 74. 60. 79. 60. 57. 93. 148. 116. 107. 94. - 93. 104. 102. 95. 80. 105. 135. 94. 54. 78. 61. 93. 129. 136. 142. - 137. 198. 218. 208. 188. 104. 101. 79. 126. 182. 131. 44. 45. 47. - 48. 45. 43. 50. 59. 60. 48. 45. 54. 61. 58. 58. 64. 79. 61. 38. 48. - 101. 64. 97. 81. 80. 91. 106. 116. 120. 121. 124. 127. 125. 126. - 128. 131. 134. 136. 138. 140. 147. 148. 148. 142. 133. 125. 122. - 121. 110. 106. 103. 106. 112. 118. 121. 121. 117. 117. 116. 116. - 118. 122. 127. 131. 137. 154. 136. 120. 138. 140. 130. 141. 150. - 143. 95. 46. 42. 49. 48. 53. 53. 47. 40. 55. 61. 78. 51. 64. 83. 68. - 71. 84. 63. 49. 72. 77. 42. 47. 40. 95. 161. 135. 148. 138. 150. - 146. 146. 151. 154. 153. 153. 155. 152. 153. 153. 153. 153. 152. - 151. 150. 148. 148. 147. 147. 147. 147. 146. 146. 146. 145. 144. - 144. 143. 140. 135. 132. 124. 130. 156. 183. 193. 201. 209. 209. - 212. 211. 210. 209. 209. 209. 209. 209. 210. 210. 209. 210. 211. - 213. 215. 217. 213. 213. 213. 213. 213. 213. 213. 214. 54. 55. 56. - 57. 59. 62. 64. 65. 62. 60. 73. 86. 91. 106. 130. 142. 155. 160. - 167. 173. 175. 176. 176. 177. 180. 179. 182. 175. 162. 156. 143. - 119. 102. 141. 139. 84. 84. 96. 85. 125. 133. 120. 118. 75. 61. 64. - 69. 53. 49. 56. 50. 53. 74. 60. 67. 82. 52. 87. 158. 121. 76. 89. - 94. 107. 111. 93. 95. 91. 74. 89. 101. 79. 92. 119. 159. 141. 134. - 122. 162. 219. 208. 118. 106. 92. 126. 175. 161. 65. 48. 49. 51. 52. - 47. 43. 48. 56. 59. 48. 44. 52. 58. 57. 58. 63. 73. 61. 41. 48. 93. - 59. 91. 80. 76. 87. 102. 113. 117. 119. 121. 124. 125. 126. 128. - 131. 134. 136. 138. 139. 145. 147. 147. 144. 138. 132. 128. 126. - 124. 123. 122. 121. 121. 123. 127. 130. 139. 146. 155. 160. 163. - 169. 179. 187. 180. 180. 153. 132. 142. 148. 141. 144. 145. 115. 70. - 43. 43. 45. 46. 53. 48. 44. 47. 53. 59. 66. 49. 67. 88. 68. 77. 82. - 61. 53. 66. 79. 44. 48. 42. 95. 162. 139. 150. 141. 151. 147. 147. - 152. 155. 153. 153. 155. 152. 153. 153. 153. 153. 152. 151. 150. - 148. 148. 148. 147. 147. 147. 146. 146. 146. 145. 144. 144. 143. - 140. 135. 131. 124. 131. 158. 185. 195. 203. 211. 210. 212. 212. - 211. 210. 209. 209. 210. 210. 210. 210. 211. 211. 212. 214. 215. - 216. 213. 213. 213. 213. 213. 213. 212. 212. 55. 55. 56. 57. 59. 61. - 63. 64. 59. 59. 74. 87. 90. 105. 129. 142. 153. 159. 167. 172. 175. - 176. 177. 178. 181. 180. 182. 176. 163. 159. 148. 125. 126. 148. - 109. 65. 81. 88. 97. 147. 119. 104. 118. 75. 75. 61. 103. 66. 57. - 38. 45. 46. 86. 63. 57. 99. 55. 95. 168. 126. 54. 72. 89. 101. 110. - 104. 92. 76. 64. 69. 88. 105. 118. 130. 166. 138. 129. 127. 149. - 215. 145. 99. 112. 115. 180. 171. 87. 48. 50. 51. 54. 54. 48. 42. - 44. 51. 57. 48. 44. 51. 56. 56. 58. 63. 68. 61. 46. 48. 83. 55. 85. - 79. 70. 81. 96. 108. 114. 116. 118. 119. 124. 125. 126. 128. 131. - 133. 134. 135. 143. 144. 145. 146. 145. 141. 135. 131. 127. 130. - 130. 127. 123. 123. 128. 133. 143. 154. 167. 173. 173. 174. 181. - 188. 196. 181. 153. 134. 137. 149. 148. 140. 134. 80. 43. 43. 46. - 44. 48. 53. 42. 40. 55. 50. 59. 52. 48. 70. 93. 67. 84. 79. 61. 60. - 58. 84. 46. 48. 44. 94. 161. 144. 152. 145. 153. 149. 148. 153. 156. - 154. 154. 156. 153. 153. 153. 153. 153. 152. 151. 151. 149. 148. - 148. 148. 147. 147. 146. 146. 145. 144. 143. 143. 142. 139. 134. - 130. 124. 132. 160. 188. 198. 206. 213. 211. 212. 212. 211. 210. - 210. 210. 210. 211. 211. 212. 213. 213. 214. 214. 214. 214. 213. - 212. 212. 211. 211. 210. 210. 210. 55. 55. 56. 56. 58. 60. 61. 62. - 56. 58. 75. 89. 90. 103. 128. 141. 152. 158. 166. 172. 175. 176. - 177. 178. 180. 179. 182. 177. 168. 166. 157. 136. 139. 91. 68. 81. - 73. 87. 134. 146. 107. 101. 106. 72. 73. 78. 131. 69. 49. 37. 42. - 56. 104. 66. 61. 97. 66. 123. 161. 122. 74. 55. 81. 88. 95. 107. - 104. 91. 80. 72. 82. 108. 136. 133. 149. 136. 124. 144. 174. 182. - 94. 118. 128. 180. 173. 109. 41. 61. 48. 50. 54. 55. 49. 42. 42. 48. - 57. 50. 47. 52. 56. 57. 59. 64. 69. 64. 49. 49. 78. 61. 81. 78. 66. - 76. 91. 103. 110. 114. 115. 116. 120. 121. 122. 124. 127. 129. 130. - 131. 141. 141. 142. 146. 148. 146. 139. 133. 125. 126. 127. 125. - 123. 124. 128. 131. 134. 143. 153. 158. 156. 153. 152. 153. 165. - 151. 139. 132. 134. 149. 151. 136. 112. 59. 36. 46. 47. 48. 54. 50. - 45. 39. 59. 47. 61. 46. 49. 72. 94. 66. 89. 75. 62. 67. 54. 91. 49. - 47. 46. 90. 159. 149. 153. 148. 154. 150. 150. 154. 157. 155. 155. - 157. 153. 153. 154. 154. 153. 153. 152. 151. 150. 149. 149. 148. - 147. 147. 146. 146. 145. 144. 143. 142. 141. 138. 133. 129. 124. - 132. 162. 192. 203. 209. 215. 213. 213. 212. 211. 211. 211. 211. - 212. 212. 212. 213. 214. 215. 215. 214. 212. 211. 210. 210. 209. - 208. 208. 207. 206. 206. 55. 54. 55. 55. 56. 57. 59. 60. 53. 58. 77. - 90. 89. 100. 125. 140. 150. 156. 164. 171. 175. 176. 178. 179. 180. - 180. 183. 178. 168. 167. 158. 136. 113. 67. 63. 76. 69. 119. 163. - 110. 103. 106. 86. 64. 57. 103. 133. 55. 40. 51. 41. 71. 106. 63. - 76. 87. 73. 150. 139. 108. 117. 57. 85. 89. 73. 87. 126. 118. 80. - 106. 131. 90. 145. 148. 144. 148. 113. 147. 202. 137. 120. 125. 174. - 206. 109. 63. 57. 49. 48. 51. 56. 58. 53. 46. 46. 52. 55. 52. 51. - 55. 58. 59. 61. 64. 73. 67. 52. 49. 75. 71. 80. 76. 64. 73. 86. 98. - 106. 110. 112. 113. 118. 119. 121. 123. 126. 128. 129. 130. 139. - 139. 141. 144. 147. 145. 138. 132. 132. 129. 126. 126. 128. 129. - 129. 127. 131. 135. 141. 148. 152. 151. 146. 142. 133. 133. 139. - 143. 145. 152. 147. 127. 82. 51. 42. 48. 44. 51. 57. 45. 53. 42. 58. - 47. 64. 48. 52. 76. 90. 66. 87. 74. 67. 70. 55. 96. 51. 45. 48. 86. - 156. 153. 152. 149. 155. 151. 150. 155. 157. 155. 155. 156. 153. - 154. 154. 154. 154. 153. 152. 151. 151. 150. 150. 149. 148. 147. - 146. 146. 145. 144. 143. 142. 140. 137. 131. 127. 122. 132. 164. - 195. 206. 212. 217. 214. 213. 212. 212. 212. 212. 212. 213. 214. - 213. 214. 215. 215. 214. 213. 211. 209. 207. 207. 206. 206. 205. - 205. 204. 204. 53. 53. 53. 53. 54. 55. 56. 56. 52. 59. 80. 92. 88. - 97. 122. 137. 149. 155. 163. 170. 175. 177. 178. 180. 182. 181. 183. - 177. 165. 161. 149. 126. 95. 78. 66. 66. 98. 141. 135. 95. 111. 112. - 73. 60. 53. 126. 118. 42. 42. 61. 42. 83. 87. 56. 79. 81. 80. 165. - 121. 95. 134. 87. 101. 108. 61. 71. 98. 113. 113. 123. 128. 112. - 124. 153. 144. 155. 107. 148. 215. 127. 151. 156. 216. 140. 64. 50. - 56. 52. 51. 54. 59. 61. 57. 50. 51. 57. 53. 53. 55. 57. 59. 61. 62. - 63. 72. 68. 55. 50. 70. 77. 78. 76. 64. 70. 80. 91. 100. 106. 108. - 109. 117. 118. 121. 123. 126. 129. 131. 132. 135. 137. 139. 142. - 143. 142. 138. 134. 137. 132. 127. 127. 129. 129. 125. 121. 126. - 125. 126. 131. 137. 138. 133. 127. 127. 139. 147. 150. 154. 147. - 125. 103. 57. 50. 48. 45. 42. 50. 53. 44. 61. 48. 55. 51. 61. 53. - 53. 82. 83. 71. 82. 75. 73. 68. 57. 95. 56. 45. 51. 82. 153. 156. - 151. 150. 155. 151. 150. 155. 157. 155. 154. 156. 154. 154. 155. - 155. 154. 153. 152. 152. 151. 151. 150. 149. 148. 147. 146. 146. - 145. 143. 142. 141. 139. 136. 130. 126. 121. 131. 165. 198. 209. - 215. 218. 214. 213. 213. 212. 212. 213. 213. 214. 215. 215. 215. - 214. 213. 212. 210. 209. 208. 205. 205. 205. 205. 205. 205. 205. - 205. 52. 52. 51. 51. 51. 52. 53. 54. 51. 60. 82. 94. 87. 94. 119. - 135. 148. 154. 163. 170. 174. 177. 179. 180. 182. 181. 184. 177. - 164. 158. 145. 121. 100. 78. 66. 71. 123. 139. 97. 105. 113. 101. - 64. 57. 65. 136. 98. 41. 48. 51. 49. 97. 65. 52. 62. 76. 98. 173. - 126. 92. 104. 127. 111. 124. 75. 74. 63. 97. 147. 124. 97. 131. 91. - 136. 130. 138. 114. 162. 205. 146. 160. 190. 170. 65. 52. 48. 45. - 62. 53. 55. 59. 61. 55. 49. 51. 57. 48. 52. 56. 59. 60. 61. 61. 60. - 65. 66. 58. 49. 62. 75. 73. 78. 64. 68. 75. 84. 94. 100. 104. 105. - 113. 114. 117. 120. 124. 127. 130. 131. 131. 134. 138. 140. 140. - 140. 139. 139. 135. 133. 131. 129. 128. 126. 125. 123. 122. 120. - 119. 119. 121. 122. 121. 120. 137. 152. 147. 142. 151. 135. 96. 75. - 47. 51. 46. 42. 46. 48. 48. 52. 65. 54. 52. 56. 54. 55. 52. 90. 79. - 80. 77. 78. 78. 61. 59. 90. 61. 48. 55. 81. 152. 160. 151. 152. 155. - 151. 150. 154. 156. 154. 153. 155. 154. 154. 155. 155. 154. 154. - 153. 152. 152. 152. 151. 150. 148. 147. 146. 146. 144. 143. 142. - 141. 139. 135. 129. 125. 119. 130. 165. 199. 211. 216. 219. 213. - 213. 213. 213. 213. 213. 214. 215. 216. 216. 215. 213. 211. 209. - 208. 207. 207. 205. 205. 206. 207. 207. 208. 209. 209. 51. 51. 50. - 50. 50. 50. 51. 52. 51. 61. 84. 95. 86. 92. 117. 133. 147. 154. 162. - 170. 174. 177. 179. 180. 180. 180. 184. 179. 166. 161. 147. 123. - 101. 71. 75. 72. 113. 139. 97. 106. 104. 78. 53. 49. 75. 133. 82. - 43. 50. 35. 57. 111. 54. 52. 40. 71. 120. 180. 142. 96. 64. 152. - 111. 129. 102. 79. 74. 102. 131. 135. 119. 105. 76. 121. 112. 114. - 124. 177. 182. 158. 181. 182. 72. 51. 42. 50. 68. 42. 52. 53. 56. - 57. 51. 45. 47. 54. 45. 51. 56. 59. 60. 60. 59. 57. 57. 64. 60. 49. - 54. 71. 69. 79. 63. 66. 71. 80. 89. 96. 101. 102. 107. 109. 112. - 116. 120. 123. 126. 128. 128. 133. 138. 140. 139. 139. 141. 144. - 131. 134. 137. 135. 131. 130. 132. 135. 127. 128. 129. 128. 129. - 132. 139. 144. 148. 161. 142. 131. 147. 128. 81. 62. 48. 53. 42. 41. - 53. 48. 45. 63. 64. 58. 52. 61. 47. 55. 50. 96. 77. 86. 74. 80. 82. - 56. 60. 85. 65. 50. 58. 81. 152. 163. 152. 153. 155. 151. 150. 153. - 155. 153. 152. 154. 154. 155. 155. 155. 155. 154. 153. 152. 153. - 152. 151. 150. 148. 147. 146. 146. 144. 143. 141. 140. 138. 134. - 129. 125. 117. 130. 165. 200. 212. 216. 219. 213. 213. 213. 213. - 213. 214. 215. 216. 216. 217. 215. 212. 209. 207. 206. 206. 206. - 206. 207. 207. 209. 210. 211. 212. 212. 52. 51. 50. 50. 50. 50. 49. - 48. 47. 75. 99. 102. 99. 107. 122. 131. 140. 148. 159. 169. 174. - 176. 176. 177. 178. 181. 180. 176. 171. 161. 145. 130. 99. 78. 64. - 74. 119. 131. 99. 98. 87. 81. 57. 52. 78. 113. 56. 51. 45. 35. 69. - 81. 63. 56. 51. 54. 127. 171. 129. 131. 82. 115. 142. 130. 102. 110. - 124. 85. 94. 121. 128. 97. 67. 129. 128. 114. 126. 173. 180. 187. - 204. 106. 43. 51. 60. 47. 45. 55. 53. 55. 59. 60. 54. 47. 49. 55. - 50. 55. 56. 53. 54. 59. 59. 55. 57. 65. 64. 54. 52. 62. 69. 67. 65. - 63. 66. 75. 82. 87. 96. 106. 103. 108. 114. 118. 125. 131. 130. 125. - 134. 134. 136. 138. 140. 140. 137. 135. 139. 136. 132. 132. 135. - 140. 143. 145. 145. 152. 156. 153. 151. 153. 154. 153. 154. 152. - 139. 144. 145. 96. 56. 71. 52. 47. 42. 42. 46. 52. 55. 56. 65. 49. - 50. 50. 50. 45. 51. 94. 83. 72. 86. 80. 65. 65. 67. 79. 68. 48. 60. - 70. 144. 170. 154. 157. 145. 148. 153. 156. 156. 155. 155. 155. 154. - 154. 154. 153. 153. 153. 152. 152. 152. 151. 149. 149. 149. 147. - 144. 142. 143. 142. 141. 140. 138. 134. 127. 122. 120. 125. 169. - 198. 210. 220. 216. 220. 214. 214. 214. 215. 215. 216. 216. 217. - 212. 211. 211. 210. 210. 210. 211. 212. 208. 209. 210. 210. 209. - 209. 210. 211. 51. 50. 50. 50. 50. 50. 49. 49. 52. 80. 103. 104. 99. - 107. 123. 133. 140. 148. 160. 169. 174. 176. 176. 176. 177. 180. - 180. 176. 170. 160. 144. 129. 103. 80. 66. 72. 111. 126. 102. 105. - 87. 80. 65. 81. 71. 97. 60. 46. 43. 45. 80. 80. 58. 61. 60. 57. 120. - 151. 133. 111. 110. 107. 145. 124. 113. 110. 103. 76. 93. 116. 132. - 98. 58. 120. 97. 125. 111. 210. 232. 196. 126. 72. 42. 52. 58. 52. - 51. 52. 47. 50. 55. 57. 52. 46. 50. 57. 51. 55. 55. 50. 49. 54. 58. - 58. 56. 63. 62. 53. 50. 59. 65. 64. 66. 60. 62. 72. 77. 78. 89. 103. - 107. 112. 116. 117. 120. 126. 129. 127. 134. 135. 136. 138. 140. - 140. 139. 138. 140. 142. 143. 143. 142. 144. 149. 153. 157. 163. - 165. 161. 157. 158. 157. 155. 158. 149. 144. 149. 128. 70. 44. 68. - 48. 44. 41. 43. 48. 54. 57. 59. 65. 51. 54. 52. 52. 46. 54. 99. 87. - 76. 90. 85. 70. 72. 73. 85. 66. 50. 57. 68. 144. 171. 157. 160. 143. - 149. 155. 158. 157. 155. 155. 156. 154. 154. 153. 153. 153. 152. - 152. 152. 153. 151. 150. 149. 149. 148. 145. 142. 143. 142. 141. - 140. 138. 133. 127. 122. 118. 125. 171. 200. 211. 221. 216. 219. - 215. 215. 215. 214. 214. 214. 214. 214. 213. 212. 211. 211. 210. - 211. 211. 211. 214. 214. 213. 212. 209. 207. 207. 207. 49. 49. 49. - 49. 50. 50. 50. 50. 59. 86. 107. 106. 99. 106. 123. 135. 141. 149. - 160. 169. 174. 176. 176. 176. 176. 179. 179. 175. 169. 159. 143. - 128. 104. 81. 68. 68. 98. 117. 103. 110. 83. 79. 72. 104. 73. 76. - 63. 44. 37. 48. 84. 74. 48. 58. 62. 58. 107. 134. 121. 95. 122. 106. - 139. 127. 108. 115. 103. 81. 80. 82. 129. 116. 110. 131. 77. 127. - 100. 171. 212. 135. 60. 47. 46. 51. 50. 53. 56. 49. 47. 50. 56. 57. - 51. 45. 49. 58. 50. 54. 54. 47. 44. 48. 56. 61. 54. 61. 60. 52. 49. - 55. 60. 60. 66. 56. 57. 69. 71. 66. 76. 94. 96. 103. 109. 110. 114. - 124. 132. 135. 133. 134. 135. 136. 138. 139. 140. 141. 140. 147. - 154. 154. 151. 150. 155. 160. 167. 172. 172. 167. 163. 162. 160. - 156. 160. 145. 151. 151. 103. 45. 40. 67. 43. 42. 42. 44. 50. 55. - 59. 61. 63. 53. 58. 55. 53. 48. 58. 104. 86. 75. 89. 83. 69. 73. 74. - 84. 67. 57. 56. 65. 144. 169. 158. 161. 140. 148. 156. 159. 156. - 153. 153. 155. 153. 153. 153. 152. 152. 152. 151. 151. 153. 152. - 150. 150. 149. 148. 145. 143. 142. 141. 140. 140. 137. 133. 126. - 121. 115. 127. 175. 204. 213. 221. 216. 218. 215. 215. 214. 214. - 213. 212. 211. 211. 214. 213. 212. 211. 211. 210. 211. 211. 205. - 204. 204. 204. 203. 203. 203. 202. 47. 48. 49. 49. 49. 49. 50. 52. - 63. 89. 108. 105. 98. 105. 123. 135. 141. 149. 160. 169. 174. 175. - 176. 176. 176. 178. 178. 174. 168. 159. 142. 127. 102. 79. 69. 66. - 87. 108. 101. 105. 76. 76. 68. 94. 95. 62. 62. 48. 37. 46. 81. 73. - 45. 52. 61. 65. 97. 128. 99. 86. 100. 104. 121. 136. 115. 129. 113. - 99. 85. 66. 130. 130. 123. 135. 75. 96. 105. 131. 191. 87. 57. 50. - 51. 50. 44. 49. 54. 49. 54. 57. 62. 61. 52. 44. 48. 57. 47. 52. 54. - 49. 43. 44. 52. 59. 54. 59. 60. 53. 50. 54. 57. 58. 66. 54. 56. 69. - 68. 56. 60. 78. 82. 92. 100. 103. 107. 117. 127. 133. 130. 131. 133. - 134. 136. 138. 141. 144. 141. 148. 156. 160. 159. 158. 159. 162. - 168. 172. 172. 168. 165. 165. 163. 158. 156. 145. 157. 143. 79. 40. - 53. 67. 43. 43. 44. 47. 51. 56. 59. 61. 60. 53. 60. 56. 52. 49. 61. - 108. 87. 77. 90. 81. 68. 73. 72. 79. 69. 67. 56. 63. 145. 166. 158. - 160. 138. 147. 156. 158. 155. 151. 152. 154. 152. 152. 152. 152. - 151. 151. 151. 150. 153. 151. 150. 149. 149. 148. 145. 142. 142. - 141. 140. 139. 137. 132. 125. 121. 114. 130. 181. 208. 214. 222. - 215. 216. 213. 212. 212. 212. 212. 212. 212. 212. 215. 214. 213. - 211. 210. 210. 210. 210. 209. 208. 208. 208. 209. 209. 208. 206. 46. - 48. 50. 50. 48. 48. 50. 52. 62. 86. 103. 101. 96. 106. 123. 134. - 142. 150. 160. 169. 174. 175. 175. 175. 176. 178. 178. 174. 168. - 159. 142. 127. 101. 77. 73. 70. 85. 106. 99. 95. 66. 72. 59. 64. - 122. 62. 57. 56. 48. 44. 77. 79. 52. 51. 60. 74. 99. 126. 96. 67. - 71. 78. 100. 130. 140. 138. 115. 115. 114. 90. 137. 124. 112. 154. - 87. 76. 106. 124. 160. 70. 78. 56. 49. 53. 49. 49. 52. 49. 55. 59. - 64. 62. 52. 44. 49. 59. 44. 49. 54. 53. 47. 44. 48. 55. 54. 59. 60. - 56. 52. 54. 57. 58. 65. 55. 57. 70. 68. 53. 50. 59. 72. 83. 93. 97. - 101. 109. 117. 121. 128. 130. 133. 135. 136. 139. 144. 148. 145. - 148. 154. 160. 165. 166. 164. 162. 165. 168. 169. 167. 167. 169. - 167. 162. 150. 148. 157. 124. 58. 46. 66. 58. 48. 48. 49. 50. 52. - 55. 59. 61. 56. 52. 59. 54. 51. 51. 63. 108. 92. 83. 94. 84. 70. 76. - 75. 79. 66. 73. 53. 61. 148. 166. 161. 162. 141. 148. 156. 159. 156. - 154. 154. 155. 152. 151. 151. 151. 150. 150. 150. 150. 152. 151. - 149. 149. 148. 147. 144. 142. 141. 140. 139. 138. 136. 131. 125. - 120. 116. 136. 189. 212. 215. 222. 215. 215. 209. 209. 210. 211. - 212. 213. 214. 214. 215. 214. 212. 211. 209. 208. 208. 208. 208. - 207. 206. 207. 207. 205. 200. 196. 45. 48. 51. 50. 47. 46. 48. 51. - 58. 79. 96. 97. 97. 109. 124. 132. 143. 150. 161. 169. 174. 175. - 175. 174. 176. 179. 179. 175. 169. 159. 143. 128. 103. 76. 74. 75. - 87. 109. 97. 80. 56. 65. 54. 48. 129. 71. 51. 62. 55. 43. 71. 76. - 52. 48. 54. 67. 109. 124. 115. 54. 58. 51. 87. 107. 131. 129. 125. - 127. 126. 102. 132. 121. 136. 161. 89. 95. 99. 95. 75. 61. 77. 51. - 45. 58. 58. 53. 52. 49. 52. 57. 62. 61. 51. 44. 52. 64. 45. 48. 54. - 58. 53. 47. 47. 52. 53. 57. 59. 58. 55. 54. 56. 59. 63. 57. 59. 68. - 69. 59. 49. 47. 54. 65. 78. 86. 96. 108. 118. 121. 123. 128. 133. - 136. 137. 139. 144. 149. 148. 149. 153. 159. 166. 169. 168. 165. - 165. 167. 168. 166. 168. 171. 169. 163. 146. 151. 151. 104. 45. 49. - 67. 47. 53. 53. 54. 53. 53. 55. 60. 63. 54. 50. 57. 51. 51. 54. 66. - 108. 91. 83. 94. 82. 69. 77. 75. 76. 60. 77. 51. 60. 153. 168. 164. - 165. 146. 149. 154. 157. 157. 156. 156. 156. 151. 151. 150. 150. - 150. 149. 149. 149. 151. 149. 148. 147. 147. 146. 143. 140. 140. - 139. 138. 137. 135. 130. 124. 119. 120. 143. 196. 216. 216. 222. - 216. 215. 208. 209. 210. 211. 213. 214. 215. 216. 215. 214. 212. - 209. 208. 206. 206. 205. 201. 200. 200. 202. 202. 197. 189. 182. 46. - 49. 52. 50. 46. 44. 47. 50. 55. 73. 89. 93. 100. 115. 127. 132. 143. - 150. 161. 169. 174. 174. 174. 174. 177. 180. 180. 176. 170. 160. - 144. 129. 105. 72. 70. 73. 86. 109. 92. 64. 50. 56. 59. 62. 109. 81. - 45. 64. 60. 48. 70. 67. 47. 49. 48. 48. 113. 130. 129. 74. 54. 59. - 83. 90. 109. 109. 129. 129. 129. 112. 127. 121. 141. 139. 105. 97. - 94. 89. 49. 72. 60. 46. 48. 58. 57. 54. 54. 49. 54. 59. 65. 63. 52. - 45. 53. 66. 49. 49. 54. 59. 57. 50. 48. 51. 51. 54. 58. 59. 56. 54. - 56. 59. 62. 59. 58. 63. 70. 68. 56. 44. 42. 50. 60. 70. 84. 101. - 112. 115. 113. 120. 127. 131. 132. 134. 139. 143. 144. 147. 151. - 156. 160. 163. 167. 169. 168. 169. 168. 165. 166. 168. 164. 157. - 144. 149. 141. 92. 43. 47. 63. 49. 56. 57. 56. 54. 54. 56. 62. 68. - 54. 50. 55. 50. 53. 59. 69. 108. 88. 80. 91. 79. 69. 80. 78. 77. 61. - 85. 52. 60. 155. 165. 162. 161. 145. 145. 145. 148. 152. 154. 152. - 150. 150. 150. 150. 149. 149. 149. 148. 148. 149. 148. 146. 146. - 146. 144. 141. 139. 140. 139. 138. 137. 134. 130. 123. 118. 125. - 149. 203. 219. 216. 222. 216. 215. 210. 210. 211. 212. 213. 214. - 215. 215. 214. 213. 211. 208. 206. 204. 203. 203. 205. 201. 197. - 192. 183. 169. 151. 138. 46. 50. 53. 50. 46. 43. 46. 50. 52. 69. 84. - 92. 103. 119. 130. 132. 143. 151. 161. 169. 174. 174. 174. 174. 178. - 181. 180. 176. 171. 161. 145. 130. 104. 67. 64. 67. 81. 106. 87. 52. - 47. 50. 66. 85. 85. 87. 43. 63. 66. 59. 77. 64. 46. 56. 51. 37. 110. - 140. 128. 108. 49. 89. 82. 87. 113. 95. 117. 122. 144. 143. 134. - 113. 135. 150. 167. 73. 84. 116. 88. 61. 50. 49. 55. 56. 48. 50. 55. - 50. 61. 66. 71. 67. 54. 46. 53. 66. 53. 50. 52. 58. 58. 52. 50. 52. - 49. 52. 56. 58. 56. 54. 55. 59. 61. 60. 57. 59. 69. 75. 64. 46. 49. - 52. 54. 59. 70. 84. 93. 95. 103. 111. 120. 124. 125. 127. 131. 136. - 137. 143. 149. 151. 151. 155. 163. 170. 170. 170. 167. 163. 162. - 162. 157. 149. 143. 146. 134. 90. 48. 46. 60. 58. 57. 58. 57. 55. - 54. 58. 65. 71. 55. 50. 54. 49. 55. 62. 71. 108. 90. 83. 94. 83. 75. - 87. 86. 85. 67. 94. 56. 62. 156. 161. 156. 153. 141. 138. 136. 139. - 145. 148. 147. 143. 150. 150. 149. 149. 149. 148. 148. 148. 148. - 147. 145. 145. 145. 143. 140. 138. 139. 138. 137. 136. 134. 129. - 123. 118. 128. 153. 206. 221. 216. 222. 217. 216. 212. 213. 213. - 213. 213. 213. 214. 214. 214. 212. 210. 207. 205. 203. 202. 202. - 195. 186. 171. 153. 130. 101. 70. 50. 43. 45. 47. 46. 44. 43. 45. - 48. 50. 60. 77. 93. 101. 109. 122. 136. 147. 154. 163. 168. 170. - 171. 173. 175. 173. 178. 180. 176. 169. 158. 143. 129. 100. 61. 55. - 78. 122. 126. 78. 116. 49. 39. 81. 88. 71. 71. 59. 64. 54. 73. 71. - 48. 58. 41. 55. 41. 77. 171. 122. 118. 62. 82. 72. 72. 91. 110. 114. - 84. 118. 138. 98. 127. 125. 166. 142. 127. 137. 134. 118. 74. 45. - 47. 48. 48. 53. 55. 55. 54. 53. 71. 69. 71. 40. 49. 52. 72. 53. 49. - 51. 56. 56. 50. 49. 52. 41. 47. 54. 57. 58. 58. 61. 65. 64. 65. 61. - 59. 64. 72. 72. 65. 58. 54. 54. 59. 60. 58. 61. 68. 73. 81. 92. 99. - 104. 111. 120. 127. 133. 136. 141. 145. 148. 151. 154. 157. 167. - 161. 156. 155. 158. 156. 149. 142. 138. 142. 124. 85. 55. 49. 51. - 48. 50. 59. 60. 52. 51. 59. 64. 61. 62. 54. 50. 53. 53. 58. 79. 103. - 97. 87. 89. 85. 71. 81. 92. 78. 70. 81. 64. 79. 151. 164. 163. 149. - 139. 126. 120. 129. 137. 137. 137. 142. 145. 146. 146. 147. 149. - 151. 152. 154. 149. 149. 148. 147. 145. 143. 141. 140. 139. 136. - 135. 137. 134. 124. 117. 115. 135. 176. 207. 217. 220. 216. 211. - 215. 208. 212. 213. 209. 209. 212. 214. 212. 204. 210. 211. 205. - 199. 197. 192. 184. 171. 145. 106. 72. 52. 44. 42. 41. 47. 49. 50. - 48. 45. 42. 42. 44. 48. 59. 76. 89. 94. 100. 115. 131. 146. 154. - 163. 169. 171. 171. 173. 175. 178. 180. 179. 174. 168. 156. 137. - 120. 90. 77. 79. 148. 189. 93. 114. 133. 49. 38. 65. 80. 67. 60. 57. - 60. 59. 63. 55. 47. 48. 39. 51. 37. 74. 145. 136. 145. 82. 102. 95. - 44. 78. 121. 153. 99. 82. 114. 105. 118. 153. 148. 142. 138. 137. - 162. 169. 120. 52. 50. 53. 63. 33. 48. 53. 49. 60. 78. 75. 73. 42. - 49. 53. 70. 51. 48. 50. 54. 54. 49. 48. 51. 46. 47. 50. 55. 59. 61. - 61. 60. 60. 60. 57. 55. 61. 72. 75. 73. 64. 64. 70. 79. 85. 86. 90. - 96. 97. 103. 109. 112. 112. 114. 120. 124. 135. 139. 145. 149. 151. - 153. 156. 158. 160. 157. 154. 154. 154. 151. 144. 139. 130. 135. - 116. 72. 40. 42. 61. 73. 60. 59. 57. 57. 63. 66. 62. 54. 59. 51. 49. - 52. 53. 58. 77. 99. 94. 86. 91. 89. 74. 81. 90. 77. 69. 76. 65. 76. - 157. 161. 162. 144. 127. 119. 116. 120. 126. 129. 131. 133. 137. - 137. 138. 139. 141. 143. 145. 147. 149. 148. 148. 147. 145. 143. - 141. 140. 138. 135. 133. 134. 130. 122. 115. 114. 142. 181. 210. - 217. 219. 215. 210. 214. 207. 211. 211. 208. 207. 210. 211. 209. - 208. 207. 202. 196. 193. 184. 165. 145. 97. 81. 58. 42. 37. 41. 46. - 49. 48. 50. 50. 48. 44. 40. 38. 38. 44. 57. 74. 84. 85. 89. 108. - 127. 144. 153. 163. 170. 172. 172. 173. 175. 170. 174. 176. 174. - 169. 156. 134. 114. 86. 90. 156. 197. 99. 78. 125. 109. 50. 40. 48. - 78. 75. 56. 62. 62. 72. 59. 45. 60. 44. 43. 53. 39. 81. 122. 129. - 156. 115. 90. 86. 73. 48. 84. 126. 83. 69. 127. 127. 94. 139. 140. - 144. 113. 88. 108. 137. 160. 119. 73. 40. 43. 54. 44. 40. 48. 59. - 76. 75. 67. 40. 45. 52. 67. 50. 48. 49. 52. 52. 49. 48. 50. 50. 48. - 48. 52. 59. 62. 60. 57. 60. 58. 54. 51. 56. 68. 76. 78. 75. 80. 91. - 104. 112. 114. 118. 123. 135. 139. 142. 142. 139. 138. 139. 142. - 138. 143. 149. 153. 155. 156. 157. 157. 167. 167. 169. 169. 169. - 167. 165. 163. 172. 178. 164. 125. 88. 68. 56. 46. 60. 56. 52. 51. - 50. 50. 57. 65. 55. 49. 48. 51. 53. 59. 77. 96. 92. 85. 93. 92. 75. - 80. 89. 78. 71. 70. 68. 74. 166. 156. 159. 135. 112. 113. 112. 110. - 112. 118. 122. 121. 127. 127. 128. 129. 132. 134. 136. 138. 145. - 145. 145. 145. 144. 142. 141. 140. 138. 134. 132. 131. 127. 119. - 115. 116. 154. 190. 213. 217. 217. 212. 208. 212. 206. 209. 210. - 207. 207. 209. 208. 205. 211. 203. 191. 183. 174. 152. 114. 82. 52. - 45. 37. 35. 40. 49. 56. 60. 52. 53. 53. 52. 49. 45. 42. 40. 40. 54. - 72. 80. 78. 83. 105. 129. 142. 151. 162. 170. 173. 173. 173. 174. - 165. 172. 178. 175. 166. 152. 132. 116. 125. 174. 205. 99. 88. 57. - 107. 98. 48. 43. 40. 84. 91. 63. 70. 67. 78. 58. 46. 79. 48. 47. 54. - 43. 83. 132. 121. 129. 143. 96. 66. 81. 53. 68. 97. 89. 108. 154. - 128. 76. 107. 153. 158. 105. 87. 69. 71. 164. 172. 135. 72. 16. 67. - 43. 40. 52. 56. 73. 76. 62. 42. 45. 58. 71. 50. 49. 50. 51. 51. 50. - 50. 51. 51. 50. 49. 52. 56. 59. 59. 58. 64. 60. 53. 49. 51. 61. 73. - 80. 85. 94. 108. 120. 125. 126. 127. 129. 134. 136. 139. 139. 137. - 136. 138. 139. 139. 144. 150. 155. 156. 155. 154. 154. 152. 155. - 159. 160. 162. 165. 171. 175. 186. 193. 195. 187. 176. 154. 116. 81. - 53. 46. 47. 58. 62. 56. 52. 54. 53. 49. 49. 52. 55. 63. 79. 95. 94. - 85. 93. 91. 74. 77. 89. 81. 75. 69. 74. 76. 175. 151. 154. 127. 106. - 115. 115. 107. 105. 112. 115. 112. 119. 119. 120. 121. 123. 125. - 127. 128. 135. 136. 137. 139. 140. 140. 140. 140. 139. 135. 133. - 131. 126. 119. 118. 121. 166. 197. 216. 215. 214. 210. 206. 210. - 207. 209. 210. 207. 207. 209. 206. 201. 203. 197. 188. 176. 155. - 120. 77. 45. 44. 43. 45. 50. 58. 65. 69. 70. 60. 60. 58. 57. 55. 52. - 48. 46. 38. 52. 69. 75. 73. 79. 105. 131. 138. 148. 161. 170. 173. - 173. 173. 173. 172. 179. 180. 172. 160. 151. 143. 138. 176. 193. 88. - 84. 64. 69. 111. 70. 45. 44. 39. 84. 100. 68. 66. 62. 70. 54. 52. - 91. 58. 49. 53. 45. 70. 134. 130. 107. 142. 135. 91. 49. 43. 61. 89. - 115. 144. 142. 105. 92. 89. 126. 140. 119. 121. 87. 53. 119. 159. - 173. 142. 66. 38. 41. 55. 55. 61. 77. 83. 62. 48. 49. 67. 78. 50. - 51. 51. 51. 51. 53. 53. 53. 49. 51. 53. 53. 52. 54. 58. 61. 63. 59. - 53. 48. 49. 57. 72. 83. 90. 102. 116. 124. 127. 126. 126. 125. 124. - 126. 128. 130. 131. 131. 133. 134. 138. 143. 149. 152. 152. 151. - 149. 149. 142. 145. 147. 148. 151. 158. 169. 178. 182. 187. 191. - 197. 206. 207. 188. 166. 128. 92. 58. 49. 54. 57. 58. 60. 52. 50. - 49. 52. 57. 67. 82. 95. 98. 85. 88. 88. 71. 75. 89. 84. 78. 71. 78. - 84. 179. 147. 148. 122. 113. 122. 123. 114. 108. 112. 114. 110. 113. - 113. 113. 113. 114. 115. 116. 117. 122. 123. 126. 129. 131. 133. - 134. 135. 137. 134. 132. 131. 125. 119. 120. 124. 172. 201. 216. - 213. 212. 208. 204. 208. 208. 210. 210. 208. 209. 209. 204. 197. - 193. 192. 186. 168. 136. 97. 63. 45. 35. 40. 48. 59. 69. 75. 78. 78. - 72. 69. 64. 60. 56. 52. 48. 45. 42. 54. 66. 70. 66. 73. 98. 125. - 134. 145. 159. 169. 173. 172. 171. 171. 171. 175. 173. 166. 161. - 164. 170. 172. 167. 71. 59. 72. 58. 77. 141. 34. 42. 40. 39. 72. 91. - 68. 54. 55. 60. 53. 60. 96. 79. 59. 60. 53. 65. 83. 121. 127. 114. - 126. 130. 87. 69. 81. 104. 141. 155. 115. 81. 93. 96. 88. 113. 122. - 103. 84. 81. 97. 155. 134. 138. 159. 49. 44. 49. 55. 63. 77. 85. 57. - 47. 46. 68. 75. 50. 52. 52. 50. 50. 54. 55. 54. 48. 51. 53. 52. 50. - 51. 58. 64. 58. 55. 52. 50. 50. 57. 73. 88. 90. 104. 118. 124. 125. - 126. 126. 125. 130. 132. 134. 136. 137. 139. 139. 140. 138. 141. - 145. 147. 147. 145. 144. 144. 149. 150. 150. 151. 154. 162. 174. - 183. 188. 195. 198. 196. 195. 199. 202. 202. 204. 175. 132. 89. 56. - 41. 47. 59. 50. 48. 47. 48. 55. 67. 82. 93. 101. 83. 83. 84. 70. 75. - 88. 83. 77. 73. 77. 93. 178. 147. 142. 124. 124. 129. 130. 125. 119. - 118. 118. 116. 112. 112. 110. 109. 107. 107. 107. 107. 110. 111. - 114. 117. 120. 122. 123. 124. 127. 125. 126. 125. 120. 115. 116. - 122. 174. 201. 213. 210. 209. 207. 203. 207. 209. 210. 210. 209. - 210. 209. 202. 193. 192. 184. 167. 138. 100. 64. 45. 41. 44. 50. 60. - 70. 78. 83. 84. 84. 98. 91. 81. 72. 65. 58. 52. 47. 50. 57. 64. 64. - 58. 63. 85. 110. 130. 142. 157. 168. 172. 171. 170. 169. 167. 170. - 171. 171. 174. 177. 174. 168. 101. 72. 65. 87. 79. 146. 81. 57. 43. - 36. 40. 54. 78. 73. 52. 64. 49. 50. 61. 89. 99. 72. 71. 61. 74. 36. - 82. 138. 108. 100. 117. 120. 127. 122. 139. 160. 135. 93. 79. 77. - 108. 100. 112. 124. 92. 80. 117. 134. 170. 96. 89. 159. 113. 62. 36. - 56. 57. 71. 82. 49. 44. 41. 67. 73. 48. 52. 51. 48. 48. 54. 56. 53. - 50. 50. 49. 49. 50. 54. 59. 63. 57. 55. 54. 54. 52. 56. 71. 87. 92. - 106. 119. 122. 122. 125. 128. 127. 125. 125. 127. 130. 133. 134. - 135. 134. 138. 140. 143. 143. 142. 140. 140. 141. 141. 142. 144. - 147. 153. 161. 170. 176. 179. 190. 199. 199. 196. 198. 204. 208. - 196. 207. 208. 183. 140. 95. 60. 40. 45. 43. 41. 41. 49. 63. 79. 88. - 101. 79. 79. 83. 73. 76. 85. 78. 69. 71. 72. 100. 172. 148. 138. - 129. 133. 132. 132. 134. 131. 125. 123. 125. 119. 117. 114. 111. - 108. 106. 105. 104. 102. 103. 104. 106. 108. 109. 109. 109. 112. - 112. 115. 115. 111. 106. 108. 114. 171. 197. 210. 207. 208. 206. - 203. 206. 208. 209. 209. 208. 209. 208. 199. 188. 184. 158. 123. 89. - 61. 42. 39. 45. 63. 68. 75. 81. 85. 86. 85. 85. 127. 118. 104. 91. - 81. 72. 63. 58. 57. 60. 63. 60. 52. 54. 74. 96. 128. 140. 156. 167. - 171. 170. 169. 168. 174. 177. 180. 184. 186. 176. 151. 128. 92. 78. - 53. 111. 118. 127. 78. 31. 44. 35. 41. 42. 71. 82. 59. 82. 37. 41. - 53. 74. 106. 76. 73. 60. 82. 39. 49. 117. 131. 116. 74. 69. 89. 92. - 131. 143. 87. 71. 103. 96. 88. 112. 103. 117. 118. 94. 123. 155. - 161. 114. 82. 81. 156. 81. 41. 57. 54. 68. 82. 48. 46. 45. 74. 79. - 47. 51. 50. 46. 47. 53. 55. 52. 53. 49. 45. 46. 52. 58. 61. 61. 60. - 58. 58. 58. 53. 53. 66. 83. 94. 109. 120. 120. 119. 123. 126. 126. - 124. 125. 127. 130. 134. 137. 138. 137. 138. 140. 141. 141. 139. - 138. 138. 139. 140. 142. 147. 154. 163. 171. 177. 180. 191. 193. - 194. 196. 199. 202. 201. 197. 205. 204. 203. 205. 205. 182. 127. 76. - 40. 39. 36. 35. 43. 59. 75. 84. 100. 76. 76. 83. 75. 78. 84. 73. 63. - 69. 67. 104. 167. 149. 136. 134. 137. 131. 132. 139. 139. 130. 127. - 132. 127. 124. 121. 117. 112. 109. 107. 106. 98. 99. 100. 100. 100. - 100. 99. 99. 100. 102. 105. 107. 103. 98. 100. 107. 169. 195. 207. - 205. 207. 206. 203. 206. 206. 208. 207. 206. 208. 206. 196. 185. - 165. 127. 81. 52. 42. 46. 57. 69. 63. 68. 74. 80. 82. 83. 84. 85. - 129. 128. 124. 115. 101. 86. 74. 67. 66. 67. 61. 55. 54. 52. 67. 96. - 118. 136. 156. 165. 167. 170. 172. 171. 168. 166. 186. 193. 174. - 161. 147. 119. 105. 59. 125. 116. 178. 69. 36. 45. 29. 44. 48. 38. - 42. 68. 93. 103. 28. 44. 50. 57. 116. 98. 77. 81. 91. 36. 36. 65. - 111. 142. 115. 99. 93. 75. 109. 125. 69. 94. 108. 100. 97. 110. 115. - 122. 110. 106. 125. 120. 156. 105. 75. 74. 82. 144. 61. 45. 55. 74. - 68. 49. 48. 38. 75. 68. 49. 48. 48. 49. 46. 45. 52. 62. 59. 51. 51. - 47. 50. 58. 55. 59. 61. 68. 64. 56. 54. 51. 58. 75. 94. 109. 115. - 117. 124. 123. 120. 126. 124. 128. 132. 134. 133. 133. 135. 137. - 136. 138. 141. 141. 141. 140. 141. 143. 142. 146. 152. 158. 164. - 171. 179. 184. 192. 192. 193. 195. 196. 197. 199. 199. 204. 203. - 200. 201. 208. 211. 198. 181. 104. 49. 43. 40. 42. 64. 69. 81. 106. - 67. 73. 86. 66. 70. 84. 65. 76. 64. 59. 128. 156. 157. 143. 139. - 139. 140. 140. 140. 139. 136. 134. 133. 131. 130. 128. 124. 120. - 116. 112. 110. 107. 104. 100. 97. 95. 94. 91. 89. 97. 100. 115. 114. - 108. 91. 72. 90. 157. 192. 209. 204. 204. 207. 207. 209. 201. 210. - 212. 205. 204. 204. 190. 169. 137. 83. 40. 43. 62. 69. 72. 78. 73. - 76. 81. 85. 88. 87. 86. 85. 138. 137. 134. 128. 117. 104. 91. 83. - 76. 76. 67. 58. 54. 51. 66. 96. 119. 137. 157. 165. 167. 170. 171. - 171. 173. 165. 174. 179. 166. 159. 148. 125. 102. 97. 117. 133. 157. - 59. 39. 41. 43. 44. 38. 37. 56. 85. 94. 85. 34. 25. 40. 78. 129. 90. - 76. 101. 80. 42. 42. 49. 71. 106. 115. 127. 108. 108. 118. 102. 71. - 83. 93. 113. 110. 99. 96. 124. 132. 126. 131. 118. 128. 142. 89. 42. - 99. 132. 107. 50. 51. 69. 67. 46. 43. 37. 74. 68. 53. 52. 53. 53. - 49. 47. 52. 61. 61. 54. 52. 48. 49. 55. 53. 56. 63. 70. 66. 58. 55. - 51. 59. 79. 91. 108. 114. 114. 118. 118. 119. 128. 128. 127. 127. - 129. 133. 136. 138. 138. 137. 139. 140. 140. 139. 139. 141. 143. - 144. 147. 153. 159. 165. 171. 178. 183. 189. 190. 191. 192. 194. - 195. 196. 197. 199. 202. 203. 203. 207. 212. 209. 202. 197. 126. 76. - 41. 36. 57. 65. 85. 105. 68. 72. 84. 66. 71. 85. 68. 76. 63. 64. - 135. 154. 147. 137. 141. 141. 141. 142. 141. 140. 138. 136. 135. - 136. 135. 133. 130. 126. 122. 119. 117. 112. 109. 105. 102. 100. 96. - 92. 89. 100. 105. 123. 121. 112. 91. 71. 91. 161. 194. 210. 205. - 205. 208. 208. 210. 210. 211. 209. 204. 198. 183. 154. 128. 84. 60. - 48. 60. 75. 75. 73. 75. 77. 81. 87. 89. 89. 87. 86. 86. 139. 139. - 139. 138. 135. 125. 112. 102. 90. 88. 75. 61. 53. 48. 64. 95. 121. - 139. 158. 166. 168. 170. 171. 171. 176. 166. 169. 172. 163. 156. - 145. 127. 118. 154. 119. 141. 109. 31. 35. 44. 46. 41. 33. 40. 72. - 107. 115. 104. 57. 40. 58. 98. 124. 82. 73. 100. 79. 44. 51. 70. 75. - 75. 75. 93. 120. 124. 108. 65. 73. 76. 78. 110. 129. 107. 102. 137. - 147. 131. 129. 116. 90. 129. 120. 52. 72. 104. 136. 80. 52. 64. 69. - 48. 44. 43. 79. 73. 55. 54. 54. 54. 51. 47. 50. 57. 67. 62. 56. 53. - 53. 54. 57. 57. 64. 72. 70. 62. 57. 50. 59. 82. 90. 109. 115. 112. - 115. 118. 121. 131. 129. 125. 122. 125. 133. 139. 141. 140. 140. - 140. 139. 138. 136. 137. 141. 143. 147. 150. 155. 160. 165. 171. - 178. 182. 186. 186. 187. 189. 191. 192. 194. 194. 196. 202. 206. - 204. 203. 208. 214. 217. 223. 202. 152. 78. 46. 54. 54. 64. 99. 66. - 68. 78. 64. 70. 83. 69. 72. 56. 65. 143. 154. 139. 135. 147. 144. - 144. 144. 144. 142. 141. 139. 138. 139. 138. 137. 135. 132. 129. - 126. 125. 120. 117. 114. 110. 107. 102. 96. 92. 104. 112. 132. 129. - 115. 91. 74. 98. 169. 198. 211. 206. 208. 210. 209. 212. 215. 207. - 203. 202. 187. 151. 106. 77. 40. 48. 64. 79. 84. 80. 77. 78. 83. 89. - 95. 94. 90. 85. 85. 87. 133. 133. 137. 142. 145. 139. 127. 116. 101. - 98. 81. 63. 51. 45. 62. 94. 122. 140. 159. 167. 169. 170. 172. 171. - 173. 170. 174. 176. 168. 154. 141. 130. 165. 175. 106. 113. 72. 36. - 42. 45. 37. 38. 36. 40. 62. 94. 112. 114. 112. 114. 119. 114. 100. - 74. 66. 68. 66. 41. 68. 110. 98. 60. 62. 97. 106. 98. 82. 42. 74. - 79. 78. 93. 123. 119. 124. 150. 145. 126. 135. 132. 74. 58. 132. - 115. 37. 71. 120. 129. 54. 54. 66. 48. 44. 48. 80. 73. 53. 51. 52. - 53. 51. 47. 49. 54. 65. 65. 54. 54. 53. 51. 60. 59. 64. 74. 75. 69. - 59. 48. 57. 83. 91. 110. 116. 114. 120. 124. 124. 129. 124. 124. - 125. 129. 134. 139. 141. 142. 142. 141. 139. 136. 135. 137. 141. - 145. 150. 153. 157. 161. 165. 170. 176. 180. 183. 184. 185. 187. - 189. 191. 192. 193. 196. 201. 204. 202. 199. 201. 208. 214. 199. - 220. 208. 156. 100. 52. 36. 61. 89. 62. 62. 69. 61. 69. 80. 69. 67. - 46. 62. 150. 156. 137. 138. 154. 147. 147. 147. 146. 144. 143. 142. - 141. 139. 138. 137. 136. 134. 132. 129. 128. 125. 123. 120. 118. - 115. 110. 103. 99. 109. 116. 135. 131. 115. 92. 82. 115. 179. 203. - 212. 208. 210. 212. 210. 213. 212. 201. 199. 199. 173. 118. 69. 47. - 43. 62. 82. 87. 83. 81. 83. 85. 89. 96. 100. 97. 89. 84. 85. 88. - 131. 132. 138. 146. 151. 147. 135. 125. 111. 107. 87. 66. 50. 42. - 60. 93. 122. 140. 159. 168. 169. 171. 173. 173. 171. 175. 179. 178. - 170. 153. 145. 149. 211. 153. 92. 83. 65. 70. 57. 42. 40. 42. 40. - 39. 47. 62. 70. 69. 89. 108. 107. 86. 64. 65. 65. 64. 82. 82. 102. - 109. 65. 33. 78. 140. 75. 55. 70. 54. 72. 80. 91. 88. 95. 110. 125. - 143. 136. 133. 153. 151. 96. 19. 93. 156. 89. 55. 97. 153. 66. 42. - 55. 43. 41. 47. 74. 67. 53. 50. 51. 53. 53. 50. 52. 56. 59. 64. 48. - 52. 52. 47. 64. 60. 63. 76. 82. 78. 64. 46. 53. 80. 90. 110. 116. - 115. 124. 129. 124. 122. 118. 125. 133. 136. 136. 136. 139. 143. - 143. 142. 139. 136. 135. 137. 143. 147. 153. 155. 159. 162. 165. - 169. 174. 177. 181. 182. 183. 185. 187. 189. 191. 192. 196. 197. - 199. 201. 202. 202. 204. 207. 211. 211. 210. 215. 174. 83. 43. 68. - 80. 60. 58. 64. 62. 70. 78. 70. 68. 41. 63. 155. 157. 137. 140. 152. - 149. 149. 148. 146. 145. 144. 143. 143. 139. 139. 139. 138. 136. - 134. 132. 131. 127. 126. 125. 124. 122. 118. 113. 109. 113. 117. - 134. 130. 114. 96. 97. 140. 188. 207. 213. 209. 212. 213. 210. 214. - 209. 200. 198. 192. 152. 90. 50. 41. 66. 82. 93. 89. 82. 83. 87. 90. - 96. 101. 103. 97. 88. 83. 86. 91. 130. 133. 141. 149. 154. 151. 142. - 134. 124. 118. 97. 72. 53. 42. 59. 93. 121. 140. 159. 168. 171. 173. - 175. 175. 172. 178. 177. 172. 167. 152. 152. 171. 219. 133. 119. - 100. 52. 62. 49. 44. 54. 51. 48. 51. 61. 63. 50. 33. 54. 69. 60. 58. - 52. 60. 58. 74. 83. 96. 91. 68. 31. 37. 101. 142. 59. 37. 72. 79. - 67. 76. 97. 99. 88. 99. 107. 127. 134. 140. 154. 140. 128. 57. 47. - 141. 180. 72. 94. 129. 102. 45. 50. 43. 44. 50. 71. 68. 57. 53. 52. - 55. 55. 54. 56. 60. 61. 70. 50. 58. 58. 50. 74. 68. 62. 79. 91. 90. - 71. 46. 49. 77. 86. 109. 117. 114. 122. 126. 120. 116. 119. 129. - 140. 142. 137. 134. 138. 143. 142. 142. 140. 138. 137. 140. 145. - 149. 155. 157. 160. 162. 164. 167. 171. 174. 178. 179. 181. 183. - 185. 188. 189. 190. 194. 192. 195. 202. 206. 206. 206. 208. 215. - 217. 206. 218. 217. 165. 98. 41. 72. 59. 56. 60. 64. 73. 77. 71. 70. - 44. 70. 161. 154. 135. 140. 146. 150. 149. 147. 145. 144. 144. 143. - 143. 143. 143. 142. 141. 140. 138. 136. 135. 130. 128. 127. 127. - 126. 124. 120. 117. 118. 118. 132. 129. 116. 104. 113. 163. 197. - 211. 213. 209. 213. 213. 210. 214. 208. 200. 195. 178. 129. 71. 46. - 52. 80. 89. 95. 92. 87. 87. 90. 93. 104. 104. 102. 96. 88. 86. 90. - 95. 115. 122. 134. 144. 151. 151. 148. 145. 138. 133. 110. 82. 58. - 45. 60. 93. 120. 139. 159. 168. 171. 175. 177. 177. 174. 180. 174. - 170. 169. 153. 150. 172. 203. 116. 132. 131. 33. 37. 40. 48. 56. 53. - 52. 60. 73. 76. 61. 43. 76. 86. 58. 63. 72. 75. 48. 60. 45. 50. 44. - 52. 47. 57. 105. 120. 76. 47. 63. 81. 64. 74. 84. 102. 100. 95. 96. - 125. 138. 135. 138. 118. 135. 111. 59. 116. 177. 112. 95. 82. 151. - 59. 49. 45. 48. 54. 72. 73. 62. 56. 53. 54. 54. 53. 55. 59. 64. 76. - 53. 62. 61. 51. 79. 72. 62. 83. 101. 102. 80. 48. 46. 74. 84. 113. - 123. 115. 116. 120. 119. 121. 127. 134. 140. 141. 138. 136. 138. - 142. 141. 141. 141. 140. 140. 143. 148. 151. 156. 158. 160. 161. - 162. 164. 168. 171. 175. 176. 177. 180. 182. 185. 187. 187. 192. - 190. 194. 201. 205. 204. 207. 212. 202. 222. 211. 210. 222. 221. - 168. 64. 61. 54. 51. 55. 63. 71. 73. 67. 65. 47. 81. 166. 150. 133. - 143. 147. 149. 148. 146. 144. 143. 142. 143. 143. 145. 144. 144. - 143. 141. 139. 137. 136. 133. 131. 129. 128. 127. 126. 123. 121. - 123. 120. 133. 131. 123. 114. 126. 179. 203. 213. 212. 209. 214. - 213. 209. 213. 206. 197. 184. 157. 108. 63. 54. 70. 87. 90. 93. 94. - 91. 90. 95. 102. 111. 108. 101. 94. 90. 91. 96. 100. 96. 106. 121. - 136. 145. 150. 152. 153. 149. 143. 120. 89. 63. 47. 61. 94. 119. - 138. 158. 168. 172. 176. 178. 179. 174. 181. 174. 173. 175. 154. - 140. 157. 194. 92. 97. 134. 27. 44. 49. 44. 46. 47. 48. 53. 60. 66. - 64. 59. 45. 67. 35. 45. 77. 97. 57. 56. 49. 42. 45. 79. 63. 29. 60. - 83. 103. 63. 44. 66. 63. 77. 66. 92. 104. 91. 94. 133. 144. 128. - 128. 115. 123. 132. 104. 114. 103. 144. 89. 49. 181. 66. 46. 42. 46. - 51. 68. 73. 64. 57. 52. 51. 51. 50. 52. 55. 59. 73. 47. 58. 56. 44. - 74. 66. 63. 86. 107. 110. 86. 50. 45. 72. 84. 119. 131. 118. 112. - 115. 120. 129. 136. 137. 138. 139. 138. 139. 139. 140. 140. 141. - 142. 142. 142. 145. 149. 153. 156. 158. 160. 161. 161. 163. 166. - 169. 172. 173. 175. 177. 180. 182. 184. 185. 192. 191. 194. 200. - 200. 198. 203. 212. 211. 210. 203. 221. 220. 213. 208. 156. 52. 48. - 45. 49. 59. 67. 67. 62. 56. 46. 87. 170. 147. 132. 148. 152. 149. - 147. 145. 143. 142. 141. 142. 142. 144. 144. 143. 142. 140. 137. - 135. 134. 136. 133. 130. 128. 127. 126. 124. 122. 127. 122. 135. - 135. 128. 120. 133. 186. 206. 214. 212. 209. 214. 213. 209. 213. - 202. 191. 172. 141. 96. 62. 64. 84. 94. 92. 92. 94. 91. 90. 100. - 114. 116. 110. 101. 94. 91. 94. 100. 105. 60. 83. 111. 130. 142. - 152. 159. 162. 158. 145. 127. 102. 64. 40. 58. 93. 122. 145. 160. - 167. 177. 177. 173. 176. 177. 177. 179. 177. 167. 155. 154. 161. - 147. 115. 66. 77. 32. 31. 52. 41. 46. 37. 48. 64. 63. 57. 56. 52. - 51. 42. 38. 50. 101. 98. 53. 78. 54. 41. 40. 74. 83. 40. 31. 74. 99. - 94. 61. 48. 77. 71. 61. 83. 96. 108. 88. 129. 145. 128. 114. 143. - 135. 136. 109. 125. 63. 133. 163. 43. 160. 125. 37. 30. 45. 43. 80. - 61. 50. 67. 45. 54. 48. 52. 49. 50. 61. 69. 53. 50. 49. 41. 59. 75. - 59. 94. 114. 115. 99. 61. 43. 62. 85. 112. 115. 104. 114. 132. 135. - 131. 133. 134. 137. 139. 140. 139. 138. 136. 140. 139. 138. 139. - 140. 143. 146. 148. 152. 155. 158. 160. 161. 163. 165. 167. 169. - 171. 174. 176. 178. 180. 183. 186. 190. 191. 193. 196. 198. 201. - 203. 204. 207. 209. 213. 216. 217. 216. 214. 213. 123. 50. 42. 55. - 50. 75. 47. 67. 49. 45. 103. 161. 140. 131. 158. 141. 145. 144. 144. - 144. 144. 144. 143. 143. 144. 144. 143. 143. 141. 140. 138. 137. - 131. 137. 136. 129. 124. 126. 126. 123. 129. 133. 140. 138. 126. - 127. 158. 195. 210. 213. 213. 211. 212. 214. 213. 209. 201. 186. - 153. 108. 76. 71. 83. 95. 92. 92. 91. 92. 95. 101. 107. 111. 110. - 103. 95. 92. 93. 97. 100. 101. 48. 69. 96. 119. 137. 153. 161. 163. - 164. 152. 136. 111. 71. 44. 59. 93. 122. 145. 159. 167. 177. 177. - 173. 176. 177. 176. 178. 177. 168. 156. 152. 155. 179. 109. 80. 48. - 44. 46. 43. 41. 48. 41. 56. 73. 63. 50. 53. 60. 48. 48. 43. 56. 108. - 97. 48. 77. 56. 32. 38. 77. 99. 65. 37. 67. 89. 84. 78. 68. 67. 80. - 85. 71. 77. 103. 93. 114. 111. 111. 119. 143. 134. 170. 133. 112. - 34. 79. 152. 92. 146. 146. 42. 33. 42. 37. 73. 60. 53. 69. 45. 53. - 47. 52. 50. 51. 65. 72. 54. 52. 52. 42. 57. 69. 64. 97. 116. 117. - 103. 63. 42. 59. 80. 108. 115. 108. 119. 134. 134. 130. 133. 134. - 136. 138. 139. 139. 139. 138. 141. 140. 139. 140. 141. 144. 147. - 149. 151. 154. 158. 160. 161. 162. 164. 166. 168. 171. 174. 176. - 177. 179. 183. 185. 190. 191. 193. 195. 198. 201. 203. 204. 205. - 207. 210. 214. 216. 217. 217. 217. 171. 103. 36. 48. 46. 66. 46. 65. - 49. 46. 112. 160. 137. 134. 152. 143. 147. 147. 147. 146. 146. 146. - 145. 145. 143. 143. 142. 142. 141. 140. 138. 138. 132. 136. 135. - 130. 127. 129. 128. 123. 128. 132. 139. 139. 131. 134. 164. 198. - 214. 216. 216. 213. 213. 215. 213. 209. 200. 176. 136. 97. 76. 76. - 86. 95. 90. 90. 92. 96. 102. 107. 111. 113. 102. 98. 94. 93. 96. - 100. 102. 103. 35. 51. 76. 102. 130. 153. 165. 166. 168. 158. 144. - 119. 76. 45. 56. 87. 122. 144. 159. 167. 177. 177. 173. 177. 178. - 176. 177. 176. 170. 158. 150. 147. 159. 132. 96. 62. 49. 40. 35. 43. - 47. 46. 65. 78. 59. 41. 48. 63. 45. 54. 45. 63. 118. 95. 42. 74. 62. - 36. 41. 55. 84. 84. 45. 48. 86. 64. 83. 96. 67. 86. 105. 77. 60. 92. - 96. 112. 97. 111. 123. 117. 134. 184. 152. 112. 40. 29. 103. 120. - 131. 176. 47. 37. 39. 33. 68. 63. 56. 72. 46. 52. 45. 51. 50. 53. - 68. 73. 54. 54. 55. 44. 54. 60. 72. 102. 118. 118. 105. 66. 42. 56. - 76. 104. 116. 114. 126. 136. 133. 129. 133. 134. 135. 136. 138. 139. - 140. 140. 141. 141. 140. 141. 143. 145. 148. 149. 151. 153. 157. - 159. 160. 161. 163. 165. 168. 170. 173. 176. 177. 179. 182. 185. - 189. 190. 192. 195. 198. 200. 203. 204. 203. 205. 208. 211. 215. - 218. 220. 221. 215. 165. 48. 40. 46. 60. 44. 59. 47. 46. 126. 158. - 133. 138. 144. 148. 147. 147. 147. 146. 146. 145. 145. 145. 142. - 142. 141. 141. 140. 139. 139. 138. 135. 136. 134. 131. 130. 131. - 128. 123. 125. 130. 140. 145. 144. 150. 175. 203. 215. 217. 215. - 212. 213. 215. 212. 207. 198. 161. 114. 84. 78. 84. 91. 93. 92. 92. - 95. 102. 109. 112. 110. 108. 93. 92. 93. 95. 100. 103. 104. 104. 29. - 40. 59. 88. 124. 155. 168. 168. 169. 161. 149. 123. 77. 41. 49. 78. - 121. 144. 159. 167. 177. 178. 174. 177. 178. 177. 176. 176. 172. - 161. 148. 139. 119. 170. 80. 80. 36. 34. 45. 44. 44. 52. 69. 71. 50. - 40. 48. 54. 44. 56. 41. 68. 127. 94. 39. 68. 68. 49. 45. 25. 51. 91. - 66. 56. 93. 52. 67. 107. 79. 86. 104. 103. 81. 87. 84. 106. 94. 123. - 134. 105. 140. 161. 140. 96. 63. 27. 58. 139. 132. 200. 49. 38. 38. - 35. 70. 66. 61. 75. 47. 52. 45. 51. 51. 54. 67. 70. 51. 52. 57. 47. - 53. 56. 82. 106. 115. 115. 104. 68. 43. 54. 79. 104. 116. 118. 129. - 135. 131. 128. 134. 134. 134. 135. 137. 139. 141. 142. 141. 141. - 141. 142. 144. 146. 148. 149. 149. 152. 156. 158. 159. 160. 162. - 164. 167. 170. 173. 175. 176. 178. 181. 184. 187. 189. 191. 194. - 197. 200. 202. 203. 205. 205. 207. 209. 213. 217. 220. 223. 227. - 199. 97. 38. 47. 57. 39. 51. 41. 48. 138. 156. 130. 144. 141. 155. - 146. 145. 145. 144. 144. 143. 142. 142. 141. 141. 140. 139. 139. - 138. 139. 139. 137. 135. 133. 130. 130. 129. 125. 121. 123. 131. - 145. 157. 162. 170. 188. 207. 214. 215. 213. 211. 212. 214. 210. - 203. 189. 144. 96. 78. 85. 93. 93. 90. 97. 97. 101. 108. 112. 111. - 104. 97. 87. 89. 94. 99. 102. 104. 104. 103. 31. 36. 51. 79. 119. - 154. 170. 170. 170. 163. 151. 124. 76. 37. 44. 73. 120. 143. 159. - 167. 177. 178. 174. 178. 178. 178. 177. 176. 172. 163. 147. 135. - 110. 164. 74. 53. 31. 48. 54. 42. 46. 58. 69. 59. 43. 48. 54. 44. - 46. 52. 36. 74. 132. 93. 41. 60. 76. 51. 43. 26. 40. 77. 81. 85. 94. - 66. 54. 89. 79. 90. 95. 116. 115. 90. 68. 90. 80. 119. 150. 133. - 145. 141. 127. 57. 56. 56. 52. 167. 155. 206. 48. 38. 38. 38. 73. - 62. 64. 78. 49. 53. 45. 51. 51. 54. 62. 65. 46. 49. 56. 48. 55. 59. - 91. 108. 111. 109. 103. 69. 45. 54. 86. 106. 116. 120. 129. 132. - 128. 130. 135. 135. 135. 135. 137. 139. 140. 141. 140. 141. 142. - 143. 144. 146. 148. 149. 148. 151. 155. 157. 158. 159. 161. 163. - 166. 169. 172. 174. 175. 177. 180. 183. 186. 187. 190. 193. 196. - 199. 202. 203. 207. 207. 207. 208. 211. 215. 218. 220. 222. 210. - 162. 48. 40. 51. 34. 47. 34. 55. 144. 154. 131. 147. 143. 158. 146. - 146. 145. 144. 143. 143. 142. 141. 142. 141. 139. 138. 137. 137. - 138. 138. 138. 134. 131. 129. 127. 124. 121. 120. 127. 140. 159. - 174. 182. 188. 200. 211. 214. 214. 213. 212. 214. 215. 208. 199. - 174. 128. 87. 81. 94. 98. 92. 88. 98. 100. 105. 110. 112. 108. 98. - 91. 87. 91. 97. 101. 103. 103. 102. 101. 35. 37. 47. 73. 113. 151. - 168. 170. 173. 165. 154. 125. 75. 36. 43. 73. 120. 143. 158. 167. - 177. 178. 175. 178. 177. 180. 180. 177. 172. 163. 149. 135. 104. - 120. 121. 38. 49. 55. 39. 42. 54. 60. 64. 52. 43. 54. 58. 43. 47. - 47. 38. 90. 134. 87. 43. 49. 87. 50. 36. 51. 49. 44. 63. 82. 77. 83. - 55. 66. 66. 99. 92. 107. 110. 88. 70. 91. 76. 108. 150. 154. 134. - 151. 144. 54. 42. 73. 54. 157. 181. 187. 46. 39. 37. 38. 77. 56. 67. - 80. 52. 55. 46. 51. 50. 53. 60. 63. 43. 46. 54. 49. 60. 67. 95. 108. - 107. 107. 105. 74. 47. 54. 91. 107. 116. 122. 131. 129. 126. 131. - 135. 135. 136. 137. 138. 138. 139. 139. 139. 140. 141. 143. 144. - 146. 147. 148. 147. 150. 153. 156. 156. 158. 160. 162. 165. 168. - 171. 173. 174. 177. 180. 182. 185. 186. 189. 192. 196. 199. 202. - 203. 208. 208. 208. 209. 211. 213. 216. 218. 222. 216. 208. 86. 33. - 41. 31. 45. 30. 66. 145. 154. 134. 146. 147. 156. 149. 149. 148. - 147. 146. 144. 144. 143. 143. 141. 139. 137. 135. 135. 136. 136. - 136. 132. 130. 128. 124. 120. 122. 127. 143. 158. 177. 191. 196. - 200. 207. 213. 216. 216. 216. 215. 216. 214. 203. 191. 153. 114. 85. - 88. 99. 97. 92. 93. 97. 102. 108. 111. 110. 104. 96. 91. 91. 95. 99. - 102. 102. 101. 101. 101. 37. 37. 44. 67. 107. 146. 165. 169. 174. - 166. 153. 123. 72. 34. 43. 75. 119. 143. 158. 167. 177. 178. 175. - 179. 176. 181. 182. 177. 171. 163. 150. 138. 122. 103. 138. 45. 59. - 47. 28. 50. 62. 53. 52. 51. 45. 49. 54. 49. 46. 45. 50. 112. 135. - 78. 44. 38. 83. 56. 33. 65. 57. 32. 57. 53. 54. 70. 52. 69. 59. 99. - 92. 100. 97. 92. 77. 95. 79. 105. 140. 146. 122. 160. 148. 90. 48. - 59. 47. 132. 189. 146. 39. 41. 36. 38. 85. 56. 68. 82. 54. 57. 48. - 52. 50. 52. 62. 65. 44. 45. 52. 49. 65. 75. 95. 107. 107. 109. 111. - 81. 51. 53. 90. 105. 115. 125. 134. 130. 126. 133. 135. 136. 138. - 138. 139. 138. 137. 136. 138. 139. 140. 142. 144. 145. 146. 146. - 146. 149. 153. 155. 156. 157. 159. 161. 165. 167. 171. 173. 174. - 176. 179. 182. 184. 185. 188. 191. 195. 199. 201. 203. 207. 207. - 208. 209. 211. 214. 216. 217. 222. 221. 218. 151. 40. 38. 35. 39. - 29. 81. 144. 156. 137. 141. 151. 149. 149. 149. 148. 147. 145. 144. - 143. 143. 144. 142. 139. 136. 134. 134. 134. 134. 132. 130. 129. - 128. 122. 119. 126. 138. 166. 181. 196. 203. 202. 204. 209. 215. - 216. 217. 216. 215. 214. 208. 193. 177. 131. 101. 84. 92. 98. 91. - 92. 102. 101. 107. 113. 113. 106. 98. 93. 92. 94. 97. 101. 102. 101. - 101. 103. 104. 36. 36. 41. 63. 102. 141. 163. 168. 172. 164. 150. - 119. 68. 31. 41. 75. 119. 142. 158. 167. 177. 179. 175. 179. 176. - 182. 184. 178. 170. 163. 152. 140. 173. 124. 91. 41. 51. 44. 42. 58. - 65. 43. 41. 52. 46. 39. 46. 56. 44. 44. 62. 129. 135. 71. 43. 32. - 66. 64. 34. 61. 59. 49. 81. 42. 38. 42. 44. 86. 62. 92. 92. 104. - 109. 104. 74. 79. 70. 105. 137. 140. 122. 154. 121. 114. 56. 38. 49. - 137. 184. 111. 32. 41. 36. 39. 94. 61. 68. 82. 55. 58. 49. 52. 49. - 51. 65. 68. 46. 46. 51. 49. 68. 81. 94. 106. 108. 113. 117. 86. 53. - 52. 87. 102. 114. 127. 138. 132. 126. 134. 135. 137. 139. 140. 139. - 138. 135. 134. 137. 138. 140. 142. 143. 145. 145. 145. 146. 149. - 152. 154. 155. 156. 159. 160. 164. 167. 170. 172. 174. 176. 179. - 181. 183. 185. 187. 191. 195. 198. 201. 203. 204. 205. 207. 210. - 212. 215. 216. 217. 218. 223. 210. 206. 55. 41. 39. 32. 30. 91. 143. - 157. 139. 137. 153. 144. 147. 147. 146. 145. 143. 142. 141. 140. - 145. 143. 139. 136. 133. 132. 133. 133. 129. 128. 128. 128. 122. - 120. 131. 147. 184. 197. 208. 208. 203. 203. 209. 215. 215. 215. - 214. 212. 209. 201. 182. 164. 117. 93. 83. 93. 96. 87. 93. 111. 108. - 115. 119. 115. 104. 93. 89. 89. 95. 98. 101. 101. 100. 101. 104. - 108. 33. 34. 38. 56. 96. 139. 161. 163. 172. 167. 151. 123. 79. 35. - 37. 75. 115. 143. 161. 167. 176. 179. 177. 178. 176. 180. 181. 177. - 171. 162. 147. 134. 165. 117. 71. 47. 54. 31. 57. 62. 51. 46. 45. - 41. 40. 51. 53. 39. 44. 41. 99. 121. 139. 61. 47. 41. 45. 59. 43. - 72. 58. 48. 54. 55. 49. 48. 45. 54. 72. 78. 85. 101. 118. 107. 59. - 78. 59. 96. 150. 135. 135. 141. 128. 144. 111. 71. 65. 149. 156. 81. - 138. 25. 38. 59. 92. 63. 72. 66. 57. 51. 48. 50. 52. 53. 54. 55. 56. - 55. 51. 53. 68. 84. 103. 117. 120. 122. 120. 84. 52. 56. 89. 105. - 121. 128. 131. 134. 135. 134. 136. 136. 137. 138. 138. 138. 137. - 137. 135. 136. 138. 140. 142. 144. 146. 147. 147. 148. 150. 152. - 154. 157. 158. 159. 161. 163. 165. 168. 172. 175. 178. 179. 182. - 184. 188. 191. 193. 196. 200. 203. 205. 207. 209. 210. 210. 211. - 213. 215. 216. 220. 224. 217. 130. 36. 30. 32. 29. 108. 133. 151. - 144. 148. 144. 150. 147. 147. 146. 146. 145. 144. 143. 143. 140. - 139. 137. 135. 133. 132. 132. 132. 125. 126. 128. 132. 129. 118. - 136. 176. 202. 210. 215. 210. 205. 206. 210. 213. 213. 216. 217. - 215. 211. 197. 169. 143. 99. 95. 91. 88. 90. 95. 101. 106. 114. 116. - 115. 109. 99. 91. 89. 91. 99. 104. 105. 101. 101. 105. 104. 99. 34. - 33. 35. 51. 91. 136. 161. 165. 174. 169. 153. 125. 80. 35. 35. 72. - 115. 143. 161. 167. 176. 179. 176. 178. 175. 180. 181. 177. 171. - 162. 148. 135. 148. 94. 46. 38. 63. 48. 60. 50. 49. 39. 42. 49. 46. - 44. 43. 34. 25. 69. 134. 129. 115. 62. 51. 39. 45. 57. 50. 69. 55. - 52. 45. 44. 50. 57. 52. 52. 64. 69. 73. 88. 121. 106. 55. 60. 63. - 115. 150. 128. 139. 152. 97. 91. 139. 100. 117. 180. 144. 139. 173. - 57. 40. 38. 76. 55. 66. 65. 63. 61. 58. 53. 48. 44. 50. 51. 53. 55. - 56. 63. 82. 100. 114. 122. 121. 125. 120. 82. 55. 67. 90. 105. 121. - 128. 130. 133. 134. 133. 136. 137. 137. 138. 138. 138. 137. 136. - 136. 137. 138. 140. 142. 143. 145. 146. 147. 147. 149. 152. 154. - 156. 158. 159. 161. 162. 165. 168. 171. 174. 177. 178. 181. 184. - 188. 191. 193. 196. 199. 202. 204. 206. 209. 210. 210. 211. 213. - 215. 218. 227. 224. 216. 164. 41. 32. 29. 36. 115. 136. 148. 141. - 149. 147. 148. 147. 147. 146. 145. 144. 144. 143. 143. 140. 139. - 137. 135. 134. 133. 132. 131. 129. 128. 125. 127. 125. 119. 141. - 184. 205. 213. 217. 211. 206. 208. 212. 214. 219. 219. 216. 212. - 206. 188. 155. 125. 99. 96. 91. 89. 90. 95. 101. 106. 112. 113. 112. - 105. 97. 91. 91. 94. 101. 105. 105. 101. 100. 102. 100. 95. 33. 32. - 32. 47. 86. 132. 161. 167. 176. 171. 155. 128. 83. 36. 34. 69. 114. - 143. 161. 167. 176. 179. 176. 177. 177. 181. 182. 178. 173. 164. - 150. 138. 138. 90. 45. 45. 68. 53. 55. 39. 52. 36. 38. 50. 46. 40. - 40. 39. 76. 98. 114. 103. 87. 68. 50. 31. 45. 55. 62. 66. 49. 56. - 34. 36. 47. 64. 57. 46. 57. 64. 63. 73. 124. 115. 78. 66. 79. 131. - 146. 134. 148. 167. 132. 98. 138. 81. 137. 161. 115. 121. 114. 47. - 46. 44. 75. 58. 60. 58. 55. 53. 54. 57. 62. 65. 48. 49. 52. 56. 61. - 73. 95. 115. 124. 124. 120. 125. 118. 75. 54. 78. 91. 106. 121. 127. - 130. 132. 133. 133. 137. 137. 138. 138. 138. 138. 137. 136. 137. - 137. 138. 139. 141. 142. 143. 144. 146. 147. 149. 151. 153. 156. - 157. 158. 161. 162. 164. 167. 170. 173. 176. 177. 181. 184. 187. - 190. 192. 195. 199. 202. 204. 206. 208. 209. 209. 210. 212. 215. - 215. 228. 221. 216. 204. 64. 31. 30. 43. 124. 141. 145. 138. 152. - 149. 145. 146. 146. 145. 145. 144. 143. 142. 142. 140. 139. 138. - 136. 134. 133. 132. 131. 132. 129. 123. 121. 121. 120. 149. 194. - 210. 216. 218. 212. 207. 209. 214. 216. 221. 218. 213. 208. 199. - 177. 140. 109. 101. 97. 93. 90. 91. 96. 102. 106. 112. 111. 108. - 101. 94. 91. 94. 97. 103. 105. 105. 101. 99. 97. 93. 88. 31. 30. 31. - 46. 84. 131. 160. 168. 175. 171. 156. 131. 88. 40. 36. 69. 113. 142. - 161. 167. 177. 179. 175. 176. 177. 181. 182. 178. 173. 165. 152. - 140. 125. 97. 61. 59. 61. 44. 48. 43. 54. 41. 40. 43. 41. 45. 53. - 53. 113. 85. 62. 85. 82. 71. 41. 38. 44. 55. 72. 63. 41. 57. 30. 39. - 43. 67. 54. 39. 59. 70. 61. 63. 108. 114. 110. 96. 104. 129. 133. - 146. 142. 105. 126. 130. 163. 146. 195. 145. 62. 38. 39. 53. 68. 66. - 57. 40. 71. 67. 60. 53. 49. 49. 53. 56. 50. 50. 52. 57. 64. 78. 100. - 120. 126. 122. 117. 125. 114. 66. 49. 83. 94. 108. 122. 128. 129. - 132. 133. 132. 138. 138. 139. 139. 138. 138. 137. 136. 137. 137. - 138. 139. 140. 141. 142. 142. 145. 146. 148. 150. 153. 155. 157. - 158. 160. 161. 163. 166. 169. 172. 174. 175. 180. 183. 186. 189. - 191. 194. 198. 201. 203. 205. 207. 208. 208. 209. 212. 214. 211. - 220. 217. 217. 226. 111. 23. 35. 45. 128. 143. 144. 138. 156. 151. - 141. 145. 145. 145. 144. 143. 142. 142. 141. 139. 139. 138. 137. - 135. 134. 132. 131. 131. 129. 122. 120. 120. 125. 156. 201. 212. - 217. 217. 211. 207. 210. 214. 216. 216. 215. 212. 205. 189. 163. - 132. 109. 104. 100. 96. 93. 94. 98. 104. 109. 115. 112. 105. 97. 92. - 91. 96. 100. 104. 105. 104. 101. 97. 92. 87. 83. 29. 30. 33. 48. 85. - 130. 158. 166. 173. 169. 156. 134. 93. 45. 39. 69. 112. 141. 160. - 167. 177. 179. 174. 175. 173. 177. 178. 174. 169. 163. 150. 139. - 117. 98. 63. 61. 52. 40. 47. 50. 46. 47. 49. 42. 41. 60. 71. 60. 67. - 51. 50. 102. 92. 71. 39. 54. 45. 57. 74. 62. 37. 55. 34. 49. 44. 69. - 51. 37. 70. 80. 59. 55. 72. 81. 108. 120. 130. 124. 123. 147. 133. - 71. 111. 121. 132. 151. 164. 127. 96. 50. 65. 78. 59. 71. 54. 57. - 52. 57. 63. 66. 63. 57. 53. 51. 49. 48. 52. 59. 68. 82. 103. 121. - 125. 121. 118. 126. 112. 61. 47. 86. 98. 111. 124. 129. 129. 131. - 133. 132. 139. 139. 139. 139. 139. 138. 137. 136. 136. 136. 137. - 138. 139. 140. 141. 141. 144. 145. 147. 149. 152. 154. 156. 157. - 159. 160. 162. 165. 168. 170. 172. 173. 179. 182. 186. 189. 191. - 194. 197. 200. 202. 204. 207. 208. 208. 209. 211. 213. 213. 212. - 216. 219. 223. 161. 20. 35. 47. 128. 142. 143. 140. 158. 152. 139. - 145. 144. 144. 143. 142. 141. 141. 141. 139. 139. 139. 138. 137. - 134. 132. 131. 127. 129. 124. 122. 124. 130. 161. 204. 212. 215. - 214. 207. 205. 209. 214. 216. 212. 215. 214. 201. 176. 147. 126. - 116. 107. 104. 99. 96. 96. 101. 107. 111. 117. 112. 104. 95. 91. 92. - 97. 102. 105. 103. 102. 100. 95. 89. 84. 82. 29. 31. 34. 48. 83. - 127. 156. 164. 172. 168. 158. 137. 98. 49. 40. 69. 111. 141. 160. - 167. 177. 179. 174. 174. 169. 173. 173. 170. 165. 159. 148. 137. - 136. 110. 61. 60. 50. 47. 47. 44. 36. 48. 57. 49. 48. 68. 74. 55. - 41. 44. 55. 99. 90. 75. 47. 52. 49. 59. 63. 62. 41. 52. 42. 53. 48. - 72. 50. 41. 81. 87. 55. 49. 46. 48. 84. 125. 149. 127. 131. 138. - 114. 86. 104. 82. 91. 131. 131. 162. 178. 146. 140. 114. 76. 89. 60. - 61. 62. 65. 67. 66. 61. 58. 59. 61. 45. 46. 52. 63. 75. 89. 108. - 125. 124. 125. 124. 128. 112. 63. 51. 91. 102. 115. 127. 130. 130. - 132. 134. 133. 140. 140. 140. 140. 139. 138. 137. 136. 134. 135. - 136. 137. 139. 140. 141. 141. 144. 145. 146. 149. 151. 153. 155. - 156. 159. 160. 162. 164. 167. 169. 171. 172. 178. 181. 185. 188. - 190. 193. 196. 199. 201. 204. 206. 207. 207. 208. 210. 212. 218. - 212. 215. 222. 215. 194. 44. 29. 56. 129. 139. 143. 141. 157. 151. - 141. 144. 144. 143. 142. 141. 141. 140. 140. 139. 139. 140. 139. - 137. 135. 132. 131. 124. 129. 126. 124. 127. 135. 165. 206. 211. - 213. 210. 204. 203. 209. 215. 216. 215. 216. 211. 193. 160. 131. - 118. 119. 109. 106. 101. 97. 98. 102. 108. 112. 115. 109. 100. 92. - 90. 93. 99. 103. 104. 100. 98. 98. 94. 88. 85. 86. 30. 31. 32. 43. - 77. 122. 154. 164. 173. 170. 160. 140. 101. 51. 39. 66. 110. 140. - 160. 168. 177. 179. 173. 174. 171. 174. 174. 171. 167. 161. 150. - 140. 146. 119. 62. 61. 47. 49. 46. 43. 40. 46. 55. 52. 48. 60. 64. - 49. 59. 51. 51. 78. 81. 73. 50. 45. 56. 61. 46. 62. 51. 51. 47. 47. - 45. 72. 52. 47. 90. 87. 50. 50. 42. 43. 74. 121. 143. 117. 141. 122. - 135. 104. 78. 30. 36. 69. 58. 51. 58. 88. 84. 101. 134. 142. 117. - 129. 115. 106. 89. 68. 50. 42. 45. 50. 46. 48. 58. 71. 84. 97. 113. - 126. 123. 129. 127. 126. 108. 64. 57. 97. 105. 118. 129. 132. 131. - 133. 135. 134. 140. 140. 140. 140. 139. 138. 137. 136. 132. 133. - 135. 136. 138. 140. 141. 142. 143. 144. 146. 148. 150. 153. 155. - 155. 158. 159. 161. 163. 166. 168. 169. 170. 178. 181. 184. 187. - 189. 192. 196. 199. 201. 203. 205. 206. 206. 207. 210. 212. 217. - 217. 211. 221. 216. 205. 97. 26. 71. 134. 137. 143. 141. 153. 149. - 146. 143. 143. 142. 142. 141. 140. 139. 139. 139. 140. 140. 140. - 138. 135. 132. 131. 123. 130. 128. 125. 128. 138. 168. 208. 211. - 212. 208. 203. 203. 210. 217. 218. 217. 212. 201. 178. 146. 120. - 114. 120. 109. 105. 100. 97. 97. 101. 107. 111. 108. 102. 93. 88. - 88. 93. 100. 105. 103. 97. 95. 96. 94. 88. 88. 92. 32. 32. 30. 39. - 72. 118. 152. 164. 176. 172. 162. 142. 102. 51. 38. 63. 110. 140. - 160. 168. 177. 179. 173. 173. 175. 178. 179. 175. 171. 166. 156. - 145. 127. 109. 58. 58. 38. 44. 48. 54. 51. 45. 48. 49. 42. 46. 53. - 50. 59. 45. 51. 79. 83. 61. 46. 51. 61. 61. 33. 62. 59. 52. 50. 39. - 39. 69. 53. 52. 95. 87. 50. 56. 44. 53. 78. 115. 122. 95. 138. 105. - 121. 111. 120. 73. 35. 56. 92. 42. 41. 88. 27. 38. 89. 58. 59. 120. - 108. 104. 93. 78. 63. 55. 56. 60. 50. 54. 64. 78. 90. 101. 114. 125. - 122. 130. 128. 121. 102. 63. 59. 99. 107. 120. 131. 133. 132. 134. - 135. 135. 141. 141. 141. 140. 139. 138. 137. 136. 131. 132. 134. - 136. 138. 140. 142. 143. 143. 144. 145. 148. 150. 152. 154. 155. - 158. 159. 161. 163. 165. 167. 169. 170. 177. 180. 184. 187. 189. - 192. 196. 198. 201. 203. 205. 206. 206. 207. 209. 211. 212. 221. - 206. 219. 223. 204. 144. 27. 83. 138. 137. 142. 140. 150. 148. 151. - 143. 143. 142. 141. 140. 140. 139. 139. 139. 140. 140. 140. 139. - 136. 133. 130. 125. 131. 128. 124. 128. 139. 170. 210. 211. 212. - 208. 202. 204. 212. 218. 220. 216. 206. 189. 167. 138. 116. 113. - 121. 108. 104. 99. 95. 96. 100. 105. 109. 101. 95. 88. 85. 87. 94. - 101. 106. 102. 95. 92. 94. 93. 89. 90. 96. 34. 32. 36. 42. 62. 108. - 150. 162. 172. 173. 167. 148. 104. 50. 41. 73. 107. 138. 158. 165. - 174. 177. 175. 178. 180. 178. 180. 182. 174. 158. 147. 145. 138. - 103. 51. 39. 50. 53. 57. 40. 37. 51. 56. 46. 40. 48. 58. 60. 49. 51. - 59. 68. 70. 62. 55. 52. 48. 48. 50. 62. 64. 44. 33. 46. 37. 73. 36. - 44. 105. 80. 38. 54. 81. 80. 84. 102. 122. 119. 110. 114. 98. 141. - 119. 136. 48. 37. 105. 46. 63. 43. 44. 52. 65. 61. 49. 71. 55. 66. - 86. 95. 80. 54. 44. 49. 46. 57. 70. 80. 94. 109. 121. 125. 131. 129. - 124. 130. 87. 53. 86. 94. 111. 126. 135. 131. 131. 138. 140. 135. - 138. 137. 137. 140. 143. 143. 139. 135. 134. 135. 136. 137. 138. - 139. 139. 139. 140. 143. 146. 147. 149. 150. 153. 156. 158. 159. - 161. 163. 165. 168. 170. 170. 174. 178. 183. 187. 190. 192. 195. - 197. 201. 202. 204. 205. 207. 207. 208. 208. 210. 221. 207. 215. - 213. 219. 179. 31. 90. 129. 143. 140. 149. 149. 141. 147. 141. 143. - 144. 144. 142. 141. 142. 142. 139. 140. 141. 140. 138. 135. 131. - 129. 127. 128. 130. 129. 126. 137. 169. 200. 206. 211. 209. 202. - 201. 209. 216. 218. 211. 208. 188. 152. 126. 117. 114. 110. 110. - 109. 102. 94. 94. 101. 103. 99. 87. 86. 86. 90. 95. 100. 103. 104. - 97. 101. 100. 93. 88. 92. 98. 101. 36. 33. 36. 41. 60. 105. 148. - 161. 171. 170. 164. 146. 106. 54. 43. 71. 106. 137. 158. 165. 174. - 177. 175. 178. 180. 178. 179. 180. 173. 158. 148. 146. 142. 107. 52. - 51. 52. 52. 50. 39. 44. 44. 40. 39. 52. 68. 70. 61. 44. 46. 54. 64. - 66. 61. 56. 56. 46. 47. 48. 58. 66. 51. 35. 38. 58. 47. 41. 81. 82. - 69. 85. 55. 89. 88. 86. 85. 93. 110. 120. 119. 92. 108. 121. 139. - 103. 54. 102. 38. 44. 39. 54. 55. 55. 59. 54. 64. 55. 56. 65. 72. - 65. 48. 41. 45. 50. 62. 75. 86. 97. 110. 120. 123. 128. 126. 128. - 121. 79. 58. 86. 100. 113. 127. 135. 132. 132. 138. 140. 136. 139. - 138. 138. 140. 142. 142. 138. 135. 134. 135. 136. 137. 138. 138. - 139. 139. 140. 143. 146. 147. 148. 150. 153. 155. 157. 158. 160. - 162. 164. 167. 168. 169. 172. 176. 181. 185. 188. 190. 193. 196. - 200. 201. 203. 205. 206. 207. 208. 208. 209. 219. 207. 216. 214. - 219. 190. 64. 95. 133. 146. 141. 149. 152. 145. 147. 141. 143. 144. - 143. 141. 139. 139. 139. 140. 140. 141. 141. 139. 136. 133. 132. - 128. 129. 132. 131. 128. 134. 156. 179. 198. 202. 202. 200. 203. - 213. 219. 219. 211. 206. 184. 149. 124. 117. 114. 110. 109. 106. 98. - 92. 95. 101. 101. 95. 78. 83. 90. 97. 101. 102. 102. 101. 93. 98. - 98. 93. 92. 95. 97. 97. 39. 35. 36. 39. 55. 101. 144. 159. 171. 169. - 162. 147. 111. 62. 48. 71. 105. 136. 157. 164. 174. 177. 175. 177. - 179. 177. 178. 178. 171. 160. 150. 147. 150. 115. 54. 67. 53. 52. - 40. 39. 37. 43. 51. 61. 75. 80. 66. 46. 41. 45. 53. 61. 62. 57. 54. - 56. 53. 54. 48. 51. 63. 59. 45. 40. 63. 42. 52. 94. 65. 59. 107. 73. - 56. 83. 116. 116. 101. 114. 129. 116. 86. 71. 91. 128. 129. 86. 104. - 62. 67. 38. 52. 62. 53. 54. 53. 60. 62. 53. 50. 54. 54. 48. 45. 48. - 55. 68. 83. 93. 102. 112. 120. 122. 124. 123. 133. 105. 67. 65. 85. - 108. 117. 129. 136. 134. 134. 140. 141. 138. 141. 140. 140. 141. - 142. 141. 138. 135. 135. 135. 136. 137. 137. 138. 139. 139. 140. - 143. 146. 147. 148. 150. 152. 155. 155. 156. 158. 160. 163. 165. - 167. 168. 171. 174. 179. 183. 185. 188. 191. 194. 199. 200. 202. - 204. 206. 207. 208. 208. 210. 214. 207. 217. 213. 218. 204. 113. - 101. 136. 149. 139. 141. 149. 146. 143. 145. 146. 148. 147. 144. - 142. 142. 143. 140. 140. 140. 140. 139. 136. 134. 132. 129. 131. - 135. 135. 132. 132. 142. 154. 179. 182. 186. 193. 204. 215. 219. - 217. 210. 201. 176. 142. 120. 114. 111. 107. 106. 101. 94. 91. 97. - 101. 96. 87. 69. 80. 95. 105. 107. 103. 99. 96. 89. 93. 95. 94. 96. - 99. 96. 90. 41. 36. 36. 36. 51. 95. 140. 156. 172. 170. 161. 148. - 118. 72. 55. 72. 104. 135. 156. 164. 173. 176. 174. 177. 178. 177. - 177. 175. 170. 161. 152. 147. 159. 124. 58. 81. 54. 51. 34. 44. 40. - 59. 76. 80. 74. 64. 51. 39. 43. 48. 57. 64. 61. 53. 50. 53. 62. 65. - 54. 46. 57. 64. 57. 52. 45. 66. 70. 66. 60. 59. 79. 100. 36. 59. - 112. 135. 122. 128. 133. 106. 95. 68. 65. 124. 121. 121. 106. 92. - 120. 43. 39. 65. 59. 48. 47. 61. 63. 53. 47. 48. 50. 48. 47. 50. 57. - 72. 89. 99. 107. 115. 120. 122. 122. 123. 132. 88. 57. 73. 86. 115. - 122. 131. 137. 136. 137. 141. 142. 139. 142. 142. 142. 142. 141. - 140. 138. 136. 136. 136. 136. 136. 137. 138. 138. 139. 141. 143. - 145. 147. 148. 149. 152. 154. 153. 154. 156. 158. 161. 163. 165. - 166. 170. 173. 178. 181. 184. 187. 191. 193. 197. 198. 201. 203. - 205. 207. 208. 208. 211. 211. 208. 217. 211. 214. 213. 160. 108. - 137. 148. 132. 125. 134. 139. 136. 142. 144. 146. 147. 146. 145. - 146. 147. 142. 141. 141. 140. 138. 135. 133. 132. 132. 135. 138. - 139. 137. 136. 138. 141. 153. 157. 167. 183. 203. 216. 218. 214. - 207. 193. 165. 134. 115. 110. 107. 103. 100. 95. 91. 94. 100. 99. - 89. 78. 69. 83. 100. 110. 108. 101. 95. 92. 87. 90. 92. 95. 99. 100. - 92. 81. 41. 37. 36. 35. 47. 91. 137. 153. 169. 168. 160. 148. 121. - 77. 58. 70. 102. 134. 155. 163. 172. 176. 174. 177. 177. 177. 176. - 174. 170. 163. 152. 144. 163. 128. 65. 87. 56. 50. 35. 49. 58. 69. - 74. 65. 50. 43. 46. 50. 43. 50. 61. 67. 62. 54. 52. 56. 60. 68. 60. - 49. 57. 63. 57. 53. 34. 82. 91. 42. 48. 62. 56. 115. 71. 45. 59. 88. - 93. 108. 124. 114. 83. 52. 51. 106. 119. 149. 148. 145. 120. 46. 40. - 60. 52. 46. 48. 61. 52. 49. 46. 46. 45. 42. 43. 46. 58. 75. 93. 104. - 110. 117. 122. 124. 123. 124. 123. 73. 54. 79. 91. 120. 127. 132. - 136. 137. 138. 141. 142. 140. 143. 144. 144. 143. 141. 140. 139. - 139. 137. 137. 136. 136. 136. 137. 138. 139. 141. 143. 145. 147. - 147. 148. 151. 153. 152. 153. 155. 157. 159. 162. 164. 164. 171. - 173. 177. 180. 183. 186. 191. 194. 195. 196. 199. 202. 205. 207. - 208. 209. 212. 210. 210. 215. 208. 210. 216. 192. 123. 138. 141. - 122. 107. 115. 127. 125. 129. 132. 136. 139. 141. 143. 145. 147. - 146. 145. 144. 142. 140. 138. 136. 134. 135. 139. 142. 143. 143. - 142. 141. 139. 134. 140. 156. 181. 206. 218. 218. 213. 206. 187. - 156. 129. 114. 109. 105. 101. 92. 91. 92. 98. 100. 94. 83. 74. 79. - 90. 103. 108. 104. 96. 91. 89. 87. 90. 92. 95. 99. 98. 86. 73. 39. - 36. 36. 34. 45. 88. 133. 151. 164. 165. 160. 147. 121. 79. 58. 67. - 101. 133. 154. 162. 172. 175. 174. 177. 176. 178. 177. 174. 171. - 164. 152. 139. 156. 125. 72. 86. 60. 48. 39. 50. 55. 56. 55. 51. 47. - 45. 46. 47. 44. 51. 62. 67. 62. 55. 59. 67. 51. 61. 58. 53. 59. 59. - 48. 43. 42. 78. 93. 46. 38. 59. 66. 113. 101. 60. 48. 56. 45. 52. - 94. 131. 101. 49. 52. 70. 101. 121. 169. 160. 65. 45. 56. 50. 37. - 49. 54. 55. 45. 47. 48. 47. 44. 43. 46. 50. 62. 80. 99. 108. 113. - 119. 124. 126. 123. 124. 104. 63. 59. 84. 101. 124. 131. 133. 136. - 138. 139. 141. 141. 140. 143. 144. 144. 143. 141. 140. 141. 142. - 138. 138. 136. 135. 135. 136. 138. 139. 141. 143. 145. 146. 146. - 147. 150. 152. 152. 152. 154. 157. 159. 161. 163. 164. 170. 173. - 176. 179. 181. 185. 190. 193. 193. 195. 198. 201. 204. 207. 208. - 209. 212. 210. 214. 214. 208. 210. 215. 208. 149. 137. 126. 109. 93. - 100. 112. 110. 117. 121. 126. 131. 135. 139. 143. 146. 146. 145. - 144. 143. 142. 141. 140. 139. 138. 143. 147. 146. 146. 146. 143. - 139. 129. 137. 158. 189. 213. 222. 219. 214. 203. 180. 149. 125. - 113. 108. 102. 97. 87. 90. 95. 99. 95. 85. 79. 78. 92. 97. 103. 103. - 98. 93. 89. 88. 92. 94. 95. 95. 95. 91. 78. 65. 36. 34. 35. 34. 44. - 86. 131. 149. 163. 167. 164. 151. 123. 81. 60. 69. 100. 132. 153. - 161. 171. 175. 173. 177. 175. 178. 178. 175. 172. 166. 150. 135. - 142. 117. 78. 82. 66. 46. 42. 45. 44. 46. 49. 52. 53. 50. 45. 43. - 51. 56. 62. 63. 56. 53. 63. 77. 55. 56. 48. 47. 56. 54. 41. 37. 46. - 80. 64. 52. 53. 50. 81. 112. 112. 85. 70. 63. 39. 25. 60. 114. 130. - 67. 61. 80. 83. 78. 129. 106. 33. 47. 63. 45. 37. 54. 52. 50. 48. - 48. 46. 44. 45. 50. 57. 61. 70. 87. 105. 113. 115. 119. 125. 127. - 121. 122. 81. 56. 69. 89. 114. 129. 133. 133. 134. 138. 140. 140. - 140. 140. 142. 144. 145. 143. 141. 140. 142. 145. 139. 138. 136. - 135. 135. 136. 138. 139. 141. 143. 145. 146. 146. 147. 149. 151. - 152. 153. 154. 157. 159. 161. 163. 164. 168. 171. 174. 176. 179. - 183. 188. 192. 192. 194. 197. 200. 204. 206. 208. 209. 210. 211. - 217. 213. 210. 215. 215. 214. 176. 132. 102. 91. 82. 88. 97. 89. - 101. 105. 111. 117. 122. 127. 131. 135. 137. 137. 137. 138. 139. - 140. 141. 142. 140. 148. 152. 150. 147. 145. 139. 133. 133. 143. - 167. 198. 219. 222. 216. 212. 195. 169. 137. 116. 108. 103. 95. 88. - 87. 92. 98. 97. 85. 74. 78. 88. 101. 101. 100. 98. 95. 92. 90. 88. - 97. 99. 98. 94. 90. 84. 72. 60. 34. 33. 35. 34. 44. 85. 130. 147. - 165. 172. 169. 156. 127. 85. 64. 72. 100. 131. 153. 161. 171. 175. - 173. 176. 175. 179. 179. 176. 173. 166. 149. 132. 130. 110. 81. 79. - 70. 44. 44. 40. 52. 53. 53. 49. 42. 40. 48. 58. 60. 62. 63. 59. 49. - 48. 62. 80. 68. 57. 38. 36. 50. 50. 41. 41. 41. 94. 30. 47. 80. 42. - 81. 118. 132. 98. 66. 61. 59. 42. 44. 72. 82. 42. 45. 128. 102. 97. - 117. 84. 45. 50. 56. 45. 50. 57. 44. 50. 49. 45. 39. 36. 42. 53. 63. - 67. 76. 93. 110. 116. 116. 120. 125. 127. 119. 121. 67. 53. 76. 92. - 124. 133. 134. 133. 134. 137. 140. 139. 139. 139. 141. 143. 145. - 144. 141. 141. 143. 146. 140. 138. 136. 135. 135. 136. 138. 139. - 141. 143. 145. 146. 146. 147. 149. 151. 152. 153. 154. 157. 159. - 162. 163. 164. 167. 169. 172. 174. 177. 181. 186. 190. 191. 193. - 196. 200. 204. 206. 208. 209. 209. 211. 218. 212. 212. 219. 215. - 216. 191. 126. 83. 76. 74. 81. 85. 72. 83. 87. 93. 99. 104. 109. - 114. 117. 126. 127. 128. 130. 133. 136. 139. 141. 141. 151. 157. - 152. 146. 141. 134. 125. 137. 147. 173. 204. 222. 220. 212. 208. - 186. 160. 127. 108. 102. 96. 86. 78. 88. 94. 100. 94. 77. 67. 78. - 96. 104. 102. 98. 96. 95. 93. 91. 89. 101. 103. 100. 93. 86. 79. 67. - 57. 35. 33. 35. 38. 44. 68. 117. 161. 170. 174. 175. 156. 136. 96. - 54. 67. 96. 128. 150. 159. 169. 174. 172. 176. 177. 173. 178. 180. - 172. 167. 157. 139. 129. 105. 74. 77. 79. 44. 30. 54. 64. 53. 45. - 44. 43. 44. 52. 62. 64. 46. 69. 54. 58. 50. 60. 64. 66. 53. 49. 47. - 42. 46. 50. 44. 47. 49. 48. 84. 62. 102. 102. 100. 130. 146. 86. 50. - 61. 87. 54. 51. 61. 44. 56. 135. 55. 104. 121. 62. 51. 45. 40. 40. - 45. 49. 49. 47. 44. 42. 40. 43. 50. 60. 69. 74. 90. 106. 116. 115. - 114. 117. 119. 116. 124. 81. 49. 60. 87. 107. 123. 137. 133. 134. - 135. 137. 139. 141. 142. 143. 145. 143. 141. 140. 139. 141. 143. - 144. 142. 137. 136. 139. 138. 133. 133. 138. 137. 140. 142. 143. - 143. 144. 147. 149. 151. 152. 153. 155. 157. 159. 161. 161. 167. - 168. 170. 172. 174. 178. 184. 188. 188. 192. 197. 201. 203. 205. - 207. 209. 210. 211. 212. 213. 215. 216. 218. 218. 213. 111. 80. 81. - 78. 85. 72. 72. 73. 78. 84. 88. 89. 90. 94. 97. 97. 103. 111. 115. - 118. 123. 132. 139. 138. 154. 165. 159. 145. 135. 132. 132. 131. - 152. 185. 214. 225. 218. 207. 200. 173. 148. 119. 101. 93. 86. 80. - 77. 88. 97. 93. 75. 66. 76. 91. 99. 106. 98. 94. 95. 93. 89. 91. 96. - 106. 101. 96. 91. 81. 66. 56. 53. 38. 33. 30. 32. 41. 68. 117. 161. - 170. 174. 176. 159. 142. 103. 59. 68. 96. 128. 150. 158. 169. 174. - 173. 176. 177. 173. 179. 181. 173. 167. 156. 137. 118. 115. 83. 85. - 81. 42. 37. 53. 51. 48. 47. 46. 43. 43. 54. 68. 52. 45. 71. 54. 53. - 50. 64. 70. 68. 58. 55. 51. 41. 43. 51. 49. 59. 41. 56. 78. 32. 84. - 114. 88. 117. 145. 133. 89. 69. 51. 55. 80. 70. 87. 89. 128. 60. 69. - 66. 41. 53. 48. 43. 43. 46. 48. 46. 43. 44. 42. 41. 44. 52. 63. 73. - 79. 90. 110. 123. 120. 117. 121. 122. 118. 102. 68. 48. 66. 98. 117. - 128. 136. 134. 135. 136. 137. 139. 140. 141. 142. 143. 143. 142. - 141. 141. 141. 142. 143. 142. 137. 136. 139. 138. 134. 134. 138. - 137. 139. 142. 143. 143. 144. 146. 148. 150. 151. 153. 155. 157. - 159. 160. 161. 166. 168. 170. 171. 173. 178. 183. 187. 187. 191. - 196. 200. 202. 204. 207. 209. 210. 210. 211. 213. 215. 216. 217. - 218. 215. 131. 79. 82. 82. 90. 78. 80. 72. 74. 77. 78. 77. 77. 77. - 77. 81. 86. 91. 94. 97. 103. 113. 120. 139. 146. 152. 151. 150. 150. - 147. 142. 141. 164. 193. 214. 221. 215. 200. 186. 154. 133. 107. 89. - 79. 75. 76. 80. 90. 95. 90. 76. 72. 84. 97. 101. 98. 94. 93. 95. 93. - 90. 92. 98. 107. 101. 95. 89. 79. 65. 56. 54. 41. 34. 28. 29. 38. - 66. 117. 161. 171. 175. 177. 162. 149. 112. 64. 67. 96. 128. 150. - 158. 169. 174. 173. 176. 176. 174. 180. 181. 173. 168. 155. 133. 96. - 122. 87. 88. 78. 37. 49. 51. 44. 41. 41. 45. 49. 52. 58. 65. 43. 46. - 74. 54. 45. 51. 65. 71. 68. 61. 61. 55. 41. 42. 52. 52. 63. 46. 55. - 60. 27. 55. 91. 88. 105. 120. 147. 127. 112. 69. 80. 95. 113. 120. - 72. 57. 38. 44. 47. 63. 54. 50. 46. 45. 47. 46. 43. 39. 43. 42. 42. - 45. 54. 66. 79. 86. 96. 115. 124. 118. 117. 125. 123. 112. 70. 53. - 52. 80. 112. 128. 133. 136. 136. 136. 137. 138. 138. 139. 140. 140. - 141. 142. 142. 143. 143. 142. 142. 142. 142. 138. 137. 138. 137. - 135. 135. 137. 137. 139. 141. 142. 142. 143. 145. 147. 150. 150. - 152. 154. 156. 158. 159. 160. 165. 166. 169. 171. 173. 177. 182. - 186. 187. 190. 196. 199. 201. 203. 206. 208. 209. 210. 211. 212. - 214. 216. 217. 217. 218. 163. 81. 82. 86. 97. 87. 90. 83. 81. 79. - 78. 75. 72. 67. 64. 64. 66. 67. 67. 69. 76. 86. 94. 123. 126. 132. - 144. 161. 171. 166. 155. 155. 181. 205. 215. 218. 215. 195. 172. - 136. 116. 92. 74. 65. 64. 72. 82. 88. 89. 85. 78. 82. 96. 103. 102. - 90. 90. 92. 94. 92. 91. 95. 102. 108. 100. 92. 85. 74. 62. 54. 54. - 42. 39. 37. 36. 40. 65. 114. 160. 171. 176. 179. 165. 155. 119. 67. - 64. 95. 127. 149. 158. 169. 174. 173. 177. 176. 175. 181. 181. 174. - 169. 154. 128. 79. 124. 82. 80. 70. 35. 59. 47. 47. 38. 34. 43. 57. - 65. 61. 55. 42. 50. 73. 54. 41. 55. 62. 64. 65. 59. 61. 57. 46. 46. - 52. 49. 50. 61. 49. 41. 52. 36. 44. 90. 107. 105. 134. 142. 135. - 111. 112. 100. 95. 104. 73. 49. 52. 46. 42. 57. 51. 49. 47. 47. 47. - 45. 41. 38. 40. 41. 43. 48. 57. 71. 85. 94. 108. 116. 116. 111. 118. - 126. 113. 89. 43. 47. 66. 98. 124. 133. 135. 136. 137. 137. 138. - 138. 138. 138. 139. 139. 139. 140. 142. 144. 144. 143. 142. 141. - 141. 139. 138. 138. 137. 136. 136. 137. 137. 139. 141. 142. 141. - 142. 144. 146. 148. 149. 151. 153. 155. 157. 158. 159. 162. 165. - 167. 170. 172. 175. 180. 183. 185. 189. 194. 198. 200. 202. 205. - 207. 208. 209. 210. 212. 213. 215. 216. 217. 219. 192. 91. 82. 89. - 101. 96. 99. 97. 93. 88. 84. 81. 76. 68. 62. 59. 57. 53. 49. 49. 54. - 62. 69. 88. 100. 122. 151. 178. 189. 178. 161. 158. 187. 209. 212. - 214. 214. 190. 158. 122. 102. 79. 65. 60. 63. 73. 83. 79. 80. 80. - 84. 95. 106. 107. 100. 87. 88. 90. 89. 88. 91. 98. 105. 106. 97. 88. - 79. 69. 58. 52. 53. 46. 50. 55. 54. 50. 66. 112. 157. 171. 178. 181. - 167. 159. 123. 69. 63. 95. 127. 149. 158. 170. 175. 174. 178. 175. - 176. 182. 182. 175. 171. 152. 122. 82. 129. 81. 68. 60. 35. 60. 41. - 46. 45. 45. 49. 56. 61. 59. 55. 45. 49. 64. 53. 42. 63. 62. 59. 62. - 54. 56. 58. 52. 52. 52. 43. 34. 64. 56. 41. 57. 43. 34. 65. 92. 106. - 131. 148. 119. 124. 118. 101. 81. 91. 109. 85. 51. 34. 42. 47. 46. - 46. 46. 47. 47. 45. 42. 39. 39. 41. 46. 53. 62. 76. 90. 100. 115. - 115. 113. 115. 126. 123. 92. 56. 35. 56. 88. 115. 128. 132. 134. - 136. 138. 138. 138. 138. 138. 138. 138. 138. 138. 140. 142. 145. - 145. 144. 142. 140. 141. 141. 139. 137. 137. 137. 137. 137. 137. - 138. 140. 141. 140. 141. 143. 145. 147. 148. 149. 151. 153. 155. - 157. 158. 160. 163. 166. 169. 171. 174. 178. 181. 184. 188. 193. - 197. 199. 201. 203. 205. 207. 208. 209. 211. 212. 214. 215. 216. - 218. 211. 115. 83. 89. 100. 101. 103. 102. 98. 93. 89. 86. 81. 73. - 67. 63. 59. 51. 44. 39. 41. 45. 50. 56. 88. 133. 173. 197. 198. 178. - 158. 159. 188. 208. 209. 211. 210. 181. 143. 104. 84. 64. 59. 64. - 71. 78. 84. 69. 73. 80. 92. 105. 111. 104. 93. 88. 88. 87. 85. 85. - 92. 101. 108. 102. 93. 83. 75. 65. 55. 51. 53. 59. 65. 73. 73. 66. - 74. 112. 152. 170. 180. 185. 170. 161. 128. 73. 66. 94. 126. 149. - 158. 170. 175. 174. 178. 175. 177. 183. 182. 175. 172. 151. 117. 97. - 135. 89. 63. 53. 38. 56. 41. 42. 55. 64. 57. 46. 45. 53. 61. 47. 45. - 54. 55. 46. 71. 62. 60. 62. 53. 55. 58. 53. 53. 51. 39. 32. 52. 64. - 57. 39. 63. 62. 31. 50. 82. 115. 147. 127. 143. 117. 84. 116. 94. - 116. 89. 31. 34. 59. 55. 42. 43. 44. 44. 44. 43. 42. 41. 39. 44. 52. - 60. 70. 82. 97. 107. 115. 114. 117. 125. 126. 106. 68. 36. 46. 75. - 109. 126. 129. 130. 133. 137. 137. 137. 138. 138. 138. 138. 139. - 139. 138. 139. 142. 144. 145. 144. 143. 141. 140. 142. 141. 137. - 136. 138. 138. 136. 136. 138. 140. 140. 139. 140. 141. 143. 146. - 147. 148. 150. 152. 154. 156. 156. 158. 161. 165. 168. 170. 173. - 176. 179. 183. 187. 192. 196. 198. 200. 202. 204. 207. 207. 208. - 210. 212. 213. 214. 215. 216. 218. 149. 86. 88. 97. 104. 105. 105. - 103. 100. 97. 93. 88. 82. 78. 71. 65. 56. 47. 40. 37. 37. 38. 43. - 90. 152. 196. 209. 198. 174. 154. 172. 196. 213. 213. 211. 201. 165. - 123. 80. 64. 53. 57. 69. 77. 80. 82. 67. 74. 86. 99. 108. 107. 96. - 86. 86. 87. 84. 82. 86. 97. 105. 108. 99. 90. 81. 73. 64. 56. 53. - 55. 79. 81. 85. 86. 81. 87. 115. 146. 166. 180. 187. 172. 164. 133. - 81. 75. 94. 126. 148. 158. 170. 175. 175. 178. 174. 178. 184. 182. - 176. 173. 150. 112. 103. 132. 98. 61. 48. 42. 50. 48. 47. 60. 65. - 55. 42. 41. 50. 57. 51. 44. 50. 60. 48. 71. 58. 62. 65. 58. 59. 58. - 49. 48. 48. 41. 44. 47. 49. 66. 41. 76. 66. 34. 30. 51. 82. 116. - 138. 155. 134. 96. 110. 86. 117. 107. 46. 54. 57. 39. 41. 42. 42. - 42. 41. 40. 40. 40. 41. 49. 60. 69. 78. 90. 103. 112. 116. 115. 120. - 121. 102. 70. 49. 44. 69. 95. 121. 130. 130. 132. 135. 136. 136. - 137. 137. 138. 138. 139. 139. 140. 138. 139. 141. 143. 144. 144. - 143. 143. 140. 143. 142. 137. 136. 139. 139. 136. 136. 138. 140. - 140. 139. 139. 141. 142. 145. 146. 147. 149. 151. 153. 155. 156. - 156. 160. 164. 167. 169. 172. 175. 177. 182. 186. 191. 195. 197. - 199. 201. 203. 206. 207. 208. 209. 211. 213. 214. 214. 216. 217. - 185. 90. 88. 94. 107. 105. 106. 107. 107. 104. 98. 93. 90. 89. 79. - 74. 65. 56. 48. 43. 38. 36. 41. 94. 161. 203. 210. 194. 172. 157. - 185. 202. 213. 211. 201. 178. 131. 87. 62. 55. 54. 63. 72. 76. 75. - 75. 74. 82. 95. 105. 106. 98. 87. 80. 81. 82. 81. 83. 92. 105. 109. - 106. 98. 90. 81. 75. 67. 59. 57. 59. 95. 91. 90. 91. 91. 96. 118. - 141. 164. 180. 189. 174. 166. 136. 87. 83. 94. 126. 148. 158. 170. - 175. 175. 179. 174. 178. 185. 182. 176. 173. 149. 110. 98. 123. 101. - 59. 46. 45. 48. 56. 59. 59. 54. 46. 45. 50. 50. 45. 57. 47. 52. 66. - 48. 66. 52. 61. 70. 64. 64. 58. 44. 41. 47. 45. 57. 53. 23. 63. 66. - 77. 43. 62. 49. 49. 67. 73. 115. 132. 152. 144. 90. 90. 130. 118. - 43. 45. 43. 44. 41. 42. 42. 41. 39. 37. 38. 38. 44. 53. 65. 75. 84. - 95. 107. 116. 120. 118. 119. 108. 72. 37. 39. 64. 87. 107. 125. 129. - 130. 135. 137. 135. 136. 136. 137. 138. 138. 139. 140. 140. 139. - 140. 141. 142. 143. 144. 144. 144. 140. 143. 142. 136. 136. 140. - 140. 136. 136. 138. 139. 139. 138. 138. 140. 142. 145. 145. 147. - 149. 151. 153. 154. 155. 156. 159. 163. 167. 169. 171. 174. 177. - 182. 186. 191. 194. 197. 198. 201. 203. 206. 206. 208. 209. 211. - 212. 213. 214. 216. 214. 207. 93. 88. 92. 108. 105. 103. 106. 107. - 104. 97. 92. 90. 91. 85. 80. 72. 64. 57. 50. 43. 39. 40. 94. 159. - 199. 205. 191. 174. 163. 187. 198. 204. 199. 183. 149. 95. 49. 57. - 57. 62. 70. 74. 71. 68. 68. 82. 91. 102. 108. 103. 91. 81. 77. 75. - 78. 80. 85. 98. 112. 112. 105. 98. 90. 83. 77. 70. 62. 60. 62. 83. - 93. 92. 88. 98. 110. 127. 147. 170. 179. 185. 181. 168. 144. 104. - 70. 100. 121. 145. 161. 170. 175. 177. 175. 174. 178. 180. 188. 176. - 167. 151. 98. 111. 109. 103. 60. 48. 58. 40. 48. 43. 54. 46. 46. 44. - 43. 57. 52. 59. 51. 46. 52. 46. 45. 61. 61. 66. 64. 41. 64. 72. 41. - 43. 44. 45. 70. 60. 38. 54. 71. 63. 50. 59. 74. 56. 71. 73. 65. 109. - 139. 112. 128. 66. 38. 54. 43. 42. 44. 51. 46. 42. 41. 38. 36. 40. - 47. 42. 56. 74. 85. 91. 101. 115. 127. 120. 119. 102. 68. 36. 33. - 61. 90. 117. 121. 125. 129. 130. 132. 134. 136. 136. 137. 138. 139. - 139. 139. 138. 138. 137. 138. 141. 143. 144. 143. 142. 141. 143. - 143. 142. 140. 139. 138. 137. 136. 136. 136. 137. 138. 139. 139. - 139. 139. 144. 145. 147. 148. 149. 150. 154. 156. 156. 159. 161. - 163. 164. 166. 170. 173. 179. 183. 187. 191. 194. 198. 202. 205. - 205. 206. 207. 209. 211. 212. 212. 212. 213. 214. 218. 138. 76. 90. - 92. 108. 107. 108. 108. 106. 101. 97. 95. 94. 84. 82. 78. 70. 61. - 54. 49. 47. 55. 91. 151. 192. 198. 195. 192. 184. 189. 194. 199. - 186. 142. 89. 56. 50. 53. 58. 65. 70. 72. 72. 73. 74. 92. 102. 108. - 102. 88. 79. 76. 77. 78. 78. 83. 95. 107. 112. 109. 103. 91. 88. 83. - 75. 68. 63. 62. 62. 77. 92. 97. 98. 107. 117. 132. 153. 171. 180. - 184. 179. 167. 145. 109. 77. 100. 121. 145. 161. 169. 175. 177. 175. - 174. 180. 181. 186. 175. 169. 152. 94. 117. 109. 93. 51. 44. 55. 41. - 47. 45. 52. 45. 50. 48. 43. 57. 56. 49. 45. 47. 53. 49. 52. 63. 60. - 64. 56. 49. 72. 77. 50. 45. 55. 36. 54. 78. 78. 32. 60. 77. 58. 61. - 58. 98. 55. 87. 97. 94. 72. 129. 136. 88. 50. 53. 52. 45. 40. 45. - 43. 43. 45. 45. 43. 46. 51. 73. 75. 78. 82. 88. 98. 110. 118. 116. - 92. 60. 40. 41. 61. 86. 103. 119. 122. 126. 129. 131. 132. 134. 136. - 137. 137. 138. 139. 139. 139. 139. 139. 137. 138. 141. 143. 144. - 143. 142. 141. 144. 144. 143. 141. 140. 139. 138. 137. 137. 137. - 138. 139. 139. 139. 139. 139. 143. 145. 147. 148. 148. 150. 153. - 156. 156. 158. 161. 162. 164. 166. 170. 173. 177. 180. 185. 188. - 191. 195. 199. 203. 204. 205. 207. 209. 210. 211. 212. 212. 211. - 219. 213. 165. 81. 90. 91. 104. 105. 107. 107. 106. 101. 98. 96. 95. - 89. 87. 83. 77. 71. 66. 63. 62. 59. 88. 143. 186. 200. 206. 207. - 198. 190. 177. 161. 139. 106. 71. 54. 55. 56. 63. 69. 70. 68. 70. - 77. 84. 99. 103. 104. 96. 84. 77. 77. 79. 78. 82. 90. 102. 110. 111. - 105. 98. 94. 87. 78. 70. 66. 65. 65. 65. 70. 90. 102. 107. 115. 119. - 131. 151. 169. 177. 181. 175. 164. 145. 112. 83. 100. 120. 144. 160. - 169. 175. 177. 176. 175. 183. 182. 183. 174. 171. 153. 89. 124. 111. - 85. 45. 41. 53. 45. 49. 48. 51. 45. 56. 54. 43. 56. 59. 50. 44. 47. - 48. 47. 60. 72. 71. 67. 47. 60. 81. 82. 60. 42. 58. 48. 54. 86. 83. - 48. 56. 79. 59. 58. 62. 104. 53. 84. 126. 121. 64. 76. 82. 78. 48. - 37. 49. 47. 48. 46. 43. 41. 41. 39. 38. 42. 48. 64. 70. 82. 98. 110. - 114. 108. 102. 66. 50. 37. 47. 74. 100. 111. 110. 121. 124. 128. - 130. 131. 133. 135. 137. 137. 138. 139. 140. 140. 140. 140. 139. - 137. 139. 141. 142. 143. 143. 142. 141. 145. 145. 144. 143. 142. - 141. 140. 139. 138. 138. 138. 139. 139. 139. 139. 140. 143. 144. - 146. 147. 148. 149. 153. 155. 156. 158. 160. 162. 163. 166. 169. - 172. 174. 177. 182. 185. 188. 192. 196. 199. 203. 204. 206. 208. - 210. 211. 212. 212. 209. 222. 208. 197. 97. 84. 91. 98. 103. 104. - 106. 105. 102. 99. 97. 97. 95. 92. 88. 84. 80. 79. 79. 79. 79. 99. - 144. 186. 206. 213. 210. 195. 174. 148. 116. 91. 72. 57. 54. 60. 63. - 68. 72. 70. 68. 73. 87. 99. 106. 104. 97. 87. 78. 73. 75. 79. 80. - 88. 100. 110. 113. 109. 101. 94. 95. 85. 72. 64. 64. 67. 67. 66. 62. - 84. 101. 110. 114. 112. 120. 140. 163. 173. 178. 173. 162. 142. 110. - 82. 100. 120. 143. 159. 168. 175. 177. 177. 176. 185. 183. 181. 173. - 173. 155. 88. 121. 112. 82. 47. 42. 49. 49. 54. 51. 51. 46. 61. 58. - 41. 51. 58. 65. 49. 49. 41. 42. 66. 81. 88. 76. 42. 65. 86. 88. 71. - 39. 49. 46. 66. 88. 59. 77. 50. 71. 86. 47. 71. 62. 78. 69. 116. - 147. 102. 62. 57. 87. 69. 38. 40. 37. 51. 48. 42. 37. 35. 35. 37. - 47. 57. 78. 83. 92. 100. 99. 85. 63. 47. 35. 43. 59. 81. 102. 115. - 117. 115. 124. 126. 129. 131. 132. 133. 135. 138. 137. 138. 139. - 140. 140. 140. 140. 140. 138. 139. 140. 142. 143. 143. 142. 142. - 146. 146. 145. 144. 143. 142. 142. 141. 140. 140. 139. 139. 139. - 140. 140. 140. 142. 144. 146. 146. 147. 149. 152. 155. 155. 157. - 159. 161. 162. 165. 169. 172. 173. 176. 180. 184. 186. 190. 194. - 197. 202. 203. 205. 207. 209. 211. 211. 211. 211. 220. 208. 215. - 123. 72. 95. 91. 99. 101. 104. 104. 102. 100. 100. 100. 97. 94. 89. - 86. 86. 87. 88. 89. 93. 107. 147. 190. 211. 215. 200. 175. 138. 115. - 89. 72. 63. 59. 60. 65. 72. 72. 71. 71. 75. 85. 100. 112. 108. 100. - 90. 80. 72. 68. 70. 76. 85. 95. 107. 115. 114. 107. 100. 95. 92. 80. - 66. 62. 65. 69. 67. 64. 53. 74. 93. 104. 109. 105. 112. 133. 158. - 171. 179. 175. 164. 143. 110. 82. 99. 119. 142. 157. 167. 174. 178. - 178. 177. 185. 183. 182. 173. 173. 157. 95. 104. 104. 77. 50. 43. - 43. 49. 55. 52. 53. 48. 63. 59. 40. 48. 53. 77. 50. 52. 41. 42. 67. - 78. 93. 81. 40. 63. 88. 96. 89. 52. 45. 31. 61. 81. 70. 58. 38. 66. - 117. 67. 58. 41. 90. 74. 97. 131. 125. 82. 49. 73. 72. 45. 40. 36. - 52. 43. 40. 39. 42. 45. 49. 58. 67. 80. 76. 70. 61. 53. 46. 43. 42. - 68. 79. 92. 101. 105. 109. 117. 123. 126. 128. 130. 131. 131. 132. - 135. 137. 137. 138. 139. 140. 140. 140. 139. 139. 138. 139. 140. - 141. 142. 142. 143. 143. 146. 146. 146. 145. 144. 144. 143. 143. - 142. 141. 140. 139. 139. 140. 141. 141. 141. 143. 145. 146. 146. - 148. 151. 154. 154. 156. 159. 160. 161. 164. 168. 171. 173. 176. - 180. 183. 186. 189. 193. 196. 200. 202. 204. 206. 209. 210. 211. - 211. 214. 214. 212. 215. 155. 66. 98. 87. 95. 98. 101. 103. 102. - 102. 102. 103. 101. 97. 92. 91. 92. 94. 95. 95. 88. 101. 140. 182. - 203. 202. 178. 146. 101. 90. 78. 71. 68. 68. 70. 74. 78. 73. 70. 75. - 87. 100. 110. 115. 103. 93. 83. 76. 68. 63. 67. 75. 91. 100. 111. - 115. 112. 105. 100. 98. 84. 73. 63. 62. 68. 70. 64. 57. 46. 63. 79. - 93. 101. 100. 109. 133. 156. 170. 181. 179. 167. 147. 116. 89. 99. - 118. 141. 156. 166. 174. 178. 178. 179. 182. 181. 184. 174. 170. - 160. 108. 82. 90. 66. 50. 44. 37. 48. 52. 50. 55. 52. 64. 59. 43. - 49. 49. 81. 45. 53. 47. 48. 66. 67. 88. 75. 41. 57. 91. 105. 106. - 81. 53. 50. 47. 60. 103. 30. 43. 59. 90. 118. 52. 59. 68. 89. 108. - 121. 148. 109. 56. 46. 52. 44. 41. 40. 46. 43. 43. 47. 51. 51. 47. - 48. 52. 45. 45. 45. 44. 48. 59. 77. 90. 97. 102. 108. 113. 117. 120. - 124. 127. 127. 129. 130. 130. 130. 131. 134. 137. 136. 137. 138. - 138. 139. 139. 138. 138. 139. 139. 140. 141. 141. 142. 143. 143. - 146. 146. 145. 145. 144. 144. 144. 143. 144. 143. 141. 140. 139. - 140. 141. 142. 140. 142. 144. 145. 145. 147. 150. 153. 153. 155. - 158. 159. 161. 163. 167. 170. 174. 177. 180. 183. 185. 188. 192. - 195. 199. 200. 203. 205. 208. 210. 211. 211. 215. 211. 215. 212. - 183. 77. 94. 85. 92. 95. 99. 102. 102. 103. 104. 106. 106. 102. 98. - 98. 101. 104. 104. 103. 94. 101. 130. 162. 172. 165. 138. 106. 84. - 80. 76. 74. 73. 75. 79. 81. 78. 74. 74. 83. 98. 109. 111. 108. 92. - 83. 76. 72. 66. 62. 70. 83. 99. 106. 113. 115. 111. 104. 99. 97. 76. - 68. 61. 62. 67. 68. 60. 52. 44. 55. 65. 79. 90. 92. 104. 129. 153. - 168. 178. 176. 167. 150. 123. 99. 99. 118. 141. 156. 165. 174. 178. - 179. 181. 179. 179. 188. 175. 167. 162. 122. 68. 78. 53. 47. 47. 39. - 51. 50. 45. 57. 55. 64. 60. 50. 56. 50. 90. 42. 52. 51. 51. 64. 60. - 92. 63. 43. 52. 91. 107. 113. 107. 62. 64. 41. 59. 107. 58. 48. 47. - 55. 119. 78. 71. 58. 84. 124. 125. 138. 136. 103. 67. 58. 46. 37. - 44. 37. 50. 48. 47. 48. 44. 39. 40. 44. 50. 57. 65. 72. 77. 85. 94. - 102. 104. 109. 117. 124. 128. 129. 128. 127. 128. 129. 130. 129. - 129. 130. 133. 136. 135. 135. 136. 137. 138. 138. 137. 137. 139. - 139. 140. 140. 141. 142. 143. 144. 145. 145. 145. 144. 144. 144. - 144. 143. 145. 144. 142. 140. 139. 140. 142. 143. 140. 141. 143. - 144. 145. 146. 150. 152. 153. 155. 157. 159. 160. 163. 166. 170. - 173. 176. 179. 182. 184. 187. 191. 194. 198. 199. 202. 205. 207. - 209. 210. 211. 212. 213. 212. 216. 200. 102. 84. 85. 89. 93. 97. - 101. 103. 104. 106. 108. 107. 103. 101. 104. 109. 113. 112. 110. - 109. 107. 120. 134. 133. 125. 106. 82. 84. 83. 81. 81. 83. 84. 82. - 78. 72. 74. 81. 93. 105. 108. 102. 95. 82. 74. 70. 69. 64. 64. 79. - 99. 106. 110. 115. 116. 112. 103. 95. 90. 71. 65. 60. 60. 64. 63. - 57. 50. 46. 52. 57. 69. 81. 83. 96. 122. 149. 163. 173. 171. 163. - 149. 126. 105. 98. 118. 140. 155. 165. 174. 178. 179. 182. 177. 178. - 190. 176. 165. 163. 131. 65. 73. 44. 44. 51. 44. 56. 50. 41. 58. 57. - 64. 62. 55. 62. 52. 103. 44. 50. 49. 49. 62. 61. 103. 53. 46. 50. - 90. 103. 111. 118. 64. 37. 41. 85. 90. 110. 36. 39. 65. 64. 110. 63. - 76. 68. 117. 111. 83. 97. 106. 76. 61. 43. 34. 59. 53. 52. 46. 41. - 39. 40. 43. 53. 64. 69. 73. 80. 88. 94. 100. 106. 109. 118. 123. - 126. 123. 117. 117. 124. 131. 128. 129. 129. 129. 128. 129. 132. - 135. 134. 135. 136. 136. 137. 137. 136. 136. 140. 140. 140. 140. - 141. 142. 143. 144. 145. 144. 144. 144. 144. 144. 143. 143. 146. - 144. 142. 140. 139. 140. 142. 143. 139. 141. 143. 144. 144. 146. - 149. 152. 152. 154. 157. 158. 160. 162. 166. 169. 172. 175. 178. - 181. 183. 186. 189. 192. 197. 199. 201. 204. 207. 209. 210. 211. - 209. 217. 209. 222. 207. 123. 76. 86. 87. 91. 97. 100. 103. 105. - 107. 109. 105. 102. 101. 106. 113. 118. 117. 114. 114. 106. 109. - 113. 109. 107. 100. 85. 88. 88. 87. 90. 94. 92. 81. 70. 67. 75. 88. - 100. 106. 103. 94. 86. 76. 69. 65. 66. 63. 66. 88. 113. 110. 113. - 117. 118. 113. 103. 91. 84. 70. 65. 59. 58. 60. 59. 55. 50. 53. 58. - 63. 62. 80. 88. 85. 116. 146. 169. 174. 180. 169. 146. 132. 109. - 104. 119. 137. 152. 165. 175. 179. 177. 180. 183. 177. 187. 175. - 166. 167. 121. 68. 68. 60. 49. 46. 52. 55. 52. 41. 49. 59. 64. 63. - 59. 56. 55. 70. 85. 33. 53. 56. 56. 79. 95. 45. 45. 44. 80. 103. 88. - 127. 92. 41. 24. 66. 110. 112. 71. 29. 45. 74. 76. 116. 51. 64. 110. - 110. 117. 78. 91. 101. 49. 38. 41. 55. 49. 38. 39. 42. 46. 52. 61. - 71. 77. 82. 90. 100. 106. 107. 109. 114. 118. 119. 122. 125. 126. - 126. 126. 127. 129. 132. 130. 128. 126. 127. 129. 132. 134. 133. - 135. 136. 136. 135. 136. 138. 140. 142. 142. 142. 142. 142. 142. - 142. 142. 144. 144. 144. 145. 145. 146. 146. 146. 142. 144. 146. - 144. 141. 140. 141. 143. 145. 144. 144. 145. 146. 147. 148. 149. - 153. 153. 154. 156. 158. 161. 163. 165. 169. 171. 175. 178. 180. - 183. 187. 190. 190. 194. 198. 202. 204. 207. 210. 212. 209. 215. - 206. 215. 212. 170. 70. 74. 81. 90. 96. 96. 99. 106. 109. 107. 112. - 110. 110. 113. 117. 119. 116. 113. 117. 112. 106. 105. 105. 102. 95. - 89. 96. 100. 103. 101. 94. 86. 80. 77. 82. 88. 97. 101. 99. 92. 84. - 79. 76. 76. 74. 69. 70. 80. 99. 115. 111. 118. 121. 114. 106. 98. - 86. 73. 66. 64. 62. 60. 59. 57. 54. 51. 52. 56. 61. 58. 72. 78. 78. - 113. 147. 180. 189. 190. 182. 167. 148. 110. 105. 120. 139. 153. - 166. 176. 180. 178. 179. 183. 180. 191. 179. 159. 140. 85. 58. 64. - 66. 56. 45. 43. 49. 55. 42. 48. 56. 61. 60. 58. 58. 59. 68. 89. 57. - 47. 47. 51. 86. 77. 48. 45. 42. 85. 106. 75. 119. 115. 56. 53. 42. - 98. 122. 86. 65. 27. 54. 96. 102. 82. 44. 75. 96. 121. 106. 75. 66. - 53. 48. 41. 43. 41. 43. 45. 47. 50. 57. 67. 78. 86. 93. 100. 108. - 112. 112. 113. 116. 120. 120. 122. 125. 126. 126. 126. 127. 129. - 131. 130. 129. 128. 128. 130. 132. 133. 133. 134. 136. 136. 135. - 136. 138. 140. 141. 141. 141. 141. 141. 141. 141. 140. 144. 144. - 144. 145. 145. 146. 146. 146. 143. 145. 146. 145. 142. 141. 142. - 144. 145. 145. 145. 145. 146. 147. 148. 149. 152. 153. 154. 156. - 159. 162. 164. 166. 168. 171. 175. 178. 180. 183. 186. 189. 189. - 192. 197. 200. 202. 205. 208. 210. 207. 213. 205. 213. 214. 180. 84. - 72. 83. 91. 97. 98. 102. 110. 115. 114. 112. 113. 115. 118. 120. - 119. 116. 113. 119. 114. 109. 106. 105. 102. 97. 93. 103. 105. 107. - 102. 94. 86. 82. 82. 85. 92. 98. 97. 88. 79. 74. 73. 73. 74. 73. 73. - 77. 88. 105. 117. 119. 119. 114. 107. 102. 96. 82. 68. 61. 61. 60. - 58. 56. 53. 51. 49. 51. 55. 59. 52. 62. 67. 70. 111. 151. 191. 202. - 201. 197. 189. 165. 115. 106. 121. 140. 154. 167. 177. 181. 179. - 181. 182. 181. 190. 182. 159. 126. 72. 58. 59. 60. 58. 51. 44. 45. - 50. 47. 52. 56. 58. 56. 56. 59. 62. 51. 78. 79. 39. 42. 56. 114. 77. - 49. 47. 41. 91. 112. 60. 106. 135. 89. 60. 29. 78. 117. 97. 73. 31. - 23. 87. 88. 109. 61. 42. 77. 93. 116. 69. 47. 60. 45. 40. 43. 45. - 48. 50. 53. 58. 65. 76. 88. 96. 103. 109. 114. 117. 116. 115. 117. - 119. 121. 123. 125. 126. 126. 126. 127. 129. 129. 129. 129. 130. - 130. 131. 131. 131. 133. 134. 136. 136. 135. 135. 137. 139. 139. - 139. 139. 139. 139. 139. 140. 140. 144. 144. 144. 145. 145. 146. - 146. 146. 145. 146. 147. 146. 144. 143. 144. 146. 146. 145. 145. - 146. 146. 148. 149. 150. 152. 152. 154. 156. 159. 162. 165. 167. - 167. 170. 174. 177. 179. 182. 185. 188. 187. 191. 195. 198. 200. - 203. 206. 208. 204. 212. 206. 210. 216. 194. 107. 70. 81. 88. 93. - 96. 100. 106. 111. 111. 112. 116. 120. 122. 121. 118. 116. 115. 118. - 116. 112. 108. 105. 103. 102. 101. 113. 114. 112. 104. 94. 87. 87. - 90. 92. 98. 100. 92. 79. 69. 67. 70. 70. 71. 73. 79. 89. 101. 113. - 120. 127. 119. 107. 98. 94. 89. 75. 61. 56. 58. 59. 58. 54. 52. 53. - 55. 51. 54. 57. 49. 56. 59. 67. 113. 163. 195. 202. 205. 206. 198. - 175. 128. 106. 121. 140. 154. 166. 176. 180. 178. 183. 182. 179. - 184. 182. 166. 135. 97. 70. 54. 45. 50. 58. 56. 47. 41. 55. 57. 59. - 57. 55. 56. 61. 65. 46. 62. 88. 40. 45. 64. 135. 85. 46. 51. 45. 95. - 118. 54. 92. 129. 127. 48. 38. 55. 91. 99. 53. 60. 30. 63. 79. 100. - 95. 38. 74. 70. 110. 91. 71. 80. 38. 36. 44. 44. 47. 51. 58. 66. 76. - 86. 97. 103. 108. 111. 115. 117. 116. 116. 116. 118. 121. 124. 126. - 127. 126. 126. 127. 129. 128. 129. 130. 131. 132. 131. 130. 130. - 132. 134. 136. 136. 135. 135. 136. 137. 139. 139. 139. 139. 140. - 140. 140. 140. 144. 144. 144. 145. 145. 146. 146. 146. 147. 147. - 147. 147. 146. 146. 146. 147. 146. 146. 146. 146. 147. 148. 150. - 150. 151. 152. 154. 156. 160. 163. 166. 168. 166. 169. 173. 176. - 178. 181. 184. 187. 187. 191. 195. 198. 200. 202. 205. 207. 205. - 213. 208. 207. 217. 205. 133. 70. 79. 84. 91. 95. 98. 101. 103. 104. - 113. 117. 122. 122. 119. 117. 117. 118. 115. 115. 113. 110. 107. - 107. 109. 112. 121. 120. 115. 105. 95. 91. 94. 99. 98. 99. 97. 88. - 78. 71. 72. 74. 69. 71. 77. 88. 102. 114. 121. 123. 128. 118. 105. - 94. 87. 78. 66. 55. 53. 57. 59. 58. 55. 57. 64. 71. 50. 52. 56. 49. - 55. 57. 66. 116. 178. 195. 196. 206. 208. 196. 179. 146. 106. 121. - 139. 153. 165. 174. 178. 176. 181. 181. 181. 179. 179. 167. 136. - 116. 74. 56. 42. 45. 56. 58. 51. 43. 57. 59. 60. 59. 58. 61. 67. 73. - 62. 57. 83. 51. 50. 68. 124. 77. 44. 55. 51. 97. 120. 55. 81. 103. - 146. 69. 49. 35. 69. 105. 66. 69. 64. 57. 72. 82. 91. 55. 69. 78. - 104. 108. 96. 112. 63. 39. 37. 32. 45. 52. 63. 74. 84. 93. 101. 105. - 109. 111. 114. 117. 117. 118. 119. 120. 122. 125. 127. 127. 127. - 126. 127. 128. 127. 128. 130. 132. 132. 131. 130. 129. 132. 134. - 136. 137. 135. 134. 135. 136. 139. 139. 140. 140. 141. 141. 142. - 142. 144. 144. 144. 145. 145. 146. 146. 146. 148. 147. 147. 147. - 148. 148. 148. 147. 147. 147. 147. 147. 148. 149. 151. 151. 152. - 153. 155. 157. 160. 163. 166. 168. 165. 168. 171. 174. 176. 179. - 183. 186. 188. 191. 195. 198. 200. 202. 204. 206. 207. 213. 212. - 206. 216. 211. 159. 77. 78. 83. 91. 98. 102. 102. 103. 105. 113. - 117. 120. 120. 117. 116. 119. 122. 112. 113. 113. 112. 112. 114. - 118. 122. 126. 122. 113. 104. 96. 94. 98. 101. 96. 92. 88. 84. 82. - 81. 80. 79. 72. 75. 84. 99. 114. 124. 126. 125. 121. 114. 103. 91. - 78. 66. 57. 52. 51. 54. 57. 57. 59. 66. 78. 88. 49. 50. 54. 50. 57. - 56. 63. 112. 184. 196. 193. 204. 207. 193. 181. 156. 106. 120. 138. - 152. 164. 174. 177. 175. 178. 179. 185. 179. 179. 161. 118. 106. 65. - 62. 53. 45. 45. 50. 53. 51. 53. 56. 60. 61. 62. 67. 74. 80. 72. 53. - 65. 66. 59. 86. 106. 67. 49. 56. 54. 99. 116. 54. 76. 79. 129. 112. - 64. 31. 65. 119. 107. 50. 61. 54. 67. 87. 69. 70. 44. 70. 86. 94. - 84. 122. 109. 62. 45. 36. 52. 59. 70. 81. 90. 97. 102. 106. 111. - 113. 115. 118. 120. 122. 124. 124. 123. 125. 128. 128. 127. 126. - 127. 128. 127. 128. 130. 131. 132. 131. 130. 129. 131. 134. 136. - 137. 135. 134. 134. 134. 139. 139. 140. 140. 141. 142. 142. 142. - 144. 144. 144. 145. 145. 146. 146. 146. 148. 147. 146. 147. 149. - 149. 149. 147. 148. 148. 148. 148. 149. 150. 151. 152. 154. 155. - 156. 158. 160. 163. 165. 166. 164. 167. 170. 173. 175. 178. 182. - 185. 188. 191. 195. 198. 199. 201. 203. 205. 208. 211. 214. 207. - 214. 212. 183. 92. 78. 80. 86. 95. 98. 99. 102. 107. 111. 114. 117. - 119. 120. 121. 122. 124. 114. 114. 115. 117. 120. 124. 127. 129. - 127. 119. 108. 99. 95. 94. 94. 94. 86. 82. 80. 82. 86. 87. 85. 81. - 77. 83. 94. 109. 122. 129. 128. 126. 113. 105. 94. 83. 69. 56. 50. - 50. 48. 51. 56. 61. 67. 77. 90. 99. 49. 47. 51. 49. 57. 53. 56. 103. - 175. 196. 196. 200. 201. 193. 182. 150. 107. 122. 140. 153. 165. - 174. 177. 176. 179. 179. 185. 178. 183. 161. 104. 92. 59. 63. 55. - 41. 40. 51. 55. 48. 53. 57. 62. 64. 65. 67. 73. 77. 73. 55. 47. 82. - 72. 120. 95. 59. 62. 53. 53. 103. 110. 47. 74. 72. 92. 119. 99. 45. - 65. 130. 113. 41. 42. 46. 63. 84. 69. 71. 39. 49. 62. 83. 65. 91. - 122. 83. 72. 53. 68. 72. 79. 86. 92. 97. 103. 107. 113. 113. 115. - 118. 121. 124. 125. 125. 124. 126. 128. 128. 127. 126. 127. 128. - 128. 129. 130. 130. 131. 131. 131. 130. 131. 134. 137. 137. 135. - 134. 133. 133. 137. 137. 138. 139. 140. 141. 141. 142. 144. 144. - 144. 145. 145. 146. 146. 146. 148. 146. 145. 146. 149. 150. 149. - 147. 148. 148. 148. 149. 149. 151. 152. 153. 156. 157. 157. 158. - 160. 162. 164. 165. 163. 166. 169. 172. 174. 177. 181. 184. 186. - 190. 193. 196. 197. 199. 201. 203. 207. 206. 214. 208. 212. 211. - 204. 111. 88. 85. 85. 89. 91. 91. 97. 106. 107. 110. 116. 123. 128. - 129. 126. 124. 121. 120. 120. 123. 129. 133. 133. 132. 126. 115. - 101. 93. 91. 89. 84. 78. 76. 77. 81. 85. 89. 88. 85. 82. 84. 91. - 104. 117. 127. 130. 128. 125. 110. 95. 79. 69. 60. 50. 46. 47. 48. - 53. 61. 70. 81. 90. 98. 102. 48. 45. 48. 48. 56. 49. 49. 95. 162. - 195. 199. 195. 194. 194. 180. 139. 108. 123. 141. 155. 166. 176. - 178. 177. 185. 179. 183. 176. 186. 167. 104. 92. 61. 61. 48. 33. 42. - 62. 57. 35. 57. 61. 65. 66. 64. 64. 67. 69. 79. 67. 44. 96. 82. 143. - 87. 46. 73. 49. 51. 107. 105. 38. 74. 77. 63. 91. 137. 63. 62. 133. - 83. 51. 49. 45. 60. 59. 81. 65. 64. 48. 52. 96. 65. 52. 101. 87. 90. - 59. 81. 83. 86. 89. 92. 97. 104. 108. 113. 113. 114. 116. 120. 122. - 123. 123. 124. 126. 128. 129. 127. 126. 127. 128. 129. 129. 129. - 130. 130. 131. 131. 131. 131. 134. 137. 137. 136. 133. 132. 132. - 135. 136. 137. 137. 138. 139. 140. 140. 144. 144. 144. 145. 145. - 146. 146. 146. 148. 145. 144. 145. 149. 150. 149. 146. 149. 149. - 149. 149. 150. 151. 152. 153. 158. 158. 158. 159. 160. 162. 163. - 164. 162. 165. 169. 172. 174. 177. 181. 183. 185. 188. 192. 194. - 195. 197. 199. 201. 205. 202. 213. 209. 210. 210. 215. 124. 107. 99. - 92. 91. 89. 89. 97. 108. 104. 108. 116. 127. 135. 135. 129. 123. - 128. 125. 124. 128. 135. 138. 136. 132. 126. 112. 96. 89. 88. 85. - 75. 66. 71. 78. 86. 91. 91. 88. 85. 84. 88. 97. 110. 122. 128. 129. - 127. 125. 110. 88. 67. 58. 53. 47. 44. 44. 51. 57. 67. 81. 93. 101. - 104. 104. - - 1 - 1 -
d
- - 0.
- - 65536 - 1 -
d
- - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0.
- - <_ type_id="opencv-matrix"> - 1 - 1 -
d
- - 0.
- - 1 - 1 -
i
- - 1
- diff --git a/test/fisherfaces_save.xml b/test/fisherfaces_save.xml deleted file mode 100644 index a0e2dae..0000000 --- a/test/fisherfaces_save.xml +++ /dev/null @@ -1,7530 +0,0 @@ - - -1 - - 1 - 65536 -
d
- - 162. 162. 162. 163. 164. 162. 158. 155. 158. 157. 156. 156. 155. - 155. 156. 156. 158. 159. 161. 164. 167. 169. 171. 172. 170. 170. - 167. 160. 152. 142. 127. 112. 98. 94. 95. 101. 105. 105. 105. 108. - 109. 109. 108. 107. 107. 108. 108. 109. 111. 107. 105. 108. 110. - 111. 115. 121. 118. 121. 124. 126. 126. 127. 128. 130. 133. 131. - 129. 130. 132. 133. 131. 129. 127. 129. 130. 129. 129. 130. 132. - 134. 133. 133. 133. 134. 134. 135. 135. 135. 134. 133. 132. 132. - 134. 134. 133. 132. 135. 136. 136. 136. 136. 135. 134. 133. 138. - 136. 133. 131. 130. 131. 132. 134. 131. 132. 133. 133. 131. 131. - 132. 133. 135. 135. 135. 134. 134. 134. 133. 133. 142. 136. 130. - 129. 132. 134. 132. 129. 129. 130. 132. 131. 129. 129. 130. 131. - 130. 130. 130. 129. 128. 127. 126. 125. 124. 124. 124. 121. 118. - 113. 108. 105. 109. 116. 127. 135. 141. 146. 151. 155. 161. 160. - 158. 154. 151. 150. 152. 154. 154. 155. 155. 156. 156. 155. 155. - 154. 152. 152. 152. 153. 153. 154. 154. 154. 156. 155. 155. 157. - 158. 158. 156. 153. 148. 170. 192. 203. 211. 220. 219. 212. 215. - 210. 180. 133. 104. 105. 110. 109. 116. 117. 119. 120. 121. 120. - 119. 119. 122. 123. 123. 122. 120. 120. 122. 124. 122. 123. 125. - 126. 125. 123. 121. 119. 126. 126. 126. 126. 126. 126. 126. 126. - 120. 121. 117. 121. 146. 172. 164. 138. 162. 161. 161. 162. 163. - 161. 158. 155. 157. 157. 156. 155. 154. 155. 155. 155. 156. 158. - 160. 163. 166. 169. 171. 172. 171. 171. 167. 159. 151. 141. 126. - 111. 97. 93. 94. 99. 103. 104. 104. 107. 107. 107. 107. 107. 107. - 107. 108. 108. 110. 106. 105. 108. 110. 111. 115. 120. 119. 122. - 124. 126. 126. 126. 127. 129. 133. 131. 129. 130. 132. 133. 131. - 129. 127. 129. 130. 130. 129. 130. 132. 134. 133. 133. 133. 134. - 134. 134. 135. 135. 134. 133. 131. 132. 134. 134. 133. 132. 134. - 135. 135. 135. 135. 134. 133. 132. 137. 135. 133. 131. 130. 130. - 131. 132. 131. 132. 133. 133. 131. 130. 132. 133. 134. 134. 134. - 134. 133. 133. 132. 132. 141. 135. 130. 129. 131. 133. 131. 128. - 128. 130. 131. 130. 129. 128. 129. 131. 129. 130. 130. 129. 128. - 127. 126. 125. 124. 124. 123. 121. 117. 112. 108. 105. 109. 116. - 127. 136. 142. 148. 153. 156. 161. 161. 159. 155. 151. 150. 151. - 153. 153. 154. 155. 155. 155. 155. 154. 153. 152. 152. 152. 153. - 153. 154. 154. 154. 156. 155. 155. 156. 158. 158. 155. 153. 151. - 171. 195. 208. 213. 216. 218. 217. 216. 207. 177. 135. 105. 100. - 105. 108. 116. 117. 119. 120. 121. 121. 120. 119. 122. 122. 123. - 122. 120. 120. 122. 124. 122. 123. 125. 125. 125. 123. 121. 120. - 126. 126. 126. 126. 126. 125. 125. 125. 113. 115. 115. 124. 153. - 179. 173. 150. 160. 159. 159. 160. 161. 160. 157. 154. 156. 156. - 155. 154. 154. 154. 154. 154. 154. 156. 159. 163. 166. 169. 171. - 172. 172. 171. 167. 158. 150. 140. 124. 110. 96. 92. 92. 97. 102. - 102. 103. 106. 105. 105. 105. 106. 106. 107. 107. 108. 109. 106. - 105. 108. 111. 111. 115. 120. 120. 122. 125. 126. 125. 125. 126. - 127. 132. 130. 129. 130. 131. 132. 131. 130. 128. 129. 130. 130. - 129. 129. 132. 134. 133. 133. 133. 133. 134. 134. 134. 135. 134. - 132. 131. 132. 133. 134. 133. 131. 133. 133. 134. 134. 133. 132. - 131. 131. 135. 134. 132. 130. 129. 129. 130. 131. 130. 132. 133. - 132. 131. 130. 131. 133. 133. 133. 133. 132. 132. 132. 131. 131. - 138. 134. 129. 128. 130. 132. 130. 128. 127. 128. 130. 129. 127. - 127. 128. 129. 129. 129. 129. 129. 128. 127. 126. 125. 123. 123. - 122. 119. 116. 111. 107. 105. 107. 114. 125. 135. 143. 149. 154. - 157. 160. 160. 159. 156. 153. 151. 151. 152. 152. 153. 154. 154. - 154. 154. 153. 152. 153. 153. 153. 153. 154. 154. 154. 154. 155. - 155. 154. 155. 157. 157. 155. 153. 151. 167. 191. 209. 213. 211. - 214. 220. 219. 207. 182. 146. 112. 96. 100. 110. 115. 116. 119. 120. - 121. 121. 121. 120. 121. 122. 123. 122. 120. 120. 122. 124. 122. - 123. 124. 125. 125. 123. 122. 120. 125. 125. 125. 125. 125. 125. - 125. 125. 117. 121. 123. 128. 144. 155. 140. 116. 159. 158. 157. - 158. 159. 158. 156. 154. 156. 155. 154. 153. 153. 153. 153. 154. - 153. 155. 159. 163. 167. 169. 171. 171. 172. 171. 166. 157. 148. - 138. 122. 108. 95. 91. 90. 95. 100. 100. 102. 105. 103. 103. 104. - 105. 106. 106. 106. 106. 108. 104. 105. 109. 111. 111. 115. 120. - 121. 123. 125. 126. 125. 124. 125. 126. 130. 129. 129. 130. 131. - 131. 131. 131. 128. 129. 130. 130. 129. 129. 131. 133. 132. 132. - 133. 133. 133. 134. 134. 134. 133. 132. 131. 131. 133. 134. 132. - 131. 132. 132. 132. 132. 132. 131. 130. 129. 133. 132. 131. 129. - 129. 128. 129. 129. 130. 131. 133. 132. 130. 130. 131. 132. 132. - 132. 132. 131. 131. 130. 130. 130. 135. 132. 129. 128. 130. 130. - 129. 127. 126. 127. 128. 128. 126. 126. 127. 128. 129. 129. 129. - 129. 129. 128. 127. 126. 123. 122. 121. 119. 115. 111. 108. 106. - 105. 111. 120. 131. 140. 147. 152. 155. 159. 160. 160. 158. 154. - 152. 152. 152. 152. 153. 153. 154. 154. 153. 153. 152. 153. 154. - 154. 154. 154. 154. 154. 154. 155. 154. 153. 154. 156. 156. 155. - 153. 151. 157. 176. 200. 210. 209. 211. 219. 219. 212. 197. 169. - 129. 99. 97. 111. 114. 115. 117. 120. 121. 121. 121. 121. 121. 122. - 122. 121. 120. 119. 121. 123. 122. 123. 124. 124. 124. 123. 122. - 122. 124. 124. 124. 125. 125. 125. 125. 125. 123. 128. 129. 123. - 115. 102. 80. 58. 158. 157. 156. 156. 158. 158. 156. 154. 156. 155. - 154. 153. 153. 153. 153. 154. 154. 156. 160. 164. 168. 170. 171. - 171. 172. 170. 164. 155. 146. 136. 121. 107. 95. 90. 89. 94. 98. 99. - 101. 105. 102. 103. 104. 106. 106. 106. 105. 105. 106. 103. 104. - 109. 111. 111. 114. 119. 120. 122. 125. 125. 124. 124. 124. 126. - 128. 129. 129. 130. 130. 130. 131. 132. 129. 130. 131. 130. 129. - 129. 131. 133. 132. 132. 132. 133. 133. 133. 134. 134. 133. 132. - 130. 131. 133. 133. 132. 131. 131. 131. 131. 131. 131. 130. 129. - 129. 132. 132. 131. 130. 129. 128. 128. 128. 130. 131. 132. 132. - 130. 129. 131. 132. 132. 132. 131. 131. 130. 130. 130. 130. 133. - 131. 130. 129. 129. 129. 129. 128. 125. 127. 128. 127. 126. 125. - 126. 128. 128. 128. 129. 129. 129. 128. 127. 126. 124. 123. 121. - 118. 115. 112. 109. 108. 103. 107. 114. 123. 134. 142. 148. 151. - 156. 158. 160. 159. 156. 154. 153. 153. 154. 154. 155. 155. 155. - 155. 154. 154. 155. 154. 154. 154. 154. 154. 154. 154. 155. 153. - 152. 152. 154. 155. 154. 153. 153. 150. 160. 185. 205. 211. 213. - 217. 216. 216. 213. 193. 150. 109. 98. 108. 111. 113. 116. 118. 120. - 121. 121. 121. 120. 121. 122. 121. 119. 119. 121. 123. 122. 123. - 123. 123. 124. 123. 123. 123. 124. 124. 124. 125. 125. 126. 126. - 126. 127. 127. 120. 103. 80. 61. 47. 40. 158. 156. 155. 156. 157. - 158. 156. 155. 156. 156. 155. 154. 154. 154. 154. 154. 155. 158. - 162. 166. 169. 170. 170. 170. 170. 169. 162. 153. 144. 135. 121. - 108. 95. 90. 89. 93. 97. 99. 101. 105. 103. 104. 106. 107. 107. 106. - 104. 103. 105. 102. 104. 109. 112. 112. 114. 119. 119. 121. 124. - 125. 124. 124. 125. 126. 126. 128. 130. 130. 129. 129. 131. 132. - 129. 130. 131. 130. 128. 128. 130. 132. 131. 132. 132. 132. 133. - 133. 133. 133. 133. 131. 130. 131. 132. 133. 132. 130. 131. 131. - 131. 131. 131. 130. 129. 128. 132. 132. 131. 130. 130. 129. 128. - 128. 129. 131. 132. 131. 130. 129. 130. 132. 132. 132. 132. 131. - 131. 130. 130. 130. 131. 131. 131. 130. 130. 129. 129. 129. 126. - 127. 128. 128. 126. 126. 127. 128. 127. 128. 128. 129. 129. 128. - 127. 127. 125. 124. 121. 119. 116. 113. 111. 110. 103. 104. 108. - 116. 127. 137. 145. 148. 153. 156. 159. 160. 158. 156. 155. 155. - 156. 156. 157. 158. 158. 157. 156. 156. 155. 155. 155. 155. 154. - 154. 154. 154. 155. 153. 151. 151. 153. 154. 153. 153. 157. 149. - 151. 170. 195. 211. 215. 215. 212. 217. 221. 208. 172. 130. 107. - 104. 108. 110. 113. 116. 119. 120. 120. 120. 120. 121. 121. 120. - 119. 119. 120. 122. 122. 122. 122. 123. 123. 123. 124. 124. 124. - 125. 125. 126. 126. 127. 128. 128. 133. 122. 102. 79. 56. 42. 43. - 50. 158. 157. 155. 155. 157. 158. 157. 156. 157. 157. 156. 155. 154. - 155. 155. 155. 158. 161. 165. 168. 170. 171. 170. 169. 168. 167. - 160. 151. 143. 135. 121. 109. 96. 91. 89. 93. 97. 99. 102. 106. 105. - 106. 108. 108. 107. 105. 103. 102. 103. 101. 103. 109. 112. 112. - 114. 118. 117. 120. 123. 124. 124. 124. 126. 127. 125. 128. 130. - 130. 128. 128. 131. 133. 130. 131. 131. 130. 128. 128. 130. 132. - 131. 131. 132. 132. 132. 133. 133. 133. 132. 131. 130. 130. 132. - 133. 131. 130. 131. 131. 132. 132. 131. 130. 129. 129. 132. 132. - 132. 132. 131. 130. 129. 128. 129. 130. 132. 131. 129. 129. 130. - 131. 133. 132. 132. 132. 131. 131. 131. 131. 130. 131. 132. 132. - 131. 130. 130. 130. 126. 128. 129. 128. 127. 126. 127. 129. 127. - 128. 128. 129. 129. 128. 128. 127. 126. 125. 122. 119. 116. 114. - 113. 112. 105. 104. 105. 111. 122. 134. 142. 146. 150. 154. 158. - 161. 160. 158. 157. 157. 159. 159. 160. 160. 160. 160. 159. 159. - 156. 156. 156. 155. 155. 154. 154. 154. 155. 153. 150. 150. 152. - 153. 153. 152. 157. 151. 148. 157. 180. 203. 213. 212. 215. 217. - 220. 215. 194. 160. 125. 103. 106. 108. 111. 114. 117. 118. 119. - 119. 120. 121. 121. 120. 119. 118. 120. 122. 122. 122. 122. 122. - 123. 123. 124. 125. 125. 125. 126. 127. 128. 129. 129. 130. 122. - 101. 77. 60. 48. 41. 45. 54. 159. 157. 155. 155. 157. 158. 158. 157. - 158. 157. 156. 156. 155. 155. 156. 156. 160. 162. 166. 170. 171. - 171. 169. 168. 167. 166. 159. 150. 143. 135. 122. 109. 97. 91. 89. - 93. 97. 99. 102. 107. 107. 108. 109. 109. 108. 105. 103. 101. 103. - 101. 103. 109. 112. 112. 114. 118. 116. 119. 122. 124. 124. 125. - 126. 128. 124. 127. 130. 130. 128. 128. 131. 133. 130. 131. 131. - 130. 128. 128. 130. 132. 131. 131. 131. 132. 132. 133. 133. 133. - 132. 131. 130. 130. 132. 132. 131. 130. 131. 132. 132. 132. 132. - 131. 130. 129. 132. 133. 133. 132. 131. 130. 129. 128. 129. 130. - 131. 131. 129. 129. 130. 131. 133. 133. 133. 132. 132. 132. 131. - 131. 130. 132. 133. 133. 131. 130. 130. 131. 127. 128. 129. 129. - 127. 127. 128. 129. 127. 127. 128. 129. 129. 129. 128. 128. 127. - 125. 123. 120. 117. 115. 114. 113. 108. 105. 103. 109. 120. 132. - 142. 146. 148. 152. 158. 161. 161. 159. 158. 158. 161. 161. 162. - 162. 162. 162. 161. 161. 156. 156. 156. 155. 155. 154. 154. 154. - 155. 152. 150. 150. 151. 153. 153. 152. 154. 152. 147. 147. 166. - 194. 208. 208. 221. 219. 218. 217. 210. 184. 141. 106. 104. 106. - 109. 113. 116. 117. 118. 118. 120. 121. 121. 120. 118. 118. 120. - 122. 122. 122. 122. 122. 123. 123. 125. 125. 126. 126. 127. 128. - 129. 130. 130. 131. 94. 71. 52. 49. 50. 48. 48. 51. 158. 158. 157. - 157. 157. 157. 157. 157. 155. 159. 161. 159. 154. 152. 156. 160. - 164. 165. 167. 169. 168. 167. 165. 163. 164. 163. 157. 149. 142. - 134. 120. 107. 96. 90. 87. 92. 97. 98. 99. 101. 107. 107. 107. 106. - 106. 106. 105. 105. 101. 102. 103. 106. 109. 112. 115. 116. 119. - 119. 120. 121. 123. 124. 125. 125. 129. 128. 127. 126. 127. 130. - 132. 134. 130. 131. 131. 132. 132. 131. 131. 130. 133. 132. 132. - 131. 131. 132. 132. 133. 136. 136. 135. 134. 133. 133. 133. 134. - 132. 133. 134. 133. 131. 130. 131. 132. 133. 132. 132. 132. 132. - 132. 132. 132. 130. 132. 133. 132. 129. 128. 131. 134. 132. 133. - 133. 134. 133. 132. 130. 129. 132. 132. 133. 132. 131. 130. 129. - 128. 129. 129. 129. 128. 128. 127. 127. 127. 131. 130. 130. 129. - 129. 128. 128. 128. 128. 125. 122. 120. 119. 117. 115. 113. 110. - 108. 106. 106. 111. 122. 136. 146. 146. 150. 155. 159. 160. 160. - 161. 163. 158. 159. 161. 162. 163. 163. 162. 161. 156. 157. 160. - 161. 160. 157. 154. 152. 155. 154. 153. 152. 152. 152. 153. 153. - 151. 151. 146. 144. 154. 176. 197. 207. 214. 217. 217. 217. 217. - 203. 167. 132. 104. 104. 106. 111. 115. 116. 116. 116. 121. 122. - 123. 124. 123. 122. 121. 120. 125. 124. 122. 122. 122. 124. 126. - 127. 127. 131. 132. 131. 133. 131. 117. 98. 56. 51. 45. 44. 45. 47. - 45. 42. 156. 156. 156. 157. 157. 157. 157. 157. 156. 159. 160. 157. - 153. 152. 157. 161. 164. 165. 167. 168. 168. 166. 164. 163. 162. - 161. 157. 150. 144. 137. 124. 111. 97. 91. 88. 93. 98. 99. 100. 103. - 107. 106. 106. 106. 105. 105. 105. 104. 101. 102. 103. 106. 109. - 112. 115. 116. 119. 119. 120. 121. 123. 124. 125. 125. 126. 127. - 128. 129. 130. 130. 131. 131. 130. 131. 131. 132. 132. 131. 131. - 130. 133. 132. 132. 131. 131. 132. 132. 133. 134. 133. 132. 132. - 131. 131. 131. 132. 130. 131. 133. 133. 131. 131. 132. 134. 132. - 132. 132. 132. 131. 131. 131. 131. 130. 131. 132. 131. 129. 128. - 131. 133. 132. 133. 135. 136. 135. 133. 131. 129. 132. 132. 132. - 132. 131. 130. 129. 128. 129. 129. 128. 128. 128. 127. 127. 127. - 130. 129. 129. 129. 128. 128. 127. 127. 127. 125. 122. 121. 120. - 118. 115. 112. 110. 108. 106. 106. 110. 121. 134. 144. 147. 151. - 156. 159. 160. 161. 162. 163. 158. 159. 161. 162. 162. 162. 161. - 161. 157. 158. 159. 159. 159. 157. 154. 153. 154. 154. 153. 152. - 152. 152. 152. 152. 149. 150. 150. 148. 150. 164. 187. 205. 212. - 216. 217. 218. 221. 212. 183. 153. 108. 104. 105. 111. 114. 112. - 113. 117. 120. 121. 123. 124. 125. 124. 123. 123. 123. 123. 124. - 125. 126. 127. 127. 127. 135. 130. 130. 136. 138. 122. 92. 67. 49. - 49. 48. 46. 46. 47. 50. 52. 154. 155. 155. 156. 156. 157. 157. 158. - 157. 158. 158. 155. 152. 153. 158. 163. 165. 166. 167. 167. 167. - 165. 163. 162. 160. 160. 157. 151. 146. 139. 127. 114. 98. 91. 88. - 93. 99. 100. 101. 104. 106. 105. 105. 105. 104. 104. 104. 103. 102. - 102. 104. 106. 109. 112. 114. 116. 119. 119. 120. 121. 123. 124. - 125. 125. 124. 126. 129. 131. 131. 131. 129. 128. 130. 130. 131. - 131. 131. 131. 130. 130. 132. 132. 131. 131. 131. 131. 132. 132. - 132. 131. 130. 129. 129. 129. 130. 130. 129. 130. 132. 132. 131. - 131. 133. 135. 130. 130. 130. 130. 130. 130. 131. 131. 129. 130. - 131. 130. 128. 128. 130. 132. 131. 133. 135. 137. 136. 134. 131. - 129. 132. 132. 132. 132. 131. 130. 128. 128. 129. 128. 128. 128. - 127. 127. 127. 127. 128. 128. 128. 127. 127. 127. 126. 126. 126. - 124. 123. 122. 121. 118. 114. 111. 111. 109. 106. 105. 109. 119. - 131. 140. 147. 151. 156. 159. 161. 162. 163. 164. 159. 160. 160. - 161. 162. 161. 161. 161. 159. 159. 158. 158. 157. 156. 155. 155. - 154. 153. 152. 151. 151. 151. 151. 152. 149. 149. 152. 152. 147. - 150. 172. 198. 207. 212. 215. 217. 221. 220. 202. 180. 125. 111. - 104. 110. 114. 110. 112. 121. 117. 118. 120. 122. 124. 124. 124. - 123. 120. 122. 125. 128. 130. 130. 129. 128. 133. 132. 135. 139. - 127. 97. 64. 44. 45. 49. 51. 49. 46. 47. 52. 57. 153. 153. 154. 155. - 156. 157. 158. 158. 158. 158. 157. 154. 152. 155. 160. 165. 166. - 166. 166. 166. 165. 163. 162. 161. 159. 160. 157. 151. 146. 139. - 125. 113. 96. 90. 87. 92. 98. 100. 101. 103. 105. 105. 104. 104. - 104. 103. 103. 103. 102. 103. 104. 106. 108. 111. 114. 115. 119. - 119. 120. 121. 123. 124. 125. 125. 125. 126. 128. 129. 130. 130. - 129. 128. 129. 130. 131. 131. 131. 131. 130. 129. 132. 132. 131. - 130. 130. 131. 132. 132. 130. 130. 129. 129. 128. 129. 129. 130. - 130. 132. 133. 132. 130. 130. 131. 132. 128. 128. 128. 129. 129. - 129. 129. 130. 129. 129. 129. 128. 128. 128. 129. 130. 129. 131. - 134. 136. 136. 133. 130. 128. 131. 132. 132. 131. 131. 129. 128. - 127. 128. 128. 128. 127. 127. 127. 126. 126. 126. 126. 126. 126. - 126. 126. 126. 126. 125. 124. 123. 123. 122. 119. 114. 110. 111. - 109. 106. 105. 108. 117. 128. 136. 146. 150. 155. 159. 161. 162. - 163. 164. 160. 160. 160. 160. 161. 161. 160. 160. 160. 159. 158. - 156. 155. 155. 156. 156. 154. 153. 152. 151. 151. 151. 151. 151. - 152. 148. 151. 154. 147. 141. 158. 184. 201. 209. 213. 214. 218. - 222. 213. 199. 154. 125. 104. 107. 113. 112. 115. 124. 116. 117. - 119. 121. 121. 121. 121. 120. 120. 121. 124. 127. 129. 130. 131. - 131. 127. 138. 142. 125. 95. 68. 52. 44. 48. 49. 50. 49. 47. 48. 51. - 54. 153. 154. 155. 156. 157. 158. 158. 159. 159. 158. 156. 154. 154. - 157. 162. 166. 167. 167. 166. 165. 163. 162. 160. 159. 160. 161. - 157. 151. 145. 136. 121. 108. 94. 88. 85. 90. 96. 98. 100. 102. 105. - 105. 104. 104. 104. 103. 103. 103. 103. 103. 104. 106. 108. 111. - 113. 115. 119. 119. 120. 121. 123. 124. 125. 125. 128. 128. 127. - 126. 126. 128. 129. 130. 129. 129. 130. 131. 131. 130. 129. 129. - 132. 131. 130. 130. 130. 130. 131. 132. 131. 130. 130. 129. 130. - 130. 131. 131. 134. 134. 134. 132. 129. 127. 127. 128. 126. 126. - 126. 127. 127. 128. 128. 129. 129. 128. 127. 126. 127. 128. 128. - 128. 127. 128. 131. 133. 133. 131. 129. 127. 131. 131. 131. 131. - 130. 129. 128. 127. 128. 128. 127. 127. 127. 126. 126. 126. 125. - 125. 125. 126. 126. 126. 126. 126. 125. 124. 123. 123. 122. 119. - 114. 110. 111. 109. 107. 106. 108. 116. 126. 134. 144. 149. 154. - 158. 160. 161. 163. 164. 160. 160. 160. 160. 159. 159. 160. 160. - 161. 160. 157. 155. 155. 155. 156. 157. 154. 153. 152. 151. 151. - 151. 152. 152. 156. 148. 147. 152. 148. 141. 149. 167. 195. 207. - 214. 214. 216. 221. 218. 210. 184. 144. 108. 101. 109. 112. 115. - 121. 119. 120. 121. 122. 122. 121. 120. 119. 121. 121. 122. 123. - 125. 128. 131. 133. 132. 140. 127. 90. 61. 54. 52. 47. 48. 46. 45. - 46. 50. 52. 51. 50. 155. 156. 156. 157. 157. 158. 159. 159. 160. - 158. 157. 156. 158. 161. 165. 167. 168. 167. 165. 164. 162. 160. - 159. 158. 161. 162. 158. 151. 144. 134. 118. 104. 92. 86. 84. 89. - 95. 97. 99. 102. 106. 105. 105. 105. 104. 104. 104. 103. 103. 104. - 105. 106. 108. 111. 113. 114. 119. 119. 120. 121. 123. 124. 125. - 125. 130. 128. 126. 125. 125. 126. 129. 130. 129. 129. 130. 130. - 130. 130. 129. 129. 131. 131. 130. 130. 130. 130. 131. 131. 131. - 131. 130. 130. 131. 131. 132. 133. 135. 136. 135. 132. 128. 126. - 125. 126. 124. 124. 125. 125. 126. 127. 127. 128. 128. 126. 125. - 125. 126. 127. 127. 126. 126. 127. 129. 130. 130. 130. 129. 128. - 131. 131. 131. 131. 130. 129. 127. 127. 127. 127. 127. 127. 126. - 126. 126. 125. 125. 125. 125. 126. 126. 126. 127. 127. 126. 124. - 123. 122. 121. 118. 114. 111. 111. 110. 108. 106. 109. 116. 126. - 134. 143. 147. 153. 157. 159. 160. 162. 163. 161. 160. 160. 159. - 158. 159. 159. 159. 161. 159. 158. 156. 155. 155. 156. 157. 155. - 154. 153. 153. 152. 152. 153. 153. 157. 149. 147. 150. 149. 144. - 146. 153. 185. 202. 215. 216. 216. 221. 222. 217. 204. 166. 123. - 102. 103. 110. 114. 115. 122. 123. 124. 125. 124. 123. 121. 120. - 122. 122. 121. 122. 124. 128. 131. 134. 138. 122. 89. 56. 47. 54. - 53. 41. 45. 42. 41. 45. 52. 56. 54. 52. 158. 158. 158. 158. 158. - 159. 159. 159. 160. 159. 158. 159. 162. 165. 167. 168. 168. 167. - 165. 163. 161. 159. 158. 157. 162. 163. 160. 153. 145. 135. 119. - 105. 93. 87. 84. 90. 96. 98. 100. 103. 107. 106. 106. 106. 105. 105. - 105. 104. 104. 104. 105. 106. 108. 111. 113. 114. 119. 119. 120. - 121. 123. 124. 125. 125. 128. 127. 127. 127. 127. 127. 127. 127. - 128. 129. 129. 130. 130. 129. 129. 128. 131. 130. 130. 129. 129. - 130. 130. 131. 130. 130. 130. 130. 130. 131. 132. 133. 134. 135. - 134. 132. 128. 126. 126. 126. 122. 123. 123. 124. 125. 126. 126. - 127. 128. 125. 123. 123. 126. 127. 126. 124. 128. 128. 128. 128. - 129. 130. 130. 131. 130. 131. 131. 130. 130. 128. 127. 126. 127. - 127. 127. 126. 126. 126. 125. 125. 125. 126. 126. 126. 127. 127. - 128. 128. 127. 125. 122. 121. 120. 118. 115. 112. 111. 110. 108. - 107. 110. 117. 127. 134. 141. 145. 151. 155. 157. 159. 161. 162. - 162. 161. 159. 158. 158. 158. 159. 159. 160. 159. 158. 157. 156. - 156. 156. 156. 156. 156. 155. 154. 153. 153. 154. 154. 153. 152. - 151. 149. 148. 146. 146. 146. 168. 190. 210. 215. 215. 220. 223. - 221. 216. 190. 148. 114. 103. 108. 113. 113. 119. 120. 122. 123. - 123. 122. 121. 120. 122. 123. 124. 125. 127. 129. 131. 132. 122. 87. - 53. 43. 49. 50. 46. 42. 44. 44. 46. 49. 52. 54. 54. 54. 160. 160. - 160. 159. 159. 159. 159. 159. 160. 159. 159. 161. 164. 167. 168. - 168. 169. 167. 165. 162. 160. 158. 157. 157. 162. 163. 160. 154. - 147. 137. 121. 107. 94. 87. 85. 91. 97. 100. 102. 104. 107. 107. - 107. 106. 106. 106. 105. 105. 104. 104. 105. 106. 108. 110. 112. - 114. 119. 119. 120. 121. 123. 124. 125. 125. 125. 126. 128. 129. - 129. 128. 126. 124. 128. 129. 129. 130. 130. 129. 129. 128. 131. - 130. 130. 129. 129. 130. 130. 131. 129. 129. 129. 129. 130. 131. - 132. 132. 132. 133. 133. 131. 129. 127. 127. 128. 121. 122. 122. - 123. 124. 125. 126. 126. 128. 125. 122. 123. 125. 127. 126. 124. - 130. 129. 128. 128. 129. 130. 132. 133. 130. 130. 130. 130. 129. - 128. 127. 126. 127. 127. 127. 126. 126. 125. 125. 125. 126. 126. - 126. 127. 127. 128. 128. 129. 128. 125. 122. 120. 119. 117. 115. - 113. 110. 110. 108. 108. 111. 118. 128. 135. 139. 144. 150. 154. - 156. 158. 160. 161. 162. 161. 159. 158. 157. 157. 158. 159. 159. - 159. 158. 158. 157. 156. 155. 155. 157. 156. 155. 155. 154. 154. - 155. 155. 149. 155. 156. 150. 146. 146. 146. 144. 152. 178. 203. - 211. 213. 218. 222. 221. 221. 207. 171. 127. 105. 109. 115. 115. - 113. 115. 117. 119. 120. 120. 120. 119. 122. 124. 127. 129. 131. - 131. 131. 130. 94. 57. 36. 47. 53. 41. 39. 52. 46. 50. 54. 53. 50. - 49. 51. 54. 158. 158. 158. 159. 159. 159. 160. 160. 160. 161. 162. - 164. 166. 168. 169. 170. 167. 166. 165. 161. 158. 156. 157. 158. - 162. 163. 160. 153. 146. 136. 120. 105. 95. 91. 90. 94. 98. 98. 100. - 103. 105. 106. 106. 106. 105. 103. 101. 100. 101. 101. 102. 104. - 106. 109. 112. 113. 120. 120. 121. 122. 123. 123. 124. 124. 126. - 127. 128. 129. 129. 129. 129. 128. 128. 127. 126. 126. 127. 129. - 131. 132. 134. 134. 134. 132. 131. 130. 131. 133. 130. 130. 130. - 130. 130. 130. 130. 130. 133. 133. 132. 131. 129. 127. 124. 123. - 122. 121. 119. 118. 118. 120. 122. 123. 126. 125. 125. 124. 123. - 122. 121. 120. 124. 126. 129. 131. 131. 130. 128. 126. 132. 131. - 130. 129. 128. 127. 127. 127. 127. 126. 125. 124. 125. 126. 127. - 128. 126. 126. 126. 126. 126. 126. 126. 126. 128. 127. 125. 122. - 120. 117. 115. 114. 114. 111. 108. 108. 111. 118. 126. 131. 139. - 142. 148. 152. 154. 156. 158. 160. 161. 160. 158. 157. 156. 157. - 158. 158. 155. 156. 156. 157. 157. 158. 158. 159. 155. 155. 154. - 154. 154. 155. 156. 156. 154. 153. 152. 152. 151. 149. 146. 143. - 141. 157. 183. 206. 213. 211. 215. 224. 222. 219. 212. 172. 120. - 109. 118. 111. 114. 116. 118. 119. 120. 120. 120. 119. 119. 124. - 127. 129. 133. 132. 120. 104. 57. 51. 44. 43. 47. 51. 51. 49. 51. - 51. 50. 50. 50. 51. 52. 53. 158. 158. 159. 159. 159. 160. 160. 161. - 160. 161. 162. 164. 166. 167. 168. 168. 166. 166. 164. 161. 157. - 156. 157. 159. 161. 162. 159. 153. 146. 135. 119. 104. 93. 89. 88. - 93. 97. 98. 100. 104. 104. 105. 105. 104. 104. 103. 102. 101. 102. - 102. 103. 105. 108. 110. 113. 114. 119. 120. 120. 121. 122. 123. - 123. 124. 125. 126. 127. 128. 128. 128. 128. 128. 127. 126. 126. - 126. 127. 128. 130. 131. 131. 131. 130. 129. 128. 128. 128. 129. - 130. 130. 130. 130. 130. 130. 130. 130. 132. 132. 131. 130. 128. - 126. 125. 124. 126. 124. 122. 120. 120. 123. 125. 127. 126. 126. - 125. 125. 126. 126. 127. 128. 126. 126. 128. 129. 130. 131. 131. - 131. 133. 132. 131. 129. 128. 127. 127. 127. 129. 128. 126. 125. - 124. 125. 125. 126. 126. 126. 126. 126. 126. 126. 126. 126. 127. - 126. 124. 122. 120. 118. 116. 115. 114. 111. 108. 108. 111. 118. - 126. 131. 138. 142. 147. 151. 153. 155. 158. 160. 160. 159. 158. - 157. 156. 157. 157. 158. 156. 156. 156. 157. 157. 157. 157. 157. - 156. 155. 155. 155. 155. 155. 156. 156. 154. 153. 152. 152. 151. - 150. 146. 143. 140. 151. 172. 196. 210. 213. 217. 222. 225. 220. - 214. 187. 139. 106. 102. 106. 110. 112. 115. 118. 121. 123. 124. - 124. 127. 127. 128. 130. 132. 120. 91. 63. 48. 44. 40. 41. 46. 51. - 51. 49. 52. 51. 51. 50. 50. 50. 51. 51. 160. 159. 159. 159. 159. - 160. 161. 162. 161. 162. 164. 166. 166. 166. 166. 165. 165. 165. - 163. 160. 157. 156. 158. 161. 160. 161. 158. 152. 145. 134. 118. - 104. 90. 86. 86. 92. 96. 98. 100. 104. 104. 103. 102. 102. 102. 102. - 102. 103. 103. 103. 104. 106. 109. 111. 114. 115. 118. 119. 119. - 120. 121. 122. 122. 123. 124. 125. 126. 127. 127. 127. 127. 126. - 125. 125. 125. 125. 126. 127. 129. 130. 130. 129. 128. 127. 127. - 127. 128. 128. 130. 130. 130. 130. 130. 129. 129. 129. 130. 129. - 129. 128. 127. 126. 126. 125. 126. 125. 122. 121. 121. 122. 124. - 126. 127. 126. 124. 121. 120. 120. 120. 120. 128. 127. 127. 128. - 129. 130. 131. 132. 134. 133. 131. 130. 128. 127. 127. 127. 131. - 129. 128. 126. 125. 124. 124. 124. 126. 126. 126. 126. 126. 126. - 126. 126. 125. 124. 123. 121. 120. 118. 117. 116. 114. 111. 108. - 107. 111. 117. 125. 130. 137. 141. 146. 150. 152. 154. 156. 158. - 159. 158. 157. 156. 156. 156. 157. 157. 157. 157. 157. 156. 156. - 156. 156. 156. 156. 156. 156. 156. 156. 155. 156. 156. 154. 153. - 151. 151. 151. 150. 147. 144. 140. 143. 156. 181. 204. 216. 219. - 219. 224. 222. 218. 207. 171. 117. 92. 104. 108. 109. 113. 117. 120. - 123. 125. 126. 124. 130. 134. 130. 117. 92. 60. 35. 45. 43. 42. 46. - 52. 57. 57. 55. 53. 52. 51. 50. 49. 49. 49. 49. 161. 160. 159. 159. - 159. 161. 162. 163. 164. 165. 166. 167. 167. 166. 164. 163. 163. - 163. 162. 159. 157. 157. 159. 162. 160. 160. 158. 151. 144. 134. - 117. 103. 88. 84. 84. 90. 96. 98. 101. 105. 103. 102. 101. 100. 100. - 101. 103. 104. 102. 103. 104. 106. 108. 111. 113. 115. 118. 118. - 119. 119. 120. 121. 122. 122. 123. 124. 125. 126. 126. 126. 126. - 125. 124. 124. 125. 125. 126. 127. 128. 128. 131. 130. 128. 128. - 129. 130. 129. 129. 130. 130. 130. 129. 129. 129. 129. 128. 128. - 128. 127. 127. 126. 126. 126. 127. 126. 126. 125. 124. 123. 122. - 122. 121. 125. 123. 121. 119. 118. 119. 120. 121. 125. 126. 126. - 127. 128. 128. 129. 129. 134. 133. 131. 129. 128. 127. 127. 127. - 129. 129. 128. 127. 126. 125. 125. 125. 126. 126. 126. 126. 126. - 126. 126. 126. 124. 123. 122. 121. 120. 118. 117. 117. 114. 111. - 108. 107. 110. 117. 124. 129. 136. 140. 145. 149. 150. 152. 154. - 156. 157. 157. 156. 156. 156. 156. 156. 156. 157. 157. 156. 156. - 155. 154. 154. 154. 156. 156. 156. 156. 156. 155. 155. 154. 154. - 152. 150. 150. 150. 149. 147. 145. 141. 137. 143. 166. 195. 215. - 220. 218. 219. 226. 222. 218. 201. 147. 103. 102. 108. 109. 112. - 114. 117. 119. 121. 122. 118. 131. 137. 120. 88. 59. 45. 42. 43. 44. - 46. 51. 57. 60. 59. 57. 54. 53. 51. 49. 48. 47. 47. 47. 162. 161. - 160. 159. 160. 161. 163. 164. 167. 168. 168. 167. 166. 164. 162. - 160. 160. 161. 161. 160. 158. 158. 160. 162. 160. 160. 158. 151. - 144. 134. 117. 103. 87. 83. 83. 90. 95. 98. 101. 105. 103. 102. 101. - 100. 100. 101. 103. 104. 101. 101. 102. 104. 107. 110. 112. 113. - 118. 118. 119. 119. 120. 121. 122. 122. 123. 123. 124. 125. 126. - 126. 125. 125. 123. 124. 125. 126. 127. 127. 127. 128. 131. 128. - 126. 127. 129. 130. 130. 128. 130. 130. 130. 129. 129. 128. 128. - 127. 128. 128. 126. 126. 126. 126. 127. 128. 125. 125. 126. 126. - 125. 123. 120. 118. 117. 117. 118. 118. 120. 123. 125. 127. 117. - 119. 122. 125. 128. 129. 129. 129. 132. 131. 130. 128. 127. 127. - 127. 127. 127. 127. 127. 128. 128. 127. 127. 127. 126. 126. 126. - 126. 126. 126. 126. 126. 123. 123. 122. 120. 119. 118. 117. 116. - 114. 112. 108. 107. 110. 116. 123. 128. 135. 139. 144. 147. 149. - 150. 152. 154. 155. 155. 156. 156. 156. 156. 156. 156. 156. 156. - 156. 155. 154. 154. 153. 153. 155. 155. 156. 156. 156. 154. 153. - 152. 153. 151. 149. 148. 148. 148. 147. 145. 143. 137. 138. 154. - 183. 208. 218. 217. 215. 230. 224. 217. 215. 180. 126. 100. 106. - 107. 108. 111. 114. 117. 119. 120. 131. 131. 120. 94. 61. 40. 41. - 51. 41. 43. 47. 51. 55. 56. 54. 52. 53. 52. 50. 49. 47. 46. 46. 45. - 164. 162. 161. 159. 160. 162. 164. 166. 170. 169. 167. 164. 162. - 160. 158. 157. 156. 158. 160. 161. 160. 159. 160. 161. 160. 161. - 158. 152. 145. 134. 118. 104. 87. 84. 84. 90. 96. 98. 101. 105. 104. - 103. 102. 102. 102. 102. 102. 103. 100. 101. 102. 104. 106. 109. - 111. 113. 118. 119. 119. 120. 121. 122. 122. 123. 123. 124. 125. - 126. 126. 126. 125. 125. 124. 124. 126. 127. 128. 128. 128. 128. - 129. 126. 123. 124. 128. 130. 128. 126. 130. 130. 129. 129. 128. - 127. 127. 127. 130. 129. 127. 126. 126. 126. 128. 129. 120. 121. - 121. 122. 122. 122. 122. 121. 120. 120. 119. 118. 117. 116. 114. - 114. 115. 116. 119. 122. 125. 128. 129. 130. 128. 128. 127. 126. - 126. 127. 128. 128. 126. 126. 127. 128. 129. 129. 128. 128. 126. - 126. 126. 126. 126. 126. 126. 126. 124. 123. 122. 120. 119. 117. - 116. 115. 114. 112. 108. 107. 109. 115. 123. 127. 134. 138. 142. - 146. 147. 148. 150. 152. 153. 154. 155. 156. 156. 156. 155. 155. - 154. 154. 154. 154. 154. 153. 153. 153. 153. 154. 155. 155. 155. - 153. 151. 150. 151. 149. 146. 145. 146. 146. 145. 144. 143. 140. - 138. 146. 167. 194. 211. 216. 215. 230. 226. 214. 216. 202. 153. - 107. 102. 103. 105. 109. 113. 117. 121. 123. 143. 119. 88. 63. 48. - 40. 41. 44. 46. 48. 52. 55. 56. 56. 54. 52. 52. 51. 49. 48. 46. 45. - 45. 45. 165. 163. 161. 160. 160. 162. 165. 167. 170. 167. 163. 159. - 156. 154. 154. 154. 152. 156. 160. 163. 162. 161. 160. 160. 161. - 162. 159. 153. 146. 135. 119. 104. 89. 85. 85. 91. 96. 98. 101. 104. - 104. 105. 105. 104. 104. 103. 102. 101. 101. 102. 103. 105. 107. - 110. 112. 114. 119. 120. 120. 121. 122. 123. 123. 124. 124. 124. - 125. 126. 127. 127. 126. 126. 124. 125. 127. 128. 129. 129. 129. - 128. 130. 126. 123. 124. 129. 131. 130. 127. 130. 130. 129. 129. - 128. 127. 126. 126. 132. 131. 128. 127. 126. 127. 128. 129. 128. - 127. 125. 125. 128. 133. 139. 143. 144. 144. 143. 140. 136. 131. - 127. 124. 127. 125. 122. 120. 119. 121. 124. 126. 124. 124. 124. - 125. 125. 127. 128. 129. 127. 128. 129. 129. 129. 128. 127. 126. - 126. 126. 126. 126. 126. 126. 126. 126. 125. 124. 122. 120. 118. - 116. 114. 113. 115. 112. 108. 106. 109. 115. 122. 127. 134. 137. - 142. 144. 146. 147. 149. 150. 152. 153. 154. 155. 156. 155. 155. - 154. 153. 153. 153. 153. 153. 154. 154. 154. 152. 153. 154. 154. - 153. 151. 149. 147. 149. 147. 144. 143. 144. 145. 144. 143. 142. - 144. 142. 140. 152. 177. 201. 214. 218. 224. 226. 219. 216. 214. - 183. 134. 104. 105. 107. 109. 113. 118. 121. 124. 121. 91. 60. 46. - 45. 44. 42. 42. 50. 53. 56. 58. 59. 58. 56. 56. 51. 50. 48. 47. 46. - 45. 45. 45. 165. 164. 161. 160. 160. 162. 165. 167. 169. 166. 160. - 155. 151. 150. 150. 151. 150. 154. 161. 164. 164. 161. 159. 159. - 162. 163. 160. 153. 146. 136. 120. 105. 90. 86. 86. 92. 96. 98. 100. - 104. 105. 106. 106. 106. 105. 103. 101. 100. 103. 103. 104. 106. - 108. 111. 114. 115. 120. 120. 121. 122. 123. 123. 124. 124. 124. - 125. 126. 127. 127. 127. 127. 126. 124. 126. 128. 129. 130. 130. - 129. 129. 133. 129. 125. 127. 132. 134. 133. 129. 130. 130. 129. - 128. 127. 127. 126. 125. 134. 132. 129. 127. 126. 127. 128. 129. - 146. 143. 138. 137. 143. 153. 165. 172. 171. 173. 175. 177. 177. - 174. 171. 169. 144. 137. 128. 119. 114. 114. 117. 120. 122. 122. - 123. 123. 125. 126. 128. 129. 129. 130. 130. 130. 129. 127. 125. - 124. 126. 126. 126. 126. 126. 126. 126. 126. 126. 125. 123. 120. - 118. 115. 113. 112. 115. 112. 108. 106. 109. 115. 122. 126. 133. - 137. 141. 144. 145. 146. 148. 149. 151. 152. 154. 155. 156. 155. - 154. 154. 151. 152. 152. 153. 153. 154. 154. 155. 151. 152. 153. - 154. 153. 150. 148. 146. 148. 146. 143. 142. 143. 144. 143. 142. - 140. 146. 145. 138. 142. 165. 195. 212. 220. 218. 227. 226. 218. - 222. 205. 163. 110. 110. 110. 111. 114. 116. 119. 121. 82. 65. 48. - 43. 44. 43. 46. 50. 47. 50. 53. 55. 55. 54. 54. 54. 50. 49. 48. 46. - 46. 45. 46. 46. 166. 162. 158. 157. 160. 164. 168. 170. 168. 163. - 156. 151. 149. 148. 147. 146. 150. 156. 162. 164. 162. 159. 159. - 160. 165. 164. 159. 152. 146. 138. 122. 107. 93. 86. 83. 88. 94. 95. - 97. 99. 106. 105. 105. 104. 104. 103. 103. 103. 102. 103. 106. 109. - 111. 113. 114. 114. 117. 120. 122. 122. 120. 120. 122. 125. 127. - 127. 126. 126. 126. 127. 128. 129. 122. 129. 132. 130. 130. 133. - 131. 125. 128. 125. 127. 133. 132. 125. 121. 124. 134. 131. 128. - 128. 129. 128. 124. 119. 122. 131. 137. 138. 140. 146. 147. 143. - 144. 143. 149. 159. 163. 163. 167. 174. 176. 173. 173. 176. 183. - 187. 188. 187. 184. 185. 177. 159. 141. 130. 122. 117. 115. 118. - 122. 124. 122. 121. 124. 129. 127. 133. 135. 130. 128. 131. 132. - 128. 130. 129. 129. 128. 128. 127. 127. 127. 126. 124. 121. 119. - 119. 117. 115. 112. 115. 110. 108. 109. 109. 112. 120. 129. 134. - 138. 143. 145. 145. 144. 143. 143. 148. 150. 152. 154. 155. 156. - 155. 155. 150. 153. 155. 155. 152. 151. 153. 156. 155. 154. 152. - 150. 149. 148. 148. 148. 145. 144. 143. 143. 142. 142. 143. 143. - 142. 140. 142. 144. 142. 148. 175. 206. 210. 218. 221. 220. 223. - 226. 213. 195. 140. 112. 104. 111. 115. 127. 120. 89. 49. 46. 43. - 42. 44. 47. 49. 49. 53. 54. 55. 57. 57. 58. 58. 58. 46. 44. 45. 49. - 50. 47. 47. 50. 164. 161. 158. 158. 161. 165. 169. 170. 165. 162. - 155. 149. 144. 143. 143. 144. 149. 155. 162. 164. 162. 160. 160. - 161. 165. 164. 159. 152. 147. 138. 122. 106. 93. 87. 85. 90. 96. 98. - 99. 102. 105. 105. 104. 104. 103. 103. 103. 102. 103. 104. 106. 108. - 111. 113. 115. 116. 118. 120. 122. 122. 121. 121. 123. 125. 127. - 126. 126. 126. 126. 127. 128. 129. 127. 130. 130. 126. 128. 132. - 131. 127. 139. 130. 123. 122. 122. 122. 129. 137. 130. 130. 130. - 128. 128. 128. 129. 131. 136. 144. 149. 147. 146. 149. 149. 147. - 148. 150. 158. 167. 169. 166. 169. 175. 180. 178. 177. 177. 177. - 177. 176. 174. 175. 184. 190. 190. 185. 174. 156. 142. 124. 117. - 112. 115. 122. 124. 121. 117. 128. 132. 133. 131. 130. 131. 126. - 118. 128. 127. 127. 127. 126. 126. 125. 125. 125. 122. 120. 119. - 118. 117. 115. 113. 115. 111. 108. 109. 110. 112. 120. 130. 135. - 138. 143. 146. 145. 144. 143. 143. 148. 149. 151. 153. 155. 155. - 155. 154. 151. 153. 154. 153. 152. 152. 153. 154. 153. 152. 151. - 149. 148. 147. 147. 146. 144. 144. 143. 142. 141. 141. 142. 142. - 143. 140. 141. 143. 140. 143. 164. 188. 208. 215. 218. 218. 224. - 229. 219. 204. 170. 126. 108. 120. 122. 112. 88. 55. 45. 43. 41. 41. - 43. 46. 47. 47. 53. 54. 54. 54. 55. 54. 54. 54. 45. 42. 43. 46. 46. - 43. 42. 45. 161. 159. 158. 159. 163. 167. 169. 170. 162. 159. 154. - 145. 137. 135. 138. 142. 149. 155. 162. 165. 163. 161. 162. 163. - 165. 164. 159. 153. 147. 138. 121. 105. 91. 85. 83. 89. 95. 98. 100. - 102. 104. 103. 103. 103. 103. 102. 102. 102. 105. 105. 106. 107. - 110. 113. 116. 118. 119. 121. 122. 122. 122. 122. 124. 125. 126. - 126. 125. 125. 126. 126. 127. 128. 132. 131. 127. 124. 126. 131. - 131. 127. 133. 129. 127. 128. 128. 126. 128. 132. 125. 127. 128. - 125. 123. 126. 134. 141. 142. 150. 154. 150. 144. 143. 144. 144. - 149. 155. 164. 172. 171. 167. 168. 173. 180. 181. 181. 179. 175. - 171. 168. 167. 180. 183. 184. 187. 192. 195. 189. 180. 167. 151. - 129. 115. 112. 117. 123. 126. 120. 122. 122. 123. 127. 131. 128. - 122. 125. 125. 125. 125. 124. 124. 124. 124. 122. 120. 118. 118. - 118. 117. 115. 113. 115. 111. 108. 109. 110. 113. 121. 130. 135. - 139. 143. 146. 146. 144. 143. 143. 148. 149. 150. 152. 153. 154. - 154. 154. 153. 152. 151. 151. 152. 153. 152. 150. 150. 150. 149. - 148. 147. 146. 145. 144. 143. 142. 141. 141. 140. 140. 141. 141. - 144. 140. 139. 141. 138. 137. 148. 164. 199. 209. 216. 218. 224. - 230. 226. 217. 208. 153. 122. 126. 119. 92. 61. 38. 42. 42. 41. 43. - 46. 49. 49. 48. 54. 53. 53. 52. 51. 50. 49. 49. 50. 47. 47. 49. 48. - 44. 43. 46. 158. 158. 159. 162. 166. 169. 169. 168. 158. 156. 150. - 139. 130. 128. 135. 142. 148. 155. 162. 165. 164. 163. 163. 165. - 165. 164. 160. 153. 147. 138. 120. 104. 87. 81. 79. 85. 92. 95. 97. - 100. 102. 102. 102. 102. 102. 101. 101. 101. 107. 106. 106. 107. - 109. 113. 117. 119. 120. 121. 122. 122. 122. 123. 124. 125. 125. - 125. 124. 124. 125. 126. 127. 127. 133. 130. 125. 124. 128. 131. - 129. 126. 124. 124. 126. 128. 128. 126. 125. 125. 131. 130. 127. - 125. 125. 131. 141. 148. 141. 147. 151. 147. 142. 139. 142. 145. - 145. 153. 162. 166. 164. 162. 166. 171. 173. 177. 181. 180. 176. - 173. 172. 173. 184. 181. 175. 172. 178. 189. 197. 198. 197. 192. - 175. 147. 123. 114. 117. 123. 118. 119. 120. 121. 124. 129. 131. - 132. 124. 124. 124. 124. 124. 124. 124. 124. 120. 119. 117. 116. - 117. 117. 115. 113. 114. 110. 108. 109. 110. 113. 121. 131. 135. - 139. 144. 146. 146. 145. 144. 144. 147. 148. 149. 150. 152. 153. - 153. 153. 154. 151. 149. 149. 152. 152. 150. 147. 147. 147. 147. - 146. 145. 144. 143. 143. 142. 141. 140. 139. 139. 139. 140. 140. - 143. 139. 138. 140. 139. 136. 138. 144. 183. 200. 217. 222. 223. - 226. 228. 227. 223. 183. 144. 120. 94. 67. 50. 43. 43. 43. 45. 48. - 52. 54. 53. 51. 55. 54. 53. 51. 49. 48. 47. 47. 54. 50. 49. 50. 49. - 45. 44. 47. 158. 159. 162. 165. 169. 169. 167. 165. 155. 151. 143. - 130. 122. 124. 134. 144. 149. 155. 163. 166. 165. 164. 164. 165. - 165. 164. 160. 154. 148. 138. 120. 103. 86. 80. 78. 84. 91. 94. 96. - 99. 100. 100. 100. 100. 100. 101. 101. 101. 106. 106. 105. 106. 109. - 112. 116. 119. 120. 120. 120. 121. 123. 124. 124. 124. 124. 124. - 124. 124. 124. 125. 126. 126. 130. 127. 125. 127. 130. 130. 127. - 126. 127. 125. 121. 118. 121. 128. 136. 140. 141. 135. 129. 127. - 131. 139. 145. 149. 141. 144. 147. 148. 145. 144. 149. 154. 144. - 150. 155. 157. 156. 159. 165. 170. 166. 171. 176. 178. 176. 175. - 176. 178. 174. 181. 186. 185. 185. 189. 191. 190. 190. 201. 205. - 190. 164. 138. 116. 102. 119. 122. 127. 129. 127. 125. 126. 129. - 124. 124. 124. 124. 124. 124. 124. 124. 119. 117. 115. 115. 116. - 115. 113. 112. 113. 109. 107. 108. 109. 112. 121. 131. 136. 139. - 144. 147. 146. 145. 144. 144. 147. 147. 147. 148. 150. 151. 152. - 153. 154. 151. 148. 148. 150. 151. 148. 144. 145. 145. 146. 146. - 145. 144. 142. 141. 142. 141. 140. 139. 139. 139. 139. 139. 142. - 139. 139. 141. 141. 138. 136. 137. 164. 189. 215. 224. 221. 220. - 225. 231. 218. 212. 173. 111. 63. 43. 41. 45. 43. 44. 46. 50. 54. - 55. 54. 53. 56. 55. 53. 51. 49. 48. 48. 48. 51. 47. 45. 46. 45. 42. - 42. 45. 160. 161. 165. 169. 171. 169. 164. 159. 152. 144. 131. 119. - 114. 120. 134. 145. 151. 157. 164. 167. 166. 164. 164. 165. 165. - 165. 161. 155. 148. 138. 119. 102. 88. 82. 80. 85. 92. 94. 96. 99. - 98. 99. 99. 99. 99. 100. 100. 100. 104. 104. 105. 106. 109. 112. - 115. 117. 120. 119. 118. 120. 122. 123. 123. 122. 124. 123. 123. - 123. 123. 124. 125. 126. 127. 125. 126. 129. 130. 127. 127. 129. - 126. 130. 134. 136. 141. 147. 149. 148. 137. 131. 123. 123. 128. - 135. 139. 139. 138. 137. 138. 142. 144. 145. 150. 156. 146. 150. - 153. 152. 155. 161. 167. 168. 164. 167. 171. 173. 173. 174. 175. - 176. 174. 184. 191. 190. 188. 189. 190. 190. 191. 197. 200. 198. - 194. 180. 150. 121. 109. 112. 119. 126. 125. 121. 120. 122. 123. - 123. 123. 123. 124. 124. 124. 124. 119. 117. 115. 114. 114. 114. - 112. 110. 111. 107. 105. 106. 108. 111. 120. 130. 136. 140. 145. - 147. 147. 145. 145. 145. 146. 146. 146. 147. 148. 150. 151. 152. - 153. 151. 149. 148. 148. 147. 145. 144. 143. 144. 145. 146. 145. - 144. 142. 141. 142. 141. 140. 139. 139. 139. 139. 140. 141. 140. - 140. 142. 143. 141. 139. 137. 148. 174. 204. 219. 219. 217. 223. - 231. 219. 235. 193. 104. 48. 36. 38. 41. 43. 43. 45. 48. 52. 54. 53. - 52. 56. 54. 52. 50. 49. 50. 50. 51. 51. 47. 45. 47. 47. 45. 46. 50. - 162. 164. 168. 172. 172. 168. 160. 154. 147. 136. 119. 107. 106. - 117. 134. 146. 153. 159. 165. 168. 166. 164. 163. 165. 165. 165. - 161. 155. 149. 138. 118. 101. 88. 82. 79. 85. 90. 92. 94. 97. 97. - 97. 98. 98. 99. 99. 99. 100. 102. 102. 104. 106. 109. 111. 113. 114. - 119. 117. 116. 118. 121. 123. 122. 120. 123. 123. 122. 122. 123. - 124. 124. 125. 125. 124. 126. 129. 126. 123. 128. 136. 121. 133. - 146. 151. 154. 152. 144. 133. 126. 124. 121. 120. 123. 127. 131. - 133. 135. 129. 127. 133. 138. 140. 142. 147. 149. 152. 152. 152. - 157. 164. 165. 161. 168. 167. 168. 170. 173. 176. 176. 175. 184. - 186. 185. 180. 181. 187. 191. 192. 197. 196. 190. 188. 197. 203. - 190. 170. 130. 119. 111. 114. 118. 118. 119. 122. 120. 121. 121. - 121. 122. 122. 123. 123. 119. 117. 115. 114. 113. 112. 110. 107. - 109. 105. 103. 105. 107. 110. 119. 128. 136. 140. 145. 147. 147. - 146. 145. 145. 146. 145. 145. 145. 147. 149. 151. 152. 151. 151. - 151. 149. 146. 144. 143. 144. 143. 144. 145. 146. 146. 144. 142. - 141. 142. 142. 141. 140. 140. 140. 140. 140. 141. 142. 143. 142. - 143. 143. 141. 140. 140. 158. 185. 207. 217. 220. 224. 228. 227. - 236. 177. 83. 40. 40. 42. 41. 45. 45. 46. 48. 52. 54. 54. 52. 53. - 52. 50. 49. 49. 50. 52. 53. 51. 47. 46. 49. 50. 49. 52. 56. 164. - 166. 170. 173. 173. 167. 157. 150. 144. 130. 111. 99. 101. 115. 133. - 145. 154. 160. 166. 168. 166. 163. 163. 164. 165. 165. 162. 156. - 149. 138. 118. 101. 86. 80. 77. 82. 88. 89. 91. 93. 96. 97. 97. 98. - 98. 99. 99. 99. 100. 101. 104. 106. 109. 111. 112. 112. 119. 117. - 115. 117. 121. 122. 121. 119. 123. 122. 122. 122. 122. 123. 124. - 125. 125. 124. 126. 127. 123. 120. 129. 142. 127. 134. 137. 135. - 133. 133. 128. 119. 123. 125. 127. 126. 125. 126. 132. 137. 138. - 128. 124. 130. 137. 137. 139. 142. 150. 152. 152. 153. 159. 165. - 162. 153. 171. 169. 167. 170. 176. 180. 180. 179. 185. 185. 184. - 183. 186. 191. 188. 181. 184. 192. 195. 191. 195. 204. 202. 193. - 181. 151. 120. 109. 112. 115. 119. 122. 118. 119. 119. 120. 120. - 121. 121. 121. 120. 117. 115. 113. 113. 111. 108. 106. 108. 104. - 102. 104. 106. 109. 118. 128. 136. 140. 145. 147. 147. 146. 145. - 145. 145. 145. 144. 145. 146. 148. 150. 152. 150. 152. 152. 149. - 144. 141. 142. 144. 142. 144. 145. 147. 146. 145. 142. 141. 143. - 142. 141. 140. 140. 140. 141. 141. 141. 143. 144. 143. 142. 142. - 142. 141. 137. 148. 170. 196. 215. 224. 226. 227. 229. 218. 142. 52. - 29. 41. 45. 44. 50. 49. 49. 51. 54. 56. 56. 55. 50. 49. 48. 47. 48. - 50. 53. 55. 46. 42. 42. 45. 47. 47. 50. 55. 168. 173. 176. 173. 169. - 164. 155. 145. 131. 121. 101. 85. 92. 117. 136. 141. 155. 162. 167. - 166. 165. 166. 164. 160. 165. 165. 162. 156. 150. 139. 121. 104. 85. - 78. 75. 79. 86. 89. 93. 96. 93. 93. 95. 96. 98. 99. 100. 101. 103. - 103. 103. 105. 106. 108. 110. 111. 119. 116. 114. 116. 119. 121. - 121. 119. 124. 124. 123. 122. 122. 122. 123. 123. 123. 132. 118. - 126. 115. 134. 142. 169. 110. 118. 127. 129. 126. 121. 120. 121. - 123. 123. 122. 122. 124. 127. 132. 135. 127. 128. 129. 132. 135. - 138. 141. 142. 149. 146. 145. 149. 155. 158. 156. 152. 164. 165. - 166. 168. 171. 177. 184. 189. 184. 188. 187. 183. 184. 190. 192. - 189. 188. 189. 192. 194. 195. 195. 195. 195. 198. 189. 160. 122. - 107. 114. 114. 104. 111. 117. 129. 127. 114. 114. 121. 117. 119. - 118. 117. 115. 113. 112. 110. 110. 109. 104. 101. 102. 105. 109. - 120. 131. 136. 140. 146. 149. 149. 147. 146. 146. 144. 144. 145. - 146. 146. 146. 145. 145. 149. 152. 154. 152. 147. 142. 141. 141. - 140. 140. 141. 143. 146. 146. 145. 143. 144. 144. 143. 141. 141. - 141. 141. 141. 141. 142. 143. 144. 145. 144. 143. 142. 143. 141. - 154. 185. 210. 220. 223. 227. 231. 166. 82. 32. 33. 51. 50. 36. 45. - 50. 54. 55. 54. 53. 56. 58. 53. 46. 39. 40. 47. 52. 51. 47. 42. 43. - 43. 44. 50. 55. 50. 41. 167. 172. 173. 169. 165. 160. 150. 140. 126. - 112. 91. 81. 91. 115. 134. 143. 154. 162. 167. 166. 165. 166. 164. - 161. 165. 165. 160. 154. 148. 138. 120. 104. 83. 77. 74. 80. 86. 89. - 92. 95. 95. 95. 96. 97. 98. 99. 100. 101. 102. 102. 103. 104. 105. - 107. 109. 110. 118. 116. 114. 115. 118. 120. 120. 119. 123. 123. - 122. 122. 122. 123. 124. 124. 127. 121. 134. 116. 122. 126. 153. - 143. 99. 107. 117. 122. 121. 119. 118. 119. 124. 122. 121. 122. 125. - 130. 133. 135. 125. 127. 130. 134. 136. 137. 137. 136. 142. 141. - 141. 145. 151. 156. 156. 155. 170. 172. 174. 176. 178. 180. 185. - 188. 181. 185. 186. 183. 184. 189. 191. 188. 188. 190. 192. 194. - 196. 196. 196. 196. 193. 195. 194. 178. 143. 110. 102. 111. 118. - 107. 105. 107. 109. 118. 122. 112. 117. 116. 115. 114. 112. 110. - 109. 108. 109. 104. 101. 102. 104. 109. 119. 130. 138. 143. 148. - 152. 152. 150. 149. 149. 144. 145. 145. 145. 145. 144. 144. 144. - 144. 147. 151. 151. 148. 144. 142. 142. 140. 140. 141. 144. 146. - 146. 145. 143. 144. 143. 142. 141. 141. 141. 142. 142. 141. 142. - 143. 144. 145. 144. 143. 143. 146. 143. 142. 158. 192. 223. 227. - 215. 173. 104. 48. 42. 47. 37. 35. 46. 45. 48. 52. 54. 54. 54. 55. - 55. 49. 46. 45. 46. 50. 51. 48. 44. 48. 46. 46. 51. 55. 52. 42. 34. - 169. 171. 170. 165. 160. 154. 144. 133. 117. 97. 78. 77. 93. 113. - 132. 144. 154. 162. 167. 166. 166. 167. 165. 161. 166. 164. 159. - 151. 145. 136. 120. 104. 81. 75. 74. 80. 87. 89. 91. 93. 98. 98. 98. - 99. 99. 100. 100. 100. 101. 101. 102. 103. 105. 107. 108. 110. 116. - 114. 113. 114. 116. 118. 118. 118. 122. 121. 121. 121. 122. 123. - 124. 125. 126. 117. 134. 117. 121. 127. 146. 115. 103. 109. 117. - 122. 122. 120. 121. 122. 125. 122. 120. 122. 127. 132. 134. 134. - 125. 128. 132. 135. 136. 135. 132. 130. 136. 137. 139. 143. 148. - 154. 159. 161. 169. 172. 175. 177. 177. 177. 178. 180. 178. 182. - 184. 184. 186. 189. 190. 188. 188. 190. 193. 195. 197. 198. 198. - 197. 195. 194. 199. 205. 191. 155. 118. 98. 111. 106. 110. 113. 106. - 109. 118. 117. 115. 115. 113. 112. 110. 109. 108. 107. 110. 105. - 102. 102. 104. 108. 118. 128. 139. 143. 149. 152. 153. 151. 150. - 150. 146. 145. 144. 143. 142. 141. 141. 142. 137. 142. 147. 150. - 149. 146. 144. 143. 141. 141. 142. 144. 146. 147. 145. 142. 143. - 142. 142. 141. 142. 142. 143. 144. 142. 142. 143. 144. 145. 145. - 145. 144. 150. 149. 140. 144. 181. 219. 209. 173. 96. 51. 29. 47. - 54. 34. 31. 50. 47. 47. 49. 52. 54. 54. 52. 50. 46. 48. 51. 53. 53. - 49. 44. 41. 46. 46. 52. 61. 56. 40. 27. 25. 172. 173. 169. 162. 156. - 150. 137. 126. 104. 84. 70. 79. 98. 114. 130. 143. 154. 161. 167. - 167. 166. 167. 166. 162. 166. 163. 157. 149. 143. 135. 119. 104. 79. - 74. 74. 81. 88. 90. 91. 93. 100. 100. 100. 100. 100. 100. 100. 100. - 100. 101. 101. 102. 104. 106. 108. 109. 114. 114. 113. 114. 115. - 116. 117. 118. 120. 120. 120. 121. 122. 123. 125. 126. 120. 126. - 116. 129. 123. 137. 116. 108. 116. 118. 120. 120. 119. 119. 121. - 123. 128. 124. 121. 123. 128. 132. 132. 131. 129. 131. 133. 135. - 135. 134. 131. 129. 136. 138. 141. 144. 147. 153. 160. 165. 165. - 168. 171. 173. 173. 173. 175. 176. 178. 181. 184. 186. 189. 191. - 191. 190. 189. 191. 193. 196. 198. 198. 198. 198. 194. 196. 194. - 198. 212. 208. 164. 113. 98. 93. 103. 112. 105. 104. 111. 114. 114. - 113. 112. 111. 110. 109. 108. 107. 111. 106. 102. 102. 103. 107. - 117. 127. 137. 142. 148. 151. 152. 150. 149. 149. 148. 146. 144. - 141. 139. 137. 137. 137. 134. 138. 144. 149. 150. 148. 145. 143. - 142. 142. 142. 144. 146. 147. 145. 142. 142. 142. 142. 142. 142. - 143. 144. 145. 142. 143. 144. 145. 145. 146. 146. 146. 147. 151. - 149. 153. 175. 187. 152. 102. 46. 44. 42. 44. 46. 46. 46. 47. 51. - 49. 48. 50. 53. 52. 48. 43. 46. 51. 56. 56. 52. 47. 44. 43. 44. 50. - 65. 71. 53. 28. 26. 39. 175. 174. 169. 161. 154. 145. 130. 116. 93. - 77. 71. 84. 103. 117. 130. 141. 154. 161. 167. 167. 167. 168. 167. - 163. 165. 163. 157. 149. 143. 134. 119. 104. 79. 74. 74. 81. 88. 91. - 92. 94. 101. 101. 101. 101. 100. 100. 100. 100. 100. 101. 101. 102. - 104. 106. 108. 109. 113. 113. 114. 114. 114. 115. 117. 118. 120. - 120. 120. 120. 121. 123. 124. 125. 119. 132. 110. 132. 146. 136. 96. - 116. 118. 117. 114. 112. 110. 112. 116. 119. 129. 126. 124. 124. - 127. 129. 129. 127. 134. 134. 134. 134. 134. 134. 133. 133. 138. - 139. 141. 143. 145. 150. 156. 160. 164. 166. 168. 170. 172. 175. - 179. 182. 181. 182. 185. 189. 191. 191. 192. 192. 190. 192. 194. - 196. 197. 198. 197. 197. 189. 201. 204. 197. 199. 205. 195. 175. - 123. 93. 81. 91. 98. 103. 106. 103. 113. 112. 111. 110. 109. 108. - 107. 107. 111. 105. 101. 102. 103. 106. 116. 126. 138. 142. 148. - 152. 153. 152. 151. 151. 150. 148. 144. 140. 136. 133. 131. 129. - 130. 134. 140. 147. 150. 149. 146. 143. 143. 143. 143. 145. 147. - 147. 144. 142. 142. 142. 142. 142. 143. 144. 145. 146. 143. 144. - 144. 145. 146. 147. 148. 148. 144. 148. 156. 162. 159. 134. 86. 45. - 35. 51. 54. 40. 38. 51. 56. 49. 55. 52. 49. 49. 50. 49. 44. 40. 50. - 53. 56. 54. 49. 46. 47. 50. 54. 62. 72. 66. 41. 26. 50. 86. 173. - 172. 166. 158. 150. 139. 120. 104. 86. 78. 77. 87. 104. 119. 132. - 140. 154. 161. 167. 167. 167. 169. 167. 164. 164. 163. 157. 150. - 144. 135. 119. 103. 81. 75. 74. 81. 88. 91. 94. 96. 100. 100. 100. - 100. 100. 100. 100. 100. 101. 101. 102. 103. 105. 107. 108. 110. - 113. 114. 115. 114. 114. 114. 117. 119. 121. 120. 120. 120. 121. - 122. 123. 124. 127. 126. 124. 127. 167. 122. 101. 121. 113. 112. - 109. 108. 109. 113. 117. 120. 126. 126. 125. 125. 125. 126. 127. - 127. 134. 134. 133. 133. 134. 134. 135. 136. 138. 137. 138. 140. - 142. 146. 149. 150. 158. 160. 163. 166. 169. 174. 180. 184. 185. - 183. 185. 190. 192. 191. 191. 194. 192. 193. 195. 196. 196. 196. - 195. 194. 197. 195. 196. 196. 190. 186. 196. 213. 187. 152. 129. - 117. 97. 87. 98. 110. 110. 110. 109. 108. 107. 106. 106. 105. 109. - 104. 101. 101. 102. 106. 117. 127. 141. 145. 152. 156. 156. 156. - 155. 155. 151. 150. 146. 141. 135. 129. 124. 121. 124. 127. 133. - 141. 147. 149. 147. 145. 144. 143. 144. 145. 147. 147. 144. 142. - 144. 143. 143. 143. 143. 144. 144. 145. 144. 144. 144. 145. 146. - 147. 149. 150. 151. 153. 160. 158. 133. 89. 53. 36. 42. 46. 46. 41. - 39. 45. 52. 57. 56. 53. 50. 48. 47. 46. 45. 43. 54. 54. 53. 50. 47. - 48. 52. 57. 66. 65. 59. 44. 28. 39. 86. 134. 168. 166. 160. 152. - 144. 130. 109. 90. 83. 83. 83. 86. 98. 118. 134. 140. 154. 161. 167. - 167. 168. 169. 168. 165. 164. 163. 159. 152. 146. 136. 119. 102. 83. - 77. 75. 81. 88. 92. 96. 99. 99. 99. 99. 99. 100. 100. 100. 100. 102. - 102. 103. 104. 105. 107. 109. 110. 113. 115. 116. 116. 114. 114. - 117. 120. 122. 121. 121. 120. 120. 121. 122. 122. 131. 116. 133. - 137. 148. 116. 114. 112. 109. 109. 110. 113. 116. 118. 120. 120. - 119. 123. 126. 126. 123. 123. 127. 131. 129. 130. 132. 134. 135. - 136. 135. 135. 138. 136. 136. 139. 144. 147. 146. 145. 154. 158. - 163. 168. 172. 176. 180. 183. 187. 184. 184. 189. 190. 188. 189. - 194. 193. 194. 195. 195. 195. 194. 192. 191. 196. 188. 186. 193. - 198. 199. 204. 212. 224. 213. 209. 186. 128. 84. 88. 109. 106. 106. - 105. 105. 104. 103. 103. 102. 108. 103. 100. 100. 102. 107. 117. - 128. 141. 146. 152. 156. 157. 157. 156. 156. 153. 151. 148. 142. - 135. 126. 118. 113. 114. 117. 123. 133. 142. 148. 149. 148. 145. - 144. 144. 146. 147. 147. 144. 142. 145. 145. 144. 143. 143. 143. - 144. 144. 145. 145. 144. 145. 146. 148. 150. 151. 156. 159. 158. - 140. 101. 61. 45. 47. 46. 42. 41. 42. 44. 46. 50. 55. 53. 52. 49. - 46. 44. 45. 49. 52. 55. 53. 50. 47. 47. 51. 57. 61. 72. 61. 44. 32. - 39. 74. 123. 160. 163. 161. 156. 148. 139. 124. 101. 81. 83. 88. 86. - 83. 93. 116. 135. 141. 154. 161. 167. 167. 168. 169. 168. 165. 163. - 163. 160. 154. 148. 137. 119. 102. 84. 78. 75. 81. 88. 93. 97. 101. - 98. 98. 98. 99. 99. 100. 100. 100. 103. 103. 103. 105. 106. 108. - 110. 111. 113. 115. 117. 116. 114. 115. 118. 121. 122. 122. 121. - 120. 120. 120. 121. 121. 130. 112. 128. 156. 111. 120. 120. 100. - 104. 106. 110. 115. 119. 119. 116. 114. 113. 120. 125. 125. 122. - 122. 128. 134. 123. 126. 131. 135. 137. 136. 135. 133. 140. 137. - 136. 140. 147. 151. 148. 144. 157. 163. 171. 177. 181. 183. 185. - 186. 188. 183. 183. 187. 188. 185. 188. 194. 194. 194. 195. 195. - 194. 192. 190. 189. 178. 195. 204. 201. 207. 222. 224. 213. 219. - 219. 234. 228. 170. 106. 83. 86. 103. 103. 103. 102. 101. 101. 100. - 100. 107. 102. 99. 100. 102. 107. 118. 129. 139. 144. 150. 155. 156. - 155. 155. 155. 153. 152. 149. 143. 134. 124. 114. 108. 106. 109. - 116. 127. 139. 147. 150. 150. 145. 144. 145. 146. 147. 147. 144. - 142. 146. 146. 145. 144. 143. 143. 143. 143. 145. 145. 144. 145. - 146. 148. 151. 152. 151. 157. 151. 120. 75. 44. 40. 48. 43. 47. 46. - 42. 47. 57. 55. 45. 49. 50. 49. 45. 43. 46. 52. 58. 54. 51. 48. 47. - 49. 54. 59. 63. 77. 61. 41. 39. 67. 114. 152. 170. 158. 159. 156. - 145. 127. 106. 90. 81. 80. 80. 82. 88. 101. 119. 135. 145. 154. 158. - 164. 168. 168. 167. 166. 166. 161. 162. 159. 152. 144. 133. 116. - 101. 79. 74. 72. 79. 87. 90. 93. 97. 98. 98. 99. 99. 99. 99. 99. 99. - 101. 101. 102. 103. 105. 108. 110. 111. 112. 112. 113. 114. 116. - 118. 121. 122. 118. 121. 124. 123. 120. 119. 120. 121. 124. 130. - 133. 127. 115. 107. 108. 112. 109. 111. 114. 115. 115. 116. 117. - 119. 128. 126. 122. 120. 120. 123. 127. 130. 123. 127. 130. 132. - 133. 133. 134. 135. 128. 134. 140. 142. 141. 142. 147. 152. 156. - 158. 167. 174. 177. 185. 187. 179. 180. 184. 187. 187. 185. 185. - 189. 193. 197. 193. 188. 185. 185. 187. 192. 195. 210. 209. 209. - 210. 211. 212. 214. 214. 218. 216. 221. 239. 219. 139. 81. 87. 84. - 104. 105. 100. 105. 97. 93. 109. 100. 100. 100. 99. 101. 108. 120. - 129. 138. 143. 150. 154. 155. 154. 153. 153. 151. 151. 149. 144. - 138. 128. 109. 92. 94. 92. 100. 118. 130. 135. 142. 151. 147. 145. - 142. 143. 146. 147. 146. 144. 143. 143. 143. 144. 144. 145. 145. - 145. 144. 144. 146. 149. 148. 145. 146. 150. 159. 154. 125. 81. 49. - 43. 47. 47. 42. 44. 47. 49. 51. 52. 52. 52. 49. 53. 50. 41. 41. 52. - 58. 56. 40. 49. 52. 45. 44. 56. 72. 80. 79. 50. 37. 65. 111. 144. - 160. 166. 157. 156. 150. 136. 117. 99. 86. 81. 83. 82. 83. 89. 101. - 118. 135. 145. 153. 158. 164. 168. 168. 167. 166. 166. 163. 163. - 159. 151. 143. 132. 116. 102. 82. 76. 74. 81. 88. 91. 94. 97. 98. - 98. 99. 99. 100. 100. 101. 101. 101. 101. 102. 103. 105. 108. 110. - 111. 114. 114. 114. 115. 116. 117. 119. 120. 119. 122. 123. 123. - 121. 120. 121. 123. 127. 128. 127. 119. 110. 106. 109. 114. 112. - 115. 117. 119. 119. 119. 121. 122. 118. 119. 121. 122. 122. 122. - 122. 121. 123. 126. 130. 131. 131. 131. 132. 133. 134. 137. 140. - 140. 138. 139. 145. 150. 151. 167. 165. 165. 185. 188. 181. 188. - 191. 187. 182. 183. 187. 191. 192. 192. 183. 181. 179. 181. 187. - 198. 209. 216. 212. 211. 210. 210. 210. 210. 210. 211. 208. 219. - 220. 222. 223. 192. 125. 71. 87. 98. 97. 92. 99. 104. 101. 100. 99. - 99. 98. 97. 99. 106. 118. 127. 138. 143. 150. 154. 155. 154. 153. - 153. 153. 153. 150. 145. 138. 127. 108. 91. 81. 80. 90. 111. 128. - 135. 140. 148. 149. 146. 143. 143. 145. 147. 146. 144. 143. 143. - 143. 144. 144. 145. 145. 145. 145. 145. 146. 148. 147. 147. 150. - 155. 157. 133. 92. 54. 36. 35. 37. 36. 45. 46. 49. 51. 52. 53. 53. - 52. 51. 49. 46. 44. 48. 54. 55. 51. 43. 48. 49. 48. 52. 63. 71. 73. - 63. 56. 66. 99. 133. 149. 155. 159. 156. 152. 141. 123. 102. 88. 82. - 82. 86. 85. 85. 90. 102. 118. 134. 144. 153. 158. 164. 167. 168. - 167. 166. 166. 164. 164. 158. 149. 141. 132. 117. 103. 84. 78. 76. - 82. 89. 92. 94. 97. 98. 98. 99. 100. 101. 102. 103. 103. 101. 101. - 102. 103. 105. 108. 110. 111. 116. 116. 115. 115. 115. 116. 117. - 118. 120. 122. 123. 122. 121. 122. 124. 126. 128. 125. 118. 110. - 105. 105. 110. 115. 114. 116. 119. 120. 121. 121. 123. 124. 116. - 117. 118. 119. 120. 121. 121. 121. 129. 132. 135. 136. 136. 135. - 135. 136. 135. 138. 139. 139. 138. 140. 146. 151. 163. 151. 167. - 177. 167. 182. 196. 177. 183. 186. 191. 194. 192. 186. 179. 174. - 171. 178. 190. 201. 209. 212. 211. 210. 211. 210. 209. 209. 208. - 209. 209. 210. 209. 219. 221. 215. 227. 234. 179. 98. 83. 86. 92. - 93. 93. 103. 105. 93. 97. 98. 97. 96. 97. 104. 116. 124. 138. 143. - 150. 154. 155. 154. 153. 153. 155. 155. 152. 146. 139. 127. 107. 90. - 67. 64. 74. 99. 122. 132. 137. 143. 150. 148. 145. 144. 145. 146. - 146. 145. 143. 143. 143. 144. 144. 145. 145. 145. 143. 144. 145. - 144. 145. 149. 154. 157. 154. 113. 65. 41. 39. 43. 45. 44. 48. 49. - 51. 53. 54. 54. 53. 53. 51. 44. 43. 49. 55. 54. 49. 46. 48. 50. 51. - 55. 64. 72. 71. 66. 59. 73. 103. 135. 150. 150. 150. 155. 153. 145. - 130. 109. 90. 80. 81. 85. 89. 87. 87. 90. 101. 117. 133. 144. 153. - 157. 163. 167. 168. 166. 166. 166. 166. 164. 158. 148. 140. 131. - 117. 104. 85. 79. 77. 82. 89. 91. 93. 96. 97. 98. 99. 100. 102. 103. - 104. 105. 101. 101. 102. 103. 105. 108. 110. 111. 115. 115. 115. - 115. 116. 117. 118. 119. 121. 122. 122. 122. 122. 124. 126. 127. - 125. 119. 110. 104. 103. 107. 111. 114. 113. 115. 118. 119. 119. - 119. 121. 122. 122. 119. 116. 114. 116. 121. 127. 130. 132. 135. - 138. 139. 138. 137. 137. 138. 133. 136. 139. 141. 142. 145. 150. - 153. 151. 173. 161. 155. 181. 181. 168. 184. 177. 187. 194. 190. - 177. 168. 168. 173. 190. 198. 209. 217. 218. 212. 202. 195. 207. - 207. 207. 207. 207. 208. 209. 210. 212. 208. 216. 219. 219. 229. - 211. 163. 91. 78. 87. 98. 91. 94. 101. 93. 97. 97. 96. 95. 96. 104. - 115. 124. 138. 143. 150. 154. 155. 154. 153. 153. 154. 155. 152. - 146. 140. 129. 110. 92. 61. 53. 59. 84. 111. 125. 133. 138. 150. - 148. 146. 145. 145. 145. 145. 146. 143. 143. 143. 144. 144. 145. - 145. 145. 140. 143. 143. 141. 145. 153. 155. 152. 115. 77. 42. 34. - 39. 40. 41. 45. 52. 53. 54. 55. 55. 54. 53. 52. 48. 42. 45. 56. 59. - 51. 44. 45. 51. 54. 59. 65. 72. 75. 72. 67. 79. 100. 130. 151. 151. - 144. 145. 153. 147. 136. 118. 98. 84. 80. 84. 89. 91. 89. 87. 90. - 100. 116. 133. 143. 152. 157. 163. 167. 167. 166. 165. 165. 166. - 165. 158. 149. 140. 131. 116. 103. 84. 78. 76. 81. 88. 90. 92. 95. - 97. 98. 99. 100. 102. 103. 104. 105. 101. 101. 102. 103. 105. 108. - 110. 111. 112. 113. 113. 114. 116. 118. 120. 121. 121. 121. 121. - 122. 123. 125. 126. 126. 117. 112. 107. 105. 107. 109. 111. 111. - 114. 116. 119. 119. 118. 118. 119. 120. 119. 118. 116. 116. 118. - 123. 128. 131. 129. 132. 135. 135. 135. 134. 134. 134. 135. 138. - 142. 144. 146. 147. 149. 150. 162. 148. 165. 176. 161. 176. 192. - 169. 187. 182. 173. 162. 159. 168. 186. 200. 218. 216. 211. 207. - 204. 203. 203. 203. 207. 206. 206. 205. 205. 206. 207. 207. 207. - 200. 211. 218. 211. 219. 223. 207. 137. 88. 72. 87. 89. 89. 96. 95. - 96. 96. 96. 95. 97. 104. 116. 125. 138. 143. 150. 154. 155. 154. - 153. 153. 152. 153. 151. 146. 141. 131. 113. 96. 64. 51. 48. 69. 96. - 114. 126. 134. 147. 147. 147. 146. 145. 145. 145. 145. 143. 143. - 143. 144. 144. 145. 145. 145. 140. 145. 146. 143. 150. 158. 152. - 137. 78. 57. 45. 49. 49. 40. 41. 51. 54. 54. 55. 55. 54. 53. 51. 49. - 45. 44. 51. 60. 57. 46. 42. 48. 50. 56. 64. 71. 73. 72. 74. 77. 107. - 123. 144. 153. 147. 139. 140. 147. 138. 125. 106. 90. 83. 84. 88. - 91. 91. 88. 86. 89. 99. 115. 132. 143. 152. 157. 163. 166. 167. 166. - 165. 165. 166. 165. 159. 150. 141. 131. 115. 101. 83. 77. 75. 81. - 88. 91. 93. 96. 98. 98. 99. 100. 101. 102. 103. 103. 101. 101. 102. - 103. 105. 108. 110. 111. 112. 112. 113. 114. 116. 119. 121. 122. - 121. 120. 121. 122. 125. 125. 124. 122. 109. 108. 107. 108. 110. - 112. 112. 111. 117. 119. 121. 120. 118. 117. 117. 118. 109. 112. - 118. 123. 126. 127. 125. 124. 130. 133. 136. 138. 137. 136. 137. - 138. 143. 144. 144. 145. 145. 145. 144. 144. 145. 167. 161. 160. - 184. 183. 170. 181. 178. 167. 158. 162. 179. 196. 206. 209. 209. - 208. 206. 205. 204. 204. 205. 206. 207. 206. 205. 204. 204. 203. - 204. 204. 205. 208. 214. 214. 216. 230. 232. 217. 199. 125. 70. 70. - 84. 90. 92. 93. 93. 94. 94. 94. 96. 105. 117. 127. 138. 143. 150. - 154. 155. 154. 153. 153. 151. 152. 151. 147. 142. 133. 115. 98. 68. - 51. 43. 58. 82. 102. 118. 130. 142. 144. 147. 148. 146. 144. 144. - 144. 143. 143. 143. 144. 144. 145. 145. 145. 143. 150. 151. 148. - 156. 160. 138. 108. 59. 55. 58. 64. 58. 46. 46. 56. 55. 55. 55. 54. - 53. 50. 48. 46. 45. 50. 56. 58. 52. 44. 45. 50. 47. 54. 65. 71. 71. - 73. 84. 97. 126. 137. 150. 153. 147. 140. 140. 143. 128. 113. 94. - 84. 85. 89. 92. 91. 90. 87. 85. 87. 98. 114. 132. 143. 152. 156. - 162. 166. 166. 165. 165. 164. 165. 165. 160. 151. 142. 131. 114. - 100. 83. 77. 76. 82. 89. 93. 95. 98. 98. 98. 99. 99. 100. 100. 101. - 101. 101. 101. 102. 103. 105. 108. 110. 111. 113. 113. 114. 114. - 116. 118. 119. 120. 120. 120. 120. 123. 126. 125. 121. 117. 105. - 107. 109. 111. 112. 113. 114. 114. 118. 119. 120. 119. 116. 113. - 113. 113. 107. 112. 120. 127. 131. 130. 128. 125. 134. 137. 140. - 142. 142. 142. 143. 144. 148. 146. 142. 140. 139. 141. 142. 143. - 151. 148. 165. 175. 169. 176. 179. 160. 157. 163. 175. 192. 207. - 212. 206. 199. 194. 200. 207. 212. 213. 208. 202. 197. 201. 201. - 201. 202. 203. 205. 207. 208. 209. 217. 214. 212. 222. 228. 225. - 224. 228. 174. 106. 74. 78. 83. 83. 89. 89. 90. 91. 92. 95. 104. - 117. 127. 138. 143. 150. 154. 155. 154. 153. 153. 153. 154. 152. - 148. 143. 133. 114. 98. 67. 49. 40. 51. 72. 92. 110. 125. 136. 141. - 146. 149. 147. 144. 143. 143. 143. 143. 143. 144. 144. 145. 145. - 145. 144. 152. 152. 149. 156. 154. 115. 69. 41. 41. 45. 49. 46. 40. - 42. 49. 54. 54. 54. 53. 51. 47. 44. 42. 50. 55. 57. 52. 48. 49. 50. - 50. 51. 54. 63. 71. 75. 84. 103. 122. 137. 145. 150. 149. 144. 143. - 148. 153. 120. 105. 87. 81. 86. 93. 93. 91. 89. 86. 84. 86. 97. 114. - 132. 143. 152. 156. 162. 166. 166. 165. 164. 164. 164. 164. 160. - 152. 143. 131. 114. 98. 83. 78. 77. 83. 91. 95. 97. 101. 98. 98. 99. - 99. 99. 99. 99. 99. 101. 101. 102. 103. 105. 108. 110. 111. 116. - 115. 115. 115. 115. 116. 117. 118. 119. 119. 120. 124. 126. 125. - 119. 114. 104. 107. 110. 111. 112. 113. 115. 118. 115. 117. 117. - 115. 112. 109. 108. 108. 115. 118. 122. 126. 130. 133. 134. 134. - 131. 135. 138. 140. 141. 141. 142. 143. 149. 143. 137. 133. 134. - 139. 144. 147. 146. 158. 164. 166. 173. 169. 157. 150. 153. 175. - 200. 210. 206. 199. 198. 201. 207. 208. 208. 208. 206. 203. 200. - 199. 192. 193. 196. 200. 204. 209. 213. 216. 211. 213. 206. 209. - 217. 204. 205. 234. 225. 209. 151. 92. 74. 71. 72. 86. 86. 87. 88. - 89. 94. 103. 117. 127. 138. 143. 150. 154. 155. 154. 153. 153. 156. - 156. 153. 148. 142. 132. 113. 96. 64. 48. 38. 49. 68. 86. 105. 121. - 132. 138. 146. 149. 148. 144. 143. 142. 143. 143. 143. 144. 144. - 145. 145. 145. 143. 151. 150. 147. 153. 145. 96. 40. 44. 41. 39. 42. - 46. 50. 54. 58. 54. 54. 53. 52. 49. 46. 42. 40. 55. 59. 55. 46. 46. - 53. 54. 48. 56. 57. 62. 72. 82. 96. 120. 142. 145. 149. 149. 142. - 138. 145. 158. 169. 98. 90. 81. 82. 89. 94. 91. 86. 92. 89. 87. 89. - 98. 114. 130. 140. 148. 156. 162. 163. 165. 168. 168. 166. 165. 165. - 159. 150. 142. 133. 118. 104. 86. 79. 77. 84. 92. 95. 95. 96. 102. - 100. 98. 97. 96. 98. 100. 101. 99. 99. 100. 101. 103. 106. 108. 109. - 112. 116. 119. 120. 117. 116. 117. 118. 118. 126. 125. 123. 128. - 124. 117. 118. 118. 114. 111. 109. 110. 113. 114. 115. 118. 116. - 114. 114. 116. 117. 117. 116. 124. 122. 123. 128. 134. 136. 134. - 130. 134. 134. 134. 135. 138. 141. 144. 145. 145. 141. 137. 137. - 141. 145. 147. 147. 160. 148. 159. 179. 165. 133. 137. 169. 192. - 199. 204. 204. 204. 207. 207. 204. 204. 204. 203. 201. 199. 198. - 197. 196. 205. 205. 204. 203. 202. 202. 201. 201. 200. 201. 204. - 207. 209. 211. 211. 211. 215. 222. 209. 167. 117. 85. 75. 74. 81. - 73. 94. 92. 85. 106. 119. 127. 138. 145. 153. 156. 156. 154. 153. - 154. 151. 154. 155. 152. 146. 134. 115. 98. 72. 48. 40. 50. 61. 78. - 98. 105. 124. 131. 141. 147. 148. 146. 143. 141. 140. 135. 136. 143. - 147. 144. 144. 148. 148. 146. 154. 162. 145. 103. 62. 43. 39. 38. - 39. 44. 51. 56. 58. 57. 55. 52. 48. 44. 43. 45. 49. 53. 62. 49. 45. - 54. 55. 48. 48. 57. 64. 64. 60. 72. 102. 124. 135. 145. 148. 146. - 144. 143. 145. 152. 160. 166. 95. 89. 84. 84. 90. 93. 91. 88. 92. - 89. 86. 88. 98. 113. 129. 140. 148. 156. 162. 163. 164. 168. 168. - 166. 164. 164. 159. 150. 142. 132. 117. 104. 86. 78. 75. 82. 90. 93. - 94. 96. 100. 100. 99. 98. 98. 98. 99. 100. 100. 100. 101. 102. 104. - 107. 109. 110. 112. 116. 119. 120. 118. 117. 118. 119. 123. 116. - 119. 130. 131. 118. 111. 116. 115. 114. 112. 111. 111. 112. 114. - 115. 118. 116. 115. 115. 117. 119. 119. 118. 122. 124. 126. 127. - 128. 129. 130. 132. 137. 137. 137. 137. 138. 139. 141. 142. 141. - 138. 134. 135. 139. 142. 144. 144. 148. 165. 170. 152. 137. 147. - 171. 188. 192. 198. 200. 199. 200. 204. 207. 206. 200. 200. 200. - 200. 199. 199. 199. 199. 201. 201. 201. 201. 202. 202. 202. 202. - 204. 205. 208. 210. 212. 212. 212. 212. 223. 215. 220. 228. 200. - 140. 88. 68. 72. 76. 86. 78. 88. 110. 111. 121. 138. 144. 152. 156. - 155. 154. 153. 154. 151. 154. 155. 152. 145. 134. 115. 98. 69. 49. - 41. 46. 47. 61. 84. 96. 120. 127. 138. 144. 146. 145. 144. 144. 150. - 143. 140. 143. 145. 142. 142. 145. 149. 149. 156. 155. 125. 77. 46. - 40. 39. 39. 41. 46. 52. 56. 57. 56. 56. 55. 51. 45. 42. 45. 53. 59. - 56. 47. 45. 51. 55. 53. 54. 59. 60. 64. 65. 82. 115. 136. 141. 148. - 150. 147. 145. 147. 154. 161. 164. 165. 89. 88. 87. 88. 90. 92. 91. - 90. 92. 89. 86. 88. 98. 113. 129. 140. 149. 156. 162. 163. 164. 167. - 167. 165. 163. 163. 158. 149. 141. 132. 116. 102. 86. 78. 73. 79. - 87. 91. 93. 95. 98. 99. 99. 100. 100. 99. 99. 99. 101. 101. 102. - 103. 105. 108. 110. 111. 112. 115. 118. 120. 119. 118. 119. 120. - 126. 109. 118. 137. 129. 109. 105. 111. 110. 113. 115. 114. 111. - 110. 112. 115. 117. 115. 114. 115. 118. 120. 121. 120. 124. 128. - 130. 129. 126. 127. 132. 137. 140. 140. 140. 139. 139. 138. 138. - 138. 135. 133. 133. 135. 138. 141. 142. 142. 142. 157. 152. 134. - 146. 185. 201. 190. 193. 197. 197. 194. 194. 200. 205. 205. 198. - 198. 198. 198. 199. 199. 199. 199. 199. 199. 201. 202. 204. 205. - 206. 207. 207. 208. 209. 210. 211. 211. 211. 211. 213. 216. 219. - 225. 230. 210. 152. 95. 62. 73. 83. 73. 86. 106. 106. 124. 137. 144. - 152. 156. 155. 154. 153. 155. 151. 154. 155. 151. 145. 133. 115. 99. - 69. 51. 45. 43. 35. 43. 67. 82. 107. 117. 131. 141. 145. 146. 148. - 149. 147. 141. 138. 140. 143. 143. 146. 149. 149. 154. 155. 136. 92. - 49. 35. 41. 40. 41. 44. 49. 54. 56. 56. 54. 58. 56. 52. 46. 44. 47. - 56. 63. 48. 46. 46. 49. 55. 58. 58. 57. 55. 67. 79. 102. 133. 147. - 146. 149. 147. 145. 146. 153. 163. 168. 166. 161. 85. 87. 90. 91. - 91. 91. 91. 92. 93. 90. 87. 89. 99. 114. 130. 141. 149. 156. 162. - 162. 164. 166. 167. 164. 162. 162. 157. 149. 141. 131. 115. 101. 88. - 79. 74. 78. 86. 90. 93. 96. 96. 97. 99. 101. 101. 100. 99. 98. 100. - 101. 101. 103. 105. 107. 109. 111. 113. 115. 117. 119. 120. 119. - 119. 119. 120. 115. 129. 137. 118. 103. 104. 105. 107. 112. 116. - 116. 111. 109. 111. 115. 115. 113. 113. 115. 118. 121. 121. 121. - 131. 132. 133. 133. 132. 135. 140. 144. 140. 140. 141. 141. 140. - 139. 138. 137. 131. 132. 134. 137. 139. 140. 139. 138. 132. 135. - 142. 157. 182. 203. 202. 191. 193. 196. 196. 192. 191. 195. 198. - 198. 197. 197. 198. 198. 198. 198. 198. 198. 202. 203. 204. 205. - 207. 208. 209. 210. 207. 207. 208. 208. 208. 208. 207. 207. 210. - 216. 207. 198. 217. 236. 206. 155. 73. 60. 77. 81. 78. 94. 110. 131. - 136. 143. 151. 155. 155. 153. 154. 155. 152. 155. 155. 151. 144. - 133. 115. 99. 72. 54. 47. 44. 35. 38. 56. 67. 91. 104. 123. 137. - 144. 147. 150. 152. 144. 141. 140. 141. 144. 147. 149. 150. 150. - 157. 146. 105. 61. 38. 39. 45. 41. 44. 48. 52. 55. 56. 54. 53. 57. - 53. 48. 47. 49. 53. 57. 58. 43. 48. 50. 50. 54. 58. 56. 50. 54. 79. - 103. 126. 147. 149. 142. 145. 141. 144. 150. 159. 166. 168. 164. - 159. 84. 87. 91. 93. 92. 91. 91. 92. 94. 91. 89. 91. 100. 116. 132. - 142. 149. 156. 162. 162. 163. 166. 166. 163. 161. 161. 158. 150. - 142. 131. 115. 100. 89. 80. 75. 79. 87. 91. 94. 96. 95. 97. 99. 102. - 102. 101. 99. 97. 99. 99. 100. 101. 104. 106. 108. 109. 113. 114. - 116. 118. 119. 119. 118. 117. 112. 135. 147. 127. 103. 102. 107. - 101. 105. 111. 116. 116. 112. 109. 111. 115. 114. 112. 112. 114. - 118. 120. 121. 121. 134. 132. 132. 134. 139. 143. 144. 144. 136. - 138. 140. 141. 141. 140. 138. 137. 132. 133. 135. 136. 135. 133. - 132. 131. 129. 144. 168. 187. 192. 190. 195. 203. 192. 197. 197. - 193. 190. 191. 191. 189. 193. 193. 195. 197. 199. 201. 202. 203. - 205. 205. 206. 206. 207. 207. 208. 208. 208. 208. 207. 206. 206. - 206. 206. 206. 218. 211. 208. 216. 223. 220. 210. 202. 116. 50. 61. - 84. 72. 91. 117. 124. 135. 142. 150. 155. 155. 153. 154. 155. 152. - 155. 155. 150. 144. 133. 116. 100. 73. 53. 45. 46. 40. 41. 49. 51. - 77. 94. 116. 132. 140. 142. 145. 148. 146. 145. 144. 143. 145. 147. - 147. 145. 154. 156. 127. 73. 40. 41. 48. 45. 44. 47. 51. 54. 56. 55. - 54. 53. 56. 49. 44. 47. 55. 59. 54. 48. 44. 51. 55. 52. 51. 52. 51. - 48. 66. 99. 129. 146. 152. 142. 134. 139. 139. 147. 158. 165. 166. - 164. 162. 162. 86. 89. 91. 92. 92. 91. 91. 92. 94. 91. 88. 90. 100. - 116. 132. 142. 149. 156. 162. 162. 162. 165. 165. 162. 161. 162. - 159. 151. 143. 132. 115. 100. 89. 80. 76. 81. 88. 91. 93. 95. 95. - 96. 99. 101. 102. 101. 100. 98. 98. 99. 99. 101. 103. 105. 108. 109. - 114. 114. 114. 116. 118. 118. 116. 113. 113. 160. 160. 113. 94. 105. - 107. 101. 106. 110. 114. 114. 112. 111. 112. 114. 115. 114. 113. - 115. 118. 121. 122. 122. 131. 130. 130. 135. 142. 144. 142. 138. - 133. 135. 138. 141. 142. 140. 138. 136. 134. 133. 131. 128. 126. - 127. 130. 133. 160. 177. 188. 184. 183. 192. 198. 197. 192. 196. - 197. 192. 189. 189. 188. 186. 187. 189. 192. 196. 201. 205. 208. - 210. 204. 204. 204. 204. 204. 204. 204. 203. 210. 209. 208. 207. - 206. 206. 207. 207. 205. 214. 220. 218. 214. 215. 219. 221. 174. 73. - 54. 73. 72. 96. 116. 112. 134. 141. 150. 154. 154. 153. 154. 155. - 153. 155. 154. 149. 143. 133. 116. 101. 74. 50. 41. 45. 43. 42. 44. - 39. 65. 82. 105. 121. 128. 133. 138. 143. 136. 137. 136. 135. 139. - 146. 148. 146. 155. 139. 98. 52. 34. 44. 49. 43. 47. 50. 54. 55. 55. - 54. 53. 54. 53. 47. 44. 49. 57. 59. 51. 42. 49. 53. 56. 53. 47. 46. - 52. 60. 90. 122. 146. 154. 149. 135. 130. 140. 145. 154. 165. 168. - 165. 162. 163. 166. 90. 90. 90. 91. 92. 92. 91. 90. 92. 89. 86. 89. - 98. 114. 130. 140. 149. 156. 162. 162. 162. 164. 164. 162. 162. 163. - 160. 153. 145. 133. 116. 101. 87. 79. 75. 81. 88. 90. 91. 92. 95. - 96. 98. 100. 101. 101. 100. 100. 99. 100. 100. 102. 104. 106. 108. - 110. 115. 113. 113. 114. 116. 116. 113. 110. 124. 180. 161. 100. 96. - 110. 104. 104. 108. 109. 110. 111. 112. 112. 113. 113. 118. 117. - 116. 118. 121. 123. 124. 123. 127. 130. 135. 139. 141. 139. 135. - 131. 131. 134. 138. 141. 141. 139. 136. 133. 132. 129. 123. 118. - 120. 131. 146. 157. 187. 194. 190. 180. 183. 196. 196. 183. 192. - 195. 194. 188. 186. 188. 190. 189. 190. 191. 194. 198. 201. 205. - 208. 209. 203. 203. 203. 203. 203. 203. 203. 203. 208. 207. 206. - 205. 204. 205. 206. 206. 193. 214. 220. 206. 203. 220. 230. 224. - 213. 134. 81. 61. 71. 94. 103. 118. 133. 140. 149. 154. 154. 153. - 154. 155. 154. 155. 154. 149. 143. 133. 116. 101. 77. 53. 43. 46. - 43. 41. 42. 37. 48. 64. 86. 103. 114. 125. 139. 149. 145. 144. 139. - 134. 137. 147. 152. 151. 146. 105. 62. 43. 41. 41. 42. 46. 51. 53. - 56. 56. 54. 52. 53. 55. 51. 49. 48. 51. 54. 54. 49. 45. 55. 54. 54. - 51. 42. 41. 61. 85. 120. 140. 151. 148. 143. 134. 134. 147. 154. - 159. 164. 165. 162. 161. 162. 164. 93. 91. 90. 90. 92. 92. 91. 89. - 90. 87. 85. 87. 96. 112. 128. 138. 149. 156. 161. 162. 162. 164. - 164. 161. 162. 163. 160. 154. 146. 134. 117. 101. 85. 77. 74. 80. - 87. 89. 89. 89. 96. 97. 98. 99. 100. 101. 101. 101. 101. 101. 102. - 103. 105. 108. 110. 111. 115. 113. 112. 113. 115. 115. 111. 107. - 135. 189. 157. 93. 101. 112. 100. 108. 110. 109. 108. 110. 112. 114. - 113. 112. 121. 120. 119. 120. 123. 125. 125. 125. 125. 133. 142. - 145. 141. 135. 130. 129. 132. 134. 138. 141. 141. 137. 133. 130. - 129. 123. 116. 112. 120. 140. 166. 184. 178. 190. 200. 198. 187. - 180. 181. 187. 192. 193. 191. 185. 183. 188. 193. 194. 197. 197. - 198. 199. 201. 202. 203. 204. 204. 204. 204. 205. 205. 206. 206. - 206. 205. 204. 202. 201. 201. 202. 203. 204. 206. 200. 208. 224. - 226. 214. 213. 224. 226. 191. 119. 59. 69. 85. 91. 136. 133. 140. - 149. 154. 154. 153. 154. 155. 154. 155. 154. 149. 142. 132. 116. - 101. 82. 58. 48. 48. 42. 40. 43. 41. 33. 49. 70. 89. 105. 123. 144. - 160. 179. 174. 161. 146. 143. 149. 153. 151. 134. 75. 35. 42. 50. - 37. 36. 53. 53. 55. 57. 56. 53. 51. 53. 56. 51. 53. 54. 53. 50. 48. - 49. 51. 59. 54. 51. 49. 39. 40. 70. 106. 140. 151. 149. 141. 139. - 136. 140. 154. 160. 159. 158. 158. 159. 159. 159. 158. 92. 92. 91. - 90. 90. 91. 91. 92. 87. 85. 84. 86. 95. 112. 131. 144. 150. 154. - 160. 164. 164. 163. 162. 162. 165. 166. 162. 154. 146. 136. 120. - 105. 90. 76. 75. 84. 87. 92. 96. 91. 93. 94. 97. 99. 101. 102. 103. - 103. 100. 102. 104. 107. 109. 109. 109. 109. 103. 123. 110. 116. - 106. 117. 105. 113. 192. 181. 131. 97. 108. 105. 94. 109. 112. 112. - 109. 107. 108. 112. 114. 112. 114. 118. 122. 123. 122. 122. 125. - 128. 133. 137. 137. 134. 134. 138. 137. 132. 144. 132. 130. 141. - 145. 135. 126. 126. 130. 102. 100. 132. 164. 184. 188. 180. 182. - 192. 196. 189. 182. 184. 187. 188. 182. 178. 177. 184. 194. 201. - 200. 196. 193. 195. 197. 195. 194. 197. 204. 210. 204. 204. 204. - 205. 206. 205. 203. 201. 200. 200. 201. 202. 204. 207. 209. 210. - 204. 207. 209. 210. 209. 212. 217. 221. 223. 218. 195. 58. 67. 84. - 97. 123. 131. 141. 149. 150. 149. 152. 152. 151. 154. 155. 154. 150. - 146. 136. 117. 100. 75. 53. 41. 48. 50. 40. 38. 46. 40. 39. 45. 68. - 115. 176. 208. 205. 216. 218. 203. 183. 186. 196. 174. 137. 85. 48. - 49. 27. 50. 50. 39. 58. 59. 56. 52. 53. 56. 58. 58. 57. 48. 52. 55. - 51. 46. 45. 51. 58. 53. 53. 49. 42. 43. 64. 100. 128. 144. 145. 143. - 140. 138. 142. 152. 160. 161. 161. 161. 160. 160. 159. 159. 159. 92. - 91. 90. 90. 90. 90. 91. 91. 87. 85. 84. 86. 95. 111. 130. 143. 150. - 154. 160. 164. 164. 163. 162. 162. 165. 165. 161. 153. 145. 135. - 119. 104. 88. 74. 74. 82. 85. 90. 95. 90. 93. 94. 95. 97. 99. 100. - 100. 100. 100. 101. 104. 106. 108. 108. 108. 108. 106. 119. 111. - 113. 106. 113. 101. 133. 199. 180. 127. 95. 109. 110. 100. 110. 107. - 108. 112. 116. 117. 114. 110. 108. 114. 115. 118. 120. 122. 126. - 131. 135. 135. 127. 133. 148. 146. 130. 127. 138. 124. 143. 150. - 136. 121. 119. 121. 118. 117. 121. 138. 154. 163. 179. 192. 189. - 183. 182. 180. 183. 192. 197. 188. 174. 177. 177. 179. 184. 189. - 194. 195. 196. 199. 197. 195. 194. 196. 198. 200. 201. 206. 204. - 201. 200. 200. 200. 200. 200. 202. 202. 202. 203. 205. 207. 209. - 210. 207. 209. 211. 211. 210. 212. 217. 221. 227. 224. 205. 97. 52. - 77. 104. 115. 133. 143. 151. 152. 152. 154. 155. 154. 152. 154. 153. - 149. 145. 135. 117. 99. 74. 59. 49. 49. 48. 42. 37. 37. 33. 38. 59. - 121. 191. 209. 205. 219. 192. 201. 202. 201. 212. 220. 201. 171. 62. - 32. 53. 37. 49. 51. 43. 52. 58. 56. 53. 54. 56. 57. 56. 54. 51. 52. - 53. 50. 47. 48. 53. 58. 53. 49. 45. 47. 61. 89. 123. 147. 149. 145. - 139. 138. 143. 151. 158. 162. 161. 161. 160. 160. 160. 159. 159. - 159. 91. 90. 89. 89. 89. 90. 90. 91. 88. 86. 84. 85. 94. 110. 128. - 141. 150. 154. 160. 164. 165. 164. 163. 163. 164. 164. 160. 152. - 144. 133. 117. 103. 85. 71. 72. 80. 81. 87. 93. 89. 93. 93. 95. 96. - 97. 97. 97. 97. 99. 100. 102. 104. 106. 107. 107. 107. 109. 112. - 112. 108. 107. 107. 99. 165. 198. 172. 118. 90. 104. 108. 100. 107. - 108. 107. 111. 120. 121. 113. 109. 111. 117. 116. 116. 118. 124. - 130. 134. 136. 138. 130. 134. 145. 141. 127. 127. 139. 132. 142. - 140. 124. 114. 116. 116. 109. 121. 145. 173. 177. 170. 181. 194. - 189. 181. 175. 170. 175. 188. 196. 188. 175. 180. 183. 187. 190. - 190. 192. 196. 200. 201. 197. 193. 194. 197. 199. 197. 194. 201. - 200. 197. 195. 196. 198. 201. 203. 204. 204. 204. 204. 205. 206. - 208. 208. 208. 209. 209. 209. 209. 210. 213. 216. 226. 227. 217. - 150. 53. 67. 106. 110. 132. 142. 150. 152. 153. 155. 156. 154. 152. - 153. 152. 149. 144. 135. 116. 99. 76. 59. 43. 40. 44. 44. 40. 36. - 38. 51. 130. 211. 224. 216. 211. 195. 196. 205. 213. 220. 229. 232. - 218. 200. 68. 25. 55. 45. 43. 48. 51. 51. 57. 56. 55. 55. 56. 55. - 53. 51. 54. 52. 50. 49. 49. 51. 54. 57. 50. 42. 38. 51. 80. 115. - 142. 155. 152. 143. 136. 139. 151. 161. 165. 163. 161. 160. 160. - 160. 159. 159. 159. 159. 90. 89. 89. 89. 89. 90. 91. 91. 89. 87. 85. - 85. 93. 109. 127. 139. 150. 154. 160. 164. 165. 164. 164. 164. 163. - 163. 159. 151. 143. 132. 116. 101. 82. 69. 70. 77. 78. 84. 91. 89. - 94. 95. 96. 97. 97. 97. 96. 96. 99. 99. 101. 103. 104. 106. 106. - 107. 112. 108. 113. 105. 107. 103. 107. 195. 192. 163. 116. 92. 101. - 104. 100. 106. 115. 108. 109. 117. 116. 109. 111. 120. 121. 119. - 118. 122. 127. 131. 131. 130. 137. 140. 135. 123. 123. 134. 137. - 132. 147. 131. 120. 120. 117. 111. 116. 129. 152. 163. 181. 184. - 177. 182. 187. 179. 177. 177. 175. 171. 170. 176. 184. 190. 185. - 187. 190. 192. 192. 194. 196. 199. 197. 195. 193. 194. 196. 197. - 195. 192. 194. 194. 195. 196. 198. 201. 206. 209. 204. 204. 203. - 203. 203. 204. 205. 206. 206. 206. 206. 205. 205. 206. 208. 209. - 218. 227. 225. 189. 92. 62. 96. 113. 128. 138. 148. 150. 151. 153. - 154. 152. 153. 154. 153. 149. 145. 135. 116. 99. 73. 53. 40. 42. 45. - 39. 36. 40. 76. 160. 208. 213. 216. 198. 184. 204. 220. 221. 223. - 226. 228. 228. 224. 220. 121. 35. 49. 47. 40. 44. 56. 56. 56. 56. - 56. 56. 55. 53. 50. 48. 56. 52. 48. 48. 51. 54. 56. 55. 49. 41. 42. - 65. 103. 136. 150. 151. 146. 141. 139. 146. 157. 165. 166. 164. 160. - 160. 160. 159. 159. 159. 158. 158. 90. 89. 89. 89. 90. 90. 92. 92. - 91. 89. 86. 86. 93. 108. 126. 138. 149. 154. 161. 165. 166. 165. - 165. 165. 164. 164. 159. 151. 142. 131. 115. 100. 81. 68. 69. 76. - 76. 82. 91. 90. 97. 97. 98. 99. 99. 98. 98. 97. 99. 99. 100. 102. - 103. 105. 106. 107. 113. 107. 114. 104. 107. 101. 127. 212. 187. - 159. 122. 103. 104. 104. 105. 111. 113. 109. 110. 116. 114. 109. - 112. 121. 120. 120. 122. 127. 131. 132. 128. 124. 131. 132. 125. - 115. 122. 138. 140. 130. 132. 126. 122. 118. 108. 108. 132. 164. - 182. 173. 178. 184. 175. 170. 174. 175. 174. 177. 179. 173. 166. - 167. 179. 191. 187. 186. 185. 187. 190. 191. 191. 190. 194. 196. - 197. 195. 192. 189. 190. 192. 191. 195. 199. 201. 202. 204. 207. - 209. 203. 202. 201. 201. 201. 202. 202. 203. 207. 206. 204. 203. - 204. 205. 206. 206. 212. 226. 228. 206. 153. 74. 77. 113. 126. 137. - 147. 151. 152. 154. 155. 153. 155. 156. 154. 150. 145. 134. 115. 97. - 66. 49. 43. 47. 37. 28. 52. 90. 186. 203. 226. 200. 159. 186. 225. - 213. 222. 221. 221. 222. 223. 225. 230. 236. 180. 48. 38. 46. 45. - 44. 55. 56. 54. 55. 56. 55. 53. 50. 48. 47. 54. 50. 47. 48. 52. 56. - 55. 53. 49. 49. 61. 91. 129. 152. 154. 146. 137. 141. 147. 154. 159. - 162. 163. 162. 160. 160. 159. 159. 159. 158. 158. 158. 90. 90. 90. - 90. 91. 92. 93. 94. 94. 91. 88. 88. 94. 108. 125. 137. 149. 154. - 161. 165. 166. 166. 166. 166. 164. 164. 160. 151. 142. 131. 115. - 100. 80. 69. 70. 77. 76. 82. 92. 92. 98. 98. 99. 100. 100. 100. 100. - 99. 100. 100. 100. 101. 103. 105. 107. 108. 111. 110. 114. 107. 107. - 103. 157. 215. 180. 149. 118. 104. 100. 100. 104. 109. 104. 109. - 115. 117. 115. 113. 113. 114. 116. 119. 124. 130. 132. 131. 126. - 122. 123. 114. 115. 128. 137. 135. 131. 132. 119. 122. 116. 107. - 115. 141. 162. 167. 187. 175. 178. 181. 165. 156. 166. 177. 175. - 174. 175. 179. 179. 176. 175. 176. 191. 189. 187. 188. 190. 191. - 190. 187. 195. 197. 198. 194. 188. 185. 187. 191. 195. 199. 203. - 204. 202. 201. 202. 204. 201. 200. 200. 200. 200. 201. 201. 202. - 210. 207. 205. 205. 206. 207. 208. 207. 210. 224. 225. 213. 200. - 114. 70. 107. 127. 138. 149. 153. 155. 157. 158. 155. 157. 157. 155. - 150. 143. 132. 112. 94. 63. 46. 34. 31. 29. 53. 121. 192. 214. 213. - 180. 166. 198. 213. 211. 226. 213. 216. 218. 218. 219. 223. 229. - 234. 209. 60. 35. 44. 52. 48. 50. 50. 53. 54. 55. 53. 50. 48. 48. - 48. 50. 48. 47. 49. 53. 55. 54. 51. 45. 58. 83. 117. 145. 156. 151. - 142. 135. 144. 155. 160. 159. 158. 158. 160. 159. 159. 159. 159. - 158. 158. 158. 157. 91. 91. 91. 91. 92. 93. 95. 95. 96. 93. 90. 89. - 95. 109. 125. 137. 149. 154. 161. 165. 167. 166. 166. 166. 165. 165. - 161. 152. 143. 132. 115. 100. 81. 70. 72. 78. 77. 83. 94. 95. 97. - 98. 99. 100. 101. 101. 101. 100. 101. 101. 101. 101. 103. 105. 108. - 109. 109. 115. 114. 112. 108. 106. 187. 208. 178. 139. 107. 97. 94. - 96. 102. 103. 100. 112. 117. 111. 109. 114. 116. 113. 119. 123. 128. - 130. 129. 125. 122. 120. 119. 118. 124. 133. 135. 128. 125. 128. - 118. 114. 107. 114. 144. 175. 179. 165. 177. 170. 172. 172. 161. - 162. 171. 172. 176. 173. 175. 183. 186. 181. 175. 175. 191. 193. - 193. 192. 189. 188. 189. 190. 191. 191. 190. 188. 188. 189. 192. - 194. 196. 199. 202. 200. 196. 195. 198. 202. 200. 200. 200. 200. - 200. 202. 203. 203. 210. 207. 204. 204. 207. 208. 208. 207. 207. - 216. 216. 217. 216. 173. 87. 102. 125. 137. 149. 154. 156. 158. 158. - 156. 157. 157. 154. 148. 140. 128. 107. 89. 57. 41. 27. 37. 76. 135. - 194. 231. 196. 166. 172. 203. 216. 222. 219. 203. 210. 216. 216. - 210. 210. 219. 226. 227. 216. 79. 45. 38. 48. 49. 49. 47. 52. 53. - 54. 51. 48. 47. 48. 50. 45. 46. 48. 51. 53. 53. 52. 50. 47. 72. 109. - 139. 152. 152. 145. 139. 142. 149. 158. 160. 158. 156. 157. 159. - 159. 159. 159. 158. 158. 158. 157. 157. 92. 91. 91. 92. 93. 94. 96. - 96. 98. 95. 91. 90. 96. 109. 126. 137. 149. 154. 161. 165. 167. 167. - 167. 167. 166. 166. 161. 152. 143. 132. 115. 100. 82. 71. 73. 79. - 77. 84. 95. 97. 96. 97. 98. 100. 100. 101. 101. 101. 102. 101. 101. - 102. 103. 106. 108. 110. 107. 118. 114. 115. 108. 109. 206. 201. - 184. 137. 102. 94. 93. 99. 106. 103. 104. 116. 116. 101. 98. 112. - 121. 118. 126. 129. 132. 129. 124. 119. 117. 117. 119. 138. 142. - 126. 117. 125. 128. 119. 113. 107. 116. 143. 166. 173. 177. 184. - 171. 165. 163. 161. 165. 180. 181. 161. 175. 176. 180. 184. 180. - 174. 178. 187. 185. 190. 194. 190. 183. 180. 183. 188. 186. 183. - 180. 183. 190. 197. 200. 200. 193. 196. 197. 195. 191. 192. 198. - 204. 201. 200. 200. 201. 202. 203. 204. 205. 208. 204. 201. 202. - 205. 207. 207. 205. 203. 206. 206. 221. 213. 220. 111. 101. 122. - 135. 147. 152. 154. 156. 156. 154. 156. 156. 153. 146. 138. 125. - 104. 85. 45. 38. 39. 78. 156. 219. 217. 182. 164. 179. 198. 216. - 223. 212. 206. 215. 209. 214. 209. 198. 201. 218. 231. 232. 218. 98. - 59. 32. 38. 47. 50. 49. 52. 53. 53. 50. 46. 46. 48. 52. 41. 44. 49. - 52. 53. 52. 50. 49. 59. 91. 132. 157. 160. 151. 144. 142. 150. 154. - 158. 159. 157. 156. 157. 158. 159. 159. 159. 158. 158. 157. 157. - 157. 94. 95. 95. 96. 97. 98. 99. 99. 100. 97. 94. 94. 100. 113. 128. - 139. 148. 154. 162. 168. 170. 169. 167. 167. 166. 167. 164. 156. - 147. 135. 117. 101. 84. 77. 73. 77. 84. 88. 92. 96. 97. 98. 98. 99. - 100. 101. 102. 102. 97. 99. 102. 105. 107. 108. 108. 108. 116. 108. - 116. 102. 100. 126. 212. 198. 177. 141. 108. 99. 103. 104. 106. 110. - 111. 101. 95. 101. 111. 116. 117. 118. 127. 122. 121. 122. 120. 115. - 117. 123. 133. 134. 130. 127. 130. 133. 126. 115. 102. 132. 155. - 158. 163. 178. 181. 171. 170. 158. 156. 168. 175. 172. 170. 174. - 182. 185. 178. 168. 173. 189. 192. 183. 183. 185. 188. 189. 189. - 187. 186. 185. 167. 173. 182. 190. 195. 198. 199. 199. 197. 189. - 194. 207. 206. 191. 186. 194. 204. 201. 199. 201. 205. 206. 204. - 202. 195. 193. 195. 201. 203. 202. 203. 206. 202. 209. 208. 205. - 214. 215. 178. 132. 120. 132. 145. 151. 151. 152. 154. 155. 167. - 154. 144. 141. 136. 119. 97. 82. 46. 67. 118. 183. 221. 213. 183. - 162. 194. 203. 209. 211. 213. 216. 213. 206. 198. 199. 202. 206. - 212. 219. 224. 227. 218. 98. 39. 37. 57. 46. 57. 58. 53. 48. 43. 42. - 45. 46. 46. 44. 46. 49. 51. 51. 47. 43. 42. 44. 68. 117. 152. 157. - 152. 144. 142. 149. 161. 161. 160. 160. 159. 158. 157. 157. 157. - 157. 157. 156. 156. 155. 155. 155. 95. 96. 96. 97. 98. 99. 100. 100. - 99. 97. 94. 94. 100. 112. 128. 139. 148. 154. 162. 167. 169. 168. - 167. 166. 166. 167. 163. 156. 147. 135. 117. 102. 85. 78. 74. 79. - 85. 89. 93. 97. 98. 99. 99. 100. 101. 102. 102. 103. 99. 100. 103. - 105. 108. 109. 109. 109. 115. 113. 115. 105. 100. 142. 216. 200. - 167. 136. 106. 98. 100. 101. 103. 108. 96. 97. 105. 116. 122. 123. - 123. 126. 124. 121. 120. 122. 121. 119. 122. 129. 131. 130. 134. - 138. 132. 118. 110. 109. 132. 140. 157. 171. 171. 161. 157. 160. - 158. 177. 180. 159. 152. 169. 183. 183. 176. 182. 182. 175. 175. - 183. 188. 187. 181. 180. 181. 186. 189. 186. 175. 165. 179. 183. - 187. 187. 185. 187. 194. 201. 208. 196. 190. 193. 194. 192. 197. - 206. 198. 200. 200. 197. 193. 190. 190. 192. 198. 196. 198. 202. - 204. 201. 201. 204. 204. 207. 204. 202. 213. 223. 212. 190. 153. - 141. 137. 146. 153. 153. 154. 159. 151. 150. 151. 150. 136. 108. 80. - 64. 106. 153. 200. 210. 190. 177. 188. 205. 207. 212. 214. 211. 209. - 210. 206. 199. 200. 201. 204. 208. 213. 219. 224. 227. 219. 88. 44. - 40. 51. 45. 53. 59. 54. 51. 47. 45. 45. 46. 47. 47. 49. 51. 54. 53. - 44. 37. 43. 55. 92. 130. 154. 152. 148. 144. 145. 154. 161. 160. - 160. 159. 158. 157. 157. 156. 157. 157. 156. 156. 156. 155. 155. - 155. 97. 97. 98. 99. 99. 100. 100. 101. 98. 96. 94. 94. 100. 112. - 127. 138. 147. 153. 161. 166. 168. 167. 167. 167. 165. 166. 164. - 156. 148. 137. 119. 103. 86. 79. 76. 81. 87. 91. 94. 98. 100. 100. - 100. 101. 102. 103. 103. 103. 100. 101. 103. 106. 108. 109. 110. - 110. 112. 120. 111. 108. 98. 165. 217. 198. 152. 128. 105. 97. 96. - 96. 100. 106. 98. 104. 114. 121. 118. 112. 112. 118. 116. 115. 117. - 120. 121. 121. 124. 130. 130. 125. 129. 137. 126. 106. 106. 121. - 156. 154. 159. 166. 163. 152. 149. 153. 171. 166. 163. 164. 165. - 169. 177. 186. 174. 181. 186. 183. 177. 175. 181. 187. 181. 180. - 180. 180. 179. 175. 169. 164. 182. 187. 191. 188. 182. 182. 189. - 198. 199. 196. 193. 194. 197. 199. 198. 196. 190. 202. 207. 192. - 170. 164. 180. 200. 201. 199. 200. 204. 204. 200. 200. 203. 205. - 204. 200. 197. 203. 213. 218. 218. 203. 167. 141. 145. 154. 152. - 149. 152. 148. 152. 152. 138. 114. 101. 111. 129. 185. 211. 221. - 200. 177. 180. 200. 215. 215. 217. 214. 208. 205. 204. 201. 197. - 203. 204. 206. 210. 215. 219. 223. 226. 220. 71. 48. 44. 45. 46. 48. - 57. 55. 54. 52. 49. 46. 46. 47. 50. 52. 52. 55. 52. 38. 30. 49. 76. - 123. 147. 154. 146. 144. 145. 149. 160. 160. 159. 159. 158. 157. - 156. 156. 155. 157. 156. 156. 156. 155. 155. 155. 155. 99. 99. 99. - 100. 100. 101. 101. 101. 98. 96. 94. 94. 100. 112. 127. 137. 147. - 152. 160. 165. 167. 167. 167. 167. 166. 167. 164. 157. 149. 138. - 120. 104. 86. 79. 76. 81. 88. 91. 94. 98. 101. 101. 101. 102. 102. - 103. 103. 103. 99. 100. 102. 104. 106. 108. 109. 110. 109. 125. 106. - 107. 98. 186. 212. 189. 139. 123. 107. 99. 95. 94. 99. 105. 111. - 111. 113. 112. 106. 102. 107. 116. 112. 115. 120. 124. 125. 125. - 125. 127. 128. 121. 117. 118. 113. 110. 126. 148. 157. 163. 159. - 146. 145. 156. 160. 153. 164. 152. 155. 173. 181. 172. 169. 177. - 178. 180. 184. 184. 178. 171. 175. 184. 182. 185. 184. 174. 164. - 163. 175. 187. 175. 182. 189. 191. 188. 186. 188. 190. 190. 195. - 196. 195. 199. 204. 199. 187. 201. 199. 190. 176. 166. 170. 188. - 204. 201. 199. 200. 203. 204. 200. 200. 202. 200. 196. 195. 198. - 199. 199. 204. 209. 225. 191. 157. 147. 154. 157. 152. 147. 156. - 147. 135. 126. 127. 145. 180. 210. 217. 203. 184. 177. 191. 210. - 213. 205. 212. 211. 207. 203. 201. 202. 202. 202. 206. 207. 209. - 213. 216. 220. 223. 224. 214. 54. 48. 45. 42. 51. 45. 51. 54. 55. - 54. 50. 45. 44. 47. 51. 54. 52. 52. 48. 33. 31. 63. 104. 145. 157. - 152. 142. 144. 148. 153. 163. 159. 159. 158. 157. 156. 156. 155. - 155. 156. 156. 156. 155. 155. 155. 154. 154. 100. 100. 100. 100. - 100. 101. 101. 101. 98. 97. 95. 96. 102. 114. 128. 138. 147. 153. - 160. 165. 167. 168. 168. 169. 167. 168. 165. 158. 150. 138. 120. - 105. 84. 78. 75. 81. 87. 90. 93. 96. 101. 102. 102. 102. 102. 103. - 103. 103. 98. 99. 100. 102. 104. 106. 108. 109. 107. 123. 101. 103. - 101. 200. 203. 175. 135. 124. 111. 103. 98. 96. 101. 106. 110. 106. - 103. 105. 107. 110. 117. 125. 113. 120. 127. 130. 130. 129. 126. - 124. 122. 119. 112. 106. 111. 129. 149. 162. 153. 158. 154. 143. - 142. 153. 157. 152. 135. 162. 179. 172. 167. 175. 179. 173. 179. - 175. 174. 177. 177. 175. 177. 182. 181. 180. 176. 169. 165. 170. - 183. 195. 178. 179. 182. 185. 188. 189. 187. 185. 191. 195. 192. - 185. 190. 203. 207. 200. 207. 185. 164. 165. 183. 199. 198. 191. - 198. 196. 197. 201. 202. 199. 199. 202. 195. 191. 193. 200. 203. - 200. 201. 205. 210. 200. 176. 151. 149. 160. 159. 146. 149. 136. - 134. 157. 188. 207. 210. 207. 196. 184. 180. 194. 209. 214. 212. - 212. 205. 203. 201. 200. 200. 201. 204. 206. 207. 208. 211. 214. - 218. 220. 222. 223. 195. 43. 45. 45. 45. 57. 46. 46. 52. 53. 52. 48. - 44. 43. 46. 50. 54. 51. 49. 45. 36. 45. 86. 130. 152. 157. 149. 142. - 148. 152. 155. 164. 159. 159. 158. 157. 156. 156. 155. 155. 156. - 156. 155. 155. 155. 154. 154. 154. 100. 100. 100. 100. 100. 100. - 100. 100. 99. 98. 97. 98. 104. 115. 129. 139. 149. 153. 160. 165. - 168. 169. 170. 171. 169. 170. 167. 159. 150. 138. 120. 104. 83. 77. - 75. 81. 88. 90. 92. 95. 101. 101. 101. 101. 102. 102. 102. 102. 98. - 98. 99. 100. 102. 105. 107. 108. 105. 117. 97. 99. 112. 210. 196. - 164. 136. 128. 117. 107. 101. 100. 103. 106. 103. 98. 97. 104. 110. - 112. 114. 116. 111. 118. 125. 125. 124. 123. 120. 116. 116. 120. - 119. 117. 127. 145. 156. 156. 155. 146. 147. 157. 153. 139. 138. - 150. 153. 161. 168. 171. 174. 178. 179. 177. 172. 168. 166. 169. - 177. 182. 182. 180. 173. 168. 164. 169. 178. 185. 183. 179. 188. - 182. 176. 175. 180. 184. 184. 183. 180. 188. 191. 190. 194. 201. - 203. 199. 179. 177. 176. 180. 188. 193. 193. 191. 196. 193. 195. - 199. 199. 196. 196. 199. 199. 195. 193. 195. 197. 196. 196. 198. - 197. 209. 196. 159. 142. 151. 153. 142. 140. 152. 177. 202. 212. - 205. 191. 183. 184. 185. 198. 215. 216. 204. 201. 209. 203. 200. - 199. 201. 201. 200. 202. 205. 207. 208. 211. 215. 218. 221. 222. - 223. 162. 41. 44. 46. 51. 57. 50. 44. 51. 50. 48. 46. 44. 44. 46. - 49. 53. 52. 50. 47. 51. 72. 112. 146. 150. 153. 147. 144. 153. 156. - 156. 163. 160. 159. 159. 158. 157. 156. 156. 155. 155. 155. 155. - 155. 154. 154. 154. 153. 100. 100. 100. 99. 99. 99. 99. 99. 100. 99. - 99. 100. 106. 117. 130. 140. 150. 155. 161. 166. 168. 170. 172. 173. - 172. 172. 168. 160. 150. 138. 119. 103. 84. 78. 77. 83. 89. 92. 94. - 96. 101. 101. 101. 101. 100. 100. 100. 100. 99. 99. 99. 100. 103. - 105. 108. 109. 106. 110. 97. 97. 128. 218. 195. 161. 141. 133. 120. - 109. 104. 104. 105. 106. 104. 99. 99. 104. 107. 106. 104. 106. 112. - 118. 120. 116. 115. 118. 118. 115. 114. 118. 128. 139. 146. 149. - 149. 149. 152. 143. 146. 156. 150. 136. 138. 154. 178. 155. 149. - 171. 186. 178. 170. 173. 164. 167. 167. 167. 174. 184. 181. 172. - 161. 163. 169. 176. 181. 181. 177. 172. 186. 182. 177. 174. 175. - 178. 180. 181. 174. 182. 191. 193. 190. 187. 184. 183. 166. 180. - 193. 192. 182. 177. 184. 194. 195. 193. 193. 196. 196. 192. 191. - 193. 195. 197. 196. 191. 187. 187. 187. 187. 194. 211. 205. 170. - 142. 143. 152. 155. 165. 185. 207. 212. 196. 179. 181. 191. 197. - 199. 205. 210. 210. 204. 199. 197. 203. 200. 201. 205. 205. 201. - 201. 204. 205. 207. 211. 215. 218. 221. 222. 223. 124. 45. 46. 49. - 55. 51. 55. 48. 51. 48. 45. 44. 45. 47. 48. 49. 52. 55. 55. 56. 72. - 102. 134. 151. 147. 150. 146. 147. 157. 159. 157. 164. 161. 160. - 160. 159. 158. 157. 157. 156. 155. 155. 155. 154. 154. 154. 153. - 153. 99. 99. 99. 99. 99. 99. 99. 99. 101. 100. 100. 101. 107. 118. - 131. 140. 151. 155. 161. 166. 169. 171. 173. 175. 173. 173. 169. - 161. 151. 137. 118. 102. 85. 80. 78. 85. 91. 93. 95. 97. 100. 100. - 100. 100. 100. 100. 100. 99. 100. 100. 100. 101. 103. 106. 109. 111. - 106. 105. 97. 97. 139. 223. 197. 162. 144. 136. 122. 110. 105. 106. - 106. 104. 108. 104. 102. 105. 106. 106. 110. 116. 120. 124. 123. - 116. 115. 121. 125. 124. 117. 116. 131. 153. 157. 145. 142. 150. - 143. 149. 148. 139. 135. 143. 155. 163. 157. 168. 172. 168. 170. - 176. 172. 161. 161. 171. 174. 169. 172. 181. 176. 162. 151. 168. - 184. 184. 173. 166. 171. 180. 174. 177. 180. 180. 178. 176. 177. - 178. 189. 187. 184. 177. 168. 163. 169. 179. 190. 185. 180. 181. - 185. 187. 184. 180. 196. 193. 192. 195. 193. 188. 187. 189. 179. - 191. 198. 193. 187. 188. 189. 187. 186. 200. 200. 176. 150. 147. - 166. 184. 205. 200. 197. 196. 193. 191. 193. 198. 206. 213. 212. - 201. 198. 205. 207. 201. 202. 199. 202. 209. 209. 204. 202. 205. - 204. 207. 210. 215. 218. 221. 222. 222. 99. 50. 49. 52. 57. 45. 57. - 52. 52. 48. 44. 44. 47. 50. 50. 49. 52. 58. 60. 64. 87. 123. 146. - 150. 146. 150. 146. 149. 159. 160. 157. 164. 161. 161. 160. 160. - 159. 158. 157. 157. 155. 155. 155. 154. 154. 153. 153. 153. 100. - 100. 100. 99. 99. 98. 98. 98. 100. 101. 100. 100. 104. 114. 129. - 140. 150. 158. 165. 168. 170. 173. 173. 171. 172. 173. 171. 163. - 153. 139. 119. 102. 84. 78. 77. 84. 92. 94. 94. 94. 94. 97. 101. - 102. 101. 99. 99. 99. 96. 97. 98. 100. 102. 104. 105. 106. 104. 101. - 96. 86. 190. 209. 189. 166. 148. 139. 125. 112. 104. 103. 105. 107. - 106. 103. 103. 108. 112. 111. 110. 111. 122. 116. 113. 120. 125. - 124. 120. 119. 114. 129. 144. 151. 153. 152. 143. 133. 147. 148. - 138. 128. 139. 161. 164. 151. 154. 164. 165. 156. 153. 163. 170. - 169. 179. 171. 172. 178. 175. 161. 153. 156. 178. 174. 171. 174. - 179. 181. 178. 173. 176. 175. 173. 173. 175. 178. 182. 185. 193. - 190. 181. 173. 173. 181. 186. 187. 192. 184. 177. 180. 189. 195. - 192. 186. 191. 193. 194. 192. 189. 186. 185. 185. 191. 185. 186. - 194. 193. 184. 182. 188. 180. 189. 194. 187. 175. 177. 195. 214. - 198. 190. 183. 185. 195. 204. 209. 209. 206. 205. 203. 202. 201. - 200. 200. 200. 196. 205. 208. 201. 199. 204. 205. 200. 190. 218. - 215. 204. 225. 228. 214. 219. 72. 55. 43. 47. 55. 55. 52. 51. 53. - 50. 46. 45. 45. 47. 48. 49. 57. 57. 62. 79. 109. 137. 150. 149. 142. - 144. 149. 153. 157. 158. 159. 159. 160. 159. 158. 157. 157. 157. - 157. 158. 155. 155. 155. 155. 155. 155. 155. 155. 100. 100. 99. 99. - 99. 98. 98. 98. 100. 100. 100. 100. 104. 114. 129. 140. 149. 158. - 165. 168. 170. 174. 174. 172. 173. 173. 170. 162. 152. 139. 120. - 103. 85. 77. 74. 80. 88. 92. 93. 95. 95. 97. 101. 102. 101. 99. 99. - 99. 97. 97. 99. 100. 102. 103. 105. 105. 102. 98. 93. 92. 197. 209. - 191. 171. 148. 139. 126. 113. 106. 103. 103. 104. 104. 102. 105. - 111. 114. 113. 114. 117. 126. 119. 116. 122. 128. 125. 119. 115. - 132. 140. 151. 156. 148. 139. 141. 151. 142. 133. 131. 140. 147. - 148. 152. 158. 167. 163. 159. 156. 155. 156. 164. 172. 180. 176. - 173. 170. 160. 152. 163. 182. 178. 175. 172. 172. 175. 177. 176. - 174. 171. 170. 170. 171. 175. 180. 186. 189. 183. 184. 182. 178. - 179. 183. 184. 181. 190. 187. 185. 185. 188. 192. 193. 193. 189. - 189. 189. 186. 183. 182. 183. 184. 190. 185. 184. 185. 179. 172. - 178. 192. 181. 182. 186. 192. 197. 200. 199. 197. 194. 192. 192. - 196. 202. 205. 204. 202. 205. 204. 203. 201. 200. 200. 200. 200. - 201. 205. 207. 204. 203. 203. 200. 195. 200. 213. 212. 207. 221. - 219. 221. 205. 50. 43. 39. 44. 47. 46. 46. 49. 53. 49. 45. 44. 48. - 52. 54. 54. 60. 65. 77. 98. 128. 150. 155. 149. 145. 148. 153. 158. - 161. 162. 161. 161. 160. 159. 158. 157. 157. 157. 157. 158. 155. - 155. 155. 155. 155. 155. 155. 155. 100. 99. 99. 99. 98. 98. 98. 98. - 99. 100. 100. 100. 104. 114. 129. 140. 149. 157. 165. 168. 170. 174. - 175. 173. 174. 174. 169. 161. 151. 139. 120. 105. 85. 76. 71. 76. - 84. 89. 92. 95. 95. 98. 101. 101. 100. 99. 99. 100. 97. 98. 99. 100. - 102. 103. 104. 105. 102. 95. 90. 103. 207. 208. 192. 177. 150. 143. - 132. 122. 116. 113. 111. 109. 104. 103. 107. 112. 113. 111. 112. - 117. 123. 122. 124. 127. 124. 118. 118. 123. 146. 152. 152. 144. - 139. 142. 147. 149. 132. 130. 136. 147. 151. 147. 149. 155. 165. - 153. 151. 161. 165. 160. 164. 175. 177. 170. 165. 162. 157. 157. - 171. 189. 175. 174. 173. 173. 173. 173. 174. 174. 174. 172. 170. - 170. 173. 177. 183. 186. 175. 181. 184. 183. 183. 183. 180. 174. - 184. 187. 190. 189. 186. 186. 191. 196. 187. 185. 183. 179. 176. - 177. 180. 184. 185. 177. 176. 183. 185. 176. 168. 166. 177. 186. - 196. 199. 196. 193. 193. 196. 192. 196. 203. 208. 209. 205. 200. - 195. 203. 202. 201. 200. 199. 199. 199. 200. 204. 203. 205. 207. - 205. 197. 192. 191. 205. 203. 209. 212. 220. 211. 224. 165. 36. 38. - 43. 48. 47. 45. 49. 56. 50. 44. 40. 41. 48. 53. 54. 53. 50. 66. 89. - 117. 142. 156. 152. 141. 147. 151. 156. 161. 163. 163. 162. 160. - 160. 159. 158. 157. 157. 157. 157. 158. 155. 155. 155. 155. 155. - 155. 155. 155. 99. 99. 99. 98. 98. 98. 97. 97. 98. 99. 99. 99. 103. - 114. 129. 140. 149. 157. 165. 168. 171. 175. 176. 174. 174. 174. - 169. 159. 150. 138. 121. 106. 85. 76. 72. 78. 86. 90. 92. 94. 96. - 98. 100. 101. 100. 99. 99. 100. 98. 98. 99. 100. 102. 103. 104. 104. - 103. 96. 89. 113. 217. 204. 191. 178. 150. 144. 136. 129. 126. 122. - 118. 115. 106. 105. 107. 110. 108. 104. 106. 111. 117. 122. 127. - 124. 115. 112. 124. 140. 148. 154. 144. 128. 135. 155. 149. 125. - 128. 145. 153. 148. 150. 159. 155. 140. 144. 141. 148. 165. 176. - 175. 172. 173. 166. 156. 153. 163. 173. 174. 171. 170. 169. 172. - 175. 175. 174. 173. 174. 174. 180. 177. 173. 170. 169. 171. 173. - 175. 176. 181. 184. 182. 180. 180. 178. 173. 177. 183. 188. 189. - 186. 184. 185. 188. 186. 184. 180. 175. 173. 174. 179. 183. 183. - 177. 174. 177. 177. 171. 166. 165. 187. 193. 196. 190. 182. 181. - 189. 198. 196. 202. 209. 211. 208. 202. 197. 195. 201. 201. 200. - 199. 199. 199. 200. 200. 202. 201. 204. 207. 198. 183. 181. 188. - 203. 196. 208. 214. 220. 214. 218. 108. 35. 40. 47. 50. 48. 49. 54. - 60. 50. 45. 42. 44. 51. 55. 53. 49. 38. 66. 104. 133. 149. 153. 146. - 137. 148. 151. 156. 161. 163. 162. 160. 158. 160. 159. 158. 157. - 157. 157. 157. 158. 156. 156. 156. 156. 156. 156. 156. 156. 99. 99. - 98. 98. 98. 97. 97. 97. 97. 98. 98. 99. 103. 114. 129. 140. 150. - 158. 166. 168. 171. 175. 176. 173. 173. 173. 168. 159. 150. 139. - 122. 107. 83. 77. 75. 82. 90. 93. 93. 93. 96. 98. 100. 100. 99. 98. - 99. 101. 98. 99. 99. 100. 102. 103. 103. 104. 104. 99. 89. 121. 222. - 199. 189. 175. 151. 145. 137. 131. 128. 123. 116. 110. 108. 105. - 105. 107. 106. 104. 106. 111. 121. 115. 111. 113. 118. 125. 136. - 147. 147. 146. 140. 135. 140. 144. 134. 117. 139. 152. 156. 150. - 153. 161. 151. 132. 138. 145. 152. 159. 172. 181. 176. 165. 154. - 152. 158. 171. 182. 180. 169. 160. 163. 168. 174. 178. 178. 176. - 174. 173. 175. 173. 170. 168. 168. 169. 171. 172. 175. 179. 180. - 176. 175. 179. 182. 183. 177. 180. 184. 188. 189. 187. 181. 177. - 184. 183. 180. 177. 174. 174. 177. 180. 186. 181. 173. 162. 155. - 161. 180. 200. 200. 189. 177. 177. 186. 195. 197. 196. 201. 205. - 208. 206. 201. 198. 198. 200. 200. 200. 199. 199. 199. 200. 201. - 201. 204. 204. 206. 201. 183. 165. 167. 180. 202. 196. 205. 205. - 212. 221. 197. 67. 38. 41. 43. 44. 45. 48. 52. 54. 53. 50. 48. 50. - 55. 56. 52. 48. 42. 80. 124. 149. 153. 150. 147. 146. 151. 154. 158. - 162. 163. 162. 160. 158. 160. 159. 158. 157. 157. 157. 157. 158. - 156. 156. 156. 156. 156. 156. 156. 156. 98. 98. 98. 98. 97. 97. 97. - 96. 96. 97. 97. 98. 103. 114. 129. 140. 152. 160. 167. 169. 171. - 175. 175. 172. 172. 172. 168. 160. 151. 139. 122. 106. 84. 78. 77. - 85. 93. 95. 94. 94. 97. 98. 100. 99. 98. 98. 100. 101. 99. 99. 100. - 101. 101. 102. 103. 103. 102. 103. 89. 123. 222. 195. 188. 170. 161. - 153. 144. 138. 134. 127. 118. 110. 110. 104. 101. 104. 108. 110. - 114. 119. 127. 107. 95. 107. 131. 146. 145. 139. 147. 139. 144. 153. - 141. 118. 117. 136. 154. 146. 146. 154. 157. 149. 141. 139. 150. - 156. 154. 149. 156. 169. 167. 155. 153. 162. 174. 178. 174. 169. - 169. 171. 162. 166. 171. 176. 178. 176. 172. 169. 162. 163. 164. - 166. 168. 170. 172. 173. 169. 173. 174. 171. 171. 179. 187. 190. - 182. 181. 182. 186. 190. 188. 180. 172. 178. 180. 181. 180. 176. - 173. 172. 172. 185. 171. 158. 160. 174. 188. 194. 195. 185. 184. - 185. 189. 195. 202. 206. 208. 202. 203. 202. 199. 195. 195. 199. - 203. 200. 199. 199. 199. 200. 201. 202. 203. 208. 208. 204. 188. - 166. 153. 160. 173. 193. 189. 193. 194. 202. 219. 157. 51. 44. 46. - 45. 44. 46. 51. 51. 48. 47. 46. 46. 47. 50. 51. 52. 51. 62. 99. 139. - 154. 150. 145. 148. 153. 157. 159. 161. 163. 164. 163. 162. 161. - 160. 159. 158. 157. 157. 157. 157. 158. 157. 157. 157. 157. 157. - 157. 157. 157. 98. 98. 98. 97. 97. 97. 96. 96. 96. 96. 97. 98. 103. - 114. 129. 140. 154. 162. 168. 170. 171. 174. 174. 171. 170. 171. - 169. 162. 153. 140. 122. 105. 86. 79. 76. 83. 91. 94. 95. 96. 97. - 99. 100. 99. 98. 98. 100. 102. 99. 99. 100. 101. 101. 102. 103. 103. - 98. 105. 88. 122. 220. 192. 190. 167. 166. 158. 149. 144. 141. 136. - 127. 118. 114. 103. 95. 99. 106. 112. 116. 120. 119. 107. 105. 122. - 143. 150. 142. 133. 141. 142. 146. 143. 127. 116. 128. 150. 152. - 146. 145. 150. 150. 144. 145. 150. 154. 152. 149. 147. 150. 154. - 154. 151. 163. 172. 178. 174. 165. 162. 168. 174. 167. 166. 166. - 169. 173. 172. 168. 164. 160. 161. 164. 166. 167. 167. 166. 165. - 162. 169. 173. 171. 170. 176. 182. 184. 186. 183. 180. 180. 182. - 182. 177. 172. 170. 175. 180. 181. 177. 171. 164. 161. 170. 165. - 166. 180. 199. 205. 193. 176. 178. 192. 204. 205. 198. 195. 202. - 212. 196. 196. 196. 195. 195. 196. 199. 201. 200. 200. 200. 200. - 201. 203. 204. 205. 208. 205. 193. 172. 156. 156. 166. 174. 164. - 165. 175. 193. 198. 205. 99. 44. 45. 51. 53. 50. 50. 53. 52. 47. 42. - 42. 42. 42. 44. 51. 60. 66. 91. 119. 146. 152. 144. 141. 148. 155. - 160. 161. 161. 162. 162. 162. 162. 161. 160. 159. 158. 157. 157. - 157. 157. 158. 157. 157. 157. 157. 157. 157. 157. 157. 98. 98. 98. - 97. 97. 96. 96. 96. 95. 96. 97. 98. 102. 114. 129. 140. 155. 163. - 169. 170. 171. 173. 173. 170. 169. 171. 169. 163. 154. 141. 121. - 105. 88. 80. 75. 80. 88. 93. 95. 98. 98. 99. 99. 99. 98. 98. 100. - 102. 99. 100. 100. 101. 101. 102. 102. 103. 94. 105. 87. 120. 219. - 192. 192. 165. 160. 153. 145. 142. 142. 140. 132. 125. 118. 103. 92. - 94. 103. 109. 113. 115. 102. 112. 129. 143. 146. 139. 135. 137. 132. - 149. 143. 114. 109. 136. 153. 149. 141. 154. 155. 141. 137. 151. - 159. 155. 144. 138. 141. 152. 156. 148. 147. 152. 175. 174. 170. - 166. 165. 166. 165. 163. 172. 167. 163. 163. 167. 168. 165. 160. - 167. 168. 168. 167. 164. 159. 155. 151. 160. 169. 176. 174. 171. - 171. 172. 172. 186. 183. 178. 174. 173. 173. 173. 173. 164. 171. - 179. 182. 177. 168. 158. 152. 152. 176. 199. 200. 186. 178. 184. - 194. 201. 201. 202. 203. 203. 200. 195. 191. 189. 190. 193. 195. - 197. 198. 197. 197. 200. 200. 200. 201. 202. 203. 205. 206. 204. - 199. 181. 159. 153. 166. 178. 180. 133. 140. 162. 199. 200. 192. 52. - 37. 39. 50. 56. 54. 51. 51. 49. 44. 46. 46. 46. 45. 48. 59. 75. 88. - 117. 136. 151. 151. 144. 144. 151. 158. 160. 159. 159. 158. 158. - 158. 159. 160. 160. 159. 158. 157. 157. 157. 157. 158. 157. 157. - 157. 157. 157. 157. 157. 157. 97. 97. 96. 95. 94. 94. 93. 92. 93. - 94. 95. 97. 103. 115. 131. 142. 155. 160. 166. 170. 172. 171. 171. - 171. 172. 171. 166. 159. 152. 142. 123. 107. 87. 78. 74. 79. 87. 92. - 94. 97. 97. 98. 99. 99. 97. 97. 98. 99. 98. 98. 100. 101. 101. 101. - 101. 101. 95. 102. 80. 138. 213. 191. 174. 173. 163. 162. 163. 144. - 139. 143. 145. 124. 107. 99. 92. 94. 105. 113. 109. 101. 104. 127. - 146. 146. 135. 130. 135. 142. 143. 128. 110. 117. 137. 140. 139. - 147. 151. 146. 141. 141. 144. 147. 147. 145. 145. 161. 168. 148. - 136. 157. 170. 156. 161. 158. 160. 167. 170. 168. 167. 169. 170. - 167. 169. 164. 155. 161. 173. 171. 161. 163. 168. 161. 151. 159. - 171. 168. 168. 162. 171. 175. 176. 174. 167. 173. 179. 184. 181. - 169. 165. 171. 175. 174. 166. 171. 175. 173. 167. 162. 162. 164. - 196. 192. 185. 178. 177. 181. 190. 196. 209. 207. 203. 200. 196. - 194. 193. 193. 191. 192. 194. 196. 197. 198. 198. 198. 199. 203. - 203. 199. 200. 206. 208. 205. 205. 194. 168. 147. 158. 179. 170. - 143. 136. 163. 178. 187. 221. 126. 42. 39. 33. 43. 54. 58. 54. 48. - 46. 46. 48. 53. 52. 45. 45. 61. 85. 101. 139. 148. 151. 145. 142. - 148. 157. 161. 162. 162. 161. 161. 160. 159. 158. 158. 159. 159. - 159. 158. 158. 157. 157. 157. 158. 158. 158. 157. 157. 156. 156. - 156. 97. 97. 96. 96. 95. 94. 93. 93. 92. 94. 95. 97. 102. 114. 130. - 141. 155. 160. 166. 170. 172. 171. 171. 171. 172. 171. 166. 160. - 153. 142. 123. 107. 88. 80. 75. 81. 88. 92. 95. 97. 98. 99. 101. - 100. 98. 98. 99. 100. 98. 99. 100. 100. 101. 101. 101. 100. 94. 95. - 80. 146. 208. 189. 177. 171. 159. 161. 149. 151. 127. 143. 133. 123. - 110. 104. 102. 105. 105. 103. 106. 113. 134. 142. 145. 138. 130. - 131. 137. 140. 126. 126. 121. 127. 141. 142. 139. 145. 143. 144. - 144. 142. 139. 139. 141. 144. 161. 149. 147. 148. 144. 150. 165. - 170. 164. 159. 155. 160. 169. 172. 166. 158. 158. 153. 160. 167. - 161. 162. 167. 165. 169. 151. 150. 161. 165. 166. 164. 155. 170. - 166. 172. 175. 174. 168. 160. 163. 165. 163. 168. 175. 176. 169. - 166. 169. 158. 164. 167. 163. 158. 162. 177. 191. 178. 180. 183. - 186. 189. 194. 199. 204. 201. 200. 198. 196. 194. 194. 194. 194. - 193. 194. 195. 197. 198. 199. 199. 199. 200. 201. 203. 204. 204. - 203. 207. 211. 209. 171. 149. 166. 184. 173. 148. 132. 160. 163. - 182. 195. 207. 94. 39. 36. 39. 43. 49. 52. 52. 48. 44. 41. 51. 47. - 48. 51. 54. 65. 91. 117. 145. 151. 151. 146. 144. 150. 157. 159. - 161. 161. 161. 160. 159. 158. 158. 157. 159. 159. 158. 158. 158. - 157. 157. 157. 158. 158. 157. 157. 157. 156. 156. 156. 97. 97. 96. - 96. 95. 94. 94. 94. 92. 94. 95. 97. 103. 114. 129. 140. 154. 159. - 166. 170. 172. 172. 171. 172. 172. 171. 167. 160. 153. 142. 123. - 106. 90. 81. 77. 82. 89. 93. 95. 97. 99. 100. 101. 101. 99. 98. 100. - 101. 98. 99. 99. 100. 101. 100. 100. 100. 94. 88. 84. 161. 204. 189. - 185. 173. 170. 152. 163. 140. 149. 128. 142. 126. 115. 112. 112. - 112. 104. 98. 109. 127. 150. 148. 141. 133. 131. 134. 134. 130. 110. - 127. 135. 138. 146. 146. 140. 142. 138. 140. 140. 137. 134. 137. - 144. 151. 155. 138. 141. 155. 155. 152. 155. 155. 152. 156. 156. - 154. 159. 166. 160. 149. 163. 157. 166. 177. 173. 167. 161. 151. - 150. 139. 152. 173. 172. 164. 171. 179. 156. 157. 161. 169. 172. - 169. 169. 170. 168. 164. 163. 166. 168. 167. 164. 163. 161. 153. - 149. 156. 172. 185. 188. 186. 171. 178. 187. 195. 199. 200. 201. - 201. 191. 191. 191. 191. 192. 193. 195. 195. 195. 196. 197. 199. - 200. 201. 201. 201. 202. 201. 203. 208. 208. 206. 207. 212. 188. - 159. 151. 171. 174. 152. 146. 160. 166. 158. 183. 207. 176. 56. 40. - 40. 47. 47. 47. 49. 51. 50. 46. 42. 53. 44. 44. 56. 63. 72. 103. - 137. 151. 152. 150. 146. 147. 153. 158. 158. 160. 160. 159. 159. - 158. 157. 156. 156. 159. 158. 158. 158. 157. 157. 157. 157. 158. - 157. 157. 157. 156. 156. 156. 156. 97. 97. 97. 96. 96. 95. 95. 94. - 94. 96. 97. 99. 105. 116. 130. 141. 154. 159. 166. 170. 172. 172. - 172. 172. 171. 171. 168. 161. 154. 143. 123. 106. 90. 81. 76. 81. - 88. 92. 93. 95. 98. 99. 100. 100. 98. 98. 99. 100. 98. 99. 99. 100. - 100. 100. 99. 99. 97. 83. 88. 179. 204. 193. 194. 179. 174. 167. - 147. 170. 135. 149. 133. 139. 121. 120. 113. 104. 101. 109. 123. - 134. 137. 138. 137. 135. 136. 135. 126. 116. 112. 134. 142. 141. - 148. 149. 142. 140. 139. 134. 130. 130. 136. 145. 153. 157. 137. - 140. 150. 156. 157. 164. 162. 146. 145. 161. 168. 158. 152. 154. - 151. 141. 154. 154. 159. 159. 157. 165. 162. 143. 162. 157. 168. - 177. 163. 153. 161. 169. 168. 170. 162. 165. 164. 158. 164. 161. - 161. 167. 165. 156. 158. 167. 164. 152. 161. 157. 158. 172. 189. - 194. 183. 170. 185. 190. 196. 199. 198. 194. 190. 188. 187. 187. - 188. 190. 191. 193. 195. 196. 197. 198. 200. 201. 202. 202. 202. - 202. 202. 205. 205. 204. 210. 215. 210. 200. 155. 160. 165. 162. - 154. 150. 155. 165. 144. 157. 189. 218. 129. 34. 44. 47. 53. 52. 51. - 51. 52. 53. 53. 53. 54. 48. 46. 54. 66. 86. 120. 150. 153. 150. 146. - 146. 150. 156. 159. 159. 159. 159. 158. 157. 157. 156. 155. 155. - 158. 158. 158. 157. 157. 157. 156. 156. 157. 157. 157. 156. 156. - 156. 155. 155. 97. 97. 97. 96. 96. 96. 96. 95. 96. 98. 101. 103. - 108. 118. 132. 142. 153. 158. 165. 170. 172. 172. 172. 173. 171. - 171. 168. 162. 155. 144. 124. 106. 87. 79. 74. 79. 86. 90. 92. 94. - 96. 97. 98. 98. 96. 96. 97. 98. 98. 99. 99. 100. 100. 99. 98. 98. - 97. 79. 87. 189. 204. 196. 197. 185. 182. 154. 168. 148. 162. 131. - 149. 140. 128. 124. 107. 90. 101. 128. 139. 132. 122. 130. 136. 136. - 133. 129. 121. 113. 128. 143. 143. 138. 145. 148. 141. 138. 136. - 128. 124. 132. 146. 155. 151. 143. 136. 143. 156. 159. 154. 161. - 165. 156. 144. 158. 162. 155. 152. 155. 147. 132. 128. 134. 130. - 112. 115. 150. 169. 154. 173. 161. 157. 158. 158. 166. 166. 153. - 165. 172. 157. 161. 161. 157. 172. 166. 152. 156. 160. 162. 161. - 158. 153. 148. 160. 175. 188. 189. 179. 173. 179. 187. 199. 200. - 199. 195. 190. 186. 183. 183. 188. 189. 190. 192. 193. 195. 195. - 196. 199. 200. 201. 202. 203. 203. 203. 203. 202. 210. 207. 199. - 209. 223. 209. 179. 153. 161. 162. 155. 150. 147. 134. 119. 127. - 175. 205. 215. 79. 32. 41. 47. 51. 53. 55. 53. 50. 52. 58. 64. 54. - 56. 52. 50. 68. 104. 137. 152. 150. 145. 143. 146. 153. 158. 160. - 160. 159. 158. 158. 157. 156. 155. 155. 155. 158. 158. 157. 157. - 157. 156. 156. 156. 157. 157. 156. 156. 156. 155. 155. 155. 97. 97. - 97. 97. 97. 96. 96. 96. 98. 100. 103. 105. 110. 120. 133. 143. 153. - 158. 165. 170. 172. 172. 173. 173. 171. 172. 169. 163. 156. 144. - 124. 106. 85. 76. 72. 78. 86. 90. 92. 95. 95. 96. 98. 97. 95. 95. - 96. 97. 98. 99. 99. 99. 99. 98. 97. 97. 94. 77. 80. 190. 205. 198. - 194. 188. 180. 172. 154. 174. 144. 157. 145. 151. 137. 126. 104. 90. - 107. 137. 143. 129. 124. 133. 137. 130. 122. 120. 123. 125. 142. - 147. 139. 134. 141. 142. 135. 135. 129. 127. 129. 140. 151. 151. - 139. 126. 142. 141. 158. 170. 153. 133. 130. 130. 126. 124. 122. - 127. 144. 155. 145. 127. 135. 140. 129. 99. 94. 136. 168. 163. 164. - 161. 162. 158. 153. 163. 168. 156. 155. 169. 153. 161. 160. 149. - 164. 149. 173. 159. 157. 163. 154. 138. 147. 171. 181. 185. 186. - 180. 173. 176. 190. 203. 198. 198. 195. 191. 187. 186. 188. 190. - 191. 192. 194. 195. 196. 197. 197. 197. 200. 201. 202. 203. 203. - 203. 203. 203. 203. 210. 207. 200. 209. 219. 197. 162. 170. 158. - 148. 138. 120. 101. 100. 112. 145. 203. 218. 179. 45. 39. 34. 41. - 47. 51. 53. 50. 46. 48. 57. 66. 54. 59. 55. 55. 80. 123. 148. 150. - 147. 143. 143. 149. 156. 158. 159. 161. 159. 159. 158. 157. 157. - 156. 155. 155. 157. 157. 157. 157. 156. 156. 156. 155. 156. 156. - 156. 156. 155. 155. 155. 154. 97. 97. 97. 97. 97. 97. 97. 97. 98. - 100. 103. 106. 110. 120. 132. 142. 152. 158. 165. 170. 172. 173. - 173. 174. 171. 172. 169. 164. 157. 145. 124. 106. 84. 76. 72. 78. - 87. 92. 95. 97. 96. 97. 98. 98. 96. 95. 97. 98. 99. 99. 99. 99. 99. - 98. 97. 96. 93. 79. 74. 189. 208. 202. 191. 194. 183. 166. 172. 157. - 162. 149. 162. 151. 146. 127. 108. 107. 119. 130. 132. 129. 128. - 134. 133. 122. 114. 118. 130. 138. 143. 144. 137. 135. 139. 132. - 125. 131. 127. 134. 141. 144. 141. 137. 135. 135. 146. 145. 154. - 152. 130. 115. 114. 112. 115. 106. 100. 105. 118. 127. 125. 119. - 156. 159. 157. 134. 113. 124. 142. 143. 156. 158. 169. 167. 149. - 140. 144. 144. 151. 172. 155. 163. 151. 122. 123. 92. 146. 154. 158. - 151. 141. 145. 167. 188. 188. 178. 170. 175. 189. 200. 201. 197. - 193. 193. 193. 192. 190. 190. 192. 194. 192. 194. 196. 197. 199. - 199. 199. 198. 201. 201. 202. 203. 203. 203. 203. 202. 206. 206. - 207. 211. 212. 202. 178. 156. 157. 135. 117. 106. 85. 74. 104. 148. - 181. 215. 211. 113. 29. 45. 33. 41. 49. 49. 48. 46. 45. 48. 55. 60. - 54. 54. 55. 69. 102. 137. 152. 150. 147. 144. 147. 155. 159. 158. - 158. 161. 160. 159. 159. 158. 157. 156. 156. 156. 157. 157. 157. - 156. 156. 156. 155. 155. 156. 156. 156. 155. 155. 155. 154. 154. 97. - 97. 97. 97. 97. 97. 97. 97. 97. 100. 103. 105. 110. 119. 131. 141. - 152. 157. 165. 170. 172. 173. 173. 174. 171. 172. 170. 164. 157. - 145. 124. 105. 84. 76. 72. 79. 88. 93. 97. 99. 97. 98. 99. 99. 97. - 97. 98. 99. 99. 99. 99. 99. 99. 97. 96. 96. 95. 83. 72. 189. 213. - 207. 191. 199. 174. 167. 160. 160. 147. 154. 155. 148. 153. 127. - 115. 125. 129. 119. 119. 131. 125. 130. 128. 119. 113. 120. 134. - 144. 139. 139. 136. 138. 139. 125. 118. 128. 130. 142. 149. 142. - 127. 125. 141. 159. 155. 157. 142. 107. 92. 120. 146. 140. 130. 124. - 116. 106. 94. 87. 94. 106. 151. 157. 173. 169. 137. 114. 112. 113. - 119. 108. 123. 152. 159. 154. 152. 150. 106. 139. 134. 155. 150. - 119. 117. 81. 62. 123. 158. 144. 143. 176. 193. 180. 166. 170. 179. - 193. 204. 206. 199. 191. 191. 193. 196. 196. 194. 192. 190. 190. - 192. 193. 196. 198. 200. 200. 200. 200. 201. 201. 202. 203. 203. - 203. 202. 202. 208. 200. 206. 221. 215. 186. 163. 157. 124. 99. 79. - 79. 87. 103. 132. 162. 206. 210. 194. 58. 25. 49. 37. 47. 54. 50. - 45. 44. 47. 51. 54. 55. 55. 47. 53. 83. 120. 144. 152. 152. 148. - 147. 151. 160. 162. 157. 156. 160. 160. 160. 159. 159. 158. 157. - 156. 156. 157. 157. 157. 156. 156. 155. 155. 155. 156. 156. 156. - 155. 155. 154. 154. 154. 96. 96. 96. 97. 97. 97. 98. 98. 98. 100. - 103. 105. 110. 119. 133. 142. 154. 161. 169. 173. 173. 173. 174. - 176. 173. 173. 170. 165. 158. 146. 125. 107. 86. 77. 72. 77. 85. 89. - 92. 95. 95. 97. 98. 98. 98. 98. 99. 101. 99. 100. 100. 100. 99. 97. - 95. 94. 85. 70. 90. 175. 209. 201. 206. 187. 186. 180. 172. 162. - 151. 143. 145. 152. 157. 134. 115. 115. 119. 118. 119. 125. 135. - 121. 108. 109. 124. 139. 144. 143. 137. 136. 134. 128. 123. 123. - 127. 132. 134. 138. 131. 145. 127. 136. 134. 152. 146. 140. 131. - 127. 133. 140. 136. 128. 115. 122. 103. 99. 95. 96. 66. 101. 153. - 169. 165. 159. 131. 131. 124. 128. 129. 105. 106. 88. 102. 113. 133. - 137. 113. 102. 89. 59. 74. 68. 88. 99. 31. 83. 140. 163. 188. 188. - 158. 160. 174. 179. 188. 195. 198. 197. 194. 191. 196. 197. 197. - 195. 193. 193. 194. 196. 192. 194. 199. 203. 203. 200. 199. 200. - 199. 197. 203. 205. 200. 205. 208. 198. 205. 209. 213. 209. 188. - 155. 127. 113. 81. 77. 94. 102. 94. 116. 166. 194. 215. 220. 86. 44. - 42. 40. 51. 48. 41. 46. 46. 41. 42. 50. 55. 54. 46. 44. 65. 109. - 145. 154. 150. 148. 142. 150. 159. 162. 161. 159. 160. 162. 159. - 159. 158. 157. 157. 156. 155. 155. 155. 155. 155. 154. 154. 153. - 153. 153. 154. 154. 154. 154. 154. 154. 154. 154. 97. 98. 99. 99. - 99. 99. 98. 98. 101. 103. 106. 108. 112. 122. 136. 145. 154. 161. - 169. 173. 173. 173. 174. 175. 173. 173. 170. 165. 158. 146. 125. - 107. 86. 77. 72. 77. 85. 89. 93. 95. 95. 97. 98. 98. 98. 98. 99. - 101. 97. 98. 99. 100. 100. 98. 97. 96. 95. 76. 90. 162. 215. 203. - 206. 192. 193. 186. 174. 159. 144. 137. 144. 155. 151. 129. 112. - 114. 121. 122. 124. 129. 116. 113. 113. 123. 136. 142. 139. 133. - 139. 137. 132. 126. 123. 124. 127. 131. 138. 137. 126. 138. 130. - 144. 140. 148. 155. 129. 114. 127. 145. 142. 120. 100. 116. 101. 86. - 79. 73. 66. 60. 105. 144. 147. 171. 142. 152. 118. 123. 105. 106. - 97. 89. 76. 105. 89. 71. 65. 69. 73. 74. 51. 58. 41. 46. 49. 34. 65. - 160. 198. 162. 152. 165. 174. 191. 193. 195. 197. 197. 196. 193. - 191. 196. 196. 196. 195. 193. 192. 194. 196. 199. 196. 195. 197. - 200. 201. 203. 204. 200. 203. 210. 205. 192. 197. 210. 211. 217. - 199. 177. 156. 135. 112. 94. 87. 91. 86. 87. 96. 115. 153. 186. 195. - 227. 144. 54. 37. 41. 44. 41. 48. 45. 48. 47. 44. 45. 51. 53. 51. - 44. 50. 77. 119. 147. 151. 147. 146. 145. 152. 160. 163. 161. 159. - 159. 161. 159. 159. 158. 158. 157. 156. 155. 155. 155. 155. 155. - 154. 154. 154. 153. 153. 154. 154. 154. 154. 154. 154. 154. 154. 98. - 99. 101. 102. 102. 101. 99. 97. 102. 104. 106. 109. 113. 123. 137. - 146. 154. 160. 168. 173. 173. 172. 173. 175. 173. 173. 170. 165. - 158. 146. 125. 107. 86. 77. 72. 77. 85. 90. 93. 96. 95. 97. 98. 98. - 98. 98. 99. 101. 95. 96. 98. 99. 100. 99. 98. 97. 102. 80. 87. 139. - 221. 203. 202. 196. 198. 192. 180. 160. 138. 126. 132. 145. 138. - 119. 105. 109. 117. 120. 121. 123. 103. 109. 119. 133. 142. 143. - 136. 129. 136. 132. 127. 125. 126. 129. 131. 133. 138. 135. 124. - 132. 135. 151. 143. 139. 120. 116. 126. 146. 144. 120. 102. 101. - 104. 84. 100. 106. 105. 83. 87. 122. 119. 137. 127. 144. 109. 113. - 76. 70. 66. 44. 89. 116. 93. 46. 68. 84. 40. 51. 51. 32. 45. 45. 44. - 34. 65. 128. 182. 168. 154. 168. 178. 198. 202. 201. 199. 197. 195. - 193. 193. 192. 195. 195. 196. 194. 192. 192. 194. 195. 200. 198. - 195. 195. 198. 201. 201. 199. 202. 197. 203. 209. 210. 213. 206. - 186. 168. 143. 114. 99. 92. 88. 83. 81. 91. 89. 95. 122. 156. 177. - 200. 229. 194. 66. 44. 38. 42. 56. 45. 51. 50. 50. 48. 47. 50. 53. - 50. 44. 40. 60. 96. 133. 150. 148. 143. 143. 150. 155. 161. 163. - 161. 159. 159. 160. 159. 159. 159. 158. 157. 156. 156. 155. 155. - 155. 155. 155. 154. 154. 154. 153. 154. 154. 154. 154. 154. 154. - 154. 154. 98. 100. 103. 104. 103. 101. 98. 95. 100. 103. 105. 107. - 112. 122. 135. 145. 153. 160. 168. 172. 172. 172. 173. 175. 173. - 173. 170. 165. 158. 146. 125. 107. 86. 77. 72. 77. 85. 90. 93. 96. - 95. 97. 98. 98. 98. 98. 99. 101. 96. 97. 99. 100. 100. 99. 97. 97. - 101. 80. 82. 114. 220. 205. 198. 197. 198. 195. 185. 163. 134. 115. - 117. 129. 131. 117. 108. 111. 117. 118. 114. 113. 107. 114. 125. - 134. 139. 138. 134. 132. 125. 123. 122. 126. 132. 136. 136. 135. - 131. 132. 129. 134. 140. 148. 138. 125. 99. 116. 138. 142. 123. 104. - 111. 130. 126. 105. 134. 131. 124. 89. 82. 90. 94. 99. 113. 103. - 102. 78. 70. 57. 56. 108. 101. 59. 83. 82. 80. 66. 54. 44. 35. 34. - 41. 40. 67. 107. 142. 175. 170. 136. 163. 201. 197. 209. 198. 197. - 195. 194. 192. 192. 192. 192. 193. 194. 195. 193. 192. 192. 193. - 195. 194. 198. 200. 199. 199. 200. 197. 193. 200. 197. 206. 213. - 207. 192. 161. 124. 103. 90. 80. 82. 89. 92. 91. 91. 93. 114. 127. - 150. 187. 196. 188. 192. 107. 32. 57. 41. 44. 58. 55. 51. 52. 50. - 48. 49. 53. 53. 47. 39. 39. 71. 115. 145. 151. 145. 142. 144. 155. - 159. 162. 163. 161. 159. 158. 159. 160. 160. 159. 158. 157. 157. - 156. 156. 156. 156. 155. 155. 155. 154. 154. 154. 155. 155. 154. - 154. 154. 154. 153. 153. 99. 101. 103. 104. 103. 100. 96. 94. 100. - 103. 105. 107. 112. 122. 135. 145. 153. 160. 168. 172. 172. 171. - 173. 174. 173. 173. 170. 165. 158. 146. 125. 107. 87. 78. 73. 78. - 86. 91. 94. 96. 95. 97. 98. 98. 98. 98. 99. 101. 99. 99. 100. 100. - 99. 97. 95. 94. 97. 81. 81. 97. 209. 210. 198. 199. 200. 196. 184. - 160. 130. 112. 119. 134. 137. 129. 122. 122. 122. 118. 112. 108. - 116. 124. 133. 137. 137. 133. 131. 130. 119. 120. 123. 130. 136. - 138. 135. 131. 124. 130. 139. 139. 142. 135. 126. 115. 127. 132. - 128. 116. 112. 121. 130. 131. 120. 97. 110. 87. 84. 68. 66. 63. 72. - 84. 108. 105. 106. 86. 91. 90. 113. 83. 83. 85. 65. 45. 86. 73. 59. - 43. 31. 42. 37. 39. 94. 180. 179. 136. 152. 174. 176. 194. 202. 200. - 193. 193. 193. 193. 193. 192. 190. 189. 192. 193. 193. 193. 191. - 191. 193. 195. 190. 198. 203. 199. 197. 200. 202. 201. 208. 212. - 214. 190. 147. 116. 99. 83. 87. 83. 84. 90. 96. 97. 98. 101. 117. - 156. 168. 172. 202. 199. 135. 73. 40. 36. 53. 39. 52. 46. 51. 47. - 51. 48. 47. 51. 55. 53. 46. 39. 46. 85. 129. 151. 149. 143. 144. - 148. 160. 162. 163. 162. 161. 159. 159. 159. 160. 160. 159. 159. - 158. 157. 156. 156. 156. 156. 156. 155. 155. 155. 154. 154. 155. - 155. 155. 154. 154. 153. 153. 153. 101. 102. 103. 103. 102. 99. 96. - 94. 102. 104. 106. 109. 113. 123. 137. 146. 153. 159. 167. 171. 172. - 171. 172. 174. 173. 173. 170. 165. 158. 146. 125. 107. 87. 78. 73. - 78. 86. 91. 94. 97. 95. 97. 98. 98. 98. 98. 99. 101. 100. 100. 100. - 100. 99. 97. 95. 93. 96. 88. 85. 87. 187. 214. 203. 203. 205. 197. - 181. 156. 129. 119. 132. 151. 142. 138. 131. 124. 117. 111. 108. - 107. 122. 130. 139. 143. 139. 132. 125. 122. 121. 123. 128. 133. - 135. 134. 129. 124. 125. 130. 145. 141. 139. 118. 117. 116. 134. - 140. 134. 118. 116. 123. 115. 97. 86. 73. 72. 50. 57. 64. 63. 68. - 77. 103. 105. 130. 93. 102. 91. 112. 75. 118. 97. 63. 69. 49. 84. - 99. 32. 49. 33. 29. 55. 119. 150. 165. 127. 135. 176. 196. 194. 191. - 182. 190. 193. 194. 195. 195. 193. 191. 187. 185. 191. 192. 192. - 192. 190. 191. 193. 195. 193. 200. 200. 194. 194. 202. 208. 207. - 214. 202. 181. 141. 97. 82. 87. 87. 85. 84. 87. 93. 99. 107. 121. - 134. 152. 169. 195. 215. 200. 136. 65. 31. 37. 52. 37. 44. 65. 40. - 45. 50. 48. 46. 47. 54. 57. 54. 48. 46. 65. 103. 141. 152. 146. 144. - 149. 154. 164. 164. 163. 162. 161. 160. 160. 160. 161. 160. 160. - 159. 158. 157. 157. 157. 157. 156. 156. 156. 155. 155. 155. 155. - 156. 156. 155. 154. 154. 153. 152. 152. 105. 105. 104. 103. 102. 99. - 97. 96. 101. 103. 106. 108. 112. 122. 136. 145. 152. 159. 167. 171. - 171. 171. 172. 174. 173. 173. 170. 165. 158. 146. 125. 107. 87. 79. - 73. 78. 86. 91. 94. 97. 95. 97. 98. 98. 98. 98. 99. 101. 98. 99. - 100. 100. 99. 98. 96. 95. 98. 96. 87. 80. 158. 214. 205. 203. 203. - 196. 182. 160. 136. 126. 137. 153. 144. 142. 134. 120. 107. 104. - 108. 114. 129. 134. 139. 140. 135. 129. 123. 119. 124. 127. 131. - 133. 131. 128. 126. 125. 137. 131. 143. 135. 132. 104. 116. 128. - 124. 133. 132. 116. 99. 90. 86. 81. 88. 83. 68. 55. 56. 61. 47. 73. - 107. 103. 122. 89. 91. 58. 88. 100. 116. 92. 77. 90. 82. 45. 82. 71. - 23. 46. 38. 62. 114. 183. 165. 129. 117. 179. 205. 183. 192. 196. - 173. 187. 192. 193. 193. 192. 191. 189. 186. 185. 190. 191. 192. - 191. 190. 190. 192. 194. 194. 198. 197. 193. 196. 202. 196. 183. - 169. 154. 139. 117. 96. 96. 101. 96. 87. 91. 100. 113. 125. 137. - 153. 166. 177. 173. 199. 212. 149. 59. 33. 54. 48. 58. 38. 55. 61. - 49. 46. 51. 46. 45. 49. 57. 60. 56. 54. 56. 90. 123. 150. 151. 143. - 146. 155. 159. 166. 165. 163. 162. 162. 162. 162. 161. 161. 161. - 160. 159. 158. 158. 157. 157. 157. 157. 156. 156. 156. 155. 155. - 155. 156. 156. 155. 154. 154. 153. 152. 152. 108. 107. 106. 104. - 102. 100. 99. 98. 98. 100. 103. 105. 110. 119. 133. 142. 152. 159. - 167. 171. 171. 171. 172. 174. 173. 173. 170. 165. 158. 146. 125. - 107. 88. 79. 74. 79. 87. 91. 94. 97. 95. 97. 98. 98. 98. 98. 99. - 101. 96. 97. 98. 99. 100. 99. 98. 97. 99. 100. 87. 73. 134. 209. - 203. 201. 196. 193. 185. 169. 146. 130. 131. 140. 149. 148. 138. - 119. 104. 104. 116. 127. 138. 137. 135. 131. 128. 125. 124. 124. - 124. 127. 130. 130. 128. 126. 128. 130. 149. 132. 138. 127. 127. 98. - 119. 140. 139. 124. 102. 79. 62. 60. 75. 93. 83. 77. 51. 49. 50. 60. - 50. 104. 118. 113. 91. 77. 45. 50. 68. 101. 58. 105. 95. 69. 61. 41. - 81. 67. 47. 29. 46. 142. 174. 152. 113. 137. 189. 181. 199. 186. - 166. 181. 187. 184. 189. 188. 188. 187. 187. 187. 187. 187. 189. - 190. 191. 191. 190. 190. 192. 194. 192. 195. 196. 196. 202. 200. - 177. 149. 95. 111. 132. 130. 108. 97. 97. 92. 109. 116. 132. 150. - 162. 165. 167. 171. 188. 192. 194. 150. 73. 37. 43. 46. 39. 51. 51. - 61. 42. 58. 49. 43. 45. 45. 51. 60. 62. 58. 58. 64. 108. 136. 156. - 150. 141. 147. 158. 162. 167. 165. 162. 161. 162. 163. 163. 162. - 161. 161. 160. 159. 159. 158. 157. 157. 157. 157. 157. 156. 156. - 155. 155. 155. 156. 156. 155. 154. 154. 153. 152. 152. 108. 106. - 104. 104. 104. 104. 102. 100. 99. 101. 104. 106. 111. 121. 134. 144. - 153. 160. 167. 171. 170. 169. 168. 169. 171. 172. 169. 163. 157. - 146. 127. 110. 85. 79. 76. 80. 85. 87. 92. 97. 93. 94. 95. 96. 97. - 97. 97. 97. 100. 99. 98. 97. 98. 99. 100. 101. 100. 94. 102. 71. 91. - 201. 199. 210. 198. 199. 184. 172. 160. 133. 128. 156. 136. 152. - 134. 104. 104. 114. 124. 140. 133. 136. 136. 129. 120. 116. 121. - 128. 127. 126. 129. 130. 125. 121. 130. 144. 135. 145. 134. 144. - 134. 87. 140. 134. 113. 89. 70. 54. 67. 98. 93. 69. 45. 70. 50. 49. - 64. 35. 90. 126. 110. 122. 70. 50. 42. 51. 102. 94. 70. 99. 90. 51. - 27. 32. 110. 86. 32. 82. 143. 167. 147. 130. 154. 192. 196. 193. - 188. 183. 180. 180. 183. 186. 185. 187. 188. 188. 187. 185. 185. - 186. 190. 189. 187. 186. 189. 195. 198. 199. 201. 197. 206. 180. - 199. 170. 76. 103. 106. 109. 139. 137. 135. 116. 136. 140. 153. 160. - 166. 169. 169. 168. 168. 167. 184. 202. 151. 63. 33. 46. 50. 45. 52. - 52. 53. 53. 53. 52. 51. 51. 37. 49. 53. 61. 65. 46. 47. 80. 132. - 144. 150. 145. 140. 147. 159. 165. 161. 163. 164. 165. 165. 163. - 161. 159. 161. 161. 160. 159. 159. 158. 157. 157. 159. 158. 156. - 155. 154. 155. 156. 157. 156. 156. 155. 154. 154. 153. 152. 152. - 108. 106. 105. 104. 104. 104. 102. 100. 100. 102. 104. 106. 111. - 121. 134. 144. 153. 160. 167. 171. 171. 169. 169. 170. 171. 172. - 169. 163. 157. 147. 127. 110. 86. 78. 75. 79. 85. 89. 92. 95. 94. - 95. 96. 98. 98. 99. 99. 99. 99. 99. 97. 97. 97. 98. 100. 101. 98. - 95. 94. 80. 83. 169. 216. 196. 188. 196. 194. 185. 173. 154. 136. - 134. 149. 136. 111. 100. 116. 130. 133. 135. 142. 134. 123. 113. - 111. 116. 125. 132. 129. 132. 129. 121. 119. 124. 126. 122. 136. - 133. 134. 152. 153. 109. 122. 97. 80. 61. 65. 85. 93. 75. 51. 46. - 56. 57. 46. 47. 54. 54. 114. 104. 109. 86. 46. 40. 71. 107. 108. 73. - 80. 89. 67. 38. 45. 52. 94. 72. 89. 145. 169. 139. 125. 157. 191. - 196. 190. 188. 185. 181. 179. 181. 184. 187. 183. 184. 185. 184. - 183. 183. 186. 188. 185. 190. 193. 193. 192. 191. 188. 184. 188. - 188. 207. 162. 82. 80. 101. 76. 104. 105. 120. 145. 152. 160. 161. - 160. 163. 159. 161. 168. 168. 166. 177. 192. 222. 156. 71. 30. 36. - 46. 45. 47. 55. 55. 55. 54. 52. 50. 47. 46. 48. 54. 51. 51. 52. 44. - 59. 101. 137. 146. 150. 145. 143. 151. 161. 167. 162. 164. 165. 166. - 165. 164. 162. 160. 161. 161. 160. 160. 159. 158. 157. 157. 159. - 158. 156. 155. 155. 155. 156. 156. 156. 156. 155. 154. 154. 153. - 152. 152. 109. 107. 105. 104. 105. 104. 102. 100. 101. 102. 104. - 106. 110. 121. 134. 144. 153. 159. 168. 172. 171. 169. 169. 170. - 172. 172. 169. 164. 158. 147. 128. 111. 87. 78. 72. 78. 86. 91. 92. - 93. 95. 96. 97. 99. 99. 100. 100. 99. 98. 98. 97. 96. 97. 98. 100. - 101. 100. 100. 90. 91. 79. 126. 225. 194. 200. 202. 199. 184. 171. - 172. 164. 142. 163. 125. 104. 113. 127. 135. 137. 132. 140. 128. - 113. 108. 112. 121. 128. 130. 126. 132. 127. 115. 120. 133. 130. - 113. 92. 97. 128. 140. 129. 94. 90. 83. 58. 72. 76. 76. 75. 61. 44. - 40. 68. 45. 42. 46. 50. 76. 129. 71. 84. 48. 48. 63. 95. 122. 104. - 87. 93. 45. 49. 61. 53. 51. 96. 109. 160. 152. 139. 137. 157. 185. - 200. 199. 185. 183. 181. 179. 179. 182. 185. 187. 181. 181. 180. - 179. 179. 181. 186. 189. 191. 193. 191. 188. 190. 196. 199. 198. - 203. 176. 97. 74. 66. 75. 125. 110. 105. 110. 110. 147. 153. 176. - 163. 164. 167. 170. 171. 169. 170. 180. 198. 212. 160. 82. 30. 35. - 46. 44. 45. 53. 54. 55. 56. 55. 53. 50. 46. 44. 52. 57. 52. 46. 44. - 46. 75. 120. 144. 147. 147. 145. 147. 156. 165. 168. 164. 165. 166. - 166. 166. 165. 163. 162. 161. 161. 161. 160. 159. 158. 158. 157. - 158. 158. 157. 156. 155. 155. 156. 156. 156. 156. 155. 154. 154. - 153. 152. 152. 109. 107. 105. 105. 105. 104. 102. 100. 101. 102. - 103. 105. 109. 120. 134. 144. 153. 159. 168. 172. 171. 170. 170. - 171. 172. 172. 170. 164. 158. 147. 128. 111. 88. 77. 70. 76. 87. 92. - 92. 91. 95. 96. 97. 98. 99. 99. 99. 99. 98. 97. 96. 96. 96. 98. 100. - 101. 105. 104. 96. 96. 87. 94. 200. 209. 210. 200. 195. 180. 164. - 175. 182. 162. 147. 110. 108. 129. 128. 126. 135. 138. 125. 120. - 116. 119. 125. 128. 125. 121. 119. 124. 124. 121. 130. 142. 140. - 127. 130. 91. 97. 103. 113. 109. 71. 50. 69. 94. 82. 62. 54. 52. 62. - 66. 69. 42. 40. 48. 65. 85. 110. 46. 61. 38. 59. 97. 101. 93. 97. - 106. 73. 36. 80. 82. 33. 68. 145. 159. 153. 119. 119. 166. 199. 194. - 188. 198. 184. 182. 180. 179. 180. 182. 184. 184. 178. 177. 176. - 175. 175. 179. 185. 190. 194. 193. 189. 186. 192. 200. 196. 185. - 139. 62. 38. 105. 87. 69. 135. 126. 107. 117. 118. 138. 146. 160. - 156. 164. 170. 174. 170. 169. 188. 207. 194. 164. 63. 35. 38. 54. - 49. 45. 51. 50. 50. 52. 54. 54. 54. 51. 48. 46. 47. 53. 56. 51. 47. - 55. 89. 127. 147. 145. 143. 145. 152. 160. 166. 168. 165. 166. 166. - 167. 166. 165. 164. 163. 162. 162. 161. 160. 159. 159. 158. 158. - 158. 158. 157. 157. 156. 156. 156. 156. 156. 156. 155. 154. 154. - 153. 152. 152. 110. 108. 106. 105. 105. 105. 103. 101. 101. 102. - 102. 103. 107. 118. 132. 143. 152. 159. 168. 172. 172. 171. 171. - 172. 172. 173. 170. 165. 158. 148. 129. 111. 88. 76. 70. 76. 87. 92. - 92. 91. 93. 94. 95. 97. 98. 98. 98. 98. 97. 97. 96. 96. 97. 99. 101. - 102. 107. 103. 104. 93. 97. 81. 148. 218. 206. 195. 196. 187. 167. - 169. 177. 167. 122. 96. 106. 133. 129. 123. 132. 137. 109. 114. 122. - 128. 131. 127. 121. 116. 119. 120. 125. 133. 137. 137. 136. 136. - 102. 79. 96. 86. 70. 79. 67. 85. 85. 87. 68. 72. 62. 44. 70. 93. 52. - 41. 39. 51. 91. 83. 74. 41. 55. 55. 56. 92. 88. 77. 104. 79. 34. 96. - 121. 55. 31. 123. 172. 150. 107. 134. 169. 191. 195. 192. 190. 192. - 186. 184. 181. 180. 182. 183. 181. 180. 175. 175. 174. 174. 175. - 179. 185. 190. 187. 190. 191. 193. 198. 191. 162. 129. 82. 39. 56. - 114. 104. 77. 105. 136. 115. 119. 121. 118. 148. 152. 162. 170. 174. - 168. 169. 187. 203. 186. 129. 75. 48. 32. 39. 48. 42. 46. 54. 46. - 51. 52. 53. 53. 52. 50. 48. 46. 46. 50. 56. 54. 51. 68. 104. 131. - 144. 141. 140. 146. 156. 163. 166. 166. 166. 166. 166. 166. 165. - 165. 164. 164. 162. 162. 161. 161. 160. 159. 158. 158. 158. 158. - 158. 158. 157. 157. 156. 156. 156. 156. 155. 154. 154. 153. 152. - 152. 110. 108. 106. 105. 106. 105. 103. 101. 101. 101. 101. 101. - 105. 115. 130. 141. 152. 159. 168. 172. 173. 171. 172. 173. 173. - 173. 170. 165. 159. 148. 129. 112. 86. 76. 71. 76. 85. 90. 91. 92. - 93. 94. 95. 96. 97. 97. 97. 97. 98. 97. 97. 97. 98. 100. 102. 104. - 106. 101. 106. 94. 100. 83. 103. 189. 213. 208. 202. 187. 168. 168. - 177. 178. 127. 112. 115. 133. 137. 131. 125. 120. 108. 115. 123. - 127. 126. 123. 120. 120. 123. 123. 130. 138. 134. 123. 120. 125. 99. - 63. 57. 61. 65. 93. 75. 76. 79. 80. 55. 54. 47. 57. 99. 89. 34. 40. - 41. 54. 105. 77. 49. 49. 45. 73. 62. 68. 55. 72. 109. 44. 33. 140. - 105. 40. 80. 141. 124. 118. 136. 173. 202. 200. 192. 193. 194. 188. - 187. 184. 181. 181. 182. 182. 179. 175. 172. 174. 175. 176. 177. - 180. 184. 187. 189. 190. 187. 186. 191. 187. 156. 120. 85. 96. 79. - 61. 104. 113. 86. 124. 130. 125. 115. 100. 148. 152. 162. 165. 167. - 173. 195. 209. 172. 100. 51. 40. 51. 37. 40. 51. 46. 40. 49. 60. 57. - 56. 55. 52. 50. 47. 44. 43. 54. 50. 53. 53. 54. 83. 121. 137. 138. - 135. 138. 150. 161. 166. 166. 165. 166. 165. 165. 165. 164. 164. - 164. 164. 163. 162. 162. 161. 160. 159. 159. 159. 158. 158. 159. - 159. 158. 157. 156. 156. 156. 156. 155. 154. 154. 153. 152. 152. - 110. 108. 106. 106. 106. 105. 104. 102. 100. 100. 99. 98. 102. 113. - 128. 139. 152. 159. 168. 173. 173. 172. 172. 174. 173. 173. 171. - 165. 159. 148. 129. 112. 84. 77. 73. 77. 84. 87. 90. 93. 94. 95. 96. - 97. 98. 98. 98. 98. 99. 98. 98. 98. 99. 102. 104. 105. 106. 102. - 105. 105. 96. 93. 87. 130. 204. 219. 209. 183. 175. 181. 182. 180. - 130. 135. 131. 129. 136. 132. 119. 113. 117. 121. 126. 128. 127. - 125. 124. 125. 120. 127. 133. 133. 127. 120. 113. 108. 107. 101. 97. - 94. 61. 71. 72. 88. 63. 69. 44. 34. 32. 80. 128. 69. 33. 40. 50. 57. - 97. 70. 45. 52. 46. 64. 67. 55. 39. 74. 99. 35. 66. 132. 86. 90. - 123. 110. 92. 130. 189. 190. 194. 197. 198. 195. 188. 183. 185. 181. - 178. 179. 182. 182. 177. 172. 170. 174. 178. 181. 182. 182. 183. - 184. 188. 189. 183. 177. 184. 193. 179. 156. 86. 72. 102. 97. 76. - 100. 104. 82. 129. 135. 114. 103. 136. 150. 153. 168. 175. 186. 192. - 165. 99. 39. 28. 48. 36. 42. 49. 57. 57. 45. 47. 65. 59. 57. 54. 50. - 47. 45. 44. 44. 59. 50. 54. 57. 64. 99. 133. 137. 131. 131. 140. - 156. 167. 168. 166. 166. 165. 165. 164. 163. 163. 163. 163. 163. - 163. 163. 162. 161. 160. 160. 159. 159. 158. 158. 159. 159. 159. - 158. 156. 155. 156. 156. 155. 154. 154. 153. 152. 152. 110. 108. - 106. 106. 106. 106. 104. 102. 99. 99. 98. 97. 101. 112. 127. 138. - 152. 159. 168. 173. 173. 172. 173. 174. 173. 174. 171. 165. 159. - 148. 129. 112. 82. 77. 74. 78. 83. 85. 90. 95. 95. 96. 97. 98. 99. - 100. 99. 99. 99. 99. 99. 99. 100. 103. 105. 106. 107. 106. 103. 118. - 93. 102. 92. 81. 166. 209. 211. 188. 192. 197. 176. 156. 106. 134. - 134. 120. 125. 127. 120. 124. 124. 127. 130. 133. 134. 132. 129. - 126. 113. 127. 133. 125. 123. 127. 118. 101. 91. 89. 78. 89. 66. 83. - 90. 100. 55. 40. 27. 55. 57. 86. 126. 59. 41. 42. 60. 58. 82. 65. - 49. 48. 69. 40. 51. 51. 51. 90. 86. 35. 88. 120. 109. 153. 121. 89. - 124. 163. 185. 196. 197. 189. 187. 192. 189. 178. 181. 178. 176. - 178. 181. 181. 176. 171. 169. 174. 180. 184. 185. 184. 183. 183. - 175. 185. 189. 185. 190. 199. 188. 169. 131. 93. 74. 94. 111. 105. - 101. 107. 113. 141. 120. 119. 127. 152. 155. 191. 201. 190. 143. 77. - 40. 43. 49. 42. 42. 56. 48. 42. 59. 63. 50. 48. 56. 54. 51. 48. 47. - 47. 48. 49. 58. 49. 56. 66. 76. 112. 139. 131. 126. 129. 141. 160. - 172. 170. 167. 167. 165. 164. 163. 162. 162. 162. 162. 163. 163. - 163. 162. 161. 161. 160. 159. 159. 157. 158. 159. 160. 159. 158. - 156. 155. 156. 156. 155. 154. 154. 153. 152. 152. 109. 109. 108. - 107. 105. 103. 101. 100. 103. 101. 97. 94. 97. 109. 126. 139. 151. - 158. 166. 171. 171. 170. 170. 171. 175. 176. 174. 167. 158. 147. - 129. 114. 89. 74. 72. 79. 80. 86. 93. 90. 94. 95. 96. 97. 97. 97. - 96. 96. 98. 98. 98. 99. 101. 103. 105. 106. 110. 113. 112. 108. 105. - 102. 95. 86. 106. 202. 206. 196. 193. 193. 196. 129. 139. 129. 121. - 118. 117. 115. 117. 121. 125. 129. 133. 131. 122. 114. 115. 120. - 123. 126. 116. 109. 119. 118. 97. 79. 63. 79. 84. 79. 86. 99. 93. - 72. 57. 50. 50. 27. 57. 100. 109. 50. 37. 61. 84. 48. 51. 46. 59. - 66. 88. 79. 93. 93. 66. 104. 85. 67. 96. 108. 107. 144. 117. 123. - 161. 174. 187. 185. 185. 189. 192. 191. 185. 178. 178. 179. 180. - 179. 178. 176. 175. 174. 172. 178. 184. 185. 183. 181. 181. 183. - 191. 190. 191. 195. 198. 196. 187. 180. 141. 110. 88. 80. 89. 118. - 116. 76. 85. 128. 134. 143. 119. 148. 179. 178. 161. 100. 54. 44. - 41. 40. 45. 48. 45. 45. 52. 59. 58. 52. 53. 59. 58. 54. 48. 44. 44. - 47. 48. 49. 51. 54. 55. 63. 91. 123. 135. 129. 117. 132. 152. 165. - 168. 167. 167. 169. 163. 164. 164. 164. 164. 164. 165. 165. 163. - 163. 163. 163. 163. 162. 160. 160. 159. 159. 158. 158. 158. 157. - 157. 157. 155. 154. 154. 153. 153. 152. 152. 151. 108. 108. 108. - 107. 105. 103. 101. 100. 102. 100. 96. 93. 96. 108. 125. 138. 151. - 158. 166. 171. 171. 170. 170. 172. 175. 176. 173. 167. 158. 147. - 129. 114. 88. 73. 71. 78. 79. 85. 92. 89. 94. 95. 96. 97. 97. 97. - 97. 96. 97. 97. 98. 99. 101. 103. 104. 106. 108. 111. 111. 108. 106. - 104. 98. 89. 95. 191. 208. 204. 196. 190. 199. 153. 139. 128. 121. - 120. 114. 105. 109. 122. 129. 125. 118. 113. 111. 114. 121. 128. - 137. 127. 124. 129. 122. 99. 73. 58. 70. 72. 73. 77. 87. 93. 86. 73. - 52. 47. 51. 40. 67. 80. 86. 60. 58. 61. 74. 53. 57. 47. 52. 48. 46. - 72. 63. 44. 56. 91. 60. 66. 100. 95. 98. 127. 127. 145. 171. 175. - 179. 179. 181. 184. 185. 183. 178. 174. 175. 173. 172. 173. 174. - 174. 173. 172. 179. 177. 175. 176. 180. 185. 190. 193. 192. 191. - 192. 196. 200. 199. 193. 187. 165. 124. 96. 84. 76. 88. 100. 92. 79. - 90. 130. 133. 129. 147. 157. 149. 124. 74. 42. 44. 47. 47. 49. 49. - 49. 49. 53. 59. 57. 52. 53. 58. 56. 51. 46. 43. 44. 48. 51. 52. 52. - 52. 57. 74. 103. 128. 134. 128. 121. 135. 154. 166. 167. 165. 165. - 166. 164. 164. 164. 164. 164. 164. 164. 163. 162. 163. 163. 163. - 163. 162. 161. 160. 160. 159. 159. 159. 158. 158. 158. 157. 155. - 155. 154. 154. 153. 152. 152. 151. 108. 108. 107. 106. 105. 103. - 101. 100. 101. 99. 95. 92. 95. 107. 124. 137. 150. 157. 166. 171. - 171. 170. 171. 172. 175. 176. 173. 166. 159. 147. 130. 114. 87. 72. - 71. 77. 78. 85. 91. 88. 95. 96. 97. 97. 98. 98. 97. 97. 97. 97. 97. - 98. 100. 102. 104. 105. 107. 110. 111. 109. 108. 107. 101. 93. 84. - 178. 213. 212. 200. 192. 199. 172. 134. 125. 122. 122. 114. 103. - 110. 127. 128. 122. 114. 111. 116. 125. 132. 136. 123. 100. 114. - 138. 122. 92. 78. 70. 71. 61. 57. 68. 81. 84. 77. 70. 59. 53. 53. - 50. 75. 60. 69. 89. 91. 59. 44. 35. 41. 39. 51. 47. 40. 52. 40. 34. - 49. 71. 62. 95. 79. 70. 96. 110. 132. 152. 165. 165. 173. 177. 180. - 181. 179. 175. 172. 170. 174. 173. 172. 173. 175. 176. 175. 174. - 178. 173. 171. 175. 184. 193. 198. 198. 194. 193. 193. 197. 201. - 202. 198. 194. 183. 140. 109. 93. 68. 57. 75. 96. 88. 62. 122. 128. - 142. 148. 147. 132. 108. 64. 39. 43. 46. 44. 45. 43. 54. 53. 55. 58. - 57. 54. 54. 58. 54. 50. 44. 42. 44. 48. 52. 55. 52. 50. 62. 91. 121. - 134. 131. 125. 127. 140. 156. 166. 167. 164. 162. 162. 165. 165. - 165. 164. 163. 163. 162. 162. 162. 162. 163. 163. 163. 162. 161. - 160. 161. 160. 160. 160. 159. 159. 159. 158. 156. 155. 155. 154. - 153. 152. 151. 151. 107. 107. 106. 106. 104. 103. 101. 100. 100. 98. - 94. 90. 94. 106. 123. 136. 150. 157. 166. 171. 171. 170. 171. 173. - 174. 175. 173. 166. 159. 147. 130. 115. 88. 73. 72. 78. 79. 86. 92. - 89. 96. 96. 97. 98. 99. 99. 98. 98. 96. 96. 97. 98. 100. 102. 104. - 105. 108. 111. 112. 110. 109. 109. 103. 95. 82. 170. 218. 215. 206. - 203. 190. 162. 121. 124. 124. 121. 116. 116. 121. 125. 112. 117. - 122. 127. 133. 138. 136. 131. 128. 95. 105. 122. 97. 77. 76. 68. 61. - 52. 46. 53. 69. 79. 75. 65. 75. 71. 57. 47. 77. 54. 68. 115. 102. - 64. 41. 50. 55. 49. 57. 46. 55. 40. 46. 46. 38. 76. 107. 105. 79. - 83. 136. 135. 157. 165. 169. 178. 177. 182. 186. 184. 177. 170. 168. - 169. 170. 174. 178. 178. 174. 171. 172. 174. 168. 171. 178. 187. - 196. 199. 198. 195. 196. 194. 194. 197. 200. 200. 199. 196. 183. - 149. 120. 101. 73. 49. 55. 74. 99. 66. 99. 128. 141. 144. 154. 136. - 110. 69. 43. 41. 39. 40. 44. 45. 55. 55. 56. 57. 57. 57. 58. 60. 54. - 49. 44. 42. 44. 48. 52. 54. 50. 49. 68. 107. 135. 136. 126. 122. - 134. 144. 158. 166. 167. 165. 163. 163. 166. 165. 165. 164. 163. - 162. 161. 161. 161. 162. 163. 163. 163. 162. 161. 161. 161. 161. - 161. 160. 160. 160. 159. 159. 157. 156. 155. 154. 153. 152. 151. - 151. 106. 106. 106. 105. 104. 103. 101. 100. 100. 97. 93. 90. 93. - 105. 123. 136. 149. 156. 165. 171. 171. 171. 172. 173. 174. 175. - 173. 166. 159. 148. 131. 115. 90. 75. 73. 80. 81. 87. 94. 91. 97. - 97. 98. 99. 99. 99. 99. 99. 97. 97. 97. 98. 100. 102. 104. 105. 111. - 114. 115. 112. 111. 109. 103. 95. 88. 165. 221. 213. 212. 213. 171. - 129. 109. 122. 125. 115. 116. 129. 127. 113. 98. 114. 129. 137. 139. - 138. 130. 122. 121. 88. 82. 82. 64. 69. 82. 69. 49. 51. 45. 41. 57. - 80. 80. 64. 82. 84. 62. 41. 74. 55. 63. 106. 117. 86. 41. 44. 41. - 37. 52. 50. 45. 41. 44. 40. 55. 104. 126. 82. 108. 113. 159. 153. - 175. 175. 173. 186. 184. 188. 190. 184. 174. 166. 165. 167. 163. - 173. 181. 178. 168. 161. 164. 169. 167. 176. 188. 196. 199. 198. - 197. 196. 197. 196. 196. 197. 198. 198. 197. 196. 179. 156. 124. 98. - 79. 59. 47. 48. 88. 80. 70. 129. 132. 136. 161. 139. 97. 63. 43. 42. - 40. 43. 51. 53. 53. 54. 55. 56. 58. 61. 62. 61. 54. 50. 45. 43. 44. - 47. 49. 50. 48. 53. 79. 119. 141. 134. 123. 122. 140. 148. 157. 164. - 166. 165. 165. 166. 165. 165. 164. 163. 162. 161. 161. 160. 161. - 161. 162. 163. 163. 163. 162. 161. 161. 161. 161. 160. 160. 160. - 159. 159. 158. 157. 156. 155. 154. 152. 151. 151. 105. 105. 105. - 105. 104. 102. 101. 100. 100. 98. 93. 90. 93. 106. 123. 136. 149. - 156. 165. 170. 171. 171. 172. 174. 173. 174. 172. 166. 159. 148. - 131. 116. 90. 76. 74. 81. 82. 88. 95. 92. 97. 98. 99. 100. 100. 100. - 100. 99. 98. 98. 98. 99. 101. 103. 105. 106. 113. 116. 116. 113. - 112. 111. 105. 97. 95. 154. 218. 213. 215. 212. 145. 104. 104. 118. - 121. 110. 114. 127. 122. 104. 108. 122. 132. 133. 132. 132. 128. - 120. 106. 76. 55. 46. 48. 73. 84. 65. 42. 53. 50. 40. 51. 77. 83. - 69. 75. 84. 66. 42. 75. 56. 50. 69. 118. 120. 64. 56. 46. 36. 43. - 43. 38. 35. 26. 61. 124. 109. 97. 96. 147. 137. 144. 149. 178. 180. - 173. 184. 188. 189. 187. 179. 168. 162. 162. 164. 167. 176. 183. - 178. 166. 160. 164. 172. 177. 184. 192. 195. 195. 195. 198. 202. - 198. 199. 199. 200. 199. 199. 198. 197. 183. 167. 127. 92. 81. 67. - 47. 38. 64. 89. 59. 126. 136. 141. 166. 138. 79. 55. 46. 49. 46. 45. - 48. 47. 51. 54. 55. 56. 59. 64. 63. 60. 52. 49. 46. 45. 46. 47. 47. - 47. 50. 64. 96. 130. 141. 132. 126. 129. 146. 150. 155. 159. 161. - 162. 164. 166. 164. 164. 163. 163. 162. 161. 161. 161. 160. 161. - 162. 163. 163. 163. 162. 162. 161. 160. 160. 160. 159. 159. 159. - 158. 159. 158. 157. 155. 154. 152. 151. 151. 104. 104. 105. 104. - 104. 102. 101. 100. 101. 98. 94. 91. 94. 106. 124. 137. 148. 156. - 165. 170. 171. 171. 172. 174. 173. 174. 172. 166. 159. 148. 131. - 116. 90. 75. 74. 80. 81. 88. 94. 91. 98. 99. 99. 100. 101. 101. 100. - 100. 99. 99. 100. 101. 102. 104. 106. 107. 111. 115. 116. 114. 114. - 114. 108. 101. 97. 136. 211. 218. 215. 196. 119. 102. 104. 110. 113. - 113. 114. 117. 117. 114. 125. 130. 128. 120. 120. 126. 124. 115. - 118. 87. 52. 40. 56. 72. 60. 35. 41. 50. 52. 45. 49. 64. 75. 75. 69. - 76. 68. 51. 80. 59. 46. 50. 86. 140. 100. 97. 88. 65. 40. 24. 37. - 37. 55. 116. 159. 99. 106. 148. 174. 160. 131. 158. 187. 188. 182. - 192. 189. 187. 181. 173. 164. 160. 162. 164. 178. 180. 178. 173. - 166. 165. 172. 178. 187. 189. 191. 193. 195. 197. 200. 202. 199. - 201. 204. 205. 205. 204. 204. 204. 191. 178. 137. 100. 87. 66. 44. - 42. 47. 84. 67. 105. 144. 153. 165. 139. 69. 51. 48. 52. 47. 44. 46. - 42. 51. 55. 56. 56. 60. 64. 62. 55. 47. 46. 45. 46. 48. 49. 48. 47. - 55. 79. 115. 139. 140. 131. 132. 141. 152. 152. 153. 153. 154. 156. - 160. 162. 163. 162. 162. 162. 162. 162. 162. 162. 160. 161. 162. - 163. 163. 163. 163. 162. 160. 159. 159. 159. 158. 158. 158. 157. - 159. 159. 157. 156. 154. 152. 151. 151. 104. 104. 104. 104. 103. - 102. 101. 100. 101. 99. 95. 91. 95. 107. 124. 137. 148. 155. 165. - 170. 171. 171. 173. 174. 172. 174. 172. 166. 159. 148. 132. 117. 89. - 74. 72. 79. 80. 86. 93. 90. 98. 99. 100. 101. 101. 101. 101. 100. - 100. 100. 100. 102. 103. 105. 107. 108. 109. 113. 115. 114. 115. - 116. 111. 104. 96. 122. 205. 223. 215. 180. 104. 111. 106. 102. 108. - 119. 117. 110. 116. 133. 130. 128. 117. 106. 108. 117. 114. 101. - 106. 77. 43. 45. 79. 88. 62. 38. 42. 45. 49. 49. 47. 51. 63. 77. 69. - 70. 67. 59. 84. 63. 52. 54. 73. 136. 72. 50. 48. 45. 38. 37. 20. 57. - 123. 150. 129. 100. 164. 178. 160. 156. 115. 158. 178. 173. 171. - 186. 189. 185. 178. 169. 163. 162. 164. 166. 183. 176. 167. 161. - 161. 167. 174. 178. 189. 188. 190. 195. 201. 203. 200. 197. 200. - 203. 207. 210. 210. 210. 210. 210. 194. 185. 148. 114. 95. 63. 39. - 46. 39. 71. 73. 76. 144. 159. 160. 139. 61. 45. 44. 49. 46. 48. 54. - 53. 52. 56. 57. 56. 60. 64. 59. 51. 43. 43. 44. 47. 50. 51. 49. 47. - 59. 91. 128. 145. 140. 132. 138. 150. 155. 154. 151. 149. 149. 151. - 155. 158. 161. 161. 162. 162. 162. 162. 162. 163. 160. 160. 162. - 163. 163. 163. 163. 163. 159. 159. 158. 158. 158. 157. 157. 157. - 160. 159. 158. 156. 154. 152. 151. 150. 100. 101. 104. 105. 106. - 105. 103. 101. 99. 98. 95. 92. 94. 106. 125. 139. 148. 156. 165. - 171. 173. 173. 174. 176. 177. 173. 174. 170. 157. 148. 135. 114. 92. - 76. 72. 77. 79. 86. 95. 93. 95. 97. 100. 102. 103. 102. 101. 100. - 97. 99. 104. 106. 101. 96. 100. 109. 142. 122. 110. 113. 117. 112. - 109. 111. 100. 98. 187. 224. 210. 151. 121. 104. 116. 121. 114. 100. - 102. 120. 131. 128. 132. 120. 105. 94. 63. 92. 81. 64. 78. 81. 59. - 43. 94. 77. 44. 33. 41. 50. 59. 52. 40. 48. 60. 56. 75. 57. 56. 62. - 85. 66. 65. 54. 63. 129. 81. 46. 18. 54. 32. 25. 44. 108. 155. 127. - 105. 162. 197. 160. 159. 173. 134. 150. 168. 155. 180. 189. 183. - 176. 170. 168. 165. 164. 168. 175. 176. 161. 153. 162. 170. 171. - 175. 184. 187. 190. 196. 199. 200. 200. 201. 202. 201. 202. 204. - 206. 207. 209. 209. 209. 202. 189. 161. 126. 95. 72. 53. 40. 38. 50. - 75. 70. 117. 157. 171. 152. 66. 47. 54. 51. 49. 59. 56. 57. 49. 52. - 56. 61. 64. 62. 57. 53. 42. 51. 51. 50. 56. 52. 44. 47. 65. 104. - 139. 144. 131. 128. 142. 157. 159. 156. 153. 150. 148. 148. 149. - 150. 153. 154. 155. 157. 158. 160. 161. 162. 165. 164. 163. 161. - 160. 160. 160. 160. 159. 159. 159. 158. 158. 157. 157. 157. 157. - 157. 156. 156. 154. 152. 151. 150. 102. 102. 104. 104. 104. 103. - 102. 101. 99. 99. 96. 93. 94. 106. 125. 140. 148. 156. 165. 171. - 173. 173. 174. 176. 177. 173. 174. 170. 157. 148. 135. 114. 92. 76. - 73. 78. 80. 87. 96. 94. 97. 99. 101. 103. 104. 103. 102. 101. 103. - 101. 100. 99. 98. 101. 115. 130. 134. 119. 110. 114. 117. 112. 110. - 113. 102. 103. 155. 213. 219. 143. 118. 107. 119. 119. 113. 107. - 111. 124. 130. 128. 126. 114. 98. 95. 77. 92. 70. 49. 63. 56. 51. - 53. 106. 66. 42. 49. 59. 56. 58. 56. 47. 48. 54. 54. 55. 66. 61. 50. - 85. 92. 93. 62. 43. 93. 82. 40. 35. 36. 26. 46. 105. 140. 134. 120. - 151. 176. 172. 171. 163. 171. 132. 150. 177. 168. 186. 186. 189. - 178. 170. 171. 173. 172. 170. 169. 160. 155. 157. 167. 172. 172. - 180. 192. 187. 190. 195. 197. 198. 199. 201. 202. 202. 203. 205. - 207. 208. 209. 210. 210. 205. 194. 170. 136. 104. 79. 57. 41. 31. - 46. 57. 73. 93. 157. 165. 145. 78. 54. 56. 51. 49. 58. 53. 53. 55. - 56. 59. 63. 65. 63. 57. 51. 42. 45. 43. 48. 57. 51. 42. 46. 77. 114. - 143. 142. 130. 133. 148. 160. 158. 157. 154. 151. 149. 148. 148. - 148. 150. 151. 152. 153. 155. 156. 157. 158. 160. 159. 159. 159. - 160. 161. 162. 162. 161. 161. 160. 159. 158. 157. 156. 155. 156. - 156. 156. 155. 154. 152. 151. 150. 104. 104. 104. 103. 102. 102. - 101. 101. 99. 98. 96. 92. 94. 106. 125. 140. 148. 156. 165. 171. - 173. 173. 174. 176. 177. 173. 174. 170. 157. 148. 135. 114. 93. 78. - 75. 80. 81. 89. 97. 95. 99. 100. 102. 104. 105. 105. 104. 103. 105. - 101. 98. 97. 98. 105. 122. 139. 124. 115. 112. 116. 117. 113. 113. - 117. 107. 109. 118. 188. 227. 147. 115. 114. 117. 115. 113. 115. - 121. 126. 129. 128. 139. 133. 114. 112. 93. 85. 61. 49. 58. 37. 44. - 52. 104. 47. 34. 53. 68. 59. 55. 56. 53. 49. 49. 52. 46. 67. 54. 45. - 94. 106. 108. 77. 58. 87. 120. 53. 42. 18. 41. 97. 149. 143. 125. - 142. 182. 181. 165. 179. 167. 176. 141. 152. 177. 173. 188. 190. - 191. 176. 165. 167. 173. 170. 160. 153. 149. 153. 164. 174. 174. - 172. 182. 196. 189. 191. 194. 196. 197. 198. 201. 203. 202. 204. - 205. 207. 209. 210. 211. 211. 208. 200. 178. 146. 113. 84. 59. 42. - 31. 47. 44. 80. 73. 159. 168. 144. 91. 61. 57. 50. 49. 58. 51. 50. - 61. 60. 60. 64. 67. 65. 57. 49. 46. 42. 40. 50. 60. 49. 42. 52. 96. - 128. 148. 139. 130. 141. 157. 163. 159. 158. 156. 154. 152. 150. - 149. 148. 147. 148. 148. 149. 150. 151. 152. 152. 152. 153. 154. - 155. 157. 160. 162. 163. 162. 161. 160. 159. 157. 156. 155. 154. - 156. 156. 156. 155. 154. 152. 151. 150. 106. 105. 104. 102. 101. - 100. 100. 100. 98. 97. 94. 91. 93. 105. 123. 138. 148. 156. 165. - 171. 173. 173. 174. 176. 177. 173. 174. 170. 157. 148. 135. 114. 94. - 78. 76. 82. 83. 90. 98. 95. 99. 100. 102. 103. 104. 104. 104. 103. - 100. 99. 100. 103. 103. 105. 115. 126. 115. 113. 114. 119. 119. 115. - 116. 121. 115. 111. 101. 154. 219. 171. 115. 121. 110. 110. 116. - 124. 127. 125. 126. 131. 127. 125. 105. 98. 76. 55. 54. 59. 56. 36. - 42. 37. 93. 52. 48. 51. 57. 59. 54. 50. 53. 51. 48. 51. 58. 59. 37. - 52. 103. 88. 94. 85. 74. 87. 151. 72. 24. 25. 85. 144. 138. 118. - 143. 179. 176. 175. 184. 178. 171. 183. 154. 151. 167. 168. 186. - 198. 190. 175. 163. 163. 166. 161. 151. 144. 154. 159. 169. 176. - 175. 172. 180. 192. 192. 193. 195. 196. 197. 199. 202. 205. 203. - 204. 206. 208. 210. 211. 211. 212. 210. 203. 183. 151. 117. 87. 62. - 45. 36. 44. 41. 77. 66. 149. 176. 146. 98. 62. 53. 48. 49. 59. 52. - 51. 63. 60. 59. 63. 66. 64. 56. 48. 50. 46. 45. 56. 60. 46. 45. 67. - 115. 139. 149. 135. 131. 148. 163. 165. 161. 161. 160. 158. 156. - 154. 152. 150. 147. 148. 148. 148. 148. 149. 149. 149. 147. 148. - 148. 150. 152. 155. 157. 159. 159. 158. 158. 157. 156. 156. 155. - 155. 155. 155. 155. 155. 154. 152. 151. 150. 107. 105. 104. 102. - 100. 99. 99. 99. 96. 95. 92. 89. 91. 103. 122. 136. 148. 156. 165. - 171. 173. 173. 174. 176. 177. 173. 174. 170. 157. 148. 135. 114. 93. - 78. 77. 83. 84. 91. 98. 95. 99. 100. 101. 102. 102. 103. 103. 103. - 100. 99. 102. 105. 105. 105. 110. 118. 112. 114. 117. 121. 120. 117. - 118. 122. 122. 109. 108. 125. 191. 196. 115. 124. 107. 114. 125. - 133. 131. 126. 127. 134. 114. 100. 74. 70. 61. 48. 76. 82. 43. 41. - 45. 29. 83. 79. 75. 50. 47. 64. 58. 46. 50. 52. 50. 54. 68. 60. 33. - 55. 92. 62. 77. 70. 52. 56. 130. 82. 19. 71. 128. 143. 115. 127. - 165. 182. 167. 177. 193. 180. 182. 184. 150. 139. 161. 176. 189. - 197. 182. 172. 164. 162. 161. 157. 155. 155. 165. 165. 169. 173. - 175. 176. 181. 187. 194. 195. 197. 198. 198. 200. 203. 206. 203. - 204. 206. 208. 210. 211. 211. 212. 213. 207. 188. 156. 122. 92. 68. - 53. 40. 37. 42. 61. 70. 124. 179. 149. 99. 59. 49. 46. 49. 60. 55. - 56. 60. 58. 58. 60. 64. 62. 55. 49. 50. 52. 53. 58. 54. 41. 52. 86. - 129. 143. 145. 133. 134. 153. 166. 165. 163. 163. 163. 162. 160. - 158. 156. 155. 151. 151. 151. 151. 150. 150. 150. 150. 146. 145. - 146. 146. 147. 149. 150. 151. 152. 152. 153. 153. 154. 155. 155. - 156. 154. 154. 154. 154. 153. 152. 151. 150. 105. 104. 103. 102. - 101. 99. 98. 98. 96. 95. 92. 89. 91. 103. 121. 136. 148. 156. 165. - 171. 173. 173. 174. 176. 177. 173. 174. 170. 157. 148. 135. 114. 93. - 78. 77. 83. 84. 91. 97. 94. 99. 100. 100. 101. 102. 103. 103. 104. - 105. 102. 100. 102. 104. 106. 114. 123. 113. 115. 118. 119. 119. - 117. 117. 118. 122. 109. 123. 114. 150. 189. 114. 121. 114. 124. - 134. 137. 133. 129. 128. 130. 115. 83. 54. 56. 56. 53. 98. 82. 35. - 49. 49. 33. 65. 82. 74. 41. 58. 72. 60. 45. 51. 51. 49. 64. 60. 69. - 45. 50. 66. 51. 83. 49. 33. 33. 89. 98. 64. 125. 142. 117. 126. 168. - 170. 155. 174. 188. 183. 188. 190. 179. 140. 129. 166. 193. 189. - 184. 165. 160. 158. 158. 156. 155. 159. 166. 170. 168. 168. 171. - 175. 180. 184. 186. 193. 195. 198. 199. 199. 200. 202. 204. 202. - 204. 205. 207. 209. 210. 211. 211. 215. 212. 196. 165. 131. 102. 78. - 64. 46. 38. 45. 52. 80. 103. 179. 160. 99. 58. 48. 47. 50. 59. 56. - 60. 58. 58. 59. 60. 60. 57. 53. 49. 47. 54. 56. 53. 46. 41. 64. 105. - 138. 141. 138. 134. 141. 157. 165. 164. 164. 163. 163. 162. 161. - 160. 160. 160. 157. 157. 156. 155. 154. 153. 152. 152. 147. 146. - 145. 144. 144. 144. 145. 145. 146. 147. 148. 149. 151. 152. 153. - 154. 153. 153. 153. 153. 153. 152. 151. 150. 102. 103. 103. 103. - 102. 100. 98. 97. 97. 96. 94. 90. 92. 104. 123. 138. 148. 156. 165. - 171. 173. 173. 174. 176. 177. 173. 174. 170. 157. 148. 135. 114. 92. - 77. 76. 83. 84. 90. 96. 93. 101. 101. 101. 102. 103. 104. 105. 105. - 107. 103. 101. 102. 104. 106. 113. 121. 115. 116. 116. 116. 116. - 115. 114. 111. 114. 111. 132. 121. 110. 149. 112. 112. 125. 133. - 136. 132. 131. 131. 124. 114. 91. 61. 50. 54. 41. 36. 94. 59. 45. - 56. 50. 46. 43. 59. 58. 57. 79. 73. 48. 43. 57. 46. 46. 80. 49. 69. - 56. 52. 50. 50. 102. 49. 32. 34. 57. 103. 120. 139. 129. 125. 157. - 178. 162. 147. 171. 185. 181. 190. 187. 181. 152. 137. 170. 195. - 180. 171. 154. 152. 153. 157. 157. 156. 160. 166. 171. 172. 172. - 173. 176. 181. 184. 184. 190. 193. 197. 198. 198. 198. 199. 200. - 202. 203. 205. 207. 208. 209. 210. 210. 213. 213. 201. 174. 141. - 110. 86. 70. 48. 43. 41. 49. 83. 89. 170. 172. 103. 62. 53. 51. 51. - 57. 54. 61. 59. 61. 63. 61. 57. 52. 50. 49. 46. 57. 55. 46. 43. 51. - 82. 123. 142. 136. 132. 138. 150. 160. 164. 164. 163. 162. 161. 160. - 160. 161. 162. 163. 162. 161. 160. 159. 157. 156. 155. 154. 148. - 148. 146. 145. 144. 144. 144. 145. 143. 143. 144. 145. 146. 147. - 148. 149. 152. 153. 153. 153. 153. 152. 151. 150. 100. 102. 103. - 104. 103. 101. 98. 96. 99. 98. 95. 92. 94. 106. 125. 139. 148. 156. - 165. 171. 173. 173. 174. 176. 177. 173. 174. 170. 157. 148. 135. - 114. 91. 77. 76. 83. 84. 90. 96. 92. 103. 103. 103. 103. 104. 105. - 106. 107. 105. 102. 103. 106. 107. 105. 107. 111. 117. 116. 114. - 113. 113. 113. 110. 106. 107. 114. 132. 131. 86. 110. 110. 105. 132. - 137. 133. 125. 126. 131. 118. 98. 66. 55. 70. 77. 44. 33. 105. 67. - 57. 59. 47. 59. 32. 45. 61. 100. 94. 67. 33. 40. 61. 42. 43. 93. 44. - 60. 57. 61. 50. 50. 116. 63. 25. 34. 31. 88. 144. 118. 111. 159. - 178. 153. 157. 164. 156. 171. 193. 186. 177. 188. 176. 153. 169. - 182. 166. 164. 159. 156. 158. 163. 165. 163. 162. 164. 172. 176. - 178. 177. 176. 178. 180. 180. 187. 191. 195. 197. 197. 197. 197. - 197. 201. 202. 204. 206. 207. 209. 209. 209. 208. 211. 203. 179. - 146. 115. 88. 71. 42. 43. 30. 45. 77. 78. 155. 174. 108. 68. 58. 55. - 51. 55. 51. 59. 60. 64. 67. 63. 55. 49. 47. 48. 48. 59. 54. 42. 45. - 62. 97. 135. 145. 132. 129. 141. 156. 162. 163. 164. 161. 160. 158. - 157. 158. 160. 162. 164. 164. 163. 162. 160. 159. 157. 156. 155. - 150. 149. 148. 147. 146. 146. 146. 146. 142. 143. 143. 143. 144. - 144. 144. 144. 152. 152. 153. 153. 153. 152. 151. 151. 102. 102. - 102. 101. 100. 99. 98. 97. 95. 96. 94. 90. 90. 103. 123. 140. 150. - 155. 163. 169. 172. 174. 176. 177. 176. 172. 175. 171. 158. 148. - 134. 113. 91. 79. 73. 79. 84. 86. 91. 98. 98. 100. 102. 103. 103. - 102. 103. 105. 101. 102. 104. 104. 105. 107. 111. 114. 113. 118. - 125. 119. 114. 124. 129. 117. 129. 112. 150. 101. 114. 145. 167. - 117. 117. 126. 125. 134. 122. 119. 132. 100. 53. 60. 107. 53. 34. - 38. 92. 86. 58. 43. 55. 46. 63. 77. 102. 80. 73. 47. 37. 51. 53. 43. - 58. 88. 37. 56. 113. 50. 48. 78. 64. 43. 38. 45. 72. 124. 107. 92. - 152. 176. 158. 167. 164. 151. 156. 178. 191. 187. 167. 204. 176. - 161. 176. 171. 168. 155. 149. 161. 169. 165. 162. 166. 170. 171. - 175. 173. 176. 181. 177. 169. 173. 184. 185. 188. 192. 196. 198. - 197. 196. 195. 200. 200. 202. 204. 207. 210. 212. 212. 207. 211. - 208. 187. 154. 119. 91. 76. 47. 42. 45. 38. 63. 79. 144. 178. 131. - 57. 71. 52. 63. 65. 56. 63. 56. 66. 69. 60. 51. 51. 55. 56. 53. 53. - 49. 44. 47. 70. 108. 139. 142. 130. 129. 143. 155. 157. 160. 166. - 162. 162. 162. 161. 161. 161. 160. 160. 164. 165. 165. 165. 163. - 161. 158. 157. 156. 155. 153. 151. 148. 146. 144. 143. 142. 142. - 143. 144. 144. 143. 142. 142. 146. 146. 147. 148. 149. 150. 151. - 151. 102. 102. 102. 101. 100. 99. 98. 97. 97. 97. 95. 90. 91. 102. - 123. 139. 150. 155. 163. 169. 172. 174. 176. 177. 176. 172. 175. - 171. 158. 148. 135. 113. 90. 79. 73. 80. 85. 86. 90. 98. 98. 100. - 102. 103. 102. 102. 103. 105. 102. 103. 104. 104. 105. 107. 111. - 114. 116. 113. 114. 121. 125. 121. 119. 124. 120. 132. 167. 101. - 124. 157. 163. 132. 120. 133. 127. 133. 127. 115. 106. 66. 54. 69. - 99. 47. 34. 47. 107. 88. 41. 37. 53. 50. 72. 78. 91. 75. 57. 46. 41. - 45. 47. 47. 54. 66. 33. 54. 91. 53. 51. 85. 60. 53. 45. 42. 138. - 139. 83. 146. 193. 158. 172. 180. 174. 158. 157. 174. 186. 185. 194. - 192. 175. 198. 191. 131. 115. 129. 140. 150. 158. 159. 161. 167. - 169. 167. 173. 173. 177. 181. 181. 178. 180. 184. 184. 187. 191. - 195. 196. 196. 194. 193. 195. 199. 203. 205. 205. 206. 209. 211. - 214. 216. 211. 190. 154. 112. 75. 53. 46. 40. 43. 39. 62. 74. 136. - 180. 137. 70. 68. 53. 63. 62. 58. 59. 62. 69. 70. 60. 50. 48. 51. - 51. 50. 52. 49. 45. 54. 83. 118. 140. 138. 130. 132. 146. 158. 159. - 160. 165. 162. 162. 161. 161. 160. 160. 160. 160. 163. 164. 164. - 164. 163. 160. 158. 157. 156. 155. 154. 152. 150. 148. 146. 146. - 144. 144. 145. 145. 144. 143. 142. 142. 142. 142. 143. 144. 144. - 145. 145. 146. 101. 102. 102. 102. 101. 100. 98. 98. 100. 99. 97. - 91. 91. 102. 122. 138. 149. 155. 163. 169. 173. 174. 176. 177. 176. - 173. 175. 171. 158. 149. 135. 114. 89. 78. 74. 81. 87. 87. 90. 97. - 98. 100. 103. 103. 102. 102. 103. 104. 102. 103. 104. 105. 105. 108. - 111. 115. 116. 115. 112. 123. 130. 112. 118. 159. 193. 149. 128. 49. - 55. 55. 72. 124. 128. 140. 122. 115. 121. 112. 92. 59. 67. 87. 85. - 38. 38. 59. 121. 81. 37. 42. 50. 47. 67. 62. 61. 56. 42. 47. 47. 43. - 46. 56. 60. 56. 39. 67. 92. 50. 66. 78. 52. 40. 48. 100. 147. 111. - 118. 184. 182. 160. 178. 181. 173. 158. 158. 175. 190. 193. 191. - 191. 173. 156. 118. 78. 84. 97. 122. 126. 131. 135. 145. 158. 169. - 172. 176. 179. 179. 176. 176. 179. 179. 176. 182. 185. 189. 193. - 195. 194. 192. 190. 196. 198. 200. 200. 199. 200. 204. 208. 202. - 198. 189. 171. 142. 106. 71. 50. 45. 37. 41. 41. 59. 67. 122. 183. - 145. 89. 63. 54. 64. 60. 62. 55. 65. 69. 68. 59. 50. 48. 49. 50. 49. - 53. 49. 46. 64. 101. 131. 141. 133. 130. 136. 152. 161. 160. 159. - 162. 161. 161. 160. 160. 160. 159. 159. 159. 162. 162. 163. 163. - 162. 160. 158. 156. 155. 155. 154. 153. 152. 151. 150. 149. 148. - 148. 147. 147. 146. 144. 143. 142. 140. 140. 140. 140. 140. 140. - 140. 140. 101. 102. 102. 102. 101. 100. 99. 99. 101. 101. 98. 92. - 91. 102. 121. 137. 149. 155. 163. 170. 173. 175. 175. 176. 177. 173. - 176. 172. 158. 149. 135. 114. 88. 78. 75. 83. 88. 88. 90. 96. 99. - 101. 103. 103. 102. 102. 103. 104. 102. 103. 104. 105. 105. 107. - 111. 115. 113. 125. 120. 120. 124. 108. 129. 195. 160. 85. 68. 33. - 37. 27. 60. 143. 176. 173. 130. 95. 93. 84. 62. 48. 88. 101. 66. 32. - 49. 74. 126. 69. 42. 50. 46. 46. 61. 51. 45. 56. 40. 48. 51. 46. 49. - 60. 70. 72. 45. 76. 96. 44. 75. 53. 44. 32. 86. 151. 103. 102. 175. - 177. 162. 174. 187. 178. 162. 151. 159. 179. 194. 197. 198. 192. - 160. 114. 86. 99. 117. 107. 103. 100. 95. 93. 101. 119. 140. 153. - 171. 181. 183. 176. 172. 176. 176. 171. 179. 182. 187. 191. 193. - 192. 189. 187. 195. 194. 195. 197. 201. 205. 208. 209. 210. 192. - 169. 145. 119. 88. 60. 44. 46. 37. 40. 43. 55. 62. 106. 184. 150. - 105. 59. 54. 64. 61. 66. 55. 64. 65. 62. 56. 51. 49. 51. 53. 52. 55. - 49. 46. 72. 116. 140. 140. 129. 131. 142. 157. 164. 162. 159. 159. - 160. 160. 159. 159. 158. 158. 158. 158. 160. 160. 161. 162. 161. - 159. 158. 156. 155. 155. 154. 154. 154. 153. 153. 153. 151. 151. - 151. 149. 148. 146. 144. 143. 141. 141. 140. 140. 139. 138. 138. - 137. 101. 102. 102. 102. 102. 101. 100. 100. 101. 101. 98. 92. 90. - 101. 120. 136. 148. 155. 163. 171. 174. 175. 175. 175. 177. 174. - 176. 172. 159. 150. 136. 115. 89. 79. 76. 83. 89. 88. 90. 96. 99. - 101. 103. 103. 102. 101. 102. 103. 101. 102. 103. 104. 104. 107. - 111. 114. 110. 127. 119. 114. 124. 120. 136. 184. 143. 77. 68. 50. - 40. 57. 111. 152. 169. 158. 120. 81. 76. 70. 55. 61. 95. 92. 45. 36. - 67. 87. 122. 72. 35. 45. 44. 58. 69. 61. 55. 78. 54. 50. 47. 47. 46. - 50. 67. 86. 60. 78. 66. 60. 62. 33. 38. 71. 144. 123. 106. 154. 175. - 164. 184. 180. 202. 180. 156. 152. 168. 188. 195. 192. 194. 148. - 126. 133. 144. 149. 142. 136. 114. 106. 91. 77. 68. 72. 86. 100. - 130. 152. 171. 176. 176. 179. 178. 173. 176. 179. 185. 190. 192. - 191. 188. 186. 189. 189. 193. 200. 206. 204. 193. 183. 155. 135. - 115. 104. 93. 77. 61. 53. 49. 40. 41. 43. 51. 61. 92. 182. 153. 116. - 60. 52. 62. 66. 66. 59. 66. 63. 58. 54. 51. 49. 51. 54. 57. 56. 48. - 49. 80. 125. 143. 136. 128. 134. 148. 160. 165. 162. 158. 158. 158. - 158. 158. 158. 157. 157. 156. 156. 157. 158. 159. 160. 160. 159. - 157. 156. 154. 154. 155. 155. 155. 155. 155. 155. 154. 154. 153. - 152. 150. 148. 146. 144. 142. 142. 140. 139. 137. 136. 134. 134. - 101. 101. 102. 102. 102. 102. 101. 101. 100. 100. 96. 91. 89. 100. - 120. 136. 148. 154. 164. 171. 174. 175. 175. 175. 178. 174. 176. - 173. 159. 150. 136. 115. 90. 79. 76. 83. 88. 88. 91. 98. 100. 102. - 104. 104. 102. 101. 102. 103. 100. 101. 102. 102. 103. 105. 109. - 112. 110. 118. 111. 115. 138. 142. 136. 142. 181. 104. 60. 54. 24. - 28. 102. 131. 119. 102. 91. 75. 73. 74. 68. 87. 85. 70. 38. 54. 82. - 85. 106. 94. 32. 38. 46. 73. 70. 60. 53. 77. 76. 55. 41. 42. 39. 36. - 52. 76. 89. 93. 38. 88. 41. 31. 47. 125. 149. 101. 156. 183. 158. - 175. 188. 191. 198. 173. 154. 162. 186. 199. 192. 180. 143. 117. - 125. 149. 162. 151. 137. 156. 156. 143. 125. 104. 84. 68. 64. 67. - 76. 103. 137. 161. 173. 177. 174. 170. 172. 177. 183. 190. 192. 192. - 189. 187. 190. 191. 192. 193. 186. 166. 140. 120. 94. 84. 82. 93. - 102. 98. 91. 88. 53. 47. 44. 41. 48. 65. 82. 177. 154. 121. 67. 51. - 57. 74. 61. 64. 71. 63. 55. 52. 50. 48. 48. 51. 59. 55. 49. 58. 92. - 130. 142. 133. 129. 139. 153. 162. 164. 161. 158. 157. 157. 157. - 157. 156. 156. 156. 155. 155. 155. 156. 158. 159. 159. 158. 157. - 156. 154. 154. 155. 155. 155. 155. 155. 155. 156. 156. 155. 154. - 152. 150. 148. 147. 143. 142. 140. 138. 135. 133. 131. 130. 101. - 101. 102. 103. 103. 102. 102. 101. 98. 98. 95. 89. 88. 99. 119. 135. - 147. 154. 164. 172. 175. 175. 175. 174. 178. 174. 177. 173. 159. - 150. 136. 115. 92. 80. 75. 81. 87. 88. 92. 99. 100. 102. 104. 104. - 102. 101. 101. 102. 98. 99. 101. 101. 101. 104. 108. 111. 111. 109. - 113. 131. 151. 154. 142. 131. 140. 105. 58. 93. 77. 44. 105. 127. - 128. 88. 82. 73. 62. 63. 66. 92. 76. 57. 54. 83. 87. 61. 71. 112. - 45. 40. 48. 80. 56. 45. 42. 63. 94. 64. 39. 37. 40. 37. 43. 54. 79. - 97. 45. 76. 32. 43. 91. 140. 123. 140. 181. 172. 168. 185. 179. 201. - 183. 165. 158. 176. 195. 190. 163. 140. 110. 122. 140. 133. 134. - 129. 116. 147. 166. 149. 131. 120. 110. 97. 86. 82. 73. 85. 110. - 139. 159. 165. 165. 165. 169. 174. 182. 189. 193. 193. 190. 188. - 192. 190. 183. 170. 148. 124. 102. 89. 114. 104. 104. 116. 120. 110. - 97. 93. 57. 55. 48. 39. 45. 70. 76. 172. 156. 123. 77. 49. 51. 80. - 51. 68. 72. 60. 51. 50. 50. 48. 49. 53. 57. 51. 51. 71. 107. 136. - 140. 130. 132. 144. 156. 162. 161. 159. 158. 158. 156. 156. 156. - 156. 155. 155. 154. 154. 153. 154. 156. 158. 158. 158. 157. 156. - 155. 155. 154. 154. 154. 154. 154. 154. 157. 157. 157. 156. 154. - 153. 151. 150. 147. 145. 143. 140. 137. 134. 132. 131. 101. 101. - 102. 103. 103. 103. 102. 102. 96. 96. 93. 88. 88. 99. 119. 135. 147. - 154. 164. 172. 175. 175. 175. 174. 178. 174. 177. 173. 160. 150. - 137. 115. 93. 81. 75. 81. 86. 88. 93. 101. 100. 102. 104. 104. 102. - 101. 101. 102. 97. 98. 100. 100. 100. 103. 107. 110. 112. 107. 124. - 149. 156. 154. 155. 152. 155. 190. 128. 140. 129. 91. 129. 117. 146. - 82. 71. 64. 51. 63. 81. 117. 76. 56. 75. 107. 85. 34. 39. 117. 61. - 45. 49. 80. 45. 38. 43. 67. 104. 72. 42. 37. 46. 49. 44. 40. 32. 76. - 62. 32. 32. 53. 141. 125. 123. 182. 174. 171. 182. 181. 199. 196. - 181. 168. 168. 185. 192. 166. 121. 88. 110. 105. 108. 103. 119. 106. - 69. 96. 136. 115. 99. 101. 111. 113. 109. 106. 111. 102. 106. 128. - 148. 156. 160. 165. 168. 173. 182. 189. 194. 194. 191. 189. 188. - 184. 171. 149. 126. 111. 109. 113. 105. 94. 92. 100. 101. 88. 76. - 73. 60. 60. 51. 38. 44. 74. 73. 168. 157. 124. 84. 49. 48. 83. 43. - 68. 68. 56. 47. 48. 51. 51. 53. 57. 54. 48. 54. 82. 118. 140. 139. - 129. 135. 146. 158. 162. 159. 157. 157. 158. 156. 156. 155. 155. - 155. 154. 154. 154. 152. 154. 155. 157. 158. 158. 157. 156. 155. - 155. 154. 154. 154. 153. 153. 153. 157. 157. 157. 157. 155. 154. - 152. 151. 151. 150. 147. 144. 141. 137. 135. 134. 99. 102. 103. 100. - 99. 102. 101. 97. 97. 96. 91. 85. 84. 96. 118. 135. 146. 155. 165. - 173. 175. 175. 177. 178. 178. 174. 175. 171. 158. 151. 139. 118. 92. - 77. 75. 81. 83. 90. 97. 95. 99. 100. 102. 104. 104. 102. 100. 99. - 99. 106. 94. 89. 118. 95. 106. 107. 125. 138. 142. 143. 152. 156. - 156. 161. 166. 163. 163. 167. 155. 118. 83. 70. 65. 46. 56. 64. 61. - 92. 114. 88. 63. 78. 76. 114. 60. 37. 34. 80. 90. 36. 46. 87. 47. - 40. 39. 55. 86. 102. 65. 31. 49. 52. 38. 50. 37. 49. 47. 46. 37. - 113. 141. 106. 168. 172. 173. 174. 183. 197. 202. 198. 182. 173. - 193. 198. 145. 94. 84. 89. 81. 103. 72. 50. 72. 60. 40. 67. 84. 54. - 53. 52. 83. 120. 113. 119. 121. 119. 120. 127. 138. 149. 156. 159. - 155. 176. 180. 184. 203. 201. 189. 192. 190. 173. 173. 136. 129. - 119. 66. 79. 60. 52. 50. 59. 66. 66. 65. 67. 70. 55. 44. 32. 47. 75. - 71. 168. 168. 111. 98. 58. 50. 70. 57. 66. 64. 56. 49. 49. 49. 49. - 52. 56. 51. 40. 55. 100. 136. 142. 134. 130. 141. 151. 159. 161. - 159. 159. 156. 152. 155. 155. 155. 155. 155. 155. 155. 155. 155. - 156. 156. 157. 157. 156. 156. 155. 152. 152. 152. 152. 153. 154. - 155. 156. 156. 157. 157. 157. 155. 151. 148. 146. 146. 146. 145. - 143. 141. 139. 137. 136. 97. 101. 101. 98. 98. 100. 99. 96. 96. 94. - 90. 83. 83. 95. 117. 134. 146. 155. 165. 173. 175. 175. 177. 178. - 178. 174. 175. 171. 158. 150. 138. 118. 93. 78. 75. 81. 81. 87. 94. - 92. 98. 99. 101. 102. 102. 101. 99. 98. 102. 95. 90. 95. 104. 84. - 111. 156. 149. 156. 152. 139. 143. 159. 155. 134. 144. 143. 119. - 119. 136. 97. 39. 28. 28. 45. 88. 93. 75. 108. 123. 71. 65. 81. 86. - 118. 61. 39. 38. 83. 65. 52. 49. 100. 38. 45. 33. 39. 59. 106. 98. - 52. 38. 40. 39. 46. 42. 34. 43. 23. 78. 137. 123. 134. 183. 179. - 177. 180. 191. 199. 197. 191. 186. 187. 184. 145. 90. 73. 77. 68. - 62. 50. 55. 59. 50. 54. 58. 43. 52. 38. 45. 48. 50. 65. 101. 152. - 128. 125. 124. 127. 135. 144. 151. 154. 160. 172. 182. 190. 197. - 193. 193. 202. 193. 189. 124. 87. 73. 62. 69. 45. 45. 46. 52. 59. - 60. 57. 60. 66. 61. 50. 44. 34. 47. 72. 65. 161. 171. 116. 98. 63. - 54. 73. 59. 67. 62. 54. 48. 49. 49. 49. 52. 56. 48. 39. 58. 105. - 138. 139. 131. 131. 145. 154. 160. 160. 158. 158. 156. 153. 155. - 155. 155. 155. 155. 155. 155. 155. 155. 155. 156. 157. 157. 156. - 155. 155. 152. 152. 152. 153. 153. 153. 153. 153. 154. 155. 155. - 154. 152. 149. 146. 144. 145. 145. 144. 143. 140. 138. 135. 134. 96. - 99. 99. 96. 96. 98. 97. 93. 94. 92. 87. 81. 80. 93. 115. 133. 146. - 155. 165. 173. 175. 175. 177. 178. 178. 173. 175. 170. 157. 149. - 137. 117. 93. 78. 75. 80. 80. 85. 92. 89. 97. 98. 99. 100. 100. 99. - 98. 97. 89. 102. 105. 93. 87. 118. 143. 172. 221. 150. 126. 152. - 156. 143. 153. 169. 150. 141. 83. 61. 92. 71. 31. 46. 47. 97. 91. - 72. 98. 101. 78. 83. 73. 86. 98. 119. 60. 41. 42. 82. 46. 75. 53. - 114. 37. 53. 37. 35. 40. 75. 108. 108. 76. 42. 36. 50. 48. 34. 34. - 47. 137. 136. 130. 182. 181. 171. 168. 180. 195. 200. 195. 188. 199. - 183. 148. 93. 54. 56. 62. 47. 45. 51. 47. 44. 48. 48. 50. 61. 96. - 83. 58. 45. 29. 29. 72. 109. 134. 131. 128. 129. 134. 141. 147. 150. - 163. 167. 184. 197. 195. 196. 204. 207. 178. 113. 83. 60. 48. 49. - 44. 65. 66. 57. 49. 49. 52. 55. 57. 60. 50. 45. 46. 38. 48. 68. 58. - 153. 172. 119. 95. 68. 57. 75. 60. 66. 58. 51. 47. 48. 50. 49. 51. - 55. 47. 42. 67. 117. 144. 137. 130. 136. 151. 157. 160. 158. 157. - 158. 157. 153. 154. 154. 154. 154. 154. 154. 154. 154. 154. 155. - 156. 156. 156. 156. 155. 154. 152. 152. 153. 154. 154. 152. 151. - 150. 152. 152. 152. 151. 149. 146. 143. 141. 141. 141. 142. 142. - 140. 138. 136. 134. 94. 98. 98. 95. 94. 96. 95. 91. 92. 90. 85. 78. - 78. 91. 114. 132. 146. 155. 165. 173. 175. 175. 177. 178. 178. 173. - 175. 170. 157. 148. 136. 116. 91. 76. 73. 79. 79. 86. 92. 90. 96. - 97. 98. 99. 99. 98. 97. 96. 91. 101. 98. 83. 83. 162. 184. 188. 179. - 135. 129. 149. 153. 159. 149. 114. 127. 120. 80. 55. 62. 45. 27. 44. - 103. 111. 64. 57. 101. 70. 38. 91. 89. 90. 105. 111. 54. 43. 43. 73. - 39. 79. 50. 109. 54. 54. 45. 40. 37. 44. 82. 110. 93. 67. 56. 49. - 34. 32. 21. 102. 148. 99. 153. 192. 176. 167. 167. 182. 196. 199. - 195. 192. 198. 147. 96. 72. 61. 52. 47. 45. 52. 64. 53. 39. 44. 44. - 59. 94. 164. 165. 113. 73. 43. 35. 63. 57. 129. 129. 129. 131. 136. - 141. 145. 148. 159. 163. 185. 199. 200. 212. 211. 186. 118. 40. 54. - 52. 51. 74. 70. 115. 127. 91. 52. 38. 47. 59. 58. 51. 46. 44. 48. - 41. 49. 67. 56. 151. 172. 122. 89. 73. 59. 76. 59. 61. 54. 49. 46. - 49. 51. 50. 50. 53. 49. 52. 83. 131. 151. 138. 133. 145. 157. 160. - 161. 157. 156. 157. 157. 153. 153. 153. 153. 153. 153. 153. 153. - 153. 154. 154. 155. 155. 155. 155. 154. 154. 151. 152. 154. 154. - 153. 151. 148. 147. 151. 150. 150. 149. 147. 144. 142. 140. 136. - 136. 138. 138. 138. 137. 136. 135. 95. 98. 98. 94. 93. 95. 94. 90. - 90. 88. 82. 76. 76. 89. 113. 131. 146. 155. 165. 173. 175. 175. 177. - 178. 179. 174. 175. 171. 157. 149. 136. 116. 89. 74. 72. 79. 81. 88. - 96. 94. 97. 98. 98. 98. 98. 98. 98. 97. 109. 85. 74. 85. 84. 155. - 196. 207. 161. 135. 135. 144. 145. 159. 146. 98. 144. 112. 82. 57. - 38. 41. 57. 61. 102. 55. 53. 84. 75. 46. 49. 70. 108. 92. 107. 98. - 46. 44. 42. 59. 34. 57. 41. 91. 86. 50. 47. 40. 39. 46. 57. 49. 46. - 77. 81. 38. 38. 38. 55. 145. 124. 119. 187. 174. 180. 178. 182. 193. - 201. 201. 196. 194. 156. 107. 68. 66. 66. 47. 41. 57. 77. 50. 60. - 64. 37. 51. 85. 82. 178. 202. 176. 136. 84. 56. 82. 85. 114. 117. - 123. 129. 134. 139. 143. 145. 154. 164. 185. 198. 208. 224. 199. - 138. 58. 56. 40. 45. 46. 74. 126. 121. 170. 126. 72. 43. 45. 55. 55. - 48. 48. 46. 51. 44. 51. 69. 57. 152. 174. 127. 85. 81. 63. 78. 60. - 59. 52. 47. 47. 50. 52. 50. 49. 50. 51. 63. 99. 140. 151. 138. 136. - 150. 160. 162. 160. 155. 155. 157. 156. 153. 153. 153. 153. 153. - 153. 153. 153. 153. 153. 153. 154. 154. 154. 154. 153. 153. 151. - 152. 153. 154. 153. 150. 147. 145. 150. 150. 149. 147. 145. 143. - 141. 140. 133. 133. 133. 133. 132. 132. 131. 131. 96. 99. 99. 95. - 94. 96. 94. 90. 89. 87. 81. 74. 74. 88. 112. 131. 146. 155. 165. - 173. 175. 175. 177. 178. 181. 176. 177. 172. 158. 149. 137. 116. 90. - 75. 74. 81. 83. 91. 99. 97. 100. 100. 100. 100. 100. 100. 100. 100. - 97. 94. 89. 92. 72. 122. 178. 156. 178. 147. 141. 152. 148. 145. - 143. 130. 150. 92. 58. 42. 33. 65. 100. 93. 56. 47. 61. 77. 61. 40. - 51. 73. 119. 92. 111. 89. 41. 46. 43. 49. 37. 40. 42. 76. 115. 56. - 46. 41. 46. 45. 48. 37. 30. 53. 62. 36. 51. 50. 107. 137. 104. 178. - 193. 151. 169. 179. 190. 198. 203. 202. 192. 181. 106. 97. 79. 68. - 60. 44. 45. 67. 98. 81. 73. 74. 71. 69. 70. 71. 192. 202. 202. 189. - 135. 81. 89. 116. 102. 107. 115. 122. 129. 134. 139. 143. 153. 170. - 188. 199. 214. 218. 168. 97. 68. 62. 68. 64. 57. 70. 93. 112. 171. - 142. 97. 59. 44. 45. 49. 49. 50. 47. 51. 45. 54. 71. 58. 150. 179. - 134. 83. 91. 69. 83. 63. 59. 51. 48. 48. 53. 54. 50. 48. 48. 50. 75. - 114. 142. 145. 135. 139. 152. 160. 161. 158. 154. 154. 157. 156. - 151. 152. 152. 152. 152. 152. 152. 152. 152. 152. 152. 153. 154. - 154. 153. 152. 152. 151. 151. 152. 152. 151. 149. 147. 146. 149. - 148. 147. 145. 143. 141. 139. 139. 133. 132. 130. 129. 129. 130. - 131. 132. 98. 101. 101. 97. 96. 97. 95. 91. 89. 86. 80. 73. 74. 88. - 113. 132. 146. 155. 165. 173. 175. 175. 177. 178. 182. 177. 178. - 173. 159. 150. 138. 117. 94. 79. 77. 84. 85. 93. 101. 98. 102. 102. - 102. 101. 101. 102. 102. 102. 90. 104. 95. 80. 53. 88. 164. 100. - 128. 170. 191. 172. 154. 146. 111. 63. 71. 44. 33. 45. 63. 84. 84. - 62. 39. 78. 67. 52. 67. 53. 50. 98. 120. 91. 121. 91. 41. 49. 46. - 46. 51. 42. 45. 58. 114. 64. 44. 50. 49. 39. 48. 59. 47. 33. 36. 43. - 43. 68. 114. 99. 117. 181. 162. 147. 164. 181. 193. 196. 198. 194. - 169. 139. 99. 112. 106. 93. 83. 61. 51. 67. 102. 121. 89. 69. 91. - 76. 70. 121. 214. 199. 207. 202. 162. 111. 89. 113. 103. 108. 113. - 119. 124. 131. 139. 145. 156. 176. 192. 207. 221. 200. 140. 90. 113. - 67. 95. 87. 82. 80. 62. 139. 165. 143. 104. 65. 44. 43. 47. 47. 48. - 44. 48. 45. 56. 73. 55. 143. 180. 138. 80. 96. 72. 85. 63. 58. 52. - 49. 50. 55. 56. 51. 47. 46. 53. 88. 128. 144. 139. 135. 144. 155. - 159. 159. 156. 153. 154. 157. 155. 150. 151. 151. 151. 151. 151. - 151. 151. 151. 151. 152. 153. 153. 153. 153. 152. 151. 151. 151. - 150. 150. 149. 148. 148. 148. 147. 146. 144. 141. 139. 138. 137. - 136. 132. 131. 130. 131. 135. 141. 147. 151. 99. 102. 102. 98. 97. - 98. 96. 92. 89. 86. 80. 73. 73. 88. 113. 132. 146. 155. 165. 173. - 175. 175. 177. 178. 183. 178. 179. 174. 160. 151. 138. 118. 97. 82. - 80. 86. 87. 93. 100. 98. 104. 104. 103. 103. 103. 103. 104. 104. - 115. 89. 56. 59. 43. 56. 163. 115. 159. 190. 215. 214. 178. 114. 59. - 41. 44. 45. 35. 46. 78. 84. 66. 57. 56. 68. 67. 67. 73. 70. 78. 105. - 117. 90. 130. 95. 44. 51. 50. 48. 62. 48. 42. 36. 92. 63. 38. 56. - 42. 48. 52. 47. 39. 38. 42. 44. 47. 109. 111. 97. 168. 161. 153. - 181. 180. 197. 205. 199. 194. 181. 138. 91. 123. 128. 123. 126. 123. - 85. 54. 62. 100. 106. 98. 77. 59. 67. 120. 184. 205. 197. 217. 196. - 161. 132. 102. 118. 112. 114. 117. 119. 123. 131. 141. 149. 158. - 179. 196. 217. 227. 187. 128. 103. 131. 119. 87. 84. 88. 82. 119. - 173. 172. 142. 96. 58. 45. 49. 49. 43. 45. 41. 46. 45. 58. 74. 52. - 137. 179. 138. 76. 97. 71. 84. 61. 54. 52. 50. 51. 56. 57. 51. 46. - 45. 56. 99. 138. 146. 137. 138. 149. 159. 158. 158. 155. 153. 154. - 157. 155. 149. 151. 151. 151. 151. 151. 151. 151. 151. 151. 152. - 152. 153. 153. 152. 152. 151. 151. 150. 149. 148. 148. 148. 149. - 149. 145. 143. 141. 139. 137. 135. 135. 134. 129. 129. 131. 136. - 145. 156. 167. 174. 102. 100. 98. 98. 98. 97. 95. 93. 91. 88. 81. - 73. 72. 87. 112. 132. 145. 157. 168. 172. 174. 178. 180. 178. 179. - 180. 177. 170. 162. 151. 133. 118. 101. 83. 81. 90. 92. 96. 104. - 105. 107. 107. 104. 112. 109. 104. 101. 77. 76. 51. 68. 63. 93. 119. - 150. 162. 171. 201. 233. 214. 151. 41. 67. 46. 41. 31. 49. 82. 93. - 87. 77. 67. 43. 66. 84. 94. 75. 102. 67. 121. 91. 87. 121. 107. 53. - 51. 54. 32. 55. 47. 44. 49. 53. 52. 53. 57. 49. 35. 49. 58. 38. 34. - 46. 39. 90. 143. 94. 154. 183. 155. 170. 183. 198. 193. 191. 200. - 182. 122. 99. 133. 118. 125. 135. 140. 134. 117. 94. 79. 104. 111. - 124. 125. 118. 138. 179. 205. 205. 201. 198. 181. 153. 139. 132. - 120. 135. 121. 114. 122. 129. 129. 133. 142. 158. 177. 200. 221. - 222. 179. 119. 86. 122. 128. 126. 105. 101. 138. 174. 178. 174. 135. - 92. 55. 52. 56. 45. 58. 47. 41. 52. 52. 69. 66. 57. 120. 171. 164. - 88. 80. 98. 71. 66. 54. 45. 53. 48. 44. 53. 53. 44. 41. 66. 112. - 140. 138. 136. 141. 150. 161. 156. 156. 155. 154. 154. 153. 152. - 152. 150. 149. 150. 154. 157. 158. 155. 151. 152. 152. 153. 153. - 153. 152. 151. 151. 148. 152. 151. 146. 145. 148. 145. 138. 137. - 141. 143. 141. 135. 130. 128. 128. 135. 143. 154. 161. 165. 169. - 176. 181. 103. 101. 100. 100. 100. 98. 95. 93. 90. 88. 82. 73. 73. - 87. 112. 132. 145. 156. 167. 172. 175. 178. 180. 179. 180. 181. 178. - 171. 163. 152. 134. 119. 101. 83. 81. 90. 92. 96. 104. 104. 110. - 109. 110. 110. 113. 101. 68. 43. 37. 58. 115. 131. 145. 163. 176. - 181. 180. 203. 169. 77. 49. 63. 104. 42. 58. 71. 101. 122. 114. 87. - 55. 29. 46. 86. 63. 81. 73. 89. 81. 113. 128. 53. 154. 116. 91. 45. - 75. 41. 46. 40. 39. 45. 50. 50. 51. 55. 45. 48. 58. 41. 33. 37. 36. - 58. 135. 113. 132. 187. 165. 160. 189. 180. 202. 196. 203. 173. 116. - 113. 134. 119. 125. 130. 138. 144. 143. 133. 119. 109. 105. 111. - 129. 139. 137. 147. 165. 171. 187. 185. 187. 180. 161. 148. 136. - 117. 131. 121. 117. 124. 128. 128. 132. 141. 158. 178. 200. 218. - 219. 185. 142. 124. 113. 127. 140. 138. 141. 164. 174. 159. 133. - 103. 77. 57. 64. 68. 51. 58. 51. 45. 55. 54. 71. 67. 57. 119. 170. - 166. 93. 81. 96. 71. 64. 52. 46. 49. 45. 46. 55. 53. 50. 56. 80. - 119. 140. 136. 137. 144. 153. 163. 156. 156. 155. 154. 153. 153. - 152. 152. 152. 152. 152. 155. 159. 159. 156. 153. 152. 152. 152. - 153. 152. 152. 151. 150. 147. 150. 148. 143. 142. 146. 145. 140. - 139. 140. 139. 136. 133. 133. 138. 143. 154. 161. 170. 176. 178. - 181. 187. 191. 103. 102. 101. 102. 102. 99. 95. 91. 88. 87. 82. 74. - 73. 86. 111. 131. 145. 156. 167. 172. 175. 178. 180. 179. 181. 182. - 180. 173. 165. 153. 136. 120. 101. 82. 81. 90. 92. 96. 103. 104. - 112. 110. 118. 108. 120. 108. 46. 30. 77. 104. 147. 153. 134. 147. - 147. 156. 178. 118. 70. 45. 41. 46. 84. 104. 102. 89. 84. 87. 76. - 53. 39. 38. 52. 104. 47. 83. 81. 62. 83. 112. 139. 82. 155. 100. 85. - 85. 76. 42. 43. 40. 40. 44. 48. 47. 47. 49. 46. 55. 55. 33. 35. 34. - 39. 101. 142. 92. 163. 196. 165. 171. 194. 192. 201. 210. 175. 114. - 95. 116. 131. 128. 133. 136. 140. 145. 147. 145. 139. 134. 120. 110. - 111. 114. 114. 125. 136. 134. 127. 132. 150. 165. 169. 172. 164. - 145. 127. 121. 122. 127. 128. 126. 131. 140. 153. 177. 202. 219. - 219. 192. 162. 154. 149. 149. 148. 137. 130. 137. 130. 104. 89. 74. - 67. 64. 78. 79. 54. 55. 51. 45. 56. 55. 71. 66. 54. 116. 169. 168. - 103. 83. 93. 69. 59. 50. 48. 45. 42. 51. 59. 52. 54. 74. 101. 128. - 139. 134. 139. 149. 156. 164. 156. 155. 155. 154. 153. 152. 152. - 152. 152. 152. 153. 155. 157. 157. 155. 153. 151. 152. 152. 152. - 151. 150. 149. 149. 146. 147. 145. 140. 139. 142. 143. 141. 138. - 137. 136. 133. 134. 142. 154. 164. 170. 175. 182. 185. 185. 186. - 190. 193. 103. 102. 102. 103. 102. 99. 93. 89. 85. 86. 82. 74. 71. - 84. 109. 130. 144. 156. 167. 172. 175. 179. 181. 179. 183. 184. 181. - 174. 166. 155. 137. 122. 100. 82. 80. 90. 91. 95. 103. 104. 110. - 109. 121. 103. 126. 128. 66. 73. 132. 138. 154. 160. 126. 135. 123. - 137. 111. 70. 56. 58. 48. 46. 67. 115. 111. 83. 73. 93. 95. 59. 32. - 38. 55. 100. 51. 96. 96. 50. 70. 111. 117. 127. 133. 90. 106. 111. - 50. 38. 48. 47. 47. 48. 48. 46. 45. 45. 52. 51. 37. 40. 38. 28. 72. - 139. 111. 115. 172. 170. 183. 176. 179. 205. 202. 177. 116. 88. 114. - 125. 122. 141. 139. 139. 141. 143. 145. 145. 142. 139. 154. 133. - 119. 112. 111. 123. 134. 132. 120. 125. 142. 156. 159. 161. 154. - 136. 124. 124. 127. 131. 128. 125. 129. 138. 147. 173. 201. 222. - 224. 197. 167. 158. 150. 141. 132. 119. 111. 118. 115. 95. 76. 71. - 78. 78. 87. 81. 53. 53. 46. 41. 53. 53. 69. 64. 51. 112. 168. 171. - 114. 85. 89. 68. 55. 49. 50. 43. 43. 57. 62. 47. 53. 85. 119. 135. - 136. 131. 141. 152. 157. 162. 155. 155. 154. 154. 153. 152. 151. - 151. 149. 150. 151. 152. 153. 153. 152. 151. 151. 151. 151. 151. - 150. 149. 148. 147. 144. 145. 145. 141. 139. 138. 137. 137. 131. - 134. 138. 141. 147. 158. 171. 181. 180. 183. 187. 187. 186. 186. - 187. 189. 102. 102. 101. 101. 100. 96. 91. 86. 83. 84. 81. 72. 68. - 81. 107. 129. 144. 155. 167. 172. 175. 179. 181. 180. 184. 185. 182. - 175. 167. 156. 138. 123. 100. 82. 80. 89. 91. 95. 103. 103. 110. - 109. 119. 98. 123. 142. 107. 135. 132. 126. 139. 149. 106. 90. 64. - 79. 84. 71. 61. 47. 39. 44. 48. 73. 137. 124. 108. 111. 113. 85. 61. - 66. 45. 81. 62. 87. 99. 78. 71. 94. 98. 119. 124. 117. 150. 80. 46. - 47. 47. 49. 50. 49. 47. 47. 46. 45. 49. 53. 28. 41. 31. 40. 122. - 139. 104. 157. 174. 155. 186. 178. 190. 203. 179. 106. 84. 110. 118. - 126. 140. 136. 144. 144. 144. 146. 147. 146. 143. 141. 154. 142. - 139. 138. 134. 137. 140. 133. 142. 144. 155. 158. 150. 149. 146. - 132. 125. 128. 133. 134. 129. 125. 128. 135. 147. 170. 195. 218. - 227. 203. 171. 160. 143. 139. 140. 136. 127. 128. 124. 108. 89. 90. - 99. 94. 93. 81. 54. 59. 44. 39. 53. 53. 70. 64. 50. 111. 166. 174. - 125. 86. 83. 66. 51. 50. 50. 44. 46. 61. 61. 41. 50. 89. 131. 139. - 133. 129. 143. 154. 156. 159. 155. 155. 154. 153. 152. 152. 151. - 151. 149. 150. 151. 151. 151. 151. 151. 151. 150. 150. 150. 150. - 149. 147. 146. 145. 143. 144. 145. 144. 139. 134. 131. 132. 128. - 137. 149. 159. 167. 175. 183. 189. 190. 191. 192. 191. 189. 188. - 188. 188. 101. 100. 99. 98. 96. 92. 87. 83. 82. 82. 78. 68. 63. 77. - 105. 129. 143. 155. 166. 172. 175. 179. 182. 181. 184. 185. 182. - 175. 167. 156. 138. 123. 99. 81. 79. 89. 91. 95. 102. 103. 110. 111. - 115. 97. 113. 137. 134. 165. 173. 153. 150. 132. 84. 65. 60. 85. 99. - 60. 32. 42. 65. 42. 40. 56. 85. 124. 139. 134. 132. 101. 56. 36. 33. - 65. 70. 64. 85. 112. 95. 81. 88. 110. 108. 136. 104. 68. 68. 59. 41. - 45. 47. 45. 44. 47. 49. 49. 42. 59. 35. 33. 31. 77. 149. 112. 126. - 171. 172. 170. 178. 189. 222. 181. 113. 90. 89. 112. 124. 128. 135. - 142. 149. 149. 151. 154. 156. 156. 154. 152. 145. 139. 144. 146. - 141. 144. 149. 143. 152. 153. 161. 163. 157. 160. 163. 153. 130. - 133. 137. 135. 130. 126. 128. 132. 152. 168. 187. 209. 224. 209. - 183. 173. 164. 156. 155. 149. 135. 128. 124. 113. 107. 107. 114. - 104. 98. 84. 59. 66. 45. 42. 56. 56. 72. 65. 50. 110. 165. 176. 135. - 86. 77. 65. 48. 53. 49. 45. 48. 60. 57. 37. 52. 96. 135. 138. 131. - 130. 147. 157. 154. 155. 154. 154. 154. 153. 152. 151. 151. 150. - 151. 152. 153. 153. 151. 151. 152. 153. 149. 149. 149. 149. 147. - 146. 144. 143. 143. 143. 144. 144. 138. 131. 130. 133. 137. 149. - 165. 178. 185. 188. 190. 191. 192. 192. 191. 190. 189. 188. 188. - 187. 100. 98. 95. 93. 92. 88. 84. 81. 80. 81. 76. 64. 59. 73. 103. - 129. 143. 154. 166. 171. 175. 180. 182. 181. 183. 184. 182. 175. - 167. 155. 138. 122. 99. 81. 79. 89. 90. 94. 102. 103. 111. 112. 111. - 103. 107. 123. 138. 152. 149. 124. 116. 78. 59. 67. 85. 101. 67. 61. - 38. 39. 84. 65. 82. 70. 92. 105. 90. 79. 89. 72. 45. 47. 37. 62. 77. - 62. 66. 100. 117. 107. 95. 105. 85. 113. 74. 85. 66. 55. 40. 46. 47. - 43. 42. 47. 51. 50. 47. 51. 44. 30. 61. 122. 134. 104. 153. 173. - 172. 191. 183. 201. 203. 126. 72. 106. 106. 106. 131. 130. 124. 149. - 153. 153. 154. 157. 161. 164. 164. 163. 166. 157. 157. 157. 152. - 160. 171. 171. 174. 169. 172. 170. 163. 162. 157. 142. 136. 139. - 139. 136. 131. 128. 128. 129. 151. 166. 184. 206. 223. 211. 190. - 184. 167. 154. 149. 145. 136. 135. 138. 133. 120. 115. 117. 108. - 105. 91. 61. 64. 48. 44. 58. 58. 72. 62. 45. 104. 164. 178. 141. 85. - 72. 64. 47. 56. 46. 46. 48. 55. 50. 38. 61. 110. 134. 137. 131. 134. - 152. 159. 154. 153. 154. 154. 153. 153. 152. 151. 150. 150. 150. - 152. 153. 152. 150. 149. 151. 153. 149. 149. 149. 148. 147. 145. - 143. 142. 143. 141. 141. 140. 135. 129. 133. 141. 157. 167. 182. - 191. 194. 193. 192. 191. 191. 190. 189. 188. 188. 188. 188. 187. - 100. 97. 93. 91. 88. 86. 82. 79. 80. 80. 74. 62. 56. 70. 102. 129. - 142. 154. 166. 171. 175. 180. 182. 181. 183. 184. 181. 174. 166. - 155. 137. 122. 99. 81. 79. 88. 90. 94. 102. 102. 109. 112. 109. 111. - 106. 113. 133. 129. 117. 102. 111. 78. 89. 101. 98. 71. 49. 52. 43. - 57. 98. 49. 101. 122. 115. 86. 56. 76. 104. 67. 27. 41. 50. 66. 82. - 81. 55. 60. 123. 149. 116. 78. 79. 82. 146. 87. 35. 41. 45. 51. 51. - 44. 41. 46. 50. 50. 58. 36. 45. 37. 99. 151. 105. 116. 172. 186. - 176. 200. 200. 202. 142. 63. 86. 93. 118. 127. 117. 128. 145. 138. - 155. 154. 154. 156. 160. 164. 165. 165. 173. 165. 166. 167. 163. - 167. 173. 168. 171. 164. 166. 169. 167. 167. 156. 135. 141. 142. - 140. 135. 131. 129. 128. 127. 144. 164. 186. 210. 224. 211. 189. - 183. 176. 161. 158. 159. 150. 143. 137. 126. 125. 116. 116. 108. - 109. 95. 60. 56. 49. 45. 58. 56. 69. 58. 39. 97. 164. 179. 145. 84. - 69. 64. 47. 58. 44. 46. 47. 50. 46. 41. 71. 122. 133. 136. 132. 137. - 156. 161. 154. 152. 154. 154. 153. 152. 152. 151. 150. 150. 148. - 150. 151. 149. 147. 146. 148. 151. 149. 149. 148. 147. 146. 144. - 143. 142. 144. 140. 137. 136. 132. 129. 137. 149. 173. 181. 191. - 197. 196. 193. 192. 191. 194. 192. 191. 191. 192. 192. 192. 192. 92. - 93. 94. 91. 86. 83. 83. 85. 82. 78. 72. 65. 62. 73. 101. 127. 140. - 152. 164. 169. 173. 178. 180. 179. 182. 183. 180. 173. 166. 156. - 140. 125. 99. 84. 76. 84. 95. 98. 99. 102. 107. 104. 103. 108. 117. - 121. 115. 106. 143. 135. 127. 138. 155. 139. 95. 62. 56. 60. 48. 78. - 104. 74. 121. 107. 111. 78. 73. 115. 92. 36. 40. 44. 45. 58. 106. - 125. 87. 69. 82. 82. 115. 98. 124. 144. 122. 73. 42. 62. 57. 44. 48. - 55. 44. 37. 46. 55. 50. 41. 44. 57. 143. 123. 97. 163. 169. 188. - 186. 194. 205. 166. 60. 77. 91. 105. 118. 121. 121. 127. 135. 141. - 145. 150. 156. 161. 164. 165. 166. 167. 173. 175. 173. 169. 168. - 172. 173. 170. 168. 170. 172. 172. 167. 159. 150. 144. 142. 139. - 135. 132. 130. 129. 128. 127. 141. 157. 184. 211. 221. 212. 192. - 178. 175. 169. 160. 151. 144. 140. 136. 133. 127. 127. 119. 115. - 112. 90. 65. 58. 47. 44. 59. 60. 65. 55. 43. 89. 159. 180. 160. 79. - 73. 46. 42. 63. 47. 44. 53. 56. 40. 47. 91. 131. 137. 130. 132. 146. - 159. 160. 156. 155. 153. 153. 152. 152. 152. 152. 151. 151. 151. - 152. 152. 151. 150. 149. 148. 147. 147. 146. 146. 145. 143. 142. - 142. 141. 138. 139. 137. 132. 130. 138. 155. 169. 189. 191. 195. - 198. 198. 196. 193. 191. 191. 190. 189. 188. 188. 189. 190. 191. 91. - 92. 92. 89. 85. 82. 82. 84. 77. 74. 69. 63. 60. 72. 101. 127. 141. - 153. 165. 170. 173. 178. 180. 179. 182. 183. 180. 173. 166. 155. - 139. 124. 100. 85. 77. 83. 91. 93. 95. 100. 104. 115. 127. 132. 134. - 139. 149. 156. 156. 170. 135. 99. 102. 90. 61. 55. 67. 62. 65. 82. - 93. 86. 125. 93. 89. 110. 110. 101. 61. 29. 40. 34. 56. 37. 50. 82. - 102. 117. 120. 103. 103. 130. 148. 104. 76. 100. 105. 96. 77. 51. - 43. 51. 49. 45. 45. 43. 51. 49. 40. 106. 136. 121. 114. 178. 179. - 186. 193. 197. 186. 68. 61. 73. 94. 107. 119. 122. 122. 127. 135. - 140. 145. 149. 155. 160. 162. 165. 167. 169. 174. 176. 175. 171. - 170. 174. 174. 172. 171. 172. 173. 171. 167. 159. 151. 146. 144. - 141. 137. 134. 131. 130. 128. 127. 137. 153. 181. 209. 221. 214. - 194. 179. 174. 168. 160. 152. 146. 141. 136. 133. 129. 130. 123. - 120. 116. 94. 68. 61. 49. 47. 60. 63. 68. 54. 41. 84. 157. 178. 159. - 94. 69. 46. 42. 58. 44. 44. 54. 53. 42. 57. 101. 134. 136. 132. 135. - 148. 159. 159. 156. 155. 153. 153. 152. 152. 152. 152. 151. 151. - 151. 151. 151. 151. 150. 149. 148. 147. 147. 147. 146. 145. 144. - 143. 142. 141. 138. 136. 133. 132. 137. 152. 170. 183. 190. 192. - 195. 197. 198. 196. 193. 191. 190. 190. 189. 189. 190. 191. 193. - 194. 89. 90. 89. 87. 83. 81. 81. 81. 73. 70. 66. 60. 59. 72. 101. - 128. 142. 154. 165. 171. 174. 178. 181. 180. 183. 183. 180. 173. - 165. 155. 138. 123. 99. 86. 78. 83. 89. 92. 98. 106. 122. 132. 143. - 145. 140. 138. 144. 151. 122. 89. 62. 66. 74. 62. 57. 71. 71. 50. - 75. 91. 86. 85. 114. 105. 114. 133. 102. 59. 42. 45. 52. 36. 39. 45. - 58. 68. 73. 83. 103. 119. 118. 75. 52. 40. 76. 141. 134. 88. 77. 49. - 38. 47. 49. 47. 47. 44. 43. 45. 56. 140. 127. 107. 144. 184. 184. - 200. 198. 197. 110. 29. 52. 88. 98. 111. 122. 123. 123. 128. 135. - 138. 145. 149. 153. 157. 161. 164. 169. 172. 175. 178. 177. 174. - 174. 176. 176. 173. 174. 174. 173. 171. 166. 159. 153. 149. 147. - 144. 140. 136. 132. 130. 129. 129. 133. 150. 178. 206. 222. 217. - 197. 180. 171. 167. 160. 154. 148. 142. 136. 132. 129. 131. 126. - 123. 119. 95. 68. 61. 50. 51. 61. 66. 72. 53. 40. 76. 156. 174. 155. - 116. 61. 46. 41. 52. 43. 47. 53. 47. 43. 70. 114. 137. 136. 135. - 140. 151. 158. 159. 156. 154. 153. 153. 153. 152. 152. 151. 151. - 151. 150. 151. 151. 150. 150. 148. 147. 146. 147. 147. 146. 146. - 144. 143. 141. 140. 139. 134. 130. 135. 149. 168. 184. 193. 192. - 193. 195. 197. 197. 195. 193. 191. 189. 189. 190. 191. 193. 195. - 197. 198. 86. 86. 85. 84. 81. 79. 79. 78. 73. 70. 65. 60. 58. 71. - 100. 127. 143. 155. 166. 171. 174. 178. 180. 179. 183. 183. 180. - 173. 165. 154. 137. 122. 96. 85. 80. 85. 91. 95. 105. 117. 131. 128. - 128. 134. 136. 128. 115. 106. 104. 49. 54. 88. 77. 63. 66. 59. 61. - 66. 93. 79. 79. 105. 116. 124. 121. 113. 68. 38. 49. 58. 52. 48. 51. - 52. 47. 50. 67. 74. 71. 72. 102. 35. 22. 48. 90. 133. 131. 111. 73. - 51. 46. 51. 45. 40. 47. 51. 35. 41. 104. 138. 122. 109. 179. 181. - 182. 207. 202. 133. 38. 53. 54. 100. 103. 114. 124. 125. 125. 129. - 134. 136. 145. 148. 151. 155. 158. 163. 169. 174. 175. 178. 179. - 177. 177. 179. 178. 174. 176. 175. 173. 169. 164. 158. 153. 150. - 148. 147. 143. 138. 133. 130. 129. 130. 134. 150. 177. 204. 222. - 220. 200. 180. 168. 165. 160. 156. 151. 144. 138. 133. 126. 130. - 126. 123. 117. 92. 65. 58. 49. 53. 58. 69. 76. 53. 40. 70. 155. 170. - 148. 135. 54. 43. 41. 48. 47. 51. 51. 39. 42. 83. 126. 139. 135. - 139. 147. 155. 158. 158. 155. 154. 154. 154. 153. 152. 152. 151. - 150. 150. 150. 150. 150. 150. 149. 148. 146. 146. 146. 146. 146. - 146. 144. 142. 140. 139. 138. 133. 132. 143. 162. 180. 191. 194. - 193. 194. 195. 196. 195. 194. 193. 192. 190. 190. 192. 194. 196. - 199. 201. 202. 84. 83. 81. 80. 79. 78. 76. 75. 75. 72. 66. 60. 58. - 70. 98. 125. 143. 155. 166. 171. 174. 178. 179. 178. 182. 182. 179. - 172. 165. 154. 137. 122. 95. 84. 79. 85. 91. 96. 106. 117. 112. 107. - 110. 123. 129. 118. 99. 86. 79. 93. 100. 90. 76. 67. 58. 47. 69. - 104. 104. 53. 79. 143. 125. 120. 70. 78. 69. 52. 52. 45. 37. 54. 53. - 48. 36. 41. 70. 83. 67. 51. 78. 48. 48. 55. 81. 124. 132. 122. 86. - 59. 47. 50. 43. 38. 42. 43. 34. 61. 145. 129. 111. 148. 198. 182. - 189. 197. 172. 43. 32. 55. 75. 91. 106. 116. 124. 125. 126. 130. - 134. 135. 144. 146. 149. 152. 156. 161. 168. 173. 173. 178. 180. - 178. 178. 180. 178. 174. 176. 175. 172. 168. 162. 156. 151. 149. - 147. 147. 144. 139. 133. 129. 129. 131. 137. 152. 175. 201. 221. - 223. 203. 180. 166. 164. 160. 156. 152. 146. 139. 134. 127. 131. - 127. 123. 115. 89. 62. 55. 47. 53. 53. 70. 79. 52. 42. 64. 154. 167. - 142. 146. 55. 40. 40. 45. 55. 55. 49. 35. 45. 93. 134. 138. 135. - 144. 154. 159. 158. 156. 155. 154. 154. 154. 153. 152. 152. 151. - 150. 150. 149. 149. 149. 149. 148. 147. 145. 145. 145. 146. 146. - 145. 144. 141. 138. 136. 130. 131. 138. 155. 175. 189. 193. 192. - 194. 194. 194. 194. 194. 194. 194. 194. 192. 193. 195. 198. 200. - 202. 204. 204. 81. 79. 77. 77. 77. 76. 74. 72. 75. 71. 66. 60. 57. - 69. 97. 124. 143. 154. 165. 170. 172. 176. 178. 177. 180. 181. 178. - 172. 165. 154. 138. 124. 97. 84. 78. 83. 90. 93. 99. 108. 104. 106. - 114. 121. 113. 95. 85. 85. 81. 116. 86. 68. 102. 78. 47. 84. 103. - 98. 70. 53. 91. 138. 107. 110. 58. 70. 75. 51. 42. 48. 44. 55. 43. - 55. 60. 51. 44. 53. 60. 58. 81. 48. 30. 37. 86. 133. 131. 127. 103. - 59. 31. 34. 40. 43. 41. 33. 41. 96. 144. 123. 107. 189. 193. 186. - 199. 185. 90. 32. 45. 51. 81. 85. 108. 117. 124. 125. 126. 130. 133. - 133. 142. 145. 148. 151. 154. 159. 165. 169. 171. 176. 179. 178. - 179. 180. 177. 172. 174. 173. 170. 166. 160. 154. 148. 145. 144. - 145. 143. 138. 131. 127. 128. 131. 138. 152. 172. 195. 217. 224. - 205. 180. 165. 163. 159. 156. 152. 147. 141. 137. 131. 134. 130. - 123. 113. 86. 60. 54. 46. 55. 49. 70. 81. 50. 42. 58. 152. 166. 139. - 153. 68. 40. 40. 43. 60. 56. 48. 39. 55. 104. 139. 137. 134. 148. - 161. 162. 158. 155. 154. 153. 155. 154. 154. 153. 151. 150. 150. - 149. 148. 148. 148. 148. 147. 146. 145. 144. 143. 144. 145. 144. - 142. 139. 135. 133. 123. 132. 148. 168. 186. 195. 196. 194. 194. - 193. 193. 193. 193. 194. 195. 196. 196. 197. 199. 201. 203. 204. - 205. 205. 79. 77. 74. 74. 75. 75. 73. 70. 71. 68. 63. 58. 56. 68. - 97. 124. 142. 153. 164. 169. 171. 175. 176. 175. 178. 179. 177. 171. - 165. 155. 139. 125. 98. 83. 75. 82. 91. 94. 97. 103. 111. 112. 117. - 118. 104. 90. 93. 107. 128. 108. 75. 90. 121. 86. 64. 111. 102. 65. - 45. 65. 75. 110. 103. 101. 92. 70. 66. 44. 40. 60. 55. 55. 59. 52. - 53. 46. 39. 57. 62. 38. 67. 49. 41. 56. 100. 116. 114. 153. 135. 81. - 40. 32. 36. 40. 41. 34. 62. 126. 125. 115. 139. 197. 189. 196. 193. - 131. 31. 58. 48. 57. 71. 91. 108. 116. 123. 124. 126. 131. 133. 133. - 141. 143. 147. 150. 153. 156. 161. 165. 168. 174. 178. 178. 178. - 179. 176. 170. 171. 170. 168. 164. 158. 151. 145. 141. 140. 142. - 141. 136. 129. 126. 128. 131. 136. 148. 165. 187. 213. 224. 208. - 182. 165. 162. 159. 155. 152. 148. 143. 139. 132. 135. 129. 120. - 108. 80. 55. 51. 48. 58. 46. 69. 80. 46. 40. 52. 148. 166. 141. 158. - 90. 43. 41. 41. 61. 54. 49. 49. 71. 116. 143. 137. 134. 151. 166. - 165. 158. 155. 154. 153. 155. 155. 154. 153. 151. 150. 149. 149. - 148. 148. 148. 147. 147. 145. 144. 143. 141. 142. 143. 143. 141. - 137. 133. 131. 127. 142. 163. 182. 192. 196. 197. 197. 193. 192. - 192. 192. 193. 195. 197. 199. 200. 201. 203. 204. 205. 205. 204. - 204. 78. 76. 73. 73. 75. 75. 72. 69. 67. 64. 60. 55. 55. 68. 98. - 125. 141. 152. 163. 168. 170. 174. 175. 174. 177. 178. 176. 171. - 165. 156. 140. 126. 96. 81. 74. 83. 95. 99. 101. 105. 107. 102. 104. - 111. 113. 115. 131. 151. 108. 68. 87. 111. 84. 79. 104. 105. 60. 60. - 65. 63. 33. 109. 139. 88. 102. 58. 63. 60. 50. 56. 47. 51. 44. 38. - 50. 51. 43. 68. 80. 49. 47. 52. 45. 50. 99. 110. 86. 112. 178. 124. - 76. 51. 34. 30. 37. 40. 87. 144. 118. 107. 187. 187. 198. 208. 177. - 50. 36. 45. 57. 51. 68. 93. 108. 116. 122. 124. 126. 131. 133. 132. - 140. 143. 147. 150. 152. 155. 159. 162. 166. 172. 176. 177. 177. - 178. 174. 169. 168. 168. 166. 163. 157. 150. 143. 138. 138. 140. - 140. 135. 128. 124. 127. 131. 132. 144. 160. 182. 210. 224. 209. - 184. 166. 162. 158. 154. 151. 148. 144. 141. 130. 133. 126. 116. - 103. 75. 50. 46. 51. 61. 45. 69. 79. 42. 38. 47. 145. 167. 144. 162. - 106. 47. 41. 39. 59. 51. 50. 58. 84. 125. 146. 136. 133. 153. 169. - 167. 158. 154. 154. 153. 156. 155. 154. 153. 151. 150. 149. 148. - 147. 147. 147. 147. 146. 145. 144. 143. 140. 141. 142. 142. 140. - 136. 132. 129. 137. 154. 176. 191. 195. 194. 195. 197. 192. 192. - 191. 191. 192. 195. 198. 200. 203. 204. 205. 206. 206. 205. 204. - 203. 77. 76. 74. 74. 76. 76. 75. 73. 70. 67. 63. 56. 53. 67. 99. - 128. 143. 152. 161. 167. 171. 175. 174. 169. 176. 177. 174. 168. - 162. 153. 138. 124. 107. 73. 77. 69. 99. 135. 101. 93. 107. 109. - 114. 134. 155. 138. 93. 65. 47. 103. 119. 119. 71. 124. 100. 46. 41. - 105. 58. 83. 51. 122. 139. 105. 131. 63. 53. 40. 72. 58. 65. 41. 59. - 32. 47. 51. 39. 56. 68. 61. 53. 47. 62. 60. 104. 130. 127. 68. 111. - 156. 148. 42. 42. 43. 19. 58. 138. 117. 114. 134. 202. 197. 197. - 216. 76. 45. 37. 50. 64. 47. 81. 91. 102. 109. 119. 125. 127. 129. - 131. 134. 137. 141. 146. 150. 152. 155. 159. 161. 161. 167. 173. - 176. 174. 171. 170. 171. 172. 167. 163. 163. 160. 151. 140. 134. - 136. 134. 133. 131. 127. 123. 124. 127. 134. 138. 157. 183. 205. - 223. 214. 185. 161. 160. 157. 151. 147. 145. 141. 137. 136. 129. - 126. 120. 96. 63. 46. 47. 55. 60. 51. 74. 82. 44. 33. 48. 133. 167. - 135. 141. 130. 54. 34. 45. 55. 55. 39. 52. 106. 138. 137. 136. 144. - 152. 161. 164. 161. 156. 155. 155. 153. 153. 152. 151. 150. 150. - 149. 148. 147. 147. 146. 145. 145. 144. 143. 143. 141. 144. 142. - 137. 136. 136. 133. 126. 146. 169. 188. 192. 192. 197. 196. 189. - 193. 193. 193. 194. 196. 199. 202. 204. 208. 208. 208. 207. 205. - 203. 201. 200. 79. 77. 75. 75. 75. 74. 72. 70. 69. 66. 61. 55. 52. - 65. 97. 127. 142. 152. 161. 167. 171. 175. 174. 170. 176. 177. 175. - 168. 162. 153. 138. 124. 95. 68. 80. 79. 107. 135. 96. 83. 121. 138. - 153. 155. 131. 82. 50. 53. 88. 122. 140. 106. 99. 81. 70. 43. 68. - 98. 86. 79. 80. 131. 128. 115. 105. 96. 53. 58. 63. 46. 63. 45. 41. - 39. 37. 48. 44. 62. 96. 71. 87. 52. 68. 79. 115. 156. 163. 88. 57. - 129. 157. 58. 33. 33. 36. 87. 120. 132. 113. 163. 202. 212. 205. - 141. 53. 33. 36. 57. 73. 49. 74. 80. 102. 109. 119. 125. 127. 128. - 131. 134. 137. 141. 145. 149. 152. 154. 158. 160. 161. 165. 169. - 171. 172. 171. 170. 170. 170. 167. 164. 162. 157. 150. 141. 135. - 135. 134. 133. 131. 127. 123. 123. 125. 133. 138. 157. 181. 203. - 223. 219. 195. 161. 159. 155. 151. 147. 144. 140. 137. 133. 129. - 126. 117. 91. 59. 44. 46. 56. 63. 54. 76. 83. 46. 34. 47. 120. 164. - 143. 147. 131. 55. 34. 47. 53. 50. 42. 64. 115. 141. 136. 135. 147. - 154. 161. 163. 159. 155. 154. 155. 154. 153. 153. 152. 151. 150. - 149. 149. 147. 147. 146. 146. 145. 144. 143. 143. 142. 142. 141. - 139. 136. 133. 132. 133. 155. 175. 191. 193. 193. 197. 196. 191. - 192. 193. 194. 196. 199. 201. 203. 204. 208. 208. 207. 207. 205. - 203. 202. 201. 81. 79. 76. 75. 74. 73. 70. 68. 67. 64. 59. 52. 49. - 63. 96. 125. 141. 151. 162. 167. 171. 175. 174. 171. 176. 177. 175. - 169. 163. 153. 138. 124. 96. 71. 76. 74. 101. 133. 117. 117. 144. - 135. 131. 135. 115. 68. 51. 72. 114. 129. 103. 102. 92. 75. 42. 63. - 91. 95. 115. 71. 108. 133. 114. 129. 85. 131. 52. 68. 60. 47. 62. - 46. 27. 47. 31. 49. 53. 73. 122. 83. 71. 45. 82. 108. 129. 179. 193. - 110. 40. 88. 125. 57. 30. 26. 50. 107. 134. 128. 125. 189. 206. 220. - 153. 43. 37. 26. 36. 61. 81. 53. 71. 79. 102. 109. 118. 125. 127. - 128. 131. 133. 136. 140. 144. 148. 150. 153. 156. 159. 161. 161. - 162. 165. 168. 170. 170. 168. 168. 167. 164. 160. 154. 147. 141. - 136. 132. 133. 133. 130. 126. 123. 122. 122. 130. 135. 154. 176. - 196. 220. 224. 207. 161. 158. 153. 150. 147. 143. 139. 136. 130. - 129. 125. 112. 83. 54. 42. 46. 55. 65. 58. 78. 84. 47. 34. 45. 104. - 160. 154. 153. 133. 60. 35. 48. 49. 44. 46. 80. 127. 143. 136. 136. - 152. 156. 160. 160. 157. 153. 153. 154. 154. 154. 153. 152. 152. - 151. 150. 150. 147. 147. 147. 146. 145. 144. 144. 143. 143. 139. - 139. 141. 135. 129. 133. 144. 168. 183. 195. 195. 193. 196. 196. - 192. 192. 194. 197. 200. 203. 204. 205. 205. 207. 207. 207. 207. - 206. 204. 203. 202. 81. 78. 76. 75. 74. 73. 70. 68. 66. 62. 56. 49. - 46. 61. 94. 124. 140. 151. 162. 167. 171. 174. 174. 172. 176. 177. - 176. 170. 164. 154. 138. 123. 99. 77. 75. 68. 87. 120. 126. 140. - 144. 112. 98. 118. 121. 84. 67. 90. 122. 108. 67. 90. 82. 85. 58. - 84. 88. 104. 119. 66. 113. 119. 110. 143. 77. 130. 54. 48. 56. 55. - 55. 39. 33. 47. 36. 52. 61. 80. 115. 88. 56. 73. 113. 115. 116. 164. - 184. 127. 51. 53. 78. 44. 29. 25. 70. 135. 127. 97. 160. 203. 206. - 194. 81. 38. 37. 31. 37. 60. 84. 56. 74. 88. 101. 109. 118. 124. - 126. 128. 130. 133. 135. 139. 143. 146. 149. 151. 154. 157. 159. - 157. 156. 159. 164. 168. 168. 166. 165. 166. 164. 157. 150. 145. - 140. 134. 127. 131. 132. 129. 125. 123. 121. 118. 129. 134. 151. - 169. 188. 214. 225. 214. 163. 157. 152. 151. 149. 144. 139. 137. - 129. 130. 124. 104. 74. 49. 43. 47. 52. 67. 61. 77. 82. 47. 34. 41. - 94. 157. 160. 154. 135. 70. 38. 45. 46. 39. 52. 96. 135. 142. 137. - 139. 156. 158. 159. 157. 154. 152. 152. 153. 154. 153. 153. 153. - 152. 152. 151. 151. 148. 148. 147. 146. 145. 145. 144. 144. 143. - 137. 138. 141. 135. 127. 138. 158. 180. 190. 196. 195. 192. 194. - 195. 193. 193. 196. 200. 204. 207. 207. 206. 206. 207. 207. 207. - 207. 206. 205. 204. 203. 80. 78. 76. 75. 75. 75. 73. 71. 65. 61. 55. - 47. 44. 59. 92. 123. 138. 151. 163. 168. 170. 173. 175. 174. 176. - 178. 176. 171. 165. 155. 138. 123. 92. 80. 78. 73. 80. 98. 106. 120. - 120. 110. 118. 140. 128. 75. 56. 83. 115. 82. 95. 81. 93. 72. 93. - 80. 74. 120. 98. 69. 102. 99. 116. 153. 75. 98. 74. 23. 46. 50. 45. - 42. 49. 41. 45. 52. 63. 79. 86. 84. 77. 124. 125. 81. 68. 108. 119. - 97. 42. 41. 59. 34. 30. 42. 99. 149. 118. 123. 204. 205. 186. 111. - 25. 51. 40. 37. 40. 62. 91. 60. 73. 89. 101. 108. 118. 124. 126. - 127. 130. 133. 134. 137. 142. 145. 147. 149. 152. 155. 157. 154. - 153. 155. 161. 165. 165. 164. 162. 165. 162. 153. 147. 144. 136. - 128. 122. 129. 133. 129. 126. 125. 122. 116. 131. 136. 151. 167. - 185. 212. 226. 218. 166. 157. 151. 152. 151. 144. 138. 137. 129. - 130. 120. 94. 64. 47. 45. 49. 48. 68. 63. 75. 78. 47. 34. 39. 88. - 153. 162. 150. 138. 85. 43. 41. 43. 38. 62. 109. 137. 140. 140. 144. - 159. 159. 158. 155. 153. 151. 151. 152. 153. 153. 152. 152. 152. - 152. 151. 151. 148. 148. 147. 147. 146. 145. 144. 144. 143. 137. - 136. 140. 134. 130. 146. 171. 188. 193. 196. 194. 191. 192. 193. - 193. 195. 198. 203. 207. 209. 208. 207. 205. 206. 206. 207. 207. - 207. 206. 205. 205. 81. 79. 77. 76. 77. 77. 75. 73. 64. 60. 53. 45. - 43. 58. 92. 122. 137. 151. 164. 168. 170. 173. 175. 175. 175. 178. - 177. 172. 166. 155. 138. 123. 93. 81. 72. 73. 82. 94. 107. 117. 109. - 112. 123. 135. 116. 71. 60. 89. 80. 81. 115. 100. 78. 70. 93. 72. - 79. 124. 70. 75. 100. 83. 120. 156. 85. 70. 107. 29. 43. 46. 48. 58. - 56. 41. 45. 47. 61. 77. 72. 83. 98. 150. 134. 87. 69. 88. 72. 58. - 38. 42. 45. 26. 57. 90. 118. 110. 117. 161. 185. 178. 158. 54. 23. - 27. 37. 39. 42. 66. 102. 66. 68. 81. 100. 108. 117. 123. 126. 127. - 130. 132. 133. 136. 141. 144. 145. 147. 150. 153. 154. 153. 153. - 155. 158. 161. 162. 162. 160. 163. 158. 150. 146. 143. 132. 118. - 119. 129. 135. 132. 130. 131. 126. 119. 133. 137. 151. 167. 185. - 213. 228. 219. 166. 155. 148. 151. 151. 143. 137. 136. 129. 129. - 113. 80. 53. 45. 48. 51. 45. 69. 64. 72. 75. 47. 36. 40. 77. 145. - 163. 148. 142. 101. 49. 40. 38. 41. 77. 122. 138. 139. 144. 147. - 160. 158. 157. 154. 153. 152. 151. 151. 151. 151. 151. 151. 151. - 151. 151. 151. 149. 148. 148. 147. 146. 145. 145. 145. 142. 138. - 135. 135. 133. 138. 158. 181. 193. 195. 195. 194. 192. 191. 192. - 193. 198. 201. 204. 207. 209. 208. 206. 205. 205. 206. 207. 207. - 208. 207. 207. 206. 84. 82. 80. 78. 78. 77. 74. 72. 64. 60. 53. 45. - 42. 57. 92. 123. 136. 150. 164. 169. 169. 172. 175. 176. 175. 178. - 177. 173. 167. 156. 138. 123. 97. 82. 69. 82. 103. 115. 122. 120. - 107. 111. 110. 107. 96. 75. 75. 99. 65. 99. 110. 102. 67. 78. 73. - 66. 106. 108. 46. 75. 113. 77. 114. 149. 106. 56. 116. 52. 48. 51. - 62. 61. 51. 53. 38. 41. 62. 80. 94. 94. 89. 128. 135. 127. 92. 88. - 62. 49. 43. 39. 35. 47. 115. 140. 135. 101. 110. 145. 145. 160. 129. - 55. 49. 34. 39. 42. 41. 67. 109. 72. 68. 80. 100. 108. 117. 123. - 125. 127. 129. 132. 132. 135. 140. 142. 144. 146. 149. 151. 152. - 153. 156. 156. 157. 157. 159. 161. 160. 161. 155. 147. 145. 143. - 128. 108. 119. 132. 139. 136. 135. 138. 133. 124. 129. 131. 145. - 163. 184. 213. 227. 216. 165. 151. 144. 149. 150. 141. 134. 134. - 128. 125. 103. 67. 43. 42. 49. 50. 44. 70. 65. 70. 73. 49. 40. 43. - 59. 136. 167. 150. 147. 113. 55. 42. 33. 46. 93. 136. 141. 141. 149. - 149. 159. 157. 156. 154. 153. 152. 151. 150. 149. 150. 150. 150. - 150. 150. 150. 150. 149. 149. 148. 147. 146. 146. 145. 145. 141. - 139. 135. 131. 133. 147. 170. 188. 196. 195. 195. 195. 194. 193. - 194. 195. 202. 203. 205. 207. 208. 207. 205. 204. 205. 205. 206. - 207. 208. 208. 208. 207. 88. 85. 82. 80. 79. 76. 73. 71. 65. 60. 53. - 45. 42. 57. 92. 123. 136. 150. 164. 169. 169. 172. 175. 176. 175. - 178. 178. 173. 167. 156. 138. 123. 92. 81. 76. 106. 134. 133. 118. - 94. 98. 118. 123. 108. 85. 64. 66. 88. 91. 114. 121. 66. 94. 68. 70. - 56. 132. 87. 34. 71. 127. 75. 103. 140. 120. 46. 99. 64. 52. 58. 69. - 45. 44. 68. 31. 38. 65. 85. 124. 107. 51. 67. 96. 116. 57. 42. 33. - 32. 36. 30. 42. 91. 165. 161. 157. 155. 138. 144. 172. 184. 96. 44. - 28. 45. 46. 46. 40. 64. 110. 76. 72. 87. 100. 107. 117. 123. 125. - 127. 129. 132. 132. 135. 139. 142. 143. 145. 148. 150. 150. 154. - 158. 158. 156. 155. 157. 160. 159. 159. 153. 145. 145. 144. 125. - 102. 120. 134. 142. 140. 140. 143. 138. 128. 123. 124. 139. 158. - 181. 212. 224. 212. 163. 149. 141. 147. 148. 139. 131. 132. 127. - 122. 97. 59. 37. 40. 49. 49. 44. 72. 67. 70. 73. 50. 43. 45. 45. - 130. 170. 154. 151. 120. 59. 45. 29. 50. 105. 145. 144. 144. 153. - 149. 158. 157. 155. 154. 154. 153. 151. 150. 148. 148. 149. 149. - 149. 149. 149. 149. 149. 149. 148. 147. 147. 146. 145. 145. 140. - 140. 135. 128. 132. 153. 177. 191. 197. 196. 196. 197. 196. 195. - 195. 197. 204. 205. 206. 207. 206. 205. 204. 203. 204. 205. 206. - 207. 208. 208. 208. 208. 86. 81. 76. 76. 79. 79. 75. 70. 62. 66. 61. - 46. 43. 66. 101. 125. 142. 150. 161. 168. 170. 170. 171. 173. 176. - 180. 180. 174. 166. 155. 139. 125. 107. 104. 105. 109. 104. 95. 96. - 104. 100. 115. 116. 108. 93. 63. 62. 98. 110. 100. 98. 85. 66. 50. - 59. 104. 120. 75. 54. 42. 119. 82. 86. 142. 143. 53. 94. 124. 44. - 51. 49. 44. 58. 71. 46. 42. 44. 71. 52. 41. 40. 46. 89. 101. 86. 38. - 34. 35. 51. 33. 11. 155. 164. 174. 169. 174. 176. 190. 172. 111. 56. - 37. 37. 35. 44. 41. 40. 67. 96. 83. 68. 85. 101. 109. 119. 126. 128. - 128. 129. 130. 132. 135. 139. 141. 143. 144. 147. 149. 152. 152. - 151. 152. 153. 156. 158. 159. 159. 158. 155. 150. 146. 139. 125. - 111. 125. 138. 139. 124. 118. 128. 136. 133. 115. 125. 133. 145. - 174. 204. 209. 196. 150. 147. 150. 148. 142. 145. 140. 122. 129. - 113. 68. 39. 44. 46. 45. 57. 54. 58. 77. 60. 71. 48. 41. 44. 46. - 116. 169. 159. 138. 134. 61. 43. 38. 45. 115. 149. 143. 145. 144. - 160. 159. 158. 156. 154. 152. 151. 151. 150. 150. 151. 151. 151. - 151. 150. 149. 148. 148. 148. 147. 146. 144. 143. 142. 142. 136. - 138. 133. 127. 138. 165. 185. 190. 199. 197. 194. 192. 192. 195. - 198. 201. 204. 203. 203. 204. 204. 206. 207. 208. 206. 207. 209. - 210. 210. 209. 207. 207. 86. 83. 80. 79. 81. 80. 77. 74. 63. 67. 63. - 51. 49. 71. 104. 127. 144. 152. 162. 169. 171. 171. 172. 174. 176. - 180. 180. 174. 166. 155. 139. 126. 105. 90. 80. 82. 85. 87. 93. 101. - 100. 117. 113. 99. 90. 74. 73. 93. 91. 126. 106. 88. 66. 37. 80. - 148. 86. 71. 67. 48. 109. 97. 85. 130. 172. 82. 67. 133. 49. 48. 51. - 74. 60. 62. 44. 29. 46. 49. 56. 73. 58. 120. 136. 56. 24. 36. 62. - 45. 29. 26. 64. 174. 162. 189. 187. 183. 190. 156. 104. 57. 32. 28. - 36. 43. 47. 43. 41. 68. 98. 86. 73. 90. 100. 108. 117. 123. 124. - 125. 127. 129. 132. 135. 139. 142. 144. 145. 148. 150. 151. 151. - 151. 152. 153. 155. 158. 159. 158. 158. 155. 150. 147. 141. 128. - 116. 135. 130. 106. 72. 61. 77. 95. 101. 121. 125. 126. 135. 162. - 191. 193. 178. 155. 148. 149. 147. 140. 140. 137. 124. 125. 96. 56. - 39. 44. 47. 46. 51. 56. 61. 74. 59. 69. 49. 45. 48. 39. 103. 164. - 160. 133. 136. 69. 41. 49. 63. 126. 150. 141. 145. 146. 159. 159. - 158. 156. 154. 152. 151. 151. 150. 150. 150. 151. 151. 150. 150. - 149. 148. 148. 148. 147. 145. 144. 143. 142. 142. 138. 139. 133. - 130. 144. 171. 189. 192. 199. 197. 195. 194. 194. 197. 201. 203. - 204. 204. 204. 204. 205. 206. 208. 209. 207. 208. 209. 210. 209. - 208. 207. 206. 84. 83. 82. 80. 79. 78. 76. 76. 64. 68. 66. 58. 59. - 79. 109. 130. 146. 154. 164. 170. 171. 172. 173. 175. 176. 180. 180. - 175. 167. 156. 140. 126. 105. 83. 66. 70. 83. 91. 97. 102. 104. 119. - 112. 93. 86. 84. 84. 91. 92. 141. 109. 79. 42. 32. 104. 128. 66. 77. - 85. 58. 94. 115. 86. 123. 160. 113. 53. 143. 62. 44. 43. 69. 57. 72. - 62. 21. 42. 31. 47. 68. 72. 129. 133. 59. 43. 44. 48. 29. 30. 40. - 96. 164. 172. 195. 180. 188. 191. 120. 49. 26. 33. 37. 39. 43. 49. - 44. 43. 71. 102. 92. 78. 95. 103. 109. 117. 121. 123. 124. 127. 130. - 132. 135. 139. 142. 144. 146. 149. 152. 150. 150. 150. 151. 153. - 155. 157. 158. 157. 158. 156. 152. 149. 145. 134. 123. 135. 133. - 116. 93. 86. 98. 106. 105. 107. 109. 111. 122. 152. 180. 182. 167. - 160. 148. 147. 147. 138. 135. 135. 128. 116. 74. 45. 43. 46. 49. 51. - 48. 58. 67. 72. 60. 66. 49. 49. 51. 34. 87. 160. 165. 130. 140. 82. - 40. 61. 87. 139. 151. 140. 146. 150. 157. 158. 157. 155. 154. 152. - 151. 151. 150. 150. 150. 151. 151. 150. 149. 148. 148. 148. 147. - 146. 145. 144. 143. 142. 141. 140. 138. 132. 134. 152. 179. 193. - 194. 198. 197. 196. 196. 198. 201. 204. 206. 206. 205. 205. 206. - 206. 208. 209. 210. 209. 209. 210. 210. 209. 208. 207. 206. 79. 80. - 80. 79. 76. 74. 74. 75. 65. 68. 68. 66. 70. 88. 114. 134. 148. 155. - 164. 169. 170. 171. 172. 174. 176. 180. 180. 175. 167. 157. 141. - 127. 102. 82. 70. 79. 93. 99. 100. 101. 110. 117. 113. 96. 82. 77. - 82. 92. 75. 94. 75. 53. 37. 83. 141. 92. 71. 85. 90. 63. 78. 119. - 83. 121. 128. 142. 70. 138. 73. 35. 39. 49. 51. 111. 112. 49. 40. - 32. 33. 40. 119. 103. 66. 34. 67. 60. 56. 63. 64. 87. 106. 131. 161. - 162. 163. 195. 138. 79. 31. 34. 58. 63. 51. 41. 47. 44. 44. 74. 108. - 97. 81. 96. 109. 114. 119. 123. 123. 125. 129. 133. 130. 133. 138. - 141. 143. 145. 148. 151. 148. 148. 149. 151. 153. 155. 157. 158. - 157. 158. 157. 153. 151. 149. 141. 132. 116. 124. 128. 126. 129. - 133. 127. 114. 101. 110. 121. 136. 160. 180. 179. 166. 163. 148. - 145. 147. 138. 133. 134. 130. 102. 57. 41. 51. 49. 49. 56. 52. 59. - 75. 72. 66. 66. 50. 51. 49. 34. 74. 156. 171. 130. 144. 93. 43. 65. - 105. 147. 150. 141. 148. 154. 155. 157. 156. 155. 153. 152. 151. - 151. 151. 149. 150. 150. 150. 150. 149. 148. 147. 147. 147. 146. - 145. 144. 142. 142. 141. 139. 135. 131. 138. 160. 185. 196. 194. - 195. 195. 196. 197. 200. 203. 206. 208. 207. 207. 206. 207. 208. - 209. 210. 211. 210. 210. 210. 209. 209. 208. 207. 207. 78. 79. 80. - 78. 75. 74. 74. 75. 67. 68. 69. 72. 79. 96. 119. 138. 149. 155. 163. - 168. 169. 169. 171. 173. 176. 180. 180. 175. 168. 157. 142. 128. 97. - 81. 73. 81. 91. 94. 95. 98. 111. 111. 115. 105. 75. 56. 69. 92. 72. - 67. 51. 42. 77. 121. 110. 69. 79. 84. 80. 73. 80. 115. 82. 119. 118. - 153. 101. 128. 92. 23. 42. 55. 45. 137. 157. 106. 45. 33. 31. 54. - 113. 89. 46. 21. 74. 88. 99. 112. 118. 132. 116. 113. 119. 134. 185. - 173. 60. 42. 30. 41. 63. 72. 61. 46. 44. 42. 44. 78. 113. 101. 81. - 93. 111. 115. 120. 123. 123. 125. 129. 133. 128. 132. 136. 139. 141. - 143. 146. 148. 146. 147. 149. 151. 153. 155. 156. 157. 156. 159. - 158. 154. 153. 152. 147. 140. 131. 132. 128. 123. 127. 134. 133. - 125. 125. 142. 162. 174. 183. 185. 175. 162. 161. 147. 144. 145. - 138. 134. 132. 123. 81. 47. 43. 55. 48. 46. 57. 59. 60. 84. 72. 74. - 67. 52. 51. 44. 36. 63. 146. 173. 131. 143. 96. 48. 66. 116. 147. - 148. 144. 149. 157. 154. 156. 156. 154. 153. 151. 151. 151. 151. - 149. 149. 150. 150. 149. 149. 148. 147. 147. 146. 146. 144. 143. - 142. 141. 141. 137. 132. 130. 142. 166. 188. 196. 193. 193. 194. - 196. 198. 201. 204. 206. 208. 207. 207. 207. 207. 208. 209. 210. - 211. 211. 210. 210. 209. 209. 208. 208. 208. 81. 80. 80. 79. 78. 77. - 77. 76. 68. 66. 68. 75. 85. 101. 123. 141. 150. 156. 164. 167. 168. - 168. 170. 172. 176. 179. 180. 175. 168. 158. 143. 129. 100. 84. 73. - 77. 84. 87. 94. 102. 108. 109. 122. 113. 67. 39. 58. 88. 75. 79. 53. - 57. 119. 100. 35. 63. 79. 81. 74. 91. 100. 114. 94. 122. 103. 129. - 124. 133. 129. 34. 37. 59. 42. 120. 156. 135. 50. 26. 38. 88. 56. - 68. 79. 75. 104. 101. 121. 145. 168. 135. 105. 112. 105. 161. 216. - 102. 34. 40. 41. 40. 48. 59. 59. 51. 45. 42. 44. 79. 115. 103. 82. - 93. 110. 114. 119. 121. 121. 122. 126. 130. 128. 132. 135. 138. 139. - 141. 143. 145. 144. 145. 148. 151. 153. 155. 156. 156. 156. 159. - 159. 155. 153. 153. 151. 146. 154. 148. 138. 129. 132. 143. 151. - 151. 143. 165. 188. 199. 197. 188. 174. 162. 157. 146. 144. 142. - 137. 136. 126. 104. 60. 44. 44. 52. 47. 44. 53. 63. 59. 91. 71. 79. - 67. 54. 54. 44. 38. 53. 132. 168. 133. 137. 91. 57. 75. 127. 145. - 146. 148. 149. 159. 156. 156. 155. 153. 152. 151. 151. 151. 151. - 149. 149. 149. 149. 149. 148. 147. 147. 147. 146. 145. 144. 143. - 142. 141. 140. 134. 130. 132. 146. 170. 189. 195. 193. 192. 194. - 197. 200. 203. 205. 207. 207. 207. 207. 207. 207. 208. 209. 210. - 211. 210. 210. 209. 209. 209. 209. 210. 211. 82. 79. 77. 77. 79. 80. - 77. 74. 68. 64. 66. 76. 88. 104. 125. 143. 153. 158. 165. 168. 168. - 169. 171. 173. 175. 179. 180. 176. 169. 159. 143. 130. 105. 87. 74. - 77. 86. 91. 97. 104. 106. 117. 137. 121. 65. 40. 63. 85. 58. 75. 68. - 93. 115. 66. 36. 69. 73. 83. 70. 97. 108. 103. 108. 122. 85. 103. - 136. 128. 147. 76. 44. 57. 58. 90. 124. 114. 57. 37. 54. 73. 50. 67. - 105. 113. 124. 116. 151. 182. 156. 111. 88. 122. 144. 187. 166. 47. - 47. 53. 54. 49. 48. 53. 56. 55. 50. 45. 44. 77. 113. 103. 84. 96. - 110. 115. 120. 123. 122. 123. 125. 128. 131. 133. 137. 139. 139. - 140. 142. 144. 142. 144. 147. 150. 153. 154. 155. 155. 156. 159. - 159. 155. 153. 154. 153. 150. 145. 143. 140. 138. 145. 159. 170. - 175. 152. 170. 190. 200. 198. 189. 175. 164. 152. 147. 144. 138. - 134. 136. 116. 80. 48. 49. 46. 46. 50. 48. 52. 66. 59. 95. 67. 79. - 65. 57. 61. 49. 40. 47. 119. 164. 138. 135. 88. 71. 94. 141. 144. - 145. 151. 148. 160. 159. 155. 154. 153. 152. 151. 151. 151. 151. - 148. 149. 149. 149. 149. 148. 147. 146. 146. 146. 145. 144. 143. - 141. 140. 140. 133. 130. 135. 152. 173. 189. 195. 195. 194. 196. - 199. 203. 206. 207. 208. 208. 206. 206. 206. 206. 207. 208. 210. - 210. 209. 209. 208. 208. 209. 210. 212. 213. 81. 76. 73. 74. 78. 79. - 75. 71. 68. 63. 65. 76. 90. 105. 126. 144. 155. 160. 167. 170. 169. - 170. 172. 174. 175. 179. 180. 176. 169. 159. 144. 130. 102. 84. 73. - 80. 92. 96. 97. 99. 106. 127. 151. 126. 68. 51. 73. 84. 76. 87. 104. - 134. 80. 37. 68. 37. 65. 82. 62. 86. 97. 84. 110. 117. 87. 103. 139. - 104. 134. 118. 69. 68. 83. 79. 102. 81. 68. 64. 72. 29. 50. 83. 131. - 133. 149. 163. 187. 174. 97. 95. 91. 139. 186. 169. 74. 46. 49. 51. - 55. 60. 62. 62. 62. 62. 56. 48. 44. 75. 112. 103. 87. 100. 112. 117. - 123. 126. 125. 125. 127. 129. 133. 135. 138. 140. 140. 140. 142. - 144. 142. 144. 147. 150. 153. 154. 155. 155. 156. 160. 160. 155. - 152. 154. 154. 151. 147. 146. 144. 145. 155. 173. 191. 201. 168. - 178. 190. 197. 196. 188. 174. 163. 149. 147. 144. 135. 132. 134. - 108. 62. 45. 56. 48. 43. 55. 56. 54. 68. 58. 96. 63. 78. 62. 58. 66. - 55. 42. 46. 113. 163. 144. 136. 88. 83. 111. 153. 144. 144. 152. - 146. 160. 162. 154. 154. 153. 151. 151. 151. 151. 151. 148. 149. - 149. 149. 149. 148. 147. 146. 146. 146. 145. 144. 142. 141. 140. - 140. 133. 132. 138. 155. 176. 189. 195. 196. 195. 198. 201. 205. - 208. 209. 209. 208. 206. 205. 205. 206. 207. 208. 209. 210. 209. - 208. 208. 208. 209. 211. 213. 215. 76. 74. 71. 71. 72. 74. 74. 73. - 64. 61. 62. 72. 87. 105. 127. 143. 155. 159. 164. 168. 169. 170. - 171. 173. 173. 177. 178. 174. 169. 160. 143. 128. 102. 87. 73. 80. - 93. 89. 87. 101. 130. 146. 114. 108. 80. 69. 58. 72. 92. 141. 85. - 67. 72. 45. 58. 51. 77. 64. 79. 60. 86. 70. 100. 106. 86. 85. 121. - 109. 158. 111. 72. 84. 107. 97. 75. 94. 49. 43. 59. 41. 81. 137. - 160. 166. 139. 182. 201. 135. 93. 85. 96. 126. 199. 71. 38. 46. 49. - 47. 51. 50. 47. 59. 68. 61. 49. 51. 36. 58. 115. 102. 95. 94. 109. - 116. 120. 121. 122. 126. 128. 126. 130. 132. 136. 139. 141. 140. - 139. 137. 136. 140. 144. 145. 146. 149. 153. 154. 153. 153. 154. - 154. 153. 151. 148. 147. 146. 153. 153. 149. 158. 181. 198. 202. - 181. 175. 193. 207. 196. 188. 178. 152. 152. 131. 155. 145. 127. - 129. 85. 42. 50. 50. 43. 47. 44. 49. 67. 57. 71. 86. 63. 78. 64. 59. - 47. 50. 39. 37. 93. 157. 144. 147. 76. 107. 124. 143. 146. 142. 149. - 156. 154. 154. 153. 153. 152. 151. 149. 148. 147. 147. 145. 147. - 148. 147. 143. 141. 143. 145. 148. 147. 145. 143. 142. 140. 140. - 139. 134. 129. 137. 162. 184. 192. 194. 196. 198. 202. 206. 209. - 209. 208. 208. 208. 206. 207. 208. 209. 209. 209. 208. 208. 211. - 211. 211. 211. 211. 211. 211. 211. 76. 73. 71. 70. 71. 73. 73. 72. - 66. 62. 63. 73. 87. 105. 126. 143. 154. 158. 164. 167. 169. 170. - 171. 173. 174. 178. 178. 175. 170. 161. 144. 128. 104. 82. 72. 80. - 82. 82. 96. 115. 138. 121. 115. 117. 64. 54. 66. 99. 118. 117. 55. - 46. 68. 59. 59. 46. 72. 64. 79. 68. 82. 70. 99. 114. 74. 85. 124. - 107. 139. 120. 97. 58. 126. 71. 62. 59. 39. 37. 61. 71. 99. 139. - 161. 142. 187. 188. 183. 98. 93. 103. 92. 178. 104. 43. 49. 41. 52. - 49. 51. 50. 47. 58. 68. 62. 49. 51. 38. 55. 112. 102. 98. 92. 108. - 115. 120. 121. 123. 127. 129. 127. 130. 133. 136. 139. 141. 141. - 139. 138. 141. 143. 145. 145. 147. 150. 152. 153. 147. 148. 149. - 150. 151. 151. 151. 151. 147. 154. 154. 151. 161. 185. 203. 209. - 182. 173. 189. 207. 198. 185. 173. 154. 148. 144. 144. 137. 134. - 113. 67. 43. 49. 51. 45. 49. 44. 49. 68. 59. 76. 90. 67. 77. 65. 64. - 55. 52. 42. 38. 90. 156. 146. 142. 80. 115. 126. 143. 146. 142. 150. - 156. 154. 154. 154. 154. 153. 152. 151. 149. 148. 148. 146. 148. - 149. 147. 144. 142. 143. 145. 145. 146. 146. 146. 144. 141. 138. - 137. 134. 130. 139. 164. 185. 193. 195. 198. 199. 202. 207. 209. - 209. 208. 208. 208. 207. 207. 207. 208. 208. 209. 209. 209. 211. - 211. 211. 211. 211. 211. 211. 211. 75. 72. 69. 68. 69. 71. 70. 70. - 66. 63. 65. 73. 87. 104. 125. 143. 153. 157. 163. 167. 169. 170. - 171. 173. 176. 179. 180. 176. 171. 161. 144. 129. 108. 78. 72. 79. - 73. 84. 114. 129. 124. 109. 132. 106. 45. 72. 91. 100. 129. 83. 40. - 44. 69. 76. 68. 60. 65. 64. 74. 72. 71. 63. 84. 107. 59. 68. 110. - 119. 132. 113. 128. 91. 165. 71. 61. 35. 50. 71. 95. 105. 98. 144. - 127. 168. 187. 195. 124. 84. 94. 91. 159. 133. 44. 31. 50. 52. 55. - 50. 51. 50. 47. 58. 68. 65. 49. 50. 41. 51. 108. 100. 102. 88. 105. - 112. 119. 121. 124. 128. 130. 128. 131. 133. 136. 139. 141. 141. - 140. 140. 141. 139. 138. 140. 143. 145. 145. 146. 150. 150. 149. - 149. 148. 148. 147. 147. 148. 154. 155. 154. 166. 189. 208. 216. - 187. 178. 190. 206. 200. 185. 170. 155. 141. 153. 133. 134. 136. 88. - 47. 43. 48. 53. 48. 52. 46. 49. 70. 62. 75. 86. 67. 71. 62. 63. 60. - 47. 45. 38. 83. 156. 149. 135. 88. 125. 129. 144. 146. 143. 151. - 156. 154. 155. 155. 154. 154. 152. 151. 150. 149. 149. 148. 149. - 149. 148. 146. 144. 145. 146. 143. 144. 147. 148. 146. 142. 137. - 134. 133. 130. 140. 165. 186. 194. 196. 199. 200. 204. 208. 210. - 209. 208. 208. 208. 209. 208. 207. 207. 207. 208. 210. 211. 211. - 211. 211. 211. 211. 211. 211. 211. 72. 70. 67. 66. 67. 68. 68. 68. - 65. 63. 65. 73. 85. 101. 123. 141. 153. 157. 163. 167. 169. 170. - 172. 173. 177. 180. 180. 177. 172. 162. 145. 129. 111. 78. 72. 76. - 74. 102. 132. 125. 108. 101. 135. 97. 56. 89. 90. 97. 114. 54. 49. - 60. 67. 76. 69. 81. 68. 72. 76. 79. 66. 60. 70. 90. 79. 60. 69. 112. - 140. 106. 137. 142. 104. 34. 32. 45. 86. 121. 123. 94. 108. 128. - 155. 177. 194. 135. 98. 94. 94. 117. 177. 46. 44. 38. 60. 71. 55. - 48. 49. 50. 48. 59. 71. 70. 53. 48. 44. 47. 104. 96. 105. 84. 100. - 109. 117. 121. 125. 129. 131. 128. 131. 133. 136. 139. 140. 141. - 141. 141. 139. 135. 134. 138. 142. 142. 142. 144. 146. 145. 145. - 144. 144. 144. 144. 144. 149. 154. 156. 157. 167. 185. 200. 206. - 193. 194. 198. 199. 196. 189. 171. 150. 134. 149. 132. 141. 122. 60. - 42. 42. 48. 54. 50. 54. 47. 50. 71. 64. 74. 81. 69. 70. 62. 63. 65. - 42. 42. 36. 74. 154. 154. 127. 96. 130. 133. 146. 146. 144. 153. - 156. 153. 156. 154. 154. 153. 152. 150. 149. 148. 148. 150. 150. - 150. 149. 147. 146. 146. 146. 143. 144. 146. 146. 144. 141. 137. - 135. 131. 129. 140. 166. 187. 194. 197. 201. 203. 206. 209. 210. - 209. 208. 208. 208. 210. 209. 207. 206. 206. 208. 211. 212. 212. - 212. 212. 212. 212. 212. 212. 212. 69. 66. 64. 63. 65. 66. 67. 66. - 63. 62. 65. 72. 83. 99. 121. 141. 153. 157. 163. 168. 170. 171. 173. - 175. 178. 180. 181. 177. 171. 161. 144. 129. 108. 77. 69. 73. 84. - 121. 135. 103. 106. 93. 122. 100. 79. 65. 57. 113. 105. 47. 59. 66. - 58. 63. 59. 79. 74. 82. 88. 88. 78. 73. 73. 80. 100. 87. 51. 70. - 122. 110. 129. 143. 88. 40. 20. 82. 111. 149. 178. 167. 145. 159. - 197. 188. 156. 101. 93. 104. 121. 168. 88. 32. 43. 39. 82. 83. 53. - 44. 47. 50. 50. 59. 72. 74. 59. 45. 45. 45. 102. 89. 106. 81. 94. - 104. 114. 120. 125. 130. 131. 128. 130. 132. 134. 137. 139. 140. - 141. 141. 142. 137. 138. 143. 145. 141. 141. 144. 135. 136. 138. - 140. 143. 145. 146. 147. 150. 153. 155. 154. 157. 165. 173. 176. - 183. 195. 189. 172. 173. 178. 160. 133. 129. 135. 137. 146. 96. 42. - 49. 41. 49. 53. 50. 55. 49. 53. 72. 64. 77. 79. 77. 77. 70. 65. 72. - 45. 38. 35. 65. 149. 158. 122. 107. 130. 138. 147. 146. 145. 155. - 157. 153. 157. 152. 152. 151. 150. 148. 147. 146. 146. 151. 150. - 149. 148. 148. 148. 147. 146. 146. 145. 144. 143. 141. 140. 138. - 137. 128. 128. 141. 167. 187. 194. 197. 202. 205. 208. 210. 210. - 209. 208. 208. 209. 211. 209. 208. 206. 207. 209. 211. 213. 212. - 212. 212. 212. 212. 212. 212. 212. 64. 62. 60. 61. 63. 65. 66. 66. - 62. 62. 65. 73. 83. 98. 122. 142. 154. 158. 164. 169. 171. 173. 175. - 177. 177. 180. 180. 177. 171. 160. 143. 127. 104. 75. 66. 81. 101. - 124. 119. 86. 97. 114. 133. 85. 62. 45. 52. 104. 111. 60. 63. 64. - 57. 62. 54. 63. 66. 85. 102. 93. 91. 85. 85. 75. 68. 111. 83. 47. - 78. 101. 117. 128. 106. 68. 44. 112. 100. 111. 169. 202. 188. 208. - 201. 174. 97. 108. 91. 106. 173. 124. 41. 39. 37. 40. 72. 92. 51. - 42. 45. 52. 51. 59. 71. 73. 68. 41. 45. 45. 101. 79. 103. 79. 88. - 99. 111. 118. 124. 130. 130. 128. 129. 130. 132. 135. 137. 139. 140. - 141. 141. 137. 139. 143. 138. 127. 124. 129. 137. 139. 140. 142. - 142. 141. 140. 139. 142. 142. 141. 138. 136. 137. 140. 142. 151. - 164. 149. 126. 134. 145. 130. 109. 129. 130. 141. 130. 69. 37. 53. - 44. 50. 52. 47. 54. 52. 56. 73. 62. 78. 71. 78. 80. 71. 57. 74. 49. - 36. 37. 56. 139. 159. 120. 120. 130. 142. 148. 145. 146. 156. 157. - 153. 157. 151. 151. 150. 149. 148. 146. 146. 145. 151. 150. 148. - 148. 148. 148. 147. 145. 146. 145. 143. 141. 140. 139. 138. 138. - 127. 128. 143. 169. 188. 195. 199. 204. 208. 210. 211. 211. 209. - 208. 208. 209. 210. 209. 208. 208. 208. 210. 211. 212. 213. 213. - 213. 213. 213. 213. 213. 213. 60. 59. 57. 58. 62. 65. 66. 66. 62. - 62. 67. 75. 84. 100. 125. 146. 155. 160. 166. 170. 173. 175. 177. - 179. 177. 180. 180. 176. 170. 159. 142. 126. 103. 74. 71. 102. 122. - 111. 94. 89. 103. 138. 147. 73. 43. 51. 77. 64. 93. 67. 64. 65. 66. - 69. 59. 53. 54. 86. 121. 97. 104. 93. 98. 74. 52. 90. 105. 79. 75. - 91. 97. 115. 103. 94. 125. 163. 139. 131. 167. 191. 213. 202. 189. - 103. 105. 92. 110. 134. 163. 46. 56. 33. 48. 43. 45. 89. 52. 42. 46. - 53. 51. 56. 67. 69. 77. 37. 44. 46. 102. 71. 100. 78. 83. 95. 108. - 117. 123. 129. 130. 127. 127. 128. 130. 133. 135. 138. 139. 140. - 141. 139. 140. 140. 126. 106. 99. 104. 120. 122. 125. 127. 127. 125. - 122. 119. 119. 117. 114. 112. 111. 114. 119. 125. 127. 129. 108. 95. - 111. 118. 109. 107. 132. 138. 139. 95. 52. 44. 44. 49. 51. 51. 44. - 52. 53. 59. 73. 59. 82. 64. 75. 79. 67. 45. 73. 56. 40. 43. 49. 128. - 157. 121. 135. 133. 146. 149. 145. 147. 158. 157. 153. 158. 152. - 152. 151. 149. 148. 147. 146. 146. 151. 149. 147. 147. 148. 148. - 146. 144. 144. 144. 144. 143. 141. 139. 137. 136. 128. 130. 146. - 172. 191. 198. 202. 208. 210. 211. 212. 211. 209. 208. 208. 209. - 209. 209. 209. 210. 210. 210. 211. 211. 213. 213. 213. 213. 213. - 213. 213. 213. 58. 56. 56. 57. 61. 65. 66. 67. 63. 64. 69. 77. 86. - 103. 128. 149. 156. 160. 167. 171. 174. 176. 178. 180. 176. 179. - 179. 175. 169. 158. 141. 125. 105. 76. 78. 122. 137. 98. 77. 100. - 134. 134. 136. 87. 55. 57. 87. 37. 52. 57. 62. 68. 71. 70. 63. 50. - 52. 95. 142. 106. 115. 99. 109. 78. 91. 53. 85. 121. 115. 97. 72. - 91. 80. 79. 137. 121. 121. 156. 196. 204. 210. 195. 136. 93. 99. - 110. 104. 191. 93. 38. 45. 45. 62. 40. 39. 76. 54. 43. 47. 54. 51. - 54. 63. 65. 82. 35. 44. 48. 103. 65. 98. 77. 80. 93. 107. 116. 123. - 128. 129. 126. 126. 127. 129. 132. 134. 137. 138. 139. 147. 145. - 146. 142. 121. 94. 85. 90. 78. 83. 91. 99. 105. 107. 107. 107. 96. - 93. 91. 92. 95. 102. 114. 123. 126. 116. 92. 92. 114. 114. 109. 126. - 135. 150. 134. 65. 45. 52. 33. 54. 52. 50. 42. 51. 54. 61. 74. 57. - 90. 66. 78. 82. 68. 42. 78. 67. 44. 48. 46. 120. 154. 123. 145. 137. - 147. 150. 145. 148. 158. 158. 153. 158. 153. 153. 152. 151. 149. - 148. 147. 147. 151. 148. 146. 146. 148. 148. 146. 143. 141. 143. - 145. 146. 144. 140. 136. 133. 129. 132. 148. 175. 194. 200. 205. - 211. 211. 212. 213. 211. 209. 208. 208. 209. 208. 209. 210. 211. - 211. 211. 211. 210. 213. 213. 213. 213. 213. 213. 213. 213. 54. 54. - 55. 57. 59. 62. 64. 66. 64. 61. 72. 86. 91. 107. 130. 142. 155. 160. - 168. 173. 175. 176. 176. 177. 178. 178. 182. 177. 164. 159. 145. - 121. 107. 70. 129. 141. 96. 78. 79. 122. 147. 138. 118. 79. 52. 82. - 54. 50. 33. 73. 56. 67. 74. 60. 79. 60. 57. 93. 148. 116. 107. 94. - 93. 104. 102. 95. 80. 105. 135. 94. 54. 78. 61. 93. 129. 136. 142. - 137. 198. 218. 208. 188. 104. 101. 79. 126. 182. 131. 44. 45. 47. - 48. 45. 43. 50. 59. 60. 48. 45. 54. 61. 58. 58. 64. 79. 61. 38. 48. - 101. 64. 97. 81. 80. 91. 106. 116. 120. 121. 124. 127. 125. 126. - 128. 131. 134. 136. 138. 140. 147. 148. 148. 142. 133. 125. 122. - 121. 110. 106. 103. 106. 112. 118. 121. 121. 117. 117. 116. 116. - 118. 122. 127. 131. 137. 154. 136. 120. 138. 140. 130. 141. 150. - 143. 95. 46. 42. 49. 48. 53. 53. 47. 40. 55. 61. 78. 51. 64. 83. 68. - 71. 84. 63. 49. 72. 77. 42. 47. 40. 95. 161. 135. 148. 138. 150. - 146. 146. 151. 154. 153. 153. 155. 152. 153. 153. 153. 153. 152. - 151. 150. 148. 148. 147. 147. 147. 147. 146. 146. 146. 145. 144. - 144. 143. 140. 135. 132. 124. 130. 156. 183. 193. 201. 209. 209. - 212. 211. 210. 209. 209. 209. 209. 209. 210. 210. 209. 210. 211. - 213. 215. 217. 213. 213. 213. 213. 213. 213. 213. 214. 54. 55. 56. - 57. 59. 62. 64. 65. 62. 60. 73. 86. 91. 106. 130. 142. 155. 160. - 167. 173. 175. 176. 176. 177. 180. 179. 182. 175. 162. 156. 143. - 119. 102. 141. 139. 84. 84. 96. 85. 125. 133. 120. 118. 75. 61. 64. - 69. 53. 49. 56. 50. 53. 74. 60. 67. 82. 52. 87. 158. 121. 76. 89. - 94. 107. 111. 93. 95. 91. 74. 89. 101. 79. 92. 119. 159. 141. 134. - 122. 162. 219. 208. 118. 106. 92. 126. 175. 161. 65. 48. 49. 51. 52. - 47. 43. 48. 56. 59. 48. 44. 52. 58. 57. 58. 63. 73. 61. 41. 48. 93. - 59. 91. 80. 76. 87. 102. 113. 117. 119. 121. 124. 125. 126. 128. - 131. 134. 136. 138. 139. 145. 147. 147. 144. 138. 132. 128. 126. - 124. 123. 122. 121. 121. 123. 127. 130. 139. 146. 155. 160. 163. - 169. 179. 187. 180. 180. 153. 132. 142. 148. 141. 144. 145. 115. 70. - 43. 43. 45. 46. 53. 48. 44. 47. 53. 59. 66. 49. 67. 88. 68. 77. 82. - 61. 53. 66. 79. 44. 48. 42. 95. 162. 139. 150. 141. 151. 147. 147. - 152. 155. 153. 153. 155. 152. 153. 153. 153. 153. 152. 151. 150. - 148. 148. 148. 147. 147. 147. 146. 146. 146. 145. 144. 144. 143. - 140. 135. 131. 124. 131. 158. 185. 195. 203. 211. 210. 212. 212. - 211. 210. 209. 209. 210. 210. 210. 210. 211. 211. 212. 214. 215. - 216. 213. 213. 213. 213. 213. 213. 212. 212. 55. 55. 56. 57. 59. 61. - 63. 64. 59. 59. 74. 87. 90. 105. 129. 142. 153. 159. 167. 172. 175. - 176. 177. 178. 181. 180. 182. 176. 163. 159. 148. 125. 126. 148. - 109. 65. 81. 88. 97. 147. 119. 104. 118. 75. 75. 61. 103. 66. 57. - 38. 45. 46. 86. 63. 57. 99. 55. 95. 168. 126. 54. 72. 89. 101. 110. - 104. 92. 76. 64. 69. 88. 105. 118. 130. 166. 138. 129. 127. 149. - 215. 145. 99. 112. 115. 180. 171. 87. 48. 50. 51. 54. 54. 48. 42. - 44. 51. 57. 48. 44. 51. 56. 56. 58. 63. 68. 61. 46. 48. 83. 55. 85. - 79. 70. 81. 96. 108. 114. 116. 118. 119. 124. 125. 126. 128. 131. - 133. 134. 135. 143. 144. 145. 146. 145. 141. 135. 131. 127. 130. - 130. 127. 123. 123. 128. 133. 143. 154. 167. 173. 173. 174. 181. - 188. 196. 181. 153. 134. 137. 149. 148. 140. 134. 80. 43. 43. 46. - 44. 48. 53. 42. 40. 55. 50. 59. 52. 48. 70. 93. 67. 84. 79. 61. 60. - 58. 84. 46. 48. 44. 94. 161. 144. 152. 145. 153. 149. 148. 153. 156. - 154. 154. 156. 153. 153. 153. 153. 153. 152. 151. 151. 149. 148. - 148. 148. 147. 147. 146. 146. 145. 144. 143. 143. 142. 139. 134. - 130. 124. 132. 160. 188. 198. 206. 213. 211. 212. 212. 211. 210. - 210. 210. 210. 211. 211. 212. 213. 213. 214. 214. 214. 214. 213. - 212. 212. 211. 211. 210. 210. 210. 55. 55. 56. 56. 58. 60. 61. 62. - 56. 58. 75. 89. 90. 103. 128. 141. 152. 158. 166. 172. 175. 176. - 177. 178. 180. 179. 182. 177. 168. 166. 157. 136. 139. 91. 68. 81. - 73. 87. 134. 146. 107. 101. 106. 72. 73. 78. 131. 69. 49. 37. 42. - 56. 104. 66. 61. 97. 66. 123. 161. 122. 74. 55. 81. 88. 95. 107. - 104. 91. 80. 72. 82. 108. 136. 133. 149. 136. 124. 144. 174. 182. - 94. 118. 128. 180. 173. 109. 41. 61. 48. 50. 54. 55. 49. 42. 42. 48. - 57. 50. 47. 52. 56. 57. 59. 64. 69. 64. 49. 49. 78. 61. 81. 78. 66. - 76. 91. 103. 110. 114. 115. 116. 120. 121. 122. 124. 127. 129. 130. - 131. 141. 141. 142. 146. 148. 146. 139. 133. 125. 126. 127. 125. - 123. 124. 128. 131. 134. 143. 153. 158. 156. 153. 152. 153. 165. - 151. 139. 132. 134. 149. 151. 136. 112. 59. 36. 46. 47. 48. 54. 50. - 45. 39. 59. 47. 61. 46. 49. 72. 94. 66. 89. 75. 62. 67. 54. 91. 49. - 47. 46. 90. 159. 149. 153. 148. 154. 150. 150. 154. 157. 155. 155. - 157. 153. 153. 154. 154. 153. 153. 152. 151. 150. 149. 149. 148. - 147. 147. 146. 146. 145. 144. 143. 142. 141. 138. 133. 129. 124. - 132. 162. 192. 203. 209. 215. 213. 213. 212. 211. 211. 211. 211. - 212. 212. 212. 213. 214. 215. 215. 214. 212. 211. 210. 210. 209. - 208. 208. 207. 206. 206. 55. 54. 55. 55. 56. 57. 59. 60. 53. 58. 77. - 90. 89. 100. 125. 140. 150. 156. 164. 171. 175. 176. 178. 179. 180. - 180. 183. 178. 168. 167. 158. 136. 113. 67. 63. 76. 69. 119. 163. - 110. 103. 106. 86. 64. 57. 103. 133. 55. 40. 51. 41. 71. 106. 63. - 76. 87. 73. 150. 139. 108. 117. 57. 85. 89. 73. 87. 126. 118. 80. - 106. 131. 90. 145. 148. 144. 148. 113. 147. 202. 137. 120. 125. 174. - 206. 109. 63. 57. 49. 48. 51. 56. 58. 53. 46. 46. 52. 55. 52. 51. - 55. 58. 59. 61. 64. 73. 67. 52. 49. 75. 71. 80. 76. 64. 73. 86. 98. - 106. 110. 112. 113. 118. 119. 121. 123. 126. 128. 129. 130. 139. - 139. 141. 144. 147. 145. 138. 132. 132. 129. 126. 126. 128. 129. - 129. 127. 131. 135. 141. 148. 152. 151. 146. 142. 133. 133. 139. - 143. 145. 152. 147. 127. 82. 51. 42. 48. 44. 51. 57. 45. 53. 42. 58. - 47. 64. 48. 52. 76. 90. 66. 87. 74. 67. 70. 55. 96. 51. 45. 48. 86. - 156. 153. 152. 149. 155. 151. 150. 155. 157. 155. 155. 156. 153. - 154. 154. 154. 154. 153. 152. 151. 151. 150. 150. 149. 148. 147. - 146. 146. 145. 144. 143. 142. 140. 137. 131. 127. 122. 132. 164. - 195. 206. 212. 217. 214. 213. 212. 212. 212. 212. 212. 213. 214. - 213. 214. 215. 215. 214. 213. 211. 209. 207. 207. 206. 206. 205. - 205. 204. 204. 53. 53. 53. 53. 54. 55. 56. 56. 52. 59. 80. 92. 88. - 97. 122. 137. 149. 155. 163. 170. 175. 177. 178. 180. 182. 181. 183. - 177. 165. 161. 149. 126. 95. 78. 66. 66. 98. 141. 135. 95. 111. 112. - 73. 60. 53. 126. 118. 42. 42. 61. 42. 83. 87. 56. 79. 81. 80. 165. - 121. 95. 134. 87. 101. 108. 61. 71. 98. 113. 113. 123. 128. 112. - 124. 153. 144. 155. 107. 148. 215. 127. 151. 156. 216. 140. 64. 50. - 56. 52. 51. 54. 59. 61. 57. 50. 51. 57. 53. 53. 55. 57. 59. 61. 62. - 63. 72. 68. 55. 50. 70. 77. 78. 76. 64. 70. 80. 91. 100. 106. 108. - 109. 117. 118. 121. 123. 126. 129. 131. 132. 135. 137. 139. 142. - 143. 142. 138. 134. 137. 132. 127. 127. 129. 129. 125. 121. 126. - 125. 126. 131. 137. 138. 133. 127. 127. 139. 147. 150. 154. 147. - 125. 103. 57. 50. 48. 45. 42. 50. 53. 44. 61. 48. 55. 51. 61. 53. - 53. 82. 83. 71. 82. 75. 73. 68. 57. 95. 56. 45. 51. 82. 153. 156. - 151. 150. 155. 151. 150. 155. 157. 155. 154. 156. 154. 154. 155. - 155. 154. 153. 152. 152. 151. 151. 150. 149. 148. 147. 146. 146. - 145. 143. 142. 141. 139. 136. 130. 126. 121. 131. 165. 198. 209. - 215. 218. 214. 213. 213. 212. 212. 213. 213. 214. 215. 215. 215. - 214. 213. 212. 210. 209. 208. 205. 205. 205. 205. 205. 205. 205. - 205. 52. 52. 51. 51. 51. 52. 53. 54. 51. 60. 82. 94. 87. 94. 119. - 135. 148. 154. 163. 170. 174. 177. 179. 180. 182. 181. 184. 177. - 164. 158. 145. 121. 100. 78. 66. 71. 123. 139. 97. 105. 113. 101. - 64. 57. 65. 136. 98. 41. 48. 51. 49. 97. 65. 52. 62. 76. 98. 173. - 126. 92. 104. 127. 111. 124. 75. 74. 63. 97. 147. 124. 97. 131. 91. - 136. 130. 138. 114. 162. 205. 146. 160. 190. 170. 65. 52. 48. 45. - 62. 53. 55. 59. 61. 55. 49. 51. 57. 48. 52. 56. 59. 60. 61. 61. 60. - 65. 66. 58. 49. 62. 75. 73. 78. 64. 68. 75. 84. 94. 100. 104. 105. - 113. 114. 117. 120. 124. 127. 130. 131. 131. 134. 138. 140. 140. - 140. 139. 139. 135. 133. 131. 129. 128. 126. 125. 123. 122. 120. - 119. 119. 121. 122. 121. 120. 137. 152. 147. 142. 151. 135. 96. 75. - 47. 51. 46. 42. 46. 48. 48. 52. 65. 54. 52. 56. 54. 55. 52. 90. 79. - 80. 77. 78. 78. 61. 59. 90. 61. 48. 55. 81. 152. 160. 151. 152. 155. - 151. 150. 154. 156. 154. 153. 155. 154. 154. 155. 155. 154. 154. - 153. 152. 152. 152. 151. 150. 148. 147. 146. 146. 144. 143. 142. - 141. 139. 135. 129. 125. 119. 130. 165. 199. 211. 216. 219. 213. - 213. 213. 213. 213. 213. 214. 215. 216. 216. 215. 213. 211. 209. - 208. 207. 207. 205. 205. 206. 207. 207. 208. 209. 209. 51. 51. 50. - 50. 50. 50. 51. 52. 51. 61. 84. 95. 86. 92. 117. 133. 147. 154. 162. - 170. 174. 177. 179. 180. 180. 180. 184. 179. 166. 161. 147. 123. - 101. 71. 75. 72. 113. 139. 97. 106. 104. 78. 53. 49. 75. 133. 82. - 43. 50. 35. 57. 111. 54. 52. 40. 71. 120. 180. 142. 96. 64. 152. - 111. 129. 102. 79. 74. 102. 131. 135. 119. 105. 76. 121. 112. 114. - 124. 177. 182. 158. 181. 182. 72. 51. 42. 50. 68. 42. 52. 53. 56. - 57. 51. 45. 47. 54. 45. 51. 56. 59. 60. 60. 59. 57. 57. 64. 60. 49. - 54. 71. 69. 79. 63. 66. 71. 80. 89. 96. 101. 102. 107. 109. 112. - 116. 120. 123. 126. 128. 128. 133. 138. 140. 139. 139. 141. 144. - 131. 134. 137. 135. 131. 130. 132. 135. 127. 128. 129. 128. 129. - 132. 139. 144. 148. 161. 142. 131. 147. 128. 81. 62. 48. 53. 42. 41. - 53. 48. 45. 63. 64. 58. 52. 61. 47. 55. 50. 96. 77. 86. 74. 80. 82. - 56. 60. 85. 65. 50. 58. 81. 152. 163. 152. 153. 155. 151. 150. 153. - 155. 153. 152. 154. 154. 155. 155. 155. 155. 154. 153. 152. 153. - 152. 151. 150. 148. 147. 146. 146. 144. 143. 141. 140. 138. 134. - 129. 125. 117. 130. 165. 200. 212. 216. 219. 213. 213. 213. 213. - 213. 214. 215. 216. 216. 217. 215. 212. 209. 207. 206. 206. 206. - 206. 207. 207. 209. 210. 211. 212. 212. 52. 51. 50. 50. 50. 50. 49. - 48. 47. 75. 99. 102. 99. 107. 122. 131. 140. 148. 159. 169. 174. - 176. 176. 177. 178. 181. 180. 176. 171. 161. 145. 130. 99. 78. 64. - 74. 119. 131. 99. 98. 87. 81. 57. 52. 78. 113. 56. 51. 45. 35. 69. - 81. 63. 56. 51. 54. 127. 171. 129. 131. 82. 115. 142. 130. 102. 110. - 124. 85. 94. 121. 128. 97. 67. 129. 128. 114. 126. 173. 180. 187. - 204. 106. 43. 51. 60. 47. 45. 55. 53. 55. 59. 60. 54. 47. 49. 55. - 50. 55. 56. 53. 54. 59. 59. 55. 57. 65. 64. 54. 52. 62. 69. 67. 65. - 63. 66. 75. 82. 87. 96. 106. 103. 108. 114. 118. 125. 131. 130. 125. - 134. 134. 136. 138. 140. 140. 137. 135. 139. 136. 132. 132. 135. - 140. 143. 145. 145. 152. 156. 153. 151. 153. 154. 153. 154. 152. - 139. 144. 145. 96. 56. 71. 52. 47. 42. 42. 46. 52. 55. 56. 65. 49. - 50. 50. 50. 45. 51. 94. 83. 72. 86. 80. 65. 65. 67. 79. 68. 48. 60. - 70. 144. 170. 154. 157. 145. 148. 153. 156. 156. 155. 155. 155. 154. - 154. 154. 153. 153. 153. 152. 152. 152. 151. 149. 149. 149. 147. - 144. 142. 143. 142. 141. 140. 138. 134. 127. 122. 120. 125. 169. - 198. 210. 220. 216. 220. 214. 214. 214. 215. 215. 216. 216. 217. - 212. 211. 211. 210. 210. 210. 211. 212. 208. 209. 210. 210. 209. - 209. 210. 211. 51. 50. 50. 50. 50. 50. 49. 49. 52. 80. 103. 104. 99. - 107. 123. 133. 140. 148. 160. 169. 174. 176. 176. 176. 177. 180. - 180. 176. 170. 160. 144. 129. 103. 80. 66. 72. 111. 126. 102. 105. - 87. 80. 65. 81. 71. 97. 60. 46. 43. 45. 80. 80. 58. 61. 60. 57. 120. - 151. 133. 111. 110. 107. 145. 124. 113. 110. 103. 76. 93. 116. 132. - 98. 58. 120. 97. 125. 111. 210. 232. 196. 126. 72. 42. 52. 58. 52. - 51. 52. 47. 50. 55. 57. 52. 46. 50. 57. 51. 55. 55. 50. 49. 54. 58. - 58. 56. 63. 62. 53. 50. 59. 65. 64. 66. 60. 62. 72. 77. 78. 89. 103. - 107. 112. 116. 117. 120. 126. 129. 127. 134. 135. 136. 138. 140. - 140. 139. 138. 140. 142. 143. 143. 142. 144. 149. 153. 157. 163. - 165. 161. 157. 158. 157. 155. 158. 149. 144. 149. 128. 70. 44. 68. - 48. 44. 41. 43. 48. 54. 57. 59. 65. 51. 54. 52. 52. 46. 54. 99. 87. - 76. 90. 85. 70. 72. 73. 85. 66. 50. 57. 68. 144. 171. 157. 160. 143. - 149. 155. 158. 157. 155. 155. 156. 154. 154. 153. 153. 153. 152. - 152. 152. 153. 151. 150. 149. 149. 148. 145. 142. 143. 142. 141. - 140. 138. 133. 127. 122. 118. 125. 171. 200. 211. 221. 216. 219. - 215. 215. 215. 214. 214. 214. 214. 214. 213. 212. 211. 211. 210. - 211. 211. 211. 214. 214. 213. 212. 209. 207. 207. 207. 49. 49. 49. - 49. 50. 50. 50. 50. 59. 86. 107. 106. 99. 106. 123. 135. 141. 149. - 160. 169. 174. 176. 176. 176. 176. 179. 179. 175. 169. 159. 143. - 128. 104. 81. 68. 68. 98. 117. 103. 110. 83. 79. 72. 104. 73. 76. - 63. 44. 37. 48. 84. 74. 48. 58. 62. 58. 107. 134. 121. 95. 122. 106. - 139. 127. 108. 115. 103. 81. 80. 82. 129. 116. 110. 131. 77. 127. - 100. 171. 212. 135. 60. 47. 46. 51. 50. 53. 56. 49. 47. 50. 56. 57. - 51. 45. 49. 58. 50. 54. 54. 47. 44. 48. 56. 61. 54. 61. 60. 52. 49. - 55. 60. 60. 66. 56. 57. 69. 71. 66. 76. 94. 96. 103. 109. 110. 114. - 124. 132. 135. 133. 134. 135. 136. 138. 139. 140. 141. 140. 147. - 154. 154. 151. 150. 155. 160. 167. 172. 172. 167. 163. 162. 160. - 156. 160. 145. 151. 151. 103. 45. 40. 67. 43. 42. 42. 44. 50. 55. - 59. 61. 63. 53. 58. 55. 53. 48. 58. 104. 86. 75. 89. 83. 69. 73. 74. - 84. 67. 57. 56. 65. 144. 169. 158. 161. 140. 148. 156. 159. 156. - 153. 153. 155. 153. 153. 153. 152. 152. 152. 151. 151. 153. 152. - 150. 150. 149. 148. 145. 143. 142. 141. 140. 140. 137. 133. 126. - 121. 115. 127. 175. 204. 213. 221. 216. 218. 215. 215. 214. 214. - 213. 212. 211. 211. 214. 213. 212. 211. 211. 210. 211. 211. 205. - 204. 204. 204. 203. 203. 203. 202. 47. 48. 49. 49. 49. 49. 50. 52. - 63. 89. 108. 105. 98. 105. 123. 135. 141. 149. 160. 169. 174. 175. - 176. 176. 176. 178. 178. 174. 168. 159. 142. 127. 102. 79. 69. 66. - 87. 108. 101. 105. 76. 76. 68. 94. 95. 62. 62. 48. 37. 46. 81. 73. - 45. 52. 61. 65. 97. 128. 99. 86. 100. 104. 121. 136. 115. 129. 113. - 99. 85. 66. 130. 130. 123. 135. 75. 96. 105. 131. 191. 87. 57. 50. - 51. 50. 44. 49. 54. 49. 54. 57. 62. 61. 52. 44. 48. 57. 47. 52. 54. - 49. 43. 44. 52. 59. 54. 59. 60. 53. 50. 54. 57. 58. 66. 54. 56. 69. - 68. 56. 60. 78. 82. 92. 100. 103. 107. 117. 127. 133. 130. 131. 133. - 134. 136. 138. 141. 144. 141. 148. 156. 160. 159. 158. 159. 162. - 168. 172. 172. 168. 165. 165. 163. 158. 156. 145. 157. 143. 79. 40. - 53. 67. 43. 43. 44. 47. 51. 56. 59. 61. 60. 53. 60. 56. 52. 49. 61. - 108. 87. 77. 90. 81. 68. 73. 72. 79. 69. 67. 56. 63. 145. 166. 158. - 160. 138. 147. 156. 158. 155. 151. 152. 154. 152. 152. 152. 152. - 151. 151. 151. 150. 153. 151. 150. 149. 149. 148. 145. 142. 142. - 141. 140. 139. 137. 132. 125. 121. 114. 130. 181. 208. 214. 222. - 215. 216. 213. 212. 212. 212. 212. 212. 212. 212. 215. 214. 213. - 211. 210. 210. 210. 210. 209. 208. 208. 208. 209. 209. 208. 206. 46. - 48. 50. 50. 48. 48. 50. 52. 62. 86. 103. 101. 96. 106. 123. 134. - 142. 150. 160. 169. 174. 175. 175. 175. 176. 178. 178. 174. 168. - 159. 142. 127. 101. 77. 73. 70. 85. 106. 99. 95. 66. 72. 59. 64. - 122. 62. 57. 56. 48. 44. 77. 79. 52. 51. 60. 74. 99. 126. 96. 67. - 71. 78. 100. 130. 140. 138. 115. 115. 114. 90. 137. 124. 112. 154. - 87. 76. 106. 124. 160. 70. 78. 56. 49. 53. 49. 49. 52. 49. 55. 59. - 64. 62. 52. 44. 49. 59. 44. 49. 54. 53. 47. 44. 48. 55. 54. 59. 60. - 56. 52. 54. 57. 58. 65. 55. 57. 70. 68. 53. 50. 59. 72. 83. 93. 97. - 101. 109. 117. 121. 128. 130. 133. 135. 136. 139. 144. 148. 145. - 148. 154. 160. 165. 166. 164. 162. 165. 168. 169. 167. 167. 169. - 167. 162. 150. 148. 157. 124. 58. 46. 66. 58. 48. 48. 49. 50. 52. - 55. 59. 61. 56. 52. 59. 54. 51. 51. 63. 108. 92. 83. 94. 84. 70. 76. - 75. 79. 66. 73. 53. 61. 148. 166. 161. 162. 141. 148. 156. 159. 156. - 154. 154. 155. 152. 151. 151. 151. 150. 150. 150. 150. 152. 151. - 149. 149. 148. 147. 144. 142. 141. 140. 139. 138. 136. 131. 125. - 120. 116. 136. 189. 212. 215. 222. 215. 215. 209. 209. 210. 211. - 212. 213. 214. 214. 215. 214. 212. 211. 209. 208. 208. 208. 208. - 207. 206. 207. 207. 205. 200. 196. 45. 48. 51. 50. 47. 46. 48. 51. - 58. 79. 96. 97. 97. 109. 124. 132. 143. 150. 161. 169. 174. 175. - 175. 174. 176. 179. 179. 175. 169. 159. 143. 128. 103. 76. 74. 75. - 87. 109. 97. 80. 56. 65. 54. 48. 129. 71. 51. 62. 55. 43. 71. 76. - 52. 48. 54. 67. 109. 124. 115. 54. 58. 51. 87. 107. 131. 129. 125. - 127. 126. 102. 132. 121. 136. 161. 89. 95. 99. 95. 75. 61. 77. 51. - 45. 58. 58. 53. 52. 49. 52. 57. 62. 61. 51. 44. 52. 64. 45. 48. 54. - 58. 53. 47. 47. 52. 53. 57. 59. 58. 55. 54. 56. 59. 63. 57. 59. 68. - 69. 59. 49. 47. 54. 65. 78. 86. 96. 108. 118. 121. 123. 128. 133. - 136. 137. 139. 144. 149. 148. 149. 153. 159. 166. 169. 168. 165. - 165. 167. 168. 166. 168. 171. 169. 163. 146. 151. 151. 104. 45. 49. - 67. 47. 53. 53. 54. 53. 53. 55. 60. 63. 54. 50. 57. 51. 51. 54. 66. - 108. 91. 83. 94. 82. 69. 77. 75. 76. 60. 77. 51. 60. 153. 168. 164. - 165. 146. 149. 154. 157. 157. 156. 156. 156. 151. 151. 150. 150. - 150. 149. 149. 149. 151. 149. 148. 147. 147. 146. 143. 140. 140. - 139. 138. 137. 135. 130. 124. 119. 120. 143. 196. 216. 216. 222. - 216. 215. 208. 209. 210. 211. 213. 214. 215. 216. 215. 214. 212. - 209. 208. 206. 206. 205. 201. 200. 200. 202. 202. 197. 189. 182. 46. - 49. 52. 50. 46. 44. 47. 50. 55. 73. 89. 93. 100. 115. 127. 132. 143. - 150. 161. 169. 174. 174. 174. 174. 177. 180. 180. 176. 170. 160. - 144. 129. 105. 72. 70. 73. 86. 109. 92. 64. 50. 56. 59. 62. 109. 81. - 45. 64. 60. 48. 70. 67. 47. 49. 48. 48. 113. 130. 129. 74. 54. 59. - 83. 90. 109. 109. 129. 129. 129. 112. 127. 121. 141. 139. 105. 97. - 94. 89. 49. 72. 60. 46. 48. 58. 57. 54. 54. 49. 54. 59. 65. 63. 52. - 45. 53. 66. 49. 49. 54. 59. 57. 50. 48. 51. 51. 54. 58. 59. 56. 54. - 56. 59. 62. 59. 58. 63. 70. 68. 56. 44. 42. 50. 60. 70. 84. 101. - 112. 115. 113. 120. 127. 131. 132. 134. 139. 143. 144. 147. 151. - 156. 160. 163. 167. 169. 168. 169. 168. 165. 166. 168. 164. 157. - 144. 149. 141. 92. 43. 47. 63. 49. 56. 57. 56. 54. 54. 56. 62. 68. - 54. 50. 55. 50. 53. 59. 69. 108. 88. 80. 91. 79. 69. 80. 78. 77. 61. - 85. 52. 60. 155. 165. 162. 161. 145. 145. 145. 148. 152. 154. 152. - 150. 150. 150. 150. 149. 149. 149. 148. 148. 149. 148. 146. 146. - 146. 144. 141. 139. 140. 139. 138. 137. 134. 130. 123. 118. 125. - 149. 203. 219. 216. 222. 216. 215. 210. 210. 211. 212. 213. 214. - 215. 215. 214. 213. 211. 208. 206. 204. 203. 203. 205. 201. 197. - 192. 183. 169. 151. 138. 46. 50. 53. 50. 46. 43. 46. 50. 52. 69. 84. - 92. 103. 119. 130. 132. 143. 151. 161. 169. 174. 174. 174. 174. 178. - 181. 180. 176. 171. 161. 145. 130. 104. 67. 64. 67. 81. 106. 87. 52. - 47. 50. 66. 85. 85. 87. 43. 63. 66. 59. 77. 64. 46. 56. 51. 37. 110. - 140. 128. 108. 49. 89. 82. 87. 113. 95. 117. 122. 144. 143. 134. - 113. 135. 150. 167. 73. 84. 116. 88. 61. 50. 49. 55. 56. 48. 50. 55. - 50. 61. 66. 71. 67. 54. 46. 53. 66. 53. 50. 52. 58. 58. 52. 50. 52. - 49. 52. 56. 58. 56. 54. 55. 59. 61. 60. 57. 59. 69. 75. 64. 46. 49. - 52. 54. 59. 70. 84. 93. 95. 103. 111. 120. 124. 125. 127. 131. 136. - 137. 143. 149. 151. 151. 155. 163. 170. 170. 170. 167. 163. 162. - 162. 157. 149. 143. 146. 134. 90. 48. 46. 60. 58. 57. 58. 57. 55. - 54. 58. 65. 71. 55. 50. 54. 49. 55. 62. 71. 108. 90. 83. 94. 83. 75. - 87. 86. 85. 67. 94. 56. 62. 156. 161. 156. 153. 141. 138. 136. 139. - 145. 148. 147. 143. 150. 150. 149. 149. 149. 148. 148. 148. 148. - 147. 145. 145. 145. 143. 140. 138. 139. 138. 137. 136. 134. 129. - 123. 118. 128. 153. 206. 221. 216. 222. 217. 216. 212. 213. 213. - 213. 213. 213. 214. 214. 214. 212. 210. 207. 205. 203. 202. 202. - 195. 186. 171. 153. 130. 101. 70. 50. 43. 45. 47. 46. 44. 43. 45. - 48. 50. 60. 77. 93. 101. 109. 122. 136. 147. 154. 163. 168. 170. - 171. 173. 175. 173. 178. 180. 176. 169. 158. 143. 129. 100. 61. 55. - 78. 122. 126. 78. 116. 49. 39. 81. 88. 71. 71. 59. 64. 54. 73. 71. - 48. 58. 41. 55. 41. 77. 171. 122. 118. 62. 82. 72. 72. 91. 110. 114. - 84. 118. 138. 98. 127. 125. 166. 142. 127. 137. 134. 118. 74. 45. - 47. 48. 48. 53. 55. 55. 54. 53. 71. 69. 71. 40. 49. 52. 72. 53. 49. - 51. 56. 56. 50. 49. 52. 41. 47. 54. 57. 58. 58. 61. 65. 64. 65. 61. - 59. 64. 72. 72. 65. 58. 54. 54. 59. 60. 58. 61. 68. 73. 81. 92. 99. - 104. 111. 120. 127. 133. 136. 141. 145. 148. 151. 154. 157. 167. - 161. 156. 155. 158. 156. 149. 142. 138. 142. 124. 85. 55. 49. 51. - 48. 50. 59. 60. 52. 51. 59. 64. 61. 62. 54. 50. 53. 53. 58. 79. 103. - 97. 87. 89. 85. 71. 81. 92. 78. 70. 81. 64. 79. 151. 164. 163. 149. - 139. 126. 120. 129. 137. 137. 137. 142. 145. 146. 146. 147. 149. - 151. 152. 154. 149. 149. 148. 147. 145. 143. 141. 140. 139. 136. - 135. 137. 134. 124. 117. 115. 135. 176. 207. 217. 220. 216. 211. - 215. 208. 212. 213. 209. 209. 212. 214. 212. 204. 210. 211. 205. - 199. 197. 192. 184. 171. 145. 106. 72. 52. 44. 42. 41. 47. 49. 50. - 48. 45. 42. 42. 44. 48. 59. 76. 89. 94. 100. 115. 131. 146. 154. - 163. 169. 171. 171. 173. 175. 178. 180. 179. 174. 168. 156. 137. - 120. 90. 77. 79. 148. 189. 93. 114. 133. 49. 38. 65. 80. 67. 60. 57. - 60. 59. 63. 55. 47. 48. 39. 51. 37. 74. 145. 136. 145. 82. 102. 95. - 44. 78. 121. 153. 99. 82. 114. 105. 118. 153. 148. 142. 138. 137. - 162. 169. 120. 52. 50. 53. 63. 33. 48. 53. 49. 60. 78. 75. 73. 42. - 49. 53. 70. 51. 48. 50. 54. 54. 49. 48. 51. 46. 47. 50. 55. 59. 61. - 61. 60. 60. 60. 57. 55. 61. 72. 75. 73. 64. 64. 70. 79. 85. 86. 90. - 96. 97. 103. 109. 112. 112. 114. 120. 124. 135. 139. 145. 149. 151. - 153. 156. 158. 160. 157. 154. 154. 154. 151. 144. 139. 130. 135. - 116. 72. 40. 42. 61. 73. 60. 59. 57. 57. 63. 66. 62. 54. 59. 51. 49. - 52. 53. 58. 77. 99. 94. 86. 91. 89. 74. 81. 90. 77. 69. 76. 65. 76. - 157. 161. 162. 144. 127. 119. 116. 120. 126. 129. 131. 133. 137. - 137. 138. 139. 141. 143. 145. 147. 149. 148. 148. 147. 145. 143. - 141. 140. 138. 135. 133. 134. 130. 122. 115. 114. 142. 181. 210. - 217. 219. 215. 210. 214. 207. 211. 211. 208. 207. 210. 211. 209. - 208. 207. 202. 196. 193. 184. 165. 145. 97. 81. 58. 42. 37. 41. 46. - 49. 48. 50. 50. 48. 44. 40. 38. 38. 44. 57. 74. 84. 85. 89. 108. - 127. 144. 153. 163. 170. 172. 172. 173. 175. 170. 174. 176. 174. - 169. 156. 134. 114. 86. 90. 156. 197. 99. 78. 125. 109. 50. 40. 48. - 78. 75. 56. 62. 62. 72. 59. 45. 60. 44. 43. 53. 39. 81. 122. 129. - 156. 115. 90. 86. 73. 48. 84. 126. 83. 69. 127. 127. 94. 139. 140. - 144. 113. 88. 108. 137. 160. 119. 73. 40. 43. 54. 44. 40. 48. 59. - 76. 75. 67. 40. 45. 52. 67. 50. 48. 49. 52. 52. 49. 48. 50. 50. 48. - 48. 52. 59. 62. 60. 57. 60. 58. 54. 51. 56. 68. 76. 78. 75. 80. 91. - 104. 112. 114. 118. 123. 135. 139. 142. 142. 139. 138. 139. 142. - 138. 143. 149. 153. 155. 156. 157. 157. 167. 167. 169. 169. 169. - 167. 165. 163. 172. 178. 164. 125. 88. 68. 56. 46. 60. 56. 52. 51. - 50. 50. 57. 65. 55. 49. 48. 51. 53. 59. 77. 96. 92. 85. 93. 92. 75. - 80. 89. 78. 71. 70. 68. 74. 166. 156. 159. 135. 112. 113. 112. 110. - 112. 118. 122. 121. 127. 127. 128. 129. 132. 134. 136. 138. 145. - 145. 145. 145. 144. 142. 141. 140. 138. 134. 132. 131. 127. 119. - 115. 116. 154. 190. 213. 217. 217. 212. 208. 212. 206. 209. 210. - 207. 207. 209. 208. 205. 211. 203. 191. 183. 174. 152. 114. 82. 52. - 45. 37. 35. 40. 49. 56. 60. 52. 53. 53. 52. 49. 45. 42. 40. 40. 54. - 72. 80. 78. 83. 105. 129. 142. 151. 162. 170. 173. 173. 173. 174. - 165. 172. 178. 175. 166. 152. 132. 116. 125. 174. 205. 99. 88. 57. - 107. 98. 48. 43. 40. 84. 91. 63. 70. 67. 78. 58. 46. 79. 48. 47. 54. - 43. 83. 132. 121. 129. 143. 96. 66. 81. 53. 68. 97. 89. 108. 154. - 128. 76. 107. 153. 158. 105. 87. 69. 71. 164. 172. 135. 72. 16. 67. - 43. 40. 52. 56. 73. 76. 62. 42. 45. 58. 71. 50. 49. 50. 51. 51. 50. - 50. 51. 51. 50. 49. 52. 56. 59. 59. 58. 64. 60. 53. 49. 51. 61. 73. - 80. 85. 94. 108. 120. 125. 126. 127. 129. 134. 136. 139. 139. 137. - 136. 138. 139. 139. 144. 150. 155. 156. 155. 154. 154. 152. 155. - 159. 160. 162. 165. 171. 175. 186. 193. 195. 187. 176. 154. 116. 81. - 53. 46. 47. 58. 62. 56. 52. 54. 53. 49. 49. 52. 55. 63. 79. 95. 94. - 85. 93. 91. 74. 77. 89. 81. 75. 69. 74. 76. 175. 151. 154. 127. 106. - 115. 115. 107. 105. 112. 115. 112. 119. 119. 120. 121. 123. 125. - 127. 128. 135. 136. 137. 139. 140. 140. 140. 140. 139. 135. 133. - 131. 126. 119. 118. 121. 166. 197. 216. 215. 214. 210. 206. 210. - 207. 209. 210. 207. 207. 209. 206. 201. 203. 197. 188. 176. 155. - 120. 77. 45. 44. 43. 45. 50. 58. 65. 69. 70. 60. 60. 58. 57. 55. 52. - 48. 46. 38. 52. 69. 75. 73. 79. 105. 131. 138. 148. 161. 170. 173. - 173. 173. 173. 172. 179. 180. 172. 160. 151. 143. 138. 176. 193. 88. - 84. 64. 69. 111. 70. 45. 44. 39. 84. 100. 68. 66. 62. 70. 54. 52. - 91. 58. 49. 53. 45. 70. 134. 130. 107. 142. 135. 91. 49. 43. 61. 89. - 115. 144. 142. 105. 92. 89. 126. 140. 119. 121. 87. 53. 119. 159. - 173. 142. 66. 38. 41. 55. 55. 61. 77. 83. 62. 48. 49. 67. 78. 50. - 51. 51. 51. 51. 53. 53. 53. 49. 51. 53. 53. 52. 54. 58. 61. 63. 59. - 53. 48. 49. 57. 72. 83. 90. 102. 116. 124. 127. 126. 126. 125. 124. - 126. 128. 130. 131. 131. 133. 134. 138. 143. 149. 152. 152. 151. - 149. 149. 142. 145. 147. 148. 151. 158. 169. 178. 182. 187. 191. - 197. 206. 207. 188. 166. 128. 92. 58. 49. 54. 57. 58. 60. 52. 50. - 49. 52. 57. 67. 82. 95. 98. 85. 88. 88. 71. 75. 89. 84. 78. 71. 78. - 84. 179. 147. 148. 122. 113. 122. 123. 114. 108. 112. 114. 110. 113. - 113. 113. 113. 114. 115. 116. 117. 122. 123. 126. 129. 131. 133. - 134. 135. 137. 134. 132. 131. 125. 119. 120. 124. 172. 201. 216. - 213. 212. 208. 204. 208. 208. 210. 210. 208. 209. 209. 204. 197. - 193. 192. 186. 168. 136. 97. 63. 45. 35. 40. 48. 59. 69. 75. 78. 78. - 72. 69. 64. 60. 56. 52. 48. 45. 42. 54. 66. 70. 66. 73. 98. 125. - 134. 145. 159. 169. 173. 172. 171. 171. 171. 175. 173. 166. 161. - 164. 170. 172. 167. 71. 59. 72. 58. 77. 141. 34. 42. 40. 39. 72. 91. - 68. 54. 55. 60. 53. 60. 96. 79. 59. 60. 53. 65. 83. 121. 127. 114. - 126. 130. 87. 69. 81. 104. 141. 155. 115. 81. 93. 96. 88. 113. 122. - 103. 84. 81. 97. 155. 134. 138. 159. 49. 44. 49. 55. 63. 77. 85. 57. - 47. 46. 68. 75. 50. 52. 52. 50. 50. 54. 55. 54. 48. 51. 53. 52. 50. - 51. 58. 64. 58. 55. 52. 50. 50. 57. 73. 88. 90. 104. 118. 124. 125. - 126. 126. 125. 130. 132. 134. 136. 137. 139. 139. 140. 138. 141. - 145. 147. 147. 145. 144. 144. 149. 150. 150. 151. 154. 162. 174. - 183. 188. 195. 198. 196. 195. 199. 202. 202. 204. 175. 132. 89. 56. - 41. 47. 59. 50. 48. 47. 48. 55. 67. 82. 93. 101. 83. 83. 84. 70. 75. - 88. 83. 77. 73. 77. 93. 178. 147. 142. 124. 124. 129. 130. 125. 119. - 118. 118. 116. 112. 112. 110. 109. 107. 107. 107. 107. 110. 111. - 114. 117. 120. 122. 123. 124. 127. 125. 126. 125. 120. 115. 116. - 122. 174. 201. 213. 210. 209. 207. 203. 207. 209. 210. 210. 209. - 210. 209. 202. 193. 192. 184. 167. 138. 100. 64. 45. 41. 44. 50. 60. - 70. 78. 83. 84. 84. 98. 91. 81. 72. 65. 58. 52. 47. 50. 57. 64. 64. - 58. 63. 85. 110. 130. 142. 157. 168. 172. 171. 170. 169. 167. 170. - 171. 171. 174. 177. 174. 168. 101. 72. 65. 87. 79. 146. 81. 57. 43. - 36. 40. 54. 78. 73. 52. 64. 49. 50. 61. 89. 99. 72. 71. 61. 74. 36. - 82. 138. 108. 100. 117. 120. 127. 122. 139. 160. 135. 93. 79. 77. - 108. 100. 112. 124. 92. 80. 117. 134. 170. 96. 89. 159. 113. 62. 36. - 56. 57. 71. 82. 49. 44. 41. 67. 73. 48. 52. 51. 48. 48. 54. 56. 53. - 50. 50. 49. 49. 50. 54. 59. 63. 57. 55. 54. 54. 52. 56. 71. 87. 92. - 106. 119. 122. 122. 125. 128. 127. 125. 125. 127. 130. 133. 134. - 135. 134. 138. 140. 143. 143. 142. 140. 140. 141. 141. 142. 144. - 147. 153. 161. 170. 176. 179. 190. 199. 199. 196. 198. 204. 208. - 196. 207. 208. 183. 140. 95. 60. 40. 45. 43. 41. 41. 49. 63. 79. 88. - 101. 79. 79. 83. 73. 76. 85. 78. 69. 71. 72. 100. 172. 148. 138. - 129. 133. 132. 132. 134. 131. 125. 123. 125. 119. 117. 114. 111. - 108. 106. 105. 104. 102. 103. 104. 106. 108. 109. 109. 109. 112. - 112. 115. 115. 111. 106. 108. 114. 171. 197. 210. 207. 208. 206. - 203. 206. 208. 209. 209. 208. 209. 208. 199. 188. 184. 158. 123. 89. - 61. 42. 39. 45. 63. 68. 75. 81. 85. 86. 85. 85. 127. 118. 104. 91. - 81. 72. 63. 58. 57. 60. 63. 60. 52. 54. 74. 96. 128. 140. 156. 167. - 171. 170. 169. 168. 174. 177. 180. 184. 186. 176. 151. 128. 92. 78. - 53. 111. 118. 127. 78. 31. 44. 35. 41. 42. 71. 82. 59. 82. 37. 41. - 53. 74. 106. 76. 73. 60. 82. 39. 49. 117. 131. 116. 74. 69. 89. 92. - 131. 143. 87. 71. 103. 96. 88. 112. 103. 117. 118. 94. 123. 155. - 161. 114. 82. 81. 156. 81. 41. 57. 54. 68. 82. 48. 46. 45. 74. 79. - 47. 51. 50. 46. 47. 53. 55. 52. 53. 49. 45. 46. 52. 58. 61. 61. 60. - 58. 58. 58. 53. 53. 66. 83. 94. 109. 120. 120. 119. 123. 126. 126. - 124. 125. 127. 130. 134. 137. 138. 137. 138. 140. 141. 141. 139. - 138. 138. 139. 140. 142. 147. 154. 163. 171. 177. 180. 191. 193. - 194. 196. 199. 202. 201. 197. 205. 204. 203. 205. 205. 182. 127. 76. - 40. 39. 36. 35. 43. 59. 75. 84. 100. 76. 76. 83. 75. 78. 84. 73. 63. - 69. 67. 104. 167. 149. 136. 134. 137. 131. 132. 139. 139. 130. 127. - 132. 127. 124. 121. 117. 112. 109. 107. 106. 98. 99. 100. 100. 100. - 100. 99. 99. 100. 102. 105. 107. 103. 98. 100. 107. 169. 195. 207. - 205. 207. 206. 203. 206. 206. 208. 207. 206. 208. 206. 196. 185. - 165. 127. 81. 52. 42. 46. 57. 69. 63. 68. 74. 80. 82. 83. 84. 85. - 129. 128. 124. 115. 101. 86. 74. 67. 66. 67. 61. 55. 54. 52. 67. 96. - 118. 136. 156. 165. 167. 170. 172. 171. 168. 166. 186. 193. 174. - 161. 147. 119. 105. 59. 125. 116. 178. 69. 36. 45. 29. 44. 48. 38. - 42. 68. 93. 103. 28. 44. 50. 57. 116. 98. 77. 81. 91. 36. 36. 65. - 111. 142. 115. 99. 93. 75. 109. 125. 69. 94. 108. 100. 97. 110. 115. - 122. 110. 106. 125. 120. 156. 105. 75. 74. 82. 144. 61. 45. 55. 74. - 68. 49. 48. 38. 75. 68. 49. 48. 48. 49. 46. 45. 52. 62. 59. 51. 51. - 47. 50. 58. 55. 59. 61. 68. 64. 56. 54. 51. 58. 75. 94. 109. 115. - 117. 124. 123. 120. 126. 124. 128. 132. 134. 133. 133. 135. 137. - 136. 138. 141. 141. 141. 140. 141. 143. 142. 146. 152. 158. 164. - 171. 179. 184. 192. 192. 193. 195. 196. 197. 199. 199. 204. 203. - 200. 201. 208. 211. 198. 181. 104. 49. 43. 40. 42. 64. 69. 81. 106. - 67. 73. 86. 66. 70. 84. 65. 76. 64. 59. 128. 156. 157. 143. 139. - 139. 140. 140. 140. 139. 136. 134. 133. 131. 130. 128. 124. 120. - 116. 112. 110. 107. 104. 100. 97. 95. 94. 91. 89. 97. 100. 115. 114. - 108. 91. 72. 90. 157. 192. 209. 204. 204. 207. 207. 209. 201. 210. - 212. 205. 204. 204. 190. 169. 137. 83. 40. 43. 62. 69. 72. 78. 73. - 76. 81. 85. 88. 87. 86. 85. 138. 137. 134. 128. 117. 104. 91. 83. - 76. 76. 67. 58. 54. 51. 66. 96. 119. 137. 157. 165. 167. 170. 171. - 171. 173. 165. 174. 179. 166. 159. 148. 125. 102. 97. 117. 133. 157. - 59. 39. 41. 43. 44. 38. 37. 56. 85. 94. 85. 34. 25. 40. 78. 129. 90. - 76. 101. 80. 42. 42. 49. 71. 106. 115. 127. 108. 108. 118. 102. 71. - 83. 93. 113. 110. 99. 96. 124. 132. 126. 131. 118. 128. 142. 89. 42. - 99. 132. 107. 50. 51. 69. 67. 46. 43. 37. 74. 68. 53. 52. 53. 53. - 49. 47. 52. 61. 61. 54. 52. 48. 49. 55. 53. 56. 63. 70. 66. 58. 55. - 51. 59. 79. 91. 108. 114. 114. 118. 118. 119. 128. 128. 127. 127. - 129. 133. 136. 138. 138. 137. 139. 140. 140. 139. 139. 141. 143. - 144. 147. 153. 159. 165. 171. 178. 183. 189. 190. 191. 192. 194. - 195. 196. 197. 199. 202. 203. 203. 207. 212. 209. 202. 197. 126. 76. - 41. 36. 57. 65. 85. 105. 68. 72. 84. 66. 71. 85. 68. 76. 63. 64. - 135. 154. 147. 137. 141. 141. 141. 142. 141. 140. 138. 136. 135. - 136. 135. 133. 130. 126. 122. 119. 117. 112. 109. 105. 102. 100. 96. - 92. 89. 100. 105. 123. 121. 112. 91. 71. 91. 161. 194. 210. 205. - 205. 208. 208. 210. 210. 211. 209. 204. 198. 183. 154. 128. 84. 60. - 48. 60. 75. 75. 73. 75. 77. 81. 87. 89. 89. 87. 86. 86. 139. 139. - 139. 138. 135. 125. 112. 102. 90. 88. 75. 61. 53. 48. 64. 95. 121. - 139. 158. 166. 168. 170. 171. 171. 176. 166. 169. 172. 163. 156. - 145. 127. 118. 154. 119. 141. 109. 31. 35. 44. 46. 41. 33. 40. 72. - 107. 115. 104. 57. 40. 58. 98. 124. 82. 73. 100. 79. 44. 51. 70. 75. - 75. 75. 93. 120. 124. 108. 65. 73. 76. 78. 110. 129. 107. 102. 137. - 147. 131. 129. 116. 90. 129. 120. 52. 72. 104. 136. 80. 52. 64. 69. - 48. 44. 43. 79. 73. 55. 54. 54. 54. 51. 47. 50. 57. 67. 62. 56. 53. - 53. 54. 57. 57. 64. 72. 70. 62. 57. 50. 59. 82. 90. 109. 115. 112. - 115. 118. 121. 131. 129. 125. 122. 125. 133. 139. 141. 140. 140. - 140. 139. 138. 136. 137. 141. 143. 147. 150. 155. 160. 165. 171. - 178. 182. 186. 186. 187. 189. 191. 192. 194. 194. 196. 202. 206. - 204. 203. 208. 214. 217. 223. 202. 152. 78. 46. 54. 54. 64. 99. 66. - 68. 78. 64. 70. 83. 69. 72. 56. 65. 143. 154. 139. 135. 147. 144. - 144. 144. 144. 142. 141. 139. 138. 139. 138. 137. 135. 132. 129. - 126. 125. 120. 117. 114. 110. 107. 102. 96. 92. 104. 112. 132. 129. - 115. 91. 74. 98. 169. 198. 211. 206. 208. 210. 209. 212. 215. 207. - 203. 202. 187. 151. 106. 77. 40. 48. 64. 79. 84. 80. 77. 78. 83. 89. - 95. 94. 90. 85. 85. 87. 133. 133. 137. 142. 145. 139. 127. 116. 101. - 98. 81. 63. 51. 45. 62. 94. 122. 140. 159. 167. 169. 170. 172. 171. - 173. 170. 174. 176. 168. 154. 141. 130. 165. 175. 106. 113. 72. 36. - 42. 45. 37. 38. 36. 40. 62. 94. 112. 114. 112. 114. 119. 114. 100. - 74. 66. 68. 66. 41. 68. 110. 98. 60. 62. 97. 106. 98. 82. 42. 74. - 79. 78. 93. 123. 119. 124. 150. 145. 126. 135. 132. 74. 58. 132. - 115. 37. 71. 120. 129. 54. 54. 66. 48. 44. 48. 80. 73. 53. 51. 52. - 53. 51. 47. 49. 54. 65. 65. 54. 54. 53. 51. 60. 59. 64. 74. 75. 69. - 59. 48. 57. 83. 91. 110. 116. 114. 120. 124. 124. 129. 124. 124. - 125. 129. 134. 139. 141. 142. 142. 141. 139. 136. 135. 137. 141. - 145. 150. 153. 157. 161. 165. 170. 176. 180. 183. 184. 185. 187. - 189. 191. 192. 193. 196. 201. 204. 202. 199. 201. 208. 214. 199. - 220. 208. 156. 100. 52. 36. 61. 89. 62. 62. 69. 61. 69. 80. 69. 67. - 46. 62. 150. 156. 137. 138. 154. 147. 147. 147. 146. 144. 143. 142. - 141. 139. 138. 137. 136. 134. 132. 129. 128. 125. 123. 120. 118. - 115. 110. 103. 99. 109. 116. 135. 131. 115. 92. 82. 115. 179. 203. - 212. 208. 210. 212. 210. 213. 212. 201. 199. 199. 173. 118. 69. 47. - 43. 62. 82. 87. 83. 81. 83. 85. 89. 96. 100. 97. 89. 84. 85. 88. - 131. 132. 138. 146. 151. 147. 135. 125. 111. 107. 87. 66. 50. 42. - 60. 93. 122. 140. 159. 168. 169. 171. 173. 173. 171. 175. 179. 178. - 170. 153. 145. 149. 211. 153. 92. 83. 65. 70. 57. 42. 40. 42. 40. - 39. 47. 62. 70. 69. 89. 108. 107. 86. 64. 65. 65. 64. 82. 82. 102. - 109. 65. 33. 78. 140. 75. 55. 70. 54. 72. 80. 91. 88. 95. 110. 125. - 143. 136. 133. 153. 151. 96. 19. 93. 156. 89. 55. 97. 153. 66. 42. - 55. 43. 41. 47. 74. 67. 53. 50. 51. 53. 53. 50. 52. 56. 59. 64. 48. - 52. 52. 47. 64. 60. 63. 76. 82. 78. 64. 46. 53. 80. 90. 110. 116. - 115. 124. 129. 124. 122. 118. 125. 133. 136. 136. 136. 139. 143. - 143. 142. 139. 136. 135. 137. 143. 147. 153. 155. 159. 162. 165. - 169. 174. 177. 181. 182. 183. 185. 187. 189. 191. 192. 196. 197. - 199. 201. 202. 202. 204. 207. 211. 211. 210. 215. 174. 83. 43. 68. - 80. 60. 58. 64. 62. 70. 78. 70. 68. 41. 63. 155. 157. 137. 140. 152. - 149. 149. 148. 146. 145. 144. 143. 143. 139. 139. 139. 138. 136. - 134. 132. 131. 127. 126. 125. 124. 122. 118. 113. 109. 113. 117. - 134. 130. 114. 96. 97. 140. 188. 207. 213. 209. 212. 213. 210. 214. - 209. 200. 198. 192. 152. 90. 50. 41. 66. 82. 93. 89. 82. 83. 87. 90. - 96. 101. 103. 97. 88. 83. 86. 91. 130. 133. 141. 149. 154. 151. 142. - 134. 124. 118. 97. 72. 53. 42. 59. 93. 121. 140. 159. 168. 171. 173. - 175. 175. 172. 178. 177. 172. 167. 152. 152. 171. 219. 133. 119. - 100. 52. 62. 49. 44. 54. 51. 48. 51. 61. 63. 50. 33. 54. 69. 60. 58. - 52. 60. 58. 74. 83. 96. 91. 68. 31. 37. 101. 142. 59. 37. 72. 79. - 67. 76. 97. 99. 88. 99. 107. 127. 134. 140. 154. 140. 128. 57. 47. - 141. 180. 72. 94. 129. 102. 45. 50. 43. 44. 50. 71. 68. 57. 53. 52. - 55. 55. 54. 56. 60. 61. 70. 50. 58. 58. 50. 74. 68. 62. 79. 91. 90. - 71. 46. 49. 77. 86. 109. 117. 114. 122. 126. 120. 116. 119. 129. - 140. 142. 137. 134. 138. 143. 142. 142. 140. 138. 137. 140. 145. - 149. 155. 157. 160. 162. 164. 167. 171. 174. 178. 179. 181. 183. - 185. 188. 189. 190. 194. 192. 195. 202. 206. 206. 206. 208. 215. - 217. 206. 218. 217. 165. 98. 41. 72. 59. 56. 60. 64. 73. 77. 71. 70. - 44. 70. 161. 154. 135. 140. 146. 150. 149. 147. 145. 144. 144. 143. - 143. 143. 143. 142. 141. 140. 138. 136. 135. 130. 128. 127. 127. - 126. 124. 120. 117. 118. 118. 132. 129. 116. 104. 113. 163. 197. - 211. 213. 209. 213. 213. 210. 214. 208. 200. 195. 178. 129. 71. 46. - 52. 80. 89. 95. 92. 87. 87. 90. 93. 104. 104. 102. 96. 88. 86. 90. - 95. 115. 122. 134. 144. 151. 151. 148. 145. 138. 133. 110. 82. 58. - 45. 60. 93. 120. 139. 159. 168. 171. 175. 177. 177. 174. 180. 174. - 170. 169. 153. 150. 172. 203. 116. 132. 131. 33. 37. 40. 48. 56. 53. - 52. 60. 73. 76. 61. 43. 76. 86. 58. 63. 72. 75. 48. 60. 45. 50. 44. - 52. 47. 57. 105. 120. 76. 47. 63. 81. 64. 74. 84. 102. 100. 95. 96. - 125. 138. 135. 138. 118. 135. 111. 59. 116. 177. 112. 95. 82. 151. - 59. 49. 45. 48. 54. 72. 73. 62. 56. 53. 54. 54. 53. 55. 59. 64. 76. - 53. 62. 61. 51. 79. 72. 62. 83. 101. 102. 80. 48. 46. 74. 84. 113. - 123. 115. 116. 120. 119. 121. 127. 134. 140. 141. 138. 136. 138. - 142. 141. 141. 141. 140. 140. 143. 148. 151. 156. 158. 160. 161. - 162. 164. 168. 171. 175. 176. 177. 180. 182. 185. 187. 187. 192. - 190. 194. 201. 205. 204. 207. 212. 202. 222. 211. 210. 222. 221. - 168. 64. 61. 54. 51. 55. 63. 71. 73. 67. 65. 47. 81. 166. 150. 133. - 143. 147. 149. 148. 146. 144. 143. 142. 143. 143. 145. 144. 144. - 143. 141. 139. 137. 136. 133. 131. 129. 128. 127. 126. 123. 121. - 123. 120. 133. 131. 123. 114. 126. 179. 203. 213. 212. 209. 214. - 213. 209. 213. 206. 197. 184. 157. 108. 63. 54. 70. 87. 90. 93. 94. - 91. 90. 95. 102. 111. 108. 101. 94. 90. 91. 96. 100. 96. 106. 121. - 136. 145. 150. 152. 153. 149. 143. 120. 89. 63. 47. 61. 94. 119. - 138. 158. 168. 172. 176. 178. 179. 174. 181. 174. 173. 175. 154. - 140. 157. 194. 92. 97. 134. 27. 44. 49. 44. 46. 47. 48. 53. 60. 66. - 64. 59. 45. 67. 35. 45. 77. 97. 57. 56. 49. 42. 45. 79. 63. 29. 60. - 83. 103. 63. 44. 66. 63. 77. 66. 92. 104. 91. 94. 133. 144. 128. - 128. 115. 123. 132. 104. 114. 103. 144. 89. 49. 181. 66. 46. 42. 46. - 51. 68. 73. 64. 57. 52. 51. 51. 50. 52. 55. 59. 73. 47. 58. 56. 44. - 74. 66. 63. 86. 107. 110. 86. 50. 45. 72. 84. 119. 131. 118. 112. - 115. 120. 129. 136. 137. 138. 139. 138. 139. 139. 140. 140. 141. - 142. 142. 142. 145. 149. 153. 156. 158. 160. 161. 161. 163. 166. - 169. 172. 173. 175. 177. 180. 182. 184. 185. 192. 191. 194. 200. - 200. 198. 203. 212. 211. 210. 203. 221. 220. 213. 208. 156. 52. 48. - 45. 49. 59. 67. 67. 62. 56. 46. 87. 170. 147. 132. 148. 152. 149. - 147. 145. 143. 142. 141. 142. 142. 144. 144. 143. 142. 140. 137. - 135. 134. 136. 133. 130. 128. 127. 126. 124. 122. 127. 122. 135. - 135. 128. 120. 133. 186. 206. 214. 212. 209. 214. 213. 209. 213. - 202. 191. 172. 141. 96. 62. 64. 84. 94. 92. 92. 94. 91. 90. 100. - 114. 116. 110. 101. 94. 91. 94. 100. 105. 60. 83. 111. 130. 142. - 152. 159. 162. 158. 145. 127. 102. 64. 40. 58. 93. 122. 145. 160. - 167. 177. 177. 173. 176. 177. 177. 179. 177. 167. 155. 154. 161. - 147. 115. 66. 77. 32. 31. 52. 41. 46. 37. 48. 64. 63. 57. 56. 52. - 51. 42. 38. 50. 101. 98. 53. 78. 54. 41. 40. 74. 83. 40. 31. 74. 99. - 94. 61. 48. 77. 71. 61. 83. 96. 108. 88. 129. 145. 128. 114. 143. - 135. 136. 109. 125. 63. 133. 163. 43. 160. 125. 37. 30. 45. 43. 80. - 61. 50. 67. 45. 54. 48. 52. 49. 50. 61. 69. 53. 50. 49. 41. 59. 75. - 59. 94. 114. 115. 99. 61. 43. 62. 85. 112. 115. 104. 114. 132. 135. - 131. 133. 134. 137. 139. 140. 139. 138. 136. 140. 139. 138. 139. - 140. 143. 146. 148. 152. 155. 158. 160. 161. 163. 165. 167. 169. - 171. 174. 176. 178. 180. 183. 186. 190. 191. 193. 196. 198. 201. - 203. 204. 207. 209. 213. 216. 217. 216. 214. 213. 123. 50. 42. 55. - 50. 75. 47. 67. 49. 45. 103. 161. 140. 131. 158. 141. 145. 144. 144. - 144. 144. 144. 143. 143. 144. 144. 143. 143. 141. 140. 138. 137. - 131. 137. 136. 129. 124. 126. 126. 123. 129. 133. 140. 138. 126. - 127. 158. 195. 210. 213. 213. 211. 212. 214. 213. 209. 201. 186. - 153. 108. 76. 71. 83. 95. 92. 92. 91. 92. 95. 101. 107. 111. 110. - 103. 95. 92. 93. 97. 100. 101. 48. 69. 96. 119. 137. 153. 161. 163. - 164. 152. 136. 111. 71. 44. 59. 93. 122. 145. 159. 167. 177. 177. - 173. 176. 177. 176. 178. 177. 168. 156. 152. 155. 179. 109. 80. 48. - 44. 46. 43. 41. 48. 41. 56. 73. 63. 50. 53. 60. 48. 48. 43. 56. 108. - 97. 48. 77. 56. 32. 38. 77. 99. 65. 37. 67. 89. 84. 78. 68. 67. 80. - 85. 71. 77. 103. 93. 114. 111. 111. 119. 143. 134. 170. 133. 112. - 34. 79. 152. 92. 146. 146. 42. 33. 42. 37. 73. 60. 53. 69. 45. 53. - 47. 52. 50. 51. 65. 72. 54. 52. 52. 42. 57. 69. 64. 97. 116. 117. - 103. 63. 42. 59. 80. 108. 115. 108. 119. 134. 134. 130. 133. 134. - 136. 138. 139. 139. 139. 138. 141. 140. 139. 140. 141. 144. 147. - 149. 151. 154. 158. 160. 161. 162. 164. 166. 168. 171. 174. 176. - 177. 179. 183. 185. 190. 191. 193. 195. 198. 201. 203. 204. 205. - 207. 210. 214. 216. 217. 217. 217. 171. 103. 36. 48. 46. 66. 46. 65. - 49. 46. 112. 160. 137. 134. 152. 143. 147. 147. 147. 146. 146. 146. - 145. 145. 143. 143. 142. 142. 141. 140. 138. 138. 132. 136. 135. - 130. 127. 129. 128. 123. 128. 132. 139. 139. 131. 134. 164. 198. - 214. 216. 216. 213. 213. 215. 213. 209. 200. 176. 136. 97. 76. 76. - 86. 95. 90. 90. 92. 96. 102. 107. 111. 113. 102. 98. 94. 93. 96. - 100. 102. 103. 35. 51. 76. 102. 130. 153. 165. 166. 168. 158. 144. - 119. 76. 45. 56. 87. 122. 144. 159. 167. 177. 177. 173. 177. 178. - 176. 177. 176. 170. 158. 150. 147. 159. 132. 96. 62. 49. 40. 35. 43. - 47. 46. 65. 78. 59. 41. 48. 63. 45. 54. 45. 63. 118. 95. 42. 74. 62. - 36. 41. 55. 84. 84. 45. 48. 86. 64. 83. 96. 67. 86. 105. 77. 60. 92. - 96. 112. 97. 111. 123. 117. 134. 184. 152. 112. 40. 29. 103. 120. - 131. 176. 47. 37. 39. 33. 68. 63. 56. 72. 46. 52. 45. 51. 50. 53. - 68. 73. 54. 54. 55. 44. 54. 60. 72. 102. 118. 118. 105. 66. 42. 56. - 76. 104. 116. 114. 126. 136. 133. 129. 133. 134. 135. 136. 138. 139. - 140. 140. 141. 141. 140. 141. 143. 145. 148. 149. 151. 153. 157. - 159. 160. 161. 163. 165. 168. 170. 173. 176. 177. 179. 182. 185. - 189. 190. 192. 195. 198. 200. 203. 204. 203. 205. 208. 211. 215. - 218. 220. 221. 215. 165. 48. 40. 46. 60. 44. 59. 47. 46. 126. 158. - 133. 138. 144. 148. 147. 147. 147. 146. 146. 145. 145. 145. 142. - 142. 141. 141. 140. 139. 139. 138. 135. 136. 134. 131. 130. 131. - 128. 123. 125. 130. 140. 145. 144. 150. 175. 203. 215. 217. 215. - 212. 213. 215. 212. 207. 198. 161. 114. 84. 78. 84. 91. 93. 92. 92. - 95. 102. 109. 112. 110. 108. 93. 92. 93. 95. 100. 103. 104. 104. 29. - 40. 59. 88. 124. 155. 168. 168. 169. 161. 149. 123. 77. 41. 49. 78. - 121. 144. 159. 167. 177. 178. 174. 177. 178. 177. 176. 176. 172. - 161. 148. 139. 119. 170. 80. 80. 36. 34. 45. 44. 44. 52. 69. 71. 50. - 40. 48. 54. 44. 56. 41. 68. 127. 94. 39. 68. 68. 49. 45. 25. 51. 91. - 66. 56. 93. 52. 67. 107. 79. 86. 104. 103. 81. 87. 84. 106. 94. 123. - 134. 105. 140. 161. 140. 96. 63. 27. 58. 139. 132. 200. 49. 38. 38. - 35. 70. 66. 61. 75. 47. 52. 45. 51. 51. 54. 67. 70. 51. 52. 57. 47. - 53. 56. 82. 106. 115. 115. 104. 68. 43. 54. 79. 104. 116. 118. 129. - 135. 131. 128. 134. 134. 134. 135. 137. 139. 141. 142. 141. 141. - 141. 142. 144. 146. 148. 149. 149. 152. 156. 158. 159. 160. 162. - 164. 167. 170. 173. 175. 176. 178. 181. 184. 187. 189. 191. 194. - 197. 200. 202. 203. 205. 205. 207. 209. 213. 217. 220. 223. 227. - 199. 97. 38. 47. 57. 39. 51. 41. 48. 138. 156. 130. 144. 141. 155. - 146. 145. 145. 144. 144. 143. 142. 142. 141. 141. 140. 139. 139. - 138. 139. 139. 137. 135. 133. 130. 130. 129. 125. 121. 123. 131. - 145. 157. 162. 170. 188. 207. 214. 215. 213. 211. 212. 214. 210. - 203. 189. 144. 96. 78. 85. 93. 93. 90. 97. 97. 101. 108. 112. 111. - 104. 97. 87. 89. 94. 99. 102. 104. 104. 103. 31. 36. 51. 79. 119. - 154. 170. 170. 170. 163. 151. 124. 76. 37. 44. 73. 120. 143. 159. - 167. 177. 178. 174. 178. 178. 178. 177. 176. 172. 163. 147. 135. - 110. 164. 74. 53. 31. 48. 54. 42. 46. 58. 69. 59. 43. 48. 54. 44. - 46. 52. 36. 74. 132. 93. 41. 60. 76. 51. 43. 26. 40. 77. 81. 85. 94. - 66. 54. 89. 79. 90. 95. 116. 115. 90. 68. 90. 80. 119. 150. 133. - 145. 141. 127. 57. 56. 56. 52. 167. 155. 206. 48. 38. 38. 38. 73. - 62. 64. 78. 49. 53. 45. 51. 51. 54. 62. 65. 46. 49. 56. 48. 55. 59. - 91. 108. 111. 109. 103. 69. 45. 54. 86. 106. 116. 120. 129. 132. - 128. 130. 135. 135. 135. 135. 137. 139. 140. 141. 140. 141. 142. - 143. 144. 146. 148. 149. 148. 151. 155. 157. 158. 159. 161. 163. - 166. 169. 172. 174. 175. 177. 180. 183. 186. 187. 190. 193. 196. - 199. 202. 203. 207. 207. 207. 208. 211. 215. 218. 220. 222. 210. - 162. 48. 40. 51. 34. 47. 34. 55. 144. 154. 131. 147. 143. 158. 146. - 146. 145. 144. 143. 143. 142. 141. 142. 141. 139. 138. 137. 137. - 138. 138. 138. 134. 131. 129. 127. 124. 121. 120. 127. 140. 159. - 174. 182. 188. 200. 211. 214. 214. 213. 212. 214. 215. 208. 199. - 174. 128. 87. 81. 94. 98. 92. 88. 98. 100. 105. 110. 112. 108. 98. - 91. 87. 91. 97. 101. 103. 103. 102. 101. 35. 37. 47. 73. 113. 151. - 168. 170. 173. 165. 154. 125. 75. 36. 43. 73. 120. 143. 158. 167. - 177. 178. 175. 178. 177. 180. 180. 177. 172. 163. 149. 135. 104. - 120. 121. 38. 49. 55. 39. 42. 54. 60. 64. 52. 43. 54. 58. 43. 47. - 47. 38. 90. 134. 87. 43. 49. 87. 50. 36. 51. 49. 44. 63. 82. 77. 83. - 55. 66. 66. 99. 92. 107. 110. 88. 70. 91. 76. 108. 150. 154. 134. - 151. 144. 54. 42. 73. 54. 157. 181. 187. 46. 39. 37. 38. 77. 56. 67. - 80. 52. 55. 46. 51. 50. 53. 60. 63. 43. 46. 54. 49. 60. 67. 95. 108. - 107. 107. 105. 74. 47. 54. 91. 107. 116. 122. 131. 129. 126. 131. - 135. 135. 136. 137. 138. 138. 139. 139. 139. 140. 141. 143. 144. - 146. 147. 148. 147. 150. 153. 156. 156. 158. 160. 162. 165. 168. - 171. 173. 174. 177. 180. 182. 185. 186. 189. 192. 196. 199. 202. - 203. 208. 208. 208. 209. 211. 213. 216. 218. 222. 216. 208. 86. 33. - 41. 31. 45. 30. 66. 145. 154. 134. 146. 147. 156. 149. 149. 148. - 147. 146. 144. 144. 143. 143. 141. 139. 137. 135. 135. 136. 136. - 136. 132. 130. 128. 124. 120. 122. 127. 143. 158. 177. 191. 196. - 200. 207. 213. 216. 216. 216. 215. 216. 214. 203. 191. 153. 114. 85. - 88. 99. 97. 92. 93. 97. 102. 108. 111. 110. 104. 96. 91. 91. 95. 99. - 102. 102. 101. 101. 101. 37. 37. 44. 67. 107. 146. 165. 169. 174. - 166. 153. 123. 72. 34. 43. 75. 119. 143. 158. 167. 177. 178. 175. - 179. 176. 181. 182. 177. 171. 163. 150. 138. 122. 103. 138. 45. 59. - 47. 28. 50. 62. 53. 52. 51. 45. 49. 54. 49. 46. 45. 50. 112. 135. - 78. 44. 38. 83. 56. 33. 65. 57. 32. 57. 53. 54. 70. 52. 69. 59. 99. - 92. 100. 97. 92. 77. 95. 79. 105. 140. 146. 122. 160. 148. 90. 48. - 59. 47. 132. 189. 146. 39. 41. 36. 38. 85. 56. 68. 82. 54. 57. 48. - 52. 50. 52. 62. 65. 44. 45. 52. 49. 65. 75. 95. 107. 107. 109. 111. - 81. 51. 53. 90. 105. 115. 125. 134. 130. 126. 133. 135. 136. 138. - 138. 139. 138. 137. 136. 138. 139. 140. 142. 144. 145. 146. 146. - 146. 149. 153. 155. 156. 157. 159. 161. 165. 167. 171. 173. 174. - 176. 179. 182. 184. 185. 188. 191. 195. 199. 201. 203. 207. 207. - 208. 209. 211. 214. 216. 217. 222. 221. 218. 151. 40. 38. 35. 39. - 29. 81. 144. 156. 137. 141. 151. 149. 149. 149. 148. 147. 145. 144. - 143. 143. 144. 142. 139. 136. 134. 134. 134. 134. 132. 130. 129. - 128. 122. 119. 126. 138. 166. 181. 196. 203. 202. 204. 209. 215. - 216. 217. 216. 215. 214. 208. 193. 177. 131. 101. 84. 92. 98. 91. - 92. 102. 101. 107. 113. 113. 106. 98. 93. 92. 94. 97. 101. 102. 101. - 101. 103. 104. 36. 36. 41. 63. 102. 141. 163. 168. 172. 164. 150. - 119. 68. 31. 41. 75. 119. 142. 158. 167. 177. 179. 175. 179. 176. - 182. 184. 178. 170. 163. 152. 140. 173. 124. 91. 41. 51. 44. 42. 58. - 65. 43. 41. 52. 46. 39. 46. 56. 44. 44. 62. 129. 135. 71. 43. 32. - 66. 64. 34. 61. 59. 49. 81. 42. 38. 42. 44. 86. 62. 92. 92. 104. - 109. 104. 74. 79. 70. 105. 137. 140. 122. 154. 121. 114. 56. 38. 49. - 137. 184. 111. 32. 41. 36. 39. 94. 61. 68. 82. 55. 58. 49. 52. 49. - 51. 65. 68. 46. 46. 51. 49. 68. 81. 94. 106. 108. 113. 117. 86. 53. - 52. 87. 102. 114. 127. 138. 132. 126. 134. 135. 137. 139. 140. 139. - 138. 135. 134. 137. 138. 140. 142. 143. 145. 145. 145. 146. 149. - 152. 154. 155. 156. 159. 160. 164. 167. 170. 172. 174. 176. 179. - 181. 183. 185. 187. 191. 195. 198. 201. 203. 204. 205. 207. 210. - 212. 215. 216. 217. 218. 223. 210. 206. 55. 41. 39. 32. 30. 91. 143. - 157. 139. 137. 153. 144. 147. 147. 146. 145. 143. 142. 141. 140. - 145. 143. 139. 136. 133. 132. 133. 133. 129. 128. 128. 128. 122. - 120. 131. 147. 184. 197. 208. 208. 203. 203. 209. 215. 215. 215. - 214. 212. 209. 201. 182. 164. 117. 93. 83. 93. 96. 87. 93. 111. 108. - 115. 119. 115. 104. 93. 89. 89. 95. 98. 101. 101. 100. 101. 104. - 108. 33. 34. 38. 56. 96. 139. 161. 163. 172. 167. 151. 123. 79. 35. - 37. 75. 115. 143. 161. 167. 176. 179. 177. 178. 176. 180. 181. 177. - 171. 162. 147. 134. 165. 117. 71. 47. 54. 31. 57. 62. 51. 46. 45. - 41. 40. 51. 53. 39. 44. 41. 99. 121. 139. 61. 47. 41. 45. 59. 43. - 72. 58. 48. 54. 55. 49. 48. 45. 54. 72. 78. 85. 101. 118. 107. 59. - 78. 59. 96. 150. 135. 135. 141. 128. 144. 111. 71. 65. 149. 156. 81. - 138. 25. 38. 59. 92. 63. 72. 66. 57. 51. 48. 50. 52. 53. 54. 55. 56. - 55. 51. 53. 68. 84. 103. 117. 120. 122. 120. 84. 52. 56. 89. 105. - 121. 128. 131. 134. 135. 134. 136. 136. 137. 138. 138. 138. 137. - 137. 135. 136. 138. 140. 142. 144. 146. 147. 147. 148. 150. 152. - 154. 157. 158. 159. 161. 163. 165. 168. 172. 175. 178. 179. 182. - 184. 188. 191. 193. 196. 200. 203. 205. 207. 209. 210. 210. 211. - 213. 215. 216. 220. 224. 217. 130. 36. 30. 32. 29. 108. 133. 151. - 144. 148. 144. 150. 147. 147. 146. 146. 145. 144. 143. 143. 140. - 139. 137. 135. 133. 132. 132. 132. 125. 126. 128. 132. 129. 118. - 136. 176. 202. 210. 215. 210. 205. 206. 210. 213. 213. 216. 217. - 215. 211. 197. 169. 143. 99. 95. 91. 88. 90. 95. 101. 106. 114. 116. - 115. 109. 99. 91. 89. 91. 99. 104. 105. 101. 101. 105. 104. 99. 34. - 33. 35. 51. 91. 136. 161. 165. 174. 169. 153. 125. 80. 35. 35. 72. - 115. 143. 161. 167. 176. 179. 176. 178. 175. 180. 181. 177. 171. - 162. 148. 135. 148. 94. 46. 38. 63. 48. 60. 50. 49. 39. 42. 49. 46. - 44. 43. 34. 25. 69. 134. 129. 115. 62. 51. 39. 45. 57. 50. 69. 55. - 52. 45. 44. 50. 57. 52. 52. 64. 69. 73. 88. 121. 106. 55. 60. 63. - 115. 150. 128. 139. 152. 97. 91. 139. 100. 117. 180. 144. 139. 173. - 57. 40. 38. 76. 55. 66. 65. 63. 61. 58. 53. 48. 44. 50. 51. 53. 55. - 56. 63. 82. 100. 114. 122. 121. 125. 120. 82. 55. 67. 90. 105. 121. - 128. 130. 133. 134. 133. 136. 137. 137. 138. 138. 138. 137. 136. - 136. 137. 138. 140. 142. 143. 145. 146. 147. 147. 149. 152. 154. - 156. 158. 159. 161. 162. 165. 168. 171. 174. 177. 178. 181. 184. - 188. 191. 193. 196. 199. 202. 204. 206. 209. 210. 210. 211. 213. - 215. 218. 227. 224. 216. 164. 41. 32. 29. 36. 115. 136. 148. 141. - 149. 147. 148. 147. 147. 146. 145. 144. 144. 143. 143. 140. 139. - 137. 135. 134. 133. 132. 131. 129. 128. 125. 127. 125. 119. 141. - 184. 205. 213. 217. 211. 206. 208. 212. 214. 219. 219. 216. 212. - 206. 188. 155. 125. 99. 96. 91. 89. 90. 95. 101. 106. 112. 113. 112. - 105. 97. 91. 91. 94. 101. 105. 105. 101. 100. 102. 100. 95. 33. 32. - 32. 47. 86. 132. 161. 167. 176. 171. 155. 128. 83. 36. 34. 69. 114. - 143. 161. 167. 176. 179. 176. 177. 177. 181. 182. 178. 173. 164. - 150. 138. 138. 90. 45. 45. 68. 53. 55. 39. 52. 36. 38. 50. 46. 40. - 40. 39. 76. 98. 114. 103. 87. 68. 50. 31. 45. 55. 62. 66. 49. 56. - 34. 36. 47. 64. 57. 46. 57. 64. 63. 73. 124. 115. 78. 66. 79. 131. - 146. 134. 148. 167. 132. 98. 138. 81. 137. 161. 115. 121. 114. 47. - 46. 44. 75. 58. 60. 58. 55. 53. 54. 57. 62. 65. 48. 49. 52. 56. 61. - 73. 95. 115. 124. 124. 120. 125. 118. 75. 54. 78. 91. 106. 121. 127. - 130. 132. 133. 133. 137. 137. 138. 138. 138. 138. 137. 136. 137. - 137. 138. 139. 141. 142. 143. 144. 146. 147. 149. 151. 153. 156. - 157. 158. 161. 162. 164. 167. 170. 173. 176. 177. 181. 184. 187. - 190. 192. 195. 199. 202. 204. 206. 208. 209. 209. 210. 212. 215. - 215. 228. 221. 216. 204. 64. 31. 30. 43. 124. 141. 145. 138. 152. - 149. 145. 146. 146. 145. 145. 144. 143. 142. 142. 140. 139. 138. - 136. 134. 133. 132. 131. 132. 129. 123. 121. 121. 120. 149. 194. - 210. 216. 218. 212. 207. 209. 214. 216. 221. 218. 213. 208. 199. - 177. 140. 109. 101. 97. 93. 90. 91. 96. 102. 106. 112. 111. 108. - 101. 94. 91. 94. 97. 103. 105. 105. 101. 99. 97. 93. 88. 31. 30. 31. - 46. 84. 131. 160. 168. 175. 171. 156. 131. 88. 40. 36. 69. 113. 142. - 161. 167. 177. 179. 175. 176. 177. 181. 182. 178. 173. 165. 152. - 140. 125. 97. 61. 59. 61. 44. 48. 43. 54. 41. 40. 43. 41. 45. 53. - 53. 113. 85. 62. 85. 82. 71. 41. 38. 44. 55. 72. 63. 41. 57. 30. 39. - 43. 67. 54. 39. 59. 70. 61. 63. 108. 114. 110. 96. 104. 129. 133. - 146. 142. 105. 126. 130. 163. 146. 195. 145. 62. 38. 39. 53. 68. 66. - 57. 40. 71. 67. 60. 53. 49. 49. 53. 56. 50. 50. 52. 57. 64. 78. 100. - 120. 126. 122. 117. 125. 114. 66. 49. 83. 94. 108. 122. 128. 129. - 132. 133. 132. 138. 138. 139. 139. 138. 138. 137. 136. 137. 137. - 138. 139. 140. 141. 142. 142. 145. 146. 148. 150. 153. 155. 157. - 158. 160. 161. 163. 166. 169. 172. 174. 175. 180. 183. 186. 189. - 191. 194. 198. 201. 203. 205. 207. 208. 208. 209. 212. 214. 211. - 220. 217. 217. 226. 111. 23. 35. 45. 128. 143. 144. 138. 156. 151. - 141. 145. 145. 145. 144. 143. 142. 142. 141. 139. 139. 138. 137. - 135. 134. 132. 131. 131. 129. 122. 120. 120. 125. 156. 201. 212. - 217. 217. 211. 207. 210. 214. 216. 216. 215. 212. 205. 189. 163. - 132. 109. 104. 100. 96. 93. 94. 98. 104. 109. 115. 112. 105. 97. 92. - 91. 96. 100. 104. 105. 104. 101. 97. 92. 87. 83. 29. 30. 33. 48. 85. - 130. 158. 166. 173. 169. 156. 134. 93. 45. 39. 69. 112. 141. 160. - 167. 177. 179. 174. 175. 173. 177. 178. 174. 169. 163. 150. 139. - 117. 98. 63. 61. 52. 40. 47. 50. 46. 47. 49. 42. 41. 60. 71. 60. 67. - 51. 50. 102. 92. 71. 39. 54. 45. 57. 74. 62. 37. 55. 34. 49. 44. 69. - 51. 37. 70. 80. 59. 55. 72. 81. 108. 120. 130. 124. 123. 147. 133. - 71. 111. 121. 132. 151. 164. 127. 96. 50. 65. 78. 59. 71. 54. 57. - 52. 57. 63. 66. 63. 57. 53. 51. 49. 48. 52. 59. 68. 82. 103. 121. - 125. 121. 118. 126. 112. 61. 47. 86. 98. 111. 124. 129. 129. 131. - 133. 132. 139. 139. 139. 139. 139. 138. 137. 136. 136. 136. 137. - 138. 139. 140. 141. 141. 144. 145. 147. 149. 152. 154. 156. 157. - 159. 160. 162. 165. 168. 170. 172. 173. 179. 182. 186. 189. 191. - 194. 197. 200. 202. 204. 207. 208. 208. 209. 211. 213. 213. 212. - 216. 219. 223. 161. 20. 35. 47. 128. 142. 143. 140. 158. 152. 139. - 145. 144. 144. 143. 142. 141. 141. 141. 139. 139. 139. 138. 137. - 134. 132. 131. 127. 129. 124. 122. 124. 130. 161. 204. 212. 215. - 214. 207. 205. 209. 214. 216. 212. 215. 214. 201. 176. 147. 126. - 116. 107. 104. 99. 96. 96. 101. 107. 111. 117. 112. 104. 95. 91. 92. - 97. 102. 105. 103. 102. 100. 95. 89. 84. 82. 29. 31. 34. 48. 83. - 127. 156. 164. 172. 168. 158. 137. 98. 49. 40. 69. 111. 141. 160. - 167. 177. 179. 174. 174. 169. 173. 173. 170. 165. 159. 148. 137. - 136. 110. 61. 60. 50. 47. 47. 44. 36. 48. 57. 49. 48. 68. 74. 55. - 41. 44. 55. 99. 90. 75. 47. 52. 49. 59. 63. 62. 41. 52. 42. 53. 48. - 72. 50. 41. 81. 87. 55. 49. 46. 48. 84. 125. 149. 127. 131. 138. - 114. 86. 104. 82. 91. 131. 131. 162. 178. 146. 140. 114. 76. 89. 60. - 61. 62. 65. 67. 66. 61. 58. 59. 61. 45. 46. 52. 63. 75. 89. 108. - 125. 124. 125. 124. 128. 112. 63. 51. 91. 102. 115. 127. 130. 130. - 132. 134. 133. 140. 140. 140. 140. 139. 138. 137. 136. 134. 135. - 136. 137. 139. 140. 141. 141. 144. 145. 146. 149. 151. 153. 155. - 156. 159. 160. 162. 164. 167. 169. 171. 172. 178. 181. 185. 188. - 190. 193. 196. 199. 201. 204. 206. 207. 207. 208. 210. 212. 218. - 212. 215. 222. 215. 194. 44. 29. 56. 129. 139. 143. 141. 157. 151. - 141. 144. 144. 143. 142. 141. 141. 140. 140. 139. 139. 140. 139. - 137. 135. 132. 131. 124. 129. 126. 124. 127. 135. 165. 206. 211. - 213. 210. 204. 203. 209. 215. 216. 215. 216. 211. 193. 160. 131. - 118. 119. 109. 106. 101. 97. 98. 102. 108. 112. 115. 109. 100. 92. - 90. 93. 99. 103. 104. 100. 98. 98. 94. 88. 85. 86. 30. 31. 32. 43. - 77. 122. 154. 164. 173. 170. 160. 140. 101. 51. 39. 66. 110. 140. - 160. 168. 177. 179. 173. 174. 171. 174. 174. 171. 167. 161. 150. - 140. 146. 119. 62. 61. 47. 49. 46. 43. 40. 46. 55. 52. 48. 60. 64. - 49. 59. 51. 51. 78. 81. 73. 50. 45. 56. 61. 46. 62. 51. 51. 47. 47. - 45. 72. 52. 47. 90. 87. 50. 50. 42. 43. 74. 121. 143. 117. 141. 122. - 135. 104. 78. 30. 36. 69. 58. 51. 58. 88. 84. 101. 134. 142. 117. - 129. 115. 106. 89. 68. 50. 42. 45. 50. 46. 48. 58. 71. 84. 97. 113. - 126. 123. 129. 127. 126. 108. 64. 57. 97. 105. 118. 129. 132. 131. - 133. 135. 134. 140. 140. 140. 140. 139. 138. 137. 136. 132. 133. - 135. 136. 138. 140. 141. 142. 143. 144. 146. 148. 150. 153. 155. - 155. 158. 159. 161. 163. 166. 168. 169. 170. 178. 181. 184. 187. - 189. 192. 196. 199. 201. 203. 205. 206. 206. 207. 210. 212. 217. - 217. 211. 221. 216. 205. 97. 26. 71. 134. 137. 143. 141. 153. 149. - 146. 143. 143. 142. 142. 141. 140. 139. 139. 139. 140. 140. 140. - 138. 135. 132. 131. 123. 130. 128. 125. 128. 138. 168. 208. 211. - 212. 208. 203. 203. 210. 217. 218. 217. 212. 201. 178. 146. 120. - 114. 120. 109. 105. 100. 97. 97. 101. 107. 111. 108. 102. 93. 88. - 88. 93. 100. 105. 103. 97. 95. 96. 94. 88. 88. 92. 32. 32. 30. 39. - 72. 118. 152. 164. 176. 172. 162. 142. 102. 51. 38. 63. 110. 140. - 160. 168. 177. 179. 173. 173. 175. 178. 179. 175. 171. 166. 156. - 145. 127. 109. 58. 58. 38. 44. 48. 54. 51. 45. 48. 49. 42. 46. 53. - 50. 59. 45. 51. 79. 83. 61. 46. 51. 61. 61. 33. 62. 59. 52. 50. 39. - 39. 69. 53. 52. 95. 87. 50. 56. 44. 53. 78. 115. 122. 95. 138. 105. - 121. 111. 120. 73. 35. 56. 92. 42. 41. 88. 27. 38. 89. 58. 59. 120. - 108. 104. 93. 78. 63. 55. 56. 60. 50. 54. 64. 78. 90. 101. 114. 125. - 122. 130. 128. 121. 102. 63. 59. 99. 107. 120. 131. 133. 132. 134. - 135. 135. 141. 141. 141. 140. 139. 138. 137. 136. 131. 132. 134. - 136. 138. 140. 142. 143. 143. 144. 145. 148. 150. 152. 154. 155. - 158. 159. 161. 163. 165. 167. 169. 170. 177. 180. 184. 187. 189. - 192. 196. 198. 201. 203. 205. 206. 206. 207. 209. 211. 212. 221. - 206. 219. 223. 204. 144. 27. 83. 138. 137. 142. 140. 150. 148. 151. - 143. 143. 142. 141. 140. 140. 139. 139. 139. 140. 140. 140. 139. - 136. 133. 130. 125. 131. 128. 124. 128. 139. 170. 210. 211. 212. - 208. 202. 204. 212. 218. 220. 216. 206. 189. 167. 138. 116. 113. - 121. 108. 104. 99. 95. 96. 100. 105. 109. 101. 95. 88. 85. 87. 94. - 101. 106. 102. 95. 92. 94. 93. 89. 90. 96. 34. 32. 36. 42. 62. 108. - 150. 162. 172. 173. 167. 148. 104. 50. 41. 73. 107. 138. 158. 165. - 174. 177. 175. 178. 180. 178. 180. 182. 174. 158. 147. 145. 138. - 103. 51. 39. 50. 53. 57. 40. 37. 51. 56. 46. 40. 48. 58. 60. 49. 51. - 59. 68. 70. 62. 55. 52. 48. 48. 50. 62. 64. 44. 33. 46. 37. 73. 36. - 44. 105. 80. 38. 54. 81. 80. 84. 102. 122. 119. 110. 114. 98. 141. - 119. 136. 48. 37. 105. 46. 63. 43. 44. 52. 65. 61. 49. 71. 55. 66. - 86. 95. 80. 54. 44. 49. 46. 57. 70. 80. 94. 109. 121. 125. 131. 129. - 124. 130. 87. 53. 86. 94. 111. 126. 135. 131. 131. 138. 140. 135. - 138. 137. 137. 140. 143. 143. 139. 135. 134. 135. 136. 137. 138. - 139. 139. 139. 140. 143. 146. 147. 149. 150. 153. 156. 158. 159. - 161. 163. 165. 168. 170. 170. 174. 178. 183. 187. 190. 192. 195. - 197. 201. 202. 204. 205. 207. 207. 208. 208. 210. 221. 207. 215. - 213. 219. 179. 31. 90. 129. 143. 140. 149. 149. 141. 147. 141. 143. - 144. 144. 142. 141. 142. 142. 139. 140. 141. 140. 138. 135. 131. - 129. 127. 128. 130. 129. 126. 137. 169. 200. 206. 211. 209. 202. - 201. 209. 216. 218. 211. 208. 188. 152. 126. 117. 114. 110. 110. - 109. 102. 94. 94. 101. 103. 99. 87. 86. 86. 90. 95. 100. 103. 104. - 97. 101. 100. 93. 88. 92. 98. 101. 36. 33. 36. 41. 60. 105. 148. - 161. 171. 170. 164. 146. 106. 54. 43. 71. 106. 137. 158. 165. 174. - 177. 175. 178. 180. 178. 179. 180. 173. 158. 148. 146. 142. 107. 52. - 51. 52. 52. 50. 39. 44. 44. 40. 39. 52. 68. 70. 61. 44. 46. 54. 64. - 66. 61. 56. 56. 46. 47. 48. 58. 66. 51. 35. 38. 58. 47. 41. 81. 82. - 69. 85. 55. 89. 88. 86. 85. 93. 110. 120. 119. 92. 108. 121. 139. - 103. 54. 102. 38. 44. 39. 54. 55. 55. 59. 54. 64. 55. 56. 65. 72. - 65. 48. 41. 45. 50. 62. 75. 86. 97. 110. 120. 123. 128. 126. 128. - 121. 79. 58. 86. 100. 113. 127. 135. 132. 132. 138. 140. 136. 139. - 138. 138. 140. 142. 142. 138. 135. 134. 135. 136. 137. 138. 138. - 139. 139. 140. 143. 146. 147. 148. 150. 153. 155. 157. 158. 160. - 162. 164. 167. 168. 169. 172. 176. 181. 185. 188. 190. 193. 196. - 200. 201. 203. 205. 206. 207. 208. 208. 209. 219. 207. 216. 214. - 219. 190. 64. 95. 133. 146. 141. 149. 152. 145. 147. 141. 143. 144. - 143. 141. 139. 139. 139. 140. 140. 141. 141. 139. 136. 133. 132. - 128. 129. 132. 131. 128. 134. 156. 179. 198. 202. 202. 200. 203. - 213. 219. 219. 211. 206. 184. 149. 124. 117. 114. 110. 109. 106. 98. - 92. 95. 101. 101. 95. 78. 83. 90. 97. 101. 102. 102. 101. 93. 98. - 98. 93. 92. 95. 97. 97. 39. 35. 36. 39. 55. 101. 144. 159. 171. 169. - 162. 147. 111. 62. 48. 71. 105. 136. 157. 164. 174. 177. 175. 177. - 179. 177. 178. 178. 171. 160. 150. 147. 150. 115. 54. 67. 53. 52. - 40. 39. 37. 43. 51. 61. 75. 80. 66. 46. 41. 45. 53. 61. 62. 57. 54. - 56. 53. 54. 48. 51. 63. 59. 45. 40. 63. 42. 52. 94. 65. 59. 107. 73. - 56. 83. 116. 116. 101. 114. 129. 116. 86. 71. 91. 128. 129. 86. 104. - 62. 67. 38. 52. 62. 53. 54. 53. 60. 62. 53. 50. 54. 54. 48. 45. 48. - 55. 68. 83. 93. 102. 112. 120. 122. 124. 123. 133. 105. 67. 65. 85. - 108. 117. 129. 136. 134. 134. 140. 141. 138. 141. 140. 140. 141. - 142. 141. 138. 135. 135. 135. 136. 137. 137. 138. 139. 139. 140. - 143. 146. 147. 148. 150. 152. 155. 155. 156. 158. 160. 163. 165. - 167. 168. 171. 174. 179. 183. 185. 188. 191. 194. 199. 200. 202. - 204. 206. 207. 208. 208. 210. 214. 207. 217. 213. 218. 204. 113. - 101. 136. 149. 139. 141. 149. 146. 143. 145. 146. 148. 147. 144. - 142. 142. 143. 140. 140. 140. 140. 139. 136. 134. 132. 129. 131. - 135. 135. 132. 132. 142. 154. 179. 182. 186. 193. 204. 215. 219. - 217. 210. 201. 176. 142. 120. 114. 111. 107. 106. 101. 94. 91. 97. - 101. 96. 87. 69. 80. 95. 105. 107. 103. 99. 96. 89. 93. 95. 94. 96. - 99. 96. 90. 41. 36. 36. 36. 51. 95. 140. 156. 172. 170. 161. 148. - 118. 72. 55. 72. 104. 135. 156. 164. 173. 176. 174. 177. 178. 177. - 177. 175. 170. 161. 152. 147. 159. 124. 58. 81. 54. 51. 34. 44. 40. - 59. 76. 80. 74. 64. 51. 39. 43. 48. 57. 64. 61. 53. 50. 53. 62. 65. - 54. 46. 57. 64. 57. 52. 45. 66. 70. 66. 60. 59. 79. 100. 36. 59. - 112. 135. 122. 128. 133. 106. 95. 68. 65. 124. 121. 121. 106. 92. - 120. 43. 39. 65. 59. 48. 47. 61. 63. 53. 47. 48. 50. 48. 47. 50. 57. - 72. 89. 99. 107. 115. 120. 122. 122. 123. 132. 88. 57. 73. 86. 115. - 122. 131. 137. 136. 137. 141. 142. 139. 142. 142. 142. 142. 141. - 140. 138. 136. 136. 136. 136. 136. 137. 138. 138. 139. 141. 143. - 145. 147. 148. 149. 152. 154. 153. 154. 156. 158. 161. 163. 165. - 166. 170. 173. 178. 181. 184. 187. 191. 193. 197. 198. 201. 203. - 205. 207. 208. 208. 211. 211. 208. 217. 211. 214. 213. 160. 108. - 137. 148. 132. 125. 134. 139. 136. 142. 144. 146. 147. 146. 145. - 146. 147. 142. 141. 141. 140. 138. 135. 133. 132. 132. 135. 138. - 139. 137. 136. 138. 141. 153. 157. 167. 183. 203. 216. 218. 214. - 207. 193. 165. 134. 115. 110. 107. 103. 100. 95. 91. 94. 100. 99. - 89. 78. 69. 83. 100. 110. 108. 101. 95. 92. 87. 90. 92. 95. 99. 100. - 92. 81. 41. 37. 36. 35. 47. 91. 137. 153. 169. 168. 160. 148. 121. - 77. 58. 70. 102. 134. 155. 163. 172. 176. 174. 177. 177. 177. 176. - 174. 170. 163. 152. 144. 163. 128. 65. 87. 56. 50. 35. 49. 58. 69. - 74. 65. 50. 43. 46. 50. 43. 50. 61. 67. 62. 54. 52. 56. 60. 68. 60. - 49. 57. 63. 57. 53. 34. 82. 91. 42. 48. 62. 56. 115. 71. 45. 59. 88. - 93. 108. 124. 114. 83. 52. 51. 106. 119. 149. 148. 145. 120. 46. 40. - 60. 52. 46. 48. 61. 52. 49. 46. 46. 45. 42. 43. 46. 58. 75. 93. 104. - 110. 117. 122. 124. 123. 124. 123. 73. 54. 79. 91. 120. 127. 132. - 136. 137. 138. 141. 142. 140. 143. 144. 144. 143. 141. 140. 139. - 139. 137. 137. 136. 136. 136. 137. 138. 139. 141. 143. 145. 147. - 147. 148. 151. 153. 152. 153. 155. 157. 159. 162. 164. 164. 171. - 173. 177. 180. 183. 186. 191. 194. 195. 196. 199. 202. 205. 207. - 208. 209. 212. 210. 210. 215. 208. 210. 216. 192. 123. 138. 141. - 122. 107. 115. 127. 125. 129. 132. 136. 139. 141. 143. 145. 147. - 146. 145. 144. 142. 140. 138. 136. 134. 135. 139. 142. 143. 143. - 142. 141. 139. 134. 140. 156. 181. 206. 218. 218. 213. 206. 187. - 156. 129. 114. 109. 105. 101. 92. 91. 92. 98. 100. 94. 83. 74. 79. - 90. 103. 108. 104. 96. 91. 89. 87. 90. 92. 95. 99. 98. 86. 73. 39. - 36. 36. 34. 45. 88. 133. 151. 164. 165. 160. 147. 121. 79. 58. 67. - 101. 133. 154. 162. 172. 175. 174. 177. 176. 178. 177. 174. 171. - 164. 152. 139. 156. 125. 72. 86. 60. 48. 39. 50. 55. 56. 55. 51. 47. - 45. 46. 47. 44. 51. 62. 67. 62. 55. 59. 67. 51. 61. 58. 53. 59. 59. - 48. 43. 42. 78. 93. 46. 38. 59. 66. 113. 101. 60. 48. 56. 45. 52. - 94. 131. 101. 49. 52. 70. 101. 121. 169. 160. 65. 45. 56. 50. 37. - 49. 54. 55. 45. 47. 48. 47. 44. 43. 46. 50. 62. 80. 99. 108. 113. - 119. 124. 126. 123. 124. 104. 63. 59. 84. 101. 124. 131. 133. 136. - 138. 139. 141. 141. 140. 143. 144. 144. 143. 141. 140. 141. 142. - 138. 138. 136. 135. 135. 136. 138. 139. 141. 143. 145. 146. 146. - 147. 150. 152. 152. 152. 154. 157. 159. 161. 163. 164. 170. 173. - 176. 179. 181. 185. 190. 193. 193. 195. 198. 201. 204. 207. 208. - 209. 212. 210. 214. 214. 208. 210. 215. 208. 149. 137. 126. 109. 93. - 100. 112. 110. 117. 121. 126. 131. 135. 139. 143. 146. 146. 145. - 144. 143. 142. 141. 140. 139. 138. 143. 147. 146. 146. 146. 143. - 139. 129. 137. 158. 189. 213. 222. 219. 214. 203. 180. 149. 125. - 113. 108. 102. 97. 87. 90. 95. 99. 95. 85. 79. 78. 92. 97. 103. 103. - 98. 93. 89. 88. 92. 94. 95. 95. 95. 91. 78. 65. 36. 34. 35. 34. 44. - 86. 131. 149. 163. 167. 164. 151. 123. 81. 60. 69. 100. 132. 153. - 161. 171. 175. 173. 177. 175. 178. 178. 175. 172. 166. 150. 135. - 142. 117. 78. 82. 66. 46. 42. 45. 44. 46. 49. 52. 53. 50. 45. 43. - 51. 56. 62. 63. 56. 53. 63. 77. 55. 56. 48. 47. 56. 54. 41. 37. 46. - 80. 64. 52. 53. 50. 81. 112. 112. 85. 70. 63. 39. 25. 60. 114. 130. - 67. 61. 80. 83. 78. 129. 106. 33. 47. 63. 45. 37. 54. 52. 50. 48. - 48. 46. 44. 45. 50. 57. 61. 70. 87. 105. 113. 115. 119. 125. 127. - 121. 122. 81. 56. 69. 89. 114. 129. 133. 133. 134. 138. 140. 140. - 140. 140. 142. 144. 145. 143. 141. 140. 142. 145. 139. 138. 136. - 135. 135. 136. 138. 139. 141. 143. 145. 146. 146. 147. 149. 151. - 152. 153. 154. 157. 159. 161. 163. 164. 168. 171. 174. 176. 179. - 183. 188. 192. 192. 194. 197. 200. 204. 206. 208. 209. 210. 211. - 217. 213. 210. 215. 215. 214. 176. 132. 102. 91. 82. 88. 97. 89. - 101. 105. 111. 117. 122. 127. 131. 135. 137. 137. 137. 138. 139. - 140. 141. 142. 140. 148. 152. 150. 147. 145. 139. 133. 133. 143. - 167. 198. 219. 222. 216. 212. 195. 169. 137. 116. 108. 103. 95. 88. - 87. 92. 98. 97. 85. 74. 78. 88. 101. 101. 100. 98. 95. 92. 90. 88. - 97. 99. 98. 94. 90. 84. 72. 60. 34. 33. 35. 34. 44. 85. 130. 147. - 165. 172. 169. 156. 127. 85. 64. 72. 100. 131. 153. 161. 171. 175. - 173. 176. 175. 179. 179. 176. 173. 166. 149. 132. 130. 110. 81. 79. - 70. 44. 44. 40. 52. 53. 53. 49. 42. 40. 48. 58. 60. 62. 63. 59. 49. - 48. 62. 80. 68. 57. 38. 36. 50. 50. 41. 41. 41. 94. 30. 47. 80. 42. - 81. 118. 132. 98. 66. 61. 59. 42. 44. 72. 82. 42. 45. 128. 102. 97. - 117. 84. 45. 50. 56. 45. 50. 57. 44. 50. 49. 45. 39. 36. 42. 53. 63. - 67. 76. 93. 110. 116. 116. 120. 125. 127. 119. 121. 67. 53. 76. 92. - 124. 133. 134. 133. 134. 137. 140. 139. 139. 139. 141. 143. 145. - 144. 141. 141. 143. 146. 140. 138. 136. 135. 135. 136. 138. 139. - 141. 143. 145. 146. 146. 147. 149. 151. 152. 153. 154. 157. 159. - 162. 163. 164. 167. 169. 172. 174. 177. 181. 186. 190. 191. 193. - 196. 200. 204. 206. 208. 209. 209. 211. 218. 212. 212. 219. 215. - 216. 191. 126. 83. 76. 74. 81. 85. 72. 83. 87. 93. 99. 104. 109. - 114. 117. 126. 127. 128. 130. 133. 136. 139. 141. 141. 151. 157. - 152. 146. 141. 134. 125. 137. 147. 173. 204. 222. 220. 212. 208. - 186. 160. 127. 108. 102. 96. 86. 78. 88. 94. 100. 94. 77. 67. 78. - 96. 104. 102. 98. 96. 95. 93. 91. 89. 101. 103. 100. 93. 86. 79. 67. - 57. 35. 33. 35. 38. 44. 68. 117. 161. 170. 174. 175. 156. 136. 96. - 54. 67. 96. 128. 150. 159. 169. 174. 172. 176. 177. 173. 178. 180. - 172. 167. 157. 139. 129. 105. 74. 77. 79. 44. 30. 54. 64. 53. 45. - 44. 43. 44. 52. 62. 64. 46. 69. 54. 58. 50. 60. 64. 66. 53. 49. 47. - 42. 46. 50. 44. 47. 49. 48. 84. 62. 102. 102. 100. 130. 146. 86. 50. - 61. 87. 54. 51. 61. 44. 56. 135. 55. 104. 121. 62. 51. 45. 40. 40. - 45. 49. 49. 47. 44. 42. 40. 43. 50. 60. 69. 74. 90. 106. 116. 115. - 114. 117. 119. 116. 124. 81. 49. 60. 87. 107. 123. 137. 133. 134. - 135. 137. 139. 141. 142. 143. 145. 143. 141. 140. 139. 141. 143. - 144. 142. 137. 136. 139. 138. 133. 133. 138. 137. 140. 142. 143. - 143. 144. 147. 149. 151. 152. 153. 155. 157. 159. 161. 161. 167. - 168. 170. 172. 174. 178. 184. 188. 188. 192. 197. 201. 203. 205. - 207. 209. 210. 211. 212. 213. 215. 216. 218. 218. 213. 111. 80. 81. - 78. 85. 72. 72. 73. 78. 84. 88. 89. 90. 94. 97. 97. 103. 111. 115. - 118. 123. 132. 139. 138. 154. 165. 159. 145. 135. 132. 132. 131. - 152. 185. 214. 225. 218. 207. 200. 173. 148. 119. 101. 93. 86. 80. - 77. 88. 97. 93. 75. 66. 76. 91. 99. 106. 98. 94. 95. 93. 89. 91. 96. - 106. 101. 96. 91. 81. 66. 56. 53. 38. 33. 30. 32. 41. 68. 117. 161. - 170. 174. 176. 159. 142. 103. 59. 68. 96. 128. 150. 158. 169. 174. - 173. 176. 177. 173. 179. 181. 173. 167. 156. 137. 118. 115. 83. 85. - 81. 42. 37. 53. 51. 48. 47. 46. 43. 43. 54. 68. 52. 45. 71. 54. 53. - 50. 64. 70. 68. 58. 55. 51. 41. 43. 51. 49. 59. 41. 56. 78. 32. 84. - 114. 88. 117. 145. 133. 89. 69. 51. 55. 80. 70. 87. 89. 128. 60. 69. - 66. 41. 53. 48. 43. 43. 46. 48. 46. 43. 44. 42. 41. 44. 52. 63. 73. - 79. 90. 110. 123. 120. 117. 121. 122. 118. 102. 68. 48. 66. 98. 117. - 128. 136. 134. 135. 136. 137. 139. 140. 141. 142. 143. 143. 142. - 141. 141. 141. 142. 143. 142. 137. 136. 139. 138. 134. 134. 138. - 137. 139. 142. 143. 143. 144. 146. 148. 150. 151. 153. 155. 157. - 159. 160. 161. 166. 168. 170. 171. 173. 178. 183. 187. 187. 191. - 196. 200. 202. 204. 207. 209. 210. 210. 211. 213. 215. 216. 217. - 218. 215. 131. 79. 82. 82. 90. 78. 80. 72. 74. 77. 78. 77. 77. 77. - 77. 81. 86. 91. 94. 97. 103. 113. 120. 139. 146. 152. 151. 150. 150. - 147. 142. 141. 164. 193. 214. 221. 215. 200. 186. 154. 133. 107. 89. - 79. 75. 76. 80. 90. 95. 90. 76. 72. 84. 97. 101. 98. 94. 93. 95. 93. - 90. 92. 98. 107. 101. 95. 89. 79. 65. 56. 54. 41. 34. 28. 29. 38. - 66. 117. 161. 171. 175. 177. 162. 149. 112. 64. 67. 96. 128. 150. - 158. 169. 174. 173. 176. 176. 174. 180. 181. 173. 168. 155. 133. 96. - 122. 87. 88. 78. 37. 49. 51. 44. 41. 41. 45. 49. 52. 58. 65. 43. 46. - 74. 54. 45. 51. 65. 71. 68. 61. 61. 55. 41. 42. 52. 52. 63. 46. 55. - 60. 27. 55. 91. 88. 105. 120. 147. 127. 112. 69. 80. 95. 113. 120. - 72. 57. 38. 44. 47. 63. 54. 50. 46. 45. 47. 46. 43. 39. 43. 42. 42. - 45. 54. 66. 79. 86. 96. 115. 124. 118. 117. 125. 123. 112. 70. 53. - 52. 80. 112. 128. 133. 136. 136. 136. 137. 138. 138. 139. 140. 140. - 141. 142. 142. 143. 143. 142. 142. 142. 142. 138. 137. 138. 137. - 135. 135. 137. 137. 139. 141. 142. 142. 143. 145. 147. 150. 150. - 152. 154. 156. 158. 159. 160. 165. 166. 169. 171. 173. 177. 182. - 186. 187. 190. 196. 199. 201. 203. 206. 208. 209. 210. 211. 212. - 214. 216. 217. 217. 218. 163. 81. 82. 86. 97. 87. 90. 83. 81. 79. - 78. 75. 72. 67. 64. 64. 66. 67. 67. 69. 76. 86. 94. 123. 126. 132. - 144. 161. 171. 166. 155. 155. 181. 205. 215. 218. 215. 195. 172. - 136. 116. 92. 74. 65. 64. 72. 82. 88. 89. 85. 78. 82. 96. 103. 102. - 90. 90. 92. 94. 92. 91. 95. 102. 108. 100. 92. 85. 74. 62. 54. 54. - 42. 39. 37. 36. 40. 65. 114. 160. 171. 176. 179. 165. 155. 119. 67. - 64. 95. 127. 149. 158. 169. 174. 173. 177. 176. 175. 181. 181. 174. - 169. 154. 128. 79. 124. 82. 80. 70. 35. 59. 47. 47. 38. 34. 43. 57. - 65. 61. 55. 42. 50. 73. 54. 41. 55. 62. 64. 65. 59. 61. 57. 46. 46. - 52. 49. 50. 61. 49. 41. 52. 36. 44. 90. 107. 105. 134. 142. 135. - 111. 112. 100. 95. 104. 73. 49. 52. 46. 42. 57. 51. 49. 47. 47. 47. - 45. 41. 38. 40. 41. 43. 48. 57. 71. 85. 94. 108. 116. 116. 111. 118. - 126. 113. 89. 43. 47. 66. 98. 124. 133. 135. 136. 137. 137. 138. - 138. 138. 138. 139. 139. 139. 140. 142. 144. 144. 143. 142. 141. - 141. 139. 138. 138. 137. 136. 136. 137. 137. 139. 141. 142. 141. - 142. 144. 146. 148. 149. 151. 153. 155. 157. 158. 159. 162. 165. - 167. 170. 172. 175. 180. 183. 185. 189. 194. 198. 200. 202. 205. - 207. 208. 209. 210. 212. 213. 215. 216. 217. 219. 192. 91. 82. 89. - 101. 96. 99. 97. 93. 88. 84. 81. 76. 68. 62. 59. 57. 53. 49. 49. 54. - 62. 69. 88. 100. 122. 151. 178. 189. 178. 161. 158. 187. 209. 212. - 214. 214. 190. 158. 122. 102. 79. 65. 60. 63. 73. 83. 79. 80. 80. - 84. 95. 106. 107. 100. 87. 88. 90. 89. 88. 91. 98. 105. 106. 97. 88. - 79. 69. 58. 52. 53. 46. 50. 55. 54. 50. 66. 112. 157. 171. 178. 181. - 167. 159. 123. 69. 63. 95. 127. 149. 158. 170. 175. 174. 178. 175. - 176. 182. 182. 175. 171. 152. 122. 82. 129. 81. 68. 60. 35. 60. 41. - 46. 45. 45. 49. 56. 61. 59. 55. 45. 49. 64. 53. 42. 63. 62. 59. 62. - 54. 56. 58. 52. 52. 52. 43. 34. 64. 56. 41. 57. 43. 34. 65. 92. 106. - 131. 148. 119. 124. 118. 101. 81. 91. 109. 85. 51. 34. 42. 47. 46. - 46. 46. 47. 47. 45. 42. 39. 39. 41. 46. 53. 62. 76. 90. 100. 115. - 115. 113. 115. 126. 123. 92. 56. 35. 56. 88. 115. 128. 132. 134. - 136. 138. 138. 138. 138. 138. 138. 138. 138. 138. 140. 142. 145. - 145. 144. 142. 140. 141. 141. 139. 137. 137. 137. 137. 137. 137. - 138. 140. 141. 140. 141. 143. 145. 147. 148. 149. 151. 153. 155. - 157. 158. 160. 163. 166. 169. 171. 174. 178. 181. 184. 188. 193. - 197. 199. 201. 203. 205. 207. 208. 209. 211. 212. 214. 215. 216. - 218. 211. 115. 83. 89. 100. 101. 103. 102. 98. 93. 89. 86. 81. 73. - 67. 63. 59. 51. 44. 39. 41. 45. 50. 56. 88. 133. 173. 197. 198. 178. - 158. 159. 188. 208. 209. 211. 210. 181. 143. 104. 84. 64. 59. 64. - 71. 78. 84. 69. 73. 80. 92. 105. 111. 104. 93. 88. 88. 87. 85. 85. - 92. 101. 108. 102. 93. 83. 75. 65. 55. 51. 53. 59. 65. 73. 73. 66. - 74. 112. 152. 170. 180. 185. 170. 161. 128. 73. 66. 94. 126. 149. - 158. 170. 175. 174. 178. 175. 177. 183. 182. 175. 172. 151. 117. 97. - 135. 89. 63. 53. 38. 56. 41. 42. 55. 64. 57. 46. 45. 53. 61. 47. 45. - 54. 55. 46. 71. 62. 60. 62. 53. 55. 58. 53. 53. 51. 39. 32. 52. 64. - 57. 39. 63. 62. 31. 50. 82. 115. 147. 127. 143. 117. 84. 116. 94. - 116. 89. 31. 34. 59. 55. 42. 43. 44. 44. 44. 43. 42. 41. 39. 44. 52. - 60. 70. 82. 97. 107. 115. 114. 117. 125. 126. 106. 68. 36. 46. 75. - 109. 126. 129. 130. 133. 137. 137. 137. 138. 138. 138. 138. 139. - 139. 138. 139. 142. 144. 145. 144. 143. 141. 140. 142. 141. 137. - 136. 138. 138. 136. 136. 138. 140. 140. 139. 140. 141. 143. 146. - 147. 148. 150. 152. 154. 156. 156. 158. 161. 165. 168. 170. 173. - 176. 179. 183. 187. 192. 196. 198. 200. 202. 204. 207. 207. 208. - 210. 212. 213. 214. 215. 216. 218. 149. 86. 88. 97. 104. 105. 105. - 103. 100. 97. 93. 88. 82. 78. 71. 65. 56. 47. 40. 37. 37. 38. 43. - 90. 152. 196. 209. 198. 174. 154. 172. 196. 213. 213. 211. 201. 165. - 123. 80. 64. 53. 57. 69. 77. 80. 82. 67. 74. 86. 99. 108. 107. 96. - 86. 86. 87. 84. 82. 86. 97. 105. 108. 99. 90. 81. 73. 64. 56. 53. - 55. 79. 81. 85. 86. 81. 87. 115. 146. 166. 180. 187. 172. 164. 133. - 81. 75. 94. 126. 148. 158. 170. 175. 175. 178. 174. 178. 184. 182. - 176. 173. 150. 112. 103. 132. 98. 61. 48. 42. 50. 48. 47. 60. 65. - 55. 42. 41. 50. 57. 51. 44. 50. 60. 48. 71. 58. 62. 65. 58. 59. 58. - 49. 48. 48. 41. 44. 47. 49. 66. 41. 76. 66. 34. 30. 51. 82. 116. - 138. 155. 134. 96. 110. 86. 117. 107. 46. 54. 57. 39. 41. 42. 42. - 42. 41. 40. 40. 40. 41. 49. 60. 69. 78. 90. 103. 112. 116. 115. 120. - 121. 102. 70. 49. 44. 69. 95. 121. 130. 130. 132. 135. 136. 136. - 137. 137. 138. 138. 139. 139. 140. 138. 139. 141. 143. 144. 144. - 143. 143. 140. 143. 142. 137. 136. 139. 139. 136. 136. 138. 140. - 140. 139. 139. 141. 142. 145. 146. 147. 149. 151. 153. 155. 156. - 156. 160. 164. 167. 169. 172. 175. 177. 182. 186. 191. 195. 197. - 199. 201. 203. 206. 207. 208. 209. 211. 213. 214. 214. 216. 217. - 185. 90. 88. 94. 107. 105. 106. 107. 107. 104. 98. 93. 90. 89. 79. - 74. 65. 56. 48. 43. 38. 36. 41. 94. 161. 203. 210. 194. 172. 157. - 185. 202. 213. 211. 201. 178. 131. 87. 62. 55. 54. 63. 72. 76. 75. - 75. 74. 82. 95. 105. 106. 98. 87. 80. 81. 82. 81. 83. 92. 105. 109. - 106. 98. 90. 81. 75. 67. 59. 57. 59. 95. 91. 90. 91. 91. 96. 118. - 141. 164. 180. 189. 174. 166. 136. 87. 83. 94. 126. 148. 158. 170. - 175. 175. 179. 174. 178. 185. 182. 176. 173. 149. 110. 98. 123. 101. - 59. 46. 45. 48. 56. 59. 59. 54. 46. 45. 50. 50. 45. 57. 47. 52. 66. - 48. 66. 52. 61. 70. 64. 64. 58. 44. 41. 47. 45. 57. 53. 23. 63. 66. - 77. 43. 62. 49. 49. 67. 73. 115. 132. 152. 144. 90. 90. 130. 118. - 43. 45. 43. 44. 41. 42. 42. 41. 39. 37. 38. 38. 44. 53. 65. 75. 84. - 95. 107. 116. 120. 118. 119. 108. 72. 37. 39. 64. 87. 107. 125. 129. - 130. 135. 137. 135. 136. 136. 137. 138. 138. 139. 140. 140. 139. - 140. 141. 142. 143. 144. 144. 144. 140. 143. 142. 136. 136. 140. - 140. 136. 136. 138. 139. 139. 138. 138. 140. 142. 145. 145. 147. - 149. 151. 153. 154. 155. 156. 159. 163. 167. 169. 171. 174. 177. - 182. 186. 191. 194. 197. 198. 201. 203. 206. 206. 208. 209. 211. - 212. 213. 214. 216. 214. 207. 93. 88. 92. 108. 105. 103. 106. 107. - 104. 97. 92. 90. 91. 85. 80. 72. 64. 57. 50. 43. 39. 40. 94. 159. - 199. 205. 191. 174. 163. 187. 198. 204. 199. 183. 149. 95. 49. 57. - 57. 62. 70. 74. 71. 68. 68. 82. 91. 102. 108. 103. 91. 81. 77. 75. - 78. 80. 85. 98. 112. 112. 105. 98. 90. 83. 77. 70. 62. 60. 62. 83. - 93. 92. 88. 98. 110. 127. 147. 170. 179. 185. 181. 168. 144. 104. - 70. 100. 121. 145. 161. 170. 175. 177. 175. 174. 178. 180. 188. 176. - 167. 151. 98. 111. 109. 103. 60. 48. 58. 40. 48. 43. 54. 46. 46. 44. - 43. 57. 52. 59. 51. 46. 52. 46. 45. 61. 61. 66. 64. 41. 64. 72. 41. - 43. 44. 45. 70. 60. 38. 54. 71. 63. 50. 59. 74. 56. 71. 73. 65. 109. - 139. 112. 128. 66. 38. 54. 43. 42. 44. 51. 46. 42. 41. 38. 36. 40. - 47. 42. 56. 74. 85. 91. 101. 115. 127. 120. 119. 102. 68. 36. 33. - 61. 90. 117. 121. 125. 129. 130. 132. 134. 136. 136. 137. 138. 139. - 139. 139. 138. 138. 137. 138. 141. 143. 144. 143. 142. 141. 143. - 143. 142. 140. 139. 138. 137. 136. 136. 136. 137. 138. 139. 139. - 139. 139. 144. 145. 147. 148. 149. 150. 154. 156. 156. 159. 161. - 163. 164. 166. 170. 173. 179. 183. 187. 191. 194. 198. 202. 205. - 205. 206. 207. 209. 211. 212. 212. 212. 213. 214. 218. 138. 76. 90. - 92. 108. 107. 108. 108. 106. 101. 97. 95. 94. 84. 82. 78. 70. 61. - 54. 49. 47. 55. 91. 151. 192. 198. 195. 192. 184. 189. 194. 199. - 186. 142. 89. 56. 50. 53. 58. 65. 70. 72. 72. 73. 74. 92. 102. 108. - 102. 88. 79. 76. 77. 78. 78. 83. 95. 107. 112. 109. 103. 91. 88. 83. - 75. 68. 63. 62. 62. 77. 92. 97. 98. 107. 117. 132. 153. 171. 180. - 184. 179. 167. 145. 109. 77. 100. 121. 145. 161. 169. 175. 177. 175. - 174. 180. 181. 186. 175. 169. 152. 94. 117. 109. 93. 51. 44. 55. 41. - 47. 45. 52. 45. 50. 48. 43. 57. 56. 49. 45. 47. 53. 49. 52. 63. 60. - 64. 56. 49. 72. 77. 50. 45. 55. 36. 54. 78. 78. 32. 60. 77. 58. 61. - 58. 98. 55. 87. 97. 94. 72. 129. 136. 88. 50. 53. 52. 45. 40. 45. - 43. 43. 45. 45. 43. 46. 51. 73. 75. 78. 82. 88. 98. 110. 118. 116. - 92. 60. 40. 41. 61. 86. 103. 119. 122. 126. 129. 131. 132. 134. 136. - 137. 137. 138. 139. 139. 139. 139. 139. 137. 138. 141. 143. 144. - 143. 142. 141. 144. 144. 143. 141. 140. 139. 138. 137. 137. 137. - 138. 139. 139. 139. 139. 139. 143. 145. 147. 148. 148. 150. 153. - 156. 156. 158. 161. 162. 164. 166. 170. 173. 177. 180. 185. 188. - 191. 195. 199. 203. 204. 205. 207. 209. 210. 211. 212. 212. 211. - 219. 213. 165. 81. 90. 91. 104. 105. 107. 107. 106. 101. 98. 96. 95. - 89. 87. 83. 77. 71. 66. 63. 62. 59. 88. 143. 186. 200. 206. 207. - 198. 190. 177. 161. 139. 106. 71. 54. 55. 56. 63. 69. 70. 68. 70. - 77. 84. 99. 103. 104. 96. 84. 77. 77. 79. 78. 82. 90. 102. 110. 111. - 105. 98. 94. 87. 78. 70. 66. 65. 65. 65. 70. 90. 102. 107. 115. 119. - 131. 151. 169. 177. 181. 175. 164. 145. 112. 83. 100. 120. 144. 160. - 169. 175. 177. 176. 175. 183. 182. 183. 174. 171. 153. 89. 124. 111. - 85. 45. 41. 53. 45. 49. 48. 51. 45. 56. 54. 43. 56. 59. 50. 44. 47. - 48. 47. 60. 72. 71. 67. 47. 60. 81. 82. 60. 42. 58. 48. 54. 86. 83. - 48. 56. 79. 59. 58. 62. 104. 53. 84. 126. 121. 64. 76. 82. 78. 48. - 37. 49. 47. 48. 46. 43. 41. 41. 39. 38. 42. 48. 64. 70. 82. 98. 110. - 114. 108. 102. 66. 50. 37. 47. 74. 100. 111. 110. 121. 124. 128. - 130. 131. 133. 135. 137. 137. 138. 139. 140. 140. 140. 140. 139. - 137. 139. 141. 142. 143. 143. 142. 141. 145. 145. 144. 143. 142. - 141. 140. 139. 138. 138. 138. 139. 139. 139. 139. 140. 143. 144. - 146. 147. 148. 149. 153. 155. 156. 158. 160. 162. 163. 166. 169. - 172. 174. 177. 182. 185. 188. 192. 196. 199. 203. 204. 206. 208. - 210. 211. 212. 212. 209. 222. 208. 197. 97. 84. 91. 98. 103. 104. - 106. 105. 102. 99. 97. 97. 95. 92. 88. 84. 80. 79. 79. 79. 79. 99. - 144. 186. 206. 213. 210. 195. 174. 148. 116. 91. 72. 57. 54. 60. 63. - 68. 72. 70. 68. 73. 87. 99. 106. 104. 97. 87. 78. 73. 75. 79. 80. - 88. 100. 110. 113. 109. 101. 94. 95. 85. 72. 64. 64. 67. 67. 66. 62. - 84. 101. 110. 114. 112. 120. 140. 163. 173. 178. 173. 162. 142. 110. - 82. 100. 120. 143. 159. 168. 175. 177. 177. 176. 185. 183. 181. 173. - 173. 155. 88. 121. 112. 82. 47. 42. 49. 49. 54. 51. 51. 46. 61. 58. - 41. 51. 58. 65. 49. 49. 41. 42. 66. 81. 88. 76. 42. 65. 86. 88. 71. - 39. 49. 46. 66. 88. 59. 77. 50. 71. 86. 47. 71. 62. 78. 69. 116. - 147. 102. 62. 57. 87. 69. 38. 40. 37. 51. 48. 42. 37. 35. 35. 37. - 47. 57. 78. 83. 92. 100. 99. 85. 63. 47. 35. 43. 59. 81. 102. 115. - 117. 115. 124. 126. 129. 131. 132. 133. 135. 138. 137. 138. 139. - 140. 140. 140. 140. 140. 138. 139. 140. 142. 143. 143. 142. 142. - 146. 146. 145. 144. 143. 142. 142. 141. 140. 140. 139. 139. 139. - 140. 140. 140. 142. 144. 146. 146. 147. 149. 152. 155. 155. 157. - 159. 161. 162. 165. 169. 172. 173. 176. 180. 184. 186. 190. 194. - 197. 202. 203. 205. 207. 209. 211. 211. 211. 211. 220. 208. 215. - 123. 72. 95. 91. 99. 101. 104. 104. 102. 100. 100. 100. 97. 94. 89. - 86. 86. 87. 88. 89. 93. 107. 147. 190. 211. 215. 200. 175. 138. 115. - 89. 72. 63. 59. 60. 65. 72. 72. 71. 71. 75. 85. 100. 112. 108. 100. - 90. 80. 72. 68. 70. 76. 85. 95. 107. 115. 114. 107. 100. 95. 92. 80. - 66. 62. 65. 69. 67. 64. 53. 74. 93. 104. 109. 105. 112. 133. 158. - 171. 179. 175. 164. 143. 110. 82. 99. 119. 142. 157. 167. 174. 178. - 178. 177. 185. 183. 182. 173. 173. 157. 95. 104. 104. 77. 50. 43. - 43. 49. 55. 52. 53. 48. 63. 59. 40. 48. 53. 77. 50. 52. 41. 42. 67. - 78. 93. 81. 40. 63. 88. 96. 89. 52. 45. 31. 61. 81. 70. 58. 38. 66. - 117. 67. 58. 41. 90. 74. 97. 131. 125. 82. 49. 73. 72. 45. 40. 36. - 52. 43. 40. 39. 42. 45. 49. 58. 67. 80. 76. 70. 61. 53. 46. 43. 42. - 68. 79. 92. 101. 105. 109. 117. 123. 126. 128. 130. 131. 131. 132. - 135. 137. 137. 138. 139. 140. 140. 140. 139. 139. 138. 139. 140. - 141. 142. 142. 143. 143. 146. 146. 146. 145. 144. 144. 143. 143. - 142. 141. 140. 139. 139. 140. 141. 141. 141. 143. 145. 146. 146. - 148. 151. 154. 154. 156. 159. 160. 161. 164. 168. 171. 173. 176. - 180. 183. 186. 189. 193. 196. 200. 202. 204. 206. 209. 210. 211. - 211. 214. 214. 212. 215. 155. 66. 98. 87. 95. 98. 101. 103. 102. - 102. 102. 103. 101. 97. 92. 91. 92. 94. 95. 95. 88. 101. 140. 182. - 203. 202. 178. 146. 101. 90. 78. 71. 68. 68. 70. 74. 78. 73. 70. 75. - 87. 100. 110. 115. 103. 93. 83. 76. 68. 63. 67. 75. 91. 100. 111. - 115. 112. 105. 100. 98. 84. 73. 63. 62. 68. 70. 64. 57. 46. 63. 79. - 93. 101. 100. 109. 133. 156. 170. 181. 179. 167. 147. 116. 89. 99. - 118. 141. 156. 166. 174. 178. 178. 179. 182. 181. 184. 174. 170. - 160. 108. 82. 90. 66. 50. 44. 37. 48. 52. 50. 55. 52. 64. 59. 43. - 49. 49. 81. 45. 53. 47. 48. 66. 67. 88. 75. 41. 57. 91. 105. 106. - 81. 53. 50. 47. 60. 103. 30. 43. 59. 90. 118. 52. 59. 68. 89. 108. - 121. 148. 109. 56. 46. 52. 44. 41. 40. 46. 43. 43. 47. 51. 51. 47. - 48. 52. 45. 45. 45. 44. 48. 59. 77. 90. 97. 102. 108. 113. 117. 120. - 124. 127. 127. 129. 130. 130. 130. 131. 134. 137. 136. 137. 138. - 138. 139. 139. 138. 138. 139. 139. 140. 141. 141. 142. 143. 143. - 146. 146. 145. 145. 144. 144. 144. 143. 144. 143. 141. 140. 139. - 140. 141. 142. 140. 142. 144. 145. 145. 147. 150. 153. 153. 155. - 158. 159. 161. 163. 167. 170. 174. 177. 180. 183. 185. 188. 192. - 195. 199. 200. 203. 205. 208. 210. 211. 211. 215. 211. 215. 212. - 183. 77. 94. 85. 92. 95. 99. 102. 102. 103. 104. 106. 106. 102. 98. - 98. 101. 104. 104. 103. 94. 101. 130. 162. 172. 165. 138. 106. 84. - 80. 76. 74. 73. 75. 79. 81. 78. 74. 74. 83. 98. 109. 111. 108. 92. - 83. 76. 72. 66. 62. 70. 83. 99. 106. 113. 115. 111. 104. 99. 97. 76. - 68. 61. 62. 67. 68. 60. 52. 44. 55. 65. 79. 90. 92. 104. 129. 153. - 168. 178. 176. 167. 150. 123. 99. 99. 118. 141. 156. 165. 174. 178. - 179. 181. 179. 179. 188. 175. 167. 162. 122. 68. 78. 53. 47. 47. 39. - 51. 50. 45. 57. 55. 64. 60. 50. 56. 50. 90. 42. 52. 51. 51. 64. 60. - 92. 63. 43. 52. 91. 107. 113. 107. 62. 64. 41. 59. 107. 58. 48. 47. - 55. 119. 78. 71. 58. 84. 124. 125. 138. 136. 103. 67. 58. 46. 37. - 44. 37. 50. 48. 47. 48. 44. 39. 40. 44. 50. 57. 65. 72. 77. 85. 94. - 102. 104. 109. 117. 124. 128. 129. 128. 127. 128. 129. 130. 129. - 129. 130. 133. 136. 135. 135. 136. 137. 138. 138. 137. 137. 139. - 139. 140. 140. 141. 142. 143. 144. 145. 145. 145. 144. 144. 144. - 144. 143. 145. 144. 142. 140. 139. 140. 142. 143. 140. 141. 143. - 144. 145. 146. 150. 152. 153. 155. 157. 159. 160. 163. 166. 170. - 173. 176. 179. 182. 184. 187. 191. 194. 198. 199. 202. 205. 207. - 209. 210. 211. 212. 213. 212. 216. 200. 102. 84. 85. 89. 93. 97. - 101. 103. 104. 106. 108. 107. 103. 101. 104. 109. 113. 112. 110. - 109. 107. 120. 134. 133. 125. 106. 82. 84. 83. 81. 81. 83. 84. 82. - 78. 72. 74. 81. 93. 105. 108. 102. 95. 82. 74. 70. 69. 64. 64. 79. - 99. 106. 110. 115. 116. 112. 103. 95. 90. 71. 65. 60. 60. 64. 63. - 57. 50. 46. 52. 57. 69. 81. 83. 96. 122. 149. 163. 173. 171. 163. - 149. 126. 105. 98. 118. 140. 155. 165. 174. 178. 179. 182. 177. 178. - 190. 176. 165. 163. 131. 65. 73. 44. 44. 51. 44. 56. 50. 41. 58. 57. - 64. 62. 55. 62. 52. 103. 44. 50. 49. 49. 62. 61. 103. 53. 46. 50. - 90. 103. 111. 118. 64. 37. 41. 85. 90. 110. 36. 39. 65. 64. 110. 63. - 76. 68. 117. 111. 83. 97. 106. 76. 61. 43. 34. 59. 53. 52. 46. 41. - 39. 40. 43. 53. 64. 69. 73. 80. 88. 94. 100. 106. 109. 118. 123. - 126. 123. 117. 117. 124. 131. 128. 129. 129. 129. 128. 129. 132. - 135. 134. 135. 136. 136. 137. 137. 136. 136. 140. 140. 140. 140. - 141. 142. 143. 144. 145. 144. 144. 144. 144. 144. 143. 143. 146. - 144. 142. 140. 139. 140. 142. 143. 139. 141. 143. 144. 144. 146. - 149. 152. 152. 154. 157. 158. 160. 162. 166. 169. 172. 175. 178. - 181. 183. 186. 189. 192. 197. 199. 201. 204. 207. 209. 210. 211. - 209. 217. 209. 222. 207. 123. 76. 86. 87. 91. 97. 100. 103. 105. - 107. 109. 105. 102. 101. 106. 113. 118. 117. 114. 114. 106. 109. - 113. 109. 107. 100. 85. 88. 88. 87. 90. 94. 92. 81. 70. 67. 75. 88. - 100. 106. 103. 94. 86. 76. 69. 65. 66. 63. 66. 88. 113. 110. 113. - 117. 118. 113. 103. 91. 84. 70. 65. 59. 58. 60. 59. 55. 50. 53. 58. - 63. 62. 80. 88. 85. 116. 146. 169. 174. 180. 169. 146. 132. 109. - 104. 119. 137. 152. 165. 175. 179. 177. 180. 183. 177. 187. 175. - 166. 167. 121. 68. 68. 60. 49. 46. 52. 55. 52. 41. 49. 59. 64. 63. - 59. 56. 55. 70. 85. 33. 53. 56. 56. 79. 95. 45. 45. 44. 80. 103. 88. - 127. 92. 41. 24. 66. 110. 112. 71. 29. 45. 74. 76. 116. 51. 64. 110. - 110. 117. 78. 91. 101. 49. 38. 41. 55. 49. 38. 39. 42. 46. 52. 61. - 71. 77. 82. 90. 100. 106. 107. 109. 114. 118. 119. 122. 125. 126. - 126. 126. 127. 129. 132. 130. 128. 126. 127. 129. 132. 134. 133. - 135. 136. 136. 135. 136. 138. 140. 142. 142. 142. 142. 142. 142. - 142. 142. 144. 144. 144. 145. 145. 146. 146. 146. 142. 144. 146. - 144. 141. 140. 141. 143. 145. 144. 144. 145. 146. 147. 148. 149. - 153. 153. 154. 156. 158. 161. 163. 165. 169. 171. 175. 178. 180. - 183. 187. 190. 190. 194. 198. 202. 204. 207. 210. 212. 209. 215. - 206. 215. 212. 170. 70. 74. 81. 90. 96. 96. 99. 106. 109. 107. 112. - 110. 110. 113. 117. 119. 116. 113. 117. 112. 106. 105. 105. 102. 95. - 89. 96. 100. 103. 101. 94. 86. 80. 77. 82. 88. 97. 101. 99. 92. 84. - 79. 76. 76. 74. 69. 70. 80. 99. 115. 111. 118. 121. 114. 106. 98. - 86. 73. 66. 64. 62. 60. 59. 57. 54. 51. 52. 56. 61. 58. 72. 78. 78. - 113. 147. 180. 189. 190. 182. 167. 148. 110. 105. 120. 139. 153. - 166. 176. 180. 178. 179. 183. 180. 191. 179. 159. 140. 85. 58. 64. - 66. 56. 45. 43. 49. 55. 42. 48. 56. 61. 60. 58. 58. 59. 68. 89. 57. - 47. 47. 51. 86. 77. 48. 45. 42. 85. 106. 75. 119. 115. 56. 53. 42. - 98. 122. 86. 65. 27. 54. 96. 102. 82. 44. 75. 96. 121. 106. 75. 66. - 53. 48. 41. 43. 41. 43. 45. 47. 50. 57. 67. 78. 86. 93. 100. 108. - 112. 112. 113. 116. 120. 120. 122. 125. 126. 126. 126. 127. 129. - 131. 130. 129. 128. 128. 130. 132. 133. 133. 134. 136. 136. 135. - 136. 138. 140. 141. 141. 141. 141. 141. 141. 141. 140. 144. 144. - 144. 145. 145. 146. 146. 146. 143. 145. 146. 145. 142. 141. 142. - 144. 145. 145. 145. 145. 146. 147. 148. 149. 152. 153. 154. 156. - 159. 162. 164. 166. 168. 171. 175. 178. 180. 183. 186. 189. 189. - 192. 197. 200. 202. 205. 208. 210. 207. 213. 205. 213. 214. 180. 84. - 72. 83. 91. 97. 98. 102. 110. 115. 114. 112. 113. 115. 118. 120. - 119. 116. 113. 119. 114. 109. 106. 105. 102. 97. 93. 103. 105. 107. - 102. 94. 86. 82. 82. 85. 92. 98. 97. 88. 79. 74. 73. 73. 74. 73. 73. - 77. 88. 105. 117. 119. 119. 114. 107. 102. 96. 82. 68. 61. 61. 60. - 58. 56. 53. 51. 49. 51. 55. 59. 52. 62. 67. 70. 111. 151. 191. 202. - 201. 197. 189. 165. 115. 106. 121. 140. 154. 167. 177. 181. 179. - 181. 182. 181. 190. 182. 159. 126. 72. 58. 59. 60. 58. 51. 44. 45. - 50. 47. 52. 56. 58. 56. 56. 59. 62. 51. 78. 79. 39. 42. 56. 114. 77. - 49. 47. 41. 91. 112. 60. 106. 135. 89. 60. 29. 78. 117. 97. 73. 31. - 23. 87. 88. 109. 61. 42. 77. 93. 116. 69. 47. 60. 45. 40. 43. 45. - 48. 50. 53. 58. 65. 76. 88. 96. 103. 109. 114. 117. 116. 115. 117. - 119. 121. 123. 125. 126. 126. 126. 127. 129. 129. 129. 129. 130. - 130. 131. 131. 131. 133. 134. 136. 136. 135. 135. 137. 139. 139. - 139. 139. 139. 139. 139. 140. 140. 144. 144. 144. 145. 145. 146. - 146. 146. 145. 146. 147. 146. 144. 143. 144. 146. 146. 145. 145. - 146. 146. 148. 149. 150. 152. 152. 154. 156. 159. 162. 165. 167. - 167. 170. 174. 177. 179. 182. 185. 188. 187. 191. 195. 198. 200. - 203. 206. 208. 204. 212. 206. 210. 216. 194. 107. 70. 81. 88. 93. - 96. 100. 106. 111. 111. 112. 116. 120. 122. 121. 118. 116. 115. 118. - 116. 112. 108. 105. 103. 102. 101. 113. 114. 112. 104. 94. 87. 87. - 90. 92. 98. 100. 92. 79. 69. 67. 70. 70. 71. 73. 79. 89. 101. 113. - 120. 127. 119. 107. 98. 94. 89. 75. 61. 56. 58. 59. 58. 54. 52. 53. - 55. 51. 54. 57. 49. 56. 59. 67. 113. 163. 195. 202. 205. 206. 198. - 175. 128. 106. 121. 140. 154. 166. 176. 180. 178. 183. 182. 179. - 184. 182. 166. 135. 97. 70. 54. 45. 50. 58. 56. 47. 41. 55. 57. 59. - 57. 55. 56. 61. 65. 46. 62. 88. 40. 45. 64. 135. 85. 46. 51. 45. 95. - 118. 54. 92. 129. 127. 48. 38. 55. 91. 99. 53. 60. 30. 63. 79. 100. - 95. 38. 74. 70. 110. 91. 71. 80. 38. 36. 44. 44. 47. 51. 58. 66. 76. - 86. 97. 103. 108. 111. 115. 117. 116. 116. 116. 118. 121. 124. 126. - 127. 126. 126. 127. 129. 128. 129. 130. 131. 132. 131. 130. 130. - 132. 134. 136. 136. 135. 135. 136. 137. 139. 139. 139. 139. 140. - 140. 140. 140. 144. 144. 144. 145. 145. 146. 146. 146. 147. 147. - 147. 147. 146. 146. 146. 147. 146. 146. 146. 146. 147. 148. 150. - 150. 151. 152. 154. 156. 160. 163. 166. 168. 166. 169. 173. 176. - 178. 181. 184. 187. 187. 191. 195. 198. 200. 202. 205. 207. 205. - 213. 208. 207. 217. 205. 133. 70. 79. 84. 91. 95. 98. 101. 103. 104. - 113. 117. 122. 122. 119. 117. 117. 118. 115. 115. 113. 110. 107. - 107. 109. 112. 121. 120. 115. 105. 95. 91. 94. 99. 98. 99. 97. 88. - 78. 71. 72. 74. 69. 71. 77. 88. 102. 114. 121. 123. 128. 118. 105. - 94. 87. 78. 66. 55. 53. 57. 59. 58. 55. 57. 64. 71. 50. 52. 56. 49. - 55. 57. 66. 116. 178. 195. 196. 206. 208. 196. 179. 146. 106. 121. - 139. 153. 165. 174. 178. 176. 181. 181. 181. 179. 179. 167. 136. - 116. 74. 56. 42. 45. 56. 58. 51. 43. 57. 59. 60. 59. 58. 61. 67. 73. - 62. 57. 83. 51. 50. 68. 124. 77. 44. 55. 51. 97. 120. 55. 81. 103. - 146. 69. 49. 35. 69. 105. 66. 69. 64. 57. 72. 82. 91. 55. 69. 78. - 104. 108. 96. 112. 63. 39. 37. 32. 45. 52. 63. 74. 84. 93. 101. 105. - 109. 111. 114. 117. 117. 118. 119. 120. 122. 125. 127. 127. 127. - 126. 127. 128. 127. 128. 130. 132. 132. 131. 130. 129. 132. 134. - 136. 137. 135. 134. 135. 136. 139. 139. 140. 140. 141. 141. 142. - 142. 144. 144. 144. 145. 145. 146. 146. 146. 148. 147. 147. 147. - 148. 148. 148. 147. 147. 147. 147. 147. 148. 149. 151. 151. 152. - 153. 155. 157. 160. 163. 166. 168. 165. 168. 171. 174. 176. 179. - 183. 186. 188. 191. 195. 198. 200. 202. 204. 206. 207. 213. 212. - 206. 216. 211. 159. 77. 78. 83. 91. 98. 102. 102. 103. 105. 113. - 117. 120. 120. 117. 116. 119. 122. 112. 113. 113. 112. 112. 114. - 118. 122. 126. 122. 113. 104. 96. 94. 98. 101. 96. 92. 88. 84. 82. - 81. 80. 79. 72. 75. 84. 99. 114. 124. 126. 125. 121. 114. 103. 91. - 78. 66. 57. 52. 51. 54. 57. 57. 59. 66. 78. 88. 49. 50. 54. 50. 57. - 56. 63. 112. 184. 196. 193. 204. 207. 193. 181. 156. 106. 120. 138. - 152. 164. 174. 177. 175. 178. 179. 185. 179. 179. 161. 118. 106. 65. - 62. 53. 45. 45. 50. 53. 51. 53. 56. 60. 61. 62. 67. 74. 80. 72. 53. - 65. 66. 59. 86. 106. 67. 49. 56. 54. 99. 116. 54. 76. 79. 129. 112. - 64. 31. 65. 119. 107. 50. 61. 54. 67. 87. 69. 70. 44. 70. 86. 94. - 84. 122. 109. 62. 45. 36. 52. 59. 70. 81. 90. 97. 102. 106. 111. - 113. 115. 118. 120. 122. 124. 124. 123. 125. 128. 128. 127. 126. - 127. 128. 127. 128. 130. 131. 132. 131. 130. 129. 131. 134. 136. - 137. 135. 134. 134. 134. 139. 139. 140. 140. 141. 142. 142. 142. - 144. 144. 144. 145. 145. 146. 146. 146. 148. 147. 146. 147. 149. - 149. 149. 147. 148. 148. 148. 148. 149. 150. 151. 152. 154. 155. - 156. 158. 160. 163. 165. 166. 164. 167. 170. 173. 175. 178. 182. - 185. 188. 191. 195. 198. 199. 201. 203. 205. 208. 211. 214. 207. - 214. 212. 183. 92. 78. 80. 86. 95. 98. 99. 102. 107. 111. 114. 117. - 119. 120. 121. 122. 124. 114. 114. 115. 117. 120. 124. 127. 129. - 127. 119. 108. 99. 95. 94. 94. 94. 86. 82. 80. 82. 86. 87. 85. 81. - 77. 83. 94. 109. 122. 129. 128. 126. 113. 105. 94. 83. 69. 56. 50. - 50. 48. 51. 56. 61. 67. 77. 90. 99. 49. 47. 51. 49. 57. 53. 56. 103. - 175. 196. 196. 200. 201. 193. 182. 150. 107. 122. 140. 153. 165. - 174. 177. 176. 179. 179. 185. 178. 183. 161. 104. 92. 59. 63. 55. - 41. 40. 51. 55. 48. 53. 57. 62. 64. 65. 67. 73. 77. 73. 55. 47. 82. - 72. 120. 95. 59. 62. 53. 53. 103. 110. 47. 74. 72. 92. 119. 99. 45. - 65. 130. 113. 41. 42. 46. 63. 84. 69. 71. 39. 49. 62. 83. 65. 91. - 122. 83. 72. 53. 68. 72. 79. 86. 92. 97. 103. 107. 113. 113. 115. - 118. 121. 124. 125. 125. 124. 126. 128. 128. 127. 126. 127. 128. - 128. 129. 130. 130. 131. 131. 131. 130. 131. 134. 137. 137. 135. - 134. 133. 133. 137. 137. 138. 139. 140. 141. 141. 142. 144. 144. - 144. 145. 145. 146. 146. 146. 148. 146. 145. 146. 149. 150. 149. - 147. 148. 148. 148. 149. 149. 151. 152. 153. 156. 157. 157. 158. - 160. 162. 164. 165. 163. 166. 169. 172. 174. 177. 181. 184. 186. - 190. 193. 196. 197. 199. 201. 203. 207. 206. 214. 208. 212. 211. - 204. 111. 88. 85. 85. 89. 91. 91. 97. 106. 107. 110. 116. 123. 128. - 129. 126. 124. 121. 120. 120. 123. 129. 133. 133. 132. 126. 115. - 101. 93. 91. 89. 84. 78. 76. 77. 81. 85. 89. 88. 85. 82. 84. 91. - 104. 117. 127. 130. 128. 125. 110. 95. 79. 69. 60. 50. 46. 47. 48. - 53. 61. 70. 81. 90. 98. 102. 48. 45. 48. 48. 56. 49. 49. 95. 162. - 195. 199. 195. 194. 194. 180. 139. 108. 123. 141. 155. 166. 176. - 178. 177. 185. 179. 183. 176. 186. 167. 104. 92. 61. 61. 48. 33. 42. - 62. 57. 35. 57. 61. 65. 66. 64. 64. 67. 69. 79. 67. 44. 96. 82. 143. - 87. 46. 73. 49. 51. 107. 105. 38. 74. 77. 63. 91. 137. 63. 62. 133. - 83. 51. 49. 45. 60. 59. 81. 65. 64. 48. 52. 96. 65. 52. 101. 87. 90. - 59. 81. 83. 86. 89. 92. 97. 104. 108. 113. 113. 114. 116. 120. 122. - 123. 123. 124. 126. 128. 129. 127. 126. 127. 128. 129. 129. 129. - 130. 130. 131. 131. 131. 131. 134. 137. 137. 136. 133. 132. 132. - 135. 136. 137. 137. 138. 139. 140. 140. 144. 144. 144. 145. 145. - 146. 146. 146. 148. 145. 144. 145. 149. 150. 149. 146. 149. 149. - 149. 149. 150. 151. 152. 153. 158. 158. 158. 159. 160. 162. 163. - 164. 162. 165. 169. 172. 174. 177. 181. 183. 185. 188. 192. 194. - 195. 197. 199. 201. 205. 202. 213. 209. 210. 210. 215. 124. 107. 99. - 92. 91. 89. 89. 97. 108. 104. 108. 116. 127. 135. 135. 129. 123. - 128. 125. 124. 128. 135. 138. 136. 132. 126. 112. 96. 89. 88. 85. - 75. 66. 71. 78. 86. 91. 91. 88. 85. 84. 88. 97. 110. 122. 128. 129. - 127. 125. 110. 88. 67. 58. 53. 47. 44. 44. 51. 57. 67. 81. 93. 101. - 104. 104.
- - 1 - 1 -
d
- - 0.
- - 65536 - 1 -
d
- - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0.
- - <_ type_id="opencv-matrix"> - 1 - 1 -
d
- - 0. - <_ type_id="opencv-matrix"> - 1 - 1 -
d
- - 0.
- - 1 - 2 -
i
- - 1 2
-
diff --git a/test/helper.rb b/test/helper.rb index 54ab179..adf195d 100755 --- a/test/helper.rb +++ b/test/helper.rb @@ -10,11 +10,8 @@ class OpenCVTestCase < Test::Unit::TestCase FILENAME_CAT = SAMPLE_DIR + 'cat.jpg' FILENAME_LENA256x256 = SAMPLE_DIR + 'lena-256x256.jpg' FILENAME_LENA32x32 = SAMPLE_DIR + 'lena-32x32.jpg' - FILENAME_LENA_EYES = File.expand_path(File.dirname(__FILE__)) + '/samples/lena-eyes.jpg' - FILENAME_FRUITS = SAMPLE_DIR + 'fruits.jpg' - FILENAME_CONTOURS = File.expand_path(File.dirname(__FILE__)) + '/samples/contours.jpg' - FILENAME_CHESSBOARD = SAMPLE_DIR + 'chessboard.jpg' - HAARCASCADE_FRONTALFACE_ALT = SAMPLE_DIR + 'haarcascade_frontalface_alt.xml.gz' + FILENAME_GIRLS_PLAY_AND_PLANT_FLOWERS_IN_THE_PARK = SAMPLE_DIR + 'girls-play-and-plant-flowers-in-the-park-725x480.jpg' + HAARCASCADE_FRONTALFACE_ALT = SAMPLE_DIR + 'haarcascade_frontalface_alt.xml' AVI_SAMPLE = SAMPLE_DIR + 'movie_sample.avi' DUMMY_OBJ = Digest::MD5.new # dummy object for argument type check test @@ -32,20 +29,20 @@ class OpenCVTestCase < Test::Unit::TestCase end } - pos = CvPoint.new(0, 0) + pos = Point.new(0, 0) images.each { |img| - w = GUI::Window.new(img[:title]) + w = Window.new(img[:title]) w.show(img[:image]) - w.move(pos) + w.move(pos.x, pos.y) pos.x += img[:image].width if pos.x > 800 pos.y += img[:image].height pos.x = 0 end } - - GUI::wait_key - GUI::Window::destroy_all + + OpenCV::wait_key + Window::destroy_all end def hash_img(img) @@ -59,33 +56,20 @@ class OpenCVTestCase < Test::Unit::TestCase end end - alias original_assert_in_delta assert_in_delta - - def assert_cvscalar_equal(expected, actual, message = nil) - assert_equal(CvScalar, actual.class, message) - assert_array_equal(expected.to_ary, actual.to_ary, message) - end - - def assert_array_equal(expected, actual, message = nil) - assert_equal(expected.size, actual.size, message) - expected.zip(actual) { |e, a| - assert_equal(e, a, message) - } - end - - def assert_in_delta(expected, actual, delta) - if expected.is_a? CvScalar or actual.is_a? CvScalar - expected = expected.to_ary if expected.is_a? CvScalar - actual = actual.to_ary if actual.is_a? CvScalar - assert_in_delta(expected, actual ,delta) - elsif expected.is_a? Array and actual.is_a? Array - assert_equal(expected.size, actual.size) - expected.zip(actual) { |e, a| - original_assert_in_delta(e, a, delta) + def assert_mat_in_delta(expected, actual, delta) + assert_equal(expected.rows, actual.rows) + assert_equal(expected.cols, actual.cols) + assert_equal(expected.depth, actual.depth) + assert_equal(expected.dims, actual.dims) + assert_equal(expected.channels, actual.channels) + 0.upto(expected.rows - 1) { |r| + 0.upto(expected.cols - 1) { |c| + 0.upto(expected.channels - 1) { |i| + msg = "Failed at #{actual.class.to_s}(#{r}, #{c})[#{i}]" + assert_in_delta(expected[r, c][i], actual[r, c][i], delta, msg) + } } - else - original_assert_in_delta(expected, actual, delta) - end + } end def create_cvmat(height, width, depth = :cv8u, channel = 4, &block) @@ -100,67 +84,5 @@ class OpenCVTestCase < Test::Unit::TestCase } m end - - def create_iplimage(width, height, depth = :cv8u, channel = 4, &block) - m = IplImage.new(width, height, depth, channel) - block = lambda { |j, i, c| CvScalar.new(*([c + 1] * channel)) } unless block_given? - count = 0 - height.times { |j| - width.times { |i| - m[j, i] = block.call(j, i, count) - count += 1 - } - } - m - end - - def assert_each_cvscalar(actual, delta = 0, &block) - raise unless block_given? - count = 0 - actual.height.times { |j| - actual.width.times { |i| - expected = block.call(j, i, count) - if delta == 0 - expected = expected.to_ary if expected.is_a? CvScalar - assert_array_equal(expected, actual[j, i].to_ary) - else - assert_in_delta(expected, actual[j, i], delta) - end - count += 1 - } - } - end - - def print_cvmat(mat) - s = [] - mat.height.times { |j| - a = [] - mat.width.times { |i| - tmp = mat[j, i].to_ary.map {|m| m.to_f.round(2) }.join(',') - a << "[#{tmp}]" - } - s << a.join(' ') - } - puts s.join("\n") - end - - def count_threshold(mat, threshold, &block) - n = 0 - block = lambda { |a, b| a > b } unless block_given? - (mat.rows * mat.cols).times { |i| - n += 1 if block.call(mat[i][0], threshold) - } - n - end - - def color_hists(mat) - hists = [0] * mat.channel - (mat.rows * mat.cols).times { |i| - hists.size.times { |c| - hists[c] += mat[i][c] - } - } - hists - end end diff --git a/test/lbph_save.xml b/test/lbph_save.xml deleted file mode 100644 index b75178b..0000000 --- a/test/lbph_save.xml +++ /dev/null @@ -1,4304 +0,0 @@ - - -1 -8 -8 -8 - - <_ type_id="opencv-matrix"> - 1 - 16384 -
f
- - 4.16233111e-03 1.35275759e-02 0. 6.24349667e-03 5.20291366e-03 - 1.04058278e-03 3.12174833e-03 1.04058273e-02 0. 0. 0. 0. - 1.04058278e-03 0. 1.14464108e-02 5.41103035e-02 1.04058273e-02 - 1.45681594e-02 0. 1.04058278e-03 2.08116556e-03 0. 0. - 4.16233111e-03 2.08116556e-03 0. 0. 0. 2.91363187e-02 - 2.08116556e-03 1.34235173e-01 1.07180029e-01 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 1.04058278e-03 - 0. 0. 0. 4.16233111e-03 0. 0. 0. 2.70551518e-02 0. 3.43392305e-02 - 7.28407968e-03 3.12174833e-03 2.08116556e-03 0. 3.12174833e-03 - 2.08116556e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. - 2.08116556e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 - 1.14464108e-02 3.12174833e-03 0. 0. 1.04058278e-03 0. - 1.04058278e-03 0. 7.28407968e-03 0. 0. 0. 3.12174838e-02 - 1.04058278e-03 5.20291366e-03 6.24349667e-03 0. 3.12174833e-03 0. - 2.08116556e-03 0. 0. 0. 2.08116556e-03 0. 0. 0. 0. 0. 0. 0. - 7.28407968e-03 0. 2.08116556e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 0. 5.20291366e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 2.91363187e-02 0. 1.35275759e-02 0. 2.08116556e-03 0. - 1.35275759e-02 0. 0. 0. 0. 0. 0. 0. 8.32466222e-03 0. - 1.04058278e-03 0. 1.04058278e-03 0. 0. 0. 2.08116556e-03 0. 0. 0. - 0. 0. 0. 0. 6.24349667e-03 3.12174833e-03 8.01248774e-02 0. - 2.70551518e-02 0. 0. 0. 1.45681594e-02 0. 1.04058278e-03 0. 0. 0. - 0. 0. 5.20291366e-03 1.24869933e-02 5.20291403e-02 0. - 1.04058273e-02 1.04058278e-03 0. 0. 1.87304895e-02 8.32466222e-03 - 4.16233111e-03 0. 2.08116556e-03 1.04058273e-02 1.14464108e-02 - 3.12174833e-03 6.03538007e-02 2.08116556e-03 3.12174833e-03 0. 0. - 8.32466222e-03 0. 0. 5.20291366e-03 0. 0. 0. 0. 2.08116556e-03 0. - 5.20291366e-03 1.24869933e-02 1.24869933e-02 8.32466222e-03 - 1.04058278e-03 0. 0. 0. 0. 2.08116556e-03 2.08116556e-03 - 1.04058278e-03 0. 0. 1.14464108e-02 0. 2.49739867e-02 - 2.49739867e-02 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 5.20291366e-03 1.04058278e-03 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. - 0. 0. 9.36524477e-03 1.04058278e-03 8.32466222e-03 7.28407968e-03 - 9.36524477e-03 0. 0. 1.04058278e-03 3.12174833e-03 0. - 1.04058278e-03 3.12174833e-03 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 - 2.08116556e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 3.12174833e-03 0. - 0. 1.04058278e-03 2.08116556e-03 1.04058278e-03 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 4.26638946e-02 5.20291366e-03 0. 0. - 3.12174833e-03 0. 0. 2.08116556e-03 1.66493244e-02 1.04058278e-03 - 0. 0. 4.47450578e-02 0. 1.24869933e-02 8.32466222e-03 0. - 2.08116556e-03 0. 0. 0. 0. 0. 4.16233111e-03 0. 0. 0. 0. 0. 0. 0. - 3.12174833e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 7.28407968e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 - 3.12174833e-03 1.66493244e-02 0. 6.24349667e-03 0. 1.04058278e-03 - 0. 1.45681594e-02 0. 0. 0. 0. 0. 0. 0. 5.20291366e-03 0. - 4.16233111e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 - 1.04058278e-03 6.24349667e-03 1.97710730e-02 5.93132190e-02 0. - 1.87304895e-02 2.08116556e-03 4.16233111e-03 0. 1.04058273e-02 0. - 1.04058278e-03 0. 0. 0. 1.04058278e-03 2.08116556e-03 - 5.20291366e-03 8.84495378e-02 1.82101980e-01 0. 1.35275759e-02 - 1.04058278e-03 2.08116556e-03 0. 1.14464108e-02 1.56087419e-02 - 2.18522381e-02 0. 9.36524477e-03 2.49739867e-02 2.08116546e-02 - 1.56087419e-02 6.76378831e-02 1.76899079e-02 1.24869933e-02 - 2.08116556e-03 2.08116556e-03 1.66493244e-02 4.16233111e-03 - 3.12174833e-03 1.14464108e-02 0. 0. 0. 0. 2.08116556e-03 0. - 2.08116556e-03 2.08116556e-03 2.39334032e-02 1.14464108e-02 0. - 1.04058278e-03 3.12174833e-03 0. 0. 4.16233111e-03 1.04058278e-03 - 0. 1.04058278e-03 0. 2.91363187e-02 6.24349667e-03 1.24869933e-02 - 3.43392305e-02 0. 0. 0. 0. 1.04058278e-03 0. 0. 1.04058278e-03 0. - 0. 0. 0. 0. 0. 0. 0. 6.24349667e-03 2.08116556e-03 0. 0. - 1.04058278e-03 0. 1.04058278e-03 1.04058278e-03 0. 0. 0. 0. - 1.76899079e-02 0. 5.20291366e-03 1.24869933e-02 9.36524477e-03 - 2.08116556e-03 0. 1.04058278e-03 6.24349667e-03 0. 0. - 2.08116556e-03 0. 0. 0. 0. 0. 0. 0. 0. 6.24349667e-03 - 2.08116556e-03 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. - 3.12174833e-03 0. 2.08116556e-03 2.08116556e-03 3.12174833e-03 - 2.08116556e-03 0. 1.04058278e-03 0. 0. 1.04058278e-03 - 2.08116556e-03 0. 0. 1.04058278e-03 0. 0. 0. 1.04058278e-03 0. - 4.57856432e-02 6.24349667e-03 1.04058278e-03 0. 2.08116556e-03 0. - 2.08116556e-03 2.08116556e-03 7.28407968e-03 0. 0. 0. - 4.78668064e-02 4.16233111e-03 1.04058273e-02 2.08116546e-02 0. 0. - 1.04058278e-03 2.08116556e-03 0. 0. 0. 4.16233111e-03 0. 0. 0. 0. - 0. 0. 0. 0. 1.04058278e-03 1.04058278e-03 0. 1.04058278e-03 - 1.04058278e-03 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 2.08116556e-03 - 0. 1.14464108e-02 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 1.04058278e-03 - 2.08116556e-03 1.04058278e-03 9.36524477e-03 3.12174833e-03 - 2.39334032e-02 0. 1.24869933e-02 1.04058278e-03 1.04058278e-03 0. - 1.35275759e-02 0. 0. 0. 0. 2.08116556e-03 1.04058278e-03 0. - 3.12174833e-03 0. 1.04058278e-03 0. 0. 0. 0. 0. 1.04058278e-03 0. - 1.04058278e-03 0. 0. 2.08116556e-03 3.12174833e-03 0. - 8.32466222e-03 4.16233111e-03 1.24869933e-02 0. 6.24349667e-03 - 1.04058278e-03 0. 1.04058278e-03 3.12174833e-03 0. 1.04058278e-03 - 0. 0. 1.04058278e-03 0. 0. 6.24349667e-03 2.39334032e-02 - 6.24349676e-02 0. 1.35275759e-02 3.12174833e-03 2.08116556e-03 0. - 1.35275759e-02 2.18522381e-02 1.66493244e-02 0. 8.32466222e-03 - 1.45681594e-02 5.41103035e-02 9.36524477e-03 1.49843916e-01 - 2.70551518e-02 8.32466222e-03 1.04058278e-03 3.12174833e-03 - 1.45681594e-02 3.12174833e-03 3.12174833e-03 1.66493244e-02 - 1.04058278e-03 0. 0. 0. 3.12174833e-03 0. 1.04058278e-03 - 9.36524477e-03 9.36524477e-03 5.20291366e-03 0. 1.04058278e-03 - 1.04058278e-03 0. 0. 1.04058278e-03 4.16233111e-03 0. 0. 0. - 1.87304895e-02 4.16233111e-03 1.87304895e-02 3.74609791e-02 - 2.08116556e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 7.28407968e-03 0. 0. 0. 0. 0. 0. 0. 1.04058273e-02 1.04058278e-03 - 0. 1.04058278e-03 3.01769003e-02 2.08116556e-03 1.24869933e-02 - 6.24349667e-03 1.76899079e-02 0. 0. 0. 8.32466222e-03 0. - 2.08116556e-03 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 - 2.08116556e-03 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. - 2.08116556e-03 1.04058278e-03 1.04058278e-03 1.04058278e-03 - 7.28407968e-03 1.04058278e-03 0. 0. 2.08116556e-03 0. 0. - 1.04058278e-03 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 3.01769003e-02 - 2.08116556e-03 0. 0. 1.04058278e-03 0. 0. 1.04058278e-03 - 4.16233093e-02 2.08116556e-03 0. 0. 5.41103035e-02 1.04058278e-03 - 1.87304895e-02 9.36524477e-03 1.04058278e-03 8.32466222e-03 0. - 3.12174833e-03 0. 2.08116556e-03 0. 3.43392305e-02 0. 0. 0. 0. - 1.04058278e-03 0. 0. 8.32466222e-03 0. 1.04058278e-03 0. - 1.04058278e-03 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. - 1.35275759e-02 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. - 1.04058278e-03 1.04058278e-03 0. 1.56087419e-02 1.04058273e-02 - 2.08116546e-02 0. 2.08116546e-02 1.04058278e-03 2.08116556e-03 0. - 2.08116546e-02 0. 0. 0. 0. 1.04058278e-03 0. 0. 2.08116556e-03 - 2.08116556e-03 3.12174833e-03 0. 1.04058278e-03 0. 0. 0. - 3.12174833e-03 0. 1.04058278e-03 0. 0. 0. 2.08116556e-03 0. - 1.66493244e-02 8.32466222e-03 1.45681594e-02 2.08116556e-03 - 3.12174833e-03 0. 0. 0. 1.04058273e-02 0. 1.04058278e-03 0. 0. 0. - 0. 0. 1.04058278e-03 1.87304895e-02 3.22580673e-02 1.04058278e-03 - 1.45681594e-02 1.04058278e-03 1.04058278e-03 0. 7.28407968e-03 - 2.28928216e-02 1.35275759e-02 0. 1.87304895e-02 3.12174838e-02 - 1.97710730e-02 1.04058273e-02 8.74089524e-02 2.18522381e-02 - 5.20291366e-03 0. 1.04058278e-03 1.35275759e-02 1.04058278e-03 - 2.08116556e-03 2.49739867e-02 0. 0. 0. 0. 3.12174833e-03 - 2.08116556e-03 5.20291366e-03 2.08116546e-02 1.45681594e-02 - 3.12174833e-03 0. 0. 5.20291366e-03 0. 0. 6.24349667e-03 - 4.16233111e-03 0. 0. 0. 4.57856432e-02 3.12174833e-03 - 3.74609791e-02 8.22060406e-02 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 8.32466222e-03 1.04058278e-03 0. 0. - 1.04058278e-03 0. 0. 1.04058278e-03 1.04058278e-03 0. 0. 0. - 1.56087419e-02 0. 8.32466222e-03 1.45681594e-02 1.45681594e-02 - 3.12174833e-03 0. 0. 6.24349667e-03 0. 1.04058278e-03 - 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 3.12174833e-03 - 3.12174833e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 3.12174833e-03 - 5.20291366e-03 0. 2.08116556e-03 4.16233111e-03 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 2.49739867e-02 2.08116556e-03 - 1.04058278e-03 1.04058278e-03 2.08116556e-03 0. 0. 2.08116556e-03 - 1.97710730e-02 2.08116556e-03 3.12174833e-03 2.08116556e-03 - 5.41103035e-02 4.16233111e-03 1.04058273e-02 2.08116546e-02 0. - 3.12174833e-03 0. 0. 0. 1.04058278e-03 0. 3.64203975e-02 0. 0. 0. - 0. 0. 0. 0. 1.24869933e-02 1.04058278e-03 0. 0. 0. 0. 0. 0. - 2.08116556e-03 0. 0. 0. 0. 0. 0. 1.04058278e-03 1.24869933e-02 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 0. 0. 0. 0. 0. 2.08116556e-03 0. 1.04058273e-02 - 2.08116556e-03 1.04058273e-02 0. 3.12174833e-03 1.04058278e-03 - 2.08116556e-03 0. 1.56087419e-02 0. 1.04058278e-03 0. 0. 0. 0. 0. - 3.12174833e-03 0. 4.16233111e-03 0. 0. 0. 0. 0. 1.04058278e-03 0. - 0. 0. 0. 0. 9.36524477e-03 0. 1.45681594e-02 1.04058278e-03 - 2.08116556e-03 0. 1.04058278e-03 1.04058278e-03 0. 0. - 2.08116556e-03 0. 0. 0. 0. 0. 0. 0. 5.20291366e-03 3.12174833e-03 - 2.08116546e-02 0. 8.32466222e-03 0. 2.08116556e-03 0. - 6.24349676e-02 1.14464108e-02 6.24349667e-03 2.08116556e-03 - 6.24349667e-03 1.14464108e-02 2.80957352e-02 5.20291366e-03 - 1.17585853e-01 1.04058278e-03 9.36524477e-03 0. 1.04058278e-03 - 6.24349667e-03 1.04058278e-03 0. 1.97710730e-02 0. 0. 0. 0. - 1.04058278e-03 2.08116556e-03 2.08116556e-03 3.95421460e-02 - 1.56087419e-02 7.28407968e-03 0. 2.08116556e-03 0. 0. 0. - 1.04058278e-03 3.12174833e-03 0. 0. 0. 1.76899079e-02 - 2.08116556e-03 3.64203975e-02 7.59625435e-02 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 2.08116556e-03 - 1.04058278e-03 0. 0. 0. 0. 1.04058278e-03 1.04058278e-03 - 2.08116556e-03 0. 0. 0. 1.04058273e-02 1.04058278e-03 - 7.28407968e-03 8.32466222e-03 5.20291366e-03 0. 0. 0. - 1.04058278e-03 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 3.12174833e-03 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 - 0. 0. 0. 2.08116556e-03 0. 1.04058278e-03 1.04058278e-03 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 3.53798158e-02 - 3.12174833e-03 0. 0. 0. 0. 0. 1.04058278e-03 1.87304895e-02 0. 0. - 0. 2.60145701e-02 2.08116556e-03 7.28407968e-03 1.56087419e-02 0. - 0. 0. 0. 0. 0. 0. 7.28407968e-03 0. 0. 0. 0. 0. 0. 0. - 1.97710730e-02 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 1.35275759e-02 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 6.24349667e-03 0. - 9.36524477e-03 0. 1.04058278e-03 0. 2.80957352e-02 0. 0. 0. 0. 0. - 1.04058278e-03 0. 1.14464108e-02 0. 3.12174833e-03 0. 0. 0. 0. 0. - 1.04058278e-03 0. 1.04058278e-03 0. 0. 0. 1.04058278e-03 0. - 6.24349667e-03 7.28407968e-03 3.32986489e-02 0. 3.12174833e-03 0. - 1.04058278e-03 0. 5.20291366e-03 0. 0. 0. 0. 0. 0. 0. - 5.20291366e-03 1.73777327e-01 9.15712863e-02 0. 6.24349667e-03 - 1.04058278e-03 0. 0. 1.35275759e-02 3.12174838e-02 9.36524477e-03 - 0. 0. 7.28407968e-03 1.45681594e-02 1.04058273e-02 6.97190464e-02 - 2.08116546e-02 1.04058273e-02 1.04058278e-03 1.04058278e-03 - 1.35275759e-02 3.12174833e-03 0. 2.80957352e-02 0. 0. 0. 0. - 1.04058278e-03 1.04058278e-03 1.04058278e-03 6.03538007e-02 - 1.97710730e-02 8.32466222e-03 0. 0. 1.04058278e-03 1.04058278e-03 - 0. 1.04058278e-03 6.24349667e-03 2.08116556e-03 0. 0. - 3.85015644e-02 4.16233111e-03 1.66493244e-02 3.95421460e-02 - 1.04058278e-03 0. 0. 0. 0. 0. 0. 4.16233111e-03 0. 0. 0. 0. 0. 0. - 0. 0. 7.28407968e-03 0. 0. 0. 1.04058278e-03 0. 0. 2.08116556e-03 - 4.16233111e-03 0. 0. 0. 2.80957352e-02 4.16233111e-03 - 2.18522381e-02 1.87304895e-02 4.16233111e-03 0. 0. 0. - 1.04058278e-03 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. - 2.08116556e-03 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. - 3.12174833e-03 0. 0. 1.04058278e-03 2.08116556e-03 2.08116556e-03 - 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. - 3.43392305e-02 1.04058278e-03 1.04058278e-03 2.08116556e-03 - 3.12174833e-03 0. 1.04058278e-03 2.08116556e-03 1.14464108e-02 0. - 0. 0. 3.01769003e-02 0. 2.08116546e-02 1.14464108e-02 0. - 2.08116556e-03 0. 1.04058278e-03 0. 1.04058278e-03 0. - 8.32466222e-03 0. 0. 0. 0. 0. 4.16233111e-03 0. 1.66493244e-02 0. - 2.08116556e-03 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. - 1.24869933e-02 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 - 2.08116556e-03 1.14464108e-02 0. 3.12174833e-03 0. 0. 0. - 1.66493244e-02 0. 0. 0. 0. 0. 1.04058278e-03 0. 6.24349667e-03 - 1.04058278e-03 3.12174833e-03 0. 0. 0. 0. 0. 0. 2.08116556e-03 0. - 0. 0. 2.08116556e-03 3.12174833e-03 0. 1.04058273e-02 - 5.20291366e-03 1.04058273e-02 0. 0. 0. 1.04058278e-03 0. - 9.36524477e-03 0. 0. 0. 0. 0. 0. 0. 4.16233111e-03 1.11342356e-01 - 1.14464108e-02 0. 3.12174833e-03 1.04058278e-03 1.04058278e-03 - 3.12174833e-03 1.76899079e-02 2.08116546e-02 9.36524477e-03 0. - 4.16233111e-03 2.70551518e-02 9.36524477e-03 1.35275759e-02 - 1.14464104e-01 3.22580673e-02 7.28407968e-03 2.08116556e-03 - 6.24349667e-03 1.14464108e-02 0. 4.16233111e-03 1.35275759e-02 - 1.04058278e-03 0. 0. 0. 2.08116556e-03 1.04058278e-03 - 4.16233111e-03 4.37044762e-02 1.14464108e-02 4.16233111e-03 0. 0. - 2.08116556e-03 0. 1.04058278e-03 2.08116556e-03 3.12174833e-03 - 1.04058278e-03 0. 0. 3.22580673e-02 1.04058278e-03 3.01769003e-02 - 1.76899079e-02 1.04058278e-03 1.04058278e-03 0. 0. 0. 0. - 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 4.16233111e-03 - 2.08116556e-03 1.04058278e-03 0. 1.04058278e-03 0. 1.04058278e-03 - 0. 3.12174833e-03 1.04058278e-03 0. 0. 1.87304895e-02 - 2.08116556e-03 3.74609791e-02 8.32466222e-03 1.56087419e-02 - 4.16233111e-03 1.04058278e-03 2.08116556e-03 3.12174833e-03 0. 0. - 3.12174833e-03 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 1.04058278e-03 - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 1.04058278e-03 - 0. 5.20291366e-03 3.12174833e-03 0. 2.08116556e-03 1.04058278e-03 - 0. 0. 3.12174833e-03 0. 1.04058278e-03 0. 0. 0. 0. 1.04058278e-03 - 1.04058278e-03 3.74609791e-02 1.04058278e-03 1.04058278e-03 - 1.04058278e-03 4.16233111e-03 0. 0. 0. 1.35275759e-02 0. 0. 0. - 1.66493244e-02 0. 4.16233111e-03 5.20291366e-03 2.08116556e-03 - 6.24349667e-03 0. 1.04058278e-03 0. 2.08116556e-03 0. - 1.04058273e-02 1.04058278e-03 1.04058278e-03 0. 0. 0. 0. - 1.04058278e-03 6.24349667e-03 2.08116556e-03 0. 0. 0. 0. 0. 0. - 3.12174833e-03 0. 0. 0. 0. 2.08116556e-03 0. 0. 1.14464108e-02 0. - 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 1.04058278e-03 1.04058278e-03 0. 0. 0. 0. 0. - 3.12174833e-03 7.28407968e-03 3.85015644e-02 0. 2.28928216e-02 0. - 2.08116556e-03 0. 1.97710730e-02 1.04058278e-03 1.04058278e-03 0. - 0. 0. 3.12174833e-03 0. 9.36524477e-03 1.04058278e-03 - 1.04058278e-03 0. 2.08116556e-03 0. 0. 0. 1.04058278e-03 - 1.04058278e-03 0. 0. 0. 2.08116556e-03 0. 0. 6.24349667e-03 - 9.36524477e-03 1.35275759e-02 0. 1.56087419e-02 0. 0. - 2.08116556e-03 9.36524477e-03 0. 0. 0. 0. 0. 1.04058278e-03 0. - 8.32466222e-03 4.26638946e-02 5.93132190e-02 1.04058278e-03 - 1.87304895e-02 3.12174833e-03 0. 1.04058278e-03 1.45681594e-02 - 1.97710730e-02 1.35275759e-02 0. 1.04058273e-02 1.04058273e-02 - 1.56087419e-02 4.16233111e-03 9.67741981e-02 6.24349667e-03 - 1.35275759e-02 0. 4.16233111e-03 4.16233111e-03 1.04058278e-03 - 1.04058278e-03 1.45681594e-02 0. 0. 0. 0. 1.04058278e-03 0. - 1.76899079e-02 6.03538007e-02 1.04058273e-02 8.32466222e-03 0. - 2.08116556e-03 2.08116556e-03 0. 0. 3.12174833e-03 3.12174833e-03 - 0. 1.04058278e-03 1.04058278e-03 2.49739867e-02 5.20291366e-03 - 1.59209162e-01 1.03017695e-01 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. - 2.08116556e-03 0. 0. 0. 0. 2.08116556e-03 0. 4.16233111e-03 - 6.24349667e-03 0. 2.08116556e-03 0. 0. 0. 0. 1.04058278e-03 0. 0. - 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 1.04058278e-03 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 1.56087419e-02 2.08116556e-03 0. 0. 0. 0. 0. - 1.04058278e-03 3.12174833e-03 0. 0. 0. 4.16233111e-03 0. - 4.16233111e-03 5.20291366e-03 0. 3.12174833e-03 0. 0. 0. 0. 0. - 4.16233111e-03 0. 0. 0. 0. 0. 0. 0. 3.12174833e-03 0. 0. 0. - 2.08116556e-03 0. 0. 0. 0. 0. 0. 0. 0. 2.08116556e-03 - 1.04058278e-03 0. 7.28407968e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 1.04058278e-03 1.14464108e-02 0. 8.32466222e-03 0. - 0. 1.04058278e-03 1.45681594e-02 0. 1.04058278e-03 0. 0. 0. 0. 0. - 1.14464108e-02 0. 3.12174833e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 0. 1.24869933e-02 1.35275759e-02 4.37044762e-02 0. - 5.20291366e-03 0. 1.04058278e-03 0. 1.45681594e-02 0. 0. 0. - 1.04058278e-03 0. 0. 1.04058278e-03 1.04058273e-02 7.59625435e-02 - 1.44641012e-01 0. 3.12174833e-03 0. 0. 0. 5.20291366e-03 - 2.08116556e-03 3.12174833e-03 0. 0. 2.08116556e-03 9.36524477e-03 - 1.04058273e-02 5.82726374e-02 1.35275759e-02 8.32466222e-03 0. 0. - 3.12174833e-03 1.04058278e-03 0. 4.16233111e-03 0. 0. 0. 0. 0. - 1.04058278e-03 6.24349667e-03 1.76899079e-02 1.14464108e-02 - 4.16233111e-03 0. 0. 0. 0. 0. 1.04058278e-03 0. 1.04058278e-03 0. - 0. 1.14464108e-02 2.08116556e-03 2.18522381e-02 1.76899079e-02 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 3.12174833e-03 0. 1.04058278e-03 - 1.04058278e-03 1.45681594e-02 2.08116556e-03 0. 0. 3.12174833e-03 - 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 6.24349667e-03 - 2.08116556e-03 0. 0. 2.08116556e-03 0. 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 0. 1.04058278e-03 4.05827276e-02 0. 1.04058278e-03 - 0. 2.08116556e-03 0. 2.08116556e-03 1.04058278e-03 1.56087419e-02 - 1.04058278e-03 0. 0. 2.08116546e-02 1.04058278e-03 2.08116556e-03 - 1.04058278e-03 0. 1.04058278e-03 0. 1.04058278e-03 0. 0. 0. - 7.28407968e-03 0. 0. 0. 0. 0. 0. 0. 6.24349667e-03 2.08116556e-03 - 1.04058278e-03 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. - 1.04058278e-03 0. 2.08116556e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 3.12174833e-03 3.12174833e-03 3.22580673e-02 0. 1.76899079e-02 0. - 3.12174833e-03 1.04058278e-03 2.39334032e-02 0. 0. 0. 0. 0. - 2.08116556e-03 0. 2.08116556e-03 1.04058278e-03 0. 0. - 1.04058278e-03 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. - 1.04058278e-03 1.04058278e-03 1.04058278e-03 1.56087419e-02 - 6.76378831e-02 0. 2.08116546e-02 0. 2.08116556e-03 1.04058278e-03 - 1.14464108e-02 0. 0. 0. 0. 1.04058278e-03 0. 2.08116556e-03 - 1.87304895e-02 8.32466185e-02 1.71696156e-01 0. 1.14464108e-02 - 3.12174833e-03 1.04058278e-03 1.04058278e-03 1.76899079e-02 - 2.18522381e-02 2.80957352e-02 0. 7.28407968e-03 1.24869933e-02 - 1.24869933e-02 1.45681594e-02 1.00936532e-01 4.89073917e-02 - 1.87304895e-02 3.12174833e-03 3.12174833e-03 1.04058273e-02 0. - 4.16233111e-03 8.32466222e-03 0. 1.04058278e-03 1.04058278e-03 0. - 1.04058278e-03 0. 3.12174833e-03 3.12174833e-03 1.35275759e-02 - 2.08116556e-03 3.12174833e-03 0. 2.08116556e-03 1.04058278e-03 - 3.12174833e-03 1.04058278e-03 4.16233111e-03 1.04058278e-03 0. 0. - 2.49739867e-02 1.04058278e-03 3.12174838e-02 9.36524477e-03 - 4.16233111e-03 2.08116556e-03 0. 1.04058278e-03 1.04058278e-03 0. - 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 1.04058278e-03 - 1.04058273e-02 0. 1.04058278e-03 1.04058278e-03 4.16233111e-03 0. - 1.04058278e-03 1.04058278e-03 4.16233111e-03 1.04058278e-03 0. - 1.04058278e-03 1.97710730e-02 0. 2.08116546e-02 5.20291366e-03 - 2.28928216e-02 3.12174833e-03 0. 2.08116556e-03 0. 0. 0. 0. - 1.04058278e-03 0. 0. 0. 0. 0. 1.04058278e-03 1.04058278e-03 - 3.12174833e-03 0. 0. 0. 1.04058278e-03 0. 0. 0. 2.08116556e-03 0. - 0. 0. 1.04058278e-03 0. 1.04058278e-03 0. 7.28407968e-03 - 7.28407968e-03 1.04058278e-03 4.16233111e-03 1.04058278e-03 0. 0. - 2.08116556e-03 0. 0. 0. 0. 0. 0. 0. 0. 1.87304895e-02 - 3.12174833e-03 0. 2.08116556e-03 2.08116556e-03 0. 1.04058278e-03 - 1.04058278e-03 1.45681594e-02 2.08116556e-03 0. 0. 2.18522381e-02 - 0. 7.28407968e-03 2.08116556e-03 1.04058278e-03 8.32466222e-03 0. - 4.16233111e-03 3.12174833e-03 1.04058278e-03 0. 8.32466222e-03 0. - 0. 0. 1.04058278e-03 0. 0. 0. 3.12174833e-03 0. 0. 0. 0. 0. 0. - 1.04058278e-03 0. 1.04058278e-03 0. 0. 0. 0. 1.04058278e-03 0. - 6.24349667e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 1.04058278e-03 0. 0. 1.04058278e-03 0. 0. 0. 0. - 1.04058278e-03 0. 0. 7.28407968e-03 9.36524477e-03 4.47450578e-02 - 0. 2.18522381e-02 0. 1.04058278e-03 0. 1.45681594e-02 0. - 1.04058278e-03 0. 1.04058278e-03 2.08116556e-03 2.08116556e-03 0. - 4.16233111e-03 0. 1.04058278e-03 0. 0. 0. 1.04058278e-03 0. 0. - 1.04058278e-03 2.08116556e-03 0. 0. 0. 2.08116556e-03 - 1.04058278e-03 3.12174833e-03 1.04058273e-02 5.09885550e-02 0. - 2.91363187e-02 1.04058278e-03 1.04058278e-03 1.04058278e-03 - 1.45681594e-02 1.04058278e-03 1.04058278e-03 0. 0. 0. - 4.16233111e-03 1.04058278e-03 1.24869933e-02 2.28928216e-02 - 4.37044762e-02 0. 1.76899079e-02 1.04058278e-03 2.08116556e-03 0. - 2.08116556e-03 1.35275759e-02 1.87304895e-02 1.04058278e-03 - 1.66493244e-02 2.18522381e-02 1.35275759e-02 1.87304895e-02 - 9.15712863e-02 5.30697219e-02 1.14464108e-02 0. 4.16233111e-03 - 8.32466222e-03 3.12174833e-03 2.08116556e-03 4.16233111e-03 - 3.12174833e-03 0. 0. 0. 3.12174833e-03 0. 1.04058278e-03 - 2.08116556e-03 8.32466222e-03 1.04058278e-03 0. 0. 6.24349667e-03 - 0. 0. 0. 4.16233111e-03 0. 0. 0. 1.97710730e-02 1.04058278e-03 - 1.24869933e-02 8.32466222e-03 7.28407968e-03 1.04058278e-03 0. 0. - 1.04058278e-03 0. 2.08116556e-03 0. 0. 0. 0. 0. 0. 1.04058278e-03 - 0. 0. 1.14464108e-02 2.08116556e-03 0. 0. 5.20291366e-03 0. - 1.04058278e-03 0. 7.28407968e-03 0. 0. 0. 3.95421460e-02 0. - 1.35275759e-02 5.20291366e-03 2.28928216e-02 2.08116556e-03 - 1.04058278e-03 4.16233111e-03 4.16233111e-03 0. 1.04058278e-03 - 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 2.08116556e-03 0. 0. 0. 0. - 0. 0. 0. 2.08116556e-03 0. 0. 0. 2.08116556e-03 0. 1.04058278e-03 - 0. 2.80957352e-02 2.08116556e-03 0. 2.08116556e-03 1.04058278e-03 - 1.04058278e-03 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 3.12174833e-03 - 0. 2.91363187e-02 1.04058278e-03 3.12174833e-03 0. 4.16233111e-03 - 0. 1.04058278e-03 1.04058278e-03 2.08116546e-02 0. 0. 0. - 1.87304895e-02 0. 9.36524477e-03 7.28407968e-03 4.16233111e-03 - 2.08116556e-03 0. 2.08116556e-03 2.08116556e-03 0. 0. - 1.04058273e-02 0. 0. 0. 0. 1.04058278e-03 2.08116556e-03 0. - 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 - 1.04058278e-03 0. 3.12174833e-03 2.08116556e-03 1.04058278e-03 0. - 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 2.08116556e-03 0. 1.04058278e-03 0. 1.04058278e-03 - 0. 0. 4.16233111e-03 1.04058278e-03 1.04058278e-03 7.28407968e-03 - 2.18522381e-02 3.32986489e-02 0. 3.85015644e-02 2.08116556e-03 0. - 0. 1.04058273e-02 0. 0. 0. 3.12174833e-03 0. 0. 0. 3.12174833e-03 - 0. 2.08116556e-03 0. 0. 0. 0. 0. 0. 3.12174833e-03 2.08116556e-03 - 0. 1.04058278e-03 0. 1.04058278e-03 0. 2.08116556e-03 - 1.24869933e-02 2.60145701e-02 1.04058278e-03 3.01769003e-02 0. 0. - 1.04058278e-03 7.28407968e-03 0. 0. 0. 3.12174833e-03 0. 0. 0. - 6.24349667e-03 2.28928216e-02 3.74609791e-02 2.08116556e-03 - 1.97710730e-02 3.12174833e-03 2.08116556e-03 2.08116556e-03 - 7.28407968e-03 1.97710730e-02 3.64203975e-02 0. 2.18522381e-02 - 1.66493244e-02 1.66493244e-02 7.28407968e-03 8.74089524e-02 - 4.47450578e-02 5.20291366e-03 1.04058278e-03 4.16233111e-03 - 1.45681594e-02 1.04058278e-03 4.16233111e-03 9.36524477e-03 - 1.04058278e-03 1.04058278e-03 0. 0. 4.16233111e-03 0. 0. - 1.66493244e-02 1.87304895e-02 4.16233111e-03 0. 1.04058278e-03 - 2.08116556e-03 0. 0. 0. 4.16233111e-03 0. 0. 0. 2.39334032e-02 0. - 2.08116556e-03 1.04058278e-03 1.04058278e-03 0. 2.08116556e-03 0. - 5.20291366e-03 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. - 1.35275759e-02 0. 0. 0. 5.20291366e-03 0. 0. 0. 2.08116556e-03 0. - 0. 0. 5.93132190e-02 0. 8.32466222e-03 7.28407968e-03 - 2.91363187e-02 0. 2.08116556e-03 2.08116556e-03 6.24349667e-03 0. - 1.04058278e-03 1.04058278e-03 0. 0. 0. 0. 0. 0. 1.04058278e-03 - 1.04058278e-03 3.12174833e-03 0. 0. 0. 2.08116556e-03 0. 0. 0. - 2.08116556e-03 0. 0. 0. 3.12174833e-03 0. 0. 0. 1.76899079e-02 0. - 0. 1.04058278e-03 4.16233111e-03 0. 0. 1.04058278e-03 0. - 1.04058278e-03 0. 0. 2.08116556e-03 0. 0. 0. 3.64203975e-02 - 2.08116556e-03 1.04058278e-03 1.04058278e-03 4.16233111e-03 - 1.04058278e-03 2.08116556e-03 1.04058278e-03 2.70551518e-02 - 1.04058278e-03 1.04058278e-03 0. 6.13943823e-02 2.08116556e-03 - 9.36524477e-03 5.20291366e-03 1.04058278e-03 2.08116556e-03 0. - 2.08116556e-03 0. 1.04058278e-03 0. 2.08116546e-02 0. 0. 0. 0. - 1.04058278e-03 1.04058278e-03 1.04058278e-03 9.36524477e-03 0. - 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 - 1.04058278e-03 0. 2.08116556e-03 0. 1.04058278e-03 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 - 0. 0. 1.04058278e-03 5.20291366e-03 3.12174833e-03 3.12174833e-03 - 1.56087419e-02 6.24349667e-03 2.39334032e-02 0. 4.68262248e-02 - 1.04058278e-03 2.08116556e-03 0. 1.76899079e-02 0. 0. 0. - 3.12174833e-03 1.04058278e-03 2.08116556e-03 0. 5.20291366e-03 - 2.08116556e-03 0. 0. 1.04058278e-03 1.04058278e-03 0. 0. 0. 0. - 1.04058278e-03 0. 4.16233111e-03 1.04058278e-03 2.08116556e-03 0. - 5.20291366e-03 1.04058278e-03 2.28928216e-02 2.08116556e-03 - 1.45681594e-02 1.04058278e-03 1.04058278e-03 0. 6.24349667e-03 0. - 1.04058278e-03 0. 1.04058278e-03 0. 0. 0. 3.12174833e-03 - 3.12174833e-03 1.66493244e-02 0. 5.20291366e-03 2.08116556e-03 - 1.04058278e-03 0. 2.08116556e-03 1.56087419e-02 1.45681594e-02 - 4.16233111e-03 3.01769003e-02 1.97710730e-02 1.56087419e-02 - 5.20291366e-03 1.01977110e-01 1.76899079e-02 7.28407968e-03 0. - 4.16233111e-03 7.28407968e-03 3.12174833e-03 1.04058278e-03 - 2.28928216e-02 0. 1.04058278e-03 0. 0. 3.12174833e-03 0. - 1.76899079e-02 7.59625435e-02 1.14464108e-02 1.87304895e-02 0. - 1.04058278e-03 2.08116556e-03 2.08116556e-03 0. 1.04058278e-03 - 3.12174833e-03 1.04058278e-03 0. 0. 1.66493244e-02 1.04058278e-03 - 6.24349676e-02 8.42872038e-02 1.04058278e-03 2.08116556e-03 0. 0. - 0. 0. 0. 2.08116556e-03 0. 0. 0. 0. 0. 0. 0. 0. 4.16233111e-03 0. - 0. 0. 0. 1.04058278e-03 1.04058278e-03 0. 5.20291366e-03 - 1.04058278e-03 0. 1.04058278e-03 1.45681594e-02 1.04058278e-03 - 1.66493244e-02 7.28407968e-03 6.24349667e-03 1.04058278e-03 0. - 1.04058278e-03 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 1.04058278e-03 - 0. 4.16233111e-03 0. 2.08116556e-03 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 0. 0. 0. 1.04058278e-03 0. 0. 0. 6.24349667e-03 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 1.04058278e-03 0. - 2.08116546e-02 1.04058278e-03 1.04058278e-03 0. 2.08116556e-03 - 1.04058278e-03 0. 1.04058278e-03 2.18522381e-02 0. 1.04058278e-03 - 1.04058278e-03 3.22580673e-02 0. 9.36524477e-03 1.04058278e-03 0. - 0. 0. 3.12174833e-03 0. 0. 0. 9.36524477e-03 0. 0. 0. 0. 0. 0. 0. - 7.28407968e-03 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. - 1.04058278e-03 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 1.04058278e-03 - 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 4.16233111e-03 - 1.04058278e-03 1.24869933e-02 0. 3.12174833e-03 0. 0. 0. - 7.28407968e-03 0. 0. 0. 0. 0. 0. 0. 2.08116556e-03 0. 0. 0. 0. 0. - 2.08116556e-03 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. - 2.39334032e-02 3.12174838e-02 0. 3.12174833e-03 1.04058278e-03 0. - 0. 1.04058278e-03 1.04058278e-03 0. 0. 1.04058278e-03 0. 0. 0. - 1.14464108e-02 8.42872038e-02 9.36524495e-02 4.16233111e-03 0. - 1.04058278e-03 1.04058278e-03 1.04058278e-03 1.04058278e-03 - 1.56087419e-02 1.24869933e-02 1.04058278e-03 4.16233111e-03 - 1.76899079e-02 8.32466222e-03 1.24869933e-02 6.34755492e-02 - 3.74609791e-02 1.14464108e-02 1.04058278e-03 8.32466222e-03 - 1.04058273e-02 4.16233111e-03 4.16233111e-03 1.56087419e-02 - 1.04058278e-03 2.08116556e-03 0. 0. 5.20291366e-03 3.12174833e-03 - 2.08116556e-03 3.32986489e-02 1.66493244e-02 4.16233111e-03 - 1.04058278e-03 0. 0. 0. 1.04058278e-03 1.04058278e-03 - 5.20291366e-03 1.04058278e-03 0. 1.04058278e-03 1.66493244e-02 - 1.04058278e-03 3.43392305e-02 2.70551518e-02 1.04058278e-03 0. - 1.04058278e-03 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 1.04058278e-03 0. 2.08116556e-03 4.16233111e-03 0. - 0. 0. 0. 1.04058278e-03 0. 0. 2.08116556e-03 0. 0. 0. - 4.16233111e-03 1.04058278e-03 6.24349667e-03 5.20291366e-03 - 1.24869933e-02 1.04058278e-03 0. 1.04058278e-03 1.04058278e-03 - 1.04058278e-03 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 1.04058278e-03 - 0. 0. 3.12174833e-03 0. 2.08116556e-03 2.08116556e-03 - 6.24349667e-03 4.16233111e-03 1.04058278e-03 2.08116556e-03 - 1.04058278e-03 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 4.05827276e-02 0. 0. 0. 4.16233111e-03 0. - 1.04058278e-03 1.04058278e-03 9.36524477e-03 0. 0. 0. - 6.24349667e-03 0. 3.12174833e-03 5.20291366e-03 3.12174833e-03 - 5.20291366e-03 0. 5.20291366e-03 0. 0. 0. 1.24869933e-02 0. - 1.04058278e-03 0. 0. 0. 1.04058278e-03 0. 9.36524477e-03 0. 0. 0. - 0. 0. 0. 1.04058278e-03 0. 1.04058278e-03 0. 0. 1.04058278e-03 - 2.08116556e-03 2.08116556e-03 0. 9.36524477e-03 1.04058278e-03 0. - 0. 1.04058278e-03 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. - 1.04058278e-03 4.16233111e-03 1.04058278e-03 0. 4.16233111e-03 - 3.12174833e-03 3.32986489e-02 0. 2.60145701e-02 0. 0. 0. - 2.08116546e-02 0. 1.04058278e-03 0. 0. 0. 1.04058278e-03 0. - 1.45681594e-02 3.12174833e-03 1.14464108e-02 0. 0. 0. 0. 0. - 1.04058278e-03 1.04058278e-03 1.04058278e-03 0. 0. 2.08116556e-03 - 0. 0. 1.04058273e-02 1.04058278e-03 2.08116546e-02 0. - 2.18522381e-02 1.04058278e-03 1.04058278e-03 2.08116556e-03 - 1.14464108e-02 1.04058278e-03 1.04058278e-03 0. 2.08116556e-03 0. - 0. 2.08116556e-03 1.04058273e-02 7.59625435e-02 3.74609791e-02 0. - 1.04058273e-02 1.04058278e-03 0. 1.04058278e-03 3.74609791e-02 - 2.60145701e-02 1.14464108e-02 1.04058278e-03 7.28407968e-03 - 7.28407968e-03 4.16233111e-03 9.36524477e-03 9.78147835e-02 - 5.51508889e-02 1.87304895e-02 2.08116556e-03 5.20291366e-03 - 1.35275759e-02 1.04058278e-03 3.12174833e-03 7.28407968e-03 0. - 1.04058278e-03 0. 0. 2.08116556e-03 0. 6.24349667e-03 - 4.16233111e-03 1.66493244e-02 0. 1.04058278e-03 0. 8.32466222e-03 - 0. 4.16233111e-03 1.04058278e-03 1.04058278e-03 0. 0. 0. - 4.57856432e-02 0. 7.18002096e-02 6.24349667e-03 2.08116556e-03 - 1.04058278e-03 0. 0. 0. 0. 1.04058278e-03 1.04058278e-03 0. 0. 0. - 0. 0. 0. 0. 1.04058278e-03 8.32466222e-03 0. 1.04058278e-03 - 1.04058278e-03 1.04058278e-03 0. 1.04058278e-03 2.08116556e-03 - 8.32466222e-03 0. 0. 0. 2.39334032e-02 0. 3.85015644e-02 - 8.32466222e-03 9.36524477e-03 7.28407968e-03 0. 1.04058278e-03 - 2.08116556e-03 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 0. 0. 1.04058278e-03 4.16233111e-03 3.12174833e-03 - 0. 1.04058278e-03 0. 1.04058278e-03 1.04058278e-03 2.08116556e-03 - 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 1.14464108e-02 4.16233111e-03 - 1.04058278e-03 2.08116556e-03 0. 0. 1.04058278e-03 2.08116556e-03 - 1.04058278e-03 0. 0. 1.04058278e-03 2.08116556e-03 1.04058278e-03 - 6.24349667e-03 1.04058278e-03 0. 5.20291366e-03 0. 0. 0. - 1.04058278e-03 0. 1.04058278e-03 0. 0. 0. 0. 0. 1.04058278e-03 0. - 5.20291366e-03 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 0. 1.04058278e-03 5.20291366e-03 3.12174833e-03 - 3.12174833e-03 8.32466222e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. - 1.04058278e-03 1.04058278e-03 7.28407968e-03 5.20291366e-03 - 6.24349676e-02 0. 3.22580673e-02 0. 2.08116556e-03 0. - 3.12174833e-03 0. 2.08116556e-03 0. 1.04058278e-03 0. - 5.20291366e-03 0. 9.36524477e-03 1.04058278e-03 1.04058278e-03 0. - 0. 0. 0. 1.04058278e-03 0. 1.04058278e-03 3.12174833e-03 0. 0. - 5.20291366e-03 3.12174833e-03 3.12174833e-03 6.24349667e-03 - 5.20291366e-03 9.36524495e-02 0. 5.61914705e-02 1.04058278e-03 0. - 0. 7.28407968e-03 0. 0. 0. 2.08116556e-03 0. 0. 0. 1.35275759e-02 - 1.66493244e-02 1.56087419e-02 0. 1.14464108e-02 0. 0. 0. - 5.20291366e-03 3.12174833e-03 1.14464108e-02 0. 7.28407968e-03 - 1.04058273e-02 1.04058273e-02 1.45681594e-02 7.18002096e-02 - 6.24349667e-03 9.36524477e-03 0. 4.16233111e-03 1.04058278e-03 - 4.16233111e-03 1.04058278e-03 1.76899079e-02 0. 0. 0. 0. 0. 0. - 9.36524477e-03 7.38813803e-02 5.20291366e-03 8.32466222e-03 0. - 3.12174833e-03 3.12174833e-03 1.04058278e-03 0. 1.24869933e-02 0. - 1.04058278e-03 0. 1.04058278e-03 2.28928216e-02 3.12174833e-03 - 2.49739867e-02 1.12382941e-01 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 2.08116556e-03 0. 0. 0. 0. 0. 0. - 1.04058278e-03 0. 0. 0. 0. 0. 1.04058278e-03 1.04058278e-03 - 4.16233111e-03 0. 1.04058278e-03 0. 0. 0. 0. 0. 1.04058278e-03 0. - 0. 0. 0. 1.04058278e-03 0. 1.04058278e-03 0. 0. 0. 0. 0. - 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058273e-02 0. 0. 0. - 1.04058278e-03 0. 0. 2.08116556e-03 3.12174833e-03 0. 0. 0. - 2.18522381e-02 3.12174833e-03 2.08116556e-03 1.35275759e-02 0. - 1.04058278e-03 0. 3.12174833e-03 0. 0. 0. 2.08116556e-03 0. 0. 0. - 0. 0. 0. 0. 3.12174833e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 3.12174833e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 2.08116556e-03 - 1.04058278e-03 1.87304895e-02 0. 1.97710730e-02 0. 3.12174833e-03 - 0. 2.49739867e-02 0. 0. 0. 0. 0. 0. 0. 8.32466222e-03 0. - 1.04058278e-03 0. 1.04058278e-03 0. 0. 0. 3.12174833e-03 0. 0. 0. - 0. 0. 3.12174833e-03 0. 8.32466222e-03 3.01769003e-02 - 8.01248774e-02 0. 1.24869933e-02 0. 1.04058278e-03 0. - 9.36524477e-03 0. 0. 0. 0. 0. 0. 0. 4.16233111e-03 4.16233093e-02 - 1.77939653e-01 0. 9.36524477e-03 1.04058278e-03 0. 0. - 1.14464108e-02 2.08116556e-03 3.12174833e-03 0. 1.04058278e-03 - 6.24349667e-03 1.35275759e-02 5.20291366e-03 8.32466185e-02 - 1.76899079e-02 2.49739867e-02 0. 3.12174833e-03 4.16233111e-03 - 2.08116556e-03 0. 5.20291366e-03 0. 1.04058278e-03 0. 0. - 2.08116556e-03 0. 1.04058273e-02 3.74609791e-02 2.39334032e-02 - 1.87304895e-02 3.12174833e-03 0. 1.04058278e-03 0. 0. - 2.08116556e-03 4.16233111e-03 1.04058278e-03 0. 0. 1.76899079e-02 - 4.16233111e-03 3.12174838e-02 5.61914705e-02 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 0. 0. 1.04058278e-03 3.12174833e-03 0. - 5.20291366e-03 9.36524477e-03 7.28407968e-03 1.04058278e-03 0. 0. - 4.16233111e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 - 1.04058278e-03 3.12174833e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 1.04058278e-03 0. 8.32466222e-03 0. 0. 0. - 1.04058278e-03 1.04058278e-03 0. 2.08116556e-03 0. 0. 0. 0. - 1.04058278e-03 0. 0. 0. 2.39334032e-02 2.08116556e-03 0. 0. - 1.04058278e-03 0. 0. 0. 4.16233111e-03 1.04058278e-03 0. 0. - 1.04058273e-02 0. 1.56087419e-02 1.04058273e-02 2.08116556e-03 0. - 0. 1.04058278e-03 0. 0. 0. 2.08116556e-03 0. 0. 0. 0. 0. 0. 0. - 4.16233111e-03 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 - 0. 0. 0. 0. 0. 1.04058278e-03 2.08116556e-03 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 1.04058278e-03 1.04058278e-03 2.18522381e-02 0. - 4.16233111e-03 0. 0. 0. 9.36524477e-03 0. 0. 0. 0. 0. 0. 0. - 1.35275759e-02 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. - 2.08116556e-03 0. 0. 5.20291366e-03 1.97710730e-02 8.01248774e-02 - 0. 1.45681594e-02 1.04058278e-03 0. 1.04058278e-03 1.04058273e-02 - 0. 0. 0. 0. 0. 0. 4.16233111e-03 1.66493244e-02 4.78668064e-02 - 1.16545275e-01 0. 1.24869933e-02 1.04058278e-03 3.12174833e-03 0. - 1.87304895e-02 1.56087419e-02 1.45681594e-02 0. 5.20291366e-03 - 7.28407968e-03 1.24869933e-02 1.87304895e-02 1.10301778e-01 - 6.45161346e-02 1.04058273e-02 1.04058278e-03 6.24349667e-03 - 1.14464108e-02 0. 1.14464108e-02 2.08116546e-02 2.08116556e-03 0. - 1.04058278e-03 0. 6.24349667e-03 1.04058278e-03 2.28928216e-02 - 6.03538007e-02 1.35275759e-02 0. 1.04058278e-03 2.08116556e-03 - 5.20291366e-03 0. 2.08116556e-03 0. 4.16233111e-03 0. - 2.08116556e-03 1.04058278e-03 2.60145701e-02 2.08116556e-03 - 3.64203975e-02 2.91363187e-02 2.08116556e-03 0. 1.04058278e-03 - 1.04058278e-03 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 1.14464108e-02 2.08116556e-03 0. 2.08116556e-03 1.04058278e-03 - 1.04058278e-03 2.08116556e-03 1.04058278e-03 6.24349667e-03 - 1.04058278e-03 0. 0. 2.80957352e-02 0. 2.39334032e-02 - 7.28407968e-03 2.28928216e-02 8.32466222e-03 0. 1.04058278e-03 - 3.12174833e-03 0. 0. 2.08116556e-03 0. 0. 0. 0. 0. 0. - 1.04058278e-03 1.04058278e-03 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 3.12174833e-03 1.14464108e-02 2.08116556e-03 - 1.04058278e-03 3.12174833e-03 1.04058278e-03 0. 0. 0. - 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 1.04058273e-02 2.08116556e-03 - 0. 0. 0. 0. 0. 0. 7.28407968e-03 0. 0. 0. 8.32466222e-03 0. - 1.66493244e-02 2.08116556e-03 1.04058278e-03 3.12174833e-03 0. 0. - 0. 0. 1.04058278e-03 7.28407968e-03 0. 0. 0. 0. 0. 0. 0. - 2.39334032e-02 2.08116556e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 2.08116556e-03 2.08116556e-03 4.16233111e-03 1.56087419e-02 0. 0. - 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 1.04058278e-03 - 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 2.08116556e-03 - 1.04058278e-03 1.24869933e-02 6.24349667e-03 3.74609791e-02 0. - 1.14464108e-02 0. 0. 0. 8.32466222e-03 0. 5.20291366e-03 0. - 1.04058278e-03 0. 3.12174833e-03 1.04058278e-03 9.36524477e-03 - 1.04058278e-03 1.04058278e-03 0. 0. 0. 0. 0. 1.04058278e-03 0. - 1.04058278e-03 0. 1.04058278e-03 1.04058278e-03 2.08116556e-03 - 1.04058278e-03 7.28407968e-03 4.16233111e-03 3.74609791e-02 0. - 3.22580673e-02 0. 0. 2.08116556e-03 1.04058273e-02 0. - 1.04058278e-03 0. 3.12174833e-03 0. 1.04058278e-03 1.04058278e-03 - 1.14464108e-02 6.24349667e-03 1.04058273e-02 0. 9.36524477e-03 0. - 0. 0. 2.08116556e-03 8.32466222e-03 1.56087419e-02 0. - 1.35275759e-02 8.32466222e-03 7.28407968e-03 8.32466222e-03 - 7.80437067e-02 8.74089524e-02 1.04058273e-02 2.08116556e-03 - 3.12174833e-03 1.76899079e-02 3.12174833e-03 8.32466222e-03 - 4.16233111e-03 2.08116556e-03 0. 0. 0. 8.32466222e-03 - 2.08116556e-03 8.32466222e-03 1.04058278e-03 2.28928216e-02 0. 0. - 0. 5.20291366e-03 0. 2.08116556e-03 0. 7.28407968e-03 0. 0. 0. - 3.43392305e-02 1.04058278e-03 9.36524477e-03 1.04058278e-03 - 4.16233111e-03 0. 1.04058278e-03 0. 7.28407968e-03 0. 0. - 2.08116556e-03 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 1.04058273e-02 - 0. 0. 1.04058278e-03 6.24349667e-03 1.04058278e-03 3.12174833e-03 - 1.04058278e-03 9.36524477e-03 1.04058278e-03 0. 1.04058278e-03 - 5.41103035e-02 1.04058278e-03 2.70551518e-02 1.14464108e-02 - 2.08116546e-02 3.12174833e-03 2.08116556e-03 1.04058278e-03 - 1.04058278e-03 0. 1.04058278e-03 0. 2.08116556e-03 0. 0. 0. - 1.04058278e-03 0. 1.04058278e-03 1.04058278e-03 2.08116556e-03 0. - 0. 1.04058278e-03 0. 0. 0. 0. 3.12174833e-03 0. 0. 0. - 1.04058278e-03 0. 0. 2.08116556e-03 1.14464108e-02 1.04058278e-03 - 1.04058278e-03 4.16233111e-03 1.04058278e-03 0. 0. 1.04058278e-03 - 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 2.18522381e-02 0. - 1.04058278e-03 4.16233111e-03 3.12174833e-03 0. 1.04058278e-03 - 2.08116556e-03 1.76899079e-02 0. 0. 1.04058278e-03 1.87304895e-02 - 3.12174833e-03 8.32466222e-03 9.36524477e-03 5.20291366e-03 - 4.16233111e-03 0. 7.28407968e-03 0. 1.04058278e-03 0. - 5.20291366e-03 0. 0. 0. 0. 0. 0. 0. 2.08116556e-03 1.04058278e-03 - 0. 0. 1.04058278e-03 0. 0. 0. 0. 1.04058278e-03 1.04058278e-03 0. - 0. 2.08116556e-03 4.16233111e-03 0. 4.16233111e-03 0. 0. 0. 0. 0. - 1.04058278e-03 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. - 1.04058278e-03 0. 0. 0. 0. 1.04058278e-03 0. 0. 1.04058278e-03 - 1.04058278e-03 0. 0. 1.04058278e-03 6.24349667e-03 4.16233111e-03 - 4.16233111e-03 2.18522381e-02 1.04058273e-02 2.49739867e-02 - 1.04058278e-03 1.35275759e-02 0. 0. 1.04058278e-03 2.08116556e-03 - 2.08116556e-03 2.08116556e-03 0. 4.16233111e-03 0. 2.08116556e-03 - 0. 6.24349667e-03 1.04058278e-03 1.04058278e-03 0. 0. 0. 0. 0. 0. - 0. 3.12174833e-03 0. 2.08116556e-03 1.04058278e-03 2.08116556e-03 - 0. 5.20291366e-03 4.16233111e-03 1.87304895e-02 0. 2.70551518e-02 - 0. 0. 0. 1.14464108e-02 0. 1.04058278e-03 0. 2.08116556e-03 - 1.04058278e-03 0. 0. 1.35275759e-02 6.24349667e-03 1.04058273e-02 - 1.04058278e-03 1.24869933e-02 1.04058278e-03 0. 0. 6.24349667e-03 - 1.87304895e-02 1.04058273e-02 1.04058278e-03 1.24869933e-02 - 1.35275759e-02 1.24869933e-02 1.45681594e-02 9.05307010e-02 - 7.70031288e-02 9.36524477e-03 1.04058278e-03 2.08116556e-03 - 3.32986489e-02 6.24349667e-03 4.16233111e-03 7.28407968e-03 - 5.20291366e-03 1.04058278e-03 1.04058278e-03 1.04058278e-03 - 3.12174833e-03 2.08116556e-03 1.04058278e-03 7.28407968e-03 - 1.45681594e-02 3.12174833e-03 0. 0. 5.20291366e-03 0. - 1.04058278e-03 0. 1.45681594e-02 0. 0. 0. 2.39334032e-02 - 3.12174833e-03 4.16233111e-03 7.28407968e-03 4.16233111e-03 - 1.04058278e-03 0. 0. 2.08116556e-03 0. 1.04058278e-03 - 2.08116556e-03 0. 0. 0. 0. 2.08116556e-03 0. 0. 2.08116556e-03 - 1.04058273e-02 0. 0. 0. 4.16233111e-03 0. 2.08116556e-03 - 2.08116556e-03 1.56087419e-02 0. 0. 2.08116556e-03 4.89073917e-02 - 1.04058278e-03 2.39334032e-02 8.32466222e-03 1.97710730e-02 - 1.04058278e-03 0. 2.08116556e-03 4.16233111e-03 0. 2.08116556e-03 - 0. 1.04058278e-03 0. 0. 0. 1.04058278e-03 0. 0. 0. 2.08116556e-03 - 0. 0. 2.08116556e-03 0. 0. 0. 0. 2.08116556e-03 1.04058278e-03 0. - 0. 0. 0. 0. 1.04058278e-03 1.35275759e-02 1.04058278e-03 0. - 2.08116556e-03 1.04058278e-03 0. 1.04058278e-03 0. 0. 0. 0. 0. - 3.12174833e-03 0. 1.04058278e-03 0. 3.95421460e-02 0. - 1.04058278e-03 2.08116556e-03 0. 0. 1.04058278e-03 0. - 3.64203975e-02 2.08116556e-03 4.16233111e-03 3.12174833e-03 - 2.08116546e-02 1.04058278e-03 1.45681594e-02 1.56087419e-02 - 3.12174833e-03 3.12174833e-03 0. 3.12174833e-03 0. 2.08116556e-03 - 0. 2.08116556e-03 0. 0. 0. 1.04058278e-03 1.04058278e-03 - 2.08116556e-03 0. 4.16233111e-03 1.04058278e-03 1.04058278e-03 0. - 0. 0. 0. 0. 0. 2.08116556e-03 1.04058278e-03 0. 0. 1.04058278e-03 - 4.16233111e-03 0. 6.24349667e-03 0. 0. 1.04058278e-03 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 1.04058278e-03 0. 0. 0. 0. 0. - 0. 0. 3.12174833e-03 2.08116556e-03 1.04058278e-03 0. - 1.04058278e-03 5.20291366e-03 3.12174833e-03 2.08116556e-03 - 1.35275759e-02 3.12174833e-03 1.97710730e-02 0. 1.56087419e-02 0. - 0. 0. 6.24349667e-03 1.04058278e-03 1.04058278e-03 0. - 1.04058278e-03 1.04058278e-03 0. 0. 8.32466222e-03 2.08116556e-03 - 0. 0. 0. 0. 0. 0. 0. 2.08116556e-03 2.08116556e-03 0. - 1.04058278e-03 1.04058278e-03 1.04058278e-03 0. 2.08116556e-03 - 4.16233111e-03 7.28407968e-03 0. 2.60145701e-02 0. 0. 0. - 4.16233111e-03 1.04058278e-03 0. 0. 1.04058278e-03 0. 0. - 1.04058278e-03 6.24349667e-03 1.14464108e-02 7.28407968e-03 0. - 7.28407968e-03 1.04058278e-03 0. 0. 3.12174833e-03 1.76899079e-02 - 1.35275759e-02 0. 3.01769003e-02 1.76899079e-02 9.36524477e-03 - 1.87304895e-02 9.36524495e-02 5.61914705e-02 9.36524477e-03 - 3.12174833e-03 2.08116556e-03 1.76899079e-02 2.08116556e-03 - 2.08116556e-03 5.20291366e-03 2.08116556e-03 0. 0. 0. - 2.08116556e-03 1.04058278e-03 2.08116556e-03 1.35275759e-02 - 9.36524477e-03 1.04058278e-03 0. 1.04058278e-03 5.20291366e-03 - 1.04058278e-03 1.04058278e-03 0. 6.24349667e-03 1.04058278e-03 0. - 0. 2.80957352e-02 2.08116556e-03 1.87304895e-02 8.32466222e-03 - 4.16233111e-03 0. 0. 1.04058278e-03 2.08116556e-03 0. 0. - 2.08116556e-03 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 7.28407968e-03 - 3.12174833e-03 0. 0. 1.04058273e-02 0. 2.08116556e-03 0. - 7.28407968e-03 0. 0. 0. 5.61914705e-02 2.08116556e-03 - 2.39334032e-02 6.24349667e-03 2.80957352e-02 3.12174833e-03 - 4.16233111e-03 1.04058278e-03 1.04058278e-03 0. 0. 2.08116556e-03 - 1.04058278e-03 0. 0. 0. 0. 0. 0. 2.08116556e-03 2.08116556e-03 0. - 0. 1.04058278e-03 0. 0. 0. 2.08116556e-03 2.08116556e-03 0. 0. 0. - 0. 0. 0. 1.04058278e-03 3.12174833e-03 2.08116556e-03 - 2.08116556e-03 1.04058278e-03 2.08116556e-03 1.04058278e-03 - 2.08116556e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 2.28928216e-02 0. 0. - 1.04058278e-03 2.08116556e-03 0. 2.08116556e-03 2.08116556e-03 - 1.04058273e-02 0. 0. 0. 3.01769003e-02 1.04058278e-03 - 9.36524477e-03 3.12174833e-03 1.04058278e-03 4.16233111e-03 0. - 2.08116556e-03 0. 0. 0. 7.28407968e-03 0. 0. 0. 0. 0. - 1.04058278e-03 0. 7.28407968e-03 0. 0. 0. 1.04058278e-03 0. - 1.04058278e-03 0. 1.04058278e-03 0. 0. 0. 0. 2.08116556e-03 - 1.04058278e-03 1.04058278e-03 8.32466222e-03 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. - 1.04058278e-03 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 2.08116556e-03 - 1.04058278e-03 2.08116556e-03 1.45681594e-02 2.08116556e-03 - 3.32986489e-02 0. 8.01248774e-02 0. 1.04058278e-03 0. - 2.28928216e-02 0. 1.04058278e-03 0. 5.20291366e-03 1.04058278e-03 - 1.04058278e-03 0. 4.16233111e-03 3.12174833e-03 5.20291366e-03 0. - 1.04058278e-03 1.04058278e-03 0. 1.04058278e-03 3.12174833e-03 - 1.04058278e-03 4.16233111e-03 0. 0. 2.08116556e-03 6.24349667e-03 - 0. 6.24349667e-03 2.08116556e-03 6.24349667e-03 0. 2.08116546e-02 - 1.04058278e-03 1.04058278e-03 0. 8.32466222e-03 1.04058278e-03 - 1.04058278e-03 0. 3.12174833e-03 1.04058278e-03 1.04058278e-03 0. - 5.20291366e-03 1.56087419e-02 1.14464108e-02 1.04058278e-03 - 1.45681594e-02 2.08116556e-03 0. 0. 1.04058273e-02 1.24869933e-02 - 1.04058273e-02 0. 1.87304895e-02 1.56087419e-02 7.28407968e-03 - 7.28407968e-03 9.26118642e-02 6.13943823e-02 2.18522381e-02 - 2.08116556e-03 4.16233111e-03 1.56087419e-02 1.04058278e-03 - 1.04058278e-03 5.20291366e-03 1.04058278e-03 2.08116556e-03 0. 0. - 7.28407968e-03 1.04058278e-03 5.20291366e-03 1.14464108e-02 - 2.70551518e-02 3.12174833e-03 1.04058278e-03 2.08116556e-03 - 5.20291366e-03 0. 0. 1.04058278e-03 7.28407968e-03 1.04058278e-03 - 0. 0. 2.28928216e-02 1.04058278e-03 6.13943823e-02 1.04058273e-02 - 1.04058278e-03 2.08116556e-03 1.04058278e-03 2.08116556e-03 0. - 1.04058278e-03 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. - 5.20291366e-03 1.04058278e-03 0. 0. 3.12174833e-03 0. - 2.08116556e-03 2.08116556e-03 3.12174833e-03 1.04058278e-03 0. 0. - 4.26638946e-02 0. 1.97710730e-02 9.36524477e-03 8.32466222e-03 - 3.12174833e-03 0. 1.04058278e-03 1.04058278e-03 0. 0. - 1.04058278e-03 1.04058278e-03 0. 0. 0. 1.04058278e-03 0. 0. 0. - 1.04058278e-03 0. 0. 0. 1.04058278e-03 0. 1.04058278e-03 0. - 1.04058278e-03 0. 0. 0. 0. 0. 2.08116556e-03 0. 5.20291366e-03 - 2.08116556e-03 2.08116556e-03 1.04058278e-03 0. 0. 2.08116556e-03 - 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 3.12174833e-03 1.24869933e-02 - 4.16233111e-03 1.04058278e-03 5.20291366e-03 2.08116556e-03 0. 0. - 0. 6.24349667e-03 0. 0. 0. 1.14464108e-02 0. 8.32466222e-03 - 4.16233111e-03 3.12174833e-03 3.12174833e-03 0. 4.16233111e-03 0. - 2.08116556e-03 0. 4.16233111e-03 0. 0. 0. 0. 1.04058278e-03 - 1.04058278e-03 0. 9.36524477e-03 0. 1.04058278e-03 0. 0. 0. 0. 0. - 1.04058278e-03 0. 2.08116556e-03 0. 0. 0. 1.04058278e-03 - 1.04058278e-03 2.08116556e-03 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 3.12174833e-03 1.04058273e-02 1.24869933e-02 - 3.22580673e-02 0. 2.70551518e-02 0. 0. 0. 1.24869933e-02 - 1.04058278e-03 3.12174833e-03 0. 2.08116556e-03 0. 1.04058278e-03 - 1.04058278e-03 5.20291366e-03 0. 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 0. 0. 0. 2.08116556e-03 4.16233111e-03 - 2.08116556e-03 4.16233111e-03 6.24349667e-03 5.51508889e-02 0. - 3.85015644e-02 0. 0. 0. 1.35275759e-02 1.04058278e-03 - 2.08116556e-03 0. 1.04058278e-03 1.04058278e-03 0. 1.04058278e-03 - 1.56087419e-02 1.87304895e-02 3.53798158e-02 2.08116556e-03 - 5.20291366e-03 1.04058278e-03 0. 1.04058278e-03 9.36524477e-03 - 1.35275759e-02 1.04058273e-02 0. 1.45681594e-02 9.36524477e-03 - 5.20291366e-03 1.87304895e-02 8.01248774e-02 2.08116546e-02 - 1.56087419e-02 0. 2.08116556e-03 1.56087419e-02 4.16233111e-03 - 6.24349667e-03 2.60145701e-02 0. 0. 0. 0. 5.20291366e-03 0. - 3.12174833e-03 5.20291366e-03 2.08116546e-02 1.14464108e-02 - 1.04058278e-03 3.12174833e-03 1.04058278e-03 0. 3.12174833e-03 - 6.24349667e-03 0. 1.04058278e-03 0. 0. 3.43392305e-02 - 2.08116556e-03 1.66493244e-02 4.78668064e-02 0. 1.04058278e-03 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. - 0. 2.08116556e-03 1.04058278e-03 0. 0. 0. 1.04058278e-03 - 1.14464108e-02 1.04058278e-03 1.56087419e-02 1.56087419e-02 - 6.24349667e-03 7.28407968e-03 0. 0. 1.04058278e-03 0. - 1.04058278e-03 3.12174833e-03 0. 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 2.08116556e-03 0. - 2.08116556e-03 1.04058278e-03 2.08116556e-03 0. 0. 0. - 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.14464108e-02 - 4.16233111e-03 0. 0. 1.04058278e-03 0. 1.04058278e-03 - 2.08116556e-03 4.16233111e-03 0. 0. 0. 1.45681594e-02 0. - 9.36524477e-03 1.56087419e-02 0. 1.04058278e-03 0. 1.04058278e-03 - 0. 0. 0. 4.16233111e-03 0. 0. 0. 0. 0. 1.04058278e-03 0. - 1.04058273e-02 1.04058278e-03 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. - 0. 0. 1.04058278e-03 1.04058278e-03 0. 1.04058278e-03 - 1.24869933e-02 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 6.24349667e-03 5.20291366e-03 4.26638946e-02 0. 1.04058273e-02 0. - 1.04058278e-03 0. 1.14464108e-02 0. 2.08116556e-03 0. - 1.04058278e-03 0. 1.04058278e-03 0. 1.35275759e-02 0. 0. 0. 0. 0. - 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 1.04058278e-03 - 3.01769003e-02 5.20291366e-03 1.31113425e-01 0. 2.91363187e-02 - 1.04058278e-03 3.12174833e-03 0. 1.14464108e-02 0. 1.04058278e-03 - 0. 0. 0. 0. 0. 7.28407968e-03 6.24349667e-03 2.39334032e-02 0. - 9.36524477e-03 1.04058278e-03 1.04058278e-03 0. 7.28407968e-03 - 1.04058278e-03 8.32466222e-03 0. 9.36524477e-03 1.14464108e-02 - 1.66493244e-02 6.24349667e-03 1.50884509e-01 4.16233111e-03 - 1.56087419e-02 0. 1.04058278e-03 5.20291366e-03 0. 4.16233111e-03 - 1.45681594e-02 0. 0. 0. 0. 3.12174833e-03 0. 3.12174833e-03 - 6.03538007e-02 1.04058273e-02 2.60145701e-02 1.04058278e-03 0. - 2.08116556e-03 0. 0. 1.24869933e-02 0. 3.12174833e-03 0. - 1.04058278e-03 1.45681594e-02 0. 3.01769003e-02 2.01873064e-01 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 6.24349667e-03 0. 6.24349667e-03 - 1.45681594e-02 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. - 0. 0. 0. 0. 1.04058278e-03 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 9.36524477e-03 2.08116556e-03 0. 0. - 2.08116556e-03 0. 0. 1.04058278e-03 1.04058278e-03 0. 0. 0. - 1.24869933e-02 2.08116556e-03 4.16233111e-03 6.24349667e-03 0. - 1.04058278e-03 0. 0. 0. 0. 0. 5.20291366e-03 0. 0. 0. 0. 0. - 1.04058278e-03 0. 3.12174833e-03 0. 0. 0. 1.04058278e-03 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 1.24869933e-02 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 8.32466222e-03 0. 1.04058278e-03 0. 0. 0. 9.36524477e-03 0. - 0. 0. 0. 0. 0. 0. 6.24349667e-03 0. 2.08116556e-03 0. 0. 0. - 1.04058278e-03 0. 1.04058278e-03 0. 0. 0. 0. 0. 1.04058278e-03 - 1.04058278e-03 1.04058273e-02 7.28407968e-03 4.26638946e-02 0. - 2.08116556e-03 0. 0. 0. 1.14464108e-02 0. 0. 0. 0. 0. 0. - 1.04058278e-03 5.20291366e-03 8.74089524e-02 1.81061402e-01 0. - 4.16233111e-03 0. 1.04058278e-03 0. 1.87304895e-02 3.12174833e-03 - 5.20291366e-03 0. 2.08116556e-03 2.08116556e-03 4.16233111e-03 - 1.04058273e-02 5.72320521e-02 2.80957352e-02 1.76899079e-02 - 1.04058278e-03 4.16233111e-03 3.12174833e-03 1.04058278e-03 - 4.16233111e-03 2.08116546e-02 1.04058278e-03 0. 0. 0. 0. 0. - 7.28407968e-03 2.60145701e-02 1.76899079e-02 1.45681594e-02 - 1.04058278e-03 2.08116556e-03 0. 0. 0. 2.08116556e-03 0. - 2.08116556e-03 0. 0. 1.04058273e-02 1.04058278e-03 2.49739867e-02 - 3.32986489e-02 0. 0. 0. 0. 1.04058278e-03 0. 0. 1.04058278e-03 0. - 0. 0. 0. 0. 0. 0. 2.08116556e-03 1.04058278e-03 0. 0. 0. 0. 0. - 2.08116556e-03 1.04058278e-03 0. 0. 0. 0. 7.28407968e-03 - 1.04058278e-03 3.12174833e-03 4.16233111e-03 1.45681594e-02 - 1.04058278e-03 0. 1.04058278e-03 7.28407968e-03 0. 1.04058278e-03 - 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. - 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 - 5.20291366e-03 2.08116556e-03 1.04058278e-03 1.04058278e-03 0. 0. - 0. 2.08116556e-03 0. 0. 0. 0. 0. 0. 0. 0. 1.97710730e-02 - 2.08116556e-03 0. 0. 2.08116556e-03 0. 1.04058278e-03 0. - 8.32466222e-03 0. 0. 1.04058278e-03 1.45681594e-02 0. - 2.08116556e-03 3.12174833e-03 0. 2.08116556e-03 0. 4.16233111e-03 - 0. 1.04058278e-03 0. 5.20291366e-03 0. 0. 0. 0. 0. 1.04058278e-03 - 0. 1.14464108e-02 1.04058278e-03 2.08116556e-03 0. 0. 0. - 1.04058278e-03 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 1.04058278e-03 - 9.36524477e-03 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 1.04058278e-03 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 4.16233111e-03 2.08116556e-03 3.74609791e-02 0. - 8.32466222e-03 2.08116556e-03 0. 0. 1.45681594e-02 0. - 1.04058278e-03 0. 0. 0. 1.04058278e-03 0. 1.35275759e-02 - 1.04058278e-03 1.04058278e-03 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. - 0. 0. 0. 0. 1.04058278e-03 1.14464108e-02 1.56087419e-02 - 7.49219581e-02 0. 2.60145701e-02 1.04058278e-03 3.12174833e-03 0. - 1.45681594e-02 0. 0. 0. 0. 0. 1.04058278e-03 3.12174833e-03 - 3.01769003e-02 5.09885550e-02 1.05098858e-01 1.04058278e-03 - 1.87304895e-02 2.08116556e-03 1.04058278e-03 0. 1.14464108e-02 - 6.24349667e-03 1.87304895e-02 0. 1.35275759e-02 6.24349667e-03 - 1.04058273e-02 1.66493244e-02 8.22060406e-02 7.07596317e-02 - 2.39334032e-02 6.24349667e-03 1.04058273e-02 1.24869933e-02 - 2.08116556e-03 9.36524477e-03 1.14464108e-02 3.12174833e-03 0. 0. - 1.04058278e-03 7.28407968e-03 3.12174833e-03 1.35275759e-02 - 3.01769003e-02 3.32986489e-02 5.20291366e-03 0. 1.04058278e-03 - 3.12174833e-03 0. 5.20291366e-03 1.04058278e-03 6.24349667e-03 - 1.04058278e-03 0. 0. 3.95421460e-02 0. 5.20291403e-02 - 2.49739867e-02 1.04058278e-03 2.08116556e-03 0. 0. 0. 0. - 2.08116556e-03 2.08116556e-03 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 - 7.28407968e-03 1.04058278e-03 0. 2.08116556e-03 3.12174833e-03 0. - 2.08116556e-03 0. 4.16233111e-03 1.04058278e-03 0. 1.04058278e-03 - 1.87304895e-02 1.04058278e-03 3.32986489e-02 1.24869933e-02 - 6.24349667e-03 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. - 1.04058278e-03 0. 1.04058278e-03 2.08116556e-03 2.08116556e-03 0. - 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 3.12174833e-03 0. 0. 0. - 1.45681594e-02 1.04058278e-03 0. 2.08116556e-03 0. 0. - 1.04058278e-03 1.04058278e-03 0. 0. 0. 0. 0. 0. 1.04058278e-03 - 2.08116556e-03 1.35275759e-02 0. 0. 2.08116556e-03 0. 0. - 1.04058278e-03 1.04058278e-03 8.32466222e-03 0. 1.04058278e-03 - 1.04058278e-03 1.14464108e-02 0. 1.35275759e-02 1.04058278e-03 - 1.04058278e-03 8.32466222e-03 0. 1.04058278e-03 0. 0. 0. - 2.08116556e-03 0. 0. 1.04058278e-03 0. 0. 0. 1.04058278e-03 - 1.35275759e-02 1.04058278e-03 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. - 0. 0. 0. 1.04058278e-03 2.08116556e-03 3.12174833e-03 - 1.14464108e-02 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. - 1.04058278e-03 0. 0. 0. 2.08116556e-03 0. 1.04058278e-03 0. 0. 0. - 0. 0. 0. 0. 1.04058278e-03 0. 1.04058278e-03 1.04058278e-03 0. - 2.08116556e-03 7.28407968e-03 2.08116556e-03 2.80957352e-02 0. - 1.66493244e-02 1.04058278e-03 2.08116556e-03 1.04058278e-03 - 4.16233111e-03 0. 2.08116556e-03 0. 0. 2.08116556e-03 0. 0. - 1.14464108e-02 2.08116556e-03 0. 0. 1.04058278e-03 0. 0. 0. 0. - 1.04058278e-03 0. 0. 1.04058278e-03 0. 1.04058278e-03 - 3.12174833e-03 9.36524477e-03 5.20291366e-03 2.39334032e-02 - 1.04058278e-03 2.80957352e-02 0. 1.04058278e-03 0. 2.08116556e-03 - 1.04058278e-03 2.08116556e-03 1.04058278e-03 0. 2.08116556e-03 - 4.16233111e-03 3.12174833e-03 1.87304895e-02 2.70551518e-02 - 3.12174833e-03 1.04058278e-03 4.16233111e-03 1.04058278e-03 0. 0. - 6.24349667e-03 6.24349667e-03 1.04058273e-02 0. 8.32466222e-03 - 5.20291366e-03 9.36524477e-03 2.08116546e-02 8.01248774e-02 - 8.42872038e-02 3.22580673e-02 3.12174833e-03 7.28407968e-03 - 1.45681594e-02 2.08116556e-03 6.24349667e-03 1.04058273e-02 - 2.08116556e-03 1.04058278e-03 1.04058278e-03 0. 8.32466222e-03 - 3.12174833e-03 1.04058273e-02 2.18522381e-02 2.80957352e-02 - 4.16233111e-03 3.12174833e-03 1.04058278e-03 2.08116556e-03 0. - 3.12174833e-03 0. 1.45681594e-02 3.12174833e-03 0. 0. - 2.18522381e-02 1.04058278e-03 2.49739867e-02 8.32466222e-03 - 1.04058278e-03 1.04058278e-03 1.04058278e-03 1.04058278e-03 0. 0. - 0. 0. 2.08116556e-03 0. 0. 0. 2.08116556e-03 1.04058278e-03 0. - 1.04058278e-03 1.04058273e-02 0. 0. 1.04058278e-03 1.04058278e-03 - 0. 4.16233111e-03 0. 4.16233111e-03 1.04058278e-03 0. - 1.04058278e-03 2.49739867e-02 2.08116556e-03 2.08116546e-02 - 1.35275759e-02 1.04058273e-02 3.12174833e-03 0. 2.08116556e-03 - 1.04058278e-03 0. 0. 0. 1.04058278e-03 0. 0. 0. 1.04058278e-03 0. - 2.08116556e-03 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 0. 0. 1.04058278e-03 1.04058278e-03 0. - 1.04058278e-03 0. 6.24349667e-03 4.16233111e-03 0. 1.04058278e-03 - 1.04058278e-03 0. 1.04058278e-03 2.08116556e-03 0. 2.08116556e-03 - 0. 0. 3.12174833e-03 1.04058278e-03 1.04058278e-03 2.08116556e-03 - 1.04058273e-02 0. 3.12174833e-03 1.04058278e-03 0. 0. - 2.08116556e-03 0. 5.20291366e-03 0. 1.04058278e-03 1.04058278e-03 - 7.28407968e-03 1.04058278e-03 1.45681594e-02 2.08116556e-03 - 1.04058278e-03 7.28407968e-03 0. 0. 1.04058278e-03 1.04058278e-03 - 0. 2.08116556e-03 0. 1.04058278e-03 0. 1.04058278e-03 0. 0. - 1.04058278e-03 7.28407968e-03 3.12174833e-03 0. 0. 0. 0. 0. - 1.04058278e-03 0. 0. 0. 0. 1.04058278e-03 3.12174833e-03 - 1.04058278e-03 3.12174833e-03 5.20291366e-03 0. 0. 0. - 1.04058278e-03 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 1.04058278e-03 0. 0. 2.08116556e-03 0. 0. 0. 0. - 1.04058278e-03 0. 0. 1.04058278e-03 3.12174833e-03 0. - 7.28407968e-03 1.35275759e-02 5.20291366e-03 1.66493244e-02 0. - 4.16233111e-03 0. 1.04058278e-03 0. 2.08116556e-03 0. - 1.04058278e-03 0. 0. 0. 2.08116556e-03 1.04058278e-03 - 4.16233111e-03 2.08116556e-03 2.08116556e-03 0. 0. 0. 0. 0. 0. - 2.08116556e-03 1.04058278e-03 0. 2.08116556e-03 1.04058278e-03 0. - 3.12174833e-03 5.20291366e-03 8.32466222e-03 4.37044762e-02 0. - 1.66493244e-02 2.08116556e-03 1.04058278e-03 2.08116556e-03 - 7.28407968e-03 1.04058278e-03 1.04058278e-03 0. 6.24349667e-03 - 1.04058278e-03 0. 3.12174833e-03 2.91363187e-02 2.08116546e-02 - 1.14464108e-02 0. 7.28407968e-03 0. 0. 1.04058278e-03 - 4.16233111e-03 1.24869933e-02 3.12174833e-03 2.08116556e-03 - 7.28407968e-03 1.14464108e-02 7.28407968e-03 3.74609791e-02 - 1.04058281e-01 6.65972978e-02 1.45681594e-02 9.36524477e-03 - 6.24349667e-03 1.35275759e-02 2.08116556e-03 6.24349667e-03 - 5.20291366e-03 1.04058278e-03 0. 0. 0. 6.24349667e-03 - 1.04058278e-03 4.16233111e-03 6.24349667e-03 2.08116546e-02 - 1.04058278e-03 1.04058278e-03 0. 4.16233111e-03 0. 3.12174833e-03 - 1.04058278e-03 4.16233111e-03 0. 0. 0. 2.39334032e-02 - 1.04058278e-03 3.22580673e-02 1.04058273e-02 4.16233111e-03 - 3.12174833e-03 1.04058278e-03 1.04058278e-03 3.12174833e-03 0. - 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 4.16233111e-03 - 1.04058278e-03 0. 0. 2.08116556e-03 0. 4.16233111e-03 0. - 7.28407968e-03 0. 0. 1.04058278e-03 3.12174838e-02 1.04058278e-03 - 2.49739867e-02 6.24349667e-03 1.04058273e-02 2.08116556e-03 - 1.04058278e-03 2.08116556e-03 0. 0. 0. 0. 1.04058278e-03 0. 0. - 1.04058278e-03 0. 0. 0. 1.04058278e-03 6.24349667e-03 - 1.04058278e-03 0. 0. 0. 0. 0. 0. 3.12174833e-03 1.04058278e-03 0. - 0. 1.04058278e-03 0. 2.08116556e-03 0. 1.04058273e-02 - 1.04058278e-03 0. 0. 0. 1.04058278e-03 0. 0. 1.04058278e-03 0. 0. - 1.04058278e-03 0. 0. 1.04058278e-03 0. 1.56087419e-02 - 1.04058278e-03 0. 1.04058278e-03 0. 0. 0. 1.04058278e-03 - 2.80957352e-02 0. 1.04058278e-03 0. 1.76899079e-02 0. - 1.04058273e-02 3.12174833e-03 2.08116556e-03 5.20291366e-03 0. - 3.12174833e-03 0. 0. 2.08116556e-03 5.20291366e-03 0. 0. 0. 0. - 1.04058278e-03 0. 1.04058278e-03 3.12174833e-03 1.04058278e-03 - 3.12174833e-03 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. - 1.04058278e-03 1.04058278e-03 4.16233111e-03 8.32466222e-03 0. 0. - 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. - 2.08116556e-03 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. - 2.08116556e-03 2.08116556e-03 2.08116556e-03 1.35275759e-02 - 8.32466222e-03 4.68262248e-02 0. 2.60145701e-02 1.04058278e-03 - 3.12174833e-03 0. 5.20291366e-03 0. 1.04058278e-03 0. - 3.12174833e-03 0. 3.12174833e-03 2.08116556e-03 2.08116556e-03 0. - 0. 0. 1.04058278e-03 0. 0. 0. 1.04058278e-03 0. 1.04058278e-03 0. - 0. 0. 2.08116556e-03 0. 7.28407968e-03 8.32466222e-03 - 4.47450578e-02 0. 3.12174838e-02 3.12174833e-03 0. 0. - 1.14464108e-02 0. 2.08116556e-03 0. 0. 1.04058278e-03 0. - 2.08116556e-03 1.56087419e-02 3.43392305e-02 3.01769003e-02 - 1.04058278e-03 1.35275759e-02 1.04058278e-03 2.08116556e-03 0. - 5.20291366e-03 1.04058273e-02 1.14464108e-02 0. 9.36524477e-03 - 1.45681594e-02 7.28407968e-03 1.24869933e-02 7.59625435e-02 - 4.78668064e-02 1.97710730e-02 2.08116556e-03 2.08116556e-03 - 7.28407968e-03 2.08116556e-03 1.04058278e-03 1.04058273e-02 0. - 2.08116556e-03 0. 1.04058278e-03 5.20291366e-03 2.08116556e-03 - 1.35275759e-02 1.31113425e-01 1.24869933e-02 1.04058278e-03 0. - 1.04058278e-03 5.20291366e-03 0. 1.04058278e-03 1.04058278e-03 - 2.08116556e-03 1.04058278e-03 1.04058278e-03 0. 1.35275759e-02 0. - 3.12174838e-02 2.91363187e-02 4.16233111e-03 0. 1.04058278e-03 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 2.08116556e-03 - 1.04058273e-02 1.04058278e-03 0. 0. 1.04058278e-03 0. 0. 0. - 1.04058278e-03 1.04058278e-03 0. 0. 3.01769003e-02 0. - 1.24869933e-02 4.16233111e-03 1.87304895e-02 1.04058278e-03 0. - 1.04058278e-03 4.16233111e-03 0. 0. 0. 1.04058278e-03 0. 0. 0. - 2.08116556e-03 0. 0. 1.04058278e-03 5.20291366e-03 1.04058278e-03 - 0. 0. 0. 0. 0. 0. 2.08116556e-03 0. 0. 1.04058278e-03 - 1.04058278e-03 0. 0. 1.04058278e-03 7.28407968e-03 1.04058278e-03 - 0. 2.08116556e-03 1.04058278e-03 0. 1.04058278e-03 0. - 1.04058278e-03 1.04058278e-03 0. 0. 0. 0. 0. 0. 2.18522381e-02 0. - 0. 0. 2.08116556e-03 0. 0. 0. 9.36524477e-03 1.04058278e-03 0. - 1.04058278e-03 8.32466222e-03 0. 3.12174833e-03 4.16233111e-03 - 1.04058278e-03 6.24349667e-03 0. 6.24349667e-03 1.04058278e-03 - 2.08116556e-03 1.04058278e-03 6.24349667e-03 0. 1.04058278e-03 0. - 0. 0. 0. 0. 8.32466222e-03 0. 0. 0. 2.08116556e-03 0. 0. 0. 0. - 1.04058278e-03 1.04058278e-03 0. 0. 1.04058278e-03 1.04058278e-03 - 0. 9.36524477e-03 1.04058278e-03 0. 0. 0. 1.04058278e-03 0. 0. - 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. - 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 3.12174833e-03 0. - 6.24349667e-03 3.12174833e-03 1.87304895e-02 0. 1.97710730e-02 0. - 0. 0. 1.35275759e-02 0. 1.04058278e-03 0. 0. 0. 0. 0. - 6.24349667e-03 3.12174833e-03 1.04058278e-03 0. 2.08116556e-03 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 1.04058278e-03 - 1.14464108e-02 2.70551518e-02 0. 1.56087419e-02 2.08116556e-03 0. - 0. 9.36524477e-03 0. 1.04058278e-03 0. 1.04058278e-03 - 2.08116556e-03 3.12174833e-03 0. 1.35275759e-02 6.55567124e-02 - 3.32986489e-02 1.04058278e-03 1.04058273e-02 1.04058278e-03 - 1.04058278e-03 0. 5.20291366e-03 1.35275759e-02 1.45681594e-02 - 2.08116556e-03 1.24869933e-02 1.24869933e-02 8.32466222e-03 - 1.24869933e-02 6.24349676e-02 5.09885550e-02 3.53798158e-02 - 1.04058278e-03 6.24349667e-03 5.20291366e-03 0. 5.20291366e-03 - 1.14464108e-02 1.04058278e-03 0. 0. 0. 6.24349667e-03 0. - 8.32466222e-03 8.32466222e-03 2.18522381e-02 6.24349667e-03 0. - 2.08116556e-03 1.04058278e-03 0. 5.20291366e-03 1.04058278e-03 - 1.04058278e-03 1.04058278e-03 0. 0. 2.60145701e-02 1.04058278e-03 - 5.61914705e-02 1.97710730e-02 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 1.35275759e-02 2.08116556e-03 - 0. 0. 2.08116556e-03 0. 1.04058278e-03 1.04058278e-03 - 3.12174833e-03 0. 0. 1.04058278e-03 1.45681594e-02 0. - 1.66493244e-02 6.24349667e-03 1.45681594e-02 5.20291366e-03 0. - 1.04058278e-03 1.04058278e-03 0. 1.04058278e-03 2.08116556e-03 0. - 0. 0. 0. 1.04058278e-03 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 2.08116556e-03 0. 1.04058278e-03 2.08116556e-03 - 5.20291366e-03 2.08116556e-03 1.04058278e-03 0. 1.04058278e-03 0. - 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 2.08116556e-03 - 6.24349667e-03 1.04058278e-03 0. 3.12174833e-03 0. 0. - 1.04058278e-03 0. 3.12174833e-03 0. 0. 0. 7.28407968e-03 0. - 7.28407968e-03 3.12174833e-03 2.08116556e-03 7.28407968e-03 0. - 5.20291366e-03 0. 1.04058278e-03 1.04058278e-03 3.12174833e-03 0. - 0. 0. 0. 0. 0. 0. 1.04058273e-02 0. 0. 0. 1.04058278e-03 0. 0. 0. - 0. 0. 0. 0. 1.04058278e-03 0. 0. 2.08116556e-03 6.24349667e-03 0. - 0. 0. 0. 0. 0. 0. 2.08116556e-03 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 0. 0. 1.04058278e-03 1.04058278e-03 0. 0. 0. - 1.04058278e-03 0. 0. 0. 0. 0. 0. 2.08116556e-03 8.32466222e-03 - 3.12174833e-03 2.70551518e-02 0. 1.97710730e-02 4.16233111e-03 - 3.12174833e-03 0. 8.32466222e-03 1.04058278e-03 2.08116556e-03 0. - 1.04058278e-03 1.04058278e-03 0. 0. 7.28407968e-03 1.04058278e-03 - 1.04058278e-03 1.04058278e-03 2.08116556e-03 0. 0. 0. - 1.04058278e-03 1.04058278e-03 0. 0. 1.04058278e-03 2.08116556e-03 - 1.04058278e-03 1.04058278e-03 1.14464108e-02 8.32466222e-03 - 1.47762761e-01 0. 2.18522381e-02 3.12174833e-03 0. 2.08116556e-03 - 1.35275759e-02 2.08116556e-03 3.12174833e-03 1.04058278e-03 - 4.16233111e-03 0. 2.08116556e-03 2.08116556e-03 2.39334032e-02 - 1.04058273e-02 1.97710730e-02 0. 1.24869933e-02 2.08116556e-03 0. - 0. 4.16233111e-03 1.04058278e-03 8.32466222e-03 1.04058278e-03 - 7.28407968e-03 7.28407968e-03 7.28407968e-03 1.66493244e-02 - 8.53277892e-02 1.24869933e-02 9.36524477e-03 0. 1.04058278e-03 - 9.36524477e-03 0. 2.08116556e-03 6.24349676e-02 0. 0. 0. 0. - 3.12174833e-03 0. 0. 2.08116546e-02 7.28407968e-03 2.08116556e-03 - 1.04058278e-03 0. 0. 0. 0. 3.12174833e-03 1.04058278e-03 0. 0. 0. - 3.01769003e-02 2.08116556e-03 1.87304895e-02 5.93132190e-02 0. 0. - 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 1.04058278e-03 0. 1.04058278e-03 0. 0. 0. 0. - 4.16233111e-03 0. 0. 0. 1.56087419e-02 0. 5.20291366e-03 - 1.45681594e-02 3.12174833e-03 0. 0. 1.04058278e-03 3.12174833e-03 - 0. 0. 2.08116556e-03 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 3.12174833e-03 0. - 1.04058278e-03 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 - 0. 0. 0. 0. 0. 0. 0. 0. 2.18522381e-02 1.04058278e-03 - 1.04058278e-03 1.04058278e-03 1.04058278e-03 0. 2.08116556e-03 - 1.04058278e-03 7.28407949e-02 1.04058278e-03 0. 0. 7.18002096e-02 - 1.04058278e-03 1.87304895e-02 1.66493244e-02 1.04058278e-03 - 1.04058278e-03 0. 0. 0. 2.08116556e-03 0. 6.65972978e-02 0. 0. 0. - 0. 0. 0. 0. 2.39334032e-02 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 1.45681594e-02 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 5.20291366e-03 - 2.08116556e-03 1.24869933e-02 0. 4.16233111e-03 1.04058278e-03 - 5.20291366e-03 0. 4.78668064e-02 0. 0. 0. 0. 0. 1.04058278e-03 0. - 1.45681594e-02 1.04058278e-03 1.04058278e-03 0. 0. 0. 0. 0. - 3.12174833e-03 0. 1.04058278e-03 0. 0. 0. 2.08116556e-03 0. - 3.85015644e-02 1.04058278e-03 3.01769003e-02 0. 2.08116556e-03 0. - 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 4.16233111e-03 - 3.12174833e-03 1.56087419e-02 0. 8.32466222e-03 0. 1.04058278e-03 - 0. 6.24349667e-03 3.12174833e-03 9.36524477e-03 0. 2.08116556e-03 - 7.28407968e-03 1.66493244e-02 3.12174833e-03 1.17585853e-01 - 7.28407968e-03 1.24869933e-02 0. 5.20291366e-03 6.24349667e-03 0. - 2.08116556e-03 8.32466222e-03 1.04058278e-03 0. 0. 1.04058278e-03 - 1.04058278e-03 1.04058278e-03 1.87304895e-02 7.07596317e-02 - 9.36524477e-03 1.66493244e-02 0. 1.04058278e-03 0. 1.04058278e-03 - 0. 2.08116556e-03 7.28407968e-03 2.08116556e-03 0. 0. - 3.32986489e-02 3.12174833e-03 1.03017695e-01 1.25910521e-01 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 2.08116556e-03 - 1.04058278e-03 0. 0. 1.04058278e-03 0. 0. 0. 8.32466222e-03 - 1.04058278e-03 0. 0. 1.66493244e-02 0. 2.08116546e-02 - 8.32466222e-03 2.08116556e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 2.08116556e-03 0. - 1.04058278e-03 1.04058278e-03 1.04058278e-03 0. 0. 0. - 1.04058278e-03 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. - 7.28407968e-03 0. 0. 1.04058278e-03 0. 0. 0. 0. 2.08116556e-03 0. - 0. 1.04058278e-03 6.24349667e-03 0. 2.28928216e-02 4.16233111e-03 - 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. - 3.12174833e-03 0. 2.08116556e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 5.20291366e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 3.12174833e-03 0. - 9.36524477e-03 0. 1.04058278e-03 0. 0. 0. 3.12174833e-03 0. 0. 0. - 0. 1.04058278e-03 0. 0. 5.20291366e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 4.16233111e-03 7.28407968e-03 2.91363187e-02 0. - 0. 0. 0. 1.04058278e-03 3.12174833e-03 0. 0. 0. 0. 0. 0. - 1.04058278e-03 1.04058273e-02 1.09261192e-01 1.61290333e-01 0. - 2.08116556e-03 0. 0. 0. 2.08116556e-03 0. 1.04058278e-03 0. - 1.04058278e-03 1.97710730e-02 3.12174833e-03 1.76899079e-02 - 3.85015644e-02 5.30697219e-02 1.56087419e-02 3.12174833e-03 - 5.20291366e-03 1.14464108e-02 0. 5.20291366e-03 3.12174833e-03 - 2.08116556e-03 0. 1.04058278e-03 3.12174833e-03 4.16233111e-03 0. - 1.24869933e-02 2.08116546e-02 2.18522381e-02 1.04058278e-03 0. 0. - 4.16233111e-03 0. 1.04058278e-03 1.04058278e-03 3.12174833e-03 - 1.04058278e-03 0. 2.08116556e-03 1.76899079e-02 1.04058278e-03 - 2.49739867e-02 3.12174838e-02 2.08116556e-03 2.08116556e-03 0. - 1.04058278e-03 0. 0. 0. 2.08116556e-03 0. 1.04058278e-03 0. 0. 0. - 1.04058278e-03 1.04058278e-03 0. 1.14464108e-02 2.08116556e-03 0. - 0. 0. 0. 2.08116556e-03 1.04058278e-03 5.20291366e-03 0. 0. - 1.04058278e-03 2.08116546e-02 0. 2.70551518e-02 5.20291366e-03 - 2.08116546e-02 2.08116556e-03 1.04058278e-03 3.12174833e-03 - 2.08116556e-03 0. 1.04058278e-03 3.12174833e-03 1.04058278e-03 0. - 0. 0. 0. 0. 0. 1.04058278e-03 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. - 0. 0. 1.04058278e-03 0. 1.04058278e-03 0. 0. 2.08116556e-03 - 7.28407968e-03 2.08116556e-03 1.04058278e-03 1.04058278e-03 - 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.56087419e-02 0. - 1.04058278e-03 0. 2.08116556e-03 0. 0. 1.04058278e-03 - 7.28407968e-03 0. 1.04058278e-03 0. 8.32466222e-03 0. - 7.28407968e-03 2.08116556e-03 1.04058278e-03 8.32466222e-03 - 1.04058278e-03 7.28407968e-03 0. 0. 0. 7.28407968e-03 0. 0. 0. - 1.04058278e-03 0. 0. 1.04058278e-03 6.24349667e-03 1.04058278e-03 - 4.16233111e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 2.08116556e-03 - 1.04058278e-03 0. 2.08116556e-03 7.28407968e-03 0. 0. 0. - 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 2.08116556e-03 - 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 3.12174833e-03 - 1.04058278e-03 4.16233111e-03 1.04058273e-02 1.04058273e-02 - 2.60145701e-02 0. 2.28928216e-02 0. 0. 2.08116556e-03 - 1.66493244e-02 0. 0. 0. 2.08116556e-03 0. 0. 0. 6.24349667e-03 - 3.12174833e-03 2.08116556e-03 0. 1.04058278e-03 0. 1.04058278e-03 - 1.04058278e-03 0. 0. 1.04058278e-03 0. 1.04058278e-03 0. - 1.04058278e-03 1.04058278e-03 6.24349667e-03 8.32466222e-03 - 4.26638946e-02 0. 1.97710730e-02 1.04058278e-03 1.04058278e-03 - 1.04058278e-03 8.32466222e-03 1.04058278e-03 1.04058278e-03 0. - 3.12174833e-03 0. 0. 4.16233111e-03 2.08116546e-02 4.57856432e-02 - 4.68262248e-02 3.12174833e-03 7.28407968e-03 2.08116556e-03 0. - 1.04058278e-03 2.08116556e-03 1.14464108e-02 7.28407968e-03 0. - 1.24869933e-02 1.24869933e-02 1.04058273e-02 2.39334032e-02 - 8.63683671e-02 8.22060406e-02 3.74609791e-02 2.08116556e-03 - 7.28407968e-03 1.35275759e-02 2.08116556e-03 9.36524477e-03 - 1.04058273e-02 3.12174833e-03 1.04058278e-03 0. 1.04058278e-03 - 2.08116556e-03 3.12174833e-03 1.76899079e-02 2.39334032e-02 - 3.01769003e-02 2.08116556e-03 1.04058278e-03 2.08116556e-03 - 6.24349667e-03 0. 2.08116556e-03 0. 1.04058273e-02 2.08116556e-03 - 0. 0. 1.66493244e-02 2.08116556e-03 3.22580673e-02 1.45681594e-02 - 3.12174833e-03 0. 0. 0. 2.08116556e-03 0. 2.08116556e-03 - 1.04058278e-03 0. 1.04058278e-03 0. 0. 0. 1.04058278e-03 0. - 5.20291366e-03 8.32466222e-03 2.08116556e-03 0. 1.04058278e-03 - 1.04058278e-03 0. 2.08116556e-03 0. 4.16233111e-03 3.12174833e-03 - 0. 1.04058278e-03 8.32466222e-03 0. 1.76899079e-02 1.14464108e-02 - 1.14464108e-02 2.08116556e-03 1.04058278e-03 5.20291366e-03 - 2.08116556e-03 0. 1.04058278e-03 0. 1.04058278e-03 1.04058278e-03 - 0. 0. 2.08116556e-03 0. 2.08116556e-03 2.08116556e-03 - 1.04058278e-03 0. 0. 0. 1.04058278e-03 0. 0. 0. 1.04058278e-03 0. - 0. 0. 4.16233111e-03 0. 1.04058278e-03 1.04058278e-03 - 5.20291366e-03 5.20291366e-03 1.04058278e-03 0. 0. 0. 0. - 1.04058278e-03 0. 0. 0. 0. 2.08116556e-03 0. 3.12174833e-03 0. - 1.45681594e-02 1.04058278e-03 1.04058278e-03 1.04058278e-03 - 2.08116556e-03 0. 1.04058278e-03 1.04058278e-03 5.20291366e-03 0. - 0. 0. 4.16233111e-03 0. 1.04058273e-02 5.20291366e-03 - 4.16233111e-03 1.04058273e-02 0. 5.20291366e-03 0. 2.08116556e-03 - 0. 6.24349667e-03 1.04058278e-03 2.08116556e-03 0. 0. 0. - 2.08116556e-03 1.04058278e-03 1.56087419e-02 2.08116556e-03 - 4.16233111e-03 0. 1.04058278e-03 1.04058278e-03 0. 0. 0. - 2.08116556e-03 0. 0. 3.12174833e-03 1.04058278e-03 2.08116556e-03 - 3.12174833e-03 8.32466222e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 1.04058278e-03 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 1.04058278e-03 0. 0. 0. 3.12174833e-03 - 7.28407968e-03 3.12174833e-03 8.32466222e-03 0. 9.36524477e-03 - 1.04058278e-03 1.04058278e-03 1.04058278e-03 8.32466222e-03 0. - 3.12174833e-03 0. 1.04058278e-03 1.04058278e-03 1.04058278e-03 0. - 8.32466222e-03 3.12174833e-03 1.04058278e-03 0. 0. 0. 0. 0. - 1.04058278e-03 0. 0. 0. 1.04058278e-03 1.04058278e-03 0. - 1.04058278e-03 6.24349667e-03 1.45681594e-02 2.39334032e-02 - 1.04058278e-03 1.45681594e-02 0. 0. 4.16233111e-03 1.76899079e-02 - 0. 2.08116556e-03 0. 3.12174833e-03 1.04058278e-03 2.08116556e-03 - 4.16233111e-03 2.39334032e-02 9.36524477e-03 1.24869933e-02 0. - 1.14464108e-02 1.04058278e-03 0. 2.08116556e-03 1.04058278e-03 - 1.24869933e-02 7.28407968e-03 2.08116556e-03 1.24869933e-02 - 8.32466222e-03 4.16233111e-03 2.91363187e-02 1.00936532e-01 - 7.59625435e-02 2.60145701e-02 1.04058278e-03 3.12174833e-03 - 5.20291366e-03 4.16233111e-03 4.16233111e-03 9.36524477e-03 - 4.16233111e-03 2.08116556e-03 0. 0. 5.20291366e-03 1.04058278e-03 - 3.12174833e-03 7.28407968e-03 1.66493244e-02 0. 3.12174833e-03 - 1.04058278e-03 3.12174833e-03 2.08116556e-03 8.32466222e-03 - 1.04058278e-03 4.16233111e-03 0. 0. 0. 2.08116546e-02 - 1.04058278e-03 2.39334032e-02 6.24349667e-03 3.12174833e-03 - 4.16233111e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. - 3.12174833e-03 3.12174833e-03 0. 0. 0. 1.04058278e-03 0. - 1.04058278e-03 1.04058278e-03 2.08116556e-03 0. 0. 1.04058278e-03 - 2.08116556e-03 1.04058278e-03 1.97710730e-02 3.12174833e-03 - 6.24349667e-03 4.16233111e-03 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. - 0. 0. 0. 0. 0. 1.04058278e-03 2.08116556e-03 0. 0. 1.04058278e-03 - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 2.08116556e-03 - 4.16233111e-03 0. 2.08116556e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 2.08116556e-03 5.20291366e-03 3.12174833e-03 0. 0. 0. 0. - 1.04058278e-03 1.04058278e-03 2.08116556e-03 0. 0. 0. - 1.04058278e-03 0. 3.12174833e-03 2.08116556e-03 8.32466222e-03 - 9.36524477e-03 0. 3.12174833e-03 1.04058278e-03 1.04058278e-03 0. - 4.16233111e-03 1.04058278e-03 1.04058278e-03 0. 0. 1.04058278e-03 - 1.04058278e-03 0. 7.28407968e-03 2.08116556e-03 1.04058278e-03 - 1.04058278e-03 1.04058278e-03 1.04058278e-03 0. 2.08116556e-03 0. - 1.04058278e-03 0. 0. 0. 0. 0. 7.28407968e-03 6.24349667e-03 - 2.08116556e-03 1.04058278e-03 0. 0. 1.04058278e-03 0. - 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 3.12174833e-03 2.08116556e-03 0. 1.04058278e-03 0. 0. 0. - 1.04058278e-03 0. 4.16233111e-03 1.56087419e-02 2.70551518e-02 0. - 7.28407968e-03 2.08116556e-03 3.12174833e-03 0. 7.28407968e-03 - 1.04058278e-03 1.04058278e-03 0. 1.04058278e-03 1.04058278e-03 0. - 0. 5.20291366e-03 0. 3.12174833e-03 1.04058278e-03 0. 0. 0. 0. 0. - 1.04058278e-03 0. 0. 1.04058278e-03 1.04058278e-03 1.04058278e-03 - 1.04058278e-03 4.16233111e-03 1.56087419e-02 1.01977110e-01 0. - 1.87304895e-02 1.04058278e-03 1.04058278e-03 0. 1.45681594e-02 - 2.08116556e-03 4.16233111e-03 0. 1.04058278e-03 2.08116556e-03 - 2.08116556e-03 1.04058278e-03 2.60145701e-02 8.22060406e-02 - 6.24349676e-02 0. 1.35275759e-02 0. 1.04058278e-03 2.08116556e-03 - 1.24869933e-02 6.24349667e-03 6.24349667e-03 0. 3.12174833e-03 - 5.20291366e-03 4.16233111e-03 1.76899079e-02 9.26118642e-02 - 2.28928216e-02 1.04058273e-02 1.04058278e-03 7.28407968e-03 - 6.24349667e-03 3.12174833e-03 4.16233111e-03 2.49739867e-02 - 1.04058278e-03 0. 0. 0. 3.12174833e-03 0. 1.04058273e-02 - 2.80957352e-02 5.20291366e-03 2.08116556e-03 1.04058278e-03 - 2.08116556e-03 2.08116556e-03 0. 1.04058278e-03 1.04058278e-03 - 7.28407968e-03 1.04058278e-03 0. 1.04058278e-03 2.39334032e-02 0. - 6.55567124e-02 2.80957352e-02 0. 0. 0. 0. 0. 0. 0. 0. - 2.08116556e-03 0. 0. 0. 1.04058278e-03 0. 0. 0. 2.08116556e-03 0. - 0. 0. 0. 0. 0. 0. 1.87304895e-02 0. 0. 0. 2.08116546e-02 0. - 6.24349667e-03 8.32466222e-03 5.20291366e-03 2.08116556e-03 0. - 2.08116556e-03 1.04058278e-03 0. 1.04058278e-03 0. 3.12174833e-03 - 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 0. 0. 0. 1.04058278e-03 0. 0. 0. 3.12174833e-03 0. - 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 1.04058278e-03 0. 0. - 1.04058278e-03 2.39334032e-02 2.08116556e-03 0. 0. 0. 0. 0. - 1.04058278e-03 2.49739867e-02 0. 3.12174833e-03 0. 2.39334032e-02 - 1.04058278e-03 9.36524477e-03 4.16233111e-03 0. 6.24349667e-03 - 1.04058278e-03 1.14464108e-02 1.04058278e-03 1.04058278e-03 0. - 3.32986489e-02 0. 0. 0. 0. 0. 0. 0. 1.56087419e-02 0. - 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 7.28407968e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. - 0. 0. 1.04058278e-03 0. 1.04058278e-03 0. 1.04058278e-03 0. 0. 0. - 0. 0. 0. 0. 1.04058278e-03 1.04058278e-03 0. 1.04058278e-03 - 5.20291366e-03 4.16233111e-03 1.56087419e-02 0. 2.18522381e-02 0. - 0. 2.08116556e-03 2.08116546e-02 0. 0. 0. 0. 1.04058278e-03 0. 0. - 1.35275759e-02 0. 2.08116556e-03 1.04058278e-03 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 4.16233111e-03 1.76899079e-02 3.95421460e-02 - 1.04058278e-03 1.56087419e-02 0. 0. 0. 1.24869933e-02 0. 0. 0. 0. - 0. 0. 0. 7.28407968e-03 1.23829350e-01 4.68262248e-02 - 2.08116556e-03 8.32466222e-03 2.08116556e-03 0. 0. 3.12174833e-03 - 2.39334032e-02 5.20291366e-03 1.04058278e-03 7.28407968e-03 - 1.04058273e-02 3.12174833e-03 8.32466222e-03 4.26638946e-02 - 3.12174838e-02 4.99479733e-02 2.08116556e-03 9.36524477e-03 - 9.36524477e-03 1.04058278e-03 9.36524477e-03 2.49739867e-02 - 1.04058278e-03 1.04058278e-03 0. 0. 5.20291366e-03 0. - 2.39334032e-02 1.20707601e-01 3.22580673e-02 1.56087419e-02 - 1.04058278e-03 1.04058278e-03 1.04058278e-03 0. 0. 3.12174833e-03 - 2.08116556e-03 1.04058278e-03 0. 1.04058278e-03 1.24869933e-02 0. - 1.12382941e-01 6.45161346e-02 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 1.04058278e-03 2.08116556e-03 0. 0. 0. 0. 0. 0. 0. - 6.24349667e-03 0. 0. 0. 1.97710730e-02 0. 1.24869933e-02 - 5.20291366e-03 1.04058278e-03 2.08116556e-03 0. 2.08116556e-03 - 1.04058278e-03 0. 2.08116556e-03 2.08116556e-03 0. 0. 0. 0. - 2.08116556e-03 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 1.04058278e-03 - 2.08116556e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 2.08116556e-03 0. - 3.12174833e-03 1.04058278e-03 0. 1.04058278e-03 0. 0. 0. 0. - 3.12174833e-03 0. 0. 1.04058278e-03 5.20291366e-03 0. - 2.08116556e-03 4.16233111e-03 1.04058278e-03 3.12174833e-03 0. - 8.32466222e-03 0. 0. 1.04058278e-03 1.35275759e-02 0. 0. 0. 0. 0. - 0. 0. 1.45681594e-02 1.04058278e-03 2.08116556e-03 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 2.08116556e-03 1.04058273e-02 0. 0. 0. 0. 0. - 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. - 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 2.08116556e-03 0. 0. 0. - 9.36524477e-03 1.04058278e-03 9.36524477e-03 0. 6.24349667e-03 0. - 0. 0. 8.32466222e-03 0. 0. 0. 0. 0. 0. 1.04058278e-03 - 9.36524477e-03 2.08116556e-03 1.04058278e-03 0. 0. 0. 0. 0. - 1.04058278e-03 0. 0. 0. 0. 0. 0. 1.04058278e-03 5.20291366e-03 - 5.20291366e-03 2.39334032e-02 0. 2.08116556e-03 2.08116556e-03 0. - 0. 6.24349667e-03 1.04058278e-03 0. 0. 0. 2.08116556e-03 0. - 7.28407968e-03 3.22580673e-02 6.34755492e-02 1.14464108e-02 - 1.04058278e-03 2.08116556e-03 0. 0. 1.04058278e-03 2.08116556e-03 - 4.16233111e-03 3.12174833e-03 0. 4.16233111e-03 1.04058278e-03 - 1.04058278e-03 3.01769003e-02 4.99479733e-02 2.80957352e-02 - 3.64203975e-02 1.04058278e-03 6.24349667e-03 4.16233111e-03 - 4.16233111e-03 0. 1.66493244e-02 0. 0. 0. 0. 1.04058278e-03 - 1.04058278e-03 7.28407968e-03 3.22580673e-02 3.95421460e-02 - 6.24349667e-03 3.12174833e-03 1.04058278e-03 6.24349667e-03 - 3.12174833e-03 4.16233111e-03 2.08116556e-03 3.12174833e-03 0. 0. - 1.04058278e-03 3.32986489e-02 4.16233111e-03 7.28407949e-02 - 6.13943823e-02 1.04058278e-03 2.08116556e-03 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 2.08116556e-03 5.20291366e-03 2.08116556e-03 0. - 1.04058278e-03 1.04058278e-03 0. 1.04058278e-03 0. 1.04058278e-03 - 0. 0. 0. 0. 1.04058278e-03 1.04058273e-02 1.35275759e-02 - 4.16233111e-03 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 1.04058278e-03 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 2.08116556e-03 1.04058278e-03 2.08116556e-03 0. - 1.04058278e-03 3.12174833e-03 1.04058278e-03 1.04058278e-03 0. 0. - 0. 1.04058278e-03 0. 0. 0. 0. 0. 1.04058278e-03 0. 1.04058278e-03 - 1.45681594e-02 2.08116556e-03 0. 0. 7.28407968e-03 1.04058278e-03 - 1.04058278e-03 1.04058278e-03 3.12174833e-03 1.04058278e-03 0. 0. - 1.14464108e-02 0. 1.45681594e-02 2.49739867e-02 0. 2.08116556e-03 - 0. 0. 0. 0. 0. 2.08116556e-03 0. 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 0. 0. 0. 0. 0. 1.04058278e-03 1.04058278e-03 0. 0. - 0. 0. 0. 1.04058278e-03 2.08116556e-03 8.32466222e-03 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 5.20291366e-03 1.04058278e-03 1.14464108e-02 0. 0. - 1.04058278e-03 2.08116556e-03 0. 6.24349667e-03 0. 0. 0. 0. 0. - 1.04058278e-03 0. 8.32466222e-03 0. 1.04058278e-03 0. 0. 0. - 2.08116556e-03 0. 1.04058278e-03 0. 1.04058278e-03 0. 0. 0. 0. - 2.08116556e-03 1.35275759e-02 6.24349667e-03 1.46722168e-01 0. - 9.36524477e-03 0. 1.04058278e-03 0. 3.12174833e-03 1.04058278e-03 - 3.12174833e-03 0. 0. 1.04058278e-03 3.12174833e-03 3.12174833e-03 - 3.53798158e-02 1.14464108e-02 1.14464108e-02 0. 1.04058278e-03 - 2.08116556e-03 0. 0. 2.08116556e-03 1.04058278e-03 6.24349667e-03 - 0. 3.12174833e-03 1.24869933e-02 1.04058273e-02 3.01769003e-02 - 9.26118642e-02 6.24349667e-03 4.16233111e-03 0. 2.08116556e-03 - 8.32466222e-03 3.12174833e-03 0. 2.60145701e-02 0. 0. 0. 0. - 2.08116556e-03 0. 4.16233111e-03 8.32466222e-03 1.24869933e-02 - 1.04058278e-03 0. 0. 3.12174833e-03 2.08116556e-03 2.08116556e-03 - 1.04058278e-03 4.16233111e-03 0. 0. 0. 7.49219581e-02 - 2.08116556e-03 5.09885550e-02 4.57856432e-02 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 5.20291366e-03 0. 0. 0. 2.08116556e-03 - 0. 0. 1.04058278e-03 1.04058278e-03 0. 0. 1.04058278e-03 - 5.41103035e-02 0. 3.22580673e-02 2.18522381e-02 1.14464108e-02 - 3.12174833e-03 0. 0. 1.04058278e-03 0. 0. 1.04058278e-03 - 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 2.08116556e-03 0. 0. 0. - 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 - 2.60145701e-02 0. 0. 0. 1.04058273e-02 1.04058278e-03 - 1.04058278e-03 1.04058278e-03 1.56087419e-02 0. 0. 2.08116556e-03 - 7.70031288e-02 3.12174833e-03 2.18522381e-02 2.80957352e-02 - 1.04058278e-03 3.12174833e-03 0. 2.08116556e-03 0. 0. 0. - 1.14464108e-02 0. 0. 0. 0. 0. 0. 0. 3.12174833e-03 0. 0. 0. 0. 0. - 0. 0. 0. 0. 1.04058278e-03 0. 0. 1.04058278e-03 1.04058278e-03 - 2.08116556e-03 6.24349667e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 - 2.08116556e-03 8.32466222e-03 1.04058278e-03 3.22580673e-02 0. - 4.26638946e-02 0. 6.24349667e-03 0. 8.32466222e-03 0. 0. 0. 0. 0. - 0. 0. 6.24349667e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 4.16233111e-03 0. 9.36524477e-03 0. 4.89073917e-02 - 0. 1.76899079e-02 0. 1.04058278e-03 1.04058278e-03 4.16233111e-03 - 0. 0. 0. 1.04058278e-03 0. 0. 0. 5.20291366e-03 3.12174833e-03 - 1.56087419e-02 0. 6.24349667e-03 1.04058278e-03 5.20291366e-03 0. - 9.36524477e-03 5.20291366e-03 5.20291366e-03 0. 3.12174833e-03 - 9.36524477e-03 2.39334032e-02 1.14464108e-02 7.28407949e-02 - 7.28407968e-03 1.66493244e-02 0. 2.08116556e-03 1.04058278e-03 - 2.08116556e-03 4.16233111e-03 8.32466222e-03 0. 0. 0. 0. - 6.24349667e-03 0. 1.87304895e-02 5.72320521e-02 6.24349667e-03 - 9.36524477e-03 0. 1.04058278e-03 1.04058278e-03 0. 0. - 2.08116556e-03 6.24349667e-03 2.08116556e-03 0. 0. 1.24869933e-02 - 6.24349667e-03 6.03538007e-02 7.90842921e-02 1.04058278e-03 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 1.04058278e-03 - 1.04058278e-03 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. - 7.28407968e-03 1.04058278e-03 6.24349667e-03 4.16233111e-03 0. 0. - 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 2.08116556e-03 - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 2.08116556e-03 0. 0. 0. - 2.08116556e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 2.49739867e-02 0. 0. 0. 0. 0. 0. 0. 1.87304895e-02 - 0. 0. 0. 1.97710730e-02 0. 4.16233111e-03 2.08116556e-03 0. - 1.04058278e-03 0. 1.04058278e-03 0. 1.04058278e-03 0. - 5.20291366e-03 0. 0. 0. 0. 0. 0. 0. 6.24349667e-03 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 4.16233111e-03 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 1.04058278e-03 2.08116556e-03 1.14464108e-02 0. - 2.08116556e-03 0. 1.04058278e-03 0. 8.32466222e-03 0. 0. 0. 0. 0. - 0. 0. 2.08116556e-03 0. 5.20291366e-03 0. 1.04058278e-03 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 2.08116556e-03 1.66493244e-02 - 1.38397515e-01 0. 1.04058273e-02 0. 1.04058278e-03 0. - 8.32466222e-03 0. 1.04058278e-03 0. 0. 0. 0. 1.04058278e-03 - 6.24349667e-03 9.88553613e-02 1.42559841e-01 0. 4.16233111e-03 - 1.04058278e-03 2.08116556e-03 0. 6.24349667e-03 9.36524477e-03 - 8.32466222e-03 0. 4.16233111e-03 1.24869933e-02 1.14464108e-02 - 1.45681594e-02 3.43392305e-02 7.38813803e-02 4.05827276e-02 - 2.08116556e-03 6.24349667e-03 6.24349667e-03 1.04058278e-03 - 3.12174833e-03 4.16233111e-03 2.08116556e-03 0. 0. 0. - 3.12174833e-03 1.04058278e-03 2.60145701e-02 3.53798158e-02 - 4.16233093e-02 7.28407968e-03 2.08116556e-03 2.08116556e-03 - 4.16233111e-03 0. 5.20291366e-03 1.04058278e-03 6.24349667e-03 0. - 1.04058278e-03 0. 9.36524477e-03 1.04058278e-03 5.51508889e-02 - 2.70551518e-02 7.28407968e-03 3.12174833e-03 1.04058278e-03 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 3.12174833e-03 6.24349667e-03 0. - 1.04058278e-03 1.04058278e-03 0. 0. 2.08116556e-03 0. - 3.12174833e-03 0. 0. 0. 6.24349667e-03 0. 1.45681594e-02 - 6.24349667e-03 8.32466222e-03 5.20291366e-03 1.04058278e-03 0. - 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. - 2.08116556e-03 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 1.04058278e-03 2.08116556e-03 7.28407968e-03 4.16233111e-03 - 0. 1.04058278e-03 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. - 1.04058278e-03 2.08116556e-03 7.28407968e-03 2.08116556e-03 0. 0. - 0. 0. 0. 1.04058278e-03 4.16233111e-03 0. 0. 0. 4.16233111e-03 0. - 1.35275759e-02 3.12174833e-03 2.08116556e-03 2.08116556e-03 0. 0. - 0. 0. 1.04058278e-03 5.20291366e-03 0. 0. 0. 1.04058278e-03 0. 0. - 2.08116556e-03 4.16233111e-03 3.12174833e-03 4.16233111e-03 0. 0. - 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 5.20291366e-03 - 7.28407968e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 0. 1.04058278e-03 0. 1.04058278e-03 0. 0. 0. 0. 0. - 0. 0. 0. 1.04058278e-03 0. 2.08116556e-03 8.32466222e-03 - 5.20291366e-03 1.14464108e-02 0. 7.28407968e-03 0. 0. 0. - 5.20291366e-03 0. 1.04058278e-03 0. 0. 2.08116556e-03 0. - 2.08116556e-03 1.14464108e-02 0. 1.04058278e-03 1.04058278e-03 0. - 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 2.08116556e-03 1.04058278e-03 - 1.04058278e-03 2.08116556e-03 1.45681594e-02 5.51508889e-02 0. - 2.08116546e-02 3.12174833e-03 1.04058278e-03 1.04058278e-03 - 7.28407968e-03 2.08116556e-03 3.12174833e-03 0. 2.08116556e-03 0. - 2.08116556e-03 5.20291366e-03 3.74609791e-02 3.32986489e-02 - 1.97710730e-02 2.08116556e-03 4.16233111e-03 0. 0. 3.12174833e-03 - 2.08116556e-03 1.24869933e-02 1.45681594e-02 1.04058278e-03 - 5.20291366e-03 9.36524477e-03 3.12174833e-03 3.74609791e-02 - 9.05307010e-02 8.11654553e-02 3.12174838e-02 1.04058278e-03 - 1.35275759e-02 5.20291366e-03 1.04058278e-03 1.24869933e-02 - 8.32466222e-03 7.28407968e-03 2.08116556e-03 0. 0. 4.16233111e-03 - 1.04058278e-03 9.36524477e-03 2.49739867e-02 3.12174838e-02 - 7.28407968e-03 2.08116556e-03 1.04058278e-03 4.16233111e-03 0. - 4.16233111e-03 1.04058278e-03 5.20291366e-03 2.08116556e-03 0. - 1.04058278e-03 1.87304895e-02 0. 3.01769003e-02 1.35275759e-02 - 5.20291366e-03 0. 1.04058278e-03 2.08116556e-03 0. 0. - 1.04058278e-03 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 - 6.24349667e-03 3.12174833e-03 1.04058278e-03 0. 1.04058278e-03 0. - 1.04058278e-03 1.04058278e-03 5.20291366e-03 0. 0. 0. - 1.04058278e-03 0. 2.18522381e-02 1.04058273e-02 2.08116556e-03 - 2.08116556e-03 0. 1.04058278e-03 1.04058278e-03 0. 0. 0. 0. 0. - 1.04058278e-03 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 7.28407968e-03 4.16233111e-03 - 1.04058278e-03 4.16233111e-03 2.08116556e-03 0. 1.04058278e-03 0. - 0. 0. 0. 0. 0. 1.04058278e-03 0. 1.04058278e-03 1.76899079e-02 - 2.08116556e-03 2.08116556e-03 2.08116556e-03 0. 0. 2.08116556e-03 - 0. 5.20291366e-03 1.04058278e-03 0. 0. 5.20291366e-03 0. - 9.36524477e-03 3.12174833e-03 7.28407968e-03 8.32466222e-03 0. - 6.24349667e-03 1.04058278e-03 1.04058278e-03 0. 4.16233111e-03 0. - 0. 0. 0. 0. 1.04058278e-03 3.12174833e-03 1.56087419e-02 - 2.08116556e-03 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 1.04058278e-03 - 0. 0. 1.04058278e-03 0. 5.20291366e-03 5.20291366e-03 0. - 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 - 1.04058278e-03 0. 2.08116556e-03 0. 1.04058278e-03 0. 0. 0. 0. 0. - 1.04058278e-03 0. 1.04058278e-03 1.04058278e-03 1.04058278e-03 - 1.04058278e-03 1.24869933e-02 7.28407968e-03 2.70551518e-02 - 1.04058278e-03 2.80957352e-02 0. 1.04058278e-03 0. 9.36524477e-03 - 2.08116556e-03 1.04058278e-03 0. 2.08116556e-03 1.04058278e-03 - 1.04058278e-03 2.08116556e-03 1.14464108e-02 2.08116556e-03 - 1.04058278e-03 0. 2.08116556e-03 0. 0. 0. 2.08116556e-03 - 2.08116556e-03 2.08116556e-03 0. 0. 1.04058278e-03 1.04058278e-03 - 1.04058278e-03 2.08116556e-03 1.87304895e-02 2.39334032e-02 - 3.12174833e-03 2.49739867e-02 0. 0. 1.04058278e-03 9.36524477e-03 - 0. 2.08116556e-03 0. 1.04058278e-03 2.08116556e-03 1.04058278e-03 - 2.08116556e-03 1.97710730e-02 1.76899079e-02 1.14464108e-02 - 1.04058278e-03 8.32466222e-03 1.04058278e-03 0. 0. 1.04058273e-02 - 1.45681594e-02 8.32466222e-03 3.12174833e-03 8.32466222e-03 - 4.16233111e-03 7.28407968e-03 3.01769003e-02 9.67741981e-02 - 2.60145701e-02 3.22580673e-02 0. 4.16233111e-03 3.12174833e-03 - 1.04058278e-03 3.12174833e-03 2.08116556e-03 3.12174833e-03 - 1.04058278e-03 0. 0. 2.08116556e-03 0. 4.16233111e-03 - 3.12174838e-02 3.64203975e-02 1.04058273e-02 1.04058278e-03 0. - 1.04058278e-03 0. 0. 0. 2.08116556e-03 1.04058278e-03 0. - 1.04058278e-03 1.04058273e-02 5.20291366e-03 1.87304895e-02 - 1.24869933e-02 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 1.04058278e-03 9.36524477e-03 1.04058278e-03 0. 0. 0. 0. 0. - 1.04058278e-03 1.04058278e-03 1.04058278e-03 0. 0. 5.20291366e-03 - 0. 6.24349667e-03 3.12174833e-03 8.32466222e-03 0. 0. - 2.08116556e-03 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. - 2.08116556e-03 0. 9.36524477e-03 2.08116556e-03 0. 0. - 1.04058278e-03 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 0. 4.57856432e-02 2.08116556e-03 0. 0. 0. 0. 0. 0. - 2.49739867e-02 0. 0. 0. 4.16233111e-03 1.04058278e-03 - 1.04058273e-02 0. 0. 3.12174833e-03 0. 2.08116556e-03 0. 0. 0. - 4.16233111e-03 0. 1.04058278e-03 0. 0. 0. 0. 0. 6.24349667e-03 - 1.04058278e-03 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 2.08116556e-03 5.20291366e-03 1.24869933e-02 0. - 3.12174833e-03 1.04058278e-03 3.12174833e-03 0. 4.16233111e-03 0. - 0. 0. 1.04058278e-03 1.04058278e-03 1.04058278e-03 0. - 1.04058278e-03 2.08116556e-03 2.08116556e-03 0. 0. 0. 0. 0. 0. 0. - 0. 0. 1.04058278e-03 0. 0. 2.08116556e-03 0. 2.39334032e-02 - 5.41103035e-02 0. 9.36524477e-03 0. 1.04058278e-03 0. - 8.32466222e-03 0. 1.04058278e-03 0. 0. 0. 1.04058278e-03 - 3.12174833e-03 2.39334032e-02 1.51925087e-01 1.06139444e-01 - 2.08116556e-03 9.36524477e-03 1.04058278e-03 2.08116556e-03 - 3.12174833e-03 7.28407968e-03 4.47450578e-02 1.24869933e-02 0. - 3.12174833e-03 6.24349667e-03 6.24349667e-03 3.32986489e-02 - 5.82726374e-02 1.76899079e-02 1.14464108e-02 0. 5.20291366e-03 - 1.04058273e-02 0. 3.12174833e-03 2.70551518e-02 0. 0. 0. 0. - 6.24349667e-03 0. 3.12174833e-03 2.91363187e-02 1.66493244e-02 - 2.08116556e-03 0. 0. 1.04058278e-03 0. 0. 0. 4.16233111e-03 0. 0. - 0. 9.36524477e-03 3.12174833e-03 2.08116546e-02 1.97710730e-02 - 1.04058278e-03 0. 0. 1.04058278e-03 1.04058278e-03 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 1.04058278e-03 4.16233111e-03 0. 0. 0. - 2.08116556e-03 0. 1.04058278e-03 0. 1.45681594e-02 1.04058278e-03 - 1.04058278e-03 0. 3.12174838e-02 0. 3.12174833e-03 6.24349667e-03 - 1.66493244e-02 5.20291366e-03 0. 2.08116556e-03 4.16233111e-03 0. - 1.04058278e-03 0. 2.08116556e-03 0. 0. 0. 1.04058278e-03 0. 0. 0. - 3.12174833e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. - 0. 0. 1.66493244e-02 0. 0. 0. 0. 0. 0. 1.04058278e-03 - 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 3.95421460e-02 2.08116556e-03 - 2.08116556e-03 0. 3.12174833e-03 0. 0. 1.04058278e-03 - 4.57856432e-02 1.04058278e-03 0. 0. 3.32986489e-02 0. - 7.28407968e-03 2.08116556e-03 0. 7.28407968e-03 0. 1.24869933e-02 - 0. 0. 0. 3.22580673e-02 0. 1.04058278e-03 0. 0. 0. 1.04058278e-03 - 1.04058278e-03 1.24869933e-02 0. 1.04058278e-03 0. 2.08116556e-03 - 0. 0. 0. 1.04058278e-03 0. 1.04058278e-03 0. 0. 1.04058278e-03 - 1.04058278e-03 0. 7.28407968e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 1.04058278e-03 0. 1.04058278e-03 0. 0. 0. 0. 0. - 1.04058278e-03 0. 0. 0. 2.08116556e-03 0. 0. 0. 1.45681594e-02 - 3.12174833e-03 2.60145701e-02 0. 4.47450578e-02 0. 1.04058278e-03 - 1.04058278e-03 2.80957352e-02 0. 0. 0. 0. 0. 0. 0. 1.24869933e-02 - 1.04058278e-03 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. - 2.08116556e-03 0. 1.04058278e-03 0. 4.16233111e-03 1.45681594e-02 - 2.60145701e-02 0. 1.04058273e-02 0. 0. 0. 8.32466222e-03 0. - 1.04058278e-03 0. 0. 0. 0. 1.04058278e-03 1.35275759e-02 - 4.05827276e-02 4.37044762e-02 1.04058278e-03 7.28407968e-03 0. 0. - 1.04058278e-03 2.08116556e-03 3.22580673e-02 1.56087419e-02 0. - 2.60145701e-02 1.35275759e-02 1.24869933e-02 5.20291366e-03 - 4.47450578e-02 5.82726374e-02 5.72320521e-02 1.04058278e-03 - 4.16233111e-03 2.08116556e-03 0. 4.16233111e-03 1.24869933e-02 - 1.04058278e-03 3.12174833e-03 0. 0. 7.28407968e-03 1.04058278e-03 - 2.08116546e-02 3.22580673e-02 5.20291403e-02 1.56087419e-02 - 2.08116556e-03 2.08116556e-03 1.04058278e-03 1.04058278e-03 - 2.08116556e-03 4.16233111e-03 1.04058273e-02 0. 1.04058278e-03 - 1.04058278e-03 2.08116546e-02 2.08116556e-03 1.15504690e-01 - 2.91363187e-02 0. 3.12174833e-03 0. 0. 0. 0. 0. 1.04058278e-03 0. - 0. 0. 0. 0. 0. 0. 2.08116556e-03 0. 2.08116556e-03 0. 0. 0. 0. - 1.04058278e-03 0. 4.16233111e-03 0. 0. 0. 3.12174833e-03 0. - 1.04058273e-02 9.36524477e-03 2.08116556e-03 1.04058278e-03 0. - 1.04058278e-03 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 3.12174833e-03 1.04058278e-03 1.04058278e-03 0. 0. 0. - 1.04058278e-03 0. 1.04058278e-03 0. 0. 0. 1.04058278e-03 - 1.04058278e-03 5.20291366e-03 6.24349667e-03 2.08116556e-03 - 1.04058278e-03 3.12174833e-03 0. 0. 0. 0. 2.08116556e-03 0. 0. - 1.04058278e-03 0. 0. 9.36524477e-03 6.24349667e-03 1.04058278e-03 - 7.28407968e-03 0. 1.04058278e-03 0. 0. 0. 0. 0. 1.04058278e-03 0. - 0. 0. 0. 0. 3.12174833e-03 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. - 1.04058278e-03 0. 0. 1.04058278e-03 2.08116556e-03 2.08116556e-03 - 4.16233111e-03 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 - 1.04058278e-03 5.20291366e-03 9.36524477e-03 0. 1.04058278e-03 0. - 0. 0. 4.16233111e-03 0. 2.08116556e-03 0. 0. 0. 1.04058278e-03 - 3.12174833e-03 1.14464108e-02 1.04058278e-03 1.04058278e-03 0. - 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 2.08116556e-03 0. - 3.12174833e-03 4.16233111e-03 8.32466222e-03 4.37044762e-02 - 1.04058278e-03 1.66493244e-02 1.04058278e-03 2.08116556e-03 - 2.08116556e-03 3.12174833e-03 1.04058278e-03 4.16233111e-03 0. 0. - 0. 1.04058278e-03 2.08116556e-03 5.51508889e-02 4.89073917e-02 - 1.76899079e-02 0. 2.08116556e-03 2.08116556e-03 0. 3.12174833e-03 - 3.12174833e-03 1.04058278e-03 3.12174833e-03 0. 4.16233111e-03 - 2.08116556e-03 4.16233111e-03 5.09885550e-02 8.32466185e-02 - 1.97710730e-02 4.57856432e-02 0. 1.04058278e-03 9.36524477e-03 - 5.20291366e-03 5.20291366e-03 3.74609791e-02 0. 1.04058278e-03 0. - 0. 0. 0. 5.20291366e-03 3.95421460e-02 2.60145701e-02 - 1.76899079e-02 0. 2.08116556e-03 6.24349667e-03 1.04058278e-03 - 2.08116556e-03 1.14464108e-02 1.04058278e-03 0. 0. 0. - 3.53798158e-02 1.04058278e-03 3.53798158e-02 9.46930349e-02 0. 0. - 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 1.04058278e-03 0. 0. 0. 0. 0. 0. 1.04058278e-03 - 1.04058278e-03 0. 1.04058278e-03 4.16233111e-03 0. 8.32466222e-03 - 2.08116546e-02 2.08116556e-03 2.08116556e-03 0. 0. 0. 0. - 1.04058278e-03 2.08116556e-03 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. - 2.08116556e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. - 2.08116556e-03 4.16233111e-03 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 1.04058273e-02 2.08116556e-03 0. 0. - 3.12174833e-03 0. 2.08116556e-03 0. 1.04058278e-03 0. 0. 0. - 3.32986489e-02 1.04058278e-03 1.45681594e-02 2.08116546e-02 - 2.08116556e-03 2.08116556e-03 0. 0. 1.04058278e-03 0. 0. - 5.20291366e-03 0. 0. 0. 0. 0. 0. 0. 1.04058273e-02 0. - 1.04058278e-03 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. - 1.04058278e-03 0. 2.08116556e-03 9.36524477e-03 0. 1.04058278e-03 - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 6.24349667e-03 0. 1.45681594e-02 0. - 3.12174833e-03 0. 4.16233111e-03 1.04058278e-03 1.04058273e-02 0. - 0. 0. 0. 0. 0. 0. 1.56087419e-02 2.08116556e-03 2.08116556e-03 0. - 0. 0. 0. 0. 1.04058278e-03 2.08116556e-03 0. 0. 0. 2.08116556e-03 - 1.04058278e-03 0. 2.80957352e-02 2.08116556e-03 6.03538007e-02 0. - 4.16233111e-03 0. 2.08116556e-03 0. 1.24869933e-02 0. 0. 0. 0. 0. - 0. 0. 3.64203975e-02 1.97710730e-02 1.56087419e-02 2.08116556e-03 - 8.32466222e-03 1.04058278e-03 4.16233111e-03 0. 1.45681594e-02 - 1.04058278e-03 5.20291366e-03 0. 2.08116556e-03 8.32466222e-03 - 6.24349667e-03 1.24869933e-02 1.00936532e-01 1.14464108e-02 - 1.45681594e-02 1.04058278e-03 3.12174833e-03 8.32466222e-03 - 1.04058278e-03 1.04058278e-03 2.28928216e-02 0. 0. 0. 0. - 1.04058278e-03 0. 4.16233111e-03 1.24869933e-02 1.45681594e-02 - 3.12174833e-03 0. 0. 2.08116556e-03 1.04058278e-03 0. - 3.12174833e-03 0. 1.04058278e-03 0. 0. 2.80957352e-02 0. - 7.18002096e-02 8.32466185e-02 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 2.08116556e-03 1.04058278e-03 0. 0. 1.04058278e-03 0. - 0. 0. 0. 0. 0. 0. 1.24869933e-02 1.04058278e-03 1.14464108e-02 - 1.35275759e-02 1.14464108e-02 2.08116556e-03 0. 0. 1.04058278e-03 - 0. 1.04058278e-03 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 0. 3.12174833e-03 2.08116556e-03 2.08116556e-03 0. - 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 7.28407968e-03 3.12174833e-03 0. 0. 1.04058278e-03 0. - 1.04058278e-03 3.12174833e-03 3.12174833e-03 0. 0. 0. - 1.35275759e-02 0. 7.28407968e-03 1.45681594e-02 0. 7.28407968e-03 - 0. 2.08116556e-03 0. 0. 0. 9.36524477e-03 0. 0. 0. 0. 0. - 2.08116556e-03 0. 2.08116556e-03 0. 1.04058278e-03 0. 0. 0. 0. 0. - 1.04058278e-03 0. 0. 0. 0. 0. 0. 1.04058278e-03 7.28407968e-03 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 7.28407968e-03 2.08116556e-03 - 4.26638946e-02 0. 1.66493244e-02 0. 3.12174833e-03 0. - 4.47450578e-02 0. 0. 0. 0. 0. 2.08116556e-03 0. 6.24349667e-03 - 1.04058278e-03 3.12174833e-03 0. 1.04058278e-03 0. 0. 0. - 3.12174833e-03 0. 0. 0. 0. 0. 2.08116556e-03 1.04058278e-03 - 1.76899079e-02 7.28407968e-03 1.54006258e-01 0. 2.60145701e-02 0. - 1.04058278e-03 0. 1.14464108e-02 0. 0. 0. 0. 0. 0. 3.12174833e-03 - 7.28407968e-03 7.28407968e-03 3.95421460e-02 0. 1.35275759e-02 0. - 1.04058278e-03 0. 1.87304895e-02 2.08116556e-03 6.24349667e-03 0. - 1.04058278e-03 7.28407968e-03 4.16233111e-03 1.35275759e-02 - 7.28407949e-02 1.76899079e-02 1.56087419e-02 2.08116556e-03 - 4.16233111e-03 2.08116556e-03 0. 1.04058278e-03 3.01769003e-02 0. - 0. 0. 0. 0. 0. 1.56087419e-02 7.70031288e-02 6.24349667e-03 - 1.14464108e-02 0. 1.04058278e-03 1.04058278e-03 0. 1.04058278e-03 - 0. 2.08116556e-03 2.08116556e-03 0. 1.04058278e-03 1.04058273e-02 - 2.08116556e-03 3.64203975e-02 5.61914705e-02 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 9.36524477e-03 0. 1.04058278e-03 0. 0. - 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 8.32466222e-03 - 2.08116556e-03 6.24349667e-03 1.04058278e-03 0. 1.04058278e-03 - 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 - 1.04058278e-03 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 0. 0. 1.04058278e-03 4.16233111e-03 1.04058278e-03 - 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. - 1.35275759e-02 1.04058278e-03 0. 0. 2.08116556e-03 0. 0. 0. - 3.12174833e-03 0. 0. 0. 7.28407968e-03 0. 8.32466222e-03 - 3.12174833e-03 0. 2.08116556e-03 0. 3.12174833e-03 1.04058278e-03 - 1.04058278e-03 0. 4.68262248e-02 0. 0. 0. 0. 0. 0. 0. - 1.24869933e-02 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. - 0. 0. 1.24869933e-02 1.04058278e-03 1.04058278e-03 0. 0. 0. 0. 0. - 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 1.04058278e-03 0. 1.04058278e-03 1.04058278e-03 - 2.08116556e-03 1.04058278e-03 1.97710730e-02 0. 1.14464108e-02 - 1.04058278e-03 1.04058278e-03 0. 7.28407968e-03 0. 0. 0. 0. 0. 0. - 1.04058278e-03 5.20291366e-03 0. 2.08116556e-03 0. 0. - 2.08116556e-03 0. 0. 0. 0. 1.04058278e-03 0. 1.04058278e-03 - 1.04058278e-03 0. 0. 1.04058278e-03 1.76899079e-02 5.41103035e-02 - 0. 4.16233111e-03 0. 0. 2.08116556e-03 2.08116556e-03 0. 0. 0. 0. - 0. 1.04058278e-03 3.12174833e-03 1.14464108e-02 1.57128006e-01 - 1.27991676e-01 0. 2.08116556e-03 1.04058278e-03 0. 1.04058278e-03 - 3.12174833e-03 1.56087419e-02 7.28407968e-03 0. 2.08116556e-03 - 7.28407968e-03 5.20291366e-03 1.66493244e-02 3.53798158e-02 - 8.74089524e-02 4.37044762e-02 4.16233111e-03 3.12174833e-03 - 4.16233111e-03 3.12174833e-03 4.16233111e-03 8.32466222e-03 - 3.12174833e-03 1.04058278e-03 0. 0. 6.24349667e-03 5.20291366e-03 - 1.35275759e-02 3.53798158e-02 3.53798158e-02 5.20291366e-03 - 1.04058278e-03 2.08116556e-03 2.08116556e-03 0. 0. 0. - 1.04058273e-02 0. 1.04058278e-03 0. 1.66493244e-02 2.08116556e-03 - 5.93132190e-02 1.66493244e-02 0. 1.04058278e-03 0. 1.04058278e-03 - 2.08116556e-03 0. 1.04058278e-03 2.08116556e-03 0. 0. 0. 0. 0. 0. - 2.08116556e-03 1.04058278e-03 2.08116556e-03 3.12174833e-03 - 2.08116556e-03 0. 3.12174833e-03 0. 2.08116556e-03 0. - 2.08116556e-03 0. 1.04058278e-03 3.12174833e-03 4.16233111e-03 0. - 1.66493244e-02 4.16233111e-03 7.28407968e-03 7.28407968e-03 0. - 2.08116556e-03 1.04058278e-03 0. 0. 0. 1.04058278e-03 0. 0. 0. - 1.04058278e-03 0. 0. 2.08116556e-03 4.16233111e-03 1.04058278e-03 - 0. 0. 0. 0. 0. 0. 4.16233111e-03 0. 0. 0. 0. 0. 2.08116556e-03 0. - 8.32466222e-03 4.16233111e-03 0. 3.12174833e-03 0. 0. - 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 2.08116556e-03 - 9.36524477e-03 1.04058278e-03 0. 0. 2.08116556e-03 0. 0. 0. - 8.32466222e-03 2.08116556e-03 1.04058278e-03 1.04058278e-03 - 4.16233111e-03 1.04058278e-03 1.97710730e-02 9.36524477e-03 - 1.04058278e-03 4.16233111e-03 0. 3.12174833e-03 0. 0. 0. - 4.16233111e-03 0. 0. 0. 0. 0. 0. 2.08116556e-03 1.04058273e-02 - 2.08116556e-03 3.12174833e-03 0. 2.08116556e-03 0. 0. 0. - 1.04058278e-03 1.04058278e-03 1.04058278e-03 0. 2.08116556e-03 0. - 0. 4.16233111e-03 6.24349667e-03 0. 0. 0. 1.04058278e-03 - 1.04058278e-03 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. - 3.12174833e-03 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. - 3.12174833e-03 0. 2.08116556e-03 1.14464108e-02 3.12174833e-03 - 9.36524477e-03 0. 6.24349667e-03 0. 0. 0. 2.08116556e-03 0. - 1.04058278e-03 0. 0. 1.04058278e-03 1.04058278e-03 2.08116556e-03 - 7.28407968e-03 4.16233111e-03 2.08116556e-03 0. 0. 0. 0. 0. 0. - 2.08116556e-03 0. 0. 0. 1.04058278e-03 0. 2.08116556e-03 - 2.08116556e-03 1.14464108e-02 3.43392305e-02 0. 1.24869933e-02 - 2.08116556e-03 0. 2.08116556e-03 1.14464108e-02 1.04058278e-03 - 2.08116556e-03 0. 1.04058278e-03 1.04058278e-03 1.04058278e-03 - 8.32466222e-03 2.91363187e-02 2.80957352e-02 1.04058273e-02 0. - 6.24349667e-03 0. 0. 3.12174833e-03 1.04058278e-03 1.35275759e-02 - 1.35275759e-02 1.04058278e-03 5.20291366e-03 6.24349667e-03 - 6.24349667e-03 3.74609791e-02 9.05307010e-02 8.01248774e-02 - 3.64203975e-02 2.08116556e-03 7.28407968e-03 8.32466222e-03 - 2.08116556e-03 4.16233111e-03 1.56087419e-02 3.12174833e-03 - 2.08116556e-03 0. 1.04058278e-03 2.08116556e-03 3.12174833e-03 - 1.35275759e-02 3.32986489e-02 4.16233093e-02 3.12174833e-03 - 3.12174833e-03 3.12174833e-03 3.12174833e-03 1.04058278e-03 - 1.04058278e-03 2.08116556e-03 5.20291366e-03 0. 1.04058278e-03 0. - 9.36524477e-03 2.08116556e-03 2.60145701e-02 1.66493244e-02 - 3.12174833e-03 2.08116556e-03 0. 0. 0. 0. 1.04058278e-03 - 1.04058278e-03 0. 0. 0. 0. 0. 0. 1.04058278e-03 1.04058278e-03 - 9.36524477e-03 3.12174833e-03 1.04058278e-03 1.04058278e-03 0. 0. - 1.04058278e-03 0. 3.12174833e-03 0. 0. 0. 2.08116556e-03 0. - 7.28407968e-03 6.24349667e-03 1.04058273e-02 2.08116556e-03 - 1.04058278e-03 0. 1.04058278e-03 0. 0. 1.04058278e-03 0. 0. 0. 0. - 1.04058278e-03 0. 2.08116556e-03 1.04058278e-03 5.20291366e-03 - 1.04058278e-03 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. - 1.04058278e-03 0. 0. 0. 3.12174833e-03 3.12174833e-03 0. 0. 0. 0. - 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 2.08116556e-03 - 1.56087419e-02 3.12174833e-03 1.04058278e-03 0. 1.04058278e-03 0. - 1.04058278e-03 0. 7.28407968e-03 0. 0. 1.04058278e-03 - 2.08116556e-03 0. 8.32466222e-03 6.24349667e-03 3.12174833e-03 - 9.36524477e-03 1.04058278e-03 4.16233111e-03 0. 4.16233111e-03 0. - 1.24869933e-02 0. 0. 0. 0. 0. 1.04058278e-03 1.04058278e-03 - 1.56087419e-02 2.08116556e-03 0. 0. 0. 0. 0. 0. 2.08116556e-03 0. - 2.08116556e-03 0. 0. 2.08116556e-03 0. 3.12174833e-03 - 9.36524477e-03 2.08116556e-03 1.04058278e-03 0. 0. 1.04058278e-03 - 0. 0. 2.08116556e-03 0. 0. 0. 0. 0. 1.04058278e-03 0. - 1.04058278e-03 1.04058278e-03 2.08116556e-03 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 1.04058278e-03 1.04058278e-03 0. 8.32466222e-03 - 8.32466222e-03 1.24869933e-02 0. 0. 2.08116556e-03 1.04058278e-03 - 1.04058278e-03 5.20291366e-03 1.04058278e-03 0. 0. 0. - 1.04058278e-03 1.04058278e-03 2.08116556e-03 6.24349667e-03 - 4.16233111e-03 0. 0. 1.04058278e-03 0. 0. 0. 1.04058278e-03 - 1.04058278e-03 0. 0. 0. 1.04058278e-03 0. 2.08116556e-03 - 3.12174833e-03 1.87304895e-02 1.76899079e-02 0. 8.32466222e-03 - 1.04058278e-03 4.16233111e-03 1.04058278e-03 1.35275759e-02 - 2.08116556e-03 5.20291366e-03 0. 3.12174833e-03 1.04058278e-03 - 1.04058278e-03 6.24349667e-03 3.12174838e-02 4.78668064e-02 - 2.08116546e-02 2.08116556e-03 7.28407968e-03 0. 0. 2.08116556e-03 - 8.32466222e-03 1.45681594e-02 7.28407968e-03 3.12174833e-03 - 9.36524477e-03 1.24869933e-02 9.36524477e-03 3.32986489e-02 - 9.67741981e-02 3.22580673e-02 4.16233093e-02 0. 8.32466222e-03 - 8.32466222e-03 1.04058278e-03 4.16233111e-03 2.08116546e-02 - 1.04058278e-03 1.04058278e-03 0. 0. 6.24349667e-03 0. - 7.28407968e-03 4.78668064e-02 3.32986489e-02 1.56087419e-02 0. - 1.04058278e-03 1.04058278e-03 0. 0. 0. 1.04058278e-03 - 2.08116556e-03 0. 0. 1.14464108e-02 0. 1.14464108e-02 - 1.66493244e-02 2.08116556e-03 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 1.04058278e-03 7.28407968e-03 1.04058278e-03 0. - 0. 0. 0. 2.08116556e-03 0. 0. 1.04058278e-03 0. 0. 3.12174833e-03 - 0. 7.28407968e-03 4.16233111e-03 4.16233111e-03 4.16233111e-03 0. - 1.04058278e-03 3.12174833e-03 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. - 0. 0. 0. 2.08116556e-03 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. - 0. 0. 0. 2.08116556e-03 0. 5.20291366e-03 2.08116556e-03 0. 0. 0. - 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 1.04058278e-03 - 3.12174833e-03 2.18522381e-02 3.12174833e-03 0. 0. 0. 0. - 1.04058278e-03 0. 1.45681594e-02 0. 1.04058278e-03 0. - 4.16233111e-03 2.08116556e-03 6.24349667e-03 0. 1.04058278e-03 - 8.32466222e-03 0. 2.08116556e-03 0. 1.04058278e-03 0. - 5.20291366e-03 0. 0. 0. 0. 0. 2.08116556e-03 1.04058278e-03 - 7.28407968e-03 1.04058278e-03 3.12174833e-03 0. 2.08116556e-03 0. - 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 1.14464108e-02 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 1.04058278e-03 - 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. - 4.16233111e-03 2.08116556e-03 2.60145701e-02 0. 1.24869933e-02 - 1.04058278e-03 0. 1.04058278e-03 1.04058273e-02 0. 0. 0. 0. 0. 0. - 0. 1.35275759e-02 2.08116556e-03 5.20291366e-03 0. 0. 0. 0. 0. - 1.04058278e-03 0. 1.04058278e-03 0. 0. 1.04058278e-03 0. 0. - 3.12174833e-03 1.56087419e-02 8.42872038e-02 0. 9.36524477e-03 0. - 0. 2.08116556e-03 1.45681594e-02 0. 0. 0. 0. 0. 0. 8.32466222e-03 - 3.74609791e-02 8.63683671e-02 5.30697219e-02 1.04058278e-03 - 1.66493244e-02 1.04058278e-03 0. 1.04058278e-03 5.20291366e-03 - 2.08116546e-02 8.32466222e-03 1.04058278e-03 5.20291366e-03 - 7.28407968e-03 4.16233111e-03 2.80957352e-02 6.45161346e-02 - 1.97710730e-02 3.12174833e-03 0. 2.08116556e-03 1.04058273e-02 0. - 1.04058278e-03 7.28407968e-03 0. 0. 0. 0. 0. 0. 2.08116556e-03 - 4.16233111e-03 1.14464108e-02 0. 0. 0. 3.12174833e-03 0. - 2.08116556e-03 2.08116556e-03 2.08116556e-03 0. 0. 1.04058278e-03 - 5.20291366e-03 1.04058278e-03 1.45681594e-02 6.24349667e-03 0. 0. - 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 - 1.04058278e-03 0. 0. 0. 1.04058278e-03 0. 0. 0. 8.32466222e-03 0. - 0. 0. 1.76899079e-02 0. 8.32466222e-03 6.24349667e-03 - 2.49739867e-02 1.04058278e-03 0. 1.04058278e-03 8.32466222e-03 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 1.24869933e-02 1.04058278e-03 - 0. 0. 1.04058278e-03 1.04058278e-03 0. 1.04058278e-03 0. 0. 0. 0. - 0. 0. 0. 0. 5.82726374e-02 2.08116556e-03 0. 0. 2.08116556e-03 0. - 2.08116556e-03 1.04058278e-03 4.78668064e-02 0. 0. 0. - 2.18522381e-02 1.04058278e-03 3.12174833e-03 0. 0. 6.24349667e-03 - 0. 3.12174833e-03 1.04058278e-03 0. 0. 1.04058273e-02 0. 0. 0. 0. - 0. 0. 0. 5.20291366e-03 0. 1.04058278e-03 0. 0. 0. 1.04058278e-03 - 0. 0. 0. 1.04058278e-03 0. 1.04058278e-03 0. 0. 0. 7.28407968e-03 - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 2.08116556e-03 - 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 2.08116556e-03 0. 0. 0. - 5.20291366e-03 1.35275759e-02 2.70551518e-02 0. 2.08116546e-02 - 1.04058278e-03 1.04058278e-03 0. 1.14464108e-02 1.04058278e-03 0. - 0. 0. 0. 1.04058278e-03 0. 1.04058278e-03 2.08116556e-03 - 1.04058278e-03 0. 1.04058278e-03 0. 0. 0. 0. 1.04058278e-03 0. 0. - 0. 0. 5.20291366e-03 1.04058278e-03 2.08116556e-03 1.66493244e-02 - 6.24349676e-02 0. 2.18522381e-02 1.04058278e-03 1.04058278e-03 - 1.04058278e-03 8.32466222e-03 0. 0. 0. 1.04058278e-03 - 1.04058278e-03 0. 0. 7.28407968e-03 1.21748187e-01 7.80437067e-02 - 0. 1.87304895e-02 1.04058278e-03 3.12174833e-03 1.04058278e-03 - 7.28407968e-03 3.95421460e-02 3.85015644e-02 0. 3.12174838e-02 - 9.36524477e-03 7.28407968e-03 8.32466222e-03 3.64203975e-02 - 3.43392305e-02 1.97710730e-02 0. 1.04058278e-03 3.12174833e-03 - 5.20291366e-03 4.16233111e-03 2.28928216e-02 1.04058278e-03 0. 0. - 0. 1.04058278e-03 0. 1.35275759e-02 2.60145701e-02 5.41103035e-02 - 1.56087419e-02 0. 1.04058278e-03 2.08116556e-03 0. 2.08116556e-03 - 0. 3.12174833e-03 1.04058278e-03 2.08116556e-03 0. 5.20291366e-03 - 0. 2.28928216e-02 1.24869933e-02 0. 0. 0. 0. 1.04058278e-03 0. - 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 - 6.24349667e-03 2.08116556e-03 1.04058278e-03 0. 2.08116556e-03 0. - 2.08116556e-03 1.04058278e-03 0. 0. 1.04058278e-03 0. - 8.32466222e-03 1.04058278e-03 3.12174833e-03 4.16233111e-03 - 1.35275759e-02 1.04058278e-03 0. 0. 1.04058278e-03 0. 0. - 1.04058278e-03 1.04058278e-03 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 3.12174833e-03 0. - 1.04058278e-03 0. 4.16233111e-03 1.04058278e-03 1.04058278e-03 0. - 1.04058278e-03 0. 0. 1.04058278e-03 0. 0. 0. 0. 1.04058278e-03 0. - 1.04058278e-03 1.04058278e-03 1.76899079e-02 2.08116556e-03 - 1.04058278e-03 0. 0. 0. 0. 0. 1.45681594e-02 0. 0. 1.04058278e-03 - 9.36524477e-03 0. 7.28407968e-03 0. 2.08116556e-03 5.20291366e-03 - 0. 2.08116556e-03 0. 0. 0. 3.32986489e-02 0. 0. 0. 0. 0. 0. - 1.04058278e-03 1.35275759e-02 0. 1.04058278e-03 0. 0. 0. 0. 0. - 1.04058278e-03 1.04058278e-03 0. 0. 0. 0. 0. 1.04058278e-03 - 2.08116556e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 0. 1.04058278e-03 2.08116556e-03 0. 0. 0. 0. 0. - 1.04058278e-03 0. 0. 0. 1.04058278e-03 1.04058278e-03 - 1.04058278e-03 0. 6.24349667e-03 5.20291366e-03 8.32466222e-03 0. - 2.08116556e-03 1.04058278e-03 0. 0. 6.24349667e-03 0. - 1.04058278e-03 0. 0. 0. 0. 1.04058278e-03 2.08116556e-03 0. - 1.04058278e-03 0. 0. 0. 0. 0. 0. 2.08116556e-03 3.12174833e-03 0. - 0. 0. 0. 0. 4.16233111e-03 2.18522381e-02 5.09885550e-02 0. - 5.20291366e-03 0. 2.08116556e-03 0. 6.24349667e-03 1.04058278e-03 - 0. 0. 0. 2.08116556e-03 2.08116556e-03 8.32466222e-03 - 2.49739867e-02 1.19667016e-01 8.01248774e-02 0. 4.16233111e-03 - 1.04058278e-03 2.08116556e-03 0. 3.12174833e-03 3.22580673e-02 - 1.56087419e-02 0. 7.28407968e-03 1.04058273e-02 3.12174833e-03 - 3.43392305e-02 6.86784610e-02 2.28928216e-02 1.14464108e-02 - 1.04058278e-03 7.28407968e-03 1.14464108e-02 0. 4.16233111e-03 - 4.57856432e-02 1.04058278e-03 0. 0. 0. 5.20291366e-03 - 1.04058278e-03 7.28407968e-03 1.56087419e-02 1.87304895e-02 - 8.32466222e-03 1.04058278e-03 1.04058278e-03 3.12174833e-03 0. - 1.04058278e-03 1.04058278e-03 6.24349667e-03 0. 0. 0. - 4.26638946e-02 1.04058278e-03 5.82726374e-02 4.16233093e-02 0. - 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 0. 1.04058278e-03 0. 0. 0. 0. 7.28407968e-03 0. 0. - 1.04058278e-03 2.39334032e-02 1.04058278e-03 1.45681594e-02 - 1.87304895e-02 2.08116556e-03 1.04058278e-03 0. 0. 2.08116556e-03 - 0. 1.04058278e-03 4.16233111e-03 0. 0. 0. 0. 0. 0. 1.04058278e-03 - 1.04058278e-03 4.16233111e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 3.12174833e-03 0. 2.08116556e-03 1.04058278e-03 1.04058278e-03 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 1.04058278e-03 - 5.20291366e-03 0. 2.08116556e-03 0. 0. 0. 1.04058278e-03 0. - 7.59625435e-02 0. 1.04058278e-03 1.04058278e-03 5.61914705e-02 0. - 2.39334032e-02 1.66493244e-02 0. 4.16233111e-03 0. 6.24349667e-03 - 0. 0. 0. 8.42872038e-02 0. 1.04058278e-03 0. 0. 0. 0. 0. - 2.28928216e-02 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 0. 1.35275759e-02 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 1.04058278e-03 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. - 2.08116556e-03 0. 0. 0. 0. 0. 1.56087419e-02 1.04058278e-03 - 1.04058273e-02 0. 6.24349667e-03 0. 1.04058278e-03 0. - 3.12174838e-02 0. 1.04058278e-03 0. 0. 0. 1.04058278e-03 - 1.04058278e-03 9.36524477e-03 1.04058278e-03 0. 0. 0. 0. 0. 0. - 1.04058278e-03 0. 0. 0. 1.04058278e-03 0. 0. 0. 5.20291366e-03 - 3.12174833e-03 3.85015644e-02 0. 8.32466222e-03 0. 0. 0. - 4.16233111e-03 0. 0. 0. 0. 0. 0. 1.04058278e-03 1.66493244e-02 - 9.36524477e-03 1.24869933e-02 0. 3.12174833e-03 1.04058278e-03 0. - 0. 3.12174833e-03 1.04058278e-03 1.04058278e-03 0. 5.20291366e-03 - 6.24349667e-03 3.12174833e-03 1.45681594e-02 4.57856432e-02 - 2.60145701e-02 2.49739867e-02 4.16233111e-03 2.08116556e-03 - 1.04058278e-03 0. 5.20291366e-03 1.24869933e-02 1.04058278e-03 0. - 0. 0. 3.12174833e-03 1.04058278e-03 4.16233111e-03 1.35275759e-02 - 2.18522381e-02 8.32466222e-03 0. 1.04058278e-03 3.12174833e-03 0. - 2.08116556e-03 4.16233111e-03 4.16233111e-03 1.04058278e-03 0. 0. - 4.99479733e-02 2.08116556e-03 1.51925087e-01 3.64203975e-02 - 1.04058278e-03 1.04058278e-03 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 2.08116556e-03 3.12174833e-03 0. 0. - 1.04058278e-03 0. 2.08116556e-03 0. 6.24349667e-03 0. 0. 0. - 3.64203975e-02 0. 3.85015644e-02 8.32466222e-03 4.16233111e-03 - 2.08116556e-03 0. 0. 1.04058278e-03 1.04058278e-03 0. - 2.08116556e-03 0. 0. 0. 0. 0. 0. 2.08116556e-03 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 1.04058278e-03 0. - 1.04058278e-03 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. - 0. 0. 9.36524477e-03 1.04058278e-03 0. 1.04058278e-03 - 1.04058278e-03 0. 1.04058278e-03 0. 7.28407968e-03 1.04058278e-03 - 0. 0. 1.56087419e-02 0. 1.35275759e-02 0. 0. 4.16233111e-03 0. - 4.16233111e-03 0. 0. 0. 2.08116556e-03 0. 0. 0. 0. 0. 0. 0. - 3.12174833e-03 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 0. 5.20291366e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 1.04058278e-03 1.04058278e-03 1.04058278e-03 - 4.16233111e-03 1.04058278e-03 3.95421460e-02 0. 3.32986489e-02 0. - 0. 0. 1.04058273e-02 0. 0. 0. 1.04058278e-03 1.04058278e-03 0. 0. - 1.66493244e-02 1.04058278e-03 1.04058278e-03 0. 1.04058278e-03 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 2.08116556e-03 1.14464108e-02 - 6.24349667e-03 9.98959467e-02 0. 3.12174838e-02 0. 1.04058278e-03 - 0. 1.45681594e-02 0. 0. 0. 0. 0. 1.04058278e-03 1.04058278e-03 - 1.66493244e-02 1.04058273e-02 1.76899079e-02 0. 8.32466222e-03 - 1.04058278e-03 0. 0. 3.12174833e-03 2.08116556e-03 7.28407968e-03 - 0. 2.08116556e-03 4.16233111e-03 3.12174833e-03 1.56087419e-02 - 4.99479733e-02 1.24869933e-02 2.70551518e-02 0. 0. 2.08116556e-03 - 0. 0. 4.16233111e-03 1.04058278e-03 0. 0. 0. 1.04058278e-03 0. - 1.87304895e-02 1.38397515e-01 1.97710730e-02 2.49739867e-02 0. 0. - 1.04058278e-03 0. 0. 1.04058278e-03 2.08116556e-03 2.08116556e-03 - 0. 0. 7.28407968e-03 1.04058278e-03 4.78668064e-02 4.78668064e-02 - 2.08116556e-03 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 4.16233111e-03 1.04058278e-03 0. 0. 0. 0. 0. 0. - 3.12174833e-03 0. 0. 0. 1.04058278e-03 0. 0. 5.20291366e-03 - 1.04058278e-03 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. - 1.04058278e-03 1.04058278e-03 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 2.08116556e-03 0. 0. 0. 0. 0. 0. - 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 2.08116556e-03 9.36524477e-03 - 2.08116556e-03 0. 1.04058278e-03 0. 0. 0. 1.04058278e-03 - 4.16233111e-03 0. 0. 0. 1.04058278e-03 0. 5.20291366e-03 - 3.12174833e-03 1.04058278e-03 4.16233111e-03 0. 3.12174833e-03 0. - 2.08116556e-03 0. 8.32466222e-03 0. 0. 0. 0. 0. 0. 0. - 8.32466222e-03 0. 3.12174833e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 0. 4.16233111e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 4.16233111e-03 8.32466222e-03 0. 1.04058273e-02 0. - 1.04058278e-03 0. 2.08116556e-03 0. 0. 0. 0. 0. 0. 0. - 4.16233111e-03 1.04058278e-03 5.20291366e-03 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 4.16233111e-03 1.45681594e-02 4.05827276e-02 0. - 6.24349667e-03 0. 0. 1.04058278e-03 4.16233111e-03 0. 0. 0. 0. 0. - 1.04058278e-03 3.12174833e-03 2.49739867e-02 1.88345477e-01 - 1.33194596e-01 0. 2.08116556e-03 1.04058278e-03 0. 1.04058278e-03 - 1.04058278e-03 5.20291366e-03 3.12174833e-03 1.04058278e-03 - 1.04058278e-03 9.36524477e-03 1.04058278e-03 1.97710730e-02 - 4.47450578e-02 5.72320521e-02 5.20291403e-02 1.04058278e-03 - 7.28407968e-03 5.20291366e-03 2.08116556e-03 3.12174833e-03 - 1.56087419e-02 0. 2.08116556e-03 0. 0. 8.32466222e-03 - 4.16233111e-03 1.76899079e-02 4.05827276e-02 3.74609791e-02 - 7.28407968e-03 2.08116556e-03 2.08116556e-03 3.12174833e-03 0. - 1.04058278e-03 5.20291366e-03 9.36524477e-03 3.12174833e-03 - 2.08116556e-03 1.04058278e-03 2.28928216e-02 1.04058278e-03 - 4.89073917e-02 2.39334032e-02 0. 1.04058278e-03 0. 0. 0. 0. - 1.04058278e-03 1.04058278e-03 0. 0. 0. 0. 0. 0. 1.04058278e-03 - 1.04058278e-03 1.04058273e-02 1.04058278e-03 2.08116556e-03 - 1.04058278e-03 2.08116556e-03 0. 1.04058278e-03 2.08116556e-03 - 3.12174833e-03 0. 0. 0. 8.32466222e-03 0. 1.14464108e-02 - 8.32466222e-03 8.32466222e-03 3.12174833e-03 0. 3.12174833e-03 0. - 0. 0. 1.04058278e-03 1.04058278e-03 0. 0. 0. 1.04058278e-03 0. - 5.20291366e-03 2.08116556e-03 1.04058278e-03 1.04058278e-03 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 1.04058278e-03 - 1.04058278e-03 9.36524477e-03 1.04058278e-03 1.04058278e-03 0. 0. - 0. 2.08116556e-03 1.04058278e-03 0. 0. 0. 0. 0. 0. 3.12174833e-03 - 2.08116556e-03 8.32466222e-03 4.16233111e-03 1.04058278e-03 - 1.04058278e-03 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 2.08116556e-03 - 0. 8.32466222e-03 0. 2.08116556e-03 9.36524477e-03 0. - 4.16233111e-03 1.04058278e-03 0. 0. 2.08116556e-03 0. 0. 0. 0. - 1.04058278e-03 0. 0. 1.14464108e-02 6.24349667e-03 2.08116556e-03 - 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 1.04058278e-03 - 1.04058278e-03 2.08116556e-03 9.36524477e-03 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 1.04058278e-03 - 1.04058278e-03 0. 0. 0. 1.04058278e-03 0. 0. 1.04058278e-03 - 2.08116556e-03 2.08116556e-03 1.24869933e-02 7.28407968e-03 - 1.66493244e-02 0. 9.36524477e-03 0. 0. 0. 4.16233111e-03 0. - 1.04058278e-03 0. 0. 1.04058278e-03 0. 3.12174833e-03 - 1.14464108e-02 4.16233111e-03 1.04058278e-03 0. 0. 0. 0. 0. 0. - 1.04058278e-03 1.04058278e-03 0. 1.04058278e-03 2.08116556e-03 0. - 0. 4.16233111e-03 1.35275759e-02 2.18522381e-02 0. 1.04058273e-02 - 1.04058278e-03 1.04058278e-03 1.04058278e-03 1.14464108e-02 - 2.08116556e-03 2.08116556e-03 0. 1.04058278e-03 1.04058278e-03 - 2.08116556e-03 2.08116556e-03 5.61914705e-02 2.08116546e-02 - 1.35275759e-02 3.12174833e-03 9.36524477e-03 1.04058278e-03 - 2.08116556e-03 2.08116556e-03 1.04058278e-03 5.20291366e-03 - 3.12174833e-03 0. 9.36524477e-03 8.32466222e-03 5.20291366e-03 - 3.12174838e-02 9.36524495e-02 8.01248774e-02 4.37044762e-02 - 4.16233111e-03 7.28407968e-03 1.35275759e-02 3.12174833e-03 - 1.24869933e-02 1.04058273e-02 2.08116556e-03 1.04058278e-03 0. - 3.12174833e-03 6.24349667e-03 2.08116556e-03 1.24869933e-02 - 2.80957352e-02 2.28928216e-02 4.16233111e-03 2.08116556e-03 0. 0. - 0. 1.04058278e-03 2.08116556e-03 8.32466222e-03 1.04058278e-03 0. - 1.04058278e-03 8.32466222e-03 1.04058278e-03 2.08116546e-02 - 1.45681594e-02 4.16233111e-03 3.12174833e-03 0. 1.04058278e-03 - 1.04058278e-03 1.04058278e-03 1.04058278e-03 3.12174833e-03 0. 0. - 0. 0. 0. 0. 0. 3.12174833e-03 1.14464108e-02 1.04058278e-03 - 1.04058278e-03 3.12174833e-03 1.04058278e-03 0. 4.16233111e-03 - 1.04058278e-03 3.12174833e-03 1.04058278e-03 2.08116556e-03 - 1.04058278e-03 9.36524477e-03 0. 9.36524477e-03 1.04058273e-02 - 9.36524477e-03 0. 0. 1.04058278e-03 2.08116556e-03 0. 0. 0. 0. 0. - 0. 0. 2.08116556e-03 0. 0. 1.04058278e-03 2.08116556e-03 0. 0. 0. - 0. 0. 0. 0. 3.12174833e-03 0. 1.04058278e-03 0. 0. 0. 0. 0. - 7.28407968e-03 2.08116556e-03 1.04058278e-03 1.04058278e-03 0. 0. - 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 2.08116556e-03 0. - 2.18522381e-02 1.04058278e-03 0. 1.04058278e-03 1.04058278e-03 0. - 0. 0. 1.14464108e-02 0. 2.08116556e-03 1.04058278e-03 - 9.36524477e-03 0. 1.24869933e-02 5.20291366e-03 6.24349667e-03 - 8.32466222e-03 0. 2.08116556e-03 2.08116556e-03 2.08116556e-03 0. - 8.32466222e-03 0. 1.04058278e-03 0. 0. 0. 0. 2.08116556e-03 - 1.56087419e-02 2.08116556e-03 0. 0. 0. 0. 0. 0. 1.04058278e-03 - 1.04058278e-03 0. 1.04058278e-03 1.04058278e-03 1.04058278e-03 0. - 1.04058278e-03 8.32466222e-03 2.08116556e-03 0. 0. 0. 0. 0. 0. - 3.12174833e-03 0. 0. 0. 0. 0. 0. 0. 2.08116556e-03 0. 0. 0. - 1.04058278e-03 0. 0. 0. 1.04058278e-03 1.04058278e-03 - 1.04058278e-03 0. 1.04058278e-03 0. 0. 0. 5.20291366e-03 - 8.32466222e-03 1.04058273e-02 0. 8.32466222e-03 0. 2.08116556e-03 - 0. 8.32466222e-03 0. 1.04058278e-03 0. 2.08116556e-03 - 2.08116556e-03 1.04058278e-03 2.08116556e-03 1.14464108e-02 - 5.20291366e-03 2.08116556e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 4.16233111e-03 3.12174833e-03 0. 4.16233111e-03 - 1.14464108e-02 1.14464108e-02 0. 1.24869933e-02 3.12174833e-03 - 2.08116556e-03 1.04058278e-03 1.04058273e-02 1.04058278e-03 - 1.04058278e-03 0. 2.08116556e-03 2.08116556e-03 2.08116556e-03 - 2.08116556e-03 1.97710730e-02 2.70551518e-02 9.36524477e-03 - 3.12174833e-03 6.24349667e-03 1.04058278e-03 0. 3.12174833e-03 - 4.16233111e-03 2.49739867e-02 7.28407968e-03 5.20291366e-03 - 1.35275759e-02 6.24349667e-03 7.28407968e-03 2.70551518e-02 - 1.15504690e-01 2.91363187e-02 1.35275759e-02 2.08116556e-03 - 3.12174833e-03 5.20291366e-03 0. 5.20291366e-03 3.12174833e-03 0. - 0. 0. 0. 5.20291366e-03 0. 3.12174833e-03 4.16233111e-03 - 1.87304895e-02 4.16233111e-03 0. 0. 3.12174833e-03 0. - 1.04058278e-03 1.04058278e-03 4.16233111e-03 0. 0. 0. - 1.87304895e-02 1.04058278e-03 2.91363187e-02 8.32466222e-03 - 2.08116556e-03 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 6.24349667e-03 0. 0. 0. 2.08116556e-03 0. 2.08116556e-03 0. - 3.12174833e-03 0. 0. 1.04058278e-03 1.45681594e-02 0. - 6.24349667e-03 7.28407968e-03 1.56087419e-02 2.08116556e-03 0. 0. - 2.08116556e-03 0. 1.04058278e-03 0. 0. 0. 0. 0. 1.04058278e-03 0. - 1.04058278e-03 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 7.28407968e-03 2.08116556e-03 - 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. - 9.36524477e-03 2.08116556e-03 1.04058278e-03 1.04058278e-03 - 1.04058278e-03 0. 0. 0. 8.32466222e-03 0. 1.04058278e-03 - 2.08116556e-03 7.28407968e-03 0. 5.20291366e-03 5.20291366e-03 0. - 5.20291366e-03 0. 3.12174833e-03 1.04058278e-03 0. 0. - 2.08116556e-03 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 1.04058278e-03 - 2.08116556e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 - 1.04058278e-03 0. 3.12174833e-03 3.12174833e-03 0. 0. 0. - 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 0. 0. 1.04058278e-03 0. 0. 3.12174833e-03 0. 0. 0. - 0. 3.12174833e-03 0. 1.04058278e-03 7.28407968e-03 6.24349667e-03 - 4.05827276e-02 0. 5.20291403e-02 0. 0. 0. 6.24349667e-03 - 1.04058278e-03 0. 0. 2.08116556e-03 0. 0. 1.04058278e-03 - 5.20291366e-03 1.04058278e-03 3.12174833e-03 0. 0. 0. 0. - 1.04058278e-03 0. 0. 0. 0. 0. 2.08116556e-03 0. 0. 1.04058278e-03 - 1.14464108e-02 2.39334032e-01 0. 3.32986489e-02 2.08116556e-03 - 2.08116556e-03 0. 1.35275759e-02 0. 0. 0. 2.08116556e-03 - 2.08116556e-03 1.04058278e-03 1.04058278e-03 1.35275759e-02 - 1.56087419e-02 5.51508889e-02 0. 1.56087419e-02 0. 3.12174833e-03 - 0. 1.66493244e-02 6.24349667e-03 7.28407968e-03 0. 1.66493244e-02 - 1.04058273e-02 7.28407968e-03 1.14464108e-02 5.93132190e-02 - 3.12174833e-03 1.35275759e-02 0. 3.12174833e-03 6.24349667e-03 - 2.08116556e-03 1.04058278e-03 2.70551518e-02 0. 0. 0. 0. - 1.04058278e-03 0. 0. 1.24869933e-02 1.14464108e-02 3.12174833e-03 - 0. 0. 2.08116556e-03 0. 1.04058278e-03 2.08116556e-03 0. 0. 0. 0. - 1.14464108e-02 2.08116556e-03 5.20291366e-03 4.57856432e-02 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 2.08116556e-03 - 2.08116556e-03 0. 0. 0. 0. 0. 2.08116556e-03 1.04058278e-03 0. 0. - 0. 3.12174833e-03 0. 0. 5.20291366e-03 7.28407968e-03 0. 0. 0. - 6.24349667e-03 0. 0. 2.08116556e-03 0. 0. 0. 0. 0. 0. 0. 0. - 4.16233111e-03 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. - 2.08116556e-03 0. 0. 1.04058278e-03 1.04058278e-03 0. 0. 0. 0. 0. - 0. 1.04058278e-03 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. - 3.43392305e-02 3.12174833e-03 1.04058278e-03 1.04058278e-03 - 3.12174833e-03 0. 0. 1.04058278e-03 1.35275759e-02 2.08116556e-03 - 0. 0. 1.04058273e-02 0. 6.24349667e-03 7.28407968e-03 0. - 5.20291366e-03 0. 0. 0. 0. 0. 1.97710730e-02 0. 0. 0. 0. 0. 0. 0. - 1.14464108e-02 0. 2.08116556e-03 0. 0. 0. 0. 0. 1.04058278e-03 0. - 0. 0. 0. 1.04058278e-03 2.08116556e-03 0. 1.04058273e-02 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. - 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 2.08116556e-03 - 3.12174833e-03 3.85015644e-02 0. 1.04058278e-03 0. 1.04058278e-03 - 0. 3.01769003e-02 0. 0. 0. 0. 0. 0. 0. 9.36524477e-03 - 1.04058278e-03 4.16233111e-03 0. 1.04058278e-03 0. 0. 0. 0. 0. - 1.04058278e-03 0. 0. 1.04058278e-03 1.04058278e-03 0. - 8.32466222e-03 2.08116556e-03 1.56087419e-02 0. 2.08116556e-03 0. - 1.04058278e-03 0. 1.14464108e-02 0. 0. 0. 0. 0. 0. 0. - 8.32466222e-03 1.29032269e-01 1.52965665e-01 0. 1.04058273e-02 - 3.12174833e-03 0. 1.04058278e-03 2.18522381e-02 3.53798158e-02 - 2.28928216e-02 0. 3.12174833e-03 1.45681594e-02 1.35275759e-02 - 4.16233111e-03 1.09261192e-01 1.76899079e-02 1.04058273e-02 0. - 1.04058278e-03 0. 2.08116556e-03 0. 2.08116556e-03 0. 0. 0. 0. 0. - 1.04058278e-03 1.04058278e-03 2.91363187e-02 1.87304895e-02 - 1.04058278e-03 0. 0. 2.08116556e-03 0. 2.08116556e-03 0. 0. 0. 0. - 0. 0. 0. 7.28407968e-03 3.12174833e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 0. 0. 0. 0. 0. 0. 3.12174833e-03 2.08116556e-03 0. - 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 2.08116556e-03 0. - 3.12174833e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 4.16233111e-03 3.12174833e-03 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 6.55567124e-02 2.08116556e-03 0. 0. 0. 0. 0. 0. - 4.16233111e-03 0. 0. 0. 0. 0. 1.04058278e-03 1.04058278e-03 - 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. - 1.04058278e-03 1.04058278e-03 2.08116556e-03 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 4.16233111e-03 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 0. 0. 0. 1.04058278e-03 0. 0. 2.08116556e-03 0. 0. - 0. 0. 0. 0. 0. 0. 2.08116556e-03 0. 0. 0. 1.04058278e-03 - 1.04058278e-03 6.24349667e-03 9.36524477e-03 2.18522381e-02 0. - 1.04058278e-03 0. 0. 0. 1.04058278e-03 0. 1.04058278e-03 0. 0. 0. - 1.04058278e-03 1.04058278e-03 1.35275759e-02 3.96462053e-01 - 1.67533830e-01 1.04058278e-03 1.04058278e-03 2.08116556e-03 - 4.16233111e-03 1.04058278e-03 2.08116556e-03 6.03538007e-02 - 3.01769003e-02 0. 0. 1.24869933e-02 1.76899079e-02 8.32466222e-03 - 2.39334032e-02 1.56087419e-02 1.87304895e-02 0. 6.24349667e-03 - 7.28407968e-03 2.08116556e-03 1.04058273e-02 3.22580673e-02 0. 0. - 0. 0. 3.12174833e-03 0. 9.36524477e-03 4.68262248e-02 - 1.66493244e-02 4.16233111e-03 0. 1.04058278e-03 0. 0. 0. - 1.04058278e-03 2.08116556e-03 2.08116556e-03 0. 0. 2.60145701e-02 - 1.04058278e-03 2.28928216e-02 3.43392305e-02 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 4.16233111e-03 0. 0. 0. 0. 0. 0. 0. - 1.04058273e-02 0. 0. 1.04058278e-03 1.14464108e-02 0. - 1.35275759e-02 1.04058273e-02 6.24349667e-03 1.04058278e-03 0. 0. - 3.12174833e-03 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. - 2.08116556e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. - 0. 0. 6.24349667e-03 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 1.04058278e-03 2.39334032e-02 1.04058278e-03 - 2.08116556e-03 0. 0. 0. 0. 1.04058278e-03 9.26118642e-02 - 1.04058278e-03 1.04058278e-03 0. 1.87304895e-02 0. 1.45681594e-02 - 9.36524477e-03 1.04058278e-03 6.24349667e-03 0. 1.04058273e-02 0. - 0. 0. 6.24349676e-02 0. 0. 0. 0. 0. 0. 0. 3.01769003e-02 - 1.04058278e-03 0. 0. 1.04058278e-03 0. 1.04058278e-03 0. - 1.04058278e-03 0. 1.04058278e-03 0. 1.04058278e-03 2.08116556e-03 - 0. 1.04058278e-03 1.76899079e-02 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 1.04058278e-03 0. 8.32466222e-03 2.08116556e-03 - 1.97710730e-02 0. 1.97710730e-02 0. 0. 1.04058278e-03 - 2.28928216e-02 0. 0. 0. 1.04058278e-03 0. 1.04058278e-03 0. - 8.32466222e-03 1.04058278e-03 1.04058278e-03 0. 0. 0. 0. 0. - 1.04058278e-03 0. 0. 0. 0. 0. 0. 1.04058278e-03 6.24349667e-03 - 1.04058273e-02 4.99479733e-02 0. 7.28407968e-03 0. 0. - 1.04058278e-03 1.35275759e-02 0. 1.04058278e-03 0. 0. - 1.04058278e-03 1.04058278e-03 2.08116556e-03 1.76899079e-02 - 3.43392305e-02 1.97710730e-02 0. 8.32466222e-03 0. 0. 0. - 6.24349667e-03 1.24869933e-02 4.16233111e-03 2.08116556e-03 - 1.04058278e-03 0. 2.08116556e-03 1.04058273e-02 5.72320521e-02 - 2.39334032e-02 1.45681594e-02 2.08116556e-03 1.14464108e-02 - 6.24349667e-03 0. 1.14464108e-02 4.16233111e-03 1.04058278e-03 - 1.04058278e-03 0. 0. 3.12174833e-03 0. 9.36524477e-03 - 1.45681594e-02 2.08116546e-02 5.20291366e-03 3.12174833e-03 - 1.04058278e-03 4.16233111e-03 0. 1.04058278e-03 2.08116556e-03 - 1.04058278e-03 1.04058278e-03 0. 0. 5.93132190e-02 1.04058278e-03 - 1.97710723e-01 2.18522381e-02 5.20291366e-03 1.04058278e-03 0. - 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 - 6.24349667e-03 0. 0. 1.04058278e-03 2.08116556e-03 0. - 1.04058278e-03 0. 2.08116556e-03 0. 0. 1.04058278e-03 - 2.70551518e-02 0. 5.20291403e-02 4.16233111e-03 2.08116556e-03 - 4.16233111e-03 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 0. 0. 1.04058278e-03 1.04058278e-03 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 1.04058278e-03 0. - 4.16233111e-03 6.24349667e-03 0. 2.08116556e-03 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 4.16233111e-03 3.12174833e-03 0. 0. 0. 0. 0. 0. - 6.24349667e-03 1.04058278e-03 0. 0. 6.24349667e-03 0. - 7.28407968e-03 3.12174833e-03 0. 2.08116556e-03 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 1.04058278e-03 0. 5.20291366e-03 0. 0. 0. - 1.04058278e-03 0. 0. 0. 1.04058278e-03 0. 0. 0. 1.04058278e-03 - 2.08116556e-03 0. 1.04058278e-03 5.20291366e-03 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 6.24349667e-03 0. 3.32986489e-02 0. - 1.97710730e-02 0. 0. 0. 9.36524477e-03 0. 0. 0. 0. 1.04058278e-03 - 2.08116556e-03 0. 6.24349667e-03 1.04058278e-03 0. 0. 0. 0. 0. - 1.04058278e-03 0. 0. 0. 0. 1.04058278e-03 0. 0. 1.04058278e-03 - 2.08116556e-03 1.04058273e-02 1.36316344e-01 0. 2.08116546e-02 0. - 0. 0. 2.08116556e-03 0. 1.04058278e-03 0. 0. 1.04058278e-03 - 3.12174833e-03 0. 9.36524477e-03 3.12174833e-03 2.08116546e-02 0. - 1.04058278e-03 0. 0. 0. 2.08116556e-03 8.32466222e-03 - 1.14464108e-02 0. 3.12174833e-03 1.45681594e-02 6.24349667e-03 - 1.66493244e-02 3.95421460e-02 - <_ type_id="opencv-matrix"> - 1 - 16384 -
f
- - 4.16233111e-03 1.35275759e-02 0. 6.24349667e-03 5.20291366e-03 - 1.04058278e-03 3.12174833e-03 1.04058273e-02 0. 0. 0. 0. - 1.04058278e-03 0. 1.14464108e-02 5.41103035e-02 1.04058273e-02 - 1.45681594e-02 0. 1.04058278e-03 2.08116556e-03 0. 0. - 4.16233111e-03 2.08116556e-03 0. 0. 0. 2.91363187e-02 - 2.08116556e-03 1.34235173e-01 1.07180029e-01 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 1.04058278e-03 - 0. 0. 0. 4.16233111e-03 0. 0. 0. 2.70551518e-02 0. 3.43392305e-02 - 7.28407968e-03 3.12174833e-03 2.08116556e-03 0. 3.12174833e-03 - 2.08116556e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. - 2.08116556e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 - 1.14464108e-02 3.12174833e-03 0. 0. 1.04058278e-03 0. - 1.04058278e-03 0. 7.28407968e-03 0. 0. 0. 3.12174838e-02 - 1.04058278e-03 5.20291366e-03 6.24349667e-03 0. 3.12174833e-03 0. - 2.08116556e-03 0. 0. 0. 2.08116556e-03 0. 0. 0. 0. 0. 0. 0. - 7.28407968e-03 0. 2.08116556e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 0. 5.20291366e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 2.91363187e-02 0. 1.35275759e-02 0. 2.08116556e-03 0. - 1.35275759e-02 0. 0. 0. 0. 0. 0. 0. 8.32466222e-03 0. - 1.04058278e-03 0. 1.04058278e-03 0. 0. 0. 2.08116556e-03 0. 0. 0. - 0. 0. 0. 0. 6.24349667e-03 3.12174833e-03 8.01248774e-02 0. - 2.70551518e-02 0. 0. 0. 1.45681594e-02 0. 1.04058278e-03 0. 0. 0. - 0. 0. 5.20291366e-03 1.24869933e-02 5.20291403e-02 0. - 1.04058273e-02 1.04058278e-03 0. 0. 1.87304895e-02 8.32466222e-03 - 4.16233111e-03 0. 2.08116556e-03 1.04058273e-02 1.14464108e-02 - 3.12174833e-03 6.03538007e-02 2.08116556e-03 3.12174833e-03 0. 0. - 8.32466222e-03 0. 0. 5.20291366e-03 0. 0. 0. 0. 2.08116556e-03 0. - 5.20291366e-03 1.24869933e-02 1.24869933e-02 8.32466222e-03 - 1.04058278e-03 0. 0. 0. 0. 2.08116556e-03 2.08116556e-03 - 1.04058278e-03 0. 0. 1.14464108e-02 0. 2.49739867e-02 - 2.49739867e-02 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 5.20291366e-03 1.04058278e-03 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. - 0. 0. 9.36524477e-03 1.04058278e-03 8.32466222e-03 7.28407968e-03 - 9.36524477e-03 0. 0. 1.04058278e-03 3.12174833e-03 0. - 1.04058278e-03 3.12174833e-03 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 - 2.08116556e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 3.12174833e-03 0. - 0. 1.04058278e-03 2.08116556e-03 1.04058278e-03 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 4.26638946e-02 5.20291366e-03 0. 0. - 3.12174833e-03 0. 0. 2.08116556e-03 1.66493244e-02 1.04058278e-03 - 0. 0. 4.47450578e-02 0. 1.24869933e-02 8.32466222e-03 0. - 2.08116556e-03 0. 0. 0. 0. 0. 4.16233111e-03 0. 0. 0. 0. 0. 0. 0. - 3.12174833e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 7.28407968e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 - 3.12174833e-03 1.66493244e-02 0. 6.24349667e-03 0. 1.04058278e-03 - 0. 1.45681594e-02 0. 0. 0. 0. 0. 0. 0. 5.20291366e-03 0. - 4.16233111e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 - 1.04058278e-03 6.24349667e-03 1.97710730e-02 5.93132190e-02 0. - 1.87304895e-02 2.08116556e-03 4.16233111e-03 0. 1.04058273e-02 0. - 1.04058278e-03 0. 0. 0. 1.04058278e-03 2.08116556e-03 - 5.20291366e-03 8.84495378e-02 1.82101980e-01 0. 1.35275759e-02 - 1.04058278e-03 2.08116556e-03 0. 1.14464108e-02 1.56087419e-02 - 2.18522381e-02 0. 9.36524477e-03 2.49739867e-02 2.08116546e-02 - 1.56087419e-02 6.76378831e-02 1.76899079e-02 1.24869933e-02 - 2.08116556e-03 2.08116556e-03 1.66493244e-02 4.16233111e-03 - 3.12174833e-03 1.14464108e-02 0. 0. 0. 0. 2.08116556e-03 0. - 2.08116556e-03 2.08116556e-03 2.39334032e-02 1.14464108e-02 0. - 1.04058278e-03 3.12174833e-03 0. 0. 4.16233111e-03 1.04058278e-03 - 0. 1.04058278e-03 0. 2.91363187e-02 6.24349667e-03 1.24869933e-02 - 3.43392305e-02 0. 0. 0. 0. 1.04058278e-03 0. 0. 1.04058278e-03 0. - 0. 0. 0. 0. 0. 0. 0. 6.24349667e-03 2.08116556e-03 0. 0. - 1.04058278e-03 0. 1.04058278e-03 1.04058278e-03 0. 0. 0. 0. - 1.76899079e-02 0. 5.20291366e-03 1.24869933e-02 9.36524477e-03 - 2.08116556e-03 0. 1.04058278e-03 6.24349667e-03 0. 0. - 2.08116556e-03 0. 0. 0. 0. 0. 0. 0. 0. 6.24349667e-03 - 2.08116556e-03 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. - 3.12174833e-03 0. 2.08116556e-03 2.08116556e-03 3.12174833e-03 - 2.08116556e-03 0. 1.04058278e-03 0. 0. 1.04058278e-03 - 2.08116556e-03 0. 0. 1.04058278e-03 0. 0. 0. 1.04058278e-03 0. - 4.57856432e-02 6.24349667e-03 1.04058278e-03 0. 2.08116556e-03 0. - 2.08116556e-03 2.08116556e-03 7.28407968e-03 0. 0. 0. - 4.78668064e-02 4.16233111e-03 1.04058273e-02 2.08116546e-02 0. 0. - 1.04058278e-03 2.08116556e-03 0. 0. 0. 4.16233111e-03 0. 0. 0. 0. - 0. 0. 0. 0. 1.04058278e-03 1.04058278e-03 0. 1.04058278e-03 - 1.04058278e-03 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 2.08116556e-03 - 0. 1.14464108e-02 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 1.04058278e-03 - 2.08116556e-03 1.04058278e-03 9.36524477e-03 3.12174833e-03 - 2.39334032e-02 0. 1.24869933e-02 1.04058278e-03 1.04058278e-03 0. - 1.35275759e-02 0. 0. 0. 0. 2.08116556e-03 1.04058278e-03 0. - 3.12174833e-03 0. 1.04058278e-03 0. 0. 0. 0. 0. 1.04058278e-03 0. - 1.04058278e-03 0. 0. 2.08116556e-03 3.12174833e-03 0. - 8.32466222e-03 4.16233111e-03 1.24869933e-02 0. 6.24349667e-03 - 1.04058278e-03 0. 1.04058278e-03 3.12174833e-03 0. 1.04058278e-03 - 0. 0. 1.04058278e-03 0. 0. 6.24349667e-03 2.39334032e-02 - 6.24349676e-02 0. 1.35275759e-02 3.12174833e-03 2.08116556e-03 0. - 1.35275759e-02 2.18522381e-02 1.66493244e-02 0. 8.32466222e-03 - 1.45681594e-02 5.41103035e-02 9.36524477e-03 1.49843916e-01 - 2.70551518e-02 8.32466222e-03 1.04058278e-03 3.12174833e-03 - 1.45681594e-02 3.12174833e-03 3.12174833e-03 1.66493244e-02 - 1.04058278e-03 0. 0. 0. 3.12174833e-03 0. 1.04058278e-03 - 9.36524477e-03 9.36524477e-03 5.20291366e-03 0. 1.04058278e-03 - 1.04058278e-03 0. 0. 1.04058278e-03 4.16233111e-03 0. 0. 0. - 1.87304895e-02 4.16233111e-03 1.87304895e-02 3.74609791e-02 - 2.08116556e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 7.28407968e-03 0. 0. 0. 0. 0. 0. 0. 1.04058273e-02 1.04058278e-03 - 0. 1.04058278e-03 3.01769003e-02 2.08116556e-03 1.24869933e-02 - 6.24349667e-03 1.76899079e-02 0. 0. 0. 8.32466222e-03 0. - 2.08116556e-03 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 - 2.08116556e-03 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. - 2.08116556e-03 1.04058278e-03 1.04058278e-03 1.04058278e-03 - 7.28407968e-03 1.04058278e-03 0. 0. 2.08116556e-03 0. 0. - 1.04058278e-03 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 3.01769003e-02 - 2.08116556e-03 0. 0. 1.04058278e-03 0. 0. 1.04058278e-03 - 4.16233093e-02 2.08116556e-03 0. 0. 5.41103035e-02 1.04058278e-03 - 1.87304895e-02 9.36524477e-03 1.04058278e-03 8.32466222e-03 0. - 3.12174833e-03 0. 2.08116556e-03 0. 3.43392305e-02 0. 0. 0. 0. - 1.04058278e-03 0. 0. 8.32466222e-03 0. 1.04058278e-03 0. - 1.04058278e-03 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. - 1.35275759e-02 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. - 1.04058278e-03 1.04058278e-03 0. 1.56087419e-02 1.04058273e-02 - 2.08116546e-02 0. 2.08116546e-02 1.04058278e-03 2.08116556e-03 0. - 2.08116546e-02 0. 0. 0. 0. 1.04058278e-03 0. 0. 2.08116556e-03 - 2.08116556e-03 3.12174833e-03 0. 1.04058278e-03 0. 0. 0. - 3.12174833e-03 0. 1.04058278e-03 0. 0. 0. 2.08116556e-03 0. - 1.66493244e-02 8.32466222e-03 1.45681594e-02 2.08116556e-03 - 3.12174833e-03 0. 0. 0. 1.04058273e-02 0. 1.04058278e-03 0. 0. 0. - 0. 0. 1.04058278e-03 1.87304895e-02 3.22580673e-02 1.04058278e-03 - 1.45681594e-02 1.04058278e-03 1.04058278e-03 0. 7.28407968e-03 - 2.28928216e-02 1.35275759e-02 0. 1.87304895e-02 3.12174838e-02 - 1.97710730e-02 1.04058273e-02 8.74089524e-02 2.18522381e-02 - 5.20291366e-03 0. 1.04058278e-03 1.35275759e-02 1.04058278e-03 - 2.08116556e-03 2.49739867e-02 0. 0. 0. 0. 3.12174833e-03 - 2.08116556e-03 5.20291366e-03 2.08116546e-02 1.45681594e-02 - 3.12174833e-03 0. 0. 5.20291366e-03 0. 0. 6.24349667e-03 - 4.16233111e-03 0. 0. 0. 4.57856432e-02 3.12174833e-03 - 3.74609791e-02 8.22060406e-02 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 8.32466222e-03 1.04058278e-03 0. 0. - 1.04058278e-03 0. 0. 1.04058278e-03 1.04058278e-03 0. 0. 0. - 1.56087419e-02 0. 8.32466222e-03 1.45681594e-02 1.45681594e-02 - 3.12174833e-03 0. 0. 6.24349667e-03 0. 1.04058278e-03 - 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 3.12174833e-03 - 3.12174833e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 3.12174833e-03 - 5.20291366e-03 0. 2.08116556e-03 4.16233111e-03 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 2.49739867e-02 2.08116556e-03 - 1.04058278e-03 1.04058278e-03 2.08116556e-03 0. 0. 2.08116556e-03 - 1.97710730e-02 2.08116556e-03 3.12174833e-03 2.08116556e-03 - 5.41103035e-02 4.16233111e-03 1.04058273e-02 2.08116546e-02 0. - 3.12174833e-03 0. 0. 0. 1.04058278e-03 0. 3.64203975e-02 0. 0. 0. - 0. 0. 0. 0. 1.24869933e-02 1.04058278e-03 0. 0. 0. 0. 0. 0. - 2.08116556e-03 0. 0. 0. 0. 0. 0. 1.04058278e-03 1.24869933e-02 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 0. 0. 0. 0. 0. 2.08116556e-03 0. 1.04058273e-02 - 2.08116556e-03 1.04058273e-02 0. 3.12174833e-03 1.04058278e-03 - 2.08116556e-03 0. 1.56087419e-02 0. 1.04058278e-03 0. 0. 0. 0. 0. - 3.12174833e-03 0. 4.16233111e-03 0. 0. 0. 0. 0. 1.04058278e-03 0. - 0. 0. 0. 0. 9.36524477e-03 0. 1.45681594e-02 1.04058278e-03 - 2.08116556e-03 0. 1.04058278e-03 1.04058278e-03 0. 0. - 2.08116556e-03 0. 0. 0. 0. 0. 0. 0. 5.20291366e-03 3.12174833e-03 - 2.08116546e-02 0. 8.32466222e-03 0. 2.08116556e-03 0. - 6.24349676e-02 1.14464108e-02 6.24349667e-03 2.08116556e-03 - 6.24349667e-03 1.14464108e-02 2.80957352e-02 5.20291366e-03 - 1.17585853e-01 1.04058278e-03 9.36524477e-03 0. 1.04058278e-03 - 6.24349667e-03 1.04058278e-03 0. 1.97710730e-02 0. 0. 0. 0. - 1.04058278e-03 2.08116556e-03 2.08116556e-03 3.95421460e-02 - 1.56087419e-02 7.28407968e-03 0. 2.08116556e-03 0. 0. 0. - 1.04058278e-03 3.12174833e-03 0. 0. 0. 1.76899079e-02 - 2.08116556e-03 3.64203975e-02 7.59625435e-02 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 2.08116556e-03 - 1.04058278e-03 0. 0. 0. 0. 1.04058278e-03 1.04058278e-03 - 2.08116556e-03 0. 0. 0. 1.04058273e-02 1.04058278e-03 - 7.28407968e-03 8.32466222e-03 5.20291366e-03 0. 0. 0. - 1.04058278e-03 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 3.12174833e-03 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 - 0. 0. 0. 2.08116556e-03 0. 1.04058278e-03 1.04058278e-03 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 3.53798158e-02 - 3.12174833e-03 0. 0. 0. 0. 0. 1.04058278e-03 1.87304895e-02 0. 0. - 0. 2.60145701e-02 2.08116556e-03 7.28407968e-03 1.56087419e-02 0. - 0. 0. 0. 0. 0. 0. 7.28407968e-03 0. 0. 0. 0. 0. 0. 0. - 1.97710730e-02 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 1.35275759e-02 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 6.24349667e-03 0. - 9.36524477e-03 0. 1.04058278e-03 0. 2.80957352e-02 0. 0. 0. 0. 0. - 1.04058278e-03 0. 1.14464108e-02 0. 3.12174833e-03 0. 0. 0. 0. 0. - 1.04058278e-03 0. 1.04058278e-03 0. 0. 0. 1.04058278e-03 0. - 6.24349667e-03 7.28407968e-03 3.32986489e-02 0. 3.12174833e-03 0. - 1.04058278e-03 0. 5.20291366e-03 0. 0. 0. 0. 0. 0. 0. - 5.20291366e-03 1.73777327e-01 9.15712863e-02 0. 6.24349667e-03 - 1.04058278e-03 0. 0. 1.35275759e-02 3.12174838e-02 9.36524477e-03 - 0. 0. 7.28407968e-03 1.45681594e-02 1.04058273e-02 6.97190464e-02 - 2.08116546e-02 1.04058273e-02 1.04058278e-03 1.04058278e-03 - 1.35275759e-02 3.12174833e-03 0. 2.80957352e-02 0. 0. 0. 0. - 1.04058278e-03 1.04058278e-03 1.04058278e-03 6.03538007e-02 - 1.97710730e-02 8.32466222e-03 0. 0. 1.04058278e-03 1.04058278e-03 - 0. 1.04058278e-03 6.24349667e-03 2.08116556e-03 0. 0. - 3.85015644e-02 4.16233111e-03 1.66493244e-02 3.95421460e-02 - 1.04058278e-03 0. 0. 0. 0. 0. 0. 4.16233111e-03 0. 0. 0. 0. 0. 0. - 0. 0. 7.28407968e-03 0. 0. 0. 1.04058278e-03 0. 0. 2.08116556e-03 - 4.16233111e-03 0. 0. 0. 2.80957352e-02 4.16233111e-03 - 2.18522381e-02 1.87304895e-02 4.16233111e-03 0. 0. 0. - 1.04058278e-03 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. - 2.08116556e-03 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. - 3.12174833e-03 0. 0. 1.04058278e-03 2.08116556e-03 2.08116556e-03 - 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. - 3.43392305e-02 1.04058278e-03 1.04058278e-03 2.08116556e-03 - 3.12174833e-03 0. 1.04058278e-03 2.08116556e-03 1.14464108e-02 0. - 0. 0. 3.01769003e-02 0. 2.08116546e-02 1.14464108e-02 0. - 2.08116556e-03 0. 1.04058278e-03 0. 1.04058278e-03 0. - 8.32466222e-03 0. 0. 0. 0. 0. 4.16233111e-03 0. 1.66493244e-02 0. - 2.08116556e-03 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. - 1.24869933e-02 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 - 2.08116556e-03 1.14464108e-02 0. 3.12174833e-03 0. 0. 0. - 1.66493244e-02 0. 0. 0. 0. 0. 1.04058278e-03 0. 6.24349667e-03 - 1.04058278e-03 3.12174833e-03 0. 0. 0. 0. 0. 0. 2.08116556e-03 0. - 0. 0. 2.08116556e-03 3.12174833e-03 0. 1.04058273e-02 - 5.20291366e-03 1.04058273e-02 0. 0. 0. 1.04058278e-03 0. - 9.36524477e-03 0. 0. 0. 0. 0. 0. 0. 4.16233111e-03 1.11342356e-01 - 1.14464108e-02 0. 3.12174833e-03 1.04058278e-03 1.04058278e-03 - 3.12174833e-03 1.76899079e-02 2.08116546e-02 9.36524477e-03 0. - 4.16233111e-03 2.70551518e-02 9.36524477e-03 1.35275759e-02 - 1.14464104e-01 3.22580673e-02 7.28407968e-03 2.08116556e-03 - 6.24349667e-03 1.14464108e-02 0. 4.16233111e-03 1.35275759e-02 - 1.04058278e-03 0. 0. 0. 2.08116556e-03 1.04058278e-03 - 4.16233111e-03 4.37044762e-02 1.14464108e-02 4.16233111e-03 0. 0. - 2.08116556e-03 0. 1.04058278e-03 2.08116556e-03 3.12174833e-03 - 1.04058278e-03 0. 0. 3.22580673e-02 1.04058278e-03 3.01769003e-02 - 1.76899079e-02 1.04058278e-03 1.04058278e-03 0. 0. 0. 0. - 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 4.16233111e-03 - 2.08116556e-03 1.04058278e-03 0. 1.04058278e-03 0. 1.04058278e-03 - 0. 3.12174833e-03 1.04058278e-03 0. 0. 1.87304895e-02 - 2.08116556e-03 3.74609791e-02 8.32466222e-03 1.56087419e-02 - 4.16233111e-03 1.04058278e-03 2.08116556e-03 3.12174833e-03 0. 0. - 3.12174833e-03 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 1.04058278e-03 - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 1.04058278e-03 - 0. 5.20291366e-03 3.12174833e-03 0. 2.08116556e-03 1.04058278e-03 - 0. 0. 3.12174833e-03 0. 1.04058278e-03 0. 0. 0. 0. 1.04058278e-03 - 1.04058278e-03 3.74609791e-02 1.04058278e-03 1.04058278e-03 - 1.04058278e-03 4.16233111e-03 0. 0. 0. 1.35275759e-02 0. 0. 0. - 1.66493244e-02 0. 4.16233111e-03 5.20291366e-03 2.08116556e-03 - 6.24349667e-03 0. 1.04058278e-03 0. 2.08116556e-03 0. - 1.04058273e-02 1.04058278e-03 1.04058278e-03 0. 0. 0. 0. - 1.04058278e-03 6.24349667e-03 2.08116556e-03 0. 0. 0. 0. 0. 0. - 3.12174833e-03 0. 0. 0. 0. 2.08116556e-03 0. 0. 1.14464108e-02 0. - 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 1.04058278e-03 1.04058278e-03 0. 0. 0. 0. 0. - 3.12174833e-03 7.28407968e-03 3.85015644e-02 0. 2.28928216e-02 0. - 2.08116556e-03 0. 1.97710730e-02 1.04058278e-03 1.04058278e-03 0. - 0. 0. 3.12174833e-03 0. 9.36524477e-03 1.04058278e-03 - 1.04058278e-03 0. 2.08116556e-03 0. 0. 0. 1.04058278e-03 - 1.04058278e-03 0. 0. 0. 2.08116556e-03 0. 0. 6.24349667e-03 - 9.36524477e-03 1.35275759e-02 0. 1.56087419e-02 0. 0. - 2.08116556e-03 9.36524477e-03 0. 0. 0. 0. 0. 1.04058278e-03 0. - 8.32466222e-03 4.26638946e-02 5.93132190e-02 1.04058278e-03 - 1.87304895e-02 3.12174833e-03 0. 1.04058278e-03 1.45681594e-02 - 1.97710730e-02 1.35275759e-02 0. 1.04058273e-02 1.04058273e-02 - 1.56087419e-02 4.16233111e-03 9.67741981e-02 6.24349667e-03 - 1.35275759e-02 0. 4.16233111e-03 4.16233111e-03 1.04058278e-03 - 1.04058278e-03 1.45681594e-02 0. 0. 0. 0. 1.04058278e-03 0. - 1.76899079e-02 6.03538007e-02 1.04058273e-02 8.32466222e-03 0. - 2.08116556e-03 2.08116556e-03 0. 0. 3.12174833e-03 3.12174833e-03 - 0. 1.04058278e-03 1.04058278e-03 2.49739867e-02 5.20291366e-03 - 1.59209162e-01 1.03017695e-01 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. - 2.08116556e-03 0. 0. 0. 0. 2.08116556e-03 0. 4.16233111e-03 - 6.24349667e-03 0. 2.08116556e-03 0. 0. 0. 0. 1.04058278e-03 0. 0. - 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 1.04058278e-03 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 1.56087419e-02 2.08116556e-03 0. 0. 0. 0. 0. - 1.04058278e-03 3.12174833e-03 0. 0. 0. 4.16233111e-03 0. - 4.16233111e-03 5.20291366e-03 0. 3.12174833e-03 0. 0. 0. 0. 0. - 4.16233111e-03 0. 0. 0. 0. 0. 0. 0. 3.12174833e-03 0. 0. 0. - 2.08116556e-03 0. 0. 0. 0. 0. 0. 0. 0. 2.08116556e-03 - 1.04058278e-03 0. 7.28407968e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 1.04058278e-03 1.14464108e-02 0. 8.32466222e-03 0. - 0. 1.04058278e-03 1.45681594e-02 0. 1.04058278e-03 0. 0. 0. 0. 0. - 1.14464108e-02 0. 3.12174833e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 0. 1.24869933e-02 1.35275759e-02 4.37044762e-02 0. - 5.20291366e-03 0. 1.04058278e-03 0. 1.45681594e-02 0. 0. 0. - 1.04058278e-03 0. 0. 1.04058278e-03 1.04058273e-02 7.59625435e-02 - 1.44641012e-01 0. 3.12174833e-03 0. 0. 0. 5.20291366e-03 - 2.08116556e-03 3.12174833e-03 0. 0. 2.08116556e-03 9.36524477e-03 - 1.04058273e-02 5.82726374e-02 1.35275759e-02 8.32466222e-03 0. 0. - 3.12174833e-03 1.04058278e-03 0. 4.16233111e-03 0. 0. 0. 0. 0. - 1.04058278e-03 6.24349667e-03 1.76899079e-02 1.14464108e-02 - 4.16233111e-03 0. 0. 0. 0. 0. 1.04058278e-03 0. 1.04058278e-03 0. - 0. 1.14464108e-02 2.08116556e-03 2.18522381e-02 1.76899079e-02 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 3.12174833e-03 0. 1.04058278e-03 - 1.04058278e-03 1.45681594e-02 2.08116556e-03 0. 0. 3.12174833e-03 - 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 6.24349667e-03 - 2.08116556e-03 0. 0. 2.08116556e-03 0. 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 0. 1.04058278e-03 4.05827276e-02 0. 1.04058278e-03 - 0. 2.08116556e-03 0. 2.08116556e-03 1.04058278e-03 1.56087419e-02 - 1.04058278e-03 0. 0. 2.08116546e-02 1.04058278e-03 2.08116556e-03 - 1.04058278e-03 0. 1.04058278e-03 0. 1.04058278e-03 0. 0. 0. - 7.28407968e-03 0. 0. 0. 0. 0. 0. 0. 6.24349667e-03 2.08116556e-03 - 1.04058278e-03 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. - 1.04058278e-03 0. 2.08116556e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 3.12174833e-03 3.12174833e-03 3.22580673e-02 0. 1.76899079e-02 0. - 3.12174833e-03 1.04058278e-03 2.39334032e-02 0. 0. 0. 0. 0. - 2.08116556e-03 0. 2.08116556e-03 1.04058278e-03 0. 0. - 1.04058278e-03 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. - 1.04058278e-03 1.04058278e-03 1.04058278e-03 1.56087419e-02 - 6.76378831e-02 0. 2.08116546e-02 0. 2.08116556e-03 1.04058278e-03 - 1.14464108e-02 0. 0. 0. 0. 1.04058278e-03 0. 2.08116556e-03 - 1.87304895e-02 8.32466185e-02 1.71696156e-01 0. 1.14464108e-02 - 3.12174833e-03 1.04058278e-03 1.04058278e-03 1.76899079e-02 - 2.18522381e-02 2.80957352e-02 0. 7.28407968e-03 1.24869933e-02 - 1.24869933e-02 1.45681594e-02 1.00936532e-01 4.89073917e-02 - 1.87304895e-02 3.12174833e-03 3.12174833e-03 1.04058273e-02 0. - 4.16233111e-03 8.32466222e-03 0. 1.04058278e-03 1.04058278e-03 0. - 1.04058278e-03 0. 3.12174833e-03 3.12174833e-03 1.35275759e-02 - 2.08116556e-03 3.12174833e-03 0. 2.08116556e-03 1.04058278e-03 - 3.12174833e-03 1.04058278e-03 4.16233111e-03 1.04058278e-03 0. 0. - 2.49739867e-02 1.04058278e-03 3.12174838e-02 9.36524477e-03 - 4.16233111e-03 2.08116556e-03 0. 1.04058278e-03 1.04058278e-03 0. - 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 1.04058278e-03 - 1.04058273e-02 0. 1.04058278e-03 1.04058278e-03 4.16233111e-03 0. - 1.04058278e-03 1.04058278e-03 4.16233111e-03 1.04058278e-03 0. - 1.04058278e-03 1.97710730e-02 0. 2.08116546e-02 5.20291366e-03 - 2.28928216e-02 3.12174833e-03 0. 2.08116556e-03 0. 0. 0. 0. - 1.04058278e-03 0. 0. 0. 0. 0. 1.04058278e-03 1.04058278e-03 - 3.12174833e-03 0. 0. 0. 1.04058278e-03 0. 0. 0. 2.08116556e-03 0. - 0. 0. 1.04058278e-03 0. 1.04058278e-03 0. 7.28407968e-03 - 7.28407968e-03 1.04058278e-03 4.16233111e-03 1.04058278e-03 0. 0. - 2.08116556e-03 0. 0. 0. 0. 0. 0. 0. 0. 1.87304895e-02 - 3.12174833e-03 0. 2.08116556e-03 2.08116556e-03 0. 1.04058278e-03 - 1.04058278e-03 1.45681594e-02 2.08116556e-03 0. 0. 2.18522381e-02 - 0. 7.28407968e-03 2.08116556e-03 1.04058278e-03 8.32466222e-03 0. - 4.16233111e-03 3.12174833e-03 1.04058278e-03 0. 8.32466222e-03 0. - 0. 0. 1.04058278e-03 0. 0. 0. 3.12174833e-03 0. 0. 0. 0. 0. 0. - 1.04058278e-03 0. 1.04058278e-03 0. 0. 0. 0. 1.04058278e-03 0. - 6.24349667e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 1.04058278e-03 0. 0. 1.04058278e-03 0. 0. 0. 0. - 1.04058278e-03 0. 0. 7.28407968e-03 9.36524477e-03 4.47450578e-02 - 0. 2.18522381e-02 0. 1.04058278e-03 0. 1.45681594e-02 0. - 1.04058278e-03 0. 1.04058278e-03 2.08116556e-03 2.08116556e-03 0. - 4.16233111e-03 0. 1.04058278e-03 0. 0. 0. 1.04058278e-03 0. 0. - 1.04058278e-03 2.08116556e-03 0. 0. 0. 2.08116556e-03 - 1.04058278e-03 3.12174833e-03 1.04058273e-02 5.09885550e-02 0. - 2.91363187e-02 1.04058278e-03 1.04058278e-03 1.04058278e-03 - 1.45681594e-02 1.04058278e-03 1.04058278e-03 0. 0. 0. - 4.16233111e-03 1.04058278e-03 1.24869933e-02 2.28928216e-02 - 4.37044762e-02 0. 1.76899079e-02 1.04058278e-03 2.08116556e-03 0. - 2.08116556e-03 1.35275759e-02 1.87304895e-02 1.04058278e-03 - 1.66493244e-02 2.18522381e-02 1.35275759e-02 1.87304895e-02 - 9.15712863e-02 5.30697219e-02 1.14464108e-02 0. 4.16233111e-03 - 8.32466222e-03 3.12174833e-03 2.08116556e-03 4.16233111e-03 - 3.12174833e-03 0. 0. 0. 3.12174833e-03 0. 1.04058278e-03 - 2.08116556e-03 8.32466222e-03 1.04058278e-03 0. 0. 6.24349667e-03 - 0. 0. 0. 4.16233111e-03 0. 0. 0. 1.97710730e-02 1.04058278e-03 - 1.24869933e-02 8.32466222e-03 7.28407968e-03 1.04058278e-03 0. 0. - 1.04058278e-03 0. 2.08116556e-03 0. 0. 0. 0. 0. 0. 1.04058278e-03 - 0. 0. 1.14464108e-02 2.08116556e-03 0. 0. 5.20291366e-03 0. - 1.04058278e-03 0. 7.28407968e-03 0. 0. 0. 3.95421460e-02 0. - 1.35275759e-02 5.20291366e-03 2.28928216e-02 2.08116556e-03 - 1.04058278e-03 4.16233111e-03 4.16233111e-03 0. 1.04058278e-03 - 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 2.08116556e-03 0. 0. 0. 0. - 0. 0. 0. 2.08116556e-03 0. 0. 0. 2.08116556e-03 0. 1.04058278e-03 - 0. 2.80957352e-02 2.08116556e-03 0. 2.08116556e-03 1.04058278e-03 - 1.04058278e-03 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 3.12174833e-03 - 0. 2.91363187e-02 1.04058278e-03 3.12174833e-03 0. 4.16233111e-03 - 0. 1.04058278e-03 1.04058278e-03 2.08116546e-02 0. 0. 0. - 1.87304895e-02 0. 9.36524477e-03 7.28407968e-03 4.16233111e-03 - 2.08116556e-03 0. 2.08116556e-03 2.08116556e-03 0. 0. - 1.04058273e-02 0. 0. 0. 0. 1.04058278e-03 2.08116556e-03 0. - 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 - 1.04058278e-03 0. 3.12174833e-03 2.08116556e-03 1.04058278e-03 0. - 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 2.08116556e-03 0. 1.04058278e-03 0. 1.04058278e-03 - 0. 0. 4.16233111e-03 1.04058278e-03 1.04058278e-03 7.28407968e-03 - 2.18522381e-02 3.32986489e-02 0. 3.85015644e-02 2.08116556e-03 0. - 0. 1.04058273e-02 0. 0. 0. 3.12174833e-03 0. 0. 0. 3.12174833e-03 - 0. 2.08116556e-03 0. 0. 0. 0. 0. 0. 3.12174833e-03 2.08116556e-03 - 0. 1.04058278e-03 0. 1.04058278e-03 0. 2.08116556e-03 - 1.24869933e-02 2.60145701e-02 1.04058278e-03 3.01769003e-02 0. 0. - 1.04058278e-03 7.28407968e-03 0. 0. 0. 3.12174833e-03 0. 0. 0. - 6.24349667e-03 2.28928216e-02 3.74609791e-02 2.08116556e-03 - 1.97710730e-02 3.12174833e-03 2.08116556e-03 2.08116556e-03 - 7.28407968e-03 1.97710730e-02 3.64203975e-02 0. 2.18522381e-02 - 1.66493244e-02 1.66493244e-02 7.28407968e-03 8.74089524e-02 - 4.47450578e-02 5.20291366e-03 1.04058278e-03 4.16233111e-03 - 1.45681594e-02 1.04058278e-03 4.16233111e-03 9.36524477e-03 - 1.04058278e-03 1.04058278e-03 0. 0. 4.16233111e-03 0. 0. - 1.66493244e-02 1.87304895e-02 4.16233111e-03 0. 1.04058278e-03 - 2.08116556e-03 0. 0. 0. 4.16233111e-03 0. 0. 0. 2.39334032e-02 0. - 2.08116556e-03 1.04058278e-03 1.04058278e-03 0. 2.08116556e-03 0. - 5.20291366e-03 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. - 1.35275759e-02 0. 0. 0. 5.20291366e-03 0. 0. 0. 2.08116556e-03 0. - 0. 0. 5.93132190e-02 0. 8.32466222e-03 7.28407968e-03 - 2.91363187e-02 0. 2.08116556e-03 2.08116556e-03 6.24349667e-03 0. - 1.04058278e-03 1.04058278e-03 0. 0. 0. 0. 0. 0. 1.04058278e-03 - 1.04058278e-03 3.12174833e-03 0. 0. 0. 2.08116556e-03 0. 0. 0. - 2.08116556e-03 0. 0. 0. 3.12174833e-03 0. 0. 0. 1.76899079e-02 0. - 0. 1.04058278e-03 4.16233111e-03 0. 0. 1.04058278e-03 0. - 1.04058278e-03 0. 0. 2.08116556e-03 0. 0. 0. 3.64203975e-02 - 2.08116556e-03 1.04058278e-03 1.04058278e-03 4.16233111e-03 - 1.04058278e-03 2.08116556e-03 1.04058278e-03 2.70551518e-02 - 1.04058278e-03 1.04058278e-03 0. 6.13943823e-02 2.08116556e-03 - 9.36524477e-03 5.20291366e-03 1.04058278e-03 2.08116556e-03 0. - 2.08116556e-03 0. 1.04058278e-03 0. 2.08116546e-02 0. 0. 0. 0. - 1.04058278e-03 1.04058278e-03 1.04058278e-03 9.36524477e-03 0. - 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 - 1.04058278e-03 0. 2.08116556e-03 0. 1.04058278e-03 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 - 0. 0. 1.04058278e-03 5.20291366e-03 3.12174833e-03 3.12174833e-03 - 1.56087419e-02 6.24349667e-03 2.39334032e-02 0. 4.68262248e-02 - 1.04058278e-03 2.08116556e-03 0. 1.76899079e-02 0. 0. 0. - 3.12174833e-03 1.04058278e-03 2.08116556e-03 0. 5.20291366e-03 - 2.08116556e-03 0. 0. 1.04058278e-03 1.04058278e-03 0. 0. 0. 0. - 1.04058278e-03 0. 4.16233111e-03 1.04058278e-03 2.08116556e-03 0. - 5.20291366e-03 1.04058278e-03 2.28928216e-02 2.08116556e-03 - 1.45681594e-02 1.04058278e-03 1.04058278e-03 0. 6.24349667e-03 0. - 1.04058278e-03 0. 1.04058278e-03 0. 0. 0. 3.12174833e-03 - 3.12174833e-03 1.66493244e-02 0. 5.20291366e-03 2.08116556e-03 - 1.04058278e-03 0. 2.08116556e-03 1.56087419e-02 1.45681594e-02 - 4.16233111e-03 3.01769003e-02 1.97710730e-02 1.56087419e-02 - 5.20291366e-03 1.01977110e-01 1.76899079e-02 7.28407968e-03 0. - 4.16233111e-03 7.28407968e-03 3.12174833e-03 1.04058278e-03 - 2.28928216e-02 0. 1.04058278e-03 0. 0. 3.12174833e-03 0. - 1.76899079e-02 7.59625435e-02 1.14464108e-02 1.87304895e-02 0. - 1.04058278e-03 2.08116556e-03 2.08116556e-03 0. 1.04058278e-03 - 3.12174833e-03 1.04058278e-03 0. 0. 1.66493244e-02 1.04058278e-03 - 6.24349676e-02 8.42872038e-02 1.04058278e-03 2.08116556e-03 0. 0. - 0. 0. 0. 2.08116556e-03 0. 0. 0. 0. 0. 0. 0. 0. 4.16233111e-03 0. - 0. 0. 0. 1.04058278e-03 1.04058278e-03 0. 5.20291366e-03 - 1.04058278e-03 0. 1.04058278e-03 1.45681594e-02 1.04058278e-03 - 1.66493244e-02 7.28407968e-03 6.24349667e-03 1.04058278e-03 0. - 1.04058278e-03 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 1.04058278e-03 - 0. 4.16233111e-03 0. 2.08116556e-03 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 0. 0. 0. 1.04058278e-03 0. 0. 0. 6.24349667e-03 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 1.04058278e-03 0. - 2.08116546e-02 1.04058278e-03 1.04058278e-03 0. 2.08116556e-03 - 1.04058278e-03 0. 1.04058278e-03 2.18522381e-02 0. 1.04058278e-03 - 1.04058278e-03 3.22580673e-02 0. 9.36524477e-03 1.04058278e-03 0. - 0. 0. 3.12174833e-03 0. 0. 0. 9.36524477e-03 0. 0. 0. 0. 0. 0. 0. - 7.28407968e-03 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. - 1.04058278e-03 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 1.04058278e-03 - 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 4.16233111e-03 - 1.04058278e-03 1.24869933e-02 0. 3.12174833e-03 0. 0. 0. - 7.28407968e-03 0. 0. 0. 0. 0. 0. 0. 2.08116556e-03 0. 0. 0. 0. 0. - 2.08116556e-03 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. - 2.39334032e-02 3.12174838e-02 0. 3.12174833e-03 1.04058278e-03 0. - 0. 1.04058278e-03 1.04058278e-03 0. 0. 1.04058278e-03 0. 0. 0. - 1.14464108e-02 8.42872038e-02 9.36524495e-02 4.16233111e-03 0. - 1.04058278e-03 1.04058278e-03 1.04058278e-03 1.04058278e-03 - 1.56087419e-02 1.24869933e-02 1.04058278e-03 4.16233111e-03 - 1.76899079e-02 8.32466222e-03 1.24869933e-02 6.34755492e-02 - 3.74609791e-02 1.14464108e-02 1.04058278e-03 8.32466222e-03 - 1.04058273e-02 4.16233111e-03 4.16233111e-03 1.56087419e-02 - 1.04058278e-03 2.08116556e-03 0. 0. 5.20291366e-03 3.12174833e-03 - 2.08116556e-03 3.32986489e-02 1.66493244e-02 4.16233111e-03 - 1.04058278e-03 0. 0. 0. 1.04058278e-03 1.04058278e-03 - 5.20291366e-03 1.04058278e-03 0. 1.04058278e-03 1.66493244e-02 - 1.04058278e-03 3.43392305e-02 2.70551518e-02 1.04058278e-03 0. - 1.04058278e-03 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 1.04058278e-03 0. 2.08116556e-03 4.16233111e-03 0. - 0. 0. 0. 1.04058278e-03 0. 0. 2.08116556e-03 0. 0. 0. - 4.16233111e-03 1.04058278e-03 6.24349667e-03 5.20291366e-03 - 1.24869933e-02 1.04058278e-03 0. 1.04058278e-03 1.04058278e-03 - 1.04058278e-03 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 1.04058278e-03 - 0. 0. 3.12174833e-03 0. 2.08116556e-03 2.08116556e-03 - 6.24349667e-03 4.16233111e-03 1.04058278e-03 2.08116556e-03 - 1.04058278e-03 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 4.05827276e-02 0. 0. 0. 4.16233111e-03 0. - 1.04058278e-03 1.04058278e-03 9.36524477e-03 0. 0. 0. - 6.24349667e-03 0. 3.12174833e-03 5.20291366e-03 3.12174833e-03 - 5.20291366e-03 0. 5.20291366e-03 0. 0. 0. 1.24869933e-02 0. - 1.04058278e-03 0. 0. 0. 1.04058278e-03 0. 9.36524477e-03 0. 0. 0. - 0. 0. 0. 1.04058278e-03 0. 1.04058278e-03 0. 0. 1.04058278e-03 - 2.08116556e-03 2.08116556e-03 0. 9.36524477e-03 1.04058278e-03 0. - 0. 1.04058278e-03 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. - 1.04058278e-03 4.16233111e-03 1.04058278e-03 0. 4.16233111e-03 - 3.12174833e-03 3.32986489e-02 0. 2.60145701e-02 0. 0. 0. - 2.08116546e-02 0. 1.04058278e-03 0. 0. 0. 1.04058278e-03 0. - 1.45681594e-02 3.12174833e-03 1.14464108e-02 0. 0. 0. 0. 0. - 1.04058278e-03 1.04058278e-03 1.04058278e-03 0. 0. 2.08116556e-03 - 0. 0. 1.04058273e-02 1.04058278e-03 2.08116546e-02 0. - 2.18522381e-02 1.04058278e-03 1.04058278e-03 2.08116556e-03 - 1.14464108e-02 1.04058278e-03 1.04058278e-03 0. 2.08116556e-03 0. - 0. 2.08116556e-03 1.04058273e-02 7.59625435e-02 3.74609791e-02 0. - 1.04058273e-02 1.04058278e-03 0. 1.04058278e-03 3.74609791e-02 - 2.60145701e-02 1.14464108e-02 1.04058278e-03 7.28407968e-03 - 7.28407968e-03 4.16233111e-03 9.36524477e-03 9.78147835e-02 - 5.51508889e-02 1.87304895e-02 2.08116556e-03 5.20291366e-03 - 1.35275759e-02 1.04058278e-03 3.12174833e-03 7.28407968e-03 0. - 1.04058278e-03 0. 0. 2.08116556e-03 0. 6.24349667e-03 - 4.16233111e-03 1.66493244e-02 0. 1.04058278e-03 0. 8.32466222e-03 - 0. 4.16233111e-03 1.04058278e-03 1.04058278e-03 0. 0. 0. - 4.57856432e-02 0. 7.18002096e-02 6.24349667e-03 2.08116556e-03 - 1.04058278e-03 0. 0. 0. 0. 1.04058278e-03 1.04058278e-03 0. 0. 0. - 0. 0. 0. 0. 1.04058278e-03 8.32466222e-03 0. 1.04058278e-03 - 1.04058278e-03 1.04058278e-03 0. 1.04058278e-03 2.08116556e-03 - 8.32466222e-03 0. 0. 0. 2.39334032e-02 0. 3.85015644e-02 - 8.32466222e-03 9.36524477e-03 7.28407968e-03 0. 1.04058278e-03 - 2.08116556e-03 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 0. 0. 1.04058278e-03 4.16233111e-03 3.12174833e-03 - 0. 1.04058278e-03 0. 1.04058278e-03 1.04058278e-03 2.08116556e-03 - 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 1.14464108e-02 4.16233111e-03 - 1.04058278e-03 2.08116556e-03 0. 0. 1.04058278e-03 2.08116556e-03 - 1.04058278e-03 0. 0. 1.04058278e-03 2.08116556e-03 1.04058278e-03 - 6.24349667e-03 1.04058278e-03 0. 5.20291366e-03 0. 0. 0. - 1.04058278e-03 0. 1.04058278e-03 0. 0. 0. 0. 0. 1.04058278e-03 0. - 5.20291366e-03 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 0. 1.04058278e-03 5.20291366e-03 3.12174833e-03 - 3.12174833e-03 8.32466222e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. - 1.04058278e-03 1.04058278e-03 7.28407968e-03 5.20291366e-03 - 6.24349676e-02 0. 3.22580673e-02 0. 2.08116556e-03 0. - 3.12174833e-03 0. 2.08116556e-03 0. 1.04058278e-03 0. - 5.20291366e-03 0. 9.36524477e-03 1.04058278e-03 1.04058278e-03 0. - 0. 0. 0. 1.04058278e-03 0. 1.04058278e-03 3.12174833e-03 0. 0. - 5.20291366e-03 3.12174833e-03 3.12174833e-03 6.24349667e-03 - 5.20291366e-03 9.36524495e-02 0. 5.61914705e-02 1.04058278e-03 0. - 0. 7.28407968e-03 0. 0. 0. 2.08116556e-03 0. 0. 0. 1.35275759e-02 - 1.66493244e-02 1.56087419e-02 0. 1.14464108e-02 0. 0. 0. - 5.20291366e-03 3.12174833e-03 1.14464108e-02 0. 7.28407968e-03 - 1.04058273e-02 1.04058273e-02 1.45681594e-02 7.18002096e-02 - 6.24349667e-03 9.36524477e-03 0. 4.16233111e-03 1.04058278e-03 - 4.16233111e-03 1.04058278e-03 1.76899079e-02 0. 0. 0. 0. 0. 0. - 9.36524477e-03 7.38813803e-02 5.20291366e-03 8.32466222e-03 0. - 3.12174833e-03 3.12174833e-03 1.04058278e-03 0. 1.24869933e-02 0. - 1.04058278e-03 0. 1.04058278e-03 2.28928216e-02 3.12174833e-03 - 2.49739867e-02 1.12382941e-01 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 2.08116556e-03 0. 0. 0. 0. 0. 0. - 1.04058278e-03 0. 0. 0. 0. 0. 1.04058278e-03 1.04058278e-03 - 4.16233111e-03 0. 1.04058278e-03 0. 0. 0. 0. 0. 1.04058278e-03 0. - 0. 0. 0. 1.04058278e-03 0. 1.04058278e-03 0. 0. 0. 0. 0. - 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058273e-02 0. 0. 0. - 1.04058278e-03 0. 0. 2.08116556e-03 3.12174833e-03 0. 0. 0. - 2.18522381e-02 3.12174833e-03 2.08116556e-03 1.35275759e-02 0. - 1.04058278e-03 0. 3.12174833e-03 0. 0. 0. 2.08116556e-03 0. 0. 0. - 0. 0. 0. 0. 3.12174833e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 3.12174833e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 2.08116556e-03 - 1.04058278e-03 1.87304895e-02 0. 1.97710730e-02 0. 3.12174833e-03 - 0. 2.49739867e-02 0. 0. 0. 0. 0. 0. 0. 8.32466222e-03 0. - 1.04058278e-03 0. 1.04058278e-03 0. 0. 0. 3.12174833e-03 0. 0. 0. - 0. 0. 3.12174833e-03 0. 8.32466222e-03 3.01769003e-02 - 8.01248774e-02 0. 1.24869933e-02 0. 1.04058278e-03 0. - 9.36524477e-03 0. 0. 0. 0. 0. 0. 0. 4.16233111e-03 4.16233093e-02 - 1.77939653e-01 0. 9.36524477e-03 1.04058278e-03 0. 0. - 1.14464108e-02 2.08116556e-03 3.12174833e-03 0. 1.04058278e-03 - 6.24349667e-03 1.35275759e-02 5.20291366e-03 8.32466185e-02 - 1.76899079e-02 2.49739867e-02 0. 3.12174833e-03 4.16233111e-03 - 2.08116556e-03 0. 5.20291366e-03 0. 1.04058278e-03 0. 0. - 2.08116556e-03 0. 1.04058273e-02 3.74609791e-02 2.39334032e-02 - 1.87304895e-02 3.12174833e-03 0. 1.04058278e-03 0. 0. - 2.08116556e-03 4.16233111e-03 1.04058278e-03 0. 0. 1.76899079e-02 - 4.16233111e-03 3.12174838e-02 5.61914705e-02 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 0. 0. 1.04058278e-03 3.12174833e-03 0. - 5.20291366e-03 9.36524477e-03 7.28407968e-03 1.04058278e-03 0. 0. - 4.16233111e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 - 1.04058278e-03 3.12174833e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 1.04058278e-03 0. 8.32466222e-03 0. 0. 0. - 1.04058278e-03 1.04058278e-03 0. 2.08116556e-03 0. 0. 0. 0. - 1.04058278e-03 0. 0. 0. 2.39334032e-02 2.08116556e-03 0. 0. - 1.04058278e-03 0. 0. 0. 4.16233111e-03 1.04058278e-03 0. 0. - 1.04058273e-02 0. 1.56087419e-02 1.04058273e-02 2.08116556e-03 0. - 0. 1.04058278e-03 0. 0. 0. 2.08116556e-03 0. 0. 0. 0. 0. 0. 0. - 4.16233111e-03 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 - 0. 0. 0. 0. 0. 1.04058278e-03 2.08116556e-03 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 1.04058278e-03 1.04058278e-03 2.18522381e-02 0. - 4.16233111e-03 0. 0. 0. 9.36524477e-03 0. 0. 0. 0. 0. 0. 0. - 1.35275759e-02 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. - 2.08116556e-03 0. 0. 5.20291366e-03 1.97710730e-02 8.01248774e-02 - 0. 1.45681594e-02 1.04058278e-03 0. 1.04058278e-03 1.04058273e-02 - 0. 0. 0. 0. 0. 0. 4.16233111e-03 1.66493244e-02 4.78668064e-02 - 1.16545275e-01 0. 1.24869933e-02 1.04058278e-03 3.12174833e-03 0. - 1.87304895e-02 1.56087419e-02 1.45681594e-02 0. 5.20291366e-03 - 7.28407968e-03 1.24869933e-02 1.87304895e-02 1.10301778e-01 - 6.45161346e-02 1.04058273e-02 1.04058278e-03 6.24349667e-03 - 1.14464108e-02 0. 1.14464108e-02 2.08116546e-02 2.08116556e-03 0. - 1.04058278e-03 0. 6.24349667e-03 1.04058278e-03 2.28928216e-02 - 6.03538007e-02 1.35275759e-02 0. 1.04058278e-03 2.08116556e-03 - 5.20291366e-03 0. 2.08116556e-03 0. 4.16233111e-03 0. - 2.08116556e-03 1.04058278e-03 2.60145701e-02 2.08116556e-03 - 3.64203975e-02 2.91363187e-02 2.08116556e-03 0. 1.04058278e-03 - 1.04058278e-03 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 1.14464108e-02 2.08116556e-03 0. 2.08116556e-03 1.04058278e-03 - 1.04058278e-03 2.08116556e-03 1.04058278e-03 6.24349667e-03 - 1.04058278e-03 0. 0. 2.80957352e-02 0. 2.39334032e-02 - 7.28407968e-03 2.28928216e-02 8.32466222e-03 0. 1.04058278e-03 - 3.12174833e-03 0. 0. 2.08116556e-03 0. 0. 0. 0. 0. 0. - 1.04058278e-03 1.04058278e-03 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 3.12174833e-03 1.14464108e-02 2.08116556e-03 - 1.04058278e-03 3.12174833e-03 1.04058278e-03 0. 0. 0. - 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 1.04058273e-02 2.08116556e-03 - 0. 0. 0. 0. 0. 0. 7.28407968e-03 0. 0. 0. 8.32466222e-03 0. - 1.66493244e-02 2.08116556e-03 1.04058278e-03 3.12174833e-03 0. 0. - 0. 0. 1.04058278e-03 7.28407968e-03 0. 0. 0. 0. 0. 0. 0. - 2.39334032e-02 2.08116556e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 2.08116556e-03 2.08116556e-03 4.16233111e-03 1.56087419e-02 0. 0. - 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 1.04058278e-03 - 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 2.08116556e-03 - 1.04058278e-03 1.24869933e-02 6.24349667e-03 3.74609791e-02 0. - 1.14464108e-02 0. 0. 0. 8.32466222e-03 0. 5.20291366e-03 0. - 1.04058278e-03 0. 3.12174833e-03 1.04058278e-03 9.36524477e-03 - 1.04058278e-03 1.04058278e-03 0. 0. 0. 0. 0. 1.04058278e-03 0. - 1.04058278e-03 0. 1.04058278e-03 1.04058278e-03 2.08116556e-03 - 1.04058278e-03 7.28407968e-03 4.16233111e-03 3.74609791e-02 0. - 3.22580673e-02 0. 0. 2.08116556e-03 1.04058273e-02 0. - 1.04058278e-03 0. 3.12174833e-03 0. 1.04058278e-03 1.04058278e-03 - 1.14464108e-02 6.24349667e-03 1.04058273e-02 0. 9.36524477e-03 0. - 0. 0. 2.08116556e-03 8.32466222e-03 1.56087419e-02 0. - 1.35275759e-02 8.32466222e-03 7.28407968e-03 8.32466222e-03 - 7.80437067e-02 8.74089524e-02 1.04058273e-02 2.08116556e-03 - 3.12174833e-03 1.76899079e-02 3.12174833e-03 8.32466222e-03 - 4.16233111e-03 2.08116556e-03 0. 0. 0. 8.32466222e-03 - 2.08116556e-03 8.32466222e-03 1.04058278e-03 2.28928216e-02 0. 0. - 0. 5.20291366e-03 0. 2.08116556e-03 0. 7.28407968e-03 0. 0. 0. - 3.43392305e-02 1.04058278e-03 9.36524477e-03 1.04058278e-03 - 4.16233111e-03 0. 1.04058278e-03 0. 7.28407968e-03 0. 0. - 2.08116556e-03 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 1.04058273e-02 - 0. 0. 1.04058278e-03 6.24349667e-03 1.04058278e-03 3.12174833e-03 - 1.04058278e-03 9.36524477e-03 1.04058278e-03 0. 1.04058278e-03 - 5.41103035e-02 1.04058278e-03 2.70551518e-02 1.14464108e-02 - 2.08116546e-02 3.12174833e-03 2.08116556e-03 1.04058278e-03 - 1.04058278e-03 0. 1.04058278e-03 0. 2.08116556e-03 0. 0. 0. - 1.04058278e-03 0. 1.04058278e-03 1.04058278e-03 2.08116556e-03 0. - 0. 1.04058278e-03 0. 0. 0. 0. 3.12174833e-03 0. 0. 0. - 1.04058278e-03 0. 0. 2.08116556e-03 1.14464108e-02 1.04058278e-03 - 1.04058278e-03 4.16233111e-03 1.04058278e-03 0. 0. 1.04058278e-03 - 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 2.18522381e-02 0. - 1.04058278e-03 4.16233111e-03 3.12174833e-03 0. 1.04058278e-03 - 2.08116556e-03 1.76899079e-02 0. 0. 1.04058278e-03 1.87304895e-02 - 3.12174833e-03 8.32466222e-03 9.36524477e-03 5.20291366e-03 - 4.16233111e-03 0. 7.28407968e-03 0. 1.04058278e-03 0. - 5.20291366e-03 0. 0. 0. 0. 0. 0. 0. 2.08116556e-03 1.04058278e-03 - 0. 0. 1.04058278e-03 0. 0. 0. 0. 1.04058278e-03 1.04058278e-03 0. - 0. 2.08116556e-03 4.16233111e-03 0. 4.16233111e-03 0. 0. 0. 0. 0. - 1.04058278e-03 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. - 1.04058278e-03 0. 0. 0. 0. 1.04058278e-03 0. 0. 1.04058278e-03 - 1.04058278e-03 0. 0. 1.04058278e-03 6.24349667e-03 4.16233111e-03 - 4.16233111e-03 2.18522381e-02 1.04058273e-02 2.49739867e-02 - 1.04058278e-03 1.35275759e-02 0. 0. 1.04058278e-03 2.08116556e-03 - 2.08116556e-03 2.08116556e-03 0. 4.16233111e-03 0. 2.08116556e-03 - 0. 6.24349667e-03 1.04058278e-03 1.04058278e-03 0. 0. 0. 0. 0. 0. - 0. 3.12174833e-03 0. 2.08116556e-03 1.04058278e-03 2.08116556e-03 - 0. 5.20291366e-03 4.16233111e-03 1.87304895e-02 0. 2.70551518e-02 - 0. 0. 0. 1.14464108e-02 0. 1.04058278e-03 0. 2.08116556e-03 - 1.04058278e-03 0. 0. 1.35275759e-02 6.24349667e-03 1.04058273e-02 - 1.04058278e-03 1.24869933e-02 1.04058278e-03 0. 0. 6.24349667e-03 - 1.87304895e-02 1.04058273e-02 1.04058278e-03 1.24869933e-02 - 1.35275759e-02 1.24869933e-02 1.45681594e-02 9.05307010e-02 - 7.70031288e-02 9.36524477e-03 1.04058278e-03 2.08116556e-03 - 3.32986489e-02 6.24349667e-03 4.16233111e-03 7.28407968e-03 - 5.20291366e-03 1.04058278e-03 1.04058278e-03 1.04058278e-03 - 3.12174833e-03 2.08116556e-03 1.04058278e-03 7.28407968e-03 - 1.45681594e-02 3.12174833e-03 0. 0. 5.20291366e-03 0. - 1.04058278e-03 0. 1.45681594e-02 0. 0. 0. 2.39334032e-02 - 3.12174833e-03 4.16233111e-03 7.28407968e-03 4.16233111e-03 - 1.04058278e-03 0. 0. 2.08116556e-03 0. 1.04058278e-03 - 2.08116556e-03 0. 0. 0. 0. 2.08116556e-03 0. 0. 2.08116556e-03 - 1.04058273e-02 0. 0. 0. 4.16233111e-03 0. 2.08116556e-03 - 2.08116556e-03 1.56087419e-02 0. 0. 2.08116556e-03 4.89073917e-02 - 1.04058278e-03 2.39334032e-02 8.32466222e-03 1.97710730e-02 - 1.04058278e-03 0. 2.08116556e-03 4.16233111e-03 0. 2.08116556e-03 - 0. 1.04058278e-03 0. 0. 0. 1.04058278e-03 0. 0. 0. 2.08116556e-03 - 0. 0. 2.08116556e-03 0. 0. 0. 0. 2.08116556e-03 1.04058278e-03 0. - 0. 0. 0. 0. 1.04058278e-03 1.35275759e-02 1.04058278e-03 0. - 2.08116556e-03 1.04058278e-03 0. 1.04058278e-03 0. 0. 0. 0. 0. - 3.12174833e-03 0. 1.04058278e-03 0. 3.95421460e-02 0. - 1.04058278e-03 2.08116556e-03 0. 0. 1.04058278e-03 0. - 3.64203975e-02 2.08116556e-03 4.16233111e-03 3.12174833e-03 - 2.08116546e-02 1.04058278e-03 1.45681594e-02 1.56087419e-02 - 3.12174833e-03 3.12174833e-03 0. 3.12174833e-03 0. 2.08116556e-03 - 0. 2.08116556e-03 0. 0. 0. 1.04058278e-03 1.04058278e-03 - 2.08116556e-03 0. 4.16233111e-03 1.04058278e-03 1.04058278e-03 0. - 0. 0. 0. 0. 0. 2.08116556e-03 1.04058278e-03 0. 0. 1.04058278e-03 - 4.16233111e-03 0. 6.24349667e-03 0. 0. 1.04058278e-03 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 1.04058278e-03 0. 0. 0. 0. 0. - 0. 0. 3.12174833e-03 2.08116556e-03 1.04058278e-03 0. - 1.04058278e-03 5.20291366e-03 3.12174833e-03 2.08116556e-03 - 1.35275759e-02 3.12174833e-03 1.97710730e-02 0. 1.56087419e-02 0. - 0. 0. 6.24349667e-03 1.04058278e-03 1.04058278e-03 0. - 1.04058278e-03 1.04058278e-03 0. 0. 8.32466222e-03 2.08116556e-03 - 0. 0. 0. 0. 0. 0. 0. 2.08116556e-03 2.08116556e-03 0. - 1.04058278e-03 1.04058278e-03 1.04058278e-03 0. 2.08116556e-03 - 4.16233111e-03 7.28407968e-03 0. 2.60145701e-02 0. 0. 0. - 4.16233111e-03 1.04058278e-03 0. 0. 1.04058278e-03 0. 0. - 1.04058278e-03 6.24349667e-03 1.14464108e-02 7.28407968e-03 0. - 7.28407968e-03 1.04058278e-03 0. 0. 3.12174833e-03 1.76899079e-02 - 1.35275759e-02 0. 3.01769003e-02 1.76899079e-02 9.36524477e-03 - 1.87304895e-02 9.36524495e-02 5.61914705e-02 9.36524477e-03 - 3.12174833e-03 2.08116556e-03 1.76899079e-02 2.08116556e-03 - 2.08116556e-03 5.20291366e-03 2.08116556e-03 0. 0. 0. - 2.08116556e-03 1.04058278e-03 2.08116556e-03 1.35275759e-02 - 9.36524477e-03 1.04058278e-03 0. 1.04058278e-03 5.20291366e-03 - 1.04058278e-03 1.04058278e-03 0. 6.24349667e-03 1.04058278e-03 0. - 0. 2.80957352e-02 2.08116556e-03 1.87304895e-02 8.32466222e-03 - 4.16233111e-03 0. 0. 1.04058278e-03 2.08116556e-03 0. 0. - 2.08116556e-03 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 7.28407968e-03 - 3.12174833e-03 0. 0. 1.04058273e-02 0. 2.08116556e-03 0. - 7.28407968e-03 0. 0. 0. 5.61914705e-02 2.08116556e-03 - 2.39334032e-02 6.24349667e-03 2.80957352e-02 3.12174833e-03 - 4.16233111e-03 1.04058278e-03 1.04058278e-03 0. 0. 2.08116556e-03 - 1.04058278e-03 0. 0. 0. 0. 0. 0. 2.08116556e-03 2.08116556e-03 0. - 0. 1.04058278e-03 0. 0. 0. 2.08116556e-03 2.08116556e-03 0. 0. 0. - 0. 0. 0. 1.04058278e-03 3.12174833e-03 2.08116556e-03 - 2.08116556e-03 1.04058278e-03 2.08116556e-03 1.04058278e-03 - 2.08116556e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 2.28928216e-02 0. 0. - 1.04058278e-03 2.08116556e-03 0. 2.08116556e-03 2.08116556e-03 - 1.04058273e-02 0. 0. 0. 3.01769003e-02 1.04058278e-03 - 9.36524477e-03 3.12174833e-03 1.04058278e-03 4.16233111e-03 0. - 2.08116556e-03 0. 0. 0. 7.28407968e-03 0. 0. 0. 0. 0. - 1.04058278e-03 0. 7.28407968e-03 0. 0. 0. 1.04058278e-03 0. - 1.04058278e-03 0. 1.04058278e-03 0. 0. 0. 0. 2.08116556e-03 - 1.04058278e-03 1.04058278e-03 8.32466222e-03 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. - 1.04058278e-03 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 2.08116556e-03 - 1.04058278e-03 2.08116556e-03 1.45681594e-02 2.08116556e-03 - 3.32986489e-02 0. 8.01248774e-02 0. 1.04058278e-03 0. - 2.28928216e-02 0. 1.04058278e-03 0. 5.20291366e-03 1.04058278e-03 - 1.04058278e-03 0. 4.16233111e-03 3.12174833e-03 5.20291366e-03 0. - 1.04058278e-03 1.04058278e-03 0. 1.04058278e-03 3.12174833e-03 - 1.04058278e-03 4.16233111e-03 0. 0. 2.08116556e-03 6.24349667e-03 - 0. 6.24349667e-03 2.08116556e-03 6.24349667e-03 0. 2.08116546e-02 - 1.04058278e-03 1.04058278e-03 0. 8.32466222e-03 1.04058278e-03 - 1.04058278e-03 0. 3.12174833e-03 1.04058278e-03 1.04058278e-03 0. - 5.20291366e-03 1.56087419e-02 1.14464108e-02 1.04058278e-03 - 1.45681594e-02 2.08116556e-03 0. 0. 1.04058273e-02 1.24869933e-02 - 1.04058273e-02 0. 1.87304895e-02 1.56087419e-02 7.28407968e-03 - 7.28407968e-03 9.26118642e-02 6.13943823e-02 2.18522381e-02 - 2.08116556e-03 4.16233111e-03 1.56087419e-02 1.04058278e-03 - 1.04058278e-03 5.20291366e-03 1.04058278e-03 2.08116556e-03 0. 0. - 7.28407968e-03 1.04058278e-03 5.20291366e-03 1.14464108e-02 - 2.70551518e-02 3.12174833e-03 1.04058278e-03 2.08116556e-03 - 5.20291366e-03 0. 0. 1.04058278e-03 7.28407968e-03 1.04058278e-03 - 0. 0. 2.28928216e-02 1.04058278e-03 6.13943823e-02 1.04058273e-02 - 1.04058278e-03 2.08116556e-03 1.04058278e-03 2.08116556e-03 0. - 1.04058278e-03 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. - 5.20291366e-03 1.04058278e-03 0. 0. 3.12174833e-03 0. - 2.08116556e-03 2.08116556e-03 3.12174833e-03 1.04058278e-03 0. 0. - 4.26638946e-02 0. 1.97710730e-02 9.36524477e-03 8.32466222e-03 - 3.12174833e-03 0. 1.04058278e-03 1.04058278e-03 0. 0. - 1.04058278e-03 1.04058278e-03 0. 0. 0. 1.04058278e-03 0. 0. 0. - 1.04058278e-03 0. 0. 0. 1.04058278e-03 0. 1.04058278e-03 0. - 1.04058278e-03 0. 0. 0. 0. 0. 2.08116556e-03 0. 5.20291366e-03 - 2.08116556e-03 2.08116556e-03 1.04058278e-03 0. 0. 2.08116556e-03 - 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 3.12174833e-03 1.24869933e-02 - 4.16233111e-03 1.04058278e-03 5.20291366e-03 2.08116556e-03 0. 0. - 0. 6.24349667e-03 0. 0. 0. 1.14464108e-02 0. 8.32466222e-03 - 4.16233111e-03 3.12174833e-03 3.12174833e-03 0. 4.16233111e-03 0. - 2.08116556e-03 0. 4.16233111e-03 0. 0. 0. 0. 1.04058278e-03 - 1.04058278e-03 0. 9.36524477e-03 0. 1.04058278e-03 0. 0. 0. 0. 0. - 1.04058278e-03 0. 2.08116556e-03 0. 0. 0. 1.04058278e-03 - 1.04058278e-03 2.08116556e-03 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 3.12174833e-03 1.04058273e-02 1.24869933e-02 - 3.22580673e-02 0. 2.70551518e-02 0. 0. 0. 1.24869933e-02 - 1.04058278e-03 3.12174833e-03 0. 2.08116556e-03 0. 1.04058278e-03 - 1.04058278e-03 5.20291366e-03 0. 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 0. 0. 0. 2.08116556e-03 4.16233111e-03 - 2.08116556e-03 4.16233111e-03 6.24349667e-03 5.51508889e-02 0. - 3.85015644e-02 0. 0. 0. 1.35275759e-02 1.04058278e-03 - 2.08116556e-03 0. 1.04058278e-03 1.04058278e-03 0. 1.04058278e-03 - 1.56087419e-02 1.87304895e-02 3.53798158e-02 2.08116556e-03 - 5.20291366e-03 1.04058278e-03 0. 1.04058278e-03 9.36524477e-03 - 1.35275759e-02 1.04058273e-02 0. 1.45681594e-02 9.36524477e-03 - 5.20291366e-03 1.87304895e-02 8.01248774e-02 2.08116546e-02 - 1.56087419e-02 0. 2.08116556e-03 1.56087419e-02 4.16233111e-03 - 6.24349667e-03 2.60145701e-02 0. 0. 0. 0. 5.20291366e-03 0. - 3.12174833e-03 5.20291366e-03 2.08116546e-02 1.14464108e-02 - 1.04058278e-03 3.12174833e-03 1.04058278e-03 0. 3.12174833e-03 - 6.24349667e-03 0. 1.04058278e-03 0. 0. 3.43392305e-02 - 2.08116556e-03 1.66493244e-02 4.78668064e-02 0. 1.04058278e-03 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. - 0. 2.08116556e-03 1.04058278e-03 0. 0. 0. 1.04058278e-03 - 1.14464108e-02 1.04058278e-03 1.56087419e-02 1.56087419e-02 - 6.24349667e-03 7.28407968e-03 0. 0. 1.04058278e-03 0. - 1.04058278e-03 3.12174833e-03 0. 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 2.08116556e-03 0. - 2.08116556e-03 1.04058278e-03 2.08116556e-03 0. 0. 0. - 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.14464108e-02 - 4.16233111e-03 0. 0. 1.04058278e-03 0. 1.04058278e-03 - 2.08116556e-03 4.16233111e-03 0. 0. 0. 1.45681594e-02 0. - 9.36524477e-03 1.56087419e-02 0. 1.04058278e-03 0. 1.04058278e-03 - 0. 0. 0. 4.16233111e-03 0. 0. 0. 0. 0. 1.04058278e-03 0. - 1.04058273e-02 1.04058278e-03 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. - 0. 0. 1.04058278e-03 1.04058278e-03 0. 1.04058278e-03 - 1.24869933e-02 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 6.24349667e-03 5.20291366e-03 4.26638946e-02 0. 1.04058273e-02 0. - 1.04058278e-03 0. 1.14464108e-02 0. 2.08116556e-03 0. - 1.04058278e-03 0. 1.04058278e-03 0. 1.35275759e-02 0. 0. 0. 0. 0. - 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 1.04058278e-03 - 3.01769003e-02 5.20291366e-03 1.31113425e-01 0. 2.91363187e-02 - 1.04058278e-03 3.12174833e-03 0. 1.14464108e-02 0. 1.04058278e-03 - 0. 0. 0. 0. 0. 7.28407968e-03 6.24349667e-03 2.39334032e-02 0. - 9.36524477e-03 1.04058278e-03 1.04058278e-03 0. 7.28407968e-03 - 1.04058278e-03 8.32466222e-03 0. 9.36524477e-03 1.14464108e-02 - 1.66493244e-02 6.24349667e-03 1.50884509e-01 4.16233111e-03 - 1.56087419e-02 0. 1.04058278e-03 5.20291366e-03 0. 4.16233111e-03 - 1.45681594e-02 0. 0. 0. 0. 3.12174833e-03 0. 3.12174833e-03 - 6.03538007e-02 1.04058273e-02 2.60145701e-02 1.04058278e-03 0. - 2.08116556e-03 0. 0. 1.24869933e-02 0. 3.12174833e-03 0. - 1.04058278e-03 1.45681594e-02 0. 3.01769003e-02 2.01873064e-01 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 6.24349667e-03 0. 6.24349667e-03 - 1.45681594e-02 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. - 0. 0. 0. 0. 1.04058278e-03 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 9.36524477e-03 2.08116556e-03 0. 0. - 2.08116556e-03 0. 0. 1.04058278e-03 1.04058278e-03 0. 0. 0. - 1.24869933e-02 2.08116556e-03 4.16233111e-03 6.24349667e-03 0. - 1.04058278e-03 0. 0. 0. 0. 0. 5.20291366e-03 0. 0. 0. 0. 0. - 1.04058278e-03 0. 3.12174833e-03 0. 0. 0. 1.04058278e-03 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 1.24869933e-02 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 8.32466222e-03 0. 1.04058278e-03 0. 0. 0. 9.36524477e-03 0. - 0. 0. 0. 0. 0. 0. 6.24349667e-03 0. 2.08116556e-03 0. 0. 0. - 1.04058278e-03 0. 1.04058278e-03 0. 0. 0. 0. 0. 1.04058278e-03 - 1.04058278e-03 1.04058273e-02 7.28407968e-03 4.26638946e-02 0. - 2.08116556e-03 0. 0. 0. 1.14464108e-02 0. 0. 0. 0. 0. 0. - 1.04058278e-03 5.20291366e-03 8.74089524e-02 1.81061402e-01 0. - 4.16233111e-03 0. 1.04058278e-03 0. 1.87304895e-02 3.12174833e-03 - 5.20291366e-03 0. 2.08116556e-03 2.08116556e-03 4.16233111e-03 - 1.04058273e-02 5.72320521e-02 2.80957352e-02 1.76899079e-02 - 1.04058278e-03 4.16233111e-03 3.12174833e-03 1.04058278e-03 - 4.16233111e-03 2.08116546e-02 1.04058278e-03 0. 0. 0. 0. 0. - 7.28407968e-03 2.60145701e-02 1.76899079e-02 1.45681594e-02 - 1.04058278e-03 2.08116556e-03 0. 0. 0. 2.08116556e-03 0. - 2.08116556e-03 0. 0. 1.04058273e-02 1.04058278e-03 2.49739867e-02 - 3.32986489e-02 0. 0. 0. 0. 1.04058278e-03 0. 0. 1.04058278e-03 0. - 0. 0. 0. 0. 0. 0. 2.08116556e-03 1.04058278e-03 0. 0. 0. 0. 0. - 2.08116556e-03 1.04058278e-03 0. 0. 0. 0. 7.28407968e-03 - 1.04058278e-03 3.12174833e-03 4.16233111e-03 1.45681594e-02 - 1.04058278e-03 0. 1.04058278e-03 7.28407968e-03 0. 1.04058278e-03 - 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. - 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 - 5.20291366e-03 2.08116556e-03 1.04058278e-03 1.04058278e-03 0. 0. - 0. 2.08116556e-03 0. 0. 0. 0. 0. 0. 0. 0. 1.97710730e-02 - 2.08116556e-03 0. 0. 2.08116556e-03 0. 1.04058278e-03 0. - 8.32466222e-03 0. 0. 1.04058278e-03 1.45681594e-02 0. - 2.08116556e-03 3.12174833e-03 0. 2.08116556e-03 0. 4.16233111e-03 - 0. 1.04058278e-03 0. 5.20291366e-03 0. 0. 0. 0. 0. 1.04058278e-03 - 0. 1.14464108e-02 1.04058278e-03 2.08116556e-03 0. 0. 0. - 1.04058278e-03 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 1.04058278e-03 - 9.36524477e-03 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 1.04058278e-03 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 4.16233111e-03 2.08116556e-03 3.74609791e-02 0. - 8.32466222e-03 2.08116556e-03 0. 0. 1.45681594e-02 0. - 1.04058278e-03 0. 0. 0. 1.04058278e-03 0. 1.35275759e-02 - 1.04058278e-03 1.04058278e-03 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. - 0. 0. 0. 0. 1.04058278e-03 1.14464108e-02 1.56087419e-02 - 7.49219581e-02 0. 2.60145701e-02 1.04058278e-03 3.12174833e-03 0. - 1.45681594e-02 0. 0. 0. 0. 0. 1.04058278e-03 3.12174833e-03 - 3.01769003e-02 5.09885550e-02 1.05098858e-01 1.04058278e-03 - 1.87304895e-02 2.08116556e-03 1.04058278e-03 0. 1.14464108e-02 - 6.24349667e-03 1.87304895e-02 0. 1.35275759e-02 6.24349667e-03 - 1.04058273e-02 1.66493244e-02 8.22060406e-02 7.07596317e-02 - 2.39334032e-02 6.24349667e-03 1.04058273e-02 1.24869933e-02 - 2.08116556e-03 9.36524477e-03 1.14464108e-02 3.12174833e-03 0. 0. - 1.04058278e-03 7.28407968e-03 3.12174833e-03 1.35275759e-02 - 3.01769003e-02 3.32986489e-02 5.20291366e-03 0. 1.04058278e-03 - 3.12174833e-03 0. 5.20291366e-03 1.04058278e-03 6.24349667e-03 - 1.04058278e-03 0. 0. 3.95421460e-02 0. 5.20291403e-02 - 2.49739867e-02 1.04058278e-03 2.08116556e-03 0. 0. 0. 0. - 2.08116556e-03 2.08116556e-03 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 - 7.28407968e-03 1.04058278e-03 0. 2.08116556e-03 3.12174833e-03 0. - 2.08116556e-03 0. 4.16233111e-03 1.04058278e-03 0. 1.04058278e-03 - 1.87304895e-02 1.04058278e-03 3.32986489e-02 1.24869933e-02 - 6.24349667e-03 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. - 1.04058278e-03 0. 1.04058278e-03 2.08116556e-03 2.08116556e-03 0. - 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 3.12174833e-03 0. 0. 0. - 1.45681594e-02 1.04058278e-03 0. 2.08116556e-03 0. 0. - 1.04058278e-03 1.04058278e-03 0. 0. 0. 0. 0. 0. 1.04058278e-03 - 2.08116556e-03 1.35275759e-02 0. 0. 2.08116556e-03 0. 0. - 1.04058278e-03 1.04058278e-03 8.32466222e-03 0. 1.04058278e-03 - 1.04058278e-03 1.14464108e-02 0. 1.35275759e-02 1.04058278e-03 - 1.04058278e-03 8.32466222e-03 0. 1.04058278e-03 0. 0. 0. - 2.08116556e-03 0. 0. 1.04058278e-03 0. 0. 0. 1.04058278e-03 - 1.35275759e-02 1.04058278e-03 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. - 0. 0. 0. 1.04058278e-03 2.08116556e-03 3.12174833e-03 - 1.14464108e-02 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. - 1.04058278e-03 0. 0. 0. 2.08116556e-03 0. 1.04058278e-03 0. 0. 0. - 0. 0. 0. 0. 1.04058278e-03 0. 1.04058278e-03 1.04058278e-03 0. - 2.08116556e-03 7.28407968e-03 2.08116556e-03 2.80957352e-02 0. - 1.66493244e-02 1.04058278e-03 2.08116556e-03 1.04058278e-03 - 4.16233111e-03 0. 2.08116556e-03 0. 0. 2.08116556e-03 0. 0. - 1.14464108e-02 2.08116556e-03 0. 0. 1.04058278e-03 0. 0. 0. 0. - 1.04058278e-03 0. 0. 1.04058278e-03 0. 1.04058278e-03 - 3.12174833e-03 9.36524477e-03 5.20291366e-03 2.39334032e-02 - 1.04058278e-03 2.80957352e-02 0. 1.04058278e-03 0. 2.08116556e-03 - 1.04058278e-03 2.08116556e-03 1.04058278e-03 0. 2.08116556e-03 - 4.16233111e-03 3.12174833e-03 1.87304895e-02 2.70551518e-02 - 3.12174833e-03 1.04058278e-03 4.16233111e-03 1.04058278e-03 0. 0. - 6.24349667e-03 6.24349667e-03 1.04058273e-02 0. 8.32466222e-03 - 5.20291366e-03 9.36524477e-03 2.08116546e-02 8.01248774e-02 - 8.42872038e-02 3.22580673e-02 3.12174833e-03 7.28407968e-03 - 1.45681594e-02 2.08116556e-03 6.24349667e-03 1.04058273e-02 - 2.08116556e-03 1.04058278e-03 1.04058278e-03 0. 8.32466222e-03 - 3.12174833e-03 1.04058273e-02 2.18522381e-02 2.80957352e-02 - 4.16233111e-03 3.12174833e-03 1.04058278e-03 2.08116556e-03 0. - 3.12174833e-03 0. 1.45681594e-02 3.12174833e-03 0. 0. - 2.18522381e-02 1.04058278e-03 2.49739867e-02 8.32466222e-03 - 1.04058278e-03 1.04058278e-03 1.04058278e-03 1.04058278e-03 0. 0. - 0. 0. 2.08116556e-03 0. 0. 0. 2.08116556e-03 1.04058278e-03 0. - 1.04058278e-03 1.04058273e-02 0. 0. 1.04058278e-03 1.04058278e-03 - 0. 4.16233111e-03 0. 4.16233111e-03 1.04058278e-03 0. - 1.04058278e-03 2.49739867e-02 2.08116556e-03 2.08116546e-02 - 1.35275759e-02 1.04058273e-02 3.12174833e-03 0. 2.08116556e-03 - 1.04058278e-03 0. 0. 0. 1.04058278e-03 0. 0. 0. 1.04058278e-03 0. - 2.08116556e-03 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 0. 0. 1.04058278e-03 1.04058278e-03 0. - 1.04058278e-03 0. 6.24349667e-03 4.16233111e-03 0. 1.04058278e-03 - 1.04058278e-03 0. 1.04058278e-03 2.08116556e-03 0. 2.08116556e-03 - 0. 0. 3.12174833e-03 1.04058278e-03 1.04058278e-03 2.08116556e-03 - 1.04058273e-02 0. 3.12174833e-03 1.04058278e-03 0. 0. - 2.08116556e-03 0. 5.20291366e-03 0. 1.04058278e-03 1.04058278e-03 - 7.28407968e-03 1.04058278e-03 1.45681594e-02 2.08116556e-03 - 1.04058278e-03 7.28407968e-03 0. 0. 1.04058278e-03 1.04058278e-03 - 0. 2.08116556e-03 0. 1.04058278e-03 0. 1.04058278e-03 0. 0. - 1.04058278e-03 7.28407968e-03 3.12174833e-03 0. 0. 0. 0. 0. - 1.04058278e-03 0. 0. 0. 0. 1.04058278e-03 3.12174833e-03 - 1.04058278e-03 3.12174833e-03 5.20291366e-03 0. 0. 0. - 1.04058278e-03 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 1.04058278e-03 0. 0. 2.08116556e-03 0. 0. 0. 0. - 1.04058278e-03 0. 0. 1.04058278e-03 3.12174833e-03 0. - 7.28407968e-03 1.35275759e-02 5.20291366e-03 1.66493244e-02 0. - 4.16233111e-03 0. 1.04058278e-03 0. 2.08116556e-03 0. - 1.04058278e-03 0. 0. 0. 2.08116556e-03 1.04058278e-03 - 4.16233111e-03 2.08116556e-03 2.08116556e-03 0. 0. 0. 0. 0. 0. - 2.08116556e-03 1.04058278e-03 0. 2.08116556e-03 1.04058278e-03 0. - 3.12174833e-03 5.20291366e-03 8.32466222e-03 4.37044762e-02 0. - 1.66493244e-02 2.08116556e-03 1.04058278e-03 2.08116556e-03 - 7.28407968e-03 1.04058278e-03 1.04058278e-03 0. 6.24349667e-03 - 1.04058278e-03 0. 3.12174833e-03 2.91363187e-02 2.08116546e-02 - 1.14464108e-02 0. 7.28407968e-03 0. 0. 1.04058278e-03 - 4.16233111e-03 1.24869933e-02 3.12174833e-03 2.08116556e-03 - 7.28407968e-03 1.14464108e-02 7.28407968e-03 3.74609791e-02 - 1.04058281e-01 6.65972978e-02 1.45681594e-02 9.36524477e-03 - 6.24349667e-03 1.35275759e-02 2.08116556e-03 6.24349667e-03 - 5.20291366e-03 1.04058278e-03 0. 0. 0. 6.24349667e-03 - 1.04058278e-03 4.16233111e-03 6.24349667e-03 2.08116546e-02 - 1.04058278e-03 1.04058278e-03 0. 4.16233111e-03 0. 3.12174833e-03 - 1.04058278e-03 4.16233111e-03 0. 0. 0. 2.39334032e-02 - 1.04058278e-03 3.22580673e-02 1.04058273e-02 4.16233111e-03 - 3.12174833e-03 1.04058278e-03 1.04058278e-03 3.12174833e-03 0. - 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 4.16233111e-03 - 1.04058278e-03 0. 0. 2.08116556e-03 0. 4.16233111e-03 0. - 7.28407968e-03 0. 0. 1.04058278e-03 3.12174838e-02 1.04058278e-03 - 2.49739867e-02 6.24349667e-03 1.04058273e-02 2.08116556e-03 - 1.04058278e-03 2.08116556e-03 0. 0. 0. 0. 1.04058278e-03 0. 0. - 1.04058278e-03 0. 0. 0. 1.04058278e-03 6.24349667e-03 - 1.04058278e-03 0. 0. 0. 0. 0. 0. 3.12174833e-03 1.04058278e-03 0. - 0. 1.04058278e-03 0. 2.08116556e-03 0. 1.04058273e-02 - 1.04058278e-03 0. 0. 0. 1.04058278e-03 0. 0. 1.04058278e-03 0. 0. - 1.04058278e-03 0. 0. 1.04058278e-03 0. 1.56087419e-02 - 1.04058278e-03 0. 1.04058278e-03 0. 0. 0. 1.04058278e-03 - 2.80957352e-02 0. 1.04058278e-03 0. 1.76899079e-02 0. - 1.04058273e-02 3.12174833e-03 2.08116556e-03 5.20291366e-03 0. - 3.12174833e-03 0. 0. 2.08116556e-03 5.20291366e-03 0. 0. 0. 0. - 1.04058278e-03 0. 1.04058278e-03 3.12174833e-03 1.04058278e-03 - 3.12174833e-03 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. - 1.04058278e-03 1.04058278e-03 4.16233111e-03 8.32466222e-03 0. 0. - 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. - 2.08116556e-03 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. - 2.08116556e-03 2.08116556e-03 2.08116556e-03 1.35275759e-02 - 8.32466222e-03 4.68262248e-02 0. 2.60145701e-02 1.04058278e-03 - 3.12174833e-03 0. 5.20291366e-03 0. 1.04058278e-03 0. - 3.12174833e-03 0. 3.12174833e-03 2.08116556e-03 2.08116556e-03 0. - 0. 0. 1.04058278e-03 0. 0. 0. 1.04058278e-03 0. 1.04058278e-03 0. - 0. 0. 2.08116556e-03 0. 7.28407968e-03 8.32466222e-03 - 4.47450578e-02 0. 3.12174838e-02 3.12174833e-03 0. 0. - 1.14464108e-02 0. 2.08116556e-03 0. 0. 1.04058278e-03 0. - 2.08116556e-03 1.56087419e-02 3.43392305e-02 3.01769003e-02 - 1.04058278e-03 1.35275759e-02 1.04058278e-03 2.08116556e-03 0. - 5.20291366e-03 1.04058273e-02 1.14464108e-02 0. 9.36524477e-03 - 1.45681594e-02 7.28407968e-03 1.24869933e-02 7.59625435e-02 - 4.78668064e-02 1.97710730e-02 2.08116556e-03 2.08116556e-03 - 7.28407968e-03 2.08116556e-03 1.04058278e-03 1.04058273e-02 0. - 2.08116556e-03 0. 1.04058278e-03 5.20291366e-03 2.08116556e-03 - 1.35275759e-02 1.31113425e-01 1.24869933e-02 1.04058278e-03 0. - 1.04058278e-03 5.20291366e-03 0. 1.04058278e-03 1.04058278e-03 - 2.08116556e-03 1.04058278e-03 1.04058278e-03 0. 1.35275759e-02 0. - 3.12174838e-02 2.91363187e-02 4.16233111e-03 0. 1.04058278e-03 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 2.08116556e-03 - 1.04058273e-02 1.04058278e-03 0. 0. 1.04058278e-03 0. 0. 0. - 1.04058278e-03 1.04058278e-03 0. 0. 3.01769003e-02 0. - 1.24869933e-02 4.16233111e-03 1.87304895e-02 1.04058278e-03 0. - 1.04058278e-03 4.16233111e-03 0. 0. 0. 1.04058278e-03 0. 0. 0. - 2.08116556e-03 0. 0. 1.04058278e-03 5.20291366e-03 1.04058278e-03 - 0. 0. 0. 0. 0. 0. 2.08116556e-03 0. 0. 1.04058278e-03 - 1.04058278e-03 0. 0. 1.04058278e-03 7.28407968e-03 1.04058278e-03 - 0. 2.08116556e-03 1.04058278e-03 0. 1.04058278e-03 0. - 1.04058278e-03 1.04058278e-03 0. 0. 0. 0. 0. 0. 2.18522381e-02 0. - 0. 0. 2.08116556e-03 0. 0. 0. 9.36524477e-03 1.04058278e-03 0. - 1.04058278e-03 8.32466222e-03 0. 3.12174833e-03 4.16233111e-03 - 1.04058278e-03 6.24349667e-03 0. 6.24349667e-03 1.04058278e-03 - 2.08116556e-03 1.04058278e-03 6.24349667e-03 0. 1.04058278e-03 0. - 0. 0. 0. 0. 8.32466222e-03 0. 0. 0. 2.08116556e-03 0. 0. 0. 0. - 1.04058278e-03 1.04058278e-03 0. 0. 1.04058278e-03 1.04058278e-03 - 0. 9.36524477e-03 1.04058278e-03 0. 0. 0. 1.04058278e-03 0. 0. - 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. - 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 3.12174833e-03 0. - 6.24349667e-03 3.12174833e-03 1.87304895e-02 0. 1.97710730e-02 0. - 0. 0. 1.35275759e-02 0. 1.04058278e-03 0. 0. 0. 0. 0. - 6.24349667e-03 3.12174833e-03 1.04058278e-03 0. 2.08116556e-03 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 1.04058278e-03 - 1.14464108e-02 2.70551518e-02 0. 1.56087419e-02 2.08116556e-03 0. - 0. 9.36524477e-03 0. 1.04058278e-03 0. 1.04058278e-03 - 2.08116556e-03 3.12174833e-03 0. 1.35275759e-02 6.55567124e-02 - 3.32986489e-02 1.04058278e-03 1.04058273e-02 1.04058278e-03 - 1.04058278e-03 0. 5.20291366e-03 1.35275759e-02 1.45681594e-02 - 2.08116556e-03 1.24869933e-02 1.24869933e-02 8.32466222e-03 - 1.24869933e-02 6.24349676e-02 5.09885550e-02 3.53798158e-02 - 1.04058278e-03 6.24349667e-03 5.20291366e-03 0. 5.20291366e-03 - 1.14464108e-02 1.04058278e-03 0. 0. 0. 6.24349667e-03 0. - 8.32466222e-03 8.32466222e-03 2.18522381e-02 6.24349667e-03 0. - 2.08116556e-03 1.04058278e-03 0. 5.20291366e-03 1.04058278e-03 - 1.04058278e-03 1.04058278e-03 0. 0. 2.60145701e-02 1.04058278e-03 - 5.61914705e-02 1.97710730e-02 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 1.35275759e-02 2.08116556e-03 - 0. 0. 2.08116556e-03 0. 1.04058278e-03 1.04058278e-03 - 3.12174833e-03 0. 0. 1.04058278e-03 1.45681594e-02 0. - 1.66493244e-02 6.24349667e-03 1.45681594e-02 5.20291366e-03 0. - 1.04058278e-03 1.04058278e-03 0. 1.04058278e-03 2.08116556e-03 0. - 0. 0. 0. 1.04058278e-03 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 2.08116556e-03 0. 1.04058278e-03 2.08116556e-03 - 5.20291366e-03 2.08116556e-03 1.04058278e-03 0. 1.04058278e-03 0. - 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 2.08116556e-03 - 6.24349667e-03 1.04058278e-03 0. 3.12174833e-03 0. 0. - 1.04058278e-03 0. 3.12174833e-03 0. 0. 0. 7.28407968e-03 0. - 7.28407968e-03 3.12174833e-03 2.08116556e-03 7.28407968e-03 0. - 5.20291366e-03 0. 1.04058278e-03 1.04058278e-03 3.12174833e-03 0. - 0. 0. 0. 0. 0. 0. 1.04058273e-02 0. 0. 0. 1.04058278e-03 0. 0. 0. - 0. 0. 0. 0. 1.04058278e-03 0. 0. 2.08116556e-03 6.24349667e-03 0. - 0. 0. 0. 0. 0. 0. 2.08116556e-03 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 0. 0. 1.04058278e-03 1.04058278e-03 0. 0. 0. - 1.04058278e-03 0. 0. 0. 0. 0. 0. 2.08116556e-03 8.32466222e-03 - 3.12174833e-03 2.70551518e-02 0. 1.97710730e-02 4.16233111e-03 - 3.12174833e-03 0. 8.32466222e-03 1.04058278e-03 2.08116556e-03 0. - 1.04058278e-03 1.04058278e-03 0. 0. 7.28407968e-03 1.04058278e-03 - 1.04058278e-03 1.04058278e-03 2.08116556e-03 0. 0. 0. - 1.04058278e-03 1.04058278e-03 0. 0. 1.04058278e-03 2.08116556e-03 - 1.04058278e-03 1.04058278e-03 1.14464108e-02 8.32466222e-03 - 1.47762761e-01 0. 2.18522381e-02 3.12174833e-03 0. 2.08116556e-03 - 1.35275759e-02 2.08116556e-03 3.12174833e-03 1.04058278e-03 - 4.16233111e-03 0. 2.08116556e-03 2.08116556e-03 2.39334032e-02 - 1.04058273e-02 1.97710730e-02 0. 1.24869933e-02 2.08116556e-03 0. - 0. 4.16233111e-03 1.04058278e-03 8.32466222e-03 1.04058278e-03 - 7.28407968e-03 7.28407968e-03 7.28407968e-03 1.66493244e-02 - 8.53277892e-02 1.24869933e-02 9.36524477e-03 0. 1.04058278e-03 - 9.36524477e-03 0. 2.08116556e-03 6.24349676e-02 0. 0. 0. 0. - 3.12174833e-03 0. 0. 2.08116546e-02 7.28407968e-03 2.08116556e-03 - 1.04058278e-03 0. 0. 0. 0. 3.12174833e-03 1.04058278e-03 0. 0. 0. - 3.01769003e-02 2.08116556e-03 1.87304895e-02 5.93132190e-02 0. 0. - 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 1.04058278e-03 0. 1.04058278e-03 0. 0. 0. 0. - 4.16233111e-03 0. 0. 0. 1.56087419e-02 0. 5.20291366e-03 - 1.45681594e-02 3.12174833e-03 0. 0. 1.04058278e-03 3.12174833e-03 - 0. 0. 2.08116556e-03 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 3.12174833e-03 0. - 1.04058278e-03 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 - 0. 0. 0. 0. 0. 0. 0. 0. 2.18522381e-02 1.04058278e-03 - 1.04058278e-03 1.04058278e-03 1.04058278e-03 0. 2.08116556e-03 - 1.04058278e-03 7.28407949e-02 1.04058278e-03 0. 0. 7.18002096e-02 - 1.04058278e-03 1.87304895e-02 1.66493244e-02 1.04058278e-03 - 1.04058278e-03 0. 0. 0. 2.08116556e-03 0. 6.65972978e-02 0. 0. 0. - 0. 0. 0. 0. 2.39334032e-02 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 1.45681594e-02 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 5.20291366e-03 - 2.08116556e-03 1.24869933e-02 0. 4.16233111e-03 1.04058278e-03 - 5.20291366e-03 0. 4.78668064e-02 0. 0. 0. 0. 0. 1.04058278e-03 0. - 1.45681594e-02 1.04058278e-03 1.04058278e-03 0. 0. 0. 0. 0. - 3.12174833e-03 0. 1.04058278e-03 0. 0. 0. 2.08116556e-03 0. - 3.85015644e-02 1.04058278e-03 3.01769003e-02 0. 2.08116556e-03 0. - 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 4.16233111e-03 - 3.12174833e-03 1.56087419e-02 0. 8.32466222e-03 0. 1.04058278e-03 - 0. 6.24349667e-03 3.12174833e-03 9.36524477e-03 0. 2.08116556e-03 - 7.28407968e-03 1.66493244e-02 3.12174833e-03 1.17585853e-01 - 7.28407968e-03 1.24869933e-02 0. 5.20291366e-03 6.24349667e-03 0. - 2.08116556e-03 8.32466222e-03 1.04058278e-03 0. 0. 1.04058278e-03 - 1.04058278e-03 1.04058278e-03 1.87304895e-02 7.07596317e-02 - 9.36524477e-03 1.66493244e-02 0. 1.04058278e-03 0. 1.04058278e-03 - 0. 2.08116556e-03 7.28407968e-03 2.08116556e-03 0. 0. - 3.32986489e-02 3.12174833e-03 1.03017695e-01 1.25910521e-01 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 2.08116556e-03 - 1.04058278e-03 0. 0. 1.04058278e-03 0. 0. 0. 8.32466222e-03 - 1.04058278e-03 0. 0. 1.66493244e-02 0. 2.08116546e-02 - 8.32466222e-03 2.08116556e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 2.08116556e-03 0. - 1.04058278e-03 1.04058278e-03 1.04058278e-03 0. 0. 0. - 1.04058278e-03 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. - 7.28407968e-03 0. 0. 1.04058278e-03 0. 0. 0. 0. 2.08116556e-03 0. - 0. 1.04058278e-03 6.24349667e-03 0. 2.28928216e-02 4.16233111e-03 - 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. - 3.12174833e-03 0. 2.08116556e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 5.20291366e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 3.12174833e-03 0. - 9.36524477e-03 0. 1.04058278e-03 0. 0. 0. 3.12174833e-03 0. 0. 0. - 0. 1.04058278e-03 0. 0. 5.20291366e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 4.16233111e-03 7.28407968e-03 2.91363187e-02 0. - 0. 0. 0. 1.04058278e-03 3.12174833e-03 0. 0. 0. 0. 0. 0. - 1.04058278e-03 1.04058273e-02 1.09261192e-01 1.61290333e-01 0. - 2.08116556e-03 0. 0. 0. 2.08116556e-03 0. 1.04058278e-03 0. - 1.04058278e-03 1.97710730e-02 3.12174833e-03 1.76899079e-02 - 3.85015644e-02 5.30697219e-02 1.56087419e-02 3.12174833e-03 - 5.20291366e-03 1.14464108e-02 0. 5.20291366e-03 3.12174833e-03 - 2.08116556e-03 0. 1.04058278e-03 3.12174833e-03 4.16233111e-03 0. - 1.24869933e-02 2.08116546e-02 2.18522381e-02 1.04058278e-03 0. 0. - 4.16233111e-03 0. 1.04058278e-03 1.04058278e-03 3.12174833e-03 - 1.04058278e-03 0. 2.08116556e-03 1.76899079e-02 1.04058278e-03 - 2.49739867e-02 3.12174838e-02 2.08116556e-03 2.08116556e-03 0. - 1.04058278e-03 0. 0. 0. 2.08116556e-03 0. 1.04058278e-03 0. 0. 0. - 1.04058278e-03 1.04058278e-03 0. 1.14464108e-02 2.08116556e-03 0. - 0. 0. 0. 2.08116556e-03 1.04058278e-03 5.20291366e-03 0. 0. - 1.04058278e-03 2.08116546e-02 0. 2.70551518e-02 5.20291366e-03 - 2.08116546e-02 2.08116556e-03 1.04058278e-03 3.12174833e-03 - 2.08116556e-03 0. 1.04058278e-03 3.12174833e-03 1.04058278e-03 0. - 0. 0. 0. 0. 0. 1.04058278e-03 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. - 0. 0. 1.04058278e-03 0. 1.04058278e-03 0. 0. 2.08116556e-03 - 7.28407968e-03 2.08116556e-03 1.04058278e-03 1.04058278e-03 - 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.56087419e-02 0. - 1.04058278e-03 0. 2.08116556e-03 0. 0. 1.04058278e-03 - 7.28407968e-03 0. 1.04058278e-03 0. 8.32466222e-03 0. - 7.28407968e-03 2.08116556e-03 1.04058278e-03 8.32466222e-03 - 1.04058278e-03 7.28407968e-03 0. 0. 0. 7.28407968e-03 0. 0. 0. - 1.04058278e-03 0. 0. 1.04058278e-03 6.24349667e-03 1.04058278e-03 - 4.16233111e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 2.08116556e-03 - 1.04058278e-03 0. 2.08116556e-03 7.28407968e-03 0. 0. 0. - 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 2.08116556e-03 - 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 3.12174833e-03 - 1.04058278e-03 4.16233111e-03 1.04058273e-02 1.04058273e-02 - 2.60145701e-02 0. 2.28928216e-02 0. 0. 2.08116556e-03 - 1.66493244e-02 0. 0. 0. 2.08116556e-03 0. 0. 0. 6.24349667e-03 - 3.12174833e-03 2.08116556e-03 0. 1.04058278e-03 0. 1.04058278e-03 - 1.04058278e-03 0. 0. 1.04058278e-03 0. 1.04058278e-03 0. - 1.04058278e-03 1.04058278e-03 6.24349667e-03 8.32466222e-03 - 4.26638946e-02 0. 1.97710730e-02 1.04058278e-03 1.04058278e-03 - 1.04058278e-03 8.32466222e-03 1.04058278e-03 1.04058278e-03 0. - 3.12174833e-03 0. 0. 4.16233111e-03 2.08116546e-02 4.57856432e-02 - 4.68262248e-02 3.12174833e-03 7.28407968e-03 2.08116556e-03 0. - 1.04058278e-03 2.08116556e-03 1.14464108e-02 7.28407968e-03 0. - 1.24869933e-02 1.24869933e-02 1.04058273e-02 2.39334032e-02 - 8.63683671e-02 8.22060406e-02 3.74609791e-02 2.08116556e-03 - 7.28407968e-03 1.35275759e-02 2.08116556e-03 9.36524477e-03 - 1.04058273e-02 3.12174833e-03 1.04058278e-03 0. 1.04058278e-03 - 2.08116556e-03 3.12174833e-03 1.76899079e-02 2.39334032e-02 - 3.01769003e-02 2.08116556e-03 1.04058278e-03 2.08116556e-03 - 6.24349667e-03 0. 2.08116556e-03 0. 1.04058273e-02 2.08116556e-03 - 0. 0. 1.66493244e-02 2.08116556e-03 3.22580673e-02 1.45681594e-02 - 3.12174833e-03 0. 0. 0. 2.08116556e-03 0. 2.08116556e-03 - 1.04058278e-03 0. 1.04058278e-03 0. 0. 0. 1.04058278e-03 0. - 5.20291366e-03 8.32466222e-03 2.08116556e-03 0. 1.04058278e-03 - 1.04058278e-03 0. 2.08116556e-03 0. 4.16233111e-03 3.12174833e-03 - 0. 1.04058278e-03 8.32466222e-03 0. 1.76899079e-02 1.14464108e-02 - 1.14464108e-02 2.08116556e-03 1.04058278e-03 5.20291366e-03 - 2.08116556e-03 0. 1.04058278e-03 0. 1.04058278e-03 1.04058278e-03 - 0. 0. 2.08116556e-03 0. 2.08116556e-03 2.08116556e-03 - 1.04058278e-03 0. 0. 0. 1.04058278e-03 0. 0. 0. 1.04058278e-03 0. - 0. 0. 4.16233111e-03 0. 1.04058278e-03 1.04058278e-03 - 5.20291366e-03 5.20291366e-03 1.04058278e-03 0. 0. 0. 0. - 1.04058278e-03 0. 0. 0. 0. 2.08116556e-03 0. 3.12174833e-03 0. - 1.45681594e-02 1.04058278e-03 1.04058278e-03 1.04058278e-03 - 2.08116556e-03 0. 1.04058278e-03 1.04058278e-03 5.20291366e-03 0. - 0. 0. 4.16233111e-03 0. 1.04058273e-02 5.20291366e-03 - 4.16233111e-03 1.04058273e-02 0. 5.20291366e-03 0. 2.08116556e-03 - 0. 6.24349667e-03 1.04058278e-03 2.08116556e-03 0. 0. 0. - 2.08116556e-03 1.04058278e-03 1.56087419e-02 2.08116556e-03 - 4.16233111e-03 0. 1.04058278e-03 1.04058278e-03 0. 0. 0. - 2.08116556e-03 0. 0. 3.12174833e-03 1.04058278e-03 2.08116556e-03 - 3.12174833e-03 8.32466222e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 1.04058278e-03 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 1.04058278e-03 0. 0. 0. 3.12174833e-03 - 7.28407968e-03 3.12174833e-03 8.32466222e-03 0. 9.36524477e-03 - 1.04058278e-03 1.04058278e-03 1.04058278e-03 8.32466222e-03 0. - 3.12174833e-03 0. 1.04058278e-03 1.04058278e-03 1.04058278e-03 0. - 8.32466222e-03 3.12174833e-03 1.04058278e-03 0. 0. 0. 0. 0. - 1.04058278e-03 0. 0. 0. 1.04058278e-03 1.04058278e-03 0. - 1.04058278e-03 6.24349667e-03 1.45681594e-02 2.39334032e-02 - 1.04058278e-03 1.45681594e-02 0. 0. 4.16233111e-03 1.76899079e-02 - 0. 2.08116556e-03 0. 3.12174833e-03 1.04058278e-03 2.08116556e-03 - 4.16233111e-03 2.39334032e-02 9.36524477e-03 1.24869933e-02 0. - 1.14464108e-02 1.04058278e-03 0. 2.08116556e-03 1.04058278e-03 - 1.24869933e-02 7.28407968e-03 2.08116556e-03 1.24869933e-02 - 8.32466222e-03 4.16233111e-03 2.91363187e-02 1.00936532e-01 - 7.59625435e-02 2.60145701e-02 1.04058278e-03 3.12174833e-03 - 5.20291366e-03 4.16233111e-03 4.16233111e-03 9.36524477e-03 - 4.16233111e-03 2.08116556e-03 0. 0. 5.20291366e-03 1.04058278e-03 - 3.12174833e-03 7.28407968e-03 1.66493244e-02 0. 3.12174833e-03 - 1.04058278e-03 3.12174833e-03 2.08116556e-03 8.32466222e-03 - 1.04058278e-03 4.16233111e-03 0. 0. 0. 2.08116546e-02 - 1.04058278e-03 2.39334032e-02 6.24349667e-03 3.12174833e-03 - 4.16233111e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. - 3.12174833e-03 3.12174833e-03 0. 0. 0. 1.04058278e-03 0. - 1.04058278e-03 1.04058278e-03 2.08116556e-03 0. 0. 1.04058278e-03 - 2.08116556e-03 1.04058278e-03 1.97710730e-02 3.12174833e-03 - 6.24349667e-03 4.16233111e-03 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. - 0. 0. 0. 0. 0. 1.04058278e-03 2.08116556e-03 0. 0. 1.04058278e-03 - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 2.08116556e-03 - 4.16233111e-03 0. 2.08116556e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 2.08116556e-03 5.20291366e-03 3.12174833e-03 0. 0. 0. 0. - 1.04058278e-03 1.04058278e-03 2.08116556e-03 0. 0. 0. - 1.04058278e-03 0. 3.12174833e-03 2.08116556e-03 8.32466222e-03 - 9.36524477e-03 0. 3.12174833e-03 1.04058278e-03 1.04058278e-03 0. - 4.16233111e-03 1.04058278e-03 1.04058278e-03 0. 0. 1.04058278e-03 - 1.04058278e-03 0. 7.28407968e-03 2.08116556e-03 1.04058278e-03 - 1.04058278e-03 1.04058278e-03 1.04058278e-03 0. 2.08116556e-03 0. - 1.04058278e-03 0. 0. 0. 0. 0. 7.28407968e-03 6.24349667e-03 - 2.08116556e-03 1.04058278e-03 0. 0. 1.04058278e-03 0. - 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 3.12174833e-03 2.08116556e-03 0. 1.04058278e-03 0. 0. 0. - 1.04058278e-03 0. 4.16233111e-03 1.56087419e-02 2.70551518e-02 0. - 7.28407968e-03 2.08116556e-03 3.12174833e-03 0. 7.28407968e-03 - 1.04058278e-03 1.04058278e-03 0. 1.04058278e-03 1.04058278e-03 0. - 0. 5.20291366e-03 0. 3.12174833e-03 1.04058278e-03 0. 0. 0. 0. 0. - 1.04058278e-03 0. 0. 1.04058278e-03 1.04058278e-03 1.04058278e-03 - 1.04058278e-03 4.16233111e-03 1.56087419e-02 1.01977110e-01 0. - 1.87304895e-02 1.04058278e-03 1.04058278e-03 0. 1.45681594e-02 - 2.08116556e-03 4.16233111e-03 0. 1.04058278e-03 2.08116556e-03 - 2.08116556e-03 1.04058278e-03 2.60145701e-02 8.22060406e-02 - 6.24349676e-02 0. 1.35275759e-02 0. 1.04058278e-03 2.08116556e-03 - 1.24869933e-02 6.24349667e-03 6.24349667e-03 0. 3.12174833e-03 - 5.20291366e-03 4.16233111e-03 1.76899079e-02 9.26118642e-02 - 2.28928216e-02 1.04058273e-02 1.04058278e-03 7.28407968e-03 - 6.24349667e-03 3.12174833e-03 4.16233111e-03 2.49739867e-02 - 1.04058278e-03 0. 0. 0. 3.12174833e-03 0. 1.04058273e-02 - 2.80957352e-02 5.20291366e-03 2.08116556e-03 1.04058278e-03 - 2.08116556e-03 2.08116556e-03 0. 1.04058278e-03 1.04058278e-03 - 7.28407968e-03 1.04058278e-03 0. 1.04058278e-03 2.39334032e-02 0. - 6.55567124e-02 2.80957352e-02 0. 0. 0. 0. 0. 0. 0. 0. - 2.08116556e-03 0. 0. 0. 1.04058278e-03 0. 0. 0. 2.08116556e-03 0. - 0. 0. 0. 0. 0. 0. 1.87304895e-02 0. 0. 0. 2.08116546e-02 0. - 6.24349667e-03 8.32466222e-03 5.20291366e-03 2.08116556e-03 0. - 2.08116556e-03 1.04058278e-03 0. 1.04058278e-03 0. 3.12174833e-03 - 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 0. 0. 0. 1.04058278e-03 0. 0. 0. 3.12174833e-03 0. - 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 1.04058278e-03 0. 0. - 1.04058278e-03 2.39334032e-02 2.08116556e-03 0. 0. 0. 0. 0. - 1.04058278e-03 2.49739867e-02 0. 3.12174833e-03 0. 2.39334032e-02 - 1.04058278e-03 9.36524477e-03 4.16233111e-03 0. 6.24349667e-03 - 1.04058278e-03 1.14464108e-02 1.04058278e-03 1.04058278e-03 0. - 3.32986489e-02 0. 0. 0. 0. 0. 0. 0. 1.56087419e-02 0. - 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 7.28407968e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. - 0. 0. 1.04058278e-03 0. 1.04058278e-03 0. 1.04058278e-03 0. 0. 0. - 0. 0. 0. 0. 1.04058278e-03 1.04058278e-03 0. 1.04058278e-03 - 5.20291366e-03 4.16233111e-03 1.56087419e-02 0. 2.18522381e-02 0. - 0. 2.08116556e-03 2.08116546e-02 0. 0. 0. 0. 1.04058278e-03 0. 0. - 1.35275759e-02 0. 2.08116556e-03 1.04058278e-03 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 4.16233111e-03 1.76899079e-02 3.95421460e-02 - 1.04058278e-03 1.56087419e-02 0. 0. 0. 1.24869933e-02 0. 0. 0. 0. - 0. 0. 0. 7.28407968e-03 1.23829350e-01 4.68262248e-02 - 2.08116556e-03 8.32466222e-03 2.08116556e-03 0. 0. 3.12174833e-03 - 2.39334032e-02 5.20291366e-03 1.04058278e-03 7.28407968e-03 - 1.04058273e-02 3.12174833e-03 8.32466222e-03 4.26638946e-02 - 3.12174838e-02 4.99479733e-02 2.08116556e-03 9.36524477e-03 - 9.36524477e-03 1.04058278e-03 9.36524477e-03 2.49739867e-02 - 1.04058278e-03 1.04058278e-03 0. 0. 5.20291366e-03 0. - 2.39334032e-02 1.20707601e-01 3.22580673e-02 1.56087419e-02 - 1.04058278e-03 1.04058278e-03 1.04058278e-03 0. 0. 3.12174833e-03 - 2.08116556e-03 1.04058278e-03 0. 1.04058278e-03 1.24869933e-02 0. - 1.12382941e-01 6.45161346e-02 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 1.04058278e-03 2.08116556e-03 0. 0. 0. 0. 0. 0. 0. - 6.24349667e-03 0. 0. 0. 1.97710730e-02 0. 1.24869933e-02 - 5.20291366e-03 1.04058278e-03 2.08116556e-03 0. 2.08116556e-03 - 1.04058278e-03 0. 2.08116556e-03 2.08116556e-03 0. 0. 0. 0. - 2.08116556e-03 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 1.04058278e-03 - 2.08116556e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 2.08116556e-03 0. - 3.12174833e-03 1.04058278e-03 0. 1.04058278e-03 0. 0. 0. 0. - 3.12174833e-03 0. 0. 1.04058278e-03 5.20291366e-03 0. - 2.08116556e-03 4.16233111e-03 1.04058278e-03 3.12174833e-03 0. - 8.32466222e-03 0. 0. 1.04058278e-03 1.35275759e-02 0. 0. 0. 0. 0. - 0. 0. 1.45681594e-02 1.04058278e-03 2.08116556e-03 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 2.08116556e-03 1.04058273e-02 0. 0. 0. 0. 0. - 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. - 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 2.08116556e-03 0. 0. 0. - 9.36524477e-03 1.04058278e-03 9.36524477e-03 0. 6.24349667e-03 0. - 0. 0. 8.32466222e-03 0. 0. 0. 0. 0. 0. 1.04058278e-03 - 9.36524477e-03 2.08116556e-03 1.04058278e-03 0. 0. 0. 0. 0. - 1.04058278e-03 0. 0. 0. 0. 0. 0. 1.04058278e-03 5.20291366e-03 - 5.20291366e-03 2.39334032e-02 0. 2.08116556e-03 2.08116556e-03 0. - 0. 6.24349667e-03 1.04058278e-03 0. 0. 0. 2.08116556e-03 0. - 7.28407968e-03 3.22580673e-02 6.34755492e-02 1.14464108e-02 - 1.04058278e-03 2.08116556e-03 0. 0. 1.04058278e-03 2.08116556e-03 - 4.16233111e-03 3.12174833e-03 0. 4.16233111e-03 1.04058278e-03 - 1.04058278e-03 3.01769003e-02 4.99479733e-02 2.80957352e-02 - 3.64203975e-02 1.04058278e-03 6.24349667e-03 4.16233111e-03 - 4.16233111e-03 0. 1.66493244e-02 0. 0. 0. 0. 1.04058278e-03 - 1.04058278e-03 7.28407968e-03 3.22580673e-02 3.95421460e-02 - 6.24349667e-03 3.12174833e-03 1.04058278e-03 6.24349667e-03 - 3.12174833e-03 4.16233111e-03 2.08116556e-03 3.12174833e-03 0. 0. - 1.04058278e-03 3.32986489e-02 4.16233111e-03 7.28407949e-02 - 6.13943823e-02 1.04058278e-03 2.08116556e-03 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 2.08116556e-03 5.20291366e-03 2.08116556e-03 0. - 1.04058278e-03 1.04058278e-03 0. 1.04058278e-03 0. 1.04058278e-03 - 0. 0. 0. 0. 1.04058278e-03 1.04058273e-02 1.35275759e-02 - 4.16233111e-03 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 1.04058278e-03 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 2.08116556e-03 1.04058278e-03 2.08116556e-03 0. - 1.04058278e-03 3.12174833e-03 1.04058278e-03 1.04058278e-03 0. 0. - 0. 1.04058278e-03 0. 0. 0. 0. 0. 1.04058278e-03 0. 1.04058278e-03 - 1.45681594e-02 2.08116556e-03 0. 0. 7.28407968e-03 1.04058278e-03 - 1.04058278e-03 1.04058278e-03 3.12174833e-03 1.04058278e-03 0. 0. - 1.14464108e-02 0. 1.45681594e-02 2.49739867e-02 0. 2.08116556e-03 - 0. 0. 0. 0. 0. 2.08116556e-03 0. 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 0. 0. 0. 0. 0. 1.04058278e-03 1.04058278e-03 0. 0. - 0. 0. 0. 1.04058278e-03 2.08116556e-03 8.32466222e-03 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 5.20291366e-03 1.04058278e-03 1.14464108e-02 0. 0. - 1.04058278e-03 2.08116556e-03 0. 6.24349667e-03 0. 0. 0. 0. 0. - 1.04058278e-03 0. 8.32466222e-03 0. 1.04058278e-03 0. 0. 0. - 2.08116556e-03 0. 1.04058278e-03 0. 1.04058278e-03 0. 0. 0. 0. - 2.08116556e-03 1.35275759e-02 6.24349667e-03 1.46722168e-01 0. - 9.36524477e-03 0. 1.04058278e-03 0. 3.12174833e-03 1.04058278e-03 - 3.12174833e-03 0. 0. 1.04058278e-03 3.12174833e-03 3.12174833e-03 - 3.53798158e-02 1.14464108e-02 1.14464108e-02 0. 1.04058278e-03 - 2.08116556e-03 0. 0. 2.08116556e-03 1.04058278e-03 6.24349667e-03 - 0. 3.12174833e-03 1.24869933e-02 1.04058273e-02 3.01769003e-02 - 9.26118642e-02 6.24349667e-03 4.16233111e-03 0. 2.08116556e-03 - 8.32466222e-03 3.12174833e-03 0. 2.60145701e-02 0. 0. 0. 0. - 2.08116556e-03 0. 4.16233111e-03 8.32466222e-03 1.24869933e-02 - 1.04058278e-03 0. 0. 3.12174833e-03 2.08116556e-03 2.08116556e-03 - 1.04058278e-03 4.16233111e-03 0. 0. 0. 7.49219581e-02 - 2.08116556e-03 5.09885550e-02 4.57856432e-02 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 5.20291366e-03 0. 0. 0. 2.08116556e-03 - 0. 0. 1.04058278e-03 1.04058278e-03 0. 0. 1.04058278e-03 - 5.41103035e-02 0. 3.22580673e-02 2.18522381e-02 1.14464108e-02 - 3.12174833e-03 0. 0. 1.04058278e-03 0. 0. 1.04058278e-03 - 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 2.08116556e-03 0. 0. 0. - 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 - 2.60145701e-02 0. 0. 0. 1.04058273e-02 1.04058278e-03 - 1.04058278e-03 1.04058278e-03 1.56087419e-02 0. 0. 2.08116556e-03 - 7.70031288e-02 3.12174833e-03 2.18522381e-02 2.80957352e-02 - 1.04058278e-03 3.12174833e-03 0. 2.08116556e-03 0. 0. 0. - 1.14464108e-02 0. 0. 0. 0. 0. 0. 0. 3.12174833e-03 0. 0. 0. 0. 0. - 0. 0. 0. 0. 1.04058278e-03 0. 0. 1.04058278e-03 1.04058278e-03 - 2.08116556e-03 6.24349667e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 - 2.08116556e-03 8.32466222e-03 1.04058278e-03 3.22580673e-02 0. - 4.26638946e-02 0. 6.24349667e-03 0. 8.32466222e-03 0. 0. 0. 0. 0. - 0. 0. 6.24349667e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 4.16233111e-03 0. 9.36524477e-03 0. 4.89073917e-02 - 0. 1.76899079e-02 0. 1.04058278e-03 1.04058278e-03 4.16233111e-03 - 0. 0. 0. 1.04058278e-03 0. 0. 0. 5.20291366e-03 3.12174833e-03 - 1.56087419e-02 0. 6.24349667e-03 1.04058278e-03 5.20291366e-03 0. - 9.36524477e-03 5.20291366e-03 5.20291366e-03 0. 3.12174833e-03 - 9.36524477e-03 2.39334032e-02 1.14464108e-02 7.28407949e-02 - 7.28407968e-03 1.66493244e-02 0. 2.08116556e-03 1.04058278e-03 - 2.08116556e-03 4.16233111e-03 8.32466222e-03 0. 0. 0. 0. - 6.24349667e-03 0. 1.87304895e-02 5.72320521e-02 6.24349667e-03 - 9.36524477e-03 0. 1.04058278e-03 1.04058278e-03 0. 0. - 2.08116556e-03 6.24349667e-03 2.08116556e-03 0. 0. 1.24869933e-02 - 6.24349667e-03 6.03538007e-02 7.90842921e-02 1.04058278e-03 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 1.04058278e-03 - 1.04058278e-03 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. - 7.28407968e-03 1.04058278e-03 6.24349667e-03 4.16233111e-03 0. 0. - 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 2.08116556e-03 - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 2.08116556e-03 0. 0. 0. - 2.08116556e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 2.49739867e-02 0. 0. 0. 0. 0. 0. 0. 1.87304895e-02 - 0. 0. 0. 1.97710730e-02 0. 4.16233111e-03 2.08116556e-03 0. - 1.04058278e-03 0. 1.04058278e-03 0. 1.04058278e-03 0. - 5.20291366e-03 0. 0. 0. 0. 0. 0. 0. 6.24349667e-03 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 4.16233111e-03 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 1.04058278e-03 2.08116556e-03 1.14464108e-02 0. - 2.08116556e-03 0. 1.04058278e-03 0. 8.32466222e-03 0. 0. 0. 0. 0. - 0. 0. 2.08116556e-03 0. 5.20291366e-03 0. 1.04058278e-03 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 2.08116556e-03 1.66493244e-02 - 1.38397515e-01 0. 1.04058273e-02 0. 1.04058278e-03 0. - 8.32466222e-03 0. 1.04058278e-03 0. 0. 0. 0. 1.04058278e-03 - 6.24349667e-03 9.88553613e-02 1.42559841e-01 0. 4.16233111e-03 - 1.04058278e-03 2.08116556e-03 0. 6.24349667e-03 9.36524477e-03 - 8.32466222e-03 0. 4.16233111e-03 1.24869933e-02 1.14464108e-02 - 1.45681594e-02 3.43392305e-02 7.38813803e-02 4.05827276e-02 - 2.08116556e-03 6.24349667e-03 6.24349667e-03 1.04058278e-03 - 3.12174833e-03 4.16233111e-03 2.08116556e-03 0. 0. 0. - 3.12174833e-03 1.04058278e-03 2.60145701e-02 3.53798158e-02 - 4.16233093e-02 7.28407968e-03 2.08116556e-03 2.08116556e-03 - 4.16233111e-03 0. 5.20291366e-03 1.04058278e-03 6.24349667e-03 0. - 1.04058278e-03 0. 9.36524477e-03 1.04058278e-03 5.51508889e-02 - 2.70551518e-02 7.28407968e-03 3.12174833e-03 1.04058278e-03 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 3.12174833e-03 6.24349667e-03 0. - 1.04058278e-03 1.04058278e-03 0. 0. 2.08116556e-03 0. - 3.12174833e-03 0. 0. 0. 6.24349667e-03 0. 1.45681594e-02 - 6.24349667e-03 8.32466222e-03 5.20291366e-03 1.04058278e-03 0. - 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. - 2.08116556e-03 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 1.04058278e-03 2.08116556e-03 7.28407968e-03 4.16233111e-03 - 0. 1.04058278e-03 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. - 1.04058278e-03 2.08116556e-03 7.28407968e-03 2.08116556e-03 0. 0. - 0. 0. 0. 1.04058278e-03 4.16233111e-03 0. 0. 0. 4.16233111e-03 0. - 1.35275759e-02 3.12174833e-03 2.08116556e-03 2.08116556e-03 0. 0. - 0. 0. 1.04058278e-03 5.20291366e-03 0. 0. 0. 1.04058278e-03 0. 0. - 2.08116556e-03 4.16233111e-03 3.12174833e-03 4.16233111e-03 0. 0. - 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 5.20291366e-03 - 7.28407968e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 0. 1.04058278e-03 0. 1.04058278e-03 0. 0. 0. 0. 0. - 0. 0. 0. 1.04058278e-03 0. 2.08116556e-03 8.32466222e-03 - 5.20291366e-03 1.14464108e-02 0. 7.28407968e-03 0. 0. 0. - 5.20291366e-03 0. 1.04058278e-03 0. 0. 2.08116556e-03 0. - 2.08116556e-03 1.14464108e-02 0. 1.04058278e-03 1.04058278e-03 0. - 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 2.08116556e-03 1.04058278e-03 - 1.04058278e-03 2.08116556e-03 1.45681594e-02 5.51508889e-02 0. - 2.08116546e-02 3.12174833e-03 1.04058278e-03 1.04058278e-03 - 7.28407968e-03 2.08116556e-03 3.12174833e-03 0. 2.08116556e-03 0. - 2.08116556e-03 5.20291366e-03 3.74609791e-02 3.32986489e-02 - 1.97710730e-02 2.08116556e-03 4.16233111e-03 0. 0. 3.12174833e-03 - 2.08116556e-03 1.24869933e-02 1.45681594e-02 1.04058278e-03 - 5.20291366e-03 9.36524477e-03 3.12174833e-03 3.74609791e-02 - 9.05307010e-02 8.11654553e-02 3.12174838e-02 1.04058278e-03 - 1.35275759e-02 5.20291366e-03 1.04058278e-03 1.24869933e-02 - 8.32466222e-03 7.28407968e-03 2.08116556e-03 0. 0. 4.16233111e-03 - 1.04058278e-03 9.36524477e-03 2.49739867e-02 3.12174838e-02 - 7.28407968e-03 2.08116556e-03 1.04058278e-03 4.16233111e-03 0. - 4.16233111e-03 1.04058278e-03 5.20291366e-03 2.08116556e-03 0. - 1.04058278e-03 1.87304895e-02 0. 3.01769003e-02 1.35275759e-02 - 5.20291366e-03 0. 1.04058278e-03 2.08116556e-03 0. 0. - 1.04058278e-03 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 - 6.24349667e-03 3.12174833e-03 1.04058278e-03 0. 1.04058278e-03 0. - 1.04058278e-03 1.04058278e-03 5.20291366e-03 0. 0. 0. - 1.04058278e-03 0. 2.18522381e-02 1.04058273e-02 2.08116556e-03 - 2.08116556e-03 0. 1.04058278e-03 1.04058278e-03 0. 0. 0. 0. 0. - 1.04058278e-03 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 7.28407968e-03 4.16233111e-03 - 1.04058278e-03 4.16233111e-03 2.08116556e-03 0. 1.04058278e-03 0. - 0. 0. 0. 0. 0. 1.04058278e-03 0. 1.04058278e-03 1.76899079e-02 - 2.08116556e-03 2.08116556e-03 2.08116556e-03 0. 0. 2.08116556e-03 - 0. 5.20291366e-03 1.04058278e-03 0. 0. 5.20291366e-03 0. - 9.36524477e-03 3.12174833e-03 7.28407968e-03 8.32466222e-03 0. - 6.24349667e-03 1.04058278e-03 1.04058278e-03 0. 4.16233111e-03 0. - 0. 0. 0. 0. 1.04058278e-03 3.12174833e-03 1.56087419e-02 - 2.08116556e-03 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 1.04058278e-03 - 0. 0. 1.04058278e-03 0. 5.20291366e-03 5.20291366e-03 0. - 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 - 1.04058278e-03 0. 2.08116556e-03 0. 1.04058278e-03 0. 0. 0. 0. 0. - 1.04058278e-03 0. 1.04058278e-03 1.04058278e-03 1.04058278e-03 - 1.04058278e-03 1.24869933e-02 7.28407968e-03 2.70551518e-02 - 1.04058278e-03 2.80957352e-02 0. 1.04058278e-03 0. 9.36524477e-03 - 2.08116556e-03 1.04058278e-03 0. 2.08116556e-03 1.04058278e-03 - 1.04058278e-03 2.08116556e-03 1.14464108e-02 2.08116556e-03 - 1.04058278e-03 0. 2.08116556e-03 0. 0. 0. 2.08116556e-03 - 2.08116556e-03 2.08116556e-03 0. 0. 1.04058278e-03 1.04058278e-03 - 1.04058278e-03 2.08116556e-03 1.87304895e-02 2.39334032e-02 - 3.12174833e-03 2.49739867e-02 0. 0. 1.04058278e-03 9.36524477e-03 - 0. 2.08116556e-03 0. 1.04058278e-03 2.08116556e-03 1.04058278e-03 - 2.08116556e-03 1.97710730e-02 1.76899079e-02 1.14464108e-02 - 1.04058278e-03 8.32466222e-03 1.04058278e-03 0. 0. 1.04058273e-02 - 1.45681594e-02 8.32466222e-03 3.12174833e-03 8.32466222e-03 - 4.16233111e-03 7.28407968e-03 3.01769003e-02 9.67741981e-02 - 2.60145701e-02 3.22580673e-02 0. 4.16233111e-03 3.12174833e-03 - 1.04058278e-03 3.12174833e-03 2.08116556e-03 3.12174833e-03 - 1.04058278e-03 0. 0. 2.08116556e-03 0. 4.16233111e-03 - 3.12174838e-02 3.64203975e-02 1.04058273e-02 1.04058278e-03 0. - 1.04058278e-03 0. 0. 0. 2.08116556e-03 1.04058278e-03 0. - 1.04058278e-03 1.04058273e-02 5.20291366e-03 1.87304895e-02 - 1.24869933e-02 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 1.04058278e-03 9.36524477e-03 1.04058278e-03 0. 0. 0. 0. 0. - 1.04058278e-03 1.04058278e-03 1.04058278e-03 0. 0. 5.20291366e-03 - 0. 6.24349667e-03 3.12174833e-03 8.32466222e-03 0. 0. - 2.08116556e-03 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. - 2.08116556e-03 0. 9.36524477e-03 2.08116556e-03 0. 0. - 1.04058278e-03 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 0. 4.57856432e-02 2.08116556e-03 0. 0. 0. 0. 0. 0. - 2.49739867e-02 0. 0. 0. 4.16233111e-03 1.04058278e-03 - 1.04058273e-02 0. 0. 3.12174833e-03 0. 2.08116556e-03 0. 0. 0. - 4.16233111e-03 0. 1.04058278e-03 0. 0. 0. 0. 0. 6.24349667e-03 - 1.04058278e-03 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 2.08116556e-03 5.20291366e-03 1.24869933e-02 0. - 3.12174833e-03 1.04058278e-03 3.12174833e-03 0. 4.16233111e-03 0. - 0. 0. 1.04058278e-03 1.04058278e-03 1.04058278e-03 0. - 1.04058278e-03 2.08116556e-03 2.08116556e-03 0. 0. 0. 0. 0. 0. 0. - 0. 0. 1.04058278e-03 0. 0. 2.08116556e-03 0. 2.39334032e-02 - 5.41103035e-02 0. 9.36524477e-03 0. 1.04058278e-03 0. - 8.32466222e-03 0. 1.04058278e-03 0. 0. 0. 1.04058278e-03 - 3.12174833e-03 2.39334032e-02 1.51925087e-01 1.06139444e-01 - 2.08116556e-03 9.36524477e-03 1.04058278e-03 2.08116556e-03 - 3.12174833e-03 7.28407968e-03 4.47450578e-02 1.24869933e-02 0. - 3.12174833e-03 6.24349667e-03 6.24349667e-03 3.32986489e-02 - 5.82726374e-02 1.76899079e-02 1.14464108e-02 0. 5.20291366e-03 - 1.04058273e-02 0. 3.12174833e-03 2.70551518e-02 0. 0. 0. 0. - 6.24349667e-03 0. 3.12174833e-03 2.91363187e-02 1.66493244e-02 - 2.08116556e-03 0. 0. 1.04058278e-03 0. 0. 0. 4.16233111e-03 0. 0. - 0. 9.36524477e-03 3.12174833e-03 2.08116546e-02 1.97710730e-02 - 1.04058278e-03 0. 0. 1.04058278e-03 1.04058278e-03 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 1.04058278e-03 4.16233111e-03 0. 0. 0. - 2.08116556e-03 0. 1.04058278e-03 0. 1.45681594e-02 1.04058278e-03 - 1.04058278e-03 0. 3.12174838e-02 0. 3.12174833e-03 6.24349667e-03 - 1.66493244e-02 5.20291366e-03 0. 2.08116556e-03 4.16233111e-03 0. - 1.04058278e-03 0. 2.08116556e-03 0. 0. 0. 1.04058278e-03 0. 0. 0. - 3.12174833e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. - 0. 0. 1.66493244e-02 0. 0. 0. 0. 0. 0. 1.04058278e-03 - 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 3.95421460e-02 2.08116556e-03 - 2.08116556e-03 0. 3.12174833e-03 0. 0. 1.04058278e-03 - 4.57856432e-02 1.04058278e-03 0. 0. 3.32986489e-02 0. - 7.28407968e-03 2.08116556e-03 0. 7.28407968e-03 0. 1.24869933e-02 - 0. 0. 0. 3.22580673e-02 0. 1.04058278e-03 0. 0. 0. 1.04058278e-03 - 1.04058278e-03 1.24869933e-02 0. 1.04058278e-03 0. 2.08116556e-03 - 0. 0. 0. 1.04058278e-03 0. 1.04058278e-03 0. 0. 1.04058278e-03 - 1.04058278e-03 0. 7.28407968e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 1.04058278e-03 0. 1.04058278e-03 0. 0. 0. 0. 0. - 1.04058278e-03 0. 0. 0. 2.08116556e-03 0. 0. 0. 1.45681594e-02 - 3.12174833e-03 2.60145701e-02 0. 4.47450578e-02 0. 1.04058278e-03 - 1.04058278e-03 2.80957352e-02 0. 0. 0. 0. 0. 0. 0. 1.24869933e-02 - 1.04058278e-03 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. - 2.08116556e-03 0. 1.04058278e-03 0. 4.16233111e-03 1.45681594e-02 - 2.60145701e-02 0. 1.04058273e-02 0. 0. 0. 8.32466222e-03 0. - 1.04058278e-03 0. 0. 0. 0. 1.04058278e-03 1.35275759e-02 - 4.05827276e-02 4.37044762e-02 1.04058278e-03 7.28407968e-03 0. 0. - 1.04058278e-03 2.08116556e-03 3.22580673e-02 1.56087419e-02 0. - 2.60145701e-02 1.35275759e-02 1.24869933e-02 5.20291366e-03 - 4.47450578e-02 5.82726374e-02 5.72320521e-02 1.04058278e-03 - 4.16233111e-03 2.08116556e-03 0. 4.16233111e-03 1.24869933e-02 - 1.04058278e-03 3.12174833e-03 0. 0. 7.28407968e-03 1.04058278e-03 - 2.08116546e-02 3.22580673e-02 5.20291403e-02 1.56087419e-02 - 2.08116556e-03 2.08116556e-03 1.04058278e-03 1.04058278e-03 - 2.08116556e-03 4.16233111e-03 1.04058273e-02 0. 1.04058278e-03 - 1.04058278e-03 2.08116546e-02 2.08116556e-03 1.15504690e-01 - 2.91363187e-02 0. 3.12174833e-03 0. 0. 0. 0. 0. 1.04058278e-03 0. - 0. 0. 0. 0. 0. 0. 2.08116556e-03 0. 2.08116556e-03 0. 0. 0. 0. - 1.04058278e-03 0. 4.16233111e-03 0. 0. 0. 3.12174833e-03 0. - 1.04058273e-02 9.36524477e-03 2.08116556e-03 1.04058278e-03 0. - 1.04058278e-03 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 3.12174833e-03 1.04058278e-03 1.04058278e-03 0. 0. 0. - 1.04058278e-03 0. 1.04058278e-03 0. 0. 0. 1.04058278e-03 - 1.04058278e-03 5.20291366e-03 6.24349667e-03 2.08116556e-03 - 1.04058278e-03 3.12174833e-03 0. 0. 0. 0. 2.08116556e-03 0. 0. - 1.04058278e-03 0. 0. 9.36524477e-03 6.24349667e-03 1.04058278e-03 - 7.28407968e-03 0. 1.04058278e-03 0. 0. 0. 0. 0. 1.04058278e-03 0. - 0. 0. 0. 0. 3.12174833e-03 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. - 1.04058278e-03 0. 0. 1.04058278e-03 2.08116556e-03 2.08116556e-03 - 4.16233111e-03 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 - 1.04058278e-03 5.20291366e-03 9.36524477e-03 0. 1.04058278e-03 0. - 0. 0. 4.16233111e-03 0. 2.08116556e-03 0. 0. 0. 1.04058278e-03 - 3.12174833e-03 1.14464108e-02 1.04058278e-03 1.04058278e-03 0. - 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 2.08116556e-03 0. - 3.12174833e-03 4.16233111e-03 8.32466222e-03 4.37044762e-02 - 1.04058278e-03 1.66493244e-02 1.04058278e-03 2.08116556e-03 - 2.08116556e-03 3.12174833e-03 1.04058278e-03 4.16233111e-03 0. 0. - 0. 1.04058278e-03 2.08116556e-03 5.51508889e-02 4.89073917e-02 - 1.76899079e-02 0. 2.08116556e-03 2.08116556e-03 0. 3.12174833e-03 - 3.12174833e-03 1.04058278e-03 3.12174833e-03 0. 4.16233111e-03 - 2.08116556e-03 4.16233111e-03 5.09885550e-02 8.32466185e-02 - 1.97710730e-02 4.57856432e-02 0. 1.04058278e-03 9.36524477e-03 - 5.20291366e-03 5.20291366e-03 3.74609791e-02 0. 1.04058278e-03 0. - 0. 0. 0. 5.20291366e-03 3.95421460e-02 2.60145701e-02 - 1.76899079e-02 0. 2.08116556e-03 6.24349667e-03 1.04058278e-03 - 2.08116556e-03 1.14464108e-02 1.04058278e-03 0. 0. 0. - 3.53798158e-02 1.04058278e-03 3.53798158e-02 9.46930349e-02 0. 0. - 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 1.04058278e-03 0. 0. 0. 0. 0. 0. 1.04058278e-03 - 1.04058278e-03 0. 1.04058278e-03 4.16233111e-03 0. 8.32466222e-03 - 2.08116546e-02 2.08116556e-03 2.08116556e-03 0. 0. 0. 0. - 1.04058278e-03 2.08116556e-03 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. - 2.08116556e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. - 2.08116556e-03 4.16233111e-03 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 1.04058273e-02 2.08116556e-03 0. 0. - 3.12174833e-03 0. 2.08116556e-03 0. 1.04058278e-03 0. 0. 0. - 3.32986489e-02 1.04058278e-03 1.45681594e-02 2.08116546e-02 - 2.08116556e-03 2.08116556e-03 0. 0. 1.04058278e-03 0. 0. - 5.20291366e-03 0. 0. 0. 0. 0. 0. 0. 1.04058273e-02 0. - 1.04058278e-03 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. - 1.04058278e-03 0. 2.08116556e-03 9.36524477e-03 0. 1.04058278e-03 - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 6.24349667e-03 0. 1.45681594e-02 0. - 3.12174833e-03 0. 4.16233111e-03 1.04058278e-03 1.04058273e-02 0. - 0. 0. 0. 0. 0. 0. 1.56087419e-02 2.08116556e-03 2.08116556e-03 0. - 0. 0. 0. 0. 1.04058278e-03 2.08116556e-03 0. 0. 0. 2.08116556e-03 - 1.04058278e-03 0. 2.80957352e-02 2.08116556e-03 6.03538007e-02 0. - 4.16233111e-03 0. 2.08116556e-03 0. 1.24869933e-02 0. 0. 0. 0. 0. - 0. 0. 3.64203975e-02 1.97710730e-02 1.56087419e-02 2.08116556e-03 - 8.32466222e-03 1.04058278e-03 4.16233111e-03 0. 1.45681594e-02 - 1.04058278e-03 5.20291366e-03 0. 2.08116556e-03 8.32466222e-03 - 6.24349667e-03 1.24869933e-02 1.00936532e-01 1.14464108e-02 - 1.45681594e-02 1.04058278e-03 3.12174833e-03 8.32466222e-03 - 1.04058278e-03 1.04058278e-03 2.28928216e-02 0. 0. 0. 0. - 1.04058278e-03 0. 4.16233111e-03 1.24869933e-02 1.45681594e-02 - 3.12174833e-03 0. 0. 2.08116556e-03 1.04058278e-03 0. - 3.12174833e-03 0. 1.04058278e-03 0. 0. 2.80957352e-02 0. - 7.18002096e-02 8.32466185e-02 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 2.08116556e-03 1.04058278e-03 0. 0. 1.04058278e-03 0. - 0. 0. 0. 0. 0. 0. 1.24869933e-02 1.04058278e-03 1.14464108e-02 - 1.35275759e-02 1.14464108e-02 2.08116556e-03 0. 0. 1.04058278e-03 - 0. 1.04058278e-03 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 0. 3.12174833e-03 2.08116556e-03 2.08116556e-03 0. - 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 7.28407968e-03 3.12174833e-03 0. 0. 1.04058278e-03 0. - 1.04058278e-03 3.12174833e-03 3.12174833e-03 0. 0. 0. - 1.35275759e-02 0. 7.28407968e-03 1.45681594e-02 0. 7.28407968e-03 - 0. 2.08116556e-03 0. 0. 0. 9.36524477e-03 0. 0. 0. 0. 0. - 2.08116556e-03 0. 2.08116556e-03 0. 1.04058278e-03 0. 0. 0. 0. 0. - 1.04058278e-03 0. 0. 0. 0. 0. 0. 1.04058278e-03 7.28407968e-03 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 7.28407968e-03 2.08116556e-03 - 4.26638946e-02 0. 1.66493244e-02 0. 3.12174833e-03 0. - 4.47450578e-02 0. 0. 0. 0. 0. 2.08116556e-03 0. 6.24349667e-03 - 1.04058278e-03 3.12174833e-03 0. 1.04058278e-03 0. 0. 0. - 3.12174833e-03 0. 0. 0. 0. 0. 2.08116556e-03 1.04058278e-03 - 1.76899079e-02 7.28407968e-03 1.54006258e-01 0. 2.60145701e-02 0. - 1.04058278e-03 0. 1.14464108e-02 0. 0. 0. 0. 0. 0. 3.12174833e-03 - 7.28407968e-03 7.28407968e-03 3.95421460e-02 0. 1.35275759e-02 0. - 1.04058278e-03 0. 1.87304895e-02 2.08116556e-03 6.24349667e-03 0. - 1.04058278e-03 7.28407968e-03 4.16233111e-03 1.35275759e-02 - 7.28407949e-02 1.76899079e-02 1.56087419e-02 2.08116556e-03 - 4.16233111e-03 2.08116556e-03 0. 1.04058278e-03 3.01769003e-02 0. - 0. 0. 0. 0. 0. 1.56087419e-02 7.70031288e-02 6.24349667e-03 - 1.14464108e-02 0. 1.04058278e-03 1.04058278e-03 0. 1.04058278e-03 - 0. 2.08116556e-03 2.08116556e-03 0. 1.04058278e-03 1.04058273e-02 - 2.08116556e-03 3.64203975e-02 5.61914705e-02 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 9.36524477e-03 0. 1.04058278e-03 0. 0. - 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 8.32466222e-03 - 2.08116556e-03 6.24349667e-03 1.04058278e-03 0. 1.04058278e-03 - 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 - 1.04058278e-03 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 0. 0. 1.04058278e-03 4.16233111e-03 1.04058278e-03 - 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. - 1.35275759e-02 1.04058278e-03 0. 0. 2.08116556e-03 0. 0. 0. - 3.12174833e-03 0. 0. 0. 7.28407968e-03 0. 8.32466222e-03 - 3.12174833e-03 0. 2.08116556e-03 0. 3.12174833e-03 1.04058278e-03 - 1.04058278e-03 0. 4.68262248e-02 0. 0. 0. 0. 0. 0. 0. - 1.24869933e-02 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. - 0. 0. 1.24869933e-02 1.04058278e-03 1.04058278e-03 0. 0. 0. 0. 0. - 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 1.04058278e-03 0. 1.04058278e-03 1.04058278e-03 - 2.08116556e-03 1.04058278e-03 1.97710730e-02 0. 1.14464108e-02 - 1.04058278e-03 1.04058278e-03 0. 7.28407968e-03 0. 0. 0. 0. 0. 0. - 1.04058278e-03 5.20291366e-03 0. 2.08116556e-03 0. 0. - 2.08116556e-03 0. 0. 0. 0. 1.04058278e-03 0. 1.04058278e-03 - 1.04058278e-03 0. 0. 1.04058278e-03 1.76899079e-02 5.41103035e-02 - 0. 4.16233111e-03 0. 0. 2.08116556e-03 2.08116556e-03 0. 0. 0. 0. - 0. 1.04058278e-03 3.12174833e-03 1.14464108e-02 1.57128006e-01 - 1.27991676e-01 0. 2.08116556e-03 1.04058278e-03 0. 1.04058278e-03 - 3.12174833e-03 1.56087419e-02 7.28407968e-03 0. 2.08116556e-03 - 7.28407968e-03 5.20291366e-03 1.66493244e-02 3.53798158e-02 - 8.74089524e-02 4.37044762e-02 4.16233111e-03 3.12174833e-03 - 4.16233111e-03 3.12174833e-03 4.16233111e-03 8.32466222e-03 - 3.12174833e-03 1.04058278e-03 0. 0. 6.24349667e-03 5.20291366e-03 - 1.35275759e-02 3.53798158e-02 3.53798158e-02 5.20291366e-03 - 1.04058278e-03 2.08116556e-03 2.08116556e-03 0. 0. 0. - 1.04058273e-02 0. 1.04058278e-03 0. 1.66493244e-02 2.08116556e-03 - 5.93132190e-02 1.66493244e-02 0. 1.04058278e-03 0. 1.04058278e-03 - 2.08116556e-03 0. 1.04058278e-03 2.08116556e-03 0. 0. 0. 0. 0. 0. - 2.08116556e-03 1.04058278e-03 2.08116556e-03 3.12174833e-03 - 2.08116556e-03 0. 3.12174833e-03 0. 2.08116556e-03 0. - 2.08116556e-03 0. 1.04058278e-03 3.12174833e-03 4.16233111e-03 0. - 1.66493244e-02 4.16233111e-03 7.28407968e-03 7.28407968e-03 0. - 2.08116556e-03 1.04058278e-03 0. 0. 0. 1.04058278e-03 0. 0. 0. - 1.04058278e-03 0. 0. 2.08116556e-03 4.16233111e-03 1.04058278e-03 - 0. 0. 0. 0. 0. 0. 4.16233111e-03 0. 0. 0. 0. 0. 2.08116556e-03 0. - 8.32466222e-03 4.16233111e-03 0. 3.12174833e-03 0. 0. - 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 2.08116556e-03 - 9.36524477e-03 1.04058278e-03 0. 0. 2.08116556e-03 0. 0. 0. - 8.32466222e-03 2.08116556e-03 1.04058278e-03 1.04058278e-03 - 4.16233111e-03 1.04058278e-03 1.97710730e-02 9.36524477e-03 - 1.04058278e-03 4.16233111e-03 0. 3.12174833e-03 0. 0. 0. - 4.16233111e-03 0. 0. 0. 0. 0. 0. 2.08116556e-03 1.04058273e-02 - 2.08116556e-03 3.12174833e-03 0. 2.08116556e-03 0. 0. 0. - 1.04058278e-03 1.04058278e-03 1.04058278e-03 0. 2.08116556e-03 0. - 0. 4.16233111e-03 6.24349667e-03 0. 0. 0. 1.04058278e-03 - 1.04058278e-03 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. - 3.12174833e-03 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. - 3.12174833e-03 0. 2.08116556e-03 1.14464108e-02 3.12174833e-03 - 9.36524477e-03 0. 6.24349667e-03 0. 0. 0. 2.08116556e-03 0. - 1.04058278e-03 0. 0. 1.04058278e-03 1.04058278e-03 2.08116556e-03 - 7.28407968e-03 4.16233111e-03 2.08116556e-03 0. 0. 0. 0. 0. 0. - 2.08116556e-03 0. 0. 0. 1.04058278e-03 0. 2.08116556e-03 - 2.08116556e-03 1.14464108e-02 3.43392305e-02 0. 1.24869933e-02 - 2.08116556e-03 0. 2.08116556e-03 1.14464108e-02 1.04058278e-03 - 2.08116556e-03 0. 1.04058278e-03 1.04058278e-03 1.04058278e-03 - 8.32466222e-03 2.91363187e-02 2.80957352e-02 1.04058273e-02 0. - 6.24349667e-03 0. 0. 3.12174833e-03 1.04058278e-03 1.35275759e-02 - 1.35275759e-02 1.04058278e-03 5.20291366e-03 6.24349667e-03 - 6.24349667e-03 3.74609791e-02 9.05307010e-02 8.01248774e-02 - 3.64203975e-02 2.08116556e-03 7.28407968e-03 8.32466222e-03 - 2.08116556e-03 4.16233111e-03 1.56087419e-02 3.12174833e-03 - 2.08116556e-03 0. 1.04058278e-03 2.08116556e-03 3.12174833e-03 - 1.35275759e-02 3.32986489e-02 4.16233093e-02 3.12174833e-03 - 3.12174833e-03 3.12174833e-03 3.12174833e-03 1.04058278e-03 - 1.04058278e-03 2.08116556e-03 5.20291366e-03 0. 1.04058278e-03 0. - 9.36524477e-03 2.08116556e-03 2.60145701e-02 1.66493244e-02 - 3.12174833e-03 2.08116556e-03 0. 0. 0. 0. 1.04058278e-03 - 1.04058278e-03 0. 0. 0. 0. 0. 0. 1.04058278e-03 1.04058278e-03 - 9.36524477e-03 3.12174833e-03 1.04058278e-03 1.04058278e-03 0. 0. - 1.04058278e-03 0. 3.12174833e-03 0. 0. 0. 2.08116556e-03 0. - 7.28407968e-03 6.24349667e-03 1.04058273e-02 2.08116556e-03 - 1.04058278e-03 0. 1.04058278e-03 0. 0. 1.04058278e-03 0. 0. 0. 0. - 1.04058278e-03 0. 2.08116556e-03 1.04058278e-03 5.20291366e-03 - 1.04058278e-03 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. - 1.04058278e-03 0. 0. 0. 3.12174833e-03 3.12174833e-03 0. 0. 0. 0. - 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 2.08116556e-03 - 1.56087419e-02 3.12174833e-03 1.04058278e-03 0. 1.04058278e-03 0. - 1.04058278e-03 0. 7.28407968e-03 0. 0. 1.04058278e-03 - 2.08116556e-03 0. 8.32466222e-03 6.24349667e-03 3.12174833e-03 - 9.36524477e-03 1.04058278e-03 4.16233111e-03 0. 4.16233111e-03 0. - 1.24869933e-02 0. 0. 0. 0. 0. 1.04058278e-03 1.04058278e-03 - 1.56087419e-02 2.08116556e-03 0. 0. 0. 0. 0. 0. 2.08116556e-03 0. - 2.08116556e-03 0. 0. 2.08116556e-03 0. 3.12174833e-03 - 9.36524477e-03 2.08116556e-03 1.04058278e-03 0. 0. 1.04058278e-03 - 0. 0. 2.08116556e-03 0. 0. 0. 0. 0. 1.04058278e-03 0. - 1.04058278e-03 1.04058278e-03 2.08116556e-03 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 1.04058278e-03 1.04058278e-03 0. 8.32466222e-03 - 8.32466222e-03 1.24869933e-02 0. 0. 2.08116556e-03 1.04058278e-03 - 1.04058278e-03 5.20291366e-03 1.04058278e-03 0. 0. 0. - 1.04058278e-03 1.04058278e-03 2.08116556e-03 6.24349667e-03 - 4.16233111e-03 0. 0. 1.04058278e-03 0. 0. 0. 1.04058278e-03 - 1.04058278e-03 0. 0. 0. 1.04058278e-03 0. 2.08116556e-03 - 3.12174833e-03 1.87304895e-02 1.76899079e-02 0. 8.32466222e-03 - 1.04058278e-03 4.16233111e-03 1.04058278e-03 1.35275759e-02 - 2.08116556e-03 5.20291366e-03 0. 3.12174833e-03 1.04058278e-03 - 1.04058278e-03 6.24349667e-03 3.12174838e-02 4.78668064e-02 - 2.08116546e-02 2.08116556e-03 7.28407968e-03 0. 0. 2.08116556e-03 - 8.32466222e-03 1.45681594e-02 7.28407968e-03 3.12174833e-03 - 9.36524477e-03 1.24869933e-02 9.36524477e-03 3.32986489e-02 - 9.67741981e-02 3.22580673e-02 4.16233093e-02 0. 8.32466222e-03 - 8.32466222e-03 1.04058278e-03 4.16233111e-03 2.08116546e-02 - 1.04058278e-03 1.04058278e-03 0. 0. 6.24349667e-03 0. - 7.28407968e-03 4.78668064e-02 3.32986489e-02 1.56087419e-02 0. - 1.04058278e-03 1.04058278e-03 0. 0. 0. 1.04058278e-03 - 2.08116556e-03 0. 0. 1.14464108e-02 0. 1.14464108e-02 - 1.66493244e-02 2.08116556e-03 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 1.04058278e-03 7.28407968e-03 1.04058278e-03 0. - 0. 0. 0. 2.08116556e-03 0. 0. 1.04058278e-03 0. 0. 3.12174833e-03 - 0. 7.28407968e-03 4.16233111e-03 4.16233111e-03 4.16233111e-03 0. - 1.04058278e-03 3.12174833e-03 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. - 0. 0. 0. 2.08116556e-03 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. - 0. 0. 0. 2.08116556e-03 0. 5.20291366e-03 2.08116556e-03 0. 0. 0. - 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 1.04058278e-03 - 3.12174833e-03 2.18522381e-02 3.12174833e-03 0. 0. 0. 0. - 1.04058278e-03 0. 1.45681594e-02 0. 1.04058278e-03 0. - 4.16233111e-03 2.08116556e-03 6.24349667e-03 0. 1.04058278e-03 - 8.32466222e-03 0. 2.08116556e-03 0. 1.04058278e-03 0. - 5.20291366e-03 0. 0. 0. 0. 0. 2.08116556e-03 1.04058278e-03 - 7.28407968e-03 1.04058278e-03 3.12174833e-03 0. 2.08116556e-03 0. - 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 1.14464108e-02 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 1.04058278e-03 - 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. - 4.16233111e-03 2.08116556e-03 2.60145701e-02 0. 1.24869933e-02 - 1.04058278e-03 0. 1.04058278e-03 1.04058273e-02 0. 0. 0. 0. 0. 0. - 0. 1.35275759e-02 2.08116556e-03 5.20291366e-03 0. 0. 0. 0. 0. - 1.04058278e-03 0. 1.04058278e-03 0. 0. 1.04058278e-03 0. 0. - 3.12174833e-03 1.56087419e-02 8.42872038e-02 0. 9.36524477e-03 0. - 0. 2.08116556e-03 1.45681594e-02 0. 0. 0. 0. 0. 0. 8.32466222e-03 - 3.74609791e-02 8.63683671e-02 5.30697219e-02 1.04058278e-03 - 1.66493244e-02 1.04058278e-03 0. 1.04058278e-03 5.20291366e-03 - 2.08116546e-02 8.32466222e-03 1.04058278e-03 5.20291366e-03 - 7.28407968e-03 4.16233111e-03 2.80957352e-02 6.45161346e-02 - 1.97710730e-02 3.12174833e-03 0. 2.08116556e-03 1.04058273e-02 0. - 1.04058278e-03 7.28407968e-03 0. 0. 0. 0. 0. 0. 2.08116556e-03 - 4.16233111e-03 1.14464108e-02 0. 0. 0. 3.12174833e-03 0. - 2.08116556e-03 2.08116556e-03 2.08116556e-03 0. 0. 1.04058278e-03 - 5.20291366e-03 1.04058278e-03 1.45681594e-02 6.24349667e-03 0. 0. - 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 - 1.04058278e-03 0. 0. 0. 1.04058278e-03 0. 0. 0. 8.32466222e-03 0. - 0. 0. 1.76899079e-02 0. 8.32466222e-03 6.24349667e-03 - 2.49739867e-02 1.04058278e-03 0. 1.04058278e-03 8.32466222e-03 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 1.24869933e-02 1.04058278e-03 - 0. 0. 1.04058278e-03 1.04058278e-03 0. 1.04058278e-03 0. 0. 0. 0. - 0. 0. 0. 0. 5.82726374e-02 2.08116556e-03 0. 0. 2.08116556e-03 0. - 2.08116556e-03 1.04058278e-03 4.78668064e-02 0. 0. 0. - 2.18522381e-02 1.04058278e-03 3.12174833e-03 0. 0. 6.24349667e-03 - 0. 3.12174833e-03 1.04058278e-03 0. 0. 1.04058273e-02 0. 0. 0. 0. - 0. 0. 0. 5.20291366e-03 0. 1.04058278e-03 0. 0. 0. 1.04058278e-03 - 0. 0. 0. 1.04058278e-03 0. 1.04058278e-03 0. 0. 0. 7.28407968e-03 - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 2.08116556e-03 - 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 2.08116556e-03 0. 0. 0. - 5.20291366e-03 1.35275759e-02 2.70551518e-02 0. 2.08116546e-02 - 1.04058278e-03 1.04058278e-03 0. 1.14464108e-02 1.04058278e-03 0. - 0. 0. 0. 1.04058278e-03 0. 1.04058278e-03 2.08116556e-03 - 1.04058278e-03 0. 1.04058278e-03 0. 0. 0. 0. 1.04058278e-03 0. 0. - 0. 0. 5.20291366e-03 1.04058278e-03 2.08116556e-03 1.66493244e-02 - 6.24349676e-02 0. 2.18522381e-02 1.04058278e-03 1.04058278e-03 - 1.04058278e-03 8.32466222e-03 0. 0. 0. 1.04058278e-03 - 1.04058278e-03 0. 0. 7.28407968e-03 1.21748187e-01 7.80437067e-02 - 0. 1.87304895e-02 1.04058278e-03 3.12174833e-03 1.04058278e-03 - 7.28407968e-03 3.95421460e-02 3.85015644e-02 0. 3.12174838e-02 - 9.36524477e-03 7.28407968e-03 8.32466222e-03 3.64203975e-02 - 3.43392305e-02 1.97710730e-02 0. 1.04058278e-03 3.12174833e-03 - 5.20291366e-03 4.16233111e-03 2.28928216e-02 1.04058278e-03 0. 0. - 0. 1.04058278e-03 0. 1.35275759e-02 2.60145701e-02 5.41103035e-02 - 1.56087419e-02 0. 1.04058278e-03 2.08116556e-03 0. 2.08116556e-03 - 0. 3.12174833e-03 1.04058278e-03 2.08116556e-03 0. 5.20291366e-03 - 0. 2.28928216e-02 1.24869933e-02 0. 0. 0. 0. 1.04058278e-03 0. - 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 - 6.24349667e-03 2.08116556e-03 1.04058278e-03 0. 2.08116556e-03 0. - 2.08116556e-03 1.04058278e-03 0. 0. 1.04058278e-03 0. - 8.32466222e-03 1.04058278e-03 3.12174833e-03 4.16233111e-03 - 1.35275759e-02 1.04058278e-03 0. 0. 1.04058278e-03 0. 0. - 1.04058278e-03 1.04058278e-03 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 3.12174833e-03 0. - 1.04058278e-03 0. 4.16233111e-03 1.04058278e-03 1.04058278e-03 0. - 1.04058278e-03 0. 0. 1.04058278e-03 0. 0. 0. 0. 1.04058278e-03 0. - 1.04058278e-03 1.04058278e-03 1.76899079e-02 2.08116556e-03 - 1.04058278e-03 0. 0. 0. 0. 0. 1.45681594e-02 0. 0. 1.04058278e-03 - 9.36524477e-03 0. 7.28407968e-03 0. 2.08116556e-03 5.20291366e-03 - 0. 2.08116556e-03 0. 0. 0. 3.32986489e-02 0. 0. 0. 0. 0. 0. - 1.04058278e-03 1.35275759e-02 0. 1.04058278e-03 0. 0. 0. 0. 0. - 1.04058278e-03 1.04058278e-03 0. 0. 0. 0. 0. 1.04058278e-03 - 2.08116556e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 0. 1.04058278e-03 2.08116556e-03 0. 0. 0. 0. 0. - 1.04058278e-03 0. 0. 0. 1.04058278e-03 1.04058278e-03 - 1.04058278e-03 0. 6.24349667e-03 5.20291366e-03 8.32466222e-03 0. - 2.08116556e-03 1.04058278e-03 0. 0. 6.24349667e-03 0. - 1.04058278e-03 0. 0. 0. 0. 1.04058278e-03 2.08116556e-03 0. - 1.04058278e-03 0. 0. 0. 0. 0. 0. 2.08116556e-03 3.12174833e-03 0. - 0. 0. 0. 0. 4.16233111e-03 2.18522381e-02 5.09885550e-02 0. - 5.20291366e-03 0. 2.08116556e-03 0. 6.24349667e-03 1.04058278e-03 - 0. 0. 0. 2.08116556e-03 2.08116556e-03 8.32466222e-03 - 2.49739867e-02 1.19667016e-01 8.01248774e-02 0. 4.16233111e-03 - 1.04058278e-03 2.08116556e-03 0. 3.12174833e-03 3.22580673e-02 - 1.56087419e-02 0. 7.28407968e-03 1.04058273e-02 3.12174833e-03 - 3.43392305e-02 6.86784610e-02 2.28928216e-02 1.14464108e-02 - 1.04058278e-03 7.28407968e-03 1.14464108e-02 0. 4.16233111e-03 - 4.57856432e-02 1.04058278e-03 0. 0. 0. 5.20291366e-03 - 1.04058278e-03 7.28407968e-03 1.56087419e-02 1.87304895e-02 - 8.32466222e-03 1.04058278e-03 1.04058278e-03 3.12174833e-03 0. - 1.04058278e-03 1.04058278e-03 6.24349667e-03 0. 0. 0. - 4.26638946e-02 1.04058278e-03 5.82726374e-02 4.16233093e-02 0. - 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 0. 1.04058278e-03 0. 0. 0. 0. 7.28407968e-03 0. 0. - 1.04058278e-03 2.39334032e-02 1.04058278e-03 1.45681594e-02 - 1.87304895e-02 2.08116556e-03 1.04058278e-03 0. 0. 2.08116556e-03 - 0. 1.04058278e-03 4.16233111e-03 0. 0. 0. 0. 0. 0. 1.04058278e-03 - 1.04058278e-03 4.16233111e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 3.12174833e-03 0. 2.08116556e-03 1.04058278e-03 1.04058278e-03 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 1.04058278e-03 - 5.20291366e-03 0. 2.08116556e-03 0. 0. 0. 1.04058278e-03 0. - 7.59625435e-02 0. 1.04058278e-03 1.04058278e-03 5.61914705e-02 0. - 2.39334032e-02 1.66493244e-02 0. 4.16233111e-03 0. 6.24349667e-03 - 0. 0. 0. 8.42872038e-02 0. 1.04058278e-03 0. 0. 0. 0. 0. - 2.28928216e-02 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 0. 1.35275759e-02 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 1.04058278e-03 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. - 2.08116556e-03 0. 0. 0. 0. 0. 1.56087419e-02 1.04058278e-03 - 1.04058273e-02 0. 6.24349667e-03 0. 1.04058278e-03 0. - 3.12174838e-02 0. 1.04058278e-03 0. 0. 0. 1.04058278e-03 - 1.04058278e-03 9.36524477e-03 1.04058278e-03 0. 0. 0. 0. 0. 0. - 1.04058278e-03 0. 0. 0. 1.04058278e-03 0. 0. 0. 5.20291366e-03 - 3.12174833e-03 3.85015644e-02 0. 8.32466222e-03 0. 0. 0. - 4.16233111e-03 0. 0. 0. 0. 0. 0. 1.04058278e-03 1.66493244e-02 - 9.36524477e-03 1.24869933e-02 0. 3.12174833e-03 1.04058278e-03 0. - 0. 3.12174833e-03 1.04058278e-03 1.04058278e-03 0. 5.20291366e-03 - 6.24349667e-03 3.12174833e-03 1.45681594e-02 4.57856432e-02 - 2.60145701e-02 2.49739867e-02 4.16233111e-03 2.08116556e-03 - 1.04058278e-03 0. 5.20291366e-03 1.24869933e-02 1.04058278e-03 0. - 0. 0. 3.12174833e-03 1.04058278e-03 4.16233111e-03 1.35275759e-02 - 2.18522381e-02 8.32466222e-03 0. 1.04058278e-03 3.12174833e-03 0. - 2.08116556e-03 4.16233111e-03 4.16233111e-03 1.04058278e-03 0. 0. - 4.99479733e-02 2.08116556e-03 1.51925087e-01 3.64203975e-02 - 1.04058278e-03 1.04058278e-03 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 2.08116556e-03 3.12174833e-03 0. 0. - 1.04058278e-03 0. 2.08116556e-03 0. 6.24349667e-03 0. 0. 0. - 3.64203975e-02 0. 3.85015644e-02 8.32466222e-03 4.16233111e-03 - 2.08116556e-03 0. 0. 1.04058278e-03 1.04058278e-03 0. - 2.08116556e-03 0. 0. 0. 0. 0. 0. 2.08116556e-03 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 1.04058278e-03 0. - 1.04058278e-03 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. - 0. 0. 9.36524477e-03 1.04058278e-03 0. 1.04058278e-03 - 1.04058278e-03 0. 1.04058278e-03 0. 7.28407968e-03 1.04058278e-03 - 0. 0. 1.56087419e-02 0. 1.35275759e-02 0. 0. 4.16233111e-03 0. - 4.16233111e-03 0. 0. 0. 2.08116556e-03 0. 0. 0. 0. 0. 0. 0. - 3.12174833e-03 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 0. 5.20291366e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 1.04058278e-03 1.04058278e-03 1.04058278e-03 - 4.16233111e-03 1.04058278e-03 3.95421460e-02 0. 3.32986489e-02 0. - 0. 0. 1.04058273e-02 0. 0. 0. 1.04058278e-03 1.04058278e-03 0. 0. - 1.66493244e-02 1.04058278e-03 1.04058278e-03 0. 1.04058278e-03 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 2.08116556e-03 1.14464108e-02 - 6.24349667e-03 9.98959467e-02 0. 3.12174838e-02 0. 1.04058278e-03 - 0. 1.45681594e-02 0. 0. 0. 0. 0. 1.04058278e-03 1.04058278e-03 - 1.66493244e-02 1.04058273e-02 1.76899079e-02 0. 8.32466222e-03 - 1.04058278e-03 0. 0. 3.12174833e-03 2.08116556e-03 7.28407968e-03 - 0. 2.08116556e-03 4.16233111e-03 3.12174833e-03 1.56087419e-02 - 4.99479733e-02 1.24869933e-02 2.70551518e-02 0. 0. 2.08116556e-03 - 0. 0. 4.16233111e-03 1.04058278e-03 0. 0. 0. 1.04058278e-03 0. - 1.87304895e-02 1.38397515e-01 1.97710730e-02 2.49739867e-02 0. 0. - 1.04058278e-03 0. 0. 1.04058278e-03 2.08116556e-03 2.08116556e-03 - 0. 0. 7.28407968e-03 1.04058278e-03 4.78668064e-02 4.78668064e-02 - 2.08116556e-03 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 4.16233111e-03 1.04058278e-03 0. 0. 0. 0. 0. 0. - 3.12174833e-03 0. 0. 0. 1.04058278e-03 0. 0. 5.20291366e-03 - 1.04058278e-03 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. - 1.04058278e-03 1.04058278e-03 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 2.08116556e-03 0. 0. 0. 0. 0. 0. - 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 2.08116556e-03 9.36524477e-03 - 2.08116556e-03 0. 1.04058278e-03 0. 0. 0. 1.04058278e-03 - 4.16233111e-03 0. 0. 0. 1.04058278e-03 0. 5.20291366e-03 - 3.12174833e-03 1.04058278e-03 4.16233111e-03 0. 3.12174833e-03 0. - 2.08116556e-03 0. 8.32466222e-03 0. 0. 0. 0. 0. 0. 0. - 8.32466222e-03 0. 3.12174833e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 0. 4.16233111e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 4.16233111e-03 8.32466222e-03 0. 1.04058273e-02 0. - 1.04058278e-03 0. 2.08116556e-03 0. 0. 0. 0. 0. 0. 0. - 4.16233111e-03 1.04058278e-03 5.20291366e-03 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 4.16233111e-03 1.45681594e-02 4.05827276e-02 0. - 6.24349667e-03 0. 0. 1.04058278e-03 4.16233111e-03 0. 0. 0. 0. 0. - 1.04058278e-03 3.12174833e-03 2.49739867e-02 1.88345477e-01 - 1.33194596e-01 0. 2.08116556e-03 1.04058278e-03 0. 1.04058278e-03 - 1.04058278e-03 5.20291366e-03 3.12174833e-03 1.04058278e-03 - 1.04058278e-03 9.36524477e-03 1.04058278e-03 1.97710730e-02 - 4.47450578e-02 5.72320521e-02 5.20291403e-02 1.04058278e-03 - 7.28407968e-03 5.20291366e-03 2.08116556e-03 3.12174833e-03 - 1.56087419e-02 0. 2.08116556e-03 0. 0. 8.32466222e-03 - 4.16233111e-03 1.76899079e-02 4.05827276e-02 3.74609791e-02 - 7.28407968e-03 2.08116556e-03 2.08116556e-03 3.12174833e-03 0. - 1.04058278e-03 5.20291366e-03 9.36524477e-03 3.12174833e-03 - 2.08116556e-03 1.04058278e-03 2.28928216e-02 1.04058278e-03 - 4.89073917e-02 2.39334032e-02 0. 1.04058278e-03 0. 0. 0. 0. - 1.04058278e-03 1.04058278e-03 0. 0. 0. 0. 0. 0. 1.04058278e-03 - 1.04058278e-03 1.04058273e-02 1.04058278e-03 2.08116556e-03 - 1.04058278e-03 2.08116556e-03 0. 1.04058278e-03 2.08116556e-03 - 3.12174833e-03 0. 0. 0. 8.32466222e-03 0. 1.14464108e-02 - 8.32466222e-03 8.32466222e-03 3.12174833e-03 0. 3.12174833e-03 0. - 0. 0. 1.04058278e-03 1.04058278e-03 0. 0. 0. 1.04058278e-03 0. - 5.20291366e-03 2.08116556e-03 1.04058278e-03 1.04058278e-03 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 1.04058278e-03 - 1.04058278e-03 9.36524477e-03 1.04058278e-03 1.04058278e-03 0. 0. - 0. 2.08116556e-03 1.04058278e-03 0. 0. 0. 0. 0. 0. 3.12174833e-03 - 2.08116556e-03 8.32466222e-03 4.16233111e-03 1.04058278e-03 - 1.04058278e-03 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 2.08116556e-03 - 0. 8.32466222e-03 0. 2.08116556e-03 9.36524477e-03 0. - 4.16233111e-03 1.04058278e-03 0. 0. 2.08116556e-03 0. 0. 0. 0. - 1.04058278e-03 0. 0. 1.14464108e-02 6.24349667e-03 2.08116556e-03 - 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 1.04058278e-03 - 1.04058278e-03 2.08116556e-03 9.36524477e-03 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 1.04058278e-03 - 1.04058278e-03 0. 0. 0. 1.04058278e-03 0. 0. 1.04058278e-03 - 2.08116556e-03 2.08116556e-03 1.24869933e-02 7.28407968e-03 - 1.66493244e-02 0. 9.36524477e-03 0. 0. 0. 4.16233111e-03 0. - 1.04058278e-03 0. 0. 1.04058278e-03 0. 3.12174833e-03 - 1.14464108e-02 4.16233111e-03 1.04058278e-03 0. 0. 0. 0. 0. 0. - 1.04058278e-03 1.04058278e-03 0. 1.04058278e-03 2.08116556e-03 0. - 0. 4.16233111e-03 1.35275759e-02 2.18522381e-02 0. 1.04058273e-02 - 1.04058278e-03 1.04058278e-03 1.04058278e-03 1.14464108e-02 - 2.08116556e-03 2.08116556e-03 0. 1.04058278e-03 1.04058278e-03 - 2.08116556e-03 2.08116556e-03 5.61914705e-02 2.08116546e-02 - 1.35275759e-02 3.12174833e-03 9.36524477e-03 1.04058278e-03 - 2.08116556e-03 2.08116556e-03 1.04058278e-03 5.20291366e-03 - 3.12174833e-03 0. 9.36524477e-03 8.32466222e-03 5.20291366e-03 - 3.12174838e-02 9.36524495e-02 8.01248774e-02 4.37044762e-02 - 4.16233111e-03 7.28407968e-03 1.35275759e-02 3.12174833e-03 - 1.24869933e-02 1.04058273e-02 2.08116556e-03 1.04058278e-03 0. - 3.12174833e-03 6.24349667e-03 2.08116556e-03 1.24869933e-02 - 2.80957352e-02 2.28928216e-02 4.16233111e-03 2.08116556e-03 0. 0. - 0. 1.04058278e-03 2.08116556e-03 8.32466222e-03 1.04058278e-03 0. - 1.04058278e-03 8.32466222e-03 1.04058278e-03 2.08116546e-02 - 1.45681594e-02 4.16233111e-03 3.12174833e-03 0. 1.04058278e-03 - 1.04058278e-03 1.04058278e-03 1.04058278e-03 3.12174833e-03 0. 0. - 0. 0. 0. 0. 0. 3.12174833e-03 1.14464108e-02 1.04058278e-03 - 1.04058278e-03 3.12174833e-03 1.04058278e-03 0. 4.16233111e-03 - 1.04058278e-03 3.12174833e-03 1.04058278e-03 2.08116556e-03 - 1.04058278e-03 9.36524477e-03 0. 9.36524477e-03 1.04058273e-02 - 9.36524477e-03 0. 0. 1.04058278e-03 2.08116556e-03 0. 0. 0. 0. 0. - 0. 0. 2.08116556e-03 0. 0. 1.04058278e-03 2.08116556e-03 0. 0. 0. - 0. 0. 0. 0. 3.12174833e-03 0. 1.04058278e-03 0. 0. 0. 0. 0. - 7.28407968e-03 2.08116556e-03 1.04058278e-03 1.04058278e-03 0. 0. - 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 2.08116556e-03 0. - 2.18522381e-02 1.04058278e-03 0. 1.04058278e-03 1.04058278e-03 0. - 0. 0. 1.14464108e-02 0. 2.08116556e-03 1.04058278e-03 - 9.36524477e-03 0. 1.24869933e-02 5.20291366e-03 6.24349667e-03 - 8.32466222e-03 0. 2.08116556e-03 2.08116556e-03 2.08116556e-03 0. - 8.32466222e-03 0. 1.04058278e-03 0. 0. 0. 0. 2.08116556e-03 - 1.56087419e-02 2.08116556e-03 0. 0. 0. 0. 0. 0. 1.04058278e-03 - 1.04058278e-03 0. 1.04058278e-03 1.04058278e-03 1.04058278e-03 0. - 1.04058278e-03 8.32466222e-03 2.08116556e-03 0. 0. 0. 0. 0. 0. - 3.12174833e-03 0. 0. 0. 0. 0. 0. 0. 2.08116556e-03 0. 0. 0. - 1.04058278e-03 0. 0. 0. 1.04058278e-03 1.04058278e-03 - 1.04058278e-03 0. 1.04058278e-03 0. 0. 0. 5.20291366e-03 - 8.32466222e-03 1.04058273e-02 0. 8.32466222e-03 0. 2.08116556e-03 - 0. 8.32466222e-03 0. 1.04058278e-03 0. 2.08116556e-03 - 2.08116556e-03 1.04058278e-03 2.08116556e-03 1.14464108e-02 - 5.20291366e-03 2.08116556e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 4.16233111e-03 3.12174833e-03 0. 4.16233111e-03 - 1.14464108e-02 1.14464108e-02 0. 1.24869933e-02 3.12174833e-03 - 2.08116556e-03 1.04058278e-03 1.04058273e-02 1.04058278e-03 - 1.04058278e-03 0. 2.08116556e-03 2.08116556e-03 2.08116556e-03 - 2.08116556e-03 1.97710730e-02 2.70551518e-02 9.36524477e-03 - 3.12174833e-03 6.24349667e-03 1.04058278e-03 0. 3.12174833e-03 - 4.16233111e-03 2.49739867e-02 7.28407968e-03 5.20291366e-03 - 1.35275759e-02 6.24349667e-03 7.28407968e-03 2.70551518e-02 - 1.15504690e-01 2.91363187e-02 1.35275759e-02 2.08116556e-03 - 3.12174833e-03 5.20291366e-03 0. 5.20291366e-03 3.12174833e-03 0. - 0. 0. 0. 5.20291366e-03 0. 3.12174833e-03 4.16233111e-03 - 1.87304895e-02 4.16233111e-03 0. 0. 3.12174833e-03 0. - 1.04058278e-03 1.04058278e-03 4.16233111e-03 0. 0. 0. - 1.87304895e-02 1.04058278e-03 2.91363187e-02 8.32466222e-03 - 2.08116556e-03 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 6.24349667e-03 0. 0. 0. 2.08116556e-03 0. 2.08116556e-03 0. - 3.12174833e-03 0. 0. 1.04058278e-03 1.45681594e-02 0. - 6.24349667e-03 7.28407968e-03 1.56087419e-02 2.08116556e-03 0. 0. - 2.08116556e-03 0. 1.04058278e-03 0. 0. 0. 0. 0. 1.04058278e-03 0. - 1.04058278e-03 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 7.28407968e-03 2.08116556e-03 - 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. - 9.36524477e-03 2.08116556e-03 1.04058278e-03 1.04058278e-03 - 1.04058278e-03 0. 0. 0. 8.32466222e-03 0. 1.04058278e-03 - 2.08116556e-03 7.28407968e-03 0. 5.20291366e-03 5.20291366e-03 0. - 5.20291366e-03 0. 3.12174833e-03 1.04058278e-03 0. 0. - 2.08116556e-03 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 1.04058278e-03 - 2.08116556e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 - 1.04058278e-03 0. 3.12174833e-03 3.12174833e-03 0. 0. 0. - 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 0. 0. 1.04058278e-03 0. 0. 3.12174833e-03 0. 0. 0. - 0. 3.12174833e-03 0. 1.04058278e-03 7.28407968e-03 6.24349667e-03 - 4.05827276e-02 0. 5.20291403e-02 0. 0. 0. 6.24349667e-03 - 1.04058278e-03 0. 0. 2.08116556e-03 0. 0. 1.04058278e-03 - 5.20291366e-03 1.04058278e-03 3.12174833e-03 0. 0. 0. 0. - 1.04058278e-03 0. 0. 0. 0. 0. 2.08116556e-03 0. 0. 1.04058278e-03 - 1.14464108e-02 2.39334032e-01 0. 3.32986489e-02 2.08116556e-03 - 2.08116556e-03 0. 1.35275759e-02 0. 0. 0. 2.08116556e-03 - 2.08116556e-03 1.04058278e-03 1.04058278e-03 1.35275759e-02 - 1.56087419e-02 5.51508889e-02 0. 1.56087419e-02 0. 3.12174833e-03 - 0. 1.66493244e-02 6.24349667e-03 7.28407968e-03 0. 1.66493244e-02 - 1.04058273e-02 7.28407968e-03 1.14464108e-02 5.93132190e-02 - 3.12174833e-03 1.35275759e-02 0. 3.12174833e-03 6.24349667e-03 - 2.08116556e-03 1.04058278e-03 2.70551518e-02 0. 0. 0. 0. - 1.04058278e-03 0. 0. 1.24869933e-02 1.14464108e-02 3.12174833e-03 - 0. 0. 2.08116556e-03 0. 1.04058278e-03 2.08116556e-03 0. 0. 0. 0. - 1.14464108e-02 2.08116556e-03 5.20291366e-03 4.57856432e-02 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 2.08116556e-03 - 2.08116556e-03 0. 0. 0. 0. 0. 2.08116556e-03 1.04058278e-03 0. 0. - 0. 3.12174833e-03 0. 0. 5.20291366e-03 7.28407968e-03 0. 0. 0. - 6.24349667e-03 0. 0. 2.08116556e-03 0. 0. 0. 0. 0. 0. 0. 0. - 4.16233111e-03 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. - 2.08116556e-03 0. 0. 1.04058278e-03 1.04058278e-03 0. 0. 0. 0. 0. - 0. 1.04058278e-03 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. - 3.43392305e-02 3.12174833e-03 1.04058278e-03 1.04058278e-03 - 3.12174833e-03 0. 0. 1.04058278e-03 1.35275759e-02 2.08116556e-03 - 0. 0. 1.04058273e-02 0. 6.24349667e-03 7.28407968e-03 0. - 5.20291366e-03 0. 0. 0. 0. 0. 1.97710730e-02 0. 0. 0. 0. 0. 0. 0. - 1.14464108e-02 0. 2.08116556e-03 0. 0. 0. 0. 0. 1.04058278e-03 0. - 0. 0. 0. 1.04058278e-03 2.08116556e-03 0. 1.04058273e-02 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. - 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 2.08116556e-03 - 3.12174833e-03 3.85015644e-02 0. 1.04058278e-03 0. 1.04058278e-03 - 0. 3.01769003e-02 0. 0. 0. 0. 0. 0. 0. 9.36524477e-03 - 1.04058278e-03 4.16233111e-03 0. 1.04058278e-03 0. 0. 0. 0. 0. - 1.04058278e-03 0. 0. 1.04058278e-03 1.04058278e-03 0. - 8.32466222e-03 2.08116556e-03 1.56087419e-02 0. 2.08116556e-03 0. - 1.04058278e-03 0. 1.14464108e-02 0. 0. 0. 0. 0. 0. 0. - 8.32466222e-03 1.29032269e-01 1.52965665e-01 0. 1.04058273e-02 - 3.12174833e-03 0. 1.04058278e-03 2.18522381e-02 3.53798158e-02 - 2.28928216e-02 0. 3.12174833e-03 1.45681594e-02 1.35275759e-02 - 4.16233111e-03 1.09261192e-01 1.76899079e-02 1.04058273e-02 0. - 1.04058278e-03 0. 2.08116556e-03 0. 2.08116556e-03 0. 0. 0. 0. 0. - 1.04058278e-03 1.04058278e-03 2.91363187e-02 1.87304895e-02 - 1.04058278e-03 0. 0. 2.08116556e-03 0. 2.08116556e-03 0. 0. 0. 0. - 0. 0. 0. 7.28407968e-03 3.12174833e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 0. 0. 0. 0. 0. 0. 3.12174833e-03 2.08116556e-03 0. - 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 2.08116556e-03 0. - 3.12174833e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 4.16233111e-03 3.12174833e-03 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 6.55567124e-02 2.08116556e-03 0. 0. 0. 0. 0. 0. - 4.16233111e-03 0. 0. 0. 0. 0. 1.04058278e-03 1.04058278e-03 - 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. - 1.04058278e-03 1.04058278e-03 2.08116556e-03 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 4.16233111e-03 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 0. 0. 0. 1.04058278e-03 0. 0. 2.08116556e-03 0. 0. - 0. 0. 0. 0. 0. 0. 2.08116556e-03 0. 0. 0. 1.04058278e-03 - 1.04058278e-03 6.24349667e-03 9.36524477e-03 2.18522381e-02 0. - 1.04058278e-03 0. 0. 0. 1.04058278e-03 0. 1.04058278e-03 0. 0. 0. - 1.04058278e-03 1.04058278e-03 1.35275759e-02 3.96462053e-01 - 1.67533830e-01 1.04058278e-03 1.04058278e-03 2.08116556e-03 - 4.16233111e-03 1.04058278e-03 2.08116556e-03 6.03538007e-02 - 3.01769003e-02 0. 0. 1.24869933e-02 1.76899079e-02 8.32466222e-03 - 2.39334032e-02 1.56087419e-02 1.87304895e-02 0. 6.24349667e-03 - 7.28407968e-03 2.08116556e-03 1.04058273e-02 3.22580673e-02 0. 0. - 0. 0. 3.12174833e-03 0. 9.36524477e-03 4.68262248e-02 - 1.66493244e-02 4.16233111e-03 0. 1.04058278e-03 0. 0. 0. - 1.04058278e-03 2.08116556e-03 2.08116556e-03 0. 0. 2.60145701e-02 - 1.04058278e-03 2.28928216e-02 3.43392305e-02 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 4.16233111e-03 0. 0. 0. 0. 0. 0. 0. - 1.04058273e-02 0. 0. 1.04058278e-03 1.14464108e-02 0. - 1.35275759e-02 1.04058273e-02 6.24349667e-03 1.04058278e-03 0. 0. - 3.12174833e-03 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. - 2.08116556e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. - 0. 0. 6.24349667e-03 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 1.04058278e-03 2.39334032e-02 1.04058278e-03 - 2.08116556e-03 0. 0. 0. 0. 1.04058278e-03 9.26118642e-02 - 1.04058278e-03 1.04058278e-03 0. 1.87304895e-02 0. 1.45681594e-02 - 9.36524477e-03 1.04058278e-03 6.24349667e-03 0. 1.04058273e-02 0. - 0. 0. 6.24349676e-02 0. 0. 0. 0. 0. 0. 0. 3.01769003e-02 - 1.04058278e-03 0. 0. 1.04058278e-03 0. 1.04058278e-03 0. - 1.04058278e-03 0. 1.04058278e-03 0. 1.04058278e-03 2.08116556e-03 - 0. 1.04058278e-03 1.76899079e-02 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 1.04058278e-03 0. 8.32466222e-03 2.08116556e-03 - 1.97710730e-02 0. 1.97710730e-02 0. 0. 1.04058278e-03 - 2.28928216e-02 0. 0. 0. 1.04058278e-03 0. 1.04058278e-03 0. - 8.32466222e-03 1.04058278e-03 1.04058278e-03 0. 0. 0. 0. 0. - 1.04058278e-03 0. 0. 0. 0. 0. 0. 1.04058278e-03 6.24349667e-03 - 1.04058273e-02 4.99479733e-02 0. 7.28407968e-03 0. 0. - 1.04058278e-03 1.35275759e-02 0. 1.04058278e-03 0. 0. - 1.04058278e-03 1.04058278e-03 2.08116556e-03 1.76899079e-02 - 3.43392305e-02 1.97710730e-02 0. 8.32466222e-03 0. 0. 0. - 6.24349667e-03 1.24869933e-02 4.16233111e-03 2.08116556e-03 - 1.04058278e-03 0. 2.08116556e-03 1.04058273e-02 5.72320521e-02 - 2.39334032e-02 1.45681594e-02 2.08116556e-03 1.14464108e-02 - 6.24349667e-03 0. 1.14464108e-02 4.16233111e-03 1.04058278e-03 - 1.04058278e-03 0. 0. 3.12174833e-03 0. 9.36524477e-03 - 1.45681594e-02 2.08116546e-02 5.20291366e-03 3.12174833e-03 - 1.04058278e-03 4.16233111e-03 0. 1.04058278e-03 2.08116556e-03 - 1.04058278e-03 1.04058278e-03 0. 0. 5.93132190e-02 1.04058278e-03 - 1.97710723e-01 2.18522381e-02 5.20291366e-03 1.04058278e-03 0. - 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 - 6.24349667e-03 0. 0. 1.04058278e-03 2.08116556e-03 0. - 1.04058278e-03 0. 2.08116556e-03 0. 0. 1.04058278e-03 - 2.70551518e-02 0. 5.20291403e-02 4.16233111e-03 2.08116556e-03 - 4.16233111e-03 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. 0. 0. - 1.04058278e-03 0. 0. 1.04058278e-03 1.04058278e-03 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 1.04058278e-03 0. - 4.16233111e-03 6.24349667e-03 0. 2.08116556e-03 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 4.16233111e-03 3.12174833e-03 0. 0. 0. 0. 0. 0. - 6.24349667e-03 1.04058278e-03 0. 0. 6.24349667e-03 0. - 7.28407968e-03 3.12174833e-03 0. 2.08116556e-03 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 1.04058278e-03 0. 5.20291366e-03 0. 0. 0. - 1.04058278e-03 0. 0. 0. 1.04058278e-03 0. 0. 0. 1.04058278e-03 - 2.08116556e-03 0. 1.04058278e-03 5.20291366e-03 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.04058278e-03 0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0. 0. 0. 6.24349667e-03 0. 3.32986489e-02 0. - 1.97710730e-02 0. 0. 0. 9.36524477e-03 0. 0. 0. 0. 1.04058278e-03 - 2.08116556e-03 0. 6.24349667e-03 1.04058278e-03 0. 0. 0. 0. 0. - 1.04058278e-03 0. 0. 0. 0. 1.04058278e-03 0. 0. 1.04058278e-03 - 2.08116556e-03 1.04058273e-02 1.36316344e-01 0. 2.08116546e-02 0. - 0. 0. 2.08116556e-03 0. 1.04058278e-03 0. 0. 1.04058278e-03 - 3.12174833e-03 0. 9.36524477e-03 3.12174833e-03 2.08116546e-02 0. - 1.04058278e-03 0. 0. 0. 2.08116556e-03 8.32466222e-03 - 1.14464108e-02 0. 3.12174833e-03 1.45681594e-02 6.24349667e-03 - 1.66493244e-02 3.95421460e-02
- - 2 - 1 -
i
- - 1 2
-
diff --git a/test/legacy/test_cvmat.rb b/test/legacy/test_cvmat.rb new file mode 100755 index 0000000..9b2f85a --- /dev/null +++ b/test/legacy/test_cvmat.rb @@ -0,0 +1,213 @@ +#!/usr/bin/env ruby +# -*- mode: ruby; coding: utf-8 -*- +require 'test/unit' +require 'opencv' +require File.expand_path(File.dirname(__FILE__)) + '/../helper' + +include OpenCV + +# Tests for OpenCV::CvMat +module Legacy + class TestCvMat < OpenCVTestCase + def test_initialize + m = CvMat.new(10, 20) + assert_equal(10, m.rows) + assert_equal(20, m.cols) + assert_equal(:cv8u, m.depth) + assert_equal(3, m.channel) + + depth_table = { + CV_8U => :cv8u, + CV_8S => :cv8s, + CV_16U => :cv16u, + CV_16S => :cv16s, + CV_32S => :cv32s, + CV_32F => :cv32f, + CV_64F => :cv64f + } + + [CV_8U, CV_8S, CV_16U, CV_16S, CV_32S, CV_32F, CV_64F, + :cv8u, :cv8s, :cv16u, :cv16s, :cv32s, :cv32f, :cv64f].each { |depth| + [1, 2, 3, 4].each { |ch| + m = CvMat.new(10, 20, depth, ch) + assert_equal(10, m.rows) + assert_equal(20, m.cols) + depth = depth_table[depth] unless depth.is_a? Symbol + assert_equal(depth, m.depth) + assert_equal(ch, m.channel) + } + } + + assert_raise(TypeError) { + m = CvMat.new(DUMMY_OBJ, 20, :cv8u, 1) + } + assert_raise(TypeError) { + m = CvMat.new(10, DUMMY_OBJ, :cv8u, 1) + } + assert_raise(TypeError) { + m = CvMat.new(10, 20, :cv8u, DUMMY_OBJ) + } + end + + def test_load + mat = CvMat.load(FILENAME_CAT) + assert_equal(CvMat, mat.class) + assert_equal(375, mat.cols) + assert_equal(500, mat.rows) + assert_equal(:cv8u, mat.depth) + assert_equal(3, mat.channel) + + mat = CvMat.load(FILENAME_CAT, CV_LOAD_IMAGE_GRAYSCALE) + assert_equal(CvMat, mat.class) + assert_equal(375, mat.cols) + assert_equal(500, mat.rows) + assert_equal(:cv8u, mat.depth) + assert_equal(1, mat.channel) + + mat = CvMat.load(FILENAME_CAT, CV_LOAD_IMAGE_ANYDEPTH | CV_LOAD_IMAGE_ANYCOLOR) + assert_equal(CvMat, mat.class) + assert_equal(375, mat.cols) + assert_equal(500, mat.rows) + assert_equal(:cv8u, mat.depth) + assert_equal(3, mat.channel) + + assert_raise(ArgumentError) { + CvMat.load + } + assert_raise(TypeError) { + CvMat.load(DUMMY_OBJ) + } + assert_raise(TypeError) { + CvMat.load(FILENAME_CAT, DUMMY_OBJ) + } + assert_raise(StandardError) { + CvMat.load('file/does/not/exist') + } + end + + def test_save_image + filename_jpg = 'save_image_test.jpg' + filename_png = 'save_image_test.png' + m = CvMat.new(20, 20, :cv8u, 1) + + File.delete filename_jpg if File.exists? filename_jpg + m.save_image filename_jpg + assert(File.exists? filename_jpg) + + File.delete filename_jpg if File.exists? filename_jpg + m.save_image(filename_jpg, CV_IMWRITE_JPEG_QUALITY => 10) + assert(File.exists? filename_jpg) + + File.delete filename_png if File.exists? filename_png + m.save_image(filename_png, CV_IMWRITE_PNG_COMPRESSION => 9) + assert(File.exists? filename_png) + + # Alias + File.delete filename_jpg if File.exists? filename_jpg + m.save filename_jpg + assert(File.exists? filename_jpg) + + assert_raise(TypeError) { + m.save_image(DUMMY_OBJ) + } + assert_raise(TypeError) { + m.save_image(filename_jpg, DUMMY_OBJ) + } + + File.delete filename_jpg if File.exists? filename_jpg + File.delete filename_png if File.exists? filename_png + end + + def test_add_weighted + m1 = create_cvmat(3, 2, :cv8u) { |j, i, c| CvScalar.new(c + 1) } + m2 = create_cvmat(3, 2, :cv8u) { |j, i, c| CvScalar.new((c + 1) * 10) } + a = 2.0 + b = 0.1 + g = 100 + m3 = CvMat.add_weighted(m1, a, m2, b, g) + assert_equal(m1.class, m3.class) + assert_equal(m1.rows, m3.rows) + assert_equal(m1.cols, m3.cols) + assert_equal(m1.depth, m3.depth) + assert_equal(m1.channel, m3.channel) + + m1.rows.times { |j| + m1.cols.times { |i| + expected = m1[j, i][0] * a + m2[j, i][0] * b + g + assert_equal(expected, m3[j, i][0]) + } + } + + assert_raise(TypeError) { + CvMat.add_weighted(DUMMY_OBJ, a, m2, b, g) + } + assert_raise(TypeError) { + CvMat.add_weighted(m1, DUMMY_OBJ, m2, b, g) + } + assert_raise(TypeError) { + CvMat.add_weighted(m1, a, DUMMY_OBJ, b, g) + } + assert_raise(TypeError) { + CvMat.add_weighted(m1, a, m2, DUMMY_OBJ, g) + } + assert_raise(TypeError) { + CvMat.add_weighted(m1, a, m2, b, DUMMY_OBJ) + } + end + + def test_encode + mat = CvMat.load(FILENAME_CAT); + + jpg = mat.encode('.jpg') + assert_equal('JFIF', jpg[6, 4].map(&:chr).join) # Is jpeg format? + + jpg = mat.encode('.jpg', CV_IMWRITE_JPEG_QUALITY => 10) + assert_equal('JFIF', jpg[6, 4].map(&:chr).join) + + png = mat.encode('.png') + assert_equal('PNG', png[1, 3].map(&:chr).join) # Is png format? + + png = mat.encode('.png', CV_IMWRITE_PNG_COMPRESSION => 9) + assert_equal('PNG', png[1, 3].map(&:chr).join) + + assert_raise(TypeError) { + mat.encode(DUMMY_OBJ) + } + assert_raise(TypeError) { + mat.encode('.jpg', DUMMY_OBJ) + } + end + + def test_decode + data = OpenCV::imread(FILENAME_CAT, -1).imencode('.jpg') + expected = CvMat.load(FILENAME_CAT) + + mat1 = CvMat.decode(data) + mat2 = CvMat.decode(data, CV_LOAD_IMAGE_COLOR) + + [mat1, mat2].each { |mat| + assert_equal(CvMat, mat.class) + assert_equal(expected.rows, mat.rows) + assert_equal(expected.cols, mat.cols) + assert_equal(expected.channel, mat.channel) + } + + expected_c1 = CvMat.load(FILENAME_CAT, CV_LOAD_IMAGE_GRAYSCALE) + mat1c1 = CvMat.decode(data, CV_LOAD_IMAGE_GRAYSCALE) + + [mat1c1].each { |mat| + assert_equal(CvMat, mat.class) + assert_equal(expected_c1.rows, mat.rows) + assert_equal(expected_c1.cols, mat.cols) + assert_equal(expected_c1.channel, mat.channel) + } + + assert_raise(TypeError) { + CvMat.decode(DUMMY_OBJ) + } + assert_raise(TypeError) { + CvMat.decode(data, DUMMY_OBJ) + } + end + end +end diff --git a/test/legacy/test_cvmat_imageprocessing.rb b/test/legacy/test_cvmat_imageprocessing.rb new file mode 100755 index 0000000..3a68925 --- /dev/null +++ b/test/legacy/test_cvmat_imageprocessing.rb @@ -0,0 +1,84 @@ +#!/usr/bin/env ruby +# -*- mode: ruby; coding: utf-8 -*- +require 'test/unit' +require 'opencv' +require File.expand_path(File.dirname(__FILE__)) + '/../helper' + +include OpenCV + +# Tests for image processing functions of OpenCV::CvMat +module Legacy + class TestCvMat_imageprocessing < OpenCVTestCase + DEPTH = [:cv8u, :cv8s, :cv16u, :cv16s, :cv32s, :cv32f, :cv64f] + + def test_sobel + mat0 = CvMat.load(FILENAME_LENA256x256, CV_LOAD_IMAGE_GRAYSCALE) + + mat1 = mat0.sobel(1, 0).convert_scale_abs(:scale => 1, :shift => 0) + mat2 = mat0.sobel(0, 1).convert_scale_abs(:scale => 1, :shift => 0) + mat3 = mat0.sobel(1, 1).convert_scale_abs(:scale => 1, :shift => 0) + mat4 = mat0.sobel(1, 1, 3).convert_scale_abs(:scale => 1, :shift => 0) + mat5 = mat0.sobel(1, 1, 5).convert_scale_abs(:scale => 1, :shift => 0) + + assert_equal(:cv16s, CvMat.new(16, 16, :cv8u, 1).sobel(1, 1).depth) + assert_equal(:cv32f, CvMat.new(16, 16, :cv32f, 1).sobel(1, 1).depth) + + (DEPTH - [:cv8u, :cv16u, :cv16s, :cv32f]).each { |depth| + assert_raise(OpenCV::Error::StsNotImplemented) { + CvMat.new(3, 3, depth).sobel(1, 1) + } + } + + assert_raise(TypeError) { + mat0.sobel(DUMMY_OBJ, 0) + } + assert_raise(TypeError) { + mat0.sobel(1, DUMMY_OBJ) + } + assert_raise(TypeError) { + mat0.sobel(1, 0, DUMMY_OBJ) + } + end + + def test_laplace + mat0 = CvMat.load(FILENAME_LENA256x256, CV_LOAD_IMAGE_GRAYSCALE) + + mat1 = mat0.laplace.convert_scale_abs(:scale => 1, :shift => 0) + mat2 = mat0.laplace(3).convert_scale_abs(:scale => 1, :shift => 0) + mat3 = mat0.laplace(5).convert_scale_abs(:scale => 1, :shift => 0) + + assert_equal(:cv16s, CvMat.new(16, 16, :cv8u, 1).laplace.depth) + assert_equal(:cv32f, CvMat.new(16, 16, :cv32f, 1).laplace.depth) + + (DEPTH - [:cv8u, :cv16u, :cv16s, :cv32f, :cv64f]).each { |depth| + assert_raise(OpenCV::Error::StsNotImplemented) { + CvMat.new(3, 3, depth).laplace + } + } + assert_raise(OpenCV::Error::StsAssert) { + CvMat.new(3, 3, :cv64f).laplace + } + + assert_raise(TypeError) { + mat0.laplace(DUMMY_OBJ) + } + end + + def test_canny + mat0 = CvMat.load(FILENAME_LENA256x256, CV_LOAD_IMAGE_GRAYSCALE) + mat1 = mat0.canny(50, 200) + mat2 = mat0.canny(50, 200, 3) + mat3 = mat0.canny(50, 200, 5) + + assert_raise(TypeError) { + mat0.canny(DUMMY_OBJ, 200) + } + assert_raise(TypeError) { + mat0.canny(50, DUMMY_OBJ) + } + assert_raise(TypeError) { + mat0.canny(50, 200, DUMMY_OBJ) + } + end + end +end diff --git a/test/samples/airplane.jpg b/test/samples/airplane.jpg deleted file mode 100644 index a9b465267d4de1bdc184b03349287cd2fab6b149..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 85238 zcmbTdWmH>T^zIupxI+U355*~7TuOliin|tvP%O9S=Y_p%h$@oj+YtcYQxVAbFp%;V^(msakO*sXZ8`~mmv7J3U~*=!u&7(`^0(- zY+UUB0uL7#2NxfYfB+v4AD@7Tl$d~!gb*K}n1Yyul#HC5oPdaeih_*t@t6$bzq7Eg z@g7eiBg7{p`~MvOdI02jm;g)w76uCdlNDZrgaB^{rh>ATImylF^sidp|g{kW5=^Gdt8JpPH z+Sxle!ks+5ynTHA`~xE1MMg!(#Ks|0KcuB+e9X-HR8)*ADJ?6nsBdU&YHn$5Ywzp- zGB7waJTf{nJ2$_uxU{^o^?iG1cW?jT@aX*F^6L86&F|YkhyVW) z{eLw7AIbk#07O_AkAD~zIY18Z>sw@d+54^hh!Z=bceMv}Z|zo72Rg0WKi(_hG0QBb zQws?|hyMYt7wcmBSE`EMEO(E02Ghk0Hs!N+U5XJ{LAH2T_Yc6V&Y|vjBbM(Puqnc=tnepDj@w|y ztB6wQ(8q`to6sA?l%XnvR+)eJ?yvm1yEft?|iY+RJfM#8ARyNJj z7#m45(?*E@1|l&?O}(7AMv;yJ(Q4E`{3B_k=i zBytSH0J4pke+fwBs!}pt9(ni?own%~Vnce56OtTT0{_bSy4Iw8z2!mm>X&$>SUdZN z(07e3w5QhC`7^0Cy1pDYSs@OVGdJ-6xr;=jl=vD}>1z9avXzefKY&EZSP?wWk4?P= zBTAWBduSJC&3%=6x12iqlW+ZN^k2;GVcp_oyv(dYA;9*H4P)kCuh=5EP&gX3(tsF= zg&kj27{ztlYo2lYyOJOp%Le`ogd`s{x`_UTlO(U)h(fm-5>`2Xwxu zd)oyWykATS8jg2N|2asG-hP|(0sDZ<_Un(2#0%xjtAleOxz~gFE!pz|>2&d3i_~r} zwO*5$wBmTZcZFe#5YEa3=y^IWa2JxKIbni%gI}Du^;5SjR6KX}y=h37kTrMPRQv}3 zB;8WGz7;Ia(56XqObq@_R?37@&JxSXG#1JBgusw535PV@YIY6k(()4B&a91P&FMv7 zF#X0384lV@ML}NZHO5GYGquqIkBt^T)5e{z&?HiAh~3wg0gvNW(z)Ll!yfi7dbLb- z6CR%2(oX-jF`l*I6s2X?A00%q>;&8y;4HlVo;?CFay{K%8zAGY8Dji~@}2o&wa+1; z6f`)G5N|}&A@7#$r(T}3iZ-&DcMu3bh$H^mf@gJ9Vh#pBkE8vT%~1OozA}89jVNJDnTDg0mj5dBwo!O@;Qf# zR)$F3eY?$+j7q36*Qm;h90AcQByXu~h7hp0F&r9HWr-CEQv-K1$8fe2+N8a!i+|3u zjfq#1ORM{|**%>(Sgjj!O5c#~?zppW2p-4U#2irAKTT*X?H@G$a#H4$6(AJFLsdOW z%J>hkFM7m%#RVx-5M5r%M{hf*r7eC4g8cYwC^6xnd=8k)li~UD#4v?Cr!%oyv(#iP z@AylA2pVVLddF2V_@Q;=&tikZR;7|+3YX~{wlQ?3y_Y%4!sj1=3VoYK8Y7xU%DLcr zliNBzu5wwzMCpVq@SbxWdk%a;BoHFYgR(s6@_(`xYdk2spub;wgZgXVoLYTEbSAp{ zu%*QO!89G~(BRp<{EaS@wL5QZr%qQG9NR)1^2Rg9H)4#|2`_fH{{dX>ISxm*f1(DA~PrEHZoqb{D)&i~UO$_|svy9#7ppucmGX93B5koQtLTVmnyO zZ3rf%)qu;en(+_Kz1^v}75X3ZZ~yPtFM2+eIy&ar?XUgkRL(uWz+D~84Yp91nxo^i zst#;e41(q=(Xw(+^CkJ)Y+D3j2}71^(QUw)POyd&ZSNf)d-<{owOW2U!r)4!)=^gO zXG`q%w?Z=o_aiK6KC-o@7U2U!#gW#g7D%Yi31ENq^PBCXnVRVGANyWkj|S5qHQ1k( z?G~c9qVpXa1=Mq*Vn>C~7n$SdX8cV1J%r3*j^m>O#&$AtE4_O)$D*Ioi|<5sc6}7& zBJNp48`f41%TD#SZOA76EOJ$pzH3r@{xhdp7w&sUn#N<<0QOq{CORMe#hP0!>t=Uh zJvtQJvvbdA}kp!R5qThV;gO64A^VmtXFx>tF z(4C>p1L3f1w@Vqbfi@c+b-AWz6B&(_z}d7s!yO*-N%zNYS1uPmP*#rdu|B-jT3jmW z_Tf!bO*cc@?+I2X6L~KJ#TP=8r_&X>81)e!wnGEKsj`fh@+R_W*q*eto|NJByJG z5c{gYv{1>`b1rJiY_HVlfIgg=D_Wst`nqgko%$m+(*`!;_dJJ7*l{c9etOb~h$%U0 zQW*%biO4yhy24W{Sm_Y}(sFbM_!_dBI4dvgGKFMZdWg$tE~KzKrmepx6CWx>weql+ z@z(8+k$X@9hDw6CCckn!BiRAOg-SGzu6?-NRLUs5ot&S7S|bF58&(RT@&KPgR|Y(b zndd>L5qlCqH>|{~q1u?_$&SmB-T{+r6BftyVUs>CHjfBwMqFWi)Ysi~QL;8*E!e&( z()6tY=Yeipqn)gdvS%Jl1{hG`1%DOS_hK~IU4BsF^v!F>6k<;jNphtneDk%GITDNs zmRXXXdg1TV+&hRI&-=qW(<4Ybfylw!=_D@656>xTUW3Xg!2)c`be{b5)NE%HQw4T7 z((DCU`abQX9BCg4X>W`LKq*h}{Mk<0R~tyBEz2-i>w_mn(7V+RH(z?BJ#Rwdu7m3YLp>A((I-N0AJg zAYPgL53v*5B@Vn%iREuZbiid?5o2s!)GZ5zOWA^3*FRshafE`K?PN zpK8r6<^BS3^$?Qg*`CoySn1fgw3Q`P-toqB>UOW|2fxpiZeWgRt*W3$*oc{5h;Ab< zOPra_9!Rbft*vI9@((a$mBOG$QB^8>Hj5^xIJhjGph|tJuA%S!43r>YmXaLw55SFP z){h^JqrF{^1hFxwZ0T!oXMa;PNf>=%`p$DorW282S;U;MP9pIK@c?Iwhq>!fKxrkY zD|QnmUE!YmI$lUP7?O;nkH?sL{kO>?ZoGW0^d`GjK|132s;ZQofs#ANG_fPGGY;on z`A2*|ZU6|N4?TP3N>$GN0F&+N)|~l7zOOv%O3|=1H!IpPL8l;=?aAI*nmoKi_Bp&o z_q$u{hNftfT9o@;N?Jo=(3_~w#wz3-I!-^16J=4HWgMRfyJHx6=Q-AWtJa{HTN>M8 zS27j0zu$jX`ly6kh@g?xdY(?4q@DkI*Qm3I2pN|cqb69f>XOUeGWd;L$uhl#lpK*J zguMd&lbFVzaZWKAB>(y-D?ep7d{pHOHmD(SXyIJ1uLPT!?>_cyv)R`DJ~NQ??&eo> zH{n}G)UTAS2dQN7^SV z5^TSz>o7L7ad`Nxbl-RazN@~=k2fr(n1glr$GYKNljD}_pLB0>I=HgwJI*f=BZH)7 zU_%xUQRp^>39Oq)5%2|P|32;;>F8-Og@>A=O~21d!X>%KsCBO)j>NVMPi^DOe37_T zE5HUoA(d+OJ5vc(79QZFgkD!fnMmChWH3F&g;le*N*9WqT)(S#(FR!yrdhfR zhQk>>3CMZ?-@YhAt9++}3&9C{JY*n7MTcsq>9nvFTmU4gB;?N=?CB|c5kwizHhG`t z2c}CPYa`}4wEzI)NmWhFXr;9PFMjGV3Q4e{kl41jtFFL;L!I3+qgbt?ZC?x603=yD zQJ$FvkUsVHt9L8Am%u8kn8B-B5MWcUgk7JPO*gWKZSfyq5muKn{56ui{aPFlXB#*T ztEC|!*p~p6mKhU^opHbO48;|UvrR{A)_D*_gaVl&MR^?6+dttn#DB5L{OBfCFPXDB z8;N|0Z!FLsioY*AZ}xyY8;Ji)+!T?GT=QH#)TDbW%$@x1F~yZQo(JJ0ro*m=x2>_> z?$}6q;26-o5wPCbXG5Fh8>r1HjC^v%6$(?h9r=4hZL$4|6T{Zh$dXLTcfzDB`{{TL z+1&*zBZF9(F4gVVuCz0^6z0KJR5W}Cf+=`1$-I_tI} zX(ESvxVes()W^_V1&}zZ!uRRO-6wiaMr*(2Fnakb#>RvazJ4}P%QFIBn^FygLFwoj z!t~?lT&GmY1k1NK1l1U$Nv$DMXxrDn)l}MW>}td1CB-IC8Pi#(Me&vNB9j3h%3JIc zUz_|kEp|eDoSAot#v!0g)V#f~Oq-J>dkq(&bYsqh-hN<23|&qHF1`A$Z82HYojGDi zkl#f~bKFDM^vS>Psijfc(CtlC>CeHU66p+`W#}r2XZ&VRNMF~e_#bcm)U}KKs9dh6 zgKPakRIi;97hQWgIXQse4*!bkNF7>icJ_Ar`A^Y%KF(X^P;NN11C0~xJR(`x9ZFUr zwUr#+YrZz$t}8J&hO`~GqcqunU1+j_D)L32Pd4LS%&D@siR>-?8VI{s1f7#SY|76Z;&!vPbb*2$jDQk}V@s z5X1xv7p6^FCGP2=eu?Ms0rt#lnD8Q=a=@S5SHp2HDE>snu+IApt(grZU&F8Wrg%n& zK@Dr94_BJVc02xVQH8gVa5&THO0v?N+yJz(hOLD!r7Zq5yV7aOX+tS4eC#HN3}GfW zkQ=vbw*Ry(uw36Y#W;ywvk)uJHscK)XfR8v+|DfPB;KU{Rjl!;x*Ksj&-%-8q(Cpb zN8t83nt@^6Y8@eAlT-a`P&T~2>@;`u{f)EZfR}wTw5D+fD`gPJ5!jeXSUjqM8#V*V#kUYHp_Y@c=~QBNYPQX6*zE?;nAVZ^Se?COXjh@fUr=+G<1`#E1CHbx6^*S~plEsm8CR){aV`6LiD za-xw4bg)lAEJdtly`5YjB-{mTk|{`&N!`t%sRA=icc)67vXROxG0orowTJehwY@9` zSiYbU2Kc3jND~wLhi8oQN1Cql6h>7qF_ODfbT=YdL}XlY$&v*^qPw@W-}}CWE-72} zu;z<~RaS-rV{ZM;_N%!izT+(;%?pzKu@>I_xB`}OhuY#QttLMS%SS`BiZF|jlABi* zpTq0G>A#LfF|>q{h;Q8su~!G~rnKAfEg}y^22Z%1t6b18T%d^xfUx0;izR&HT7L;% zyk54IMqS@IbqHTq*ul)nzN=uE(quNX_19_*&DW~n*|eAj)$fE{bN>0lo8WSh-{4_P zYRh#a2bqdShP_pSmWJ3 z*xkutc3W%Gr7uxHVN$+QclRq+!u+!8u}aE{ayVdAY*UUI>rl(waiqbDS7CzwOB zwAX?%FK!afp}tm;L2Ul60Y%lv2HS*}DGZq{J`4Prw%f`or9&RNb~^|RsoA#JpcnQs zuSU%Gmk+(PTEA!L_K)l|#84J8Hk81UZJIjD11>a1LpQ$mf_Avru4;Uu-e{7|Swv^+ z5=#>7$s8R)$8gq!xg&1s61l!gUsSMHVpd*~hvN-BPAR^s57-xzqL`GA~l z5V7l~LD@!~EeGUw`zFhQ_@t+amfz>`;W}ZqQ&#|+PtcoBe*Q3HR@chnW{42dbpwO>Z2{8*1lhbhA;8s>zv~iOU5h8>WL_ z6=aP^R(7xkr54P-I!B$9HJ`s>=|L*+&&Hp(P+PfrFtXU)oy2p1*Aw##cOEHl5lurA z9{W7wMJeGh^ZB8Hl~=6ZX9dEWTUwmR6a|-ZJ>gz)Me6 zy%TT_1>OTZgQDDwii5Re9DT(W`B6NcQFzTk)Q((R+!<3r4lSn2z?-5xI_}RQ%`~Tn z=_zZw9~L&L4r!0dfT+dvQF-m?;FEzPPr}ZWKKkR;13J=@x)-WmI4seo1?#4s4RE*? z$efagF^4|M*`_AV#|WyN&ar=&8^t5UW=EA1mJB=a$wK(?DUrLX48E&AZpyN!mM zN*A0G%%o$tGyQN-5}a88kTPc@6WnAr!F=)5{XHFbB-oW3$N>Kx=Yuo5cl=vN9aZ4C zTMlu5iKk0;xc0c(BaRAmwAFcK=Qn0^t3AP5mBo|53V=bW(m6Q5+cW9rLMztfXsrsO zw_{mf4UoQV*`@R*15(|@jxC(nf7IJv;V=(MRPp=+L|i3}tyFumR&(-lDK9*BM*#-aZ%ouHAGk zzPr|j`yQvMjp*aZ8X-|iFLgG8t0mi|bsuD2kc4)jy@N?5Kg@ehz4iSbSmw-6!;a(& ztKAI<o{XO4g>AawZTwCaT@z|54*YxoiKV(0JtX%d zcCPwrvb*CrB5VI$K!#_pfyg?+P@S(mm+JeiI&O;2^SJql54SLj3i$)4h4fUJ+C0BL zhEAgMuz!G~8g3YSa7jjopeV7m-yU+6&5alOBPc|*u5kTz+cRm~O3R4h;a_N!hG66X zz6`n$doMjcSG~8NgXAuOCWC&L6enVq zSz>xmNk71ig=Xui)&+x5^#c9}0eT+hb@3uaYzT2IHilNzXg1dmm>UA5_2s7m#|rXI zTc+yE9!nxH(RK06=i*C|YSsu3EHxgA%3k6j)m#GBdX_;U|I^3 z{l;_}CGkmo$erE@f8^64MFE3Rm7FV%g7OVRYqDgSXzT?So-_~fTs-Gc;Y5t#0m+wI zpG(6Fd@EM1yg&&8I`t&~0EswI2;PfOJl)|b6n{HbR}GF9K)`bKYK9RkkP0N@SRn_RPuZ=BTb>+vCY8&$!pn!iJ%IA~kTf6EJRdxNvQt7PB zyZ)hrLW;O;f1_|!viTcN#CkL?TI5T0%Tr<1lr$Da*PXzS96cR#=+_1+S`Ic~3A_y5 zpYQQu_u@a_ zmdW!KE;0J;4=0IEA6szNeRckrNu8-Y+tNl|&Cg%Wk9a-)4=L{3xm zmp5vMG~cOXdtD0ScI(0>yjGreyZC!i8~g7Ff-h&Y;(iy zmQ|^#JHR@P3p--Mmv57|nUeO6bl>HeeNt=sF(rCFu<_n~3VieNU3kjiSZi~@)v<*- z+7DL5N+?c>CD>^r4$MQ$#xE}JdRJ(N>wE=Y!<7bqOg1-l8aOgH@sH&GKo4%O#xOHyTgJpkYNte4pjCf{dpPeP;6H+>H-mImHb7|W7RNe}lA(EN*l_g`z+Qbu zU_DPSS$^*`kOr;YGIwRzmqJA+)7IucZdny^TJ}8`Vf!^|^gF9qIBuY!T%*hK`!u8e z*6B~i@9G9a{KSR}yelbsMJriNhwjC(7)W28FJ>Kh?y2thgC`s8yb>3Y6ceBkiCg)h ze}IYtP5Kekk~O_U2DS^p-6*0*&TLW7vEp3&WkpVn*6d$?lUJYBM?wDp@5CkUWt{$I zoO|{!wrp#{M%+~e1~FtmrM;@I*h9>-y@mtdTuVB3s+Goqp`!)6p{(edSg*~>y~#*$ zXlLAIF0I7^J-qlUb7x~K#Pn716^;>^904IH6$hUq4;WzZX5Bh~*;= zR>G!UWA9a+lsQi*A;YTt&YZ&zh`?`T`%ouE{TGP;mH-taL3>q6WSd#!?J<#vCj)O? zUVDFKlPvPGB4QSc;Rsp{F|+dr-E%YK4b%wkT|?RH{Rg4P@<<6Lf+q;+`0r`x3c__H z{PzAuzzh#{JeTq_uq8$SN(JoS4RZt(XQ~=44 z_+jQV^uEQt``mV@+Vh@#7|Q(IIqMBHtlu_ekUJoPeJx%L8A6I;6#%AA6`;zD7)6P@ z*{U@HXId3Wfr$}R*VavOJCQEC^kHFFB|}{9rVhbDM^!6xA`Ig(TA_Fn_gvKZEJo+U zJrW{cpCJsa1&}t5(zPWGH0(D!BmycK=IXr6OaB!}XHOTM2CGRo+W$N3@ot!xFlv#jEoXOb!Yx{Xv!Y^eKd7x_8ugUgkeM;c`b1L7!@7B63zn115X(X-` zLhpx2H+er+)A~E)%Y=MEU(5>SfBcnFG|txk&bn0yvl1hcm?i2(V{nw z=QswmBO|?M7J5gXkW83pxqJ1TJ{IkvcB2#S+KxM(jIfda2VFnhUt7)Ij2j>7O{+eR zMM^UU#LcUI5tcKa9oTJaxe%)7(t-6HnvDn3dPU#Ke1Opo+cYql92c4*X@qiICw29H zzopdoKVf#`6u?j+d~_Ap^QO;$%W4%W-b9!ZYA(s;cm0cT*9&4APrB7#>Ct2y_(*n& z(X4pVC%cDo0I^96YFN%8CMWC1O$o;XPL(lp4kdw>ciQQ#Z4!EhFRD1&s=tL zcz;;w2C-8FpRmiHV$_I^6~YMlT9u5FiJBF94>u}#l`@;DImAa~g1Swfd1>|2i?0wy zI;V3l-E(0Tds361$6E%2Dj<1W3#?Vtp&Uf8Lqqf_3qSTazO~?h1D_91NzrZ`7cRAg zO}P9uDt$V%5*(kiNha~Md1@~)f$uJ|M8PlFg`FM zU*l@zsh2Ad-~qTPum2ozO~=28O$}s=|1+EJCqTKX2cW5)_H%K=;>(V}vAPsthK^pdL3|{0*f6$z znib)&cCy4TDl^_;0`R{0exhJpW|0o&{$~#yu>lvn6(Q@f=YY-4nL+K*+9_b`V+uE( z{=sP{y+}(WmCY;3{^i#*qJRuBp~|9s`E;2f?gZcvud6dp8%MRJxro`Q<3njaMg3D0 z)qgMfbFK{a5Aa>vUitp~?!)2VK!QAVdhHHbhh>IXXR*_d*VL!qE0o16YVM{k9V)Y$ zuK#@7&j0&iBH?*o{c3^Oudij;;Tjk_c^ce{_bhO4=C+($4~%#stIBYreE-ouc|lcG zv6|sk)A&?4?rT;GJtb3HNqlNbn7dQhp@^ltpo-x7ozwAKZzaUm0n{L!+Ho4RB_RfxNkGNrkXi;->HuZC{;p&i+cc#f}aq0UqFH zDj*>R%imdw@j<-e6=S~znT-xARQIOczUU2f8rKZ7ACkCn4eLrFrY^08sc{1KtCg&m ze(NcC-0=4ATgx*%i8p-7<1z5bjzUJQANh?dW;9zkhjRx^hJSy|?-spqQDp(&^-utN z9-Gb%1d3ESa7yq9zkd0%D?M5J#E`>LcZxCXD>p;04HGjsSlI)ilVp)dBpcX`KnJ+-jg&00A)sfLwA7NdM92l`gJM(J(McZ`6ztGu(SY&nm{mDItECA8@q2Xqo$* zSsYj{{=F6*oyKLHATm??W$wf^Wx74*Z7BzCI(vK_zQC&-G7`<(z4`@7!6siXf|!a? z4IiX0w@gI{j9}Q-C-dMB9ZQ+#k}20pO&aT(jwd-f*klze7qU{+(NM z9zYm44ln6#DPhbdli4!5bG?~E^UAO%`QT%LDc~l1qJ0r_mrA(<1^CGc5p2@?GetuD z8q>;K;el}|cZa-tq2}1nbid_K_U{OKQp4s}OGW2I8@ZY=iIDOV)oWh)3l%kIYL^b> z+3=*Qe}L|16X`Zlq6C;>snfc7pfMMEpG^S91VTb)xz~0mC{H9d#v-~}$Vn`oMc?QG zFeKZZ@T9dpZ7&QQu^V6MfNfp$#{IOoL|)uxRc>1^H?42X+5?HZQig%WoMe(GzMf)M z+q0SVJ|X>`20=MG5lk%JL1M4Li%=Q+#OYqOCmEYa;m80Ch8d~ zfmJS2h|fpMB<3%pBvpq5HE&`dHG^}xQY%8MMg_V;4_^cvsBw3V6Nch#V=-QRg0Akx z-txo;iG2M|x;tVQs|H2=xeTV)g7l&3ktom>7dC)g!(Mkg`X?$*IEK zzc?hRYMSFJ&}WK8S>u6synmIhski-7?)d1@1{y*?ZJLIssKDKSTyXN%S!LEuQ#b+f zdQOzJB;z0Vmfsi_z+F_)*z%omt=9cH4lO2?zG4>&o)~&uZ$!QJXZHM=2(cX@R*_=xNEfEawc(n$__RhE7qLoaN1fGGXrk! z1ty)jfQV*eeY@pk%x37H@0Iyv>q_p5tKy@ZiTzpB{8pD<91-S$@9d4}3H+um?;|x` zY6iGJT+qUpz0Mw->|m8kW+NR!o*{%SAFD~A*p%Viey4nPDO%#vHl-%fG;!-@=`;zG z5B;qY2`Z3JAquU4E9md4_m)|s48L@wX)actQRK3Y3zCfUTo%V@xey;JxT@HLW($x(Lj{tHU-iL*;6#gi{tD7$3PVdk=yVd0>g~nxTb6NYnfyl+`U3aNBbC z5EvreEyg*DIl=GO3o7M}gj(J+1|Sa2($&FFo|@n3uUJ5Vn6Xbkie2da+A9nLrFg6k z;!D%P_3Uxw$_LeDB3@_|Z>B^fE9_kA7U;zje|+RzUg=_9K-MN{=3Qf}pjC?5lSvG4 zxNuT{*W~~$o*9WC(#d3DKTAmr|i1@JxjWBA*W`)mD`{ zSK1VtMLQZwRr}~w<&X7j>!Nh}UM6}>+^8nzXQ0TlO!2F?(--=tVPFB?r`l~Fh+KEB zh63Iqj5L!)k;E>ja-4$aY8a z!&yYyQy?tGyaIYQz#0Zey0r@;Obfwv*C#KNTkon! z?KwX4@ElvCgOnbDv8LV?Uw~})wgKyB_WKb~)D*LC@%+G%apEr_LYH1=GGcZ1KFeg! zVgf_7$N`7i@c^(rdNwZ+&OoZVZxv`tLfFd$0j(0Kei{ z>{FQ%1A1ReE`W7DeaU9=ekd;ILO=K&Hu*M$a<;a#qud&QpCiuptaYAwC){(%J`XU6 zu|qjhfWs-4OoC5)2tE3Ogo>ES;DWgTm>N*3odnYy4_xSVMXO9A)|U6@U^+jAzUygc zJm$-!29(!dd7%6H0cn$u&FsYxLFddfo~sS)$4) z5KFvT?`-aJbz0v+yEfi-J4sciN<%vqJ3hC|vH6pmjs&ZZX1R|IL$9TNfzqPk{>EHQDjp^g@Wui?ccRW z{4nG{5b#jF@LZanG?5m@BqURK9#sr*Yz0~mr5 zTb<)YTPrsxziO}xy^Sd=ZdByye0js0s8j}mi%;-dz-OSm0lMLQ`CT(*MUzVcDqLC^9QT%4d$Npo3Qg#*U z%{BfIPu>CA2M6jK6Iv7>JMZ9xB~4u9?K7D)ema_w2EE5&P?7#Cn(DN`ScFF1DKCbY_J@ zkGygS{s$27@Dnd18gtoW>p*TSf6rP}kSayI?ERoTmaJji;(#@$HR3utxE3GPEBmT8uEn;5HpWxNA;Z_ z#$~GhDKL*=C+j|2SWeUc*%DcQ$~5QKN?Q@arw^-8zkZ?)G&36$T&f2YMWl>ybny&{ zL}J#R#YY@3WWiWXk3`Z*n=(U3T)QHT67dCSsqESryZ>9iP@16?DFa1XwS`HOeBLYa z%2i=U%ty=lt{}hZ7^!)j7wCKm^^h2%+HGs~PHtp_?^ym+0#|ypT*jZ%u0yRgs($*yIBu;rnbqOT@ozg+yHD`~z6RH~#@PB@K0IKZ(tF0AFQ& zV_X@Sf4z~hH)SgN4-iuGS0dP%j@s1&3KHj_re9^t69*tBJWAZjKN>S(JAfpp_R`oe zR5!_cuS+W_n!>n~rF)9@*uwow$N1XW1VIom>0oYNI>%h~I4))( z?GD&MdXD$NhWRt}2#9?*tGH$xOEp@YjEXrB^3<07J|0$E=#IA^DyRC@#a=!4ORNcJ z*t187B5G0vt?v4h7DE{)^gxNCTLD#Q&o!6)Wm6mrizD$`#4~iIvle8(IM1O&`zRx-4+78~rMoNBAWn4%yS)#Hc*^G$y-6mz4 z3{Re6*HBkxw$Kn|DmW~c6bLHY>&P-vEmnZiLOe84<~3#L=}H%0zp%8W&{Fz_)T|D^ zanDZ~X?k_XSsn?w(;Ov5Y)EK^;97A6AQ`$7!kx8pLQvZ#-^#J~G~=1oZQb7YrM4JO zoH=Ss?#4sDhH%qeT1dp~>fsBGU$$z2pX8dVCO|+-4hWHcM_`PN%?JAt`b16Ht2Of~ z{e|t4c3dSTXImG*AH82K&@Vq+8)Je#HK|mhl(vvKujWhBr6NH#e>ZdyKMwG7Q zv_m@9C&#zu% z0})Oi=VbNSKtmHkA^>*^A0~og=(CB_QYjL0VleUAqABcZLQiJ??L}+HKWUKwk#j1 zdn}&^UdF+&k^yFkp;?metyyTUIh6$$sj1RYikw7-wAv5cHPcWhp1##FMAGkamA`X)t#4-dOGY8WRdbO6P<;ANSrUz;*%0#-~=wV!QmX zc%&23uf%dEMNW`pY)R|rrlsdmU_S)r`Z%WO%WqW|L$$<7lV$jlRKdD0Q$ zUaCr*{&Kt>PFKOl&7JF#s$`kSK#6$(KlB+=a1uTS-&Y<+)#@Rk2Qr-P2WoERuMRJj zctNOXX8%B$68`zIXsgC>g5ghericMjd~Mhe+p1wi#smKS6fWoU^M181 zb?!kN-Sr><*mA(# zryfaG6&5=px1|a*RZu!EM_c|XSyn)Frw;Ip#C91@?_X9s1U9(v$}HPr*~SYi+$DMn1CMQ7L!?aJ$SM{DExuzR9TdEq+DEeQW*6?US zVypPcMzJ|sDBN5_Ls^`)@LRdzlQCSKlhC3vs=8q$7zvxw_yCko=C)F;onpSzt1Zjy zi|D{Y>vmPE^756xm?1~1NR;I*XYaT#anu#(wJ@oXrZ3`XInYk1HW%WmlpS%liGf+T zJGrpE?+?R;g3TO&;5bLIweP{8zNDYCeO6@qcZ8ZFH+Pbr=Gf`Bx%(UiSPbgkHs9{d zP5%KNapOSR`o|>v-y>JN$>^j$C{e*`R-{9f6U0`=>%R{g@H977oV=!d8wcf;)y`d- za%vzt`T@0H!IhT@Du)p)&eO2vzYXli6!46LBr2zRa;?T=<#9hUAZ7j#W*jw}RDE`$ zNHKmza5COzu#BU|4^un{=T6(*a?i=^JseFhNc2NR`hgogr+&q3#19Fo_>BYGOV{-T z>8HHyk=4y1kqVJS)3crkz8hpPf!O_^V!HgRWE97_#~!)^P~KYYdb(b1u(i_~RH3jw zH8IRMx3o1DzC0RlOLVUKhhV{`xEV$;TsDUEb%;Z=H+4FU`(uFa&~tGp{=PcOzRBk4nh*nI;$%w-$W%S3 zq+t!S)2hBFx=h^B-L13bVdLLn2p!}GH<6e+39>}4mB-%?70^!brfaQHewf4nkl?~E z1wBf_yyp5E;i06SIf#X#3=KR3U2+^vDP_4SC#pYKh72NvWJDglwTQ%P!k&tbm-0~( zoBx^knXCXpFJcTf-U82IHm3c!a8qoDODlSxtDgIc4^?W0pkGMpwKmf5jDi;SFal;bz-Wf6jm0fz(nK>m?9dkorU77?`z$r52FPQ;CC!Xs1=%-I^%>{b=SvJ z1kM)3l#zlYI3%q8idvPknnbjc_Y>s=%+z`TikhdP1YEC8siOUnB2EGtvx(|z^uyHz z3`HQo70S-KdI-lK!22+~xoI;!zv{O@J%Rt=MB14l$F;KGVFRHY->x61-U$cpGQmd#s5^0Q$+)|WS;=?iKST;hX3~0ay-_E z&b041u4T|i*u-ZYj)#2X{s)MAoh=i;`0%&;_wH?7^<%1QNjx~=B+&Zs5G5(Bw7J>Y zgz?lmYS$NUb4Uz1!O+PCcwZc*e-&j$#1f@naNC)F))3&T;k_MB4(%ihG3h9GRaJK- z3}Sx&rVdi=85dbil!)<`xNS&rv8;4#F8vzU=Oe>pDK=Ta<)E#0i!FRSq;B>Z}$H_qr zOh%OCQ*uvciTT8!*wq8KfgtoQr)f7-lbWPMD2Xa?_Ad%=F@H#Wk5@sC zN|8uVV~xJY15kz|lJ;RvYSU5jsa6WSGX7v~DjRye9m@Euu4FzR!jE|h%_788#~YuF zb`5Tyl”qAprlH0O9gX9`Zebk8&mB|u^G{bu1;NF_o{E`@d0PjYxoehH-F;jdX5+~bQ*1cF>^3kP$@H-&B z6Gkn1@m3kho@WNvIKilujYzhADIWbauM9J<0GAgIApGqO^R4HffWX zPXS4qb2_w;QxMrBZF?#I&X!xgXUJK19#6VlTw3>YSlxa%5kFA~@mok3P?9D;^|37S z(EP13m&&kS3wGS`xPIOLSh}SN@9{@8F7b6XpCTPk@VVY&xs>!x&BqYuv)@L+R1vSv zGs5qcf=VCx8Bx@g*yRWHb?u*$zD#KzI$GYJN*ks-Q3KYS#i^QVG9kjdZ$c8jJy8>T z>-oO`_&^80t8<*U+R4ED4PCbVp!|DkB^UlU*UZ5}z#+IhevO{B>-|cMq|!&|b?{ht z(NEdN{)oS#e0=zV+JtfI9yIX*vGPt#GXWrw_UDXsq?_Yc#T1r9XXAZX$Gx_PxFqe# z#(nFSwi=Z=dz*TlSR9&-R^570wwoiT_+$G{`18V^CyL|78l}dwq|1c4hGH3!f4qmW zAFX}AqH1~%jC4Cs5qN6uE4w?j+>V$y_9L+sl;Wb4qp|VaVUj}uQaFq}Z3$@nn*RVa zOL1%?a20t@qcvPRMB52w4Z$R4v%Z!-Eq5g%Bf~E)pa4f-^NNm3av|KHb;vp9l5XKH z#c1N1CsqyDlac-vA-fGOzz@i9Mtjw_eMyRTu{m=YQUD_ygVvoT!^TKb3K7l^dYu~v zLN6k~IR`le=Kva2yopMMBak=;puwiowS=0!f*Xhdc@b1Qo$NyOJPv;V1zL%tkwS?B zW1J3iN>?iPdXp+Dzs{|b$m}ysmfL!k2mxXT<5PQTCD^SMyIVfOpCdLDk-!yVTR3G? zAlybf8XUTc#Mb#h7DX6Sz^2@rc==#9pHbeYt%|;dCWx~DgoVlAafAL9Y2@Ka!2_u8 z(y56uMTE?Rk$`v^9XY0yQpy;p0AzDhBr1434ANkUJcJ;Y z9Fv+vkIFeg>T`}b6)10El1CI_K;Tm&XNZ#Hcg#2(ls zjC1Qq_Hs-?Cuk#p4k%9Ag|rk$Dkw%wpI>292+@j+70>HIEow-yNPq-69^$1@B9aQ^ zA4(pfszOSV75Pqc&MJhkF>USNBO^58Oovs~nqGr@YCbXm$v7QqVxtOxaqUXtS_;T>x7*g88n9kS z=AHBr=HCp$4~E_mAx=((r-R0S<=rc)S1~^1Q;;w~>VMDluH3`@?yvZz`Lo!~w8z)~ z035&creBWa82)s}%oK54zr}9@T6{KVJdjGHa;&6+KQL-!DBV}7z>kj_ z-@;94VYuIOpev5D7 z9R~6{t4qj(#_D=|5!jC6opBxs4tXb`@BVXKc4^rBBCR>lsVZ|;Y1#aWj$@4Azi+*_ zr?p2F>`GZ3@BsNp7~-9q)Q#PlB)68{UKw$m00^p6T)?Y<3y?;0+Nvq+CeZ0#XGM6~ zSB!v9H3PJwL`h#f7Q&vjO3^cIy@ry~VV!b-k%9^84?mqUI7~~hqbijEkfe93Z7l(8 zJzW+f7SgN$8O}NS)ZToNx@~+h!Q6}2fycc|SI}J6)X;|i0BV5yzG4PPJl3o;#!*0V zfO0X|Ruva2x;2lyL326>-08vTfygu&A=;r|slXZPYC0qhYpG|;EQe{}fEP7Zc-VH% zIUw=Ug!Rx?(4{Wu7ci9t&qCeJD4ip0GLi-kKKbfI{h$e8o3WG7XRSG;4V~m; z83g?*TCmo-mY{gbd4Yi#ILXaUXIR$&WwD=1hjzv4MsFMfO7c14nf8g!T*>mW7zAUj zJ1(QW_7+BvF4-F(^rSMOj3AQ)^Vbv-ASe`aSdo*OXpK>_8w4ItwNe$Wpsb)Ukf0+3 zjx(Iqh;B9?F930#y{cZL^({i-Pu~Y5l7G)yw;Qt&fzNDI7Pci3h8Q4l4^c}kusH9J zYA(|y>OM2H;fEacsT2m_QXfH*qN8Ak-IE z0IO_ZPC*A1X=*FzPyyJcRO20oueC~%d1ScbBa(X6yKE)6s0bUFeFi&Jkdq()jt4MR?_|F1 z4LE0G9^Jn;QbFRaz=A`AmQpeb{{Wx!n#QHlKCYFnE5yEWl15SJJ*u_r9#~lre7muZ z`K(pdj+G?zJxkz6$BlF0Ca$o|@?GdxQUP^n$L{lu>FD3jrG4k3>zX%=G%J4*=ogXQ zS=}IXbipG%K^=(nsj9Z9kIOjUD*Cn|V=1q8d;0$X!TkqZTd`miXDf_jACK!*jhaHm zz|Kwx&Uvivd?kn_h^q%?B$nWM3XLO*Nlb)=CzFFzn`+}rl(MLy)GKaK03hUl`s!7+ zg_TeMt%64!Vx~>ll(iCDGKX*^WaH)SO)w03VSro?3FenI(9~>2EHOwJOoNg$>5<4e zr8crGvC6Ns<2)X}<5ZeklJ4Em!0x{?oHBq2$2s-?0P9q?*N%_nsR#)<5cSbWW9LYMi(oLv3q%vfPrJKqI#ThmI)*N*wXuiWTAwTqL)d4*1-aU1T3giZBO7s9$u#Ucr>YUkoy6mhT7=w?2th*B9)wd%Azj4a^cgrAtlOK(;u!nK za8M0gQhS-pagoU`?ZHRPI%bgxW^LdA4@TCjLW%5>-4F9MRmCEF+e1do(^fjkS++u zcoc)6ESsb#yx?H*Q!A-JtUjDm^Z~*^atl+VAx9^UqZE1p=D!UXufuN$XQ9xn0LNeW z_l~-F+Fl6+o}6$^cH{p5-s-RKOY>*1ny>cy{{Z8c=F1{v2u=rHgm5@`pj+Qx(t>4Mn!&Ut4vryC;`>BvY+o~ zxi#OGPSod5v%lVb-wRddrs=+q^ZuD?-Q*G#jDd`C)MLGC*~q*(C!o$pr}M4rBz@f} zH5&@oDd)HD$;df5#tla-!HXu~02~Z;HO)0GEOtR9sZ`3bGKWIy4&#H4ezofV00F){ zYhMZVmAANQF0>oD0J^u`oxQiNdNBQJl1}k`e>00W%j240=ZBY7r<3T zFcQUw8UFwpg<@r8X#p5H&tdIVqFM`m$y(!KS3%JB9X&rW8Rg>64(yWSrhZ)>>;*D%IYYs+%$qWx3zvEMRF=Vo10Ay#iOKoTtxTy$i z0{;LigMm>sy6zw@4}1(7cO8aFY!M4HV~zz&Z+9XnP{py>)3w#f*l@m*SK3gHqn@=q zQi1>n81)#W<6utrA0vmtsT`b&uRXgt4Y!UuP_z@&f#KLxit&N0BpdU~)ZrHSjv%{Q>s#f|qq(lL(pGJ?R8z?_bIdeZ74#ma%P zfyY{UGP;)Mf!7p<&pY^IA}_-~2(e&K_8yF+AtsVk^I6Vb(D;{;)E!eSqd*XOWQ^xI_N<+rsO!Cz&tCWk@#kCkO|31x)USD<-HYC%1+sxMCGgOEP8PD^1B5&!`#OB2mC zEeF=Z$i+{Pq?RWnV~%sjN>B`B$Xs*-IrgF0dm_Erc7!uX03a1*7-LO_Vv4bi$c#4@ z&pFTORi%WqCQG(W!+t=)`9~yGpSL>3B-l4G7{xAI>?d?7c_!SA^I(ki^sPu$N~B>% z+;!+am6WWsLr&z@s-5Fv9={AHq1IW=38483&-L z>IHK82W6sum zt_A_?PL4_BB=7CXr(`trv1&NPiUDxl`e5~?Hh5)l_`%@jrsB6z$fZVDWPLfLRs@r? zj@(m0p*GcVfHCMPzEDw+$C7)RR{>d7u&smg;CfSIwFN^FgPh`;dIMUHdsfEv9S(8p zQN5@D5;;9_+|x~kg-8KhFzL=kS0O0){{~?QT2s)|JW{$VtI& zKq8wSR07{FPv=iY7qKFO=O>I*qyV6)9{s4;P4pg{9At1h(}b+5%DE%fiw4N^&xPpH zd^hlzC2-mmfIluyJcO>%Adg^C&lu}nnT6IaulS|;v)0YE$JhS=9KSY89jc*LU=A=x zH9T-L7RmR5E^xW$ z7_XtKo%BCd!c8@)dBd`+hEs*>o` z*~=(l!Oln=kMqatSve)6J1uo|#;}uUNX||@E7!kg{{WAg_rfi0Z1o9by72YnfL&UW z36DSW(LD$qyW*xitvEiXmz&^Ync-zY_ICB?&(M7X#2PP)bW2@-LA;9Y#_0r+NR5y| z9S@=QH8_k0*|7RzxY}z*ejietsLj)wvrf%bn^ar&wKBP@* z=r<_iJm7F?Ufn{F7a1K#Z+ds^9W^4BDHwT6As8U%Ij3&H+7)+aaU@ggWJ?lNbGXK! z6P)@QtsK!{?u#r}k~`3oW6>fhXN8<9p&0}=MhE`@UZA-}FyIl$;15c6wV3q2gbW!* z;Ob8u7NM9AE9QxbQUE;iPg7bhgtx08JD4m)?mco_7zUwac!NZxm~`dzYo@*V)kKDCsi+%I%Y zvUz}pKPsFYcBvy%8!PSGgN~lP>NX!j%xhvTN0xw>b(vR6y-!CIqyLF5(w0e7q5D2 z#&Q7}!97JQ>I^)UBmf6BA|U`N10Twm4=4)&!jec;iCl1brE!on1RkE%3fnPqK*%GI zMOE|xrrp3HxjiyRYGcF{XJ{B5=(x9JPYN(C&PfEE(?kS}D9=JMRdDD?u}Gsh$2997UI)KQ1UM=XXVmRn*J5V^@9@H=GJ*U+IV)FWCwQTLd9 z_6m}dT@yC!bdL|+Nq1^|O1ZQMWW}rCZYl>;j;udg-?8|2rD{^x+uQik$!5MY7^9LF z2N4szp1<87diJhbxGJ#GoxkffI(B@o@A;h$vG5O6)ASuXUOMHq-L|k}OGUSZ-Q2pC z10O+}rDyPx-fc1O4~t?|hTPpcHH_QDKpe3c>5x}GyjK^nlZ)l=Z<;M}eLG#lUsBD# z!R;3D>|(X}iKIK~Q?^l!)*%STf+~J^rtrn?~g80P%NHV z3^DSZ-2v)3tkxc{HIg)s71Q0*e|rA99?$SgTGze?-)WI+9wteAKjIkxOF8Z4LP^K( zBg)_(n0jWu$XP_nB#nMnT!Wul#=SQiPF+ui&#TeKVxA^~vX=g+h=v?6#~tc9M0mp> z$-x*k&11vrM#Cru?)|x-#>_Tn80-Z$^coMdg4o6s_02%m&7I14B%G7TG+a*o2AHS7 zRZ)!N9@P|<#3^FA?X+|>?z#zgE3k6RSu=si>VMB#ciG_~goqTJjOQI{n`nEHn;4L9 zZLPbZs%-+0?ss8$0P~uB!DLgOP{7E}$Q7`7+;S6V$k)YYd)) zr(;q9xG)2p_pI4SWU!+EHl97bsfvVrrAhR`;-2~m=yLktpGf3$N+TfPiJ62EBMk5q5=zG562Yc zBX$X%j`C1L^GdG?~+1JL=~_OSS4rE2S@c>dzWW|K}~Z*akWZH#_WPqF@W z;dA&C!&drL#QGkVhUKDmSXh-wPCn`S^fmOEekNa3j8oBFKkMdo(wp{b-9O>ao|pEF zv+(Y*aTVvoix{sGPb%R=xFn$%9I5G#&{wqlJ=Qh<02|4pPkr!SXmktToplR&V}B|F z-+X+aoEACnUY;U^;}uoU)9yB^p#`~r;}?lFPlQ&NIy_$u=GFWoV)5NWa+d*OMk5(z z*_9yiS|77N$KM6~Wbp(1I=<6e!}kwjVzI=DB1(#P7(gg7+~b_{UQ@%)t`>FR_SLUG zqD@w$<$ZVlwLJd-$NvDdmxjI={6N?IC3o<(C2I@GBJ*YPqmot+pEDj=#!e3h(v4^1 zeg1{vs}CH{@D6x%ZD5Zg?PQFk*yE^-dFO4VU1sKTVClx1svWw_EwO}DR?m#OYQ zvxcYe+xCF)^4@=BO{d>zQv)WMakfB!j4P&B?wn(w#y*wx6}8-!@`WUrv9yotUN$*S zomWbKXZ1L%-=C56{Y^k&l{dz7k-;6RH;6YZx#xmSaGdrdbSsh@2cW>FM;TW+2b_D= zE}$#04iSm=8K*K5cdrB5kgO>xdIQM780Mo8GXPuI)7UIBOKq=}QPZBrnI)kJa50nm zRNP}zPfP}s63fUQ)lzG9-y>kI;emte-mNuqS}8r6n89r4Ju!l6t;L~I8IIw|R>ykN zm{zdZ31p124gtyAj%sL~Ll99;&OjUtfBNXK`U;4pa8xNLp*bUu@u!J56CUHw7|%gd zxR^sG=^t|PxhI}argSmn1Dzv!mp>o{Dr*`5Gq3l1-D_R-Bj~V221m`uB zwPUe5N>~62;DN?6YIx*kJCuxi)C`hV+6G9*divCCaQlmWG3h{`fCouxKC*G7s000gLG=xYQfFScsmSwhu?j~)hidl(00Hhr*W@tV#@b`%=Bfipg z80LyW@{n+U5!$v|NZ$ci9%;%Fi?op1)CgcRibTVb8Gs|Gqy(cVa5)sElr}qi(hKS- za0W=IT2)XjRBop7dbW6n18-i{{R%fHhNjN`~83M z%kyMp^i~}GDkfDe&)0)ohXNRw2MT(3J!-<21xpe;U{J(;$|s#lFle=}+}mEzBuziMBGmiG7X z{6W#ISz?%o@6`bTUmQQ<-|(h>%)bKjXNxy9imQwzj*BJaVu*j6n4p zhIr4deKaEsRuRUoyuYE@7kFCN{{Vn}Vd4)8c*DgWCVQK$e%|lFdZoKTd81Dbc9Oea zYk}F0MooMf<3A2-{{R8LExPH_%WXE5crLX0*NyRp${dcoaa?&+sk)NG^pe-tVkk?N zR(+3g{iU=G3*)!LO(XV;@MV@YIH6l#5nDycjnn{Kf#^?u#ClgR`!oDV_^IM%hv2q_ z`$VT!T=^%eSIq-t7Ei1a%he@2~dH2dfh=H69o zhDR9~uP-;kMuLTEdr5UL#6~=-P*yG3+`YWPP>qetXV=!YR!HPkW%-6NkbBpP_0;2H z7C?pAV+S25!k{Gc?MFcn$q>#|vQnMY=JdY6ot7M;AqROF|NJq`vwKZ_^DzZl8kl!dH zlTl4*P8EO(G28K~y_mWbZUO?rEv${f9SHhWa%Cu`dV$I7{(t(_sRW4snUS4#=dT>}_NL>d(3958&?^y?GRQO6-hhnp0>r4vBcA-$N!=H)q8}*% z2X`M)^r>ya#Jia8AenP z+@Q)aj8SWY+`VnR&hyheA6mZ}Gabvp>(-@#I)GONaZW1Rf`O6iQX)|p2wA#&*T>(r zZ|xYKWWNr48K_GEhJPzlyoNwG4Wt-U_3Mn9^s<~E*KtvU*=oV>W5+%T_?uqSb*ouo z)}*wwigKy~u#QaiSI-U8x2=6mr~GzE{>=K7vb-NSl1QW(RtE!$_OomftzB{}Kg=gJ z&8h3Y9r0F`;yXC6bjzicBt>jzkO;`)wZgQ(f&s;RtfJuBWi@AJQJF66$tYU@ag)Xc zBwFrUY|(<=fb&($%&v_2tnABh>Q>iE1X6RH8koij$vNHB3WuhQwW_%rMip?a$6N}E zMv+cNc=yd6L_%hnTZYf5#VFJ~kh{)(yVY9y4*F_bidC66qk;(arnrm^%tswDNod5x z^W#C0C?NaN3DhoGhduLEV0#}n{3-b1;vW%sSHpf6@DGOm*$#=LX||X5lD082!5DQ_ z$lzd%*U>sAqS~E;-O8R^*u;^R&epF-HN&bEvUhoIS?}Z-?G|gv3&~y!I>rK|-5nWl{N{&y!Bxbl<)}IS_{#odSGQ?8wui6UrS^ra zT3^8+%1duD$fSK#*Nck5*1^k`sxX}w6?LjEh#5)9&%HKikq^#Cr#x37k5Q=Gh7~~v zxTd@$V`%7mQFJ%hW55}9s)9-UDGi_jOM*vnMZuy8t(zsW>5Nr*B2wFMz>dUKErqdK zNSqQv^<(#X<2j|4O~}scv}E#o3U5$eWh8|_&H*L9{{T)ZIbdYlD9+sSM{17-RxFpJU#;a{4iy zXu6*Y)&BsIUe0rNfs{XOi$8;Y5z};^9{68aztkCu$8s!V?xya3XU&Eh|a{Nv3 ztbQ%mcw<-6;_)omfHV`AFdlLb z7!81UCpGfkxBEVL($7_sS=6niy#jMA#N~@*^PKwRoY&Iin7TL>D9=etua`n<(5XU7 za#}sT4@bSQk$g2_Vd1?a$Tkj=iHt*RWsiScR#vAvX^^`^GPUOI@@yFn-OuBi^{D>x z*LQb+iRQ`OxUQ_1!v6pkJYnIR+f!#Mv=Fw&g@8~&M=$?g!qQ;BEv1>UgY+DP1s7 zSx?Q5ewEDXTBnxAHf~SKNgNIhZ%K19C3Ue*)5NAY3YmhmWP%AaU3jWUqRYw{5xW7h zaa{_EY|c_?Xk*ReDd4y=#&^fvJCCJSxbd~#!V*X7NsOLx=nZwODt2a4sM0(u_AszU zeM;I1=85OBj^u7k2RR_}I^&N{we>%OA=EVYYfG1rl0wI0zT&*_LC4+t)#uVr9aVZC zOPaMTU040*`LnTf002KKfrkVs>DSi0E1pU!O#ye_q>?{My=<~5Qd6sqAOpQP72>L(B-wkekdmki#9kv(QoaJGg+DZ9q(&sFx@;2W~_3inSXucBgoyUxyUDb3?4BA?zg?Bxz+*VH3tt4|Q zZj#xs+lJye>z``yPueHL`c{YWPf@kfEg^;mwzjxIZku9ek|iaPdZ;Al2c>U-#8j3o zMYh*3U+Zv$TxEYQ{{YwCd74?Q?8y>xa^HC6K>GIeG{m)Cfuu%aNh1e>b6)Cin`2o{ z<79v|hat9Y9SNO2_^-$MRBK_S!1rpYcCVPzC6s)i=L3#v>BTi^ zJzcC!eVbO)>3$IWQ_(&%ctw0$pxV!GZ{~ShCo8)lLH-kt_1FEF85!H<_N%K-R4O`h z-5J!T;Wq|UmfVtXaf92^p?DBB;s?L;sJ^CbrR3~WhCK8c>CIPiWE%l2ae>A$jw?jP z(5%gXV~lQX#IPKJ?Nw%p1esI7!2bZ+K049hXq#iJU9RQ&0oU-ZKVSW=z6I!TO6lUGe=KND z%SawV*!RF6t#s1B;w!bu7F(k$*`vh#W&Z#L0+`1%J_7JbJbbqo^5A3FV)gCbyu|+7 z9~Cut$kr_-DUMRcZy`v}Abh0s_pf@F4^NYtqu1~{sL`h#W@u=?wC{jtoo;+%;B9VV z!+2wL=L6Jd=Eg=vR@Z-P{{Rl?ejv7&!9E9BG|ivBH)JG$=a2&AbmN-FIYuMeIJqSo zGquK*^m={W3V$E|I(!@W!|>7c%WWT0webbB$33R#*I;ks1%c^;M@r#;W)IpcS^b~2 zdERSAztHbj7gk&U0E}mAu6i*2MQ=+lt31AVTASZb^CmD+Qj2#_`uxpL6#m-39d+*% z$*pO+`)QVF@Ai8uWM3^%SN6p4jnBc&TI=Fhh@^wWkqHxYtVxuW z!W133>-pE6m}HQphl8S|`&IA{i7hTQHi4Zqqc9Upz-P+{K5U-cSB-d+z`FEs+TP1& zHI?Mihnmvh6_Vd~AzS($^}bDx_EL1KZ+jjFD+?&vqFVlIx*y^H007=Acqcq8X% zDU+XE{{UZV^dE=%N_a{un5-^moU>uXnD+a=)#&4~Dy(HnD?^ql&zk3|Sa^czqlE-a zy-&*70|U~!6x1$!w0Q$CVa^6ke7#C(I~_ObhrrTF`_xB`+o&R#XPFeN@rO`wNj37hJ3*O#epa?zfJNjtjn{LNwAYVNFJkP=n!2|VJxYE=1}W*o_E zQES1xyo9Sv*#mbN=l=k$Qb#e6o$OcvkU<Rwfwa}sU^WS7EJkIGqAJXD^AHF-tG6z$u-K^8mey#xa^;oJoqQAf7<@?a zRJ9< zfZ&pD9Py7$wF&Dt6ePYdx$_ZTkg$Y}2L9rlY1K zWH$J(8A!*b7Q1f=d2=xcdj9~1bwAqz#>zLA_g--~l8Afi&-(gOyB|c>azGpA+Z^K`-KfsR(N#P9x;dQQ~Z1b7S zlHbR>B~?h^jQ!g0waA`7f`^2^;iCtgLUzv_MTVUAHsN5c4T>$7dbzc zYdGO3^{8tJVcw4a0N2QRd~x{QZQ+~yjbq_`(AFU;Y~i-BouZjZ!v-aCq;&_r4LjlI z#t)2MCz|%x#r^|*04=nJ+U841@FogM0=s!qMh_tKTm4fGsLpD7t(S8);mp*2TO5zW z&y8QSCyBgiABOdxhw?{lB%3ZBEgBb&Gsg94K3tBV9=NV6;>U=;Y3~d8?^W>qmZ_`V z+1gw(Tin~&@gzs)2P(ME4?gwXN`?-eBiXlf;-AcJP*PS~-1E&(Tm7T&q-ZW~{9xpR zosrC;LB@Ik$2EZ782IBcl6fusRP89+xTV1)9^Z|6^wt6zB!;WPD8wHNJ|fEJcZBuF zez_J>F)jI2$?$99WbrYJz}n_mki?3)#2;_s&O5pXXE`!KIosz0rBbTQLw%zHz~=)+U8VqfF219Iok*pLu1 z1#5gpwa_g!cx?PFeOUIZwIxworHm&RQRx2w zra>3RH`0D1czfa(g>`G;cVjqtqM9(O6xY6W{7LC}RGN+7+=ZvknZ5i(ktYk-Ut+_|a0L~Be?ND8d`%tpkpR`4Qq$ds= zJm$91y>=4QV!g(#IkuEYrZS@&m|zC)?de=jrLI9DEO1Pq=MrFs#yu;m4^HffOR0f( zs7tWn*Dg*@?wI6#D>h4lS1PP>NK@32pIY{5B#ud5|Z3-SJ!%k`ifgXE$!pqDrI@c$_e3r`qlOS0E_jxbQ=lv zxWJMdaT~cnOYPh@91f#tHS^i_xr~+1u+0*dE=e!6*Wz?mv)bwwuwL2BC5}W{5!CR? zMnS1WLAg~q#&Ab^@;1=&T4~vV5W+y3MO=*XYNv?&N8vvRSU#)bt$xEyv_ZJbb2^~M z;(4UnLs4z3Bjulp{{Zk&kA_|oON~F_-kUFo?^7zXzGAiq)Mu6-fUl6eb^C67eDTck zGWfmpds%X;Z>J9_P{>#3JBd8jo{ebwy{wHhOC!cGT)!DL^%U^*)UO!!HL32x?6Dt))+?uQqB)^p z;YcLy>AN3>YxV=+KZ)e=f5GnxYty)C=F_4{n>oygHaF^~ynZF8{?ATpyGIRaIYQl^ z=8oz>bGRrRbgJ$FAaF2oUmJ6nvkNOI2eH7Z2!}5F#{+$Jm)mR11<=opc&daOAJ!l%;n5ex~cSB=P{xbN2$KnR9;X4lv=|5%B+T1w3)YjVS@JP8WZj8HF4xF&$5yfi?Zc?*$R=K4( zDLX#bJMSH9k@zRVy0?tQkeJx%b6yxo!FGuYg~;{fR}*LP#>-gvF=g>QMX#(q_8!#ze1dQhi1!<{{yzXD+eJ9?$}oR#2!w}dc$#rWSvT6v%7-5!0Mt0gk z!iLHE8rD=Alq1cgpY>wpPASEuzx)sLIh|j`zCZAv!i{g@1@@ugzYw}X9NKJ}bPpT> zOW~b~X50pI!5?(iAB_GW{7>*cmEvtHRJqb;)h+xq{vp!ut!-H&A~y>xZyPbrGNc^$ zq7>miuYbW<6k^*=TU&kBzv^UoL*rkH1;2`I?0iqAc-(2e8IxR&`qI$AmbU;Mut)(Q z?!hCFep6jLUVLQmzkqdr6y9sPZnquRha}YPE~B*&wXM*PdZ(9?BvYQJ7~Ah!PLyEm z+gE9NZMf&l8@VffpYZ0-z`NfP_|HPL@rJ4K2Tk!dnR{xW!*8Z69#rL2kXt03xg!|w zUY$ROv?<9qIz616bG`*X%vN<|=~QupYQ_~{xteOmRoBB`huV_4z3^s_Htr7lILZE1 z<^KQ{ejj`r@GgrUxpnZTPP(^gL{l}od1f$rAD6a&n4#u4iWcRQ`_1zF6mgh{VbkU2 zcDYkS{g-|K{7CTquZm>wH2QhHP3Wt4BDUP{diSnl#lNs;!O2?Q4I*u38EzzGRa>OM zI4%52eJi3FwjvLkb~==$LlG)G-wSK*IJ^G<_$PLWAYrF#x{Pg%e(@r4`Vm<(f5A7d z?<`X1N%6gj-niL4qag%!1gSmix}JSKri-0t81q5g=Cv>QCr8BFP*TQy67f{zZMkG8 z^IF8Z{ffRn=~mKd_P!pPYewY94eV~29OMGs>!P1pffRL%tDsi)F8i z^esm~oz4ps6T}a$R02OL^09eCZPdd%uH8;K!j%3U8SY*Y_{Z?O#{mz7{ClO|G5-LT zBH$#y_sd}ZmD`1m;x0&VdyfAAjd+zII&YRr%)(UV9VCqVy$CupMu3uY{{Ysme^as4 zY}b8+Kt4|8AoK5638w7Mc_y_;%a-A9ES?Qs9nB)`JADtWaaVs2BCwiUtudG+ye>|8 z8T9^j--oQ|wz@K8w7NMfoj&p_kqprt!#_6A0pMhQU&^Po(r%qqq>E#6BWz$dxX-`x zuVqw8T^#avLoPf$IZrhtQMGVE$6VHQ`bGV}@0~%~pL=QCe-Ec>+MQ^<%w(>tLHi%u zSSN(;G>iKQF0QUbH*0S!e=Ea|3ZCPWUbFGP;@z*pzYkkIq!x{FcOZr+C2Zw8@t(lf zgP7BJjMh|_Ss!bd({(ZPi+VXf%=B-Dw^|mp;oD6|LS^!0w@MM$#9#!i)U9Nd9KfG#Z#2+5NYfm0{OU8EBo)f>4 z-%z==X(oBtO&m)61&Ij4;AgID<=+?lQt_{k@6M;=FBISEQ#iph%+3?o4uE?K`rIB@ zN|KFPE6Ub8;*v_oHYHF&E1kmt_7x?hu^XfksSCIQ=s5!;C*O+o8)`1bk!tGu33joI zxz-Ri2?<6c99Fl6?qj!=_s2A@>+%$1fN*;LRO#)hHCwYt+_JucOZJGCjzvv}dmM~% zez~vHZ`hAkYySX%dTcUJ<~^O=%q`O+E?Wow`mZ~PqkIy5q;OTgBVM1W?z7BB;(BAX zLag!=z|XFG*TQ+6wk+E-00!)ICkKk*J~eo2R`FMc?BUU^9`b8VM&9B}dIL2jTTyN}C z@ta3&KV7ryFu?aB;xHo=r=c-3paRVd=FfChynu z*JIUw8u)&H1^8fS7uTZYqq&}BD6B%Hj$dv_=LL;*ZF2}f+Z>PgO>oqjl$%E#N6$Ad z>{xoXQ<+wtUx4>r9Oh{D3pPaIL`vHJZ<5fKgS*!)O;(ehg*C5c7fdv8A0g7+#W~L zmD*}cplf@hl<>F1e-Y`PF}LxTi2Puhoy~@oCY5Tj*@!b6vNq{RW4*G2rUzO)dGN!xYFaD4tmKRPULU+5gygQwMuGg`e;*1P1Ne$Z zuw5kSQ(Vm+>xV3YKQy*`DLiA-n!(Wj0B3C@!`cR~;mZ#Z>T}q5gGw5G{CARh+of2< zan8B>q$tJ*9X%;Rvy5dFv~J+$?{rwW{h#z3$@OdNo1|?+P)iA-ycX-`+g@6(7Ii+S z3P|?vn(Tai;d_4@_zL^M+VtyS1#Ag|*m3dB4lj!slmX^2mr}-B3 zp9^VTA@EJlg0El##`473NFf0}Qn(}m)7H2qbjg-%x6`F^6ku8mD6;Qo`NNp5YflnL}T(Dh|VLW|@@+Z==sy33aJ z;fVCAS{K5<68q{ zvQwLq>M1^FdsslY9CsC;tLS=nh_vgSA6c`G;?m&^ZyR(Y6^mEgs&jPYrw3-N{$;x> zD{Vf;J1aC1!wM=!iZB9!fImvj*KDuln#%J|NadE+e=w|$R23-7c>wzQcA=*B9B2E^ zY4yGSWpC{-6eBQi4#Y+d3SE!tqNmXQ+ij(wzlg;-mPcs8+!QmC21i~oO@U2@_he?Fzcq~N)CU5?X5_>22W_+}XY0O30LNoTLyk&|_xUZ`+A ze7O%kyb)cUhsMtX>S1lXL2s$}Zsms7i&?Rf*aPY25wQON-&MytQE!@)y8K4eB<&p^ zXZjkG+3A|4xSLJCg6=oN4=O-G9dZb&uV(O|MvwP=4tlNzGCgU=S5`4;!s()<{vEZv zhsea9nYty9es+wK+z)#1rB?FP=cyNM4Bv%%?Z<*XANU`{SNd!-tolZsrz2aT-UA{4 z%uimutDgO~`~z{TSa^TNmXU`0B*qz3jtaLc$G0_wDLQ$qYB#*3zZQ?N%xzB}Houxn z@n^FB%$JRK@WV!#-!pxkR#CHW%%qP_YKO*e18KUXde*+TmbUXn5*Zp~C5aq>t)4TC zV!0hpVT_cQcln-GOZ!*r`k$8n0JRpGbEN!B@@@cq_7FM_4pf7KUPa}V+w*YQ?}J}+ zho7{i7Iw!}nl9Pf&wC)ZwnEZ2a1>;prCx`_da63^v6X;0A0fdVGn$%}p-J+|id7U{ zjR?FQt=(J+E%cko44puQi9e7vzoPsi_?vVdZ9Bml%&jORG1$s}Q=W$vgt64)t7dbq zlGNDn@9g#Q$6CHK>7Nd@d0IEv#z=gy4}6yI#eReS#l8UX_rtG;x|W6G?FwBoX1_Dr zqsouD82~5cCmfFT=jSyUUg@%>B$ zYuI7s@8UqG1eO3)5_p3}wG3`G>u8mD%S?ijw?;J<_C+@Fw}e$OFNp126Mzi6vVAdJ zFN-vPfIcyq+r-))m8eR@hI43lG4~*ITGLa5=7M+h8>J@o(8%!LhQDX80A7p#01bEs z(%R`*6`3qD>UiWcaz3@&#qm1AoJ*yXnQf3Yk zO}As^2ORy{lz!RTB1T?c4Y4Djj^jR_sw+AE?R(7iFuWU!#mAbS-fR8|8~)n*0D8GI`sL_gZk3?%j_w5bBy~n7u?Cu?Sw42K?|^-r&`p~KWl%7 zGFimBg}$e5_$on!FaUSRKA53mmt&5nhxwFOxhTJ%`~zy+_M`YsF<|{OZ7A&+=5P&2 zelC18U)`S?=|JZ^+$~?$X*cm6bK(5WJ9`Oz#H;aF;k%rV8fgT9l1ll6V|VKaLH2nLK)qoZ~UyK*P2qT7TR0@H6(vao^_^T+!}h>}qYw z#tl^H(3vk7*w0e#WQrzqo<#{68Ti>UNxU#LNCQ6!-cL)3;l+UQQ33zvD-= zhj9A6OZ+eHD~)qPM%bPru@8)Oqpqb!mVliM&Ujs^h(o^xFU z`h}vzeD_U<84PkOzA3?4PVDe&I69Ja)t5v?Y2s}<>7r>oc=`*L7 zbZw+uavua5ty3~;<{S8L;p~?N?j1hT*5se{wx`K+_@*;gqtdJvHAwXtoiTtU`H$z; ztDa4!$E#K;M{{pwGuoMnKuO{wjQ(8KY`!bg*vkx>My3L}j5^vg2KN{pD`=-DbZ4W{ zvkSy?!Fg^MNuK`FZmM5Tkmnt9m9AEOKU}?uV{3+Hiy}v888;uHuS*M3DK2HH&sq|U zU5_mI(c{fW!M_N;8R>c~vDyhVeKz(-3QI9qBVmtx{{Twr{w91!)4m}7&T#5}AHS00 zP_kH_Naavva=bXe<2cFUwy#Mlu&S5*y_Np}@GtlW*=BTHu``nY0H2clWX{j_H}NKr z-T;R|n_PzDQh8*ZZNue}2pnU!4r_+^->rC)Q1NcDq)&e&mXSCq5*$Rh?#I*)KN^}; zp)AU$I=5B#o-Ji1UQM3^e$skgscGXlH4DU;!!@d+Ou+4tl=Fk=GAqd5-s)1Wio-q6 zT-Vgllzp19*%!={XQuwm9}qOph94NT9}(-8&|GPWF@p6bK;S^*Ya9{PbDzS$V)VTS z!Ft}GZLR4VHkmD*xVyF2gdb>N%^KS&0N@TX zd*ZYr(RCJp$2Pk&xj8H&Rs97TG+UZ$V>au-I)&atc!uSH9UFIC`!yTVSx~2P3!ZSk{bEu&nK&nd09U zSa@qsxSr;C-PuaQjtra6I2?5AUJb8!$6nMY{?JP>h}avjeq4I`4l9bhXBhiP?0s(v zP{Y>5dpt{NJ-tkL_3dWui#6$tvu^oR08LQ58inKTd1jQU!h&}U_v7ncU$mU1t3O($ zgTmnc2rHQqXj+w&@}t5)x&lbSQa)@}zMtWZO7`7njX*|Rl5!6p{c}pB<10(hsyLWa zjk{m^{7bO-UKJuco6#E{0659%TGqZ7(|oTq-G|&x0ddpoSx=cqVk>4U_KPnkg*0bS zvb1E9S1UKaOjR9UMAPgYAzNkLBa}`_&mC(HX~;)NWL>(=5YX3yXC?00?o( zJ^ug-uVHIxb#ogsqNq45eKXY1h+^k88Ev?;J7`bH_b1kH@8DYrZy$ z&ONpU-~=RY3`t+Yy{cIq8A|d#daoAaC8QKr%I7aP#orRxI51Bx#W@3OWOLr5KeQ){ zE#r}+Rgu++0nq0d_WGLiBaq=Qq)$4&cZ;mO>08r6-kbYT>yS?wy3t~ofCk*K&lT){ z4u5D{8H!%(IxmzYbzDP+AYc-3f6p{aAf+eEO4nzPj>c8wbClhWbMV*19|`!rW`->q z=G|p⁢J|M+BS>n8kJy9U3GMjajfr8%h92InTX$b@J)qX6eZ$crO_#r1_bpXW?sI zUIFCl?ye6Y1DyB%bm8!>D}{Sj)UFV|c?@yf{{TAW=j3*1rB+wbhx{meDM)EG7h{~A zz@Fabrm^@RZ)Qn@PzqFGSOQ2m>rd-W%~)=7YR#TatNy~i8P|M4ae1lyN7p{peIwjF zNWcse$odT8uW6s~PrrrsZ#24=wXNzq<7GvAk1uQg0C*AoYob|{m%$W^jcKHn&tLFQ z!L1j-ejKv!#*e69rJb6x#;q>ma!Dkf=bGJ{;ogySo?YG5h2J`^*tnmu7 zu$B>qA24O>T1HnQSJ|Hs{?Ps+vDN+={4CP!E#kP2JtEc#XTT1VLlQ>H3G5giJ*(F~ z0C+P>@fX0YV@iqzlT{H-un5C461iQcxgdaj>*#X?=wW2~`$<3inV(&o^HZx?cAUTT zrg8rOv+d=V!fz02S3V$fX&>5FCwCt@j5bszGoSvwQTUbdA4Jr3?LuoCww5c2nU$mi zJAc~x^{pX7c#LeTEv&UXdas?SF39rli(WGDUyZ&RX}se#hyDrYde6e| z6Iugx4Y!-Uv0BSCQr}(0 zZ4*V6EE$(0Bc6RLp(k}4oj6T#FpFJN`;SA?=-@F}>O#wz{{vgA-eefMsSt{Orf5$Jg4dUBRY2A7)zw5poJ(9ogzW zyj0bXHjiVblbsnS2WE0t9uUwh=OtlS-P>@DfxzdSesyx!Lyj=(3@W)`6_j(3cn8|P zdlLy#n@?l(%nofVb{$G@-bl;w4wn|9E@iYawAQ-}ZN@iXl0PGg<_+`-BSLqrxgKU3 zOaaf#593ONT;b{cBhMT=_wG{6)#U7exFt!)9AnnFanvCSkx_Tj=ev{AZVpq8wd?tn<<>7i zFhw)52RlK=N3B(c;oeU&b{mEU&~cCPu0Ljy(Dxy;NV=C-2_Kk;Esh)0injvl7t#X| zcPu&Mf$y5flb%UM5mu!-Fm)pChRzy?iDPG}kn@KPciZCZ1s@hQm8j@BH8J3Oa{~HBUXvsOY=N0P4lG!ulqT>deFtrh=uzRT$iDe~OPewkY@UD8(?Q_~Rx|A+T zzGEkVPbZ%By$V-$ePYQu9gJ^+r3(ii<5u*~guW^9BK-gx(&w~zW;vh{?O)vOIAhq?TWtc$ zL$utJ#tH3TD_O2)(dkC^)V~`PJBuEa)Sby<+zj!9SZ-LQ;WsfkjeN`ytVbXoxU0aH zlS#7eUx^c@97abpe2 z6(a{dMN)PXNu%>e$37162BqNd3F?+^ZY*s>OSBwqazSDEe!1el!u_2zi*E{eVZ2KM z&jyz)0%k&ml1bIo{%#8@nJPXc&)J55B%d8=H@J>h7u+f?C7u>%0}o=tk$ zd@56?N{rUGv-u{^3Z2vxpG^-jn)KO|aWrfncmdhD0Am^TuH!(uxQk1Y^6_MNrc6a5 z5?6O$!24IbiC)f(W9DfdTC#Iy&w~6ntazhcvX0qix$|TR6j6)~{YK;Tue*}_hX_xOL2AJ@J4e_ zQa~GqbJo5@;$ze^F*xf^EF)a811F5}M!~tj_}k*YhxA*yJU+fC)3p2O@Fnx*0h1#j zbJDoGuLN9pkPTXEqkHG6XysW0i3h0l?Nq7MrE0QIU5=_xk~dvWOHuHyo#Awo`)2hJ z%KOn~1Y?d=fAy=(ykqfW;Xj2YOC3wZ2ph~EWNQ<%4!Au!cCSkf?J*Oy5xTtH%vir@ zkAor5TWe8)$YAK;jD1Ic>s*(L{xf_$*8E-J=w$INsnad5KG!>_ATHI&2P4#hU5f{Z zO-aP&6;DDmYVe zy*+yIS^ZkF)kNow2`JpZrTD|Zr5ftj#d=mHB!F&{)9e0oT6Q|uhcyX&%MDh>R4Pnp zv!UF3oafUu%~CZJcUG~ZQcF^U*j#F!Ad)j082q90Daa?&j=d^$@Ybz0{jQr8z=T{} zA`~Eia&hz=6ZzLZCk-03`DN;Q8GdCf9bRbbrl{&>_+Q{nAH`RG74c7rwOb2^iW#Dn zA>SD+cI_+%GoF5xf$@9xWs^$q)Vkk*d{}iUVq+uPN`Yi$J$4b)_r-8RpRsC7RL@rr z#Z{epZnRR1wyS+llXX7=&v$jc@tf^7>{J<0f~*fC8LBp33)DBWUt3z`RBQ-b=ijKs zdr{2e?CkejA7-+iYKm~Pi`Bhv<P9<|oo%{+lf zJ5Y9CydWu3@8vD5GK{0j?)3Z<*SO1hQboi`AUX8TMRnd0_*dgk7rGrY zN1MoI{{WAPK}i1qGuF8|XL}=DZfAzeXgb)5SuelP_b&>5&Ndbbmp&!CYuR>;K@ci{ z`<|!2rFEVq@UDTTXpd)apxY=Bm|`AK#`gI~*Vpi_iV%$}HLE`t&p4M6oYmw{mYRAm z)tL8MD2CP;W{2dBRRPcNi~~-#@a2Jo0$lTvpRa#zYpKn}U(E2mqmsHHo5J?@do2t{ zdq@-zpyUE`_*9qP5s0UgouVf=$xq-N&ttJuq%;nWk`tdXb+z=s8KgX{dN zf%s)rbx9t;k;P$4OzQUif{S>3UY35OM-IgDwc*l5yPqYS)HOi?naF ziyNl@08O}Smsuod+U?gF&KHh?vXtq{?p;Y*rp*hBkBFD#TUt+WoD~EUj=Ub8m9wS% zE!3{AA5qlNB)pSryr7ek7ajhT=+>t}Hyzo@iH|Z#8~*_CsPxIAX1auj+tl($wQ@F| z8NSiHT=T+^$7?G2KfP?LfsO_`5${(|8SNCKF2^UbjqsJSVqL@h@z*MN^3CCmj z*4!3N4at!h>}3FC@H+G#jd@et>(I~{+mpv1g(OG_2RZC(K7%ASu}JA7FU*G^gMun# zBpeWFJAx$#id^L4frt+j=K}*2gftV1Gtg52B%TE+ZUH8rQ8BCo5JO<*g<=?jc&b8Y z#vUBk{681N4L8HuXNIM1T2TX*nS`p&QAu@PzczmFKn;BjXX5KIm!_XR z5(0~6<~{~b8RIwuiuLno&)dyO{kcDrk@UIrFO06+yXTkPbMxkZ8d~etcdLCWO(n$Q z1qY4foD=oUX#8&Qt6AuN4i9B`kqr%GW}he!nF+#=PDklqXyfd$G-2!i0Hpr_!90me zk{>h3H7y?TEl`qWazmlq8~ImLrCykHB#G`$ditZ-dvvRp^L-z2P3D-*kekDEC9 zfnN!mRJLOl-j+tIl~zl?_5T0>^{)c!cN+JHt!^$NMV(V)fKCGrG3{LU#Qy+}8W+ON zEp=T}O}V^>%<|jp-9gSX^J9$HiwaVySy6`V*y41Pn~G->u728o4)hHgEkbQ0P#q7m;o6K+~5Ppy?p(sd|3F`@#DpxXwWb2Z6MRjT|uX5@)Yvp9SJ0Y&4c~|zJo8x z)hJ6Dj9%i|exjTmHu+j@9&-+>KC7$h8i$KyyO&V~qEyH-Ji{Pw&pFRu(!S>S3t^~5 z@Z&_h)UTdt)I6-r?T|B#hdluF^%c>d!W3}vj5fZXcl$+}-Ew$FO zZ3Na%NLexris#t%7|ndK`)_{98vg*ry;n^5f$+x0-dmNmFyBBW2xJ44VV()WBl54D z!PfenXks73s$zuPT4(0}0E#?4t@tZjz3|tFY-P37Y-KUe45O7{(z2dGC{zO(IW_te zWg3uEhRpP$l#*mOE@K#th-`6##YY5(X)eU$xHYFLwaZIE8tUqK(ik0%M&Fd=lg)ki z`xXAik!w0ad`bAfVKkO^N&f&6%`#RhBvbzYEnEy7dJg@4E62_2M-7K>tJvnRQN>v^ z>v+Fs--FtFZ?W*4Hte}0%9=&={{U;+sd$IsXTz-*LcP^AyE&k|wt?lhbib8xAXB%i zW3D>a#=K2U?s6)%Iy2?(4S1LKf$>X6b$4m3&wUtFl19^Ak(hDA1=>fwdfttoe$e-E zLpADK+uO*;db}&du3}c zs>@B!QjZztbhVR<`G1ktcq8DS!CwnXw;yeXRJq3FYu5}E`t9I)b+1vihr_-~$8V`v zgis2EU=>GfVDVSV>BnQh&2xNKZCBdYev6_!zh3y^;B5=yMX$qKsgU2^2}(+=3_zqp zOfkwelms6L~ zyh-6d8vwo$k#1#^b4L`Y$Q=Q}VA#O`=C5g<8u1%hKBBr6tcfc&#g5~Uy!Fq1I#c9O zR;cX9DaxJJ=NWC|i3YJ2muKL6-?Y4f6Xz?&ih5+TEXDpTKMY1 z+wA%^(!pk{2E+H=Nhi6&kIue~Uk_=Kac^Y`dxROTtYl+KvyC^VpOK|&Mplny`3l-i zs9sY9bmFFt(NwFW_QnNsa~KmCw;@(+lb+R&bK$)*<(SQC9I?qJoMz*y6qWZZT0;~d z#~9&HO1hx1`G~>i2dJdRyoc^60AbgIijg*z$X|XcMoNwt@Oh~ZTv7o?00Tz=bE@pi`WfweEc**^_f9Xv5li=Q&V|n9!HM~raJ%`!^jHDB|lg@G5 zy?e*)mE+$Ac#^|R_;uj;v3H=#5!n!gTXu~|QP;jY`d6`zQ=V@^Fxoe4@#P09N^5QZ z07K=gSTAL`g3?JIIF$%80s)f^$6nn!)|3`EYp5loL;I3RicA18k&;O7UcM?x*)YPT zcW%en{{XV~i{VcWct(F7YiPEt^E7FC@)5NF106e`O7{3P9XrQ<2cN_GcB$vVG+Bn= z61y8YQa`{a{DPI-r8n80f27ML_rzMNOcRg9q*MqL{@UE}Vv z;Sbw?_EqsWjl5+ajs6N0G~n#0D8S7|Lj6RMqVRHDv4`oi%dGD!=nu^^HpEZ z=3|Tz?bg1LNl9pRLUELIKFR%uKV(UKf2qOoKgV_@JU3w|duSz08`)IwIsO28p8Y** z^s?&a8yHdxbx7ld0-`7ZQ~|*DuZPa@KUlSr?#F8Ib$;uygvv4 zJcTvY{{U-S$1_?P7tG`g^aPw$RHf{nAevhujpnap=j?a4u|Xo_;9*NB>x|VaOMKA53$PTGmx6&Ykb@lg}p5y6j#D@WgTr3r(KP#T&#M z?NTIBDQuD#Bo1@W*0?Qy$2z}&d^K<3-4+d2Te;_s*4jxXJ3n|!Z!MmOClsjRoqI-a zcevv=+fQS6!M+>NbTqrXUlwZGoSQ^fkjZhmM5Tdkzlb8ei%ZsYi_;V~w^2I?_yK_< z*ZEde;U_06SXC-1yCYsECGe*s2enVTg_ZxcZ!Rt8qT{B%f++-&Rl(xH%oFGD4sqh{Ym9B$1AI;M0Q~?c3AR zn*s@~!6oD2iOy-UP92Ou;gn~QM&Yw1XHWvM#(UGDa7j>lQW+>rV`^KM)DWt1J?ut&uZa+Xdj4+c?OB#Jr7cb z=F3a5j#=&@&e^AY5;53;+t$B9R26(>KB_Kn@pe9wGM6qYw3qYG^K11v?}FMne-&A3 zSM2`)+4gKCx9LVg<5vgog#?IB5Vvofcrrl4{F<5 znY)tJD7*dVonG<6#q_nlZKHyYC~kG1vZShEb}9)3j2@i*O?LK>X}VUQC61v0AYuH* z$ShCydx6hN?Z>HEF1wuARq&|wJ^ui~H~t{fJ`-ALt>K2e(yv>~mSu>_u|b|+01O_r z?%oU1ue>8=ZEL072`nx`v<6fP>9}>rrg8MI&askFPS1AR@@G|ES2-^2{s$@Xv-XM8 zJOQHK+G*lZ;!UC-vfO>xn6DCb!5zUJYxC;=0AIP)d`EfWZGTWV8imY~O+2i*3|Vu# z9k{Qk;d~derz}*rmW$JKf~0JkxBM|$%r>v7MSVOujyu@J^3~N#YwlTTIt=C~Ts*SthfTE3AkPN(bPK z`tx3n4>PTW>vT+Jl^1c56tv=&wc59iQucCNP9}4KprfD}5O(e1gl6D}F z$F9-arfXeve=|^9k>%{)i4Jq}f!FI^H0n9Y&F;u@=53k&H_;%uwP`Jq)-vT)=b5&Z zKncJjpTe;`Luodj;ma)&`t@OZlvYt@OGxNWeq3|UtyMPPENm#Yl744r;LR6FyVDjw zv)w=zHOP@R6Yu%vwJv-EqiJ@x7y2A=TTJR?k%$<44(76*Swc+{H@ip7+MkcLJHHue zn74IFb!%%&gpo*$MjLbBk%5DNbMIYdqvHttckznTPw;)KS=w2#x4YDB*CtiZA$wyz z4?Sz$`mAD=OX#BS>(Lp$kzQt>#9cleOX2kE6xWRKYK;ZVDC}l@624h)f0e7uZv0&) zh4AY7Ytr*;P~0O-vy$x+kVJepW%j3+)ArPqUXPpbCbMz8QNVbA#r`L-Ej;&ev{zDZ zC9oY^IVYcd{{WL-$?(qmSG~Es)W6{(ZMKm)K)^DdeFvp_S&kl+Dsri7{{U7wqT8LK zbvobe1s{a1t>d_|n^1C@GpShBfXL1dUfHii_*?NSPWYLjwx?$kK`c+@%M*@4;OFVh zeC{JJof;ol>2tCYQ@ULa!JT(141>rA6)U(7P%#7y@#$V@bqJ=4R>D6+gO6IV6BaB- zPSi2F)K*Oa=FJiHM@dTBR@93 zAw}J?aXB)H1ioZ*0Anh-$K&Z*A%@U%+cksSqCi0cosv!nqyuq*flp#V#}oi$V~SjH zKmZ_)DNaclJX04?KAEKF9GYT2Ro1=~OYsNcw}CuO2BwzHZK2rM&Xcg%sIaJ31oY|1 z_pg}zd+`4NPtv|5-uOF8NcEe>bn=Wil$@aHjPvY0EAO)WVwN_o7xog0MeP#$Kah?;nls?vwfyqSqo?i-9ap67_^F2a52*-ueEUcW}a?sWs_2r z2a!w4cV~WjV!Lo0wQ5zwM^x;;ue{*I;yI~84|H?$>GE1XnP{sRCu;%@PETGwm9aLj zbAJ>vO97BTg-XPjVsHmsdUIWP=kVKeTntp-JLr9P`y1<8mHoD>;rpA}Ww%(?Xknc} zR0N!XiqrVb@&4Q4zlq0$JWt_McO~3=pb^MpRfV#o?gO4ic&~%R;9fH_czSwYU-K0C zV>wCbrO%E2BzV62#Tv`%8lJ5rn+KMyAoDz=Cn}jaCjjHGYT=UJ$57M)yR*tbCvxC7 zUU>Rf=ol3>+FE#e`qId1vfHdy>jOQZW3$X4<0CytBEFdYix*Rx z_f$*EVz#%Dd3%h2o$5jRy+;K0?_V{ZO;*FzlJEMRu!@BaSG|us{j0nguJ}9RP0RRU zW=M57QdIKC%tb={I{S&d2>+{mnqWw{U@XJ!tEi`q~+e*4^Yf9Aj*~+nxEw>fnj}4G<-_pLC_=lk% zi8?fz48Vs65d#8Vq)l#E_jYZ~pm+a@PYQ7Kf?}+rx zWtFY%Q>rRGI*NxWx7Co zrj2&AXh=JA-?e#lYq_^4yV$hSi|%!o7DnpbV1|DykbJ}(f$8}F09vnis%iQ>V$^0y z_GUOyGVjhaf$v<)T@jYAM0t#=4=ThCax?E+4*(u!M_-?)-Gi7xbQ9z;v4$Zeid5koj#$FKvr_OChk z$MKU)@a~xwgQMD=N^MZQ4(g;vh%x46v4VEzfOzjwhQmt}RYRw9Che;}JouUM3q zi!UbdO})jQnXzGTxmA&eRseMAUa#;!c@ZJl{U2GSA8xU}GduFmlX2hF#nL>#3$@xbBcduCe zn0!_=-FELr)9)pJGTgF4!$N0zomlHV$!JO~4HtX4HbR3g@_;cGmD!;a2>rA2Jy@8+G6;Z~-u zd}kJ=Z7t*yOD-cUj&}lgAFhAT73i9-fGspzeS1u}h;k&B5HpdSWFLMBudmFTgrL^O zm}kos33WYZ_I~)S;r{@JGi&}P@jJTP$qFoSMIKJ=-3A9d`-0Y&+!i1UbNHR z3o9!ZiWQY`#1_b7{(D!?VDNP+W{(v96s_~Ic!Z*yqV`riS5(lVVs_oATo!zf;^!Ra znz7;S9(e7iy}3ppl_kRPfbgUm`nk=~i<&s$CtA>bUB469yhZTu#P%Ny?C!Nd>Mdk1 z6mtd*uz=Y?>Bm9WHQav6ZLLM(#@3*oOKV$lt2}QTZFM|s&t}Izg?vS7(5r%|*LU~a z_9rOG$)%>K^`F|mPJ4^p7W&BflQq1_8Y<=g0EFazooko#_^TTi^QJ=^t~U)(^}~|dn6Zg4O$smO{)v9-bEcx z(>xB<^s^#6;RypM;WIK6tNX5do^e$Yx%B*HELf*a-R#lMdLphrS6jV4K|N_ z#NE$!xsKj9JweCH!yHm+9|`Z1K2YjN-it)hOU= zP9918_8bzm(R0VXAd^d0@a6vih_vgQX!k)4jjSwg06E*#b>L*zVc<`LR+s+(4aTdW z>M^dPI++NSi^dcK`=;&)KhC);RhAbE8i`p+qBLo<$NV$!*W%ZWwJY13d;17uw0D8+ zmf$wlAc3_(!1|i^j{tlN(tI&&kzHKf-d;#U&mkaljP1{1pGvID9ZfG~MQhZhc&$%b zk4jkDHV~+2Knf3GS5&GlUuYw!JUteG=T5

9c*I!I`JQfZZ*4a4?dA4<(#Z1mh8v1TrUSF z-1E;~Yu{(M`vsi(h0JRdaYS6G=%GbcGAb=7z4{eVrK&$a{w{oE);=Y8>fFJ6_K?AF zW3gCRi~!$wW4ZOOSNO5vNc=hbKk2YTsNCCLi?ur@aMDg@U*0x)_dk)Zs;fpgIN@kT zU*1>m{c2$-`;O@FKMrW3#(P~V&PCmF%f4w_02Vz@r`EE3QLbnsUws=+*6wZe{Wd0R z?6G)S=}8V#ra|NKuX0l6#HN+(ul`09p(#^-W(B6H4ziZAym8q}8nVqWkdY~7`EW78 z73`h}_))8P%fWZr{5NqCrx$C5z$Ac~QhD9aN_hNIz(Gn{>X+tA!}H$TBinuscyGeq z2%EzfvFQ4hrmL!0%JT@zeV$;TxFnN+a56dd$yN$mt6SMz`hso<&548ntT5M5Y7YK&v2L)%rFRC z@J?~-Us0FgD@zSdoK}*%lk)!nf^a&iURT!oA3}c2{xtDtjC5H>w-|eCL<#3RgCodT zo`awRr_#N$Uo5zdjt(*neAYgcXkukf9S+;`S&*}A+^xX%sF9=2!f;0bisTq9}T=?4WYPu?+jVTc8rWh z1+opxfO2q1#bo#s;va(iAMsblc3PeFhLNR1GshLY@Ey{t43Mli``wRf`WotW>*66D zUb=tV?D`De^>NjoXEpapofpC@KMUXMll(>0Adc33TKZJdB0Eu5-2wT)9FlNrrv0Ps zAo0(@?Q(AkYZ1d8vYF>-&K6{kJJa94;xN zukG!nA(amHAZN9D0$)d?!q&Q$pDJnV@}mrrPJKFmg?;X2H|-QH)A1^TQ;pNs_eVA3 zJ!LP*cf5OB8Qe&*g#~g3GJEzFQqO*?Znv)NCU7EPpx~ef2R*;~^_~_g5xOf8WedKC zJS;8V^g?FyN)sm1a#tM*&synTK-Rz5$#OPI=_HC91OPg7jyca6u8e%tX(+!_p9ZH= zx{~SsXTN+vzVSzkehKI{2+s(y^25t=?5#R-0`d2;$3E4|{0r2tG!GL)rQK@M4Kn&v z7YS{-w=e{%k^v*POjpO@=*8fwM%`r2=}9R#NBZh|AMGdOX!PHT8a|4yK$A>GS!8dJ z5>F~UaqC`Z@IS}8=fj_guM~Ij+{bxvmeV|n7`nRyfzC%g{e^9X!^Pk^WWFf=O`LRh zYq|Dc#2fuH#r^@-?{xh}OC3i@hT#P9w%3M0ojt(@z8dh~hZ1d48@q&NBQEbQFz?%+ zt}6~6sVX#TyLSAJdeOX;8$GY$JR0YP{sYb7uMk0LBv*QjGNU8qqKSZD-(Aa&eQW3S zFxzPN9$&~LI2gv_2O0Vr^>TF?(3GRIn}3mwTl+&>!m~Z~_M4#EYBF0|-_0CuR#s5? zILXJqPsYB4{i8f>rg#THu<%cYudXA%Hfe2gRksDU>`6bwanyDuxbrMKuZ*Kft?u8U z*-pwfiQ+#Gw0{(MU&R^^#19bZ63?gKU6r=Eyi?`MPXU;oM_vi^uUh!y@qDtO+5@kVhMd>Fr$j%5lswRH04#oqV}Q(u8dH)aE`B$$zALKEClb zi+HPzase_--!$P)c7i!4ocq_+T1?k>m(3;BlB!Jvaz!+33NRx%E7WzbD>K%ko8Ikx z)+$LWqUNJ<9hN-i!C}GvAI7OY{fvss_P8EZ1gvO7H?KKCP^H$5GZb zZBpg#q?R^Twv?=C4o)Iv`gK0NtJD|6dJX!#LJUfnur zRp(n-f0@e}I7LNyog~^ehoV|(_c~PVfBuYKymfkK#`i>i3$M z@f2d!?TxI~61H5%7YN0FiB~uVygcS=cu7{Owf_KuZASdkk3@R+#@`lczYBgETWFF? zYjLW_YxYZUpl^-JmGf14fr3ZlUl{3-wf)peM50EMX!)_Yk&-i9yge673p(=qPw+=I zWb0S7PjAt*J!j!xhjnd#U(;>cJwn}Lw2#fh`S~7O1|7zCap_(^ZE1b0_}bD5br~m{ zQJij)@%~13ZtQ=ZX@RR6uC^^~{{Td9C?zOCJJ|cn;fIQB?xsE!u(O&d^sPSKUN?o6 zl1!ChmKb5cIUip2iShU2G=B|rw$ilQLoTU)raNLCaUMtC+nn%ytK~5GM~cP9i|ecO z+`L4bRo3kJV^zQLFNLkHSHyZuH&;F>vswK6mj>b`X3v;C3CBb2Tr_$m#pA{_Ye^?^ z-df>COo#cJ``ja^P7bVP?#uA9vFFMXlUChXGwrY0mOGsn!BO}}S&87(?OCT}mxgp> zki*-YRQ~`P{yX@8;bSF}X7f~$a+b--P=AS!VP6j{G_je3rBCfP@8#U|Do)8h=Tq?4 z#nE`{!SOeMN69h@pYPxH;pguRg4OoaG16n#w$_p^)k}(@tX& z^PT}UqM2m?j+|svG7fjflRllLzN9T4<~wH+$g%S3qpJbm9dTB?IjULsgHDH2v79_N z2pLEiIITHbq^7&rQF^p%sst*onl2qPktfW#0wQUCxR z^wv?+9@Gp?`w0M(>rQqOrufOvrfH&Bsf_2oITWCRIQ+#>j~4iQcWHB>{5HAreA|6L z!zj}}NC?Ys5GUUR5nnOiX;J)j`17b~nrP0J`m@{_kf;qDY81A6=LZAaSJTjLmOm3+ z?FBEtnb`MpCe~qJ{8Rq`(wjc5Uxjva>Uu1CS%SjDOo^I5Dl_J9QUZ{B3}+*p)@R1= zhxXHaJMj*y6ml6-)>9-F^R!XiF5kT94mShNd)JE$M5S61db|E?^EuK=Eckau(%Vgm z?qQqCkO0h61+nRq*QIqc_>%ffCG2C<+Vke##zZVs=L6~5ze2_P@1M+yN-jz-p~>9% zXIs{oM}8rNV#~&^nCsi?(xLHXguWWmg{8gU&2UPBtXFCD_sGpuC22+-*{tfqqUA+D z1n4%F;jZ;%4SnubaFr;hk^C7GfPUP>Ex- zkwwg4;kK6GoQ#29URzaArB+ht)&Bq!o^evG%+|+6@%!R7zo_2n9}X?;U_aSVMyLW!m|?lp@2s@w3Pwb}TeH47Vl$KVucFJTQ^Vk+DEY~*x|~k(sMG3O zw!6|aFN&6WPNGuk!$-Y}IiA`=5yo;rZv5w(>c43p6E>;wlImMjlv>$ZLvEpl@8Aue z{CEn&aFtADI*+9`{%+sqdKBW6V`ZcN0DyaU!`~fQc+cQ=vEh#r$8D%x==xc>jz2FY zP$}Dify$BEzHab8h3&j+;(H4nVsz5}(&b)z#vm3PjO32E0CcZ6FG~w7OIRA%^||#2gT54K+W!E<>C0-fT`ir%n4r^VDIAR%E0Uvv=N)~;deM&W!Tujf7D@F8 zU`u%7LlJ3q0s+p^$;a}qpTyR6W$fR7>f}pC&RgU4=A@nxi&XH{wBmbw&E{c3M!QJM z=dWIs=AQ<9Q>bdC?=@XU$@N+98a5K6A2tO8I|;xX`x@U3N;1K@+U-BUh{>kYJ#y>B zej3*GB+*jX+qz4IK*k{}sLvSW_UpxDd~?veTE7olRq%z(v1$;IC4$@my${|SxIA^> z*F73>r(T+^@V2k$DaopCQ9csA)OD?5=)rq5j`F@3=O=b^l23f(S3P@Ya&KDR-eM*W zJjaqjmG$e=zfg@jbm8pdriT?8m#V5s8*62+TG-q@kJ=%MSb|)6dGg(Hk_h+0;M48A zs~cNwX7Vnq7;>4tO(G~lJcRub(uVeU8FNyvQUbl{|#iMB#`fCSynYJSb;w%A@`6C$Z zULI*@L1Ew9)91OhHlsR{TWWd7io9`g@hirIS@A{tDY}#)Dn3Y;H~~jtj8~(0XW>tY zG(U-2WR`jj#;>3Tj&``WOcluC$vk7Z#%mmPWtY-eTiJ5EdW#25NvhJ@RCXV=M~J*K z_j)gbv^|e=rx%)dW5^L5peQ}M6JA~Lzv0B66FgaEr~d$IJ-x(Hy~+Ti18xpK$TiP} z=ECJ%@?9JI*_AiXh*G}VpI~WPezW0E8)_Q1rjlK0vS~3QPB#ATNVAna56zr|(!M14 z$Kw0Xh#wF&jdIXDF?qgBE9P%xMZ%IWaq4)kejTK$SDj_jDSX)&x{IC(`jxb8KUVQ2 z+&1^uHy8J;scw$hXJy6}K*yzh2jI_u7kW*Y)-LrUrrkq{QB{CM;O8ejf6q1DnquLE zrl~=CFCkM>mFC7=_~LH`X*$2f81)(TDVI7mkdPgWz>GL5Fu)Z#J@H>R-)b7qjlTjx07Ac2NdreD4UbIj1os%}UonnKIO>Xh+1F9Fl)RDS zdPl^2{U66E4ZoV&b;N+cp!tb3g|R0*o}l8sm5$+r2|R-Vls3{ZMHz(!Ny1C2Gp5^) zq*sXy(Ug@zSw_;npw|)LZw*1<-AeOJx7F`%E##G+IA?sM2u?z;wQ^INROL^-zXGlA zT=W+k0A=SR)}9V}3dX|}-~dfE20_86&AhGX~O>sW~JU^)DUlH_8M*85%WA>E_;dd@N6#(_g^yyp}T9K)j zT0NTkhYGQBlD3y;+I}MNI@(ZIl3T@+MNG3id$K_XI8oBM4PqPnZy9TnL1*Mjm(wyp5U^5RurcjlRJm!^ zl_));m*QsxrlTntJ|EKW&x>Kc)Gd}s{N!iB{v|wuJ$l!x{BF|p-FM=ZkNhB!eX;c` zYkP?yXTV3{b{zfRyWiB-7^?i3$Thbszu?Z;K}s=_+VAu_pNPIHdoK*w_z>t;`aZj5 z3d4BzV55ZUA_w@h)SQvcb6V%aJzmel`bUX1J6(*@2~{pYVJhw8g24_ zZRJ)EQ`qOVc~8PCi_L#hwbe9*Lp0KuWDOV00PP=cdHPqify4VOyW2~x{^OOlFat)0|9BJk{~Hm7ZF%Onyo3gv(V9=O09S6i=Ijdwx&2BT^FxuN~+UTHy`blf{; zyb6_h+-21p*>duqBx=92ds*t2W<6F2$DO(xXqdm24;q>(w(C?1oX+Tq{Zho>&7mdx9VX^lqsd$^G}Z-6MQj$rl)}XDWaQCvUzdc z$nmN^Q=(-_&3Hbcrq8KG6e%;uZXH%uC#W4j^sj#^p)58MDx%clamx=X16GCT_H6u(Q$1^cIgARUVQ*_blKq!E@Rqh!qAhzU!abWl zY5k+_tS&CJJ3H++$ni8*#jmFcut<%ap!XyiZ|scF+j!>lP}iK=Ph)8EtgR}nYX)$^ zf$7zG9+l~}IONXnb*H7ydJZ1iO?0`V`$~Lq{{V!eQjfyE2i7GzdIGnzKyb4+U=MNh zuMg9#BZ?ohxmg^7NyZ54$n@g9JgW=!EEHiSX+2rNIdjzJes>GH7a6_LuC*Ia7R?Mw;vfz*pLIL{MW@%P9g$c)^ zNaUj3xfyw(nH?A~Zb(1S)^4LEo||%)S0R);1r4;eTD+*;yCYW8HzSc|iCs=rfFhhp zQG^-ix$RIfz<{|lCk%O}1Bl2Nr3B{$jwt{f5tB%)0mf;7$qK`n8Ne7ElfbMW9@#FV z;fu(=!Y`RrIEZy(4tT1j`DYfplP!pJb+@?im8#Di&_W_zsLW%L6ml0J^%Z4&K?Jr@ zMW;y8NYCV}5Kh+GP8;wP-ILXqE9+yG_)}x2*!&{!nhSN=K8Ix^h8wb81Y_6Sn&~Zc zO&)7&cDd4Qpi$6{pH3_1Pl`VSHEBFebFOGUA9u9_0l@``$36J(U0F^oVQYTz*)(}`x>rYv z&mG;qsTG~nE{o=cWo0=z;C>a0sNFQ$^xAd3xHCdSAQCD9e;%heueVL@!rcZ7>JBM_CBVF4ivA z)h_oh>2F|~ovqHHqs;=Oq+sNzkPrYE9s1Wv;i&ZX_@k!WTwcArChZv>A?6ieeqG&j z$mck&3eCoxl6@J|6)9Ebdgy&k@&5ow)%;oT+f&gal08OIJTk0kn_4v_WBub_J$yR6 zmqgTb2(`m{ExFdY2!;xH{rgc z;(aeswmw~}y}a9lBT0{!9;BRC=gzG)?};^s)bD5Wrn;2PE4LV8$C5u9>*1IxYOQH4 zcKuFD*Oa+WqCaK}dkb$DU0PiavfNw6ve_g~W(V&uKZojT$-XCeTILUpULvxd>fXlU z=TKXVVEOX)$VMAI2VDMiP{cUqRV4LXzvOi~ceGaaFZct%dbQ`oSoBMXVQ;bB2D&WS zjFjZCBb*=By;tG?0EavqXRr9n;s&qc3u~JI&te>55GcXq40JqptTRfy^;@T{;+M^` z=~T4~91f$VUi@0|*W0{3roynOR`bS2^;~k~wie6Do?kDyab8djlqt5~JF#d1uSK!RMdr~reUbQr68wAQJiNq2V2BUp>R zP6pg&zANKu#*NuF`X4r5d_XYxKg51HYnu~xn76QrBpZZf$_Fc)%@K_e$cvy zjw~eb?tyW0r=e|^F-In2lqdssdi5PE?DD*=R;|xHp!R)ik!TfBOc70B)R0^eYf!veIvrY8rD2t1+A^U?X{GN_OC2% zCm$#za(VuB@ptU&;_ng@l>hNlyph2yHw6Pk#u7z#r6EkdTr!H8>yoayks#4 zr~^FLM-H2)>#!^McF-4g0a?F^aya?Eq-MRWT+}`0^f_rp@`^{(o*D6#@56tFFQ$0A zM;d(g*1|h^JjFhFE5}2}r{P|A;4cE){9L$wS6BP$tO61<@{V(X&U#lq zx||}*?Us@%g+5$iUzR=p0HuA6D8_~kFsHWv0Dixz6!~jcQs{l*`#*TELHLW{yJ&AT ztAlx>B11D?qO%7BA=HjLXOC*7;_nmqeZD4Xx|QX=tc#-C+%y+W0}E3q7%P%F<2?Hc z{N@zp3iFEHU-3KfF>tKa_PhN@%j16n_~%4{b=^WMORJ13k1!Slw$O9ilis}p!4?-9 zO{!?I#!a=PYOu=Aa>LM%>rS$%N}sWw$>?$Na?QzgI@}UAV;HJe_NjjXh06ep7%=Oa zW&i~u zoTO)pKm#~Gl_C%gFz7boHJURUjH?V0?Ny_<78z3cfw}pKBopsQJcp%>Fyw?%803O@ zHAZbNC~sDKF%&TneCUD=vJ7y2kG)z0kN9^D#n-~02S;xv*8afL`ucsII@r^-X`_*} z_bV%_9)N-XJd<76{c&}d_oex>(#>_p*I(b4=E8-j{eJkAeR@ZP_7JW%R- zqRk9IPa}utc6xuGO3<}b0u*Tf0COP-%vXV)=k%|pQj4d{6k{n~N$ie<=uyio(OcYo z^vrl+`?M#p&vRV%pQAKai*)x829b_rB=81tpK?E)dC;n(Q8nmm1t(5XYoTjV(dE=c zH(T6nyfKO!3!dgyl0#f*XdlgrKf4$5%`{$ zv+4JDR&d@rOSaI@wOA5!jxYlcTJZ3-V=r<#UM~K(Fr1W}Y(Msu@uap|5b$=NrK{<( zq&Eq2u@w=hKXFDeo}bFTaC>&t^yw|M{Wtf;_7ftU=hGdAJ!{{}DXKU)$-Uj#jXAef z%dzi2v(Jn?KRwo+;SUgLcFCw&0yO*Ak1Wy-S};$pc*mt){j7XBVWaDM7mIYwCP%)$ zEezr;118W4o_#CJ&4BXFubK-qlP_=39qLvs`%om2VvvDqdD4Ck4wD z+w(qw(Jpik1pFR@Q1JG#EE=TKyi4XprRIELkZ1TuP-{!T-`W2F2rP8(5cvM$=6CTR z$&qcH{>oVACPAD7o<(_8+@%?*FM4umdLpA6%E-z1yYXYg8W)S~L6>U98p$l?XDK{c zB>~4A5Dz20e9`e6;@^yZC~GaDwy$wEiE8FcbqnSBq_%SE4l*-=>?_;Ivh8DDveGK+ z)a0zM9Xgs{4m<;=_>09+X_r=QF^m=w#8gWws^@47KURHD^3o9KHK`eIJE7FS8W%HlQ>ZgLMG z?jFLt1LOC_EgMA9TflxDz7tMR!!F57n9vMio4NdRUM5$Ec&todmWkb*_2ph_nGHPgL16lKH~sL0APD{t|f_uYPBiH zcv}AeGZG*!m4oJ|Jv{Dxo#HJf-^3a%=7)2U75ohgkf4wlV?6h-1@Ncr zqow#yUzX=k)*kask|0r0Oj0bW;gpsKkN~fb!((NJqdF^TTktlAxmVh*$BBN{J~?j^ zc(wdFr|ShJPmM!;*ZN zPrZ9MsU;6{ZdNQL++>sPeg6RPpTJf=2hnEn1-vH5`$`0o{>4x3Vvzyd$T7jk;a(5% zZ{l>`Jl3vsYYlO1ygg)CiIy@NcE{cKIXDA~_>8)n#9}2{dh-4+W&UQks*a^bm-S=B zE$!llDI_Sd&%C$VFn8xX0oK0V{hRz(b>i=amNIHn&o$kHwX4lC;K&!D&IWkE{43Vt z3UT%^lHEVef50M?r8qS%mOVwu1dx8UPAQgFah_D+v0o&%C~ze{XM8H0=A?$|Il&5Z zx40Y;NIH%L5r!EVsUk#(Y()ybfKvoK5Lch&P6UC{kO0n4ADuOju+DMLX@K=1fdJ-` zMBn?iIT*;|mr)2JQldF9!yW0S93dGP?Zq%`;eHeG@YBKL9W)I;{{TtjuA=HF!->&A zao^Uvvmf`$zv7qX&qp?P%q#x@j$isyDi$(G7!Ko{^yal~CMN_D#|PHA9;o0sUmW~0 z@Yjs2Z(_W+3vqI}Np~NS@xuYyzHjkA!9N=5*U)J;)<0~5GFRBW0F zPB~GRC0As%U*so#R~6Lb{B7{d#aE_ zq+-HFAbV%>ud9YGmL`InUcF9r7Z%gl)6^oKJ9)02#zPG2q`HpqiGeYh@Cd7S<)(2hEd$G05kyt$En@A7eJosN0rOkMz%|rk$KeA;U&SPxP*S z8)h2S+~V3Go0Xl%R`oxne5@{;Ir`kUec|07#+ohWo32>Jac^{{Fr*F?j-d4hymI5= zuC?&5!djGicAcYY7E!Cn?KCXXMn-lK)Ud`fE4K}ZaZZD7&99Rjd1H3^*zqkh#n-w{ ztpxftr`hMXxfhZsUzd2`>^Se~S3WNI^TnSPuVA>pNv*6b<3D2tGK;&6vtXWhucMY0 zD-jyge+v8C{{Vn$oE4flKMHuSSMbt3_K&E@n!FM;@Tpd4x2n43uXzq@I`i%dJw8Abn7{d>;-1Hy9Ai7BybtoNhchU#e6+_(!^75s!QgUhO=K~bVmOG z#)t8ucrx}+1WRt0X%jP7HraRL$WRFhrtgYY=HPeC-7?sHH|e^wN@6xislH zNg~d_@gG*uJTDJ}bbD!RAf85(Q<5S;oiH{l9Q@el(z(kS<82`xbX1yLh@^ACJoWr) zF!W;z5~#P6ZvOz6;B?L}+NbD2;|~@1i^SR%m#1n4Cz8f7ZD{eR0K^+Tv7bzuz|wUF z@b%O)!3>bjlL;D9ncCwdV?FCyR2CZu=)7jyuu#m*KZhWGb@ms*{{V)Od^qsb8g#clbdm* zgTm9nCw{C@k1sU4o`lUBItdv@qZAMo~>r|Vua)$}%X(J?G7a(0E3Wr4;2Ox+3lmxTm$cqQ(rwnD)`E{scXq)AGqqSpFC)%=l7T* z+E_Knd^@CXzPh})`z$R4M29D#z~uJl&{xp^00V!vz8hU?uzW^=w0jsKVuJQe#U~?a zL5_LdoO8&o4Dzo$RSRm;Ywxk>VWAjdpw)8%E_`l**_=Dq}TT_g~<=f5V+qJAd zRAw>Xo=!(|=~q4#*=csZGw{&9m`7@EcHDWSFqHNL9y-^tQjGBU4n?|;=y2hrrBX3y z{Q$IB*TS+}-7tdLqjf+Bm*vNfhaEn(`QPI^{WnVSE%uqF-5Z;Bx^;vkhhYGmuu^&S z&wBa(8C>-$C$@~NLX)4mO(c>=sFAMbWdJcy2R(Y%+P|~?i)mjC^tiA7$>)I2y4xTX zW0AObKBl$e7QK`gpXh6cR;MrPx#<@L)x?N?QZv@GZBU6NP{CQrJc{{L^a8`ov9O7y zP*@$H)V9rVq2rlRKyQ$t>OK7^cCd9UM2G!)+_lh-d4_jTr(?>Ed%HXn$0znz{ zqLdu@pJj0+cVoTN<4a^{<2(X$ntj9&T_9&rdHI3l5&dfyy~CmAdbh(r1<&Gk*T#hc zFd326PS$Mk@{T`B?yvkepz59*pGLm0fI%!pPSgWw$5HMprluyO)Gq!JTT351>OZq> z{-dGlcbYZiQ(QqVA&f>N^HgVWC)DTkuM5+3FA>=57q%LlzuD2jBP?;U9mAjEUt0RS z7CJbn$`;l=0y0r=ob3ENW$Gv9im-jlA!PGSi z#=MnKmT4H4AajA9)ulW)NEV*hyse zO(m7q@P!ir*JuD9nHA_i0N+!*@g@D_(X_TQ#runsv^G@ZpgGAMc(0SFm(}Fgr_StC zO-bpdr+x8<#g-lx@NMp=b*Vj>2vJ%!R*{?0LwB!(JVC9$iuEgt`J<9aZW&dK#1>#c z892s2D)sngi{zbYEjB#b%JS2p47Rr#d~b0hq%p@4W^8Z<2Nlx%9UdL{hpt26om)>c zO?Dk^u6)rB#~8`y?{Ih(>f`H8P@L&*mHy+W2SHSqGiO=*LwFzI-+?1O8E7ZF)eI>l zG9!kKv(Y64T*s4IlLka}>wy3~9?cAF7Cb{L# zo{2U1m_{xX{oeOJiv5o@F9&#Y#kY34vqYB*6GI)<)SzwXa5L1LexCLB9AY`6Sz=&O zz+gupj92Hm?>ojhPsr$!(KK_P5WGWq;U5TUI_{UJwe7`}4I)B15^9QjBj>z4hDWxxt8cl1#5>EH-gQm(S&f`A$w)vEu{l zUia|3;CgG?mY-+hQgo%bBI4c$Bg~p0Hv$O-TfRm~73=2M<%6c$-QM5Vknr>z{rCNO z9rx{R29M#N1?hT5l&xtc-0F^yph)IKQ^VrEMYoL2GF_yyVF^PKKQ2KTHO-JW^(84S zTV``_+R8}w{{Vu22la0jYY}*g%fu0Bnx2y^bJ_<{Ch^?kJXhH_-W$?2EiEj(L1S;I z6o@2`G(oo>q~P?)8Lykp@h+w<^6AT>XQJBn5raqP=f=$*(?#*#tzo2EJ*~gmJjmi` zN*#^c2e)2pE5ZIBw(&jc>DrjQS*_4X8d}EOoxlym9E|#bUsGEVDBvSf`q?uKx}P;w zE~nHV8nxYT!oLKxe-5Sn<<6sb8p9>Ru_VQhn{hmzFgX?TSA)D2;jL3&y48G9tVLlR ztZeRG#^zu$5m21u=hD2qq00?{m1rx?kIKP;<2?vImBpK>SH;5( z9n$<+tSR!sF@1IW&so#%t+kyh+WOe$E0|Jf@#w=N`PL-2DW~0BO?@ax!9a|9bs*P( zw{bITm9)$s9BRhL?3#k6=oR+)%0^=(aC!CVR=f%0H}MQITIx2E!F2vU zx;>5PbM`Zf_pEk`%D`ap(wt-gh{sN*xl0^m1A=+ZDd3QEwtxV~JoopdKnDVV6p^^| zNX!&uoQzN+ILKK#4twXlIb|y+mQ?i4ds733_)u~1zrp1H0MG+ZANeem&`Js5H>mfn z+{69yulS|;v(nAKHL#V59a_C9?0q2RxW8V0tuzqo`kkW4HHGUxw(8t3bc|wJ9Q?$ANZl;n?Dr%LDaRa7SKa%2#jOpX>c*T zkIud9f`qGAsZnf|zVkWBDJ0HnYs-M5ObHc;X29bevsw!=lF`9*K&r-9QO`fm{{XFD zMLTlY6>GHabCT&-6I$O~+ufz?w+K|g%2m~P#yyR2#@AKTY=(@|Mv>gfwm`(T#RL-F zaq25RYtK{E!%8m6tWPPCD1jT2(1kf?Bt?&c-#Q;mqX!0IiQZ_}}rJ zekoion`L4XOtrW&MC^Zh;EZ$VJ*&+0yG9Kpdot26WM(}`&lUC9EGxia6(;pO+ETo( z)`VUm8jM<1)zq=Z@rcUELCG!HWBU74-UQR^EQRu3KRyfKhnq}_swg!8~0 z))m1GRcI=>1llX)U6XIAYV6BK0x+SENC0qg%@Wa5kKlVoBiV-`f>O zMT#qZ9@tsSa9?vYo?k4ljAZl2;Z&RUQg+tn&UZ;Oy!b(({{Y2jYi~O;3#OELvT(j< zmc(b*Cm)V0@4tgSDVxRq2GcLDATeCW3dJ&(2j*Oxtw$xSAPj}dkXZdI;EOvjbulDU2T4Z6SN;M=81G)M z3`5yrWl{a7`5ZEXlWg9<(=K$It8GJ4cv3rc-XzBI91uo9^fme+@atR9ylvopE5sUH zR_ul)ViG-}B?IOFAG^+LgNWtrBTj2&baYXLs9khtgnrSH=(@j&g};b3+sH+P1MG;* zf*tIBVUDEZ9G+|EJzi*TZeh~&OLc2_m@sJ54Iv#)N3J-pOD2?-9vsTiin+r+o3u-){wP@Lep>}L?;AeAQ3lhDjDkjS`d6=h)7~)f z2Djiz^c#zaA76sz7~)5ZY>IyIVcae=&3HKFDdzOtH&%Zm(y4b&JiR~6>wjjih_QH& z!WRA-xxcrX^GCLcRnhr)h|2NoFbS_$*EIFJv}G}FKX?rBk;tzH6%|VnB)f|d2MIL& zPYd{s;!6u#3;zHPYZvlB(mF{K#4^kCbC5a=X0|*VZ*8KV4$Cg5HO%fMXx}6Q8!qBo z9-MPs?lOf0t)shNamg01bb9*E%^I|d7#wZISc%TnX$Q;}z z91sZynsPB6PbQdj9!F43AwmGpdP4OhaK*3}fHDp#kx0@;t>xg8f)8qFeGVt#T!8#7 z@PNqw0FVZr2mS-4Z$%?{jFNQ@NhEfz?7@GwR=@L0^Jk@+{{YCszxd_<0Hrd*6)Z^{ zVxBO=a`g1;TvxH@+o>Dv+!2pZNu`Pej4_Pho;l`$T%HofFt5vFk~^AkVyIY*cI!w8 znq0926O*2m&UpL5)?PEy7C9~@wVn;eDI#)&LQSu}6QBgblx#cCu4c9qD-)2%kuX0(|E5UgtCG>BNA%bW`4&}Dsfgc2-) zt^+yTOly&W+x4rk%D3>vBRSZElEVc3MIU7{Pc!)2@vXcyrcL3W35e#@B#n}J+m(fJ z+tk;|FvBFmNgRfrb}|xI9QQo?e=7R?j|!+zbtSyDeuho+UD%%5)Y?hpD;p zf%()Lj74H;zR=34f&gQk*ccxDO?x^@Va(Dr^c`MAm`f~TRUig(xH-V@_+q)A73tcB zm*RN!Y2l37+-1>3cu?FNA79G2>e5u|dYyPmmz|$uzVL62z9DGvcuqL2ZKcrk-AV5S zv&2=M%9Z8FeivLKu%}9=oqQva#(i zbsXh{5n~rB63~RCe)}E^+}pdUM7r>5tjET}MZb=T6kDudQv8S)zgOCQ!tO zVnIX5IQH#dC!IwAif7)=71JBu%zIG$7vF0VAAeiupX| zx3#P6qtV#uNz$P2{eM~?34CPn-S3ZlVSjl9^2=nByTiG07>|_=_4@kPu>3Lq0EK(t z%TED#p=W|yeR?mlUdJMdnioCt(!o+f=OjUqb61(f$TvwY8h^Hi^bFCXk)jN<+f1ZZ3;f_K9%vV(*C-G zYRAogwFaT#y-!&hErrvy?4~hvu(%6>(6-a}xxme3+x$w@JPGjT-@+amvWC}DzE?Nk zD=WsiDjiQukUEO`N?3VS!%(3MMxi-108mZ3J||_v~xh%$(H(sXbG_-Twd%bWx}6 zX}CVxet+gx_+9ZI!}=%18y^i@+-fgvJ;{M)krj4tARz+;j(zK=`1Sicc#<7UUHF49 zh^$&UQQjFY?hI~&ZwfQP$8TEka5k=;;nB}TuSzFgYwj;`zP!AJQ|gsg%Jbl zsbf6z+^Aw?UCXvE-3cc@hpl~@XA(dhoCZ*F>0UNxN>s5jjJMzKD;Y0oE_C#JdL9Y! zXTZYu#Bl4D_JZhKFWKf&#~@@8f$5Q5q`GB=pM&l75&MYkAd*02&&!n{gX*=U>$%dU z73g`&El1uue+KF@Uid>y)GkO3C9+7zIRIm=bP&lLiWzWt!Nqyi6{ONPC6Pp_f;t*g zgopV8vx|up(Lpe6CiaNrh}otd@Ch> z8Tdp2{{S!@KOguGmD5O|whnXa>s`5z`{iHpOY>)^n}5i{zxd_(vPiO{gWvS0sQE|- z99J3VgD3zqFzg3x)U2UjgWI(N9gq$S0D5Ahl19!EdxCM^gdGMFq4Iq&c&fUjt>o;A zGC{~bw7R4tD$`Fg-7UncfP)7;D`Ys0aHklpWbPdbzD#b}WyTvL>rrbuRi>q6Qs5F( zkW};jc&SoprhrRJa|0FqOmU|N zJQ5Z@ssQg*PTb3zVr6?C34Zn$7cxU6QOzhjWd1JQ&u&F|zM!xTQg^hqe=H5;<2cXo z`v3)fb{0~N?(_(zy6Mls(10Ept18T&@b*HwA!t=c=cFj*;%7^RSqGEY5yD}mNE%ZrU}D@$0n!dZw? zeqIUZKJ~5|f`fW&N}8=JNYT4%7nAHpGaDiR$VNu)pbt;}y>r^7x+U7%TF9(SY|>+r z4i6REhHf&mdzsa{jgmCt`#hRWy_A|ro@nAxm}Fwg2ONTNNnvdb?W)5xWziqzPrHH- z8SZi3u%{cv#!s)@X;QDVmpa_Fs4`zzTft>;U@^Ex^1vKpzv29=2t@jw*m#xAy_fv7 zWgt6l$;E3;x^iifrOi*6o5d4e-gtOv7S_Rou=5{i{n~(f9>mjp520UJTEnQ_SRIps zi5sT?5y|$fE~9w9tlv*zboXb!{3`f!6{eqc@h<0BHul;)hV^z3M2#8T(Sg`wit_&e zia#55zlj&?scA4Kix-^It5}wfNsis4dk#s*9lDzG@VI#9IQi9@(w&#Dsn1%psX;^U z`J4}jEG{L~q`bJqf!8Vt-M6Pbc&&>s2;bUR-guG3cXu#d!wh0m_e6w&pIniE2Tm*7 z#8&n)v+HH|mrgFL-1^huPs48*Xc}IR<1KT~X0%jJ|ZnU_#*gj#L9fb54&o%M+eiAvJGoIe$b$)v2UOKc>RN{QYtV?fc z6}`EJS>AB!>WzcQ;QnX5b{`1!-5ML+4^Hu|<-=)g?jyH}xq*%pu+M%0HT1aXIYLrf z^!5J$hB|PG%9LQgt!wzh{}wS>wk9p8R6CpO2bsw_Xss)?wCe zwDYDxETG!PrdK<0g=5q3uYki!*od~TuE!=JHk&>(_&MRP7kJCX!s5gWiR|Y~sl4-- zX!C|(8}DN$j`iRCceS#$*CUSD$rhhu5Vlv8g?S3{#Z+K{l56ZMRFC$oV;!R(_+Y7} z7{WW<{{UZ^<+}E{ryFl4PDT)_fh>xjy<_Z7c;dZ3!#@Tuo5T7ijx@UnrqYg>WtvO* zgk~9za!JNY4D=w>=GA3~gd*R?bk3{{qY7@Mw*LTt&MGeqX_5Rwv+)mwL+TQJrVtic zRX~+_Dm#@WP7l(v{w@4u@n6KPdg4893GFodQ{=&BWNnH-!!gfXkVb2#3x|#)6$#Y% zp&h)=d|c%^X-mGJ*U0EUWZhAs__H0l*(}are=cm~2>9GM?~Hy%zSi+)h@sJRrn;Uo ziSqeG9$c2j+;#6?JDx$yAIsIGZC=U{Yq95k0P!5&F!5Hbw`#9#VG!64_lY?_&b=}V z3msEMHgdqG+Gvb^Ta1mh=i*@K)a6|*`CR4QBtveH_+Lo-GaTDlMS-5mIuFXV^t+g@ zp%-v%@}^Mg%g%Buo?h~EDK^Whz=Cr`fmMT(+nUS;WmaF5j(g&h%vgXVaqHhie^!@$OQWKt4dS?!N>EiJ05+9j4<7i#{g8WR1Mkc zGIL0hCtwcq&lLj_q!4@eravK)IXvg+b5S~$8D$`J7&OE_Gzz3rWnD=aIN)*D+w`ZX z0}`YxoqeiFl!(a3ILYFtu7R;e-N7#zZV3TKdeyXa131Sx;QCcDq7-7&zTxtYfb^@y zC6dxu(NMXKf|1jw6r@X9A2Ils!tm%a+)E_Q1?w{xQZPV2&+A@yWi$yb#nP)5#?v6@ zkEhbUzX?BWP0HPjp(jnd7+R-@rAvt;x3&y!0_@KL0N@qRbH!=sT70^kkzd?gZdR0_ z4a3L>etH32wG?Sa=R&(mO!P6O+1Oa!xm9&^1%tLgBb<*~<9tgrG1^IQ6EmTiS-_JE zy}0T0u1q!RPX1;RmaQeAo*(#It$3z&vXc7V$!?>0Y+7PToUaT9K7{jLJ8h>+4~S*A z`(v@TV;qg&hQTA#t$O%8OltGNFNH71Pt0*j6%=1nt2cJCTt@a*@&$*NV!1$g`LcV8 z$kTM#Usk--E#fEsn@RHSZl?hDt*Nd=`M0qWn@!m1ViH^Fuo$I{oVgoH0kwNEC$RRa z^F<6X7$alnIQ`?1*FE}iS;pzz8Ohz;rEdaTpD~%s79m0C4{(24jxAL$F=1_K`=ku4 zaolzP06x{w(y1%SkkqX0v9aOCwbBHmQ2qY^+7(hLm=^iYKsCNJZx~+aDWqG@_Xz=# z;UkVM#4!gTl^N(e`d62Tl{i)QwKl$==5J2?iXYa2;@dwOcwgZSjnADlT0Wz6e8*V` zJBr{&M_e2n_UT?fV?C{!h#Ms`Fq=9P-2Ro@lqgiAI*{GT-_*+&E7j%fZi`K4PthgU ztTdastyPM>%0gN=zymoWr%~3uv%_8&e;#}u(RDMX8&ejy3B9;hF_|F90G$2oZtIHk zvwTDnjG*?FpWO62aItas-*k6hw2y}VB?~JiWJ+E*695c_&=;m zsCW-Yiu}Zvk=e%HN;qPXbWHvNwdT9F)>eB7?Ppl`6(!K9Y#ec()%o>HMy##T{-!l! zc{F+S{{Rg%Ux(JZhlzYMXe8C|LjyF@u`7~EDS^gv2OfgHS@Ai&e;wXKt!f-)L%V_# z=IB0danD-%Y?`;Xol29|R{R!+6(H&Nq_T(Xzyk{bf{}UAV3d2X`q>(Uw4QcP&s{Qrz7M?(Wj!PJ!U=?(XjH z5}Z=JXnEeOy}vc~_b(%VGw$4TUe|dZ#}$!H{RJgSPa}THXJmut5p1DXO}0U@MxsQb zM8fH&h>0C;_g2KRy_1}3uYNxRU&R3^DU_qILkaZGiU8aT{0os(mC`3t7%CGX{x zq^@QQ|1!fKQd59yb;LN>hccn+U{m0quBB$m|<#X?N8KKhjBiZt#<4A z9zSPzA#ia8DJ=*mpbflH-R5Oh9#WP&%<l`#>Ur_9dQ9^CUF+ zZpZ{m79}V4m45PwkkCPPx>?rIt)PPkVufpK*3O zzODxReYvUL#=*X6IOJzhWy zt9QM#7sjewx)szy@pSZb1^b^AG=Acu{sOm4diZipc4(~>L`>IK*!hnZIcr67Dw-UeHy zYy0;v`UP34{xxygmn(m08@<1A1QAY|AC33-i$c^FIE$QgSUM4oW03S?don~C4Y1G0 z4vu4*z7TPYHEfu7$|4g`7E<&I(lsR^#%?UQpa&IQqrmu~#WPKvT%O5udcO2i#Rdw6 zN%Na+#;^3snz!ia^@N9=A56C zCfW~U?rZaU;B;Fe?Jg^KWSE&gaH65^HsLAo`am;p8hz^1NEh|8x$Oxyh54YpF^+_IsGNe zZlw%Gdj%}s9?DQ==tT(~?x9RAOqa-=5VY@OBV6L7$4bBvzRU4Je_`9t^pY9M#6SCp z3)Y@e0In3H;wnLoG&(TjLZhC#`W14DpbNV1@i!tqmtQ7Yjjm6U-WPL;SZkY+pFE2@ zN3q&&uPo5j$JWNg->1ERq6ABa7=+p7Q37(9dW>j)zZCoPswwj`ldI=6Ea#AyobWMG zhz$lJ+U(Hxq&>K;cC^ab))eG&k;FVSvR5dp_@;ZX8XewRTc6Xy^SK zU_-DLeLBTVZ&1X?^bl@r z+P>g#+p^e`NJUW3B!|Ba=47Ds$}bAn6l;e2IBW;#QsBm3gS*#nQQ|~Nyk@25tTHbK zItoS|de0Q|8W0h)Cs0hz48h33&edMtSSxwM(Lq4hB=tZqsw2Z4>}JN4ZCRnshtC?k z{*Lw4_6G)jPw-UedJ4t;7WQRLmSETDa@-Ph0rE?lXAOHHP!BQQB<;g+!`J=L!rW{w zi1T7zWxjlFV@kEh;dDKZ03-J+W$m@&(920!mzj-c$+_0&k>@GZ&8Ff4Z+>(gUn>#t z<*QY1<}6?Rw`BJTJoTt&%)co%2L!7|b2D6j6F`SnflvY)^bpR&*Hy8Sk zA@@RTksTUG#oN#>=Z0~XsdIwX2^7OU)2?6RZGtuqbIXMuGqtj93Y{c1`$7d7-=c5~ zN)v3SFN-{#f2R^&_XTb93tZ}Slk6PyjVVUO$<3h7!k2#KAD``}1{xx}iX%P2Xu z0$1^^0Ghy9L6DW7_3qU$vs}`TjfL};sxa}vgf;qzbSpfJ)us5DWk~AD-c4Y z86$$=2}0mb79i7Y=I|V&x;*%Gdoce_f3cM6P#w(m>8yK1p>woTQ6_Ip{&(8a$hM+I zi6q@-9B^M5)t#WT)mv)BG9BhTv6-!P3^Y$-Jbs!uJj8x3PikZ!T-c!Ne$^DWZ&MYF zYB7!TM7CtS7~2?@D|a~H52SqJ1QCPB(ih8`^rT}s14;~CxvSWgVdwt)euKbLvs$@yH+$`Ib3SzlV9^8*MD zweOHtt&%@9j}u&#eJAf+w#!ix16hp%e?3w5J^lx{(8~BxRmkcsf--Sw&Kh}LsG)PD zko5#jB*W zHqwE`Ds6$SVVvtXwh6)*=Avk|2BblXq z7=V$LKNEEJj`ezQh}zA&g<2u1HA$;|VvLO;5{4W;R)a9#L~l@jGcMkxRSoD#;` zu%>FT?9*tOe!nZaO|1jfIPj>Dh7@JJ8+>T^NuylX^;O}fL$KtzqzJYQNAc>EzE;yW zvQ4&b@g(+KNp>8*Z;OQ5?(uotai^E+xR@-GzMPsP1 zKYd)h6#qI9*hT8=ex<+GF}+x+xiS66W903RLP7nXc?HKV&Prey0aD~tU!XkHUDn;e31XV6a|B8)1=C0|xak#b=TUfdWX`(r^kYtGjc(VifrIl2?+P%v zSs9!E@-ixZUn>Z2?R2BSde<^>&y0EQa>y(s?*s<+@I~(`H__Ld?+ifZh;r=^il^{H zyAF)Cs9$=pVNH8fvY!XxhXJklg-tvEA!~i4g{eB!H-jpAEH5Yc$sfmR8H>G_i%I0( z1ZmtZu{BywLjCj?1Ngi~6t=NRSnmIEYPv@WdAlr(fXK$iN#8050_gl;g$~F)Ex9)*7nkcffb8be*h}>ZTK(9(7=)ENnEiOIOQvAQrg7@jGQ4n?ELF63vD*84E-+@Ny##isvfmW*PDnD9SK01LgX!c)cu{-nmI`s)T{+U6> z{|?ZL|96015BR$Il}5DbNJD@cCK@1Xz(>bhUzE5soV$|xf9ogB2t(34tt&(bqxApmtGOb{zF&G&zvpt zjxQRI@D-41;IFQ+t}npkKkb;h%t(L`EO%Lw+wvzWd3V+0dWE*-pppJTTpSXL@^q)E z-wh+L@=l@-1^EtibD2X68ynGK;Tf%PIe9ofcT|+Nm+qy?1^!90#Wd>V^)IW^cnnL* z+p<}YI(x(`p6HM1I5d+CFll@svGY@4PP3N6oV$ps_V3Fg?Gu`GlRKhw(NO-{n!j^@ z9rh9TD+GJ7-vpNYSUmr}Mz7QM-~(ehzB_H-k;E9ut zIa)Vc>}kTq<2!Yb^3hYU5){UVd!{l<$MT2PF5Lv;`SMtEH`t5GZSZ+()T88B<~v_U ze0mI?Xzxn9vp`BIQQ>kXJ(EGkMp|&ux-v`Cg}Qx}EI&EK-1(v0{sEo_0UC(wJsRX60X|YSHsSn;;#LT(dNfstdZ%TTX^K7xt1eJVd8ezW{oKtoJayyfNnUW zdHsQn&b;T~NE*DQEz*5cEZ-i_KCT8P+uZ8Pc(IgNd?-r#MB~kW za-niMXJ{i$=9~U=9*Xg6WWEli%zIeXO!K0tNV--!fKUM#JJp#*t-)T*3ZUB<8ef zvT_8M>6wcW1sx6{2RTsiRQOAc&J(&3tG)7>V^M38o;nAioF4yrXB-+z;$pY&+ImI3 zn`zJIx@%jO?$u|?{#Q<0L!juV&Jb|vE5(>i4xK4QV;=AAH_v0Z0+q=`OXkvcYo*jO!9w6A&5av$e?Cw#NAvox9J-I9sp0th7xG;lp8 z{lB?nln}Z{h2SS7%}8fgAPdM6BoDK;hIyLoMONtfXkzRL59OpZ!D)hTA5yvgJ+_-G?EUz)(J@Zn0v`fR@boH zg#(-Tx{+EK2+o#0wV@da;bb~7?w}|~wkAvNnl*M`4>b&RRSVl?_RG}C#ihZ6GbcFJ zou#RTn|6M9j6q-vNZqo0D#E4rf*o#S@^3QTzS`5C)F7q^V%o5) z+=>T3R@~qpDV8IzEHihDkP1oRLh*=4^CtagsQ5gI$*v4t+tGK%}Fg~%nH;gg}Vnw)bYSV7|1?_kG z!&5eB8=P`K9EV^@ny=1TBm44DL-zX3I&C#=Re8d`Bw>V;eH>B-@O3t{CuwiRvsFk} zOLQ%`&>S49w8T62QXEPJq^b1195)%awiwXCj7M?9I+C*C7)U4)NWSmntNt?lH9GdK z&+t+6g++pYemWYjrUN&I@hTe?!&Sf0#8}nv*F^T^z=o-@_N>(_WT|2D$a|ij__qLG z;&QXS7o(3l`Q*;s9>?k#XY}9*8$imbFiOskH#yG(5D8ez$HgH;s98gjW3m?`6{Q{4 zMxC2rC|7p%rG5T2t2JTewRzCfya$$^kH|8ieK<^FVi}+~_3*2Hvbw3dS`R$1ZwZCk zgJf6SF@6>;K{*eQO#KeN3LpgezA{-XBZ^W3VC$BX{U3;41L^JBPT@I)zG9N1r)x}c7e*HiS>M%;IL z^JI-XSOLblbIck60>HZ`_u7{I3eiyvX375nQDZsofRrNxcoaYgXDUx6{(_q-?Fzq= zFoeqCi|PYO|A0V>uIj=fMYdG953w>ji!4>ly1=w|ejsAM6$$BDPd2Rbrnj34A{I&S zNS}2rOq>565BsjR?;-&4f;UZ6Y|(**hpZ*(K+=)f{?muI(ZnW9xKa66TimM71ba*& zN-Vz}e{4m0|M@C1C%H;&7Y>MqS6`AuDVYoj3S>1Zf^PhS{Gpj>cR5WI{d25D8Zi0X z`W|s2Nue_Kn>b+yPrih%!IQD;BB2l3uS->QXd23whmwU;410yI5yH;$u!vrffeijE zawa4O-57SbY=Ipv-#(*_zR6aJ-DfiuyIGPTce>*I|Ejtm*eWnF9OiKNA9N$bmrr$Y zSJSK`&>{Gm-T}6XT?ex3nRCeMib(XBxznOeV3WIfkQ(c$*D@ zf~7op9=8S2U!Lk`NeBzliW)9^(mpfxL4xNFs=_&vfpn`QRSeb1jpO@)km^?tUJWz6q_w(s;^e;gl$c<&uL5C zMQuL`iTCjg?db9*mu@Q%r5XFmFnz#in*f2%47hFi{^+M#|Elx)^YrBNa%BY1fYB5mlPL^zhWeJSim>^C>bTX6lK4_O`{9b(#4SyC<0 zpm&W_^FnzszUPmN-C3t>!@VTBURwQ+jUeYE1*ZrSr#`$Xb`B#JKe730(;IVo%*zi< zH2TUoXDK#6lWsX^4x z+V9@O3a?yGG?MdgTD9wj)>G*#*dHvcWigAgi#SA_-_9$bUzk}Gg#xjvPr>q{GfHen zZ@>MSP0*;)BJ)OtSMhI%NBTBWA)6#OAoSq+QTt16#W=exujm$>A_Vl zD%;Mr-}|E%w;7gF>0z|j)8hY0?B0Z~yq5Cfdp};Kqzvvy7fmL zsf-3X=}$$(yxPtj_3>55vy*`bF}h8klGr z2;~>k0g0!EpXRzG&1`C{Gc%_hfyM}A$Z9!3&>rw1e_Ynzgz|+I?i9RYVgg70fkRE! z)G}Se^VJonpWj+65VP9U+F+T)p_(ii!QTcw3F1G0`L*{8oK35BcCmLbNNBWe3Hmb> zJ5iYTTQF8LA)he2z}=VA^s1HlCt4V#^0ALN$wAMQ@(aJohb53DcpnrAAPAHJzmAr} z5cAmnHu*W8*X@A^>t0_EUGua9&jhs;`w;pm+lD3o zdmv5IAv15gh(i(~X$F3ojHiaiWmHJ<9i=`)x#!%_0LG$5cF=C>Fyt|Sxofb@FK`{A z1&JmhMGv@-Lq!b?rcTP%4EWOWaGj8MH-qkPQ)^SZVC!x9a70!{ zEQxmoOU&3?WTc;$(>4TIb(|wGPlZh{lQW}yY}$rTe4whJ7R`aeyIOq#2JDN-=f-i1{tJ{5tkm%hCf_E{EOnQyLu6LKwER3<@yxGE-y2vsFFzQ<1|X z|J4r<)w7qJ)Pq;OdgNmAYFk(hO{Z}ljiUQzqdR&~Yqg^!o$zQnecd4$jayk9>mq^_ z(MR2s`E&qOygKIeD zyPU4Nayg|2A}e^N>WMUgDajF9zx!yFe@w^^4P)^%{||s?Q&e-ba?v5og$HkYzRj<2tr zIcIlAt^hFJ!4uPer}VZKGHcl#6}sJ6qcmeEv#7xB`2o$;xIaRgDZF+5;UC**s8(Z| z+;4Y)NoQ<_WD{NtOzu_c^Ng;{}N-%i<9hSHYR;8i>W2Oox#^Tvz_BdPqP5xe=c2$S|^GgVNh zO~Un^!x&Wm?|SR{zt`LQ62_3Wekk{zo(HnXMa*4)9WgL~ATPqd@F72_;wxgzjS?IP zvsV|H+9Wi==O6{QjdZO1oQ_VCLuEG;t#1SELY=lO2zvYlVc{n(FB;%(Ct;o%SflL< zS>#0qQhJTbi_ftWI=9x6R%8K*5uc6ANwzyOw--QlI9y&?oopo1@EI||?LE$~Z4H-;%qNEOJ))awP}8%664J`6X^B>Ksb^nDg9$=x^f|;|?6!)oR{kDK zf0~*;R&7Q`CW_k4mq})zzuBaPGyx*dR)}+5%%72xI#58}9E4$IhU{shgXZ)l_>|Cq z&QIi~ZH~V$tY6Olc_;Ii+yfgHSRCIz(4~5Np-X?r?+JT5bjS2Q7t=kx7va5nr4(}O zh|tT6`UoYxOL21$#Dj$o6;f-`-xGa#&23*&GSk;hatENA!AI7AI70tgk;6-Rh!%9b zf;SDm3=$JZNPTPiIfxnDM1LxKrK8NJ68;kRH`MMXK9Z$m7j`y^eV|^&x8=hFDB4|; z%X_KZ&w$Gp@5`!q#tSt%lBa|0QJ-)~T|-=B5>RX26l|;Zj~v?wm*f7-Oel$QZOTt^ zbr6e%0qJ4{zzj0jXu)6}{96t3d-tVRIrIAME0NCOy|OBYl*nL`f4| zTyJKAM>%3p}=+~*p6W`zEM?bO995U=9waZS3S`q}3sChmHVpbUz%Pf{i zH3`mDi^@Dbd*Q~DLfT-iE4u@}Bi_ ziCsI1`45o8coli2e$K*MB76$@VWAyQ zp9~w3OOhB3r#yLCT@7qBOg_MJ9C(R~Jh)^%UfES@7}DJE zuYTz3XpdUqT_YfJjoE_)F&&qgFlvRCrG*V(H&x}7s@%{Vu#|=g^9aAhM5RaiNJP*4 zMWCUIV1ic5jQC{#ZF8Tt()Sk?&~E6+@fHAJnrA+8>eHUdH>F+`+zC(=t4L8P2h8Zk z)%x!LVntd!|7bp78TVJEc@p`x$oz!-MN6;HPxpGH{J^&st$RYUY<*&E>^Feg6Q$IN zX|z^C1FUgqgngozEqD%{SuY#YlyBt1(A8;ch(Shk2VG1H&vJ)RAxqOTH0INnB0}>kA)$L7{c9d3(NgN)Ea4Y+uhh&e zj*oR4YbL4-x740A-(USw4_h6t$}~EMly##UT504zxnNM>7KaqKrz+MDN#94P3NT$} zK1XU@6UV=i9*}L4P0L+Xx$7l+Rg+ViPVBw)N7Bk|N1aWA#g&~an$uw5=hkVLd#w+W zl|0>}kO4iEpD%iOn>1XZ>janu6x3t)6 zbVqsqPg!ON1G$<&m*RI4)7v~>ntX`w;p=geeE^xx#*^ilqwA%7Rl&3aL>N%+e6rYlca&?xg?T(x(t&LW7)hM8sZ}F2*N{ ziXP2$i^i*|m)}OC9BF>Ffkn{t^`m%xmRR$UX&f^Y5w3=MM^FqV0bto zGPB9^^5vra9DIGBK)M3C(kPZ&4`YcBb!P(#mtpJ#-T1dpEQxisAEW$ z?MbNwIs^~4<+kBv=l&4wpKQQ@lR*+TdmTr=e6aYN#bU8~gM-@~HvJ^MINM06m~d%a zTj1Wp>s7_Vez_VHtWGN|)aTsp|E!#390EiUpn=>OdA(shHJ3h}&xn06wEfGQ-oW43 z)nIaz_6yTN5dzr@(75w{_@c|$q*)0{oEHSGZ~y64>v+n&UIaZA=Vgn1@9b&jowE4x zZ4Ie!FL6HH@2cd9bFu%Oq-$ANykOeGzhoCJc6*BX`FO12p%#mImQRO4&bM zp>4gHSBQFULvniIn=<}^)-c)ZkIVsn9Eue0SDwxmCysH^(x}^6qDik=gmWxX1sgG^ z#Cp^BustVdBa84se^vIPjzGnc@GPZ2{#@7T2O_Hxy;j>ke>Fd35wWk2QsI5O#bot$ z7kI<+1`UpIjGdql6P+|y_ME&S z6C_i|7WBpX+3V1in(Mqq4q#4Xv!C9UqZ78IRS3gmdyi>ANH96hz+iktz=v7TZwldu z{{W?KHN))&V}eote{>|_?ZDR6{}UNS4=|`=_r<#{6(4;6kem`_azi4E~um@ zy$d;CzmUHimzHUJG0kv5thoEW@|!$G@nDDk=-a~a2{|^wXC(IIyhXPMZ*`X+$(N|# zKa9|~gw92IP1YqUvwIDH?{1C$9-*KEhf*d~=eqWuvWPE(QLekyz5OTJ&8}zWJVsVR z4%D%Q9huW~6+uZEh*ABXi1owQt0ty?oV@Tvnu6W;ZlTja>US~H%2cHeuTOZ__2wos zW7Ut)Le>SQj|zb;wgu~oQ z4W>GMKjK48my!mXhY&vA_M1G55$Xc2Bt1grcoT>{gY|O)?!ng?)D4+#m%(o$A3R3* z!&*^?gFV^WBLzln=jK_V9qnnK+l;ZP997D3C1zu%x;Z9bzSshL-HB%GvYgaW%f~Nr2WRFgRW^ZlLOue z3Z^u>>t$TdLt(LP;&|oODW4Yl?TGN$F9?w#bSv~sTfnvSkURUgqmFbm@CRsm=}w<- z_&)%pwwKx9?U_!>5kCKKj@fF z1OR~s_)a=XsQEb9$OwY}2f@uN-%Xs0`bVmvW+A17+9>lA{cHX_IvLMvNW~&~_Qq@}f$9cU{>Rk3DJ*#O# zF?6?4H8{zyHF0R#L;utZ1(84Hj;L81vdLA^1n-VDm^FVh$cpa*DXvZ*5-@=9`9uz2 zQ$()uA>NXL7U9jIoR66YPMHCPczS#A>h>n1w!QnksItbdyycz*`6-C%Cq9sv_BXBB5gJ zVri$M*SN@LtFR+4E49w#H#>V&!M3pV7mDk};WVGp;3kD>iDMz1u3wkqoLEV+$cs&n zhg$ByXl@y^i2mQ;yNWueEJMp>jgogOp4z9J-LF!7ihDxFxctK(k!ve#iAS6yb=rkA zuE}w(oHuIMo3TCXlWaOka?xW{-`KB%H0^iS1OvYAL4Tha5Y7~{#I2?XmB>=Fa?HZF zjQ0NhzsyoCo>eNnHiwC_uLu`Z3RDW49~kZr_jzEG^+^}+ zQh3+47>_dragO!Ae&LscgaiysbLe6-+$ob2yVyuxTl9=E+6cDzFvVB%24-Upe#A>L z-Fku`z2_M5s|2s2zfAct(C=M6T(a?)Dm{c4@Z@H-gu*xSiy^ddF4%&WIq7vdVdu2J z*ku?(AAekKsXI?32`5Tdc{mNln9rNs<3CpLBK$!;G_A1pz;Jc=4fHyc+KcG_$6z;n z?0pj9;BLVA*ZZn!Xc1Y$u zN~{U`&K?9WaJZNx5(F<~?pdR^mV}a_<-!CxxzJf1TV!2v{N?if2X%Ke7&sVxBLQ~4hgx}O{ff?2p|tAW z=CI8yifC`FjZP`*ZJ0(Y(I3mjri(MWR4rQ$IY1u*;SpQD-nhGHz8Q5I_#jz4k7;(=N10AR9_~_Qb&A$3U0nD?hH}xNYIuU?q)doW*u0plK-C>rC2rQ{)p=_0_ zLg!=sI@YYOPznyi2sIVS4`VC;lx-)a=)9#%5nqb$k@DRw1zbB}7lqw$#SM|UR$ww? zi`)q_+8F7J)+%FtcRIW$_gLec9E*YbaPBFOkmR!*(+9TEmgdwuaD|*xD&P~ z11TFjcYgP(KA+%PhEE43TUNJ*HpwCk5?I?G#XRRnoblxT+Wq9tsSon{;Oh)PjIf` z(nYmW)h9J8YMn#lxUbJCR3J$s1C=`+H-Wlw0T^!BP{!s}!sbJ1gdd7XeLC`ll%*Y~ zBV*A!@L}3ZVPhJzP$k5I4FhSTU7AK1x?1dFk?hhpEP8ck-`5@1UI4MvQBaXZOd)$k^tRIk#zr@e~1d8*}X?Gocis^T2`b*8v~!X@^Kz2L{WA zWZg_*QnoZm0!%&vak}4^V)3-(HhuQqRZDzwbf#?`48#zea{c$y6#kx3IP5GQbYT$Y zS*OqaVf#};L&7<>IMq&#A`I1{0UNpY^7;z2zW%f9%`wVi%frpRx4ngLBN5eCpAW10o5ygm~r7=02hkk{vxq?q~W0NiX1tM}5Q&DMz3Y;Qp)9#7=RS zsi=o(3P&9SgXaD;-#|lvMfA-=k&%M|l6s|idOW7+p{ip0Nb8^g3 zO%_$Jk+IqB-_ka%?j{dh!ZKjrN*(>v027V&@JY^EhEtJ?lzO@mFK8$IpLrmDQz%kk z2eu&o43@ppE2OAer@U0EbX_tK33A2J#wklWF2+wXtoP*a?_BZZGjM#VJM#yiYCgNu zPlNKjte`C*a`i&k;dv|gpnXJk602Q~$Sbre1f3M2`#Yl$-RWhXgE}6YEzWfDyrN!A zzocK{s%z_|v6F5EWl^@*L@fyV_KhQq1_331bYCwA@46)0%;jzy>jX(zoGEk@rPSx~ zd^Lr^mv%0kj3f}hOR!~5%C|_D*}3UgLdD*@`!VxOy5hHQjehOIaEp+4_w%Dg4f>Lu zZbkEE^GmQh(0S6~l@>_1KLK57Y^I2|T8V{@7`OkVE?Ph!`9v=(^J3os<^w zpFV}$=q~p|sG8T)LPZpM` zsHooKJHE?CKX%D}v)q5$r-I`m$v|XrZQCaBZ!rTUC$;Q$WtAfZwJfiqRR>Hexe(>g7ExyIc z?59>q?)QeBFp{)H8dK=SiOys*RkubFn9{@`^&xoL-rW6fJVb%d9(wUVB=@W@%wd;b zkb@}~W0GWNK-Dgku50j#xmjzjAnN*ll2HNfV(U_mH8Oepl1J>t7^>2E)Jz<=JNvNOG>X$K3OqZGs#D=Czc64P|ROyV{ z(VbBHHhf)Yc{+iLs~F5l9P#;I`Cl^I^`wLES^6|ImX$r6lXdF)$sLB^16fd&ybRn8AJjM9c}f2OKy!RmiT20M>TVL)ZBW-- zK-BRL)^PheEp=BbKXKW|NQ5CDwU#K4^nxy2;$~zfW4qxhofQc&e~ph;^QJ~F90~oh zOnV`F)s!+um+KTR|1EMS)!kjaJQVF-GTJT8w?_djEA{98Vr43#Cf%mQsm$cot-HEgwo3JeXBIntGuTTC&0WN?3`C~odqlO(nu!jHH# zM7kLqdH>w8ba*`j)7Hx1{=1MaYP@;$aXap~o%mkPx7S) z-lmQ$;uHb{wRvsnk@hQZrnvxZp+MpOW_$9~QlU`3qV#C?RuZS+a;zX4L6`+I3cBpR z6H@~#BWu5=e1+Uc%@MSvO%Qh?k>#gIbbqdQ9tEZA<{udjj`p83wxgKicIgGq#YEpz zCt1zcs~O6eSja?Mp41A*_X80JDXOf(V66Swr32pI#cVz!c{{fU?NNSo^xP-EwN1-e4rxn zpdNZ{+xQMaxKg8?!re--J4y)|%>SHSo6om$9NyJevLJ~tCQ?C`MPFm;rEZ64VSr2u zDtjzfo`K#1TkevOB5Z`m35@GWSgyX$7O(5eH!6Th6I?s3k+Zi9=CU(Vv7>o2Tn;8Y z*%hbyNe*eq15(Fqb3UwyH9NTL#i~ujeMQwUBsdZHpFzLI$N88nu$$r)7-IL%ytKcv zE4OIBp^}h)E$8Tbrqe@xZ592nR=k9-)W*!NqvH|dkK^;#W+IJ9rTk0#w2hLr_w;N~ zmyWa7CN~Bo0i8Ik%yDStZ~XO_5n`H#&O68x3|h7C;{Nr>dgH!iL+ht#bUZl zAA&dcy`^h2Nh{!@{={ZX63{LoVh?}@J1f`yeq%YHFnz|({vgE=&#`F=MSzvJbiWS| zsB75#o+>3eI`%OPy=J|A(*sq3x$Hsdc2vA_P|=5-$!pL+hh;FqrL|>yD>G)^B_}I3 z8bS}#z|ipnE$v5Lnm{u$-udYLTuhsoN6-1EfaUyFNwlAN*!tLeIpW33zx{;FtXInm zX!^W#h=dvI9mM|>SvIEHHdH$pKdP$<#$)NvA_v=Jt_qDDm?mP&D&AM4UAkRLlcXJe zYsF0@1z~00y}yJH-VUF6oGKW$i_3>qTzY*EWq6v8^Tz0;EL71)!u~D7-o8G8 z{a_K>*gP93}gQ6;*-a)FLutcL>z{e-)#qUqS z`;$Vy+?Y_0L!cVLz$kHeWEs_GO+;Mr!w*rX7Eg`WHN0wkL$he*c6$`IYgT7>tAkMI zC;49$N#WX^69!tI$M(N0wFTEU8pE}lj_A6N8Xc#=Z(2`=6cTf1{=b&4G^(j8_Rh$K)zz)*{cj|3va zA{0V+CM6+>1_3R(fD*_}@-Aur-nGuXXYc#%{pXx-e^-$k2bIYlj4m6{j9kwF;$(SF zKg%(tltN-f9%eK6N4!1D-uVdlrRo9pL0>ME{W_cchj&UmO~Rfeivo}KcOjsK4Z&c7 zI&=I|L8PkJB&0G;ir8^UYL?dxFB{naZo`8nAL;(bRM56o(CnWsN`!`e1|()&yExuY zR(a?$j;h;KEPFq+yE@KsRojptf4W6jI}TF(mQlXNU-qKTX^C6Ck~sVB8FU z{aHRm_j?&)$1dF`)ipSXw|25$^zhdf`nuq1(P1#a;!>?)@Im71aAR`TQ#lptrs+lm4`?DdZd zAVyYl*c(6$FI9;~*m{^l+`Bi>5RJMUn(4b4*QDYIJ!}tN8G#(ZP~1xq`$PN+^{~gj zJ7g&_a#w&Y3dDZU-%5jL8ts)EAV!h5lf#+WE3OIT}H8!20~UhqB(Ki9}wE0VnJw z-fFVt9;`Zg2=n~;4Ww-9^4gR86>kjtZ5zLrdygnlzrXTTf)}oAGU%b ze8UWVHmA`SCm08iTyohA?((N<4W~^NUOV^kR3RyQYKG-mfIg9Y9x9)jq&3FMwCy|1 z=CU%-D{iI}uN`7f{#Vg6ek!<^O^0mj>^D5AC87U9DgSx_l3e{CH+b!DHHF6)goBlz zomF4?!ROK}iFx9hN3M9Z-TcjR@%IZ1rd9p)%WPB{_zQb-OzG%=kwbTCpfbp}uY}}Q z22bht1&leFpMD%W!3Z1AU2JatC2Fi=C<4I9gbgy>tOM7@IF2ZF|BllU=3dz>GfKWm z<%>=d?HP$w66oA2$c9dP#1r6DjEr0f`rk$5RHl#Sqi*uO2%jwdyEJ)Ep~W5(S<=w1 zF;cwjm}Rr0!MrhK=0L0V zGd_uTL#8Dk;BQ#pvz}XGIZ+!i4y5BGsx+41`no5a`o%+(BmC%2(_G#ADtKp8yVJnH z@6iK+U@ZRf>?y!T2A=N#mdeb}Rom*0OhzRfAB_g`LO~|bcKty$ynnO&P_>sQNJx-6u z;^8UZ?{mGZ?VvFj+v9#_>-pgU2`wEx10xSF-;<~O5|UEVGO}{7UaP38scUE&8X23I znweYJy|Z_4baHm_^7ird^A8A&_!t=#{V66kH7z|OGwbu0?1I9g;*!#`@`}28IHCdB z*o5lr>h9_N)z?2TJ~25pjs7!(Sy)_JURhoHyS}l1aCmfla(Z@tL3K;{4$xY^iK5PE1ww8}4%)8GQ18E5N|3EDB$pcvxYdp28RK(Ap zBi##A42JOn)xs0UN&IfZ7#!^9ap}`ea0Rd$i9Bvk(e1^c<64X>&CgSJKt z9zP7_>v!o@Ap=Xy$-wu~+=QUP#Sn{O^g{mowx>=O+L4LXuFn@(r?=SNCh3KbR&vA@ z#s0eI#6a+gn`TMDnBK7TW#m(!DIH|n(Xqgy)DahG+3z`-f%*sd*}mY|o@12&hEQ~Y zcpJtY_EyWril+Sp7S4s=8YljJ!m-tIyg4tFO1y(Gc>QQr3dVpJi-e3GNlC&8N5!gSMvQl_3-RO-6l;& z@N+U*1Sms}rhI%n4`uG$nypb>+Pzyd1ixTDs3;^lM{Ul%Mh~twr=IP0E%jg^?eX3~ zD?ZR9^qFI+ivuq6U}tH-!Km^6%a|z}A6uiU*j6L}i-L7k=6`xl?0x-k9ItJmE$px_ zZvI2S2U-U`+}2#b z1Q_<~VsxlwLW$*!r^>r>+hC!vt_AsFXTxq8b|N{hO{OCHn5Al;F!7bJ+N|W*8L(rT zm3d!(?|Ln%2<;t4?c51|B}bpS=t)f}go`0lXsH=Xt$Iu?O@bwr(P5p2L-VGCcz9}1 zS5hdPb$>k{BYZJeG4%TM2)p9;Ot;4(I#TG0NjRs<$?uL8lTp~i;ndeVXxeVI!$`s} z!D&sFPy6-0U3DT9L@kKp7LIEwX{J`wg$hG7IPdr&6AeA=0}I*YXp}5J`n`%hvePN5 z9H1PNcFXF#@PV6FHhoNgI_BJrz1Z=1PK|)ktm|!{1C4*9Les7*X;vba4I8sDe_wIa znS7&h?KvPOasNgzGWbi381X$=T6+JlH0Qy__+OBUVh@J?SU&aVd0bPQn)*&`F7_33 z{F=;B`9uP5wn-aIZLK8BLK^JbG$QP(qNH94hUI6KRG**!bqH47$2ipue)rFL4Xmcn zZ>>d5;ssLUPpUc{4km-!W%)_Vhi#5zD_NiHl}5YeVa@gw3_)hILyjd{j*>-&^5%=O zS`7CgRpTn0SIa5w%unxB8>D7`@NLB$PqliZd{w>Ajh|?{;#-A~j%{;$t0S?&obBXo zlpW;^B9a1Dw)?yyoHUL2tM0$+$whbeH04mWT(YFbaM(R(jNl){Btwhz67c@>y5lD# zf>LrtVo-l>Ql#Kd>K7QxHGUnhz8|9oK3pt3HO)@PQz9$Pmsi7W&QsA6)s7)3pfTDJ zS~Ail9~Kjs+ox^|&+0OG;p!tmu6(r_2mVy>?iV|CYJPIc1ks&mX=MIWWrA>*jnZhN>wzS7{K;4~BgA^(Kx?8Y z!MtRyzHM{(1P9wZ5R-t#OP#dwP6WTI_J^Xirfm}>$U)O&e(dqaanCwEf z{s9E82MbzybJY1&q>&0+frJp#$`V%dqZ<0r)nTB80to4S}U{JB8tAOtySyFiW zZw0yVgWO;A_jvOcl0KobIx79Uy)a$xYCs)%8t;&8iDB&=oPzBc8Gi@ir`uK!udYTd zT(%*8L6Rk?fWYkDXCC@xJ6KS*kn}-2&Wl2y5#60jtFE9@fPaBf5T>w}s@_Tj6?l?xYgP zbO>$j{R5zq;8rxSl|fceTf1M%h_PWsYdUE75)77_x`vc4zXKy17`ZH*4RQYf&U-u^||sucKBA$Pn-vb&tA24sotez0xBKfp&9JZ7!y#3Ha52cLi@ zd^=dA6iYCr+BR|WCtNunVW3H{d~Fn9&{pnTvt4?CTo3t_A-i zo^q9_gzqz_Zb)5tqdvHVLBK*IZMHuK>S^8G|EB$5`00AsOtaA|Lb1vEU|-P7zhGEE z(aR)i=l6?f*O`xZohHC_iz)$3Zr;#PTW~$8$=A}$!5+}2kI$|(EH^(@x1?!0eyf-q zgq<^**mjfHJtJxp+4GItTWR6&Sd44c7`kqae`E<1)u4Sq*w8~lUvd6fmWz*2akFC2 z^1{`^@*@9(%}wu*JlSfuzWXt>!eZ2w!M&IBO2hF-x7IQ0S zUnUcrlqb_&YjA1S85hsB;R8T8@IK2QTnOpm<7XC0oy-<>@TW#7!i#4FJ^)FzH-Pp(YQH>2u_hWvk4unYQg z5!KtR{PFtP(JazU!R8-2q0cIwx{3xiIl)|u@>cxZ;+58O)rM(^Nh+V{bxRLL5;9g4 zSYB4nfrdAa9c|syTT?*?$aBPsom^NVE5`(T^Z1qQ!nM+Yz+!@rmz&Ft+2_i0u*6Vi zMjc^t0H3VP;+GQeMN${e(O~@MX~0EB9gy4fREtYJRsF`n5|yxaXCWD&ba2>5TxaYk z;;ZGBaq|zLnqQvN)hUt@Y=F7I_MbO@!Hb@KnZGs=xYS~~|99g2$#n0*GfyGTY&=d% zm7p`ZQUIzz-o>1jpsfX(^jGmwo$(c;igJIoeqZyA2(BdIM>je|5S2H;a^!digR@~yHZ)6y`C_O z$61NaDvbXkXLiwYf6)tI5%|7GlN5WLaR01sse4QaUs+j=#Z)MwusEf@g;`^rW2#1X zMWc|deWM>x{gte+PH7A5np+A@MXyk!p9UDe-QKRdX>GcJ<5I^q$t=UlX@^f zl=9W$yRE`c_g_O!Uo-hN45u5DV)O4oT2#LITMTww%u0>n!EPasZHg03#beCt%*x0Q z(%{=NCg+Vb>p}7sZbQJ``XFz=O=QZ*%fj#a+Reo^7p>1L{{gy~LKV*P7bv1mrcJUH zCrwX5l!#0`2FDeU8Pr++8EIepg@^37*+H2!vx({ZV2?@{3$pCpgwmEDZS|yp##Cyh z;diMT4*WTZJ;us#(ep35@|t%2`EqILf>qlGCV#JX{{e`$jLypsjY1E{L^jcV*}%^d z|2p&yRkQq%24Y0Ou!(q`9L{4$#$}k97VP?mJ5}^sChzyNu#&U2U*czRJxc6} zzR2ksMznT)N@ULc&Yk48`9*FFWnFyoV>i#A_YOTC7xV5+qlB|JMb>xyR_qGW*BhHE zH%pf)kC4Yr^@~Y&oI`0^$0eU$*%Ys9v4cZc@7>MDOY7o6L@TxnqLDHDrMbh#ucEuy zB9&+&gPj-2)j`hL-eN9fP+@bv_OH}sNJjD>a*Pox?!7qT=>BggSnu4z47Nx zMiBF6XP>sb1R)yCx-UZR+pbK9H+E#_;5v}uM$y@4kX)R_uq!a3x4P^N^pR$I_h}`R zNhl=PKbDiyp3{}Tp75~t+%Bp2(OI3=b0Q}>$(|yUOfkYDp`ThZoC#UMZi4bf$;+uL z4PJ2Z%(oP|CZ3gA`ClxgH!GV>d;_g!B#@>XzN#egRXNB7q)tq`ctgt4kbqXy2{@mO zx3bErR|w+mM$w%)%}JJ=pz!UXW&GpdlYz2X7j0dmQE&9#b#K#>Y)#1*7&)TI!nO95 zw}v)W%Z8TbNm(g})N&@In^`f{`}}F|RsSx^1c$$9KL9cu$_(s>33>kmM3j1c*-u1N zm|M4f(?JyOv`7B>;~)qnU{i=;&Tm6ye7-6w>r^EPEyM*J8SgT6lAy6#AVU8H$82!xw3{n&-t4hFF7S? zA9Q_v`Va8lzYRJ6Y60i_`o|=!MYjTIv6HuH`F0ela&B+1Y;R}yUj5HQQ4JEZP==(Q z?2%8r4ST}XwrH^e-O97r#U;^SvX+oTpzrCRjfujNP<*QUG;jL%5s=iFQ>qJkEFd6c z_q9dNSLUjgZJ#iaU)Bc-hAPcXd+i?}_UIiL_o!s4No%bWsZ6%4Z>_tIv4vC`nCxmV zK0Hw=VyeY{p`GGyDBbAxV*Mnwv9`P}8eTTOzA}-*a;nWBAF+MtSGGYqU$c~_0HrnC z7&Xe#Psd?QwYMgm*Pja6Hl%9fSgUS`SC}g0!PpwCQ`JAfL-f_%g}H}p4~G`hg6)5d zxlwUsBu61R($-Rpjl!9Si@27=;E`?ny{lz;^o<&>JKhXZ{{YUGz@cKCnAB=e26fqo z1sz;Wssbl(yy}!9kc^9i%oN#NW9?LmKiAp!IbNL^XcQ zM(m82K66{F)})}oShE;h46i)%M0&^z^h-9$aJVb<#_a;uNa2+hBJkm4HJgfZ(iIqd<`^%(B+ zcMC$++6t#v*HnM~QgG`ajzoc6;G4`j!Rnb=~iBu~FgunO(wxbPTUl;us zm%73z3`D5c+X&5km>T1=ql!z1c=9pa<^+P6;1qv+U@g_ zg0RhP4dcDu8;w%Sa4Xd2%0=~WwkQk7h!)GN(?b`=kdrTEohI|2ri8gCIey13a$Eiq z{r&OdYz>=0J(O-=I7>1$B>TY0p@H(gwFh;h|6a|TlwJQ>VJ0$l z_K5YS-W-=w@%kBLp@sapyj5U-FHT9ZFRwhpIgCS-odWy zZwdJ6@iPYY$#6fdGGgPD;QmJ(YC}!Y`y|-0D}hBLH?p$=Y|km4e#&ktUV1t*K4pme zV_75M4i|NjsEk`yP;H-U#Eya_BRtpCq11O9)(W=rX*aGu_MKeI4KP^oLt7mkw`)0< zM6yVCW%-3Z%jtEi`sL;4=yf;#!m`;ymNV}KlD3IGqcJv2?w!negutDE8YZ);D;>k` z3$Iy~((8zBp10D|BPY~W5wF-oihzSC_A`SDyn~Lh??mTIpJgoMNkg{D9A3K!zwK0A zoHjOFl|k@lH7s+14JoKnCx2y!cF>12eKyoKk(H5XiIq`Ar!P;g72!mDQ6AFcXGx zDyX9^?F-SW1m7mR(@#IySDUbi`bqDQ=N;~6paYDSHVJU^`sE)L_rC{t0`}{%-(@g2 zHquOfTrKFg^YDX%N{Ox1Lq8;V&TSlXFg&5ru??#{-kOm1X%#j*s%A3WXU>LP$vKpq zp5{XlVx)0Q{;yOiHQr0Bj=yE~+ukDg&_C-^nc#tc2&3o!n^jkgo?#F27JHpVw)r@g z%OPdSZ0Z~!#(hVepzD$Jy@3e?tldqmC9OS#&11ni$Sf!Y)!c9b%7GxEtEDk5L1q3F z`iN22f-tJ}i|L3HnI&X;zk?+gXWi>6nv_iSe)2x9C?0TsJA7qt(?yA?WgoFpwJ3sc zVFXnYm2tLuRxCdGxq#;Q824dtG`&{{wJeU2BpLORY4!Z2M?I zD+}?LCx1@JrGH&yz``LM=oTxx@^y3)OBLO;RIfmsxmIE6=QE5xP6;wxYa-=ab^wp~I$S?aWW@rsv1lKLC8&yWWSTPS!SAS#hzS-tKEUmSH~r=IC88!l$ULtaEr{ z_#Yqvb{cw5;_2Wc`bMox5m3$s>>9W$c9irfRIL8TgarLj9I$A@E&xLHC!sFnJI@G+ z>7$OaypGI0&gj@S4m_BZV-lYGN;7h}x?ID9r8uqf_W?uKFZz^McUkWBX~_KYNc01h z^2Z}ALg@|VJUwKegX1&deR-H$cpdc@WmC!LpIZ;RZ69)_98a zW!jYY%Wt17t#ZdsgOt)bP!g1C?!tE7O;PgB#w?tN=)p8uLciJg_c{c6ioeT)B%LZH z&r4?F%M?`Bhj8-2$n)DcoV90@;<44)2dUAkR~4wg771S&y|)?Ntdg4*L>gXx*IArl zU)p`=J#_u3!#8`qVG@SuuqmiIaPH@xAa+W5G-M!_Ts5H4tH$%bPqKzFA7KLRmuP7p z+-g}Ho_1*0&)A^ww9VJ1b&`ngg(~n^ezmV^o zCNH!!C|S*yG8G=3)|+hpY@Dk0A%C?1SW?Wv=LLf*IVro5+D-&mUh)4MFgH8#jq09D@(I* zsJB<$1?l^_w#z&s@|Jqt}8bq`#XO6ePeRM&4az`3icx=hJR zt?^X0XTpHyM~7RdVkfi1Vjr5%rJ)x-$lQzUK<+^6_boyd&fE5UpWq=cho@3^*3CJ= z$$ih5EAl(8TBuHpquq*3ouRqyn3wu_f{N!=CWpO(@e@!-7#O>I5Ek0E-XdMj01I2VhumBJ!kcBs{IOsB zM~*>yCMo}e7fwdv;k6g>Uu%d1-5&YBGHaONZEtUj>b;kZe`2ygyVhq%QktC@uSzg1 zo&1paz5;8uaY^cC<-s@}d5HW%-PxN9EXD4Izz>jLni!CK!C4L`oF}L^7QSgkt%<9R zjh^`%0})vo44vg%ADDhfnl7yLHXt!y^CS?AI)%OyX6A1*Df=qa`Mouyy(08^Qc;M*HoO7-%_b3iwIg2aUqFkj0E} zCD&B-@DuN!FGNXc_QkxMdml<`H=jHE6(iBQz!N$5DWlm<=oJESDYCgIeWkL5dpU{4 zZb*%S=O`t?l0ec-PfTbQBdtvcN7{W2UvU8l0hLjB+TpvixL><&71&^fi5qrAW@L$( z1?hY;0ylI$<7-C-sIeDsjd0lvI$4SWUm7%9@$`r?cr;GV>DG#Y$oTnz%dlQkd4ffV( z-oWKbOM?zlHHUHAhX+S1alvR*QS5fJW9?44F|Ocue< zalVUO;#!fF%dD-rVwm{$1rDDUMwpk{_`rH@9n>ri3*8*ooHy|;=dxkV>GU*RpvNBi zMil}Yjjb#ifKMF#i}*6goUO>Ok7+^U0pKVu#dV*Jg;@SV2fn% z{?uK%zz~ zmSeCNmf*T`#WUaNBjh_k@yxKLtqG#KftQw1pH^SN)P+@FR{R5_sG9A3$ULSRQOmZT*^e%E#0rB)FzKbnEw}U2Tl#i~G`) zU&RzmSt|WCZ&en|pV~ci9K6?`{@3H|kkL$V!$Ft2`QsmANVecD2CJd3YwC7ShPBAs z5|Gf$2}DLsD$uz(FvTZ5q?9M?xczl=$Yp(B(kF*~!Et}aT|>tS$|2qq$yrW;NbMdy z>U%>6wcM=jQgURw*jJ@yx1Pej+DGpk0r}56+n9stMO=ikocg831EVde16uw*4>;B2 z5|d8S50`W%y|mNRkV`91di>S!NdgQgPg(ZCzf`$E0Um zFE~*OJOZ(5*uHl4*|dX^6Kb?0C)m*n@}U&F(6yKyi4}hJXflAdBNr?gK3~r`P*$;#OZ5y!H+yRv$PZrDT3&{&r0*rPE6jJ)s5K)D0>% zo&upQI85T!+_Fke0SSq9zl& zVE}a1zT+=$#GHMnX^*Y3+i#D8)WEGDW376e>ITAXTEC_w!HbwauZm+GNTO42{vH*y z*6^JsZp_x9aNfJV)3uOeT)9M(vFTmk<7>LXqbt8(i1A=E)ElLT`;H$ahM;3+S(%t+ zbI>21%Rf@@cnrO0%?9#Coxl^_T?pap^pj)B?JcbWc5!Q!@0x$7EW_96 ze>&6)zfv~WAi64PE|iu_=^8(igaD00^IT2?!Hz-l-#hs$4N|W{FXcmikxdMi;lUQX z838^v)%{>U+RRf*YG}3?O&=mzT1Zg*=>vACaZ1#Vib>sBK3iONhG2%0x~g;9O2=nK z=%a+W7QXTvUwrS-7Ouwza`Tj;7fnN{=&gER`YK z&m_iEzfkM|$5h^*CqnqQ?QYYpceTd^7PWlMi$cI>ylI`oV_!Sy4Try?{+c}8!Yb2S zO;SOfz}-|`I-j+9&Z0&2K!ba$ohZ$>8Th=z$Eq<-mw4tcsv+OUx!lF{hACA-t9bi%7e>^aS^?qgDlV0Tbn~{*(gWc7QbL!8&0L%z>mdf zR=vFmd>!e3c94Y{P9FBCRtZkQ>l={c*M8`+jYOoTcTTy0tb9p(b7-!0Nvn?{?c9Qd z``oJ=10r!}fV6LH+dfR<*?Z+b8=+p2y<2N5?6Fg51?hP(i-^88<(d4O4?DQF z!3r0um-|v#9`0e@ccf?yK4Gu6-VuDD(BG&MsjnZyK}vH>jx}aZC(2ib;rrArA=3@@ z&OjB|&_>SaVvEF*R(0)PlfEa2BZYruv;Y$iE>idV+swj+)=e*?C;>|<0-KN>m| zH0V>3aE$JELfd83?KPAx4DOeaKEUfL8elY7B}0C{BIfrGt|b1+#TOr*y*;;Z626!a z^!mr1QzF_NHC=?D!vkNBst`d=Dg6MB@u^s&234KW@0xmFxm!?5ms=NM7GD-?J>wEA zpc|O;BAA=jXU5&GYCqL|#kFu(pCGIgA}1q(E1)i`KuRc+EBvt1Mx&4W5gt(!O1OT} zkOHZ2@@u3k7yN-8Sol~Kd*9)Sk`Y&PSb*9q{a5$4dE`8CkTt)MmfZvKOxy4D!vd-q zN5@yylOHG|FKTO>CKe~M=P@%aC#Sv!m9GTu0V*=>g>p+39ufdNMgr!O!uK@3txM4{ zWL=uvsEgPJylfHv{)PMAbDUw{+8X_cCiY$i(%Cp6BjJm!C8RJk z=OP!^-XX8N_(YH$>{a4?P;{Dd&av!VINZ;?r>Y;bMp%wr$K>C|@W4)5Xbtc1Jks*< zanTwgY1kFv5>&*kOOp4&#blmw?^% zH&u~VdYGfxGF9!+fFBIqW*n~a%*$eCu{< zZQ~Nw5Ao|;4SVO?axsOOYD}J&hNr0|!`yxBPjGo&@d6c^l05eyyU_N$IhZfRKonA@ zAt3o~yCH7y!c>(a`pUSnJ3BgZ2PTMMu^45mbEzLTnbupT`9%HfAdQ}iZ0)TqJud9T})FV)+`rGF{F;)M;Xx zvAyyRb}9f9q8fWC-lgGLv{Im33eC;fotd?c3bbEKC`dDi(93znX!iiOHS-`>SuaK* zP1N8{!TVBv@!prqckLGDqPD%a!@9#Bu}@X`+^Y5t&A`jJf)jUz$S)=M0fqkhQ?+s-?s&A(Twlm}W1y2@(qFbb!#2mc^ zxjh_b0rAzMfA;~5jWKvK&)=a5pcm8Qw&4!9o9$Y4B@2+L_))GZ>0%*o4KV=QZ?r2_ zgO(Vp`v)C^LiC?av;Kq8;%>;cTl4q&+d=(=S^Zwq5J?>V5AeY91oP3e(0sPChi6)D z$a_B$@`X&QWU|xdfClW-|$bDNm_U4HIemu{1mV>IkVVr%YLzTiZ*XlXc1W{MJ@r6=EQ z>=ffJ%S5_Wqyi;H#G+G%JBDC;gVavKJp zqgW4A$c|HAJzi-i4N+)1M|)S-(Tu3@1uS_s$c~PK6mKW-*+OOlq{J%2StMUC=(IWA zhq7L?QUCyyC2Lw+y@YS{ew1CFSWOF4+#Wvx!Vz^-C2toDVEkqI+Ruxxfk0MrcOMp) zpeGPlmFjd1>`RfAC8}`!pkI_*AmWGWIRgWRMC`7PbYNI)@Uw-@xVRi4hhZ?6Gl!Mt zp{910-kYuJM{&lyQnQUIzs*eVo88B~Q1D+n4j9jP3er4n!?fnx549jXR=19htBRJF zkRv-sR{2+Vv`J0s_cFhiUMY+Q`$u=8n#F#AEA1O&Nzr;~=9a2gRksSUl~K9P&9RR* zcqu{mHfd@u zc$>?xV00YzUo?ivjm?VL0@n-?z2mrN@nyk~!p&)v%FP%1o5W11la66X=zo>@I)pT(NnfxBkL>1b`*Ah%Icd zru1q31Ld3t<|3}zbS}gE5aLwkoem#ONLXem6iX(2 zDziUA<)XxQmRq8|2sBgbDg;{P3^F-G!yVF94b-KjNb}6@&VDQ%JiPl-QI4wksh6gP zc~QQa_tw!4thgrIxfD#2cH&{+*EW55g7mon*{D}1x+HNQEe>QQbfXW`;Z+Fge~2fkP1c&R@B z!@e^L_tl$pEV4uJnGYY+Qvs|GuBcgFs(P%Mdp9U_d;liyyu0SsF}G~Bmla+m;zrlK zSvf+E(c*z+5wRMA1oiHS{YYy~&k(!567BVMK(yHGn=F(j&Mo-haTHqb1Ei#-nyC7I zFY&oU%BZ!AmDil*Rl#!~bDbL1#@Z?_6oXHWO>oS@VldM=txPFkdm6g-VeJyc&9Zh} zX%6hcizqSYNx0;?_W>sglGTgnTw3F~e{b0)lgwk>DNk{{MuJH`NGphqa>(BM0u=G2 z!A){Go--#4PcdxAWgErj$NYA!L8eJB^Z=0tYOpwNDCb-8+whqF&Y(JrL(CNIjPKTA ztv^qruk8GYQx-lSsW!krQNRV}UNSDuQ*t&L*&T$h(cV|q`%NEZGbC@#ypd@lmmht! z%Q!2Y;hKWmp!2M#9_p^`o8DxMCMRaJdoTX!vFu6?om^cVRP)s0?@d^Q?_piN@=m+w z(`KF!#!H~@`8jJCxW>f<)f;28e@{7aNvFa8HP!1VpcGQoZB_yt$(`x=T*=+tliZtC zc(Mw*sKhs6TRRbkupUVi;$PgiF^)8!6{>`Oq`ni}^Me%1@}R1i-Z(81s3>oRY{)UM z#OmNn-xSjikmR&jXHNi|OV4)?1vhR)_K0p+QTy`#w!1gf;23UrL%XQMZP7x!_)j~b z6+sZNV9j}0{DmdSA*s+C|D>LVgPFgXFCAj(v>cMT#ReiN1`o+&eO-UfM*-e0)>oQH zVpdG%kU@cvQf;Bo7`K<{i>1;+)V_#|5VQ;Sc;{4}<NF(~Ub82r2HeodolI-BJ66cUv5#R^h5(VEgD=NTL1rFfNl>7#9Jbkr>O4?w7kKkoadfN70>@{z+35>&+g39}05^`^( z+@HqciK#M^$!BIOEc3o_rv?ytn|v&q(AS=;uEE4-t--!`u&Uz^5JyL*HyI-j_gP{4 ztd~6^RV*TwGjFS#7M`!0$RmB+DmBqMzT1#GR4B-mFdLDPtsNOH!<`4HDeRK# zjV1^xbo7AG^k8u>OgxwkTAsv?J+&u^tR3}b3WtI7XOIl16Kg&bgTPP|g`T_mxWM*d zd?lpq02$fF{TI)H*w^{~Fw5`6O7&QX=)=x4g|v!tu>w1J0(t*6dOlgnoJEm@z}M0q z>(H!;xyqN{iSq4lx4n?~+0!Jhd77)5h8al38yUgqG$uplKqFVj?RNDWo4K7L_BHua zms~#;wD;u=v(a0u%&3++t(;$tsYFbi#@t`|c+&IE>^5ZkDwMdV=(HxXOvjJ6H20JPVYUU_d53;SJ(!u?Mg!e{{gHgjvOsTS^Guo9_Ql@+)OVR!zixoX%lMx z%(~E>HpJL5bxzDir^?(|R&31^;m{1vr4^N{oo~3VRQK<0xX6Vig#Lla$Aw7YUq0vs zbn{mMHl$MW#FZIp)IL>wTUXTD1gD8-JB#pn zCo-HO@nrf0$ao_2X2Kl%j9+8r84bp~p===a+n#d2oM|93qPpcSL;+>Vm@(NiU!S*Y zVvYF4i#M}S%Q_gnLy(c~(`nO~VLpV>AG3y~UI{^)*HCXM7HT1w1mtkF6&3@&d&Nu$GrQGOHJ50l<~p+ z9J_LLv^mMuKDQ{>43QTN_Ziz$_Hai%!KQxyp{w7>>f!GKEsP`K z=_sTajhh6XLT-T2Baqdxgmu(~AsC&fxE~$gq7^{&Q4Tv3HMyKa#B2q!ePZs|&a2mfvfFg0wi54mP(oVbBKNWDV~8 zL@d+GxUi(am>x3X}_R_5NE=YLDs;OzB>b3cBB-hWB`EX>iT^ep1_-o?hFNE?=(zlr#FZ0y~lh1B9gg` zEit?7e$yzP&aaPBr}R0? z^G<>easf4}+wBcGF*027i%mE+t$pG`q2Hz^bVJUJ3{bjl>p$5B<*wn+x`X@gGms^4 zEiVxgH|{~Bh>gLMnU!ELv|rIMOQlf%pthx{LPzXl7)%>>9grvDb1z1LpiF}<8V`}y zK?)w~E?n!EerhJi5_pKJ{E~my#k>|CStI3_(~UYtY>t$fUssrof?Uv=)q<7~%JMGP zzF8|fz@vlkL&v&EIsYvFmS!B%KJ;Q6X+<~pjs((-h31CAtiOz$0nLEdlH0p(!{Og7 zx#ge*JQE-@rSamEH=Co>MyeY{P(58mfr35A!KOH0^p#`Ti)2i73(5zV`!ko!?Cyep zA_(j&w#Hw)XwwW87Z~bM)=$t(iSx9msnF?vt_I0N!}Er6r_(GG{j!nv)LlsxbEP?_HAAR+^% zHF>39c$U?Px{Gx}$~k;R>Pyhk)`uj_yEkWwmU`>`Br7Vz)b^+I zHx6tQeqDHs)}hYiM3r+_!!2`np{e7;)6?s|QBV zw+jNb^ZGH;eF|pSe;7gp4yB#uY#+CinjXv1kOVUIHROw?`)YJ3r`}Ot2_l;}@vZeK zHE)1R2$3(39>wJZC1aF+j13amw1tVP=h;E-{@SI4s|=fGMNF6*7aML&xUBQSD*Sv+ zOKdO!Qj-DlUkgu4Upc z$#yxHb)Kmi9Jt~Vp}C1Rw62_}n#5}FA~V`7YAzT|F5)fTtb-jrc)F2PEpLL$Zo``U z&TY`MdYN-oS zNe2-Fce&rorKD;sP3EPSO=axz%|Ya-*9SBZc<%3{^EpB+@~>?8R}UA zc0Ol*vtt85pTY+jhMpkWtV-uR&gn;ny7bN?Fy~Eh5X7$x%To3N*YU_T9q@?Gi zdn?<=+ZJ(8PSSS80IF2EbD85dK3KlEv~C=qp8jYTkAsvTvD(cE=oXt|tGRVKi?dSw zX`i@&lBNW>apRX;Wd}|^60JZV!{le?p=@Vsi){DLcIM2dc7$ozqdYHy=Yi_0 z_Af@l8}E4JM$==5l`JqNJO+LirDxc+FoBaJ*>%0I#e?#E5IWI@fqhsa60y}VPRlHy0KMVMM z?loT;TV2@SLa80Kt?FE?j;n=dSphulUzgJ)4c#mK&s6%WdGyxjtA@+r zO43c)ecSeb@C+B!EPmG#JR$ddi}Dk@Ad+&uc_WeRdgN4zV+6W^d+{ozvK4D~U-d;VsTso9`!z_;w!C2UpK^>lIk8?Nj~``+I-);z}to-l1>4}axsHlRH{_7jr9J$4lw~jc`Ho?9~Vkx^}I4o63DmxxVGsx?TiZ2yw7gEhF@NX>w zMJ7NeZZM#3&j4fqc;g*$N!OgOulzsZ)YZ{i>9_Uy{{UAsH6IY@`jpW`nj*rcGqHT) z7&8DjZpTiXU}urVOBD8!O%!mzOTe-_c}>7oT#`V~LCN&U?Ohj@?B2S0eg(pusl{KR zQu|ht_VOvL#4|s1!KgHEeR+Ft6nm05zCfjb%K$+KkTL)R-v+OJjxAB{ z?)3e7*`b01=QZr91dPEDnAI7`cFsTm{K0w-D=6u$y6^pK-%(m{SCn+Jy}z%YmzkS* znma{h8{GNr8}7S-ZBo_tZX17mH#CPEzGhsfOcPqVUx+kM2x=C09vaZK3msceyOvbA zxVnnuDrA6xS`DD!gS(Ol%7CQTOlnh%xm<4Tz5KkpeuA9}wIHE%lj*C|Ub;WK(LI^7 zs(fSdhN!m+*RxA)b>&-L*_mc8;SUV*M$xg)Do_x(909?oFZ@&Ci8N%owv^AQ$U-D{ zwlXocPyi9fGhMl40C23NbnjZuQK+2dd-Pp){{TIIErN~(Qb|Fi`s;6=i?3ZxKM(vu z@TKGv=vvo+JUX9kxLB?=za~exw1t2kWO42&i~;9jj@bvG-L=wE)5WO|hPBOCR@StI zGDUut^IyRvTa>5~7`((?jf2nR4r|SLIg_ELy@^DS~uvg{#NwW`tD^ZLan(S z-(_~cM3&xtPQpJLY1Z1^#FlbLeIA)=!r?Tvg`HWrGQ5*E8bh=Lv%U^U0~z{{#IF%v z!2Ti7bjyuGSs86@RxLf{F~%5y9G9cZjX@+Gv4%W+#jD7xK~#&3rq$h>c3m5H-u{U` zy6$TVkf!Zqt@8YP{{UXLC$#v4ZK2XMNHi;tFh?x9ZRPBjbK1t(2Y5raFfe&^Z^CGo}i3<604pC&jwO!zIn}P)Lq6 zTVyMo6S!qZ1gjHT9}cw515NPl$B4X5E}IncMs+yuwR?H)7R~~57)Ewb&5$v*ToN$2 z=oV{2q$9~jEnVA98`oEB=(hQ9vN~|}l#^-cw`BaZ`?s?>jbFwvc-&n@f8z~HNQEPh z7IN6!>P>Rwf2>%M;)*gz!p1=W0DAIt{3glZ%@yUb)wSzcZ|&ZAVw+C4f_+6)oW9v( zl0dm^9h=A>-R8O}T7vczl761#c zc&1^KCDn*rmB~ZrBIi4|6&2U`U%`3?o#ETq^e+%x&7#iI1vXC=<*k#cIdzGcxs8T* zL^o|JNFlkY#lkpeJRI)heKohd()eE2YSz}$O-lMZa!Q+%RTZ`0{NI;n@;Gl4_{UYz zwPv>QB>E4Cd?7juf9*SI1HHI)Dq@|E`SG2ja8PjA&ls-T!#6sQhP*HKeIHVnQM6g4 zk|?z~h5EpX6RQWP(teuVevR(WJn{F$ckw;^zAMu_OEg-RpBvBiVRL#5IuD=AQ5!f- zqi*RY1dh9KYa7FUFtn7~O%KCeDPp{l7gD>`rh8zl+=&utE)_u>^Vl&5Ip^BLQLi{J zYLb%C^IKajEWPIS=+g35-ses#4oS7;71jR$hSuM{-FsHI{{V%fp=wq>4qqQyK9jA> zBgJaEvd?BBEtY0?4Hhz|=E>xKe8-IZF@K@!GF@vIvDxZ(!bA2*;_~wj;u2Jl4UVn> zKPkz^ae`~DP@xI)!Cgsfy6e52yII*^y0)sQRlQZo3pTvI{TofE-&KA36}2&{>6#Xw zZFAyHKKkD2p6P8;Z#80kk%t6qM?8{xkUEO3diM5`!hg1HZgnJ*DFWKaWf;u-+P!wMZ&-^`vMFUQuD0>tNgG{S*~p9? zytQRwsK=4JCyp4fKG?U`(VLjOue4lRvtdhQ$P)wjLC$`@oyAI|;qI@${vCf_p$Vju zSJ%Gx>3=(S^kwZ9D{FcD)VhGA1ceu|JFJBN01E}qar*7=(y}I+_GbG_Nx9=7mRR=T zi2h#x0H$+RsJq=OF;l9PuP-m^%lhtHhgBA=lf$V!yzyYGEQ%Rq0P;@+bDvJxsz*|f z?XpX8c$tzDBu%hf%5`s|U(*%w(IX&r0lj@mrQoD8|mhmnv#m%%%5U5pA zFafgPbcG#qNyp>IG`9Z$WRR;}LL>Q(;Tnb#V?36|Pj0+(&L~t|Q@SOzlS|L~{{V-% ze_7MD9WwQ_>&R~*k^rr75(VA?0|O%`qjBlqJQ~u~HIEO^0h>&)y0%Cn#%?Y|$9@3& z!)tZyLU^jo|n_M!1sEk)|jm%?G)MBjo{s zHH&`jYN$ZBfGB1+5)76*azP^`j+n^fj)J)ADX1w~-)+Ayxe5w0cE4`j6}oA!d!FcMQ>m1LjpzoM)bd5*UIpipsmyCBL~xMV%15jS{G5Mdv4O z@8dMhcX6pCPoqu;4#v}xU z+`}ho;Qs&-BLfTvO)3g?Ek7^ob1Y6Ko*iCF`hEKU0H0mDBbo6Ym3`rX1+JmuDOXUI zCi88fQoP<(Tcw6`~LvJNGUgol{nLmvvyyLzud0>0Lac6Stw4shXAUuPHJG=Um+m0*qT+hU4 zVIZf6ptXHn+e+!|v_78?!*y!U*{S{?@Jf2;?3rN_$8isfZWRvT^B95eoQxcd0C>-F z&s_0${{XY*si4|_Zun2dXHrn+6oy!y-NG>1bB4!LgY0wDipwqW8Di>2H7Hp(X4BiY zjceBDeSQ_IP7Ov^d)nWw$mM)b;Qs&_ctc3A)^)pB2AQfx&1-WQ5(b$_-vgei>x`Ao zI6Zq~L*joCoN3Wt+#5-Y%J9K*cFI7;>;a9$WCA+m4z>DCSl&@@W|WilN&dfq@c4Sv zu~%(u+P9j${{XFy)=6~#00{VpN|#cE>z2~Sw^Lc&87+-0j#yt z%rV{DUM`g}XjdonuPiahXN7Hzgqs7XP>&2?BmCWWuigB#YE>fT80p>H=d(|L z*K^98u&P#j-uGMUe(ztz>~#-`-YT`x?kz5~G|~_v#TBlladRvon4QJNv`Psfe)Nr= ze(=c^=UNrsyJM)I68JmDo)5p&?NwsC(`@WwhSJ(C`zw%4`WS|-lA6)C&UF}!=X{{RPnU%8&!qrZ+dT`Jz!#2*iIn~Pc8&l*8~ z(U`DuTnH^#HvHi4Icy#})h`#=F|oM4*M1;tx>c>M!g&^pdu=vWKe`}}1se_rNmPMCR$(?r$s-H{=2jm*0Xjis&`Z7X`91SbuCJ&Um}lp$?Kt0NP>uOz4al4B|B7 z9h-{IzA6#LNkQnkq_3v#_w($!w{uQcDn9eQ{I7r4^10*QDb``Ml5Y^}UI+0Hi1p~% z*>82rMi6P^kDA^DVgSJ(KGg>R0vOhXv*|uJwo&5UVofIHZPY~!&`7>o5El+e2^nH= z2mqg(hR$nODtPHBJ6~n0YR&mt+FMSy-o_On9z@{o{_U4%`S&vQ9R~jZz}k95w)&;j zl#&N~dnhN8S+c(&^O`u;J;W&c(&wh!;<%5C{vr6E9*1jV9-k+MwA;Xf*GD;)?)4S7 z2DoV%+$h5QybeIYJusz46e~tDYE7+`wBJ|gy#D|l7PMNcB&Xir@coxV6XEy5`LAKS z&~GFY-P_A`bEawfst6iOHXk!XG0w@Ob=*|rJ9s;AYo*eBC*to3T~FeXb8hgPlNG=$ zOwl-yuuGFJ)>bOPg8_q`!GL0|#fq4W3+eIN~vJt!VOWqLe=qA_*JHAbFXV2vwiI-qE$vYclvZ!h}T5rHfB*>>=&w;=f@ zuj2mz9$Wan{`Mb-_xfGt!5!9vUmzm#5U^MD^6Ff zntDn**+%X4QM=_yI|tUI2;HkY^y|0$JMMHV7liz0;nARvhxYe+gF>*FFF~-ol*kD& z#w7@|3=D(kG2k2%&2M}+@RVL1(PFUhZ;iEm3i2J|T{lp5wYY`L6(v}!LvW;p#~}Q< z4cfbEVsReIRB;m0>%O*HJFOgKmAR8{Eo&VbF@!0_^HQ^2w_h*v(T&%%Jw6>V_02<9 z)wHc&OUvKi*lKaxLvY6g{JvtVkOz);l#h3Q?3mkVkjh?4q z(8P=xn|ictsNf+7&2Vy81m`u=hf;+_D5Rfv%=xs}SlKt)_kTNI7`|k^qr7`|`7Le# z01T5xUy1x>tZLpIeQ(4`d8GLe0V7&mTRqmsB{Mr*DUiIGKk@Dndf~f|B+y$-_*duZ z+E0nqpHrP67S@Pv3|8C8-7BzGZx~ImO8QNqME|*1j6Q(#_tTb8NRS6t)oB3xdm({p3s}kvH%OagqjCAd2^6RmuuC zer;WCzMXd2l{#tKGv9T8EuMH2lkrMh)6jNHBDcYSU0>-}ij(4%Q-;ugA&-$T6@A>*DREnO97K?rwDx`LoCK{*^2 z_pHrU{{U5+RXSIQv{>|eN&d?2iEWu-Pbgv35=qJ(*xUguI&p}p3tmi!)r60e*>)so#BYlt`k?)EfZMO zdO8)?V;C5l?)WzdyVB@Df+w@7d zZ=Jsrv%dYEydSDwGy%0(oCQ~PxCNvD{p=Bi=L3xMjPchq#GeoT1Nb`NHnVqs_JE}b zxV}4CxB#l-oDfd~_>XK?5^3mwl+Z^=xX9J3)s^RAOUW=`r^uCv9=RPHT zEj|nI#kRQ{%=U)*TN|M)h=pHZk}@;*gD7xwj1)DY;ctXq9r53U#-ZU)99mlHaH=)c zt>Kjx-B_~cDx|msDJ;BUx(s~ZrD3bARu+yXFGDak?T38~Q+g15S&`h$GJmaVt&;J0d`qq|` z@WmU&CZ{d5jIs!%+;h0(2F}Bk_2-e$bgbo5nl^n6B^h-5zpv2iH2c{sE@Fn`U%39u zI}e!vX%v+ zj1sNLohC&3^MnwXy|m>>1n%2!dahF|~Lnl3Xiuis61Z{PF$OlVV7+EI7b{{Yvi!(GcJt#GLgz07%K`R&l2aB{;8NWeY1SEP6& z;Kh);icMBIH5uj*y|s(W_F1H7$z>@v(t0ZH1g=j7_!L%3j5(FBW80w%w4SMN_x}K2 zJ(20!Q(4;U#%L^b`xrEolFm~Jlgl$ADwr6#+GC6mpplm%M(cxE9xC{+qj+w|Q;y!- zOTM|)B8nLnXqC`fq>jUILJsD0xv)UXckEEFC`CfcM}GS&es=qhH!@#Z#5ET7x8vXb z2jYC~d;O=aU#yoGu$d*9QZXw?tUHsS`o2Lsb#Y&NZ}W;hoQ=ii^kBM1O@HL8^=7-p6{=p%5=82` zB1vQ+RBgb>CyWlKuRPb2X&Qfyz99IwQL)p0Cip)=iW@7Ngk4g2CYhSt#Ktog3q%i_ zfKO13jDcU5aE4ul%_>%&AvYA3&epq%dv@LQYt5f?pX2IbArE04TYWosWd8uO{{X~& zXU6t&X`6!7|Hto05gj5 zGprZ(R&!GeMqcI9ziaFLJ07MMynWmsy}H?xkOQfVKJ#jGwr7e(x+r(I;O{_nW@FHP`IhVC@Dbae1-#f7e@ zk~2*$lowO1EXATL#^iMaX)173*QSg98_4UlzY5#~R!(AHdM!ME7B-Si0#mT)$KE*VU#iqIjMsu^w2y(;EP{3dkt>0Kv zj5@xFS$SIix3{m%Azr08Sv2i!?f8C6@j9I=P4T4gT3L7-#OdLm_(#l8w3?Qru-o~L zr}u*88)*^-0DkRr$RltddPahtE%4Mncf~&z_=j5iQDG$B9n~fK3<=biYk%D?aoi~C zb6HkZAte}D->Z6AUu$mf-(H@x8mY&bExM)OTRZLP(@Qdkj=X!}-xp~1Iu3_-tLq79 z=GjiAs7xdCi)~jWB#_U70Khl|1KyXy&Eclf;;`1dQ4fdpJ9cG)?$*NU(*9E0gRD(E zGs&Es?L=TY5Dj?Pi&De5Mr)Zn+g*2iTc=mH*V96vtx@w@`}9`%TVGC|g^6{a6=*t= zX?B67@1!i!uCvHaWdx4R+WAK{$T(thw@g#l(X&O?#ev_iz z+=+KFKR=d2Fc>^C?K$N4I7$+uN);+QzR_(b^R<<>{{Vu{k7(*AXLsKAx0i3j(VE^d z@i&G36h&*Kw}otPFC$>lDnw(Fc2zr_AP~$)Qr!aJADgkq@ZXF)U-1!!yQBD8_d&Y5 zg<<<$-KjUX5#g8wXN*T4S7{$E)5zQi0QvQ3QKdpSs;#Lzd$(Gx*57}h;@o7aChvb< zzkas)Z`8fwuN>*#60*0@d}(2*UU?7YTR|q96i}>;#Zq}Dk#fTv?m;7c;#akKKD+Q= zQuvbJ+m`+&@UESrNak0$(k`#{86H4z(#ZZmUbrOX1~c0=*_BfIllGLS?lp9+*Iip~ z_j=hSZGJ+HNX}l~+OIn=o&NygyXI5-oT=m)XeHz40fs9c)`dug-O(> zDL6{ zjZ{MzNG@l9DBe89MU{ZePIqU805(BBjji|>#Cmp*sQ8D%CL8Y%*}PX5x=yQdvWvYu zyD}dokCvu4ESzj3U?UmBc@wKSIJ`uos?t%_+V7RCY}A#muJyA|uXLcPMMGC*XLZxp zUccsYehc`4;yLu2y=TGN71!KHx0~?+RB;o`3iigW9NR+j+GaNej;f; zGVwImzA(ShthJ3$M;+FOsY5=UaAS*pJej~~=8%)ZJ`O-CK~*EFh6bJM)aK@tY?_X% z`MIpxZa3FYdM&pW*3jq7tddfHFT4D?MlOSh#CmsX8QRF&-eM{mVxeIChQXSt0^bF$L@yZ#3?KACH6brt@N@XJ{74cVEJYrPLy z-)7Km2L=EI)<%l~@IIkLfIJ#@YRTJYbldH;xA`q?(B73-7~1~tlGo1qzsGlV z*lPGAO7QQ7?QSO3^o!Gb3>R`~@#*gOms7U_5hHRC2Mgw}%e^eKxzP z+*<0IoYr>wX|uJFjMnnBL&|_AbCgv=R2TWXaK(FF-MO!8E!~#)+TD76{mi|rW$#UB z@3y*WcKozoCG$Bo&^6gaI&Q0^PWrZ`FPsFbWtLom#aMK~9OtkMPC@6r(EKx~+vvjf z=S!Y_8ur+#+`tw@jp2$yjV97h%Fi1GJ4f*JIH{HI%GU3{;o0_IBTP)=INO@*e@!mE zHq%cs8MJGK&?cWxc<*8o`Hgmvd1{78&iIRSkVs%QfC*N|BxaPl9*g2FYfjNTS@9M0 z4IWvZX&y^KeJT=&v9MJEqznK7PYO2>PDnXAkfiRS^jmqWt@QkRU$M(YwCt?k<)?qo z^SS4KJn(cL2=QFHZI_62pAcGkvWRsZJCT6pSIkBqBV&@eIL}jGV{39*$MF*C<~fm~ zxYKm`?E^3={sVmfwIu2P6^K*E#2KubBQZd@|SkJ>wa5{{Rr)-0JW=Y{{|~nN@%# zBY&B8DL5N}C$Ce0e>&hi&kKajDpHzCQ;nkDmg~Px-lyrjQH8|R%i$_*$tJG1`ThR@ z@J_l*&3od%k0J4Hi}2q~@P?fRpKoaTcAXd5BAMf6CQ=HG#O}wg6m{EPqhV_6tfkG% zhFI;{8RT3x;uI0n2P3z?TpZU=5aOuI5~5zX|$dsj%Vc^x9jKB1`Sp1(fOB0!6EVOfL{{SV5e~r(m z^jI{{8QEzX&-VSC+Fi`jojdHz-gTCx_I%sLak+8BMh7|I@xdAKe~Et#>~!fP*0g;- zSF^t|Pb?Q2gl~0ibc|L=iCwD2j#@PXd!mz$InHg;sHGmMbk#oEF8tqe)ba3buXk%- ze_j6m-OnhM=di!~HnFB$S|gDpZ9HHcb}G!Ax3P}qXv}8j_shaQG6X@0AeG7U0-R?6 z9!+){Hm9fRcGCD~OtCi_mHdbMOJ0>`y^$a}D)9q`1m;8YZrng&@~VKU$~9{8TIp-} zX{zo0Yh&D^{;x&KQuFQCPsexHZ%(hro+h*KRm}Qrgy!}Xx3s(f#SvH}R1X+(qa-Ou zAT|kIpku9kx8r{sc!$Kdv+G)==b9XrL_ifsC*@TfAn$;q>5^-vf|Go&rI!ByHRq+@ z^<(Gov5f1wukz}0QtOw8?AI-D!dP(1vC2e*gYtvhr?0QlzUa|>c6?4W-xz7}m9+64 zoOcfqIWb-$s!bX6BWjV3NIsRp#u!NBaw@TJ;Ywfl3rq5oeuuS{)l_qO5`Sx&KYF_S zVs?6PX*|TbF;5M^`>X*3V~}~k=RGs)Tqlh`XRi(G`r7Ljnw8F#boSCAdnpWV%0>z| zA9Sm2$Dzh?!2Wm3xPrb%jddtRIJIXNv(sMR)vkW8jL9hGloVw3*5A`6@Grt23;Zau zmd41eqGuAwv&hcUOW2$cKM(2+X`No~*IK$adUe&cq;Ra!Pb;ZO3C?z7o-vc0di{Mk z;;U!)+2X4-r8_jcyRE)m`Xi!_8W=o0X~OnN-|pRVYZ6q=CW~*;Qs*6=j&sVq!dzb%HP-Oc!srUYi=0ncJf?6*73YilJbqL z%D*FdV=9||ZgLJrbMsc6#pISUd0N$)Lp{7Mw$_qZG8tu*D+bs&i0yN=k0)Zb41YY3*b^;&y6*<){yKu&Q1Kp<;@fRQNYaB?>6dzR@yyB#=VMz)74frR{n-Z? zzhdefntG)0nDyo zSk#fzdy|eiuNJH#rv1dF*JhK`N9VTJ^9a$aDRV~JTc_Q(`4lz1V_9pE@t^&x7q%BU%Ad+!)4=p z*?dubqU+b`VJu~2eLzPud1^prMUP~Jl>mn_xF36NIo!~ESK&>1=GVbdL*m^o{&{@c zCa`E@pHgH{6wQWpi)bvlk}#wIPTqr>QN;4|DcUf1YRM*&vs!P}-s$}GG^bLFe5zXO z)92FPk6jN)uul<1;k)_JTxd~PO3w4^+N2lL8H!^JT?)aEmA`k8d*{E6_@BdL#j{@C zYQGiyRjk{?Ad2ER@8Vk{77pi$T2hj(NXb!zuDNK$T9UpJMVt@6_Tg?(ny%i-sRj;m{`+<1>gp7HM_({%@EC$uriwn?pn zg4XlLAtjWqHnS-VI&?k}@mGj7qaLl`uZW9#XMC>l*y}K~H`+@+A_XKs$t*zpxXv&( z?A?K0Em&ddQdrv5?+sJ7jxT1`$;Mt?bxq$-P0ng9N#0-6R^Rmdih5?Bs;7(f3tO2c z@VCSp4TvYv2ij8Z+a;DkZ;|H3fwU;yBJia!Fujk7^a=b#EN{L$ctdOLjqUtbWn|Wf z`+;97@+HYt`@b}cgUav;&rNJb9))PCR#Rz4Ew}H++Fn1+)nBqpT^0@!akQ^(?`@ZF zPRBEQf8oy$>NbsU;XO0O+6udfuB?`OQD-Pd-R3wFAO{~Y-LwJzueEx1gW~ObR@0%? zCip#nE|Sm$Ti75?L9L&0X2RJ&&WAsGIF$9yX-5lF5fxH1ifY!2X*>4SsNJOPtY7`R zbY(whO>#-Me_Jn|wEL~wTbmJHSl?+62A`?gX&1`skis=NV_73pjj=~^s$-O7;W2`6 z81q#1>+cQevRhB_A4=ABn4>;SS8?d%`C&i+pCVx*us9)#9Ahd4XF~F+%SwaiceR%* z`KNU6t?uld^}D*x$wyh~=I{44v3FG0JQUXvn{8K6v9#Kk2|fGW+L_&e+KS>6GXO9+ zU@_5nHO(>6{5v!F*GM{^uO6(-V3$zw9BpZ8NWl=L!A6kdaZuYva4WixvxP?*ky`0) zU7np{+?Bg@*)7KfK1CHL%KZ21*55bOZP$YQD}NjwFVnP9cQuoVh5oU9bErtu22$&? zDIdx znHBUnYPC6e6|EgEmfnfkz4w!~`&&+VdpV~j-Pd=$pWPi_X8iR@(SuBH4fx3FTF;E^ zHQj2=+go^dONj&`(l$igVYX+?J;vrMu|Oa(Die&F?^6hmXo!>V_;f*^+hIwba zzqpE4gY0pwlBj6qavmZ{jBZ6%4g4bv6p&OJbm>!!T%GUpUb?M3pMIJ%nzZU(^0#-V zfB0v%m-AZs!P2g*?kx|8%009e@?9*BcgJ%(5d;mipaUau%8`=$wwm(4kJomd5VN+_ zEwpP}oqE>gZRL4wcUxIWEx2X~SvHJ? z8mci(Cv|tH-EOzlYP$E-`8NLY*^~in!a!M^3D|Rv90EF=abH1r2jVQ=B=CNZc?_ZT z{{RPCi!DOXu`=E1A-5!|4=&LVLB?BY$mb%KX@Pl$T~iA!d6SQAUa|iG$<%f1&uX1% zW!TI(>?lj75ukSol1CzPHxhT*W>yh(Q(96oh5x^{d~qrXp`H0 zqRP#NR|;F?8PDK)lh@ap=5-qgZQwB6%OhU9G)V+5zd811IRJG%LV|l&vywukd_-tc zT+?z(%lg$Ec>HpuhLw9+MK=99{ue%a{iJ+!-YC>8d<)_G*lu(!0%wv-pvud4diW0@ zz~xa!#Uqo4#&cdr;SC!~);v+C=^i52TSwDnnPa%rAhBzs41eDUxGs31XF{9`4O{vBcn&cPT!N-_!mLy?+zJHT&40k5Tab z>~=RP_Oo*x^iipEEJ8>!?43~rM`cC)O7hExHZbB-_vrhDX9 zDsFLV@A~QFdevbYDaBg<0Oj}mu6AA@xz*s)P5c(@*7C@TXY(*w6@IS%&o^I0aarmjDnpj2xbWc6hdylJEXse}CzmQ&W}p-_b7G z`Tf@@>sH#vh%F)1?k9OwqLK>~kns6cC4tC8fJQ*zZO>d*Ub&}S!0#@$e$LZ}KRFT* z!I+if1d)tmoN{?M6zNJn>yM)OKlpJf5}{Hm>22ls{{UM3=XaoJ`s?Y|dXA4hkY=}5 znpH2p(g$`Myq$U>FCCmJdeNw_z!ZLGdub@w{6DyocCCA+fo`@Vht{ZA*>d_iU7uN3I;_?uGK zuC%ATZ|y6^aTKV`yH+^lU{!cjCwK?tZ1y#s@Za`uxbeS>wGRtlYBKn8GjDq~lX0q8 zNP|&(b}EsgkCmLNlG_VoV|C`Ysf&1iWTVkPJGW_V(mVcVpMs+$N0~ic{WrhML&+u5 zZ6T6b*^(83n{uES$X$+*CzG<{7?x!l1H)$rCerer(`#-q)Gr|7=7d$_yB8hbi zS)4Wm@UGb3o(~-k4tBN=pf%{4W&WG16LD#;+d!y{@+`B0SQEhm_<+tj9AtfK`KO3D za~G52CrPeo>t}t|wtD_4>Yt(d)?J-a$Kex&`MR#D>8Hu{IsIn)K+@-${{T_ep_C+m zD@`H*IKf|=lgK02u{agRc%#KyMWij_PaNtEr0B{S;j>Z&)~AF1t`uxAQ^sT<4x4N3 z{5;{@Mr(?WF1%W!PS@>k^XaEk#Nyr{S!M}gC`r2YJ{8-g{TA%`{{Y0=r;mSVFC0%j zj-M>)YY&sASZUzARyIgZ+zeqCJa@7*lguE7>V45oAPUYlmIXq^ChSRpf^g$MES4T9hr{=}rk&yqMoo4d zR>^GqyJ*D6P~fyvETryOlVa_`1z3_Zwe!_E^GlXpUXRo8-}7CrO)6ZFN-1skTl)Fi zwT_FyI%HE`>HaA2M~JVl?XF>$O`akCk$s~~8+xf^b>c#dM;=)_!2~uAgfi<*uC(4A z@a#GS^P_3$s#sZ%?7RKMGsQi;hvzxY3X*>I6cV*HZ4~SDjjp{tEvmNuK%CR|a$4KZ zUY54ItygEY%KrckG`|wT;!Qp&t~Gcy4LKghSS?+zEpNVOCO;|UPb@D41CBA3C60YR z#QrhYlFDmS@TbI)t$EA%;I$a0EV6+)@6%P*RRux82Zt9;Uk;|AuAW@C_i(2DigK?dtgULOGI%JBz#JOE z&}}a~Eu!Aq_GQi5=*&uzW=z$*F9 z3Y>6i*TWrmNuNi#xz;qTAHve=3}jZhvb)sf^8gtA+>kPCAcn^Fe7T8o{w$U=Xd4l(6_04Gt|6EXLo9ROX1;Raz)zz0B3!r zCcG?1-nWfaV<#+mgyWvWigw-}@%M!%yqm&)5z=&PeKisXx`8EUjxq}uNv38|^76%* z4p^@h$6ht6rG>;v#tPbVE4J-*-u_*0*I_JFVRo+9mc1?0OMg~ZDC(Xm(=0V>o9#!% zCsfk)7ZBQA&mvo1=@*Etuu543fT#y|nv8^H2qP7rtoS>_vR>&rrR>+%uxb$W2> zXtdK;)3K+m_*=zV-i@Kz>HZ?o^^H#6;F}F@!s-0G`(;nvwZtp}q@fNEA%+Gwh9P^O zhdR~Ah2psIuZmjZOutLHg{8c<(iptg$Zsj5NaJ{z;F#DlsddXKz^yCBIE)09DEvJh z{Hp6z`mLK<>2<2R%~icc2|IahefxITd)%Y0ct^le*hqEX2U%NcT7;OM>r1?ANu;mA-kCuF%(c53N6a#E90YH#}M-{<~j zpN0M_X&({npGeevF+IKJpB#qcUB1!H&YaAzmHz-rx>aPy2OD~ylyC)O*lS-5B-QU= zg5+u%oQ2~Taq5$4(afirGKm-{i@k_u`^OkOgI#j3KV|Id!+#X zeyt@h-M?Ec-|OewLn`-1@od^&uj8FTb^E(rK0h}~mOW9Yf;EVSJC%~%hSH#}^2d|+ zhz6qY$BDGGqo2vpMS0lw#9bEjG37Z5QLc{JL41*0u0|!!~w$7Ot@C^6J-8`7r65 zF6R3~5LxA$%NU&QQoCa(sWKH~RXjnW>YBclZ=>o~DdD{zQPii1X^_fpujP$FLvc0J zu>v*R&4+EH2o+eJwe(LA;-fjcUsSYC`uEvd{{Zk-i;A>k8C@^GRJ*t4-L&g{?zxU~ z_f60=Em1GLGi`6E+3EAN7J5C<5Zql|EE0*Qog`h*!syv5xCaZI4XsvuE3UPacK%hg zQ|ng6mRQc8wh3pr2>YXP7I!A`lbxWdC>X&Vv74rwOS-m+Urx^5ALw~?;H7y>e*MzE z&(;0Od0*1BIIRwir|K5gw-&Di{$0qoaxG<ZDG`NA!#qmIbh61HP~;Q0fAI~t z>0W<(rg+D|z9eZF&82G^Or@iiETaeP-i#SYBeN;*lUmZ9>Dr>YYTNFb>-U|MDpIX{ zJl*vCJAcD@9hQ^vk5RI^OQ>NQP3xAD=vk>Y_bvuY7*0I4_1MI6eqK#_4u$(zjW=TI znp6%;5J}z}r$8Kc$QaLK&r0|{CE$8l-X>UzKI@k4TUX!Ly|ny~wc+j|ua@DK2NNea zts?sJ_I_(*`mV&f-|cj|g_GQA8b#E1LPNSXT*Q%W$itEeIVU3+z#R3jBJr2T&lq@~ z32oxl{>2Qyq@pkbOB--hw>Vxg^5A15n)EnhgRs0mC0V{|i_=H1>G+kJ@eN#kKdMtr zQ|ss2=NE0Lz!b*ro??x=5d?+LA1@s;bM4ciuSw860pqKY9gMyW)-7(Oa#Y>hJ*wn7 zsRgCj3Co}v=PU*?KtD^0g-EYyEfw#t`EU83IaZ`8B(LfJ00V#cbJIL=;aklg!ngho z)I3k6LVO`+E|E1`h7#RLD~FI-@_t~$0Rb5d=N~c7-+?Z4zZ3Xj^m#NLMp@M)lFIU1 zFEn4uBTdYiY(+G07*+YsL$hr8u)LXMYE_}i`Zv=}b+X#~+waqduH$`&M%xH9AAVn#q9^X7Ucougb_HNLKH z?4oS9pKhx&fzWqe4uR@>{#>%K79G6?+Mz=UjG1hNB%@qN)d{h{{VsJ`|H>AF)j24@h^zdD`L?{ zJ3Nx~8k`K5 zW0HPTowbZ*8jjGrX)D_HP3h73em{RiC{&LoBCNh&)&5rWI-i9aoN(L6q-u8Bm-a53 zX>)gRErp{za7`t#RGLLpZQzj0mcYhO7;2lxJ~FfMT#akuuNmq3U}-LI<(R^fO>G+N z3K4wGuFguP$Ki6vj2iW@+>W0uM&0jiFTU%)Utc4`&ML~TAtEewq z#k%!}jl3)2&lN0ckw+`bVqvi|%2E8N(|ITc`7jYlIRqX~dENrHBNrN!ejZ&{UA5O+ z>-lQVnpoNxd^*F_m8YlQ{%zk|Xm}p21>9E?-`Z)HF-F%*0uc#h+}U8KC;{MS3^@Sy zsxrKy0__}5;xoJ~Y88obob~qT2VuqmuTHKSbDU?l_4$zsl$%cJzW)HzF{PhT(^;m{ zX1I!WJP704vj>bGl=RtGAO+M?P-B@bgJ-XBX0JT%ZRuNxKWi8dMtV=A{f=HwhEG5p=jK~?7I49+d z41z#yZw34um&6y6_^0E?i!S^-X9!7D-d`-Y_i8diM31^c3CLCmSAsGKuIwc^;pn<_ zqss*JTP-^2)70^?n20LUs-HDSvwFRMB)YH3p3xVFw7q9Ve-C&wNYwlj@ZHKK=C5+4 zC)J%1z?7CGBAyt9A2t9uECBRhhqjjbCZnf#d&4>|q$9Dlj(4>Xzn5tgjV>p-kZokS zc*#J#?Z+f>w~Dpvw@wdEkG|J`H@A~#CK?Wuo0Ga%ZTEIH{6nhC4}}(3Ad^bB)b(4K zqif0Cq`0z)=K?*=z3{^hN`)9v&3JCNuWJ@p8m6;+5X2`VO%U8o0!^}ZPcXJWeY9-{ z5)Un3Af81;Z%dbz-D#rjchUU44v47AZp+I0ef>Ig{OohyB{p$swt8LnhwL?dPh7Kr z==b&zwkMa(`@<6EMk?+fa0D_8h9ot5zl3~KbEvhZnQMNU4~?UWM3TnwWAiR-3rD%4 zXH*S0mk@BSaM)mQL9L@zYNWe6S?ukt_TP8E+(V?L7|Fd;Zq46IYul>n@*vZq@lT1o zH*4X)2~DCyWo;eCn3|QaNN;B_$QgXgbi|0@`E9&zMI`P8TXkK~HLWwkJ|H^BioPSw z_MK&wZ>=wMW=ZaC)m=}T3y7r(00Fi>e~Txgarn6#etk6b^#1^ZW)PF5K1Cf{y|3%G z{k=YCYvWO6;!R%XRX-0rSF0jMt#7Dl5!+83Ytw5&Se9Z}cGJ+1a0ob_{{UWjwE3*$ z)_2PbvZb=$Txk-(S8vE8d09{Z!AOl*0;lEV0p?c1#&c4fno8R*F5C9}jcL|!g{iy# z4SoCl-!pqp(k@CYdS8q@XjUW$E#cGc?qhHVQE@D2WM12q`}GH{tR6&l1L+{0FH2dZk;b}Hzf4cY}5R_{Pxt!rFqT1RquH;zYBlC z>RZ)3CN&SW-@l0U3%TOBOOLQU%zE5mm;2HG0Lw9h_j8WpCcMMMo-6Tm5~qeE@urhK z%UmnZruchAjU$dQz<&OCW=|~gGNhl>XNIbv>N-4&tJcXcH*59jZ@}oG8mjJkzV_98 z)3@d7nXeCrye06;&d>wc1QYU;866ur87~9RH_y#@?2=n8Y?Z9_?{4~= z)KPEVTCHuT-PQcbZ}lID_dXYY3eA15t64_AW%b>U_Pj1Jym?z0B54Z`lqi}(w;}d| zN0{gy8}V+vti|Dv6nK-wTI`eG8L#w9R=kQRBiu-N-($xaY_3YNBX>E@L{7a5Zg)}B z-rYZ)p3eF&dslsQX4GY9Hyz)}EjHIpKKIl@%jLrfS++h)PQ9vQCmJhIQeP<8kD3 zw;oc$;pxz&T{}H58Eo&P(^i_hO4_Yfsiyr3)l!!%lIL4HY4iC#Q|t0HY`ihzT_aLA z+7+IgJyddyqTf7{ zeRRI7wZ8B8C#z~60r3XA;raYmW$_EdwwAJp<(|*%0_JN+-g zH;z0^JV8CCm+@TcmUj09{fk+a<4jhCm3Au1yPP(6ee87mfM-1PX(+B*6nUw|^t0vj z?)A0rYpt7llTxgzd`&0ho!_VQ&t32?y{B2|_ZM$tsH7_qSldv&Y%w5ZU^`ek^dPWO zcMp`;AL4Bb;l0iB_}2DKW*bqyTZ_#zQG-r~GQcmG@@t2oYdrrV_#7o+=8 zyL)LFU&%Ww-93d)(vonS=KNlssr}2)&pssZyq4!rz16iHb5663V77+yK)9NCpKBl9 z-55^%j31p&bGYsV8t8lt;U9(i?U_qED_NaYrjj{4I}9xY5w-GFQw%T^uE24Ot}$Mv zO4RAaI#QP^=@%O-ulst+*GkDdb+OGlE?*OluG+W$YWm&vR~xJ73wJBp&+!V{(@YA+ z&rR_8i*V|#l`u@9n{WgG2+17gyysokw5HQx@b-n{U19{9XPZ zIo!k*QGlvVdO3DF72_DyrzEev-S2NVZS>JyT+Vc-7(a&b*3RE6_4HdiYMHqgi~JWB zpd_;Jww|nxw$ak*YkR%>ZPTwSglbcK ztKC{j-&VV5*K56X)m_<~wx8jfO%6>rR=x0*>C|M5>iV0Bqd_ZUcxj7m@)ZyI%mBLx z#_a7|_80nu{wmjJnn-W_Q+an1O?`K6_Ua$Y4d%twV~ry!PU0A#UO*uSTxrJ6agMrQ z?$Y+Z&$axK$2-=Huh(ANbXWE7(OT%Mp?I6^daSZ*8mZCV1iXY?-A12f&BVT5SwgbL z5!FD;5XD!KxQgs-A5ZZqu+;7yuI{6r!tA@`~at9;_0A^^^ zsM@CviKXYKpId3CXQ`~|I(0dvD_Of=rn;wYk6m{B4=uF#YvB(PYC46lfjo5r7-0_t zdc0!Y^Vtb+k(+iG4L8+Z&!+7ZTDjCfh^5v&?{W|*jc{6XqKeG(FKZ|s0Nc?{r_=0ze>dwy2 z!NiGx7`qur2xIvOEWb8Dz~G;vbnk;!z96`VNcfxMuN!!)QfrH#R>JNW*3E>Fw1z;T zf|If)D%-h_a3iV8t`>z^sWo z3Tl?#Iq`;zb7HMLaA~(Mdvk4S&@!_#D!WCw_l$ybkVZ0V$$lvKgGTU=!rOlUd@k{3 zxqo7pHush{le9K+S`l#mU>Q*}?gt>EjiH-!5H{BoJ%#@OcNDFA?X|YH_OrkI0p6^o z7g9~Dt=7MnU%7d1c{jyxjc@TA!P+K`s)@g~^sCpFLvacssA2Q0VLw!1s&uJ5;9 zQq`YFmQtq_;ZtXRuSD(nZFlJJxsiF{)xGf!siJs7&+Hbqs3aD@+8%6ft%9IrWw5M^ zgU`xAIplR0z7Y6hs%Vz&bq=u(y%Z?&TF7JxA^=D$vOZC;stJ6l3_xHBuPYB-PNbDN zT1j2$ZS2$6dw-HXlM#W18WB}v*G;e1_qDD17GTk}Z8yVqt*A{cwS%mqPqL16hG`ve z;zp4`Ert=2SO9X^#z0=mElb2cE!3p&Ux?@PZLd-ZBhvJOu)<}LQ~@eHs)GRz)^f}b zQJhubrB1DBMSHi`<)XjO@4rKz6^E-%lC`Xp{avl{>+)tlh%dEIgnl5GQqfuqKexis z-1!nlmXOX^HmTQ>gl0+rK1tcQ@ zgqJ5I90Py|-SibA<0qxo`(0k$K7WP0kAQX4uk9*JM`h=ypXcV!V)$#~T?;~eBF97U z#;6UpnRfG(wo9gGZN@2^V-J@Sx^e>m6^Z+#dc1RZuT;_wvEc1zK-KNu;xTcjwbNT( zc`lJEM!3hCxi~@`ZN|_~BDcfM#?noveLZch{{TO`)aR>3O}AFkO>5nMU+~8rtlmwj zEuV(`DXeO~0P!B4(_LEW`n{lv((Oo)2YuuBE+UcnP{0P-Nf_Ho=;%6TonV3C&)LUH(^dueS+8rl&BW2b_LnHJuuK(VvO)mfNaGQox=HzoHK!Mh zJSpJBOOFBm%!1Tvmcj{6uJX+s!9YK_eTv7ZV}r;e105<3ZMAulSG&@zQr>SQ<7-KD32_>nl6MSp zxj746w}yTJd_M4Qk#m3X21}h+#4)^+yta=n_n4I}Gch4dV4fMuZYOXDAe<{#l%F*E z+t1Ty>29`q9dM@_G}SsU=hgoJTkLfjJjvpC<$e)z_r4w)R-hKyAu)tu3KfAuG;oY(ZU<1< z5dv^`6Pu*zKiaxA%uREywyK-%?e3Z&ETyynEUe0*UBkM}GNHi{lF9-3b@yja-ro1O zt-IdaCc2W+kG!|j@a^XB{{ReWX#O7XmYP=U#2WUaqugp?H7yrXg57N)*)PiSL=~6- zip-`kq#ewl?re_VRX#4%ZY=x{CFs;mg|GIFma%lnEzFTcgB-EQBmV$MkN6C7Ch@xj zoSMR%B|dbT*7oUi^!~ef*qX1J&QZGEb=7oReExeffbdnNmbw1`2`|N62FFN>?#fL< z33QwCvPS!XOQGWk~ev6QxF{v+gX#7IAwq6+4tvpp^tQuC5#Oc>T8vzr`bLGBD zsq+z)v!9nHohs9EZu))8Rkojl^ZS&k!lgASYNKm+TKQh~`}&@_@aswN+URzvW#Fx2 zPPkZuUj)09%WWF&JCH%KgC3z>MsjnL!PD^;tMKo`v7>m2^=)Qb*$c*9oA)otPoL&6 z$Z|mkYLG|(*Bh>!?-i@{do6l9zw4l-1yLo;?ehNsKh(}XEb*?9bp+l6@a^M8DOu!H zvX114WX{wkH3icvlH1oE2(HgoHm_|KtKx47+r=c7;}^$9ON0{OHgO`5yn=rAI5|95 zi;t^PHGRw8`oFtm*KWsF9aH2{pY`j|uP2Q)O=>CabRQ3RmF=?@u;9#>Eym=L!g}^{wP~i*3G5Ov>#P8REG;%)!kpo+3xI~rqJbaPED(H{QLUrr>{)gd(8{S_KT(I9wPCq_wd5YZZ%6m zZRNs1+#;DGXyXN!1ce2;C5QypL|zt?MAIbjmA18|#+P8p4xYXzl+4c9%LpyvDt;)H|*@rp;;!{Lo95-JToe{amUJgtq0;9ejM?E@YTJNYOD5ko;#Rrg{PXW z{Mgq3*R__a&H66)RY`5qD!vVoxcMa zRgFf}Z2thSyY5J>;p@MM+B9;uyJa4%(Up;>(eBp9YxUuGF;&AIy)lw-aC2Am{b$3H zK`62KcjAp%S(*vuyuP1MSmeers-|ZfN&%dGB3j zgW^99_*YQAi&)pR`%Omj;{x7UWs#VYa{I0v#{D+`0CZ=rahk7F>ow&VO6@DXdHl3| z%G+ON`f6P`Nvrbt+Rb;>t2g&c@e{_HKaPB9rB0f1$)?ys&KpqFZeX@!3jw%A97PpD z1mKlyU^YntythK0KLKbKT784~emyC!q_ne=>SakJm4*@Hkpn!(1g7;W03?ucf!&6# z>+?}f8(*(o7MeG@zKdO2((8OZU&3(f zH>rE9YO%pJt-8S|(PN%ldkD7XKcD3@+&r!Fz&ys>NhJK)gZop$V@!V!XcAj!jjVas zH&ES1?{f0Tut9DLvVk#UxI(#6fDSkb*G7|3j8tuYw%6zKZCkRk>1--fl#`No(`)>- z^m_X9UFc?~hO|u*`rgf~zT9mC#XN@j+G(y@Q06F7IWp3(D$c3_a>M{oWo{>nNWI39 ztx0EdWhzM=5qV8zdu=dtmIcn)7kjBv3Hf3qV6m;`2u7N;yuaY-+1c&2{TH25GgVuZ zbnAZmTk-4L=2wSO(L6;aqpXu}Z#|Zw9PK=6kv!Itvq5nSOpF;+tM4NR2nI;pF$K1* z@dru1iqpdDqw2mMy>i-g7g8n~W!j)bk>!wpi;7b}c`TC1gJdwMtj z00pf(-^uQA#+69PK|L(Gt-U&WdOMo8+E;*}u`PG;2Ub{ap*Hiu6}*>1X#i$$vnkqC z9ltbu5(qdvgHh2m4Ln#2Zy$J)IZ#CwocH&zSlhy|ugu@PAjTB1##7W}f@S zi{{4^Vij^%<|i2+d5FbpYFEB1(e&+3Zw_cl;Ol7=rOu(K>HyqLZxK70e7(j?i2{<$ zNyY#JInSdEJgP-Gt1WeRPrdEB*Sg!tiuEbNqE^>SrDu2N(%Nlz-?KP7D|-@zvedkz)n6n+BS*-Kmvf zTc>12Pbf34Nanb4?4ZPRo zgT$U3p7PQdF3d7ow~-)rjS9a*y9}({{q4k%F~_%f2g5c=;8=BAJ3T@xsf$BCqoZm? zq_oO5eCV0Bw?zdTW;oi+4<0r#J1HpWucq&9y6e?j@wJbw%An&-#l2mZ&A-+E0KjLO zTj>5O(ELxW-`E?O#gw!E0HjDGfn-D{ot+nepe}g9RnKo`@P~*kHNS>>rlYL*O4X)# z{L^(lnn8Cvn`CTX%g#_Ax--+BmFC8TaW&p1jFs-ztI6)WufO&8Ra*3trCKkSc-gzZ zFHgInM(0J=tu12IH4QxB(V`XX; zUgjyM^Gu4xiZd&69GoseQUVNh&2we7D9;ewG_uiK&i??93t6z7T^}O&ZtCwzdxv*+worr;bK4lOms$LrBGo^Yb8L_&DT^{=KVsb5qeg zL7~`Qcym+z=96MFrWj!LSpH{nC-FsXi5eMZy7*QsMGaCb+T_D1>I3KF=; zz;FPj=NZk@oHo0*yY*J-YwEje-c(`V4)>Nk&kxgIAU!P8kZkv7j%P*80QfpVPo?d!?U3EKqPYY=_HrJXT zf_zJ+K8ZMQwd%L_GHPnzZaYR~SV=}87BQ6rBP_vy#lHBR@HayS8|&RW#5%o`$Rf3S zOPS+{s}tsNDOg9#mQcH&7{C|+tlb;l-rg4)uzAKbAu6CP^Qv;^Ig9EebkYG z1H&n4KKU*@n>kETGtR_`84R0)GC2gUK4977=B!;R&tIQky|>eJ`wa_MS%R|9EUz8E zn8>nuB3T3^Zeo0*RI4)#0svKC6CQnD%WZy5Uta$JjrKV3^wcA6{{WAFFS%UkwY^Gj z3iuCE@PCOk`E`iwbqR;|Y`S|Tv?KuGZE}hg0ADepX24beWMGOOANX;u{6e#^zVM#5 zZDY5vmgd^t@@d4jk+PM0c=ME!Kbr)u9xz7X>x#Qg$t~OdmuG#tXpK^oKY7u;zF(hx zZ=-z;&11ut`d5ea=)6a%L)9nylo5CiwhU4YiaT)?f(gSYUkVfB^gPli@NAT8} zAC5j8Ymw-8_b$rOXpCjGyJk>YG>w(x-haA8EHh#;We4&1g}fqJZG1T%lYS#$7-=8us$$cfv_E6!0`Q9SInL)@0X;O2@BQ?WbRIv3GO4pV2)>ri3@a^BBq-5$r zC~5t7T3hn!YUs8<4z*oTwH-e2TT5<%M7lPweFpKj4YD~x#(IokwsL**dsOkRnV@Lt z1RgnuOO|NbD|Obq%bT`lI9=N$L7d?8zmtJVa*b(4IXJuY{BNVv`nXCFgj7 zw7Lw*98IeDkx6AL2p}n8ovbmq=dtHC!CMjS=A2vPU39zGTRT}R`Jj#pE;_5X>1&*i zjI|$yz5&!z!rHEhe{8R2vpZop7;vKNeypo7$4br|%f{{RwvDdHawT|wXrogQ2N z05>pQY8ph4tS5u>Pd}KiCr_EMK3wsPR+Xtybk#}`R_}j%U36Ak_D{cZs79ot%~E%_ z%HCFX{{Sb@o5PU&Mw`O-J|ppOjQmrpMFYR?^!;~C7V`{|vEC5UOP%9}j9_B`bgwJ% zo$rVIW31chw;G0~`9(6B z7>ce9JrdRaxBj#|+u_f|?RQDluE&M^KcrgQ>!s~)ZKZdP3x;3|MY*ui@xSE^2cRPc zyT!=rEegR*)M&yFhU6>d|k;?8qDui~>#uSl0|CcV2ZG=CYEq zY4q&<8d^7NS+##|tej)YmEO9&zIL_txBNRgzZZC;Q}Er*y^n@8ZBI(pZ%3PVEtSMC zX>x!ll2&O8M=NkX^h=za5=JYVm&1d``h;)d4P!u)Qn`os%Wb3^E88arVoD{2u_I># z1s6G8pn;0>sLE{t(_DkghGrnK@}n+5#?XAn z`e&tbIvuX92>#CTZ-KOzd)Z@ zOI;fIMps@|x1d*opxkELzPGb|^xb|s^}9R24z8W0O=YIX;NK4E1&ER1y}X9wQ(gZoE-_;=6gC^TbmVZw%Unyz617AqN3voTEs^c+64l`MLl= zuKX?iqLY(Jtu%Jt&8wuJ{kpH_a@31d+KjtzYreML`su!lUm-NTA6M|cv2&}9L&H-| zr(4AodZds@(AqB5Qh=a_6(oSiX?7z6DQ*8cb&TK_fO2G z@dmwprrX`?TIYs5GvU2H;%j^1X=H5UwzwI}S;o;jN>1^TpfeS1?YC&HTb(0Px$y>x zb>YiPjWADj4sf3akzxt>{6{5xVcY#-p|teb-nDm zlUACm%_&DsQq|eJ?)BAdx8LtCXbs`*V#*yiLh*K&X{KoQk{gNEV20jj&zmbNe5OsJ zUR8O>UD3u!I2ZmFvDP$+hJh1lkxL^qEoTsn+|3*T)a+$NL<4g+7ju2!3YFZUA883f zqQ8H?O;*oc{VsD?r!^%zf5GbXzPsN40HbG-c-u(Ud>eT^=AEm~_qwc8TP^IW%WHXR zQ0@bGatmi_oFE}`GoB9(d{LXhc5`W3u9pN1*9?(M0uMS7nRhszCX9lh#uVqOgU30F zwAz|>eQ(zH^7K}EUrwERsLfT3Q{C#UyKJvyv};W@-u+Kv(LOloH#)tmT58kjmyks3 zFZTWUiV0+A$SW*QA~x;khK*MwwpSz_JzwG`j+*L2f1q33!EtqMw(i4H8k~~JwE4{& z#KfJbLYT=6LlcAnjdDi6)zWnBZkykt-q!o|UT3Ka5udwJ+1s+U*W-To-?>pfBgLa= zvMz}xwGY`0rWm!YDp=!nExBTXcs#a1!ANg0p{Hq*~lvV?v$t+)y+Nsp7IKOA^+V=0+S?g>0?DXyyqbY68du_MRuKxh= zY^`o%#Qy*gyj$XBbUrxLbUhvhR<*Reu(GnYo>y?v@0K|e3CV4v=5OK0Q-OW2_+6Rq zd|mMdU20v-kXv|cO(a&pOfnOG#fmj9_`?uRGn|87ojAr;sQUc>03Xx7=Opgcsc+G% zrF-k6*Iw3tnJ$yAcso~wwzaNHrD;~8Snag=HDK~O7Y^m1wTxpsT$0QVb{w4MtN5$p z+;QkPFnA_sx3-1iY3GX3QEoRD^9-y=VonLcEa&DsuyT4OQVRahS8nTNwyxc}bUe3# zsZysb)}EHTZ?)U+tJBMK3*kS8E;TQ0r2IXmvXkg7qh;!xwvUAp^DMjQUkFh$J!#oN}*7n;bE2Dg|nY48yiwiXs7rOR8Wj!7Eg2DO%Xr)Q0} zU?T?%NM162X4-n1_pgWgUDt_z65rg~=>Bcjku{WPRwZL7U;-;h`;ZeNpOptBe->-y z@SM~m&ly?kd-c-)0M+!qx9EO>MzuQ8tnmfFS5jB674T7AUEUD7Xjh~so;IZ?(& z8=CX*^Gg=JjI>^fJ8StbPsr@X(vQ^|sULYOuP&PQ)#!_V12wxnLq*m89^TqPr^Tn= zHG|BkZRMWcKx1W*IbeLkg^3`4s~7};WAX3y7Kdr3SYF2*T7`xwfb9M$oxMr!?%fUFMYLZ*4myUr2JO#9hCFv zz7q5Gdl=@#7T2&_+?k0gT@Lup)D6f0V+4{tJr_XuKk+Bx65H!HdR~j+Hj)NeV$yWs zWh9WX3fu75`?%-;?bKJNm0;`U%h@?K1%LDV-QBIy-e*2Oz8fcxx01Y_v`zNj-BIc~ zC&BNCx)r>3R(};QUex^TmsYUc?QCr!T18?;-Z7EKZq>hO@J3{ft;G5p!8S$252OIM z1ZM$)IsyUC0UTuGt$hTzMlQ}(n@hUu)t@4`s(kuUHly&*#`+w$G5B87#8cbdD+}vrd||OA+(E!e zZO9ysatI(}rE^!|8jyo{epx>Hr*55J=DtU>g5!Q!C}O#yy&~7-t>3BT-Y)R(jdXNt zjZfg$h&2zeuzPPeT9M<1Ab=4ZcG04OSOQ1@^MVfsymd7lT1UNx=ISjfMsg*ynXV+6 zSdtq6WCs~1al>$MdmoaZ@G8BpXa`(*x@sLHa?qpdGmQ_zYAaI`5up> z+vrxFZl7@LsC&n9j={7xO+IO`TD&c-Twe4yPi%VO0`aDJ8tcJek-!_OR1xz zX&SDzd1YyO`gN>#iyg+BZK&NxVE}A=k^PJ@VqY6$W@RG)@-}aWQPS4)Uy=*0I^^D5 zStJb?i5XpHcO^@+>|dV=!ve4JDcaZ~xoTous$C?l-CM4oE}p+LcvAYjEvwT@em4DE z++P!Tm&X1ZQ{lTw;=I#zeLmD*%c(}U7Xi?a##sxHNMb--u*O%8RBCu`9cRMc4xeAs z+Itu^`4(91c6rb&+d{0Cj{_EhWF>|PSHgf*fFN>WBWHs0Mljo|sMC|{ZH z+WYqT{{U7Z(L6=tdr6x{_=~FenoSE(Pcl7kN7PHhY|Yg9G5n4*)c{ucSb^HKbiaiD zAHTi0eG|sIH21b`8QAGF$kF5GbP%YNcP9rRlafIds%f_*^m?YccTZK@uid4EQlfU0 zHNNX+zJKSY=b_o_w;mbrjp4eS-sv&Pf--c-<@2j4jbzV&0>3m*~Q zBsw#AhI`p<+FvnzL3-xtICWT3P5YNWbgS`$$*&bqojFP>*1h^IFRI_8E~Rwajh?-& z{eDF=s(9Ys;@ZPe)NV8#F(hH+c&1lmRKk~4mS~IQhI|${2l$BMyUz+wd#A@_qr*BO zu#!V1w7PDgr`=80{bCszS-}OePd!c-9QoL)buh`euXWv}cWw8xyRuyto<{g-D(_XU z&ddD2LvvHqmN9uYo#TCTPfKWsn$CSgPnIA6AhAM|a7Y6ihx4jS6n-+(q`TEL;i}K& z8RLTEODQH;fU%jt@se9Bt@dqxR$rmDI4@?VotoYLul^hH zIe!-F+U&Zdv1wZEm8_6LC%2mJQ42Io0B<(ZIGGuN1cm?;?TW>Ld>`Tmv5}_KwN|xR z3Tl>`k+!skQUUVWA>^qI!5fG<2Wt*GT?{1}(Nv*sRlmEU=#+Hc+C3lNq$x?o%2M9_ zAN&{P`IyppbHmFokvEETXr+#5p4vS!eMZVvWh`13xo9yI98ZrtYvNl= zlWl$D9}C^+_VYYPNYQn9u60|MAg;-$pMAtYbY@++;1%bHp;=U$Ud{8R)y3O=U7t}&1lM(YuNQb1 zQ@OI#rY!T#;l}$c$Vnnap4wz)jk@Jfoy28F6{V#3_e;64eM3gEU0Uv2g5De>^$XGVUoJ9oJfR^|k&ce19dXd~RmRt+ zRYG%*qE1)n?ah0&-%mz!x^(3x;TL}TFUxPl;;g(g;0b4iZ@hgKwxw|{_0zNqtH;{v z2n@FH88fv(11A6sbON>EwebFyvO%Wnw~*>(CMBKbytr6~2{JZI#lLSqykFuN3~;(i zr9~FyO}B0Nb+X+n>*did{R|xmMJLXZZ)>kRUf1j2SHGFVYZe|kxz)zG;?Egby2{>0 zk!5M5p}VmgzV)n5A7)B`%)@uxA;v+jP<%z#wCnqzEVTsi<($(+s9eb*nrRN~7nVqz zubCkQcKoUW?HjhHJ)AXq6`}0y$n?8@Yh}E2Ys*({w%SvdHJa08m*IQs=(_6n-pz)w zX{~sYJxXs54O3RW276oGVW76L(CuP%-Q~vT3%8G*(;O)aBWEm!Qq%9|zOdBw{XWw} zdndSnX%f6kAC}BgS>?|AhIZWEP%i77m5i_n?^2W_O*GT8PS(?1+iLyoe)iheF?8<)6r|I)0R#SO+_fBrkixK@@mgTuCJ=so7Mg!cwS9O?(J=4w6|#)qLS)%lHO}~ zRYpuQhLx8imSVexKs$|any#~C_VFxnH1{$Gk!84XhlOxmo zTmCE0{tx^UdQ=}Z=F(sA{eM3GNUM3L>%JsyxoZ?9K({Vs=6-vNAce8m3%!aJwih}Y&>Z>6}Fck>GzmSKj&0l>$~ z4neJ*FW?7=?V*%wUKZ132L>|}2*%US-GC?u9S^r(Uqk&~#$hbrp(ojXMghR}?~h_Mqf(NmiJ=wV*5BlLPaRv^IpMJl+hwlZwLBZ+ z$Lx#ZF9KWt0K!S&i-*0kjh(KZNkdA2e8K)z;A9NrBzubTF9z%4Ykfu!5NW!U(|w}Q zOBJ#^Czrf$cELNblpve{Kpcz;_>6uEoeWLjz1wN0maF9d08QET*?uZ`>@V*uryD2R ze>?R4mrtp_73g>R1o!v8DQUC^hQiW22}?0(?&b5`M5`O@Br5=3Me_)35;8L15$IZW zk)&&0GM?4!&ZNrFK$mhLCD1H|V{x#y95<>R-1Q6d`N~u%xkKW+^wB$g&qdYs+h4EY zdQqu}Q@)=rw%g>N=hXR%(^S*7Ul-WH;uz%9bd|r69_`~}BvCeerFH<0ag68JJab=M zd@8f>N%&)^{{Uj?Z6=@P?Yl{BPnitc5jMu;?ccm-CGmm>1FxM2PuWHhT*+(s>FH;; zq3zLx@bz5c`CDmzI$3(JxjhVf-9t<|q_%PBcGi~~T1PY}lLARGgaLw(g!Z``7f2pY}`|Y+fvDTiqJN_x9|@OO;cwCO%aJ75*%ooOJ8P zKH{;{?k>EMXSBvZAwqnlZQ}=w{{SyR>-t7XS}z3|bl3dPf#SMVBbd5fY`pxxuQOWT z!#8ONmR+u7901JQkEb8YwLU)&Pib&xnnNussTP|n z-zBw`yE?C!goBVl2b0jAzkvK}n%BHppy@V@WVwnqc2&WYFz3{Rg;Cs}Q&;_=3Nhxb zD=xnyDc~Jh^3sjo-+9IAzZJYIWU_s#{@9gK<(O5NmLO#A*^FbKe%0k#{7(Z~u&rCfaKSCiL}M?H=}uO}Ctg_kr{uczyN z-8!5niZwrn7Lre;_;$}twYixAMvhq=1GQUmTn5Mmw;UXG$0s&CHKBNe#WP!Kdj6$# zZWiS%?UczQODZx2d2;K?B<|Ws`AZYV4Sbd%P_0tfeHH%z;Qs($GwP(OVd*NBuH~(^ zzn}aQxA8Q(eUP-!EH!H_HE&=7OF6BY?s#KSD!hUGxk{{z%@|RPFYt^2ypDrC#)+@r z>qTLmpw!}m+81E6*hnKRmkz(`mfemPL&E&M6at6G#8Q^3S66nomG%48lIolLx1&`g z*Or|%eSEz-^trQtH;Qzat~^We1H-pAxBhZOA54N7%6lv;yUT6O93 z`Crcc4v9iF6Pmw&>(i%}oeK-2-RhIWrb!09VWPB>G;$;|-cJAnB<=-W`3sd1m0{T9 zj>Ap1)h_I!z0q|)1$dU;*5tIUX+POzk(2->iI_2ld<;4O6c7&Im=jW?PL-u6?%wIG zR=pqJ>95_%%;y&*uiv_Va_!NbCXeEe0BYBQ)*J0cEn%Q*Q){W)ERx9GN%Ih+KLF%8 z4EY`SI{H4n1*Gv`=~`})bEKJFXGn|465=ugDU5)T5>H%*B%G-OHO=*v7|RbkKGs`4 z_qWf_W=yckGgV`Ib$u=A{{RoFtUW=rv2#N*1uls^}qQVT~xm!ySLBr+`!Z$ z_-f3SzBanoG^;3lw}M29$H=>qMJ|}Q`Q2Dx^3nwu88yOdS6>GH8rjRL-25QcBA(Xb zM7X`x&86g*0RzyEk0TP<6IW)WK>C_5zEVzH`>_ap(6pH2hC-XyoUx?K)d z@Ey#$Oirmbp9GM^ser$Cu812N0vQ1$tE!CaY-d;_L#R+vIarsGYrC0ACKAf>~#JNz6XBk~J(_W2q z-K#gce)F~0u$3t;XD1iiYka)6?WKt=yis%G>$@Kicn4X~wHvE6X|+8*`$9i#w*L7N zgmbjJ6Oph0NG--|r}$&4X}%$j&&2w6g{El|PVEfyX!^8_o@zN(5{TTL*!h7m$fO^= zimYW>Vd+W}ZXBsbT-v9-y4h)}Uh8+!-pqeji`7Q&%kT5j-d6p6Q&{n3&xiDDdmR}x ze-LSLZjSa#txYCXkgx%93@3r;VNfzU^ISKHybGY}(=Uj$UlaHzPnOyZmR2xnl0C`- zN0gpyb1JI>K2jAABw%w`Q*|Y5MG3h*oMUyX(^qL}*WR;M)yZDi$}odalD3<@H1gFN zo)qz4#T!|MoUmwmb+l~IHmRszG|dt)`9O)BmKx?P4`^4nqt9{$(+DiSdu9DHF?2Nsn zsoG5>p32{SuhZ2%cJ8^U{4;fF;!6+sOgw8f=ZFo9#3g~`xO>3N8)3Ez6%aNvk{IQ3 zzzW;fej@4q9`IDUcZs8$K+yEq!dvP3ZN!u6GB6k$_OVn^jPgRA*ugxW`BRNW3QM!#*qU-R<{=>@IvSr{2gQ+8q}D zP3WpsBZ*i<&&dtRIW4_GIrFcHJ_wp+v(dauuTQ00*|hU%J{8cd%;-F{-mQ5#bGlXl zHW`cc+m1-@!qKILl$}JR{{U6h$*q45mgtD7I;zyEyFGP%p6<)ZS$yx+yc=CR#9AJk zt7={|(R8z+>I)nfFzKOM>_Vsrhjc|mOCeRuw%lawQ;Hm|Rf zZ+&*s`dg*lx!;H$D7Dw^uQZGA2eyZ#q_Mq*>z9IS^qN*zo-wqCk3{Le}77sL&3OVeR}TSjwWgd;nzmc{!zh9QW{510efIOCtH{3m_k zxvU}7G?^?yUMiLloGCpxAajG;BfWm5lx8ZtRT-;ETgdnxDZtdF6U;>tCO*X=R{% zN1H~~q=v*@TtH=-c6Wv-#Hjm-P^76{%1=LgIdtNh3HFk@2x_bbk%4mYb(WUfnJdc$WE>$$4UU%d}_;yo7*53}6-qA(p;FHmOga z+RL)Kw|##dHrak3qVUZMzRgCP+VW4)Tk^VHe1Oe&w55ZfhWcVlI*=2x5a8;UFQW&K#Cf(%<8~~-TduIn3z%|d7Vtuma=J{*V z{(gVfhi+kmSa{h%-AKx-^8IdQcyCG78%S+mUbu=&n~6hkg-a-2RE~0eeeuv@ zw6s4E8*BBlxHopOTU-gDkTwuHl8YYEk~*($fODK0{Qm$i#Ql38FK42&TIqfJKRew0 z9~*_Cm0+pDt=!wYd;FK9(9iv({2V-C;fqas!+JfP=AkXg$+ee!jS4Gs<*ObuAwS*) zwva`9)g(HX#2cM1Eh;#ojvGi-$c>>78{W1c#I3IZ6o-z77F%h9dp7&8&wdZSE z`t5B$Tc3nybzMAU>dFo(_eu5X<#%;|_;cug*;~L*2Z^rkuP<(=Ht06GP4XUkGXQhI z0|9_I93J0m=~`40n9}Ct6OWvsd}kf=jB&$uG5=9Xc!(Ft1aQdU73qQj+uzeU9jhwu z;m(yJv@@OPTYIp4F>HGtKAjIe^In{CTs|_-5V^i*&SEo4^c|@?6eaj;;ag}~mrsUA z+Csdk<`u{}<-7IA9ChNj?-YCq@b<3(xr0qH$s>SD;B$kVvGpgOgx6%aS1$HiQ@5kn z@A(S{#Q4b7wC3OS*z!G3;S3%Vy%$~`o#44;mezI`X_6#DfDEs7XB__kc%HS3KZG>s zZK9siJ$}+ZCRZjE-5@HNBaGz%Imo~q;Nz#oW3t>X9xp1N7~O}py0(|^eO>^3^4 zA~Bp=?C!1TbUqxg({)RBxYBPdw5>+%Ob*uY%QTXOBq2m?zy^fA;k~|P+&V5G)BIN* zma>oH4+C$uwcBBS+KK{>&m?9^cQ6hZg+{`VLELaRI6g)<4I5cX(bZ{m(`i}R-Dz*@ zQ>K+iDw0!Lt(&&1rr+07OUIXXx>3`0T_)dGxbS2TbCyBBd_rHh#>I{=i#1)nvMRMZxTywbv&@gHM=QZUO7mX*o=*> z8B{qqL(;aqU8ri_7uT)D-@}OY8>^Ho_g0=tUk6^2lM0DkZ7q;vBd&5XN>Pj?@by}? zuDu?%eqZqGu@z$}K4|Ik>-}5H%$LGGGO_Vqnig$S!58sCB!<#k$RdLNz$;)Y#JMa3 zY+cF~utDVUSFSum@gG^Sd2|hX!jZs&G?wXgxo&M$@W892g`G%XFsy)k3c%Gws(;Tx#wZH9O+M)-lC$#H+K>No2VWBc6-UAD+sfGS~{0!rfno`G2}kJoM>}M@o%X3TpONfAD+$h?eJ8 zH+y~~ejq=?=eM`hCDd(SRB4lKz4ON;j2I9x9L*jSb=*#P?~GF0O=aLHBDvI;OR`c7 zaatImhVEwL?kplCIU|pqo2DzD7dKB0%A%B=?5%gcj@qkypUBpQDSJ*>{6E)YLigea zi1mMPvxh>nv%0r$I&EI- zSc2kdBF@vlYb=1^l7DtMAMh$vaMP(t(rqPeZ)Wd)zowruT%pa(_gioGY5jgiKg6FH zd^qu9S?jv4rJ+TtloGAO+3F5_vyck3BQlP0x6B=SipTIr!v6pac=uY1;ynH_)TPu_ znkZn=bVF|On9u@FT_gd31Mev#IoZLiDdA5RNf(CK;n9lf zQ@M2u-Bd>y+nvlKwuvJrk&+9A2Nlm+r0Px8t5ViiTWz-5MS1St`dmpxK`onKf2aHt zfzo_+;+t(1wEqAGTI&|_UC0y|G+Q(wfcd40;spxCd#^bA-D|w?k@1F=2mBaX`4-2N=^oH~m5vM&K@9vRoJraoS!r%r9zE&(MPHJfa62E!H%p@?EP z9o5m^_}~5#>#GTTNvC*oUy|Iy?If^W=3lG&%DaX7-P9i``c>+-grrzC?&(=tUxa*Nrg-M&{{Y868`bTt#H}Tx+J9%=%{+UsT7Nk+ zjNp$hHDYs+Pc6Yi2`4E!7kt{sc_zAAOW{iIOC_SSwZ%I0)|0lHf5X|QeY~%^-rs5- zG14_ViRJK4m#JwEgUYyH)mtX-@gal{2~7U z3FKZIMbxCzw77sbi9C>8F)@+f&3`+O_zA~A0mT(uaQJvT#`3e#E46KJcHiM`Ht1z2 zw^Gtyjne75OJ7!S{xpW$#JBNyVYJ)%u40At6DF6bPiJn+kT*>`zEB>^^AUse9!D3# z--?!=FnRnvqb7;rOE*aw;?!D5oCeAf<}Wuo6Wfh(hg;i$OKApx&BCi-IAn{UUT7}5$j_|hRefumvT0!#a1I? z9(kcssFAh7A+`o?iG}3nEOB0qFK_JQI@>82|_%!j;X6_+g_Vr zuid(_G&Y_myp?0sFT62ts5GBqyt}>ClH%s&6oo~OE$mehvOZN(NaUK{@h^z9eFsgn z(KK%!ORii=3#HVlYn_ol1(Abp05L=51yFW_@}9lx5f>F1P0sqg9-Wq{X{EgHz0N#D zTdbTZ^4q?fZEIf3*SAy8Q9L=SS-pwQ;dmf>i?|vUxlC>-&I2%ffO#VUdSIIOpN8HC z(WkN+m4%+3Y@~7(B2~!RINZ4TjyUHX`V)%%3xb^n=Cr++p4a~Xfquu&@g-bF4-Vxk z+1+WP^82mw?s_2jccV{f8^Zv$Q-U_ZziS@roDk!Ykmauyf@Eb2K>vj602JAh& z20)qn%u{w7uhz3HH6v@N$8m27mMNM=kyZrxSn{M7AYd>U>z_*a9D+3#EzWk8-&XqT z_n)M3LZs=&I;$-#ucCVS?7C`qk?IyU;nMXbfh4z<-bmp<$s#xb&ly$uh~bbfJD!K< z8~*?c+4vh;{?F5pMC%)g6L@w7xz0g2%ATFGU!hK{Tb3G)xm&yPy3zVJucpraN8o%( zm(-Rs4>?BAmYUhOZmo2CCZ4-)eO>!B_*YibJSH_gQU@Pym+esbGlR7;!$=EqFi8XP z>t5-p>yYU7n<8T?kawNIfjGthE!&FyTAdk74@QHw%l-!IeUHd-b)gJRdXZL1w6^J| zNBuL2f(=twm`$m~ZR1j1AXh@b9;EHhC-eL(PAdy_hjai4vzB7yf`0%j+Mw4eNgqE| zNvApg0AF|Y+=^IL!3i4-6UkwMeS!Y~KD9>f(sIZQOSFuZZb&)c41OQ|YWhqfj4jN3 zt~t(b@L$*Uv4MYgXJ;bYy0ovzZKSXm&pkfB{d(a1QSk`bNhY7C?tWM_ZU_M2@$!!O z9sB)jk2}t&<?gi4&-ZuYY4{dw5s?L153DW^-6w=iF5#3HI*NQ_BByQ5H5w_p)~PIn#vuGho5 zoI_CA;;my*x?N)7t}dp!MPRa`?JOlHKXp(L-9XOKoY#vudt};AMXk2d$>{vQKfAKL z;-kw4>3_Xh{{X|4d>3IRi}4jB@jkm1m4OpW=Byd>2;V4*D81d+I4ky_gS z0E_g02Wpo-5{F2ZZ7N2RHkK*lh%8MZD$%1c5xibxgZD=Ta6Vpx#>7*th^o16qif%5 z_P_iTyECQ`F#`5HPdtKn@*!fjFQu5Lz}uMMuJXzL?K6o4YfEF)y5Fc^ax z%HUw&E((jHTTcz>+D@^q_zD;_xSlC(HEk-#s;){kmfv@mPwS@T*|h%vhxQURzLVh%1+^q5X)WH?7MyXk7^G6I$Q&J~ z0AQ%du18$bt#vex%fqkXt36$c`S*WfH!{Q*KPQ;5MzE2%<8$=~fnI$y<5@*Xw(q6y zWu@1SMBriAkeL@ygPiy#NI9NvD6?QT=$UavE5$@5-|H2rMYh{nL~c=IFx53 zW2G*w;SU^Y7Kc{xC&oKFjWr5fBv$dqrr!l}!FS0hc_2_Y{nG9~!ZU`dt4^G%b4fX0 zXQNmD01l4Vw{F{9=#1P_m6EpWxB347S9d(i#J(BSr=5IH@ZVh3Ci99!o**+!l3NU8 z_wq<&xREeG%OZ>(F^aq4-wI3NLww#Np5w)umC~87hM#Y9cO;hWfUKdGGQg0>DoXs= z$i_;=RGmyCr8!!6)$L}jWZO%xWo5Ej4b_Yun#uZY+s%GQ1)}QuZmr^fC*jhM2;SUX z7I+Qs+3n_&2P8uzh?{{6g$^IdtP@TINXbxmgP{ z$Xf&u04#SL7473x!{MD5TFy&OwzKbdt-PDE{OU7m@ljr{@9D4U+^MhWx;3O;XM{X) z;z%vvn6!%%gQwY_^_ZI8Sr%V%cQbat&pSRK@ui1^ph^5)DzngmEO9pWd8uV?ADD_bre*RZEtqG?bpj& zcCg#Oh+Yc2y0p}7b-xx1nM9J9tnZfgz)EqnvMb^+%1Hw_7&*@-r<=tW`jk&^<7^tsC3BYn9sl+Wl=*=U#KQ zIVoFqm-PPt4?|l;@SlS89Yr<&0EfCIot@#b4R2+BVTxx2fhL&U5u| z5T}OblU(?tsxFXza=&KOLrF7|i5 zDbF7wC;;uxOmwzh9@TW_w72lI5$o1TZZ2*vr)jQHq})kZo>>w(HnArkFxCYF`8{ z)X2#pu)Ay1!Z%h9r5L+P-4f{5nl9S)Z`6pXR+XwPdfU<2Tky7u&d&DNL&rWb@D{qZ z8U~7D)b%NDq}4Tx%f~9H84&qCe(=%&LX5Lxsw(Iy^E((H`TjuZrbR!==4_D%C+S#X7zU6+S_H zRn=Yhntq#mY!G;>d$qB+nhP5wyYdtL{IS#?{f zATr53u6|Vi0G3Xf`A^EA92ey9Yu?MSPZ?QKhLV1F(@SXDx2D_m)%g|cI&!p?mi~6{ zqTg-4d}AJg+cOa&0{}>h)ij&i6iZImA=Uvg(Q-6m?p* z?R!1--rw*wJ(4RpV^v6_EK33d1}n#Lo}H@1x@nde<}np!`G=HB=i8B=$C~=wQ&U!# zQ}c`@9A$X)`~LtVnDGaJH2az1)h#WBwD4h}kq{SGz(2xso(H#ITI+lns7Z4NlY2V6 z@SHJGoz359^gVIgk9sVjd4I*r-Et^klET7iA%Vk5x=w?P zlgaZFq1t&JK?OlSEqK?%7QgV3rTlVAuu5fULpqrh?LEoHK*`TeanD2fKNVskvzSqw zQf+VFN3YBL&)&Er2O8Wm=LtDQ&0ThB?dQGr=$k#;z++7C=YvJe5?@=#aO`DRu)-A) zfs7z6)RT~Lg(r?P$NWsy>?|yxvVwB|0Bg8121{bEv_=5jINO4F+y;AB$m8(o(WNzK zt9N=WZ-47|>$mEdEJLL_^!Z#pHF|g6>(6E7*Uhwh8Lj3o3eWbQs!MHF2Oy3|Ju%Ov zdv}2(x|=}OwCjyHL4=LWfTNaP1{ZNH!5o3_p4FyZT7^pTjO?V-SGP-ke|DEV`~@1= zN)eK~r_UE}?_d7_Nz?M^W9kBDktUTsLxd;@z#l=-^I6vMc{h*bS{E$lP5VG4hYATj zPdt4O;qjPy(uH|BOOpQpcA9FvcJn_;$5W?Pl9F7?KYz=v+V8H1d8cWn=T2Cfz)u;3 ziKAm0uu|cM;0N&Fag2+)1t@V1lD}6=q#I~8>jS}Ju zMYlg@iYWZn-XwjXj0Gg%6Wiag71l{;Z&XU#8w6%X-dLaZMn5k8oon~D(u^k??7s!K z`T8Hqb=00Fr8!wHX8QO3t<;j%#@$eR>@r8=*Xz=i*+%tI_qih+d-{Kz z*F_mg%Tt!TVxjJkx~swF$8xBH<`@}M`u@JgxUUj;l{A+7CB3}YS5mLY6FyicINWo9 z20Q!LrS*wZgXLPDHC!sIG@H=j{{XOceP%?|_3Oe{cyRz-k>_?m+yULd#xMnR5%@~m zRgosTu(x#pDh9Vf$FB+j>U#9AI}esi7cXmH-sZOZe7~!|OC9)(WH8Y7G_>W~+m|i; z8{zm%`4FniSji*ug?)kP>-pC^;@=7BcJ|LCmiEkW#Y0AUegiWhuIzT`z8^%QSMNGQ=69Vs@!42rb43QUL=sr)?In zk=trhrS<%cZ{&TQ;+`-f+CwmwR{2zs&eAtvbDk^nOjK7pidt*4w$E?B<=p)Sl}MEvK|x^D_;chO#5cv9xpRFT@|#dWN1PzslYpXNr+-ZzYnoedhqJ|y_F z{hyj4S)dao+J{p$aRt8JW6D-!ZOs5SZ#1&&Ka0rn}$r%T=aMGn#rAJbPpDdN#uJzjY zy}u6kHK|q{iPVdIA9G4y9BV!rcavYU)a}`zc8g7oW4aNjTwq5iOrc}QP~At&NCvd0 ze}sCchcy2H5z4P8mA^F39%+V|g0 zyzlZdRMl!e>)ZYt`e#F-YrYlGWRFd=xbZ}?d8;9}wU+$C6yPcH-2_XX4^R$x=CmeD zePZ_SQPHnwjnd~g_Uiyx4WzavWth2p#rYB$=l3@+v*LeQ09xf#ijg&bsNt6Ey=dRDI`#--v5 zyNl~sV#U0dDR7r6a7xA`nHkR9V2KVof^mw*N-?JBMO{6wb!C2yr}Gq>lZ@|f{&w`+ z^*Zei_QS*%Evi`Bc#}v{q6w$CUpPN)r2^b>j+>u6f~L7Y7HYaahQ{(s-y7>!ma6c> zDp)i^1R#yknFJyu$mMcC9AKVv!_Kjlt-9#DS!(|P1^F6c7qg0-CYHT_;Qs)_ zm{vYG@%FucZKrr!z*gEVf~qvvvs=v)q=nRxBL%oXUugcl~0G5lu`?=j%QpT#%ROrnp?Ax`Ls`h%> zr?%;?sok%ka8;oFrR@IzEj#)CYW>Y!H{%|WB+IAj9u(5P#VSU14KfpPmB7P+Z8(xO zkw?rLJ*O%OCp_!T;;#+sE{|#A9UoP;S%fx_YC2uaS9)r%%#9R^7FSK(QBd``)AmA5jKWRjG2w^?iQZ_#x7&htXkF05{UwC{D-vulJ^ zK)Qtby|kHZg$6c`NP#^80~zITD(unxO1joW`Yw_7jS4AUCtWr{G8ZURx${Jdqjyyd znCGD5Rm@x_+@&?IdvCSBt(n$ed`^aBEH*hi=wpm}Z!BqB?;|V!!rm5d$qJCPh)h?NPNk@{KX|4YNF3#QiYOmby zJTiU;U5_i_{+Nw5vbhGy<%wfP0Fc5*18E14q_NwB(yrh5e@gI0gje1eo;^v8yzhyjpY32*m#HPGr>tf*Skm6Lk){$`WYvTa@8Rk6!?L*A6V-R#}f z((R?*y_)WE@OVPcU)SyL=eO|x0Ee_2Q!V|=O+4C`q8>%TE@dA-$`!W)>Io$0it2TH z9R~i@yhUfINvP=d3byb~bvh*1GAn(=P=+*!e5!F8vE7V%_Ts3*gdtJ1&UbCp&{Pp^xRp z3+Jq5SQ?Hl5Ka=B)!Vzfce1|vE9rgjzP0L8UgNr2dTrBnzmi+D^mp_x2z);A1;yp> zi2QHx?@GD4y+3JmyLjwnnof5zM8HTCa6UkX3OOX2eddGU)YqdIT1SShrgsrE78dU_ zk`$ep5x&!w+F4noY?jJ^arAh6B}G@Eze0q^~8veHYyH{5mbQ zzDA)d=e4vT?}HCio=`9yz%G0EC(BMeG*R z#RM`*DQ33|l8B^?pcy=L3^yMCCi+La|%3Z!0*U+_HIRG~twsYz;`zYO(``ZU!!Z{&75Ql!W1 z(zaNTz!v$Jf#1Iv>+M#jwRmC{>YqF0Ai{)UoE(Fbj+p>)fsEIVs{Z$ty*ECA(r%YJ zTAo|+iB`|Ul3K$AaokMdA#&_+xFm(_dJsVD{@Aaa76!c5Bej-EPs|oV6-r@)0AD@2 zj11?~9M|MrX^E%(w+5c74d3S4{B85mpV7V*Vd_VPq^0(%wQV0nzfbbq_G_3D!$r1T zF{ZOy7zL&y+xzEj%5bQegJo7OJ-_UX6Z<-X_X6x6C=RFbpV`u;yJ zk-w!}we`G!wYoOVvb2Pj3!a-u=L6Zk?laAKzr+nWbt7-8l!D$%DNHg*?pU(8IosTY zU^oN#hpm0>DXNYSpPNUsY3Q%2e{x?v-OtZ+93r5q&8HhU?zCF{m#wzF{{YI%=}(8? zPvHF$-7X|$ioziyw!o;n7a>^W^MTOxuG-0!U=c*Fk*W|k09yyR$6WeX^cs1TP76SpqH(&c`F@ zM_%Ll`c+15oG;wX!`jKG(BnK);yECYT4}bD%6hrM%=cy2RnCe{ph zQ#)=l8&pXcjFFbw3C4Pi4?$hjVC%^#ZR!1gS3G<~{hXVLdM!5UJA}864UmDCSuzRE z0T>5A&a}~4oJDG=rE*FT6poya!2N6JY0`uut+DgdtyWi3->3EcGb35l?6mYUH05N; z+`euJBd0kZr>1$YEb)Jc{70y?XTOkPDb$y>#6NW&SAVDL7W#?MuhZ-S0daQ~@0Qa^kGiSR)aN+h_S{8wo*f<{ z@YBm@;tfVgqF_=BTd5~2ByZHku#*`9h|2o&Uk^vx##gAedhcy^cK*N5?W$CzDA_-Y zZ4!MiuaP`{67asSd`*Rw%vW~NdGbSZd@p12#&$KNgLjq*2X_8JJbTo+(Ph2AeN)3X zTE?GpkqK_#y}X9%%HkF!N(V&*uwX{Qq=GSkd9O1YMw}z@pQfiox=BWpBr<#CTPG&#;l2BYvtiabl; zh+5{?;q-cr^6`Jfwm4egCgaHpa@oscF#(cJSROeegv3gMijq&OR)2f90>DT)I06QL^;jKr+o+`bb+Sgn&X_Jl7#FO5c;sr8Mpbo6KKf}*X3FjBCej94q z65HHq`eB9MRl7+UuXLia?b^qDZs@rKkl+^D19laKN_6FSIc?tC?X|CRd8#Iyb?@8! znlg2Jrby>lbz9vk?%Dp)Kb5FJ=_{!NG41mS1pL75L6ONE3ZWm0hPRsw{SMPh)a@V_ z2UbX|q?EWDu_+M}tV!xN0CSeFInjK|YT9&G_pjw|pZqzcI?5@*E&YEps!tE;dacT9 z*M0)<<^8SF2=6Z?lFoQSj!QJcT(fbFy9YnSaZ_GszYcHKD=UqCVzyLeg4W8~Wr389 zz@nyCBOOq3LG+?>hdP}~eAevjyKS}Yr}c20Wf*%tYcIcF>-w=u(?h&EoN1+Kx`oNN zoe`JqQoxLW?Gg>fD9GoKs@!eKCc7E#_4^nfN!Bf`tgYQ;XN_6oXE?(&k0;7O=L)XJ z7{K7;pBSTvm&3}HyKAq0ujTh{Okq(|ag*l1U+eny*zwO1TKG3pz0-8qdp%o*GSc}=X@ZA^$O=!VLVS|_VKu>GFwTsY#16UG zKm**;sY}_Vg{3Vt(Q>5xlwJP-@>@01&qXR%le|^ee!iE}XSKgl9V#D+J}!pL>w4wy ziDHg&?R{yj*sN;1Hg0B$K*XTuU5xHh0frB$s~B35~p#+y)QK zgpT5}d{g1eZEsVw*1RL(L#oLtlRw)oEv2+(+w!RlV^&P#B}pn2hZ*70SuwzssD#O_z+jZzrmhHgL%OpG(T1P)KM zs!A|eiAlTcn(Fkun^E7(PS;lsZdTGtD*Z3>ch&2@iM=;nZfJI%CwON*4Dhdoye9+- zvOckApg|4O3=+rAGq_Q=_<&>A9E#{Q-3!8+eu|gcj<>98vD#a@EShuNSQe1382Qsi zyT%4SX`EvpE-)+8!qSC0igjC*<-OhGeLCrN*;`bvuTDDEop0e<%dYR%&s(j!+tuAv zZ9Xkm!j|`%7lLne>sjYmL9qSx+|AHA+bA<_B}U`7JRCO|^8WxF%dJ>n+}KT{YF2G= zG!uDt)?QqRATGp8?QrFJ13a#Ff-!?#7kwb~vgUX-IkXK8=4o!O;<)n>CtwKy517w0f(CJg2X{Sl>|e7KnTuD` zVvZOBymu_iZ{$YhxFJ(<3;%Q~Y;7qkJo= z{{R@mloS3Wy7_76WqbYSr}(PiK{d{wV->(i-W5q*TXVE(s#LCV)HyjFao)VH{uq48 zUj8#9N0!OtAD5QKc=WH5&nFd$RN)G8V)|S1Mmfb(#m2|~Z za>&sna)KF@x%pS17|wXderwY7Yqzn}To<>IZUUKBWr*@JqZ|3pJmVFB7|D)e zzab33?%GKWo}KyYRD5%0@OXYe@F6RG337;dC64!C-3dER26ObU&@hzaDRatqz3+Y2 zj^8`0U#i!k`Tl!eairr2J+!x8j{R(ws@-(zdmqESLJdd5+GAPCm{QpnGJ>GtK-vdG zzym$G$9nD}oFW$xBTKuIpzSA)21g)g{{Yut&`uHdG}JU)tM0MWFVFWNqlDnkMrNPQt<`qMG1l+M-{s5vD3(TC73SzhTZalNjUcy9Ay4IYeqzpDHYc$KIz~v$KV0{E8W0SN(oD;^ElaZ zO7Uf8LkW`QMDnWqp|<249zW00u)I;PN2FOaj{aC-mUbO8+@9UK*RN8dg*Pp%c@*eM ztysZpclw@nrD>YaiM3~adMT~p60DI#k}lacwl`!30CGJ$dRKX=cv;L*T#IFd#tNxO zQw`4_#6iF;M;&YBRvvh@Db>-vyq4<6)?+JE!^Kmh@W)L$_rJ{X4~qU9g40+R>#4kI z6^Qbbt1fUDl`G$#c|4D$RkZOP{{V-rQrlA2q18s;CddPIG_a>q9#I;HLO{xq$Iagr z^OfoSMx{te-|t^7y$@dpSL<{jn%~pH3n$vJ(VyA{Alx%Ev0m z2hKq(r)~!3z~bkLyl1F*K1)3wD_th>UQ-nD$)?5;;^R40^9zl!OxmnxOo>GJQ@>TPM(eigJ+s5ge~E>_|pCB><@7dmvxK*I&eXxT>5 zhE6t-fH7Si&Y9txyD0S!hZiGBXp!O(dDl^_P1j>CpE*S-B$ z_3{YDQIkt`_jdHZ^>YJ9_;KTXcUC&QdghXD;$JFD-49Wc+1VUrmTPo_%aE}wPs%gv z-nv_K*E}QkfvM{{d+EQs^DVB-cGqx#SZ!G2kyQyiDP=pi0C~-Lv5hZjf3>$q_xf#p z?0Pel+${Bv-0jl2Y0_x78leJ9fa!gve4&T~?E&yJ>5w?!3gxSaieBWSzvJ`K`5{LRsm{$m#Od^H zE5#PZX|6nKbjhX%5J4cEMxz}0vj*Rg4`YFxcQu!--00eZT?Inje#dLD`XHmAZx03$PRn;y-Bx^O5<;9%K8vg(rPaMVqcV{R$AY;%D z9Bq1(WTh>hw@Yur&&hAEW3CDE>c3C;f4K555%{mdjjx>(MYGa%53;+5k5asn;TCWS zb1aV_C`K?yDn4ugdRJB98|$#kCxW!NG|fKY#BxcaczKdI*c^Z+nolkAGCal%26DN@ zWr}{*lcNP@*2(DYt-c<+yK8N?(NKh_M)Fr**H6&G@zt~I*Pmt9^$DW6^P*I;o+&0I zu-eSdW01{|IBuPR>0W26>wX1Ia@)g}Fxg&T*{QX6)T|}4iWdq=0g_le)?!G^ii&Z; zVr)TB8nrYwD(_I1;ROI6o-TB+^Gj*R3_(~l&{t>Iac33qlec~&aXOW?I z54*~m7G2ou)RH;eqrXi*g1lGadrd#aRu|d?lUu|*zwFx>;f`DZ{<-2|fTufHp};4e zO?N7Cp-0<0TejC-+OxZk{{V&7$FIzklq8#$X^*C~D{n8|#P4q~ zjj~B3vXFN4HRjf#41Fg{5h%)v)k|B)RqP?n$yGgs`~eZtgaoVmLsmi z1SvZq9JG>K{Dt^D;ePKVV<&0Ub(gTCc_gf*%G#3b{mxhO*85)i^Ed4uJ4!xR)p=;u z{{Syey4v@HEOk9v=U=uH- zwF#|m1-efxqWa3-Lc}5*$nKveav1{vIpFifg@cs&8s&SZ%Wu(J=9jB>G^qLD$G1AOatmsYO-kWB87(AP1E%2RGMW|@}PH-_#F-qg*Y8*9~v)=wJWde zjWoxkTfqsLMfRUP&Gh?0!F5>trHto4DFomg1Ul`x3jm9j0IFO2QhJ+Z`eLw zoRdpw@k>;H8R_~()sKd*B#5kEZJPMsIbg&Dca2|TWrluTy?I^@dy17VYeo+7S6j>c zlIzu9qkEj3zU-qpD{Hd1;@#ifr){t3&!XxQ!6v77tZCQsq|D13TisiTSagYYyX}vs zI|gx+UT>&qH9cuppCTA_H85^r z!WgzG3$Se2--0pDU4J%}rbcJeyf+rFU^eWw@coUotbuZH!dc}r22%e3!boiWO??G8 z(sb+t+RSKHW}8%5G^|%ca%rroQUa)6;jc!g%|_ntrEfzA3iS6wcBJyp2Op z`)u)m$_kSs%0VHy2p0r%z|D1^1c1=ISrk*MM7pK4uq;qAfDB|X`9L_xZaEmi-uKEbVekzCH5^V2x4vd-lqwT+?>`Ai5OIbpQtpy!N%$Gv%Ym|o2GuysAwj}!Rt z*AZ!UllwfvpeL?5t8NfY- zeksM=)id5{{goSO=HL7i`isKKF{Q&0alNGHegG@je+(vlG>DP+*{CBd&W2G6pC3kyY zqP6YP>%UX<%Jr&XuyBkl+qLz!?{)XDyRjaXWi9I~-`aV|PX7Ru{LFde;N<-?U1i~k zEk&iJjEW}VqkET`odz~dwyPZ;WJ?r_sy$`vKET0i@C+j(ns^Xsq5=2Vie%Sr1Otaa+|*X3(; z(DfgO7Srk86Vh$sSb#R@%*ccsxC}_i=abLZwRW~^GtMQs3ga7Ba3CK*G1Kzv(!Zf8 zMi9bNG)PSJE=Ap&Q}z+5L<+1K-eHZ+d3I~{h5qZPMBxPn;`KwznG;Q#{wVBQu9 zmP^;eW9AHGIbLu}#h+d}`MBxVm1i0$E32(9wYuMLmghw@siir|yEeD-^G7>*s_DzC z>DpzEr=wn58Qeu{b)coNw|4om9TcmnBb*EzazPoc&8&Posn|g+g{F*`aTYTDp4i<) z>727E5x1BJP@HtZ#d-A`oFf^oUaf7@{QLdJ@Vib?Z`XhFu`RBox@Mm%cyCGY#nsz_ zZX^vok!a5wqmAQozb{n;kGsef&)T#a$ePW3eWz=w5|;Z8vply-qdzksC2@>x7{c?{ zlU(%bDiD=c-!=BVt-8_MwYnQkMp99a!~Iy#*7Z$0!IK?GX-T0n6C%l{X%V~=J^&6j zNMAhl$S2T@)^+}&4~_2aV%I!pdugWL9n%=}``G7l6!8B5Z@Aba%K@0d2dKpAPL;R`6GbA-bA!lHJX%XyWPy zjWe{YN?llT8w(&j1JqQr-VYE-rd?~7x<0XfciKiQZe+KR6Tnoqjfvg2rbq-2yXn;& zJxpyEiS~)5_gm5adU_bT%}6m^b_{C%42fOgE{2*GRTwFSt$-KFdu0TBQ z3*?m;2nwiBbA~KB^LJWCg?FagH^c7*Ailhnu4ab&QL2VfJb?*1@O2MlUCXYnV)$=K*N_m=v0n#{M-S-f(x1{mBI_r6o8$T(r_7v>e| z(!yR5p(v=uEu^fT_Sb8F+t<;nJuU2eW$ivKe3g>v>aFtiX8hN>ptU|F@Sllob=#dr zP;OcDW=W(t3aKiy`9P194VcegdWJ0mSfIDpFFY>xmdh|}+gmLf?#k&{k-4L}nidE# z&+i;B1P}=(y!8rnCZ$W!#nJ>;Zz(*Kb_hUom2f*@dvTF?!g;hUH&)fW68Bn+ zu(GYpmr`1itfk&Sl1S0Z>Pc4|jt?2b3rbMBs^JHFCl`G_O}(~ujkR`NCQ^*zr0(y3 zC(&zkzDrM3c0UjGD6Sq&GsHg_d@+9%i6@g5sj9l##9NdO7D!S>3-avqfqm2+S$lP9Cqg=d?fI=iBh7JV=wMGB)jaa z*1Nr)tkRuXPM8bf z`6xwGlC$Pf)uq{K*K2&6XvtP|*R-6!?c4q>tL(4Y?wYo$PZfA#&qmW>gTnXT0?;(1 zo#%Dcpj*a}^(u%^O*39Fp7}QO;>C(@Cl27mZw7XVA*?d7amL59z zkW)!~6KAIBivmr!22$5TJakja7U+I%!xP1NUxPH8Z97N!e`YmNX306biYsXBSp35m z63EQ+5D)QTah?dsuWp52S*lbUTi#9lo!Z;WW0#YeH#WIdv|8T%wblL##?OkS@Wzp( zTI*N3?wPD>7IyL}78mhJ94^Bol?>*}_iB`mNus_1j$=GL$dx)sCrN+ADqCJ8Acm z=pGo5>Ne3!smZNc>A$@@Cu13#YLg*&LZc`Qfl8eGt(@lr(yx3u9-V!m>-OxPZ-}>x)mT8Nct?aI>(^j>*cGs)# z`ks+#YaO|15=q(Hi9U7#h#h$t^#1@nR_&eS3jShT$fcBTc?bmdt8{QPNKb! zi@`}kcD|+kPCHrceCCKui~uAt1qWgZ_8y|SJvkRk*KS~7u|=pin!Z>Hp~eAFah`A+ z+~n7dLTx@)dzGoiQEhtv0A7b&bolQg5(dH%g~0@q$pf#~`cgzEj2P}gFTmf90RxT? z9>14*Q<|D_d!pk>(`svH{eNHPJ{ctn48^4^OGL#>C-=0m-XA$B_QelDsyWd(RizH_Y(~6a@%b2{^$yKPcntTqlCejiiA}MLW;LN+pAL-UPCd>BbL3>s*Z2mq${T(e30SRbZ_yNC;avQ-Oj{p%wA@ zl-%mLEgI|Ot);zmeI1X|eyvV)V+xAt`SrVZz5ajIj*Cj2qe()lEUhasbl`E{2i*R? z)wOx5Fazw1Ak2R-AzLfJ+}`~4f81wTFOmI*5SM*LcUdEJT9*G~rwC{+< zRH-f8oBP$LT>{jD!g@KTTT%vb1CYzxceG_%{L3)qu0yNt&ZmFRq+LsGp?)Shqjgo%=XW#X)4ywh2}wYpp?hC z1ZS2x6_w#TJ%3zAgH*8a?})VBNVs%sriNcEk_#aW`~L1n&I!*UYs#r=(VCL%`oFvH z{TbH@UzYm%ck}+f^7437!~PzI>eMCnj|46rNLm}2p)Ra&$s`0$c*rMl9Xj)z?RLuV zO_BAV5BSnJV+65&cMF`*#~Uf*d{M*uw$9^%6dZP{x1JZ(^#piznRRRV zq(&BZx@EPlQapfNLn5>eySUrH3^S4mJX7SVuT8gSZrgmXzu(a7x3iLV>HT#%`%ejY zuGd$%e+tQ_-CaoIdGS4)$v?}I42+N}sXTMI_vfZHb*&pz)};|%cz45^RpLe^p65v# zgYte->WBif58)e$BzCVq7M(ik)79GQ&)4O@pUA#=RHu1IUYh*8*_m@6{3G`e4H@OW z)b3cATT#D~+F0C=zR|`IM5F*edg;`CDQxubiIeHqvs^>s3srwJ%eJu8TTxYfV6!sG zB!m(CCPe^_q*o(3dki^CoV)qH1RHjSohHGFY`RDHZDdpT;>scFBQdfRW%gyUr{U+TtT@THf-9exP3__Xu(e>2I`?(J;# z8U8?5&YED6lu%AKf>?&Y1A;lv68u@xqSq}n?-zJaOL%Xj*k-l1yM>{Q{n;aV?h2p> z2ODqzrOfBeO0;c0k5#7oJMY;UMw7%zS!-vn_1pTf#&}mqyIo5E07Tb(MXf_Eq6>iy zwfkGPa!=ktC~!jOa8CSk4O7%+w7I-r5I(BcD`y~*Bd<#KIt*|U|R<-V5E{{XL^=8uPbX+4GY--uiLA5zv?LaajV zZY`&We+Oug5r9C(20Sr%q`H2q;%^i9k~uu$Z*=QLw>I%{g$NvvFLxhx zq&)MEF~tflmL*~wFQZ92#U-Vkxm&u`b-&L}g;G$a;R!gk-?rXg<t}XnUU&<@mKTOCA4k;=xfP+BZA5s^JwD*Ld~6Ep+nXzr6amLxl{bWZMe!!e*8al( z0KzujIn!_M5!CBigWRl2rvq%hNLN#UHz~$(>swTZ*RbwWlwj7*F`eV(ccb#M`R;Q{ z)b6WY`tqmvS-(AgOzSQMk%s%j_j;#>JU^-2!@5l;PlEDfW>8loNYU>KPCyJ)9Aq2= zSzZzNc__KEwU5PCx`?ow?Jzc__M1|~mfT(wFU-RP?^VZb-Oe~1Jv=oRIDaFwaUN9NxCk9Vu<**9w*v#jb`e!s2R*y&ywlK0B9XM6iu?i{1w zV`E2!kagjXFmb!Ccw0XR>q)6kuXwuJ-%hxKfAmQ0Y@=&~7DzI*P=@jd;FcdT-Tt!! zXzHe$$>OTe*NYKc3DOOh;sRVj32cJ&W z`rZaIo?T5X?EZVMz0b{anzE&v-frsa@w40des?;54&NP5MYO)1+{JNk8#xN4GDkam z^~lfDt#o#NTu&H|5)>R{DJPM^>&I@@z9LR^(@#r&hlz(#g;v_@`7=QQxq)ACBp;i} zV~ii-$2|TO&1+gM;J8U`)G|dOl`yNj1C6SCa&kfaE5}mgoxiV{?s7Vjzjggs=rpNg zxQ<3pRx$`?eoEwL7#;aPl`X>-k=7yRN3?9(*)G3a_2Z|~o~~}?J4TvI`b1_)vhszDseD zz!>(fR@+cjmtX*tY^f}B*F0qN(!W2m(>+owi! z9vzXct~{iOyv15XjyQvFV}Z{jkMrwVCc;=!;@PfP;C;k$s&F!MkGwsHTz3M#pDDpg zr5MgnmzLg5-pb4F*VN$5F;I<3QHs0!?dI3tZ$k$16oK|AMBK#+fXl~olaBQaqRpI- zB$p~eg_DimypOx>)Z?vu&O4P>latkVU2o>D^z-U^^r1CQKF_!Hv9IC#gKHb7n$9F* zi~{e-#&eAJ=a4F27HSP1g(6LPBHJvnLa5|68>t&kPdUa(2L`^!Cao&Cct$U}+q&2D zx$;@o8C0t-WoNznKf>C7O!t2Q!S!j z!2bY0t$#pfv%IXlkK!y9Hwnv|yE(01^|d?Yu!#?s0RuSxK6`(h`%ok>;wM5tO~5e= zv~knkx-j(lDaIc&lMz?iPE)p<6cuK_nWdQ*$~nT6`J3DfR9cM2*3`x$`CIM-9#pqc zk4*b|SE}TrB?R{KJXV{Fn_KyGIlBurlJHF`x0>Yc{oo(~e(yfm?_DZOYYatWP{*7W zW;i30(zjgGo|_mo3RLV+n$F%^gQz)WkN}{76ak*u{&kyj(W%UHqQ(Q{yX325Bpy0` zHR{4nQP-j1VkxBBTfggLh`sRDwyl2JrP2u8sfzv?<9O=_-#anGR{=cs>=NTx)^IyCEwEnlbZ$r`{xp;Mr3thInv4?N^CcAJg zq=9g9fzg92oRPaHpuom+(cdMZu{w^Q;N4XbLWGM+)M1y+Jy&UMt zN=i;D$$ih{zu>NieFWtep8fly9__q8B1vM}KEG#gc1m1Hb19x{R|6pb02H|&DFIu8 ze+tX+o{g$_fxoi!-xYsrU0F&BL49os$Q&;riG>?!9oz%&Tyw(09Mxj1@2;&|y5IWp zHKST>az)?euj%@lH~tmzeu!t)S4gwd-ZcT8uJVqg0N=ZmY|ma1&UW&83d`1Ye-vJ5 zscolfacXQ)VJT!(pmC%=wF?qjHX4PBuwv%{gPVgJ4CDC09CPa~u`hviN4dYWx6~}9mEnr+3m>*x2+E(8 zw!m2qGIAM+IPYAziPli|uiaXG{WY@wnWrr|PnMSd0H>js;cNXO`ctCmekF^=aF~gT z-p75xL6NY}v3MZy^Zdkvo`lyK@j@Fo^>&|C(_y}n%&3+xwIre}0ydqwB{a)2mLWymJ;FAJe>9pvf+e;Y(W=m7|#H_xF)SYb1-w+Z>XsKOBNl zM?5jA7M?A&_{O4eWEqShyf!Qqk?n9mWqG6xOAV zx2bBnoR;=~3$Elqh}RR#d2un=tHC}~1Yv+aYCwv6WwTNyj~MJ69_|jr<>{ zUQg%hT8686Jb{DliYq}fjDRCT42p1a$3O1$#bEF?VLxjq+EU&2{Nr}Kth(GM2&g(r zS6yxSY_D#u+si}J{0pb2ihMkp?eD}5LNla9lD>R7_M2!SKRy(!F_n*zoun@r_pag( zi7JT{`mV2_-&hi3hE{~ZJp2wKg}lZMxp9J^9zJ7S*!pqBQ)(Q^r)}dcTl15BZuL3o zrm9{^d0P4;uhX}e%KJPibuWniID-3L@c#gWG&@}(Nw$IwdBhEH6a(`il~94kM>ziJ zIjju>#@;Ia+r6`&UD4;gwQ~$`Y8MMUmh%muExdS*RXHph%RhI9BQ#T?L)r3P{Fh$p za<``{Np^jGI@Fw`oT8grZqmNKcXrcWn=7r2nDx8sKNAa|A9%vYO=+cDi7d{ICA^oa z0Zq*^<)&PKM(pK6oOBi1w}|JrwK4c_O*hLt%@Ado;kfe%ETkD>j4JKwu_->M6^(p6 zs#As%o0qfE-cr(5zgKIf{cN<;QdFZk`)Q=Smc8!ncK-k+efty5e5fESGcIl!D3_0)vg4HWH%) z19`_*&M~W$Fg2r6O+JeEw)$IEuKjgdrPRr%RZ0+A>+1giUHqQbZ5e(X@lSxvSGK+h zTdVu4Xhg57>Jteg5}p8r$&g>2n`2aC&JGQE_OYydRMfAcw_O+eR>s;^lG{&Pp*AIj zaU&RQ+i^hI&hS$|c(!p~^d{$9l4&d6$tBnB^G^Q&Jx+gP$lY3xRn=d2+oH9)TgzSZ zY;CRlOQBvxCxmTaxwv*~iT?nyX7U-)Nh=SO%@Z;PW0Jo9qPbITrT8hW7yc4GJj(>C zh?<0Jcd^O9D&gEAQJfW0I3WDMgXz(&I8;j8ZMF3D`Cj&YJjuM=r3<%v>2~zjO;(+B z>uq};-S9t6yVSKLeM0hEqLA-NS~$i6$UwnF0QF)Ip~Za(s%f_O8dTQots)dV%O*(r zf$!~Kt>Gf6VCk*xf5rLvpO$BJIr9mqyICt+rkC|NuZL}NkY4B$#-?2=@!(%E3xN|2 z=v0hjhaXH=cVRM!O}S*5K@r9Z5IXiFuTSx{{TDcXxUHY z&9XT-V}iSIagLZh3HLvhRo1~xu9NKA#iUgvf;r%?Z>Y&1&&ZuN+v60f`4lGV5(E$Ogv)$0Gs~+N`9q(8Qf{@4V3oLsylCK1Z6^P1$Ko{2H)by zHOVycJMM-Ogq#jfPQ%u|7d4eBM$7VA`5&g>69XETP8->|F8=kr zwEn#NBj>X?dkWI3lU+U3-_O+M@1x%&%wb|wv33kt1Dxa);DP;3WI1IjRhWQw@HUcj z`TBLQlgG-clTB-{%{Q;(r=j#%K3T%gZ_DNWW$h+MYsjHsgl`fRZM_C^IUl7n#J^@X zMp#QQmEe)uP1{jA9=OTfj>oTB_jq}!LMm@t>GI$6Jlx?*4sJHHj<@sL*S_{XmheTi zNut|EH^xi}kfUngsL!c6$o%W7)^!!qG|C(TYaglYa#vR%G6;5iD zYE*uIna}B}){%+)&|SAaS%~EIsOA#SBE=MEs)i&SWcRN|no3T49z90oO+$8DYjbW) zWqEP55TG2Aamo4`=Wk>;SMb|ODCc+-GObOiD3@$3yp;XvHxu;_ zzaS2IqHK?mq{eN2?N380aCZNr2CB!;&>67Bp#K^GWHs|D!3>M0Rha;wWHR)a(v+;~NCjA%0 z7CPRCa}Su&PO)tysBMxtA){_GGTGcSn*7ntO*p}&+x)lwx}SM2XhtpSwfuVDUj0mH zPl_kiu3)jX)NQ8oVQYnw7K!X73J0AO!Ag{1Fnr8z#|^Y@uVC=bvEuvP5?lRZ=TFov zjAeYSY8b8BX!h{Sa}2Kxi^n{ky^cWAQ>Q5N!dms~yT4EB$5l8rP4lGJ-TitQ5bBz} z&xu4fx_*nMY9UZXYWJd5*cUrh5gb8RNB)VwkQD z9yt|>RsfT<#(go4YbyTEi%D7SeSYmU^ZSUR0VuT zIX+4H`9D!2bY&*YZ0Uyg#R#IQ2_SPf1;oxLB^BH+qWB0ReXT zgsC9s<=NM#dh_i__?itpq1Ci`^($XEJXcFRHd00vhGIzF7@Uvcbveg8jMo-hR}n60 zM*3)+yuVJ1Yv^}k6eTsy>t%mkjqN_q;tl1kwV3fOz0QGi1`d^~PO@Am&)g+MTR6rt zN7A^>MEGmM*8=BN*6lR4no|(dkR4GKR1$&OM`a2+<7vlYMOD<}FJ`^#>m4nA_p-N^ zy$On!I*MEVKk(m)wQr_)Pg3yY+UB?7JN-XRFmATFwz-ZgTZbG1maxcJxA5Z_$E9$3 zhL`Z(3x!W?X=4T~R zGjX<`kDvS<{^OO=HT?@u)!fD5xZg=g<43r=wi3v(4)wSJP z=06E|j{4$1FUXQ8^$V09Ru9V2G1<2qVBnHFV!7+W3ZvHXUHWUjxBmb;n8`{nnY*iN zv;Mz9EbjbIY2pjLTfw(&E}s+Zxv`G!XyR;R3RSmY5xXIY#t6wc#*c_RVWrEa+jw_Q z(`-B&sW3aBy1u+=V%&1Bgf=ASBq3Goa^%HTE zah2@6((?2F05!Sh-XXP`YwMUUbyb?+{_xyG5J)ED83PJ4f!6~h9>Tg00eJR*1YO(M zYu+Efe=M^q{{Un`vv10|ic}tB=bny$9CO;e3bB?VpR(tS5*gkUkQX_}0UW94k=m15T6{q9 zRB_t;D!kPpwnUEN^Ta~tPdY+WJlk<1#s~z0*}y$W#d(lY=WZ{Rr0*xK@BFUmJ6Ym@-kq)2@Y~C;PdfUqgnUWh-DTtO#NHUSd897TX}WaN&1e*G7G$+9yl}@W zki>EiK830H-d_sEr$ci7Dw9yvl~y=3du=>Ra1U1_?29s}1RdP=SCqfqj0W86aU%%FxlfeV(x_4z>6t!X?P1%qrKJD=C!F=w34|b#w3hlOb_|y z2n1ksJa)Qjoq1JK*K69%HlB->SwA;zTGL%`lF(9weLCOo=&$O%cH^~A4cvI&Sc~DO zfbOBXhSQmD>@@I}a!)pz3tm}Zuav}`m(xObK<1b`6q98S7)bwom2eo zzRD{2g7d@LM7Is%d+k>5%C`k=Hz1NUiool3N z+9mheZq_)WTXQtZ7dT%ri6ur0V}3G78NoH`WolLNF;I<@cIe)=-^u#j_2^*^YdY0s zrLCpawDkNoOHI{}uRalJT858&(cNr~MY=}I1IDT5Zf)EkIL90ln)b^$%yGF(WhWUd z3YI4r&p+q$uiCLO<)WgW^>gwpOyg4@IVF9+FFwE1I0%HgPsBH6xSe6Vwmj><&F6VV$TtR zPd=U`hs{XY41l3kQn}+e$o~NK*Ns|kF5e^E!@)@@Z`6+3Fp(w6kwm-pot*QGbLrc+ zek*0zNoX9gR*38&jyDiG{{Z^^E6s%CeH;)I|VzWaeOiK?h{a7RBRwU<+I_KKIoVccyO8M<)O(xQebywBJG{0X%`**_m z!jB4JROkH9{{SX?_160sI-9zxZjpSwq#-y`Qzsc5{Cb>n8AB=*;5y|%-g?trM zm1#A$%hUcDYJQxbyA>}pr_*htxO57x?9q^l2~bW3agRZc^|xuE%`zKwL%1lBgpzF` zags?m1as?OW0&R1RMUdh-^+bIS5HIcarpSssV;YJUn}YQ>!+^9KBK4HK=MgwqD0%5 zCt8LNDdDR+Qt#7l+I)|1F0Bfb)T8C6U3=Jlh7L6EO z$Rdyc5Mv`f^NQU~)27qb@A~`>UR6@6anj5B{7AJs$t|6s0I|pMjE%>G*Qc?pVQQAM z;y4Zt#*v0g1~~*{^6OetZ6$7|Q?rwAp{o>e#}l+po4EOQ=KysW91PZ7)R}c`2LXv> z4co6y-TGIfg4MRqD=~brv`BB}hI!0v(ulU>X#)Trow5aT>oZ;I?ufFOZIj7aBP8c{ zEEnGx^~P(`sJUpUzazt?B`i{$Z`b|-yKix21W?4+uJb3$zm^9bGDtYDGx(9B+UjOl zrj{upkqOy4ZbHKZah2WQIrZyaZf{GU131q_{{YX_>cLfvG0>8C{=E(#OYmLRt8Z^E ziKfjoFcz6+vv{Nsup4qycxF5v7!%J^(zopVQK(sJ5ZY>&qQ)jG65rctaw|9_kg}|< zLi^n-Z{Mpv;+`S%a?025`aQn>`cLcJDJLZz}x1ZUc#fx@WB!S=+o@tuvPwqhg12T0o@OL1$u<)WK;{q@Xf%jW>D znPc-DWFFP#PU}e7KQGsBmYwc;cxkEr?ozVz{=d)2n*QQAHH&+TFBo`tUelH&WlQmP zgsP5kPEPJR8FIWF9+l~S62H|hh_lh2;Vt4~651IGybjWG+a_#m!2@s%M_g8Qp-&MQ z%A{ALZAp49#-%EAaHqDtnq`j?+-Mhx9DXvnl6jTdOGw6@CDe#>jQO#)(m4JcAE6kk zJ{P^#{7pBL;cM%ATPP$|NE&svKmgB}(4!Xw_xZEjgVM37N)x3jkmg@^>b$y}(Yz<4 zPrBFs8~W}|s%ct4)NWSh8|iKUNp3D}UP7SS3RVW;Z(a_J6Q1@ zn>Zn@!CW3XfO>!l$fE@+vV*5y&OL8s`DwYXCZuV#DsNt!_W6HW6m{PW zXnNhUc#~Y!n#%Gd3!7UjS?cb$xlWTqt)$b;-@gIma{cvsu8+}rE zE#P>_3y&=$a6K}G4?Sy+Rr&d&PB*o!Zkm5u?c{V*PH88r^S}9*u5|rk3m4S98E>Na zcG@xJqgz>N^4e_38)T3uV0s)jdU7*S%dWM)k1@T~@4R6xw7^buYY6Tjv)s7hB;6W< z6bkdbxgy`aqjzu8_tig7Ph6_CURuXyuKbTW)uQnZv8PQxfiJb0tS38U zv`h682jJkwp-gz^7#nlI;MX^z>%K7Xoz2dRr@R)?+-0s4F|?%PZXY8##|3_a2d!yI zs&H_fmsj_B-F@GwjCm@>({Wep=I{M~!(KCgbrgn``T({(5|l!XE@!+RyfRJTWGzac+#BSDaoJY?1!1 zPbq=P8?l80I6W)NHIEl~iM4%B%JWmW@O``vU~y*G3mc-47%V<}Z{r8$!i~o*$TjET zX#HZVc$<5_W!l~EqL#jDR=)1nH>Wi;`CaX6dj2c$zn0h2)4XxvyJ#c1lJCcN4H}Ry z+C`2waB$vSB)DK#11?DW-NtLZ)_hrK;y(?4XWHr)UKvG)_fYCrb~g!h6b>^pf%mcV zZNlXB7{jT8#3`z&MMXQ>E?2hw7VAsdEBuU`rsSV9a{mAimy_9Rt9R~a-f8{~)@&`N zxV+T-L$3g$JAFR>&dSyp&KGbN{$SvqWRo2Z4R4(l}tNcD&drN&{`tIcgxM?Gf*2c~lm5SiAwCwLLcqFG8!6&J& zHSuSFA@OdRX??EiTD|U{_J@o++nA%b3^GFbN>x-S`J4E+ZCn~yDz1z6mC~}d@^?+& zb!4ykdApg(xY^QL>u=9{>*uAP%@XSR7mF8KeFNd1vj>GdJz$ppcB6ZE!X-rj?S=$* zEO>0G2uUE42nMzFZ8yeIX-EDM-G5%yKeP)(br{@>iP#*jWMTJy@ewMJ0Nl(;#d?>F z=DA+F%ga}__w{tF`Quw4x+xF zB9p6%i;CT?E$7nr*X4h}%Nmrh@^jNi`EBykYbDpI_CLbCF)S~&ml4YveWeCOibi$< zM$kHZ-~O(Z>B#X)OY-x!d%q7?;>kaROcB* zUw`ZIv7oUOjBaC?@NlCzIr`xCt!r5)k~K-DK3?Lv#sE0U#d%n(N-h1zvxB^3mvyO5 z&^$LU1enBxgUH-ZX6cdmdsfAcnQYOtlJ%66g*XfJ&OzvUabA6Cx>CA5j64-sS(GM% zFz>Oj$is|h^`=NwppX`4l~tG_`9VE+JwfO3uB*95{{YwZsl=3HG`e5$Jmcc26W{1? z+uOk;o<{BRHZ~3djIr!bBOSWeA#(&4&SY5;QQ1$G7{QPc%9G9j2cAzg{Qbl#FE+%@ z*)_}S@TLC%1J(H-+a4ZC(&5Y@$vg zesvX-+D7m8=p~hWwphP=wNg$#ZigUqz{fc2U!G9*Qp7hsV|S(cZ~p)Tp4O16u(+i&we13AP-o+>kyMIF+;wQtLPJgxW`TK2!GOp9jG z+(l_@StE`3aHQ~rj&YC(9S1yDC4C|pcbS|Lz@RuJo}G_h%e8zaeO6ekM7g7DXuTEx z02}^i(q#Bbcsx3dJ3ZUCR`qYwQb=Q#3#kRv(!(Qz9I>)&`L|$#J9q6`UN5z{YfDQA zr;0;$a|%j)!paq7RaRa{I46%x>tXvnYt zBU?ocj5C)kPB2I${{TwQyK=LkM9B;lmA+Lcw;+3p@4=?ttn;%8B^#wF~WE8f)`TWnEFFa%8eKW+qW$ZKCT}y^3XA0(73X}5}anA$$#PT|U zU7vtHCEWO``HzfsMzpfIksuSa8yVMuxUwL?0Y_Ip!-HRzLoumNPBTmOzvcP-u6~s~ z6&kd;qWUiWe=p4S3%ygp{sOqQhVCfFlX|QYM1MJP{{THzN`n~5;ekB|Ca^EHZwR&g znxg3z)5=)K1@toub1LJ!g@y?P9Aq9j1A$w{RIwAZ;GZ_B`rpd`0GY_CRHyI4c5C|d z{{Vt+TKINpEZ}<^)p&1k=@`0#1q;p&%#$v1esxp3gWT6ieJ-!5*y*}6Xm*;`43XSh z&8y9B`;~#*j1dCDKL$*+t?BcAirqR zK)_%t77@QAl1p{#)K?pCCxU!8XLG1c;z!jaVqC|4c>}zFZTXY;!#scvRE~qEHJkQw zrr`$Ts<+G0?b81Mseitx+?u*y*ZdnB{utC3U$(fl@D-x1xnDAA1ZHUyfS`?t@r6Ex z2;(BTtz$y)Cxq{=C)af(yu7)8mevhE-tiH!k_dH)mnT1Ua5Izdio+)4l&>zg>2A7f zurFyFMk(L=^C_+W0Ei~GxH_MLVbe6ithVyo*iCON>$HTx5tLz^WRP$M4`W%@aO&C} zy6QF>j=Ch73#6KK_Qg~Y%Q6Ux#xOZ8BDWdGL0)zxQ=0ZvrOkKex0cO){+9=6-P`8> z0N@P&)y*Naf-^F2u3YMB^I^l+g`eUCT^vt7T~*oU#ZV{gT&J68XbhT zeh|B~zKN0nt<7^X+uSxWhmlxgkOaa$;StvIXsLuYtk+br35-onsuFHTH7Y; zLvFGxsM~m&D5sD2gRji6f=6-9JWL{{sm@;x(z3R_8*;x#c9)&kTq(P@<7Stamt}oA zZoOW{y|=@A?PBP~sp_+tZPGc~R=2r==q_7qLP=wdNk1_DA`byhGJ1p03YTZo9ub8uRil zX}0aIk4ydiFJ!jt`Y$)M(R@2|;+vlj__kl{o0u7G;be*n85lEU$R(9X2thyU;0!|! zKHam;F72)FMQH63NiU(aRTxA2`36|N+yp>)&S_M|Mwcr} z&EJ(J8>Zg(P5NlAyZ72KT#nb1wVm#?wyWprwA~R&;x8Hak5-P)OTE0liDy|RT`y0K z7FoVx1oJrZfhn}@EW{1G16*gsABp<)g`M@7(-Tg)v9)9oHSBSQl)lE1VuTYZ+DT`X zih#SYGlR7(KO#x*D|0sap8IrOZ_8V3VHW2*G_4(#yzblc{8rnZ7kT0f>xPQg#CmM^ z5*b!ot9H1P&6YsQp-fTjB;x~|5EmK72<<)t_&ZMV2a4BH2UEQfpE*|SvIHu)F)Vw_ za5yYaryyh>zTt>dsg9=`CvCRU*LrocwfDD?=I2%ChQU>zHMD&!_0#(FKBVx@?K4-u zwP%thYna?bVPL{D3W1%(gMz<%+XB1z;f0KHi8eEw24w_+j+_szey@s>QMz4O_}?p) zd#BNP{{UZy-e-8j!Sv~~5S#-s;ca^8HXSTQ# zwg@YclB3iGKaZ_=)aI_^1^sTnQ`wz4I#F}oKkM>GYXm-I9(A*>amG?cY3UHL7*2OJe0q2sE5WmFCJ+e8)Wz8f~ zLo0c&A^CvJK!O1F&py@NLQT<5$DfFWu?{WuJfGsd+!N~BVoDlQ_6^92oU4)m1oq?u z&U$pNXHk)FrnqR&oQ0G$#k|d`sy7|nXRrg)KZo=G01-7T%M;43^#1_Tbo-vS^FO&b z5{#+j7%4rJKRGAApKhlud}5AAW!z94D12m$@zC|7Oko`4IRZ3o#{-;wN1!$N-3KL! z<)_u@_oMWxsk(ahJ3kJX;U@AXj0jm|`+&pTL%n%9o?~{uCcPq6#9HXOcU+#8$ACqTvD%Q;5QVz;I(Rc3BY1#Sy7dh_`B(uHD z*Rb57ja3d;048#$2ZlTzo|VboL}zopDIHbIuGJ(f9FdXh#z;Q(`R;nxwVj(&*GJKR zOZ7ghD3pDIj9PI^PTMc*@GC-*$fi;-x1mc0`u8a!E9166_0t%aO_T$EP*3 zs;rPAS_u@Rf>@F|k8gU<6H!X6S7TfqDMpN+bC=XEmf}&TMGF;I0J9u|JD+j&tz?Km zs`4zXh%iV@1CQ6eZ5Z;Ty0e;dQj>iU+3uo}?Vdi7uq&K^2YihBRa=Q8Cl@jm&SWi< zjO25kgQa>HdTth7Yb_A%G15B$kn1JX_q^QZ0$T}uf24OXQ61fsC${;KX@wwX|{S9{79;0G(tI1?V(Pg%d80DVZP+6O92v8N}Y+w!#2e%woRY|B* zQsvuSHT=3;^%XeE6KZnZb^f&b%UVao?+$ohOOsENQnb9YVvxqV)wR(`7^wZ*7~_#P z_XnJ0ocA}{ahYAZuCWbAfFB}!lM8VZG?Ct$rf*%ms*lP)=+TC4fYaSzb^%#=kFmQGwH`;_O4o(9w9CXer zO?*+}%>-R(+6TjZBU!e0^QUWwVzVtbLc$L;j(Izfoad8R)s^qgyKAaCDI}?;-PWfg zsCbjZTIK6pYF`fTG)vga39VqV7W=_a9Hzp=k&;N~a0eOfi)!8z@TQw}r~d$I+i20x zDJwnag|6==8;(MkxML7d6?s)r(>&I-of?#FNu<^LtL@ck=ilYK!l@~^$=yFc>Ay{m zj?>~zw~Ra^{g-pE>AKvw*$flvklXp8eq1f2ZmtFZ!k(Y4dB2IIn#JRJVx9;hW!v^8 zmUy7RA0bCzz>H@gkTcNpUQ}aKRXN{Vd_6Vl^?th>RGewmw<}L{ul-wIzj@PWo<4gW zG)b&{IlG-lm<`3&rYseXI59&aJ90XZc_i_JRWz&58KjqbuZ8>pGHL4Ge6VU0w6I5< zjo6J)kHdG@QfoaDd)W1F5q*-{;hYGq zbbUTunETtj#@-1Bu?%>~>x#~}3x9ninro%Wj3^e@T3m)nKJmlt3WvDKA5sn}b2&?v z8+N_E`~LvLn8l~M``*9T`~yE+@YaBD<B_4T?~s75!kYpPFY=cfG=KBpTR(Dx?S z%l-=?x1Yg&99XS2i@y?hfg_#cnkesFM+++9e|8QZou>-G0CULVvt;qko#CrEu5|wZ z54M3}s7oY~U9-!134R%4C|nh9oM(;+7^>xUBg;+^f`4ab-uvmV$!*-h#-w7SR$R{h zcI)K&b=LZ$rOCNazqSeK`hA^&cuw2?^E*dI5h>j>bIVL zwc(Exk*8aMD>P3Ql`|89Nf$Pi!=Z>sq$3K4WjEL3Xx&Va`A@Kv^4razb9&U4z7o{+9X@{m7D4I05nA|XOIvH5jV<)vF20`rfxg9u3cPGkvxggmU0v86?DqXi=5lwj7kQfsn1|6O*2uPaEJb66^4ILSF;kcn$B(*4eHF zyML+x{E@1}RJp)*K4T08Cm0zW7@BGjbE_n^y6t6c-i@ois>@Eh=|U;fT(?@k!$;p% z``zh&#vRYYjZa)KKBo3sUFyWBnstSfTwL44fVSxp9p*AioT=yL99O1($kx`d-s_k1 z%^8l2Go&!F5t{dJe+B zNX9!;Za#mJ`KB5i)g#QUqT9>ApY-|@>hVK&XCNwvVPp&gHwUS}A5;Bn%zQg_Hkac& z+c6r)XQ_cCD(&~BKnDOE{oEdF$ix2bR+h)LID2|>P+F~i?f(D+(sag_AR&@iN@7Nw@8iV$&8PXoPs*%C-D`{i*e^|bv408e$6R#BD{g5kIj(@M z#2!w1XZafAFA6QR1=XV^NtK=g6XrNwyx{Si5uQ1(!1$6pnCkMH?)&W5;bi{+F30yD z1j-L6!%~C0jAMOmyl_V3rf75U{F zDc8JjYwg!#^qpf1N%T8?2F?q(A@VKm8bOzxi1|YH!5RH)tH1Ew>^dr3JzeR|(~Q))&=1eA@iAKO4@owTI1NhN))Uw*Ky~*JQNs(7?LYF0Pte zzdA|n<%wgI$lysPFi*L`7#(`oIM*R=N-_mO`G$SXiKvvj==!z) z01tn>`#iS~8g$%ZtgNn*(`{F$LIl+wDP%~ITG20BHQh&fqhQ9y)dys^LY+i&2BwuKu2z>F09u>M*5&sVBRO^!R_Txc8lJ20I{< z`HIp9C>wd&26L0&f%(;yc%nshW(Q#UQ^gi{OeRCDH ztkWp+OlNUoNmU?c2M4G5#d?&JPsyG>D$<3L)f`WSTUpd^?(gm!2Ufs9q%O$RlbjH6 zanIxU*Q7|!Y!)v(N92JUv~C!Y>&`jP*QHEs>T|B*mglw+w z949g=p2obsCaB?qmC|Y1 zYwP4rO$9t$BNwgS*8cz}{e8!Z_!!Ue(AMx5g*82QR$2T%;4L~WE@=Z=>Q)oWcO-IP63Zc;Ex5coPA`@> z^J`Oz))V2&NcwH%rT&*4gDiz7^Jcdsuq24tSQ3ySG3UQqAn!H@;VPvOGyCv^!f4RPzXpr#gRp8>Cn|duymr3x& zrkf$O)O;c2T)Gr#wJTUdAO``rqN>Y~KY~NwgIvAzz8%mnZX&w3y176B2Tr+(e2#I9 zm1$Qews3v%SVl^5vX$HKw%c1}_gK^6np5bl{WCH3%?nz-Z6ipZPSV;)*hMa&vco(~ zqb-B9w?c4!P%?dL)u)8KJ*Zo))}yKF8so%1b<^h;3$z|GvZ%r17$a{u^fa+F)hK&O zNqybdmruBGl&Q!1fACD5M_=$pjVs-FcfrtG-rG(SGfNeP+-DdJ8Z5c#j&_dR*Cns` zSH@bEw0bV{t^nK#1`2J2PjBsM`#3Fr``NEMjtkkpX*<8` z&iXQK7r=faTQTEHD^048=0iR0-ME=Z2MzOJy5L}epKRALdE!42&*Bg58%=NQva4h| zUNMc3^2&gYK_KJ|{S?2=!sB=y^~?sO?Cy4l{}FVyXPEh)T$ZA-;k=Bpj4 z09)Kcb2EoHJP<+K&N^UyYnHvW*Y&-5gnEtGvT1W4@AvtO&;}q3=g{DGJabvnrm1_| zF57MEbk1seRc))K{eN8#NW9Q5G_?}TXf4{>Ma$et9D*3!VI4V8s}_veL!8P zlg3w&KH$*LIEAgGQd{npjIrs)G1IMQ3_r7Oq~UiI)|dSrzdiK1_BG`S@#J>1dq2}u z`+r&-=Ba7oJvYRY>w5H&YL-`RvTLgwcw)M9kCc=w7aXt5M>yTU;<;T@MDQKil=x@C z_c!+upq6O0>Cu20&sc*f2a%R5)C1RzV~TT{bW%%8xA88TSu6bA*~;lSUCMfCxBM6P zTep2q2gO?d0EOU|;>$zu7MX6by0N{mwv?+b+@0QYHry~Ha8bu_aBI^%Gx0k5J)f9PSB`Hg7 zUzV48{uj1|PYe7y)_x^w8l>7)oRM6sMyX?`O9Xbds;U9=rJa;V>-P-3&e>OCN{x*&i`_XqDL#SWi%Z`UYFfMIX4SRPG`AxPFe6RCuv{OTYAEi&WcnDo z5y4=WG!lBtZCjopIMnMH5bxu z62e*D2es2Q*)j4#Z?v%`0CANH$0V;OH4lPyNOesT{{T<9vAb;+*5Y|C=eWNX(2T0( zWRxgp%MKzyU9ri)Dtqv>;fbWG_OsT{UprfU?QhQGoLn~1=(JmIth(v1Up|iO;+VWc z7MLKgk_#Ow`5Nw6E%dqKSRyK?m0iVv!TFg+PjQ?MxAsx~#j&&0tt_Xxnk95;WM&B# z;<*PUR|MdU0!Z#TueRX1##p5!?u?`vQF3G%#67P8ukD@`8vyVK|TerL0MQ@=V= zXqQo0-UM67;1aB9wNge3K`e90J%?dliKSi_y*C!1iJ=(Y6K?+immCs0jAJ$WJesK% zrP=;Eeuw7VzQ&y?(|Z2^mfHUSk!NE@)4V@@4c(*{aHvIa6roLx z(~Ob81L>OUBe#m_#EEb>D8WJr40F)-Jxy?9Ta3A^bl?)4c@rYJfuao*jNzpuppygU zJM|MPjn(kAhg6J7ij?{MleQ7 z;f@bdYmd5x;DKZpFLGQJM3-uq+aGv>NEif-zL+N!_+JswRI>`zIkn#1{J#BC^L>x) zP7B7YMpZ(Rg_KlP`uqvEWWHPOyIkY0{&@tiBJmph_U9taGf zhhCWP^smpbjl4s*N9*}|pQlty*=yU-^e+bsn+3O)ZEi~;GYG;YELvQR{0v}v4%sIa z=o-zeH(CsWb8{us!Hiydjnm*B0LbW192{o9dCAB|teoL2^S!HRbIJg%&&Vce=UchP^q=s_~Y9L6xr8IBcCBeppwj-1uqJ*BzUH0v}G zm6uS3h|b`zyaR#{PW*aP;pc3|E;~6d&uzYcBJ;g+%FbOOC;tGFpGE8P&iB?3NaM;8 zGk_O@c=?7qb?errw~V6(C7ZGI$Mmo2*x6B5NBP@QE?A4RtAQf7(naXrUVH>OC*}6^ z;<@Yli0;wBAhVFU3Q5T7N1(483wczOyzTNm>{X*hFCtrbgnnEyKE*pu0VJP6)9d-v zl0zI<0Ik37rBXpHf(bn2di6EwDL!j1r;OmaZuPO0*G&|FQnBjbi0d-IIPhKk}K;(ZQSv(+9F0e=OlXd736VUX~PPXUaha|W==s( zPZ{vtC3R>200n+$op^fpThi=qG|vHQ&keoN9&{HG4UM-vs^F>41_lRinXUaR!8$jH zblb(A-}^&Zj#UQU*5%P$Y%Px_AQ`dA%I7#3=Q#Y=**|EU+iL!H@8-T|-nTfn(p_Gk zuj}(QJP&2z9|%i#ec~?_{{Ut@$X4Rs3wZp-9@Qq}cKwOvg=5J3fcaG6(0P1D& zrk?s-Ru;Ym)!~LXmPxMG*t`kP49y{DA#i$w+zeH@^nV3wmO!qxVP|tH3`-5UR%IvU z-sF%o*oFg<(~9SxvZ)6NUCZQZ}>mg$cs_%o~vtSH62F9Qra@NDPwi2!X=ETB!qDqV4REr#~kN0 zy6=l6@ztW*XtP|{U1@K;MlD6f%xXC*CRZ$1*P%a3<&|mA;e9Oh)32W2k)yOzw%^yU z>2r#gOV)J@xX!Qf2`%lVQrmT_2a-~odM}g-UU1q@_~Pjh5bfuPs;g%t>>P8GipEWH z`<*^}c`;6!O3!T!o2^Gz6Wv+bi#uTM%n}$AEZ7674YXsR$LU=Uf^|J!+G(wIE6FUa zE=UsWba!&R5X9pgkKs5O<07F_gxifr-rKKD9-op3MJU^q^f*f!uNmv|OM9kD)9RvD zCMzdcZ}uEvktJ5+kZ>FIIIiKm&V0RMCv7rZ(@-BPVfn4Z5CA+^{jedP@FrcN&MQFxCfSd##c;D2HI3D8_I4l+- zQFWn4@3&n#y(H}a0O8G6A{1xKIi&pb{B8L@+q2XBLE@Va0r)rUeiHCki1Y=xXyKny zONk(!>x_iiH1Y%oJ(D%$xBd-tp~J3OX|PUj7#F;KTHT7f=V)k=M7jBaz!(@l^~;4* zr72FoDwL&W;;xcQMC_8ko72BTYISKS##G(b_qCnX{MXA(EO);ObZh0)q_Drfv|C96 ziR~cMuOo(c+z9hp05>SzkTa8<<#-3A@fE$7iea7~4tO?gL2cz0_id)V_&AMNf)S)7 z4aA1s&nJaFbFVLFif@~iI$rKQeScGvo>IKyciUU;yCrX5yG>3DNP8^@TM=CNVr@Y0 z^A^(1(csts8$^;7X#qGqD+U?C>T}%qcj5Piyj`lMrKQ_ynq9?)CAgmJO<1k%n|3CD&6aMsW9=?48?sy}Iw}yoP*3@ea2Z zq5YiS5_LEirc&2@wWY5pC)O|Do>W4{{VN+&t>?&#rsbiU22v( ze~LAK45iJUm?buLGhbWS+Z>R-dqul*6~-9t%M-VNDwd-JzYz53H0vE+4P#J5Ylpj& za@$)VPy#079BKj1=PQ=rC^)F6DPiY$B;y<2+WfBfZT3z1^e!=SwC8r#oxkAgz54C3 z#_M{K@HNxu+MkF20JN=|BCOwUbho&a0zAX8eBpC|Ivnyk*Q0*O*Am0xElNAPl?u_@ zx*`_m405P20U12^85Q@OBgyrcR9|b$$?y1dJT4=Y{{XY9%U7b)O*LQVcjdA57sWjf zQt>~8H3(srRDFV2;~=vsQI#Q23V9?EoMSZ~!;M;7{T2x>ZJ+G{7AHnv#UxR+vd1{d z8Rs2q^c+1U3bJ?ITkhBKx%qx3a;b)k-NoPUOXRI%)3o^|n%XB&8GA`ZF)rj+ zNXb<=Cm2)LvG)E|g=Ecbtj1)UYRKTIDsZjWljwSXg>oo4Qj%Sn)TbENQhI8R&`Q%s zEHehk=OE#5f03?JR)|M>(8i#Y+l6kwQO$GUFBc@X-0aM)B%fW681bdd^Z38)F3e+= z(j{2c$pagS!97@W{&=i!65eT%Ngvo9uC3WaOC*eqDIl;TaQnWU2WtE`h-XP+F;1#& zr)95CPbBWUUi}a4P8Fd)s9>W>S}vShdfx3TYPvR^``hp1H>{JajUGn)kf3rtqxsc{ z1d+}5W`HuVV9}`?o1XdY^z^TT%i8wwsmrC(ex1JSpP}Ma>A2p`-hDd1L%s0PvC*yL z*YC>1EHZ)RsmLIJ0*s!W{{R~FT{~TxT{bCTvCGdii5#;QQ5h;uaya&{-tuQoo(WTr z#L|?$dVZT9fN^#a;_+Wvs_hi{W3}D2dTe=)sd=i#$oCM)ZW32gz?nlSz`*a@_0L{w zo0LMgk1$>8#rPwKA6zr zZNoZ6464Y(VcfXE>_Ft7eAcFc8l7`WWto3Oe`ZTSqLvDqD@gQ)g4to=*a;+dk=bl@bEM zRAV><{{Z@{`ku*CNdEvmUy@-y@m%GtmtxO=5OT5iBC_n4E( z=ltTloDaJPKIgBG_oS(#a>CA8ABc|5M*jd$Ppvmqwsdra$V*6Y1E?UabW^OIYbSG# zr5EgPYZ#aB2Ayvtj{7)eV<9WfI0V-R;ro`pxx3Zc#{3!g#SErEa){$-$6=68O?v+T z920#{B9v5WN>6C$dOd}VDW@&FF%q+Hc}U&wj04nGX0Z&ATNihVM=VtmyZDLB-emzUq=uKkX0!hRc{TD{aE&|NOA zqJS9|Im$~ZcEE};gVgrP931rmy*I-8C5$?BGw6C|o1}?HwUibaB-2E#C-~Jq4OZ*LSGN%BJ_WqG(e8;>xzjI`Xe=|q%7w|n`^P7t-JU$}$9lfAc;Z{n3))-i zZCQS-`)O2Ml_kFYHv8B0sHs9XO)o3&{eNC&&Yj_Z5Jz)u zeWiRy(=F`e8zZ&VJnJ{e02E#75nCkVYZ0DBI(v^6T-sdUczj#Fr(-7Dl#@-_G>U^e zgwf-E27icy)OD^*L?g}0rkZ+v>q}eu`^{5Hb4oT#s{X&PQ_U17s)?AE{5)^f>wLJ#I304+KRTNe`9YBr(_;C7HZ#Tk(WO|mmzJW`wsk^ z8mleOhVCv5)>hV&EXWnglY=11A);&rKEnj@)`-)L6m2eVyVYpY`_a!;$w{|=>-zry zGorHak=BH#M9>x%MPe@6P^FFr7YY~-{B<6^YaTltTf>iUaeoYgWF;0!RUQn1jGTLo_jXTH_drZqDnHa`CZLQah z*yp!weK)`!AGJol)_i}dT3c*=jcqxQM92sw(Vu=YI*jB3D}w_nP=_?5&8FS@Xxe|K z+Mj2NjO?LJYk%wd{SI7d_Ii%1<+il9_KX})cLd0;`&8{XoNV+t#&eJ=zNh;{_`kw> zlXyGBI)KC%y{ge;lSimWqcV*)M;}z*%6w~6>Oq#{+x28i3 zOC`nZR*~FW&oIGa#m>MRA-1SHN55L;#?plw)S7-;B(Kuy`u=?kROM#~_3L%lO}6W< zom=xbzYzGBS$vohvR=3d@=Cy zUFv##I{k*Ah-cO$v1Nh+plu40L{~pC0l3LtHjEmYb>mG%&GN~#lWNJdv{CN*Uix~A z*!xLxH1&VhiuyjT&(C|B7akzeJW*q%>vtD=3dL`68{Nfgr9nLL`GK~1&kRAna=&yj z|wOlnu9D5*Qy zYs~Dee(wJOE2Qn-`dv6fpP%7LFV9^z+s}QpOyjj53+cKhn2^}`(i5s(&IHr!5Y38)MC?Y=d`@Ff?J1^<-LyJvaEoDtUR#Czwm*P)bU+B(yvLl zrxxAsx@)GpYunG%)x+6*asIt;{{R7Lp~`rlT-D6e9bqCqa9k|gyut%@QrTggw-x9g zvmc7!hvJJ`T4|bfly|lah@i;EX$*;g%*?=Z{nL&!jMv)m!uEKoYM$5i^7(mK@$=eB zwgRg1eqFWMexD=mi>ZOqWLv9q0Tn# zM+1;C%8~W&U!`5ssp|g#;C`p%^r7u=^N(9!%SMl7({AL25nAlX{3{TkWaBvR`c}2{ zQ{GsXZHqi_@}rD^PgBoP?bj9NW9g{PO52@TZC5I8E$#XCIQirIEHU1_y`*hs>hlzs zmKX(k?c|f5znypf7Qcs6vW|N;Ng0%2t8jDf4?JePtZuY!-iY@wiTh}_wP>}d648kv zQkyw-UNF5YoYbXza}Cl!0as91fypP4SmC|sS+h#(lCL$q&eq;(C$l$b!I7gI2~tQ= z&pr4x&1!cBN!xf*%8F5e10yHDWB&lwu3Q{fESl(d<`c7x_Giz&Es1qM7TiN5@`-K1 zjG3DZ{{S&KOlO{OI&?LKu3bXQ9lg76^3Vaek^uH3{d<2}{&eDbLY^lRQZH9074ouw z@IFWPzYD2L0fVP)6*#>-TeXQG-n1R%#FL2!42P>=jv_2@pe%{w%5Iw@eJ06@=A$EX$g zKM_uH#NMK_Z(Dl5*H6U#OC*gr(dDP`t6KZ?YkNMoD&8xs#Zpc)kDEOJ_7%I}$y|7Y zNz*5dB}s3iWnc&@bIvi;pUaxtg{0|bw911Q>Y{e?I4iE zTq*?z=6rPb`QX3%isD(O9WyF0=VCS zh9jres9i^I32WF0ZMopFJwWF?^sF%Ra+|iy+Y<#EYWuBEH~5XI8`oVHN#D)5bVhiX zgSU^HBl`Z7?+Iz->MuRPjKu;NqmmZ>BCEpyF`tzC^V+_P;HH#&XngfG&CNM=dYyw` zTiT-9nR=2!p}+);k@d-{QpzTf`6})q;N=NYf5(rn(zL?Uard87gBw*&E-CDAe-!l> zk4Jkk2w5&9+L#0{L(X{Z>0cfAfwg;Y6t6N{$KF_03qkXu-$1_8r9v#nRjvKhn5KL7C96WHoG>? zPu>J%4uYSfS;^v6i%DhHnkdtJcD51oyPStIu#G_44*p044r}7-Imh1V_;0S){Ew=q z)w?Tgf9qdF&qDCWiL{*})qF4FEgIGpwLvmY*NG@|)DqV00Vh2^Z0D%tS6AT=66rA7 zUA@9yU)r+(_NPxtBHT$BVCFKcK@12y?(5LkJDQ^wou0a1ZG89g3Y67Jb2X=XeoIfj z=0)F(v}sydZM01(Z5{llwKo>AOwp@AR zj&Xst{Rcb(xa;d&tLt~(Bbr-F4;0>9TM(+ym6)uFfsy4oF}~BDM{%Ajntsm_K6w0- z(|^D4E-{rQdnm*e z?;6yr)aZQn_q|vAFwYELC5E=zeXXU{ z)TR8d^ob)#omhR=+(cdP2Y7SnDnF`H`{@?&+#3dpO4CywM3 z#(HPEpYPLhXMB_Y>v;xB% z`i|U=TK+22d_@z%VI{P_VJj&TFeEwWsxA zd^xJ=7dL?}b=_9@w58*Q{oF>Lq#Sw?)lNQ!yFEL>J{Grzc{I%eNhZF?d5y$ZGIPlw zJ19JM#dvez3r>=z55QIM3Uv#`t$y-V|aVO)_1qjYBv%6o^cD0WY^j*65eV6ram%?up$D?XvPqV$3L`az)XM;zI-r>kmy-8LrzmPCk zD9FzhnSUOgd8yoA>c1B?6ugrX#~RzsaOoZx4ervYRs)TrcTUcGszt*EDSxb@;tC^ncf5e?jm{_`6%Z*92*84cw9&O*=!hUbuZEiV_&Y$EOo8E=Fd}vVa9_$o9I3(O z!B*su0nI)ih<-7&@XgnUv{cbF%R5jO^D4A-%9cizJ8~9p)I*swnGzb+bXeKZa5r+?OnCK%vV-c0Nz-v#KbhFWEEkcZ%u{yKtP?v)>5<<) zqu#kqXg}HKOoe4)c93vAabA7_a?Qc?J97o@sjjC(;jK&UcF@{7#*FB8GOj}&g?^*B ztleVXWSFGR3n9Sya5nWH&Z`e9wOLoiayoaY{%ho4IGvY5*eIPYYipP&2# z*~H0Gjo)99>OKt97f;gNgNy6=BJ(ZdjC`m`=)exApUV~6_=(mXCMfUjZmks^O~iuE zHuFva&Ru{2V+S?+<{Jp;V4|Zd=(W>d>tp%bKF3EBnS2iCdAC0IC6c^M=g52pgZ7tb#7vbNWKm-W`)@K4+F zWd5lYE$oxl`uzU@5tp}3J;{=37DkhhcsygF{J+Vq--j{o@y>@DDGlZ`kjsJhNzYuK zwco=xtD91tP2A)E0Hq_3ivIv}!}zrwl`5b5M2~!sOFpl26G#u08Y=7{owz5rPPNkL zXx8v$!mFyWK*sW+~d-*b;(;# zvNO%(sEtbyBs^!nF61f%`k~uEQ+LL^MLrz9*6R;ne{&oPpIA89Wzk0wM23}`>4F#*>lvQk_pMd0QDFL74jTc zK~7NC*KgCI@9_0!8g4edt=IMc06&@1d_C~*h^-p<+d*%t-+9bF*Cp7BG=wN6SI*kG zBp#!11mhLf>6(S~8i3L@nc{;@wu!Ccw9;-SGC;=|XH=gO@sZ1(*c@WMUlWFsjjGv4 zy47pfPfKija;pbZo-0@Qew})4smbcz3-Ii^mDF|@`Z7%kkO*%gdpSgVgB`=nD&xNx zJ^ATfFNf1b(rxtUHBCy^b1IaU^4DyTMo7vlm)M|Z+=G#yZx(daRG}4h-{!p?{_}ZM zsW?SF*UcL@DlFxic>E7zdS#5Ep2kS6OSm5+n6f@_IRzXOx1r!x?TnXxA+}3dE-od8 z>M>_4O(aP+L{Xa6)bu9h)5c&jv!NTcmg zGGsEiKuf43y*_{NO`KezcqDVW_lR}h5Lm!94-Uz3Eu^ak$joy@ z?|?x`d3DE7TjtJ3Bv%8i_*N}tw%Tf1q?c~Yo z{b}6NjQxYsUx)Q$qtN^W-X4i{9dAOp*3f*$duzfjE!YekD;7rN^ds>#m3t?K^!;{A z%ZW_Z%^MWAF#Voo<2X3R?t20be;QL%t3o`n_w>JBtNQ#zs>-C@rK8)rf0c;zJAtgr zh1eTW)UdyPRMk)7&Ye(~$7%>B0WrF``~T5U$;Tm=9=-nn3d5VjSH2XF?HBq|^d zjpFrk_*?I#(rn4{+VtI@^1XD`Yro9Km*Mw?wHub#H9c}m%VJe#dE$|TWao{>Om{p2 zIKcGB4>!a8QMH+GJUg!c0BTr6BZQ91VI-{)Bq}PZ$jVQq?la#N+P<&P%S!I{)1trS z_xh%BLUM#}Q7wHR-?IGtx|BRqpxCob$rD#&87*6k&?*4b}cCF`sKQ(iL zobR&f_gnh6b1L`4u;_EVx;~So8MNJy-rZ_92JLQLht9rBlB9yioMYua^_QgE={_UX zFD@g~^?i1AU_>@(mXM*~IXhNB7v{!zABA*axutAFo!zy*iEQkWwcWJ6(K3^Z)!N5>5kqV@Tr$qjU3B$aeXYJ(HHLoSi)oF1muhkJ+tIi8rF;A9b)dv z^IThau7gW+Cf$ha58Wk0JcHY=Nn@N>RW~_CbuD(bNhRpJ->$C3(Wmh_O782g-DI>{ zKh)dt2Zl8>qcj>`s}{)dBRtWpL_zmeS8*+jo(9pw4#$yg^lcYIg3nO#Ot)8-2qcoy z?%l1?WFQccm2L8L=jBo9(=@3{jd*IGHTT}n?$=JAi0?H`D5ci@?f3ov0ENzf#Atj& zW#+}D>en}K4i+VOCJ7qkoFGhq0LdixIp;O!z8UdOso{SXY5I{MuA6wXHN5P2DEy}& z<0Fh?zcut3T2y5iM%PN}%kkg(*utb$Xv&=3?yUCf=cma1Tky`fHSY}A-+iLeJ8PRr zr$HX=tjqzx1Otp?f-7gmI#X);OtHxfA}_PJWixJ8P^<_mft+>cy?(KevQeqieUHYn z`8Qe9j_XbPY3ZvukA?b__xc)J%OH6zw^}~s*h?qN#(C&7?V9vm5+;@si~wBcEW3bF zp1gBhn7RJro34jW4wHr|RNCsx+NFk{Ex44T#88s1uz{{WtA&&lOdm1PJ@&FS}_L5_?aHzu@No}u6;7c$&I zsLMUFLmBdXhugW7obWOT$voFzZ>8y;BnfEgCGDNCLkW0GkV@q4EJjEtp1#MGo^O-pZi{ykqyoS%)n9&8{ITgaH&+>37`jogeL z4?N_MezoTfnC=*>i86Qxxare9Yw=zz!#pNAN!wkv>HRGa+PEhl9M3FMv%0!^-(Oz7 zqb}GaXz7rn0GuAbTI_xhTSI%}NL>MOYilF1BbLbk0qOU@THk{CYG)La?;Cub{{TXG z`fiU4<7U6-+|&81ey6osNVDoUG9rlcAw%^556AGXjyU3nPL}LU(jBa-GEWQMzoRkD z#YPLr{u98f)Rdo@&gs{(Y8O)7%6BU^18vCX{DEBpUQ12dVA!sKilC zMwR;)LadahR^7{*Rl67(_UK`p5&>=k{VRm=itG~HCAolrs*R9} zFcg4BI{Mdr*D{Y&g1jwxEv#YB8F>mkQZ_+22bCwcJ$b4=BEA|{kZ(%35X8ZwS0Jz) zfCtpzSG@%ruBiDMoYQSB8`JSTuf4)@8a| zmTB4p1aaA05z&@=l3kd0Q4q;IV+E?;hc!(z?N`1Y)_g%>3Yf#g71f2SCe;~?q3fIz z)0OLn9TiCXR^ts^cH64?f5Voka_p~l{cYE|751S$<-8hOU8T%+yWUl_jyq?RV1c?a z*pTDT)sC;FaX#Yv}j?0EYhngX(oTa!J4Ie&6I| z+GwLw)CHV^`7UR5^JWrmk)&QnOpw3~0@>h_FhQ>CSJPn9w55Z_UK@Gm+FC2SYmpSp zNWwSnn65{mQQtYJkHr-y+3DNm<=^rr5mrxWS@*FGwU>(Z9|zoD3&9*^R@^+!%PRm* z7DX$;_uMo7$gV#7Mc3>s9hyk5?bbgwW-L6_B%YhOJf7JEFR15EWr$Xew!ZrP+dudn zjFh8JZ?*b=TK@oErtgJ3IpWP`(&NNF5xKS(7A1tBUnEy7yL#=&$RLx)86R5bHG7>( zJy1)kUEIerF=muuwy@*B2kD$~&UiIbqf(zLn$iCN!*$dZXgbYXRsDZoiEzEulyY22 zEKFyRIP+j;GWR74HZ#fKcG}>LOt2~6AtU8XoDF=2j>T!{p<(1S^ zino5B@CONVO}O9hK9)WWmgugl0$n_&CCj9uLfFnp89yoXBhwX;eWfM+@q!Nv#PNkG zzTPnuuE(i6&m-7>_3Pp??9I+i)RMCD*GpS}nf5j4q?aOh?XADhMX|MOqu6LVdnLM? z7-9o^IvG5vG0}v4e*C4mAQ^i`sQH-2vB$D3m*Q4#V z+xyJ@tkj>jTK4|5*U_0e=Zt(&Y2pOaG=Bz7cVx-|+U*Q%*vZ@*1p4wvZkeq8dtbY| z)QsB9%8nI8ap`QWkZ^XF%LL9g;d%GXTa5;kX=^91Z@=ZWnGQ82@jaL0*VpIT);WI> zS$t9P3d3cnCYj-{3$%+Q7DizUPDufo$jiAP_s)FUSSa#&>BzV7?W_4L}tGMrjg**!n2et(h1+{dTu+I{T0_m6F? z#O{$byt6r)U`NdE6cX46gvi`L%M1$7ytuINv{pwz(;(bU=HvE~~=o+I~_-=a`?PAdNZSh3~ z#<6iUmva(+V5k^u1QGx!F}oYOkwV+Si$1Rv`gqSpyOLO(n`rdUv^q#Y$k=z88v_R{ z2*qhmKEcXKHvGMGw#_Sf+ilEaR%tZ#z4dO(`rp&D)xI~x5o|oY#}uPMUqgLb~+u!F4E0k1eDMpkwA>Q0@Sneg}*k*Qo=F%pT+2l)iM`)1#?6HvKB*|dAOqPtk-S19Tkb{ypU z*DYAd;rVZ_yZWAoy0M(iJ#G0TYgt)Mw6RIKVV!p&3ZRA@;NbEOJ69urWhJB*^Q4%P z+^a|>RxG>QcaEg-%G293Foz z1y_nJsNv!UpOM8AR{v7_{@S?x9;XEsE?6v7; z*Xiaf#9l`7x9vazh66v2D$bsfBbe?Zc2K}B2wXQ_dFj;u0EK+!285@I=5cN<{-@jG zCfx^Sl#fR6gx7j?&8xPBZ7XhK@8&r!fqqa%4;dr3&Ebm?Ev*=;(Ma8%VusJnOkPv#yoht@L>WrwKeDZLh&B;J~OuAK~@ zh!+UjOxJevTF+{VUos~4k19wXK0zm^9P`?|8tIZ*CZBiik%E8}u0DgD0mtQEnQ`1= z>%luM-rDW@?foA2Ye?di1a848ikG5%Wj!P69lta(;i;_0Z>Z zG-weag(EL62rYwvPg>u5d7+W)#QXX#<@rD)Wc_NfPAYbOzi~K7xka_<_m?%hgQjR? zxgg_iLk6sS6|XTLYr=?=G}k6X!GCN2gI$Qcy`*xG&T^Eb zt!;GIy6=AE(wd_i#rl6++wU{{KdxQ)c1Q3ph~d7L##sQfx`f4If=-I_AX22{fzKUD zJq~~9ys@g0dv7b_1EL?7jD8?zzc_4K^p~1knl7tzBY9|KwJxNUCqFJdagM*s z6-~{>!czHqc}x8CHJZ_K^!}~?00d1kO;bt+OW1c?+(zoM%&!>?0putn=G;2>=NL7W zCy1`$wv`QxTcc$%N>r}mNyd7Coaa1sz~?ojYNo7}uj;q*)iKecr6%vE^uOT#N7%Yv zwGO9c6{euqwpNig*&vG9fFyqluv{_EI3x~w8oz$JUZy;)JID|&U6pR5j!6$riZ^<3 zUzmMWB$XX{_w(te%c1q|ZvOsFq9me zlGE^SOa6tZv`r$`86eW^t(N`vw5;~vlfdo|Jv#e(3WD;&6)5OndK2*AQeIIYX^CGf@rR^lSr2ha7EpGj<{zh5wCkqFR?;fYckw^k$5Z8u&uHEsS$erdmv zhb5ki`ttm*_iuIJemT_bd_8TcUwEbC)U_E@Bs+`7v8ezC8!$*b3=mE`^{+6uxYVCk zhFfhd?<2QCAW3Cm8U`DJusn=)!1wKuUtN~Lx;K@gwo6Xmef3|K$17^iZSULV{UV&+ z6n%Q`SFn`tmu}$W5tl8JGC=`BCnrC{?ge%h-VxLE`^cuX@lCk5gLG1A5y9oa2~}oD zWo(j1IU!ISaC4mXSH&kDOKP8Au%nhpeb~hIC7m+V+ zFNBlaN0JzX7!fW(!DSgFb>^<3seO7378PB3yg$m1JG zbRq63D{Fr*msh5%*Iva{f^bor{P+Cr`ZJl<^_#0=z@!pA(wA$Nc4q~fBazrE)0PY)?cijXpVd!BlrPf#U{;%iXPRz>F zgl|o2`T1?<{Uhto+1pb#8l|)rQcpIWeWyT7#g;JFDU@Qk8<-KWXD7XVY2m$U;9VuI zr1=UI2aGWoBRD)~j1HY^_6jLta_gnC{L+7~WAa?me$O{e{i}LiX#4*FS|f@0pKWpB ze-i21?W2^9rvgWajk0cKQV89iI^Yb~b);Mw-Z2ym!OjB&#yw66u1as(VY#36{aEkB zMli2V+r2*@_&?J-MS|Z@w*zvtumC`I9C6gw8?F7XPiKZ%glhi)BB~=dm~oN`>4AVj z#~jy#hi{vfOJ;kuRn_D6mi}hP89dlnG4jrSUi<^k0M~D6Bv;x!tgwFh3W*S| zH>l&Ne5IIDTE-XJwW>NUnhchL6kqPxV(n zOvT2O=t`vaSNy-o^iKur_WB*o$?*-e>d}{uOQ~dcWo6n3Q4(aHqXhQk@m*f6tz6zi z9klv;!5c~@wr58(Nwj>VLccozPIuItZxK`tF z05m>aU@N}i+>EY4C#P!s--_!~#MD$~{pEcv-FhFUa9$PAq3tlyT#c(WqS4y+yLYy_ z@7Zi&8%2U7yKuxyy;m!hARb6K`q#O98PYBE&j&uDQZY5;k1#J8$&7FZ9eC#z>G)}d zYa1$#`a|<;zmq%<8}Yu&hgBs10EtyE`~^4pq;~!o)9u+70GnP#4BJOeI*(en34ub@{5};|J4I`7;XRPX#GhT^7|9mg$l}mg~HXkD0rFpXFK_ zOs#ct@=E|wpEC*p&(zdnq~_-jQ&+ooJsB+&*vl;H{$reF z&JP~d$m)?xb8{z^G1?B)D*pgB1~NL)lg&zUli3(&adD>@t=SyqBZS8*hC#_}V8^H90E@g_vq+hc1y?5-;Ea*a9Wh?>YBbN88uJ@S;?wTOh%GL(+fio1Bt&*ACmf%hzHSaW za&w-5*X4Q5er$D1F1GE{O?_4T&(Lz3PM!vo9=d9mOYeW{)a!K}Z&|+Z-L9cyr^j(; zGBA$mlmir_sA8vR1fGq%J;o0c{3z74uMb_%sA@Jcy~VH-nCU4P;Fo||#vDEv=*9zwggEKB8ZcWvpb>-azT z9$J_xQBT>+Z9ZOIjU8~^YdR&w@2=QB2zf=V)RHosfT6s>yBY4IZyuG;c$)5C5!q>G z%`WWcW%4JA=I_t9y9>r}c~B2>NgXnH&mC7)B$r)(OZC-XW2TgOI($E`_5Czhhr@c0 zimrw3r{I_^H9Zz35;mL~-dW=xbnFLfW08@JhV94`O%}2syPHq&^^}%M-dy&!(kv64 zjO{8(VUftr?2t$!Ijm|*QH`ae*?E4J{vjb7R zwfHXV*4}%B4*pfdX%gKjJu)%R^6#43XrimcbB=gBl$-KDOf4jB14xM=&I^#9%EvCG0AY0m7 zqo(--%tD+VI-F-b`tzQ-r4-aJveWSU*O9wk&OF-NbLu@aT!!X3w8hr#qP=A#MQIt3 zmgoaWgBizV2k-*A4GTt;+xd`bu$IdiE*?e<&FVPoo}c4imsOQ0!Bd6#pO@pWPgCw( zDm%`i(RbGW0Psg@Iw74z-XObk1b6}{T#O$1-<`+l&1qWO*-fS?f@!9ER4UfitC?N{ z_d_-^a8K~|BhtMbEk!uGG*z$F_urc*o)s*M5eLHRWj<(bEYY4VWpxZ>!ozi`- za9E$GI3H4LBKGG^vASz%Zc|T#X(=Rd`HbhU-aLv`cz(`ZLshQo8w%j+x0MbFa1`h<| z9V_Z6(2A$YDQUNRck8G1V+l1F+HZcJBBr7>J$mui{Z<_%ovz({lwe857+`^tFa|ln z2a2<*>FIf6X{g?K-%Pc()7V9{+!vjQ&&?c4pdtF6GBcB!SeF=19F*LezfP@v%gvk9 zyZ2Jj`73`~Yux9&HR8=famEs{pUM>!`1sbYCNetZF45{veWm1^v|+qJ&`0P904ypX(}o!ej6)%BFS zf-9X#rnrd^!5nWGR*YvL9iRir#&eO6QZvWuc2>8VaMmramfCpTqmnj!J`PA=2?TT_ zILA*~?WB|^7i}-M-}5u%anjm+zu}L4_(iB(Ui>e!)+5wbE3Xe~K@Hf>uA7;ee=bdUFp~C;H`O!UNvOhB+=tw(8!YRQ$2SdQFlJ3=QZqi#}_s^0+9D~#qrHZ_9Ej^^JULAhnKCzXIj}u$l z7xSP15tS+w08evP{0%v|@c6fhZe)96%BD;bc{$p1k@(h?8cxu>F9q;_!W$w_H}GGHk{8+x~SRq?w?!O$JJSaNfcNJ&Iu^P8OK5~ z$sF_b^`_~wh-GJtF_fH*q##au=NbH~^DHG!Y<1qM{m+==5@Tz1^DKq+(oL*+(?VcF;yG z&;(0)=5~k?@`7aHv5}rZ>DsuM_^P)pbr>yE*4KU4 zUzz%E4AGjUd0y65x=Fk1veT-!+&o-OsI{h*=6R|Bh9w=#9C7upru6ML9S6ZN>9IKj z%UA?yzymlV@#i)AXNItpsMN15Zs8xg{{ZBV#Qb{1MwL7+3OamqYwlm0X7`6}rAgjc zql`wefZslGo_NQ#a(*Jzq18Ngwh(V0V}v}X2Wi}XQVIGR{U(pUj+B$xAI?*>FiI_M z&c4C`+I;QiN#(R)a!xv)IICJxM`>tdiPGE-rs-c&Mc&`fhn` z>=J6eBYj%zHN-K=MVZngfuuR`9tbcWt!R*|p(C0BsQ)89C*MJ=S1h1$VkP&hpG9IxwLSv*xb zI-Y)cFKJTIIe&;+mFAVAOKYVgNppGxC=6yzgn^eMzB>M1wUe$`CWqna=hE%Pf?I;_ zw#vhCZn+1!B>w>Q>)5XS-}3&vkDY^1rkd*Q{$HCuIFDJ?b<53j#5&9#EjCih`;0A)IUpB$S_jitO06l7eN zAr1o^@w9LTa@>mTTTIdXPjLnR0ER7Pzmg^L)*VJfeU29(HVE867#Um+hO?Y$Nty|mH(m;Fwa7};A} z?XJB$vufADORwI+srYL3V45izXVbj(wY_`}b|c5-$^gm2^&i4PseD19Yc`hv_-GiS zkYZioE#*hS1Wg)zxg3qaDaRb1yv}l_?fpKzbT*WnCZjuB`t#fICAP5E{5>|GbbLi( zBfN{so>4KoR0MKImUj)O(-{PuRtJhaL9OYVG@ID1rw0WuY%UCtyjjR3xh>p`9(lny zzzN}%R;st7eXYOzH&BdYDSI~?Kl1*xEX|@?UO{c*G}F@YPz}V0$MF9E4{VHz(os>QqT};g?dHEyCr#98 z-qzFcC=U=@Yb>_H-uZ6CYCMHa;zv+&26!XB2;g@kr$^!DT_juTvRlP*46&BCo9y0n zSR67kb?cve`{KH2(UjtxmDS$%eHYK>Wm52mBX+;b`u?tE>aa(3HOI2 zRXmcxSRQ%7=O0eBp4L}-eUF;@Yg&dzSXi)SaCk1Hjt?Dw4u-LcSAQq@^p~lklwFjh z{{XM+Q=hsQckn}dJ^UtfF+l_)WTOB8N`a6)$@=mI8mvk*e6vb#5d&<_(94o=6#T&O z4;+rX@+#pN+Rx2)^Ys3;I;8bUUwyo`{=dlj+e*;xBvO%GD%-n*h*h&Abm}?$Gx}F! zXJ=(;W3u!2Fa{ZBn3jIoJ%Igd@%%EUR$P%v{ocQx$K2xQI7M>a%b|m+c!I-DdB=v- znH{$It8Qdi$8rh4&%Zy8YFYK0jW14y^3z|qzL`$hP#{pm^;Q80!5JJ7ewFXi_Hfm; z&GUA*r|SJt=TuUhQcHdIM=!7GdXA$UH#&9HwzktUnB0VWh@?E2ncR>M_gI6tbmSW0 zb%Wwx2;4&^uWof&B@ZMPw-=7e5BHpqtJ}77?_IQhD9RC5(n+ z>An8|Uo*@+U!h;>*7q{qcymvlUH<@Vo6EXp2&C>GFHXD};(8nrt?HOLrZJ(vD+o|XKCZ96=b^f=pI_P%oeP`h< zLF{!qLm-0I7=pzcvmKH{K}Gbv;JcMQEdf(OwBIVo)Nsk0&7+ zhXjy1V3I+vPYBgWxz*Ayqwm+}s$Vmj%bme#*L^qh({%nuUWunz>({djo9#Z&%#Gxh z?&e0=tDJDE31WEdk6tla-WH!!T^CY^OVc#i>|87p7L3Is?Z?brhIuMI`fyEl<6{{` zsa+*+_-{K{xqK}<+fUE*F>fv6xVmj_eHtr$o>*uj{o=-)VC=~1PjWp*L2SC$TDiWk zkDH5V)k-|<5O7EvS0649Tzx&OIuVU%-uJb>dU<|*dK+CNn|_~ht$*QNQ&)*D()n)m zdu3F4ZLY$3EJ?x^VYCv!fY{ne#&ceE;wf}M%cmgNAWfoG8(6p}hZ#A~On^VFbkT9= zk1tQ^&i???`J7be&nF12zdx0i{5kBuvu?RzcW0~kK6@38@=|A55(W{Mee$phrh26^r|t}{o0^bZwZXk%9`6wbF% zu-mdlBMpt9VDXYU>&I%PXksRk-*bgIRKTZwR^QkB1K4~YcWy0>vRpn?5<@O9zh3=n zuZ&|`SS51_XxcK;ZX1-YJM)g!^0gPU$4W0tpIt}yxF||5Ya9-Td3WLMY6gj8n@>WF zlH~5#LCyw9KF2+}SEF3rrlA*|1gOimdbDGy1GpdLR@lXPLaOXm2_~vj^Zf|5KyNg( zo>-zR4q1kIIOnHMKb2#6D(c$W^7~Io%!EuI1cA959H|`eLF3-0nr{mzu8gVLIJGC$ z7W`ilEw#!kGkK8~Mkmwo`g`$THF%Z_h^9&8n8^^3?MWq8Dh_Zt9Csgqug*M0qbcC2 z)=t*H>C>tE=YhD0)5K!1(pugveA6&5r;yByRwAsN0)aq1I0FKzZZS6JeWCITU^hQX z{C0$tu?kMf`gwLgq#8<OprSOGo1Xa3C44dht|7jZ8R+( zNRsHuc2Z^%M(J$Ox#axbSf30y{vn<{1%9=cRD>{`(Rb5ZMW@%T{_A>depQ~*tydEY zP>R-Cb4gpKmgIjn_R+0QZ&yok6n8PnbbitdgUtzmxg$K2kEd^X=5C5L(vYpRGj1WU zai7N>tMd%w-^W>9Cugsoy**drevy;&Dhrt==Dz?X|`xH9AwVy zNnkdPy@yaetLZIvRY~lu@_e{~ca-uv3<1x-f5N|V@b;8rfwXq!e>+7l%>G{S-n*7> z2sgDQ^1Pp8M#APhO)6IsoXfxi8OIqp6~t%}o1Jr1)np(^EZY_NIRJGT`u4B6!z)Ux z?Ya17C*Y+E>~|(ciq04!n3FNwcooaHs>jt<5Nyl1Xlc#b)4)p$0KeV`Wz4lAd){C z<$gSC@@T#iySB3O{L794dF5VJ`@2-J&hNd`C#5WXM+`MdLtP)`=5s=o@ib{qd#~!= zN5-}~VbC>eiS@CnSYJ3QuEM&|!4oBT^r#~)n zleax^aw}CDPHI&jZi#p5wcp6%pS7t{QG&JayS|^-{4v*?uL{}e5$l=_t;E+3;#p#S zK`zx!Gr5<`1#z5>_&v7~#WMHA8ZVBlV$|+5s~s~?R9(ujNXv03=O=gE9CT3J{J?>l z%C9WfB{=DAFRT8%{zcHIHvOdDsqL|!;!g-_)_QOD=9{Hl+szsYnPHI08C(Jtl$OUq zwB?2~j=VF%-Y}B>-e?la=Fd`AA>xR(^24L~as%|r;PKkL>FTX6`|YQuzMnI)7OMv} zy8ga@n1{ofr;VVvj`H@>%T}|W%t=7<%)yD}wvM5ce86Ya4Ai>jmwBT2eke6brnb16 zK=8{Ua*i>z(aB~2cgQ4l6r%{=mfHUSU2kHiSvja#ZaY?j(i<-lXWBY})(u0;t>Nhxcq*U9>S zUx{AjwA|U%JSr`8fAov^yw{CPO0J{;+>SxP$vlJKoPktyYpbcO+fUQ1E$y%EgUKO) z5hTmdo_BVUZ?a^^tB)t0DW|PpuElFNaME3sxFfkjOS#76^^vv#Ae79)< zkORRZkVq#d9CYd^kz>@frP420QJ! zTshoW9mO-$a(`a6`2HDAs^*r9$!^cTsZ~N+Yk$EaDYWQTNUf69u814nBw!Iws~^w5 z(y{f!YLP}vS5huKxb2{PMjZA#cqjAyYtyA3SlTM@@;Pc%Ztb*=HuF>Xix#Bte5 zs6nOK*()KBIsNRI7#RNP$m@|(Y90X7wdGw{+)k6L6f$hT_uhEhk1(=D8nejiWML z?i}N5U?~_qPs_?D!0)sZ|}TYsHN48oEZ|rFc|rq1&oyWOJuG<;A5Kfu+(P= z#XI{?)#Sy|>c;0JG%2xw^DgZHc>dN(spz$-z(vz{j!Zcs;kJYra*h z{=ebOqaSG9{{XEIUHD;hK852C4|uA5Tf>*I%O}|9hQI+VF|IylRaDLka6vf$jN^*> zhf>#J@RyFXzZctT3vpxOIMYs+H4GgjL-NUz#1{M6&rY4W`<#yyo)yhEc*#3G`X}_%Gb&D~!2%CS>VQ(8x z;#;e$`H~owqlOq1ZABwFBoT)s`}VGu>rc6}yG!i`U$sDak|Platavyp(><}pZ&Tfh zPvL!kBWh0dX8Nw5@WjjFFt+WcT_YJII|`8Dx$H?CeQJ)Gsr{40&?UTix0c+qkfU&A zAbh0tI43_rQS1~c$t|9t?Rl!gQd+GJr&j{>D?#Qo4y2LB2^^Af)3;75=TC@s2T#6h z38o>;#z^Bs{0-3c&row;pYio2Jfhdxuk!rte$C*%CDYI9Q@6z*%l-pr5vWFd)KKjE zRX|csJDxqdQzNsE;O?EHP`Mc{nsNhr{|-0SomM5_pN ziy;lvdtGIY4broBAnj%tT}o5uAo6R z!)@F@d@y+plbyRtxlF=P=U)$UyNb^FGgd-bC#~!2B zxsQlC-H_6j*2ROU07zjV2L$5-o;%i9dUB0Kt)jVDiN`M)vqDio?#`Fb3E zoZ@?j61oNocVLg3>s*(_{{RwQ>DEwLSUR=lr#x1Wqqzb=%oOlPaB+dpO8N=4Nx4g+ zK2D5YB2lLvuV2*K(X?;ue-7E`*0#dQ?Umt^&`4a8*vTC5LFcu6+51jw{vNrKeIr@B zd49-Hss>Gx5=Sz8%FEAn=g@IpUTr8+%bZ_bH(qUSb>N{>6PqUu*Uj`_*Gukv)u;y5 zRqbHY4b8Y+_To4DPmnifA@a-t9YAb!>4Qn2>M*XP*7p7ymT0a}Tc~TNUBiRU0;$Qy zdIO9Tz^~2eKi;l&qVsFa+rHfzebt@6 zOLk`@Atxl4cjUfn^*WCW_lm8ZVce48X6zmrq6-z0J43eJasynXI7f(JpKve!ef zSf{%1$k4S|(E*ogNWriUTtZBkP)H<@G1Oqvl{Tr~JEyk)0G*kQN#1%VZ7$c~bNXf6 zJ`mJKqdXeL-iN4Ln8a3hF1G5;@{tj4Lgyoq*!8Yz>f*}xR=2dZ)#Y}yB*vPDD}#}R zko@t<+i6jrhZ)UzwUTXU)V*5#@9Xz!cj2U@-1k=7uW#$2&}!Z$(c*_sztS~ux40zQ z+>&Ltml$~Wo_6PubI8Uz5mOC%_g<0V*QK|X2|i*G2?XGlB;XA5?~LSRWCC}L zFY`4?xVcGL^f}CH8XVEs=^Bd^1I#LpjF`>{z~k=Yfyc|wIIC6{mY28f2B$pURL=23 zAy;_R^#p-~pK>|JVk$XZW}3fCz3tPczj;kg+|jr7sjaDae@eL1VOx(9K{RYYmLSX? zBD{{Hk&)DN&2tYftDv+tt31+21gz>{B!Wl^#EkGts08!S3?3^;Qj(Xlc4@BZ`T0Jd zkf=939)^V4o$J^o#k?~@z^l7D?JP;)76UtnsORy`Q;S&DuOLf_Eq>Rqx}@NeMmY$1 z865labJDrz87s8yw^qM1UPx}=;44Dc7m=NM#rCfel>?AKz{h-%-#OzXaa2~@PnJ;_ zGBL?0ND4qCWE1LndqFW9Uh<8Z95dCoUIq9L+qN^UAMo{MCc{2%M?KK@i?DcP&GXKGq~ z?e)BEsNG-NMyNK%_bLm2z*JyouX9xGG|Q{oW2fF+I_#SNs2q=&6r% zsJOz`+fKLN&qCDt{C`^HZZ$b? z7j=c)jL|0Bbei2lqYyB5lahVN;~66ANGQ-ic#r z29e_^^$!zWDg^@F#CK32-PTCQAMUti80lPR#eEY;_@^G1Yw(jvu!B&xw_v(O)#uso zBn-ncF6J>z{dwLS{e#9n;{#nfaFtF}ms>W{w$G|s@48*q-!m#t4J+!`Ri>BgZoZzj zJf7#l4W&aSk*q^=VXRy-3GGd@CBWbUHt-a%0OL6HCb4wOs~ZD*Zeja75BTUxh(J?oj9PlEGSx6w3naWuDg2@=IH$!Q6|Ob)z}kWYW5dX(iVkCq!H=Y1BQ zLQ?i=$?4axOZEQ%Be2u;%P)uXU+9-wKA)*YYjW^P$!lqLCXrhV7+gk4P6!)H{{S;x zCYdM0kBIi|{{RTgdUu38M=55O!s&B2rX}Jr(1QkxZO0-yo3~C8iLZs+~P?04!H~8wuBqq z>-XJhs(N1k0CwHc$1G>Dv|7FH{#)`tXuWeVa(LW3PO1j>KZ9Sxs$neJ+O02{& z;BrSeIsR4H_`gn%U+|^JmkYhcs+S8Alk;QcILqA|?6XLR-YISN* zsiv>`{{SPK@P4Ch9))jz6tl(WE-)3O8-V00u6u)B{*kFeb7c2Y&dne~k-~~phCbcR zaOP2STQGLeEk@ln{0VQZ;Jc1ig+fmQ$W~O_k_SLRt~*td z=G82xoTEHaH<(d|3X{)X{{UKyBwLG&xBmc#G_5{arkC}hur8#ZPBKSqX7YhPQpi*s zoMaw~dt;|OSBLyjdrACEijOK4wopdpW>)kB6Q2Dm;kfO^U^!&|()`cayc~?bw&gg- zXgmG~2XTDH<)VFH5hi;Ia>fe*A~1svnhV!srjFZPw{{{XM+sr^pk zp-H=cRy!{ZL#W^0$7>d{nr*TpDf1OuAaw^k=R9(8@7lFIQEzD-u(uX5w59en#!`=*6MDd#FPVejW7K0g>C)2Cka?|;L6ExXlsKT5+@ zsV|Rj$L{iaXnSA4c;?dlBY&%iFlLfQjgHa0Dr5tkah^EOewFAx3ej#+W4^gr4EGMx zzHn6uZ0!Jc9V_}Xh9&H>N^V>7{{Wf%Vd9LvuM}cs9ewM4$tV4OM+5PXT)Wh@mhjJ# zml56F#cvo%fGS%dj?!|(0r+*U?!>`kX0S^m#E6P9vwIQ;T=W(76ya(SgjTvAn%0t2 zQg6HdzT8#ykmEWXbHiCKe;D98krTD9W6THfYnw6}?_ z1-3W10~k2t6}}dns^gpfRjc_UlQF8P;H=iNXD=3^EVIh9+kd0NhFKkfUAX6*e>~SG z;7ul98Tg-8@vn#$3#$tj5b4ng51X?;EUKg&DLEM}oQ|C<)WpffsKdHn*Urb0m%=Ze zwDh!o{{Yi#oj;8{O$L{z-fHs$<=fk^jxmAI0$7rG9R^Q&_`~8%dIyU2GptYI8&&gA zNpo{F2H|bh@&}e9BphwV2^{AbHRtDXr#w2KuR_{C3pjbYBi@ z_KO|IgpQ%&3utBqZY^U-Ay&p*I)Ha|>ANF1-0$qZ3~6|5QpV?)Z5 zu&)FUT#g1o;=Tr6(+e+gTi46d`aexivXweGxivjn-FEx+{RJXxyPhGjsKkU@eYQ7kXR=dTA@~&<&FOT0Q0@{I^8eE-VLy^wwm8cj@D~c+YIqt&giVb zWNqKVjt6dic+Hu-Q>E(w#}&=xhN6*|w$z{@L}PH;q#WT`?)i=ZBc6Dt?d2z?{{Vj8 zy7?H(56kaK-~76+gmHMU#MY)w9_vW9)U9n*p5_b7UoZV(06MxTAh#beC$GO5ORIQ1 zSjhxl7>?c$$#TX^m6B-l!y-ET%m*JXI{-N5xG^(rtGizQSJAGzeurfmOL~7kzt^90 zAH_Crs07rkq>6acctadfDwQJ{`EWtNJbp)Yc0LL4&aZo=T2G|kSv{Vk@|Kq3F)UJn zkcW~!Y=8mlpL$-=!U}s|eb?fyjao{Qy3v2Zf7kpmd&Cx(9v9W7`*xKTyS^d0jkbv8 z!k$p_IR}n$k@Pj4ccp4qdKIp#r_UAQ#Wo@;Kw`P)frFfL@6AJ`>B{Y0tFKSFrWER_ z(@xrH`uG06d%oITGWX0HiaZyI7RQm8Wf*@KJqXWVL&pTsqUrJ6B(uS(J*C~LW?9l9 zwbW{De}$UPxW24+$_{|+w{4ZlRCvbw>~3;?43o`phLTBbY)U-LH6g4 z-RPZhZJb;AgUEc40605{=OFbtJ+M!;V~M3G!BU5CmDllf}I`(ToNffdzD+0M#p?Q~k$nYkr+KUe)&=5BQqhU@G$mj3`}xDc7H zWsJt57pEi^IsJVFVd_v>PZFh`ttF+XcKb@CMNEy(2c3b8`}1A2snx_a7%Rmq+t1T? zqFP&H&RP04F5Kg)d{=OulhO*2bv_T`QMx!v|nkwk>&7(X~AZ$b^h<7>mIFY)~$6<$i`Cka^`~d zU#h?5eutjx>96=0y{Cg>}J|6 z&x&ZtCn+v7F5W4fSKov@HsiIzUSeuiS%Y=v$AWo5r+}m$0O}ha-^wH-5apS zy=zLHMI{KU^j^Mh*7^4`#9}E^Y7=YcWpCAaJ9!$`TKA3gjX&&OD2GbB(j$~5kvoQnlg2|K?VR<|(mY|H{6*4-!|x92`j5ld*`3xTy=$0mdF6b`u<)OxpPwqIs4NZCBPZZwxX6EMPeYFOoWMwKoM<;L? zCxFA#y?S&~wahOK-O5FX_X)xUWf(p3Irrwc>!??u&jqTw{=P?T3bUh)lx4K7FZ>CA z!8~tVxtmMAno@7oWSJ(C?_#(KoP5gJY#uoWjPNVgJO$z+Z4z1U!MA9cfn%{i&kfh7 zzH5SMRiipDeb%==jkw08I_c@NX0ENTSdjN3?m)|efe^?Wcc$Fu>sb2i_Bw`$_R(7x znW2&Li-rdudnbWQ4^B~0zLqn@a>`BaFM{uEt~5oN#mwl?35nian*%*@&o%S^0E+GR z_>%hS8I-S@(=Hov0OXKz06pvS&k`f;J&YqOYJUF!;CgVcjHxxzFURuK<~Ns}Oo|zt z;NStb^sOsxILjI_ca1^Yka3ZoG4%Xv@;WN@EqCVrfAHt@ok_ZM+qa_rzVofq?QLvk zjw?$`gCHRNqFEFi;P1i_fG~T5TbI9Rhe~jDfg&;346;Wq;g3+efCCtCN!bCp*X?)K9DdTp+*=ik9bpDdELy>;L6Js071 z?b*>LhTi3t3%iJ*jc0AyUOd7Vo}7$*Gm7`kBrcg_93k+Q=*J;*k&6B6hvmvRQG+igblV97$ zE@3P#BPblihlF9+gt05AD7ac~-#61&>*?0Uxhx$x^F`h3b?dghG)66lhrC;NX3J;deJfLj-*LE!Z`fL) z$NI);qjgrtAnpgA3FK94O%vg_g|Ft+JWu0`$GK(l=C$yY46sUgZ=UMp<2$;l#7BQh z_{yHfisqcJeXVuts{Aai(&yLElbU|bc{KL#ef52MdHI(fdIs{@k|UgF{ZfuN=K{1K@!yFptgUt3I@7`SFgv-D*4M*2a_t-*50b}ku3IO! zHOmZSqMN3}12S$U%8n45MzR7TiqD>1@y0R-99FgUhni4wvrZK_kS;rWr zoT@D^r(OPEeV@$AG-<{@%B$;S`g->K3YM3D4tzwp#B{{T|1}!edfN+%{LD% zI`{tofHKp@v0vHArR$F@uJ0g@M_)E23UG`GImaX(Pp3|6ZpIB$O|*R^8)!aa;v$(x zIO)bn9*3NEsBSI3PQT@@%|E~74wtfgvVBW1U0RK7>KB&c7K{SW1DNFpj&tZTM?U`5 zQ(Dk0O17(^YK$V9KbkT&Gjc`;KylkX`KqX#qh{}?uFua>5}X=IF5jue>fRlDds$ZY z+E`{r#5XJpM9J7;PDXeb9Q7S}sO+sZ8$Bb=w7j>H-Q0<7nS)B8Vicq|))%yu4x?6O=dzphNLdbE66CIDJ9D8R6ITfK0hVCeCZRBM@ zggk78aKL~*P=7F}U;9^B^KC7PyzxsLJ6ucs+=0OS z$G2L`@h#QIhOA<_hewA_d69${H>7P?@HmWP`egBdE3*xT`oxoq_49AH$nt7VR2MCt zx-PFxdVg9UHhA;IUMHT`U7|~yX^TbYm>fpIxY~+N4o*gRB%E>9yspQ?dd1$O4W^%` z>Irc(FjZKbx8BAuI&yLAoD6Vl^qd9?r3yaeb?awzzI%F}Oz~8pn{!EP{cZhvo{ekb zZ;YM}(PQwZi?mBG5NIgwk!fBfg>E50Fu9ILA)+{72bSRX9qPTtqwo)1@SNTlk@b&< z^W9vf!=;4L>lRYXiM1mv#7e2l5T-}LX8KoLDg9bX5R&D++*7@`)irdw-YweiWOMU6 zvG(|1%F%r~+xoTkIzI>eIrvwkOBSc#{{R$e-Zj3GGvr68>lYdrX$Vj@LXn1S9B?iM zbM>yS>fhrhizAawylpeV(MF`fYiATD%IK~_q|Y3Nb^v7M{J?!F%5bdQ<0~blwr>0T z&qmYenp$_%;b){uc7J?cVR?mrhS!_)+6KjbK~qxBecqpP3|*9ahrL)xJWb_<=o1PT(-2jy3}rUn|bba8)781x6`AR z4A<)45r{Q7DL7!7n{ZUbfI<446MFd z&z-U<1;!ha7-fF<9jmtRl>Y$mvFz>jDJ7N&V*#z>4UMvJNp)=RKHl~ERulK$^M4Y* zUDcEQ7s&V=RY_s#soUPB+&gIXPwsF20axQ3dj5rNVdFt04BA_e(c5ngBs>PlCjooy zADITM=-(3Ud~p_?XQ4ESEc+Sam>(?_PEO?dy|>OZD`BcAt6ZeP7zs zr;LZg6w~jftNf0?;x3Y(*zjr(aEUZTNIn24LD#-qs}L|i2N@mz01D;)7A2&&)97m$ zHwhqe?Bx-I9OnT?1K*KckWu!p(f$XeMs*$$KF?q4=6Zx05YyV`ONY6a&OAyBv~EG@ z2`2;j(wlkbGDWAmZ2-HUFcZkzfyQ!w3d&Plj!XLWHk_Zd)bo2E65M!xT~|QTtRuI9 zCJ@Z+A@d64lY!WCjs`gc2DpC{tPgc1j134a`^jWw!9&l=anGk-_4v;i;wOm2RfSfU zD`|Y*{{V6QQ{jFFo)ZTQMJvB(l%J|gPfPy*UAgwQ2`GsW92^G0UB9h&NA0+Zjuf1{ul-o+^qnqJ#iF{io;b6~jh%q#eqg+w zc;MCBtxneB)_pqIHuBqpHNz^EQ`2rgkQMqJX~PSG(bxX%<<3J`b|5OM5{PSOTK}u9(DLq=b`2H$M;w2a@6a20Hf5AClh<+>6d^@7~mljtJBrbO}5=a;T zNcl!U2c~|N;{N~$?yvku@e1nZHb||aQ+F&ADBYX|j|T$>>+e{+M3y3z1%2CkX|pt; zOZPRg9!W3j=6lAe;s%}KX=G>^f-+cOl5vatm0Gs1Vq^hX@+Z;viG-*d3-w|6`o_s12_PP22HY3cq)v5UiU${1QtbiPY# z{{WxhVfZ5HpwcxD9(apY`!u)G%(F*41SE0e+UkQ`eom^O7-Km7n%@udD&Cyt-^bF>ddt#?c~f z&u|Di{44Y9TXLFJ9g^yoXKtGI{;Yj&9x5=Crmp*6zfIrud+tvg+(4Hy*?Cf0 z!y$E+NOrLUjDk2E`jh$AkB4u(HENd-LmlRyapmoK(q2z;Iu*(1s*kDZT+x&z?#b!t z-_u{r(yci-w+r8|U-%t-yt@~)n`YE)F08F}d8CO@v4&<@q>!8f6cqqt8Oi6+5Cut~ zX_{I_Z7nsAI!BQd*vlgulycZWfmai5&qQT@y}+rV1zMwP%g^wC*FqX_=7Ns5>7(`j zzeA?+PlvRruPtr7Z+RDor;-mbCXrfegit_O%u$sj^*EDh$G^4vD5sK+gYr#wh4(Ci1ccN_pdU~5Xwh6y;UH)~n#uD#lS)yjgeRvf82YWBVV z0L#_u=vmkGJqN^zb0(Q4m!|4*mxg<0iYA8O3}#p*JDVVb@<_+mcS`1TTXcIHy$1gP zZ2m@WVGR%kf$CI)j^yx9s^+}9kmqWwQc>SUYdx)XzpvnFN*>NUi9Id5{{TL{{XGoC z(<9Oz;>{&gis?d|Wj+<#5P_oX88U-!5zDNXy2ZBBR zoEnPD+eJR!SMS$-PN_DUl3&;L{W5DkBgI--OPxY%Ni8Rhnl^S~3CI}8Tqz#?&V6de zpcH8(5^P?>DBTOiwBU?oPu)F0BdPDf2DFwQ&BeWUw*5Ojbujjv%}OYzcYCQ_TdtF+ zS`#UZMY%^&j=9HwZ>D(3#J5zoZ?fF^ESs2Ykym)Z>z`ri!0V2pxTR0`Z7$dCx8QFD z8#KC^7dA6B>{jsJOC7(MBt}TfZ5cQ?>5x6~-?$a21a5AYJNZ~fzjET;N#nNU&lw}A z$>0vXRH?b8r|IX?>*v(kO*E5xe_z+!&$#X{EQwg{Y+yG^NZhf5jxn6$`B8s7>udHm zSob~%8!^s$dZ8|yJTxcPcK`m_qlu_#PG3q<@ z^sXCIz12KHsZFKnOp)0}%AQ@L5fT&7Gxz!dUd(ZPv6V`XNdEv@{{WHM3<{|y*ZTc` ztqqGkKS$7_ipmRnTbsEQuJ(&?L%}#v$>-Pc=~>$Dqj9I)qe#~B+(_RotVjzUK-^VM zPCD{`!nrWBt&FOq@2&nz?)+I8tUM@3mHz-=*ZeVAtaXcM++E2vx`Jhts%7M23Bxx4 zVD?=8HRhiZd|`g^=JFdzT2v55?;}5!J(Z7Lq?6AX8Lz0z>C&BarrYxF_w&=Iq4PND zxkm7h&+$A@Uez@H6IQd2N-=ZfmCy|TPhl8)DI-z{F>shucNQgVuo-;%rh^Y*=TU>io*YMiQ2?_qu7P;6Wm3wu?2@-Lv1vbs0b{u`Yca6-+7Pru^XatjkMHbYIJ? z_;*$oI(P{jmU62mK{yB_kbJ=P2a$|&4R%v&nO*y~>g?0o*S(tj8Ob?CMXHx+>2AJH zui$rDH~b>j*YWB)&xg}bmI!>+Fkcwn_aLY&$&`y~j)0Nhj&X%;b8Tzl%biQX7Vskk zR`PCc;}JU#lpy4ZiFn5&gVVixn0WKljW{KJ?(flejr(5uKAI~YPqV2vCsDT@w$|M` zZm;sS_h->Q61Tt59?QiVU9@*rz9NlczqIlS2wh0r%nN03$7uv~10>e2gRI*4Tg0~T z+1Sfzp=vXgi5hLt$3A{!05cWH0f0XIN#~x#n*M#_yj&_{DmZJa{O|t&1LS{cczKsRHcdyJS=oM8Ux(&81a_Ou z5^m&{1RM;XW6#o--L2zbioh})<+28Sv7WW^bfpC(<))|TGfk$Vj@Ljsk7R!Y#%ll*=CTu?$3GkG#8ZIsX6}`)qY-LjO>hF@jfY0&;|@uMo8TwWg;{{TM{ zi}hdd8NmL}PhmfYQsL~;Z)bP8a@=KI@}!?}iucV$Y#@bXHkQ%J93(hNGl7nyJ?r!& z=HW&uzlC4!U#a*$A}WcCoQBApkoOz#yJaPKKy> zBf?%HveDO6WOcpQpLC4Q14jxe+m#vWdSvyjVFf%~roPJjUW@fEjN?ZI6;pXX!D{~i zM0JT4zo_b#Q)>58MzBfAxGV7S7jB@b;4nTx$2tfW{)s$UgAn zpgx!$_3G4eq^}pMUyjR9Q_4<_TGZf`mHu{DZ~g(-MIMddF93+3M7EYVMa=5vFaRXs zKvRK(k=DL*ip#{G7rc1^@a_C}x^|f$xV(n)SB4}YhS~y-ag@&Ef)A!^l2DacsPkK0 zeLWwMr53+?ik8VW=XcxY{{W_RemsX!@gAjT;hTM4=Gi5<^2LpsGsF{TAUMI>fs>Aa zp4Dx%yRA}bEvHQydpjtS(IAH4#~@TBN9Dd7k+l8X07ectrHqSmX+FzUZNK5pdTqj# zQjN5}n(q4j+j^Wvxua`(9;)kgYj~CqA)oD1i6m&Ez$XmK+kS4i8TxaccH+-N*7X*; zHnunOGzue9^1uPW%i&Wl4;cy$bI^AAJZ>HrahkrmX!hx<^L=|H^*)OYUCIh{-%VP! zop!qE>A73Q8bybP%u!Eib#HXhnGzfADA>Zh3}IR@?guz*gVT)SuwWX6^_$sCqr`C_ zW|jnK$OPc!fF$(D`MUG#UKMyLOO^|_MboaGJipBEr#nNMZ|-+rjqd#Wo#%!;F{WtI z%c|>4bas-}ia^&cWswg}vFtB{kGy*0fCfcjuZgbhr*`m~&0%3AVm6hoO!s7hGFnm) zsXTnB0651`4Q)G7k0dmfy>{!@*Jazeofvy*xy?4Nt>^mN@MJ5d>JkNeyXmBwd=PE- zJe$bi$eX@SGINeHJxQ(Ax4YFe#u|mpQ>1?>XNmy(M;SRAhki4Ty^VOYjH9aZ{{VyJ z&rYj@w37b5UzwW@i!P&L_BQv>$rcC<#aY$!@~G%~W3MM2_^rQ(_8uFwn(EVCzqpQR zZ9dUvm3a#ROPBakP z+{qbrCMHaV55_|R4_uz!wR5e^tuEfXJ8a3NOO>RyG_>oTLs8L$w(!L9qJH*HSjO4g zla8L_IPIF`uVK`aRRa8FEU*y8UA^2uB9-^t(9(v%aEihF-w z*T~W~V&%kF&-P_i3d3$yf}Tz~bDyU|dtuUecGpjFsaagiP7C=!osE-&jE;EV=bxd$ ztRlUfZms!#D?+U8Zim>`lSeZ}9kfo7#u%950J9#%m-o9q;6Ek(nM6t>?7cht$NT<#HQ>201p2E*RP%b01X*S89Fq*q*kw|f9tuV zbR9M*xt=-TXNCyqDIkb#uVAjdh*I`iqrdh4ZG z;pF29Uh8$I{588Aww5X_&+cOCtD@<;UER*JeRX|vI=__^d^7jJ2cSN^y}Nvu;|qI_ z68OShV_2CWwXl%=hQLZuK~M=hlzk51e>(U0exjV^UdcOJJzs0<+o#O)vkDxmk?r#S zzu}KNZC=Ymzqh#8^vIg-F(=vJFXg6K@Xg620D2F6W16^^`p1m~w+F;pLI|8m1-!Q~ zSu42ffW#KZVV}evzot;73r3~%*4j7uCf~__!1(-1ahEhz`z71&UU%)$8X8A~V!AhO zo-m%(Ads@#>1p=+sN82c*y@A=cwkBAkSd;`;Gc-5`UBzL2l(T~5QvpC{{RU6*i=s7 zs0CZ;&||+f=vBg}B%=#z{pndH>2$B;^m{W1*XM3E8eYE_-MaaH4BGI4U%NzF~`e!E|`mifI+U31{<{vSrZ zmq^z%$)!6ahd}VP?x7hg%7tr@4hOR29@(!T@xGJrrp_<;M>YQd75M)E!`E`iw+?lG z2ts8mw5WfYreld+B7;(Y;gYcCLBYw@!0VlvHoBNx#ka z-P-F^dq03=iaXW0)MiGt)ETZVR%`9@PdCbC0BrfbU;QB3?s#Z9H+1=r?4>SPWw-bL)}oUwh38m`kgCuGYJ2qw1{mK1x!YG4bYYMdaEw!vg%-JLX}EMYZ%!rb#ZC8 z=B#^uo^)9(W{%qKG>$}apJll6$ZYiaPdwMpnnj0&uf8H`miqO@$eI!aW=YIN2su2Q zWb^I*95{+FmLYS0H~!l#{{XMd^m4kDeU#+|c_s7Ju7|#8mKPVgY*9yjB-UxPEDsnX zZVv^3`G?c3Tk%KPJSn7ax70q%GZ2W7s)FS30wDhY^$PIw{6uiLY5ey6KSSy`R|P!V zGNVQ@zN+c|H}vXwPN{u$d#OnGw(J`ug=GPW?oK)!=RV@IFCtk^)Q}O7OY*rr@$1ch zH)GefsX0qWeV6O^{wMb~T}n7=RO!>%CH;S0h}PP8W6B|aFqpwBocoHmV`{=jd0}e0|hx>ViLK(PBkshyoTRR6qwEIR5}Vnr5$mXC=Ms z-CepYQAk{179$7d>PN3p_*d(yr?r!udj9~K{H0!-P}iaI_lER0_=oW}D_PmT!xh(= zDQU9miZC`3KEB?S?*1s%u5>BbXoTQ=X_r}>#? z3Qv-f-6X#AUqP2nwD9`sw>NMq$rql*mzCpyJAwWc=3Wk)Q1PdYbsrQ>9HP%pj#Sg+ zbp70gRPr*p!6fA5cI#a=XD4|*ulXnX*z#ymjW*>c@T+{={{SnVWAUfQ8lIpR!I~V> zU23-%E-qn=F2li6!~^mm&NGhO*Q9s@!?vFbd=n@3wY8X%Xrq|hq+2c+1nJzd-H-=N zV-=1QnypDr_e#sA`@hY8Cw5^aO9Ko%bd;NYRl9#(wLFg3$9^H3#y37Fxxalj&Lx#} z;%D0y;-O0{e1cCs zvYM??-EQB0uTHOZ`5lgur4Cp<5=)}lYwKrquJ`O`_=`$?Gg)hmI@?rPZCS5AhuZBWms$9)Egsw}Zc{!^{b+0qtpHj>2)XO4`=f;q)_8JD!D zHl+zQ(|azLyn1!$&de%RY~?k!y>IgL(|dO4bs9H}8eKX`uJ7d2?~z*AeTrEgX)-ca z;t<1sJQ6@|21A?*yR3M_$9@lr*)-h;M_W=Q`v$Q#n-LD%h%A!EP{zPya0B-uxg}ns zrsUQ8{{Tr}{vU3J@uLXTwcVE8A8$43zps9N>%=;Su?t>nGejO$ITm*paxNK&V%cZh zJDeW;)r+ksOtH3+H_qXr%Si-)`I%hcuFj=R&b=BY3=Dk_1I6iCJr{n!} z^*8igH&NH@=DE}1wTaSE1m&GlK-`=aWE_ApHj+n75u9wzE~dIku-2hXLMacI1;Zd$ zh=%1b4&l@8_a4Hwt47hZpHE%B=5o17RQ7i3{drsSGHfrj$R(cM>PJoN&PmHEk&byi z$51-sKA_l^!^2v%<_p+-m4SxVSK2TE!5*D>;{zuHoQ_FO&&fY0)3aaJ=VW103z|KD zulRE0ZF{EKi;W*pj#!o>6zHc11%?A4>->jqYE3s%U09o|h*erJSIpQLuS^nnJmao8 z_QyF^oZ}lUE%N;eicRoKSB=?X>jT~ZP>TI zlq@c|3`r}T_5^Xk#t%-Om6W+)tn~anHD0}q6us9AT>DnttOdTyca4tHHb%V(^*`iO zZ>2Vngm~qU^1&4k9^C%`p0)Tgr6%0xv;MlDZ5#8bOGoB&_nIy4ts==Sx(N#h+T?J* z&*@uc*CS-nFJw}93Zss_zLncjyI$;dvC&#ll2MD*74_GHNU=7y2+AhNlMBp@d;Ke# z`y5ucX=x6h46IR}V#$S#asA}OWbx4R{I3O4ttmOhuSaH|%V+8SM)9PjhfNecL9O^%B#u~$OETVE4a&V0Lb+vLazP^>TJn`ohqvqY-812>jmulJG?GcH zYF7q0`N6`@Fi)W!J?rmsnw61}sd)paM)ghWP{I=uRMlRO4l5z}@uIRK9RDk-ituNDZdz9IZj@os~7 zUE_jX5w0#$c)Es=23^2pVSs^0S!oqf(V=MIcTY7bF{{SoNzP%3;c&e&@?DDf+ z^o_dqzvR4*yTd;SukQ5wtxH@wi|C?7c|1ivuHxe57X(2BB&+$XK3q9anIw~d8)knO z_=i~upy(a~)-Cj%Jo#3(>dkPl5^yAS8IpOAB$7!yV1Zaq3mS7&XvQhK?5%#OcI~C? z^h>$Yv0U-zl}rAe{{YJR*b@O`c_K@xqMWWe{f^kk>OFkI zhaFURMYJnWUewD zLR`lDfyN2OJM&$1HogYA(=DO+bK}hl?mfOu%zBoOs#)6=AnsOd%A3w}mn8AQ01$oZ zSifU+N*=9Qy&uc-f05>5DOAK-RbAEkY15*2cU!A@lx!_yiqULuCcV_3K$V>%(^+M* zbN>J>0g=GMpFz~%@N3rm1@R{5#C{)d3A8NJ-Nw>dS%^$+aT^1j$`0NR4>->tXBF>d z_={5ZbB^~{ZEDuueY#(E`kqc>hI9AtZby9{%U0XzeR_H=PbyD`8pntHS*vI|VbWl? zNd@Hl?nIK5Vgm(b3FQUnf_T8|oYz6|8piX)elW7sG~3j%wM#glwUW&p=D3-ZXJ|Pj zjAuKC_)QG9qm$*GlkB!hw)gA#J+w!3agnQ4RB5|Kw|y48ukN+}?=#c<1@N!Onp`P) ztazO*QsNSe3>IOWoab|~BnBgl{v`FTi^1OqBC+u;$BQ+)g}JFsj^P9r{2 zKzE|&p!Yt<^RFq@{Bf-7@*AtUBy>_y3n>8s>DT~x?O%#F*3U23d9;W?1OjQnxMl*T~40-aA1Z>rDbpEN{361gR$-G4k>0p1+M}ERfGKc_n}V z3=%QLesNk+jQySN-JXxFmHPeX?l^vV#nrZpO;<&Ge_cn&RW_!^O~JPBBaeQaYhOov zPV5$03V_5HDcEvK@@umJ1nWna?$`SJj(l6S2Af-NZ$C3uE8D2;%EWI>a=3Z-1{uNZ zbH+c;DvM7Ha=e~VICcTpgMh=i$0yT1wd~@i)H!7q{eEr!I-WHe3z|+1EAMZ*-*F7K zmoO?$5P5Q)z_tm;T#?d?)s0XrxZX&3%xQq!;N*6%4--wK)Vk}_e>v)3RQUr3~t4D#s8+!9!LBhEAgT$vV zhxBL6@y<&O?<%Q63-_C)-LLA$u3X!_^|iXktHU@WaPuE}xb2>R{&mCax?Ztmrrq4h zs|-l21UB}H(%^gHxcZUbn*Hkr(}I*Wx%^?7LDH!zbt7v&x_$?YdzSnJac{HgmV`tj1l~+)OvACVQ41I7&HQP{(;nOB7eUCmC)%hLR(CGl&=I?7xxg!K7Eq}O9@$c3E&$r%c9zzg4;=QXLX z_?uezfAIcIA4a#531>m}V=^K^3`JT%E06lg%Uxq#l@XoX1+m9OGKB%V0DJBbSk@kYpFeeJ97yz7f9M?th8^^Z( zJ-)E;UxsgDj%Foej&ZaysLvZgIQdWAB=_SL-9=Kv(&VM5Hs3!}3__kO7NuF;Q(D`} zU;6v|l`gdXJ5JLl@RVK)VW``(%Q6;elIms~nJ~qex!exr!8rrkv;0M+c%Qqa^{{X}i__F6wwDESIX{IcU-(`7BmgsSlwOD0xPImxudBEp6_nQ5Vqa^a* zvs^@ytAS|VeXYkQpg4G&jPedTfI5#08(BIn%2&PZ>Dy0|@;hkLjH)@oHDtB(>h$Z@ z{{Vjaa&eGZYS)LgJ%3McG-@|1V=4Xo3PiT^ zh2t0!fPSM5!NCV6zIqj1I=su_-=p7q?EOz#QFEr_J$f(F+ppI{vC_2f3;2dvU&6OH zFzV09({7oI=aNml@3l?<{{U9`Jdu|K8qu`Tj4=I&Rfh8I=GwVW-%Xm=T+#r95X&rOBl6DX!9~F@ zlZ=u04tVCDMbWHvSFwK)$TaB#s$C>PV5b>Cz;qelka+3qUUnuBNi_ceP5%G`s)bp* zrK;B6y}p0uX5Yaclc=Dz)FF;Y-6x7@n8;n113P+w*n`OS;+=0Qz2UjKzm~>w#n8x% z5xbOiAY&!JBb;PrxuGe=Cf?tUz0uyHoD*^Uf31$X`^35p){#DgE}I3b-I(PM1f__Y zB_I`H(2!0?KD`ZLXm`FKlI92`)5Xx624CI~(ghg~2*}Y|_tcVDpO*$gZSd{KM2^@;J!nip12kZA(McqXOZjw;^3* zc2Y_Xoku->fE=E+l~=9atMA*%uhiBrk+?Pee3`vzWfYO6-kypYLUuBpsz)4g*OA|+ zAo0yiw@Pjrc%nl(E+hp{Ac2r^*Es5ZJ-OtQw0SRW*7pAZfN9FyTOV}x+N!P9y|P7d z8ty5$F5}bhah!Vl``}BX&kfs4X{a{ELf8^11cAWD0QDdKvryqE!I2yr9Epd6FykIITIa`UZkp^TiHymYtxF;@1< z;`(8!3vVe`g+_cGzfbV24Q5NLDB93PX&PJ>5*0`D3gbO<*R^!vt2q0wtN#Ey9kh9B zMN^B_eustX+6Ir~8TAOI@l^UOhC^u!O>FNT2M6bjk^w(1c9B>Or+CN0mn)!nPsEYI z3`fmt=r08RZa7_|u5+Fk1IO0CP{CTB7oLQjb}a4-iMB&+#8nvqy5Cbml3QLY`Tp2zq*cXPk@=5Ps4h6|8(q{gDrg zmsGKYZJOp?8ptVQ!v!WIw>Uf!-0@#mmEx*YX(`KFx2&z@tH0@?^Z3dX6s^dXntJ)2 zzlHuNYrZs&+Rs?WIpA}e_hnkGldWl6y`;Yz+wV@vo*SnaHwfJ(`h2ft zrT4P@bkyIt(tICrVwbl%H1^MD7ncNf4jCXoe&ks|M?Hc9d-F)p=w2Vw-bw5YytgU? zOFpF?w8L<~S2o~E$ByHg$zpk~Nkbk5nr@vEi=+ zX^CQ&NGge7ThqEDxuzPGopLz=tzP2f0n zU=zlk7I;-v*=N?TuOG|>NX(F1s^b|QIpgu}Z9EAL--qGQ^q&-X4Yc*RNl;trB_)5C z8+T6}c+WY`cXQ8L_9)a=<)!6!XJzx>ZvKBR3e_hhok=|(mj0L9?=M)78tJoKT;1t% z*!XdxVQ+PBXPlAFYX?NT)byK=?d=m!lG_u-Z8TOfu$y2}zXt>+ z=T#>h5)KKkYY$Si)Kq=uo%%gHEpM;ss?gwYqSV`d>tB2GPqX>z`w8}P^}qQartlvGLy0M@U3dGmmYrX9>1{MOY`k-?+#e|+^e-lfnYPpSvmSZy<_aJTT1%6SOXSmFCB`UQvfAIGCpU`SNM*T@;{)ahK*>D?KJ7vx19Hc4$PK^)*RD-`m20TBAW z(~NXQV$eq!A=*|WgZ@oVZ)_C{y0&F<0LKS{c*joFmL8mHHz=)(#7

u9qz=P=Z{j zE)ZbI-rWBHlj&A;_X6iA(yZVDCF1~e{C`^a@LaU&MJw<9Ka3(d5pXxsYx&Kxs@UW)R& z{2%F{*DGyr=1UqXI+Gb37fj$Y4!O^B`qgRWlW1m=MwqcE1b7(h!4>0TtF;vlw&`z| z_1|;SqfJfodG&vPulW>+mS+xBCNqpL>(72E?k1NnAua#}Fu*)>+7kYZ`dwJ1Q5w-@hwHpw{> z{Hj!s?-S2j^Q%{>O0uU5*)8<*T~}ZDW2&5K%8RX1-t+J2{df7B8qb3~YvSc=O;^M^ zCXat4i*+hpYZj1)kq_?kb6}vnr86wiWM+}KFf-t7q zZ;MTe!!1lP-_cCUZ(w%zh|48j`B||YPN94rd`T+43i`nMq~GsG;F6Fxyh+V!|w}t;wiO{0pFckTV101!h0zH z0JLFbQdDh>gt!<3CNfS4`D@6lM%RRvnmu*4{Z_W~X3C^$rBai#`@4RYZw%R8YLo7N4oR*rmfmHpqDIQnL|y_{3g^DkTN->>MbY^PF5^Ik3KeK+rYzv1*dgYfH7w~850g;P#5Gc+rG zAJ~GpIRkXkA^g{-PCHh}(&4qX@-^7}FRI2FSeX1nXKis2UNEzH+qQy!>xNzj0;*iG zZZ}r)Z~Wi&uv2xad(yr8{{TsS#cBK*s$E^A9trUWhqYU2w=-CcQrWKIUUE)u7&bcY zR_C4;s!#CuT)0VY^zAurZe2;vpQ%_}KI7ey9k+r39gn4Q)^#MWYo*)z{{V+HaF;dh z>wSMDa(dpIcj2f6-XziWZ6e?>NN1Z*D;p9q^A;Td&lo4vo-3czwOJ7PR~C?5q;IhU zGi-EjMh8)h1B~Qg9(q?5MJFpizy2Hk81$*P$#m|#pXb<>yb~^?aSo-YX)?Hp_dGHU z#FLS^3E_`Jfx+VggI2_Po|`-}-dNtiRFw!ap%^wdAp<0Th#Bcz{?>AWi+6f??WdCz zt0_f7{mQdy(p&2@+3GOLVz^wS@%)aR4)3o{-LiS>er<7J62mQ`TtF2AWP)QSlE4w$ zIl%h!lTj+JX+iDx`RxAyLeyN8QeW4pHi3N-T)m{ww!nf#jllubkTQgOoO9cboQ>O; zDGYjsnCQ!oETI5oZR?+G@$}+~m!{H|&fVAfqej^dl^V{h*EZ;cg={Q<0(s*HjxY{? zA8NWHM1>wAvlLQQh#--W0`|fDIq&OS$}L_m@3UW#n{wt>KD&0?j46weNPSkv9 zeRB5`KG%ifEgAB2g#fo!Vt*`tAE01d>0#Sz;(C4le>DbvNEu{M56svc=bTraXA?B3~{T&j5VVF&y;dSE^a~hCNo@uXLSC$~eoD zB-Y5XmV9%P%(3U!8>`ZI`C{)+n%#7FYo_}B{a(t)p6JC|r%krC-{=1T19lglC(!iU zSBFt+%}V3|WQpz)5E%B#s_Y{jRGfR(Y_scLAhEWS!=4iG?X)>&YyD1DyNWg#+!kqa zUA@MB=*aC{@x;ZhN;0*#Z&$17w!d}s(7JH4_L5$U<=_4vuBHaNKBl%`VAZ}LYFF1T zHpX;2c2z=psC1GvUf(yD$6l54=fy31z~HZ#RMSbmmTKQUJpTa9;n!c+JX>vTHmjw> zrEOP&-fyuiXk%tZ8)7-f4ZDTLGu#^VTOSH(J|c>1T~k}sH7~GRgLfUx=#C+rs+EQ% zJOau=-O;h0-$^uW z68FK^w->$(yVOjk*sRbc^o4EW<#Qh#oDuT2NbjBvcODzD*0fzVOT@Odoh;!pwb0ZU zZ!Eb8RhJ6t4?ijA^z|_G$;W=R_@-ft`tB-q z>puNY><$>gLnzAWVJOF2bX}MA`J1r~D&_%cr5KbeGMU+emH?l+4tYJhbJD7f5J;h7 zL`{r$2(Vp;J?kt*I(4IZdMjC5f9a#!!s6;-n~iJpUhlTOJrQ1Q9`Ys)5o9>Q-67+i zNIfxGclJ1ufw)(ZQ=wpRI^=WDfAh_J{x=0aXU+1zq4an>Y$q$hU%rGXZ7h%gs;&sn z1Z01OUem3W2}uLsoTErG2=w&-0QFW_JUdI7uAM($z}FdBa&`FI~QSF41)n^s9T>1$oDK8KxOmJm+uwQoJ_ zw%LhtQrg-Gt_goM`HgNk+E4ef?NPnWn@H0%2nhrt88Er*atGspHh^QlOpP|PsPjFa!$oe56OMQ^b2GK6J$ zy@yMp-3_Q=k9y!00EIuV)}U<`@uw0?Iv~d7CnKj|PrYj_HFoaZzpV~fWAOH~*X|&d zFKy(Ag>{(-aU%SrAE@MvQ}vG*UMz1d`%c8DkBNR(dN9cH18I{d*qQU z_YG>MSj!xth@hU`k(yg~gfdGLX9UDcs<9xGfDQ;b;EK($z3{?n6GyA+T8D-8H@V+! zcm1A35i$}$%q*lX<-B~$PvUk;9*XyTC`kj`c z;*Scz_WFOs-wUp@dnRPF@oW}W)4_2r(ep@wW>&^FiJCIt4o6c?);=K1pxDJ@t$0&Z zzq3aHJl$(`rNT00LL@MGESoXHpvM`>>&1zLs7KycOZ8j-09u~3D#mUWm9O%CYgf8v z5Bw(o01uqJcb^H+1|oHDw?O`f0Zq0*BxC?N>(ex{>;C`+ZgkzL;L)eHH_Gi|E(>np zld|FtybrnGfzrH5)x)-_$_hT0Uz+^BM^dNFqLcaG{Qm&VO)EwCE3Rsh$)os+=ECU| zN+N>dZ9K-x1`n4!E`a15x7q<19Os(qwXX@wt3a}9>3gr(NTngwY@$i;ZR6Yj04>@E zcxN0hB!}vEcC9K>r|jP@pMU4KZr+2FsZFNc{Qm&2*48;&DEw*RyBQ(THHmc%HC&?0 zXDdYNbN6IJ(BS>oOdg(wxsMa-Fuk%*t$1HeyH^EG?V7Ef+BV^UOiB@m$s=+c`yRaW zttwSLoo!R=)qK&se|am@Z9nUN>-tQJX+{0CS6Viub38C85(UI;;L) zk#>7)tNQ~h#Ij2gvPjXA&V{)heX)(+oYWdqHN6FD%SNFOjtd?Vb4t`G1kiQZ5y4)9<&JbZZrNWPNL8tif?3qQ=++1;+zFjYD%J z*Vk$lyr>brQoM8co=4_+ufXv1y^S>LD{I%t{UOp+s=K?{ek|3owzo&!A~U*t+uU{M z=~^;sM%vIYi;QQ0IPF{&{py_0UdJS&>r_eiF?AcMlGKoVuvn6EGm<*j1E}0hsFPxd z{$2yh0^l6y130fnl|{`P?G^qIf|!bI9kSj->kW)oETA_;c{~>q^ypV>gK| zd_k()?ziy$oS?-FOnyN#q5>I)K0r^Q$i;oO7ByWr>?x^9=##$oex7abwYr}jS}8s4 zeP5FQ06miX*2lE?U&B&s1_>@c7F)q-8T(h6JTf#<790eHlWP&4a6L}k;=8RgO`i0= zk0f_?)@VzIf=Mk341CVdu>!71HS}8bVTPxMRQaPc z+S{+(w$eq_X z&*8mHCe4uxyOpFkNi`kqwe4%$TfWPtme+oKRpI5@ z{l6vV`n&wIHH{+oQnG7kG&NaJhmgl|im@;}0A!86Vh1@q1I{{E&z~1Q5^DZBx@YiL zg)FXaR#^oPB$BBt3s@fagK3}dI_M_SiE$2xd7?B1{E(%*-FCVQM0fOwq6DMzjE ze?RL^n|Ymnmt@xQ!5XV7MHo=ra-*klo+|vhfVuwwmWUhzr>;orUxL@hOWL^Ke^dJ# z1%QlbMXh;I9a`emRz*>}ATY=P^T{0Gf1Z`8VdG0ki?5p#sa!Tl>7J(t>0R`(Gv(&$ zdDZaHl$=vKeJ@edJV!E5E!e~e6m7v#j^F;jO466Zx)!YiLu^Z2DPW4KrA|i~^zHuu z>aVK7QN!codY=>j053!5F&NBFTTv=Y-Horl-{w@0!FP7%QH8 zuOmoRomCo+R#tz1ksP{x+;OGdya1pFctCzu?NGy{Y8NV9?ImUeZPY6$`{L?i$}Khx5@yiP9-Ht9!ind)HaV$)S6yD8jBr(Z%@)Opwg0}InUbnbn< zs~cF-Ao2`PYq>z)=N-sBbN+uS`RrQcny*WxpXPlw6-~wAt34it9T#8Mblo0J1t(7~ z(nY$B=UvDFW4TxX&tuLynzsZRrRJTf>L1u*2`@^v>t-@Y!7wtQoFHw)U@zfc(0nDE z&ojYO*Jbn3Ss%%MAaLwBe>AAlX-VnX-QV#403#AV6~PtUSJAem9h@pH<99vb5=BO4%lii zO{nVHRMs}|NX;$W7IDO}NIMTLin1^#Bomb#vslGLk-J%It*x`}I<8PxzrE*uZnWvI zW@l;!$#p;ND;->mqUB21M6yLAN4N=I6>uatQ^r9AatIZb;%^t|mUBmOde)32GWoJa z0|Z%ig4j|31dh1eIr`U=TN4Q1ne#83-q+Q7?ceS$7->#PMO*#_?R)j}?b_EcZ1o#` zG>aH@T^?BPrD@(Jx|hq$fFHROYylqRb@#7E@I*c?y380FHh>nWqEQ%&8CyrrjK7Y-rBX)zl~eN`dqrR>G9oL zmm=mw(ybs6;F0^>ruH2<01gkXD<(~L4R&8X`sc!`<-!LVO_jjxaO%sIW5*-cw{8qa z@fwm=@3Z@#;!PP!O;wNK<kG3m#?T9Sa>bSz`Cwlw$krv}IU}OiLIAxq@4~3k%`CG(<59=ogZ31brh3k^ST3u= z1fr6vk_ZC-)sCk_nz|L)mtXpu#h7rwmpR7kNPm$Mb~#>ZZ88&Z#bb297Qr$J23NR( z!qiq5fGKpQ&=&v2?~rH`&mXP$IhW)`_RODoGt7v!F`07KwjI6Gf3 z{zW=%TavkTeQ=3C8q_F9<%5fE1K5u+BW?k155YNNZSR#TjW~ZBKk4|qTo6tPFcWl` z$G>BTl=z_dGW5UjxYI_UK|Y%@mfnundMhn(clXM%lss+do|RcgNpJOA^hUsQ&xJ(W zHMffpqVB zO@eFB>u;+M0|yyUGufF2IX zzFoZ(A4=jjU0a&kfA!kF`ID6W0%>MVq=tvz7m&A}^PSXXYmxa^7~;sBG4X=rVBc`a z6{JdGe?nBH`o^Bv<1KsnW?OH8vzAa2?W-F915CT&-a$V6tX%_V@R6s2ce=Ux${Dik zcLwh(xePa-X)!3*koJ_G<5!tq-Oae~8!YcxZ40YA z{xJm&=Vyn(X7*c932~_W$?7@2pu7|UqK$i{pLz8|u(^N!xbd2~rNOTcCQSu~XAELq zH@xNorcVJ;SC)&13ov^(pVtqa!XK74Pfxse)NP7nn_OU1l{ zaSyC?7VhC@v7SnrGYMj@9JF#GtyNv|(G3c^4EhnDA@Hl1q~5Q2*FWqcR3ImKk;%81 z#8Dc-g$x($+9++)hkdU#BQ#Upoh3G)U)jlv2>Au%^?CBnMm0l_$H_fS zOE4KH%h&0>rZKs6#(V3Tid5T^F)J}r85?h8^5@V-j<5`ql8p5i(3zreSyTLf?H&}E zs+0p3u&d!h7`Y$R-i3R~`K?5SlM3(sGlm&(Q6& zp2OxZ{}qxZB1klhiAOB}(zKnbHRxnjiO3|r^viojp;`lQdPeDF7(}q2KgxaVOyQ>M zqbwvlSQ(|=gnwpd!46p>-3+w%(Cc1X1=(fqh=b3odapPR7>KyQZh)hl%zS{_{Fv?a z^>4{7KL#e3|+UvhE&3siWa-Zbm+ zGn8uye`bz#bG8;G0Y)o!lN9a*q2_h6Xw%t=MA!!Jj)V5bcfJvM2&nC81yO_vqU zXg8syYkoNDppJN+aY^i3+(R{D%72O%WoJ0yvdl-{lLT1 zT8y>+W=XqckG7P41$G1mzYBK0H6EHdm7V7092%1mo9MOp9))18TX?#gGpBiPXz=gCD`i(PASgY-;Vj>=D}_nEDLin4p7 z;XPI~Y?H3&mRVo1SaDr1dWz(O^%IOGXLZ=btiL3+Lg8m$#SB)yVTpS(l+Q^|&mgHa zX0$m=&hxxgxYQ{*LzAvNXjxv_dHmAivb(^BnPBoW-Qh_WM&jSS%7$+Ub-gdc3-SRI zrxtEQx`-3n!J3YxH=jHjMgz|vf=^=e8MqDnlYK%d4M5=Rw}aoA?3y%={!M1e0=)jH zNuX`+3GtATe#v7|tx7XDSuokidDoKK05W5;V>+)c!ITf?BDHsM$)10qS3EstR=Y)g zmSpR#YJ>gd^ihd+eWPy&&|w)xj@5Xe=eFzKswy$Bhvk*S(yBBWITO?Q?l$1CMQ)f` z1{A*w2D>+!sF3!u@CtE()Wl6Zd?&SGmbU$y^?40nJYSl z@?a+Znlw(})fYG4P(R*4`f7Nb3m-gh<1uNrP~UCpj`XgXz88dfUIW%Xw&|spAtTyk z+6oDukvP1-jL-dnHjlfenI%8nmAU`3J{pm$?+hd^S&8wgd`pj~pMqs$TtkbyKlV=P zx7W8efs`g=+Dv9*?+Y_U2<;XSQMs&^Z?;~l?`pTV7KUHiN=y1P)aY&3*6g;g?l@{W zMA|z07ZHc{JoWwcrdf4taAJ=m9Ypznp?bt-HaOBc=iw!n5)scIVWI+Qjuh3iE#?UE zjWv#yD|2AePP-Xk+iw+}m)`pSY{r?8yWNi`p`}mR%~B}W7*(Gu28mu|?Z||ZNc8pk z&;KFASrmU*BYa>FT0{TvedtTD!nqc*g`{MnpyZVa_^P+o3dJB6f(Deis{oKQ%vBE3 z^4UzSz_V@z;%R}yL;lzkfG8PE?4y115O(2}aAsnGG>>%c+lXZS6W9w`&78edZ~kH6 zw=RiyLOLg}g3|C5blw`J5O_G%ukZq}{5mJN$Ndt(d@n%TXaY5c_oh&%%J6(-VW3$F ztdrspk+fU@5wO()B>b+E;^&9lFl-btdPxlo9JUHk5QV&))e4Qw(o)3P#I}^0_L3Q1 z4MplqcWi2Ur7Z5pN+I!&Wk~|bf(Rm9CDflPI686v1F>ixHdOgh7{6G__tIyfih`o2 z>cSgeMdujd^A@e&MC>=e*KTrwwf_D&5WgR@SeE*0zTG$U_6;PjXW-<-Z+4j-Oj+>C zvON_qg+A#}ie%@=O6|QbiejsDLDFSa$N4^?gC9ROP#H8n<-&Zqnhj7J6sOMJL9}nX ztjs8{;-{5iecyKKmYgRRvuiYapoov}T`!eHlZLfF$*hEBY_UjAY#qT15Sf3>Q05Cf zje@V}x!sDCJwc7~q?Un@X%7)}1#v-I5M=jSB`GNxmXKfs+rJGr!}W*JTqbu(%rcIG z!zJqpH)&2F{uHY9d8^jtx`g~`!b)_u3^aBJa0@jld49;)! zGdKuHN!_I73~o&S#n;yIsPXfGSsdLmK{Wyfp}Lkf=avHvA7o2wYAz87w=IKJ?T6c# zASB}>P|oc6&s5(~U(awhbxMuc)WNQZp!-~S(NxkV)ThDj>tA8avj>}dIXj_mOHv1R z(^=FDyn9AHTOTkIwqK7N6dmbxf+$e1x^QG}1VN|46&T*dl&EGkTInsWc=jZM)OqyW2V9 zljFO9bQsiVMz>^-lYUoDjd@9{OiOV6boUCG)D4p_WA4h?LHXeLQm?aOpvBtEJb93u zb0GXbf-2Pb_U9kjM8K

a`x|2L{>JXIK^Kw-8&2yI# zJWf@B8%Y_>c1`@-_@DD5oGyCtak3lp54`Sq@PXC^ji;v;}CI_JGsCZnxU)QmY) zt!r(fOHa7U38OQ_ zJ!{?`}8uWiNnIZE!s`5mqYW}*NUqs?WvaQ zA}|FAK8ArQMc9P%*PbiLoFxa#HD)*+RqQpb(G*0D^D^YGT%SQr2qQ&x zOtT%NwlFbSHrf-@R7!v&y9miE)C17eEi>C&ypgk+l!1UVf!>@|*(qzNjc{%m-b;MQ z=%BGbckmTz8*ghJf@5Vu(J=hiL>@185{K(xMuC8ieTun(W?o26n(F`d0C3_HSK@n^8?N zh2EU@w=!Ef0iq;hInU$Xs!ITmmLnt|!n%^=lY{6(TG$|#LOj%$6JrHi9MLiJTyIUU zj20aU^{Za)h=qF|QyX60pJ?#Tupy zO{k`t9Xz16>dM$-p17|@_{W8$cs=geun3ay^3-zunRON`M;}>NX@2~0dN2ygt zg#{k2$9Zz8I+9UGmo~Qd_oCk6 z6eE@y?~~H2OK&xmi=l%tNWofQgn)DF+Pvu2mLWRLUB>?ab6fniK9UerQipPhgq8Bx z7YIpHoZ~%su8Y9>CX=n}FxqR^v)JiOr7o`$63Z7KC@e-7KBkNn2+tD;&AT?0_tN^m zlGLj6lqpJ3S8HXqy}oRIp`hvG!WY`+g`{d4g|()pZ4RR}fnbdR>I-9WBm1Jcy;Wem ziVw2d#Tp_V&ZLs;d*-|Gv}s}5RN;HaNjIyso!asujY&=2wWG63rki@0#U2?;BIBMw z>00`0+XE+`Y-afmz#AJ|91~u2IU!X_O6vO^H7{)mbPXc+Uev5SFQ=?#?)G$uGqx9T zKDD#rO)%+K8itE}AdYPw=-Io*2w6xO$jHrWhM_NGD$=(v!{(iwze^moDz9p(t@rsi zV+zV+6oY1Q*pb`4OMj7bYEbJVThyn5 zYdZ-iv4$lZWsnYp*1<@A%iHQm3-R!mStYNlGut zU0UCP%#*1n87-ckdK2F2mYT+y_V=Aq`W96&1;?1b-k{w}f29pE5hD4CZ!DEE4@UL; zX;j5IR8?VaX-3b<_g=gF#TeNr%cC;wZ{)VVEfl|JNZW4SP;Jb6^5{ctEBfcPbDI8;bzME8S$w_CwDF!RzYY7jMfLqi zy6Sm{j(i+6SZ(j1ebJ0U+lB}|Yng&3Zc6p_9jp2)h4D`pmeZ8CT0c~Nd7V*IF)c%9 zsQGj~GUV*IwMNR|oM7UyHBX1Og?!r!vZn{+Zfn@Z;HcvxYKvZs;irmm_hxe%mxVQr zJQjO$>z-LTta6e^Ceo}Jb;z%f#^v>Ja`&}QW_GD5M)54#+>2mKrtU%JtVwci$dJYm zX8HX$XA7!&d@mP>h(JtXaF0oQ-A>& zHElt0%x7Wb4EC>&C5 zGEF6~a+Q_Q8YCqBp5irjVp#$lVxpCWyOxMTT%Dw{e94N^lZ;}eZCBhYznM_X)5(`v zLNgG~ohcg0Wkikvf?tVSit476-!poO*9Em`qLL64%H&1TGx47eeA88z2NR(cZj-2FCf<$@^V9FtALji9%DbKKYESJeGPYp3vlJA+B( zAZ!p1){|Fyj^n^mgae*9z@{@Qu6Fh7S7agvbd+=)A4-Yh4sxx=amc2krnDZ#c8X9k z06Y<#)J+tOLV^Lua zA8S@I^EwX<=@$1|Wvkm-2xP%BvFgp-*Q0oQPPkaw;&}mFahmWbQk`n>bo5Tm{;%(6 zPA;vJQr5t4NR&Mt6@yKX6b$-zZA zMo-P2def!0sR_CgZQZzq9M;S_&Dpe zW}0fxvrRw2{st0^YuYo>t2?gf&(^#}sQ8u}ojPlYE%dk44eh>}1MRkeZN|`}{GR!& z*wS$9in&qH4uDoToLup8RUVxZ=#|^D@TYENWm4A6EjD?|6s~IH)cWc>hm5Sz!m765dwX3}gS<^g0VQ+6W#-DJv0VdAY zBaxh9v>@?jw|U~*zZh##+Fsq=>P>tt=Z|yRsKddMn>gGfw{i#!uo%FD&(M3PE$Jd2=n4wrEvg4aq)O9N>K`D@~Wo2__Zy zqJg`nF^}h6RWa`uiH&JfQI@xBMJqLLxm!>3FmzoiPA*qnJEi?x%ha^vXC#tB2zFK< zFH9Q5o;V&TZ5RO~jjNsj$7*3)&2G&4(j6|w^$e?v4D4N$nR5mhTcgn{?22S z2stAM2d7_JBDrGZ)%CaMui#6&WIHeEERHwE%F%`+gT`z2{sqNGrUB8D_mgk$)cC$3rsG;O=-1>~ zG9sqX{{S~k4u+tSGr_Jc}2=xL8g+k+|4nI1hsAzg-s2QHs7E}Cc zG5S==Mxt<|8C~mo|xP}vG93D<9;&XgGEH!RQTW)v8 zYNEZ3Eh^chm=F$nk9zd&0@G{&d3eh81DsdIX4ASz<*fbVX=9KuC5AX(n0?xF8Ce7| z9HDK$Tzl8fz3ydeEe9KEx0a3-0WsCHnnD=5hC~cLZ!vn!wGP(Y>MdxUwj$1-R z&fKY92&r-8mGAd@ktB+DZ+u;)c#*jz?L5|HEXwgAR(Dj@Z-O%Su=I42y`GCL3zO>2I_u?&EdjOPa!tmVA4O>bqyxG+R^3}@#( zD;!l-LX(`HmtUFJgQn_KX?AC*_&39gC5m5(ivkAFI%mCfb6MQNim}Uqf=)OBvcll! zQY#S`@hhCTip!nF^gQEQ)*9!=w)Qcy5e#I=?fol<)U|nMzPrDT%0^@{tep-sjA!1S zD-$ILZj$_?tN9+T3X0PGzcyyvMWsn-W^GNRx(5O%p(l*@Zi1a;nnZ=I<%;f0rp_5$ z1ysD`r59?Q@v$WPOC5OWn zmv`}7Tdb4J>CQmQ9CicVujPcGt7RK>bjgEuEo-5WoA*r^jq{#;Pt=`+$2#%45gglk?04lRJ^&8 z7~;3Lk(L88$g03(oOQ0Il`3A+o7LXlo@O^wZ9al)_O>>j9E#>UPcVo{{VnZFMV@0+~T!#d)XwC;xm^7I6U!O zWd0FbF(K2gPSz#Lu;b_reP0je^UA9!bbI<7nT`scGM6OxTX`JK&D+^rv^N85Aw7DZ zrB`ie1m%I?@K1XEmXjGt5MTPaG`CQ>9#@j@b*6?d)_fyflC5+u9+&?OOo zyIVQMV%J1w^%Th*t>!Qxi(m!mioYzY1+$ z?K0uQsLMC8G~0=i2)4GEkx1xCmPg=z714%C$;wf=aC+)g5?!ayXFP;$!6klCOak#x zt-aHsUS2@mb6t>&QoJ67$yt^yW{6sO4CCz#_ycZP{Z48ablXL}RoG?~ttz}L$T5)&3 z_4oET7@WTF!%7wueKO!h1_8qPCrG0=OmRZh(CS zdCE%(SvlGBDK~w!U*x|N=;$X_pSz{4_!x&%xO+CVb%qG}1tLstInOl5zY*Dsn;4P_ z;&2(a<(oc&v4$ztw=zn}+oD$2`tv)zl3H}RV(VF!?P8v2=a%jg1hPokQkm(2)A6l6 zO8WD|l3QHp`i9swizx-q*+CJucrmd&6OProtvN<@VRbmDyS?vpn_gCWnM#sPL9HGA zJEJA%vsjT~MiK2$0c`XfRMwM)wwBvyVEAa<9Bg6Uxaie{CY)B5{LyYM+LNp|`o65N z-Cl;8<>ON%&J{re0FrurXw`JvOKbV;ZEjX`Z009*`=o)BgWOkKsY-AfG`j+C`PAt>V zY&6YM_84`!u3)q%%en;xiv=VOeQOTQOWTQK2Wbv)PEQO#$@*5#ge6WjHBxQ*StW0t z=3LJ1FKs_lTSn9jZUcaJoDgX|bKxg=lUuO};iK~yFG4*&wd!T`-ZKkQhgGWi92KUh zR#JOC4hHVlP#|XvvIg7-LIp`8Ufd^?uFopu7|}^!G1S&nu>A6O(?q^~7pbJGM@G!) zFRvhlS`e*~kD9X=#CKE7&|N?Zx7{i-MQ2UPD-KjtmD3!mw<0*vkKQa5k9vYw7!FhB z9188j)4J#WyPVRMz0(g_jYOeTjojxo&P;?kjFG|Q*QrhFCa)9D{vz4K1o7O)*moEp ze>&mJ&wxqm(gdxKuBYMhXAJjAZ_ z1D9e?OlPM`awv9C-&0>JHt%z$$4}wNkOuOkMLV{M1ZQ_GMBf30}YyLV*0u2zJhkz<-1q-sbiI+O2K zZNp1#8Z?Kl7CpU9YbKJ=nG->82%TmD(G=_@xf`fRM6=H=tHz=**)kE9`U;5JPn8*t zL{_v}BDPimN{|OR^{K7yt=csb+qU-`6oNP+wWY}!rzF~Ai?x|eCX(IW@Wk)6w&b=} zr?`?im2W~Za^EVldS#S3bOS_9K&kStuCLTf#)Lh_wDYkEFyV~~3M~Ry% z7ltR^wvA~@QF2%ADK_;VH1>B0f(ro*kuWL{^N+)&I_}TJ8g%b*3^2~Oah&AkkYc*; zDxUo{X04~A6|bRI4L41W)nI)};7K^kq-P7COn0Stw3+NhiY)P5M|0Q`SYxec1xgCi z`S~`9O2$?Fz4F~k_O~)dr~*h20jm>Rw2nDa;?iH0!7O{{(z;@~Zo7X>I<$U~o#nE_ zCp`r;j&RJQoRS58TBOg@Mi5&WCxL(|r<0rJl6rQgGB+6{?K$gE z6$o$u7~|_ln8q@(846B&nu1WF;T*~z4bkADg29Vjevj*R}=9Oq?1Ixl^kL? z%c#etdQhn4N;JCL^gN1jN~)9Yd0w}zjYCASnmioD5xD5pk$-&^#jUh4*+m0K8AdUW zzH|4Fy?OYIL~2d96z>JEXQtnZKAR6o!YN;7$Sf>VRlZwSzPGalOEj~bD8T+^tNHe~ zI#s2Wu9LR$ZrWLHvP(%A$O;#?tz}6<5OpMzZs{(m*;)QNe9pGpe5*@a=f0ojX~m}a zg8u+b7B)6g802tnQYGIZ0Ps)uMQHf74~O)-F9Yh@CDp#WrfN%Y(oG_=8(9;e3Qjv@ z8ujB&wK@{5S`U|(m0P>J*XFj?-y@aE5~&(+lD+Qz7MgwN=fI4QE;arT4tpHZ!yUkr z%YYXycv|xLBIRf!ewvo9Ep;1cVV_XbXNnog5yR&KN#{X0Xl@h}mK4My|q zuoC!pkPNW{&<^IcSUS^k=8r6*xwX?z>F8xDkd2k@o}WMI6fProkvAb8V9MvyG}f|| z7KPX580Vp+sm;pme@r=&M3N~;N=-V&_HtY%I>bvHf@vZiTQM7$cdqlp(WUQ)0_qW!w-S-Pv4T6|y_}l#@hh2bpWJzQio7nn zqP6eBdp%mlEndR?CbXE4gf<8xwncHiEP*@?q|Pki5zEotxn@(wb6)Li4JtDF)i-;q zubTd~JXqrARjMydPb!*OWMpEa%H)C%T9d=q+HRHNOFPY2%l0856M0dGeWYW6Yv<|3 z;j6|~7gY2JZyT#s%68@`PvQitftu+lp?Zdpm?N!k{?Lwt4kjDqZNGmbyT zjKZT-th$&*E0eGQ08eg3Pi}~Vk%A8yubrFH#_Myj@TIa#Dx~4I5s*UkuJ*1B~jsIHF|=!s*uCB1;CVNBnn~T=>So*O9!pwBvDiw?1c2_yUVHk| zGshgwD#7RA?kq+ZCaI*I-%~eqv@Tk;m8>l+*Nx{k2#z7p6ZuuQ(h(R-WpNuS9PDxP z9M^6h5UCzmyHD^ngjA76Z7{}*EzCtS+nEXAk7}|^v!+%hFsk7c{{RW~G$iTC!Re>` zIu|R9y-M&C6~umAXdUyC$K}V=)bY<863a70kL6?LQ^6+>b1%LDYN zk)&v3o)aTnNrsaNzyhlBwXOFLM#|clNiEf7S0MFbHu6PsT7+d3z|oErkVAL%r71UN z$(Gt5qy>OEW7pD}0b`b4Fi#^D`GS4V)2uY99WnTfQ#S=WRQAm~g|0N?rh0S8rX1rZ z2iw}6)qstZkZ=d5PHHkS)DK#B0ypGs-JDf<6rHz+JW}nc-@wCi$24oO4p@rgyl-)C zmKSamG=Ivi40-p zmyPvJQ}oN7FJD_dKgGT(lT6dJwvt<7u$c&EIN%O5 zk6NmD$6csbos_-S?RU#%Z(WS#P10P{<94-6&EEe2nB77x62ruIRvsMGu627zcCDqu zf(vDHkO1}esNss{{Us{t6p@eKw5}AE&J8yRbGkTYZ z_hgzPy_&J&ekZbu!&aW&HW=NwR!X)>Q`~dwU#?*)`$`a#-K2hZi-L`LDE9**kGfAC z$4aqm4&0HR=iA<}$Ij^_VIJj_izEVa-Sfr;PJpQlIT-ZsUNq%%X0*B6cwrU9MWj2A zr=@nrSylyy%XJ5mz~^r@@_74uS98pkvutPC&DF|VJgv7m48P0kTApk$vn{$YRBfe! z`Hvje6!nU?LCVPw5TsVZ;K=Pe;6#A(7d)D(Vs;bCVq}1@CCMed%~d*TO(?y3{{UWw zPi+xAkm)TlnC^dhBw!CSfr?^4?4l`VUnDooafKv%_pPeJ3Em8eTcHigO3*QlHVK%3 zNa_cnso@h_$^=&`phhp-IKw44bs?{cc=KnV(JjC|KS#e8(oUlR`V*!90Iwq(RK1Yc`C@-D zl;{~*b34MR3)pi&gqg(bZ4Jo{{T#wmHz;AabC0F-4*QOR*6cfP|P2>ua&Ol ziNwW6qisJ|{ztKkYMnk)tuix4e$YlUfCm-K{6f>Muly@>XKsgi835fQ&m{1|u@FvME7Y3udFDmTtr=cO37&CYesKi7 zoz|`~yYxrDmC4F7SJ|++yN)Ne@-I^0JSIt16KF%6ZRe?}C%U?`mPs^=>xg5XGaRBh z2o8)nQ;wtBv5zeq`#I{Y(^_=b?mZV9w4}En(KTH|!@8Y@v!Px!jrN+$Br+<7!Cssm zzl|apF0U^2YwNi#?{DuVx|V5r<@%@{lzMclSgMMP!r$F(J9(vT#VT=Ab#3oj*Ye!3 zy56Z{soCm!M6tzjrn0;&V+^~L=OlNg>eK3eB-b@B7WjhkZZGvqp>)IyB!4b8s`eGo z@iiw-cx^dbPv;e7`I4!^685(Dt#6g?S6fZrGA8yNc&$4PHhJQ>wu4J+sZ0#us{pb4 zpITU2ZPZ+_=DXWrPHNh_74)4(=SCv#%0QPJJiLVmj9`wR%BsS*klQ>8p~Rq<-OC~;5E6}0ed+D4;y;yZh-R`4v5>9DHG@rD@%`hoQ8^sh|thLaVK zhas^5qufaHlEbSrWY^baIAw*Z>ACYeUHLgBrTnaXwr7ZSVx6sj$zNZYV*db7wn*A& z(-)aT);FBxD?MT2og}TWhhbTa4_=K2MgpBZVERgyAJuQdkp^xbIz5 znonNlRXyvpc~8U*9$05vwT$({9CB-kVnGU6dK_2jnN?`j!$rjSoX(fCuG{K5Fdcwz zUW9R4R;m<0fWaDJ8NNxL>wv`3(LR?s4e z9z5;?9>TjTB#duaBaw(~=e9dn$m1rRR(YB^U6UkFZ7fF3QYqUg#GIeYwOF)kc;r{N zPcvp(Qs8a+*E5x(t@i}C(6wg`#ns%B=`b7E;fr*VV+e(hOqw-IT|&m<<4M)5ypYg` z2@8fijEwqMbrmR6a*ERX?E7d<`lCGtm*v}AS|fShTQuz|WG|orae~K& z%}}06H2DHWYqZJ8Vl$t^wOpk%uWQ?=TIf@F%__@0F|%#P6yT4oQM{fog~h`;+D6tn z+C2qst2rynNBNP~%%U$H;0hzaQ<6ge01v%WxRcFRffORK&jT4W>DAF$2>l#o!vxw+ z?&MQ~u5f<5n*7Nhr;RF4C#SHaD;PgENglOH=mc!apyXnsGa{B@*RM5bMR~5{LAbCO z$i-2cRJV^IoPKp&$!;{8GcLSGZlLU9dBN>ix|Xwbe{A-42ltZ@fcM9G&UMrxOdOS~Z60~!NH1n=FV0;s2em3` zb}eZdJ^W%xCJ3vX6dtGAyv0ijn`)+(Yh5;9=lLGPtx>Bulim1FOtp^6<#pID#oD=X z2+x(Y^gi^mXqKu`ZIzu>vR@;nJt;#6NlxC;Pi?%?{D^poNouTSjWi?380J-j>5SRgt;|C-{2S)Ue$A^H1PcYpc~QKKs7Hoo{+D zw*7i7Kcqu&JUTone|32_s@@_uQAckS2olW@^(C>%_Tr-Or-|h7mbE6UH;3(YaL`Ez zj%Ohem|!sAf=6CKttBdSD^jkLlV0?q^jA`PN6O26e?oaDTAb<0^4~<(_OjLan3hu9 z#S)qDWnjgyI8s|YRrum?3JaAd9P`a*MY-tRzpv2Jqe{_N6S7StNFn#8fo$FDjk( z*K6Ug8?D{-_J^s=vQMJ2#b@&1G-s~uO9fPqT60tlqyJK0A%&eeL|;rS@t|gNyc|ajcR@sy|9<< zHr9qnv-1!+$*y}-wEKK-9i$AmFynSkIPYIMjloKk+*EXy&&>Kv79~lkH@4*+9!TLb z86qM=jj_E5s@IUl;qGLUE&xTxc0Fswq|%2g>3g2E+vjZ+bsGeR&7}ir#(tu)nh7u^ z*_`q+J65s2h|N2u+0FQ-JA2JK<~d^xwFm%p&*5GjFag<5VnO4*ea8+?UdmB@51P*6 zuNFycjLm?4ymzfg6e@tjo~NaHSf;t`c#ykS97qZQZ)|^sYG`(;EyQ8N0H?QHSD%P{ zux$}l^2Y4+?IO`5Kv(5Z0NOb$D`q5eghePqSOABP2YUFr(o&meo~}&=H7i$=G7v#wkx@J43X)Iai!17m!IG!?$SD)BfPwgr1dN z$eu4u|i zD`6w_b=eeUm~)zo?GXjtpKfdOUZ?40d9?^o6S;pAS@#7JJ0mV-=rLrwWbun)|SqK?>#Tg`U+}2Iciml{qMAArekCjQK z?&{>t6j@wfYnQG5g`-`{3BV>YD_=yh@db_i6Y7?pNp{MHIUs*Z&lIQic}^=%=T--i z*GazTt9Vu!FK;}ojGE@j62#)AQN1PO}+|RbwCmLjyqRJz2G0WT@qb-&SJ7?OgL~rJ^d&IMGZxaQ1v4sb)&2y@i zYx2gOJ(In?TW$P}93u<1`u_k(TRld5X=HH)tVJKLT zuQ|(g`qog1f^D?Z?2?uKU#^5t6-qCfQqyaBwuw9?@ap$jXS~&KBhxI_2<0sy-67n6 zg$G~ESD^S0;g5wpF9qhUG?MBUQq3=yEQ14L{oH+P*2^+jr3^+T>b2$kulb%%WthvB zRH*f`xj%?!yiGbu^c!S?RdIoyquJvpyK1&WR)jB3MX zj$B3_R4Pg`=+19edwUDGp^`uJURlXMcvlDGEjHCPX1~$njz2gDC=VDSx-kh(n~znh zCl4nH>#@b%=(e+529jY0RF)v{K9x^ZzSC~SoElUHNNocdWg`KfrcbSWo-Um_Do^c8 zOMS=D(5pJhc1C`qDb+2ZvrjG|7$LTgznZHSn>EvS)<_B&BLtE@QY*kbMP$}Gt!w$LZE6mI#%SD{nnKc_8in2lk z5yc#bXDq;A)tRJ;)skJs!T^CrI-d3M^43Qs^hlOew3ga=Ab`fvA{1BtFH=_Z`@5Y& z!F2Srjk9pCA&)zmNA#|S(zA-yroTdEqQCXA(O#irk1KxVVjq}yq7>6`+8gpt&d z+O_PwBdNcJ;nYWst!%8Nxmc{NcL#Sw8QfQ}uDVnwQff1oBC~7LXZWOuly+V3{{RHh z@ehlBBY3A=(ocxAy9d(rmBc{)=v*qU0V&_{#d9}WWEzdV<>slY#|uLKdRU<*Bn(b) zE4reqRa+Azuci9!r{8@>`Iox(T7O=qJ;s-!NVeAc9prJeibT>C`H39$sqS@~OP>x~ z*$Z_0RlJOh?ZG+YIj=w3QlTeO8pX!nJAaz7oviMQ_cp~e%_4h!QbnHBJ2}YMym60H zT%+CU5?@7r;z?MrcWD z)G~==NnMM%F73CRn%5HFw36w2{r>>dD%!G)$n(g?6p_{}Fm1#FYE_NxP$aR)lK>rD z9+k}~x2xETE`%!t@+(dv+#SlZFu^3#r-sr!u|q5QfbC%8fmH}z?rz>;=FGdVE++Eh zh~zOP!Oc{ilrG@>;{+ZvTg5A+x(esqSDrewQHbT-dFTnO$^2P;a&c>Abl{)ijMwIl zzdWr4e?#>pO+{Wr1^ioh*tgN90D=K?ia+5Q@tw&9&8@g2ozIh96!5s3n?~NGy0qig z;tv37vmf;T01^Zl$q^@|Nf*Pf4=ZiE)bB0{JdM}}y5WI}U%j8*{eFne;vUdOg};Nm zA8CS`Sdiy~A>CKwgGsYcEp*#-$E0GqAx?!YV;y_FOq{1biHi5`09eKcI0`XQT1wZN z;EjnTZOI#l$`7eEjy9v6E=KH|OYui$0zbTMc4wmKnhbH=wYk5JaT3ONL-z?`o)3Ii zT5c{P3vF*1z+O%(=dd&YOJj-4trd@U+rrRHKf3nLei1hK+Snp ztFLK#hl`B5m6P0BLRuoB@N=94UX5DR;|A-iu4tybmaN|aNy=Q&?8a(-B8yD5heYty zX$(<6nLXP_nI>lb5uSj04!*U6Z*cE1X%8Wr{+4L>x znq)eK;kAoXwzC+>YooPE^vxyZ#-paIX>WHG-Lg!wh~r{nb``RvDAIN4R9#bFYRz?B zoy6p&K1nY-^eXDQteTFgaj9HdLv8kkMp$jrY-ki?0Cvy$H6hkzlTZ5-#ILo(i4Wcw z?V88hPuk9>DqPpPTPybT=v#`iSJ-`)t8rmxaJExlLp+~#p`6Ax=aI)eik3}JPy2Z~ zHkx$%G=?;eBKz3CS7OJmPd%$hSA;0W7I#}+=$+l#TWYQM8Oob-Z%clAf59|#c=erD z^=&k^cxT3z-YcCgG_ki1$v6wdN;>{E^|bME zN)TIA+5Two@f2?vP5qtDg66;^QV}w|VfKVSdARF}^FI)LH-`HB+}vt1L2n^AMeph> z*Om@7=&DWG9#srWp*JLsYs9xF!kT5Zrk!sMo}B?PyMgmDC%sQ^t=QdJ#c^pWM;hP~ zTb4exnyVT${;#r0Thn88Bu!?T;8#v-dfKbGXycp zRe5egpMKTanyC(GoUSeo%;xo-CdxfdYh5*j$RpSZ=veg}*BdUCsOhn`n{^nDL?o~W zImxdFHp9ItQrS27p3Vlcapacz5v8bwl(-yqs~U5IcEvy(dRK|0T1@J#tXmHeXkXfK zNh?X0NQqI`KGpNL#J>*RT2BtBh#D6gT(2M>dirdZYMv=J_qsf+YWBExmqVG;)kV6N z$6SNyQ?ON18*e=`Uqx2j??dOJ?1*zNExp)F-_95Ik9@J z4)zvlU?$wNyB;t)4A$kwlYF{O#%X-bNIr;K+`o@q-d^uxmyJA2TxLJkBD#WW-WHw z1KPoA8r_M(^ME~D+}8D7H7cIXUe-^_*LVCZQ{ALK<5cjTs}vL4XvW!KvoWkFak@kN zS?~0$I~z?R=UKFmRf=D+#sf;KK3(4R!HB6!y(r2twe5ewf14)h#9e0TWP$IyR zv5YSm9lo^t%_eL6y*p1y8E-C~ZQ3;(il7lIln5$!HB=r@Ac(~Pc;`-a}>NdGvg$ZVmHCe;csbDD`crOAB>vg$VCMpoOsytf;O@0x_h(g2COEC~laK&8y@Ww7mH zjI0z87im$+9cwyfTb9UN;PuCUQ(ZLlCr7#W>~U$Zl5OlQ)Q)qoRHpTm;Z+wO-B2s# zBGol$D<7dW+tiJ&=5M_z{3<4uvC9&B^GV6QTN<#<FoO5v~=zyRYo z>rt^F;HC!|&ou3AK{7Xx6M&=G(rME~b$Q{zE@2D7^)=?^(^11YK8+rZTNdg&c0Dh_ z@mytMNX7{OpK9$TjbMqT9WX|7S#a(hygPREIkECet&bztHA1&K#;RO5m53l2=RNUW zd8S!C<;p^2NZx5lXOMualib%HHYvE%>g3F1F-b2it1QsyfiH0o!j$Ct@~Y? z(n_o6d)nWx-Xwxsm?C(_+#RIyb5?J>Uu^yam%$CB$M%TzSg#|#KoqhMycl&p)uk*< zX!BK?x|Cc}?Am(#oxbwjCsN5fS*Po6hCHs!Ra#_ZC5oJ6_2V@gG_k2z(*rpqR}A8l zzf*LThPBIv+qZI_*v$(YG`}|rMnKJP3G@4`O<27Y7a2gYm)t;5IVPDaA!#CDQdrw* zQ^pNk>BRA*Im=ll*?kno@SyG%`8GKQd*OxNs_@6hLsm51d3ty0G8nwNn%JHFm4D_xt<6phh z)tRlI5jpaK;8)tFqhyiu>KE0XW$^~%RMl+~)vS(0yN^5oI@b(Y?=8$pcJN4`fs@94 zYv;2CDPp;%teUm_&!WIdMv6;YGiOEB(@uqSuQ6r2kO3J3H~?~Mq_?tb#D*8~yR%VBXn#Dj-;|J5DprYxs@^hg6!uQg5^5F;LkIeNB9yDoSl`n*B}~tsTt^NfO%0 zqnye9m9#4ktAmmU)~a5;lSd_}do>sRZYI6k8(t^XY?Dy3ZwS5h zznKgkXaty@zl)`G(?u89M7JIzjtR94O)Dt*@~0bpxUTAM5~(K_%Nr+uHm!B{vM#Qz z*$Wnz;VUl^Lw{{ya~#USqn%i@NybYP>VGP$1n0#!a`;-t!dxJlXOWx%$<9eWmES2- zhr0;s+FrNP;iOw@shGz?&~?2&#@_j_5I{WEW!$1e#?UV^*jA1#Fri-)9)HN%#0v# z0}LJpeK@XaDp8|0{w`$x;k!HB#FBaAwrFO!jl9QcUPT!tiO*W1`I#DbW>f{> zH-x-bXBOx1zN3aDGkJO9s+J}aT0g=60FkHEt9Cx%2mv55^f{#&C*=q7ubQ%ZA8T<| zHaurMQ^W*<#N_%_C4I$lOlB|$9X)C$BOft2?^P#dWHqkjQpvRNIU}V)%vf#CJw|Ij zeQa7oL}i!&2VUK2x;vt47e*`@vZxfEqP)!AzpJiZ>-9ZMv3t_=J#WI7REg{vy^E3nz(5`H=J#)0E<=;qcLl`J5Q4a+PO(=ZiZ#+f6fq`=nw~kIG0rYOT$q ztOju!2ABypuRuEr@+#VC$t{zAi&p$kew*d82e+0b#EKc*0>Mr|yKUqZ`k}N(Cw}-q47_MH9KOL0t-Np z1rMHuiRtvOYcJv1;_1e|B5pBzS!-=<@8;K@haG&$LQ{R*=UvT-Tns+4BrsyH(Hgc_qT4RJF0jK#@-aQZDM7#XzgSrni+$UgU25J zl|xY1wB2~iajjXb7qS@k%>wOE2L~Wmi&C9@rMxaZDMD)ZT^hQ&{ZCFah9cEyJyx2T zclL>Ac*~{g5zeWCk}K^!Ju2siygTAOXGzv|-9J%^8+|U{&$%;Cw74f5RePGsh89(; ztUeZ^wcAepmG1suPa(Wr`74&wB$O!Dlj@S!&h|X4)|;ysuTq7dk8JPkq(d+lFENj1Ipe)1r+s*BB6!q@$O^!4 zb6<0X$43=UnxD-1y4Y7nR*{dYNMX`$9imX=5xx05j+NuLT6!hRMGH$ID~B2A)ytVe zH6t7JJF@BfHpginGy|3Nv^kH%dQ+A+4L33 zgv3+A$x^J{_4MiZow&*qtsiMkXm3fYKBpA6>J@h!d5itut#ZC3@S0xPzMzcq7+5IU zc>=v^u~@2Z67xKWw?cPE2dG(U5W1m|$sX^!+*NBW8tPm0SYTpY;ZzR(weh&h6=63G z*F)BYXt-S+#m9x=8gPzvHw+Y+RYq{$mEt}x(3{Mf-O#TMlx5@!_GsaG6dK=6e>L}> zdaa{RW9O@@IW*hbiwOrYO2?7Z6Hv48K@KJ8cRVS3vuKBQK@4y@5-UQ&MiVNQ zBc9crWSm)y?BecvuZ8AjiaA-^I2@Me{{XFBMx%c7&Gw|bQbMZX26|VDKDFQJy3UuR#dTrgeHzy8L1qoSix_7{VfTl#xw6( zM-f#^nw(pW-Ir#y{0h~}O^Y#&Q%dmIy40=hbo7GcT-!|1?w;WGU#HfnPpBhJZ*wKu zr1vGIm>9N@dkj{NbA=_(WZJ#0=c9glu}ef%xx9)qbn~qL0BCTirCVsnaB8Hp`REcm zsF7Qijkp|p*DY!C&8yk!QX8T8di%uM#lD>chT7U$GbO_zDH{6MX{Y=d)vvB6vy)mu zZ4)tx(RUXa>yFv1AeB_zIeW>a_uu;YoiuRHddoy@*!%~M#^-Vin}uZ{$tz%f0CcX4 zO86_MtcMyDBt$;+gE{x+qIfJ#Nm*_89)ux6lF?l0bl-+BLRMJx$Zh0Ken`h^)wb|W z?x8m8$o!>`p)g6^&%JXuW^Re1k0b(l&Oof2385GFGD($xIDk*EuP-gQbIuP8RsrZkl(tDnK>-l^)H2y}LqR()^JZ9qTmv$$( z9R+V`9}Rvd>e0u4;qL?L5< zWv1;fKa+MQok}u_czsuMppV2J9n$YA0z65eSN z#bGSFQbcU+09QfcEjrUxv>I-mXiep;O|njz0Q9e?$*?x3QPzc=^j&n_9v(XsrB*5r zMY-j+nwZnIaF;euzTQ#2I~J~r*T*+nwy_*DkwM^&1HedO9v@YP}R!Mzdf&rMI@Zg>aNX*$CB@y` zjW+o|x;qN;e~*3)gemb(oS~y7yw5CP4E8wbUY-&S;M66(uk+vaI2^xv-%Fnz{7Ufj z*1C`O+)6yDP%B{ft|CcD1OuE7Yt_NcR;3nl;v$sT&BTlY&UhK-wKS-jYlKB05O4)u zdqxcAsPsKw!z?W#$&FlODIM!(?X2ROIP6>(otu1Wc|nf#@$+k%N&22**_yW3a@%P} z-4XyC2nYu)&pE|XOGSp{G*U%y+k&bSj044IHl;;Hy@ubrV{cNk*X*sMu!hHVv??T+ z!27xD*R@Nd+}Z0NW4hL_F2qvIBb_Z%bfrP*n$l6JPnI*%EpD~ju@cinYp;r}G+jnZ zT^m6#TiedejWUxvu0HAX2fbn4_?J>mIkfAk7ArZfOs#JKA1Egy>T6l!922EUa>Zz` zy{&D0-Twdrn%zV^P2%Z1MSj;%!8o!8q^fz$S2oraB^0~O~wiI`=0Oq2Ir+i4H`?Hx7>PPhrSP5+X#)>Y$}B@pxUSK72jC+ zQ%%#!YkM?bkSHVo0Iz>9%Oit_G~MJ~N{*|t*p^FuH93{y0Y(oZsvT!QN7)_PWE>n< zT}(|HYgUVm3Cmj+k*!)@*Ff2h2}EDym}P3Vip_BSpDb&wmxhp^d$f zXY5I)uZh*wUhdq-oPovx`d6DA)*RNhhVKgcGLQ-z4nm)LdXJQmf-B>kB$lVS=qo8w zGCKC4smhQ}0pt$#4)-k#H#Wv!v;Cob#^fe>#X&Xz+BohhIV))PDJHinl~*92S^|Y6 zZ3F|stnJj%4_5;&Pu)^}m7AnPpKK-3U70h$=Dgg^#&pzYD=mL3ey68^=8BY} zyB@2c*jw7!tZ05w$m6K1SF*)5mBbFaLjr=l>SuM<= zA`z4fM;&U0rF9&G`##ok;7CK|eqX4sQVKLF)RdpSqF-|S4(f9DjxO2{wS7Vf5`8Wi zWRlK5G1(JvRUOZusv`E@Y+laA=bV=;z>rVZy*gE-sj3w|4w`7%vMt8#$~&4?I_<8R zb8V|FwVnBa)7f!e0kykn_&vs-Oe`%SR7O^p;b_Hk`R2l>};*12Qssm3iy z#kcm7T@jL^oV}!*(KT+Kr6`k4xP_8CImOoRx`=bfwIcWn#q%3&M^VzA%TBv;65{pN zBrEHK$@~R4;c8WkV}^tN_e8bU@1d%%3UBw1SGRUhxV_ODYaK50Q8sG@+X-$Ww=OSixm)5;Snzz?cPdk)KoV zTY4UgeSdC}rNq|IPQ=T(cBnu)4(7Wsyx8nT;<+!bof6R_n-b$nm7c$=JF6-7*(RT3 z=E)7ZVmS9@n4YB7%hI|;3wd*Hut-yYqpFeIn){qLyC}8rtq+v0tnBw^m|p1CJ|oop z_ML51yGX@A8;?%4fvstJe}dd!TivzX%?lI&ACbLl3{DD++r>TBwmmE^CQ?d=eJ)b) z>(8i7XM207lOv-UBRONY)Yoe*ovhZ7G&7>KB|{?|XEgGqCrQq7yOzG1A~E(;<%-y$ ze*#>}_SWHJz!B~TgX>(bzu`@ONTIlUC~gv2glG?-=uLFvDO9Znsr|-yTCt@i&d%4u z`Wt9k0EbgZlIB_2+&~8)50o04QPpR;(vk)yIU^ff4u_ibDN&USGK9BFq2^Smt5$MP zc48em<5fRqiKAZs05?;`bKmfW_|knrqD8exSb+!!FOKAj^6_{|__!%iYksFiI<)EC zOztcq)Vwb(rRRvRURYyKBu5?yRrSEBd`$(N--0zey)+5px(&7|58Y$!+Pw@l8DZ^C zZtmB=%Et`kr8MKQ@mIvVR8J4xBWI0M~|Z1rL}iCm2autX}=0@-Z<}dx1QqS@mFo7sM?@^v`6%>W$@p^+Z=JXMk6N8LVWOn|CVDoX;O#ojRk)fJXCMvF zj0)41eJf5Go>+m&!l})DJY!D{5R4^N+{e1{VSA4&O@wSw%Q3}s+K-8KEBPJ)aO$A) zRNz;Ki_GOV;|-5SmL4$IsX}SxmLDj{$DUg?9C1MlhE)W5n(^vOp3S|Egt`{ed6wJk z(GoZEKs{4w zQ%TtEr-;MWUh6uYJL8UvvIo@UScI7mlghWHc2RiS!&gzoG&-CnIg}M`Hiq)AmNvLTa+4CQa_1waDNDG) z3~}DLT%Sg4kQR1FT$6<(rDJ$=NrK=+T3FC5#n}G<7haXaj%sw0m!AHIr-E(~mAsF1 z(Jh(nBa%5mUV}cBYf#hGZQ0K+_k#OZeJsB8qftFS;2uS4p8H1?;sa+sk7sc#m?7jC zE0ee$mB?Lc_I4Kr*H2`fSy9Wpcx}h1`d3v|PK*^s{p&3)<@z0%RVm&*F3QsCdfoNh zx)r9Rx^=FoQW=pxRAHau_No_JzmSt?x9ry`q)RL|g#c9Dj1t6hN9SC#t5PY{sQt_G z@};tV_MbGr6VQb?{4rYZf5Y-B$9KIN;wx2=Ay8R!fq*%!>n|DV`i`RndPad|ACiM) zXqW_JsXx}17ack+dm2f(+Sl@XedC=7&0cb~i$M5<_^RJdms8U;``e{kknJe)5HZ4r zJvgkrbH`pje-Mc^{{Rs|tx2U$@y3jqg9O@TP#r9^VL*v#~m|VuZz5Cr)xI1o*(ev zhb^Fv;#+ejqjIC|MNnj_fx-fPI@Y+%>jzpgP^P6RCAzY^i%E-#n;ak|%(lWiT-uqwfI5C(N%k5&W(T(D*CA36K>j{Lm z&czrbWT&~R_RDRn+edD)M(jq`56=d^rBsY+awnr&9&A(PQ(X>@>rL?Agfz(7%FR6Y zj}l3Y@_4Qa*xBf}lHJdJEzg?ySfp&K{RMAc6sblkIwUr?ht)#h^5vf#S6zPJ(t zvOhC+Lv#kcCrHqcSz4JSUn|S=A`EhQJ!@<$gr??l;~RujMQa@rdy^#UM6sSoILQ@5 zQqb+5VR;$_RyfJz0r%Rm7yO1~(pQ(rU3bi*anyvK_xJ8vvRkX48=_ z>7EDUKM%nro%BpdX<3+z=dFCbeQee@QrWmFVs>6fzZA0cp((+4xbZif6q#H;7YsST z>sGAf^5hMZoadkAUWG{ewm4r$#ysFyyCD?gX~ z0^_Zb6`k&*9jr6Fu_u(`Evi0zcQ~tJ?ma_Mj7t7vZo;&V10Fw0=W}%7%O|IAzj77X z&}shw4RxJhS^cw9Hnws~()mcAF!!&0@K?g4b7qOD-_Lbx0*LLzha?W?KjBK9CycJC z##W8Bw^hBF>CvR{>)K1=dwCwAruc72(ql;BiE|JD6UnQ$SN66sGq}QmoR3QSDry*b zaz|ubVCqWmbAs2rNq4WxB92Fb&N4_gI)A0^yyNbkED`BW2CCA=}lRJamIf4$nZuRF<#3dBorz!rAei`0|Wk!6zeA|}}w z>Pf*h%C7Y4%iB}QBwIDPxYS^@xLXe`Rij`xAU&!XG*}~o8|%wSMXc`22}Q}zYWog& zyV*N$@;+)ZaQBli@4P2#s=dXPwEj_tZdCAd)}Vg{>Q-utYktn?o?%sUv@U-t%h;;- z?0R%FYLsH4^%mD(@qUpqPIXxlD5N1VmLE^0b{aRwy-GA&eSc2#Ms|rJ``8`uYstoC zyw{a4xc9Kw%2=qb=VzpRUhrBeg6IPObN38fS zTa7Hz$=R5K2>h$ByH7GNGaT*5TJ&;?ixGv5HM~{6Fs?~y)TgS+ZE+*X5^iK5E)EWBU%@^L zyzv}5z4gA4=cbNJ`m9p%yHL<1+}?UPHX_=0Uh z@D;PPu!0!Mi0#t~Nj$OjHI+&C3swr}mYbgmC+QjIx5rEQ<8dK&V^QcW3?UtNofi%2F8yvFXW@~|VHty|D^!*hHM z^zmL?SnQfW5%3nk(C6iDHj(tWk*7bDRq0rAnR|a?>@hUU-X2W@Oh; zs3f-~j(My0S3+eAASYDRKQf}!RDCnCx?N%g^Id)!@C{OOKHiRp~R4$j>Gli#5!Uqnx!S?Ycwze`;_bYLZr@Ues6HS|xzpMaWWt3!PD&3!C{ zm$q_UY<-hLzx52T8FJO>ZBS8OdoXd!G>L)+lZC z=nRUZ0FD$_xhF?1rlS?)chjdT@0vzO{3Ta1F~n=~oPp3QbrLg$8TF>L{mJc7Q{I)z zTM_Rs`^n$r1mS&Y!giGHi{%}uC1>Ug=X@2UXd2D+u9@PynJhHR>!lK0#(E5J5AvsY zTF%={@ou98cd=gSx<%yA3SCRINQ=-eeMhx@bvVZK>Zh&j*G9MePnp#KslxWQbE0)2U|TE(nlwA3s$O*F?kLLh|1PnM0GmObjVqa^A= z*KhIFf59_WyN6Y$%+9*f6IF)GN3gL9+sG~sHf`$<7RKh-LvaLA`Ef|3VS8|TlUqI*@ZX5OChFRxnsVC2wpOO*=2=*zFvlA7 z<2WbMj6FK_WgHDC`|@c!_gDNiyYw!kp+=jpJ&~c{4}^X=@&5pXZairn&5ntr+pCn8 z@gH>MN!(Mm(T-T0Ru#6Z4VI6cJ~-rELf&X)x|u-@wXwP*>F-@M@K}r;IAZE8B%6xq zqe}1ZcHg7wV6jy36=y=4e(SS+{FmHi%dN2s6moEi041_(IAxJ;XE55wte0p$Lu7BO{OUYPF@L+Jw#)Mshj=%f3Hsl%q;ZJ5*m$Ury0 z_uEX9O`U8f4IX%ZyUq!>!T`9^RKg;~t;Aa%C zX%?i^qDb=LAJIo)SU1|bO)r+mXjTL$;8)mGlI1>j5O*?f?O@ahLd1|a93K9amnFru zo68Ch-tYxXWf;C@XyV?6echxo*~@VmA;HNR{cE3#QM*TA9f}dqp4H1=-Eo>Ug1yr* zykX*4zq12gU`n4PapRU9i8bZdcLkl8ZRCuAE4SONE>tPI6=t{*kX4G1IW=AGokl@8 z&j;GMYT{fc%DWq?SB=?L>Qi)#P~eVpUPJMlN%L%>)nbh9jO}&t9CiZBHfaTD7@&n<*z5?_GX_tGEcBa{_+%J?qQI(Nc?c zIjh3@ovxjJW{pr>2-tk8Pf{zj@Lz`R{7-)NGL#l@jj~SpDl^z)sjra5$zju*dl^xL zs?9H@d;)l0} z%FP-k!~_G9ea%;E#u6CUg~kcRWeS{lh&}`Qo=PiCpb6}x>VH;DB6ogy6`#cx_cGhMT7Ay=ryeJo=n-5D$2Z_xR@*P0wP z&l&0#dMAhVS!BAf(xsMbD48-gbinlUN2wH>->V(x=5jI;axt?>hnz3yz6pp8ffO-n7q(4jMo=Fg*3Vxdg+MG z9o(h^uw_&Z=BJa9D81G1^0(orLZhc8IQbkc=9_h;%OJg)c`ZmLCWvQmK9rXC_jWPC zIJswlK2(xN=UCUF8qsm<`X5_^#q%XN`F-cC{5klv`b?kM`m~!Mm6XQh^d9EDqfYU~ zy~+}^{G%8->s~$@3WIbS+iyc`Qs#W?sWsP#EWFt79PV{Jb6lO}lawe%>Mvt?L>CYFgFasT}g$nE+oU zM-lBLV0vP;yltcSzr(sWi2O_8_MgID81XmRtc9K2s*_y@IFO+1p!C5W_4M@pwQ5fn zMi!}VcP%aUxt6-Crjl0tj!DX$ImVRT>{S%0)Eb@-x&g<652y_!HvK9B4K=#%MqiDO|OTL{yRHulcfy1h?g_CWl{i#X!{6F()3?>%FKA)JhSDf9-Nx;JrWCh-BVA~^&6OkMr4Xt9H3Bn`u%H@ zJHX&DE}a}S)SbQOeebhfEWEb$yA}$rGNff!6s+E@8#B)}wN(#~Dvhv#@6l4be=l!bl(rOUkqRCI^+}To+BSw7-?6hIj3b#E>F)?m*&n|l~gLiov!77l1l8xOIy3kt4Jl7LmCzsW4oN1_Ht?yjA~b$wMkk&PR{Sm+w(k(+G)7c zOHSuKsCbt1N!5?qWFjYsKEcVVl6acN_C!!*4AGs%h6d{Q7B1I?PN$m;J<^m-e+9{? z>dIvnTm0VHJ-ptl|P0WxM zkSdV-MoufrHGdoGaFUv25yF6#Ehi?qvD2M8Yms^z;i*QXpE1j7I_1`+zHRI7nMMH| z0r*xykh2}c=i0d=h@9e^-0k)%3dA$Y#rHWNj^2W+Gm-$#PJ5b(P0psHaI|bBa)olP zMi^j`T%V3?1@41+Y*aQ-xE1SQ-IQNudDT^!q zZyZW?_Q1t)SC>*=+(~sU+J+>BJx)EnDl;0%uVWWvnd#x_xJQ}wD~Wb|`^%Bgp0tm0 z%!KE^JlBx?j+=KQGXu4{V0zSRCIYY{YZ7ZIXs(JNyK)oolZPX2_O_l# z`Omcf0Iq|qR_=H%Z=$%7ce%ESnoM~p&H9gFOxHARI?~Q4^gD%`Xl_;pVaR?m#~tfl zUTS>T*Pxx&#T#g2)FFx~;*x8KWMdt^+$sVH$g27q>N-}NB-eUg{VL(aGCZk>yv*_Q zRC74WGfMsc03gv^hd{q~xVp8z3p&lb#*&@Uq0dZuR(_iXs+N=6%O~z`ntAP_37EqV z?t#*sInHhkbZ-8gy*2y=C1rmjn~y|U^hxja2~mSEi5Lz6&r0KUJ4yUMbhmO^i<@}? zO^n%4PqjFydo~&Hbhj7^c8LDy{{Zz>-w*so)%2H3c_n9$ z7#ogH70ZaD&uPbh(E3_Z=8q(gL(;w>i^PqZY_}O)*FkII*r%OgpKjC1UdFsi*Oj@K zlR7BH({ISvitfSh)OMB$FKtpd1PBWf=TJ;q8$D{a?!&B3~Aox=E#W!zg z)*2nUs{NKMt_J9G0Av09F&(L880t7WjZHTRHO!XnB<-%9ZKd@VFAF?EPBP_^+4k@F zT=Km)Lx)9?bd5(ux3j&nK@67h02bYk&E@gv4_>~ttrmfQbt4Nq1BjzDIotpX*F9?q zVQN>Lsi=GRY2EDZZ#t^{@|Dp_I8tO!Ht|tpJB(;IF|Mn_wqwLLkm+Ayg2zp=pY0bn z9c_SP3fS^1k1c?Jt}*A*N> z^2uhsSe2slUJ%SP)4#PoNOQ`j9o)%MVT~T3FcqQmq+Vo^BEU0Jl?Z{yY4P z{gYMIPKiIg+w>&xcZMa@FC*3U2~gPEOriHSeZa+fwx{tU!Eil-=f_S-<;Ftc-l28RB(5<`~sneoK#aiJK==GTJW{Q$88|k#mtB0&UoUoFZ65u z$#oDekTV`mb6$)qxl*GzuZbQ+;GaJ;MMox$4Y~=guH+%UWeA*{ zdRHx!W|ZBRk=uS~-YVrmr@?Z*Y*R>}k~YXO#Zc6=>Fm@?%O_u@W$ht0`7duWoE@z9 zGa#Nh8v_T_b$M&j761a3$N(=|vD zyYcN`We3d^(c)HCn;#mGI%A%o_pe|0Bk(s|_=|X&)$BswL$;B8*KvbB4=97V{#EAY zxV3}B%4_0!FJJf@nW#FAL3RGFet`H7z`8D<3=>&sg3bs4NFW1+P%)pWuAg7=BpM_F z$^yS=Bkt!rYvu6P!Qow2tlqyfvJh1&S!}-}g1o%AzjkJojEsJH3FjWwRy$Cf`OJFq zde@6K>PwnOqq4Bm8>z$2ah`zkX+a5v3`oyB)Y{B_2F-A!vLX?mT2*o)Rp;g7@S;lT zpz23`D2_eKF_VMb)fQ$YU6%xmbJn%1tXHBGbO~LGqNmJ27g(@1v5wNGJE1`#L-xjcdOqAJbFgtgFMQq8&f zBxe-z6b;O92Yk{=x2PGC2NrQOpyk14Bzsfzn;W}}X(F?MD85MzU%&t16P+T+Q>`m8#AcSs99Rg9h{9JjRSnZ=hL-m zT;5yhQ`qSG8%Y|;rAu9xN0-OIl$ zx!3h%j~=?xrqHLjwAD2e6NW4!Do#1;ipA8Gfp>!CS$6Ola8ITxRn^pswFtB z3pzHk@c>!zju;-J*1Jm`Z_NRteh)%==Dhq(6tCR$pzhP}p|5YQT{2+E+ti#K^IQHM z@&5qC4-5%!yfNadyEvXVf_TQ+5s}6SD!`A&^{*Cn>d~zllwF$F`sn>Nx$5EQQ=K;& zs_E!wX~K9k_ON@|%u=S?f@CDk^KKit=Cmc$LIUB(Oa&b{7!~2pbE@@yU*dW^s`f~~ zcdkCAZKkP;(%qqfp#l}!PdVJ)rmLHop^z+BAH5Co$rED)bC7GMvsEL_qS0;Wm+7yW zF^?*Zlb*L9<_S$*ucVDtC<@wEQDYx=awd`+iF+3q|F_)62G6lQDF>U z1E&M86ym2woGME0bsg=yw%6}=?qJ%SrER09_2{e?8nxAoaami$VDeegQt;u(#xQfz zw@#y{X}=E!pAGxmU+T9j57`xPkit$&#f zhMT9{*xEx3w#rK?mywuhf2^x9R0}3+d1Md-8 zQp3J@ro7wiT=w7%e2#mwP*YCv8el<>!>GWPK0di?8haX3-kQ>}EL8UNYSS z3TKZsulPrF*tG2;HM_pJ1R{gNpHp998QTu3a@oaN-g{X21y7o@QhGObc-E?y7qW}Z za^6ep-ccdgKvV7QT*r$%F|K%eJ4x>+jLm!teVQ|q65}8rdhy{(wP?z6c9PYsU&tM zcH!jh-~-%L;pYmJCn>v4NiUZx{cZRf$`Yql!F)FSZem%!hYhBu4yR*rCDf4tWa`*h z-_^ZqH&%&S-Ic&-@Dvk_V-+y14n+j5B;EYg^edK1S9^3gscj*(ykum+Ib zAY^F(QrwQ1uWv7sYRgBd=Ht^+yF4@Ec9xd9$hnCK69NhCkz7U#5symyOf0#nMDQ^Q zsh+FwFW}w(0L0yB-d@ElIt7C(-cA>m{{UfqNw3gv2K+kH;nOUWOt3n2g|JnE05OFf z&$;ev<#Rc#!yW8C%opR=^h@RxpCnyRk~=+rUbFD+ui4g8ZZ?3CuUyxiO>s5c?{joX zl1AKl$rZtw)>3MWdTw^%sq#YasKGh_zzk&L8K$r+@`k|VoL807$44Qy` zi8+XRX3>ajuy;pK~E>1z<4An_{kzluD z8Cie|*gZM)rwm5f3`idI;+56J$V*_ek(1J+h8CTgSq@QosBv{BqCJ(zG=R4NDgl5g zqjR?62**E#X)8BqlC%|^AjEN&W1VA9#$4y>EHsgBX(m*92#+ ze5NfmQQ7Q$79A%Gn>u9LMAwkVtl!ORYn;gNruN6Ms#n)Glip1FNSQ46VlO$fBLUpv zxg$=3pyey`-{o)fI%)I!O;@{b#IpmtvZ*RK#&cTMYLJGIxMs#d&uYh!wWz8~qB=bX zQ@Objwa&GtM{A;_m+@NOu2N?M?u7^DC(^nvgH!mARq@;x8YH$Bx`pt0k?$L15$_p1 zdJjtMqgJz?9YRUIb!+aeWUl)=_BiXt5v5VI?3dqrw{J5-$62=2-(1o4E2|0hF?lg- zq>B)?%!9D?$vpwCJ}cXMOGxgX+!$eumV+nhU&E8Q21&tS$bI$+{^*4w$>uBbG4R|v0R%LmhL?& zFwUkM4J=Hwl(dhl-Tb20-pZFPN}Qb*uk`$H_Z947l^PgKfmT3KK{y2ZlT*ucc+#ey zXCz52%%ULdK4aM9&{a~MN>py1zvi_5yR$jkQ@hx;j@}~g7v1w4 zl0ETUW}~X#SZb{LeA`&UV`2t!Dsw(+HQXZZ<7A(jHNr(yisoCd%&i^G?D}oKm}QUb z&@q^exFwIN?^EcPTArVNH61?v?Tll~A$Z;maMZ6>uO_;sWcyoR%;}Xla!M^|{{U0g zei-i{`BmpmL-rtvjiUj*f8 zxwrCGfA9|$IA|)|;ubr#H;BIgKeUY;}iQ>v0^CMYnc1W9waJrKWft{vI7t4Q6xV#ndCk zxj2kMI-Fyi{c12Wrz(@Digvnxe=eVi(TL_%BI)g={SHe|66!O_JgFFxLJ14N1bS9< z@t2LElY!9VrfVrma+|3w-sL2$k~sZ-7DE#g(3J%7S#jKr_>o3W7_UnUQPYxa=f=|K zr*v>X6m)jI(+%WH^T2m!+PQCr9|=59@k>%RxeO!(zLpxg!SRQ`LwcpzZ5kvpw8a z*2Ue(^4H~2$3b5`mR?F#W%jl8-TrKs4qjL;hn8PYbExVQ-A=4bj7sPGqoq}GCf_Yi z-1YBXMOP`*l;3uGDXoa3wMfq57@oYEd(5P4&N%g`w=Tonh_V1fHhJTkX2{vH2?wq- zLQ7^H1re}9LC$$2Jkm|_4=fhlj(w`!bhux*%XbC*u-Q^M9`#;atgRaig=_*(YNoGG zUW{E>g|;yn{4-Izk1bdqym}Kxz=(r9*iv@J4oUT?C1ps$WR>(CDq*5>VE3{mv%0po zGkKOm;odTlf^)Qy)}*(ynPOFxh01_(Ijw2?=_swQuiQg?rI=$1r2=mq$>39Ek|iV) zyS@Ry6{MO<#H889YZ|ebN)|FCk~CZc(2>n_I*eD|9?^7|^&0@EP=vH4&T>DzE7+2H z&e|{4o-MuGcV=IUqrK34HEDca6ozTm7I7dimh@UI?eyy_mQ5n+OVsjFo@QOSke)^l zr4ysd)MdK0m#Hz;yLS=9lIzcBscFbqs6-Mz&n=sy8rVqfd^Xa@c&l(=0yfzH04XGA ztxY<2o2eycm^74Cx}5%>c_fY|P4S0jDUpCiYhvDa(qU_el%s9{xHwV?%rbAmqvz3?KJ43yAvENU=zqBo^kD7LF20^w7pSaNguUtkdiMM-6qTHlV_1RF9ITHS8)&Id-sR4*5Luj%q6V(P;X7 zH@fV0_BTm!X098NfW-9%rjAx^y@>u*@|dXFZ2F8kybJM86?QNOp2ww5h6g#u)6)R; zuQpL=?TYG246&EnBe2282CcQpMOb2DSoJjxC%H0?rR_e#;`(^iVcbb0<`@|KYp6|P z^F~P^wwehHkoj!Ec#qf`x>2b@_2Z?szf+d8jYg@BwZE~j)6hj|!b0b1Ku+R*@#d)8 zM|FL0vF&DQ4kJbD*Ps=JTUDnRrLSK$Dr=RwNuHr`<6DRLYafL4%Vn|E43B3$)G>r9 zZcba~9nVbHEopJ2Xo_Nn0Y8>9%)^eD&358(P?RZ3s?wZNw|Ole;FZogbliEP9<96i zbTzJFn&ZQ|UZr<&Z2@6(u9C@fGO65{-PiK3KOOF39W}2lujeh_;@UeXHsQ?lzva{L zC$^ShWNhuCjaK93k&5N9?0Z$$lG!Zd)8Mm1JkqNfiOCDo0;DI<_xRd7;RLuWb?}r_*XpwB0+2sx)vY-&~~pw6G}Awoj!>_#zzDjYEpgw z06}g~ngbTYD&U`5pH7}hW%~?q?rnwB1EC%3iW70Hq_=v0fjHhigqq%#^Te>uk;8V1 zvI2R?Ju8&DM~!4#xI#^wE(Z-=)nz(zT+40$0L+M5OG2X(j!eoy3*2C0sa{7U5c#Gq z9PVCv)=`|Ld+%dQTSJ%eL^4fgw=sZ1uq*)WT%!_Lj-k4W@1;AXBsUc(ShJ(}FH!i1 zs72w;J~N4Uo>Dl9G1Qv+i{Yok4L`$v9=7n7lW4H%R)DmRw+}q0tDjR{va3@UDBOUPhB{?CMuVIW1)9mrCTHyNp$4w0QpX zB>LdzG)j;1yOgEeg^CUuG6%gPvH^x59Pm5TUfMB;SybQ zi;n?8EKo}`5Fr>LPB$9r!QfqJ$<^UA(bENXs08=$HY+o2hn zY~b`-NNC6L}r|HE-R!X5XJ!`IqGTZ?AUHtp2n9lw=7nIu*n(Oc^^TX3XM`p zFzQeOao07RlVx34^WTlunsnk_D*tRC#O!81^)nyd^fA>cA8bT zv#DQS>EK3@$Pbi?KK=>g@UN?@f^d~cP4)Zr{{Vn^7@lwQU2yGThulrr3+gWSDG2w0!x`rDU+qr72Du$^Hy# z8o2)eDsB9Z!p2wB^u03YR%B1JTNFh>fwZ62sO$HQZ+ij!z!G^}ZGJ!gS=iX!(a5x33 zV{>tNAP(3B<7nwz(sH$%G2}{I%+~0Z7pG2XdG>u zZq}2Iaw=%NTK4|{5AJ*|rRX-W-0D|L_PtHWd0r9EmcQK}O2OtS;$28VG@~TCbhkID z3lHunxphtcb}@BrMom_9+Z#mPs>{yx@(h>vo_v1;IV6oA0>-QS&mGEp1$>@G_UOqKHfVSRp*(4 zg<=#bKBqse7+6BIT9ehL{{SEOHyq{4@6e9l&eQL%w5eo)-U&=>$a1;IV^lZE_Lfx} z*%N8SbcJYs`F`0MN7Npy8JA1Ir}QgmA6g();TC=y1h4=eaJ%IT7_Z&`A5BA z>Sk!BduNj-7AcJ6aw;mya;48Fs&@Gs!7gVMW8EsrWMXl_Twwaw6M1Jk-wi&}Hj-&v zBypnTl53|8HOsF;?PTtK4e;;5ZQ%O|Z0#d?FXure+<`vpAK=YSLJVv;2{@`Mn`6evA=)md6`H<*_P%OK@*n$0;qFR@luApj`Cw$gG5??7i$ zpEGykTSbu277RH9IqytsTX}erF`RW%is_3|R+1szY)2-Sxv_6JB%iu!q>x-faPbm7 zM6%`lsz@NWh^Xky+yE=Nhex-vw~1UUh`<;<&3gG|8EaBYO^z%? z?#QPgg-jCN-;jiYv1md+^AT_smLwur&~YP7KGceim&RWOQDAmb{Yze=l0 zE0#L!W4`9E{40$O{3j=fHE$l;Sl_MCU$Zjj_hkLy+}ECJ8eEI1%WH2p+SAT$vi|@J zDClw8u6S36wE6DcwEn*08+`67W6Hc$q~B?Jwcnhv$r?;X7XYX{^H^$%tMbU(WNeH# z0Qy$4O*VaI7JTrFMuwd+ibWvdfdhe$&brlL=Wt~lZs)ytd5kY4&!@o7(A0EtC`=Q{ z=QSc0068BiI2f-T#k1ClGLpjt=aG(S>miTjQG!n;&8 zPKpm&$;X;nnADY{WOVvd+D#%#(8iI5$?kLOS1+{vQu9`p&rh?LQB<~BO4zGPv8g-; zBY=HEHTi4>v6DH}mLf_s>L=dd4I^i6Smeel0U(DgqRUulnVtXa=(29G=&=CZeuIB}1< z$AgYftvnoOLRBl^zcNgqUu_V zR*>90FikYh6;N*Zi9NWkzr^}Ch3>u}>i!?__4IbyCB5agpB2kCQzIMSJ@eN!=Ha1A zSXs`a_ne}<(rQh!YPBY++AG~jzn#^;QN)11 z@Z=`qf#*QvjX=;?3`Ci7H?o_#-W%(OAwDHM2(<7vjTV)H5gn>$z z`W62GgKeRT((n6OH5GS|zwS~V{AaCn)vHNXmony3Q(Ac~K37K{ESwWv8X=VE z8*u=RbI)pvPtdP*Ep{s_*uKZ-s3ER?LAUYsu6a?FNvJ`4w^w}?-&07*MlMgV!2(0A zTj_FSrDeM+mDJtLS?(cJC{SlO&wA=U6L@~c zZDM~GT||<#rXjZka3pWy{3%Aegi@BV}Z5}bOk%=qX>o~v)6#>lb-#ByLL=hl`vBvG?&I(*r$ol$Yr z?<7c((Vd?!oQ$3+hDXlC1C9++(^OBWz|s@7&N=E%D$KE2z`z^Tk+GAoa1W()Qsv%m z)*@Hg5xmd_$|*ecG|?+LBt|etW67#?ENk-NqqMGR%>e}&PmIhfP2PA`D{TiOiv!wQVqmFUB zdCo@mP>UyfJxM^4hSb^XJ{xx&J z+9VoPo#4|Tzn13x6%sj#Aiq{&RaX$FO-ft0eY%=bjAP8!+Z}$JrD!@dwwj&(p*_Un zIT}lMTosUX9`&nXCaPfzty6En|SUK7YAaY>OQp+f~1_DjOClY#d{#vR&t0Tb(F4E zv(VT9>zLQ++t`d-Fzyl$8EbIN>gXSY(eo@Ea6 zp#hVS+;^`$x<*MFG>2x^AOX{G>sdRwJD*8_f4YyLu*~7NWGT;2dg$T5R*E-Q0f-7g zJXanfpE2*ytH~1LT}H)DagmehRuXW)ZDr)}L9Z6R9!cIi9@ZZd87)|%aUVv(&pD|Y z@+Lnq&vS!Z-p{$T=XdUkw@g3)pG*VZuiM_TxC4{*&0$t6WC{(dvwK3mVW`2r{M#vP z?=hDgcE@`3F9&O$Ch=$5^hrEzW8pm&k)+hF5mh(Fr-6aX6X+{!4NA16sne;;%ON-tqU@9VpWZq&)k@N>E!VogIX|AqMc{u7>6+-i zzt=U0wA&pz-KJ?I8@E0xlapU9 zulbvEw>c)g)o;AbmUp;EMSQ&H&2l@FTbeDm*{o-|W%>4DMtj#j9lEu-<>vnYQtMhV zsGvZ^}ADSZ4qTI0y}-ud*D}12-8lrDw`|cUH#W>J#`~n#!>S8 z^)PjN9YaIAeJbu2w3>KC?7i6^?&s@Fw7EJn!8Go&x;6|9xl)8KEa96jR zv;19?G<>xor&7E?NFjqZ)#zpPzOh+BtE+v@{{X;N`JPs9 zUzRB*cXQlFrdcsl$}T|7c_g=T&3AEn)#49VoS{I$iEUWQhIQ82^8K;R-d$St%aIt>+JA24}%F*W_ zu1#aeqd#5aayB;^?N73$WZ?VM^SXCK7E6H$*NAFpaMUD+fkNMvm7^{!oAIj9Wh*U4 zhP1LsNLLZBtwdcE;YoAXIjoz$r6tg#d!uVwPL=j(Ws+so+Y{RYaezOHqt?7BeS4?c zTj_R@$1S8KXH?*}qpMmqshG_*|jxxK>bO3J§K@(yv>}tiE9!fx)gC(NK%J zJ1~w_B&;bc?||I~0nJGmU^zGgn(^j)(T$R2gk{cHdIHBwrMolb*&9^#n+xAx|?6Wv$nEpg)J>yH;8?nVO7Mf!0 zId;j%YVu_77jNr-^Ewuc>AW{p@+7R{|sZ*p~lj`1yeeUKna#2u^b3rsO2>7qYR~Cz|uAO5xl9v#>k%Ky+$`XCW zbAB0$9Y;>OifDIB1*1v14$xXQI43_!?)F%Em6YJ`&nBAeoMO}a+eRu=RQY7KOZB-e zh_LamjjnYM5NnNZ9F|ESX5^ibov1#fS2Lwa6tmjNdvmFjCkHh73=;NgI1bPH&O*7<%0cd z(#d_LNvTp^>w5Yn{&zeK+HrGt-pLxe;w#$7iauhb53PB8dR@~viux&GUF5R_Cydw8 z=5*&aGHRYFPGZ(%oLXl<<{8EY|; zI3&}>?XodcjwA!UYwc7Ph>lj>$lm?rIEg{Q>IMZs_c9R6yr^y%16aD!mZ+{&hA2`& zDsVk(UrxSTWGf7KB!F1=t*Fo0%b9LxQasAXOtHr`yjKBm2+8`_KdtK#q@G=}{oIEl zy_(fIX!9qus4M;s2d&Cc5?uEb@69nQ>trjIr-GOdH@ zQthzS_dT+04$Q)`GKF)>jC86KXqIr?dBQEHsbD$9eUxdW?vD!Y=2oet*^7B5kSey~ z<;ck+>s}M$JyTJ;)n>NS!>Yzg`Epn4kV zd_AaZQd*l2?MIbo%Q!2Yq#mE0PBJs3(~IthI&Ke^T~dE}(7~tO$bZr#mSdgUPZh8B zSZ=P7?QD&l5kdr!tMb_U$0ydj=s~x6E5GXJJF!ms-qKs?TFE3!Sx^}K-lN;zv+pl8 zSgq}}hqz|2j&+sb1TNw_9M+!nF6sJwjMqgY8^sn{UEYmqh!y?Cyq z7WU}dK#LiPNM#={L*BNWVRYA9{%5I`$)_maZGQth&5#ySgAOx{^r<3|;$?lLkPkia zSW4+xA4Ii@t7f5~B(XUM6{BpJwoD9gaa>r%YH>UA*LLhGk`5I11n1VJj1o4nJe+l} z8b{C~SkwmU4OxO|p=FvG-ZzYfMpMe3#<7rctDO#~<9`!)meM;te(oE`Ns?8%F$JIH z7y!8Y!ydf*)r(81NW;GXWU)Mq)MIf~YspS-?JHla_4D)nOg)7n>-uT|U!E z)9%*nN`m6ynmwi_2ZRT|6`gf-k~xmu2?|IoeJd)}6N-!-(n&2fy{`V|{{RD;oL%np z>TKwGE&l+CF5uGaupFs&EyAMulTu&kk742oG$E*4O32Z#of~BrcYM|l4=06|CiYiR zxAp2*v`VM5w@aEDZjo^YwWz(0r)tsYfXLFb?elOlb`GTGpt!oRn$j53)x7yGJn3a) z$yOO4QC1PcQr21TBHY?*O~1^sV)j=PGeZGHiMJvChLZM1n&cv!wsXMm zSWcuTNxEvu>Hb2qQ}>Has99;SL1}RrlYGF>uw}fy;8u3EsMsc}eJ+Co$ETT<;Y)$@ z?c2yby3=@yagVaMzZ+Th_^*Gx1Zl~>XR|HbE|~J^4?Oa$Qro$a_VTajG1`kK)6@l& zO>G%crbHijdVV#pw4kcqN#4o7C1l(AJDJ*UI)7TSUeGubez-Zm+E|mX*Vjiec8|JTGHFdE#twHIpo$Q#-{QYl1r?&WnKr;y-Zdi z!d!{$a?_`Eb2fXcrhTU2l}X7^YAc1a06NH8PNyck=PqlyjOa?*A}H=y-r2>{D6d!7O z2+(D+$EXIhg1)Sm*$OTYwh74tI2ANk2&74H!6OHgo=sd=JgiGv5|18VMRM_5K^&Hm zfS`B!)&>5*9mVTTe|D_+Dt%3LSFGF}_UZB!I%zv1mF2di@x1W{XxHW#=Zc2UQ+A6g zrCekXeQOGkadDE_jxthKEUn0zAZ`vDJq1HN4H+`T*-_3Z)Q`4@ni6(m+-c_C($?_b zK<4DP?oj2F4_`{AB-#li`*U11A?)pEd!+pfi*Ip;M?AXV1I|0pS#Vh+J4w%4mA0ib z=#Wj!8In$mf%4@3bq&;Pu>9mRHUKBEueXibJQ?;dH8}U7Sr9+X$oBeIjC@75)a~2P z(ZWLSCJL;4?X0V=Rm_&ASG1En<6Y72d_WY+lB=Nr$t0LV_-3*-FAn%-(@&MWO{>Ll z&4J}J4S-cpjO#TcqEb;!6#PG|co)O>0emwzmeP=tCA^s5?Z;Z`tUf5{b~k_7me$OY zBkdrr4o|IVTap)2cecNIQs=1Cms8L!b^DvCBaLBHCmgq-t%$U(Zt}|i08orWM>j}5*&!IzbYJO z@u`fxr6(zD`+SV$WYx+Su}wXkvgzvbY0^s59!s(y9B0zJFH?=0?)Ad45jkNf7#KZ? zttap<*VEASGRyl}C%ug10!2bk%!`wb^xH|JncgD32L_?78$OmVbZY4=i~^P<>!N!S>?0<3_L5-Xcrg zy_c!X=O1X`o~NOB55`u$71KOTsXe4u7xy}0vb0xT6`PIUg>o7M5k~{bc;%+@)Dzb% zDyvtGOf?Ep?1VC~00VDn9b)veuw7g$L1%3k2guGg@<}zNsOok%@kMiN?vTc) zr5!-SuMB;KOlqai9_b|gKj0GJ?4R|i6{NFTNpiN+fp2>YMp&u)r>@^h&(t*YC6vl0 z3b96vs?Ez|j+NC)n|G$(iuUx9U+@V{Mpv-yIK9=RI(&Bq;&~3ug#FMua%i}T;=48y zhFL^`Gt_(YTyuh{hI75tbo=k8q8pbinmwPwG25d-r$c6|_ISWD5#Jd#)?Uc4TRe`# zxZKl;T4swr`(T*#z-anE5-j^frb9ORMIS2~iurP=I;PpQi<`k*5nI5k{5Io$bk>s5JF0r)-# z!Fuc#Q6*6%i-q}Do;_*8Fray@yB&$Hm`3XFV>v#EQ7A!#894j}FqR;qHz%uAUhhF# z+m-KcpwnR7!z_8)JJ&rm-PWN00BM>=NWsdka4VvXK5aXMpDMWfTbFfdRmvi%9CxZy z%-3;B!FePR{xvne9$xX zL!Bs7lG^_Ooleo@lIcUFY76pt*gb`G$`h>{ zCan7X=JKiSB&9Bz9+Bc71^8aa#2Rw=GWPcJ-sZr0qT_-j?~lf^^*tX@&@QfYxf*ni z;R4)3k{mjoaB*HnBM#`wPMda5f04rHFNS?@`IRNG(X{(DyW1oMGL~%*OR&@>wec<7C~gcAK#_1` zVbFtKGd!}!+O>?(xQe!|Z`#Q|$mXVJic~Vj6C7X@ z(-Zs%P6%?7(3j$bQI!w{2z zDopY6@OmGmcye0U`WUiBQZQ6wzG`?tFSk9$1!Fy~Xr6_r*^HnS;ZJkgx=lY;)~>uh zz7{tSCY~=+_h^U*F1<3{NcOCid12ddd#1ikS(wf-lvg)PKbhNU`nAS~5VnT$SlTGe zu`~`r4&CxA0@x8bmT6huL%Eool25HXOx!Thq~70l$l;|M&Cj{5Xr5@AMI&ONW*xFA zY;Giu(=j6D#zP)Wc|7u5vbTTh@ix)jdJs^|O=2s3dir=YSjqK3xq@>hZfFC2TmMJLd7uH4d} zv9A?MY1$D|Yp#~Iovm+{x|4?IbfYS9_7cW z2AyMLsA_go7~&5z32r3|z);60>0ET7Qc{i%n@u-=n^yk-BWd!b?O7BTjd5pd3$fc2 zWjX1BYPyuTxRK; zYEO3zcA8QNqkoN755n$YX{8T?{nd?F7>Q=5=vB%PIu?8tuQ+%%P`MxrFe3?ZJnz@ zS%%H>9P_{j6&Wl>0Km^Q)NJ(&jbaE2xo-6|QAxBjw$apJ*3{tS^d?ToorqNh0AEs1 zCYT&Za<~GzC2f%iX?zT0100i4Npgq_D{!Nll$&-#-Q2*qd2i-yYw z+z4>F>TA@Y9$4JUZ8xDi0TfFTsT;=wG{0p9Gp5{NgT_57wM458OXC^Z$a-Mrl6WDVO!nmY zol2TbD$w?F`3A9fL=c`b+#KM5DP@&Zh1rltTI7mJU6;A)*Pbi2jbv$^f#(gL39fTo z@se5Tt#=GfDyYi^IXU#Nyl+dRz-vRxJY}d~>XK>K`ZTxDh74~MuiPi6%igKO;Xe`U z*7DuL40mus*AW@Ph|3xblD@x6&QP66a>H-<7b-1MiGn!h_}|$(%)? zTl(@tc8lhd(Y-wzD|q9=UL5h<;?ux3>l9E~m}HhV88Q#z6`Anc;b)1obr5U*Grjv2 zrNEjfVUG+L4vc$`V_MW+%{p||lfJ#bulOX=lc&t*tJf0187E*bTh>sz-#%s^SC)Df0O-5)?3bxabbH{3v zZ#!~$IONxdJr=oBNSVfS&0#%_eiUDd9fxoqGaLYGZ%&FB;!@<9 z8L)i-t}52on`1dkOCzR}P6JO{`+4CwU5tVLVfa#MRc$m1bdbK)N65)1=~_+E z`pjopULWu+`P=R$oMh?RJO2Q|{{SNsPqK|JzS^-Cna<+iW!SJ8=c&oAi(At*JqqS4 zEpEnJDc%_Ff=V#O8}6KY)(SOe2~|qzZu?(v)Y7cenu~h$`4z5}?yn(*WAhovDyzvo zyH%;Q`}icewuT#%EI_Qw7(XK8oZ`Cuoa@chg1xP4b!|3`9F$UvDB4MGkUUaASs4bx zI*&?AOGlmAqebB71oMjJgH;qMTF&oR_IZsC`%4P%Own&g*%%!;;Dr6t(*?H5t7mU%7g<76sHV~#y4=D8WU(=HTborH{f z*XWr{>D8snPi1s`Ep*{i-aL3V1p{S$#}jy+>!cl(7nylHBuYyiKV1t);MiL|I4>$p|li*z~M@55@YG<i+-|;?p%q^}SkoX4CXbhifZ2vOLHelM4}ykFOQmPO5THORm0~{H?R~CQd3*liJp| z;rOP^>yHxr9{7uWtLoYVT=;JJmKk*WUBOXh&&+Z-$I~_2_|H?c@g0Vp;a?N!x;4Ox z-Zy=BP9?~}0C|At=KO0Zswqk^dTHd=uFl=9b2^k|2u6(irk~68{LeJiybGy#dtAM_ z@SeSSX&h39OflIqV<6+-+Pj?>#QN2>l23aya`}WtkmuIi_^F1uB+H*!#z#?W=Tr7uhZNn8w z<%CQI~tBaR@UupQub?0k0Mz_3o}N1 zvfi7zX0yaOPu+s)cW=J`03s>bB-zmTD$h;2y}32fzy&dn;>Qd9YU0IXr`^eIIo%b45XLi*Ummqnr8!UQ747d^Z#{n{W<#23 zQ-@3b8W@jy?QL}mHpIIe0y1%&)hObX)?`pfBY=6X3e$BIRCZ5Ko4M6b-A?7pOJ;;A zEb3GS`A!QJ=6b*okCQ>Pzf?DT&$?7spW z6s370oc43ri*~rSWLt>0##nvj9qP$~I5f*=R03J$W@Fqa6zRdjZB$nGZ}+8V_=-}x zRw^F2kOS$DTF|kA^Gm$4yu7t|7GK^*&M}qs6~$JaNz5u15rXW-&f)W_ixL;g+zxlJRY%mMIvJh<}|@ zdmE>>ja=*!5=>}#1Kzu5!WrAaaTFIZALu>ZfLW9OMNXY9#Z9` zm9w{?$MvpLT$1Mai0zwfTmiSRuDaEiC8N7Cr52s!M`0b@P>W}{XGA2RV}LztL8UR2 zkFEzi*EJU?(|pX*NjYd&QW?%iJFri+Bgm?Z6|=j5Yo7OG>JgCc5S~fsYCxraP!ByZ z(y44n$(|vEjURq~W7?V)N03DVvlEUz>L$`wTaNZuXLI3S4$o~Exw}HF!+?D&p}V;@ zac)%{4lC)fbftyEB|Y~%nzL1BbbMpt``bzFbiG$chVmJ#2HUo5VB^yrzO}dFF9+Ib zYoL5d@ZP*eo2ihp2#)85Y<$4uh5YN(jWp>w(|aWT?FD{Vss8|Zr|8w!{_1 zg_}y&*6A)tos6;PY=r#72LRVU@pC}E(EM|A;k|z53)@|8+-g>HM!ZG{!5HWTZx_iA zXqst1&r_Qao#B4BUv-a2{gTIlqJ2-{caA<5$E!C}ifzklf%9yz_Wy|cN#T^21l=0*7tu(|qIlV5ph zZwkuE<`p}bbt5&boM$+=#@o9du2~*fN%@#}bGj1By*}v`gEZ{(84eB)09SoAc(!_u zUh=uIr(Z15{L8fTt=l`TpaS6I9QUs}tT|gWO{Q&F>Mf9s(D9#Y*SC1wovNhu1Jb;# zMLuVH9@Y-Mtrp1;01B1PI@Oyl?v{=OL57^YR0S-Df3O)yEWOZQ~ZoMxwKn;x*av1n3r~UH?!YE z2iYylByXM49Pku(G}~QoRgx=BD^k0j<4v=;`&2fpM%9q7QCLQ9f{j?uStgoYv{rtk zMJe4iw$IGf@a?PW7m`}KfftnWFcNK411CR)U9;5epGuQO(dClnOV>%6+3*x8^fh#< z!kr&#*0+*Ld8DoAu4g#8OOHh#`x}P?7S5I=0l^70q>(;Y%FSJJ* z!lWp?V&z9%X1M*OSyH^7s`m0rOMUHxR8>cB>!~x?#<4^hQ*w?;H6-_NS(mi3n%?A1 zZVS35Ha2=>_p4P^70j)4m6vz31$vqZBuN{oH!=SJtKGPC&!^V2?d6*4c}(&XBPam3 zImL5J+|f$+wf^P*00h!HtJu(GVP_mU2PBX&-izC5BDjv&E?r<86VRHuCn|5rCHJ&K zw>RE)9xc<&uZFaVd{G3V=;<#en)btTINk;r{{V$?Ei{bf<&3fDs-xS|yE8`VDp8WW zxnq9MMQeH3=fnH)ZEbgNyt#dUrQK-yb%ln3C8hnH)3x=?hnWE%D&w_BB=>IUZlrmH zF$IiB#DyN-mB(7Av{r;UY?5nhwY~jWe649Geg6Qjxb8G7=`U>Ur+Gj>>ffAn?_KSz zP%J2swnj6W`VJLJNzPAOFYE9=KQT@-aYR~ySgqaGFiL~LuQ&M+(I2t^|d zdz!3Wb^;Cw?rFEvu+k%GUmGHeuUyhJtq{V1UmTvosx7B}!hMSDg zvQZw(fEAA4n0*gwAljEQ+!<08SQzG4e!v#U6!~S^00W@lRKY57X)(Q6$WXlKNgxh! zQ-w1#x<*)x^yn(#c`J7&S~3N1DO+&s-j6OYx!sRUR!g%O5JTr^_M|e9KrM_M(RQvY z7PR{d{aS67cI5Md*y6jr2g3H6LW{e_4>mK;L0*<$hxXF;(_ZS^&74@8x_da6FLl_W z%Ag7Wz&)#t)x20^465PzBd-8eW*Lf6c4Sebc6{e8<(t9fGPs8AeAZSRGM{R_q+492 zxBMe*BMS#{aRg-iiv5@h`ZqpAl7H~b=5gLH`mv;LuJlKFMWQ^`<0@G@#W{l zZC)hRf=7F%+r6lWAW^e97_DP93Nlt9{`yIF)a-mad3cv-ZLa3Ax`eAma|>;7alx+I zJC74;7uPqwBk`uSeD|Su2_^*rQGiIU53JQt_G(s*{J*VAl2b`b<^6n(y<@|=j++&= z;!2m%eVJR$gOHs4)9+TSg_zasEH!1g(c_vIk)@S)iEuc_rE*!qqm4~A*P+hjnrZp| zOv_2pi-;WTM`aF2P!C#%SG3jixS@{fC4xKE^J0(ybGM!ibGXUJni~Oa9P#iZFHJOb>d))$Vl7V^_QW#ez*P#nLqp$oVYeu1!;%Cal$`-=|S7mj1Rm z9~|nMd^Uo_%IwkttR&7dJuAzuq=2r-)$#!&apMNMqaS%I?2ltEPuaKKobI=B_SV~> zVoKx@p7`(UT-Kec2Aj&6$P73+?_S*sN>p1$-qzTTSFzGtT&#Fh>w%tYX3FJ(UBqDX z&st4qA#P~kk=Dg{_EzRlFad$@a4-L|tt+l%Xc&iqn zqLm9TTnyKTj-sP^MEXoFAykE)=Bq+ve1J~e5t3_K$qaEMiL|k7^VC<5KYLT6`dJ+$ zc9(Y=74Eq%qhg}WqJ5p*dD3L#8V!VcX_hn#=gPl)@%M>5?mYb~rPFlsx|J%WcPmBt=;i+awyXM_vy+}FLJvf) z*RG58V{h%nwUQ)m&hz2eD8a1x9W2xdluI%XzT@tL>0I?wrqs8xSMzUQ%qhNgr&c#o zzSA2@w6@cwEpkk+bk3V_dnom+n|M~<6?YljJvxf!tvYp_T|JUl_0st0>3diT=%HNGDUEbEM(yPz*I(D@Ve>$01x>C_ghTrJTGBwd#gcldk8j`r_Py6 zW91yx9cuc^Ro1Tci$`Lz?jk+ALIvSPcg53KR;Qz!mAxa=@n<@_tES0*V;96a-mdyp zzNdTUTj>_E!ET{*gmaUhTF4joHh1yg*-5roq~4^A@;Y%|eN07K)Rd+ zMzEy?Cls{*05eDZGgi5|zm)ls%v$c|OobW7I#e^2TUg`(fWQJxXzEV19a-w-ck|J= z_p>KuB@|ELZEQt;)^m-~%ySk_K4D&`qiYV3q<2aTq~TRh09Stw;=Zp^QD4>e{BC^q zaYEHSbv9)!Isj7{>N?k#c%wwR()9+oiY9w`TRe6(_gL6V5r%xbtxp#ZB^lY7EjU2% zqHkvV$I_uB1AuUAz*^|fK@txo5J>rV&kOx(7G`s}oD;xNSEJZoY)KeK4<9pi_Na0` z>itQpmWssgHdBSq3iH}42CHdv2Jh2MC>vqxuU10h!=)VA}>2xW}$!v{5`CgBw|+=*Gc6$m7q!}Y~BMo7Q~vB$4k#mjca zT(i=(4M{@T+qn(K@(u-dIv>MyAYAHG2P!kSI2GN3!MsaTo{{{{OhzM-a>sM1j?+)l zp;+MZkRE|WWNRAbj3J|0LB}VaYuChLAxfK!bV(d=grx3y{GaVtdt%wY4)ayR;{ z0yzj6Z1K%}4kr-t6`ETfy*MbN&%8Z6&}jEUDeSJyNYU?^cVP(QZ=tTMzt6@m7JScxz6)(cqlG*5X^D zsh#dmABW>u8fSw1EiSX9`0q;8F76`KllRFQU`BDs$E_HpA7L(8XwjY;{LZJFUnZTu z$nRTA)2;4ij^E9A90LrpE*u))(B>Bkw(|_K@T3Ks!DT@v*@k=0070=zGhI7<+TrKB#-3GPXu-R zX?3|8T`nnPzjtdx{*M?1h7Sa0l_xGqMZfEzGIx#6b5PXE+*?kcyC{WRfrD6Y8^a1} z5lIV!J7H91zY$OPlCt&u3DqnA09&42;%!!IpAt(w`4XVWi3)(KeR2L3$ZB`0_YEm3 zfMGHzIohi9Z%-+(q zP56pJ6^{Vts2;Vy71O5N4b9fPyj>ee_Nh-zFHrH`CtuBgqE;a82VCGw=vqPY*i zWMFb?!hAXLtT4$cXr?2MuOJoVPbe z$g_F#Az4DNKPw*8^D5H9VtJ{g;_r3qr^|f>f`_)Eo7}7{?IutoX2h8z9OpG>MDV|f zykV@x;ok~q&3}C0fgbfmKsvKC5C9(a~~76X~oK`vP$gI_=E7f z#(xSX(r$cJd!w`(h})Yx0zDDeIuH0Tr zl5%?2JqWyP=}~UoFKrW(Z(qQpp<)|;))qfFLgl0~!ouY6|S5bcr3qGq&uW6m}HZG9P9K%rZIR zomFYH3srHD*lHS;#Cmp}Z|2DDw>z*uI)$v}w78N96fCegM%Z}Btlb&ObM#t%rE@QY zhX^GtIy-}san`KOCxYYf!Y!;<$6fni-efq5WA^o|+^EJ)*G=gD`)E5!+m)N%6Vj#B zY;GoK_NmG%5y3Sb$AbJp<^{F3Sp%Px4yL_Ycxl$cLBoIeCkw3@RD9bOV)#+x2lHD| zXl#UN94lvY3enR39obn-lj@FcTrP3^Ir>oynsAbMnS7Bm#wn{)RywF9u(G!>!D6fO z;1k9TQl9x#7ilwqcn1QzYSc+3vN@w2ZgN_eiVSYcv^L%V9jlJib*UvUBg4ady?N_j zFPLMwn}kn7jVo%-V^Gx4Ou`ejd*s(Mf2cHJh&&ecuQG)tCU$I$PY>xgwpUt$Nn<6o zmGiUO?-{`C2(2Fn__xP?1=g=LolnBh>)sjFBWR?Df#eb}BpK*OwSKij6Gn_?NAhUv^lbvmUhwnjcS#6?%5-FZ;2FpZ>BVXIH{tf3;axBd3s-Ql zv5-SFgq0_*GhR&G>eGy1?QMVH4K+o|-E4KSSlT_5Zy;1+OEbTzsBL0cCTEF8%jWRhmOw31EHksijz8y!flPgc6sbo~Nrtv)EC zD#01t@Co+yse+8Erv-PYqifmiq2!v)-NcRN&n$8=B$r;9u1j3h7s@g$m?RE^9M`pj zrtX_Ps*+Kp)J{I)X=iM?1m~O%qN2$sCyMu?l2$zX-%$obZUYC?HMOK`O&bUt8#Jn~Tusj@Lef@OGXSHD`zp0p`6EPq2n&3?Np>893&-E6vTu zCM!nSsC4#uRpKoe9FPqp`fZk>I;leLppTh|0M|sOt;+h6o4wIO`@>eAd`}(6oXY!| zHuUz*T7ud*5=jNN(BCS9*j90mB>AH5XzDq}%;mgKpsuGIi6j9PcVz}~^{ib(#`^Qf zSHwOV&~=#L(qB!oo=ael06iFRL1FZ+d`2dCNjlWhl9EZqtEQ8`%HPsGEG%PI3KDHK zvtDPPX{&G~0d1aNA}qeuI0S!6zOi_h!k#0td(Bf-@TKIj$8s+%+^ne-hZ}$%qp`1< zqej27c!)))#irWQ+Uadp+S=Nq+-?qBlC!$m^*X&nSh3J`uMyjLw^G(VAn4kix<#Yv z*QG%TARKJ)wJ&qc(%t>)uCp$whF}gB0vwW4;3eiHS6yhY8RT^(M1)#yz?q~ zXb_m&?t_jiEFLqL1uPVIlfTJDYQFE06)E1bs`@J&x}v*?t&_`(fsEDbZBS{ce`^+z zYjW3i?E=d(<)J6|m(bUXPZX%t_OOb4yC&210E+8xG*9!)@-_P_|;G6$_= zUidp%zP$1#bW1dC#G%IF>0NQ5PIMtGJNK>cd0gj?Cz7PSqVzW&JJr+8rG}c;*3e-$ zxWSP6);*b*NV}8mvIdG)+kwsvbYiL0l{i#t(T>Z>X@8#Q44h>dLicRawAAFZc6(#9 z4foA-F?f~5s=0i&a0%~Sd1gJ(Qi|DJ@NpDw&5J!%W<e&x$ir*{ zI7H*FDz=}l%cjn=Lkw*qjDq7KO?ve)wn{KoNZ|He*-KmTbEdE2y)w zof~d)*P6u9?vZ61nBWS;n^L+GJIHupoD*JGy(f0gwG?3AUwN_~4gtYAtjR~3%;5Zh z@DF!)RwlnUg~`|DWHueiWj$HM1ga^ zKA_i={6p4dwvyt~W>;&eH*Q0PQS`3LG}NEDZ8!U@Dr?$RNb-$CP)k5#$lHPl4aIU= zmZJAhurTt$-~nGrhNhC{XQ5tv{^}?c;1YTabNs1M?mv5^v!N-G7@504;ku3b{cK%`13?k&x1dzd=@);zCtcDfN# zP`eC*00+H#?}X!;5fhYRbCc)=dz>pb*yGHCAVKu#Yts7HG;Yz4v$L^o&hpmjoU-|0 zPdMvPPKqLZ(*}%k0X*iq;aW4Kq=m@TtYr;3)R`5F#U}({lxP88~Lr_-V7(Z@wvQ;pwpdtU%tT*nkw8p}y-1D1^#k`$h}9jj_z z3R=N$9lOdJI8H~)f@)~xaEf!CM=dSrjO%0houaHYd_Q9F8*^_XZx|(y2A-Z1U$eZg=USq3VIDu}Ygk#LyLwChvm`&QzT?@l^W+t2B+k5%0^w8ftCnOJg z(SuSDsUCA+V*uBRqcu^+T0ip^CY_m~Y2sCbGRjH880VVSUmHU+d0X}z3=(*+R}YDu z1!dIn>cuyyrw52FuH!D(1LWY4!nE}LPSx35%auI_de_ilv5<07lR0GD1wr=?4{mGFrkiNZzNfT!LtE1{zYc18Z2lTsyX&|lM0Sh?jn8}@ zl{Sr~P32p_mTudlMPRCa@En0(SnATO<0^5sn)>xVdZ)csQ|RsZBY#uSd^KgK*lHR@ z?B@L3n6B-mOl{+>R<)GNFP64Z%_5wvZ^n7)T17&YR~7Fo{pL}dQ+;gRyw^ex73z}f z9w9epLx)K=_K9xE7x6eb$>OTXez%uPCCG1;c9u^5^~UC;+4jd)uDxw)#10A zG<@e6V_LeAi*sob-%jTj;{8g~O@`*`c=jL!#-Q>z;=B)C@iS_VHPo^I%y7GoNCLf_ z1q8kHxBih>Ub1}-D^t`B!<~#a=aHJtCpqI8IqP2ZBWT$hUAJ~H5)L-w9e%W=5D45o z#wzSIA;9Ap!RL%n03(y{)0%B-plBxC0&q@GVa-ivd2wSPn%-P6BO|p$;;Kc)OLJOP zB}z(h=z150JZ+_$h@;gBf$};26ZqHC9uC$mbtog2&gK`0s2nzb9xL;nBEeO|Pns)E zjQZ>~SYoO3L#F4Y=y&r8mN*wXm@1$gn(mTo-8$si-deO%s8%Zc5D!i(^ZM9o)|E)B z#eQz~{En8Qnoo9XTu8lGy_jffRYavu=hLWHQ*FIXIczKpZ7tMEaAj6SEUey$@<-psY<~)uozA;Us zIWr#VoG@t|U>Ut53gFObuy_TK2h8bd8K>mhRpk$(Hgc1J9#;ze;jy9 z#?niV6!=wVg4W(eSG9ev9FLWbdh=W1R4P>DsUBp^=Qg0!cj@YU#p7RyI**Gdj^cD% zTR4%UNTVlt0l3}xR~2~EUS|$IZi5}YEA6mYTgLHLv86b=a8Z9VK6^RhAT)o79jXRW z4j5zVE25<-Q+AQGT4G=Uv?;;ongHhvcn6G*m5O_n<|$G}cJh6Arne28cjyf}1>Ni@ zTxCap)|0PO&Tuv z!s4fdsqG>2?ejgmz~8j|wiDZ~y=-E5NFsQ~Mn`fw*ST7L(f%6oR;qPbyg_dz?aIcb z8Gr+5TRdDYuf(+ey7#a#L&iCadwv0^*YNB7p|c{+FoRszs!YO zBbw-=)uFn0RwyNFreItg2$6rDYvpA_mNQjjcK-lApChHg#iWe}*5K2mLhqgAt8u`q z?cxh~76!4G20^&F9OAj9539Eo@ov6mPA#kSFIj8x$mAr)a{cEE!Tf7h&h*aa)E*cR zOLwhdh?Jy~?{6dKVm2iEpAoD{6l$+g(Yc44`WNunG0Vq+m6bYzdYid|^Ql~V%N6YTm!MoOHn)*h+xga4vT7~LsnAW^urUo&~ayODx zs67pO)NqoNoVB}u@W#=m+R*Vo88S4J%L{$tO5j&F;Qs(0&*05iM>M3^%;S2K_kHW_ z@c1W)!pehM^z~aDc(-M#?=atK+U}nf>^CMzt~plp%~n`-4K7e3Ei?r3ugC(t&TrlF z%liJdJQ}dO=7{+WF>SeokgR#z#tlcT-d-3=+FX;ns5Q+PMpD;v39Ci4O`_@^CAGB+ zZ!}vYIc>)rR)(G9x4Mni_AIn)K`F>J%U=V`oTIQ)ttxFsM@4O{+Fe_u(8$<5L8Ldu z*oK<`dsl-xYA(q2X})E02{j;#wT}LJ(_Zw96psTGqZW-UA-!oK`A{Y}8LD&6#Y0Fz zB=iQZF?P^2xmo5c;6)xl>z>tK>fwTfmS0=}>0J?yx(SsoE@LPacXN-%v!{`n9hGsO z0j{cXwUH!ZC{o-$&Fp#{)?M|&nYJp7`3cgmKzr* z6#V}HBfxISKcC@YFZBsEd8X8n;D%Dl#tp;*M;RHacXzkagKKwi%5YGswsO5|SxReF zvoKImN)Mq`;fEjS@_E3f=Sdflipq9L2IV-wJP}ybR%q@!!NTeQ^4HoXlbwS9NY12ECl84C>F?J&_CI zQ8)>2WVm8U3a5?*Xldd=3l7{9jAVUl?yxt#k<)E1%dQoes8PFb2aX55MKzR8M*Ic? z9DhpnDpHL_W@Mi#E6JpxI0tCXbL~~GG@FEAQF!go>s%GEH%-9NRBv*rx42WV#&gNz zrYVesa7Ib(UVQ1!4^(O<)0`aRrZL)pgz}&q_s12Lt*LgoBydRh2!!$5txFAs#F8W; zHr(ASYFK&Iw<^#!W&2+aUdcDv+8wS>A%-~ht?}TwEuxBOU(Apk;Q`0jKDF*)vZZF~ zE3zesaI=d$Egx0!r-tn#TU~BZzXmwu1+YCmYr4?>H~7;>R+{fmit5<_-00YI_*aLV z@Gc86PIQ+f{{RNhTM5Jxi{-DX@6_uwU)l%5x`duqswK3RZX?tLXX^szAJr0$PT@Xod2jW|cBYY8-#LLwAF z9_DE~RX+;&gHF^gqkU0sY-OJAM1iGTMU3zm_OCi{r3q7~C_61%=#`b9$?jt%Ide<; z^D$=emDAqb#*)OX1i+vpZ#H|VO0-+D&)d?f*m$Z)V!(8evB_3E)kRgqR*g3#?|1kjWll4LXve+rWcrj- zDMgMr+>GX;gHW0sJ(?T9M5pFeJd9RV;mwFsdRaSuMv$jya+ywKIr&HP}Uw_3|=x}q5k;7^~6Ex_NqqG8UNemmcarfUB zMY(ft`=;s!Ghai3$?8{WwPoDXkyBTbISpUq2Cp!6mhKRzJr5)DuRqm(AqIai-0p62 zLFYC0I6R^d^Jf)obSS51W1YYFg?~567DzpJALm@{=A(6}KKWZ2Il`VR=rH&g(R|%c zp2Xv&UhrBY(ta2GSd+tXu7R$r%cqh&w+Af={{Ra58${Rauk9B908gE6t(iwc4+g$p zHo$utt;Kt--Fo$3sOZ$@R%Fs!kj(a|85ojR(y3lWEW;}ZEC)`N^U;!wz2sc!-DqV) zZK>JH$mQM^IM`1>YUCD6ZjuzdZ3oNW`9G@bq9Z%3AAwk1L+1da_}jeu;q z-MfH6;=X$kO{v`UsJldoQCe`XCJ-DPQ|=xFa)~2s>~mShn!7f;DoZL9+Z=?Bq~@Ya zm^PD^$Q{Kv!6t)S7255iETOOusphFQ#?sO=s}aBi^IJxp#jym>b8tZ}h%?hQUgg#d zBTQS2@GGVVlr?m zKTy7wQW0dxRmTIpdvqwLX3lB7Y|o`_;DH>?=I$-n4s%!h_nkou0a1*P>sjIA(tc-z z_OUcq_c2Bi;>tUe&Oz;;tvcsYvbwjB&80kdM*=xwd??4L?_FNfDm=4~%?e4fi(O9< zDHO^H9Fo1gDyx!%48x}w=xdr&Z%)E}%)8sjVnWisNFBS^o%p}vPJ`jqZ?#{KHG$g_ ze8m1;D|{Xjc&Vg}DpXN?t8>EqOYt{b*QAm-%B8E4HZt>$)yJ?hHsYWY)D8uGwi^!| zJQQMd(x%e9wbdI{ zThjDJcWaA?88&AU0CIyL#5>lPk#`(+u?VeZiQ56y`jgXvz&_Q#v(uFsyEc&NEj5Fx ziIJt=B52+}EDQ{H2BM1GJ(F(=LlU2K2UF~8E>!`zD`-*>>5dZGJ9#IOPQxU;f%tYm zT79mC8e7S66#h-hN&>7>70>0?vYaDU9J7v(rLMhA>C~%1^Fg%yjZH6K__3qu?H-Tg z8>vz$ur1~Rf}W$3TN;1IuZZ8-lGtjxHNEt4Ol91J?j&{kSI1^t6M@DjEG)g7cTH}! z{I@;KHgeXLqj%jJU+~dZ_Uf|go(;RTEDj0{!`$MgkM^7Jypbw@VqM27kV_MSYvVDV zA7iMdsliG;sS9=cM`=#&aSKQ{40%$Vj8kO&q_lgBAqrbWk_OK8eowV{ zvf(U#9&O5-v+kMLt59)COH(rM_KCBKDH6`d4B&FjpT@cUL-vT&9zBrV2*~WJYiRI| zW|Nd3+{k#kH2x-YSHB!}NgsK>x_s~e7zVlf?~3}R(=!Mh=OgCky}UmQ&Yh#m&T5&w zW26y>b>n?%?6HmALFWUC&7WS??iXy6u)xRCy}CIorjv2d^6KU_CiFAslJZfyNn|6b z$*9e=rFRusvHQ0C)#=7@{Z&3og){=kAG700_qZPyTag)|^Cv<-3fEmiCta+YPrCH4&2wC)rV6F1M#rN{qNuKhw5d76sRxgk3Q4UkQHqJ1 zYxNlKUNxQBtBNGIwzphG9N=@2pIV+s<+lqNmNw)X^Xk)XO_v)bVV`V*GR-QX&nE+# zfZm}PETD7%uQkk|lQh+hNZIi#vhDVzmrzZO8o-JN0kKx0uQh?Yl>xVfOp`LPIU{dc zqbJ!*GkIrr3k=q@;jW@>lxMn&nPl7u=mk=1uQ}P8P!&f&GHbq-F09SAXWd=z0w~a6 za!xBQ;#6{4X4(MG0N{%BDAQ>qjHF^-&li{kNt~RHI2A@md7F0MWA(3cjWrc^bIDx) E*;vFLGynhq diff --git a/test/samples/girls-play-and-plant-flowers-in-the-park-725x480.jpg b/test/samples/girls-play-and-plant-flowers-in-the-park-725x480.jpg new file mode 100644 index 0000000000000000000000000000000000000000..9ed853ec7c1fa905f63c083012813e84be94b6d4 GIT binary patch literal 70533 zcmbT7Wl$W^*X9QuEVwiH5MYqt!Gi=D+#Q0uy9OtO4DRkSxJz(%cMa|mJRv|f|M%V6 zt=dn!d%C*6^r>6*yWMsBInTNMcjfOk09Q^LDh)tD000pF9e}^D03k^=DRB*DH9;CH zb2eLN3o9B=PIe9&CJ#3oM=KhroD7Yeij)kECm$CxD~*eXiM@@x4~+=TdtQvc>i|gr z8Y(If6$K3l1frv(VPFxy!NSDEBEu)ZA*3XyrlKSVfoQ<&j5Ktt^dJz^duCP+P97c} zYDNJOelB5lZXT}x41$1;j*f+iMf&CqDHkn>mh1mH{`LUy&=9r}7m*O?0El=9NO%Z; z2LROnAW;zhD**p95D<}&QBZ+s=opy)5}I%UhzLkXh{#AND9FhFvIG9z2O#62;L~!7 zqY|i^0O?!^xq{>K(dZ@WdWqC#e}cJ9T|>|@h)GDv$Qj-;GBHDVc=_J*3kXVnl#-T_ zh03XGXliNe=<1o7TUc6I+t|9fdw6G(w5^{JLIr zdTzC!M5eB@7{p+n9fs@wp#2xw{~cJ!{}nV}*0n%MI=^cz7FgOA{*pUgWQjOZYEYT@cW%~3zZ+j_fFaVwJ!u}YCT3}n{ zq8;UpyV-fyG^U{R`XPM@KV6ZJ8C3E&WJ)`GI9N5)$6?GTI_~qeI!t|T_AoNZLildd zVtR66QGAf-B8Q|kchZ@F8o~(tS>mW`#zGp9-=>B1q4-nNtc0vig>X)hGvwSiFm5O7 zk}(g2pmE4cK*eI08qaqV#eq~UUZF*dFV52NJ;m{W|4C~uEg6cOa#yBhZn|DuD6Fwr z6}CgMG3|i3X7hgJm%s?XSaW~A@*)wfVp0d2jGF-d%)A~?54hO8lHsO|H(-f z(sV1!*-01eV;yz!L3OgwB8>(#q|Hc4ZGCH5)0QdgMaq*G2S%r6#*c;6rS{zV?oWjl z@P$U4Dai6L4j&mGM+Ag%1vP@>f@T}A{#>h$W8&2YPrIl_Zs8*UVtU8{nbRBVhB^d4 zKpL+4g0&t3R9#6q>OvL|EVh=V)Rp)2hn&9kvKsfe(=toI}UO z-yl}CM97DGo`iXTBl@hFw6AJ@CDCaOVDo^%{l&D&aWQh5_hy9{`flt9@xi2rrGK=O zLKN7yw(c&2D&PG`${@%&Opo&cAFGu4GY>g z1B3v5;jbzEXb6$6*e;=0dg8kABHvt3?HO3(vm6D4O-tmPa=0cCaRn;xI^<193^-3c zgO@u+nP)e1ZG?sa+c*Q7a%l8#t-lt!uany6KKPPLfyc~D+lE!w;F4ZU)U+6YH2{&Y zg89@I=Ljzw?Wv(U#)#4?sTt`Mx11g^zqL}}RvA4*T1DOFg<3yWDhVQI?^*kd#+e^& zNfM>vbE<^E)9m>gFJ$8)rp zti_tkuz@E3m2f=`W9Trii9<(S+=j-KaG~B;-bzI(ZN?LgWL;nPV<|n8#>BQSjyOb^ zL6bLd8h4=zx>>pr?ja3xB(?ISxV>)v3(bh0V-QNL0RNR5I#$C7u7mQ9Xww_KiMC3G z>wGmqtGVJ-rHq>?ro3MNIGrqj$jQur8mbS)fdaN~f}J#G8C|SH8<^=xwB-9w+na@M z>m4QaSjoh;pOwvC@&Xna9Ih(Y8GSjJes(QcAIIeJ3CiKs4LVD}G+f`MH)r6&KXT@%g$F1EQA;xG;1uGv-APn{aU8dfJ#W{ z`c|dw`}4RkiXsK)6%o6b!c|JI!^A`u`44N3RNBUV02XeQwqz17jVD*8`63@S^Vg@G z(lezLPNq$IP>f4dT1B4YFhd#l)(?lI-;q&#c*kyYc~NV#oWw(W{G%t@yy5aft>gce z4ExI|&fzNQ1l{irQLihHe*roIm1m6ZhRnt8;%_rZ4|HRjz2T-!F|-Lf#+H>su-OB1 zZORdvc?@uA>hGYlsNM=k+YCRP7+#T{hiSd219~66z9O^4#CW-B#*BOo2TEl*cdY8U z%E*De1Lk3#EadurP&B_2IGmoXM(%0R!6Vcdj()cAb29_1<7 zdf(#8?~fzKsbv`Yu?(?fb{Mn(XkCjuI+OQ6R;D|T{|OX&vB`ham-jo%G+r(-*;zEH zP#ISJz$#mmu}*`m)@Xnp?8KBX5PYEtizK~_Lt2m0U=JO)p+E|ak|^WinCN-Vi!vnx zUANIYi{9rW&w<|@#Emaxw+&iNf^<~~hulUnCk^CB+2V@ZFM$zbyTx_MD-Gr`HmWLE z_1g=VRh-y>e`D70&`zs~Jq~gZMrQIWEU4+ry!#O@`-oU9|A_$!@Jr;6iW~+C$;-Zy=&|`Fa7}2lu!l}Ukgq4K#i~!k5>bV;)d^A1pK#~ZyHdTC%5rot9JE`?hP^F1RoN+ire&JtKYl<&Eq7b(xl;DzZpY;P zQ(%GTo2% zM3ympj?RTuif+C^4v{f|k(w0WBIWVu>Uv&@hRfq#buA|@?4Ox0u?%)gwHi{8iq0GdS9LR*1 z<1eOe=4VdL!INe{t?C*cvlKD`TR*6}%y3pO9M47h~ zv10?_WuF%?0i;nL-qiUFV-x4`}RWH;zrbj?q~yR$)`yI zCnd{Dcm^fO!h_)(pYOhVdBUpHA%6IcUx=-wunNtaWS3{2`!uqQO72FSuu)N$A0=MiJ31+S^lfjRLLKbwv4dFDPL^(kR2$@i3~pTtn8ZVG=>MD z+Ip`x)F#t-5I(e!vbCBmEE-5by&^fltT+O9MKOF?)uYXS@YL(GJAnq8fpvftY1*$- zZZcx5Q1TR^=FpcPdJ{PU`2lruqGnmt-=%a?w6F-WYEZK7pU4eo#}urq#jau+XSj(p zfGn&w5&Zn5FSZ(X7Hi~|VL0}$O>p9{RQ#0pP!j)cz~XofhThtGMYi{yG^ z@ni)z^Cc3X`DPv08*BJ&rGB#JCJWquZ~xdfd?+F1s(mU-y&XVXN(YINe^-0hkRaRS z1uw&Awot2_tA8DxcTrrO;ToOIlf3uD`3*ET`znH^6o%{_RR|&ym1iz?rsOILu(( zLO&}r+21&bTknL~J9#EV_T)^{2~mN<5xtjM&XB1=GBm5u_>UH^R`@`z6Ks!{rpo{^T(SL z*R!>QrUdhnm+9BBn3D2St?J75Auto^i{1Pysr5UvJcBc(+!HT|8gBnDnZSYNQs%Yy z!oP-Y1oeOIt*{MV&d+Lm0BC9M@u=D-Y6RpNU;LXXt;^^lR_jD%l62uvzjjyXUjRmX z#Y-~VSU{$mSwV2rVfo^nAoB%$_*gscrCgtX^T&jmW|kLagZ|CxPwEBNH*V@YDJ`l- zDKY$J{^v$j7lv*I%4|h$FEA7jto*bi>SP6myaR%7*CO?!Hh3Oyn#Fr5#rKFNTE3jW zU8_RO1Hv%Qn+y!V<<}j4N|(x%e&oIQA44&Y*m_yHRgIh^PNZxt0!>$S-eb=;dn1fY zpQ%f^aB*O{7HuO6JfGU!{RN14$MJDUyD7KKA4t={F{H(5ZtRlVxXly5HWIZqgss!! z87)-)b)hZ7+nQEi`|7u!TQOvO(~(eN^;G;$nLKRoDHt4J+fG8A+{zB^e1t~bft_M? z?=wCL1#oK-9D-UW^%mmG;s5i&|bYJd8DW}>@p%rDS#_%s9Lt~CQId$BP z18#!;klXP%LOD&^L3bte!z^EP0i-8#8hmb$*fRyR$)N|PI`>ET4K_zB|6$%on&{Ab zc*k7syVS&!3^CdGEA=U6ESHbofGn^3vNh<)xCzNpcna4KA=IN5TQAD56R`34ULs6% zS++x*u`C6~1ErD-)senySxGI*6)su6y=sWAX#^nHaznqiti=IRMNQ)>BbUOK_Y4;! z1SeQdtz^Y&k(RDiu19+G2z;1nYNtqvR+H$0zuIgIcu+IiTX#6@MOamqx zBydzEF{MFr8^piAtxEXA9^tmV4(w`kOnWHVV3mewb-B=5r;jg_=IGY9ZJLiO;WoObI;@L4+ByP2*B2ooz~8e#@awU%M9(L%^yN z?agq?1}S|Dz%~$dys134oBa06^iT?T!9iywFV1bn#R>V`+I=tTGxeVa@yI2@}vZ!3-#a6~V<1b*6p9Ws1;Et!jWZxL(;G+qQnt3C|ht7b#;~ zS;hkxm6L4bzG&H)op%m(O+ZCpH>-%Nx~CITK1#*cwWvPCt;Zoz@6eAZf^Z>*9U~J( z2Tl%2%+9-ihLF8|mmR+cVw!@S|CDN=`0QA?vZPK|D60D{$K^zNo1Q*tqKDuIY5_V< z8kue?C@ae}r-2|&pK-&q@O!GQiD$(9FyR9NIE!aap2ZQ__;#sKT1CE;?4B28xAH-D z8d6bq00b=h`M|irvA}E+3GPrma0Uanj&u!TNGn}|hYQuB5R$K^erD<)z4{^gAgt>7 z_$W!24ks;E93lNDHJfPSMKY7$Z7k151tlu&P$LmH&F!ot+F*ryWc8Tiv}A|;FF;{6 zMDY-GqqGw>{aVXDkH_+niw?(6Nk8>J%oUkON%c}R=QLJwIzG3oc5$a1%h<{~><8C| zI*T^ZC}~P_bn>5N)V8mRiO7`dk-qVWiz}8E;Z#W3a_E)hYFUozw6jiZRyYBL##Idk zlFPTG@Nu@oN49_3fJx~1{v`iXIEp$Oe1|A9#iCrt=-B9Yr7WD(9sEdh$w4yFqZEW@ za1jWQg?h^TY6iQ>luzqTQzl}=k(3Q$O^v{A5S1=NT1k&MrETSd$q$6pe{#PLIfVZ& zz?;J@&UbMjV@oo~RmRs30oFWDX1&tf-`jJhS={V_GW|Krw1u6(Q?3h@pEp_9P1wvX zWqtWXqqvOMU45h01bsh#iZiOUc>uqL=4dG+YnvbWX*Wr1=*R~-bjB*G)xDnC-a^u9 zD_PML;wv|CQky${(Hf9Y|LyEN_TYP{{#YE*7)x%9yam z9|11LU8al4`G}b^No^?T>F=wP+DwghNWK&=TwUb5s%C``YYn>@O`5!^%KqMyAf2)_ zf~Oh79d+}&$$Z|@syU9KhxAr3L1;Jc`=Ysnuo2XA%KYDZ%6Xyh*3PgpsQ%4yxNN*y zM}J_@2_u|Tr-!=OY;7ys(+9ZbU!>eYff88*N%t5}(fSKe#l#9Z$_ik9BD#Ogt~Aws z{AVNIKUTOO-dj&+WXy^vn}<+xD{BgUoI83kZ{-)=O4fQD;5&{cGl{JcH(-0HKQ8rO z_wwA_s;^;4(`lL$JtX}t?>l$siD}n1XR8NObL4FHs!{#1vV@l;?RqMcPZXA_R$&Q6 zJo>?N-;rH%2Qr&k7Ll27KrwfBHhMdkXP)!#lgtIB5OTTa&BTO0ri<|kPVB+(?RcWv z@)$IY28WU7ieRFqu5P;5qi^N8?u6CXwEv8WO{+)=MW>kO+VCUi7HisA-lD4k?&vZo zvu_i%3j3YW{w;BT(1~2!od0PS&%I`5iwIW^3F?P0sMTP_Lq~iE`Vxo<@g6J!2)~j* z5=85=2l%=w>d=_&pF*s{s^#8_Hc4K1#eZ^W*$9ILta)LQ(6}>Av-Zl}8F=KAPD!G! z;MC|z#U7wa<3qFR2=~ccW&8YQ(9-nVK)I<~8O^roTfP}dL%L!VLDQrn%qPS{JzgKK z$N@U6dsbsL6aT6M2;pyCoL!rXo{_UtNYS)wO&r3f&y9927^-qvl$DT$M4w(fW1U4A zR>4Hg?G&v)vq7RwoQbuRe)EUMam9wUUc^XI;OH!4yjJ%~Qe)9;YPrNi%Gf=rzCjl} z&V==eZ!hyVyIFh=zn636;v#xC0Kl!nO}b_i%zKjz$>z|ZzHYj0O_>H9W+#E$V;s3; z;SKx&$A^kr_;9{FYsg{z1+!oK;lou9Pl0V8k;nz-C1P zHdkSGfGhp-5$CY^Yeawx&}ZTwmWUY<$xjI2wn zigy_~K-R*7Wkt;~g@_K<6EDVDyv%<_cAerKsK!JRc}Ur@z8Y*KQ_L}tkFh80PAELk zY7{U^#F#c6k~Um+io)y8Rfo;C#!aR9-TbaxD$HI31`t}x7=oz?Y9&%^<&!!m#|)iP}sK0kn+PPwoi@*R6(~< zHK0iSans%>bB!*W)vyf;;YD}9Ox=zFb1VTW;}M=X5|=ol7#*);TiHYB0n*hZkDfCX zgEMCXz3=ko6#`^itpZQv;p}KITr?5*7>&M_s4rYwLv&%3R4m3b#r`LWKsnq;keYXa zD<%&kXYF)rS4;gSmHv>i7#%&nY9N7=g}BeRTG|_Kmhy=wg*J7rc-g)6?rWUSY&_&L zN_-*e=wm}46pD^iccQi9s$Mtq?JLQF2C~=NOmKWFLTZ+|miznb`d#gn05|OdeV=~% zuEq8K;CPkYS#6q}x7PK9h)hw^(I31J|CN_^!U4>N#2lIoG6r{A`xZ zF3;t9av>+)m14NAV11py+0X~_?mAhDy2K|991J-*lnudswN|`7o)?bv1TP%wz#)%@GO%gLv6>Abv0{BA}EKX=$J{fUh& z-rRCEe=ez$U9~46KiJo%Bcp4fjX_Woe=bj{D9_}>OZzsm7j|DIM2)&OT=`Pee!rtT z9w=C~#|9DLl_g0=@eIL+RAOEK1yCr`|M)mB1+o|Kk)Ecy&)tcD*+$ianAIm8yywLY zx%e;1eHbi-WIY*?uB)A-JQOA9_71K-Hhra#y`w9S8X_6m3318DyX^x7ol@{KlJYXH zv#EL_N>T-R6mrPzafF7REVZr{r|c1byjeAKCX49PFDtvODy2ht50;KZvdaEd;OC>+ zr4b9v!QqvVcAX-Nx;Spz&1j!dWNh7(Al*+lvb0kBtW&t7)!e9=b4M%t!#27-%>)b3;o4wkXcFHLyy}5(U z?xQ89asyi|;nv~Hs?irk_w$fBYQE2w^pNh&>d$vC1rk$|pt~zWmqI1> zBbFL9)w=Y+GDZ3}4Y2!fA0mkrd6)DeS1|CvG1K<0`5GG|PWc1#pq5PvL*IzppNA@= z61;h1zPwADw?AkFP=1$HPd|wcAUo1Ga_Vq`_|VD5OLS&>fW7M10gcGD8friE)+5&VXC>ovTJK5+K`tOj*mRQu+c0t$^ps`9we3X5 z_G2r9vuG(#-vpYGXyaq_FottikjBToprQ=+o+bhsA%hsdd6-L%S=`=fymNrIDPFwa*c=qPRxRUb#F;o1>{P*udJ zlhJO*wj&Vyq9~%0G8PW@cpz*75a;a_T7ELXZan;ahAnAQ@4=a4!zQxaa3_tvK_#6j8|{Kn?$UQbvuY{od^gQv0x`^&Z5e@ z{y2s&gSKjLt-uiH76L3rvUhV3(Z0_Iiy8z$E_;TX=!6v$R-YlRCeHav9Gvk>!H!zd z*%Xht?tTl7Mr!Zd*09AUS!e2;;`U?pU=rx4T0qK9rq**Qo@>_N7_R`=H+s!d*5ZZ( z^Jy}mkH{OFu}ySwXl%WMLQ(zu>cPW%3M+)f$#oY>ruxbJgz#kJewz;$SaXP3^XEb) zo72ATPV4}C&U;={osJW-W+uv@d$@373xyPCK_+}N5th+jV$(vNy|%6wWNWlpnH8!O2tw7Ousu8-=&U6$1>A-U&n?H)R>0bb}Bl+NJzjW*a!BW(j z1EXiN@}~c`$qToXjrRlHoTw3VTMOv9v=)vF?b%oriRKZi6Hw#sq00u5fZqHfdu4A* zHy>?mg@xew-&Fw6MgccM*b9Gzpq3jlX0Z6VO16T*WLD5qREkh?js*Rv;ncrQ@>&>Y z=~bqq_i!g$AC!ue27Dc>S7PFWN`-p1VXh|MI&M7+bsYSJezsJW8B)`qBWlz=SHd@J zgM5L(MdXWN&xd}5mul&FR7@<ahv~BcPU! z{cg0|I4q^2ehoMg#2n&rb;O{RCe@3ztBXkcX);}tTsvYue7`l`UjDB53$XGwke17V@!cI| zq|+9Rs+>j8QzaWR=p3w6ubjk+EC2o}E`fGereK!pit9C9WvN^5vx1r^3~2K`+UHj@p2>-+chna z>avJC-h2B~rr7tfZxc$Q)YfF#|5YC0!st`E{)dO8YLbxgca-gcdJ7G$t+VqNOQna= z$t!_A`XL{Z-F}$)Ir>2ttJYOh!0mYB zx(9#n?g3}T^cBxn!Bk(Gk8wD=7xT|W?6{?y{{-wOD&xr-J6>cD*H%$V{37|lL3)vK z5B7l*)m*mJjgH<`VrK5g(hG=iD=zYa@W0Yn2|K%Gj1sF&-fr;C1cs@}mJpm8N`P`N z@5`#qMO40BZ1E>bMCSkSI{@~Lvwqq?QLeKb{S2T?y8;l z`~=RkZOSa3^Py9mN+ehttp4{8WmjWeaG^acorDTax{a$gvKgx1XGZ!lrA0Xr#pSY> z(+B18y$tY4cJ3x|6IEIZvEr5BQ|^p-6%T&gn(BDE*&zW)Rz?hIVr-old_{`t?tIk z4p9Lirnz+XULoBrAA6+5Qvev4a9NQ1fS#yiX`tEKPx;%rkknob`* zT)c%$Xq&GVjMMnoY&XH{n(Hl(}+WEal^2S+ONf69%Vjk}K~*q;d521!WiH2ESTb zOd}ODK8=h@(ZB4e=_|WoHpbEIe7_{?DV0X9qK$(kw!&Pb8d0n9hHw$rr30AdtM_VM z&gARN88kCvlxA1)ycP!A#H5po!zPk##(W39w`vXL2^>977_M9~I-s2FaOQAWrkwxe zKLb)5uWl!kWWj?pHU&$SgPkIWW&XS}pL3Gd88+2J*(rqenP|k@PsxFor~s37I31WC zQabm&=Hl(mHLK;8`05wnv7I$I(l@<@BvmW1QSvhM=28!$|82a- zvIXEMyOY0yvyxW$C`gFul|3ZIs>vFd$sGNJDA0RX6z;GZ!n>T-eGW4_%NWkLDUfx_ zunF|CgXB^7^%Hqgq!k%|Bc2mXSe=x4FkjKa$Ha>sxGTRp(BCM(I(v*Yk@bAH(Pt=b zu8iBqT(X1$tIRkM-$AjjM zr!I05ZsuC9Sxe}_t9I1m$ z>vNOKc2i2Ah@sBjVect3ta&bL5M67EdnqlEuFj|9FMz416e!fo5Afh+^@5pa4dXxm zaETnDRh>-C%7dTFi?ksL z9N9mk$M(%~t9Z8=@$nH{f)i&nt)dSsv#0=jE86C2Q8P!52YYTH*Uu-L=>KY6y4VY5 zHRUWT#*o0F`aOGd&JoeZop#SHIkVDYA)2$`iseqXCWki!ZS+vW_%O7c_Ji-5HV*w$*cjW`IY~T4BR)v2s1aII`m~)0 zaBWg0@;O@C2^T8V+s9}L-D-|rv0>@^Vq#T8lOLj%-W%R<@--d4GEM4et!xC*16n&g z(+LuRgCID4odlGXZ?8&`71dh@pbt@ zZ=QOOIN&8x21S^$)|MjP^G&F3CHvr&``YBO)J43&OZnChu6~}p^*~^_l3G z9>qbTPPaHKCuN-U3ub7-fY&h5tiN>o0(RO`ifX+K%|If~j?uPuK_Tf}^C4$@_B8!F zJXu@j{^HQvSpcSJ{`YaAJbZqJr7%x z^sOu)jztTqfzWnwlB5-yr@7M2L>5X?WT&~jF zA~Lq?@pppd+vep=!|-t%a+^dIEob2-aLUCXNxjcnSiKn_F{<0~hsAtt+bvk_!zSga zB87rr^pqs!x9EwEI7PXRBA-i8`9K$${udv_foW313GJ3n2ZL3~*IK#Rf4wog#-D!y zUrOh?-&%h)y`Y-$hXsEJIcjG&X*grw9t2vhjlb)@D463Y`?=? zPlf~p%04nOAXX_wH>Bu0%+xZjcDfzW)~ka=HMXHk=bpaFvQY2aVIA9C#pT9H0jJHA z0^fCX5c}bNj`G{u%OpGLDMYZB_1(k6O_=eh-6e9c3#W&zp*>nd&LKPXc7k!(`j; z)qDSnqI)*{*(wrnFXUM%S+H^R@uzDG_0Z&GD}mPTt~YY?;J~a z8Jsbbfgg_THub&jc*{gJAPQVuDC1JqV96jF03dJ@RU3zF)?RyMP@g=NR4EqEuR8N* zKAmwGMeuX-XH1>v z(A1kUS|h<*O&5_KP^rO<U+ zV615k#Vk$fE#M#B_l-jTD|TLlUGx_q_o-f1Y@7cW3U4Q?u%pZ{=vh{mHZe;ex*l#Tf9n2X zFKl7vQ?_E;{MG;M&0fUzIT&GD`R9cWdC{!iUqE5Klf#!FiQtp01#;|q_V{zB;*hN+ zwxKO27EcN|l4w`gVk14n75MG$VkW;|yANAw!p!zqrRG@HeynfJ!G&UJ_34UELznT` zt$~~x_dh?TwS3uAO&aVW%_02Sa4KCMFA0O$wyb!CeiS8_^{50=BVJ>R-eF*s0YkkQAS3oIS2afJ2*2y5U5u^ z2~HUyO+j15RJ1wp`Pn>qa50X*iPJ<8!q$#uGIZ+EosbaAll$mZELMs5G%+4||$c+h$7&l5g9!6eZq&i}yi|L^YQGhE_@=<@_t33bR;7^jAWk_G;IpwHn=-SEL7uq_FoOlpy&b~(tU>b)xzOZb25w>y1Zz+m{``W zr~QeEx)luVQeU8y*N=;ly=6&Ym-t(Am?MvCN|SHu+9^JTyA)8eCF<+tK<@PgJu?v4 zM6)pi^kg3nKPn^aBQf34)Ne&ij<8<6Omu5~Ife20PP_r|06f%f?n3yebFn1Ie zf#_GwO^mc2A^ZJvyqBurt90fuUaCpbGnIjUj@W)t9~*N=ek<+MC*YhI5>kOOj`Lkh zMWo#MzGD%?quciKOCc%Zxo^s-776r&b-zbv z4n+yDWHaM^HeBV+^srQM%VB9r!3D~Vb~H%?^D1DGS$I<`8<~DRUN~u{EptvBR0zNs zZAL$ewT<`AIH;u!3;W+9He1%RWep9hPkxM@otD0UT{o$i8!VZ`Zwboj>0G{axcb&Eo}*n+nhWN7TYpt z(tdna{P3P02YfS#|7n3F(@t%UvE2CpYKonDU_MP`a98l|LmyoUWi>j}Mw1~H_HEiaC1h+j06%sDUv?w`* zGO{I(AC(d78AI7r0cw@ou>k{%f4154;>o-K0#pTUfe|g;*0b+eM}KdpaXfMS1>oAj z!NomneK~J@Z(`{W=n~bUr&*SssY|!cI0!Jx<$ee;olLTKZ?kw`pj;-Sp%SgL8har9 z`qJsa9@WBqC9w7TlgWzKR3@EI{g)5#)OBwP>!WQ{GLn3$SgcAhNsHSY4ZCE&v|ate zdQGlkk9o&q9qIrzBmJ5g)c>dSNmKvq%c944+eN{;1>qrB1BA5D(i~VUU-jc_VaOP< zs4Ok?zNBn)WUX3It>(g{IL1;D)o*>Ja_BBO>+Oc|EANS(RfzrFMcsOc9wH{^X%DW; z^XVH(udU&EH=;oQ}Y#<4FthGQb=+e;s!4q`;;Za^V%>-?fe zHq&R?s6I`3+0$sZRMNj|fmH(UGUhDM-vO&xxS->lN3aFjulA2;iW58gLecLGBQT?v zABLV*?lt2Iah#<*Un#Cj!`W)cg#swf9s6J0zxcK68S$d@e-y{E?K2GO;rO@H&15ah zhv551Md zJ*LO#W10O0qI^^O>WiNi>d-#i2FuTA$Gr8_OicDug@&c|_&Y`?HO?s!2!*+}mZRwP zq)r0S%{o%z28Ln?$kEh_g8pUYxb5mpwIf$xR2(ivs>#$+m9x#nUB0sg!K0 zaeeCo>hl`L>nm+OjFV`>7LH`g2mW#8FHgegUk6g({O~iT?$Ii4`NC6SfoWH=o<~WV z_uBM*8#~*!X>h{R5(JA63!_YZv67z+{$ZuQ74W(*w9_uTb<}*uqhNdyP0ce?0 zm)+8RKK8o-pzwE;w$~p?nnn3GjW!df1LK!{f!!Q*?|Sj!JYLJK87P8z@9S+NwEp*LC=^M$ZOitS&xrQT((>Bb>&1eUdRa4#=y!+V9$*Q;<_!7@3gYO=YWt zo$$s-kG(sV&~oaK0v8L(J}C6Ws2H_|=<*BIYH<1ZwS1@n%_)Q|uMCG|QZ@B6hBqZS98Ccg;`n z^AVqhIxejpdA1pn-7qQ3d;V$is3ef#UfrxbZb=o}m?9+f_AT|V1}TFNR&5B^QB0cW zRVKn*j*tA^?EKaJQ;9w@SM@PkReu2kO^XTWln+=b%%QP*-CRR6pe&hXPuuKoYckF- zFi-%i$O9OvmOaa+uOXt&c@dqIM>gd0d~(@>yAJYS7d1Ct*=sFZ+ZYzmS#fq2T3B{z zFSaL9oB;( zE=P`4_It`bmNXeJ#=))SB0M03W^7xf7{T73mU5lkxTHKN2P`ez!v8rhg!^r(=wBBI zvO-YNc+$i-Z8gb6lm$*v`AdGQ2I9_7JUCIk=OzRX*zM6Y*d5@y6^og=__9Bb%1Hp=YF?{*yt&uX2MIT-q@w8hdZF&6C(B?3FRr zm5H*g@L)bcfYl+$!CV4f&$K{3ZFX`YWFRIhfkn#P08yED{KV^{bomsvuUV4=0<95{ zC@iN`0l#VV$k4$_=0(8PVn^-PWEK zsV}fDu&?)GB<+oL2)$@;|NS&@@<$ClLIl~OaHuyU0 zvQ|#_$6R^W?Mum(1%4H7v?lmnN^A0eDiVgxVuYmIkgj>7cx_BF@hLZshyryoqhSW= z$IK@7>})yI935`euKoGXEOs&!4C#J6M>ha%l2Y%W;>iXDxjub{VA1Te>e^P#fB%C6 zA?4G#aCm6quk1-?zTJ6R0?9)jH4 zx$o{x?zJ%+S&IBWxC1?Wms$2~aJ?P3A-h~7k%hI$f#Ei@F`hC>-WhXiENNY%7(+$I z;m0mINKCTE;&;3=itlm-N!G*|>aHYp`vc$8<4n`FEh-s~)S!(y^qb{Q7b}uOIT2KH z{k8V>m?K$6@iZM_{h@kG89GL!W+H>krfMsLDgknO7OhP%VujZIYyAgx;bGVPn$Loo znSRJlDLh!i)r!i5sspmfF3UFC#|8xo zmLiAi)EmR@PZcfT(sdm=J8#+6yN>sAY{r?!_CsDn;Bpc)(G--$)GC7-#)B{eonNgwhG0Q%xP ztfDuzaQzPer9fK0hnaCAL^sIpaH^vun(q8H@ak)aj_X*=Df~9;_lW-hX!fql!`=?l zd_JZ`Q#HmgWs?Mtr=@QsfT@38pGxS3B(-J|sNRTeosF)aZXmRQB8-0uj8&DuKU%J3 z=9%aG*w0$p=0*I{7vh+W^7~YG5`|o5n~2`9JKn|VF~HP2jX z1}lNj%1#YSV@RI<^)|xpcBqAi`Tc9iJY%d8cW8x=`lgiqS+V?-S8w7g$BNlQ5rXn6 zk7LGb$9!pWTT+M*;fYuEHJV(^)-RObv7R@8P5>->nq;uRa?*0gl1+2|9lzZJLe0vz z=~}n)4WB8+XDh~5J1N>q=60iMHwKK5SD_V{z>KjwSpDJH)a|L1R*pfEy))jk$OQGS2;DH^28-k6PM2?c-x9{#;i)Z?Z>4gu`Fs@ zCEQ11Ym!dv)mbYFE|Y1*fxew;M7vNh0pqx;Zty}2$q*cKfyt*w<+E->jQdcK5*vkQ zB~+H}QyYnvEGx46U?1m5ffNtoCyawqDu*SpMeG(9E(;cmIUIc414Bft26;5bxC*B$ z!0C!|GPuI$C(@H_5-Lpcs}fZJ9StIhWIMMCw9z3rVlsMzLq-{J*c^5=uW%v~g-{D~ z-lCRN$KM0!Dbc_@(mcSta9GuC$;&hJJ?OZ>4X<=aJ%G?1x%@xz$ zz-;F*+{6+=)G+>3R_>iAt41olSm>KP_%Jy;ha(s#x93!2wavp8JHC~t_5erAj1fq5 z_5&Fw*mH{Vld|a{@u;>=*pR3>&nKy?X4T+}b3|VqK2kxf`LAbbl}KdS z(+XCa)SD}gYm_n%z8Gc*`NF{O}lRX@Bc4GcS*gxn)c z3>+36O*_s^;RjCUn=QDuy^;x!&Zn=f43Xdx4?PYmMnWE}rw#z~J7jPv(FayCw7dRb zP7Z0R!8U++^d0JEjD4R6D8+^-zd&oLX)h8)VE8}|dFz_A(kok&kl5&YR%BM|xA&|- z9)mTnrdq=!uClgQVPF%v6uGQaRrWP>J5;(vd}kh&(9JBcz|q@5=FA5LxKL{=!24btm+xc4A;dkiO@NYQQ9w*`?Y6?~ZAw)ESi4v*U0aj+pnStaF~D zDi10}Uo5K4wZ_HhH*&_Upc{86DoD;xY*TV#NTC!_NM%O(RB%`xezoj=AJ=5L@Kux! z`JNzPXZ2O!AIlZx@W3Q0`*FLHM;ZFpplR`{TR|LX1ZuhVAN_i$)RI;cO7}JV;z0w9 z_pJNPj)hp|Mr6NC`G*M^>ASzaJJvkf2II0gnZWMc56ZWVMbw7|%3@H^qN@z!kMORe!MdrI zQ>0GAV=#3j_8gV2a&HgJvHZ>kIROVsuNB1FexYx04kn4g4eCW#J+(m;;?G{x^Atrf z`{};_0I=*Uit**CUk*nR##&`3KaF*kvyD&6y9ecP9osxdsLZ5`4n(^ zkSbNP9od-F(Oaf4m?y3?RbVq_vm+)l+=_@&VaVG69+w9?pMc%>6=YmhK;ax791zWn)ZQze;m0~}NsYG*couC89a!oGgz+P(k z9mMNK&#NzK#bIr#2f41}NVsWjZPY2o+~?|RgNSTUGnQ)aGz+DTZKK%P5uckJbDo~G zt9&L@Z_RS*-KW}K5uAp=AmLQQoTxI{D5FrvsOwbNC^&Jy(xqLP!Q&NDYrA!F11q<;Y962rt&@ep#~G;F5Zo3F zPpRl?Q88rsRO8f|NrM1@AUWy9ARBQ9mmGU$QzFg@*o_A9X_>eO&A4a zi3mQ}H67GTEMv*Inje=NQM%LRKx=qgT8Bt^E$$a=axgoOPob|$vb$DaI^KM#A9QjJ zc%g+OlW^P|fIeo7}^TQa6>{g$<4X zqPV2-t*98k(~C?vET@C-MRa>u_cHcU?0Nh|&RvR-4d-D(_H92GHH#S zrDIaedLF`!z?I}lpfWOrkxx`S6ZEG?ZYCSIqR2X_JRhZ2F}}tO0MB1qQMEqi-~h=v z=}&EiV&EnKasg4u!Ob#hB$76gH!-I`0PpQk1`fzw&RZWYdeo+DA1&Vzp)Jyo$_ii2 z+|F2@r1z}?V)DYLDtSA*8m<*x_r}>CgjJ-B5L*h~zSP(vG>hllHvR&VX9~E=f;|mc z+2#z7EeQ4Cim7lACh$uD*!tA1#>+O-Lh=prVZRYw4wGuI`E#Q*j0p@0u6Iw3S&M;_ zo-DqLDN@EdC}1$gPwl=v%F86pVeB>w;mi;ve8Qo~ih!gG6iZSHas z7C#`{kieY!Q&2l5KyAyxWgR)Ln^W+Hsi#Hui7ea8URjlufcN6DQduKqVs`V?bgX3w zLrEi8$w_F+g7pE$9|Yh&4PUmL2=_Y!?s|byNhtF&6aq&qIvSZwBWRIAyAMi+Q776O zKz3lSv8bA00C_g!wrWNXwTM9J)2HiI!m2o8kCov;IS1bqkP9TKGKfS0H;j_ZIQrIX zw$PFOwpvO2+5G*M$2~xB9qJ62uWF){c>la|Ea@4mvo$bY>YYrd|LZDIjS37;CI=pu?8=2#ipPhg|QO8O*c10-Z zc4$MW`OXmoG_BD^Zt0qIx6^INa=+^vs;9TP_Wb=TFT?tB&ZVXYPqShHlmg8D#s2_= zepT7(5@~u)ny|(dqE+Ehun)d!lwVO28*6x%YO=BJ#N?XJoe^?Z9@WXot7(^4IEW(1 zJH-7ywY;K8^zku}x)G2~Un)Z@T(}BBt}{}&U$!iG!6&V3U2DI*F~tCxzuv`jI=sW} zkj(KkO}hjWk@?YLUZ<&eD(Fq2a(~qpU+ev94-$OZdp9}WFIkh* z5XW^Tgnwo#8+c~j(-qSlXum@@xyuEYaREpe^{e)Fs?apIQYs>yxX&cxkHVr$IdYZtY7xtJ@heDK8*A~!Ek<1j;{cFov5ytSm`qxR|&0J}EuE`($9^hH;Zs@c zj#!$+ymlmtR=L|95l-fQNe7W#eU7hjsOk3RT={`8%zNX%Zpo`_&RY3Nvt89%Z?#BqC4ZN#o zsUGzzI*@iQ2cZ=M&H|DceQG$ar3`*wra8@FYa86Ku6jQh7-fVev=obG7P`$D0P01E{Q`RYe%m+x>^ zqFa2D$S`x%98ds_3ckk4zlJuMLJ7dc+SQM3t@{v<3{gR_@p>&d&hGn*wBZP?LDEj);azap)5i#SQdQ`AmPd&+7 zokA5GcWwv({RLI?1FI{=CRClQhXuLgB=i*0cDp6-p(!V;GJ<=0QBrQ%Pd1#|kpt>Bx;3!9WLY^*S>G0}<=HrCV=wO6+HB+reF@k&D$(>T@iH|XiR00<8bd##;idEs<7wW(@&_nkbx^d%YdWStVBpBjQXCHH0cat zJ^Q}U%blut!S7LRLR7}!?_e|IjpIJw z!&3Q=7~>>oHDJfbBoGf6JkTwf@L5@xKb0$mh+--X7NS_6|tNJ>T2sF%(!XUanV5FeidFjSGOZ) z(AP`g?*nQ+C%a`)TA|w@QBmw zB8?Qa-Mj)>+>^=fJvh!k3hlf-;EfN%F@t4hhJ1Y25`4~o9^Zv0nvrX=qhoBb@;@5t zg(YU0gR1YL=2x+Kk^H?6Uux!O($Z4F*_RxGrv|#6VSdl3T*Dc`ibA9x)AYr2lisSa zSq9&J)xy=Ck47%)%DI)Dw z=eIRR`%H#c^Bsx$RjGFkI--=9%W*S#UvM5hO}t9x8Pe`W$$vxWTk_%Iv2Crc0I?1oZ4Gk&uNO zSP|+6G|_Rm{qvtgUcWKpa+=~+btwM;G;Ar;(b*_+avrz@k)qDX@f#Ba||)g{Hvq9)%nbM(Mkt#zi& zZ*wwlR%LPt2c9^n1TwGQ1fP6YhbL+k zoAQpSkPtu_QrHNMiU+eg1Oqo&CB07DrLt^8Q&ilqgz-N?}myPV@`9X;!6&KRsC zg^C{?C$V_cliUI>OQzhxxT0n!&je?ue^h_?siHN z6(2hjjFNg)TKgF^H^7p(xWU5^xcd9ob*fw#Oa+%JLC!i>XM{93(sr3ph*d(adbT_M zHMK3~pMT;>^p=?xXkuU89ti|zk6zWi70R^+j&ANDm3aAxo(S#iY7Maf6{Y$ClbY7m zlHW|Woi1BuMi7Jdk8BF(ZKP#{%5jj{!O1wT98DDo-E7TO`EStDSQIDRF76Dh z*B1p>ISM+{W7S$&00iv=uVGcn>?`VQ&vzrZP}@j7am7??hI#zQkdOx>IHtvYWMgM{ zX3rcB^vGt8UI-Ze9Ex1MLgkA~!e)#XatB4mYj4hn%iPSdlj_*4Rfs~3Bche`1Nn-- z0|!AQP}{~oyxiitX=xLlr^I&pFN|Y~)onEdGe$UBqB&qa{cA$w#X1GLW-%k2ca4<) z0EKzs^Bm!?xjbP2AJh8MwS*u8Cif??B8sqHW_9y;(@2o~^R!-@!Q=6*7ifz4FGPFnHeNS887ubw&Y~Jix50^N|_2g3JV~(tbW&|3@ zxfv&l)0MdES<@~_G>-I)(FD`ZvB0^Nju2KPqyYj)>=+Q+k!}{5PW6XjcLoLe~ouH=QGrbByph3g9ie ziu7CQmQ6O`yY417#t*e{c98N36;P9D+?5r~tY|=lrg2o|KyQ@ipsjYqFaeBKH0%Y= z^PGXj6rJu~BS@OF%vBZ$d6CC0=~gVE5y$3#3XhjP{Y_M~gt-9y_8D{NJu60H0<25M zdi^T=jzJN3{OmsQuB1w#M^WSs^AD)3>L%=IN$yr# zfC>3`6Tqni(hOs#VNpvOLwd$1VCldNazDbO6KZ~T6(KOF%QS~*AB|;WYqIon9mKZp zrYW}<5fuRyw|B=GtbJQsdl!m0#B9&W#(2-6s$cMs-bfU#o~+$B)8!X2(ZeIS+NwYY zl1*3)qp@OrIjnnIndOa4%Bp+wSB$p}%xM-e!4)|RC@|m9nC>(v)jnuYDicN;i|ZsXbaTfa1Ls?xCo?YzA}4M zi6F-ZKH{F@xU*(v0Hz1hk`)pBfS+vhQ%L}fm1YII;M6+;uGC!PxS$D}YXkRAJt_y0 zR{(*7#{)Ds_jYaV!KfW^!c24MMF2^25J|$nmcRkjbfjpbc;7F#XwS?zs$yBAl*xn) zcs}FauGvI}Dem8Kh%YF8bDRoNVtN&(Lm3OYAaRqpW{Rscw=>Gp1OOA*QB!s}q1!}b$9@|}6 z6&L{Bl#V@WHD4{*GYk#@?M-Es*X1ONWKpu@IUw>uBAtMl)-a)$X>{sw&(f=y=5}M9 zicMOLV<<-88^1K*spXTjfuFrj_5z|@Ew<&1Ge1Jdj=gbDIT5Z@24RuLb59~N$2jER zd(?+Zd0*|fbA6sA7(mO^dkSk-A`=_5Ue!iJdut;Jt@x|DF84?3xx;obv2>kPYz%B zlUPd&Q@E45Nq>el?oaqp7`ZzQyBgjP@a5l&bybEGXzk-Wr<{%udJj^23i=~U(=Bv; zIx8DE_CpZB^(VPL=AiKYfo0*nCMydV!lH7{N6jO5WA9ol;S{m$T~UgTh~=E_R=l_f zyGMQvar&jvgHw)k{3H*4I4kXUsU%WCW=w0A5wAsy?ZmdeIF+MLIZl-g>L>Iwd? zfiuDgB&g4)aRy8WH7j5h_P6`0Ys-9-nl=pMBex1!EQ#ieK z(mg`u%Y{B+{BzA@88-nUfKNpXdexs1Sxs@S+_4AA48Jkx2~k;%1BYe7Rye^ejevWe z=Da$q-)FA}?xNMY7nx!?KQ;&*1}QEcK*fUY$-o=1Y0%~+mPIN8p*zXWSn;3Mp;AEG z8iqLg%~_UB70l_u3BbepkDbtkRf^8#{&~&@`t*Wr)uNc*)lfzg3T%N=o;7@Lfkq%u0bTx?9hjHO8c_fHi$oMCf`u7#TeIb$-$1Hdi;#dyNn?+G~R=-*1TGec&hZxLY>5-1trh&9V+LWI;*+z4o zKML}VM_k=;<-plca8G0OuD`?D#I|xJ%m;A`wSnkI{{UL5F3#-9OHq{|;{p9l$sm9+y`Egr%)~$Q5Y9a2}h@!|yyJyy;*a8F4 ziu9>dPCE5G>{cbI+C2+ej=K+td^I216FQ}=zFdWR1CGB#S@v3nE%wMr#|+=fsyqVP z_{|tm6u_+fD@T9-NMw4BM9xf)V*BFh$%ivD#RW#bJP4PsI-isEu5*wGJ5+_qXS|KNFze3 ztGCe9_VO$aLdJ}(!5z(HM2{fgmG$TRYDb)`W+J@gV2x=YW1yg?$(wEKBn-#(jPMmC@WNBZ|hnjEv*&w;A*l zt#RDtuVP)L6O==Y{{Vgce+tsECNpOWunPKn4xMn>{s4AL?^cJrSihsP_iOH+79jDfsG>LDUbH2#^2UAgNowu=5L5R(NB!FZh zex|ogpec`(A7j#^x6?&{BHR?uUUQn0_u+v&;-*n;+|QMadodlfiU8ZN^VhX<`hBT( zUMr)zTiJnBz)$YxtLb`t*4gu8#ySzsX)C1BP*!@7OJZLc=qo1v$j5M!54-(qurL-J zFXvEPXy)c3tieI=j+Ip8*5O(_>q8>dRyYACB#q2ygqdy&AFW@DMR?#58TVlI+t#K2 z$!k!je&XXeBerW>oQ|CP6w4{OP3H;-$@HxVbzdq^^k&)t+B=dx>oCDT+dp`_Qih5D z0E82Q23M%&qNhYvHMze8kEvbnE~91ykH88)#-_WSU@}3(FspK>lE>b$UhOU8OJ!C8 zbC34h)~(!$bs3U9@rR96IAenB0N{GoE!%S2OL3-qd7LSQTqgkHo+E(|5s*DIRoiW@ zM4u~X7(8=G^O82jg+1AgCfQa-oKAp!%n$aunqifDD`!1I)>KkEoUEA{NM3zNr>r?rNF4PzrYjOSmR9CD6yuc(k@@$g4>&kf zOq_Sf{V9?Lgl0Eo$5O3|th2e5fVjBxI(*Cu{A z2A0&4f(clI$U%?|SGh}DfT?j5>J;Q3FOxz*^#gGPaxx^Wr9M_6zVQU}ML0uhNjsuZ z+jLEz#)>Q)tEw?xd4A3j2LSR<6v$PYP0~4XGnG(ribZK=&Pw18f|0>xR2UfV-mPdG zk|dFY45Y6-XZqCA%8~%ZdBzUftRuu^wgM>UJ?UW^qzIs3ayN0BcIqMV1Pz6V{vcEz$DjQ!j2?eFxjY{*f`0=g;2(J`qjyC7l!th>9O-KzYOWMg9y`Bf?5 zi)LRdpL*!0YwB}PQy8(CijIb{HAuXJ<%|So2kL8P>gqdY`B0pW4Pt5yB+`Q@+QS47 zL0uLyxQTq(Dde-FriDw5(< zmeMtp294CC1Jm)Ws?t+dW|ZoB*I(M&4v&%@9|W*QCA{sM+3=r zZ=4K_`W)9s;eQ5Sc!ubd9!;VgNjnZR+yUIw-W>4!{vp3X8nCri9(35iQRqGE+A(jW z>B$rktZ>A*R8i8kp@-(yTMkm}Rnh!Crucr?MP~@}2*XPJyM0getCBDW=5h4RK%!Yt zJdL+^IH+YRy$(pPMkz-`K?UQ5$wE1=G4YO&nt?4MZd~*0UW0up2v2I}H3^2sI0xF5 zNU19^rqev);ybwFOIYMpg;(V(^6nn>mv?sd2{d81B%_?yS$%4*ccwx}c91`W*AJ*H zk=(LKGqml^d9^9>%gEU~p{sY6g!kj0d{&X2up|wJ9D)xbx#&aBKGh#|^iBdpN!<<(?tm`*Zw3g;Tv5pvyr`oz*Y9)#| zNFOjItAL+$k1Vcp^ENAI6&(nh_ehdcki+}K1Lys6Z(cDWQ}Ci0TMUN({{b(eM&xz00=PHG*Jte-UMtJ8(eO0&o| zq$$YYwlQ8qJu>VONsviynB?>oGeQVCZ>b}Sf*Iv2nL;TZrlm6se2iPyoK&%k$v8d_U|#ja)pT z9%~yNv6||1i>iWo6*B5jo}gD9_KTe0#M$<#yuDDUD`Rnn=t3TIPSPu$2V6B6G1`&! z7_r7HgOgF68*2s}kVP=+b9x`nj#&$y2X-|jCj%6(sR7(qA!BhZ;oIhfKTOt`v|vBu z;fePgR&u)B(k(qv(8Y7R0~syA#Y-gVB<=~wUyx(aS2B~yZb{s72LyW3!>BZ524GE3 zyq=@coANwhe8gkkt6E-I`Lh1(Gm(Yez#jFTCZJdqDV9E!AdcQ>H!FE^_BDLn$ZLkNSk<`a&~sH_f`7FLr(NjeC}G<*sd+S3v8}ba-dFu&<2#A;`gE-3 ztkKNgsaTsZ>Phx%!GJ#Ozr>_}F;!&JC=xLlJBdD&MxQdh`b>&jl_}w=%+OY+hSCeb}%eB$n>i2*BgUINXNZC zE4W`PG2H9a0h3f{PM1aaZ0D~crSlsHBjxp|qmDOr^2-LtMp7y{R#-_KFziXDfV7iB zq_+|;3PuUVJlifoiKApaOB@mHRgw{c>S^g|Zs3x?qHPUEpNBNMq%KtJr! zQLWzS)s+YYblpWO0n99gRHA|Nj(Nr^QE<_m>_#05f&FRM7Jp?QJg81Ga(a7IafM|B zesz9gBDjg3H6d6l=LZ~pDgke{FD<0Q0fFi&?2g5i5ee>cf0Y6zW0wGN%{%BT5N&V* z$X{?9Lk^htq>bc;LK(Ll0l}-G^2J;3?cnyJNOOY{uF^VzicNuBJIKI?U~$M5J1VMu z=05#DT10@UC(cp_zj}lB@uNoLA)7hQY3>D(703!%k4$H!G5poaWGKfR^rGFBdV`;C zqNLdyeA}|evFs{d<16ova-^~bW5yJ7RwB3EBE}GIbA`d@6<%oL--QdfpGwftPnWA% zJ17XZ5$-*(7*?@bqF%?!nz`?jNayamp3tIa9J>T%|zOQ-rzh% zSY&3Wn1)^5!Oc*z*wfrA^4a-CR;yxkdND5v`zywI#uyrGZnJ6Zg#Q4vDqF3STPvmj z1gReNLf%cVxZrK|t4`|VZ0uUJxIhdS3LX~uNFzUi_N+Z;;rh61y%B)!ZJ6=@00BSH z)#BWqd*-z)Z&_3>>~^eb!AnMMN~ECfk0`o|;=*qx>fTr+&H~7!fBNgwwT~{}O0a8n@45^6~9eo&ADXd;Rmq7^|SE7!Bv!O{r=xJWFsT7(gx0`fhJ!;%@ z6mP9$+56M< z#7+oa2S7WYN@#5JIpJvT-)*^>S&z=LbUEZ#ZK3!Uc`b$Ru8n7C+=!3*$w#2{`kL(g zIpFJk4i?sRq(;4eonRcSN4M3z>g|og>zeVBPxUtAcwX7t2n0cNCUaQ8b8TBn&G9j@7~5+n8n`45Rb(shJXb5m?Fu z>g+e*@DEDr7UkO$O)8fo3ZtU^D+bcc?p8(sWA1~=r#<9pHh-G!0G`$BP=~XJDdS>i&pV>biMk?j z$gE4>l3?8{q);$(T=u!PA-@?N#cL*>jLw>OOwN(Md}O9MAqyi-y$!} z+gIBapN!Sp}jS7v67@~M)*7CdoP-%g$gRYLFfPEXY0 zs=KjQRYAzcb6FK)$DRVRj&eOSlTDI03$`{3p1AE%t_tCHsleQEihIgqJqF&H%`1+> zppaY08*u;}VUH%d7??6-S1@LckIuaYMoF!mF6n20jQq-Wkz3K1LkiLAXzr*cP(d{( zbImom9MFe7Sn~tXOmWH&qs-ZwRQ(C%qx_;Sj9l>L4gOk}$KuvPi;f$;1 zF;K@D9R4-CX7R$e5IYp(8`J`DM?4;&{{V$86C1lk9wyTo8~3=0cS9lEO8)=}HHj1w z%-ds)ocbuucK0{>b43_ifHtT@zl`8wmeS_c6olLCMLuF~bN2cywvhdzNdn4$gq{?C zQ(7@gk+MOyLDU-AmJ=e301Ga64xm*hw}$#QmIqgoG5{)i`h!HH%(N<%PFH4AkvZMk zp_1AXo?!t_cnj3lt+GcXWf^{9*F9>b-L}uWoO%xRl9kntiN@NaJ|O8J36^qj0W~!1 zbvN$HDo6)VdQ{qc4JN5>tT+vlKAismO0}n2z2*C=jGzVNW6?%yIZDirXx8N@JlkwY zUC-3r-Vln|9^(hYU zlqI(3BW+e0%8I;%fHKTSt}rVK5Z9RH!^ZCHuJ%(1{#m7L@>e_>NMSayk|XQTWag|H zLS@=Pv=3fsW1UGT31pD=z7wst4F>y2iy@# zON9gzj+`0+JC+vI;iEIEt6;F-*A-Uc86uE`JJr94icq8wUpV^I<$?KwF(=-uOA_zU z&S)pxUwbY_GwDqh>}HGoYcXN8spINu)Ww(--G;>$t1`^uRzgY@Lb=)r9dSr*=(noE ztqR^n_hk7b{{VP;{cAZRk%yO*8~_hqD??7X`#E^7V&7{p!>_;hg%jFE9GegZUZJu& zQD8+P9l9~&(;|wq@Uxw>Ye8B(@xGw~+LOm+orJ0%sG3P0cf}tR6 ztK{rpNC(qA)QHTAM%<51^yyXObw+GA_pwa#3j#OtI*M%pBvM3+C<}v*6fX>Y>Vl1+ zjFj8k)~>9XLRj)S2NhaHc9){#sl^cnIsw7?fzNEy-8U6Og1_wl08>b~R|9#^(x(i# z&g_yop|C4{=~y=654~*Y5?Q9Tr%QUFt&-sks7LVb8T=}fEKHz+0r#smw%1n^MQ?2j zNb)#UMe4-%6;OWi6F#$6RzS)@QZfxxo$;JieK~F+)2-6wcFM7+WX^V+bj>z-4te6c z;;haIGd}V8JmA(H%$Ut>UAj!U$j_}|UB>E8D?&=^bP3wtl}V)*x`Iib4;0&iK_@t> zms5$YSdaCQV4rd8O*?2yFTmKjxPi~e9LNv0Gg<8WVRAdv4|vYxMt)-+);@s$0QIv~ z<+~ChDg%#x;8RY((`EA^Duj0xYT3@wS@ECUN1sZ)YNU(~v^AhD%^S&rSe7RT73a5? z627eK31Z5jPT)#|*Ek(|*H7XNNp0<9fm|DeO~EiuJq>c!+H{gkWR~)5wEF_!zmx4Qv4_GD*F1lo1vXWR+CM2vJGVbO6Q9pC z>us}1x>%$*JY%I*#ICh3*+C3SH#lSHyqeawNp5bTjaSPBz(psis&PCBpeo9z{gta$ zOk%u_aE=O}l*n>P`c)uG@<`}BL#aHneVR5bu?!RHYF`S06{W<7?=xbvlF^>lTZwWv z91Qm~?KbS%hk^3B=9R3ER{rlQHT5?V+shd0MRO9!A%rMBt5W*s_k16{T+X9&v>Y1X z#LJ;j(?W)$ch{QcZsjeKOfDwKf3CIL-?^bmUS}iIu6kt8uj3OR`-1}F3DLzGW3ACNgjO(`c z*HKwT2s6xnP){l`)c*j5b64Icmez0*ILO*vf!)(MQIXvB=CW+!)DCaeq{~0gIAAlL z2*LEuIH>JaZ*?&%=gBT*VecymN1>lgaQ8CJ>X(6)PhYiP?IwJ&2QyC>^PD#=`Bt%Ahhta$duE0EM}=eE@5FB7Ke8JBRzMtX|$ zdwe!H8TA!z5TlF;FFYn7Ga4y}lraUCm4-t7d$ zuLC}{TUXGZNxDadc4dBtZV%AZad~maCQybW?_;U0BZyIav(cH)4&=F^sx~ClRAE8M z$4bT3=Qj#t4T8fJ8VO>|n>P|T=Aw#3lJy$pNlq*8Xa z{{Z$#%{EEElVok2^$es^yG4RQ#~!tlO+8H$xY0U!M9CVX6OY}K)A6V-0V8~DS}fsD zJ$(%%j2K{YG1MHIjU;r2RKePL#yH6T049V4bI#j=$T;(gv&TBg2KBpD0 zBK);Nb;vZ+1191zCA%RVRD<~%;~YE^yiPe&gI&Di3P-X2Rm$rY`!77j=))(T^fIFQ z6u0m&Nc?L2G8aG#e(($iJ;$M}^<1g#S8T=<x>Q9!02gQBgS|;YbeR1M;oF$eMbIBO|xIbfrigEMftJmyA`pcXcu9; z>uc*^RPt6_gZfr0+r}ds69f)`=BBZ{Z8AbpO9PF{D@9SYp_`_5m-FflfE5!iZtYbSf$+LW~A zV%y7Sa|=x>d3UhJ*eW=2idiJK()1rHE#7RPG^~1-?7xRvt8W2^Q;lRlx{wv!^{90q z(@FDzZ>6*f-l2Gg(8dutYy|3a$<0_TF$%?Z82SNHPjhRx%Z;2#>JyB5 zb*eslu=2#Ex#^tdwMnz0|Mk%Q3ns~%htlxJ}6 zf4fwyi8O5GNM%_TJ>^CQ;l_PxdG2JmA*9>8w$X})BmqVUOpXRKnwmJ-IXPpR&uxMc zQC3A+WAiYKi^%1h{PRM`2@c^)7{*%%01lO5?MWo$gXvdvs}CuiCS9@2yIY+7C{MX; zr)_ePN0m}XQZtX%tm+zyM+8yn_TjGIYcsgqs69Q+LnXOaF{}kh;B@AlmXAyCAPz4#fckVGGqiwr$@&%H=Ekgt=I?M3bd zHiAM(KnOnczhz`ojO6v^thgocBM38`3Xlz>1Ypxbu~0*dZsQ~Hr|ePHo7fKZV2#8B z%_)y+k_gQ(Ad)1Nva#bFas?FOp1^%*qT;d5Y1ZqgNb##}bpYcXsJ_z;w5*DOnD7|) z{3I;A0uC^9 z{{ZTyym?}P23-C$EHR^o1CE3NRdHCjmfmDVx2SJIDz+Xn$m#AIv8&NC3w0RJJdsdH zswLh^Z37Cq&px%9Wf12hovNSSENZ|C`&JMcvxDi}>x4cO=)j{4($x=?J>crkJ~tKXD6nh#u$tqCYC({uTHN zeQQ{c#9DycVGHh!4@q2f1K1k+6SZ{0901NhF~7Q)PIu6&Z~=3M8T2)ebj4VP0E*VX zMJgDMdSq4w+q8M-aO;CzG1%pn=55rabF||%k8yuI1m-g$dSYa=`ZdoYh2gVnyZp=krpF7hzFg;23&ATdJ3R*}AzEO~I1$8*rs z7R?ZZ$`p)KF11v)MUK{0^O?4n+E^#Aws`59r+27g-NVMp(k=l9kURPu)?tzEQDaoZ zDfbk1{{RZEb+J5+>MXHOe|P5@-NzXvMhPE!F;I2Kn zuBI3vnlR`iaC#LW=kcVq*cxkbp%q8o1O5bRYY?XS4hsR!O;?&Y;yKs{``s$loH8wh zw`sNCb`)oz9+g)eINnIqzr2wxHpD`a(>2P=e|2wojXdol6Y~nP+N8~p@vd{*n$EqR z-c{N{tf!osO`eS>skM1=wQ-z`WMJ1Zs9bI&X0BXGPJ(KI5?|Ter4H=O`C`q?VEWZ#t7_sfsT1NAoQkMi(4HmB#5%lCNO}B2vOW)8RsVh zprn%2M-muA2;U7Xag&lc!w!Uu0zm8B*Lqga+f7W&E>`0d2aZL zSm6M`{Do?foSm6+{{UFHzEy!(h*SVb<9Y5)HqsF6xvJ2`$2F;Dn8!d*=qpI0o^oca zF{+@z7#-?(*;Mrad-tmO;ZZl^*i#lr{?^fRlmi2IL5jPWaSa<#5fC*YQ??TNSaLaz|8__t%4{g>w=pX63R+YSdfZ>Qzoz zmm?LOl~vy<+{cw(=Zf=j$tfm!I5|F6p2TS${9tf+=9x8?_1wv~C#xJ_(nG2xvKEpt zlfv#8#Vop+X+S}_G0Q+BYG?qz+M56&e! z532x0Lvev1NdDde)7D4i0OX)8M(%bs=wdq{lJ9eEghut^91|1_A6Vc*^MKlx)f5=xT)3 zVWtFNpPSONr<`Qf5n{F00-EIYiGy9NYtk{#x$j*K?Z_#C)Yl_%xvr$^jooRzf-6!) z0nZrXv|@y;S;lkgRBd5%Fe4>M@5AL1$*?QWGxiBe9ymH-dV zmF@>&6}7zRvz9GxqdzZS!nyrNP_%~HTSoJCmnR^C$_ejU7ctAHczWI;6S~MUcARcv zGsm@a*VgQjgCIay{{X5{)9PyClhl^(n<19bZQ3~_x${xR<$PfM2%^!Uj^UJz#K#^n2x4e-=Cvndt4nI1Pbm0--glu*LB+^A7 zPq+e}xF)6ZSM{3t|Glg&CdjAjWL)g(Mf26nYp zp5EyRh;DT~U3wAqr6{)UhNP`xXzvz4RS>Yr%Nm*`V&CflQawpyI2n9lU$=t z;j}2+2*z*?HH2m?@9J@Z+|;jbvcwe>f$G%9h{Fg)O~4-Q%||n3SrKiF0g!)MD$>ZT zK5eQ;Z%Qh)5ydB#!~vBa;}o+=BvCW+c;lWZNuyTSj7cBfrILNoJYGr`1F0N}+o_qI z=k1g;;r?v0hQ}VptS-spCu1QDNM5`ekA*qe$r!;D_>8UhfK(g`p$}4H7}$<8)0%v0 zr#bmYp{N%uTWq~ODnuJt7v4{>rD2Z@+h2m&04OK*sM>EO9Rfz|P6qs*J!<5U0;?k6 znLO7=r04@y)O6h@)Ds+%?RPliJx{&> z{VN46X8S_9kcW(XyB~%6iuL~hgW6}>FRyiJj_)NzQJi3IZ@hlE1M{tE>mp{-jn7%r ztS$7dItv>_2?Pic6nYA<#N&!%Nsa|G%&xSKONlgOp)5;r(z)B{Tmn}mYkuID+Zy-f zx$Rk(*6fSEHr%=8Odwb|hVg9Y;#dxQHH6 z)Q_!Ig618?-k`?~axwnO0a+T7t3nz{43D^DCpEWngfSTWDajjJ+`xIyV!C80N0 z7Qvucfnm4THEHz-hszRgKDC7lt3D-XAa?Cq(8*~UkKQW%Y6{q4ic877$@0hO00Y=n zsO?fW01hcmp=lcAGd?{O);6i)R*E(-!?X_UXweSMn|Igtnq8|;Jc@{;^Y#_MYB%!h zcYbp#EGz!45A#0tL`i$EUwQXV%!+++rt)O0mGr(iuXSr?P_0M|Smle#*jlU8SSqIi{c>61>lMO(Kx zQonWo0KofKZ>h4_!5jeXLGlcKmFE8d3vE2#5}Uac5gbfYBfkS9^RG(RBU$aw0F~yw zDspp;*~00@5_UN|+5D$tx8?pJj+KRTbq&s?3Z_BG1QG9BQmnG}# zliScyQ)5bdmv8P#as^{Z#fhg~&P0S0&sv5s@}HD}^{+O4jgug_8)GK1+6Q+fSOz?o zM#oR(T`1Gph+`?p^yyXZA)YRLsN8z(=C-34uDXhP?qRGAxDP3IuPBJbfJq(4PWkrj zT6R*ram{cPHRPOcU;s~3@9pdWs@kQ`*|hm2cL~M4dYdT|Cqz^Mh89)RKk&mTx zNi=fHm27HRz=j97mG`&@EuO--MNFN*XFcnxy3{OS(PfU(DCeGdJbf#gLBSrC zbkpi#Hc1-ff%;aRvS%EALbGFF0=F3kucg3@lDOm6wnh@UeaM7)yqt4_YZhCw`h(1j zP&{FQ^sB9?z`&~#q>hK2{VP5TCU4%)fP{Ri#~gOgdRy!$t8O+UEcZ((;5j%L>MGsT zf*8`>PI=tlT1K8Ld`N^mzjS4I1JDlDpERYVCpqGa*sEQdwpT3kjD6J=C4$LyBat4! zNnp>P(xTE(D&_O@Fyq><-cNBpu_TsL03#t&jDT^CxE*Vg7ph3=!lkJ#)tq-x1(0Nn z5KcmY)bUaaJ80$>(m;0tcM#o9JqK#fTYHpz%{Q4VpWZIsiIbC_!`ikLq?$O|ADU>u zMpj;3as0=vdCfTKbElh@R%LtTfJ+DN$wo|Lq1*WMsC?UODo1G}9s7qMt8>UB8Ku?l zWdRmFk&udT2JOckK7y&++(_z7gL{wwIU@(&s+wvy2>G1`p{%^|h?7rm+ zR&2K@xMp*=IARAu>OE=^B+r1%0sEzi_o*!GEr@oxW*qa;hx4kv^<`r>708BGZ}x~ge_GCIwPRXxQIc;|YeuyayTd z_NkRr)sa!BZAxixJkT20XAFup^O*iaj+3=PmND%*;6C^#j(nW%6xd4dyQAB<;p> zPx7p(8E%FS0;_ahn4;oHf=!C##t2+vuO^VA`C+s2vB%b~CA> z+`8G`qmb)a}>`EkdSvq41gX(9@Qx_ z#|*9Hu~}j`!A)L|O9L3_-zROVDJYG|Q<7-uBFL0x-(w)EXN}xrj8eGfap0kmj7R zC~ui~?nht3rAJF-W`sKKUOr>Vr+ckMVg<6gY%)Bt4(B+};a0q+g3+zo;E>#dA?`ba zRV}YCl^9F1WIaTjj=!B=lI|9XR@&Yu*|@_-4nM|=_776C#DL&T9~j{WU&f|uc=m&a zW%Tb*#xa8A92^sz@m3MSEJ3!;qRmg-&00SrAtwHvf&lnj7rb!~$ zGBfW|)xi^=DmdBLoDX`WF5|e#8^$rYNX9ACvb!r};eGh3qEz!pR>?o5G=|wSLoC_Y zs)`N)IOd9JV0jV@_r(-g?>#UEK|Yuy{&mxb zT+P_Rw7F8b>2Bq-j-#li8H91OzeO3S+%pi!bKmPxTsWKvF@k<(KaXnbvB)L7s0SG9TSSR>IJa3H@_te1D$Fs)t5s&7<{%njxnckv zYc`RpY_WGbD&TY-s~&4_wF4~NL=R6|y2~0yXS$FoD9Op)xOQ~=VHHkABW)Y|* zk4n3DHb<|Z^{q`0MLGLK>NhuUPipF;O*eP3$%wDWthX-sQvPiM?Jf)rD(omgI3N-a z(DbiBU0NIH-QjTA9HHtfmHRTP?Z+LeF$+fGL@ca25OH16OQGkg@=xB>lJeevK1YS- zj~|Gvb7^w~{(H!;kaO$JYusN<*36R2wD!Vhb#vExtFH{>=mGv!GqT+5r&cmr6mD+R zTsprEp7cj}Bj`b<*=cwB#rn^1zD1DFQS&gzUuuH$O1QNp;eR$U+qkY7)9Q_5RU3Bq zf!LFN2)Df5r)-AMbwIbI%CmyQ`l#!#6Ib3x7MQ~T%9@MnC z37XxSG5-K96OsP_)~{xX(UcHJH6ucg)B{>VyIYymqZw*=QZNMP@Tn2{^Io%m;Y}}4 z$$Mp1Kg6FY{VSHg_<1t!Ya5W*=#mfWE2=n%vyxbOBaYw3GmKT;KE_MwJjqFp)lV(c zcd)I^KfyDsQcZu$s5@Xza!0BE01C5lXCzjWDYRsaDd?meRMx7}w0ea)U0KWB%!c*+ zpt}@oL5=_v#93xI$>~+%B%EUh(AA@Gw$YLNRnY}#ob$VS5nOGE1nS*smhpM5lhUJz zH1cj>PET6Yw}?i&K;x}7s}#M|T8&jx9R3|^M%GIkdvO*KSe>p&+q*TKfV%(#Wak@t z)8(^?taBr6eyXnA4|D5WxW=xL(}Yizv5z&hZp#~jgyRZvpXzH~-5$v!X$~b}krz4I zd!J9nv21N^Q&F^OI&S%}K3w)6onCDHrdO5En$Azn+~=vTDwcX1^4~(K7 zU7a{nRFV}`4;FT9%NG88RqesHh0rR7jSq?Os+Bx zaC-g~r3CrBh^-{ona{K_xo#<8)CqWswd=Firapj7)iNX%c8o~PENiqSAP zWl83yX5S+DDq9^%9jU~lFemTzB~MSS8-sQkS+wFV@%{^9>0gBF6AnDX7zZLv$zlM{Qry(+r~ui|9PT-&WHY8Q5)uwsiN*y`6_c5pcbHTR4lo61 zsB37Hx@<<|A6kWhc*mNB2|vO*esyUrB)d#5=TX2ccwfery#RW++AuRn@XIPT*xSqK zTcE2OZ0$ms7|$T%V(_&D_j62kN;bp?%7}0Wv8%PWCgTJt0SUY?#tzQZ1v{9=q~rU? zkyU*4hXEA>dVgATTm}jq*tRKX1&oC|nZslFSC7`8pEqXJNLXZ?5=&>Mew9Wx+?WKO z_&?UBS$42EP`v>ZToF8RDv`a6kJEDsRt_?;@K10$QYFlA&%PO5*&F3OaD8fDv`*|? z5J5jN+erq)>u%%_vbHDQ|y2GhLr&lMQn&4iF(duJ5F;ws}fQ~1$J zsfKOXW1gq~0IfwU1x3po3b^i5 zzx1li%&UTg6+O;>m1@xmlZD=!PZ{ZsYAL1i*_r2mG%nHsJ4ge+tu$&27ThiYH1jpR z)PFMt$j?1R8im9%l}*KpgVcgJAB|Cu<}Bo^VYnyKt2W;>#AIU_Is4ondegIp1YF2p zV-CmOovaDnmOjtspm4;f;~jbQ6)P;U!=Rn!i-^k{py}0 zY5rK6K^fYl@saC_hM3DR?GcCSASrlcIWAzo=HPsxH=h2>! zcc3E$!2HEN23b{-K5@w%4Psk(t4O|e34034dIH$b;A>GP9%zvm2RvkVse2kC4M8n% z7{cNEkOg!1Z5ahZPJX%n0OG5vye?Dsu}72Ljz3!F?^NXMg-`pkgZ#xx8O~h3!^X&c z*noej{cASvWwx`HVh+^=mOK_dfPal?-WiiWxd3{!xF3)Lxjz)@UuM!Jb|Ho~k_G_J zrEMJ*%;m0!I@dXFc&hh$<))n<&ike980u@2z1QWFDQ-57?0VL9yi#0FKJ&=O80tx^ zT)P|co094`y4}L7=V5FlOVdBryR9or`vr=t{qxIxX`U7Ezt|xccZvJl;@nV;Hz?idx_hIWn z1Q(+2+z8U-mh!;hA5mCqA;((kgszV|tvfq2W(O+!lkWk>X;o)wU4T%aB#K z33m)eFaq_>TU(i=;iD*h&syZgd}mG>S^_P!#59|*2PA`m`qqWS0`-K^UBe8MMx==b z-bV)qpy}V%sF~U_95R#d$fvZjPj22}EZ~Bp7|8GaE0)chGJQe`QraTxw&EwjVb#~F zup_PrJw2+D$1|hKKpo2yl6|vL`Ju3)H_71bJ%0+b0aczbC2&=;Li8V6TCE0`a-!!e z<`Ou-=dZn3C6S2(IqGqaDp{qPXChXPMN!urkN&+7BdP+?fE%U{T6ZeLRTLe?RZl>} z8Lf*8C7ub0bP_}ZV2%$I+bcx4$~0@2=;}Z#_;;-{7}Km{NtuB^AYj`^uP3mnWh7LG zOP1k`(NAt&6tIa~EDkvOn#_&_FqCq~t_C~$)`7p8IUvuFp}A14xVOG))~q9Yqa z4xqB*?=k8?&lD@Lb~6z?v;+WDecwS==ZyrByT}!Y;Dh}tHIWqUVh9+=2d+ITR!bRd z$yX-n31V}R)21qH?gL3KSb3NusjHfO%ZrsP+=0g&W7@KUd2G$R4cy}x#Ym#+SWCmz zc@NMptvJh;S0Z+3?d-3LvrFf04sdb@AAqZR{88Uorr7aw69yz4hFNBP>t=gN(OQf5M`U z_DLkjXxE`+KX=pWYBjfw6JSBPk9wLo1bl zWW9Z2;wZ@7y~ByQ^NtGRlU{c4rYsctSpe6kX_ z`3P;hdgs%x=~S-n^%H3$Td+heN4;qse8xc$AH*<7_NvlEizu~@e5qZ`pncQMRG-SFT|PW1-@5>TlhUU^)UYq& zV9Oeffa4%wnw3jRh5VKZ4 zuRPP2V*tfjhus4Pq-1rp^PM;h0;X^nnwl{nRSO#A{pK&9%9xPY$=QWM0PT#@7)y|k z8OD11Rn>J2%tK1VfzTc@X$GXBobKlXZ*T#r{NX4O$cX13cqR|#KdnU?6vzZ|-HtI+A!Tjb zSFS=ge1N+=$uIeV!hFOh8GSIP4ki5s!#Ju4zh`6u8N zLZc1-6%3GX0!9TuINUo@EM8tVvbwiCS4v36>~v1<*e{L`QNX7N%#gOy-!D~BkJg^i z0=tn(Z1O5tp_PF7cEmdEIVAd0Y-ol%MT#Yzj&s{NHEKpxRAC&CBV*RMy3sHu-?sG6pIoeal6wUEFR=XV6>rbI${sb4fbP zf-#+|&;J0fvj&T08d;VUP|U}i^P1Mte8kmO#iKi91UmNGc+GQGkZMz1JKD3mUq6GgkWy*iEM%b8gUMu(_V>sL;2gqJfWq#U5qMwB{z{1(x`7t2WgKm+c|asCv^ z?d|;8UU174N?4~t$DW*XkLy#zbSMY>G>hR?nsEwFxyH2GZ(SL;29FlBXCX zb69uQ_U>4)WggDQB#n$USn0_6by7VY@f&ava$D5GVuw~}V;SZrVM zuQ1j1%gt9&iSDHNH;hKSD*hDxygn7E{;g8n&qEr=K$hZkj1uL#DvXkA)BHE!`)v~0 zWtCQ2!ZOZ(huBr04{1=?TCLRRqGuTy>IeAN<;U$I}=Q+XXIX_Cm!kLR>0G^eneJGC5x%s4#wxazj zHWl6tmZb6@+wf- z%bmT>D&Uwjc$5Qy!!1omdm2$zxtXuu3oR+|e|azN)O~vXmCRdQF43Mb zQTUToH`=IzGyAAAzgF*A@w;c!9<)->b#*$pZb1VzWoBRUE1QDg^arO}yA9J3$K4(4 zbdF}3zLO^h7^^W%D+O*y{{ZWnu$L!2X*4wKZ;klf6opT+k#zifRKN4M}sv_uo&FG|bQa{G9 z6!HdZTg04RLb&N3e^XfroYv8bj)y$v=kGIG#msTB1B2I&)qY}z6(j~`8O3I*x7oo{ zj(YwTeIpXt$js=bJQ&6fPpGbJO83q1@7x(Rs6JRm9$6VV86uv@P=^fb#tUaT_NGKa zuIFU{bOMrTeAgg2+^4Y4J?odL(YhZRdN&001FcCKqMo8O^dq0vs;sRK&m83X;B}`( zBl%>;7`EU$QfZAB1Zs_#)lPaUwh8*vcElU^hvo;iX%`A&B0c-F&wu{4T#82J$^rn- z0Ms(HCW#gxN=U%%!70Ojbl4-@+)U1;vUmL7&YDHU(Wwc5eW?SYx!sfg&U<|`Q>Ygr zg4xWUC|AZZ02%y0!jj=cNLf*z2O)!WIqrWdi_R>BfwTL$7^o$ZQcIJyit<+?np%Nv zOa|GSWM!4eDDE;F9Y_BFUZ9N_?|BBqY>~9{_*0Wtyn@xD7i6LiVUc*nEHlG*gK-?n zf4mOi^v9>;RLNQuxoA}jF<+-zl$lIn42)uI0J*@;YQt!D69X)~ebwvv9%_pz4Tq07 zJs4y3qzxyz4XYHokg0WL;J+9L`q8Rd%=o&FUz4uI86@JY>{%CK$X9GW7oe)wGM7Ub zQh}X`>Bpe_s7m^iG~3XeYAYv&o)XHJF-8g@=tg>dYc>ms-ZEWOVB?11`;OhJ8DxXX zNTCJ57$rIyY*z2(XAA)6gVfd8Bq+wl#pJO^Di~fd5#$9V^!2EtmFIE`6o~!i#(ykT z1%;Fiq>Q&2=Z^eVgfVhLfUAzZb5pTv%$v+*U?AF90&>8N3S@CiU7L3Id~YCQX!fR% zoBmKsfz;KfypbUb1RmL90HtDrI3#Dnj4y2Us|MR(JoM)k1WxLtyoz1E_BwtPvfR2x zK3p$yX#n;NG{niV>{Aujr2~|;%(Tb6ZEDKGH)V7see8Gw9Ru%#V zPC4(4P`74DSi-8`?Tqt}Ow>zpaP9|`&T-2e06l0J_J?jx54cb{ry{v5B0zTi?s|P` z5^0_`^CAd307i598j03?%}Zb)RTjsttXbCunr58oM)vtNF036l6vhK zql}o)5J>Mp5Q}nh5x_0gv64TPOxDXBWlO6O)rlE2vS36G}W z%M$RJVm|W`)9FonnM8Zy1op-{)XfN!IVT?6AI_eTD)Y!tcoYSUwYIsGZ;`eW&@&wV zlvcTk*yKn@&{04fFWQhOU7OLzOmwKpk0hd$Bc^-Po6C(t0u+uh$6uvB2EhvITpoZ7 zpTJi^ive#rfhHM9-#9ts)6z$dIFTANla4{i9=H{$ZKhn@0HzTdj*R>OKc#5Jr`TCd zvgTl}%2+XQ0rulHE=45HTzS83CPisW3<6hZADvmZ2#CQ>?oLAF^YyNtN&Gou8oL#` zxg!A-k^uD2H5vt+yG3NM{{V9dfzPQY^`zawD;P;8!;iYX#wx#>y?m z{{U1+kRBnoQsfU!+yO|EX&@F6-ZJNJ`oJ;yii;F!={o(couf+>>Olk;)d0(S=C6%X zOY1_~e3+5&6fpaz+5@Bt?7?@aPEn;J7S_lV5$V9J z-32*ZZm%lTv1??%WmKNw9#sDTS>@y9KJ@0(tTFQ|H`TbRT2n-~dt-~sNyBViq0D z{{Sl4)TP|aig^{s{5iL2bqz;VobHl1f+;}LsctF4Ut zxjFZ&Yl(W2YW3u(q>_0(1!G*goJX9VrxYcqGD$6d(QK_5+c3!ihYUIC{{YskwBH-z zRUq<7>OcC`Y|ey7^D`=NLY!itYtrmS&oGb=99Lv3rK3lkQj2Z0&VxzFLxI$0v_znA zyq@*V*j&CyK+BVc$0IoDkMON)Sv={M7AiUdSGoTH_18`AakO4ZNd>_mQ$F33fO2zG zH9bZ+hm#THb@r-O-ejQ5kf=JjJPKkrTHu(=PDXz|V#bw;;USw-;26idj(h-8k z`U-)rj~kEDvy_rGj9WHfK4hR1z~s_ucS6F#X%OYHgaG%f>rFyGwzaU733?EHdhu2@ zMDuOIX50wFDIE=F<#uY7k-}pvOE4@>NzXMjY{QMm9`$Qd(WQ$LM~OJ(En|Ypcq9>3 z840VJ$tew<4tnHOg_|3CVNO5>u>`UY;x#JHZqq&g*C3B9Lt5Y*{&W;Cf5?G9kqhaXy>Gl5r z8qc%S+G&W|a-5pQR9DpLRNK)SdUl%k_L9bqq1S5<*NTAK+}cjj$(6@rT^5AUTf|~a zbJU92xwL}nBfWXY45yW>>aS?-jp@O{HfIgwiHIa`^%TXk940x*!NKF}PkAowu9^pV zLxv#dIHhUl1mg$>u2x2N~zmq}_1QnT)co z@Ak5+KOXdgS4U(gpusHUj=cUfS&2PMG1*)dRy&Hx$lsp19OJcaM{KDVl;3sNrg7i= zipaIvbpRRiN6H>Ha+zi(aI)9M92ykf;j&GIjZI{D>mdI zv-gR|6(IpyOgS5v6OU?&Sy|AtXL^J9iWa3NJjAjn$<7GI>U57BK}%yD&!ty|$iz@(rWz zoZx;#rE5*5+QnqE-QCDs;O_$?9>TJL0_>?*A(U-y?5ETUsVgf9U79Kc>9|UTeU2$3 zym$E?eXq(JC!2|DS z1W+bxi!?A!jD=>57vm%m^s0*?+5WF_#~3xH*Bj%o)K_pHc3cc}?~eRcJxbLrw@i`< z)}v3T@gHZIR2pxCL1B{{RXkw{Mx2FbM?b9Gp-jon=&pARQT zRZE}rNxZ9p4hK0{!TEi-q38(Z<2baCb3BjoK44hN@EQOs4e)So_7TcRRRKJFW@v7kGMu`3{abXsyb zSb)w-uVa#N*Pfj-#W9RZ3(GRZPB@hEJ*utPN=Q7#1E3=vSDf=m%oyNqQ`aYok@g>( zY-<|h1b6oofqcegVx%T9&T~>y6Jcf!%tUHB_B9|QcONi4!Q!K3EchXrM^TIq&ZQXJ zy8wPPTr3T_OJoC{dech=zzE^9gZ}{Qr%5n~VVQo0qG`s)lar1H4m0@E80iSzf`^~d zoP4}IONm*;L1P>#JxKMby8~7ruMiE9>)MgSk^7(t z9=)n0Wk3TfaqH_=(1u_>QT6Rk;8C|(t${L=Gda#P_h_lEb_XBnHi`cLT{j&5AW>Cu zSmgf6ra?K6Y?BglU7Pd(R)iNOJD)1kN@=7~kDOo+!jPMNIo2O3ZYME^D;UE4Nj%kg z^*go!yw*&d`EZ@Q{YP5TQjP4%QFgj4-e1Xrx7w1S&JDeq41wrdwNo;qp$l%s26pe4 zpT~;MA(~8iWu_hE+W0JY&+ebuClv+GJ0>saOSd4C~z}$oYa5&F?_2=3Z{k@5J zu8^1{TozH5Lyico>y2i6Ijr>EJS>7xl02@PS<8Bi@y08zjqY<-O2+VomRv~4gZ-Mg zk)Z&nEJt%ynknPKm3ERlnzaKAVZTb zBXpVR;3cbx%3dh|^#|IytJK3B*I9VE2Y@RXH0gCsP8&D}&ns=tKIraGupHMVCuVvz z72gM8jgbN=yVYb?kSuW~?408{#yAy4?x*2 zhi1ktD{ykS13sR$dObQVJ`0DOtg|C<4@KiY=jm9GNYmaK9kO?m_>skR)25Z1I4V?c zLw`k6d*k!wu(Z47f( zZg0tTW3g*!t#tVx$_)LF917&Gba`&sr;aeB_8se>8nwLe?{@OvKQgyZYDBt82yMxZ z=XY8Z`xDB}DCze~?4M_LW$T5_AhNhT3wb`9O?DDpMGTTiCW|eMoS7&gRtv$s0zb;AWW2>(1)2f2hlUAl^2{zjbPv9D|;OQ|DvkT}dOEOscXk z%1#Rk(P>`Q50Iz{{v*k(u$#dhz0EpFPu<2i!1bfrNE9LyTu(pVk((cdUDEYQt@CXw z;u$#4ai4n5T;Tm_#d;iZQrjxX?rn)!%18q#><0u>EN#*o=T$$ukx5@s?N~ZyyCtFs zr&ADlEaL2Z{Wct*%AKTmg57md5ZtiK@|hcfpL#i(X3AG~WsecU66Ps!wb^h_O!^w2 z&21E8C8l=hsz04=Yf;CjX)Pj28_j0N13!6l+t-TZz*$v@B)@&t6SH?BaFUgY#PT$t zGQ<=gmNn-G){!HKsA2Ly`$H<t^P0Kb0^G3Rn$AweMka(f4z3&=FYpct z?fk0zq#xa~?j!@j$4+Z9-asXX3=RRwUNKq><8!zGwsrzI!K`Fmv?|Xa17a~Qc`Mvz zs_dPZ?K{fzjO6}ZY8&_6BTSACc-mV83{^-#c>`|p-0{0406hh17^H~TV{ZOt`!AMx zV4*@0g+M>Xv6e>w{^tXMfyXs!1Vl3KblwpV`p;m zUP{)&0V^YvRU`rkUvKfKCw;O9K*mGHIO*+Cd2ZwnnOJnsa6hFq&#{$Q>qo zR9QVPG}?Et*(PaU%Z(J31cuxKkH)TENoOP}6iRo1yWKh-20+Jtywm^(iB%nV``F_m zqggz%K}6&b2nPf4t9E-Jb8>f)8sTMQx%oI8=M^LlVVS(A%8m;5VejotRr@rAIV{CV z9)RPDLR{|2Pn#JFoDL{tmn4cgV*5pqEQ|iJ4<$aHqN_`A+Ygqfry%sDx4L^tL!xp< z19S)Q?^ol3*7!8BAr}ZTU{=6CPw=J#wENXC3rn}yWFVo(L;f8rL`IsHkYjDd;c_|P z=~g!LBROI6 zbs05#Pu}pCS9LibC_Ep3r8dt?w;7V+E##ovxyk)1TugC%}!9tTdowK<89I%EPy;@xrW zS-Cxj6rQCbs}YVM0~H4)`{&d0rAecO*`$o+c+5@u;M9bdAnhlD0^lFapTeRUS>$vi zMBHJA`4wtHv1P8~w`OZskjIWf#t%PH%~*o#?W>94Ll_-dFxmV+`t_b*Snb4_RmUXt zsRV-O&19LEXaMZ#_|u%<*%E?I?0v#QZaks#Mn(%3!1`3H3~F8AD=NgfcHf=6eFbLT z85a@kXARfO2PAtOR<4(B>xO;7WXf!8WtSZf=lWGeyK04Ha-z6t8YEAdzHgO|KO_99 z-()hVSI*pw{MgU8{{X72UdEPpAgLr1k~-x70EJVVQ$WX+&wMCjO7Xc|jVq5!Yjnwt zPB3z%vVZ#j0G%}qK5-`q%lC3Q2iwz%bXO}P1(QBoo><@&=ZpdTsgv8xC&Wz?Dg*PE zIB#K2$VHn=Q*j^&cT2RKw?ToLV#vl)$_7dKMk?{s?`*9WX`yI@i-J~6kWXX!esw|_ zQr><1VKag#ap)w*2rdkTNa8&2c5l}`zdBiNVYQ8yi63S05Ajadinu@MPIg^0+10@j=4F_ z6s$X(RnlBR^NAxu!)`p##3<+vDx9)m7ZM2=d*ZFm_WRTuRw%#_R#whFoYKa+M1_G# zqXRsNa!28c-{A zLxGc?JNBY3&r!==ijc`Ox0Y4&oL70J+`?^EX<&>_h^ZqM$;yF`%wX3gYzU2%#>9@K zU~%=U$tRN=OkHIT6^b_)BO~+RRl=_;ze5_7d6kbq)AdoS=}zu8OBm`h+-U?OgTpj2iM|qdnKEB7;`E5?oCLrCLL^yX1EMwUu=wlQ-`ivFpuPwI4LA z>$j~s z0%fp~az0U&`t%>BYAe|e$fM^wMnLLlvsngyU%!qj_cGZRS58@?1xC}~jd!G?GO-Nn=TYoe7ILDyIgeSpc2Z9JFDM(8C8F^s3IN z=;%&YfZeL5Tx~m#zAJ^Ro#~fLs0^g=!=Cy4DvQdSn=#-HK3Z`3j(EW8d(z3U<8JjG z^F&pFyOr>*k{E&95l%6Hep07A^``_Iv!Bwe$8F}uNFXr#qdjTdn-C;q^;}Yw#|MfO z5KafNsU?bG5RfM5&sGOG`q6N+WKlA?AjU`^txqg5WqPXr0G=u|k@l4U5D4v8qQ{b7 zU?h6*GusrKurD%;$K^3b8;=AYqv=g`W62ow0<6pSnL^~MXQ)BIq#HH_$Rv7m%@-O^ zsRG522H(flr28Y80tD@xRm*+bmA0@WrUfgBBXJy_U~$kkaw;5)Q7Wt%b5aOBK*zYL<|~v~Zl?PRTbDqJ`+>*IJ+tXcHq+K<`Mu5at&B%3~}u|Za*+5*k_8PEU#>tiauY0Td)JQMlU?+ z6hGWQDaj}C{V6ElP;96ol1WUfDhC{qoPRpC0LbWhIi$*4-X`c=7aM~C!K7FU(U;zPo5232$We(zS1_dx~P*n+I{>@})J?}| zTQ}MZZU<`QgPy*XD#2uF!k#hP6knHQ7P)00jKmna`OG*2oPVAx zTH8&w)O4NE5-%bD09dEE^#jtfLYHXdQ^6!3m!}lRx|2-1jz}ljHgXgU^mQ0Yx zf<5b6X(6?RK-dcKymYDr$oC_1s8$@a41QIDZbpwnyl)4dWtmE-A0n?HeJNoQtbb{U z`7W+D^T`LNAB{~Vg{)5+UViYqVOdn*eR6oMB)7EFqcS5i$lL`AGmo#eX=X<Ns@_~}M8OP^Phl8xSil&po0c;uEvF@U>C`G6b0&MQ6(;Wgw4pfZPKEC(6JasGX3>}HV{ zatwwT0D5!Z+Ox1@2r^<;VY!IOAN^|7Xsw+XMpzOv$Ok^PjMPozeTtW=kVe}V85|Y# z>6(hx_8*=*cnpC*zu)?1uG`#V2e|T9AcFxi3C=qX^$aix7be_BKJgg92A%YH22l?$&OEmF9iu{ti;dme9 zQcll8t#m!(n$Fcruu@xV5<_Pvjw-#}AsTQvnK25D}gaU*}Yt6_7rwYkhNX4AMNRsNP{%$mci%+|#5EtV9rPjD6NT zllXS0$K^vh!iYBk&KDS~s3$Upk9lF)MnJ0O(#Rh7Dn^l&RKPNIEs}S8V;ok*7n*&& ztSfN=X%Vs%W9H{M>-6K=v&=F>lRCPy9D>}I@99u1Zd54BB|x&Rd5e; z^y*LPN>go(DKo}!0oR89(a+1j$O)NoJ09=uRNbV~^)T)9(8-T*&89w5n zo(rX(Gv_D^^BFq^n z%0bTkkxF@v*&t)E1MsNiK(4A&a`XO8NG)cS&>%vM%Qozh^c0dvjEx$zd5m$E=)Co+ zR|}QiHk%I|n@XLmxcrFrsERaB@sqTv%X9itnRYFPu^{gkCaewq)Gf;S6{i@_tWzck5Hw+aXqIrVkm;0)vx}!l$rUTTxa~lo|O* z>;C}O&MJs(W#y~rswB?%8?%6Zd~nUA>wYnmd@A z3yhy%YVLJoI5u!9GKECC9LBJPBw>tKD|opEyIp1iP)YcE7y7R`{WZlC7laBtCa@z9VIRPZ#dWz?* zXA+SUkDIZrTWCXhhDoE0uSISF6)~N(2TeUqE6rH6MJ-NUyN}_lc%hg+@`pa6pKj`t zfLUAp(~ruvl33XkG){AXaz+M!3ehz8BF!xd32*!FGjSQXp#~~$})YhO=Qayk|1o7q=Aoq)J}fwkU}o^Wm7YU0UeJVXSF#)uO#O_w3`by zc8t`XOEcj{Te0n2mpaiIAe>_rCIXOKC)$ys+Q6_MiN$GHX(r|=CwBeX^&|P_rLow} zC}eMt5WbZ4w#n~ZR+pq&NYRO6KRSS}uh8~2QufRHKJ?o%HuX6r@BvfkYFxS&k%;#A zJFvw29<^f93HKIB859iTvG%KS8+8n<7_mG6E5Fg~?Ha~1a5L0oS#{Cg*CMstN8>8a}a6^e$O-DD`E3>>WnVIBo<6 zMFcYJ87J$GYFp{j8JOHzyf;!t0{Q8UtLx7-y+4g0)3mq@43b=^3+3k|4u_>Gxe&S$EGL=*i0mwb`&2)Yo@VM6ml01ee5bfLs zOE;(CS?zVAT_ARXT{c|&%@^+@KZj9PBk_3AEEdO4+dd01k%j>z^~ch+j9{gCJq+b3 zHE8J0mA)TBxMkG5u6|O{{{Z#HQ@Hqha3n4@C>-M-Iu#$*x!AmSt9jweBj@-E@%ai# zejsYCFCs9QUQ5xLmc7IKgHOpVt+f;~s{Ql$PdbiG|ZgGL>cQ-9;kCRoIjp zPIw)CD);v6cRNEsa7KEAR3v{k>uf=zQgU}TMt!kZB_nIA7A1+qaUzae1apCkSi>m+ zf{#!QS~g}@jZu|UAYI3=Qg{NYX2)e2vS_KczdRxQQZ;MwO&c zrAH^`CxR)Z9s(qZR7yC><%p?nC1t!=Ro5;)P!2E$UbLhx14ws+l^8kwDsEFnQRmNc zlPGA)1A=+ZdsVq4bRmw`83SsLwH$9Gj9ysI-U5Up^Q#eBFPxbqDL*J+Df4wDb`gRy zhIQN*@WH6=B1p;?k+8rLT}cEUc_N>479HeJdVGkd?|+e2tR#$D7`(F1M=C`)wYW4z zVQnC}XSkFY{IP%rSB~TKr{0D#mPsSy?t;0%?e(W@jyp4K14Lc-GLA7$5yT_G0j21r z{{YTtlenUiL=aE46quS>Pb-i>AB6ziOQ=IU^5<><3P{I2KPq+Hc!joxcVWl}1Y^?_ z?LOEmiAuVV0Qt`0k@ciecKv5dpi>(k4Tc#R{CZVPMB&g%@w;$vIQ&1!tG6*pGZ|5{ z86~n$BPOeg(zMZfO}Cuz@a*sAcua^+D~ z1Y2@g9CKDJNHG&6m^s1DPdzbHDK^En##MglCy;sVSaV4lC`WR&wVF=^jPf1Ga1?*_ z>EUGZ%96o{8C-Pr%}TcUV!wET2+!~uOY5Rh!~l@46p{QxzCR!3O--@5q(mJOFoXaz zoG9lXU&@oAORWpoS)P*mg0=bw5<4ukiElqV+#ueY$RY(pI_!|gIGAVv;O z0b--pp_cAhK}>=h9e>XidP!C>7=|L@zF9zT;q~UDw1Hu_JK_3lo!p zjy)>WF$RsDrFAO1n4Ul$!@V4Va>R0pSg0kKa9nh6{#G9+h4>7JO|E zBOEC|&a7@+=XTNu9Q3Ek36M>*&tQtuuV&l_^6N!R4;WS8eiT!%T^xhFv0Nl=ATdZX zQ#_*j@l-BYJg+|VP;z7Wv&UhIm+cl1+%$?F=H&HeJ5+rK{{UX1yprH~S0*$_*l?<# zWALt%nMw5&tG1sE%Np%s*=@aBjt}|oN;K(~KQ&|9wB@A7Q;vhyv^2=?u7QnhrF&_y zxT2gP9UFH+&1p#$rJcIRs4nZ0GIKF+l>Y#`fIl-+dkN0^9EA4r?%A~9w|=;*7W#RT z*^`GrR;G_BN;Zi zC3E=JQ|b`SXDnqwkT=WUgVvHwgOfC4n_>v%)FU_<3Zb7K^^bLEBUPPllI3J>SwRFJ zaC%ei6EXu6Y>*7DSOR}K(40#Jnti4Kk~8FxpmEPUf-1fi7AQcjPToc;{1Ewve7s|} zI?-J@84{X<>cvEaX z8A$|=&g6m#I2b(u?OZ_$AeGMInH(QqTIoC;s3h8JTgaw2F3gB}B!NjS1$ZF=TY9B3^NdoWt_;uH<>rW@M?iHG?_K?tSZ|ya5%P9R+hI=3;xEYbxE1 zX=(`OH&^wmF@eN#wlVmM6oIBySY~HqB8hyy zx#&MyZPfWyP^zo#>sqqMde&%f2G+biF2o>P@ur{B%d()15y@E$nBb5gN zr$LZV47PZD-~m!PJVi-W!5HT}`_>Jbq(G89AQ3cx1_S_j7_OQ-s~-^B#}1(43+ToX z#~c3u&v9JXjzXaXjNJ}1oDYBgy)rb#+8_!EILSHwRK;^kQt;NLZV81x)et-w{{X1# zO^;L6Ev?c7bPT*5%6O*O-``m{Xr+{7{DFxe^XXjxxVF}0`#tOn9m)H$D{$x2{{XE+ zN$xb-Ia0T`lF2NypS%MQJx(~P@j%k`c?k6f70^v8n8gkwBzJ?LV(D;q@)8BSDi0jL@r{{RTUJuz0<$T?hw z?NJ;vWMzr;6-weDSjdp=Awcdrk7|F}!+>^x2VBx1k!3j_H}H({_?lLbw0M=iKyp<$ z&(^C!U6tP4ZvEiTryXio?m{LN6fXdbao5mP41C!(CPwg1JMrGG$EC|GMOn(YQ@C}< zLJct)lRdmw1eIk6ji`9dS%^x}F(@*`1X6HCOAeoE4n(F*62*$}F;iSeJ;d=cG;0_c z+{gM*az0SsG57v; zX5mC}p?PHaPA~`FC$>MOShsdDhDe6N{qLvdX&we5MrQKazHE-8w;bp6tnIDFGAK%+ zZWQ$S_`v#pwEi8A9A`Y091l~I{V9sE#7sV7vtud;1pR8Ha!+-1LND%FerXBgKHjwK zE0(;)l1<6Z4+Tdce~GDz$C8q}KXzR3wJn@hamZCef;cUV7XJVWM$$mI#B&(~e8mEm zY!m1^3Kp)&ZCPq0Q@rVb%z$(x=kWSe>Y)>JZ8LDhsqLO=(?o3`A)uHNxl^|So4b9W zM~@lD%=qGg4C;4d=D+~4$rR+3Rz*OnF`iU(`uo#Sl%mFmk;7x4{CiW{J-Z5$Kpb}F zkjCA4rs5lScgRh{X~ue!QCZu0iyF%?RBV#uXSRD(_d70Rjzo{=RRFo}G0uM)f;*Le zmOampy&(Ik+ZjK~o46CLtWW-?K+aC!FjTM^7sO-aKRjt zka?;XI~q9OX)HMRT%KrJgH{|Eq>46Y1oRmLkJgDJNaR^v%bnjT^ge)e81|MY(hIIj0~V2r@dEc<7pX8fbGUVI<)(Cj1bR`0q82K z`4FIXMR^Z!Gge5|*fRT=Dd2K4Ds{Or*j>ep0;3I&n4HqcktQUO0`)l0^QfhjBaEqOr?`)NaAbRdkHFDW?IOCB?Bx0$cVQU0yNV|HRoo{7B-QT|+$&y-NX9mD z-u{B5@V%gt?&nds!H&{4eE$HpdVf>+R!lIRPgFi*eDX7d3<$dsZTsvf`7C&n6nB(gN{F+Zg?U;~#((J-&&o-`<63?V(oSe((?nU@_@i zarjdO5^Z?~-dho5ZuHJ-8?fU|EzBr%Ejnn+KD%s>gYq)t>E5g?X3I`%Y4sav)tiNK z!9wJ8IO4jSt1S!c5Gb}!OmQqMiy8@_%N39*3YY*M^yxJQ^JEaSs;?jyBX83cO=t2#tZY#7 zAC3>z~Gx@)}*wL)CBLw}@NB%Gp1A zIIN4N5ZXMlap{_m!dCEVI<3|9`12Okcg7p0bH^Uos=gz?{?NS^@p8=A0Cp7~XH*lF zk~!JS&3_c__cBHgYPv0%;W7YmxQcb&o>C2mJa?^IAG5ux#~jk5;*xzSD*Lt}@2TcUcm^rtLeh|Ne<*|J!gvkrFP z05jB)ST<~t0^0-gbUnLM?V%0wQtK~qGkIg!ebTxOu>cwnV~8O2P_ zBn!_zi_IaH+T~ivK(QdkIt&tX){;0br$Zo!;QcxL>NJaS8xwy6@IBA-tIu^PvrtbF z;7H0cK=mKU(~66J@iMIeS-uAO!Mu>zcrzCrZpDlQD4O?fqKINRJhi=;ofcIe{= zgYU&sA#EmQxJOy~l_%vLdQ^`9*|lUL!7Q5&GI4-&>smI1YgVais1GjbK2(&RTk1t< zwk4x8$cE{X;mf128RxIDs(OSkXF9qgGzEEV=V|w;bqh;FHOmuJ>E% zk`STgwE&+|tjqlcIK!yigpU%sfJR8_$E5+3NMpy&53NEF?Tu6o&Pn6bf&BAO8{e^A z9qM{*85M2|mgrYkv2x-?x0M=UxE_Fte6XtmRN;ug`D-%dnf_2iHhxuK>T1MNUB(b^ zQ`xc93d+xNy+|QvOQ2b~4U8%4ioYDU1te)3aV(&f=yS;YIH%d$&fAPkRs|W_*kXT9 zDc531&ydbhnL$?LZ{j=Ca=4UiU0{!G36+)D6Pz9g`R1ER1=(v&m2R!pC|fE{&{XnjX`p!S zmwr$pl_}8jKmAl_%q=Ey6dyU{J02AJV;`+#Uut(Y`lPU2{Nx{( zu*R5X8@img87KTbsoue2#ix`%ddUm0KPZ?mQ}2=f6>{eO;gCEn92{U6us;qkYc)^_ z5heLlDEr48{VHpugngbkR0RQ4a!Sr4 z3Nw{ckO%qZlQ<2uZ3;eYa5{QZ7Di>-$ERG35Puq03yhv#=2-%Q56HZG3UpI>lNNMS zyYCIyH6ky}G7bkG)C+Vu+AvO74Dvtv)WlV}SCvX+tYBgAPDkbaYRG~}tfPUp2$ZW} zu*fwO(BzdU$+r5;?%Z_vfElSL_xn?F`JIhXC!|I1N$1 z%!WiAGP(64o<3ZmP8Yccj%j0&Q8udNj({9ym=JkPfh8yuf-oDPJ?iTLac7vg2aq@aJ=>B>FGw`UY2}YIynJ3 z`JI3(?khFoX(Z)@id%ol#s|3mzgik-E#Pnjl1#^FOmGHx>)NX%CNlDGVJm~UvFAAY ze}!BXgvsVAi{>+`U!aUEL1fa?Nd7@PE&-%e8PIquett0~zE2b9% z9CSQ$$9mOjX4#)?moCjKtC9{g*8{KkRMSi?)m4OHh{n_RkJmja>&mHWCWQhob;dRx z{{UR#v!@FzC5#ZU-M1iP0D4pP7NeQsy?HlCP)C+4oDQ_oMABgNDOP91{a@9R&BanuHF9tICjn$f~Wddu$7NBqe=_gO+BR+kf6xHAQmKgNjFLaYk)c99+;-uZHvucv@au)bC1@OX^&N~#kigu zg1%rWw|0NLeW}+HTwAib5Xe9(#lNO%bprA>i+&sU8yOk)`qMVqtR6+gjL9$Y06s(g z>Mpv2a$2TG4y|_(4Bk-P!DSgM%{oi=W@KlYZ1cT|3;7T6tjn!FYZ?5bhF+>v{H#4i zU5iP-dset{vK3v&b9Ehfr(`Z?AX)Y+Dm087{OYV#Nc8nI>pS1DK4Zd$Id#dw9`wNQ zg-|6qBRNsX_NQCN4&qCY?}Z!#icO-qZ=qs#wigW1pah(NMtH|#O%u!ylWwcE*9@Ql z2sFNQcDF2&M7Ip7v@yz%dj9~N(nUE~o>pVIaGB0e(0Ww)gcX&DypJwIBrDLdU~^Ux z0E`vgx=wS9_r(Wnu>x?#PT`&lQ@quYL1B#l019!OQf-%F>{n@MvdL(#6om|HB%B;^ zlA@?bwC#nC3ys8%gnQJf40CyRBI-4jS7XH?ZhgT3{#24%M+9-Sav3MzvuZ|ue)!4s z#d%K$^Z?nqC(kWIS?C1XgtSe7LhB1kNA929o)_uLJ%V!~q;H2^HD5XIM9l5Ec z*XOvnnmH}uU88}5*!_8^EpG%Di0VAZVsP!|F3<*Zj1O8=<2q{hHpJGaU){FE_BNWN zwpUYX5;{b%I57x@<|Teo2X1j(Oo5EUddRXV$=%mK(!BudKWn*`LnKzQ<8p(OkISj{ zt~Ta2eL{KGNiJh&IFZH+dz#)A8^1BdI%+ntT`j_m;xbvYo+{7TB=W&A0LDJQ{d#F#ibZ*)j^=h!A8NKZ>3}$@o^eO{ zV<o!FLDRbgPdyxrw^|zt*|Kak3SLMSaSCa)cemtVelvph;>P+snY;o_hE7%`scC zUgp(|o?EGoLDV=reidp}fatn-06Br=jkj<{>>Q8AwXOA=eM&NywxVLA0!2~?{{Rod zmGp~8fXQNBMm+g!c=}Vj=qqsEkgLkS?p2_zo> z0F76&o;BR518wX;{{R}f=fychRT)*rNzM;mwJklyhuQt5SlYw^$lMSwPCb7rhVn^g zi)_HEt`6Z z*%CI6Odd0a104W9)cLy-)rY|gy}X`O68yPE*oOzdVf3jX)8~rao^)uXC+-oRG2Wjw z%up$5gBII`405ONJ?h21`Z)7R=RTbUH5RoU)$BSjkf~|5mk;+q!BLI@J?f0wY%|}< za?nhr!5hg0FCLih)0&>uqMuM{<@wA^Jh;Pr!1c+^Uxp^Vx;GoVm1a4|sN;|4pZ>iP zcHNU}m9*e&%SYu#?nfJtZXVh6;;n49ytzR875?i)ykd*kBwN%-+!ZP?SwYF{J^uh2 zq9#~x3;B6DJe+WU53YYog(Sw)v8xirBg!r;nY^~xt0R%W)1LL8b14$}ixGm}G4hO; zImSIbDpk8{=;T3|<-lbOdE@C-pHrFxl`jpz`^rCvXRTbJ*v2xHU5ggdAhYvLx|MT= zd||Ws8jz_;_7`Qw0A7bRQawUjx#V#Z0E2UUfqk>bU#(3$G?9i2zjA;XnDLL{;-N(& zdy_dh0x+Pl#^yBGbiZ z7}|5+CXv=eT!H{N7|%*ZA1QyuNdExq(1P(f3GeqsGZ zK1AJZ=6UHEPr86)wP)B|q=e)!9m5WlW;o(`Jk7-I7*I}6;3-KAekBUe9ELY#3a1&z zxD=Lx<~W@mcXb>-ag+3Cf}0+mu^!g9te+?l&BMgY>B7 zVLS=hUCa^s6&mc{^4ZQR4@Zvj_CS{b{kR z7}{fzKj1-t{14aGgo5Q!B!c0k3OvT(5;L@V4{DvSB{9F6yG}mhoR-cz{&e|c0|GLS z&&s*M{Eap^$WXGVO}XIkODj)VUI)#*{0V?wgeiD#6Ms2dwp6OYcV35b$gq@G-k2Ibg6Jb-)S+Zn2FDycT@ zkXMG>I2i5qtFg38AyA(-2+OcNdvvMpyt8$}jm`sZ$Et#VS_Fy~yLU9wFhIu`U7IS6y_@b&F$7lS)aGd$ z2OWhKBr)7FWf$en0cHvh(>-XZu+BhfjdV+?SlAQ4JoAnZ8K*71jf=-Tx{Db~a1385 z{LeK=3yAdvp4R3SagEzpZTb=3wC@tu{ud@CkwGH_pOuerdg8hceNmZltw55vj5Pa? zK4AoZ^@p`on^7{h`7O|Q04*Qc1TpeZvkt0Gar8avIakXBNTnEdVS`ky&=V|2eKhk& z$c=jragTgcbqhJ6V&PodvC5D#quQf{d6DiQDEF-`ChB`w<&|go2i`^it9x@v>9JND zX*?$0M!0v_gK%BE6ZP#&cdA_6#<7JFTd>CGazhVc)~j41vOVn4s+S{bp!r9>KMJgp zks*>+$$V|xdLQXRih7by=0ya%qAM=YbKCUIId2(%e5#870K#$8)~lFSIV4uV!6XCH zuU_B%hDK|6#9+l4*akq#j(Mce)3F-B*LO2cS(!-yH#v5|>HO-CBiXm)i~U;)n?y75xpUWw0{yW}5qXN4VbKU${?f|ZSX7;T-B54CT&oq#x8 z05jN}et^_B5&e;i9nocq5aT@a&P8CQ>pY1VF2gt+XCFaUuQeoQ*s(htZQUbe6VUPB z>rdIB=N%c9a;l+=3=B4NTZZFg3jzqY#<=r4?mc<`06hg^T0100?m!1SV;|l=-omY{ zay&$IT#nqeSDDqI&uZ<9IC2RQYt^ofcTcG^!)=l=k$SEGtj zp(DT@%X9-BYdIE(?bV)Zhuqs$Gn{qj0cX3sJ804846PbeQS;J1X5e;4-9I2wou9d-~;~v*Ud|(%2KV(qC_!B zgg4AR+x#iX5XKd8llPmP(pw^_1OU8q=~6jTeBG?i&>Z%xi%P>@HjCv}V&BK;eW|M$ zAQ;ZZ{^zgKrUBLkM=aUoXP!Q^i3$Pc%+0i%1Hd2W@TYO|-(jfvk7t&<3CTF?Nq`jX zT&Uy@l{@2qVlYNWum1q5kjTYP$}#opQZz&vO5_etYGkTh1;HeqD2zzbzm*FzW2QQu z^%`FYCoWM&%#KDm`gW?b8nIN^iSFBTs71kX?f!e#q$vzD8&p+I++=W|{d$^#vkXsi z%eq+?bZDcX?8p2nD{H-uNeo+qk=L&^S9T)En(!odEwxWS#&OC1l!eMNuwmvAg1!3m z_NcC8S>~B!`8RFOdjVBmLvb?^orQ@2p1k$N8-l&f3ulx{&Pt;p$@Bxi9X%^nN!nPH z1@g&Z&|{4C#boAxvOpkAhhw{(W7D;0%;~(vv=Yg|;0%ty^{H(YsK{Txg?QHhEKCw&nZyJ7zpT2KXyp{NAopS?nz;ks^?%((YOR< zSZ1AtaVC~eJ%i=RROFJ) zfyq2z)V|}fGTfwKtYBvyh6h@=X?rvi2_j;oa(UvQ1~}x{NOD&yGfZjSlt|IwZ7Qw6 zrFK=0pxwgy=OBx z3vvvJ&K^UxfXAyeL2 zt1J;IZ!T~E$t33=O~WJbG`4Foxk!v@I&S%8I4YyB>Hb9;u+YC0kXc>k5@d}0s&;+O zexo%F<*B-z#F~>ib|q0p+z!B0^FE(37Y0qjHsFWAIQAa(UQ4TcxzrVT<&6Uf#G5?M z4K*Dsye=%WcP88CO`FgFP1$06@fomX|AGoUSv9kmiKCtGPHnoNQfk4{{WLx zS=b9f`^!E4m}Ufi2NX#&M4|1HDP?j%*u)NVE+K0txM%=QF6YF)ma|u28trc`*?O7gH)SKzP7Uwx0fsKEF^3KbJyCU z5L!i@kVs!{Nk%NE(~jLKtL2T`4a{s*j(V%8jRAB!St44b@mU&*Tnk zM97j_quvPaL~2WgPEWd?4^F&$)J^9V{nX=l9P&p#y?&J>F-i85xRE&OoEEtAd})AH8xsSF?Q0sY_4`Be6IG5PaBIob+t+86JAJB)u?eYU3!rP+|oyJK*6 zY`{~T=Z@TW?N#or%zDg{Mr13yWIBgpVE_!%II72Nh}zvqMn2L(_}#w7y>q& zkfNH<$7HHjK_$RGS(Ka-anN?o1v+Vk*byR1vg`zw803ue=xJCJy14{*3?q%=1T>_p zgn1O0l`-dSL#Bq19i`0Ljvuha6UOiWWG zaTFO+2UGt5)~P6p_SKXm%E(!hY@G1E;CoatLWV=R%Ap)Sdw=?cI7c)@M2>*B%=?Z{ zZ%?gGmN*WEL}Xq8AoJW{AMmEwjN=?$cu3Q3es3|??;O?0f`%9>4{!xcmf@o=Lm!x& zw;24XB#B^vszv~lf=4tl4~(pYG9AQq$7*{9llOhTf~yC>C`mwrpx}^yok&~>a!*d# z&py7Nr7I5Qy@5x~AW`YMmLRGbmO!~Y44i&7RV8B}m53|Vit+TPtiEJUQ*OXUaZFm4 zoHHDN(hv4nAJ81tDP76LD!X%n%5X{a%~g~UGRUv~ua#f#H*D3Pw1SA&3?(dgWaKdC zrhUEmrjWG}p-(tVKP*51dSkEQ(yiJ@9ooCC(kM=`%luzKnx{3pIsMzSp6W-f0;DFt5-2QbN3f+ZONw$c_*F&5XA2*=({{THHlHJQA6lj9F5HjPS$4~1` zdxnleBl&auQIWWRL;iWDN9WAAl25cMkasA;mPN&d)4nOwaZKdE~+uSXLr?xKdJiD8Z`=Bo_Zi7j(TVD%`uF((%NB^ zLcw`0&@a@Um1!Wgg~8Y-n>(^NKz+|s{JrQ)lPV%fC&?MWR^S8l=}$n6SSc9Ky*-30 zL~a*<=i4!3hF2@LBV-@UdlGNaJ-rFmOK2>`IUg7RCRvoweX-hW+!0sNL4YVY&n!Ue=qjZm zqY@?BWJ2450filuR+_U&4%cK1IRk@Le38HljQiEAcv@07gYU;$#!S^K7St=?J_%9% z-nC-gVf#u8g2vx?-;TR8&*@dz6#oELypDkPr82Ti(RqI`IAflD@##@=tc`6&Au$v| z^Qky+aaQ5Kxkk6Sk|l~r(8nt=#^OlF>H+*~D&9uAix?oH>}B1Mq;&m1l|3!eM@I>8 z)5P1hp#??`GIPaxF_qG2;cCsrofJ7~_c0`AD&DGl)<21@huW>~7=j2X$L2q+Yr_dB zE+Zk7C=5Xdlm30Ghlo_%X)fS@sda4rpVqRg7iLvAW^>HToDThk5oEdCGsX^hs9>96 z+}LlBk8o-8!}eV=8<}L0?i&gs2aNan*Anb@?Wt-gGKU}o-Mb2c=sQgrkZ#$Xxap2K z$KYvReUPY76L8PW+|?VMMeWq*Xuusn+-b!&CR`IDNTyh~A#KHTkMqW9FYjS+%VlhY zk^sRY1L>O17fCZAAf^Wd8dylm6i<|&pWdkRIai)Z8b$*fnBxN?w6@0;qe(7yo)vI$S;_P&B^b&} zGx@(TX2Am^IQOYi*`t)Q6m8&z3PwhHP}cG@1|aVP_;?5L{Oa<@_G?9VbG@6lY@gDi zOr(Tek)lQi80x=>I5kf43EEe3tg4^@2T#tdyTq}ZMfoIVA%h&SUVjRN+>vOY^BNEa zefyu~QybppJ2D9FnV^wQN}S;R)7PQ=sFQS-miHwOzyS0={d$r_k|vHEsN*-`hWWC zNhm1Y5}Uo4OAh9dcc_&>Y=3*OA75&U<{O*PK0y>{LXnPfS|@B#JBZO3HV_FuV13Cr z$^Nw1FNqTGwUX7x3^A4j_v=}t)}=PKCyLNRWbYlTw)`wg`25f1OpeW=Ri5fdgCN{V zV0r3z9+b)cLm2ar4Z-6lB)6~Aujfya+02^(gu>@?HsBlmuh-g|(FWyqy;Ww7qF*ew zMn?zf#ZXIw9_h67Eai!KiC{qbf-_qONQT`ovRxy{0Of%P@W(Y=tWPO(Zz{^88_Zx2 zuM8=vtC4ASAimVdjuiVE7n6oDHVFJdH6$q-T>YRz?>IQhKRE54Is82;MzprLMtI}> z<1s|X%lPtmtGafSzHDf!HvyBs9AsefDc<@bo`jbs+U=zCL{c2)HefQj?0*`L#^((x z+#(@W+qyg)VDudHtD1~9tFjANWHPG&&y3)IpXF44)k(T{UC;8W;1V(1`%;%-MRjD7 z!X?~f0TK}H?-9d>3|*Z`Aos`P`qWP9o?v-ow*ijMH|HJk#y<*@<5rSb(NbqFnfVw8 z-=2e?^UW+bm#+&fP{2x^u0GC~AC4(42f8Dc&99WpZ9HOZW?0B781&vU2jVJI<|JVy zLUDk;VE+KneLn+=Cb+p>K~`uXJ3wpzvEw=CBN-)}jrOn36b`dxdAY~67&$ zfaNifp^X0Nl}>(UUI`zCD%^Ro%9F|!S&rSuI2h+St5^2c_k_)FY^vc%mL4}T>_@Nj ztk`XqS&*p;-K(KkBD0z|T=`G(uq2!w-G3U$dwZ*b z@E2XXa<1_(9{m1wb+5dwGS(I<(uT?BJPw_`^IB7O+|FJ^+NOkwX)VRLRhST3KD+tp z$>Xkn3ZZnWmk@{oeX3ZM1CxbCQ~>=?9D7xX?^aYtX5GmMg#4`Bb`DKd0eUCYvKyqb^z7MK~<(N+ASB-7-7X&$dHxYc!3qGRYE31~&qupZyB4 zmhoX}6h_KkVG}d*7bCCGRms&LvWC{-V3~^c zc=rjSIT>C+J;xazjbvNf&2{CKg(HkOM{?N&`+MTIVn1iLSG9JJXWne`dEg&f%fGsP ztbCM-ikuW&44(f0TA0P`3hQ#^<%Pr+sBET5%&s=bcp&uW)6%8;6tG-oSQWCofz-FJ z9<`HUs_qJmM%N`|g}_jK{VPo^L@aJ0n5DZ8V-bMgj~%GDMnaS38!gkh5kvxR`@OM) zP^oMP$^zYf_DIDt2rdk=t3w=*AIb8@6nk^|8hk<{D@M^e$m%z2e1bXbef{e@8uMKi zpg}7;6;;MSKBAqtM7vc8OcTI8YAD%2#3g6idMjf*55w>jlU%ySK1SZe4ZW8>f{Q+* zO%{?(@Gq$!#5t(T86nz903N*YOpOngil`1fI{yHi)arx`U^8cqdV5eZp+dVskb=bU zc{suRs4+7mENVap=3)=6OoTf$Wjw?DAoIl%yV}MG+(>MdJ!rUCibCE_#bbfgbj>mV z3~bv19=}gom0CgA)Y-s-xITI;{52SpYbWQlqKtL8hL9Xt1%s=m*;u zJwXw-Pp&E%WPyt;SFR=`1tJy$@jkzWT_VHfJFX)gHnJ-WeR4mQLiX^@C}D9AAYd?M zKg%DjJ#0&lTa_k_qYopivywKF+&8Z|rpGHvqvhwJ$8T!3wzr~YWf8g@e6h%{xOx=? z{)8E^Qc?)y8Fvue#ILIeI=e1=zP9$jUqcSM|64p?!4Q88?nc(E`aGMs+C{{ZLSp+=rdW-Ex_e*}%k^6x{@g4CbRSn<4$dS{9% zuvC$YG<`rgk$Ly}QAlS!7O6eF%COs{XkQDl0VR9$>+e#@q-qkuCFk&wxx+avii*xN zaehyn(gBUBo)nSD{5n>>#q8G6T*nC|<4h6{CqK&rHLRr6td3bp+~?tS@?L2HXyZ^Z z&&+!d^XX7YD_mMUOch4#@Nf^|?OG2cA}H<5$rLCvBbEeiJ$UQr1w}R1k#8v|(%ego z0;6KD_|}NCI@O|zMN66A$^#${qbL>TCxq?^71SemdgZk8v zxFS(4{hHp=Dlj?%xl8Nm8u6#oDbz{;(0Y`Bt7m7kn}?O0wP4+gsgHxaTK zLr3!txfsoIsJUKJ1e?5>kYZ=cCsNrY(ujs|at~gWc6be=yi)GUIa7h@P^&N`vXvzK zySn4jx|26aSb<^>AUjXBTM@p%QYIs=;JFnLD=Hi_Wm^ZDbjz@#DiEaLp8oiz-N7ps zt>q~oATC#vxMr?iXZ1FkXD)^s|OAUmzxgMpW9XZcj^F_Z2Q6lXp1ewCb}G|O?w z7G29OS~HM(f_>^cWW-G&B(ZWh2R^@rSGR@}VA7U#Ku$1v&$0DryQR*_jQCODG=X5TB zlZv$jaVj{8+DTNE0Dn4y*$PO`xe?&yv7SDaEODWCSit}ss}sowu4_pWiLF{!kf~M2 zOf_o5YR?`^fJdjVy;HQeB0>>xFi%`#>rS`44{%06U`Wn*>(lwxa@S(lVg6ikd5X?L zH&$WB?2g`)utv;(c^N6t4#tywa|RCRfeFDplkJMMlKIlb85 zySIhyo|Maj9>!^0amd9?zcQ{y06lY1#RPL4N~CuL@zbS1%vOxO#EgN;k;}hxjz224 zpJ!WR=Kq+U9ovzyI|#dW`@ARn@^HCq#Vm38NzfdPan#)b*p)A zEfNA2J;x_-&ImuHHd8z!&Mo`IJx>GZKOfSe@@Ja+eDmjM1yesLKmNLW&Fk1Lp(VYf zP}zA5(JdDBq$|7@+ zs@_u!dTk^1s&QMB%wJ0gJlu=4!jO4}Ob={@KhCV$8+|&~=gqoSGO!`lbGM#;@f;on z4E8d{SXso|M_;y=$odX{S{^OI7wnda8T){{43A(>KbNg7Iu7r-747^|g^JtdRZ+S| z0i`3`vggzc`_e-5lN`zBN^lC`?$6h${cBU~D;zFv7C8CIAv%vt5uehJGR#HfkfC#s zqA;pID9tB!HRjA_Yxr(Vl1D6A8DA{yZgHNV){03S%pO*fDTW5;kwUrb4;&NgkMXMp z^h@27T(( zS7tf(A1`!4kTO7NIEBT1%Chc%ZjjAKsghwTGcl8}hBI zCbfcBjdcWnIZMWbGXst=xd8S&ew9?)TE%d!1-tLS^CFH?RDv_WZ0_sRgGiQ^S8<4~ z!^Hc`Lb9&h6O4sy{{S=B>q)+(xZiSZQD>Ig10Cdo2_G4aMmC<_-Rgw5f@v`fXa)er zbG26(2m1S(ywgu_^UDma6RAm~AQdb-_2WL(Qd<~=QQv8#wZHMkpdO!(=T6C@V?I}| z#n>VZZt|!SILk{O+!bF?dyijFr8MvI*K2@>vmQVC--T7Ty4cGiJcXk)f2|TqdK4RS>*F2R?Y(Pj>pocxozl3$%l|A0rZP5ta+++dC&;I~gmD?mPc7n>KcVP7tt_2Ir zjX@<4x}qM6;PH=YWur?J6%M;oT|zIL!JRWs`>*j zm6`tXt}(zJX^bQXbLDZ@BABiVA296$u?MO5r%J)lgOkDhIiw_pJn;?DE61L@JLA@^ zt<(8pXylPc2v}}hA6`A`q%px1*a!nSC#G@rt6-w3DUH8*Mtb9^`twaE&>n>EaeC7& zyqbjZv!h@KCwH;Q{*_YrGPEt`Z(@L+<-p3Ee?P*bxVs-{kwFUJkR65q`hK+>*Jzq- zcPb389M1{wfPP`m{q^}(M(9jrQXzQ|3>76w9XRT0$}+CiKo^duf^a#{=iaHElU#{F zK2c4@n;>V9c&!9b%ajD?)2&Dni5F>-HN!4T79IUhZo;{k<(}T@h2W4YleLCHT>F28 zZ^;zIWE?2|5D(4Qy$&x%n SG*FfM%EtrhGes)}&;Qw04}4t! literal 0 HcmV?d00001 diff --git a/test/samples/haarcascade_frontalface_alt.xml b/test/samples/haarcascade_frontalface_alt.xml new file mode 100644 index 0000000..ade4b21 --- /dev/null +++ b/test/samples/haarcascade_frontalface_alt.xml @@ -0,0 +1,24350 @@ + + + +BOOST + HAAR + 20 + 20 + + 213 + + 0 + 22 + + <_> + 3 + 8.2268941402435303e-01 + + <_> + + 0 -1 0 4.0141958743333817e-03 + + 3.3794190734624863e-02 8.3781069517135620e-01 + <_> + + 0 -1 1 1.5151339583098888e-02 + + 1.5141320228576660e-01 7.4888122081756592e-01 + <_> + + 0 -1 2 4.2109931819140911e-03 + + 9.0049281716346741e-02 6.3748198747634888e-01 + <_> + 16 + 6.9566087722778320e+00 + + <_> + + 0 -1 3 1.6227109590545297e-03 + + 6.9308586418628693e-02 7.1109461784362793e-01 + <_> + + 0 -1 4 2.2906649392098188e-03 + + 1.7958030104637146e-01 6.6686922311782837e-01 + <_> + + 0 -1 5 5.0025708042085171e-03 + + 1.6936729848384857e-01 6.5540069341659546e-01 + <_> + + 0 -1 6 7.9659894108772278e-03 + + 5.8663320541381836e-01 9.1414518654346466e-02 + <_> + + 0 -1 7 -3.5227010957896709e-03 + + 1.4131669700145721e-01 6.0318958759307861e-01 + <_> + + 0 -1 8 3.6667689681053162e-02 + + 3.6756721138954163e-01 7.9203182458877563e-01 + <_> + + 0 -1 9 9.3361474573612213e-03 + + 6.1613857746124268e-01 2.0885099470615387e-01 + <_> + + 0 -1 10 8.6961314082145691e-03 + + 2.8362309932708740e-01 6.3602739572525024e-01 + <_> + + 0 -1 11 1.1488880263641477e-03 + + 2.2235809266567230e-01 5.8007007837295532e-01 + <_> + + 0 -1 12 -2.1484689787030220e-03 + + 2.4064640700817108e-01 5.7870548963546753e-01 + <_> + + 0 -1 13 2.1219060290604830e-03 + + 5.5596548318862915e-01 1.3622370362281799e-01 + <_> + + 0 -1 14 -9.3949146568775177e-02 + + 8.5027372837066650e-01 4.7177401185035706e-01 + <_> + + 0 -1 15 1.3777789426967502e-03 + + 5.9936738014221191e-01 2.8345298767089844e-01 + <_> + + 0 -1 16 7.3063157498836517e-02 + + 4.3418860435485840e-01 7.0600342750549316e-01 + <_> + + 0 -1 17 3.6767389974556863e-04 + + 3.0278879404067993e-01 6.0515749454498291e-01 + <_> + + 0 -1 18 -6.0479710809886456e-03 + + 1.7984339594841003e-01 5.6752568483352661e-01 + <_> + 21 + 9.4985427856445312e+00 + + <_> + + 0 -1 19 -1.6510689631104469e-02 + + 6.6442251205444336e-01 1.4248579740524292e-01 + <_> + + 0 -1 20 2.7052499353885651e-03 + + 6.3253521919250488e-01 1.2884770333766937e-01 + <_> + + 0 -1 21 2.8069869149476290e-03 + + 1.2402880191802979e-01 6.1931931972503662e-01 + <_> + + 0 -1 22 -1.5402400167658925e-03 + + 1.4321430027484894e-01 5.6700158119201660e-01 + <_> + + 0 -1 23 -5.6386279175058007e-04 + + 1.6574330627918243e-01 5.9052079916000366e-01 + <_> + + 0 -1 24 1.9253729842603207e-03 + + 2.6955071091651917e-01 5.7388240098953247e-01 + <_> + + 0 -1 25 -5.0214841030538082e-03 + + 1.8935389816761017e-01 5.7827740907669067e-01 + <_> + + 0 -1 26 2.6365420781075954e-03 + + 2.3093290627002716e-01 5.6954258680343628e-01 + <_> + + 0 -1 27 -1.5127769438549876e-03 + + 2.7596020698547363e-01 5.9566420316696167e-01 + <_> + + 0 -1 28 -1.0157439857721329e-02 + + 1.7325380444526672e-01 5.5220472812652588e-01 + <_> + + 0 -1 29 -1.1953660286962986e-02 + + 1.3394099473953247e-01 5.5590140819549561e-01 + <_> + + 0 -1 30 4.8859491944313049e-03 + + 3.6287039518356323e-01 6.1888492107391357e-01 + <_> + + 0 -1 31 -8.0132916569709778e-02 + + 9.1211050748825073e-02 5.4759448766708374e-01 + <_> + + 0 -1 32 1.0643280111253262e-03 + + 3.7151429057121277e-01 5.7113999128341675e-01 + <_> + + 0 -1 33 -1.3419450260698795e-03 + + 5.9533137083053589e-01 3.3180978894233704e-01 + <_> + + 0 -1 34 -5.4601140320301056e-02 + + 1.8440659344196320e-01 5.6028461456298828e-01 + <_> + + 0 -1 35 2.9071690514683723e-03 + + 3.5942441225051880e-01 6.1317151784896851e-01 + <_> + + 0 -1 36 7.4718717951327562e-04 + + 5.9943532943725586e-01 3.4595629572868347e-01 + <_> + + 0 -1 37 4.3013808317482471e-03 + + 4.1726520657539368e-01 6.9908452033996582e-01 + <_> + + 0 -1 38 4.5017572119832039e-03 + + 4.5097151398658752e-01 7.8014570474624634e-01 + <_> + + 0 -1 39 2.4138500913977623e-02 + + 5.4382127523422241e-01 1.3198269903659821e-01 + <_> + 39 + 1.8412969589233398e+01 + + <_> + + 0 -1 40 1.9212230108678341e-03 + + 1.4152669906616211e-01 6.1998707056045532e-01 + <_> + + 0 -1 41 -1.2748669541906565e-04 + + 6.1910742521286011e-01 1.8849289417266846e-01 + <_> + + 0 -1 42 5.1409931620582938e-04 + + 1.4873969554901123e-01 5.8579277992248535e-01 + <_> + + 0 -1 43 4.1878609918057919e-03 + + 2.7469098567962646e-01 6.3592398166656494e-01 + <_> + + 0 -1 44 5.1015717908740044e-03 + + 5.8708512783050537e-01 2.1756289899349213e-01 + <_> + + 0 -1 45 -2.1448440384119749e-03 + + 5.8809447288513184e-01 2.9795908927917480e-01 + <_> + + 0 -1 46 -2.8977119363844395e-03 + + 2.3733270168304443e-01 5.8766472339630127e-01 + <_> + + 0 -1 47 -2.1610679104924202e-02 + + 1.2206549942493439e-01 5.1942020654678345e-01 + <_> + + 0 -1 48 -4.6299318782985210e-03 + + 2.6312309503555298e-01 5.8174091577529907e-01 + <_> + + 0 -1 49 5.9393711853772402e-04 + + 3.6386200785636902e-01 5.6985449790954590e-01 + <_> + + 0 -1 50 5.3878661245107651e-02 + + 4.3035310506820679e-01 7.5593662261962891e-01 + <_> + + 0 -1 51 1.8887349870055914e-03 + + 2.1226030588150024e-01 5.6134271621704102e-01 + <_> + + 0 -1 52 -2.3635339457541704e-03 + + 5.6318491697311401e-01 2.6427671313285828e-01 + <_> + + 0 -1 53 2.4017799645662308e-02 + + 5.7971078157424927e-01 2.7517059445381165e-01 + <_> + + 0 -1 54 2.0543030404951423e-04 + + 2.7052420377731323e-01 5.7525688409805298e-01 + <_> + + 0 -1 55 8.4790197433903813e-04 + + 5.4356247186660767e-01 2.3348769545555115e-01 + <_> + + 0 -1 56 1.4091329649090767e-03 + + 5.3194248676300049e-01 2.0631550252437592e-01 + <_> + + 0 -1 57 1.4642629539594054e-03 + + 5.4189807176589966e-01 3.0688610672950745e-01 + <_> + + 0 -1 58 1.6352549428120255e-03 + + 3.6953729391098022e-01 6.1128681898117065e-01 + <_> + + 0 -1 59 8.3172752056270838e-04 + + 3.5650369524955750e-01 6.0252362489700317e-01 + <_> + + 0 -1 60 -2.0998890977352858e-03 + + 1.9139820337295532e-01 5.3628271818161011e-01 + <_> + + 0 -1 61 -7.4213981861248612e-04 + + 3.8355550169944763e-01 5.5293101072311401e-01 + <_> + + 0 -1 62 3.2655049581080675e-03 + + 4.3128961324691772e-01 7.1018958091735840e-01 + <_> + + 0 -1 63 8.9134991867467761e-04 + + 3.9848309755325317e-01 6.3919639587402344e-01 + <_> + + 0 -1 64 -1.5284179709851742e-02 + + 2.3667329549789429e-01 5.4337137937545776e-01 + <_> + + 0 -1 65 4.8381411470472813e-03 + + 5.8175009489059448e-01 3.2391890883445740e-01 + <_> + + 0 -1 66 -9.1093179071322083e-04 + + 5.5405938625335693e-01 2.9118689894676208e-01 + <_> + + 0 -1 67 -6.1275060288608074e-03 + + 1.7752550542354584e-01 5.1966291666030884e-01 + <_> + + 0 -1 68 -4.4576259097084403e-04 + + 3.0241701006889343e-01 5.5335938930511475e-01 + <_> + + 0 -1 69 2.2646540775895119e-02 + + 4.4149309396743774e-01 6.9753772020339966e-01 + <_> + + 0 -1 70 -1.8804960418492556e-03 + + 2.7913948893547058e-01 5.4979521036148071e-01 + <_> + + 0 -1 71 7.0889107882976532e-03 + + 5.2631992101669312e-01 2.3855470120906830e-01 + <_> + + 0 -1 72 1.7318050377070904e-03 + + 4.3193790316581726e-01 6.9836008548736572e-01 + <_> + + 0 -1 73 -6.8482700735330582e-03 + + 3.0820429325103760e-01 5.3909200429916382e-01 + <_> + + 0 -1 74 -1.5062530110299122e-05 + + 5.5219221115112305e-01 3.1203660368919373e-01 + <_> + + 0 -1 75 2.9475569725036621e-02 + + 5.4013228416442871e-01 1.7706030607223511e-01 + <_> + + 0 -1 76 8.1387329846620560e-03 + + 5.1786178350448608e-01 1.2110190093517303e-01 + <_> + + 0 -1 77 2.0942950621247292e-02 + + 5.2902942895889282e-01 3.3112218976020813e-01 + <_> + + 0 -1 78 -9.5665529370307922e-03 + + 7.4719941616058350e-01 4.4519689679145813e-01 + <_> + 33 + 1.5324139595031738e+01 + + <_> + + 0 -1 79 -2.8206960996612906e-04 + + 2.0640860497951508e-01 6.0767322778701782e-01 + <_> + + 0 -1 80 1.6790600493550301e-03 + + 5.8519971370697021e-01 1.2553839385509491e-01 + <_> + + 0 -1 81 6.9827912375330925e-04 + + 9.4018429517745972e-02 5.7289612293243408e-01 + <_> + + 0 -1 82 7.8959012171253562e-04 + + 1.7819879949092865e-01 5.6943088769912720e-01 + <_> + + 0 -1 83 -2.8560499195009470e-03 + + 1.6383990645408630e-01 5.7886648178100586e-01 + <_> + + 0 -1 84 -3.8122469559311867e-03 + + 2.0854400098323822e-01 5.5085647106170654e-01 + <_> + + 0 -1 85 1.5896620461717248e-03 + + 5.7027608156204224e-01 1.8572150170803070e-01 + <_> + + 0 -1 86 1.0078339837491512e-02 + + 5.1169431209564209e-01 2.1897700428962708e-01 + <_> + + 0 -1 87 -6.3526302576065063e-02 + + 7.1313798427581787e-01 4.0438130497932434e-01 + <_> + + 0 -1 88 -9.1031491756439209e-03 + + 2.5671818852424622e-01 5.4639732837677002e-01 + <_> + + 0 -1 89 -2.4035000242292881e-03 + + 1.7006659507751465e-01 5.5909740924835205e-01 + <_> + + 0 -1 90 1.5226360410451889e-03 + + 5.4105567932128906e-01 2.6190540194511414e-01 + <_> + + 0 -1 91 1.7997439950704575e-02 + + 3.7324368953704834e-01 6.5352207422256470e-01 + <_> + + 0 -1 92 -6.4538191072642803e-03 + + 2.6264819502830505e-01 5.5374461412429810e-01 + <_> + + 0 -1 93 -1.1880760081112385e-02 + + 2.0037539303302765e-01 5.5447459220886230e-01 + <_> + + 0 -1 94 1.2713660253211856e-03 + + 5.5919027328491211e-01 3.0319759249687195e-01 + <_> + + 0 -1 95 1.1376109905540943e-03 + + 2.7304071187973022e-01 5.6465089321136475e-01 + <_> + + 0 -1 96 -4.2651998810470104e-03 + + 1.4059090614318848e-01 5.4618209600448608e-01 + <_> + + 0 -1 97 -2.9602861031889915e-03 + + 1.7950350046157837e-01 5.4592901468276978e-01 + <_> + + 0 -1 98 -8.8448226451873779e-03 + + 5.7367831468582153e-01 2.8092199563980103e-01 + <_> + + 0 -1 99 -6.6430689767003059e-03 + + 2.3706759512424469e-01 5.5038261413574219e-01 + <_> + + 0 -1 100 3.9997808635234833e-03 + + 5.6081998348236084e-01 3.3042821288108826e-01 + <_> + + 0 -1 101 -4.1221720166504383e-03 + + 1.6401059925556183e-01 5.3789931535720825e-01 + <_> + + 0 -1 102 1.5624909661710262e-02 + + 5.2276492118835449e-01 2.2886039316654205e-01 + <_> + + 0 -1 103 -1.0356419719755650e-02 + + 7.0161938667297363e-01 4.2529278993606567e-01 + <_> + + 0 -1 104 -8.7960809469223022e-03 + + 2.7673470973968506e-01 5.3558301925659180e-01 + <_> + + 0 -1 105 1.6226939857006073e-01 + + 4.3422400951385498e-01 7.4425792694091797e-01 + <_> + + 0 -1 106 4.5542530715465546e-03 + + 5.7264858484268188e-01 2.5821250677108765e-01 + <_> + + 0 -1 107 -2.1309209987521172e-03 + + 2.1068480610847473e-01 5.3610187768936157e-01 + <_> + + 0 -1 108 -1.3208420015871525e-02 + + 7.5937908887863159e-01 4.5524680614471436e-01 + <_> + + 0 -1 109 -6.5996676683425903e-02 + + 1.2524759769439697e-01 5.3440397977828979e-01 + <_> + + 0 -1 110 7.9142656177282333e-03 + + 3.3153840899467468e-01 5.6010431051254272e-01 + <_> + + 0 -1 111 2.0894279703497887e-02 + + 5.5060499906539917e-01 2.7688381075859070e-01 + <_> + 44 + 2.1010639190673828e+01 + + <_> + + 0 -1 112 1.1961159761995077e-03 + + 1.7626909911632538e-01 6.1562412977218628e-01 + <_> + + 0 -1 113 -1.8679830245673656e-03 + + 6.1181068420410156e-01 1.8323999643325806e-01 + <_> + + 0 -1 114 -1.9579799845814705e-04 + + 9.9044263362884521e-02 5.7238161563873291e-01 + <_> + + 0 -1 115 -8.0255657667294145e-04 + + 5.5798798799514771e-01 2.3772829771041870e-01 + <_> + + 0 -1 116 -2.4510810617357492e-03 + + 2.2314579784870148e-01 5.8589351177215576e-01 + <_> + + 0 -1 117 5.0361850298941135e-04 + + 2.6539939641952515e-01 5.7941037416458130e-01 + <_> + + 0 -1 118 4.0293349884450436e-03 + + 5.8038270473480225e-01 2.4848650395870209e-01 + <_> + + 0 -1 119 -1.4451709575951099e-02 + + 1.8303519487380981e-01 5.4842048883438110e-01 + <_> + + 0 -1 120 2.0380979403853416e-03 + + 3.3635589480400085e-01 6.0510927438735962e-01 + <_> + + 0 -1 121 -1.6155190533027053e-03 + + 2.2866420447826385e-01 5.4412460327148438e-01 + <_> + + 0 -1 122 3.3458340913057327e-03 + + 5.6259131431579590e-01 2.3923380672931671e-01 + <_> + + 0 -1 123 1.6379579901695251e-03 + + 3.9069938659667969e-01 5.9646219015121460e-01 + <_> + + 0 -1 124 3.0251210555434227e-02 + + 5.2484822273254395e-01 1.5757469832897186e-01 + <_> + + 0 -1 125 3.7251990288496017e-02 + + 4.1943109035491943e-01 6.7484188079833984e-01 + <_> + + 0 -1 126 -2.5109790265560150e-02 + + 1.8825499713420868e-01 5.4734510183334351e-01 + <_> + + 0 -1 127 -5.3099058568477631e-03 + + 1.3399730622768402e-01 5.2271109819412231e-01 + <_> + + 0 -1 128 1.2086479691788554e-03 + + 3.7620881199836731e-01 6.1096358299255371e-01 + <_> + + 0 -1 129 -2.1907679736614227e-02 + + 2.6631429791450500e-01 5.4040068387985229e-01 + <_> + + 0 -1 130 5.4116579703986645e-03 + + 5.3635787963867188e-01 2.2322730720043182e-01 + <_> + + 0 -1 131 6.9946326315402985e-02 + + 5.3582328557968140e-01 2.4536980688571930e-01 + <_> + + 0 -1 132 3.4520021290518343e-04 + + 2.4096719920635223e-01 5.3769302368164062e-01 + <_> + + 0 -1 133 1.2627709656953812e-03 + + 5.4258567094802856e-01 3.1556931138038635e-01 + <_> + + 0 -1 134 2.2719509899616241e-02 + + 4.1584059596061707e-01 6.5978652238845825e-01 + <_> + + 0 -1 135 -1.8111000536009669e-03 + + 2.8112530708312988e-01 5.5052447319030762e-01 + <_> + + 0 -1 136 3.3469670452177525e-03 + + 5.2600282430648804e-01 1.8914650380611420e-01 + <_> + + 0 -1 137 4.0791751234792173e-04 + + 5.6735092401504517e-01 3.3442100882530212e-01 + <_> + + 0 -1 138 1.2734799645841122e-02 + + 5.3435921669006348e-01 2.3956120014190674e-01 + <_> + + 0 -1 139 -7.3119727894663811e-03 + + 6.0108900070190430e-01 4.0222078561782837e-01 + <_> + + 0 -1 140 -5.6948751211166382e-02 + + 8.1991511583328247e-01 4.5431908965110779e-01 + <_> + + 0 -1 141 -5.0116591155529022e-03 + + 2.2002810239791870e-01 5.3577107191085815e-01 + <_> + + 0 -1 142 6.0334368608891964e-03 + + 4.4130811095237732e-01 7.1817511320114136e-01 + <_> + + 0 -1 143 3.9437441155314445e-03 + + 5.4788607358932495e-01 2.7917331457138062e-01 + <_> + + 0 -1 144 -3.6591119132936001e-03 + + 6.3578677177429199e-01 3.9897239208221436e-01 + <_> + + 0 -1 145 -3.8456181064248085e-03 + + 3.4936860203742981e-01 5.3006649017333984e-01 + <_> + + 0 -1 146 -7.1926261298358440e-03 + + 1.1196149885654449e-01 5.2296727895736694e-01 + <_> + + 0 -1 147 -5.2798941731452942e-02 + + 2.3871029913425446e-01 5.4534512758255005e-01 + <_> + + 0 -1 148 -7.9537667334079742e-03 + + 7.5869178771972656e-01 4.4393768906593323e-01 + <_> + + 0 -1 149 -2.7344180271029472e-03 + + 2.5654768943786621e-01 5.4893219470977783e-01 + <_> + + 0 -1 150 -1.8507939530536532e-03 + + 6.7343479394912720e-01 4.2524749040603638e-01 + <_> + + 0 -1 151 1.5918919816613197e-02 + + 5.4883527755737305e-01 2.2926619648933411e-01 + <_> + + 0 -1 152 -1.2687679845839739e-03 + + 6.1043310165405273e-01 4.0223899483680725e-01 + <_> + + 0 -1 153 6.2883910723030567e-03 + + 5.3108531236648560e-01 1.5361930429935455e-01 + <_> + + 0 -1 154 -6.2259892001748085e-03 + + 1.7291119694709778e-01 5.2416062355041504e-01 + <_> + + 0 -1 155 -1.2132599949836731e-02 + + 6.5977597236633301e-01 4.3251821398735046e-01 + <_> + 50 + 2.3918790817260742e+01 + + <_> + + 0 -1 156 -3.9184908382594585e-03 + + 6.1034351587295532e-01 1.4693309366703033e-01 + <_> + + 0 -1 157 1.5971299726516008e-03 + + 2.6323631405830383e-01 5.8964669704437256e-01 + <_> + + 0 -1 158 1.7780110239982605e-02 + + 5.8728742599487305e-01 1.7603619396686554e-01 + <_> + + 0 -1 159 6.5334769897162914e-04 + + 1.5678019821643829e-01 5.5960661172866821e-01 + <_> + + 0 -1 160 -2.8353091329336166e-04 + + 1.9131539762020111e-01 5.7320362329483032e-01 + <_> + + 0 -1 161 1.6104689566418529e-03 + + 2.9149138927459717e-01 5.6230807304382324e-01 + <_> + + 0 -1 162 -9.7750619053840637e-02 + + 1.9434769451618195e-01 5.6482332944869995e-01 + <_> + + 0 -1 163 5.5182358482852578e-04 + + 3.1346169114112854e-01 5.5046397447586060e-01 + <_> + + 0 -1 164 -1.2858220376074314e-02 + + 2.5364819169044495e-01 5.7601428031921387e-01 + <_> + + 0 -1 165 4.1530239395797253e-03 + + 5.7677221298217773e-01 3.6597740650177002e-01 + <_> + + 0 -1 166 1.7092459602281451e-03 + + 2.8431910276412964e-01 5.9189391136169434e-01 + <_> + + 0 -1 167 7.5217359699308872e-03 + + 4.0524271130561829e-01 6.1831092834472656e-01 + <_> + + 0 -1 168 2.2479810286313295e-03 + + 5.7837551832199097e-01 3.1354010105133057e-01 + <_> + + 0 -1 169 5.2006211131811142e-02 + + 5.5413120985031128e-01 1.9166369736194611e-01 + <_> + + 0 -1 170 1.2085529975593090e-02 + + 4.0326559543609619e-01 6.6445910930633545e-01 + <_> + + 0 -1 171 1.4687820112158079e-05 + + 3.5359779000282288e-01 5.7093828916549683e-01 + <_> + + 0 -1 172 7.1395188570022583e-06 + + 3.0374449491500854e-01 5.6102699041366577e-01 + <_> + + 0 -1 173 -4.6001640148460865e-03 + + 7.1810871362686157e-01 4.5803260803222656e-01 + <_> + + 0 -1 174 2.0058949012309313e-03 + + 5.6219518184661865e-01 2.9536840319633484e-01 + <_> + + 0 -1 175 4.5050270855426788e-03 + + 4.6153879165649414e-01 7.6190179586410522e-01 + <_> + + 0 -1 176 1.1746830306947231e-02 + + 5.3438371419906616e-01 1.7725290358066559e-01 + <_> + + 0 -1 177 -5.8316338807344437e-02 + + 1.6862459480762482e-01 5.3407722711563110e-01 + <_> + + 0 -1 178 2.3629379575140774e-04 + + 3.7920561432838440e-01 6.0268038511276245e-01 + <_> + + 0 -1 179 -7.8156180679798126e-03 + + 1.5128670632839203e-01 5.3243237733840942e-01 + <_> + + 0 -1 180 -1.0876160115003586e-02 + + 2.0818220078945160e-01 5.3199452161788940e-01 + <_> + + 0 -1 181 -2.7745519764721394e-03 + + 4.0982469916343689e-01 5.2103281021118164e-01 + <_> + + 0 -1 182 -7.8276381827890873e-04 + + 5.6932741403579712e-01 3.4788420796394348e-01 + <_> + + 0 -1 183 1.3870409689843655e-02 + + 5.3267508745193481e-01 2.2576980292797089e-01 + <_> + + 0 -1 184 -2.3674910888075829e-02 + + 1.5513050556182861e-01 5.2007079124450684e-01 + <_> + + 0 -1 185 -1.4879409718560055e-05 + + 5.5005669593811035e-01 3.8201761245727539e-01 + <_> + + 0 -1 186 3.6190641112625599e-03 + + 4.2386838793754578e-01 6.6397482156753540e-01 + <_> + + 0 -1 187 -1.9817110151052475e-02 + + 2.1500380337238312e-01 5.3823578357696533e-01 + <_> + + 0 -1 188 -3.8154039066284895e-03 + + 6.6757112741470337e-01 4.2152971029281616e-01 + <_> + + 0 -1 189 -4.9775829538702965e-03 + + 2.2672890126705170e-01 5.3863281011581421e-01 + <_> + + 0 -1 190 2.2441020701080561e-03 + + 4.3086910247802734e-01 6.8557357788085938e-01 + <_> + + 0 -1 191 1.2282459996640682e-02 + + 5.8366149663925171e-01 3.4674790501594543e-01 + <_> + + 0 -1 192 -2.8548699337989092e-03 + + 7.0169448852539062e-01 4.3114539980888367e-01 + <_> + + 0 -1 193 -3.7875669077038765e-03 + + 2.8953450918197632e-01 5.2249461412429810e-01 + <_> + + 0 -1 194 -1.2201230274513364e-03 + + 2.9755708575248718e-01 5.4816448688507080e-01 + <_> + + 0 -1 195 1.0160599835216999e-02 + + 4.8888179659843445e-01 8.1826978921890259e-01 + <_> + + 0 -1 196 -1.6174569725990295e-02 + + 1.4814929664134979e-01 5.2399927377700806e-01 + <_> + + 0 -1 197 1.9292460754513741e-02 + + 4.7863098978996277e-01 7.3781907558441162e-01 + <_> + + 0 -1 198 -3.2479539513587952e-03 + + 7.3742228746414185e-01 4.4706439971923828e-01 + <_> + + 0 -1 199 -9.3803480267524719e-03 + + 3.4891548752784729e-01 5.5379962921142578e-01 + <_> + + 0 -1 200 -1.2606129981577396e-02 + + 2.3796869814395905e-01 5.3154432773590088e-01 + <_> + + 0 -1 201 -2.5621930137276649e-02 + + 1.9646880030632019e-01 5.1387697458267212e-01 + <_> + + 0 -1 202 -7.5741496402770281e-05 + + 5.5905228853225708e-01 3.3658531308174133e-01 + <_> + + 0 -1 203 -8.9210882782936096e-02 + + 6.3404656946659088e-02 5.1626348495483398e-01 + <_> + + 0 -1 204 -2.7670480776578188e-03 + + 7.3234677314758301e-01 4.4907060265541077e-01 + <_> + + 0 -1 205 2.7152578695677221e-04 + + 4.1148349642753601e-01 5.9855180978775024e-01 + <_> + 51 + 2.4527879714965820e+01 + + <_> + + 0 -1 206 1.4786219689995050e-03 + + 2.6635450124740601e-01 6.6433167457580566e-01 + <_> + + 0 -1 207 -1.8741659587249160e-03 + + 6.1438488960266113e-01 2.5185129046440125e-01 + <_> + + 0 -1 208 -1.7151009524241090e-03 + + 5.7663410902023315e-01 2.3974630236625671e-01 + <_> + + 0 -1 209 -1.8939269939437509e-03 + + 5.6820458173751831e-01 2.5291448831558228e-01 + <_> + + 0 -1 210 -5.3006052039563656e-03 + + 1.6406759619712830e-01 5.5560797452926636e-01 + <_> + + 0 -1 211 -4.6662531793117523e-02 + + 6.1231541633605957e-01 4.7628301382064819e-01 + <_> + + 0 -1 212 -7.9431332414969802e-04 + + 5.7078588008880615e-01 2.8394040465354919e-01 + <_> + + 0 -1 213 1.4891670085489750e-02 + + 4.0896728634834290e-01 6.0063672065734863e-01 + <_> + + 0 -1 214 -1.2046529445797205e-03 + + 5.7124507427215576e-01 2.7052891254425049e-01 + <_> + + 0 -1 215 6.0619381256401539e-03 + + 5.2625042200088501e-01 3.2622259855270386e-01 + <_> + + 0 -1 216 -2.5286648888140917e-03 + + 6.8538308143615723e-01 4.1992568969726562e-01 + <_> + + 0 -1 217 -5.9010218828916550e-03 + + 3.2662820816040039e-01 5.4348129034042358e-01 + <_> + + 0 -1 218 5.6702760048210621e-03 + + 5.4684108495712280e-01 2.3190039396286011e-01 + <_> + + 0 -1 219 -3.0304100364446640e-03 + + 5.5706679821014404e-01 2.7082380652427673e-01 + <_> + + 0 -1 220 2.9803649522364140e-03 + + 3.7005689740180969e-01 5.8906257152557373e-01 + <_> + + 0 -1 221 -7.5840510427951813e-02 + + 2.1400700509548187e-01 5.4199481010437012e-01 + <_> + + 0 -1 222 1.9262539222836494e-02 + + 5.5267721414566040e-01 2.7265900373458862e-01 + <_> + + 0 -1 223 1.8888259364757687e-04 + + 3.9580118656158447e-01 6.0172098875045776e-01 + <_> + + 0 -1 224 2.9369549825787544e-02 + + 5.2413737773895264e-01 1.4357580244541168e-01 + <_> + + 0 -1 225 1.0417619487270713e-03 + + 3.3854091167449951e-01 5.9299832582473755e-01 + <_> + + 0 -1 226 2.6125640142709017e-03 + + 5.4853779077529907e-01 3.0215978622436523e-01 + <_> + + 0 -1 227 9.6977467183023691e-04 + + 3.3752760291099548e-01 5.5320328474044800e-01 + <_> + + 0 -1 228 5.9512659208849072e-04 + + 5.6317430734634399e-01 3.3593991398811340e-01 + <_> + + 0 -1 229 -1.0156559944152832e-01 + + 6.3735038042068481e-02 5.2304250001907349e-01 + <_> + + 0 -1 230 3.6156699061393738e-02 + + 5.1369631290435791e-01 1.0295289754867554e-01 + <_> + + 0 -1 231 3.4624140243977308e-03 + + 3.8793200254440308e-01 5.5582892894744873e-01 + <_> + + 0 -1 232 1.9554980099201202e-02 + + 5.2500867843627930e-01 1.8758599460124969e-01 + <_> + + 0 -1 233 -2.3121440317481756e-03 + + 6.6720288991928101e-01 4.6796411275863647e-01 + <_> + + 0 -1 234 -1.8605289515107870e-03 + + 7.1633791923522949e-01 4.3346709012985229e-01 + <_> + + 0 -1 235 -9.4026362057775259e-04 + + 3.0213609337806702e-01 5.6502032279968262e-01 + <_> + + 0 -1 236 -5.2418331615626812e-03 + + 1.8200090527534485e-01 5.2502560615539551e-01 + <_> + + 0 -1 237 1.1729019752237946e-04 + + 3.3891880512237549e-01 5.4459732770919800e-01 + <_> + + 0 -1 238 1.1878840159624815e-03 + + 4.0853491425514221e-01 6.2535631656646729e-01 + <_> + + 0 -1 239 -1.0881359688937664e-02 + + 3.3783990144729614e-01 5.7000827789306641e-01 + <_> + + 0 -1 240 1.7354859737679362e-03 + + 4.2046359181404114e-01 6.5230387449264526e-01 + <_> + + 0 -1 241 -6.5119052305817604e-03 + + 2.5952160358428955e-01 5.4281437397003174e-01 + <_> + + 0 -1 242 -1.2136430013924837e-03 + + 6.1651438474655151e-01 3.9778938889503479e-01 + <_> + + 0 -1 243 -1.0354240424931049e-02 + + 1.6280280053615570e-01 5.2195048332214355e-01 + <_> + + 0 -1 244 5.5858830455690622e-04 + + 3.1996509432792664e-01 5.5035740137100220e-01 + <_> + + 0 -1 245 1.5299649909138680e-02 + + 4.1039940714836121e-01 6.1223882436752319e-01 + <_> + + 0 -1 246 -2.1588210016489029e-02 + + 1.0349129885435104e-01 5.1973849534988403e-01 + <_> + + 0 -1 247 -1.2834629416465759e-01 + + 8.4938651323318481e-01 4.8931029438972473e-01 + <_> + + 0 -1 248 -2.2927189711481333e-03 + + 3.1301578879356384e-01 5.4715752601623535e-01 + <_> + + 0 -1 249 7.9915106296539307e-02 + + 4.8563209176063538e-01 6.0739892721176147e-01 + <_> + + 0 -1 250 -7.9441092908382416e-02 + + 8.3946740627288818e-01 4.6245330572128296e-01 + <_> + + 0 -1 251 -5.2800010889768600e-03 + + 1.8816959857940674e-01 5.3066980838775635e-01 + <_> + + 0 -1 252 1.0463109938427806e-03 + + 5.2712291479110718e-01 2.5830659270286560e-01 + <_> + + 0 -1 253 2.6317298761568964e-04 + + 4.2353048920631409e-01 5.7354408502578735e-01 + <_> + + 0 -1 254 -3.6173160187900066e-03 + + 6.9343960285186768e-01 4.4954448938369751e-01 + <_> + + 0 -1 255 1.1421879753470421e-02 + + 5.9009212255477905e-01 4.1381931304931641e-01 + <_> + + 0 -1 256 -1.9963278900831938e-03 + + 6.4663827419281006e-01 4.3272399902343750e-01 + <_> + 56 + 2.7153350830078125e+01 + + <_> + + 0 -1 257 -9.9691245704889297e-03 + + 6.1423242092132568e-01 2.4822120368480682e-01 + <_> + + 0 -1 258 7.3073059320449829e-04 + + 5.7049518823623657e-01 2.3219659924507141e-01 + <_> + + 0 -1 259 6.4045301405712962e-04 + + 2.1122519671916962e-01 5.8149331808090210e-01 + <_> + + 0 -1 260 4.5424019917845726e-03 + + 2.9504820704460144e-01 5.8663117885589600e-01 + <_> + + 0 -1 261 9.2477443104144186e-05 + + 2.9909908771514893e-01 5.7913267612457275e-01 + <_> + + 0 -1 262 -8.6603146046400070e-03 + + 2.8130298852920532e-01 5.6355422735214233e-01 + <_> + + 0 -1 263 8.0515816807746887e-03 + + 3.5353690385818481e-01 6.0547572374343872e-01 + <_> + + 0 -1 264 4.3835240649059415e-04 + + 5.5965322256088257e-01 2.7315109968185425e-01 + <_> + + 0 -1 265 -9.8168973636347800e-05 + + 5.9780317544937134e-01 3.6385610699653625e-01 + <_> + + 0 -1 266 -1.1298790341243148e-03 + + 2.7552521228790283e-01 5.4327291250228882e-01 + <_> + + 0 -1 267 6.4356150105595589e-03 + + 4.3056419491767883e-01 7.0698332786560059e-01 + <_> + + 0 -1 268 -5.6829329580068588e-02 + + 2.4952429533004761e-01 5.2949970960617065e-01 + <_> + + 0 -1 269 4.0668169967830181e-03 + + 5.4785531759262085e-01 2.4977239966392517e-01 + <_> + + 0 -1 270 4.8164798499783501e-05 + + 3.9386010169982910e-01 5.7063561677932739e-01 + <_> + + 0 -1 271 6.1795017682015896e-03 + + 4.4076061248779297e-01 7.3947668075561523e-01 + <_> + + 0 -1 272 6.4985752105712891e-03 + + 5.4452431201934814e-01 2.4791529774665833e-01 + <_> + + 0 -1 273 -1.0211090557277203e-03 + + 2.5447669625282288e-01 5.3389710187911987e-01 + <_> + + 0 -1 274 -5.4247528314590454e-03 + + 2.7188581228256226e-01 5.3240692615509033e-01 + <_> + + 0 -1 275 -1.0559899965301156e-03 + + 3.1782880425453186e-01 5.5345088243484497e-01 + <_> + + 0 -1 276 6.6465808777138591e-04 + + 4.2842191457748413e-01 6.5581941604614258e-01 + <_> + + 0 -1 277 -2.7524109464138746e-04 + + 5.9028607606887817e-01 3.8102629780769348e-01 + <_> + + 0 -1 278 4.2293202131986618e-03 + + 3.8164898753166199e-01 5.7093858718872070e-01 + <_> + + 0 -1 279 -3.2868210691958666e-03 + + 1.7477439343929291e-01 5.2595442533493042e-01 + <_> + + 0 -1 280 1.5611879643984139e-04 + + 3.6017221212387085e-01 5.7256120443344116e-01 + <_> + + 0 -1 281 -7.3621381488919724e-06 + + 5.4018580913543701e-01 3.0444970726966858e-01 + <_> + + 0 -1 282 -1.4767250046133995e-02 + + 3.2207700610160828e-01 5.5734348297119141e-01 + <_> + + 0 -1 283 2.4489590898156166e-02 + + 4.3015280365943909e-01 6.5188127756118774e-01 + <_> + + 0 -1 284 -3.7652091123163700e-04 + + 3.5645830631256104e-01 5.5982369184494019e-01 + <_> + + 0 -1 285 7.3657688517414499e-06 + + 3.4907829761505127e-01 5.5618977546691895e-01 + <_> + + 0 -1 286 -1.5099939890205860e-02 + + 1.7762720584869385e-01 5.3352999687194824e-01 + <_> + + 0 -1 287 -3.8316650316119194e-03 + + 6.1496877670288086e-01 4.2213940620422363e-01 + <_> + + 0 -1 288 1.6925400123000145e-02 + + 5.4130148887634277e-01 2.1665850281715393e-01 + <_> + + 0 -1 289 -3.0477850232273340e-03 + + 6.4494907855987549e-01 4.3546178936958313e-01 + <_> + + 0 -1 290 3.2140589319169521e-03 + + 5.4001551866531372e-01 3.5232171416282654e-01 + <_> + + 0 -1 291 -4.0023201145231724e-03 + + 2.7745240926742554e-01 5.3384172916412354e-01 + <_> + + 0 -1 292 7.4182129465043545e-03 + + 5.6767392158508301e-01 3.7028178572654724e-01 + <_> + + 0 -1 293 -8.8764587417244911e-03 + + 7.7492219209671021e-01 4.5836889743804932e-01 + <_> + + 0 -1 294 2.7311739977449179e-03 + + 5.3387218713760376e-01 3.9966610074043274e-01 + <_> + + 0 -1 295 -2.5082379579544067e-03 + + 5.6119632720947266e-01 3.7774989008903503e-01 + <_> + + 0 -1 296 -8.0541074275970459e-03 + + 2.9152289032936096e-01 5.1791828870773315e-01 + <_> + + 0 -1 297 -9.7938813269138336e-04 + + 5.5364328622817993e-01 3.7001928687095642e-01 + <_> + + 0 -1 298 -5.8745909482240677e-03 + + 3.7543910741806030e-01 5.6793761253356934e-01 + <_> + + 0 -1 299 -4.4936719350516796e-03 + + 7.0196992158889771e-01 4.4809499382972717e-01 + <_> + + 0 -1 300 -5.4389229044318199e-03 + + 2.3103649914264679e-01 5.3133869171142578e-01 + <_> + + 0 -1 301 -7.5094640487805009e-04 + + 5.8648687601089478e-01 4.1293430328369141e-01 + <_> + + 0 -1 302 1.4528800420521293e-05 + + 3.7324070930480957e-01 5.6196212768554688e-01 + <_> + + 0 -1 303 4.0758069604635239e-02 + + 5.3120911121368408e-01 2.7205219864845276e-01 + <_> + + 0 -1 304 6.6505931317806244e-03 + + 4.7100159525871277e-01 6.6934937238693237e-01 + <_> + + 0 -1 305 4.5759351924061775e-03 + + 5.1678192615509033e-01 1.6372759640216827e-01 + <_> + + 0 -1 306 6.5269311890006065e-03 + + 5.3976088762283325e-01 2.9385319352149963e-01 + <_> + + 0 -1 307 -1.3660379685461521e-02 + + 7.0864880084991455e-01 4.5322000980377197e-01 + <_> + + 0 -1 308 2.7358869090676308e-02 + + 5.2064812183380127e-01 3.5892319679260254e-01 + <_> + + 0 -1 309 6.2197551596909761e-04 + + 3.5070759057998657e-01 5.4411232471466064e-01 + <_> + + 0 -1 310 -3.3077080734074116e-03 + + 5.8595228195190430e-01 4.0248918533325195e-01 + <_> + + 0 -1 311 -1.0631109587848186e-02 + + 6.7432671785354614e-01 4.4226029515266418e-01 + <_> + + 0 -1 312 1.9441649317741394e-02 + + 5.2827161550521851e-01 1.7979049682617188e-01 + <_> + 71 + 3.4554111480712891e+01 + + <_> + + 0 -1 313 -5.5052167735993862e-03 + + 5.9147310256958008e-01 2.6265591382980347e-01 + <_> + + 0 -1 314 1.9562279339879751e-03 + + 2.3125819861888885e-01 5.7416272163391113e-01 + <_> + + 0 -1 315 -8.8924784213304520e-03 + + 1.6565300524234772e-01 5.6266540288925171e-01 + <_> + + 0 -1 316 8.3638377487659454e-02 + + 5.4234498739242554e-01 1.9572949409484863e-01 + <_> + + 0 -1 317 1.2282270472496748e-03 + + 3.4179040789604187e-01 5.9925037622451782e-01 + <_> + + 0 -1 318 5.7629169896245003e-03 + + 3.7195819616317749e-01 6.0799038410186768e-01 + <_> + + 0 -1 319 -1.6417410224676132e-03 + + 2.5774860382080078e-01 5.5769157409667969e-01 + <_> + + 0 -1 320 3.4113149158656597e-03 + + 2.9507490992546082e-01 5.5141717195510864e-01 + <_> + + 0 -1 321 -1.1069320142269135e-02 + + 7.5693589448928833e-01 4.4770789146423340e-01 + <_> + + 0 -1 322 3.4865971654653549e-02 + + 5.5837088823318481e-01 2.6696211099624634e-01 + <_> + + 0 -1 323 6.5701099811121821e-04 + + 5.6273132562637329e-01 2.9888901114463806e-01 + <_> + + 0 -1 324 -2.4339130148291588e-02 + + 2.7711850404739380e-01 5.1088631153106689e-01 + <_> + + 0 -1 325 5.9435202274471521e-04 + + 5.5806517601013184e-01 3.1203418970108032e-01 + <_> + + 0 -1 326 2.2971509024500847e-03 + + 3.3302500844001770e-01 5.6790757179260254e-01 + <_> + + 0 -1 327 -3.7801829166710377e-03 + + 2.9905349016189575e-01 5.3448081016540527e-01 + <_> + + 0 -1 328 -1.3420669734477997e-01 + + 1.4638589322566986e-01 5.3925681114196777e-01 + <_> + + 0 -1 329 7.5224548345431685e-04 + + 3.7469539046287537e-01 5.6927347183227539e-01 + <_> + + 0 -1 330 -4.0545541793107986e-02 + + 2.7547478675842285e-01 5.4842978715896606e-01 + <_> + + 0 -1 331 1.2572970008477569e-03 + + 3.7445840239524841e-01 5.7560759782791138e-01 + <_> + + 0 -1 332 -7.4249948374927044e-03 + + 7.5138592720031738e-01 4.7282311320304871e-01 + <_> + + 0 -1 333 5.0908129196614027e-04 + + 5.4048967361450195e-01 2.9323211312294006e-01 + <_> + + 0 -1 334 -1.2808450264856219e-03 + + 6.1697798967361450e-01 4.2733490467071533e-01 + <_> + + 0 -1 335 -1.8348860321566463e-03 + + 2.0484960079193115e-01 5.2064722776412964e-01 + <_> + + 0 -1 336 2.7484869584441185e-02 + + 5.2529847621917725e-01 1.6755220293998718e-01 + <_> + + 0 -1 337 2.2372419480234385e-03 + + 5.2677828073501587e-01 2.7776581048965454e-01 + <_> + + 0 -1 338 -8.8635291904211044e-03 + + 6.9545578956604004e-01 4.8120489716529846e-01 + <_> + + 0 -1 339 4.1753971017897129e-03 + + 4.2918878793716431e-01 6.3491958379745483e-01 + <_> + + 0 -1 340 -1.7098189564421773e-03 + + 2.9305368661880493e-01 5.3612488508224487e-01 + <_> + + 0 -1 341 6.5328548662364483e-03 + + 4.4953250885009766e-01 7.4096941947937012e-01 + <_> + + 0 -1 342 -9.5372907817363739e-03 + + 3.1491199135780334e-01 5.4165017604827881e-01 + <_> + + 0 -1 343 2.5310989469289780e-02 + + 5.1218920946121216e-01 1.3117079436779022e-01 + <_> + + 0 -1 344 3.6460969597101212e-02 + + 5.1759117841720581e-01 2.5913399457931519e-01 + <_> + + 0 -1 345 2.0854329690337181e-02 + + 5.1371401548385620e-01 1.5823160111904144e-01 + <_> + + 0 -1 346 -8.7207747856155038e-04 + + 5.5743098258972168e-01 4.3989789485931396e-01 + <_> + + 0 -1 347 -1.5227000403683633e-05 + + 5.5489408969879150e-01 3.7080699205398560e-01 + <_> + + 0 -1 348 -8.4316509310156107e-04 + + 3.3874198794364929e-01 5.5542111396789551e-01 + <_> + + 0 -1 349 3.6037859972566366e-03 + + 5.3580617904663086e-01 3.4111711382865906e-01 + <_> + + 0 -1 350 -6.8057891912758350e-03 + + 6.1252027750015259e-01 4.3458628654479980e-01 + <_> + + 0 -1 351 -4.7021660953760147e-02 + + 2.3581659793853760e-01 5.1937389373779297e-01 + <_> + + 0 -1 352 -3.6954108625650406e-02 + + 7.3231112957000732e-01 4.7609439492225647e-01 + <_> + + 0 -1 353 1.0439479956403375e-03 + + 5.4194551706314087e-01 3.4113308787345886e-01 + <_> + + 0 -1 354 -2.1050689974799752e-04 + + 2.8216940164566040e-01 5.5549472570419312e-01 + <_> + + 0 -1 355 -8.0831587314605713e-02 + + 9.1299301385879517e-01 4.6974349021911621e-01 + <_> + + 0 -1 356 -3.6579059087671340e-04 + + 6.0226702690124512e-01 3.9782929420471191e-01 + <_> + + 0 -1 357 -1.2545920617412776e-04 + + 5.6132131814956665e-01 3.8455399870872498e-01 + <_> + + 0 -1 358 -6.8786486983299255e-02 + + 2.2616119682788849e-01 5.3004968166351318e-01 + <_> + + 0 -1 359 1.2415789999067783e-02 + + 4.0756919980049133e-01 5.8288121223449707e-01 + <_> + + 0 -1 360 -4.7174817882478237e-03 + + 2.8272539377212524e-01 5.2677577733993530e-01 + <_> + + 0 -1 361 3.8136858493089676e-02 + + 5.0747412443161011e-01 1.0236159712076187e-01 + <_> + + 0 -1 362 -2.8168049175292253e-03 + + 6.1690068244934082e-01 4.3596929311752319e-01 + <_> + + 0 -1 363 8.1303603947162628e-03 + + 4.5244330167770386e-01 7.6060950756072998e-01 + <_> + + 0 -1 364 6.0056019574403763e-03 + + 5.2404087781906128e-01 1.8597120046615601e-01 + <_> + + 0 -1 365 1.9139319658279419e-02 + + 5.2093791961669922e-01 2.3320719599723816e-01 + <_> + + 0 -1 366 1.6445759683847427e-02 + + 5.4507029056549072e-01 3.2642349600791931e-01 + <_> + + 0 -1 367 -3.7356890738010406e-02 + + 6.9990468025207520e-01 4.5332419872283936e-01 + <_> + + 0 -1 368 -1.9727900624275208e-02 + + 2.6536649465560913e-01 5.4128098487854004e-01 + <_> + + 0 -1 369 6.6972579807043076e-03 + + 4.4805660843849182e-01 7.1386522054672241e-01 + <_> + + 0 -1 370 7.4457528535276651e-04 + + 4.2313501238822937e-01 5.4713201522827148e-01 + <_> + + 0 -1 371 1.1790640419349074e-03 + + 5.3417021036148071e-01 3.1304550170898438e-01 + <_> + + 0 -1 372 3.4980610013008118e-02 + + 5.1186597347259521e-01 3.4305301308631897e-01 + <_> + + 0 -1 373 5.6859792675822973e-04 + + 3.5321870446205139e-01 5.4686397314071655e-01 + <_> + + 0 -1 374 -1.1340649798512459e-02 + + 2.8423538804054260e-01 5.3487008810043335e-01 + <_> + + 0 -1 375 -6.6228108480572701e-03 + + 6.8836402893066406e-01 4.4926649332046509e-01 + <_> + + 0 -1 376 -8.0160330981016159e-03 + + 1.7098939418792725e-01 5.2243089675903320e-01 + <_> + + 0 -1 377 1.4206819469109178e-03 + + 5.2908462285995483e-01 2.9933831095695496e-01 + <_> + + 0 -1 378 -2.7801711112260818e-03 + + 6.4988541603088379e-01 4.4604998826980591e-01 + <_> + + 0 -1 379 -1.4747589593753219e-03 + + 3.2604381442070007e-01 5.3881132602691650e-01 + <_> + + 0 -1 380 -2.3830339312553406e-02 + + 7.5289410352706909e-01 4.8012199997901917e-01 + <_> + + 0 -1 381 6.9369790144264698e-03 + + 5.3351658582687378e-01 3.2614278793334961e-01 + <_> + + 0 -1 382 8.2806255668401718e-03 + + 4.5803940296173096e-01 5.7378298044204712e-01 + <_> + + 0 -1 383 -1.0439500212669373e-02 + + 2.5923201441764832e-01 5.2338278293609619e-01 + <_> + 80 + 3.9107288360595703e+01 + + <_> + + 0 -1 384 7.2006587870419025e-03 + + 3.2588860392570496e-01 6.8498080968856812e-01 + <_> + + 0 -1 385 -2.8593589086085558e-03 + + 5.8388811349868774e-01 2.5378298759460449e-01 + <_> + + 0 -1 386 6.8580528022721410e-04 + + 5.7080817222595215e-01 2.8124240040779114e-01 + <_> + + 0 -1 387 7.9580191522836685e-03 + + 2.5010511279106140e-01 5.5442607402801514e-01 + <_> + + 0 -1 388 -1.2124150525778532e-03 + + 2.3853680491447449e-01 5.4333502054214478e-01 + <_> + + 0 -1 389 7.9426132142543793e-03 + + 3.9550709724426270e-01 6.2207579612731934e-01 + <_> + + 0 -1 390 2.4630590341985226e-03 + + 5.6397080421447754e-01 2.9923579096794128e-01 + <_> + + 0 -1 391 -6.0396599583327770e-03 + + 2.1865129470825195e-01 5.4116767644882202e-01 + <_> + + 0 -1 392 -1.2988339876756072e-03 + + 2.3507060110569000e-01 5.3645849227905273e-01 + <_> + + 0 -1 393 2.2299369447864592e-04 + + 3.8041129708290100e-01 5.7296061515808105e-01 + <_> + + 0 -1 394 1.4654280385002494e-03 + + 2.5101679563522339e-01 5.2582687139511108e-01 + <_> + + 0 -1 395 -8.1210042117163539e-04 + + 5.9928238391876221e-01 3.8511589169502258e-01 + <_> + + 0 -1 396 -1.3836020370945334e-03 + + 5.6813961267471313e-01 3.6365869641304016e-01 + <_> + + 0 -1 397 -2.7936449274420738e-02 + + 1.4913170039653778e-01 5.3775602579116821e-01 + <_> + + 0 -1 398 -4.6919551095925272e-04 + + 3.6924299597740173e-01 5.5724847316741943e-01 + <_> + + 0 -1 399 -4.9829659983515739e-03 + + 6.7585092782974243e-01 4.5325040817260742e-01 + <_> + + 0 -1 400 1.8815309740602970e-03 + + 5.3680229187011719e-01 2.9325398802757263e-01 + <_> + + 0 -1 401 -1.9067550078034401e-02 + + 1.6493770480155945e-01 5.3300672769546509e-01 + <_> + + 0 -1 402 -4.6906559728085995e-03 + + 1.9639259576797485e-01 5.1193618774414062e-01 + <_> + + 0 -1 403 5.9777139686048031e-03 + + 4.6711719036102295e-01 7.0083981752395630e-01 + <_> + + 0 -1 404 -3.3303130418062210e-02 + + 1.1554169654846191e-01 5.1041620969772339e-01 + <_> + + 0 -1 405 9.0744107961654663e-02 + + 5.1496601104736328e-01 1.3061730563640594e-01 + <_> + + 0 -1 406 9.3555898638442159e-04 + + 3.6054810881614685e-01 5.4398590326309204e-01 + <_> + + 0 -1 407 1.4901650138199329e-02 + + 4.8862120509147644e-01 7.6875698566436768e-01 + <_> + + 0 -1 408 6.1594118596985936e-04 + + 5.3568130731582642e-01 3.2409390807151794e-01 + <_> + + 0 -1 409 -5.0670988857746124e-02 + + 1.8486219644546509e-01 5.2304041385650635e-01 + <_> + + 0 -1 410 6.8665749859064817e-04 + + 3.8405799865722656e-01 5.5179458856582642e-01 + <_> + + 0 -1 411 8.3712432533502579e-03 + + 4.2885640263557434e-01 6.1317539215087891e-01 + <_> + + 0 -1 412 -1.2953069526702166e-03 + + 2.9136741161346436e-01 5.2807378768920898e-01 + <_> + + 0 -1 413 -4.1941680014133453e-02 + + 7.5547999143600464e-01 4.8560309410095215e-01 + <_> + + 0 -1 414 -2.3529380559921265e-02 + + 2.8382799029350281e-01 5.2560812234878540e-01 + <_> + + 0 -1 415 4.0857449173927307e-02 + + 4.8709350824356079e-01 6.2772971391677856e-01 + <_> + + 0 -1 416 -2.5406869128346443e-02 + + 7.0997077226638794e-01 4.5750290155410767e-01 + <_> + + 0 -1 417 -4.1415440500713885e-04 + + 4.0308868885040283e-01 5.4694122076034546e-01 + <_> + + 0 -1 418 2.1824119612574577e-02 + + 4.5020240545272827e-01 6.7687010765075684e-01 + <_> + + 0 -1 419 1.4114039950072765e-02 + + 5.4428607225418091e-01 3.7917000055313110e-01 + <_> + + 0 -1 420 6.7214590671937913e-05 + + 4.2004638910293579e-01 5.8734762668609619e-01 + <_> + + 0 -1 421 -7.9417638480663300e-03 + + 3.7925618886947632e-01 5.5852657556533813e-01 + <_> + + 0 -1 422 -7.2144409641623497e-03 + + 7.2531038522720337e-01 4.6035489439964294e-01 + <_> + + 0 -1 423 2.5817339774221182e-03 + + 4.6933019161224365e-01 5.9002387523651123e-01 + <_> + + 0 -1 424 1.3409319519996643e-01 + + 5.1492130756378174e-01 1.8088449537754059e-01 + <_> + + 0 -1 425 2.2962710354477167e-03 + + 5.3997439146041870e-01 3.7178671360015869e-01 + <_> + + 0 -1 426 -2.1575849968940020e-03 + + 2.4084959924221039e-01 5.1488637924194336e-01 + <_> + + 0 -1 427 -4.9196188338100910e-03 + + 6.5735882520675659e-01 4.7387400269508362e-01 + <_> + + 0 -1 428 1.6267469618469477e-03 + + 4.1928219795227051e-01 6.3031142950057983e-01 + <_> + + 0 -1 429 3.3413388882763684e-04 + + 5.5402982234954834e-01 3.7021011114120483e-01 + <_> + + 0 -1 430 -2.6698080822825432e-02 + + 1.7109179496765137e-01 5.1014107465744019e-01 + <_> + + 0 -1 431 -3.0561879277229309e-02 + + 1.9042180478572845e-01 5.1687937974929810e-01 + <_> + + 0 -1 432 2.8511548880487680e-03 + + 4.4475069642066956e-01 6.3138538599014282e-01 + <_> + + 0 -1 433 -3.6211479455232620e-02 + + 2.4907270073890686e-01 5.3773492574691772e-01 + <_> + + 0 -1 434 -2.4115189444273710e-03 + + 5.3812432289123535e-01 3.6642369627952576e-01 + <_> + + 0 -1 435 -7.7253201743587852e-04 + + 5.5302321910858154e-01 3.5415500402450562e-01 + <_> + + 0 -1 436 2.9481729143299162e-04 + + 4.1326990723609924e-01 5.6672430038452148e-01 + <_> + + 0 -1 437 -6.2334560789167881e-03 + + 9.8787233233451843e-02 5.1986688375473022e-01 + <_> + + 0 -1 438 -2.6274729520082474e-02 + + 9.1127492487430573e-02 5.0281071662902832e-01 + <_> + + 0 -1 439 5.3212260827422142e-03 + + 4.7266489267349243e-01 6.2227207422256470e-01 + <_> + + 0 -1 440 -4.1129058226943016e-03 + + 2.1574570238590240e-01 5.1378047466278076e-01 + <_> + + 0 -1 441 3.2457809429615736e-03 + + 5.4107707738876343e-01 3.7217769026756287e-01 + <_> + + 0 -1 442 -1.6359709203243256e-02 + + 7.7878749370574951e-01 4.6852919459342957e-01 + <_> + + 0 -1 443 3.2166109303943813e-04 + + 5.4789870977401733e-01 4.2403739690780640e-01 + <_> + + 0 -1 444 6.4452440710738301e-04 + + 5.3305608034133911e-01 3.5013249516487122e-01 + <_> + + 0 -1 445 -7.8909732401371002e-03 + + 6.9235211610794067e-01 4.7265690565109253e-01 + <_> + + 0 -1 446 4.8336211591959000e-02 + + 5.0559002161026001e-01 7.5749203562736511e-02 + <_> + + 0 -1 447 -7.5178127735853195e-04 + + 3.7837418913841248e-01 5.5385738611221313e-01 + <_> + + 0 -1 448 -2.4953910615295172e-03 + + 3.0816510319709778e-01 5.3596121072769165e-01 + <_> + + 0 -1 449 -2.2385010961443186e-03 + + 6.6339588165283203e-01 4.6493428945541382e-01 + <_> + + 0 -1 450 -1.7988430336117744e-03 + + 6.5968447923660278e-01 4.3471878767013550e-01 + <_> + + 0 -1 451 8.7860915809869766e-03 + + 5.2318328619003296e-01 2.3155799508094788e-01 + <_> + + 0 -1 452 3.6715380847454071e-03 + + 5.2042502164840698e-01 2.9773768782615662e-01 + <_> + + 0 -1 453 -3.5336449742317200e-02 + + 7.2388780117034912e-01 4.8615050315856934e-01 + <_> + + 0 -1 454 -6.9189240457490087e-04 + + 3.1050220131874084e-01 5.2298247814178467e-01 + <_> + + 0 -1 455 -3.3946109469980001e-03 + + 3.1389680504798889e-01 5.2101737260818481e-01 + <_> + + 0 -1 456 9.8569283727556467e-04 + + 4.5365801453590393e-01 6.5850979089736938e-01 + <_> + + 0 -1 457 -5.0163101404905319e-02 + + 1.8044540286064148e-01 5.1989167928695679e-01 + <_> + + 0 -1 458 -2.2367259953171015e-03 + + 7.2557020187377930e-01 4.6513590216636658e-01 + <_> + + 0 -1 459 7.4326287722215056e-04 + + 4.4129210710525513e-01 5.8985459804534912e-01 + <_> + + 0 -1 460 -9.3485182151198387e-04 + + 3.5000529885292053e-01 5.3660178184509277e-01 + <_> + + 0 -1 461 1.7497939988970757e-02 + + 4.9121949076652527e-01 8.3152848482131958e-01 + <_> + + 0 -1 462 -1.5200000489130616e-03 + + 3.5702759027481079e-01 5.3705602884292603e-01 + <_> + + 0 -1 463 7.8003940870985389e-04 + + 4.3537721037864685e-01 5.9673351049423218e-01 + <_> + 103 + 5.0610481262207031e+01 + + <_> + + 0 -1 464 -9.9945552647113800e-03 + + 6.1625832319259644e-01 3.0545330047607422e-01 + <_> + + 0 -1 465 -1.1085229925811291e-03 + + 5.8182948827743530e-01 3.1555780768394470e-01 + <_> + + 0 -1 466 1.0364380432292819e-03 + + 2.5520521402359009e-01 5.6929117441177368e-01 + <_> + + 0 -1 467 6.8211311008781195e-04 + + 3.6850899457931519e-01 5.9349310398101807e-01 + <_> + + 0 -1 468 -6.8057340104132891e-04 + + 2.3323920369148254e-01 5.4747921228408813e-01 + <_> + + 0 -1 469 2.6068789884448051e-04 + + 3.2574570178985596e-01 5.6675457954406738e-01 + <_> + + 0 -1 470 5.1607372006401420e-04 + + 3.7447169423103333e-01 5.8454728126525879e-01 + <_> + + 0 -1 471 8.5007521556690335e-04 + + 3.4203711152076721e-01 5.5228072404861450e-01 + <_> + + 0 -1 472 -1.8607829697430134e-03 + + 2.8044199943542480e-01 5.3754240274429321e-01 + <_> + + 0 -1 473 -1.5033970121294260e-03 + + 2.5790509581565857e-01 5.4989522695541382e-01 + <_> + + 0 -1 474 2.3478909861296415e-03 + + 4.1751560568809509e-01 6.3137108087539673e-01 + <_> + + 0 -1 475 -2.8880240279249847e-04 + + 5.8651697635650635e-01 4.0526661276817322e-01 + <_> + + 0 -1 476 8.9405477046966553e-03 + + 5.2111411094665527e-01 2.3186540603637695e-01 + <_> + + 0 -1 477 -1.9327739253640175e-02 + + 2.7534329891204834e-01 5.2415257692337036e-01 + <_> + + 0 -1 478 -2.0202060113660991e-04 + + 5.7229787111282349e-01 3.6771959066390991e-01 + <_> + + 0 -1 479 2.1179069299250841e-03 + + 4.4661080837249756e-01 5.5424308776855469e-01 + <_> + + 0 -1 480 -1.7743760254234076e-03 + + 2.8132531046867371e-01 5.3009599447250366e-01 + <_> + + 0 -1 481 4.2234458960592747e-03 + + 4.3997099995613098e-01 5.7954281568527222e-01 + <_> + + 0 -1 482 -1.4375220052897930e-02 + + 2.9811179637908936e-01 5.2920591831207275e-01 + <_> + + 0 -1 483 -1.5349180437624454e-02 + + 7.7052152156829834e-01 4.7481718659400940e-01 + <_> + + 0 -1 484 1.5152279956964776e-05 + + 3.7188440561294556e-01 5.5768972635269165e-01 + <_> + + 0 -1 485 -9.1293919831514359e-03 + + 3.6151960492134094e-01 5.2867668867111206e-01 + <_> + + 0 -1 486 2.2512159775942564e-03 + + 5.3647047281265259e-01 3.4862980246543884e-01 + <_> + + 0 -1 487 -4.9696918576955795e-03 + + 6.9276517629623413e-01 4.6768361330032349e-01 + <_> + + 0 -1 488 -1.2829010374844074e-02 + + 7.7121537923812866e-01 4.6607351303100586e-01 + <_> + + 0 -1 489 -9.3660065904259682e-03 + + 3.3749839663505554e-01 5.3512877225875854e-01 + <_> + + 0 -1 490 3.2452319283038378e-03 + + 5.3251898288726807e-01 3.2896101474761963e-01 + <_> + + 0 -1 491 -1.1723560281097889e-02 + + 6.8376529216766357e-01 4.7543001174926758e-01 + <_> + + 0 -1 492 2.9257940695970319e-05 + + 3.5720878839492798e-01 5.3605020046234131e-01 + <_> + + 0 -1 493 -2.2244219508138485e-05 + + 5.5414271354675293e-01 3.5520640015602112e-01 + <_> + + 0 -1 494 5.0881509669125080e-03 + + 5.0708442926406860e-01 1.2564620375633240e-01 + <_> + + 0 -1 495 2.7429679408669472e-02 + + 5.2695602178573608e-01 1.6258180141448975e-01 + <_> + + 0 -1 496 -6.4142867922782898e-03 + + 7.1455889940261841e-01 4.5841971039772034e-01 + <_> + + 0 -1 497 3.3479959238320589e-03 + + 5.3986120223999023e-01 3.4946969151496887e-01 + <_> + + 0 -1 498 -8.2635492086410522e-02 + + 2.4391929805278778e-01 5.1602262258529663e-01 + <_> + + 0 -1 499 1.0261740535497665e-03 + + 3.8868919014930725e-01 5.7679080963134766e-01 + <_> + + 0 -1 500 -1.6307090409100056e-03 + + 3.3894580602645874e-01 5.3477007150650024e-01 + <_> + + 0 -1 501 2.4546680506318808e-03 + + 4.6014139056205750e-01 6.3872468471527100e-01 + <_> + + 0 -1 502 -9.9476519972085953e-04 + + 5.7698792219161987e-01 4.1203960776329041e-01 + <_> + + 0 -1 503 1.5409190207719803e-02 + + 4.8787090182304382e-01 7.0898222923278809e-01 + <_> + + 0 -1 504 1.1784400558099151e-03 + + 5.2635532617568970e-01 2.8952449560165405e-01 + <_> + + 0 -1 505 -2.7701919898390770e-02 + + 1.4988289773464203e-01 5.2196067571640015e-01 + <_> + + 0 -1 506 -2.9505399987101555e-02 + + 2.4893319234251976e-02 4.9998161196708679e-01 + <_> + + 0 -1 507 4.5159430010244250e-04 + + 5.4646229743957520e-01 4.0296629071235657e-01 + <_> + + 0 -1 508 7.1772639639675617e-03 + + 4.2710569500923157e-01 5.8662968873977661e-01 + <_> + + 0 -1 509 -7.4182048439979553e-02 + + 6.8741792440414429e-01 4.9190279841423035e-01 + <_> + + 0 -1 510 -1.7254160717129707e-02 + + 3.3706760406494141e-01 5.3487390279769897e-01 + <_> + + 0 -1 511 1.4851559884846210e-02 + + 4.6267929673194885e-01 6.1299049854278564e-01 + <_> + + 0 -1 512 1.0002000257372856e-02 + + 5.3461229801177979e-01 3.4234538674354553e-01 + <_> + + 0 -1 513 2.0138120744377375e-03 + + 4.6438300609588623e-01 5.8243042230606079e-01 + <_> + + 0 -1 514 1.5135470312088728e-03 + + 5.1963961124420166e-01 2.8561499714851379e-01 + <_> + + 0 -1 515 3.1381431035697460e-03 + + 4.8381629586219788e-01 5.9585297107696533e-01 + <_> + + 0 -1 516 -5.1450440660119057e-03 + + 8.9203029870986938e-01 4.7414121031761169e-01 + <_> + + 0 -1 517 -4.4736708514392376e-03 + + 2.0339429378509521e-01 5.3372788429260254e-01 + <_> + + 0 -1 518 1.9628470763564110e-03 + + 4.5716339349746704e-01 6.7258632183074951e-01 + <_> + + 0 -1 519 5.4260450415313244e-03 + + 5.2711081504821777e-01 2.8456708788871765e-01 + <_> + + 0 -1 520 4.9611460417509079e-04 + + 4.1383129358291626e-01 5.7185977697372437e-01 + <_> + + 0 -1 521 9.3728788197040558e-03 + + 5.2251511812210083e-01 2.8048470616340637e-01 + <_> + + 0 -1 522 6.0500897234305739e-04 + + 5.2367687225341797e-01 3.3145239949226379e-01 + <_> + + 0 -1 523 5.6792551185935736e-04 + + 4.5310598611831665e-01 6.2769711017608643e-01 + <_> + + 0 -1 524 2.4644339457154274e-02 + + 5.1308518648147583e-01 2.0171439647674561e-01 + <_> + + 0 -1 525 -1.0290450416505337e-02 + + 7.7865952253341675e-01 4.8766410350799561e-01 + <_> + + 0 -1 526 2.0629419013857841e-03 + + 4.2885988950729370e-01 5.8812642097473145e-01 + <_> + + 0 -1 527 -5.0519481301307678e-03 + + 3.5239779949188232e-01 5.2860087156295776e-01 + <_> + + 0 -1 528 -5.7692620903253555e-03 + + 6.8410861492156982e-01 4.5880940556526184e-01 + <_> + + 0 -1 529 -4.5789941214025021e-04 + + 3.5655200481414795e-01 5.4859781265258789e-01 + <_> + + 0 -1 530 -7.5918837683275342e-04 + + 3.3687931299209595e-01 5.2541971206665039e-01 + <_> + + 0 -1 531 -1.7737259622663260e-03 + + 3.4221610426902771e-01 5.4540151357650757e-01 + <_> + + 0 -1 532 -8.5610467940568924e-03 + + 6.5336120128631592e-01 4.4858568906784058e-01 + <_> + + 0 -1 533 1.7277270089834929e-03 + + 5.3075802326202393e-01 3.9253529906272888e-01 + <_> + + 0 -1 534 -2.8199609369039536e-02 + + 6.8574589490890503e-01 4.5885840058326721e-01 + <_> + + 0 -1 535 -1.7781109781935811e-03 + + 4.0378510951995850e-01 5.3698569536209106e-01 + <_> + + 0 -1 536 3.3177141449414194e-04 + + 5.3997987508773804e-01 3.7057501077651978e-01 + <_> + + 0 -1 537 2.6385399978607893e-03 + + 4.6654370427131653e-01 6.4527308940887451e-01 + <_> + + 0 -1 538 -2.1183069329708815e-03 + + 5.9147810935974121e-01 4.0646770596504211e-01 + <_> + + 0 -1 539 -1.4773289673030376e-02 + + 3.6420381069183350e-01 5.2947628498077393e-01 + <_> + + 0 -1 540 -1.6815440729260445e-02 + + 2.6642319560050964e-01 5.1449728012084961e-01 + <_> + + 0 -1 541 -6.3370140269398689e-03 + + 6.7795312404632568e-01 4.8520979285240173e-01 + <_> + + 0 -1 542 -4.4560048991115764e-05 + + 5.6139647960662842e-01 4.1530540585517883e-01 + <_> + + 0 -1 543 -1.0240620467811823e-03 + + 5.9644782543182373e-01 4.5663040876388550e-01 + <_> + + 0 -1 544 -2.3161689750850201e-03 + + 2.9761150479316711e-01 5.1881599426269531e-01 + <_> + + 0 -1 545 5.3217571973800659e-01 + + 5.1878392696380615e-01 2.2026319801807404e-01 + <_> + + 0 -1 546 -1.6643050312995911e-01 + + 1.8660229444503784e-01 5.0603431463241577e-01 + <_> + + 0 -1 547 1.1253529787063599e-01 + + 5.2121251821517944e-01 1.1850229650735855e-01 + <_> + + 0 -1 548 9.3046864494681358e-03 + + 4.5899370312690735e-01 6.8261492252349854e-01 + <_> + + 0 -1 549 -4.6255099587142467e-03 + + 3.0799409747123718e-01 5.2250087261199951e-01 + <_> + + 0 -1 550 -1.1116469651460648e-01 + + 2.1010440587997437e-01 5.0808018445968628e-01 + <_> + + 0 -1 551 -1.0888439603149891e-02 + + 5.7653552293777466e-01 4.7904640436172485e-01 + <_> + + 0 -1 552 5.8564301580190659e-03 + + 5.0651001930236816e-01 1.5635989606380463e-01 + <_> + + 0 -1 553 5.4854389280080795e-02 + + 4.9669149518013000e-01 7.2305107116699219e-01 + <_> + + 0 -1 554 -1.1197339743375778e-02 + + 2.1949790418148041e-01 5.0987982749938965e-01 + <_> + + 0 -1 555 4.4069071300327778e-03 + + 4.7784018516540527e-01 6.7709028720855713e-01 + <_> + + 0 -1 556 -6.3665293157100677e-02 + + 1.9363629817962646e-01 5.0810241699218750e-01 + <_> + + 0 -1 557 -9.8081491887569427e-03 + + 5.9990632534027100e-01 4.8103410005569458e-01 + <_> + + 0 -1 558 -2.1717099007219076e-03 + + 3.3383339643478394e-01 5.2354729175567627e-01 + <_> + + 0 -1 559 -1.3315520249307156e-02 + + 6.6170698404312134e-01 4.9192130565643311e-01 + <_> + + 0 -1 560 2.5442079640924931e-03 + + 4.4887441396713257e-01 6.0821849107742310e-01 + <_> + + 0 -1 561 1.2037839740514755e-02 + + 5.4093921184539795e-01 3.2924321293830872e-01 + <_> + + 0 -1 562 -2.0701050758361816e-02 + + 6.8191200494766235e-01 4.5949959754943848e-01 + <_> + + 0 -1 563 2.7608279138803482e-02 + + 4.6307921409606934e-01 5.7672828435897827e-01 + <_> + + 0 -1 564 1.2370620388537645e-03 + + 5.1653790473937988e-01 2.6350161433219910e-01 + <_> + + 0 -1 565 -3.7669338285923004e-02 + + 2.5363931059837341e-01 5.2789801359176636e-01 + <_> + + 0 -1 566 -1.8057259730994701e-03 + + 3.9851561188697815e-01 5.5175000429153442e-01 + <_> + 111 + 5.4620071411132812e+01 + + <_> + + 0 -1 567 4.4299028813838959e-03 + + 2.8910180926322937e-01 6.3352262973785400e-01 + <_> + + 0 -1 568 -2.3813319858163595e-03 + + 6.2117892503738403e-01 3.4774878621101379e-01 + <_> + + 0 -1 569 2.2915711160749197e-03 + + 2.2544120252132416e-01 5.5821180343627930e-01 + <_> + + 0 -1 570 9.9457940086722374e-04 + + 3.7117108702659607e-01 5.9300708770751953e-01 + <_> + + 0 -1 571 7.7164667891338468e-04 + + 5.6517201662063599e-01 3.3479958772659302e-01 + <_> + + 0 -1 572 -1.1386410333216190e-03 + + 3.0691260099411011e-01 5.5086308717727661e-01 + <_> + + 0 -1 573 -1.6403039626311511e-04 + + 5.7628279924392700e-01 3.6990478634834290e-01 + <_> + + 0 -1 574 2.9793529392918572e-05 + + 2.6442441344261169e-01 5.4379111528396606e-01 + <_> + + 0 -1 575 8.5774902254343033e-03 + + 5.0511389970779419e-01 1.7957249283790588e-01 + <_> + + 0 -1 576 -2.6032689493149519e-04 + + 5.8269691467285156e-01 4.4468268752098083e-01 + <_> + + 0 -1 577 -6.1404630541801453e-03 + + 3.1138521432876587e-01 5.3469717502593994e-01 + <_> + + 0 -1 578 -2.3086950182914734e-02 + + 3.2779461145401001e-01 5.3311979770660400e-01 + <_> + + 0 -1 579 -1.4243650250136852e-02 + + 7.3817098140716553e-01 4.5880630612373352e-01 + <_> + + 0 -1 580 1.9487129524350166e-02 + + 5.2566307783126831e-01 2.2744719684123993e-01 + <_> + + 0 -1 581 -9.6681108698248863e-04 + + 5.5112308263778687e-01 3.8150069117546082e-01 + <_> + + 0 -1 582 3.1474709976464510e-03 + + 5.4256367683410645e-01 2.5437268614768982e-01 + <_> + + 0 -1 583 -1.8026070029009134e-04 + + 5.3801918029785156e-01 3.4063041210174561e-01 + <_> + + 0 -1 584 -6.0266260989010334e-03 + + 3.0358019471168518e-01 5.4205721616744995e-01 + <_> + + 0 -1 585 4.4462960795499384e-04 + + 3.9909970760345459e-01 5.6601101160049438e-01 + <_> + + 0 -1 586 2.2609760053455830e-03 + + 5.5628067255020142e-01 3.9406880736351013e-01 + <_> + + 0 -1 587 5.1133058965206146e-02 + + 4.6096539497375488e-01 7.1185618638992310e-01 + <_> + + 0 -1 588 -1.7786309123039246e-02 + + 2.3161660134792328e-01 5.3221440315246582e-01 + <_> + + 0 -1 589 -4.9679628573358059e-03 + + 2.3307719826698303e-01 5.1220291852951050e-01 + <_> + + 0 -1 590 2.0667689386755228e-03 + + 4.6574440598487854e-01 6.4554882049560547e-01 + <_> + + 0 -1 591 7.4413768015801907e-03 + + 5.1543921232223511e-01 2.3616339266300201e-01 + <_> + + 0 -1 592 -3.6277279723435640e-03 + + 6.2197732925415039e-01 4.4766610860824585e-01 + <_> + + 0 -1 593 -5.3530759178102016e-03 + + 1.8373550474643707e-01 5.1022082567214966e-01 + <_> + + 0 -1 594 1.4530919492244720e-01 + + 5.1459872722625732e-01 1.5359309315681458e-01 + <_> + + 0 -1 595 2.4394490756094456e-03 + + 5.3436601161956787e-01 3.6246618628501892e-01 + <_> + + 0 -1 596 -3.1283390708267689e-03 + + 6.2150079011917114e-01 4.8455920815467834e-01 + <_> + + 0 -1 597 1.7940260004252195e-03 + + 4.2992618680000305e-01 5.8241981267929077e-01 + <_> + + 0 -1 598 3.6253821104764938e-02 + + 5.2603340148925781e-01 1.4394679665565491e-01 + <_> + + 0 -1 599 -5.1746722310781479e-03 + + 3.5065388679504395e-01 5.2870452404022217e-01 + <_> + + 0 -1 600 6.5383297624066472e-04 + + 4.8096409440040588e-01 6.1220401525497437e-01 + <_> + + 0 -1 601 -2.6480229571461678e-02 + + 1.1393620073795319e-01 5.0455862283706665e-01 + <_> + + 0 -1 602 -3.0440660193562508e-03 + + 6.3520950078964233e-01 4.7947341203689575e-01 + <_> + + 0 -1 603 3.6993520334362984e-03 + + 5.1311182975769043e-01 2.4985109269618988e-01 + <_> + + 0 -1 604 -3.6762931267730892e-04 + + 5.4213947057723999e-01 3.7095320224761963e-01 + <_> + + 0 -1 605 -4.1382260620594025e-02 + + 1.8949599564075470e-01 5.0816917419433594e-01 + <_> + + 0 -1 606 -1.0532729793339968e-03 + + 6.4543670415878296e-01 4.7836089134216309e-01 + <_> + + 0 -1 607 -2.1648600231856108e-03 + + 6.2150311470031738e-01 4.4998261332511902e-01 + <_> + + 0 -1 608 -5.6747748749330640e-04 + + 3.7126109004020691e-01 5.4193347692489624e-01 + <_> + + 0 -1 609 1.7375840246677399e-01 + + 5.0236439704895020e-01 1.2157420068979263e-01 + <_> + + 0 -1 610 -2.9049699660390615e-03 + + 3.2402679324150085e-01 5.3818839788436890e-01 + <_> + + 0 -1 611 1.2299539521336555e-03 + + 4.1655078530311584e-01 5.7034862041473389e-01 + <_> + + 0 -1 612 -5.4329237900674343e-04 + + 3.8540428876876831e-01 5.5475491285324097e-01 + <_> + + 0 -1 613 -8.3297258242964745e-03 + + 2.2044940292835236e-01 5.0970828533172607e-01 + <_> + + 0 -1 614 -1.0417630255687982e-04 + + 5.6070661544799805e-01 4.3030360341072083e-01 + <_> + + 0 -1 615 3.1204700469970703e-02 + + 4.6216571331024170e-01 6.9820040464401245e-01 + <_> + + 0 -1 616 7.8943502157926559e-03 + + 5.2695941925048828e-01 2.2690680623054504e-01 + <_> + + 0 -1 617 -4.3645310215651989e-03 + + 6.3592231273651123e-01 4.5379561185836792e-01 + <_> + + 0 -1 618 7.6793059706687927e-03 + + 5.2747678756713867e-01 2.7404838800430298e-01 + <_> + + 0 -1 619 -2.5431139394640923e-02 + + 2.0385199785232544e-01 5.0717329978942871e-01 + <_> + + 0 -1 620 8.2000601105391979e-04 + + 4.5874550938606262e-01 6.1198681592941284e-01 + <_> + + 0 -1 621 2.9284600168466568e-03 + + 5.0712740421295166e-01 2.0282049477100372e-01 + <_> + + 0 -1 622 4.5256470912136137e-05 + + 4.8121041059494019e-01 5.4308217763900757e-01 + <_> + + 0 -1 623 1.3158309739083052e-03 + + 4.6258139610290527e-01 6.7793232202529907e-01 + <_> + + 0 -1 624 1.5870389761403203e-03 + + 5.3862917423248291e-01 3.4314650297164917e-01 + <_> + + 0 -1 625 -2.1539660170674324e-02 + + 2.5942500680685043e-02 5.0032228231430054e-01 + <_> + + 0 -1 626 1.4334480278193951e-02 + + 5.2028447389602661e-01 1.5906329452991486e-01 + <_> + + 0 -1 627 -8.3881383761763573e-03 + + 7.2824811935424805e-01 4.6480441093444824e-01 + <_> + + 0 -1 628 9.1906841844320297e-03 + + 5.5623567104339600e-01 3.9231911301612854e-01 + <_> + + 0 -1 629 -5.8453059755265713e-03 + + 6.8033927679061890e-01 4.6291279792785645e-01 + <_> + + 0 -1 630 -5.4707799106836319e-02 + + 2.5616711378097534e-01 5.2061259746551514e-01 + <_> + + 0 -1 631 9.1142775490880013e-03 + + 5.1896202564239502e-01 3.0538770556449890e-01 + <_> + + 0 -1 632 -1.5575000084936619e-02 + + 1.2950749695301056e-01 5.1690948009490967e-01 + <_> + + 0 -1 633 -1.2050600344082341e-04 + + 5.7350981235504150e-01 4.2308250069618225e-01 + <_> + + 0 -1 634 1.2273970060050488e-03 + + 5.2898782491683960e-01 4.0797919034957886e-01 + <_> + + 0 -1 635 -1.2186600361019373e-03 + + 6.5756398439407349e-01 4.5744091272354126e-01 + <_> + + 0 -1 636 -3.3256649039685726e-03 + + 3.6280471086502075e-01 5.1950198411941528e-01 + <_> + + 0 -1 637 -1.3288309797644615e-02 + + 1.2842659652233124e-01 5.0434887409210205e-01 + <_> + + 0 -1 638 -3.3839771058410406e-03 + + 6.2922400236129761e-01 4.7575059533119202e-01 + <_> + + 0 -1 639 -2.1954220533370972e-01 + + 1.4877319335937500e-01 5.0650137662887573e-01 + <_> + + 0 -1 640 4.9111708067357540e-03 + + 4.2561021447181702e-01 5.6658387184143066e-01 + <_> + + 0 -1 641 -1.8744950648397207e-04 + + 4.0041440725326538e-01 5.5868571996688843e-01 + <_> + + 0 -1 642 -5.2178641781210899e-03 + + 6.0091161727905273e-01 4.8127061128616333e-01 + <_> + + 0 -1 643 -1.1111519997939467e-03 + + 3.5149338841438293e-01 5.2870899438858032e-01 + <_> + + 0 -1 644 4.4036400504410267e-03 + + 4.6422758698463440e-01 5.9240859746932983e-01 + <_> + + 0 -1 645 1.2299499660730362e-01 + + 5.0255292654037476e-01 6.9152481853961945e-02 + <_> + + 0 -1 646 -1.2313510291278362e-02 + + 5.8845919370651245e-01 4.9340128898620605e-01 + <_> + + 0 -1 647 4.1471039876341820e-03 + + 4.3722391128540039e-01 5.8934777975082397e-01 + <_> + + 0 -1 648 -3.5502649843692780e-03 + + 4.3275511264801025e-01 5.3962701559066772e-01 + <_> + + 0 -1 649 -1.9224269315600395e-02 + + 1.9131340086460114e-01 5.0683307647705078e-01 + <_> + + 0 -1 650 1.4395059552043676e-03 + + 5.3081780672073364e-01 4.2435330152511597e-01 + <_> + + 0 -1 651 -6.7751999013125896e-03 + + 6.3653957843780518e-01 4.5400860905647278e-01 + <_> + + 0 -1 652 7.0119630545377731e-03 + + 5.1898342370986938e-01 3.0261999368667603e-01 + <_> + + 0 -1 653 5.4014651104807854e-03 + + 5.1050621271133423e-01 2.5576829910278320e-01 + <_> + + 0 -1 654 9.0274988906458020e-04 + + 4.6969148516654968e-01 5.8618277311325073e-01 + <_> + + 0 -1 655 1.1474450118839741e-02 + + 5.0536459684371948e-01 1.5271779894828796e-01 + <_> + + 0 -1 656 -6.7023430019617081e-03 + + 6.5089809894561768e-01 4.8906040191650391e-01 + <_> + + 0 -1 657 -2.0462959073483944e-03 + + 6.2418168783187866e-01 4.5146000385284424e-01 + <_> + + 0 -1 658 -9.9951568990945816e-03 + + 3.4327811002731323e-01 5.4009538888931274e-01 + <_> + + 0 -1 659 -3.5700708627700806e-02 + + 1.8780590593814850e-01 5.0740778446197510e-01 + <_> + + 0 -1 660 4.5584561303257942e-04 + + 3.8052770495414734e-01 5.4025697708129883e-01 + <_> + + 0 -1 661 -5.4260600358247757e-02 + + 6.8437147140502930e-01 4.5950970053672791e-01 + <_> + + 0 -1 662 6.0600461438298225e-03 + + 5.5029052495956421e-01 4.5005279779434204e-01 + <_> + + 0 -1 663 -6.4791832119226456e-03 + + 3.3688580989837646e-01 5.3107571601867676e-01 + <_> + + 0 -1 664 -1.4939469983801246e-03 + + 6.4876401424407959e-01 4.7561758756637573e-01 + <_> + + 0 -1 665 1.4610530342906713e-05 + + 4.0345790982246399e-01 5.4510641098022461e-01 + <_> + + 0 -1 666 -7.2321938350796700e-03 + + 6.3868737220764160e-01 4.8247399926185608e-01 + <_> + + 0 -1 667 -4.0645818226039410e-03 + + 2.9864218831062317e-01 5.1573359966278076e-01 + <_> + + 0 -1 668 3.0463080853223801e-02 + + 5.0221997499465942e-01 7.1599560976028442e-01 + <_> + + 0 -1 669 -8.0544911324977875e-03 + + 6.4924520254135132e-01 4.6192750334739685e-01 + <_> + + 0 -1 670 3.9505138993263245e-02 + + 5.1505708694458008e-01 2.4506139755249023e-01 + <_> + + 0 -1 671 8.4530208259820938e-03 + + 4.5736691355705261e-01 6.3940370082855225e-01 + <_> + + 0 -1 672 -1.1688120430335402e-03 + + 3.8655120134353638e-01 5.4836612939834595e-01 + <_> + + 0 -1 673 2.8070670086890459e-03 + + 5.1285791397094727e-01 2.7014800906181335e-01 + <_> + + 0 -1 674 4.7365209320560098e-04 + + 4.0515819191932678e-01 5.3874611854553223e-01 + <_> + + 0 -1 675 1.1741080321371555e-02 + + 5.2959501743316650e-01 3.7194138765335083e-01 + <_> + + 0 -1 676 3.1833238899707794e-03 + + 4.7894069552421570e-01 6.8951261043548584e-01 + <_> + + 0 -1 677 7.0241501089185476e-04 + + 5.3844892978668213e-01 3.9180809259414673e-01 + <_> + 102 + 5.0169731140136719e+01 + + <_> + + 0 -1 678 1.7059929668903351e-02 + + 3.9485278725624084e-01 7.1425348520278931e-01 + <_> + + 0 -1 679 2.1840840578079224e-02 + + 3.3703160285949707e-01 6.0900169610977173e-01 + <_> + + 0 -1 680 2.4520049919374287e-04 + + 3.5005760192871094e-01 5.9879022836685181e-01 + <_> + + 0 -1 681 8.3272606134414673e-03 + + 3.2675281167030334e-01 5.6972408294677734e-01 + <_> + + 0 -1 682 5.7148298947140574e-04 + + 3.0445998907089233e-01 5.5316567420959473e-01 + <_> + + 0 -1 683 6.7373987985774875e-04 + + 3.6500120162963867e-01 5.6726312637329102e-01 + <_> + + 0 -1 684 3.4681590477703139e-05 + + 3.3135411143302917e-01 5.3887271881103516e-01 + <_> + + 0 -1 685 -5.8563398197293282e-03 + + 2.6979428529739380e-01 5.4987788200378418e-01 + <_> + + 0 -1 686 8.5102273151278496e-03 + + 5.2693581581115723e-01 2.7628791332244873e-01 + <_> + + 0 -1 687 -6.9817207753658295e-02 + + 2.9096031188964844e-01 5.2592468261718750e-01 + <_> + + 0 -1 688 -8.6113670840859413e-04 + + 5.8925771713256836e-01 4.0736979246139526e-01 + <_> + + 0 -1 689 9.7149249631911516e-04 + + 3.5235640406608582e-01 5.4158622026443481e-01 + <_> + + 0 -1 690 -1.4727490452060010e-05 + + 5.4230177402496338e-01 3.5031560063362122e-01 + <_> + + 0 -1 691 4.8420291393995285e-02 + + 5.1939457654953003e-01 3.4111958742141724e-01 + <_> + + 0 -1 692 1.3257140526548028e-03 + + 3.1577691435813904e-01 5.3353762626647949e-01 + <_> + + 0 -1 693 1.4922149603080470e-05 + + 4.4512999057769775e-01 5.5365538597106934e-01 + <_> + + 0 -1 694 -2.7173398993909359e-03 + + 3.0317419767379761e-01 5.2480888366699219e-01 + <_> + + 0 -1 695 2.9219500720500946e-03 + + 4.7814530134201050e-01 6.6060417890548706e-01 + <_> + + 0 -1 696 -1.9804988987743855e-03 + + 3.1863081455230713e-01 5.2876251935958862e-01 + <_> + + 0 -1 697 -4.0012109093368053e-03 + + 6.4135968685150146e-01 4.7499281167984009e-01 + <_> + + 0 -1 698 -4.3491991236805916e-03 + + 1.5074980258941650e-01 5.0989967584609985e-01 + <_> + + 0 -1 699 1.3490889687091112e-03 + + 4.3161588907241821e-01 5.8811670541763306e-01 + <_> + + 0 -1 700 1.8597070127725601e-02 + + 4.7355538606643677e-01 9.0897941589355469e-01 + <_> + + 0 -1 701 -1.8562379991635680e-03 + + 3.5531890392303467e-01 5.5778372287750244e-01 + <_> + + 0 -1 702 2.2940430790185928e-03 + + 4.5000949501991272e-01 6.5808779001235962e-01 + <_> + + 0 -1 703 2.9982850537635386e-04 + + 5.6292420625686646e-01 3.9758789539337158e-01 + <_> + + 0 -1 704 3.5455459728837013e-03 + + 5.3815472126007080e-01 3.6054858565330505e-01 + <_> + + 0 -1 705 9.6104722470045090e-03 + + 5.2559971809387207e-01 1.7967459559440613e-01 + <_> + + 0 -1 706 -6.2783220782876015e-03 + + 2.2728569805622101e-01 5.1140302419662476e-01 + <_> + + 0 -1 707 3.4598479978740215e-03 + + 4.6263080835342407e-01 6.6082191467285156e-01 + <_> + + 0 -1 708 -1.3112019514665008e-03 + + 6.3175398111343384e-01 4.4368579983711243e-01 + <_> + + 0 -1 709 2.6876179035753012e-03 + + 5.4211097955703735e-01 4.0540221333503723e-01 + <_> + + 0 -1 710 3.9118169806897640e-03 + + 5.3584778308868408e-01 3.2734549045562744e-01 + <_> + + 0 -1 711 -1.4206450432538986e-02 + + 7.7935767173767090e-01 4.9757811427116394e-01 + <_> + + 0 -1 712 7.1705528534948826e-04 + + 5.2973198890686035e-01 3.5609039664268494e-01 + <_> + + 0 -1 713 1.6635019565001130e-03 + + 4.6780940890312195e-01 5.8164817094802856e-01 + <_> + + 0 -1 714 3.3686188980937004e-03 + + 5.2767342329025269e-01 3.4464201331138611e-01 + <_> + + 0 -1 715 1.2799530290067196e-02 + + 4.8346799612045288e-01 7.4721592664718628e-01 + <_> + + 0 -1 716 3.3901201095432043e-03 + + 4.5118591189384460e-01 6.4017212390899658e-01 + <_> + + 0 -1 717 4.7070779837667942e-03 + + 5.3356587886810303e-01 3.5552209615707397e-01 + <_> + + 0 -1 718 1.4819339849054813e-03 + + 4.2507070302963257e-01 5.7727241516113281e-01 + <_> + + 0 -1 719 -6.9995759986341000e-03 + + 3.0033200979232788e-01 5.2929002046585083e-01 + <_> + + 0 -1 720 1.5939010307192802e-02 + + 5.0673192739486694e-01 1.6755819320678711e-01 + <_> + + 0 -1 721 7.6377349905669689e-03 + + 4.7950699925422668e-01 7.0856010913848877e-01 + <_> + + 0 -1 722 6.7334040068089962e-03 + + 5.1331132650375366e-01 2.1624700725078583e-01 + <_> + + 0 -1 723 -1.2858809903264046e-02 + + 1.9388419389724731e-01 5.2513718605041504e-01 + <_> + + 0 -1 724 -6.2270800117403269e-04 + + 5.6865382194519043e-01 4.1978681087493896e-01 + <_> + + 0 -1 725 -5.2651681471616030e-04 + + 4.2241689562797546e-01 5.4296958446502686e-01 + <_> + + 0 -1 726 1.1075099930167198e-02 + + 5.1137751340866089e-01 2.5145179033279419e-01 + <_> + + 0 -1 727 -3.6728251725435257e-02 + + 7.1946620941162109e-01 4.8496189713478088e-01 + <_> + + 0 -1 728 -2.8207109426148236e-04 + + 3.8402619957923889e-01 5.3944462537765503e-01 + <_> + + 0 -1 729 -2.7489690110087395e-03 + + 5.9370887279510498e-01 4.5691820979118347e-01 + <_> + + 0 -1 730 1.0047519579529762e-02 + + 5.1385760307312012e-01 2.8022980690002441e-01 + <_> + + 0 -1 731 -8.1497840583324432e-03 + + 6.0900372266769409e-01 4.6361210942268372e-01 + <_> + + 0 -1 732 -6.8833888508379459e-03 + + 3.4586110711097717e-01 5.2546602487564087e-01 + <_> + + 0 -1 733 -1.4039360394235700e-05 + + 5.6931042671203613e-01 4.0820831060409546e-01 + <_> + + 0 -1 734 1.5498419525101781e-03 + + 4.3505370616912842e-01 5.8065170049667358e-01 + <_> + + 0 -1 735 -6.7841499112546444e-03 + + 1.4688730239868164e-01 5.1827752590179443e-01 + <_> + + 0 -1 736 2.1705629478674382e-04 + + 5.2935242652893066e-01 3.4561741352081299e-01 + <_> + + 0 -1 737 3.1198898795992136e-04 + + 4.6524509787559509e-01 5.9424138069152832e-01 + <_> + + 0 -1 738 5.4507530294358730e-03 + + 4.6535089612007141e-01 7.0248460769653320e-01 + <_> + + 0 -1 739 -2.5818689027801156e-04 + + 5.4972952604293823e-01 3.7689670920372009e-01 + <_> + + 0 -1 740 -1.7442539334297180e-02 + + 3.9190879464149475e-01 5.4574978351593018e-01 + <_> + + 0 -1 741 -4.5343529433012009e-02 + + 1.6313570737838745e-01 5.1549088954925537e-01 + <_> + + 0 -1 742 1.9190689781680703e-03 + + 5.1458978652954102e-01 2.7918958663940430e-01 + <_> + + 0 -1 743 -6.0177869163453579e-03 + + 6.5176361799240112e-01 4.7563329339027405e-01 + <_> + + 0 -1 744 -4.0720738470554352e-03 + + 5.5146527290344238e-01 4.0926858782768250e-01 + <_> + + 0 -1 745 3.9855059003457427e-04 + + 3.1652408838272095e-01 5.2855509519577026e-01 + <_> + + 0 -1 746 -6.5418570302426815e-03 + + 6.8533778190612793e-01 4.6528089046478271e-01 + <_> + + 0 -1 747 3.4845089539885521e-03 + + 5.4845881462097168e-01 4.5027598738670349e-01 + <_> + + 0 -1 748 -1.3696780428290367e-02 + + 6.3957798480987549e-01 4.5725551247596741e-01 + <_> + + 0 -1 749 -1.7347140237689018e-02 + + 2.7510729432106018e-01 5.1816147565841675e-01 + <_> + + 0 -1 750 -4.0885428898036480e-03 + + 3.3256360888481140e-01 5.1949840784072876e-01 + <_> + + 0 -1 751 -9.4687901437282562e-03 + + 5.9422808885574341e-01 4.8518198728561401e-01 + <_> + + 0 -1 752 1.7084840219467878e-03 + + 4.1671109199523926e-01 5.5198061466217041e-01 + <_> + + 0 -1 753 9.4809094443917274e-03 + + 5.4338949918746948e-01 4.2085149884223938e-01 + <_> + + 0 -1 754 -4.7389650717377663e-03 + + 6.4071899652481079e-01 4.5606550574302673e-01 + <_> + + 0 -1 755 6.5761050209403038e-03 + + 5.2145552635192871e-01 2.2582270205020905e-01 + <_> + + 0 -1 756 -2.1690549328923225e-03 + + 3.1515279412269592e-01 5.1567047834396362e-01 + <_> + + 0 -1 757 1.4660170301795006e-02 + + 4.8708370327949524e-01 6.6899412870407104e-01 + <_> + + 0 -1 758 1.7231999663636088e-04 + + 3.5697489976882935e-01 5.2510780096054077e-01 + <_> + + 0 -1 759 -2.1803760901093483e-02 + + 8.8259208202362061e-01 4.9663299322128296e-01 + <_> + + 0 -1 760 -9.4736106693744659e-02 + + 1.4461620151996613e-01 5.0611138343811035e-01 + <_> + + 0 -1 761 5.5825551971793175e-03 + + 5.3964787721633911e-01 4.2380660772323608e-01 + <_> + + 0 -1 762 1.9517090404406190e-03 + + 4.1704109311103821e-01 5.4977869987487793e-01 + <_> + + 0 -1 763 1.2149900197982788e-02 + + 4.6983671188354492e-01 5.6642740964889526e-01 + <_> + + 0 -1 764 -7.5169620104134083e-03 + + 6.2677729129791260e-01 4.4631358981132507e-01 + <_> + + 0 -1 765 -7.1667909622192383e-02 + + 3.0970111489295959e-01 5.2210032939910889e-01 + <_> + + 0 -1 766 -8.8292419910430908e-02 + + 8.1123888492584229e-02 5.0063651800155640e-01 + <_> + + 0 -1 767 3.1063079833984375e-02 + + 5.1555037498474121e-01 1.2822559475898743e-01 + <_> + + 0 -1 768 4.6621840447187424e-02 + + 4.6997779607772827e-01 7.3639607429504395e-01 + <_> + + 0 -1 769 -1.2189489789307117e-02 + + 3.9205300807952881e-01 5.5189967155456543e-01 + <_> + + 0 -1 770 1.3016110286116600e-02 + + 5.2606582641601562e-01 3.6851361393928528e-01 + <_> + + 0 -1 771 -3.4952899441123009e-03 + + 6.3392949104309082e-01 4.7162809967994690e-01 + <_> + + 0 -1 772 -4.4015039748046547e-05 + + 5.3330272436141968e-01 3.7761849164962769e-01 + <_> + + 0 -1 773 -1.0966490209102631e-01 + + 1.7653420567512512e-01 5.1983469724655151e-01 + <_> + + 0 -1 774 -9.0279558207839727e-04 + + 5.3241598606109619e-01 3.8389080762863159e-01 + <_> + + 0 -1 775 7.1126641705632210e-04 + + 4.6479299664497375e-01 5.7552242279052734e-01 + <_> + + 0 -1 776 -3.1250279862433672e-03 + + 3.2367089390754700e-01 5.1667708158493042e-01 + <_> + + 0 -1 777 2.4144679773598909e-03 + + 4.7874391078948975e-01 6.4597177505493164e-01 + <_> + + 0 -1 778 4.4391240226104856e-04 + + 4.4093081355094910e-01 6.0102558135986328e-01 + <_> + + 0 -1 779 -2.2611189342569560e-04 + + 4.0381139516830444e-01 5.4932558536529541e-01 + <_> + 135 + 6.6669120788574219e+01 + + <_> + + 0 -1 780 -4.6901289373636246e-02 + + 6.6001719236373901e-01 3.7438011169433594e-01 + <_> + + 0 -1 781 -1.4568349579349160e-03 + + 5.7839912176132202e-01 3.4377971291542053e-01 + <_> + + 0 -1 782 5.5598369799554348e-03 + + 3.6222669482231140e-01 5.9082162380218506e-01 + <_> + + 0 -1 783 7.3170487303286791e-04 + + 5.5004191398620605e-01 2.8735581040382385e-01 + <_> + + 0 -1 784 1.3318009441718459e-03 + + 2.6731699705123901e-01 5.4310190677642822e-01 + <_> + + 0 -1 785 2.4347059661522508e-04 + + 3.8550278544425964e-01 5.7413887977600098e-01 + <_> + + 0 -1 786 -3.0512469820678234e-03 + + 5.5032098293304443e-01 3.4628450870513916e-01 + <_> + + 0 -1 787 -6.8657199153676629e-04 + + 3.2912218570709229e-01 5.4295092821121216e-01 + <_> + + 0 -1 788 1.4668200165033340e-03 + + 3.5883820056915283e-01 5.3518110513687134e-01 + <_> + + 0 -1 789 3.2021870720200241e-04 + + 4.2968419194221497e-01 5.7002341747283936e-01 + <_> + + 0 -1 790 7.4122188379988074e-04 + + 5.2821648120880127e-01 3.3668708801269531e-01 + <_> + + 0 -1 791 3.8330298848450184e-03 + + 4.5595678687095642e-01 6.2573361396789551e-01 + <_> + + 0 -1 792 -1.5456439927220345e-02 + + 2.3501169681549072e-01 5.1294529438018799e-01 + <_> + + 0 -1 793 2.6796779129654169e-03 + + 5.3294152021408081e-01 4.1550621390342712e-01 + <_> + + 0 -1 794 2.8296569362282753e-03 + + 4.2730879783630371e-01 5.8045381307601929e-01 + <_> + + 0 -1 795 -3.9444249123334885e-03 + + 2.9126119613647461e-01 5.2026861906051636e-01 + <_> + + 0 -1 796 2.7179559692740440e-03 + + 5.3076881170272827e-01 3.5856771469116211e-01 + <_> + + 0 -1 797 5.9077627956867218e-03 + + 4.7037750482559204e-01 5.9415858983993530e-01 + <_> + + 0 -1 798 -4.2240349575877190e-03 + + 2.1415670216083527e-01 5.0887960195541382e-01 + <_> + + 0 -1 799 4.0725888684391975e-03 + + 4.7664138674736023e-01 6.8410611152648926e-01 + <_> + + 0 -1 800 1.0149530135095119e-02 + + 5.3607988357543945e-01 3.7484970688819885e-01 + <_> + + 0 -1 801 -1.8864999583456665e-04 + + 5.7201302051544189e-01 3.8538050651550293e-01 + <_> + + 0 -1 802 -4.8864358104765415e-03 + + 3.6931228637695312e-01 5.3409588336944580e-01 + <_> + + 0 -1 803 2.6158479973673820e-02 + + 4.9623748660087585e-01 6.0599899291992188e-01 + <_> + + 0 -1 804 4.8560759751126170e-04 + + 4.4389459490776062e-01 6.0124689340591431e-01 + <_> + + 0 -1 805 1.1268709786236286e-02 + + 5.2442502975463867e-01 1.8403880298137665e-01 + <_> + + 0 -1 806 -2.8114619199186563e-03 + + 6.0602837800979614e-01 4.4098970293998718e-01 + <_> + + 0 -1 807 -5.6112729944288731e-03 + + 3.8911709189414978e-01 5.5892372131347656e-01 + <_> + + 0 -1 808 8.5680093616247177e-03 + + 5.0693458318710327e-01 2.0626190304756165e-01 + <_> + + 0 -1 809 -3.8172779022715986e-04 + + 5.8822017908096313e-01 4.1926109790802002e-01 + <_> + + 0 -1 810 -1.7680290329735726e-04 + + 5.5336058139801025e-01 4.0033689141273499e-01 + <_> + + 0 -1 811 6.5112537704408169e-03 + + 3.3101469278335571e-01 5.4441910982131958e-01 + <_> + + 0 -1 812 -6.5948683186434209e-05 + + 5.4338318109512329e-01 3.9449059963226318e-01 + <_> + + 0 -1 813 6.9939051754772663e-03 + + 5.6003582477569580e-01 4.1927140951156616e-01 + <_> + + 0 -1 814 -4.6744439750909805e-03 + + 6.6854667663574219e-01 4.6049609780311584e-01 + <_> + + 0 -1 815 1.1589850299060345e-02 + + 5.3571212291717529e-01 2.9268300533294678e-01 + <_> + + 0 -1 816 1.3007840141654015e-02 + + 4.6798178553581238e-01 7.3074632883071899e-01 + <_> + + 0 -1 817 -1.1008579749614000e-03 + + 3.9375010132789612e-01 5.4150652885437012e-01 + <_> + + 0 -1 818 6.0472649056464434e-04 + + 4.2423760890960693e-01 5.6040412187576294e-01 + <_> + + 0 -1 819 -1.4494840055704117e-02 + + 3.6312100291252136e-01 5.2931827306747437e-01 + <_> + + 0 -1 820 -5.3056948818266392e-03 + + 6.8604522943496704e-01 4.6218210458755493e-01 + <_> + + 0 -1 821 -8.1829127157106996e-04 + + 3.9440968632698059e-01 5.4204392433166504e-01 + <_> + + 0 -1 822 -1.9077520817518234e-02 + + 1.9626219570636749e-01 5.0378918647766113e-01 + <_> + + 0 -1 823 3.5549470339901745e-04 + + 4.0862590074539185e-01 5.6139731407165527e-01 + <_> + + 0 -1 824 1.9679730758070946e-03 + + 4.4891211390495300e-01 5.9261232614517212e-01 + <_> + + 0 -1 825 6.9189141504466534e-03 + + 5.3359258174896240e-01 3.7283858656883240e-01 + <_> + + 0 -1 826 2.9872779268771410e-03 + + 5.1113212108612061e-01 2.9756438732147217e-01 + <_> + + 0 -1 827 -6.2264618463814259e-03 + + 5.5414897203445435e-01 4.8245379328727722e-01 + <_> + + 0 -1 828 1.3353300280869007e-02 + + 4.5864239335060120e-01 6.4147979021072388e-01 + <_> + + 0 -1 829 3.3505238592624664e-02 + + 5.3924250602722168e-01 3.4299948811531067e-01 + <_> + + 0 -1 830 -2.5294460356235504e-03 + + 1.7037139832973480e-01 5.0133150815963745e-01 + <_> + + 0 -1 831 -1.2801629491150379e-03 + + 5.3054618835449219e-01 4.6974050998687744e-01 + <_> + + 0 -1 832 7.0687388069927692e-03 + + 4.6155458688735962e-01 6.4365047216415405e-01 + <_> + + 0 -1 833 9.6880499040707946e-04 + + 4.8335990309715271e-01 6.0438942909240723e-01 + <_> + + 0 -1 834 3.9647659286856651e-03 + + 5.1876372098922729e-01 3.2318168878555298e-01 + <_> + + 0 -1 835 -2.2057730704545975e-02 + + 4.0792569518089294e-01 5.2009809017181396e-01 + <_> + + 0 -1 836 -6.6906312713399529e-04 + + 5.3316092491149902e-01 3.8156008720397949e-01 + <_> + + 0 -1 837 -6.7009328631684184e-04 + + 5.6554222106933594e-01 4.6889019012451172e-01 + <_> + + 0 -1 838 7.4284552829340100e-04 + + 4.5343810319900513e-01 6.2874001264572144e-01 + <_> + + 0 -1 839 2.2227810695767403e-03 + + 5.3506332635879517e-01 3.3036559820175171e-01 + <_> + + 0 -1 840 -5.4130521602928638e-03 + + 1.1136870086193085e-01 5.0054347515106201e-01 + <_> + + 0 -1 841 -1.4520040167553816e-05 + + 5.6287378072738647e-01 4.3251338601112366e-01 + <_> + + 0 -1 842 2.3369169502984732e-04 + + 4.1658350825309753e-01 5.4477912187576294e-01 + <_> + + 0 -1 843 4.2894547805190086e-03 + + 4.8603910207748413e-01 6.7786490917205811e-01 + <_> + + 0 -1 844 5.9103150852024555e-03 + + 5.2623051404953003e-01 3.6121138930320740e-01 + <_> + + 0 -1 845 1.2900539673864841e-02 + + 5.3193771839141846e-01 3.2502880692481995e-01 + <_> + + 0 -1 846 4.6982979401946068e-03 + + 4.6182450652122498e-01 6.6659259796142578e-01 + <_> + + 0 -1 847 1.0439859703183174e-02 + + 5.5056709051132202e-01 3.8836041092872620e-01 + <_> + + 0 -1 848 3.0443191062659025e-03 + + 4.6978530287742615e-01 7.3018449544906616e-01 + <_> + + 0 -1 849 -6.1593751888722181e-04 + + 3.8308390974998474e-01 5.4649841785430908e-01 + <_> + + 0 -1 850 -3.4247159492224455e-03 + + 2.5663000345230103e-01 5.0895309448242188e-01 + <_> + + 0 -1 851 -9.3538565561175346e-03 + + 6.4699661731719971e-01 4.9407958984375000e-01 + <_> + + 0 -1 852 5.2338998764753342e-02 + + 4.7459828853607178e-01 7.8787708282470703e-01 + <_> + + 0 -1 853 3.5765620414167643e-03 + + 5.3066647052764893e-01 2.7484980225563049e-01 + <_> + + 0 -1 854 7.1555317845195532e-04 + + 5.4131257534027100e-01 4.0419089794158936e-01 + <_> + + 0 -1 855 -1.0516679845750332e-02 + + 6.1585122346878052e-01 4.8152831196784973e-01 + <_> + + 0 -1 856 7.7347927726805210e-03 + + 4.6958059072494507e-01 7.0289808511734009e-01 + <_> + + 0 -1 857 -4.3226778507232666e-03 + + 2.8495660424232483e-01 5.3046840429306030e-01 + <_> + + 0 -1 858 -2.5534399319440126e-03 + + 7.0569849014282227e-01 4.6888920664787292e-01 + <_> + + 0 -1 859 1.0268510231981054e-04 + + 3.9029321074485779e-01 5.5734640359878540e-01 + <_> + + 0 -1 860 7.1395188570022583e-06 + + 3.6842319369316101e-01 5.2639877796173096e-01 + <_> + + 0 -1 861 -1.6711989883333445e-03 + + 3.8491758704185486e-01 5.3872710466384888e-01 + <_> + + 0 -1 862 4.9260449595749378e-03 + + 4.7297719120979309e-01 7.4472510814666748e-01 + <_> + + 0 -1 863 4.3908702209591866e-03 + + 4.8091810941696167e-01 5.5919218063354492e-01 + <_> + + 0 -1 864 -1.7793629318475723e-02 + + 6.9036781787872314e-01 4.6769270300865173e-01 + <_> + + 0 -1 865 2.0469669252634048e-03 + + 5.3706902265548706e-01 3.3081620931625366e-01 + <_> + + 0 -1 866 2.9891489073634148e-02 + + 5.1398652791976929e-01 3.3090591430664062e-01 + <_> + + 0 -1 867 1.5494900289922953e-03 + + 4.6602371335029602e-01 6.0783427953720093e-01 + <_> + + 0 -1 868 1.4956969534978271e-03 + + 4.4048359990119934e-01 5.8639198541641235e-01 + <_> + + 0 -1 869 9.5885928021743894e-04 + + 5.4359710216522217e-01 4.2085230350494385e-01 + <_> + + 0 -1 870 4.9643701640889049e-04 + + 5.3705781698226929e-01 4.0006220340728760e-01 + <_> + + 0 -1 871 -2.7280810754746199e-03 + + 5.6594127416610718e-01 4.2596429586410522e-01 + <_> + + 0 -1 872 2.3026480339467525e-03 + + 5.1616579294204712e-01 3.3508691191673279e-01 + <_> + + 0 -1 873 2.5151631236076355e-01 + + 4.8696619272232056e-01 7.1473097801208496e-01 + <_> + + 0 -1 874 -4.6328022144734859e-03 + + 2.7274489402770996e-01 5.0837898254394531e-01 + <_> + + 0 -1 875 -4.0434490889310837e-02 + + 6.8514388799667358e-01 5.0217670202255249e-01 + <_> + + 0 -1 876 1.4972220014897175e-05 + + 4.2844650149345398e-01 5.5225551128387451e-01 + <_> + + 0 -1 877 -2.4050309730228037e-04 + + 4.2261189222335815e-01 5.3900748491287231e-01 + <_> + + 0 -1 878 2.3657839745283127e-02 + + 4.7446319460868835e-01 7.5043660402297974e-01 + <_> + + 0 -1 879 -8.1449104472994804e-03 + + 4.2450588941574097e-01 5.5383628606796265e-01 + <_> + + 0 -1 880 -3.6992130335420370e-03 + + 5.9523570537567139e-01 4.5297130942344666e-01 + <_> + + 0 -1 881 -6.7718601785600185e-03 + + 4.1377940773963928e-01 5.4733997583389282e-01 + <_> + + 0 -1 882 4.2669530957937241e-03 + + 4.4841149449348450e-01 5.7979941368103027e-01 + <_> + + 0 -1 883 1.7791989957913756e-03 + + 5.6248587369918823e-01 4.4324448704719543e-01 + <_> + + 0 -1 884 1.6774770338088274e-03 + + 4.6377518773078918e-01 6.3642418384552002e-01 + <_> + + 0 -1 885 1.1732629500329494e-03 + + 4.5445030927658081e-01 5.9144157171249390e-01 + <_> + + 0 -1 886 8.6998171173036098e-04 + + 5.3347527980804443e-01 3.8859179615974426e-01 + <_> + + 0 -1 887 7.6378340600058436e-04 + + 5.3985852003097534e-01 3.7449419498443604e-01 + <_> + + 0 -1 888 1.5684569370932877e-04 + + 4.3178731203079224e-01 5.6146162748336792e-01 + <_> + + 0 -1 889 -2.1511370316147804e-02 + + 1.7859250307083130e-01 5.1855427026748657e-01 + <_> + + 0 -1 890 1.3081369979772717e-04 + + 4.3424990773200989e-01 5.6828498840332031e-01 + <_> + + 0 -1 891 2.1992040798068047e-02 + + 5.1617169380187988e-01 2.3793940246105194e-01 + <_> + + 0 -1 892 -8.0136500764638186e-04 + + 5.9867632389068604e-01 4.4664269685745239e-01 + <_> + + 0 -1 893 -8.2736099138855934e-03 + + 4.1082179546356201e-01 5.2510571479797363e-01 + <_> + + 0 -1 894 3.6831789184361696e-03 + + 5.1738142967224121e-01 3.3975180983543396e-01 + <_> + + 0 -1 895 -7.9525681212544441e-03 + + 6.8889832496643066e-01 4.8459240794181824e-01 + <_> + + 0 -1 896 1.5382299898192286e-03 + + 5.1785671710968018e-01 3.4541139006614685e-01 + <_> + + 0 -1 897 -1.4043530449271202e-02 + + 1.6784210503101349e-01 5.1886677742004395e-01 + <_> + + 0 -1 898 1.4315890148282051e-03 + + 4.3682569265365601e-01 5.6557738780975342e-01 + <_> + + 0 -1 899 -3.4014228731393814e-02 + + 7.8022962808609009e-01 4.9592170119285583e-01 + <_> + + 0 -1 900 -1.2027299962937832e-02 + + 1.5851010382175446e-01 5.0322318077087402e-01 + <_> + + 0 -1 901 1.3316619396209717e-01 + + 5.1633048057556152e-01 2.7551281452178955e-01 + <_> + + 0 -1 902 -1.5221949433907866e-03 + + 3.7283179163932800e-01 5.2145522832870483e-01 + <_> + + 0 -1 903 -9.3929271679371595e-04 + + 5.8383792638778687e-01 4.5111650228500366e-01 + <_> + + 0 -1 904 2.7719739824533463e-02 + + 4.7282868623733521e-01 7.3315447568893433e-01 + <_> + + 0 -1 905 3.1030150130391121e-03 + + 5.3022021055221558e-01 4.1015630960464478e-01 + <_> + + 0 -1 906 7.7861219644546509e-02 + + 4.9983340501785278e-01 1.2729619443416595e-01 + <_> + + 0 -1 907 -1.5854939818382263e-02 + + 5.0833359360694885e-02 5.1656562089920044e-01 + <_> + + 0 -1 908 -4.9725300632417202e-03 + + 6.7981338500976562e-01 4.6842318773269653e-01 + <_> + + 0 -1 909 -9.7676506265997887e-04 + + 6.0107719898223877e-01 4.7889319062232971e-01 + <_> + + 0 -1 910 -2.4647710379213095e-03 + + 3.3933979272842407e-01 5.2205038070678711e-01 + <_> + + 0 -1 911 -6.7937700077891350e-03 + + 4.3651369214057922e-01 5.2396631240844727e-01 + <_> + + 0 -1 912 3.2608021050691605e-02 + + 5.0527238845825195e-01 2.4252149462699890e-01 + <_> + + 0 -1 913 -5.8514421107247472e-04 + + 5.7339739799499512e-01 4.7585740685462952e-01 + <_> + + 0 -1 914 -2.9632600024342537e-02 + + 3.8922891020774841e-01 5.2635979652404785e-01 + <_> + 137 + 6.7698921203613281e+01 + + <_> + + 0 -1 915 4.6550851315259933e-02 + + 3.2769501209259033e-01 6.2405228614807129e-01 + <_> + + 0 -1 916 7.9537127166986465e-03 + + 4.2564851045608521e-01 6.9429391622543335e-01 + <_> + + 0 -1 917 6.8221561377868056e-04 + + 3.7114870548248291e-01 5.9007328748703003e-01 + <_> + + 0 -1 918 -1.9348249770700932e-04 + + 2.0411339402198792e-01 5.3005450963973999e-01 + <_> + + 0 -1 919 -2.6710508973337710e-04 + + 5.4161262512207031e-01 3.1031790375709534e-01 + <_> + + 0 -1 920 2.7818060480058193e-03 + + 5.2778327465057373e-01 3.4670698642730713e-01 + <_> + + 0 -1 921 -4.6779078547842801e-04 + + 5.3082311153411865e-01 3.2944920659065247e-01 + <_> + + 0 -1 922 -3.0335160772665404e-05 + + 5.7738727331161499e-01 3.8520970940589905e-01 + <_> + + 0 -1 923 7.8038009814918041e-04 + + 4.3174389004707336e-01 6.1500579118728638e-01 + <_> + + 0 -1 924 -4.2553851380944252e-03 + + 2.9339039325714111e-01 5.3242927789688110e-01 + <_> + + 0 -1 925 -2.4735610350035131e-04 + + 5.4688447713851929e-01 3.8430300354957581e-01 + <_> + + 0 -1 926 -1.4724259381182492e-04 + + 4.2815428972244263e-01 5.7555872201919556e-01 + <_> + + 0 -1 927 1.1864770203828812e-03 + + 3.7473011016845703e-01 5.4714661836624146e-01 + <_> + + 0 -1 928 2.3936580400913954e-03 + + 4.5377838611602783e-01 6.1115288734436035e-01 + <_> + + 0 -1 929 -1.5390539774671197e-03 + + 2.9713419079780579e-01 5.1895380020141602e-01 + <_> + + 0 -1 930 -7.1968790143728256e-03 + + 6.6990667581558228e-01 4.7264769673347473e-01 + <_> + + 0 -1 931 -4.1499789222143590e-04 + + 3.3849540352821350e-01 5.2603179216384888e-01 + <_> + + 0 -1 932 4.4359830208122730e-03 + + 5.3991222381591797e-01 3.9201408624649048e-01 + <_> + + 0 -1 933 2.6606200262904167e-03 + + 4.4825780391693115e-01 6.1196178197860718e-01 + <_> + + 0 -1 934 -1.5287200221791863e-03 + + 3.7112379074096680e-01 5.3402662277221680e-01 + <_> + + 0 -1 935 -4.7397250309586525e-03 + + 6.0310882329940796e-01 4.4551450014114380e-01 + <_> + + 0 -1 936 -1.4829129911959171e-02 + + 2.8387540578842163e-01 5.3418618440628052e-01 + <_> + + 0 -1 937 9.2275557108223438e-04 + + 5.2095472812652588e-01 3.3616539835929871e-01 + <_> + + 0 -1 938 8.3529807627201080e-02 + + 5.1199698448181152e-01 8.1164449453353882e-02 + <_> + + 0 -1 939 -7.5633148662745953e-04 + + 3.3171200752258301e-01 5.1898312568664551e-01 + <_> + + 0 -1 940 9.8403859883546829e-03 + + 5.2475982904434204e-01 2.3349590599536896e-01 + <_> + + 0 -1 941 -1.5953830443322659e-03 + + 5.7500940561294556e-01 4.2956221103668213e-01 + <_> + + 0 -1 942 3.4766020689858124e-05 + + 4.3424451351165771e-01 5.5640292167663574e-01 + <_> + + 0 -1 943 2.9862910509109497e-02 + + 4.5791471004486084e-01 6.5791881084442139e-01 + <_> + + 0 -1 944 1.1325590312480927e-02 + + 5.2743119001388550e-01 3.6738881468772888e-01 + <_> + + 0 -1 945 -8.7828645482659340e-03 + + 7.1003687381744385e-01 4.6421670913696289e-01 + <_> + + 0 -1 946 4.3639959767460823e-03 + + 5.2792161703109741e-01 2.7058771252632141e-01 + <_> + + 0 -1 947 4.1804728098213673e-03 + + 5.0725251436233521e-01 2.4490830302238464e-01 + <_> + + 0 -1 948 -4.5668511302210391e-04 + + 4.2831051349639893e-01 5.5486911535263062e-01 + <_> + + 0 -1 949 -3.7140368949621916e-03 + + 5.5193877220153809e-01 4.1036531329154968e-01 + <_> + + 0 -1 950 -2.5304289534687996e-02 + + 6.8670022487640381e-01 4.8698890209197998e-01 + <_> + + 0 -1 951 -3.4454080741852522e-04 + + 3.7288740277290344e-01 5.2876931428909302e-01 + <_> + + 0 -1 952 -8.3935231668874621e-04 + + 6.0601520538330078e-01 4.6160620450973511e-01 + <_> + + 0 -1 953 1.7280049622058868e-02 + + 5.0496357679367065e-01 1.8198239803314209e-01 + <_> + + 0 -1 954 -6.3595077954232693e-03 + + 1.6312399506568909e-01 5.2327787876129150e-01 + <_> + + 0 -1 955 1.0298109846189618e-03 + + 4.4632780551910400e-01 6.1765491962432861e-01 + <_> + + 0 -1 956 1.0117109632119536e-03 + + 5.4733848571777344e-01 4.3006989359855652e-01 + <_> + + 0 -1 957 -1.0308800265192986e-02 + + 1.1669850349426270e-01 5.0008672475814819e-01 + <_> + + 0 -1 958 5.4682018235325813e-03 + + 4.7692871093750000e-01 6.7192137241363525e-01 + <_> + + 0 -1 959 -9.1696460731327534e-04 + + 3.4710898995399475e-01 5.1781648397445679e-01 + <_> + + 0 -1 960 2.3922820109874010e-03 + + 4.7852361202239990e-01 6.2163108587265015e-01 + <_> + + 0 -1 961 -7.5573818758130074e-03 + + 5.8147960901260376e-01 4.4100850820541382e-01 + <_> + + 0 -1 962 -7.7024032361805439e-04 + + 3.8780000805854797e-01 5.4657220840454102e-01 + <_> + + 0 -1 963 -8.7125990539789200e-03 + + 1.6600510478019714e-01 4.9958360195159912e-01 + <_> + + 0 -1 964 -1.0306320153176785e-02 + + 4.0933910012245178e-01 5.2742338180541992e-01 + <_> + + 0 -1 965 -2.0940979011356831e-03 + + 6.2061947584152222e-01 4.5722800493240356e-01 + <_> + + 0 -1 966 6.8099051713943481e-03 + + 5.5677592754364014e-01 4.1556000709533691e-01 + <_> + + 0 -1 967 -1.0746059706434608e-03 + + 5.6389278173446655e-01 4.3530249595642090e-01 + <_> + + 0 -1 968 2.1550289820879698e-03 + + 4.8262658715248108e-01 6.7497581243515015e-01 + <_> + + 0 -1 969 3.1742319464683533e-02 + + 5.0483798980712891e-01 1.8832489848136902e-01 + <_> + + 0 -1 970 -7.8382723033428192e-02 + + 2.3695489764213562e-01 5.2601581811904907e-01 + <_> + + 0 -1 971 5.7415119372308254e-03 + + 5.0488287210464478e-01 2.7764698863029480e-01 + <_> + + 0 -1 972 -2.9014600440859795e-03 + + 6.2386047840118408e-01 4.6933171153068542e-01 + <_> + + 0 -1 973 -2.6427931152284145e-03 + + 3.3141419291496277e-01 5.1697772741317749e-01 + <_> + + 0 -1 974 -1.0949660092592239e-01 + + 2.3800450563430786e-01 5.1834410429000854e-01 + <_> + + 0 -1 975 7.4075913289561868e-05 + + 4.0696358680725098e-01 5.3621500730514526e-01 + <_> + + 0 -1 976 -5.0593802006915212e-04 + + 5.5067062377929688e-01 4.3745940923690796e-01 + <_> + + 0 -1 977 -8.2131777890026569e-04 + + 5.5257099866867065e-01 4.2093759775161743e-01 + <_> + + 0 -1 978 -6.0276539443293586e-05 + + 5.4554748535156250e-01 4.7482660412788391e-01 + <_> + + 0 -1 979 6.8065142259001732e-03 + + 5.1579958200454712e-01 3.4245771169662476e-01 + <_> + + 0 -1 980 1.7202789895236492e-03 + + 5.0132077932357788e-01 6.3312637805938721e-01 + <_> + + 0 -1 981 -1.3016929733566940e-04 + + 5.5397182703018188e-01 4.2268699407577515e-01 + <_> + + 0 -1 982 -4.8016388900578022e-03 + + 4.4250950217247009e-01 5.4307800531387329e-01 + <_> + + 0 -1 983 -2.5399310979992151e-03 + + 7.1457821130752563e-01 4.6976050734519958e-01 + <_> + + 0 -1 984 -1.4278929447755218e-03 + + 4.0704450011253357e-01 5.3996050357818604e-01 + <_> + + 0 -1 985 -2.5142550468444824e-02 + + 7.8846907615661621e-01 4.7473520040512085e-01 + <_> + + 0 -1 986 -3.8899609353393316e-03 + + 4.2961919307708740e-01 5.5771100521087646e-01 + <_> + + 0 -1 987 4.3947459198534489e-03 + + 4.6931621432304382e-01 7.0239442586898804e-01 + <_> + + 0 -1 988 2.4678420275449753e-02 + + 5.2423220872879028e-01 3.8125100731849670e-01 + <_> + + 0 -1 989 3.8047678768634796e-02 + + 5.0117397308349609e-01 1.6878280043601990e-01 + <_> + + 0 -1 990 7.9424865543842316e-03 + + 4.8285821080207825e-01 6.3695681095123291e-01 + <_> + + 0 -1 991 -1.5110049862414598e-03 + + 5.9064859151840210e-01 4.4876679778099060e-01 + <_> + + 0 -1 992 6.4201741479337215e-03 + + 5.2410978078842163e-01 2.9905700683593750e-01 + <_> + + 0 -1 993 -2.9802159406244755e-03 + + 3.0414658784866333e-01 5.0784897804260254e-01 + <_> + + 0 -1 994 -7.4580078944563866e-04 + + 4.1281390190124512e-01 5.2568262815475464e-01 + <_> + + 0 -1 995 -1.0470950044691563e-02 + + 5.8083951473236084e-01 4.4942960143089294e-01 + <_> + + 0 -1 996 9.3369204550981522e-03 + + 5.2465528249740601e-01 2.6589488983154297e-01 + <_> + + 0 -1 997 2.7936900034546852e-02 + + 4.6749550104141235e-01 7.0872569084167480e-01 + <_> + + 0 -1 998 7.4277678504586220e-03 + + 5.4094868898391724e-01 3.7585180997848511e-01 + <_> + + 0 -1 999 -2.3584509268403053e-02 + + 3.7586399912834167e-01 5.2385509014129639e-01 + <_> + + 0 -1 1000 1.1452640173956752e-03 + + 4.3295788764953613e-01 5.8042472600936890e-01 + <_> + + 0 -1 1001 -4.3468660442158580e-04 + + 5.2806180715560913e-01 3.8730698823928833e-01 + <_> + + 0 -1 1002 1.0648540221154690e-02 + + 4.9021130800247192e-01 5.6812518835067749e-01 + <_> + + 0 -1 1003 -3.9418050437234342e-04 + + 5.5708801746368408e-01 4.3182510137557983e-01 + <_> + + 0 -1 1004 -1.3270479394122958e-04 + + 5.6584399938583374e-01 4.3435549736022949e-01 + <_> + + 0 -1 1005 -2.0125510636717081e-03 + + 6.0567390918731689e-01 4.5375239849090576e-01 + <_> + + 0 -1 1006 2.4854319635778666e-03 + + 5.3904771804809570e-01 4.1380101442337036e-01 + <_> + + 0 -1 1007 1.8237880431115627e-03 + + 4.3548288941383362e-01 5.7171887159347534e-01 + <_> + + 0 -1 1008 -1.6656659543514252e-02 + + 3.0109131336212158e-01 5.2161228656768799e-01 + <_> + + 0 -1 1009 8.0349558265879750e-04 + + 5.3001511096954346e-01 3.8183969259262085e-01 + <_> + + 0 -1 1010 3.4170378930866718e-03 + + 5.3280287981033325e-01 4.2414000630378723e-01 + <_> + + 0 -1 1011 -3.6222729249857366e-04 + + 5.4917281866073608e-01 4.1869771480560303e-01 + <_> + + 0 -1 1012 -1.1630020290613174e-01 + + 1.4407220482826233e-01 5.2264511585235596e-01 + <_> + + 0 -1 1013 -1.4695010147988796e-02 + + 7.7477252483367920e-01 4.7157171368598938e-01 + <_> + + 0 -1 1014 2.1972130052745342e-03 + + 5.3554338216781616e-01 3.3156448602676392e-01 + <_> + + 0 -1 1015 -4.6965209185145795e-04 + + 5.7672351598739624e-01 4.4581368565559387e-01 + <_> + + 0 -1 1016 6.5144998952746391e-03 + + 5.2156740427017212e-01 3.6478888988494873e-01 + <_> + + 0 -1 1017 2.1300060674548149e-02 + + 4.9942049384117126e-01 1.5679509937763214e-01 + <_> + + 0 -1 1018 3.1881409231573343e-03 + + 4.7422000765800476e-01 6.2872701883316040e-01 + <_> + + 0 -1 1019 9.0019777417182922e-04 + + 5.3479540348052979e-01 3.9437520503997803e-01 + <_> + + 0 -1 1020 -5.1772277802228928e-03 + + 6.7271918058395386e-01 5.0131380558013916e-01 + <_> + + 0 -1 1021 -4.3764649890363216e-03 + + 3.1066751480102539e-01 5.1287931203842163e-01 + <_> + + 0 -1 1022 2.6299960445612669e-03 + + 4.8863101005554199e-01 5.7552158832550049e-01 + <_> + + 0 -1 1023 -2.0458688959479332e-03 + + 6.0257941484451294e-01 4.5580768585205078e-01 + <_> + + 0 -1 1024 6.9482706487178802e-02 + + 5.2407479286193848e-01 2.1852590143680573e-01 + <_> + + 0 -1 1025 2.4048939347267151e-02 + + 5.0118672847747803e-01 2.0906220376491547e-01 + <_> + + 0 -1 1026 3.1095340382307768e-03 + + 4.8667120933532715e-01 7.1085482835769653e-01 + <_> + + 0 -1 1027 -1.2503260513767600e-03 + + 3.4078910946846008e-01 5.1561951637268066e-01 + <_> + + 0 -1 1028 -1.0281190043315291e-03 + + 5.5755722522735596e-01 4.4394320249557495e-01 + <_> + + 0 -1 1029 -8.8893622159957886e-03 + + 6.4020007848739624e-01 4.6204420924186707e-01 + <_> + + 0 -1 1030 -6.1094801640138030e-04 + + 3.7664419412612915e-01 5.4488998651504517e-01 + <_> + + 0 -1 1031 -5.7686357758939266e-03 + + 3.3186489343643188e-01 5.1336771249771118e-01 + <_> + + 0 -1 1032 1.8506490159779787e-03 + + 4.9035701155662537e-01 6.4069348573684692e-01 + <_> + + 0 -1 1033 -9.9799469113349915e-02 + + 1.5360510349273682e-01 5.0155621767044067e-01 + <_> + + 0 -1 1034 -3.5128349065780640e-01 + + 5.8823131024837494e-02 5.1743787527084351e-01 + <_> + + 0 -1 1035 -4.5244570821523666e-02 + + 6.9614887237548828e-01 4.6778729557991028e-01 + <_> + + 0 -1 1036 7.1481578052043915e-02 + + 5.1679861545562744e-01 1.0380929708480835e-01 + <_> + + 0 -1 1037 2.1895780228078365e-03 + + 4.2730781435966492e-01 5.5320608615875244e-01 + <_> + + 0 -1 1038 -5.9242651332169771e-04 + + 4.6389439702033997e-01 5.2763891220092773e-01 + <_> + + 0 -1 1039 1.6788389766588807e-03 + + 5.3016489744186401e-01 3.9320349693298340e-01 + <_> + + 0 -1 1040 -2.2163488902151585e-03 + + 5.6306940317153931e-01 4.7570338845252991e-01 + <_> + + 0 -1 1041 1.1568699846975505e-04 + + 4.3075358867645264e-01 5.5357027053833008e-01 + <_> + + 0 -1 1042 -7.2017288766801357e-03 + + 1.4448820054531097e-01 5.1930642127990723e-01 + <_> + + 0 -1 1043 8.9081272017210722e-04 + + 4.3844321370124817e-01 5.5936211347579956e-01 + <_> + + 0 -1 1044 1.9605009583756328e-04 + + 5.3404158353805542e-01 4.7059568762779236e-01 + <_> + + 0 -1 1045 5.2022142335772514e-04 + + 5.2138561010360718e-01 3.8100790977478027e-01 + <_> + + 0 -1 1046 9.4588572392240167e-04 + + 4.7694149613380432e-01 6.1307388544082642e-01 + <_> + + 0 -1 1047 9.1698471806012094e-05 + + 4.2450091242790222e-01 5.4293632507324219e-01 + <_> + + 0 -1 1048 2.1833200007677078e-03 + + 5.4577308893203735e-01 4.1910758614540100e-01 + <_> + + 0 -1 1049 -8.6039671441540122e-04 + + 5.7645887136459351e-01 4.4716599583625793e-01 + <_> + + 0 -1 1050 -1.3236239552497864e-02 + + 6.3728231191635132e-01 4.6950098872184753e-01 + <_> + + 0 -1 1051 4.3376701069064438e-04 + + 5.3178739547729492e-01 3.9458298683166504e-01 + <_> + 140 + 6.9229873657226562e+01 + + <_> + + 0 -1 1052 -2.4847149848937988e-02 + + 6.5555167198181152e-01 3.8733118772506714e-01 + <_> + + 0 -1 1053 6.1348611488938332e-03 + + 3.7480720877647400e-01 5.9739977121353149e-01 + <_> + + 0 -1 1054 6.4498498104512691e-03 + + 5.4254919290542603e-01 2.5488111376762390e-01 + <_> + + 0 -1 1055 6.3491211039945483e-04 + + 2.4624420702457428e-01 5.3872537612915039e-01 + <_> + + 0 -1 1056 1.4023890253156424e-03 + + 5.5943220853805542e-01 3.5286578536033630e-01 + <_> + + 0 -1 1057 3.0044000595808029e-04 + + 3.9585039019584656e-01 5.7659381628036499e-01 + <_> + + 0 -1 1058 1.0042409849120304e-04 + + 3.6989969015121460e-01 5.5349981784820557e-01 + <_> + + 0 -1 1059 -5.0841490738093853e-03 + + 3.7110909819602966e-01 5.5478000640869141e-01 + <_> + + 0 -1 1060 -1.9537260755896568e-02 + + 7.4927550554275513e-01 4.5792970061302185e-01 + <_> + + 0 -1 1061 -7.4532740654831287e-06 + + 5.6497871875762939e-01 3.9040699601173401e-01 + <_> + + 0 -1 1062 -3.6079459823668003e-03 + + 3.3810880780220032e-01 5.2678012847900391e-01 + <_> + + 0 -1 1063 2.0697501022368670e-03 + + 5.5192911624908447e-01 3.7143889069557190e-01 + <_> + + 0 -1 1064 -4.6463840408250690e-04 + + 5.6082147359848022e-01 4.1135668754577637e-01 + <_> + + 0 -1 1065 7.5490452582016587e-04 + + 3.5592061281204224e-01 5.3293561935424805e-01 + <_> + + 0 -1 1066 -9.8322238773107529e-04 + + 5.4147958755493164e-01 3.7632051110267639e-01 + <_> + + 0 -1 1067 -1.9940640777349472e-02 + + 6.3479030132293701e-01 4.7052991390228271e-01 + <_> + + 0 -1 1068 3.7680300883948803e-03 + + 3.9134898781776428e-01 5.5637162923812866e-01 + <_> + + 0 -1 1069 -9.4528505578637123e-03 + + 2.5548928976058960e-01 5.2151167392730713e-01 + <_> + + 0 -1 1070 2.9560849070549011e-03 + + 5.1746791601181030e-01 3.0639201402664185e-01 + <_> + + 0 -1 1071 9.1078737750649452e-03 + + 5.3884482383728027e-01 2.8859630227088928e-01 + <_> + + 0 -1 1072 1.8219229532405734e-03 + + 4.3360430002212524e-01 5.8521968126296997e-01 + <_> + + 0 -1 1073 1.4688739553093910e-02 + + 5.2873617410659790e-01 2.8700059652328491e-01 + <_> + + 0 -1 1074 -1.4387990348041058e-02 + + 7.0194488763809204e-01 4.6473708748817444e-01 + <_> + + 0 -1 1075 -1.8986649811267853e-02 + + 2.9865521192550659e-01 5.2470117807388306e-01 + <_> + + 0 -1 1076 1.1527639580890536e-03 + + 4.3234738707542419e-01 5.9316617250442505e-01 + <_> + + 0 -1 1077 1.0933670215308666e-02 + + 5.2868640422821045e-01 3.1303191184997559e-01 + <_> + + 0 -1 1078 -1.4932730235159397e-02 + + 2.6584190130233765e-01 5.0840771198272705e-01 + <_> + + 0 -1 1079 -2.9970539617352188e-04 + + 5.4635268449783325e-01 3.7407240271568298e-01 + <_> + + 0 -1 1080 4.1677621193230152e-03 + + 4.7034969925880432e-01 7.4357217550277710e-01 + <_> + + 0 -1 1081 -6.3905320130288601e-03 + + 2.0692589879035950e-01 5.2805382013320923e-01 + <_> + + 0 -1 1082 4.5029609464108944e-03 + + 5.1826488971710205e-01 3.4835430979728699e-01 + <_> + + 0 -1 1083 -9.2040365561842918e-03 + + 6.8037772178649902e-01 4.9323600530624390e-01 + <_> + + 0 -1 1084 8.1327259540557861e-02 + + 5.0583988428115845e-01 2.2530519962310791e-01 + <_> + + 0 -1 1085 -1.5079280734062195e-01 + + 2.9634249210357666e-01 5.2646797895431519e-01 + <_> + + 0 -1 1086 3.3179009333252907e-03 + + 4.6554958820343018e-01 7.0729321241378784e-01 + <_> + + 0 -1 1087 7.7402801252901554e-04 + + 4.7803479433059692e-01 5.6682378053665161e-01 + <_> + + 0 -1 1088 6.8199541419744492e-04 + + 4.2869961261749268e-01 5.7221567630767822e-01 + <_> + + 0 -1 1089 5.3671570494771004e-03 + + 5.2993071079254150e-01 3.1146219372749329e-01 + <_> + + 0 -1 1090 9.7018666565418243e-05 + + 3.6746388673782349e-01 5.2694618701934814e-01 + <_> + + 0 -1 1091 -1.2534089386463165e-01 + + 2.3514920473098755e-01 5.2457910776138306e-01 + <_> + + 0 -1 1092 -5.2516269497573376e-03 + + 7.1159368753433228e-01 4.6937671303749084e-01 + <_> + + 0 -1 1093 -7.8342109918594360e-03 + + 4.4626510143280029e-01 5.4090857505798340e-01 + <_> + + 0 -1 1094 -1.1310069821774960e-03 + + 5.9456187486648560e-01 4.4176620244979858e-01 + <_> + + 0 -1 1095 1.7601120052859187e-03 + + 5.3532499074935913e-01 3.9734530448913574e-01 + <_> + + 0 -1 1096 -8.1581249833106995e-04 + + 3.7602680921554565e-01 5.2647268772125244e-01 + <_> + + 0 -1 1097 -3.8687589112669230e-03 + + 6.3099128007888794e-01 4.7498199343681335e-01 + <_> + + 0 -1 1098 1.5207129763439298e-03 + + 5.2301818132400513e-01 3.3612239360809326e-01 + <_> + + 0 -1 1099 5.4586738348007202e-01 + + 5.1671397686004639e-01 1.1726350337266922e-01 + <_> + + 0 -1 1100 1.5650190412998199e-02 + + 4.9794390797615051e-01 1.3932949304580688e-01 + <_> + + 0 -1 1101 -1.1731860227882862e-02 + + 7.1296507120132446e-01 4.9211961030960083e-01 + <_> + + 0 -1 1102 -6.1765122227370739e-03 + + 2.2881029546260834e-01 5.0497019290924072e-01 + <_> + + 0 -1 1103 2.2457661107182503e-03 + + 4.6324339509010315e-01 6.0487258434295654e-01 + <_> + + 0 -1 1104 -5.1915869116783142e-03 + + 6.4674210548400879e-01 4.6021929383277893e-01 + <_> + + 0 -1 1105 -2.3827880620956421e-02 + + 1.4820009469985962e-01 5.2260792255401611e-01 + <_> + + 0 -1 1106 1.0284580057486892e-03 + + 5.1354891061782837e-01 3.3759570121765137e-01 + <_> + + 0 -1 1107 -1.0078850202262402e-02 + + 2.7405610680580139e-01 5.3035670518875122e-01 + <_> + + 0 -1 1108 2.6168930344283581e-03 + + 5.3326708078384399e-01 3.9724540710449219e-01 + <_> + + 0 -1 1109 5.4385367548093200e-04 + + 5.3656041622161865e-01 4.0634119510650635e-01 + <_> + + 0 -1 1110 5.3510512225329876e-03 + + 4.6537590026855469e-01 6.8890458345413208e-01 + <_> + + 0 -1 1111 -1.5274790348485112e-03 + + 5.4495012760162354e-01 3.6247238516807556e-01 + <_> + + 0 -1 1112 -8.0624416470527649e-02 + + 1.6560870409011841e-01 5.0002872943878174e-01 + <_> + + 0 -1 1113 2.2192029282450676e-02 + + 5.1327311992645264e-01 2.0028080046176910e-01 + <_> + + 0 -1 1114 7.3100631125271320e-03 + + 4.6179479360580444e-01 6.3665360212326050e-01 + <_> + + 0 -1 1115 -6.4063072204589844e-03 + + 5.9162509441375732e-01 4.8678609728813171e-01 + <_> + + 0 -1 1116 -7.6415040530264378e-04 + + 3.8884091377258301e-01 5.3157979249954224e-01 + <_> + + 0 -1 1117 7.6734489994123578e-04 + + 4.1590648889541626e-01 5.6052798032760620e-01 + <_> + + 0 -1 1118 6.1474501853808761e-04 + + 3.0890220403671265e-01 5.1201480627059937e-01 + <_> + + 0 -1 1119 -5.0105270929634571e-03 + + 3.9721998572349548e-01 5.2073061466217041e-01 + <_> + + 0 -1 1120 -8.6909132078289986e-03 + + 6.2574082612991333e-01 4.6085759997367859e-01 + <_> + + 0 -1 1121 -1.6391459852457047e-02 + + 2.0852099359035492e-01 5.2422660589218140e-01 + <_> + + 0 -1 1122 4.0973909199237823e-04 + + 5.2224272489547729e-01 3.7803208827972412e-01 + <_> + + 0 -1 1123 -2.5242289993911982e-03 + + 5.8039271831512451e-01 4.6118900179862976e-01 + <_> + + 0 -1 1124 5.0945312250405550e-04 + + 4.4012719392776489e-01 5.8460158109664917e-01 + <_> + + 0 -1 1125 1.9656419754028320e-03 + + 5.3223252296447754e-01 4.1845908761024475e-01 + <_> + + 0 -1 1126 5.6298897834494710e-04 + + 3.7418448925018311e-01 5.2345657348632812e-01 + <_> + + 0 -1 1127 -6.7946797935292125e-04 + + 4.6310418844223022e-01 5.3564780950546265e-01 + <_> + + 0 -1 1128 7.2856349870562553e-03 + + 5.0446701049804688e-01 2.3775640130043030e-01 + <_> + + 0 -1 1129 -1.7459489405155182e-02 + + 7.2891211509704590e-01 5.0504350662231445e-01 + <_> + + 0 -1 1130 -2.5421749800443649e-02 + + 6.6671347618103027e-01 4.6781000494956970e-01 + <_> + + 0 -1 1131 -1.5647639520466328e-03 + + 4.3917590379714966e-01 5.3236269950866699e-01 + <_> + + 0 -1 1132 1.1444360017776489e-02 + + 4.3464401364326477e-01 5.6800121068954468e-01 + <_> + + 0 -1 1133 -6.7352550104260445e-04 + + 4.4771409034729004e-01 5.2968120574951172e-01 + <_> + + 0 -1 1134 9.3194209039211273e-03 + + 4.7402000427246094e-01 7.4626070261001587e-01 + <_> + + 0 -1 1135 1.3328490604180843e-04 + + 5.3650617599487305e-01 4.7521349787712097e-01 + <_> + + 0 -1 1136 -7.8815799206495285e-03 + + 1.7522190511226654e-01 5.0152552127838135e-01 + <_> + + 0 -1 1137 -5.7985680177807808e-03 + + 7.2712367773056030e-01 4.8962008953094482e-01 + <_> + + 0 -1 1138 -3.8922499516047537e-04 + + 4.0039089322090149e-01 5.3449410200119019e-01 + <_> + + 0 -1 1139 -1.9288610201328993e-03 + + 5.6056129932403564e-01 4.8039558529853821e-01 + <_> + + 0 -1 1140 8.4214154630899429e-03 + + 4.7532469034194946e-01 7.6236087083816528e-01 + <_> + + 0 -1 1141 8.1655876711010933e-03 + + 5.3932619094848633e-01 4.1916438937187195e-01 + <_> + + 0 -1 1142 4.8280550981871784e-04 + + 4.2408001422882080e-01 5.3998219966888428e-01 + <_> + + 0 -1 1143 -2.7186630759388208e-03 + + 4.2445999383926392e-01 5.4249238967895508e-01 + <_> + + 0 -1 1144 -1.2507230043411255e-02 + + 5.8958417177200317e-01 4.5504111051559448e-01 + <_> + + 0 -1 1145 -2.4286519736051559e-02 + + 2.6471349596977234e-01 5.1891797780990601e-01 + <_> + + 0 -1 1146 -2.9676330741494894e-03 + + 7.3476827144622803e-01 4.7497498989105225e-01 + <_> + + 0 -1 1147 -1.2528999708592892e-02 + + 2.7560499310493469e-01 5.1775997877120972e-01 + <_> + + 0 -1 1148 -1.0104000102728605e-03 + + 3.5105609893798828e-01 5.1447242498397827e-01 + <_> + + 0 -1 1149 -2.1348530426621437e-03 + + 5.6379258632659912e-01 4.6673199534416199e-01 + <_> + + 0 -1 1150 1.9564259797334671e-02 + + 4.6145731210708618e-01 6.1376398801803589e-01 + <_> + + 0 -1 1151 -9.7146347165107727e-02 + + 2.9983788728713989e-01 5.1935559511184692e-01 + <_> + + 0 -1 1152 4.5014568604528904e-03 + + 5.0778847932815552e-01 3.0457559227943420e-01 + <_> + + 0 -1 1153 6.3706971704959869e-03 + + 4.8610189557075500e-01 6.8875008821487427e-01 + <_> + + 0 -1 1154 -9.0721528977155685e-03 + + 1.6733959317207336e-01 5.0175631046295166e-01 + <_> + + 0 -1 1155 -5.3537208586931229e-03 + + 2.6927569508552551e-01 5.2426332235336304e-01 + <_> + + 0 -1 1156 -1.0932840406894684e-02 + + 7.1838641166687012e-01 4.7360289096832275e-01 + <_> + + 0 -1 1157 8.2356072962284088e-03 + + 5.2239668369293213e-01 2.3898629844188690e-01 + <_> + + 0 -1 1158 -1.0038160253316164e-03 + + 5.7193559408187866e-01 4.4339430332183838e-01 + <_> + + 0 -1 1159 4.0859128348529339e-03 + + 5.4728418588638306e-01 4.1488361358642578e-01 + <_> + + 0 -1 1160 1.5485419332981110e-01 + + 4.9738121032714844e-01 6.1061598360538483e-02 + <_> + + 0 -1 1161 2.0897459762636572e-04 + + 4.7091740369796753e-01 5.4238891601562500e-01 + <_> + + 0 -1 1162 3.3316991175524890e-04 + + 4.0896269679069519e-01 5.3009921312332153e-01 + <_> + + 0 -1 1163 -1.0813400149345398e-02 + + 6.1043697595596313e-01 4.9573341012001038e-01 + <_> + + 0 -1 1164 4.5656010508537292e-02 + + 5.0696891546249390e-01 2.8666600584983826e-01 + <_> + + 0 -1 1165 1.2569549726322293e-03 + + 4.8469170928001404e-01 6.3181710243225098e-01 + <_> + + 0 -1 1166 -1.2015070021152496e-01 + + 6.0526140034198761e-02 4.9809598922729492e-01 + <_> + + 0 -1 1167 -1.0533799650147557e-04 + + 5.3631097078323364e-01 4.7080421447753906e-01 + <_> + + 0 -1 1168 -2.0703190565109253e-01 + + 5.9660330414772034e-02 4.9790981411933899e-01 + <_> + + 0 -1 1169 1.2909180077258497e-04 + + 4.7129771113395691e-01 5.3779977560043335e-01 + <_> + + 0 -1 1170 3.8818528992123902e-04 + + 4.3635380268096924e-01 5.5341911315917969e-01 + <_> + + 0 -1 1171 -2.9243610333651304e-03 + + 5.8111858367919922e-01 4.8252159357070923e-01 + <_> + + 0 -1 1172 8.3882332546636462e-04 + + 5.3117001056671143e-01 4.0381389856338501e-01 + <_> + + 0 -1 1173 -1.9061550265178084e-03 + + 3.7707018852233887e-01 5.2600151300430298e-01 + <_> + + 0 -1 1174 8.9514348655939102e-03 + + 4.7661679983139038e-01 7.6821839809417725e-01 + <_> + + 0 -1 1175 1.3083459809422493e-02 + + 5.2644628286361694e-01 3.0622220039367676e-01 + <_> + + 0 -1 1176 -2.1159330010414124e-01 + + 6.7371982336044312e-01 4.6958100795745850e-01 + <_> + + 0 -1 1177 3.1493250280618668e-03 + + 5.6448352336883545e-01 4.3869531154632568e-01 + <_> + + 0 -1 1178 3.9754100725986063e-04 + + 4.5260611176490784e-01 5.8956301212310791e-01 + <_> + + 0 -1 1179 -1.3814480043947697e-03 + + 6.0705822706222534e-01 4.9424138665199280e-01 + <_> + + 0 -1 1180 -5.8122188784182072e-04 + + 5.9982132911682129e-01 4.5082521438598633e-01 + <_> + + 0 -1 1181 -2.3905329871922731e-03 + + 4.2055889964103699e-01 5.2238482236862183e-01 + <_> + + 0 -1 1182 2.7268929407000542e-02 + + 5.2064472436904907e-01 3.5633018612861633e-01 + <_> + + 0 -1 1183 -3.7658358924090862e-03 + + 3.1447041034698486e-01 5.2188140153884888e-01 + <_> + + 0 -1 1184 -1.4903489500284195e-03 + + 3.3801960945129395e-01 5.1244372129440308e-01 + <_> + + 0 -1 1185 -1.7428230494260788e-02 + + 5.8299607038497925e-01 4.9197259545326233e-01 + <_> + + 0 -1 1186 -1.5278030186891556e-02 + + 6.1631447076797485e-01 4.6178871393203735e-01 + <_> + + 0 -1 1187 3.1995609402656555e-02 + + 5.1663571596145630e-01 1.7127640545368195e-01 + <_> + + 0 -1 1188 -3.8256710395216942e-03 + + 3.4080120921134949e-01 5.1313877105712891e-01 + <_> + + 0 -1 1189 -8.5186436772346497e-03 + + 6.1055189371109009e-01 4.9979418516159058e-01 + <_> + + 0 -1 1190 9.0641621500253677e-04 + + 4.3272709846496582e-01 5.5823111534118652e-01 + <_> + + 0 -1 1191 1.0344849899411201e-02 + + 4.8556530475616455e-01 5.4524201154708862e-01 + <_> + 160 + 7.9249076843261719e+01 + + <_> + + 0 -1 1192 7.8981826081871986e-03 + + 3.3325248956680298e-01 5.9464621543884277e-01 + <_> + + 0 -1 1193 1.6170160379260778e-03 + + 3.4906411170959473e-01 5.5778688192367554e-01 + <_> + + 0 -1 1194 -5.5449741194024682e-04 + + 5.5425661802291870e-01 3.2915300130844116e-01 + <_> + + 0 -1 1195 1.5428980113938451e-03 + + 3.6125791072845459e-01 5.5459791421890259e-01 + <_> + + 0 -1 1196 -1.0329450014978647e-03 + + 3.5301390290260315e-01 5.5761402845382690e-01 + <_> + + 0 -1 1197 7.7698158565908670e-04 + + 3.9167788624763489e-01 5.6453210115432739e-01 + <_> + + 0 -1 1198 1.4320300519466400e-01 + + 4.6674820780754089e-01 7.0236331224441528e-01 + <_> + + 0 -1 1199 -7.3866490274667740e-03 + + 3.0736848711967468e-01 5.2892577648162842e-01 + <_> + + 0 -1 1200 -6.2936742324382067e-04 + + 5.6221181154251099e-01 4.0370491147041321e-01 + <_> + + 0 -1 1201 7.8893528552725911e-04 + + 5.2676612138748169e-01 3.5578748583793640e-01 + <_> + + 0 -1 1202 -1.2228050269186497e-02 + + 6.6683208942413330e-01 4.6255499124526978e-01 + <_> + + 0 -1 1203 3.5420239437371492e-03 + + 5.5214381217956543e-01 3.8696730136871338e-01 + <_> + + 0 -1 1204 -1.0585320414975286e-03 + + 3.6286780238151550e-01 5.3209269046783447e-01 + <_> + + 0 -1 1205 1.4935660146875307e-05 + + 4.6324449777603149e-01 5.3633230924606323e-01 + <_> + + 0 -1 1206 5.2537708543241024e-03 + + 5.1322317123413086e-01 3.2657089829444885e-01 + <_> + + 0 -1 1207 -8.2338023930788040e-03 + + 6.6936898231506348e-01 4.7741401195526123e-01 + <_> + + 0 -1 1208 2.1866810129722580e-05 + + 4.0538620948791504e-01 5.4579311609268188e-01 + <_> + + 0 -1 1209 -3.8150229956954718e-03 + + 6.4549958705902100e-01 4.7931781411170959e-01 + <_> + + 0 -1 1210 1.1105879675596952e-03 + + 5.2704071998596191e-01 3.5296788811683655e-01 + <_> + + 0 -1 1211 -5.7707689702510834e-03 + + 3.8035470247268677e-01 5.3529578447341919e-01 + <_> + + 0 -1 1212 -3.0158339068293571e-03 + + 5.3394031524658203e-01 3.8871330022811890e-01 + <_> + + 0 -1 1213 -8.5453689098358154e-04 + + 3.5646161437034607e-01 5.2736037969589233e-01 + <_> + + 0 -1 1214 1.1050510220229626e-02 + + 4.6719071269035339e-01 6.8497377634048462e-01 + <_> + + 0 -1 1215 4.2605839669704437e-02 + + 5.1514732837677002e-01 7.0220090448856354e-02 + <_> + + 0 -1 1216 -3.0781750101596117e-03 + + 3.0416610836982727e-01 5.1526021957397461e-01 + <_> + + 0 -1 1217 -5.4815728217363358e-03 + + 6.4302957057952881e-01 4.8972299695014954e-01 + <_> + + 0 -1 1218 3.1881860923022032e-03 + + 5.3074932098388672e-01 3.8262099027633667e-01 + <_> + + 0 -1 1219 3.5947180003859103e-04 + + 4.6500471234321594e-01 5.4219049215316772e-01 + <_> + + 0 -1 1220 -4.0705031715333462e-03 + + 2.8496798872947693e-01 5.0791162252426147e-01 + <_> + + 0 -1 1221 -1.4594170264899731e-02 + + 2.9716458916664124e-01 5.1284617185592651e-01 + <_> + + 0 -1 1222 -1.1947689927183092e-04 + + 5.6310981512069702e-01 4.3430820107460022e-01 + <_> + + 0 -1 1223 -6.9344649091362953e-04 + + 4.4035780429840088e-01 5.3599590063095093e-01 + <_> + + 0 -1 1224 1.4834799912932795e-05 + + 3.4210088849067688e-01 5.1646977663040161e-01 + <_> + + 0 -1 1225 9.0296985581517220e-03 + + 4.6393430233001709e-01 6.1140751838684082e-01 + <_> + + 0 -1 1226 -8.0640818923711777e-03 + + 2.8201588988304138e-01 5.0754940509796143e-01 + <_> + + 0 -1 1227 2.6062119752168655e-02 + + 5.2089059352874756e-01 2.6887780427932739e-01 + <_> + + 0 -1 1228 1.7314659431576729e-02 + + 4.6637138724327087e-01 6.7385399341583252e-01 + <_> + + 0 -1 1229 2.2666640579700470e-02 + + 5.2093499898910522e-01 2.2127239406108856e-01 + <_> + + 0 -1 1230 -2.1965929772704840e-03 + + 6.0631012916564941e-01 4.5381900668144226e-01 + <_> + + 0 -1 1231 -9.5282476395368576e-03 + + 4.6352049708366394e-01 5.2474308013916016e-01 + <_> + + 0 -1 1232 8.0943619832396507e-03 + + 5.2894401550292969e-01 3.9138820767402649e-01 + <_> + + 0 -1 1233 -7.2877332568168640e-02 + + 7.7520018815994263e-01 4.9902349710464478e-01 + <_> + + 0 -1 1234 -6.9009521976113319e-03 + + 2.4280390143394470e-01 5.0480902194976807e-01 + <_> + + 0 -1 1235 -1.1308239772915840e-02 + + 5.7343649864196777e-01 4.8423761129379272e-01 + <_> + + 0 -1 1236 5.9613201767206192e-02 + + 5.0298362970352173e-01 2.5249770283699036e-01 + <_> + + 0 -1 1237 -2.8624620754271746e-03 + + 6.0730451345443726e-01 4.8984599113464355e-01 + <_> + + 0 -1 1238 4.4781449250876904e-03 + + 5.0152891874313354e-01 2.2203169763088226e-01 + <_> + + 0 -1 1239 -1.7513240454718471e-03 + + 6.6144287586212158e-01 4.9338689446449280e-01 + <_> + + 0 -1 1240 4.0163420140743256e-02 + + 5.1808780431747437e-01 3.7410449981689453e-01 + <_> + + 0 -1 1241 3.4768949262797832e-04 + + 4.7204169631004333e-01 5.8180320262908936e-01 + <_> + + 0 -1 1242 2.6551650371402502e-03 + + 3.8050109148025513e-01 5.2213358879089355e-01 + <_> + + 0 -1 1243 -8.7706279009580612e-03 + + 2.9441660642623901e-01 5.2312952280044556e-01 + <_> + + 0 -1 1244 -5.5122091434895992e-03 + + 7.3461771011352539e-01 4.7228169441223145e-01 + <_> + + 0 -1 1245 6.8672042107209563e-04 + + 5.4528760910034180e-01 4.2424130439758301e-01 + <_> + + 0 -1 1246 5.6019669864326715e-04 + + 4.3988621234893799e-01 5.6012850999832153e-01 + <_> + + 0 -1 1247 2.4143769405782223e-03 + + 4.7416868805885315e-01 6.1366218328475952e-01 + <_> + + 0 -1 1248 -1.5680900542065501e-03 + + 6.0445529222488403e-01 4.5164099335670471e-01 + <_> + + 0 -1 1249 -3.6827491130679846e-03 + + 2.4524590373039246e-01 5.2949821949005127e-01 + <_> + + 0 -1 1250 -2.9409190756268799e-04 + + 3.7328380346298218e-01 5.2514511346817017e-01 + <_> + + 0 -1 1251 4.2847759323194623e-04 + + 5.4988098144531250e-01 4.0655350685119629e-01 + <_> + + 0 -1 1252 -4.8817070201039314e-03 + + 2.1399089694023132e-01 4.9999570846557617e-01 + <_> + + 0 -1 1253 2.7272020815871656e-04 + + 4.6502870321273804e-01 5.8134287595748901e-01 + <_> + + 0 -1 1254 2.0947199664078653e-04 + + 4.3874868750572205e-01 5.5727928876876831e-01 + <_> + + 0 -1 1255 4.8501189798116684e-02 + + 5.2449727058410645e-01 3.2128891348838806e-01 + <_> + + 0 -1 1256 -4.5166411437094212e-03 + + 6.0568130016326904e-01 4.5458820462226868e-01 + <_> + + 0 -1 1257 -1.2291680090129375e-02 + + 2.0409290492534637e-01 5.1522141695022583e-01 + <_> + + 0 -1 1258 4.8549679922871292e-04 + + 5.2376049757003784e-01 3.7395030260086060e-01 + <_> + + 0 -1 1259 3.0556049197912216e-02 + + 4.9605339765548706e-01 5.9382462501525879e-01 + <_> + + 0 -1 1260 -1.5105320198927075e-04 + + 5.3513038158416748e-01 4.1452041268348694e-01 + <_> + + 0 -1 1261 2.4937440175563097e-03 + + 4.6933668851852417e-01 5.5149412155151367e-01 + <_> + + 0 -1 1262 -1.2382130138576031e-02 + + 6.7913967370986938e-01 4.6816679835319519e-01 + <_> + + 0 -1 1263 -5.1333461888134480e-03 + + 3.6087390780448914e-01 5.2291601896286011e-01 + <_> + + 0 -1 1264 5.1919277757406235e-04 + + 5.3000730276107788e-01 3.6336138844490051e-01 + <_> + + 0 -1 1265 1.5060420334339142e-01 + + 5.1573169231414795e-01 2.2117820382118225e-01 + <_> + + 0 -1 1266 7.7144149690866470e-03 + + 4.4104969501495361e-01 5.7766091823577881e-01 + <_> + + 0 -1 1267 9.4443522393703461e-03 + + 5.4018551111221313e-01 3.7566500902175903e-01 + <_> + + 0 -1 1268 2.5006249779835343e-04 + + 4.3682709336280823e-01 5.6073749065399170e-01 + <_> + + 0 -1 1269 -3.3077150583267212e-03 + + 4.2447990179061890e-01 5.5182307958602905e-01 + <_> + + 0 -1 1270 7.4048910755664110e-04 + + 4.4969621300697327e-01 5.9005767107009888e-01 + <_> + + 0 -1 1271 4.4092051684856415e-02 + + 5.2934932708740234e-01 3.1563550233840942e-01 + <_> + + 0 -1 1272 3.3639909233897924e-03 + + 4.4832968711853027e-01 5.8486622571945190e-01 + <_> + + 0 -1 1273 -3.9760079234838486e-03 + + 4.5595070719718933e-01 5.4836392402648926e-01 + <_> + + 0 -1 1274 2.7716930489987135e-03 + + 5.3417861461639404e-01 3.7924841046333313e-01 + <_> + + 0 -1 1275 -2.4123019829858094e-04 + + 5.6671887636184692e-01 4.5769730210304260e-01 + <_> + + 0 -1 1276 4.9425667384639382e-04 + + 4.4212448596954346e-01 5.6287872791290283e-01 + <_> + + 0 -1 1277 -3.8876468897797167e-04 + + 4.2883709073066711e-01 5.3910630941390991e-01 + <_> + + 0 -1 1278 -5.0048898905515671e-02 + + 6.8995130062103271e-01 4.7037428617477417e-01 + <_> + + 0 -1 1279 -3.6635480821132660e-02 + + 2.2177790105342865e-01 5.1918262243270874e-01 + <_> + + 0 -1 1280 2.4273579474538565e-03 + + 5.1362240314483643e-01 3.4973978996276855e-01 + <_> + + 0 -1 1281 1.9558030180633068e-03 + + 4.8261928558349609e-01 6.4083808660507202e-01 + <_> + + 0 -1 1282 -1.7494610510766506e-03 + + 3.9228358864784241e-01 5.2726852893829346e-01 + <_> + + 0 -1 1283 1.3955079950392246e-02 + + 5.0782018899917603e-01 8.4165048599243164e-01 + <_> + + 0 -1 1284 -2.1896739781368524e-04 + + 5.5204898118972778e-01 4.3142348527908325e-01 + <_> + + 0 -1 1285 -1.5131309628486633e-03 + + 3.9346051216125488e-01 5.3825712203979492e-01 + <_> + + 0 -1 1286 -4.3622800149023533e-03 + + 7.3706287145614624e-01 4.7364759445190430e-01 + <_> + + 0 -1 1287 6.5160587430000305e-02 + + 5.1592797040939331e-01 3.2815951108932495e-01 + <_> + + 0 -1 1288 -2.3567399475723505e-03 + + 3.6728268861770630e-01 5.1728862524032593e-01 + <_> + + 0 -1 1289 1.5146659687161446e-02 + + 5.0314939022064209e-01 6.6876041889190674e-01 + <_> + + 0 -1 1290 -2.2850960493087769e-02 + + 6.7675197124481201e-01 4.7095969319343567e-01 + <_> + + 0 -1 1291 4.8867650330066681e-03 + + 5.2579981088638306e-01 4.0598788857460022e-01 + <_> + + 0 -1 1292 1.7619599821045995e-03 + + 4.6962729096412659e-01 6.6882789134979248e-01 + <_> + + 0 -1 1293 -1.2942519970238209e-03 + + 4.3207129836082458e-01 5.3442817926406860e-01 + <_> + + 0 -1 1294 1.0929949581623077e-02 + + 4.9977061152458191e-01 1.6374860703945160e-01 + <_> + + 0 -1 1295 2.9958489903947338e-05 + + 4.2824178934097290e-01 5.6332242488861084e-01 + <_> + + 0 -1 1296 -6.5884361974895000e-03 + + 6.7721211910247803e-01 4.7005268931388855e-01 + <_> + + 0 -1 1297 3.2527779694646597e-03 + + 5.3133970499038696e-01 4.5361489057540894e-01 + <_> + + 0 -1 1298 -4.0435739792883396e-03 + + 5.6600618362426758e-01 4.4133889675140381e-01 + <_> + + 0 -1 1299 -1.2523540062829852e-03 + + 3.7319138646125793e-01 5.3564518690109253e-01 + <_> + + 0 -1 1300 1.9246719602961093e-04 + + 5.1899862289428711e-01 3.7388110160827637e-01 + <_> + + 0 -1 1301 -3.8589671254158020e-02 + + 2.9563739895820618e-01 5.1888108253479004e-01 + <_> + + 0 -1 1302 1.5489870565943420e-04 + + 4.3471351265907288e-01 5.5095332860946655e-01 + <_> + + 0 -1 1303 -3.3763848245143890e-02 + + 3.2303300499916077e-01 5.1954758167266846e-01 + <_> + + 0 -1 1304 -8.2657067105174065e-03 + + 5.9754890203475952e-01 4.5521140098571777e-01 + <_> + + 0 -1 1305 1.4481440302915871e-05 + + 4.7456780076026917e-01 5.4974269866943359e-01 + <_> + + 0 -1 1306 1.4951299817766994e-05 + + 4.3244731426239014e-01 5.4806441068649292e-01 + <_> + + 0 -1 1307 -1.8741799518465996e-02 + + 1.5800529718399048e-01 5.1785331964492798e-01 + <_> + + 0 -1 1308 1.7572239739820361e-03 + + 4.5176368951797485e-01 5.7737642526626587e-01 + <_> + + 0 -1 1309 -3.1391119118779898e-03 + + 4.1496479511260986e-01 5.4608422517776489e-01 + <_> + + 0 -1 1310 6.6656779381446540e-05 + + 4.0390908718109131e-01 5.2930849790573120e-01 + <_> + + 0 -1 1311 6.7743421532213688e-03 + + 4.7676518559455872e-01 6.1219561100006104e-01 + <_> + + 0 -1 1312 -7.3868161998689175e-03 + + 3.5862588882446289e-01 5.1872807741165161e-01 + <_> + + 0 -1 1313 1.4040930196642876e-02 + + 4.7121399641036987e-01 5.5761557817459106e-01 + <_> + + 0 -1 1314 -5.5258329957723618e-03 + + 2.6610270142555237e-01 5.0392812490463257e-01 + <_> + + 0 -1 1315 3.8684239983558655e-01 + + 5.1443397998809814e-01 2.5258991122245789e-01 + <_> + + 0 -1 1316 1.1459240340627730e-04 + + 4.2849949002265930e-01 5.4233711957931519e-01 + <_> + + 0 -1 1317 -1.8467569723725319e-02 + + 3.8858351111412048e-01 5.2130621671676636e-01 + <_> + + 0 -1 1318 -4.5907011372037232e-04 + + 5.4125630855560303e-01 4.2359098792076111e-01 + <_> + + 0 -1 1319 1.2527540093287826e-03 + + 4.8993051052093506e-01 6.6240912675857544e-01 + <_> + + 0 -1 1320 1.4910609461367130e-03 + + 5.2867782115936279e-01 4.0400519967079163e-01 + <_> + + 0 -1 1321 -7.5435562757775187e-04 + + 6.0329902172088623e-01 4.7951200604438782e-01 + <_> + + 0 -1 1322 -6.9478838704526424e-03 + + 4.0844011306762695e-01 5.3735041618347168e-01 + <_> + + 0 -1 1323 2.8092920547351241e-04 + + 4.8460629582405090e-01 5.7593822479248047e-01 + <_> + + 0 -1 1324 9.6073717577382922e-04 + + 5.1647412776947021e-01 3.5549798607826233e-01 + <_> + + 0 -1 1325 -2.6883929967880249e-04 + + 5.6775820255279541e-01 4.7317659854888916e-01 + <_> + + 0 -1 1326 2.1599370520561934e-03 + + 4.7314870357513428e-01 7.0705670118331909e-01 + <_> + + 0 -1 1327 5.6235301308333874e-03 + + 5.2402430772781372e-01 2.7817919850349426e-01 + <_> + + 0 -1 1328 -5.0243991427123547e-03 + + 2.8370139002799988e-01 5.0623041391372681e-01 + <_> + + 0 -1 1329 -9.7611639648675919e-03 + + 7.4007177352905273e-01 4.9345690011978149e-01 + <_> + + 0 -1 1330 4.1515100747346878e-03 + + 5.1191312074661255e-01 3.4070080518722534e-01 + <_> + + 0 -1 1331 6.2465080991387367e-03 + + 4.9237880110740662e-01 6.5790587663650513e-01 + <_> + + 0 -1 1332 -7.0597478188574314e-03 + + 2.4347110092639923e-01 5.0328421592712402e-01 + <_> + + 0 -1 1333 -2.0587709732353687e-03 + + 5.9003108739852905e-01 4.6950870752334595e-01 + <_> + + 0 -1 1334 -2.4146060459315777e-03 + + 3.6473178863525391e-01 5.1892018318176270e-01 + <_> + + 0 -1 1335 -1.4817609917372465e-03 + + 6.0349482297897339e-01 4.9401280283927917e-01 + <_> + + 0 -1 1336 -6.3016400672495365e-03 + + 5.8189898729324341e-01 4.5604279637336731e-01 + <_> + + 0 -1 1337 3.4763428848236799e-03 + + 5.2174758911132812e-01 3.4839931130409241e-01 + <_> + + 0 -1 1338 -2.2250870242714882e-02 + + 2.3607000708580017e-01 5.0320827960968018e-01 + <_> + + 0 -1 1339 -3.0612550675868988e-02 + + 6.4991867542266846e-01 4.9149191379547119e-01 + <_> + + 0 -1 1340 1.3057479634881020e-02 + + 4.4133231043815613e-01 5.6837642192840576e-01 + <_> + + 0 -1 1341 -6.0095742810517550e-04 + + 4.3597310781478882e-01 5.3334832191467285e-01 + <_> + + 0 -1 1342 -4.1514250915497541e-04 + + 5.5040627717971802e-01 4.3260601162910461e-01 + <_> + + 0 -1 1343 -1.3776290230453014e-02 + + 4.0641129016876221e-01 5.2015489339828491e-01 + <_> + + 0 -1 1344 -3.2296508550643921e-02 + + 4.7351971268653870e-02 4.9771949648857117e-01 + <_> + + 0 -1 1345 5.3556978702545166e-02 + + 4.8817330598831177e-01 6.6669392585754395e-01 + <_> + + 0 -1 1346 8.1889545544981956e-03 + + 5.4000371694564819e-01 4.2408201098442078e-01 + <_> + + 0 -1 1347 2.1055320394225419e-04 + + 4.8020479083061218e-01 5.5638527870178223e-01 + <_> + + 0 -1 1348 -2.4382730480283499e-03 + + 7.3877930641174316e-01 4.7736850380897522e-01 + <_> + + 0 -1 1349 3.2835570164024830e-03 + + 5.2885460853576660e-01 3.1712919473648071e-01 + <_> + + 0 -1 1350 2.3729570675641298e-03 + + 4.7508129477500916e-01 7.0601707696914673e-01 + <_> + + 0 -1 1351 -1.4541699783876538e-03 + + 3.8117301464080811e-01 5.3307390213012695e-01 + <_> + 177 + 8.7696029663085938e+01 + + <_> + + 0 -1 1352 5.5755238980054855e-02 + + 4.0191569924354553e-01 6.8060368299484253e-01 + <_> + + 0 -1 1353 2.4730248842388391e-03 + + 3.3511489629745483e-01 5.9657198190689087e-01 + <_> + + 0 -1 1354 -3.5031698644161224e-04 + + 5.5577081441879272e-01 3.4822869300842285e-01 + <_> + + 0 -1 1355 5.4167630150914192e-04 + + 4.2608588933944702e-01 5.6933808326721191e-01 + <_> + + 0 -1 1356 7.7193678589537740e-04 + + 3.4942400455474854e-01 5.4336887598037720e-01 + <_> + + 0 -1 1357 -1.5999219613149762e-03 + + 4.0284991264343262e-01 5.4843592643737793e-01 + <_> + + 0 -1 1358 -1.1832080053864047e-04 + + 3.8069018721580505e-01 5.4254651069641113e-01 + <_> + + 0 -1 1359 3.2909031142480671e-04 + + 2.6201000809669495e-01 5.4295217990875244e-01 + <_> + + 0 -1 1360 2.9518108931370080e-04 + + 3.7997689843177795e-01 5.3992640972137451e-01 + <_> + + 0 -1 1361 9.0466710389591753e-05 + + 4.4336450099945068e-01 5.4402261972427368e-01 + <_> + + 0 -1 1362 1.5007190086180344e-05 + + 3.7196549773216248e-01 5.4091197252273560e-01 + <_> + + 0 -1 1363 1.3935610651969910e-01 + + 5.5253958702087402e-01 4.4790428876876831e-01 + <_> + + 0 -1 1364 1.6461990308016539e-03 + + 4.2645010352134705e-01 5.7721698284149170e-01 + <_> + + 0 -1 1365 4.9984431825578213e-04 + + 4.3595260381698608e-01 5.6858712434768677e-01 + <_> + + 0 -1 1366 -1.0971280280500650e-03 + + 3.3901369571685791e-01 5.2054089307785034e-01 + <_> + + 0 -1 1367 6.6919892560690641e-04 + + 4.5574560761451721e-01 5.9806597232818604e-01 + <_> + + 0 -1 1368 8.6471042595803738e-04 + + 5.1348412036895752e-01 2.9440331459045410e-01 + <_> + + 0 -1 1369 -2.7182599296793342e-04 + + 3.9065781235694885e-01 5.3771811723709106e-01 + <_> + + 0 -1 1370 3.0249499104684219e-05 + + 3.6796098947525024e-01 5.2256888151168823e-01 + <_> + + 0 -1 1371 -8.5225896909832954e-03 + + 7.2931021451950073e-01 4.8923650383949280e-01 + <_> + + 0 -1 1372 1.6705560265108943e-03 + + 4.3453249335289001e-01 5.6961381435394287e-01 + <_> + + 0 -1 1373 -7.1433838456869125e-03 + + 2.5912800431251526e-01 5.2256238460540771e-01 + <_> + + 0 -1 1374 -1.6319369897246361e-02 + + 6.9222790002822876e-01 4.6515759825706482e-01 + <_> + + 0 -1 1375 4.8034260980784893e-03 + + 5.3522628545761108e-01 3.2863029837608337e-01 + <_> + + 0 -1 1376 -7.5421929359436035e-03 + + 2.0405440032482147e-01 5.0345462560653687e-01 + <_> + + 0 -1 1377 -1.4363110065460205e-02 + + 6.8048888444900513e-01 4.8890590667724609e-01 + <_> + + 0 -1 1378 8.9063588529825211e-04 + + 5.3106957674026489e-01 3.8954809308052063e-01 + <_> + + 0 -1 1379 -4.4060191139578819e-03 + + 5.7415628433227539e-01 4.3724268674850464e-01 + <_> + + 0 -1 1380 -1.8862540309783071e-04 + + 2.8317859768867493e-01 5.0982052087783813e-01 + <_> + + 0 -1 1381 -3.7979281041771173e-03 + + 3.3725079894065857e-01 5.2465802431106567e-01 + <_> + + 0 -1 1382 1.4627049677073956e-04 + + 5.3066742420196533e-01 3.9117100834846497e-01 + <_> + + 0 -1 1383 -4.9164638767251745e-05 + + 5.4624962806701660e-01 3.9427208900451660e-01 + <_> + + 0 -1 1384 -3.3582501113414764e-02 + + 2.1578240394592285e-01 5.0482118129730225e-01 + <_> + + 0 -1 1385 -3.5339309833943844e-03 + + 6.4653122425079346e-01 4.8726969957351685e-01 + <_> + + 0 -1 1386 5.0144111737608910e-03 + + 4.6176680922508240e-01 6.2480747699737549e-01 + <_> + + 0 -1 1387 1.8817370757460594e-02 + + 5.2206891775131226e-01 2.0000520348548889e-01 + <_> + + 0 -1 1388 -1.3434339780360460e-03 + + 4.0145379304885864e-01 5.3016197681427002e-01 + <_> + + 0 -1 1389 1.7557960236445069e-03 + + 4.7940391302108765e-01 5.6531697511672974e-01 + <_> + + 0 -1 1390 -9.5637463033199310e-02 + + 2.0341950654983521e-01 5.0067067146301270e-01 + <_> + + 0 -1 1391 -2.2241229191422462e-02 + + 7.6724731922149658e-01 5.0463402271270752e-01 + <_> + + 0 -1 1392 -1.5575819648802280e-02 + + 7.4903422594070435e-01 4.7558510303497314e-01 + <_> + + 0 -1 1393 5.3599118255078793e-03 + + 5.3653037548065186e-01 4.0046709775924683e-01 + <_> + + 0 -1 1394 -2.1763499826192856e-02 + + 7.4015498161315918e-02 4.9641749262809753e-01 + <_> + + 0 -1 1395 -1.6561590135097504e-01 + + 2.8591030836105347e-01 5.2180862426757812e-01 + <_> + + 0 -1 1396 1.6461320046801120e-04 + + 4.1916158795356750e-01 5.3807932138442993e-01 + <_> + + 0 -1 1397 -8.9077502489089966e-03 + + 6.2731927633285522e-01 4.8774048686027527e-01 + <_> + + 0 -1 1398 8.6346449097618461e-04 + + 5.1599407196044922e-01 3.6710259318351746e-01 + <_> + + 0 -1 1399 -1.3751760125160217e-03 + + 5.8843767642974854e-01 4.5790839195251465e-01 + <_> + + 0 -1 1400 -1.4081239933148026e-03 + + 3.5605099797248840e-01 5.1399451494216919e-01 + <_> + + 0 -1 1401 -3.9342888630926609e-03 + + 5.9942889213562012e-01 4.6642720699310303e-01 + <_> + + 0 -1 1402 -3.1966928392648697e-02 + + 3.3454620838165283e-01 5.1441830396652222e-01 + <_> + + 0 -1 1403 -1.5089280168467667e-05 + + 5.5826562643051147e-01 4.4140571355819702e-01 + <_> + + 0 -1 1404 5.1994470413774252e-04 + + 4.6236801147460938e-01 6.1689937114715576e-01 + <_> + + 0 -1 1405 -3.4220460802316666e-03 + + 6.5570747852325439e-01 4.9748051166534424e-01 + <_> + + 0 -1 1406 1.7723299970384687e-04 + + 5.2695018053054810e-01 3.9019080996513367e-01 + <_> + + 0 -1 1407 1.5716759953647852e-03 + + 4.6333730220794678e-01 5.7904577255249023e-01 + <_> + + 0 -1 1408 -8.9041329920291901e-03 + + 2.6896080374717712e-01 5.0535911321640015e-01 + <_> + + 0 -1 1409 4.0677518700249493e-04 + + 5.4566031694412231e-01 4.3298989534378052e-01 + <_> + + 0 -1 1410 6.7604780197143555e-03 + + 4.6489939093589783e-01 6.6897618770599365e-01 + <_> + + 0 -1 1411 2.9100088868290186e-03 + + 5.3097039461135864e-01 3.3778399229049683e-01 + <_> + + 0 -1 1412 1.3885459629818797e-03 + + 4.0747389197349548e-01 5.3491330146789551e-01 + <_> + + 0 -1 1413 -7.6764263212680817e-02 + + 1.9921760261058807e-01 5.2282422780990601e-01 + <_> + + 0 -1 1414 -2.2688310127705336e-04 + + 5.4385018348693848e-01 4.2530721426010132e-01 + <_> + + 0 -1 1415 -6.3094152137637138e-03 + + 4.2591789364814758e-01 5.3789097070693970e-01 + <_> + + 0 -1 1416 -1.1007279902696609e-01 + + 6.9041568040847778e-01 4.7217491269111633e-01 + <_> + + 0 -1 1417 2.8619659133255482e-04 + + 4.5249149203300476e-01 5.5483061075210571e-01 + <_> + + 0 -1 1418 2.9425329557852820e-05 + + 5.3703737258911133e-01 4.2364639043807983e-01 + <_> + + 0 -1 1419 -2.4886570870876312e-02 + + 6.4235579967498779e-01 4.9693039059638977e-01 + <_> + + 0 -1 1420 3.3148851245641708e-02 + + 4.9884751439094543e-01 1.6138119995594025e-01 + <_> + + 0 -1 1421 7.8491691965609789e-04 + + 5.4160261154174805e-01 4.2230090498924255e-01 + <_> + + 0 -1 1422 4.7087189741432667e-03 + + 4.5763289928436279e-01 6.0275578498840332e-01 + <_> + + 0 -1 1423 2.4144479539245367e-03 + + 5.3089731931686401e-01 4.4224989414215088e-01 + <_> + + 0 -1 1424 1.9523180089890957e-03 + + 4.7056341171264648e-01 6.6633248329162598e-01 + <_> + + 0 -1 1425 1.3031980488449335e-03 + + 4.4061261415481567e-01 5.5269622802734375e-01 + <_> + + 0 -1 1426 4.4735497795045376e-03 + + 5.1290237903594971e-01 3.3014988899230957e-01 + <_> + + 0 -1 1427 -2.6652868837118149e-03 + + 3.1354710459709167e-01 5.1750361919403076e-01 + <_> + + 0 -1 1428 1.3666770246345550e-04 + + 4.1193708777427673e-01 5.3068768978118896e-01 + <_> + + 0 -1 1429 -1.7126450315117836e-02 + + 6.1778062582015991e-01 4.8365789651870728e-01 + <_> + + 0 -1 1430 -2.6601430727168918e-04 + + 3.6543309688568115e-01 5.1697367429733276e-01 + <_> + + 0 -1 1431 -2.2932380437850952e-02 + + 3.4909150004386902e-01 5.1639920473098755e-01 + <_> + + 0 -1 1432 2.3316550068557262e-03 + + 5.1662999391555786e-01 3.7093898653984070e-01 + <_> + + 0 -1 1433 1.6925660893321037e-02 + + 5.0147360563278198e-01 8.0539882183074951e-01 + <_> + + 0 -1 1434 -8.9858826249837875e-03 + + 6.4707887172698975e-01 4.6570208668708801e-01 + <_> + + 0 -1 1435 -1.1874699965119362e-02 + + 3.2463788986206055e-01 5.2587550878524780e-01 + <_> + + 0 -1 1436 1.9350569345988333e-04 + + 5.1919418573379517e-01 3.8396438956260681e-01 + <_> + + 0 -1 1437 5.8713490143418312e-03 + + 4.9181339144706726e-01 6.1870431900024414e-01 + <_> + + 0 -1 1438 -2.4838790297508240e-01 + + 1.8368029594421387e-01 4.9881500005722046e-01 + <_> + + 0 -1 1439 1.2256000190973282e-02 + + 5.2270537614822388e-01 3.6320298910140991e-01 + <_> + + 0 -1 1440 8.3990179700776935e-04 + + 4.4902500510215759e-01 5.7741481065750122e-01 + <_> + + 0 -1 1441 2.5407369248569012e-03 + + 4.8047870397567749e-01 5.8582991361618042e-01 + <_> + + 0 -1 1442 -1.4822429977357388e-02 + + 2.5210499763488770e-01 5.0235372781753540e-01 + <_> + + 0 -1 1443 -5.7973959483206272e-03 + + 5.9966957569122314e-01 4.8537150025367737e-01 + <_> + + 0 -1 1444 7.2662148158997297e-04 + + 5.1537168025970459e-01 3.6717799305915833e-01 + <_> + + 0 -1 1445 -1.7232580110430717e-02 + + 6.6217190027236938e-01 4.9946561455726624e-01 + <_> + + 0 -1 1446 7.8624086454510689e-03 + + 4.6333950757980347e-01 6.2561017274856567e-01 + <_> + + 0 -1 1447 -4.7343620099127293e-03 + + 3.6155730485916138e-01 5.2818852663040161e-01 + <_> + + 0 -1 1448 8.3048478700220585e-04 + + 4.4428890943527222e-01 5.5509579181671143e-01 + <_> + + 0 -1 1449 7.6602199114859104e-03 + + 5.1629352569580078e-01 2.6133549213409424e-01 + <_> + + 0 -1 1450 -4.1048377752304077e-03 + + 2.7896320819854736e-01 5.0190317630767822e-01 + <_> + + 0 -1 1451 4.8512578941881657e-03 + + 4.9689841270446777e-01 5.6616681814193726e-01 + <_> + + 0 -1 1452 9.9896453320980072e-04 + + 4.4456079602241516e-01 5.5518132448196411e-01 + <_> + + 0 -1 1453 -2.7023631334304810e-01 + + 2.9388209804892540e-02 5.1513141393661499e-01 + <_> + + 0 -1 1454 -1.3090680353343487e-02 + + 5.6993997097015381e-01 4.4474598765373230e-01 + <_> + + 0 -1 1455 -9.4342790544033051e-03 + + 4.3054661154747009e-01 5.4878950119018555e-01 + <_> + + 0 -1 1456 -1.5482039889320731e-03 + + 3.6803171038627625e-01 5.1280808448791504e-01 + <_> + + 0 -1 1457 5.3746132180094719e-03 + + 4.8389169573783875e-01 6.1015558242797852e-01 + <_> + + 0 -1 1458 1.5786769799888134e-03 + + 5.3252232074737549e-01 4.1185480356216431e-01 + <_> + + 0 -1 1459 3.6856050137430429e-03 + + 4.8109480738639832e-01 6.2523031234741211e-01 + <_> + + 0 -1 1460 9.3887019902467728e-03 + + 5.2002298831939697e-01 3.6294108629226685e-01 + <_> + + 0 -1 1461 1.2792630121111870e-02 + + 4.9617099761962891e-01 6.7380160093307495e-01 + <_> + + 0 -1 1462 -3.3661040943115950e-03 + + 4.0602791309356689e-01 5.2835988998413086e-01 + <_> + + 0 -1 1463 3.9771420415490866e-04 + + 4.6741139888763428e-01 5.9007751941680908e-01 + <_> + + 0 -1 1464 1.4868030557408929e-03 + + 4.5191168785095215e-01 6.0820537805557251e-01 + <_> + + 0 -1 1465 -8.8686749339103699e-02 + + 2.8078991174697876e-01 5.1809918880462646e-01 + <_> + + 0 -1 1466 -7.4296112870797515e-05 + + 5.2955842018127441e-01 4.0876251459121704e-01 + <_> + + 0 -1 1467 -1.4932939848222304e-05 + + 5.4614001512527466e-01 4.5385429263114929e-01 + <_> + + 0 -1 1468 5.9162238612771034e-03 + + 5.3291612863540649e-01 4.1921341419219971e-01 + <_> + + 0 -1 1469 1.1141640134155750e-03 + + 4.5120179653167725e-01 5.7062172889709473e-01 + <_> + + 0 -1 1470 8.9249362645205110e-05 + + 4.5778059959411621e-01 5.8976382017135620e-01 + <_> + + 0 -1 1471 2.5319510605186224e-03 + + 5.2996039390563965e-01 3.3576390147209167e-01 + <_> + + 0 -1 1472 1.2426200322806835e-02 + + 4.9590590596199036e-01 1.3466019928455353e-01 + <_> + + 0 -1 1473 2.8335750102996826e-02 + + 5.1170790195465088e-01 6.1043637106195092e-04 + <_> + + 0 -1 1474 6.6165882162749767e-03 + + 4.7363498806953430e-01 7.0116281509399414e-01 + <_> + + 0 -1 1475 8.0468766391277313e-03 + + 5.2164179086685181e-01 3.2828199863433838e-01 + <_> + + 0 -1 1476 -1.1193980462849140e-03 + + 5.8098608255386353e-01 4.5637390017509460e-01 + <_> + + 0 -1 1477 1.3277590274810791e-02 + + 5.3983622789382935e-01 4.1039010882377625e-01 + <_> + + 0 -1 1478 4.8794739996083081e-04 + + 4.2492860555648804e-01 5.4105907678604126e-01 + <_> + + 0 -1 1479 1.1243170127272606e-02 + + 5.2699637413024902e-01 3.4382158517837524e-01 + <_> + + 0 -1 1480 -8.9896668214350939e-04 + + 5.6330758333206177e-01 4.4566130638122559e-01 + <_> + + 0 -1 1481 6.6677159629762173e-03 + + 5.3128892183303833e-01 4.3626791238784790e-01 + <_> + + 0 -1 1482 2.8947299346327782e-02 + + 4.7017949819564819e-01 6.5757977962493896e-01 + <_> + + 0 -1 1483 -2.3400049656629562e-02 + + 0. 5.1373988389968872e-01 + <_> + + 0 -1 1484 -8.9117050170898438e-02 + + 2.3745279759168625e-02 4.9424308538436890e-01 + <_> + + 0 -1 1485 -1.4054600149393082e-02 + + 3.1273230910301208e-01 5.1175111532211304e-01 + <_> + + 0 -1 1486 8.1239398568868637e-03 + + 5.0090491771697998e-01 2.5200259685516357e-01 + <_> + + 0 -1 1487 -4.9964650534093380e-03 + + 6.3871437311172485e-01 4.9278119206428528e-01 + <_> + + 0 -1 1488 3.1253970228135586e-03 + + 5.1368498802185059e-01 3.6804521083831787e-01 + <_> + + 0 -1 1489 6.7669642157852650e-03 + + 5.5098438262939453e-01 4.3636319041252136e-01 + <_> + + 0 -1 1490 -2.3711440153419971e-03 + + 6.1623352766036987e-01 4.5869469642639160e-01 + <_> + + 0 -1 1491 -5.3522791713476181e-03 + + 6.1854577064514160e-01 4.9204909801483154e-01 + <_> + + 0 -1 1492 -1.5968859195709229e-02 + + 1.3826179504394531e-01 4.9832528829574585e-01 + <_> + + 0 -1 1493 4.7676060348749161e-03 + + 4.6880578994750977e-01 5.4900461435317993e-01 + <_> + + 0 -1 1494 -2.4714691098779440e-03 + + 2.3685149848461151e-01 5.0039529800415039e-01 + <_> + + 0 -1 1495 -7.1033788844943047e-04 + + 5.8563941717147827e-01 4.7215330600738525e-01 + <_> + + 0 -1 1496 -1.4117559790611267e-01 + + 8.6900062859058380e-02 4.9615910649299622e-01 + <_> + + 0 -1 1497 1.0651809722185135e-01 + + 5.1388370990753174e-01 1.7410050332546234e-01 + <_> + + 0 -1 1498 -5.2744749933481216e-02 + + 7.3536360263824463e-01 4.7728818655014038e-01 + <_> + + 0 -1 1499 -4.7431760467588902e-03 + + 3.8844060897827148e-01 5.2927017211914062e-01 + <_> + + 0 -1 1500 9.9676765967160463e-04 + + 5.2234929800033569e-01 4.0034240484237671e-01 + <_> + + 0 -1 1501 8.0284131690859795e-03 + + 4.9591061472892761e-01 7.2129642963409424e-01 + <_> + + 0 -1 1502 8.6025858763605356e-04 + + 4.4448840618133545e-01 5.5384761095046997e-01 + <_> + + 0 -1 1503 9.3191501218825579e-04 + + 5.3983712196350098e-01 4.1632440686225891e-01 + <_> + + 0 -1 1504 -2.5082060601562262e-03 + + 5.8542650938034058e-01 4.5625001192092896e-01 + <_> + + 0 -1 1505 -2.1378761157393456e-03 + + 4.6080690622329712e-01 5.2802592515945435e-01 + <_> + + 0 -1 1506 -2.1546049974858761e-03 + + 3.7911269068717957e-01 5.2559971809387207e-01 + <_> + + 0 -1 1507 -7.6214009895920753e-03 + + 5.9986090660095215e-01 4.9520739912986755e-01 + <_> + + 0 -1 1508 2.2055360022932291e-03 + + 4.4842061400413513e-01 5.5885308980941772e-01 + <_> + + 0 -1 1509 1.2586950324475765e-03 + + 5.4507470130920410e-01 4.4238409399986267e-01 + <_> + + 0 -1 1510 -5.0926720723509789e-03 + + 4.1182750463485718e-01 5.2630358934402466e-01 + <_> + + 0 -1 1511 -2.5095739401876926e-03 + + 5.7879078388214111e-01 4.9984949827194214e-01 + <_> + + 0 -1 1512 -7.7327556908130646e-02 + + 8.3978658914566040e-01 4.8111200332641602e-01 + <_> + + 0 -1 1513 -4.1485819965600967e-02 + + 2.4086110293865204e-01 5.1769930124282837e-01 + <_> + + 0 -1 1514 1.0355669655837119e-04 + + 4.3553608655929565e-01 5.4170542955398560e-01 + <_> + + 0 -1 1515 1.3255809899419546e-03 + + 5.4539710283279419e-01 4.8940950632095337e-01 + <_> + + 0 -1 1516 -8.0598732456564903e-03 + + 5.7710242271423340e-01 4.5779189467430115e-01 + <_> + + 0 -1 1517 1.9058620557188988e-02 + + 5.1698678731918335e-01 3.4004750847816467e-01 + <_> + + 0 -1 1518 -3.5057891160249710e-02 + + 2.2032439708709717e-01 5.0005030632019043e-01 + <_> + + 0 -1 1519 5.7296059094369411e-03 + + 5.0434082746505737e-01 6.5975707769393921e-01 + <_> + + 0 -1 1520 -1.1648329906165600e-02 + + 2.1862849593162537e-01 4.9966529011726379e-01 + <_> + + 0 -1 1521 1.4544479781761765e-03 + + 5.0076818466186523e-01 5.5037277936935425e-01 + <_> + + 0 -1 1522 -2.5030909455381334e-04 + + 4.1298410296440125e-01 5.2416700124740601e-01 + <_> + + 0 -1 1523 -8.2907272735610604e-04 + + 5.4128682613372803e-01 4.9744960665702820e-01 + <_> + + 0 -1 1524 1.0862209601327777e-03 + + 4.6055299043655396e-01 5.8792287111282349e-01 + <_> + + 0 -1 1525 2.0000500080641359e-04 + + 5.2788549661636353e-01 4.7052091360092163e-01 + <_> + + 0 -1 1526 2.9212920926511288e-03 + + 5.1296097040176392e-01 3.7555369734764099e-01 + <_> + + 0 -1 1527 2.5387400761246681e-02 + + 4.8226919770240784e-01 5.7907682657241821e-01 + <_> + + 0 -1 1528 -3.1968469265848398e-03 + + 5.2483952045440674e-01 3.9628401398658752e-01 + <_> + 182 + 9.0253349304199219e+01 + + <_> + + 0 -1 1529 5.8031738735735416e-03 + + 3.4989839792251587e-01 5.9619832038879395e-01 + <_> + + 0 -1 1530 -9.0003069490194321e-03 + + 6.8166369199752808e-01 4.4785520434379578e-01 + <_> + + 0 -1 1531 -1.1549659539014101e-03 + + 5.5857062339782715e-01 3.5782510042190552e-01 + <_> + + 0 -1 1532 -1.1069850297644734e-03 + + 5.3650361299514771e-01 3.0504280328750610e-01 + <_> + + 0 -1 1533 1.0308309720130637e-04 + + 3.6390951275825500e-01 5.3446358442306519e-01 + <_> + + 0 -1 1534 -5.0984839908778667e-03 + + 2.8591570258140564e-01 5.5042648315429688e-01 + <_> + + 0 -1 1535 8.2572200335562229e-04 + + 5.2365237474441528e-01 3.4760418534278870e-01 + <_> + + 0 -1 1536 9.9783325567841530e-03 + + 4.7503221035003662e-01 6.2196469306945801e-01 + <_> + + 0 -1 1537 -3.7402529269456863e-02 + + 3.3433759212493896e-01 5.2780628204345703e-01 + <_> + + 0 -1 1538 4.8548257909715176e-03 + + 5.1921808719635010e-01 3.7004441022872925e-01 + <_> + + 0 -1 1539 -1.8664470408111811e-03 + + 2.9298439621925354e-01 5.0919449329376221e-01 + <_> + + 0 -1 1540 1.6888890415430069e-02 + + 3.6868458986282349e-01 5.4312258958816528e-01 + <_> + + 0 -1 1541 -5.8372621424496174e-03 + + 3.6321839690208435e-01 5.2213358879089355e-01 + <_> + + 0 -1 1542 -1.4713739510625601e-03 + + 5.8706837892532349e-01 4.7006508708000183e-01 + <_> + + 0 -1 1543 -1.1522950371727347e-03 + + 3.1958949565887451e-01 5.1409542560577393e-01 + <_> + + 0 -1 1544 -4.2560300789773464e-03 + + 6.3018590211868286e-01 4.8149210214614868e-01 + <_> + + 0 -1 1545 -6.7378291860222816e-03 + + 1.9770480692386627e-01 5.0258082151412964e-01 + <_> + + 0 -1 1546 1.1382670141756535e-02 + + 4.9541321396827698e-01 6.8670457601547241e-01 + <_> + + 0 -1 1547 5.1794708706438541e-03 + + 5.1644277572631836e-01 3.3506479859352112e-01 + <_> + + 0 -1 1548 -1.1743789911270142e-01 + + 2.3152460157871246e-01 5.2344137430191040e-01 + <_> + + 0 -1 1549 2.8703449293971062e-02 + + 4.6642971038818359e-01 6.7225211858749390e-01 + <_> + + 0 -1 1550 4.8231030814349651e-03 + + 5.2208751440048218e-01 2.7235329151153564e-01 + <_> + + 0 -1 1551 2.6798530016094446e-03 + + 5.0792771577835083e-01 2.9069489240646362e-01 + <_> + + 0 -1 1552 8.0504082143306732e-03 + + 4.8859509825706482e-01 6.3950210809707642e-01 + <_> + + 0 -1 1553 4.8054959625005722e-03 + + 5.1972568035125732e-01 3.6566638946533203e-01 + <_> + + 0 -1 1554 -2.2420159075409174e-03 + + 6.1534678936004639e-01 4.7637018561363220e-01 + <_> + + 0 -1 1555 -1.3757710345089436e-02 + + 2.6373448967933655e-01 5.0309032201766968e-01 + <_> + + 0 -1 1556 -1.0338299721479416e-01 + + 2.2875219583511353e-01 5.1824611425399780e-01 + <_> + + 0 -1 1557 -9.4432085752487183e-03 + + 6.9533038139343262e-01 4.6949490904808044e-01 + <_> + + 0 -1 1558 8.0271181650459766e-04 + + 5.4506552219390869e-01 4.2687839269638062e-01 + <_> + + 0 -1 1559 -4.1945669800043106e-03 + + 6.0913878679275513e-01 4.5716428756713867e-01 + <_> + + 0 -1 1560 1.0942210443317890e-02 + + 5.2410632371902466e-01 3.2845470309257507e-01 + <_> + + 0 -1 1561 -5.7841069065034389e-04 + + 5.3879290819168091e-01 4.1793689131736755e-01 + <_> + + 0 -1 1562 -2.0888620056211948e-03 + + 4.2926910519599915e-01 5.3017157316207886e-01 + <_> + + 0 -1 1563 3.2383969519287348e-03 + + 3.7923479080200195e-01 5.2207440137863159e-01 + <_> + + 0 -1 1564 4.9075027927756310e-03 + + 5.2372831106185913e-01 4.1267579793930054e-01 + <_> + + 0 -1 1565 -3.2277941703796387e-02 + + 1.9476559758186340e-01 4.9945020675659180e-01 + <_> + + 0 -1 1566 -8.9711230248212814e-03 + + 6.0112851858139038e-01 4.9290320277214050e-01 + <_> + + 0 -1 1567 1.5321089886128902e-02 + + 5.0097537040710449e-01 2.0398220419883728e-01 + <_> + + 0 -1 1568 2.0855569746345282e-03 + + 4.8621898889541626e-01 5.7216948270797729e-01 + <_> + + 0 -1 1569 5.0615021027624607e-03 + + 5.0002187490463257e-01 1.8018059432506561e-01 + <_> + + 0 -1 1570 -3.7174751050770283e-03 + + 5.5301171541213989e-01 4.8975929617881775e-01 + <_> + + 0 -1 1571 -1.2170500122010708e-02 + + 4.1786059737205505e-01 5.3837239742279053e-01 + <_> + + 0 -1 1572 4.6248398721218109e-03 + + 4.9971699714660645e-01 5.7613271474838257e-01 + <_> + + 0 -1 1573 -2.1040429419372231e-04 + + 5.3318071365356445e-01 4.0976810455322266e-01 + <_> + + 0 -1 1574 -1.4641780406236649e-02 + + 5.7559251785278320e-01 5.0517761707305908e-01 + <_> + + 0 -1 1575 3.3199489116668701e-03 + + 4.5769768953323364e-01 6.0318058729171753e-01 + <_> + + 0 -1 1576 3.7236879579722881e-03 + + 4.3803969025611877e-01 5.4158830642700195e-01 + <_> + + 0 -1 1577 8.2951161311939359e-04 + + 5.1630318164825439e-01 3.7022191286087036e-01 + <_> + + 0 -1 1578 -1.1408490128815174e-02 + + 6.0729467868804932e-01 4.8625651001930237e-01 + <_> + + 0 -1 1579 -4.5320121571421623e-03 + + 3.2924759387969971e-01 5.0889629125595093e-01 + <_> + + 0 -1 1580 5.1276017911732197e-03 + + 4.8297679424285889e-01 6.1227089166641235e-01 + <_> + + 0 -1 1581 9.8583158105611801e-03 + + 4.6606799960136414e-01 6.5561771392822266e-01 + <_> + + 0 -1 1582 3.6985918879508972e-02 + + 5.2048492431640625e-01 1.6904720664024353e-01 + <_> + + 0 -1 1583 4.6491161920130253e-03 + + 5.1673221588134766e-01 3.7252250313758850e-01 + <_> + + 0 -1 1584 -4.2664702050387859e-03 + + 6.4064931869506836e-01 4.9873429536819458e-01 + <_> + + 0 -1 1585 -4.7956590424291790e-04 + + 5.8972930908203125e-01 4.4648739695549011e-01 + <_> + + 0 -1 1586 3.6827160511165857e-03 + + 5.4415607452392578e-01 3.4726628661155701e-01 + <_> + + 0 -1 1587 -1.0059880092740059e-02 + + 2.1431629359722137e-01 5.0048297643661499e-01 + <_> + + 0 -1 1588 -3.0361840617842972e-04 + + 5.3864240646362305e-01 4.5903238654136658e-01 + <_> + + 0 -1 1589 -1.4545479789376259e-03 + + 5.7511842250823975e-01 4.4970950484275818e-01 + <_> + + 0 -1 1590 1.6515209572389722e-03 + + 5.4219377040863037e-01 4.2385208606719971e-01 + <_> + + 0 -1 1591 -7.8468639403581619e-03 + + 4.0779209136962891e-01 5.2581572532653809e-01 + <_> + + 0 -1 1592 -5.1259850151836872e-03 + + 4.2292758822441101e-01 5.4794532060623169e-01 + <_> + + 0 -1 1593 -3.6890961229801178e-02 + + 6.5963757038116455e-01 4.6746781468391418e-01 + <_> + + 0 -1 1594 2.4035639944486320e-04 + + 4.2511358857154846e-01 5.5732029676437378e-01 + <_> + + 0 -1 1595 -1.5150169929256663e-05 + + 5.2592468261718750e-01 4.0741148591041565e-01 + <_> + + 0 -1 1596 2.2108471021056175e-03 + + 4.6717229485511780e-01 5.8863520622253418e-01 + <_> + + 0 -1 1597 -1.1568620102480054e-03 + + 5.7110661268234253e-01 4.4871619343757629e-01 + <_> + + 0 -1 1598 4.9996292218565941e-03 + + 5.2641981840133667e-01 2.8983271121978760e-01 + <_> + + 0 -1 1599 -1.4656189596280456e-03 + + 3.8917380571365356e-01 5.1978719234466553e-01 + <_> + + 0 -1 1600 -1.1975039960816503e-03 + + 5.7958728075027466e-01 4.9279558658599854e-01 + <_> + + 0 -1 1601 -4.4954330660402775e-03 + + 2.3776030540466309e-01 5.0125551223754883e-01 + <_> + + 0 -1 1602 1.4997160178609192e-04 + + 4.8766261339187622e-01 5.6176078319549561e-01 + <_> + + 0 -1 1603 2.6391509454697371e-03 + + 5.1680880784988403e-01 3.7655091285705566e-01 + <_> + + 0 -1 1604 -2.9368131072260439e-04 + + 5.4466491937637329e-01 4.8746308684349060e-01 + <_> + + 0 -1 1605 1.4211760135367513e-03 + + 4.6878978610038757e-01 6.6913318634033203e-01 + <_> + + 0 -1 1606 7.9427637159824371e-02 + + 5.1934438943862915e-01 2.7329459786415100e-01 + <_> + + 0 -1 1607 7.9937502741813660e-02 + + 4.9717310070991516e-01 1.7820839583873749e-01 + <_> + + 0 -1 1608 1.1089259758591652e-02 + + 5.1659947633743286e-01 3.2094758749008179e-01 + <_> + + 0 -1 1609 1.6560709627810866e-04 + + 4.0584719181060791e-01 5.3072762489318848e-01 + <_> + + 0 -1 1610 -5.3354292176663876e-03 + + 3.4450569748878479e-01 5.1581299304962158e-01 + <_> + + 0 -1 1611 1.1287260567769408e-03 + + 4.5948630571365356e-01 6.0755330324172974e-01 + <_> + + 0 -1 1612 -2.1969219669699669e-02 + + 1.6804009675979614e-01 5.2285957336425781e-01 + <_> + + 0 -1 1613 -2.1775320055894554e-04 + + 3.8615968823432922e-01 5.2156728506088257e-01 + <_> + + 0 -1 1614 2.0200149447191507e-04 + + 5.5179792642593384e-01 4.3630391359329224e-01 + <_> + + 0 -1 1615 -2.1733149886131287e-02 + + 7.9994601011276245e-01 4.7898510098457336e-01 + <_> + + 0 -1 1616 -8.4399932529777288e-04 + + 4.0859758853912354e-01 5.3747731447219849e-01 + <_> + + 0 -1 1617 -4.3895249837078154e-04 + + 5.4704052209854126e-01 4.3661430478096008e-01 + <_> + + 0 -1 1618 1.5092400135472417e-03 + + 4.9889969825744629e-01 5.8421492576599121e-01 + <_> + + 0 -1 1619 -3.5547839943319559e-03 + + 6.7536902427673340e-01 4.7210058569908142e-01 + <_> + + 0 -1 1620 4.8191400128416717e-04 + + 5.4158538579940796e-01 4.3571090698242188e-01 + <_> + + 0 -1 1621 -6.0264398343861103e-03 + + 2.2585099935531616e-01 4.9918809533119202e-01 + <_> + + 0 -1 1622 -1.1668140068650246e-02 + + 6.2565547227859497e-01 4.9274989962577820e-01 + <_> + + 0 -1 1623 -2.8718370012938976e-03 + + 3.9477849006652832e-01 5.2458018064498901e-01 + <_> + + 0 -1 1624 1.7051169648766518e-02 + + 4.7525110840797424e-01 5.7942241430282593e-01 + <_> + + 0 -1 1625 -1.3352080248296261e-02 + + 6.0411047935485840e-01 4.5445358753204346e-01 + <_> + + 0 -1 1626 -3.9301801007241011e-04 + + 4.2582759261131287e-01 5.5449050664901733e-01 + <_> + + 0 -1 1627 3.0483349692076445e-03 + + 5.2334201335906982e-01 3.7802729010581970e-01 + <_> + + 0 -1 1628 -4.3579288758337498e-03 + + 6.3718891143798828e-01 4.8386740684509277e-01 + <_> + + 0 -1 1629 5.6661018170416355e-03 + + 5.3747057914733887e-01 4.1636660695075989e-01 + <_> + + 0 -1 1630 6.0677339206449687e-05 + + 4.6387958526611328e-01 5.3116250038146973e-01 + <_> + + 0 -1 1631 3.6738160997629166e-02 + + 4.6886560320854187e-01 6.4665240049362183e-01 + <_> + + 0 -1 1632 8.6528137326240540e-03 + + 5.2043187618255615e-01 2.1886579692363739e-01 + <_> + + 0 -1 1633 -1.5371359884738922e-01 + + 1.6303719580173492e-01 4.9588400125503540e-01 + <_> + + 0 -1 1634 -4.1560421232134104e-04 + + 5.7744592428207397e-01 4.6964588761329651e-01 + <_> + + 0 -1 1635 -1.2640169588848948e-03 + + 3.9771759510040283e-01 5.2171981334686279e-01 + <_> + + 0 -1 1636 -3.5473341122269630e-03 + + 6.0465282201766968e-01 4.8083150386810303e-01 + <_> + + 0 -1 1637 3.0019069527043030e-05 + + 3.9967238903045654e-01 5.2282011508941650e-01 + <_> + + 0 -1 1638 1.3113019522279501e-03 + + 4.7121581435203552e-01 5.7659977674484253e-01 + <_> + + 0 -1 1639 -1.3374709524214268e-03 + + 4.1095849871635437e-01 5.2531701326370239e-01 + <_> + + 0 -1 1640 2.0876709371805191e-02 + + 5.2029937505722046e-01 1.7579819262027740e-01 + <_> + + 0 -1 1641 -7.5497948564589024e-03 + + 6.5666097402572632e-01 4.6949750185012817e-01 + <_> + + 0 -1 1642 2.4188550189137459e-02 + + 5.1286739110946655e-01 3.3702209591865540e-01 + <_> + + 0 -1 1643 -2.9358828905969858e-03 + + 6.5807867050170898e-01 4.6945410966873169e-01 + <_> + + 0 -1 1644 5.7557929307222366e-02 + + 5.1464450359344482e-01 2.7752599120140076e-01 + <_> + + 0 -1 1645 -1.1343370424583554e-03 + + 3.8366019725799561e-01 5.1926672458648682e-01 + <_> + + 0 -1 1646 1.6816999763250351e-02 + + 5.0855928659439087e-01 6.1772608757019043e-01 + <_> + + 0 -1 1647 5.0535178743302822e-03 + + 5.1387631893157959e-01 3.6847919225692749e-01 + <_> + + 0 -1 1648 -4.5874710194766521e-03 + + 5.9896552562713623e-01 4.8352020978927612e-01 + <_> + + 0 -1 1649 1.6882460331544280e-03 + + 4.5094868540763855e-01 5.7230567932128906e-01 + <_> + + 0 -1 1650 -1.6554000321775675e-03 + + 3.4967708587646484e-01 5.2433192729949951e-01 + <_> + + 0 -1 1651 -1.9373800605535507e-02 + + 1.1205369979143143e-01 4.9687129259109497e-01 + <_> + + 0 -1 1652 1.0374450124800205e-02 + + 5.1481968164443970e-01 4.3952131271362305e-01 + <_> + + 0 -1 1653 1.4973050565458834e-04 + + 4.0849998593330383e-01 5.2698868513107300e-01 + <_> + + 0 -1 1654 -4.2981930077075958e-02 + + 6.3941049575805664e-01 5.0185042619705200e-01 + <_> + + 0 -1 1655 8.3065936341881752e-03 + + 4.7075539827346802e-01 6.6983532905578613e-01 + <_> + + 0 -1 1656 -4.1285790503025055e-03 + + 4.5413690805435181e-01 5.3236472606658936e-01 + <_> + + 0 -1 1657 1.7399420030415058e-03 + + 4.3339619040489197e-01 5.4398661851882935e-01 + <_> + + 0 -1 1658 1.1739750334527344e-04 + + 4.5796871185302734e-01 5.5434262752532959e-01 + <_> + + 0 -1 1659 1.8585780344437808e-04 + + 4.3246439099311829e-01 5.4267549514770508e-01 + <_> + + 0 -1 1660 5.5587692186236382e-03 + + 5.2572208642959595e-01 3.5506111383438110e-01 + <_> + + 0 -1 1661 -7.9851560294628143e-03 + + 6.0430181026458740e-01 4.6306359767913818e-01 + <_> + + 0 -1 1662 6.0594122624024749e-04 + + 4.5982548594474792e-01 5.5331951379776001e-01 + <_> + + 0 -1 1663 -2.2983040253166109e-04 + + 4.1307520866394043e-01 5.3224611282348633e-01 + <_> + + 0 -1 1664 4.3740210821852088e-04 + + 4.0430399775505066e-01 5.4092890024185181e-01 + <_> + + 0 -1 1665 2.9482020181603730e-04 + + 4.4949638843536377e-01 5.6288522481918335e-01 + <_> + + 0 -1 1666 1.0312659665942192e-02 + + 5.1775109767913818e-01 2.7043169736862183e-01 + <_> + + 0 -1 1667 -7.7241109684109688e-03 + + 1.9880190491676331e-01 4.9805539846420288e-01 + <_> + + 0 -1 1668 -4.6797208487987518e-03 + + 6.6447502374649048e-01 5.0182962417602539e-01 + <_> + + 0 -1 1669 -5.0755459815263748e-03 + + 3.8983049988746643e-01 5.1852691173553467e-01 + <_> + + 0 -1 1670 2.2479740437120199e-03 + + 4.8018088936805725e-01 5.6603360176086426e-01 + <_> + + 0 -1 1671 8.3327008178457618e-04 + + 5.2109199762344360e-01 3.9571881294250488e-01 + <_> + + 0 -1 1672 -4.1279330849647522e-02 + + 6.1545419692993164e-01 5.0070542097091675e-01 + <_> + + 0 -1 1673 -5.0930189900100231e-04 + + 3.9759421348571777e-01 5.2284038066864014e-01 + <_> + + 0 -1 1674 1.2568780221045017e-03 + + 4.9791380763053894e-01 5.9391832351684570e-01 + <_> + + 0 -1 1675 8.0048497766256332e-03 + + 4.9844971299171448e-01 1.6333660483360291e-01 + <_> + + 0 -1 1676 -1.1879300000146031e-03 + + 5.9049648046493530e-01 4.9426248669624329e-01 + <_> + + 0 -1 1677 6.1948952497914433e-04 + + 4.1995579004287720e-01 5.3287261724472046e-01 + <_> + + 0 -1 1678 6.6829859279096127e-03 + + 5.4186028242111206e-01 4.9058890342712402e-01 + <_> + + 0 -1 1679 -3.7062340416014194e-03 + + 3.7259390950202942e-01 5.1380002498626709e-01 + <_> + + 0 -1 1680 -3.9739411324262619e-02 + + 6.4789611101150513e-01 5.0503468513488770e-01 + <_> + + 0 -1 1681 1.4085009461268783e-03 + + 4.6823391318321228e-01 6.3778841495513916e-01 + <_> + + 0 -1 1682 3.9322688826359808e-04 + + 5.4585301876068115e-01 4.1504821181297302e-01 + <_> + + 0 -1 1683 -1.8979819724336267e-03 + + 3.6901599168777466e-01 5.1497042179107666e-01 + <_> + + 0 -1 1684 -1.3970440253615379e-02 + + 6.0505628585815430e-01 4.8113578557968140e-01 + <_> + + 0 -1 1685 -1.0100819915533066e-01 + + 2.0170800387859344e-01 4.9923619627952576e-01 + <_> + + 0 -1 1686 -1.7346920445561409e-02 + + 5.7131487131118774e-01 4.8994860053062439e-01 + <_> + + 0 -1 1687 1.5619759506080300e-04 + + 4.2153888940811157e-01 5.3926420211791992e-01 + <_> + + 0 -1 1688 1.3438929617404938e-01 + + 5.1361519098281860e-01 3.7676128745079041e-01 + <_> + + 0 -1 1689 -2.4582240730524063e-02 + + 7.0273578166961670e-01 4.7479069232940674e-01 + <_> + + 0 -1 1690 -3.8553720805794001e-03 + + 4.3174090981483459e-01 5.4277169704437256e-01 + <_> + + 0 -1 1691 -2.3165249731391668e-03 + + 5.9426987171173096e-01 4.6186479926109314e-01 + <_> + + 0 -1 1692 -4.8518120311200619e-03 + + 6.1915689706802368e-01 4.8848950862884521e-01 + <_> + + 0 -1 1693 2.4699938949197531e-03 + + 5.2566647529602051e-01 4.0171998739242554e-01 + <_> + + 0 -1 1694 4.5496959239244461e-02 + + 5.2378678321838379e-01 2.6857739686965942e-01 + <_> + + 0 -1 1695 -2.0319599658250809e-02 + + 2.1304459869861603e-01 4.9797388911247253e-01 + <_> + + 0 -1 1696 2.6994998916052282e-04 + + 4.8140418529510498e-01 5.5431222915649414e-01 + <_> + + 0 -1 1697 -1.8232699949294329e-03 + + 6.4825797080993652e-01 4.7099891304969788e-01 + <_> + + 0 -1 1698 -6.3015790656208992e-03 + + 4.5819279551506042e-01 5.3062361478805542e-01 + <_> + + 0 -1 1699 -2.4139499873854220e-04 + + 5.2320867776870728e-01 4.0517631173133850e-01 + <_> + + 0 -1 1700 -1.0330369696021080e-03 + + 5.5562019348144531e-01 4.7891938686370850e-01 + <_> + + 0 -1 1701 1.8041160365100950e-04 + + 5.2294427156448364e-01 4.0118101239204407e-01 + <_> + + 0 -1 1702 -6.1407860368490219e-02 + + 6.2986820936203003e-01 5.0107032060623169e-01 + <_> + + 0 -1 1703 -6.9543913006782532e-02 + + 7.2282809019088745e-01 4.7731840610504150e-01 + <_> + + 0 -1 1704 -7.0542663335800171e-02 + + 2.2695130109786987e-01 5.1825290918350220e-01 + <_> + + 0 -1 1705 2.4423799477517605e-03 + + 5.2370971441268921e-01 4.0981510281562805e-01 + <_> + + 0 -1 1706 1.5494349645450711e-03 + + 4.7737509012222290e-01 5.4680430889129639e-01 + <_> + + 0 -1 1707 -2.3914219811558723e-02 + + 7.1469759941101074e-01 4.7838249802589417e-01 + <_> + + 0 -1 1708 -1.2453690171241760e-02 + + 2.6352968811988831e-01 5.2411228418350220e-01 + <_> + + 0 -1 1709 -2.0760179904755205e-04 + + 3.6237570643424988e-01 5.1136088371276855e-01 + <_> + + 0 -1 1710 2.9781080229440704e-05 + + 4.7059321403503418e-01 5.4328018426895142e-01 + <_> + 211 + 1.0474919891357422e+02 + + <_> + + 0 -1 1711 1.1772749945521355e-02 + + 3.8605189323425293e-01 6.4211672544479370e-01 + <_> + + 0 -1 1712 2.7037570253014565e-02 + + 4.3856549263000488e-01 6.7540389299392700e-01 + <_> + + 0 -1 1713 -3.6419500247575343e-05 + + 5.4871010780334473e-01 3.4233158826828003e-01 + <_> + + 0 -1 1714 1.9995409529656172e-03 + + 3.2305321097373962e-01 5.4003179073333740e-01 + <_> + + 0 -1 1715 4.5278300531208515e-03 + + 5.0916397571563721e-01 2.9350438714027405e-01 + <_> + + 0 -1 1716 4.7890920541249216e-04 + + 4.1781538724899292e-01 5.3440642356872559e-01 + <_> + + 0 -1 1717 1.1720920447260141e-03 + + 2.8991821408271790e-01 5.1320707798004150e-01 + <_> + + 0 -1 1718 9.5305702416226268e-04 + + 4.2801249027252197e-01 5.5608451366424561e-01 + <_> + + 0 -1 1719 1.5099150004971307e-05 + + 4.0448719263076782e-01 5.4047602415084839e-01 + <_> + + 0 -1 1720 -6.0817901976406574e-04 + + 4.2717689275741577e-01 5.5034661293029785e-01 + <_> + + 0 -1 1721 3.3224520739167929e-03 + + 3.9627239108085632e-01 5.3697347640991211e-01 + <_> + + 0 -1 1722 -1.1037490330636501e-03 + + 4.7271779179573059e-01 5.2377498149871826e-01 + <_> + + 0 -1 1723 -1.4350269921123981e-03 + + 5.6030082702636719e-01 4.2235091328620911e-01 + <_> + + 0 -1 1724 2.0767399109899998e-03 + + 5.2259171009063721e-01 4.7327259182929993e-01 + <_> + + 0 -1 1725 -1.6412809782195836e-04 + + 3.9990758895874023e-01 5.4327398538589478e-01 + <_> + + 0 -1 1726 8.8302437216043472e-03 + + 4.6783858537673950e-01 6.0273271799087524e-01 + <_> + + 0 -1 1727 -1.0552070103585720e-02 + + 3.4939670562744141e-01 5.2139747142791748e-01 + <_> + + 0 -1 1728 -2.2731600329279900e-03 + + 6.1858189105987549e-01 4.7490629553794861e-01 + <_> + + 0 -1 1729 -8.4786332445219159e-04 + + 5.2853411436080933e-01 3.8434821367263794e-01 + <_> + + 0 -1 1730 1.2081359745934606e-03 + + 5.3606408834457397e-01 3.4473359584808350e-01 + <_> + + 0 -1 1731 2.6512730401009321e-03 + + 4.5582920312881470e-01 6.1939620971679688e-01 + <_> + + 0 -1 1732 -1.1012479662895203e-03 + + 3.6802300810813904e-01 5.3276282548904419e-01 + <_> + + 0 -1 1733 4.9561518244445324e-04 + + 3.9605951309204102e-01 5.2749407291412354e-01 + <_> + + 0 -1 1734 -4.3901771306991577e-02 + + 7.0204448699951172e-01 4.9928390979766846e-01 + <_> + + 0 -1 1735 3.4690350294113159e-02 + + 5.0491642951965332e-01 2.7666029334068298e-01 + <_> + + 0 -1 1736 -2.7442190330475569e-03 + + 2.6726329326629639e-01 5.2749711275100708e-01 + <_> + + 0 -1 1737 3.3316588960587978e-03 + + 4.5794829726219177e-01 6.0011017322540283e-01 + <_> + + 0 -1 1738 -2.0044570788741112e-02 + + 3.1715941429138184e-01 5.2357178926467896e-01 + <_> + + 0 -1 1739 1.3492030557245016e-03 + + 5.2653628587722778e-01 4.0343248844146729e-01 + <_> + + 0 -1 1740 2.9702018946409225e-03 + + 5.3324568271636963e-01 4.5719841122627258e-01 + <_> + + 0 -1 1741 6.3039981760084629e-03 + + 4.5933109521865845e-01 6.0346359014511108e-01 + <_> + + 0 -1 1742 -1.2936590239405632e-02 + + 4.4379639625549316e-01 5.3729712963104248e-01 + <_> + + 0 -1 1743 4.0148729458451271e-03 + + 4.6803238987922668e-01 6.4378339052200317e-01 + <_> + + 0 -1 1744 -2.6401679497212172e-03 + + 3.7096318602561951e-01 5.3143328428268433e-01 + <_> + + 0 -1 1745 1.3918439857661724e-02 + + 4.7235551476478577e-01 7.1308088302612305e-01 + <_> + + 0 -1 1746 -4.5087869511917233e-04 + + 4.4923940300941467e-01 5.3704041242599487e-01 + <_> + + 0 -1 1747 2.5384349282830954e-04 + + 4.4068640470504761e-01 5.5144029855728149e-01 + <_> + + 0 -1 1748 2.2710000630468130e-03 + + 4.6824169158935547e-01 5.9679841995239258e-01 + <_> + + 0 -1 1749 2.4120779708027840e-03 + + 5.0793921947479248e-01 3.0185988545417786e-01 + <_> + + 0 -1 1750 -3.6025670851813629e-05 + + 5.6010371446609497e-01 4.4710969924926758e-01 + <_> + + 0 -1 1751 -7.4905529618263245e-03 + + 2.2075350582599640e-01 4.9899441003799438e-01 + <_> + + 0 -1 1752 -1.7513120546936989e-02 + + 6.5312159061431885e-01 5.0176489353179932e-01 + <_> + + 0 -1 1753 1.4281630516052246e-01 + + 4.9679630994796753e-01 1.4820620417594910e-01 + <_> + + 0 -1 1754 5.5345268920063972e-03 + + 4.8989468812942505e-01 5.9542238712310791e-01 + <_> + + 0 -1 1755 -9.6323591424152255e-04 + + 3.9271169900894165e-01 5.1960742473602295e-01 + <_> + + 0 -1 1756 -2.0370010752230883e-03 + + 5.6133252382278442e-01 4.8848581314086914e-01 + <_> + + 0 -1 1757 1.6614829655736685e-03 + + 4.4728800654411316e-01 5.5788809061050415e-01 + <_> + + 0 -1 1758 -3.1188090797513723e-03 + + 3.8405328989028931e-01 5.3974777460098267e-01 + <_> + + 0 -1 1759 -6.4000617712736130e-03 + + 5.8439838886260986e-01 4.5332181453704834e-01 + <_> + + 0 -1 1760 3.1319601112045348e-04 + + 5.4392218589782715e-01 4.2347279191017151e-01 + <_> + + 0 -1 1761 -1.8222099170088768e-02 + + 1.2884649634361267e-01 4.9584048986434937e-01 + <_> + + 0 -1 1762 8.7969247251749039e-03 + + 4.9512979388237000e-01 7.1534800529479980e-01 + <_> + + 0 -1 1763 -4.2395070195198059e-03 + + 3.9465999603271484e-01 5.1949369907379150e-01 + <_> + + 0 -1 1764 9.7086271271109581e-03 + + 4.8975038528442383e-01 6.0649001598358154e-01 + <_> + + 0 -1 1765 -3.9934171363711357e-03 + + 3.2454401254653931e-01 5.0608289241790771e-01 + <_> + + 0 -1 1766 -1.6785059124231339e-02 + + 1.5819530189037323e-01 5.2037787437438965e-01 + <_> + + 0 -1 1767 1.8272090703248978e-02 + + 4.6809351444244385e-01 6.6269791126251221e-01 + <_> + + 0 -1 1768 5.6872838176786900e-03 + + 5.2116978168487549e-01 3.5121849179267883e-01 + <_> + + 0 -1 1769 -1.0739039862528443e-03 + + 5.7683861255645752e-01 4.5298451185226440e-01 + <_> + + 0 -1 1770 -3.7093870341777802e-03 + + 4.5077630877494812e-01 5.3135812282562256e-01 + <_> + + 0 -1 1771 -2.1110709349159151e-04 + + 5.4608201980590820e-01 4.3333768844604492e-01 + <_> + + 0 -1 1772 1.0670139454305172e-03 + + 5.3718560934066772e-01 4.0783908963203430e-01 + <_> + + 0 -1 1773 3.5943021066486835e-03 + + 4.4712871313095093e-01 5.6438362598419189e-01 + <_> + + 0 -1 1774 -5.1776031032204628e-03 + + 4.4993931055068970e-01 5.2803301811218262e-01 + <_> + + 0 -1 1775 -2.5414369883947074e-04 + + 5.5161732435226440e-01 4.4077080488204956e-01 + <_> + + 0 -1 1776 6.3522560521960258e-03 + + 5.1941901445388794e-01 2.4652279913425446e-01 + <_> + + 0 -1 1777 -4.4205080484971404e-04 + + 3.8307058811187744e-01 5.1396822929382324e-01 + <_> + + 0 -1 1778 7.4488727841526270e-04 + + 4.8910909891128540e-01 5.9747868776321411e-01 + <_> + + 0 -1 1779 -3.5116379149258137e-03 + + 7.4136817455291748e-01 4.7687649726867676e-01 + <_> + + 0 -1 1780 -1.2540910392999649e-02 + + 3.6488190293312073e-01 5.2528268098831177e-01 + <_> + + 0 -1 1781 9.4931852072477341e-03 + + 5.1004928350448608e-01 3.6295869946479797e-01 + <_> + + 0 -1 1782 1.2961150147020817e-02 + + 5.2324420213699341e-01 4.3335610628128052e-01 + <_> + + 0 -1 1783 4.7209449112415314e-03 + + 4.6481490135192871e-01 6.3310527801513672e-01 + <_> + + 0 -1 1784 -2.3119079414755106e-03 + + 5.9303098917007446e-01 4.5310580730438232e-01 + <_> + + 0 -1 1785 -2.8262299019843340e-03 + + 3.8704779744148254e-01 5.2571010589599609e-01 + <_> + + 0 -1 1786 -1.4311339473351836e-03 + + 5.5225032567977905e-01 4.5618548989295959e-01 + <_> + + 0 -1 1787 1.9378310535103083e-03 + + 4.5462208986282349e-01 5.7369667291641235e-01 + <_> + + 0 -1 1788 2.6343559147790074e-04 + + 5.3457391262054443e-01 4.5718750357627869e-01 + <_> + + 0 -1 1789 7.8257522545754910e-04 + + 3.9678159356117249e-01 5.2201879024505615e-01 + <_> + + 0 -1 1790 -1.9550440832972527e-02 + + 2.8296428918838501e-01 5.2435082197189331e-01 + <_> + + 0 -1 1791 4.3914958951063454e-04 + + 4.5900669693946838e-01 5.8990901708602905e-01 + <_> + + 0 -1 1792 2.1452000364661217e-02 + + 5.2314108610153198e-01 2.8553789854049683e-01 + <_> + + 0 -1 1793 5.8973580598831177e-04 + + 4.3972569704055786e-01 5.5064219236373901e-01 + <_> + + 0 -1 1794 -2.6157610118389130e-02 + + 3.1350791454315186e-01 5.1891750097274780e-01 + <_> + + 0 -1 1795 -1.3959860429167747e-02 + + 3.2132729887962341e-01 5.0407177209854126e-01 + <_> + + 0 -1 1796 -6.3699018210172653e-03 + + 6.3875448703765869e-01 4.8495069146156311e-01 + <_> + + 0 -1 1797 -8.5613820701837540e-03 + + 2.7591320872306824e-01 5.0320190191268921e-01 + <_> + + 0 -1 1798 9.6622901037335396e-04 + + 4.6856409311294556e-01 5.8348792791366577e-01 + <_> + + 0 -1 1799 7.6550268568098545e-04 + + 5.1752072572708130e-01 3.8964220881462097e-01 + <_> + + 0 -1 1800 -8.1833340227603912e-03 + + 2.0691369473934174e-01 5.2081221342086792e-01 + <_> + + 0 -1 1801 -9.3976939097046852e-03 + + 6.1340910196304321e-01 4.6412229537963867e-01 + <_> + + 0 -1 1802 4.8028980381786823e-03 + + 5.4541081190109253e-01 4.3952199816703796e-01 + <_> + + 0 -1 1803 -3.5680569708347321e-03 + + 6.3444852828979492e-01 4.6810939908027649e-01 + <_> + + 0 -1 1804 4.0733120404183865e-03 + + 5.2926832437515259e-01 4.0156200528144836e-01 + <_> + + 0 -1 1805 1.2568129459396005e-03 + + 4.3929880857467651e-01 5.4528248310089111e-01 + <_> + + 0 -1 1806 -2.9065010603517294e-03 + + 5.8988320827484131e-01 4.8633798956871033e-01 + <_> + + 0 -1 1807 -2.4409340694546700e-03 + + 4.0693649649620056e-01 5.2474218606948853e-01 + <_> + + 0 -1 1808 2.4830700829625130e-02 + + 5.1827257871627808e-01 3.6825248599052429e-01 + <_> + + 0 -1 1809 -4.8854008316993713e-02 + + 1.3075779378414154e-01 4.9612811207771301e-01 + <_> + + 0 -1 1810 -1.6110379947349429e-03 + + 6.4210057258605957e-01 4.8726621270179749e-01 + <_> + + 0 -1 1811 -9.7009479999542236e-02 + + 4.7769349068403244e-02 4.9509888887405396e-01 + <_> + + 0 -1 1812 1.1209240183234215e-03 + + 4.6162670850753784e-01 5.3547459840774536e-01 + <_> + + 0 -1 1813 -1.3064090162515640e-03 + + 6.2618541717529297e-01 4.6388059854507446e-01 + <_> + + 0 -1 1814 4.5771620352752507e-04 + + 5.3844177722930908e-01 4.6466401219367981e-01 + <_> + + 0 -1 1815 -6.3149951165542006e-04 + + 3.8040471076965332e-01 5.1302570104598999e-01 + <_> + + 0 -1 1816 1.4505970466416329e-04 + + 4.5543101429939270e-01 5.6644618511199951e-01 + <_> + + 0 -1 1817 -1.6474550589919090e-02 + + 6.5969580411911011e-01 4.7158598899841309e-01 + <_> + + 0 -1 1818 1.3369579799473286e-02 + + 5.1954662799835205e-01 3.0359649658203125e-01 + <_> + + 0 -1 1819 1.0271780047332868e-04 + + 5.2291762828826904e-01 4.1070660948753357e-01 + <_> + + 0 -1 1820 -5.5311559699475765e-03 + + 6.3528877496719360e-01 4.9609071016311646e-01 + <_> + + 0 -1 1821 -2.6187049224972725e-03 + + 3.8245460391044617e-01 5.1409840583801270e-01 + <_> + + 0 -1 1822 5.0834268331527710e-03 + + 4.9504399299621582e-01 6.2208187580108643e-01 + <_> + + 0 -1 1823 7.9818159341812134e-02 + + 4.9523359537124634e-01 1.3224759697914124e-01 + <_> + + 0 -1 1824 -9.9226586520671844e-02 + + 7.5427287817001343e-01 5.0084167718887329e-01 + <_> + + 0 -1 1825 -6.5174017800018191e-04 + + 3.6993029713630676e-01 5.1301211118698120e-01 + <_> + + 0 -1 1826 -1.8996849656105042e-02 + + 6.6891789436340332e-01 4.9212029576301575e-01 + <_> + + 0 -1 1827 1.7346899956464767e-02 + + 4.9833008646965027e-01 1.8591980636119843e-01 + <_> + + 0 -1 1828 5.5082101607695222e-04 + + 4.5744240283966064e-01 5.5221217870712280e-01 + <_> + + 0 -1 1829 2.0056050270795822e-03 + + 5.1317447423934937e-01 3.8564699888229370e-01 + <_> + + 0 -1 1830 -7.7688191086053848e-03 + + 4.3617001175880432e-01 5.4343092441558838e-01 + <_> + + 0 -1 1831 5.0878278911113739e-02 + + 4.6827208995819092e-01 6.8406397104263306e-01 + <_> + + 0 -1 1832 -2.2901780903339386e-03 + + 4.3292450904846191e-01 5.3060990571975708e-01 + <_> + + 0 -1 1833 -1.5715380141045898e-04 + + 5.3700572252273560e-01 4.3781641125679016e-01 + <_> + + 0 -1 1834 1.0519240051507950e-01 + + 5.1372742652893066e-01 6.7361466586589813e-02 + <_> + + 0 -1 1835 2.7198919560760260e-03 + + 4.1120609641075134e-01 5.2556651830673218e-01 + <_> + + 0 -1 1836 4.8337779939174652e-02 + + 5.4046237468719482e-01 4.4389671087265015e-01 + <_> + + 0 -1 1837 9.5703761326149106e-04 + + 4.3559691309928894e-01 5.3995108604431152e-01 + <_> + + 0 -1 1838 -2.5371259078383446e-02 + + 5.9951752424240112e-01 5.0310248136520386e-01 + <_> + + 0 -1 1839 5.2457951009273529e-02 + + 4.9502879381179810e-01 1.3983510434627533e-01 + <_> + + 0 -1 1840 -1.2365629896521568e-02 + + 6.3972991704940796e-01 4.9641060829162598e-01 + <_> + + 0 -1 1841 -1.4589719474315643e-01 + + 1.0016699880361557e-01 4.9463221430778503e-01 + <_> + + 0 -1 1842 -1.5908600762486458e-02 + + 3.3123299479484558e-01 5.2083408832550049e-01 + <_> + + 0 -1 1843 3.9486068999394774e-04 + + 4.4063639640808105e-01 5.4261028766632080e-01 + <_> + + 0 -1 1844 -5.2454001270234585e-03 + + 2.7995899319648743e-01 5.1899671554565430e-01 + <_> + + 0 -1 1845 -5.0421799533069134e-03 + + 6.9875800609588623e-01 4.7521421313285828e-01 + <_> + + 0 -1 1846 2.9812189750373363e-03 + + 4.9832889437675476e-01 6.3074797391891479e-01 + <_> + + 0 -1 1847 -7.2884308174252510e-03 + + 2.9823330044746399e-01 5.0268697738647461e-01 + <_> + + 0 -1 1848 1.5094350092113018e-03 + + 5.3084421157836914e-01 3.8329708576202393e-01 + <_> + + 0 -1 1849 -9.3340799212455750e-03 + + 2.0379640161991119e-01 4.9698171019554138e-01 + <_> + + 0 -1 1850 2.8667140752077103e-02 + + 5.0256967544555664e-01 6.9280272722244263e-01 + <_> + + 0 -1 1851 1.7019680142402649e-01 + + 4.9600529670715332e-01 1.4764429628849030e-01 + <_> + + 0 -1 1852 -3.2614478841423988e-03 + + 5.6030637025833130e-01 4.8260560631752014e-01 + <_> + + 0 -1 1853 5.5769277969375253e-04 + + 5.2055621147155762e-01 4.1296330094337463e-01 + <_> + + 0 -1 1854 3.6258339881896973e-01 + + 5.2216529846191406e-01 3.7686121463775635e-01 + <_> + + 0 -1 1855 -1.1615130119025707e-02 + + 6.0226827859878540e-01 4.6374899148941040e-01 + <_> + + 0 -1 1856 -4.0795197710394859e-03 + + 4.0704470872879028e-01 5.3374791145324707e-01 + <_> + + 0 -1 1857 5.7204300537705421e-04 + + 4.6018350124359131e-01 5.9003931283950806e-01 + <_> + + 0 -1 1858 6.7543348995968699e-04 + + 5.3982520103454590e-01 4.3454289436340332e-01 + <_> + + 0 -1 1859 6.3295697327703238e-04 + + 5.2015632390975952e-01 4.0513589978218079e-01 + <_> + + 0 -1 1860 1.2435320531949401e-03 + + 4.6423879265785217e-01 5.5474412441253662e-01 + <_> + + 0 -1 1861 -4.7363857738673687e-03 + + 6.1985671520233154e-01 4.6725520491600037e-01 + <_> + + 0 -1 1862 -6.4658462069928646e-03 + + 6.8373328447341919e-01 5.0190007686614990e-01 + <_> + + 0 -1 1863 3.5017321351915598e-04 + + 4.3448030948638916e-01 5.3636229038238525e-01 + <_> + + 0 -1 1864 1.5754920605104417e-04 + + 4.7600790858268738e-01 5.7320207357406616e-01 + <_> + + 0 -1 1865 9.9774366244673729e-03 + + 5.0909858942031860e-01 3.6350399255752563e-01 + <_> + + 0 -1 1866 -4.1464529931545258e-04 + + 5.5700647830963135e-01 4.5938020944595337e-01 + <_> + + 0 -1 1867 -3.5888899583369493e-04 + + 5.3568458557128906e-01 4.3391349911689758e-01 + <_> + + 0 -1 1868 4.0463250479660928e-04 + + 4.4398030638694763e-01 5.4367768764495850e-01 + <_> + + 0 -1 1869 -8.2184787606820464e-04 + + 4.0422949194908142e-01 5.1762992143630981e-01 + <_> + + 0 -1 1870 5.9467419050633907e-03 + + 4.9276518821716309e-01 5.6337797641754150e-01 + <_> + + 0 -1 1871 -2.1753389388322830e-02 + + 8.0062937736511230e-01 4.8008409142494202e-01 + <_> + + 0 -1 1872 -1.4540379866957664e-02 + + 3.9460548758506775e-01 5.1822227239608765e-01 + <_> + + 0 -1 1873 -4.0510769933462143e-02 + + 2.1324990317225456e-02 4.9357929825782776e-01 + <_> + + 0 -1 1874 -5.8458268176764250e-04 + + 4.0127959847450256e-01 5.3140252828598022e-01 + <_> + + 0 -1 1875 5.5151800625026226e-03 + + 4.6424189209938049e-01 5.8962607383728027e-01 + <_> + + 0 -1 1876 -6.0626221820712090e-03 + + 6.5021592378616333e-01 5.0164777040481567e-01 + <_> + + 0 -1 1877 9.4535842537879944e-02 + + 5.2647089958190918e-01 4.1268271207809448e-01 + <_> + + 0 -1 1878 4.7315051779150963e-03 + + 4.8791998624801636e-01 5.8924478292465210e-01 + <_> + + 0 -1 1879 -5.2571471314877272e-04 + + 3.9172801375389099e-01 5.1894128322601318e-01 + <_> + + 0 -1 1880 -2.5464049540460110e-03 + + 5.8375990390777588e-01 4.9857059121131897e-01 + <_> + + 0 -1 1881 -2.6075689122080803e-02 + + 1.2619839608669281e-01 4.9558219313621521e-01 + <_> + + 0 -1 1882 -5.4779709316790104e-03 + + 5.7225137948989868e-01 5.0102657079696655e-01 + <_> + + 0 -1 1883 5.1337741315364838e-03 + + 5.2732622623443604e-01 4.2263761162757874e-01 + <_> + + 0 -1 1884 4.7944980906322598e-04 + + 4.4500669836997986e-01 5.8195871114730835e-01 + <_> + + 0 -1 1885 -2.1114079281687737e-03 + + 5.7576531171798706e-01 4.5117148756980896e-01 + <_> + + 0 -1 1886 -1.3179990462958813e-02 + + 1.8843810260295868e-01 5.1607340574264526e-01 + <_> + + 0 -1 1887 -4.7968099825084209e-03 + + 6.5897899866104126e-01 4.7361189126968384e-01 + <_> + + 0 -1 1888 6.7483168095350266e-03 + + 5.2594298124313354e-01 3.3563950657844543e-01 + <_> + + 0 -1 1889 1.4623369788751006e-03 + + 5.3552711009979248e-01 4.2640921473503113e-01 + <_> + + 0 -1 1890 4.7645159065723419e-03 + + 5.0344067811965942e-01 5.7868278026580811e-01 + <_> + + 0 -1 1891 6.8066660314798355e-03 + + 4.7566050291061401e-01 6.6778290271759033e-01 + <_> + + 0 -1 1892 3.6608621012419462e-03 + + 5.3696119785308838e-01 4.3115469813346863e-01 + <_> + + 0 -1 1893 2.1449640393257141e-02 + + 4.9686419963836670e-01 1.8888160586357117e-01 + <_> + + 0 -1 1894 4.1678901761770248e-03 + + 4.9307331442832947e-01 5.8153688907623291e-01 + <_> + + 0 -1 1895 8.6467564105987549e-03 + + 5.2052050828933716e-01 4.1325950622558594e-01 + <_> + + 0 -1 1896 -3.6114078829996288e-04 + + 5.4835551977157593e-01 4.8009279370307922e-01 + <_> + + 0 -1 1897 1.0808729566633701e-03 + + 4.6899020671844482e-01 6.0414212942123413e-01 + <_> + + 0 -1 1898 5.7719959877431393e-03 + + 5.1711422204971313e-01 3.0532771348953247e-01 + <_> + + 0 -1 1899 1.5720770461484790e-03 + + 5.2199780941009521e-01 4.1788038611412048e-01 + <_> + + 0 -1 1900 -1.9307859474793077e-03 + + 5.8603698015213013e-01 4.8129200935363770e-01 + <_> + + 0 -1 1901 -7.8926272690296173e-03 + + 1.7492769658565521e-01 4.9717339873313904e-01 + <_> + + 0 -1 1902 -2.2224679123610258e-03 + + 4.3425890803337097e-01 5.2128481864929199e-01 + <_> + + 0 -1 1903 1.9011989934369922e-03 + + 4.7651869058609009e-01 6.8920552730560303e-01 + <_> + + 0 -1 1904 2.7576119173318148e-03 + + 5.2621912956237793e-01 4.3374860286712646e-01 + <_> + + 0 -1 1905 5.1787449046969414e-03 + + 4.8040691018104553e-01 7.8437292575836182e-01 + <_> + + 0 -1 1906 -9.0273341629654169e-04 + + 4.1208469867706299e-01 5.3534239530563354e-01 + <_> + + 0 -1 1907 5.1797959022223949e-03 + + 4.7403728961944580e-01 6.4259600639343262e-01 + <_> + + 0 -1 1908 -1.0114000178873539e-02 + + 2.4687920510768890e-01 5.1750177145004272e-01 + <_> + + 0 -1 1909 -1.8617060035467148e-02 + + 5.7562941312789917e-01 4.6289789676666260e-01 + <_> + + 0 -1 1910 5.9225959703326225e-03 + + 5.1696258783340454e-01 3.2142710685729980e-01 + <_> + + 0 -1 1911 -6.2945079989731312e-03 + + 3.8720148801803589e-01 5.1416367292404175e-01 + <_> + + 0 -1 1912 6.5353019163012505e-03 + + 4.8530489206314087e-01 6.3104897737503052e-01 + <_> + + 0 -1 1913 1.0878399480134249e-03 + + 5.1173150539398193e-01 3.7232589721679688e-01 + <_> + + 0 -1 1914 -2.2542240098118782e-02 + + 5.6927400827407837e-01 4.8871129751205444e-01 + <_> + + 0 -1 1915 -3.0065660830587149e-03 + + 2.5560128688812256e-01 5.0039929151535034e-01 + <_> + + 0 -1 1916 7.4741272255778313e-03 + + 4.8108729720115662e-01 5.6759268045425415e-01 + <_> + + 0 -1 1917 2.6162320747971535e-02 + + 4.9711948633193970e-01 1.7772370576858521e-01 + <_> + + 0 -1 1918 9.4352738233283162e-04 + + 4.9400109052658081e-01 5.4912507534027100e-01 + <_> + + 0 -1 1919 3.3363241702318192e-02 + + 5.0076121091842651e-01 2.7907240390777588e-01 + <_> + + 0 -1 1920 -1.5118650160729885e-02 + + 7.0595788955688477e-01 4.9730318784713745e-01 + <_> + + 0 -1 1921 9.8648946732282639e-04 + + 5.1286202669143677e-01 3.7767618894577026e-01 + <_> + 213 + 1.0576110076904297e+02 + + <_> + + 0 -1 1922 -9.5150798559188843e-02 + + 6.4707571268081665e-01 4.0172868967056274e-01 + <_> + + 0 -1 1923 6.2702340073883533e-03 + + 3.9998221397399902e-01 5.7464492321014404e-01 + <_> + + 0 -1 1924 3.0018089455552399e-04 + + 3.5587701201438904e-01 5.5388098955154419e-01 + <_> + + 0 -1 1925 1.1757409665733576e-03 + + 4.2565348744392395e-01 5.3826177120208740e-01 + <_> + + 0 -1 1926 4.4235268433112651e-05 + + 3.6829081177711487e-01 5.5899268388748169e-01 + <_> + + 0 -1 1927 -2.9936920327600092e-05 + + 5.4524701833724976e-01 4.0203678607940674e-01 + <_> + + 0 -1 1928 3.0073199886828661e-03 + + 5.2390581369400024e-01 3.3178439736366272e-01 + <_> + + 0 -1 1929 -1.0513889603316784e-02 + + 4.3206891417503357e-01 5.3079837560653687e-01 + <_> + + 0 -1 1930 8.3476826548576355e-03 + + 4.5046371221542358e-01 6.4532989263534546e-01 + <_> + + 0 -1 1931 -3.1492270063608885e-03 + + 4.3134251236915588e-01 5.3705251216888428e-01 + <_> + + 0 -1 1932 -1.4435649973165710e-05 + + 5.3266030550003052e-01 3.8179719448089600e-01 + <_> + + 0 -1 1933 -4.2855090578086674e-04 + + 4.3051639199256897e-01 5.3820097446441650e-01 + <_> + + 0 -1 1934 1.5062429883982986e-04 + + 4.2359709739685059e-01 5.5449652671813965e-01 + <_> + + 0 -1 1935 7.1559831500053406e-02 + + 5.3030598163604736e-01 2.6788029074668884e-01 + <_> + + 0 -1 1936 8.4095180500298738e-04 + + 3.5571089386940002e-01 5.2054339647293091e-01 + <_> + + 0 -1 1937 6.2986500561237335e-02 + + 5.2253627777099609e-01 2.8613761067390442e-01 + <_> + + 0 -1 1938 -3.3798629883676767e-03 + + 3.6241859197616577e-01 5.2016979455947876e-01 + <_> + + 0 -1 1939 -1.1810739670181647e-04 + + 5.4744768142700195e-01 3.9598938822746277e-01 + <_> + + 0 -1 1940 -5.4505601292476058e-04 + + 3.7404221296310425e-01 5.2157157659530640e-01 + <_> + + 0 -1 1941 -1.8454910023137927e-03 + + 5.8930522203445435e-01 4.5844489336013794e-01 + <_> + + 0 -1 1942 -4.3832371011376381e-04 + + 4.0845820307731628e-01 5.3853511810302734e-01 + <_> + + 0 -1 1943 -2.4000830017030239e-03 + + 3.7774550914764404e-01 5.2935802936553955e-01 + <_> + + 0 -1 1944 -9.8795741796493530e-02 + + 2.9636120796203613e-01 5.0700891017913818e-01 + <_> + + 0 -1 1945 3.1798239797353745e-03 + + 4.8776328563690186e-01 6.7264437675476074e-01 + <_> + + 0 -1 1946 3.2406419632025063e-04 + + 4.3669110536575317e-01 5.5611097812652588e-01 + <_> + + 0 -1 1947 -3.2547250390052795e-02 + + 3.1281578540802002e-01 5.3086161613464355e-01 + <_> + + 0 -1 1948 -7.7561130747199059e-03 + + 6.5602248907089233e-01 4.6398720145225525e-01 + <_> + + 0 -1 1949 1.6027249395847321e-02 + + 5.1726800203323364e-01 3.1418979167938232e-01 + <_> + + 0 -1 1950 7.1002350523485802e-06 + + 4.0844461321830750e-01 5.3362947702407837e-01 + <_> + + 0 -1 1951 7.3422808200120926e-03 + + 4.9669221043586731e-01 6.6034650802612305e-01 + <_> + + 0 -1 1952 -1.6970280557870865e-03 + + 5.9082370996475220e-01 4.5001828670501709e-01 + <_> + + 0 -1 1953 2.4118260480463505e-03 + + 5.3151607513427734e-01 3.5997208952903748e-01 + <_> + + 0 -1 1954 -5.5300937965512276e-03 + + 2.3340409994125366e-01 4.9968141317367554e-01 + <_> + + 0 -1 1955 -2.6478730142116547e-03 + + 5.8809357881546021e-01 4.6847340464591980e-01 + <_> + + 0 -1 1956 1.1295629665255547e-02 + + 4.9837771058082581e-01 1.8845909833908081e-01 + <_> + + 0 -1 1957 -6.6952878842130303e-04 + + 5.8721381425857544e-01 4.7990199923515320e-01 + <_> + + 0 -1 1958 1.4410680159926414e-03 + + 5.1311892271041870e-01 3.5010111331939697e-01 + <_> + + 0 -1 1959 2.4637870956212282e-03 + + 5.3393721580505371e-01 4.1176390647888184e-01 + <_> + + 0 -1 1960 3.3114518737420440e-04 + + 4.3133831024169922e-01 5.3982460498809814e-01 + <_> + + 0 -1 1961 -3.3557269722223282e-02 + + 2.6753368973731995e-01 5.1791548728942871e-01 + <_> + + 0 -1 1962 1.8539419397711754e-02 + + 4.9738699197769165e-01 2.3171770572662354e-01 + <_> + + 0 -1 1963 -2.9698139405809343e-04 + + 5.5297082662582397e-01 4.6436640620231628e-01 + <_> + + 0 -1 1964 -4.5577259152196348e-04 + + 5.6295841932296753e-01 4.4691911339759827e-01 + <_> + + 0 -1 1965 -1.0158980265259743e-02 + + 6.7062127590179443e-01 4.9259188771247864e-01 + <_> + + 0 -1 1966 -2.2413829356082715e-05 + + 5.2394217252731323e-01 3.9129018783569336e-01 + <_> + + 0 -1 1967 7.2034963523037732e-05 + + 4.7994381189346313e-01 5.5017888545989990e-01 + <_> + + 0 -1 1968 -6.9267209619283676e-03 + + 6.9300097227096558e-01 4.6980848908424377e-01 + <_> + + 0 -1 1969 -7.6997838914394379e-03 + + 4.0996238589286804e-01 5.4808831214904785e-01 + <_> + + 0 -1 1970 -7.3130549862980843e-03 + + 3.2834759354591370e-01 5.0578862428665161e-01 + <_> + + 0 -1 1971 1.9650589674711227e-03 + + 4.9780470132827759e-01 6.3982498645782471e-01 + <_> + + 0 -1 1972 7.1647600270807743e-03 + + 4.6611601114273071e-01 6.2221372127532959e-01 + <_> + + 0 -1 1973 -2.4078639224171638e-02 + + 2.3346449434757233e-01 5.2221620082855225e-01 + <_> + + 0 -1 1974 -2.1027969196438789e-02 + + 1.1836539953947067e-01 4.9382260441780090e-01 + <_> + + 0 -1 1975 3.6017020465806127e-04 + + 5.3250199556350708e-01 4.1167110204696655e-01 + <_> + + 0 -1 1976 -1.7219729721546173e-02 + + 6.2787622213363647e-01 4.6642690896987915e-01 + <_> + + 0 -1 1977 -7.8672142699360847e-03 + + 3.4034150838851929e-01 5.2497369050979614e-01 + <_> + + 0 -1 1978 -4.4777389848604798e-04 + + 3.6104118824005127e-01 5.0862592458724976e-01 + <_> + + 0 -1 1979 5.5486010387539864e-03 + + 4.8842659592628479e-01 6.2034982442855835e-01 + <_> + + 0 -1 1980 -6.9461148232221603e-03 + + 2.6259300112724304e-01 5.0110971927642822e-01 + <_> + + 0 -1 1981 1.3569870498031378e-04 + + 4.3407949805259705e-01 5.6283122301101685e-01 + <_> + + 0 -1 1982 -4.5880250632762909e-02 + + 6.5079987049102783e-01 4.6962749958038330e-01 + <_> + + 0 -1 1983 -2.1582560613751411e-02 + + 3.8265028595924377e-01 5.2876168489456177e-01 + <_> + + 0 -1 1984 -2.0209539681673050e-02 + + 3.2333680987358093e-01 5.0744771957397461e-01 + <_> + + 0 -1 1985 5.8496710844337940e-03 + + 5.1776039600372314e-01 4.4896709918975830e-01 + <_> + + 0 -1 1986 -5.7476379879517481e-05 + + 4.0208509564399719e-01 5.2463638782501221e-01 + <_> + + 0 -1 1987 -1.1513100471347570e-03 + + 6.3150721788406372e-01 4.9051541090011597e-01 + <_> + + 0 -1 1988 1.9862831104546785e-03 + + 4.7024598717689514e-01 6.4971512556076050e-01 + <_> + + 0 -1 1989 -5.2719512023031712e-03 + + 3.6503839492797852e-01 5.2276527881622314e-01 + <_> + + 0 -1 1990 1.2662699446082115e-03 + + 5.1661008596420288e-01 3.8776180148124695e-01 + <_> + + 0 -1 1991 -6.2919440679252148e-03 + + 7.3758941888809204e-01 5.0238478183746338e-01 + <_> + + 0 -1 1992 6.7360111279413104e-04 + + 4.4232261180877686e-01 5.4955857992172241e-01 + <_> + + 0 -1 1993 -1.0523450328037143e-03 + + 5.9763962030410767e-01 4.8595830798149109e-01 + <_> + + 0 -1 1994 -4.4216238893568516e-04 + + 5.9559392929077148e-01 4.3989309668540955e-01 + <_> + + 0 -1 1995 1.1747940443456173e-03 + + 5.3498882055282593e-01 4.6050581336021423e-01 + <_> + + 0 -1 1996 5.2457437850534916e-03 + + 5.0491911172866821e-01 2.9415771365165710e-01 + <_> + + 0 -1 1997 -2.4539720267057419e-02 + + 2.5501778721809387e-01 5.2185869216918945e-01 + <_> + + 0 -1 1998 7.3793041519820690e-04 + + 4.4248610734939575e-01 5.4908162355422974e-01 + <_> + + 0 -1 1999 1.4233799884095788e-03 + + 5.3195142745971680e-01 4.0813559293746948e-01 + <_> + + 0 -1 2000 -2.4149110540747643e-03 + + 4.0876591205596924e-01 5.2389502525329590e-01 + <_> + + 0 -1 2001 -1.2165299849584699e-03 + + 5.6745791435241699e-01 4.9080529808998108e-01 + <_> + + 0 -1 2002 -1.2438809499144554e-03 + + 4.1294258832931519e-01 5.2561181783676147e-01 + <_> + + 0 -1 2003 6.1942739412188530e-03 + + 5.0601941347122192e-01 7.3136532306671143e-01 + <_> + + 0 -1 2004 -1.6607169527560472e-03 + + 5.9796321392059326e-01 4.5963698625564575e-01 + <_> + + 0 -1 2005 -2.7316259220242500e-02 + + 4.1743651032447815e-01 5.3088420629501343e-01 + <_> + + 0 -1 2006 -1.5845570014789701e-03 + + 5.6158047914505005e-01 4.5194861292839050e-01 + <_> + + 0 -1 2007 -1.5514739789068699e-03 + + 4.0761870145797729e-01 5.3607851266860962e-01 + <_> + + 0 -1 2008 3.8446558755822480e-04 + + 4.3472939729690552e-01 5.4304420948028564e-01 + <_> + + 0 -1 2009 -1.4672259800136089e-02 + + 1.6593049466609955e-01 5.1460939645767212e-01 + <_> + + 0 -1 2010 8.1608882173895836e-03 + + 4.9618190526962280e-01 1.8847459554672241e-01 + <_> + + 0 -1 2011 1.1121659772470593e-03 + + 4.8682639002799988e-01 6.0938161611557007e-01 + <_> + + 0 -1 2012 -7.2603770531713963e-03 + + 6.2843251228332520e-01 4.6903759241104126e-01 + <_> + + 0 -1 2013 -2.4046430189628154e-04 + + 5.5750000476837158e-01 4.0460440516471863e-01 + <_> + + 0 -1 2014 -2.3348190006799996e-04 + + 4.1157621145248413e-01 5.2528482675552368e-01 + <_> + + 0 -1 2015 5.5736480280756950e-03 + + 4.7300729155540466e-01 5.6901007890701294e-01 + <_> + + 0 -1 2016 3.0623769387602806e-02 + + 4.9718868732452393e-01 1.7400950193405151e-01 + <_> + + 0 -1 2017 9.2074798885732889e-04 + + 5.3721177577972412e-01 4.3548721075057983e-01 + <_> + + 0 -1 2018 -4.3550739064812660e-05 + + 5.3668838739395142e-01 4.3473169207572937e-01 + <_> + + 0 -1 2019 -6.6452710889279842e-03 + + 3.4355181455612183e-01 5.1605331897735596e-01 + <_> + + 0 -1 2020 4.3221998959779739e-02 + + 4.7667920589447021e-01 7.2936528921127319e-01 + <_> + + 0 -1 2021 2.2331769578158855e-03 + + 5.0293159484863281e-01 5.6331712007522583e-01 + <_> + + 0 -1 2022 3.1829739455133677e-03 + + 4.0160921216011047e-01 5.1921367645263672e-01 + <_> + + 0 -1 2023 -1.8027749320026487e-04 + + 4.0883159637451172e-01 5.4179197549819946e-01 + <_> + + 0 -1 2024 -5.2934689447283745e-03 + + 4.0756770968437195e-01 5.2435618638992310e-01 + <_> + + 0 -1 2025 1.2750959722325206e-03 + + 4.9132829904556274e-01 6.3870108127593994e-01 + <_> + + 0 -1 2026 4.3385322205722332e-03 + + 5.0316721200942993e-01 2.9473468661308289e-01 + <_> + + 0 -1 2027 8.5250744596123695e-03 + + 4.9497890472412109e-01 6.3088691234588623e-01 + <_> + + 0 -1 2028 -9.4266352243721485e-04 + + 5.3283667564392090e-01 4.2856499552726746e-01 + <_> + + 0 -1 2029 1.3609660090878606e-03 + + 4.9915251135826111e-01 5.9415012598037720e-01 + <_> + + 0 -1 2030 4.4782509212382138e-04 + + 4.5735040307044983e-01 5.8544808626174927e-01 + <_> + + 0 -1 2031 1.3360050506889820e-03 + + 4.6043589711189270e-01 5.8490520715713501e-01 + <_> + + 0 -1 2032 -6.0967548051849008e-04 + + 3.9693889021873474e-01 5.2294230461120605e-01 + <_> + + 0 -1 2033 -2.3656780831515789e-03 + + 5.8083200454711914e-01 4.8983570933341980e-01 + <_> + + 0 -1 2034 1.0734340175986290e-03 + + 4.3512108922004700e-01 5.4700392484664917e-01 + <_> + + 0 -1 2035 2.1923359017819166e-03 + + 5.3550601005554199e-01 3.8429039716720581e-01 + <_> + + 0 -1 2036 5.4968618787825108e-03 + + 5.0181388854980469e-01 2.8271919488906860e-01 + <_> + + 0 -1 2037 -7.5368821620941162e-02 + + 1.2250760197639465e-01 5.1488268375396729e-01 + <_> + + 0 -1 2038 2.5134470313787460e-02 + + 4.7317668795585632e-01 7.0254462957382202e-01 + <_> + + 0 -1 2039 -2.9358599931583740e-05 + + 5.4305320978164673e-01 4.6560868620872498e-01 + <_> + + 0 -1 2040 -5.8355910005047917e-04 + + 4.0310400724411011e-01 5.1901197433471680e-01 + <_> + + 0 -1 2041 -2.6639450807124376e-03 + + 4.3081268668174744e-01 5.1617711782455444e-01 + <_> + + 0 -1 2042 -1.3804089976474643e-03 + + 6.2198299169540405e-01 4.6955159306526184e-01 + <_> + + 0 -1 2043 1.2313219485804439e-03 + + 5.3793638944625854e-01 4.4258311390876770e-01 + <_> + + 0 -1 2044 -1.4644179827882908e-05 + + 5.2816402912139893e-01 4.2225030064582825e-01 + <_> + + 0 -1 2045 -1.2818809598684311e-02 + + 2.5820928812026978e-01 5.1799327135086060e-01 + <_> + + 0 -1 2046 2.2852189838886261e-02 + + 4.7786930203437805e-01 7.6092642545700073e-01 + <_> + + 0 -1 2047 8.2305970136076212e-04 + + 5.3409922122955322e-01 4.6717241406440735e-01 + <_> + + 0 -1 2048 1.2770120054483414e-02 + + 4.9657610058784485e-01 1.4723660051822662e-01 + <_> + + 0 -1 2049 -5.0051510334014893e-02 + + 6.4149940013885498e-01 5.0165921449661255e-01 + <_> + + 0 -1 2050 1.5775270760059357e-02 + + 4.5223200321197510e-01 5.6853622198104858e-01 + <_> + + 0 -1 2051 -1.8501620739698410e-02 + + 2.7647489309310913e-01 5.1379591226577759e-01 + <_> + + 0 -1 2052 2.4626250378787518e-03 + + 5.1419419050216675e-01 3.7954080104827881e-01 + <_> + + 0 -1 2053 6.2916167080402374e-02 + + 5.0606489181518555e-01 6.5804338455200195e-01 + <_> + + 0 -1 2054 -2.1648500478477217e-05 + + 5.1953881978988647e-01 4.0198868513107300e-01 + <_> + + 0 -1 2055 2.1180990152060986e-03 + + 4.9623650312423706e-01 5.9544587135314941e-01 + <_> + + 0 -1 2056 -1.6634890809655190e-02 + + 3.7579330801963806e-01 5.1754468679428101e-01 + <_> + + 0 -1 2057 -2.8899470344185829e-03 + + 6.6240137815475464e-01 5.0571787357330322e-01 + <_> + + 0 -1 2058 7.6783262193202972e-02 + + 4.7957968711853027e-01 8.0477148294448853e-01 + <_> + + 0 -1 2059 3.9170677773654461e-03 + + 4.9378821253776550e-01 5.7199418544769287e-01 + <_> + + 0 -1 2060 -7.2670601308345795e-02 + + 5.3894560784101486e-02 4.9439039826393127e-01 + <_> + + 0 -1 2061 5.4039502143859863e-01 + + 5.1297742128372192e-01 1.1433389782905579e-01 + <_> + + 0 -1 2062 2.9510019812732935e-03 + + 4.5283439755439758e-01 5.6985741853713989e-01 + <_> + + 0 -1 2063 3.4508369863033295e-03 + + 5.3577268123626709e-01 4.2187309265136719e-01 + <_> + + 0 -1 2064 -4.2077939724549651e-04 + + 5.9161728620529175e-01 4.6379259228706360e-01 + <_> + + 0 -1 2065 3.3051050268113613e-03 + + 5.2733850479125977e-01 4.3820428848266602e-01 + <_> + + 0 -1 2066 4.7735060798004270e-04 + + 4.0465280413627625e-01 5.1818847656250000e-01 + <_> + + 0 -1 2067 -2.5928510352969170e-02 + + 7.4522358179092407e-01 5.0893861055374146e-01 + <_> + + 0 -1 2068 -2.9729790985584259e-03 + + 3.2954359054565430e-01 5.0587952136993408e-01 + <_> + + 0 -1 2069 5.8508329093456268e-03 + + 4.8571440577507019e-01 5.7930248975753784e-01 + <_> + + 0 -1 2070 -4.5967519283294678e-02 + + 4.3127310276031494e-01 5.3806531429290771e-01 + <_> + + 0 -1 2071 1.5585960447788239e-01 + + 5.1961702108383179e-01 1.6847139596939087e-01 + <_> + + 0 -1 2072 1.5164829790592194e-02 + + 4.7357571125030518e-01 6.7350268363952637e-01 + <_> + + 0 -1 2073 -1.0604249546304345e-03 + + 5.8229267597198486e-01 4.7757029533386230e-01 + <_> + + 0 -1 2074 6.6476291976869106e-03 + + 4.9991989135742188e-01 2.3195350170135498e-01 + <_> + + 0 -1 2075 -1.2231130152940750e-02 + + 4.7508931159973145e-01 5.2629822492599487e-01 + <_> + + 0 -1 2076 5.6528882123529911e-03 + + 5.0697678327560425e-01 3.5618188977241516e-01 + <_> + + 0 -1 2077 1.2977829901501536e-03 + + 4.8756939172744751e-01 5.6190627813339233e-01 + <_> + + 0 -1 2078 1.0781589895486832e-02 + + 4.7507700324058533e-01 6.7823082208633423e-01 + <_> + + 0 -1 2079 2.8654779307544231e-03 + + 5.3054618835449219e-01 4.2907360196113586e-01 + <_> + + 0 -1 2080 2.8663428965955973e-03 + + 4.5184791088104248e-01 5.5393511056900024e-01 + <_> + + 0 -1 2081 -5.1983320154249668e-03 + + 4.1491198539733887e-01 5.4341888427734375e-01 + <_> + + 0 -1 2082 5.3739990107715130e-03 + + 4.7178968787193298e-01 6.5076571702957153e-01 + <_> + + 0 -1 2083 -1.4641529880464077e-02 + + 2.1721640229225159e-01 5.1617771387100220e-01 + <_> + + 0 -1 2084 -1.5042580344015732e-05 + + 5.3373837471008301e-01 4.2988368868827820e-01 + <_> + + 0 -1 2085 -1.1875660129589960e-04 + + 4.6045941114425659e-01 5.5824470520019531e-01 + <_> + + 0 -1 2086 1.6995530575513840e-02 + + 4.9458950757980347e-01 7.3880076408386230e-02 + <_> + + 0 -1 2087 -3.5095941275358200e-02 + + 7.0055091381072998e-01 4.9775910377502441e-01 + <_> + + 0 -1 2088 2.4217350874096155e-03 + + 4.4662651419639587e-01 5.4776942729949951e-01 + <_> + + 0 -1 2089 -9.6340337768197060e-04 + + 4.7140988707542419e-01 5.3133380413055420e-01 + <_> + + 0 -1 2090 1.6391130338888615e-04 + + 4.3315461277961731e-01 5.3422421216964722e-01 + <_> + + 0 -1 2091 -2.1141460165381432e-02 + + 2.6447001099586487e-01 5.2044987678527832e-01 + <_> + + 0 -1 2092 8.7775202700868249e-04 + + 5.2083498239517212e-01 4.1527429223060608e-01 + <_> + + 0 -1 2093 -2.7943920344114304e-02 + + 6.3441252708435059e-01 5.0188118219375610e-01 + <_> + + 0 -1 2094 6.7297378554940224e-03 + + 5.0504380464553833e-01 3.5008639097213745e-01 + <_> + + 0 -1 2095 2.3281039670109749e-02 + + 4.9663180112838745e-01 6.9686770439147949e-01 + <_> + + 0 -1 2096 -1.1644979938864708e-02 + + 3.3002600073814392e-01 5.0496298074722290e-01 + <_> + + 0 -1 2097 1.5764309093356133e-02 + + 4.9915981292724609e-01 7.3211538791656494e-01 + <_> + + 0 -1 2098 -1.3611479662358761e-03 + + 3.9117351174354553e-01 5.1606708765029907e-01 + <_> + + 0 -1 2099 -8.1522337859496474e-04 + + 5.6289112567901611e-01 4.9497190117835999e-01 + <_> + + 0 -1 2100 -6.0066272271797061e-04 + + 5.8535951375961304e-01 4.5505958795547485e-01 + <_> + + 0 -1 2101 4.9715518252924085e-04 + + 4.2714700102806091e-01 5.4435992240905762e-01 + <_> + + 0 -1 2102 2.3475370835512877e-03 + + 5.1431107521057129e-01 3.8876569271087646e-01 + <_> + + 0 -1 2103 -8.9261569082736969e-03 + + 6.0445022583007812e-01 4.9717208743095398e-01 + <_> + + 0 -1 2104 -1.3919910416007042e-02 + + 2.5831609964370728e-01 5.0003677606582642e-01 + <_> + + 0 -1 2105 1.0209949687123299e-03 + + 4.8573741316795349e-01 5.5603581666946411e-01 + <_> + + 0 -1 2106 -2.7441629208624363e-03 + + 5.9368848800659180e-01 4.6457770466804504e-01 + <_> + + 0 -1 2107 -1.6200130805373192e-02 + + 3.1630149483680725e-01 5.1934951543807983e-01 + <_> + + 0 -1 2108 4.3331980705261230e-03 + + 5.0612241029739380e-01 3.4588789939880371e-01 + <_> + + 0 -1 2109 5.8497930876910686e-04 + + 4.7790178656578064e-01 5.8701777458190918e-01 + <_> + + 0 -1 2110 -2.2466450463980436e-03 + + 4.2978510260581970e-01 5.3747731447219849e-01 + <_> + + 0 -1 2111 2.3146099410951138e-03 + + 5.4386717081069946e-01 4.6409699320793152e-01 + <_> + + 0 -1 2112 8.7679121643304825e-03 + + 4.7268930077552795e-01 6.7717897891998291e-01 + <_> + + 0 -1 2113 -2.2448020172305405e-04 + + 4.2291730642318726e-01 5.4280489683151245e-01 + <_> + + 0 -1 2114 -7.4336021207273006e-03 + + 6.0988807678222656e-01 4.6836739778518677e-01 + <_> + + 0 -1 2115 -2.3189240600913763e-03 + + 5.6894367933273315e-01 4.4242420792579651e-01 + <_> + + 0 -1 2116 -2.1042178850620985e-03 + + 3.7622210383415222e-01 5.1870870590209961e-01 + <_> + + 0 -1 2117 4.6034841216169298e-04 + + 4.6994051337242126e-01 5.7712072134017944e-01 + <_> + + 0 -1 2118 1.0547629790380597e-03 + + 4.4652169942855835e-01 5.6017017364501953e-01 + <_> + + 0 -1 2119 8.7148818420246243e-04 + + 5.4498052597045898e-01 3.9147090911865234e-01 + <_> + + 0 -1 2120 3.3364820410497487e-04 + + 4.5640090107917786e-01 5.6457388401031494e-01 + <_> + + 0 -1 2121 -1.4853250468149781e-03 + + 5.7473778724670410e-01 4.6927788853645325e-01 + <_> + + 0 -1 2122 3.0251620337367058e-03 + + 5.1661968231201172e-01 3.7628141045570374e-01 + <_> + + 0 -1 2123 5.0280741415917873e-03 + + 5.0021117925643921e-01 6.1515271663665771e-01 + <_> + + 0 -1 2124 -5.8164511574432254e-04 + + 5.3945982456207275e-01 4.3907511234283447e-01 + <_> + + 0 -1 2125 4.5141529291868210e-02 + + 5.1883268356323242e-01 2.0630359649658203e-01 + <_> + + 0 -1 2126 -1.0795620037242770e-03 + + 3.9046850800514221e-01 5.1379072666168213e-01 + <_> + + 0 -1 2127 1.5995999274309725e-04 + + 4.8953229188919067e-01 5.4275041818618774e-01 + <_> + + 0 -1 2128 -1.9359270110726357e-02 + + 6.9752287864685059e-01 4.7735071182250977e-01 + <_> + + 0 -1 2129 2.0725509524345398e-01 + + 5.2336359024047852e-01 3.0349919199943542e-01 + <_> + + 0 -1 2130 -4.1953290929086506e-04 + + 5.4193967580795288e-01 4.4601860642433167e-01 + <_> + + 0 -1 2131 2.2582069505006075e-03 + + 4.8157641291618347e-01 6.0274088382720947e-01 + <_> + + 0 -1 2132 -6.7811207845807076e-03 + + 3.9802789688110352e-01 5.1833057403564453e-01 + <_> + + 0 -1 2133 1.1154309846460819e-02 + + 5.4312318563461304e-01 4.1887599229812622e-01 + <_> + + 0 -1 2134 4.3162431567907333e-02 + + 4.7382280230522156e-01 6.5229612588882446e-01 + + <_> + + <_> + 3 7 14 4 -1. + <_> + 3 9 14 2 2. + <_> + + <_> + 1 2 18 4 -1. + <_> + 7 2 6 4 3. + <_> + + <_> + 1 7 15 9 -1. + <_> + 1 10 15 3 3. + <_> + + <_> + 5 6 2 6 -1. + <_> + 5 9 2 3 2. + <_> + + <_> + 7 5 6 3 -1. + <_> + 9 5 2 3 3. + <_> + + <_> + 4 0 12 9 -1. + <_> + 4 3 12 3 3. + <_> + + <_> + 6 9 10 8 -1. + <_> + 6 13 10 4 2. + <_> + + <_> + 3 6 14 8 -1. + <_> + 3 10 14 4 2. + <_> + + <_> + 14 1 6 10 -1. + <_> + 14 1 3 10 2. + <_> + + <_> + 7 8 5 12 -1. + <_> + 7 12 5 4 3. + <_> + + <_> + 1 1 18 3 -1. + <_> + 7 1 6 3 3. + <_> + + <_> + 1 8 17 2 -1. + <_> + 1 9 17 1 2. + <_> + + <_> + 16 6 4 2 -1. + <_> + 16 7 4 1 2. + <_> + + <_> + 5 17 2 2 -1. + <_> + 5 18 2 1 2. + <_> + + <_> + 14 2 6 12 -1. + <_> + 14 2 3 12 2. + <_> + + <_> + 4 0 4 12 -1. + <_> + 4 0 2 6 2. + <_> + 6 6 2 6 2. + <_> + + <_> + 2 11 18 8 -1. + <_> + 8 11 6 8 3. + <_> + + <_> + 5 7 10 2 -1. + <_> + 5 8 10 1 2. + <_> + + <_> + 15 11 5 3 -1. + <_> + 15 12 5 1 3. + <_> + + <_> + 5 3 10 9 -1. + <_> + 5 6 10 3 3. + <_> + + <_> + 9 4 2 14 -1. + <_> + 9 11 2 7 2. + <_> + + <_> + 3 5 4 12 -1. + <_> + 3 9 4 4 3. + <_> + + <_> + 4 5 12 5 -1. + <_> + 8 5 4 5 3. + <_> + + <_> + 5 6 10 8 -1. + <_> + 5 10 10 4 2. + <_> + + <_> + 8 0 6 9 -1. + <_> + 8 3 6 3 3. + <_> + + <_> + 9 12 1 8 -1. + <_> + 9 16 1 4 2. + <_> + + <_> + 0 7 20 6 -1. + <_> + 0 9 20 2 3. + <_> + + <_> + 7 0 6 17 -1. + <_> + 9 0 2 17 3. + <_> + + <_> + 9 0 6 4 -1. + <_> + 11 0 2 4 3. + <_> + + <_> + 5 1 6 4 -1. + <_> + 7 1 2 4 3. + <_> + + <_> + 12 1 6 16 -1. + <_> + 14 1 2 16 3. + <_> + + <_> + 0 5 18 8 -1. + <_> + 0 5 9 4 2. + <_> + 9 9 9 4 2. + <_> + + <_> + 8 15 10 4 -1. + <_> + 13 15 5 2 2. + <_> + 8 17 5 2 2. + <_> + + <_> + 3 1 4 8 -1. + <_> + 3 1 2 4 2. + <_> + 5 5 2 4 2. + <_> + + <_> + 3 6 14 10 -1. + <_> + 10 6 7 5 2. + <_> + 3 11 7 5 2. + <_> + + <_> + 2 1 6 16 -1. + <_> + 4 1 2 16 3. + <_> + + <_> + 0 18 20 2 -1. + <_> + 0 19 20 1 2. + <_> + + <_> + 8 13 4 3 -1. + <_> + 8 14 4 1 3. + <_> + + <_> + 9 14 2 3 -1. + <_> + 9 15 2 1 3. + <_> + + <_> + 0 12 9 6 -1. + <_> + 0 14 9 2 3. + <_> + + <_> + 5 7 3 4 -1. + <_> + 5 9 3 2 2. + <_> + + <_> + 9 3 2 16 -1. + <_> + 9 11 2 8 2. + <_> + + <_> + 3 6 13 8 -1. + <_> + 3 10 13 4 2. + <_> + + <_> + 12 3 8 2 -1. + <_> + 12 3 4 2 2. + <_> + + <_> + 8 8 4 12 -1. + <_> + 8 12 4 4 3. + <_> + + <_> + 11 3 8 6 -1. + <_> + 15 3 4 3 2. + <_> + 11 6 4 3 2. + <_> + + <_> + 7 1 6 19 -1. + <_> + 9 1 2 19 3. + <_> + + <_> + 9 0 6 4 -1. + <_> + 11 0 2 4 3. + <_> + + <_> + 3 1 9 3 -1. + <_> + 6 1 3 3 3. + <_> + + <_> + 8 15 10 4 -1. + <_> + 13 15 5 2 2. + <_> + 8 17 5 2 2. + <_> + + <_> + 0 3 6 10 -1. + <_> + 3 3 3 10 2. + <_> + + <_> + 3 4 15 15 -1. + <_> + 3 9 15 5 3. + <_> + + <_> + 6 5 8 6 -1. + <_> + 6 7 8 2 3. + <_> + + <_> + 4 4 12 10 -1. + <_> + 10 4 6 5 2. + <_> + 4 9 6 5 2. + <_> + + <_> + 6 4 4 4 -1. + <_> + 8 4 2 4 2. + <_> + + <_> + 15 11 1 2 -1. + <_> + 15 12 1 1 2. + <_> + + <_> + 3 11 2 2 -1. + <_> + 3 12 2 1 2. + <_> + + <_> + 16 11 1 3 -1. + <_> + 16 12 1 1 3. + <_> + + <_> + 3 15 6 4 -1. + <_> + 3 15 3 2 2. + <_> + 6 17 3 2 2. + <_> + + <_> + 6 7 8 2 -1. + <_> + 6 8 8 1 2. + <_> + + <_> + 3 11 1 3 -1. + <_> + 3 12 1 1 3. + <_> + + <_> + 6 0 12 2 -1. + <_> + 6 1 12 1 2. + <_> + + <_> + 9 14 2 3 -1. + <_> + 9 15 2 1 3. + <_> + + <_> + 7 15 6 2 -1. + <_> + 7 16 6 1 2. + <_> + + <_> + 0 5 4 6 -1. + <_> + 0 7 4 2 3. + <_> + + <_> + 4 12 12 2 -1. + <_> + 8 12 4 2 3. + <_> + + <_> + 6 3 1 9 -1. + <_> + 6 6 1 3 3. + <_> + + <_> + 10 17 3 2 -1. + <_> + 11 17 1 2 3. + <_> + + <_> + 9 9 2 2 -1. + <_> + 9 10 2 1 2. + <_> + + <_> + 7 6 6 4 -1. + <_> + 9 6 2 4 3. + <_> + + <_> + 7 17 3 2 -1. + <_> + 8 17 1 2 3. + <_> + + <_> + 10 17 3 3 -1. + <_> + 11 17 1 3 3. + <_> + + <_> + 8 12 3 2 -1. + <_> + 8 13 3 1 2. + <_> + + <_> + 9 3 6 2 -1. + <_> + 11 3 2 2 3. + <_> + + <_> + 3 11 14 4 -1. + <_> + 3 13 14 2 2. + <_> + + <_> + 1 10 18 4 -1. + <_> + 10 10 9 2 2. + <_> + 1 12 9 2 2. + <_> + + <_> + 0 10 3 3 -1. + <_> + 0 11 3 1 3. + <_> + + <_> + 9 1 6 6 -1. + <_> + 11 1 2 6 3. + <_> + + <_> + 8 7 3 6 -1. + <_> + 9 7 1 6 3. + <_> + + <_> + 1 0 18 9 -1. + <_> + 1 3 18 3 3. + <_> + + <_> + 12 10 2 6 -1. + <_> + 12 13 2 3 2. + <_> + + <_> + 0 5 19 8 -1. + <_> + 0 9 19 4 2. + <_> + + <_> + 7 0 6 9 -1. + <_> + 9 0 2 9 3. + <_> + + <_> + 5 3 6 1 -1. + <_> + 7 3 2 1 3. + <_> + + <_> + 11 3 6 1 -1. + <_> + 13 3 2 1 3. + <_> + + <_> + 5 10 4 6 -1. + <_> + 5 13 4 3 2. + <_> + + <_> + 11 3 6 1 -1. + <_> + 13 3 2 1 3. + <_> + + <_> + 4 4 12 6 -1. + <_> + 4 6 12 2 3. + <_> + + <_> + 15 12 2 6 -1. + <_> + 15 14 2 2 3. + <_> + + <_> + 9 3 2 2 -1. + <_> + 10 3 1 2 2. + <_> + + <_> + 9 3 3 1 -1. + <_> + 10 3 1 1 3. + <_> + + <_> + 1 1 4 14 -1. + <_> + 3 1 2 14 2. + <_> + + <_> + 9 0 4 4 -1. + <_> + 11 0 2 2 2. + <_> + 9 2 2 2 2. + <_> + + <_> + 7 5 1 14 -1. + <_> + 7 12 1 7 2. + <_> + + <_> + 19 0 1 4 -1. + <_> + 19 2 1 2 2. + <_> + + <_> + 5 5 6 4 -1. + <_> + 8 5 3 4 2. + <_> + + <_> + 9 18 3 2 -1. + <_> + 10 18 1 2 3. + <_> + + <_> + 8 18 3 2 -1. + <_> + 9 18 1 2 3. + <_> + + <_> + 4 5 12 6 -1. + <_> + 4 7 12 2 3. + <_> + + <_> + 3 12 2 6 -1. + <_> + 3 14 2 2 3. + <_> + + <_> + 10 8 2 12 -1. + <_> + 10 12 2 4 3. + <_> + + <_> + 7 18 3 2 -1. + <_> + 8 18 1 2 3. + <_> + + <_> + 9 0 6 2 -1. + <_> + 11 0 2 2 3. + <_> + + <_> + 5 11 9 3 -1. + <_> + 5 12 9 1 3. + <_> + + <_> + 9 0 6 2 -1. + <_> + 11 0 2 2 3. + <_> + + <_> + 1 1 18 5 -1. + <_> + 7 1 6 5 3. + <_> + + <_> + 8 0 4 4 -1. + <_> + 10 0 2 2 2. + <_> + 8 2 2 2 2. + <_> + + <_> + 3 12 1 3 -1. + <_> + 3 13 1 1 3. + <_> + + <_> + 8 14 5 3 -1. + <_> + 8 15 5 1 3. + <_> + + <_> + 5 4 10 12 -1. + <_> + 5 4 5 6 2. + <_> + 10 10 5 6 2. + <_> + + <_> + 9 6 9 12 -1. + <_> + 9 10 9 4 3. + <_> + + <_> + 2 2 12 14 -1. + <_> + 2 2 6 7 2. + <_> + 8 9 6 7 2. + <_> + + <_> + 4 7 12 2 -1. + <_> + 8 7 4 2 3. + <_> + + <_> + 7 4 6 4 -1. + <_> + 7 6 6 2 2. + <_> + + <_> + 4 5 11 8 -1. + <_> + 4 9 11 4 2. + <_> + + <_> + 3 10 16 4 -1. + <_> + 3 12 16 2 2. + <_> + + <_> + 0 0 16 2 -1. + <_> + 0 1 16 1 2. + <_> + + <_> + 7 5 6 2 -1. + <_> + 9 5 2 2 3. + <_> + + <_> + 3 2 6 10 -1. + <_> + 3 2 3 5 2. + <_> + 6 7 3 5 2. + <_> + + <_> + 10 5 8 15 -1. + <_> + 10 10 8 5 3. + <_> + + <_> + 3 14 8 6 -1. + <_> + 3 14 4 3 2. + <_> + 7 17 4 3 2. + <_> + + <_> + 14 2 2 2 -1. + <_> + 14 3 2 1 2. + <_> + + <_> + 1 10 7 6 -1. + <_> + 1 13 7 3 2. + <_> + + <_> + 15 4 4 3 -1. + <_> + 15 4 2 3 2. + <_> + + <_> + 2 9 14 6 -1. + <_> + 2 9 7 3 2. + <_> + 9 12 7 3 2. + <_> + + <_> + 5 7 10 4 -1. + <_> + 5 9 10 2 2. + <_> + + <_> + 6 9 8 8 -1. + <_> + 6 9 4 4 2. + <_> + 10 13 4 4 2. + <_> + + <_> + 14 1 3 2 -1. + <_> + 14 2 3 1 2. + <_> + + <_> + 1 4 4 2 -1. + <_> + 3 4 2 2 2. + <_> + + <_> + 11 10 2 8 -1. + <_> + 11 14 2 4 2. + <_> + + <_> + 0 0 5 3 -1. + <_> + 0 1 5 1 3. + <_> + + <_> + 2 5 18 8 -1. + <_> + 11 5 9 4 2. + <_> + 2 9 9 4 2. + <_> + + <_> + 6 6 1 6 -1. + <_> + 6 9 1 3 2. + <_> + + <_> + 19 1 1 3 -1. + <_> + 19 2 1 1 3. + <_> + + <_> + 7 6 6 6 -1. + <_> + 9 6 2 6 3. + <_> + + <_> + 19 1 1 3 -1. + <_> + 19 2 1 1 3. + <_> + + <_> + 3 13 2 3 -1. + <_> + 3 14 2 1 3. + <_> + + <_> + 8 4 8 12 -1. + <_> + 12 4 4 6 2. + <_> + 8 10 4 6 2. + <_> + + <_> + 5 2 6 3 -1. + <_> + 7 2 2 3 3. + <_> + + <_> + 6 1 9 10 -1. + <_> + 6 6 9 5 2. + <_> + + <_> + 0 4 6 12 -1. + <_> + 2 4 2 12 3. + <_> + + <_> + 15 13 2 3 -1. + <_> + 15 14 2 1 3. + <_> + + <_> + 7 14 5 3 -1. + <_> + 7 15 5 1 3. + <_> + + <_> + 15 13 3 3 -1. + <_> + 15 14 3 1 3. + <_> + + <_> + 6 14 8 3 -1. + <_> + 6 15 8 1 3. + <_> + + <_> + 15 13 3 3 -1. + <_> + 15 14 3 1 3. + <_> + + <_> + 2 13 3 3 -1. + <_> + 2 14 3 1 3. + <_> + + <_> + 4 7 12 12 -1. + <_> + 10 7 6 6 2. + <_> + 4 13 6 6 2. + <_> + + <_> + 9 7 2 6 -1. + <_> + 10 7 1 6 2. + <_> + + <_> + 8 9 5 2 -1. + <_> + 8 10 5 1 2. + <_> + + <_> + 8 6 3 4 -1. + <_> + 9 6 1 4 3. + <_> + + <_> + 9 6 2 8 -1. + <_> + 9 10 2 4 2. + <_> + + <_> + 7 7 3 6 -1. + <_> + 8 7 1 6 3. + <_> + + <_> + 11 3 3 3 -1. + <_> + 12 3 1 3 3. + <_> + + <_> + 5 4 6 1 -1. + <_> + 7 4 2 1 3. + <_> + + <_> + 5 6 10 3 -1. + <_> + 5 7 10 1 3. + <_> + + <_> + 7 3 6 9 -1. + <_> + 7 6 6 3 3. + <_> + + <_> + 6 7 9 1 -1. + <_> + 9 7 3 1 3. + <_> + + <_> + 2 8 16 8 -1. + <_> + 2 12 16 4 2. + <_> + + <_> + 14 6 2 6 -1. + <_> + 14 9 2 3 2. + <_> + + <_> + 1 5 6 15 -1. + <_> + 1 10 6 5 3. + <_> + + <_> + 10 0 6 9 -1. + <_> + 10 3 6 3 3. + <_> + + <_> + 6 6 7 14 -1. + <_> + 6 13 7 7 2. + <_> + + <_> + 13 7 3 6 -1. + <_> + 13 9 3 2 3. + <_> + + <_> + 1 8 15 4 -1. + <_> + 6 8 5 4 3. + <_> + + <_> + 11 2 3 10 -1. + <_> + 11 7 3 5 2. + <_> + + <_> + 3 7 4 6 -1. + <_> + 3 9 4 2 3. + <_> + + <_> + 13 3 6 10 -1. + <_> + 15 3 2 10 3. + <_> + + <_> + 5 7 8 10 -1. + <_> + 5 7 4 5 2. + <_> + 9 12 4 5 2. + <_> + + <_> + 4 4 12 12 -1. + <_> + 10 4 6 6 2. + <_> + 4 10 6 6 2. + <_> + + <_> + 1 4 6 9 -1. + <_> + 3 4 2 9 3. + <_> + + <_> + 11 3 2 5 -1. + <_> + 11 3 1 5 2. + <_> + + <_> + 7 3 2 5 -1. + <_> + 8 3 1 5 2. + <_> + + <_> + 10 14 2 3 -1. + <_> + 10 15 2 1 3. + <_> + + <_> + 5 12 6 2 -1. + <_> + 8 12 3 2 2. + <_> + + <_> + 9 14 2 3 -1. + <_> + 9 15 2 1 3. + <_> + + <_> + 4 11 12 6 -1. + <_> + 4 14 12 3 2. + <_> + + <_> + 11 11 5 9 -1. + <_> + 11 14 5 3 3. + <_> + + <_> + 6 15 3 2 -1. + <_> + 6 16 3 1 2. + <_> + + <_> + 11 0 3 5 -1. + <_> + 12 0 1 5 3. + <_> + + <_> + 5 5 6 7 -1. + <_> + 8 5 3 7 2. + <_> + + <_> + 13 0 1 9 -1. + <_> + 13 3 1 3 3. + <_> + + <_> + 3 2 4 8 -1. + <_> + 3 2 2 4 2. + <_> + 5 6 2 4 2. + <_> + + <_> + 13 12 4 6 -1. + <_> + 13 14 4 2 3. + <_> + + <_> + 3 12 4 6 -1. + <_> + 3 14 4 2 3. + <_> + + <_> + 13 11 3 4 -1. + <_> + 13 13 3 2 2. + <_> + + <_> + 4 4 4 3 -1. + <_> + 4 5 4 1 3. + <_> + + <_> + 7 5 11 8 -1. + <_> + 7 9 11 4 2. + <_> + + <_> + 7 8 3 4 -1. + <_> + 8 8 1 4 3. + <_> + + <_> + 9 1 6 1 -1. + <_> + 11 1 2 1 3. + <_> + + <_> + 5 5 3 3 -1. + <_> + 5 6 3 1 3. + <_> + + <_> + 0 9 20 6 -1. + <_> + 10 9 10 3 2. + <_> + 0 12 10 3 2. + <_> + + <_> + 8 6 3 5 -1. + <_> + 9 6 1 5 3. + <_> + + <_> + 11 0 1 3 -1. + <_> + 11 1 1 1 3. + <_> + + <_> + 4 2 4 2 -1. + <_> + 4 3 4 1 2. + <_> + + <_> + 12 6 4 3 -1. + <_> + 12 7 4 1 3. + <_> + + <_> + 5 0 6 4 -1. + <_> + 7 0 2 4 3. + <_> + + <_> + 9 7 3 8 -1. + <_> + 10 7 1 8 3. + <_> + + <_> + 9 7 2 2 -1. + <_> + 10 7 1 2 2. + <_> + + <_> + 6 7 14 4 -1. + <_> + 13 7 7 2 2. + <_> + 6 9 7 2 2. + <_> + + <_> + 0 5 3 6 -1. + <_> + 0 7 3 2 3. + <_> + + <_> + 13 11 3 4 -1. + <_> + 13 13 3 2 2. + <_> + + <_> + 4 11 3 4 -1. + <_> + 4 13 3 2 2. + <_> + + <_> + 5 9 12 8 -1. + <_> + 11 9 6 4 2. + <_> + 5 13 6 4 2. + <_> + + <_> + 9 12 1 3 -1. + <_> + 9 13 1 1 3. + <_> + + <_> + 10 15 2 4 -1. + <_> + 10 17 2 2 2. + <_> + + <_> + 7 7 6 1 -1. + <_> + 9 7 2 1 3. + <_> + + <_> + 12 3 6 6 -1. + <_> + 15 3 3 3 2. + <_> + 12 6 3 3 2. + <_> + + <_> + 0 4 10 6 -1. + <_> + 0 6 10 2 3. + <_> + + <_> + 8 3 8 14 -1. + <_> + 12 3 4 7 2. + <_> + 8 10 4 7 2. + <_> + + <_> + 4 4 7 15 -1. + <_> + 4 9 7 5 3. + <_> + + <_> + 12 2 6 8 -1. + <_> + 15 2 3 4 2. + <_> + 12 6 3 4 2. + <_> + + <_> + 2 2 6 8 -1. + <_> + 2 2 3 4 2. + <_> + 5 6 3 4 2. + <_> + + <_> + 2 13 18 7 -1. + <_> + 8 13 6 7 3. + <_> + + <_> + 4 3 8 14 -1. + <_> + 4 3 4 7 2. + <_> + 8 10 4 7 2. + <_> + + <_> + 18 1 2 6 -1. + <_> + 18 3 2 2 3. + <_> + + <_> + 9 11 2 3 -1. + <_> + 9 12 2 1 3. + <_> + + <_> + 18 1 2 6 -1. + <_> + 18 3 2 2 3. + <_> + + <_> + 0 1 2 6 -1. + <_> + 0 3 2 2 3. + <_> + + <_> + 1 5 18 6 -1. + <_> + 1 7 18 2 3. + <_> + + <_> + 0 2 6 7 -1. + <_> + 3 2 3 7 2. + <_> + + <_> + 7 3 6 14 -1. + <_> + 7 10 6 7 2. + <_> + + <_> + 3 7 13 10 -1. + <_> + 3 12 13 5 2. + <_> + + <_> + 11 15 2 2 -1. + <_> + 11 16 2 1 2. + <_> + + <_> + 2 11 16 4 -1. + <_> + 2 11 8 2 2. + <_> + 10 13 8 2 2. + <_> + + <_> + 13 7 6 4 -1. + <_> + 16 7 3 2 2. + <_> + 13 9 3 2 2. + <_> + + <_> + 6 10 3 9 -1. + <_> + 6 13 3 3 3. + <_> + + <_> + 14 6 1 6 -1. + <_> + 14 9 1 3 2. + <_> + + <_> + 5 10 4 1 -1. + <_> + 7 10 2 1 2. + <_> + + <_> + 3 8 15 5 -1. + <_> + 8 8 5 5 3. + <_> + + <_> + 1 6 5 4 -1. + <_> + 1 8 5 2 2. + <_> + + <_> + 3 1 17 6 -1. + <_> + 3 3 17 2 3. + <_> + + <_> + 6 7 8 2 -1. + <_> + 10 7 4 2 2. + <_> + + <_> + 9 7 3 2 -1. + <_> + 10 7 1 2 3. + <_> + + <_> + 8 7 3 2 -1. + <_> + 9 7 1 2 3. + <_> + + <_> + 8 9 4 2 -1. + <_> + 8 10 4 1 2. + <_> + + <_> + 8 8 4 3 -1. + <_> + 8 9 4 1 3. + <_> + + <_> + 9 5 6 4 -1. + <_> + 9 5 3 4 2. + <_> + + <_> + 8 13 4 3 -1. + <_> + 8 14 4 1 3. + <_> + + <_> + 4 7 12 6 -1. + <_> + 10 7 6 3 2. + <_> + 4 10 6 3 2. + <_> + + <_> + 8 14 4 3 -1. + <_> + 8 15 4 1 3. + <_> + + <_> + 9 7 3 3 -1. + <_> + 9 8 3 1 3. + <_> + + <_> + 7 4 3 8 -1. + <_> + 8 4 1 8 3. + <_> + + <_> + 10 0 3 6 -1. + <_> + 11 0 1 6 3. + <_> + + <_> + 6 3 4 8 -1. + <_> + 8 3 2 8 2. + <_> + + <_> + 14 3 6 13 -1. + <_> + 14 3 3 13 2. + <_> + + <_> + 8 13 3 6 -1. + <_> + 8 16 3 3 2. + <_> + + <_> + 14 3 6 13 -1. + <_> + 14 3 3 13 2. + <_> + + <_> + 0 7 10 4 -1. + <_> + 0 7 5 2 2. + <_> + 5 9 5 2 2. + <_> + + <_> + 14 3 6 13 -1. + <_> + 14 3 3 13 2. + <_> + + <_> + 0 3 6 13 -1. + <_> + 3 3 3 13 2. + <_> + + <_> + 9 1 4 1 -1. + <_> + 9 1 2 1 2. + <_> + + <_> + 8 0 2 1 -1. + <_> + 9 0 1 1 2. + <_> + + <_> + 10 16 4 4 -1. + <_> + 12 16 2 2 2. + <_> + 10 18 2 2 2. + <_> + + <_> + 9 6 2 3 -1. + <_> + 10 6 1 3 2. + <_> + + <_> + 4 5 12 2 -1. + <_> + 8 5 4 2 3. + <_> + + <_> + 8 7 3 5 -1. + <_> + 9 7 1 5 3. + <_> + + <_> + 6 4 8 6 -1. + <_> + 6 6 8 2 3. + <_> + + <_> + 9 5 2 12 -1. + <_> + 9 11 2 6 2. + <_> + + <_> + 4 6 6 8 -1. + <_> + 4 10 6 4 2. + <_> + + <_> + 12 2 8 5 -1. + <_> + 12 2 4 5 2. + <_> + + <_> + 0 8 18 3 -1. + <_> + 0 9 18 1 3. + <_> + + <_> + 8 12 4 8 -1. + <_> + 8 16 4 4 2. + <_> + + <_> + 0 2 8 5 -1. + <_> + 4 2 4 5 2. + <_> + + <_> + 13 11 3 4 -1. + <_> + 13 13 3 2 2. + <_> + + <_> + 5 11 6 1 -1. + <_> + 7 11 2 1 3. + <_> + + <_> + 11 3 3 1 -1. + <_> + 12 3 1 1 3. + <_> + + <_> + 7 13 5 3 -1. + <_> + 7 14 5 1 3. + <_> + + <_> + 11 11 7 6 -1. + <_> + 11 14 7 3 2. + <_> + + <_> + 2 11 7 6 -1. + <_> + 2 14 7 3 2. + <_> + + <_> + 12 14 2 6 -1. + <_> + 12 16 2 2 3. + <_> + + <_> + 8 14 3 3 -1. + <_> + 8 15 3 1 3. + <_> + + <_> + 11 0 3 5 -1. + <_> + 12 0 1 5 3. + <_> + + <_> + 6 1 4 9 -1. + <_> + 8 1 2 9 2. + <_> + + <_> + 10 3 6 1 -1. + <_> + 12 3 2 1 3. + <_> + + <_> + 8 8 3 4 -1. + <_> + 8 10 3 2 2. + <_> + + <_> + 8 12 4 2 -1. + <_> + 8 13 4 1 2. + <_> + + <_> + 5 18 4 2 -1. + <_> + 5 19 4 1 2. + <_> + + <_> + 2 1 18 6 -1. + <_> + 2 3 18 2 3. + <_> + + <_> + 6 0 3 2 -1. + <_> + 7 0 1 2 3. + <_> + + <_> + 13 8 6 2 -1. + <_> + 16 8 3 1 2. + <_> + 13 9 3 1 2. + <_> + + <_> + 6 10 3 6 -1. + <_> + 6 13 3 3 2. + <_> + + <_> + 0 13 20 4 -1. + <_> + 10 13 10 2 2. + <_> + 0 15 10 2 2. + <_> + + <_> + 7 7 6 5 -1. + <_> + 9 7 2 5 3. + <_> + + <_> + 11 0 2 2 -1. + <_> + 11 1 2 1 2. + <_> + + <_> + 1 8 6 2 -1. + <_> + 1 8 3 1 2. + <_> + 4 9 3 1 2. + <_> + + <_> + 0 2 20 2 -1. + <_> + 10 2 10 1 2. + <_> + 0 3 10 1 2. + <_> + + <_> + 7 14 5 3 -1. + <_> + 7 15 5 1 3. + <_> + + <_> + 7 13 6 6 -1. + <_> + 10 13 3 3 2. + <_> + 7 16 3 3 2. + <_> + + <_> + 9 12 2 3 -1. + <_> + 9 13 2 1 3. + <_> + + <_> + 16 11 1 6 -1. + <_> + 16 13 1 2 3. + <_> + + <_> + 3 11 1 6 -1. + <_> + 3 13 1 2 3. + <_> + + <_> + 4 4 14 12 -1. + <_> + 11 4 7 6 2. + <_> + 4 10 7 6 2. + <_> + + <_> + 5 4 3 3 -1. + <_> + 5 5 3 1 3. + <_> + + <_> + 12 3 3 3 -1. + <_> + 13 3 1 3 3. + <_> + + <_> + 6 6 8 3 -1. + <_> + 6 7 8 1 3. + <_> + + <_> + 12 3 3 3 -1. + <_> + 13 3 1 3 3. + <_> + + <_> + 3 1 4 10 -1. + <_> + 3 1 2 5 2. + <_> + 5 6 2 5 2. + <_> + + <_> + 5 7 10 2 -1. + <_> + 5 7 5 2 2. + <_> + + <_> + 8 7 3 3 -1. + <_> + 9 7 1 3 3. + <_> + + <_> + 15 12 2 3 -1. + <_> + 15 13 2 1 3. + <_> + + <_> + 7 8 3 4 -1. + <_> + 8 8 1 4 3. + <_> + + <_> + 13 4 1 12 -1. + <_> + 13 10 1 6 2. + <_> + + <_> + 4 5 12 12 -1. + <_> + 4 5 6 6 2. + <_> + 10 11 6 6 2. + <_> + + <_> + 7 14 7 3 -1. + <_> + 7 15 7 1 3. + <_> + + <_> + 3 12 2 3 -1. + <_> + 3 13 2 1 3. + <_> + + <_> + 3 2 14 2 -1. + <_> + 10 2 7 1 2. + <_> + 3 3 7 1 2. + <_> + + <_> + 0 1 3 10 -1. + <_> + 1 1 1 10 3. + <_> + + <_> + 9 0 6 5 -1. + <_> + 11 0 2 5 3. + <_> + + <_> + 5 7 6 2 -1. + <_> + 8 7 3 2 2. + <_> + + <_> + 7 1 6 10 -1. + <_> + 7 6 6 5 2. + <_> + + <_> + 1 1 18 3 -1. + <_> + 7 1 6 3 3. + <_> + + <_> + 16 3 3 6 -1. + <_> + 16 5 3 2 3. + <_> + + <_> + 6 3 7 6 -1. + <_> + 6 6 7 3 2. + <_> + + <_> + 4 7 12 2 -1. + <_> + 8 7 4 2 3. + <_> + + <_> + 0 4 17 10 -1. + <_> + 0 9 17 5 2. + <_> + + <_> + 3 4 15 16 -1. + <_> + 3 12 15 8 2. + <_> + + <_> + 7 15 6 4 -1. + <_> + 7 17 6 2 2. + <_> + + <_> + 15 2 4 9 -1. + <_> + 15 2 2 9 2. + <_> + + <_> + 2 3 3 2 -1. + <_> + 2 4 3 1 2. + <_> + + <_> + 13 6 7 9 -1. + <_> + 13 9 7 3 3. + <_> + + <_> + 8 11 4 3 -1. + <_> + 8 12 4 1 3. + <_> + + <_> + 0 2 20 6 -1. + <_> + 10 2 10 3 2. + <_> + 0 5 10 3 2. + <_> + + <_> + 3 2 6 10 -1. + <_> + 3 2 3 5 2. + <_> + 6 7 3 5 2. + <_> + + <_> + 13 10 3 4 -1. + <_> + 13 12 3 2 2. + <_> + + <_> + 4 10 3 4 -1. + <_> + 4 12 3 2 2. + <_> + + <_> + 7 5 6 3 -1. + <_> + 9 5 2 3 3. + <_> + + <_> + 7 6 6 8 -1. + <_> + 7 10 6 4 2. + <_> + + <_> + 0 11 20 6 -1. + <_> + 0 14 20 3 2. + <_> + + <_> + 4 13 4 6 -1. + <_> + 4 13 2 3 2. + <_> + 6 16 2 3 2. + <_> + + <_> + 6 0 8 12 -1. + <_> + 10 0 4 6 2. + <_> + 6 6 4 6 2. + <_> + + <_> + 2 0 15 2 -1. + <_> + 2 1 15 1 2. + <_> + + <_> + 9 12 2 3 -1. + <_> + 9 13 2 1 3. + <_> + + <_> + 3 12 1 2 -1. + <_> + 3 13 1 1 2. + <_> + + <_> + 9 11 2 3 -1. + <_> + 9 12 2 1 3. + <_> + + <_> + 7 3 3 1 -1. + <_> + 8 3 1 1 3. + <_> + + <_> + 17 7 3 6 -1. + <_> + 17 9 3 2 3. + <_> + + <_> + 7 2 3 2 -1. + <_> + 8 2 1 2 3. + <_> + + <_> + 11 4 5 3 -1. + <_> + 11 5 5 1 3. + <_> + + <_> + 4 4 5 3 -1. + <_> + 4 5 5 1 3. + <_> + + <_> + 19 3 1 2 -1. + <_> + 19 4 1 1 2. + <_> + + <_> + 5 5 4 3 -1. + <_> + 5 6 4 1 3. + <_> + + <_> + 17 7 3 6 -1. + <_> + 17 9 3 2 3. + <_> + + <_> + 0 7 3 6 -1. + <_> + 0 9 3 2 3. + <_> + + <_> + 14 2 6 9 -1. + <_> + 14 5 6 3 3. + <_> + + <_> + 0 4 5 6 -1. + <_> + 0 6 5 2 3. + <_> + + <_> + 10 5 6 2 -1. + <_> + 12 5 2 2 3. + <_> + + <_> + 4 5 6 2 -1. + <_> + 6 5 2 2 3. + <_> + + <_> + 8 1 4 6 -1. + <_> + 8 3 4 2 3. + <_> + + <_> + 0 2 3 6 -1. + <_> + 0 4 3 2 3. + <_> + + <_> + 6 6 8 3 -1. + <_> + 6 7 8 1 3. + <_> + + <_> + 0 1 5 9 -1. + <_> + 0 4 5 3 3. + <_> + + <_> + 16 0 4 15 -1. + <_> + 16 0 2 15 2. + <_> + + <_> + 1 10 3 2 -1. + <_> + 1 11 3 1 2. + <_> + + <_> + 14 4 1 10 -1. + <_> + 14 9 1 5 2. + <_> + + <_> + 0 1 4 12 -1. + <_> + 2 1 2 12 2. + <_> + + <_> + 11 11 4 2 -1. + <_> + 11 11 2 2 2. + <_> + + <_> + 5 11 4 2 -1. + <_> + 7 11 2 2 2. + <_> + + <_> + 3 8 15 5 -1. + <_> + 8 8 5 5 3. + <_> + + <_> + 0 0 6 10 -1. + <_> + 3 0 3 10 2. + <_> + + <_> + 11 4 3 2 -1. + <_> + 12 4 1 2 3. + <_> + + <_> + 8 12 3 8 -1. + <_> + 8 16 3 4 2. + <_> + + <_> + 8 14 5 3 -1. + <_> + 8 15 5 1 3. + <_> + + <_> + 7 14 4 3 -1. + <_> + 7 15 4 1 3. + <_> + + <_> + 11 4 3 2 -1. + <_> + 12 4 1 2 3. + <_> + + <_> + 3 15 14 4 -1. + <_> + 3 15 7 2 2. + <_> + 10 17 7 2 2. + <_> + + <_> + 2 2 16 4 -1. + <_> + 10 2 8 2 2. + <_> + 2 4 8 2 2. + <_> + + <_> + 0 8 6 12 -1. + <_> + 3 8 3 12 2. + <_> + + <_> + 5 7 10 2 -1. + <_> + 5 7 5 2 2. + <_> + + <_> + 9 7 2 5 -1. + <_> + 10 7 1 5 2. + <_> + + <_> + 13 7 6 4 -1. + <_> + 16 7 3 2 2. + <_> + 13 9 3 2 2. + <_> + + <_> + 0 13 8 2 -1. + <_> + 0 14 8 1 2. + <_> + + <_> + 13 7 6 4 -1. + <_> + 16 7 3 2 2. + <_> + 13 9 3 2 2. + <_> + + <_> + 1 7 6 4 -1. + <_> + 1 7 3 2 2. + <_> + 4 9 3 2 2. + <_> + + <_> + 12 6 1 12 -1. + <_> + 12 12 1 6 2. + <_> + + <_> + 9 5 2 6 -1. + <_> + 10 5 1 6 2. + <_> + + <_> + 14 12 2 3 -1. + <_> + 14 13 2 1 3. + <_> + + <_> + 4 12 2 3 -1. + <_> + 4 13 2 1 3. + <_> + + <_> + 8 12 4 3 -1. + <_> + 8 13 4 1 3. + <_> + + <_> + 5 2 2 4 -1. + <_> + 5 2 1 2 2. + <_> + 6 4 1 2 2. + <_> + + <_> + 5 5 11 3 -1. + <_> + 5 6 11 1 3. + <_> + + <_> + 7 6 4 12 -1. + <_> + 7 12 4 6 2. + <_> + + <_> + 12 13 8 5 -1. + <_> + 12 13 4 5 2. + <_> + + <_> + 7 6 1 12 -1. + <_> + 7 12 1 6 2. + <_> + + <_> + 1 2 6 3 -1. + <_> + 4 2 3 3 2. + <_> + + <_> + 9 5 6 10 -1. + <_> + 12 5 3 5 2. + <_> + 9 10 3 5 2. + <_> + + <_> + 5 5 8 12 -1. + <_> + 5 5 4 6 2. + <_> + 9 11 4 6 2. + <_> + + <_> + 0 7 20 6 -1. + <_> + 0 9 20 2 3. + <_> + + <_> + 4 2 2 2 -1. + <_> + 4 3 2 1 2. + <_> + + <_> + 4 18 12 2 -1. + <_> + 8 18 4 2 3. + <_> + + <_> + 7 4 4 16 -1. + <_> + 7 12 4 8 2. + <_> + + <_> + 7 6 7 8 -1. + <_> + 7 10 7 4 2. + <_> + + <_> + 6 3 3 1 -1. + <_> + 7 3 1 1 3. + <_> + + <_> + 11 15 2 4 -1. + <_> + 11 17 2 2 2. + <_> + + <_> + 3 5 4 8 -1. + <_> + 3 9 4 4 2. + <_> + + <_> + 7 1 6 12 -1. + <_> + 7 7 6 6 2. + <_> + + <_> + 4 6 6 2 -1. + <_> + 6 6 2 2 3. + <_> + + <_> + 16 4 4 6 -1. + <_> + 16 6 4 2 3. + <_> + + <_> + 3 3 5 2 -1. + <_> + 3 4 5 1 2. + <_> + + <_> + 9 11 2 3 -1. + <_> + 9 12 2 1 3. + <_> + + <_> + 2 16 4 2 -1. + <_> + 2 17 4 1 2. + <_> + + <_> + 7 13 6 6 -1. + <_> + 10 13 3 3 2. + <_> + 7 16 3 3 2. + <_> + + <_> + 7 0 3 4 -1. + <_> + 8 0 1 4 3. + <_> + + <_> + 8 15 4 3 -1. + <_> + 8 16 4 1 3. + <_> + + <_> + 0 4 4 6 -1. + <_> + 0 6 4 2 3. + <_> + + <_> + 5 6 12 3 -1. + <_> + 9 6 4 3 3. + <_> + + <_> + 7 6 6 14 -1. + <_> + 9 6 2 14 3. + <_> + + <_> + 9 7 3 3 -1. + <_> + 10 7 1 3 3. + <_> + + <_> + 6 12 2 4 -1. + <_> + 6 14 2 2 2. + <_> + + <_> + 10 12 7 6 -1. + <_> + 10 14 7 2 3. + <_> + + <_> + 1 0 15 2 -1. + <_> + 1 1 15 1 2. + <_> + + <_> + 14 0 6 6 -1. + <_> + 14 0 3 6 2. + <_> + + <_> + 5 3 3 1 -1. + <_> + 6 3 1 1 3. + <_> + + <_> + 14 0 6 6 -1. + <_> + 14 0 3 6 2. + <_> + + <_> + 0 3 20 10 -1. + <_> + 0 8 20 5 2. + <_> + + <_> + 14 0 6 6 -1. + <_> + 14 0 3 6 2. + <_> + + <_> + 0 0 6 6 -1. + <_> + 3 0 3 6 2. + <_> + + <_> + 19 15 1 2 -1. + <_> + 19 16 1 1 2. + <_> + + <_> + 0 2 4 8 -1. + <_> + 2 2 2 8 2. + <_> + + <_> + 2 1 18 4 -1. + <_> + 11 1 9 2 2. + <_> + 2 3 9 2 2. + <_> + + <_> + 8 12 1 2 -1. + <_> + 8 13 1 1 2. + <_> + + <_> + 5 2 10 6 -1. + <_> + 10 2 5 3 2. + <_> + 5 5 5 3 2. + <_> + + <_> + 9 7 2 4 -1. + <_> + 10 7 1 4 2. + <_> + + <_> + 9 7 3 3 -1. + <_> + 10 7 1 3 3. + <_> + + <_> + 4 5 12 8 -1. + <_> + 8 5 4 8 3. + <_> + + <_> + 15 15 4 3 -1. + <_> + 15 16 4 1 3. + <_> + + <_> + 8 18 3 1 -1. + <_> + 9 18 1 1 3. + <_> + + <_> + 9 13 4 3 -1. + <_> + 9 14 4 1 3. + <_> + + <_> + 7 13 4 3 -1. + <_> + 7 14 4 1 3. + <_> + + <_> + 19 15 1 2 -1. + <_> + 19 16 1 1 2. + <_> + + <_> + 0 15 8 4 -1. + <_> + 0 17 8 2 2. + <_> + + <_> + 9 3 6 4 -1. + <_> + 11 3 2 4 3. + <_> + + <_> + 8 14 4 3 -1. + <_> + 8 15 4 1 3. + <_> + + <_> + 3 14 14 6 -1. + <_> + 3 16 14 2 3. + <_> + + <_> + 6 3 6 6 -1. + <_> + 6 6 6 3 2. + <_> + + <_> + 5 11 10 6 -1. + <_> + 5 14 10 3 2. + <_> + + <_> + 3 10 3 4 -1. + <_> + 4 10 1 4 3. + <_> + + <_> + 13 9 2 2 -1. + <_> + 13 9 1 2 2. + <_> + + <_> + 5 3 6 4 -1. + <_> + 7 3 2 4 3. + <_> + + <_> + 9 7 3 3 -1. + <_> + 10 7 1 3 3. + <_> + + <_> + 2 12 2 3 -1. + <_> + 2 13 2 1 3. + <_> + + <_> + 9 8 3 12 -1. + <_> + 9 12 3 4 3. + <_> + + <_> + 3 14 4 6 -1. + <_> + 3 14 2 3 2. + <_> + 5 17 2 3 2. + <_> + + <_> + 16 15 2 2 -1. + <_> + 16 16 2 1 2. + <_> + + <_> + 2 15 2 2 -1. + <_> + 2 16 2 1 2. + <_> + + <_> + 8 12 4 3 -1. + <_> + 8 13 4 1 3. + <_> + + <_> + 0 7 20 1 -1. + <_> + 10 7 10 1 2. + <_> + + <_> + 7 6 8 3 -1. + <_> + 7 6 4 3 2. + <_> + + <_> + 5 7 8 2 -1. + <_> + 9 7 4 2 2. + <_> + + <_> + 9 7 3 5 -1. + <_> + 10 7 1 5 3. + <_> + + <_> + 8 7 3 5 -1. + <_> + 9 7 1 5 3. + <_> + + <_> + 11 1 3 5 -1. + <_> + 12 1 1 5 3. + <_> + + <_> + 6 2 3 6 -1. + <_> + 7 2 1 6 3. + <_> + + <_> + 14 14 6 5 -1. + <_> + 14 14 3 5 2. + <_> + + <_> + 9 8 2 2 -1. + <_> + 9 9 2 1 2. + <_> + + <_> + 10 7 1 3 -1. + <_> + 10 8 1 1 3. + <_> + + <_> + 6 6 2 2 -1. + <_> + 6 6 1 1 2. + <_> + 7 7 1 1 2. + <_> + + <_> + 2 11 18 4 -1. + <_> + 11 11 9 2 2. + <_> + 2 13 9 2 2. + <_> + + <_> + 6 6 2 2 -1. + <_> + 6 6 1 1 2. + <_> + 7 7 1 1 2. + <_> + + <_> + 0 15 20 2 -1. + <_> + 0 16 20 1 2. + <_> + + <_> + 4 14 2 3 -1. + <_> + 4 15 2 1 3. + <_> + + <_> + 8 14 4 3 -1. + <_> + 8 15 4 1 3. + <_> + + <_> + 8 7 2 3 -1. + <_> + 8 8 2 1 3. + <_> + + <_> + 9 10 2 3 -1. + <_> + 9 11 2 1 3. + <_> + + <_> + 5 4 10 4 -1. + <_> + 5 6 10 2 2. + <_> + + <_> + 9 7 6 4 -1. + <_> + 12 7 3 2 2. + <_> + 9 9 3 2 2. + <_> + + <_> + 4 7 3 6 -1. + <_> + 4 9 3 2 3. + <_> + + <_> + 11 15 4 4 -1. + <_> + 13 15 2 2 2. + <_> + 11 17 2 2 2. + <_> + + <_> + 7 8 4 2 -1. + <_> + 7 9 4 1 2. + <_> + + <_> + 13 1 4 3 -1. + <_> + 13 1 2 3 2. + <_> + + <_> + 5 15 4 4 -1. + <_> + 5 15 2 2 2. + <_> + 7 17 2 2 2. + <_> + + <_> + 9 5 4 7 -1. + <_> + 9 5 2 7 2. + <_> + + <_> + 5 6 8 3 -1. + <_> + 9 6 4 3 2. + <_> + + <_> + 9 9 2 2 -1. + <_> + 9 10 2 1 2. + <_> + + <_> + 7 15 5 3 -1. + <_> + 7 16 5 1 3. + <_> + + <_> + 11 10 4 3 -1. + <_> + 11 10 2 3 2. + <_> + + <_> + 6 9 8 10 -1. + <_> + 6 14 8 5 2. + <_> + + <_> + 10 11 6 2 -1. + <_> + 10 11 3 2 2. + <_> + + <_> + 4 11 6 2 -1. + <_> + 7 11 3 2 2. + <_> + + <_> + 11 3 8 1 -1. + <_> + 11 3 4 1 2. + <_> + + <_> + 6 3 3 2 -1. + <_> + 7 3 1 2 3. + <_> + + <_> + 14 5 6 5 -1. + <_> + 14 5 3 5 2. + <_> + + <_> + 7 5 2 12 -1. + <_> + 7 11 2 6 2. + <_> + + <_> + 8 11 4 3 -1. + <_> + 8 12 4 1 3. + <_> + + <_> + 4 1 2 3 -1. + <_> + 5 1 1 3 2. + <_> + + <_> + 18 3 2 6 -1. + <_> + 18 5 2 2 3. + <_> + + <_> + 0 3 2 6 -1. + <_> + 0 5 2 2 3. + <_> + + <_> + 9 12 2 3 -1. + <_> + 9 13 2 1 3. + <_> + + <_> + 7 13 4 3 -1. + <_> + 7 14 4 1 3. + <_> + + <_> + 18 0 2 6 -1. + <_> + 18 2 2 2 3. + <_> + + <_> + 0 0 2 6 -1. + <_> + 0 2 2 2 3. + <_> + + <_> + 8 14 6 3 -1. + <_> + 8 15 6 1 3. + <_> + + <_> + 7 4 2 4 -1. + <_> + 8 4 1 4 2. + <_> + + <_> + 8 5 4 6 -1. + <_> + 8 7 4 2 3. + <_> + + <_> + 6 4 2 2 -1. + <_> + 7 4 1 2 2. + <_> + + <_> + 3 14 14 4 -1. + <_> + 10 14 7 2 2. + <_> + 3 16 7 2 2. + <_> + + <_> + 6 15 6 2 -1. + <_> + 6 15 3 1 2. + <_> + 9 16 3 1 2. + <_> + + <_> + 14 15 6 2 -1. + <_> + 14 16 6 1 2. + <_> + + <_> + 2 12 12 8 -1. + <_> + 2 16 12 4 2. + <_> + + <_> + 7 7 7 2 -1. + <_> + 7 8 7 1 2. + <_> + + <_> + 0 2 18 2 -1. + <_> + 0 3 18 1 2. + <_> + + <_> + 9 6 2 5 -1. + <_> + 9 6 1 5 2. + <_> + + <_> + 7 5 3 8 -1. + <_> + 8 5 1 8 3. + <_> + + <_> + 9 6 3 4 -1. + <_> + 10 6 1 4 3. + <_> + + <_> + 4 13 3 2 -1. + <_> + 4 14 3 1 2. + <_> + + <_> + 9 4 6 3 -1. + <_> + 11 4 2 3 3. + <_> + + <_> + 5 4 6 3 -1. + <_> + 7 4 2 3 3. + <_> + + <_> + 14 11 5 2 -1. + <_> + 14 12 5 1 2. + <_> + + <_> + 1 2 6 9 -1. + <_> + 3 2 2 9 3. + <_> + + <_> + 14 6 6 13 -1. + <_> + 14 6 3 13 2. + <_> + + <_> + 3 6 14 8 -1. + <_> + 3 6 7 4 2. + <_> + 10 10 7 4 2. + <_> + + <_> + 16 0 4 11 -1. + <_> + 16 0 2 11 2. + <_> + + <_> + 3 4 12 12 -1. + <_> + 3 4 6 6 2. + <_> + 9 10 6 6 2. + <_> + + <_> + 11 4 5 3 -1. + <_> + 11 5 5 1 3. + <_> + + <_> + 4 11 4 2 -1. + <_> + 4 12 4 1 2. + <_> + + <_> + 10 7 2 2 -1. + <_> + 10 7 1 2 2. + <_> + + <_> + 8 7 2 2 -1. + <_> + 9 7 1 2 2. + <_> + + <_> + 9 17 3 2 -1. + <_> + 10 17 1 2 3. + <_> + + <_> + 5 6 3 3 -1. + <_> + 5 7 3 1 3. + <_> + + <_> + 10 0 3 3 -1. + <_> + 11 0 1 3 3. + <_> + + <_> + 5 6 6 2 -1. + <_> + 5 6 3 1 2. + <_> + 8 7 3 1 2. + <_> + + <_> + 12 16 4 3 -1. + <_> + 12 17 4 1 3. + <_> + + <_> + 3 12 3 2 -1. + <_> + 3 13 3 1 2. + <_> + + <_> + 9 12 3 2 -1. + <_> + 9 13 3 1 2. + <_> + + <_> + 1 11 16 4 -1. + <_> + 1 11 8 2 2. + <_> + 9 13 8 2 2. + <_> + + <_> + 12 4 3 3 -1. + <_> + 12 5 3 1 3. + <_> + + <_> + 4 4 5 3 -1. + <_> + 4 5 5 1 3. + <_> + + <_> + 12 16 4 3 -1. + <_> + 12 17 4 1 3. + <_> + + <_> + 5 4 3 3 -1. + <_> + 5 5 3 1 3. + <_> + + <_> + 9 0 2 2 -1. + <_> + 9 1 2 1 2. + <_> + + <_> + 8 9 4 2 -1. + <_> + 8 10 4 1 2. + <_> + + <_> + 8 8 4 3 -1. + <_> + 8 9 4 1 3. + <_> + + <_> + 0 13 6 3 -1. + <_> + 2 13 2 3 3. + <_> + + <_> + 16 14 3 2 -1. + <_> + 16 15 3 1 2. + <_> + + <_> + 1 18 18 2 -1. + <_> + 7 18 6 2 3. + <_> + + <_> + 16 14 3 2 -1. + <_> + 16 15 3 1 2. + <_> + + <_> + 1 14 3 2 -1. + <_> + 1 15 3 1 2. + <_> + + <_> + 7 14 6 3 -1. + <_> + 7 15 6 1 3. + <_> + + <_> + 5 14 8 3 -1. + <_> + 5 15 8 1 3. + <_> + + <_> + 10 6 4 14 -1. + <_> + 10 6 2 14 2. + <_> + + <_> + 6 6 4 14 -1. + <_> + 8 6 2 14 2. + <_> + + <_> + 13 5 2 3 -1. + <_> + 13 6 2 1 3. + <_> + + <_> + 7 16 6 1 -1. + <_> + 9 16 2 1 3. + <_> + + <_> + 9 12 3 3 -1. + <_> + 9 13 3 1 3. + <_> + + <_> + 7 0 3 3 -1. + <_> + 8 0 1 3 3. + <_> + + <_> + 4 0 16 18 -1. + <_> + 4 9 16 9 2. + <_> + + <_> + 1 1 16 14 -1. + <_> + 1 8 16 7 2. + <_> + + <_> + 3 9 15 4 -1. + <_> + 8 9 5 4 3. + <_> + + <_> + 6 12 7 3 -1. + <_> + 6 13 7 1 3. + <_> + + <_> + 14 15 2 3 -1. + <_> + 14 16 2 1 3. + <_> + + <_> + 2 3 16 14 -1. + <_> + 2 3 8 7 2. + <_> + 10 10 8 7 2. + <_> + + <_> + 16 2 4 18 -1. + <_> + 18 2 2 9 2. + <_> + 16 11 2 9 2. + <_> + + <_> + 4 15 2 3 -1. + <_> + 4 16 2 1 3. + <_> + + <_> + 16 2 4 18 -1. + <_> + 18 2 2 9 2. + <_> + 16 11 2 9 2. + <_> + + <_> + 1 1 8 3 -1. + <_> + 1 2 8 1 3. + <_> + + <_> + 8 11 4 3 -1. + <_> + 8 12 4 1 3. + <_> + + <_> + 5 11 5 9 -1. + <_> + 5 14 5 3 3. + <_> + + <_> + 16 0 4 11 -1. + <_> + 16 0 2 11 2. + <_> + + <_> + 7 0 6 1 -1. + <_> + 9 0 2 1 3. + <_> + + <_> + 16 3 3 7 -1. + <_> + 17 3 1 7 3. + <_> + + <_> + 1 3 3 7 -1. + <_> + 2 3 1 7 3. + <_> + + <_> + 7 8 6 12 -1. + <_> + 7 12 6 4 3. + <_> + + <_> + 0 0 4 11 -1. + <_> + 2 0 2 11 2. + <_> + + <_> + 14 0 6 20 -1. + <_> + 14 0 3 20 2. + <_> + + <_> + 0 3 1 2 -1. + <_> + 0 4 1 1 2. + <_> + + <_> + 5 5 10 8 -1. + <_> + 10 5 5 4 2. + <_> + 5 9 5 4 2. + <_> + + <_> + 4 7 12 4 -1. + <_> + 4 7 6 2 2. + <_> + 10 9 6 2 2. + <_> + + <_> + 2 1 6 4 -1. + <_> + 5 1 3 4 2. + <_> + + <_> + 9 7 6 4 -1. + <_> + 12 7 3 2 2. + <_> + 9 9 3 2 2. + <_> + + <_> + 5 6 2 6 -1. + <_> + 5 9 2 3 2. + <_> + + <_> + 9 16 6 4 -1. + <_> + 12 16 3 2 2. + <_> + 9 18 3 2 2. + <_> + + <_> + 9 4 2 12 -1. + <_> + 9 10 2 6 2. + <_> + + <_> + 7 1 6 18 -1. + <_> + 9 1 2 18 3. + <_> + + <_> + 4 12 12 2 -1. + <_> + 8 12 4 2 3. + <_> + + <_> + 8 8 6 2 -1. + <_> + 8 9 6 1 2. + <_> + + <_> + 8 0 3 6 -1. + <_> + 9 0 1 6 3. + <_> + + <_> + 11 18 3 2 -1. + <_> + 11 19 3 1 2. + <_> + + <_> + 1 1 17 4 -1. + <_> + 1 3 17 2 2. + <_> + + <_> + 11 8 4 12 -1. + <_> + 11 8 2 12 2. + <_> + + <_> + 8 14 4 3 -1. + <_> + 8 15 4 1 3. + <_> + + <_> + 12 3 2 17 -1. + <_> + 12 3 1 17 2. + <_> + + <_> + 4 7 6 1 -1. + <_> + 6 7 2 1 3. + <_> + + <_> + 18 3 2 3 -1. + <_> + 18 4 2 1 3. + <_> + + <_> + 8 4 3 4 -1. + <_> + 8 6 3 2 2. + <_> + + <_> + 4 5 12 10 -1. + <_> + 4 10 12 5 2. + <_> + + <_> + 5 18 4 2 -1. + <_> + 7 18 2 2 2. + <_> + + <_> + 17 2 3 6 -1. + <_> + 17 4 3 2 3. + <_> + + <_> + 7 7 6 6 -1. + <_> + 9 7 2 6 3. + <_> + + <_> + 17 2 3 6 -1. + <_> + 17 4 3 2 3. + <_> + + <_> + 8 0 3 4 -1. + <_> + 9 0 1 4 3. + <_> + + <_> + 9 14 2 3 -1. + <_> + 9 15 2 1 3. + <_> + + <_> + 0 12 6 3 -1. + <_> + 0 13 6 1 3. + <_> + + <_> + 8 14 4 3 -1. + <_> + 8 15 4 1 3. + <_> + + <_> + 3 12 2 3 -1. + <_> + 3 13 2 1 3. + <_> + + <_> + 5 6 12 7 -1. + <_> + 9 6 4 7 3. + <_> + + <_> + 0 2 3 6 -1. + <_> + 0 4 3 2 3. + <_> + + <_> + 14 6 1 3 -1. + <_> + 14 7 1 1 3. + <_> + + <_> + 2 0 3 14 -1. + <_> + 3 0 1 14 3. + <_> + + <_> + 12 14 5 6 -1. + <_> + 12 16 5 2 3. + <_> + + <_> + 4 14 5 6 -1. + <_> + 4 16 5 2 3. + <_> + + <_> + 11 10 2 2 -1. + <_> + 12 10 1 1 2. + <_> + 11 11 1 1 2. + <_> + + <_> + 5 0 3 14 -1. + <_> + 6 0 1 14 3. + <_> + + <_> + 10 15 2 3 -1. + <_> + 10 16 2 1 3. + <_> + + <_> + 0 2 2 3 -1. + <_> + 0 3 2 1 3. + <_> + + <_> + 5 11 12 6 -1. + <_> + 5 14 12 3 2. + <_> + + <_> + 6 11 3 9 -1. + <_> + 6 14 3 3 3. + <_> + + <_> + 11 10 2 2 -1. + <_> + 12 10 1 1 2. + <_> + 11 11 1 1 2. + <_> + + <_> + 5 6 1 3 -1. + <_> + 5 7 1 1 3. + <_> + + <_> + 4 9 13 3 -1. + <_> + 4 10 13 1 3. + <_> + + <_> + 1 7 15 6 -1. + <_> + 6 7 5 6 3. + <_> + + <_> + 4 5 12 6 -1. + <_> + 8 5 4 6 3. + <_> + + <_> + 8 10 4 3 -1. + <_> + 8 11 4 1 3. + <_> + + <_> + 15 14 1 3 -1. + <_> + 15 15 1 1 3. + <_> + + <_> + 1 11 5 3 -1. + <_> + 1 12 5 1 3. + <_> + + <_> + 7 1 7 12 -1. + <_> + 7 7 7 6 2. + <_> + + <_> + 0 1 6 10 -1. + <_> + 0 1 3 5 2. + <_> + 3 6 3 5 2. + <_> + + <_> + 16 1 4 3 -1. + <_> + 16 2 4 1 3. + <_> + + <_> + 5 5 2 3 -1. + <_> + 5 6 2 1 3. + <_> + + <_> + 12 2 3 5 -1. + <_> + 13 2 1 5 3. + <_> + + <_> + 0 3 4 6 -1. + <_> + 0 5 4 2 3. + <_> + + <_> + 8 12 4 2 -1. + <_> + 8 13 4 1 2. + <_> + + <_> + 8 18 3 1 -1. + <_> + 9 18 1 1 3. + <_> + + <_> + 11 10 2 2 -1. + <_> + 12 10 1 1 2. + <_> + 11 11 1 1 2. + <_> + + <_> + 7 10 2 2 -1. + <_> + 7 10 1 1 2. + <_> + 8 11 1 1 2. + <_> + + <_> + 11 11 4 4 -1. + <_> + 11 13 4 2 2. + <_> + + <_> + 8 12 3 8 -1. + <_> + 9 12 1 8 3. + <_> + + <_> + 13 0 6 3 -1. + <_> + 13 1 6 1 3. + <_> + + <_> + 8 8 3 4 -1. + <_> + 9 8 1 4 3. + <_> + + <_> + 5 7 10 10 -1. + <_> + 10 7 5 5 2. + <_> + 5 12 5 5 2. + <_> + + <_> + 3 18 8 2 -1. + <_> + 3 18 4 1 2. + <_> + 7 19 4 1 2. + <_> + + <_> + 10 2 6 8 -1. + <_> + 12 2 2 8 3. + <_> + + <_> + 4 2 6 8 -1. + <_> + 6 2 2 8 3. + <_> + + <_> + 11 0 3 7 -1. + <_> + 12 0 1 7 3. + <_> + + <_> + 7 11 2 1 -1. + <_> + 8 11 1 1 2. + <_> + + <_> + 15 14 1 3 -1. + <_> + 15 15 1 1 3. + <_> + + <_> + 7 15 2 2 -1. + <_> + 7 15 1 1 2. + <_> + 8 16 1 1 2. + <_> + + <_> + 15 14 1 3 -1. + <_> + 15 15 1 1 3. + <_> + + <_> + 6 0 3 7 -1. + <_> + 7 0 1 7 3. + <_> + + <_> + 18 1 2 7 -1. + <_> + 18 1 1 7 2. + <_> + + <_> + 2 0 8 20 -1. + <_> + 2 10 8 10 2. + <_> + + <_> + 3 0 15 6 -1. + <_> + 3 2 15 2 3. + <_> + + <_> + 4 3 12 2 -1. + <_> + 4 4 12 1 2. + <_> + + <_> + 16 0 4 5 -1. + <_> + 16 0 2 5 2. + <_> + + <_> + 7 0 3 4 -1. + <_> + 8 0 1 4 3. + <_> + + <_> + 16 0 4 5 -1. + <_> + 16 0 2 5 2. + <_> + + <_> + 1 7 6 13 -1. + <_> + 3 7 2 13 3. + <_> + + <_> + 16 0 4 5 -1. + <_> + 16 0 2 5 2. + <_> + + <_> + 0 0 4 5 -1. + <_> + 2 0 2 5 2. + <_> + + <_> + 14 12 3 6 -1. + <_> + 14 14 3 2 3. + <_> + + <_> + 3 12 3 6 -1. + <_> + 3 14 3 2 3. + <_> + + <_> + 16 1 4 3 -1. + <_> + 16 2 4 1 3. + <_> + + <_> + 8 7 2 10 -1. + <_> + 8 7 1 5 2. + <_> + 9 12 1 5 2. + <_> + + <_> + 11 11 4 4 -1. + <_> + 11 13 4 2 2. + <_> + + <_> + 0 1 4 3 -1. + <_> + 0 2 4 1 3. + <_> + + <_> + 13 4 1 3 -1. + <_> + 13 5 1 1 3. + <_> + + <_> + 7 15 3 5 -1. + <_> + 8 15 1 5 3. + <_> + + <_> + 9 7 3 5 -1. + <_> + 10 7 1 5 3. + <_> + + <_> + 8 7 3 5 -1. + <_> + 9 7 1 5 3. + <_> + + <_> + 10 6 4 14 -1. + <_> + 10 6 2 14 2. + <_> + + <_> + 0 5 5 6 -1. + <_> + 0 7 5 2 3. + <_> + + <_> + 9 5 6 4 -1. + <_> + 9 5 3 4 2. + <_> + + <_> + 0 0 18 10 -1. + <_> + 6 0 6 10 3. + <_> + + <_> + 10 6 4 14 -1. + <_> + 10 6 2 14 2. + <_> + + <_> + 6 6 4 14 -1. + <_> + 8 6 2 14 2. + <_> + + <_> + 13 4 1 3 -1. + <_> + 13 5 1 1 3. + <_> + + <_> + 5 1 2 3 -1. + <_> + 6 1 1 3 2. + <_> + + <_> + 18 1 2 18 -1. + <_> + 19 1 1 9 2. + <_> + 18 10 1 9 2. + <_> + + <_> + 2 1 4 3 -1. + <_> + 2 2 4 1 3. + <_> + + <_> + 18 1 2 18 -1. + <_> + 19 1 1 9 2. + <_> + 18 10 1 9 2. + <_> + + <_> + 1 14 4 6 -1. + <_> + 1 14 2 3 2. + <_> + 3 17 2 3 2. + <_> + + <_> + 10 11 7 6 -1. + <_> + 10 13 7 2 3. + <_> + + <_> + 0 10 6 10 -1. + <_> + 0 10 3 5 2. + <_> + 3 15 3 5 2. + <_> + + <_> + 11 0 3 4 -1. + <_> + 12 0 1 4 3. + <_> + + <_> + 5 10 5 6 -1. + <_> + 5 13 5 3 2. + <_> + + <_> + 14 6 1 8 -1. + <_> + 14 10 1 4 2. + <_> + + <_> + 1 7 18 6 -1. + <_> + 1 7 9 3 2. + <_> + 10 10 9 3 2. + <_> + + <_> + 9 7 2 2 -1. + <_> + 9 7 1 2 2. + <_> + + <_> + 5 9 4 5 -1. + <_> + 7 9 2 5 2. + <_> + + <_> + 7 6 6 3 -1. + <_> + 9 6 2 3 3. + <_> + + <_> + 1 0 18 4 -1. + <_> + 7 0 6 4 3. + <_> + + <_> + 7 15 2 4 -1. + <_> + 7 17 2 2 2. + <_> + + <_> + 1 0 19 9 -1. + <_> + 1 3 19 3 3. + <_> + + <_> + 3 7 3 6 -1. + <_> + 3 9 3 2 3. + <_> + + <_> + 13 7 4 4 -1. + <_> + 15 7 2 2 2. + <_> + 13 9 2 2 2. + <_> + + <_> + 3 7 4 4 -1. + <_> + 3 7 2 2 2. + <_> + 5 9 2 2 2. + <_> + + <_> + 9 6 10 8 -1. + <_> + 9 10 10 4 2. + <_> + + <_> + 3 8 14 12 -1. + <_> + 3 14 14 6 2. + <_> + + <_> + 6 5 10 12 -1. + <_> + 11 5 5 6 2. + <_> + 6 11 5 6 2. + <_> + + <_> + 9 11 2 3 -1. + <_> + 9 12 2 1 3. + <_> + + <_> + 9 5 6 5 -1. + <_> + 9 5 3 5 2. + <_> + + <_> + 9 4 2 4 -1. + <_> + 9 6 2 2 2. + <_> + + <_> + 9 5 6 5 -1. + <_> + 9 5 3 5 2. + <_> + + <_> + 5 5 6 5 -1. + <_> + 8 5 3 5 2. + <_> + + <_> + 11 2 6 1 -1. + <_> + 13 2 2 1 3. + <_> + + <_> + 3 2 6 1 -1. + <_> + 5 2 2 1 3. + <_> + + <_> + 13 5 2 3 -1. + <_> + 13 6 2 1 3. + <_> + + <_> + 0 10 1 4 -1. + <_> + 0 12 1 2 2. + <_> + + <_> + 13 5 2 3 -1. + <_> + 13 6 2 1 3. + <_> + + <_> + 8 18 3 2 -1. + <_> + 9 18 1 2 3. + <_> + + <_> + 6 15 9 2 -1. + <_> + 6 16 9 1 2. + <_> + + <_> + 8 14 4 3 -1. + <_> + 8 15 4 1 3. + <_> + + <_> + 18 4 2 4 -1. + <_> + 18 6 2 2 2. + <_> + + <_> + 5 5 2 3 -1. + <_> + 5 6 2 1 3. + <_> + + <_> + 15 16 3 2 -1. + <_> + 15 17 3 1 2. + <_> + + <_> + 0 0 3 9 -1. + <_> + 0 3 3 3 3. + <_> + + <_> + 9 7 3 3 -1. + <_> + 9 8 3 1 3. + <_> + + <_> + 8 7 3 3 -1. + <_> + 8 8 3 1 3. + <_> + + <_> + 9 5 2 6 -1. + <_> + 9 5 1 6 2. + <_> + + <_> + 8 6 3 4 -1. + <_> + 9 6 1 4 3. + <_> + + <_> + 7 6 8 12 -1. + <_> + 11 6 4 6 2. + <_> + 7 12 4 6 2. + <_> + + <_> + 5 6 8 12 -1. + <_> + 5 6 4 6 2. + <_> + 9 12 4 6 2. + <_> + + <_> + 12 4 3 3 -1. + <_> + 12 5 3 1 3. + <_> + + <_> + 2 16 3 2 -1. + <_> + 2 17 3 1 2. + <_> + + <_> + 12 4 3 3 -1. + <_> + 12 5 3 1 3. + <_> + + <_> + 2 12 6 6 -1. + <_> + 2 14 6 2 3. + <_> + + <_> + 7 13 6 3 -1. + <_> + 7 14 6 1 3. + <_> + + <_> + 6 14 6 3 -1. + <_> + 6 15 6 1 3. + <_> + + <_> + 14 15 5 3 -1. + <_> + 14 16 5 1 3. + <_> + + <_> + 5 4 3 3 -1. + <_> + 5 5 3 1 3. + <_> + + <_> + 14 15 5 3 -1. + <_> + 14 16 5 1 3. + <_> + + <_> + 5 3 6 2 -1. + <_> + 7 3 2 2 3. + <_> + + <_> + 8 15 4 3 -1. + <_> + 8 16 4 1 3. + <_> + + <_> + 1 15 5 3 -1. + <_> + 1 16 5 1 3. + <_> + + <_> + 8 13 4 6 -1. + <_> + 10 13 2 3 2. + <_> + 8 16 2 3 2. + <_> + + <_> + 7 8 3 3 -1. + <_> + 8 8 1 3 3. + <_> + + <_> + 12 0 5 4 -1. + <_> + 12 2 5 2 2. + <_> + + <_> + 0 2 20 2 -1. + <_> + 0 2 10 1 2. + <_> + 10 3 10 1 2. + <_> + + <_> + 1 0 18 4 -1. + <_> + 7 0 6 4 3. + <_> + + <_> + 4 3 6 1 -1. + <_> + 6 3 2 1 3. + <_> + + <_> + 4 18 13 2 -1. + <_> + 4 19 13 1 2. + <_> + + <_> + 2 10 3 6 -1. + <_> + 2 12 3 2 3. + <_> + + <_> + 14 12 6 8 -1. + <_> + 17 12 3 4 2. + <_> + 14 16 3 4 2. + <_> + + <_> + 4 13 10 6 -1. + <_> + 4 13 5 3 2. + <_> + 9 16 5 3 2. + <_> + + <_> + 14 12 1 2 -1. + <_> + 14 13 1 1 2. + <_> + + <_> + 8 13 4 3 -1. + <_> + 8 14 4 1 3. + <_> + + <_> + 14 12 2 2 -1. + <_> + 14 13 2 1 2. + <_> + + <_> + 4 12 2 2 -1. + <_> + 4 13 2 1 2. + <_> + + <_> + 8 12 9 2 -1. + <_> + 8 13 9 1 2. + <_> + + <_> + 9 14 2 3 -1. + <_> + 9 15 2 1 3. + <_> + + <_> + 11 10 3 6 -1. + <_> + 11 13 3 3 2. + <_> + + <_> + 5 6 9 12 -1. + <_> + 5 12 9 6 2. + <_> + + <_> + 11 10 3 6 -1. + <_> + 11 13 3 3 2. + <_> + + <_> + 6 10 3 6 -1. + <_> + 6 13 3 3 2. + <_> + + <_> + 5 4 11 3 -1. + <_> + 5 5 11 1 3. + <_> + + <_> + 7 1 5 10 -1. + <_> + 7 6 5 5 2. + <_> + + <_> + 2 8 18 2 -1. + <_> + 2 9 18 1 2. + <_> + + <_> + 7 17 5 3 -1. + <_> + 7 18 5 1 3. + <_> + + <_> + 5 9 12 1 -1. + <_> + 9 9 4 1 3. + <_> + + <_> + 0 14 6 6 -1. + <_> + 0 14 3 3 2. + <_> + 3 17 3 3 2. + <_> + + <_> + 5 9 12 1 -1. + <_> + 9 9 4 1 3. + <_> + + <_> + 3 9 12 1 -1. + <_> + 7 9 4 1 3. + <_> + + <_> + 14 10 6 7 -1. + <_> + 14 10 3 7 2. + <_> + + <_> + 1 0 16 2 -1. + <_> + 1 1 16 1 2. + <_> + + <_> + 10 9 10 9 -1. + <_> + 10 12 10 3 3. + <_> + + <_> + 0 1 10 2 -1. + <_> + 5 1 5 2 2. + <_> + + <_> + 17 3 2 3 -1. + <_> + 17 4 2 1 3. + <_> + + <_> + 1 3 2 3 -1. + <_> + 1 4 2 1 3. + <_> + + <_> + 9 7 3 6 -1. + <_> + 10 7 1 6 3. + <_> + + <_> + 6 5 4 3 -1. + <_> + 8 5 2 3 2. + <_> + + <_> + 7 5 6 6 -1. + <_> + 9 5 2 6 3. + <_> + + <_> + 3 4 12 12 -1. + <_> + 3 4 6 6 2. + <_> + 9 10 6 6 2. + <_> + + <_> + 9 2 6 15 -1. + <_> + 11 2 2 15 3. + <_> + + <_> + 2 2 6 17 -1. + <_> + 4 2 2 17 3. + <_> + + <_> + 14 10 6 7 -1. + <_> + 14 10 3 7 2. + <_> + + <_> + 0 10 6 7 -1. + <_> + 3 10 3 7 2. + <_> + + <_> + 9 2 6 15 -1. + <_> + 11 2 2 15 3. + <_> + + <_> + 5 2 6 15 -1. + <_> + 7 2 2 15 3. + <_> + + <_> + 17 9 3 6 -1. + <_> + 17 11 3 2 3. + <_> + + <_> + 6 7 6 6 -1. + <_> + 8 7 2 6 3. + <_> + + <_> + 1 10 18 6 -1. + <_> + 10 10 9 3 2. + <_> + 1 13 9 3 2. + <_> + + <_> + 0 9 10 9 -1. + <_> + 0 12 10 3 3. + <_> + + <_> + 8 15 4 3 -1. + <_> + 8 16 4 1 3. + <_> + + <_> + 5 12 3 4 -1. + <_> + 5 14 3 2 2. + <_> + + <_> + 3 3 16 12 -1. + <_> + 3 9 16 6 2. + <_> + + <_> + 1 1 12 12 -1. + <_> + 1 1 6 6 2. + <_> + 7 7 6 6 2. + <_> + + <_> + 10 4 2 4 -1. + <_> + 11 4 1 2 2. + <_> + 10 6 1 2 2. + <_> + + <_> + 0 9 10 2 -1. + <_> + 0 9 5 1 2. + <_> + 5 10 5 1 2. + <_> + + <_> + 9 11 3 3 -1. + <_> + 9 12 3 1 3. + <_> + + <_> + 3 12 9 2 -1. + <_> + 3 13 9 1 2. + <_> + + <_> + 9 9 2 2 -1. + <_> + 9 10 2 1 2. + <_> + + <_> + 3 4 13 6 -1. + <_> + 3 6 13 2 3. + <_> + + <_> + 9 7 6 4 -1. + <_> + 12 7 3 2 2. + <_> + 9 9 3 2 2. + <_> + + <_> + 1 0 6 8 -1. + <_> + 4 0 3 8 2. + <_> + + <_> + 9 5 2 12 -1. + <_> + 9 11 2 6 2. + <_> + + <_> + 4 4 3 10 -1. + <_> + 4 9 3 5 2. + <_> + + <_> + 6 17 8 3 -1. + <_> + 6 18 8 1 3. + <_> + + <_> + 0 5 10 6 -1. + <_> + 0 7 10 2 3. + <_> + + <_> + 13 2 3 2 -1. + <_> + 13 3 3 1 2. + <_> + + <_> + 7 5 4 5 -1. + <_> + 9 5 2 5 2. + <_> + + <_> + 12 14 3 6 -1. + <_> + 12 16 3 2 3. + <_> + + <_> + 1 11 8 2 -1. + <_> + 1 12 8 1 2. + <_> + + <_> + 7 13 6 3 -1. + <_> + 7 14 6 1 3. + <_> + + <_> + 0 5 3 6 -1. + <_> + 0 7 3 2 3. + <_> + + <_> + 13 2 3 2 -1. + <_> + 13 3 3 1 2. + <_> + + <_> + 4 14 4 6 -1. + <_> + 4 14 2 3 2. + <_> + 6 17 2 3 2. + <_> + + <_> + 13 2 3 2 -1. + <_> + 13 3 3 1 2. + <_> + + <_> + 8 2 4 12 -1. + <_> + 8 6 4 4 3. + <_> + + <_> + 14 0 6 8 -1. + <_> + 17 0 3 4 2. + <_> + 14 4 3 4 2. + <_> + + <_> + 7 17 3 2 -1. + <_> + 8 17 1 2 3. + <_> + + <_> + 8 12 4 2 -1. + <_> + 8 13 4 1 2. + <_> + + <_> + 6 0 8 12 -1. + <_> + 6 0 4 6 2. + <_> + 10 6 4 6 2. + <_> + + <_> + 14 0 2 10 -1. + <_> + 15 0 1 5 2. + <_> + 14 5 1 5 2. + <_> + + <_> + 5 3 8 6 -1. + <_> + 5 3 4 3 2. + <_> + 9 6 4 3 2. + <_> + + <_> + 14 0 6 10 -1. + <_> + 17 0 3 5 2. + <_> + 14 5 3 5 2. + <_> + + <_> + 9 14 1 2 -1. + <_> + 9 15 1 1 2. + <_> + + <_> + 15 10 4 3 -1. + <_> + 15 11 4 1 3. + <_> + + <_> + 8 14 2 3 -1. + <_> + 8 15 2 1 3. + <_> + + <_> + 3 13 14 4 -1. + <_> + 10 13 7 2 2. + <_> + 3 15 7 2 2. + <_> + + <_> + 1 10 4 3 -1. + <_> + 1 11 4 1 3. + <_> + + <_> + 9 11 6 1 -1. + <_> + 11 11 2 1 3. + <_> + + <_> + 5 11 6 1 -1. + <_> + 7 11 2 1 3. + <_> + + <_> + 3 5 16 15 -1. + <_> + 3 10 16 5 3. + <_> + + <_> + 6 12 4 2 -1. + <_> + 8 12 2 2 2. + <_> + + <_> + 4 4 12 10 -1. + <_> + 10 4 6 5 2. + <_> + 4 9 6 5 2. + <_> + + <_> + 8 6 3 4 -1. + <_> + 9 6 1 4 3. + <_> + + <_> + 8 12 4 8 -1. + <_> + 10 12 2 4 2. + <_> + 8 16 2 4 2. + <_> + + <_> + 8 14 4 3 -1. + <_> + 8 15 4 1 3. + <_> + + <_> + 12 2 3 2 -1. + <_> + 13 2 1 2 3. + <_> + + <_> + 8 15 3 2 -1. + <_> + 8 16 3 1 2. + <_> + + <_> + 6 0 9 14 -1. + <_> + 9 0 3 14 3. + <_> + + <_> + 9 6 2 3 -1. + <_> + 10 6 1 3 2. + <_> + + <_> + 10 8 2 3 -1. + <_> + 10 9 2 1 3. + <_> + + <_> + 0 9 4 6 -1. + <_> + 0 11 4 2 3. + <_> + + <_> + 6 0 8 2 -1. + <_> + 6 1 8 1 2. + <_> + + <_> + 6 14 7 3 -1. + <_> + 6 15 7 1 3. + <_> + + <_> + 8 10 8 9 -1. + <_> + 8 13 8 3 3. + <_> + + <_> + 5 2 3 2 -1. + <_> + 6 2 1 2 3. + <_> + + <_> + 14 1 6 8 -1. + <_> + 17 1 3 4 2. + <_> + 14 5 3 4 2. + <_> + + <_> + 0 1 6 8 -1. + <_> + 0 1 3 4 2. + <_> + 3 5 3 4 2. + <_> + + <_> + 1 2 18 6 -1. + <_> + 10 2 9 3 2. + <_> + 1 5 9 3 2. + <_> + + <_> + 9 3 2 1 -1. + <_> + 10 3 1 1 2. + <_> + + <_> + 13 2 4 6 -1. + <_> + 15 2 2 3 2. + <_> + 13 5 2 3 2. + <_> + + <_> + 5 4 3 3 -1. + <_> + 5 5 3 1 3. + <_> + + <_> + 13 5 1 3 -1. + <_> + 13 6 1 1 3. + <_> + + <_> + 2 16 5 3 -1. + <_> + 2 17 5 1 3. + <_> + + <_> + 13 2 4 6 -1. + <_> + 15 2 2 3 2. + <_> + 13 5 2 3 2. + <_> + + <_> + 3 2 4 6 -1. + <_> + 3 2 2 3 2. + <_> + 5 5 2 3 2. + <_> + + <_> + 13 5 1 2 -1. + <_> + 13 6 1 1 2. + <_> + + <_> + 5 5 2 2 -1. + <_> + 5 6 2 1 2. + <_> + + <_> + 13 9 2 2 -1. + <_> + 13 9 1 2 2. + <_> + + <_> + 5 9 2 2 -1. + <_> + 6 9 1 2 2. + <_> + + <_> + 13 17 3 2 -1. + <_> + 13 18 3 1 2. + <_> + + <_> + 6 16 4 4 -1. + <_> + 6 16 2 2 2. + <_> + 8 18 2 2 2. + <_> + + <_> + 9 16 2 3 -1. + <_> + 9 17 2 1 3. + <_> + + <_> + 0 13 9 6 -1. + <_> + 0 15 9 2 3. + <_> + + <_> + 9 14 2 6 -1. + <_> + 9 17 2 3 2. + <_> + + <_> + 9 15 2 3 -1. + <_> + 9 16 2 1 3. + <_> + + <_> + 1 10 18 6 -1. + <_> + 1 12 18 2 3. + <_> + + <_> + 8 11 4 2 -1. + <_> + 8 12 4 1 2. + <_> + + <_> + 7 9 6 2 -1. + <_> + 7 10 6 1 2. + <_> + + <_> + 8 8 2 3 -1. + <_> + 8 9 2 1 3. + <_> + + <_> + 17 5 3 4 -1. + <_> + 18 5 1 4 3. + <_> + + <_> + 1 19 18 1 -1. + <_> + 7 19 6 1 3. + <_> + + <_> + 9 0 3 2 -1. + <_> + 10 0 1 2 3. + <_> + + <_> + 1 8 1 6 -1. + <_> + 1 10 1 2 3. + <_> + + <_> + 12 17 8 3 -1. + <_> + 12 17 4 3 2. + <_> + + <_> + 0 5 3 4 -1. + <_> + 1 5 1 4 3. + <_> + + <_> + 9 7 2 3 -1. + <_> + 9 8 2 1 3. + <_> + + <_> + 7 11 2 2 -1. + <_> + 7 11 1 1 2. + <_> + 8 12 1 1 2. + <_> + + <_> + 11 3 2 5 -1. + <_> + 11 3 1 5 2. + <_> + + <_> + 7 3 2 5 -1. + <_> + 8 3 1 5 2. + <_> + + <_> + 15 13 2 3 -1. + <_> + 15 14 2 1 3. + <_> + + <_> + 5 6 2 3 -1. + <_> + 5 7 2 1 3. + <_> + + <_> + 4 19 15 1 -1. + <_> + 9 19 5 1 3. + <_> + + <_> + 1 19 15 1 -1. + <_> + 6 19 5 1 3. + <_> + + <_> + 15 13 2 3 -1. + <_> + 15 14 2 1 3. + <_> + + <_> + 5 0 4 15 -1. + <_> + 7 0 2 15 2. + <_> + + <_> + 9 6 2 5 -1. + <_> + 9 6 1 5 2. + <_> + + <_> + 9 5 2 7 -1. + <_> + 10 5 1 7 2. + <_> + + <_> + 16 11 3 3 -1. + <_> + 16 12 3 1 3. + <_> + + <_> + 1 11 3 3 -1. + <_> + 1 12 3 1 3. + <_> + + <_> + 6 6 8 3 -1. + <_> + 6 7 8 1 3. + <_> + + <_> + 0 15 6 2 -1. + <_> + 0 16 6 1 2. + <_> + + <_> + 1 0 18 6 -1. + <_> + 7 0 6 6 3. + <_> + + <_> + 6 0 3 4 -1. + <_> + 7 0 1 4 3. + <_> + + <_> + 14 10 4 10 -1. + <_> + 16 10 2 5 2. + <_> + 14 15 2 5 2. + <_> + + <_> + 3 2 3 2 -1. + <_> + 4 2 1 2 3. + <_> + + <_> + 11 2 2 2 -1. + <_> + 11 3 2 1 2. + <_> + + <_> + 2 10 4 10 -1. + <_> + 2 10 2 5 2. + <_> + 4 15 2 5 2. + <_> + + <_> + 0 13 20 6 -1. + <_> + 10 13 10 3 2. + <_> + 0 16 10 3 2. + <_> + + <_> + 0 5 2 15 -1. + <_> + 1 5 1 15 2. + <_> + + <_> + 1 7 18 4 -1. + <_> + 10 7 9 2 2. + <_> + 1 9 9 2 2. + <_> + + <_> + 0 0 2 17 -1. + <_> + 1 0 1 17 2. + <_> + + <_> + 2 6 16 6 -1. + <_> + 10 6 8 3 2. + <_> + 2 9 8 3 2. + <_> + + <_> + 8 14 1 3 -1. + <_> + 8 15 1 1 3. + <_> + + <_> + 8 15 4 2 -1. + <_> + 8 16 4 1 2. + <_> + + <_> + 5 2 8 2 -1. + <_> + 5 2 4 1 2. + <_> + 9 3 4 1 2. + <_> + + <_> + 6 11 8 6 -1. + <_> + 6 14 8 3 2. + <_> + + <_> + 9 13 2 2 -1. + <_> + 9 14 2 1 2. + <_> + + <_> + 18 4 2 6 -1. + <_> + 18 6 2 2 3. + <_> + + <_> + 9 12 2 2 -1. + <_> + 9 13 2 1 2. + <_> + + <_> + 18 4 2 6 -1. + <_> + 18 6 2 2 3. + <_> + + <_> + 9 13 1 3 -1. + <_> + 9 14 1 1 3. + <_> + + <_> + 18 4 2 6 -1. + <_> + 18 6 2 2 3. + <_> + + <_> + 0 4 2 6 -1. + <_> + 0 6 2 2 3. + <_> + + <_> + 9 12 3 3 -1. + <_> + 9 13 3 1 3. + <_> + + <_> + 3 13 2 3 -1. + <_> + 3 14 2 1 3. + <_> + + <_> + 13 13 4 3 -1. + <_> + 13 14 4 1 3. + <_> + + <_> + 5 4 3 3 -1. + <_> + 5 5 3 1 3. + <_> + + <_> + 5 2 10 6 -1. + <_> + 5 4 10 2 3. + <_> + + <_> + 3 13 4 3 -1. + <_> + 3 14 4 1 3. + <_> + + <_> + 3 7 15 5 -1. + <_> + 8 7 5 5 3. + <_> + + <_> + 3 7 12 2 -1. + <_> + 7 7 4 2 3. + <_> + + <_> + 10 3 3 9 -1. + <_> + 11 3 1 9 3. + <_> + + <_> + 8 6 4 6 -1. + <_> + 10 6 2 6 2. + <_> + + <_> + 9 7 4 3 -1. + <_> + 9 8 4 1 3. + <_> + + <_> + 0 9 4 9 -1. + <_> + 2 9 2 9 2. + <_> + + <_> + 9 13 3 5 -1. + <_> + 10 13 1 5 3. + <_> + + <_> + 7 7 6 3 -1. + <_> + 9 7 2 3 3. + <_> + + <_> + 9 7 3 5 -1. + <_> + 10 7 1 5 3. + <_> + + <_> + 5 7 8 2 -1. + <_> + 9 7 4 2 2. + <_> + + <_> + 5 9 12 2 -1. + <_> + 9 9 4 2 3. + <_> + + <_> + 5 6 10 3 -1. + <_> + 10 6 5 3 2. + <_> + + <_> + 10 12 3 1 -1. + <_> + 11 12 1 1 3. + <_> + + <_> + 0 1 11 15 -1. + <_> + 0 6 11 5 3. + <_> + + <_> + 1 0 18 6 -1. + <_> + 7 0 6 6 3. + <_> + + <_> + 7 7 6 1 -1. + <_> + 9 7 2 1 3. + <_> + + <_> + 5 16 6 4 -1. + <_> + 5 16 3 2 2. + <_> + 8 18 3 2 2. + <_> + + <_> + 6 5 9 8 -1. + <_> + 6 9 9 4 2. + <_> + + <_> + 5 10 2 6 -1. + <_> + 5 13 2 3 2. + <_> + + <_> + 7 6 8 10 -1. + <_> + 11 6 4 5 2. + <_> + 7 11 4 5 2. + <_> + + <_> + 5 6 8 10 -1. + <_> + 5 6 4 5 2. + <_> + 9 11 4 5 2. + <_> + + <_> + 9 5 2 2 -1. + <_> + 9 6 2 1 2. + <_> + + <_> + 5 12 8 2 -1. + <_> + 5 13 8 1 2. + <_> + + <_> + 10 2 8 2 -1. + <_> + 10 3 8 1 2. + <_> + + <_> + 4 0 2 10 -1. + <_> + 4 0 1 5 2. + <_> + 5 5 1 5 2. + <_> + + <_> + 9 10 2 2 -1. + <_> + 9 11 2 1 2. + <_> + + <_> + 2 8 15 3 -1. + <_> + 2 9 15 1 3. + <_> + + <_> + 8 13 4 3 -1. + <_> + 8 14 4 1 3. + <_> + + <_> + 7 2 3 2 -1. + <_> + 8 2 1 2 3. + <_> + + <_> + 7 13 6 3 -1. + <_> + 7 14 6 1 3. + <_> + + <_> + 9 9 2 2 -1. + <_> + 9 10 2 1 2. + <_> + + <_> + 17 2 3 6 -1. + <_> + 17 4 3 2 3. + <_> + + <_> + 1 5 3 4 -1. + <_> + 2 5 1 4 3. + <_> + + <_> + 14 8 4 6 -1. + <_> + 14 10 4 2 3. + <_> + + <_> + 1 4 3 8 -1. + <_> + 2 4 1 8 3. + <_> + + <_> + 8 13 4 6 -1. + <_> + 8 16 4 3 2. + <_> + + <_> + 3 14 2 2 -1. + <_> + 3 15 2 1 2. + <_> + + <_> + 14 8 4 6 -1. + <_> + 14 10 4 2 3. + <_> + + <_> + 2 8 4 6 -1. + <_> + 2 10 4 2 3. + <_> + + <_> + 10 14 1 6 -1. + <_> + 10 17 1 3 2. + <_> + + <_> + 7 5 3 6 -1. + <_> + 8 5 1 6 3. + <_> + + <_> + 11 2 2 6 -1. + <_> + 12 2 1 3 2. + <_> + 11 5 1 3 2. + <_> + + <_> + 6 6 6 5 -1. + <_> + 8 6 2 5 3. + <_> + + <_> + 17 1 3 6 -1. + <_> + 17 3 3 2 3. + <_> + + <_> + 8 7 3 5 -1. + <_> + 9 7 1 5 3. + <_> + + <_> + 9 18 3 2 -1. + <_> + 10 18 1 2 3. + <_> + + <_> + 8 18 3 2 -1. + <_> + 9 18 1 2 3. + <_> + + <_> + 12 3 5 2 -1. + <_> + 12 4 5 1 2. + <_> + + <_> + 7 1 5 12 -1. + <_> + 7 7 5 6 2. + <_> + + <_> + 1 0 18 4 -1. + <_> + 7 0 6 4 3. + <_> + + <_> + 4 2 2 2 -1. + <_> + 4 3 2 1 2. + <_> + + <_> + 11 14 4 2 -1. + <_> + 13 14 2 1 2. + <_> + 11 15 2 1 2. + <_> + + <_> + 0 2 3 6 -1. + <_> + 0 4 3 2 3. + <_> + + <_> + 9 7 2 3 -1. + <_> + 9 8 2 1 3. + <_> + + <_> + 5 5 1 3 -1. + <_> + 5 6 1 1 3. + <_> + + <_> + 10 10 6 1 -1. + <_> + 10 10 3 1 2. + <_> + + <_> + 4 10 6 1 -1. + <_> + 7 10 3 1 2. + <_> + + <_> + 9 17 3 3 -1. + <_> + 9 18 3 1 3. + <_> + + <_> + 4 14 1 3 -1. + <_> + 4 15 1 1 3. + <_> + + <_> + 12 5 3 3 -1. + <_> + 12 6 3 1 3. + <_> + + <_> + 4 5 12 3 -1. + <_> + 4 6 12 1 3. + <_> + + <_> + 9 8 2 3 -1. + <_> + 9 9 2 1 3. + <_> + + <_> + 4 9 3 3 -1. + <_> + 5 9 1 3 3. + <_> + + <_> + 6 0 9 17 -1. + <_> + 9 0 3 17 3. + <_> + + <_> + 9 12 1 3 -1. + <_> + 9 13 1 1 3. + <_> + + <_> + 9 5 2 15 -1. + <_> + 9 10 2 5 3. + <_> + + <_> + 8 14 2 3 -1. + <_> + 8 15 2 1 3. + <_> + + <_> + 10 14 1 3 -1. + <_> + 10 15 1 1 3. + <_> + + <_> + 7 1 6 5 -1. + <_> + 9 1 2 5 3. + <_> + + <_> + 0 0 20 2 -1. + <_> + 0 0 10 2 2. + <_> + + <_> + 2 13 5 3 -1. + <_> + 2 14 5 1 3. + <_> + + <_> + 9 11 2 3 -1. + <_> + 9 12 2 1 3. + <_> + + <_> + 2 5 9 15 -1. + <_> + 2 10 9 5 3. + <_> + + <_> + 5 0 12 10 -1. + <_> + 11 0 6 5 2. + <_> + 5 5 6 5 2. + <_> + + <_> + 5 1 2 3 -1. + <_> + 6 1 1 3 2. + <_> + + <_> + 10 7 6 1 -1. + <_> + 12 7 2 1 3. + <_> + + <_> + 3 1 2 10 -1. + <_> + 3 1 1 5 2. + <_> + 4 6 1 5 2. + <_> + + <_> + 13 7 2 1 -1. + <_> + 13 7 1 1 2. + <_> + + <_> + 4 13 4 6 -1. + <_> + 4 15 4 2 3. + <_> + + <_> + 13 7 2 1 -1. + <_> + 13 7 1 1 2. + <_> + + <_> + 5 7 2 1 -1. + <_> + 6 7 1 1 2. + <_> + + <_> + 2 12 18 4 -1. + <_> + 11 12 9 2 2. + <_> + 2 14 9 2 2. + <_> + + <_> + 5 7 2 2 -1. + <_> + 5 7 1 1 2. + <_> + 6 8 1 1 2. + <_> + + <_> + 16 3 4 2 -1. + <_> + 16 4 4 1 2. + <_> + + <_> + 0 2 2 18 -1. + <_> + 0 2 1 9 2. + <_> + 1 11 1 9 2. + <_> + + <_> + 1 2 18 4 -1. + <_> + 10 2 9 2 2. + <_> + 1 4 9 2 2. + <_> + + <_> + 9 14 1 3 -1. + <_> + 9 15 1 1 3. + <_> + + <_> + 2 12 18 4 -1. + <_> + 11 12 9 2 2. + <_> + 2 14 9 2 2. + <_> + + <_> + 0 12 18 4 -1. + <_> + 0 12 9 2 2. + <_> + 9 14 9 2 2. + <_> + + <_> + 11 4 5 3 -1. + <_> + 11 5 5 1 3. + <_> + + <_> + 6 4 7 3 -1. + <_> + 6 5 7 1 3. + <_> + + <_> + 13 17 3 3 -1. + <_> + 13 18 3 1 3. + <_> + + <_> + 8 1 3 4 -1. + <_> + 9 1 1 4 3. + <_> + + <_> + 11 4 2 4 -1. + <_> + 11 4 1 4 2. + <_> + + <_> + 0 17 9 3 -1. + <_> + 3 17 3 3 3. + <_> + + <_> + 11 0 2 8 -1. + <_> + 12 0 1 4 2. + <_> + 11 4 1 4 2. + <_> + + <_> + 0 8 6 12 -1. + <_> + 0 8 3 6 2. + <_> + 3 14 3 6 2. + <_> + + <_> + 10 7 4 12 -1. + <_> + 10 13 4 6 2. + <_> + + <_> + 5 3 8 14 -1. + <_> + 5 10 8 7 2. + <_> + + <_> + 14 10 6 1 -1. + <_> + 14 10 3 1 2. + <_> + + <_> + 0 4 10 4 -1. + <_> + 0 6 10 2 2. + <_> + + <_> + 10 0 5 8 -1. + <_> + 10 4 5 4 2. + <_> + + <_> + 8 1 4 8 -1. + <_> + 8 1 2 4 2. + <_> + 10 5 2 4 2. + <_> + + <_> + 9 11 6 1 -1. + <_> + 11 11 2 1 3. + <_> + + <_> + 8 9 3 4 -1. + <_> + 9 9 1 4 3. + <_> + + <_> + 18 4 2 6 -1. + <_> + 18 6 2 2 3. + <_> + + <_> + 8 8 3 4 -1. + <_> + 9 8 1 4 3. + <_> + + <_> + 7 1 13 3 -1. + <_> + 7 2 13 1 3. + <_> + + <_> + 7 13 6 1 -1. + <_> + 9 13 2 1 3. + <_> + + <_> + 12 11 3 6 -1. + <_> + 12 13 3 2 3. + <_> + + <_> + 5 11 6 1 -1. + <_> + 7 11 2 1 3. + <_> + + <_> + 1 4 18 10 -1. + <_> + 10 4 9 5 2. + <_> + 1 9 9 5 2. + <_> + + <_> + 8 6 4 9 -1. + <_> + 8 9 4 3 3. + <_> + + <_> + 8 6 4 3 -1. + <_> + 8 7 4 1 3. + <_> + + <_> + 8 7 3 3 -1. + <_> + 9 7 1 3 3. + <_> + + <_> + 14 15 4 3 -1. + <_> + 14 16 4 1 3. + <_> + + <_> + 5 10 3 10 -1. + <_> + 6 10 1 10 3. + <_> + + <_> + 8 15 4 3 -1. + <_> + 8 16 4 1 3. + <_> + + <_> + 0 8 1 6 -1. + <_> + 0 10 1 2 3. + <_> + + <_> + 10 15 1 3 -1. + <_> + 10 16 1 1 3. + <_> + + <_> + 2 15 4 3 -1. + <_> + 2 16 4 1 3. + <_> + + <_> + 18 3 2 8 -1. + <_> + 19 3 1 4 2. + <_> + 18 7 1 4 2. + <_> + + <_> + 0 3 2 8 -1. + <_> + 0 3 1 4 2. + <_> + 1 7 1 4 2. + <_> + + <_> + 3 7 14 10 -1. + <_> + 10 7 7 5 2. + <_> + 3 12 7 5 2. + <_> + + <_> + 0 7 19 3 -1. + <_> + 0 8 19 1 3. + <_> + + <_> + 12 6 3 3 -1. + <_> + 12 7 3 1 3. + <_> + + <_> + 0 6 1 3 -1. + <_> + 0 7 1 1 3. + <_> + + <_> + 12 6 3 3 -1. + <_> + 12 7 3 1 3. + <_> + + <_> + 5 6 3 3 -1. + <_> + 5 7 3 1 3. + <_> + + <_> + 8 2 4 2 -1. + <_> + 8 3 4 1 2. + <_> + + <_> + 6 3 4 12 -1. + <_> + 8 3 2 12 2. + <_> + + <_> + 13 6 2 3 -1. + <_> + 13 7 2 1 3. + <_> + + <_> + 0 10 20 4 -1. + <_> + 0 12 20 2 2. + <_> + + <_> + 2 0 17 14 -1. + <_> + 2 7 17 7 2. + <_> + + <_> + 0 0 6 10 -1. + <_> + 0 0 3 5 2. + <_> + 3 5 3 5 2. + <_> + + <_> + 14 6 6 4 -1. + <_> + 14 6 3 4 2. + <_> + + <_> + 0 6 6 4 -1. + <_> + 3 6 3 4 2. + <_> + + <_> + 13 2 7 2 -1. + <_> + 13 3 7 1 2. + <_> + + <_> + 0 2 7 2 -1. + <_> + 0 3 7 1 2. + <_> + + <_> + 6 11 14 2 -1. + <_> + 13 11 7 1 2. + <_> + 6 12 7 1 2. + <_> + + <_> + 8 5 2 2 -1. + <_> + 8 5 1 1 2. + <_> + 9 6 1 1 2. + <_> + + <_> + 13 9 2 3 -1. + <_> + 13 9 1 3 2. + <_> + + <_> + 1 1 3 12 -1. + <_> + 2 1 1 12 3. + <_> + + <_> + 17 4 1 3 -1. + <_> + 17 5 1 1 3. + <_> + + <_> + 2 4 1 3 -1. + <_> + 2 5 1 1 3. + <_> + + <_> + 14 5 1 3 -1. + <_> + 14 6 1 1 3. + <_> + + <_> + 7 16 2 3 -1. + <_> + 7 17 2 1 3. + <_> + + <_> + 8 13 4 6 -1. + <_> + 10 13 2 3 2. + <_> + 8 16 2 3 2. + <_> + + <_> + 5 5 1 3 -1. + <_> + 5 6 1 1 3. + <_> + + <_> + 16 0 4 20 -1. + <_> + 16 0 2 20 2. + <_> + + <_> + 5 1 2 6 -1. + <_> + 5 1 1 3 2. + <_> + 6 4 1 3 2. + <_> + + <_> + 5 4 10 4 -1. + <_> + 5 6 10 2 2. + <_> + + <_> + 15 2 4 12 -1. + <_> + 15 2 2 12 2. + <_> + + <_> + 7 6 4 12 -1. + <_> + 7 12 4 6 2. + <_> + + <_> + 14 5 1 8 -1. + <_> + 14 9 1 4 2. + <_> + + <_> + 1 4 14 10 -1. + <_> + 1 4 7 5 2. + <_> + 8 9 7 5 2. + <_> + + <_> + 11 6 6 14 -1. + <_> + 14 6 3 7 2. + <_> + 11 13 3 7 2. + <_> + + <_> + 3 6 6 14 -1. + <_> + 3 6 3 7 2. + <_> + 6 13 3 7 2. + <_> + + <_> + 4 9 15 2 -1. + <_> + 9 9 5 2 3. + <_> + + <_> + 7 14 6 3 -1. + <_> + 7 15 6 1 3. + <_> + + <_> + 6 3 14 4 -1. + <_> + 13 3 7 2 2. + <_> + 6 5 7 2 2. + <_> + + <_> + 1 9 15 2 -1. + <_> + 6 9 5 2 3. + <_> + + <_> + 6 11 8 9 -1. + <_> + 6 14 8 3 3. + <_> + + <_> + 7 4 3 8 -1. + <_> + 8 4 1 8 3. + <_> + + <_> + 14 6 2 6 -1. + <_> + 14 9 2 3 2. + <_> + + <_> + 5 7 6 4 -1. + <_> + 5 7 3 2 2. + <_> + 8 9 3 2 2. + <_> + + <_> + 1 1 18 19 -1. + <_> + 7 1 6 19 3. + <_> + + <_> + 1 2 6 5 -1. + <_> + 4 2 3 5 2. + <_> + + <_> + 12 17 6 2 -1. + <_> + 12 18 6 1 2. + <_> + + <_> + 2 17 6 2 -1. + <_> + 2 18 6 1 2. + <_> + + <_> + 17 3 3 6 -1. + <_> + 17 5 3 2 3. + <_> + + <_> + 8 17 3 3 -1. + <_> + 8 18 3 1 3. + <_> + + <_> + 10 13 2 6 -1. + <_> + 10 16 2 3 2. + <_> + + <_> + 7 13 6 3 -1. + <_> + 7 14 6 1 3. + <_> + + <_> + 17 3 3 6 -1. + <_> + 17 5 3 2 3. + <_> + + <_> + 8 13 2 3 -1. + <_> + 8 14 2 1 3. + <_> + + <_> + 9 3 6 2 -1. + <_> + 11 3 2 2 3. + <_> + + <_> + 0 3 3 6 -1. + <_> + 0 5 3 2 3. + <_> + + <_> + 8 5 4 6 -1. + <_> + 8 7 4 2 3. + <_> + + <_> + 5 5 3 2 -1. + <_> + 5 6 3 1 2. + <_> + + <_> + 10 1 3 4 -1. + <_> + 11 1 1 4 3. + <_> + + <_> + 1 2 5 9 -1. + <_> + 1 5 5 3 3. + <_> + + <_> + 13 6 2 3 -1. + <_> + 13 7 2 1 3. + <_> + + <_> + 0 6 14 3 -1. + <_> + 7 6 7 3 2. + <_> + + <_> + 2 11 18 8 -1. + <_> + 2 15 18 4 2. + <_> + + <_> + 5 6 2 3 -1. + <_> + 5 7 2 1 3. + <_> + + <_> + 10 6 4 2 -1. + <_> + 12 6 2 1 2. + <_> + 10 7 2 1 2. + <_> + + <_> + 6 6 4 2 -1. + <_> + 6 6 2 1 2. + <_> + 8 7 2 1 2. + <_> + + <_> + 10 1 3 4 -1. + <_> + 11 1 1 4 3. + <_> + + <_> + 7 1 2 7 -1. + <_> + 8 1 1 7 2. + <_> + + <_> + 4 2 15 14 -1. + <_> + 4 9 15 7 2. + <_> + + <_> + 8 7 3 2 -1. + <_> + 9 7 1 2 3. + <_> + + <_> + 2 3 18 4 -1. + <_> + 11 3 9 2 2. + <_> + 2 5 9 2 2. + <_> + + <_> + 9 7 2 2 -1. + <_> + 10 7 1 2 2. + <_> + + <_> + 13 9 2 3 -1. + <_> + 13 9 1 3 2. + <_> + + <_> + 5 2 6 2 -1. + <_> + 7 2 2 2 3. + <_> + + <_> + 9 5 2 7 -1. + <_> + 9 5 1 7 2. + <_> + + <_> + 5 9 2 3 -1. + <_> + 6 9 1 3 2. + <_> + + <_> + 6 0 14 18 -1. + <_> + 6 9 14 9 2. + <_> + + <_> + 2 16 6 3 -1. + <_> + 2 17 6 1 3. + <_> + + <_> + 9 7 3 6 -1. + <_> + 10 7 1 6 3. + <_> + + <_> + 7 8 4 3 -1. + <_> + 7 9 4 1 3. + <_> + + <_> + 7 12 6 3 -1. + <_> + 7 13 6 1 3. + <_> + + <_> + 9 12 2 3 -1. + <_> + 9 13 2 1 3. + <_> + + <_> + 7 12 6 2 -1. + <_> + 9 12 2 2 3. + <_> + + <_> + 5 11 4 6 -1. + <_> + 5 14 4 3 2. + <_> + + <_> + 11 12 7 2 -1. + <_> + 11 13 7 1 2. + <_> + + <_> + 6 10 8 6 -1. + <_> + 6 10 4 3 2. + <_> + 10 13 4 3 2. + <_> + + <_> + 11 10 3 4 -1. + <_> + 11 12 3 2 2. + <_> + + <_> + 9 16 2 3 -1. + <_> + 9 17 2 1 3. + <_> + + <_> + 13 3 1 9 -1. + <_> + 13 6 1 3 3. + <_> + + <_> + 1 13 14 6 -1. + <_> + 1 15 14 2 3. + <_> + + <_> + 13 6 1 6 -1. + <_> + 13 9 1 3 2. + <_> + + <_> + 0 4 3 8 -1. + <_> + 1 4 1 8 3. + <_> + + <_> + 18 0 2 18 -1. + <_> + 18 0 1 18 2. + <_> + + <_> + 2 3 6 2 -1. + <_> + 2 4 6 1 2. + <_> + + <_> + 9 0 8 6 -1. + <_> + 9 2 8 2 3. + <_> + + <_> + 6 6 1 6 -1. + <_> + 6 9 1 3 2. + <_> + + <_> + 14 8 6 3 -1. + <_> + 14 9 6 1 3. + <_> + + <_> + 0 0 2 18 -1. + <_> + 1 0 1 18 2. + <_> + + <_> + 1 18 18 2 -1. + <_> + 10 18 9 1 2. + <_> + 1 19 9 1 2. + <_> + + <_> + 3 15 2 2 -1. + <_> + 3 16 2 1 2. + <_> + + <_> + 8 14 5 3 -1. + <_> + 8 15 5 1 3. + <_> + + <_> + 8 14 2 3 -1. + <_> + 8 15 2 1 3. + <_> + + <_> + 12 3 3 3 -1. + <_> + 13 3 1 3 3. + <_> + + <_> + 7 5 6 2 -1. + <_> + 9 5 2 2 3. + <_> + + <_> + 15 5 5 2 -1. + <_> + 15 6 5 1 2. + <_> + + <_> + 0 5 5 2 -1. + <_> + 0 6 5 1 2. + <_> + + <_> + 17 14 1 6 -1. + <_> + 17 17 1 3 2. + <_> + + <_> + 2 9 9 3 -1. + <_> + 5 9 3 3 3. + <_> + + <_> + 12 3 3 3 -1. + <_> + 13 3 1 3 3. + <_> + + <_> + 0 0 4 18 -1. + <_> + 2 0 2 18 2. + <_> + + <_> + 17 6 1 3 -1. + <_> + 17 7 1 1 3. + <_> + + <_> + 2 14 1 6 -1. + <_> + 2 17 1 3 2. + <_> + + <_> + 19 8 1 2 -1. + <_> + 19 9 1 1 2. + <_> + + <_> + 5 3 3 3 -1. + <_> + 6 3 1 3 3. + <_> + + <_> + 9 16 2 3 -1. + <_> + 9 17 2 1 3. + <_> + + <_> + 2 6 1 3 -1. + <_> + 2 7 1 1 3. + <_> + + <_> + 12 4 8 2 -1. + <_> + 16 4 4 1 2. + <_> + 12 5 4 1 2. + <_> + + <_> + 0 4 8 2 -1. + <_> + 0 4 4 1 2. + <_> + 4 5 4 1 2. + <_> + + <_> + 2 16 18 4 -1. + <_> + 2 18 18 2 2. + <_> + + <_> + 7 15 2 4 -1. + <_> + 7 17 2 2 2. + <_> + + <_> + 4 0 14 3 -1. + <_> + 4 1 14 1 3. + <_> + + <_> + 0 0 4 20 -1. + <_> + 2 0 2 20 2. + <_> + + <_> + 12 4 4 8 -1. + <_> + 14 4 2 4 2. + <_> + 12 8 2 4 2. + <_> + + <_> + 6 7 2 2 -1. + <_> + 6 7 1 1 2. + <_> + 7 8 1 1 2. + <_> + + <_> + 10 6 2 3 -1. + <_> + 10 7 2 1 3. + <_> + + <_> + 8 7 3 2 -1. + <_> + 8 8 3 1 2. + <_> + + <_> + 8 2 6 12 -1. + <_> + 8 8 6 6 2. + <_> + + <_> + 4 0 11 12 -1. + <_> + 4 4 11 4 3. + <_> + + <_> + 14 9 6 11 -1. + <_> + 16 9 2 11 3. + <_> + + <_> + 0 14 4 3 -1. + <_> + 0 15 4 1 3. + <_> + + <_> + 9 10 2 3 -1. + <_> + 9 11 2 1 3. + <_> + + <_> + 5 11 3 2 -1. + <_> + 5 12 3 1 2. + <_> + + <_> + 9 15 3 3 -1. + <_> + 10 15 1 3 3. + <_> + + <_> + 8 8 3 4 -1. + <_> + 9 8 1 4 3. + <_> + + <_> + 9 15 3 3 -1. + <_> + 10 15 1 3 3. + <_> + + <_> + 7 7 3 2 -1. + <_> + 8 7 1 2 3. + <_> + + <_> + 2 10 16 4 -1. + <_> + 10 10 8 2 2. + <_> + 2 12 8 2 2. + <_> + + <_> + 2 3 4 17 -1. + <_> + 4 3 2 17 2. + <_> + + <_> + 15 13 2 7 -1. + <_> + 15 13 1 7 2. + <_> + + <_> + 2 2 6 1 -1. + <_> + 5 2 3 1 2. + <_> + + <_> + 5 2 12 4 -1. + <_> + 9 2 4 4 3. + <_> + + <_> + 6 0 8 12 -1. + <_> + 6 0 4 6 2. + <_> + 10 6 4 6 2. + <_> + + <_> + 13 7 2 2 -1. + <_> + 14 7 1 1 2. + <_> + 13 8 1 1 2. + <_> + + <_> + 0 12 20 6 -1. + <_> + 0 14 20 2 3. + <_> + + <_> + 14 7 2 3 -1. + <_> + 14 7 1 3 2. + <_> + + <_> + 0 8 9 12 -1. + <_> + 3 8 3 12 3. + <_> + + <_> + 3 0 16 2 -1. + <_> + 3 0 8 2 2. + <_> + + <_> + 6 15 3 3 -1. + <_> + 6 16 3 1 3. + <_> + + <_> + 8 15 6 3 -1. + <_> + 8 16 6 1 3. + <_> + + <_> + 0 10 1 6 -1. + <_> + 0 12 1 2 3. + <_> + + <_> + 10 9 4 3 -1. + <_> + 10 10 4 1 3. + <_> + + <_> + 9 15 2 3 -1. + <_> + 9 16 2 1 3. + <_> + + <_> + 5 7 10 1 -1. + <_> + 5 7 5 1 2. + <_> + + <_> + 4 0 12 19 -1. + <_> + 10 0 6 19 2. + <_> + + <_> + 0 6 20 6 -1. + <_> + 10 6 10 3 2. + <_> + 0 9 10 3 2. + <_> + + <_> + 3 6 2 2 -1. + <_> + 3 6 1 1 2. + <_> + 4 7 1 1 2. + <_> + + <_> + 15 6 2 2 -1. + <_> + 16 6 1 1 2. + <_> + 15 7 1 1 2. + <_> + + <_> + 3 6 2 2 -1. + <_> + 3 6 1 1 2. + <_> + 4 7 1 1 2. + <_> + + <_> + 14 4 1 12 -1. + <_> + 14 10 1 6 2. + <_> + + <_> + 2 5 16 10 -1. + <_> + 2 5 8 5 2. + <_> + 10 10 8 5 2. + <_> + + <_> + 9 17 3 2 -1. + <_> + 10 17 1 2 3. + <_> + + <_> + 1 4 2 2 -1. + <_> + 1 5 2 1 2. + <_> + + <_> + 5 0 15 5 -1. + <_> + 10 0 5 5 3. + <_> + + <_> + 0 0 15 5 -1. + <_> + 5 0 5 5 3. + <_> + + <_> + 11 2 2 17 -1. + <_> + 11 2 1 17 2. + <_> + + <_> + 7 2 2 17 -1. + <_> + 8 2 1 17 2. + <_> + + <_> + 15 11 2 9 -1. + <_> + 15 11 1 9 2. + <_> + + <_> + 3 11 2 9 -1. + <_> + 4 11 1 9 2. + <_> + + <_> + 5 16 14 4 -1. + <_> + 5 16 7 4 2. + <_> + + <_> + 1 4 18 1 -1. + <_> + 7 4 6 1 3. + <_> + + <_> + 13 7 6 4 -1. + <_> + 16 7 3 2 2. + <_> + 13 9 3 2 2. + <_> + + <_> + 9 8 2 12 -1. + <_> + 9 12 2 4 3. + <_> + + <_> + 12 1 6 6 -1. + <_> + 12 3 6 2 3. + <_> + + <_> + 5 2 6 6 -1. + <_> + 5 2 3 3 2. + <_> + 8 5 3 3 2. + <_> + + <_> + 9 16 6 4 -1. + <_> + 12 16 3 2 2. + <_> + 9 18 3 2 2. + <_> + + <_> + 1 2 18 3 -1. + <_> + 7 2 6 3 3. + <_> + + <_> + 7 4 9 10 -1. + <_> + 7 9 9 5 2. + <_> + + <_> + 5 9 4 4 -1. + <_> + 7 9 2 4 2. + <_> + + <_> + 11 10 3 6 -1. + <_> + 11 13 3 3 2. + <_> + + <_> + 7 11 5 3 -1. + <_> + 7 12 5 1 3. + <_> + + <_> + 7 11 6 6 -1. + <_> + 10 11 3 3 2. + <_> + 7 14 3 3 2. + <_> + + <_> + 0 0 10 9 -1. + <_> + 0 3 10 3 3. + <_> + + <_> + 13 14 1 6 -1. + <_> + 13 16 1 2 3. + <_> + + <_> + 0 2 3 6 -1. + <_> + 0 4 3 2 3. + <_> + + <_> + 8 14 4 3 -1. + <_> + 8 15 4 1 3. + <_> + + <_> + 6 14 1 6 -1. + <_> + 6 16 1 2 3. + <_> + + <_> + 9 15 2 3 -1. + <_> + 9 16 2 1 3. + <_> + + <_> + 6 4 3 3 -1. + <_> + 7 4 1 3 3. + <_> + + <_> + 9 0 11 3 -1. + <_> + 9 1 11 1 3. + <_> + + <_> + 0 6 20 3 -1. + <_> + 0 7 20 1 3. + <_> + + <_> + 10 1 1 2 -1. + <_> + 10 2 1 1 2. + <_> + + <_> + 9 6 2 6 -1. + <_> + 10 6 1 6 2. + <_> + + <_> + 5 8 12 1 -1. + <_> + 9 8 4 1 3. + <_> + + <_> + 3 8 12 1 -1. + <_> + 7 8 4 1 3. + <_> + + <_> + 9 7 3 5 -1. + <_> + 10 7 1 5 3. + <_> + + <_> + 3 9 6 2 -1. + <_> + 6 9 3 2 2. + <_> + + <_> + 12 9 3 3 -1. + <_> + 12 10 3 1 3. + <_> + + <_> + 7 0 6 1 -1. + <_> + 9 0 2 1 3. + <_> + + <_> + 12 9 3 3 -1. + <_> + 12 10 3 1 3. + <_> + + <_> + 7 10 2 1 -1. + <_> + 8 10 1 1 2. + <_> + + <_> + 6 4 9 13 -1. + <_> + 9 4 3 13 3. + <_> + + <_> + 6 8 4 2 -1. + <_> + 6 9 4 1 2. + <_> + + <_> + 16 2 4 6 -1. + <_> + 16 2 2 6 2. + <_> + + <_> + 0 17 6 3 -1. + <_> + 0 18 6 1 3. + <_> + + <_> + 10 10 3 10 -1. + <_> + 10 15 3 5 2. + <_> + + <_> + 8 7 3 5 -1. + <_> + 9 7 1 5 3. + <_> + + <_> + 10 4 4 3 -1. + <_> + 10 4 2 3 2. + <_> + + <_> + 8 4 3 8 -1. + <_> + 9 4 1 8 3. + <_> + + <_> + 6 6 9 13 -1. + <_> + 9 6 3 13 3. + <_> + + <_> + 6 0 8 12 -1. + <_> + 6 0 4 6 2. + <_> + 10 6 4 6 2. + <_> + + <_> + 14 2 6 8 -1. + <_> + 16 2 2 8 3. + <_> + + <_> + 6 0 3 6 -1. + <_> + 7 0 1 6 3. + <_> + + <_> + 14 2 6 8 -1. + <_> + 16 2 2 8 3. + <_> + + <_> + 0 5 6 6 -1. + <_> + 0 8 6 3 2. + <_> + + <_> + 9 12 6 2 -1. + <_> + 12 12 3 1 2. + <_> + 9 13 3 1 2. + <_> + + <_> + 8 17 3 2 -1. + <_> + 9 17 1 2 3. + <_> + + <_> + 11 6 2 2 -1. + <_> + 12 6 1 1 2. + <_> + 11 7 1 1 2. + <_> + + <_> + 1 9 18 2 -1. + <_> + 7 9 6 2 3. + <_> + + <_> + 11 6 2 2 -1. + <_> + 12 6 1 1 2. + <_> + 11 7 1 1 2. + <_> + + <_> + 3 4 12 8 -1. + <_> + 7 4 4 8 3. + <_> + + <_> + 13 11 5 3 -1. + <_> + 13 12 5 1 3. + <_> + + <_> + 9 10 2 3 -1. + <_> + 9 11 2 1 3. + <_> + + <_> + 14 7 2 3 -1. + <_> + 14 7 1 3 2. + <_> + + <_> + 5 4 1 3 -1. + <_> + 5 5 1 1 3. + <_> + + <_> + 13 4 2 3 -1. + <_> + 13 5 2 1 3. + <_> + + <_> + 5 4 2 3 -1. + <_> + 5 5 2 1 3. + <_> + + <_> + 9 8 2 3 -1. + <_> + 9 9 2 1 3. + <_> + + <_> + 8 9 2 2 -1. + <_> + 8 10 2 1 2. + <_> + + <_> + 15 14 1 4 -1. + <_> + 15 16 1 2 2. + <_> + + <_> + 3 12 2 2 -1. + <_> + 3 13 2 1 2. + <_> + + <_> + 12 15 2 2 -1. + <_> + 13 15 1 1 2. + <_> + 12 16 1 1 2. + <_> + + <_> + 9 13 2 2 -1. + <_> + 9 14 2 1 2. + <_> + + <_> + 4 11 14 9 -1. + <_> + 4 14 14 3 3. + <_> + + <_> + 7 13 4 3 -1. + <_> + 7 14 4 1 3. + <_> + + <_> + 15 14 1 4 -1. + <_> + 15 16 1 2 2. + <_> + + <_> + 4 14 1 4 -1. + <_> + 4 16 1 2 2. + <_> + + <_> + 14 0 6 13 -1. + <_> + 16 0 2 13 3. + <_> + + <_> + 4 1 2 12 -1. + <_> + 4 1 1 6 2. + <_> + 5 7 1 6 2. + <_> + + <_> + 11 14 6 6 -1. + <_> + 14 14 3 3 2. + <_> + 11 17 3 3 2. + <_> + + <_> + 3 14 6 6 -1. + <_> + 3 14 3 3 2. + <_> + 6 17 3 3 2. + <_> + + <_> + 14 17 3 2 -1. + <_> + 14 18 3 1 2. + <_> + + <_> + 3 17 3 2 -1. + <_> + 3 18 3 1 2. + <_> + + <_> + 14 0 6 13 -1. + <_> + 16 0 2 13 3. + <_> + + <_> + 0 0 6 13 -1. + <_> + 2 0 2 13 3. + <_> + + <_> + 10 10 7 6 -1. + <_> + 10 12 7 2 3. + <_> + + <_> + 6 15 2 2 -1. + <_> + 6 15 1 1 2. + <_> + 7 16 1 1 2. + <_> + + <_> + 6 11 8 6 -1. + <_> + 10 11 4 3 2. + <_> + 6 14 4 3 2. + <_> + + <_> + 7 6 2 2 -1. + <_> + 7 6 1 1 2. + <_> + 8 7 1 1 2. + <_> + + <_> + 2 2 16 6 -1. + <_> + 10 2 8 3 2. + <_> + 2 5 8 3 2. + <_> + + <_> + 5 4 3 3 -1. + <_> + 5 5 3 1 3. + <_> + + <_> + 11 7 3 10 -1. + <_> + 11 12 3 5 2. + <_> + + <_> + 6 7 3 10 -1. + <_> + 6 12 3 5 2. + <_> + + <_> + 10 7 3 2 -1. + <_> + 11 7 1 2 3. + <_> + + <_> + 8 12 4 2 -1. + <_> + 8 13 4 1 2. + <_> + + <_> + 10 1 1 3 -1. + <_> + 10 2 1 1 3. + <_> + + <_> + 1 2 4 18 -1. + <_> + 1 2 2 9 2. + <_> + 3 11 2 9 2. + <_> + + <_> + 12 4 4 12 -1. + <_> + 12 10 4 6 2. + <_> + + <_> + 0 0 1 6 -1. + <_> + 0 2 1 2 3. + <_> + + <_> + 9 11 2 3 -1. + <_> + 9 12 2 1 3. + <_> + + <_> + 8 7 4 3 -1. + <_> + 8 8 4 1 3. + <_> + + <_> + 10 7 3 2 -1. + <_> + 11 7 1 2 3. + <_> + + <_> + 7 7 3 2 -1. + <_> + 8 7 1 2 3. + <_> + + <_> + 9 4 6 1 -1. + <_> + 11 4 2 1 3. + <_> + + <_> + 8 7 2 3 -1. + <_> + 9 7 1 3 2. + <_> + + <_> + 12 7 8 6 -1. + <_> + 16 7 4 3 2. + <_> + 12 10 4 3 2. + <_> + + <_> + 0 7 8 6 -1. + <_> + 0 7 4 3 2. + <_> + 4 10 4 3 2. + <_> + + <_> + 18 2 2 10 -1. + <_> + 19 2 1 5 2. + <_> + 18 7 1 5 2. + <_> + + <_> + 0 2 6 4 -1. + <_> + 3 2 3 4 2. + <_> + + <_> + 9 4 6 1 -1. + <_> + 11 4 2 1 3. + <_> + + <_> + 7 15 2 2 -1. + <_> + 7 15 1 1 2. + <_> + 8 16 1 1 2. + <_> + + <_> + 11 13 1 6 -1. + <_> + 11 16 1 3 2. + <_> + + <_> + 8 13 1 6 -1. + <_> + 8 16 1 3 2. + <_> + + <_> + 14 3 2 1 -1. + <_> + 14 3 1 1 2. + <_> + + <_> + 8 15 2 3 -1. + <_> + 8 16 2 1 3. + <_> + + <_> + 12 15 7 4 -1. + <_> + 12 17 7 2 2. + <_> + + <_> + 4 14 12 3 -1. + <_> + 4 15 12 1 3. + <_> + + <_> + 10 3 3 2 -1. + <_> + 11 3 1 2 3. + <_> + + <_> + 4 12 2 2 -1. + <_> + 4 13 2 1 2. + <_> + + <_> + 10 11 4 6 -1. + <_> + 10 14 4 3 2. + <_> + + <_> + 7 13 2 2 -1. + <_> + 7 13 1 1 2. + <_> + 8 14 1 1 2. + <_> + + <_> + 4 11 14 4 -1. + <_> + 11 11 7 2 2. + <_> + 4 13 7 2 2. + <_> + + <_> + 1 18 18 2 -1. + <_> + 7 18 6 2 3. + <_> + + <_> + 11 18 2 2 -1. + <_> + 12 18 1 1 2. + <_> + 11 19 1 1 2. + <_> + + <_> + 7 18 2 2 -1. + <_> + 7 18 1 1 2. + <_> + 8 19 1 1 2. + <_> + + <_> + 12 18 8 2 -1. + <_> + 12 19 8 1 2. + <_> + + <_> + 7 14 6 2 -1. + <_> + 7 15 6 1 2. + <_> + + <_> + 8 12 4 8 -1. + <_> + 10 12 2 4 2. + <_> + 8 16 2 4 2. + <_> + + <_> + 4 9 3 3 -1. + <_> + 4 10 3 1 3. + <_> + + <_> + 7 10 6 2 -1. + <_> + 9 10 2 2 3. + <_> + + <_> + 5 0 4 15 -1. + <_> + 7 0 2 15 2. + <_> + + <_> + 8 6 12 14 -1. + <_> + 12 6 4 14 3. + <_> + + <_> + 5 16 3 3 -1. + <_> + 5 17 3 1 3. + <_> + + <_> + 8 1 12 19 -1. + <_> + 12 1 4 19 3. + <_> + + <_> + 3 0 3 2 -1. + <_> + 3 1 3 1 2. + <_> + + <_> + 10 12 4 5 -1. + <_> + 10 12 2 5 2. + <_> + + <_> + 6 12 4 5 -1. + <_> + 8 12 2 5 2. + <_> + + <_> + 11 11 2 2 -1. + <_> + 12 11 1 1 2. + <_> + 11 12 1 1 2. + <_> + + <_> + 0 2 3 6 -1. + <_> + 0 4 3 2 3. + <_> + + <_> + 11 11 2 2 -1. + <_> + 12 11 1 1 2. + <_> + 11 12 1 1 2. + <_> + + <_> + 7 6 4 10 -1. + <_> + 7 11 4 5 2. + <_> + + <_> + 11 11 2 2 -1. + <_> + 12 11 1 1 2. + <_> + 11 12 1 1 2. + <_> + + <_> + 2 13 5 2 -1. + <_> + 2 14 5 1 2. + <_> + + <_> + 11 11 2 2 -1. + <_> + 12 11 1 1 2. + <_> + 11 12 1 1 2. + <_> + + <_> + 7 11 2 2 -1. + <_> + 7 11 1 1 2. + <_> + 8 12 1 1 2. + <_> + + <_> + 14 13 3 3 -1. + <_> + 14 14 3 1 3. + <_> + + <_> + 3 13 3 3 -1. + <_> + 3 14 3 1 3. + <_> + + <_> + 9 14 2 3 -1. + <_> + 9 15 2 1 3. + <_> + + <_> + 8 7 3 3 -1. + <_> + 8 8 3 1 3. + <_> + + <_> + 13 5 3 3 -1. + <_> + 13 6 3 1 3. + <_> + + <_> + 0 9 5 3 -1. + <_> + 0 10 5 1 3. + <_> + + <_> + 13 5 3 3 -1. + <_> + 13 6 3 1 3. + <_> + + <_> + 9 12 2 8 -1. + <_> + 9 12 1 4 2. + <_> + 10 16 1 4 2. + <_> + + <_> + 11 7 2 2 -1. + <_> + 12 7 1 1 2. + <_> + 11 8 1 1 2. + <_> + + <_> + 0 16 6 4 -1. + <_> + 3 16 3 4 2. + <_> + + <_> + 10 6 2 3 -1. + <_> + 10 7 2 1 3. + <_> + + <_> + 9 5 2 6 -1. + <_> + 9 7 2 2 3. + <_> + + <_> + 12 15 8 4 -1. + <_> + 12 15 4 4 2. + <_> + + <_> + 0 14 8 6 -1. + <_> + 4 14 4 6 2. + <_> + + <_> + 9 0 3 2 -1. + <_> + 10 0 1 2 3. + <_> + + <_> + 4 15 4 2 -1. + <_> + 6 15 2 2 2. + <_> + + <_> + 12 7 3 13 -1. + <_> + 13 7 1 13 3. + <_> + + <_> + 5 7 3 13 -1. + <_> + 6 7 1 13 3. + <_> + + <_> + 9 6 3 9 -1. + <_> + 9 9 3 3 3. + <_> + + <_> + 4 4 7 12 -1. + <_> + 4 10 7 6 2. + <_> + + <_> + 12 12 2 2 -1. + <_> + 13 12 1 1 2. + <_> + 12 13 1 1 2. + <_> + + <_> + 6 12 2 2 -1. + <_> + 6 12 1 1 2. + <_> + 7 13 1 1 2. + <_> + + <_> + 8 9 4 2 -1. + <_> + 10 9 2 1 2. + <_> + 8 10 2 1 2. + <_> + + <_> + 3 6 2 2 -1. + <_> + 3 6 1 1 2. + <_> + 4 7 1 1 2. + <_> + + <_> + 16 6 3 2 -1. + <_> + 16 7 3 1 2. + <_> + + <_> + 0 7 19 4 -1. + <_> + 0 9 19 2 2. + <_> + + <_> + 10 2 10 1 -1. + <_> + 10 2 5 1 2. + <_> + + <_> + 9 4 2 12 -1. + <_> + 9 10 2 6 2. + <_> + + <_> + 12 18 4 1 -1. + <_> + 12 18 2 1 2. + <_> + + <_> + 1 7 6 4 -1. + <_> + 1 7 3 2 2. + <_> + 4 9 3 2 2. + <_> + + <_> + 12 0 6 13 -1. + <_> + 14 0 2 13 3. + <_> + + <_> + 2 0 6 13 -1. + <_> + 4 0 2 13 3. + <_> + + <_> + 10 5 8 8 -1. + <_> + 10 9 8 4 2. + <_> + + <_> + 8 3 2 5 -1. + <_> + 9 3 1 5 2. + <_> + + <_> + 8 4 9 1 -1. + <_> + 11 4 3 1 3. + <_> + + <_> + 3 4 9 1 -1. + <_> + 6 4 3 1 3. + <_> + + <_> + 1 0 18 10 -1. + <_> + 7 0 6 10 3. + <_> + + <_> + 7 17 5 3 -1. + <_> + 7 18 5 1 3. + <_> + + <_> + 7 11 6 1 -1. + <_> + 9 11 2 1 3. + <_> + + <_> + 2 2 3 2 -1. + <_> + 2 3 3 1 2. + <_> + + <_> + 8 12 4 2 -1. + <_> + 8 13 4 1 2. + <_> + + <_> + 6 10 3 6 -1. + <_> + 6 13 3 3 2. + <_> + + <_> + 11 4 2 4 -1. + <_> + 11 4 1 4 2. + <_> + + <_> + 7 4 2 4 -1. + <_> + 8 4 1 4 2. + <_> + + <_> + 9 6 2 4 -1. + <_> + 9 6 1 4 2. + <_> + + <_> + 6 13 8 3 -1. + <_> + 6 14 8 1 3. + <_> + + <_> + 9 15 3 4 -1. + <_> + 10 15 1 4 3. + <_> + + <_> + 9 2 2 17 -1. + <_> + 10 2 1 17 2. + <_> + + <_> + 7 0 6 1 -1. + <_> + 9 0 2 1 3. + <_> + + <_> + 8 15 3 4 -1. + <_> + 9 15 1 4 3. + <_> + + <_> + 7 13 7 3 -1. + <_> + 7 14 7 1 3. + <_> + + <_> + 8 16 3 3 -1. + <_> + 9 16 1 3 3. + <_> + + <_> + 6 2 8 10 -1. + <_> + 6 7 8 5 2. + <_> + + <_> + 2 5 8 8 -1. + <_> + 2 9 8 4 2. + <_> + + <_> + 14 16 2 2 -1. + <_> + 14 17 2 1 2. + <_> + + <_> + 4 16 2 2 -1. + <_> + 4 17 2 1 2. + <_> + + <_> + 10 11 4 6 -1. + <_> + 10 14 4 3 2. + <_> + + <_> + 6 11 4 6 -1. + <_> + 6 14 4 3 2. + <_> + + <_> + 10 14 1 3 -1. + <_> + 10 15 1 1 3. + <_> + + <_> + 8 14 4 3 -1. + <_> + 8 15 4 1 3. + <_> + + <_> + 10 0 4 6 -1. + <_> + 12 0 2 3 2. + <_> + 10 3 2 3 2. + <_> + + <_> + 0 3 20 2 -1. + <_> + 0 4 20 1 2. + <_> + + <_> + 12 0 8 2 -1. + <_> + 16 0 4 1 2. + <_> + 12 1 4 1 2. + <_> + + <_> + 2 12 10 8 -1. + <_> + 2 16 10 4 2. + <_> + + <_> + 17 7 2 10 -1. + <_> + 18 7 1 5 2. + <_> + 17 12 1 5 2. + <_> + + <_> + 1 7 2 10 -1. + <_> + 1 7 1 5 2. + <_> + 2 12 1 5 2. + <_> + + <_> + 15 10 3 6 -1. + <_> + 15 12 3 2 3. + <_> + + <_> + 4 4 6 2 -1. + <_> + 6 4 2 2 3. + <_> + + <_> + 0 5 20 6 -1. + <_> + 0 7 20 2 3. + <_> + + <_> + 0 0 8 2 -1. + <_> + 0 0 4 1 2. + <_> + 4 1 4 1 2. + <_> + + <_> + 1 0 18 4 -1. + <_> + 7 0 6 4 3. + <_> + + <_> + 1 13 6 2 -1. + <_> + 1 14 6 1 2. + <_> + + <_> + 10 8 3 4 -1. + <_> + 11 8 1 4 3. + <_> + + <_> + 6 1 6 1 -1. + <_> + 8 1 2 1 3. + <_> + + <_> + 8 14 4 3 -1. + <_> + 8 15 4 1 3. + <_> + + <_> + 1 6 18 2 -1. + <_> + 10 6 9 2 2. + <_> + + <_> + 15 11 1 2 -1. + <_> + 15 12 1 1 2. + <_> + + <_> + 6 5 1 2 -1. + <_> + 6 6 1 1 2. + <_> + + <_> + 13 4 1 3 -1. + <_> + 13 5 1 1 3. + <_> + + <_> + 2 15 1 2 -1. + <_> + 2 16 1 1 2. + <_> + + <_> + 12 4 4 3 -1. + <_> + 12 5 4 1 3. + <_> + + <_> + 0 0 7 3 -1. + <_> + 0 1 7 1 3. + <_> + + <_> + 9 12 6 2 -1. + <_> + 9 12 3 2 2. + <_> + + <_> + 5 4 2 3 -1. + <_> + 5 5 2 1 3. + <_> + + <_> + 18 4 2 3 -1. + <_> + 18 5 2 1 3. + <_> + + <_> + 3 0 8 6 -1. + <_> + 3 2 8 2 3. + <_> + + <_> + 0 2 20 6 -1. + <_> + 10 2 10 3 2. + <_> + 0 5 10 3 2. + <_> + + <_> + 4 7 2 4 -1. + <_> + 5 7 1 4 2. + <_> + + <_> + 3 10 15 2 -1. + <_> + 8 10 5 2 3. + <_> + + <_> + 3 0 12 11 -1. + <_> + 9 0 6 11 2. + <_> + + <_> + 13 0 2 6 -1. + <_> + 13 0 1 6 2. + <_> + + <_> + 0 19 2 1 -1. + <_> + 1 19 1 1 2. + <_> + + <_> + 16 10 4 10 -1. + <_> + 18 10 2 5 2. + <_> + 16 15 2 5 2. + <_> + + <_> + 4 8 10 3 -1. + <_> + 4 9 10 1 3. + <_> + + <_> + 14 12 3 3 -1. + <_> + 14 13 3 1 3. + <_> + + <_> + 0 10 4 10 -1. + <_> + 0 10 2 5 2. + <_> + 2 15 2 5 2. + <_> + + <_> + 18 3 2 6 -1. + <_> + 18 5 2 2 3. + <_> + + <_> + 6 6 1 3 -1. + <_> + 6 7 1 1 3. + <_> + + <_> + 7 7 7 2 -1. + <_> + 7 8 7 1 2. + <_> + + <_> + 0 3 2 6 -1. + <_> + 0 5 2 2 3. + <_> + + <_> + 11 1 3 1 -1. + <_> + 12 1 1 1 3. + <_> + + <_> + 5 0 2 6 -1. + <_> + 6 0 1 6 2. + <_> + + <_> + 1 1 18 14 -1. + <_> + 7 1 6 14 3. + <_> + + <_> + 4 6 8 3 -1. + <_> + 8 6 4 3 2. + <_> + + <_> + 9 12 6 2 -1. + <_> + 9 12 3 2 2. + <_> + + <_> + 5 12 6 2 -1. + <_> + 8 12 3 2 2. + <_> + + <_> + 10 7 3 5 -1. + <_> + 11 7 1 5 3. + <_> + + <_> + 7 7 3 5 -1. + <_> + 8 7 1 5 3. + <_> + + <_> + 13 0 3 10 -1. + <_> + 14 0 1 10 3. + <_> + + <_> + 4 11 3 2 -1. + <_> + 4 12 3 1 2. + <_> + + <_> + 17 3 3 6 -1. + <_> + 18 3 1 6 3. + <_> + + <_> + 1 8 18 10 -1. + <_> + 1 13 18 5 2. + <_> + + <_> + 13 0 3 10 -1. + <_> + 14 0 1 10 3. + <_> + + <_> + 9 14 2 3 -1. + <_> + 9 15 2 1 3. + <_> + + <_> + 16 3 3 7 -1. + <_> + 17 3 1 7 3. + <_> + + <_> + 4 0 3 10 -1. + <_> + 5 0 1 10 3. + <_> + + <_> + 16 3 3 7 -1. + <_> + 17 3 1 7 3. + <_> + + <_> + 0 9 1 2 -1. + <_> + 0 10 1 1 2. + <_> + + <_> + 18 1 2 10 -1. + <_> + 18 1 1 10 2. + <_> + + <_> + 0 1 2 10 -1. + <_> + 1 1 1 10 2. + <_> + + <_> + 10 16 3 4 -1. + <_> + 11 16 1 4 3. + <_> + + <_> + 2 8 3 3 -1. + <_> + 3 8 1 3 3. + <_> + + <_> + 11 0 2 6 -1. + <_> + 12 0 1 3 2. + <_> + 11 3 1 3 2. + <_> + + <_> + 7 0 2 6 -1. + <_> + 7 0 1 3 2. + <_> + 8 3 1 3 2. + <_> + + <_> + 16 3 3 7 -1. + <_> + 17 3 1 7 3. + <_> + + <_> + 1 3 3 7 -1. + <_> + 2 3 1 7 3. + <_> + + <_> + 14 1 6 16 -1. + <_> + 16 1 2 16 3. + <_> + + <_> + 0 1 6 16 -1. + <_> + 2 1 2 16 3. + <_> + + <_> + 2 0 16 8 -1. + <_> + 10 0 8 4 2. + <_> + 2 4 8 4 2. + <_> + + <_> + 6 8 5 3 -1. + <_> + 6 9 5 1 3. + <_> + + <_> + 9 7 3 3 -1. + <_> + 10 7 1 3 3. + <_> + + <_> + 8 8 4 3 -1. + <_> + 8 9 4 1 3. + <_> + + <_> + 9 6 2 4 -1. + <_> + 9 6 1 4 2. + <_> + + <_> + 0 7 15 1 -1. + <_> + 5 7 5 1 3. + <_> + + <_> + 8 2 7 9 -1. + <_> + 8 5 7 3 3. + <_> + + <_> + 1 7 16 4 -1. + <_> + 1 7 8 2 2. + <_> + 9 9 8 2 2. + <_> + + <_> + 6 12 8 2 -1. + <_> + 6 13 8 1 2. + <_> + + <_> + 8 11 3 3 -1. + <_> + 8 12 3 1 3. + <_> + + <_> + 4 5 14 10 -1. + <_> + 11 5 7 5 2. + <_> + 4 10 7 5 2. + <_> + + <_> + 4 12 3 2 -1. + <_> + 4 13 3 1 2. + <_> + + <_> + 9 11 6 1 -1. + <_> + 11 11 2 1 3. + <_> + + <_> + 4 9 7 6 -1. + <_> + 4 11 7 2 3. + <_> + + <_> + 7 10 6 3 -1. + <_> + 7 11 6 1 3. + <_> + + <_> + 9 11 2 2 -1. + <_> + 9 12 2 1 2. + <_> + + <_> + 0 5 20 6 -1. + <_> + 0 7 20 2 3. + <_> + + <_> + 6 4 6 1 -1. + <_> + 8 4 2 1 3. + <_> + + <_> + 9 11 6 1 -1. + <_> + 11 11 2 1 3. + <_> + + <_> + 5 11 6 1 -1. + <_> + 7 11 2 1 3. + <_> + + <_> + 10 16 3 4 -1. + <_> + 11 16 1 4 3. + <_> + + <_> + 8 7 3 3 -1. + <_> + 9 7 1 3 3. + <_> + + <_> + 2 12 16 8 -1. + <_> + 2 16 16 4 2. + <_> + + <_> + 0 15 15 2 -1. + <_> + 0 16 15 1 2. + <_> + + <_> + 15 4 5 6 -1. + <_> + 15 6 5 2 3. + <_> + + <_> + 9 5 2 4 -1. + <_> + 10 5 1 4 2. + <_> + + <_> + 8 10 9 6 -1. + <_> + 8 12 9 2 3. + <_> + + <_> + 2 19 15 1 -1. + <_> + 7 19 5 1 3. + <_> + + <_> + 10 16 3 4 -1. + <_> + 11 16 1 4 3. + <_> + + <_> + 0 15 20 4 -1. + <_> + 0 17 20 2 2. + <_> + + <_> + 10 16 3 4 -1. + <_> + 11 16 1 4 3. + <_> + + <_> + 7 16 3 4 -1. + <_> + 8 16 1 4 3. + <_> + + <_> + 9 16 3 3 -1. + <_> + 9 17 3 1 3. + <_> + + <_> + 8 11 4 6 -1. + <_> + 8 14 4 3 2. + <_> + + <_> + 9 6 2 12 -1. + <_> + 9 10 2 4 3. + <_> + + <_> + 8 17 4 3 -1. + <_> + 8 18 4 1 3. + <_> + + <_> + 9 18 8 2 -1. + <_> + 13 18 4 1 2. + <_> + 9 19 4 1 2. + <_> + + <_> + 1 18 8 2 -1. + <_> + 1 19 8 1 2. + <_> + + <_> + 13 5 6 15 -1. + <_> + 15 5 2 15 3. + <_> + + <_> + 9 8 2 2 -1. + <_> + 9 9 2 1 2. + <_> + + <_> + 9 5 2 3 -1. + <_> + 9 5 1 3 2. + <_> + + <_> + 1 5 6 15 -1. + <_> + 3 5 2 15 3. + <_> + + <_> + 4 1 14 8 -1. + <_> + 11 1 7 4 2. + <_> + 4 5 7 4 2. + <_> + + <_> + 2 4 4 16 -1. + <_> + 2 4 2 8 2. + <_> + 4 12 2 8 2. + <_> + + <_> + 12 4 3 12 -1. + <_> + 12 10 3 6 2. + <_> + + <_> + 4 5 10 12 -1. + <_> + 4 5 5 6 2. + <_> + 9 11 5 6 2. + <_> + + <_> + 9 14 2 3 -1. + <_> + 9 15 2 1 3. + <_> + + <_> + 5 4 2 3 -1. + <_> + 5 5 2 1 3. + <_> + + <_> + 12 2 4 10 -1. + <_> + 14 2 2 5 2. + <_> + 12 7 2 5 2. + <_> + + <_> + 6 4 7 3 -1. + <_> + 6 5 7 1 3. + <_> + + <_> + 2 0 18 2 -1. + <_> + 11 0 9 1 2. + <_> + 2 1 9 1 2. + <_> + + <_> + 0 0 18 2 -1. + <_> + 0 0 9 1 2. + <_> + 9 1 9 1 2. + <_> + + <_> + 13 13 4 6 -1. + <_> + 15 13 2 3 2. + <_> + 13 16 2 3 2. + <_> + + <_> + 3 13 4 6 -1. + <_> + 3 13 2 3 2. + <_> + 5 16 2 3 2. + <_> + + <_> + 10 12 2 6 -1. + <_> + 10 15 2 3 2. + <_> + + <_> + 5 9 10 10 -1. + <_> + 5 9 5 5 2. + <_> + 10 14 5 5 2. + <_> + + <_> + 11 4 4 2 -1. + <_> + 13 4 2 1 2. + <_> + 11 5 2 1 2. + <_> + + <_> + 7 12 6 8 -1. + <_> + 10 12 3 8 2. + <_> + + <_> + 12 2 4 10 -1. + <_> + 14 2 2 5 2. + <_> + 12 7 2 5 2. + <_> + + <_> + 8 11 2 1 -1. + <_> + 9 11 1 1 2. + <_> + + <_> + 10 5 1 12 -1. + <_> + 10 9 1 4 3. + <_> + + <_> + 0 11 6 9 -1. + <_> + 3 11 3 9 2. + <_> + + <_> + 12 2 4 10 -1. + <_> + 14 2 2 5 2. + <_> + 12 7 2 5 2. + <_> + + <_> + 4 2 4 10 -1. + <_> + 4 2 2 5 2. + <_> + 6 7 2 5 2. + <_> + + <_> + 11 4 4 2 -1. + <_> + 13 4 2 1 2. + <_> + 11 5 2 1 2. + <_> + + <_> + 0 14 6 3 -1. + <_> + 0 15 6 1 3. + <_> + + <_> + 11 4 4 2 -1. + <_> + 13 4 2 1 2. + <_> + 11 5 2 1 2. + <_> + + <_> + 6 1 3 2 -1. + <_> + 7 1 1 2 3. + <_> + + <_> + 11 4 4 2 -1. + <_> + 13 4 2 1 2. + <_> + 11 5 2 1 2. + <_> + + <_> + 5 4 4 2 -1. + <_> + 5 4 2 1 2. + <_> + 7 5 2 1 2. + <_> + + <_> + 13 0 2 12 -1. + <_> + 14 0 1 6 2. + <_> + 13 6 1 6 2. + <_> + + <_> + 6 0 3 10 -1. + <_> + 7 0 1 10 3. + <_> + + <_> + 3 0 17 8 -1. + <_> + 3 4 17 4 2. + <_> + + <_> + 0 4 20 4 -1. + <_> + 0 6 20 2 2. + <_> + + <_> + 0 3 8 2 -1. + <_> + 4 3 4 2 2. + <_> + + <_> + 8 11 4 3 -1. + <_> + 8 12 4 1 3. + <_> + + <_> + 5 7 6 4 -1. + <_> + 5 7 3 2 2. + <_> + 8 9 3 2 2. + <_> + + <_> + 8 3 4 9 -1. + <_> + 8 6 4 3 3. + <_> + + <_> + 8 15 1 4 -1. + <_> + 8 17 1 2 2. + <_> + + <_> + 4 5 12 7 -1. + <_> + 8 5 4 7 3. + <_> + + <_> + 4 2 4 10 -1. + <_> + 4 2 2 5 2. + <_> + 6 7 2 5 2. + <_> + + <_> + 3 0 17 2 -1. + <_> + 3 1 17 1 2. + <_> + + <_> + 2 2 16 15 -1. + <_> + 2 7 16 5 3. + <_> + + <_> + 15 2 5 2 -1. + <_> + 15 3 5 1 2. + <_> + + <_> + 9 3 2 2 -1. + <_> + 10 3 1 2 2. + <_> + + <_> + 4 5 16 15 -1. + <_> + 4 10 16 5 3. + <_> + + <_> + 7 13 5 6 -1. + <_> + 7 16 5 3 2. + <_> + + <_> + 10 7 3 2 -1. + <_> + 11 7 1 2 3. + <_> + + <_> + 8 3 3 1 -1. + <_> + 9 3 1 1 3. + <_> + + <_> + 9 16 3 3 -1. + <_> + 9 17 3 1 3. + <_> + + <_> + 0 2 5 2 -1. + <_> + 0 3 5 1 2. + <_> + + <_> + 12 5 4 3 -1. + <_> + 12 6 4 1 3. + <_> + + <_> + 1 7 12 1 -1. + <_> + 5 7 4 1 3. + <_> + + <_> + 7 5 6 14 -1. + <_> + 7 12 6 7 2. + <_> + + <_> + 0 0 8 10 -1. + <_> + 0 0 4 5 2. + <_> + 4 5 4 5 2. + <_> + + <_> + 9 1 3 2 -1. + <_> + 10 1 1 2 3. + <_> + + <_> + 8 1 3 2 -1. + <_> + 9 1 1 2 3. + <_> + + <_> + 12 4 3 3 -1. + <_> + 12 5 3 1 3. + <_> + + <_> + 7 4 6 16 -1. + <_> + 7 12 6 8 2. + <_> + + <_> + 12 4 3 3 -1. + <_> + 12 5 3 1 3. + <_> + + <_> + 2 3 2 6 -1. + <_> + 2 5 2 2 3. + <_> + + <_> + 14 2 6 9 -1. + <_> + 14 5 6 3 3. + <_> + + <_> + 5 4 3 3 -1. + <_> + 5 5 3 1 3. + <_> + + <_> + 9 17 3 2 -1. + <_> + 10 17 1 2 3. + <_> + + <_> + 5 5 2 3 -1. + <_> + 5 6 2 1 3. + <_> + + <_> + 13 11 3 6 -1. + <_> + 13 13 3 2 3. + <_> + + <_> + 3 14 2 6 -1. + <_> + 3 17 2 3 2. + <_> + + <_> + 14 3 6 2 -1. + <_> + 14 4 6 1 2. + <_> + + <_> + 0 8 16 2 -1. + <_> + 0 9 16 1 2. + <_> + + <_> + 14 3 6 2 -1. + <_> + 14 4 6 1 2. + <_> + + <_> + 0 0 5 6 -1. + <_> + 0 2 5 2 3. + <_> + + <_> + 12 5 4 3 -1. + <_> + 12 6 4 1 3. + <_> + + <_> + 4 11 3 6 -1. + <_> + 4 13 3 2 3. + <_> + + <_> + 12 5 4 3 -1. + <_> + 12 6 4 1 3. + <_> + + <_> + 9 5 1 3 -1. + <_> + 9 6 1 1 3. + <_> + + <_> + 12 5 4 3 -1. + <_> + 12 6 4 1 3. + <_> + + <_> + 6 6 8 12 -1. + <_> + 6 12 8 6 2. + <_> + + <_> + 12 5 4 3 -1. + <_> + 12 6 4 1 3. + <_> + + <_> + 5 12 9 2 -1. + <_> + 8 12 3 2 3. + <_> + + <_> + 12 5 4 3 -1. + <_> + 12 6 4 1 3. + <_> + + <_> + 4 5 4 3 -1. + <_> + 4 6 4 1 3. + <_> + + <_> + 6 6 9 2 -1. + <_> + 9 6 3 2 3. + <_> + + <_> + 4 11 1 3 -1. + <_> + 4 12 1 1 3. + <_> + + <_> + 14 12 6 6 -1. + <_> + 14 12 3 6 2. + <_> + + <_> + 7 0 3 7 -1. + <_> + 8 0 1 7 3. + <_> + + <_> + 9 8 3 3 -1. + <_> + 10 8 1 3 3. + <_> + + <_> + 8 8 3 3 -1. + <_> + 9 8 1 3 3. + <_> + + <_> + 5 10 11 3 -1. + <_> + 5 11 11 1 3. + <_> + + <_> + 5 7 10 1 -1. + <_> + 10 7 5 1 2. + <_> + + <_> + 9 7 3 2 -1. + <_> + 10 7 1 2 3. + <_> + + <_> + 8 7 3 2 -1. + <_> + 9 7 1 2 3. + <_> + + <_> + 11 9 4 2 -1. + <_> + 11 9 2 2 2. + <_> + + <_> + 5 9 4 2 -1. + <_> + 7 9 2 2 2. + <_> + + <_> + 14 10 2 4 -1. + <_> + 14 12 2 2 2. + <_> + + <_> + 7 7 3 2 -1. + <_> + 8 7 1 2 3. + <_> + + <_> + 14 17 6 3 -1. + <_> + 14 18 6 1 3. + <_> + + <_> + 4 5 12 12 -1. + <_> + 4 5 6 6 2. + <_> + 10 11 6 6 2. + <_> + + <_> + 6 9 8 8 -1. + <_> + 10 9 4 4 2. + <_> + 6 13 4 4 2. + <_> + + <_> + 0 4 15 4 -1. + <_> + 5 4 5 4 3. + <_> + + <_> + 13 2 4 1 -1. + <_> + 13 2 2 1 2. + <_> + + <_> + 4 12 2 2 -1. + <_> + 4 13 2 1 2. + <_> + + <_> + 8 13 4 3 -1. + <_> + 8 14 4 1 3. + <_> + + <_> + 9 13 2 3 -1. + <_> + 9 14 2 1 3. + <_> + + <_> + 13 11 2 3 -1. + <_> + 13 12 2 1 3. + <_> + + <_> + 7 12 4 4 -1. + <_> + 7 12 2 2 2. + <_> + 9 14 2 2 2. + <_> + + <_> + 10 11 2 2 -1. + <_> + 11 11 1 1 2. + <_> + 10 12 1 1 2. + <_> + + <_> + 8 17 3 2 -1. + <_> + 9 17 1 2 3. + <_> + + <_> + 10 11 2 2 -1. + <_> + 11 11 1 1 2. + <_> + 10 12 1 1 2. + <_> + + <_> + 0 17 6 3 -1. + <_> + 0 18 6 1 3. + <_> + + <_> + 10 11 2 2 -1. + <_> + 11 11 1 1 2. + <_> + 10 12 1 1 2. + <_> + + <_> + 8 11 2 2 -1. + <_> + 8 11 1 1 2. + <_> + 9 12 1 1 2. + <_> + + <_> + 12 5 8 4 -1. + <_> + 12 5 4 4 2. + <_> + + <_> + 0 5 8 4 -1. + <_> + 4 5 4 4 2. + <_> + + <_> + 13 2 4 1 -1. + <_> + 13 2 2 1 2. + <_> + + <_> + 3 2 4 1 -1. + <_> + 5 2 2 1 2. + <_> + + <_> + 10 0 4 2 -1. + <_> + 12 0 2 1 2. + <_> + 10 1 2 1 2. + <_> + + <_> + 7 12 3 1 -1. + <_> + 8 12 1 1 3. + <_> + + <_> + 8 11 4 8 -1. + <_> + 10 11 2 4 2. + <_> + 8 15 2 4 2. + <_> + + <_> + 9 9 2 2 -1. + <_> + 9 10 2 1 2. + <_> + + <_> + 3 18 15 2 -1. + <_> + 3 19 15 1 2. + <_> + + <_> + 2 6 2 12 -1. + <_> + 2 6 1 6 2. + <_> + 3 12 1 6 2. + <_> + + <_> + 9 8 2 3 -1. + <_> + 9 9 2 1 3. + <_> + + <_> + 7 10 3 2 -1. + <_> + 8 10 1 2 3. + <_> + + <_> + 11 11 3 1 -1. + <_> + 12 11 1 1 3. + <_> + + <_> + 6 11 3 1 -1. + <_> + 7 11 1 1 3. + <_> + + <_> + 9 2 4 2 -1. + <_> + 11 2 2 1 2. + <_> + 9 3 2 1 2. + <_> + + <_> + 4 12 2 3 -1. + <_> + 4 13 2 1 3. + <_> + + <_> + 2 1 18 3 -1. + <_> + 8 1 6 3 3. + <_> + + <_> + 5 1 4 14 -1. + <_> + 7 1 2 14 2. + <_> + + <_> + 8 16 12 3 -1. + <_> + 8 16 6 3 2. + <_> + + <_> + 1 17 18 3 -1. + <_> + 7 17 6 3 3. + <_> + + <_> + 9 14 2 6 -1. + <_> + 9 17 2 3 2. + <_> + + <_> + 9 12 1 8 -1. + <_> + 9 16 1 4 2. + <_> + + <_> + 9 14 2 3 -1. + <_> + 9 15 2 1 3. + <_> + + <_> + 9 6 2 12 -1. + <_> + 9 10 2 4 3. + <_> + + <_> + 12 9 3 3 -1. + <_> + 12 10 3 1 3. + <_> + + <_> + 0 1 4 8 -1. + <_> + 2 1 2 8 2. + <_> + + <_> + 9 1 6 2 -1. + <_> + 12 1 3 1 2. + <_> + 9 2 3 1 2. + <_> + + <_> + 1 3 12 14 -1. + <_> + 1 10 12 7 2. + <_> + + <_> + 8 12 4 2 -1. + <_> + 10 12 2 1 2. + <_> + 8 13 2 1 2. + <_> + + <_> + 1 9 10 2 -1. + <_> + 1 9 5 1 2. + <_> + 6 10 5 1 2. + <_> + + <_> + 8 15 4 3 -1. + <_> + 8 16 4 1 3. + <_> + + <_> + 6 8 8 3 -1. + <_> + 6 9 8 1 3. + <_> + + <_> + 9 15 5 3 -1. + <_> + 9 16 5 1 3. + <_> + + <_> + 8 7 4 3 -1. + <_> + 8 8 4 1 3. + <_> + + <_> + 7 7 6 2 -1. + <_> + 7 8 6 1 2. + <_> + + <_> + 5 7 8 2 -1. + <_> + 5 7 4 1 2. + <_> + 9 8 4 1 2. + <_> + + <_> + 12 9 3 3 -1. + <_> + 12 10 3 1 3. + <_> + + <_> + 4 7 4 2 -1. + <_> + 4 8 4 1 2. + <_> + + <_> + 14 2 6 9 -1. + <_> + 14 5 6 3 3. + <_> + + <_> + 4 9 3 3 -1. + <_> + 5 9 1 3 3. + <_> + + <_> + 12 9 3 3 -1. + <_> + 12 10 3 1 3. + <_> + + <_> + 0 2 6 9 -1. + <_> + 0 5 6 3 3. + <_> + + <_> + 17 3 3 6 -1. + <_> + 18 3 1 6 3. + <_> + + <_> + 0 3 3 6 -1. + <_> + 1 3 1 6 3. + <_> + + <_> + 17 14 1 2 -1. + <_> + 17 15 1 1 2. + <_> + + <_> + 4 9 4 3 -1. + <_> + 6 9 2 3 2. + <_> + + <_> + 12 9 3 3 -1. + <_> + 12 10 3 1 3. + <_> + + <_> + 5 9 3 3 -1. + <_> + 5 10 3 1 3. + <_> + + <_> + 9 5 6 8 -1. + <_> + 12 5 3 4 2. + <_> + 9 9 3 4 2. + <_> + + <_> + 5 5 6 8 -1. + <_> + 5 5 3 4 2. + <_> + 8 9 3 4 2. + <_> + + <_> + 16 1 4 6 -1. + <_> + 16 4 4 3 2. + <_> + + <_> + 1 0 6 20 -1. + <_> + 3 0 2 20 3. + <_> + + <_> + 12 11 3 2 -1. + <_> + 13 11 1 2 3. + <_> + + <_> + 5 11 3 2 -1. + <_> + 6 11 1 2 3. + <_> + + <_> + 9 4 6 1 -1. + <_> + 11 4 2 1 3. + <_> + + <_> + 0 0 8 3 -1. + <_> + 4 0 4 3 2. + <_> + + <_> + 15 0 2 5 -1. + <_> + 15 0 1 5 2. + <_> + + <_> + 4 1 3 2 -1. + <_> + 5 1 1 2 3. + <_> + + <_> + 7 0 6 15 -1. + <_> + 9 0 2 15 3. + <_> + + <_> + 6 11 3 1 -1. + <_> + 7 11 1 1 3. + <_> + + <_> + 12 0 3 4 -1. + <_> + 13 0 1 4 3. + <_> + + <_> + 5 4 6 1 -1. + <_> + 7 4 2 1 3. + <_> + + <_> + 12 7 3 2 -1. + <_> + 12 8 3 1 2. + <_> + + <_> + 0 1 4 6 -1. + <_> + 0 4 4 3 2. + <_> + + <_> + 12 7 3 2 -1. + <_> + 12 8 3 1 2. + <_> + + <_> + 2 16 3 3 -1. + <_> + 2 17 3 1 3. + <_> + + <_> + 13 8 6 10 -1. + <_> + 16 8 3 5 2. + <_> + 13 13 3 5 2. + <_> + + <_> + 0 9 5 2 -1. + <_> + 0 10 5 1 2. + <_> + + <_> + 12 11 2 2 -1. + <_> + 13 11 1 1 2. + <_> + 12 12 1 1 2. + <_> + + <_> + 3 15 3 3 -1. + <_> + 3 16 3 1 3. + <_> + + <_> + 12 7 3 2 -1. + <_> + 12 8 3 1 2. + <_> + + <_> + 5 7 3 2 -1. + <_> + 5 8 3 1 2. + <_> + + <_> + 9 5 9 9 -1. + <_> + 9 8 9 3 3. + <_> + + <_> + 5 0 3 7 -1. + <_> + 6 0 1 7 3. + <_> + + <_> + 5 2 12 5 -1. + <_> + 9 2 4 5 3. + <_> + + <_> + 6 11 2 2 -1. + <_> + 6 11 1 1 2. + <_> + 7 12 1 1 2. + <_> + + <_> + 15 15 3 2 -1. + <_> + 15 16 3 1 2. + <_> + + <_> + 2 15 3 2 -1. + <_> + 2 16 3 1 2. + <_> + + <_> + 14 12 6 8 -1. + <_> + 17 12 3 4 2. + <_> + 14 16 3 4 2. + <_> + + <_> + 2 8 15 6 -1. + <_> + 7 8 5 6 3. + <_> + + <_> + 2 2 18 17 -1. + <_> + 8 2 6 17 3. + <_> + + <_> + 5 1 4 1 -1. + <_> + 7 1 2 1 2. + <_> + + <_> + 5 2 12 5 -1. + <_> + 9 2 4 5 3. + <_> + + <_> + 3 2 12 5 -1. + <_> + 7 2 4 5 3. + <_> + + <_> + 4 9 12 4 -1. + <_> + 10 9 6 2 2. + <_> + 4 11 6 2 2. + <_> + + <_> + 5 15 6 2 -1. + <_> + 5 15 3 1 2. + <_> + 8 16 3 1 2. + <_> + + <_> + 10 14 2 3 -1. + <_> + 10 15 2 1 3. + <_> + + <_> + 0 13 20 2 -1. + <_> + 0 13 10 1 2. + <_> + 10 14 10 1 2. + <_> + + <_> + 4 9 12 8 -1. + <_> + 10 9 6 4 2. + <_> + 4 13 6 4 2. + <_> + + <_> + 8 13 3 6 -1. + <_> + 8 16 3 3 2. + <_> + + <_> + 10 12 2 2 -1. + <_> + 10 13 2 1 2. + <_> + + <_> + 9 12 2 2 -1. + <_> + 9 12 1 1 2. + <_> + 10 13 1 1 2. + <_> + + <_> + 4 11 14 4 -1. + <_> + 11 11 7 2 2. + <_> + 4 13 7 2 2. + <_> + + <_> + 8 5 4 2 -1. + <_> + 8 6 4 1 2. + <_> + + <_> + 10 10 6 3 -1. + <_> + 12 10 2 3 3. + <_> + + <_> + 2 14 1 2 -1. + <_> + 2 15 1 1 2. + <_> + + <_> + 13 8 6 12 -1. + <_> + 16 8 3 6 2. + <_> + 13 14 3 6 2. + <_> + + <_> + 1 8 6 12 -1. + <_> + 1 8 3 6 2. + <_> + 4 14 3 6 2. + <_> + + <_> + 10 0 6 10 -1. + <_> + 12 0 2 10 3. + <_> + + <_> + 5 11 8 4 -1. + <_> + 5 11 4 2 2. + <_> + 9 13 4 2 2. + <_> + + <_> + 10 16 8 4 -1. + <_> + 14 16 4 2 2. + <_> + 10 18 4 2 2. + <_> + + <_> + 7 7 6 6 -1. + <_> + 9 7 2 6 3. + <_> + + <_> + 10 2 4 10 -1. + <_> + 10 2 2 10 2. + <_> + + <_> + 6 1 4 9 -1. + <_> + 8 1 2 9 2. + <_> + + <_> + 12 19 2 1 -1. + <_> + 12 19 1 1 2. + <_> + + <_> + 1 2 4 9 -1. + <_> + 3 2 2 9 2. + <_> + + <_> + 7 5 6 4 -1. + <_> + 9 5 2 4 3. + <_> + + <_> + 9 4 2 4 -1. + <_> + 9 6 2 2 2. + <_> + + <_> + 14 5 2 8 -1. + <_> + 14 9 2 4 2. + <_> + + <_> + 7 6 5 12 -1. + <_> + 7 12 5 6 2. + <_> + + <_> + 14 6 2 6 -1. + <_> + 14 9 2 3 2. + <_> + + <_> + 4 6 2 6 -1. + <_> + 4 9 2 3 2. + <_> + + <_> + 8 15 10 4 -1. + <_> + 13 15 5 2 2. + <_> + 8 17 5 2 2. + <_> + + <_> + 6 18 2 2 -1. + <_> + 7 18 1 2 2. + <_> + + <_> + 11 3 6 2 -1. + <_> + 11 4 6 1 2. + <_> + + <_> + 2 0 16 6 -1. + <_> + 2 2 16 2 3. + <_> + + <_> + 11 3 6 2 -1. + <_> + 11 4 6 1 2. + <_> + + <_> + 4 11 10 3 -1. + <_> + 4 12 10 1 3. + <_> + + <_> + 11 3 6 2 -1. + <_> + 11 4 6 1 2. + <_> + + <_> + 3 3 6 2 -1. + <_> + 3 4 6 1 2. + <_> + + <_> + 16 0 4 7 -1. + <_> + 16 0 2 7 2. + <_> + + <_> + 0 14 9 6 -1. + <_> + 0 16 9 2 3. + <_> + + <_> + 9 16 3 3 -1. + <_> + 9 17 3 1 3. + <_> + + <_> + 4 6 6 2 -1. + <_> + 6 6 2 2 3. + <_> + + <_> + 15 11 1 3 -1. + <_> + 15 12 1 1 3. + <_> + + <_> + 5 5 2 3 -1. + <_> + 5 6 2 1 3. + <_> + + <_> + 10 9 2 2 -1. + <_> + 10 10 2 1 2. + <_> + + <_> + 3 1 4 3 -1. + <_> + 5 1 2 3 2. + <_> + + <_> + 16 0 4 7 -1. + <_> + 16 0 2 7 2. + <_> + + <_> + 0 0 20 1 -1. + <_> + 10 0 10 1 2. + <_> + + <_> + 15 11 1 3 -1. + <_> + 15 12 1 1 3. + <_> + + <_> + 0 4 3 4 -1. + <_> + 1 4 1 4 3. + <_> + + <_> + 16 3 3 6 -1. + <_> + 16 5 3 2 3. + <_> + + <_> + 1 3 3 6 -1. + <_> + 1 5 3 2 3. + <_> + + <_> + 6 2 12 6 -1. + <_> + 12 2 6 3 2. + <_> + 6 5 6 3 2. + <_> + + <_> + 8 10 4 3 -1. + <_> + 8 11 4 1 3. + <_> + + <_> + 4 2 14 6 -1. + <_> + 11 2 7 3 2. + <_> + 4 5 7 3 2. + <_> + + <_> + 9 11 2 3 -1. + <_> + 9 12 2 1 3. + <_> + + <_> + 15 13 2 3 -1. + <_> + 15 14 2 1 3. + <_> + + <_> + 8 12 4 3 -1. + <_> + 8 13 4 1 3. + <_> + + <_> + 15 11 1 3 -1. + <_> + 15 12 1 1 3. + <_> + + <_> + 7 13 5 2 -1. + <_> + 7 14 5 1 2. + <_> + + <_> + 7 12 6 3 -1. + <_> + 7 13 6 1 3. + <_> + + <_> + 5 11 4 4 -1. + <_> + 5 13 4 2 2. + <_> + + <_> + 11 4 3 3 -1. + <_> + 12 4 1 3 3. + <_> + + <_> + 6 4 3 3 -1. + <_> + 7 4 1 3 3. + <_> + + <_> + 16 5 3 6 -1. + <_> + 17 5 1 6 3. + <_> + + <_> + 3 6 12 7 -1. + <_> + 7 6 4 7 3. + <_> + + <_> + 16 5 3 6 -1. + <_> + 17 5 1 6 3. + <_> + + <_> + 3 13 2 3 -1. + <_> + 3 14 2 1 3. + <_> + + <_> + 16 5 3 6 -1. + <_> + 17 5 1 6 3. + <_> + + <_> + 1 5 3 6 -1. + <_> + 2 5 1 6 3. + <_> + + <_> + 1 9 18 1 -1. + <_> + 7 9 6 1 3. + <_> + + <_> + 0 9 8 7 -1. + <_> + 4 9 4 7 2. + <_> + + <_> + 12 11 8 2 -1. + <_> + 12 12 8 1 2. + <_> + + <_> + 0 11 8 2 -1. + <_> + 0 12 8 1 2. + <_> + + <_> + 9 13 2 3 -1. + <_> + 9 14 2 1 3. + <_> + + <_> + 4 10 12 4 -1. + <_> + 4 10 6 2 2. + <_> + 10 12 6 2 2. + <_> + + <_> + 9 3 3 7 -1. + <_> + 10 3 1 7 3. + <_> + + <_> + 7 2 3 5 -1. + <_> + 8 2 1 5 3. + <_> + + <_> + 9 12 4 6 -1. + <_> + 11 12 2 3 2. + <_> + 9 15 2 3 2. + <_> + + <_> + 8 7 3 6 -1. + <_> + 9 7 1 6 3. + <_> + + <_> + 15 4 4 2 -1. + <_> + 15 5 4 1 2. + <_> + + <_> + 8 7 3 3 -1. + <_> + 9 7 1 3 3. + <_> + + <_> + 14 2 6 4 -1. + <_> + 14 4 6 2 2. + <_> + + <_> + 7 16 6 1 -1. + <_> + 9 16 2 1 3. + <_> + + <_> + 15 13 2 3 -1. + <_> + 15 14 2 1 3. + <_> + + <_> + 8 7 3 10 -1. + <_> + 9 7 1 10 3. + <_> + + <_> + 11 10 2 6 -1. + <_> + 11 12 2 2 3. + <_> + + <_> + 6 10 4 1 -1. + <_> + 8 10 2 1 2. + <_> + + <_> + 10 9 2 2 -1. + <_> + 10 10 2 1 2. + <_> + + <_> + 8 9 2 2 -1. + <_> + 8 10 2 1 2. + <_> + + <_> + 12 7 2 2 -1. + <_> + 13 7 1 1 2. + <_> + 12 8 1 1 2. + <_> + + <_> + 5 7 2 2 -1. + <_> + 5 7 1 1 2. + <_> + 6 8 1 1 2. + <_> + + <_> + 13 0 3 14 -1. + <_> + 14 0 1 14 3. + <_> + + <_> + 4 0 3 14 -1. + <_> + 5 0 1 14 3. + <_> + + <_> + 13 4 3 14 -1. + <_> + 14 4 1 14 3. + <_> + + <_> + 9 14 2 3 -1. + <_> + 9 15 2 1 3. + <_> + + <_> + 8 14 4 3 -1. + <_> + 8 15 4 1 3. + <_> + + <_> + 4 2 3 16 -1. + <_> + 5 2 1 16 3. + <_> + + <_> + 7 2 8 10 -1. + <_> + 7 7 8 5 2. + <_> + + <_> + 6 14 7 3 -1. + <_> + 6 15 7 1 3. + <_> + + <_> + 9 2 10 12 -1. + <_> + 14 2 5 6 2. + <_> + 9 8 5 6 2. + <_> + + <_> + 6 7 8 2 -1. + <_> + 6 8 8 1 2. + <_> + + <_> + 8 13 4 6 -1. + <_> + 8 16 4 3 2. + <_> + + <_> + 6 6 1 3 -1. + <_> + 6 7 1 1 3. + <_> + + <_> + 16 2 4 6 -1. + <_> + 16 4 4 2 3. + <_> + + <_> + 6 6 4 2 -1. + <_> + 6 6 2 1 2. + <_> + 8 7 2 1 2. + <_> + + <_> + 16 2 4 6 -1. + <_> + 16 4 4 2 3. + <_> + + <_> + 0 2 4 6 -1. + <_> + 0 4 4 2 3. + <_> + + <_> + 9 6 2 6 -1. + <_> + 9 6 1 6 2. + <_> + + <_> + 3 4 6 10 -1. + <_> + 3 9 6 5 2. + <_> + + <_> + 9 5 2 6 -1. + <_> + 9 5 1 6 2. + <_> + + <_> + 3 13 2 3 -1. + <_> + 3 14 2 1 3. + <_> + + <_> + 13 13 3 2 -1. + <_> + 13 14 3 1 2. + <_> + + <_> + 2 16 10 4 -1. + <_> + 2 16 5 2 2. + <_> + 7 18 5 2 2. + <_> + + <_> + 5 6 10 6 -1. + <_> + 10 6 5 3 2. + <_> + 5 9 5 3 2. + <_> + + <_> + 7 14 1 3 -1. + <_> + 7 15 1 1 3. + <_> + + <_> + 14 16 6 3 -1. + <_> + 14 17 6 1 3. + <_> + + <_> + 5 4 3 3 -1. + <_> + 5 5 3 1 3. + <_> + + <_> + 7 4 10 3 -1. + <_> + 7 5 10 1 3. + <_> + + <_> + 0 4 5 4 -1. + <_> + 0 6 5 2 2. + <_> + + <_> + 13 11 3 9 -1. + <_> + 13 14 3 3 3. + <_> + + <_> + 4 11 3 9 -1. + <_> + 4 14 3 3 3. + <_> + + <_> + 9 7 2 1 -1. + <_> + 9 7 1 1 2. + <_> + + <_> + 5 0 6 17 -1. + <_> + 7 0 2 17 3. + <_> + + <_> + 10 3 6 3 -1. + <_> + 10 3 3 3 2. + <_> + + <_> + 2 2 15 4 -1. + <_> + 7 2 5 4 3. + <_> + + <_> + 8 2 8 2 -1. + <_> + 12 2 4 1 2. + <_> + 8 3 4 1 2. + <_> + + <_> + 8 1 3 6 -1. + <_> + 8 3 3 2 3. + <_> + + <_> + 9 17 2 2 -1. + <_> + 9 18 2 1 2. + <_> + + <_> + 0 0 2 14 -1. + <_> + 1 0 1 14 2. + <_> + + <_> + 12 0 7 3 -1. + <_> + 12 1 7 1 3. + <_> + + <_> + 1 14 1 2 -1. + <_> + 1 15 1 1 2. + <_> + + <_> + 14 12 2 8 -1. + <_> + 15 12 1 4 2. + <_> + 14 16 1 4 2. + <_> + + <_> + 1 0 7 3 -1. + <_> + 1 1 7 1 3. + <_> + + <_> + 14 12 2 8 -1. + <_> + 15 12 1 4 2. + <_> + 14 16 1 4 2. + <_> + + <_> + 6 0 8 12 -1. + <_> + 6 0 4 6 2. + <_> + 10 6 4 6 2. + <_> + + <_> + 6 1 8 9 -1. + <_> + 6 4 8 3 3. + <_> + + <_> + 5 2 2 2 -1. + <_> + 5 3 2 1 2. + <_> + + <_> + 13 14 6 6 -1. + <_> + 16 14 3 3 2. + <_> + 13 17 3 3 2. + <_> + + <_> + 0 17 20 2 -1. + <_> + 0 17 10 1 2. + <_> + 10 18 10 1 2. + <_> + + <_> + 10 3 2 6 -1. + <_> + 11 3 1 3 2. + <_> + 10 6 1 3 2. + <_> + + <_> + 5 12 6 2 -1. + <_> + 8 12 3 2 2. + <_> + + <_> + 10 7 6 13 -1. + <_> + 10 7 3 13 2. + <_> + + <_> + 5 15 10 5 -1. + <_> + 10 15 5 5 2. + <_> + + <_> + 10 4 4 10 -1. + <_> + 10 4 2 10 2. + <_> + + <_> + 5 7 2 1 -1. + <_> + 6 7 1 1 2. + <_> + + <_> + 10 3 6 7 -1. + <_> + 10 3 3 7 2. + <_> + + <_> + 4 3 6 7 -1. + <_> + 7 3 3 7 2. + <_> + + <_> + 1 7 18 5 -1. + <_> + 7 7 6 5 3. + <_> + + <_> + 3 17 4 3 -1. + <_> + 5 17 2 3 2. + <_> + + <_> + 8 14 12 6 -1. + <_> + 14 14 6 3 2. + <_> + 8 17 6 3 2. + <_> + + <_> + 0 13 20 4 -1. + <_> + 0 13 10 2 2. + <_> + 10 15 10 2 2. + <_> + + <_> + 4 5 14 2 -1. + <_> + 11 5 7 1 2. + <_> + 4 6 7 1 2. + <_> + + <_> + 1 2 10 12 -1. + <_> + 1 2 5 6 2. + <_> + 6 8 5 6 2. + <_> + + <_> + 6 1 14 3 -1. + <_> + 6 2 14 1 3. + <_> + + <_> + 8 16 2 3 -1. + <_> + 8 17 2 1 3. + <_> + + <_> + 9 17 3 2 -1. + <_> + 10 17 1 2 3. + <_> + + <_> + 5 15 4 2 -1. + <_> + 5 15 2 1 2. + <_> + 7 16 2 1 2. + <_> + + <_> + 10 15 1 3 -1. + <_> + 10 16 1 1 3. + <_> + + <_> + 8 16 4 4 -1. + <_> + 8 16 2 2 2. + <_> + 10 18 2 2 2. + <_> + + <_> + 6 11 8 6 -1. + <_> + 6 14 8 3 2. + <_> + + <_> + 2 13 5 2 -1. + <_> + 2 14 5 1 2. + <_> + + <_> + 13 14 6 6 -1. + <_> + 16 14 3 3 2. + <_> + 13 17 3 3 2. + <_> + + <_> + 1 9 18 4 -1. + <_> + 7 9 6 4 3. + <_> + + <_> + 13 14 6 6 -1. + <_> + 16 14 3 3 2. + <_> + 13 17 3 3 2. + <_> + + <_> + 0 2 1 6 -1. + <_> + 0 4 1 2 3. + <_> + + <_> + 5 0 15 20 -1. + <_> + 5 10 15 10 2. + <_> + + <_> + 1 14 6 6 -1. + <_> + 1 14 3 3 2. + <_> + 4 17 3 3 2. + <_> + + <_> + 8 14 4 6 -1. + <_> + 10 14 2 3 2. + <_> + 8 17 2 3 2. + <_> + + <_> + 7 11 2 1 -1. + <_> + 8 11 1 1 2. + <_> + + <_> + 9 17 3 2 -1. + <_> + 10 17 1 2 3. + <_> + + <_> + 8 17 3 2 -1. + <_> + 9 17 1 2 3. + <_> + + <_> + 12 14 4 6 -1. + <_> + 14 14 2 3 2. + <_> + 12 17 2 3 2. + <_> + + <_> + 4 14 4 6 -1. + <_> + 4 14 2 3 2. + <_> + 6 17 2 3 2. + <_> + + <_> + 13 14 2 6 -1. + <_> + 14 14 1 3 2. + <_> + 13 17 1 3 2. + <_> + + <_> + 5 14 2 6 -1. + <_> + 5 14 1 3 2. + <_> + 6 17 1 3 2. + <_> + + <_> + 7 0 6 12 -1. + <_> + 7 4 6 4 3. + <_> + + <_> + 0 7 12 2 -1. + <_> + 4 7 4 2 3. + <_> + + <_> + 10 3 3 13 -1. + <_> + 11 3 1 13 3. + <_> + + <_> + 7 3 3 13 -1. + <_> + 8 3 1 13 3. + <_> + + <_> + 10 8 6 3 -1. + <_> + 10 9 6 1 3. + <_> + + <_> + 3 11 3 2 -1. + <_> + 4 11 1 2 3. + <_> + + <_> + 13 12 6 8 -1. + <_> + 16 12 3 4 2. + <_> + 13 16 3 4 2. + <_> + + <_> + 7 6 6 5 -1. + <_> + 9 6 2 5 3. + <_> + + <_> + 17 11 2 7 -1. + <_> + 17 11 1 7 2. + <_> + + <_> + 3 13 8 2 -1. + <_> + 7 13 4 2 2. + <_> + + <_> + 6 9 8 3 -1. + <_> + 6 10 8 1 3. + <_> + + <_> + 4 3 4 3 -1. + <_> + 4 4 4 1 3. + <_> + + <_> + 11 3 4 3 -1. + <_> + 11 4 4 1 3. + <_> + + <_> + 1 4 17 12 -1. + <_> + 1 8 17 4 3. + <_> + + <_> + 11 3 4 3 -1. + <_> + 11 4 4 1 3. + <_> + + <_> + 4 8 6 3 -1. + <_> + 4 9 6 1 3. + <_> + + <_> + 12 3 5 3 -1. + <_> + 12 4 5 1 3. + <_> + + <_> + 1 11 2 7 -1. + <_> + 2 11 1 7 2. + <_> + + <_> + 15 12 2 8 -1. + <_> + 16 12 1 4 2. + <_> + 15 16 1 4 2. + <_> + + <_> + 4 8 11 3 -1. + <_> + 4 9 11 1 3. + <_> + + <_> + 9 13 6 2 -1. + <_> + 12 13 3 1 2. + <_> + 9 14 3 1 2. + <_> + + <_> + 6 13 4 3 -1. + <_> + 6 14 4 1 3. + <_> + + <_> + 9 12 3 3 -1. + <_> + 10 12 1 3 3. + <_> + + <_> + 5 3 3 3 -1. + <_> + 5 4 3 1 3. + <_> + + <_> + 9 4 2 3 -1. + <_> + 9 5 2 1 3. + <_> + + <_> + 0 2 16 3 -1. + <_> + 0 3 16 1 3. + <_> + + <_> + 15 12 2 8 -1. + <_> + 16 12 1 4 2. + <_> + 15 16 1 4 2. + <_> + + <_> + 3 12 2 8 -1. + <_> + 3 12 1 4 2. + <_> + 4 16 1 4 2. + <_> + + <_> + 14 13 3 6 -1. + <_> + 14 15 3 2 3. + <_> + + <_> + 3 13 3 6 -1. + <_> + 3 15 3 2 3. + <_> + + <_> + 6 5 10 2 -1. + <_> + 11 5 5 1 2. + <_> + 6 6 5 1 2. + <_> + + <_> + 2 14 14 6 -1. + <_> + 2 17 14 3 2. + <_> + + <_> + 10 14 1 3 -1. + <_> + 10 15 1 1 3. + <_> + + <_> + 4 16 2 2 -1. + <_> + 4 16 1 1 2. + <_> + 5 17 1 1 2. + <_> + + <_> + 10 6 2 3 -1. + <_> + 10 7 2 1 3. + <_> + + <_> + 0 17 20 2 -1. + <_> + 0 17 10 1 2. + <_> + 10 18 10 1 2. + <_> + + <_> + 13 6 1 3 -1. + <_> + 13 7 1 1 3. + <_> + + <_> + 8 13 3 2 -1. + <_> + 9 13 1 2 3. + <_> + + <_> + 12 2 3 3 -1. + <_> + 13 2 1 3 3. + <_> + + <_> + 3 18 2 2 -1. + <_> + 3 18 1 1 2. + <_> + 4 19 1 1 2. + <_> + + <_> + 9 16 3 4 -1. + <_> + 10 16 1 4 3. + <_> + + <_> + 6 6 1 3 -1. + <_> + 6 7 1 1 3. + <_> + + <_> + 13 1 5 2 -1. + <_> + 13 2 5 1 2. + <_> + + <_> + 7 14 6 2 -1. + <_> + 7 14 3 1 2. + <_> + 10 15 3 1 2. + <_> + + <_> + 11 3 3 4 -1. + <_> + 12 3 1 4 3. + <_> + + <_> + 1 13 12 6 -1. + <_> + 5 13 4 6 3. + <_> + + <_> + 14 11 5 2 -1. + <_> + 14 12 5 1 2. + <_> + + <_> + 2 15 14 4 -1. + <_> + 2 15 7 2 2. + <_> + 9 17 7 2 2. + <_> + + <_> + 3 7 14 2 -1. + <_> + 10 7 7 1 2. + <_> + 3 8 7 1 2. + <_> + + <_> + 1 11 4 2 -1. + <_> + 1 12 4 1 2. + <_> + + <_> + 14 0 6 14 -1. + <_> + 16 0 2 14 3. + <_> + + <_> + 4 11 1 3 -1. + <_> + 4 12 1 1 3. + <_> + + <_> + 14 0 6 14 -1. + <_> + 16 0 2 14 3. + <_> + + <_> + 1 10 3 7 -1. + <_> + 2 10 1 7 3. + <_> + + <_> + 8 12 9 2 -1. + <_> + 8 13 9 1 2. + <_> + + <_> + 0 6 20 1 -1. + <_> + 10 6 10 1 2. + <_> + + <_> + 8 4 4 4 -1. + <_> + 8 4 2 4 2. + <_> + + <_> + 0 0 2 2 -1. + <_> + 0 1 2 1 2. + <_> + + <_> + 5 3 10 9 -1. + <_> + 5 6 10 3 3. + <_> + + <_> + 15 2 4 10 -1. + <_> + 15 2 2 10 2. + <_> + + <_> + 8 2 2 7 -1. + <_> + 9 2 1 7 2. + <_> + + <_> + 7 4 12 1 -1. + <_> + 11 4 4 1 3. + <_> + + <_> + 3 4 9 1 -1. + <_> + 6 4 3 1 3. + <_> + + <_> + 15 10 1 4 -1. + <_> + 15 12 1 2 2. + <_> + + <_> + 4 10 6 4 -1. + <_> + 7 10 3 4 2. + <_> + + <_> + 15 9 1 6 -1. + <_> + 15 12 1 3 2. + <_> + + <_> + 7 17 6 3 -1. + <_> + 7 18 6 1 3. + <_> + + <_> + 14 3 2 16 -1. + <_> + 15 3 1 8 2. + <_> + 14 11 1 8 2. + <_> + + <_> + 4 9 1 6 -1. + <_> + 4 12 1 3 2. + <_> + + <_> + 12 1 5 2 -1. + <_> + 12 2 5 1 2. + <_> + + <_> + 6 18 4 2 -1. + <_> + 6 18 2 1 2. + <_> + 8 19 2 1 2. + <_> + + <_> + 2 4 16 10 -1. + <_> + 10 4 8 5 2. + <_> + 2 9 8 5 2. + <_> + + <_> + 6 5 1 10 -1. + <_> + 6 10 1 5 2. + <_> + + <_> + 4 8 15 2 -1. + <_> + 9 8 5 2 3. + <_> + + <_> + 1 8 15 2 -1. + <_> + 6 8 5 2 3. + <_> + + <_> + 9 5 3 6 -1. + <_> + 9 7 3 2 3. + <_> + + <_> + 5 7 8 2 -1. + <_> + 9 7 4 2 2. + <_> + + <_> + 9 11 2 3 -1. + <_> + 9 12 2 1 3. + <_> + + <_> + 1 0 16 3 -1. + <_> + 1 1 16 1 3. + <_> + + <_> + 11 2 7 2 -1. + <_> + 11 3 7 1 2. + <_> + + <_> + 5 1 10 18 -1. + <_> + 5 7 10 6 3. + <_> + + <_> + 17 4 3 2 -1. + <_> + 18 4 1 2 3. + <_> + + <_> + 8 13 1 3 -1. + <_> + 8 14 1 1 3. + <_> + + <_> + 3 14 14 6 -1. + <_> + 3 16 14 2 3. + <_> + + <_> + 0 2 3 4 -1. + <_> + 1 2 1 4 3. + <_> + + <_> + 12 1 5 2 -1. + <_> + 12 2 5 1 2. + <_> + + <_> + 3 1 5 2 -1. + <_> + 3 2 5 1 2. + <_> + + <_> + 10 13 2 3 -1. + <_> + 10 14 2 1 3. + <_> + + <_> + 8 13 2 3 -1. + <_> + 8 14 2 1 3. + <_> + + <_> + 14 12 2 3 -1. + <_> + 14 13 2 1 3. + <_> + + <_> + 7 2 2 3 -1. + <_> + 7 3 2 1 3. + <_> + + <_> + 5 6 10 4 -1. + <_> + 10 6 5 2 2. + <_> + 5 8 5 2 2. + <_> + + <_> + 9 13 1 6 -1. + <_> + 9 16 1 3 2. + <_> + + <_> + 10 12 2 2 -1. + <_> + 11 12 1 1 2. + <_> + 10 13 1 1 2. + <_> + + <_> + 4 12 2 3 -1. + <_> + 4 13 2 1 3. + <_> + + <_> + 14 4 6 6 -1. + <_> + 14 6 6 2 3. + <_> + + <_> + 8 17 2 3 -1. + <_> + 8 18 2 1 3. + <_> + + <_> + 16 4 4 6 -1. + <_> + 16 6 4 2 3. + <_> + + <_> + 0 4 4 6 -1. + <_> + 0 6 4 2 3. + <_> + + <_> + 14 6 2 3 -1. + <_> + 14 6 1 3 2. + <_> + + <_> + 4 9 8 1 -1. + <_> + 8 9 4 1 2. + <_> + + <_> + 8 12 4 3 -1. + <_> + 8 13 4 1 3. + <_> + + <_> + 5 12 10 6 -1. + <_> + 5 14 10 2 3. + <_> + + <_> + 11 12 1 2 -1. + <_> + 11 13 1 1 2. + <_> + + <_> + 8 15 4 2 -1. + <_> + 8 16 4 1 2. + <_> + + <_> + 6 9 8 8 -1. + <_> + 10 9 4 4 2. + <_> + 6 13 4 4 2. + <_> + + <_> + 7 12 4 6 -1. + <_> + 7 12 2 3 2. + <_> + 9 15 2 3 2. + <_> + + <_> + 10 11 3 1 -1. + <_> + 11 11 1 1 3. + <_> + + <_> + 9 7 2 10 -1. + <_> + 9 7 1 5 2. + <_> + 10 12 1 5 2. + <_> + + <_> + 8 0 6 6 -1. + <_> + 10 0 2 6 3. + <_> + + <_> + 3 11 2 6 -1. + <_> + 3 13 2 2 3. + <_> + + <_> + 16 12 1 2 -1. + <_> + 16 13 1 1 2. + <_> + + <_> + 1 14 6 6 -1. + <_> + 1 14 3 3 2. + <_> + 4 17 3 3 2. + <_> + + <_> + 13 1 3 6 -1. + <_> + 14 1 1 6 3. + <_> + + <_> + 8 8 2 2 -1. + <_> + 8 9 2 1 2. + <_> + + <_> + 9 9 3 3 -1. + <_> + 10 9 1 3 3. + <_> + + <_> + 8 7 3 3 -1. + <_> + 8 8 3 1 3. + <_> + + <_> + 14 0 2 3 -1. + <_> + 14 0 1 3 2. + <_> + + <_> + 1 0 18 9 -1. + <_> + 7 0 6 9 3. + <_> + + <_> + 11 5 4 15 -1. + <_> + 11 5 2 15 2. + <_> + + <_> + 5 5 4 15 -1. + <_> + 7 5 2 15 2. + <_> + + <_> + 14 0 2 3 -1. + <_> + 14 0 1 3 2. + <_> + + <_> + 4 0 2 3 -1. + <_> + 5 0 1 3 2. + <_> + + <_> + 11 12 2 2 -1. + <_> + 12 12 1 1 2. + <_> + 11 13 1 1 2. + <_> + + <_> + 7 12 2 2 -1. + <_> + 7 12 1 1 2. + <_> + 8 13 1 1 2. + <_> + + <_> + 12 0 3 4 -1. + <_> + 13 0 1 4 3. + <_> + + <_> + 4 11 3 3 -1. + <_> + 4 12 3 1 3. + <_> + + <_> + 12 7 4 2 -1. + <_> + 12 8 4 1 2. + <_> + + <_> + 8 10 3 2 -1. + <_> + 9 10 1 2 3. + <_> + + <_> + 9 9 3 2 -1. + <_> + 10 9 1 2 3. + <_> + + <_> + 8 9 3 2 -1. + <_> + 9 9 1 2 3. + <_> + + <_> + 12 0 3 4 -1. + <_> + 13 0 1 4 3. + <_> + + <_> + 5 0 3 4 -1. + <_> + 6 0 1 4 3. + <_> + + <_> + 4 14 12 4 -1. + <_> + 10 14 6 2 2. + <_> + 4 16 6 2 2. + <_> + + <_> + 8 13 2 3 -1. + <_> + 8 14 2 1 3. + <_> + + <_> + 10 10 3 8 -1. + <_> + 10 14 3 4 2. + <_> + + <_> + 8 10 4 8 -1. + <_> + 8 10 2 4 2. + <_> + 10 14 2 4 2. + <_> + + <_> + 10 8 3 1 -1. + <_> + 11 8 1 1 3. + <_> + + <_> + 9 12 1 6 -1. + <_> + 9 15 1 3 2. + <_> + + <_> + 10 8 3 1 -1. + <_> + 11 8 1 1 3. + <_> + + <_> + 7 8 3 1 -1. + <_> + 8 8 1 1 3. + <_> + + <_> + 5 2 15 14 -1. + <_> + 5 9 15 7 2. + <_> + + <_> + 2 1 2 10 -1. + <_> + 2 1 1 5 2. + <_> + 3 6 1 5 2. + <_> + + <_> + 14 14 2 3 -1. + <_> + 14 15 2 1 3. + <_> + + <_> + 2 7 3 3 -1. + <_> + 3 7 1 3 3. + <_> + + <_> + 17 4 3 3 -1. + <_> + 17 5 3 1 3. + <_> + + <_> + 0 4 3 3 -1. + <_> + 0 5 3 1 3. + <_> + + <_> + 13 5 6 2 -1. + <_> + 16 5 3 1 2. + <_> + 13 6 3 1 2. + <_> + + <_> + 4 19 12 1 -1. + <_> + 8 19 4 1 3. + <_> + + <_> + 12 12 2 4 -1. + <_> + 12 14 2 2 2. + <_> + + <_> + 3 15 1 3 -1. + <_> + 3 16 1 1 3. + <_> + + <_> + 11 16 6 4 -1. + <_> + 11 16 3 4 2. + <_> + + <_> + 2 10 3 10 -1. + <_> + 3 10 1 10 3. + <_> + + <_> + 12 8 2 4 -1. + <_> + 12 8 1 4 2. + <_> + + <_> + 6 8 2 4 -1. + <_> + 7 8 1 4 2. + <_> + + <_> + 10 14 2 3 -1. + <_> + 10 14 1 3 2. + <_> + + <_> + 5 1 10 3 -1. + <_> + 10 1 5 3 2. + <_> + + <_> + 10 7 3 2 -1. + <_> + 11 7 1 2 3. + <_> + + <_> + 5 6 9 2 -1. + <_> + 8 6 3 2 3. + <_> + + <_> + 9 8 2 2 -1. + <_> + 9 9 2 1 2. + <_> + + <_> + 2 11 16 6 -1. + <_> + 2 11 8 3 2. + <_> + 10 14 8 3 2. + <_> + + <_> + 12 7 2 2 -1. + <_> + 13 7 1 1 2. + <_> + 12 8 1 1 2. + <_> + + <_> + 9 5 2 3 -1. + <_> + 9 6 2 1 3. + <_> + + <_> + 9 7 3 2 -1. + <_> + 10 7 1 2 3. + <_> + + <_> + 5 1 8 12 -1. + <_> + 5 7 8 6 2. + <_> + + <_> + 13 5 2 2 -1. + <_> + 13 6 2 1 2. + <_> + + <_> + 5 5 2 2 -1. + <_> + 5 6 2 1 2. + <_> + + <_> + 12 4 3 3 -1. + <_> + 12 5 3 1 3. + <_> + + <_> + 4 14 2 3 -1. + <_> + 4 15 2 1 3. + <_> + + <_> + 12 4 3 3 -1. + <_> + 12 5 3 1 3. + <_> + + <_> + 5 4 3 3 -1. + <_> + 5 5 3 1 3. + <_> + + <_> + 9 14 2 6 -1. + <_> + 10 14 1 3 2. + <_> + 9 17 1 3 2. + <_> + + <_> + 8 14 3 2 -1. + <_> + 9 14 1 2 3. + <_> + + <_> + 9 5 6 6 -1. + <_> + 11 5 2 6 3. + <_> + + <_> + 5 5 6 6 -1. + <_> + 7 5 2 6 3. + <_> + + <_> + 13 13 1 2 -1. + <_> + 13 14 1 1 2. + <_> + + <_> + 0 2 10 2 -1. + <_> + 0 3 10 1 2. + <_> + + <_> + 13 13 1 2 -1. + <_> + 13 14 1 1 2. + <_> + + <_> + 5 7 2 2 -1. + <_> + 5 7 1 1 2. + <_> + 6 8 1 1 2. + <_> + + <_> + 13 5 2 7 -1. + <_> + 13 5 1 7 2. + <_> + + <_> + 6 13 1 2 -1. + <_> + 6 14 1 1 2. + <_> + + <_> + 11 0 3 7 -1. + <_> + 12 0 1 7 3. + <_> + + <_> + 0 3 2 16 -1. + <_> + 0 3 1 8 2. + <_> + 1 11 1 8 2. + <_> + + <_> + 11 0 3 7 -1. + <_> + 12 0 1 7 3. + <_> + + <_> + 6 0 3 7 -1. + <_> + 7 0 1 7 3. + <_> + + <_> + 11 16 8 4 -1. + <_> + 11 16 4 4 2. + <_> + + <_> + 1 16 8 4 -1. + <_> + 5 16 4 4 2. + <_> + + <_> + 13 5 2 7 -1. + <_> + 13 5 1 7 2. + <_> + + <_> + 5 5 2 7 -1. + <_> + 6 5 1 7 2. + <_> + + <_> + 18 6 2 14 -1. + <_> + 18 13 2 7 2. + <_> + + <_> + 6 10 3 4 -1. + <_> + 6 12 3 2 2. + <_> + + <_> + 14 7 1 2 -1. + <_> + 14 8 1 1 2. + <_> + + <_> + 0 1 18 6 -1. + <_> + 0 1 9 3 2. + <_> + 9 4 9 3 2. + <_> + + <_> + 14 7 1 2 -1. + <_> + 14 8 1 1 2. + <_> + + <_> + 0 6 2 14 -1. + <_> + 0 13 2 7 2. + <_> + + <_> + 17 0 3 12 -1. + <_> + 18 0 1 12 3. + <_> + + <_> + 0 6 18 3 -1. + <_> + 0 7 18 1 3. + <_> + + <_> + 6 0 14 16 -1. + <_> + 6 8 14 8 2. + <_> + + <_> + 0 0 3 12 -1. + <_> + 1 0 1 12 3. + <_> + + <_> + 13 0 3 7 -1. + <_> + 14 0 1 7 3. + <_> + + <_> + 5 7 1 2 -1. + <_> + 5 8 1 1 2. + <_> + + <_> + 14 4 6 6 -1. + <_> + 14 6 6 2 3. + <_> + + <_> + 5 7 7 2 -1. + <_> + 5 8 7 1 2. + <_> + + <_> + 8 6 6 9 -1. + <_> + 8 9 6 3 3. + <_> + + <_> + 5 4 6 1 -1. + <_> + 7 4 2 1 3. + <_> + + <_> + 13 0 6 4 -1. + <_> + 16 0 3 2 2. + <_> + 13 2 3 2 2. + <_> + + <_> + 1 2 18 12 -1. + <_> + 1 6 18 4 3. + <_> + + <_> + 3 2 17 12 -1. + <_> + 3 6 17 4 3. + <_> + + <_> + 5 14 7 3 -1. + <_> + 5 15 7 1 3. + <_> + + <_> + 10 14 1 3 -1. + <_> + 10 15 1 1 3. + <_> + + <_> + 3 14 3 3 -1. + <_> + 3 15 3 1 3. + <_> + + <_> + 14 4 6 6 -1. + <_> + 14 6 6 2 3. + <_> + + <_> + 0 4 6 6 -1. + <_> + 0 6 6 2 3. + <_> + + <_> + 12 5 4 3 -1. + <_> + 12 6 4 1 3. + <_> + + <_> + 4 5 4 3 -1. + <_> + 4 6 4 1 3. + <_> + + <_> + 18 0 2 6 -1. + <_> + 18 2 2 2 3. + <_> + + <_> + 8 1 4 9 -1. + <_> + 10 1 2 9 2. + <_> + + <_> + 6 6 8 2 -1. + <_> + 6 6 4 2 2. + <_> + + <_> + 6 5 4 2 -1. + <_> + 6 5 2 1 2. + <_> + 8 6 2 1 2. + <_> + + <_> + 10 5 2 3 -1. + <_> + 10 6 2 1 3. + <_> + + <_> + 9 5 1 3 -1. + <_> + 9 6 1 1 3. + <_> + + <_> + 9 10 2 2 -1. + <_> + 9 11 2 1 2. + <_> + + <_> + 0 8 4 3 -1. + <_> + 0 9 4 1 3. + <_> + + <_> + 6 0 8 6 -1. + <_> + 6 3 8 3 2. + <_> + + <_> + 1 0 6 4 -1. + <_> + 1 0 3 2 2. + <_> + 4 2 3 2 2. + <_> + + <_> + 13 0 3 7 -1. + <_> + 14 0 1 7 3. + <_> + + <_> + 9 16 2 2 -1. + <_> + 9 17 2 1 2. + <_> + + <_> + 11 4 6 10 -1. + <_> + 11 9 6 5 2. + <_> + + <_> + 0 10 19 2 -1. + <_> + 0 11 19 1 2. + <_> + + <_> + 9 5 8 9 -1. + <_> + 9 8 8 3 3. + <_> + + <_> + 4 0 3 7 -1. + <_> + 5 0 1 7 3. + <_> + + <_> + 8 6 4 12 -1. + <_> + 10 6 2 6 2. + <_> + 8 12 2 6 2. + <_> + + <_> + 0 2 6 4 -1. + <_> + 0 4 6 2 2. + <_> + + <_> + 8 15 4 3 -1. + <_> + 8 16 4 1 3. + <_> + + <_> + 8 0 3 7 -1. + <_> + 9 0 1 7 3. + <_> + + <_> + 9 5 3 4 -1. + <_> + 10 5 1 4 3. + <_> + + <_> + 8 5 3 4 -1. + <_> + 9 5 1 4 3. + <_> + + <_> + 7 6 6 1 -1. + <_> + 9 6 2 1 3. + <_> + + <_> + 7 14 4 4 -1. + <_> + 7 14 2 2 2. + <_> + 9 16 2 2 2. + <_> + + <_> + 13 14 4 6 -1. + <_> + 15 14 2 3 2. + <_> + 13 17 2 3 2. + <_> + + <_> + 7 8 1 8 -1. + <_> + 7 12 1 4 2. + <_> + + <_> + 16 0 2 8 -1. + <_> + 17 0 1 4 2. + <_> + 16 4 1 4 2. + <_> + + <_> + 2 0 2 8 -1. + <_> + 2 0 1 4 2. + <_> + 3 4 1 4 2. + <_> + + <_> + 6 1 14 3 -1. + <_> + 6 2 14 1 3. + <_> + + <_> + 7 9 3 10 -1. + <_> + 7 14 3 5 2. + <_> + + <_> + 9 14 2 2 -1. + <_> + 9 15 2 1 2. + <_> + + <_> + 7 7 6 8 -1. + <_> + 7 11 6 4 2. + <_> + + <_> + 9 7 3 6 -1. + <_> + 9 10 3 3 2. + <_> + + <_> + 7 13 3 3 -1. + <_> + 7 14 3 1 3. + <_> + + <_> + 9 9 2 2 -1. + <_> + 9 10 2 1 2. + <_> + + <_> + 0 1 18 2 -1. + <_> + 6 1 6 2 3. + <_> + + <_> + 7 1 6 14 -1. + <_> + 7 8 6 7 2. + <_> + + <_> + 1 9 18 1 -1. + <_> + 7 9 6 1 3. + <_> + + <_> + 9 7 2 2 -1. + <_> + 9 7 1 2 2. + <_> + + <_> + 9 3 2 9 -1. + <_> + 10 3 1 9 2. + <_> + + <_> + 18 14 2 3 -1. + <_> + 18 15 2 1 3. + <_> + + <_> + 7 11 3 1 -1. + <_> + 8 11 1 1 3. + <_> + + <_> + 10 8 3 4 -1. + <_> + 11 8 1 4 3. + <_> + + <_> + 7 14 3 6 -1. + <_> + 8 14 1 6 3. + <_> + + <_> + 10 8 3 4 -1. + <_> + 11 8 1 4 3. + <_> + + <_> + 7 8 3 4 -1. + <_> + 8 8 1 4 3. + <_> + + <_> + 7 9 6 9 -1. + <_> + 7 12 6 3 3. + <_> + + <_> + 0 14 2 3 -1. + <_> + 0 15 2 1 3. + <_> + + <_> + 11 12 1 2 -1. + <_> + 11 13 1 1 2. + <_> + + <_> + 4 3 8 3 -1. + <_> + 8 3 4 3 2. + <_> + + <_> + 0 4 20 6 -1. + <_> + 0 4 10 6 2. + <_> + + <_> + 9 14 1 3 -1. + <_> + 9 15 1 1 3. + <_> + + <_> + 8 14 4 3 -1. + <_> + 8 15 4 1 3. + <_> + + <_> + 0 15 14 4 -1. + <_> + 0 17 14 2 2. + <_> + + <_> + 1 14 18 6 -1. + <_> + 1 17 18 3 2. + <_> + + <_> + 0 0 10 6 -1. + <_> + 0 0 5 3 2. + <_> + 5 3 5 3 2. + diff --git a/test/samples/haarcascade_frontalface_alt.xml.gz b/test/samples/haarcascade_frontalface_alt.xml.gz deleted file mode 100644 index cfc54a852de00e419d9816b8b4777c17fb8ae2ae..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 105708 zcmV(sK<&RDiwFqpO8!g$188Aka${k0V_{@vUuJS|ZggR6W?^GxUtw%?E_iKh0MuP; za~nr?{mx%8(U+`KB-GuvpSxUcd1Y@(RgSeKD@o;(3M7W&RDl2kfO_QD=bRpprfho9 zGv)v$ZCNnUJ&(S9?>+a~r+@o=J+D62t97$n{Pl&Ns26`bJ39TBlar$gKR<15uWwGy zr|WuF8THwy>O;NQ%rHjJS}r!zd38CxsH<7MsV_Fm)g(`TwW_BZOg#Tm zy`46TdR6_<)QhX>YBM=HdO6b15pMnZKmPgV?YnP(eD~+-?f2h)SN;9_f4q77ef8a& z|NilZH{X8u`p17iu3o+Q=l|pnuYdgM-M2sdfX~&Nx7C0Cgbx#5#BtRb5w`CBA9a)x5c= z7wekK^7=A=KU-Fd<>v8W$9Lb}-T(fc$G8BWqrGwc)ot<6dDS2LdA-=wbF6;8eDy7F zdJQ`MYWzQN-8VP&qWWohy8=C5Ew68GHz3@9HQXP#!ue{t`hpw1!c(l84_BM&Pp`hg z)==trdzV+s)y;A>-C+E2g=envuywVn*Y)aSJ;NfryJ}Xm>INI(OMad02(I1DYI#%h z_sdJZU9;l68*HlPV_ji6uu(~!xAm-9Z&uCuE$>rJ7qh$`%>v7jpPaurZx(pi>TRp>J6A7UlT0!vHp1lNOO?rxFySW zM_>l7^6;LE*)JXlH@%ooo9lWt`K<@R4Iiw=-GksQXSWyiIL}gTUvjp*xaDTc3*BB0 z(_VrSOMJbmt|22<&2+y0dC@be^4te+arbWT@cYH|y5^(&YRBPfUoz{Q*W3^@vR1vA zEmznaxFhaxz1-woh8N$g+sB#V{@9olW!LSi-m~)EX5kj(Zo$lkduYXNvS>HVdcA$R zcVA6y9=s4FAYbR_)xBEIao2VMv7YTq;wh^aQxI$Yf?r@yF1}Rt=NoXqnor+c-^?2> z&vdn#E;dcQreL_3-?jn@SIDnEZ?K8;s~_jPZl@hRn8&pPi7u}2zti((-hkowD3{G< z!JA=|RMX6$&Bg6}iiNwy5@QYdV)rB_E5Bago>l!31g_RsWOv^3*L1-Jzj{y5XWmTD z=XHB8yy&c1fz7eun#J}bUk=Mh^>W-&fFJ75HC_l?`FMNLb^X7$7=$mY+4Oq)p$1w1 zv}0XBnTy+17J`{cZ_n48W&=@IeONAMd9^96zya&O998q>IxpF6md(@6^mx0OuwLuG z@bfv<09UTTo3B>4H+<=DK;}S%yAtu2_U1c>dX^hoxEC8 zt^!%$V)J0w5$}jq+&p;AYEgffH&D(Od8236`qZrJZ$PpptEi^E?2!55U0+OR_4_SUAX0cgokOgCxvAebv%kJ*XPt2D3APsQaoN$7`h_w$7NNgVOjoL`UIj$AF5 z+)WVXUk}FDmq0t%Q)j=>s;At`>tFshUtX$EXvI=6ovFY^X{g+?Q$>MH1DN2Z1`Q&ua;=IAT+<)7?+xy*A(tD?p#^USPO{IV_ z9z*1*iG-!r4*!UNP@+;yMfAZ8tHmf|q6^;pBKiayW7NhdYz60C8blv+0Q!K79N46T zKDyG1gXHNcWG6zV<226^Nk_mTzDD+x^ z`TpUyipKZ|7PiV*aYE_(i!pa|0Rx~W&rbB|%k9UzZx;3E_V@Y2{n|e&k@d5X$PQdg zPVU%B+-U|I>B;4>o_J#d_L57=S!YrodF+#@=%TkedK1ewQqZ`W^*Tf=-h^TNzJGZf zDpEYC zYSS%~p)EOP1S+|SQpN=pm4z}R+~`3iaFP!uMH>Zw$~32U&MNYt)zF*H4Wg3lol2hA zQdO~wO1{#To`mQ^q8yZ|_2h)2Sq6O(fa^RAEhnakL=bll5>JDX64qsV~pxSCab*lma9$&i7q1(Z{#dA zpg0S~Hq53ygySLeQYW1pg`ydQP9T%fFl-gATLsIf2br96fbp0EW7wNihVV4xq!DZh z`~~=~hLPz2zF?c(L)`!(56ZUf(=!x}7)cg}3}hFPR~g0w3V@0U&`&@D-k13vY|wxk zN^8s(7xXY99me@!chHDqNJ-OS`1%JUo>X;7zz^(R1Edi^nI6oR=$()VV+!z5m&IK` zb-EK{faw;~Kp&Fczk9-v!y)oI4d2K?9%IG`y#!HSvV-gr>6)wp z%m}HBle}_yH&|z}CCosN`2jo=j$GopEh_C=!&g5&E1md>vLOYn0K35)Fspj`&7)=f zGXY9!rOI$11gpW804@<{{G<*Ht-xVW!s4D-+F|zEw>h$fq z)(IEm4LRz192VjTEYC!LH_g?S~~#ApMI36bD^dM+_C$xg;@n9A%Q zJBBOLOrr8BdKePP2H0&qEItj(980c1r3i~LmZ?siB>x*gSb1C^?=+=Rj}9GFF1x#LZlUX<=~FVN^N<4D~w$nJ$CS zQ39DK4uUH(g+dd+(^FUuM4`->fT!~GXv!25Q$&mcY}K$El!RvzA&Y=3z8g8v?LUfN zUr)e3k|X=ZD}cE^9%G-JQ_RgF^eFUkIanr<%$s6z&}+{mM3yM;bT=a=CR#HZ1 zpf3veLB$^45gjw;NRi@Ft5PyWLpN7a1P^K$EA2l0scd8meI#Z{|fDc~0vtXjA zRdC7K9?T>v2_4NQP&pM+2^?sRi#{r`;)jJ__8%k*S>Wl=%}gW_#*Bg=G&VOdu|#L- z0qj90kku!kOp-lr5YYq_^Gi~xyr$WlfPlkg=NW+iOF))^_6)np4NKzA~Oe+vc zM{!;XlhkyK(Ix}^CrQgdLhaw}penaBsKPPn9^O4JG1G$)Pt0slX#fO3ZRQQqzfe?4 zp^erGDBS{eyTWV%3ngbQ^dduJ1I?%dM8+b62-%kHVm9F@cV9a88y5->hCHdcrMwjb zQfdt~Wqc1D&+K?@0TEpQQB9eH31hV+Si}r>Y9F6V2u-pfwJW(dYqsB}V@u~T*ilcg zn#no^qZv>zq#iCPph1BwCTqc#b7d|l%!n$5$oRNm?sJK;ZL_p@Wd9OpW{&G3wtg_= ziAAfk9vo@u{}9ETsv@)6TIF35i=9xa9v!ig^~|6&jGhl8;M@d^&l`iDhAec z0jmVps<$$auY*Y-P>J|&Fs@WATH4lzS;7%JV<4gS?*WO#N47ijAhwk&BP1T!38Wmo zh}h*e8r!E5%<4cJ8ImtJNm5vxo05vK#}#b9+5p<=?G+UN(aXx zl*Bv>>0!J9nj}gvNzt=ps4U+q=5i!u1KSr2bSIkqyFs>9l{>t?AY~fE>kIr~Sa0VP ztSw0)_%eBCB?86=XT%y)7~z6mO3{#=ghhgnX2k7E;7Jop=cNhJd25}}v9=?D=l2!4 zKePn@$O$~5l5X3P=D&<%7A9;3!z$?L11+^)wS;tZCRSi;Z^}%3uM?~m6%+ue9a^_> zh!h@aA?EHBo;Zrt$E*R*pbP5)oOk8$1}m;ru*T7JhqY10?%9{dT3{&Mp*ZvqIXt;O zx}Y>y#<0%agdIncfE$#HCQ0m(cVJ_X#K5*qumlUOI%dO}5K=PCj2o6}wSRwEZZi;f zR6&_66h~>a1WN&&keDxp_0v7j4cHLYAhehd$(zE$4G&Y$2*cp4aI?dLJp1>A(J8$v zAujU!Q8MDdOANxnqGRPIxTr@+8@Q8wCIB=lEb5Q=B4g9 zkE>dv@3-Atx{c?J&_^d19a{RVBw830p-(8t#i){HfE4r;UFJkFDX?izOgRJ04m0`= zQ4F75U7hJzsdaUw5u&PQ5@AAsK;l6tD}6l6MuM=$T6=JuwS`G@jProBFwH&P0?#DV z=itc+MtjW~8O>g0wyfZgZR9+V1znPK9G4MDW4Ou_X&Vd!f%|uHF+7vHT_-*_{TQPh z!cM%&-RA=EUj*jvQ(^5zGaHNLoi6u)E8-%}Y&ob(81#TN&m_g?8H7yTB+<{vdRqyB zN%lR;*>VCh`x7`XK#ZkHb&-{9fIKkto=-B6$~nT_k+#fjW3}0FLO{<(EDok_D69(w zmkBcze1wQALl(g~s7G%MjA~-V=aLOX^hbW{teeQKZQU4!6M7OOtXpP0DupG~ebQ5* zx;&GQW7JNSCJ}qh>Ro!Jg0gyG(0c#=3tzciSf26fIEFVF01#5kF-gt^XSr}aa5_|1 zv`PCEgz@Y$obEv*AAsw{L^m`heTX8YY!>fKEwGjEOf9fEbTC3@K@JQkO}`Lpd%Y zldCz6V$%vTPGK@uuD*@{icw```8<+%+Cq7~!&B(m5}6Uw3gW~9jL~NSv8b@Wdk_i~ zcAg<_AQPWaNeMTJF#VD64?lWf?odP3!ZVhkI@1W18J9X;ZToSGGIU& z#nA^Z3h1P;kstezIAy?!5{4r619bB9EkAWPp73}4Gy)K`(D_W8$^9c#pE@N#k_hP) zbS}M3W&9*S_A$Fla8EU~|JXr%7;cxBN!kwjUB+>)bs8yf46JCJ1@A;{zz99Og)oS7 z<)v?&+ujB9stT1SQmJJOrATu-U;a$Y8gd+i4IKkP>$7ou}?e_%8QKw5?e<& zSD44+DG>!)FS5h%z`jWb$m5X$u_&WSMOa=cr5K^Rfax4y zVgvga>_lhsFsGr}zaPW5ee8E|lWr;X^pUJEv4*P+NT&%IbRUmkq*K=^n8*xh71nP$ zNJ-E~1+z7)htO&NevHGWFUrJt$96R?vcr`RJ#>>5s2MgKHr6Lyh}vN_=LYEjq2S-4 zr$X%Ckr7&yv8(+yTQ82Hoglg_voL(HJ_N6Oa8o`I0`k(alC!i#5P&0j$wzD{BLm5_ ze^-Ud4Q+NLnTG7F7^m14D#_}Qi~pQ1bFTvh_yCIx2$8Kd3)K?L?4Tti*i_bqVS#(I ze>X+z4&0%awy82B(8x}J?6ie~2yHESk17?051Bs<#6~Ax8O##{PQrv3#ez-)8EOAs z3O2IQ-TiJ_SvN*xI89*f2=ke+#d)e*A77G#t(+KAbOK;r*k?9rh*l;vLAv^Z2~Fkz zP6~BrwRWdiw4Lln>5j?lc(&hW*EmlgjyJz1qz(!lf1cL#eR+q$Bfz3zH}ZVLOma`*%Tv z%J1?er3?edIWW^0Z#@JUI0GQLtj5(^Z4(<4C167-gy9}=keM2)E%zGcB9i@kA3}k= zi{ptqM(1HHd1V>Gh4AXtm5A;KOCEAO)us^UF+tO4#nX45 z2oWaG4J_t}(WKyE_VmDcOfE}okHS_^QdR|GBs!8+8jsj z7_RZao(Ya2S_PY_PacJ3Q&vDk(Vob>%xv;0idQN+mXLTike~MNen>fQY!}SS;fqmF zUbK-t?*fxvSg+F~f}x^O)+8|wQmoXOCqODjaUP(a41*7Hkd7$2;9PVjYmQQ{!?t;f zmXFd}aqUc|R9T;K$L`fUn?nP#nL@cI5P0k^Ca|7#8rX+O4v;R9OWSswjo!B1O`UN= z-PSdaKuqGnWP@Wbsk_e8MZsV8prRX!ed7xcRE904Xi#|-c*NK+16cO&rcm2n{X444 z^SPB{9Jr??(sdWDXC0&ObNG}Fkq20dQF(KIRWhPLe|ug6M2m?Er)M z)S^-BDwQm=8obfQhEf=q$bW{>ikJ#pd5LJAjv0YDanm@Ej}Fo6BxHoqY4>gqt{lPL z=e*DHJD#)`lIa02f(^jxkagMvmq_99V3uwq9tfPYb&peNSBC~2CsrF)A!Bn0jOe)g zj1}{{S~NU_Gk@F`4Xo#aUhVW8XK@@yaUGipOB51ImRaQhTdYUEsPb0v{43hry08(W zXAYg@V|HNu4GhE_rs-*Wj$C(Pxt1K99wR9#@We(ewm8R*ZhZnVVBf^(mtvdE!gCvq za}p)dPKP!amWOzto~LP7&(p*)BV=FuNs9Da83{D}wx@WMaT69<=}5K9vlxA0U028{ z1%~z_kE44gT^hpf(;?bk=_6Dlhe>1!H=to)yV73$+#s(sJ7Xp$1DDzg?*GYqw_VwC z<4W{b)(=!RDe zD_U_TVsha;RH#fg)#T!3j$z})sR$K;FTVI2)E&TQ~V{VL81->#20bAuVSyzFLR5DGHub+RmF8j`bKdYjX$y1!tYdi*%{3t`{cV6 z(hCM@cqJ9f%x~$>`{Ma3}!tCbKvAummFu@jGpj5Wvu0 zrRk?Cf%vattiW-?&7S$&TI=2N^5P`!xDewtOb$rFp?5_q4~W(p%FY$FSGp2T2I8RV z&eR5B-1Xw-<$$?Dj@F7Xx~nBpp`t$LY0` z(cOmA#xG*6z{4gthpk`K-5uR78k!N{R`K+p6@9=tq=8UJeE{d2DN~a|aAsYjOx~lV zE+W7aLy21*IP0j@#H#iC!`8Q+B4L6Ys8BgHG64lg}}b`!YB9$6Ms z8Qv?QwNDQyiZvx3H+rNk`db`PF3^MIy_dUudn;^E0okjg^=(}AF?FWd6NM@l8+hCB zYijuGNy-|><{WC!0$@?OaKJbrCmyJ_6G)Kg2Y4(2Am-K{)Jei|bJb1-QH@EfcJ#OO z+n0*-L`m$g;+$}qfZs_M%AR{~Nb*BTZwM|6rzJqZ08BOj_MkR(?qwPpSYxJ1R9_Vl zpCCratqXX)SnfM^?qg4A=x5M$vhS>Ot_gI|7wWv}SC%%XD`B)x*Kv-x?^>Jo9dJ!J zdWL}UvQymMJvsxhp73+&T5D*uIum=^>@3e}ZB_*LW7IB->fz5%AUHM`&KTa$@`jV` zhO18Kw%q}XD>q7I*4!K5%u8V!D5;TiE-6Y#02><-_p-oK9%k9*>?V6f9 zN2FA5rBo06^^;K_=j`aCytxKY;M|kNzDq06J)Xvvi}&FX&qtjwq1&`ZWK0jquymr! z3XqUbE<`~W=B)%iaL?Ih%4j`@0-=G!U&gOur!eAi>urQ?9XpUc(87R~T?=4f%Sj3n zT3rf@X~d5%OeUd4t?I$LqC*y6%$GY6sX3D0-}k%xp<#b^BbEHe&-`qjQl*|FBhcF_ z*{oARKBx$4ndFo8oFt$d-BEh>%*KSXU&U~t5B~Z4D)vjwx?yOMuP%6Y(933Oqa5mi zK%6aY^8!%rF?}HhNB7JmL6uz>WyhZ%TIe-edcW?y=7jkcf%G4K;%93mTgNAg17jrX zP3{@XV7D`H)q0;>VWBl>bYm-7TkZdvReP(#t1n})b0>YuByB>4Xa6k~-jB`S|6CQ` z9~1w#5AP-;M0rUM5#GEq7(5SH^pc^B4ecUfI+;fqW5y$jOIxKaW}<)o&dx!hzhQpF zX#96LMYPD?=iZagkxahhJhc~{ z{iEg>NV@ogLRFNwjej!YW;*|5U@Zob(vEBm0-bQ^EmsNNJ9hAAb~qvGi@|qo=&iVz z>`z*EHIx;n5&e6X$$d4j4ISTv$XIG!YbZWHan7$>yX$^sN$$wArrlkuMQO+?Vh@gz z4ghMM>x7C1aPrQ>A5$!8nS)z)4L_Vn64Hq+8qqjDeJ|O2C{(O0(yX1x^cbq1B8GwL|sJv3q20cm1qtCV& zIl{mdb#f7BG?8i}e9a^lWk?6ua`o%F^WMv2eVd7pCHv#ftRTR>2dYc!B|7;dm5YVR zj6D3ThvN836%}8*^bY9x26yMiuYo_4Z(pymU)XZqfIuih$7fn=o2JN|kO zS|rLkL}`7vNBk;MK5pRJ`$=Jp{hQw`QtgMI`N=?^F3doQg|S~z=8hRk!T3r#t^t0` zx_H@5IY8eM@@$xbbAfT$3XlG6^g+aPVCF@P{pvq{!-QpQ9N^`E~UqeSWsV ziTn*miv#&B6s-z`AW;X~ptHSwAoHsnTO>a00E*99#-q}!)k-p5z!s^+2V{QA&;JHo z2#eI;q6>ojEl#22Xpz8U3{SyHusM8Kd8q-2a|0Gl=J269O5Ypvs4D8dsD%0aOydg7 zd)tJ?C9>Et(eR3|ywVc63Wu)`b}Ek7hc??f{K6)8DtPERnmR*S!^2?x{ySkvrp8 zhX|uI!*w}1X9rBAHrjwT@vDp1-I2s1yNe(HmZfirA2$!YEd`I$6$kn#rVZ~|Q_9-C zwaMXM1ES}Om_+^24g4AcKn4}HJ5johmiQe@zy0ppyJOj(G^rFd^u;LVlgM7Q!Ie&i zMJm4uld^Sp#R=zZ%2t>C2Q-59dXwIhJ_oI4j~ZGj$0Q3AkJ03!zjA(un&K8MM1Zp! ztr|k%jpIsO+-Mz;2*!xLeov~2A-32+nfWaN$fPGF${s<2!~<4tkjB82>D9@!qROaC zls532WiesqfcQ`91h)9yJ9!5Ptn@adfE+!}Nb`Ec^(43u^sgKO&h9*{l8u|Ry`-hl zuc86W37KYYlWE4Qa6=RfkY|WwJPCnyG5S`PUde}^yYpy@je|>RC{1}6rJ6^`7Q?Q8 z;y`VQJG57Knym6XnYce1);a@87$8f}!pVs`qleN4>6-J2wWjKT$}cXq;M+O{&r{o! zVlpm0+(M=_I(d?R1ITpkI#(y_4VZ=Q^i6eH`+Q(Xari(nZ^mf=C1_#Q8y<}Z zi$w3^&QucDb(Vf>^qTixc&=8d6$gTqb)rzZuTJ@rPFHHd=ZqW7{YiY2Pz^~Ie2wa} zDlF9=qYa=*Vl1k#K0l}U)}7wE=Y8uM-ze(De)y4}4c+muP+5|ET69k0tk&|%)TRT$ zY#F_h1jC>dt+o6zvC3ou-i4l&?>yKYO)xF|BXC7|$&TCYK^|;vgOri<64RLU?r`fy zZx#AXpfg)5(+NAHOM~^^U1dZ_ZjsWZ0SvaH<6!tB7aZP&{KNq$TTDmO48Q9>?8I`h z5k3;G9K&_|W>+OUoH@7&sW?Q2BgJJ%wFgzAbsMLJ*8Mx_anfVY6A;6hD8IN-w9k(# zu65yCg2gwvc2ndDo$k>7Hi;0MBtSd;DK+VuXn4&gDKNk?!9KfDp11ZW`H3mTZAN+9 zmQl{dd?Sr)Y+>nU_{1)uIJ(#(xbuiTrU$b|Pn-snUvh2n>j#Du@^#-*UF_Kn8;*D> zPQ*x^F}hqo3Gl4Oshx=$gH!9Is|BsuIxUoYx4NhZ@z0Ma>NP)qKk?f&m_?Pe0)cZo zln>ipNgcC|xM09!+p8{7LK!vgQrG+{{emB(2SG(2e0ZGz6HukQ|&fT4x^<4J=dQ=BHnpXY7$Njji~EF*W|EpQm{bPIBj(Ks{D75$jB zs!uq)otfF_pOt}=las580u}b!jC0Y&G4SVy^)akq-&@MYWtFihL6mU6jHqK8`OZB` z6o&Jrbl?pJV3W-c54J?%#5AMfUmG37O``T}t9jdE(uKPdrnpzH1aZ%#DC;3{r5R zR>Jg9x1c0>kH@lkG9LC{Ei7PWWZARpJlQv91~3rNIpNHN2ZR z-)%Q_s^i4HbNL+JO}^t=)R%g8Ql%M|0&Mn#6`IYmQjg3?SD9oRidE((GW@}85ndcH zaH2SCh8yMg+^DjL8#Sm=r357nCR9*P+E+V%TuX1vV35fvEg(x+(3S(Oz-lh`iP44M zwZxb2Oy8v6Dve?W1|@cztB)6>-BYh_QTim=20b@kQCyffVP=c-zZ3pVmwVIu(UOcY z`i9F;ULGwQ2SX~A4raUz=VGU<8u1<#T#7beQg;lv!$nsoxuD0QpULNk7I|N#wyQ|_ zVqlE4k&~!eujt;nv4xRs?M^~eEoHVL4!n-RGzOr=SoDBDVc%4~zOBw~oT=+3qJY1s zUSL|XH;>Zd0k)vZr?kW;uF+yT#jWwOEc{np28o}aU5tF*8^8XcAGaNTX!^n(*E(ed z%EhZZ$}9);!(kK@IA(=*0GURIJG5(focxz@aq1K2sc$<@{-T$eCJ}^dWP7mX1wyMd zHp4R$xc%nV9?X9#lD#%G)TJ)EEu2Wtq9@(W7SUNt*|J6?&XWX^Acu`ar%5&_E%hxa zxbJ0_RLxuxien8oAKs>4$EQiYzWvT_tp)2AUJIM0W`g^NPPOJfxj)2X#QButm+%*} zvMn#1AEq#uX)!h7fJ@WZ@!puJ2I1!xGgW=z?eD`Oyb3?S2iti3mU6h{rp<w0Qyl8GQIekz;qr};-FcNYR zJe*0+^7k~p(I~z3QoRDwcDNSfLd5%FJUBQtICPK9w7O|J-aF%#at^2)-5Fd9y>$Dk zS^ELACb4U+amTC>-?MET0rM>j4N_ZgZgT{Ayg!i@b;X6)Z4v{jRuT(~_7Tp!wzNOs z)HG9~eH9uG;1=n$4T@FVk{10PdGK%*BFVvrM`$= z9t?ZJh`lko4EI&5QShnHkIgHvNR8;V(=M&dA$8-39#{sQSZdZqk?M)b#BJP?4}#Jb z`yY;T!tvBAnw#1m@G)JjUC#K1PrJ_Dcri$1P05U|wpyeUx!(7Y(YY@&nvW8?D5iR# zJ1SM@&XEpKkM`A=06nP^s3gjAi_fKgmyfJ0Lbd#1PdT^sI9JE(rfei!&`4C$J; zCya@}QAmy#oMGTLciTB?t9`gM0IbKNzs2Y05`Bod-%6r5;oG)+BCok|*T6X0{$%;2 z0C?KC4~Z;QX6*x8jBbhsk*ns!2h5r3HDP^EP>MauHL{N!Uu>G5md1(QgGb2<&0>n8 z`zbmb#lx%$`aCx3mKR482b`G-HBaT%)2Cm0<3I0u%iu7TU26}eqc`=&5nd*{sWy^* zI^lxOo;7py1lfV`g`(8OGJbw?ae2wSozz}lGMjW$)f)+$Mgy(VpBOVSqSL)mfxwq< zQWP%Y40La7-WGGO4j40yf%;wgfqcoP^aFckOZG%1fe~6hdbt2c4Bcy&#yR4o3{lld z;$zmZ0(<@{&P?C2WAEE38|~DNrdM?kCa6&pvnRf{O8y@g`N<5_S$&%`iU$X{(GsdG z`ez*&PjC}|7c#7a0=?lhjlG9NsSNBRXMHmH6c-knFrY@x1tfUfrgmR`lnKN-+>jAf}F*R?tm-PjVYOdU%}C-eRf2Pn!0IHY*!ZdhJJ)gads&+($dLJwt^>1GiHqq z!hx_0shg%{5}I?34E*A?adNnbD?UGt@QE7vz7plDauAMByf8IWn>^VY_JY0@y^wLW zK1r0YsPu?r=m`Gg#dquT0}1kEuW!SQB+FG&gVV+wy##YQ}+i=FbIMY%+ zV){yyQ2bu=j@J&qzgET1k1IwEZ^lZUCE7Dq(pNI7v6alIfZ0#<18K^UD;@WfK5>&M z5lFs}RZEHK;=sZW3@pASQSYCwLP?kI(c`2HqnGIQ@|~FHkD+PenZT8*$?()k6NE+; zH~m;?1@tdBSGVS!!zeO4Z&sxNir$-d*8i4y=a1L$|77#dyjy}^&BPX8NH*bsK!Fy# zQ$6&=7cvapK7g*%!({G@6hWu#01m<}QR>>j|9}`pzw9oKTI#nk_Mbnmaz%q~SgkPz z0C)v2B+VebOFXC~RS?Zvqo)eJ2IuICxDP7R<~`iYB2xPN9ESD_azqw4fD~#4pbJ+fcu=100i@+_TN&q9C{cWhB>} zpu!noO_yq8dpYTD6U>{(Z`~={|GQ zZT!+m=BX70Tl9rJU^qIY6!*3&x``;R__P}{qsaL2(&a(uRJ3Z1+XT0eIvcSkz2iH9 z3v~o`EV>jO7?T`5P5}G8P^#R%{nDOHvv4$k`6y-&AcjemS#>;GoPlshq4vvIj+Xl} zm0eY;F8~Woy!=#t(Tnm)$b2;J3B2=>nq&+C|9AWW3_8InUd-q{U?)n7x3rtX#MZiP zIZXB{R`6jn;?tdM{ReddTn}a`qQK%l_c+nFN)6zCc>gX=sty>2mT{Ecg7rZ%*#Y$Q zg*FNW>Q!<5&=laojhEEbww{0<-0aNeI^oFHv3_DC>967%dc`xmN9=hGhBtYuWNlum z;GIa?;Y~_5or3dH3m4gw)VoUb;8d9vM~xTnyAz%rIU3)$M%cq_K(^TbUo2J*m^$f> z7PB-H;o?(jjvmx*{X|?yxIdRikZrCVlBAd6a0wYbUov9WUvkGwgv0#+90VA1^68SRDNo3*h1$sAac^rx$pgNl^%|Yu#G4Ne#|9KqUqJ8#a9SFZkMqeQ zD@@XjhO%L^t+5#p500Jzh=|ytUE=3Q7OUia!w-*k=y4?fzcf|s9`1Cxyu15P3v0Ggs!bLR+cTH}Qp zKNj_nr1?dsm8lHcedrb-}B0G)zlmV?{lJ#qN ziMIPP^=(y>SBt@7sHEs-%Ll{sB*83MBCD#Cy{sE0Gi=ASx4OvaJYXlAnfg~$^4%V)`17@Oqc>cdd;C)EhH&8O= zB?%ZUfW=DfxyO@vL+jF7K_{%1v-1XK4koqg1$X7*yy1YI=wMsko~2- zVx5sP@_^0frQr;9S~pbu%VajBR^y-|(466gT6BFqk-(a_u}%Z##ao%yw?b%#OzR5S zXu@1%U^>gWo|o^Hp-mP>8~2!Orjp!1oVCV`&qXQ10lU%fgLHS;Ho0KSD~%)X&g}x) zqIi;9P1db3F&sU!PYUURvmP!$dR(+Ml%kcc#r-TF0rf#SP*CKhga1J7cgm4$=l+Fw)Qgx7|t+>v*{A32_#$ z&(Ni&2cE7ue8DLdZo7u7wU*V~$P<2|WdwA+f4DBs(b!~HgyY~!8mo7cISWJyZ3X`< zm2=!W$sl7KXu)>@4HZezzlxRUrHZ;aNSs}?9Sf&Q@sky=HAujFuyA7178=-2hp0Xh zZ>Q$4Oc$c8JB1O-zl@WpUp&9}R-!)ME!pI7%_Vs_z*?v0)1)Uy0lM>&wB`tz1nF$N zTH}5l?VGLD=zy1KyI2ly@49wnMs7mjOl~JNnaR_wPu_KfU6l6Ls#~2L!!oJO$X2KS zXj}CmI>LfDdW^Wb)n*>r9W{!YbJlG5sI37un3_qO%-zCQz_=a+*669ehU^YFijH+f zc|SQSLstKe8b;%=E!*AS^u;7I!G}u6Au)SG4HLsfnvFZe8aCnZfh4xDRUjT1WH zIePlEk(}N;cOJnI6zh}CZmaY^?Cic`eB4ufT69pYQ(8*e;M$b-h@0qriEQV6h!Qae zrE4$E@aWIoht?T`fx4!WH$AyKRIi4<8a2}4 z7UjY2P+Akl+qKGwyqL`rDnSngX0Byj9PS-36m4G@DerBS$}l+GLRJnVJrbZyxdD8l zx2EE-i)R-plR93d6C!znv@TuM@g8s!CF?)F?rgC2l6l<82ih(VL^3G>$oY&=D*Yh* z-2o5KOyeEG%OyTLPRAq1bxIj(g~bzh!c;WwwDV)#v4zq68$%`2m?=){$AU}i!3eOM z8%^n2l@>X7F*;3OouD4Abk9YE@%hmOV?E_YS=9ztb5qW-xUxoEx#ujInSSFy30i@@ zb5a`MVof>`J|~T<4p}GW7I~k{m79{eU=i&ouc7WC9C7s@iqQij;}x7uK#l#Ut1j9o^sLT84>M9Br0H7udxZzBA^M?fug^e#Up``u#N)o6@^vV;uYg1gc|I$?#bx z<9*T%NB;9;u5y3l`K}AEy-H=kcreI=QAH0Bo>lxKda;JT!R!VtN~Ifz zS~_}#Mb*}UDc9iuDt{RRN4G7ae%>T2FubMAU3vIpS`8^d;*P~ynGSGoB5*Ph6m8U9&saoz~Q ztUKz2p2=vyRHWbzBS3yYuSP>0F5S6v&Ndksi*rP>VR8Xe%CF<4D*RJ#q~H7@zciCO zcFxSH=%zHzD$(XRIO-$Yq;rK_JSQ7lMNxZ}PW@JvMSrHxj~{fRM!Ky;{wfjN9e11t zE7BfWsV3S}K27wzD|0;)72jhjj0U&sqN~pdE7ehhJ7Lft`^=wy={X^UXK(zH1M`&! zF_uP3+eoPI90N{Ee}dO+Buy9=ca;acREPBEMpQDSKU-8K@sjK)PBNZHIJcDdpH}%ME}o|YX)!Y73U>p&vS%3v2tlq4@Y)!=w*Kha^GbAx`gVGE zPhNZ3N$X}e9d$9x{D7ls3`W#j%el+2y>E%2C@Ksqt2Gs`MtMO0q-PAyMGw3&O((NN zDiz5ogJ>Yq7sCyXkZtU)y&Zkip7yrB9N%xcV~N*ZygpIVr8EwT(El(=dvc;@9C-kB zNUivKES{zl-X!gASkx|)#~o~H94GWkOz8}6oaBjx3{YM}hf0Go2jrVPPSw1Yp)c{~ zb#04rz%uoFKz`>=Vtd?4f@}-4O8@~W*6I@nN7v>m9mfz4O`Bw;1zKpKN}@Qo^S_KA z>c}>@DO2V5XOD@DzOs(|O%L*s@`>|B<%lQ-+-of-S=H90pwZ$yFr%*;1b%)D!AIvV zg<=f#wy;(Fr5r%ewMTl3kVgh|L*CUAS6+lpDz>t8?mqai0kbUnn|*!|5ntubI4i%( zCgUu7;XI5mmoA;#?f}TTy#fA2a-2{~mqnlG&kriT?YwU|eDY%;_|H6X ziBDU}qa}q;C|hKm<_5Htc`tw{U92)7WYW*u-Fuc)bY-y^SaHBVb;K9wjY{$gIT&uy ze}3o+2Q5GR%+K~;K*O7KusS#3YM@nO;5a4~vWe7Qb9#*hgJa*IHG7XabI#$2CP0Stw) zAoCBK(Tbn<8rREpl5D}jd+RuD9z?H;2?(DbbBwcAZXJ!4Pu9Ci62<)RBR~69tEKl& z#dpzC`(#Iu)GL?TyrEN`9{$pIr3X5XmLlzsC&p5xHTJ_<67v`3N+9k z41a^79z0Nt^K5Mr?>iab%sSKRuYv*bSk{y+KqY%;dtX^XBv_XSTN zwdj-G0IfC{ZJc2~8>!0g427^wlCjmlijC`cM)X~d^sZHly^3e@bEBCw8r}!w=^)DB z`$pU`Yq#s@@IvT_7aag+Q7>{}P7))&?&i3S{(8$q%SQ5Mr7;l2IrUjaF^*oPU^%LZ z&1vL}23|NzPD?#q^y@!h)oK%UvTbGh&0mFQiP~j+fbu;CncZC`sQ{&GB+Zehcg#-L z0SU(~yI7~sk3ohpwcn^2g=~TRL(TZF|32UL$s2&bOHWk*c2c{u<1v%bGOGcG;#62bjh}KD2B3t?a$(mPO(g^}@SCmQXwLu9D zDTO(Lri<>#Crn+hZOhv!KBJv>9438LCf;YS$!%7NC!w5d*JucV(}c@w5@jUM;INSB z#TF?YCtO{R9;V-@r*pwqTeJ2oULTw$C2>&saWm_9+BP)1kg<~`(I)&d&aQSju-yf? zj~V?tN6Pr&Cw{JyE9nhR*)P3$&7P1xDvivQfwn*meQw&pF*HqAg8R^AleW)KJL=bW zc+|RF4zUp8j7H`=~ zE#-;hPYdTGL!D6Tv%c48w#|+4-&|uZK28V3Cl_`1W|r~2)!Hzr5HzJ+crYHCn&EB_ z#9T@8J2{4hx7nmPGH_es56Wn@daO;`4_Li^I~u+(l#lqkcQYr}QGWQDpSv?bH7bxo zkCEIonVd`gP!|!V+sqQR$4XPlVkMn^(QoE}7i|76U%lH<<{n92RJx!EH4G)xA53_i z*(JiTC-QkGS6e~TQJ_KP17`ZmxV+i~$gph~!(SD>u~jrXP6c;9ncf0C0+jrq2bw4o zDL!n+@m{LLq9pHt%j@|3Z)6Xn^UAlZ4WjM`JBL5A@c99DX#>*F;SZ(O_b3z^taJ*sYS-D&3r+D04#8TTA4Krs%Y_@Y>*wbe^;#vq@3(S~pfX;{*yGAbT~sLJfl$vXAUqzQQnOQ)G#hC1-1Y#DL!|WfG3>6))fz!*44}I z^Ro-Nbb5C%eZ(4X3Xr7fY3ab)Z4fYLNKNUq;N%v5FqJ0ffXZ7AMFms|Uz-Eg19OXu z_;<%?s^h-f;_%M|p`hu0l3P9b9yLuF&>R4*&9P)8d*Z+WnE=$M{L6vGt#^FBgyVSf zISTp%t@qyX`QP%6|FIePpX?oPcZO5Ei}zT9)z|nML;~4x5dS0_yD~e6L3@>4#K{x_ z4UJm4tW%=THDvR7M|S9D<6&HBjmc)-z7DqtFiRMNPbnbdHSwwU-{ z;7=4;W0{`FPjuS7yhk>}@H)3ZoAv@~_oU~8G1*t2M21DB4M?HWp84bg4d050>SXJ8 zt*a5{2Sz47q?dOjQ{_)>2w%p_*=WgXbmhnZrkvyfqcV;Y$mH``ekq`8(hAYJ{Psne z?TN*i)Df}p9(-Qi-iCz?{f9J*rvh~36X#cRAyfgv;09pU8mHs@6yu!BagKf!>v*Zd zar~_x*!Y<(hG6xD&x>q&eA3JqdEy6VNnZ)+AQ^)h5SQ0D*kO!~?j)*4CECRLpm>O8xfLdjr$!k3aHr(VyW~ z!x;nSc7X0l^jCow3p1A=B+=`zyp)m9fctmR8Sw<~S8qqeW2p6(_Z#2&iaU0iS@@y0 zLD^{fVAPMEDUDfo=$$O5cbe>-arnhi#kSTEpRk;_>k!=rqUa`*%i*)aA;OR(6D`h4 z`9xX;jQ6Bn_9V$3$CD%LYQiY(U&V6XCu-!|N>pFntt#+g;>nTv=q!h*LKB@8 z2=TwMfIeV1pZDpJxh*}CmPHM%DX%#SBJGLJfsuEWhBrd{nmWtNCWoF8z#IeC#j|w8 z#7%BtVi~-uEf^5*l9(%BiNr_92&lO!Enk1S2r#BACN)Eq$r?eZ;$(Cz#tNNa`wn9E z+Zy>rKzxVf;|k%}P{n*z&g;Ax{>3EPgSa(IkB-U|4{cc|b3mg5JmQsXwEL)wAsn9{ zZqQ4%-SO+oR~glQSIPL{Cw?+a#P#L1a(HWm1(PtbdgAm(*5=cx0*;^U*>dE8#3Gje z{On_-Z`8XvqKwVTmXSOc8CeGU;6&reu-6?0DryXpYLjOTe+DU8*_7!Ii)Zcg1CYax zM9J`n-f<_=oPjCF4@7)*7~E6Wz=*@SI(ceSG+hQ%Po>kZVpo6d7vCSJZ=;(H$Em)6 z<(mL0@(RMy$Ol~)6=eVthF`2@(gvNT>!utsLdsclhLgh$W-mS;0Fez`3$7_2vDqCr8>|8EA!FV`&XtT0)+>_|J=D-8>E36SW zW;lwAbviM@xGj_Ks*=AXsh^WVyUxTb@j&N_+A@fUCMFV-I)?ykAgRW(Cx;@xjLrPF z@%Y=rbfre^A;@IujU(4^oF=?4PiD4Os>O&gqM6;~IB;Z&(%4Yxxc95r%=4VwP%kdZ z;1jyk2%)L78- zSlW{*5$R9T8Df*IOfKfD<4Iz^FPe03JHmT}Y+>&%B z3?@R&HA+I)O0-sP46a_x)HvV{{~a#=o(|~W8{r)l!YvoPg6cpJlZ_Iy-|=}5L*p{J zLR5-z&?9-}`Qfh3Lv-JU-b96^|zuJf#nmIw0 zhVd zhBAhCH*b>fL3Q?`cML9{&H&D^Cy}kyNaP#3Dg5SS@Q*nvltLvh+0=_sBqzua2OYxW z)e5I?(nYg2t4{)Bg!UE85u^#4PFnq#*A}dhJH1VQ6(4uHG1d3@yL?agw&*-OX+s7G zUTK;?r}I!8BcZThIAGgDW!N^t+?UlG=a+~D%4lwYOc^CY%eii?A`PR_fc$&$s?CHYK4A)K#XPfk7pTyZ) zMMp~$8h`L4nH5gXdF?Iwsvem(_~k42e%#Qr0_gg%GB&JFPtkLnZklY0vUMF*U zf)PF53%BkPzm7S(TpH2a*kTzy?G6z@R3K?4OJ}5fX9CV0rYNdR-;7>_P6U%tJVdj0QY3IRo&wDyuO) zC*}@iLazHA480|%R$bWE;{VD}xXkQj3t8lX^S}>%Hr$&bN@M**E1p~g4hKjM@;&!? zKMnV7v6_iXj^T)n232ZLglRZIihGMr!JI%$5+ozDCd009Vi#$w2Ta%7rL%o2AZ%CS z^9BJSTiV71g4!H_t@Sy4NB<8#VGM%_nKa^)q87sSqLz$R)bRPaLz~D~Z~OAq^@Z1g zTpvM~)D;Kg86mvjH6!Z>uy8We#pq|ObZ}2*3jZp0>LX?1hA%W+#b*?1!%AbTe@JhB6<>BrspDn_Xk){;YX)d(H5xu=21?9Mme`s(kPCN+IXeTa zIA>#f&-|CZ#yvV<%zifQbX%UOru(acaMsPsn4PK3fSLDZ;TkMz6v`& zKe6cJ4SK&jEF%zUi+xy-B$2)0)^aQPfGR=174A8j<9h6qmPaYpf@-wtfupo|j*ggO z=A8?$#6JbP{K?;@?=i2+*LbXyX%m_e^?`X69v`7r4fvr^6Fqs}l1ldx0j?>F!8}Lk z6gD8ko!?H|vj`@)h)JlzEWVNt1Z$Os&P5qoD>!?T*h1*PPGLZ4xEvP`+yPR>|MUYl z%riU5Vx{0SE^Uq(Q$>d3rg7&xyMbhsZROgs(ABT6y=`%Vba7w9+Y#UA6V}#Wae$QJ6Rt?&`)rXK2OGtx>Y!Po)Ca;up+LB! z{l(Qs|F_8nm^wE&!Bjz89NWhUImmsX_SH#VG-Yf;VWOZ1&Ie=rsvQTB2eS5FXAQbL z&QhZok|9=$oQyc42hj;5eA{G%ufymxg+y9KGb|74gzKv{>UImxN1OC^2I45*@rxQj zpLK0p8K0kXT*9fhSg?NExxDjT^dElW=W?LvpIBS3-ICz$iC!CpcWdG}vVabg^D5vH zdc_4fZn8+Ej?Yg*#yVN<-4A4s!4(CkxTf%s(4wkVo8-Dzzzav~T!Bqua-;|>BlsfV z|Io8bUwpYfKjOHWuJ>>~uWNGy7K~T77@ru=`}Q~YcE6O5)KXNKqcSN+s9i@qk4uJ6X6;l32vk_?o`G zVe<2{GG|)DeRw;5Xp4Oc&Jw=b)Qh>|6GXrE0E2KQnWd-lc<9{A6-tIzqDNuU-6FB> z^P{r-8Y<|wH{N&uz9AD_Umix$rjhT4YwwAD3fG%>n#QS^4Kvn`MukGr9@$;is`U9m zSbkmRD0cx{xg}sLUV!7l`F=B_d-MbQ6eR^gv^z>g667quP9pISTz5@%Z9nk&Syr#; zVze(-?+>VRTDj}aUg;LEHi^Xb8bb@P2lsnxMf&^*BgY)_Zd`fgL;n1Ssl7x=ol#n% z;p4uHk0;w&Ac4m9P8ZymlWi@&4#EI4iC$?Mu~w!NVYhK_HyPXPCh;i;8W;nnrnun= z4>cP72t^~w0iLwx2#eaHhm(-HXn%Yl>vm|AZu}Y4qNiN~~p02TcQU zlPm)xTFyqOGR>|~4gjdPC?z|PbZgh3_5GvdUt7WefAbfe8)_wQrUOjp6X+0K9l)dZ zOfKLi=R?WlK=iXgJJH27z|YSf4#$`Is{^00VQL1{^~jH({NP&pSc|3WWE$XzTJSNY ze9JQLjJ@(=;{1G&*P2u-_?*%E5LG`R4^Y&{z?ekWl#@g8ZnX4h_|3%0 zT0{>grVnBRK)mPsiv6%o{FA>=?AbV8>c7JDu~L|0;d8g5kky-6$iAty&-xWv!5^hb zAIw!c@PR1X99~3k``-3-dF}1E69e_ZXPk_7AJ(ZED{6Do3CbUEB@UMrw#;h_ z-xE{>z!dHWvqF_e%E z4^n>_=`6j4H73y22csj4f)gavZH0JDo+Cz;aMPvq`d{2>90;%NUsuTRy=TClbA%&N zM%tJ)nYE#0DzSXr zy#NG^yt6rK5$Ed_EwEIkEc`;*wYPkT*vf~ffX2NJZ+Cf;%%ok66K}vf^YGafE@RlU z0Y@;ea}nSjAVeHJOe6J2fFPn3U_HT+niSbphGqcY0gV@*jAg>vD?s1q%gRM%USTDl z7&aJZ9PgC^bjZ`PMFud0kX5_2Qn@#mSr2RKdwMVUObE5{Dv(XoHjQh%BCwn5iwtoZbw`Ztx_$`|j?0A8y14)-c_rObl zF==c!j1_{-6*(u9mz^{2p3HH)OTHSpdBTlV@3?uFL}LSIoF_?eVKHVzfWGM zmr$vHa0-8r5$(h2 z-6+N;@|(O0nI4#dcdq@Z8vMRYCp=1&!2E8kcgcAF{HWC{$Z5l)MkSOa*Bq??L|A!1 zb3x$&$AyaQj^fPbNH_G{z#uiM*`gZzK=|$Dj(q15pMxN=qfFE>c_C{x=+OQkEQm=# zLasX1y=9Ve?tmO4%pG@dxUNl=4n*J{T}UbJDPg=)rmG5Y$P<1LjnAmMK^&4uA5&wTJV--0#jbY0WanRu1w61^5nqHp4g8%5;D)ad;SL%(XXK7&S%b z6U`qGTPoe^8h04<#GPxKY~(Fa{OO`)(dXkx46e}p=xyIL^3S$pXN|#n#IXNrj0dTc z%>Nut$K88mOq=Qp$5sW$cO>U6g7MGKDEe4x+)V>*biaGp%7s$|`go`6B#BQtg}tqK zwwgMdB`ra3&LI=P30!nEI+B2Uo7>s8<#y8MO$0X;;|oY&cz_)o=)D$-Z2=yl&tZo! zQp1co5S%Doyz4$cdoY$sZg~GT-lToZ|4=*;CT4Xk)5YC;70!K*wM&-RUB+ zR;3gA3@)H<2InJvb+}vZ7`Sq5szuU`UZwScnz~jiO5=7Ztu~o^n@~}qJ`updD;~tP zN*zhTy%i3QDs52?>Z_9pt7Lj?5R30Cb3>G0843Ole~HnD#Ol7b^ui;T~~t!Bk&(Rz|vujt!GP zSuiDIsv1M)h}-7yL+Dr<@(YHX`Fk9)+NAcgxQKFiPK}+<@iAmdKn#?<2K%fi2nZ*))emp_td%N4Z zUv?}zW_?w%p@k*Sp^_K&Kv|v5(xr8=<|7VziUSL5kE=Bp)j51iSE_VkIC1T1--7kw zGQVeb-m8uL5}+?s?7?+sr3o)B)Rqup)`hfELn39Exyf4ZdmxAQnozvY^1CJ!bqgbm zjcdUJ5#nyr9`sZsp!Z7SoT|+x;{cp4ea=u#3fgR~^*s@8A(eS~zUZHGAZRwmSm7q8=8DDKFhzYL)z;?)7A(a<{Em{Qskk0U8eUBK%iWFF7@Nsx)@ zK>v;wU~#{Z2lN@gubAG0yj`?^ds%l*@;rKPrIZI(9?4w*5Ga-tgG{oGNPfko$JG}- z$JXlf`O(AgxfwTXqknLe|Mkn2dsxi<#j6QW8y!xq;qlX#R5WlQ6Q73og$(Nu*^6IvMEzn&FdVC9*5X-62L4}4ACMLVZT!jRZm%gokW^@_I^_w9h7D~0;}ki&mp z3cqIu)=fN&{xWY>8fqlCvg{F_taJroY$EKq!~jXx~u(b%S`;~D8?WE`~LDDfB)JT{@3`6KR)_@RD9HW{B8d^ z3G*-i^xy8!zf7N>#Ei?fyzezv^G;*ut2l3-tBZ> zqXUsAW6Bm&|BkHN?&OpDb&B0UX-CQRv0BAE%nKG8bC%nW44nzm`SO! z;9HXouW~cy7_V6!AAqWPw?gpmB5lz97Yk>AGcHlUMtNWwjvfN&RMGS+Te-=8B09bZ z!VntaGGWc$>Bu&&j%=m(GL~=p+@Bw}jS=4Q0VQ|Ws%kz!`Du6QjyV#%_beJ(scBxAUuBe3&KGGYk;t)%F5YG-Kc3u}i=y{n zG|(Dn_=IdsZf&6KOZKq3^%aF{PEr-zQLzVAGQDIJ!e6g3w^^mSuk!HG<~J6jQa?Xs zsS~$iy}uN5+nrcn5{y4U6B$lTe|f^N1BQ@bgCPvIo1B+9P8=Rm(_X!{lYzrlf&&yP5gk5avLTO(y?i?NMSRYYnX%Eaa8 z6SuXjC{U@<8j3a7bKt6OAfG2~qIrl;%U@8tRJgxI*OphK>t36>t z4sW}`DdKO=(p6DiKy@@@Oln^%(}6ig;W3UICFb~{Jwrim-0+$w(|{_If#;ZzihGMj zE3_agv(|-GakJuCqvp)AtTk2g`2mGb)F}6rNMDR3DGYq(Qn^1FQ84APXCorlrZ(w7 z6q!Sw7GZc4*SOzuU`D|Tv>SP!eA%8+lDF(APSf`&X@}kg{Za;Fw$vO=>XW`nY(yw{w8&X!eq)GW=l%oV zip2rD90^aY6BPZrhoSE;y5f3mox5N<5j{9ew0+05)q7g2$WqdsM;)foJ=i1R)_ zgvc=kdheT(7tdf*UY+1Lq2nY)s&xv5W=>LX!rPMm?WOhEnv_y_HZ&=T9@U_dSLj_25fjAp*7msEy$t2 z@EKbtdsHeez4~A^Z-HOIQ#OKQd@_*^_h}@p3uD0dwN0U(aM`#mQ`uD|eQCu^_{+W9hV*6Bu)b;G=4B~MTbQ% zemrHJ322ilOlEZA7?M_IqY+-I)BoRMNCtS&#*kpNE{>;0Ccy&_A;Wp-RXv%!gdVu0 zRbdhd9>BG+gB}<=w68MpF6p*+iBq8h$VCNtk0)7khN9v<>j5lKYMqrfRJjx{wPkIK zN9jZY$!(d+t||?K$-#nc_k3_4WO+}TB)HK3n~E7I>)NIK@aIqVnTls z+wMC_wIMl>GTYDMX~C03H5U<^%_d`2`iGNzNiW{T5}g=1_+0>M8_&^({8N1~Xadb8 zP(x4JI6Y{VYATtSBqQS-PR@lWMkphxm{?=Yy+Kb59qOG=Yx{QS+G72r?kaSTp&eSQ z^Hm~m!8OGyAY0YR@NQC{!i0A>81zbYtck!z6S=bL?oEhNBw3-K~`e_`!pK&gkim2Q6nq zqg$#+bCd}!+ZyZA&X6YT{iDeLtbHD+;G*iIQO`GPb zB-D?vCT^L0-zKhGpaYFM9d8j$kqM2TaLj=Ts}Xusav|n8=2X_WvtyR1zF4Lcz7)3; z^+8b59YJ*?N)Ru(kT}6r)1;*nFkNE{%xqz1M$ejq;+~7FDI5ka2Csj9G*Ry>lv@kb zD*!m!(MGSqxvc1--nwz4Wv+GBqMv^TUM`dgm)@dXq@Ni$49IpjaL@r8Hqc?K)IPRF zg_HIAKsF6X=s^_#dRhRxxq*WhcCbJT$%yI2Ue-T9aJYD`{e3(gC+>ZR>6Ro}b)Emj zyCP3G%Y@H0a1IL&luQ!&8cP(dCFggmMLIy3@R6%7@1LaWN|a3*fsE>*a%qso``ncm z4ZlU*p%>1+Cn>Q5LS}EA?b;&x_RkL-=zuijfp3peTsy?KYmxH9&;0CNeJX$$S{uPV zMHn~7c>zR-;w8MJD6``To-!6P85O=(#RDpi_@Z7{-fN;_Fk@s-SOjX+JJaKLDhF=9L2R2t3^ua0P zzOgc7%x?6kYkTk>r~8N%Wga=EcnVU>b95es>ICj3=%q zQdKW${96^`C5_);JljJXo~B`sL;IBncOK`hsFN{GEhe+;7;n> z47>Kl8_rWO@{Cz>YG_Mq+Jo~{8MPISayE0Bl!cfH^<14w5{=cy>PRffZJGMEGSwHS zdX;CQ;{F0Ed=xV%rII^K1CW^Oe}jSTeD#3X$^TrlasK?6Vgv}vU6=%asNIA~i2d** zKUs0$;ZAst$EEu06vNmDpcH7ZvrgWLC?8vg@Qn1u!EPLwV(56e?%uAt2horHNFm{i zXff(+4rC_nTljbx?!%Z&b#ED@S6eN^$YiZVC$c_nr?$RvXdBv{1ZHbBpBct!Yh0;x zeBSJiCx^Clws0+I)6!(E<%$FBi^CxBw+eW{J(SRBo4)1`P@oYeWD+SzYdY(c*@CGd zQaMV@HFyyxCK$IDUfp)z)fb&b17Gh#o4#6~c#7ck6`Id?8eUEAs=U(jnOy&Gf|{P&x-i`c%rZox}n(WWp}lMW7}Sp zpY)JtlW?vN#ni{NeCn8qZT>k^}yg`wDr|;WB@?3L{l| zA1-5aZavI+>-cvdk3}Dt{QMX~W(u{fPWCd%9DW`o#G=!EFg+jq>6Vo~^fo&^PfARS zP?A_>(Ly9YKZwW)bF$oKPNvk`4w+7l?63YHRE1G0&dd!uD@jbsd%bEJ{kch2Tg+w4 z6H|ymT)(q(t|KdAhx-**6eYT8&*8E307G=~r16}gXGM=ZDb@)% zIM$PUiLdg9Ho4d1+M-t?zUVd`&dZcTREY+*HW{h{jOR&;O>c#1J8MNck=Aivqqet1 zfg|M3K{vTCbG)$##)ML<%M86qJry57fbc?gt}l9K<^ht#h~T)*=8a8W&M_o4oaW)m z>-1!K(A;JMtO=t(gF(HM%cja5Mpyj1mqj9Gp0J(xHl%t#c->VeMgBD73RpM>Y3NB|HD zu*YAVJWn+OZyyjm0A^d%+_V#+p|?!Twu^`flm{FwG><^*Lx`alRZR46qpnZM{;VeOnY@~Nf_Hps`9YmFCDzt>?>`zO~X?^i&XEOkfjx$jv zRZ*&V1A#h#AOP}wO(oinj32(PVbR<9L;LnG-2n0gcnxnw8A~HHL317k1hMXhA+HI9-B0KlZo zhU7q2mHQh$Z9*5B-uoAu4kq-fgH7qvPJ18xA!c zbP26$)LgHX>4^D++;>a96NZOY^rXGE6jy+}2RmD`>wNIH1n6#34uu+#Or-SP>5EF6 z_W8*JYjpc6=`ixkTMLS|>*2!x1-*GI1s=POgT9FW zj#y9(IrUro_nnW^-_BY>wx$oMnuT}{Wf!K<4rX4*=E5PY2%sDS=c(>+YNDZr<`Lk>Qd=Z8mVNm=} zKW;c}B;~m^#<1{On}aDMslt0@_<)tURbwjJ3Mq+OI(lEs_3cOa6?ZEvR%g!!Yos8t zUpBhN+0bcBJ!{=NZ#QXVXU;xrbhK@nxO8n;ajq2T^J9&(slLvoAKm#zoFN{cCvZPW z2}74f7t^5%nUZVM)>hl_EUvk>W9%oaHHYiYTSvgLFRr`HHPJ0I8q5TrS}AiLWq7La zYfQ<`9y+ zl0`}-@!y65aEgO2U8rIsAuMz@stvsrGfyji%@)V){lGZF2WHT6Gj8W5A3wAw8IdXaYvmJMGk=ae72M}ZEh8fY+C~iK!pd+(cqQ8&z52zyG3!MG-M{BvQ^9Q zCu~`Cu*QKyTF1Z7!8%5N6bS)d0F3Nw&ykeRPaK8~L3!`UjsLuk74V-A_UiYNc*}i= z0^+n74gtdv=eES?odWe6?k<)#IX2R4cW}7Sh&i@|K|VtL%;v>|NZO#``f?&{onW_-+%f0fAa5t`_I4Q z6Zp&j8h`P}hyRan#rQsqzwZEse|#PO@=yQu{`?#F`MaIX_>Ga!a5vd;BlydyY}CdS zaBKa^(ncE^25D$f!pQNN45YKl2u`}(wYo^aI+4(ncQyLvmb^E6>OcI%Pv$x{_VhU2 zO}G|&;;eyQ1Xs0^p=He{8xlvW*peQ~QdWJdPYj!59Z?~ZxX{$mn|KUu>b}ytqaY&)S zPooe9^BtPJ7IADjL}M7(YADy|C(^%1(A@bA>6Jscp-$n&m{UszJ#BLzrQ#|FJRD+n zo%A0!#yB}3hIupBMLp&byP+Fj>-KdeOmBb~9q&AM*&SG;p-G$%Z^HM)dS$g5LIC`f=}i_Dla?6G0@s>l2%&HNRaGknSxQ0 zYehPd*d#u|TCAJ=3WwnaP+IWIT?80x&XU?1nLiCD5lvT}qr(k%R-D_QQf9bxtd!`8 z+cBRddC%Xu=pnK})WRBdZwyqeC{-9pU~<-6|lqlarj z^Okool(Jh6QGZ3yRSh>?Q*Y>C9v}xGJYJG$vgq?Z=~2kcAojv|lzcVpQ4SE{E`ax* zMBlC{($BAx0XU?Su$bZD^+}>ub)2RVOG29HB>$I)KXLQ|e=cz4Vwp}D9s5{6-53n* zS#5CJsZp{pDWP=qr%$}^s6_%Qq%3+ChBMX2%E%FvK2(G2PP0X-ln%>qS5!-j)AMbc#@L# zX!xjWvnQ`p4F$AL%Gecve$wa|7atILT38*!^p%zF36r55QGz!ax4L7PN1>#MS*fi@ z)e>{QD8Oh;5vCZ=$QPXxO44^D1ZcALzRJ?p17nAy$7po4MA8QApxj@~bxS(Tqi}I? zsi!u{FEv$hFD7WrV$r%rPYfN(9l*Qh;Tvf5zcFf)BDz*N1Zd?E2g%sb3finduVs^? zA)yTv_akVarL4^z^awG+@4BUac>rt*!(zV!zz|7Gg(rg6sOhxR=#8YIX>;R>=2?Lm zYLrFOJN^9Vp$`HT(g*3zbe&h!SmF#0=|nc+AZkk#}D=E+h6VN>qK7P z2FWBoYp+CjBkmVp^~sSqeycZ}LQ;|eKPG)=jO;G@1w@lYZMdG$;@!gVvagxN!{UzD z2v0fwqCPl9mHbss5Q1*uIXMvz0B|--fR#lSQ+xD?8gIaY8!=uEsn?EINwncHC)rd7 z+I#dW)l#yfQn)N-?zZy=l-F_J0eZx$BF|2UHijhcZOde%Ws(g&lf1}2Ch@U2DdA7( z{uF#L3lj(t|7Vkr5+DP*EK$aT_r(R19SL|I&N1(Y4}(lzciejv+~H+067c~8!Y6I( zP+BuD;?!kK`sOl#n*nwaj5}Slt+Nw)yZaLPwh95@N&2AiOG##)Ke+OY#&y=v5cf*E z$l2)NEY4sA9ARBFJhKC|2f3*F@99Hh0rd|Z@}K>UWRF%kxbkDFPtc%0JRgLjdMm?m z19dE3Cb?k2SrP*`(TZJ0p)18ak-&8Se#N%;YcRnAAGk6+8yH$9UAM$KgX2mXQ%NSb zgoW#qQ1V|n!dffQk?^GnALO#n2iab{(+Iu0RlH*5!Nf0&Bv#_V)*19OYrN`d)VUdu z=i>O>K0l(kZpE8{-=+bDy`q!yPrNV;=^iZItC%ppq-V|OlXE1cm$;M>ynx1P5oVm2 zPw>&X6@Q9f*)l($9)U{XSz_vTC4u9pcDK5|=EHr!1yr+2;op z!`If{J3@X3r*3kDbOB-q2FFuVyU&?q2!#T*caCziPFhXV5i-y%Gt$#+aVTqN#2Nq7 zu^?lb@byonCd#b$c=CRE#dQjtE|oDeldh5Y$taYY;<(1*hTcCv%&7M>r@C$Aq%Q#y zj8f2mk>BtLWpLz#Hw+ge{%tZB!@YA~EM{6o`r5+EPsB8RN1ENz`}U-sRlHx9>x1Jw zmG6z!wCWw7ctJ7V~Td|vl3l7yV1hR>PW_ndsa zDvkHudNO@*C<;Q?xQpmuat)=NA| zA2#LK7w;L9u}YcMt2JqKsbqXcEbc=5^D~OZ%j|wbFMBrh@=_+9S*PWSMXgU}?9@P^ z^{vL&sZQpeWidR23e4d&_FpU0fjPz1G~LW8Mx6H^1W{j3E(F!h1y2zfYP23K%{9*4U}!LdPaPQyTZAQ%Rc}+XGnynB0E?_j^bA1$<#fagK4oNE@`?Q)j063YJ zOSgo&=umZHKykYWxt#s>#6hAnsyq!sTd@9!6Jxb=v#bdODKghqIW3ciM=L$ca}5aA zBV-F5SJ}J6bge<^j>E*hsMO8}2+!7|j2KPNNQTSc;%jqv9)1TWkCx?SykKi(`uup} zl6u_m0P7|fF)n_q+gRjwhAhqzVrV{&qem658vX{8@GpfdY5Z0P#9v$d*3XY8{xETS z-}l;hlzuvFX!x+vM^Ukf=9d;K4=5D10o4O`TjTO%GJQmFr$!Uplz7i{4gS?5hdB$a zC>X31Vma^IM@w}<$Hq-18{}EvK4$(T+B~Lptxaz0=O-9BQOmq9W!qLsd6`hF-4h=y z{=MoGm7LbbR>d=iN?BPH2G;{q3>y(n@241cO{@0gpt+fo&Y4YS`7%r&Z0>1H z@Ya~aiU5hs^6WnDx`I-kb>zsE=G}<+W@y!lx+M8hxGZr1Cp{FRmktnu zf5Bg@&8p(acw^+O+%lea5vH}&5;#5X1znIoiukZf185zF7c%JpJ)CZbbuFGTT~mL@ zf#Jnr$`iS1NwOx3HTJ(xc3rKv1gh^64DFaJR3UBv_B8J`SMR*f4=?hP(A~`o>;1ei z_MJIt!7~>^q1}__45+b&^+w@$Nt<QdK^#?=#WQzc$Z?uxXfLCKIvy098fNP} z@Gvp@aXNF~H~}n^giv8n0?Lc_8#n4&rSkK`j=0AexfN!ZwlRXIueZ;_jOHVdud13& z5;bu18t&f2aZ=Jl)(UihsL@88+j}H!YO1mkU3>i&71^hz9Olf2<9(OSk8sL+gR(n*!RqdhWecPieq z>DhZQZzLl~#;$9SJwHF47$!eAVxPfz+Tvc~FQ%_$q1gcIKoq~T;Yh9~+Jj60>f0Cr?$f|7^%chkjuo&5ZiLawl?8;jeK zR<*(Kg3XWOyFCP{NhQv#Vz^eNYynkHpKEEEQB}D|ZlrX`Vy5pAoyf^&iA}AVFqUKN z@Y-w&Y4h4SR06mjs+^e@snd86AiPtHx*F;G`Kd#>uaNG$>4d`_>n(9vNz*4V+~_^n zi2$mXNfV~pP^HZ5Xs?tA%-!+^=)8HcfQKj%AQN=@g zihNu92GALExpH7t!klH(j!an($Hctp$dq@CZ~AJIz^r6waF~8wKAR1i45fS zc8b@Az0x~Q**C>@Pi|l4Xr>Adk21;XiNKLLRuzbZM3>3jKIS+xhXQRfEm{{3+!-m! zNzQt{=&e4I&Z{M7tk0+}&0IOgMOQT$35TbWUkr=J?4QLWcfyeK_F^o%?#23|Z#UJx z1u!82>Yfyd{0jxbXQ-UdohGzl8I62s@~>@;ZQBkECoTcw9cz8lI=8>@X#oZ{z%s9` z=mR%1kB&apnJ7!6^+~J8Mv4m$t(exu$$2|Op}0|Xw`=RZLDfwh$dqQU`1fIAH94H9 z6zwy%+*0~n=L=wwf}W~%Z|Hv)Z@bSACzx(|C%Z4-0ORK)b)bjB2&)3X9$ZB|c$5NY zyEoABtozrW~{)lXNpJo5?~I9zmR@?r4M8ka++6+#x3F)b>G# zV1kM?Q?eX29;Gar#o#t{j)^iRUnXW|)s!gGm=?HJr~ki=9`J|ypsjR#)UAm6lYy(Z z3{IGol(1R(MzX!C^fwDzC0F*(&mQXFDZee#rOVim*McGiEwBnMAT*rc`rJuR9{dtO zN8w#ble0+#QKbY`^UTFs%$4m2xDgkdT;20cY=daW*sQofU1U+9k2}CQza5?HuF?5#{u;wr8R0v)A>~1t089Wc zI3pDLn@;w=Qj;|G9zia^+5;x#n1thh@}Xmk4A5u=pKCQ$n?v@%i%O?Q?|32W=$UD;k0!x50DRDHH#)p%5hJN7CRv}}P+d_p zkIj6MjsbLZqK_+gv-HG)YzDb3>we(@M@0AdBu~26e zBhv0*V*=K{Lyec$UEgu$25%$Lz_o(L+fpV)C0tS0g5NYFxn?rwmi`DRWmH_l%T3%F z;>L|8^B z@r4M&Ae&ryZ=7plM>{c$t{XmKAejVU z?Q`8beL3({7Qoc*J?Bn2srN-_x>o4JvbGQU{IKlX&FiKY8cuGW3bm^^6uy7UlVn-+cMT&RkW9n_^m=kIlzSVd8UKWm4G-O4Liem zXU8tUlPQfOF}7EZ21<)_!@@eCU|i=8mkBMX2mPT5WK2PCbG%# znB!{`fMi9D9NHbsCA~^^Y?B>%Y(Vp&eP+!?C6bW$Iat)_0R!l+pt?DQ>tP z-X^y@O8=s08iK1a*YX(-%*Xm=T7EOt80LF>QsqO$fY{sce)5Z_H*1j7wXy-GBr_)K zM5|@qrl=L3%0*jV`TTU_l4IQH&o=F}I}txVF(5sr$y9kT#{@vI8cv_sC}VIu^>pD1 z4W{CS)1-H;NS_~Z^x+(EqnU|4IFP*Lq$s*@(7|ZYG7khRz5E4DKp9n@^cSe*a(4l& zq3nIFN~e@fXO0q{B)llhei|9d;{uvmWRr4UlY;eXWisl7$i6ewSH&e4>+|{HM!m03 z+f^T-P5c;Z&>F85eL&yAVaTMlfQ=x~N#3|wH6TFzBRu;eZaBi;(Lp!3i;Lfa8>qoh ze5;Am3cdLs+;#2%_Vmjc)yl~iiTDwnZ|x}nm5Z?9#O&g>N_AI}e$y8t+|lxO++GEp z(F5v^;cZDruN-MPYZXs(%F-G~?$P@yBjkvpsosHbu}gZkCybn76(t!URQeM^lV=kW z9)&_bDRY#MpkS0P%{YT-co*drpC3(>-?>xo$)~!9^MOCKt_?9u+X6t!bL%NTTk+<3t@yq5n9qJd0N9lTaX1?R(Jvoy3tz(^twZ zuFY3RAH8;-^n|C1w6UXlKYO^uGCS&I-lccZQKkOGt3yVt9q?go-DOsAOMPyStj(hU zfvnZ(^RtH_!0hkq6ht?DNBn}YOog+!mh|YC2ZM7r38}OROWNQ}E;!n?M6S-jWm`N> zpPxRoOO5pQ+8bV9TjYOaC=ni)#O0SH98CfUs|4171mQNx{KeOS3lX7_a;=LSVLd>u zX!ipmX&Wa*jVaQJt4G3WJh4wUZsAEh>q=4eA(b{^2xb@5BwogWj4G^Xq!4U zSB3K%;}!N`b-^SwbWFj;#WYjC(*&aRYQU9)lfP1^6MnALdA((n@ds=Nq0DH^fPeO6 zs$f3Lm$oK&TvRlMRoGmSq6~t3rJSKG+I{H>dPI&2yoKUzoTLqIt`rvFnefB`0!n`H zE>*3y_moDdWlr+sg)S2Gld9c)H6=qoKY(cWMQXc>^jo}!L9v!>oC}~ieL!GQoWB}q zm~iu{OpeAyyci`EGSwpO`(wo%nb##x`k>O-P>Xv{@yS@&U#RldPnX3Dw7wTrg*ARg;!g zi9dM_h}-8U50u=rdyY|j`CE=r@^7()EvB!)U5NLDhN7HaeSSDmCn{NQ3)#07(wN2Cgilm7Mo&M%AXahZ;&CjkMVq`hP1C#%x(43F zTs)EoW*9nVOz(&5I`;EBPzc9NY@D3&-CD<*eWFC@Z*f3_`$+ujq=d)OaM6(2ndlIU zUgh@r@r6z_#=5O9&KH%66==Y`du#fnFDAiRu3U!}lW}TB>!@M?iLN+)i)A`6z&Lu6 z1klYmD5^usA@(FoEfW2f7tRAkbrR0wc6CNo_ra@KM2epuUnt+4c#r4xn~c6=fWi14 zQjyu=vOj*(8|j03*M~O84z)%CB#alr7s2P4f9@ zn9OLjxr0O}ApBa;hp0~G87F5_wGYA=*ZOM}`uy}Fu228Y5Vr2A5DrowinY=!kOR=e zles!wW(W{FZ5bwwxx5I6hsJFc9;dZ39biv5Yfx|AB`3zHI|}75?hu*e1E?0ioBz)u zaex61$$`VA*d$N30&aZ*8K6}t(x!HF z(&nyaDtGu*V%UBi-Wd9vXLaaD3g0T7Xs#s}K@1mcFp zNnAB_@)Hw^ixT!0KU|FFE%2d|B+E-H=`%6uwi|4hH0kpaF;^dntn^w#VFBY8*_ZzL z!NWIo<&NGGd+06s3QK@#^2YH=M|;3!Ca=E)?Zm6A#vBgM($LoetpJ6ii(WiNpC3NR z%zd}*x}&FoQEgVD4cPSrJX}4GGM6r^&6Pp}R>sc{CvvQNZ#TlSgImFk zu;Q93!z_{&>Q5LjEvj*Kh~}zKPWq?^8OXjRGgua@bU@!h8{>Lwbv#T6w^&c$P7{1? zo>Lk(Gf$V!_t6YmNn!x)BfrpX@{}uz5D-K@XJG0u4Kl8Jl zSxZ*Z$F0choT=hnV@y1rM&QKB^#`s*oK3DaiTxK1MEt-24G< zn&UnbHq_{d+hjw`z+Mjpq|B&`*rI-Zbm2pKbF)Wu3cO^?B9Z!0Z+J*}<>AS<{v^4O z%aUPK)vJ^`Hwp9_U6|UCob}q87`uLcbfH(`#odZZ_ZR~5O~L`f^TK0MwNDN&(Ad&d z(@GlW@^fzz)78k)=%o~0j0&m;SQCD25#O8h=T#$rhb{bC?(eWDYcFvCY%i7O;_mjK zc^;;;lzK#D^hpkkhs97zaxBtp(b@6yGY%g&UU`4u{GTH+{?(84YYwubd5%{@5nJN~ z)_~p~Y45$ZAj}-}v`HH?bkG1WIFrn&^i?c!fQ8||E4FV2^fuzyw)plG>oy|ubi|TB z@a>6iQUGKUH>kzrsVjKmM$leCo$BH%_xV}J_sHsQ0PK4Pz%mRK9d8_veUWVPM20$4 zLIurt7oByK!z+g#f}Yj5Q*CX3T#v-ij9JFSfzmApDqeWQgihbWI|5QL{C+)JMKGbtDce3_6={nLWJ~3i^ zL3!8cO>x9Y(z=VjrT8}o{fz!&`Haq4nY=VuXbgUt+)o1Pc@&_1N*&jxgK>b6 zArs9qf9O)A?wD#YBbgyC3@sL^Px#SJ^XRHTZnyy_{VXi;hmrKIY|s|%Vd9Krq~A(L z#@)EdJs7VAqj0)0MSgPBZe4o8WeMOR*C54Ywim{%_&8vL8qx(4&&^V5o$s8MVyk-T^ysHp;+W|Zd>1-^LY zF9wqZeNr~8*#$LfF_Lk85kGu>5HWmt zGP}G=<{>Caq<9H^@mV@Sxsc2H{_T1(hVlK+zwrD;o5r-}6j|}&dvKg6H?9fDO@Ah&Vv|Eq50?8t+Q0gN#n~;1jRI zKID;FtJCL)5cPuMZ+G^6WUX$|?x59Vhf3oErrbZ6y;lBeYqqYkfB|s};`mS$Y~hc59GR74L6>x=wZUYWI(J`%+yEM>t(EBv>w;VQyjw-FKh6!e zU1vBSjU3$uCGe3PfvkvOXI}vzCo@@`QL}<8l6G6NsAbF(s*!RD3Erzl_%mB9h8aLb zZXa2giC*Wy@LXc>BuENW>$8!jLJ||*pH#9ezDx(m66I@TB)*RazC7^D4$T1$RHL!F zyIU9L9X&yUX03BC+|r{@VhAlbQgq$NX|%prsS~D~V>Ej=Jl~`^@E4GCk6MP|PDVVk zz{hV{iNjfGlxIO5dyHa=1osQOnf~vSZ0RXK40=dk;;R zQ#c=1M=tu@Y*uTdW=O9;b8Y6ApPy35M3r_G={J2zP-M^0Sn9C#QSL{TO7(`Q;>w#O ztV>1L>)8yKY%DU5@`Ul`Z7Mph#2n6>TUgK}KniC`LdEZ-15A>jS%$=>*SWSS(3P>I z_+4I>YbdXMemoIh6AJFSM@|Zirv{ML@fckV(323$=#(OKw8KsNbRsMo;#L?YTYb?7 zp`GyDtal@%-yLqZ3?Ed`)F%1l!pyL#0--9kD|xMIp=FM?M_#3A$F-_BN{f83c4GK& zQI>BKvadnlTk?7N;YWUQ6}zVaT10e9XI#V-`O-sBKD=2xrjv9rv{7^_!&}8b`Za*w zPNa~IWWKjCmm_3R`9mA{VnAXXj&dg6=_&lgWvO#{k*UH&`^j~$lF}Cizh!ERzH;q^ zndYd|+YypqWy&3_^G*(U$2&iq>YrHSJ0}agLvcRJELn^UGqM0WdSs@8td;4EjN{~} zZe@$;(G*Ho!IwZ8#x12S-glp$NYsfM<<=6h6Jj<8J~lV%{U%COa1xZNL^3FwPd-UZ zn2#znnyEDw5#9kG3T^=J<`H>u{`SbSsqtfwSQ|!-lN56ykI0yA>FF|8BJ@wnARbTN zc8i<#eqtbzcfBq%ceeDpq%L#)(+KTS#-}!i7=X~S6G`Wg$IOT|ER4V5xEKi}*XnaX ztTAkK+PzI#8At7nZ2r)V?E2R~BCbZcY`mq^FVWwFuQqcS7 zM;0?{!;M?RK{_gQj-~OuNX%uEQfCurlf#8^S95@ZK|6x})_^FOfv{Gh|G(L5{$?*u zzd6=+LWEMD(9iL_Y4>j+GP^MZ#8g@f(tq6-J<9rtY|?L!koSvSzpQFEY<3+-p%~}k zboljr;8tK}g)YuG9<=hCRIg>=jqDPRZXnk-yZ!S63DPIYR=Jtd4hxVyGgv8%MCoJE zS~MmF@EJ^hD>br;&PsNrGsu8`n}H{4jV{|iKad!VqPt1DjD6wzc(L3xNbj#g1FK5M zvW7GFL`G1JcIlnT+WaO=YDJs1PE3NkF>Eo;uOHx1l!;_*8E==qgNbGM(rvgn^Mz*( z$8mTbaO3pEgEKtw!0|MD&&kNYnoKot#rLOF%|#q?!h^Hl5|{Wh^{oZx5NOpc_9BLE zm+}CdEWBj&dVD~~Q2cyp^sY@jowGTp5sBZDif7OkH(dP$9b=3(?hFxhPeO&hocqK? zvuwBp`x8LPZO1t5eG7hafiLFJjyLMF1%ANh?DwnF8IO z*de$V9Ec`H<(p3~B5A6xOhDk*07z(*%k+J9?lI$3F4}Q-xz^}4o;+ZM zyLsz0p~eL^$)6$N4Rxw^$-n?nm| zmjC)gzyI?8{p$J0lYjr)fBya7e#6&m{KX$1{y$1Siaq|m?7aR_ z>%aWdf4x8dI-NN5eg&qzJ@oM%0I&<8f_mUi&S5=l3>soO<3Lh0l^z*l5Va5K&m#a6zhzG z4|07}+TzOl1Q~1Ca^1bHGB!aQdP5^sho)VIwmZ8#=<+LmQo7KuP|GA|PVq+(0Tn*X zx)^MH!gklMV1>6wiTB+G=M8z8aRto*bxM0=sH=?W;@+;*kq0@6e+($I7xaEXsq~s% z;R&~)E0pHF+t7C^&4#Ye=!`=8XjSy-Pgve`?9go0>H0OxAEBXSYiu)#P1ZK6C#YEU z*1&p5CCV1~XD^-vlHW!Mo!S!_U&Sq1@SEM(OH5{jd+4x`;1RUGc9;%~HNWGx-h#l( zxNDD-Zi||v_@D{P2z?OnWF*V!@K&Mq;G`~g5EMFYI{`S2i_+4JE|Ly?)=i}JX9dFS$Gu93zjLx}T)2t8FEhvQ1vpSoFmC5Ae+GxGZ zAO&>3(ib1D14^;8J(ay^UZai^N3`DB1K}lGsu1aThQiZl6)r`iQ92mF?2GaVIT81x zm(ckwA(b1F4KbejqAV6bAv%?I{-mp_JP{2oQj+XA$ltlX+O8? z4au?JxQVs%J*jr}1q6{yFJ|O)0@^>}ffUB(7N=CYPp+vdAH_x;3{a1)0{TNvyf^n^ zox+W5$)WMv%N^69FTGu*X09f||;i8vtNL)R&( zwKa54p&Wb+i-)Rctrua2o{*N6uXgi%@n`%kwOFp0>J3ZB zk=iOaZdSyGarorp78DfXlx4*iV9rF(l1bHB@G8=ra&6zJ2jpjb-1KJS2nbs)BfWR8 zTm9ijel80GN6~xlwK3l;qCS{cF%8IQ#)dxIWzKxS8bE)k%qHZzY_XOn(uBycc-z0# zuPa~j9h)Y8_=%tU{IQNUmh#C?{E5jMQ$Ur3{p193QnO(U|71vPpdqPi&z~Og^c^Jq z_h<4#oVRCk3sZm|Rzb3M_KtUM5cX$Y#~#Xyk{q{|lU99b={hdduJoT(Sv-xOAE%74 zyqnP75tg?la~FrL;u)(zFH~iqQG3EUrim;-{%9*Et;T>d)q~tw)JqmKiS)p%WUvHo zRG~65iMGf>2~toX4(hW7S)Y@O7&18UI02)CO?s13h;OZNsUWyW*Mx?8Bo_HLcd~8E zo%~H-w2==kC%d$$kF0(f6wqv#B%&3YG!nzR)c_`kWlPI7j(~oCQZghIW6p8oWiZ^2 z-lucaAAaO#7PG$4X)z!QkU$xP{2*ur*CIz=3}0jN;jEznEp1c9#MmCL74w84@Wj2i z?OJTF8ay*byF{nx=)rWd04)OVnY5H*bF&gHp`0LFVOEDM-i?POXz@O$L*yd%?r}9} zG^x*CRC9=NA9QD}snSWfw9;b|)uW4}jH-{{(z3P%wa-sW>O`S(U!CNY!Iz&#U}@-! zpVX-71F2pcB3^Bo%;ZK2uo4##>tP}MTIlWC9k z)kZ$GbD@K#x7Numr*kqQT3^_eSX{#b5mj+iozYtQFKTx_{xOSPoh7t31LnL zeo;7-)X5jhfLJ=4VT$WxF^=3mKhE%PGw1i?jB8B%Zk*vG1$)CZBVL_y^(qvs<6?Y* z@6luzs|^q(DH)w*h~R_@hf~Z(kHt!Uex%U`8}2Q-@8gNvu&(~iUy&mdCoAJ|T6vOV z84YbR`Q65((z&&aNAVtP%Zs5-YvV)v{6yn>d-i@`U9OAq-NL$Eaa9`@)??1qXlRHplwy)u0W)QP4=I_~|na90ZS=~34!iUB*Jm9yeJ{k29+0hO( z07jt2$@t~8l8*PRH98CSMWA?q7ot-vE8WB*og<RCOADh;f0C4zt; zZ|xZBh(+8HUqlB!v@W$#2JZ2IE$WR9K~xG2mf|G&T0<1~qj;5Eq|y74u>=p(TZ8mL z>TNsx(c{IfElJeHJ!k;@MD1XeVIIPO#F*@AnTBqyk}iP8Ru?he=jRUfzNw8}J*~dT zcF5$&hC&f}B1vIHo)U{U9FIxlK>AF$wZw0tOIsVn`VmQrOh{7XUXoJxNK$@_m!j#V zt$A1zn$0}1KXE1;r51CqllCXx6mMNJL6~2m#ZsOy1HP?fxh9kybkXJT=X`-rS6GuVM-F}P!-P+ZdRR) zDy{6Ol=Y*oT_&RpTzelax>S?0#-gbwCL7nF_I(L$4_Eg$dwQv*ce;Hn=91MDVimu0POsxt+t9P+tKhRD6FTVH5l<$GC=ipW@L|(o za?(N%7&9vO0D?!Z`dZIck2rVK0Y2WZxMJLkKfO%-g%7zfaMsaT=XYy8IRPO7s*}#y zQ>xCrUQvefL3_c|R~9j3JrUr1QPJL&X@ob|Jw`>$$_`))9EytG`T?W5N=rOIG&{tF zmy<*&C3T7iu+>@@Q|;>^TaN$HuNQS)T558fRnU6HB;3d09FF;d9--^xxKRsPJREJJ znu~#r_45Ogi6Yu<4ePcN#tTgvmy!U5)_Z+oXj!>H;oS%9!fSU@Eh}~C`IM1qeGy9@ zF&?dV`n*5hwjFg!${Vf>s^;JJZj*HiKoDiZQuNF2e+nqJ*17T#^(u=3hk7Cgy541i z)UVhR36d|Tr!HL&DQuMTL`7K*XhMn!PEwhSnG0<|^YlsdnuAWTQltYj5W7!q`8{4| zhcOrqLpC0Vnt>1S34xa*Dl-kMjWM;8j+O<0zS7&7tJAf!6elz&w^fQ=Mf$D2T+rdt z!A6M{?SV}Zhx^pXa=70|6#LYaqc9Kx1*-UJ=%R7?ktxT$PZ58pZ8C6U?g`KtF1*M} z1H5=3ZQvC~y=wx_x0vGxxM>AkX~7H|wZ-#vM1pd;v%OzE#}5*efAu4crQD)YQJU{| z!M#Y)x2NfY2TYT8vyXZ-#hx@SF{BN-j<3v1)+;ZFcK0N)G1v6+iP1JNX6$T9pwt?yW>n<@7zx>Q+;*fIUET(P68J` zkf2lz#p{PgcThbhd#f1qkk%QSQx=E2@%c$dzYH7RmZ@*^iRIE#iMi=yjYq}j+-WM1 zx@Af;@V=xh2jO?E zSriwBqogjXBIAg@M5c7eTihz`RospG?NEHji#~CyjGhgTk#cdUllkds%p$-eMm6%P zcr`vhqR6jHzVP0D;X56D!?;f>MOV^VBb}l>$VRbd1&>mp(u*K|5{Lue0S+?k3-Emn z;pOK?6zyKS(6&hzjFKz5m~j2B?oR-o)(GIbV(6W1#H7tR^b!qrCw*6~W5B*ctkqvut#J$Gwj^{rZMX5>O>N&>s@JVh3$i3paT-z4r=LZj$$mb4*Z>mxPJXEx& z*}T%r{mB%M#_yt)mt@hLe3mF6?s%GV82v8>tK|WPg-%4XUO%+Q<9PH-Rf0YUjt_nI zO=6q^x>-DAjWfVW#ybNIjbSNC@A0)Foe5^WgATipL!y20>=Xz@<1Xrf!o=zCQ_y0i z0uD?rbQ8@LuDiyKJ2%K{Mf&{Up?~H5c&KfH;r^n-RibsF5J2(DJb>Xi3P9pzcqiyA zAKD5|9&SDDcG=OaROv{diQFx8$ItwO!}6!oiEY$&@*sLQp|o4{K`E1Rf0VNb!@(!> zbxCt+T?>&3I_<@d>Hvdcm?peW*d0H!C1gQp=#ERODC*Skggsy*S*KAkMLXzXYtFjj z;yMg32B6Oo#ZsBt=f@LyU!}IINPvMxj%6FUw_4i(>oMt5(wwy&K?*TDozO6pCpk4o zyS&y?wFA?M`t==wcjM{q+ssxYg)uM;pD?NzpO{R07Y0NXE}?vq>S9zq3SP0m?=QyB zv=b_j+pYU$1iobn)fG4aaG}@qZuuxSO*<33L}^4k>0FHaF%@@g6O<_yRafnVfv0>2 zRlHvo_C5Ln=L>`5p!lpSO++4%Bk0yHr8D<6CPj=De@a(rk* zswQI#qfg4IjEj0^_ONLxYyRKu#E2s9p!l`c*wQc2o2kD42JaR!VndtyNm%=XsA{S`74@KcAW;(LKdu;J1xb&V0$ zPxx<2y`zMUl$R}(Fnw8J-ZT9j(aqE+#Jwtk+b+9yTAxlM@k$3Lyk-(sObgGDJHqoA5xl(4yRt2Z`TjQLQtSvR^APaAm?!slsi+}ckVaF)A;ZVm#= zrdSXoZcuTj|IrhpIaG%`i%w<)5X3ZPk7l+_84m7?HmUu<sdAOoIo4q`(S!jzA*+bXL31D=DBd9mi_lqRBWBUG^y=V+5M&nd; zSe8$WsC!kbS*m4?oJ@qlxyEBkA&3I|EGDx{IY70btA4vp{LagGYLNC%n2-;PdZi5YZ|wy1x=b3IiL8=1BfNAq10UrQ+xZ+(T}?Ac;@6q2aw)6 zD=EAMpUfW>Eqp@<*SoYy=;?0i_zomTVSSNHh*$Z9a@g!v-6bdaXI& zr>=Hia$w+b^el~|)Vneff%&Ly&Y+!qffU@7tq6Byb5eb#X>m7-OOLjMizWK}AY&Yp zo3^T7t=FFX+aiqnC>bOCtUbXGy+wwpwO*K6JlX#S8ms8hDi;Kc{jVHgcAR~e+Dnr- zybFZL-Ru-&|^Q`uD}dqpE!>q00_8P5}* zRF3q)9;xb+Ido>7qYds7C2hCF(`PEB>IziyL*8tfz36M}Ns@f?}74$w&%!cb&qi{0Bl=d=t zpuGABIWEBtY86Nvi3kxJPBAw|>^>$&dlYq~L(!kYJ7D=_Mmr5*R7e03V3Emvh&1#| zNhe64mE~*iL_o;7Bst+Ep)yy+X*^b*WMAPmYfMejsDO);SdX4}Xtd}O#QD-H*8BVn zV(jy82paVw;%u5h(0<32=>)ioY;FdTWR~_A*|&_UnluZa2h1k9?l?-!Lk+dW z@61}O15CPSWmKQ7E^PJ0!)b#7ncz$wnMt zgWk10iia;>cqfcEJ4*2OzSF_N>|2fzZz@!$<1?!slgFs{W=1Ik2M;>OUlBscpx>ZT z$GVE`PB>bO;oN)H^F?Ccf$jzXuk;+lT}PUh&Yhw{NgQ)XElTuR$1*%c!+Dwp8sptt zD$)th&7{!u{atsNr|wWY0&_DyDomZ(T@RA$=}F9xJv{!Mrr)!6n)D4M(T^LZHTjk3 z=jRQq!TnLnO(&_pGVmE+nJhh9d$3Or^s+=8)R?NZxjWBu$R#`N5=<9`J9t44%!Trf zv)8|yr7bGCa7up(rYXO8;?sy8iGkO6Y#M2;lg*NHD%(ny$YG(iRHo059hj(h*VOib zFLpGw@nVmZr4U4PvHHZe+oF=$f;P3#GGVe#)`OydFO9nL#X6la)EtfNU9(g-CGX*x zC~ZLM!r;+47|sX@UUgoZ*2!hMx^nc;9d|5uS&Jn)GI#hk=y^YQ`1a)f`KPJAsFrsX zI=pzIRedmdptvb*NN0MVG{HwlOKM69U`z7Y7fW>{ZgjY(zl9MaGHe?lM<>H0Rf>{l zH`g^$cc$$hnXuDl&m$nQ;?nbf&2Gh?j#B*bzwIyo@%O*}pTGU@fBZL!cty|@H)&GM zKr8&u{jWdt`!E0Bzy80!{rlhljl|CHzx@3_`S-v5=imSBH+;9oU;Od8|D)cc(&O*@ z^-nyDzx>mGy+8jhoiOe?YGPB+a5J_R(4lH20dVGPq{-lDdK}|-${YbV@a^F=IK+W+ zWbx%Z)YaWM9B(qBCUM46I0}y50;PH)3$Nkae|ZgB+RfFdGw1@Zv(m(7afy5a+YH&` zTdnc<8M{wgw;laNyxJHeQa0R}FY|!;i7$Xq!dRIE*mQD;LeCBEUHF@}sHpoq0wVh4 zJov4==ewKOuppyISiL7x;;0;%FA{Uo#0DuE{dvxM^A}XL7D~tgg4T-kdF)d!D#i_A z|{5$}R%{BKdC#Ro0d+5#95dQ(;YPnbRk7?(YD&fXcI%uJ5Zj9*G z`e56p+zu4-s3`c6$@PG#lM_U~TWhko9{Bup!!PTgw{MpZ>!5dUR~?34JDx6mc^djM z`n}`-#hyG}OcZo(iTF*J&D3aaY{;y7uenMA{`?rEU!ea^g)Ez1FClM=cH)LFKYO$X zy%`XRRQwC=NpV&uEnu_OiYrlzbm?`KWO~2@YIxGTUGtE~BU_T5dDMBX%?X_s|$n^#zD7)`nHWwuP;15wEb})4Ms;kG7jPl%US>m z7M%?B3<7+7AAm~eW3tHU`TVFO?+umPE<l0hMh>jLE00acj&1{k}Iyleh zku-nuMM}@-2N~Z^o;MJpY=RK}LQB$Kmcb}27)UA47A>D@@@>Ro3XqBny^*hLTwq2q_ zbScS*CP4Y==|ck^tbsog@6%eD4#cOG%Q5gaVJ3(5;D#%YR+$Yw6K%-?&(jkcg(rTI z7@j2JNq)TfgmD~cvIa{M$lbKTd^`J^gWghTD0C@PU zK2LiE3>PT|?5=AY!vj*+?|8KLr%5lq?YrEVD+Fl6d9#-%gW5|pT6&867T+GJ34{@o zsR+#5mDYrUFu?mo()5AZ#PuNE&G~H4oR7Vfm{#fsaE4l$lO9xn5d#WD>pHwy=RkTS zez*x<#{|A#Lx2Y)uKe9s-yKlE zwuw6Rjb$R854TV0Tp{5`dQhg4N{eW>&}q*g9Z|_78*w4xYYdhXDp(zN-uvUEgUY;T zO<04W(ZbJ7xTSc+G%`Bkqd&rtY?CUG%1n3?pn0CkVx3NKBL>92b+fBG%(s3syfMx< zrsK0#>GH&@m~1^F0WJ8{+oV*PjZ`&2mM+y7eKhRAc;eERzTFdE`qB-1!l6^9N3oJw zLcZi&EJZZn0GvN>860j*x_(D*t)nwz$l$8x?elX9zt02rZE@hnT@d$1>C*7V=mTOU z*)Ft5<*pAXepXG6nsyU@B}%u&Djk_i3_9NXcgg-a)auXvMw_-D!0guXjL?adl?i?D zctr_ZhgvwLvNGBGGWLo@0IC?%>e`gaK0li%_Y{}1i{Zk~mpHKSf~B`Uzl ztof5s+JS#?!n?>~_7fIe^)60n*beQXnsdU3t`)6~w2uFOLP0{~N?t60pcJ25d!S1W z06)Q@b-@6Kx%N%M;f?Sa+7Q~dK344On8JXU^F>*F%C2dX@M08)I z5!SlsOz5AVPxwTga$A`OxusZXb2Npr_*Ysp0nOBs2T0a3h<9H`<7JT_j!lf!V~^{oQyH z>X3G9Qb8%Rc?crV#>x}#NSaPtFqMR8Z*I~TR05#7)D_Zhf2~X>1{C!&CVYFG;_@Zj z!bGavBsD%3c-!-VT8+<3_L0y-HO6F9>w@R07REN==36{YC;TPaebdx8HBI@-qF#)r z0?68}Ke+UmT17}uXfi$PjrMO-$@+M{wk&mpHh)7_*yykR zq_vGwXeftbNzd8Ht6rN0exXWTbpi3u4A3ZuqZ#aEhF2yWkJF^lTXDw6HR^IiCkZUln9q&hK}DDK0QK|JheB_v z@_wPqpSg^Wc0fG(s4(B4n7Ot|F(E!;^hiC)mb6JR0Idk54$V{tepo}{_4AVlC49Se zGm?u7wqf3yc+ByU8Ee$^iA@eqQls=*e$RrNVpgK6B(VfuroI>;SC7P#$^GQvch$xQ zBu?*@7~$lNNd-^j(`qf)(gNN|n+)qgjfTVxt=WjKSgX_LM-MvewcjK0At~%z80Gq+ z^KLhKK`B0Ke-x@D_yy_Og|vy;xp?%xoG8kpy$=-F(IMy!TCvExw6( z^$VGoICPAFP@S|%r@NHb0>JK8W^K}?8Ar0NoioCZ{PxvM4DFxEAF} z;!-X2Ggr&RwK$vgY!q`lPA#E&TLbHH#8%?gNcNiay}J-E3%DH@VteU$W0L;MXmR7g z`lD85vOsS!c+Ybb3XUucM;y-@1w3mQBo2%(?E5gir_tu9<uZP_GF{kGC&$vGs}r6pEwANnT7EPV!YqhxoQ-p6!rcIN=8KvuuW%L=~N%D|i&(fvtc4j0AJlqpgqlTW@)ikFOj zWQoew#VUP%j-jLLx)DoV0i6A9lGvC@^(|vV$IVDXQQ{2RDC&bF$E1SNYf&Nfa&n(l z*{Lz1#{?(N7LomlAdkG0Rn>nwa{u~JwoQjphg<28UH9J6J3ZJ-COWKaN{uQ`*K}Ze z&nT72AeAm!Yjr$eQxU`F^u6wi>P6p`JirHzi9@)`(4jq9ca~f2fbS6I5jkFM5~+u%pVey zTn&a9R3gw)Wp%ln2gV^^6AvJ(`2PK)o9dqD&t7=>Na!>iC{E!Ys7YLVFwFzEW|lVT zc2P%HfagyIzq6<&$*0<#W!wj1cOY(;{sU?Fe5=o~3 z$Sl!eKk~(8W8TUW$95&nI7=bhj;ooqLVbQv(gsX?`*QVx5_cE`>8s<)60Rh1o*W(a z15QXmamglabg8zvORpCGIBV+~Wi>naz!*fv5abRg`l!>-@4NEl6%Ts0PKBxA^L}89 zCfdY0kU$a2QYI;jc$zdub|X;d+O^kCj6rbg_4l{lA2;JB;gC~%KssD>-d$5VN#Hxc z08a||X3c*n`A08~POWf4wpOA8Lk{`6;)CCFKFSYA>9eP;GghM0RjD!wx;~llrA^Q64%Ue zi_KX*IVBIMz3_n(of}kfq=h@Pm&QD<#SL~lqGw^4-1{O@&vMZbc2MQWyUtc|-Wnab zp7_%g9Ge&ir%TSwh5-#58i2wuLUaRbWc>E|8ArY1)ZZeIN{SY3tM`oWtu{K%X)y9) zE;5FnHvN%1K!~|a`qQX2-o4Dn!V9-Xu4)Gc7&9J1*AH#-dO}C6lu9PhL}Y!koHp%D z$jWerk1%L1IHG&rK3uU&d*m;gv67XB?iROEd%_6OR%r2% zL+3i_a7X3*C$q6z58=Bc9gB#z5 zN-J?R-2C&F3e``flJxs|Vc#|{EV!od^~Q-v!SQ(Fx={d0tmDnXYb3LRiHdVX2VLB% zz0|ei)DH|f+L#x$I}T zvWD3E3D=Ewf0){y!z3@jF(B^3L?tR3o}_pibAizK@`InIw&BDAVE{RH^IQ~(_0Nwe z221p2lQsC=TNYVkrW;Z5&tB<);j`-zVV05@rFqk_!;Aw`ZTRCdR(Ul2h}nkSp@(4x zwFNx17yWN*ZNuE8XMNI7St)cGC_P4bXL&Ns@C(%5#wx$CA94JY`_MVPPTPie$?#BQ z!KK&H9t9A@lkL5s^Cg$5NimyTH#$iIr2ww*PhAwO^b>-Wdo-T=z_`6aRa3iqZxsmn z!Mc$q?M(6Jd?RNENeo->03CoFHOk@!q#qbiaFEpQtOCm5 z7oPy>N*^x(jO??#co`tjf`Qe25vG5BIB^x|#v5;}v9=hl^;9|^)2Xw5PmpHcEV2o$ zF<7(BiWkh#42%F=1qfV}EK50+mwH2a&rR04{)!%z;bV;s7~d{LlTTJgDplpZC1Bm; zS#tVe;~+(?XsA}pbYL{`ts8&O48#w`o&yyx6v+D!EpxQmpICw_&PIB1O{O?aZa>1& zW^+s2yn9kb4Jh1VF%U~ zk6`bX$*7veB7J^3(I!q)+jf|Y{*N*YW$?6{`J+%02f`~QgWSSNlf0m-9u8k?RDUf_ z`lOuDh_vAd`d%SY_QVhOSD|S;KpRJJ=&PQrq0AYDR*cP&_PH|AY&jVxSd2uMH7G9S zz=-18I``IJcT=$0Z}lb2rp+Pl*VgsHi~=wsrE}j%I_G5YI-NK;KCd{1Vts8!A?1iY z=9&I$y-2yaw*b=rqa1$w_`Y0}KZ_fML~r(J@2hgqkGoaDVxBjM_mz zQ?yDNr3${_8BdbAP~2>tj?B?KW_`T`NT*i`!?|r`^~O6O7&&^J7*wMpN1-?e<@#uP zNZ5zouA;rW_ES@HUiQ*DvTE@Ai=DKb5RBZ`sctJ%qfwCIyv-W{aQihc>5486g7wkM>{PS-(T^I9Wjhf=}30Q14pX}*|uCvswv zAtM0l-m^)!B|vq$e^RE8FT3|Sb+A+;N+jb@`I*nocu`apKugBttfIZok12)@KW}8G zM0=8(WT#e#bQH}e{dQySZ7P*oH!&$B$mHA*qDnehf>pD$K?PkYlAahse2W!tqSWkW zl2m{AiJyGZ@YK6gPX$1zHpf9j_bNaOiJwP9JL#(Bc(m{<#OfVA*&4}R^aw2@2F>X` zE92Xacf%x!>`UPpt3c8=cNwC8O@KLJHbdy7r>D>gkACPlWexwoSfVo%ikk}At^(;x zTE85}>5FCYz^TdcP~mq3cUlK#p9FvvO>YzymsjFym5xN5T!}&N0pOL&umh>11=S#a z))9av53HJ)q>HncXn@VjCEX1N6k1{pqU-{ z=a15>x#wbFFQ9#&L>UPzW7ZmQP1Qwf~=+b;QADL z|1%y6pwVPD;E=xY%v@H$`m!kGLL+%VA;b#2pBw5pO|pS^*j~Lfd}gCsLPgJ$1J#() zCYJP#Y?Jfd%BjBy1;)7=b0T`c;PYEP^7cUG*CxY$d5zGK(krJGVfw`V0!Y#E=2;yi z!nq#Iaplo{I?=UdUq$!!`B{hFmq~Y3sp8gC6?z<0im$|<_%?~P8YHS&lv%I3Ml=3i z`o+^&9A?;&Va7d)*S|J#cst#4TTQxMsROL%gIh0y9JC(j-)PM+H-u*t6wqL01iCI7 z)`@+7qLHNM-oS`4+ugD(=`S?M&FM7~g*+F35Rl+NdolNItluB>$;W=ieuX_SSJiwYO+S&!T^MDdJB@ zwf^|u_m}_p`(OXh-~RUx`rLfsRqjfi3xJI_-mU-jhkpO%|NGbf_qTulJFwhe{@3?k z{{El*```Za@Bj9j{N;a*zxd;$|HoHid>O{y_v@edJb(G8|9XG^b^CnpQ73F;>pt7q z!S*Ix^3DtmBXN7?La6vZU|{J@n#iofQ5x=$#x|!c)9F5cXCiUv#-|Ghb+iY}0l?)%WicrE#_W_%K zJk=Rzq$P1<)|~9(D)L?l0BxNckmKibNLKTg{_w$&ZN%=kJ@B-UpRFh z=#}wWX`jR>y->Kp_&!PVRezoXVDtV)jBPify>P}lQ-9S+JSk6ZL@rZF^dp6~Oa`J? z4g9=NDc|ustLmCFq`mgu(sTfnw!@53=^T-CG*#58MLx-NtL&`>h|ig&H#x0JaU=UL z$opTs77s|?bJ!={r04i(!M8YOl5gyVJL}2`^^?REDmgr@auiu6CAuP3acpz!`gb;pSV0?5zRxbnO}o*Yz<^AK=i^G5PV80l zPMvY--QPisD_v&?#OSYPiu8l~{~paJHLsmYH(VCR0Ow`{@}Xc7e00KfpW$KhpbuvVl49C78J8aK)f z{Tew`J7gK;;b~)wn~fi#KB$!9s-yX4&nRrFXXA5l-!WxuDBc#IuFp>}W(u{hPWtM^ za~w1kVhwq+4r4lEc3~geWU{NW5~xrS$HNr93fGTt#O*dcCx?uBi-#~^LrcpX4io+) z-M3PzKbmXgxW%~T!p?}$Jwg@42{*KOkN&_cvYHdeM0|HkMab z)Fcy)+2n$zioa$#xrj$MR%pA|n=(>jtw5ijIM6!aMx}J+wCyMm+SpDZf5+8hcv{*M zvb_g>CD0@FY_s8_mdr>*6Pt7`SPZQ^AW5&^XXJ*(ZaZcT{*uU~LL5iQiacpz@%Rq| z6+nhIEzL}~nkr;kXy)osIxuS}Lz42IGBHNwJF>}t3o;bw0L6Q&wI~l}LRy%N%qc4k zE&HVTo;I3r@DDV)_^wf;PY@y~H-EdUkgw~+{q!n19t!P2<8gGO4L#43!5xLlt##&s zmf0jdZ&n?>a`t3PyH=zFqlTlNu)lR22`7KG1|XOAC$ZODb>QB@4F;HpK6tK|<>eX$ z2daens@~vG1i($A6bI$GX&%&sF$ZU{sF+R-907Gn~HlD9Mj3qo6cTOjPh{d3HDB(0kHwG@_}|f7T-EV!Yk~33}WY zGH&bGc9k(+4bKb-L_)(#T!9bDsPy7vAfF7j`lMt>M@VxRjX>Jst$BbgakSy8FN>6# z#k-?RE#(Q6*WSr?;Jb)I&&~kF(S~X^F{V4rQcF3kWH%l#WI|V-H zrdQbV96b!>CEK<|;)>Hr^AsQu^mfv?(6Uu3rhR^RF*X_XMgaFMuG*6tfL9CnkQ#iF zoMmp9&bcn`x#Ecyx8?Lw3ax@L+D&YADdi_v5_vZT?3Z2d7HON}h3B`sCu7U=!A>gC zW_2Tt94HZe?ySKL#rIr%B!vZQRr>tof;fJ(Qg=(K{+8B!&8YS$ry4pdDZNXhSUVnQ zJsd9(kREsZ+NLErUQjv-(7Yc>4>)M7EUzS!lIF;Y<0Mbwqbfr}IU*#U!|zV&5YxO` zac`YA&TC~lG2_s?UHx_3cD!EgCABdbtr>&l(Ox}D%_|K2?8=t9&QGEk6UsTTu4Zxg z2}VV|1M7WQ%u9-3D?Xnd5iwKhre^CSnVkDR?Gt1r_D553zP zFZNw{RnfX?&%nplwLh^9)Gh^hfV7Md!o^}YW2@dS+~>GJb-@;=Hm zl!!lnIfBcI&1)kOlQw13`A~v4CR*TvjLCc`!Chyy7(EqYaTV-GR2*?fmi<X!Skk@wB7Bb*n|{3WH@?j{cipIR3g9H*X;thUw*9{NH6GFDxL@C zgJ((W4@fWCniTDoJ#Co`E35^_uM9K6uB)-2_48ASVa<3i3$Q&moxV77ix9z~pmo6m zS)m7xkXf&#Gl^kt#~8)w4A|Tp1&%e7&3aqa&cf57$Q z=AC1u>dmS2ogDJf6G>^js+n!=S*o9(IeZ_dn^~;vYG>&yY>h8c2`%`7&vmjwE4M=O z8Nf!JR_M|ut1IQbMPhAQUQf&$MDD1~_42sd(j^sbgj%I?3fKA*>8BW#)KWsSX`8gC zvaFq1t2t_$Ea{>PJ_}p#7;9fJeY<ID5Z&8b36oAwR#Tih;TqUd$)G zw?{I!j>o8$?vw}AoFt32$QFefw#l)Wb~0q&Cc**^4k}CrZ_>0xb1$qk8eA01B#SJu21idYp6ac5~|A(JCurY zf|%TJ1i?vf#Rv>zu}Eh`9XHTn8z&-O;t9YYBlQN&k~}y`w0O}=ZkjSH+2Cr?i6@x~ z-q)JiI52(iaggp(ru!y$s>)d(zTKq{d11{5Qz8z0gmZIrKj@ogA_4^m4WW+ZRFn0`tT55l-88C6u#E|=I7@V!}6`( z+QNP3g>Udn8sBeXL7XRAO+9F<@QHVH&CQqsHp@v05ulSI)B|W=<0R$hrxf4TeD`(Q zG&@K4ie5)`G*`7gSaCQL-cvejl`(tkHN0OWxR*{>$2G{F2j&zy?BVW|8@6Y5F0USy zX4Y9Ln}0M;s-{Y}1i(ngtv7j^q~Q%5?EytLi>K-HLke1v-f~^)9;!=y@!o0lcykJ^ z<-u99Mlk*#?!Q8;+K6`uK=$pljt7^ zY$*3FC>3gjQ#I)#QVnMpFrwE&0_WPqFHbmP-j=ECs#3nRRrI~RWvS?sp2Snq88#B_ zGk&}Hq(O+%`aYbNbTmm{lWydJF~xAmzFR~kx9?l#Nuy^pRej$u449x0EmlZDY+~&5q5meVW5CEe$ zCiT-eclhZ-qmf>tFJ5&Ah7(8O9jOs`A?Tv5xUl$`KXK9SLJEuFMH8P5b&N)*gije;IQvbr>4IT1h<4bi1P%o&qUKR=g#8h!Dh+AjkcJRyA2#xT#zL=t?;#z z)DG|>z7=RU&ruE=ogFG0+A~+igSrN8yC>j|=13&3;MUV#CKrV|(ox8r?o}4ox$X0F z2c3Wox(zk-mq~Z!XH6}c<`b0-t>gH{aFiEi4mspdPGwOvv_@TPo}L#4lAD~K*OADX+5g~bTINddHJoC>4bvg7Cyu_^pLOC z$W~w)D=r~4PVy{nxo2GARH=O$ALgF5HwhY-1J*)lV2vjDhakI^_jKHk8R;jd>_udc&tC z*`Anh<2EEQ!P$P(GRb9BI>s=NAgIM%J5T-dT!vk?NN<4%Z#>!K7^1JFA#g3|q3Zaw zAKZItMvYi)Xt1MB((5C|0LLj9OR$)&*H3JE@O5Gs@Et3Nuh}yJQ7@@ubYvp4GMCQu zHXK0QT(fQ=hGUDLAY;aS`|M}bHu&PYUgYi60n=*2&)@gy^y7;gi$_Kggp)K1YtF8-khy#JKy-#|TX>z3=ZyG22 zb#htTalPUpya>gzIFan1=RhVL)R~mDB}WlIlk<}ToL4k)Czc0{;#kHHU`v4V-e$eZ zaO_fTxZYAgwN|AQnWTfOx-HYlXxVVz;pJ&GSXM4=SbbvX9F>V4RE`DC$0R);k(G%r zmAm1q{nqFCjREB4rcQ(3*pk1(`;N|6>dZE*jtueAv(C1EGcfC6By9<317A;Pt zoX}re3#|Q;&jcfJV&^k>zh~VcW>ZD2^TU+CErF@>b z=yXoHpLEF{fETZtB^dr%*ci2VLfDe87t#+|n5#VN$dgVdM?8Wp7YQa{oiomVw{h7+ zowft#^;bz19wne-$H96sIR+G{sBV?y=IE^3ivYwEz=z`YTSMbgKF?o_G^sm*;JEqr z%=l??Rg;T`I8EHwdEy=%ovjnKe$Ki5^m-y%X;u8(8jJb!sPh3x-tIi(E=|pjWb@(B z$S20oK1J)3NRPX2EleaLn8!9rKG5$4uV9acI;~Cj(X0Klou$SowqUX=i5|nN@gx;O zE2kJW`Ur-dTrFtVPNH#hWEt&!o`c944q{h|o4inzCioS{1tcNy1nlJi*d4`{mb31Q zwC?8W2kJ_9&BZc(o`g_>y`i+YIZ);6FJs@o^EcA3Et6q;k>?X-z=z}HJTbp_LvMwX z<2XBYb~nxd1aV5G;=M%Qy?QyGSQX*pC2wPmhAr(F5C3|mLL3z`93NU~qCK6>`M^=>gTD$1Wbv} zjyV%(!&k4o&$Ar$t6b|_Z);Tc@E3TQ=sCx5(vj8HpDYE91lk0$=DcLmjsy?}2bY#4 z)RZp9{fc~^zlaHPH(1EJWAa$J3fYFVj85piJZX(_< z>-2dNV|dEl*xR-%b9Rrmy#sVHLKKgSOMNuTCok2!RkX*nft*~;Qb$wVE9c5((Rfbu zh~%Q&E$RCb_QN3Cs@YtjS87iC1p z-cGg3rhHj>b<(Mh`^$yP#Scyt9vd7AX^r!(+GY)GX@lZF46{}%btJjeC&V$aM;y~$ z-NoqH=T2|b^1vC@7)*;>ueU0A+~!UcW$n@`n<$fEd%IMp&+`?|&Zykcx4FlFj-Vqj3{NFB_8+%F^>$z2V@NEB_}tF8#?MrpERw4let*O1LhfiU&!y~>n#`W zyGn_FE?WB-EhB3O@aPYgOX#%aO*O~E=9A0(cx4UHKe&R~SM_ZAdCKD-`%M1kuLhLO z7-yXmk1yp~9*b1i| z^+D*5X>o6@_rL{QbJo33YcrfwJf4Byk+o9Q6Uq)BW+yj0|NhlzVSTHL^DPa8rbg@9 zjbpMh+dz~UyO1@|;7#u3Rgxv>-vifQ$m)r!NA^^1C8n&=E|F7 z$~jlzVMAxorc-}#5sMY^+Hmj|0ZaWnX(Gd$;eDaLd{5{Pex{As=$C6 zEMAn(KEn+!W-OX7NIfCmxUZ3KEs-lzt@vP2)j6qmi|fKmMrTakc8oG^V=uNUFv;Q+ zvmQ`x$hhp@%do%KC->;E%hwSH~w!)PzxXAarN0q>J_ux^YiyHk%REBxb`4Kdt z#CgtgJ&|vq-O2(aj{1gA@`pekRYa)bz;DPRr(Zu$Rb1V#y%)`oFUlQmX+t#6tZ$lM z;TL^!?qbb7=vR}@g}ymeA>Ji5E#&I6w7(sAi=U24{Q3Xd@BZ^ozyF_q__v=N3HnRP zs*G(JzNZ{l|MxHY@y-AK`~UdEAOG~P+@SdW%OC&CAOG-Qe?m9%yMGyf@#l~IFXbME z9)I7jzmmxP?yvsw{{FAh=ZO@#@>JdqS#yZ?H_XEG)#yRWK7mf8kHV8HMJXf8HKGmq z!OZVcH)>e$tHkzum191m+`n7!jPGsTx61wg)0g~GeI$^6kzfiDb2jq90IxD%f}WO1 zmG`Wzo8xChYtre8?`s$L3F%3@mYv>9PjqZM?QoHBqhp~6+X{>JWE9{AxEs<6Zc>@t zspjN>dufzX*qF{Qlk82Te!Cp`pS{S&mt6 zVBCpZtzqFS-qf}J@K7qt-Q%X0Wc=Oh)`?@byl(l*08a4+@X8@UK1ufN5_BF5Wx(I; zlpx4y%D}v6Yu0$P&l56oiybmTYL5Pg#idc2exRMVjk~8(~4plW$BCSpC_~;dWSN~ z*X0NI%ZubM9mmtsJx5nlV*u& z%3R-~*L91@VPR8}6&&^BcOus8RZh5a=qSN^4>!H07hBvbseh%*XrXn2lqdEn;rPGZ_+|1KRa61F!Tag7o1~&S9-GY;=-q#r0U40#yRym9i*E|2*vw zmvrxj#v>mqI|l3V>eaYdSGrV2cRqQU49#rP7``_vlcPYd-n;iw0>2bq*65)FHW@J* zqFb0}d*U;!Rm)BV5D;5lE*WzJrV1p$0NuuAoau*&JA6GeP$Vm|)-oM1$rz&}yCH`z zPp=K+P=BH8L1XHq?*z@vgK@1z?YzNsI9}!)g@@+ZO8UqcW!~jlnT~{<SDqkcteKIF%Lit4_@H~o zJ=dj7<`k-mCbhH-0R21r{Pz|5Jn7IzdD)rQ>mGqS94N!_qrhY`jnMJK z*wS)clwsLxyStw!9{$l2C4v4r18O?+&zPY00R3_C%;@pxK>FGzIdgQ@jf;qp!}4pb zkOu@2Hrk}O_u_Xmwc}#sd=>C5=>~$UD%#wrJpmL86HmlDjS6R7ozQvVfJ!mC&aai| zOnU2$h@6Z%r4U=Fqf+RQ)-xD^CJ&7oW85%!+H$dJE%f?(7g3h=RWk+G!ZGHg~cUjD+7Us_|8eO%RjN(7P$S4F8?KM85x>zfawh3J)Mp zD~M2XJ(`mC03b%mTFiwZfVYr|AQQb0GLelzCdq9y!^xqz!k$Q* zBiQ`5bfzPy%)-PGlDW1Wom^G1Ny`Ios6QYP zeqN_r!kXpP=h=@+qEO#s{Tzhw2B@#EaF_5xD}%z+wMRQSl;n0nkEQs#%%;rn9c(RG zq(ungM{GCm%|oQ_a}R0Up5jqr2hC`_CsH%KKN3;G7>>|q^MERPGN)k)E=XUj)R9Qn zGO;o$nZ5OOgh*-toYUTeE=oi+Vy%gU&u z%@uCt(6C=4#h-Y<_co9^k0G9_NwdWw+PrkeD(mW5Iv~5K-_zjtkCX4Y^Ymq0Bn;|R zvY~sePhzZ%M12F6Xte8@R58_HL|s+1aK5{fE=eFRzqw&nEFmRAA$dPy7+i1BBpO0WLrELX(C_ zyj!c6XikILweu7wXowLta1&iDb<=^eSL5$BezTb-)2lon*;Q&Mn?L}9D$hm+;tyJk zS7LPW0hG8%b8w+EUCdog1X?AUBp84;^ zyYcf>#g%eqw^3;J?K-<-AcC%x-Z+4SB9o$Nph4@@h#hstGFf>Xh zqaQnNyjpt#c{9gjGOn*Silv64#@pgi`aDlD)_ZTn?KWWeJ8`>@ImiZWJ83~F^e&g) zIcm)ds<%1&py6O%-QiKI}G|!2UXT;P3s7a!)vcQgD>q zH%Mo&>636{i(YF)Yc7rMB9n+-tfQ9V^h2v_C?t=t9k;ct_oa+&mAqgIt~_D#1DA*9 zGOX}wN@ZRIAuE=96-2g!wept?+aIABFf)*!+KV$OnAVD3%O*KP29zZlXx_21s8ucQp4V`Ho^ry-`zR~DWKh4} zS_XGd#d}fvx5x8?tpxzc21JKHDA$~OnreE`c#!LM>5CkE9!UbZou|b8I3+huQ}C(A z*uokJ%^uP8loJ#pdu^pnf_g3&CEcIso*|2%{_}K5kfv`l;c<3{>g}g5`L*(n3J`%u zj)o+Wk7#03qoWskJ5*-a#WK_DhE7C{4h?fPtm0AW15s0Uw|LcE1$2<*d2f3|8D4*Lzo;x z&#uX~041XSz@p-hH2~5MP$A{(o?5)NCpUC&zfn^U+$IdbY~Ju(JaIz?P@u@B0w&s| zfvW*tbn;wMY8fs#D|Pxj9WsogZfthjr488t1nt#L`FZ2UqaSN~vgJyZ2p*}CS!a{p z0FFK`8)a0Y=(N}9kamU+x!WW9b5_=tAV-`Bi`Ljh;|9zJb<);2P9Y1-lQn5tjqZRG zIFkzavWO!-&xXjbLzef>L!&e6Z}57(_AC3Ixfs(e=%?EYr;c-4IQq)_=(%{o>74hC zWvPks2Mq<%*5+dENOp-`TjjTL3tJ5HSR~pO0-_bN>*MpD(O4<1m3yHefpXqSjTOmZ zKz6(Ov9%(7p5Z9pHfwJUq;yyQuxVD$Zb@@bk0&UQuK&uAM>bfKLO43*)t)$np&5%t zukA!+>bS`6mdSO`HkiD+1N#96HoPTxeI6ug8P0@srL{ah{K7YMb{JvVOea;P$`D-oO4Sk2x>ltld8r3m zDhg^U&Qr-wv1gwYE8^>E;19gPQAo@+y_Cbzdy@7KRu|JS`scZcyf0AO*z!`=GM)*c zU$Q=Fc_}GueZ&W&IhwR&z!OHc%IT`o>KcR8KTl2cf!f~YG>sY8wmovGK+;qokt?ka zw*8q{f~SS{X`*hk`9FAc3h z6`Z@t8I{rn+eK*3rM?INKTlhf`y!Ux8rrrJ;%%b|M(t?0JaHV$gNCaHGj*ephQPs` zjWEVHwV-=%K_M3}%>&d$8|2c>9P4u5@OS62eJ9v#33PW{i{WFo7_%BhHq1DP4BZWz zT$l~+$rdB}6o#>_Rq+J3p(Bjpt=gAwqwOJ|beK4CFR9WJbW%AV=^Q|klNX)b!pzdi z-&bK4n=cmV1g~)rLelF2pEgbe`B6C-4aUW8S2sG%* zaRW5vs?-h$BD4Wj+;D(|Tr4UN!Z)mH;UaG1(u&%oa=X$mTTrF2vdZ~N`8*5KCMwmo z6^i(Ro95_ry-6tVxT&RDrZj{IJ;0jGwbl}qE*>S(TGOs=u|!7}Rq9<<_4t}iifmkT zjS3omZdq%aPuDeOf(dT0ioOiD-{jQ4R;7VxV;8U(+lmYN#8L7)5@Z~uJzQ11ytNVC zMOz?8@BF}(BPq`o>9~R{Czpzhd5P%N00?Va4K$Q;ga#2G9rDe{I0vh>!7d)HDu=(( zEtn4aBx8-y8YDV+9@}jCyW`h_UQwQIWl>Qr<&-za&6%L`5iry0}^K+O@w$VN-KnMVw!Ww>eh^rNKOIOkj|9#kEaQxO5dj zh0sVb_F=6`a)hthJN2>*R z6N|7=KF?bGa6Wtw3*~FbHuU{$rS3tF<4o2J?wp|Y6=PcR%nPS=5Rf#2=Q#+eG8Hu|+_G+D~Zm2|48My%B2W`wm8v;qk<7hM+{ zZ#hGew6B{hlwZUEi5+fJWQJRsP{7E=u1QNUqSWHb)k?0?PVO1u%5)}lU%8d5;PdnJ zNM6ov_an2|G!LU4cBR^#-a=1YSAbo(vWFf470y|4TqdxOq0x^ZBwei2=ed#Zy}kE~ zM&;_u?QXWITZ9DlCAA9~U>v(d^Y%o3Pm3h9Z4R&(WB+UFY6K27Rp%N^EGivEPVguF z&LUultG0Lq#47@bB6}qy3Agg#1uNXnD*!N!NtTn^Dy6K1^XEd}u|+w7e4ai@*5KxD z{EkoD&;!IPlg+kxrK?o5C&wu%7@;Xu2e6;q3=2`TYav3>WXR$hrY9UXs6!;gdH05m z?XVqI4*6ncwSfxSD7&K-Q(jcFTvGAMLS)5 z(fK^#?G=b^gd8gSq*;$4tu+DFP@yV|#@M1~>^9gGy@e1z+N&KHVsI4}>CtiNrTT29 ze8XKioJS4FYc|4?VVNpHUyoQFXX+8_(c2=meKj)L3MRwGQw#o6pX98dJWLn>BKIhD zQgfpfKe4y$S^y?iA;bY8hg?1Yx743ZaPqo~$fbgcYL8y&5u{HH0G~i$zu52;Rqn65 z;=6rzIYpU)syO70BC5q|p4m>Rcgtdzz;uJ9gV7j>V_>wvDfNLO(X~Y;4OQ@dg-$Lx zqdh28eMgq;%e~c^yp@0SGly20&Rq^L;!GDnA3J}A;@U)0K(}n=Hp}dqEvGewCi#qD zTpVlG6QYpO1i#(u%S+v}V8N_)(p9D?S-al~oemdUI~R^u_+W9+7?ARx|I5**4yw0Fg`v z0pj=I_VSZqOci59H*Q6IxN}qrv)%DKzz}1~3Ko06dVoq9(#0G8_($&F1_Ie%46I@b z96gE{yZxkNFq~3GPAE;4=Ei3HQgjM9bfsEfbaFv+b0TEywor9joqqEdKkMGbG=+N? z4_26z4zqNMEw~)}>_mo9W`zc`WN>1&7x+A#@*Qb^=c?$NwgNks)@flLhKAbltNy?n z3EedC3{awMEO5hjm$tpA+nJOb#wz*D*${HgX z8>7FKVYaJ<`aHSu?Y#U}L)yQ-6$5Wt=5m>N?9h-h$Af$m&2g%bBz|K2Hu_&W9XZ~k zX)RT!Uu_kj_|Qe((T*@6IYEHrJ^#@*(I4_Mex`ir5`f#D>@daXrJ5>D(1B+raibN{ zR+OYmuF@ZNBBOSMzTFtW4O!NXLl-Z!%fY>OREbHmPnON_K2qwP+AE*E$z?N!7H8*@ zF96UYbhINnk+|!`hHdwjPOMVb%cKXcZsK$64;nF7hH`kLK%cIqlMtUPFqNYmrv5FC ztnKsEMjssh+mUtuzCM3FAQ^^=Iv|3Q+psy6DJsf_3jbk%)g*yW&`48)j%zmBs#TvI z$y^a183Q*2zK?8{J!{Z~W*uIr$cR3-9TtY?j5LVp_eS&7!-QV~w%BCyb9Dp4PDnq* z?u>%%T6o`(i!&k!3Yssz6h?E0$)GT)Xa%HLZQ_$r9v*EhhA{)g&`>Ov=!7-tt-w^S z?3^8UUA)lbIzykvqB;)K6Ke=G*eDZPY-$ZA9R+ITtAsk?UCGsTSpPhmVb@i5pPQ~* zTptEKXn2*naOCSxBmk)DB_QUarOaBpRb?M166mXoEefgp0G**%;^-ZpF*>Wd2S4DY zKr_lD0yM&P^4cp**2XspU9fc$KcM%eSw!XjZChQT^b=bu_eF}WHL7S%N#qhh%$lf_ zp}(PNcC?tKC~#bvuFUZZy*U=qgP#aqVaNJ*J*9td!tPl0aw-jb5{A3^TznBx26|E& zU^nzVb8k}Mk6yc8y53dh)<4fX5Vz$`?%@z2<_>t*UNq`QY4Dl##?{jY?W{4_gVD_9 zI2V&*P_@Evs?wX8uG+%-87qxj!#x^==^fjrf9)goYZWrZy)t!(EBPi5#7>6Jwb)3N zVoNspba_-}QQ>?`HeJ0I53RA>6f^E?ncGT97QQx3rk;~bwI@VVR+>N50Y(xaa8kII zj4&$p<@j(!K~g>y{3)2)>~UYV6r8TTCguA*^zwm;E^#ReYIjLB(p6&l}5 zANf|TEY4H>^HfJ2%T1&FTGtWn%&_D=Zt@NIW zB>2v;ZSntKDExGk!@vFIpD6o_>+czjT{})N$&EM+ClcOJ|am7rZW#xKip;wl06MIg=TB%)V0USIW%GSzsKvXh38|~&a>1EQn z;W+ur=t+Q=j6^kh$Oj8hri7|(aG7SaYlkQin+`mC$?%e;I(?qFk*~bdi^z92^*gZI zfBK4FSjBwdhN_Wte)pPb4~9aN{ixxq-7Rf$zUuV2Z7m(IB!1pn`*?)bp`PSs(qNZ! z*$x(4@SFf8NDpD!X2yfW3$&ATh!G8|Rwp&%c;z_tz z$b^w%54PrUxiMa(;db*@Cao$Q_|L)x-%1*1O)`EYKZcT$JCD>pWG6eQ7J6e=U^?zR zM?RRaYLJ%ZHboDri)X9UDeLMq#)`=yVI?(uABv|)^5$lUq&?Bu|>eya+aFXyr zqeJev!6at`&Ybf97}0h3fwtCFeV#<&0qGNYw_6nb{Z%ZOe1NXkX{T8q7}OF87-=rF zv0moDI%jsOOueICuP$<3pC>2keU)NYkpLaI+1GJ~LV&vLfe(IVb`w=7Sye)3F&;Vs zmdF(~^3_O#15mw;yn-7imjN)!jybs0j*km(x#LsseJ&o=#|DLSc8&vO$) zRDb87Q@4#@3e{B{TNgY~;Sc7Wm6)Vv?Arsd@+9bcx+H; z1s)YV>A1egtX;#*SwE_3ji$6Cq9x}*o_2<0RoWI8&QaIObj0w~MykqP!?bH_Hu)@} z)$EbIR(n93Fzxn~VSvdKH&tbNkP84|!jvwyR2&em9+zDcV~u`u7JN zQ;ZF-)-3_dXLrLC*DEtoUGSi_MN!p>jh478QvceufZoQ(*3c>8K}8Pb*zZ0nBr)yFC!QG6X~eyWHqlgkQ8Lfgmd9ws>af)-dVH+*Orv+vvDd zCztp*TcSlQFiQgbFWz}47>IIDK$Knl16fvvAONfQXafu$(tqV>(=;&+poZ=|J2{3{$W7 z6DBI&+oo6?^M$mILp*&KjG}@{;)erp8XWe$0=<_HaO9hCP2b|2%W4JjCf3rj=~WN*4W&_SR<%?Kt&(Zp~v zMLDQ>PD^gS*7P-@>xsCMGQ#8EKTi5}Wgx!wM6N%5$uBm+8>TcgoKAWpPcH9k8DaFy zoDrRa7+UZLAUhBS6NDDe+UI$S@!^;ENRU<5vPpDQxdT(tSd|*+NS_=woKvqf%%Ho| zEMli$udp9ucuHA>f=5h0%U8SI%`ZQRj{eTyM)v5El-#hhJI<2eJfh7iVLw)Fx2}j!wz8Cos2I->t{`N ziT)#nKTH-q;!gyf(kLU>Fv@`-6qzaGZ54HE5rsw-O@>L~=%=Q_p*lyJ>YY(SHk)zi-dsv$ zLI8dP){1z52Js0gC%;JdBx(Drdhasi>m^%0n;+wuDuDIeYjl~ktt>chjAco*<+i9_ zKai60ZDxJ9RkhDMUTE^)d*eo$PWp4w`ih1L&LEWmDAVF~_<0V5TfSQE z0_pSW2zHc6!UG?2k?Q>1=InX3dFQRwY6z`KC#iX9r3J@bNs;baiB1HX+~WLl3-fIs z%IC&aRbEgGQ`0A=p0l+bji(=X! z%y^RW)U2ZC3ZqxqZ0d;*M_=@Hj-P02ZS#T96P}VAm1q0fv}H>FNSbvrc8RIsMIT&x zc#sMZNl)r`QL)JYyh^JCq3@E!Vrbfd+>^8OmEY>Ck0dT?WPzZgJW)O21IM>^-~p%c z%cN#H##A{N$W`hZ=X)UcWSpft&X*8ki-YDEDho|@Mkrw5iJuhG3{7pJaw%LVy%~o` zAR1--Jl91>@)L?!c#tCMh94X_s0he9! zyTlhGxemmhd@s%4h6#=BIrl{Kp9Kp4rD6#4cr`G`2)aG2ti zQE<~0=F}Mw@`D9NLxTm#)=RJ6dd|kDwZR-_7AM|YE7AdZMZ2%kFpb+%CVlnc7~2{% z8vq8Lq^EHSh=S?B4K^z}!&8=w16TYs>x=W;IN_36?jnrqSfJZ5ER0-bG zk3K*{nOjc~8muRcN~Cz34fRoNiZ(6@*UO?^S)9;L5l*R>&XXZ|;Y7F$BY@&1_5voxcoJjuwS z7oFg0W4fGJ&g!L;SvgsCvS2M3!m zr&B^{mXj#ZaFEiNCxNy~V(~B?peO3rm0I+k?JHxbxWUlA1y@M<=&QT6C!{P11~IhE z01Ra|f68ryw3fv2EsM*-ae|(ZD~0pDMxyVEZ|r<5w9`7+@wS%-1CE-s-b}jEaWQi8 zX{ua##X%g>qeZZOKqK+JFmS6`|BiHfBU+E^iQ6SwH#A`W1>^p6R~0IpT?^Av_%mLxZsIsMA++Y$dh^b^fRnGh~>V_%d7FP4ju!mvp{5*fyT z!1*}cTmf3E&>5!-y|ee>7u7ux68UO)e`o|99&{ynkQmO4Rkl>(lrT?rRcNU2(2>1p zos!zMSfdjmq!V{yxxW&1+l^>1UW3wlnlKD3p70!w`%@d*3bsyuD@vC2rtwKAR1 zS;XB0Kfa^BH*kjCwMr|6lZ(>*$yv(cQH@41O1Fhc{+%jmqua5BE|N`o!j1FVZ+t6G zzqT7UOz$goWy1{6hL!MxA{qK8yj|##@pAd(qA+Lvp-i^O3Q)gRq!XJUxA$Gyb=?`m znMcl4_rfjvCnFNkUbJQ}^zrPIslO!N@gngttEDdji~}6TxXA8Pe>W+X^hLd7BYB(j z?I5FgK@)5o#Ig zO$)bjCO4)k!$YVjYjnX|tI-K^BJQ#a+O^fTWlj}A?_m<_l(@=+R2_WWR{6BF=Fw!* zzk&`Um4<`(ueum9ktc#cPKuQ-Yl>dA0_D}D=fGTvxCw`5hq(nU`eeL>1f>-PfTi@7 zYsjH}o|^E9618n5QXnn~r$0+`PkoYKPGd%@Z!2o$vuSTkJ0c0ol*VRdZTiuUcyLmi z`8IS}epra?AY-{%M*UtxtE7_$$#F^I+G0nmiC1Z=LexY9fh+fL()yYJrk%(jy)97N zRUgV{o8v>H*C{Y~%Lm9uU*uo6; z>bSEynj~CAwLZ}}kB(HD1Eyu4bS+?TSQxVlNZu{#GTQ;tA;;|LjtZ}%Q`%sMge!|s z4M3broAP9@1CU)RfCIPTBIhRZ6gV@WO8Qo>$#-VoaW-4{o5{Yq%!v!@}7xx9)0nXv@yToUSxoh~~ghIPIiNRGV)MS!x zQ=P0)1sr57RTrGyvS_B$KF>LH(mglp0{xoMZXj9P3;ku0>{&`CUMGJ*-*FGknRZlY zwmyj-lC$785+#7-*EXcu0ae76c=SGpFUPZ#J0`RYEv)F4tN}xmN6%8@+792UNU{pQTkseJz%9*od@LJrYwjH%^JEY&)j@`frAJt&nGxmc&qQxAnIygReL zA=BH?F6B!jln;eBoD1zw*5HL7I8h#le>S%T_MEyE#$H$6 z9+O`>7C3!83da|7{1B>}?0Rqj@vhBUN_3;irVUm%*1$tQp>~+4(Y6xhi&mkfg}DK% zMSJ32Pp^XR%$Vq{Oxlw&bX53TK~K2VK^;Q^%lq-7co zZ>3vx)OT`D>rS~J*`=WC(OQuXun#h^0;L0tzs=COG)Nmp?#YR}3hmFwsVNUat6YLv z&baBiQ+>8%-WM`&>)3Xc5!WV4*J`4w_|JEL@qSU0di_-JZG?wH5peZ&&v9Tk-Q$NB_#(72k5XGH%J7 z%8|6fZMJSHPY9_-?<a1@2+kBRpguZF zg5%e4Pqx6FIVo6DHrdP$#&agR3fDhRVvOs|-*21{y)am$#$DfW#=wDMGcw4!W zXryRR=u$N&c&?#nvl$ZBRbw$99lst2t~^B%`ui)-ujgxvUMahdJXgUVb1{3?Ly`e2 z^jy+5r&kJ`x*~xG5O^|Ip@W=>9hJBll6>WG&iwmWy`#i!%YIJfMk1guNp^tl?vG-( z=^(+d=8jh=<|^shDmA^G1XW#hGZ6Vafe}%AIb}85IGL3YPACJ5keOJ)MdK&Xso*)cL*YRls zbC>Ru^R6i9;d~f#bI!kr*5&gwh7mj5nv}`cg)-hIT$Z1{$X^mn9k6FH_6Sey3GMW4CLi@08&mmu)y}2QrgRar2bHoAD@8aGL#5_4 zpXL=UvJ#=(9$p8PmsrcR_@6-r-PBA%cTW0F1=?=2IVx04%vYYXPJyK z;+OH?ebHDLm+gT;|H#~Xi!}1bq1%8o@Jr3$6n=Kj{eVYEL%GKgUIqR2BqGd086qV) zNg{HwPDhqTWSAq}Ss>`1Xy2~5d>F3h%7m{6wzbSKY7F#nz;KDl5iyfMDji62WMeMY z>GNd9*-U!H?IoR(PZX))27GewY41@gLt8xRw9yq!8@W80dbuvG)JZ?jX^_si&GxlD zC}NOKrc`}a8o9-sF^}N{mGSQ&t2pUNTa6|&!&K9~E<$qsJXLWR=}|P%_}lG83Qxvd zjcBt32#*gOXm9vj-qt9nWvh%oD5xvG=ZE}esZgKiDtw|)xvfsYbWmDW;AKIJn~w}< z6CXP_eM^jBu&D!;g^w7QgDKZo6))+5y^+IO_x36bw+uWN1m#s8NZp;|LCL`xHoR{u(s6`^?5d;-H+<~u1WoGgyigR$>7kI+a5r2Zv~%rX^NMI?bBq3i@OgH zqR@-6+oJGAKhH(zh-A4DF+R#C`Z}#L>7JuMFS~66i#qS!vT#S}jc;%skL@DbAC-hYfS2DIJ**BvPdw zj6z+k)Pdy@W?lNt@(BO;Em>5Rwdsbb`eS%t|wqa_rSf>+; z3gIsI+oLqbhkeIU0wj-28CjP}w(SYft3qy$u6?!CNr4gsnjP?L|2HH0Br;}7w1;8hq@N%q&dyD z7g1e3qJ4;aUg&$9cZXF4-UyP~&Q==fGRyw~#lp3>PDmb&<#_tA)C95ygk(`cpCojMJf$h&+ z>)-kN^q;=u*O~!Vn$33VN-RU#qhdCvng#EXQ?@kwiWLTdH2OqVSscLIiLH-`VzN+M zb_E7>_YrT?rF)jHb8gSP6lLVR@nW1Lkb2|#Vrz<@WWM-<*#UB*4#r&G=Xv;`ZDm7X zgy9X#D7f3KB{O`VY{{dxh2AjTIQW}XnByoF>S(JIYOGf3^Mu9s?$djy(f6qL@PZlO zcc7i^EwkH`nXXn&+>L@~qou*5T~evtl|7k>uZmgh^Nhtc;kaqBe3PqHzNA#9b1+Gi ztG!PwP#Z;ihGz|x&ROC-0X}QR`Q=9NYKLW?rz~XR+N;}cJ-kiAXkGW7y>M@1Zl|U& z1+0`nGuw-|SqIb*I@JY$1RC(gVWEAVt{{FByRmqYVQKZw;>E`D)E4;!E$O+jl*(>b zX1#_h<4H^JCHV%;sW8)|6vydSw^;S*u@knNWGU{vl&F(!@7LS(r!V=%Fp9UI!~}joH(Zn=bDMOGHg54ZX$+bJB42&g4oE8ofpNoh$nYz!J0fFgb4zJO0J^2q z4)uWrd*yRjm>8E$a~6PTSB@!Fgc7#J7TQh(lKQY%zgb1}@c_Q}cNNiHsL_E}>&OgVD&-M2-IQMwZdFh?U$c@j+D2jbvT zN5eUqyB%@Xl$2GE{|&2KGz$j=?6+n5?x1&632zXiSCX%hSASxOfIo0IQqDw^;mM1U zL*xu}f@sUKEKVu?0M(&`hQCd=;+MT!wHF;LryEx7`>P5q;RI-s66k!QPopR|@trt5 z+&GyO3KicgUpkjsd3SdwNFtAg13=t;@Wdk zZJndM#y!gv;Z{5a3rkw&yx`kd$uxMPtb|@RLFjp3J#JL*8uc!7@*LwNjra zS^R6rdhS9a`=D9g+@OUWzHhPZ@)rsbiAznn>ynQmyhNI&lbgX~nv;$j^uVm>A}Trx zU3EtB0}&@OIO;pmiTyNN{X2gf-!^_7aZa^c5kMQ%^})eR23`;2Yvs^sHZ`vqH#9V* z+bXz;&r>nU8}vRFV3@USnkHmcoE=8)Hm-h66{%Gm(7@RdZj4Pjb669=RuZ8a=;RmM z!uUT-%%8vTujI~uvn)fTQpRh+)VGT-hG2k zSzZ;rGMyc0cS2vAN3arCqtHr6bIb&$E=D|*fUyi|qc6*1p^k*U(h29SlX<q z!PA%qHrc+Fp)VSjru0>9N*u|I{l{+K{FT~+o+{m#TP_a>FsjgjDK*F5++@~hcu!9> zBEgN-zIv^m$XgM+^O7C(*A_3?u`z)A3s9p|l^H(QyeW+`8zm1FDBP!W=>r`?FWhGg zru8k==>M=KKfdti@BwG6Av$U_R`QI+EG3!#%J4llaFcv5U(7tgu0%^V+2U>tXwq`q2q)s`eOo35G*=K)Hkj(qzYO2xjeDB-s=^!VvZe(Bh?3`Ae3 zQsMCQiI_~YHOB!9`diG}aAt8@cyrR*b#>`DPvp;1wf?>f%uz|o+kbtXI(4s9c7^j8 zJc;?EV3v8$cm(O9KG&_Mll<(-^<|UQckuJ13y+-S``HekLD{tJQxrf2&;bxpn8-MH zEjHEY(i88Lm7H8s<;0F}q9;Jh^7D4WEY&7VwPKg2R((kifOj6HhCZ%8ip=CU;09y& zP+~H@fZ>fqpqu>VAe;I%A=MVocH6PU;f8VdainaLN zU;X3#{okk0_b25V(!OWsF5tU?v>DmnIPlf+Z?p~%^n})1=SUaWhC&L#k{a!j(;cznL? zXydxONji>k9=90#&?7dAIZG^>k)LoE@UJm`y-5up zi$+`2nFFEr(lT2-Nu8nlgOK;~MsL!|bp;-!7zR?@uv}a9`acue>kEI{zEremLxbmB z1=B|)3+_a^`KFo4q|p?6_JWoWhmIW0+Nk~WGurRg{VkNI>F9MSZrC`_M&}HVZ2YL7 zghVFg@G2a{;{lsHY{4~5w4no-dRxQtpC7-D?8iG-9A25i<;pGdR~!f2YfP)f2gh4# z=G9_4Q#xt1Z)fCi*|}RG(g)$OS3s)kOOQ0O_BsG ztuMRFpAebnotk8%weOLW2puY!MZ)Z2<;KPnQ-&;oGB@6Mv*(H4C*f3B(u_zJ1zacC zi8>yhw>ujHi|?V3@cYdT(-f*j>_OYhTa{0bwh#t#W=dLEfH4H;y%F+f=-JW zx>Rw?q$Mx#9ez@FPWxSDalQKU>_c9z$!{kc-y7JuWgSLyI+=}fvQ)Vn6z?-sYJ^~m!3U6uN-A}M~iJ3WqyMCoRaHmXZ@Wx8%=!!tA|NYu_r2Kr;e zyR{m5rw2%h%eVRt`1zhTiu=^$U>P@EOJsdu6lu(@VXBEz++uTOii&Sxjv6(=8HC@)$&3(Exocw$J(0Ok?_A_A)?x<{%Wk*k zu!E?E_oYvQbbQo6g{|XdtFv?VYl9G#;rc`LHP%QE@DVoZ^H#?iGG!|OaHnKpaoNf2*h!i)_Q@D2+H+Aad&1%G_Nw!3H(h_3;azB++)7AvJP&TV z&Ojz^)b@(M$)v+H1=I`~Bqi8ZyWJxR3HL*%@RLz;`h;w-36d;6ful@?g{ClLoZr zDNLMBkK}i+Rq03={@tgzJvuMCica4|FiN|E?tHxy>!1ZB0$-m+|Nf2G?e8 zNdN)d?rRim{XFeZzrMl4dnILV^5ymy6_msF9^lJrdlXT@ZExCQc0tE9IT#fBYBZce z$-3&xT@Nr1b|qomK)liSZgGq)tWD{_pmBz0H^F$U8(uowudn9gKfw)%=5;{NxKJ`f;UJ6c8rS3cd z;pYeD2x+{h?Y;b&ZyGoq2Rn$>#U}=@bEd8p#eJn zw&C1;kv`8m#E?7Os3l|1Z3lRVlhd-3P*VlsdQc?hG>-*N50N%$-)Q3KWlI>krLw5+ zvO}c9O|xXzn#LBjq;|(Sk}4dDKQpWqW)E@@PkVyNP1_2nuhMBh&DD=J(Ssde9_*4r zz8}-tg&ua{aIwZmZOH6{)}Q@m9R& zQU(Hegz(tMX79sJKPEGg!|`(x?N!&d+$s6zi3cAxDL3fB2g29_A2|J^J7pJIXW$N+ z3_R0fc*xW$utS+7!v%oQQVWg|o}|Ut0zbhzQ87^;rfgc zS4*At4^4Gd2QaM3O!&1joiKlx5w-4eQn8of_Zrxkad0i0Kj83qgn;a1q{zqQHncHw zlCi32(gXl;txTUM9@>4G`o=0HoltNO0RePii1MIYYMo|kxFVbKa7-FsqqoYTRdNFV zwJIHn2kf`$NixWZ4PI>ZMe_!Ug3eZgPSsDcZ%rIcleq#6_#F3u%Mr&HEiJ%`ulgGL ziG7RPD&?*sjfS=``?fKz%cj1}!WY{-Q{ID%wtI`3@!w4$62|MK%wLNL4f=*Ky*yV}e@&0V< znW+gihrwvnSt%ZV41Qi?Pb__LSu;M*K71R+zgIn6%bIVK-oC@#cM!7qY8I$Ow^F^a z!+Jncl+1qRwlU0TGOUK)^Z3Q_s=@TmwOW3jq~H*$y-yI6GLVS9wUZxln;SyLej_L7 z%-9g8&rQoGx;|AdskNpGbZk7pkPn4;?co*VIq&-e!sQrU@ zVIBMJ4c(f!wMiwCCw1mMi0pGQ&^u1ZC%zH;ozi?ybg;aDLJD_jO5We8C9x` zq@-H~2hDA9kvdPX8N+t!-gERXtkat_w9 zaQ)XJ7Q+kk0Oe7xGk3?uj{&jV^wRp%*Zkrev@`RGQ~P1;@?=WMM9{?Vz*rWZbfPdc zZQY##!ruGhlroPPU{1`xc3JQIX2T$xzKT(d`<)LEiPlWo+q)GUph-FyC{-N@M)BR~ z3f2IA9tr07hd*`lz5P+fs!qq%_MltCV-{!uD!OC*<)qjh5H?CShDtC}Vy&1bXpei+ zxNPH$l@6n5*Sfg{_o<#4rMJ>>H8$(5*&I7nxtU)m(e*68*sSFN?&JRfXYMzB(OE~T z6m(~}MC%j5HIavPP624#IIHF5wsK*3Rkgn8UX~|>9{0s;_qFUhuTK?TXi|Y8)8zqX zF*?ctPlgoAeJ0mXq6^o+qFPyYu+2mE7wu+-eXV?LVE4~aITYg%pL zKkOJMZPlxGdJ;DDiY|*4`aFM9?h9mF>w_C@fOo;oIJsX8F>eAO@kR{N)fF9X{{YZ1`k**GcUuOrU6_`h8H-OEEM-|F{aP1p~H40pj7V?72CG0 zNqGsQkpmxhW^^l0j2^vnH2REu#L@KOFs&x3i!z?}c^YH@bi37l45a@~{L#Kf2KNr} z2g8x1N9Uj7d--n0z%J+xfIBzwD)yLUvs4){g4QieebIuZeVzd6-y-1mq+{81DJpPV zQY}-QS)_iA*XG_gfOnw&XdJH9Ss3psIM^r^p2W85Z_++bfK+l&a+8c%nPDeec8&B! zQ&h2T15)^9y*1fyxzKr2c`$mdlQPuG4RmzH&J^^;tdMphD`eQNzpaxFHu0Ufv0m@n zre$+LkXprt7vWe}nJ6OHE}8j9(@4sYCj(zvZ`?KS&2TlYEy%Xd(;5^t-f9l|Cdom= z?>;{4stz=exU1R|%-=>Q*BnP@I>{bQT%zH|(Z)-;iupfJZH(Q^TVeh;q~9?xtF61@ z7}YH3&YrwobjnA6rf7*7k2*>Ba>2y_=d%^AK(E#50L3BK9`k#SLw^vy8z8+GChd{U zWrnXj@ddyo*#R9H8)r7_?b%EjzwJqyMAqJ}{&}V&ChC;i%Jf?WQZS~mbcR)Qf3zqI z6iHVhvcY)VX7k9DYibRhHB%JUo~M4oWkV-6F!hG(=wF*OsP*<5&KVa^mn309;6*alfFi%T=L56T>g8)?RJ1~T7Q)Y*EWeT)O>hThp}9X zC+YJv#>j?|n=5a8QS69Y;!#Rk2Skq{bDGTzr&1 zPhiN97~b4=`9n6fDesh<3T=d1^q5Vv;EJ9l9wci%>y+YVUcC(pa@BXJpWr9%L(BTU z(6ajKm6s1k^vsHr2X4m(;Gi^X2jHkOIXcEWh6~c^57lvk*Onssk>wR)hqp75?k$3 zcVLaujE?43>G(7$#6=5?9@r`P6kE+rm-2ZAqI})X@CQZ2dB_%n$;2lXrK4jS6Wlp{ zZKEh^ud#Uu-wV#k%=DvbQi1YN;@CLQX z<2H=oQ#$E}1eTnnk(?_jW5KJSAzQ4{5q{#HS}#AAnBR(;b{RYvH`0r#XjQ4`zMhO7 zGtmWfdR#NMc9Ih$S%P|wWS|~vO|p~|OvX1Be0$>hPv*RT>nnnPk1d)S{9|bty*lve zHfxVUrE5>-m2|2rtmvd9R3*9Sj^2)@2CL8D5wnilP?|v-?h3SX!gdo;RUC)<;F-f& z3Xk`6q{kf*xF?@IYR;}Kt%x%}HeyKi&(4SYutvK6jq(C}=PdDzeO z^x@lw?=qhaOHs%JR*4gz#|OX?KK2Tv?yLUXOuxsiIU)KYsMKPa*)4DIDms z$Pibb4z)w~oEdoi+Av~Ssgr!3@1U*d?XA}~U3w_fAT6kIQZbDuN_hNMI~S9aJjrB! zkSqG=EI=8-D4|8vD4(Z0Xb^kTq~+JOLcXJmMk9=0?b1mFmdWfOr?uKx&GW?5G$3jdc2hmFt4cO zq(BXj-e}4qG{)4$F+c9`e>P%~ht0Sa$B(YdSTmhkm(&(nJD!kk!}xk;m@?wjaE*3p z6ml%q=<`g6jgxfaf4J)?(Sw1GtvE$a*``04r8wO*f_cbzhWd1OY|iJ7ah0onuYiyz z{IYd~NWQnr_B~^MoFs;-W@l~&ULc)a-8arL3%5e(Lpr&-PyGgkxP=<3#jaOQSc%?V zc8q!0lG8=su4=r5j9R1WPn-{Ht9X>8r&7o1(=KcpXu|N*!qE3Fmg$HI#^FavqS5iS zXH@lBF0eF)8aH|+)?Q{4?~=Q*jh@SBwO1dd6E+yPmtEO)*E#OG%JArYCoWIi z6tBW{e2zWlphGlEntrJV9n2T2bYN2?$2oc*#M;I&iajx(s8I@jwTJUX}=y3bu&8H_;LHZrjcLl!h&~p+&bb9QU62*PcsxzZu+&tX6>Qpt=$+)f|#}Rtd zcXEV_lMVf6q#mSHj&F+$C-O<2PpnBNJVd)xXQxlK1t!ry#YPOc6K^+X;kk@kD%7#;Jecg8V&6nm3z zj46rkS_+<^jJfDz=0!=d?&%G`1e4%mkg%qKZn^m4PMqlH$qBzNqTklA?W$pW)q>8p zMkQY>=}&T>a#%9;rb(T|91j>ci`A=k+UmAtD1U&xxV8`8WBC{ckvp)5y@nYvw>ubN zU7m=lZ3Id7g41SbuqSWLsx=tu%6+@m7by(=JcS`&g;U1z-T{b22fk**>y}*1*Fu4W zpiWPw!FbeqkS{9M#@_Etow%7Cf!h%WSeNT`fW*+tM&W(eRWBcf4aOw$5|oOO3)P%g z*b^K=jtTf2pE^!sPO9HgDm-9HmYoX0wMx~`vlu>6sMuJi#{BA5ILYAZ)DxedsuqK` z?G?qEtP_fqbmtdKZow|r>4e{f4e`W#zl%)~P>$d4mNXG;LCtx4!rtmoS1>D?VK$Q< z{q7}1qz+#OSuN9vWs-8I{j=fHx&ue#i%w%61y4mN1!9jRn%rj<+F_6Zo*euFVKS*a z0GU8$zp|rNiyDf0fXMIx68!CP;@1ei=9d>LUWMUYI`&1>(jJ5)7){=}-c1)mn{_ny zVJ0LssQ@gC4OTs&qqu#XzIodXqY!z_{<-f1yUqUVJu!8FLT_W8#jh~8A2#u z-K49Z=PS;do9U}t*e zajcU0Ws^ETnk#gXq<5e#DrW77tHr_d1VnChAH$oGRI>I5?x;4r;#y-qUGZ63FDS8L zgk+GxSVZLZc^*Q!xpp%K)+=mv!vob`wc=$jO_HYPArBC_1ITw7ZWv4`n^gOCrw5QI z(25sZe4p$95mB$DsJ9ahiE*I(%@C1Xdj08Ze)T9=G<&U_(1%TKe1tfMQ?#idLpwVP zE?L|t2gGl|ssP$fgs5_&|Mp%i`?l!ufDJpkj;2)5m(~Yvbexmm*hsa8LzJ_+3vE_v zD*@bYi$3gP2Ub3GCPlSQq^Rn~=uLGdXcom?NU_r+v-Z(_QQBF2)?~{&bB?Q42I|^k zB(B)!35_}krT5QVy`I7?&m7JeuEbkmyl;bWI>IAKETPNRDrg%xW zD^7%JT6}Cz`1anpN{6r4mN{upTu02Eq%!uUEGnh#gm(p1o^LmKxT)QDZ1Th_no^|+ zL|A$N7(O^lCM~%A!)R&Ixl}oFAC0CYrnoL`ad_n?q!lD_^S!cyyhm=a>&e0niY}eF z^Kh~rP#VdQvQB9_$-Y@igWCDRETGWHMMUVIr!@SsQ@t5p(GqRL?2645060~%Qk9QJ z%r#ex6{A98Snv2`J|hK&HpJ2lQC)<2{&_YdCNO*4L-yQ=*qJ(3Xl)=$=>9-?fr4md z${!K9=p4X^n%SD+@o`kMFDftmi1K1U_V-ZGe_-|vhTy#_O2ptx`anKWoN=YW*=A>y zXfnCqi1TR;?;Y8xG@q0Q4_NdfbUVON%(Tg=J`NK% z{RQ9??epsGc*Mm*^mdu#J5u`HCIbIPv2ULQ_Y^+gA*UfXI4MixE|F3t%5=e5Z+ASV zp3R4ncQMmU{6ui-FnN4C1*40TZ(02=FClq|BiCibanD6X)6}sv`hGKHX*PDQ)4W*F z9VZ$-U*viH^GwEYy=|PFyfvg7@wPi~{fO@Yi0g`@P*prCV)jd5dvV^PZ!m6HOJ0h%!O4|SRxnbZ+0T>vp?c(F(d z`sZ1Uqm5S?);_H(x+o5m`>gpA-!4IK+_cH0c|rx6Kwr?(yyUWDOnjcfs1p^+ovksA zkW`JEy{;xxB}y*s;Pn@huM(429ktYjj{1tjw+jB^^Xvsp6NX>=d$;y0HRkU_KV$d& zmoNFXOca1vr3i}IFLcCzvNgxU$lNk@LwQ#kj1Wl9WBkthFF6SsYDfrIo&F!w?5}jxrIb#V^{Is6}bI zXsPrlDZnHTq=$kIAkcr8XcQn$qDA`md!ea*Ghd{n;)HaAK@~S43FC`cuXp|PsQFJ{ z^h>30Mt3_P7VCtUk4BhEgIp$f_9(MP$5xn=fb&|JmEnuSvG_b4^8F&dXG5+R@f{g5 zLZ@Q~7eYOiGm+2%H}K)wq=POFVv8h6+-jR#fzW84C}A{!Az$4fkIz#f?b5Tor9#>d zk>eJ+iZ>@pgpaMM(=m013z5pUyyMeuz@D>#(~0+VBp9mYsx^NcP<4E#0Nq9fZOQ@C zR}70Yd~#7n5XFO5n_1#q-%`fMOh$uq%b)Qld>zp-uA-4cA*?rr>VG{Q`}?)r<&)RY zeDRGlH06dq>;Yb}MweaEka!{|lS>%uz+WAT_t7jY@+R?l-emM@VmCdX@T>B!>8n3| z$*-(tylSCYYY7i@e!%ZfENz&tkeqCiLz~^5rQ9LJvT;>u@uABT`6hm672m#Mn^nA_ zkFx>u8v15^Kvn{eaKAY-qh*;~sIcNfFJE?m6+d#ZOa~TUhI%_@ybpDg7kQyA9$*|n zyp$)Fug+{q`djkVvsn#e;&SXv-(nQaa;c8&zT7&#>Ndkyyko!>TyPHN(xD-Ka-{I` zQRW7CVQq5v1&tbgJA}Oiz~>?;$#c6e@8RRM`w}<1FZR>d{Ng?UZwezZ3LVA!q~&NR z@PE_7q+O1HW_LGBGSfHsl&!{Sm8Np=*_Rcs~>Q7(tYl%wJnrP!_2a#yZpAeNm8a;tg zsG{tX0y|EJ@YE{)OxLT$Ql6nt;;xpLChL7M`8R5Nsws?RGy2e*b9yb0aw?PIdbmE7 ze@q@sy3JbUqPA#{)jsa?6w4KW_?EBiquJgg-70{8V#;J=p;_PD11A=gs!)AS@G;vL z)JBZ=Qd$Dxa>+zc0qXuYaCRES~)~0cY)WBs&KZ}gE zs8wi3j6kFhTK|R*>3iC2eF5!}1sN?ffTPU^T^nE~gKVr+F2qbO3tClLh%f}0_OXAf zQuyhp$DjZI{q8^i^!xw$hkyIaKT*eF_KMe({?WbTw#NVE|NcckzWLvO{~v$&}q@}$$%VmOv`{M4oLe4g>_1N`5VXQ=zO==%bf znRE3MHS&774o_+tC`l*sY;xJb{e73l!oY2$>v*QMCkrFh=Z$o1Z7 zTuLbE+u?NJJqB7Fh zA2dyw^;nmxXhSkPo}^XY|MMi|SU8k&>oqJsUaz;R^Ze;ceqkv)#T`U{CPB~qc;fHP zo=rKo!@1Gf*d0epZd~;V27j*|x6d<>K^FK%~R9jU?Od&HY;lQqvf{bdCHFC=!tKiXrxO)w__hlUdBO4kane3sy$ht35s|C2J!thCR;00;C1w5Ra*dwu4Y*MlbxtB zfnm&|lnxl)`;!erWukUcbyuc4V9QEuNWf3pZ`D)tz;5KF3)!xSU!?X6qL_!=6dZb$%b09{;y7UsLz6VlJP zYDV9kI?m&q_$|15KYHd~S}yN^o>&33u@U%w12itSVv8`KaNL|s-eDr<+)1(ytd}%M zN;8>Ulu-IGSqjiRF3VMY;)xZe+eCxDEzy8sa9MGRN>%Qr^zuM{&j8;h4Nsag1ZGx8 z3RD@|>776qo<(KA5z_DGU5f8n)UU5nqdJL3+=kwXOY9FK`&@C?nTS!4QTkllR2!~U zyn#f8fE6IdTon>fB^Egby0SKgfB+ z+G)}w%VB+H54!BxgB~mdcgK5#(m=gDu%E5N;)Aw-Jdk~oAqU9Ak75vQFSe)w)z7mK z^-4^<%ah$SHSA9Bu!hHpOL+Q#dBv#!cHou+Ct8!f~)0|dm;o@vA# zRVs8j#0Z+m&f1RQBp5ePP$-$yQunTnPV3n-VsXb(Pgv#@K8EkbpZuadW;irWx9F5_ z>gAk1sgPjkC3EPdhfhXd;-U*?t<-8I+M<869$+30BRq6WXi6z@t#yd0IpGXDHoz>ENIj*S4f<--o~;P z$M$PHUp?VlBjv7_YS$w226RDxq1t=nf^lgUPxKLFoT^X>Ee%iK>|_IovpV_$1G<+r za8XbA0}nft_vcN%zVrFsOy>QkulVIlku>egRc53o?$Sv!?m%r@MO#e8W~poJ zQazJxRBt_h{W1pL({eG37nluwkcvKA^2owt!F)aj7|h*@Ud8a}HB&C*Eas!v&+`}U z@=U*byy~9E>&n6rd|thIM#$W_*Al?oT`1DaHYvX(iN)CaS~Nr#4Ycb&A$?&lFO7yW zc*Fn}OoW>qe&BH`v?Qh5GEFeoD)o8#B6&`3qR;bdY`<;Mi}{$rc3L%6 zfVwAoW-@v~89A+*a#Dba189W_sOa?C;+{wSJb{r{+x7N5<>h(3Wt6DY<&_e(02AO+ zdKQpq5?#D?UVxL4=6D9%hy|uG-eOyIB)W(#)1AN5KJz9~?l93xSF_m@lgW}?nwCDY zRCKOPOjGpUnwuN7&}(Hnvc+L{YNP=%WQ!SSeGQmKTTa1Y`fh(GcdmmXGn#Bg(4KOR zr7#@dPVqE1>T~Tl*$Fq9+cM?0D&@$o=EAiwZB*?6mxRtIy?UYfe4m|w7$wtYxM+s~ z+v3jk0sX{9oWCb2asY@;?pcy9T)B3OUg`TVBkSXmws@yQC>p29HBtPiFg|2lj_+$7 zlbujb42RFRL-`yYAsbQ;%S+H<3b2D;PXCi@g~R~(CVCO#FXvt)v8E-cvPfsv%36Vr zs3s1cA?J>|57S0sy#7dO-a6U##(-q>K9gDIop$9kE3{4;B!>7$tOu)c)|;vaZn_>VLnjw zc}T5_wx@BLXp_)^>0REK5?flVUVEQsALPDFx~od^ir{n6!yUig(H`JC+ETQJyVC7j zz%<1@WNS2}zRac9h;ch0o?s+by9?y)d#DFAOCsY_Lt6`!m-<8y?4GfpNugs(jRixsv$s?13E%J@{3*4#myU=|yU8E;8Gi z!m&lh)j!WYl!-c(ZDkr=Ef9dx&jC;ZhhwTl+}E%`>r@S=P-k__ID&;hp6<7cF@yej z;-OEV@xBd>w-=XOM&_Rk4~ZutmhM736(vZM)|ra=GtCbyK{q=^72;vkzuXfhsd_#!D>bxKMbvSo>MUX}Q5x{Q+HfpgL+t)}mZD#`;+?v0D8t^# z`}&nbzDwU1*&G)lr43c)$|wwhq}?+bubQ*{vEpm9rB(bJr**B2C&G^Nj>KSg$QBag zf{FCX9N}Zu=Y}5?_Vr3FgsB15&s~OS&wyFbI0PWiVkm_l;4gfPJxxSx-3a=9!cb&8DpGV{`-NbJMU_Ui9h%h6lVD z2;m81n}PD8+j0-{*`PU~cqcZJfWEg z=gQTF;jiY-)9|SeZd66FMg3(Q5KkOdo#Wz*q@WqNn*;hMqhANSZyqdiiO5N^sU&yi zTaT*Tf?F%p=UI&Fd3ql|cD+wK;x+5bJL;o?584{un`gr+(S~-61{7WDDdsoJsY>n}V^QK|rrYq8KLJK4tMno2jh5~Bl}YMU6pf;K>i`&M75 z&vO)UtsuUAq1ryz9mP9Cx3J!D9a)wqR@&|oT!Ody1H4U%FabYGE7tJ1SzoNvk!0bM z_DJ#KhwK!Nac-sl#8Or|F0Udq>}hQ>3PLUL1G9HwGMKG#esO|^xGmGh<76+>;^Wtw zHXc@<_#?H->}W=03c>koVn>grwEeA37uO8q02?uUk8X}ry@15KVaPRj+)&EIO@+fk z@sT*U+RKBT9NJ`ddOzbaYCc&>>Mek2*qo^>rWnPEWsloJ`fVL!R~gYNy9iw^#kx`( z_JD>@lNwEufr^*S?3CvzY8YHzjTZRpwK^W4H0sxwSlw|NG{ce&E1J=5KQ8HbDc z+!B37C(!V`(cOxBKa*(D$F^@F?h#olQhuJ#u!$P^wi5N10hTvO{3tlBLZ>UtP^SgKlU-6{bV`v5WUp<~kAikF3}!6C zP_VVJVt$^v*#&wqDE#Y*XCE2rUfae@-5JSP5(dY7sK01qWUzj#zZF1=s2x6rEdh6V6T!ZWR zc^)H2eD8Y#H-Xn1?GQE$7!BvCl4`=MA>WxRlgEh!NU2;I?o6DTJWdQQ7~5HZ5{q0X52ZWIZ3*ptm2bHhO_l+glW*U8hA^qLFWJTsJMZ4R6# z0zLFw*7+Xj{T#LYxBotEPZ+blsDXAa%i+wFXZ&t8XLKJf*5WqH@8Vi)lo)yj(8eOp zI1xOWcRF{H6kBBOiO0*iBsg)3q`{wNJ~(JJR`BRFigTY0ruP!`;a7_3>!O`^J7Q>Y@SqLH^$;L292qoQt)=C-y_)PRVp_-EU~0ev8-GP7?qzJo7ZUe-N2i(FmDQrkmlDJS~L- zxa@HFaBySM>$H8Iu=vjDeakD=VUMtbS8BsBq>b>=R`IDnp#L=Z?F3=r_lL>%9H!3Q8STTluU1Fr`T#XVb7mO;Y|z7d(&n^Pqh~jsvKrxw zPtxbPh_n7m`3h&qJU;L?o{9(dN)80T>97L>Fp6(7f0XSp4q(Hjr?Lp{jwmLijwqJ* zA|@HL;4QZvE<4UTRH?PaRrKK2;~Rsw%>bwCv=J5qPgN-iL?5y@p|gE! zu{8X$-tFEe9f1DwCBN3x41E#Fhr-SXhwnix@$?PZjL<01CihH@L_4ly9~l&jL~Z{( zci|Vzc;8Z$ukRSEH?zq8(^vdb5~|T-luBtIg9W%^`XtRtJAe#V6w)cvLUJey$?C9-W58d2!X z=0Jriji2ir#V#nSXHo}cVloNEdx&xawd6=%Un|k)nT-BDD7;_l-l7Q%kt^&W>AUzO z29rZUU=5rlTwOk!R@#!0+@e{8cDhSd!jC-w@c87&O@6`HZQNix$CHF+sSMl2KCJ7f zYD8^q&;g@Fvogz0a7DlIkFy@N@o_!cOqc;FAhi-GnuA97S;W(oRF#{(X5AHl2 zl4ePA?Y&NBA4P3LuHp3mSzPDFEqy@prxQNW`jczf-~PMQJ-%l40!Tm+(M>7JfzS4d zzLvq~$-s1!aaPby#T2a}1t>ok?Qf+Vi7UPH2W;1+xZ%9TtBQ5TV20!2D&@iGu{JVK z=w0!Oh1W?lPM|*kd^FldyuSK=9dYBl-RB-b2wQ|@LVGeF6Ob^8dSSs?1t;Z7MF1d~ z;Ws(a!p||@ry@d7vskAS{6x7@(cfK+KQ@6kIim9AXS!Rbt^M5F1&rPu2a0*LsMX{~ zz4!=N>~vvTl*Hipo-ny6cS}4Y`*+I{&(M}teB9`9MsGFk7UMX5w0>!L)F!zJynlmn z@`k5yQClYE^W=nFL#X%o;>Qqb!*y2_Fs|W>OGc2#lNbu6Ck1z`TGQy0FpzG9jLf8w zDtvY6$bHKbd6QynM9Am~b>n~sPYfaC*ia75$oHx%Wld8a3Yr~T>lF)9JZ=&Tf zF4CxkHf!aS&odb^aWU??7k|?i9{i*mh0>-a^+B0xqc!^w+Y|tYNwJ`y)nf=#1D2G< zEF}Px|8wg8@`XR`B5;1sDQ^|@U@1>#CEbhFPPds*@yRp9ox_yIbacQE`mn0STz@7Nhd+5!bI(E6^t&RT z=RWt;!dJ^7GU=>btR$IIS#0nen;3CWW zf%UNc-|@udi+L5yMWuwJHhba}j|+~FQqYXGVw0m8t5!KAH*tL1;_av>G52 z_70)yg;c)R6x;!*1oQC{(40JVVA`B zeUa>Pj@qFe<%(r8E4)_RVC{j$npN$z1nTrJkJ-h4^a_QV#FU=+(_*PU&xiQE>Mb^^ z-keFctT&fd|?) zh1N7~kMzk@X=89|06S3V>&sW&2@?&;JF{cI1Ueg_c*m1Os}iY-Td2zuk<{>*#27B_pX+{Q!|xT)XLuQy2X_kHKv{xr;Yu(tEz8fbA=O`ifs3Z-Vm?3bcY_ zB6IO3Y=X7ZLf*QSHYxKNh=%#0otpkd^=Un!3z_j#zO_@1U3SW-qOe&b7D<}p#oVom zgDWxU!BXk#HCaUq;7c*|4>^2em#X-A4kW%~P2P9b`tAR)<)kq(Hwqd8yh<^5U(#cs zDwSKnnbQ_iO7%(MUbK5zOg{nOIsswg&SR=wP;*0#>I^_YrH;t)piu{k@Acb1`7RPbZ~M3Q)7Sjk2`9<{5XU4*b@e9-RWu7)sQ}?XI&3mK zfbNaaGi&3H&Z5e{ex6qeT1B+?w8~IqwLQzzUOH13&}0i`ZBH_mQC`DMC!VdwnSSM?Uerq~D>T9h1)Rz1e;m z_c8Y@x-&0*u~26$O8?PCjwC8u1kG#BNtngX`ThT4V?oT5gBqwY!VqGg~mJ@{t!MZYkyBbl%N z@JH>p`r>HEveDECFHU>%#6>~ZP|*fDcWq|v-!!Pii#nX47sVm=d46PUSKr4%Y-zgv z1w_y_lW9bBm8ehFLJMv~01<9Y<8L#$7K#H$lnMA#mjR=Fo*fxk*Ukyf`=u zI@dsJr&r<=ZMdZ=&0#db^WUdSJ-ocodbO zuP}G z$)?g)2WobJ649Aw%az+I{7w`tSv{>pEUpjui74B={F>fAhPfxp zw!hGI1GNW01m3xPV&l$@L%eiA{d5m(bEG8>lNXvdaRR8midl|`OX{^veQ$FhJ8XRH zB|wQzpHyLvjz4J@JWC17hPyASOj2InYr~Q1X7p)Vg(N3flKV=veTBjcMGJhY=;-8W z{mCGpdNk_wJVo2AyL7FTg>f<-t>@~QI^rDCCT#cnwumxHwY^x<+5@=oiJY}EEU*AZ zFpYCkc8rTQ0SP%P#V^OA?AVV)+sYkFVi)bWL(SS=Dh-!cQhSURDW2$#ivhc#tHOUu zo4om)7OfPjkk2ZsE4_Y3IYRLM-uf{v2bZ_jkCp1Xy2tvl18Sg?Dvsk*dwI}W15hTH zc$-Sf$XTCq3+Dza?nQu5x7CHk_&iOLWBm4Z^S2MTo(-G7V-rzmH{5^%S{*J%6BVM^ zm{vMjQ76$^y#Z|lOQ%qUXmYVa2gr}_fy{fGgS@WB4Qupc1WKhp!}@}*;d3L=f_8Z+ZBbYWE+M`!{Ge5zm?WX9Cat5LWmh{HSKB%l zakI9X+E!(aae%Cl`!b2_s?%@rLWxixJQy@UEd5DP7D@}~tTkKUBAOHmj9imUX8tts z)u-w6R0V4wdAmB@zAZ*JsJOd%^=5RPXvsmv)a*GZx%uG@Hz~)Lp}JzsX5&v?tkD6M z;^<-GBvKss0WA#vyFXegLq(+n87dIA#ANf^=&}g(fd7gSC9_ng6OpyIWRmUTlDKi} zN%<}wc3@+ms9(YR`BuC#8S$G4fbJ}iJP%o z>-g7XJ|KPul~jeh7_lmh%Fi3D>%r*)mswJO^pY|kV99`(*AUBNN6L`_#iQ+W%dPQRzt}keC~yYe z%f&LCSWvM$AF=-Bdu+twmB1FlLU|>T`+&xEykw@d*)d@CI!EK;>w*hJ)Yju|TYZ{N z7@g`hhJU-yTrcFlLBdHBXJCMAcr4^Qetp(i#eoQg)~7%aIyt<;RYw;WoGNw5Ezk^1&na+L!G;+LWE%t3o5qoUO--l9_FyI7(V5{+-K^gFX|f6IAXnzk*Jhv11~j8Xtn z)7k!su&|=v!hLF-s7!9tdLvKP@FO#5LcCbX&r=?kiSx|@=2(;+^wck}RC|R5%}}J! zgTw6!7SY0gm&S;mnzOTK9BOs|6jC)`t<)JyQ=73g^*xrRzu^TN^i;$9--o}~gJlLI zHo1&Fe0p5gMqEO#St?nv#ZrBq`LG{;rSC=Z@sl^l-)2W-Q+k=aI7CZ24g@99&-T+> z2mTxB;byb;w1s|UqMd)Lw%P$4*-N>#Ss&?|Tlf)w;k?kfqj5D)YJZ^ka6!{;s$3+e z7GaJbDNX|lpdz1EV<<<2#-xL(q+Lo+2n&Et8X&hPzQw*vcLA zRY86KJVVm1X6?>3r*7H@%UA0fni_bL&?D!A3sQ3I5cL2I44*wwxJ#36fou`#>d34g z;6L>1eq>g^c1_ImMaSOA&I~0f-z&?rskVl%?|>{7SY=ie2cXe#tk9Kr9<9Yf9iczk z9e5mH^Bz0`U-n(#vD0LcxgbVaz>{ot8#{YAth^=rT`%t%kZ#WEaeex$hA2+ z5kj#+(ycFw0#GX6SkmMP3*xv{@r~>dlq-|7+vmwxAZ=(4hRgI)p-u=tZqY{U0vnEp zsHGXD1U&%n9!TQQAsd5W3aVRdaxpBM(cMGQhd12Ci<9bpfB_+jxJfM-PuQ;1f`Tgu z&1(Q@IR5K_l_Jr1BN-n+|4}EOFn~dtd^_*GG2vb+)Ddq|yVJzwU+dle-qq-PG;ut1 zovV6f|u%Wanq#a9P zFFTu^s?3`vYT&Nzbeypy4aHI@dNf^a!ah%a4ELJ5IAg!Wjj^dn4b4}WCIpD)LFqKz*s&=2PlnUi*omTjacd}@0Y(i#lPMYZ4~v{52ON)$Bs7n z*%;holUgfA$Dv(|=1jm{!x>sW&uQqGq1BXmMO;??wQg8pMtG1y}@)_^}7t>AcUCCV~GxSDLO7TXLmiz`TN93$Res z%M%3;^&rOXm`-kGu9Emteh=m4j%IodRciS>F*26W?kf2;_60YM%y9kn&i&a+cbX^H zr(B!60Dry7T%7qxna-7sXa8MMCH|*7PRWK>bQljMZa{hDIv_)4K)@lh8Gjz>U85BSN#Ng$ zl{(?zF`QxVwxrA0lHMX*459k$N&=SIkU!jC!v(tvUZ+XnVkTavERN>d+v1Wm{y9&K zEA^|t#}H$r*>_-w{<6w31|xx$doK^1A($djr1avKhh;9zNn|kM^)W@B?!Agm3H`CraGuK_~lQ_WY zXw(ypH$LpzW^3g5T_~LouDC5Wb0-3GzPXPhMt_0^i`g|j!n5Kbdg5-X9)SB)lvHx{ zlS%`;(42fSH)q7`EL7?992V!9{e6*Qm&1hNlSVTa&Cobg>@-#==6Y^G8f63l+h`G+ zoWL-wQE4rK0ySBCl@8EXS9is3py5Yo6_W__|< zz!|EM4Q)y1s{B%+jw~&e5dijHv{Uv(LGWS9N{3Qf1<-lriB_>vP%2E=L4oIV1UR)6 z!gYo_#wy4=Ajk1>xYfz@=fO7x`C&NU3m6@85z zIU>iYm#5DAlSJ^)-iZ{y2Wf4?VXH5I162mL)hOtBpVYE)O6^>?7}=PUCk`DizezY- zvqg806Dh*Cm!j>v6NMRI9@Z(v0b;*=geMV3Rl2tncf4G6GK`=$s#mE#Wh)np3lT?l zknR<5x=p}sFKy1KO3y}1;CvDuhT2F}dZ?qpnr(j3RsnFL6$>+2-G}%*LlJzPZj?50 zttq|JOf{|`Z6TNCMFR)AzqQ)YOSO1VNwjTrAkNx@kw>%n>ed78UP_ZOC0(iH=Xs1l z2*w>JSia~s>~Bh`Ba_FsOxkipH&Y*lOS8^~WAd`>jhe(_lexgCUTX!NcUr_?kXMR$ zVmoPAdc3XS_at;fg&G>#&a55ON4fX{6`y!{ z5`bQF1Oek)hZ24=RZPX{TosHzFR^&#eV*m$S8&UXyYuL|_V}nYqXw-|M1|{5ANi=@ z@pt+cRXR1#2GtKws$MITkaAT_b>L|#xAx9tnfBN_qcg6pD!ny?FMDnBB=m9wX40aK z^vC3Rs?96)TY~S?TvTHpU@)#2q&wrwx@TADH+>OBx5{N$esJ}HYQ6&F8R-u(rq0h| z@m`%hQw?`KifeWHJcIGwFv(lzW5-FQ1+}2Q1EE)E^$d}b5yIB$$hR!#j(Tf znoh{FMj`3v*@t$ycfEa@+GS0;;c2QbwL)WMeBMR9T$z`%oGk^UQqbXgdYzjKJKAR{ zJsUM0x+=&1Jo`{*jC`+r2;0&*Q8Taj)kcwOFFuNO~{+C=w@%s?pyXPmNAS;sky2C>JEnw3u9^ z2Q(H($5d2U;KQcgsCKk7vrL{OMb6Y7Rh?B>RACT0U_)f*R?=F9K2JVO7(s3Gfy&ot zXB{_OwMKBvV-(Z9k{NC-6@d7h^p;08wcGHqzxI+>igZ9>QND&7*R5f>?O`ACRZX=O z&S055uTNC8or$qZe#l$o+E0BL%-^a$OI3xZc#MZ7UOgXmtE;x8e-`#KZo? zn5Lt=b<8d-@ybk+L=?f(q_EKMX|YacB5d^bK-t$18`od&CuxGuEedT1qdu}K@hT(8 z(5Xtw$pclrb9KCR*Irf^@9O8-hvE5iCji`3q~DzAxb&Jm+(q@t@_-I|C!8kc$)hQr zT#xLWc`y*OqPbnH(&zby?`^d^ch(q4<6TNa`{^rwE!&4ntz|8YPLObW#GW^riDzpJ zftu7rTM%yIHz16&#mFb0-vU6ywc*Sdo%`{x2eV%^x>7m%_2%i5 z)2i&G4?7xay3#Bz#~oP}xqaaF!4S%A=_**nxe)cpFd6WJA-zg7479#;4;+vV2V?T> zkg_JXtp|7v8-Aa6iHC6|+-yLLQ3>dIGYUNbo}k4F0HfkmolWBqkqlgmd^GXwE#8fv zCo|fJuDNZ$+Md%?UpNuwI14pRi&=R>u;Wa$Dn;prJ!#pZ=;;fk+)^g88~ie`CuR!<^&Ao5y+E}>bc>2*#L-5O1dJyH-DDQ(=W(HkUMJrB0vcFKnp&-|p2ne90D{)!*zzpFu?f%E+^* z_9SK!J(xEhK}9n*$*-H?;B~^go?Jv&tJ3HBi*|Y4-r&P@`t z5Dqdt9Iwo*tgq`Z{h>nz(B0a+*FH~7T#MM{)|lU}H03R^TSiS#uO2kE6@Rdr$XpB+ z97UzY_~cqWGlL4f((n^|U33yTKv2jJ2Z|elViWn0FX~)z-QiO&HG$RU3q=~iDvgfu zfyZRhr~3%hXl~S>_cfi1eV%(5D;zhwiS28E^*tO>2c*`*@E0A691lbkz0!XqxzXLj z=SK7l4JwVwi)M-{uhr@E{HHJZwWY-SRNSuhDjbw2 z&T}}$1~gK65y~XhQZ&!Z%STcCGwS7%pwrmCGi@R}A3f{6- zm`?sAK|Vx+jJh$?bMDB6(jGEL>ri!Z6Tv^vd9>l)|DH9xe0n$SAq>$N&Vka*TIO_W z)B(_1(|9%Jq}-FcS`x|tjYeg#cS@#mG7laX zBp%4|6MMwsZTES?L%!sG=L$l@e2GKBZl39!} zCet_a&e_-I`+g{B_htqEd*Nrtqm{3Q7F+nyb^4w?(LGfw)x-;JQeFD&%f&GaQ_0bt z4;PG;I-TG`Zj<8M*Cq?5-|S_XiT1fM@*Dl^lO6n^{6ZQhDRh&ZY`V~Kc~_&>#un9S ze!|b9kGt%S36UMf`A*sak5{QJIeCvq>Ea{Bq%)04XTvgL@R%s95d|)8EBFZ&M&4D4 z$8C$3G+9MMPh?H&0MX?^H>Erj+z4kzm(50tm$Bq1T@z2#;?A%iaqTP<6XddIf-El% zHCj@;QfO%L;L1ZQML%eKp9I~@$@54fJG{${TM`hGMk9A@E zg6mv1P+WPstSp_b}vsxK9@I(ro382vf-;g>vHKw;xaNUk; z!@j7Mi4$qJw^j08Mf%NOX&H3?%Z^Xo+JmSNhDkK1hT1BZ;b!~Ur~$;^NImHqx{FgH zjJquno!AoDC)A)rAh!sB`%(ry{@~07U2an;yf9#sS<<#JJBit!g>#d&YJQ%b$cbX+ zeJ$IzQp$@1V*qSn)Nte@dwp)>J5ID@G@R1{2*h3_Ni;K(k zKpBiZlvr48epByHRom$i4u1zNcuYgp1LqaTnb*?gfdt-3uH(`g0o&2$=nTdC=Qw$lQd?j2YswRWAeUp) zox{xcTI5?fO#JjEzg!^bl{QOCKdhX)6LqYQBuy{4NjV8H@WtK&@FK_`uC>2;WaZ?b zKUy+3gaE;%<93VwWI^B5S}@PzGLxLefrX84bvM<;tgAf0Qj`m?-|d_X_1T7v5@EDh zyRUIh?S#YUZI#-_OE01TC3IJ2qgy_4)}p|sny@Apo5(eV>qp*Cl4EL zQ8aBze}TR@ByI=98}^+na?$ReBBN)7HJShoN~>3uR>9Y2XABA4{J__bD|&+{1N zzCvYJff_#Q!f}Ui1rx_I*&RQGcSwdX1cHH{sDGXzP?qD(A z^M-ws;a$EoXw6le8Z=y24+_QoxvGp~XchlGYsWuQFS;5Pin1oQ?guywy_BEt=U#fj z#XZ3ZBg3E;X}I8+fbhiVGrbh5d!yCimode})6m$8(-cJ({R#UK>kGfjcDynJx11<_ z)oOf+3bknX0J#JX_NbOIC{+*O_AwPvNqc42UHpI^=&PE! ztT7ODNssOictLbzr2w+yv2mP}NrNrss^Z&5;GpQ*IHVt8GdO~LPiNFiGsv&p;6hzX z;5R$)#%Gkt5KijS8?Z!HHQIj8A;Pp$NH+D#n{SP%=m&@j9kvN~uTvZ9nO}aC`b#-c zq*MuKN?YqstYpv~Nv3C_37)+3tPUr4!NDz_i?#{<^DIT&S1ETD={I{-_mU$`f=R$p z9{A?gh}LlYDm51}>2O?)OmW9AhvTwbYp?nl(ZxOMSFU{M9h1d)1+FZvKsK&;G<&if zg0tahg^i)lDwFaUG~Qk-7a)_a%4?PSJX_)4PtIMTMk~A{Bnu6YO7E?+)tz(;2MXtw z0xctrD_3(vMeQ{J^tw_!zZk33k7z0KR>>}dncb4tqxh``aPUOOgxBfG`c4_6`EK+A zs*{Y8M;*&tfO*V^UVE4T5)YiD7_LfhX^0q=+`ykp)6NM!ZmwD*pE#&8SQ>{yhxuli z_FZ4>8)|t7Zzz`1%18ulObL5`pG8qZu#>}3c zG(o1>;9{9RPeJI{kLLFM09c0N;!X|NwqOi@DV_Dl8>C!fd$K6ZhB;~Y-VE@4a$`<` zOhRy%HiiSPQM6KytdHdF0{=B!e9N}$w|Hg)+pbAF1-kH)h%JxiCc}HW_d>v^lfK23 zW98CD?zCx^*~P{T-Ms7x9tP~;R{xNu4T{lzkU zp3GqLHS(I?3em`C#D@2)zf6PCGRh}N>@vETwl8iKP1rD?(MdNadOrqD(a@P|EC#nr zIY4LBE6e-l{fa%XQC^igqQK2nTDExhI598{c(Hop=Jy=V;AUNsA@Zo1tLNzinQ>bt z-&G|V-_lr#om6d1eSU!LJ*yWhwPdm3VLMZ$=Em%pKwa5VELQ1=(Z#)nNq0$PaGG$O zxZhi%HSW$miKr+*;H{^Oxai3qtkJ4TONu9s;Tkh2azt5i%i(SmZpN!HtP#KBF8m0~ z6DR4;Nf&U0GQoIux~SYJsfC`q=l~YmD>QuvuFSbq4ts~ee$GbVa&#Fq*hRM#bNf4qA7#dcxnwNXDqcUrQVdVjJDTD< zqi2V}wxc`p-Z}NHx zCRdFPA;19Wg1LzJXbwr!L25UR0`y5nNdQ%FOU|OGu&@V=yWJ;+o_P{quqM>2}8Gw9!l{UJVR5ZF|_ahgjH2QfqBPOoK*mpC^i(#~qI2j2<-LK|q5^X3^M$s^Rh(WVbf5rc&?obJE4?ee2Ys*C*-g|G>NE^DA`S5t z>vUp?*pi0h4lApIe`(HetN`RUZn@UDWYM&LLsR_XIB#!QiXTa9>-JkvGF z!Q$eZ)ml*E2}G|XBqk$zXbxY4iz-cut@7%6$mil%FEyZF%v`KdJwaUDmMC^rNb!g>D!7nTZ#WK5CRAc{c4R)fN=&*Fvqn~0 z;W1+0wpgVDtVFw%WAC4&Z&UCMmBLX9^s6C}g+!800=p7iR_)U8mJOq;89^MzUcDZnBqkCNM%2|FhY`VN?bJv#bUu3V>XVd&bO&e<%Ae6*O>##?_{D8R4`y90 z)RBPHyrtD`7a5B>F`%FWKq$^fZ_jM9bi~Jrn%3FGZd`f>d>w}=aJdPs!RJI4R5Yak0(LWNZE+Q(9x>n?H0=As)CPMbTQy?udQLpHaW}Q+~I-?!&voiYX4qQEGt@vYS{bk+RvU*? zlTclIrr{tpF3wGIvG@^asQ~YlF2#$DuYI1LC^Hw{w);+B-KDV28Ky10K3OJp6bL6H z-TCK9@DROu^1`dM^IW{|?1*gQe)wd&#v1iSjnasN00v-K(IZJZn&oI*7RHr1DQ_98 zJscD|jYt+jo}E|%xdr3C4T~Fn=5n~Dn{%clPZCcl4O6NuUHhajmPKWrbXRS73+o~) zYeyIgyOpG0U$F(|)q;BuFB6Uheb%2up5mg!Yc_jjcV6P0n@ zwHt;Y{%Qn*XmUEky77KJ2`=yy8m4D@ne}xflUvl#S$X2jtu|IC(e0JBn0Z z!qv6T9DyWxHwo3H1F9G9Y}ZyNp}GW+1zKLl)7D-VJ6}H`pcoU5o4tCu8m}#aJ|;Z0 z@qn?@ncYpqeU&0ZQ$Csf5rmsu9u1U9V{wk?M*>X0_vLSv>U~=}CSba$0V_l;R-c$P zGLo#*u&SppQh2VRq9J<$HX-X5y2#1;k@SySmx_@Pvc;x?#@$JwOHYRN$wRX%d|&H= zlV!8KtTJOAr%I@s_SGFy|7Rm8uB{H`-V#+5-O6O9M2-$g#Cr#dn4Cc=ej}I*NG7S< z>dSOOK5<*3va3S=BEK-^ee8O>Jc%eR(XUzXh!URbsfIVLv^FBkMk4o8m5xMzT+Tf2 z*EV8Lf|$HGO&SKWblvkunSG79JGDz{0w7MFrjTAjvk9K2zWg$Mo}#e(GTE*w@wzL+ z0-sR@OxT;g?vg%8imtZ#+(E*@Q~J$nX;G`K9;5^01a%L0&PkX5`j$~)3pY+T3WZvD zo1ToI3Vn!(I-?DOnR2Vg>4ZAsN;`V1jfg?Y?(hf!l&)3rBC&0XM?9Vw z;6}%N*Ex!sq=?Xz;Q%(%q*2`>j~Ab(A7VU9H)ZmlTxb9Gk=*1<>#v%%6I|dSLhD~2 zh4e`_O8Xib-&*I^*@B)}6kxLX&D9A=9N{Q#z3rv!GPnQE)+TW7tud%{E?ZlH{f3u; z;@R@aWYWvzC8eUUxDgkx#P~cp(Z6n!N&DBXU{XO}M6(VGnYnv-3f6wC+(VDIr{E+3qVn26ArB__|4H>Eip z*QH1&Ef(qoLDBA7s`9ldI(zJHFbx3MJDFQGn@Vb^sWTCg{`7Mg5I7x|Djp`|L}WE0 zB0kSeaFlzqe?!s4o`fUj#*SDVV@?et1m=Vj^p-6h1szLilXqRuq$OSD>{nNP$Kvy> zgiH+NZ|Cv0YaFi>N^)w{(hB<2C;5G55tLUNm!!JS!uZVS0P#wub~SP=4k;^+>1TiI zFEquaax;TVpykn{P#azF9L_+4os=PIr8UB$@-I&$mr}?4mb7KKY1<~D%|5cexWy}z9)7_u zR$BBlqfmO*52-bg#w}EIajO;jJULW$H5>EeS^IB(f-U z9O}LMF~#(~bt#V$!daUUIlNvjbK*AO_rJxzHf^}Qq3|4bHc zVAiW~;jA!A2beqak#%MjDd{Tos+#P$8lSEJGLi9!Etc|#GsU-9{oM=ZKjLQJZY>U4 zcgL)&y}E`_BGxo3`l2T;WyK7bf;k?g%(~q3kxK?w5u>^-K6CB!G)E41igt4_b-Z(X zdN05~;J0D`bS39p%0|WtE=>R!9NAgw9lcsbdkoyj`1Hk@WIM1M5<`glwnlPU+}peJ zb~R@k$|$d*g#$wR#%To{f3_ve-FnnBxwx>zLI)d$hxbJ zzv(Lt=MZ3qN%U6ZiBUNw*?O;(oYuvy{C0v7`3C;)B>=ulQr$@XR-$ljs9yHb zvr>&5soenbo^5s_*0NBqi*gCQXcp`Ac}9fROmPbp3O*eAU0&-!Jpza`DSQlmkaSu{c-^+^T=UKplO zm4OQ=9Cqq&>vSz>?JyDKPB31KhGs}VoPl#BrM60e;G}{YHzaz1;(d@=i?fyf zc`BmcN2T{~m*NdgZj@@xh$Do70`19e7Q+=?YE3GlCtoL^2;Q*59LHSE-sztwBSvD* z?UsHW={q|JS|3JCXjf}vtn8z`5vN+6F*&sJoOC4_7ED>$u*s?ttsgPH_#Rx{1jG5B zkuqSpSZmVoVxZqus}BbM6s;FmrUo0Xu{qX=QbEe91R%m!{bTwGHbP{am-mV^*|R=e zUqE|Cmu);#J+0+~i_g)rma)SRc%GA^e=_B@HC%h&Mx9G_IDHBXKVIFc>hH1-w|NGs=paGPP~jp1+#l`Vqk$W>wXn=sar&d}vC;Z$RzY$cbJO zKTl}}Rc#IN;q)Jw65fOv3<1oRG=t&VEyE^;AuKVulkfC4qjRuF)v9xtTnoc|ya$tF z+F}kc0M7|x?-r7mZHSy^!`XQh%4k$G9}IGFD1bY>w1P(0rkRL}J}sHtBKVD1Q@3b2 zV7)1qQtbUUmT>N|B@jto-aGyc07e;J>JzTKb-+X(LJla(L``lPvkj^kJGQ-oUabUcoDP#B5m0 zo!hW|UCWKX{$1kBPu~|;+N;}~F4GlVG1FVrn3_H}z{R7)MJAlc`<3xI2tloB?ry$y;Sif6d^gYXq zO1UyF`OeL3#*00fw70SMD9W_HHmQz{g7>cgAvR5X+>20Lj@VcDRjT($@5iRdhPA6~ z!udioo{W+YhPV_Z=`h&D-(uFu3_!lpFwO7{VXIw}93Uaa-FM?)wU;EvE{^|Gs^AG>_Q+rYT zm4U;JdjWl&_T)P2fB&i<-~I2u|BpZX@lXHCKKuJGfBY|h{KJ3!32o)?{$>2d^^?cn zqjVuG(!U82wc~`{vOwtl}R81fqLiPP9nIa2NLil@V4#3 zxvv3MBY}kkggtLwEws(nB;Z1zx#Xb0#SDv(z$yaZo+GkV5!jam`UxN#4r=<%umTAz zBmnMtQ?@VyTa$nbf##Ao1uiyNgap=AJhNE;d+%1lAI0?s-$N z)<3(GKtF-zl7oVNC#*mM%L#znF36TgpaBx-Cm?J%c-8NL6-Zz?0dU)8+42-LKmwfv z$Ew+lE_5Z!ARuGYJ^BU3fCnIeU?SF9Bh( z4OhP2Sd9dx5io4K{A8MQHX;Fc0`hLFZr#1HAPLMNpxSdpJjXV>kiZB6$cBTO5%yS< z1m+L`mmHDJG0ZL`Fo*!M#ar0vGR%a(x+hlngmf<`*6GP;lC)siB=f7u~ z_l}bl!Z^O1B*00i0sv|5pNylwh!(P+R$j2*tf1Ql< z_Vaw~9Q%ViR@iT^awYN_WvtrOkhi9)jrla8%+`UdZl6x3-nPWy2F2TnY z$%r(y=l)UVjo+VrbcMWZGdk~?X2!h5b5HPTZ;M-gj3!{7>1bmU>YKA)AAWpZe~$Z} z0OaHr=E3a&%^bfxEF8+oppVjsAA<-O1~dZ`quH}+KAu21Z-pS^{}v- zEq?v#7NHjOpWIsTry~K|bQ}#tC}o3id-WLPrs@3o*n)@s1PpWOZyK$F0Yd#m2vv*C zCqfrq^$^fbq^DQpw^|OhzL~CmVmoOzqCiVPI|yz4M0zcXn;uMhdu96x_M!|SpdA5H zGqpwwuht21F4lbg!*mI3Er2=M*<-H$G00Ff>>@c6_DFo zm!B#F6c+*@{GvbP1H|$uQz3e+;Bu(4ak3bveIO+q&Q)mub$veQ+u-V)CphzSn3SYA zoU5`t*M3}!4EokuIzg{OeFBg=qYBYiTo=Jl4DD=Ba7)`OwE(vVQU}x``snK-wi82Z z?Gu}^onDa`GEFU|j~*$DYYYa=PjFXzC=Hk%^>XbgNdNNtV~ z4VS@>;fWbnqK7z^M4<**#aR{QASbu7rQOhvThpC>BHVV$+nEKyb=7pXGd#a`AMtIl zl;VlNDuw@3i-L*He%9Ovpllaz%{=1?Sc9$F628JBE<7hO*9~1Ki|kPy#;io-H?D0iY0B9 z(fVSHAHfM|Hz9bOk3DUoRr>fO&vB^Qfm~Qr(SnF`5#GkFYWf*ds{)18aY%h zf&c9)lF0`aa8yf*&=KwCk+k_iaFg{x~#LFRRJZMXfm z0B!s13j+$+->z!6Z%W7Wy6I*oGONwPMvEiEf4mhUJnG#K1p`U1WJF0rC9*B^f4oJ~ zJw9|lM4SZIG?@hVzm2`-AZ`L}@Z0l2KeetR=w%cU9G>Gro<)6YAX66^dSY-m|A|0g zz8Q8D#_@R7N$j!axWi7jgPsd{2X$mwnSd~n$1AxSc>7p+=pkrqg6u8kgw|{!5O|x* z+qqCmd-c|0!nxLJzy2*$e`QwaC-63%xAXpvj}_k9O*nt_<9k@A@U72kodoIuHBUM_ z%FmnKhYDnG+S@m)+B(#aCh#_?=J{x2pZZM?BLptF-i)~vXAyS-Z}V!NyE~B!HvRYt zWHZ9;n+@R!ua*;dn_BaHq4TD9X{G|cA<32Z!cb2Qb%g|lO87Xqqr*J2kBql?tGT~0>Z zX8oB2I#*(*Rrg+o?Cu^|FbDy|GL$DlBDmNnp>7{8#aSdif!o~ipYfy7Aqn6F@Xfy| z@fK8)KyU)L-B$e!9*y=$04Jc@{F@l>LL~_VCve+s)z9G3XpaOy0;;vYiNO|>kwAO` zx7}9#jGvAUNdP3E+We~+tWOyU#3yiFZ0&dabaY4pAOY?27d=>?G7?BZpe(lbBSkuz zBmsngcKM4QDNYRuWFb%%TlOef$L(czOw|RPZB@~sFwdK zMv7BI0x1Yw7hCn6A{|YV07yW!{6!2Fr;G$r5GaeS`bZItCP@G%pxXZ;#_Ll_0`Uoy z#a4a9&qaqMfD=$H|5c2)pppcF6Syw6_B(hq+9Ls+fOh$d9&bS<2?Qrlwp#lUJQwYe zfQo>2|G#=w3yMh~I060@1RoIXO(0U%?!2>_P%_2=K394rg`= zPQdVo5Ij*3do|b~#%QA^P!FqlQWxRLl|T*fddu&C1nQABPXeY0V(ATC5PP)oM&NC5 zZ|84y4nKdx^*uivPW<@t`0CsEi6%R&5!EM?EwP=J!0+F`>!}GR+WH&o1xmN8jUj9h z?dQ**w|U7wH;C*KL8esSx-?~xp#e> z+SuXsfBpLP=g%Jl1Y~w!jiLCiPjF~A<*qVfg!0c`2LpkP5C+xM5fV>7?w+jObt>tvW zLtgDlKwb&2+c@;(L~(r5$r1wcdidTh3HWI$rReWMYO_hiKFGy;P8X&%@p7Xe{s z#$Am=BzPXzl$Ez3AnebQD+5@;r=c33oJ>I2rL|Y`P~N=BuXsxWO#*MLHThij`DR9b HCExxZ#YU_~ diff --git a/test/samples/lena-eyes.jpg b/test/samples/lena-eyes.jpg deleted file mode 100644 index e3f2caa70827ce58e128dd54522c3d5d3d284a9e..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 3174 zcmbu3`6JVhAIINpbA5z`ls;&f$`w{}Qwj8|Cj!O{9k~7%KNPVln;;sFd!~jfE&sMf^zLs0m*;& zgSdeI#Lp)H;^BoHcxOZa?gMdwz+4~@B-D97M z$!P>W7e}>Ct?iEhf(N6xp&%$=2+$`&I-2zzuf^VL>Lm^J)-Gj7YI(j~SkH+z>Sk8I zWOh0g?Q!~2^my9yit*aFdA221jU$ht6|~;b8fpvY3Ew8i0zTBmzzG$(>^Gccre#zC zR>wVywuZ#mc03{47cUwvSh6(Reb^K;uVzMC!BGvvWLN+5P1r1T-D2O!_$HVErL{QZ*&oHcjBi*9UYP>&Ke(Hn>r8Jf4E^@ zY9;Y=Ycbfti;xO&IKB=@mZi$t6%DBu|uQ&7dvg%+yWUVh7zK z(F%m-bki}E{@%MQKIMaq50^dO-Axi!L8IY*dVxv!DJ>=ChY4!k5BapgxcMz+RNuNa z?>NnVMo2xn9gmBzp5wTjQ*BviW!GEE}G=14wxX0^$-GvANVHnU8*HPh}c zGrSHP6KXIT5{emgLXEJV|YgcloqLDsxJ)r`-ha8fdk=_=6Q? z;pBbz)FH_S@9E-Q6`jUU%r-&9JKbh$B^O#ah3ve#?34 zwfEwwiEkFW_jm;rAtqqC0YRi$*uBi9tkvAz^eM9X@H`6n1{D|BV#7!ssDF#k9^Osr z>MF(+drkIB=?$4%B%e?IGvB~g%wC{KpesoDq<*8}y&J!KKEu=F62?W_AeuSHrN5hmtD7iCwa;9*_*FylfX)ozzYI@2|W+rYq{ z8r!+`X{^quDt^=Bx5yQ}qEbR2GOqW6U)n;~&hgB@S0@Gp$n~w;B;a8~i zt5T->fUF#8R7IH8r>N@CPBfza$W=^A3Smd=Y)4f1?UL`sHhvX;#`(Tj6}uy}F`y|fa7Ps@L(k?~Qkk#E$R(9L$;+n9M<<(b>qr~dzIoOfCEKSs)>XK1 zGE|AJl0L~B&|+E2`W}L@h?-Cuj#3{}WrVX{Y2^id2e||?%^Oeyx11srjx3M=AeH$Y ziFQS7+06Aej8xYr%ehR=RA2jWCo5>~7?W9{w>ZM!2ahFsPs zDhT7%gI%NK)c9B8UTu4EUitPzl-;NVzze7Y3MbCK4`=b^{DCJe== zURw)@SSZ~GDu-S-8;74N(WR89u?*Gp>o}4Dn^;E3UP+7H^~GsX)G#JJF~v<YjGGv?UBzB4BA$ohr|~h~TzvznebgMzRe(e6JmZ z@Q=@sGdefS$_tAH|CIc!X1sOyy^#l?;DIwTIf2BM;_>*Dm(_LxH5@@-M625nLfQtz zMm<~QKE0rTGm+)-@-mSt&2O1VU|hdBPkGV(5Ov;7+To)bZ;9T*lY9A!;^l?J9N)4M zZ)N!r9MTO)kPUOpI8nZq6mV`jQgg9utm@@E=b5UY^fiQsL1F?w?;~#EXX481XV-(4 z{0Yy*gt)BVtBKScwEA}KnxuY8A^!&RTC7r)wyLwFMO2~{euvc6bC}t7=5(sow?yw>lP^SX zOe;%Bd9OOqQ`e4r_L_X@XLSctv@K+$;62le%px;GRdcd}$}N&M;?9NmL)u&H6#Eso zD!*m>sC&F37(vmisQ_kNnOV)Qkn!CzZ*^W?j56V`L9RiiFc8GeVGYqe^J1Gm%5o zL~$3J(`I?o19;`~yx)y;tSo0MXWKsLy>yUHa0?7ibi8s~x`}~tugpviN$=jNh?Ope z*QrR)USYFK`WmW=?jCD2@PR|jDc9fTUcT7LqdxDZ=phSHkZ+BZzE8mEUnWqS_SmOU z(wbv_QEHd4(7R~Z=L>?bZ84j)Z}*Y%F(?t3eiAZ5$RP7-xqnEUyd~CcTH#)TNyo>* z59rCI6JiLKK9%n3-%uWUVcb_$?C$zNdZ)&c(4EFyRURwTz_E}WpZMxZLRLXL1GV~z zTH7XY!B}oCHzl|?2KM!BbOZHGo!g-|hTOg!&mxgqb^bj4={247**TN*FpnfHeCoIS zh0m^kID%!c^M)|5%{tkSmzZn#9*RJGnPem03{C-8xl;;QVG!OU)z{0@5#6ZWw z#KgqL#=^lPdWnaNi$_NI2A_zE97s(?PDx3_z{N~M$3ag?$s)wc@s5X|pC8C9A|cEx z&c(;i`=3cru(7f6aPdfAz9i+PrKIKkf0n0K00Gv2Y(hn$1H2$WK_x(W>I49v?L z*3kuFw(upO~DQo|*kOx4O2zvAMOqv%7bCc7Abrb$xSt_a9vU!TCSszXSU} za1lJ?dVz+9iiY_gTqrL*o?lb~G;~@X3_>Y2Ok<}vbi9FBL?7aED%!B=`P5H{O`OMY zNErB68BhNM?Z1%y-vJBy|3db^fc;c`OB|o+Qe4s;F`GqHt74@L zB}U+5Z{B0+rwvUnU*lmyEgS7fOG=F*-5D$*XdXA(DKdU>cn}W5}w0)t)4r zZ{m{nN(%6@yV}n6<+qbHPQh*JvJlKIN49te6NYsvvjYnYC@WJ#qfuBx)4bx@{Cf#p z5{FUK%hE=NFfEpV#ib!y%4`laV3~Cy>)$Yr(`x#w@*S@ZLOIE5X`+eVijFtE+qt>% z5L(0RD{c(S_3NQ;!=mB9A&2|z>`k?nSbkjMvx7sZ`9%ax#eE?rJe2V8rhB5 z7QlbIKVuwh&D#xX#6NlhB=b)cG<8n%`sLkZ9u@{%_z9q7?RlU!#T0`Q!8|w00|{5M z^pmNO?k0DN)a}27L;UgeNM@6sbAfTaKP;@u)}q}k$ssUK3pJ#yudjAKm{rfl3+o9` z;1mKJFB)2}>3cnkvSX;SgYN9rL)3k7s53yIk)zf+wpZq$w63J};e!_eq%IZd1#gi3 z;lPb5E78WwI_!ucyQ&|E$-nOtT3s)vU9r8O<(#om%cTQ$uQrKpdAqz{<5)VClq2rs z8u#UbxUG5Py8Q2&)wiEd0HP=zBx0{WZZAnvmttCThpjMFoB$(CydkULG=Yp0r{dNG z^(KA!*3a82>{l_DmNEI{j;v-ezTaw#_!o3kl~y37iiij9eATJ zKqewO<jHU1-NayUaGg8cKnmh()$8FkftQ2(DIl5AW8cT z?3mI#Y}-IOI{>l&6L-GHUW_as*lRXz&v_7@2zI>5j~fnhk`D|g-AFq=_)Gq}tsL=6 zEFb#`Pz5|Gbw-k$B=_fXSI4|-Y5JA@n0!GjpRfd`9PgQE;bho&h~ZN>v9Ew7x__U4 z582FLa5`wVDMH-%70fZG7a7X27^=|mKX_+PSGjQmmljybeVxG4PXGx<+6*KW=DvR7 zaE?pS!clWWn!n3=yzGjYCKSE0KK*V=$(&1ivwmk=?<6VsY_5cp?Flf_bkcXHjpTBs@`1kmc3?;!6{}v?q=Hl zQ5PyY8ust=+5m>QI>9p3evg`rt-wGc@~c^A&ne-kW$m+ zk$C#&$hfIkoWC2>T%0>m^J>~Y#E}3#JyDgAa)j;Y^@FP(Bv^Pe?9Z`*KysLCGY)=@ zHE(`AH8;iO%eYkbOgM`UYB3OIBvdg0 z?tyx`vmA`8exs-1GoN3c)xwW?xdr>(M^#mAo&UMFr5n>!|8sraTaXnmpF*S4HxY(M zo0jpT^+}Gzh9gqrUESg8a?72l?NC=RjM?1_@0ALgzgu|u{yj=nrN6g$!}KdONamoujAjp zh}l84L(%5Fc|D%RR^r}W-ln^}{_TWOAI)fWpJ?zSM=8BmN(NfA0-;|(*+_c}p2Jkv zFr1~@aI}D|_gVsT-%yE7CGIv8!9J1Oylwp2{)Zo1$Blyav?)800-l-QZJ*k$DG2JG zT4&!TM)26+M*F*5%hc zx0QbrPm&cTMi*?zgNJ1Y+jxjf_q>t0)yvu^BtaiqlQ`L8UN%YEK$bm0!%gn{`crPH z|1NQNkGy)dU8?=w{(fME$6QWt+Wq8U*t5~HyQ8jhI|cVS*NEDlxnpQ!foRjZ>u(ZD zhn-&N=>?A#+k;^A7iEN82s_a`EoT_l*2M`w{guO>oxW#+Zlmo8Y$0x^Ox6G6i>kp` z9EyOBK}_o>fW{3ZM206SD+n$g%@_PY|GNZ{v{?<@vTo3V=2TMb1cc8Pe=bb~ zt$v|a^_eN(6Llq@PUZ|5rO@{+6oj|D^&XI!eoZnST-cf>R~T!zGGqC0Z(iMx*$|Lu0Ou?-k& zx^xL%cUiQ%^NN3!6Yn7CRsr0N@t^*i>vIu9p|q)+NwU6+YUutw!}ahcL@N82)&+}? z_OWdgdv%`0Wa!=1w$>zLQ&VDomPY-;6M!2kTUXxSlr>psYa>yjbIINN3U z^VL)OVzCTyOhSV7x)kXz0T@^bej8|6=eDo`x z(*xEW2|*e}K)*|%CgtYtf;SRH5%kxKXoa)XLGa)V>c_pAA54V%Gnf*s-J&MNWmu^7 z+sj0GCk42gFkV)M4b7W%)y8mINTya4){KikU~)}AMrLY{Z}JIn35#P;#=@<0QVNxc zci?(w_;L1&`^gAQsgklp;X3`{Qef<#-u&*mEqi^8M{Rk1-bb8-%`tl=^TNZ~>+d|M zYrho)U<;e)HBcV$diK4loP7Xw_1O0C;bM{ouiN^*dVtu*6x@L1 z$b>8)M8$poR;xjG)@p@+7}`jNe@0v!Y{5}ToXdM?%f;N26sU1O)C#YqrXIH-=!5A= zIgizR=?@6-&qV&3&vcE~nv(=IEstusEDSI-E?&PovMST8puV3m#qV4ujE*Uq<4U&f z<8?gmuS16E<9zxEa?_MVSWaq@o-WC}_0jHGaX`irf_kwq{Qk&pnK? zu0xG~*!|0z#^9e4>$28-4yo&XVF)jyIfkkhtJiU%BGiaI?*X(*->j)^QJLT(&+IQg zK3IR>|BL^&N>80XJ*%g?FhL+dlr9#H|0M?b4ktlF#a?sWSn zKtmMrB<65ee^73-ydEx!h?{WR-)A=I#$FVnExW9(9%NbD9%i8a1ToVk(xw6dqo9`^*`Xd~KWBz9LyADtQFk1LpG?-kOQ zi;9)srHP_DvULDKr5#8y2c7zMB-os7hG0U>FlYlMDL}JSKxH1K`1{ll|JI>p*5GmY z-24lZ7gdOe;f$_OF5!65R`tKHnTVS0Ebt<4y(+L5b2?aN3OoawMs#&X;k{2>A6YAGLD| zRWH)B9;UpI_6(F5F9x%;smYRadP!c{oRXB0VO3L_^E5}R&dR;G06oTrbz&1zvqpNS zf3LiZC+{^l4mX;dE4n)^fGm9wsJk~L=u)AYVvLif=Y>)86Tmli!$~W_hg1`e#ojmD z9ixU*q8be!Mc;n{?3HGUcJEzQq2V0})8PN|mp~%M=Wet=jhUVwL(j7*n+{%N=RN_H zt!gC&CQ2u}jIn>Rv}f3c};k zz`bmY`C5C+!h#AyZjBVF+0#RRZp%gfav7C8@-^I0UX8@(s@)MWdvW3>vMyE8NseX8q+abD-BE~x*i>B*Q#G7 ze;k+)c9l2#8G@d2L0T@q_-YnTca;oP zD7Jpro=1S1EIGB8G`&kMi)Tt819(y4D^QTmDMBs%Vohy?iakI21(WcQ;|$Eh%r^0- zpw;(@5wJab$}7C6sYgy8=RyIsWb2EqYW_jL9B<7@|J_A&*uVMn*CmIJkevFfQg)Yn zXvw1sQapQCU(NrFFSgU`uzs*SaH-6qkXU}f{}zdW+So}f?4mdEDzQ_t$w0#&(7k!t zuIPu+-Lo)$DC8~+i3o|QtmFZQOLtmuxy#1Pr^?XNfVXA=;@^F;f-lSVKaYz`tXeMh zPfZLxZ^1r8`i4YR%yIzno7~N}ey=EH1mmxb;b+3DtCT566W*Mu0ImQ3?9ko#4VxCC?b1YV#%*o?SkI%xi_qq{nj z3#KeFcnxWlC4#Xzjakck7Q<}%TY&pV5_BrBZ%jLWaF!4 z1GX^BumIV?<<#|yGA_n@ap{yTnLVG;SI3!mS1+nv5@w6O?shGKTlhXG3`ExZ?$<*T zM{w&S`TSki-6+w0yO~U05y*T7s>qiU3GqUTYLdLW-n&v!#!S7jUk#*q9ieghP$=>j+J`wX?)ui77QQery^ih2T0j zi>z^8N*-=8$^cJN+*swyF-UuDV|_TuxgKt9d4j{piX1Yrwj!ifcr&6PYwLvy$zuPS zRKhuGc1O&w_`P>hm?>wm>}9JXwpV32;*2ZDctz=78nsf+7@8Y!^jdJ<;rn-ITdZ@V zFVb^^D=8sDNFd2lQT_mDVIW z&oYsjT`;~HLkdhwmF>Qp&yzy^gw@|&feuQxP683=$??k2{e1iN_i49{5UG(fqoIRk zM)wHA88pL0cK#KHp8K5(yCSEK`i~8~t#~|_hKIY#r$Epf~Y~H%d_voU! zgma5q{t?30l8Hk$lJ9E&L~C{PxE{P>7=8_jcCIpfPVpH&A62|*FPh7ZR*vxWQqj&8 zD7&0BYp{Hsx}Er^9kiL%Uh$W4Ii2&Z@|ZK)M0T}uF-ERZZ*V;wl)g1f`0ID0ZU$4D7Fc z;4FBoQeW!e>FEQF{~^X!?-ki$A8+C-6o`o1BqNfKgX*Kj5tuK>{ zX6nKb)6mgQyELzL!p>*<8S$};9i>NjUyFa{#jdoLOProR)yZE3+#rAYN}2Nsu-%l+ z=8tyyzz3G+Quv6Nj3VARh>1r@(fZv|S>N)b%?2$&z9U4suWViU#Fyk0)|}GcQC!&H zlC5#4)#gyqX*zLnw*5z6rv94wHo%6(*xYB}<4~3{(G$SE{DyweSL`HyHT#f!vo{30 zw>BVXInosv>W`Sv_Y7|L#|}Jny)lhnaU7d}7*x5phjeCJ`#k|do0QftjEik5bmoA! zu76}`Vr87AKm&8RMkt;iWxosNaUHn%z%v7opS0c5W;fkT)sS~exAfuDlC(Arjn$3= zR}`i_$(VSujh7D_tA-GdH9u4J zwsf_6`m#>H-`R?IIQ_q@q!9!fF>F?Qd8T8r!M;3&fs7Z>iU;kt6qp-4N_N_9dEnb2n zhD|qZP(4tBIdpMQ7Pqd%+CPQE=lVr`V{CL9baUWifmMxTG0eg%Qmz^$VZw6A%MH3; z@7V|7eP~(zWXx&dejBBP(2s#CJF}N+gvUJ+p)f6~(XaK-mDCUX1wo@p85m5hRk z;krnZ&TV23nd&U$6>sqM=eEq)_n_`7lL(ve_1X~J{%s1WU4wBpOK;KN9iKs`+Y-p^ zRh@R$y}{zXE{0ljZsG+j+XR!_1TGyJ3QXd)x86&6B?dzC8)miI^arPAEQbG%bf~=^ z*r%cA_PQI%TqBcdr^{sQyWsrzPmP+fgUu<_Q;ungAM@~~*&G@~IjOY0YF%H+;KcLI zOgvn}=azr)ALGr3)>FGpK;Q_Ck*Q|%ubw7{&t<^8jLuinBeb7;p8)vnP4}v)WeC=7 z4n3cQguX&H95=2jL8YSEWR2&9b4Xs{erAzA10ejxu=Q0t{Ies^@*Gr}!Vjlb}m_~<^UT%)`!`%Pab@cyKj}$T+yaljl_sl5kiM}v9>?5BdX`|a7i4c zolVR=>^s18ZQVR-e+mU6xF#kj;{9uaW1< z$_l&IvDQTOdClI{63Ia<4W55+si(mcAkyto4rjqS;Xp!*Z!`FYi%(Zj=?UI8d!Yk9OH=ytLmaLdDwU0}IXCvNO z$>IaZcc~Hn-VxnR@t_c^=QEt}Js?#9@LmF6zPgi#V>{m2I$u!;XSyPI*xX&~9sK3Z zo~$D~8HF8;U#M4HL@<+Y1sm;;PtZl6`n4n45@0fgq^0;zwc_ zO(Ex0{RTCHqzbmRc~J6^%U`PH7@%|~g=HgYOy1`x;R0xTiOo1YL^$-W#l(aRQ7G20EZ`zL_t z#V;b_xXwM1n%S7|`d9%dZMcE6SyT4oniyuD4~zSWcjye+rRu<)>nj86N4w`WB#sEEzPGF+!r0H3?#@GQ} zt!g?k19mmrg*0*piTK!I2#gtKsrlUwBOnynhG)CXk7|E(czb7431ew#R4sPi9z`*< zv;I2{wiTSzW?KkaB;ovE*MXIz=XBgH3@f$cy0l4BUFpVB1v*n&)CHUH_fS$F@pRV#y+ zB#f>ie`2x)FECeMTYH^`NVf4lh9;Gg4eiu+e&~ zi@Y_$5w~t+SN`pm;!X}Wt5Hty3T}|V+ZxX6bu-HAZrL+Xrpq;J<&_z#CEojoz3cD! zHV$v*ESie(M>8Pc1pV(H%M4|NDQfXMp8(ff28rr$4vQR%(3;MLqNoDK(#V-|HE^k9$!LlE>wh=q9d?N+r#tG`qtskWQjH*)*X4R@gVL+kpKc{<^c8D zU*n7I_R3)E_BiZ=&)S;&4nRIW0hR=QUzs485pPJzT04Vl#gU0SLLR0DiJfESm3B^F z|C;`xmz>&&&l8U=@GQ$#g&YjXIee22TC6l-rgfTqreDC@Aye65gK9eS`R91YKhL|p zlj!&Lk+5=WLz>Ct5sNxRcnxDi1`QgpLBc7^dm4_jCosF7=?-;r%e3FtuB)r5Z3LO3 z5pL7qd3$UXOMwy*oL@mASh&vfD(Wh*N49R*%jU9FIz4@kufqKtp2k_7cS!!UZ@Y@P zuW6B5IwPk5jQ7{QL*D$m-8f?+=4u04(xo&A619+CS&NY}EZ}&R*$Y4Mmc=9yf8#8< zuObhVNVn1bpd|x7=c1Qn>_NgGIujCZR`4CHH^2P!WMj(oEy>xAd;YNia2 z6;N63c`tie*3#O*>pLTa>LT1nDlYp^wh=h`#gOpEs_Z7~2saF2W57aLeg2TslN(bg zS=ZC-(;OO@d!wRc6WM1fX=vuP1wgqlGH%_oNrT(zq|SWj2Uljr=IZNrn>%fEKawS5 zQn#1xi!KGO_;5?^B=D@#OEt(c-{QLj>R&-msSp6;v0P76alc$uAp&IY;idRJ&em47 z%@m{>D3Y?7_Ay?izD$$l?td`FMTk& z(P`f!H8Z0Qtv__Pi>y?bJQEwp)YG4KH{y@WkFA!*xA!DPwnUrlyMtyMs%v1ho;_?T zM%~SF{8Sc0i-ogtEmoQkmeVJ|3wyTg2R3d3>+$OA8In=?4H7FOmsdXMy^l7PykK3* zaTt~jEBz2Z6TN;-vWKLr7wCjX&yY3JzSjN0w?uXi|FT?V42dg%fkBG5jcJllP zl^XF|@YifCzAvME5M%JXENhEZ4k~~*)U;L* zE=pyHb`J{5M9or#TANL{VM}gC5BSlVKC)LqD6Qh6WF4HBrBy+hS_wU4_?PZ@%g6GV z7Xp0;s|)^fRdc}bk)G8@L#eY_MbHuoBvU80oqXUjNceF{>XGmHjQThX@-W4D0yJ$r z0YX&Md+sW}5{jullLHV~L7wt`a1!ms=ejKPNi))kvYGz@Yf}JVXY=<)AR?H9f=%vtG@lnbfxR2sl@Qkz=s7f3({=~>+UM2 zEgjhxLP?eKlAms!|86&XU*sG!De3x@5+Nv}Wez@v`n4^vM!$n!te1(U#mc?r9E`)} ztH6!VJEjh!Zl$hn_?})m4!V5ztGzhtbynDZ?0LkFuh?p)ifU6=Rx(c%UFSLRTyRtk z=?XP~(p&p?Nv(Ka|A0o=G#B}v6ZHs}!1h-OiX4V({sy;$9q9(zx;@iad!$d`?u~Zo z?lQXJ(Po)j^ZQR_D4v`mCQiZ0;%`RVt3} zF_52ZCYJC7P+SL&zB$$<-|pH~r?dMS!LFMl#;E)8GsUe_w*0xBkn&8E7hKOkqIu}R zy-nTfMCUIy4T*%3>G0w_unNX_+(*MI#-^}Fj-?3^ox;@xubF{FJy$ zgBSX8pLm2!*&}>9oR|)m%n$a-Nv_nQ9CzMsbeX3Os;bRu7m-~5SSqDT7KwLX3ZAl-;sUg!C9+Uh;-8UcSl0m$3BaoxQM zJ5AWQos*Yd-{`3(qfZOhA(=C^JeW=P7Df+P>aJ~HDc0O-y6EuO_$DZ7%k zbj(y*D{TZ%JZ&s+gm~S)>@*Cu#-`#VA)F?OPD;Iyf6B1eGYVIAD`O$L@d-f9!6scA zXS&b6egRz9XO57hzX=j!61?UC6TW{OGzF!9%XIJ9+Ro{6q~>gR$)VMHejRNfBJc8f zTo_EWyPT|^dDH^8e#em(TIl8c3Enxuhi~|OtyYqj-M+FOHMUM=^aUujOnDnAwIA5$ z<}lvKP0T$n&S>S@bV~XC?lfY@VM%eg&(;M=TFqx;`MLiCwCdO})d84nPjUY+L$Lz? zU~Aq$pPCN1$2m+nRL%QcrueB`?Cq$jlUkLN3Ilm~$hYsZ^a1syO1MfkVQ-qu!&l!@ zrhQ9ZJ^Tnx^-aMF2Jw%yuiqhwcLkFK!RTpKg8Fz4^a%&(8o}`gjTuum-J+bjGBX|L zy?KXtbVgDGS}6t~S(QZD6xpe0i-o<3VXTjv%)j?f-Ezu63Y|$p zTrw`MVb$!K$zNiW_q(KwE&PfXNJ}`j>l5z(bnC?SKd&#&1Mewtj>MBvY=`q+h6D(m`@xJ*YEBFrfhk=L3dXyZ);YX<78nYK(3g#WbbB*B6E!F>aS!QrNqTl9HNm*4*+l79rgq?!C7M;w45dGDoZqRBdOT6O^0?hv zc(Nm3qX_+u;2rs*j7s5>>A^N9_3@dZbwr@}ohz`Yopgssyx{@Z2$O124pIBP%#ipDTAH56l#2zoxgVDkG17 zY3 zM~}yJd;bmhVw4B{&8iE!Kh?X1EfHI5M_v{g{qR9Qp=P1AY%F-vW@XwQ3VPb9BM@*5}Q31$_xjC}0F1H56-|1B!7Vy}ObltyvCiY5Q zMC}^;X4`f07hwg%COz$GrKjjQ_u`PH^vy@n86~^b%(tI@=APZR3ZqU47`~;m|>-UTT&$sB>HR&Re62z9#=n3wA2TO+SVod3a>7 zI$_FH#IyCM^#RjpgjfxlcBCTc!L{@VPe17=2^U;f(9+kbuY-G@#wV%heUs1i~YT#r8yJX1hRDh3%5Paunl?W9vO3q zxP@q(G9gNVH>uXi9&F2P4270=+)}sNQaOocwOGQMTg}$VLG@o8aa5M$j>^|5yio2L z8(Z$xsq)UYDiE%L_S zH7RkX-c7JecI!_N`T7}sZ6Gi}$bNmf)Ln@DSIu2!!w8wVWhkXPX&W*d>i%gp^GGuk z)i?Bg7lF#LiE;PQGV<@#jAb;D%e+7;1x+{<#d8?rJxG7;Pe_?P+E_1`3QB2OgTFbX z@CwEpdSt;)eMvHJg6?6;1`xl(6MeM7`{b2pDz8y#NAS!zBm2+a3={4PSu2j?-+m4I zbHU*Mk+_wp^#c~BfWYM0qJfeVe}OK8^WfoBY^lJ{SQeMQW8Dvwaa9XbVvUinH)=eY z1?>OTEDVI+cM8n}fl5`;L#Gc%BYyELl;GQH#Pcie@xwu`y<)<&iK9d#pDX-(P5q% zGK@m_GFGHi*ws%#!#!aBU>A=W{%} zAGfluS)77b^2^qqd-j?0(mdrmL1z^Tb(?Efq-}55%3oOV9DbnOZu3&ie4p*-2j ze0N%cai`1%r-X(iIvnGIC|c;-m=ba$AVuxe{%p~&7Gx3<`;b<6jnXG-40`eVjp;Z3 z>w-F9)hfiJ@?X91GRmfNIreRM1@mRmkF|7)@+6Gaxapv&?zlX6Q&JPS^6W<~2IJr_ zWqQ}&sz0Y^LcXuREWo@LXsKnY^kv14{16_i^_*|%6Z*kpw6?wxQ*CrIFi)p8$4bc` z5KX&XRhbrc8}9812O!T;_LT+M4#-G*u-p+Ns_QT&P%8c%=*{5(SUA2fnM0Rh zRW|1dus`#0T|LQcH|YTVPv#H$_=60}JLgWM!0@g!u83Lc8eu>kiXNID`y%utgV%cz zbv`}PMcghCPn&Fqr{}V)SeIt9`ir?a;fKFk+v{imoP_z`Z6(45HPtniw(HJ~i5pg= zf)bci^@Ub51RY-FQjW57=8~>a?*iPq@ip|A%o+WZX3=WyOjO+HZo9;b#(7_@z4D-R z>oQD2S}n~FgqZ2_Q2wb5BK2rH?2(5D&T&-?CPSo}UY%j1cdDEjko- zX)vyI?BqmRB~4j+q(=R#H-+c5j9F#4wLGtXxawT&7smI0n9fz<{Pnn#K6)2CdrzLb zzhwZXGmCFRr-BT#??~UctwxKAlp)fCh2!5blt_iVD%|8{*OFt=nHAscT(SW1JP@y7-> z1k>1QXay~|B-@96kf?nAH8iYSD35fiy_MsL48A9;lYp-K*MX^JVj4GLYeQfS%7)HA z-OFvZpWZuVm^-ShS&9A1^m3OikviFLMUsD4DweOTflM3e+o9c|lVa`$YbSS0l8pU6 zbM-MZKdAYGHTkHFd0C!y6t8}D?ZPLL*sU8Q_h3_6y++zM!iGhS7*SW!%_~U4RzhAW zWrew%lH55;LrdP_YcbB>;g46Ax$WO?0&N=ORjyn@9>R#jabBa?KQ^H zVpK`9aix5>Cm(BMeNY&_J+7B=n#^7$oT}qhcd>w7x{RI8HK3ZPEXR^}=72;vn`|iY zhtZRn-p&}T(kMsMXWv@6cEqfpNK0E*!E;RQ1}z+Ix67xK?`14w2VYt>aLbnpH2m4X zX(OET`56sn1_}}5U8{Wt;I|2&cLn_sUK#(JVV^X;h=KbV1r)9E%e3wnQH=z+$5zyp zpzwVz)MGZJYE)gXoi2zUxfiH!5!>`pGWF{pT|q8JyF988uhGbil74JSXb-tGILv=-t7l4W`_=AWAjmrSM2ElFAel-K3T8K!bz zv1`#O-s_J2nL6ztt>LyVp&qHPlO?+E7tBgV!gx);B+BhIv*(=FB>KP%|1n1AU-O1b z{lhaK*k<$x9cT?qaKQelwF)^yOE%X>I}6FUICa{0wmwJBjTdXzo|z;%6)lYyuqjv1sU2 zBA6##uHM}3Dn!;c_?dRpnHV18$(-lF+*c5BZK!n%!2`uAt9elO^5I+A0|X zZL+(l8C3X#^~@y+YeA0#v?E9gpujxA!E>iwPHn>w!>nF1zZu=EJn;F3FVD)oGE+k% zZG*6E^L+@$vY}kh8r%5Z69BJ?T+uz-m@m)bnjk$K)f5EDaN3jh9IjoHP%xSR9?m2v z)EJV;a>hcGw*z$uH$D^>qWP`wcp?+^OPh7sqM)a}*Is}5!3*+ZyI`}JW@w!wro$@P zun z82n!#qUe%ZcRx_jB59kmj0ktz!cR`!ruu97f-W z6?!})FkVw$C<`-H)s9}5v^BLdyLCp{@eA*Py3Cvo!3_O!xDE;uwFitCZoTm2$X*7? zEhv2|u~EL(=CM#pFs;EnBU(>xM3EsSi0y|q*2ZH4QXPA0jV3iqU(Fo8{XAT+>NBmL z%wa!VCz}R-i}1YK87+>XH{WV_Dd1#VI(dkjHawI3NQf0c>h;TX4soCgt;Dxp`PJOD z=S`rHdG}U3a6~>$+(LkWl&GQ>YV176pW}~i^?s3^nxqs9NTjn4f8)GZ1%8*+6Q?UU zG+v!&pQt9Asd|bZE=qcG9gcUkTQh#)^#fD-tIX;{>^c}p6zdRXE4S`{4GMqGd-fzb ztg`1MapG6CdH;Q`jDmRN`G6F$_Z$?NpNG$VAR%_(#D3_z1pY%JUf3@QAnrp7iZfv5|&c`Doe!s(x_X(j! zl)qNJ$8g5M!&d=7G2|;-%v8}!^WD^}>1H2mGAOzwfmq0N^z~4|2esaDiH>(zE=2#i zXkN0IbX0R7Ig>P<;O}h%@i})Vc@Pf2rVLa}`+)JLT>dDiK7TRRU|bw~B^G_Sl;N44 zadhB9ahCY`71&?u8N9}nygDE)Si`Fy?^qlllbvle4sSa-ZqsV0_^S~9@}FI2pRazx zp0l%!g60V%)T#fcE=s%56uN)(8XMxxlBG3F18xp(Y8cj zv*A0jmJ%nRmr5@#o-$JNe1*lZGFX=AD_zphD0};5DWi`|50WR06HkErg(8!Wke(ef zQ099{vIj}rEwY}aCxDK_a|2#oxiYUjE9n3+#+5~2cj+dB*KNv$08y5X><49xS7O0N z?_)!siRD0zt3OUp0G0Izzg_bii<6rWk5p}u4!=f<7O?M*k#5*GPlGhL(#x9B0l^98 z3i`mCSJF2B_IUm&*LcKLD(d9?1pdtGjG5ZMdY;S|-F`l|8I=spugNsS=aFqA3*|&P zA89J8xcZ(W*)L3S<@{!<7)Hlv$Z^_e#QY^j!Dsv5MpHQDiao%tjf{GEyk32$vNo}C zfJ;}wZ9a?d*yy9&$$cw~yl}3QCvz6pn}~8nNJ2&G%SeYxm@e~S1m6=t4FxGcm}XmN zLes$4I%mc7;aiz!slI8t^e{Q@^}@2o6JWY5h6pFX8&CVU?hR(!s0wE% zFBt=mCHfi@&jp~l!^)};PdCpY}8MH-?<#1SqHZ+iXMN2 z^qf_E-+X}yUQ%%=(xq8txxLD<6DD;8ktf#Fwf_;Ad#+bCpUB5>$v*++kDuK!Uj^fa zcOgiCs_ybHv3#5Zu}YP2N@A%lv)0@|ufW`nwua%nKxZqSBfG9I=W3tbRB$+5PyZ9Z zvKJI9-;nk#*3^6>Jf20?Jq3SqhEtJ$W2wlct6fcw$%{LRd+L&eBJ{OMJ(&fKJyK{@ z+DBj}Sp2OYPm;~bp!eE^>FwC_vSJ3kCrp*4#1zUd)YrNwa+YSYuegYpW4@*q4DJm; z9n2h(<^TIhdifZo%jf+GchKyHe(1C1z@VJ^6U@Le;j|sdiY0KmfymaJ!xkvxMI8cp zL#l^5*o!GJcN59CqlocJ8|tN;?x=o7(1>Fo^{~HCZdtuH*2;aK7gw~JA)v!Pibw46+^@tObs(9uH@LQzFLSMHKw^|nafc2%MMIPso=TVh& zEjVUlc<8t3M6(8Vh&HM?G6kAi#g2EDM|1BpdD8V0p26Mhv;WCSqO%byLIoh<>btzSVw!QGE-r}VNm~(O ztJg3T&{N{lE-EpPEhNj|Djeb?$rPd$|Z zPnB6;{!J!OQ4D^}QJShwzsfQdCsya>Ih=-$SFe!rM+WceXr={;vS_%>CiSna5^-i0 zP*n9gK6i`AOvuFR#koP4GlfpJ16riOsvnAfv!D_?$pFfEHGM3-)u48LbSRE&t@OnD z-q$dxR*XOOrQyj1tb@NNP)59eX)wmwwRNeyab^_^zR^hZ%KsEODnwVqX+}>u%|MTt zHdf=G=p=0OX*s--J?bXb3K?r!#IhyC!*fMXe+evg(>e|iDK=!QM2?;`U(hEJ+(up+ zLZEh3V_ld7{9Zbe&Jl2?lv+IJ-+}6L^@{9xLW%_7v4WekyqGP7^M zPB+qYn%2&0M@2*b oaBy|QT>?`I3|`7F0y9X?UX;M~vsV(&gP#8VH!I9vEdT%j diff --git a/test/samples/lena.jpg b/test/samples/lena.jpg deleted file mode 100644 index f06aa74a57ce3a4129340cd4407ef3c0558e3193..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 91814 zcmbTdbyQnV6g3)Li_=1JD@BV#aA=DbclT1<-K9`y2pTBf7AP9rDOM~%ad!&@_h3c7 z{61Un&-dPBCF`zrGs(GkX3p$=_P$T^PwM~@6$NDl02&$^KpFJ{JUs$F z7=MtZ^`vGO2i7Kp&5kWcsC`Ol?Ky$}oKBF~@&q6?%XH3YP}={V&-K_!Fa9dd6>MwKY*6I|((fz$$~fdn z8O2a+e787a6iBVWqui)o$DZ44pFBm2EK(jXWnoY9SZ#LuQ5&V9>1W`>>5s2*dta{I zotES^;k%AR2tyRITC~2Z|DA41=;bWZ7_KKzlryk_yxZ-ie_@3K_An)Pyb{%NsU1#| zV+3RKAFC+~ePv`N?XME@Di&=l-=eesVGdp7`h2)%yWo5q&~sojgyEx3G#I3jUb(bPm6A7umXztYl?5 zNH}TYpR98xEI+@|5YB>vwpXLGc!Qj9j*Vf`WsLZ$-0$V+xXw8bj%6oa;-8XDNYXj| zX}uA7(|tbnT}Oj=y2{tQc^S8X2M_G&(9tdUw$cS}>aTvk zr1jg=yp7*Z_PX#Jpw-WA$5k2Ds!=N2@4bAM2mIB$6xE13dfcf3<>obTcSHKK^7S2M_JSQBTVJ1x?)u^e1KA)*w&r#mT7({d> z3%clFKl-V}PWv0>WR+Kf)8vO-qm@~%+q1LcG@g8XWWc@q3#0fVkpds{g1xK@s0&e` zgn*vA&8T?U6Tmn{k??J}JI$?i4m`&>fh@R}k)hcic%q^(53@!al*zSRbdq14Wg~)8 zYX*TkKa1;QOEm)l;P<8$t(H?Cjys-PEEd+8NPbJ|I4Z8>kH1n?)c+7Q4L872<5WQm z?NobIE}cvM+tN=ADf4$c;@%?c7wH;n2$rlFbPC~V_(PFQLs;nDjdN!(4%cJh^om?X z6r|Pf8LmaXr!mc=KzHmRIakt)9VG(ZJGF)+dU8|+BqpUN$VY}=s|QYU)`@BIk9*xr zXswu*X+Y|q0MNnM;TS3O&kq_hDs}^-U=lcj>dv~ZRmdc@AV%K~^V}mMe{)0_0%AnV zxyV}!5>npB=V8umsQ5dyB#SG{niKZS$Ncrp-02gbXZ1zuhmIMe2G{(z7Eo$SDuXG(N7QJ=^M_(Ec@V8(K#jDz6ct&j8`z4Q33*Z@z`CZ zWX1yL8t`d1?otGT@Z*$=zI*;UcI;ZpKod{|L`}bJp+5wbKL;T9Kn84P!V1a8^@9bj z(Hxp(0T>-Ju={<(N1K-HNW6Zj(1sMh=~A}xx8HcBb>{MZk4MLHLnq`8R#WG>rA0Wu z*XFGIJ^`dViyyPL|rG zwW>)9wmZOqW(uQeL#y{Uc_em-@|dFaQd@T_XAmwWy*22lFT6TQ9i(-fWvcPNx%x9dm#OclCW%B zj$Ov_eHS8y<0YS74k(3xI(ae6z_vZ!fV7V8@GoF&C@>GpdikB%5NC4#rs4;m2R^6T zERDB$YEYF%!FI?drVIxQ`_$cBiNEjl*k>~nMi2?{RQ|=DR(x#RU)Ebl=De{IE2!Tc z@8n%N=&ynRKPVCE4-xu^KVg%y+zROSx-T_fvs!DTJr#Tc%vI2X|JEbNBj3Y`mI+Ch zDEjp_bnkmWiLUZ3)d(bP+%>%^ZF^%x&j>AmwU5=kv7y8IyfcB~bV z$F<8q;Kc8!uk`^;gv2Cq%6>twpAS2|2sEA0BW(+^p?t_*g0&D9dJ0;+3=X^rl8I?( zoaJHSa+9!@F9`RVp1pmqVHdaEkuttD#91=qo}n{xc&zezjd2t>a1Paje29<*?i$e5 zOm?I@aC{0;nH9DDnr;SL#<(B_KW?T-4Y@}-am*@Cs}rWCIf z;=ChwERr)5hdOo4G5q}eO3jA7{9aw#v(`w%uY|9FBBbL*NA|xHbN`-6&Pb*CD(+5^ zDEtYKJk!v_ghzq4=wukSEwY9Xtd=E6!8PSuEZ&q`ITxKdJog{--P9HSuZ4E;Zvl7 zp(jS_vn|Svj`IIx`BNw&71R}^95?y3=>jy{aV#F29Cxx8UUIdo@~5-%>x@sA>5+z0 zcUN4_JG)z!5tRE9h7r$3!p7Rzqo#gI?JYQSHI>m;?g$Xj+DnFTXe%s?S#@7M0c1uC z%ekWdntieUPE_b|qw}ss8xP(Pergx-?#g}z9oC3j_phPZ?%oz$qt1p#_ST)DUG>Z zEEdF_F0cS;0a8zZKSf0@STrlk?Gy!!O1>ogV>ky|8r$W3`pY<&m-mh>dU0*-U#@vQ z`MMg3WqJlw!0y!F`iouFmm{WbKSCfw8qJ`yQZ44xspRPhE%Y{+rhBOKPFCZV!E};J zg|yX}tm0cWefHoeOnU&@)FRjgXSir66#~31t4m#`bCkhlIC1Lw#3 zV=)p6!QU?%0C`LCo6{Noo2!Y=EA&W8$Z=Ps)rm`VBRFre_OBGFZ?&2GRsrvI?}_T_ zd;2;8EW3_iXGjqK*dUzfExRp$>nMPGEVa*HAF14bBG>Pv#KrodVLGA9ZV_+PW1z^7 zf#6cqkP#DO-A|Kk{YTpz1E7|Y6W7A8s$<{&4HeHJC*s7LtO%=1jW#R%q z)+fMSr|~~mA8k&j(yPmrEpO9!!!=w*ZZy`&5J&AH{xm&&+^sy^`%uW|24TnoPc<1y zg`O-xl$v#>1Pc2TL+8oowYC@s#lmqg%Fw2=28{_G>1r#pM?89&bDY_4PWH1;cvDkn zN-KI(11_QGe_8sh$#$Ebi;`4No8}KspO)%7K~jQ>lg576XWsx}aIgHa$MwQE0Z&ZU;SXgsyBm)$y!y9|KA%H^a|cRbEYjbgZEU!Tl6hWvf&&K@ zdRm{pBI{K27%IUGI58`ID{?q}A9K-kfI6PG7axs|b>VZ=xO!E-xZbl--jmIF(NfU}} zOB46S7vC``;5yaL0Dc${Zuyd|v7jUUy-AXl{76CpH{c|3+vqM_HJUpv5+H^_E%R7~ zFiTtgvg2g(?P4Hi71|}mZzdBue284&TFt%(Q#oiADy zv5mx0IXfuGbJAz6<-%I-vH{rY+GRU1f=Vl?`(dip3w#IlwEwP3Lbbbz$q*C-`rJ zO|cTG*Rc`w_1ByOn0|0SNn%&A%3tZbmot-ftWEONVbKV-@S_JY;R2WKrMC!E=^2g8 zZ+X$EeM%6L9u+x@_!?|^1JfMdSR;lJe&d|vvIl#>PRyBng8ahJ6@A$Mf|RV$SlGqH zXy@kP^A_crJLxAnhzrNE20g6$Faav)@&yZRL_=MF&;#c~iPo2Q*@14s_MgUnNS>KZ z&CGAbYb6|pf`#4@QgVvZbJ`^Ua6D@y&&KT!ERvPE78umw!+c9o7kORlTMdSSoZ)`q zf)OxbO1g#IoR#=FL2S@>$tK_^XZ*28?srRj>XPCUv-Ex}xZoLHFXY$#}|scLUP zwpg~sSO8H2rN4j|0nT+K*dbV6t|CWV-$7U`Zz6jbDG?XYAX5?%5co$B>4A=p&3m5A zQUVu!MmR4njPfHj<-#`r&2hwKpJ)Ba50`S&I`U(k9W>a#PN)(XRPooJPC$(1tl}z= zSd~9g&xleMo|*$zQ^n|*=nzo%zr<*|{3+V7pg#N#xGGD-(e!B#gqV#GRBG0{Ro-s3 zZy+^Z0Q;)!CZo-JaDsvT0o}+x1w5T_v{B`))X6gaiD-Q&QM%@k4L;fyBYC1@DVJbB zWo9#i`caQ;dXjVK0hdj4lvLG~CsN$+L_KlXh^}cP9@&q=ru!oj>>p?QUGL^!H75|k zx(KDu=$-&$H#%h2qZBz2-I6<5>c+J%J@oCGsVL6pFY*SUAMlk#$vla*P#pNc2g*_z zUH0H`DbDI^(R+ci*Fb)mk&;R zbj<#*KATYn08Vj={BJE*B-;3NWSe!^ZNf*5y&h??*451UwedVN&LsX=WhlAZg zaFf50{RBY2DGTDbpTevdBPZ{s&wK(%aV-y?`Mg#){4`iH=;G(roD)-MnnMl28WbZO zV6?%BpN^Z9ErCXXBASYe0<~irrE40TvPfC^Z_LSDnJbnFY1R*GH3|3iwIg=yW28h4@~D1DGM@xwJ#%Zjx$ z?r?j#D`i{c_)_L`$czF!LwKc8T5k}z(s{$`$x>oxS!M`&Ek=he9%h{2D*2-kEz{@= z;}hV`xPhSQQuc~4JT$fOl&aYp8#qRNpl$pkd78{!Flx1v*{^-!GSLO^#MQbfaro`1 zqO-n^<6C#nb&vQz>ifI12_iEKJin{ld($zo`jw^Y&%u>i20%&TCxD)w#2SRi_iGK^ zW-1!>;3y8V>eWpIo*}Cx$p0XZnEmnzfWP0(HKRAN@3k#*ZcX~F}|wDP>x65uPpSWN^B~3S;>5PX~-Znf&L0N zE#-xu2iRk^k%trlvO6tLPFX+=&i<>)p|7>Vnq(!E?(P8QVm)mB-|*yq9JkSy0BC7J zWDr@|^CST{|A5xmhp=P~AU-Y*YvMQWg9k^Opp|EZGv9U#xVuQC0-pf+DiAFZO4$}F zR$Js=B0LP=qv3Ewn1)3uu_=A<s z^*|MD2bUGx-4y~E!ptuhKY1wsI4{-Uwf5t(v?^MW7TuO%B+ zMeRYU9~NtHKI)|QYfQ${H@*yP@F;d&&KTSS*$bglDzRGLFB}KRAWkc?f)~>}$SS_O zu%W;cfOgh7I+hA2zx`ObGRvXkmtd>D9akwnNxU4v0DV+vyW?)H6165;qyTZdx5_AQ zufqPEM6T2~EP}3s%RS?(YZ~>xC9pvT#GbkH@xqvvqj`)=Z)6}LQ6PShgl+9L93XDM z_UW2W|3l(mDi{KkdaJ2t6!&qjUy%}20U6PoqGh%H^PGw?&k?T}Kqk(B$^moA66pn{ z>JD()*MwqSCwkj{zCC^b`z9IV*+n9ecdy52phG~yVs|M%MaR1r8-8C63??^~Ev{<- z6%vTq<{I}vHE+qB{ltcz3*Ojb`Awy>Jlvh%Z?3>Mj=}H04~N;HiHdX$(&LEHPHUGQ zmdlqN2Ui*x%v)2ACG(_gAn*w7)*@Pq0Sz+Gq*nyY|Kgwz#8Ua$bPPgytX{w(qsE&su^4?ztS$# zb9bqrCjfH46f5Ro-lZ#tewybvL4VeMFKLa-O3^$Tzte%L>C4GMqIqtJ(^<d0gKT^~pMzt<`0__oCEubfh>bI{myVCSqJ7EY;tee(HAi=m(B` zusiwWKCO|PypJFJON&cV$V3H-G zWkl9uoewozDj*^$!0jT!!c5})m;Eyuq2FC?{I5i<qiF9R+WGGhm}&+!jqK4<2?``! z37QPMR?hC({>V9&Yf5*120a38oo-R?_jBg|f!e@p#Il;xZwp;_eSP1^Wc#)_pH?V! z4`Pyoi^13$lTC+&YMjHg&FCLEI2Bn~@PXZTwr7KsxylzRD>7AkVLgKVl|_CJVHVpL zjhlsRk_T2XARB)c$3}tB*wh@`e^U&adCv_u5`vq-etdt@kpoq2WFh6Rav*ES2e)g7 znw^CvdsOe)Dpf1z<8U?kQHk_i>C3%ztEp|OQ5h!F)tXbkKgRpFjr{Ei!<7_ohj@uS zrjVsN{{##y=1?05O+2E1T{4R5D^Y~l%7!|=TRI3ZQd2vQ7L0pAmnj(dhA*e^FH ztLq*sFy41+nf&2#{;;O~d5cfelbCh=<;=JqXoy-t01uNM1(Gago3d42DB!KEol2|# z0eYsn-@WoLF3X+LK4NZ_h)GGzWqPkvqO_?DD@X)`s15FQzuf#I*kz z>!E^?4U=!4I zQek85_WHD^9(+|AOWN+oArjvml|x)8YO0yiNXN8{v(huMOKsSGe<9jtj9UG@TjiiW zfDm?*Z#i@8PmIy_f7^$n9ZAB&o0~&xrFVcJj$b32`w;u@#oHV_-%SNg_vn9*sCpwe zz2#otVbd*x6QQ=Do(b%+S0v2zIL5<0HWI+z$5FtTW%n8;&$tlzO}#oD+W`7D6F_Z{}AB^4oprG{$nG31~Q zd#%AhqI&Oj-5*xVjH7g()KP4Y+pWna9{Z?QtOk070BgB>|2u<)>39#doSJNHhZntN z5prRIJShT!|4_(Vo2xCE%4Tq23N^!2HdD6!M72A18z{=Fxo9EqM&Q_N15cr4Hf6*Z z`?LN){2|AKw}ui@YHVp-mV7LY8ak*6K7i1FS7aa+2M-Ua=E}%0$!akkOu_ag{5$U) zE_cZPs3tA)QM;%`(w3op>Rkod-WY02^)x#wq z3*kS|qgYa5Q!XjyIBc?m%BWShMQ$UX=|Nr7Zr!`L;WapzIh5a9v{T!-8>^UGnn+*MDBxjo(4nngF^si4nOMlD4!G(q z%xqoIUPKLUHJ?o7duUEqd4YB3*pdrA#jxpd5Tu z#3TmrahTe%HQwLvo7T_WJ$6DbFUl(&J|Q1F!sbe$E*`?IxX{s!a~D<@!*26jqsb5;M=8z6Ay{MnZ7U@luo>R>^NyYFB2<9Wl*!AqqdKq>j`N6vjlL5 z#ZPvEY1OkfPJSITn=srcMHLz4(7&H2am+?1j;mJGIRkD ze=LoG%rR29D_HL4O`-o!_UZb_EZ?H2jQ;s;*9DCH{`#+~n@d&5wZYI|&D_qXln~=E zKcA&Xy!EWrgvuN7jmx9Jk?+~QdazqtoSU?3x-d>C{jZN|1sHA$V=Pnyfvw5z;|~mY zUy9>@mFol&gV)2i)ekW)Y;sV@7@@oqDRRUZm9r(2;8pL(Zk_Y@-`D42M_{Ra&?u=p z)x{JG2(f1@XEv`^X_9#@SZ!?-#la||NC!BGUmed~br<#Nl0-DoIjMAFeJQ3HLVVv_ zZ{=)WR#23@h|n+8hQg?qZVgfvJzH`%r)pT8RqWb{0iX@_O{W`GH*VM<8jY61z;ShNJD7l>#22K;Wd=c;1y_eK6Ho_BZSV z|D&Cr@Xy~o+qqT_Y5%qWE=)Oj$sr=a*g>(nHAJc({a+l_RQdb;S;G}JQ`Kzw{Kn{= zucI>Id0vD&vGA=h&&qjFW-dTZDr(ow3VqC-_jMUM@s;+~HmC-B5+vq2XOLa$}}{B2Wh!1U+UfW>GFUg7a-FH6?Q4jizAvM4F2gXmV>EPJoD_70K&1n-ZyK8g<2@$HbzQdZ zcggr(&GxLW@SNF)$TGkWus;q?MBWns5>h|cS}%EdYa(pZkVfg8Fpr6@fTC%4WpYX3 z$e|=<#2MAeh^N@K@Q%s5YH$~Xu)S7;>d>9@5`SsB?sAN3H0))+!|{maOoaorxv(bO zHfhKZ!TKL{HPrV7u0%wfgYyyb+m3g1FB*#)a|!Hh#3V`7gLF%~=0OEw&r(rE7_rho zO#KX-Z?4?m!-K9)K>B&fRc|*`O_px0^Z%*rOcYEa61Pc*)Cu#$VU+=W(}}Esd*}P& zd#$cKi>Q4>??REIPztVD?`OaxR5biM`r6ei#|K4>JIrkD30}$bGY!H_(fR^A_I=}P zCHJdcE{1)jt(bv^>XhM3U%Ke{^T#fs*>>OL3Ese{YFyjEf{{+DyY6}_iwO-z_uI+3 zsmuToau8XNuas2i&&u|$2*}I#0xzft`T_emv`+wD$HF7KCjekatEI>(^yjfK)8ePm z(+WO$aN9QzaQ=oFO&hmmKUU$pN=AubQ#PF$_*q^g2F83?w|WN=+tST zk|)-Vi69eLaBn>f;xAaaurZ(wzssErkUXMzTl5q8x=Se`G*! zOq9-C${p^ua|~XuuZyiPGiU}Gj51J2KRd`nUnzIcmbyyA`{>@{-_d;c2x*rP9=h6l zRJy9=9@%i>6qcrzX}P}5^UoT0CpA+4qrT2Rh;dQwzJ@36$=}8D{m5uKA+LCsqUaaM zJC!7wL=H1ACyz6ymXi9`lL&nsH6M`)dcuCbzHZ~h~R|JUm&bqu| z9v>ejpbQ&vqYMF6tQM6^Y=6TY{L|<$_F>A6dAO~#iv>sz8591fYrtJ0_mVdFFE&n< zOoAG7;+se@s>=$|k0(Ef)R$ewjy2>%IG*zvRg1Bt>O-zsTw;48u>YPa(@yoeFdrrH z0Z(qHE}2zJgOpMbYQMi~)u!6?uWzf1GZ75_NK&q+Zn}{=@-6mP-$s)UZhfb3 z==&PIymdGOzx+2wAlfZy9Eln}j0>8pj2qP8+y|T~fBT*ENnb!4o?#Gh(cD)3RF;d{-xj>_HIB1*7cQ4mj&hHPXvZ_FHbjmkUpzd8lbzl@VUaQ z20323!ba~*Q`IL|k@MfqUtlKrUymIaWnC4q`f>d-e6cnjF$dh6Ey&38-6hM8c21n8 zGtqn(mzIP*>Fz(`U);M!`Blu8bVyZ17Jx{d>}2bnxPqiyNFO|-HxwBo%>vS&OO%>; z_~H2Sp-HtMKz7}4>nSZ-n=4G>*){2cPTWHWy{$AXTp*T$01Y}}fv zt*%vxh&#fd-dTa^Z1}V#7$8!V#RUJKaW<{ES)IunLIk0*ye#KDkU`^OGU+ob+3)^d z`k=eepDo*dKeUvk?OK=>-onpy$ppmpA+>E>oB))hBR0^&fGD!!h0U1H32hq4+Im#; z0pMhU4{H~D8sU{;fxU#5DPnh_J|kT1&md55W2S3_C8i}nZeLMjT(`TC77GR(q;D^O zUf=TDuO>*XI#F|ay%92F*-S<-1*!O$ROD&$?j?qbmw&2LN zxz-BL>4rnc9>(VPw$i39DTd@3nt~C#Vh3vth7nnQMmJy~`S@)0shq2Qjay*@mmEQq zdjORkb}Sm34YC~>H$*sea+|vm40k9A*3qo->?B7hRYm!oFQA6K8rgl1CA8>gfl7L= zUg|ttVHRP?n-`2J>#7u-UEAtZe74#e`j7uYBO9SbBtZU}E?HX#D)bw%;pA(@f6Unq zTs&?MVdjd@41w)JkDXPy8E;FbRyU0(ez&26$_21tVjJX5+5#cK%3_VC6gEBCRU0yk z9Wvn7+>N3Xmq<$OV<#&8c}mhM%r+q(EwY8Ip1JYPU=DSOOmA092m&0jF=1bR(SMoxMcU z_y1;um+mgYe)6Yus$c`BOxu*lVG9Rxh7LXQA~RAwYtzg~o!sliv(I8I z<2$W0QZoLFD4wxS>s9joq0jFotlK{IrtV7M^s0{Mv3z62Rh6Ssb&wX#>m`|(rub%u z`rPG_Mb|3Z@6*mN1$-+;%G))gqJex@QXLHy54jc*68R22nSG|VMX^;*Ma5Z5C-Y5L zz3!uxxRU4oPXJ(_!3#hO?vnBVN=D~Is6uu_yp7YN4N^0PpC2uIs!MoXLQe?7d2O`s zkwE$tEHkAd4f)ccb18cj(f|*LHW7N%T-FqSKMUs&9u?+Jhi|#*HIA3a9bwlowlb^7 zQr3n~uE`-`_tGZ-JVk~WVP+Tvq@-B^U*AdK6#tL!DIl>%F$jsa*5OtEJ{Dab8qW0KNj z)x}RG^fha*Gs_p4k9uKA6{@kCxU{(i)9zuTpQaAstu0v0gniX2fq9)p4)w01zEkPB z1feXyvlXI0U3Hzf>n3?D6$NG-&YZq|BztE5=DB~?@*u4`{cE@>=q`WHRP0`H`qZne zDe&cZBvenqgk`VlxzmL4LS6dOXGX773vvGfqYSfYGaFB9eMZEOG45ZZT(o z|NXxImH>8IH4P2M_NXFtr3+0>MPzjEY%5>%doQ>*|(ZWB80NnXICp11X*2xp2J z!PRLG{&$Xlf7D-4@9iaC^qG)EFlE_k-(U=nVbHg?qgLPaY{tHaipmuOTTisRop#sr zE^G9tsXcuja|_CuA#+r&IzY`~!J3KXibU=YLuOs}fcjL1;7cm$ zwb;;pJcw0ebb4aI&TAr1uR-6V%ZjDh6BMK*N7Q&9y}5A;Q~lwKd$dDCP|oSPL}>cv z9^%c)x_aVX zu|mj=+heiI>pXdB?-2++P$N*O@o`GM%ETjl`GHJ^2r@VP@@2c-8tRWNq#G<8j&Ywj1$8aBQeTtQf#0KxeECj1~dVdoMP>MT0Fd)6QxSko71{w9!;pyW<;<7Ww zPrZ0QEe?7Pr|(&8OnVu~P}W`U2s>s&Gr~Zt&mmDq8&KyeKCJ-R#%0E_pq7(ZNmY?Z zW)a&6*D?}Ha`LWwQE+U0wt$~Vm-ZBQr^CAJdZhTwF!GvtxwIQ@3l=n2J>&Qw;;H^c z7wjo+Q?+f@tW>Opo~q?Sue#wzC*b7dXlFZ2;_0qVZ0b8IXz|Y9$$)(6hXE~!Oq~2C z@WT9;eJtE*gj%y?UoQLN*U2hi#h-q9nMFYl_gD!vJrG&93yL~rZ&sMhHJgF`f|n@T z2i0aF!}GfKRKlUV({qd{-z60w!G2M*moN7i3i;uL-?G~0%WH_lC}OuO5v#8ZKKiE; zY4?`3Q^eaKo^2%c-DYoozvtyw%oN zr2>`F8IavqD^c>uLVFC!M>8qKS*ZAtW{Ki)jAjhgfcl!;NT6q%J!Q&!>=e}&b1EMSx5fJPJGa|V37+{-u5%O5Q*F2q%H>|bzbGT1#Jw7PmYDl~p3 zFm+U-D}D6chBbL`U?YEQ&wxh{9BLQjBmM-4?Ihs6cc@Z??oWs{DiGE{7*T{a(ebXT zXTs*+h-I~XLM&8HcUT#kj8w4PpY&PWi^7$9f zAS>aiawTm?er-=VQo4##V!C!$MDwTSvaMxlzq;T^;7Lyl-A@o0*o|qA14iaq6_IMq zG>%zM+A=eWKHrLn>Vg6>2ubk7;08ktem{n_ibOs-cKv?G4;--2G8f&tBA^II~sSd$A1Mb{~w(H#a8%Ul7&nTW`cpx~}@t)UC zLK!2n1zExAV7=)mTgbbN5!JsMM6_A)2NvaJnR78J^Kv`YVSZ7>N&Al-jK741-4jHv zp1x6G$g@hnHz<$*?0qw>Ov)F@Oy{eo=}b9W*SGj}sG z{_On)UkW91NAjJm3`s0nxJ{FB^x9k64o{`OaFH%`qCi{wz1dR5%mv!X#qC^?m18sg z!*G)%G{hXclsjbeb+HqRyq0s-K zZwLv;H>CZHQW4M{>(f;zBP;!$4g6&fjs@9|>#H05S4w$RX5R&`6>=WhO%P>X_JMCn;LQD9Rk%3F$@D8Cd)(MBQ4wYpn0=S z@-%c(Q~jt(xEv7?>$bP!oVpT}N$lHW}mSx6o`*t}h5nttLBP$a~i{N}f;k6*H_AxK#y_pzPT_Yisr)#}#!bLSk z0{H9a(uF9~7t*MRD3CNid1u|@c{!&>%aORxoI0s9QDtuyif-8NFsy5rcgx z54Qxmu_lvKU9H|`RtFCJ*r~OxyIw$-d>S_jHPTI89)H8Zc!;KhK?h(drbo)}Ux_AL z$0b$+@0%+&%6T1!<>CC5xgY1SrULqPPZ#zErs7Mil{Ipiw3XHYVp54h>r1W*o~DiQ zqL*TX5lpN<%vIpedVOTTGAc+JY=8O#^Oi4E8Vgabrf{#ku%w^u?-f$B1%Fj(-ZAvt zz3+&1qN`OP$48T@G2r2b&mdpqDx27fb<^@A?+m&(Ila_%k`Ls^6DBUWM})Vxl!2_D zX_TnDHh;ahlaJ(68pILat^b*3@OD)j@jG9edR%C@+8%@`kxB@x>e<{8de5XF$HJa? z@!%B2Z_!#aA#Yr_AQW7$3?jOb`s{e$r&0ny8+GTm;HPRFH6G!hZvCbIs)x2poqrYe z;Mn_FQ4Xf%OwO+LsKNC)bK;v)x->F(KS=@jAW<=^M^k!Vn@@kx+``*10N}ej>c!qxCFdWrgN8N zx!WKx5OH2U8_(a4y-EzQxu|$Gxjf5x^41u~C;GD<7Fc=g_6hLn*ZYO2aDhP5aG5a% zh?j)vf`q^Wh`>u4my066-rXNx0#&j%9-I|syiWZsM#6qPji?sVaTy){{_E#8Q&$Q_ zx&TE1JsOjol*akbSKjVshB*M=i~bNU?PEV?RCsLd0pOkam(1& zpL`_k@R5~sE2pXSK1k=^>o{H$)J;I{x;d;ef~m;p1UTL_(4II*n5!8Q5E`Fr}`+Z%MbB(Q;E&LBSIuOfTIL#T$v+npkuSBsCG8`q@vDT<4x zM>^+XVoOhe*|Ob=zXe`uudb8<>lk1v{d5!5MlwUXg2K-;BUplJ((@Bm$+*_VDf5^g zAv|!#IQCR-Pj`3RpFer-@&fgMtPLNDB>&b0 zI21TNSNr9Zu4%S7d|vPQYhxrh_n&g;kch8{r$1t2k;)lb;MZ0gC&vQFscM3v)EF*! zP-y3=`e8XG_j67Gx0Teoql0tl_ftMDFiS{>+a^vTb-^RdvlVHAP+?pkTABSf*xb4*?wl7t;*lH0gE!bAy z3Z6AW?_)v#f<5zgK*P=P-`{sqm86QW+aZzSgtWwxV1`Ys_Rn^TnBkP+l2Nm51`FI) zX@sO}*qt(cJt_LqrBa#7@v(~v*y3A~GbOs!@UwC9y(7cEHcC6E^fzwMdNUEHe=X>& zpGJ+opdyz$i`{&W0N-nHR}Zt#uX87Tb|n@Yq`agRjk)@ksh=__lPy`XT2>shZBqBS zt`X%m>R0Ob$n%$ec;@}uIzo@Xx&$`B9Rfq{P2J8d>ZLbIeh{5&}i$WAPj>wkY*2gc34Sf5~!DwmlHD|7& zl*L)-`OZFS0XQrVU;@v#7~6=q&4iv;FZ4ebT6_^T5}e1>&g>!zO+LpY4bZmAtd<3k zN6ZPo_I>slkdvgKa)Cr1n70KFOn5T|pes=^v0<EoDDa{EcOtp}U+U+|v61rI0(R ztiICgDZy8m)Oc$+t>LA#Wb4qcg@?bMu>3}D?M_Q-iW7JB9ihq3tES837ar=h z{lIsjR5zl}%YD$H$1NT^1*9401GpVsIZgDDzvC&%-`OQM0ry6Cmc@yS_YBu}_EkJD znwD);JaU0*NVij8VIEWYA1uD`bjv_{>Ves!gs+K0{M~@u*l{ARUn+kmoXWYOMZ>k! zapvEa1;W(ZAIjx%0bheZNR9)zkHQ7SYmODaKh_^-)$(N>po*8L56_0F;F*5?AT|IR zSIN5lje@lCc+2njNts&Nm&%HN_o=XO8h5TQDFyr-W#*7~IVola$i=ndRYesE$JR*gvhHw{*< zuqyXq8j!23s0^c(qScAXD$TgC+w(*TuSJLK$hcfFb`XGgRVrZ5q@+AZp&nH<-SM(^ z{D z{rzlGNPa$Yzw?!6L(%HmOy}@1@8S~7w+Q}dn+(=;C*CkVqbiJbBu=FgI~sUu{6kKAji4r7ouK?O8*n>v-h8WG>tcyM6gxD2K9XVw^`kP!#Art zXxAhs%Sx65tLellK_))#_lW&WY)-KXNlptBr~P`VH92Sb?{~JFO)oIvdEq{r9ohyv z)7SO|K07ibD%r|SulyNp?HhbIo&aBxex6V>u>KE{uEMX$_UjK& zP(hGV5C$kHN{4hKjdVBC-CZN3yTbt@9b?kn-QCUTk%Q6WdH4Ig|G|B4_jRswzIATf ziBUD2)$Xp7#_roq=O@-2BX0nfd^kb(pxp5e@q(06x(8}z)r-pIQ(w<+XoPcMS~~G& zP_WPgmC}5B%z071aAP@DuH&a6*hdoPpn+n!+lrZ&TskF?i9)nW;NRnAYSNLNO%{Gb z(Vyn_X%_oUOMpPHI`Ls{f3Eej@>f4D*dm%VOxOq}pGaZjsk-=c#0CmhurDU1rBhi+ zZMFV(XdeCRg^VQOxkI$u%8n`vH({#Lg~)WfjfBharg8PT>)kc9ZO~~$tE*IK7kWp{ z^LyT%vCOu3&w52SBXRd@6EV&yjJC-6$-8teM1pLfCA+hOmpTafWYI=nQRxH?A}!Qv z28UZ{P-4oAhe6=Q%tjI8 zTmZ$WUnmXU8xENXht$4!&%f?diq};q{Gy{aV*R4RbAJY$=y-67ca2!hM}MlcTWHJz z`|>GGdAs`A$Gi#RbGX8!tb(4);Gky@!iM12Ya<=r;6IIyqX}F!isDO^) z`eTPzf4YMQLgLUf9t-0!w~32470m>A}K!lVj%`skE2i-1PQupzqNf+%#DGE3-JLzEkyxZJYI&o^G~OXcLwFRpClYNaXs@EG@CFm9C#0a|Nl1 zSTH~X3j;La2=Ov=+^hDsq`|mk{eI_urfqJIQjta4?RU*M_sl3&723Xkiz$sU3nrXu zlWrQ5`ItT9X4JwM!@@g&ldG09H+kaAS>{(+VW6*BSdTOmftsa{CAM)h0T{=pC#5f(I zz5Agkvqt%AbAJY|*5#$XO9E`dBOt$lkgiAHpFBy^(KY@Dc z{>PeD#bi!)t61^BT~V@eZs=My*Gbd$7}H`+%6+{dBYZ?_$J`p`^AlxN=(zYdh9 z{|`{XSpEuybP*n{@Jocfd~;NTm)#Occ6c`5R34qsmqg^6hc8mN%)A-EFMT!V1BC`={Jg-} ze1hW2yPbi_+gptEzn@RvW((Lb_2sHvnHU9$17_p>~wcf3i!Yx+lw)?}}n>Ys~>iENF7 zXpJ=e@NW&Q^Q@ze}Nmc-29qC zCTg6f7trfKcLPJ?(?%4UhU3|B!`0Q*%ryW27S_!A-`8QQ`B;3su=vZUZ69VC>7n4~ zTFW~B*t}5ELISR815|n}Ue98{&WFowL&Kx@U!)!q*2M?**pmuEft~vhAD*7;pCndd z0D!z@(22hGJSv*MR8s#M@>>3ns8+}T*T2C6CmbMJbjk-!cbOkx*0Qd(w2?E7#-Y3- zgB$W(;PEW&spBRQ(748UTvv_~w`rJ`g{Dwg1}VL-gI5oQfbD4Wt{^CK>JijYoY)|x z@qIw*wT8jAv($|z&&QYoQ`caRi!S(dA^WK$tmDUi?q#3%sir6YbbH8@p3gsesNiK* z3+A_wuR#kju&i;_<|-Qo7SwCBXG}DnMr9HllWXXsRrxgR^ImCt%(V9gPx{&*Q=M_L zHJt1*M2m_+zfmp;!CNEC6<(6Grgt`p#`&!b48K?4T8Oj|0n39fU6WilW`NB;3n@!Y znB1#m`yVjK288FlP2_PXfN$hTHq%XY=Vk0~)(vIYluJ!SSCCgHXKLC%W<=9pRht*| zisErrqJJJYP^{fdTG2_##>D+o%WsdjQarLO7Lqilv0A5J2aylGYNvIi;wC|@v18!G zOuGHp{01LQjZY4_xsM{7aUQFl=nl6z8W?+WC2l)p)-W?0W)H#)# zJ4=(c>PK>)P@fa7r%GR&HW=}s?99p55omrMl^A-Rt*6t(?-6gOtFvMY*!RHkp#4LY z4PR)*JwKWd4`P}6)i91F*y{$I^M7vp$nW9XF>;TNV&SMPl}_|S7k`n-6N@>>alw)a zhJP+QR`%La_P?fv^b=0~J7;=rRgsp`&I*_-N4pW+rYiDaW z=z{g#g;#BaNa|=>rYSZa<6`k)M)L&o4$JL(Vz9U7(_i%DxPmU+gPYbvwfDp$CCmNo z8dJT6-$_)mdmcuj+}^rqEb~T=v1^eEsP>4}UIB3IY;+%CWjnuL?iXxV(W@&w0?VT^N z^%1-xPtCW<*Gab$xdZ`pT`+}L8xE<^AAWN&l+wa{^uUOr`@P?`X)323v`br28=9l} z?`msND&<>zAw6U+MZy(-T+u*GWi}~>2|k-^l5j`1U!6s*h-z;C@psqyFH1dJt}!Qr zhlbJ@+(_Cm2}=#oz11StJ?Or?7{`*!#Hi=9Ur=ebQm^m_TW0Qc`SR$@`u;@eG!sPt zfZ#IgLF?KI6=7fd;A<3NM80X1^3r(5LWCiZmt!A24p}yU&yMOpBvzGUNDCxVnvv@Xso1So%V}BZH{Z(Xcf+pCBgF_aw>XvYCKJR zlFy77E3^dLzXnLh>U`1t<>LrPYy29QtKvRRdd@72{R$gG_oY3Q5c*}QjP+Dm!& z^-kcy-OFR62UKg(@#&v-e=*+sAY~`4>Qs?TanSp7xKO^scS{e~?2hU7^IsMjXcH!32og;0Q_q)%OQJ6G1f9qdLxRwfA=TD+HRpeW4j5Sq ziLr~4&tlvs5F!wx%xSuz^go+{fJYPom%X7ZVOeYDkr74!u)U+SvfSCBpM)mZHJs)g zE&mXK_$$$=9A1x@JN$Xp&(`?Zk?MEqs+Ut%)C~0U`cj^DI|%oKaY z8TTJxpX;)2e~cM-cW>5~7uX3zyNK9=2hedWn#?UkY0bGTbkB@g=_jc#;c72Z`rqIo z*w|NcCrY6jL&xz&F`CC=s>9r6iH(>z;=Y!T4-1}~M6XKd5?;`u9r^zOJ~mz?p=S2@ zOQrRCuVddlkJT7(XoK5&d?y0HI=C*A^egw#^`N>a|J^Ar5!piQqm0Ch-mf&QPMlGP zorfyuBlW$Uz(F%}v!);7{V{dZe+zzV(%^;^qb3*zvki6LK&wjWhhs?WmZe&)sV>lU zJ7;OHSSF+tuLodeTExC_(dRV$<0x)*RGU)ztEwVr4E4S)yM)-XqAX3$Mz%TqYTL_7 z(YK@W*kn6|{hSNS?a8S0tK8$WF#h&B1`d$55r5jiV@;$_$m(u9%+SN+BqaG#Iuk6c zFVs@oLGctG_Gma~q&-{UG4iR#Ui(hih?chaZlDwvTH9i2GF43X{8gJPx_pItY<`4= zMF|w-Kl^J~^G~`_FI!curot)V)hQg^C_i!4S$kuyLaKvkQ+p)zFok`pPW05%xl-hu zcNEdo)n=OJo_u*c!<42G>K(eCWo=~WnlaCLejUIqs^;-t&Xo?d&`Y?6cXJSY@}jJ7&cSsB{f~z+mrGnqzXcN^P-Jg2T=7hyydv!I>3X*d%6G4sFEcG& z(|(gL`r|ar%y89AkAVyWIu_i#Q;D5xHV_6Kqto07L((W6!HPiB5AFW}0=~|BPSMyZ z$G*Tp+i>4*I=4JZQg$pLZ>jv+9tx|erc*qW@o^n#cyLgKLhhjyS653#LAiZ}bX0WbGn&trSHAEg4fz|gB z*h9_Yn*)3N`gy(F0X?adhFX=%X|2}Lmh&tp85H0F^Jy0XoBB{^{j1f(YB+uj#7m(fw1)W!ZQ3?dp7pmw-o+|WAuGOhT# z``Enz*lgUL=v4(B=sPUCI5CfuGUA+iPQdo=AyOMfEFzPk&Lj`K3 zOAuS@Ipq%LJ*7!74#WDgmO<5D7lMYk4DfQfzA_|uSg#2W1bG#29sdU);L5Xiq*W?f z-B}q9Ku3|8J#3d(#J=Aa3)G^_NkxzyAhewI-0pI#%opo2etzAiIzhuEpvdp)ZE?KS zy)d9qvle*OkN#r6Z%p}cowCXbqJ5HeYL1%52V0g76#9@$@Eu)_n3vPD_4QzcrRv7d zjNWwo`VUYO-a`w`oLlBqukyM6NfX@I`|1S& z@*3*W{sCt5AnV7z_*ki-mkbq&JlSze#ARk#W47DUP7KihGJq&s(5ig+EAEZ*zfW{`#lv3*K2!D++qC7L-ap{&i%_E-R~r6VY>x>Ihdw6>y1BHofKMPMba< zU+&X6cRt>3Wti69{vfx*3kVc&JBfP0`}9<-;7u(Z7=6udD31^~Tu%2k<7I42_-;lW z(4p_|UsmBP2&I(&$Pp6!VrZbaO}A}AR+jfb|0M}Kxx{ao=ZJS5XdX#WJ%DhAi}l@Y z4v>EdmsW)LS)h=AS!tao&!n2d@|TC2PO7){=b$ji@m8#7M3)6pWV*qQIqP~yfkps> zcbxx;^ujAE&NWqP;=3g9b^l^wAhrPVM7cGPh-@=4dCXh4UT(QZCun#x226EV#1s=F zW-PWzxTv=A=aZS=yy7(Z0)31z4E%sTeQ-5-Y`RLc1Lnyn9Bvq0<3lY=GV8!CiMo(7 z#AV?Ve9-#i^^tc0Ks-1ggkTJ(W?fqXX1M1&R>7CQDgNPB9QD|IzY+G4b|jc{HtX&v zi#wjBMNxu3w4GW17fs^qHT2zW!VhP;hh|LnsKc&9%`qUa)UsuuO!&zuw;)WI%T-J#h*c zHV~E|lR=mBhYAb|wbFb0g$$g;;Ua~OkW|y0dvEvzrgy8VA=Z81K zWT@P40%SU{oTIhMMZSUig|)5|#AdwDWsM%wH&d4C$9Vd0*3HVG@s7`a`!E5Szw+s? zTv}@gM+nret^|>v8xM@%P>Pe}l;l?maXyZDZWfM7(#~ezHT?qBzf3ht=~YkMbJxJR zRR;O4*FxxhZJqutS?KWfKQ%tlJ1!s~yQF66Xss*0mIM6$sg|4B0CLjX5EI9FldvWB zbQHH&$n$O?ob4{{dc{fhVO*%~xurS1XBG339&`)!!EKG|vX=+DdxcPvY&7Z1ow|>2 z^2ENuQ;50sRwI#s8z$`~8fzG6bTpOp=9Nx$U%iCux;UY6;`_9{7T;W9spR46@0qxi zFYfx4;40cfpB@o|s9mem&G(EzjqZY^n#(d@N@rUxCH>oBiyPRD*5SBo9OnI|Rb4BZ5$(xxG{qQrkh z{i;%3GR8RS*gDbu3sZP2>vluKtG2sJiI+I1?ZM?Rg;sYp7;&amP$dR0K#_YL#2n*@ zeM9LuQTt7m2W#6tVf6Pwd_)(5%8o*3yKXZg%D4pL?j%Tf%-Q9r_ zeWnj3h`9d>=CVeKoh*$W@O& zb*SmKTBwx@1*J-sp6$dWSyAT|noQYavhl+f->*hWSc8N5mA;kn432wSO$<;k;~M@4 z_|*b~#voyQh{E~Lv1AB23BRf?;YfY;M2A;f|6BmP2SOK@W;3xjCiIA{617| z@B@*hv#r>o%y-wjbN?=R$!Y6cOl=-01>{R-q+Y4+3n9FJ?1&KxI=#3;azV{s)JKYu z(V1dBGQt=dMoj3%icdBln0;h>2(B-cS>u1roA{u)J-0D{L72a5hE zTQ;6^gvSyp$^uMUAIv9Oibn4;S94fK^rPvy`ipgH`&`pF{E8lX^iCc27TNPNx=a4L|enhH(to zTh7UO6^V{^Y{A}(Eby}|;*7r>lUQCXXfT(LSVmk=uco1{$}n)~lcOHseb;Q-ULeIu z$QqG=yj6mu2tygoUHm^9=Z&a~njx3zf?U`BF}>?6b@$ucHPby2GV2KsUF`^F#+r6z zZfp*M+5I3SR4`X2X_Apd$IN}0A-D0R$k&_73R1H_`RF>*E?o`tB84nXJ90<^Ma88= zCw{`C+Hkd{s+Oug%3`?7tT1`+VZ{<%l{LWUX?tVesnN3u?EYqPwHVv&}+2G+`09DC57omYdnM(nJYQ>;W0T`5w@s4sSCx4$>NA;P}S`x&^ES;YT@??WCXlF{# zL-Bkq6D!lq=k1S2FMhs!xX8WsFV{9?`5&ieFARG>xgR>SaKCVWpp&`R5t^B9M+6{~ z;&X&ZQuJBloW`Hdb>ErugF@9@mOw_V@H0NUcIsOfM2~Gr#@e=q->Is17geeSA0nP4 z5PJaK((|v`W%1JcB7{S2+w@E@KP`_0e)@?3gJ?DE&vZ{sPG9kockxl{%Ig^X56wYN zuBq-6k9I(BO=OW6B)P42_7nqrtJ!dFn1P<{oOVQF#IER3@gt+e+6kJGC1()a|6VNV zP9lE418Hjycq}GY6=JY|tH9l@lQ-$MMZst3TNM97_G&_R7pgL@U;7_mt79|j-A+>5 z-xH948>^nxnJ=gQ2yK{qkBr{)a3>+0Y3ShfvJKtaO*1eazHA{`2_y5Uxyl$~LyT%` z6%mlXoEMw9YESP#Ah)3LmqWhPhO#U$pKrouxMS`F)@mU1iQ+Phb|LNy7?S5!+8n!h zz(glT#J~m%_CH(~zHpBZetcc&^%vRQS7d#upXB3LB10Y7S;)PtVxY_Bwz`wQ@%@4e z$v7sh+B$2Q*a|NX&r(bB6ks<+?$;SKBxxp?2}Y4*+*tDMCrGi!EUc;D_|Hw=53A@m z_{%LgT*|1IMkJ=uC9%ih>_7R;m25|v$Y(0PqYatKLGkWiRjkMAFB8b;PX&;8*$Zlb z-bBr_zuh(A@NbUsd`d-DrWWfR_^4|pNWHT$eFcCL@RwVZ=6B!%S*#B|y2UNr>2kc` zy2k(tOoULp&0X0zLiX22tHdVBxUgX_6{kw531?XSZ)7iR{&7%TthVxvOs=m1z&|H~&#gw=?1U?FBzVU0=vWgZya7ACUN+lHuSDkV$^Y+d4K^Sd+#t76 zC;D;J3NYRhvW@`D*jaKHa&H4RH9-csc?^Vl}8i;eJJHONn(E_u7B|;=SXBVvvRedzi%$ zG1=Y3%)e9DLqjTm_xDB%uDzqGX$(n-^nK#)x;5b;!>`71n>5|kG908YhEn4#=r*zR z@tX={>Nm`5ac=OOTl0nvx;h}m)<&@ZpIB8$la@v zu$8cvkg?L=hyvqmKaa7rsyGA35dJyCOk~V2@4mayZtzZgOWIXbIB9?)?U@{ntU0g z!=%?D^YsM_4#A%@9Y&le<3Fl8?_A#KqdVJrNcqZr$K7L`+-zHIN+C+`aXzdvv#6(- z^C-YN?MUo09q`7#W5OrPw#x4ZOOTfcy^GDKGlBdl*>U}|;vG6I0`nJ9TevIn&6|&d z{GLY)wqp`xTI_dK#0a?;cZ&S)<=3oP;e+A$-d{ml{{ezE<;(kiyZ5u00=VbMjM*1& z?$ur+3nQhiM_0h4F)l}(aC8fPR9rrV)})A320Lllh@5XMn2J-tR|@bds-BN)yj+Fx z?$1O`)wTwItQwZfk1clI4Jh8onq$#&D1NQ$sb7Vzfhhf&y;yFAo{Yu)XNX*sL!IG` zG7pxs9f0R64#c)ToX)tIOW8hkRm(YJg-J>x@eTSaU$1t5Eyv7n@^6QOfSc(C>ulhv z>zRh!bu~Jg;Yn(;s4YL_siQzAY(@QovP!o2Pu!Xk4?bIq5)Qo2;gH`U_HS>Z zmy)*0dC?_^|FU1S{KK*3ZMt5(*o;{d%QHwy1l37Q@~u|JVe-btM%}qfLOHpi4*r}5 zP|=@V|I)g_Ki-nHC|^p$tYHc$9Tq^-2Q{KlU?*5S$@r2P&H+Yji2GxIIZ1)XjnEVLw3&KQprBIio6|uuZ8n%hLJWoM47z zQk17eLLl#CS{J4^?Mn8kSx$Z3?g@rd>~>bZ)&2b&UlxFU`%>`hUumIUqgE%f9g8+@ zE}jPCKp8_2f!rOQzma`pN()sXZ<*Vv13Fmgoi%{UyU-G^PdPW`95itS{ix;A6r-h5 z&A#|*lhTFYvILcPF6k5~wTKygarTd?ywZw)%#j3XPB;(a5f> zsJ%|`H`TB!IuL@Mi823lxeRpHiAg|`9;{>*otvl| z;l)kg07INN!!re~9q6-6fDqJoRq5?(k9=Z%!p^ZwwSBXix!z^|ncSSH#5FWKuty+w z3kwi*bzS-K9ygO2O5-*6ol%xLW6@%V_=CvW004w6r{s*$%w0e>jEo}B5eioAX9M>q zrlUv&py`(xYIaIXYdZ&lh>019e8FOS18vu{c(iN#M-A%-AHVYWfkJ;Ky5eW(F0Etp zz0#_E+k{kYebv;}K`orr=&L$FbO_|)n^n%WqwCDWALiFEB1TkcutK&HFK+uSTh;){ ztG5$xlx zh9%6yX)^dmIaXcY@E_{fSCtZh&W{B)0s~SV`W!3&N_(@DC{ELvnP+pSE)R65f~X4# zb^pIHYnsqt(Q}im3UF9?5KszD`-H`bkw`|56oKj1Cv+7ox4w8bkNCNR&(X6X^wcpN zwlUi8ysIBw`Sc_4Gq~@%FH4r0G-}6X(C6u6g&};t)UKk3n1+L?tk@Q+)N}a6RbVZb zzgyJs)Il(~3wE@xT}>k2ZKgoy)pfE-+F>f)^${EDS$}^sXnv{v(thD};^5F#zb${t zu42HDgGG}W1c(kfwKq~}Y)KMGe|Vk$hBgLVMHS;~+0HOm%UvaRA^Mh!sV}krIC&QP zl*76x&uid+&J;_o@vG$xP^JZLx-8~Uof#e`8#NAi7K(KZn zqrp6femZF4?_fog2y{f*-o-LT0_6RECwyQOovTEsz;nJL*RF>}(uyB&)^VsS`K<#A zAM93F_n%w1{JLUz#A)yw$UwmF)%8MVGY|OkB;*mE*Kq!nYcb-xjd5KL=?bmp*1&%; zLbc|5uL{wb)YMzKf5c;05|DhDIOkzL;Q}g4%}_IpVef{0S|OVtLpq4OTB;9`pQ%R& zTJZ-G{6v4N+OpGHX;8F@W;4eg%f?ABp(^$tjE8M8@sQs<=yywl-VKes+?g#mCoZ-bI3}|SFeLQu~ z1rBVz^m)wDJQY=}o39D}cd{W4YRBvhP^Y9X9~0$;gF*V9%e*~I=w$lQ=#d@vmf>1q zkM{NOoo2r%Z836SOWqxC!R1WU%xq7?`1^-(Z2vfEkz%=fO(?x<*&!FpPIdP&ZG*<$ zZ*r_;@MSy*;w#;yge?py=^w*A4xw1Vd0vAO@}1WxD*d_3?WX28MWEHs zko{6WVLTaVH4DHQ85g;qYb;1?bxxdFZ+B2U-H(m9T{65N|9cn5ZYXfURTwvH9Aaxv z_r^)u=ctprjD8Z{U9dfM8G2m&po7?FktY(kTmkZ7HVX;9#pJ_4($mt0Jbi3m_SjX( zg!|*R$Qb;VCp`ca!{vzvE97IU`mtqU)K6uwWNA5vd0;vnBi^YX;Kj!z%~v_vp8GMT zbrx%xHvIYrPndFt7qD)IQ5Z@{6frol#&x6EX7wqf^QVqPY?Cp)t)lb=-*Ip&>NB7b=p9!|8py$0-je@*V`OU)P1b_WoV$aH@8KYZ#nDTUizp!r$A5bH4ek*k` z2>gcN2U>RFGjeVjO?O@&iwcE(@co2pn+-I8G=bQ0&1HYC;^W&!PUZ*`h4MnJauryb zQ5y@Yw5s1!RRd1bIzR{kdFpq!zS>Q3BT5VQ%ZGuu#K3}Fh2jMNGO1ZdnqaBfZ;=wp z*cMi~9)Kg~6(m%c>}$URDQV&KUQNlLlxEM3J?@o0pU>r%1nH%JYpcmp_!x%1(1+oq z3OeVsYVmBJMJa84fwEA1Z)>-GNy{UTRWwnm?%a*Nx5dl@`xOvM2r%b4lhN^-~Qf;(4>dh!RNj@IzaE?^5TD_Tjpz!HxCr;`H?|56S?KqJSchSW$lUCB6BZ^-I5+>##?U}nTW5C9i)6I6q`!1_0o0$BBNeY4hu?eA2 zRZjD0ZBJ6(!}+G%NUDzpta86)>cGrn!zNmk8Tmp=z(G2KN*j8*w4z2`!}(SdzX6z1 z^b_?IEk8>VejY#d?M-C$@9^)8`0c}t>E}=7u=vQVw$#|Mo&kqb^)7;uH^6q4c=&u} zEGg@{`pRDvXz-!zn|~;esvZPHFmW|`A8t5zb+!cC)U4Y^DQfra7Dhvwo4S&=!WJie z)A|BrDd1z$>c5qnUFjM)TBn=r(p}__<8rM3lpHrw(#cc)`BD_&sW zjS{nB|0@8wh@zK}G^yi{rVM?qt{w+f%$Uo5G-)MNzT|Ra5HF^tI+c8Q9b0NZhfOXo z@SK6)R5+(;9}4l0K9BF7ymjpPR~s2w5GzX`1Gao*933y?_cDJzd)&=p%{@Lo&(i{a zOTH`yzYox;jw-=q2f%Q^ChbyC33rY3j-SxjCbUKlYdQZz#E{?vW!4a5=0=HwxiSV8 zeU2{-@_BOr?adeTnYPjb+;!sMkblg##>E~&FFdkd9!zyFy|j_4exuQh7lsxri413T z(qazt(D0ok9!6a)m>#U(zq6-_)4{dJh+LJHyHdiA7-z%0GM!L6xm!q#_ly?O{aU6_ z@3S73XS$Yz%_~%Ht%&;-XK(Y>-TZ8J{Hu=s;hVgGak-lbF4zX~o4Sgo=U((dD`=ua z4&DV_FFx=v-e_JZy)+oXDr5hZBRk=TzY**9-Xw^S7jR1Bv)#V__eLWoS+?cWMnXzc z+IXZ>RY~mX8m`)}vAh1qp0Trw2K)qiYKEoVXS1(}1-5tUkzvv123X~Af9Z@d+ln0I zz1LJ-1HLT(HUh%qq5$DPYM<9boj~r6r7N}J9vkWCq%BvYJf9uOeXs7?U<(F0uu#|W zpKGz4x^2sr8EZEqw2>g}%I+>^*Jay!s6GC?2JJ>e@KRIi6xP)y58|d9eO;yk@J^(^ zn|Vegf-lHb{@Ip3M!lv8EiJU)Wy^iLb)?;jnDZ(H(bM`%yJ z@SxD@G_+9Fk+LJkU22v~jVjlK8S=OL3l1IFMbS42qbza4A#Gnhd-VlLrpy!Pu@L;o zskTt=*GHtkzhYK$he2%%9Ob~H@II`q@GFnLm(MDkVHEN0FHwxphyioV<>i=< z39>-fRg`V^tT4Bi#L6h4p>BFU&vKr9RbdS5nQ=qG6ZED%f^ z5C!q8$V#CHaQG?q8d@F#g^N$6?Vg50@=5VHrdiK@!01v7vCjWq)ESKZ;?3LNzQ#N- z#RY43PMf2CCZFWn>f@T;e3`)gp@g3WBI`I0?KvIe;SuiT@R78sR!&TY)Sf~7XEr$B zqplC9b=8t@Ov{mick*faBbCvQQIm^UK2I~1}_Gml0; zsUX{ui4~{YV76!$7f?jW<{Ms|9NV>#!@iNsg9`84rC~N_PrG|u+1t9}jioV1N8UBd zMtLU4uUKg;oZH4@f7_u)gA0rCKAo#*-pZbFjh)tgzZe&8s9L{2&X4&;eL5>Sdxv#Y z`uAa1a8l8=tkKxwUT$wzM>O+{_Wbf|0tvNRC0eo_4$PN?p}P}8fF})IrAR72H-Q!oIFxN$#0cEHhY!Q4)WVPYf7-u+mTA-QOk<_e|6cR|p5VyhNx z3Vu|H97Nza-Jp z7=wHMf(5hECkSP`?aE(!k&&q$eM9`Pp&aWeo?D-_U-Jc^*Yd}}yF4C!ChdkKZa8#t*+*Y)%h8BNry!V_Uh&my`#bb`diV3wuM7CV6aX zS$~Dg;lFaO4h!-vnj|2mU%Tql4+{0sBdq`@S0 z4U(_&abpM^<PGFMOT+7Xe@tFj+sd-0M)m^{lBM!OpyOTNpZG|?EUP)rH;h)22+qkT7%Tz!jubh(NmtLBt}b*} zTg+(|tD3r0ofC7Fp4xl}LNc|bxj@iEo#9HF# z>C$@roqeptKqV*|NBlDrO~>%UU{NrRcY^QgY@p4*P5n-dBb?EmQ~Y!H3Ek;h3>tn% zGD#38;jezBjl;QJAg&uvUBhH2s^%yQ`x!E6DKh*wMIeoVWIs74JSx4ssY17=DzWTq zZ4P4<%?5F~>(ICh!E}d=AkX#-Kb6fBg5F6sD|aDbayly!{Q)Mq@Kb1d04`CgE)o91gm}|fEf@&?#fKzn3VAeb(tPyOMM~8SR)E2LZVm#znYyfv0N-g~=ed8tNXd#g(IKMsM!XK5Ws!lN|3W zXjDo{;c?!1p2=RhqM8x@koUWFm`fSfrDdHMbJuD)*|_k{A6T1ut%o!?6>0X@!~7Yr z*9_Wt{JiGS$OvO7(2H_T zafpztNfxbA6N&7wDnZ7IC|BM35*PgA6uXB1>Qsv(e}km@1v@lixD7tjpJzRV`iXfv zd;8Lc(8_-GSj$}?X!k^Q-bFk-Gm>+42fgwM?IPM-y*Yg+OsH1$(&3WB3 zOxg-H+<|`3nR|q=hiVGE!T;SJx-1Xg-Ou;d=KNGx{E+$2HAfLdIlJH;@o}eelNac` zf&>=1kLReYefhYM5(sWY5f3?G zC(b;Q^yQa1#IvRJ#iEQ?8MmRw@p3|IOQp%7Umabuxo>Fgf|6eBgYVzRCjVJEm9ojV zI1XwNsOH9ap)8%pMe*fz_J05#N)4Hksuo$wszDl4%2|gkZ<@C_IKV?jA+ou%yiGN% zG&4F(ZWwi(O>M`~l6p)77S*GBd^Pj^8TAbVfUT99*=|H&Q(^TTx^EdU!P8?p_t;yT` zO|=;qG59a89?SEw{{#3yR*$Tq(B_T=^+UfA}K0W|-na6-H{PWDh=b@fO|jEAvF-5Cw!v=e|9vfRYAnD_ja z;QxzI%-z=+UXzQiQqrljrr}k}I2WTvd$BAZXuLAuMz~NxR-rB5HvEg$j3Cth(kfQy zeYmu8-`&^c9!7T+r7cDFWKpoRO4oZ6t(B%5utv*|&NAKl+s=MMn*U;BW{SQ$7SckOC z@H%=FE_@gM?M`)j{G@MI#}O&kTqNL{Bb>?;esy3+^N~AFJj8^BL&JArb~0I=wE4*Q ztHVy4zi)!=GGw=PvJi{C!09p+`5l$Dn_+_2o2k;$$F$@ z-$+caF*$$gYh1?GvUPK`$-%YP?O&JQscC3zO!Qs$vU{2II~>`Ot~HIc}pHIEF%Y2{G>}87VFO#F-GJkPX?f+ zLj3bA4cq>zzUotgLN@hpS$5y9ujX<{(g&Z-#lzy}kcTePNdnXyy9^Uq(wyZo*IF-& zMtHJ0*@)SPRwi(B_T&EpXfn<`QTyk1y{9ULK{VaoRre-pfA2I+MsWLLcZr-+`#5<- zo0J9^YAk$z*Vj%r-|Abjd~mJu<9d9U2=G!WUGb{e(k$e33w7RJr;@#-&VC7d#X_$@4$15Jr_olrpK`B+m@F3F)h9Gl^6gk<fb z3rwDo9}oa6k)`sPNz+kw?JW}MWIi9`IJ6e7?u|_Uz8!w?BSZctiu#{idD}+B9X4mU zUY0r_Os}`!76e6k=qk`hP^#9L0Keyqa+B0Br)j%AAi7uNjWAnZ$r07Jc_31VYJc>t z6?Y%ebvHiyfLijni|x{glg$XRj>oP+^3mgi|5Hv5H38Dgbp$j7(nAesY>q@SBT2(N zB7e4pyIee)QlulGde!H-;oyNUGe5mEF-%61`}zL^-6FIiOXtO;2=K&^{v>MMdcZAby1FUP>qQK8=Vy zy%&kr?UwG$MC%HnL#{h^5#LtnQ%WK!{ZhKrZmG~uhrFLdFFoOlN&dW9#vx#tbrQ{5 zn921w+AH&9B2E9NPZEJ4|ANtZeowkE-Gu>kg>+Zu_jt;`Cnm7Jw2$9#Hs7rA+1Gw< z;h}~oMqF*khl9ugpdw@bBvUM;{(4+LBzeH*Ru0i@kF?C!S_@4qdWTom39fe`fNkz!;CYnw|w|Cs6NAsLT}7e%%=2 z?HBSY^RXHT2mua5v5E`7vx)G~1Dpt^vmuS!a}zl1e|QN~VOaFELQSNq?vWv6BbGw9 zKzN}CI(x?9{{SUH+P;dWRz@Y4mLzaGet%l;JP$Ish@lx=6Ors|&&Mxv=Y1WUN498A zqTNF%=m9mdv6dt^Jadk}t$g#1n`ez*_>Ga>hFBRBf=3x1)#RTM$@>)GVD3}KcaF=wF^kojkgB={ za=qv8eU!e59Mek6<;EaX3Cyo~3VoZ$W=sI2)NYI3C=+SAu{ z_?+0fQN&V}IsK&9-hI`pwwtZ^dL2r|{L4G&R$EP-1aHzq>c+hGZ8Q59O}brL;C-6a z4B}JB2a>J$V;@c{N>}POK@fdD*_&H@0Dd*3ux=GUd#CC*RZb6) zU;6&GJab-x;9T6^T6nfY4bdp@mJc2QKX89h>seZLoz47jHO--l!Uc9EvAy`uQ_ytJ zJ?rZ5iV7UjRz7PT&3}3MoPNLKX^9q=_JSy)LWr^Or`+K4$Ln1`fb^(z{{RVV-a5Xy z6I|O_zu8@sGRGqUjC=gRV;p{U+S}!FXPYlilQT5UR&Nd5$vv7)_PF7Z z8ReDmLjnl^V;pctHM+Xirw_vW-B8?amV3`87=nmaU_? z(S9E5I*-BaFTmObgm&7eh$J_fz2kl8tq0Da^ndWjoq>vTb*J7^`?O2)KA-R>fHYqP*@uV; zubHtdop+)RxlGR6td9ODPn{&gJk zM+_|Gh++U49euI*Rb6#5N$8PU#U;6w+C(ZbfVs&gw5$+ABglAC0U#a*Pfz7kpwbGm zTO#4TX#&LrCC&~p(0gXN?}<7dqpkQ_?#dln=Ge&*QebU|fOyZp^{nR<-Q}t~Fcea$ z2R`S)w_X;u(0oAecCBN56zpNX0GRh2;7SMZpYMKk*w|03==#hW!s((5@wOTEoJVw> z_jW2l;g3v@eEnS+I?z&GSM~QZ*~d~;>N;%fwHPLf-EMT4m_;rw?J>h9a9Mw!A6oUV z1+~Vc&`Atv5JFwL0d@==}J@BMw}Vd6g!cthciklrBi=D7u(y2e>x z+&tM&Tq^bC@%Y!me;X44!jL4CTs};~fdb zb0uvIlDLecI3RW4Vym*LIp{#Z80%LS`U0{OWv>aOMcr!Yx5(gyoJw;TL3coiap&7h1Mu|r;<>SjI!&Dvq}9>x-XE9uN{T*J9Q)SjDgaV@ zjE-~k{{TLf^HSeK%CCNQ#k&m9l|0~JoOG`t_=<|wb14`*N!{1+tuToyiTWLQEmN`b z{qbhjSy8wLgOEG=*3O*8qu!t$pb?Y$9R4-;Q%%JgFNvE`p?H+#O5=e~+Ub^61nvU^ zuj%;L8@oDHqB$6-3JWgo2tS=&w*glUxY~I>{{ZI|l(w;?ZF{p!MtqXYHj)7t_8mXZ ztzzqzsL`1mWGN&S=bW0(leE>lg!Q{V#{HFUi+gQN+EZb9HLMab&cy*pQ=Z(` z?~nAGd3-IYX}8meW1T`vBXPBJ^AY%G{F?c!b*SQ-OJ@H7JwMC-0r9t#ar1)yYp=fc z`_Gs)NutylZK8P6-q}_d0v-TW#(x}V>P=$Vo7=5K%|DotK;SOy5PNQ~slq`<7jIwl z{{Vu0MON+0V@~4vr$c98LrCkANaK#Y{*^7Jkvv$t)vjdTR4T-+ff(6(p%Mkwu!zIwSk7&ZqP z-TDDu?gqU|l@&Ugt0T+CQG^qn9WA3r0=_7VPoK(o(4r}h*aA+*IphQU>!j3mc<0cq z;EGTTvBuJDJh12GC+Y_t!`8jk8#|-NoV}z{N1W=~Rm4sqxwlA=lp;*zHgS)yf6lwD z8acI%I`iS=FMw>!xZ`f;WZF+1ascbzwNd6)Io_JShb`hLTf!?pg<*?l+B~P0Qlv2m z#DxF=GrPWfVzD5+xQ1MwO7Os({YQU(mCGqfOGa%QTK&y=ymzl#MdTT6+0{W-Xp;qS zIO*JdI@ed>DD|%v_-@+RTiZovZ1*oS`D!Cg+dg6d`iya$*3iUC5pt8!88|A9CBOUz zdVj;q?RNKF5yxqFaSe`@36#e!)qRXtbNd1}eQW4nhdK?$iER=-ijYfjFuS{*@Lpbp zM^1x}%D6Mi(4$2=q~&Mk`yPGYv~+uaTK@oD5$OqYcPxdJe(eT99nUpWQq`Y(A~ri` zIVAcD_;|yWSZ*qFvgkn^w-Q1L`|NT@r`Oc~0F5I!-WEq!lyXLU0nhWQYiqDcUD%S& zS)S+Y_KIED<;dk%r&C=mu9B+{nLBxnxj_VA56-GmSczTK)5i=xbZseU(NSY+;-!&OQGCm0a=}-^^531aeM3Qh%5D16JML$d=bK z^*KR}k}w9$fI$u@JObB!YvdUQZw4RkR6B-06HBrb(;nsTkZ$&J%9XKpvyh zp|7d5%Lw#61`9YFIEZi$2iN@jR|ab|s!?mSc{+c|6o?6fhXZPI&s&!QWBt z#BiZLQh7Kz^{5yem1RDM8T2(*YeqChA~w=C9PkDQLsjKcT((BgJ9jlvdX$n{BftcT zUa6%5j2Jag*)&R}*UXXG)HQYKr&_ zgP_4VAFW@uMN$)X8+H$HNBRC$l=jrsKE}KNOq*kmCkLGNtnEtNJW?{L&O7Hlf5Na& zmP+N?`kzsL#(JH!-U8LM4={bA%KXgfo=Q58oBseE{VEUIv&GYC_7+|fvv(IasARY! zp^P^lndk7Y4-rq=W<0)k{BQYwXUfv0eCAi^@BaXjr}^9NK6S9Xku61uTrlN}3Nizfe+9shJ+T27&$QYKvJmmiX zo`>=0^$V--4ET8=yOqt>sO>3d8=OYC01|pKyXF~KBI&B*P#ZUhXao*)OU&`IH5`z83@zhx|sv;-APZ(55#7-rMfbb)y1>D z_@$-zSHxNmhdgV2c`lc6sw1bF<>gs}au{)pV4wd0U3jO6qqfqnjisKaZ>T`4ku*D$ zci@Bn0N3g(3bBKhjG7advQ7E^4#xMwZ-#pB#eIBRz*;Rj*@Ir)u);!~ne{lueL182 zGCm=_e+76#BNl@IM!CHtgRfc87%Wpb|fX6cT5jc{{YvoE-B02D-Rx204NywJt`+sG0`nfycQZ&)T+x!oyL!7mcwLG z1zZu34=3wemg>?%!H{y<#xvfryKdyxK>t44H$$MuL>#r=wNv#A*_r@HL|fG~SkqfROm zqZQE_)NWOrpL13M5diYoa6*RT0E6H2{A%NfBDV7ij1CKK#{PK5PdwIMqLr_q&QCd% zvWEaM+)%d}!5ujF=~4mZ#E?e845K8Glg#Ts05659Wm)%4ry1L64zv1INB#)YR#s@91$P^MhG>nZ>d8f>~Vsl zJa!nbovR*q%z>`Oknj`?vM<#1sByIJNd_?EW3*ITd6$ zJbbOxbNW^ow`wfXj;!~84&q3VWO2#nx;VfgTN&tmb6+txXLHZQd~FFiK2xz?HstrO zB>05PEoJ~`j&epi_Ro6L1iyN|M@9|VHjkOLSXs4~^3Zdim<|UyHLayU?G^*~0N`YF zuez%j%7~`ZxxExs2+Q6npNKeluKY)5?*V8qXNjSl@wdiSSS*U3G8v2#mYI>a4&{;)m z8~l*l#4xdT3j{6&2dYd;2 z$=9!^^||RvHg{$(jV-KQe1z4mp^9jVNdzynXM$MwuL|)Vv2Pqtr0DnG+A^7#D@Ym2 zE=S9Qob<=xUqzNKc=AR+GsetRslRC{e2zy{*X6&sio)hAc#_xUc8VdFZa5?ka!2V~ zUlbkg{8JsRv@&@yTEJrN0APUPo7s=e@M-dEiGbL?Akd}$|BDw2PMep zKQJnlzng0Z+Tt>af&Jeje7-VtqLk`R!`Xt>r!D?)^G1$o8>qVW~!f>8thrza(@1B-6aRohnm0U2iscxPA`=2|B{pDHKi`zmCbIXSHts-C+ zJq&#tXvYc!m)ca%)%Dm@3RdcfmLU@N5E~R@&u5}B>zSJDNiU2?l z%8Td+YU{KsbaJfCfsMF5D~IBGpFxR)Xwvp{_D4}-tq?%%jimGKT2Lbu+7CgHM|#(7 z&!4Sp+_z~O{{Rr=8owHhbteP!6!d82lXukeuZ;RC-)L7JWMG^e40f;1Ka3h;t;@>r zWnp$u0Kx5DnLN2MX!}ehs^v0|V~g-b{IgySGH2Tz*67G#oDwmRez>o?z7=Zs8t1|r zeM0&7xzpsgxa0m?LzQBGEc5GMO_{+eck}+gBj@KOD8-}VzZKX;XRhitkqF_5r+11; z2S83#9@se@e;Un+rV5^8A?bo$Xk}|AGY#edMD~g=D5T1j6(rmUu*=u0sSI6JZJPH;^FY3@rF zsSJgIU@_eE#aoWyWlZnf81fH8S-46pPsnS?6lGtj`qT`-94`yhQ)@xNk+Xshdv*23 zI#p@pRt!}Rcpq9L?wt@#yCdiCHbQ_5?l}XV{{ZLtRcQ!}7XajSAos>GpT@gYlGOTL zQ?Wwn854M5K^O!d(~rixFNaDPubAbVAmrogk9x-ye`49CD_r;A4FJ*Y3D6AW`*p6G zGCF^qGX`>KsND;cQTO`7PXRk=KWKh~@)UCOV8H6;He-wy z10x-}(zWag0eB_GcqKbyHOSMJ#;vHWbY#{L$95&uJi~1jsPh_2fwOKo1XoAnKZ+^w z2Takf<_1U8?ahROxg2sU`65^Zx*b{;qS*5UExZ>aTB_{{V(5 zXxd~JmeNN%p`FGjE_frR(TloRVBv zTluiea%7A%1W-Eg3vTt`3i})e7C3q~Tfg!?TQS8t)f&FdFUaKN(q0RDXK-oA?X>GC9z9;&MY+Hu?GOM?7@mbjc|DJ{blLnU<Ld%s6cR~4g-mSS ziuhr1ZWJ|fY)ORdW~q_$S;aLRr`9Lxk| z7eBFURTEt4{v)<)c8n6iCLG52?Sqk@_Kkfb z@Yle4Z^O+F4+wZ#Snu`iO^4fVqB%PbMgi;!@$@+LuM0h>{fubC?LB=z;m(}0lzqIa z&*57A%l-mAzd_P1yeDV&3sR=x$TyOq&i6mU5BElY6J6eeG;`U=Vgn=qQ1gS|AC-J^ zZmnK*xApmkV%w$d9_`)!pK{RVJ|$_Fv)D&>rI1=LlpsBKNQ9m}hwEJ}t^K}*r;`$e zx|}iFj)T^{TC?V%1h-c_IH^=zo%cBTZ?3Oz9#la6PhLK!)|myXNX*j>(l-pmcH^4! zC+}#sKEnftjvgG(;%oZ*&HH#3Ft}b1eDhk`dGboAU;_|9J+WNxeF&|2MW%HY?p)__ z^dR)BvD_k(xyWn*jPb=??2iVdZ=rSxfIOZuIv(|*3#rKGuN7;t$u#bBem~RGP|>bo zL6_J`7|$NH`RDPk!||KD_)3M@mjEwM@_(Iaf|93+i$234lb#BtGv_Fz7PqQk02GjR z#t*J*?f(GTmij$IK-Y8@aU?A$y+Fj|3y6Vn)28A2*V$&4_7_Knm7v#S<FNL7qD&r{Vm~HD@c3o|YkxHt;;2U}6W#NbOyp!LJNW;x7|Le=MUG z$IKw9B>H6jG~4B;Ir$0b)`!-UZ4g6a5ZXej@Nr$Xg>06V3Iup1bAw+CUQNec+d8VR zby&300x)y<4Ae_+6zp0-*PsHqm%FMtWUNHmZsGEPF~}J2)~U;Ar0gRHj1l#%l=~F5 z(9N1TBVwQ&6M>Em8{QRPE!jgiJoc`w8&@Go+<4UIjB*#L;M9qK6o76eeGg&&H4~?< zn;XH$mr}%1t1p_&F`f@zGfa?%055UZ99KI{Y;;m;=g%ebilN(soPpQ;;-Pdb2xTKD zj&L#5S7n`<^y_;vwcKnY^4*RyatZIxHP`$%V3UH&fCtPo?^)Mt*t?e%?`V7Phn>s{ zTO9^K=DK*JV7Tp`gSC9sZCgB?LP~DKF31s+jz}aN^sgfLjEZdLzz2>q-vX8!TBz*6 zXwRATAYWEtyOX;F9^~*VV^3hb5*X)_GEYkT*{^YW5T2~uiB?6%;mGAz`5KX#hXD$V zE(suldV1Fb)mfbpc3_Oe?ZE+fCvO<`tt%j{@-gq%1bbIKRMI*r>T5zIUAbfTc^Ljx zx8ZLN-*~sg7Cs!)$|U!)h|%2PS3OCtCYJ9+YgVeGPE{X7-`rvRWAT51z8C14*M_IK zwedco=fxUZsAVxojq^KtpgA0MIjk>+zaFf7cMJSGhrkLR?mf|5f-`Ir50G)5qw%i% z9$AaWVU{8jM|a{2N$sPa zHk#e00B>G0!2Tnxc^||th&H-bh;-dDWBsY9VbSsmDxRGC1Df_9`&K3xT7LvuUv})8 zGmNnE#cvrxhtIq8`_Oj7gZ(tZSxeqQ6eX3P{q>7*67LfXPgZx?I zYnX(#iD28KIm>Kt{kvgE{A=wrigwu_8&Ymb$@Q1&zf;bvWP8T@UCrN=*AwzU$qEQ; zW3b5|m3KCtE{4j|dp##d9%S$lJs>NSMK9~A&n;WOf6~XX{2cHE9tiO9@!q**yIt2K38Y!FgXIR}%*H*xkoB*p zz8ZW#PX=g0>hLtaAk|dKJ2B?oHvR$V$N3ugJlh=V&ZMIBZp7PXVR z^jrQvnbm8yF=5hmG|->}6kRhH`zw z#+t^3;VmTUTJ7q^1bnKf-10YFs-u=X^cC~AvGK#i+UBVwmcAXEPSRAi#+h?8qZ}5; z3J;(rx-9C+#caQ?>;4JRkziG6dwR>=TY10oMxLATn?<)s(yXBy%wz-rNWuJ# zaZ2lB&Pwg0cT2k7K@Lbff)8v~gqI5&h6kLCWMk5lWpsH}p=y>cTHJ>?2R@u}T9&s2 zE?95?AN_i@Cv%3R3=bH1t4h-J`NieRfXc%GhI&`$x9tVu`#H6%i1ebYvWDK+>M}tb zel^vXL)&7Onj`75Wh_1(btSVtah6S&PQy9f&f&m5xIXpur|g5NGWgO>CV3FG{)Usr z4hJ#F!GIn33Vmzr@ynYHFHiD3nx5*Nk3IPHrmmOctL2gsKGs2oLOxOR5*D)cfbu=cnaUhJ4gw*;SUQ#FF7+wXpL%>@fr6Do8zZ^*z51y{n!{ z8RcR=a>N0id-6TF^ga64klnH^b#b?ae5j&~1>KyVbNJWNKLETr9fpoI5f;ag1|zxR zvB%5V;UAe$PE|EMZ%BaOYWsqmCIQdAcWT~Bg$vPk;=U^tWhEAL&sH?d7yzdnaC3}* zjUr4HfdHOza5G%bv4e?aE|r%c6VC_ItKAS+%oroN2Nh}CMoLy@e2_&p8A0jE_o{PQ zxl#u>VtMC^=!E(*WpwUVHgASv2+vcDR1-#GV5gEe9-V8gUFr%+4NHk)OnIj`9Z&iH z04AI@Ss@@uGoJY7qI9{niP27_w3k!F2G>#&FgU=^`TqbprIs)OA@VW{Dd;~hty8_V zXVtf7WM^NH=#=g>YIV#F&ZMg|D$ z?_EL`P*i$?IIozh{p~h9%tBo43v#=y*|z`(QJV5Uh=}cDICaiJ#zp`=vsZ@JqOrCK zq}pf9cZ!RuO0IC(J8*teTUv60t%nD91S!cs=LWv+qrEhdF;<&w+l&aI0o!>b6~W0I z^e5l^DKjDxBW3_&BE0!MPPoN&8ymBt2?jR-p5xH{YeLR*81oevGJ(m)Yo2!4-7bvi zG)QOE?&Gw#7yK;oQ!w<0hdk zndBcIei8V`#oj8?bqy24(fK;fv?$lPEDXnY-#Gby#OAp_f!-1EPs5KF>k(`A9!goF zq*F-0xs}888TIt9s>^Xy<(Kj)d)&ACx_pn5t$LNzAidl2zsTJ9$K$Pj?@`or4-@!` zNg!CHxU*v_$PqFypb{_`5Bzq#$HVq(;{9^aMQ0>-_VEP)hCIeqC#mg`gYDkCIDZEU zP>ZC!-Tw1j+YuN>RQ9(;)2_u`Z%)>{b>d4c6w45>wUMo$b!?zkY{@9cb|-du?bugG z;ja*BHy$F@{ukL?{hv>{(k^t(>_}5_k+q2S+mEXn`e~%0%HMD6?mlX)5{rUcEBx<& z^E|J@+Dk{RjXv(#rj`*htb4+Z>JO+n@1BF5J;GJ>zL0FjLFPs%!aArzdNY;=NLb-zZbdFnAcHLae6Oxe7ApjhvFo;*Ze}3u_^mJIRJ77G0*w; zr+C-L{u=mMrblgeGEb^a9&K!qfMN;z?Z?Ww@A+2hUdkG7&J{wYE>v)I_j~@Qhu!$@ zFA-}00NQ>h)FPTvK3ItXAYVlv=QLmZN$_=^v8HKP{{Uw(YLDarw^U}Pp{t(@3O)%eR z7xUX0zzC*HlfXE^^yfcH?!(uUg{HI*VwzH0p0n`3;%|+#+0#t%E3M2dLZh%C;2eHc z?yzf--718ea_z_%>s(l>ag5uB$1Qv%nwv*Spj?SgVj1KT0r|W1t=oirE4UmsdSK$Y z|#|?$8qDOcz2F}XfGMO$4~HufQB|=pJ|w3N%kL=RXPr| z^>$rN@R%r6_v&iDGsiW55O|NoI;o4q9zIlYFh+?a7$X3m(2{=&$v{_4&Xn=z1#Lo zx@dkZXfn#Ly5hp>6$7BbQa_*TUr$-{VHuUQ`n@Ms_IP+Ue%o?Ba8-c zK|k;zkH)-i-es3hw{Z!Ox=9l`2LP!J!TK=bx$uok4-~o%dNleJwW$>XnB-J#yM_lt zfyHMk7jWT@3oBuIboUtJrFF&HI+1UB<=cBj)vsfM0lCX4AooAy^slb`DW{DS!q(Qo z6&xtZ$5Z})m3jHBlA{>;n$b@8JAVgRi0#ee443DTo@=6-Rc72@pw3TU(!M(o`RX=r zZEQeT1|vNVdHT~Ci68)dI0mNrlH$ikw@$q!1ft46K^NpZ)JdQc0Np_?uA&yT&^c+@J zZ*%Pv)XUWGP$uS5N#(Zm?~HnM{VS{ZTX?M@Om4v#BRqef@T{>hYYy5rr6td1eI4O~ zSpid%fCY7kM*)UTJuBoZwR@g!C*x!{pa>rWjCb!|QSk;s)-x**0bFe(t#5{QnuW(Zt2m`gA?=O=;9YS=uHsVIfA26!H$t$n=RqP+@=ZM4n!CX9>_K~u(h z5$pWwHkkn27a1W*$K&3-`CYTJ7PiHEi?oGHGi8?`9G{oicCS(RIq<(#@$?786T+X_ zo_MuF&5tr-dU}vElT~_jAnR3jNaV~hKUc%KE#8ag{ao}95$L)fh5Sn=hIC!BrHp89 zCE7A)Zb%;3+sC=5%XJOCk-EH)H(Su1lbK6@D9=}I&p=Jk60 z`ks67N8=8);L)e1fcF;#9Bj5HD0NZXmW!h44dBaZO|G-5K*D1ifNc<_L_~IG$;cf#SKGog z=`Uv!<=shDe$r0-&i?=<{(2(U!~FpLw#w6KRnqNbzMfX-ssRY2Jvit71ztI#$rPS5 z)UP6NS&in|H)N8?`&e_yCm)q6w!OUv&&^Uv`F^KK;K+xFJZ+_G0nsGYE(}*NmjJBH zt@8ob3~+ewpK9~lm~QNE9!wuH85%MRa-XtC%i#e6lBAK|G#u*x+Z@y#D}N@b<6a+lEW)Q6-^}BzJLq@knq;!5jmF zoE~Z`K}tN(=oo1@)O6%zY1W#av8zL(=z-{v3OB?OqOdTb7(Df7{RGcHw30Ud-M_8+|03C z!R1<8k1EEj;mQHXpj@9y5bc2SN886(p*@V|;aCisI>)vk3-TKZe9O7nD+%_AN8 zC#E|AjsV670=+y28R8q1zF(>DqV!+p{{Tanyzx%4c@m|~`^sYtv^OUQ zuh+FfrA4iHi&3|Z)hC)}Vz9ngoxl_5QyT=pk!phAHCM%H&87LPjgH(Jxvx^3}M=g*l7##DO@8+>fdqTva~uFF6G=9FK4~sW?H?F? ze*LI)sC5gU4tPdHxsuV0FLHm?D}p*_?_&nOeSLr8C&Vk;dsM!=ktVtkMzMmCERKFa zNaH7<=i0uPF3Q@Vt5#QUTODf>s3l2s-Tr4i;%^W5hrxQ6k*~!iyoJsiB!=g%X}0>4 zsN5#=B4zo29OKYeqTw2lx<$skl#@*7^{bgR2_(C7^05k_5rt9P{{XLw_D|We?d<+0 zct3H;*?LQ7sN0{=t#nmMVPzjD`5YA&HA#9Nllx3tTg9yEb~C^jI9rkcEs^(g$2~wl zTvyL_@k?!`BK26Vqzd>T;Hvffx@Wa>VBhXc-m#1FMg{!-ZQ%$A0G_!gsXyWQQ2>oe zk(i7&KnDO1Ph9c*z3a7TtSM-9e+M*Mty{;DGN~{lZ*mXeUtQeUw30<;h<5OxZ5jNB z^Y*VBI-RRV3!*i{$KB>d1toI0#2x zgmX%zBzzD7#~3FW{Ag=iqP9ZD#f|_O=y~FYkw_o~yuY7-=)tY?|wAjPc z^BR|DAdt#FmDhYCl}yC}F` zMR6z0u59kKM?K<;{XamGOMAPd7bu&=0fB#^^sia{oBlKF7C#HMfu`xBQ@_zQIPOzU zB*mC!`AJ8{3D4!huDM`-xrKLnHm&nbU(oS$Tufz6QeIyzPjS*d8fqRbus$Zzw5z>8 zQn?;&&Y5=GNaJt#1@ANo<_u zn1VU>N)a#6YdCa?iUzy9=yDU=37?+JQ z2qYZmpX*5ux2Q*8`c1sWmEUurZOU=T;~v$VHJNo5oX4;H4bZJL6p!LX--g^=qZ=JL z8Oak|Hyglg^v^i=ud+N3r$2@KG<3w%t}b=WPC1|)$ZS7+kF@&_czp7vGY}A!X3&K0wPm%fsY%+`^O=%UO z-*}V3b~c}9*JINj;>zO8THQq&eD>$FfH@=l_NxB?3w|5weks)Ld@JB}zM4ym_^u?s zCF4sqA9(Z}k>A@D>fq$+(@Upck>TT7q0Kqz%l==f`dO;@Uq;k40i|l=j_*RVS&Rp@+ zMr!Go8i0ZoxsRJr7EJS!4nJD%bX%Ec3JJ#IGJ5y_06(pG^NO|4&?jXZbUokUmY!#w z8BjT1Nh7sne$}2Y)HE*##o?_MZzAhgW`&tgK3E?&)2&P)&eUGlJ_`_*BQ%9R+WpGs zz+NHvRW6&UUD#@q7^J#Ip33Rem3_eO1fKc+b=Z6w@aKqzzo&Rd!|c~E%XepasmbMn zkO&+&aNUW(9=zAxLbIs_6}7MOv7RC@T+^Sg>-n9R?Pa9tb43)!2+}~uIT+*CzE6&M z;VBZt0)!yolafi~^TlyssyV@_cRT%$B^rK(d1Z!JnI(;wI0ZJgHk|RE4sq%FiuNyq zC@g*|{6CGO7?L;MMlqR8iZVd-#d^dtD&k@9blsxvv<%FY`F^tt5{tftCbk zaX9C%9D_yhXx(C(OcgxgM@sZ#@hg!hb)obZ?BU_~lFChFLKHSg$mfiV*SqPlJb1`r==-vr-lS$>HO*JCX>*LNsME7QhN*^ z(x8$?Vx&3A86foSTT)2EriE*Zyhb-L+3)M=S+^Hzs7M_;jGWhXIO(y@*HlmwPc!X~ zCUOo&260;&Uxf8dN&f(NN-GXm6}0Ncj9Zb6wb33Z(5nKmzT%@JapZj}jrdfEMjLil zJvhfh{&=h-z0bGS_GdY(N{)p|Rqh)j81(*C)%+lJYm%G}a-$>;xvIr~yGXh*wL|J3 z3xnmU2PXh~*Jl7OpkVXQHSu+9-OoQ3{q`-~L_q9#`A1XIyno^(07D>Q&cZ+^y=jM& zaz{p7{rwM{Z^E5kMJhLL1d=oTD|bzZq5#C>?_(Iq^#1_s*Vk5l;yWSnJDXw{kwDzI zRU8g}pXc7Ve~mX9{)chl?K{HlI{yG_Y2xN-VK^plHJ4~3pimd_H8?0jt|m0=d)E-W8`r^H_!B-vz@Uop6 z%SN}iwY!AJCgxaI01ueEcHkW2wR;un&b(Y`X&ANmYh&hXM_12(FI^tn`WXKJ6#oEh z?PI{2OZX$;*|hsoM60Olv!?JHXa!;~_kcVDjCbd)e4V1b_r*O+Rnxptt)%+aw=!H? z-rUG!mRZ#O-N)1%0qg~L@cvUADtL;o-3%^i%-4Mb)A320&S7nh`fkH4&ECVXK2*PrDa@~FFr|_nr zgT|KnecKZ@n{c!FTYz1pcE?eIPJ0~H#?N2tVrosw5|3SfQ_*bfH2oO(+WqD?HrICX z!)+Rmn5Z$v;0~mmG5l-5z9M)+FATtMZlX4E-rYa;b+{wUnlR^luBVVOfCu?F;v;*$ zpV#~YJS|5VwD)#PUVIi z0@US=sI_`8PQTZY&}mw7+RY-E!CYZL>N&_ikrh$9l4NZR2T1S~lRJ!#UM zsmqx&>T23=Q!d*}zVO__!d3fhQx<1g&|*0F`9bUX=lnZg0DM4S57<5SpW&pm06BQ# z3R%LEGBb|2HQKQiTwE#2$=gewc42^{i>J*~f57kb{{W2-;&gpFTN}GuVQiB;zbful zI3N+9QPQ~&7I=3?lF??5Rd!U9&R7D1N%uW-&-1Qol%o}S-O2g?0KiD%%V9jaud}3+ zk5{h$0N0VhJU?r>^I%=195EyOX%+PQgLY<+ua#ih}Hhti)0 zZc)lY00gdZ2OgEne$n0sv+-u75WmzWwHDEqiK7`A&U5)z)VX76$zI3jQsX?A*KwtDr*)nK+Z0wHzZCWEb9%j<$xe#IT=0u z>({4_sVZ)jCGNdCU(?X_F*$52+EdeQFQ=}@f_zf(?!ECgS2k8J0%1urVMs&BDhIKz zIM;MrZ7Sm4B!4ingS-Qi+cmZo`x{e})!ye_T53shZ53k%+(9v%1a1Cms5@{7!Qkh= zOjo1$E=INZso>b2G#*K`jQrf>F$eXpYF3i6?Ee5G=d9xFE;1W#2`3(>KaF|V2HiL&Drs`*(*FRN#fap2 zB8<6ab|-6b$I~6Z!nEzQ==E)8+fHfZ2=1}SV^GWiJp!C^J;=^0&~DECgI60P>raQ8 zGWc`CmiC4=2WsPi6=HXNITc-* z%9HnwNyd9un3B0mVUalnRzt`=!K+tN+sN@WJIn3Fgp3W|-{-w(($x^|+*u5ADNq9( z_ayOAO65Tz$sIW8X<6SwlUKP)YnBn@6W1GiRVnWS4X(p^7$ZMg>7^Y=p2cLENdZJs z&QAjw{{SNutE6}ImJ9wZ-teLpzT)d`oqGGL@F_p!Ryo0`qyu4 z2~fkR!hm@KzAF%}^f+;PO_JP`-{;o8x~umWq3A_7E3J*z^GXHW*aJLt_3K@a zgReA}wT92c7SV;aVm3>D+IN z{v+smOjF)y8gy370Z8tpkIa%*JOxBQUr$=_iJ|cZv3DU*qNJ{WH%zW2{T!4N4#Ye?l{g@?VS|BDY;u9V!hv*4^P|n21U93$Vf5anCux z`qtGd$;Cw+7-}w@?%%umbo|WU2}P;hczLw@cqEcb0WHjI2_iB=?oda527em#?+IB! z@fBv)JUG!>c!~>Ew7!aCv?`J^>yP(O(?0c3+Rsnw=9q~_n&x{g&CM&t&7fa@!Z)Zi zTBBH7yUege9o@1OBVNBbZGinr^{+4Z#IjrXp5EieR(BC=_ZDd^kVA2mwFLg{4nYV? zh9yAmJ!=d@ZC`cM`uoVC7)HA8)}EbzM0ucTW8Whw>I*giKi~yE+^mZ6;AL{l$j2Gu zpQU-$ZJy2fQ!8pwT*!(E-ShMyj^CwyCGcOu2jS0vhNUgJI`@i4mjVU(qP9GK8Og`g z`d6Er&C%;aTbU&xYs44U~B%_+NX^k0$Y%SH$o00Dxd2LRPd(U&Ud zewRjsaM)yZb<`>K~sPi)BOJc zD#gh;A5%uo=g|KE2QFAVC3>hSC!k&*@vrEvPrl*=U0?NE%nNyl$rt!K?8vp&-YQB{IW;HU7trL4^0 zHc~Mb>=W{-d)gmRTwwq7O*5tWZP((M6|qYgyQ z=bmsl&*@#ag|6d|;#Y+vX-hbo*fvjdD9>KKN9$iyq`8{%f06Q)Q{4LJ_J+23z8HDr zW;iS*1hVG@Hy@!j@n?!<7aEnEW>G84X#+7Ic!IkK_vjDh-n{Gvl$VvvY3mp2%pEoW zEJ4%0XrsJ0D-L{>#tGaH%UvhJ%{onQ#}=gSD2`l=6M^aN)bz!7RhKH9yCK0g(e?3x zBoNxBc-px4{{T6z+Sv>ivBFdgE^tPFU&g*G5$`QdscewR2u5P$HsgXbj2eN7Ez5oG zyw(d{g|ZiMICah#?O3IdXkz5VO0Fq07zny-I7&Lu@lapsZtV+^GPU3dtoHly?71{h2 zVm!S z9Kg)YfJSn7&3PZh62{h6&fk@WbDn;cICbwMqc3Zi`GZxEHn8kN5F4tFNanf?5(~TO z1UBf!*npwGmp@ATHx6|b=yoY6-cMz7zta3Yr9y$V&1qws?yMH;y~*^?L0ePXcn;As zeFgNk*1$^byeK~SAIpmNa@b+%-O`Udmwgw@x#8w`j8yFyH3+`1SM%&}o-+95U^Q4Y zj|cb`&Q`RIRd27ND2j4V1CE*Mc_+1bm&8wqo*?mM!L!t7iD8XFl@c(Kt98Ip&l&1Z zx)64wNl5{2Q-Aa#{{vRU)Lee3-zk+!!)gZK#OLI9~C`IZ+6YGJ+ddG(1 z)bAfr)b#y4Tt2HZM{OGosK_}iM`Tfq`s7z-D7#saikeZ?{{UCN=v48g_L1=VI5ms8 z67yWRibRHG8<7YnEzeK9G1Jsn&lN=F#rRBoQbvy5JIxn|9Kl;_rR;A^p#ZXRh z=WBn-9VddkX{vZ%Q4(7|+h@<65dp&jIri`W0P3$y)3q-G%Pe;q#_cNN=5Y46Q8AGu z`Gy8me-A>Zk&gAGYeq3{dZAW?n{GS)WsPU!rj_7LR(&f=@YR;DuP+O%%7P+T5>)IX z<|8~2j@6+501xbZP2osKArT0%)->^%o;3i9(TbiJHrp8I+im*Dv- z%B1z_=(;1qHOQ^(wVSxDOp9*A_ekR$W3N4q3HnxGA|gt;2Y?G;eF^lfAg^Zo9aSZ( zM`!SJ!B6Aw9a&l31#K?cL34W{1S-b7Bh-#Rt#CQ6YoDhz zcpavlCeWxbagfAy?cTbJG+AO$*d<0#o|vd?@iA)JnymnMk^H^ja#fFP_M~fAlo1Pr z$iT-UnrSOD$L4EdH;O1A+~IOZQgTmU%DEkR1g!XN>Pcqw0-K%Ayc%wN$1{6x8r$qr z8*fJFdVlq+pO!JS5cn87vGoKDeiWqB*!p}ccDp^V;GNSOnBpf2!;{?dE7txXL|;!? z)j3ocBzLZ){{VK+&NI}bny)j(HO5=DZVIp@?%?Mh)xc`1$ukDY9WqWj*FLg(pIMb8 zqsntvu&bl8jz}OV^u{a0{w|2(yn+=mg3LyDVBj3}{42WvzuIDs?0V&<+2)!|2=S|9 znXXkffz)o~Wcu;#&1fX;XYm6;naC#EYcaP2k@Au~M_T&G>s9(c$oTm;%C3FY@jA@w z{{RlJG2Ew@UWE*|S29dyAc3NWlSsPn2{Y{d(%hPnQol6-qXhk@RkpY;JW` zE;6V$anPSi>gNP5(0ITHpJQJeS+>$OsbtbcSrv*iGK0{7PZ+3=E0Cc;uiF>rTnLF=~+uzsgy`B#e&rPT`s*!i6Anlg)1x za(TM5J>1PGhBab%01EXl0C+JiqD#w|^COMKpIYb4Yb-SmUaZ2Sy1G3!-6Db@h@cut z^5lX#b>_Z4Q@eLLlC#vP@t15Kc>Jo&R&K-)qZswA=|Rg>Da|B)W=(Vn$^(pGfHsgb z{{YvjvP~>tx-JP^9(sR;ewd)%ht~T=+{e`}QKBV+;{D-2n6rs?K#IM z^{nyA*jXc7AH7*0UHDPiBSmH);0)ux^{&b()JMICBn~}Id=+@|$(iD==X5^ea?!DG zs5$N0ysO8`8rpEp$p<;;Fb|=nMWrR`bmi*OX&*3ZjvHNaN|L7oamIP=>(;t0DW$el zXN{u{GOPvzeGhM5E9~4KvrgM1S1)0X9IPF1V9JtDPi;Loa4!{L3T-n%cE&T5uWE%){om#Keh z-;hn!+?54eZId+`s=Ap zHL>zgpDiaj=-*G!$MH{zAfC(q5$_AxG~ea4yAUBEX;>sEUULCup|uo6YE|! zHvYmId?~-Xq3Oa7PHGQVx7>KA?G5nb#9j>XWcrNu!d*K3%!xkGL|uYpXKn^7$OYBI ztce)Okd8+}27k{r=-_I`y$DoH;HZPU zKhD0!_*vlh(EKZ7r<+~3Hvw;MNgRn8ent8!k;l2Okj7W~&03Wc-Tn*y80yR))o@UY z((eBNB){R0mHz;4FO8z=_CJBX7}OZs+eou(QpKO&Tx1l3BdV_ij2>`0gI_=VK88De zU_j@0mmxq&`G+{;*w?Q{g2Uy@ytV%TFTkE3PueE>>-YZvRz8W**fqRNtGEsdGZ4jh={_HNdTVJ4*d@+ z7fv!w9WABUk}sGLLX(5}e=$;CNUtB5pds6a+CH4qyRt`tDt4)%n|*LnHrmW`xXC>| zze?mai>Fq=8-O`2=qotCc=WJz_0+?;yb?j4ha|8*zvS0GXY($y<0?9Sy#D|{(zI_| z9_rrTQ($VLDSk(#XJt78YJ-6M}$(mp`8A!#>YDLsk7sNQ7^ zz=MJU=N$h4I@;D+3hwEUw2Tmfg9nk*jC8Ea+k&TQ3)84L9cyT9Vjky3@aw};>X-ij zZ=G`(Z;+At*ST5SM{8~sS09f``Mm18m0m^A#;&a-JTTq2cYc*3MrC2ObM>zp7n4>n zpSrHgkm=wJ%zr;hv|^4vgB(|-Mm)B;=hUd>vH4#rjP3xcb->8SZ(6T#=#jFlgn*#! zIp@88l?ya|gxkH2b61&+MSRRRBbM#?S9|a(Xyv{tqjMHHV0iEP)_IEm0A!Vpj1TeA z_6LPayhy?Go`p_ptzubJ@^~G&2ep2CRV%h>iC+0F!4GP|QyYN%>&tw03R_MwfwYsx zYZ?~k)a%Q%c0N|uB!BIh-y2Ts@ty%Z{{WNiUafDXw~IVCq+Dqiae-*QMbt!q(dQpN zI+0(YQE-$LChVI0cVBsqCHpx>s@gAKOIYdbX7HYaGTCW%@amV`i7zhBB8=nsSF3;Z ztH(Yt_=CmXCh^6;hb=XBwbR-(M2Il7d!>SGT8E-Tp_<;_1}H z%i7k}^z6MqR&_S9Xnq3Ff8h$UQ8uM|zE#!gf6Kf`F!B#xcmut8kBx8jYx^5N4rx#e zT^>mr?6Acuw3jk`qt2MACp`DyWRAwYdP|;Hdo#qFPD=j()9Lpw%-8<_gm%`)!P7?4 zn43kikjXlxeEZ3nS717ZcgF{C!eqDUOiW->|wqHyIpA9J2%$?mDa?!qPjg@E2O}=ZYR1i@4?65u6s3&e`OB3XJxz zAoxS!TaO?3?@rL>c3UwZn(@Ku5}dI=%ki$PBo<$XuP?Hkn*RWRa@Y6kMa63M{ExXl zA9!{z8hk*siYs0Eb&8c#1BHS!g$Ir^#~$_Sf3%;+jXU5!fh5#z%u@J^RNn@bYq(^- zIhBX^6C>(yJMr^$=}xqvMmx*;{53frM>n3wc>TubxW3-?*8}A zxRypGq>0eKn+7M7%SoU&wrBdwo9}X69 zs*ZXPr$6V~y31JuV8%1JfDb}H&MV?-YR|fk$3v$~;r8c{GD+xoJXb?$JV#*!V3I-U zOQFGujoyaUrlQcfibo|%<0Sn#t7~>7O|Id$4Cl5p{OdcVvEx*yXLM7$m`JS3GB)S$ zah{dLc!E`Ll~@1?&UvZU_dBp^(nmh?ksF015=bB(NUWxmi-1&|00;;CYgUhHl1TJ# zhc}9ssVvQ$k<@hNzM+m4*8C$VAZ>V=2jyL~ozeN{7AFeOso9@6-pT?5^7gPSgcF`Y z#d7+QA#=MJ2O00pVH>AreJ%>t(Bw7irM0zrTb3F5PuD+%e4*pLLG=$3OB8O|4oi@u z*QR@MUfx9qD)N_PMte0JKPu`?qD373O~@>avODAZ*c^W&SiU!CTgGxYL;KSU3;+lv z6y*LUz1lDRrru2O8nrafy?iZjb)N$GV)V$tcEuCq;~S8m{D~Fu&&P{qwD_#nsSznK z6SySuSPbW%_DAJjW?N|2l3kh2RkiNE{{XN26PVDgAH+T*)9n@_V|m6-FmMSyzt39x zPe`&`4I6{D-!#tI}oI4$OU1HhaSV#72C}C01V#eJQDoRxmgEfN zes%JteZ3L1Ir_lkZTr<$b}rkIZrD zTcR(03U4D2?OP|y7W)Q{R%gBVH$sa`)1y^D2vL)Y z=p;Li)n5JU;PF#+YPmLZx9>JO2wGPP4}Z*7#kG>hg2J@J)3&VQ#MHKhwhALEqoAsd z9E~Rg@^fC2O|;G!v+~~J7b~^#u#vz$eYvdrg^n=ARf`@8Q_pev;=e(R?2o&gdA2zX zY)UgEiOS$|4jg=f^n1W&!utK zdYb9R?)hSdYx#mCvY-WGQa};Lqd39GKK1WYl8aGi&q~s5^u50$W5?Qs&xWAz_km%# zR+3nmwJ8}x12o%7AMg-H3C=TKpYZ-;rhHF*B6)X))2*a{6O4_ZFdq9)O4k1XyOrPd zvE^4vR9o(w``Y~v8}XismzsBt{4_TkuMg^DR=4>`K3P6o!;XUvhw!gEv(uR%OS|_L z)}&%Xjm;s>aHFum>;C}iuRgR^t)9IHt82gJll@HlozPv|nC;dWZV5!1MJ2Xm0>_S( z?0yu|ZuPw-ua3Q=Slem3bECAABvM>T18g5RBr+xe=LhRvUNXEX(dM4sUZvby)q=d)o(2XR}w;d zXD$?DrU?TcmDik9jXDaA?a%ofSZazj)TXYIJ+t8+p{e+DLDY?(hvl`^CStN(-Ka}= zP-kx><-Kw2E8-v8gU1)XJovSFeKxwXI2BQRw2f3`CK&F?EPHZIdHGc&v9gq% z+FDzuoAdH8s~F-d&bs^hbkomc&%8GPJ|fdgZ71!pg197*NI3@>!0DX#73+GXyIJ_Y zd|(NkS}+e7#xvL2y$sE_Z$sP4Y^t-=d@~$|+8{~G;NiJHQ1Y;Z^nNyaPdF9lB!@T8W~ z$_pxz0raiu)QV2$!*PW-%N;ekK5W*mSnFDfMspJ0Oc#!R`R`oDvvLa;P;jGf;pzT; z>SEtR-oZg~$I%{N@i$(JNbvp4^EPm&UMIAt`_d%y=ESKhC+I7AsAy!s@$%t+hU z{PwQOU+*oiGl|>TBkhlX+LP~YV!kIuX&_Nvk??YvKItlJ

zZV)0PEYu1Trzr7Z{O~x+k#~l%1X+)46dX7ZK-mrSN4lZ}7ED>bSENI|50HS)4a5Dg zT5Y(AfBP5x@4sR7s{Q@9!plM7%q$&g6CfqIi%>@3_}{C)$aRrSJ%4Wi68=L@q~zW# z7Qae|1b0Yr6yzV_^URULVT3mLcgdL4TDbd5v>%ZNi6B5t*-S%~HXxOIsq}OAXBv=t zz@O&MIxQjsIPXd%Bvuf_0t5Gh`?L2KZr~^2fO>K%fEz#$!1WYqm{5Te(-VVhHh$t* zznVb#A~H9_#TZ{5XgT5zZmburrx~oSLME`Urlyx77oPun763vAprLVCSM#{Bu7H3H zb%^=J|C!%c23r~cSWt`>z9Z0B)f9Xublip$`e49}68x z%mo9L?H24z6#3v$nO+z(7?Svk=ogV1dKn0F?0A!%ETzxP_QG(@p36SY5Ewtu0}^~~ zSRf0B=OA}Ltt4Ah+5_m#1!HWh?TTF-$l17IZ_W@6^q-H9o0mr-D>XNv3=qDaVQ$62 zP90$$wNXB4z7AQ!rp*l=NO`bDR+!^;Z%6!`JEA+YMcshlazT&OFasID8SEF7yW+w20{W8|`uD9k3SNqZC*S%#QMh7q{+HS9W-PQ7@x1J2k zC)EXbSMY;9Ypr|QDBJ9;!%1SJwSGg6khtY-f78pMPPPa@Sbv-9{+Gq!`P%YZha)|O zS(bH}zLB@So{zD9h^bM85sneUZTF}kP^yux0Zk~D7nF&1tSP}Vx-pE@hFZ~@2M=rR z=aO{YO8<(5Ha84~8bFUL3t>cu<^h872(Ze;R-IYThu0>-fLg9#p~P2ULgf zMY#5~0fXX!BBx$>(w0DW9BZc=$sF6ZCpy(wE z8mP4R70|yz8YUgV7F7rc_~X*2Nn?j34HJeC`}b4yh1%etlBJr4wT703syaP@$3Hzj z??wZl`m+jNx)!i_HIT*c)CJ$!%YjoD{Kn6C@q7$P$SJWCW(h0|A!6+Cz2g=jO#t*y zRB-4Z&`go63n`OwOj#%R#b5bgfTos@hK8rQn!AP~7*d^3Fg2+GaA!gK%V%=gXL@B0 zpaEPkF(lwu*uxp?aLq^eh{-KRZwS6Fkc(uhb=pD@fzI0*BXOidNSp^qqLN5h@2uP^I2uj5`g}gnc0Sf{&v=Yo!L90+jCcD|u0N4S*|KSJ`fUO=qKqLXUnWGG# z^ot1q<7LR8iXi|zhY5hvpXR8?BZv?g0EB;4c-s}ai1~oUfVlX(85H`MlP81e5GKq7 za&cHb3m&SKF0K!(C9w42VvfHi^__4>sy~N~Sv+fGSB%?CG4JFC#2tzzfr#P0ImA%Y z6b~!1x=3m)@^igrV-Tx<2vdg~7pH6w&r8Ne`0L{9NtO#Lvn%$758X_NU(fe+;dzpe zxh%-3DiF%Q{S|NLYtDvwUItWu!PWDz&JT8G!_nzyiR))Uuy?wzOI4^BSuQnP6$1pf zCpXBZ_LyURj8#LJbz`J+S-4a6X+KP!TaS1Mn)V5Qa>3XE$WH{e9`-5DzoRc<@Zf^wlUX9OI{>yN`zUUkVz&5xJOp zeN9uS8+N+89~UJp6{PJnl)V|~SRWc*>={{v+f$wK<ssKbWhFXz^>KqW%3zkMG2H21R zjWPiM0fEJn7DpfqMkY<6uJSN4+->1XwiA;QL$H@C_hUs6lQQP z;7gQ#rUB-Fkw^#ZvV}w-#D;wD1T&4}dWSre{-fgO7ZiI@a}^E1aQ|P7_kSZ9?hEd} zq}2UG1CZ!Fd)5w;!NXnykf{254S+_nH%Uqi>?fLfFUIE!IFMQ00)9nufcoii@hUJ9}Ua zH7KFMnpzR4!<6?ky+-S(oiO<-a$#tt;-A!2Bmux*wlumx|JYv*wak#0tin7T$0YHx%@V(tpR^Oz7YZH35rQ9smKMv?3}1OY{U+J5gAzG$`~; z0PFyes%O|}a!*&l_vSc55DBR;`bPk4EOr3SrV7EAsVM!wAGE%3Llp<1uSo%5B?-VD z)_i`krv(!${83;cf*zA7^g_KQ%vkUr71bZhPoY`U0iLr;rT6lAVeu!AZ+Z1V%{NcXJ{a%%{5p)MB%yTRhm3v`o5y3yD3yetK{ z6yRLwFY+|_|Ha$qT7Y|Mpcz;1v6CSkk$$BiUL{eUct14bfpx;OKHRZ3+P&voSX-1E zrzXM`Pl&WIr@Rn{icouk0ZKyM7&Wp29cqsI^+Uagbg9HK=A2*uY2Wb+f!(KldQSP{ z3DJJWv+r8y*n^9U>363d9Gkgwbo$EqzAG2%j|5djS(hC3NFB<|j4T|1#E&UBpU7$;a+-4B%e3wmqxNe$!aGP*?c0vS_2J;z?~T1IKD@?rd$= za!oN|Vb40-7n;kLnwwTyx;DCdHhTuPhuU8b_CgHZ>g%E*F-#B`ApE7fqD*E zqph#Udf|zFTA2H|vbH+1*ic=cb~paGkH5FBJ~yfe1HEV?9ag4@#lqp&>!`&btTEBW zVFe>O9xqy(AogbODrgZVaHjQ8nZSj6;4I=KOF5?B&IkpVe++MA0%^_Sm)-dIn(``cq&_?;2aT0s^716AIp5UD{v z0X#(m&{5^uM}0>KW(RT&|=A#ralh01D-o=na&03F80bwO#Ui`0DT@34j%)e{UO1+kiME@p-7}0v%EqLg4k! zp$7=N2nBaYFo+ZZFEE1O1tCY^tC_2+Qsp^T>Y7~kCCrD?FJ1px2y^~4f6;yZ0^%=E zq5nemb>3(4qAzFcG|&C{Js3UZ!5lCQ>+7W3AYnkqPzk#CVucD07-@(7cb&H}4WL9M zn2Sp^ZUofpGX~iE=tZil`Dy8RX=qaYJ=p_msIv_4RaOa7Q$K8=4Y`d800Hn(0}TKl zhSnqC_(u9n05kwZk0{{TXb}{A-NFF>TVa2whylR!mfb)cDgmxJMw(LHXDpE1foMOH zRsaa-mbLM1TXs)aUaR3GEkeJYR}r7Xy<(BC=}H^(UV<|y~B2quHT zswmH*NRP4zw|2x|QErvt&gcL-&W80}3Lm~0)_%;l?qp!&<-pdfM|*CboXxm6@$h8d zl_PDZL*ysin-2Q|{?-PDm^rRv0WlQ6HaqVJp z)_TSL&C0~>+OpZa{HeT@v7E~Y$6gNhPs(bZG#kmbv=6h3fkG^1P+$tc|+LXLV&OvbFy*__)S+0qXwj-*Bvst(ffgVU?OaS-eNQ~(6rOvM9whh-B`!3OOO7`*0bLh zpS)X`AMTPT-HnU(at<^y2-MW_S5*(xQS;YAHmn?~XagadN)Bw0&OF}TI z69@+gh4_oDFO*8EFxP)9K-%EZM+qtp>()wd!zw>>xJK}g$uNMzhbbx6MsNc0O0!p0 zvxM;e-8Vv#`nwAPR7HDrRabR&XJtHN0Ea+$zxKzPXhLM5bzywVS`L?W*mQ&jvse<5 zVbLy-g2cBLPC+84jEkvM_xBnAWeNz0YEA=CxI>F_kNve2_s9gmwtzN3)1n7(krn3H zaQ|bR_zRS>H$4L0<`abl!XXoY&Y{PofVP52Xo!`vQ;|ofG3HtPZm643da`Myq9@ zd0I#7sHS?f2D%RoJpb_j6AeIH69h0oO+8FY8wV(aEl``mE@=R)0Zy^hHP=0BsK*2# zes>MEj_P9-$2wP+T`unDsA1zB#hqQD^%d+OxIi~a7PT~FF+kVhzJJHol!bwyidw=G zMIxYwI6#pFh9&?pqyg;&ztUuDO`!pHCN^ELfY<@>lT+~#@pAW10k1dLWDej>N@to- zfk6#2#}5uO9C3()x5FdIj2>6 zWkV*oXeuUpc}_Ouh&{A1&2WGbL~|0l0ixcCplR}Ru5!0YwKFO3v#9WOAniR9<*=_k z1SetoA7WpOPh7AoC=K2|LlLgs;m*PoD8#8gP_R5Z!rUr@JZ?E!-*K~t(lZ7rA~H1H z-R>UVqM>&9v*V2pC$%KRyOcqjyp9;?fNrG$worzOL!C&2nK>5FAK_K&>rfZsS{LHj zcGR=uurD&;in9@A;U09Uj#Ckhr=rS_hh~Snl|^}s-Z+g?Z1&FS$+%#SKbZ0!oE$(Sk^LndnlrK_|`nj(Yh1XMA!|pI9&qF^D^V^ub)10zin=_kVjPKiA zb-_wY)>=#TazoA5!1&JS<0ti{+w#Is1H;?RjVQ1AM(C%p8`-$;a-KFpQh28X*(Vkx>`rh}-KJ}OXpR0}k zH2dhssgYlv&VPEb(%x7V73gE3qUNNk<*9MVTSJL95GgMHy2u64*b7-D*)mvZDI#T9 zk1-d*FW|TCx;0WnT_)OkAG;AcXTxlSwX%XyBkX;UgJB4NHF!_`%f(-? z{uO*s9*1#eKH@4&nDJ#h=GA$`tq~w4))Va&1pF!=>{7Ie#NgMGsh6mFJRbHMfbIAD zr3PTK?^~{-P~(LHRwW0iM#>wpaPu*9FMM9*u{|WAwB?7SO^2PGJNjynrxki?AlML}~yqL4}SiQl#I|0N54~VIuQ0mR83S z=&zuAI?M5fJMPZE2`de#LEt}dfe0vWKjzvPXjNdL{?J$*z!@?tw`tXHm2|)Rv%vku ztzU83KX3pa2+ae6fg=%t#Pwfs_y4-o{r}$qNC7Vb$5$jcN^1aW_a0p74!eJEpVLk_e7-|E(eSa}N^gTm>t+uv{kr74T;CsU5l_m0zaGm@9 z02hDWZ>yyvARw6j1i#H)@LRkZyl^E*;6LZY96%KC{N(`1pm;(_kJNogL7+ei|35mX zCD97Zdev?^l`cA1B_oWYjNX8ViSLJ@t{C?Y?e|w#hX{lpoTr))eB*M36C5lcZ`FN> zr=c((GZLP+EQm;iXGpwkX(;mWOmyH3Kw^XEg9#$bUYZK>g7bR9= zty~8b#ny>VXi4Bi8L<0>Yzl)D{yx$3nKtCiAjM*s)e-qKie(9Q6kLw*gkax`^&4zC z!I-vUL!eFi<83>0rks1$W_O(}AD9~6w_((9z@tCK!JJJ%svWkYHn>~gwAJC0OI)o* zDy*e$ii1A3{+XUuQo~E}uqgC#PI7m+@8z80XIC0z(Q(AFHQGfmmqI=AgB{C4ZAt%-=Aa1+c66zv9>|GV+T6@@s2;X#XYcB7kca{0sWJWmM^|MY4aV|UNU4PV}I>MqX z(lP(AAFPbgQvtnaLJ<#_VBQkq(s|4O~06bS-w^QdkQ`M!VRr&KIPwR-}LI zssEwB<4b4Dr|zmZT_qSVZ*|L_wbVartenYxIFpvJTVL|AtqHsT=d!YA)di2T5(i6) zcE_H)8J}IKC?88ai9Oug-mb;6f)`cEpSnueC2Y#7r|Oy)WL;~r+86DuYn=lt%{45O zUv-zi@09&*w4LafwYtI&{ar)|JgKW%Z*O=r&M)LeKQyr2)rA+u%YlJ6LxZG`vCR0;*YxYu(BI~Uf14Tn zFV7!;nI9dfEmyQ;%GA!iK4FC-R3Pl)bglQ}Bc^FFH zwlhXQNUj{F(D;;;`-@7-4gjidXQ;3`PAYPdYRGGYv?ZFPgnL z7%wZ_(1fApQKyz@2mE4NjyN?%*fxaO)&&UyG;w&m5O}@dw@75uG2D%a1yogWR#9?L zSGG9xosH@NgFk<3y6*r-s%tzFWo56X>CUP{UHHkP6(!sTd1<19Ub=^IWuQIkdQti@ z_YcSY4W~BOwlIJiVHC=SR*Ej*?%x$*)gEfje)ua@J-~t|!2J^7(-~^PA<70LImQBE z2ocFX!?{1)5=~rlgk{g^Acoqu7+XXt!;v-&yC7zGh(S&C)l#um+K=r%Y#-2niMGFY zr1#*w_SOGckp%`xpPRdgY5YCe@vGfGW)I3LNVH5941I3vT+dOHVHTwIE#S`qjc@-9 zxrnq#$?eBdRmDnGg`GL=hffC9*Zp>%MD3UKWg>U%n{NeDbWjQ82g7F*6?I%cja3MQ zIcTJ=tf!)6si$MiFrlJhrL4&gAaE9-{~Y=63f|{=9~uB{fLhO+Qt77|zy(4a$U7zG zFGmu~@z2M$N9JveV;W_S6fMFZxS>l80Qc7b4GmB~F8*kM19Uaf0bm4#Ncg;^2}~ix z!2DXA*3mepr*U3aV@43tAC0b?=n@Lg&_LLbp#Pg`OL+j?wfSYDR^Bz&{2B=$Kpqo{yVMNO z21|TR;1~Rs8EXJ}aJ*p$z)hT$uP}>t#p6MEe+oNjPb+o+^bg^y6Xe+(U{v8{0LdDv z4+>ryz&#UOD8yAu>l3R!wfQ-TKli2RMm=pK~zcbmvgiUX%iv__oIlc}L z-39X})zdQD))=RXau1sfTZ4Q@Yx2DCW8gB*k5}dCz`i#Tq}5SdG%Z*AG*8DQ59@eg z`)taObiv6h-qE4jgYB-P+}EYt8wVjfz^LLtLnOY1zOFfezGd9d zHHUk#8-NZ37pN`LM;7c>?rERl=T7`27p}ge9?emnrG8G8J`m{~8nA~u?1@gN+Sj@& z)S)iYjU{t|pG|78Yes-gMX(K+4|dQjBvSot3nL+wdv?Zn;4@Ja<5PY-r2YKi-gA*- zSE4ZP?~jY_xf0laLZAwbgjPldCdMAgK6_@WI34=U%evgB^({N)4@Vx}Sk8$9#(CCI zw_Q^^SCF)rpZiW;@S>yf%aHt4OZ!qy-h6TLW_i+wroy+KgZ6 z(EEvj7v0TY9`(HLseRL3^?pQ-u;Ay(uD?DW`p4S*r^hqH^$mAVpJxMf-_`oCo<@+S zdWen|dRo>4xJS?c#6V!Ccf?rh7=dC|`ZNGi0lMrZUfC?NK5Lg`C`H=xp1n2=!fQHX__a66XjU}Fz+N}q(+nX_nU5vg1$mGSKQ^EZqi1{g*Xl1&tY{Gr2@nKI(HU;Zc9)9J z9e?jgfDa==XNV<>V(8Ao3RGbfD!2(`3rD($25`#1_k<5#hoeW_21Cud!kkF_jx$jU zQr~a8{~N{j;(H;l{hu@dN&mHX>z7O&IDc#a(1D~0fG1{3DpCUw9&Jj>I{RoLq5)9- zF?SP3!1`pu&@hzD0DKg6U&8VEQxd^nyhouAps7f`L|I1px=t zSO@Vihif?1pTiJ<;1(|+QT;6me>b23+%r|f15QK&xCq@Zmm_gt^kWU}ChU}vH$(E_ zP~s(v2(;-LPNcqA=Gg1!+Up`BOR>@<`3Tnsc2jjehWSofyvetq{UG&%!vm~z&qCwA zg$B8IxV%9&mBMG}H`ID|64;=l4r4t)TqQqYioHp?tMM&MHEvIZLAI!llWa7J7_0KL z#@-pG5PVj819847UY6YVt9+bld>!!zz3F0_fKtKTvfRTOs!vL=>oppWw^=oddSBBN zFS9!yCh30WHBoktB0X`ahESB`Vp;Cz)E?nm>+g!(tRT<{XP$;=Z>oH4uoG@vMgI1@ zGu_*{HryTF1u-2mMHU#?PWKUy>L4Ow96)C4eJ#)lw;uH_4~_??@9)_rCak^W^VkS&V56`5OJ^>!uh+emA6v`bjtyTd+EEPGRKbVuVbGpPZq~9;0=@Rry=91K$Aq!1)n5@Bfnq!1Z6+=nCG>?_uuJ z+E%jo--~z@(On|#OO$LXI5&5!dvI))8UXH|WV!H2^`{32_1qy?L;L^O03={X>K~S> zYLYmBH|Zrb044x>02LpRu#vKwshXyPfw9>kH9KW3PiX+02l(K2|(h{vOhszSLJC?;jV|N04zx=DJ75Xt0V-A*4IJE?x{)+oQjVY zfiRl)`eR%UIxi&bdTJsJ(o|QP1K_jcW)3=Z(FPMl;ddzF zkj#V|#ASVrn`Ziuf@lCN050i?e!w31j;RRIR^%dSaTKYLMxg&3wn-cup@D$7;|se@ zJAE`<*R)%?$2D#u7T@YknecW5-gQtaKnU5=v?Lm$`p^ga0TB3t!6%Yyu z@~#cVcf}diKAsaGW3>Seb-`|Y$LwJHk}yYzp>5H=@JiW0lt+8ZP6u@yaqkazZHw@% zig2qZ@GsV^IohcdVVa*;TJ+Jp8~0?_?r!E6ylKo_D@s`^&3oM}o3F~-Y$#oCs(M;g zF_UEsmcUvpD(f>Tw{-iwd=joXjZTYW<8W|%HqwV&!;1`Vn(aWx~rwysA zjSsilD?g03J@2X`Fn}pxtEUc6y6ujV7u~fldu1;=Yc|>{-wd?;Iy>^euP^>EIlR!{ zaVIv+UK?cKpu2{$tJ)za6(uBNOaKx3+TjX=#lt|U=DNgaV~i-qUn_0yI&goP03ZPi zmm5a;XegDC>%TStARsK^m;kurQ|P6xz$4G4H^tpw^aC6~9S5)oJ?VwPGCcsw4a)$c zVCXL7BMBY^&gWKIEP-hN&{e7FP(o+`X8ZTqsEE2x51=wysi;Zh7O4|}0^ttFzfnoS?L+xP#00oM&0rZ!GeQm~iQ0QN#%qhuJRj>k9q5-g9F+8L~={Hl;G*;3wJg8=@qRFGJhOWf{RX26ra1-l43GheJ05E=d z92ZCfUK@fs#seJ`2%w+(4(3Ax;Cr3I3))DFH-$xnmElbz9mzPFP;4#^ z~pv2AuTW$SkZVMK)~C*PWg7C1t~@S2iop{4hMcJJ|H3AbT?H!eZL##f_wADrw$StJJz#7`=?b`0|UTY<1rkrB^QU#^bG>yCLl*eU(lT~8B79SjvbbhN{Cwej2y)=>@BS7Vzh zH2^GiVZMo!2u#*|EQ`HNs(ejh?2wKN^BoKXZjV&rp;V#+5Ix|OhXVO=;c@J=Cr4Ta zAhwb^0jLpegKe;6uTRJ@B6GqZ=`KWHU>7~=Ay^C2(R5eWAPvU!`|rpD zpkQ(Tm1@>kM!bUQXsfPiqoU%Va!4T!Q->v}=m9zaxfveVty@<4St1H!fQ5v2Qy_6GN#+(#y9JrxWe^$Ya0s_?#uAlS|M>gJwe!+-Z zf=o)C)xal$H4fQ){}=sze-WksARPbinE)i{Uupw?YzER_>T97_EP)U7>VgYTZs_Cqv8D(a5!O7!Ktbe5;;Ol*#O~B;1r)BW6RM>g zrmYgLqe@aJCt6h;q zc-H#xe=g{#0t$f<-7?k{VPTd8$OuwAN?>lyitE3L@L&)T)!Gn&fcOE;v4G}4_{ng? zU>W-z(ppS}HrUNF$CYDU;cW|Lf(F120Psf&3&Z>e&rY#1b~ea#)64fUsl!nVlW|Wy z+yOy6v6m2vEoV!H0G6?elu9))DD+>%djSeDcEB73P=cAq%!Iu&Bp-Hkgxb>y$gWBE z_qyq9bI;Zy(bpxz!BV2-I_sxUJ|buR2 z77;}OcEzC%oaW;J?I%LYyd6q#bO^N(%$y@`DM8NnylgT9ZOd>23?d)KTKo}Trz}5* z;$WAiNH08s3c{Q-11t;ttm?x&NE0iK^2rNxEDo`5xDeSA0n5lEFVOv-k1g$iPE#A? zAMfYJ3cBKA45{%$H%`1P%=+9Re^Qk5BrR^MzVJ2U+-3T)lxyqi>ibV zJ+hDeLqCkQt#|e=$eWh(5?&O?ed?8cnVHxb=z88L2W9$kasWc=GdYT1;s+|(Hh&s! zT&$`1Fw*gIsO@!g8Ii(^WjU{8*)N92*Bi@mjCj#j1Jwt!p!b6!Sa`R$dbhW7x2^f} z@WA`w;SZx@JN^CQ$LMO^>1ttDjJd^AdHrTr%PaoK7{=7~?*?lAb#d~aSC%FVGtSx= zIv+Y9f>(7l+zgEURF!>HlnC1j#c0b&^CWga<|0%T{W%yT@uE<+Kxyg%&B?}+hf)V^ zc|}VNK-}(sPlg#i1@!MBQc&0opCp#u4MYfBhz20BMWrmQud!LtB5#XZIeC*z0A!=m z021wV?kmV|M6@FP@z+#yRaGMq3>FYtFzVo*OXZ%u0jP+Tn!1gehG2zi;2>}aVk=%@ zR09ZdjJ6Qo$X|lEOb=ibfGDg8q!dI?DXYEvuw7@gO&j-jVOC*_`&(mxF^^DJc&zs| zK)EIig2J&vA~eQ^w!vpAVq_fo3J8E9{sSm+FDdq5a91Iy849}@Xw8_!{q}5PwN|FH-Cm_MB1!0LtGBjS&!#!ZI4?PKnVE zI`s9UzwZF{JRU^0%pqm^sPwN#GoS$g0kH?>(eR*#rG}oJwmv_AlZIxXzTO2#r+Yp= zf1>oW2j)ndUhp5PKZj{RLV=h7q)hC9v4` z7;B!KWm5ssQL*les>6N)`83rZb5P9SME;kD4Svo!KF%e+u4$fjWW=)`Kr6tH4Ve$K z=v-?oc8zX18?o%ors6wUWIBlf0<&xUi&(nKf}Qhx9TUBX_H|=hTVPL=vGpBqx0_zh zxn5QSVU8UEPB3Vipv%YQzmobC$cUqW?Xw# zl(TrJxuN_>(Zztx!ZswwYzY3@dG#&TZPT;YSIit4TUre}3+Yvsi+x|)9K zpWbMZ;qm#Qv+C2>*yEC%xwPvaT8m+kzVB}VvWK9#-qkr%kg-~NXScuO{iEp*{dJo) z6|8E180y&WYTRh9-Ds_T)?Uq>oirG(?Yjf=cfC~~hUzvOYM<2?{Wv-Ktfl<@KqE=< zbc;8=ZJ$S2Co}`>Y<5)Bw1}l-;6Mhv)z?8x*qfnty2ws<(+^W3RA95O^W*e5i2|&( zUv$(leEg@yvH#=Ac*p(AA$qFV={Rd@IO`iCrUh;d&{mCrPHnD_RUFEB$PtJl`JEJ* zi(ck1fUEsX8biz)gG6AK)Bq%$=l4_q7p{6B{vwJ?0sBbmu>M&49vmT03N#ovMcDK! z!cxBG?uOb?m+`?Z^|i!AovRfINSBPT>Qcuy-%I6?ladI8u~ijXFv-eBvOWgCmbfu2 zMQ!1&t7}-PsoJU@LiX&fBoJe40ziOyL8ZG}kZDuoW(d{tS^ zdXCt4#n`q-!t@u`(0ftuRDXORL^Fs$QA}{W1HoYmk09}x3=N$}TxcGHhdr?SXJLS| z%ROt&V;bMPDXG})KVqBN#A2=`{i1)u6KO$IvOd?zh|X#hM*xst;2 z^Y;mWuSUbbmW~F%64*>xQ_y}iG%QsP1(_Niw>7`*<(d-Y`zJV{RR85`p%Up+;(+qV zoAd)|11xm{9{IHxJ&q%i3wFNz#sDDJ_?wq_8kBpRh`e0K()C1_E{;I?RYf3U;+#q6fRmnMu)=`SlRfhNv;fDsm+6PMLaZRNQ23pt63<-=@ zEOjvi6*<5RgDeBCJDXp!H3am#! z00q_;{2Y1!^9uG@mRfj1fXKu5mpTEkOqRV#j-3fX>P1f0j5TmTVFB?7pFwH>?6pWf zxM!oE9_UN?`iDbdj2bC{+E&>doE#c>r0~5(wH_c3wW>e#7TkK~|i_NgpEp>IkD+0AJ ztRZ&Ape{we4*Xr{2dLO8ee4T7?QxU7V=sb&Db}^_#>M{jQ2z5n+~nc7xR8|X(s05r zKis)Ilo`&c@0f4T$>64=eswW!^)XHuJdg*#wOtWd7~zUTTp@%XU;83=D|n)nfzS$VM4V)Z8=zL3kCoilxx&vq%U67kEWo)vz@^pS zwJ_8@J-`KM2o*(Rs7KZ56ZxkuR9(D2RGc%Ed3z%M?0E9|#iVmH_m7NUiFj9^`@Xq$ zDEa=A%A{8V9WPtUm&!_Zt1}1#cvX6ByQyZSTsEC`e>ypKt198A(Yakbnah%Av*Knl zuFd5=SS-rhX>8bSYh&NLTX}OX@#tp$oz0SjiR7!3SqYB|Go~{#rVHZ{UcDOan3t7v zPycza;i)C7;fd;&)$**r_Er5n z+Pl_Pvr%9Cd8FmzK>hRfDz5(UOKF(@m&1zHiGg7+%)sl> zo|mITzpbvk80=qbZ+$;J_+q4Ccc|*GPY0j(*C)n!x{*tzZ{%lX6Q-w!@0Pb3UMxzi z0dR<8uO!A`=GlS6}n$0MiCyy#tMy0Kjl?bq4C;YLBjp1pxM65Prr_!wm_5 z1w;b?Sf~1ro^}=2&&>azb{}H>6rYd^9_>&t7T2kLp1zk1z@g zSNfK*9!opCXIQosx$0GTnE?mkKMI~h50Dx_?@0{zz`r&eb@|Zp%MU7`h5qm=k6)_yGgrc9@z~@OJGw~4Im(U9Rmge8mhCl`Uy9O zYu+v?AwGE#0e`~uAM{^Bd-gb>vsVIX?noXLbOX6#A)aa1gJv1oqd_f~kfZ=n*|VkAwSBuaFH8 zqOE#ZLj~Q+VdVpd)eaB_c}zzI2#B>XI1g|?VRCTYkdlMulLiAcL{N;_8=D$lwX*`~ z2N@JVzmYnw4?N*BiN7Ep2J;`V7aSn2n`&G&R^#e@%R=+Mg+8`x+|99sgYA>QO6`$Yc*h@b9Z z%btLm4m<@7l+l5WafYMmEn|`1M-(tF4&=8m!2k_qy4vKp+7g;d0I4G6-8#uykWKG8 z6JEwgO<8jAen>dfTq0G8tIY7VO!GFc2yt!+_UH-lZu9fX_pnP1bU>Qh6z$$eNN(yHV<6!aPh2WmhHJ>~n&= zll&bLJsfi`pKZ-Z9WT#*nj80`p=SA3#8hI!#O=7Hlyg1t*Ov+|z3T0IU6c7N<192D z)KY}1FXhK=m)sf8OMO-l|GF+`t-fk9FK<5n{ATu*UwY(oE#r?%D<;$KKQ1d+s4GR! zwcVJ$)tvS?^WM;%vqQ=8kMc7|vXbV@N?8Iwt1X-_%iWTfz3*!K)YJ5;tzx|)2h&gj zAUA4jR_n{SV!!BUo36;80zPUg{?aXfJ=8^V%P-T9c6%C!vu~`_Xa041aJ{iL+ue1vimk3{@FHU3 zcRQ*f`@iX`pKmDu>|zSp?W*5yuXx$lv^zes0c&WaX|uQKMQ{7(sj0s{S$#h-xidKM zZtBsSk+G)@^1qHx{@2H2Gs%aqS}Fyo9&k}p^VZYyGt}h-8tIe77pS9h+*}W!mE37z zI%01Co=K7&=(z$#5q_CcU^-X|uWqn@(FySWJn1c*c8+^WG$DLLIXnjr5}eUvUL^kv zo(#aK8HN~lYLUelYQ<`S2>`!w096IeK?D-;qK?uP`G9DB5rTmNnSS@J#QXf?`D$`N z>4);Dbcnn#w!tLEaDzk{aM95Cj6QzDs!SCyu=7NgpAk_U^#RVT-=LqOMize&WXZ_8 zaC9K>JBKAk%?ZCs~*oY5@8H&7eKl ztlC-szM)#U%0YXfu>HD;m3FYg{0G;aZ@t87pOc?zW6Hl(PVsXOcB*8uc z`X^~eRip@z7_5a$-FJs9l(o$EsoH4jdK#Fxsc9ZFx47f(lpox{?LC4bK3ML(3lbONdR(+1k3ZBYq=j=|@{8G}W<)BuVdw9+kA;Wz?z zgVteE$i^R|T8~3Ygj%>LaSpmEA0p}0Us)+oS(y>Uf z07MRqi7xwIpdRoXd_XDgp#MPp$F!8ihm3X480nldGvfV}d#MND`$qMrC5UifJrxBD zNE7^rTR+$c&?ip_$feE_v&G?M0JRHJ#64?~1`IC~c`y)=9+>K~1&?>Z4gS2zmK>57RfjC2z8)llk)re#7)5Z5uUOLH@Zb%j8A){M|prts;49N)CJxaWp3tWPBwRN zw|2KI3i57__HR4tUK!$<y^yhhIZMo;xrefexr>Q-6Gv%Cj0592oS(`M7-JL2z+B%EK&OMg;b zvmwjFE8{W9y&JFYBX}jI6ZwK2~YO4qf`_R+8+f>M20e#u_K;L%%*iu~yp3=Lr z)UClbY@FZs_r2|Eo-a;%T$V&S{JWt63?ANg)%-j%K%UpLw%!*_g&*5%Uw6wmuLhgm z^fbM0ucw{7>1_De)_|ME%l?M#-um^n>gR2B&_-W%H&F3eO+S^FuC^Aw=xjy=@T{#7 z@6vY@UHC)19qoKS*1O%`xjQ`g%i`l7=4M`x4u6`S{AFeJ+8Cm*-Zx{er;g5L8zwzAgKjIZ;f)oFO#%%4onyY z%R}ga;d(;z$LpWTfO0PYA_$ivuX1}c2a z`DGwfgMAwffR`}1ZiqS)z#;oXhisITIf4xOKW_l=9cchoN(XI}4iO`apBVhnAQg3X zgx9T%@7owZuvSfV)MNR?d|c+GT;rwF=xrkRGi?i@j>FtH?+Uc6^8oNMl?CWmd#TrW zYf$&=Lru$q3C6H!4(8y5;n;rEhno$wwC-ar5Js_(<23u568CsfPucU}K8t-KOmR=} zB`s#9>_!DuUlH>w^vnXlktq2V{8^~ zYIfb-EjhrmG{(Os*026#fLH=cD&IdgfRWSgT=S*F^`8d7Bb|Vj&=F&&XaIINz7m?l zE)gII+HZ-IZl=Ot0lpV}9vD6m8Y=ibzyiV!+FMgYWCCldvjURrpu;saqja@SnhCY6LytJPaRW4X*zj8h~^} zOE85gq$gPb0kU5)Qk5JR1TPZ`5Z7lnE7qsCEi`EWFn=U&K8JEI9Yz6scrZ|dw8O%d z29Ro@fwMm(PO3S#c>FS7WS&{S?egffO`We!zN0=4<~PmMX)4HV1T15thYK_{9lj~M z2SyOA|6zR6hxi%b{%6>k-ZRs^jd;x%dZ=!$n@xtj@k5xPHU`|&Grer#ai-Yfrzi-i ztgr8zY7+?waY*ztoIY)IQKgZ?%&Lv;Lbi)lrJHq`vxqAYiDoVqj0<%!UR{R+xozn>hj0(@@MWG znaRzWi@yYa|5?$)kq5_?ZbZK8lD+TholA>^ywPvTkVZEacuh6NAqQ^DmYjWJ7E7%RJ%B$8|%U|@AkXg3dKk|C0^X&*} z0qvh2jeeONCrWG!iP_}fPYY8&%ujupoBXsg_tWzHyQ#KMgi0>0)MREyc<6`N>fdm- zJ7;Mgp`{h7sTHoN9j>Z!OiTT=uG%F_?c4UkUXA?|*XJr9P+SY{!k8s+apsP%DDG0! zyKsGg;X}n&@O;D*ngKmP7y%&#{n`LrX#nj}IP z2HK3rxPt$%31|y3l7*PpMZ1;+2*-$?U_&fFyCI2s8RgldB03bL_PyAXO)lio50Kk7}03MoZ^Z*(FG*D6fHLx!?IANfF6z3mf z{TLGOaDOvU7592TB!pl(fQGuiJAG;)1)#4G0{~%^sB0ei1OXEniIf-~x%lrL-oxIN zHXu?Y6%7C}Ff4m^05kw@<*2l{af5_XM%e~K{*eM(q|`?IL3xBE%44p(Lxv+>Z|3ZQ z;R3NL0HWb5T(H$EiS^&ii+p_5YWS2@mA?+~SCrZ}2)?jHCuOO?^d!k_$y?W&t6p`s?X42`M?bGT{_=SGho$Mi zK7apmcC9`qxOuR|Aa0VLcJ?t@f(hpxYLU&t5(w6Yu zM0i*eU=7iT2>|9k4S+x=xZN~>Ky57$D)1jO?yBE@BOJ|sZvcDMU%W>_q8GZSg9q3Z zTPhOdIc~a|*dImcXvXSlLHb~?0Oky}Dc(Va%~O7Gc*&WwdDqTl-8xlr|7!EYWO+e@ ztfZr|v@0jI{K1KH_q-i5eT>ROjO39{vS_!~b0JM9z1w0PT0`{vL-Yp%bTNl$gW~M0 z5BwXWcgRjzxO?jF`^w{#z#qx0M;ZwB7(0?51JFDkO_uO46`s!`>E(Blt1xa;NPnfv z`yTj1xtGj*M1JJ{?d*&wht@cOMcXS zs{g<10knbPQ-TL3`Xv0>KntAU$i^&k)h%|#3{H;)DaDa;47;B=Ft}(qyFvqHd~;D% zLJsDuu0kFFLqL?4R-~FL@sP)~HPHhfVdZPCN0QM6GXs867y>BqEPJ{2(@yy9p#g9x z{UY)d+c?w%(1c8MCG>yqNUH)K@dssSU>ZOO#Q06PF^npv(eDMiHx z_JQ}w?HJfZM6u(t$tu{@f_J7lLdrCtC_@0n3WA$8BW;|a8d+K>kAAH@`s$wNM7Tkd zhi;y;1AXNN0xmOkF8=hD`<9}S@Ga;iS1d4p*5&5TAAew>%YFZ$g?=(QUoN&;4wgw) zMwmROJD7p~0|6zV)-lx}Ndqr+LR|Uda8hCW@U!viO>-oq%$fv(d|&G%XFU`>b@-36 z1a=YVKMc`qcl%sNw$_%#evaiXkfyEDyeuH$Amv4c%Oez>@+dnwG1-w$SUB(!MRt(p z@+x4JLQQl3h(tNUTr*cYCQQCRyD= zL_famZP{tBc~)2QX`m63&se!|iwn0DVA$zrAiQdDT|N`g*geWTm-exw&kqv1F#cV7a+sr?2hv#MtgY z|BK%4&7O|6j)vWl4tBXr1|(L}F!-iS8{GP703S!kSoywV2|Uoe-chwZ*!;uX=r0S? zKP}9BoF4t@@xos@b5H(tZTr>aV_8AcMLRto)&I>!d7p=thMSgVkbz!|nQny6p|d7x zH*FzaOW`&;1N1O1T+K+yvnsP&3{uR>CLRG>YQMW})XDx9Jf?ZK({C;*XX zPmDVaK*Ti0x`_r5N)oRzKJs{bZfAW+{%*G8!%X9g!Sb29?1md>O2S+kLLF+(#g<=*Ysty& z%T6A+8Ql`B*XE}q_csF8hBuLBDVT(G8jRHx_`Znhm9GDLrC%z?dv||v>sM5N8x1Wx zEuB5rPwD?*u~ zB&in@fYbn>`cmaZGTbRoVmhYJ`En-DcuNNYfN)+t?9j)mB-n~g3(}7=4?U6};Hc05 zu&@Vt=YIt;dZ4DJhl&a+Fu*&6U04;O!!!aPD4<)hpV0D|Dv z+%VCm`opF3Vv^`fLdJ5KlNf;V>KkZShxQPaxuaiQKX@ zE<6(YuKd#H!ob%LyoY?Wi>%b{V@+zN3f6Q_ydd{HTbpzz`-eU@=>Zmi``v*)10haC1w8b3OA5r&*^XCre`G+be|Ubd zD-=&M1KPu#T0-oJ=HM&m`w5z9qn|@H0X6Q{IUx>ZK^8cGwuDB+yE&sgdVmv#i_;x9 z&-1?iw~vH3+`j-1XE`UkFE$w4pQZZ|lZDyqzG)R`{`1z}7g_g*;_oje z#4HuZkEbWjrJR|2aBlhbk=3GG^G)s3xy1{~Czmqryy(qeYnD%!-&`xbIhLL^cH`Lk z%?qO`i30`c?Rn*sm9@lvA-{T2pM|T>v$CY^mNpV1mt_?!hvy3)PUU25R3>cJC6oH{ zQeL-OSHa%+X?5|-mZ~p3eI(0c?*Fo<@!i1WtDcTG-NZE3yz8uCX$-Y=qh9Q6e;Q-c z+wi8heO1=FP+$J0z2cXCoc-ln?HzAA^FQ@>z8#yKFS-AuIQ~gh`cgywnymbZta`3l zw$j+NLaK0I$GhR4&yNN_J{mw8hJtLZ6%tVnl>hC{){T}%G+%Fr+uje4?DXP3)b@U~ zhrwc-8HH_dPvfiM&YvDX`ZzheiMjOn(9aWVxETFyYUb}xSKciw^d_A`#$0upZIo`g{9-?b5b z)YyEH5(osu1h5AIfr;-m0II*#4+Jg*q2>1;0N;kAh>$$sps5To#zsZSS5N!2wbLnc z^9Tc#Beo{j&mJ#HyfIN-u+iSOgs81&EStN5yk^#f=-A&bWBTBR$wq7CdF z;o%Uaor9#ibSxCKJqs{G9S+UXDQ6aez-ZjVl zYma)>AN2(stBUj$RuKPP@TCZT!3TmRFhzgnydOu(hLj?q#W~}KL~w`&QIvgGFlzv7 z7AfVP`lzKc?e#J-RIt(lb)iy+X=$(HiF}iMREK&h*gf`Q?Yo?cCkH?M~Y5=J;Q_8uXQ~kN!Q*9~tcg?kF13>4Q ztOwBXlH_G;c*|7zfu+VnTP>kzx75L5^r{JxdfS1VJ0BV^y-jm{e%ZR+*C@$M^OmLh zZ5yow7fZqWG*X9#gr`64=d!*UenhN=g*k+|&Rqj_F8)jvLXT!=c*m4DVv8hO6UeE& ziLeXTXjZkP4&XwOZly!^0303!$%QV8C$3hc&nJ6X67rt!;ZW%AnCIty-xGT{E6jgj zf^R^}S{ho_ef~RwGkPQ~iD0?dd9E*`|g*(-TIyMD6HHHX7o;x0P8R4Flv7Qy7 z*5$!Y>25anJaq4Qn?n;q+}jppi`Po7pZyJQ*V0hu`e?7_7_a&ur%G@1ao9aNKo}L_ zkv=YkK8^*!)+GUEl?)uVme7_UXeC;RnCP3{wh6Jv%g&u1xO*04f9}%Jr#VTzx!D6( z0>*B|zRWzo+uk%;m^B%Ha;y9v_C6nFc~5HVW^SDsczAvK?(wC(TafM-bM8$&h#kBc zi#nI+#M!i~6A34`s}o<#lGh(zf1G@JBKdmbwe-&W*B?K;@VK&esj2lzX%-^|3GX}Y zZBHvRCbCjrRVQpVR;<-m?lzZW_dj2mK9!fYToON@mq-KHZYf)P`xFqC0BC0 zt@>q0=lh|aj|0Om@$tvvt-ErwwVJ+yvBayUig#TV*nhqo?B3}f-s)-FZKI*j z)z`3ES@g87@WsIBWI<|wLDE!F=JSTi&8{Y4QY~-T>1uo5+xw=wjRo@i!KM$REng;k zX$EYP1>)3RzS9NqU%uJi@T#}>-AFrPg6Ex;Z%2?6v~Ksv$qArgZ1%Rid(`)NapCRk z=xZRU*=d>qw9%htAN||LvwsG2umxx}0;q5Pf&&C~Uzz}<1|YpDrI$$8VZ{+4 z@*Ks5`Y#TuTEWJ4{swwD%%Aae&x(tE(}_dI!28K3Ulx{rTjx5vNb+!&j)eP5(2xj> zRIp$<^Z@N|zTrdvt^tUp0{>Quue?|NrGR(^xI`xq`T$5uhWoyAgoKIc%F;T;+pFS8 zcv+NJ;|agoBkuHosv~}2L4TS!3?17|4aZQr(8$| z7S`JYDfpYn1I*a@6gq1Hkz+)YhU(8ujbaCg58KD%5cUu1khk14)KK)13Mm|+6%7DI zxUUK%WfkT)f&r-hlzxO@Fo+}w=)AEGnlA+f2r{T9?s6O&fCL2b{u7$}PiY^d*7JBq zSBWR|Z90L}0O%iRM(7`S$zln2!%*|SnV0||B(Q)LI1G+J7CMsVi(57;0YD+@K39Gr z;&n7-6yVJiC!Jg`ewB?u|3PD}8EW6Nv&#>Qd{&$OrRMBk?>W6bqTlCdm!PW|um8jmPUA8210?b#6F*&gKD;p~| zzTu*m;%SH(T!XKDhP(9@8&>p(ph)p|x$S0=667+PcH>ET=4AYpwfNIxsYzprS1|Ql zDJhssIJ=Z`0(<9;=FX+;)VW*1ugVfPimyDcyfxTuA~#8Fw*d~xP_?&WuEhFdDuYRgy4 z@;v9)Ma#xEVZda%8w3NN>tRpaTs;Xq6IA}s@}A;y=Z7& ztSCl;`=)Q;UAO#gN9Ehj5;_E(W1*(xX>A&dTrsKC)l$>9TB|Uce$(Imp}P&`*ApVZ zs?+#VPa7L2tEyKT${ATE%4(-7t0^>J20MY9u>5@2TKcZDXGh)u0~Md2m$*qo{2v?G z?dioWZndRsL!SG#vthSIj^7+h;FqHV&pQjrmU-1LMuE4(1Mf!rL6BbbwR~8c{&{2P z)AI7};`FDDC!baxf1d6Amxb~Fw$RmZCJd>KyRxd6x-L}gz(e0htL>)&T%{{pX`w;E ztGNor7O~!8A{t(@15#+g+`xZ0;#Cj-n+RwGKqtt9|A4ts^DruN*>R4=PT5qW$xA|`!iMx$yEA_>jZOuQ7 z^uHVIeK9)8Sn$9^1-GxIllJ zyXZA@&Wot``OAK^0jfW3fG|k1f2Yr42r32wu>nRAe#Uzc-X1Pdid+c%U@<>v2{do? zHLh{jPqtRa0yExJ9k=?crqppQIR5@>D(;%95p5c!sYE6W5f&H$9W^FUO!J7oDl362mPRKnMD*iD89V{ylkX#$AVD< z8JE!+?L!29aorZze`uiQ_(qX|r*X>+&u9J1dP+c2H;hzn7%APgP)o4Y#!nw2KMZ}C z19u6KAwbbma6`F<6U@t%A1H>Kexju=5InnqL}OeZRMH&};xZj?Zkl3YoM2}<`hmSfpA7PK73rc7&X;$>Kz!uiRuGEZ@_y=8B4)6P8A-YVZ-lmpFMu)T*8`g~dDquR>8qV%4Jx0dh4e2x!Uia#}YIl3k8L~pw24MS;n zX40yB^D`HoF_pdA&nxHZr``(X%Y8dt6J0mS)#w8F5Zv z<$rcj(Ra}{^wZZmVxfD=T;sf%#%(ywZl<_(vaKcksssPzuU484ApW5I?D?qg{fhWM z_<@Re04XTgndkHXK@d_bhdB~`NbCc!3g*X7Epi=9>CxpzQ4ldSb*bu_h=~r5wVyhSLuDb@oAJNsI2apJM+EkBCQHaL( z7zfe-ju~lik!N$oK!B1Ks~=_pn4lp0-0QLbyr`{uMq8Pz3A}*5nnj!GaPfyeB!$3m zt;Rk9IwrK7JEp2P3=a`lmS8MY!Bk-mVyhGjBO1V6GhHAWP#`w65*a@Ws;Hw;vZ-yR ztwy$!7E4-Ceym2ZwqL8d^{+M2U$R3UUvR)cyuuCcrnVw(Oznn&G5{;z6owBL4!5lh zg^0mW0}U{-?01EF08xUm*h3IjY_5rr(KD^OM#nhwXbt& zh$Z|Sv|#MFSrQQbUL4?nEpunIPeX_cnZ21{wE@<|oK^Tc%7Q$qLtP64?Njk_^s%fA zcZDZf65?DD$;dGTp)Ap_3(vH1O(3YNZ+E`CFt1m|^>M&(1i`*(xQ# zKlNx>0GGHX8h{`1m&V4vA4`FdT^laj*OdxtyDM|WQcZ@+V=_rcZv zONU2pMuEm`%BvQNAF?+1Aj^JUQ#e(gwV0cOIp~Yp+~?Kh3uWo6)rD`nyVt8y7pqDz z^Vw)9`mwVa&}ON$V7WT2zoZPQ@TaDN&Gz=U-LiFAAyEO(%X3~fmcQy5+8rVVzH>`1 zf8N+Uu&p(-`D+Vs2xmcsWRn+V29Ti_D2R}?d z{x}ZQP=}A(LQN4O24+Vvr8gZiq6>t>&q&WkXD4~_JAIggHoqMjrn0~4?OttaSZyw4 z2|=#?n?4!g0XW3b1J>Is(GYwX?PGcHY>DpGEg~Ts&>&@7bS{tg!VEgR|^B@rcg^P(l~5}qy`|C zy(e7-YjD9G1&2M`(b$S&B&vjff4?>UJUoHbT%x=N+wEDU$mA_lxBq( z85sU$pD{TqYO1vI_XaG`}JIe;(sjne02M@8P zhV`$@PX%yv@OwVfT0_TK%iyTJQ=FSqTChiPlxO|v$g*f(+3|q7BR;ZNKjNN>qkMD1 zef~6g##L$nT=r@8bbcy63f-C@+P!-ts zkaNVPUV-@EvCxY*(WUOE*_%VYWC9RxS{Z=CgZ>Nr2iqJ6<5W8%8UV6@A}4n!0S`?M zGT+>`(7$G5(|zN_r{=3al?DHh7czO&tlQ6|#n(PT(e^G`8=ckq{tj-VmU>J=4=fEH zSQ_%D*h_=V;9){PU^D?D2XVsx8KoFYV6kto)k(6~1uez=8Idr`uOw50hgN1RHqKdT zT_M=r-mt{Y2JcToeeZ*|xtrmNE*yA*T_CgK`jFvep66pF7(V{?7{C<-+T?f|bHxLr zFA8#Cn!%zO!hTDjTiXf0_G8{8yawDSu z`mv{pQ48HnUpK84xR(kzp+wEhM zx#`0NiKDmA?qr_+Yg6v4qK8u{cVLd9*m_=Dxl&aymzBJce{-|G;zd*KdSm5><^qDZ zHp{cI8eK}gg5?9455CZgwZ$*n3a87mSSEjv*FCS!TyJPzttx$7Ubaw?kHyf(_SUz3 zt(%>7Yjt&Rx@xiOSuD$AX$)V8yX169#!PAId{f=i_GZ?P_%^@q8)Rp&-BiCW%ltdl zd9V*VAT(U?e5NZi=SuQkHWj=jU#zKkx4VU)VECi!ZT0jFY(D7+9&VpPwxJ`egm}_~hI1QC#XiPEGSg z#tY(OEY$!sT-3EOW)D;UK3ZStyrnh`0O~V0HYh;#K~^>XrY#|sQb;e^w5aejDs$Mw$R9aKIoAdU}dIrxN*v7}@J{W!BWv{q~@}sc}<&+Q+HE zA6MqT%+CC6wCmr7E58iXysEzWD)$tc@b2XF_VT8-%9^p7ipSWs4)i}C>fag}_%!qA zhqNdFIpn!VgQ!zpih*UtHXonwoEGA1Ezf?d~PO`9XAu&VTsEMD?Jlrmnuy zw;1UNhX%p-KS1fHI!nF|Qa@l0kiZ$S5LV#+QUl;U+~}pdzw|^({grgWLMn{u+qe7n z8i14mDQx2uz7aG4&F@6A{9Xg#rY~jricnw093Y}&m?41vl~qI(B@+qsA@LKcx#*h& znOa`=@l6i)E{XQ4IpW!HI-)q-z2=BdX}D`eln3r!1>s(K;ohPFQ2pmFh>9-^pN~01 z^T+oCnitRM2Z}g&Ar0r99H{}o50e@Idf+BMlUfghJU1iknQ*R0*>uH(I?l!)J8~VC zz}P_t>gpm&gcRhbqAD7IrbdW5oG?x104#%!8R`NAaXX0CQbh#7#s8wQ&Iw}@K`HS% z070yU@7b9V4KL#6^;A#k3**mI#u~UoL-%A$%%K6$52VO28o*g&)r;n6gEi5D#p$cw zG*-u=C(qqh$ZpN_@dr&3-V7qHI?YDdcCw5G{}GE{@gbboh+Py;LDXC}u_@*UGwiXJ z)4%B+_@buZUpsF8JwNcrtdO~j4s||&NNTqXG;SE{U((ekkUieY5OC?Tp2}52^;;y` z8w&~qs1*5>h?6fGsnHwQGlSQ|0xGk$MD|62E^#!=WGt}JCEK0pfiz0!^EA1K7Di53c9y)Y#eT(&?LrTW*An z-#I*U_3+I73w`%)4c@r9UUVCw7V6e#-1@<`%w{6}@RFd)-pHT$%Z)q38vu z3zDwJ9TaCrou05~MBRpWPB5kg;)FA6FMXt}2}$Ji^mTXRmw~?BwxZ>-{Ey8g zbe#_)BOk`wUk}UII@;(ri=_#~!Ed)zzUgV$YOj6OBRu0?_O*gC5eH9DFmW;Pe|CFC zUKm~BO;6``Z!IGNCZO*}`uVhHtyNn+HH-qU2gMA5ZQSdze)vB>FRs0vnEr8T^3BxT zyGIk`72k<)c2xh1i<(A|mUguEp>Rc(D!--J>97O9)dLDpEzbCgL=+YP(vhq&N&O>N ziy?p`4FN=~Fc9DhETZ8R*zIP43rY`wH@5tup*z2juce7JJEY1G5 zI`{L^_z&}ge_a{-@$sXdmuG)nUHsw6!jDf^cV`|ibq{Wi&i?v%syip0AJ1_AU(D3h z4OIlwU);69>lKV03N)8=sUJv>lG&$d1By+oSjG~~`1=IFE?4>lsU=YNr6J&tDK0$c z?<=uCrFdl0yF||Wf&IWc0_34J{@wrt5Tw|U^QDCUvl@wyf{iK}g_@{pkpJ#$Vt&NN z_F-56I8XgCKlw>d`MJp2V}T8)LQ5k(3FKfJs5lx#5BSs6SvRo&xCj%}iw;k@2lS`V zg91&SCml?ZgHigi0{0LHkDz0&DC`=r7zlLm_*h8vb0{w@8Z>9xpKTcomwuugF z1J~JGO-s*R`R9?w z|13ZEDKBs-&Sv(MLvM&p7N9B#1Y}t1sG>PQw@jhGXRM231mF6+fr{{7bhb)zw@Gre zU@X8dNO-b4h_y4If1$NW9$=J(4vT>_b6sxwWU5?-d&-Ytp;KljmKID8shB6bnbf&j z7CKp^+FRVUG{|r^EBCc2_p++=bF2*V!YK$EPri=>1`l{1oJ^lq<3wob5)Q-6;UuQ zrpeZ(@wO&dmcl`*^tP<_u*!F|OtiLo;N|$h-tNAq$HRz_!o!iW^HIzb%eSJR-a0vZ z=lJ-&OY6y(ma-BDZX6%FdulW1!Q1ABXGL-S$;mqpPS2#D8cMzQIr&^q+TE#p7rP&v z?!R_w?)uS%v@4JEYZeRBrqd5UD~(@FIrZpP%+R&4wwvdN({In0q%IZRozKmDmV6g; zh@G-rf?RqMudJjTf027)3&Le_(Ms-(SF*~TwkGnwR%&aWX2hY%n#p{yP+j__B5Sp_ z{zYkGZ{pqg%uAo!vQ~wsf5~)i!AkaZD4qy|*#r>c$Z+tqu5`JkdR3PHLRQJd@V=vR zD)-KOQO48i?B(+6*|Mz1mDQ-m1m@FRvfCru?HqW~Ub-c3`#jw7uBZQ5W8t&vsyFgt z0wW=DBJ0J&dAqZGrAdbRj1BM(`hb=)F8I5BZ4wJ;t+j5ms|u`tr>FJxK-0USj@Nx% ztb*5COIGChxJP^%AHsQJtGkisI0bF>)sRj0W^f2_&pDiut!7;jBO(5|6TZaCTeF* z)T8w@eAJX-0kHwLQc_|F0Q><0Qp77toSCl>5O6u=lA=Zhq^PO<$G=!<>m^>fxi!(d zJ2CZ-&7Hq5P5phe^|#*Yx3c(0_q~SCg>zH@1|#8j!ynKH--7fVJA!d zZ~ts`=v!{nfIJ{De=Pd{4i1uRf~4S=y$L|t;!^j)b|n0VJHF77{hNOd&^Hi`|)L^S9#bMQ%FvhzhhCjCp3^hO`mh80WbkfofDE^3cZy7iQv2cm@}>q zih0mYS^*IeC&oZU15h|-C}^OH27vQlwzDA+0af)9nZWwmGyq=}B@YcvAV1oG)4>DY z1jH+=AO#H4(t;$4oDZoms{-I4=m8=@Ok17$e$+q>7wBX9YS@CpqG2GQzQe1*9a`Z6 zq|Jxu4Y8OG8Ef(;j3ZhC)t}Wd)t{k3e5SG5c_UT!u0j=TCdiAl}i8>pzrG4w_^v>M)CjCxh}U zhop4}xIiMc7={uq|0yoUuqIMWbc>uV0i$j>>Hz`qaxL+6D0H^G=V^7rULRWp(!nbH zL`Vw>!}$Tuxq*&3KDKy47x~$7H&630l@K9Pd>bMVI=U73+R{P_0$upbh9I{FU+W6e z^?V&u-K-NyJ_v9k1q^@CD)z?Vj_d|Rs7ruDskc>%i_skyy>qr!G@*P~qiR2M_}wf# zt{EBJF)_X7;d#^9<)*K5$=Qg>J7?$boaw(9I(#}{GU@W#_2|Xi#M#tqyA=s@X*Y+@ zgs)^=ecxLBJnj5)_ML`1x7Kb3J-U6YGx6?Ha@01746g{aT8xGNL;9?S|~_H3A|gGfmDBNwU`7~Iw-PlR!+7hwE)l^vtD`4Jo{fr-Q~-WMssqfiawF1)d0?{o2&O20$_;`%QQ z0iDTblHq0pBnie#MWc%162l~)o{F9`yY8UP15l_+zNTU6O_Dig5oZEjYdp1wOh^I>`7m(7L0ElmB>MBnGm z{H^>8qnAV5Z=Nhk$Q!7w+UjliJkWs~$L6E?H{*T(*Gk7vi;sSKJpSv_VdlP`P1AvMnEP%+iMD47hAw{@ISuPw=V-)e*+zE_qaZwLUdA7_0ZBn z{s(CnS2%(pLyZg+4M00cO_@0WQy{4UuoB=3AEkBhw6-diPp1La4YXo(l<+VSCEi#Y zI*`Z>HqzvyJRvfk=Y)tU1O&o^2qGz|5p)ZR?0G$99D&a2DI*!XVQq5F+5}F~RbvhC z8KSim06qB<`tj!abcMYJ00e~T0{D+m-Z~oHvom2cOim=<@s_90wk-Sq8czJTipV$d zAp_wi{UnHnIp#YWk}89(P@I`6Kh-^Jvj>*OG#m5>%tHv!7)0>wOhfVOVs*#alxaiQ z!#SDd+M8#4n%{CWxMBM#2cK0S0*s3|et}Dd3El}9l*7=w>`C8(7DD$zY_pn9`obP5;?Bh@o z;?n4CSL15NJ|M%{A_GmCmt`S~Uq8F%Xvlm46(N?Dp;iQ()dbkW8Y=d(iFYx+>t%Ku z@qs6Xqfle@;w*K~Ss7il73N}h1AGc2LmDp~?YesS>76sP*JAsxAL+RqGkfRcoUC#) z?bJ;6&FPd&&yvp#-Z;E^_w@VhQ_J;o2>uHR$K>}P5+^&8bZ+e7?Wvnr7qTBdDM}pA zFKo&<-y7$$c+PA5>do#`{(aXDkK|@QsYsd1O@5qwbS3-dZrS}8W$~+p$wNsO9zTqG zQ-1$tL-9mb@^oqO=#7}CMYmow6wlSx&y^=^m!`a`Pupq)$tm7$DHp_#$}~Wj-KJ`y zxE6}CM|09vlh3^@&)ezRcUp zbp=mq%GR69-gNc@_3SjaVeR>`uMI6RnPOWFjre+QHaC166f~h%Jym>DjO12W7_?-( zY0rM$-Ni2VZBHBhW4*o{KGJhp*6a3KvH{ki|My}3+_B!$vMR6Pg8#Z71wh?qXUR@y zEnR^*g9b2PlmE22@|j$|+Ssz%)C7I#MOXc9Z~Kprre6>48MJ7e9+b{9iHj0pY} zdf*sx!JN4la`}@2qi6$E3Erd!kPQGt3}7&bHw@=E5Rg-Sps-~oWvtp4l7eX-W2KYD zZENF878)miZvY6v$Rr^T0DUh8#UkZgNt8|r@&CF5*bnNWgt3A4zHd$i`Ha<9k%9m| z^LcUZKh1Xj>qO;F)5E#c*zRjytq(3XJScC$8@##ZO-IM8Q3z2_{&l|ZA2agLOM@V0 zAIAoNnjZaie*Bl2!5=2OKR;^!G~V`pqW8mi-;a|+KaLN48t$c|{M+*JJS-S_{(v__Ne~wgRv}ZPm3R%#F^u z*d>Sh7e)m%pN#_lsXyjZcg(Xo(iI7Gd5j-EpxGfF$zHa+>IvT#4Pfew$HXZJzpnh( zA_k@b;Q90DVgQ_<;gbUTS2O@OQT=_I2n}^V13f$;6t=FaFhntgARwMOK-hxnFdk~+APsth9{9YzCU<;l?o~4b zpdRk^kVF|^*%G5M=A0Di!3c&`VU8ZvRXbq_%UJ7_9-zPBbxYH8`r6lwG_Dw_GkdZ& zfH=e!;i8o>N2Dzx4YL-`5ESC;NOMiaPM9|VWY__4m&Xg}ff=+PF#%k)!bR@jWs`ju z9jyybUH+-F^#9X&`+dCs$NSOiR{{s49V*?8Qmq*vRPUInkt$5@5m{#XC=bXQ6NDdp zJqgK)w=j%%GzS9Wd*K-e3n&Qy$^Z+a@9=cP1t`PCCfC)z)X}=s)`S#z>=~fwZ` z%j^I=`khK5oy$XP$~{d9>PxZFpnQ|DljrYH8{*n|*c&TrwovST5wXU~nC_3L?XyYJ4`+2kwF%5#Z&pUikLpLl9J{p?a< z@=8g{eAa{ByXU5puk4h>?=+N5RaUO#-|20vRqsCq@rl0EQvtM z=VghDrRh@@8B^tDD=?1QfpOXia{1WPzuPL?YOHAaCxDB1~ zZfDtQQ{}7n%2yr5k1MmM3eyk){50J8rVCW3`BghTAb%z=VW~WscmS^U>%jd(gMdHJ z+nd*0WgBhW_e+7N)|zrxo0>P;Wt*Kcc&H1t6@0>*fx(wuW5gPx41h5Dvb*)isp;*( z$yZa;pVw#K&5VjQ>CE_#kDsoOPQ{-;>1&`RFj$QPG5ppsq*{?kVT>aXHsGQM1Y42G zOb=iPpaJ0dBTWE;@_)oZTKw|bmwJGL8!GmNYzoPT=^%VD$_5~)jeB8?T}zk+4L~Gh zcyZ}5gpEz4$7O3UTlFwKH7`vSHw_JR0PFzt|NLiZ1I+ndDy7QxpR#MIsiXSmKilf- zrQWmO z3*Emgw*Rou_jzXIhmpRYCwqQ;)b+!7_otB#Hu<1!ABVc>%{!B0Tf>7dhX(iue>2ec zd3ubMz=yf7tskAFBJYllI)A>Z=t0r?EwCVG*Bi0(V6&O z3iX*({T;RS&bip!!M!mixa@F1%b5ro0O22vX96q3oy)>pu&>Vv^%Q{|V83_)9rgXw z;uY_i^KJ`q-iufK9-VZbJmociAz<>9uz;3~puvA;E_j0!jh}RyIPEfW%IVQ*m!TND z;VAn)^g({c1Z-CO8Wy-1Qi&4adnvNIi0>hi6ypa^O)VfGLg0iSoEih53XC9;3#P6H zKoqE@8my-lq^$xt7)AE4q0UhQjkA{eU^_AD2af9~0jB^cA*sD&q<3Cl`?R(?=YoMw zoCynIos*iXbPIg1z=+t;0{&nS#2x&ijgb@&0Eu~>XMeyZNMcG9PLeR+8FXpuNuNY)y0JUmW>`r=zRwx(tSzqVjV3W zt+mAN!OPz%vd$fy4j(D*yyL?>F;6z zp|d*NjozN-Vo>boUmfP%e8jOPSi2!e8&U^+&0JoF!tGe7`BjgbNJ?!rTfSGveE}KdX`d8FJ?dJzYslq&ZqzS<$?Gs z!?%x*C0`rLdAOK&cjCPN!o4#uYs(f2bH`GzPuvXKs;F8`k6X^WJCa{CT~fM{b?-&` zx%aZ__0rpml?4O$?=F{Dk)())+;V09XeJAT(Dl-+551#=y-eq3J}u5!ud3OpE+=qt zp(<-8JANfIVY}+#=eF`U^_3I3@y}CFt>#|uyLV$SEqSIqcd4Obqe=F;Tej6u0XOtZ zPZPI(A<%7a+-NF8EXEx0ytQewLr!nNSsGJ0GR0ojJ_O;}Zmw9B!9A~9tjt@f%-ycZ z{@hx;(be(1t!=R?lksA)H2ZmD>F1HY<)-2{ZMA%5*1xOr<|hp@s6pfwpg3FY>{;*W zU2bb%Zf{*~Z+_ax;KpWst{Sgz84qqE!))wv96k=QIVOZ#Dq@aN^ zaH~VRfTRcK8#0y01ONd4^hrcPR2Dd~^|<^)?Kf8v3sR&{3gkqcyT4#Ms%t>ORQrGa zKSG=w>I(}u#wUNCng4ZS7}t&WkE(vHjh}yTvFrNjlC#IEZpA;Ul&!S3fcgA1HTc*0 z5$^auP4)ja&y~OT{YWbkYl1xA^~nX>YM_h5?&L*p&AaiYAIJON4YYh7ZO6LfRWB;M zp}||)iLhmxmF(b zE{*XmjPc8g@JbDK$qaQWJM30--2G3pm)s}LI?u;>EnM*v6Tms&#VaAR7Xl^oXKDS5 zM1UT^F9GAi@JaLm&V$jmGyufFQUj>+G01b$FCvfxuR)la#@aN1AWfnBm39FC_XZH9 zrzbF8>>sspzK}Ig-I3>l>P_EzK98P6dpkk zfrLwhgUMCB|8Unt_nNiYeNTt&@|6EPeEVaS-`nJv@$)v%u6VAUaGQv7Dsb1oX3er! zDc(d6=>M9rXg1LQaj@X~CKBmxZ%%;MT{{DkQRzSo0q3+20!ESXlHzVtY;95w{^MeT zyTd~Z!who+pr;BCOOaFNY6jmX!B&&~3fFTIBI9f<1t$vsYB&8NU$YwQxIK6@O$QBYr;d=w$8#eB2gp_>Lu>?2C)*I2tl`Jzy~YQeB*1 z>#?XOw*sH$U+F39St+PotdCpGxG@rI*>&q|XL@PJMc=Vo$NS=M0q;C1&0EX7GoN*B zI4)@B!SQER>5GYRlMinWB_ChTkAGg2O6o71oTZAS`IK9WNs+JQEiX&%&&$dt^RI5_ z-h0(lx>#5`TU$AqpEG+uVypPp5AvbShWg3k@};8tT$~r`vN4L-D9fJ9PMS%$u~Cq| z)>t%Om^ha9U_L!zD(#90@@;F}sVjfkm_=XVmg@ z?Vq}<-gI|twzsY})?sD(rZIE9Hs^VL0k#up3!b;hkeEHK%v!FCaEFMHNryWCVI=UM;FZw%p^0L2; ztTbc8k>D zlBpv0!2UJ_rt?B(mkW|3=Kiz(k1hrcpYeTk%8{Gjqf^e{1RU;&^neLGL66$f1NIsK z695kTEP+`ha8QAjdy%7O4h!hMjTROu=X900&yf)2t*YdrrsANXW~-rUt%ht>_*v2h zK)OLWw7-J`1J6?9Y;E{&=GAsj!%lC@2l%z4y^{CF z$Dt%oSA9e|hsj-v{38HlkRh_dU#IGaq-0MlwO{Y+ae?8VUmkZOC)TpwXq zfV#4W>Y@Kx0{{Xdv>Gc2uK%G@JfxN~7XQb!g^L3yim-adS=wCZn647xj${B}0mR`$ z-1j9@=r{{QvLQ)=gaFDnrSZTD#U%E$i6-U{RDWp+jAanjUy$)F^>E-p79ez3c!HX0 zV*Ud?6ipTlAl1o)>W`5pq5Jj@d7@N6dn0EipYy`-lKRfYzz=SswP#0coT)*<0P>TC}A2U~w4z%Ci8u^G+_ zbj$H|g3w9s;|*)AvzD5d$^NBSE2u%_3fyopNbxi+bvCMYwoG@kJ!5bFz|}6*!?w`d zTG)7b8uN(hF1Daz==LzFau7`l3oAGxGRS^nS#s3UB1A`re>5)p9fACD z^TtT$hH$qsKdY)hOBg|oq3*@bb`M;gaGk62GZZi8DDPr_HwKg>8_fh~(?oD5H>bNE zRs~0VhwojSdk{Bq`N-Jy)4eBrM(>`P%t>5Kz3?pediV9SPaniiB}K1X59_~svgh{A znTug#HzNCQ-tIc@GkDr(_-bs;{e;fb@e>J2FXgFQC1>U@ge+f=?2W(MdES2}_rhdF z^J2ln#k3pK_b)tsc!68<+}%?{56+I=KJqxupBlPZmNArmeK6trv(l8;W%pjR^?$rPiHYe#(VfI)_$xK<%Y{A3TlAAxZ)V^sb*dZULA`6Fx zH=Ru|MAs^^U)E%NYRZG;vr?J;p(TI2P5!Q{?sdBytph@{<%XJPl}RgAS+M?JbjWZP zVsn5TY_%o_Ve>OtE-CN~0i?b>mDfy_6f9R||JdKX)n2^Sfl;VzrytI!jKBaE!Yl*u z5!&f%-R^C{5gOVL&T%XZwh0;=Xom*M_851djjop0ga_atJ=pVQVd2-O%da1ey_p#Q zd13z7rG@7`UBy=~2J5Lt!IZPmXGzBIc_D%l55w933o>uTxUE3%yAxz3*5nTZdN2jF!6%ktzumL4$y{5aLa^`8bn z6D5XWXQX+vzwsrZJtN&Bfw{8*F*ZcrxypQYGn?(TplY-SRt29PjsJad`M1Tz4>OZ5 z$J@Kp;|Q=cg!O+=T~E;fB-CECf#1D3jc_OZy#a93m#q0EV+M&5D&+x49uHFfyVMw@ zD44GaUy3#$lw3R!n3C9j?==AGzGN^b#BuDF75EsB!X1wlI)bB~dpzG%x?c)Qy zbEAE0PDcR#w4Vy8i}EB6q%zv0EXK1i+^r;<3`mchFprWWewD|3YmfW1(Eup@)8{?r zFZ=M)q5**MNqn!pbTAqK6`w;!D3A1fp7clCAqW&%YyKt;erDBPhQ;nC`A$a3Ryqj5 z&grQ|X{rRX2GG-@0igRJ6BtvVKSDsEy4u7;@;Tf`jvDEnu`t3A6jSK)2I6W@eW&7| zH`9i$5UZzr$ws6}uyVX+Ybtq#A`K(t8Yq);e^L*(IISC8z0LH5K#ZM%nf6&7B}F2b z7LfqL5Y!5Fl_248{fCzZ-IFye+g&0UsrB6V(MjRNDe_xv2=x{3;pM?H0C59!mn#<5 z{kJdv)|&c%bl&>4{Mg%!qaPC@mM(Zy`e>!v9?CRV%f)5LLO<40i(B?3Lv=RKG#&v2 z*%|X5{3-;^)X@S`5X%W70SK}H3&IPCu#_@4dmJO;ti^lqdc*3OYAd3H?RBx!s_?Wa za}mMHfsUt88NH_TNYxas8wSho1v zjR!bGHl_JR>MEVE(B~hpBG{`V%9llPSs37tb*;ZK2};dA)-{NSVHx?bIdH5Fw1ZlT zR84qM*qbKV>SkLgr8!w%ceIN0b*?!U)_?UVWX-t;XJ)P)AB>CXxOZdhX7uBnTT@wg zR#Hxm-##{X>+smM;DNixg}&tKiSGM1#&1SVTt8NS>1@x1!#z>qB=h&!^m3z8AY#ne#a5$fGO19XF1T zoey}`Q2(q_K2?;nm~r!2Rp!fz?B`u0q=`K%$R3S9zLIz1U9-yriEwat>Vz$k1J0bhm6DY1_KrKC;{22rKkeZ_~$7F1g(=+M93;6{ex>GM2;aKQ}rW zUl1AJ(?)RoR$tfi{$6CR?5z3UCcn`=0P^k*sU050#+O z$E4a@SFm@&1pXt!UXBP>5ByF%K}U}{aoGP!4FD8~eWAdDPC9W0j@ZEklB}Vr{sgSo z1(*l|sHahZlO7l*aq+wAo=ZWpGht=-uJ@LfOdyjU?ESPb_XDe4 z_Pq;3pGP~tjCBF&d>U!vaLwQCse9Q~v(eq~yi0~PH`0pdEmbJS5pyh-XAI}3%v9!y zek`v6L!*^$b$5N7eDw3e;>Y>vHzRGsg|}dJ>$0HUr>b@6TVbxC*xw3Gz<;-f{`P;` z02Hi$$s%IU$yrqVecyjw6-cY&-;dM)1ni?|02189x06agMPI7>P^7s26Cf-toI#eX zRn1(zQ6uRle|L1+VBZ{hBk|8V^$|D!0s{(-cbB2$y5pt&bqZ2_pE>kps z8c)M~X9E%wr3rwWxHJI(0lBMd{0|!dP@u1>GM^KucJPRvmO==o9;tDN{Vir{T>nKP zn1wEauVeZuXU#Q_>nWch?h!>5UT@|)e26F9{m+|eo>h3jk#>zK5Qsn63-6@ji#Lrl zqz1r8@7NeYsv&C^rLM4hvp1p8C)*2?=R$8>kxhA1I6vFy(+MzSrWxQP6mO$-M_)7E z!|#1p?SC6f`RD2jKa^j4ml8aC-gzR{t~;DmQuPPM2gwda@Wu8*#1S(JK($5%W@W%P z1SFSU(ppRGp2_e3xf<>qa<(3L=yGfEoxk> z^Bk-`}MSy#Cm<=JRvS?c9DT8KCVAFBc< zd@qdS?aZ%R7_lK|vcZy?e-r*;Z+KXjorvnaadzb!%!8=WwA)*Whi6ja2kze=i3@AL zfAeWt>|gujn>8iazAq--TrQD)tjk(!YJXahJ6@DDb^X#@Zp>m<%JclwPb(50rKc>U zUVBrOu!1b0zOpwvq5FYIm3hv|%oCVeuQk>3EjBwFR~oD5t4o%f zs$cfQB9%XFZP@PbCNlnccPFutTm8MShKJ|`yCcIt%*_rJq#QQa3sCv)oT(Q6$kyenlnv=2+0f1R^xcj?m=wj|h9aP`qP(GNBjRi z*7U=8C+Evp2c@67zum!ByqfqOEdO>o8o-6H*;sBUT4^kP)>g4lpT9r@Zb4huM(KY! zNa#WzUGwAQ*e?sqUzQ$!7;Sr0diR{JDlv^_`_#3Rzb98~uP96Ky~63?Yho9-{(mc^s`{}MR_v^6oeue;gfEWnu^zWOi zT-MRc3itW9soMWGQuIq<_)jGvyU8cIVl4(E%^yWNR62wEBRJ5)pyHgK)@cL8YsyR> zRDY=funoos0_P%rjC*(iIhv=rifIG5iQ0M-`81?{d(-5kgXW!cy=)W|`2974m-YO4sxcme_3fE;bk#i}uoz8mY4#IHsqP1C+ zoi)f(nwL$1k4s%xK&iJ=ZGcllh;6OEX=f1An_Z!oQ@WQ^rjH}bgBo8;nTKfs>0?e7 z51g&o1h50hchKRlaMH&1f`dWLVZZ6?r)M8roW6B(?ncb)?PEiCPCqHl8Ho#>O1(b% zFmCc%;NrtG9p@t_E(MPz9vQt5H+?3e^JZvMTok`f3-KpA(<=HBE^QQ@oVXS>73R@< z>s;Uc%M*7G_okH%-Z}m#;bQ-dbK4oGX5$lv?q1qRjs=04O27B`R?yIco3rs}un`?D zD1Vl9vH$kz7a36)AQ7mEaN(^5AT{P2mt!UaXYe+LdSF#ZCg1d`&FlGd!S8_IOSDfN+eK16Z$+nu+!6y z+4XyvD*er`JMo<^!zlDwYr%Y7##&3|MmvT=m56(}w=T&FvT9pQxFagZ*3meI&@g8G{!zy))FA5EC4ts{!qT*G`&?QIWe&L!c2t zFajMZ->h@-fD`=A6V712BnE=}3wnsO1U~7+?w8Wf!A1;ZScrs9xepw7q3#14k{Ql0 zAyNW;a8l8~Zla1J2MHL?E__F>eTV?Cc(YJqDJs%&@mVuDpkkw?m2&0$)3cB}7iXCIxs?p=G*H|OlhyjuyfysDL!X2Nzpj1GJm?fGqd__yH>TE#zx z+K6o9u=4#f3e~6KZD0L|!N&Ik4XY4&n`#kKJa4ahT$BB{E)U++Qezpg8;cVZ)I{;{ zuf%3$y}M<5u|F{-2u@hq}TF*maZy>&w_ye_58jAU zg&ibmh9$cQNi-mA9uywV(hfi{e}1=?lTwBEoPwn4FG(V({?f%?Qpxe}1}=oofCgZr zr0TD40Q8?8>PPjjJrUG$CZOr0f8+7M+9QFolVMdy1Iv&27e=^e1iKRbT^8lRPPpZy zU+byBmXiS;=Og|E?^94e6%AlE&W|&F$&16jS8RS1J%ImX0R)}(A{2h)h@t@;K{V(9 z-dB$ss6WZeq5-6stJ46O0Lbbje~vghyg%L4)b|WIfY;9vu5j=>6?yTLe&M)apiZIZ zlPSRf@f?hxsrwIXO=u51=cD-Wu=oY^2jSuFA8&!g7cf)}&JXqv!Y>H?M{)h9`lq;< zW?1ugQK~o*_K)uT|J--yuSG$h5`CVhM!}wH4>gu~>sPuFac#tQKh&|t$C@>JmXl7or#Trcav!Ir09W?C@vbI!eaw^W)W~~0*Q(;pV!k#6@jX%6NekE!);q36;b8G)UzW&0w z^7gv(Mg2#d$|Sa5Xp&mY%*@Qpj9bjiyv5AS%*@bIcdPkj+ws@|CzE87IjK8yaz8(9 zyT>Q+6q>!;mnwVKv?*7{Oe;%-y@PO{5UUeJ6-gb*T~;5#4bb&wpgTNpc?nz)F* zBr9OHuw^+v`%_KGL4LxgB(dJ$1@vA)VOIZB5A$z&rr}=R&N+Mo1 z*01Iyo#(pT*T?Tv6r5M5t(BKA7Ztv0DL~1!njf>6;Ce4kC9UOEcgAvcCJUk$oi*?K znol|#UzcXCHK!c448Ccu+pMkHC@i_DjaV%vXe{w#UG)2bQ50UQS%DMr{@Xdphc#6@ zwfWn%*@(aHM{7P#wSC{)`J%h!n}H5!o#$OG-%hqL2b{In9f|W#YZHH1o?wZ5KhS`` z^t++fx1-${MVz%a?bPJ%S7hHdX1yC|`!v@5(|E%NklT@#m!ti!2U;&X8{YRfzVEO9 zW~%4g@lH0;RBg6B1W$gmFoki@-AEH%~Mrsqx%l-_MUroFr%fSVTO0!r>16)Db+zN*T^#8=qqHQ6e6Iw*8GsSkVVkNFz#|5{kJVD?N} z|B1Bv7eYnDH(&YDb4yK~sn(W%czyFXl>YUR-z;?eG+F=6c;P{1pYfMl)`mK5O95N01}Gl|DOgR@pKb>Js&(IB-LMdl>h*L3Ivw0fF4|i1lrGM zXK8Nwl5$V2Ct{4}hqVttf?$;)aDg5s04rJfFe9TPH|OR6kDd@WuJ%(=4#OdK{Xvdx zUbgMNPEDS+tp3G5)^&dNZNbjW2cuyQ6A=#M;f^$b$taJXF`*wMyX+>w`5^|tnX{j4 zFPvCwdcaYF9oT^20}*Yz6Yt0?4FFOw4PZLRlm(03r~n0Ds;9%pQN?t|%9vq8O|sN4%$()FTL>UUHAaH53FR=m#1o_kBTCtE);q zWd*@XJ;zvs`u@k*cP)94r4(I-D1}GyiceUtvtWT*ga406N1nP*{pD5C0B~rKJY)KX zlYW&sHU^3`0MOSGLpe+=NPZV=oOLmAlO>Z&LJ7^)Cj$P9D0#(+)b!s>r~k{e-#<2m z-o)F#C^mkT>N*pk)9IwtVX0E9uM{Km6_`Y#z6RST{E!($7(QrAY@bAWN*Sga*b|Xr z1~?1_2n81YKUIb*kaL<%l=Ic)LKUQ;LWztC(KaIevA{?%(M-RdHw#!nz$H}zA*|yEyQSh}kR;+T=Zp07H#xPD>JxEhMQdbMr8))!|ok5GM zqlIOcwRO3TQL~*6X^vyqJG&ay+i4V9C?Gnk)|agz*B%Ll zo=&up0kVz?u#=*sm5h*`oXE@ieD3U5`C*5p$+I!=MjTf~fori| zdub7i5!UmOj_bKGGX>4Fg%uYyaTkSA8%drQF=k`&>7#Mp8^wO>hZBY?5-kVIws;MBjj~^#c}`OMq@dR=eD`%r^%k}=I*`X%)J!9 zw+-<(!;AYZeOpDDI8VIltbH*&f+6!kPWn0Uz(5yQa_Bv~1%yOo76%RRrT z3f?WroXpAV7sVg9)V>;Mz-n~6ws^NH^}f6I!${|==F+<{@td&*6l8cx!}9!YwC&r$ z?vv`uyY|AjBdth(F@-+w7PIar(B^)8aF<%J%5a(`#MVeyYa#I zgROjTAA0M)8EE`4)b^^o;nU>oZ?{*-djZ1zW@Q#G(5unf@8-xGs01*$@2@7h;G&`Q zroH*DZ}4_-?69|&QqGz}xU|lXy__4ln;kwHXu&WJzaR*X^Z>8~8UQh%oj)$l z3u!0AEWu~K-`S-ByjxrUu)p=1_>+>7NK;eX7-1(jIjHf^c*MtWD!^>Q-)I`2AIxAP zELMWa12ComK>FMW6?Q?A1^_E`F9t&}BjJu1i77OJktTq^cu2588uifXvQccYP=o`@ z1OVqP%}_N`Q`S!j+V__hkH2PRVfai&?aL=HEGcC9skxV1`@g-t#i8LhYh%A#>G^J` zluU?|Lht#4=(@DDhLXDJuA%KdG!R5FZ~eG4^Xr4z-|Wx+uth}L$oHFLA6G_hCfk0! zKJ{U?7kS;gX`%YR9&fuDY}{)u-0f-I??n|@cREn_Vnlp9+Lig7nl3V<;H8`9a6=OE#U2TaPs!Sc2EaSK&x7y|p*oMB zI;*Ou**nw+_;rMMVfDjeXFSY$B*bPU+_f{nsWZ^6&dnObpE@tAh5)Db5SO7Sx0x8X zsR+l(aHpwAx2Y(vpKV83P~wG+f1(3u{(h44R;(R`o=qPUpCl?k0{(E=14>MwFbUxZ zZNSf9*iEC;PNC6Usn%4f+*Bn^Q}FD>%@`q=^V27+fUKTNfdC6W5Yo@=o;|h09`5ni z{1A3P`w!e$0azCaSyRpkB>qy98oNB3<@$G`8C{6kmRkEQOvZFfO0eHm@~ zuGoJ(z#v=omzfG*i@>E79*1ipKgM%HJyDf3N@cJR`ql#hNeSvvp}A_2i87v}X?n`h zy0Y;ak7|t-;?#9Ko;|^y1>R1TnR){$l@INQ7>x=uAPU72D=jYaMHXo5^@lB0n(ZvA zEse`849o3|Yp`~}wAn!u>lLW_xq3>Gn({c3!U65J$Cll&+fEm_c)-h=n8to9gDwlb z9tSg;AN12^tLMVn*UP-m&Y;y?r^QB}h^P|ceD$PDb>(ujl+q3L@*J#M!@XxygXiKr z4wHQj)1sE61C}D45Nf@sFF3)1KQA2rhW%up%@m*Q+}Nd9@6BZIm1NKPD3S*J`r_iZ zazvk+BQI++c2a#0Vl7tUqdQ^~=28Q;3Jb1_!p^HRcFU`-bKS2SE3d>w`xyZ@?PWVz zQHLphE6LF(St0M5OO`|t$8~jgZFO&lM-I|`uS-Rr8q>ZVY`$(PUl#eHRs7fxhi}hH zW6N@S*maWg`}UmsiT;cF;?uN%SB0@JyE-lh2Uo=D^VzBNt)uLawHT*`c%Sv6j5Be? zWk=IZTlQ6V5#{@?tpxoSXu(xmC9Vwb2YNpa_1?7BV=n!}bT4s__rnd>-DTU=IV6bT zYWMv}=Z|AuABSt+4rAxgcsJe+t?*?}{b5}JX~W-7_5U=6PPqBi=+KARk^Aw!o53aw zN(Iu7sr>ASv$znNeB{o=|G3uEt=dfrUb927^tEzaF;X*ld^y&i5Suxzy^hjRA) z!XO~Q%|I&`+i&rSTj=>PBT!t(jKqrWYFLb81d50A{@%OsaU6kY0Iare2o|0mrDvQE z4_{A?f4jB$&Borxjl&i0TMtwCFLbWOP zD}hFf5r&I#_7r^y>MJ=s(+MaJ>!F6|f%fBY5Wosle?HKFh!`@$#$46MTr_%YmBeQ9 zRVE5h(PFiv_#f)6@YLytBz@ewZxd)_>oV za#0bzm7UNdO6kwYTy1JT>>nV-<^B51ul8qte>(rW-I?F-P5*u$<@3<@D}5j5`aaAI zf1DZrZe@t2zmTT}HZ#(3)-672Z#?d3Iv;E~hYCE{eAFkVU!D$kUQhPFTo`2q1or!3 zdG_6ca9ExFdT;HAt;L_Vm%iKE{_XzOPIF4SvW(Q1zton7b18>37iS(M!5kbKILLGn zYDrf4OatJ(tYw7FjKl==K>;9921w}tV80K`A2vC{kuZh0(My<}lF5Kic!)-Lto`hf zj?`ma=_gvhe5CQ!W29sf|52KR;$MBK@^c7OPhHeC{RAht7GI|p9|y6gb$5`Y=q0t4&rUkQd~)c zIZknrWPyi!@hVA)lVnCu`skthqX7)MsL=pwOcZg1r)aXJ z2~m_K@|RFB6aWMQ3wQr#&m5$sh=g{N6Zk)vKoA;?2?P!hj0=GZQUP*L{be6TYp7x* z$Bmec3Q@puD&+k>P1BKqv>+jLf~m4diBWh0z{^$#lYKl!7&AcvxLuhvdEY-WLHF{i4>Kydbj8xzV@eQNi>Txtg16*aQ$?qjvOO^4c z(MqS+QFqAA2u2W-L?z+u)|&jpR%`7hQ;jNpMIlw#n1C}q%pL~4O~<_~`|S-oEp^*4 z6tdN-uu!QZ6;e+%%S1QV(y-CPc0DZ;whtVhwbZbcIM?kIA25J}oHztr=Q+XKDPdbt zCi9~B`AFZxB$ti+D1k{C>Nt}eERK()K#=OSnV0r9$Ll0Hv@O_mJtgA2xoj&h_o6Ch zr>6e4DE?z@$ZAddb)NTme(X+T-C3N=ZDY<-appp#!FpNwWq#~=OY@p2@MTZm`$o}8 zd(UQ)(@|AE=58o~w@M1vYYG?gD_-OW{m@@}+1WXo6H92_+p6f3>9Lir-m$dgi&Ve+ zmgJ*W@mYS*r_hvMS1hT6C7 zmACDU-%s>?9PYgD7o#y2yrZYPDCifR71zzBCk-{%;{3P0fr&=w_&v25{L~@_JBw+mLWSSpMVE=-a;P zi!$F=b$}4L%bj>rcOP}t6D5W?V7)%`qPLC#;@i1FtQC#K?Fk@ac2DtCcJf~f=qi|)L8+sY^*bbRwtLN`8-nfnUAbGY;Vh_ztDaz=kDY= zP+RwDYyPjVxBls1_3zgfznkkjYKp$94d1TF8Y@g0OLv(lELy6mJ!O2EpL&hfVRiC{ zt*QUIH}lt9lRvEuQ~GgL`gXC8ozJJa(GSz4D0f1ieMzq8P|JC56Ab|I-Rtpzvp(^~ zK+E-L2iVEQNXO+!H`}wjslkUG+Nh)fykDFn(US)7-NyVkt5a}iv5r`+jEs@_`Z;8q zr;io>@{e+@&l&El_$4=Yf?O#25;M5ZhpWAW3`*Vq+yMU627W0qzoR|C3gvZbj zC_f8t431!u`h;Z1F9;V?{P{10N#g6TkckOui7%gMeU07FGhcoEG&`#XUneg6G=RQf z2M&uJ5a7O0_cnhQv7ZyK4nWcX5P}QFumTQD5S5O^_k&YsB41@BxQ`-GY3m{dJ=&!qouYh#hZmW;MHP|wS8BsXgaiJhA}}D&i)K zir||cwluuxg2p4d$Z`U1eIw4Du5R7U&)Ccqy{e7f>#E;s>c{wDIwATb-UZXQ?VAU)AfLo@;Tz>xPPp<}w(c-%oab9BDgmCOWu+*qImIjchihq!7g zM?UtUul#PH?Y6u8w!0c1h&N;P*W=@Fds;VJYObmiz8UI#HPCt8TMq;M<#_9h!2vMg zgPNQ-y#?D1Q709?-!;U(ER7pW^qDHlUGMBX9zmBhc-Gs=H5OMx0?9Uu^gdMA#uVU75={3FC#yv$?*rIUyZIRm%-cRR6at zv)}EK^gGL*2YaR8tWo_(zg?secD$KvqaCvL!I6oS=9}Rrsy`C|q+5a>p#xkG00RhP z86VyZwcQSPUGO(GCb;aqo*4!~c{4vQX#gLW7Z6qaYIpV1D(u@a7G;0EzqVQu5-$6d zJmkw~(rjJ0eSh|X{=C-LdhmFVctJ~CKmUXcJl2Jw|3K4}-1H?9frk%S;QTS%STX@f zqU0(4xX7U&Hjt4ukU{wc_DcYOkS6y0FaHv+e?-4Z0<#lC z40W4{_ZyCIWyL=nBE)`C^u<2**!`3Gg8xs4zx_an>qw;gbiBuOtPAeY6A^avv2HU_ zu0K0Ya*(WmPSf1jY;gUj2b`pNG81qlWKi0Jzz2xN34};U0RsRBW)Z{?faL&8&>lP0 zIwQFX16gEKEKe}*50;bmC4op@-uAf++kdYAGyw9T+5b2^5nMvK`(px%J)s~0lY5E+ zKw|0{tcdBGkO3(;`zuRA-epA^_&h(Ar2g_M;q}Av6nHf(D^z7!`w$W-+52>si}`Q;;eXc^dtc=JG2ika#AwJ-vD#Fs!bpxt;UX;|#Ra#MOl`pt zh*eLzrZkj)Xg{1REtO>Dr?DDOlC@>>jJ1OlW$hKEydSKJs`XW?EVV^C&#_vovDR<4 zF)k+~-bA~@%W=rvcHGf)z(!YWK?1N=m8B+Zr5+3QK1Tx-{OHAS@hmWBxDi~vdOR&j zekUgq(oQzoW8z=zbQU}ehCPi2J&frD@J;b{Mjej(BQdZYZiej+x*aweZI&91Ch8a; zAx}d^5sMbg&ayw)V?M@bHrx?&nAJ$9i}aw2%DDaFq^+Fjoixw&IJ=o(o7q6_1m>7L z&m|--hd8e$+jYkJE+<6a6^pies&{geUZjVxQfLo%7>x^^jkP|`%G}RPT}g1iE{tbY za?8eC9w^x&iF+9b3*F$|DhFH_Lzw51i-B}5``?{y_ZlLR;t>(0=8j&zA z|HO*D?xC6i;+HZ*MA)8e2$?xMfqV>Iuhx*2Y?9cH~1WUv=yxf^M*6Jfp`ZpJHzclM*L zm;hM*a4Do9NUr}=-ny)S`rMTJT-91FRcj1YN)2^V^>sotRJ}D+Y&DfqBBPi4Cw@3T z{l{1P|9xlT@5jU+2g{Gd2^Te)yW--Rs@Uza;K@AEXjLnq&Ou-Q{nG5awdwEnSpH0Z zyEKHm#$PW?LF|FyL+O7t)+%7^Bkg#vewZ0Vzb)DS;MRB4QG3?YNW~|rT>@kqOwIH&n|*SR>i`FPL&-2l$g-32Sq zcn2E5X}TA5AW(t-L=xRguxA5^Fa%dvLcxfIK?;Blpvy|B$xNxvL@`I>8O!c89TggY zpUiVV1qF*I%zaO20QS$Mxc+mTczE{28Uh!Htyh$SyhvHG#8MxoO`V+%nlDPc*j&HXP!qjashwe` zt#PltNw=M0ow;_AxenSvpc953lFPe5@&2%M3jvRG=vJv?Pr*;8TW%){^_K z@{_LG(wijH~HC#d^$_l#9PrVhVe;6ISCAMCicT|({ zs;Bnbv98xW;`_d~Pe820;+sBU&vV;Zb=OtRH*?wD`=Y1ru&epDv*{cI)XwVr;nug~ z9Vg%4)tyb37jq~z3dspGMa!e z*or`uH+>CMe8k4QQn~K9y7n}XVEk#mpGdN+!G`O8v}3&w4PfYYXpjbQJ<#=Hw3mK> z-0Wd%e5!{lURc>zn(Hm1r^` z@6UP~EcvT#M;LAgTO0%%Z-<-gM40YIn(akV`ptRZL*4`ip!9K>RtwhQ63({jkUMihrhdj{dfB_e>YzJ<9OAJ!Sb`ZtStxy zjp;`%qW!AG#g_WHM)6r^-`V&))XZ--7w(rw-mee+usurM|7m{YH(2^C3~=j5R!!-L zW&6+oy5CRt(KWH=emT}b132!igL?aFy!+kE0Q1>JPZJIG-P9m00a*aPKzHN)D5(Ea z1Nd=!nbnz~*kd|H0} zp2+^7+H0$h%_O*giLM;vMQ~an6Ikk*kBp4XGXef}kdbkb zl_Lg#G#F{(`*Z*2LDN6AI{l_J;kW&f-_(1o zx#-S?7>qcn^_VF&8moXC^Xqh4UF#@Yu|wo&tWm7!XJg?^T)cBzGSvyCn@HEW*) zW8HX$9xZvkV5^lzr;QNL(qRv&Ng0p1N-Mo4bIlQ3?Fnaq1fwbs^EMiQy-u^GPMehh z(+0>vosCkxy<(@iEL4qZV%Dad3Q>Q=ef4+l7IWrS^{`Y%R1Err=HhB-}z zyOSZe6z+bN6>yauxDx9#5#~Gv?>p3NG|Z{n&vr33a4{)nt+sBdq3Wt4<|5Uq&r4$< z%6rB)WIf$yw>0l4Lv)_)bWj*RpB;6a5jkHFwV4!in_}^?zvilKXer)oJr{2u(NU_y z;poUxQPN-cHf&YZ9jAJ1W=C&khF#?aE)?aE60=ZRbed$nSDu9cYO}3}A6m;z+RYXn z7DX&Kwx1M7tyX7k=H;;+x*Dk1%MWky_nHfh+$o4#&PxW}T`n)$Elfada9bMr8*v<^ zfrNnbwubZC%Dcv7Vg^oX3)YI`4vTYcsuG1ZQ#X}Q)bYBz<>heS zhvB9dJ?*rI>z0C713eIa?gj^;d!7vUy=kr86xY1&%KC&y%}D=tYvpNM;2GMb6%A_o#-x(is^~+UCxX;s7kvVt3DsDIcP2ZFj|RT?EP5({b&clllNo8 z#L!dsUygKtn&Wxw%_J?MpYR#TPH$$01pB#>!B+qe5L(8%E(crTJAw?K_Od<#2yHp) zYP=rqrUzgjO@088=&zR6->@ot#OeuUX!l*Iw4FAfmg{X>iZgjxQO3V>ZG*MF-2q?hi1v+AI&QmdtM zjWtO@W=S^I*+GHB4fQ9h3qPHF`1jk@|9ijl(^v=I9v2mnyJaD>J(bf%DHoNA`?XmU z)s=hQ{U=yqZ>(T*M4a+Z+Y9eebuABkTIJe4@WaBuj~HLi_M)VFG1x|f1X_PLB?L1- z`?(%$y&7m?+rz6My&mu6m1gjQVQ#dOxCNm2t05Qxo#-%F0pY6wR4!QoeOg&$1@yz# z(*4}%yXn!Nj`lyUwvM_Q7<~Pg&jsThuK$9dSFr9O90se-r-I$T#OvQsUS5*tF5&fm z)`&@5fFxEB)O`sE{ICxC)7Acg49dk{!uW&}^%)SBm<37LqViw;71@x=kDe-g`9$fL zUqk$NRFaRjFsksh?g(}74|bW3@*EFwnTYU!1vC`nE116d*>dqG2)-@Au`3u|n9EeO zE8y^Wgwsr%^Hhw(aH!=-nDu0oAO-jtJ`jMwry>_70PG*2gzhCe@qh1g17HaFT>XWC zAj*seupD5x0A-j233q)O02K0eYjq4k%MBD+ufxxYAP*9&=jYEI$S0GLah8##0kHjd zk$&zfCAdHbD9E7xMKFv2SSb2x_>?_^_eshlodB64&zQRjoF5$(z91H6EcB`VTq?hv%77W*0o?s020MI3L%~?zklJXjfnP<8zGjAr4k<2T z8$B`rgawYNGJo>?#4azJQD3JaN6U6ot#&KzPEX@zUy~MdHL;mywUK7Ev2KC3a+5VP zfexhaHghGaKaC_(2{b|}$3(Z?&2}=_b;y=b@5hV)Lw4HeODE^V0aC^?5Ls#T(*=03D5>^dpqBZk~32YFmT*Z`l`3$ z!^Ft9Q?qR0?|Yk1h6b<2McW-M0&8e`@@hc5DK2?6)P?oXOK}Cz_hCuGQd-btLPURB z_(Wd%NozOX@J)N{b!XIpIOlSJ@R^3!(2cs9v6Uuqp3=|mi0$_K>7j>O-^TvuYJj>n z!d>fq~%9>7lqBP?!Cd)hAgdoOxA4_fQF3*&f$Io-?g(HCQEhdOVD$8RP_ z@0KTS7bfneXFtp@lTX0n`|aiiD&onspwU46Sx>d22*dS2O_u(94~M$X;Q*9CYrlbJ zAZY;5f$)Kt_Y-;mgg_d=sGBAYpv~0;?s;{9ds#$qYi{Q5NdJ#V8^1r_{nzcL@8?Ia z`^7g+kuRG>hrNT_J?*D;emIBYzr9-5w$s>jIXj8L!}q%@A2+9dvpM+x;^*QoMb|Nj#P00{j3<|02tU<1C;SK|d;2Fm!A%1L9%Ag%gHMsm}axBy8^o+U$o z#OnET^_PqYLKwgU{405-^grDF1zXUE@JoT`^N@b?N3y@5iF@)~=c$au^5H@E%QPTN z4+>xY735JmkjfWQ+FwfBD=LQ>=;pZE*0S;?;xWi!Jk)8_A6~yZP%vRHE#8*Meer!0 z``hFF&>iG}E{p~+8|yCYd=iBTU?j|nMbK=b*Gz)<&o;tM!2mc+0Pugo0N4V-0@_b< zL>aI{#gDh!V;W!`lwiLdXS)`p&-xE_IFjHwAEOC3yRM9EHHcjXHrhm(rz-cUUKq23i7Z&+5ZSZ@Tziw@=pR~zoG%eYs$uG z$qV*A%0loj69AerdH{?X>_k#^bS>#9HK{l)Y~$q8jnvrtOPE4J z2#l^Wm6xGGfMj)K(8?C+NW)VSoIVW%wmVsj!kgMMGyn{L(9kjjlo=~96F|Ncwm^n7 zvu6pmF8|nH`%nGezaC5ax5c_2ON>s#)#vbi~P` z$%JIhC;pmpM8~u`=rvoYvHYpB(FI&VqfnqB-{NH1>FwCyYDJ7!wY6rwg%T-UVsk@` zqgnM}4V`bJUgf0U?Pxe^quFk()`;na9+sjy*}7`YjwUEJI;~YI_2jU`h*DOF($dPe zv+WA-mDqU@|7c0Migq|o=Z7n zE(b-F>AIENf{jSGtK9H!duu>(_sUY4Eq01ikMbjLYcluKF)#7ycJ-Ku@;emgZ#I{& zRu|pWRJ?6Se_5M$Ri3z8nzB@svXT>nb=|L9lh4{Kz*?_*8ZMhkAs3yOM;%qAZP(}U z1>g15zv-%_NxWz+2f00ID7f#dCnVsurx`Su@9?+*jG^v+pqCsHzzOy+-^~x5DNx8oo7`*Hi7y543)_yqL z-)hY43(%VN)YuQ!-44@S3^hE6GTVpvA7Qc+X2jVJHIy7GfFvbY*aim^K&?CMqCW1a zCl2-PO-~%EDqTcPeX#ZSug?B(y!@N_-n+iAcRewub*Xa|)hq4I=UsW%)d@$rsoNbr zTOIAIz1@e?v$z!zeu-h{PiwQ^k$61OK@T7hjSBu|w&(41>$|BY$~|~E011%z>rrMS ze72je`fG(&*CX8b$ynz4PwTxNZ03RR(U-ys(Oqk;47$vFal^>i7dkQxaS(tal_U9ZBi`Z2d186uaSn_!ok!#N+2`zmzg~Ea#)C zOV(qFr$dXc)kLfpT>hDG*U1p4xi~+lpX_|l`ZoJmvjT$k-y7~R5bio2?KYR-j`C|J z#$__vemu&W9>6Ft8tF8O7Z6hKqeN#iKOuEM13gN16|}*LPK*UWzJS0mf37k-=@5Xx zdZ=~x5HA6%2i=ckW?4fKL_wY(H%QKLkV@uGr#=-iSn0P(}?~Rpv%vXkL z35A9#pKGFtr#ZXzM73v0Do=5FgXBX|%hr%Z=*uRGS%g;{-#EOF@u%?2Mo3?t22g3L z#?FVG71w{V%qk4zv0Sb-Q)gBH83qLA^J!)yrB(m3J^tT^GXHHT_J8#R{!n0dQS7|n zDuan8i_QikW$@lyYb~n3NKwjD_KR>erARd;WDo(*A7f`Ec$%uohRHrk*28dAu~6$d z5gEl+`XU3>WON3)@)#u+nW)y8Yl=-(s`O;iRG$XPKX;W=4AoIXvD|H}(X6c?RBCPI za2-|tpgQ$cx{Lt>OuB3>+N_P6%(dDqwQ%)maWrgmFhb6T$$O=>4jEzfh6>fHj}i?u zX@o%BEtaZe*AO(;WMP!4tQfAT6RoG6YN1_>pM} zVzl!@sP|?9udeL`4|p22x~dL4Yp?h?E{6ERsvOOY*iE-vO7NZy_Z(&>^>S>F2pquf zEji$_D0(Z=?>y6oRLGUAl+8Goo=VYHN-*UR!e1PB=^(0dp74Mfc5B7wuIqTUyRqnuUdae+y;(roZ;(0IIZh z9I(F~>v=ymge%cSclq~=eV9w*N`28y8fEXRVU{7nnww`9K`(|niMxRsgwxsaQ14D# z9fU|Chz~njcIwLD4#5iDY->E~??xbYF*5RYarx!U!a+9_)ftil?&td_6Fo=0bmskZ zV0o?u8E%9a9>iD*ATXIQp=Rv;F$DnZo%PpS4Afo^R$B8{X74}XZZHrXF;P%4Dz04{ z8bo&RcRNe}xHSCFYlGkPw0$d z-SX`Bo69&hW77}0lU2|6%frz8Io$fedmnE4Vr1C-mWfZeAMc^1T@Ck~^>>^ObX|7W zz8+}>C+F@jFn_S>Bf4jL;QitR3m+U+ZzuZiXGi#uK+Sgx<5=vWk`vA>yPzp7wdn^C zXWwru|NeAyBh}JhR!&+@UjG+=q5Q>PJpbx1B}7ljx?iCAKP>&Z{*%)y31$48^dh*$ zefc%qO^F>4L12i&usa1tCg4nB9U=dheOwBEIASjImyOJK#3noX@2$0 z@X2#GC6#Dx%_1wqo&Z-WJEYHvNax8&X9n(WKYQ%i#ojLDJ_^~tem1=U=z&oM3&haL zC?<8MsRR#h{Y(Rhfycre1T9#E^Uu(BVFXQmr{c5jhYX4r&}Iz&ppHQNU;~K4`B4cO zRImn$w%Lz!5Q3pYE$0JFL4auh{f-)K<|^zWD%q>($g_?o*^xpPAphLyxs2^&0;vW1 zKLKIhN(v;!d&xa_l6meb`y9InvcQC>FC}U2`{8n5v%AObhsC!@PX!ntN<}(SS&Hkt zKz39WY~5%8_^ik35hIgjqzMa_kO1(# zW(%~(Y`SzZHC02E=gJ2d>6>FN8ZS zM|w{ATQB)r!yfDRwP^J)YxlHW2=RhC$@Z3ig+m@H-LCq%#^x1vW=pZ2xIHfxL>-I# zU(|^f3iIEjdA=l(-Nn~sjX%1RPuPAf#;jka)$ z-^z#tq8y3!nFrq?(3SYjgsV>vhequo&4YNgN9_UJlj+?4<#0 zMH=o!n{5Rf?}VD~gFR|HqTK$`0){^vp#j`Z4&JZM{d$=Xz=G|07+Dm)z10+OiSSU4>42%6hjt*Fba{B1|S&=J`+Qs zeo6?Se-<($Ng5Eo0zZTmgzi&my~k3va>|iL#<_M@H7?d&evTv2o)XqS4WQ50s>k1< zKh&!u(4*DM0>rL2$bK-y2|X~LKa#`W(Nvr}ht)rA0|b~u4`2eYqSk{03s?Sl0SXp8 zL1S$|1t|I#Y3>w#K_-^Oh~Od+Mq`Ce!0vA)$ZRpl92)4jyMC{|TBC^qE1+_H1qe1^ zo;a!cNucyqb5c8tPjz~ayX#gDN093w^{kiO;_R4r*{d19L?Jj8v z6nDY$(?Ed@4xoW1RMxmWyy}fmZjRmp5IQLdq ztJFAXSJ`QoS!q;QX;hl4)S4@{+N%%Po3~>ZYD>O{cAKL~I~=lLj?jbvXaH|)n}!+fVBESF>b=E6NDL(CQ; z{BitW@-bNmw5#{E>WK6PTx#(&Bar<(EpR&8vCYS^#?`FH-)<(nFdh4c`J~{nP$vv0E^}QD zi&N(Fa_4elmQrGNqwVin%DLa2wl>X{)*cnaZN|DWth^`&keXK3}&s9(I>rw3eQU z%g&oCuUhNS5ZrXsU19FuRdqkL@N#nIdSdK)V&whY)c12k_=8^7#U5q_?WTs#r^Zc| z=1OpXDEUr6lC^~Ac+bT;t>8`lx@4OgoLY{geuDI)M!vY8@(RpVz!Z9p~ z&bpcq17G*FoV3=Qb=1HYdNtfa4>-ptVz7nCGZsFO9hn^hsBe6zGnI^*}tSa^ZcPRHf2s@l%&|P7l^FZ)#LU2dVqx#e8ZXilc5S%%P4-)7IbRf1vd>Rt~ zhCisOUrzMBoEqc^sPFt3cYjIsf0zcQ=m9hU2%v%&^xPP_Ff?@EZY}({Jun`iOM1D& zQ)%LCaokjvl9o__B#K{-Beb|C(&cY680I`2COAV(MY~VOc;KZ90hBWl<0@4DXgHuApaL|H zpF!)CF#UxkPn_*Zs;giLm+VAKpwQC*Bq}gIhX%l#ObpBfbH4f{g)Rh|kR&(mq1)%6 z4hRe>rOsRfCpGTr=y;g`;Q25C2;Bc?&u9boPaaYI*#gl3d==$5WWf^>U() zrHCV{BF=@2e7c5=B#%X6^^E-kJwW0GP2Dd5BrsH@^p~0t*RISY0lW;zOv@Q8O#WX7 zb^kmZ_P5QUe^cgtn~raqQiq}Zv=cch+I?8++vqSlq-cRx^GiPqmwOBXoTjIW8V(Sc z!yTLtX;kD4mutzDXviffJdKigEVSvG+I0i+q{e`Z3OqwUQ3-ieU(}}qXa|6EF0|M zlyQ?rEY@tP4S-w)6-t-X8aXVLitSA5?KRN>47wUFgxNz#9}lw`547A*_TA42T#oh| z546B>ddSy$*xz(2#Diq^317=Ge}}1n?U0AUfXLem4xmi)Z zDe}0k$REo}T?lntkF>i;vfIrFSS&5t%NI>1`r;dUUte%f26|iNeqHTeLHdGV9PRtA zI)#P)YJ9+UxWiVQ*HmIG+oX+(tmAzD?F!K`MnL7jziD$taSNHj3?DyK`kuG8VX3xN zTT9T`MQQL}N#0>W5G2P}1zuN;xp(cA^QC#*qwlJ-7tG*F{&yBbgkV_1FFQhD88g#7?z3mzwB=$rA*Zw3%Lhz_!R2SUQ9 zQ$*Y4#V2)@N8-xEuA1|K1_ETz37@p&5irSMao&&#_4CtU`AtvdU3cUAk>>lsHn>9v z;$k75zNhh^y;X>l>}k91Zr`aZIqNLH8)|qn(skM_K5ng~0i1W#?}-I4gRy`HaM{;> z(9wC=H+0(5b<`?&ORUutZ`bCY_0(@P*X(sR?{-fgeE97(&Y%lJ;5bC>G_w`Zque6B`(*qC_V=)GSqTCA*{Zx*lgHJ!{2 ze%zeHx$}p)-k+9+zMJj;INb-E^KP{Da=89(QcT_F0OWG0{_uHd1H1#^!QNle00gPm zXfN8Xn~@$iKcBk=e-|9^07e1w5-9hQ6_BJ8FbyykK#IjMl_7xr4_lyzfSn1>PrHlX zEY@_n=@>nGsv#w(!>Z@Yr*e;l{6z@@EV!^q%pM-LK%Y@x$rWA#2?*PpU;I+`FaJ`) z3zGZO7Rb@q=yPtcBroi<02nqAmZ-E1ngOL>@9{H(r_x4JGFo4JZTd{wT~#gG*s#FK zrq0uz`&Ms&Bec$LKN}8v9;_bQysY8-yTuQ}+P|BpHxYf2<%Vvdjb!{OJK8u@X8EY5??KI76WR&CwSqMuO59 z>W-EE<#_$St>ypoSjd0xiv5sceVk}K9b!0aZ_sY9(qt~*W2@2bs9j>Bz%IVi+K5m| zewN@)`ansN#E|jIJ30KiItmp4xhl`&<(}dGpKYi~003*Q5GYSN3T%YhEXfx$6kBK$ z0$gFCh7(*5eh(Jvb!N&41yT*vM231@c1EL~w!`jLJx)e6gKjqyv4d{Ctri!2<_1Wv zNWet;ij~B~8*BEM>Q?K@)fg&+F`x~`3aP+UtK810)JAUt7QeU2u(RHjp9SmwX-ovY zji$X#k2Aw}Q@mz^Tzc5-d6^9PIraOQ4EWl0`#MgELidwGuhRn7M2>x)+SpEH8|soe zIT>iNkrcd;p0<-2&eDG~-eV@vl&^V`9lTjuznT(ym2baRT)vu9eOu;p+ugAf?R#D1 z)0>sI9AR@;>Nl5Ou#*~aQRp+17rPP@I1}Z*9clY2!E?K&;-Ir?)JJrlSHU{T+L}ou)H#kml|eMC^4GU1a&*WQU*DWSmqcT~@{& z6sOE41a4;r+*d~3cDEn*^lsEuY~{vZX1Os^tQTfoR)n2bW*rvBE$4(RWTl>D2Hj-( zoweZ(RCXw?JuAvy%ZQpt4LnWryQoipHQ0LHRr9i^;l8K++u@$~eKmKj1&8IS?0LTH z$tMrsbzA8W^LA9bMZ;17|iyhyOW^fi|)3o-mcyH^4*4ly@otC zLbpBLyLCl;t2BT^aphJ`2@T+~w`HfHYQGiJH`VaESX;i@PgdxP!B~PE)bo7MG!54-4P8y(gQd= zQ2m($SOl^C=lcKc+A<#63<0cwKCRAT%=g_oGf-@yp}eqseBb@JqNj^tTO>f^j{td3iJR< zKNtW#z*}A>Kvp_LQ7%ed1=k>E1sVXEz(Opr($g@RFELi*2zo9Zp`=P2KzWtKI>PpW zUdbyKK!QX709H$0c>jTL$z%XA6!H(i0I%G6CEFn$*c34nunywT1B3>EYl1-gLAr(Y z+jFWvBM4vTp~uM8y4w8D!`^@0Ecu6#(0?CD*iCbs4AI&T)?W{@YxOi5bu=QAtI$%7 zO?{1tE@CvOt1MoSo-sWLL(Ic>&MV(GdSeKwe3OYvQkg0;l_oklMp}Tnc2Zx2t3T(q zUP&4OX#oc6WrphI21?!La-F8=gf){jltMLSV)f1miot0P{pdG8W)#>&!-xK+) zL^)6TSq*!cP6pdTfpaYclNT(dTbC5a86Ei4!E4Ys?;_nt4WJt(R= z&2ZgmFIx`vIZyVPZs}SNwBAp&nXRr|3iCXOH=RyS+DUdkN%NR2C|pVs%?Ei;M0>r+ z4Y=uQxM*x*dRUKhe^mwLrsid9$#zBdYLewvl<7*4`+S7^U`qOAS_V=8pxReeDX)v8 zSIUr^g`H(Y!TUU~$_L9mz;2(10@q5zIdX7(= zfCQA0z_VRdNIyGoues=`KWHpJXsTGREJV+>+f+%>-)$3q%5hi6K}Q>Jp0?GmR+r2d zr0lfTpY*ozy4Fy+Tw69*QOE;%GFzRE2VI@FQ*+l7bNlVB6^de^}~%yVwq>`)0KD-DKPQ+4h&?&F6i! z3`vk#ss8i;EcU4T`1w%!=>)t<#g{C92=(RA13*5Ae1YRHRYW$!7>gTvGC`&z)lyXUx z7lOSW_CF6-eqdoH13vtMd>FwW^bwn%hub|)qEb@4vj34-x#1rt0f8mX5T7F?=>Y<| z@Sy+V;%_V^!_LP-N{-_otB9B`$;`OK*{adQrrY0PDAa8r*l9GxaVXdk@fS{T4~K*= zyPg2H|F-0OO~!c=_JZ-le1aE+el*-}BEpHC&qBf<%X?|dQ3DK2(pX>@iV_ok}31d z^vg+n^tQpQZ7ITmi~n4N({P|2da+?I^YsYl-8g3gK}X#T$GnV}Biv@f9EN-?M?+j7 z67UahE5Tzq-FwyFdcxhb&c&$C-gqFyeJm~js{Uby-)c%EfC0RbmGtPTlyoY^M7Zr# zLd1A%>}{?m|0h>VtKTNrj~8aOg$90?X){t-I};al8)wdqdpskBv2q<7iL@9tE!!pK zqv`n*(Vmm>?kCZDxaz-ZZCTDtT1xk$wq8}|-{$zQN4xg9L4GiV`7oUnv|OCJn4Pwh z>~>TdyPqF-km$3P5<8bK+DJ{=OAp%5k2x#|+-VTc<)zOhySz-Z`l&kZbw|r#ef4@_ z>|RO`(e`YdSiax4=3Z5#GRI6O#lUO2%?m;TcGV(2t5cLvV0dm+=}lPJPL3 zQ~ps=>|0)QLwC|$=3?Bp(jqp~Vph{5w+dr63L{sG;`XZZF6*mLs>`oC8;@JdcPd~O zWuF#{mb1b)bECJ?L(e*@)(b@YO~sql#m9{T6Lhn_@~o>J2{FjZ0{BLA7v!?Lk}ZenZ(q52)hntk)Euc8GV|Tc8PHE40_vvR79Q z*nsuLd|o<5|DaR6-BQQHYc5@u_bDn6zEa|4j{06r9yT#p~q0ATXS{`}_>J7^{VNjNY+N{5gbMM$QB z&)0up^YiSv*;5&dXR;h04V^GOy&OA>1`pc~AKSqYXGFi?ZT!z24t6G^3D<`%-&tj4f>fiB5hv`Tc8UTmuKP(^`0MRiZ!>oWT4ijyNhUemT zkYvkTe4OHNAQIqT%Kdq&8`Mu0K|Iq5*aGcFlMhTLj4@lF`2eFSZ#`iMaM$Uu)oiuV z6e1urad3Oi1OUz7jntP10kD^n5_13;fUAr&7yu2x@9CpZIq05hk_jMELs_td)4)|t zo<$I1VECXo0tsn|>hi+F0~!oIjJ}u657nPqkJY#&gO^{CmcS1Qfm{#D0Pg;5vUFtebLN-(Bc8#$ zLav$SbLgsU;b9_?W$!2d)LZHczW;We=kW9kjrC%*)gv?&MFvU*W@;s7s_{C8UP{Uy z%CZ?IY6H$jGtP!w_R)V;+1VD;159-q?2QozAcmj|CL3xbn``A7>eTA#w_94&+Zok3 z5Xh&}Yo&@;1WpqCidkj`J)wS6Q9iT5Hh`;ehY<8Gr35b|`j2{BPk0zF2bwcy5X8PD^65OPrybo}l@*uG z&1ZdmXMGgJ-s8@yvyRHs)|&msLLi5;?je>fEb;f6OLl5XUv#w{H&redh&IY|_UcQo zyPKE;&N~{3H{h&RvO5B@?$~Rtr6qs_9Je*^)|Ac{6)jemY&F+10pMM+-CDa?Q@q(+ zz1v=YEUsCs$)BkyJ|2J#xq)76yC8DePw~i0=_u56HOg%{Q?y=Je>61uYGv)^%JL5@ zgC9ofzwa-+s!Z6gNI2{)1P5Lp8Tc@i^0FcEx+>?gwfcHmd^cBvC(^s2F;@KF&69ZC z^I@eAFY8Z}Lm!5Q-VcwzUF^OdYrY(AyB_U=y^4nUdbktfKl#a=+lgLY&q&l6?l|rh z3lB(nCkK%W&;TSu0H^@O*>ea*<2|=y$R-3oxU2pKAauB)Cw=_fE=kds^Z*GUEJ1+L z083av!t!Thf%B`?tx5O7$leM(Y_J z0%;g1F{>fru*~^Whxif}kdS)+_1E%Wejzc5<3}m_hO%;ei2Iu$`yxP?UCM0;Z9ueA$=|;d(9_$%*MNMLE*ssq52Cn&?sk!p@ZS}KRb?d;8K5;?n1=XakA}s z8t|_m{oPFf4{*H7_B_uJRKeS^R?O^Y8BT}swt&ERfNVutKbS%z0yG?P)2+3Tr{WMc zQm89O?kxula$o)oSe_QUc6D+;%Yd7p?)a#&x7`V|y78hj^HmKS%$jU_O zkMpn<0)bF^!qQ(b?J-b}R{Xj|Ulo9)+EkzUAVx)CyJqOglo)AY1f8xblcfGM-9)~` zMpNuyT4iB?oS38+GR2B53~KF6xapJ7!d?KT9n~hb|O^s0b5<=PUX*C;S&;R7PVEd^+JH#Wi5pED~R^mLc z_@527o(?dh`p-q!_XRt`CFpn4pAEqdI-EQ8MyzAKjd6~FHeIB`*_`QeImu%s$s2di ziAX^%uo&t{Dc{MApH7OKjPzW|jo+`%+(-*Uskd+qlRJM_5PX&GeN__rMx6b+xo9oUnRN;=R(Oqw1`!>iokF@m725inwX1p>DpmdOACOsjQF*V6CNQy}fp! zzLW`Iv%X@xs&=_HZ@QsmwQpprZ{>V& z^7(UT6{RF2y>d5uZ2g(t`~9qk0<5885BOOR2D%OhyAB1p00?6PHx%j4A?m$1)P68h z2nHCBhWF{ZkmSCEQ*VMBe81r!d(3~}-3d4_n_Fx_qwIcmDRQF$oC*qefCwPid=~N zQ+7w;3Q`nzD)>VNq+qkmtsFij0g&wFIg&6)1Xj>S(E!J)3!G6&0vCp$?1K0yi~&q+sYtk7?z*=?#`qpzHz_$*aJ zs>DpN=R}NF3|$p2DO@H4l?ojd;ZFwrmzETOL@u8Dx(Jn}h!0EDlp%e-N>`DuP;RB0 zZ>7f~C|gay18Ph)Ym5btpd2gBGCOTz_L>dV=m)um{H$jg2J*$GYBlD%ZMNos!=1JU zME>IJFE&?iHq&g-S0Qzv(9($Qe}{+Fc#s1ctLXrYJRN32T?T!u79!nf3DbdARDU5T z*jZ=D(`3lU4EJU>jE#Xl_5L2?;kFxbHe>$!VAKWXI$}5LJ|FwV7@=*fCi^TTd2$P$ z4fmJ}wZIl)D!_R?$!9h%XDz`C!_K+vu(be-@ksx2Ul)D}^us548Kb3n+lj$v2_B=F zDFdql?2MJ)y_LCtD zziulczrE_T!`j^ItoSX;Q(+VV#R$PpN+RD3)}LjiTx7bRG^MW9*B|Al-4-QNAMqf9 zVzg3_cu}5-;&-zwiGVZgNP%Igq(qyoROYQF2i)a&p!2$DZNdI?J|}6R5RpBlWG74V`d>!>;pM$k=b(P@1)cGD+~Wv@C) zFPj9WKQS`fwdHd--Df23)Z|^ZRuVkGXCeo~Ea=@p`N_!S%Z?&~1kP%Uh(LKi(Si_c zx2gQNt?^BJ*(PkCn*1xSv>jCl>#(z4DNP3kATW8ezHGa`a<8s(2ML?F^t?^H*C-Z3 zI!jaV)(05aYN}x!v>|R-Z>nFdubL~#TdF8pZ>&1)Yv1i?VEHpwo>d6S3nVc(p`1hRmB(KkeVrB{s=?B)DR7T3^j5BUM;M@+n9a3Hu7P0 z{>{SDw`;3-!{G@1&1eawOy}uWvd?5Nflz$(T>Y27#Df3NT|YkqzY@9DpSwhSZU7IF z@n0YbMhM0$&wmPq|D*exB=Q#%2#g;Dvj4NkhJp*UUQwV4(Ph-n&9 ziHgry9Er4qRQd)#@89kA{`*|^Kd;pMzBBB<4Mo08GdhC<7wx+kr9AGSH0Z3+;Q|>( zg*MP^j(>wfD*Z+s>;Zdf`DA4&9IE3Lp0b|8m>P{(7Jj7~#K+6$8EaHn>J}Jj3Lt@z zO16<&rI8wOF$E+F=n6X@Y@#d84I3@=sr4{Z^DQ*t?cfO1V5A7}TWO(#??sxfe1)MB zUO?>*hAl1@t+oajz2W;`Z>d^sAw-+e_OQ@^QQGNgIT7kQNAsuj2RTgzyG#bV%tg9$ zH{XhLUkIX1IX5w6Ht z1=EOdm#svvJ(1UDlK)a-z0@-9}9tI$2svmqKNTud!~f8$lwWY zyUj?Ks|0h(&3t;|b+RXdfQj_9^CXuYwi(4ad!f!tX-T7@))%>Pr&UGgnV!d0Wn=L^ zTr&D1JfWrb`#X1w5|$GJrqZLXO5)#EB&|239~7qFq{U99`c1`q?PvO2riZ;~%|B?Y z-_8m>%5+{YFIcaxcvBpAkrug}pScwmxKosJTv>dTo48S)xE<+-x#?Yb%5~eoNmb5F zuGe@*@I_AKd2RXYfp)UscN>bgTS|^vi>Y6)F#c@JyRMBsDoa|;N?c2iKgx^0DvdoV zji=fkR;QnoB)+K4#J_sKGWEQn7~kprjwY;xXjCWSn&Xzzt?KfP%IwXGe0+q?>avg9 z>u*~M;pXGo_NKS$c(DI=plPi%4`0%=;r=7cd>RN!E1_5)RVVHhreSl9?u<6GU6!?6 zmcCGyMjKeIDL`AdT~)nTQ*qdo2NJN~)N;_$gpOgcICH0|dZVF=T-^2g%Jtf^{pRY) z(%iw^)XBo^!?s4ug7yIeYD%U{ayF`4j#@j`YjZa1QV$wSkLrtVI!dnEigvq5q96Xa zIQc!Ld{X>&py;YabXpg~9}ynTJ00mS`_tcam7dl&@3)b+Re?0&y03%PJdD_H7KceR zdp+FzZnW*Zqx|gzCaLYW1C2C*`*AFNI;q{KeGOdv9}0H^i~CF1u^lzX?bSye)ieM` z1R4OPUts&-|1;7{2s83G2>y7wA>2g)fDbm+|NVF`w%b4^oWr)Vy_V90j#>h9UQQ1Q zcmIc12&4FbLK&iw2)BOBpO=S;*!-}v_I_naNE<#_c~KdFWJlxim$K4CzCiGo(iCzZ zpMUoMk)&Rltc`VFrJj|K3Ef@KrK!-j**q^o>@BpemLjc@=5+Awy zPs9m)f0jHGQI0|bh{XZIVLpz#ztdEd6Aj>D3*$0Gt5|G?`xs@A*?E0K`*lfrtbMRd|Mg79Cl* z;?qc~CvnoUUs1|KWxf{T0YFMsWg_IC@F73SGqEas4iK?G0YXKrA`K=CHAt`#RTuOD zP)NCVLkX400=Vo0{0eC>+A_F=3YHH#@-zS}`vnmh$@1zl@oHbQYwC**{%NJ=ALdH` zZ8-8LvFAT`hMgt5K#+fvWpj~W3lDO@S!K{csntrM(NR0wP#za(v5juNiKY+*qopW} zBf83X8A12NpdWErrYfcsFiq9y2Lu45YC_CcDKpotHq)sv)#5szpe>cDBU^5uB6zo1 zX^~t8ohiput;tSr3Qymh-+DtUNEHz1xFEmvU+ZbRO)b6C$R-;|0{!76Ylio&st_FR+wrw7E zt!^f5UiOng&S!DXgu&K17^azPM`=E*w$)ksaQho-iE(!t4v6vP5W+uhHui*TeG6iK6WD z?5LBHqPg-4mW?kei`GFAWBeEVJ?A2AFU#Zh3kt4t!VW}!qv4^r+O|f8_a?=xNMryF=|iD5+#U zby1djRi3w&8nu`adRClvm7laT*c>=)Z^& z->%F!>nM8JT!^vgT4DZrv1qF_2F2`7N$zf0>0Vj(R!PEgQ6^Rg+vTapMX`r@5ii?I zUia722CiDm@QgcZD!l1zB~5ITD=l zD=$8%Dm`m%IPYnL5`$0jT5-%`Zro~i++jryG^EX{oZYJ2{kr0n%AED;(yiLO4fNyixCq&V6*N4*eFgv5|__6mG|Z(kL0E<7U%BNRO|q>Kuf>Y zRc$v`^LMdc)Bpi#xjcEcSVU8yZ5(#ioebpP^w!*u*8jBB@nO8`rZfAxBk!O#eX~@w zKhSsGUHY~)3(dq~cm38t)yXh{#sC$>TlTZwL6j?m^p2DFBF5tMw!eY9KQiXKK{0YI zq7m5ku;jtNNJ93f`g2(RpmaO$#M_7W1xXi&bw53T2Efhz!&o=o+U$Z}PL7-ncAxck zk%U77_&6xOr0CaWV*mwxcB`>?udSX$1R`;+M*c_!1wWuA&<5U44S%<=Oe(;KrBU=> zZ?l`)c$GnZ3zR8jNM(ugtE&vUY=b$93rg45|u zy+$m_5YQiB*XwKBkI@_U4}JnHOw&nH3EU5lm6@=+Li`zk?M4uXv2o*EY*<)Ksd}%f;C-%a!=Je!5`@kkCCj00XdV z9vC}+{50MaXrt<~3D}6z6&?;aFk5(`0cc2Z>jwki%FoJ${SR9p;X&zfHp79oI^b}Q zp&DGBaQR=vs48ri<@{l<@jv!@|79TLuiM?fEwO!(<-V2bbQr0A7~wi-uRP_bw&0{W zVy)KaY*=rhRd1p$HdMysIZIaw#y#B#fSTPD3C6gY5)Y80MZhFhrpo-L_$5Rtd?#>t zv?@)s;2@(`putiL_ntI;xnylQxS?GZ_^ldY8d_LrcnXcH~X+GFyI?!@5z_Q=XaMaHlXm>Wu zbvn>-CfIH%!f_?ce!|NbMi5P++rx4w$Za9gtKZkG&p~t5(P+WJxZTF6!NtD8!EG?W zelEgcGv0MA!F@E?q1WAF)XjLs+iWr1c21Ohm=!ah8#tL9g45?}g3CyN8^&jy36ZM- zHm}nI`{JXR5{?sHhm+#_vP=8?tyg2*&udDK8uEb(4r{8`tD6qeLay5TmXdwf)y*$uYojtSk!iaIMxUa!o&FAm=?OWw_nIgIh(7bRByZBFP)W$a2J z$Zg0@QSf4X%$6wht|sD6TyRlYh2z*}ro()0ByH)iBIT%3bdVXelyK+I zu3HMv>QlDKNGQs>sL6U!n{-v3c-m010~}qIhSv=;g43q*!}>hf{ns63m+g(`ZDklx z?>Cj6)fJ!A6kjx#-1c^0DGFETq$MBMHcUVdo16DbGSBO?i6A~{FFvZzT(8JkDoLEp zj94p5-l@x5FVEa7%RQ+ng$uM-2b@q&4`B6wAQn&Mq>N`pgXpsJnXfDv$q|@2I9O~} z<*k)vtg<)~mkk%BjApZpO2(Csp=3|oFjbO2pPz-9_GD@5NO9qkxEX(lS5w2+BNg8a zWPa*O{k9|drabJlG=g?@-cz&QTy{H90O5z+h1HglosP^G{f*=kTwqu|Aw+Zus;=?Q zkCWZ+#@lHCF9#c54v?eJz=-pDMBr$$0>UHj!MndkviXrT0Q7Od9=zi3|G)KI4|Gq4 z0J7xxvNQm}Ar@wuCnz|>Tb`C9SW*E)~B&>)NPm(M=0 z`2Umb^M6|Ue{KMh70_q0(B}z2;`uDte?FCx9GZdP0Q&V4j_#wU=CTStI=b=ZrumN6 zwLZ?RzD~%yM#8!NyK?vEzhR%Bon-CP?qh}PgW$yi|0hIncEjCsG}M-v8`_Uh{UiUV z17PPfL9LE;WF0ge?L430GaKgvRyP&v_p_r|dy4xd%CC5<-B@$3`DZE4*Ev35!T34kpS7=WqUOy`Xc;>P%xIlAl*OX1x5=`QRTfDM#lF~B*x&CMiL4*MDEE)nor_?|tPaDgi z=R5-fqXqyIrU8&Fma6#_SBYrlC*ew8Wf>ch=l8Ei;{RC6{@cm4-?#f;rrZ2j;`N(c z&j~;C^(3FY5sFVNUY_)`Md2CRm;o`sq&WhL~-#S-IwmKi&cS28B@C!BphFZr+{ai=WlWljBR zS=p;BXO=TFQU06pwv&;*^Pbk=TIk)!BLiUmY^FusHI=_^$yv`!J}L@5$qe2qia(6? znT>T_$&0?vNj}MoTrNu>T40?Jn8bkfV5b);&bM_rdv&?HSs`1QA+seZ+nN4v$`jA3 z(w9>_S2KbZvP1S$J%_WS*5i`*VncURJdO&&umU}+uG&b8dxdR7arVpl;ujTYhLaf@ z4)T-MveHjWgy8bi^2qbLv=@zex7BHHDih9{3eH;vRWMZ4)3TV|lC*>JOr8&$%64mt z1#G#t7&sd1Q=CW7I-6lDEtVCtO#%bp9U|#>vFm9ly6EZs&|SGzU$Rw^dRP(%({!bw zVy8Cqs3Ci)ENLtwd^$a9qaYRX&jx9ig}KK~<(n07|I0TT@*sMyRaTB?L@yS_qw;0r zKbfB~nVkgcaM)P9Utc(q8a1AmJe-->pAs`Dit9;?A!1>9*y}GrTz%F%d^b~UM_KCp&U=K3{2xm}$0R-a*Fo4lEc%Nip-c1a@!gYgEKG*-vR3{FDM^))NWy$Ek z_v*7TO*-ppKtDkPfCG9x+QS?m_(qKPBOD_Z=Ht`|$uRe`L$BtCnIuSB{%LXeRGdzBOq*(Fq9c}h#;_aFg*B}M~NE!eS5)~K?fE5r8Kmr1Hx#-lIDU|BUV6X$p zJq{L-qI8I=JP9z^z`4lDa{XrrfCUtxp%$W~7@{ms7(lF!Iw8P(W{kQbJpc@VA%N;H z1OjUaU~iU@Iv0H6&LuG~v;m1CO!6U<0XrW7>D5sX3ak2aK|7`{$MQW<@hO`q3Necv zwmp>lG);72&xu55=L7kN)L#fWG=LIA6-*kkH5EkaU#08IB`mve_?{n4_P70A&yhNkB;MQCjIq$y!GmBm1>No%d{U=m?`I&C>Lr< z=c+x044S0;72HsM6~2Ck@>76uwl`U(nhDyne3MyPYRG_d^wgO`iY&BBOtmZZH5-lj zGt?+Ema8<9X|XdJv^E^E(j^{%JwBKLVF2uQnr#hP_cvN<5hK&-YytqlC-m9tLH*1# z*2FwDlt$LR6*yS;db%%$dJg%Rpzoaza~$%pz!7>Xz=2qp*;oug z0|o<(yL_B?unEfxTS$r=aW$&(v1V4C48wmsU_HXNH{7j1B=988YbQT^B01(VBk-&^ zo@|!s1mDRByN#rf7YR-{!QHiG&gbO4%ktXE4INC3BAS8})8Qb`uEeN?xWK8j$i*nn zvm()TXZ=x5G!=g*JLobqbTKt#DLQ07C1SZKYPTTjO=yzdrq3ma6LNWW?EAKihDnTq^kkq4f3>^%G%?qho*(?$*WQk@oMO#_^w5|gL3RS7I*^y%j!Sh-1D`m_CIV%NO{EpVj zigp^RH|mR5stVBnFPCHtCi~A-maWxQtd{4Fq=YZ!C-G@C>HegMvE=B9^!PzhOm|Xr zQ%q=IhG?QNf3CcAMJ%MGeOQ>lg!xr(<;(UgjQcMt!*>gk_*0t9j+rS*Ua85t?5m^N z-uKmRH7^Je`{n=c!FD^K5uLDzg z(bqx`pw`m>VEYIrKmB4x0bW`ATy)jZ3$MEB+2%7GknSP?0LZ)gp>+xkfQ;Ykk!Bp8 zA^hBqlkqb4&1~P>p}M=yg6$$kvE5AM(f}Zv z@^$deV+Djq^zCdPgTmX<(Z5|D8;`RIm6w%%@|WEDwH~WTKVfO}bJeF$Rlok_=cWJW zEB|Lrz@N_qpBn(z|IbIV1(Ngw>OPP!haSNGN0J1|tC5r}$3$AzSy?UG)Fjv5vc}yS zh1U>#jUWg9LrsJ^4*J`m{)PMB?n}MxuKdjuS_P=K)ijB;TY zG!f%YZ-4_Tz`sH&fQO_pfCJ*u z;WW`scr(@I;reg68DS-10nq~{ybK8%thZDqaw}h3CQ}{j9;rZ?C*1L&fieLA0y6

oo1C>}lP~yQ$+2#vEEdb#M z^B;-*1HxJX?A4Nk`yZ<*d_HDpc{(a0#b**DXo38rBP&3@sFZb|=WEGfSd9XJ>Mx}J zYRd|wAVC)fgz#4>x=-S@q{F$z>l*)IdH#Q%w*Ady$v<@Y{I0|KceVDXvCi*mi;fe_ zHzM^$oz-WY)lMU9*n?xVNv2qjlS#jw9t<3)P+~_toZ1SE;G4?gJ6)hI9V!1PLG`gn zRe?~mSPf~BmKrRed`)#QiAq8JtI4`Q%~-Y2K%v1vzRz5B$V?08&N3mui##t)vcSl4 z>2k9n0*rMNIB>JA{;-qDu)Q9%9~Sgwx+?j)>KXdFv09q>mS#hN9t(jEOP(gf9(t4h z=1Y+{_&bdHn6uj%b5fsk*F^9&>SNjJY}Vv#MV+O*t^`>vdFwX1nCIE)XQDDAjyS-n zH^QYm#G%nnbKcExA=qi0Xz37_9&ZbL1ZUy{7Sdy(giZw_j4)XVu_xnYG9{XEwJX>j zgkZwoW+EmK3g%>z|7>o;PHM!yC}5-{eam&;b5fE_9bZiGA)$=$fEPu9FY}|%^J8!GVwMyA_zL{DUoS}5O%FTG z3O>yW+|Q1^u1tfvx}5C1nd-if6tFgO>PVigK3f(VDJT6b2FHAqEFCjegyrJ-RK z3etu%lgFaNCK98@(h}MeBimAAyE2lO>#9kPBv$vw#pdrPir;l4ziNyk*=;{JdM7t{ zxGZP9s%X8n`C@b!T`__(+={N7OAk6*2vryCOUL>IE4Rh&pXR#19c+F(&;7dfuCL+k zKqCk5JX|XvyuRpdhN~k4Go-T*>?y8~GW ze?owP0lLmdnlSgj8tugdl#nkRlP;UHcFV%%(xaDi;%3r<2jV;?(*pNuGS6E|_{*BB zDntjsIp}IaLB_;wtD&PTiNmxeKv{$Y0RZ|6svU6q`rm45N$FSNe;N(a}U z$ImpL{#-@+x%v}f4v+|dC1w53Yx;je1te>q&(=WyXoq5XjR(f}SJU)-tw z)N~rae6$mD0IQyd2H-&hU^}!B>${lXI~OYuf!GK=WJ9{lB)b0WEXnaa+35n>4@E!O ziF29aLfyYku_b=*BE{}1%}D|VT&95!JD()l9K~5<6}uBwcoq+2$j&B4PlPG}uLWz|L3BZg9WB{b?swH5bH%Dby2J!=uTrvsZkC=P5y;k;EjClnGEfjKthE_s zWJwgL(N`)nRAp8uGE=FsQg1YqZ!>zHtE-)^qXIXn+C;F}Yj84bbTuYvFNX+UN25wx ztu`0^E?0dxKZ3l#TqD=TB938#h+r3kK_80&casS}2Y8v>?t5J=7DAm@Bb~>6O~?Jr zn;mu9+>Kf6G`m~$_&D_VqYUu8EQ*@+(Q7f0DYn$EbTDc0um%%`1HKsRvPvpIxI>4# z`GmjKP?&qapY3#z{c>_BywaoesJ*P{c6Uo)>PAz=UN>_>95>QJ*1}ynd@a~G?Zmkr z7p3hNW>6N_Yiid@D$g^$ce0YVqn%%rWn9%3t;Bjw#s&-o1`5oj0oD5W=&qC9%Tb;O;7Y&R|?cOTSp>|9qg{|kt zofnG^vm@3MeAi-J&vX5ci|9#deE-~nXR~5=%hIoFM0Y(!l(Q3Y79KvE^-wb_clq{e zigpU(&l~a&DsqpTk-z2&m~Cdneo@?ATk%Cz_Cakv8-J1pkS2ju-VIUd8ZNuUkZq8j zVOV{^s;WGL{G1&Ksf8j~MhB(YnnDg6i*(*C zibfoO40yY$a<#Z>ySj0?xNNtvda*3C+ec@M8*x?nNM2@Dfc;Ev#8!FMP+~$+Y(P=4 zTXSsaR6*8GQ_XQ-$HiFJ$JOrNjn{nJn~UetPLBUXgu`-L6e#h0Q`Kcx^>t4*zC*ZK zki&I5)KBisS(o6_{BE}U(?Zv$xz@Ln#MgBEFxQVQ_Q%QA4-+k*zAyS4xY6TbM@kn0 z=2w$KV%LLDL#O1*PXhoIz`TfE4Sdb>p4#hyMs`7{y0A04=;)x7=<2~Q6tbUpwd(~I4R}nQX3c)jKIVWZ`&U+-rV~vREqIj?wSX<*&75JXs z4)=bX>=$e^*uM>l&&JyC`kP;`FT5FRd)-@iGdhMg?Y1SMUtbBzCgoca@JkVwd?>iT zJ${n9adEkyO;d%<;?_W!4Ka(TiMfrJN8@&jbHwD9oG75NiA$f7@O^i@pH! zfdC7VekH)~c$5bhe8KNCO7MCck9D0%@|qL*@UMjc0G@e(6)J3g9vnc0C}1Xl2w^^; z8T^dp{&|Ws_j(Qwl4olDRhk3U|1#B{2EZ;z_@Pv|K#T%*LIa30+l{uQ0Z208#$7c@ z7^eYL8OdX-fDI15o}jzFGS6TEp#ipg_SEjVa2%u_xk^3pmV1s$0PL6TKg^#%nMbI9 zsojuAiGd^$jO9=BhgAuFLwqPFHc*+F-`jxWhuJ-bkj&P`N@!sl-4tPwP3e5h?`1l2aA&fgJuk z#6V`K$f5~=sEYmoMt_5)Zkf4ug4(liHF6FJlvhPnKtN3uO+rh7VWrC2u-3*vY;VwJ zuUBV`eUMxQ83P7tnHIXqdJ46U`mN3eBcuiS+o11Vitt*9@@BJ-=MU@qNq>v+Kx-i@ z*h0O<#iZBYZ8BciXiZ0$uLRn#Q^Loh#KySQ)x0Orh8Re=K+_?vY!4U1tR|zKy25-G zd@UAY{f0w5x5Ay)Q)2pq?N%fGr@YO^0-Tz?oWxE#QyvC$Aui)tAsaFN6R~#Pf$p1; zj)bwmQ#>z7+HDYT<&+R8G@o6FlHe>okgW)-rl*k*s)r*|))ttoRn2;B-PSce!WCk22`EM1* z?Npb%FH1VB%!0;#kQOwR6uyw1`TNX>7u8vd_0@PppX5f6MvL1s0m!SlvD?{E+dO2) zZ0E)UXs>6*%_oL$NBNv*2OQTV?UW>46i06tgfG>VVlMQqB>220k;p<;SgMFPkc-Q-e0LBKLD55CmLQq(I5X(CxT7gZnIn33DD8q7?Vb zrsBiOjLovl^{lX+646d++IC6$R&_2+A^b}5Bf{o$rJ7+SeIz}yKP6%*GX~A`enZi0 zenMZ6Exy^iHHF(?xpj^6MG%B4m<$*K28sU2PFgB0A5P0?2=eHP@qpblkPzOK6x=9^ z8Do(((0eyMO$GnWTs1y)FZxn1urJMwo{tS0PfHjrNpvkoU~OOHka==R~~gx+_7?N zJMV4c&;tl_mt6dbaKWzvBWt+-mwoj#0Pp}Bz*R4Du)ezyPPgCyIx3JsuLnBcOb+9c zebZC_VRGs!U(}EW=BNuXFcT1Dk+FS4}dNbDk zZn*xUrQoc!6t)$k0PY$u@dO=fL2&naYUt=c->lfn%!v^qDHLkp#g%kv5l8 z^3%~3S(sM1*mMRuk4CwVMmzWTIbr?-=Lfnc#-F``HXMu`gw=l-t`BZB0QNr*6M$gu zCNcSe3j__6%rC+3;o)JL;efk;tUIql62L=}3=jYB4d5!>jRtU&;Y9VnNOc4vrU7vM z#~O&;_d%T1R)pDhr1^4?5z+ATzJ}~Wn#~o&7K&wh -}yMtvOWAH!&U;=QLmv@$x zv5^vV0B-WqJ_@o-08l?U-cn!r$vpOc@(Uzj90B-MlR-o#$iA=?B_@n?6fH$`#q9d= ziK79q=ocVgU&3t&=W zxfp~+3SZ|LYv*Z6V+E06sFJ4jj82oFDo^xSwU5)koKO9a#pHkL_y3nRuj{hVyE@BMosQI5EC%wW6CT!nG(4gXt5d>TIXhr3SrFGY9`o*d7{zX za>y6|NN?tb?WFjbc)Ln(^TiO?c(5H*cByXaWQN0_A{a+j6z?f2d}1vASf9O zaPM@{8;s!c5_Oyz44ZzjD1{iQo80iZ^4!fl(S4@xQBn9*YScu4GfSs=f6MKhkgcNh zHwCfB<&pe{zlaG~D~M%rf0Yq_Ul6)gU-qIV=S@k%RB_2{O5|R$=R#ibMoh$eoZ5=g z!E#?zrLQGLtY$}DX(ufZ4cbX*CP8C|^*QIj#cgHRHN_yGS2ekth4D)%VIZgn z&GpC4c}L9!r@ejG)v1>aHQf4-NtbNOKX0vu(+Su+mz%s-1c)88TAX}Pk-t%tJ6o8& zP?WV>UO>6ut;`%PtDGrJn~sTCk8#?rt7HBcjP@Ch^;ts^R#&oBS2>xVN%dbUOk;+a zDNN~#4x35K92F(EM+Fsm+SW(-4QHoL6lCqT*IrDIzgr#q?M%h5`b!a-9ae;F=SQ!X zCXN@SPnG5z*Jhp-CBGo^V7%p~yXEB|(Usjo2-j%GLr8refi1win7AQYem5rmFe=8v z8oJc$z9tAi*FAy?7bgaR&fiwU1^;%a^RyRBXVhK~J)mFw#~v`$jK?+ieS!bO^?$JG zVFJMPw4G4{awpA_i9rwplk_{%{b_!JT(FDY_WSXXPg7(kPuerb>pcg=#a--FFRWSlRr*W z4!CRiN&S)9|C#YA+4$25z;AhAGT?!+fKFhns3>`mxI}zz2@-7Jv&0w3_sDvD^7SCjc72 zxybf9ox1M;_RBy3G7SA+um*~=;_go@@OqdT%O999*Z~bXsWJhy*{D_+$YQL|?gc6* z*;s)JGR{w*IZFvv5LS=ASs004<^gA(5I&4>{}@0m;w<-~~xIqmV(_M1d3F10h(m zJ*M_*IwF`vixLDD%C1mlpx53wHW*!IopeKp=)g7MkO(R$Vr#txjL zV#3acMa`tYeZRZjLWKQdxC7N6A@Q(}?NpHKWUza8q)&gK>AIuZX_&LvTsKZnAwy5C z%*m?9$EM%M2B!Z|kPQV9&M0931i}o&dQZEX?WBbQDsBWj2uq&mz;O>__^Hiq<^&Xz z7BCZN+u>>6;z4+%$x^7xT57;yNhZNwEx{IpK|XI%f=;V*kBj4WE6OHfBeq1|8=?pV zid#vZqaK!RUZ#CAs=IUPiLGzuS%@B@I~+LGQ7r-4{sCWiTv%-NC*#Ks$?=}b$j`5E0o zK7$bc|kexmQgR4+yj#9qSa|2W$IVMOqFc-2>T+g<&# zr~VZQ?A>+Oy>%B|I5E^osyVlN;wlCEegf{tx+J;n!hOHD5&jQecn_ETHa?TM$IlIb zc$^nQJv0Dr{nULppv0VE{f6r&>mY<_cVj~@x=XqHPo)Ph5hI%7DhvUE<^v(Ny>S7Z zF+n4-UTb+V`wb;1?1)>~=0cDcw3!#Yk`sw(9egb|S|^>Ah{Yb(Spz3!5d~UL489Ob z{AaVz&oHm#9mzJI>%XK82zibFze?cGNbiHSC$V2b-mjzq0P}K~14tOwdMr)Kqh$Lp z^ocLN(){|dxs;Tjj#j3fb&a39*=me5PFku3K^-pnUy~E)_@{H~m zQV`Xj?LSs=lI0IUF{h~>AjbQ#)>MBE%OAp^XM7EYoHcqJG}~>}Dh&xY7jRmroUDK# z`+LhP;06H^2o{jU3c^oOE>KY(1X$t#N)KQZAPj(A5MTfRtZ>;^lZJ`|p_7X|SAK9^ zLR3&!5oVHMpekg?Q|OhRLHNNmlo0`en4~MP*Z~=SSpJ|27D8Pr(x{FLF99 z4&P4KeV=5y6KdLIuQBeYw;W)&7GN`I!=HospsmuRootnkYK6X1uan-QkHrjWEf$KE zn$OydRLO%ZFjmRbkr$-G+OooQqOY8+DcfbOL5>30FHY1ff-nj#F;oK*DALnpLq%g~ zu`>YgEiu=~GgU`rhOK|9nhbw3#0+Gc>13E{rI~8g`#F!hS&X?^%mz44`P+|rS;6ob zayMNHcW$>)8um1V1_}#^tx=o30exaUHefG1blKCOPX7_%lpuiQdOM(2 zANR4~r}Tum_60gEhT0!yMxKjH*-rL*8pCEgO9|c0&w5cDzn7P@6c@zwIuzl+7I84j zvnw)mEX-!RM6{Hbc9aoxm>&wu^Ho_aGApif{5!nL@|!Fv1Q<9^_kthEKmDmNo0Uj= zg2`?QQ?6_CZdjw2CC_K4^IOBRct1Cet=(B!%5g>BWpToKS=>ryz*)TST)cNroco-g zREmg>BO6rC6xG!JpYR_(RyCa zN?Js3jQ2p2&qi^?MolIZ%(aSwt-RRfg5=ZU#FLiFkFCY0ZMB>E39koQcdL?Di&Bvt zY~`oCXsWoZ$-QcCIjAkVtk0$TpOq!z7`j%Rc2XQOo1eat5q6Lhw~!aNT9UbtpRrjh zK+WsfX(Sl4+c~bU-bKCDS`Xs|Q!vo%J#jMtdv~bIa&gLPS;j(f%4k~TbVl?j4yjoQ zqcLG!p+Vh=al^$q^Uaknr-y&FJo~rnQ@nB~;kWaKia*x!cC`I|MEqtz{JO6ZXYA|t>W5PW z!HJ#+uOAUFJAJn86nge890JP-=>^f{E-z^SoTIiX))qj9& zOC0}u*!v5B?MN?e0A{M-4m8~LdS)7I;GiyHG0Tgc4=&$Ji9+7tV3;HG5Em4Bz;Gg2 z6sgzE#fUQ&6NyB(pHKE<+FQ<#+o{Vr>#igPdZ)RFw47H{Xad>>Jq?0ozho`LN=M** z{>ki9LjIw$W8WtG7yktZH&aC=tby=saMm{v*rE?3!k_Pd{^%L^_$k|e;@u^SAgVvF zzyOj4AZ&yl5%?v|#UJ`V0RT|sqmA@RT^-Q<67D!0<_n1d1s^Kd@ze8d!k} z4S;Wh9*}ROPT3_Nh9N-kYco(tlKpvxt||olG(Gh!wWkPfvsE4=xk^%b48b&7fq+R_ zE@=Ppe(RrS;{I(Y=bz?1zRPz0knHkJi^uyc(<2Y<;c$n+bmR3{%PCuJR9c<(8l-3J z`5A6`TUD8vhr?anbL#)~zyBVXY6soN1sW(vbykNYTaUl#CaZMiaSm zZK)j9r|hY6%`}TFG{hEKeHL07#_9;l@DytEwCM7(>UOnkb+oLoGK^7r!YT}ZY)XHY zxlWmr2?32m(O%^9_1X~+pbbY8ofiNswRktt8v~@swl@>L*5g5TL!mySkv^*lK1-n`o} zjBGOGZc9$&N@~nmZs0^zK%bx4Sdd3+ROn{9AMoZAhv=93(W8`~@lKdVmKtIpjh zOg_Z%G*5I<7JJcF_pYOauCRwcPe&!V^h!w@TqZV4_`Bg~4b2~(&qYP@a!J-_q;2){6w22XNz^iUNM`dlkid)%ASZVqq3SV&L?tSi7+(-?Q3k(B{@4 zr;bqf?ea{l>+lC1NebDuOa||W&IBm)xRDpecv8^S(b2|;eS*Z zuvC#RAR=8tA%4?XfmYynuzaVz^ti1XH&C2*?q|62_k5V92Y|jda^4Jez8PtJH6UjB zbJhy*P;lH_aoyc;+FC(=8Bt}JHXn7>(%>E7eaZIPao z{;^Q2)-aFe$N+A~LVe6mM)<~rM?h(>uW5(3)lj5227fa-acfoS>-CviRoRHeUJecY zv^o2xJv(3hnK|qDKL!7OR{4Hz0Ls7of+GmT{_5vE&T%VB|lecuINz zMV|)1gG2;?;g6||Ji#w0zmWchXevSdtn+f}^vAu~7vqP4KzkZMzrQ1KkAmpe-+>0u z8|K;{;SRML%TM7%Ibr(7#vfLXgxJHjhqaFc@|CQ5c;%hXcYj8Kaa@2NKwvgPKf~^g zqA$7oOB#S=2zU_v+Mx^M9q#^A|D$BrgG3fVf)I=bu>L>;#R_8fp#ex%K!Cu+>au$Y zk$nON5Tq#UAuZ$h_z9_yRDb8^QqE5wp#=7ql?hOg309V;2MD<_@IhrBOL#$S`LXw* z0kF)G5J0)@3c6nv946!g<5il|vZo1Q0DW$ny^gXoe!8nscD2f8(^p2T zoNlbjPZ4~ItjP5xa7Md8TUi9$ts>1Bly9yFLV%kPEdJFv-?eD>)o{B>Uvswq#QzR> zTG0mDtb{(a7UtMvtJUL(4A>rhEGwNZd+mN_-4PF?4mVqohI*`-dXb@Gr!X;?&-vTT zhdD0?+s=hqPXPe<*bjON+7o;uW<-8{0d6aJv4wl}xLK_DTjTTGO)8G935C8pB49o` za3jWbEiDwy7mie$Jh>o{=J;2m8{5_ym%x6Sj%mt#BYY$To-yzXT%^% zAULx(DP=Z0`ZU}3uqt;kEAA{ecqt`hEh~~pfZbvoathbe{8w|6j|!tso2y@RR70de z7<|;yazgMxamIRX!a2O7nzDn6^rJFzU^4f3zdU1w(V;>xcBaHnrNoWKg|27BvR~S% z$=<3hn9WSxDk%pEn8}Gp35@3i7S_Wl;T`_A+gZ^E4TZxAK^OwBq{VGyCC#P9bw&Ai z#RZO+#E+F`FE=z0Q2e{qfnSXkzi*EF*cg9QoW7YKz#rOlVFm`DL@Qr)3B;tc*820N zireDHICUEfZR{D||~AnL7#n}LcKef9T4EiimO4EM6@2NuSsdc7)_sCTyf z`>nXn6&!Vz9YM3{6Z1uA0Q;>~RDV)@Is51U23nx@a|9EJhX#Nx#AQ#raOFqpg@Zp! zA;_A29j`_N$`B@?lz!Iz_+X;}W_md5seLm(MISn9OkBwE9Z&SY`La92xiwH&hV;bx zcgBYegHDyEpS4!twzQMsQ{iY(W^YjEWz!t!GMW-Ko0p6o(^@%TN!meu#off@cMILS ziM9#;@*A&2EzZU9aArN}v6m^BkSmDwnIO+rIDTzU~X+VD>E4$jY}H*L#n+|1MiiCxOH&bv&Aft<3d7c&jZSq9Mm3DY;9@k0ZE z>n9AK(E#A_iDrP7fJ52=f$9H!_DkTtPvSr50cZfNGtM%H~CDPxQAS#)2t3iX9up2(ZP)fp-BL2k3 ze&JK^nwg6R_KY?KiY)**gp+ghr`YU zOs!*4>$u6_r1nd=&~^>T*jWGer!tV_RnDbWFsWF5w~M(g0#>&eL?FOEvMU*ilXR%M zIQt&igqk@hPlEIFakhCu!vZb!Lb`la$A?SkM!Fg~?>9=F)5?T#QB)q2j?^6phUXN5 zSv41q5nz0-IyD#FXdbEi4*8Kwv+q@Jxs(9+H(WaWUZi~u=>$t=;l7U$ksrBLD^|r4 zTuR)gOMd%>QumhMb)nF4G2aGLx#djJm`)7w+Cqk5%ZrPA_2t@1#EQ-7c>@~JoJqFp zO~d^KB;^~m+2Bw6=X+e2i`SE?93;Qr!a565gM2%Hnw#ZW2yK5{1t!BTtKowl86 zzf$I(&M++%WgTE=Fj{|qaTGSlKR=xMda?3#pW|k=3ID0D4v+13_g)|AxIb3$c)0M* zWX)&OT`**QJUI%IB@Fk!K3x9A!P2)|4TZMQaEMvHAPI`k=XS96X=_U=G0f(X(k{V40Qyn!6QXL8;|LlkH3C%(0|5-}uN(k=z zAasIj55S!uchbTt;zMiUzL1POme_h`B=lK$g$MwgrAivH6~NF?2C8UsxIg9;jH%(8 z`)@Dy|M_zD@5VJ>P5IyT*xxsJfCJnwrTwmo{YzikW~OW=js2uj@!LkpJr{k&AXzb_ zUeG7Ja;4nTCSNx57qoPkWFR|!JTFj^O zm;xYvLdoeCCX~~|i1x-$oR-9|YQ{wiTCt^L#t@o%pTD(=47lrvu0Q(9MjUr?Wz@b+7*}P#Fp^Vo3f%28sZWP zlM-44$rCE>yqdA1V;;E`m;5$-+pQVJ*dhQUI`1_eWb3g2fK5LH0X=#Sk|@qQ4E=l> zNT26(?N~+PN`jFBGy@>f*f$(GrE@@pZ0hq4?YP4@VpYy)Q~|c)we4%Zs&rw zZ0naL4=aqc!Z@)R#tdaoC_kW+uT)P1AG zcwAz_UH)aW?{P~hD)QaZ?3>L^H|we%lsX^P`!1B^tUI-^D!P`hzn5#q#PGDe0MYOV zwZ2V{X(!u(a14mW;2?CbD*sVc-t`I(hUH60m}&N2sVdwp@-G+V?p3EhZLuIy_`X|> z^s7COb=7HEE66-5_hRXKu`KUqb3ZlFa?`9OMT)?5Tmg0IDu{g&x&cZxrWUX{mu>QM)Dus^IfY z#k2nO4pYiZj(xkPY^%NT(ZdkmJ zn*V;b0Y*c&r#i1r^j)7GyE8v~cXj|63zog#Y)pT>I{EebBs5kp7W-Z;PJ%J{c6Idm zLhr*VOf%?eeQ0bC#yW`5%IQA5f~b0Hq!YW4+he^C#(Rm2{OmY*{RlKh$%csc@!}{T z9n#e~An3)8mvHwCcsvZl7YKbKfceZJ!tCwV#+UmCNP2m-wfXvJ_Sq^jzZTvT2|06L zUp@crQp>#-$9cbex6rtl?;dj5CY*@3wJld>Zef$r^c#gX7InK-TMy zjY9AX@*tI=A*#r5WmG7HV3xQjLs&3|01qw73+Yxu403T%{jmo|8-O7M5yb@nCn=W5 zd?%veBS}v;!sS0P58v;r@?cfcS7MLa`FS1b}Tp4F`+dFf`-p zpf1RGNk;frOfxcJ*fE4X12Vios^P|U3F$Oay`QHrazADpv(VO{Z(D=AgcrTOp5U7YBzG<9C1)N)H%nfnOjyYl9#ox80o;Pzx zQoV2TCuaYNPZ_I&KFA>2JI&OB}` zJ}Aq==V04>tEv2?v-(DV{YFI&A`|v%N>}o;Hwtt1EA#tIvT;m!IZiAF$1<&JbwxKO z2VSpi{^rvBZx`BLbYwp7%)C;QeW|7SLUY@_k%mX3IT(QMxB4KIMb&;VJ&LffCmU-| z_O{<_&3(DQh)wTTo7154f3`eAuskzqXc09b#2q7^Plw})HM0G><_BjFOI|G@;H z|4w`<9AG{VriUQ(#VsDyAN$o8DdTm^nU08DE+agPJPgYK^g|h7z0tjXRs$Y2gnH6 z5$XSo>W}qrN<@e_CPow$FO8w6C2{kFqB^Z?AVas3sm3IV2C(kbAnI$ysUgzdJrMn> zvG|270L@^@tB3k`#j6A1m4yCDjz1az3HYE5Tqw4o`hyROLl}Z)Yq1|DR>Xm#znx>i zD>?xb!g$4-KO%g70)C$;`gq2{!-GOB224l-fb9>mA%Xkf^rhkz4dAX%fhplmp5kVX z^rB0!Z)M?t3$&@@Op2-9DHND4fTiQ5MmXaltb&k{vHK7=&)M;oYQ5*jWbA=nLo zu#av5Pzd7!8UVJwgb6+!U{NeWxC*Gjm;m4gihcm94-Tl7Fad=e47rtffJHOf0AyJ( zhahr{*-<6z*usQRm{?qHZ~pGp&Ofea{jUYrUp1;;l)Jy2aQ^))|7W$T3tk&IEile| zlgEBhpjd{k(jvZ+LA&ovJV=-9WU1$@$s6XxU3Jo=h%#el?^wB)6-2BfOnZ9x@y#3} zq&`0(EGs_LLk&gUuj4aw6Oo@Bmd%W>5hnFW=(7;krgGc(l}T^z-=a^ zf@wHU6}hoX*t2UU(`3sI$+lgM>p4nfw^i0>khEp!`*Tc}3-#-@UU*T!z+lCfwq!T# zWN7D&tT|QEyj8YamVds|f4Wn0Fkh_sesk3jVyS04~9Y1vyu8(>KBMDRSN^G9TC2K^T2f=e^lca;duDRk7|y zp=|}kJHKh8rt-Kn_ew+F&3gA?jen^k=W==4_2#U-&hlI3Sv!TmQYtXbfcSr!LpcePzG1?!rj*_0f{Y zqxH}Fny>bbob>kI9_V~9Ir3~}_3ifdH@nNf*cpSe7cR}8txTW+0PBA_*AD|{xHmr~ zk|u|UK;xmN8v_mZ#@bQhUoDPVIpbo#-V~{g38`h{)na;;-=tI)FJK{=+bD zKtLn93wh-yi#`s@J$XR>!5>YgzC2%|Ew-93nhpRX>%tnKCYF6?@Kbz$|3 zm7aUmX~6yaGYrFC>$2avk)O6y=$tLf->oaV+FS6X!*e@VGo?!{(MSqaTuAGC(&USI z_SJ%PQYLm#TsUOD>a@lboq`2)mH|3vr2b+7fCfOsI{qo!o%|3p z0qOpR9)N@EKVC5h5RO2B>i@$AK=yzif$|S20LYyWtH<0_LAK+q)G04*{*E*QQJIH>+W zfzSZp34tC!z6O*55Dya;p{2s6bCftEIu{iJrBK84+ zOqgnVIIMxNRLDyP8#N-28iWRLZ?NyXmur7LY5J#j>FZk4lYxw14e0*1M)-NL8W_ce z0?Dh~g!@(&ZkjjS{kNO!53+>UEJ-Woq+P%Al83!-jGNcehm}dYb}`|wW|WM{;zr~N z*ywhovhml(0ofEDa8=A?KQqxnjkHk0Kt%<+AHiX*!gvUPds7p-MHDzabZ{9}Nr??2 zPLrB9uTR}|=s?j~({gd4CB zWDxe6#N8Un&8+mJ0ykWMuvaon+hJl;!SvJ)K6wwnKLvJ~PDycU95w6+--&{XYM6`8X5rXC6GRk&BT+M%*z$FOSwAe&X7;a`U_{neOV zZk79=_LiVgA;|t}Vfy{<(uXb8I~BRGA-YkYce}y=u%+fH+#ov3ub@aZmEPQ@Z zSK;3*_fKS{gOz*OS}|JWKj>?L+1c+duKsRq=$rn+uR1MH%WeC0l?z3l%U#9yhv0x+ z^02QKcK;7%A)_5bxIFY|FV@z;tp6Ipim*difm8n^5P976->*%;x*1MtPp5nF;mzR= z;&wlQJ3emuozQlX)P9it;od{Od4IBxsQ%aZg zhtf}W0`P@U{qY;`&yGHvA4irXFdw-5e|2#5<=)2Yjg>e1yU+Gk-fZuDwcQKF-+|u% z((qKSV=~XZP~b!m#dfWKuchL!qYPHB$SNP#C19airO~#TwY@gUH1hi@vkxk~$cosl z$l9&(Z&eqoc;I%@cR9-h3D^qm@A+0#f3Tha0ioiP?*F*>V+bJo0par#sQ$S7uX&Vc280(h zbiY1m1&B8A!-IbCqgOQ+=)6$z;q#2rPx?UM^--x25D+Q;0{%lbfXC&U+qtQP2}EYf zb+7oUS9HO_g&JTdjX5cy3<;zAg>gu*0=+#mJ~SgfJdF|oH&CEJ=mGG70N2$V69F1% zdPI0y#MzAK5I{g4Bu7%hNoNSe0_Ra8a3IGegk4YtGh*TLR>lKWCJMxV()*Lx1OV~J zogFg)gNO%!IVhe{{mCAHyFZMbu>-)tbsP4`umdWgh2o(!DFQCdNNmS5GUDr46wC*3 zjmFpXC5OP5G>00DG~*Z3Q{O$B{_A1+Zw9>2`whPuVgGrhro+Yu=CZtY=)a@!(V(hFu(`~`z_%fv%K=$IjO(ZB`ibJ=BHuxb~i3Huqyuyl1Q z<>`r$T{7;RRnegnwMxXR8EVABU|d)>@Q`Q*bI|jdnjO0o<@i#*`AUIp%b}Q5vB4?Y zaSjt%9DvR94g|nnOqmuW%U>)?!`}g@ z(Y^dM%mjOlHLvS@4|`hn0qIoOv3%Yv&VEr-c#I7CGS{7A4bpwLihZ|>JV>xPEYH4K z;y)>K!ZGcr5Snenq0b68?AulD=gnoWI*M?oJ}Jn-`eCEgayiq4)xx|>wBt2hscAfE zu3st1nDXf^78vgq=j>#qJKs`EpJ5abfzi_MAtZ z4KR(kU+27DSA4b9gCEF~(o7J0ZZ(u2mSvq(dCwPR0CXbc2<_D%8eOR^x?ER-DvwAU zG=PI57yiz`d@k1d?swK*#$UTC54vTjB5>Ec+t#>Sle?Jd+$?m0AWJMuO0toJ412io z-1Hf2-P?=QBm0b$M@;oA-;e=JP%4J=L2HId{4WUk^1r=x%*DGW>XM z9O=8SSG!)V!yt1GVTxbwO@F;T^5ts(yM;a!{nv}bI4JrsEDBukyFl)|JKlw&4@;ki z(*wBX;}svGA3T}wM|2ms{P(AOQT?Is1@i}+-sf{@55w;W7l#Q@_#e#lfXwqc;OI$~ zeth`DeE`U^`k^7+9gxcOfloqxZ(`Q^bLJW5|9VBq56^NF&{<;HQB zY2ItXWVu}AUMlx*HdbEgs(Lt3eY+v!Fk3sQO(|C=*Xg;VX2q=2I_%F}$W23wg)n#@ z(_2N(QBwuhdx+lr>imV@-dH)#6}!WNV$OtN0$_#5(mwewKWqRWfFQJi4-J4E0>}w~ z40`F|1BEHm{qlkj3ysIdE%RpZL z$piHN!}(Fb=nYmsS{Q=j;2~i9th!eS=wC(l0F?e4xe`D?cMD~(f`Ab0Ixf6k0k}ZN zPTpZUYtx(v9qgExG9-xW;>Dq!dSinflrY?C4H1#*P{hH9!3V+^9chV;Bm-e=Q9)<` zz<)3SpzH$w3Fv|2vtlFMkwIiA7_5QN0MG^?1_ou5j94K}p;0ceB*1G~5(U!$0SYnW zV6=%vE?$f2;f1u2qJ&UFa)o>XJ{7<^rhytROr#^~1qpblWW_*xg{&AX2_O_Gq`-_i z)Egg*27tfG`{kv7zt!_UCRIP%&iU=M<#7ktq!UDR+l%;GsE z3#QE=ZZ7I^-ZlFIZI;V^4^nH24T?u)SuoGp%C}w4G3;e%FS!kustfmXTu6%Fa0r%-k~LQvG9BmB zWiYcvp}(4Mx?P%nuYy?(e(b?nkEl&C2|{Z6%k> zJ*z(RtqR|hj+%Q7#g}Tc2_LRvC#XR;>O5DP*QL(NNAunH7utTg z*7CdMx-UC&?-ylUFLhk3%Y()4<$GZx(?HG)mU#?GoxcL9D`eQ6W z&wxl6MiGeXf^k2f9wOU)XXW$5JtWe6eRLUS&It1T#o_FYw!Hm(?O3jRF2}kS2%+1k zE!%FczEBVU!Sv%y@vuc$qZ2pVG-F=<0$7p-4lIh+{KPJODH}b*28G0NTium`o@Z;T ze|G2cZ#Fu+`QeJ-knm5=P{8;Mji8egFv#!qU#HKIH+`tX@JeDn zM8ywieMzflyn|%`q-1Qwq9k$kNo;)r-N|Ows#1q->IH{p%Y)jjhTIno0O{@60YLc$ z2nePut2q{|@m9Qg-2DmgCzqi8ta??b`=sX&4%Psq?GL&FYCR5F_lfZLz$-ezdL|hI z`Jbhq+y?*XZoc$kFa?q#2w%_$;IV)|f~b-FT_-&bV-t zeoO$wD=ivpfbSt7eljSb2nK+kC_EnE?}mLq9wn?vn2ftK8UU(4Ap?fUi$wtev>-kL zlK~n4u`XuD7SIqE6J3@Zh5J4ZF#)h*Fb$v?pd}P1hWRMq3&AlW7|(bgub>GLIl!?H z1BYhE#Sv0uZqly~_WyXT>5og=zgSHDL#OV~EA#H>NPj(P`nnyFDX@P~KF$(6^QGML zr5xu-m#n-+UE*~o=dm~CmPa+CWJ27#t7jrIY)MT!?-F0OvsV<%K~8ilJsb;XA~O<^ zVGJ0c1{H8);qid@cnH&wT7$#_JoKf|p#Z2(rh22J3YbalDhYo058ayc>4e25CJ(5( z7K}n1Jj|##$b`Y>U_?%bH_?2Cao%nKwgVv;(gI59bU$3@wewyj+#?Rswd;26noV|)X92je=XWn4E(XEw zZuJFt$)OFvyt6hN!YhOmU38^QrYlA=l~;1@4~x-JvM!Z4fOH*ar+v|s3k3XDiSGty>k@pswDkE4bQF1fNtafp1r2 z-)ky5smtFf@~-4+ac4xQszP3hl$WhUFk`y?`j#A*typ#vzN0y_>sPY6yKJr zz1nQ7?+zB+?epDltA91!duzDi#lpbzX@b5SGe?8Ole6kxJK6fWN5U2~1KJfkfquqBWJJAEM-9?5l%!_b;hdn32eF)sp z00PyYApSpHhTYo)N;xKgx9d=EjiUkJ(;(s{5+4H)KY7UY?}udoBD!GB_GD=aD_=yn zBe~`E&hop1b(}Z*+i&*|;oAT8*37f<@`F+rFpvR{e!!_6&oZr*Wx?_Y(Anj37d(*1 zO~N)Kzaw2So9Ei7@UP+4Uz%}JYTqt$Y!zmpl1@4GD@9(IZ{M4n{rvdipFP;ava>KY zn0784AU@^Oj|mmnxwGGMesF&eoDU1(A2NS_xDZC&hb(}08drXz(37vk?l&Yd>0H>K z44)zXBC0s|-5sWHnFa*4qOxNLfUsW}u`Jl+aAW}lgb83J+dSt| zBlK~vFdcV)lHiX*Pu}|Rigy49;T6vis3KDj6`yqc2OS89SA>)4$e)A!@&@M34jy> z6Ex7o7_fsJ(TL?j7$o5dO4tF#6QDWxKY)M$_yDg5R}vNx*bN|UkqCmPM`I2^>4%IU zFb6~dbF)E5*NW;=Qk6+^+ZR<~h!1iC^TcB6$ZkebS#nYim)&mCEZcQkI#`gx%$cxim^Gx#n}nONh0=0I zW%RW);k=GLV&wI3DAQ`;ZZXgUXFr!Zz>aF+gvwd`_Ef=+C1nm?9U9rNn)nX8Y-6n( zIk@iw`Pp|Wj6W@H;KK0AvwoT&8@cOq&n^Wms zGWLecx?PxgXjh-lOkc98!cvK{(8h_kp^nQ_uqbWm9a zw1@CFht9yOg17U{5*v}_n}f7S*B)4mR{f$)wViE7)xJ@hd0ggR)v+(S6}rhCS<1^jlI#O!Ac+>y=X9qk8MJ!REVd&D(`}M+K$_73v2yj;CNH)n#6; z&c0CTy-=HV(2$MI!G*$fXxXk5dhj>7S8jgW*S=p_zL6KtcroR;b%thZ}DW7hdljJ>6RV+0h~T+=X%&-y5eKh6TTI%$Gh|oU?_Lp4P%! z74|J>>Zpd@>yr0ps3x-NgkLW?CV}juK5J50L1En7ZZ9nV*Ka76-AsmEqkLr&$0FVcDpPUAO z_OL>uh#}xCAp{G6Ki?l-5Jg90c}3znqiWP+29X+|KW5)mu=^406<`5j2Y?2E#K$q4 z3=k0h;ahoWXaM_#RJ;Gk_b8djpzmVD z56cDhQWmhRPI_W9H5RULkj|k+A?BrD$ZkrG&x<^ZiDx=ZIc*TGm{ZPUf-?&iv|Knm zuWCgwU6|HO;5dy>7!pzD_2L0Z!lGF^W)zNVIZ%Gx%Qnuc`QX%gk~!djF6cxfsmxIs zlUVA)V$h>T{oVBtsgRKVUT`Rnof^o#4!pWC4SQQFShH$JWGw7#AwEQ>xndLEb!&Qc zd0n{rYOJ`B1Ful~me;V6slv_~mO*!Y>YZB0ZgmE3!N>T{^KlzAnqT*4ZN8s;}sz0&E!@eEcuF-FGoGv=^>JNQEr>s*Kys z{_Bl}2qA#7>=rg-1_m~1{VwN-!-fFWm3#-l_nR`%K|kpr2Ce)F}q5;znsdCgm%^y4z`M4oNC!gZx87i`z7P!*uo z7i8`fx&UykWxMY*m0hhb-1TK5xn(ZTK4g>6y3I?a1=}!z=x+LUa_nbI9q*TlzMA!4 zt4V{W>D6-YL51;3XWG>c@AcNE2SaoBCdO}1w|urV{(g1*^W{+j-(To@ztHi;LhCmx zoiE3#KbvX%Y^M47XdTki?sUO@x(s@>qn6TZy|wqp+n>zzfbV~2v~vt^9mr z`9Zg1&MoV+>zgwT<8H@fVfJ=M$%W4B>rJ+`OevfYyKL@8SK3@j7I?`Q3w1CIzf_=t z5PjIft}`jy%*g|3@|D7ZotBDwt4m*9y7Bw_N8fgt+N5;$+0fW?p@e$tps zfy{e6U5X0_96*W47u=At!1FPpd;_-uq=P#?dBG=3JbBH>D*#X2Fc1f}?o}L@S~qhw zI7cOENR!8yPE6`qdc5vr8*so|`w`qdvHN{gj4*&S-1^Y~9#?4}R>(;Oz=sAvm;wdP z?IP{%LKX4=u6ub`T%3ze&VD*)(~`WbPKGH0f~!EQM<#nVB{DaW3b>!h0*j19E<9ww zT6`FK&JY<2M`*Z#!Uw`06-p`qKpXW^!r%volS3uKfzb?LQ$t`uum}whLlHAcxL{4$Nsw8`|EMfuUb<6tUBd=y$dmZ zUkqn|TfzIHRCc@8vY01awo;zBQXZs95np~#t=>sbT-LKd`JdJ@FJ{VbWNLOzDf3#G zdQxYV4AApCQlgs#F?A_1)tsmreoR|RBJiKe1VW!&pB&f0OG3~MoQ}X{8q*2E(+B2* z7+&1d;kmYC5YJdrHdHb!1Nv;rO$B|jz6Yg_llU%7-P>|#ZO)^ zfPlmvk|a&4xL|go$|EWOUvt?+?26Ajl^0wpB(Pu1Hi8T@p=Kjzc+;kwSEuZ_G`O)Y z0xc0IZW%>=8W9>mkDRrVq20BYwv3Kgl=WZ1nBaAr4-BxkL?Z+Uo`v zJUb6^GVT|e7t8IJaWjJodiy^fABlu+H)4v-9t9abBr; zGno6j-utkD*d^R*_3Sp-5tnwizUWR*(+QaVi!JZh$G_g(0h{xy&8crTC%#x6dOh3m zV!Y|uSlyG6nny!bFDDzH4A&t$7mDKRofX&GD*+rGwN+l~u7i*1?XfnTJL7E+XS$L9 zj%6=A+Mw-113>kMSwD;)!1O0L`}32S41nIeT%W}qA3fmV;>i2$6*#rwj*rCvJe*O= zK?8lgPRs}B2QLutyD^6Y#2EyHIUAEK;txr3f!-HY!F6+#AJ?y^;(JSjVV$ znaU|GyH%9fB4amMG=q-R+3fWF#^#gpo@cuo-(0=&XIED)Wid;Vqxm7x@gWh|*(RR} z0%8+$?hKjV66gUWq=U*%^Z>+zp~{nYf7JB2Pfy4E^i=dmpT?es8w6}Yzo-1OLc-zl zh8_@ymB616B zXz&r1(YW{n3nB@i^b3@ zw=U4xB}RSY`^pglV_8S(YA^tkU2Dg;OP2FlXR==r-w&LxkrM)j&$F3w;HWtE=@dP7LA|}x%B7_@b2Hs&qA)icAgFw z=j&OvoqWqqo)rc=cgixi@*SHF@u6F{VK*ZV?269`F8q^*@+a+e$Yos4a)RwX;<8?^ zZoFRKw^P`>kyF0vD_$z7naQi~Hs%f3+!u0djtfcw9Kj9rW_{@;!0ulC`?kCrHEw96 zZxzEMNKaVl`n}7gnMg?;$SS;3tcTt7c2(K+Ld&gM7tkkMAweKnF0ft6)m^M{uUC0r zmKnAy)3^K@$ev*_bg{&GudWCp(p!ZYH(JV2@o$#cLDxGdaKo_i|H(-tM?2cO}=kl&!dxZihtRLRSxd`(|wcQZupB+wnWD)t8*F$lNTj zZ{&IATsGvOA?O1W)x66&;mchtc5l_BoeUHr0_BUHK}66zZ}%f`c)QBFQ|G?jTMqE* zd3QZ%Foy^h9i>2fwhfbT@P|() zc?d9Pl_>5w=mB5suE4O9cyoCi44;61!vv`X!;%0e@X6D_e2A?tm_M-l-&!K-{)L10 z=MRZau(gKZmlrz=KfiqPi-VQxO_pi99z*$9UfObTHsX;116~DOZj*J}RPH;?8M!!*XsTkCC59tq}0q(lk>Z<7#Q)K~LX<<=J6fB1W4FJOg;rfZd_uz0rL`+&@a#3n(t3fpe@mDqx%T6w4LHq~ogV--j z065Tmq57}oS>XME2>@p|--7tn0D7Y($(?_~b}$wYXb-vaB{IJPEFgRi7@{AjqT~($ z(qH^pM0R`uM8ZT@Ao2i+tj7{f0Pa`cDv&=YQ$rq&-S3A6KuW;AKV^FCgl}dG@8k$? zc=#7=Y$$heenPZ~tGzuC3HUSy2 z;T~E{ZW7hUh)4PrU>^(t2!kx3Mi(bS1Q7S(5D6{uQD^{!G%PNhwEia>08B9f0l_;O z5D+#2fPi2hgt`yG7YP9oiC_?a1r8A)oDfly6j7BJh67mu^a0q%mVr=24MP;LkHgHM zoHIv#e7|dcycOYxV!S?El*y!}~VRjlq(aY3zhBfIjf_Zh(o3UV*?!c2-MnFu(TpFr>ms~t12SNoqISPcq$lC&;lOXkH zC~;3e?^Gil{z9e(vjz6O%LYUUq+l$-7y-+mc@uBR0|P?EfPfGocgp!qa`u3Pzu^Xm zVc4{5Hr&R|Tr0kJ=S?a2hPzYkMWpbcg3*F#OsfP=w&!ykJ6NLn5YUl^nBOb;nQ*4v z$k*L1@m|cqCB=5Dz zs{1zTI%dl21_~QGeN7#n%BBo|fi9!fkkg>Cwd&Qq2&B{sE@!*99qF@~_Vbykx3je? z4l|y|eXaq&8>H#0{`8aTyj$hQMStEkzvWSb1<+8Vk2ec^TN#;@g_xcY@zpk-dD#o zY4wBqf4lZ~CY}4Hulm90 zz_Z1TXXEX6y1WmDE1u1Q$us}6t&y)+sy|;xxNh6CnU2R3?Kk`CkxBV{vggrA`$>Pp z)t=hBqhR-UUhQiJ&Hw%svSm79J&i#5yJG|QCkJrBhbbGJc|h=oRRi!J?1ZuMB_SZZ z0s;cn2M%teybEYP03Y1$F$aLuPddKg0RaF+=*rp@sys0wtV{&91(TQUgb9R4zv|Mi!q>=}ih~9K#>6s^pB#ey3GP1;zD+a$T;YkEK6&L2YCxE<1Q1l36ko=mq6Z)x7zfoK@1Pj~`~d`n zQ-llvdJMS$fDG78BO+qZ05Aa*CP(EU(IqaViWZJJfbfPRgkwZN4LK0tmm1md0*ZzP z81#P#hT$Fxu%!eEV#(pTf~0g>m^bn4kJI=UGr9Nk#TfYPB6V_`d?m#=%2TTTN&n=T;( z-gd1L_JB^(tK@W~(0kbQ1+#!KY9=rr!IYe_tP@}&x!}|xv>oRD;Qj+#!Y?5!W?shy zKXTV8ozV$q^+Kde`dA1o0}_?8sFMv!80+c!U4Sszuqs4Q4BQpzL0GaMouRyjPCY34koI!9qC5Gidu zsfH`nh?Mf=6dPS&h)8s&%FBejI-#hGo4AslcD=LgMt8wpUBPj_3kF!%3o-x=!Eo)G zNB5vWdA`By*>1H zu?-F2>2&Mk$yNl>TJguU}NW`%`6ySnqm!OHWEg=d?qFSa+~|3g?o zY_0$L+O==jn=e-B#~qGwINP!5@E^0MGye=QMdB1weWiYC7eUQ!yWZOzOW79*`UY&JXNzAn5>YTj0|<>s2@Xw-h=T81d1^|JRWokaEPKG!F@g4j1Mmk2)K4@3KtM2oSj#mp zVj|Df!txW`e>4CfIXDEp$EV%S)sR+{(#sa z!!n2nkijou?F{PCk5KwC1Q68EQlh>C0(w%J_N3AZ@F#%(U=5(g1b_xW_5er$umB($ zK$hTEX3Av;|GX{bAWgWUNd}#KNEF|~#hp4FHvQ0cStElH1_>b;xdb*vMpvO*^54Dm z2tYu^@u>LG#jF@WK&bN7&L;{d(OF%$4cpslh7&6D7 z$)v}-sps-ygCC95fA?(tpLetWa@_c<-pZe?H~i&V)_?S*{=uL6sH*H{OUcjrw7+W* zJj)k8Y;qmeY44Qr-ee`-%Mo2@%|@}fmJ$0TJ?4U*PjGVF{D*$wgAB%k3W5N6kws8c>p+@f8(XICA%RlA7rwTd>}bWmK4ez~O#_67?Nb9-Mkq z>O~!ISV)^zu#gyo{D1?y41`F~maxB_)v)oaS8~#J(uCt`5lE;|OH`^w)d(cO=NlAL zdcmYhw2Bzv{EQ8^^1M@i1!iz=&AgUBC1cM@Ijefvu3d{H`YoFr(Y`l}oVQAy=j&n7 zm3cYCaKo!TUkU>g=ZW8bv7i7Bnt;ovb91-z3a%CxZdNt*r+KHW*>!qzr_(j!%4|03 zM$)ZwPUlX(Z_sM!Gpk3f+A)W%%jT?7=^C_(+B8jr-rAY&?R3~1veNZ(sZ1c3C-4PlUQsx~j< zX?@YPwkD+ITr2VK7uYX3R2Rz;Qtt+`4D-c@_&XO_upd4u2fxS$YU!*^z3sKYK>N7Z zd!g8lkmRib-)3eyEQanj`L9ff#Jk``s1Xt!2ovR&wU#IDSZFQO#lJu;C4@5@Db!f z+~`BX2zJn)L;zR|b0fkz;o$t>vQHeM=p*bUG#m|p0EpoIc{Z3I6e0)?RYu1+Iow8N z%5b_0&i=sk11ni0)@is&5Sbrfe>zkPE;U&H8+mEKe{kUaNr=A+2(mw}^WgvBY{L6J zaOKB+pJaS~;QXMb11v&`2WJ#*1K+nq1Hfnc;TL2^V?gN-&`F6Nfb%2R{sbC;{81Uv z1F!^sR&9G)Wd{X_WC4*o0I~t#;QD{ZFS(m5y6sH?`f=SUx{xl|Gs9yt36TIJl6XvE zAmC#?3vLe@fG#Q$)!z^mg$7_DdO$eV03JFmJvKa(P6%8x6QVO98lZ$^B|?i!!3G#x zUmQFjAPjrpA|@3(;q0g&A}g2?hrD z7bpTP5t2?qYuluA&F2RhFIw*;4mrz;+L^45DVuUaBR6ZpV zwAXI6aMdgW3v6y6OzVo4wPw_| z$r6iUCCz6J$OYpHL9ZYIIr50=g%8iZO^lkptjARywO$J36j%@l{^0uq{YN&yf{C}1 zCSJCPz%sgkNMW_40}i?pR*#xLYXcpKGb~Al?elE95*~1SzH~TQVhf5dbv{#fqsTdD zNQH2rg+oQ#ShK28{r6n5EBQLYlG>N{tkiw4IDNasj(T@9-+d>~yyni@by~Mv_Q|yL zR;99BXKGH*oU>*OTU@mY-JssqqcwNy^%It~VS|1yJstKtmy5D4=V!smXWwgr-Eq5C z-yl;BdW{o>8HZlWp`LSGX`C)Jw-`)?>U6ItRTde?`t;MBROzMKn(HN5kbprS3rJ_z z@423(x>#g8E_a?3SPzTxZWLKm0TE`c)K+F%guqGZ8SZdZh1U4 z@@9JC#boEx+15wno%e=Y?+mpdPx$UA>OKMJ-vI|+N|^%+b6ua<`2txv$m4dtE~1<(>U7r^-Z za&PX79n1%i98aME5JsL`i=V9%VP3@bfBky}0GacJ3E->!&94r3-yiJa`u}1Z^#3go z|KUseYPjwY=HZ_7iCoiCVa9f08c>n>94S`8pb@XB5@uwv<*YD6)LAcGk$Z!Q1La_+xgoc;YJ%fFB5|FKH; zpwV)7x$0*--hZ5u|0vlh{jO>&qapVeSJkOGVdF^~X= z5Dnk0Ry8o=M>UcOjd;r}-nDC{jf#E=6U6xeJ%7m|2Mlt($OEzBa4LOO!C15DAiM8R zSB`lM(5!Dd6^CBgB_u}Vn9(7yd4`hfPQK%^huGSI;Jjuq_Xri`$vj^Y(@RUr1}TD; zY>a34QC ztFs=~x`~^+Ux$padB3gMmRhfrmKlsqHhrHX^Lh^K(EXq!-N++i3Gjn-p~8Ap>^NWM zzFcBEU*ZG-6k!85;5(G(KFYRiSC#JPcxtSYP1z4BZFd@M zC$;#=x9vBS-R|zbJv@qQJ4_nx&vf0I2WT_&%k`Nr7rQ=R?tZ`0`Fs)(P~Xd$iF?C6 z$m&AY{G+k%+k>r$l({p~3N|Mg{g3AQkW~pcH|TZYod&q_gmL%`!l42?z+1a?n5t{3lP334m+>xc)=maK89I`9I(9ehVyU1Lz9N zU~?2@5ac50czkATj9?$VnoHOR5jawgp70UM2DMa&XSj+Ik&rmAYSYM6$QRXSYyyz_ z0(T(N7!K_LhH-%=p}9wRLhx_<1owR6d%2QZUda`==+K$6=iqM|p#z|eNonmVafNXq z*|7JCi#COv)rKMmCJI21Ix2#21C0UJ5ortyc1J~I#YMZL!;u_GIPfIKLJ^h+I|n?( zhQQ(t8sMDx5WqX|7R`fX-3@u_NKx-C=10$Rjd~t;Q7<~dvp(+-w zloD2+5Q%LB>OM5UAoAOECrvZOUWLSCeBLZVCo6}=!}X!X%x*^QioMcxK{M3S#2gUAPeCB zlf2lelsI@VLsd8+O@{qhznt49OdivS;13EM<{II)rht-Q)q+eIq_!~t`v9+B*GupX zx1tiD6mDdQW;6-t4P6|jn?|dOJw0U<;Z`!MhgYZ!LB4Cack897^6+q8(s8y7tebg8 ztW`(V;_9TtJ}n>X(92M|x>Ycpp0fyGAhBsv0qOykg>~_AhGos5-?kVhWty%;g-4(< z)0iN`S(8O+G*&tz!Of#%Ekp#yMMud(!sKBwnrNzx#wZj?%Twj099@H0z38@I%6IJB zbpsMXAt%MJGJ!;~pYK_AT1Tw5rChkbr6Ub>E7#md=GCnETHCGpb!mka3b&tY@bh)1 z7`p6}puAYdj=SJej`K=I$!e~5Av0~WBy%b|ty#h9RnrlVGnQp;wF=vf{6*MW^wd9| zn|L)<@~iGVL=;@D@gltzRuC6U%~u-oPliWe{BV7!1!|0l!k@b&?igI5ySCtQ8z z2I1&=ccMM8?;RyF{8vk++8ZMZ6jzZo=?tuwB2fN>;;jeb)zuI2L?H-4K zfM6rKJB#?2FL&YKPyAjI8X{z0YcsEAr(Q4M`ak<(V-}hK?1a%#@D-l!?!MnY`sD$f znU8*Z;rMsQ7v9c~U_Ark)>=gt+?im2ypSPUu=8guNfYYWDv{8W6fZjWks|bzA@q!& zO}Eoyl$5j1s8jGC1BBpbCzOhLqgk%wj;5PKJvSGDJ53|r;ERL3zc|@_kjollQe!>| zg=-s$1CBy@w?H!0kDnaES;dAK?1=;Ur)u91_Bc2*d9pzX%Eb;1zd& z>PMe|_|FcHXN6Hy!s5~r=#>&dzd=4_ONGQ2G%y^PKp;AM9WlRlEwnXQ0x#g%YevHB zdLDuyRR{U%qe74r2)Li5dwwwcB%^(i=mNqX4w>?Zv*{%y0yvlkaOGceD{<3DCxCt! zYGKkb;)9bYNTNSN{4aS3st@)7ACiIb@TVT|6d{r2dNcrVMxRw8F-CSjPjWXW^-i`F zu`p-=n^qPYz^pQHLY~+uq+${8qekT<#91RkjFHiRfFK8hA*eEf2!>3HCUW5&QQ=69 zM{1ZeIvi2}99RR{qt8`wlPcJW;Q1iy5!D}ZUtI9v`Vi3WM#2FCzl8AuUmpMwl*1SW z&@j*dfD2(hKxP*BLNEwITnrdKsQyIQZ*nBee_;Cq7id_pk)ez@K!nKsFdT%i6hc$+ zCI;n+;*ovv-TTA;eY5^wR-Jz~==o-}@h|t<|8CRrw*!*Tiwtj?Yp%4W|E5R$hYsWI zOwomG*|v@TXU*pK#i`py3asa!)f&F76utFwu4hWYGTbsV-n&xnr3o%M1&4WXY);%W zF{e{vs}h29k|PQjRP>}#KDCn_-z4Hr$k>}2_Mjo9SHc>SB#tOKBPu==#WPyYlu?NP zyvSDp@(v$2EC3K5S;&lbBFHR-2KN1+oP!Xq0R?YdE!eQD_A+F!fF`J)nc5{IXHJu} zsAXbDy=PTy7^Jg0!JsO6&cL~fBzIFPG7{QUDXl_wk0cSG6SmF6YHqKT3FBx4eywF% zmTl^}v{WShF6db+TF!<+Ja1Nx8st5~WNd@?O42b}UUn$1gR0~)LDPt_16;|Anf5KC zwpAf1V)E02VpD?82!bNiG=^W4+F{mqq-%yV>{B*ptw_+XlQqjk#eBYp!L}x_FcWBE z6SXl3wpflkiB+eROxSgEc0-d`=wz_6b!kvRcjo3c7niJ;IPR8Nu9U%5E%$t(W5%D} zXjW#6gh<=a$FhAXaz8gEpUtf1%bKL>QA_$^Y3aqvl2v3Ic+9Xhy<1v%4+f=;h1mBZ z>1@?&9dp|Tv)oM?=`C4aJ(r&*mQ~n2ne3E)Q`((|rfU^NOKwlE3O`rQla|`mnwH_B z<|>O<%n+DTR0_!b8mY2)oAfc^F{O!TouXbnO%%Sc#ezP_Ba<=XHY&#qs9*(uczU?&#_%lOf%X8| z2mbSZYaYD;4dCnDg)g_3Ao|5!9stX`?b)vn7hf-r;nQ%_$L}SV!`S*_IgHXDXcDt{ z6Ex75YYU(4Y<+oj{_DNtcl$f9j<&uy-v7nLwXZgMZ+92M#%G}b9!d_ZPYBMBSv)Fd zBgDx=`DuD=1WLamCP)_@>|-W?YYr3j4A_EkD3zk*8X2!nDeAHrS1XEcj`Shp3_64N z2kUQ-Hh*<~_g#+*NOd+fEdCQB@C$q%%BRqFo%--Vw1Gdl`jG8`w0cGZAgez-pUDP5 znm;Fng%JeMfH;8I2@|D16uX4DPtPJU4Eis21ce(xmBl7zvSH;b!yXHaen9+dUIX^M z@POOMwrqOMOBp)+aA5&J1pm4L{#bBZhk)xKU;BaYPcnS4<|TCl9}?ct34VCCvQ!@^ zp#Xx=1F-vrl7KAw|5pQmhs2Ly^7FjPL|*^NgJ*OCRD41p26|}VkanRsPb*Xp3T3ym zgeUHl>n;H69`Vj%*i|!ux58HI1k|DWNzqX+X$dwn&>&7(Gp;5I- zFxtBw_Vm4)Ui{@+#}^&0rzJUe>+-h>bwF&f9)$hph05a1#`@#l#)qR-@OXgn_?HX4 zzulSp*~-`#^F42-8b6z@e>K+*w$Ib)cCdXw1cHY%8UUQ1A5Zq80X&-<1k^*|JhKC+ z`(y(^C%8V)j0ZB97r%;W;KlL~_PuBTFBYc}%J^n=K0x^=b^w?R&;W2@4;zJc(sXDd@rAnwI)-y!0?ko@&@b>->y z!KPO)96G4w3avaGAqUZ0CbECQ{SPOyU(88tNPqh+x*4Z&(Wyf92j3rXKlWS!tz5D*#w3N)HC8h|d02nB;0KpO)TC`=O;VvdZ!1mKK~^wMHs1pzG>!30I! zM@>(PMNNnL7q7VHm%!eKO$7vmI9%NE$tq90CIR>Vo(Kd82zU{ALBuZww#0LDGX^}Fo7T<<3S8fCiud@e@K4_*axAtI3uYUkv~q4{^YQ$|6iV7 z|Le7q|G6~sw};LDwxjv?e%UXJRbTYA{@JCzf7o+>*DZeI6&&ZJ?&R^_*Qb6_EV!8^ zyX@DVH+ zPo*iGIjw5LqJYZ~d{`0jcpj-S#WiusTkZTZ@d+9# zT^$v#2#YtcB_-a1^}@onnueXyikpSrlM>Ht8@paQ^vxV-8;g_z!l!1UHljfth{0IQeva65!9P^~INKE6-L|p07dbwf*vN|C{5r z_ZtImXX+ky=O0$2Z5C*D3e}r=(rF{7UrMXz#guU3;16brh%ko1OE|%uKyfmuy7*8a zKbh2+at;G^!_TIZkGpF{&744(rB)&GMR5Sar*xC(7XajypUnT-$svp-NE8Uye|(Xn5<40I_&?+UO$d}wyb|_v zIeG#D!U6zofP{eXihh7j@F5%qoq!w#@D3oLo4LZ!)51^|SIYygB0L`*bx03-y22>^Q=I|aUPluRt{<08pS7&t;>-wP}V56}dF z1ysa{#}MF(JmZZzhns$8Ob}jC@u37JasOOOC^`Wq03hl3ko1Z`8z`m27Bn2(9x`Mx zH!(Pu7F5oTsTWcaF%R$uN%7$RV@ph`1keEdlvp&IyqIWY%iJ32{_gFwf4Z>#-L0PQ zcFq6LEB#%C`;Q?ch&dL zNblmu&dTVBdqha&SSoW^0Y5d-go59jn$jobV**(7*q3c7ouY*F#Bf8*xnf>?r-IXs zL`ew?B3?Lvf}FFR4q2}X#eG4|*-e+vf+}j3teFMK3qu=NH1MaDT-5z-yXcBHt&&O2 z0S1-A=o2SzX!yvoUoeWHK%USG<_u!&07ea>F{60drag2i*VE=E?uBbNGy=@rY%_2I=ghKP{1!? z1EG^I>y#iJ&1mIA8tsTt)2&og^7#d9es&TEr%WtuQtKKuRxev*PU5Iy>C#}TB9xKF zQCDP^O%~T(YU#Yu(sW!?yqo7je(!N<_FhB5?aG=%fBAsH(`w4Ax0mPZ{dwxFoK$C) zFg=~6_bS|ZMqi$#pukd?A#~^yb<)TLd}VVyqmU)2V~cyl+IeTrTxR~PuV~x?)3@4t zx%rza-En5_d`4Dns#+RFQAab)iF|o{4D;-#@=&TPDb# z)L>-@Wl@Pqr%zM=>qn+&>WbgLobBzk7{{_*FkN^)S@dqP=8LhKXHB*X#m1##*BrbJ zvYBg89@J(ZHxym(@4PnD_c`G5#qNirHIQ^Yo9=o#)%_fs-nju-H@{mM#+y$jJ06X< zJ(_HPGTn{qKkD+UrP1f}Xbio$qz7VKx^IpUmOij=!@ifC0MG`=4KTS32sD5(GzKvJ z1JM5@Zt)0f1o|IxPXBhb^Lcmn?RxvgGTVYnHD{Nv z*hJIvgk}}HkQ19hJ*SU9Cyzdt8hi$x0@lRD-1t~;QoJE1IGsl5hbmK8UPcTyz|}Hd zi%yIc3!)%Sdg|_D23nYUy0!q9Ap}gm>32_y&H-r%`|;U?h>(O3;=cdApYxxR+`nH5 z1T1|31d$2vsQ!dkC?bCYAClD{OJGtL7Knc#8UUIBe)|t%ghP-Q&khO|g+-WX)FO$X z&#Iksqv*rHM-SHr!2OF(u>Os}e2|kdZ6gey3CDjBK(h(LJ~scz0)ob#y!exCfGqSR z^^c<00W-v>bYh+iT-f=JRQxc`Kk5HtaS>i?nill|aFxcdVF!o{B;`vd9;OaR1( zfpjncL4;M@4;la_060QFL|ky5@_|o%Gh1=w6m430t6Ii_hA}QnzyyH%H6S1~06U^i zqGQdmu^@xWLW7YCsgDfD4gd`xEhfx^1^~k{8e#tl{0F5UMnI)0%zRctz#SUqZcznv zN;!*)`VKy5ZhT~6QXJI3f$AR(!yKf50W8Axzmk&xgCHybaL@*@1V&&a;rGdkMGq)q zMiw(7kP_TLWEDh0sEi>1@$sZk00)tikRoGuU6Md^MgKQQa=v?e))k zU03z{-uA!VZ~oU!#sBV5{jAD#yRGbLf9Y@g&3|YR-t!7C68~3dxjgYL9@ws7~#c zC(aoK>vk2)9#+#7)9RE#B^$iY#Wdwgx@OWWpU@G#VOYxUOJ&bO#*zuMXd+1%IlxB_ z705zs4!E|7;Zd=im2oM@ebwyjlo~uKatEK=q?NB{q=T+HrV+sGb5^6AO4AKlRcJpY zbVjpM+rSf)@_BV~RkcE0tuhvg6j=<8kHPX%X|8ydi@|qt#YP%i5t1PIBwj%g7r83( zEES`^0yy>GtIE4tQna1xyHZm5xVHVMd2}$R#woI-ORRoVUcSj!oR(Xb?rTf0?8061RtC zw#A7&3{fVN?_u#ZF)Vc~OGk;5M@J_IN72qjN~rNlIs^N|xKBPs;)jPPvC~sj(TRfK zX!f}fsErbS8djpxjre>kO^r8aN4`Fq`)Z=}=RM9x#fsf5>0G9AGf%yfuLW6lwj|?1 zYvF^@_D2&VPbT_*wleVZox$fDeXl2*fJWkcHrV<>iPAmhKN1o31;Y~CE!n|{)2L}D5rZ*7d)k8u~4*<;v^CzJBBBTH?`hT|tBhMkQfPnU32LP}L6Tr7en*rOOi8ssB5DA0l^Tp0G zq+Ve9;bwi05%>`BErggnb#>{p!5i zJyo}QYan%gwmb`Q**8}%!Tb8iPAv^T4T5IaxzOa(k@Uz<$RbV_bn-?|_Ja?u&fj;4 zpdj>sm`^|b9vAvv9!y|F_}>lX7d(Q#$A2Ot2?|hfXuts?gnlN78xpRfP(1A92DJp7 zg(WvZ^jywRl7U|Y;-8^L^@nxJxK#lL9l`$es8G9!%YKO+7F!66BLSZe;Lm@qg8fG9 zbul842W~&)ns+x>OEv)fM$~tb^huaW1X>GW-;#svo`6Y20o7(hY{*07KT-~bc?H3$}=XaK11 zDDGuk26_P4?zpEDX)3UGU{X-xAqc<(P{F35PmoJspg`CGz*3FS_k#V&roiUm4r@B3X(y@Kmj;Xs;XG$Zk(An8#i z^}s@(a!Tei#mA21m-&(%N7AB~JD1MbGAFO5Qh~pZnMD(lWIw@53g6AZw}P~kpVZ8y zPRLk|LSCnkiQM*Ktz-_sy-5H^hb~r7ejLR{jjYp%#%!8i1sm=QoqEnvhGtgB-Lj`{ zrlo9~xf=!!T$JJYgUdd6rI-K^QLv!rkSUK-nv`Y+a&lP3?D#GPANzm}y=cmq(!{4= ze}D#n4KUUKBO2bcSxRgaoQ7eoXhh7wo*DAsY1l>JB4bz08h9f*#(~!a7X;)IU-s&d zGKQT2SgH#SYnMjbE74V0&D9>`L5BT$X7;3AH!bIHSv4yzN54YXAdnPECoq98FO+p&T4yJe_?fxrM%5jT5T@OR(TvU zyIpKeW9u_GMg>zPj1h1`nanUIpPC{{N|D9$4Dl(-P?{t(G2xSFek_+8%i={Ph@)at z!$Zxn6jcPx5W~=iNAo}WB;lvHPDaziiI}I97)tc1Q@94Eghpv73B1!#0EKZQVv|B+ zBYtuYE5T-u>&|q~UtFI3&06z=O3&>A?XH74YfYWCim#SfuGQ9UgXZ5-e6_zGVJvT# zM&8eN|9W%q=bQa+R=Qr#biG^b`C_I2?R*ywo?p$hKc8s3J=Ao2uo--R1bCs`;~c@gK!NfNYCqh5pa$q8 z2tO+Uwb$wdP#{!)^nk~6z348$m%#EQHo%+9XaHaVp#i*@hfrV+_z!qQq|^(Jp6_-waEW=>K8EyNig3_TZsep7U)je;9= zgf$@w*F+C33b%f5OeFEljB_PK)ri>Ttb}R_r^zH6@L1O>a&L53JsPZq@zL|y!M8iB z;FbR7+S0?$j81Nx`rO&5Q(@6Tr)a0Z|M`f#!jn{=52;?{4&cKCK=}TLgn;dX34qLd zAuT`22QuUfWKet>up=Cleh7wP6oDl$8h|J=%F0YCl?i(+O00H?t*=uJw`WA)Z2;)^ z=x6P!ajR^`p$78@slO=GQ0Icua~@DniG8;qeH$LJ0h<2@APD#m$@fRO{}2fCq57i% zU+;BO3E2v>gMLm>Ex zgp8{yB?;{TO#(Df-2D+IOuW)#t6?7z%P+v zv67@HH|--A7T3(kjA-h(uk7C+9sRGZ%s(_6{&0QiU$1xk`=aiTU4l0i8Lws=-pyA0 z^OpXfTSMMe3GUZrJgC)uRjdBApZ?%6>t$ClFdQrn@<5F_@34Kc8KuQ7;Zz*K1Y6u{vwTQ zQp&;v06RHk1|UiW0r7zE5!isc_OL;_Ws*&s+2cmmyowKjahEt5I{+loji|ZU0YGew zXkz^75P6MgQjl3Trr-oFYdWO9zyNMOO^A2kLJH^~p%xc1&D$>Hs3x_MlcbG{&*V^7 z^y(v9MvvRt?KMxQX-4(3Mqz57MqS2XWhOE*87W!{T^!3$P*Z(WMi!0jOyFQ)fQxf# zER~0qT1c=UB$E2cDRx9iDkTQbiJwL>X<|!8S(!b*+Uo4daI9wM?s&2fbBlM%+WNdr z)wcRfd7ew<&*?jJcSu@ zj;JP)ak25C37-Zf$53LTBg4ajVnGiN4+TFY?%ZkOJ_tXVGiRI{&GosF-|zPRaxmk4 zjp$OoWI7#jfLNQmmOYurZ37RHqCPwLY@!Q%O_1^5tn~b1ci_wQzOPn#-i=nlo&mwR zpwN(7Ef_gK$NO+*_+~#A038p(&-yCdwFx_=~to6ol z)3u=n5PkwT{Xvo%gl8Ng#dp3x0QBQbg4h4q<|MBFFIW3f%2Bv60igP0R=`%^?Z!Ab zqX3uCrM^aV*VYP%K;Im0paHyE8+$%ChPyxTA4~=T{AcksL;z?K`&)!$Y_|1TukU81 ze&3xkr>2ewqg$BtHf|F95S`IKwo=cU5~6f*Q3epQqaz(L;nw&FJA|T%F%H5lIHE8% z8r9#Il4MPc0PYVwpjRawGHaF!JPQ>C$L&>!G(Zm8)3FwG8U%{Hzi{;VO5T(zE|U@; z`w>yKV}5!jKJ4R!j|nb68S+lf0c5NrIswvMNE+;#kWu2i0)B&DG3wC4)<2Nv!GG9^hmAQ zDM}|WeV^{QI1PHkt$aItbID+LqT>Ha^h<#InJR2?|F84?j@PRs_XHRtNbwgSpyfU?pocHR^cXqj!UPmnf(A;brpHDpLqbvg72%%?M1(I$oCJ9v)SZBHCs>;} zh<_=hNBH7{(FX7g+zGe)>cr^kgs3(i9S#sA%M-tabOeGsGz6}-$OB-6Ar8Kop8z`` z=*Vl}FHMaoiHAM)S=_I&1m4Tf{O-@+{N-ZfAC4CP=|Sgr2O0mfm-DNp?9a!le!H6c ze->olHFLk}%emZC@oc2|w>|P-7c#!BvOH_jUd)xUC;kTx#+5uH?K%-rPEvaaqw>IkZ`(Exn-2lc6v0d);c7_6op-DrjspsX~ zJp~Kv*+qzfGlU?L*2yLCqAFm756Tmf4LPXeAs%wXq?j_uC!`DnYb==)CuJ$i4lqqI zoC?Q`f-W_uUCQkh3A&}+ajg(*fCG;TcDs0mWAn60w5(BXq}vuvnr)kU-=@UgxZ9-H z#U)9p3Hc(ym{EZd0gel}^~@Uevl{b&O4P_@S94M_=^R|8;oM-Oa#@t_}`WQxddnt}2qNrSMs&V;N^+<%uG043A9_dd!8H`mDlK+m^5Td~W%i(^qTE z%v5>P)%k9m2T!MENJUh>Rgso(I#v?FvNC1-hH8dzO{2ccj zgB8h^a%E19%_}t;D9OB2A&gUJQz#T=qKq5NVV{fQh6ZD&7x(cQ@cdBLNdritYJlkx z5tAGmNj)7z51~*$jZQorML%_ldF~9xe-HubXFmxKITLg)GMdV5sB64GS@*u$`gv6v ze#nPRvL3B?*`IY-Uw3nGK*yZBx|8{=x&C&>($`eG!Z=fp-;}3c|-uZZ- z9fWPV@UmQek|W#6kWA=# zjl%f6q;pQnN7<|d8z|t^sI=%H2yuMOIA>g_2RD6s1YR8!*oB2UC=uZMyW*mKjD&P9 zfx=}aFbcWcGP!6l+rCkjw^!)fuP;4r%D>ZFjTnR5bKP$bwtjiM_4!)uNtUjf2ixbL z#(}JPCW3J)EdJc-u%I79;v4;w9}_Nbr%%Dj2Yx=Bh;T4>0rilPUPLnh+#gs2#GX0@ zEf_u-ra({y!x;j<1sN~+E%=T2mPiT@p@xM}kp_GYW3M79mS;{=qHo{W4U8vtrOi3^cE0IwJeh!cQ=?)YUlvQtm8AT^R4XYi4TOE!Qp zNkWe(5e{p>>$4Il*60X*R5TUs)HY#Q}njYH6|F)_6yJ6e6%@w~|Z2h|n)&H=f_=`5xXSt@|E{!8A_@Cy}e$}jf=n-SP`?8e( zS-s(^RW+~Sb)-Zto9GAnq(c>RBb7BTVqPjUofInHdy{YLquaogO-^h~jIH8P+e92_ zm?;w##|l;;1>ehibTk z234~txm(Veu*l~W)C+Dol(*RZf|WdE7W8P@eM(LXJFzpBKV^c1SOq6)aEcHbjC}({ z#RwOhG@9nk@*!pNpoTl35kUd#mr63&v}(Bu!rDHJ5oXc4NxE*(^rcGc#Zo_=?W88c z7X>$ZCFCHCq)MTnip8o(7GfsQ$Hl7SV=|JH^HZb+Vs*AanJ2QkxEe!(P)X$}5(RRG z)S8-6^G~Npy0;r(uGi z#FXenF0S_HPC>dU2#-$;ijNCpCNnr%p3EA@|485tF@1^!+o1hgj*9Tk>%E;Q+EOuz~_BJosk;%TBoM1S%Liu%H z_uXRWlkuh((_Lr)DD?M7TG0URkF^2bfx80^VEqR}Esw^rAMVB07luEm^{D$``{0*= z`2g4f{sWi)>w}HAMq5$G@y_?25X2IAggnm{#_>uzeG*L2Km#DzoX8bG0|2H(zhq7+<*F7B`c{Vlpa;f#3jmB?= z3!eCm9YUHl20i8DfC(VD(U@68o(jz5qUDFffU6DokNeIAt3Bj5Hl!(8y<=6SCNQ2n5JHG8i<(R zbOkgGsQx%JaAe6)q53YA&b^rqvzZuPdu>Hx?p~U0h0X`6@ z^5=^!AOew#0g@o}A^Z#Z0g!!tXaKnKqxvJF4&w!Kv(X#SA>dlLjh28n^U{9wss<`w zA`Twsak=J6g%+Iv4S-aKk-9KaEleIX0O)~{34GfpznLS&_5XZ2_aKdh1^_>}@l;xm zC;<%sc>t*FY4HAxh*XA#U;>bZg~-E#5DS9|z!n*f>JJkSM{FckI)NQPbRIp*2N$^n zP=I2v-T@gD3?B>uSoYQn==hohVL#yVM%?|O5KaguViZ}ipnC!iBK)5z!9bsg9ssfs z6+yw^gA$)lK9JKxJtwv@DV#_JNFYEV$N~TgVRXo6$7V;L0pSd3^|_I!zgQUl?&a~{ zU#j}|LBSseD!v?_{Hwjn|G8=W>t69UEd|fon|^eKTY_$+KUfE8po3NVv{42(p+&u@HZporJ(DD|nYCM1i)UW3b7*mJ{Ga<86!dZ3bmeZ9$kk+jd?5pv*VOK0! zq?a8=gpN{GCibcr+qB{j+; z=GCY~2tMl;vHHZUDzVO$$Th|#D;ACceco6pb6yB4Dq-oMx5%cViq&+HDp8OcLq`eb1xKVt#&QUr zUoa+mPGlTEiYcZ@^jvGYSnB1=a~TqQ98VmPNDGgPi%FoeXZOzd4 z{$V2H7mc1vSrQ1Rdo(G8+QVVqEX~5Y^4VnD%bCvit0TYIpZnSV{MTy}U$2cJ#_Qcu z@7sm$SF>F&=Xyc@c{bexofjGaf$boqccPO7{qOcSqA@(4=z<0qEdkgL8o;fw4h#o` zkK26zo$>aQp(gAAaLDxl8bBc4YZ!EX@}>{zd*GGW0pJ}xkc|QEZ?GDDI^B;h0tOKp z0H{Gw7(AKiy*&;c*~C}7>+e<F0Jv1a z_L=1SW08gfNidv$Hge4{en7b=sGoi_8UX74hXz0dTL$Vr4xSGRj5v4z0NX$$zvGk4 zf5!t!4I){gWCI`)#9##hT~00`kB99j1l4nH)x1-QzzNI&m;i8AGj%_DRb_luhJ7y) z3J)v@KoA-L+5ou({;&rox54B}0Qe6gA@BN?w{m4yJ>m;?-l3HZ`!liuAb|wy*6g@Y zRCY6HKT*+;0iyxP(E~!yfd+~O0OW@t0!4-6y8*di0mMHByHFfb6!v{cBqHFGDd2q) zJ%E#drD3K0U8wgoM-AB6hi%?;6a1KC5|G!G7fvpEvUEcoQFbIFHQC2S&!c zAhJ_T8_^_PbhDpmQjRjjGaBlsB(_ruw>55S3J)V~yNKB?<)8@>(O_amBQLI3#K0x7 zE0r}WNE#I}O4)JvVJKoGHl!qVoA@1)q%O0xSDAto#sl1doSH?ga9PH{t$f-d9#C_z zF-9&J)(PY0RHO*3TU4#7!ov9Ib{2J9&O>}W)Bp4Z|aXi`oX)iX8&B464>EU=HT zS6H`c5I{d-6igU|y;4TEoYk3%Fk#88NxYGv22BV&B8bbj(iPAFfEToER$VZp9-1`0 zl2j-^K>5W*eo`r0c9}P9#zU)d1LPm0s>7f!5~SK=lT$LKPlK9_3l1?Wj z#|XJJp&?mRB-Rws#kz+;_s2W13I<+;Z7|UuW&&Bh z1l^P1bfUxq@IjSFDM#st(JY^HlIX_B1WQyn>ONl6C^69Y z!4d}MooTcflzvNOFkuaeP*@hNfSZuZh=ntl9h=@{8eAW;7}R`TGJYvHIlf*g=&~y& zJ<7El)%i-t`G(xvgS8L)E1q=u-wsW@n{R(Pk#VPpd0rYbMm?P!^$|bvG~-hUcZ1?W zgQ4L9vd8*_SkJ}=Sp38VpK$d#C5Ve7KP38kV8M%5lyyQO{HGr9Vew1){^ON23&Jxw zD4+o#1q=-!`Ao1NEZUMtD_2Q-Eb67qG+6dx>-(qDF9-V*uq}oF(0&5!PXmfFZvAlX zMBT?LARrP8!YcrMlGl$yPvpJ)$@3>*4TOl8|6~CXv0wQnKt1G59|xU)1pNvAPktKl zz8^g%Eub^7Vh-5LxBcjOxeg8BX(`bF00dzf@U&7#Hh>=zfj%^V4~j6d0i0w>;c#$d zrVDE`o6Z({Cn;0tJb{T6}CF%u>Ni2QXBd4i2Q|~7B~HJCL@bVDP<*eC^-0paz1TP#Tw9yI(1O_0^t#D z+cgU&$v7(tiS6+0gkpX{&V-2@*f^tVA&i=#Bq(7f71OCBQXceQF!Nc^uvXG^gz8w8 zGGo<_Yoyb}kpX%d*Nd=47}fG8EYbl5XHd!QQ?jPb5(LpeWPplKOaLHyS_sdgt#sA0 zK{z5!!~$bLE`lT{jmhvzxR_D8R7#Lm7uDh|jbcHg>eXs0mFf%zPZdU0#zdB+q|6vC z^9tP%U);bJWYZYwaY^}XWe!hXqP6s96-;KA_nLea;`BUWS_WICi{~q&le8cR#j|8F z$?{l^I$mgrWh-!tkKqX8ggTbir^w7ru{&sL0Y#`tkfug*B_Z_Gu!PiTAV2Z3r%qFX z!#ObwNn9#FI#n1au}k!RnbaB^E;th#|4C5Tsj~@@QK@lsm`^A|V^f2pIF#7r&}3d1 zj~x=jj|zv;BO^R2_6%{~$E_cZV7UGhED;!ig@g(ZK?X>~>F}Ua!5X1>x~B5M zaKqQr6|XA!NYFcSrh#QU?vjrb=8fdl@77jd>nI0d@$>nPw-Z&b#tOb&ZTfn(_v_Wk zH}ie3<_BKP_QB8%RsIc@y0g9aMw?;nfCIJ<+5i}zsQyrXJ)Y`#JO<;>w#O5l=n9B* zM*|>z-w^PN4e+zMz83&(Mq3}^&GB}80vZ500R#x3SQvl-$z+DhMhHqp98{^okYQb8<;yj4939D zgxDN59T$Hzh9X`fY#v&)_z$R`^`-3gxe&54v z>I~<)npr8miHv~KzVBHh-lb@0n z4q)$~m;WgUET95AeH!RL=>|bg2ITISFn#+|4?xAocNcmLuK)NZBwjd8X^8d>{meiWk8L_K9)57NA<@8+5oCQMggK9=FE^0qS(*N6sqRUM7UyyCf7(Kz0RRF*1GwxG0tNb01Bl1i zg$4jl4ygUs@F08#fCEYx0Y!!b0wS#-fV1QOIt)S6qlrNQ4FIqYoZaBlpfCagH3)ww$r;5fS@g*) zFkJlWcnM@n0OF79HeSggpn@J&LJcaV1^XybK30@Bj_RWXS!f?O@T2~4vE{pm*Z=-n z&A;rq{%$b+cfF;*TI~JHONIZs@BH@x&A0WQH~l65aJlubrC357~5lq1jBrCR#6A0jzHZ`lQ@8 z%hABH+1xaG5=5J0Y4Q+|iAB_Br7aDjhQJ$(NFp$2r!O`$ulr`(rAV% zo@a^Viq6saA#?*<>lWL+LWe0{rHz&O-eeC zBj+VBGq@rfg`V=$)A2w4NyzD-XX39NH7ISZ!L zMhz=Jh1G6z?6yr`9)?Ln`_<#lq=(SsbcS5p=HxhXC5vzD``6V84baxNnF zG?nv74DAzwm5={BDCoqs9ky;~&qSU(gQ}ev5-Ml1@EY?eZu(~c-y_NWLjxd$T>XMX>XaI!{F1BL3v-haP}uRCZ88aY#3Rhe4aJuXnZg!rpWi}SM5 zfYSe{L`AHHD~$jD4S?tY0ahs10AvHe4ggDFoE?1xIwBTXF}UoLF_2jNqWS|7!ofngj1~#ppKt_9 zBKE+rhr?+=h)og&Is+I)gKUaqm;zeZ>*b#B-kkr3CCeY@U4J!G|Cjqi|NXe-AJ)`= zKVd?lcH#p=1CEK2!C{PLZw{M zWlYAx=ZaN+&8Zu7=#l%_$BV~}dtAxy5i|PrqB1_EoJRpb4B~$`kAeL#tc@DQ+&T%j zNy350XL|}`K$kkGU?I>Eq5=59VMRP6NkA0ynnR5&-w8?5x)VLR6vY;bYyK6e(vd+@TNkMcERC{o09MU5iOgg3#BbpWe zx^9i6Rv@h5%kq;2CMv_JP&O$IgZ8XulQUmx_KJ;OSz3`Xvn(ygC)H&NWIlwrR8>(VO%$0ZI-AHnOXG$m={ag6ORG&#iDRWQ zmeD3n^QxR?mfAp9X7J5srdG#P>$p0vB-f#EYXnM*NMdL6q(M>KGts=5WNB=?o|0&e zN{|IdBNZeDs-IJ5V}9}}AY*zE-6?aWL{jNzPjRE8+0m55urLIJpaxJd^M}1Wf zyYk+T6n)n3f8JU25=Ne*txsnBk7j@&00{Vvfd+gsvF{ygLz8%k9RMt#|0EM5@S+J~H-OSlM*fo3 zA19CjN#OqE1Q1vY6RY3=`*WTU`fkl&OYsIa(KCH;i+jDg^!3X8=j*dD+I+Os`*g7z zx$`$_eBiLbxi2Fw(H2cX>L0XPo}@S*i<3p;g5Hf=KREs{-O2>npAuw`3Pvh;5ucew zhuH%KTyXdSmkEWftwm#Wh5G-N#E{x212ji2#d5Uc3 z%N%&cK^?~{3OZ5N^DqIVdC8|F{;RCCJA3gNT&;ZCDfChl;KbZbl2H@6D9u$4NVh$kt0k#650NwJX zk_`Y00N_7BfdUO6k!S#dc<8NQsDOfwwofjB;RB(g#6Sp!Q~+amm^Ffs0V50m%^wp0 zIzPsR?0Dh;`2prr$WA1CfR91TPK?8;V#Gr@iZYEJKmQ9{A{#MT$pANUWde`QiA8bD=oC<57iG0~QYD0u7? z&?v|+{qEKFe++y6IN$n*3myOccFq6ZR{ya@`ByFeF9!SnW;OR8=9T|ARrspb{%xK3 z-#azG$fI3!#jfUXI^|U8Z1>gFB}s5SHw0!xGfo{+O%^f)-N_$cOc!4(cQ(m5P&VYV zf6{ngThiLc~F*B1EZ;w4)!Hw*fa=PTH%^F3ATric&o)pF-vJr7B zR}k-+CZ042!NpuPrNF;o&>-%TGZ4uzYv44c(!I2hW(lKLD{fQ@VKEJt=20boP{W^1 zlTTZXlNt_$mssbHs9D_#`mmk@4id`xoI%toq{5#LZqJkYR9M2n0dz^nS~GEBCb5>T zgfwiysF>49X5^eH5xta^lAp`~N?Wa!blNm68cCas3pa}{T`~j&gYwh{zSz%C)yC7! z3}%fbZPs2kXe+7G<-(i6CvlX>oqmBnU!t>8l2wsV0E7xo2c>*;mic2sutN=xOA3v{ z&X!zvcn)=Xrqo)Nz_!N3vOkBMi6M+VFTzGsDg{86w?p}#WH_r-k6<9aL5 z(S1|$q~J_(GQEH+8p+AM+}rYWw)x$12cYV2=SJU6mcQ&Pc-2wx8LEFr(ZjCNldj71 zEmcpZf$iX`KJ<7BH+QIWhi;9w+!=4VGuDk1my`Y`VEw4$XaJ8!n}9Oi>94svggtQc zo#Do-JvC?mAn89{{QuGQmr-(NSGq9hf3xPt%!RgHg5(TlW@hF{W@ct)=9H95rI<_1 zj3uc^#Y}dYyY0U1zP8)l?WUUN#H-TvH}lO}XT^#PWv1kE#NKB=`++VTMU z4H^KALX4;qr$=C9f^@Je{q7GEw?yvik0PH+W57o!x+e=)s7jC^J>|!&gw;aghgnFG~H9 zAbp!WW2ZP{C;s0g8ohKH767W0R2!_x3}zLJ%i6Y+WB|}vDB^axO2-qvYyed1%gY8p z!X0U_cV=msY&_!nkLr);7%~y2)8q^`)c}l4W>l`M_XcKS?)6;%!Q#--!T{!G#C~n$ zde(A0t8ove6$cu0yPgxU=p z|J8Bmazdi?#sPab;yYzhnpmxG&09#-g)y6R&U=%Tm5*lcm|4Dn`wMKH;hw=-N@#qIsV|diyB;NxXXtm>Bx%GaP3u=IK1==%3hBHys zL6>mF!W+}FF#!OP2e~s!OUdF1f=rf|M)tst%=9b)FGS1CX0zcGjp~mBKRA3Rke?hz zDlC8+py^eL3Hpx+UpV{g#4vhoM!sVL@y8>D{$tr&%g@9f%#>goQ9! z31I6B2uRLB@**z#^}J-@JYyyaej#?q=p0?-(QQ~AQQq=4qF5~hk0DJV%xLj z((j(H{qgjn-`*Jgk4F>#waWT#t?c8ep`RXJ{lk^$cT15k2l75Sdf{j14t+Dif1}!X zrZn%EU-m(T;e57kE2>%YE4wW^Y^@heA_R|IuJfHKiSG?~XPn~8jh@Hzwaaefn8Da* zm(IbTCvJw5{qdS>DaKZ^>f@$A8YLm~+aYOo0Spf6#u|XE_nDT_^|~j97qQW7WJTOoksf5T(J4^nLgHgN0Sz?3`OZuXa{-31zNg*{duENrxw zG}?iD6RT3V+H{^OovqGbY3cZk(SW=IU4g7dL+9z491DkK zJ+_)pZz+ckmuF6(KJv>`L?#j1E;s%#jYzT^sF{!OZ z7p=3#onk#Fh2t~$YyAb?&S<;BVB~U?OpYLh%iP8_@J)J#LYv0ar=~l_GM&sqWV@s8Uz_SBm-p2%aED%B>V7;~e|5YWi%^upJF`9b z9>7PS4B;UB9ZXH^fpHKBgXdrky}f@C_j)Q2_{rYoL>T1Cvje+d+rN%LU|j8yA8>z> za7ka=zkFlQ?8D=m&sN8=F21}ndS&AfE$MyM$LKbieNzEtZ3|0*Q|d@V}Y1!9kQXRW9mb_C9oAx)xz9IT;pbSw_p84xEpnv9-- z34oiF&Q8g|k_lG?Cr40)54F#?7j(~rvm2;B#5bh~*8gyS^TApX>tBcf@Fj)LV-rg( z+gfvR&b8#6ZO%si7ZPAj)3D@HtIV`4XgCw$$`4u&H5q=2qK;ki9_*0(J%-Lh^W9ip!-eiejx$t2)@}9MN}kZ z|B!Hiz!QjpJ+C#nAr`~y4{G2DZM|3Ngcgiy0GI%_ocu*2d)g#G0{}AzOJKBjssXrY zWDS5GkS*k+0YvEt0p@|%MHs$PLA3%@0Re!1xPj&~QVJCAg9435lzuFG z$rG^q3AYFQPA;g82!m`8f#-v3J_~&U>t8&A8blJo;O!%3bgOyT_oDhY3Dde{j1Da! z5rKM-zyOjNpc0TDA=aU3jdEH8{Dq`^7*4<)2+n-}_2}&H-?;Us^WN`PBfp&R{d(`j zZ%?oN?%d#i?92T{uj%>1_#f`=|L#iVFMFL&8%?+C+!yj;_Njg|&wn{?ny?}8U4h{5 z-mn13$+J5D^`;0kSuncVaIoI23tViDBDrkFNt(7xt)p|;rq5?Rqu1?_J?)*a}6+n1HI><&#>avZNw1}rtdW=kqitv z|5lb`S|dV^7}%dPHsw~f2g_l&OmBEhaG^k%hG<~UX;^ZZfa=V`P1-ISw#h&=LdY=M z$(CDxC}f7z00HQmNH7oBj^u~oFND9YL#1kvYugm6EP{C0e?)3=^R*6+%Fb4rXc8Ms2874V z5*XP$80vyd4cRR`b+t5}j=|Q`GePA9FH@H)HS@GFS5}@m+b{Om^$~~zs?B+o_B<=s z>=If$0=<{7c5!6-bPzOUQLU>|=fhgq#MC&IwtNqur$C*>U$1hby9iU@=_oVu^=_Hf z$d()EY;A%Gt`^xV!qp(H5>7})DleIE$$8seA(W3)7C>Y(kEu-)D`{!1RTa-xC%)Jk zdOntYrdYKr1l5JUUadj`_rOAQY^8>K+e7?K?{q^3D*1A7h>3Mys?!joq&HmEs z{pB}@>TZoR-yCbZG1`82o`g6OQ%^8?$fkD;2Y31V3;p;Kr5r|Y*aN@5KJsj#=iy}I zwaL~8%l*_%9~XRJ{V;`ousnSW) z0Kt%i5wyPacxnFi-K%fxUBfrLet7*37@|k_AUOWXfn84z?0MtB>c)^IquGds}{G~2mnazR7!@*dj#cG0_6Ec1n^wz`VQOKzj@j&w{63`&>$MP=^gT6|J zyI_e*g+Rc1t$4^|gsz23$_1VATwUy9jqgTl>}pf+Vng_PYu?TFA_TzQ>n*z3RdIK? z`qs<<{yiTa9=q4(Jrg$%iFleFsgfUUmjLqtK`Y_Y2^a_RJ^r?2GyuRg$a=&gCjs#z z^f3v-4hrfa9uMDV{F=pLYQxXlz7soPv;m6fg=U~<2oUgsMnb@!3}OI>5dn7sOaQ_( zx&RC@8Vf@quKz7A*GMR^4!gsO7`DDx`EC^k;PVXK?`qVx8Zm~xplAS(n%t0s5iM9F5qy1rJZJzI z0sw0gvDo(w;4TS-v79f|kp>V}>~{$^z4Cb*P;YXl2Im*Idw2l_7)&$(uz&yr#f7{e zg9aIJ4vU6Fc+vxS%nCTiiP&fuxc*}ZKsE~|0FwSFVPcX%U^;pL?3!_}2Oks!P*iXf zZty|7wc-IRft7r)gK*#tS4`glBnRI{Bx4d1{zWwaKt0&^q5+_Vz;}UM|K&XBzc4@$ z<7l!UPO1xa z6o1fF@ad7>|Gbv-A8Wej9i@-k?H@D=-)^#B&C?t+iuU`&hr`mNAq&KN7aILrMeZ{$ z;nT+OweB3muyo0i&gbecmDoYXU$d#;<*?*Xjp{`(s%uwC25i=DleJdB>DI_69mZ*! zcG@h58Qi8%vtktc zqn0JJa@npy-AAy@!8||A-7pZq4HQs5dC_g0wrUVL0GrQIlVH*&nhEOGqL%&Ht|M_L ze1vfQ--w#_W!ugaIKWK;wgZT7*=wqn%Hu3yv)km`X$}c=QPh1Sj1~eW4iCj0Fb+JqQ1KmXEf_m?mH{+>D_x9|ZDUK!3_g5x z!PiEhwhq_-baF5gXlM{#;ua<_b9A}Rc(x-erU-zl?=Xh*t+^GNNKol?2#q0?!!I>B z*40CU%7)h?TC15O0@_Pi z#F%CFru-LV!*VcK>e3Ebo)q5?~2s+ftCs2zfcMzh)4`((5I)Bf^zJ7PD>jeGry zKE0+vV{dbZCkhI$kF>y==IvbrZ!CAbyW07|diVRwT_3IWKAo6ak2MOEl_Su{d8UMld)c!5dB58m+w3VH$SG zmta*=9zp{11tg%=hp#n;Z#Tzo)Oqf==Ui#Zz1CiOf1v8YK-trQ@&_IHPY1gn%q_ik z@bDMsmfslip702pm_lokK$b$VdzkV=!AA^ykma(2T=Svd7VJpE+a|HaB~Cu@Z-86_ z!vVgZ;`2~w4~|VHOE~!?ljT7|<%e32gCW4k62Q#~Jphvgc|GABjjI53;JElpX>8y~ zHm;!DY#NS+rnABaOF-Jm+RXRC@CR@|o}d|k{Ie7^Kmh>fXOMqT{m(X#1ur(exZ2~O z`u}wUI945`iaXT+@SKte;FZHQVWfr~LkuKTV2R#>H}ETZW-f4%Ptp za({i{3k`50Cz3+{@!uRT{@__NOrG6TeMj}bU+=&j|6#M|Sqp*tzdwW|nmB&M0#gkD zesH(TY}ZT77mD<+7U~asghxX14Yzd8Du&Xkl9!H+E|$O{7TeEYy6JT20MG*<^pCKa z@Ph+Hn8&4K0zd=EWu@n_(i6duoLaRI_I`NZzyTD}uy(jXNTK9PfIkoli0GIA0MroZ zMhx*6tyRLV<|2MCgP=Ny|4r2Q9-|ECKeS^o{_Io|>L;o{=8{1zzh26KkQjDA(2Jqq zqDeqe3@KT+8m2>tAV$WJpiv?2)JSRtj9;EU{M{G({;*v4_2T@`FD(D*cNw8^q@O8l?uS<2EsOSSLe` zhJWX#*RbEO+i=Jiyz+wq`^o(HI@mr)_=;&Zg6dQG{*AbC%&P=(Xu;(ib6Qc;4`YGm z5Wr0u7M@r&Bi9#6VYuld#(iJNKIu_`;}6miH31;}9a9K4x2xIKtpX1mOHSd=;?<#@ z?+zQ*!g{z2ZA7daQOA-~KJPV_O65MLus0OjlNW)V5q8LH0qeLCT}Qtw9@;9(pABXA zIRn)?Ypy~cmg;>Xos+Mzb5$x9OU>p0Mpx6gX12mBGKQp1oPbE<=7Q^~@$%(%j?lv7 zsnckB8WR;QA&$ydOa z&A{Vo*xyBAvq59vQXt_Pn z1{bq?^8-k7zqi=?boVIuo#gJnIu1bQ-U6IKXHncS0l@kV7yRo}9oHsW9xe7gT_JaW zG9N6FTR;Bv&V2vF<|ck=(38!1$Os;+Lr1pzwLR;wQ+~2{^&OZiEH*#vik~d9PdN=8CR+^ue~A=O zz*%{ca*MYon%@-8D)9L_{I33puft_5moke%@=N;WRs#_AGlGAFi{VNY1~1db>`h`ExOrWa-*y8MpypbzN&kDbx+q9-Z*gZ zXhH!E@bW}X}DPY7|b0HCTrCIHd{8e%US0D1tvq#z*N_bE*P zRpO~t0iK}lqX8VM4C1_G0by1+(p0!rjv#m+ng>uL(EpFr<{WM;pe6vK3`pz@{!asV z+T=y`rywA5_lE|!GxUh0z7Quk>;Mu6od8%6P#`zHfv|vTU5JFdRcb{8xL9mJ12`2` zg8X|RtU&`HI{=7*MVulo(?_F|2Eb%M35?^VXFvv0AQA!s!tw_P4WN)mIHRzCKq6SF zgoWX;fRkPe9A7EyHOg@JZ{X8Voyql|q<0aZ9~ch00+e6PA|~$scupQc`cw1fXHCv#q_ z@Er6pZ}-`-AwQcdz8sU>EsFp@SuzR^Wra?*_?Dc~%WlUTgDtyCyv=suY(RIdAOK_i zMXw$msNJe8LB<6LNNQEP(L8N4Oqn%PCKW_jrwf9(jPG%(4*0Z-J_VfMj%0=40J=M% z+U=DryJXPrj(X&{#iIoxP;?vYr@?hod9+{2>Ak=bH$}Y z*8H49k0Aitk!hD=cedqVp&OP}a2{RvX%M-No$z|V0JFw*3m-$n{yZNdYY+*LD-?T} zf{DVixuE$_aTLEFNiWCpVv~03h~L*A4Aq&#rFt(yQG8;R8`eNvks02|+cWq{H25bY zD;35Jc7e((*7(F47hmD#N-a!*gDXMlN4dwvUzM5(+~1JNLk~b{M!u3F9rQb~Tj|Vq z<>%SL`MQ8t;f!d5b(Xvwo!1~#fX!*7aiPQkybC24F@DG(`G49>anKO5i*+%z!OanA zl2{I**&?$Wm5zWm;8R#_9H}xnMeySvLhXst&jhiL&bEoPaYI0~gP~?*2$KH0Aaxu3 zUUW1X^KVj;|J#4_8_XwWXWl)~@OoR`vqHtOIHYZ=evb|nus5E4w6Bl2=N}k=&= zi~=tYIsvj`5EKK0AdCXo^kNP`4|ueD;lb`@06}+lP2b-)eRpf>_TI_IhnMdoApYR| zv-$S-21_27y8$yc%4JqM-yqTDXdJl)XH;W|YYo*-S5GX~pOe*}o89U6_5|I-AxEEE z+oI(*YdGyjahq8(<~L3SjBDBUBPG6bwLz5ohi$Rf+GF=xBllY(cbh`D8hm#f{12J~ z_Zxk;YMhr#4OdES_Zs4NTXL_pW?k+szCPOicxB8#|PP+x=agF~_S0n}g>49Xv zf8PTre}D7?97P%li>H>r)K-8f3E&z8Cn!KnsTppbpjfBr_SqNm{d)$aM0LIeX)0xo>{ zJ-IUh{U=(&>86}hjoHA0&=OGY4^>4El#|$ZLJexjIbNT0xF(w_{Z#d**22_E;0II# zAYMT2LEQbZ0C?UTd)$iPUt;@1O#s*dU;*&3-ua-;js^fFFdD$4Y9|^1AfU^orqczw zQ(5XmLD{-fwCqw08ASkUYQ*4lGGGShWimZ1rk# zkr4~~fR1}K&j(h1w@TP=(m<}&XVk(gZPw)=Tp+Dv3a+21ty%7)S+4y-<36wE)qMM$ zTM6HVQ@O#dY|E5OIO~wlI}K0?)XErxMj6aF7Xna$8JDf{Ifr!4p@y^=s6C?f4u+jr z0H7scGOj?HjnCJ0jVc&(=(thAXjctprUu-!DlwjGfCm^gfSI!8tmdJMiI zr$5KwwlWol43Q$0ZQ#hg`T$&`Ln^yls6w-mrX-6~c7X85O-;u_Pe>Q!T6|ua19C9z zqSf>y_Rei0us@SB*h!gLw$RnNjxSfU-)#xrZLsf(`g_a<+;iIyl3Y`MxWDu1p4l%> z%zd!G^S!0ccNg21AQoe+Fo9&bkj00$J8eKY`+ zd$_{k2>>5dd};^)`cGuQ>l1iHMi`7d6TZ-7AAp@OF8=q|ryuQIdbqiS_3zU|i;uS^ zp6nZXvbX1rZgMf-m+ORiNt7pqQL8G2?G$N>&E`_GEnj7b%QeMDOOwyj7xhi#hNcSh z`vdN=kbO1RwGuVVBO@fH-70ikgqcB!?Pfy|*v{=*7bzq44y21eYzaST4&ABu;XH1O zzTTaKSFXY?x5|B~()FM%2SCuZwwxQob$1s>z&rZl=+xsT&AR%BIrI$1kGJzuUlFGK zkejwc%%Bm22T1c0UY>XY6MysrApVr!18>`QRB(#UFGR|5JnEae|Z4)(xxG3*0QG!hOds6LQ`VMIVzfCUg<*X6 zA3*>0sKEtz2MqxD4^SXX0Dyqd0A7lIQT+iE;oHCh0t5sf2s8jhLIMIp1GrLVMguq! zlJ2&1R_p>SfdROKqEpC7&!eZ~`i};H3BbXmd3kJT!C(j)W-;It9cQE=5sY}oF;b!Y z!X6m7Aug~jav`A*U=-kI!X2nWN^ewy>5uUDbO1qsfG8FaZv80wVDh|hfKVazm-s3Z zJ+L5?SOCEv0`?C|4(OgRfI|c5kkDEbq$NQ8+oRy12cQ#RNq`1`r9u@i4UQ%C8eXNG zUBJr#A+?B^_WIKBcVE5zms9!wI9>LO!y|uxcJkj&*8Q(V?-$)!&u2QnJXZbZea^pY za=+Ie`(U-^y(#Z|h0>?R)@wD6^?(q+f6A-flV_RFbDu9q$+iH%IqOkBt@3<4UUsI! z+iw!}>G+TV6M3^*)~8o3hupwq7QIF+kY}CR&A10vYp`7244D!0yW!QI$u*$vue$XI zLyoN+`=nPsVv%E8(5+MSX~Y8tF)aJx60zjhj#(v(2z3cr*Zt;Q9=PvXU=fNr08l>m z0eiw0&~=bGJfIQ|X~c_e9qfQ$On)rP0+GRih!N*xo`*D^kOkthdA(>e=HH(iK9cL5 zw5a2Bx-%tXI2;Bjw2WPGR&d@9yCGwrH=d^goMM1X7qC7cbrfY>!xOiDiB+J_*M@Sm z{#?B;sA1n}Y*ojgrmQapmx2P9X1@R=y_75G!?-lsF5E zHC|NVB5SNf9SBP-UarbcX1(Qd4sY3OX>+JY0>O#=?9GmbOLL=7*QP()zx2(~xla!bzP&v7`eN_% z-Gfh-yB{ugp@QF@>3eN$>ds^*w!T+}S}qJWT^?<}IopSrMwqzWnCiPW(RFjW_x5Z* z(EOV-J=dqYkamd%aA&a(gr5iVU9TCH7>e@i&n6%Ef87R}_uHcR4{+e+?q zRWUMT+lfmL$~VS7by_A4 z=mX^LpPnXW!m|PQiI+Ywl{>x}NWw zi`$nAyr}-T{-gQ>`N75iay#&!7ZU)r26(v)K=lVH2u1%~a{&%YKXp*YQMjr8L9n12 z5IRBY3?HZrY?b?7ZO%pMr(7RE^u#t8e?(RVe|7hNxdDE$1V&{C!UHZ4v4d`KlIEO% zfT&Dh06x@`0CNC#0N{y22k@wlL;|1zfChTC+=2#hET%XTQz27u(XANJ@Bqj(NCc$` zH&7po<)qWl01)jBM`&cixKfi57Djv^L>%mhC5s zvr5YaeKU~=&&2f~B_0caW}^1u!uAJ`)N_gggdTv^F>!zZa}=q+Qbwzo4hj%ZAV5I4 z{-Y(};@_|459`IlM(LnY(rXZPNMsdkeyvhdC6hL)M8)h>qGRB&Pv)j09qgwk$NzBd z)ZgD7{O&~lccbn%CL3QLYWwwtra$iS|EkOW=2FS)ySu-gcKy6B5Zbu)%qwvOssQ9T*@uC^mdW;UT1lY-CVBDtkG~_jtKe_NS`wy>wr}> zVB^nuK-l*jM^Z$td)}c$*e}f2Aj(~`(=X*hh3lGjsaJw}OaqvTY9+!6n{9Vic*cbg zG5L%~I`3B@adg_PTM3vJo!W7=U|h~c9t&0in+SRgn6QkRw91!!rZIyY2WgIn@;rNj z`VEJ4zgM;CRU)YvNiql!-sdxJ`Aw(uLdS}7R|77zkX65>gwKmI*i*46`U*US5G&tn z&@^fdA(qsTDt7U#0k+u1;zJjM>lGJLOu9fPwm3AAVtpW6ZU+m45cL>r0U#r;DrU{9h}7kB<(6c+Dus#CZxXxW*20J;Want@ znHjni*aU3@g3R2xlb22htB<=QL&i5kqHO0`O2Z8fv5Nnr|G`g57iIFtI$EFX>HTmd z{#vE=e6e@ZZS1iL$KCSzXzXBP&CQviw|38bzPa$z{Yzi&pM7_8^x10vo4ZHg*aHVm zT;xIIzdqe_b+YsJMAxnH&O1{*aCabOdSUq1(g;G^Z_Nx{9q+w4-G6s}5Dfry{_9h1 zX9sGK>UDRi|K@b-<>8v^;|=GB>fr8qXKm{GT<@*L0dW8E<<*%U{2of^iv<9h0d?>k z2QvW>A@GaP0PrG!AbcmX2SE16_5bx<8}DuH{pjH8+pB|bP1WD2_aC$}4r@OUS#FvZmj#L+1Zp^#e z61`XJL>TIu?Y?_8);m=eLLq4j-fQ&TX$k=Lxdts!WAJuU@Oqv9N{#nMbM#(EKC*FM zEq7mOuedW(2ZBGk=9{}GK0mth<&mlTA_d3a3jsNd|Ih${Scb(ius;WV&b2}U%5N20_vM9Fqpm$U{*{<} zG49$`9G;HaH!HJ2{e*u5R9$$4uLD-KFnc%yr_Y8MAbaXi`+)Bo07-^9*IanEso)fn zq8swgH0HxU4h?{kh5`4--Tzc`&gqt191w&KloRp~G+!76;QD|s2}dZw`JtwVm-r7B z13y3r%-h{@7=PZWw!`cb_MfmW!7Gm&tZ%ks73_Yk(eZk#?`gB=L5=-kt>a<60|Nm> z126zM7ZHNW6*Sq>ANGI<*;K| z$pU?IGwxamoAx=CVC(?8L5<$+wT!8R(*`-hco1l8 z%9SXCQX}fJkt@?O_*$k&LFdXck(kH;cLJ;3VzsS8ZS_dCdKRCXv|X5yB%-JCQ;Ewa z7}mIs;f6)1dvqr7AN&YDt9TSA|CpGs(Z!iNgg#SFX`rIm77dBCt(M3@sIWk$vt$2; z5k4sy@DVtFB&P)fM-rEnB(Z8Eg`tYNU`dX|Y+%CyRHDhm;=vTx1p_iOxJE9n5Z{kr z05ls(GSC2yAd|_!{vb8OYt0MGRO;j;6I&e+TLnA*#-^lg4G$sC<-Pvs1@YrhQ|*n(p*Qy|etKyAy*<+(?wNRRb?Cj-f!CM&9?x|?n(chL(Eki2c&hi- zaL0|owo3!e_h$OaQhj@#s3QMoXO71V{N$j;|b2ik(R4KiYB{21iCfd zb7i#c>R3C@&8co|4$w|+%=BKJ?4q8am*A#pZizBk|ZaA^?a z(GT{mJYAc;zq0snZQ-?*+2?zv-rJmizK7ULys@Y2&B^@Ns?3-Csuia>SFX(5mc-w_ z6Z|U+ol~Huz)W!9d09Q}u7n)P20#`_X~L_YW_;J5hSezdcu>v(ea^Nv;o+P~aK#;|fb8MeOvS%YSzu}=69;nuX#*gJCU(3S z1t{?s-jJXmV+BP@e|iQxIT;|K1k9gIbON#iurfH=8b!NFHy+2uKMvI=2>__b0{V}* zY-EA$Ee@>bxpx=(4pc(1MdVs9@_rM7FCy#$+S8hUxw{nicY@^9$MJZstpHEXwB>{B zkK6sR`q=S?IL^tYY(PCHYl2u26i))099kjA{o&UHV*FfVMZ!K;n4tK2lTQ500Ke-$fjlHG8ti7YMhf< zAm+dc1RG$az!!2eU>getF%-YlrJivAm}*c{8VBHDnxr=SMoB^ z0LZRb%Bm4%)=B830f5|zuNS;YHE&Nyd8*LzdS3|=;YSSu$gb)-Uyw^Qw(MkDJ#*nuB@v4b+;Tde$O9vg4t+2SP2V z2PP~sAV}CA*D1JDc7(UMrwpQ_S#AJFgL*bZjU{S*p6nh0E zf9(Q&Q!H+g$vQQL)MWH$M%Q4ck|rHbvc|JI1-QV_XU^DBykKu^B1dgU^;y? z$Gb1$n6~L)Fc;3GH&~tElEO^1)ohH3m9Wl-Z3BQ8t3axRo)+9qmcTAjdZg;GREtnw zSgk2i$pFsYP8xt9eJ2C7`Xo|(DUU6DZgEWm#|EVz5*}REM9JGhu;ZumVd0tWE-4R` zMwNCqOPD7zG}=QsQjHxqL2TrblcCUoU|5?@6KqeDW(v$QM@77@t)R8iS8QV`m2|O& zE;Fz-SVDLt7Vv`fnG6#RZUJfdNQ;r^luCU31sOCpS^8y`6<5W12J?>e{Uh(}>V0j# z@zHF@gXy*h)9nwZyBllI8DxMfr;hDVE&MF**o5Fax# z?L47RD698H8UwKcgQLP54rxshDJ+%Dm39vn0Dg`jTdwHM&Y7;P!sB>e)}h+M+g;^1 z8ln%|vaVJ8AGGD&#s(1!-X{NDB+hok?zcs5HwEsuMelWH-)!>VYI0wzHD3n>u`};U zf5Y?1!Dpil562pBuME6@Zu6%{=iX|HZkSnR%paK{>Drzw-JXPNK3VW4!-x$={6x=1 ziFhe_7m$4%^aG$naP6nQq%0ipzQVhU;(g*!lwZo$DPipVq5%*ZDB1uLzR(GPEM)@s zr=tOIQc`$W4&gT1$l;`Y&`A=bJvnT|)FLuA^2fOk;FlpZl z>$f`G&vyGzK3vho5#tF|}bUfHmf8?brspu?@yFhX#O57&HJlLPPs{GOjutlu;8vzY;0C zY_R*`<&9AIAd?wjG0_0v1_~As9H9erkUsg8Cn(-+h=YJ0q==VEyg%hUOaR2f3@(6T zCa(Daf1o$15F$AO)h*h`2G00M=%h0}x%XniKr) z({KLuWW(R>@B77xuJ0}s{9)4h>wfR!g~sOxr~mC-!yoo&KkNy;-QV%ek?yaL)qFEv zdAY!OAgX!Zn)}O*?sKi-aV2NVr@c_&eRrnz)iTF|k-Op5&%4!dh^v!}vHk9~t6;tc zQy@4)OgfZM)ngNjA>d+FblM?;G-hAeaH_x!F))}slV(M?L)EQ=07BSqR*YE@+hRsM zz?f0E4*SoL9oa8iLE|BxVa^MKPa9lCVg8H>VA-x)gsQ-*!uA`V^H!s*R3r5Yc}fn= zDPUJXeWoA=jaWe+&w`nA6rlf}pnKKloN<$c88j6HMk3f95oYaLO*W04%aM$EZOuk4 zHa*&uOfWlDbS^$!n8#&lY*{M9%9ccwrjT3*dJnk&SeL=ohurI7qRC+@*)UipVYylw z2g5kg{gU84XgHI}FG;20k2pJa!rg_F!tL-3>j!As)_ z>3qFV2&}_^hz|yXmxlENr>U$7rd87a{zK$FMx6f5rt0_SD_*NGU9WIpo}2I}@CF<7 z+SW_+PW3iio9($b(TD}_dwX%k9{cR*9KfH~*ZOWxH{BR(Bxkhw+Hm9Lfrg8H4Oa(S z?@aXEo$k9i-h~MO4FCtF|N128J$;~Z;>v%1s3`&cw_O-+MjOBt9@YO`f5YXG*6S0U z)b$??0A1nYXd9|Oh4_Q(N%8&h_;9)Z;mQD5L%@;lEfGrS&G{j4Krevexxe@EYTuKM zq1zktApD?py}MZYdaZt+g;NKuH65!IhKj@S$Yp-13~CGmjj7y`Qf#tMRy8z+;@LWD zj?o^KspAT5gD>0~j=@_gEEJU*OXdD&Mu5z)j$vSoXF@ zDa8MA8y3F-a6RwTIUlsgZZ!t*r}sNz2v~i6sPgGhCCrf?4>#j~$lGT(zIt{3-L9O| zR&fKD$=jYx(j2$%#2XB}0MvT)0E)~*g|<^0VCwph#{}#{+5q)EcxzENdcxcJzWTrL z{YU0kA}0R-wgKRBfN6lD{a{!`13>l1`wjRH2o7<%s@~_EjQSQ4`(6?U1qh`di(g#- z(ExVk`Bt(Wm;eq`L{BvpqWS~Y2df9U6?%*XR6oF%I7IVR zk8H2_L0CupRRf^DnQ8!MTF@|ZsJfq601)Gctx`Ys%+%5tDPzEe63|c(CQCn{sy`+G zD*BPi|03z|-9`5rqW2pkPdl^Fw{O+i?lwB^H)C7iqZ$DG;NS%W8#qh=XaHCOAMi^c zbA|K4Aa=GgHq3lb*#k6&CnE!PKu`i>0~}z{Nh~mj0k0d>R&arcA*hH0A1Hu7&;ei% z439uSK$rlqNe0}H%3j7#g@U|-n?|a<0&dS-itvLG0i2&IUON6dd`Uo|gcuk<)n!r) z+SKF~xBv;#u?c7rr2~;~R_TY(ZL8Vk9cVMGIk#vwrKC zO}S)|fp35qVR$xxw*zNsms-^?VXR28Olw+g7P~a^p@)g81c4Wlscka+2QQf>VMtnv>d>M)kJ{Zg%GGCMswIzf z0yC~nHy-h?RF|F|?*?c8y^S%r6F;8n`e^UmX9rgi>Vi$cqor{OR>9VPFyC`;whK)E z8)F^dGTxr-2Ke)EehAh7{_Mbw$?oge2h8+c9q&XNfWI-4t*(r=TpI_}(~5JhzwY`3 z!F*8taV`!upXsf`>KHu$qX4zw#Un-g!8CwoK+64i>f-2*q>L}J@CCLw>q*E$~=`C*Z+~i(y5}Nt-A8FEhVR`La&y( zuh&QJG-cgy&w9|2{jekcpe^#SC5W9cKp|9;x4Lp3HG>8kdwZn%?dgVxLuHT0%8?uV z-maMs4^4f((fUbO=#pR2#OK1IgOSQ0rcCMS*zsayBv*a}@}#C?@%wTDcp2VHAwnLi;049Kq+`w`kJb!$v;Q!>4Hn1Fbq5*6a`H}i^ssVK$KF@_z>=(|(_Iw-= zK+ynD->E|XvfSfE>Rjk3qPDwe375J`@JK;G&Vh;uN<+C%xW5rW0G6wn7p9VXZ&FM0GEF)N5YTX_zI#;pXkh;uof<682n7Tk(s+0OH&VZ1o!G54z^ zWl8~pGTQWNRH6l=5}eK@yW&88a4BSkRU9I~&=UI1(nYg$J?fly>ldARl>SwhaoVgz z@(h*@XB>)S0nO=%^=Lxh3uNg+G;}uNoAcT_O}d~&z^A3sU-_~5mF;zG{*=kI2<@@o zzRL|K3G+1l!U#tel-_8_cM+f$#jK+kc z4sp>+0|b;L0OW#eR2rRVeNzbu4$jesRU@u|e8=~gin7J_DTUF#M3qvk| ze@_|%C=-^43MNk{@nqTKL6t%H%HIgL{ZEt+KKhNy)z&naV=yn*RlK#Q`5)<@r4AOC3I{QH}WZ|_}vxIB4# zZUmWMDE-&RTCa_?;ZQx`>ToN10EU1EbAy*h+Aa;ZqV%Hy;M|z(0Mj28|NKDxt?8}{ zgAHf^Xal(KqX(SqtUBIafgXT40Qe6M$~{1TT=`MuvDyXtj~+le!C1qsiRK&QE$Ap% zFn~iz#9zDSvE#k7I(&9+^wz@ogTXiu-NOMzzbws>A(HMOHVFm>!@^>R6v`@_6{Zdm znM{+Eq)SP&vp8jTCwjnaU2~dllmTVyYcbX#)TBDCzBM+MVq{4KBkVpIBNZIS1+4mZ}Ab`F#T=rzF z>iK%#$4BPASm}Pf)%CDQcFZfSRbq3yzGLah0}*KLvdo|FPC2xH3ki2sXwj5@D#w)98zNsQwok(U2M#|` z)N~Ya>MsA+4S>=BQ{pcwG?rnGbJRc4`hg6-GcMyz~lg21EeR_rl!)<+xtK0znf95B%DY+f~V-)$r*g`vs&R zFn{X$?TES$IVjcfr0yX%jpB?0a{MK zirFip!3z^q(KZG1<2U0KPr3`& z-J(4~>7AD7)oMS=ItC=y7p9uP5a2Tb z@t?E74b%=GXhb6dITiH(JzfRaM5klA;~~WfkNl`#eJam$$b+R$*2(P1mft^bb=FAL z8ffCT?euWP1qki3=%<5$#b9X8A89pMvn6T^jfcG}7HgbWlKI=gzXZO|P}BHUfzmEg zTX{0XX~DS@8QI`nXjzbDkp=)#9d7F?rclQc>xlSE=&Prvqs;))rQ%!h1bYQp3I{yV9A|b=X7_P4##DiY1Fs)< zzPq&0T?w-wv=EnA3xP4QeNM_`CUL}kLsMZ(xi{az7Yla6NHPUu3gD(7lI1&=P7Dpd zw^RmM%sDu%I+cTN?GVgvL+-J#XSpK()L<(JJn!$D`|QB%ySoRzIymvsCLr}rFg^kP zytOg%V5#Tc61k+`p6LZvgOZIW_d(SMVl&l!1IqwxfG2y-4>Xz(P2 zE5i*J`fCtzer>erd|&m&f!ez>oq&LV{sRTV^&fKpp5qn#TB_V*0YEvv;qIT16ij36 zxINX5MuNW!Tv99;z(E4@=gve87^t@g+ppGmujje;+L?e%tuziVlcveYaL_Vs42G4# zjSAIO7DsEq)8zBU6*8>ZH7UtHp|~q2Z@IY**ZeZOJ19|Psr4<9Sa)uIg~Jh*%Hnbb z27>AG@};uk+3Wz8-9&-0j zCXD{X%9o%$RH3Kd8|00VM$msk65GCm;u?^6_r&@ah#!UtLI6!H07y$f&q!2%LI%Yn zX&ZQJ;ctNen2z@?(0_anemQ7JE-s(Y|IL=pfO9tLp3ZTh0j!pU!TDLu56{QlAoW52 zh3o%eq%#s7)(bCBis6$uS=6B}_!Ry_^#CA00R7<+jd6i`q?Yq?$T>sGk00B{nV0S8A7jpDl0nuJBFlf<&RWfdrK&VwM;^KB6Wpe`z26g~2 z0wRGhj7&rVgqWE*LPP@4bC{W>hy~^_paUqEaf+p^Vm=M`ZXo;E0bl|kf-*RC$`~L5 zp%b(an>Hi?2 zGCKTf&;Za3`jkxE{m}r1HJl+e8@&OmV7M3&<*<|mAP8xcSUglH;b6|2Q)PazR{n2K z_x$0)$v@pW`S0h;|9vy(SED)K?wS7ewS_;P%l_@8`rDr12dzkFc3rM=+%I>%)sg+_ zzLu*)u@iav`-S!oR~wJz8fKIk2P4`geZ1KL%Wdf6le=Vw~Ofl<$l z-#Fn=&moGyr5>`WCu}M-0O0;hi3PxfNlyBK$8bGpI-PCX%C;eZ9>4#X-*hr)*!0Ug zl!_IH^<>n4BH%pac5TM88{K{(n+wtfnn7G3uF)D=EcP6s+?LK#?Z{AMvO`)+%;?ZE zgb>YY=@JW14MQF?M+OT|YAnEY9yW@aOg4ZQd_IYWK9jBIDXb{&9ElZd(c}y?0AjM1 zl!PWhqIYRf12Evz8NwLBQ^MdOuC{wbS~L<&2}*h<)&to3g2ZiLaWHV8%~)9S0&}F= zmk-||J6i?He^B8rb{ADfYGS5*pWN<|>Mbm;hLna(L54ugw;9YO{Uyy&sY&|dokTZ8 z%cTD(RYX%&miKm64?US}f2%KgI7>fgH$cu>XXE!+-Ba=KdUesO!>y3uzQ1?kCx;im zIkfP>o-y=*x7YgLTD7Y)2h=a~V1-`@CiJU|OK=mgAf`o4b9?3!&%Y*NA00j3>^Z?u#&;X!i zLAaQd#zX_a1_CM22!1KjXxg2Q-mrTy=0yWoh&UDt{EIoBg&hA>$T1bNK?1hFlvuEl z>YvE@A~*V`tOWRzd!{LdbD@otdx`=?9cl?o)&L3TA4>5{MZQp@z}d#w3#C{i*$PlX zu#<@^KNfGZDDa{vw&10+JS5dpwQb zjbQH*8tCH&`!ga7@IJ10J!vG4&}az>QJ4o15U&3?CxWumg@&VXHBb&T0Qj0=^;*Vd zWYg0Ax&dGU@H1)90fbq!0;w=x$SdR_@ljC5XTv$JS|un`a9@N2i%`=^03@IusJa@I z>;@%)Wr(>Tj{_M9)WSf1nqlrHrQ^W-8Py+p;5q>Vs;CyJ07h?U05J7L18Bt^U&lcM z7()Dul#aVU@E?Fb@K_$x^T!Q>aU%~YC?k44<^WjXV;?|lClbLj#meL=g(8xcdd@}r z?$)`#|KP+Q9xnXr-u(ZyTJe*E8-KdF_1&vke_SwsGnDhmcnua@pglZj3_a*By;c|e z$!N}(E9EEJLrXr{8)Nwodh;es>^?>6h=I|ghSRmYR<2%+SW)qhMC^wmmbIX6F{B?d ziDBh-0ApjG`$&#^$s`3Ce@ZXFzZR#J_-7fBxI(fa{fdo{Zq+86*9niuZObtWB85o| zWY{$7)IuSFNO#owIgpDG@PbHTlLAi`JchN11L?tA0o(DQ=VD$Q0KiLd|wsiNy!Q1`}5Vlvd7xbPE)3IwU{v3jz|QNo7IhTW-sW zNi1f%OiPogGh_jY3lYHujzW(%R4x{@b&! zRC{g>ls#K)dw1X9XGg|9+|>z!(8Y*!OZFpg8YuS3d`>zCKKnaqnp6hv2W%SAc*Elp z3jhkZ2OyluW!;a40i4JsbYAEMoYPF#n-4fvNQ`g#}R! z0E8c0Q(lIDVFw^hWxZ?wgdv)i0iY}_l~xw0Ow2-!SN}=&&z`^@gjZ%vSIiW4 z(qP&QQe+8GN%80(IA{zw#6B8f12Q_+06=>n0>Ba&(*UaEm_a-Q))2%2TCjtV5eB{x zr%uLd)k~T<+;)XHPr`|B|G}-P`tN@A&^N^oT>OPaBOs9zfA147jmItJ^u)^(^*s;7txC+pAT_)_RKQPZS$ku@xk>FB9Y6bHmo zeJ0dlG$A7uJZ^Zlppk%tr-1A$m8r|%T3KT3oQeFH#Wir5dRTz*G&+VJiC})Y#YK~- zQ#tq~Lv@_CEz{txZ0p%K-nFYvC>5pbU}wI<-??41GlR!bcGb5(YA;?Z%&m7iiwy3e zkaf|gnzUIK%L;b&!>V(V#BVM3KVKXEbZh$K&2ilQKiEs6dSTrI^Uf!0bms6K_LT0K^abhZ}RlSEl-J&X2(2AM*hS{s49e&!?~I(m?gq zp@xeC^(Q*YPxaKCA8bB_t?zI>^uXtbt3eRDI@t(z(AmK%=z*`#jNM(Bc(OY8Y=rnjtkgn=LCcSo77YT&ZN(;j7bIY!Zu>?+7ffA#CRCWsap)T*l`vJ-?lHHgFLnjp-3jjDn5Mc^*f8Zjs zwrwL>!HF?~OaN)=uqni{mvZ|dvCnB4XovU)&X1BnYsL~7Qz?ES@E-?@gKpR9v5v&N z%f->jm}9`J9}L(=vcsJLcZbV9680|U20*d^oSo5Ot10 z89-LbXao5P!#INYqZ1sf_TyLKNAPQ*|2k0v0a`x%N`HWLJbD01|H~eLCr>-VFa^Sa zDwv=^Ow#Nx!F!^RFR0T{Z!r&a&tKs(R z_=5%^42u8<;h_2hvl=kT(ExCR?$e?-aC-D`RTF~hhwjp%fTe)s(H zpKfgY<;KDvuXX?90q@_=m43FX?f2(e{$X#~o5Kb7%gyllxt3%6WTfa}Z~RH6^^>WR z_m|rtZhXHl{BgMf=ABhiQA~pDN!qlLjksMH{X-J~!)G{y!m%0Gb4(#HT$}frabUj# zPf$dmAuOrEqUZ*ai9MCRh`e%rq!wEtxEHCf`64;=Yd>t>p@oX)M@n!ml5gk6Uc;OHDSmN|nqb zB1w4oq|(s?@JMo55wJ(ggr-K#)JKfbB4gOiM~)JWn@ogPXaLaeOGpFQ4m1Wot7FNC z*PD>oFu;r#y$9$G2gw_>WPGYAJ4SpI(S86f8R%RqnuJtmCx-qkMJ9=nQ85%2o)w|N z4uQ^@$;V1r%?1pW%1aYul@0Wb9;}WwjX)5(IZ5A<}7!&(+s}&E2C_RG76{ z3UiCaHW!P`7MC3AseLp*_fJ$Sn99({LhTfl63MpdXwaXt*}netEL*!7}MR*T?(NA@JnMp3!Tw zT@+=ANXCZSF84Qsc=~K%{I%JUPuE7DPjx*RsJq!xaH&2Yw*-(TAf_!yf;jwzl}L$ ze_J0ug_}D}ewwo>Nf*v>a;Yck-xH0o6V35ct+{9n1n!6KmtaIB2Zq%51csA{2gt=M z#47IlgFnSa0W0ML<=&$;A@l%>HcFvDL>*S;!>>A2?o9*?WIqkGpA-Q01er_RFap(aEjC`v-gv>}x19*PF+J*)IBcL1Q_DhAv3wee^emTxQ z4}@Ucao{a#KFV>Kkn5wfJPZaV05kx&fg%$ID*-eBt%f#3#gwOg1--mWs<4pQ}ns)1_v*Sz-@cW~Ymg$^s`WNT^h4 ze7HKJ^ur(w&igP=MoW+-(*fY11e4J_IRh7V(g4yjA)&-VSj#r%yNVDHW@ppUU6|Xq zqXD4$;}Z^HCo%FRG*GsYtMDr9*)pv-=@sNMq5;6L6C6!`Mv6R*sbw;NS0FCNDipaS za`?W1O=M#7wW(Yf&k1&H7o`E=m4~&FTuTI;9dGgbhk+;X%pAFPM?5cd!Q+uQ^G-=lYuq~A`V(d(NMpBrT(xcH21+%j(Ry~g{ z*|9AqR0KsT{71HAWLAh3MN$pSIoy0+Z(+emMLCe4LZh+NYArFr9?p`dP!(xli5eKq z&RHnP*;A4QAN-S*(eoXpuz7f+BldP*@$r=M$_A)o)0?Rk8=$x8g>?I zyDW1jA8E{KY~tjTaCSojz>b%wy3*6p00>bhv9NtX@k}8-0CNDSz-R!Vgi+`}0q&_S zZYq*Qu^)z&2voZ-8US!12@PmZ25Bmgk|n661QY^@l<f$kU<>cFwWvV ziES1dgOSaJWW>kg7i+bxcHMyAI-Ttu4cq%XhCZ*kH{fh`nA#oY@rakCS{C^al?8#| zlj;vlzd4Qx;A|^$E_2}DfF3{&$$TfQp5qNsssT_F0K&p>b4QhbkrbAo1L608NQ!ZR zI0YpjARIiwmw53ACIgHGO=OFZ@CPM5fNXZvn_bH(t;fT8o<>O3uN(V02Bm-2C(K30s?B6GBH}B zxO+1gJ~{(#py&Z;0H6b*0mRuX=m3g^{1PD-O#(ZBQV#T7>1FH;Si(UOh6O1OAb6}{ zN#rlN@^c6fl%W5k2cSCRMH1gAMF=nrw0)ukmN18{>Mo_A1xfKTuz+Y_2Z1I8V>o03 z^y?*v2k23=aKRtca=`%|&~P9Ez!}n#27soO5C?G306Jl31Qw}E&}3o_7??1Y=v9dF zIY|Rb=6k()-~H;tKV7T%`Fi7@Pw)Bd<)J^`?Eme0)-OhjezsNd-g3j8YUjz;$c4(t zdo9`b5D(iH{$i@=`Dnq@&g}W9u8f)P7t+eCLIn06wAqelxncCS{c{9QZlsvExXYD#--0#5hLf7gHs+i93$q;n*BcWv9R?(NVjOU)k(x*A>Y8D=~C0}bVgLd zFElFKE!s+%2(CU2YEzUhjPYby3ay3Cv~x(l3JL)t5^W3t5?UbF!Zu8kA#n%{e!0~l zRHOQ%)`MY*`x=-$_)}ulvNIJ2H+?M7kevh;rd{eS3s%;6VqPH^SALkR!Mp)=9~)rG zjSD}8)v=i;cZhVkDkB;Iya&(#6iKQ46gn?G88ZivTwMC7jUPGzQFta3S6;;q$k0IQ zNWx`J!&2or3kz&{28K+QzLS~qBQ|V*wlQ=(M{#LiZAFh?pwIXpuVAPzb-K!8^=*}- z^$vf5R9vAqAgH9r=E@ek>f#m0m*<}CpZQ>S_dBx|Fr?A>)^v=^ikDZjKXWFKD1d)djzYQL^==i2ry(H2~_uezA{$ z{zsdOj0yBTmqsx+4BVUM{4dN85Rn=xwZ!|Ixi%sWcZ&ViTEsE|h3P0*EdNNS*bg1I3 znGUqiZ}yLTF<<FH^(V*=-ryb}^IJ%#L3UV$jqMEZ;B zkGn#G?elU1AbxN!4n_0?ZwI(g8m=G^rl2=a4FH{h5Rp>|-iY@bSZDa1|Hlk2DVcJG zqjmr<$e;=1Pc#5AG>jN4X>^A`;Nr0IREj#A6%~Ip;+o43kA$7*1PDUt@jHME^?Ga* zG0#R>>|`Uk%M(NYCe(ctZi4^dyleo(#)pK0y_f)wH(?0K#*5@fkQvY%M_IqrQGlHR zA^%WgL|ry^$hhz0;{Vb_2glC)HoZMy)5wFf#ZzFzc0^DiICM0DupOK=4&=6~pWkLBV7RjMCqU20%=q zIo;Ra0Gt`Qb z;ZU8$7w^(0|NE8YKVKaByW>Z`dwk+AH(LI3X82c2#h(rreK1x2yZue?9vXyh=t*1l zo$iXKJz4LJR(vvA{Ilh}w^|ezW2`X)yUV9&E|sl#Sl1ltT@KBPL%rnHVjE0+eu8FL z_V4kTmjV`;ZjR`cof-wepMIwfX^|@q!ui4Vf47UE`Fn$|4a7!5=<6`;a%pD6mc@vt z$EL*ivfHPh320gsv>uIp(B|DJC^}hLek2;+^171}g>*2_uz0xyyg!P}!1h|hcojkprug4V| zzRg6wi*cL4sY$GD+Yy=wc!#w;iJO#)VM4{^s~J4E*yvIO@*KrET9Y<)Cws?_@D0N4 zApZ~|5bplO&NCGt0}tzE6IYV0GQg$T$dkBvBKgh~ei8$l33$3ur61J+c~8WsozB7S z3`d=cEJ;G`z~883sB&zDS*AFWep$({$e3i(=kMTq4FzQdJw?H?kjz5=(U0pq-sPt5 z)~bol^4?07-kO>T(bIqiRulf9&eB&={cvOcoz1>Cmph)#cYd%j@ZRpew-l@0K}|>XN5u#7b918o-fRzQI<&Z0!(s!BM_B!!)`OOVT`qb9 zx&@j6Vf0UQo$YS~4HUdjtbdQUmx1z+R{;K8ndrWPJ;7xE{iP|C{%e!NWG0vxx;WZ_ zmVm7TtVu6S^juqLzdki^vc2d+NA0^y!_Oysao(F5_+)A9)77aD7DnHl9eQtW^s}Xr zPZx(jSsrYn_nUUXsJ<5P58WZ!&%(}6XqKV4#YPT0U;f7!g8nHU3wcKQA^tcAIv*wEn){65t zim>V|e7(N_IJH$9z#B!cfcBG0 zUG^z{FlE?4HUSB`4$*>T5<&qy-EjRU!r%0GfEa3c^Pk3Qjc<`sNEU7uYzkx=Y|c0D@rbLpl7M zXv)3NLd>550Uc|^5I`CLkqaO)4Bwwv_7cyZy7;B`qHEn{Fb91Z9{JZUa%cv){^Okd z-XI8u5Ws)H0-{Pk*2Pc}Q;Px6K(Pn@0ph*j_)mqu;}Ib+R1ORk20*?{^aB7ySPTF! zf{QnH05FEb4`K&!z03v(=wiMR3jk^Y00cCl=i)XESf-G}zzWe%XHby>JSfrT`q*a5@v-cvk3t&N*?H*1l586 zC9HwuT>NRP8VQbc-1i~ktrybp4dgok6D0^j5CDVP4`wF`1(Pzdnr;)PcFHn(^zHpAA~y8y|XSH2cq2$G={wdDa(w*q8gbx8#e3x{rrS-)%KK zDB|4@Di);@#5CS+@n3GR&S)5udhx6kmTd<3DkHNO%UjX_0v0rYeyw=aq8~6ByL75P zqY~bwE2#bflzZJu#JM{bSn|8)g6`enz;eJd91M=zUGt&Hd?2e;=je2Vc7^h%43=V{ zHlHVJH`(_Um!7Ju+8>KA*{q{#&0)VCa{~yYGcLob&9GaqUen4}3{u#mqOF#zgn4R7 zOe!c>s+tt)2Cg_R);n1u@NICnB0{Y+80m<@Vv}2-ck;9bh7=GAZti4z28|_L6_Lu6 z22OnnD=CGz>yRuxt}=rgQhI{=>>^KPj#jTrOG3;RpdsS5!lc7}h0F>mG_XD>Lm>b= zexXv5mZWD(>@1#qM=BZsDuQw+QD%~&pTQKv2@Hzw-dUg&zam;){hwOko$Jr4rta68;OuMD){77yt!)L{f5n(L(q{+CADPIOkI;-BfR z0zh=Cs}d0ZG$S_(E~nM9DFv`_WDHEqoI~ZgN^X)JX7XF zj?pzKV*;hMF9QEhd&1O64VHBb*`f<)(bKGQi_N zC9v4o)Sq8a;c(S@f{lSFOrc9HCVX3WG&)mUxLlBPs50+zd(E95h`bswLVYkCd#7IU zsDOLW$?g`W`%^PaNMcCZj>u(k>P|&^iXs5+KoP$sNxE}8h5MuQQzRdv|ANmC(pnN= zJ^BIV@(&sq)c{c0aS}rSr2u&0(M@#}fEl6RGlmfG`1I z35@+Pxc`@0i?4PUzDx)}1HdL3J%EJ6B-X!_Zz$CRs0?A0el!4F_9wa@KF&b zCS->>nXm#yDgcCF@ZU$>ua)r2xU^cVd?nmQwE!g^LG8eK5~ZA7C&(nB@X-CL$REKw z2!_uHe@D>=+JpN(76YAHA!!Dpj7ABqSxlqMf3TFsAvrK==71I)P%bEyqq-L~&E04NY51PoH_oJS0jNwciSD#cE?LCwNKxDdaS`NL=9o!@=-{y*RD`R!Wu zU(Qbc?<2*Z_GEoLQ~P+R^nXw1{IBB!Z%#zt8w|WX-|*f@?)!c5o4LwaGpkt2i8HXN zmR`>{U2OD>I%H!e8O%XvEGp!7;ckv>FWC1lxU`6n9xy3Jov>Q-PB|RQJ_n@2vkvLr zfO$G-S`B#?Lcuq1O!k=j&k zaR-^g7+VDVN0$yt4+FA$Z3aw!$lX7x@K{(Lg@=R`n%)%RvZ80Q z0XLy=Lo#NAY8MW18BmjDXi_-XIU{Wb-z-UCi;|e46l4Yn^?a2+Q-rMpStO*=>`GUb ztq4{S9;wwJP?P&$QbyPiYbu}2^4HlUo+3;B`L>b^4K33JJ>A94J;jw_snL+k@TkoI zH%<(UtTa__4x;i-KO3ugKHGkOSI=9!hhgvubGOGc-EXgrzp-Z;4m|e~bWiF~69B3| z4(dD6c?~tg_UHU~`~B(ubEB;n`YbsJ`ODCY=7(3f$q1KMm}4g`)H-_gN5FY zmb$-O8U1*E;N8jY4;Kc1vUm3Djk!-(CqCOX^~vsu*Jrz*!XRk0{oY{1rN%tCHEjB& zdvszr?3PREgz})4Hpn&Ed@*;&|19IOR!fV!it;M07I?Z;yX*yWl}9KGOGM`MjEF?q zlao7KT+-|h)VbVk!DvGyTI~-MTWqbt09@ggp)0H_K3`vW8}R^5*+?3{k6?@dZ(2vk zhuxl(hC)vr(EO3fL&*Mc_yNwdBZ*Xe@?OFmNrnJI^G{^HzaRopYOn8?z?A1R3OzWW ziJ(UY=0f7;21~(AIvN8t0bn^q;v(P$#3Z~@;6Hdf!Gi=>eli3k0S>}=ftUdrPQ~22 zN=QCe0)Zjcp69zt&vujm0s=(`2PhCWy*Q}#XWENit&gCNV*&sR=rjPLwtPT6m;lf) zP}TwO00pA(pUWL2ALb?UL$v{XNvVRdT>uJ%9)Qb!q6c6TK>5DK;0}EZtWY>bH)icC z^P&e}{qTP#0P6ZrMS$VSTOIK?+M-XJL*VT~wg>;Fr=77kdb01=SU~}TAOKAQ4d8B# z=X{#K~r*5eXQ`JVH(>Clf;eB(hM1;rb6|Cs2O)`7~h;Ak=;W_y89w;bvA#I8>}- zhYTWKHa5d>3hLC0$^~h-{$r^N4>%k+Kck@IpM(;R1~8~04S@6jEjefd6FUBYP6CA# z6bu9c(($MUfb~N&H)TY@?$N`2n$s_VM@3S-EX~7H%miuQJ-_{54-fyt;f8-W68(pR zo!`z^e=`^O^?d6`BQ?L9%lX-^k_S`SU#%4XWU2aov*BX45vv6sJ*C-dIaQjw6_VZz zN*-tHd$j^$)nL<3sm0*!0Q?~#j^L9SMM%NyG3!R{c7QW$E<51<5gQMQ?YqLRsi3RV zZf((-y6m`s#8>n459fuJV7Gv_d zoZ+piu7jm5y9+AU;stB|$fVvpYZ?87DI z{_q2EvbkQKBq%aE1!kYj2TZ^vP{LgYcXmtwB!V$5lb4(Z2Y*ELF_Lz$(^G-!il7?H zuz!yV!8F!u2(tuCp>EY#cOmZ&8H!VhtKXEIf6QOur`Z7;Tp9D0`0 z%r-*Gk4s!!pIsj9wwnudB3GU^A8*~oKyjBTrz@+pF1rw-Gt4xlk=&yTo!8fv4tDe$ z?wqCQLnn`4Fw|L_6#s0LSA} ze|4+_MmhPTg^>5gl&y{``R-WVTwcWvS8J|1y?Klo^}{a%0N&DQK= zIa;igR_*d;Sq9QrE4iF*y|&J3P-UiBU-@BSX8Nw|*hq0!Kr6SV(F!zLGx%UILdc{$ zSgbOOb-1voI~uRDSU{YujmGO@S;cloTPRE#KwjiTb>7k9;IrnedqtLOapgg;x=n#V zX#tWxVciO{za)7FC|C(IABrqM=Yxu~ow&RaU=VkR)MSbh3I-Rh>Xd~8iZu@Q!;~=` zAfUts7<0gjB{1dXi5Zb%0qNM->t^z|ZzD!PX>>FdRDT=-F(o1-3A+?-MHcNBw)Lt*qdgaAtU__r3I0g$_VOZKZ!hjkR7F%Z+9Dk2j@ z1Hc;KW`8-VKebFI(O}=#{gL<4|X5IOtibZ6bI_q^T}2gviF$@@lk(~Idk(mHpAu$k;$ap*=5)xb>q`^FCB)Ra9 z>wI_0?TCfBkgdItt$sDGJ`h$f*u}GMJ>q8(0QlAV8K# zh)a)hX!%@bE+aFSmWEA0wL)AVV%DqV@Q^5Dr@;vhid>QaEMcP=fazbsPRCvW0$o)9 zMj5wVB_ej1Py!<|OhO~UFNy3I-1p&!jEpS|1OyZkWWF2%NGO<$1w02#dC>nSOj4A4 zT=}sBKt%9>S_CiUdAAmSG-?!1*`W>LRms?3sdjUAygrcq z-TOEG`O(Rb=8OMs&i}iW$eWY(zgf-s#i5SRyZw)PbH7+^|MgP&*9Y4^Y&IPZs75u6 zYOSO{puHLr->viw8DzWN+E%@&2QdI%{cgVzhHemrt@zB-PW_b6JQuQ$IkZb5J0jP| z3{oU{O&BET7RYxz5Vmba+=yYB&}(N5+IfqvR;}(gXvb9YVYy^Lr|U2ns`bVSi?zmJ zDzw_7LLo9sy*eX`wK`pB=Bo>Iu@Xa8N1(FSf)K~7Hdj`?-V@CfDwA1~ZJF}zbkOQU z5*@a_c7{NoM7L(}y&QQ^sIxQVA+gCXHi7c*5t@Q>lZ7i+BPkGZ?F=ktp~1mN6b>z^ zfMWPNQaC$Pq%<~Iq4+GJk%0d17Z~DdC;lbGMgm?g(BWID+C@}DS zUh)oN_L7o@QNY9jxKD!ti-jk^adRXQsWx9{E703>Rpyvfhm#{S~(_2!qZ5$^ZdFXY@!P+`9ZPQ!ZF49k+3nlwW6~wT$O9iHYm((Wo364 z7oU&KUTo{zU)ywhX5ztQ$Nk}|*QOfYSn9hqR&$l`^qX#u_uQNu068a-yE}wiKad|> z`R`1&qpV-)ufEh>eq*o}m_9h5_a?eQ$3!!Ly$}BA?m*p{-g>kIm_S?@Y`!uIqc`FR zbfTl`@)TCSMD2A6D}nBsOa1leB5-s#H_~}+X7JKPFV?)^0-fq?crZJ9Z*u78n{z1i z-)_u&wLbd(OxNct13%pu|9GM2lLd5wv7hdl`E+IUqs1Zg0GyxfoBL+Z+~;fK7z^H? z>-%J}|NWVc2i@goD*_PnL&O9A9)@X<@sNfDGe^iX>1oNlzxi+WSGG^r)^;@4nlfmS zRDoAycCfh~kyx^02a0lAZoz0pZBKSlM=-lS9O}%;!&act>+22%A)H>$LOOXVjH(tq zx-qk`TZ7LyGs;hs@Aw<;_E+%#FICEkEGs=tkcm9bG^l^Msi~;ZoTQzY0EB7D;tZgO zApelv0Hpw+b^v&j0Q4uGKOpKP9L4bt1f)a3`UK+703S5r9GB=ERPIn>uRwST(44=B zfX5_}F#k~@UIx0Blr%noCOXmm3Sn9WISVtxDgf1(?-k4PRk}vAWhxX{2zz_|mR^^+ z-(>^sr`2a`@ECdmrcu9XA>X%F95_~&d!e-$C7XCZwC9{@$2ufLSpZQhT#Cg{9DzCt z(FxAB7m)RDYaXuWDAUx4fEJQ4f+jS7tOQOspr-}^5J3`ru?=y-hzTREqR@E(AR-V` z69$4XMh!fks0|*j@PGn@zm&KJRR_PfgoB=dghY}C0B^|kgkC0-y&zWDcNxO?|@OLlwken0oWLmP%zj8 zkz`;}_b~xL1VD0N5`n<|YAygDT=vle#`J=569L&V1Ry61Tp+9g#!R9fCB0kCflnM7 z0D|KIJwY0Vm;rEd3e&gGx@7-&?$~$lKKSL?ec$e%{d%S9?+-rQv6`qp;*mN-GLKgm%?p=}wGDP=RU#;+G?IO8 zcKU;vg$q4h`{28ZP&jU+${}mmgOCS4X?9PxdB~cn5Lu zN4ys<{#OR;!Q?sLRd%kEB)`KHlej>Sw1B*Sd9dZyNc)xEnwujHuXa|$67D?Oz+f}^ z!SPO*#Nqj+fhHhAX9pW`<%g6PYhl<$TpMb;Hr#!AwEIMF!+BT+O~6sEL}F%zS)@hY;_C` z0CXVqjL(+)Umvc&(VTlJ&$#84EjncQq`-&;4WNt<4=#}xMwm2O=8nHHZ2Qq#N$GfV zi!hU(O((2exP%&+OsKTNDs59Z-sp>Vg>xGM0SJQ|e8C2fw<{1>DJj@foC6}zLclz1 z5)bIPU1~<7hFzrKnKD!1#+rcd$^W4Q_JI{^dMXA-R!S1;FWJ*37651fsQ!3Up#e|@ zJrT`F6u${;2Vw+-A%Iv!B&>l51t4*-;HBONqs4vE}HT>Pm909E;m)Zc{fKMvIZ z$Oag(bP4ZIVo8Fx7Ml%$p@q%E?yAx4?)7`7Bfi;?b0Fdv^x6BI)?S~p!D(#rnT8_v zJteWF!oaT5(1`{>`9N$)xxdhv_i9^=D*d?8gT@0?2M15^B}zPn+N0cG?JbApC*}sc z2$Y8MhQqxcUF3W#OoXy9E}-s1){Eba>W^80a*IP(z}+8f002Q076kGSz9hs`Y@R93 zD8lFoofOGpWRm#7n?2cR0LX%X2;eS|edxS8p$ZNF`~lAgKtJXHq(veVCXpLV)BsPL z{I9nJ(FX2Uxo#AjuY(4ft-V};=qTm>fO5eqLJb8Wr-Y4Mbw-fI2KWOZn2nB5c)Fj> z4l-HU96s!Tz&kD$aw{dmauHDs058g6rWNzp?SvD-kTgsNq%kO%z;?Q1Foxqo0}R`0 ztbE5!BKSa{`r}39M4~Zt%b6gFq5;4i2$C@j0nms68wDnl$O#Z(Em46ZOuj$V_}yD4 z|NQ*QZ=c-x{BZBz?#cdmZ{)-2oUfOQzM5@-ImGWy_I|tC_+^vrMAX%15pQM7KI+a{ zid$x^()}L!uAm2Q{ul-D59`-)Vc!O?x?VYNL@VnwsQb*Cev=9^E_gYt2aE?|_Psvc zq+JcXXvJxO-)Fa0JfOqcRspmsDp$5DrQ>Q5e&IsceK6)e;xTR6G)F@EeHA(P^8;r> z&fO9B^|<>&*gbER)mv?qT784X0l-HKMhzWoIToN80`Bt_9+4W4h*!j%?&eBk3InEr zL_gr$ShASP;SuNom7oV;2S7CdxH{wW18yi0+;h436akATsYw}h&dxMZDjiD#a6o+` z1I*p*Too`JJxk05D?g0^Jut=vGyp7_f%CxM5$q299^gVm^q)xicp>~D{*GzfSGIxt z1Kub3tftdI{D;dB9^op=`!SjE@mB-1g&`fdq==H&(ZoRQ6m-5Ig{0CK*mK<~kD4Zr zD_nqy>hhZgt6G|a1-XV`bv%Bkzxh&q(^N@(xHNaJx#q-p_non3uYpx9$H` zr&KIe)HLPh;69hF)?%i_5THyYfdTM_>x}1hgmbV7K>YG(QCVMBPP^B;T2Z`OoCRC7 z#i(=8A{n-b`i%Szqp-oO0tH!>xXz>cCu}&=a4`qd9}@t20M_D1&pTO5{C`mNPc=nfZN(LyuzeDD`4@h0)R$DbM+10i2uj5O zU=H}}20&H_t=aH_KpjT|pmbqWunfvN27*@s__P#U=q$z7mx6sxHRS>N$Ebk`fH+9k z5;hU8|1TzhXKgTo4pPp1g#FnS#v!r5^sw-XrRREIk5(S1dJ>Ly*K?;I0;Cq))K8!reh0+qK=s;EJKi^pSmxufQ^6qQEg8tWmu78}b{^{POlMD-k9;?1e zEALQ?k2;k1;3$ayFPxBw#E8#2)pkWj%rg;3cn zkf5*NQ;p%k#z$^2-^|g(4Izij!r#Vp^L6Ex!YWrqsUu$I$*DkqOvqoCYws`08;;w@ ziX!W6wZ{iq9?o<;8moVdWcL2X zUFfYn-ClaOtKv*oDYgYShrs~_`rmfEtNLtr?d6_o-1KqfzX%`Dgh%wbo;vFJm5C0R zJ)G@pxH8gtdARF%XXC;4hOLgqBdz7cM0%_PzSBS3n*Yh3v0rXY{_UaZuMt1FF!;&x z@HZRNU+$Xtbam*nwPBpkS0_JR9tYs_&E9!zfWO>5^TE={Cu`P=`eKWW=gz++YL zLn3ilDn$=~CmQN_KrHXgEouwKyMmEgySqO-f25$OFBXM=#!6}SSlGH+5E!&81}&l< zJs0loB{DAFb+8wtJUC(PnJ|J)Cqn>8L75p;14vxeQ_ukL|7qfoHwIw`?bwMs!OPSa z@*<$Z@2#G((WP_)gpl@E4ImNtMIfO6-wA*cj^Qn&g#Z{k16a#pEsV4Y%%)5(5Kig# z41^lRmFgP1wL9P%4%|k5uW$E0_cDr?|7@wvKE2p-Mk4@>t|zQA`wJErdse2_W&! z2^0uvFr0o_ztDd@YY$*wPtilE2JpNaD*;Q0OaC2Bb4jXhJutL!Qpae!540Hf+gD4eo(E!Q? z92kh^&@=MrsR;SP6&?@}NT1+hcAM11k^$~Oi1$MES0E>n^aFH-Y6QF}xm`LDdH~8j zsG|6*Ne@sEn`nv^iX8y1|CnvD0|42dy6hto0JWarKY;tq5>$U|fXP-sPx1_a4pA)u zrlFV>&;uZ<8Z;{gED91&ujJNbq}6I9yDCcl>C)mq9dG^j8_VClap+&JZ+*C4_VZ&^ z-)s$jyQlG&tM$K{Ye7WJlQ!$^v5Gf49H(5Yy%&-FjiKNjag; zIOLI^iW64oy3chwU_Bnt1EiX_S;i#V29X3js{#&p#_M@C+dF5}tOcxdHXY=_^)hjc z$Airde3I2Ebl7uZqf4&y$;8AT_iJ)7XY=5{50FRC5E$tKpG1!a0LuplSL5Kxq5py# z4_O01ECZLGZOMeqnN0LwSO8!lj2(a;?Sx4d4A`V$6fm+CUYWxowBj0Wn?{{ac703_Vc+QQqpBX}=SJ&;)4tyKj+0ZKR1V4May&QwWwc+MVi4-ux z6dLY0-_vriv1(sa<$*S`33zj5_=D9ENO^yALpyRb04pcg9Y^Eo=JS?&kxLfyLak~<$(_-Tizb5eRH7l zK||Krd>cGMW)0jvIip#ai8%o8t84}vwj~83K78E;JAcG}<^SoRC&Bo^$KnJ8LMNMT zWpgCkwkvleAs@IWp5N{Zc825lPu&~O9xp5y%?fSQ6wSiywmd%KQjalRI5Wyf zGbbmjcaYU9>|I}a!4myf;{REo^HlXuyaBKwAXYz8^dS=L^&;epx(yJ2Sv)2jp*d%z%~!z?Hh69Dw&AP(RY z0m(~5u7UY;gpsazY za4|FhKtM-pvrab?@c|Cn&zaUD>d8yaDAAV@)QC&~I6rvS5`MEi_IhhV^F`?Y#QYiY zzk~wR62JjNl!AZ~2GPV92;k4-dJokAaL@p*7MM=Nl!v_Hqkh#My97BTsJ0Ml6$sKp zYz`K`XaFuYlWG6~1~W`!X3;WH{V@Tc0hCGk6=Hs+0H$x;3bCM0E<}CD4geSqCICzW z7$#uziHeVfFk*Yr09sW-tQim*Q^n7~_fTmtl;s17k-?T&%mgu%v;@e8Wu*F}ToOD- ziv=&{Txz|J`|I^W`-=C@f^WEKlyfpO7`SRcGtNqz*(QnpkzdqUa&O+6@ zeR=Or#=q(bV^5AquTisc+F_Xu>6a`VRAH!gXB;X_Cs=V!|jIu&M_1vPp-2He?@lsPOL`(@Bsdd^W5;7Er$$GMozsb8*K9@B-JAL^K%r@Syqw zMOCo{c8LmJp6X;afqIiOQF%j}U{D=$Nt`aJ%_`Jl;7GWx6SHW1>~V>MdppP*lu7Rk zQE0-mh48gAGJqAJOi%_AiHV+EBol1z?f8U4c>vcSgbHAF?1CJfmC>MAj)#I3N}ZJ@ zjOslBsY8=4({gnF;>L=+^5$4&fxEb)vSFjY@fbo^8e49`x?rH?@#Nrb=m7fb9}m{u z9B6?1!i^~;_x2;B5eGd06d=TYVJnM;E!-FIh&qnk$D>UpM;c2=9q+2RJ5F4n&kQtQ z8tJ++(tT^HA8^o3ID-x&C$br%1FHXtmJ+;zb7KV4Ks^M&$2+QU>p$I5eX*G5^)xg^$;#@eTOXFL#gqeBTth$UDRJZ}gVGH&XYct?*pF<48!m zVBicvC8J;iJMA?n;L~o|vCWZ`;!1)g)Q?k>Al&<5h?ZHdBQcOcvDnGw;Pzlh&jc@M zu&@NdkiA)XwGK~-!}4I=QwMwi+Iyo7*&UJ`-;gGrVF_@jiji0BS2pQp3zgFbCn(9q-2 zqXEGAr_*ok4cn*U&Vwb<{S8?MfYP7@C!ls>?9)oD-za0B|5J{?XYs=%4(`yGI`XLH zExyFE7quP`5S0pvfq-fNqz51jAQ31=@q(z38M0|;$%n}^I6n{{Ky{4glr1Rni2hzT zK+O$QE-`5U!1__^A2-14fdD?J^0@4iil1lz)Djrr54r-?0004D0>B2CY5>$401(iT zh-{yOx8EsQGx8S%$ZNcMn)fxoLwDyU&^+mjpn*C$v1@#^LuU!D2ozRLf+ zwfx-L*13+syA8quw{g{F#>#ifuUm8) zcL(j@_>WqoaG=A|8$5mhWW46O=L zzezXhc9n{xK`yRxVt_ebp&n!&T=q?DA@q|vHWzXje2VZ9ML{R=jSLR%?-8xtCpQAe zhw2L30vlhBt^hwc16u^l9aJCC=G3?tCgPJ2paBYyO{j1SRk{=oe7>;wHE}gQg+HJS zXPL6&hKP-?_XriF0i;6ip8^Dch(Cb>;nIinU`GVI8>K+xIUk11_1ie0FJbj!V2_!Pt~pAhWA&%;Q@tz=qLN8e|cyD*L>XfzgVC6 zc60IPTgyM$Bxcl~@0$2#a~3_|C;Mi<+L-!!FTQiv*Bc8z-M9Sd`t%1&W8WTF{mFsV zkJhH}t3F)n|8TMI>$TypmiyixZ+NSx90v{HQnBZBmTBF>pHkDIj;vv&RI=0I&r`zZ z7`JU#Gtvw~9@MZTsV#YDwaJ{XR3ZV!!D0JELU^^Rb|fJmxZdw?2!tB_Au!O!^77Wp zi%%gD+lE20y*2$QCC}8T3Sw|vvB*G7PZSAmyKqy#2 z;AmOa!KUo}by3hRPuD}!n~z6SVQ9f{*{2S*1g18?K!HHlLD5HXKUo(-13>jhC%}2x z000W1hy(v2+F*zV5_KO}ekvq@vKl4PF_;({kQWxgBhKl%=&{Pck#gVv$&XCL!XTf3 zil_epuK(}$?}i3WOd&y+}boSOS9r^sv@NHGl`zZfXg9q1b#n zra2YT?K1FZG~~*RB=;=tP8b2<)^AQt0R-gda|ufvF+P z8#+`1RDU!NibRA70RBJV+5^_a5YQ^g#2f(h94HWW0NqkXw~PiOAkaXe1)DU92p<$I zQY9DH|6#RwNF~DSXbjUf*@Q(lYzFWm1>!`KidEWX?hm(OhJSc^@>g$N_{$p?etWdx z-_NxD+uh~=eWCB~H(USrp_VUa^4}ZD`(UZ)^NF%|D>x^7ycM0e&&(h3h!%aCWrJqS zX@nKmxLFSF|5nrqMHt|nZo8q&ZN)8q(JTYwb671L)=5G2LHc8#LD8ZUf&|qh7Yv$} z%WmW0ko{E5cQoodl&48 zt{f;3{GZ{&3~UEO0FH&Pz}^*OggBW2Cs9n$Bt3)9e~3-g{cS2lMsKw-4i{4 zq`OS^p6P2j+g5t6z3g~H;lbK`AU~G|nqTd1IMQ4J_Ba0M+CcN!-lnTF!xyFoE{=48 zLJDhsG=_`aRmU6h_mzeBS48p3mA=}2O{IsLOV4yx-{`M@W3uzJ^^q?(M!(z~`Fsnv z_|aePoBj31+)tJ#zurCn^J9B|apu6UkL>z(Yw7d#DJ*ysqrfB%8o=l4GiU(cZmpmJ z;QIgT6Pw@cUqJ)FAAPZV?30zjPZxU80KQ)A{$RN7adYm&ru;joBl-3%w{%v^?3dDj z0$~$SkiIjAm+lbJl_YnQ37ilkTIRMSkhzhC0y!8$0?-4T9G>jQ+p?9K;mV3yU!X0P zg;Ai+Vwuj0tmQ^lgnh&0@@PbWHeG<2RyweD1lc4#d0Z{7! z^5ypp06JkR)a4}&lp+X_WdQMhAjAQ(D?(y$VhBJ3pjri4BmG~Oz|;m9H+{>J?G&hG*;-XYz|j+Nj>YWLSsg+sBJI+pR1h(7h7|1 zaJxrh58R>8H)kCzagw1SkqkrVJuvfWKpO~y28yB&LMNg9RFkxKp#PLk_yR;>mHsox z8>kIm!S7Ez!6W4-L5M(!?J>}QOaO!h^j7-|2MBW0?~1_^4$@!nLEmf(zuTRKTK{%O z6i=}A#dqR4G{EQt=nYsBKqCe>&~rJubNPm&0SUqd5BZfF9@UaV14lLpdP_xYUq+@Y zEe#%U*!d722sS&;=0s?W06i0t067d;esYls11ktP-B-vsz=H6cd@14L?hh6ajGeLI zZ51=I&V^$SN+jr*AOb-kRxYH0nL{!oLG?i!5YiwP1Kkt%{bnAmmXnS|Nf-yANgxlP zN6zn;2|A^O2!wtB$b~F{HM~hBcS$E6*Kj9vf*F$pkLUp-8UYxVBtOfkLwGvOnPHg# zZw83YS_Sl81s{~tYN22*=J~_*^?$v+^p97Uzk9UxxBII8>;8d1U7h~sNbjF7&i`>= z!;v{sE(QeLXL;OG7e;U#ItEp9rWt=hc$;| zn&Uyu;fTFQuWZoi`mKr{iwb*nsIuYm*6lDiYGu`O9wZmJB0-2RbrC4vfbet>dz|o6 zW^rFIBGSkrjt>v#j0{H7P8ffR>EQE#H%+QJSroJ77Mchy4)_tY4J?6`X&jHl7}dJ5 ztyoRc7#2_2S4q_=W1g-L15S6+db%cHis6rq@@vdGgMG8Ws}MtKSgX8riY z3bw-ok_8D5Btl?!0G1_6QMf`T#(8Sj2X|jlMk-WhbXo?3p3a4-T>5r-#?I6oK#FOc z|DJ5*8Eq0%u2Qk9Fbke~S$t-k2O&BgX2lU*xFWYVZY|7Jx=u_j9PeFh@P)@KN@2%; zeWdi^RQp@Q9pL=j8?OPQ|K?;L{5uin@^Eni8S76LCZDZN!OIg|%uADP=Z5Q$-3V3> z*q=um3vrP@)>L$)p$HZHLT~+nYNFVDwYl_UYvcLB{_C?N*Qfg~4fk9h8zyl7aLcjI z%6-knhug~0Dvs7yoN2DT-dgaWuk!8j=C{V0K*KP z=@d#!LRx^8mad0SC#vMm6v@tXC;&hM^$A2lp~OXJLmp_v9XvG+nZTOe z$kFoB{#bA_7Ti}BKU5ON%B@zw2;!=~BNfC=;f^0++9QDw(E6qk?+`q}8wQUrp&JUo zp}wR*9_kH1kpd{)FL@oYUr3ftr4i*<8Xd9{+yemL;}U}dxd{&7esaS|9Et^mM=~#B z2mob(&LWI5P{mRiP@+khTsecdn_wU2;!6rO3Zx*w@Mj|Cn9p|4#BE~%({RAl=C!rD z&DaWzMjf-c-jzb%?vlX%O4#n_?a6iS&GR3w$lWXooop-sAqTcU6n7K(T)3N`Ys$XZ zoOQY;c)Y@Us=4S?Yxd>dIv4>#3H)kn*_jULflJRfhA*{e*Q@#6g&H*7Dj zm0Dp0bh*TOI;O%Bc%MtMYLm>twq7L!ZUb-U2#4dP)10&nSb;h+5ebQqNDkZ}{IrZ1 zi=M|~;!;K;Az2wvose934y}~O018wsA`&pl(!KZrE&u@k^hrcPRGA>-LV9CD)rHA` z#JotD=mE8`2o)iDCLMi(3J1o0AB3L)od^vB-%nZsF8)eL1h^=mJu*V{1pb3f02%_`{iz|GYN+>sKd!duIA?*DJmpjeb2yfm z)ZBive8!^(tdG_1yj?wMR^YGbH<3(&QM(2zut|$%4}coGbi^#_LMV+!h%u-OI|;M0 z$LSq1s_-BAe1ZE!VQ_cYu>wY^O>npt(-A0s18 z!ldJRPVPhuzL6zya@AI*9M)ijzt0w$*kX7yAQUX3ak)eWa_33`N&~Y`IKgqz09*pC zg-yJ6VZwzioRT4OD}ympd7-W6z<1s zWA_(^9?cCsUK|1Q=gM@~jd^0h4^j|{J|2%W6&`LZz~jNXg5xb^XS?fw0)diovaR}5 zSKHa4{+kQq*Jk>!jQ3s~>IGTo)vn6@^?4gr@k0&yCmM^+HkMp#t9pH~?)|BDocAW% zKAh?NY`zEQ%cXvl_+Rdu|LN`tY;M0;>HBtL_}2#}{_gPf-yL54$?mD&99;g@p=A(( zzTH2M^UWs6{)8+9s_4%)r*VG1ZwBYr2N!;}XC4eua6^FweZFh-%eA3T=epk=X?WCG za-$}4uE4s-#={z*UrO%+^-duJJ0pjk>1U+d8JX}vM%6~GME(x~gb|5_NOV766cC8f z0H6{#(CDRR+iG3&cur}PBhVCz%r(>v=R{|-BAeye@P&pEZwZH72bC$r%txLzhw|a`Pxjj}N!Vn3j5O&4jj~;Ib!$}l%9PT*5KEstc1BFVhXoL-zm1-OP!Z$-AP@#ufDn_837||Q!~}o_P{htG;6N5Yr>Z}$ z|46Y$_obyZ`wF+iHSMYz0F7y28y(Rs#xT zbYXB?k0it%%}hR#le}vWKAj$VJTrJB#WESJ+=@3Iwp;qFn*LCc3VFmHIu#l)Z3}J- z@<(HV@hV0xVgaMqCd$0*p6*&q_CsAIuKz5`*aJiJw|N`mjUiAxMGC7EaE+Uvk0<%> z;p(txtu!D7xCg(<%KagK_w6E!z1uWaD?@m@fJK94hU;%J* zyd7H3-PsAEyPn$|dv7LH()8jYiMjotU;n2$t;CfdL(9r4nypy$Am^@ zT|HxBSJ?Man&o-=0|e=J@KDM^`>Sw)pAMg%6L+ezZIF!S*P!;WwvRULb+8 zDf?zw+%dcFYJ_IM*9%wOI-L;Z zsIK7EOxyJHHp611i3Y%##v&rrj|Q+5Yn_R-AiJH5wPGSPML)0^m;hKKGh`4_-{$KD zP4kDFmwvpp@z2-V|NVOJf4#o)$x6Y0I^Ob6SLgrxqwRm)E&pwm-<=%ucDOfme!)lL zZx_1+5&piFXx)wvfay=(%SeoMI3{p3#=^IdgY9HQ%|=onW5uTS5S5lofRf#i2crqS7+`{y(GA-`^bR8D~5DU5| zv>$Iz4hC~r1@QYFK_3F!6=|+sxVOvoPTnNUw8Vtntj)VqoHP?*E%NivHu+VA`jv*p zarfVAYyZuB-=n_r8-r~0~#-E<=yf;;TbG-TfF#6kO?)xO} zJ~2P^Xno<)+UzrHV~>``9?f?>zcTp5bo*^&UqdaY+p5pC*IejmIM-3mMgCZAKBXU~ zKh>W-@a3NR%j3hR`@649jNF(SzPB`TcfRkzQvZ#yrW@@Q*IP@jHy7S%D}J`G;`Nc* z-;UM4H(vkFSnJ30eech7|9-mb-N}xR7WzL~8T#h%)Mq;*UmO|x^2j7k58UV}@tm)Y zEPi`#^V4JVUmRch?)18NWp|!I0bJ<&lUv{Hud^lo^5`0?;IH;KzCF3kX87yl>t7yU z`Q-T0M|<-h9G!lDYvirP?$;)oUg)oRy1n2*ea5*=+flp!m_^xXRMe<^2?nqBD>#}g2Gd2zKcdATTYyE=8VGHI_eP0HhioI^#Xj*Eo%7Ipw7mzq+s z|Gd(Yai^!?MqA0XwoEp<7dpy7hwu~vK@yG;n1(i`U27H+Fe*NkUFrmqBv>?qdZHpz zC3`rLJnWzbao?9(j?@XHfq+-|v%h+}HkRT}Wv8ZN_fG>r4uI9z z?J4&{3FS{#u$+Z33oBk>_aIFFEdrw#2BLm)WM3TAzkLDNeCqqqhy@5a7;FTbAz%Tq z2AB-e!m{V?FC7U2nvF06&WuAD3N~+3iO4Yi6wRY0OoLotE-Lhk>lgn0mGl30 zz3X32H~hDIoB!qJ_@9rr{OQc_Umq_2e~%XZuF7;d%eH2>42Ro>G(O zJBcADQ>{C(=H)k}$3LhcVE_!c;%9UlQEL7vm$~Vy4E5OZ(^j+zL;b38lJGcYG5l827P~r4zt(&tW zu?x<%HpXB}@Q+9`W3=FJc9T1_U>cUg^Z+r?eD>ehZ@fLfYy{II=x4NXIG%GJHJc5ZN&KOOye2B&trql5`q(+Dy;N@YEd24+< zl^E18M!35xB-;QCWZZ@LOMB31C_C+TYti#H_MI@zfWKdf(L|a}vdz+vTzIY560%Z?TJTJ*Z@ay@hI{k9>FTSaO}G1+5NbWONT%-4!2YbZR?Qg)%I?sR+Q$(G8i1Fh$V zhv@;Vf1lf!78wB39k+&SFZYyOtZwyxbZlvbjk*ePfmC*n`obCB! zq5r+9&JXAN{xIK51NdTN?DO5xuZ~U706y6o!@>dcpYM;a{prlkSEtuL-(UP}Z{h0` zD_$(`nZE5OnhT4qsxo)lBCp-mVdDPGW5dW4XF{v96^nH=hQu)mVGFwQ;MubT&JoK2RO!c@Pp2 zQKL+O1{W-#9rXOag|kb~VF7X9mvDdX{t}aiC%kp(1kx)U?*7scKx2>$A$}nONt**< zAnE{rI1&~lWxQ~NPDL1wdW38BP~GSR(mS7rBc z3X*0rqNmfsSpbYAhv5U-85ca17PC~8vRRS2Q;~MGGWA$R3ZDCiE8~whWb9U^Z&#!r zuE^S~NIz1ay;+%jxHw^_ByqPi>9}JpOdFsX2s*#Gn8#mkEI3t}z#jN&bJ3L+5hMw^ z2(^rn0uwi393(Wr$rtOABsxE(T=Mpj9Dyk4-1;SRA(21al#6xf&CW6iKm1*|!bt&P zLUqX9W08s8J^aMlxQvK-)JVzt;R9&oS1|6xW1n3z|0PFy;gT7xG z#}43Zn*XU}6BL4#2*WUey=2}J^J`FMYBb>f^Z;oGz#ceDtr2@*6}F&WEP-hNnCx@$ zM+QtBJb#MLft57bFWi^Ge*}v^K-Gzl8&01VHDw)epM%K{SNoBeP~)%iT z1o6W|{z{(H5)chw5rLnHLloxQVv{#0U3vrjUfrDg>u<0B^}*ant z#?Q9u|K(KMpQhuU&Qq^Op^DIS2O{w`_u7o0G^3#y5a|T*G|YF}Y92Ca$E#HX5DIpWi~u?HpDt*^PjaE*CGQ>rbO+H)FEm; z7!Gqi4It3ljgefc`#eI!kQ#vW3P=vsU)XhF(auL#$mNB+i*k>$H%1>ARmL>_aC|%4i85|MC9_aDBW! zKI~pkF)-%sJoCI&)o%+fF<8(yl&0nG_6@$YF!HE5^~t8BOO0748Y+&rxAbMCrX&>B zq*b@&wOwA@e06t)@RplXSUz-I?ykN+-GayGqvdG<{;Z9?vN8M8+Q4(G7(NRG|7Kq! zy0G(YRcAWLZ>c`hQF*Sb`ebYQ@#a#_UPI~Gj#{v$izB1Arbb>^pLk)R|GCNbJ6)AG zndobiZq;Q!*_i)gclmFJYJWFa^A3+AHE#`8zBSbN-b6d4|J~`%&o)LsSsVUrYy9)= ziBERMzBo4Z`O)bQHpkHYe!M*mr1PiqJKvmK1^@YSe+jrB2#6ja_5pj#tOWRhuX#MZ z_5Jyy-=01C_1PoeUpW5#>FsY$totuS|`sBkI+j87Hkrj_P}uwYvLTSDJ`y$P7cP*b8UB0R|CeUK6Lwb&3JeWg z|G|QO9uYh|fgiaQVPV2s4(I1YgSIR*81Dzr|HYyVEdCeC&&iFO&5R)ezArv_I5iSk zz*){hC~2=YA06CI70n=Zqrkpdn82Y8&;yQD zr0$j^94$*aUY@dF9(TSj|5#}pMI7S**gkM|PSzsq5@IfjHDSLbM4qiny4WOOpI?w4 z$rD0K3>LBP7)!JlNubb;j#8*Tq`*`CuXUD+%|ulirC*W=&^V;gaOEWSpKBR6}c)6@T#b?mph`~)m|y|nKFAW71|W=pj0*Ht=l~=? zXRLTS1C{LoqNd{u-Jo@E)M5LB-M_p$*xVl;1U`-?fGc*Jud)NvX5pkJ!T{j>44O3@ zsR01xPlfuA1^WU4QN-y1c>X~1rw~usw8LfvJ7FdO?*7uD0Zds9AX*MakO`Y0?*3%T z_XMii0z8l_H=7JsnoIur(z*Z7Gdq92*#EB=+d=>Ta-rv^(_KI9*1z8sc0NUjiaYhH zRzHj=sQx@E2dy}gB1gc6$O8Wd%Bg^uqJ{0xOlf?_Y~zO)9A#$=e$YGKtP z#FM}5>+o7(d5~ZVNe&1nCLT2a4S+|+f;f#e)Z34-8XTY0-ypd))ta1W2{QYLy`PBd zQmAPs@`DFRZn0{E@-jv$^1Bj)qj24d@==9*s_c4GyvfgQ@WX;JNC35tG67e_+tWaJ zfV%@7^7hdy)#Q$acsO;(S+QVyP!@SH(|@I8$Jg#IEj_nBe|x&+!9Y9vx7#E2M0!!X$@Rs% z|HXygXQo=7ULJigH*l@D@m6mmg8~9BM|NZN@n%9CE9nHH2Q-zRXs&<;3WJFK!86OF zPfxcz8mhe4T6n*)@K#Ow?Yh)w+6tiFzdca%{z&87ebuyqcc)t3nQnPwsPUbt4i*5v zpYH+jhr>hB=X`c#=F7eLFOEU(oI>b}nwN?%s{G#apU!OY$jVooeSrnB2mbEV5-cFv z!w=`Szdd*O+w(_$xO)7L*U$WPX6M^e>-2!{FKqvKVe{*g3t&p0Y!3f+wi{8{YyA~Z zRwZ1{30(|P^%=cteVnV6-qjjKfd=Px&oFOy_A5emE8=;n*UqG)U<=ABI9{n?2mt?K zM9At)H#0-S29<)YZ0HSiG2%Q5T>~^l`;LNaG~(JFSj*FNyalWj#uw zKc0)ry93)1MO;dSbnJemt3Ce)F8)jdXu0|mu;dOT{V5S8|9243-#Zh-Y2=O5kX9 zHpJhi&Y%wL~Y8c z`n1a(xsG5+QS^BtEdwNAM}qz-{k+JZf{cU|S$I)6e4%Lo68b~~p!zcw{0gF{6aXMx z9~?(yK=x!l-<~3(;qm_LNR=YvA2r$e^35JxLP?5Gh6c(6@UYhYpxS=3G?FFonN;&$ zg8y2S?}SxP@uHMx`?zK+R3ZRCp@a^^W0q1S#N{47uz*+s!vbOlKqRE#{+qNwK#+fE z0Pufk0H8gMIu9zouyGDj(E!>_K2kpzuo^l2L55nrf-K1u{ZLqMxh(V+HZf7N6H zGV+G$&p5*AHz_ElRQz7(q`q=G0cbleZ$lwk$qNVwi0V%d5Qq@Apbj}0)J!%6GrReA8B z;Q8Q!!iNf&)xrJerY05x-byxOQ2WIXu#)w1R~-CDKW{g1e6cC3n_r@!Ot=C7oURYmvVR`WWK*^QLgd63__p7oV)#tw0p8slh z>1$o3?+(_zH&FL_XT=+Rb)x7m4*Y($`{U)o_u&654}7pW^2Pq_hlj^L+!_DwR}`hY8bv9|v!pfA|H4yR9v;Un=orBW_& z|D}b$)D@)mAi+K~gJ7kCTzEhmo)8P;$c7Y3@?UQKe?JQFoK?0kee>`p=z{!rp>e@c zP9|q7=1XpbToIyC#p>1Bf&R^?2y@alD)U!M(}Dhn;{zv>ZBuEH!^vTT$>E^?;6F#} z3qX6A09e%?uShsqVTZl5ogZu5>lPBC<#Y^prXW2YkHaC!QAe*9Wq90LK> z|0vi0>b#w@#MAX9P)KPc$0~C7stN5Xxddoaopws1c(xauZpu0ZvADaKx-W4+LHQ+B zFi%8gWLJ?y2Xe@RNtG!=f`A;I3k|a5QwV^Y3$Tme2~;8o2uuKYJ12qcQ`rT)(`4sx z&3~P)01(t7{GS~aKk>H%Ihe#rVPW(Pb^s88o~ciIqAcoWVd%q}q${~0yRrJs82xOh zaN2>I$-O>BrU`NLF106y$&|?|9StDK+uiQtOdNcHN>&UJNT(tXfE<`gm8@2$YV%ch zm;h&ty@9@+{+P<4-qP^ppheqjQt~()WbF0V_WJAl%!Uqw3Q$EdeUlag!vEP34JOjT z92;PoL|>pD3Q&)qY9K(@7vRxvR*r;N2CUXWi~p3xd(z}G8{jt=Y=91gdm5(v3!%o9 zNWZ0UBM1E#S9PX@C41m(lyNTFuo$f$3-Ycbt}9&MXXBrw{>@m!|9IiTzdt6?8{D=@!!b>L4eBLL+RKLb9J(t z0up>JB*nwS36N=H#&Yj*lN-hZxCyy(7ZaW^E>740m^_>eE|2@UGf#MVLGfl;cTg*P z%&Q?S;)SWg=NfF+QvxQ#0$Kxt`y!%8>@i0xDj$x_{C0Ek<%zr-Ek#_wpQum2-;f5~ z<$g!Sovy~cijwx6!t#vjbbHBAd;daT-*8>)OvmtvmBafzy;LrucL{oYZgq^z#gpCD zSEjo0`N63lsn?y6wj2G;m%HjPZ+K#~`$Suri1F&GJKI=sxg86j`bz_CPp(V=uRrK0 zx>TNcsl8*OJyZptbyf?ec9pDeU-$u?S%l+?7G=Dtb_2F#C7c2c= zt`2;*)ceiGFi*ZYHu;|}ZUFJ)@(=p|)7h=>PAz=0JHj>p`_rqmgim*;zdN-;V_-xO z3V_oa-=Eq1H4a1$t#Gue>H&ZXE$u`70@obqM^_7vccLI*{Sh|@GvV0Bn9 z?w-rV_O5=1U5kpC#YlZgpq6Dfoj+>_&L>MonA28>5b=F>G z#?kULh5+ij<0P{mhQiMTaHJ{=Y7otUC&%mad48lk<7fp#Kqjy71FVkMOOhd#0wNu$ zNMW_WU%@IEi#N_W1Z5)ZMVQ11dZ^^^%yyTpa!nf9ztVSkl)mK0xcL7P4~bU<&jEr2 z1oR6B6ck9vyFmOMvH-fm8{_~J5!23>!U{q%3T6E(2&2G6b#|!%+^>kaQxb7H#ed&! zAQbFKqW?mKo=qvR4EOpBqQiaU74i0XjUidC$yRCrfAamc#ad;)(uXt{ETeP1+$yzL zLC9$UdfU_Gw_*E3h5V{7%AN{GfQMxZn$*AIAtSivi*G<1qXYCZN9@ zu`9+S$iWK5VGaI|g90R6{=4*Ey}pJai*d##UkNo2ghW{c(>}@5g4B-P57Tro%!!Cp8L1^OaFAb z?SI_g__u3)pA3gxOJjlT+vKmHIx6C)gWD>isB#55V8oe37{!5h(*qsg|Ngm5nVU17d#S!#`@Hh=%Au#DkQ zdxyo=5*Sdf*X1jWQ9MJTHa5Ca$f{mdUGPgjkbQg-0+qOhQoZO|yQZXQvQG=LY{ zOMcT?`bvB8TcH1=4ew2~zBAeS)@UOu-;bC2-kG zeEoyzK@uTu2CIkE8Rkx}LV%Dq5)PAo}df%M9c=eDW)JpSq8E_MH#lVTqr zTEfNMZ%=Q~13-%Y>GIAGXV&<6z@<;uN8XugduP0X>Ew1<{DoY`O5cSLahHN(M^s;~ z8VJ`j#9aV5l-i%QyZoo&qJWCZ(s2ncLUnnm;)>L(_ zvxx@K6KBcxC0-E+2!ZDWdANYZi}#pA<1K<;Fn#lIVa|{Oeg)Uaad=J-pes21{sccq z;s;9s?x9+3FlfGq7r{Xi1SI)|uvg%XDrvrcX#kR`923AV_74oWfSh6jEJ7%~d1sp3 zmF%=&e>Ox%aLvc}ZKo({Ix%E2F?b<6hCT2|awu*P-2FF-6XAMtXBT-}sH^JJ!R}90 zC!VOugz!W4XWz>sSU=bfhwHzC6)LcxjpAfR0V+OEmYrPqeL8YH`RR4shYV1q^ zgaMEVOej3j@H=+D`AGdlls`IN82ts_@_0A*B&{yO(q~suBTM@|GpCphWPaa z>SzE>S{Tg=QT;6p4O;Th+swX$A(lpY+2DC%*UGl`TXWz-@gBsTigHr{?h+^ zxb|-sTHkK79*I=UB?k6{X@>n++ZsrlSxN{c(rYFb&JT=F|DjOdr6~XT2tTZ$`Guqz z6BpczAq4R+h4JTe6OLrXY{!Lc#e`xAx)>U`7$3&tdbD*c$lPxBuMW_rt7XYP0BZ`2 zHep7RprZA5@^tzSD(8cygRY@Y$~cWOL5~SDCeJEx9xnA<+0gP>l>sS%(bzsi|A)QD zu&jbk!;-+k`4Jw=4sTA1xYPiIyA~iUJR(=|$I%1x(Spk%JX@SyS*Ar`y{Yw!(E1_( zW{#FXwG2GanbX+pHH$V`Mg3g(}u3$8&LC!b(LV6MHavw9@bWaWm) z2(LWoOp-gBM(K*jasrDt9r0maK3YTu?(XhRk0a2(UZ3=8Q}WfK%*B*o(x#e&&As-d zlXZ<(2Zmpq?|gMEtP@(}jVq^Mj4&2U@QVcitLrzD4F&TNNPex#GAhWr;VcQt#GgKGmH6Vn^vqons_4&rcCu`t8ogXaq{(ipeqm_OvKR??T{_61fA6ELl z+nfJ#XXfLLNkqSnqCfZLp1Ac>zA55Ao?YjW#_-d*4LSjLf2jwETmQvfzWm|r7U(|{ z09%0{&Tiry_n)rqNkaor5?PWc!rq^4f33Il$(ocKrSZqpthht-sbQ~HrSU;Ln5^^) z_wvAx!QV?Ht4JkPKruu*(*xYRm;=)N1My8mEnJ(K-B(uDSC~6fTCm?n0$RsbS!Qpn zrQBu=SNgys5UX9M$9bDcT;5-7pDF#Unx(ogFdWB`dVu(rqxwtfF3b?b`EtPPX#gB) zS40osyOM996#T-Gw#{54q~DBsQM$^|ek3`V)Bw1S;9=$OE~keThamKg9Zip1E{NMK zu&?IE&!Bh?>!I4=I6|I!YCM>@f;#5&ip18_LO z3Hwh;6ee~9j`e`l8`ur74d#&!AxQ-Aj{^mIvNHB|arm`78x4T!eyMr;A9Mw6TX0L&qTKLm9j3+Vsr#b4?H;+P1g7xaJOAz?<)OK^%A1g6C| z5MR%!P?YYvny7@uj*`2rF~7B|7sAbB0h+l`U(o=94b#D3DO$t<<0kp6O}7$lnG5$H z@K^JB7-49z`u6*Ibo$Hs1O5AK0i?!1(Ngr+H=g|0r!N1?{f&RWxAgDlTYuXcu^Ve# z$qAWCGL8EB0wtk4n~kxorG&30hY4pPJRu@XJVGw&z|7qT>7WHtvb&){Pc+*b2 zWi!FH6lU3oi`dCXT#5=|Kb)fT33qdi@^Xz)`cQ}!2M%&Kmpgk#xXCh9hH^_#o>8B! zS3hFWqv&aAGlw}D%*_6w8`gB?7Zj!k-#J4L#-yRV%U08Z) zZ0OmkisuG1t~VCm!(Oew28qp`t_m2UciRft20z(f_e6ioiJIcp;^yX}*1nS3yE8p6 z%+^0CqFU;YG*_JNZM!x$_;7XfnbrAMb|zolS$=Y{@7`QL4S?zo1VkI40k93G2hafa z+iUjQTP`phOg0nuc&V-UYD3zkinJ@G@i(iI0iB-fD0-=<>^Hp?;`Efi)LHT7aMSC9 z4X^aqQu^PS>wSBsmw2zw4ioCq_u=~BdrLikSndB}cY;^G-4`mbKb~6o;rKE(&gcL> zKRWy6-t4z0S@y0-b)UODkJ8~4>OO}aAT@x$Ts}$<02lhFt9w6z3tip&{>;XIxpk5) zu`rk;VP;|Qy@meY&$J05P({M!f~X^j=2@$p9PDCwT!T8?k^dC!fa+P!4gjLjrhen zPzwH)OvNRSamg=6kp2gRgjt1eC&Ey9i6I8Jzkx_>&L6p_p8#d1LAR?>wHD37ziMS zmZhK%I8v3tq1N+!t5ht6rOhya5HMU0_zgcd17IZwM#S%@ z(}3yo2*l6fIgcRzSW-*hWe0GsDPKesI9}ujc>L9~O-Tg8ywncyUz``)U;z;ffcZ0Q zAEJO$rJMjE3y>DVe;XHA0t+cXMU2z{2!$89@F^A=z-XYHRc&jaugLkr`@!3jIQV3h zCf?NtL@3G2CqXI42Cl+SU#ON>`x}H6s6oXLz$SpAkHe1?2QQo+%<4LS6^A@t(zr18 z!TX`vq-Zeu)M`9{P@w#S@F4zj2!K^Qq1^LIy~-Uq7~hrJ0H@6;XBz1A_v$u!v|6k+ zvGyZ%@t+UGepDK8JyOQvdL%%Nh8apId{8_g79vec(dM;C^GdjBiMv1F3J+L_4Vj6u z4ch!BtqPoZdV>Rc1B|4&Ohy|2+Y{&h`tHmB`TmiAd$|46+2%W?z8fK``53?XWb_1~ z$OuH@yd!d8J|>Vu+aQpDbV>5XIzxQLKER@!jPN~{6MLZ|gOA@zj34O#e0b1$LiB}_ zyra1(OR>SRdM}%+bBab)7GTNM2Bc|Bq!b~|4Ri9$lCgBL6sWWqZ}8CqMrTcmkxQn+ z2k{+|FAyHI?sB!aMvhIUIi@fwO;GsVy;$V|tst+JJ2?UDK+%&dP=aL|3cAD6$A?7t z0CD%{A|`}0BJR=EO9XE@JlO?(+l6pPtRlTJV*&Y*o)e}4BIM_$3Re2#!rxKclpGjm z^$E%h&dCnXM7pJX{Bi9e?ssaNw|juh++H`Fm5`0!B)bG51XFq$-46ozIN&Bvm4{5> z>@I)&0Hb|~&T^uz{Nt2}~ zyg%7|XQ2MxVEygxirby#x4J6s^wmM**{jU!tmtYjY40zrygl0R%uqfF>9?`tA{RVP4lJ{aK~@==f6HS%lY=$!cQkx=>Zt~@H13@X%#G0e5yZ3y3R{CdhYvF{6AkhB3=J^ zl(3+`TtD&6*=-sCbHG1e+h+~{4#GfGsD*dtK3^YxccPIsz}>3k^EqK_k=hZ$w{@~Q zl^0jEER6y!rv)$&%O*S#z97Uq|STvz;A_txZ!U zg)5cC7kXNED{}fH{7KQk7gBe?Ndypiy5jdoS?6MowcpR~|FCz&+f0=EUydW~T^x!2 zFCDP{U#y`i{lX9wM+e@GFqq*Hc>pbXNppbU8aejHf=xub;^NN|*pUFk1i;;2d&rpv z01Jq_4ljnwRpB;9wtBylk>2LB&8pd3dKd<3s=RSGu+p~-3yc`qa{@<C8V!V>B%LN%r_WI7avVE=41+3L>CFU?tH2XfOCT@~5V!yp zDLl!0!R;Bp&pJOP&oTVrNKfbiGypWf;F4m~D|Wo1#8d8nsq#_-;B@&a#ciDscAGD- zJ9}4<_pwOJxW$R2t-i$g)0N@BZwUM-C-7XbsxQQKJkT&|(QwUY4Lcsh6TuDTEIJM= z0lXqaZwNII6UM=)XAX6)LnKV5W3N^D?rhgz-+uZ(J$wAWKG^@ymxdlS*;XP%wB(E( zwO1gXqimArV*_}EP=w3$YFrQppZZEa4ME4FQ80GQ%h6`s^p4sCPG^NK#`!M<`wYX6dWy*{hKE7dxd@L^L zS$uRJD#|+k4IIftLE7E1I!p48&W}im)DV*8!-^GPUD&X|#$$+P4<;k~1zta^Fd5AN zU^LL(i=Zw+|KNIs_@2*?7fIQG{&=v+1b17=yTqr6%e(N^QYc|okf;ZzLhH=f?we$d zuS_q^3{B1o&2GqStw<`j%6;*MLsRDG$`s$9~eefTiNXq~T6ymZk%Khb|(%qkaz?Y&QT;2cTBpgt&37`jjvA+x)1bLLu7%Zk? zAH6YL`*d^8t9vK{5t*u_GEW0|`wN;XVhQG#Nmt{1P-$}g=@$q1u5FW1Xu2KW|8B-D) zT5*1<`@&oB=U0R@O!5MfsGoEKf%|)SF{BEo3MnbxAtn&~1;^gV;S}pYtK7tL%aJ;V z&jhPx;Ts{=zx;!NJ&B=)U@B82>Gc)CK?BKg^ZCgvW2wb6Igu;HNvkEv6Y1dtcI#Yj z{Nd`H&5A7i)Ub1K_;hAn!`r#5h)6HI`_H#zo^8s6%6Y0@Kr|BN|43OXNDhz=_xJVU z_^q-;QR_<+I53Dnljs4w2-d$^M5l?`;9F&>WDE1i*?}rrn{&7_1Isxqq!5?!@8LOT zwMf89U`of>JXfT%mSCj7V)k@HK6bNb8Vh(4KO&xRc;!TG4h@4Be?@U86_O*}{dq#s zf4(KQEojHjEE2n~LzE0YF*WK5{Qni3F#u?K!soA972js|eGDCTsAjScWd zoFAJ~kQq{3a%7(Qunb*Y?FM~>%qLl{u)De>`?#g+JPY-ze66BTgJGO#05Di^9jP{A z?xql#)CM^cUp4_O0N4cdg!m&27CDh%J6!55TDU!+>NvZB@Nm=rsh@5WMrJ3cs%phghz;^HcNc!*nJV+?!RM-i^`1wP^f%uP_3_#+d=4*)W_i=dEl z0`V5b6T(AnbmMOkJs>|iGu9YaliFC5R+|(U9c>H>AhTC)BehZPWGpEjuCE?Svn7SQ z8_h_CJr1g!f35d+S9^G>+yw6L?{Y9zFB`~+{Y^*iwZf>KbVGlrb|@x%CMkY0F7sk* z&l^X^-kq;|vA6hML)uFdP0vhrzcSJK%G~gilkE?tx=3rmf*%6Uqp99!XZwh7Y0YVD zF7NKDY(~0ur9PF<@cGV)+dYk_cAr@tef8MJ%g2^q+dKT)(FIcAvHZloAMgjKPY&x} zuKy?Mi^&e7A8?;KSCf0Srr>6E#;wZKhxK{bEWg;2|7=6{bB!?Qihk2mM)iNAzw&n@ zb#L~Sy**g@dSBUlL{=#0G9AJ9e`)eXp+YOl1OAog8|AhBWs3Ro7l!COv?*g&iCWZxxz_aO+cJ2<;mNzhC0PBC7RhS9D9#xI;11#I&|pvy`71pU!7nBe0?cy)0I->(=tBzPec7S+ zZc=%)YQ4Gd_xfwt@$$&?4ugEqg5AHG9)MhcA%KOj$OjJ6x0?ND17sKNmZNcDG!mlT z`7ZWw(_!Wzm^R^rrC70nBLjeRFs_!Qx6efQIvRlQLL@t6&)E>4?L@x`tbyXKBNo|c zsInteqzkml{$H>56#n~LXa4Qc&A&c<{Ns(><5|8-F;P7x-DrfCMKRSM1`z=RlQ!){ zkeVF>^w8ZzTpt37ZQ0LCB>M%&p^0#RJmbcK6vt8{*V5t^W1^N~B39xsXHs z@3RHg1sjS3WR-sUPD{XGuw^nPe#&MhNHSjUX_PzZ;MzMMQWL8L%qni~!Ub1oyF5Kn z&w9H#$vs^|z5TPSakv191TJ?MU>3vypeqJ%8h{3W2(lp|^%L&}hz~JNSZ?9c?&;2= zSmTYPz>N(sVy+N)crMP0gO5SaXUJfJW*ZFIlxYAlJ!F3Z-@^?-fpR}zcOAHYc36_t zD=^-WlpT_t7GzHiiXjXjL>5LEfXCy8yuy*8{=;nrtvRN+NFS}r`5$NizH%@Ahxj-- zbEgZJxpgLnLCXA1ni-nPAhDXMVbjs!b4hup+d7|G7tl^3_?$b7%mUw6J;nDxU16-1!HR!|^3pO4p-@af$zO}kK$dB36Hna1Kr zHM#KppKmLs0dQVwEqJ+2OaL?h+Q7@5#c%Z#zSUduc7NGt^R1sQbi6ZO_u*XY2lE|Y zklVg6@FSA0%}LH5_m@9e8ToE^?$4*UKiLq9Elh#v0nq$W2Kp^^lc? zsu@oRhh2o~knqBa(rAi9ZT)Ep3kBTMQ`d?UxQtI`g^y>1kEMr=ri9P{wyUyFG#2kx z_Yd&w-^f&$r9Kovu~Cs2oH(6++z*-T=}I!&#hm~BIW7JrKxM>>08y= z{9`a81(M>hTZU7#oEHzrlt)Rn#-5p(fTAzW2Q&cbFdzKt#TGmCe{=v4Jtf2+B`~pv_Y9`Bcn9&jbwdL=gu_+mUzfoQfZ zP*Wg3RHPJ2V2ps`RdOtVa%9RJwFXEU{D&yuLbVJN&~mL0m=9_1;QNq13ID>{0WlOF zpYZ5~>!+i3Q^cjbUkT+GP>*2uE1+6-LH9H&0DO8a`ffAx0irDf(qAlqFai=9;2<(; z^qek(5;q=T8Ol24dn`oDHGd{R$Df6!NhHf+T<}74pn!lv4ZuEgVfwYCpwV#spyQw) zUP%h4TTI2E575vgz=hC`O`yVc$i)8g@Z7)r_V&NNb@GqrS{@V`*8@D4BZH@6LU)oZ zOOfV@V1JrTPoQ_Z$z>|ScQHD2E=aip==ycVmOk5C@X4B1Eyfg3szY+a2AJDZwt zH7{j7#IIl97!*j0eSCs+I&xqrEhCPAsz*$LoT_z4R%T%n+r`-%X8cP_{KOCnz~PAf~_;k)zjV*b+PIHmCbf z6h~GU1%=rT9Srg~ghLS-GJG->2b@eYua1PsH+$-z%LzZ66EYr#ghD%$64n!uxm4T# z#A5fmGg;4#R$i~qzt>Uvu)p|)>H61JC+|;S=->Iu?ij|-_oqj$4|P(??~XS;HPgoy zVW@R{w5+Z>uV|~c6SVYNUH;A9rmI6Wx29(vZLYqwxAx-x!Yg|-59Yg{1p?}>Bc}0E zciq*_x=XE97w8#XHRpP2_B+ZS)}=w7VSV~!P1>`~xlcFdJgCj!k=-w%-? zzdhdg=13j4?ALor-XE|3{aD=x(=>pt&zJkYS{wZRWXp$3Lqz`m`P2&b{lfP7$k?Zc zhrT;8O%ND>4@DmZfF%0;6Xee0D_@?R{r=qQH>X!X^S?i}{?qBTA5Jd)`P?c&F}Obb zaOUv$XT{;x&z1j&i%0(T*111jIq}1VV?6%T%`<<#e(HxydtaU3{pQ@tXUC>LSQ&nA zs{75shNqfyE|qX8G0lexBgV>zOWCfOFLQxYM&~>_mt`5HM!i}soLDrDcrb6 zpco9#2xKL*b>F`iLv3}zSH2@Z&vn(W3>! zAuhwq4V&3~r8n#XSjGfB))?iLI_&-h@n7V>lK_nGKS?hEnl77>e8+m?e|28?eToUd zf%S_=lY)dV$oK&L;6j+tahh~K6n(zM8bOhw>aEreI& zM9nxB26#URFX#x9SONpog!^v9n78dgLKcA4T9kPyI*^pE*$}_!ShK+QBgCozu!!9N zU(x{H>aF|hi`W19)}q{ zBRB2AJ87X?$w6$47h(RSMzZf+jfq?e2|OHS+a(d6$oNPz)qetxtiSMu79t5Ub4PWq2L)<3OiCI6OiH7te^y9psxi!; z^c5y$2LTjXj$nCv!_spjRZ-)NL`z}zQeywhU5P@EMIvP#o+uw!u#FX_qy{Dd6DS*L|5M3-ooc*23}d8e{OyJ`SpQ&(>+hljNY3X zygS)}q1%(Q{kzrW!%aP-MHQ`SIh(y*S9&Y1*5^a%xiZ}R#L~j^yBlwu+J5EO!b{uZ z3MwUxqPD-%koBk`gY&SCqM!XjTfuWJ`Oh?=_!Z2b z=R1pE>8s!gk5qp^b{fDt!_{x~m;a`#=*@vDP#^?f-)@e)JKprc;vkg#?~cxXu`~Yh z#?WWm!=D}={(5ghh<;Bj0q*k%1qj{_;1B2P)AKZd?@q6Zb?%8(8o-aIme~_f{eL{W z^T+c?e!B4U`SH@xpDrK!>B6x;UflcX(*7SWA7>i)@$xLOzW$Fn5%_~e70%K$0LnMle3k(q zHqcC24paRxALUT}c`p14C5fT~-jP-UyohRyHb8senvYma)OyM~oHR!RkbFa>BY8+j zMiBv?-11s5ixr=09kejY%{ZZK9xM|7ve(EtEd#8x&ZYAG{(y(|OwH&{&584)am zL2phrLCs7hu;prNrgW(C9FiSHfP0g0YY;Ns7Gm59e-}w!e3$Bfq&k(y6OGxF{!=9M zHs?dxqyZeOPKMdZ0SKbv1K04#b0lEWhJZ)3U~F`GMIwo^1YRhJT`aJ#m8Wi0rmvQz zNey7FI%}gUd%aRTQvErzg()+6c6tD=rDCm3lt>v(C5cSn1Qfs2cNze6Pq>~A@6RkD z2JQm!7jf_}k_F$9Ofz66KqA0?nCed(c(x_%D`g&dnQh-y5#^VWo$C866ox(BS zUsYk0WqZnK089Yz2YA8+Km*7&=vn{51O@!5Fsi^VYW>tS0KyLIbTSG5;gLKq!WY^4 z688vtD3SnpBVrQww;_Nzz~K#tFOU}qk3$Kp>J9OOA&TXvq#a`jkRn{@0W^TosG!LZ zA#)##FpPz1#{A`rVSYsNj#v$lc_ar23O(rjR(#-kjCnoMv>9Pqu^LuwMgkp$A~!OC zutrRqA@AcHM`?yUDm+BNb|QSwMEd^m%<5m?z4@o>qYqnSb`taesjFc=B3F{I%wX+e zY`|EgsoSbX|8+P%csD(9KFUV!BY!VTU~~psX>ohGX-6{cBtDW+OyfD47PXxmfjcy! zXqqKS360q2>9uwK0l9j=5cagLK7rm^i?<#{mB~{VBr_(MY>7s5prB4VVW1{efA08T z_cQ=_^jI+`2gMYGCx-Z_3B(B2>q88N2wy)wZw$qVY{^9;Ru_UMQSV@;{0ulLt6iZI z00IUub#|ixutwwRgc<+?37bZXs-BCX)l-JkuUPB3`zQ~h!&IX>&ay@sA9ITHi%PY{ z1j6Fa56{^L0C*aq`l*>$+~wlE>tvJUu=D56oqZ(J>dKH>?b=bpYE@D&{uS;D-UDm zS2q^kI==GUQrE-j?nkqu#4+OJd~deICS1;d=h*!q#_Z7Qa8cA{xLR?*B`FJi`#M zf@vtW&)=ThWCEZK{BTa3AJ6YH0ep1=E!f^aT|Z3&U=E-GNNwQT^T@>3FqHmuZQ{4% z?a#Is-l(*nE3lo)ik?8#ul2y*5u!FrJA8aWfoK4N6HJA5kLxR>eeZx3_OLHtyF{J~`2|nj2f-bFeEqGF@weRE9My4M4;=bIo`300^dnV@hCv ztD z)+#dQ3zLv6tXF0(7ANz{Mpf2MeZf{uE=7N}JZma1QEC7fS}gNeC=LM8uU>KFymPgu z&~y5r$65` zhwDFcfYbw+19%*Zwz52cgmb1W6>A67UV`ltV{zmF>%|FFBLpL=g|if?Q)wsZo*udoodWJud!ZT5RvwF8n)fxZ(?D4<8u<>Gd z+;7&gEsC%1T;`vMq-Pti{?G2#%%4FGpDk zlUvJ;9f&e?2FlS2tR_WcZd2)}V+^nL_pR|a73uXkdILcmK>ToW46Yipw<*BK-{NJ8 z(pfQNW=JO>7gE1)aC3K;tlYTiun<-r!en2L+_5MoH76_%R1_*Sf-HW3`I@;NuP#ja z&7NAD0(Tb?5-EG^ar~C0)ozGdE0Qz>rs; zKACL=0(xt(njZlF!42Zm)xnRJ`aWGBq5*ufJ4p}tbZg|x-HA`PC%@TSKm_pPsnvhF zu#FTzdX6E4qz0h+3tZ^z#-GovBOUm9e}xsXBnIX{`1uiKz=fT!POSgs%KpFJIs+Yu znLz9VuAlgc&F~o-zy^Qh(~ar3Cp(|(EWK5oe6cwEVtzc<&|O+Lm=u+2Zy4Ko8fB6< z@sK_ke+p>c+f!(>v0i}q>+HsXFqYzPPWKN8ad%JDXqW2hRvH?PmX+Ka?$|0!D3UwX zS}kOe3dWAwN4n-)0QVhgFRuSAgqZ+@6x`KCy88nY@dMoPF&d(*Gkv1`qM8fuAV-Jb zyP`=rtRqB{3}B|i`J9au6`violpFjDeaI0v4Rgr}K3kAlhb^vP9>XH_^vv`%VE#k& z<6N#?!06f0TSbXGrD?P2F_S6bRLsqiByb_H8md2u?La_M1CS;Fsz1vBp$Bfx#e)H# z2Bra&0jR?+v}6j6SaUXqH}iRd;K})F&f%ciJ>QZGZInlZyF$m?mZhJ`j|C zuK%b0&^s=qj0A_N8qi1VB7>{ptTi3Jw^5Qx9X0O-khu{V<=G-7S( ztO1~bzR;W|HGmuWp#(#c2Y?yeHrvi{KWr}n`--$)|NnLXMFuTHK(S865C9599%PBi zv)*5e^Ar~3bp|Cs2Yzr={0@tX5|2ujWJl^ImimGQO4JuY@Ob_NC_4ky{6J?A0m53w z4j`jiVqyH`T=@k$_ z-tk!4aTY_hv(X^+ejBj?U_r~_tOT@ku|^EqmJ@=2k5*&RJp?R;`ymW=h0ViDW6d;xXD4c2SsHs`c^Z@FS5}7ak9R*aKaQ8@i(6y&7W+tO*{*BeY%ZA2 zOi0&RI*O|g z0RaTT2>NiQ?W4I)T!1)VY>fP2zMID{x1j({et&F+#qT%Arpa!E{{O}96bR41Tt58O z(HVjPPzijqHzQO6`-@UU4BkF}Jiq?w?l_KbKb_tF^MzfgpFf|=M+N==%;A5&a{NDC zKl!Ii$2k9V<0RW)K?*v(E=h$yIXwHjx&BuM>z;(ySQfjV6eJAZ{bij7FVa{U0$2s7 zdAQ-(2gL6yI5tiw^@Nm{wLeTs$ITrer7$!+S}qT9bsH-wU2knW*V1^UqZT-uMEFd( zcdFJ;kTreWgn67?CdxhhG%7e6W85H+gMs#t4D8qt{L%o3XW{J^%mx?}e}$5Q&O-PX zjED(9FiMG#g!L~4KswO>|K|qa<;fnKU6-$yf;T*G<`|tW#otsLZtG5t8A*#G_YvEl zg^Z|`oVfL(lv!c`lEe8DMHsp&O0&ajA>(FSmUR7R4FLKt65H!jnE)KRu&nb<`0Zq~ z89vvPeyJ^+M?9jr?BnT1-KW-z)0~TpfYQ$|%<>4`xUao9Qlz<03s2-5h(zca0%S~ zZx=;e$__f85xAddrf#wqCB3~VKug49uD2pvqfOMRqzNFy(+6X+Or17M;ghYD!2+TO z6lvtFf{PUHWg72Vqpr?Z+vq2(grqnyG63+pYV0(6O!_OX6eUx#n~iP@@m5^*mt!nYFoAt= zv?kUDL&U9E&>_oKvTZXda5ojCK6ow3yp-TK8Kqu|H&2IZ@r+wxmm8|bHf}atKNsx_ z%M+8ht7Wl2OqaY{8?_g%;#Y0Po5}y$NVJRu%Q>qF*1e3FlUZ@w@qxP$`s49IG=Nj- z345vbwYZ4Ql(>_{S(_=DnbF#NmQdVN)#;u|Kfx*p2OP<~khuVcu4mU2>mfGPc~kAOa>j6MLVr1)Gh8Q`uZc-AtQMZiQf1O5$a033IpV3mR2 zLoAH?F&B0QG5%JD13py3V%J+PtfZZsh4+@1jIP5F5M_*tHN~2|w7iZT5DXB7my62% zG58pa8nJ-SA<3~i6Dh$nh4D`29nGYv1y4FLhs0A5;~e1I+J^vHwx!H3H|_vSmUjrX1E z?AdECS_EH+aoBj1~57)ikSNTSN6>!k2 z-DTK5bKak9d3U6SB`}ZRKhhGI34k{6)#mUY7COJ$9zm1E5C8!bIOzLha}Yp(IKIdu z%78zgS^IKl3YCB`huEFq`PWD0sQ%yWuQ(K8D_`x;kQMwR&Ohh2IX|5j=T8@R{&M-q zFX}J`0w_R27<~E2*Jp%i0I=xmlN+DxEWE!q{=39i-~@6T7zt zgQ{5RljZ3af}M^VAs-!xsMC~A4dZ~7sjQY(k~%DJaWX8KuhpIfZ{{W1WPGl z2Q61}b7vbN8ipG;ecoom2MUlh6Q)VM+~M$ zllBgU20rCtW;C+=)%@gzjF|cK=#{M4!^Na}rJkxy=W2hYJzr`7T>pt~zt)~BH2`z~ z7{f_7dP@1py3`Z3Ne)I(#_6VvbFDNFzMDab=a(=p@JOq0G>j}72L0n~qv#n}N=Qi2 ziMmV&E|ei*L_D$sKoPc4k+NHxvt5-5AC!U)DF}_&a)EuRFkw0?YA)YSZCAkwOB{HglKu-&h_QfXAdDh9 zv%r7w0%8Y%5DXI_tCkN61xa}gmLd1)`bAen<3Ore0WCCX>RX{))as{Da z88WYYt%^ASNpOiy$pkkX*EK(5ux3Q^<5A1-H8ucjWlk=`EMtfH{y(2@q8Y<))NA8i(8NOXGyRU zW+a)Ngs;{3faOTde7yfcobGl-*uBb#xd;u5fn|FDy#&Om)$BQ7Q*9^NPN#>T%!t`Z zjo7t|TmO1| z7!op;FvxkCMU}48d{-3MJh-WxJ8DMnN#+j0mgEAn70!A76 zVEcFz^Mc?@s5d=jdKYC)R#`@{y*;a70r77ZEo>`uIa(42;+$0U) z>DAt6*ZZGYnYceab781yyE2dP!usO!lOx^N`dc0?j6So}iGKL*Q0tA+_7mN;XZson zdOTmBd!;V-N_F9#dKS@nkE+ulo5JtJ-0f~{?!&sw7upKB{y*K22l>@N!4RZ@RhQ z*V6#r9H^%H3-Q-bEi&Nu#+$hQ3kuL=5r0Z{I#`_dCMVhjo>2EN)wEVfM1cR0b#eS31AW~yf(C#!(2tjPzrS#pY#H{(pYN@Gcz8jG!q!J$AFhA0F8yLoIG=)6 zcbnd;9=?WJUMwg4%OlA35UC7QeEK&Hz_AMU^!0MZ&NIZ@E5&Gxm#OFh^@+(#t?jUY zPPSEC?5paG^v_YrGj#skTJ+8bBn*c;zU1EQaO)%pS^$F*3+QKf$I%0%1|VDlJrRE? zkg(7IsQ&a4exBdJAt6B80dRz_#X$u6WeF^?fTT5muzzs#gg0UF5x*o_tttq%lJ7W` z6;IyFTAqOZX#fjZ@e4VLb19Kh_1~|MG9A-Ue%T#&Du&<2%qM!H(vO>|zHXIYR$^0}vCyK<*1YSx>j8KHY*3MEYx8*`n?@399Jp-8qg8@XuDD ztbgy8L|w`YxtJ4rA|(i@1WqJ3bj*C10P=j4us;(Z4*(r{d1raciHOP2YSLvsRDXH^ zn}7n94=7NrS8?~<8Ax01$a2_mQ$cUG)ASM8kUWoa{ z;vWS7j&GeN76T#_Oagpp09^bj{Zb_4c$jH8DsUoLSS-v~wPO}JO#GEZTUVHlWx#l# z3h;*u`{8(h8UUpGy~Kc>Aj7G+;O#KuW~5;w+PEEUIG18Q8mWi31Ex<4IUE6)R5bD{|jkhM-qZA7ld6ciGwCIY*MZUsgK~T80X&;s+&#-Je3uGCdGOpEn+`6 zc_%#vpP!xFyp`;dx$LTe)Ux`R%=Yw>^0>6tlZIIG+a z%3Ykb2R$v$swBNN-ehGzjKj0eOCD<`*gcd6z>1j94|_R$*=PV<|HI^Jlargc%R8ek zb}{%Ufl#CL<~Ut|#Z|6*+>Hsqsxd|?%>nK(^H@2^@Rop?N~a0((a->V-3{p>`DICU zA=*%}A@J}}9CQxUsYIV3BFdTESJ#w)XoipOlDb#gv##fb5rZ>_$COz)8y(u4ki64A zbYZsTH;a9^E8ne-zTX@RJLqi-?tFNbHoK05W&sl~63OmgK15#o{OFokFU{0u+v{r<`yPm=+;@Y#{6?@urOaAHji z0Vmgg?g5Sl@W%^>|8h~7LrCsGf4+Q_2EgNAuJ8Zx?Cv)wHmLsZtWSS#Z{#7J?aBbRN##nz0=?U@%^(k^xsTpu_>xIYUww!xVHyxg1l+F&k5Kmr{i8?rOwH+?L) zun9_jR2O@rB%B%idPTzd{E*}6mYqa@NR!ZGAmo&&(Rq2L`?#h0xFvdf#{2ldAVvX@ zsZr(X)wxCEWk$-(P*O^4~v<;7mCtT|R(v7B8tl3Lo4Skh!KZb&R_N-k=ROREZr%r%*^{SEOd zpJ=&HlHM5V?qg7T`5f>JQwFB^hhSJ}cGp1ZQF#8N)=Nz_=RTfdONrElinq9zGoJ_E z;+S;CsC`+tDoIC@E4b$4(WW4dRqi8V*4+h$!r-REfUURE1G<;Gn|GovlE)#t$YEY*d?4&u3M0 z(1lBu=Aav(zuHw{@Ybb9Cbs947Wst+|D!W-mew1tx0j#HMW+%fgrHx$s6FK&Az_t4 zR#@Z8A)>u1Uo=+`IKC?FY^yJH#c~FtnoFLl)1FVA||!s55+QETb59TiWv zl|9#9@nTmskIz9pYAZtp_Nck&)t*Y40dNr2pEbZACfnb}?{lc(cf*aZ_g3@BEAI~0 zel*eY;dt}ci@hIDw!Sk^^XYUukFbM2nQ8xOwf~dFu1^b_L; zu?XdSu{FxB`0K+XJo)4Cl^>6p@Q4IJ$c94Rq7Zod5X?|AiwH( zZN;^|w)0($Gr7t6zKU#rUA$IFB&5aF1!D;z2yk{LmX81Wu!#gZbnuX5-XOVqa<7+e z?tqX$K*Dm06eER-!xI(*%pX#&B#$tKq{E9M@au0G@s2EeJS4;cndEKH@XFPM_j!y) zpJDQCPf5V&e<43%B|Bn0FM2l3wv-*gK42&%;$&CjT3Hre3xGct8`5vIlDIX zF$#3&UujG|U!QcfE$d=iE}74~A|XNy1l;kZgI_ePhQK0% zCmfc#Yelg{5Hk}j7DkJGZ+ZG`LDYIp&UkJdkINMqVoy+-1{NeV0Tr3QdbuO(6~w^e zu|9>( zUaI+MQUG}OY_vc15jVFAKV_!eBSYbts*oiqm5B-k`M{{jlYKn!0;2j0Hwdj9A`nVo z_@Ko~FPNZB7~-3R>jO9sp8gbiJb!S1qxy6A=i*OekjS942aHN+03rn*f{@iP5Na9< z_Jh>lZIGc8ZZrB2BG!Rzr$s^R*I0mRf}4J@4(%9l5UhXp)vR_`!^wU0=kVoXtOcu| zx#%GF#vDQ)8~qKf)_{7ef03^y-%pck)+TGc^8-~S{1p~q;x?I}yH;U+uGH_@B=?J< z`Wn41$xT_TQ5PFLPUS@HMd%w%F2GZ>Q31y?BKA{lCsRW=A}#AtVOt4_M~mv0vda4t z^XjA0D#H@1f@7*Ip;e}!-kA8hz`%T!B1`3+;O!ReX0i^GCu7XQDAGzW&#P1&jB~|1TAslUBQL|wXz{VQ|_lN(rUXx0*|#dJh3`;Yq0!& zo&5$LBz37b8nZ6fXWnSez1x<5tv=&YZSvK|?5nNCSK4cC4YrfZ_{_@K&4~{3eqY#} ze|Bx=iJ74rV?Fr%+@9>eJ3V-9ruXtd+nJ8$>$77|tWI1SY`Qqmd}V6*LQgfZ??`{K z5xw17a;G8xenZ~U2D3f-<<{^wJ7ZGy=aD(!PbU{y4s-XX^nbZEL>pjA00JT>fcriW&<|&p zKHpt}(&KQ5!yZl;1knKgbnXa*(H}4lVk>}E+~vK0x_a`bOD9MS{_6B59zkE6+WP3o zGHU>AC!ni7-9S^)^7EUPH@%nBT- z0SKkB$e$6&B*7I#z+-!rZ1gJ(vb5S`xha#;xLT4%PA>`oynrTCLi>`U#eRC}$yXZFxcCG6fCa(wKwuico5MwK4&_t**&AaDL@MO7ty#BglCG76 zpUbu$j`syCA0v4&NY8tvDcCPhBg@gqGStcxwHi}sLgABT-ZX$Lg_q<9SFBfJ2Luz8 z^cblDG_dcbz6a|1L;RQ|Q2(+At`qp97nD#6Jv2~$KaGKJF#%BS83;rI3}N&n!}uxN zbOfz9w!Xo}0h<=9eZt>|EJ`SzBQ`a8yb#H;TR^VNKNWiZVz`bR!R;s_ErTI?BD`7* zF+$ScinSh#(eK9@PsIE0#rW=o>kfw-b|U-^hnp4>e2*pvoh2h8+HW#OdnqB{T&({Q zi@r8Uo2l{6)B=@whUisge%`xjfxR~G8gFNq{>L-J!Iuul+qM$ocC$*ia~k_&^E>16 zS`u>V?5WjJ(J(OpUpk@p?osf;m1#~33pf@T8XGa07SX%0H653n$l+4bg3Lr}1*4Ehir z4=kTU+~iPzxb@@1&bHa;XXs6hdxBVuWPj3uN=)iZ7Ic1*W0`qRkea*Nc)vO8PJPO) z#*8O>%I@`6Q|__(d@xvZvo-%(Q{J_fB7(3lwUu7)ufICjOwqr$F#h7!!lUKMrDOwq?ll+T?8ch+ zQCt4)n$$-v1sM82*IM+(KrJj!0H4=-s=)mz{o=|zP*3$I@JoO^j<6TL%MkG4bmzOH z%?tq_&2(}7rwvf<=>b&y_ebk^^5I0I^vcIGEgw!beLCCm{$%q9vu&TP_OlZBbgiG# z|Jn8^=ezycANS|j4^#c23DFx^7k|0UDj1k(@%t0Yl>47Zdq28JGjNzg5Dq+tdH|g; z))6!Sh5*Mt;4pm9f4On$FIP@{ckalyrw?=S#}VkWW6PiJ%)&i=bCk&@lZfC;xnb)u z`k_D>nj0({i!?r&K5nrJnd!je-1G@o305lsa0HI;bV$U7y1L*PN_(IISe;za26yL{ z-yChfHOy#LiN8X9s3lb^@*}|#DgD7Dz3|5!6M$stLj#Zq`;v}VGXIfc-zE21iPSIr zL>-2p;)jWp!IIVyD=#$w$qn>>YXDS#sR4lggO^GR0Hlj~R%=;EP*-w1fX_^J%2Im7 zQceQI|D}xRp;Y@=TI@g~_Mgc@pH-f8z7G9Y#yP^-8)1BAo~=t`4@?8#FadD82dJR| zNY!6R!yF9&xSt6Cvj5etVyeH`1J{cQ;93_k!UT$mW&rrZmy(?vwp1eXs|_qj{04>q z9RC?O#3WIhgqVN@0HzU=t{8C{U!qQ+F#reA0E9GaA2A znkpT(#J_qTL)})4phfj}3<1LWUqXAtV|T_I!}+iFXNxr8{#;yuUhB_e6afEWd(7ql zzo4g@gzfF6g5c8`mXjH_En;lr0x8*zW)%}akwKNGQ>3dDOaPp8jXF!K&e1u*AGuey z%##H`saDAbnEc2(lMYV^_@nSR83F+PF?^=z^Uh=OD;GHyEfKFv}_Th_FZl9u4;u@w{OM;m`@+KgP5Wq}+`QU=%o! z7PcPgdpIs&JJzymw;o9eI+7f)&F(i^b2wUiBt~~E+IT$1w3lGsv?+Fibo=>9n0F7x zo04VDF&;`1af{?~cGp*`Ql9NBIy>BSc(i#j(XUtIHg7XvF1;O(=r{3je)(itWm|M{ zsX40Mp4FFG&>C-V47c`1Sg->km*!|n#8zC$Oh~|>)xXUeSm198S1RG{V2Nzih7`x< zWd}!Msi;5XMFY^voe=lZ090=Bl(3@A@G|TcLS%k64_|!Tge50j9q2b+GD!!(i)J4! zD}-RBZ?Mu7p|K>IBl99t(d&lG4Z$)Uhq;)^TCgcZG`xot6eCQY9oHxk3<<{{cOYkP z0H0)|*-T8Jhr7yCkWGDEyd%`HDS^oe0g-}T>go)tE8Jt;J);$xB&~0lha8#^judKl zmdUaJXCJjE!3GKdC7a1ummPhvEaB2N)AE>=I+;p|G0)g(m{+g@Jg#^FcY%e=o&9$o#;wDUC^mq&XpPj}uQYkbh0^F&Sd_0p7684;HX4x23L+PhIyw+FEnwLWlpw|C( zuwJ_O(*U^pe=yZSKaei|RDY=fd_2|6D?EO)-1GTd`jX zsQ906jsX5J3Q(XqVkX!b`*L%Xet>uwuTZoC(OvRi|AU^=j~_TT&e-p`x?nhn>3;%d{fC@`-F;fKiZ2f~-kIpU z*j2k(o->#f3lA{O&z}*N>pw?=fC7l|as(Cu>kCq;qX9@1e#!Suy7EgsK=Oc-nt?$1 zsr3$n(qEDQ{_hPyy8cUt4+Rtnsz0fv$ky_$flV>tBbiAn1*w|_sSDZ3G=Pbu$jS7C z@ucXn)OePtxW7RFJyo5|$`=TT25_R%F6f?hX%}jffPfH%QTN3HppArHpdlRMewGFN zoD)zZ)C07EE1gBeyW<*7WoHh!(kd9Dq7yi@0;I~&EocB@C)}EGvGwN`0#k^7!_2`H zvfm)iPL+MHKIM30+L4+>p76+6uw5a{qIauuHY?!;3F+^4UHS&Bp_)v|KTgPoiKnm1 zgfsf9zu`Xu0%G?|aet#PhgvUb0*HfubEM#vzAPqy*L$;Zfu<#(3VxwE{^hpB=NjUk ztd6-?9e=Sf>;k^Z+19-zGxuT`@dLqzT3=bEue?B~$RWN_ntRxc|fTw7}`qA_40P(s1z?A-aqOHX}yR%{p&D6}%tFtp@bx z6@&tyG5itM02sirHedk&6SU7?L2PfIS=M9n#(e?d7+Zk>8(l#&8mz$!ND6vfj5cys zc$FU%m-Zx!~91Q^}DHt7i&}g(2)GaNa4R;ocnOEZ!=i6Y}L*O;_{y|msl{GR#6+1 zonuSrPE78#Cl1=xMIYjA8_2(zkgJKK9lL3D)0p&#M{IJRbx{+8z@HjD&qXB@u3hIRt;f#prq5-H5 zx+NF_u>ArB#&bgE>P$m2xhcXFao9em1;@kM#%@~3g&Rqx{sWk~MgQ<@Tet0VJ4Uf^1wSFgr7-&a+t_Z`lvxH>=k+D6y&ec5;G?T=dG zANE(?=qSD2U-RTx`|W|oo4qx+#VAn33XY^~Tsbe+mEP^|ygAtUaB1}J^2mebsVC;g z?k`U8`1JZ5GXdxNME{kA@vCFqx5kHW%q(1+8o4`Ie6KF@MwVqSGjb;-1WxdNS|}#0 z*NPIat(MJtJ^99iV+y3ge`UK09WiJQhhsSrvTR3zAN(NH8Q1Gye zHC|Z?&lH(EuAk9LMKA_XG7Q(mq7`8<@V&zy)QtuZt&~9o3Uqc2aQ3K6$=$5Zxzyjt z1aP=4XErO1rXGdwtcypCMh*Q2))3c!66^R4((hr3C51Zz`$$>vQpLv(2t}B*5N35O z;shMKVs8CEN4_}F|DVHZ2sd@?03--VY5>dxJPM3du!&@N7cz^~Mn`tpqh|Bcrcp;?BP7fewF=7L&{ZPp9WF8 zg|MqW8T6lbqj&_gX&`^mVGUg`yy1>j!U_e=&puXe7w`^$q#@&KM*+=4Yztt2Hm0!* zperyINRxp$D99j~)@6|9c)Tu!eezyS(td3+hbN>^9IZ;gK!UD-R80fIomd zEqWgj_2s8x-%B%KE6|0}Td)BXi0AYJlxW~T0tmtZ0wbV6)qn+yIu%ioBcT7#_9Oik zqA>V0VbXyA4<TC~Kav=M)))5Yc8YN~-FG|9cRi6X0K=|5 z8d~RYu<}Bgr z1+K>?PRA7u#FtlxWmU$cmd7W~Av#ZuolgwM1OgrMP@sBzvRze8*=I#Ezd2&Uh zn^%w|hrB`L z#gc&3EgTbNN=5;I7p~p`?h3B?Ks_vzF=^m2(HImVH=rsASL=kOvzHHde|Y++#*mNU zCjsbB;g%WzY&=xEY?awDtpImTr zeD?jl(Klv_o@mX!*_8dLE9v1-?VX;=yMuL4O?F`U$rDhZ8|?*Lj!sslov+QiQdj!a zX!qUWp8JbqcULAKtV}<-JjHpmE(|_-a(`*^*39tT)x#GT<}S?j+#9dpQ*bvcbRkUL z6RqhEP&Db>m>oBg!dGLg$5Nuti@~s$OoH4UvG_Zz=*!s9Q=H92>T#3 zV$^+DLy$zj-(UIxGU(niJW+_G0zPu+1H=$;YF(NGkbvPM1cL}M!Pnd4A1-wMeyZ`k z$-0;ON*?k5c8UFDMkv9hT&KAHQ~miY$IH9{_pPq(RPA7B9T5@eZ&m;Jmr}u9S zAS1v`+NkeAm!g>DBdwLUC;A9a-m5HHE6lDBu@Vcz8yLkvI9f0q9XvhR0Wbjwmr#ZP z$L(Gs@JQ}G943Gex{gB<{EGk>=t+=;a42zPNAnMGxIhbWvcsc7RDX%Nz;mjG|koRj6 zsrc9Md~V5tZa@Rzm1_`zS~6$=T=pU7h!t_e&nS?z0HCt-I=p`3e9@7?6XhDWgLmpP*2XsU+f(N~Ki&SzWBWm#wdhwbK>Py@(2@r_kRZ?dFW z0{?FfAQ2}xrB8`YRfY%v-Y1D*IwiUAB?_-ro3SZS(`Zrmg!}Uwm;eSN%*cI3-S<~< zK^Fc$zQW}n&*v76SG!(D)R#bqEb0!cAc-0KRLtdN@{$&)m&&W z;^?V8;08<|s5Av@1I%h$n8BWIO^H(LshGNh?kZPLl^5{(A@1okfQW#s!jz^c-w=$N zZLWfoqw(}od3);^mc8UG23Q7=`eJdz&`}qy@l7&Wa1Dx(Yw+;0x_X7HwS3Zqqq>mE z2m!EAhv6dU=0pR4Wg$VR+@8St={;m<6b6I@ySV#c+^_KDB2NQg0*Eyv=0s%0_yuzJ z*E&5e(l$JGDM3k@rcjHENDX6|%s4NZz_3VEIC;jXJ?FE-Ug|2mmL0~*vB7F=w3<5! zZfom$V}1CoiGsUr$zZQHo73*~6x{46yw_j#aJ2cUiT0-^T5t7MUTVxjFnqS5=zLxN z>9Vvd_4#*uY9CGw++Ub_?#R}|)fq}ZMgRH3%XmD{52Tjx%<|gxxzVd5#dm8>w^9^q z76TDRnSr`;r7Ki4q9aBkt@8;{iwV(d$#JVmu_tokPUYFp7bIP;$huK3&fS{)>t&fw zRi`}Hkoj6y>6^V33;}Ei-X3YB0le8?E0ul;{NeflpFm*0|M6@$E#aNPijO86u!H6a zoqz_wBQwGK!`1H%R?-7LoWdrk;r+?R-%mAvvD){=`Y;E$pNL?p{0D0TRR50;kG?zE z@yT-kmm7mW?oE7mYy$5fBm$owp8axn45}zKod&@9=IFd*hs;@mA^HQk@F!NG41EJl z2#-0EWR6aKDb#1Z?@iSHcA(@pJtg<*(r;I%pUQ}Wx`sV%v#$cQHW4y{r$?lZ5C6r( z5c(ZFDDmz^jdsBeLIClw5By!6!WG_GffjtBS@Nd`N9}jD+?g7=+TFHWoI9Qn(-L7z zF)ICC4}ku2%+5}tm-q+@5DkDfAZ0g7k5VT9>IqS)x%*3p1|Vs~B&qQK)&QgwFdBfA z`GuHKM9(`KfN-@UyT$|gu?+N|K)vh$|NgY3>FmV$%($&$`(}RBct-q8b{y_+?0y$B z!mv);D&=CHeXcI^GW1Qy1VHr%t058WVngOdmY@x(R~u8og4hXj!Dl`2%Mw`P`}4!R zE)3x6vZP3N8o*vf5|aUrp*%qd#?MghFSq9a1hEx3U7rN(!z-+aC1rp^IF>CMfI}CC zAb>{>@?d5QR08w>>>_x6xFP{)`b29!K+tAY+E!J{PAwL4fJIoyCE!7gA2pAn0dVnQ z2teocdT%a8UpjwJ17!^W79?CE7!G=f2u2E!@>+Z1v$atVs-vE$ioI1HdpX~BG1q!F z!@6TP&qWx>-L3caDb={K0{{Y|0mONGC&=YUz@UL(1^MRHsho{xj}xHQ@ilm0vji2O9A2g!>N=#BQKM?aDzc22Dt0 zzgUG&91Vb=N6`bU8X7=fkdidVQJYctJp`+lLbOX^2I3wUA_7+rp`~;rtizjk9ef zg`zhewfPL2-RFa~TMU;@t4RrIwy4~-wLm`Ol`QV99h;a9n0=2REWC8%{f$(GS6a+hItHuS29WuR#$)nKE zYB}KK?ec4-x5$doxRVU5xBDgKMbQ8P;0V$H1b@`aHzz#TqBKM({On4To%ndUT#aRr z+d<<${0DwjS6j#f;0;*CH;{heG$P;X1~@z z^O!xhEhqrRI5}=uhAc+~aMoi2&*mi}>b_kR!+E+k?UiOFC2WM-CRT5J<)Kn-Q^8~cdQ^BdwZ+N_;rLxi%pN%=pG7{d1eL$vbfSb zb}+#le7w8!-ptg4iP5vQRim+C-S+T8tFKMwWWo&2=@1Qo>wlyp+npsaj}qaB(l7D% zB?w5c_&waLM3Q-X2K#vN2;GQRSVc$;Kw|z#iSSYbkg7kl1s?yt0f0RkoZQ1yS{49h zp&|V#@iXvzvSK&$BbM`GXEVa#$v^-l|7$!gY$Z1mE9Q%>MKC@u);Vq=ZP`$FxUiqC zNx#;V!yE5nb;5c0kkttnuyw0SIa`~E`SZ!D1YrTqk3r$5jyK`ukU>^3)t??f(RbiE zY3vo4T(5Q%F%TTDN|LHS=Q!v(k?!338&l3UCZB7f4W!cmPF812A;UW*iL@nx9!VRP zA|Cgu5=s7I2-ql%KG|G!zNccVI&plX!fsEBTpbkswAVc)l@SRR8Me+tqP5tH@SPlW((->mPj_bF8Cl0CgL)ap1-53*|Ul1-7z@r1zBrdX#bGwF-`wfTBQzRsu2 zS5a@#;|9@UHHaigupNk=c>egSx!|`WL^S$znuPHK%>bMSK>)XsE`JRf0PVg?f?~P? z$$JqFLYPRS4HhsIf5cZNl)wQR4!lp2+`B9?=$_M2Cc=LCr!LzJtKq(Dad>?CqS3|r zjh!&_0k2>Iv>oZU9i~4L>3bxOcmVB4l>N@q^cznO|9MvT*Z$}~_oV!$#rk}K;fPfk zcjyrOMVS*7(9_@pNyb@z;McqhMW(Kcce&0wmQ_8F*I5%+Qx5bWY?`+z&c$2yBmCC` z{rdg1HNM`>{vNa8S~3RMpTqnqwU{H-N^a{05?b_uspiNyMS#J}lpLIt5D=kv_JmXe zu%lP14LYL=TTO3$Xi#!$OhaK-O`OV8`S|~#a?wG})Ez<)fJcfu?m!qjWBY?lS75a) zY*`z)9+Xl9)Xpq>H3UW)JUw7!D%@S!=(77|c>re)ai)|3D<~EYqZKhCxQYqgCfCta zbZ&<*1w-}~pfZK}T5(nh*97N;W)V-u64;{CCj~@ht3%B`t~dypUDbZh!gUSEu}#8+^4b@lvi~E!^B?vgOOYTO&gza?4(ttbJp?=Gp%2yA7#NwdXzREqH3M;uXT# zyXzm}>o7a?%I4Uk`Gy<4ITxyvuU6%ptq4C`nS7?U=zLqv-LcN+*T!F7n|pqK?&0$6 zv)emQZ!EpOyZY+k^=CJ?UOl?~4UQ1TaRx!-Y`a^@xBIsqrV1V=iPTTq{hzQb$k$uLKs{d_h7L6R!D=t5@gL21e7f5C{(S$t z3tdbG#0h-7-2UgiX{Ld%cMu7W{>%Aw)&r8C#5X&$pY4$iu=oANW1pQ|`4mCf(Xr1q zy5FCv{dS@5EmnYCxsduU7RR10u}??)jYb;#!woFt2=^umCecR`>fs@Fw%%@FJ0wmE z^9C89A|_74hLdJM7^I-$c#D9>WW6aCCqZYC6f{{{etCTK*2ECWz!h%|KcLOKcwjI(g$t;xGYq z5P_t$NXJmZKgkosQfdPZQxmZg;2=JS;vB6v<^)=sVq->9_zk|*5g&$Z-BW)Hwb+~uVsjN}|%5sVQ$f-lh_ z_9_xs1F(?bh)JSeT=~%nZH#!>SKCDcfbNN35SR~-;z?hD$cY39YE5EFUSFb!g0c;8S+=^v0mF$C=n65M|ZH#MDuCV)+VWD$y2ge3iK0SNL{@+E#% zI0)e*jU8!!kPfaVGGM$PApQfdWB3dXto`A?0ZPpA3bOb&P^$95y#++y)2)kuZ? zJs1lg2H4P^4r@b#GF-fZywpwk8J(FGt?8Y;EsJCG8-soAE%u=0BrE06TFKzL#e z3~C{FO%C%VHql$(bGkc@D8C*8#G;5bbYk-#fge%hf43aW!xjGdZ75J{_^{MHP23UJT=k#+{*OpTMMrpnZ7q! zbE_*?u(Jv21`n;|vr%$=p!Mnb!53D>a07jAVeani!i&4JPi?H-KXT;$k)5Ykre2yT zyIK%)G|e&`W@`Yl zl~TQehCzgNgF(|{_MM9iACCx}jkYb@Lyu;}UMfz#R+4LGec+?DVa~^^eSFCuVOGFZ^s}|0Kkm;%6XHwu z2SEHHXLxVsrxP>Z9UcB^tLO9O)(V$KfsUmEDzt0}--VLm&dF*qRAo9l(MFokwGDCGgr0Kye&>OSvDQQ}z$ySU>o zE&Lw9f)olN{r%f+fXPE5|ImR%v}{0>>}Gj)F;->c3AE9pPe*Zb7-{TQsVp6^Vz-;&;o@2B$y| zJ>Hmue-S^xR$vpVC?B+nRMy2OYO;UzY#U_%G^qjn%?ecX02;u{tv`pr;1u*`Zw5oa z8$Id2>CLAB2$cXDu_ikW;C5vUTChtw0cX=q$CLc`Qmh1NA+sXUrOu=&)*6Ta%f@L> zsYq1HX#-3Hm_y{rWvHAAbjm`bs>oMeq>~jW-SfPi+k^e<{8glbwV1Va1|RP7OaQR^ zS;}#vXRv^a#*P=dry~GBN%fb!AMpRd1&BNV{NQ+``g35^-~b_PK^+soc!=Kw#Xa0O z5#=`%Y#0yL&RccUL7D}d7PB_sAR<{X_F1wAVDSbhkHy2xn4;oELcYA1 zMab%6i!1CrJ-8@2BrtA1XyqMKv#W^W^AM&EDkr{$C#X_FexwF~n>6K~uJFG#0D=Js z|H9WHF(59+HzZ7BK}mqs1hFj^rOu`bOAiVnoFFeM$KpzK3@lYIyE)YEV}?6Kpuk04@T?X z?X7rkw3Z`WLWim_3!(=g4Z}5>LjU0!5a; z(ECe+pRD(MzB=;hQajO-zn`TIjD3G(`nw|&-|UQjcVzsVo#Ag*TEAOu`F^G0+lA`S zCd=OIEBsAU<_k6Hr*q`rJSO9?9dx>iV|3SrnQ{E~tIN>IE2`n+fOA#YeOAVkSCGA8{*Nw4(bFGzY z1u4_%v7>1Tc2_6v{xkrymoR50`HMeJ&?6q7T>qu0cLoTou4pGBby6-DLIDRfBn7`n zSAGO2bRhm-o(meNBc_;%gg?#(mB2kI> zolF1@MOZfL1S-2gld99CWx$EbL|Ab9mC1B0O8;(6Dm#GPx(t2{Q#l#{%YZYT#qdN4 zg+JF+_^W4IQ=|qUDFEmJkbKC25j0R<=}6;CWM6OgaqCZdy(j%qV={zMegFrdM>SDT zRz=>cj(egy;aY)}2EYWcn-GAj8bn4CU3m8p0hTV4$9s5y9@^zTi87y(fPey{Z-G*Q z$Ww@c^@>8hveZZ-yt2js8B|@Ya>Ee9kpeFV(xCwe_cybEbeI5IjNWX65&gmr0s@la z;6*loMGHxkBeL2tig3h)(J+93u!AN!5@!g||DiyVVN|5tK?9u)A`eoJ=8HnlzZvop z;fv^jNkJM9Qj0vuaNn&6!;U=|OP{GIAsVhXC_m1C3ZS*cMMXnaGwG$ATKqpLU9WUTXTDs!kV#HtAo^G#@oNKMlCW3123 z9onT5xi1tqxz6el6s(KPin5pH4po&6X0Y~kdJKR?>4wXun<(Yr_?UwdfsGL~B6ufE zdqe`CMJW#LL70GgtD*nHjgy$8;)lUiJ-nEm8E9084oO!n$xVp$FBPA7uY#!3w4h9k zAHwx&`iIGrV1TGlIXZh;ZcKJ0u+`%(W(AP|wg^un#34Sev=cRaA%HTc$D8dTmwU>e zFR`qL>g#p79IdV>IAo=P6yM&LN78OIBx45m^g!8DL&bOdiXMzKJvTS_Xttl6uQyI? zytO@dZ?ffDe>v*k-7@5iH!{Vi}#ko(?WntpO^<-zv$GwWL~oZG*Dbnn4( z+0#9tSF%HoCHgH#h7tR7EF)GEaO!OI3;rwJL=hfU^@)0F3p?;UY#t z)O{DRzoi5V!kCL24Ilz>pR?ePwIn2+?Cn0^+rCwjv00psyUtX0YMxew9~_y$#5zh| zZvx>Vtw@k|yjl5zBZ<;a5%-Zp84#=iH!fR0LqHPdBN(61ADo>f1%TLHIW)s!f$ZiH z<7={;Eum`RnJA3{5+#&3e~6DF)z`N^B5XJ%em*aO2C$GBhWF=mdh}>=-%c*2+e%N9c1;*)=A0D>WkOspnVs{5SF9fd+O+?FR@{3V~bU-rok=Qsqz+58b| zJ)HyChjY3rnY9Fa1zLy*t*lO2tH2jJNlF_&iiQARx%w2X8o<1W#URNqDv<`l;$@7I#ln#o^a@HQ#nM zFZ@Wnc_GvY0iVgSNajWZ!2S~mC>{(^Dd&;&S0ZA#{tG8Koia~{A%vWny1}Gv5A>yH zlxjSL9L%V|*&jf^$tb7XcbI%A=)d+v`8Zq>T61pBAMEdS_QV6dvN1MU25QVMA zFx{Kx;(Q77x>lI>(QwsIGsTyx(=KHvjGGLRF3ynOsfIBMRfx=!H!E*__z6Ty$LWlj z=8)#p!kL=x+MK$j%JP>w3O=ul_$*!bb+PsB;+S)xW>(ov27R_d9q!{9=HYM9kNZ)in@EFt`nX8lB(E~VA92gCQOrH-uhE4_J=V zFU2M7r(3V&M_(+ldb1Kwpus6r#9JBjOZ_h%Fs>D?{$>FJ5oghc(bSY9SVI<$=lt~x4>NRIi?dU#pRZM^6k1#` zcSx4V0}*z)x<`5|(TCFjc;_$y+?biVKH3ii!~`&v7DEGQjS6Rf%f^@n0I44`kKiCU zxq$P~26)8q`DfpM`VFqP4xO+h5EJ#?5e-J&=SqQIUD^PPnZVgaQV-AoSU3rbI$|?G zlf2LeWe5chc899a7+wPLg@-eL2pW8dF4oH92b8F;PZ2yvkbof8p^ZHNHB$U)uR{skp8T7(r0476?^nd!DUG_87j!1Y z_gs3=cC;^m33u(TKx36oo=uze_DRDCNamBEko^Jyr5H5^kV+jMy{{ zW*u5EVIzU7GvcoRO})+=#GeKr769Y{m_@nA`X2~LOaNwOSAeSDMj$W^Km*`I5`c&T zMiJ&{01h#*mIi<(fCJYa3da~BFrmKFk-oTrG6YNnDWM6$2PLoaWqaq#uZ*rz(um$NKcO7{>a4{>wxb`5ho;0T~_CZ(F2 z5rJGGUUZ^JrUpFIS#-D14&OA}^YI2hvC@EC*lN_2%hgFTwN)+)R(hsrRD>mk zD*YkqfTduJY;yCpo8seqW25vDh4%a~9}NO}_PUg2OdZ(V>fJQV2icZ%o5IiN=@b`| zSCZSGtqa5#2zMYZ+QP__`YwdKqGa=@%yNydn-4vJ50BdUAPzhX>AX%hUWm7mpf2VQ zJW|w7t|BQ+2zJ~xOzT9pdV4Y5Q~l`yGyowoc>Exc7b%aK!TC|@1kJCN#LFZH1e@Fr z@mJdnLD@m6A+A~hh{>T{`#B;6#6O7`fG8h#!gXI6tGQYf#4@Ja>{M=1P1Ur$w737! zk)GFjQ_0nOgu_~U?t`JyrzTqNLHS?oeR*f@H@myPJ+brhvBf9Hn=f=0Uv4isS&~6~ z_8H;SSaGGN?&d`IoyEyJ%S(6H)}Gzl{q3bw_m53KGm>^cH|$J8;8JYpWLW50qV`N) z%(c9zYlX2lisSE;Cp}q{j;%kB_sWwlBw4SfhrL0rOLH-YHta_`M>S>|Izi|L2;*Px**zr-i_GZ>FKJH@Q~hn@4feqOh~-< zRv-it2!xP91_=ZRBq8Lz_on1ZrShgtwVR&qndu(iW6qpCdt=YJ+xPkMr_xUB##Vfh zkwSowD)W86_jw;v@x?&q%i-)7LzO7{XbIE-ACzK+;)6hnU=Z}XIkNTr#okTG4EXuJ zA)*c5Kl;s%_Mhw;{q^CAUmU~|c;c7)27Wf(|BF2%Uv2ODW~v7<^j}W2eb}GA+2p@c z>$pu`VrN=Y7u%AMePOjr8GnLrcC80tkjWD@uDAHl_YHuW z0MGzn7>5JXh||qM96Z6nnhLcZMgKonfBX^$WgW$xP=LS+&A~pDdjy_SYXBlJCb0o; z55^1h5|sOQiv;YGK>@;9s`aA!zg+^i#t=VwtSxb*Iefg6@I=8K0%Ztye=1JkZ37@% z-%U|ee^mBQ5d1rgX@C+2m*apHN}wUE0X9XxnXE$t_^2-c8tCW!;g33f59%E^DlNCF z%~vx9GyrM>K*5EICrdAEkSWms{B*jtAm2qVLmR+8fGmMI0Q%t)XsfO9F@4F^l-5jx8ZqkIP4#bZ@S#Tkjh z&XuV-ba?&iI4YOi8`i{JB8P*k@ru-d^~u5(8P+T=>>N=2Rcu|zoQTMLZn2nM^g{{5 z(45^~Z-^seSIpu;Q(BXIe@I?;;oyh~lx%Qf*6 zbqNGILTYql`=;Cbr*0kEcl*%cM~CM=UfliV%EYZL!E5E_V^-{e%v)X7`GEXX&~z+h zJejbqC++7l&Z|`(oGX>it6A5L8t=SYJ*lLx#jV%tLva3q`WJDJi2S`;7d#O)u7ypf zqxQ22&uYlF(;(fB+##iSNG<7+3EN4=wV)FISFAD^`C-gOj&7DsZ{U=IyS&RJKb3Ib zsEI!A2z@nD{ds@-)9&OqXaId_RR1rAvtRaCemhk2-PWdGY==ceE07}aL4P~j|IK*I zFL(9-7W>|PL%*CI!Vm!UFKi(YCI7QsgFoFp^0R&0zTLeAbf91C9Y*lvkEgr8nd ztO?csqv2Wv7oSZdg2Dh#T%e->TJeK{@|5NSr{yDm33e>VeBT~$_39+UCi!-^cAH(k zP~p1>^V)!caJ#Mi83%FJ!ut{Ys79$I47qPnk)gQID;1+aBg_YjCDeUjK~w{9viPw5 zK(;d`fG)3psizB40BQo*mkEvd9L+klS114t6m~$e{Cv1UpvvR^PQV`)7n3wWa`3Xu z?E^^oS1FMS1G}f(ASk*g(SKoM%w|&pU@{iumcV3boNE98e<<}YH33kra5k>cFBEs! zEKvDk>x=kROaL

r5s9_UA;@O{4&E*O6@KbW{9H10nXHtiLVpZIN386<4|v7u%z_ z{(}RG2>=TKKtNdkVgZ29#H@gIF-rfbrU2FkXa=bM$7)Npnr>^-F;*Sqfiv()-OYIfN@}Mb5O%LQ7=C;b95`kj0(BOdrUYG@%oX zF>C@(bfvH*M)e1U^kiEaapfieKPurEg|(FxE1FaZ#2 zpusSFf!?4K41`{HdtP^X(EuKS1(Y@4tRlJaXTqBGu*Y-XIEM&914YqC z=?4S^H&D<(0Rdq~#)}WwBD^B%WCFZrT7~RpE(0%3EP%yAW{@XS+EWqHsh|qL z@!^p8FqlqZ*M|+hCn3o}X-Sq@swpcFvr43F7P(EA769B((n|=gM+e;HUR8JO$VD(3FtrWtoHKlPA-$rcu!CwZ_12!xSC+}FF;IKVFA><)B)}f z0T)E@Ccacw3|n0YgMssGBxq7eF`@kD7rA&^x7cVGYSna12{|DpSU_k1bdom!(hhJZ z#K^Gnf$$W=^#Or1gn?JKK~a|Pk{Hv*>WPN!V65^t{F#6W=!p|kg{$>pu(m~Id2k-Z zsvHe~UP$){WoO!(AGXGCS7xH`J|)~@Zh56|9R zI`aDTnQzamz1cr>y~q71t(|s=5Jv^$zteX4y4QL%Vn=?%9tVNxFVu#w)CSI#TTVr_ zu)eun>sfD#4=89;HqmN@AQ{TV_x%$Lw`2xx{wGidd*waLQI+9 z7YyeJX`2m-9+eoP7EmWqQfo!h2C=l7!)X?9a3#XReOao{D-woGL{ow1NEIP#3W3@k?Z2INiE;z&?J@_y84Pyu(JRht97PbKbBK=_R zw(n+#f3j!m&t}K*k)Q4y`E*Oer(0^i*xLA_KZEB_x>A=aoFv@Btr#;4dvpS5ERteT zg-q6M)b8>kZo#n`VkoV0+J^8^@=L^;LJNu3c*3KYw{Z3u835>}jqFhs#FhMR9=jU; zz6JSE_3H}q++v|9zW`=`WC*~D6-$2PyaRt{3w%5=Nh>NWXtp_42m0>qnq2R!-5q!D zuL!ql<>uVU0%!o|o5|fD_C6r_pa-DtpK9=(YYE-xOB3)1)gL;5Hhi2I zMB{S^1k~b3Gr(7&ACQ$mi~nS!XSK$Dx;YG(e!UT6LHG>1a%&X7JlQ}*18|PR=RGE9;*QE|K;Z77sH9q zhrXW-Q2Idw9Z7sO9Q_OpqtErlVCq?` z;FTfxH$*D|{olu7d(ZF$>$Iv>gupPK#y?>j9%+vyKnV+Fp-(RKv#G7~gFQ#&8kK4!>o8I&`u# zd!;3Gy(x6FE^xilbumc_#A;ZHocGy`VY#Ea#i>;n(uMESKwU7>_=b`KX8wEP5Apzv zz&;cAbS|SzB^Pa}ts5}vx49ilHR)-Oy@pOp(3n9aXDJNb5$B-SP7Ky*#X*rE#1~uH zJWzKOY^j7MRde(KUBn@EyJdDWN2V;KsaXPm^~eI_S-GaaDPW~uci!{+Qcm#mo=<*$$S8MDP2MnSq_g#Qp0Q4~s0N5b`VTFhTWG0OE zP1VgBnp*GyO|~)5&F8>0MhE67qf}7vLuN5kTl~IZL&&z5_Z%@`Df+r0WNt7gito3?Q#G$o^I@Dw>md~gAkVy%L zA}Euw%|4g)&V|ieEXoPL9g(ZBHy_l>$1JKDw{b3PosU}Q!{*IK{-{L+;{P@?lC-&a z|Kgs6kW?_=z?mM>^J{p8<;=obF|S1-tzfg_^s*5AT^MCKe_yr{!(Y#-Pu{f;K?(J;9IX!W4pmV7zi6LxT(A#RzhlMZ)6lozTC@dliUIq)& zLJd~{zX!ZTv0jGP(7UTWUW$|%9AyrQ`QYucH<$E6X@;qf;}ZxAhz_18SZBq^iXp*v zBptrQz(q`jFe(!^*>xjP_&>YB^gmeX#~NU7$}^n`jEC)0F$d6pw1lIzKJ0HVbtNu$ zg)Vgl$s;@-S_0?+mpkKUn}at8D}n8tZ1CZxe+D9~dhh8*KQJQHbgI@vCyXcOkqpxm z!jtt{4+JZx>wWm-wR-Prt&4Ju$n^lS63B_dzQ6LfML-WFGePrPb}0q|LhT3Zzr%OD z&3mH3y;ko(-5fpJR(`xWxlkLzo*6q~3;~O+p~aR6{6WDJ#qRgp~n3KlJU|L%&~n)^~VAK2Sz~9f8js`fUy89pjZ7t;6IQ7Ljw$Pz{maG&o`C7 z=yJS7B5R}hPL1hGrTucH1*wp$0p*-aI&G6-NsBs;S`W4_)d1W~1{y$;3j!$8fQhR( z+(6L)kOY9;Z@rM&AZCCFgv~*VC`SNQ6Aw6mJml7ogh(-Slav8dPvY!`n0T;#j52tF z!WszX5Eu)ng>a4@%E9IUWFa_31N<43FgMAWsP*I}u9UzR8l@k05$GIS4V-DKXi6uY zHi~!KM3W}+y2mEqM3wt&Qy6vvSDQ%#xX}>2UhTP*v7buv5+EB=PuT;lTGoT}2i*vO4{#^o{%8Q8Jb~zq zK$slo8qg5ZiAzYt7}m=W!EM0)gXIz{D_!LfD`-m@;`cv*?K^gN`~tL}k|Oex(?{d( zTm6Ys_;}?cu@6&zB}1Z)>{Rp1j@`N5;#e(fa#i^$)hU-<|4zb!7Lm zh1t(f9!2&4yZ?|u1T{DqU+{c|`}a|gVa0Dj;`yRab2O;O56~akFTXu7_T%ZkZ+GFsi#V?kX>oWt;Z_u22y{?&l@*ukOb0tVZ%vJ#>uo!b2y|&=5c<`q zl}WiQDwY@#HV3o^(*wNCA)R5dY(fEv3x-V)IzjH5k4*sX_>?IS74b-s{i#FMcj|+b za+t~t(6DG~CUK~yqJRMbfe~ckOVVmdyVE$4@*yPs5K`1D{m=n`0)#}cZGiQXq$SK( zc_G#%j-IXIt344^fB1cp;FlJxd_nw=U=BcU0JgK<=*J^Ih_a5ZfZxK^p1R$WqTd+A zbKKd{49+$NEqB90mdm6YEW0d;|?(y*qQF zGl-Z;*v8@epKHTs-IH1@AqXC@jtXOG?!OI96U>HTfHv$J3 z5$uD0@Dbu)dXNVRREPNgpbfzD`AaN*H^ry}Xb99G>iYlXSUJSNNa%hu;QM@2=A&Ns ztFGw%2GhM-+vT+Bd_s3TC|h)k4miYs*P-5O6|?H3LR|Ub0D)HT=MpnGaKB&!7vnNP zrmiNM8Xml$+hmab@ct=8qE)0}V)O11wk}}(QrER>jE@`gx z!xc^i6HNgc05O5crN$F?AQ>B0ae#w}3QP|dApWpHfN0Z6gJQSS0NT&2Q8J^EZ`DdR z>Djxj0D_PT$(prDmIFFyoA0%U?zP3QwS;fBM8F8V)es;(pwf1}(t57adOoiD`Rt~j z9Nl!VIoK1k*kOwHeo533{A#lMYI|Li*`#LkI2($}HWs*5h6#Voh(iVK@!5p=ajpMG zg&RADm;e**Mt~<~U`KiHV{`z(g4+{D3Pkv-`C5z29x{e&0yS|{*spS0cq)`s4NE02 z6AIwMFSfXq!Io%iSYxxW>B5Zw;tM&2#XPKexr(SQ)0648a#eCB2%RND8jHRWR&jL5 z%3uO&;b_nR$Q2&z+!By93UK|0-zOJuErtk2a#4LOtPZ-RCZM{|GfU`*{o@cZ0S!B6 z2*C)_ink@+T9i5rAE&&d5j%qv8ngjy5i*V-QX%>8<>NhxIRjAyP_%K1*$J!j?nuRx zcGET+4;6coqw+H1&lLHbH}^jdrH!D#2>$cXYrx?o4~dwc*w)n|mKl?Ycd)|IWUtJ4a7_w!ZeoMCw+WzC%-* zr4_fpMG7I(S|Qdy_@54wkDVGAgmB>X22>COB3>kriQoxdDo_i8!qBCWU{8ap1U}3b zJ@0f(hyB)qN3jzg6}Srv3bxwSvrcm#$O|I+gwHZ>m0!ySPKS&;<;)2QbB{&2*HEF~9wnhsVF$GxUqu&A&bXCg|{wcWwIFzAZmL zF!uG#;Ag`%&%2WM8$wudpGmt`6P^PB$F$3OtU9<{;hhZ{@Ru4;(1+BxOELQ;r71om z%qYS_4(^TN()Zn*` zq0ulS63`#}DwJ|M-2rHbiG?j00!TH_p*_Ur;rojJ?#a7OK>0#brJwp;tP`MM$HC7= zI70BYDlXMCIj}qIbeo4F?wu8I#|)$N&%|svdr}@)|8I{vAp`>}6v;3k*pM4K@E?eK zbAF$o`k(=z#8W^Jh4SMOO#&am#{mtYxZ}zXga?O0d#E7*4FK1F;#iey0Qf=-0pzjK zhw6_{ps1oJ8vGR2k4GX3YazaJ0GEJ4p*Mi+PbL7ghgR&0W2c%45cGBj&_;v>ppdS0 zCf+pwC;-m1r!gO(`oo9EANh7$7NsBf56)Wx zXs-Hyy)AE z6M&CF$MxS{RtgpnehHdHLdZ!W6;cZMj0j1P%|ce22zLL1b~!nq08yq6R09C_AHzY9 zmZ*z~EC50ky<$Wo+iFlzG=IYXL1M51F<}_JNr23VNkSfB1eAMk<8$!Ktv1D^m_4l( zkTF8Z0}!+m=5ccF7PWZNrW!XWV8A)&Q$Y%UrN)1!A@r~iySh zTvw}|I4c?R>(SvY-cgC3F?)z@&UwPHtga!W8a=nM~eJlm|M zDT8j8UVhZAKIxL53FsDsHY6*VN{cJxiVBGW-io+NBd-zhEGnj01STlosNCHl;hNE<-++kxf4fG8gVATMRewWaqVZ8NEM*{%*p9A!XrcB8cyOqwUDUq~RM4&$ANI(-3 z)AER|G!Ozh&Tfa%*kN#8+&=TuL)*WcLCAabPEYFoP&Ig;h(@|L)&?Nxlex)f z2eyBD{4lQnU!Gchab(}qLo-))wBFjaX{EjL)KJ}WZ}r8Y%~v*0-aB~s%hP9HtxkP7 z9KIeF@6eQG#f3Exju13Puu06^BIUr@W|u{=-H4bucB`-iuR5$WJ0!U3vYPn_yyf8F zd0fcw^10xmm`aN3gfxr}5RiB9OFC7G0JGRuwh>83VE&{EHzsHWty<|}3++nMy6iWj zb95V&iy`OLO7F3#^mtH*G--hEc(Uk{!&MNEtA5S7m23v^ny;4Y&UC z7p?GEOrZLI+*AJPU=^xAQo}F-!0(eZ03biO>4Vuhza0$#v>%jvi~{)OFZPoj05fN- z0r1Lv-JgEc62_I~M8piC!&1z%({7w`*(P)nK%Kx#E9oDEOMVz-=fVESMSIUmD>W1q zn2QQ=jCpzHf&yo8iLIazkGSC5N{ih9eAsk9y)40DLn7dy7l&9ZusPuJ3palmvLVZm z>sf%UlA@T%#j!CWLAwId0N8mSAO(J3L({E^t#`K$o$GEI54pQs<`xfW03iV%=>o=F zC>W|a36-QXToM@wKNRa9Z2&J<+&1t>VB1WgJ=B$-qI=?|k0k_E@u{pB$_?V}i158R zDA5fR6lqK8n3&sby3HZmuC#Aog_n?j5;g!qvy}l|zw7pr{$WU#*_+@6*I z4p9JL(@QA-7zN^}^#FWO%JGDpwg?u#=mZ!DD4-u@9gh_LLoWEuVSF+Gr9fK0sy{jh z9x*f!UQlx|_xa?Pc>WgpZwcadzt$2Ue4a+)DMTX1a#o`x9lkAbv@VFNJ^21$e7>C+ z@cFGl7)yZv19;~sIT2KO0vW+LC|CV){RamW3Sqv<}$||KOKv);!UDqLIH;Xwq*Z{xV0ibYG@iP4e zS+82uDd!DpB*Pl%fJ`tb+ z0HSZu1Fl!QuKHEatKGkwjQxCz>v!8jzu6Z0aZmc!;G|DC-0CD*B9~Ln2MN!uYDReoga`S|PK|1hQZg#zLvCXrB3n9EUJ$#3r_4b*3WKjM6M04Eu+ASal?RNmq$ON# z4I<$k6i>5IuNN9@JRA6+R;kG(u_o=6A$`apk;#gGM5;Upodn5Y%2`4!TW;d&YCW|W zoT1d$i{K{#fCzsg&&bgxj8X71Dbh3)G(dRpTR0dIgoP|P0$C-turVGrC+#vDz#o3$ z22e=RA*dbz+#kRZAzv34z)%Q&pJ)TXg{a6EcuoKU7UVv#hsEQjP<(gW=9he*<;?JbS>CVL-EcfH)Z z?W4IJpRXQzv2Xy@|IM-aXY;$C9DtjD|LgtRFOPOz+BvYgsrlN}j{Ex$zB#t|i<1YR zce+nUxjkyI3?$7;QM0@hib8lsK{e7Mq!E6BoC_}Fpi3gu!Gr@qqjP9csr@3WGR;fFG1JqBj=)khaOe?k*PqMmnI z^&L9p_OR=0HhMkdJQ0!NrhgO(LO#{`xEaq^T(aX{CC-(U{c_TFwcK&1%KM-$__#6j zq9yjaBlWx`_`EGjK|r4jU=Lgm$A}+qYy0`0Avi(<`5`#Z>eJ(@WA|sUl>wIL}m4 z2nm~xjjKSR7G}%1J|jZCpwLiK2CHXHK@lGD*N3OSnNG7X=Xd#(pY1UDg=3z6L~ z_&=xG!#JyL$OZ_*6BL>N-2Krlh!;>xj4JnN206`e0tcf2x&ncKQ1tQm8KPh|r?3*h zBOoA@{JH9Y5<>ZNfKY&t3JH%{hyZ~5w@J92IWaIA0CoWI^XbS@ zeNfF&%5ey?FJX4e`FQtID}jCqW5OWbtm0rLFrwyyDKw(vbxaK)e(Z0l1^{RtWgXQY{y(scM#Liz=A&$> zP3a1nQ)oh3t_rCy1YCl~62@DIY@`#K2i~O+k&(B3?t(@|a#Q<&oKzTDl0;diUMjpA(#l$D=JDZccwVn!YvE_;hmk z(_Q_a9NrE4wy)NXespyH`H_P!mkuDt>;9gtmq%K!jdWd`8d~4ddvVLq&3)6Ko;eJ2 z(5Fq>;~sGnk7Z?Z;!;VcgwrXY)krw~QX!PC$R9<(GK5ZH4uVbSQ0+R(O6;Y@*5X1- zQ2`E~ynRmFU@k4d&D08W%90XO8N}YD#-d_)Pm)r|<>*;u+M;~$AfatEGD^Dn^i}}_ zG`77C)0OJz`K0|!*mODJIvX{d!EQOCzmPDW3TcmdJm?F7EjC()7>gwtlm-@5{-KPsf^{^;cf4b|bLpfKLxLM3!BKw_%uGig%)gQD$K= zam*msv!SlylYq}sCU!`0?!+SuJ}n#$yu|SYpQFw%ROJ;wt_2is-sDPM6Y6FRYRtP@m-iF5GU2T{E;MBCcJOT)) zQlqHRYT^Hf9zbbUJDG8weK-zII>)xGqj|Gj;03WCf zE!GnQH2^FG|7k;+4kC9NL<2lhC7UvSINj()3^i#0Q2ge~I%WTfn>z*lQ*D5HLLovV z{SoyY^*V^6d_Q zY6F-C&;am+G=rfySU}(cK@|)X2qFLo!GHo`8u+*$`2n6c{pC;FotOabH`;F3*iik? z$JA%SinTDD^d&oteAu_auMKd2g2TiFfE_>pk6d`Ckj*fbz#s_Wb=j1HLMBsfKjwrW+_8*i~{#(e&fKzK_uJXN0Fm2NyyA30v@ zK2~WxmT{~^^cQO^*XwLZL%mk*y;|$LQt!Wlg-@O5a*dN}02i_zm;hg>^Q@+waFy7k zrVS{>qh{qtHSuqo8}78$kNT~!&(;0;pK~^D#O>ZF79r1_%_u=^IyjW@_!Q7tG%%Ox zJWVlIm5-PUIDFdNe49t)Hi(>6k?z`1GaNMG+bsSdpBO@jj23mkBewYzRs~I@0FGBnv-$H%t* z`1HX~b~jw_@!lCsKi%5)WNYL7%~cOZ>tF8Zf4O7Rs{=D1FYNzz{Wz-sher;=!T;%@ z>HB*|uTO5eINo!6&$e?ThYE$VA&=Z#7dB6hVrf@SZelnsE- z#iSLO4~Br#Vg0F)?rhkA25>XuMgzE=aiIY`sSiG`3qTQu>;H@P7+64`57pq1r1)I} zFcXEQ_xDF<{^r>K%Fy63a;)+asbixqY-_b0T7 zCgo-M3`b$UrL4q6LxDy#8&Xq>5ag@DT$n5Oxb=g913@q1dGU8qA-|JWii!_Ue>?#$ z1gV#*C{Ir>feoCYv;HMi4+mVl)6b z2P${=uExfr?alWlMou7h~cwE?L0k6kEiL^*9vOMg%G=7?0{=gvpd)afQ4*+)hXY4UO4s zw!!aVE*m&f9Xyb-%_c2q0Q<83>6B|a;aaFmpfM1&R5O8eaM?%L%jJ%8$idJ6&LhR8 z(VtrbkOpuKuzq6@6`Wk;b7=mFWr69hq7H_WJGM{0aab;0HO5J*AT3=;_G!wxUC20$Aij{n5z0psV} z34mGx69vE!nFH|TRbTW~zYkKzXWgFXUGe)(_Ul#V+tv0fY5ln8Et|6EJKm*Ni7!_P5ycJt8rz`lNfnr&Q1ppcVoZv7$0J_DU9U`wW zlXObOnox03&4)GO4lxs!aM)iB$coVwKn)s{&T3_zH_bQqu5O-Oo8EJy!@JMLoA(LNXEm3zYIxh-skL6O zR9wn9!2P&bLu&o`TKA<~1Gru7zSU&CR_9w!8!xm}BH$t;WmcL^ofVN`e_&^#d@K>$ z5(*D$Y!R9eNJx%!k5KhOA-#;xTpfH1JI(hS9H%gj`h_ ze`lq)&Mwp$X>90U@J+adLY>U(m0ANT8@NDbkp-LH3Qx6)CIkV4Qw+@)n^(jT6p&q+ zPboJ5O>|2yUY;Io8QgzFm(9Rlvq z3`X7tPEj5>Kf;Yg>WxJ`KHJS*o4-g(R_y$}Hp6ttzq`Hv+x7MDb~iomjo)aCJn4_W z-q!qlYUuJn?Ze5M=es)YZXbC)xA*gvBVV67{`%=!q#Sn&sigG@$iCNIV{2*OcSY5(_(pA6l1F#isbgrs^ zXhf}Ip`M3W!D3Zep|Z39k9dxQ;*RGiUOG?)3(HI;3}W#_FVr*hwZ%WOv7mR&*RV^; z5KvYM(H}aW8G^gwVm)7=FDZ=CKG?2fEOB&U0mIR2$O7`iQc!U!YFG!sG-g~2 zX;1ppxc=X*^54#S?pAtG`Y{1Ks_|h0c+}v3Sns1CAnbuL0sMCF5XlnQHT>I!Ni+b2 zJ0j`j56ioMb71l}C-(hparzfWrhYy@{^?}r-S+s|lzG`J+o@#_%jj8pJ}j3}TTxiy z`vfr13V|X1rnsIn(C~`&v;rIpyHs10XDBT+mKEt~Mfe15X#q_7^o(L3mtkj=p!2Cp zU~iR==q|uPa6N(72z($=kwLP=wH=0?5NZMaBM3g00rXNnqZt2&LB0T=FXxuR;d#2b zak0JW#oisq8!8v7GwoVstwNrX2xDTQkHbQ{^@xO!Ly|x-^cXJ0z#Kh|1;?IT0u0^2 zrfFHFlnj_E`V`@ZqW4hE007au=wNCHFwnWM{)fnsFf8bF^gJJj+vf>@@p-7i5C3O0 zfc;79Y}&pv>DU&rOh)ZT>J!J?GAEjejWb9-gy7#6MD;)462H)zI0uL41|MbofJaOK zXHW-fJp=`60SnW2yvYYce+vIW^}pO*4hRToMOXunlLK~u@L*g(BLO4mEib46EyRb8 zvR>~7+Xt6@tb8x`CJ3bmxBe#ov04X;K7spj{YS1OvSK>HQxC4R1|j>xjefl`d9psf z(upfSuJ*x|YVWaH(g45&Jy`3TuXdpaU=9HKj|PD1kAuzd51#f!Uk_*C@d=lIg#9AI z@XHYd8-e;6fc4uKBUlMwJpeTTHUVKgA=m$If&#tji9Bsb1MrhnfO-qzfW|b}E3E4Q zU#@lCZ1P^Mu|DXmf7(*@q&@wp zHFY`W-L6wrDCB;nCc>9zwZ=}5r_E}O3k4XNjSN^A67D?VP15ObOGcRn8HPs_J53?C z-ks2g!U`vB^sUB_RTKAF6WLU{IZ*CZ*ge{SNodqFrLgF+h)folH?EKwVYbFHSybWL zR9}rRV`uS2g&Y{~pm0-upOAVX)EA6w&_JbyOfZNHT!W~LPtVK8p4p+ZN9`5J=OO-! zY>tX60Xat`5Q-SY;axx{{0&}75t0Tt8|g7?qPJ?K+S6I*X{z#6I;92y;Gm5K*j|9G z0c0P0KT&=j?qy^uhY2=`ekAf>3;Z2vCEOC8f-NfB_#*>fd42Q9mtDFAn{2C+9Tf>? z+WH>N9{S7G$#1s@9`;49cc&k3seL$-xjPhpGFJU)YxBd2{uleEpDgTqeRS@Vv+J*q zE#8{h`DkwX(M->S9b>l^_TC=rx;?Y!;^Okt!@X~MZ6{ocL6tfTXrin%Tvk@W}(-?+QfpTNMGXIBe z0aK5t6Q&pr83wih5Q-KNX7DIRo)m*@iP0W3Sb=UV0u|DMe3JZ);IzQ-YP-k0jIf|e zAAF%t`c#)9dc=aB@hMNZ0H_f>lY zzCbu1_f=pIjF@=XKm5gk5t9A8JO%py@7892ePZ8ttFymaUHI|x{+})H{P}GE>yFU5 zpnSVQP%q_q1blTte(rD0!UZ3a4hX5BP(j|7nlEH++=v8rBMtUyilo&Rln{hRQ}Di_ z;LjBxeHE2~42JMH-1kXqhXEA4nhOiD3^10IS<4u9c=WSi--a+=V&MsrC0X7Um*7gl z{^5IIe2Jm^D=x<8V}!yZmIU}m+tJiDU6Z}HWBb|m8qgMd%tjB35td70DmfMaaOT0m zzo)XW6j{M`7|AiYc<+#q$Q(ly3kLkNQx*SRB0SX($bs_;hT6gcbR#NQ7=KfQlxd1+ zvLYH7XnYzS0!F}GV50Xqtg}fg;!u`qLMyegy-_J*sRmX)L3jm71gAFjsH>u!VY1sP0EC?7q(qPUtMlZH`uOY$(1s%YBy$9zUNSryf zaPA{M-1pHiPS&{3H3f0-OHhN(HpOvBkLgIjZ|*!upDo_iIy<@rmI`PaK$fV*0QLds z2RZIPyia1Q^?_xG1F-mQjVys#MEOHBhR-x7PB%gG6+PCJT5OD;s1F~lf`Tk^xWa{f z0QSQqFtRE1gAaRS9}lHJ8A-zq2)BEx0f6j}ijU`?A^-sXKULE0L9P% z&;}3)jOl@D0N1MRpn=|~v_UR=0IG4D455rIa!~$x6$02n3nDzWpToexlNgMkISeQO zpqPgbXtj`qDi8KWmxSLUWkTKs0dTLBgNzqq2B+ZmfZ>xPcLK+!=*b}XqZ5p%goyI! zQL;(fPzpdEg+)ZCpcGpHSVO}W6w&aQ2Jkp)koU?(BL;n|#5?G1I?z?O)RMu7_w7>a zpRP~+X*u{|g=y8sJ|0z`%32_rzn*nmOc}0LSOSF3C{>%G_NJ(p_SSL=N@n?tvo z!&llPOVyr(Dc>%)bF)gvB}IU@Ub`*dQC#3v@(g@Y|o~iZ*RSs zRDgX8)%Uh&;`-jhKRvbd&90`Wn^Tt?Z1=Y`JQ%Km1nlAF^rLNc_b1vO?cDro-_AFy z%ge!Jx`=%f5ow>ea`tknZhdcW&9+C3A1bPSBQQ*f|SP@66Lsl=(p>Ke|>W9*K13^KDPh61H+$>R9;K# zX7r4Dc8PVvMjMNX1^`G03Uft%0jej0R^ZHRC_xa4*eRC_-}^HJt+c1=2P#g)R*8nhQP|P3lV*5`D0Ma1<%^{rzZY6M(gX%ChC6MUHB4`Cj1}Zcz zFfWN{R9TgL)bEA!Gp_&ex;R=B-k)$G3k>3~9SIj4fsQtW5wt>G|KaH9!X>P9^OF%z?B~j z0Owr;z?0Jr;nN5Rs|PXEf1=KFyxxOCzt)IHEER}#1ZDn1T!R|19su(P2#+5n2+lw7 zkp`n52kT!lE+AmC#_^EC*dW96j!568Y7sen-^8o-OL5CVZQ1mN*rgO!>9;4+8_ z;IK^yfeENP9ZGJsNEBx>ePtzHdTEfy3JW+qMeZ~=lH5DuEbCLL14n4>mzpI!<-eUL}N zJ_5fRJ7hErgh!%VbVF7q6;?9oJx0S!YxhTM2k-6fIn^Eb@?hKladqPVTx16B`?y@6oJe@L$6foPP<2Vd z>>{`U<5DRSa-ihGjWR9}x2cQ`GL4(dC%IQ25N9+bv$INA+%iJ(1jDk{nW{7d>g8?^ zM{W};G^G-s$N|@&I%_DwQy~YKw~+x{D4-9zq!t5HX%$&L+K_`KQL#;SU3p!3e|uG5 zl_%^H3CLxfENM#txFho&E^khm%E%Ey8b-|EifC4$7Qm5?O*}sNbXj}jHaImxyN@>p z8UQ2$tkP0oJ9ygw2qOD{GTh(Ga8E?O4f;pK6ljk2rfii7d#X0nnDy1W)B!n?%E0{j z0EK{L{F0CjvQ!}IFgRhr4v)K$CT6k0EXu0Qfc5XRX^^}IucwqqJm1vyvs3F|&h@_; z&tB`UxZRg{I@Wx5bItX^^xZAh&n7z_Z|k``IsEv*?q^H;pRO#wTv&Xuy!hbI)RVcL z7p8Y#-#z)^j)^me=U%Q)ecWMKGxA#aeEcuKstMkLV6sP;CFlX5tN_gibp)AH0Feof zTw07afChj$0M!kn06<~fg|YU89WnYJZo2@-pgx5ShK0}4mTd?q#a5wsq@m~W`jw|A z&Rm$BS{&Ha8;mCuTI}|fc^k1j(9sLPE+@@^UIKK8U$#+Qx-rEp-mZ}zi&!pHc+bR5 z=cC4BPBE_kYhD%P0w=sOOaND6Moa*=AP6Y8VFG{=>4O^QgE}vXXX#A5>`Fl)j8!mU zg3b*8#oYG4S(*L)+T8C?E&Tq>^52|Y{@tk~zdA9GweV*{nVT8yej5xYiv75P{3su+ zO8f=U0Ps_xpTW%u^hcPfIhhilT;G=|_wwnAjT?rlJ65(%FSfUgCKG)QQ=^g(k}DWN z@Qgy+1G^u$dz5$}GqC>0Fo7~nvfxRkTVW3U19S#hhVXDuaG@(CvA}R1q>+#o8u*hNyVBndVd{{}5oDFPOUr5vhL}u_Z8Pv0uspRa4qnfGffQ>4 zY?VR!1gZl*DEd!W%jMQNZCx(w zbTWztfKs?rrxb@So!~LHtz58{*jX zLg;X)+KU)SRD3MAG2*PXB#u=1@GtO#kNRVu!XJDD^*sqAXsYg0;14eT)CBO=XbOkw z4fsrK3n;zVlUDE3Hs9kG&%Jv4jXD>!VAnDhOaOiMCJj3`I8T7&LxS4#vGQfx zB?_!wu?J?9zK=i{!N#(HOz%^u`T3=CzOK1`G@>@5E#dP4^`J&0u?vn4=vBnthX%jT zVi1SG{7C-za5-M9p=Z(s&ZoW1sHKz^!3R5y`uF}#32)sl#J#Jf6!VEZtXaFQO zpoorqVEh=XEj6DGcve06Fw?Kp8%C0un=||W`sD7%1HOC1)#qE1H;1xUH`hKKYq~Q~ zb#JKl$?n0MI|eU}4L;qs``Pl*H^+|LKfLGO?9{E9UAGSIzp;1Q?fJz=a|=)RcHir? z9dYt%8HJ%T23*I%DsJI1>)G@wCIg8>@YZ(G7`U+l!+|9LXe79sqb8yOfCfVxD9ehm z1qI2(4)htyI9zzk06^2t5}}79bka&gY+AF$ysfJF*y!G`PTl_U=()#-=I`yBJGEuv z*yi!A71drI$54`|$on(2Of)}H-g{b3sf>k}!G-`MAO40@YA!-XLHu9ys}37DD-IGd zwCdHa2Q?St=1URdjf4&7YTR=k##N|hJ!Q&B9U@mN??6> z!x3g@0hZOo<^P@Tmtq9H&3-|fM>_oX;|TR>B>J(4h?5~+K~uplq1tTdwi~At!NXZM zc=Ri^p@nkKp>pqB#s}{IY*lc%mRRWE`hT%I1s{K)Kp_6-{GZA7pQ`%+g5U)AmciK^ zM*}$7NVq-3@TWdgk9C%vrSRtLFP8Vk+lZ= zB(b$7@I+ID>RLz6LVXZz;7E-h4FJs#=LaDB6T;63Vf*9`sqz%~gQAZf@a`k%3YY^3 zC6t^v_(IP*0%!nFTK#uw?UyPofPgM0^e6p_d7BWrM^NuUBSHM445SKyduH^6!W^Ik~%J@P9nHBGxg7xcl^`h)aPTB z&&Qj7yHfwB)6RdJc0WjPmV&VP)WQAgRMHH;2YB1v&8Y9DME7!`HxKLVPa6aG>!T|n z*RV>_B9Fus8ZqL^1(pBRT@(#7&VafqMCE)rR*{$ z?9mdQ>|p)otTo|fD{X~Bd>C!A3X8x2r8WU*IR=3kh9~f5VA4Mz*Ri}36GLd` z3h-MZx;zhcJ35*L^B#@|HW+}|2l`Nv7gzFA?r-06eR}-C z(&5)@C(ryAJkooS#Bon zH&S*qfSXmGTb1^^)h;Xp&;U^VU-xCd9BKS+vI~y?zg?RBhqK52?!x*XF0TK>rS-o% zzX~AecXPd;4W?F{SaFp?TnWn!T^Z9wXXD0=9)No~MjSLbR8qj=cmy!$`QR3$6rcPkWUr>=mDU0Ax5zbQ&cHB3R)>( z_goJk6aZ=;3-k{@5P*O%cYbVo@saiz6ga&}>k8`WacCE&7F=Ijl0M>aJ z6M#_+_sw=btyQ7Q3ItImBWD}J0{8d)1O=8M|G< z16`+2ikmx$_JxH*kAg9xhq9N%!4odOo}>i#s(5Gy#0%OahjMt(sDi&a83NS6i&z7C zQ3J08jig5@Z58pF`0Q$C@tv`Of4gw(Hw&}Zdopkx_}7)De;BoYR$(~hFzt6sk9d_Q zLx!_avNBj#oy9n<))r0qcVg&;SHQ8&S;(x2Fj2s}dyxIgapkA;zM_4w_!TFZo}cA_W%C zfSX_eL^6kIEF{Hqk&=c+QnUef@XL+WPy3wfUT&XIP_7Vl#S_TF^olO4U!CI{|s>%Tg_>BgR^$IA<^Ppo~kJp0j!)h7oJBh~Bv{LYsP zJD272*(2KxaMAjfG0xtE4odT~B zds+{Jm6XZ@0wLA_l8qmD1tN095*;YHsB|>az`$1v$FQ_^6G`r(Y@8_UaJ<`u_TjO$K@T4Mb2fCJJqr-7OhhNwYdV5 z<(xyd-^iO$&<wHNWP^|xJ>zlKDc)J0n!`Gw$|D$u7L_%(+vH|eAMREpmfH8<;2Obg&o6Wk- zUi0Ca*nHMGU*S5EaUDw9=TmO%feB7hhwyZ4N<$>c9XLLylawqgSN$pJFQxm%KtTQS zOf%>`0W^SI(n|=&%g3AC0AaxYA^vVT0w|uJsPo|vZfFkhp(X(Ae&0<1IsT7#t=5eN z08tMh*uB=XROv#|$EKHLywnGQ@Sp)4tM%hK$&ak_ZR(XWQ%U!mORz#mZlaVX9Y zh5J*Dfm#bwza+%a{s^xB50Hz}>_;BJ#R~J;r0z^uwdRrGrh}I_JQ#q$q!}#O->0Ai zW-*{64=`wu5ysi9DtcKxpMy03uK(BrH!65Af<^-X&I5>_`1vS!y%H9w_y!5$Q$Xa0 zu@4+~K?EW`ZfF2l4#VUNI1kd~MNE8ok4{GNgq6Goej)k<_5t`Hg61(&Kn~L{p&|C~ z?@uj$voL^c&z~+d{o%;Ki{`d-;BM-)(=NrFSGN){uSIRpPhP09U#&9V%<3=H*sj&u z?$$Wa0Kn|tYLpYzs8qJuD?XKQKFUN6+cnjqQip&B*$ZyjlEU|acmhT*WiU&b9GE)D zm;!bo4P+ai)>>f?dWBl}hU(~C;?GPcu_`LAJgSdGL zW#XH>+Cd5 z9VAo@kL3Kp7F5B6qPLh`^d7HtgP1`mB9tnJgs*Z05G5G7GC56vP6JuyNXYZ3H*+~9 zpEi-;+}>pMwS#;A>gMsE?5=sWrTl7V;^XO#52rdlok7rJKhnM)?A-Kl*Ven!6A$8=;W{`|mgTFM#jtPS!vFyP^hrcPR5)r@3Fw2k{-fesi%ODwaf{Jft=8F5H8y;J zEoDrmtTdYaA_=ayC~XAw#uk@HuhU8qh^PYdHNPzEjC^$I_GjzoU#_fva^e)K|EDV_ zzdE+|$>GDd#)g+`Gwra~FDVEXz7L7w`IP^(&pL*+7Q1Y-f<5a{0bo4jknGj5;X}8_ zC_EanpaHD;)#pM6G=R%d^Ob}RLIGHWq5<5k^*(M6KkG<+)LZ%aaQ(Lv9cTbQ+rRm* zj_v#VOUM6kW&QWpPW{7;wcnpR^y}sE$Mu%|HXhy}FxMh}i(tNEdMnHaOUKG(+xc8r zs*&L)A94+Xr>l$ekmXyYR6_9VWO9(_yf`#|ZFuNnSL=o5)KX9bKg4DU1MgGN{GlGe z0D(iYx^mT@I`~&2vqfnU8US`Dxz#H$z+#fhn_q+mAZ25CE%gb-fPet*Q@ezoX#Dh8 z?@CA8{h2+78?%S2Dna3cLf%0uOUe~#odFXAtZ*HCF}#{Rd@;7xMB&9`Ld8OS{|iA{ zB}?FUd*F9N0C`ech&HcbfrCII$DL>Z{hY2VS83GW-f-Lx4#iuAhlqwi=0Ks;ez`yjbHzWu; z4^X}#y4vIdE{`IPijN)u?mz1O@menq@dwS__un-D${CdG0CG!UvIi#qaYPB6JHYV~ zFB3%rphf{a5(yYSm@D^S`=A-%kWjGt0Q$jVOLV?2KzvMVf+v6o)dpZ10qQ3d5A#|7 zk-9K6&vVs&gu)-H31B8b1Az7<1e51?4FF_+Gys%)pg?E?ctT-8c#cCYgwX)713(Pq z-8#p^M(_0s^Mx!S%$yE^TcJsi>uMUbMMY1ZRB_dNmJPf3p z)VQ+J7M*fu)Q=(6l2?dPX`+ApCwHHHb?odX>!-dtcmC^B=f7B8|H-lSUz|ApX78?> z1D!j4mMS^h!QS95{QvBA%PwX-J8jAqHDqWd2%SIVQXO*24_JkBHtD2-eaNK+OuFol zoDUl>gbX;Blgx#{bp_E+XI8wGp21icD)<~9$J`1tB?wT)WIAd)gLzfA(g@@5uAa!1?Qj)rsfu_HeDq>j-fEQNXiL}5F%KLCP+l`@TVNBqm+ z|1~flY68I3o?4qzw#I*NRksJgf!SpQS^eVasL6bgxLZC*aq8x-b4Ax`g9VC0Wx zBGRr5w-z;rGz^jvUxF|hk^qAsFnlYYKvZMUZHotHl0F!{;o>}3Ze6bMET-LuQ;wOC z5g$BIO|ITl)(Vxk^?wm>8hjK7l-dDME)KY`qX7Wh0Rf+~aR$w1rO}D&IZ*p!b)fNp zyGb%2ah=B@L149>cMSj%Vl)5>6gtxw!!qnrdx}`X5l0{oprn({9=Q4Ez#No*Kt0Lt zaiQqtwiGy{>u?0B^%E4Ri-ZFou5zw+mmjL}?TQ+K?<2|>>M(#>5P!{;dl8s%v_1}z zGwhEJ*GKneeFy8pKS12$%ia)jAHPH%z;N=bu?ld+GcuVq=k;KPP zfk6v~j}L~P_xSKtk2*XL+B^^2{1+_-B zA@>OL`Efo!Mx!-I#I1T2;^=C*46x-u_`%8-fPN#duu%wLM>?PuL&S*c4?Qptp+U16 znqK1RuV4c6L2-xMGmIiY65TB3Adv&=-!=uKNzLvwh&JgZTht-u!6q_6J$%cNx~-52^pZ7wZ4|^3-oGU%9*M(5Z%s^@`A1RdPM!I}_K# z_47p9b|opkTCG2uwq35PTu3J2^VP3qUTgAvT@(JeK6NzcZc)ipxLI#_Kdn+Usnu{E z$K_Xq;FdzRjHk7#T<~Rc%A8dyub(H!%NlhS$iBEt!Y}3ktFd#$R-OcijaDeuOJzB? z23V`ppkBcf6<@00n{4W2Rj@s%@<14=;_5YQwcS|WRJAFpG9ow$;{~7_s_x_RjsqzG z4hlUWAb4})PXsuFfdH;P*zv;h6N0a(zpEkDujgt-?-hak4gdu2D=d)lM}q((%rC}4 zdJJX=K^~UFL}f#b)x=RNC-}k}3^M_(xIoF{058UUP+XJ;`~)jID@S1D>)Xu!2lbh& zDPNa8TxE;zscn2TJOAtXv1glW@AM=e4p!dkskqi&d9$@R^O@kLE#xC#OadU3h z(<8Is{=@k5`O$^P3rFtEP2D-NmriouskTEUs^3p1-&NiB~9dARt0a@>L~Pwq7)&mFz|-SaQLymsf?W2gS|(v@GFJ@xI{ z@-Hr&`0m`wi$gnaO$}eHEg#aVk_?W&s04}d%VFDE(7anpZ|CubB%)nLHT*%hX?aLK z*l*PzG8vX!niY=@VOysnCX{|eOSLrjA=!$cxc- zPN9cOQgaEKge^j00oEr#d&p(KjJSY6IZTK^WZ@6e7lB+zQ7$Qy7m{E|XdbnUl7vhe z<_obgCa)YCEg^TE-#m1pwc+99)VaZiqxDHRRNI(kdIm41u_wf;07qb=3y{?n;Iq)W z&|}a!fZfST3e?Op9iIhq0s0C|p^bb#iGO+513(f*Pz;>oa&a*vo1Vdd@&*kFV+1w_ zRt9`QWL-}CbSebT9~49^e&;jZ{c-z&lygT=yDMRa7>D_z7f zG8{pKfp%! zWse_AU>rQhBOrb}c{Lb**8@=fKLZPBtQ_atZJBSjrgM7W@Y8Pp!*(wkz?H1&dZX=f zmEl54v*H$l1+>d7LH%tPv+KkhG=Lz3B*F(c9BAL8-je1Zif#(kM7FntUIf7=bh39l7aDCrhxmbK6Hpj&FAaYVsIUBL0(@a$O%iL3kN>cpdp#HEVzA(PQoLWj}> zWtX!t572=S?0BTCl+fvUG%;No)caHBXi6Ul3XA~#MH?|3KuASL*bCZ#Q6%+Cby%We zON^j)gH);JBM6?YX7Hdn!opS~RBFVwpsltc-WyQ5H6?U8OXpU3V}aJ%ia{G!jH?aS z444>D*@4~T#{j%QL%+ZyuJAad4HTB5`UBfR1;?L@-$H{St7$gJris@jS_2vfh|-{T z5CtagO>`z20PH*g<>L`s1auC3E#?3!f|Y6jMDCkw03Zt?c9^Jw!3U)klV~uK!oh^% z#$dEHd2ATVD)}%y75Fv&osIqX$Ht!YHJ+)B9?imrH#m}XcP0G;jWxra?H4u;U)!TAB=Pebb&nSutg=)ZqTyA9~bZYy=&GBvPU2Qj->rPk34h2mkI&L*LFTp7S zrxq9yd?1YAN?`$z4<-*`1Od#!EeHG}A_XWbq8b2sVc>3#;H`XwzJZCb5t?c=fB=UF zJsm)Kd?diro$Tv6(cXA($JD8Tri0n=R);YlNeK8x89cE5*l7q0N`OWD8*1w9500Ju4-HY)h3W@Nz=Y9_oN*6YG(0B5_1 zB?Flcn!weGK^2T10HaN?iBM-j8-;fe0$V`W0fir(01W^W0DcKp5AOA3B>=J}{CS!} z;P0bhkm{cs3y8KWw=kgUJ`U9n2prTB1H%U>KMuejh`+G%1r~(C0@Z)H%6SwL-<(!} zS{v-I_5cMs(hvg8A7uZP`tV}bhiPE0ItV!!b^v?R&e@FXK!s<2#*IgK0R><61}GK~ zfE}v(6Fw*^{+1*R;HZ@Vp5T`_uls{QgkTHtq9^#c&3y|Jo)$08*$Um61TxbVC%lqX zpAsn(LkbQud%@{UvC9BZB0m~E0EM`m&8!jRg5ZUmcDZOkBg6F{8D6B;%NT_IujIkq zbE}RA1K!Ol7V!eYCO{2c7&*vkf-xLKUO@Tr@jj)ZTO;bw@!NHR9-X3BuWr-w>l8&; z72tOvMXpuxtR)}7(nMcOv(R`Kd!m1L@$l)^7H^4ATEM3L&;L{KgCFi!s(;@d`R`|T z|Lxs{XGfYJZ1r9p46S!Y)~ZccngVy)%P&-h4?DGUHsxNcrjE@7j@%@Z23c(A9yMGE zdjpM^&rJEFrLf9jlt@?vOJV2JO#)rU8qMf@ajDfQ)PtUnN{v0Oj44*KRc4{qAyt~# zVm(U;rjVS$HOW*au>xuAKz=lI9yYgfjzlf8mIvCKQv;X)OiZqzP!-fi>#}1#?Yn@n zfY}ZHkC+B82XgmEiN_p3F8gJeGk`B)Y$v50WgQ9c_ynRCgDwVWfrJpfb9sA|d&Ij2pk*_2w7()Ytpxo8r~>^*@6n3# zI(*jsQB$j0W@XE)B3V2X+cC81SW9p;>D!WU?`=#T>uWr{spH1P=&QMdpUp2n-oO2$ zr9-b)mR~I`e6o7v)$+kd^ZV{C9KJU@c7O5Uo8xO=?1*MFXTv+*barv8-m7kwH z{@v>Q&yLLgYGLnpdnVru4?geeI-7~FXX5bO$LedFk~Z%ao=#{HAUfwTAbW09$Jy^w zBWGsWtzB?w(Fqo8io+HO_@HMaW=sIrDxC0zhQ$c9VE1c1&)dTv_a@=#|HXLQPxlP} z4(s2`r~mEdrGL3~>0j?%{loRMzrVZ!5%uj>*LE#$lY%y45^VRVclylx;{bfCCPKl8 zLIMLjSluD_5r}_MD14h5b(+n7P<;YN zssdR5E>(r8>VGKXIaKLJ0{}U4xhZ_UBbD0$L@#xNNCRpnCID!3qbFN|3z6GBeizjo z_i^+9e4J!1Hb!8~i3WhxF%{$jIW7*>000Ex?vJ}XspdfWTM{Vc1k)!tKJkc#Xdq`K zN1^|38^F8dNR)eO{fp|4C-^0vleI8%W9oer%0wjtqxvsotb5{S{B>|3XTu#I^nY{$ z^tSz#9)tj+`tK=s;0X@ez`hFi4^aJ)1y6B6Dd*>$8X!q=|0xadJ9ZGBpaJ}Jd-m(G zG*W^w1Uzo@KJ5y>=!;*hG@MIm5R-B`C|e6@kh|0`D#MZ%UjM}JK_UpS=rI8w3xG;K zx0c7j2Wx~ZIREskM8w(?#-9p6IyvlK&EKMiUq5Y3!yGs8@rs1O=N7#Hfz)_{27nC# zGT&kQ+$U#YX^b1tlu^3bAnh^BH@oyZt+HLx(gC9!0h8qddK96%WksMEgCGH1rGviV z$@Jj!r5%kXxg9wwOgfV%;z;zVjP9#LLw{PX{^xy_zrAqv)%x=7sr1dh3s5xSGVJR1CuY!DHnqLe_iy~Ri z3Hv>13NxBcIfl9#WyQQ-W)yp;>g0og?*1#4VJh1xt4Ev{ixZwpqIjNnWdA<4V}P6tW`Bb~S8<_6mCAU3SH! zOAmK`1Q5Z47VL5uJYf0Mt5Qr_jS~j#7QJfRY2EJkx9N=`o&cmnYzq;`25Oc%ufSyV zM}w97w(om(_QscIZ+x|O@r&bUzd3#3o8w1+clrEZoI3IIl_S4hJMz`uZFl;r?{rrj zuYwIg{A_)ADWaQD6zmSIRg2*cF7U9>Ui9;>{7uM4|H0dVT1Qi#gHQ^fl$ar~7lHBIWYl*cal;cp^hs7_V zfM?@2lztNaMLaTLzmvw|7Yo>{z2(5-Nx(~U1Rij3U%)*b*^T&woU2a+Ib0~>)O{Q% zJg)zMfUsI18{l@*39v$-0$y^djRfSuw>sZePC5tbcwG>ggK$8(&=SQCfZ7#P`M~d{ z0es234e)A>kJLu6-Q>$Q{Q?03EjZrw+f&B?O(7`IyefORU$L^G!VgVhl z4MP|_lXBu<3jYC8;1L1;Ma}`@bF6&{1&Cw<~oL;{$Fn`AUx)v=h(@>$g~afriAi1-fZxc=dhp+|>%KN`t=IaT>)$LL?)ee10YD#a~iDY<+F50UO{8B1c5S{)Jt&`%vtA*Tz?A`RSf)O3+es>jiCWZ1jvc?v00 zYE*c$(Y{JQlD~Wrwa&=5BM2-K=EKkAL^X20H&yOvBe01^U;*lrw2Ol2V^>lIP$1AHJjoTll zTytJ|oy@Sss9CU!7JNcPcw*0l&FX?fiink!fc|*Iemv$p6SG`OyVj$o<&YlHp74Lg z%Ph@dVZ^~@7Q3i+xnz&ae!%0{Wzx?Wv`3QhL+SG2V7S`q@~ez6I|^zY6}E6&RmaJ_ zORr8{{o>S>*DLFqO}U;O#aYk&Rl{$F0b_{$T^zgar?`PSasRe_u3@c#7N zto0$->oM%NtfFZd?Wjk0GHg8-*R6y#NFIhg=e%3K-!1|j2*z+I{ZNFR^y|)qjHd$H zGa>!Os2QZ7TUpQTtP5)ZWWwYcK>M!`PWM4*DIZE0c>gtrO8qqt)q`AxKVO;miDDECaN0duXhx z2?;zm_a8d9W7oy46W2#Ko$9W>-k4g6*{AeEfjrVBrSX!{MJ!U9eGG zkO$8Oz-87l8muOur-P*^N;4KeV0^*u8;);i0Jv~)VUNmZp#gw&iw1zJ0~!DTrG2$k zORd?<6I(A#j?UDE(EzIDLhOERY(YYyL|<`<)h0U612rX!Yv&2!3_-1z38e=r1TGi5 z1T-6T6k<98T-SZju za$W3T+I^thHJh-*BVn=H5BE1XKmh!~^&g-L73qZQhUs`R4=fCz*qUyr7KOp?EXa0L2tB=*f% z^4qN`96b4YG=WdU?;LSoL#(CLl7J2vnseW zq(6cJ6z6l(0&bd3&oXIf08NNt60w2#qR}n zGAitaU+yO6G_~JD_1rS?DVPAw;3bc8?2DnBLcy6gasoIOjl8s4r#W zm4q^fC6YLg8BrQ8Y~M3q(K@X+JZcF3VRzMkS#12Yzxw`2>!;`5{P*Af>Hqx8-~R7E zdHtuaZ~n*m$X|E3FsG+wMozwzn=eGhA<8R{!)KJ`vkN!kwFMRg?j{mu8Mj~~xM z%N$};NbPkAZF+`EO_QR;YaoZ=D0Dm__N7?B!fjv0P}oE|3sgF6AdDtdiVF@|;^mY<&<)}JLsA~g7~qd8c_OUWC{H(nvE~lm zd!Y9bvzJ`55-wK%c><6XZ4?4NDurp6fcM@81FK-V!i^j85i6rzuF8tE+tbz0&RqQQ z>G`YmwsX}%C>SpcRNmX(@^DA{tu4(DxA%U2aOc;yGU#KV6evs?P4o zR`057KGZX`zoUO;^Z1jUyT6)0^3~j-FAmTB%U)L{ms$2 zpUzHwwr%KHPv^~S&ALB+FY0_=?)$Vh_PRE4#$%mTiVm6N$NhR32%amqpu{gZmGf@p zyjO)e;Fw2&zXhzJsnSoZfg+ZRQR}6c?PjH$m;%-M5D)p;P~8{f9ltrWcGg&(aj%iA9^sE6@%14hXRJXh&aYt zu3jPzLi$@+BD0AB@mGRR#O3h9W? zwm0eBk85w*fperTiUxq{zc1;)78gALXg;8PxUiuI5aXQ|WHiD7Gzxk?Ea9&AmO~K+ z#wYRjM@?@bS&XRotJQAogvnx{Esg>W%1zF06Z$NI$)J&70?0u|Fl69dOtkwipsv#KmV{1*+XAKd21j^y1 zsvvN!#p>W(hM@eo^#kWY517YK)eyx77_kR4X%C{%W~;*sEfqg_0}d!Co&zDw0Vw^b z@3`Qj#Q%6S`R;tXCGqv<*q1|*FE)kIFvy@lBIDy20^kPmVP^F?OC^tv?3XBy8D=xl0LodkIvyMJf9SR#-~#@GXh5udyTqmF0f24> zLE|xqN7P941q#HUFv$=D0AqI?%mGOE9nYMvdOeK@rf(LXaO(Y1Qb&l|$eCpv%j z_;>&QFMs;ezkK(nA3yjXSBL(z6!?dF!wr`qL!8kBQlZJnQ0wvluhYPN;V{a0v>coQ z`ZI|@B1=~|hzS_-ggX>;&L&*kd)A_YSX`i)Csge+Di zQ0jzg>;tTPjgcvb|8v|L%y<)K#P+h4Ql{K%E{}U!5g}|B7+{Bjy#kn^4o7oi>;AAM zY2s?+Y$bqxEP+w_K?lNP&Z-l#Uc%>rcRvn6X$r^!ja=Jv4FHNzvLB{%v3`JN4IV-0 zA8HQYz~hmSfZPrZZ=qcBJE{8wY$Yn++;IJ$b^xM+_c3TAgaEJ=Twg}qhKD`r%PA$o z7hC1VI$aPY^}8FVUmhAf*&aCBlDgg1a=o+R;pWZ{w+}uTA9%Q9%Zq(8AI|RneT>yt4h`+l5epiOwoQSs$YuO<^z@^0V^875w~W^ ztvcq@osK!s04`O<&u4s>GXB$X+nJQ}Y{q*6^3IqSp>LB)F z2hi~sb5p-v+VgLBul~!^hktza`d?qX_@}#<|K`-(C)3?mnj_eY zwwZ^G`rS^)tRGC3nhUMXcsyBGce1hJWJ}Y9p03+HgO@uyuXeS8_H(Db>11X6Sln|a z@^9-m7E?it3|?33At8U2^POd%Yh|^lU{~jq5)u|t}8CW0W}Dka0m`^98i+O zMdC9VY%GBx;{sT3g^7E}6zJo6!t6d7^&%NX*`q{gC2{jy$003ym5FEy20|mk_NoHgY zuEZPwLRwfXX*O!Nc+C4#xcEl^iA*QWNC4guHckf(7y@wphcyC%b1(H(UFeRSZO4h7 zZAo72$XsZpJby?AB%}bj_+KRS#&P`z?1M!vh@ljGkFt)7Klnw6+XcJkOh=q*065fA z7Y$&o#=G8@gjX{a<%mTwv2_Cr2p*p~(ZIU^VJcCQw1l=eJ{gbrd_2Ly1VE+%ET8K_ z&@n7lxbcWiK+Kfkv(^4)kP+5@s;J|9XVP5#4n|BJ2& zCIB>m^HJ5+xaN#kGH+lkIK;bc668&HDEYwpA1Y7k z9kL2enX9PGM`yW8OF%2ub3{D4+%ME7jXuCBGNwpI=LFQMPQPoRyX8ht=A-edFZT5Q zbmi!o!QqLB3)bX!M|M4b_=`XN%P;@?FOU8E{q8@lh5vustY0K`i#oouq>%Q(2Q0qS zsJ1%9DzM;lJV=I~C59@BTTBDvla)s!lz%SpNugHnb6OH^eKe#?29-g(z+x8}0q;1N zN+(Z>7bw=M;v#sI%e``oTcR>5Ek2Xary;KW5Cc1eMyK5BRy%Bbqnas~v(!m{Lv?&0 zVyTK~y)Z{aVprH4NTxP*4=krVH6E2qFS3a9=~%#``cn-6r5_>y!uJRHr??0}4bgBx z4w?(w!yJI4EXCc5jm3kCDFk|h9stgdMTpUa*q0JW7kXwSd_e?69Nx*B5Y_+x)&THr z!Ow&C2SNu{5zWsRTx-gH))AXi{ZB!DS+CbN*3|Rh#M<9qocU^3^_{`$hkf;TH`T%Q z;mK6bi+!W_cWt@5clzm(#ivJ)f3kk;;i1Ei=9fP_vG(Z1{Np22H#SwxyCf4bQ57$5 ziv=-?juo$bE?_+1w;c94*3yAvQO8Qqay)3jIT5s;PWi6Xrp{M{uGYpcSB0+Dgf3PE zford4WAjnZ`9OG|%Q0p%jXJC?Dyh3+v{F+h)#P|*WBz{hxM}f7}*% z-t50slek(}{(Ae^vuzW1`bS?(?D=r#fv5ZCUXD+EG_~W+%=GJ-$v1mcIA2%uWB-N7w%K!-s!-{qeuN zeD%+FufYW3vzbAxA1;q=S?}#zXl$RZsOt;Gwx-IrxLp$#>x@@-wl;CUwdQF<_0ziS z)$-7pa{rCC%EgA3<@Uj)ULY_HyUHUwJfyaO(8MH^vk zhcFq$`62wvPVWB2u)9Dm7|?&j!ocVs`DkPUKo5Z4s<1?Zms~-aRV0C(26g~c1Ar9- zUQ6ILm`d1_k<7u0$fd!)H-`_bwMQ1qll?|@kjwQ6rI;}M_hK7C4Z9em! zm>qjjnBz~Ut%UVo;h8OWqGAFu2XwyPl7vY$yq%H5MX;TQD0%?ayzl~AuXmvVU{y=( zKigu2do8v>XT&<0@kiA*lo^(@vA z3r`rg9mzUY@EkJW@8iQT3Q!?p6mW!ucYG$2zpz@sBl!L#3m$=A#3h1=11O*8cRgTl z%C%4%p)&55YNJ594p#=y`4D&jqfb=BrUB~UISxJu>xgeg({K>N7oz$+g(`lfuIB| zepq1gfGLUdx!gjDO6qais#UrHR$vMH8yi}7R8mjn>rRTP|*bJ9I=*z;`j&}>p6y`Tn+t-GQ6kl~*^_UFj=-u&w&}OyA2r z+h6YA`D%XG$4BQsKe+;(*VDtZxA*OTa_aiCmBV)ieW#MrEpl<6l!Hj;JvPOhU3J8v zIv%hb4>=dz7T7F9iG3_&J{hwg4_j7)2x1K1YD^+!_hQ0+E#tX`K(0#v<%}2Se9E)e z=h<#CY|$&Go%&r4^?s*nJz_f@FzqrrCX}%Bkeu+CPkTKpdc)nQ_mlegos{lT*7CB> z@mag?(^lt~?XF*s#C|y(`l8wXd6Vl`!&TpHZv1kn{TF+tzuCL*@#yxeGm}>*N1p83 z@^WY2?Y`8-CePVA#|qvNLHnhoXU%8CITy99y3~tS8PI=ZL$0`_=mBSgddR`9!4EEK zyOZ|bsrEf>iRXGi=-bhjueP@Qc&6v~$9DYj*0q0laQi>Lc=KOAef{r`?*G$;lV9u_ zx!s?Ay`}c!Ew!I+sd>_sc-)b?-Vnc3mpYLN&qw{|>MKuICQhXShpoz0hw5t5`J_Jb zQC#~VBKx@6`AMt$UQBV(BV6@}=7Z85a@m+n-Y%AgnQS9iG;|sV!VUo&+RO@O2`C$2 zMp=sBdQC&=hsn94un6|Ixh(jcRCq%k^kTR-;6;VCEmp)xe?km6Y*ApZjiQWK9T-I8 z<>|fY@^f7sFK2fjuCLmj2#ryfmUd$j&$i``JpjIe zhs-3b;{olibYN@1genPZOx&q~?OgAPU+oIt7|34fNyC(%@N?RL0>$x&+I_J-biM=E zd@ra$2_}bwKnB(eQE-Zm*5~A4fOoK}#gZAZ z0RWB&_(QOJV()`|vGxQ|eiHlDhD|aEMKBhP;(`xU2gUtjU-f!h3i>jH0Ox=s^c&(T z0qW6wr5k)!f?vVDv?T?tFF+owH;&ffx3KPZ!r>0*VA?yE4WSL}O*!VOy;ulOrK~gA zz<9#HDd715kQ`j+0qOj7Jo~E0M-_TBfOn;zs{WKt80YKF34A7Y0Iz$)Bod&7n87`0 z_S~$pAQ22}fc21U$s^uv5rW5wdp*o~YIrm-J}ZR0I)yaDWfJ|Dh~3DiH3{f2ZHB!w z1Ye-^V6VH?gf~1Jk&W9-vMGmh(k_Dy+%_YBOwZls((Y0+hlPR;m*xCO<)x%yi$tg> z+5pT4Vnq<}sq%ycCcK}tOu`>%wU`c8RV-K6pRa4V+uU+@sO#iN*VVersoKbe{;F^H zcKzGp;Dc)KH~qc;V`b?-w$y*q8iOzgsxeD(AuTVzs1Slip|F%ku=S!cgzKivafjH# z&4-6RTsBL}VB{pGM!i*(u70$uutE zp#gxYDP}UXLLshE#P$bijx>^$N_4-FGUR;R$Se;77A6>wbbJoc)8|~*am9m5fDkbL zA3XpX2;>|9L8>%pFLfgf*|tr_Y!VCW9g(HM!OvF~f3`gKYCL_fD{*hA0w&M5wpBma zKKN|c$kRQ8AMTlaHGlB+%Aw~=haRsjJUM>)<=W|2N5&ov$6%PeT_XdJ3#xAH_f}fE6s^kP-|(I3xpO_lt8qX-5ONm2$&18hp^F&9M(# z;-3xHz8R|hVtd41VsE?jbdyXaDJ8f#@Ve~^@qm$3u%~Lu#VAV;BVnE2O zFUf-^BMInc6eO5M$PEU$8Nj`%pae#$w&G$~G$O9GPQs6KXqbi}n?QIkv~?b2{*WN( z0vuvDy)hp~8suV*H)B~Th69ij)utV(j2!4@cHilpdJ6_>*KeWDw_whoj57qxt z7m?$>T!`LvG0^%81?#8JG`U4h=C-KPIK&JYdHc~7OFx^O%XHz zd=T&s34%u&J9wG3SR=zaf^a}#=>vj4KqSEW0QvzL5g&i(hjWNO*rM1L;DQe#KXLHS zS=Uj1aMV13Wy4a9e`Qwv=Ndu)8X;GZX*87YG9wiofm+Vh8}f|C8~GTn`|%o;vSF0Z@a;*^>I%_AI{S zlY!Wqfdo!3&DSeUm&x9yo2KDn#yYENJ_;~G$FJq($$R4yqHND3Ih5Q&#(Aq`|3 z1SG*cr`%bo6F8A@2Poez(}Yxx7GHLxqO&(zm(bY*N<9+WwQMya9-ShUgC_(!385CP zgo9-)ypf>~5EG+Nam17YNmNq!BW@AbuC#fzF1ON-%odl*qTwqnO1)WNf#A!d4_oxH zbh3B2Z*O(5*2+?96wb6MGtjhbtz0{Jf21 z;SA|-UOw2FXaMk*Q1N)U^@H2PFQRtBWCD207RAU+r(wm7NMSSpd=3@xof`s(#UmxJ zr=VDp{D=K8zNC~_iohwp2=Q{yx~zvB!a6#uODh_PC+;8I`IF;29*@>s?Fe1#j@;<2 zc(A4Q_Kxm*I|e@7z4iIN@fUMbpB-QM?9{2p%ZG0tI(X;osi#ZZKkYVOve9~kaEQ`^ z96YX2mkUr1L@*5*(Yv~3Tvos+R#<~1Tt^m_OEsfqRVS&hpkv+|4dCCeY zAP5(Hn7CmMfDC0MIVM5yJI9A`+qj;CHc=MFW7@=Tv3ofo$e-fA44W z2d-@!nNG*h0P4-!D31@#ftkyXsI)PW%)#S>)q~28M>GKR4>SOPllcCaI4KwtFHT_n zDE(*>_(JTQ^>97H&j3CsNNaQ^(g=cLajj9`?Y3==dUhv02g-3^{qNozcOVmZI%>zg z7?*28>1m5x?u?vibRoNuI%oqpctSM;k_4H<<-y^BR2YRAOIKX#zt`>(%Qh?qaC0YD z^`_`rXF0MPNjwXTA{u-|5r%l)21G@Y^)KcCYK;sK2?q@Tv{4*L!_WZmOMEgm(q}r# z!RbU_!66RM%@GK}@KvB8K~RS3j|l()2B5LR+zmiKKpqhP@dQ{u*1uqR?ym~qaVln? zjX9urzz!T{a6|!+@$b(@4^$;!2OY(A9*_=z9c*`hI#Ed_f}!reyY>I)9)Jk|O@gq1 z29X|7BC5Cyc^fb~%`!69(>(PB&#Ln^Ko9*fn2`HxH_5${)Q4 zES``%5wu$dWUv(MG=CXAEf6*tjbDrpyc{2d!QsWminXS?EwOmN&kqB_8#P_m6AfeG zK-lID*wYhTEkE1W_^*SOF9W_stvXa%%E~XMvw3`>K*oiONFk6Ac`^K9nEVYNXgQ+B zM0Z_sL@P^_>wV=)SA#a#q6;Kw3cGr;j*uJ?092y7DMZ)D`>0ldP62(EJ^ z=B2a*2Siv51jHq=lvwtYLXW*dQ5j);k}FjSz^>c}iGYB(D&l?1MCKPA_A=mLU=GO5 z4P=u{?GjKs*hQ>nx9!E|EXLmtsl;gzCL{Lqaz33oILva?790Z$DXd7{A6wN)tK*kKrkf{R7vDr7X2*zR_%nb z1FRn|%IjhCxrFO{%6B0Xf+QH{e7Wmf$_e8goJ$qnD_PP2aQ8gJ`z6P(zHDqZBfW~1p;^ay0126*AkA)b-w%E@h2_mM@^}REtxwFkPSx9 zq+@I4(Ia919;*yaaEIM$Ofb+ZEc>*eCtb;U*8?!lGMY*?1V6Z|Q8TQeQMkbZ zdRP;9-I0FPk@<484Ow7+wK)05((8c>TNG`cb27%&zG(%CHC>*6R9n>Q234#0>_K zt4*m6!vU$3mX-2w$B!bgkIk$U3fok2cv&}aXjSZ@dOm!*c(}L0AjpX{1*EFcii1oR zuKBqBqX7W?0p5bg?}b-ounk88zytsYh(zwt$;$>V;@dNs`MT;0JsnSHCZPdD1K5`> z@9@~lB~mm1+}@mgQA8lIb9v<3=3ZpzQ+9G{^7({)6lPa*Z1cUVIR{VthG_JYnSq zr7>~ztRdc?_${;t*w|qL00eZjAq34AdcbmH3@Z(keqsa!np2H`e>LI_{D&K3dn&!- zQ7dTxY2QrPvMXW*CE7kyO0m-6Ugb4uU8*wgh@~PsKBK|kQW>iUp z>0A;d*20K=@09ak^#kJn0Ezb^3xIKpbcaJTVNs0f2>pLT&);Q{PU*Nije=>LcG@c) z;TNx(R6m|--R9+5$_hm#GMFvHb01I!1TVc>!$Ks!maSZCsD9Q{{n?QnC;MwJX2Z`i z6=!1E!Ekvf5Dq%LX05Zy5IEk^`sJ>ke;%*+Nt^eC%VdM}X=5IsMu^319I1^Dt4xWy zl)#QUwh%xEuukCP0aLQ4VRvPGOIVdKFbwh%1b)#`2Z^;O@=pq&le7fnuDI5QTL~~q z;;qJj3!4x;OIUK^`VXT-1y>p}#H!upP)m|s0!{4JdfYmH&=OU1Rs3S47qL7#w?pkQ z%iRu5DDJMR2sGFg-b|p@ri)ctt82^qTeC2SFw2<+4a4nII--fn`cNjVFd>)_-s_-Y zfbS0!2uKe8afs(LxIkq@?n@y4B8b8W7YOYWe;0AYw|3katGU0W zDU=y3q}+^LTdQ)R^PX8kxa~?I!;8wu%N!Zt-ma|F6#d7DWO9>Icx?hKcNSw2N%_X?P1#}lq)`7pM_ z;unP;xxu6da5)$VFz*ulCnpQAGHGF%Xvl5d>bK2Aov46&BbJ$fVJ2wa6|wJ*+As~E zB9psza|ks5Ydy$#31SCut*-)({FDxWN^(a(fbj#WKW^?PYC~AMB5dnSYYK5IsQy>l zGiU0=%islKqU30#=BVMUZ`|} z3q%6nVGDs0--uYs5Y8%aq#7?Z6TrUoNR^j-+vXUtvdEE5@i`r%v$R>O~8$=Jll3;Jl{DY5rLSJr9<{+I2$e>iM z2j!od0H~D!)&S@Pgd2*M03y&NH6;+o2oQmucLpD}xbM|FF#%jisIdfo*8pJV0~;T( zeV_$H1E`jYFab0v#Nd7b0>Z(IkGQredDsDf_Os0_*>02Ph@OJ28t#~aIjQCB)bS2F zWfN-YltnlyDcY&!J|3z%TjPbYzqEu6Yh^@{;Qx2K&3>|`;YwBQdU@h(L*>)X^51RQ z^s1(1e>mM04JAyHcCV$+6PS#dHb;HqfyxW%mWRDfr?Tl@ft^*r<*`NBpu$}Taj9^! zglyQv5JQ=TG76Ih6_XD*2$hsyBnX%*2ij&^>ZYTfCIwfk;fjdqW-(im$2YMo)&7nu zceO`i;%_WwZiFp_NX8a(p&Vv#r3}7|!+Nu09=$1A%M#ix#`oGIUj!pMr_>lfe4W; zG2Ef)gldiI53LQLp?6zf3I(DdAPfZ3(hugUE1&m8P6SE;*K`|IwJO#^L-*62J-3G| zkfnFEJ^l!M|B239qm9>w8eZ<{c{DxpWZ&)&mkuNA@#D3VUz|Di=ET0A?1&;CaYUvI zaAYwtf4f0AZx!!zs^*-U6A}BVm=%@@Fibulv*P)M3jftgC=jDKDCKy5EsK`meb|zG z)EEW+gLAJgg7$zOKvuyOfpc-~ojNa!7J#nYuM1sGyDwF^&z8GRq{5f0qi4#kXX+3S z8$4R&Ka+M{iRw_M*P|9}9WH01V3!_p8t1+C3)Sg!Ky_<8*PB95dNOxg6Stev_uJ|( zRb_6}d9K#_F4YDvHbk$sWq{0FZi*8$Chh>gehKJ5dRW|sMs+@B$MqkN*D}5<7+<0g z0l*R3bTehW8Z%yqYHy^hPijM-c4a^9tNVHjyr74Fb8zY(*H`~|>&m~seDc42^7=oX zKK`d0m;U0^!pj3&o=%V58R@>&*Koceeycrmy(N9UIde7}J&wId(tAAOI2N=mx%6ja zp3_0c*{};d)I)B?p^zHN(J{u(puYOoI|E$mPc7Yzh)_v?gp!qQHa z06GH%c!0l$Xg{n0Ow2M^u0mglTM^X&0Jx(85Zc)HI{+`6g*5==0>nWGU_EF#1^Hu% z*x}mja!uvk@y*W;?Al+SIaHS&iU%_?L@&_cSq-i?;RgD3`_tN3kVHhL@$EV1BgJ_1R&CV$|9N23#N^tJtonNj)OC; z(Csj?$Bj&oiM>|$1A)DfM61W& z911`Mele505smLrdN!Lq-KIcXZMP{+N|si|(An4`6`O>SBJ4ZD6u9YZNm((ocq23a z16~;en_D$U2#!C9mCO(F_$9*XXjlKxN^8@Ol&{{*GYWph;{S+i;5kC(Y*S`yU9{UF zbqWgjQm#fR)(dGIUVc8jBH-JMHLR3VCT4K79DTVZhHDEL^w5RLIa;qJY10P6j)a6R zfFm?qfM6yXu&4ZnDE^3uK2#NL@ww`%vxBw%cCWM9XRr6FgXNK)ri#h7>Yi$q8eZ@q z#=-29TT0+27|cn@AsS!=27m%YdH}`z0pLR?P(B&}ARxSLFes1>8v$4$Bfw_3j9LP} zWnqKrmy=??b%6L!ETC4q?!&Q~51UPMRu+NvES6S-{>t`=*E*;}) z)1CJx25yYEKAhh48Y;#bWZ`8+8@$WUpa8UPe*M;%qdX*my;6Z&DrT<}L{6PSq zKwrN@>{cxZ%H*H{oQxYG*1cZoeoz~FR38CSMA}BR|3OvcKE6YR1wK63CETcr-zxWA z_NtHzeX7EJs=|AtwHyG;xvB`x#oG8y+;v(4_v%BB8&gjj(jT^DUiVc!YKz}#PTpzD z+-$A9*`9sW*Z6Fp0SVIQ<0cg1Lrx{wN@RNxwOvhluBALzqPFuf!1VshSYSjfXJG{q z(q4<3E(BHAQ^<$0KCJS;ZcG1kr1NJJ1Harg_N#r{e}8i6@2;Kw$EWxI+h=e7+w%|q z>DtBLo?ia^@WlNc!w67&I?;Etr{-Qy-R<@oxcZ#V#IMzcan|EDj2){%1168-Q8UiG zO)+bc>~~`>Q691@4m2Y~vH1j?L+95%pya{UKSv>}LW zFC6N-0sJ{q?S{f&As6indmmJP{Borwy1xSEZjPm<7_R>?`UfHeIuM2%9N6CB;t%)J zoiWEu*1Iikn@l)&Cf&$B!#4P6qi?M}^n(|jez1T50e##@uK&2{=L{i2)O{al&ws{( z&>p@SiT->lixB}xQO-#eUUH%5-N**;VhM~1;9Ok27EvE?5d|@TKpm$94PXH1zlslAw+WjPyiYU$v;lbgOxt9mDi$n7=bTEoN=zx}hYaQk6QfOB zHm%je3Ev%4TW)Y$HsjU>X&qOKl96St>Cxbv~XD&dkzM9cp#OmwHXxjV@WrZ8* zWi)7m;q$II}llk)CQQE1Kuf$@qDeL;pryJ`7m<=o_!YCP$06Wy667fAoA2Tb?WðE8gJTyyK7HxC^@DH56Y!1bQmXug@72mnw_1eb zO5RSjd{+Per|UnX+dR*FUpQaSI%UsHVp|e>0nq^xVDBgdK%y4{1WB;>-m4^1z4zWN zS-siny?4oyd+a!gQ=B+ulBs+4KJR(IyuX|9c+Wd$@3rprtcMh(h%t3t_w~R2C40B2 za6@s%K}Rvyf826D2$!7+8jl4G?>D%?c}VD_%JXuI{c~p(xIZ6Wsx7Ah@ELjlh|taU z5C?Y9xfbu`_R0?;_UnzFJ1v2WHMaAZH;}>GY`fBGzTRQN%<5dd{d`m9={ncxI_ufm zvh%fKXK<;m99qteCO3%uZQ9I0_vOKEEUa%1wBH}@yfe^tYq0J8w#dcq_Ul6f*M^5K z5A%kV7raxUi@ykuietls3Z_XV4?$+i1{_6Sv=g|X5LEj$3 zoNoEGmE-rO<@~oGda^|j$pI1p6*5PH4q4_Odd-bWzu;{QnKwtmdmF1C zu3P?i``YDI?oo5ec)(Sgm2FEBxA-!prZ%_GqEbh#J$Z7kp9?Z0t2vd6zvRb1254d` z6%5hjR2UxysRH{Z5LawySpdx0*`~67bEK>Aqg_*7u_{=G30m}~yt>l7)Nh*cTkwNJ zJjFGf=*M&YRV;zIr=$1<`H3!p=Y0A9#~eUjr+W_n*%M zKOPHwG9LJRD)jM~|BLD1SBt|Rk9ohE3H@|Y<yKc0G5|%mlUcNW~Cq~TUnxBlASc3oz6OIv0l9*C+S|K^ru^AcKFNgHie#c zHhwxWaJRSfy{6i2jn$j#stHs`sm8bE(F3jm_bss6ZTa+OYvU4Sz)k?3TqFb6OVp#0KHm6;L+pirHs zetKwAciYBD^{SSpH7$*^Ee+!}Rikw^6CQiF)6&`;9;$ZMJNS7fiajO1M5j`xBg0YO#`)F-1qTNoRb7|%?H() z+wOjUi~oVo6Gd{wgg$qo+cr*A_9dhMB>aK-B&IVx@c$TwUyyF&=Ph7%nFt4-_8afD zn>H5fSC(dvXR1~Q-48Zy_;7WYqJMp&^5#U{orN9O7PVeoF@Amhh70Rgez0xbqoaoj z^?h~X#D`~&yk6$J=~nh>71sIl8`D+2ItAMAwZ)pvC91t2?MLiD&>Th;d-S4lv1qr9K>RMOzt-iY3{q^?;8#osmT~K}A zbr%96v8I04U3|=E#HZ+Nu-tQ5C3e(`d{ta`VSY*es}5OpKss$Z_i);-4@$m z4k??Ef^ZZkHj;Z)Q9=^gJNm>01TByyP!bo9V>vQ)60?!PH=0bx#(H)HotOKE9;{jY z-eh-2UdEcLKzBibB{>=QH^P~b6S|XykjOG+TXQ11x)UFI{bth6u<;DoctQM58thC2du%!}QXmstRG zdyjQE&JI`60~lLzfj&@g0R_Ssjt)UJ2Md~Wffg&`C>#EC%Gh0(tzP{S9zRJYHW0SvpTiAvB z#VkWl&@|>TP5MmBL*^}HleLte=qSHD;s@7~Cv-BeFy$09>Gha->@#20-WlGGq*%-5C1kYKIFnQ{(|;NM`cX?0#1mb!fh( zv(sn*82_$d0w|ELE|sASpaD!2>hOVBR+RE^Y3KEYO z>3llUd7#R>##z=^lubrbr6$9n)a9lqG%0e)+w+mj>ZMX>Inc$dn#_Q%v{F-=$=zXo zf_8y`&NT_Cn&dQfN-F+nf&!Exm&Ya105W7s{si=2BsKEe<*{i&N6T>c=H}WJjp5nm z>dBy^)nRLPTARb3UR!b4V+?yr+_-zPn8L^q{xUd>A}JZ`G)TFfAvcl-@s2`|tw+1Zrrrc6XUa2jo$e_{T+?gxWXUXym*;cQyIauVgWLe8BEe#C| zTirEYU5-7w$W>hKF19gG5X#7J5&sNm1LEc`!eN9ns6cxJf#*No<^L0>lV(8C7v7C? zJnN_lTwilc84zvzD+R*)Yam(H5 z?mN@1cc(jUPIq2j*m`r##I+4eu54L$>%gJ=`*u7#cJ#vwCx5ZC^+q6fKs&!qs_-Yr zcj(n*Ie`9eC{5p7qQN|8uQlhOt>B2GP$;vXk-av0Y2w876d2TiZt~A(h zwuEkVQtJbkn%tKnb1k7Ge4|;61$R3_Ks1l~s-N`N-R}zD@2$DnUU{v}&tYxLx!zWF zvB7t(HFTlg3sQ8sDR8rch7q~ZQ+2(&M%4X*w%dIzH@fQ|jkP@(X`td$`k#)r@O(Jf z@M5B!=iS~~+5^@9-hepQ!Q!d8A@fmxDY!q)=BQVo|NPCFS3t4OhD>L@C8)qo+H#`} zfKQ@EJ{K^81u+U-tu{UG3_Kl--07=-x^VELHA`?Gq5=H<^=tod|Ixoad-<0eSAl?j zx_$YB)r+34TlQ?-vez4yKbjf2)Q3PJbfMFGr6+u`GkBrR&t~{6ZD4M7I#VY8dTY#CL>DY7(Bh^(Ys5-VHIbe~xHlStCascxzm~Wd zcUm&;?wA7M48e(J#T2B7B{0@lc!d&2oG(o>DI_R?%@{L~JwVPxQY=4{f!v(^1FidN z{WO4kE0!Of>KZ94S{ttHD=sd>;U_+xKf$3=hgDiZC!MoK+o`O5&lm$?n=Lgjq8I$+^_M~j~Z04x7& zhxbx%;7o^$Jut#9NXk2?VvzP7e5ByGH z5Y$j{vagCK=NOxzCU+Fg=l;H%HAAbLv0yL3jgfMgov6BS@f4Uo6whY&MxtiALKOXd zP2Pjees1@?v+~{5>_YYxwRqds;3nZ~bG?h+wyEAGS_0pu+p^qcUg{~E^_ix9rL*CR znV@-P$VAsUI~=?*6~4bP{BU8_k3fEevCoLu0P}n^i6xv52dmFa`u=P+G*EE=Dv|)?Y1Im0 z4%(KfZeanCrRvGo4(a3rsK7{n%#bY3Rm~Qu1^$yG#npLjS=N#~#mZta0j#&Er}88- z`TB)L+3WIiMidDb0;Vq)_iXHlOxL+K_t%{qX}>wqb7Qz2N3gTL@-@DyPNOMkDzWF~ zSTz}Tl@6Cdxcnk83*VlE)Qm(KS8qGiNu|ChR#KFv!X5`rtZ?-acNTHwSD{Xns0w5n z#9yi0;-v)qs#UQ#Uy|A=!SUaiWvzC0);I^6{3DItp0KsvT^1?URg@P5%vlxX+2tk5 zoVjF`w32jvQHGu+Fkvk00Mb)sW__MLw-`^*5>0NFT&+!$>J?hA)z?|q-yR-f8Bkv6 z%v0uPNp$(D0z+n*GC3dl&rVj=qy4PfpFF;2Ali!7Hp5@(cD7xnguo*(j5quDRfY*mp9k26fFk_MoS zf177kOzP^O^YM82d>xkb3T&E&iuFrDXXSc0r zhcWYro9bE48i48#3kVnoxc@@6mFj=9*?qOnccayLr@i_{yO;a^^(H@z%!fS@$~{H@ zabM)wP~GGHnrDLzk9upL4mUm?tba1p@NBI4et)evUEw?JL4N6BPYu8k@4UPiZhAP{ zOvQgX(fwk&|Nam?pz+yM*ULrSFDE-F{n0i+^?$vvn+9;ZyZXsQ2c@68|DC=Fv&flh zD_qZ0Rf46;BKkzYEdI_l6_+9oYCZRT8o=R-oKxj_AJkaS*b7cq8u)oWUuin!DqtCK zC2W4!?t9!@{b;cH<>JAYOD4YBz7E*uA8*|Frw7meYqS9z+xyd9E1z##{AAst$1A5_ zty}Wp>Y1A(9hbUmFLi~e{^VF(>ZrWf9=OmV1Y!&U^niE0=6!H#T?PaS_@^H9nRnTX zAdDi7URlJ}JsW5B#raw`!$_vNZ*h&I0rcyUgGm_QE8=4ul0?5sN?b5Mcr*Yai1QN@ zgm-^@JWnuHCV;%OM5{&)1XPxis(EW3|DbZyk~88Gyjhv+>d8;9JJ;QFf93MSV{L1y zNGJ>r8VpPTYzt@rB9#F%i8;SdI0*1NgwY!lMpS?@_hT7t03zaeE(lD3Md*Rzgzq#d z@R*WXh`Y(j8muUz`cv@%!D0Q=0C?dbi~=;rvjKenLSKOE|M?!w+B}4F(E!-u(hR`; z@%$06{#+`rFmjmlYMzqe$RX_kECkuKZDvjblmET3={uObcH3>ggo2q-L~wa091wjMcIw2RObEe z92MqM0s_)W$$Dhi9MXu9lRN&BLN$i(OaMe)EX`N0G^<84<2MF8V+Ej=x!h2uRWZ9O z%Wid4-)OCVG|+LsxATKg_=w%R!Dt=LFT@PJrKq&mWNj%hRO$1}WGZ$>bIniHIC4rYx&mE_0t7!tnT2s%cA8$; zv?VG{dT!_y`7(^1ZN5TpMV4@PFlLpTGRw9q|9XGeGetqotoA*vXJAeAK_tt;Xso0Q} zMEa{CDH&5(HjwyxbN%0F)NM6oZYpIznY+hs0QuqiPu+($bFtQmv6(PE}T7zIgKs{9drvvp={Ffum&xh-|M>7G?38Iz#`DpX2iMEdxcF_Z# zkGDJa6kG9nC zR@6}J>aGlrJY2o<*m(QFp4JW3p%J5rba>H1WYRLJ)G2{+CoUf>0N9fWqkk4radEPF z!ig)|0I2>yGysukoxl(3T=pdKKFKLwowmbNH0`$o`h$>csdFx7^U>&8>Mmv}N<0<` zFh@Eop?h8$487m$|6rg}6!doNAGr8K<{=V5Wcdp42MHLf+UDA@2JK ziK9aRb^m|3_6sqW2#Lhnfw~VI^gW9oNid%NEkp;qzo+v;hw!zavIm`fYr`>$B#c;LJNCP+*%smyzp#f|$ zr}L9Ek}hEf00e}JB#@en9S{wGB``G5>Xg_vWl9$cfJ|jiCeF_a96<5?UzDdJ=4qw? z5rC33ZMq0oLWY2`tOR0}wlqcv*h3jWHpq}Vejq=0pE3V~n!xq$*8L&hvXbJ-g2J}k zTyIuJO{TiLAa9}B+Lc#?DKr;$l}wtJj8i$62<*}G@bngk@p^&-Ss4mTnQ|G3ra+0OQ zPwSF0OVy?JOmn%m5Iq3_Ni+Zj*X<+;GGKBa*&on^^hj4yrMYsIL1#7Sjd?0P=>iF5emL4lKX}|5 z=0nOol^rj(*E8MECR-nkHa;9~qQuh`M3wKZ=Kbk-8_(OlwS36MUo?QenyaloY#2^g znN9``XToNTsj;WVo#Jx6ohpB}(s;_pw@`W^Xol2u-c`)q|2>l)An4y4K=D~`F)W~a zE$%xlz9&OXpRbtsdc(3`?cDI~k^R4a|NTGSxc4tlUjDboPyY15sb3!2{&M5klhva) zr+XNGpDY=Bwq*RyX#35f<|_;V?Ey;v`9=g{f)T{#oWuTup#+92Y})sry7~#8fe9)^v2?;{k=8E zM|w9`SB;v?&NPzg;)@k>Gn-4Ipap$*m>&1NlE|0Kx@Y=oXVxEed%k zJ7d6Bx(MHnDwMH~6`oRLUr{bRL?Gxf+iL_$gF*$bw+n+oxIF}T!3g4NANBi;7W6ZN zHAgxED0_c!>!j{S4SAxSAezU5K$jIt5Q?y<0$?%-=`-2@sQ7cr0NR5uN)uvG5KH4Z@+dvvZin?^ z1d>L<*~%Omz`L&O9~uB;e=hsn`hkF8g0ceu0&3N(>SakCs#F>Po5QXwDeGeLjNt!_ z>t#!eGXNq9(woebOw$swq>HHz+0e|@6UNfT>6(=}vTfO#^`@ew7SE!BvPBN}qEMit zq@X!Bqdrd)R3##MT$xuglV8%EnP-eiRQ%)}Wvqx|FHJAXO3k!nn#0CGsMLe!K7PnT zCzXPezLebnmYL9Fgmcbk?Jz$ut0w$7|7Btr<3dX@jr0y0N^` zUtq@$0WE?s*g>SeAU!8JD}WJ@I?sr!4|!wpNolw*NM%HK3Cra)l3uhqh|7|tY#P9e z?8P43ATkMtBvvI!l7xkIg3My9>F-`XHneV}e`QzWShXYK$TfTO%?4R28wjH&zq-)O zT01R1+hXaM9^XA~^#?QZSbt$sot6xlDT(+OJdvUeVD7LDjvB!Ij~)=+0sL^H*RJS^ zUbUi!e{#xL@!f&`%l_^sgO<`8BcZcZnOpLuO|kK<*~v`>r5l=ht}m~@)akh~SaW4j z-;0e4?=HviXW`Y=(^uCmzrK0(t!-;)0AHLx@cCl*-kju6nu_&ud2&jBo_Zi#$$xqp z01U;gCfyEW`W_3O$(a9?9CQ{Eo^{ZUwQ|YDnu_;>=4*A1%V8@J5TyRwtzrVWUhlov z?ta=;^PtWDq%ZOqJg2+r)kq@^06(=?BMlsE6`u6f&<{QwZ~kbi?X$&QRDX;XK3Uko zXYO~0ILr!wMbR?{?$^DTX#Q|v>+^}mr=txI286os!AR4+p@v(1wO~Y#$6N0X*54m) z4jx~?spIKQap*g)5|n(7IQ)s9Azb%GTBzM@j271t5gQ3;76$_Yjg!W3wrbDxZ^ zsb~rLX+rSD^!{?`k1&{ENYMZ~{U3}q(EzxrN0-1+W9RRUn&&>G0Ypt8qR5X( z>z!KyM}u6Vw$C&G{wS(H?=XCDhy(H89=5X4g^!P84tO<=1=WCV-~{ZoHjej|UM0bH29#nqVO; zZu)Z)uprfcZVvFG2B0NGJ4CelLnOV`3R|w^LUkb%08)U1j?ArP8KetQ%{$YjO=?L~ zhKeLeSU?fAoI#S1rVg#FU#}F-&*`!by<{jobsX~_LLW2bYz`O#mf=@bpr!P4mKCTs zmdclxX7#2kCkhJ|mS*D^vB+ha@H#fyYnPR{`t?N(*}09m*&Qm)xFUUBe(Bl*PrEG7 z9Iw=3lJj<2M!c>>W~@ke+A^JvY$t&&XtfGbRjhnPiaPfTiHgK7vQ6ai3*ZQmaH31i zvgLVP*``uOHkePYGzYy^m8I5K910YL4C-=6mb=;zwCfEy$x4bcD*-9tU&%SPtnzwm z$e5D!CB&8}O3HVhYD`O=fx=wr=>x67YW~Rc}SlR6{1oEUggvQ|FDT_-< zVHcesca&CCIU~I-;{)weHJ-*oO^Gfsy-=n|eMg=nE2+pbXR3=z9c{w{>o)W*tj;Oc zy@d`wj%>1|xCM&j#I$#?eE2>fel8{W`z7#y^z!_H3-mvRfPY^C|L`x3e{8%Xau${n z@kx$!?XlkA<(3i*KbD#D=*oj7*^8??Zf#omYNfau-=3|*<^R=|=?7~^A8uWKdCk(B zTh`s#vF+u%hu<7I^n7vXq*)P3j>o>ykecXA{z+SEdP90Fac_hX!uloNYqv=YKK^cb z?jb8d(?$Y$M8R?~Uz%tDSE_AXmI=|Nq~2-w+-~+0qWhpV_^c=Nu+`7q|4~oP-S)tX zp?d0mv;lCnrytM*KALEyD||fN{`pKd)&Ik()|ZoQZx(e?>)8i99c_9%EY<^0MjBsE zh)=$lY_;f7tY`o#oQ2pbf767j2)18mTTAof~{nkb^pcC+ffCTu%xz_5r((Jm} zV1K_F(kfB!RvG|6|5c2@+y#U_o@N5@mmDq60SJnMKg_@Vz`6ZU6cDncwc-@Y_Rs{&eBupKji#0sP<3UjF&g2j3jo`^|xMZ`Ln-v0{P^ z@WX`zk7ow%O|;w@6Mw54J=HV-V4o=XBdUME1P2KWjfRRL9pdT(4!ntSwv?(5R1`9G zVOWIg>IOsRnv%>-)`DgE8Ej?P2{WG&zuK-z@g~l9Nt0RFA_M~kDoBQOzaUfm*G$Fh z4g4qft@#)Mks?XnD(UmK)HE6ZYIFR03Fjc=WkY9Ve@FF+_SP#?BkwQlJlxf~tG;f^ zV#9LfN+1~Q0UqB9%`#Z(zUnMzq?*UeeHtI6twOq+r7FR`af_G25_td*a1XYKpSeE z3eROzP|crTWf!@qy9(F2mSbZ za_9lTK2abDMc7YPs|}Ey)VbzpU#9{jypeH9OmOR8Qyf&X%R!!O@7N!KyLj#L2*C zU?vdN3%?Ts2JjgrH5zdvLFWtvDVf$BZ$)}hi98!?{(O0!&lHT<8_Tmi)^tai*5WI0 z`|@pt5^YATL=!JpBxmGhS-hs|NJX7H$6Ao2%1x3>=fx>gm5B+G)Wmm`sj*nX706V% z5~V&_WyviI*+ZrRf1R(ZGdyfcx8$Ye6)3ayGL4!A7uG0oM71dM)MZufo`%p^$kCT0 zuV5BQnU`It3)l@|gQKBicJGQs>zie%MvXT0@BU6$|0gA4`iA)r(}rvg0-EE1rbcO? zKiK#n0{EXUfuoxHAHo2Bc-JKfu&5{h37Ob+Q^<H#s6`uftRnZYB@?pdUTYSm3ia#$YoL$$9*8^MA;nrH#@ z`FNTMpz}4i`>7UyollkyzFOD~p#OStFHa8G&WBSyGy|^xFQ@7skA!Iew1-!d-86t# zi+d>jw1F23yJ!P!h8YDwemFNeDsQy=m;kOdIj=T4XaGo#;ryJdBJlNkt0P1n1_0{w4r zUqBPr=z&2iC`o}*nhkL@$Na^|10{#u`G-9Pdu;k0M%^AuE|QC_CLz9CU94Yk&SlxQ zFfSeJQ06nz{aTd?waQddJ>dA;NQF!Q=ofLM`qTu>La+lO^fCXP7!a6(lmt^+av(jO zl#V=f@-&7x;TuTK*ZQtHcCaTq+AfUrA0KXbx3gtmbJMi7+%1!{0WOeBi&Ild@Ryx~ zfT9fmUmz~{;%9O$swfrBJ7e4;c^Jb+p9@d5zl(`)){MKfLl6j(ZPjUuWR|^!wi*4&l{tkGA>`H+c!i-q#UY z9dWE__K+ka+#OI9w|I|q2KP01_SCtKbyaVwwqftQv#NYgwS61s__{8;_PvD$l6{^!f8KVH}P`G)#0x77V| zXVb6uH2-FIM6)>Rw^oz;>d&v ztI`@u(rdKIWBKXGfYF$A>ZKj&DY$`->)H3hH&9OGWX$Ad;s!jakpV%jvgJ(U2UjG; z83uG{wW)BG!L*^wyTwvHo8_p=bXk)#v1aRXwQOsc`DEpZJInU;zaDc{P-A#@sdQD{w=5!3FPz108jb8Byd}kF@i>vAcVeiCpsCB7axs`r+;KB zCAY17MEHIM-ACy*6@{;vv-$9 z&UZR)E$X6_4xA!ZaM&dZB^+b>P4 z70!UtHg)p2MoJV3$irrH_BuoW1|6|k2P$&We;xA_vMdGnhcz#3lY?f?jXK9Igk6ye z%%3T&-1qtLcB}8%Km;RY@E=|{uz=VGvkHDS(SciM^t>K#`+RZlPnQjTyr}!xNYjhn zIvf|iobCT|$-pPGy&o^_d$F+N)ok~p$)1l_O+1BrhDzjl0oc&fGI%NJPG$am^W7-vaV5R{eAhgFmLfTltPaeux7@7k0EfdyWQLb}3NI1n_*Y;n_&rXUir&Uc2@WCr-lDvKweTKi(OQFM zol(1n$t+(5DQGH7)2@=aq=`mJoFOr$T&TT3W9H-jj}L@Zl4eRxX7S6)mk%NTaHDt1 znv z|mFRKM&L$037m!859JOzsbdVIcoTW;0vh%CPLpEz%|&B;O=a4 zvclzsWiL<68w7K|sth9ssyT<<@4k*om_I}pum(8XS;cc(jaUqT1>xw)6KWF|e*ykr z?McXi5V#qZS0Zlkvh-#*u&K&~^z6(~og!=G$u_+nG-=NqfP+!Fcu zw#HvA|aTwPoaXDq{+o+VgQxc&M2U6mLn$%$0f=;!hRgv7SlXhjK z_3EYY2%!vdjmS&aA<`@?jRxC6H$IF`soZVwJ z3%h({Ri)JtPhX^Fu&1v3=;Yc*>rcJ6{JrHX53HNqwrSC>RU?~cx>wG$&MvGT8nrhL znycJdrDlb`RGvWtC{k$1=@rXZg#ytm%>ZT&JpkgrK1prV8mnz}!CZ4WmOGN%9A$~e zR$uGuc9&FF7FT<7oo0=xOm8pAs3^)PHv=m%YE(q3N?lfMA({hzg2gSHJ4=$}dmA{$ zVeT?S#3V{^5Q14$pwJa6vvMT*kfo}xek@?FK-?SeFIu*eiHD)eTiJG64ETy9hAD$?^x zWofLqQT!75i$Dw|uqr+#BRNjU<^N|5fc*y&2OX-*`0v9N2z$X@o!Bq_k6PLkdNAt0 z5-OT4)J9aYiBf%kQQ`LHwmWO4Z!NCBK34l+`QV+ELytBsdAxbqjjhY>?LP2e$JXa( z-uvYEj>qGs?UwZNq=dZKc_qp5uH>W|nWQCC0S9bRmK-?}6cmUkFj81cVx7OgJckAV zM2=;q@Xhy?oaWZ-H*naXvIoA58$`r@uPyMTr<$jj16utLyMm8$9=O*9+S}THN_+s+BdeI4l@2?jNeV-x=gU-9ey0^}o^Jx*kDT z;Jn`Ez1HNSUC{t&31?hIXWhl;eFdl8n1B|XXBAA2v0ogFB47bsszL~6yBIWFt+Cx{ ztGwS^|Iy6I=bP64;n?wixOC;u*Khsn!zcgk$%DUMJNN68`@TK2od)n|X6W8j_uZ-X z+oO%w*}?QxL5h7aPy-5dsXcVAQEURRrud-FcBayH%w2laT|gkgVMh*g6-tX;r8$Qy zN@)NL0efxvTg&hWDj?Eh4Q6~r88m>2T-CTv$-iZXB%TIfOp3J#$2W1kfZjtCC=H-2 zE%k>6U`dtG09XQJ&>L+4Bz%F?^V2w871-0#Km)k3WaQ95-R5e~`H_L;k*d~`;$nW} z;$rMd6<$MFm_(yV+3N}~!lXp)g83|*$p&B=z@;3tM`VE|2&Foo5j`d$k%7RUligUH zKkYWJ_M4E!qO;u`ECpv@?#x3Cu-01y{?6t7RIeXL2M&x+;qK5T!X0_C1diqbzycx| z5+??@q4a=L?QSLpOrg2{bE7Apixb`DQukqYM$J2E032R$`{5jHU|e8yd?UwEC|J zmaPhyU;%;u;QO{BXkO+s!*d1o+EH&k*5iir^KeYqt zgX+&5fEN(>&uM?wNpIF6d&X9?W>tZ5N|%a_l(^-kYghu;sub7_;sepnQKrxUdh{}S zKz|lyaO&Z7h5$uhX5vIn%5)}{53*&sx<%QAi%UF?Tg1-hZhbFY^mv7UD+~f31a+Nn`;iF=i4Mo z6P^cg(u@VkurssB^GX7`VX>K-Eh8V1pEDV8rX-^1lH@tkOk19#(bs9o$Ti5bi_&t9 z8D_6760p@da=qb#N_)PuP*LhBt@fHC&Y~(;VbEU`uxQL?O+Jhucj zzy_ES%sZO~yx#H@T8u(TQdGvsa%EWs%3Pza#AEb&jDAOnx7OVp^7qsS+pFyj6*-|2 zjjL2|hAdQ|GS%CI6LsAy+eSyd^+8=Bj5kf(TawuSGn`#C?Dh}3D%y?t)w$ZTv?NoS z3^jmXpJ|b^2#J-vHIG?Ggc!%iWXa|dVCH(jf0_W$(Qxq>pXXnou!@6vfp2KC{BKg+ zIm$D`zKanX;tZ0<`!zBWfET%|Z>=7Ew5t2!NaWT``~4Ne_g7Ee-8gY)<>1}D8*d-J z{Pf((*C+OVwaRv=Ft!ZN)!+PWadH9yu#Winh%6N;cvnWEkoy&AsQwU9u;$14`H+Lc zlykr;lGB+0Falx%Kqp151Sg3$04gjeTK6H$P46f8MV6{?NVQ z+Uvd5SG(8*_`!eh!9E`{ovF02P6u}qu1cOlTI^Am0lD>i&Qdx74FI<|bQn7;@>iE= z)*8~+7t;U~n0k$9Wet*~ij-KRB*B!FKm#BiGDkvQqX>OO@MV@@%o$HKd@1@$uK#IL zyHrX8h+08FPY}WJ32~!7*S5OqbAz4lk9X~C4Q#3L5~s7Xw|&&<1X;o`&V-*tY)sUO zD!K>Glca(U>Eq+F5=GrFk}Cuvg!c(LVd8?Lsqsh@;}g*m`?K`@73LWa3sTdjfKfC6 zXq3JZ%Hk?dArKIjJK~Pt;Rm;2<;xye3;~@kGQTi`gBVH!fCkD|fP+IPHVj0y2z6N7 z+y=On5Ox;;k(dCQT-5sS{rcxjo1+T@UXYkYhXATSbw67Dc^+&=&*jB-a93@`UJCu( z3s1ltFnu-_*cMUud8ZACW>9PA0Qz(O<2$4#(rlo&LjIxpbC!5YAcL;J`L5Qvm-d6a zdC+%bvJ#`M*Q@JZudD_9;nx54w#Zjo!e4Kx{pI$?Z?-r8=;^Q*OJ^V;pq{8CSfoOZ zc)nN|_u8+nXUo7-|KJEV5YyeHb7mGr38S&niL#}7IfdT<_ScnFTHUJh3;n^#bD^9ldoo?TdDlTVk_T)0IO-;;Jry14Rd8x|mB$>!VCqZ`( zA7=u9Yyja5=mt+v#R5r|G}n^ntSIyw)tT9eDzeud1ul;v=q~bC=qhZo(oCsAlT-vf zzs}WNV{56i)z_G-Ds)CTnxt`&Ap;##us>&pMtmyPac?{5&=3%6f^+RW^~C~ zGUChgOeN_#*=gw|kVkc8;fi{jr`_joZK)k;s#?@iH{0AaQepN1H@PKJXPVrUBFll6 z6Ehczox)W;w##H$URygG@{T)9y=4XAOcgR5n@s6ZX&`1~$0Xut%@v;AfFdDAohVWv zqvt<207^e0u0I3`#3!)0hESyWaq8+C%k6&C34i%iY1UYdj-07cbLrZ;-UsX2@6Uv< zj(0p-KmK^bl}R7G)prz9Q&;S#fNM5dp%(Z0_o6ZXp0HvS9#h(TM7l@)ykrkBC z+KOl!z^>;(XC*_x)4po9zHokcG6#SKeG2nuy8YwHR@MNYPPhMbNzYfy`o3J+`^mEY zFINr=O~7dL7fT1enCatuwPfID%X)sgwCmGF9W)6s7EE^`1be=)=d-1~Zx(e>{aGM$ z{ip83D;2Dvk@^Q+!P~7MQC?uETg~ok^>(iC5dUHNQ~g1QXaG?Zh!cf?u>E;IU^wF| zW%tVja2_|hu#JeA)2_VtaRfpQ0I_wT@y&Ga*PE9KKe#iee}CZ$d*FY4`1Bv|-2KCa z3%@+DN0yw-g#cxl{(G54FD}AyJsb@k|gLOq8xfpG7W%?zntU*{wNwi^uCXsmtY4a36dxmI2r&1 zq{>X~q_=!|z(Vi~j&GZTxMSMZ`-;hc+~6-FFZXccoTpn)_1XSfm_O8dh(MzB_c%{> z+Qf&Qh{6Obl*8SB&W{tg-yU^<02&ga-{$CXN6G$Cn|_i1HD~T7Xg_mX0g)7s;e<$! zDUU9S@sZvefhP)i)U&V7!8-=DTLMO~Ac#E}y@^B@;q&9f_6LlJqAw^wOKU-tTXNc;3K@=;1nJ0t@>c3>gH7F$!zeGHQ_He)PA+8=@;9Z ze!Z*dS3B#!*;f6_tu?>eR{xtF%|Cj;6@JL`a!f3Bv4x=e3p?nE01beH?GFv$&8VH~ z|Jju5s~JB+FeJff!QPDdXaG-p?RQ&E_u9<&yIo=f?9N~UAPH|*xgH3J34k?kRZ0vx zfXbBQ2DPeACTmDdX_ZNuWNB?m33&irniSkXhjX<3I_-Et{#2e}y4X2gRy*tISmJBh z+Sqz>xK-q(1(pYWpX>|33%j&T9v>+iU|J!d63>85Qn3??`|0wj?$|hF=8+6$=ux-brXR zmM*Cc&Q`f5ouw1yCB3Bu%{jRtB*EnB(Qn91ju+}P8h|P(j(}nj0PsI+0Q^G&OJz6C zuL=|hNe=4DgaoHXb#*LqrJ-Q6)quo&vPeH;&h9NKKR7t{{;2!PpySrU-X|L;pKMw9 zaO1LD8^`bN-1+F(vDa5l{p{3=8{ycgl-Mj`Pn`l$1i28X)Ki+X-K+yBdzqpwFJugB{?nuaRcEHIxXy&o?bVEy~k<$dJzvJChL29db_*CQZ6 zI`FW!>V9YC-F81urVv7XFW1@tb3lGztn#D*Fc#3RE>u}KI8LAQ6}=xQLH0G53MqQP zX`dOYD`ZfHfJ-6ct@;WY07RhYqwQa@t25K+$RN)D6vE6s0yYfbd|6;xKO1%sFIs8!B z149HtSVz(49CejY`v1KFWHSK(0bvobu`GLwEe~6c#YG~nH3|XQQxo8BvHtZas$jMvRin0CdT#It%rL$&i8kmAL-cJ z9-JyG*-}@1sIPNnb*M_GEs9xCOw6xD#*bf=hX&dM%9NFu01CtoKoC7ited;|ivR#@ zYZ)vEt&2;5ifT+vZY<0M|JhXI1S^N^zop6yPO`DmusmSHbB${?2K}f0Uk!jbuxJC| zjt>eXGJ(5%KtRX3{iOBM1K!AAVx*c%fJ;N&xaLMQ+bCxZxq3q=7U5%z+Mby)cSQ1n58 z*k(sRvpFQPy}0Zz4V1z3Ut42eRFT65m;r)6;Z%R<`efDP+3=@pYJa{d^2^QDzunpL zyWK6n-`n`RJ@vocS^Mj4HNV?l|J}~!AKmG)f&WAs029ER7qk!nzaDjS&7Z6FU_q`= zr+jb59Uo7+Fbj$v*2Rnq4|~e*bz0DZkqjK&0i5z>A9m_@STkqEOy>%=6!R>zMyXZeXg{Ry( z2Mn@BR`n7`;jG&}?F%w{7I&-Am-QHj7SzHlZQD)g%Qm|WJFdm;?GB57!g#Rm5 zl9(8uAc;xQBq{S{+2-`Z5@mKqTv}#|GVQGxyqzIv0{0gvHPHqD&_OxI4HU*FLIGSH z#52cgQs$X5424<)Q80nhnu65g?9_ZuS+KEcw5f8qB{10J>a=H7l&W$WT8or&u}7uu zi)t(337)P^N|Y^l2M#EfoMf_#SoQ^RXb$+YEQt)XT{=%>>JsN$mRam6DbGq$rN>J1 zVvt12T^g-Ro$b@*G!$pm=O~?Vf&w9#KR+cdL6Vr38kd^(c4Agcnk6lRw7U(I&?baBULi`WCV|8%zV%Ozc(FX{iqnsIi*pU(7x z{{a5*^7X3GPZzdwezv0bjbMwmd@|F?D8Q|s7h1w63)?wQ2Zf3_Dl~i4A9~yude9xX z+rb3jzTQxAt-c&F7gv6!mMCCFSPjh}de{Nb0Ej@K0n9;L!Wa5oTmDHOKl3HvLbyTD z03LNz(g5B}kUqcgS35WT{h2fWcqWA5V=AaLzka@0ILXyKtyJqL!ss`IpsH>@>`C%#ZLINuqHJS zPj;w07xN`{04#y`k(X)C*<#J#P^wu}D2q0LCafS*;<14%jZbi4^_&bVUo3%X091Ue z-*oeTLOcr%z@bq3lqzdVN?~jq@-Axh+>cX|Hg;ZJK@Jem+1|DfMmi66hNsF5D+2B# zy`7tyBF%+42Er%e;|r40gsNsvl`>~Y9!vG7zSBRb^(9IbE8pnFKbl!BW(&wdC;(K_ zj#4rJ%m}`yl2GX>tYGEv<(K=-1OTA4LivUC_dh~Fpg=e_lLkW@h}t{|E6{d<_C&MV zvE;K(r-9hXW2AP+lXp&wa1@RdcxltAq-;1DrR+?D}@ZlP7DbN=0_}tO$I7GfI zbr)`_G105e4g{}HR^MAx{c>6Oi*>bMZwPXI>nQra*%AJBN9Z@(D!2R;{Id|Y-UamQ8k?%0bA%{%mXcrY_E;pMe3N4f7;E=Jptt8NDuIzP1 zmejQlTkG6XLt&aOD_t#1PEDJisC*|8tY0^e)Vd6Z)?if?6{hK7`eVYAr^vt%G%HQX zOu+S@1L$9mFSqcNh*x}k% zWsfv_+nXGXMrBEQthmv0$Ct&$P-L+ZLRm%w;DQh9MiKXpEIw9vb7Hh0kZ)~oD+Yswh~XaJmt?Uh{r@3(rG177rn=>Z&w|6eWXdoxn|#dPymvmIY7 zYW;Mo>9a*GUoGwYdU^Nfi+Z2{eZ72GT>oeLK3&qsWuFwrj~2C4_rG2-z!30es)=Us z<&uui7q{|xg4((Miv~d5@2Pq|7@-YB8vxax(6Jkh_A3!94S>G}z!W`zWi=}btg4YR zoDZ3KUam6W`_CSjCMT}^L`(XN$DAeaI!jLbjRNcnl-#W2PpBkn_>-y5uUE}{vu)!a zPoDbg^}GLg|M|bZc>S+WU;N?5jqlDJ_v4+IMaV`qV4W5BDLzAIe^>&u0N^uhfC+CA_WhkOc0>diUn$U@Ig5YR0EgOyHGkB!nH#-e{c}hVij;Bo zH`wR_(fL69uIBG6J`DisXOsXcQsWVY5%AmY=Z?<>pDRBvu#&_QxIvs~1Atr<^@`v` z>pq9N4-trdz@Z;(^cLb~v988B8?0F5x8nG=(qD{~^qDTlwXxu%ncAmIs^6@r{%T_c zsOMK(Yror7_q!d{zuy)9!=CVWJ44@YtNPv6>OX96_|c28z>85o4dCUNPYA&#F#;0c z{>KZe;ehgFH^47_vZ(3}?9WA2*aT7i=>%v67y@vUW&*g|QAQpl)gK|)akriZ01cD| zFse>y*QJs&5mXWhnN*|II2Eb*Lc1ghwW$&s0Ax@IplpCg^7KRbMa$ixoo@Y_G99e& z>EfcnO#QH4K@iwX9x`C<8cXT2GTV&BIc;#?_MAkYbG>C%8?S>yCevm}b@}RI zv)*FX8V&Ni;#6%;Yzo1=2DPQy)KKr}D$NPlEOi}i3qyfUkF}yyUs!2!SDPwvmC(j1 zWib+EqD&SyUlduq|hOA4jip>N9OhZDB$N(Js=s__V}C87}{1v8E(B(N(0Y zY8C3C(vsC7-=_M?@d|T8Zgwa$*OaQtlcp4^70^1N03k1c<%!f8YsUXo10b>{8XExq zBQTvqtjsMvU^M)~snm*7BO>yJyb5-r~PFIdFH?(xv*S*algj(Dzxp{oKfR(2d^+9n;ZXJGQ%zqjW)sl-@kGO?3!AC_zgjc! z)2Z&yrn-KyVnpI9{kz9jgOX(K3LpG1Gw5A#pn$~zqgiS)Fd3BWo%w$JPr7-*K z@}KFjAMHf^C1{}H`rqX}(-k1m_js$g`$P1E?;mXdgt2@d@X{ulK{WM6xILrzWzpK| z--lCworSKz*Nfoa1{)vpr~T zF`Ymv#SoMeWtSogpy)?8zykKEva-bHi1rpLVY$t!W1-hJ6R?8b~98`ujbt-|edX-OegX|DX0&{c(5r_uE3h-&XUdoee*_+g<*6 z$oY~a$jM4deDq%bxZn24;@UY}DEP^uFzT>qFeJGDD^>#2Gz_Ez?k5A@hrOPMJznJa zmm5u2>rGc{O3(Z94wPy4mS^MOMzUk8JfT%1Mg8lOr&MW`^_dz}!DLJ~tK_X3c{6+9 zybN-K*#`HjQ%5so7y=VTG?|w^ovU43prh_D%vLSV)y$M?HhD^RRNA+J@_T$!25U!F zK0ZI4g(Xb}o3FUSl4mb3^w{$q&b%^es7GZhSDJJ&+CoW=RaIb=Wnr3zm4CjVE~K#a z&5|priBv{z-?{R%JVm7?D{Rkn`SPs}T|rJfykjmJs$6BEG0W>IYxb6f1J-ayaG>4a z<1KMwTn=|AOO-+7Z>7O$(-o(^6N>=@^nXEN#-wm=k18f#ew5=x(T{FZ!F(7CsNG^e zoG4W6d@;%ZWN5hNlADnp_jX3i-?X@^B1XG0MVaw-3~;9-H^;3_xAN!Ae@9?S@o~%n zXbV_wQ&=MM>DLHm%YJgm%iWMmH)Yr?|2F%5uA8W$svpND4_h){I* z`@@OO0i3J_{N>Y-t?8smn)z=-i>lUVKVMjNwYdO6#$sFgZb#9LJFe|fOu z;cUYPYr3w@4BT9{`2A&V7bfejZ`^c~A(k^OF&?xMfwj3fJmE%THkKZ=%| z3z#{VD^1tK)~lhidkv1qt?q{{_D8LbTM_dEHUZ6EL}AZ+LQlIYU-Sk)8m{HM8Eg7{ zVaHdqJ!}G42uIJy6D=@AAq9Q9sPpR;gKP!3^8aqr)TfKvzF6MRz8CcW(NN@me>J2} z$Ul#V>z+?FKOU=pGFta!xaR3V=wY|#ey8hEr~6hrfx{JdJKXm=JyHCJCmeqgD6g^v zuB*5X5vZ;LAsC1Cz=crBBX9vsb{Q z0+#B}H!bBZr~mcA%YVE7^1JuX{^t0>Co9Jv&-S7KUP4ll%Hl99=iyadvcNmRzJ4zInFmDYpyqB-_$-hqmIk_>iP z^xKSDT={0Rl`y_UCU9zM>AZPPh0GzB=40MDe?iWI*kZI-2}yZW}M$&CiTUDoIsykd+btf&&EZ|Hy`6K;T4FB9#zJ>DFl? zx!N&X9#?+hs#as!>@Oz&7DI)Nl}5I~KsR&vzW4q9!1;mDoaq~+PygZO3Lt)7M7&p< z9q3=If(7TtD||g$UE3S@g7CY|!s`tZ(VmEjui=*n2WBw<76ctA%I2hq^LZf~ZWYS_ z>OMyQ5JPv>*;zd=Cbn4cLEH@XoIy1rXlObL1Z;mEFyLM8fNWHbw+~ zX-#D*j38VeV1LrmHezNMW~+hIk!7jhKI<~=s4@{mbFRDm&amUfZ0PlJ0sj1KbL5+C zwc!50-cj?rJx#yc)%e|>=5Mxy|FFB^_d6qh*j@kYO`#t>9&`&L(1;ryz%vBEV_q;H z@uZE+HGq#73S+qM4T6vdkIjKU!=7h@LO=Yl+j+m!d85hlL8Rn-2v$SxaeMlKGW8x? z77YLeIpBVGrW*erZv7r?%+vu;+VhW7)4C`ki&-&0KW=iI5QxYtl|tJZS2!FsdSM4IlcItOil z>d$%AU-ijo-Nz%5R|7S#haw-1)PFM8_~pX(UoP$a)$;ydEa~}tQ5T01;ghL$3_&3X z{bFT56rh(=!UgElrQILRbWrXek3{BdAw>1({pkqTqq-Nv)lYgWA9T5C05@C8xdz>7 zchLsURhFRjy;@_r9ucLVa?gPjbR|+ARRZ%o?aAd31U7fj1h5Pc4sk4LFH~D-0ANJ7 z>TTB}Hnz$TjX;6E*|hY#_xAq%<@f(``}SY%J^%>%hucrSd;c^I;OVNdhl@LJk40_{ z)n4y!xG~uL5Ea-!?XBK0haPaL)%!t{>jLY+paoa$xmX1euJE3x6r;VlQ@qQZjs9+j zSLHd7(082r=TCaV8;J0d?@?GZWv8o-lbqyYBE1CD5Y=f3|;fI^}Hd^8>UWLj(j z0DNEv;TZAZ7#o5B7IFm26Df?H+|`B>gkV5G7eo0c92v))SqB_Bt4cLfxx(;=34lNt zs=r^6=94B>Nt3Dj^@xD9%C-z;f4+_hU?59P16Y`sLG>Tz!}K&{0Z7A^7V3zaT5Zf- zUsSr;Xk2e7US~Egw_3Wg^F0!cBTetnmSz4#o*$zwSfIA1<@t2w#qr4#H-s~&=ug7q^FQXjo{ zw`Qe}=Vy(Z+}Bp_d%Sb#>h$Q%;mGr4BR4lKzP4`Y>XJq0w;#Uu-j2`L)*LF*xfA~P zXoRgrzdo-JsRqCT2FKnD<&0{BXq0B+%$+2FWaZ@*bncDKHqL-iL{noXX^9sVbs zftP)u*MrqOpLA7zI9N;drw64d7`Xy0gHuUjKt`&+Rtw9|y)nA5@ch6F?i_Tf-IZgDNxV5EB4!)~yCR ztX5%SI@tKLl@mYTvEh&BPcs4h_5P#(`tr>`JbwPiOXt2ledxvd$$N{MZ;n*o8m_r9 z5V|6sTtAc)xd=%E3;-{=&Xmo=m*ICw@IKr~{3yc&7{o=XQD*h1v&v}W(J9)%b74+H?v0EmPH>LC;?FK#{)00huVwWcCP z#Cz#u=F;z;X?fOERSw5zr5SYP|WuKGH?O2kQK=P`N~ z%9SAda~gs~{&04@L`C8)ir84NfC#5cCI2fvn_QaYB&%FnlbXGu)Mf!0EmR{-03l!s-scnknMuntGn!<2bsgea1QsD-g zt`HDVx~fqttf5=eWqo>OuSSY5&}f#D>;Gi7dLmmf=SHhWCb}d~z1eJDS6Z;5Abph~ zYgt)7$}-a1E477nc~$0=;+*)*g5;c%l)QqJJaxR@TIvfHc_IdnMWQjpC!;Owt#A!k ze6{MLk|bqb0@fmOU9uX3PlMi!vA(yYvZl=EFRFlGkdCoW!U8ouJc+65B&AJLP#5TL z?by=Vx-L7-keiTc%dq<`E%-=l7Nki2c0sXRN1F*0S<#mj$+W;S^c7@ZJOS%@;WND8 zHUanp*3Y36Q2l{}FsWv#D>A~8Q;-Mj z;W90Gz9jY?I#aX({KqyBZ3e1&DXgOvvGbMaaU{xvE#b>8hE-<8qSAtyvW&@mj6HJJ zHjKR5wf@nHhRaJQ@2=<~hvfSDC0900-QRWK$?5lB?;5-slD9LY&-Wxj+IfNgNZe!IaATZVlpFC0ogLjWic4d4-c&`w4H|AST+J7I@ZY+)I> zkK41~v*{0-()X3B_Zwh6=y41^S7|usExb`}e$eE&)98Ryim~16p@y%QkAJyg`R`92 z`^(K+f4+17UtYZaXD_{ z(j<13f;}*34+<}kA0_}GAUXl>dl~FtUibj-6+gC>8}n z=Vym6O^$vr)V#)Tow6A=)rEJqME0~+cNJ$5G6R>Ia8?etA2tD+*ackk3sVzKiZp(Z zz<IBb4%Hv<9mIS?z_6{_0wNEl5A1WQ$8)^R zP7i<&N(%hho+t%Ku!D}ZRsaEU#}{rtEj&FU?s0Ac*k9)+Lzqo3*MIKX2O6z&n*g6M z2!h~`muHIy6o^hB(!m-lc7~ZbL_{!F(sM~K!hm{Ptqm|LdgTZCq3$yf@D2pTMmM?* z-q-Ad@{jk!4gw%+9K-|gd48i{{nv=G0NpQ34pLvxHZSvA`DOv8P7hSyovM7iyy25o z)j!+R0QCRs?M=Vg(Fo=Lce{D7ru5SQzTIB?&8Fb*cGUiAWAL|IL%-bMV+UY=G$4k6 zxjnF8g3<#(c<2gzIM)OG(YP2Q!)O3+Mk_xa5Al38?xjyrTaOllgy!aP~GM&7AY*Qw zvOcwx>OWnOK^O&gnI{sxI8h{oT9SlxiR?k zJQpo22gtS|%`N`=m(BxpdZ!M~B{Ye zk$};aovhKv$+HsWz9KWqviuZfZoKq|20)}Rb)OH}H1HCI{y7x==njB3z>6X^mAm|$ zLxUjRh@AoK%(w(;a+*9|*f=vQNMh#eQj@G|71TP~1L3G*hKNsuM}&UOtJjBfva1w| zB{uhrFVvo2WJ!wI5pX?SHL){n+1lb9cb9oHGBxu>Bhkr|wP{IdWWIkN5Ecyy5dYKP zpLb$GU=?w1v7-*<7TuX_!rpb(sGPOr&YD#VP1?S)@*~SuKik%Qce>%)hS57)haPWS zeq+t5+qjbGu)Uo0llw&RdY6i;d4p!_yHKU|eo$3I)QDl#0rq`=dQMzA`z! zDJ_0To3=1pu_RBq1Hz9jTUb=O@`V*B`Y-PO4#5NkBF8TQX5bvgl0S_0tD-9|T08o+~A52gQMoBK{<#p4d|^B#c+ahM4Jg;)&mf=L`~Q5FNA zOtKtq`f`R1LDMIbji1f5zn*N2p64UA&xUKL`y95%=mVY)g;@YV`+3w|`J^}We4zSf zv+YhR>3EKt4K{Yam-vf?&HSyn>{Ic%)H4c1u^`@Q05JVoX|Mt28>9!&2?&D}a1e3_ z^t$eRmLK#0_P|KnP&I!zSpUV$(5EXFeS75KU#?#L)2%!I{Nm*w9zFT@^nHLD42(SrB-et?% zX)7QfW>v9vgDHDTm&SjizATjdsffQY{4vWUatlFjWVnEJ>Sou3|vB>3yq>p*0G%0P|<2}20@cj7D$==AZ?#MEiWqob+?)K() zdm2&j+Ewy=g&NQwfy8FInR$q5)8gsqAom&JR{1`#RU_6LUbfheP#82}~#8Gy9uu z3<|>h89UE8n@?`yNNQeyg8Vg@3Vj$-l00@t8hQJB#-x~m3 z2S+(}0CNt{W~w}OpEW?#@-w;yh@wMqK-X86g7&~$1^1_KvGRrf|2<4pZ2`+-54;Y8 z&ng>jfUWP6ifoJ@wug*|8!hLDf_Ep~kCxYbzBc^z=6bmQzunpN+g%OR{cm?gezT*7 z(*Nr%;ookn{$@iZcmHoT`hT|-B2X1HP}k!@?~@^4)Dn)XeY6KWAN5DsL9l>COBiu; zXaER+Kb;B^2ZmZ0ve1*>a?Y*h5*onenu1$(B^UiUr`%b4ZMwB3sujkJ4rN-GUPIou zPcG#!0dSST1Ar@ht4>Q&SZk&hAZR#W&zL!sp&ZMUP35W<7m7S#sy}yslH%7JvlbPm zEh|yb00<3USejdxt}BR5)y_}TYKnvYwn|^CyP~ez+tSxC*jv@^&9e~YNNzizKb}9q zT;rfKRGC?1k!!f)Q{{6dc?OLmXliV7G*=eco%%wAvTTXT1HiaVot&7Sq6UaGq~{kV zW8$f_IlG$M*Ed#;m#9igmBqOdLw%qrGc_YSS&i-&K`$#-dO*fI$%=S%zll7-^f?(4 zjMY@i1X1yYEd(@BY|WFBqB~)s5sPD^JGT&?OS%wu@HohtNti;z3xYqxzkzf~O1dP; ztWx;WwIxzq4@K36Uj%`*Oq&rdC}=Dys@G?(a8$0TY^+FAl)U|SeM-suosH1!4!2nj z_f#)*I}ijY-~O>CX}(sHLNv|)ssSLl&q$Ulljh~b#V+-fUud;s&_7>#TDody@a&@_PiE$;g*&PVOvw*i14 z_5qwXLp4-?UOpYGM;?q`jMD$ncq2Ukp6Hh|?eu`3ujpeM_-L}})o9(zk;unW&7VxS z@bYH7_SJ9=SAL!^25TPo1mXOE(y$7?-{HB{Sbn8OkbiJTHASL->n$1pGbIfJj5Iefmbms&m;2~M z_mS>4>@XqH%-T(>YO2>(SFrq_3ieWKkaS&)#eZv|DUh*{eDOFw_8GgU^Bcmh#RPz1|Uwq zhaNB&3?Lf7o9QssACWM)5M+OSk&2VSe z;^xNwsh;V9Ky!aZO;xrvKVB_($1?W48U8|7sL<)nGL>tx%nCL1e7!_hnql@EYJ$d^ zh&fcD$}LMp9To>Yl-MtdV}?Xqpd!RhrgdGpDcVLr%BNG_Kvs`Z(J zW@}%$r&d?&)Mhvq%=aX{)1_CPT{3lh$bMt2_Go8gzsXpf6eoM@zYriyw0-ox|DPZr zmI3+&Z_DH07bUfpWS*+C9`P2gFy)LH^vlh%&934_PW$0y>t3DNdTrJ4wG~tMb}V|Z zVfN9%9Z!#+`s%{vuMaHwphkz=Gd@eSF}_EH$2e@$RPcTR`V?FH{uz$_53kAQ=GMVBiLApX!} zsIxq=TcGqK1-MzqP2UIpL)m>q#q12+Yj)89fPkKL2cp;i4+p~B`YHWiOg4Q!(Z~zh z;GZq&rS#JPe!93V+5pfB{A$%8k}*E{;Yi)<(fZF9wxJ{A<;76w`C#zHV0f+#)Y1U% zbp$w1`e*~b8}(MWJ>XHexly~BNCci!X`tetA_q87D)4=*|Gl99bB@qhoVp6Q{?h;e zPQ`H+h*gKT=t^bDO(uYF*{udA6jF8%xKDqyV(M4>cK_+zxj$dMNjm&rA3ebu=+Bog z{`UC(8)K~(pr7`J?+i4MU>uzQeyIKcL8ohNM}x-8jb6w<(KY}O6kPy71j2bKjEjCH=((|)qQ?npz$NO9)UU}$|^-G;CW zlgm&hW-5smObi#yhi0lyj)fA;~z{LuroigwrU?|;!d8E=ClT-SNvX^<` zN0ws%2lxX^k_NEeSBU=)Vqk9ZNV?ASSF!*&)`96;1*QLdulH=XJ6iW?04GTWXt$r} z^9uoRyXRy(PhWHg@NQ2~1UGj04>sBML=1cD4fFsAph6PdEVRBf01@WS6PLHJnI*80 z{x(!V|7RSbxKs4G?9(KEXaLbsfa^b>k1Cc~AoJ(Y2BOp;@&MNRjr56s{{kyyP(UGE zfUr4QTkD1egs~mYMOQ}xj~52;{P}2IEx11y|6gs7{9$j)?{_zR!!>`0XaH<|0e@%! zz&?N6S^L|~!SA*+0R-6rhz9U<7^<01$ie1zyg)#o&P4cdZY*$%;CPW2PbRScdB5qi zDbJ%W7CU`5$=ooMYwb2W;;14Kfu1|!Z_Z!Xqv zEXY}xTe`By+o|&wB^dIug0-FNCPudpG%aki*G>8xdTkz$D%X;lWtSDhNhpk!*5x`| z4H0j;y}HP4SLjU%Dbg4@%+63nZP;ELH25s4y!`p8xj)7?U#?D6Xi`{3rg9&XIC z1@lwqzeVx}B24yRKjbjMHmAN zVBDRTvBsiWZqyAJ>+c>p`0U8$%gdKO+rRVqo=s1euY7!H*MoCszr1+%o2B9P+W$-S zw+rHlhmA{4i0_ajE4=56+Gg4Oz37FUb z(*X9CWzYba03ZT^kRXpb?kqwT3>Bg;13bk-r>pXAlM^N-4FEDIJkjS}-VggKId29+pN~bpUfBGL#jT%?w?GH_bi9d` zz|ScC)6JhwG<-H$PkqM?LP*A@n?Ho}Gk4{GK2Y^)F!Z9o@_8R=*rBI=RRHu@03ipv z)q*d&`*u^s)mk%me`H(?D{QK%{?vUKP3*LJMn62^E?@$9&&C2E8wluVdFG)q^}80$ z(Fz?6fK>p!p$PpUuYKfF(# zB*QQP?5W5jlV^v$c#FLR0^V9%;gXV!hSd4t)cEqmSd5zIy#A9iSP{j}7e1iL$wi5f z{o?_GSO#DVs*8CGm(Z&0tg6h+9^$JP%*WxGFV0R*QqN1!#m%FLw;Bxl`kQC~$9ihc zb^4~v`OCsJE33ncD@tY^#Z}qj_GXc$X2!g&iunn|W!$UK5EM(~xiN_hlylerWL*jw zko=2_Elo{f)6ku#TjDfssA?9eo&^`39HRQ_>$)sOCUT5$sf{6X_IxAG+b zK!87=jMu&%34SzI^}OE;;{S5c3-tfdSRktZ;t6Z$evgeEG6z42tF6{EwFPG*B;IA7 ztH^rKsM}tgF`|g$q6goDMEIaW?n{#dM5KjI?Z})M&`9^jO;*mJam5`SGga z40p%C_WT7ITyJIZX|VE(6ln#7b|p#E5|g>blQK_4J90Btsd?-Mk`lNJBL+qe7CpQR zZ7_a5$!Uxo>eQlXp7Mt+S zTPkU)NDYgPq2=KBAhZZ^353Y!#w4U9sLk5Ub4?&BMN3SXgN3;(a?_Volnpp^tJ_*0 z9C`P{eZ$YTPkwrM^X)x5uIyg>1PyRAHX}>F%B=- z{zMhOL=e*tp7sRpwK^YmxNbLCZ#R_RtP>Le`d(CEXZ%In_fNR<#3&9GziqK)9c0Pm-&YgKaQ24&T@VvVKsw=ctgkul7tI;z*9&G$* z+1T$7@BZ%8(Z5`|_}`yA{`1Z2e}DJMzubTD=L;u4TsL{T#r|Nl<_eJ4a4pZPm{Rlx zuQWR^)R&V^bFs#H345XjAq8L+93=u#`gsunoNnU*w~;jfiEP_V>Dw%scmWZ_1e3c@ zCyU6EovF!XlC)gl$N39H9t$SnsVN!B2{7@o{ABB!w_qMHeSUI$X;M63Z?#J0PD#$6 z_l|ac41*w$Jyo0iEvtgM{QMmqt$SPRPxiJR?yhIPTxxfn9G=A1hN9MIu=pgh0%;oV zjc}2!jOA;2#(rq)xPgW4&|hoNF8255n~m zXsF({vw=~7@GlJAJX^wo%fC5n2Hf8eD%w-;-4$`~tm6n1P{I8V8rD^rmW5oaYCKz- zgSh<=^FqeinlJ$XHb}0A8g1wMeAmbPk7k1(uMK~(vHG*M{$K5=`fh(c&u_NE_Nn{x z-ugf6s{QrmO5pzAY^vn^ep~pv?E(VgGmHX1y4PL)aLx~o9uVF7(gWU1RXy$ZKI(Dt ze9%SiqZ_&>KoAEy(411N;z4gYJ%AD69$^5jrpxul)75z#l)wPIKtsRhoH<8~y3NJu z6M8}UhwniH0Q}(x!YfH;n^c(=-1?v2Q5UH5q8_C?+(fxLB&yBq_30IrVV)%PPG&=AyK8#arw@rN->i!psu2 zRBy|+c=Ibre$STc%kcD1(b_43PT&=3yT3ize3^&&@XoVPZIBx>T(t&z>8p=n+cpERn%r1x(#kifxX&TOn}_+ zkcCjE{%j@H77#Y1lY0^ttf??PS~7TVS^L@P$e<;=P`TPZdwjR04o03v8@5kf_A|hoF^d`nMD^l8} zabxKs4`5A^7T+=Sz#EHHn~RhPfTMCS;RRih8#RK)0}itM2}iz&g!CI&1;Yh`9dxZ~ z4l1d&-L12s33%A-eBSAgb^?%}*X(a$?6i8HcUFEhP)h@N*5P9gpaC!nfc}3v)glfh zoE+gcr@8z=EAt0@ zB-{IyMXYnr2TN%Hfc_^vbAkqff88WzizqG{05+V=2V%eNEjr}Pp#kvux$iXpgeU8q zzu=rVp9XL#U}U(V0o-n@#MSP@$ zZ6_6=A|Dh8EQlVk*_6Q&cu}r=NSD^BPN|Y4!Q5qyG)MMNpp?@9FzKWLK*Xd0;QUMj zAPSg}NE!fqp@>!+kV!Fj%ZQ1C_`tso+6MbuoIWFYc{G57oz3Tly2u9}D$-6G%g#+K zUR`ZpQdu!#bp%Q2NDzEwN&GzUpXjz3`hyxYiGCnS#UcW^rLcuah_}hpY74SwTqR)Q zY+0%P>}Cb}UujtBE+8$7yZMQ3KRe#{d)()`oFG4(DDuM#qX35?;Ape;NMl(v&h6BZJ%#tK4x#X!)A$``Gf?Y#!)kw&pA{@x!HgP>a5e#jTiBFmR*j@7g1 z0r>M{;09N}Xcag*-5 z#AjR%2h?56b6401qv_&s;MQdD#q#RUH)8S}`Pt_1ANDtWySwg}TSC9zQ_uCE^Dl=x z5qy2SC5-n2&*(u0{N46ioEzIHWFD!tD zQGq!gLIJ`Jw99s*jilC+b5(h#Lu`OE&$)6B7}M7jswVU0U^{hkkp<6B140rSK&33D zGA*$xE3dWKJL_-XTw6C?k~5g0?MYAX&}#=&^05rXV&cFu^QH>@lh&Tux@F6IHtrhV zxV~$8Q~SW0s@hdv??Q7~twL#h`yGl4WeY%@U8^cdu1(PvYKlx*=EZGeTY46)4m5UV z6xt+mbxLZMJgd6MUvKh-OB}d?CjRYDU|z!Yl*dZUG=Q{hSApA+RW6TFsN$6dWp1ui ztLD#)SC$#7ecpi@Uw?ytu%%|I(cfd1W$ROlni^+osycJ#OC)b4sAUpGY>YZqMFSvU zGF?iBkt#buisuB2=-jxp|5XE!q5lFwN)n|0C^Qs3$QO!b3aD>oDv2vgj zUiCLT>Ko3t`dju-Uyxls5+#FSU$ z2sxOy7*vGSD2M7#-3K~n0^nUJ0|G`EqE~`OdH@aJ9{y{!*1I(pMu7*7cAkiYX$CwW zG`U{&RDCwm@TNcfwB7r%$N$k_)vMkB1RhX+uzspPt>VLh(3_#~C!?a=N3Z-;e+oTk z4)X~Lxxg6a5Y^B6F_{QQCxH8Hj)!edxJDfA?@;>@f}QpWz=t-#0)QSs1Hc7{n?8w* zM;rwx8$kb=01i5`4>@!9TlLso94XH`=F$s|m@9_{AbK077xj*tEq?NCaH;$0s)=uQ zuKn$iJ-cUKe%0%%z#0^qIY^mQd7(v>v;8{lSHB9X4N zZ74nPd_dl*&bcxCXT|9x{)YyTA2Xi@fI}QQ54TiOuh)e%szT~MWH6}|J)p35h)-k! z2xnz&YN|ib(L@8dFx|i0ZJ+^sFui1BgLiqAeX%!CtCpgy2A`>Pl zK39??@?la%2n_9n4X{U}YB3bB{$1`a0zYB>ix~qGz~+!?eWl2M2ZATv1?nf&|5#I* zDE(b-(Elh31oFd^20-=a@Ri*CqbC~r7)^qlLxkqyeB0d|oEu0Ch6Z|+EHK=m5r56G z{)Iyv9zkq$LG$Y!tZk#d|BMUt3>3u(ySCK`GiPW&dm4R$JJjZa?X$Z*2!R!fCy~X% z`i&OC`nTF9;=TMv+>J1^n{}7YcuE(!iV1!}vhaSt|N407F6R7e8@}G!^vmt_SUqF* z`KxV$`Sa(4Es*`8{eb=p(kDfqiVqiPQ-~9N|IKC~psote^U+Fb{fn_+^yS$|;QoM{ z^I*`$c{J>KM8zNVaGno1;QufOpad31K!}e!tv6atH>(YoYZz~{PjiKF#tyiQ%{S3-vURfG*Ku9UWoS-^OJLzto@eOttI_fowwhVQbPT#H1oYv(nF0oEn ze0|oYso=tmZL8lKS$S@H>i*=+u29t)uV>cjn67ZuW)|hAs8i;rN`Cy~In#y2{Im>2 zTLwjOs3_QEYu-9IvAb<(wXLc~q9fN(qf$HaEj`6mj;s>p+a#Q%=Brd(w7G!GVv>{J zN-!6=LZ#K#44XVwqe;S-IloY@g`+7;%nF7^ySvsm2Z!8-8h=G65x!W2YGN`fjMYtj zi_0)?emfysqe54lk)R}IfCd1nlanlmZ^~^N6i7c`gaLrsv1m*4-GXJU7*OxU+VXLES}CV#8*=GF`E}+;G%qCH!winThzls1ImVqAWJj zkd%^=m!!Z|8RQu z?a}&UVFPua@UM$)?hCChhJf=C+qoJGv6M6bY~W5+SD6%tok*j+9ieRB}KZy3|XTr$tOuR0Mv}z;oY?)cwTg}7YuJiaWo7hPOA*Z? znA*xJwc5C|$^b&L)>{l{exy5exFc|?7wV^2`M%d=IoeVV=@UcHlWmT(U7qMU)$Tmf zU^(7W5tRg=>JDHE#1H`OXHM|tJls%0C%_esee&KG!41U=8X*`=p=c=l4@X$VVea4L z6rTR|4kiG+KLzNIu}_1YqEAXYbHLsvKOw;Uoq>Hwgaxg)~QOp9SA%OHK?{!jAP=0^9?7TeX)(4Fb3M>AEQt#A0{j^$Nf#P{^9;} zsQy6z3;{U7u?C24gQH^szZ6{z{ODGPjRwGdpVH6s!^tquR})nahuj>h|HC0ChX(Ly z#L0mMN&`Rvzy!c@7<7mU;7TKm1(u{ciPyWnab(0>#RTV-C)LXnMsg(0S;oP#+Nt2s>bAw(`^WZlw(f~k9;pe9 z8e9$f{4SGuz-EK-Qk{`!Ow?q|$9`G-cx95T5-ZckD1F(E+R|{3yL&@zJ+#Q)oHD06 zzf@o3DlQM_mj{)Fa=dPmWfVTLe{*GWP$Ow7zz&`5OG>{)9 zPH;&WS4mO6q^HjHfY?-EP%3Ox9!%r;;mkR7{<}*AKi2U;s}h4+Q>j%|WvId$S(P%) zkrZQ3jjPmYDwHx=(tI$`pgym&z*3_xF4yFg>+-|J*7E~{_ZKx^8n3*)ZsEOUlZU(o zBf8|mcM=lg|4yHlNIR*^%NQun?J)AsQfiA&R?R1OTkL_Ojugn1`Ric=XVoZ>6ulqL zp2|;Z&6oG&rA`&9ml{h^Z(drrh%Be zH*cY6%U_T{(buND1%S&1jT;{_Z2raK4$u0hbpGGLBw+#oBJigr)~Qn1^bBUpW{rA? zKr{e6L4^-NnVuUlk|-JgW$~CJpCN!9KokOE0yyO;xKeE+Hk~6j0sjF4x>IGoS8aL5 zeZRv`19;rxq5;qbo^=GCw);VWfPg+4sHOot?QlQq^g!Zdmn%}^Vf74Dz34?eT={yi ziramZ>JtTmqI+OI^K78@QE!mL?_wZ$((Px{fEC1zi1})@i3#9?U@;;9ARs0H8UPRw zoF5JiAPNC70SLo8O9pFg8o&_`LqHDSFXY$5wp<#(33rZgiEz$|;OGGjj(a`T_q#(P zcWk2ViNLrFh!j6|rA#ACHHGjtZ`Twy2kov+7Ald+|GOVG~tV!_!mBO!9fD7s7$0F#( zfl7Eg&&dT)2`u)yb~i^(_qUVwvA;dkmz%q%wR2Zzm2L}kh&e6Tg~1>q0GuJ{3hy?QL8w0vF=Gn~x*|*?L{hxSb3fV@c(=|15QI0}yB+Ss zogTKzSV2(zVfsfq1lW<#3G)${q^Y^~;( zIMJ8i@2vaL!$JT3e(&Sq%11+iJ3X$KlQjX!@Rp+ z4}0hVa6q5;Q~hZJu6v!f8_mY+)uq@$ANT8N04MC3sQH%_Drf-hYQgYf4d9a`d(xzC zvf@&cp_H{Kell8+x2LWD-SL@);Rc{>kc!EY48JKdRX4J$bNEDW6Kd?u-jbo*?DmY3 z0O!U)Vw*17=H>l4{nZ`wI#tEY|+Q+)ll; zH#ezoT9hYd4`H|!crO2M%0ml2>_8Ae}S}l^Z0PgnsckaYD-bd zKz8DoGiSz;v&>vDSyZ-tZ1(Qnr582~Kij|V=D}^ZcI|p|;^ari`(8ve%k}B$e;1#e zAXCQ(;ZOR4|AV_8%ncFZ8Y}b-+})~l8I744c1dh$Y^*IY(V3JOkR(K8iQO5JzVsCA z=9lHjfq<9*c3HAW0|qK#0-%7h8m0Qv1EPX}s3w3005~4K{);)F(!ddOK-hFYV!ItS zvkZ9D>=Y=_+`%G(^)G9Hhs|!T{~r(5yy*5}9v7VepmGX4ryqJxDB1uR0;1(U+5j~1`Y(w8OaPp_Efq`vm^Uy4fZz+8&(Qba&wKVPuK#R%Vv@OijTEP;=>bf^6JXMOoJ07eAb9yj+}T_G9(k&`IG1Q4`# z(QgkQ`0w|Lh56_&FFyX4m#_YM>+)YO9{GCbl2Z{2*MGkLYIpE_qmv#Wl)w$n3w4gO zgecTGPF0t)B|2JZ=H-arNc^%$V0IV7|JhZZwc9GvytkI=R~BohauxWrx64whNrFsH z%%c{IA|4MEgZ6uJ=xjY8=Br7ZkTWuO}X5_M_Kb0Xco-JxfZ@Dn_e0KL{hc_ z{45FZCrJnb^5SA`_{tP!Pdd$O+y$^d_l8ZoLdDyBg-ifKVO#G4tHFbl+70jXSc{Fi z&+b&1LL&+8^jsLM;z>pr=U`nKUZL+bTImPxH8To0MF2p%_uV!hDUW-rO8J_7^<{_J zQ3g17*IB6bduy!(Lkf*CrV%Z~1$%@hpi%65w;=+E3d9;*IQ|RJzs|m`*-iDQ^n?H4 z_|FbtYqfoA4F;bTTN>P(v3RQ$!H_h7@AY3n^TygTEPystRUnyO?H6GH+ajhzUG@w8 zj$2cKXUnTUT3!3o^%(s(Li(h{|8AS8{=eH1p}5lzqUJw8-yGssc^9&P9TCp2paX5M z{cca=kEs5)x*ShNg1k`rKb(#{9Swal+l0>##T}#n$9?wu-4*Yj>=1;6Q{=)PdFQ!3OtQ@=EaerLqn5CJ0ko2r3ew17!2*X#`+>>TbXOZ z?pyDzTw7u9%g#b(qFE5D0$!IXi)8BJRCTYrhSOG2)nE&@d+U1jMq{cbEk#kBYmSr# z!)kL;yjqb;-Oosed6}kAr%F|63T2W?o1`QD*OFU?t$#*bt}!nVbhQ~Y=FB*4aYnwY zyuH3|HtZYrmsFLitme|@*3OOoz_2k*2WPa*)jhoMKy85~XI@-#ObTgVT=tQD(PISu z6FVolN|7=R%2Sn3QOGj^tO`RCAOm3T-B|PrbnA+u5OvRIXn7ztmk}daMqSr zB~Q`+WC8TM{4{Mvl5}ZN>9(@6CZarIVJ^jiSqbE4j*S{+85JwlI|A8f>z&&z`OB?Y zGmeZIi*C|bvOLgqYWh>#Ub`d*33_a z=a(7(Z zs=)5Ixlrdq0pidAp0s&hQSm!HkK3Hg0aSl_02^H{@&NiY0M7FsKcye~5JjJBK5QS} zaed(VYNX*we-%3bh6d3RIy~%w*#X>XwB3kU7y{S!K~EI~ zB<2siOFvmQjvCh?_*ZlZY)VS>YE)&(@lHjWH(gnj5Qlq@ z4(Ic^B`^~J4S=ASVT)-`OWpb5?vumKNBbkwWu~1?Ehnbh#~p=e0y>Kd;kf}fu?9dz zh|?!O`OJ~>#2EfZqv7u?!-@#1Q>676@)x_ywpNzzz-c*LN~PXWS-8bt42nX91+|CL z0|khEFFimAfP4JMdxB?s{KWj8>kXVC51`#e5&-p`PYOW*da+i41GE1A$P0xLrnp3R;!s%_zR7t$3xktD{~K*X~^?iTde8VCAKRQX#ivb z`_obof_dd~=76ADiAh;~O7f^Ab&E0M@^JmJ$%#b`LxG~uZl~>V(7&O~vbeBxFxSvm zT+v)?>9PBER=W>X`*+wK(|H9oYOOO}hbJ0_%tf(MYmz3cEqZTc`Ofxn_%JnD#>P^+ zJ2h86KUJEhD$g@}HO8U^8t$ixR1MCZaQu}Lxm>Q4$u-%U0%xJymmerpW#=Vl=1Gb@ z6)iqTTUJt`<{c%`@J?%U(1*uVD*%y6TVXMGb`I_i*Dtfkbm~;ORAFzM+&e&o3%t{J zl67e^8URXQdH@pub)V}$4FE|&6zGrE{b=duGqeP-AT|MP$x1aE6fUqV*mq&Dju+nU zfc0p-d!sY2Qws>2;8g33$}B@#Rz{qhEvqRfr_*BIXfNAt%OBCawNWd7f6>UjW4j-1 zTk&$~@U`K#4SrjH7A*YvikNw&Nz$?fDUDg#;cOlMu27$)!1tHHJ&l#d#Nby7B9xON zsV{e&YRcsgT$YzVTc}-TOj})%HCble-aGr?@XmX?HoV@w_VMmbZ}uPiaPOX1GtQ$% z0>KlL-}zf0gDjFauF6!7p7?>DV8z;@Pq{v zZ2-{;fK@QkS-c;vgpC&}i=ks)ie`$D>4q3XCMv3 z0ONzOg;@Ektv(t6$uo2vqU}GL9sYXfwtu>D?_VCi`Ik?=`me9w{M+L@|8nibcSkn7 z-{iW~o?w!`<|$>a^Cfp?yzL>;a=FEw#+?t!T|K7 zd9N!~FE7#30J^mj(p&3Qa+^eO|7ifit~_P|?0zW!|I-Fg5)7(16XXctgos*G*nLm*woxIVzXi!#Sbb1 z0!D{u0|5My#uGr6fd7?X6QK-9jQ6Rf{pJE3Aa+)nwt5S;dGlxh`@)8;ff5=3Y)cW( z+fJeP!SQDY0N{h21B@L)V1zGFH}NmR3KU;xU?R|exIibU^6d_W1~$6TH`(7FZ1o+g zH6Cws?r*Rh?rh z2jpQBu%o^V#Q>!r4ycHBsT9ng-F2RwwJtgq?@<~k9MBEbWsCgyo0?V!?JL}6>%78a z?pRyd`F_jYMU}8WKi}N^t6lB5ej@w&r^B7U1M1n)@QZc9-)*b=?bgW8)&~&;pbYqI zwHIj^@4!UZ!|{$*;ExB|zT4OGqsRR|Z2hAL@=w$eh31%8&wNzbS@EN_ZB5&`~5(@2u@ zD5PG6q*5cV)haqNp#Lj27i3Ct z73~ET9hrt%n}4dz-JmNhOI73cgMm+}T5r~sHhbC{Y)#dLfq>5BNXyd8rRqefQEPN( z`wNmwwexh@shRnT%$#@vrqOw2s1h=CX@vwm`bvYvN`pe0n<*`@msHmII-J>_%;fxZ zX}&Tx!{;6LTbjrTu;=*50WLPQbo8zp8rxKvXU&%7C{mPGN6&c85Flw{VzPSPk7bGR zQ8PG-JE@Z_CujrNNeY5oDD*$9f_aI)OXkPvVv@-1DoIynCUcuELS&GU`nM#}vs!4# z&1=t61?0(OB$X(EfD(!=HLW$(6&ht*k$qu_YeR9)ib7?bBF;7M|JZ0Nd^y?j$?A@~ z%j?cB4DYWgTauARKrxmKB9bLBr9`eGO^GG5fMwzmb7JN}HkJNeOiqkWGhdb;_ZDOC zt&YMC79Gr-m4?(EzMO>?GgRH1o8JB6!1ABIxAn!|?YDNV`S`}A7n?ed8dMEZ4Gk>n zYb1C?goq__P57*b;`l6a3iIfya1B(6i1O5EE_ zu5Knv#vXWmamH?o2qxTLmdSPauqBfQz-2-R!Cc&|g@AUB|6|}Ch#Vr2-~#!IFZxTO z69B%@w|S zw^ERNIz03MF#(_+7;nN@^me0zxJP1Vct%YruGg6_go@yRa`%S<#C>0YSMI_?mfT~G zLcsk42Hg=Weh>NQJS8Aku$x$K>@#Oj_j#e)@%4PTuS~=56-lTdMU_SlN$&SLLU&uj zj|S@CcYZw6^xU+X$sU3S!8{2s~!f9YZW+}+=vzsZ=sy*!&W0Ja}%3skF$ zbfa0S26-wLUSWyUj^zW>agUae?$jcQj_a5)l-%{^sy`eU`Fn% zF&?ZHa{yjIq^4|d@SPh8o*m$tFV?)r3GHgJA8fN9Xm_4&cXHFm)#qrp>v*q+aF{cl zZa%rcu8d9~z6@*Vx!wTZW?#gN+gddIoe{&x&$}D` zyr=08JDUHnqxDaFI(~~IG#t=fkw5N^K>I-qEH=X+MSB|ldaV0ThueSjWWbLJ#LLm( ztFh3W@q-T$z?-Sy%kj{w37(a3LlFZD1ps&dNrVFbe+}SCPX!I&VTa{vQ|Xo3!i%^; z%ryYENh^vpV>z-0X(F1>sx)li6n>>L0KTD=`{a^vYAi0Htx9>FG?gv!bde4L`o6O4 zP1cHWgDaTp2^b<3dUttxS%t3Dm2asnET8by%-BO~UDdM|Uss`}LX|0UeN#woNzF>s z1`L%|rBzjhJ`Z_bamti=u^FivQ@Xh#!(~?53MBamyNdA>Pg7?mDl-z(Go^WXs#1f_ zYSfx?Q?j+vLTgE&(ccv`*Ba9;`Lg2lq|7WuekeHMD{Cx~^LOxDiz5{kJ&kS4`-j&z zmw7Q0mByuIXv*u$8~8y_`u~yjmr<5pSGq3fU;XFwx#yHEWo9sJ<{cYjGh@IGW@g4@ zW@ct)&Qyw-Y@sC?%TQ)nEW2D)_w?xQal4Q!4pcFRt zGm-1*@J??zLGYF$834c>)~nR8VP?-vq>L&@d_QYtn1dD=OO3ihMV(D^xIK8X&9No! z+?@y?tqko>h1OJN_D%M`dSTT&$B%zetRUaL0%;PA5Tby*N~ep*c!QcjV2@2q^T&k+Dx2?tihn{wdlDV;1<5ZVI*%Bz4v1P zI1;v;2$wMsKOHhLHWAZ*5u5I(`b!Q9002TTX#>n42;&3*Kn#NFeNy#j1SA!DU;qrD z`t$zyNYx*BKoG!;2)8&6FGvT_4M+zhcn6zL*23B8zcdJXZH#WXjgEoTU+Iwi^-LEQ zZ}De3aCm0)kChwQ?%x3bW&LD?Jj-&9z_TQdZyw~$Tlz>K}Ax_5 zOP3!?IC%m9Xz_LhEZDJ(npFc99qNrZcW?lpB-cbl1RVhTssgbI;MM{Fun$1`3;72C z2+N8SY7*gPv>8f(crXgWEY&(OQ#XO+($j-rmd0C(nCD)6fQb88pkh^SiP54NMu;dgD zJni9At;9x&B{1W1whPy%>+Z}p3a_^@O1uaIxJ(ByTy<-tntcF*UaIz)fy9Nu6l0%j z18FJPOUn4=$%j0TcSNOFM=E~S-%T7T=9kbIf*~Ob;T1}BFx!G7os6F1ME*+pFD6Jr z2@E}SIK$WnTI$i>%*nxeUO2e_0|`9&B}cmw>;p&&V-L*2V0U|(;m?Lz-@0nwsm&dz4JKFUrf$xX=$b6>{5S*W* zZO}l44ESK{=cl;)4{*M|H1QWY007|ii7Kl9M=RSOOM>YD001&!KFS6|N_Iea1Q8KT zH-J+RU_b}J6bJyo4(Rpa7(^iKfbQ1Y?lm|GggF*3+a55}+E19YLwdAess^RHPN`xI zP_I(fQ}k6Oy~@&Iv!UN&Xw=Hv^~&)w!=zq48VF6rs-{ydOBx4en+ImvhB}kYZLyZg zbnWK0f!%F`huVkMRW|mNhr+rtp|dTOGinC_>V0($-nuq_L%l5?F6DM_i8+%=dqvEU zNSc!gO9W@PfZ2}9*IaDy82l-3b%i$*w$SDWJ{_iqKibGsd#zHtu8mK z?Q{SMcN6##&=b(r9S#pPcdQ;B**qAjH58~-c?wOgp)t`_;S8&uSY%Xd0RX%<0RRU5 z*aRU9;9xUH6tG39glq#6&<#kFAKod@Xs_V9X_a}pQdP!P-RMbHx^x-4I;>SE)w)5K zqfxI7smzhGKu~SJ81a3~o-m zGom5bTjktPp_z)6t?uf&xPI;1r#8NJb>C0d_q{aKdU8DTv$gGKTqUOe@jqoHVtXuQ z-ALv_0DzQ$#*U8C4;aw1Gxi;hhDXY6!xnvwNu4OouaXzG=@jkqf__!ej9E2fQ0xd; z5CaoGf)?yh(0nXp1^`Zl&Flaq77&N)Ge_)!5mIG6L8<;Y#L)prOwbqc2x^OpRDf(B zK%wUe7$60p)^oV>i}EZ~$$xzO z%fG+*&R-wg`1`|CFE4Gm)Z~58o~HWWXbn>RZ^HrYt-Rfyyx(072Hb3kQ2MVmMd$!n z0C4>W08VFoyCar;VT%+3!!~|}O)+XH?a>y-ieT>MItp_I02JqmNe-z*1;uWK98U-U zz@C>Yxc{;ePE08*9JrWse}4=B=I}d1{6}s^&&q)$O%p)>!B!&Trov8)al~D_ zRb2c<2hb&805t&a3+INLuAugsZDgc#cdC(zKLzyqR1=Hbn^^!j*Pl4k8{?eqi$ei| z2`UCV)Nx_@mZa`u_`{|9SbOAPiwIrGT04l0Uy<&c#ennuHPC^0UH~cv>j`CK?aWY! z7yvOo>Jd)S!XXX-7^-FQ3(cR3&y_zL{1T%N;D7||jcF9<00dbGZ0M}q)t1`c93bL# z>Hq-$^hrcPRNvK};AK~HiiCj6V@>yG8lPWMhx5;`_7DGR@4#;kK>h54@(vZM;avRC+pv@&kcWde)RKmBi~$|`pcQY@4Y!y`|4N) zMnE(HQaZd;@fiWp0RRA4M1TiWd?_k`cmT;QjwuiT@YZsGW%ME=i)y|3vM=WT1p&S-4R1L6=VuU02xIn0CxWO80qku6tB3 zR|Ic`tlMnLL1j@ysl^!1r_+UPR)A>WV=l^|xEZmd0*@-FsUHYbC7D?FQm3KI41tzQ28-t8|OUh}g99Y1Of?@k4m z4peVTc$)JIb8`q6<3C5t1n{fi!1&~PC_0RS0@ie}HSjEg5ky*de<(2Gap3yL&^B3; z599;?fRnfdnM*?Wp@6UkWpCAH7Z2$mwXEea9g1I=82FyDf;H)d0mnn+q1_Tm_ zL6Fn|fB`Rc#3}t^1DurvOVytjF8dUHjx-Ab10ElC#b5xj0UTiBt8m8P_>&X&z6{WK^R3qc!dZQw^04BAf(41qOu$e;GlwjMDTrACHjLOuO0k& z{pe3tPyTN2md`Gq{*TvQ`1hax^#AzvZ~y+*+kd%#<(vD5Us>LCwb@1L@6EQz^_I|` z&iIX%$o=m0&DQwc&h(v*)YbaX#ac!{0hpjLf8hR~s`MSN@Eor29!@yv01k$PgcBF9 zadT<6HorWdJfB6FxZ%giEuIB{JujbFu5vPgNd+JWxBxdEQT;hw|2fgp;#g@h06-=% zo$-GHKoOS@)&_I{40aH>EUn3G@9Ms_V($7_=gIz#gT0-nx*N_7b?)tKIXloY8VRRV zO01`SYI@duvG7xhcmVnUb_o#7D$RyouVZQ4P2wXH|8w2(^9*hJQXIxIm?R%=i(|HP zb+qdCbUjlY#{C@X`_+kt^Fv5{ad*HVnmayhAMpY^h-r@y0K*X)uSXF^_2=**YXho3 zMPD#{Iune5pq5I~Uxqv|g3k8W<0E~t8-jnFjWGbgyoh!I0H7z3007MwZlDZ&DE%}6 zQt6jqfQnC}fM+$5U^)N+5-o|XjqxoFv6ZQE^1lE%bYb)&WWGPYr23srt-sve_lKjy ze>ytw$D^Ha|Gzrj|M{`*FOK(qbGrS{hZ@LyXW&D{|MY14=O^3#aHI}K5aytNKHBre z+2PMP=g0o_=HjoeP745_19)SynjHYs9wNXP`iq&*l1B3483FMbspyMaKbCMSo5+sm zL$L;!sip&v0N~l4=ySc1oAvfv4do|dn!{1Uo}dwLfFX^%Pc3g#DPeh1{TT!y32soy zJ7k&`xw6}27;;$p%Pd`HYfpKw(;q)rm)cidxyl>uGrH^5WuxWZWlsCCWN1^ea!tHq zK9-zHRN_V@2s9bVQd5H$DCu5>|cU4I3Apsb#|B&7jF1J}q$~buacUBCh$}4nvYNyPEBaj9oAZsY(>++eB)_kM0 z)EabT67iwNmQ`!koEuAb2XqeAf@0$j7M1CPqeGkgGHpq|Nb8jVAiL=m?$9iR8L&|F zAA3PdFH%APF(rHopI@Tw*`wgFY_N>DDL9o zA2J;B=?{3cFnrkYLjS*3=i^ZQAGAjS2`M&`Cz$cDEy~iE4>1mc|8uR%jy)Xi(Am^@ zQZPd}p5hG3U*MAsLqFX#L4N%o_ig(0+>w8M_SXOFXCM84e*5eHc=L@fA71(L=H8d) zYcAH?uhe*M@u#$gQGs1=7EfS+Cg4U(>`Gmbyx;Q~KLC*J0K6yC9{!*2iP~Xd?eZG7 zyVPs#%2`uMw<@=$@CR7AvHoRtpOs&I2LR-Mv7zPq4*=i}%}gH)XaE3L26g}d0386t z&}eZn1R;I`BOr!0TnPA0aB$-nMwRlhL~KKA>+NN;Hz&H!40oOy?K{?*KGoN}yS?dH zd(BWVKz1}8fM278dc+r)E+=b;g_mM}K8f7*4hs~x)fGOLy|6#8_9rj*CBXm&L8AIM zhcRWt)d!LfhkdU!+Y$9WoAgV?=YRoO%72C@3?Ka6DDh1BVUAM4x#KhI=Y<7;^m#A< z0N`EP2LJMuJ0p1dFL zuN7M59^wH+BD??q41ZdZM7|*X-B=rD4Inb^i8G^(o2Y#TgU*dDzc@HZ;^Uu=4|Dy; z?fJ`7Jzt&fW%Bdc(QW|X(<4n7K9l$e0FVX$#VII24Qz>7`LYoH?Cj{LXGcD}IR1~@ z%l~#`i5LM<`rn+&&;(HHSpe`9Ti@j^I6!2R!h|EV)Bzv>CLxl17%)Jrf+Z$sb_7H$ z@N>Pf+s);$fR4u0M`9vRZfm)Y;O~BPziJipA2^^KY(cB!u!D3%#+J!7%Xc|v%cjXC4p2FHlgy*lJu6A7=1rY8OIMsvBhQ0dngU0Op# z??{#TGxl(Oc_OSOm(gx6GI52k4)k z>RlGO)vR#1%#o3f#XZR$pTVulm6hcvh0Ukj;xCJJwX96I>U=7jqu7x4H>6Xejg2do z%pYIcy(;63iQxF6l9F6)Psf@je}&@7Cy51S1SCy?RN#Sd_Ak*C$_33|u0VZ;^BV6` z2CqnBDK5rs6pwye=^{r-zOz&Z)u*b=jF?uPvtV&cbA!#rU%ow_*^qGkW@-9Qt1JJw zwe7>b(|e{mrkZO9!VyxoqbA3yRNabb^{PZY`hbMlVN+`zDy^kJ5Kpn21^`GxhUdfW zi3>Z)Fc^=r3+eOtH#XOBZ^ktI~=aqgOC7Z6cRBUhT znrL1+Khk%wH?*eK)*JV6i%;T}1auYT>T?%mX&xf`C9BiP&stU#ig8e(hyxr+#fSan zLrxRTU!#ItXhpwS551K^GhSoR4cFLJERDz^;WmmE3~Oj6CscpN=u-86JOUD9^lHZF zA|76d+{4&-YhS`X4b~?@Cb6Z#M-vcbbDd0RT9xRR8^M%|5Rlc7Jvo?BS-5 zGX%9BAJcmcnEoSX4sj$?YsuaEeq#^-xRJq6#R-*&-7-G`b5I;lU+;{)Jzn$ix`B_^ z5C6;d#edwp_VaW5|MlU8Z(n)zf4uwVzrFC(Kc2e$#nl}z&Q@P(bYH6tGWp?f_Xhy( zbR>A*Y>hJghX{oJOFCz&1E;G{0C)~W90y{~{ShlftZi8bh$)+(c5t4iF^wo^B1CYxA9L51#IbV8@RkGm0>({Oze`%u%3ka-Bbithc{{ zstr{i!ajN~K7+WIBPjoaRP$;^L)3SQKDApK^+@lc(D#T$0X~zx*Qcc^5GnzY;Wdy! zZ~*y-S(do+_tilD;m;DX;hr>0U~cz>g<%W9p#vbwk)kiP0umDNPP4+yibBr<09Etu zmNXr}hMMr!X3-7c63U+W!F1-uWp!__Z~A0U*Y6JYBK^&-f4jaq(=F|IKRev@#qrk9 zk3$9}@)z}QhX{W^(f;S-&3`#Qz_#Gi)5Bj~p8Dd_H0SSkR(y4RvFHG({y&-{@}&_L z5KTbV46Z3_3xOv@UDg^X!^EG8&j<(rAR`_O5O{!v+*GBs1jY`RCg5J1?|P&2NK|z! zVJ78uhg&ybQgvu$wepfwNlCJ_gs%)(K+FL;H0nN+qsJEM_f{{h>E74Tf2=lhI8Z)P zUOs6t>cAJvc*H`t0sePi#e^W|>*P#_L`eO^!N)Ntw>{PdQ$N&aX3tG>(MHn=rU5 zO#YC@Wh*kPb2aHeran5@Uq6-cW)fxon90MX-lcTA)j=-)Y=a5&@~EukYP+u3Y}EJ? zk+!Msxu$4?wMeU5#2r=%O$h0k+mIOQ*;pTK_bY8EjXgvM*UnZ|&3CqMoF3TP;>nN# z#w}ivqe{mH$2+Gyg$tPPBl42=z}eC-v|!pI1*&7WR_D@a0RSnImx(z8O@i8SU!V_& zYh-oUe?D30EY?O<8d<4|X8GRQ$(Pm-M05Ucqy$5vJ&+9DwrYRU-0h317n5Yn?;M)Rdy|E-X7#OO%?K!K)c zwxRO;VDl@>dY_+fgTlP7#=oo~)Ed#X+ts69$AHVypjI@h4Gm^@wJ$c)+jV8_raP-A zZ;iEViD_!JdF91Vq!gyd06?EEVgj@GMBx=vB);3V3$b)Bz__9_=p6~Udu+N6y_VZR zLrGzMVQ!l&zgJy^R1muAdXFCQ5%*9A5pWYlFhI;Eabv{rC#wTs{=*S#fJzaciv)}# z)ByFw5D6C0GfhD*{+LBm^m%!@DF^^i?jNH7z(7C00-u+rLwr(d0wDZIYXF|Sb0qb^ zV*p?fL-}evHtzm=+*+0y=b{$= z&e_cOfJg{vj{{dMEu`u%W!g~sIlO=hT>nW0xR^9^q?`cQq9g>o-X8wpc=fx>+uvW+ z2LSwj$MVll?fB~Ykw0BK_ODM}|Mu3!f4h73(^G4o8A~(zzuj8Fw1@Mcr-ITC67Zxa zxYFnc04~>uITvff$5U?ne~yv=6)VSy4<$A?w$(QE5{H4Lrl?4G&xOPVkTds({?CE@ z!xIw-@q*1m769k~sQys?Spd)kL`sTa0oCaB&^?_C7cm0z;@w|Jyt^C>z{$s1TI4Az z?DTurcXV8s8NV^zdv>z>;^JZaI}dbK?e1<{8FC=_2LQko22K1DuK!?w8C@ZbX1>T5 zYA&~~u1#W&f3`Dmy)SvO-FK-g#2|^`rjHR^Q%rsx<-YUCsmuZtuXKz ztD)lK+ll-S6q1&rfz>`T5zA&c7TWOb zdtk{KRAK=U6hrm@U`2D*Ai7p$!pzr*OqkUz5&(#y5Y0h$4L}(}4EaoV^nPdHYNPW| zRCyw0+3VBp@fdngf$8OJeJhoUgn~>7SwdNokQX)?tTV~lwGDlnYX^?EjGk-i-V^XF z(-ks#T;kR)@tBsy{JmBy+`-lUvTXs?ZijtOB)mCQ)#LQVltx#fqRQe*YAs={v&tH* zH2X8wP{QPMDy)X$vbMV3=HzHgvM*!|`PDXJd$D$)8weUwUaiBcws{m~cn4XCM=UUw z+bTM`mbJ!PBhC>1KaeuDkS5jks3jfsw9o-G#yive22T_N3Ef?5y1F*EwXB~Q+0z?p z@yPW>3l=ID$V|%Ec;Av_sfgPZOn-?9TB6X)lpGWTc7+nl3Z7j2CI5Xvmn1+KLr@Iq z7A(qWHq16}1I!`U_U*8;?&P1Ck(_!Qkk=nVg?!%jAAFXVBZAbmfW0elB7t004kkU-}cBr6oO)z<|%u?=*I3H3Mbl zE}gnXR>TfqKvz0pQLPBr*12`tgJoh3;5V|FL=1d7j;%<59e@agVg8flfIg;yUQRj1 z`nMs>CIH_wuKzEzCjbCSJYyd!J_kAwO#l_27b-q=A5`E&2?luQGpM&%15oaz9RM$2 zfD|Fg^%yR>k54+-=XZq3%g6_43nebrt z3DbX{SG(7vI~uW`37W2@%lS)^4Zz>Ma2Pg(3q|>~f0>?W}(p=CA=S$fLf86r}|D5*8*c zfy2e9z|w(rvX;FXnQdzu3~ zusY~%UlOoSClU>2bEQ#Vma~vw0;3EAH~@hA1Q!dRLIwbAXsSXpb*?LUwI_b9%YV5$ zOb37-cyB|HJ^(AX`%?|q2deH)G%@+PGTCr>qLGq)W4!57U(Gopy~N~41i#!E5h?KK zdr$O>NERkGLO(p#Bw}8u=_1ly2+9BeS^-34())Lr@58lNS)3d~9^6U;ak{sjA3D^M zJl-7zQ3xS`--(Ri(s&yH0L}mOa3cU9&40N5pBSj44-lJx`k+V$YmNhH+tE~$TgWz9RA8vy_^zaaH9{ipi>`AGAZCp*77(fj+|O~2pM2o3a$ zV}pO%-}A=38Sr5dEU( z5^LV>-da25Wz#4QFxM!IO-9F9ta4jZ8~$#W8f(wj zBvxA#%gR+_mXc|ca+Om=LN4>U#=L>?P;A=oo_86yc)Xhusd0ZSqj6NJ9JOXwyv$s# zlWCQ*h{n=kigsD5{7S#8EDoEqDbZ0Et!;}mRvP230vmV#uq_fP^U*G7iwsVM$8YfY z4OY#f;!?Ra7;7JGo~`vHeadpb#%(N65rn zQ{y|k`ghFtZSL^LX+bcQ#_dE|YOboCs4uTDKDkIyoU2eM^!XawB026TF`eGMP)B&F zJnxC3(j2==&JNb2Qim3nu++lG6b-F5R|F_p3uU$fS=?Z)wtIe(()^`A`a!GzL9GX8 z_D+3aM3v8&D6Z7_RR){MK{squm4{{ah{}NtDi#q!8VwU)F1KnhAX13vd1yI$g}Jnd z5{x5T(GPy0Dk)L05LTLRt{gZ!-g0HKX2(JH6cgF5C`hbV$dXjv|6bNDu6Ms5@oi-WU>??8Yty;(RdSUc`zpngI zo%4Qm*}XdJ&9LIRdM6(~*A{{~dao^Zy)km7ffg$YkD^0 zc(pzBMt|Z*ll8w?H~#w_tN*lT=T}FL{_)u1KcCw3x2wngdV1YU^YxdSgI8HZw^m>MOZDDsje+Y;!7KH?^VN~db#cVN$1CjzfrT*9 zZ!7?+6`DX^fnSJY7Q*8c65{-PTHBynErO5o7F8I{s~TEQ_0-&&?SB9nbfWh_chmN! z%(kY?rn-vdAuqHs1ZB*NNP}_fb*h|23`H54GKONuFy(RXtBs#wHQE+D-|oHK89LqS zhXS;x#)Bg?6(4OE`Cr)h2rG!udS1BEOPgD6^iX#g6LFAkVf6pl#)s03eKh`YRC#{d z#nDElHx%p3No<&kJ#F8jRmNhtpZJEGV}OS=RB>3CZV zqfm(jB$%Lmwa_|={UZ92xG2=WK?%7X5QjZ3|kBP3`J=lQ2Fb_UhKE!S1TznqXDh8uOPp zy~R%YfN)vJr?Gn#)N8d%SMD`>tTLk_M*(NOu4ZVUW;|~8vMul^?fN_!ly=N~%5}b! zyS=G)x}#=^=(@{XZP3*;C9$qV(BHIp-4i-`v)S@@)y zJB!TdF4jbhnvh;+U!Z16t}4zgDqe)S6#zi8U1Sl=9HN7Zgh&_zwW3lyO?3OzUjOZrcZwO*d?zB<`)bGrM^;@<1CotJ0Y zAI^4PTix;On&G!sFZpQGmS>jCKfiP8!!3;myVGl`Tw`v1i$NYK&Lyso-;lqy$QI_$ z${r@g-|YbMb3Ae_0AMV5vaBeNWZ*7OXguJbaGUx`evWwHfZ{NW5M)?gw1WAMLxXb^ z7Q{pno<$B4wQ}*lSXF*5ZAU!C&>sM}nkv6u;l7r3-Kp|jjXQ7y1rmfUC?uK22oxXy z;Dy#WPs%+2K=r5e^L(wh>Xq&aS^=uRv;>yifoK9aFLtLH%e>fA!GYKVzmq4zU_3sN z_|gGT+>rsZ27m(!2E01fNVp0Z04Ikj5K%KwKdJr?+rqaR{WlwY5d2|$vcx{@H(;}j z*(Z`<{Ba*Pc%JD9-EU=&T}E#9!?^xVNcD8e^eAn)9o9ZuUH)9g^{B#ruhMiYWxf

zi2N-f51WSg#AcX-i^ASSdi5eEa5{-w$JDg6i0g}(Pu}0zh-zRp$RDbCmoh?^#wzX#mu>gYE zSxYOxhtT$E0vP2B7wC}&kbs3PA7&4RKk$4+$QSQC$@sB)-r9z{dK>riL)zdT1B!OjN(Q zw)y>yjlbB__M3y4`E>l{Snubj2LF1ZpBK)bj*tM{{x8Q`e}Ak4tDip~>Ou$b>9L`| zo*w_p*~veh9svM8zcRz2`ZN6b;@XmL?ymaYTay{=9Hb=3?>4V7y|DTTskBVq(9 z003-&v4JBHSQtVqtL0z}_oK=5TVsjW2f|Nvg`VyTKGo*E)8IItGM23 z;kM7X{EI`$<-XA7U|@5sYCf3gbcQQ*;_Uf=M5wTX+ zM|#?m14O$dQG_WxVNHP87LTsnUZRIGglK@>tW9m9zRQd3W>bhueNSqT;Kr!g>(SVe zZfWvzndBHsOcuGnF*Dv=(VuXnYy}3WlSbgg+cq-3cjf9!6Rp!M5;VlKY`#61|kxm zsFdczo;9k|YDtSJE?JbrQo$%IGAoMIMGMrW3zR>2QdOc*muOOE>x8>(nYr+A$a=(U ziyF&V^HPq5#Wb=kxcMl&@(Rke8oqm7#WKe6Mx|Vdw6ZXN&FI*bWy9yEdu}Zqx;)YO z!iJfr*GxQIGk$Z~z@v%IXIJ#x81K5atoPpX)`#;G&#Yel>O}B#Pt)3%x6i7p*Q@x3 zH!a99=CI?Hi$qBXpm~CwEv*Wr4#20>b4dgMV49-7?sNzH9QOV)Wrx1Bwm7F%E$h@O z351z6D&|dcE}qNFine)lsF3#i45+}+#F7n(Pfj*8(S;=Ot!o_+K|6g_D=`g$_p{``H=2r+IBNxxmW4Bn|9w!xh_TU zg$|sG*e_N2uhcrP*0^vOeYU&eM{}JYtRMODu9=@7U-jF=+dn&V_$NDOpBk;X)g8Ot z9RUCy^wr+#Oh|_X0P~-#4S_55{%eiFYmKQ(wGm7p4kyd#0FGC=ss8YXGRyI2a1Q`f ztF*y<5fzDbC?g}kR)ZeUnVXNdGZDc6KtQ2fTGw>6r{T(U|5Iybug{H~8tzz~4y~?; z9_Z`XSYI(2^;a6yV2lV7AbV1!;kQB(3~{-`W!;d8AM2<*j}&Vld1I{NVte31R|EwB z8(@+kv%&5aM8IF4Xb=m4EV)zi`u`3RM#*^>AzxV*zp!+co~MQysQ46asaN2d&zcti z0206eIsi%7#S4cHK#KO2l749gnD+3*1T@PzLZ4iMPV_O;nsEDsm)IBv@`_B5dPqwxFYJcay9Pa$$ zH2SXrXq|sJ)cME5P&|93_dlKL{QcoJ0D$TLr^g4rJUj8(nTb!&O?`fG>YJNOzP+{d z>+JRaGu8lC=D)tP@_TQLR{;R;E#~4c6kgv^JeSl68Sv7E$1-4g0zm;SHDUTD6HbE*yZ;j1q|9gB@$>+<;r!1mg?j{RivZZ zSA&$y!y34x++(jD=-;$t?Tr;vdsDU;UJFdRWlxq`t(oPUF3mO!xfS39+?&#pCv$K` zHp)sgIZ777CZ$FrlQA5p8;FgPADIJKp^i! z3Q=i@g>XrZQ$d_JksS#-fN__x+aRYM|awrRX#NAt9287?6Mt zfWyjH(gRC(e~^F=g*t4!>9qkiz%?)TRRI8RjS7`79l&?W0Ackkn4sScf_NEkdS$c$ z3=q{n3jj~G!{GGN1UyR`OiKuz7luFR7 z@LFFAV$yrd``+6;{^R{C{&alLPj)PQeaYZ66SYr|W{3iQ(3`&65WmqLlR5x6pkfK! z6r%bg13p{HASj0T>rmWsAZk96cA~%+ncGpM`(;xmb$w|e^B)*KuzU6F^BGR&W#t_u zg(8cwP~7^N`@;wl*#P;uY=C1*c?I4N%F=4J0=5Eq?ojw^wT4(>36?%w{8+9UoTGQ{fR~a=df#DM) zD0j&Qkrqxw-V4Tg$$=wc>AgR{j0KS^)r*elP(0 z&&N9e*ggb-WfS3X2l|fxgAc?fD_929fB~3;(hUFrNC7^Wt9g5z(9tOE?fqt=Tpj1r z)>BEx{;++M%ZQ`wa+ig94r@d9z=*|haOI|uE?rcmDCn~4nFx-dCuMWkQ`co@>iM77Sl2FxvH&$VGh1J%S&Y9BKd~z+9Wkuqqri>7nMTAsi!;_GHYK005$%rp}h7^Q*7y+IG9YW&kaM zwODR0)EYH`{`td8JLlO9b1BB-L7rD=R*Q11$ybsJ;LsY;<$4QBbqg27Ec#BXjo51y z$-t$>000u=tco}flTMDeR2SFT(t1Z&Zni9t>z^peGFkQgp|U*bvWo23Tsae<(`QUb0Oiui+rX)D8iJ5d5XO6H@eFn?cRK2*~HDIBhRjz zdTQm+$Hz83wR+^yhM8x#E_-JC)T2#v@2p+&aOu>=WwU1|>dy>EmYd~7{n?6g(GM#N zBm{+}nlD7o{|Nvh@DI%=B)`%UXdb3Tg;ED#m$49LI_&IsA_S9<+jYVoTvl77e+(Oe{h16Xg^eZRKZ;Qr9qHH2cjX6_&+Ru1?dyz7v2w9WdNU% z0Dx|QSr9P5-T&p0dJaS&!3FBC;Bfs12G|3$17HM1sEQGH$g!!#*wZzX<1mORO5m2=o?}sBP7ZLCWlY#AC({h^z*On;St}OXS zST7Lz$R&(sZ4Vx9@a)dG0RW0V zrvG#RJXr=X4w95#7y8L{A+$X$rMO6=e>MROe*gmx9RN;kjCv#{sE~1y{o4oMA4@nc z_++??ov<*7&NBBI`cv*X()zA%Fr2 z9A-qK`ZvYs0Jb-i4G_Vw=$XY0Z?A6saAVs)?`~)P`#UtfSvAprS9Kc`t8jX-`-xy`TFL{&#o;KJAej4pTD`JXFUJmuRDgbK8Ne`! zNkExu*it6b&N>OBf| zxIoTS)MwPtBb)OU$a5EI={5@TG~~q>At1=*$tQ8^)XPg*=kgcxS#3tOS|KkjDJfaq z+5XOneb29**iz&77C*V@zyCKl{^W(vX-Jn41Xr9xDD%9y3MPd>gA?lo}0Y}248xIu>K|H_pwi$poC@tKw<=O_kVq&nM3t|VW5h-FV??Z@kbp|SU_|D_giCk zTB4WnR}f@YE4C{Wpd8Xr;k%s3+GB1v{zcSH$r@P{ISNc|Git2xzD9YNv#f*<98? zot@1O*Drandg|n0^O}m_s_Nw4!QPW2y}b@|U76l5mob219%aujN}0@Tm|HD|WeFEz zE1VlH^+d>VywDrF(iNryz{g+czeei;fP1qo008FCRDWRslr{Slim*YU|B@EJJV651 z2K*|JKtRGo8vwwLmmPpmdkxkC08n?h%X91JNP``b2#>0(GX-^ra?cvz!bl^NA4WhN z@BkP98#n?FzzG0jsP=G=&;dvy0BEBC03)E|(k7s{5&|guVYb9%zJmco9FqZgelT%+ zviilPjqj~*|8RZNuXi)w?*IV4I7!{_!2yD_FQUFUeE99Tp|6g1etDu7zX#;LLhyBd z0s#2?_2vJ1Yxx&f=f1eI7y#hz|8EaA{Nw)mFK(>(9+~f~e;>!bv+pJ5g$w?VSGB?d zA}d%j0+OPDMHU#TklAq%pAQjc(j%?U5_T4aO;xR)oUa6jL_KQmb~IQ^RxK=Ns|G zu?CunqzCPxrn2(1*&5dyD%AQ0gQbQ{7@5MaDX+07D@~D*)=TPdbs#>IX*$|BwYy{S zK&X+*&b~KbEN5WC9YmkIpd^#uHFwy&u?Xerd_^Gfjb^d)*W zEIwG{j+^p{6U!;W^`TTGFJihwS!DfHVKCLIjeLVyREj{699F(^(L#v%lGz~(E;!CC8E-iuC0RRAufTn$xLb;knwT z+!L?>0IUJv&zz}r!6ZfpzySbg1@MHR^hW21xuLsT&|1hCAsY3WAP>+Er|t? zus&tVf3+q=TJO=2p5e@nsBLY)JZq7yv@6z^6|)XucEniebj))m9lg|$d2VX(-OWqh z-M;kA6OSo}f&0RCmY#Zdk+fyie|%sUDI z20jq~YjtXZ-pmCHeez;@f{a?n2*{UPNOAyv&Y(p|rT_r2h84=ek^&%v4_7rd931Vx zv10Pp(vh>H?Rz_F=i|iBbzh&Im<##H#fzwfq7XD<(-zQbTFhpa!@KI^XFB5N+x_QT zeHS|@{mIjfu8ZAKSU@;4Q@EM+WBhQgFMbR5=TMahfx!i6tX8sp7I-jRC-lIBH57fM z1N(Jp`soa$yFVXN{ox1!0GKpz{b%&g@JD1o_Rtxi z2Tr000|2<%bB+&WI3$8eCZKSQ#Pz?Oc~Lb@05EW@zj{}T$bQ+~D&{}ZLFRUCBz149 z`XwBiH?)1QrtV+%bTHdt!UF(M`T+n;AcPOZi5@gxeCFHZ-QS)b_~P`y=NCplzce96 z|5xU}y}ab#@2--r|9`)|io5@}w^wsMy|UzcFAXM0bYcDj21u5lGyyDug%3pbAOhf% zRDAZp%zQpt)%3yg`j1yP0~K#fq~07$ztkUjZ8-79c;rG_Q`K_UNS+vHQ2^;qO8@})o%%&^pT&1ho6|Gk^z*G{kd^p~6=K!|d4^0FlEa7v*!=EK}Vi5v8zW8UyP}WgYF=K`_Tt*^ zXI2k9vu5nw9qn&z8G3E)x>t5@xHXkQj%WEnj$NKxDl618&Qb_3Irf3Z{6(7l1^gx1 zIxuAtSsyU98UDxw`;!q6|HH*LxP%2@Q9!933@4|;p}C+P02tDi_9%)*aB{cm)_N?P z{H7J=qOB3@X0H)D=mUYWeO}{0Hh@_ zBOsBYUXKnS#mq;F2&V4S1V|rBbAQPZNMZp=g5eMGdl;;Iy+8d@SBz9IvfW=BsCZ*U zGz#At2W7G@M`3mz(HI9ervgaCn_i9*a`0@OCs-xnbr}S1B{jlRe%D2{U zTjwi7BYh-UzBi~ru64Su_Da{lgX!6~wy%Bv;Idb?_P)Dr=!dJjU!CiDZmfX__~(XN zp6;(8_yynpyWQ2dJ1eg?Msa<(TpJ?%{d|>=4genrI)H<*vI9}u;iLxu*yyydmTOhz zyGWeovR|Tt#S6^S$qDl)!S|Ip)d~p!nE!Y&t%90aToRNE6VPhC4getMIfgs5q9~?U zM->>pnv*4RIsg$JQ&hytH&7yrDb)NbND%C_`0`*yysWh)|j4& z`Pa8JU7s9XUzP4Dcc6*~0K`mn;X)+AOp#_>fES)(+Jj6CmS@)M zO=1C2ulbDV2C__0h(Hnyzz5~lPnDD{5gL=*8R7W{pLnlEmw`raGUwWPqm4#b9t{gVxu0Dr1cPmF}piJZ*K=dy;*rt{P`LX$V%B zLlxGbTcJ1PW(~^<^M3Gy0-HJ1-!MDbysE|DTkWW3w$3g=A(IEo6Ksz&-j<*#q{W59i)5N7azvgg6dg>`2{MxxCuO;vE*-y?0$q|{TCzZH$T#6_ zr_1?ox;$}nS3?|PkhCD*S!|0rYn+~j@y3>RZ@AK6cWLwvy}_Z-85h!zt4K)p6=+=r z8qB4c&!|iC6s373B{>Bu(S=Zvbx-8hTYTFx!JReUP0d3`+Xe59JiPm(RZsQRKHFRK z(opkD<4rG)EWfpQ2czT<`-~3~Wh42TvW3MA%~(paS5Pfn#LNdx86FS#{IF&aeh*^b zfC@}RHE|fV;n59Y!&;o<(lI(HWKGf&t6bjDFyOT<3+l(qWDW9MM&2!o(p7H9a-V69 zTeHinJDI{n#C9-XpmgG(KtdL`esU9UR1^P#`W8z zo*^N!QC$3`h+xJ(WI(>&R}BDw1dm$dIO;stnTGHGN`DP6PqoCJ?Vus3l0ZWG`Gf{% zIipE-!mkh2vKGeuUu=f^s@@o`;8_vefSJT$3iLyHx$AfC;)wuC?mGgFu>voM3{nzbU_)bRP;SOk* zu%E9AoTv)!t6;93K2V?B+Sqz>Wc1dO`4={A{}H+3bP(@ z?3JF#`Bu->?$GW2@a68{(IyZ3-YescP<<%+x5mWqhoOIV{(~2^2yWz@?ZNIph5DC9 zfq4->pF&T9qY(6twVW7fJ~=El0St34ppL{kf_-lf4*r!u6ku=)4Z%>&(Y{J@AIbjR zkM@{>k5K=LAo#;WnL|UF6MfZO{P|7xG=+f>ra)qBI+SeSsKA3!FI`j6bhEF!PaQ*+w;qFh5_X$g%qrHSa za`FHCL>EF|*1w&s(*KH2}(<%usY&3txY>YE#@zq-EatLtmNy0iM5duusg z+*_a zC4g9r5fFU zUY;1Y$I==zqjR>qjltTW7I)|XTG@cw=#iN#EQ!jpu)Eaam6yfLE|1pC3Y4i1Apu6U zqq(ActYxk{IhZn6Wt>%rgta*(iXxfc8cDkwp%TTd@v>44Wm;D%^Ej(}TW1DZCh(3{ zEzHy;YYilKD(VL@w$AMbV;SO|gt61aV!c z1WXDgHqitZR|RUuTP8+=shCm^=ZD5ZxiGhM!6HRozE!1R6yqzD2a1(k*5Gegez3@~ zD3@>AxY@!q7WUL|B(W)E-<}AKdHsvSu5(S1(``XabobXg_u#12Shc@zV*ALlEvr^u zSkt*ZQ8H;Ot~8+<`|m28j0%gRHXuhUWM4SCKsO@m5ostg(QMHdrvLm<)&@=_G!zyg z{f9A9R=h};^Ca)R!NiJ8&5+ZuG*kxIH_8hzgX%MA*87|rBQ`_;Tb)X(zvKdh7L4i- z6BGgPdGb=?R#u>t{woB;|L3_~<+)em2LpI=vU_0WKT*jTj!gi!erh_^T;hY`wE)xq zh3@n-S=K)Vop&5~KnTh`KaKO|Kn>aP{3-y0pYYmX4fIf|Kfy1ML?r-tW2_01C>W5H z3kZn-M4+d;A}ohdhtVHMM*@TU?eR;sURa^P%dElhO5%?kV7jO%8# zh=9M>=($;g3y=*aDC*y1em$u;XKEvt+A~kj4!yi`_Vrym-amZc!^3+%Jh1I&N4Ea_ z;D(QOE&X`M{F{phUzzE6X{Po0$$E4E_XnyT4c9*yXkhdY0FeBi&Hjy^&IAB}Q&quJ zRnBA8o}(!j)^C_V?DE^t+^lwK(lVttH;(^a+&ZP1OrC> zP68lzHpVb~zKZT)AaSX~4**>1@LuQ&ooovTn*U@oOn*i|R|iuNC@+tY3Mn|CV1q>W zWZ;7d1nOUKLUMEvG=J8@!*!=dnh*DiJuS7HyS(7-v?uvhX9k-vazMSs?Ec(H1Jq2s zo$>fQIo5ErpI=)oUHo}DHjp`pWl(Pw004!QqA#s~!2t1L769lN004H#5&-P)&1`H5 zY;O$iZ%pj2i?6Qotg3eHZj0bAbYm#>p8(MG+ug0O`y~MQ^oU3RW(4#Y0EE@giQ!LA z5B~8)_t#fuar*qr`Pnb8F8Sgr0I=$-TdTggvxdXV=hv6B{{8ai%CB#){@$w-)o;yG z^ttbgEB|Yg6|YZKzPDUB#K8jkuK*yTV3xuEsbCiL$?9fc0M^itW~<+vOalN<_j>QO zIv%xq_#(bmTYfTWIS?`J@N4GH+5uH*D|wJ=VFm{P&JEY^rdkNrcBBiv#1PzRZqM@;1% ziI%7_R_Dq1)Mfafxl2v3KWiPah^`!s7$(eSIerXkO{tbWZ9}AKwrj4xs;}0S@vA%u zODtxM7z+$$nci;*gbeY7xiV=<;22?*>lg%C3{f)TdmG2e4K@^(!2$}|tJncFMq10A zsiBFjd$wMmYMG|VaBJ;OO}eUXX8qjmdQYnKfBWwim5l1F%quEkeTr19Bo7u1sQ|is zSy-Vx*xmm8{P3+w+psmSGOx(_Yc(ZuH4sKm08^w zT^*8jlJR75F7+$+#7w(Vo(*Z;l*>Bo)vW8BJht=Hi4!lreCgopbBSFpdHMHCilAMq z7ozuZ=ZU&6Re!Gk{Bb-5xkz9DEF)3+=>Vwv5&($65Qw(e|0;{f04Xmh?f1vl*HkYF zSeM5=OM>N1isDIY*?>X4-fJZ}ZlkkwTe*rfV7!PiQDE48B5VQ!@B!t%&&8j*kDU&- zXb+olQVY=y&;i`6fM4&qgFAHg00Z;^kU{TMy9FgQs|BODORUi6I+N6Ws=r9@>J%4z zN&JOGKmq_j0x%#pQlgD=_oo8@0I2@d{l^_ZRw`V>d3{tk#7R++FZ3rRaR8$sV1PqI zAi)4Op9p;kjd|D>McrZ|Nw>N_i1QB55z!3ci09o1dQVlkQ2*`?+xG??#4xOM(1I)7 z`T5v02!FS%nFs%rlzy)NBGi)|EEy6oyO;=-777sngUZ4u?4|fYZHeK1h*p(`n#iF&p+i3~+tKNmW001CCa`h1-oqmdb&FOxE zy%_W(^cDP{@2Y&iU~R(Nq5AJ{jWHv_-2d`q3sSE`gVhImE7BPml!we$L+Z*XBe&OnTyqi`4A`o-`Pfv6Trw2NKQ^S8fIr7=L!M~mx|J#kJ zZ>}!?>!pb=uQBUi`EU2PQ1}1;j{ty|hSMa1VFfBxe7u0(oUWqQ^U22mkiGj;{p$gM z50}>pN$}cMSU~IspbXImz#w{l$p5I@{am;2R-Nr?jr~~6z|?Y^SFyyRr2}YHmXZTg zi993=04+LohuP3(P@@P107N)=nRd2JEffHFLO6}9{H`^j;F@4yo!`C5XW#0@A3xAw zFh;b7q{*H!I+JpvU#50y)b7(v6*gVG zt!A{XvcERm>`-}~nxI1y$;5kmGu_UzKy_wd+s2FQrgz55d@)Xj{-oEyU3|6HJ9f2O=^QoUi^dHV2N_E$9A{3_BUGwmZdBqQ%P%?rW^Nj zt+J%Fz`QV5S1b}^NEDF&AdhWuyu7@{>tO)e=nhnPye5UbYjMzHi?YGaJbyH}}3;mmRZCJ74w23#;-`<(uD>G*QLdD3g2@|Cw~t3KWkW?4Zd5;5>E) zr2~-C!K8?o@2Wqn(5&M3L1XZ#=J4~K$>%x}ShKy*1uv*ZS{v}>?oVhi)gM%#`cwL) z4uB&`1URpaaK4KKpabCgk5lyPW0_Zm>t7zKdvT!V`M&DsdaIu8spLGv`k^~UN-&FJ z5ggW;e%PKS5&l+V95BNSjvu1>qauE`zv5AU^{cb(&y6=f=&!=I6Cbx%Cfi<}>HT2s z+%I=-{Oz%AzdE{wy8rQ>)t~HL!+Ce>lGoQxez0!*omIncE$`*mvIDr^R|)?I4k!RX z_2*n^ik+_wQ~l4?h1nt;sR*8=%}U#jRfTs4oI9d+*cPc0Ver5~A&$kz|E?&qEpi!rWCup;0Id^uSSUbQgasY)$3IGVNh_NQBzld$=sXjMQcVUPrzgYi5&S80ba=7m7 za6K1!>NVB;{AeR_z7k*@7^ngR7z9!1ss1c}FQ6potl+2Z!jh<`QaCve*Yl(U;6svL zg#R;J;{OByhW=3gx3mb0Q070o04_n%zM7KTT5x~}>}?6+Qg?5%>ILi=)--(w0I)x^ z0PyESSp9V11iNMu>#r2(cD^90>CXag=M@ezLNO zgA*J~P+*{ggM*VlIno37wdpu=L0|05eAB#{Q*(qutb7!<&Y+2D>DUr^W>OE6cj zbU!U%|vNV(HiV)tqSAydq&^LsQdlQPtt9%xE-2g~AqQxqDg z*HTfR9vrOc_LceE_SD4iwk^w#R(Y$#WznYOXguAYi49M;EG{q6X>u3Ja>@Bpu-Xl2 z6h38f#H_{qN4B5ogD@F@lwByaIXM3N)mkcrm=fd_I7?(yf8O1s4q*G0 zr^33+%oHd;Cse8$M$K1|SQ)hRnsw8DSBs)##A+Bb%9q-do6FTWhwsKcKWG92jzukJ zlTK*|KqA<=Xc< zNB}_f=U|curwESF)13*@eIK-?uGb+LPTX!J10Y660tP(Wn|yh^@x`f*AFi4D;l}A# zmh|21O5E#CzQi9l)A{j+#lPFX_0Olb|Ni*ae?Gk7=lj?H>;PxOhdWokxqgPy|Hjhp zS7tk3m}q%!xPe4?lwWr{5CG%;j|W`ha%1#dP3U}mgeed#+mlr>xJd`AU56?HhZCVq z0UO_XwuS%1zZAtCq=(>-(2vsp_+J(P;Hpjszz%@19ss~FhxKo{tdKQNOf7G>nCa=` z#RXA~aD{^v$_OZ2low(gR4Vfp$ru444nSUjZh-v(q#$4h-8jUal*YKUx_W<4(~ZRg z_g0VY>#ijna6^6l-tNXOtG3as?F|RhdOhS+d`4@{x^>k-+>*)Lg1^A^pZSk80%F2* zl3GC?E~)<{?Flo>LY^!A;1aYA<OX70?>ttd;N5+RQ<6D zdJF(rB2dlGR=0owJb#Q=L>2&E9g06c7-R(WOsDT!mE}stai+q~2xxD_xZJKM_`6+0 z2k;#L@IoL=i%Qn1SM`|~1gi%1iczC-%A%dM>t;;4B@WZtK>6CRdzII|(q&!eb!_yN zFAYSI6Q`N9l&B!KQ$|I^N)cAECb*tSONt#p%H~7s3vV)@^te&c+sqmP&h%gU6|>QFli z*pMaVQ2G6qbikSEZe7xoYK_~%<@#`4_4N7`$Gb9pA#;TE;J%>^ne^CH`-)mN)=%aX z=PlI9N{|X07cAgQALS&&dilaa^0`)Kl28R+>CpXpHvH#p4aXZ46@~vznS-FfsLgu< zPY6X$9@af3rK-;9&E7)!@Oh9xo2vSe^g`^1$4Cx80P z3%@=*9{@NE6HU9M6U*qYfV+fhKj(D2`smh6569LnX_mn^u_C}%I$6g zI{>c#n8C3xg+R#yfF^(u5T&1r&y`;q1WB6!K4dh+ll?H`Af`hcIs0m8znpJ%$2k{E)b zCwOhH>$T;h?`~W1@!qu`Y?*&FQhUEE&P3?->9!wlnEjUnn?Jp{?_W;t_~qeEGy$LN zT?+vGWbcM|w=Bm3=*?w4FHN@#3D`*U(|tAfI+LuRZ?%c)4+V%0001~yAl!xGDUJSx6d;@GEQnq*LEi)bFo5GL zIZ#x}I@em78`sHu?Ur_(4*O_#X(0f>2&hu4#urEe0OG^YY~t&Q1$247hzEc_Dt+5{)5+AX{?@C@2A^L)eXyl+%w<{ITz7V=Z@^_nG1}?#SDVfL{JeUDmJRUcOn|a0 z%6CtU(tn}N%abO6Ew1DNcW+umz+WHXf?vspjDRkTi074Yn4QAmS;}=`34Cpo^?)$? z7gHdFzQc7F$D7Xf;`UsHfsX_LQerzhVaD-?J7OgFf&{RDDBMi^X+-!rEPhYW0WkXS z5-gxoU6sdS_)zOxqC5qQG^-|)mH~SqfcA?0urL&&Eoc*TAiN)N{=ou>`433|o13E> z8+?abg139qkLK!LUD5dd#@3&0Z~m7(EqFTv0DnA+1Ly!4AZ9@)x(NmQ(}}*%&rN)O zb{gI%(|_FGzPvv5k9!-xxx1WO|DUhS0RR+ziT}e3&o8bm`wSW=^vxg5)BymmjaC2v zRDX&-lYKtP%YOv`(F9}x;N#^Dzg*XjEyTyD1g5Jv2*F;PNI%nqrENeMnxip^Sr3HE zwtMxDGP`|6D#ToRnVbRy)CMw+%7E5`7R*p;j(Zy#D~3Y0 zY9{`5vHqG+SEaY9(gzW{&G#w?Px|(Jk!4{<%C4kFf_KUvu#;- zW@0Ga&r(`ev_LB>Ff1yPeLoj^j8`RRpJtb9vDs=ZGi}O5xA_aMm8;%OP|lo{ngyg0 z$e$=d^Q9=3Gdp4jz%9GVY9oV5^Mfau!-O>kXMPFaR8?k6oz2$g@h*;&k>IYj>buOI zVMoPCx^8)A(^0t9tJd7zfBe~XUFRDt^W`FoadE^x?Kjt&H7(_E>2%|vilM6HmWkbO zT;2QYD;Hi`k~$Wav9i+_EMQuNE`jZZrf^YNaSno2D1i7uGPliI{p6F$$2Ty+OjLi& z!YKXN4M{KV5_#4?K&VDp0;9cP30!M-PDY~3l785qvu^8vy13U+yx68);xeu(Q=^Sy z2e8+tKb~+vA0P_mSkOQdfCcp9CGf?B4KUyd21sB41^@s&Ig;T%hw3j~|0NiBJOv^o zKnewuf?}kTHH8+OA8!59;Ui( z%}$3%4)_iLsQxeZXC8E?kp(>4S4}tYbf*Y@Vfp;SvBo=HnVZm-x)L-8uZ-2bzjo~7 z-RpjNeBaLxZTscHja=%VAFOzFy!Q3kw)fUe{AA~<-=5v~v!mNSKCtnFJ!{|JvFek3 z8-BKb(+AsE{cv^f4_EdJ71(eK9MFf|RmjlLqcH-y*_wodBrSp2`ktu?o~ZDjjfan9 zV!M*%`%{=do2GSIf1U_@N3Ox56`ieRQ4U%y5$DMS66M$b?+Az;0OtO508qL?0(6Cb zS#GOAWISLH>sAzF3LRG|7y+>a#uu6qkTaJIVOgfk1bNg&QV>odg~Y@c3R-r4VW3ns z5sM@Hy18WVg>8#>byUtry&I~lt}Gdzj<{n*`ArTddNHB}po~w3%D2}9sGAIMF89Wn z|6FJ(r}|&(31i_voB*tzyHoWyN2?%xG6S%AAtc`Qy{_lK?Hz@5B#4q=mSO@;PQ)d z&xgo;v-2XM|3W@CD6nL2b7Xg8XkSnD(V;pT3n33V8CmT;0Q9KO(K z0^s(%H_Pq5_Wij!&Ij|goDYc$UQ+w<(%PS`Z2n|f!$%}UPFLXr@!m}Jd($;94JV)J zj@+r|rslX_>xThN(hw1^Oc>#PO8@{mU7KKI5{W@kh1+0Ma>gOe*_wQ-e6nVYYYl|s|xYm_k#MnFvM@%+ig zX_b+jP6uEr%`HQW_ZVYFioxeW?w%n);{ z9c4 zvvhP###a?_5MaNezkf|8&@taIpRxutid;=;uJ#87io&cISfgfy0w>j)TMQ$1V^wNZ zb8A#<^_M6cN{V|+N;7hUjSzvN;-XSQVN?u!QVLC2t&!y{#C^e%ho_$1UnEbOEEDO9 zevh}=WEu|ma9ZvNSG84EPPRAi85%t^z2d^^%@23%d1wEDcl%U>HbqcYG-Xlk@HoL& z1gP7aTGzw_Gfk~i!~4%4JNPg6Z~p3VC&H_F>V19@D?a~|bWU=m?E8+wCrA{~D})O? z@@4=aOY<+G{{RLcgG&IwAp#7~QL2APt>Xpiw~ZL_k_E=1MINQDzC17#4v&Uh%gW1^ z`Rx-p0%`M+0WZb(+o(n_!W3vf3A$11iMS0Ph@$~Lyh(`vQr&+H1Jr%0zt{m}yzB$G z@^kU$5SaqelNGUK0wJ;inuRDVYXlvK82WUx|M~W?bYAF)Jkt`uhxx6cD#;jWOE>Xhw=LN*H3=3Z`03D9Qfst9lt-e{oPfA zFAi6|I-YrRzU{q@6QAr}{p<6Ge|loiPmk~X!i#whf zZNA@I_f${a{k95L&6tvA9U#(|>OyzAsxCLi34LS-a3&Kz6ZY*)2M=UI2hxshE`1M6 z`@CHKjf{B|3QccQ<7cd@_i7GBN!8WUKS67O}eC78|mN?l+Ugj}GzigT(pb)+dKEPw_w zhk7awbS7B>g8`I&NdQdI7fJ$5fwGa15Ppu2H1N|v5yZ>@0CKSX2mt#UnEvmqjf)_# zrpTVo_?5v*wn1b-zOlOHqpj`#yu0lW`>}uc4gmgoeE84D`aeC{|JPG}(0%}buekMJ zocr?f>_2X=!0!LEt1}q>e0gi>Kb~Iqzh2l39{larYU%v__8QK=-dW2LO5nGrYTlU@ zc0iIAOp^E#_97kO4vjM?im>bf7(QCsL=*7gk_?t`m_r}~esw7M{6Oqcclcg=;3m6^ zI`7Gp1GV9ysGVCL*S$7bakE0%q}Dd5wCDg@bq4IfFokCsfKh0xhFo~vjNO27(73v2 zsogYZF|TsDSC_lidVPezoS$6$psVeATg%pXqAojkhNG!1DP>5)9UtmWR2B>?Egp@= zt}gSNLyi(#xi+N9Ez=h|lis=|olAy8EfpFUoKa(u+;4F>@bQ;xlzAmKmAN5ORbeLz zCJ;4yyjm?z{W!-(?dgc4CRmxiqU?P{14Jw>DO<}IKD32kmHE&^~#k@3~ zSXT#IAcHIVbilWwUQp03ES@?!H*$T|$g!E(Yl~;!K78`+%~4DUnhhqtSEqu?6>(jM zSvFj5+*}{tI=5?6bJK%E2VQ-2_q{_CZ*`jI^u;BGDqG%n+z(hi!rhZtD52vQMqnJM zd(48c_Ql^39yc!{9Gr*`qCdFbl?cVZPbTL(90wS&8I~(`3v>Gy|h$bf}-Dqs|G@X<16{io7);i#N(3zM}<=cR<@ zTGB>F!o6z${fz%+s{BDs;BJ*$Xn-3+&$Wbk#}o9`u8Nmn{WnK3hrlD6=e>-JxR_^~ zL(jKHUS|H&8sYsFI)JVi_G)Os-X0cdz>@A)&^?E01?ztx!yXvYC$pMoQ4x>T^Z9os zTj&V@01Ef>!tunSn~4&kfaZo*BqI4Hsyz=6*+*^RO%WY=4ULsD}WV z=u_RXJI($V2P+?TL|z`PeQ(9kk2fy<-SPc@I(OpF=XU<;_{yK`pL%OWt6*WwG=H>t z`on$8|9JNJuTLEM#j(Bb@89^N9V>r&aQ&~3ZT{Jw6|c^=y)@PQ!bIbA^pAD z620CQztxh21$3vQ0%N#r^keXB1`D9bnFA=e9l(T670M~evdF|gw8(gY0+bE@ zrNaZ@snNnokgtTIB50tD98C*;v)^K>zQynvru-qy6~>NkjlT4NvTV znA=3<3Zwue0|#WqT>k@%5KGAfF5q|0CQTMH&P^Ikn>w2Df_`Ji+N+a&n`)D5>rxkI z$CgK(p~Bp{a@PP;S5?uV+qNobKHA{F*p;|5Sb1+SdAm1!vBh(y#RDDa>R<*=Gj7j! z=G$-1v}Em|Yi^A-AOes8K(YXm5`cvp#8?yYjf{H4I$?;+cM;%zmRU^~qoit)?%S6U zRzLmei(~8zk|zeMP7GHc?MWW&5@j9dPMApOctL{Gy%`|_=&BTkZXN04ok+ki`9V31 zfoO&odIc5+Johw&4tHm`{_kt8I?#!SM25@&!7lC3U;?_oCAF=ia&t{&Q%ekO+UefV zozeJPtD8RD-2RL0ZNJ;y_LoB)e?HjuhXbvDJlyfugAJb_Z4*IY$Gb6p_~zpHR~IKq z`}*Pva^F?|xVw%+m8aZO<^TQu2HrovGW+e#HK@Z72Yh*L21OXw(BEV9&-@1r;Nt)0 zWaV2^6)XT?b~4=O&qYvj7;9Hl`(u|8PHW`9ClhqZN@=u zX`ei2+NxgRGA*?lR=Rwv0;z4)%?BEruMhX$>+U&T*D&Mtb0ZevCxs;tL1hlB4KLoTD(5_1897p=#j59ti7PaXM1dYW;0DGqTEF?G4c ztO2au5m8I)XZ9e|s;+fxEU-R~K5WZF*KUd@-OT2H$8(9Eg-~%sE zm;h&UpjZP4IVk=X1#BSlBmi(Lgu@r59{}Lu?=6)f_Xh(20Jl=jZ%A{{>Tm-9%i{?! zZ_a0*bD4V;c>uuba>Hi7Wm~|y#eo*gbU17~PBfL@fJegF2$_iG=Y@R&yh+!UDsKHy zLLCq&p-vJDgZ>L9DD2N0X$Rc@EcG+^pvEVVfL7qY98BV#ZVbFgOjui#x-UKX3^4Fo zPx6(X#LL}raeC8PHwaPsUqJ|l=X3UCC-^Ba0QTpbcmWO73Q0j9-zH6OPB()A&kR*P zKUnp2Z;As46f!7cV9xU_ga<06&yyO)llZU)ILCD-0E0Is>IoTsYr5^Dwc|hCx#}e{p=r&yH;V&B^V* zIkx%ZZA;%+-1*8(>kAW25(NnUkEs5gDTY4)z}=4O3w05ESuWJYF4V^ng5lD5EM!XkKI;5}ak6n*aU008bI&Z4|PVGi_v z7=4X;ZKAj&P*4~u%tsYW2ar~)NOgY<0E7V3YB2v1G*GS!Sr!n3CcfGu8tsa@D$-z{ zSu=NYc4$pSctd05>G6U2fF)W|P~&hesZP}EWJ4a?3XlG9o%d{8LlyW!bHT>~i0XeaOZn%HPt+G{UZM8NIzsc#6o|tMw|J4?i>W8d-r;%x05AXv zhHnk+T)r$^*T(c`<>1XCLudk?Q z0U!aur-w!Guh;`a`aIJ5>7nK?PIP^JMi@VQd12z)D>GkRp85OTwMcxWBfU$*9|-`m zy0Gt_ctY?Q(E+gUr32vl&-{nGKL-rJ=95i;lmz*o!2k`2gnzQ4{iiG2NQU`%ITN9* zJJ3wc4<|EkOhSK--)-~XXz^Wb@Smx4?hBe2?9Mo}efm=Ny$Hc-)an|I7Bv8a3-Unf zWko~<^qBR7HuI24i%r;&witrS5~qHt#k9tsSfA=R*fDmhz5RMe^?qW3J&_iZJ*GCe zN{Ks1msny@$lN+(itVd8Sz+?Hv?i0v;Woyhb;jK3>OkE{W^gt$(&DK#73f&Kq6Jgu z6jFQv0HF*hl*<VnBV<1qMLB5L<v>1-ZkC1ZLRqObN>Q~jl70E=8`Jfi4lH36`9fP^eOQ&K&&l-i<%ozUuwOJwKis{K>jie>k=K^D9UGa^b-5&+Pft z$sNBsz7mUcq`1puBNuD#bQIsm}|?XI}e5V_M{MK*u{05S>cVw{te zfwL99<7o%~pO;#7M7Y@UMZ6cyB|t8iIl>5tNFp(x5sEMo@E{W3008)AFnW=%lg$+w@&yUQ9$`>aCr^kmjR0WfzMKQH@eOqmRxoJr}xTo58 ztTAx9C3LAhe5*HlyD!ER2r}rc(aeROG(#Q+{cL)n{IlIf`pYMIkzAmG1O`4*APjiG zW&Z@xk2pN{vl*_(uU~p$`p*u4`3zP+kBxoAq@JrfLnPdx`?J*kwv?FTlkv+g7sF?q zpSuP1le@g&gJx+$k|iAZFg$@1$tZ%Y^1k-C82Y0k?h(||ea*?;4G}N^7SNXF>NC}^Ew6cRL(?y|xBPx@>t{#1v421SjQ{f&$J+mTwEfFdeO&*)I6Djg zApXMp6N|Thy|+%P`_hqCzPJEk2KUX4m0w+-&%(ewjRM|q!VQ!iz`Jt|(g;Ybe`h5a zp#A)g28t3G9e^YS_;6{9h>pP)V!rZ+vuFs?WJ$6>W(V-7n>1?A70lo=uHy;IE}v$T zO*UF4?=_S*sY)_RIa5NYEX29t3*DwwVu;vn)N(ED(y$O#u^t@O%ctF1d?Lrqw(aT0 zGo9miCKjJ;ZQdU9EiI4rm-(u-wvfugtlwOKP93#6KFoz-g|ku@^vg}czf)TGE>CWPEQgR5NR8s2H0a-dN$S zbt}U)iN2ZTdm0nHt$~h?ims%=8`3#h0F;;DEvPfNd%&#hQ78xpx;aY1Tt+cgT z!&MqPS;v7A4P62@K3uCqDm50kRAjh7?1at5+K|e&ZEWi0L&sj*zUz2f`{|bE%bo2H zW~Xnhn7cH$^wPTd<5Mf|?%eszu5-_9=sRDn5 zX-RYUd*`?RYGwLr`I8mJxlb12N?qj6Eg}hr^)GVb?6-Xm>%&H0?GWBw_tj!gh7 zqK#e)Q=k)-UVQLTkJACb0=iZcI1{zd2Z&&-gdNI1YXIU<#A)!IPnX@T7P2o10Ek;* z<(o|ch>;3O2LJ|8`WgO6eE^?)3;+-7ywW>^plmA;U_Btk#{&Rd{80=b8%8L=J5d2l zfq(&&z;pn>fHV~1LtzLpT*HCG1B;)U4glP1kNj5vcyXwXi@yW_yZ{C?3WD1+*@&qe z;bJ_0w4~>wjWfSJy7QYmm;ZeA!k?~Q`Q7F7?0Y}iG5^7mfe&VSKUq8VhvPfHy>;^Q zYe)Wge(x`iZTZ=u4ZqyC{uet}!w`LQi2#7-#~U9F)!pr>9n6U`+AGAQ!O_ydIB1cTUCMt{l9hq0KnsM5C&6R1+rpq#*aCE zg@}N6}I2(^Kb zgB93H6n?p4HXYm5T62Hd1SYjOLigJBXD3H?Hl;8Rjwsb*VfR3}X=%*A1Mj>}=>Or1 zZJ`_8;hQ~?b8Ws;t%0lfyOHfaB;>wS|8r927dze_QSSL9hZm|pN9qFr0O{_}iv$34 z0N}yNz6z+K_~7D`j;l)@d$`15F;R=3(LAeAPb-g_&@#NmbF3^1pwY% zjAt@T#W*z2nGu2-`>G7^gk=HYEzpw8`Tm9B}bix;z@+OB}aSCNr z>$J)YhGJD&i5xBs6PtwIQ>hQ(`ry!(C;iQx)#D@eL&Fu#NsB*f^tff#;wK8tCR@TE zV8G1|z)+$f6byMS0D$|yU2b#~>$L@hwp;KGb(9*)LqmW%0qzCEayXK6yA`t(aZ5XN*CRzZLdTi?4b(x=^**5>}|vdLzz=5t$PH40L-eLb-@>GxC-yF!~ps z5Jhz8$|}9{^2({FH!OXA{gN$pp&bozg1Sz0HC-XMYt@DeJ9gaOz3Bb-1YZrU%aK-28{_O|MlI_m#@zIhukzL}!bv`A=Y8 zjb(-C01Aq*t>(UOk&}*)Cl!5Ypu7MBQur4DK=lWx82iu%00WGV*%<%;g6tvU0SNLg zU@p{bw@rqEbHTub%TD~m`c!zn+&ro+nKLQZd&^ck^myNMj>PRamocWekaispnMp(u zA;2U7q?~BJuB7dB0M~2WSF0V_XfPrHoG1Vo3O#HJA@YLePq_yGxbjP*e_r^^D_8)v z$C&uP)Dfrpg8{SxRDb*!_{_5{~uPaCmuZy8Z1L zP6rEsPqr-i!|4OxJh<_fn^*sI?cASlp8J% zKk!&J3Tem+R|d| zQzNSXu?qju%E0mJ5K@3+QOB67Fi7grLP7Vk$nvv!)M5u9UHl(&eEAUTC&-|}-h+Q} zY|Q1wF#0j)0RTvU#PFw4uNKzsS~Zq%VYxh^kfl@#(%~@#B^xrTRL0fnkWA(+E`S3H zzW^r*`bF^vu>?k8P%P(*r^jX6)>wIO={Oib)E7>XTO0A%sYP2*W3fzzT`N)n{7a72 z`!D0+(;2G9IeU*DtU1Te%kWEo` z&bNjV&ryn3R};wk&pTWHxWAR^PX|B@0B#Vt0DW_Ikm~>Cxsh+K&V7A#{`1T8Ut{lc zYt^?*e(tTq^#KAX2hA5;AgVtYKpHT0pOThqY{T`Qh!T*^Nx$s#}(C6Dp5 zwpdH`=wRJcXSlY`M#is=#CD@hrz}w!G+I&;A*<-}OH49hj?WH&5sZl+bl|N-@uC1)4N*2tu3+E&RDx`k&3IdM}r6D&3IG65hJ=M&N8*Lf3Jz9r zk~0L_U}VE!0KfnMK;i@dBv%Rg01ne3u`r;%(+Bjzgic8sU;yCxzRXL5b&@9p0DxBn zF*1~XkU#{AjW)h9+4|;e$J@*LKiazNkLM13b^qq4_iz99{P92D*#EnWJ3rhq`N`U@ zx2K!lS~B$Zrcnq&zqxSqw-=B7{M4RL4sAvS_Tw!}f3|()8;g5hnrb5n;C^2~SkAMU?Q zexwiiS4M4vPc4!TLEOyC4Jk_L0Q?H}J;DeYxo?9`bO0HRG6nZvrKI%7aiCJkv(;Y? z07MiDN~9K-&$LCv-Mm4YX(a8!P(xkbEwO z!tO7NgvzUI+Hh5e3)fT+teV-|k?L*?G)%S6X3W8|(meGOMV1_6t0%Iy zCNga+?a-+b8Y}l`97C;I1+x^lkj@qs<}Hwwih&G)D%j^{bh;Loqd)AMNyOGxRxGWE zt!${+(pkF~xwNqi3lirqBk9 zWsLGg5;rOE*#WV%9+VUSevKMDNNV*001As~^);i5L*00cKvrs269@N?5;c z*ND?P=CT0*8!F=f0BZo`-y~$s8cKJE^kBeFpJtz5M;^e%O5fRd`Q=JKbReexF#X~9 z->i1w^K-kR{COqQ7VZ8vPm)m065QfB!rP%f7K(JhK_{fDEHllpex1o zpMgH->8>=908e*S&;h*AU-PItjVl}&AVrBuFhHEZ%fqBF_55(Y_szxqA8cOw+tUaC zeDl&D@810Lr4xU;bo!@9*8gbzz`ILF-kR!tb?M-HJ2(97^qJpYzVzE`7ykL;@t>dC z_u<}k?`)d?aP#~Rmk+!;+xhfxJ12sS4G0NJ1G zf0IE&78v@ks9FU8B-DzORs=^A4je2k4GWvGZd+De~pjnhBqEPiy7Il>b6&hz+m=03-oi>rLPX2eXsH zePuvg`Nf=Ppc2g&+hByg*M@3tOt(_*CAAmb0M~zDKuCW_8@c<_1W@{=eE`@0EDY4a z?K#;?^rHy;I?iO3;^H)^jEST&kcWmX6Wk+ct6ZC`C-J*oJUN4?yaK(kN`k>N)8Zz zxiU=xFaYrN?e$;XUiP=UTS0<-Wk=0GSJh-M_WcSymin5UT*BEEMJSs}Z8?x< zWUA79bBPiFFv->05~We5VFbhuAgnLf6qj%jcB$P}040X;0RJO7LwOM9R7g-|i#*X@#`b2kUre|f{;$)~c=&2j*SWy>jN|z<( zdX^8zo9*f%^%Dg?xpT+Z^yS&E4FOeS{y+H&N-=QOlMz-R3+Ae-iw!j<2San#uxf?a zvR3O2{VsQ}%h}_yjCt&n<(95wMVBYAp`m$OYwL;Op(~S9muF{gu3htJ$HDVEk3QPH z{>82YZ`1Cy>oEak2i(y+kfC+v{05)QeKi{ zP~{buE)-Yw{4(6-3=4C7g|aHO3Br{Zs~<{#X#vGu40cpXZvBrrg7gO|oq-V+p6>tv zJ%I!O{LL8<0{~J)3`@U+LO$qnOn98Y9ssbrxt2XJ3c+DjA@L7u-KNbhIT&y_VLegd zBn{?rwFpD!T&eMrqXGs9vVWcbPNj>?^rxz!1BuU|2Dn=vWHfZE2FqyQqc+h2umP3; z04C@g%walGd??-bDg6=$lot-OAUXp{C?K?BP0>fqF#zB>`heEB6eT8d1$rw1fM?ob zPqjpt_OK0>ngAw3{15{oe&``vWzr?ZkEZZ=c+{SHuDgo!!eH%l{TYN{yh!hChF==4 zf4;vC0C;Cf|65B2KH0JAPZy7W{^0i4&p-3;_aA(9>mp0wch=7TXny3K`Kfo;t^eJH z^Pk>-=8LDF|I35>f4Ft!cUMlbBzS-OvJbW|d7n(T`EC{f2)?-c!}vt@b-guxsjcE< zZTM)FU%LDA-LxMUouqe=4|icf+Nc8_ z7y+>aW(U9@M4QN$9MdO8os;pp`2O4ylS63u%FP&&K=*k!6jCslqcGd2v zi5;u7pJ@$W?uxMkAOPTMPyE_o6={wT>KOsu7;j(%#Qf*{P_^Lv5Ewu*%vck%duIB` zceD2W)OYr=Njdz~KA@kU z8WyAf3u9lLAOGUw)ZcC_<@!(c|Bt7)Vei$Pd z>OV#eFjM`LCG|gF-t@_Q=A+rFAC5#{9*#cU8$b#G&G|~b??lpmBx2tev@+o(6K2q= zhbq8VNtH^;HW)uRCPL_eJ4$3-N=>)L&|}aH8XP0Rmc4CVduyAP$HJXvEt}zCn|ajh z+Fnz?Inz8FPFL$ph>ZL?lUG+p5`eQ<>(95>IWi60%R}we;kLG9S9`Q6D7RpsMnsp6 zxJ0!cRwbMxrS^!y?beiGq0GFSagbYUBQ)5qF%aXy&7kxiJOUl$iA3`TQ(7LLrW~?sO-BULnwx-kN z)twc+X>UD&VpD_bGdiatN7a{#y*X3&i!Sd0lRWf;1rDt?Qi!vrvLG*CFH<@f6=X^^ zL%x`EQK4mFeiPtVZiX?r+!I_CO%J%N?d7()>L8{%$2(h3j*V;^Y~L|Dabm;1Q+sc} zdg{uv$2LB*HnJ;fY*xCETd(kxP8*(VRu*;2ikkGr34K{l^}v-~dw;q&^-=(bURm*z z|HGtJDspn*Q<;?tMm{nJNPe)0Q7rnO%=ZH-6+<4@ywbQoq|xwU zRI7<=HMq54Ai=JWOCrWZ{F0DDj!cYZ0vinUJ_(I(C=jFx=rEglZDsRe|B9#|7g)?c zrpuJeoVsmpt_xv4q(5E3cn zf<09qdA>FEs3H1XWB6HUppD@dTVk(vq+V%HzR((V3H9l9^ zK$>H|2xwgJBn2I|Ppq^UyEpFplzWVNLZwBn+=V25Lji&bnk+40;m2Hv=|AG(N{y^M z=Lwd;I0g#T!9i9qj&jQL7qLU?3dN=qi8Djp4;K%g?rU0|4lRk4pB`?V_SwRD`Dn;@ z)J9KZuisgT=kv|MB!y)K%46l+v_8w9o!yHzc^F#_VUV) zHa7hJP&YAB5|alWqoDKL@1374$MoOd?>pfxiMjI*On!lyp0)Ob9Jz-KGxL| z?`ZT_hZI%-fa(w7$BgkqsZw7o=Lr({mA0_nl^S}@eGedwscjXB^_*^=wIKQ>a%J+D_d)xpGsU#Gxd^N7ZspMhGG#l86nu| zb92$PX>*F|9pxkbz<@725O6h_v~A|H&N5?<#oldjpc~j(6J1@O+0oa3YP|74Pdoj@ z=?w=T?b-j#(OvIt?6}t8Xq6XN$Q6Tj70&y87IROTr&0H0TbZHTTX$;HfnS~Pyqj>e z$rqI^dO}^WP{E)^p&;J9c)^n>eeiaV7eX9TGAk1{8(G^HhrHBKDro-HeIflVD1h+8 zlMi{}P8U`xGG%2jzJUQsgHZaE77Ay1av}@x3oGS&o-H>3Fz71pu~|`m%!U0+B3@wu zVkn)ls8)E4>#ds2r03it$x$xy;5R_pD@SXjGa0$(N zg5nEJ7yyi*`x)_sP*sLr3aDr<#K&>mo-g;|F7&JpnZXSkIybmYgRs zYDL-0k{_+F9Yd$mLRL)}J$Y1wEaCNCQjUg8Z`3V%LZ9;_dUrB~nBE{%1OxE(#O;Sd zFMR)1a;iTVz}+7(2$$q%eIQD(28xxGcuDLi5{us|t=wC%i2DS89Kr$-A0#|Qa`pf7 z|IXJ*t~**E?YToNIBP zX(~qn00rnsb6B`<4p*KXf&EDiOwG-a>gz+5u8$H@Cyx}g> z6ATDfIOZ@gG8x>9t9ok!B*2vu2M7qA*`P;a9R&<*YxM7HkMWZQe;+OJ5Lv;M`O_H`sc7j^(Z#o^}gf#whZu)Q(5qb-fX zc~`TT1#PH}005*^-XE`il`Qxy0Q_cOI{<(Q1Q_tu*`aUFk5T6A_}W72F2cn_v44pe5Ar<(`7iIm0$eIBx=Uu_F2NQWJH8S0^1c007L( zx==&f7V^RqWyn)l3I;Clr=Kb8&qSEe~d*+5@X5~8dAXE2$dCU zy;?Wc(5S<#g))aq4+ePj)=-((CNHy=TF48-`8nZA*N58mxoW02`dp%5w5t5lgr~M9 z(ml{Lvu<)*SGqrJPR1RzvGS&t%+&DY0s4kht!-~~#gF(jjKcJJGF?uNR>-UtISLl= z9VpMu!*`)O=v!MI-q6}RUzuq(xtsLmkgS`H+9rbzKHOBMc}e5I_KA^0E0-KzHh+Hk zq5Hc}K6UiqtD6U2>b0-bY9b2?dM%~XUR|rrSW#*ow7E07qJDpTu5<0rF0XyJy?9<$ zn!ljfn!7+dyfQc$yc% zAI~m+ONzPdQ~KjdRfWMoX`oDqYC?}MV&cgc6fU80wYIz5)mdi7Ig(y*aWuFh9>xHw zM^P|gRxEbt);n}t-3E64hhvT-Ve|2b=~TpU)UO5rSOee+CuIYO>W}+dwTsd(xxe86 z%IHSogL0$|u(bZ=og*!Q5f9S@Q2nXU{$3DkN%i826sC;&jY z&)SGa*Z?#7=Td*SDa@6hqJIPTp{B@F*zPyQ$o~QWfPqJhfZF2s2&reXgdKDjs)DK) zdNVH%)V(s?@Y-n8>toGtjJLc$TKVIN4Clk~YR<<~wVzDaiRY4)Z68i{zcVxN&f?LZt{!=Fs`XAga$g@- zKPQoT)h0P7DpD)}PIBcWJgYj!5ABOsSJ>nMY~A3P73Ny;fRl0mKQ$qc@L~`7~*AFp^R>FS?w?dqNYa`rHuOl060G!@PH3#0@50JgT)NfuRiSZ0Jnxx*YNonthqSccxE7eaVSj+JXR2} zLWuwa3@(q6&(1zJ#r#Kd{e%N5kwNi%mfU^>0ATsq7U4>Msxx_JqzS4%6dj4qPxY4o z;Mia_DPVK}D1qq!zyOSc*cf9$!4*Dh@?3FZpn-$37i||qe`y&2y(jypRA3m#b6;~@ zbO7xMJc#fD67E196*wTl{Mp_R-`pT*pr{1+dp?}3er2xa!}Sfn*xCBq{T+We((#AG zZGS!4^Tp|*ug{H&yZ_a>FR#u2?e_A2f4KfXp5F40M_WV_@L&UnZ7`)@;(+olz~Gh$ z2KbMs*8T17a{M8_AtLzBx_^IqCxI{`{gF%<62ZuZWauyD!+fx$SyBd&3!feSG=8|M z>63M>Z;=SUs_A`ZL2H^nSlRHS#iR!lC6<19IR2=||DYpqtJ!m|%6=?fb|`Gx>Cw^w z^s5T+0)l^%mY2W;MKnkuXwk@86mpt?UaMok5!%o)bZTMZ-_=FLUrAqRNCllp1t-N?;&d77CcWHU6fWK%H^{I|jKROB5BEN{miTq%A$Lb@A@KD-ZQ& zMgV|JxF;Rx9bbH8`RLYlRjsSbO|6)vWpMmURb<^2+ZW{77A&%tEIeWpY<&N!|bgAp4-eArrl1vGw8vxKM zN^#aB<^|g?q&-y{4L1E5WvM-%pn2|tY9P=mQyLXY$>~8dd!X){7A_R74+;fi-e$@vh0Fa14IPl;HCow+B;Jsh#$x=T9lzspJW)Xb=RsLSRUjhKB19+<0Ph=za z{oA!(l4Nl3f7nrRrVTa42GusuNsAcj9Zl^jT=FZWcx z(wlj;k9@J3m;3M+B8;r^t*#j7_4e>fO+F4UKkP}o)0g7qjn?S<{qdiT)%|X9*YB71 zd_2_pld;a1dOKe2Yk#A+{ms7i|1V$v9UbX;UHQWL|9I_I2o&N=5C$R^p$L8L@Uwk(IS$1~%x$F_2^Y|Hldd+MclJ?pNSwVqY$1-d$r z0M35SKKtzbZhyxc{cUfKbiKD=+y-W|=|EO>}`JQ{6;>pvLx?~i(q#NwxOUKsNO znb5%qEp-Exn-Ds9x~%tp$6)@+nmprE3P&LG8NFaiNN&4CL2Psn7T1Mtbk=$Lj; zq|FFfvj70BO}HNf^yZmJ{$kXGd3rJ)=(Nwzk5?Y;v^Dva=&btvuK3J>T1e z^po-L`PTX?T}^<&rGXHx3Cvnqo4PR>yET=%Hkrif0n;97iTCt)`Z(o&LJ0hc{3YKJ z%IFNY^3m4gLm4Rn_;^3={Js-C0lXpzh3E4}2SlbLg_~h7RUWG6$Y4SkJ`W{@%Cng7 z2)Dys{`6G$f&R??zVzOnLV%o|JOHLsA6c0Vh54r|}!X22$XeT7v<&*AWrC zy)C$-BSyyA=A57FKNxVZhnzQ*3ba}0RL|X@b*-UicciuJ2MF$ zzyJvVzO$n1vn4_T1ORaBClL5k(qL8c z(ip4N2#S1GFV+s03JVlaZKcUkVdQt!sZHXjEVW9rLt(bbjHXJxONT%xFqD~q=izU` zyPrj0GQ3Ho8#Tj*KBySec#PJ2ac@Wyl=_UwY`0-vi-Xj zOguTT=?7;He0TeXw>GSQd1T8c`q!~cUWDaY!0DxugYjgl?{d`3MF+v0Yy6g@@ z3wj(5ngB5nZgkFf*Y<0xV1dAURsq&A32>YDdmZ$SbO3DsVh403>4yDh1^@s^;lNA+ zpnz^9X$YLWG7q33AQ2un2%=yZ6!XB5GGUPSaG3FmC1D}=#3R}RtxxIaGo-`c%QeF4 zpeyC3|ER5na?gFAihnnY>a>v&v%;(=4C z)Y*dfWNY)jxbI-db1dpy=2ZD!`vyaP49OYraP1KG&cyAK^MxL?T6lhd0mUT`(YkR- zXOSEI4|jHSI}C53``G6S=~T^7eC2Z-b6*jvf4%`=gfuFifdnWZ0D$p8pt6Dvz*AGj zx&RbVR8<{NRzm^t2Lb@%uMooGQftYpfDJD06M@jFiNPE5hpx_!EDpH2D=d%4)}#|% znyR%y2b-~Hx?3)E)!!S5vH?K#XA6uxNOE9sXQR9lop@_94gg%AV&2O{H%7(hoSVv> z9!;KNR!kDWK>X@>4kx$^xU&sqkI(@OWk_oQD$w1N7slun=jY=iSpa}?&z&6rz^#EJ z0(<+S0D#Dc84^cWymf_lv`2P!M8SZ4y(usN000I~PIXBLLD8oJkj&tK0iF-_Cb9n% z>Y#SN1OU|i^;sWn1P`lX?$z-ox&bik1+L8aK&*`YU|Z{-?`?QVx0N!McYc})F zg4Emd5p#z*tzasUdUswB0C+j+doki? z6Ikj1E@o=arD{(`ZTmc0+`gCr002@4K#5@pOk3BX)Z{4`R|Io!v8(th)|J{pw|MdL6 zPxqX7cmJ*rj;?#MIC`R`rk5W)Q(dR6W>a(Rkjj*=d~J!#wAkM;-xb=q>ChMV)_h!_%A#Ckk}opI);O>%HR2168w7P9(w`wPxnMWaO*8>gDkPue+D=6V z0C>GkY0fue{7DVvu+Jr70AL^ifMgBLmM@i^MFGk^h5l~V^`OwiAeXw&C;5=W9vK;p zeEv?Rf$D!FVZWVqUWwUmWrPdGt(=>4Iq4?RzY6$LZQ9nfj-B=&Y8f?Tt5*rt{$j0$w)Nsg_x5mN^s~ zn@tBI?$fCNV*omU!)f=SWb=_o;}(~(Lsj8;?KNTRMrVfQR7Hho1&WDs+`%FGaeIaE z;Ye|B!Xs#IDZX2L17PwhEIdnI}xv^w&Z6=1Y zXlXjJcc^Dxy>555>10os2>5H=?i+pno4x+q1Ae@K*aJA-?O~M4ZJntvy#Lh+Wc!JW z6G=+>*^#IS0Uk@99*)8Li{RgZ*!8LQbAzc%qd9UM(e)RzeAyC60Tq~l;`nw5_2*!U z%ob|>>G2$#kHq$X3OG(nO#=qe3<*vT;~P;p*ptBD4I=1Je`+WDz5T#I{K#+)wub{+ zNJC)BRRU$v(Sh8Ffvk97V%!@A02lzQ%lNmo1~z29s}fCXQ_Xui{8vX~FYx7Dk^N## z;!n00@Bsw?xc>k6%DkUkUHIdxiz(|UKBc=qrJr(7t(U4lpOFB7S1AjO1YoAY41s@m zbLrn*p9KJZ{%AcE(2wqJ`Wkg#D*9jm4<9WpNUx}a*zf`X@c)sn|J?dNTV42YVS-@* zA(2uvJbrMv!hJL^jGXk@pzl$y2LQN`cAQDrj|L6f>T5Q*ty3n&fJxn|RUsCJ0!k_X z19?HN!q;=a*|McDaB6UBODKxwC$FhuQE1GdVL4zC;e}T7Y-7W^Ty|A1KjThxnA~AC zw2Yxvr4>h}GR!H*4#=*tB${$v;nB{(aMqo6sr4r6SB1PziB2D?z1mP#L-l863{;S2 z1C(7c#Qz#9jmgG*uDR2xAR5d;#8|`(*&XxS0?mx6BSY<}$#`g_ zt9?md_riEEt5@ktU;R3=RK;AG{P({e)zmEWIF?$p^R&7tXLDDbXLrxSlQXk7RS z@X?P?9sI+~r@wXj$fqZ_|Izg`-@Um1-4iDtoH+6Pz`95rl z-M*&rX7{psW1m?G00NaQBXA;sRNLRAU;F|6w+x)lnp49Z2csy z7B+o^YrG&0#4WO3sg?kM4uAogFc#r3!YyE@{0?~v#lcQT*gAIah0e>QA6AGUJ%*Io=+aWmx~e93Q? zj4qgL^Iyk*DT8k5zwwQf`)Q)#QQUPuR`-&gfNh3U{ezI@W<-77BRknBJLXcJXwqMf z)Ll!t&V?)tPFC3z^9|)Q=8EMm_4a`Mc)aO+(tA7K!X5xBpyP>#!vXtzD0pc7Qg%47 zVffPP4Yxk(yQPeLF1eTr6e*zMj<@*2@oFq7(|x1FI#-x^)C%M1Io$E1231f~jn}uO ze^jbQAU`-9_V2-)3(g6f&%Az_kF#>F)_~@e2vkg&K={-CUmjHmA07kw5!(p;q`VveC802z`#|aKe zkC1pG6BF9EOgE)82~^=*iY`04!=eK0CoSvC3%YeyD;FfKGVjcbyf>Tp7z|jI|6)b!_f~g&dwBsB(05l9aD@JBVf=&10PDnH z#_PkO``s;5RDWn0kiZO&As1e3v;sDzi8WwIZIHttS6~OtqOV)ws@K~zrTTb7 zek?c7XZBmmjUlr??aY$(7;A`!YQt`Q6DlB|)$cKTjpZiR0vt89hDtLbkqde^cZbGp zrP%oJ2O1d|069dJwdm_W3y(bZAgZPGcCELeT#N2*=%jT4+t6r%DMPB{A zH7&aP^V-*^q7g%Vydj)&M+%#wez`RwZX zhnG*id3^hu%UTbHwEgP2(P~w~S+~hMXJeCQz+O+t+5)Gp%~{(SncBMd(qC-#JZLWW zl$5^ujY_+IuD0_3GMAL&)TXW|S5=G584SO$`hxd|otrkwx=eDnT;zaT%PO67MW#n% zvd-bvrlVZ#$!!~@8MX|b8yR*r>zsY>0*?2B!XVI4#096td(5-9> z8c-?!3(B60`K5@3yE*KQpy_k&+le}ueQw$C_`E_BK@HI#6c@xoybWT95-%O_fLE&j zg8~$g=Z)R~bpPu;es2BeeA-jZ%EQje!wprZz3LOqs4-HLXwl?^ftZr=2Z>CnRI(PK8^*VL)lYwLNM>d4*Cp$etTS>%C zr{_vXGabNnjEDPucgBhE^&jf;6UK6HUMKX<=|LJJ7S#VfQgiB$CbSSw5p5F+Kt9PA1L7<;<>`+JFcN8cF$1DFAT5Db1Xj^;1I zz6JXSG(XG_m;i6iv~0}!*JcA7bG{8Zg1`dX+J%_}0Pq%E%gWTBY;FC|JKM2;U;-=# z0Ou!udSeM403%;yKVSf_(#4~)`;YVv5fYn|m-QPJ;}-q$X5*l-de~u@YHk{Fx)yuF zdkfu1+WV#(f(fmK;*PH}#%fep6h12a;9fN(96rCL4z6Z6H`?y+Y0@<6Ua2;h@g5=0 zQI^WEd7v)WDUHa7v~#PW?C}C3Q_QSV!@@Hms8twD3WKA@S!YQULgP3&8#GQ^Rc*Af z(AL!LH$>x(Ou!m$)VLco^*&pR0be$~t6pIyTnv$nRi+*)3=d|fUD~L#OpV34NvScb zZ7cy~Jl&b*g1^?+otvE)S)Yy#G@AocvBATW>sJ@XGp3e`xs`P_mZvK>ezE7ot=Uzp z5~;30rZ1eHii8huSnzPy?z`L9y}M`K53b++-nFA2>^t(|`Td_BJ@wA9Ll4(sl+?J= zrOz2^My;xCKIc^3e;PDY7Aj4XzNV~2JrwTRzvKFUJw9+ZW^XG&@KdS4n?YV;mX)$f zjnGqg{-~4|rJT74vp#NlWOrcdg0!PW#y&8aP?gr28mF=bzc6Nl`qy4%GeFXYO1^I_ z@uMLL8uh3HA%C1DB?*&>KA>*yT=e6RNEXsxtA(u)iDuXVEl$R$7b%rGqtSL+ZG*Lr zA*&G5$h#sN6BH@hCt4ap!r&Kds(tX*Y9V7?Rs0g~jUb zb_BSLvm-`M05@>};6~JrW%S(~`7oY)c`><#BjQ6AxKR2_V_wug-1h;4*L#8wTitw~ zoEBlz-_>$Ah3SyKIl>(c59D%411jN-3^M( zCjE|j^PYO+UQ5jZbJd9k^*NXRyj^|Nt32$k5x>_@uTX!?SHI4xoz*GWrBBU$t+k?( zAwOYCQ%23KO*><%LD;jdR<*0ixT`@!qR!bw!`XDhC8VFJhEwtIv2gv#h;Z6qp-)pa z*ImPG4D)9ZEWxs#aCj}6vZ3=~4Bwi_oWlQZvVh|A!f^QPK;U%0|LkB`@IQD&k0x<)KH5tte4H>Zw!qGg zWH9+TKbEHzkTQNHosS@biu+F$e2qkDG_#a^& zSN!ce+x$B_liRc5wQ0}JObc6PH>MNt@E@*Z>>Bwm`?}fu`rES;e|K^EZ!gdM-Sq`O zd9eIP_gDV(;ksWx-}0+xTYr3S(@!64Mbr7iJDUN9pFQ0A_qW#Z`r~_>fAM(7KiuB% zcQ-fu=-&FjLkW6s{Xc*NLUM z+P<~2^YayLk_qT{R-yZB{m!cVw^w92-(6k!CVDkUp(Vm70`s`%BR;%vm$E|{8jc8(tH8Ql;J;}PGfuH+T+ zr%zY0pwYq(@QBSmzoBJMYxnt)sU7jm5?`v-)&Kz1>J2O|ajzHCUAc-_u4J8uL8Ydo zI$-xB%VCw5IWV4X@bZQ#4So;8I7p$l7xklJ9-z=-txVp!RYL%zkO@H+nUp$9rNdoY z=t<4?W~LgQp*lH+66scNug?^7Yy4hQAY>0SW55uiUgglgMigbEL#`)!UQ<%ZU|_Oq z!C2d@*Xm}dfRw0S>kc>Py|q!AhO{%BY#AQzT;12Y&}RuXRojx<+EHJ0+xX0pwc9T& z-S&g+d;fIvt`FC2*x%mK;R+2$+ULci$L5XSJ#y;yhE;dBZ20W-(LcI$?t?SuzjgfJ z>qqxLJ-GR7XK0}$_F(yGqv?Z7Oz>j=97!ZzBLnA;i$5| z^7WdzWr}i<{lrC&dmlC|BIc>G67Nqk>tXpteoLj8(}a~Ih$*=K>*tn&4fYyjon?r` z+1z0bn9g0&{}lNjozRAB)l357W>NZ?1|tV@iNaAu?EpWZ9q2aPRW$&>bkLVps!(=E zYh)c3YoE>9u9o*>1I{(pqGlmrnM1R&LBG4jiYpwJaA(4HHVS#b!17|E{!+Xi-UAgT zL=eApyUllzY{&%3z(N-U09=pQc&6^(FSKyL0A8v7xO+axd#V1&dw>DBATR*N9{?aq z{&v3Uey8VtN7J386YHS^O~%zWc|lW^m6c{{=Hz5^vsJIO%jfoJD!P?r%Z!!l?eeYl zsvS-RwhD*cniEaB6HS_f^_D$${a(B7P`&xAw{D+JeaNBNZLFEmR4vpi7F#sqs_H>S zRllOTqq4MLDIYZ}rwldo^cB;F(&hH*olgDHX7sNONByS59@F6_)1emY!4}63mu0QZ zut=|5;ww?ftF2@s7kY;;7M@h>e_`t_CH#C9`5;zaSOTA0!l478^wYhGVL+8g0b}_~ z0s#CTB05bYlA(%nTEh;L8FjK>Q581fTU8ZT>-jMU0O$Z>dMyCJ<`)2f=%7hkow1s7 zIvvXaI0Dge3MV3xM3pd*bDMz{m11Qfb!vL>>b!x|eTfCp=Gma{%y|Ft-r(MZ%mAxiF)TVS7$neq5n{d7J*3s17Y^UP7fE(kG3Bl&zzYo z!1W*Q&z>A<6CDG-(1T&70w+gu42^|wXgDhsbRMYtJoBrJqmT6jc60=G7vp92w0icn z7tNnZh-~+P8C!EL*uZUVjc&_?HspLH!w?2}3jkQ0`*dyVA8kzk#h%W;JvoZu^WR^Z z`QeS(pWH>nx%?mQF8|phD)@$ZKb}$4*l@X1_0oPcQ*1#cph&0 zl>5KEvGVV4ulbwnD|nEQ00!x6Fg))sNPe;;_aU0omF*wn{IjgUt04WC=a~0O008I1 zVIvF--~a{;06>M$m*&6#@&n$T3DXC>HSB-V)q+_gq44BR?DLy8xnwhSx^|;EC)a1H zWN}$_+U)3RPHxY2og1Fq9*Qlp*{00;0j&&AP!b}0jLIRaVbo~a;Ex>2cOPxUNdVSL1qyw;#t<>O!!{@1*4okvZMn*C^LdR8%n3yJSGfXapX$%Z zR{{Vw02l@U0DN9mArnPkuA>8h9Wtx*=1ObO(>K(%YNTsvCeiCR27LBdqPYVpr`H;1 zJdkQk2h2W~vd*h>2hAWv9ob=E0Lkghhp~;D>Rvd}JuhI3S<36Z=4e;4-{~;d8lUYl*_cK#kAU~n6x;% z?fN0hoL;?S@x+d&m(Tz8fxde|OGG`lWbSKBK2#M#`bm|C$0xmAP{2h1FjNw-Bc7=O z=r`Ej3~F>z7NGc~2!Sa_U-VT}2mk;b#K8&_0ZEHm2>`?_W-tIDP||2>6wFUKzmeY# ziXa2UF9=F%%-=#LC_;dwN zNL7@OqtY&`?5ZyBsVN&%SI_8`^K`O>>gvTh`7)!5h~te;({f$)YLjA-vTT7xKW$J? z8q}j2`M5#D0Ru*LDiSgK^_X^#cHWGq5+_W3wabMc)}R;{8w_RWcJ+B-IKQ!6GUpRuGJW z=oh&wIOU}&vmt|AST1K000Pkg&~!2`GL^i>w-7;NGa>)Usi8|V17`;FYxCh*kNezc z&&}z=iB=birfc1iOC62Zx?FdMd{?`L6WrCI$mQV}08mW&jk5&6xyLJ zdMWEUiar2va#*}!Z%2sTF&-%WJnZWX?=1L^^hxh8M#*;t_*GaV_Iuem;O>tii0ePS z0`KSgzd6%{0CY>nzqt_D+Zs596(|6(EceBR&Oh5(_{+Ure|u_7n7&QEI^T5uq;EtYd z``Smd$qyF9sq*+e!0!vo&lP!IzgScF&f0c_|KD5N$@#-I-JI{P?EYe9PC5j{b8wD> z0uni5GoiOeJkNSu_Y2Nz3ETOo?ReO-$D`fosGfAF+VzGGg@wRdSB*03^z7)Jy*oW~ zFq4|6)hslV0&g5t$;OQ$A{dR}e0S5vQ0!dC!1aNNyA$*7%*@-7h>zHs6MCCltJhXw zQOnp0-yS2|TM=tx$Y$4-y=K>_wB>SBC0xIry3?pJi7uf^uB}u601kAVN|pc|XoMIE zp!v~O;t8rU)o9q{!j#;s(weL7>BMwz>#E+uYALuT4${>)vKK&xv8=CWrfgW!9P5j9?8`QLk6ez50F$^ zahM3!`uuiJgak^3340=++A!s+oAn2~EDm>RSyHE1)S$W$vwm;D_ZMdleRlTYrx$KK zI`ij&%1ea+f| zM91m9r~d5Xw$D42%M6I1=9GvXHzl$k06>UyDl3SU2ML5YV54iW!AUxFyRx!RUClPY0=t$h=+#c$rUslLv~U`DLWoV^ zh!ZjBrDVg6Ht)@L?;UOwa}?gi{c_Jgf_xdvQ@fC`36D`NQFX4*>w`JC@NL z000*USfD2zEpHFTDE&{n{m+SWDYRUU*iU$k2i=-`;rcrv=bc#7wOGrsmb#q{wvBa` zRaQMIX7hA4^K~_7mKNzMmuf0k8|CXPijBIO-46X>myK57NTZ!@;6#h_SX1q(ko!>o8vQ6jP{3lb5C!+P|lJ2Vo|JAnO z`JCr;uH{l8ayG_hwYF8Q)|I_tt$MYoTH)ZkPM~tR=m7X?N+aK*5j5Wk()C{`^a<)J z6Igq7ZMrk)Wee;&Dxi_r&B+XwoY$vXB>-UXdr2HD_~GSob_<^! zP0#@V0Ac_jN`I0LfFUrilIcGO000IgMo6rT4T}x{=LUFu3bYvcc7(UL`?nXodysGT zvGXO;VAvl%!k8C45UKH^z5^9}$orWOA0CYD>x;k|u{DO^N6d=5qbGZ!C_y3I+t31Z>U)NQ7rRaAqKKcP8;Zerp@r{`2m(|8lVV@6HIfXFFkk=-_{sgvQXlYlH`o2c?e*|NpaP%g@J?Rg zj=uK60stT>gguMW+~_fV``*g@cb8>9S(-%V|LL*}O8^{p0@w=v=Awc`0Wkxh1AqmR zsz2x53E%Vn#z!4>cXPFuqvq2=(_z11SF?Jp!#J$1$k&u+3A&P5>J9ai(Zao{m1kPh z8=LFL)Us)lc1)}4l~qnz3?oJjy~0GTYkMqvseAZR=fJ7fj=ky3@|NZihX)^sIufxI zDr`R8RCArR$z;d#nP5Vg4eScIlCB0b99uRwTSzaD1xLHuXF5C`QF|=f(hdML=mXgML~7$XcRo{} zYHP|nWNzGk*b1&y+O%`XrO|S9b5*9Qx}N0Bs;Pa;1~&}H`dj2?SGCqss&XoHL95HD zvR~L8fOVpwKA%lCsVcqPqPuD9m>Y6^Q3Aeaay@Ll2o+Rq) zn^VpE^{?2=U(?NfjgVn&36pccfFE5v+G?Do;{GM<7|Y7k<)xa^5{@wbEt!k81HvBW zb=HzOP`#2~5F}t~#|*%&R!P|}{Ltd!g4Gv4&j5f+Df8(x7=B@37pSO4U0#fikd-0(t70#MPgFpN}`iZ977x%IQU1^+`?7o<=QiDx}5 zkVFAVs?cZbVfADD&@6%kdV?6c-ED2T-`XT53PHo|u<=2v_I_~{;9}f%FmDbYAI9Ch-VQroF9e?F{ZC@7S8?zgvHDdZmxjlVfM|DCDXcNQ*tcjfvwR;+ok zYV|uSm%m&v_3q@*i>}mzT;xtVd^PSrA8EOo599uJHsd}_Q+T`bl`U$1_&lwiLh1&1miBeo z8N}j=Ek9`e`qH^91J_lR!0Lol>YPT4s1JQ79RP0#%hfali~({6ea2v*UEntY0L+S@ zfO2*V6c8!^cp)ilj_*KZpnQ+fC154p*VusW^V*Vmw`M1Hv`5zjJ(owi@6XGhF4O}6 zk4E!PCcyyrjsE5vgMI)&2ty~*cq&|-$X}mI3JvHe2{4fhBQXg8=m41XVgUpNLZMhJwAhsusQD9TP&cB%d+Ml)wI1W zvMKM!4w^ri0mh?+nfF%aKVOsolU)VOpT*`EfsRGj2LwD+|9^aa`_CSU39umj9|`K8 znodFIml*tV&6kLNDn6g2^z$m!eUO08fCu1#^EILUUzqu9c`K^_@2qSi;_X6AjksUlTG<_+TUsY>b=rG_0(@#6BlEaEJ0Uonz2dqw^z>p{w zI<%|m4Xf+an_YT%?E}S8FhmglLrz8P=acosO`l8D@p?YuIOR9r$Tl$sI3KCKoWL}+ zfkuH2KssOm+ztT1D;U5GKw9@j5ySuhe>a){WIr$Z15Y7>SQ5s_frywc1VX+yJ3Wu` zFI@9-;o3LG7k{*D%{!~t zyt97&gX#J2Z`}Ta(-;5n;O;*>dguoi&VBpLiO)|Q`Qq^Ich@a^v1s_?!PaMm=)Fwj zW;%Q>=DCy)UB#_F<2s&jUTXDTY4dUYzm)Zy%X)?UKLG$ZcX-W789K`{k(&hVBda2n znk#=%=`VUaaq$=HxMIg!eCewY0?Aw|HO!AR1f~NhrhAs~Wo5eKfeymHt&-n62LOm@ zv_b-egNUletC7czMmm6uT1oU1EMHo$#~+l*fn!by@DBh$0Tm1eq(J}x{0~h4Jt+K= z_-B-r!8&%-)$SbVyRvxxjoGP#1KAZ`*V)0gM+@7Iq-{_@w+2&p$6}%b81`Ks@ZFw> z;{{E~J7EBr{@<8ReFXp)N8{`PaD+4HxX}2s1ttxFrAaR{0N5UB9w1==6cC?h2EaRu z9YE~RK=deP4;;}YB#w`@A4AH+MmxZ#8c|UHT3;KhR_I`hQS6F*;<>$cUaM`Ey^B_Hoi~l`wBx*>S^wI=S?tlGkH^vXYdb*2- zfWreH^2x8gx1^21?`JE!KUpGnzJ&27)qe?I|3U)9Y~afdKm@|1xcI~Va{vImfIeNE z;{8m3d3}ZvP=6Cc;D_D5iwWluzh!^Gy2o!L<7LF4&nYzlrGB_2dU|-~YX9J-2HU8% z2J*MVNHBo1TdNt=YY{Jw)@qmgB3qKVJ=r{whkG)a`A*k_vvF}KK33-oDww#+bV!nA zDrbd?CV&lI9D8bIh%fQ0sWQ}PNp{5CO^ax~7;IuyD#_9U0HAtE{z8|@a-)7Ok%wl? zd;)c09_-aB06-_BM4AenE5}CnXVSA>9rOExePL6;XG?_YG8~qTlg+JcevuN)NqMrE zKO+*&dGp!kY@5H0&9AV{A8!sPo&N5Y)MT`8IyccB?8-MMiJZhq!eep=tN~-C)l_3+ zQ6OQoFH2-@F*Z*b-{@+7yUqTr&2lMjeweU43_H<5Vq*2jm+$@EhadmNJ0JYj-Fu&1 zJN9DR%9CU9jnVoZhas+$FY(l_ZLy)AN~?7Je&5n`=+M~s2ggr*v1ieVK=pufPQ}+> z(<||=P?%&ggRDky_mI4l01RPR$4ALSgo~_(F#t%wJ-taGH2YlbNpKD8R2~H(?<|N` zI}~c+>|ZihtPmIf97zR4mJ=gi!Shy?H>l-qtq^+0)mr{NNWXc5WG5g>No6I5!2LdV zL{rgHIfpwVnh=@*Mu>TNRj)xkZqb4Pi=D>R(C!wYYyklFv=~VU*xRB%=r^-iell#s zB#w-D?*4QDNbk>u?Q{U#%FjidH*$VrWS9X+V*qIyEHrtkbI{qNxxE(g%3Yl(&%-4MSw+qhK)3!Hr zwQpx@pGAys#BFaT9rs(*FGA)w0+zSJ_IDBuAGLblh}6BCZGM?(LH~0V()t^7X0y^tv|kX>CcYu{L8b4 z|LW4&zc_#9FV3F$^J9Ane!=kh!~Xp1ZSjZs_?>+GayE1>7dS=cRK5wp4>`cs+x*wt zf&jqrnCn>5y)W9Zvq{;d6=NHrKdeZOe$JeQ>q0D#}i>K_ykQ$2>jZpHu_O`uvKjDD4JLZ7(lw_qB| ztzu3I64H7_8D0^Dfdc@1lhmse001f=2>@sXm=a}7=DousmlrR%Haoq4AjJ~u3 zMQtbB8UW-#8^11gg>DR{Df+jEKmyN=;lP7=nJXjFtK-7c4FI?~lm7n>fk}qBIGK?K z08l`%{KZIjk= z^}({PZ?5V4n6Td!9f&?fAk3oVw^sCgb6E#4@WrZ*FQA5&GaE>McTI-tKL=GP0KnTw z4!{PE4&d2X@Lq2VO903~FK6Ay!gYHC_HAD4IO(HWQ$$tQ?a!Q@S@?2l>O`<*!dS&r ztra^Un<1;$KvNDFb$tf;s8hGvhkR=2SWowsWQ;Aad5!MnvGiDDpi@uqueDC4wky>2 za!u4+?^RnU1+lwFY$V82y)Hd!nvWnj;RJ{mG!H z)Rn4(bKmFhdbi9RP`H!k_(bbOlf6-i zLykh5a>wem%}v%INnw5N>= zTKm@@ee|bK@BiVg$M5f&MTD?1s#)4(>1cFD^zw~OmRVzIT3yj*Y1-1(c4hJMBdgcF zeRTDQ!*!dDmFlmTRjXuBJ=LYax$0C2=-Jnk{T_%rw|mVPHNa3Na9+VG`B)77-+bg&M_U#tgb z8oxRc2A~|}?k{10v;hDG^wvQ5SvM}Bo|oMrEPx*M1fLIv-WdqIlgD1daV=(Ldw{J1 z5jvJ^z8ZC(@z`(XoEO99>&aS}BG!gcAFtkHoR&5=BmpR;U)c1QGxZTa7tno@1{BQ?{13hk9u1D6!cBx}|CqZeuhY;0G%Kqa z5- z8(!xI1Lp>VC_%A=V+O$WUz!12o8QW%9tsF0s5Akl;xp-$D*jgj(62@U7bkOg2jL)e zZl?95uFe>|KT80cQl7Or@6N1mcc<^vVCd;g;=Of+ z?{5_gz<+ys1OWK??d89?xAr&BxBt_N-9LN0je9+VU%-G?;2&S#Nv%ik|C={<{OXx_ z;1C1AuSy&dOQ1DKA`jjsDr+_ zvhCaJyO~OVgbC={Zs~kyWyiOd6h57o`d}jZ?r4bcnn%OFyIrn3tqs?+u2a#v-9G!4 zX4|mYJ!o_9>>7HwV*SI31-o1PBl4PFO?9(M7OPRVmR1fbE4nllqqX)~muE{TzB@K_ zb8zNxM`3xuGtXjN;x^-Fu+ZL!Q$k2>B)mmep>pZ;OtDm@R?vDTdwSV)h9TQtnY?qUeys zfB3%P&m(pHIKuM=F#)C%*Qgq*s$uq_r=V^LdgMb^Ksi7K|Ieux9=Q^_R^$Y*Qz|PX zABtNc>;8Ctkq|-%6jTp-LFgj^9%XY`F@ zLoa&#yuKvZt0zc{z^a$DKE|uG_JutEWWd7T#qRE@CjE_|?S7>893JNE7Af$uMw`2M2t?=PGB&g|$Hi$>oYZhw#qT}${M_80E- zx1MbcU+jup=?Prz_HZx0)tkhV?nKCPH0#=zZax;RJ?RoQJCep9habp2j!=A6REkhM zB){}<3ON`6HN<_Kuco$i4#eqK!ch7=$?BtlqEB~7R6x1-Is)qTl~o?O+9E6IZ>XE7 zb)@7Kepv|~aD35YHcMJ1Bld#;I1(V(AqN0Rhi|E_2r4!FT|TWcqtp6CEKDgAEbA+; z37!zUp>nZso-`TOcH}OvSa5W_>%{b^n7Fn!-WbSUA8?$_*OLZ(doq2c%LxT^dn9yq zD0sftPZ0dE&JdZ7-~@*WFm?aZWQw~#xBg30`HRzejDV==T zUEuSQaS$K@|AS6ndPT8=3lI+nIs@mYI+)p__2hxOKNb#>_8*3aKiwpqUq0FR3&fxg)(U^O zyZAzH{t0ydoiE1#KYqCWr;j)O{OM+a8IQO9{K@v8KH2dTh@dCCIsfo@*VpiU!wK%Q zA8-pi0r>^u4?@YzU9hOD4ww3;dm9fC2v0=bom$f+IaBOlN z_A*>5@p{wCP0_jp+M8OHk<@h@ZtFB^QJ|fwRG*3@t#%PnfckkKuA|#t5&lpfM;Bt+TEZJ z#+o`4EuCIRDjFOJHnpaF9gT*TdS$(%%F>{y#Y8&naCx+5_RiQPX2DWdRhF#v%@kI2 z2T}}~)4|@J^l-2~G2XdoI5XDfB;z8F1m%(mSN}ezW{)w0O6p$<8Cf3{r~{L1FHZWle~s*ouUu7BfWwI{J_KEveG36cjaXw z|6MLjU4)5PO&LGZL_~2h1OR{~p&-(0fdPPlU;uHygED3sjDdtq5!IR)4`LX=-cW13 z0|vRvU~1JH{54ett-RBq#x{J$u0szB3$)&;-BPb3!$DahNL}V+<2(|9AJa7Fff2c#0kHdzlDuojOwn2Y*z!; z8$ruMd>}%O+X3rMpZR{s{xnwiBy8urm2P}1?*Rb5*`NMqfA+(k^!r`uk9u>T4z+zW znEU2v+h=3#p9~jxc)K&kXWs2eem2zkUQh1x;jT}{yT3iwOX>e$ukfw;)9SB(1pvi>Hc|a001#j6(o&vT z2PyJDr7-dwUD;d!p6?CG4oISgnB1WJL7~rA94$~0Fsk@|;7eJjsR96|>z$|%T59G* z)H2F<)Qa7=5g8}}aO{2)6k1A5%7es|1$p|k1kbpGkm&g*?m55~i{hJ!c9;%xa6{Ci5S)ts0)iJ}RhWnvM#N9HLmd6= z>CT@&+x4^Odw%+C_m7|L{n67sU!(eC1kJ4&C45tVZRnA~2d@fa(sVtXF5wYmHqF`+SdoM|$8?-`L@FW=Vq` z|F~(BaehPXjK@2yYZ$9m10r%}tsf<;oTD2$b$=l^d;Tcz2CaWfGjZF&nN>Rj8c?$`$% zbW!Pc=OVC)~$GZQ^%dbhD8RQ{k52uL;YC-*o^4yhxKbv4mMw_LU_I z0Duyd4gdha6q=uTvAIK(2YPL~_~I+IKx_*a0f16Y^@rkT2e?*N?$@cB6y$wZG}TlR z7#lb0!2mXZ+;XI%!tF}}0B(-74gdh-L3b6fApn4I5`uu}05FoogBnRF`DNo)^6wZ>0&PAKw&!ofGYz>8Us+c z0e~BE_l>wqqzY#mzyQiRbPz!TOn~wIr|yFR5&(!4u(l?uKVl)tHje5K20-`#03Z## z6HcW?q_Lm#n=S-}BgLJl<00)rvhHEL_DRb5Ea`k2uYI1ZeH?VWnQ8v0EA~lu>iv%R zd+o80yR+XMYo&Nlrxx|xv?0zzE zCF{SK_Fv40FnC}9z@FEG{@A^q(7Emi;#aoej^vy6r|KCUZK%^X%=u6M2LNE{4`mmf zfym^-y0yHN3%<0PD;a`v)0gJMya6*GaGkF>9RLTuh?r>hy6v*kE}Lbsh17yy`zWOuS4VLl)c+Z~h1l1o3 zh$Vmxt;7O{SH}1{df8=rV_y8zjrl*_)%8Em3G<&{+*$EYPdEPdjqU&PVwY6+Ilq1m z|Fab_C;;&D$51`u{Op17hv2~eQ~fzVK?}sF;CI#k7teS9{Pn%k`RVKXzlIC+Ta!@< z26zPn=n24p?`-V;XnFRdq758-0N-ENO$yj|mKDCcHvgS9IS~lFOpFSc0Kc3Fk_Y){ z{^%R?C*GPFebnE5E}h#G&23BeY{^et9vj}DiEs3{rp@YZZFQSTgg zHDGO^vbQ=LW<$y2y))-0Mt6jR<0kc(!#K}unRYe~IGaXo-hNvxi(sUHHEGPS*mgWj zD)bHJ@O0aF#vLIX*r8C;1PCglMvhAa7M>1`&Z?2)c%!Y*Ht3oHHlNQ#oPd=XGG-Ds zrMXt)?oAB`?JYPu=;xFuY8?He+t;l+J%4a*XL>dho$}Zc>euKVYA}!hZxHgc3GCLk zgzbr>JKYxU8S7l!7N1Ob``w1HTh$aY`g87RqsmNdK!e_;E~~I9%bS(jq%IOShmw{= zqCVf1nHcU`Fp-&+CY8!gz4#2{!35sm>Y9SG3VS$G%U9ItHZ&U6)oHfWYj(H|dpwq% zZr!d%-SJQ@VRL(38WvwqgzNZ_@BlgkltR*`7zG+Gi2VR+B1piY6%Z%l6xm@3jDv*n zrMwbP0sxo87HI-;2CM3@{X)WVE@nFuv7Cw7 zV3{7|8Xo0bC`TV5^vZx4Um9si&`_D*Yr^KNVW{qEccJ^2rN z3%q`FsPkoeis!dl6Q6gc-z~&G%*Nj7%Dms2LNNLu?!T1?oXPm8`xgqK8{P41?V)R} zzWcoq>@m({-Gl+02;26hYENVvchqS}043o^KyOj$FU0=E>%Y_i@O1t2 zcT>%!Cg69aKQ8J!RDNF)N{4&BbhT$$j3xj_ISBwH-KQiQ70<;EK%#&EfUSif2OGFm z8Q=Pp2PNp?g8#~N>g`3jm&@aSzOVOhpnxtffdBc;lMUkf|6=E_U*Gww=R2gL&&6Ll zJpXPpV3SaPViWXmi*$bUNF10S>H7a40RRjT9RL_0#Q^Zi-Jj}DAMow_^i z_arwqIk=Ygs+D{nG%Cuyit<*2hS6n0CeNsiZMM1|XESMEYhtbV0v#XiTGLd|M%ZMX zZBbqQJeRlA;qElLS`8L23%#WZBE5WCBiCx=G^xnQ{I=mtW1y}^!-{~=2yvg4$+&u3 zt99mTInp3SS*5npQ zhxOiinMwTz73_R5j;>d!JbGJ5<0B5M*wP5zy zK=f`@c`u9hZQX6@aquD$#zmuK*i_Y zN6F@a0>Oi5(zyVN1yON5q@YmN>*du=N;$#8#fQ6CWmW1X&3d zV)L>x`hA~Fjd=h|01Xu-7y|$R@v7>SM%^N-%xD!j0C%tzY*9~JRqVB~5r!Ugi`%%t zsoCIEZFA{%x()k1X1pzthaU9VkA|FweZm6abgY5S;HXb%Mo$Io3IP=z`rMhJUO zzyM!40N`fA#Wc7`1T`}U#tMQ=N5UP2PLvQBVt#uA0038xLWA!Gs}ZYAt@({(qamYZSI!*tz)p!HF>_F25)&8+vm z_UQZFiTAsboOe3X?{;S1>&o)*QD5tee2jC)pBM%dS%W*I4 z|M~U^Iq#R+LiCHbIz#Nl-R%xt&oz_1ah?UGu=8NlemG=XU{?7m`G%JX^6mcv0LXcP ze4z`1;!`U4vNEKRuJ&R*u&j(Py|n8mbpXQep{5dxHy4~?WeL$S(0b58tcm!H8YaNQ zb~`R_&GJ&>!2C5bzf#?9(nJ-NA}d%UmO{AdksZblzH?3~0FY~_#SdHp07h}n(sD*k z^@x%ytI!u@?bbD|nd?jE-(EOzVW92ybna-*du=FvZ6t6kUw3D^lgJnD{+w&0*rg>; z^#v}DW6PXCw{vD9b9Ov^W-LMKuLJ;8f6htlfJShCiyZ0+92vz}>Ubw~Kcr9w7D!qZ z1_n@b!v1f|H5F;1D1Hxs0g!8)MAeslM)UhMkiGbkN6{jJbD63J8KdA2eQ z=J1)HKHBmCjI{Mp$~U&dhh75yPLNk9U9!94xUOi zAJ6$&p2W&3t`NgRuZA`8@{E#j;JIm~I;*n8l!hL+cU7+YdzfYCtv#f7*Q;Ho3Zp|)7qv!%c5hJOjGAK|t&0{;Y}hrh!0(VI&J!6KF!e<)sErFd-DSq zbMg1~%>38KE6&YZcx2eO)lwF!DXV#)a}NRW*nxRez>`()Nw80Q=ul zK$Lii1^%5gu!xFfU5Y8g zjn>ffeBgQ7_aYa3s}SbA*O_>h^1j^~5wCncA9xZ&V$^&q>baB&oR53YWdb(`^Edi4 zS35#C+I_4;0{}c+E#Udncp%cSD_Do>dbv&BDMm6%^!{G~0Gc0e{n8NtP;};S)`*2Z zw!4K3G{!zvEPp5<_oXkT1OUarmh$GRa^ShXig`W*TXLSU5iM)sORv*(S!}&%|CN=^ z%F2M607z9pp&e|nX7oy&LGg^E13(u*5@d7rTvsXbAys>`tJhiQ<%Ur<2hlLys=$Cs zwiCp+S;k>qTgcp)ow+k_?B-PWodvlgIp6h>?7ivC*{-IClU?^F6X$!p7kYiHfRUMX zqCX(4eum>z`ID6Ou?+DqOnq7YlCJ;c0i2>f)(g&OwOP!z0f&sJw%!k1M5gAs* zfUEP`Xa(p4E>5+=0?`5RN;g0U01WU--Iq!~NI>=HuihGs@;{&Ux7k*v-X1?`8Q*Yyf0EB*_p00|o#9OOsxfpVwqP`?4*khQd## zV;^p8`s z0|E)22*O7K0IL5_9`F3=lU+Y~vIn}K>MsERbzeHae75szRDXm(RR6C4fN3xQ@SWv( z3OyBHEPSy9uq^vW8@qu7O8<9PwPOqMy*2&cUfKK2rM>Sj?0PxV_GCQycsTafSo-sY z-JdS(dfXpoWq*%Hvys#%oh+^qqolB0nNp}?GFe1flhjvr8V$Yrx{S&;7EbOO8@o0+ zb}1Q}Y&MPS^^06h3)~IM8k%R^kuG;2ZMKj);;2N-qiWQfd?pKojMtqXnb_Oa67uUT zjCO0Ql~~(T^d$gr%Jf#5QZKJj)nEbID2zE96CRaWJ*U*EYRG!K-4-{=FkVZ2hd1xj zy0tP}OLS)S`b)Ees|OO}k^0tTb9Z-P*@D4MR%MgCM1gN8SprRFcca!Dt!oR{w~!Sq z`vYv$RGF6SSjU2S1FJ%fo%+(|+1%jSk$L0pjK`dISmKQhsh&Vz*d6O|MxqvfAl$KT z)y}Jn*WVeNe{1oInM86!-~8M2Ry@P$-dl}%#-LV*oNWqGOa*ELst-B^jNv&K-u zboWaDK#mkQxi z?KmN)?v1qH?#*!bzuww%qpkU7r|&|c>3pH(NL$OnkbQrXmEFJ&Hte)o?$lUg{T~1T z48WX&8@Jf)z#1Ajmsi2+!0j;Y=S#`gRPaA63e;5l9y@k0}>R$ozE)i*Z>pdTnOn>7p5O)z1z4cM%9WlzK4J$`JU$Nc-c7I0kSyKrsG2 zKNum#>-;1+y)gjb*jR=Yt+SK)3sZv12LP}GVk7M6Fs=*{-XoNqQ#pQ>d4Rxxev;n> zBP0!n82~U3z_*85&(xRFPanYb9~i*9P4of7X{tZx$Vi66-Jj~uE47{|80q>iy`t4V zIo3)Czz~~dG3LMo#gO;1vnz(xGXMblPm2HyY;OxA0RjWoCR>)Iyld0G1;N@qS?{Tl z$b-q~clHeax093qlLg>g%YOZM6r!J5u*E=YV)^a1^RdG6b*TR&(2YhC-dmbHGdyz_gj`o6b%;EPp5pDr7Ce_{7K zGhNRXOy3*nzTQQD8n}%=U)HnVTf5O=V8bg@U71i;M^&ndd1BAt^=ghU&G%V;_ z7jH=t%-f(fBx=JA)pa_xD?7M#1?cL z(3cCF-8yT-#Mtz?$pw!m7JRz<@ZsV9+o}Vmzo2Q(`GEjE#Rrd5A};^{~e9#dHAtU1F9%rhKsj001&Zz3tUMU46=eO3m=7)N8~d@Afb7jHZrsi!E@2M7$vv|Ndpg=44y0B`X??l<6D#jm2FyiIf$ zkzVlrt!^-Yye;S;MgqJ70MZaxB7*J|+~mVtj@ub8LnvL3HQb81u7&C@rM;Iko{Moe z`d!ST@rpRwpgZfcT=wg(gpAjt7ObkTMje-e_VYf=8L#ao{{aBtABvAYkK_iS#!<`pl5rWgyf%k1 zFBl-!#FzxgW$uc(1VGXOSSwzG1)>9}EuRa~7tm=t&DIXJj+mE-L(hG`rK}177;UPR z03cy9kRHsyzp;FdM^;J)z}zTk(6Ig;S7IeAzA=~q2q6%WL?lkD6bZX|Q8WkuytigK zi&~ea!iNgM+f!{%7It4~YrNf^c{CKhH=TXDxEl{Rin|!|jti3K)I|EkMD7UMe2AUV zB*mRy!VnZ&&=X@xvR^n-6L7RYEJXx=sR$YuYEj+~44?z;3@i{40!8&FrT?p8fY|WD-lx?=q9oKmv=0kk#Jn6F%JGU% z9KQ-?Km-8*8`2);z-toC0KoF7d&XzmoAaHUNIYAR{?7j4zc@1T-_K9~{q@BNJ-Pk^ z0Ka|j;IH4__tQ7H)NlLg)9pWdwuAHY=R0}jL(cyS06Vz*Q~iJO`k|k_ap31K4sw3U zD!?0i|M87IzkYo;=W8D>$b39o_;^tUS2zfL=>G4nZT;?=b|Lg63V3lEABaC%kMO_q zk2m)6tJuI5eIVeAlHXp5Z)pCb+4i?4GH=c=+#3wv8Hn8I37$ySABj2+MryY-YGw@b zVRpW%DiURtk;>{g%i=^*TCfHiHfS0DE_Kwe z^M+OgA_H~xNxiOKqcxUR3Ws5tAUf2QO?|y<7cAQ`(gREtR{#M2^hrcPROpW=^&)3Z zt<=e?REX0xDi&PLGQE6mrLs(}m)n|cu>@KjO+5)1Cap?QR$Z&DO*Ca7b6kpssLkiB zA|BG$wd(Tj4d+Ihx&qAueowy1Sl?o>bx&?tzU)Mcv9-3cF<=j(u!yu2V($Jn&j>qW zmP!+x5~5O~iS0GUsrIRrOZSESeO67-rVd8k9rFg4k91CUrF(}mW7Darh%Qi9YUyt7 zTGG4x%zd}h*6K|SD#pSz1lwDz z95zl4zzBH_NBtl{?E$atsK1szfWg4!lneexxCW&gv62=^UTKjmCfuRh0#7?aT>tNP z1n#x_0RS%bBKx<{f;}8y@Op2AXZFb67);*GHi?sKxtVrejoa_!Tm%I}`m+(nUfAWR z6$ji)F}4$|3i2RD*K55X`l~pI@%AC5gwsJ1nL`Xjw?~4h4vGhyNBIHMGdzCk;RmDk< z=+eYo7Xe)HYeX|A89f059I*vfQR+s-N!~BZA9#M0l{x3kWh=PNq3^XAS>uP__sXgY z24k>N%zpYE#z;+hSRq!#nF;glK@;GvC=2R!&E;iiz;adtl#$n{iZKfM{a4_EKmxI; zP*D}P)lP7}tD4;di%1wu<|HPz1uXHt)zd=_f#ft!;sW?ZiNadE2shIML@>4l_H>P& z85-D|h%G0|T%{Sd7)C9IX|s80L*x2DWY!ZPIV7edgk6sZ9M#Guuf*lQ-kcg8+BiP7 zvcuBgE+cZJ3fBj1O_jQ;g6&__4lc6X%Vn~;)pkvNvZbRf&=W8LOFZpUg%w+e2JnJE74|QW=9l(OY+bhdgJ<7=xpVvy zcI18aF9sstS|9zJ+1Sv| zcPnZJlr>{o#gs`krIpXu%U9JI*VGv{)ElUk>uMDnYn7;jD4ko}rtRL^onE^jg?y$1 z&6<<3ro(|+0DwLK05}(|6?r-z(nJ>SN1{B?C|ajVWCJSFhIrhNSai+`&iy(>fL*VWpT<9}drLGn%-tHyaPGr{ zcPFprBNwwF&iRZN&*w9(ek6m(eex}J+GI^NSL}9_l&T8i@Eoswnfm+H-5=$Tr2Z@h zvX{A3%Ho7y003ew?&D(T3wzgM)*Dh_h5?+S0=SfEKfAj)e)A<3QO_lF(QtP=S|jJHOhjl%%dn@iI0isFRLw#FVQ_7=mWJvQYw0ThL*pxR z#89E8xT*#KSRFIb@R^0tWOY_?VO*E2Vga9MNw181CsgSt832W%VBw=9;fp>L z>$|-(3IOcsP44ST5c{UhL(W<$$j} zANIaIo+1E}g!j*vb$+p`?Tgh!0gLND7k?@~=ldIa=mU5VzCg>ekV2vlSe0Wiz?vA@ zVeidreL0bQ(Br$?2|?*On{cAlL#naSR%UTW1jeFRr{o{oAz~su;w#p+>E)Q0i-R&31p(mGxT!O=^3+Oj#5K5hbs2 z85;0$3p>J1x~2w&)1pf)+W*Gk!*|EhGi{0a@dhTw79lOQMsw-;GjL7eQKUpsS2Enx z+SR(a;Ol8I`iTp6YRvUo1HPn&a+P|H!lCwNVj~k1o4R|K4G*r&hWq2SiG~XMe4BOu zQ18jv$6@31Z`d?BvZ+yhAlR}nm{{69c46n`Z{B?J zXy@ePUfK1I@R4rQe_w9C-w-`G)AQ@cn}2>N_pD8|-cc2vGe`GoX-#!8=IM8Ie{tW3 zolp9JqPSC%fmRjuKTP}>02HUVu&x{kA88MOUI7r5^gj%Hfrp}>v*7)OauHlgz5-0F?rAIdx&$=x4H z-5p5qdO06EpNgH&Hl0p;55?Sv6LrVq%|~%ucPYDcl_cx>$|{F++JL59UiSNSua&Uu z!hQd%@$XmNK+)}|3<;0~0EoDX7$CknL8DQy|D?tjum8Ax@Ji9=%PPb$edNnO5)BzQ}{c?U;Q60CWIs|B?`SrZ0%t zAJXQ`L=M^q^5@bFB|A;&2LsRo@qBI~1tf5J=M;TCg@F%E02B~JkR<)&Fb{wcLM8-9 zbY)=&T#y(JkBf*$&;=R??Iss_iT#&&e_%iY0|o>8I^!@o;^N<%1OWE+r?Ii4E!fkS z-rJWV1V)+!03qAjd<+8!k*8xo?zt}SUy}>0O#9blf=hypD>8v)3D0cMwJzC$eKY{@ z(YoAU9_;_SD~o?}clocMZvXAe9sl~y;eUB|-#@>5^q<~8%rscigK`)EQ2iwU`1M-{ z1&idetT8N=PUCd!5^;c z;?_^m=K%l^u`nw|0u009PZuX>7d|Gna(U}}^D}Qvq~071;RE`hv-wV2%cW#J(rom3 z+v}8z8%z^+J$^4yxs1BcHxuLlcRc`L*b~~>H+y@@s;$v%zp1*T zaMQ1X|1s8>1I}o~8LLw`9MxK!;7oEYu>m!&lwkzzv9&~;Q6jpU4S{HC#fIbW?%sNF zylvT7|GHRx%3NwhEoapRfso znUwl6m8Qz!Fb8|P7cZIJGd{d#sC7ZEu{EgmHN09i)#Q3IJ#?uvk6W^()I1!US~a|W zq2uc_4W3;KHf*J*!e=e5;)P95I;)|rb>=ezz#r~5{@?%vYK?QFwjtm~8g zeZM*1|EJU;@6Z3M-(kT20sun5gPxBAV9a?%EPNK{y225< zWUg?8Mg+out|$PP06@?|Y=>1ID=KuOJ5iAQUFdhh^1-hT}9x2Y_^h6(L9=GQy}SVwJ4AGA^${$}(csPFZ!+79CkJ zn8Yop)sYvr*s3Hnc%@mk2Ddmi#ayQC{`!qgwsrM}9W53*&Qpo{L;kuwO|$}HRhVx= zLSyIvu#Uhu=t{CdVu3g$wzEG)A0TxAciVgbfbfDY>OmiMkZchUi^Q!h_u4%C(zP^t zAurNWK@;WN2!SZ~ymITmk`TI}3lSUFf22XY6Lsdb0yiP=%{De;69f)9smJ4u z$CAyb@vTcWVcm?PA6I7p{$^M7PH*B~e+qT~y`C`Z^pA&z9}m?&|WYIj>^DKWftZHGJED9diz;`v1S|e{l>TJ}Hd; z%OLcMBA-&~vRDMG6m~#d|2a~-hAN)}>f-{$RtJG%d|7!XjU(e9NSmx##rJcYP90EI z1$>;dJ^=}CbB z(rA}EK9YZ~`9(=+igJH?f{`qPSxUJm=)AvJ)>9Du2!15Bk682_h>3)+;Uu?yKF{0u zO!2p%Aj1ALE0z1NhQO$Rxc<`?kPwNO=fF_zz-VC`>d)Tfk>LU*etTzZTSo*IXgf<` z0}0xNt*z)jX#zrG640Gs^J`rpv?>!=krZb^)V(m$ydc=HI^M(-`uU3XkJq>Uw-ciT z`Lf&fPj77b*S8P-%gY_Vd5a*e7ngD|YU;zBSp!nYuL_d>W9)A5| z-;W+{l^B1i=yR}zKqmCVdmF#@)_TwM04_#Daj0VMeH!^JsNK&XT0 z0N$S;{a|70<#h7pRO)d@!=rZB!*=(rLL=KT_;&4Y)^D#@&v$4?u>4fZ_yz?4UTH;p_t!VY^%m5h?EQ)hex8Y(C3sOeLh(;(4hMaWVLPR@KPLE45YXT1`XTosKzU5cIfy zHmEdAkM%^ORMfC7EHJ>~Lm=d}r3V&W+PMGOl7Te?*+q+&9LNScZPoRbITd!Lqq#0M zIIwAAWP7-|JLJmcVnZ$N_ObREyyR-tb=oqGv0CTUIqI>fcuj85G(`OEUAd{&_}EzI z@|oUML%Es0#7L7l>aNsm3OPth<01OEXJgx1ie!UJDCP~ zsbJ)b+g`=PrC!2-YB~U^GcYrcl~t3}2mmkx5Ylh_{gn#R6hv?%Oi?xe>%MgQ6vBVz zhf*L+kr9#vf*gb*002@ShPsRm2@9m$qX?qT9!q|ml{#csD505}w#^+VHt7sWp`DBaTWrMo1h zJER4qkq+sOjgS-p=`N+ayHljQ2S|6rfbs0v5Bm$Y_r3Srb6;oMod&r8iAEk3V+!Sc z-vNMstEbIb67Zb>IX@Sl8z`5#B`Ka)u}W19qk+D=(>msf+>`FFMx+wF8W+6c0Hayr zeUG10y?__cXUTtq^aOtdw9cG&4Zk+}oi#k2{ghUHvA;(|O1c$YPjJZIaxktHMLO_B z^lp8_-BEttPe+ zPGtM+@#ouJgN8On5ZjnCo`DDHKgBC7tLnT(Lf>5J2euzNPzHs(f^i!bQ|R`PDTbCY zoP4X-RHuaq-b|1{Y(fAEy7B^}54#uuFt;}y*0_~1J~r;YBn|fqoa0z(SmNzv*ihjy zwJ)Ie2}8g|?KYJXEKL)v|5Bf!6w#d8_1W->jHY);Xo(BR3&WxvS7r7Iuz*arEg!#a zr{*~9ULi>Y043(DSGLnw8>sAe(G+n^KsKtlNZoS!mFCXo`E7)|J^P?>PLByTPVsPk zUu*rr`J{jmCX)Uok@zG#8VyzmlndR<_CK}tV(2xM5H%ip=rc$|GDHzZrdIzv_%*d* zV~~y9yj?WJ2bzc*l|>B*2`#(<(A%4X+1YXDK@R?we7jvA>YQmpVQBj{W zanIN7?XQpP{jbn1^CP$#fQO8#C>#F^{UX#uKELNz5d|}OI zjLO_Si)Z(~IdMg%6DpvV|6UHSI8Ug>jnf}plyagcNhQmk%)tCexH1r;(@n#5+JY~i ztPcTklb=PwJ~oVU#7nbOi-l)JtCdx6S(@%R{6B;nt3h1@u~-_Nly4;55E)wN0f2Py zVYh6meDorl(WQpoJC9}M}67IZ!(8-RDIBj--~b5K5ghb3K68~H*8N0^jtM~k9;cn@3eda;xNW; zPqP<&d zYt$8D)uu^54$hlJHIY!=B2OK1UbV-BF5S@JAA8Zz&$>H`UEan*O@F=`FCTOXbvK^RgM|WaZ{Mp5dkBVLt%Xlyd=jDe05YBq z2LNCw)CQoFA;h9BDp8S=^6K4`6G?{fBSAP>7<;U&=*TLhxlz^Dp8o7X-jfO1B7jLN z610r7Xj7$F29k79Jh2LfJ{l~Csf7v;6rhe(%yLhbp`zAAuO3vJnrl0`7z#GdRXUfh zE*Z6t@0byOw;R~7W+R*$bwOgKF`}!oUR%2?h1v8ygx3*INd^;__L-VIc2;18zCj)X zzxfONA~oN-N&np?xaM@PF-r|6wzw6-+iV&2c7Wu+7h$;Mp!b~mAJBt(NnA!Nz2A=H z6XQnZL9Fh5a45O`XuEfNxpu7W9PpGu>XmrtK~#4*aJ<~yvjuQN#ZpRs{o zXv*E$2sq&%I(gF4weK`3A~r^ShNpDb{M9gewq(hpbcoM zS?L%HFKDEeRJkN~4w3LPCJJ`GkH|gatVabRzuarlCo<<1(LL@A85@1V!dWwa&v?UX zDOVEZl3ql3!E_yq0K^--r^KWnI}2*@>wO{WS5L)RC;Mnh4d3E@&|hQ3H(Mdc@kIV{ zD?1Tq&2ux{98oTEe?u=bcRXcov>~rG=W*0%<}W`TNc@2LPdy<7CvmFJ%E;n+@?+!K z*@X<2vB6THSDmChy=IS%e0{vwGb;mC3HUVu769YV0=anYTt`AL5vA8yngWypDE`PC zXy1Ed|7yA$FbmFuCEU%v(byFv>=T9Z8n!2{#y^t;3`C!vz|B=XPzms!jWMU#p(p1k za#0~ij8>O#LJ9-MW*;~abksTc=zMO0n`8-K2vBbXnP3e)F;;-!Qza!P_=UC$8*WFpE zk7k;p{%|ce#XG2lA7x*rH8qV|x%=i~U4W8~2tRd-Xhfa>Gk6rsIvC6d$#y-@?B|Gs zt~HAq>Ak@!*7}GT+$?aYfsha$y|1p^>lYbviT8|S>e(d>b$BTr{**;(%nQ$Yd5f7* z0@s`x7S;IupvUB`PtD8?AJaeo0onAwJqjmMI1*jecj8#@-`XhY9e6`}HYGcte}K>G zP=l_U=B zlU1OEGlAAti*Xd^S-hTZ?an;2lyiX-meKZ^Uc?G1k#%8HCuX8i&xK|WJ1pZnsM?46&CaWdeZ6W&!{&#q$(5={S_PBNZ?HpQ46s-9X^Rv z$@FyH=OKD648d-r*Zs^3s*!l9UUhxqvpInj^ES@fQ<1-POFWG z*pqP5^v=E?IKmVghCa!56x~KU7lk# z3-Wiw+&6MYBq$^6cU3?x?Wq(4OO>zz$~p~bp*M6#&`*oxO>n)zd3u0Z=B9WVdws{J zLQaeDqT4ektF)cJO zg`&mjgGNP^Is4~1M7W+LrbcDD@TvW4{-z8Xn8ZW1deq)?>xc|)?E**<>sNbm(>!r& ziGT2!>B`mousl(Y2BTw6m189ApW*zw4y1!&&GY(~y3iLR35m_U_?({X2<&(O%?iAN z5%@q)Kf|e@LZ6=K8r);MkF7AtQpc}^EQa3m7!uAKEC=5V@Y+4i8^5F}@id zGK~8{go{l{bBp2}ZbFesp9G81b`p}fRv8}ttghCWoo&yA0_#&Hw;$Jy*B?H%3b)iNv#Bc!l$&emMw>ZnYuP55RyZ_$;un9iyj>d* z%=8nlzB0>_40rNv?L{fh>gQ1bY1nQ1zLaK@tC`_l_0Io5S(z}j5OQi~*gW}@`RnWH z%NIELH1HMOVhRL$tr>V#1Za$36JE9N85Y%#x-MXZPdy<=k4Fn!9{^M{aAa6OpxE7l z$6og1yMo^TXAm7m-#J&oNwgR!1Ek=Y*R8%Veu5xS(D%sz5w>kw1GF9J>*3Fvr?&=l z^q<647%yTpC$pHJwHD3rWu8{8M4^yC$gi5_vpt&9_Py^YYWHS zaS8EuI7-dUItbjRH@>8_C9DkP`+09T-m^8tDq~^%;65ScbsrCI3+^4>sh2WLEgQ%3 zTaDymB0!Y^seD`0Ec80A{934Hss{0IR5mEAn3^lg=Avr1@!avB~eHOWmtVcwsu}%{RuCwiL$o58C}tB$E|(yqV+4#K!5>0?l5q zKZ%t{V|9nqwRa56F>msNt=;?bZ{&w)m=qTZ9}DYqi8Fs4dbSyZ{viFM@769y4=eexry&Q!|@&VPM@~V z664N550Alplg+;3n{^k?&T+8uHs^- zZDgPv?#*#wb@&g67Xh}=!$;8U(~e9H^3y~~_HFEXo?a0pd87xJztm}cEK5Qf{^0g+ zzhj7@miZl=Etd$MCn4?OyNsWaC9y%r0DQ>v=#cm3{|2+Bzi2^Sd%`+=ozXx(bwkqwvXCy`%eS-jy4m=BmQZYTyc?|wn55+Jg(cwdccL2 zxb~N39`vI)Nd#Bw?i9~!fAc%IH6f<^+YGhO5>dF6U-r@39w?Cev4QI@Z9X{oAhUn8 zSs{@t++y;n-&xJOmf_m1=w;n5$g-_VfBJQ>u1lS`DX637dRO-DHvb_e;os`cJCn!Q zXHS}e`UHNXsnC2vcL;fB?X^=cpYP^rPSLS(!Wd=mtkQXDBzf|>SYg5AD>UP`Y0|^r&jaa#3H-C|oK3ZEDaf;{wuT10>OE*j587Qn~N>e~q7u!0~<`-v`&8E8uxpvx0(5$g3};DGJ(!_|Yr~ z#j?ctvl#5H)t#T`bj(4Zq!Mqi)Ddvk_!Q+MCKfWl=V^<}iLMZVi`%D_#vM+sh`0AG zncQTmMUwhV#q5MVYrT!29S?lR=yk({09Nx6Yxs6|_g}NO?EA(DJ?qe8kr}pYyn`T- zP>$t2fz#gc>}ef^G9PLy6PIbNl_Sj$9O{W66^b&twDZCuHE*(Hq`MhZm5A}I}-`g?Zo!SiJsmkr%fhWLl z!U7&H3kU(p|Ni@m8zvPLu6aHHUA*l@UF7_ZFYM^k#$Fcc%kQCNAj7&2(k{R1wXGpFP~*3 zoxf@xcCdD~%gY@)b4Nq5DgTvd{i0BFRgqDN#oHtg@BfsZ@nE_HQnUJ2SAdCz{;fma z@QVv8ITC8Fx~YmiX(&Rd(au7v5gA&UT3|9aRwFa}){vu(h5Z<;d6J63?JGBa#@Evo zh=9V*#=xItr)&B9R!^$aasjowfw?~V`eRPQx@*J0z@-p6PURN2ui4d*V>wpPbxu z*icz^L{&Ir{BoOCRHt36ufMNCb@W6c*pNxC5P>;aq8xyDeBSxnB;V5>7xkEe)5w&E;8Lm-K zM|O(i`hrY`Bi^=kwf@S@evGpg?QU&&iqS>N;<-cmh+4B~s9{oVg(jh#3 z=|gjGE9M^e!@R(yp8ml$exKhivgMWfc-;68zsXk>Tq#dRXW<3M(d799OZO2`x}Eyg zXL6-%m+kr_yhm{6tPx^@?1qiz%V_9-Z&(q*q(Ef*)`ADD<$#ZBsO z_Eh(?eb@C+wHG6_;Xcx?Mtg`(^}dFGf6fH>zhlb_mBDWA?qm+`g+TT1LqFnV`6Sx0BecjMHVjyviQ=p-8@0D=rYX8&BfzR-sOIyiwn zKClNLFRu1p?Qhq!l}`#+?NDu8(N$6D6A&c@;Z~1onjEvfO@NAn3t#UgdN5RrTkM!O zNRbK^D92Y5<$ktM_A?X>61OGC)|BSFN2Vl}VzuA3p?K-L*C{2TV~PvF{A z@-~o*<94^H!Ji)D_tZ|4)uvQ0rwUAVh(S+xU7$e!#cq&WNM{Xvxwr4Uu?8()6f}pb zx4sU}W_w^}QR8E{fC$(nQUkwl$?}u_lF);p8Ny%_sMt6ikEuQgAIPx9b0b~vBSy^$ z9txLlnp1X#;VPe2z-4mVB%6x47zAbf;a;?Sl_qio(<~Sgcu@Gb%!D-V{DYt*EUy4& z-*hKC5bg9fwQl}B66}Y?;i5eeA9Z7Nv?L*B4lYWkZ;()JRU^sPj=ocW+BlCjulMJp zS&{N$GNq`6avuIaI#p!93z4(^)#{h09UI(dt1CbGdp1RmDslfepZlfilh&rdZn6)^ zzKm_uJ87)UlebW1mV#~pejtlWoIejpcK+F0SS9z6|7n8!pU&~oEeC>)*Z72ue^V9} zwr8U?@!hQxhJL}v(DvH*A4KbIm?aiU8dyyDh*$I~*L=R%y0|NNR0u3lyAzF|JMf}> zxlIqAQ&gyF*PLYs{r>gI+{NxFO)M14T+h(Zt*o@`v~PseL3urTbLXzo=Tx_(ERUW$ zKAW_J1#49G1(t&~+Qh+mJptait&D*^Y&>>9LIzE{d|%gJM7w+~_a@c7VDlN!Y%c>s z@5(wY>G#azEgcB~;Dy9z6#$He+8t@-#OqtBbpf}^VH5B$G-j!tb|AkO7NC$>Q;MEz~-#b3$ECqC;4FclJR)7??g*J#1JJ)SeOVMtP?@H;Fptw+g#dvcxMUj=wAm zLT(hUbuPS%S95WGLws{?hjVd;HYn7B5pvlNo^8$V{rOI_?)RHr#f@i>P&)* zAP5&13p&S%y*IP@Ynj^F&fmSo;o~I5s2J7w#<7)97CR!C8ff9xFe3~2E$aG9z=hvj z-&qf8%BG#tg$UHB%xhgLW10rF{uR<=*TtCG^CqI^gfFV#{40DEWT0l1HUZ}0Kj$a( zjt4cKr3b)+hU?2{#;S+jgv0OOG+kmoiyyfn0@?D$+K&{7R6mt+pRvkX}OQRlla{E z@9z2Rn81nTX=QY%HN(Xv_Z1E~Y z^g19(T8NHqEp;IE4sRAKkJu{MK~Oc&J8VW>9V{97flImdh8D#b=*jDeN=&Q-dVYMu ziLu5c{qfP0ih_7a5<~-wKjU8S->8BF|2Wu~Xc<6sa>Q|OicFA<{;WQ@8GlXx0I$=) zk`DS+O(T8e4!H_oE1CK`U`#9c_hCOzz#dD};aQCMP^$fK z)2_e^>P_K0=iDsVeVqEs6Pg0-<>kc!^vo0M*H~!LI*0Cxt+M zn*s391l&6poF;A^2>ccy;B;BzAa@f}Zu(?K-z%7jUw1#FW*PPPbDLvT+QfHeA$!*b+hy{(g%rJ=76_jRdWbg* z)~%ay{lZK^eTH%w9FbOPLZpii)L>g{i~vCWj5OGPj*R#npexWJ#nsRKanrV@4HNYz z5_c?(sj6XqbGcDsdDZxYV^0;@?MKl5QC2y`n_(O(8_L&dYkAwz6y=xPzC8co!|T73 z5c>7U!-)sps>cp=-U*3QP-)ku7ty(yqV0ykU$;|pp%?Bl}x{bsh7WY2}1syHL zVaL5TOD%Hb{y zSb3J1P32P@&x{e2)ipGc8EbTuWjXz%?X({%KtQto9?jqh9rQY#`FuJ=d<>N*AgvMo z_n*AAO-$@OYln0k3T2q=PtpM4z3n>nX_6Drr6K^}qtoYoti=gnQ@>_yp`;SRjAnV6 z^J5OGx~q|due&Lqe;ysiXdQ1-jCH1sxNl_HK3QsR8t(Y&2g$c|p!w~09`=!pp~7Pt z#0}=2E*){6egZwspD+X3e!V46o=m|G;9kW7#3)C_DMyh2XZ3sWbat_9=AKuVm+p0f z?ihxT4iGKx8)bzP`(hFd+>=+T>aU90*a+zV+$*J&&&zWNG^07h)+u`LdX@sL5MJg( z8whA(Z{Ga_&w2nBe+|E3M;J{W6$EOd%;)Cd007RxsO(o+SBt-^VeO`xi!ss8Q%<>d zZeE!U|B1x}VhaTK)Ft&}>-0mm?xgtn3u)4N%;e-0*)R)Q54{b>-!-oNE;A!Yql1(q zdj4_6x*ARTA-s#_W);_Mb+34SoT+D;>DVr?9)&kG-#hSf*mukZRloJS-#z;O&;7d% zEp*GK1eT<-&@!RQyQt>=3k#_IW7rTbkD+`^QV7`^$j_H`O&09R&Ppj*i8$iofbx2y zAoU;#(T(mPbfJT2gAV&Tu!GLGrWcGm3nbzJKvRNuin630I;(){CcQsP`K8|5bD_Np zcWD7{bDfPF9E}4^y#Y`ygMtzM>z2W)obX9uGW@jPKgQepn7}9ksL~9D#uf$_F<{`p zh^ZaVUSQM>+Wk8>#KGk8vT#~hTL6$otv9u?k1x+U@f|O{ zV8%-8`iA+jd1mcbEox|YnPTiN@0fw7>?9v4 z<&T9y#}y4BG3NkBL(rs{Tkiq6h1%)*p{rTXzTy>mFhZDQ3afkQiqf-WWuHOyH7faA z`argT#^qX(eyU=M=IZ93`3}no={E;|AqBsz&m1-%x_3o}ee#`3Mp4$90PWiIn3g=72>gDb<&a>_3o7!rJHFFsJh; zrMLn>?bcvr4LZ;V;Deeot_mv1y;@`o!0|vn%3!3L-Zk-I)m`k_c2Y?I0PAVd6M~Iwdo<5c) z%QRv>zPS(3--9i+l9zu#fWKUnT%4qf=liX?jJ;C3!ND?A0K9 zg+Ya%@p<7?zr(YgoJcq$>J6Z%`k_QJALP!?X5Q0&ExKt)6A8Pw7MXH&+sOTj28gFE z-fb0ZsKZ|yhxw6xwg?HMx$DcHIqIpmfh{F5Gn4xgpJ!grLaLgJL``x}e8i_=LpuA3 z=}pDjl{lz;I1zP@sA~sGMknZ|2T>a~#(5GRwX5D3J3hq=rgvyf`D;^~+?1;&6<5wv*R86Bj3e0Z~z_fm`$ zDfPxKdHs_iX?^JtJ~NGDjD_1bLxbRtbB2X4MWv_dopRpKF+ z=ik2`VLG2g_nproI6B2?UdoN=U7q1kHk31A02lc*k#4<2ER)K-fEz7x-T|nnKlUx% zM0%Qy$lm4@ajWp^-RTGV*W12=?(S~9>u}K1h0yQUTyddCE)7X)s)(CmQf!AjP>}nu zL|5%&>g2-f$z=xh=Ds83&#M(7=H$H~AuYlep(f-e*W=Wqt}q0#=Obam-uAA$31q&K zFl2yK3Vz~Gh*_6g-S9di22o*)BziorIDP2HTJH$z5PF(WJvl8!uSQqO#e|-Fw)KEB zAN}Zf^~X1tEsd7VsG1!}4?G<_FaKoJn2=1Be@G@uxT^Ds{m#>4TMr827M>)@_7aE_ z&Ik6A9PBei$IUBft(V()2j=GUqDh@M@HpI~_wkt^~waa-cN?@$1;WIh8 z2Zxkigx>N=xeD?NflQ}E{l;_}N2+TxoVp!*d)nElVq>FcL*Ji}!YQ73bN{PjJs7H5 zD6IOmru+T0Beu_96T`-DG#14ZPMYm{94oudXATawVq`U&_B=s3(PERBAHyPwt~#&h zh3dQ+0VPnfS~bV`ao9`Y0Rz!o4xPLSM<_tv(Ib3p(?d|{ zpOlbk<$BEB=Ed8kN;DVosES8ql5No!aEACrM(eCFTes1O{kKF}NsIaO+lW#Val|b9dEWfKuwuHR>IR?wKY1Pak8t${SWNS98Kf)g*%3k z9B9jJi#yZyYe|rsobBU7gYB~cdE~f?8Ygg)?lhW51SwLacplSDgCJ%r4yqWnVh6<} z{fe(m+3D=y%Q@FUpmWfqLd?^{#c34cU-9lgc)CHZ)YZA{r^N^ECKH5IIP#{dO`Q^} z_tQUny-996`BtCqo;L)o+j7)B#WELfZ98bZz-V>ePcx~j{i*E)B>wm{S|6 zU-RWo)2{v7+;kqvob2ReJbgbisn}ai`JDujB!as5gWz$=<+0pS$V5y%@JMj5yq zRoF~$>tz%Zer>)Hb+=hw^4$zOU$X}Z?E%hrP1g6V+u^gfN-X>N4bU@abizg|KFR@~ zL*@?ZW6RGu&pL%?gFOFpcj$0&ZreHh*`*zrFGHDA|3#QkG{T=wON;)!xK2Py_pfm- zs*7v$%G7=;U@`*lD$Yu1&Km MAWhH#R%8!2; zMvvQ^tEg>b&zxSW7FG0QHLN8XO7EwcGMVVNP*#+9{l8m{|!Fy z488qe>d!;$?@qxGmj{+5yqM|G@Zu!qovP-9%}@am!Znb{lzL=Iu#0GBKQ*UvS2GPf zY2@HI@sg=uDg%tRe#XY~6cvA{(bF*LU}CL_b-*eb`$o*f7PWQF93N~37UIqTe>Gg! zD70yr-gIzaX1*I2F4-dm#%CU(?wA+{?({S>j(lV{@2uZs{$dBQb326dr6^)t%Jbx1w;b?$%=}FucD*REM#k^Vr zHvWY-PWS(UW5=2rmott%VQJoZa%XNOSy)XK-CYhs&6eyEtHfj%bH6#lYnn?nMzFqP zRUD3t-!JTc*~q!O@ex^C)XLn(qP3x2o;%}tVoweiN$y;pnK8TJBsFe#v$rv=aB@uy zY;Ah}oVVro)Z^jjVg7#pH=ABkYMx@O2$?^5Nac8Nuf91WWJ9FRY;ht{y?TA^=qFn@ z4CH|I=g*8pjozQ*BuukGeVj>eWX)}frk@-K_%I|_&<+u)872*nv>7lHM0<&h9V24~ zFHhP9BUkq62o%QARC^d3jZ>~LsF zi-{xMmhHwI^7 z_V|jr7A%@EotOt2bmT7gC45OfWiQg)ERVEsH8L;EVkamHHqsCJe~}y>wyA;#DGQ~7 z{*}kZeo%lL{N3oeVDj5Cnmp1Uik4t^j@YC`%^D2^*Ui)(NxwbacQc7}u;K5E&))}&r6NNDwS^e1iAGd1S{%q)n+k7^`0^;(FM zn*C_EqrK+3bGgc!*h7qZ5*~kd&@C!@;U=}Y`u1tVSnOfqXYb;^=LgdzcN?K=pNiNc zP&=1rtuD~>8#YHo@#(V+6Mmy573RVG!cRR80aE_M8vpHA)rCC85{HKji_|{7Sq&p( zf(ePi>N&V~d6X^*rH3*0a~Oyyuw(12&rbjkyAKU+{%-tRz38rq1U#Hxg!Pe;38a2^ zI<-%@hTHIay7;H~_Zq@&#W7i{o&m|C+OI7WN6D$?CKR^@jQ^ zQS$)mF(g2c<8uEX7oTmAk-?pe*h}u$r&OG{m(^mMpzAFq00L*-y%wiF!7c}zOeI#I zk8K8etKqALU5T#d?P8oyug_cZUg01=?_Kq?>aFLSEmWQSpLPf8ITj?nIW>@gUz*%% z0ChAr7~_Im8^aF$J05>{UfPF%HpL|bB_#OaswL*||4ps{JjS-)ppV`?x0;=s8$dFd z2&0Y-r^Z3a#YQ>vY~vdE%M>c_)qCfQ>2TT>q-#*D^e$D`0?91FhY?h}BTb4V4f6QTPx3rOaY&ZQWow zn!>SK$1v7}xy!4!Y-P<{b#$0>D0qEGB4OBkp553*#Ky~;oI;dt1G32tyt4*x1(!DF zb&z_4lKhi`#4J!HgAvRC3#Kj-8 zRMS2v8{NorzU&&3q==!2bSkv$#D90VIeH)@30jbl%j6~P&=2o;|D$1v;#S$>Ktk*d zGp@hleZFYP7yU)TWXB-G#ml!FzS^?6340TyJU_%aBdnZzZILSlr$M=AhV)jxFR8HqSS1tc{j<3=7` zqkvHa^UyLS`evT!DFn&#aBpf#zydUd5Kr|(PDRm@wu_XaNOvS87CC8?kqYmP;Q_^m zUlhN0F+#uEm=0?@eA-B}`>?2oAT#wg`(0Lf=q(yKz5n%ZY5)7^RrI`P+H~$3P!F|TWZs#xW2AXj4cT9HCtRSWjIp6jBn;aukYV|`j}&b2 zDuu9xH;M69=bgfB!~>eB>1;a0gEQ=+6g#&|(Cp~O0E+a@C(8jFCv3Vo#No&{J|hP?oc5zvyFPw;kJS1?oTid1#x> zNl9v-DRy^gb*q$Quqh4waZ>s_^lfrrni4;E*fG&nVB-sup~6Rg-J8*q?-8lh%mq&a zZ@lsNdh|T?e_vly#Iz^EHAvA@&y}9{4LOO{0qAa#`r;XtZ8uxEZKd%fqf@u7j z)3l_6F$CcEQm|lZ>d*tGjRAtAaC}tQTZC@QMdUogE_poBY7nGYyq{>xxHLJiM`nc! z>4A=XhPuS>0Wz!Pqf1_2jBT+jTJ2>XSJcWRn1hmF&ulz8?qFnYAm(!qxN=^WJ9+`Z z2-k-;z{^<=yNtF4BcB5h2nz=&0fF0ZH|`GFnB3r_Zhe9tOf#zu1Pf2pFTm>_R7eEq zL$~Vi8R(7B=6UrHtI^~MaVJOIM`u%GpEGOHiW1P_5Of5&m0 zxJv11G~jvorT^9S74q5vf^wYI81w4q=M)pO6=m zO#QFBN|NrO3pVayQVuPn$r#s-B^sD3^!V>_GEFrQ%t>iDzeFE8B4iH&5Wm#B5VX!@~}%KcK>XZp!Btc7$r;)yG1 z;cm?7FY&Q|4#XCsdEus#@A*w-`S}ZjJ{B~DC*KwPio(4c7FDe}Dovcqn(gVRNN<-# z33|_J$|syuEx7Zxmwrw_kz)MszpLqy)6-@IX;rS`|8RCb$^8z^t$d5krV~w$ui z5h=s@6u|lZFWcwZ=hQ%x>*)-a>LjMeRMXmYinqCr^OrHo3D-a5-ou@jryLYmaj|20 zB{igaK4N>X>!b&$H6J2g9Ug3O%fI7qLr^=hI+}kmjNvUu*Tra!8FW#g2S=fgATuN) zB~TlQxMc6A6444Hd&~2%`m-2oT%fb}e5YWHM!_Ir3GYO{T&I7FfNsvoK}4tWi?CS{ zm9Za^(8HZa+Y_m;r7!vWFA|kyi$Cx30XHs^%5#LBWl7{F=#LwIv&sX;j&me2+SCs` zL^rhF#|Pj4G$%AoY}r4D>zW6+6U7GSGCU}maYM{!>5S0jr_o#tzpa_H+79H||C?PQ z%EBne_rN`o&VReIJ$Hhg)+{pD-suv>oulrnE=OroFtLL$##4Rhu@sFyq%F?DYeF?C zk~`8$HK|`!Tp4G*E_h@Sw>ZpYwU(OLWH?XNBGprlRsu)j{t|Cq{W;k%aE?o)ahf@M zN{R};9OedysJ&lBk#4zSy~PAI;;uc^Z|h&?y~B^UkSE!5Ghi61hIh3bFhG8$yWNLa@ok4gp2fR&7K2zl9wl_U z|63mNC16=dPKkPUZvFFkv}ec^&O!H)Hrs#~B+)tZPqA%{p31?=6PU_`+~DikXx4@d z*4TjvRWnZf4F=n*4l!&(DOcLb9}F&EebbC7ddn0>-2zq_J89{+mf~suu-8Wk^l( zlv;uIk8jVgOV*PN_cO9$27KlfM%l)r#&3g?uEw!~KP)}>F-kd5)KPy&YZ8oT=0|Pr zQ!fzi;5`jrdev|ic%Y^u=zGpXke|Ky+D{|+y$weg_kDNd86Q%i;N}r~0V4iXV8L4d z69Td10mc;1UtQ=P1V!iF=f4lVPm{l2u3M*kLNs0>FRu60--Q$h)uGUWs*N-o?xS;$ z!%I_%jZ{DD(#z0Lna!N+=j(Zcsrx0wCu**<$J}blzQ;I{`{$jz1qnF%uY3J-EH>~B z7ND~V68ew{>eQM>hs6MncE*p)t`4ZS_ z>#efuBUfVF+h7&QA)tFbI$*{*Oa4|6Rm`B8BR_dbS9;ax>EBS>o|N~kOF)hCIVHAL z+}y30X?BY#$%li>CRR0lUqh2NBgO=2T;1Y-t}#IjEYRQej;+5h%zNuVy#lSXmP$#f z<_Grx5TtcZmo!1(kmx%~)*V~gBFiP$Yj{j(b z&Xp2^0y2Kj*Xg6lh!GbG_{OvI+To4djSBWe^b4KcwM%L47b^;k z#*4rysDyz-k01(LajBK>`7b84oSD1-&#z$L9&46>sAJh@;@Xk~wPW3A1R&dOqC|8s!=r`%M_q-a7n4z$Pa{yAHl?gBEldto_xBPpB+u=&MD?FV;Q{i>z;u{qaAf&wHd8JX;<%(bNvNKzf) zyFD2XNwwE~9{P65M`2+03IHVn@5&ps0APa<=U0y^W6&%Dz!HT!Cvk_QMTa_I97!^C zU!hqhU4j4X`o)(A-#|_d-Z~mo9u7S8jQ`#$M{1oN&*xLiSE-ERQ%i6_60k&#cXtH8 zvo}PYr%u7Vuv$fk5nSqT9LT%t9i+C(7Lw>cuMc%}J3amzpKVeiq2!7B8wo_k75(t3 z?iIzq1=k7-*$aKVcQ1Tus0}E4-h(b}{9w24e)x32G=guC?XCSKz+KxyL4}M8=OO?V zu4}wgf4@+?xH#0zZv`JQyEvnh%`n6C_SVXe`mTwBOIrvSagXisGc)R9lJRVxBV?L- z<0-ePYhGXQ^wgK8k9e9MD~-j`{z7W#z5JN3`=BW}I5@Da84CUEj?4auS1%hh>^_=O zrq`FVyY9_2GysA}6Wq(i@{$TaRM3RFf)OOP2gkJ2Fhk$=i2?rR8cDEKZE~2`7lG-w z#yKd~5L{ry^p(IHRbvwafUHqQ=OOvnv4>&-&2lNGyMonr2iX4MCOcU!{euBp!y6Dh&Lc-WKwrMFPH`YM!sBUasE*lnAC_4<7`2ed})5CNprC`lfw1WfaYl%eoY#OJI^{C2s2_Fqk- z_#wY&QTz96+E;#K+X~|^$pQcU+6@RnVCNBHKry7xx0^RIT++GE;YeMP~2ZX^E*d`?IV725pylW0(kai|i<#>dql_BNn zJX%J)#l~`JL$yPqva|}*Sy^e_yKEU9{WG_xUr6S9Av^F;z3sVuT^=4}29Qe?l z)rpv-={sPdFh2O1ku&Ol6rFQiUhf~q&y#ID*>1U(mbGf%xNNUwyC++#mTlW@*jHpI)K*a^g~%HYGKokr5thscxTFMT$#BXG1Fy zwc(d|BOogYDm5_z<~Qi^mZT-*-2#8dwDu-b1qbJ1V=x*)Ew%+mun={2K1r43;*7^9 zP?DMb>7g(gj>r|)qQI3DMAEc!QAEAyf{ZX!S~#T1ISC}gfC|MwF;nq<5X3(*{^bA& z^?CIWSCAg!JqIDQ+MZvRx~&w|hA(|jp=1UKu!k=Mu|M|ydQ>0v;`$~K_N$h8qb!#+ zGWxiZam7wU}uh>oM^6isjRHam2qz72fS#rX?bN2TRUVaYBp?>)M0K)bvf?Dfc7X|sf)23i7N-o~KU0Vm zw<`W942Bm&>P892%@pq+lBYa-0{}&nX^=7$RAx_-W}JDc4fjil^p%lBXgX8+FZQ4@ zvsk2}Q)V*2jfL^2L>9i$&s~?N!r*OV9BfTs9CNNn&*?hqN`Q)wopwuIZb=&%)1t`Z z+4}1dWdlDgmI)su0n+LLFVTgIa=H~zeT@1VhrT=66vFOKUvsy^)(CY%XINDg;_R%t zvl|vv{tW`0v9Be@QOGdP9x|9S3vYtTYEXq8d?Z~68C})=9mH3Ua97gLKM$oe! zyj0tBeHLhV$pH=kz6a+1#tYKY7H3?%VO{gnt{~_2Q7l zyPGeDizrmb>aRQj0vKQYe}VL|g2iU1L;n@W9gAWRz&PB$3!P9`SN9Xba=f8I$EpyR z_IaXWVDn5F=A&;pEQF3!Ues0j$x-YXaufE-&@ajl#!=o6S>HUxz)Xjf=;&)9c4!>) zlh2;sj$qHU%us`8<;6fCK>3X7hTc&{7#htf637HjmBVXt`jV`*U^+e3Zc`vr1k33p zK_$hMOGs&~Uf)`K2?E5f;>Ie&sfJrkVkV`Oa|e^tzP2j%??BJRNWc||F`5sZAS{s@ zpnwnt4F-u%c1Bh=I&KPPGLCOD7RZ?TkZ($x3p%g4DPkEKT1jChou|?*E_0*ZD*sb! zraZ)*l2UL((oZa)K+TFTz8A;7fO_(u`8eYZzdCk5PWK7-QB~A43C!8i=z-W5lUge7 zHEnJc+~epaX48JYYQe+G)9@zRFZeNM#aS_*6xz~@&U)UCcq|MDx?a8(==su;o^mj* zF{_kp@TGAvNcrI3h`V5u{bY^)SBNG4-IIHpAkhNlPY z!(AzYSr0}@%wODMS`DPaEZ1`X<0<_YTh_L1&DX37HRfBUUpZBysyfgb_vo$>#G5<0 zP;d*~_0CWK%Xu1GYNz=Jt-?3c`5Slj%Z|FI9nXXDtXlzw0`Pm5=(vb^YJO$=%n;4oB4YzR`kRA(kXZ>z}-iD@*D#93K+4OM$I=PnZ4eki#Ip>ug z7$qerJlIc=j8Dmnf=-&N4U0N|QjSbhNN|T(VB%kmU^;1xS8+JS)mjE8_0?x(lb3#t zHaJU55Bm?klF>k^ExUU>KzWtq!5C5;bp%|&8uz{f2prqu`6ZHcA1PB4N5o#?&wkVz zrh500VnvgBZePLr@WHCGb$&Oqy|LHT07)j|Yk4rUacHj!w5QJ8sT zBU%tCF%-T4-t3^}C7+;EMjS?hel7_anQ{2_+{f>{VD40X8Y$vPV>U+CKcGVVcAB8S zaW$l!YZ+o!iy?PN&E2&qkRlGWfJKHX5><_zs;Mw^HPCB$qc@*L*k71P)<5ne26i8= zJR+_|CIwB#w%6mYVVI3(&{UEBdo8^(x=7(-YeZ6S7TRkEqlwYLH3D7G58lIn9D#$X zyM%maq_PURswQePp%;L_t@#-}OE$jq=Cx(I)5*Z_=7q?=tJ;F&qIi3FZ~GBl%=v&- zOJ%WeAMwMS&(B-00GkyL^zEnd8+ip>4*(tg!Gv(v@4wzJm(yF^+T_)v98{S z{{GzoV5bpo*{Z?c#xaOT~o7V74yrz@WMaS1+Hdow&&J5ew8-_7+vj4@)zI|B1`t z`vKQqi0E0#6Q%nhX@95OtH@$uOXtwBx%APRE$sITb`oEe7Tl191Fy~nW{7z&waH&t za(e5VLLLlJrNiXXX@c6ZL&p0}XBRzA(sxc=1Z=nk5`fYYdBP_-xq^>t*NGSt9lBxo zna>RF%M;(bx-=jDsZyKdXvv%jKKZUSF8Dof=iB#eg=gYhRyxilCi8Fb@(trgKhuMY zaPVa_94v%aAOWUTH@rHuA`NpX$UGVYLQZwfgXwvb3%nDzEZlWlkvm#k!VvS%VP$+L z-@=^rRB_8uoA*?G@gw$<*tvCA9Xo#;+dk__S!ojd3^t2K;dL4X`_Xwg+Fj+k;^nJ3i{D zWS*_#5Y*6>Z5VhH{d77}xG;$X>ZA5g0}|N3jC?*+-L~7Sh|-@MvJB zf3BHMXrH`hSE3k!JPcRrxb3vV1_z+7N@6g<6Y>h4*a`auyZJTUx}PTixlLz31js!M z@S-LZZt#HuN%0jdHWlR0=^*a0eG%?|TB?o!2AD9Fhjg!@H7G%pCuSP@=0N8=%i9EK zeCb3QF^*zbFsOW}+-gQaLIT5#OrQ-g!1H4QL24oJeb5vFFI2r-sM|%^u&kwYeRRiJZb#t2su0SthpWS`s6z}#2Yb9U_PyNK{3?E8tOZXn_6wq^Qui4d1J zNiPcxz23WJPxhDWwKy{*J(9s5J!4I0oLQrX9+e-;SG>vzfv7MxJOdwj200$2 zDS&K54gl3ERWz~3-qnGAn_jw$`2qkIT4*gBL|A>k3}x2(W>3Kxp@kJ0LaP`6MtL0A ze3MZTs}fP@7!t;B>6<^h8*Se>J$`&T>31jGr`&wJ-*=+~HoG>U9#qZme%`ZPpMKq) zf7A@v$t!=SV1r5;m3Txow{H1ltM5_+&VVJr z7d#Vse_^4!*TaOcD~;TUj-W%r&_4jwP4y8M1nh`PDaBJf?qP=ZC1Lin^s`Wh`WVql z{T9aa%v-&8skpW%xRv=u#xU!Nw;oLISm1N7wm)1^pRe6Pzn50+bN!%zh5Cr*_=_GK z$G0eJ{atb%KVhY3CHDB(J=Q#I^wQ zR3oxWz>Tc-oW3xKow*MOz^KUti(;u}>+OGbgL%7^<06LbT7~CY+x>>*KST{~dkabn zQKR9jbyy6ghl^C@5qwa~g+xmrml`Cg001K;ns?q^KzXpTm}d%7?^OzpH04&TRVfXf z`mO9hp6c+7E!G$%)(|6+s3`yhE{GVt`dqeM;L+W%-8@PJtG=Fr*HIMG}b3 zh(|O2=r0hqNc|f6-QqtcH%_Z~D&okIJkHZ>;{w;xbVz64QD^k?%=YPw1$JEWIeDmTt@Ro6E{==r9$X&>8+c4Trhq}8M zKFJmk^pEcM0mE(ThaFnSzm&JTRC79Kv?8vh6b7p9(9mA7N#7N}NcE5==n40ne)gEyjiLL8Aa^F`K5OXye7U=~8WZhHW zIB1{H4Pjph@Cbpw#uQOo;&QYIXe^_sTXz9<95c@a3Z^qgi=Z)jx+3Hsx_Ws+bW$_icr|sfftj^?~{#Zb4fCZ*vsci~<=lSV9b@ zv4*Od*)AN`GZ)g4XU!EBAd+->KqKiJ0nxxPhtx-LHi?#}fa#S3qX z`T(DX_ky`(H-s!^!y%IOA}pUs($;h9;#B3>{Z_=itee!;8gjA{e)M2Af74ues-fx=(=L59Mu4+XH@ zSl|+NIWy5$EjZL=@BA~28c&f^!7!g&-rF3~lfF-{9W1E+zFya&c8Pc%weRuo@6X&M zZ@2Vl{(Emeu18@}rT~EFV-gm>c{n}|T_=`4 z^NVI@J@mDGo_jt25AENJhu1;g>aUTP+jj=wA?@sagqRrD$SQ#GkYP@|W{Q#soB?u# zLn=7y!^MN`Z3A3CqW_00P15fE`(J`I z{jrZ?0w@CvmLZJRQ(r^V6>(Yy!14?$f-8G6Va*sfcGlkwmS@{|ggfhmR{k8>@kI7s zq*4`1Pv`j z>c%7&W*Nz}+YC?0N=ue;=nue8C;xbzBil3gl?;mW23#Pc)%Qk9N>Q>B(~6nV@v|cr zSpZfrl%E4%C>B3gwt2~G=DI<|ASr;vj_pOE)F%I<&-$zprDqS&V@kpUI=Q4jDg%#4#2}!Z97F4I$HMkusO7!vU|Vp@P zKx;~h#~sn%5o3W5mMe#bwNHt{ZTXOD)*Xo0W{nmVBO@d;;pO3vHkOD9UZq*2V^rLM ztw^2xulzN3<$gQ_SoGL8MIucjtkG#u>8Jog^YC!u<{n0`>;&QQGR~JYWnH#jA8@Z{ zrP|ggwATtGN6ct+NRw$KsDOOcZn3EM*IZexUMwky2q^CtTgbj1R#c5urc*9`)TtQ% zCX<9JS!B%AXwxQbJc|;It=m~pKSb-M?(tpchrYIZjHaC%QVgelA@?%(GLPtNJO3Y! zHeSoxO+|vE?D6%z{FmGg@knFvg^|KAdn#C<(mV5h6)t`L>b`$;b0zUuLf8&s0{V&p;E4w%m9ED-n5s(GaQTZc|d>S29B3 zqN0$|M7RMX@E9Zh9}a0sBAQmGe=#&r*;bLwfm+@JZB+3i5wMFV^#xvx)d(f#n6{I8 zjt;*4iW&|!o>$!ltip;VliptpW8hk-(!B`Rzr_6y1W=FTtQ{A)cm?*M=L&3!DUJ8; z=*i0dr;Q!aWb$L2;$eZR2HZ3D=5&<|#t1uX#EOaCW@AO+Jmkk_B~KwRvLh3m+B2$hEOA178viddFIAgp)cteiDkI{BpA|aP>lO5ZRiD>goQ%)0}SQ)EdIZ9ph z>d}juHa&575JUVvpSgdTZY07$>F|s1#Yb~@wn}?ioFl^9F*kHc`bGo7+N-=3K~MYY zHT5+?eRzntZ}F(ta&|Hio4fHdL*IWU_vhRv;pxpXE>Q$$KSJF3O@*+UC$!-Ttm*$j zD7VE;%ZnYU_Mn_5uO>M#orrz>Q7=Obfq-CJP+Hwsw5TtU9g+{FLIJUHX2c-q*yR(M zD0Ex+Qjq3hb|<;V63sh{@c}`3aGc|FYY^mdID-)owYmpgH`-}ZV3Qw^?VS~&OU3yJO zh-Gm?fek$f|Yw$=^wBeP#CH~^~<9V%LN7ELCQYE$8hAhLoizl8t^iO$D zD5LV~-^vf_2Ij9%moLvJ(Nw^YBTO`4|9YY>eI2URCFrt$m;9_w02M^NkY)UTq{1y(5jQe8r0|nVKyc6E#WFn2!GjsAc z57@6wH2B)YezT14zDnbK0^wsnj^)2lN%32^6pyNq7)pD+VhJuYUxyDo*qne-Loyot zuvCSZ;r59=y2jo(ib?L&#{+*An@vI!8a&Z89^x4NdI{C`Osol3J1LWBCPjm~!C@R@ z+Fa9XSe=3dS-e*%O&K?cLDfjdvxo=XU+j{?p93tB~H6b6LGTppde;j;-mDqI*cyl$_q zc*|#22cRm(Ev%B);;S&(DUye^&k98HNI8jxwB18#zkPD=v6U`cJH;i z!nJ8(viB8z8vUhz#q;3XA=CYd!5WtKebZgFfPV~6&Lc#aPJ$9%cvXv z5`)u-c}c@O_(mAS8q&j-Ix$#EG>o3eMT@do{P`44S>uZFiJ#JKO;1D{ZE%v~fr4#} zX-9$p&7Se4N-oxi(~0^LZnaA5OW->u397jky+o|=LQj4rS2Vga*MEx2b}X=(q2Mxn z0vV!8q_swB|B*<%Xc-P}+2#**EJgupF!^F02reK#v7W$pUK<+00|&5lbQK2!{ztjs z7*%W^nN^-hzNT^wYHJmiRoC`Y@=tdNcL=QBYoUppQ$^|ric7w~xEz`Gga}bHqr>9p zO@_Eeu6dV-bjs~q7xgQ@=#@qomMe&?r2f{+=~O1^VP+>Kv%6go5t?>zuiQTD`6;`~ z!rrWrZC@p5km1wVw5Ryx$jA3?rg;T52A`n<2a!8ZU*+B}=UbwF(~PAa1=m#X%rMo) z;i64T6oxt+!%hEXzD)SVfZ<^zN_gFOks)j&)*?bVEqJc~5~7j+AmGAW#X=Ga)`>?a zm4>!9H$U~7{#IdZK!Il~W1PChwRa%Z0*sFo;z^vnJ-lCpp%iNh+#A$JjT;8XSd6w? zciK+9<=c+9PC}S0YDIq%jj|3CCgeUPytW>r9s}gy;OR6ynvVh+MBrs6a)TLfq^2pr zGj<@?@hp;og(no`^8hi)dwltQu$2&y(!xes!%JS{rgu87e^j}oxx1pVn;EBj{Pksd zR4#7pPvN#(+UJx7b8NTe#wraWCv_Q^(B)cJ;M>f^xSh^Pok$DXUdxAmc@-TA}& zrxw^FvI9?tl726!aqX);kGN0g5kD|SipSZ9#TBQgI(-*VTLEj>&F;tHjX08C%;vW zAs%Py>h9ff^CUAr0@{pr?=J+(Owgj#5#CVH3$O+^+JC&~vn4EQMB8fd`ckHV_sVjy z@8t2^R2*<{zs4*mPlDRmb5rCF24G~`AOjJj6OJ*w`CJ|S*2?c@um+T%8Ds^17vxmj zZc;oYqtFmp{HWv2(Hk^SD`j|KFi$>uh!_&0GzC61`5b>5Do62HCLvEv6IfWOFK)I# zh%kbMB{?#_rMY2hlVFl8H5yTQ)tCSHK(Uk1b4^snP9H#T6ZsTVws#UgrI#G(LN8Ip z5rAaf$yPQ|6{Bt`dsIQ+yAZ8bin&t3y*25PTTtZpo0&VhX=^@F_n9O#183sv^1|p* zwMQWpS^1%rwQiG}{>Iu~+TOtBV8quCrb46{Cm3kq?638pOeAjECjl4WC)**uBL@`e>3T60!@_+~U-7`_JUe6i{^-29ihO zV_&GmY90;gLzrm%8_pedO44P%@Ga93OmFj~(qOUjjkw_u(I(O{g`i}ElBlJ;_$1vi z%1M6-+4@a+vPp-)9OiU`d-o~SR*;*zDvrcYtc8G>zE`PW>UyUwgM;bBU!gqlPW43LJP<^83H zwQ#nU+Sj%+!4~k{R4Upj4)#xr3;U2xvQ9OvH|5%c$CwXGWhktQc13HNF9?C@h1^J3q z87%B`xRUVJ9tHiz1puY#O8EeH=rr;h*2o*&@|X#&*^f?qMjB?yJIn(Fmw~a1?UXsj z3+HeqN}IsU0}1(DEZpXhe@n0)b`uvPUe{%UAE8;%-@Uw7n%TZ(Mx+wY1?p5)ZrC5x z9k(k6V!+z>e?M>>?l^6Ci$Zgmj+f-MR*Mmu$F(~RR@yjEit$1-CI6cw%N>&jdRdYr z;J9)yNsZPSl#sEyD>2ciH0%jP_rcK0ifDCbJ~PnGpoGcJgtkdR^BjyKDmN;xjtiDP z!@g28IW;%cHIY*#od?LduQ_9_Sl2&t?tdh(7u}^zgp_b?U78uOZk@-qhV^CV#dj>) zpSxrT`7WI0!j^Yww0x74-s$z2c+JW>KS2Z(Uv`N{JQ+OMTln5vESn`dF~4Gllj*&` zJNO+uH~fNj$-r+R(W}=1WT>6de#s^o`W99zWs;xryNA>*;x^{hzC9t-+YuQcJwt$6 za=Di7&;B~4u(9_!7}3B4Htj?^eU)!mpc)Qi$_UIY3>SNj0NH<7A7$bpM%_km&AIAO zSQ6N`Q`)pE!GxJ+Al}L`?}-0H5!W56SvSMnKW;5HaIlG5kCt78q!1d<{C1wIr(Kkn zb{Nz$b^2nX`wF!rVPutnR}_-{RcHP0MeI3z-nxIdrBJcg1c^xQ{(~jwBS!Y0$z<(i z92TYGfj{=*O!R%N`RM~(N#3MVjw%484n(RlPKtcxBt75~E~0XLDHop$S1^+U05m2? z0vJy~MUk7Ck+<%)iMbmO&LJu3n(*{*dJB7(vP$}db^0diP57Y-H=%xdsrGHruua00 zQM-ipbgoz4h_}|7q9U)+ic4KjK@uh0=`iZwd+}X=?Z$iY(syD9Rw@#Ix#H8zr}e}> zrG?a;{z6xKt^280+s>CxJlf2o<5W=}!Jru@{Ofcs^fK#jj9Nif)c2c>Q>8@DFa(cxJWA&CU0yK`jG_KV$imsfEG^lua!DU_;R?b0#(hjqflA@ZW|v z!jT``$Z@wpD8RH#{1)gWa+{$!P}g1Sg@293>v_i2Roet~VZ(B5z@0 zur1dPb4!-(+F7V^J9G=q>M*S~#oyX)ySR*|pnZEBJxFuebXf4s6L9>^i1Em zr|z=4ITUs>1rTR*i<^JrOP3LOucokJ#Ry95(K+cyLQAW)zbkyJ1sAs(+r|{kx?bRS zv`i4L!>2i=guv1Ly({1gwjUJ2`k$zO5?~lV;B}&L0%o(z{0KkZ=Eij@sIQk532%pnKmW z@92=M8z(4EEfO6Wg4_fSB8BUv4e>$!wbWxtB|EOI7mZCwN$TwVV$}Wc>jRko)AIF$ z%k>sY--r(30)z^*lHNET#*--So0YC>ACLLuVk)8#C!MriV>OQ?$ofwv3kmlSqo8z( z`j}fjw8{zU8K}>>qlzYk6dBjSLxUkeUJ|$$QER$nPlBrBP@EqdQH%a~0xcl4(-73o z$xsCxqY%AeE&W?R((ESSyciXtkzwaWFvECY5QL9IQ%|nL7=kIZxH8;KU^=-7vp$D` z0I8ca^e;uQx$X`CAnCXvHXH&AhTWc%~W6q7NzPwyVZ?_sl_;E>s3P4LiA!Y@P#OMVM-#{xvq^AG3a>jZ9q z(|Z>cUAsT6%R7&~_w#PNuaMNwIkzABOR>NGw+hPXzfaGST{vUV%n`P{z4(g8XaLeV zfgl%zZlDpy0e}a(pSMDKIGW%9!Ek-mx7^h_8B>iGrg^s!{DWqe)Uk)=b zQYBi5SwwbNJ9(Zgut^4Y%^zJRu4v2!>Y7UBUR4v-#y=)IUI(|(#jqwPusM#Mxat4d zwZ8SzK|eCJ z$s=T@72d>%4D=uG?<;Ms)9c$4B?6Lu*$7w}K1dl!D9n3Ved5IF=723QiWl8U=E^@T zdR4J7lyG?hR3rhYf!{wZ6iXz6x+KcU zsS9FedZE5yw<*+jii20CjYq`WkSmJ89t==Az)F!@oQo_Lk;egS5QW(UCleSCqDE36 zj$_V)0O*G(btsD{hC{dYWx}}kocurWc#>lCK$NuH|LE)%MoEg8`>|x|^m>_M97g{* zxiusSnQ2Te7wXdd{QG&oy4Ku&IQY~M2X%WfM}FzQ!KxG|Hjg(wxh1y24~s0qnrg9$ z;qSI+!t>-EGkBdSHSY_I#q}viFGxXBD8fz7RcQ zUDv!k(dttpOY5LPcL;5rSG!d7zqPf2$6Qz^v-h&=d>d$sCDgcE(-m^@AL~C}rC(p; zds_XZ*0s@e^|rS>JNsJjwJi0oi3aoZ%S=kuCTq#(vD%RVl^!ZsH7`N6&)ea-E)SpI z-e+&$#c{=`csMU|aos2vo#PIYliEdzZ~vLlOM9(uZ7#@~f>mod*V5DF-vI2^&toi7*DpMoSin zV^~}rU;!bQL89yHJeF`#^>qatd@G&Y^<47@U8_Du(Lu{@g?I;moz+Iwt0wt%s`{t2mfhm3g>d!lToG`zwx5}>u))rsQ|>j1GJYx&aSe> zyeu?92AEi?lyCi}hpq>*FU?f!ls%xh<^%|tw{GjOWG^Nf7&C+L$7BeaE>{IP&6tl0Tk-^Ikht>UT5T{Jm?PKne#~gZUSo?{F^W02uF6v+ii2(A~ z*H|-U0|8C!@VqBV1v8(HBCFKP(s0UhdOtJcY1Os$j{TM8ZknprRW z#^`*n0UmVXZc-q%zwk(+rr$b=*<4u}#j}ZevrFC3U6~x_+q0hjl>D`gvsBJpF*&kg z3W4NFcVCcX@0g_+p}qOWm34loJzhM{*4Tl6T-Fc7+t^?x9i%gRfLcwguS2}t&e7OV zZH+g=jlS;npEyW+CEpZ5IT8afQC9TIL+Zt~^5b};V}W_RH3}EHtO=7naAQpkM+uQL z2(}m;GY#VIIl;rj8oh_!biSHYLkR|fI%o=jvekj|=NdIpVtsz>JiY84?6Abc_$sR-7%h^ey+i zj=Ykc3D!|cV*jwH6c3x~GBj#h;a@b4`a4Qp;eQop3#CtbgN_x&U;9YvheO8)RiZqX za!I(Y2yKeLYV>)Pc=`)_kQXr7+-V3*6)W!l2yH-?0`(!PhYbxK>wP2<)?}&jAlrA5 zaOWx(!f_}2+>SYrCEM_u+qG`CN#(@sRH-BGt3a&Aiqaha6yMY2N5o0q$El`JHrGK2 zD6UB==Kw&Ut!a^|;dvsry)v{%&8fN8w?rHCFI&5ikb+k{*jb_ zUGGR5PI(vz0U35;TCP_XXqW(7KZ~S&e2p$o8iqIykNtMpKdJh>AbqD5dDdLPg9EM6f z1eC?hT7p=?ecLriVbM{`W~Pu}xqVn;4!B}LfK*xRb5rf?x1)M+-gL-fhQe?i_vkhZ zbYs-0Bu^!Ii^z@$?tVdFN04HDfS+e77k-(e!UrV757XC9 zKd3Dt{Od@3nteb#se#Vt78!wM( zEX!45NW6sI9A?S)CYWoq#7$!=uS36{Kpi-gpi!&tvTq;5!$=3o6WeD?Z5GE6*NVmC zhzR{%5G2K60FPMg``Rg_nHlwQ1j4C=a8Ck`c$X^0)}N}`A+5MIQ?yx8Bb!I^r4rbP zm~~x&G~PD?gx+} zq(&osvS?1WAo8yt@7+07snyREbx!TCirP{q2Zw)e<|Y>3hq7khoejMESjvl?%?E1X zHN2Ln9gXW`tWHS5tDE(CU*T>Q`R#rf=!T|GvKf`O;w(8MB*`!+#Ug{+rPuCN&edI- z(|b4_Liq8Z#6ztx+8+v9%p(z2-%VUZ4zV@{p}xl>C9+6D7+^EvzdZ#R9f|BGo7PVz zRktL}<%zG`G`b|Sum+Oy5}GVp)+K)s-iC%%B=>^^xGg3hn&o4`;7#s_j0SxoL&?#! z8P2bfCj1y_E=TIr+`NMA?iN1o&h4LaF(V`CemH&YRa>3yoStuPu5z_?e-0&(8ZD7= zj&R&r>C4n+n9iTMMEWLD#kzmT-lRmHF3P{ewW!Ct{)4FOs)W;f6Q2V-7KOzc4aZ~Q z2+D~K0d6=8pVR;`oZnX+I<=4eUr1y19sK*)IS6XH|CltP{8Ol9>1SdUg{7>{mopK6 zBPzhNL2HKUQPl^5NThNor08&!h|ROtjio(9G>xHZkvJ!=ofl5&^vW7=F5DR!o-Aya z1OTbRlA%)LrPoK4{{WCR5`ochpsd&zZR}RRMwnL9d{_WJSb&3(GE$^>u{(oYW_tRR z5-m5d&+2Q$WyLD3>>w*@reC7`H2qd=>fE+WU#Sdl_1Efpl8?`18NSU~;zL_W??zJY zjO9WJ&6$eg{oe$$I1Ni{a}xu6Hawdx2N>EMViI z|1H+wyMo>~44Ug#3#Gk?Gajd%gcrXC?jZ7iUb;AnGismkr!eN%Ny|Drrrq4@o|hl1 zy}!#&!*w>A-|SY=oS%{UnqO}!tPcA5I_y?F6BusrK0gPsh%SHh_q%>6Uk^^1)<6LVA?>sKJGYInFv9jSp z?S8u#!ehKweq|4KEx>Rs$gh-SC+A@bt&C&~Dkba#^zLjUKZg-pCS+`Yn6U{4{GMqz~91|Qy z{WF2mIC9UlIxW{$(5%nd$BhbGYa9;yDkMo34IrrRX~T1xG*y09#x*i|qPPxx@4;#n zGCGg-5R|Nr&25-Hx4PEa0zha7=c-zYpQPpmz5HEadn5BCtdXKqwCy2>{PpUAvK*>L0sspj z74F5u8cowr-CxnS=h?ru>ap+iL+e{tTXQH3gx0Oc2qA1tqzNJVx)-b5KOGEbOoQgg zS@5k?;#_Ix0v-U{ed$2@@FTklZD z#e!-_w)!}_>+SDt{JxkmUgPzxOch_x*cj`aS zP0V<&lLn{beLoVRHWV`E4#M=@UH!J|Cw^rfb&eMq7`>w5~I)4m7PmAvQW@cpT-DlFfQJ&b2r&ncA+8}qM zQHRZuyUo;ZzSCT^hkBXC>l31OdUX_t(WcNhSE{Y^i}m2j&E%Jnlg-D{mxSU7dBdt~ zQ)NzG17Ea9P}PTur!cp>FK0F1&Z;WDS4?3bDiZxi1xtc?;-6=_AN7S{CBx0#;r-wx zfLAD9v%&QC%{Eb}gXKwB9@8B@sJSwgmLiE@M&V~-w*nUt8y&Io+G~UY;|NM+BvNhlHzGA5y^d8DcWV@JOU z|5q3(#P%?k&%}#JKdvO=ler0U`{9q0Osi{ZM)Uy_Q1<|k5KTZayljF$gB8&A^5F(t zu)z=!F?}saGMlm({nG00BVz5>(R}m&6fvaN1j}mGib{iCOOnFAIpBQ5<w@deQo-XLDc_jj_Fej?>2i^#YSbEyRcu^Tew zv@pZawVnkNoX8cHl*~I<1Ft?geqg1>D2WdH5!#2`_h|i*G54BRJYKZ)nHCRC^ZAKV zDl^<(D)_u96iiM50r9-07*o$_IR55yYUgrjrgy03^Y}gJU%leqyz=GFkEB3TCvj1b zE3UbS{8Vn^pemT~W+Gy3);UILs##cI(b2u{qQZO6VExnW%iUJXUA33@;>)V;py&$s z_4B7hdpmLu=lx-ljv-Ou&aD=P=D(jhJvVx_bm^^=<>{p9)(n3T0leo$#XWO!5LLLX ziF|v^rk*u0(k8l0T9NhR>3Rz44Y7l45sdU znsK7H+|>UHK1jC79x9C%J$x9vr2s=@vBW_l1*&Y5lxXGAfTtXNuO>Av)*q!DvEbE+ zw88rNhp2h{scLe8jU5rK!*_7=uVRIp-dy*q|zEi3Vs-6t0*U#LhseUr`Rae z9)RUAB7~#PCy#4htT=We<}|bZ_}z=t3y|zmSlypP^KOJiGC>6oNiL+-`u5rnrlBN? z_u9+}k@c0QxKf++ECF8cBc=At*gEAAxI-k^eko znzcc8{%u zN11)W->Y48h=lx|Wow;D^q;l7X{!z$c07BB7Yyg}6%Gw{D%~r$UfIJ>PSez|3_4nqp(+OAZ zrY*0Ix$n3_ESUn@WqRu65XbnbMZJxBr`~Hwz}TH=IxB9Tufvh**dRHK1q9D2vAHau<|JbEA5a?(P=7B2;hR-h- zg$Ka+xvB-Q5Vnk^lWF>QPNwkMS3f`RRO`&JUED}*jCXo*cSN+jK)ki3nu3EioIv=D6QyYp9L;r7p zGbI#*EE9S;Ec)wlI1<6Z2a9y4D$ye9#CKU=qU6NumnF@8hC_e+Y^p<5_BFC2rX0D! zX{I>P+Bt5jb=i8!WcD0&1#?Ibk@{zlY|{&(tD%h+ty_03Tk$WWa&6=Et;4petm#zR~iKF|loLOaA=#?l2C6)z``Bl;QcKkBimN>d>9x zdVN_(-RCM!hm;RAc|D%sTnzbl*dhW4Voh&}`xJt_r$hk<5vFKXj}(GyO;*WilIr&* zFy%Gm1?A&scWmT55d60w{r|dxKQpKF!F+}0fjlN?O~pEfg!{p@1hL^3QN%$&KH(U^ zA;vUBLqR$h(n;Ei5W&S9Qc^far@W%=BPC%SHTp{Z7@K{T(lTyf<8m(MVOeml=WS&< z*v@uz!p&H#GJp8vztGBxA9++6U~}IddkAcQxIXNNf0qW=*>ravvAR;umr$baR%y=C zT_u6S17ModMQ4tT-va7`K1Gc{YedU&pd27#{W0o$(l|j>>j>>hEm6A5l}HK^l-x7z zt~#!(&}r<%XdynLsSnzli*3E_VZ3~Q^-*)+{=Pv!vC;Gk}mp$g< z)iSvpHj;q2DYiJnl|sRW`#ZLL-BM#z07pz7Dhr4UkQ;m^6MJ498UuwJu9hg`4zb23 zGn<(Z0`ZJkc8By3lUOi6CAdqXnn)Z%Ir(l-Kw{X%V8cDaCNl<&9yof!Oaj9I;*E@j zfMObM{Za-WOJRKC_aMx=8nK+!Trm~#cEkf+)rlThe#R`Rx~k#cj&-f|i%{>_H7@+; zJYu>p0+wdGUm#H@m(PS^ySisrwybfg9H)#c$ z75u}El~+64_jERI9^F4RuzRX+$KuEquf|gNi+?UJE8=rSyux2WCkpQe36skz0P|Bq zf}Ci@)*`yDxRgXb!8Wp_G|A>>L}FaQAR{3{{=5|^0E1Uh00!B@6T}pPpj3$FfXsCn zObv(BYupO)j!+xgl>amSEQ}&RF5wDEkvx(j5<~ct%8;ZHkc%fZ9H#6d$jTW02=1i$ zbyKVYkmUd{(O45JT0us>SOgRBVQq#^1qUCZ6#z$sFCb$88XYTyu#keEaGFo6W|kla zrbW)_)`^FWvMG~t!K_+i(kxh&+d}63QPc6b3G>^N3G?x|WxHE_CItYn;~a`ucLxl+ zLdM-;)ApeLNX&XPZo|P7-2JHz09^tG$cN+BBMI_4`U5O#;hct9bfud*m%(U;H@?=E!g;hM z@$^9T6MflR7yu09o*S>bzq;%8bmOl#4*q8A$jfW{?r#{pziH^@jl=I9T>bXGm2d7@ zz`+xo-|U`$eaFmOJLk|D;PL%^t3E!u;kWyj@Enh`qr+jR1LJ+n((+#4#3=|_&`?_< z=0(d|E@2f(VfG1&z~w8fh0Ec-Zs1@Mj1JiN$ypi}vz)x!E5=B9004g&kO*Q*DWqZ{ zv9Lm`M&-)Lg-%)#YCYNf5(vQpMFiLc7CzIr^?E{Cbl zXYcmfyZ!DKr@hr}>+)Fer$&O-!yVZ>8#~`S*!=~m>BE1!F!k@(X8&$yw_ z+p(gH8+}A1G!rXIqDmy$UI+jvD+B)n5u_MDseB2t-~$S)m90>hagYjvN(9j-zMF|H zbP44ivC_tu68;BO9z}}Df#I`;BZrg|sa{}gU=@c=F%b7)goq3jI?-|t+#sYZQ6g{K ziD;L`it(_ksWCf}^3=oYEgNgZ(pFdV61X7fm$X7Xrq;k7m`Q*-#~c`7qhbn;VuMBL zs!exx)s2N5Rd%fVR*Vk~?dt1Zm-g2|5#%)l)82Zc*rVo|!j^c2zbRl$BwR@>5HzQ| zTVpjLsS1Mq25+J}+gTTGtF{`mMy-lg2qXYX)q7!1RMp;6KM_cb*7nYf?(OJY-P<}7 zRUCQ7Fu%H?9_2E_>eodE!O z9|#&KeiUdcUkJ-auaGM#B#}~t{~?-j@~waqIK-lZTbwCsC_G%6#tl<4I2{@H;!yx)X z&T~HJgdGr7{UHQ;6oHXH1HcpYVXElk=O2$(8iJ2DhVTkLJd`${Yw%}n`yo~-*Rib_Qh45Z)_TRZR5~ywokmXclOO)Gw&Z* z`QW^_fAQUY3pjZ4_U?su_AI`&YyLMoX7L>7jqNiyzdOA7`E5)4XU1A8b1IpfSxzLv z=)=rK1(46l*kb$u*g3@pUJ-0xk&=yw1tS+B93?&OEO>;FG#G3V zDkNAIfg40tt?cwVvkH-$K^8Tzg69^BVBQzZ=fJ@8ks25KVLnPD3C|g&6k~iZ_#!49 z2R$5|f)G6E6A%HImL-U3^ruGJo>}PFSM5DoVJ5@&`tZhxb;^wqE@*mXmq#@hFu>+> zRoXcfF^>8*Qz64@Xz(MJVV4ZmADh6_c+sPp_NoB@V^&G8K{RYrLK=ke0IB{)X}3w% zhf1vz)X8{F22Gbu-)oklpMatix+WwXpjW^T7>Yg~YZZLtnb*j9i0N)Ikc!`H)pwaR zon|e%gnpl`*`#W-YWuuoxvbY?!Q)`SfiFf|FbuCZzZr|Z@cV4EY1?f2K92)1&|)(* zSPaz$UA@)NV$(HSltX^=vG(-ytDE21+X?`{rtY85P5m7kUKd9I0NJsvL2B%!xXp~V5LctHCRhf zH+??;m|crYC8k(JmX2U|r1(PSSd4r}!czkP+;W3oZt;lpCbk$qvgFRf=Be2TpW*`p z%p9cL2_OT7hbX)dP@SbTu9_|LX&hdSP0bSV3$QMaPTz@tqWM8@W92PF9|RkKZ1^N4?eWiP{2v9v3rW-7H(1A@j9?m9Tf8HA3Qxx%9gc-78$ zunoiKM7Sa9&l=?h#uV1&@rP=4z@Am3QEKJad3;y1y1sJf)qee~uRr()v13-ntNgJ;J z$J5R;6>gCJxc=i>b3SdqP~oBg0M-9mjUOEV4*Y+h0zz5Gm7gl{6ae7)(X<7nALmjY z08VCX)Mu|Y$1wZFa2VK0N&m+ z2LSlpp{3s*T!qsA&fa-^_`%`T=nQb)*}v+IU2~)%*t>}4;I-}3A8s4{X#f0g_N;n# z`_k#P^MkcDX1N?eNm#1E4h@`BVa5eVAS{%?N<<=r3lI|{ebN+?IROpqKQKT_BN{LQ z*h~glB7tcSo1W4tF^s|GJ*QFOCR?GBcv)q*&XetH%mDZT`1ipr4(%Gsx?jjgmA93Z zk|h9*A|Vx`hr{?6yTN$G*Z|owP#$CWFDa%cbo#ScnVxDnSmi!ZZ97t7JJlRp7qQIv zP2)ZTrmO>A?aH8OL&gJBhgrD4#ViXE^ZK-VZ+(0zZHHAHCc{%cHL5>kqi_eB^J?b2 z2J8j{15o9`-VD05VEnN+&~H;T8Wit$fvATD^c{Dby5`lDk%pTKvjRd zQZ43Ih&a_M5f%{|j0zO}Ub_)sP_L6U=+OjdaPR~N-?m0A23laA+-%j>ThxtKeUnAk zW-;`-?fqVRo6Xp0H8$ETZ5}cMXomzk{7zpweLWBuQr9K$v*R=xgu zaR8+s0D$WM#lhB(_cVa^fffh=@a^g0@6V1BxhF(Er%?JQK07}4`SC#?R1cX44|05dyjmfH4 zM=FUS#9-|1K=9sB@a56SYm=#8PiLR*^}R3{!u9{f9{0=L-h1tyJ8ixfF-YiEJzejA zG#5D<5A4bI9UeaZ%+_6B?5y}}zvf1O*DawNIHhb@eizfid@d`(nAb0A#P)rm!kvVloE*xjN350wFs1;fI?|HayB{!_yU0o%J%^rbO68rHBYYO z$PnPJ7nu{D>ZXc8i28Hkp0?^);_E<{hph4L#+mBWL|emBP1TT0VJZ5TV)`;V+@$gS zu_tVl*wiAsRT~Zanr7PM64>|S6J${jV^6ys)BS3_ZKaz ztT$G@Ztb<%wHGG)H^`P1(SP{}unlZJS`%Ug3h6xzHPN}#FsCJnG1$B%!6{&G1zbH1 z#y;h!*Sw-aUTHB|AV78_;$c~!cgxTLD9gwyDLMcW3Xe_#5mEmM08re?NT9S76dXkX zp##96n3@2Sd>E2R@P7jUiUlG`GGLJMTc(u3B$ZD9u7EiIl#|3z)Dalfk!9fg7r^O( zSVprjG{$tA0~Z=>guxQ7RV!`6POnNhY*Ed*4J)1cCA(&|O|!&yRoIXDfU-$Fr`ZN&E4%9RP4P z>w@y(f{44^LlsQwfH01w_fy!6)og|`nZ;_;0=vv`76@Z^I7lW%Ps`u)Dyj}NVR z_uz&PE*yLA(4NKCrjR#+B@$8b!)TEi1$1r+a`!k2dLaM+*MAc8fL^e?6axSpEsseC z2_?mt1ET|godzxk0D!QB55^x_Pf*yEYH0v7d=3ldtWLfFDc?R8i|PO<002~=0{{Tz z)N%j-dN_PB)ImfV#3V2u6p`US?r;q*&()c}XQrACRM;;y1&&rYPqn5tCR{6{_L;DC zLrr8NV&0nZZO!@Dznc z1IRBM_UJ+4W8T|tQ*~OU%~nmb!-o5Kt5yuPdZSW|_+oHA=l~kjqO6dCM_>RbAefjo zn3TBeV*#Z>A*zS!Od~^~$2xSCT2!GFzzPWmPil427OMuQMkBA)Dw@qYQtpi!zzn*L zdab%aBdu0Tsx`_wvk{J}@JFiBh&!A*s9kSO_<*udw-bs_Tan z9p4;n2l?}d)BT?xX#4I&AI_J@`||(*4Jf(qqY3!(e?43vrqO%AMcA_>r0&L2tRba$@5G{`1#)03w^PdhT;(R zJl7L^4h9c{xx0NyJb%8&cemg3(s1C_@z`q>yE)L}VXSy(DDo5$g^ zi&;)7@6=G`;i_PhPy%&7%xzG`NcD#jhE|G@cSzk~<_yg~Qn~;DLAfO$)7yC>7}iS| zEE19h&jSXR41}=`MrRRk1BBVqnJDqxWpt}hTkT1Nv^E2iY>fc`kS>61NOZn9002b3 zX!tUtL@i^A)jWMwv;{d|*+@@w&0M9k#>6*ixhj{|UzhI3s>YOgP%?^He#kDYH6& zx^GbUo#w35R)cKE#-@eFwly>JM`p&hb>!N^TBp2}4+kL`Ps=Ogiy6v_KwDF?9{?aJ zmHE^`fRjV*sZ4h_R8K?b*$`>Al!+aMbof{x%wTG0u_4*1D(59EeG6UNh6BMGPbOkD zp(BOY+tY6HBFdP7Y4uB|s@>cSMEP}%XwF`!STj)(87|+W{C;%Wj!k;&R zp&v!-@Y6TA>Wh!ZM@S?Rra;2tUe=}-^=QSD7S$TBd85y~9(%tw`DVXis}C%{c~8)|%cnUQ z)a~`Ej>POZhhjF2eD{aV`$8ss7JUF!_bCbp&rhaZ6abv9@tw-Ka6s;(tdr}1j)Xxz z00623Kv4y>IEadscpR zc>T+JSFIWuG+KRPF5kpw=h3ZFt4w~a&31mI<>pA${*>`@Q)qw2dblC7F6DxE8~i@u;}16o0Kk^4 z4^057|Jt+*pWT>pZ_E0(RR`9mi77OyKUx78!yz^RbkM4(eJSdk_8Bqn9dhfS>glv8 zuuax(7PVMaO%8LL!vrO0r%nudr&^@~=YvC4e>_3;$4CHAs&M_63t)O06Efl=CaLvG zQJqYHYF?obRw_kRDiVr-M?~c`n>970vdijp$_AaPUWF-wvdyGvF{rX4W=_TfZrZEgzc|!M zG(RT>LG=*pw{sKFeWK7)=gVWmpB?Y}^jPm_NBTZF)bq)K?vMBPe7cXE4|cb`x25Sf ztLt8zu6U|Hd9^EkqRF>CWqj!I)-aX;Q2k%*kG=*g(BT*szV3}B?+sMk8%Sdf_@$x9 zOT(d;hj1bo{NCw_-5*T7I+%E6ApY`T9LRCAJ&d2@%bn?~wV89>9Z&3B_~PvJ-*;zT z>Co(RiYf&fH~hZ2MfmBl()n(#Jf_q_?*Xy7p3mnLaU=z-^;OAt)(`BDxpOQz#Ahk@P^NbZB$8zXkUxSQLRp735cavZ8CT;OSa$w?%HEbb<0eYT9$Cqii5)6kiB8E2{It&EPFqhK| zVoPJLAB(|>Xm4-TSkji!bG2$F1fJfyWJgECL?Y7C+BDnNG~L}c+t)US)6y`VNe@S( z10B7ayZbf|_OETL>Py%nNTr9vvzlkHtDSb0PgthFH-~{}&evp>25fSlLqdEeVved@ zu%kISRPSw0DFUWtTxEffzg&>=)vlUe*U`|MiVW^vzjv`E88<|RYnq}`g?#z{_mThY z|D0_YJ9zZP&AVU9c@ic61apXTY=qI5|4POny*&J!(E*Us%%Won3mtcmjoTU9DPU5+ z`Dhg2Cn{!Q=t4w3CK$L27ytkeJNN>$Vx;017vf4tm3};uRRB;%We8|11k&IuDfI~M z^@RK>CY{9p3IN14C=UQcik_#8Anzg0qkt$#xqu=J5&(d^zlX)Pl$7d<;OZ#rT2ElMoeNTGofeLsKbO8YHQwPHz zBzgh>VBm^Ftby1}{Bf{D002l5GzH5w>2z<+6MdOOX%k4Z16jv`+R%DfEJUpU z0QmK?KHO1-T=>Z53NP&5aQDX~0M^hrb5SGyEV_r0ygCS$ z572JHO1j^rAGC@f@4+eqSbKa569PTh9=a>xVlmd`H_>rqu zigEqN6LRHO2@z6+44kY&P@xjR2{k5U#zibVrqC8>r8O!EM5SbUY|=o31Z7c^R@7=# z0UOdPDG|a7Iq*_#vS@asJy!jKHS;*;r6!tX?bTu z{p*WW&yA!X>xi6b4(!g^=RJytp6p0G+miqQz|;Z${>XcQ=ku#G757JK?vGT#5)Na4 z`$Ocj_xoe_`xDQ1dx-;RU-+edjEJjW7;SuNu=(b2*OSu=mxjBZ8clw*=>K}wd#~EM zRWEH8l{d=dY4~;tI1ukcpQB|FiaE%X7+Gb|yt8PqOpqRHt2k2StC0yf4;O-*f#D^$ ztQ-OE=m3z2i@+0D(hFEDXhS8Xu%(qd`5M1O>lMjOOb&ei!FrS6Fs=aCf6yR^Op#(X zAmAhOOTiQX0PI3tg*{Sb55?3Lt4M~8V#EU&1v13TpaT$=z=dC;6)D*8BV_U*!xxna zW8TWa-le9dxw?3Jb+}p2w%B-B2AYsXR)IKqd@76mjBdwWWhfANuX9GqA5r-=f z8D_0anli{CKo*UbWz!0yZe6Coxpm9R16K|_{?U^cb~QRDGnvI)^GK=+=^3Jb{y!kr zJTSlG*ukf^&Th8j-(v;TQ-o?0O*%$NbJcBt2Tj9dI@0?g3x zoQj#i2yJt#0RRW1Ru0 z;C5I1`5pubB%T|pc(Nz`%t+1ciF%a&*H(4CzSQ&9#-X>jj=r;f^6hOCZ)_QTX9uL8 z^SJn<`s3gUK1B6L6Y%-*b)Owu`|;tWj}EQ+^ynHq!Gai`zk6)wdwbWty>ay8Z6iM( zS@`1ksy7d>eB;!{j}ET?{>q`RPHsgv@Y=Dxb2IZ!t3~#!|D9Mrm0*xVbX-P0SHnfd zMmh17%R51lAcs5vU|j>LoB#ma@xl9p%ZA4%W&jxK0szcRR!SuHFc?$^0BsK_An-iE zY>0(Yaxp?O_U*OttrTZSX*S1S#;d zG3;A85Z8q}{L4us{FyP6=|hj8=9(}Q21Z2!}VjvtP; zeYvmktAlMH>}>dWe+QO(zdthx_ct5>03<*V{(pXyxIRGf`SFo%oKFvTe|oU%<2@a} z+uHQby1L&iRlT;Dyg!?IVIpy>FM6Tbcc{v}>+#}`yf)SP>cZ%YiwiHU-uUv` zmfL6``oga@g|GNsTW!wOHreW}u+a_{MF zf3!BSO0UAz4_24No1v5r{~vm32{xfbu!UfPsVow**@*uoL)~&AR6s7i!YzE&aW#Yr>Ubon6mWOXy0Q%4d>0ypl-DnuuC_CaE4ozm%)VL|W^z zvuGv^ih$3M^lPITX9e;m4RS}&n}KR5m#nM_)I(|0ndrW~?Z%7K>vr0eO$uh8$=GL$ zRmrVjf#?taAM$0t+*I3qao@$czG?ch!jfP8i$=(0uXqF{ThHV;unWCn1!!EXaYlv0 z3aKn15*kWZknJtlz~%E~&;;N*j|)E1n4@w&mUN)ICq8l5s zcL2a!+os;#HTmA|srUCx+?rmJb$KVc-qVt z;tdk6AnqV|yRijE4S@mY_~F4K7@5bg>2Qh#1?1+?!QNoKt6Hx{2LJ#-O~*19q#fDV9K7r>|h*^mGL)v|}xC5-NX|Iv|_Ywf|4 z6$E`x)`tNA(ELn=&4_l{*P7mxb|L2re*LKaQ!z8bSP<%hX)p=%s`T$dU~i5z0l53G z$vW5ONH*jk5&{x-q%BS&5+LT9k2q)imT9+T$t9U~DlitFj@ZY2$Tt@B`SkE*1KTs~ zvx4~n1%yYcA;9w*tpr3(omL7Mz$0j!n1G%XvoHgP$5B$kgHcsn#DUrsPmo)e((-c} zL5o?Au`~WFSS1_uYPuXU?4!ZIIwR$Q4MS=|RKkZ9Qb<6b@z~GwR^D6R_`%-xZ;ucB zZ~`9A{a+t#qyXTn{Y~E;?fTu0dX#lI`+s+O0@WW)0FomC0J!^O+Y7`IFyN!Z9i;jn z?*8mR-tA{o{aZ^Fug_;*nu**Q@juz+zEEd9kTh(I>Zh&ZCPCptx7vcwc1G^>ChiTw z1CDS$Fo1imC;ZYt?A4JJNFD$H41Zw$a|gG6xB&HspY2UQJKA}BcKYeL$$M)@-`d{y z?vAG4E;Zfm3}30RT&ZwiVz$$(MBwV2ku#zyfZVEDC<%#5Lp+U@2A3ZCh?*af84Ql} z>PYrT($sHJhe~)DI+f82z+fQpDxZ3Y@Rl-m5sil(F1R|E7qW^U!EUgE%Z3>a=DjJs zBdN3)xk^wsxUd8zJO>xz(dA59A?C)I86YSIR{nxguB1#D)ca$`h+pBsvaXS@*D)kE zz8t$_FpT4uuuTdx7%EA55t~*5;DIiPw;UXiuA{nVuwypru8Dc-suNv)a}s_P$Yv>9 zRv;>%D;Oen0o@|f+1NUDp%mldidaKe{cJu%Rs14aMzPbFoAY92y;m%|>w z#pPp}KrdoyIVDzBaa<Gi~t)5{w*mcv5sYANmxcN((-9$PMM2d>Mf@kiy;9*jyws6Au`ZBT9Ex=HY*?z z2g~R=4!2h&>k=`MIWccij;TZ|9j3KzHHaW!z>c7KU(|6Z?%Ef$Zn3MEtm;i}{YIA# zA`E*%dT4}BWu0Ua5V0T@_*BAiyvn~lWyPNG-hk#v#7IWI5CSEw=M#v9 zv0|=^A8(ZS%hgbVdXOD|Iss=PBcfd}10ZBk3Q$2B0u+5b<}tu=7241m@3nd#m>+o0 z;mY-7R~9yKw+CvTM^MaY4Js|7xK5wtPz<_ifKb{?^BLYg$@!{GEmGlC;R zS;sgBFOt`JjEIm8vM9u7x|k(iPI*|wc5}-O#dP!&nqmfWTjz5ACx)|6VK~|5zS8VI zP-R`0MT&0(lAe9_(OoqT-1N8AN7q;Q&=zb$Buj-4*}phTDd)zteOE(hPZJ@6)}-vn zf(JXa7`Kgut&=eac66r`4zvO@3CDm(J?z)5^J=#zU8{q}F^6Ij4sk(Cr&HBtSHU}a z%&Uh+XxOD0aH`-i+V4h~S2VcnRWuAz;VE z+^mA1k}yFKwHg(OErSc`lvB~GVbA-tSV^0(hz3lO8Z-(rX-FUp@pyiEIc#pXC$x{j zc5_|Rd%N4eJ3WZ?E|@(41HL^q@B_}tUd#Y+i1hRF+#j#5`s3w!Wc+@8V)V1a1798` zl+hPQ20z(LNPnF7cQpQPSM#seW?x^-VMz;dUbj1Rclw+cs*RfvZ0AsS>ZAx~hBlV~ z0M66xA$Wp5*AsodH-i1%7Y5=O3A{3#1PlNGun++62LJ$I;NDon?cs)-LrsqlH$OGj z{L0F`i6Bfu5f=^`1klu=p;06_Ie;uVM;v;sIN;y4m!Ij6LMQvz%#g31LZ zpp^DMpbfgUu8`gumZ`8S1YUwggLxcF0=pZ9QYVt32@n-=VwOnOQ{hqsLdKv?VluMj z$Q3|-q>d}si!@HH+r(m_u5svP5T26#fMPbUfTQb{q4vh;VgpfJm zR0V+nDM!w!aA`Rjc+a)gOnS_f*-)od5sBC;tAZ^#e|*1L*XYi< z?Mst;ZAx$1KmC)oYz3U%5D%ck_JG_fW{Q^mbIEwRYQvUmX_Kz(SC5EFmz&F2sF+p; z2ObPc4ubtk9PHAth>NQk$QE4d2%(QP;IeY!BUD}rQI=l7%;FXUnGj|G(Dg(22_l$= za7SYPL&gSq@eefwrT{=%SWHa+^J@VVO$6A;^FKs9N@2iHe+r+<4}swaM~24e1K>4Q zR!YVIkbxp^gvYSUcrGCeECHfIzyjrS;VQdqqgRVzz#5BmvqQDZYuN76Zgi-(c?~-P#@zuj{@snXAgDbU zHJ(V@!4Vw_7>>oP=mR!6q+7k3onhnYoC_F$f=;gdStkGh)gKse4%+~b`j890>oVw| zob5u^dO2su)E8Vo;2}RQcB1Z6)gO-+D$oS@iKXbz0Ptjc_{pyHt)A?&{grTyetx9( z&S>2W6OAuUHNUZ@_x?gVgh20X9(iZ$#G9K&-`zI($$?ex?VEmo_vCxvh0q*q7<^~* z@Vh(5-`zX){?19rJ%0;q*fsg_f%%X2&wPAf_VXi)q&Yaa@X3)?pB-C`gD3b9FMf1r z5tI=i0nNe3XbVnk`26(dPmXW;{L;B+_HA0#-{&>C7zKs=LNx1KQQ@!9L?Ubs?>JHi z95i}bBE?k3#AgJN0l=d*s3gsL1pvUpF2nnXLJwz9C&WK+`V{gF#f6BR#8lr-XJKI& zw$GRV^)pcg8Vy&H0FJR<)cR1eBM;e6uet<~ObHNLe;J0`%;2w`9_70{#NZl!K_n*z~E&iq8Nvp6LZocPD&yqYtQgFVwQ$DrIiW}zNW)08~1AF{p$5` z^ORjY=TT1B#0x$ZJW4TCNJ~Xv#vq7-KC0EM1=?W<{QBmW-@&=_)W9Fl4#W2O&oKQ* zxZ|mTZ;p~7Fj@LV)Ys*??=Q{6Fb?O3vs2%mLe}FrWTOCp5BGFJ?Sn{RRDWQ=D=X74 z&ZM5|4czSTU93?ZP06td}h>$3&OU5U@)H zd>S2ha21Pc?sN*zZLHibf#s8t}v{D56j$|x-1 zml5uWxxAFVyae=peWGKueX+Y{x;ENh8yTz)_om#fT7kpU#;H#vT@_WnDz`iwwpG{X+M1#{TPds8>sZ^_y=~&a;?gy{R#PpZcd7KqP(}9> z)de~eoq}H}1poZdxy@HLt=sP?U4a;3$S%!gOkEjS(UQ^%0RT=8Er9h)9tXS)QF`Dy zk2^jc(UNqs=v%VFCgtH?Kq5PS?f_sWfxsyW04R|UIX?pcR6tnnMfJz^pX9^*oC=Va z0Fiwn3IiTk5K{?-=m1FaI8Gh_ND4fo+=To9tSRvsP9ELQr1>x#Kqx#+L-}Ouk6;HLIm9Qg)A$H)@a$s`yi81tPT8xl{mv^$y}kyThx;7+|YIO|<_( zmcsmc%m6l{Z3S5rFtY>hnL9D1rF z@?>}7R&VO|U=Hi|cQ8xC^4Dbji_;CSEOxv+-v%xSO~9KQ27j}01Q>u;;CK6G008f9 z8F_QVz*`#!@dO{@#oz7%228xSWBlFiV;}4R7|h^&d5o0%j}NbW005sJUBYv`^7-*K z=m2nFEc)T0)c^o;j&J(v@a)%T_kD2f?CBkwvauYS#$p#e0{#cSa)@Xp9RQt%2sS8u z@McL$m${JhD&@Bs)Ga1WK*TUG3CD;uY1q0s;1|thVZduFDWbx8Y&1IBN>D(U0E7ER zA{%NY?#r+RwJ~{iRvA(aoLuGZ?&_x}s?SzCPBytuRT>Z0IoIdHt1^BR^usNQ-SwVr zwP66j?xq+-pD6uXYXZOk5I*>DOU|{W$^!t{UK8A0<=cpPK!p!o0?a!X<4!yxENmg> zAV!`s2ZABj#;hAME<{Dn1Xe*% z4G)f_=m6kskrhiY4UVwO!TDgz0jv(@z_l7ti&5IF;ZFFpi$TrmfC6HhEm6(7plZs@ znRd&1je=Sg5B(4ZC%{5KtE53MJyL7CF_L(7edGJPT0S|{@%4$`?_u$Fvj4AFrttXn zkq$V){pG^gA1_Xl72gZ9KVF>u!=*Vi0RRB#f6xJ-5BTg*|A%|Kp#Op9=dI0k_hu8% zjz%uGxK36X_vds=Zoz<#-KCeMMWF9W5w{0b#Y5L>9gjD9&;;Q6e+Q<}ebL+9AwqFXClmY;31p@$}5XIwdphZ{c&R`fDVb2YQZuenA5Pz{d1wXhO4c6;5)+ZZ1mn&`i zLz<0F1q?ywjjArOBrK5G*dnjM1jcPcz-MO}o_pfyKb#vsY+oK>Fhy*UoJ|TYEFZ7{ zOog7KDuJCKx$XH!xH?1Pf{id9g8`PNWchMnfSS*@$pUcNX^GTA8YFnQ7$m-s&BtCb zSRlA1=S6IE!Ll;5$Wj$)uZZ>8B??3Z7&&58e=}bVn!YAbgS1`*4g)-}75r0vB#VQ} zh{Il1uHwoYlFd`y3w?Eyy)`p4y<6t{cY57bFbnd_{S~&fnyZrvP0>(YQ{8BPMF$4O zYL>((R5MpFxg}zkA=y?t)!sB=)kbWZDCqv6K8|#Orckv*pcOvCG6*gGU5le*JKEY; zxougy!rhr{%Gqm4FnzkSF01@Ekt8+fW7lAognqy!g zKvcBctq=hKe2j7c0C5He9wTfP9zHbU?Tm8plhIq=I+XZ>5!WHJ7&LN zdr;*sW~{jBgVRTGKbyf`m<<4Mt=4n3%5@dMfQEoH2M*F4RC~brYgmJ!_j(Fc6EYwDx@bDyBfADI7eFN*%$yW2ByvGre^+4Ax6^`L-0JTUjo86d%y-<>=3 z(uE^ay{%F{p8=roGvfPxPz%bO8XM`Um-g z=`Nn21Hf}U!O6-cNtp=MpCmc6X--BdLSW2gg?5e@bAClZF#=ytO?KQEOrNXsobQaB zt}z|1_aeZ3A?d+o|NKDBftK+0y3qc%6fgj#9|wgVpW0IG$JtXK+En4%TD={54! z#EcuF+VuhHcDN%aH9KPJc?)aKFYh!E6bTC%@JEV>m{EQiRuj&*`<|Z6zO}6l<@?Ly zy+58C{?o-V_yYa;@-!NPZ;ti+>Fgi?;JY&;uzC0z#t-LV{yg`?g_&b05bS0=Of2Es3NdSC5wzdaCo zro(%q&T_R%cR8m$lhoqZY`aG{uM>5O1(gVL;%VFh<)AMGZAJ>e%naRoj~{}-bU{x7 zLwM!LCM@9K=b~+*^OUC0U1UytU&hix)FGp?OxIL2cWV@<|rn;6e8-SgIM-lO8 zk}8qQ@2Ti&92#jGoopI&%ben3Aw1*sVm+@^h<3!Fa@17z)mIGy4E&}{+)?3CdRyc5 zS$o*VQb^c-{8J zGq8<=%PH?){tNE%FnxpTQL{VT8fxJ_{C^%9*tBwdui;k@^9q;CmLrmdg(|FOmEt!R zTVNp$8y-7UX{I^=qM9wEBMwYbyuvRRV+Mc=ICPoB7Yqsz8j{yA10>gc%IKe>fG7YU zj??+601N|2mCv^VKl#Kl@%7}tlE;9b;;7I8P`Yx80-^wbGy#lq4=i2b?Mf?#Z*Yvu zOd%JntWZ_DBA+3XR|LV<6xS9G8wVYLpF@M#4niPw(=AFtuUar}5U+M=);VNL7SVdA ze2Y)B$)&_hc!NWZL-v8aDr|%u4(kqw003H;{vYy7k49`nAQUmK^~kn(lzH06c06hZ zlY@imkNZ0+JFMSukR<>;4=(lK_t60W04`TLa4w`RS8^`22xt_50r(^N`+fikGuIo# z;C~)(jsOFYIdiKcjwaw4EKc^up2yT}tm37~>Q`p!UY)H60Q`Do^BYT@@2u}50I+`G z{Vk&(@16T-&n%GOy=}wqZXJ4S%iufPhJU+j9G87~g5rF-fButwbDtfYqrTv?gEOBV zn8x|!@ZzUOR$?lE^ZBu*FOILK&X*_G0RX-~zwL`t8$Um}>8o?w0077s`2N~~cMi;c ze00rMCpUj^X#IQV4;|UOT5nLOR*-QK7739T4FHDW4~F(YcQ|;5CBm#!oRadLoHA^d z5JONVSpft2gSt;_9%yBF#D}m0N{U5D4E7-A9j$qLh@A5Ya0nWiYgO zv^R8Tq3U<^K;NXo)G z6zr29dZNiou|U)e0OMbD0MB*>!TtjP@QCd&(gX~~FaZVtJl$b`d6>iiKsowCPxPhU z$h|Jl-A>2dp3t-H?wj?diy7sqnDS`U0CIm?DH^gEYUPp)OPo;I&h)mdGn>_g%ewrP zA08S#>Q$rMaKRCmEytu$Sj0kPiI>3NSrf|!ZMm`_K3+rZ_6=iakBx;Yf z##&PDYL_8xG3Ek+#(|F6?rdv^KU3+>*~B(sfye+4LGZpJwtDpei^9Sw2D3z02&{vh z3)nHXt0Easebk&p!c2XnI-&Ne$`vYsLvKtCkMBSNK~rYXql(nWIy15EY-SuvQz(Ti zILr)B&|rsFiqRYE+`jJm$k1BCC7Zecwze;Ij|FfjfFB4&?6=Y)(7heAi;^%|xSvWDk zn7V{G3I8+){&^{kB+vXDJ5E_ZliOlhIra}8bN~+kfar(-$$4ElSRnBG6a|DsQU>AY zffQdl84p%T_>Brl3^`LAIwGs^Ww`!RtHP*0R0lvb*L(&7!XV1-)XCun0U^+8y8^@` z$~~+gFyr0iQLVL0fdqSEmYr@DTpwTrjV559Pr1*pI22Uk>Tk2mk;HZnnmN0i^VICD8-`0G{iEt8Vt*Naago)%V7$U!16UX|nd^sk&F@TYj^; z>&-RY(1ZSZbJ>7hjsLEwMBKE3JllN$g4R0r_; zBkSKfy7c9Rz2BYNia+@NuBA`T?|^MKwalFQMvf6WPr2bG!xhv;{*nd7n=DkNdW0>*oY>pgkPvV-7qK^-8 z=a zUQw--yhBo{|RaD7e>B4J@}U^h<6_*)^Dc=0RS-jL}KvArzQaa zkN}Y=;FF^tAMXF~Ko6?_dpla+-PiW+u9mkpH{6+uU+)bZs5YPd#=1`MKAWkT$Bxs=X`$%lD>rkq<=S_}hfSt%0-iwNZ~AcEI1PnZZyC! zi_OQqn_tLOu%$MM%WI7LTvd@k17ttF72RH*R<{BMK?0*tr(~$K9KA(s^Xmeb5Ma+h z&e08bY{(~YT~kTn^xCR%;DC<0jVzYka`2b+(ZKDI+V>@q~c)gf0FhLJ3i2!`=5(I9fj${2BugRg)>ULhwpnyiG^ ztX1^tl~X1)d?40aK>H|Gn?>tv(#>ua`T#Tpo4x9-e(fH=2`gYYdxJ2G)?x+#mJ&au zTf*kmZslgb9(};cj04OMWIRZJ1f>H201RBO$5t1F|BefY49l4T0GRRSS$?bnxG4ZY z-G4Mq4uOF@0N{^2T8~T^;url`L+~l2MYhHeJo#*Q3XcQ;dNX(Wb9aX-i38(MB_;tc zjMdy5ul@C^jhAZq zkG#3D@2yS!AM6@^fBVpT+Xhknafk`Tf%(r4ul(}ZYE*wb0s!zK#sE-=;s5}k0>T6s z7=RhTC#Sc6ehN6T<;&ySe}8h_`zJPid}{x97Y<(EzN0-EgQARAx&qQ5DE(m-P7Gq1 zG_+!<=^(zLzJt*V_VoY&rjl~#bj_t@*#9z@m0-+>nJ~D1h>uZ#aQ*k>t3R~~tXc60 zv2Q^KP*~VtcU_!rhXv57YX767jR(^5EeY$YtOIc?Na8)v;@?qA0N_CffTE8M;6W>} zqxz>0H|0DS384C8U;yOUTeTmG1HLf&rz>-Ce1k6NhqJ>N2qW?FoAWcDo|#7VhYS>S z5KP}l_21X^+gA`=|~8c0gc(p#Py*AV`1!0Du8p_5lF6{v!emFmSgwicMhB84Sd*ISdx) z=}!04-TtSVowpiox0=k4RjE(KrTYWQ?JgbE{o7j_kHurH>8f*^S00NRDilng+&yKr zTnOn_DizG-|C@@=6#YWT7I1{je-SJz!R!|-5H9a|3aA)i03v1?4t@mj$S7EW;cD3I z>&djw)Q!#6jOU`A4gQXdvC<*&s#zMrGFJH`MP&?n*&`1#N@y&G)MN}dR`&H&b&X~k zvQn*+EtfB68#!92HoY28+!~aZFps1 z-PM(Id&Lj`zeR<_#|Ct3L^$rKZPHq>Ldz z2BvSg{$qrbr-0xA2fQ(1je}Ndg{c6aQ6*qEiTG7K7;=e-DMe{9W&pqde6hN?2#;<) zuTsj%2w8xucAchMs~pqG*I1RCtO|&a*IGqey(+@#`%(JU+k;w6cj5JqgZn<58^lYZ3j3Yyj{-u>z7{?IZ210JjM;yQn++J2?hd9@zKa4t&e zPk0_|d*y7GD(n~!T+P^Vu4L_yL4y>!ROP%}OE7=}fLk3&U;y}^+dXLt0G{p6JlC7M z(+^1n0HFHrNbS9``j;o0?oHO*pKE@7W&3N3ZLhBEgeZuN1U3!7x1sm#b=|+-*!`O= zeedoZet*}<@3suSzp?Mbo#Ve**Yn0&7)DNiw0r!m4P77Z9R7IE*k^|qK0P!KMG&P6 z!iQfSU;5_c8cc)9_5b)fP(WXv-h%4?{pH&edv)WAhpHODj_#)1(s&(4Rmw?tD~2mnAQ2bW(= zeE|R#82+#sh!}#<6RoG0$+VS}V2n%_gM|>kBL)CrZ~{Gjg{GjO!xOl^(0i=Xa-lJP zp}+Q6m3BkSvY585%7wQ#Bo4F(ch-Rd3LWi89cqp5sSob13+zQtP~+QH>E2cAKiCon z9fUbBaAI3+5He64LIGtVC30-6_N>l2SLb{P@*N2pC!+TGfCck_b!jh|07oqIY1d-b zH5oVK`j3nMfZH%0vQI>vgFe%6zyi*vKj;Pkv^q2$&O8g`&|oUiZ8x@=l%o+3N`I|d z-mF(bl`v@24qFtfV#bw0)sk1TFV0tgu&Wya9!!8i0ig-_;$-hv2m!t@g)zWiko}A5e{KZc58qsz|N7G6=ch)= z62RGsFHVhqdX!+mJ3Cw7*jV?*j)oUkXYS4=ZuGd%x471aRXT=}tP(9qN!VPSSABz32Y#%>3T^a`HbH)~xleZ5MW{vL=;spR98Q+(j9- zY@<9bQEm1lc>>;|B41SodQf{&OU~BbXB2@WLzm3Ib4RQVBkC`L%<3n55ZMXC>7KHdQfo_Vqdz}^3HRr(cz<155qfDYhlOKy+?60=`Q|Bd!M zY*!HfT<^>$d*h{nD!_n-;KlyR*GB3%uaDNhIo|l%blqz+^}k=)4Hxv*vQC-+7K7Og z;QIge@-Aw`*_nZhfm=85A!44{Xg79A29U!uCdQ{jeN0v_?tbGU+x(FbldRP zdl!CpXz@1(7Ja>c_PhPd?j2on=g^ApPp-IkV%gURm)twK`2ML?cTcRjb7K8>$F_WP zZ2LFIcYJ+v`!}bzetl-+UoLL^`rNkHPwelnujbz_d0vEYY}MH#QcotqrWM7Rv$1gm|Bezkr1DOnQRg$!01*#a~&%-T=4$%%!Ed ziwd(=RQgH!r2`nrPUg9?Drcr7Z8YHInm-V54(59X3ex)v(?>IGlfKl6oK%3JFC%4s zroAiE)|-e|otbbqdKRQ<+e$+HW5 zN2*e0)8k1?#Xc)7Ix;zIE(<{Bm{9ltIMp1jAzy9y)s?1q5J)SgcKF<>R>*JF<3{u(CY&Lo^H#z-ptla;)U{rQ-Q?2 znJEkHNlOY!4=rAKU})LP>&M?+oHt^Q*FP2#Fc?SEeO=D(l@46SGzpKctTZJAiyI5J$^QkNRY(kBrkOlrJam+H~mF@eB7h}kL2To!c-+I+T! zSr>?TA}R_RM`_A;`I~cUThc3iW*Z9!mWWs~XXpSh{xqtRGu$N|<(*~eC5293syfjW zrZPtAaeT9C9XLrOs}nGjuxe~Xz`M-pj(87GPhzSm)@X=|a~eGrfx7Da<^Xcf!p??@ zo;+_wX;vMn00T`^SVZ{KYicU`%4?>&TW4T_iUZ)m^iapb{A6$Z;~}ybEIdO^bE6G& zW1GsFR?KeLyljVC>x%gGe~A5cj45QULlN)NS(0S(XI5X_uxLrjWK0Mm;0j0+bI0MsrKSVOQ^XW&)vZaUA-j38 z+YH+yHi2FGHA2pxc%Z~XG7Prm4oBV<26zvI4Gm4-U#Y)R^s>I~kbV*miC z`-ncFfGGXwK6&2iEO@%71h$9j|MY^g=ld(fLS=6$qH2i+;`!=m-K$fzZ_G5kv$UNi z;MGN#_b#9hcxO4+e=!F5!n2E^U}vmL{q zZXf#d&e1QnkNkP(*q6J;zuYzX?ZMf*N0xrIZ_#%LX73(e_3go#hbLCwKe76o!!!4e zQ~HJc)#**&o?7?i$sHe_+WOkDL!=LG;(YID7vOmo+&eu49d!595bkf1 z{2%xKd#6Y5otpmo$lzyt+L;`Dy0i0xO*OACD|>mS_UXaAr+TxlcX*gRj5w4yS_1$~ zWtg!gMujFshnm9Y3f-MjnI~8N>d8+3)ANxf?<9^Z_F!tOfi60Iv@h2mt8GeyTa+skYop^|td>$>&O4d;OlZ1x3fFrk^@^_M_ux zzuMY%vo57tYk+XCHOI87~A4kFdv=NYTe5dRwl0 zU6ymwVHmS2HfNbp@<2;c{e^hH%uC+Okv!X}A{W*Ur;FVu3LFvuQ2K?^zly|DaoGm| zc!xxI-jR?%EP_G(2jAq$*ns5#G(X(^5q$ko#{C}S8DP{xUnf`K&fW#ia za5XQUAF5&u@X~nAE0cAv&ot2iuogfEz*@lD%jWapN9zW}U|?zIA2$wjsQx@Z-8M?~ z=X|sgBp9IF|9Q{&N1OTpfX}xL|1SVQ2XN=$Vy^$+9Gre|eAR=KYrZ==3jlm~Y}v!p z8y}q6eE-z8J14h)d-DGVfGhGynE6Ocg2j-pEK? z5OTG#_UMqHuOBNWks>-KI?9XQOi(~*epmojWI*oe)QEoo15ZQ*>=5z7;$NKBFe(Oz zkM)h!uPz@rS?gxs{X~loIsfuP7lm6;|MdaPKDov3ZY|!};NR0-P6q(b0{{RIU;u?4 zx?eE<41Oyz(1`*Vl0b+r=eOd^MfI=FSzD0<0MG$Y`nmhF|3&qmDfF@$HjPZEA{(U; z=A*NPX~==53)2@@_-D!k13B)oJaO179u0UPg$A>QDwIPM3=v=e0Mbv~JC5wLHls)r|!Q!QNe4G`#4l0_@BW-Vqsobko!7Tal?h&{ULuiyyp30U+#1B zvu`!HpKL9-)aX7}<=_WtXI{qsw!T-79{l3kji0Wa{&*sN4?Ig$Xr3vlJt;gtR9

    *>xfa?WooB7-fKt{&JFRTdKpo6 zV*Q2@kRd{AjEc8uNOZ|4$tPT~N}{;K zLb>Z`kpn#sT)!}SgWNB4N@`9zfHNg-UJHF^u(;C)KmqaOHKqRs885-kK;nWx2>2ff z5_p0H*PC)~wFYjrvS}X>q<>G5c=i@Qx1f~prDp~zo*Sxqk%~W7$CF(!p6r6XKHbdo zy`^1D0;u(ioLceSu~iRF zZ2|xuoZfo(^tSI#ZH52&_RO|#&u#zg*!G8)kKRAG^Q%)k?>v3!h12`zSC*RQJox81}U`t)zT1=ek@^-cs?CUDsg%}j^ zPhBp30LuZq;MUKR*Q?6XzyR8UwTOs{oDu-=tLv(KP(W1wmF3y1D|1#>4`_@7XkoKKo8DMJi0W=7(m?p#TmJOW{e@Q#QgBicgH3% z{-pZTp zgkoSv_;Qt1WwL9MFtHI!OypWnhH$AQAf7R!Os$U~%!|k{B~fBF4Rzn-H9EMSg9Dq}%j&56uu_aGnEE0% z)rM=JebS8SHgz&_zDY_0hkyZQ1DRHTske-xpJC2)svM~r2TYVhWlM|m`0P2@6Jabm zzka-}a>}@wy3!{qo%2C)#U6kY)A2<9_w4bbkVNn(k6F|M$M+a8rm!@~y9Rcm*IJocC@R8f*%=+PP#zxk)FLu*d2*^?6?Pnj15)sBk`vs`s- z6vJ3WMA-j-0D#h=tRwU1M$eD5B=`JZ0DunQ{|Eq3Mg)FwAbh|8DRBH}B8X;=E+JH0 z{4)$16oENC^BuMcmvyl-ZbQ0hz01tm>9ZmFJdo$41K5+3v@^@Rr66l*rk$PPsnmqs zMVUuSGhzJClsYK-oD)T&?u*NQMfz1pf4YGp7XZLHTPo_iAbHAMe7|iBD|CjUfc>SxBjjxQ? zzc^C!)}l6E^Q7E!fB{rMpKcuaXifjSOFDrE^gr*f==sxz;g8q#ez<1-A2%%cS004jv;ESDO0KnJ##kqTA`TZj+?j2kF?SWqzH?^NcW1ZWJ-_qbrQLr%y7~LdN54M1^Q#McKR>hcyKBeaI(4ir zKPUdTkHhjay+`CzXpTqkpD=e0p*^5J9Y8STCnh;`o)iWE0MH_^*(a$#d56sazScNz z4k2{-yaEzO2ijj=+;OD_?HhiRON7Xw&ibb@KOCaTN?!i zAo#&2ZcVwDiqDmwZh#kz0fM98jBQQ%Obf7!SX%7GH3-=cbAnY>IaGXR2Izt)`p`Zr z%6&8Wp2aK*5>K>d zJUdbNyVW%$x4{1Z0CWJ4E=+xYVd~-e$@_x+7l*t5os+{n!3I77F{p5XKG6>a^!c8C z3`E~sE5^vrOayKZkvCCKLA5O58XA0REo2KcUO=t71ykvO0Zin?W8_ z0kvfV051+eP!_!e0F0KsFjT+{fFUs50M~ycK$QNcyE7qzf=d820eQkEdRVLoaGsl= z^GsLfrG~WgwXO@*o>OQl3UV$Ek3PF|%blyYzCE*LM~T1LT2$b0mfL-~Nq$XaT%kf~ zobv=8WFn+DQe{^eDavdliHkO&U9n069Wi;94nlPVpjecE2S&Nlsy0BpxOL_fnVw6f zurXj7866cH5~_`q*>px2o@Awx{q-cRIzgu~>eME+hGSN1gkyfVzz=?tR6~MOpO~5C ztj;RRjK@3ztXC1prt>i<8A=It!rYNBTEark5JRR5pVp z)9y(&BqXSfNvcFT39r%3dO=cbyhCqIjY}~^sA&R{RF;~YrfL#p(kk5sk4!r9P?kEh?w_8NCb?TA}PkOwyxu3SI>`c{Ndo*ZOKt#3?xc3@*M`H z{hwk2iMD4>K0B0~pZHJk{&PhT82G0Y-GkHt{QDs=6p%-*!C%1}6$Uo5+a(sh2$zqE z=0{rU03?mSWcx!0APhl+6p)nvB~d_J?S;|5ihLddBgrKe7{D}GN)5xmn(SiZoVgVA zEMX8Y$D101Fx28q7m<+X#YS|SVn-5W3*uz`7UKlzOL`UN0SRGY!Vr}2jfl|r$hoC@ zE%{A;xuR5O=yN&8Q!TR&16=>kEX%57)w)yzXP4iGufw(+>vE@d#+5YYFpa0iZO%_U zQ<;0AEEAH4!S9J;I~!q#aud<=Q{rJSFIIR@VM?EQT6g0FW-t$@IQZ}v?i5Mn`$IWQf-{Ub~6A6@<3;h9G#*FQS5>E7{G zk4|rUaB9Qd;~SX)JUFxQ-r0?J&TRPZ+~#{1c0IVf|L&PxUmo9h_v)!{ZyfyM#KuSG zkA8dY#Ek=J8j~!cbB%K!Ltc#cXO3E9qpQO*C>Zq&1w^1?i*tY25k;b3Kd! z26NNIGuwr1bgCe2EXO{QnLM6joAxEFE=pNfn6#xRaYK$~N0DhuUi`*@alKECFmzR> zetmZQflAkvp4?X#SNv&P3l7iN`ae25MF#)?{CIhW4&V+80T%@$#NGe@1_1hl)1!0- zWI%p>wEy$HT_0@hd}CS7b5ns^gZWpxGR`!)4pbzs_8I0UL|16U`ll-#&fes#4W{YrzECIBJOQ$7CY`U?>CKRcNJ?o`8n6yQ?E38#ScSC)~T|BmzFL3{o#Z6o_YC?+h;ap78y{(v)VZ)M()xkjHoX`q=dw!T}@Z{K3I^HxZIcnMk z4EN`AKSXHloss{-)}QzKQ{^ z^U=SJiJ2RnpfO>gm1?r15yBWQ+d>myaT%NzMUq3G!qR{~N^O=qvr-BwbLz8G{H{26 zW>N-w$SJCXtOOVSbcJbE<$(^8=!ZHM5kcHo(9lxRTbxKjV-FH?eW?_-g@Az3olL<7NthWOWX`OViV@5b-(_9AKP*M z(2C7&Z1w)>znJ7itSA}03%}L>4FDt+5CGtb6g#&zHDSxb1)3(EC9Hqb`9%K$01Sb# zl4b}j{_;g^fB*p61@3^DH#ijv4!RM(oC5|3B8WafCZ_`sYC>)z3BnS~9yy1tE&u>6 zAOJw}>X1b>YL*R}6aoNr%FZ}-4(kYEVM*bH!zgGS5@W-1WHRDs3pD!rBh1ON{qe@?Fd?#S}*Pi=pAdNTk(2k`Lhru*kM-Z{Je z+q0YK004joSN48=YR}!vJMUcB&m`c^`8}Tync2yN-)1~qGw}&bYmnAY3 z-B#maipyP|oi8Z9MiRfcE< z_@(M>IsmG_FpsOw67%8m3|5OJ48SaUeO(Tau%awud1>Z4=%A8JU|?NkF25nxKt#vP zmS(dGzyM&pID5?Rnkq`4EKFNimNS&+VJy7B@9xj1`g^+5Qs@At3Nioy>_0IR9m%p{ z`nJBvw!O^0y(DpKe%$sF^VZ^oO~625{I&wq24DQfY~z6n2fJEtuBiBOUkA2s#Jm6H z;-a4}%~J6nU7ThHAOPUP43Gc-{7eCzn_wRB&9Ma{`Ta=G=lgp<-PQZSrWOF;>CxhA z3$o6)xQg#1&ZKWP8=8!ojs%@>1HIXr#TxJn z{l!%Om&eQBoT+_%y7Im0T2_J?2|xi63`qxo5a{hm+~WKMLjnMAjuz7aywEGM1OR~B zn89_YTy04^Q|vsNX*-aW_R`{^PmZ0q|J?I$kJoNawzk@1SC*BJXBA&qxBtC$mDMT@ z*9VPUxKXO+P+m2_fboe)NPJ^R6!AcIxi&?n=CCU$J~SA}dlA4u_G#R>0ekJY$LmY*Z#L z`;a*iINJ!zIl2%o{$vHm&Ov~r3C^DtSPZcwY>Lq{=FLy5F3fH&wpA6SR$})r4_8Hp z#KbEM+6X1oQ!?q2a>2seRCeY8EQNW@DM=cGF3RdKW>@AmRr>3EcE8)`wCgOePl?gG z%*6CuX9)mMmEY4|HPl+x*;G{D+Avh?@RvFYd+H{E4Y$gGcSUveXlZUsS9vfv%v+R_ zkPtoh*VQijNOsObr{~k-E5n6|^`3gd_13;q%Y*||72Sp7yv5p z<=5-7x%)rcocCgT(XHleFyQHSKLCK?3YrV5|MLrqUmmP}WvB)*=<|K$Jkfxn1m(r6 zBaP1w*1kQ{@#eyocNTY`2tpV1=HjMz7k7NPs_&!K3wVCKrXP5CXSSWs`DFF{k5+d6 zeo4#k7B_#ivi-C5J)f?d|MBWJIsjy#0Kiv!CcoXkNb-lccXS0qU?`yP4lZX1eD~Pu zuMY?qARFNRiLLNI-=6~j)_-?q%{OP(-#NGA{-ynQZyx>b%1&kg4^Hp==InvbFC6>& z{Qke3-v7l@H}}j;x^+ruoLpU8dbHd!FO(q-4IdLD;qo0rwsSPmU;qGvU#}_}8KQ6r zr6*7+2#R5EKtxYN0EC3sS`#mib=~YOJX&GdU*p(RnYy_yTM~foX)oN_lDDxY6AkF@ zwt|gS-W`oTKHN}~1qHOdwPbsHIegCUrreDco*nhstOy8O(7IeY05E{3sQy)%_yQ3l z1MMT|{^B%x0^Xl3bYdAz2e7s}K=o%&nCcHNM0(6bo@ZHgV4^6qKi9pmDi3oAAYrCB zlMY~{Agw3Y)tB$(AOpo02pK3HfN+nyIfUW+7ZMo*7RnDh|^4?zu|I^|%dMy9){Ol7oN!tV3RavTOkEX>G?U#q6 zxJ_5-NMOc@35%^Vt*XJOuQRBt)G@U>`L8auWM6E~z?bUT-U1vT*!z8ZwCvsSvbV-c zAbH*%FMVgCj29d#K8!!Z07!pI|GSgrFZcPyE?A!k2z#YH>tcKQ&DM-38&a>8Bpl8( z9IPq))5aZteeH!C{pADJl!|%AB88rX?+?~5era)DnKnuv`fL5XxoXTlF<^+1$I2r3 zhQP)d_8(N>l8#V^ZXh9&VnMpEjQhJ?7iU*%ohq$YgSA{-rV0=4q*Rqb9?CsE%%WB$ zivpn`?h%`y;3k2vgi}+VWJ;7durw?ISYkDvcy#e9vLTt)G7_NZV}B@%jDlK0AE}9n zV$5Jx#Bq6tbfO86h0fE&MDkh}Dsw0koU$Z$LZLskBG(px2*QO8f+%`!xF%NRGP(J$ zB&v+gxTN$XhfSU6iSwi=Z7K2ub5w#SAy8X1z<#gI;1kx+X0OX=wZ|o=r}zRHRn2w7 zb!EMc zApHdPh+V_>3rh)?TvKU`<9>~r$bs4~mfLz{{1cDEENNpxHRwmfg-tXtz{ockCPOfQ z(2_zW1=HSz5)`Tj@&_#-Tn+!ATnU4tVDY<2aWTR!A|f22ku5R;?ify>Fb-379XwBw zHhRFK!_a@s8jCUKhE&56i)_NGYSPKm`C}s2g?i=OJpBNPlzh*yTIUKy!o zIQ-^h!>fbkZ%)*{g%D`Gj_MEl|JrQp(<4>yE$>7c^zJei#9Dd2I^FQQ6GgV)1c;YeSB^he=xv-ZB#lMdrPp4W4f%x~OrOQ?l0I5WV zfFV44VK~9j2e@eC_+|);uR%BRis=$Oxgm2|B<|)nf=l?Rw16g>EFeq3JyVf2QS4n*ojX;MEvkHW>PVJr$mga5 z=*h)K)II9YKpixd>saXbOcuGPO6DpQubaR%$#^Za!KPzpEsP zk-*NvgbkU>Q;qf)#`8Yg(scJg7Yo4ud}HaO%ZnaeUHbi%C66vI{Fj^TXY`}_VdQ(~ z6l(!uGW_+4!7q<4`0BU_{{k>R+ST>Z?(R3&)xEN~^wxs3a}9|{s}VS;muALyTebP} zNLH^I(%|6DLI!)FrLvgn$cScTYeV+Unuole0vjdY)H&LkGu7&Q-r0W_dEK&V6rSg1B^o@4^b zDgg3-F#w2;HQ-beA=bg<^Foz#LrpQVRIT2v)w`4$L?h@s*&f12T3kY7**rp&5{;h^ z0ANz6;$$)~00IY#e@s1XdV6}jH$@Sbtd!$)PY1wGFG3)Ziz16*1Wg^}E-aKtVKD%P zC&7!cGaUe~M7)o`5Hn<((wrD!NYc2X~r~72(dHDL|q&zRg2ont^hM(yhRD5 z#BMq(DFXno#v%fBCaF>bX?4{Fy@ly@sqyLQ2^pekP+7BV{>p+@f(JP4e<2FuHzzy3 zD!;$9xVxdWEi>MgZOthxY9o}mrFubApe8+9TWE3SXXI69`)kQvGH9IhG*crx41Vh3FvPBf^4-zERxz>6!RzL3u^%0DUCfghcSKaFK%u zrUgNB29Ur41&6@mt0XHSu}$`~2b>6&!k`L!fXpZva!=d}drZm|-h`!|xNUhh2>=#3 z4V?)LC)7!E=Q3ubJHgk8?1yrVrdBPlj#IbUtc%jzi!8d$nen@_;@7$Lt1~PNd;61g z(@xX+T-%|FjAH@oaoqp00?kb#BKT*yXK~t@l9aP04!r(P6{HFbU`MRfd8)|D8Zc}U zUO@Odh|S(g*V&3xp6vb75L~H9yIk%StG^IObr~0$vc(oyb;h;Ytm}1|H|n!)HfBEA zoDBy20sxfzXSxcg_|GpW1p@#84j(cWerXU-hzbAz7|glp-l?zmPB9JU&>7r4yoj~{6%hOn`(O7?t-o`6{SW71f!1Ob$A=HkZ~Okj z_6O&-J~+1>0JwW@j|2dZuAlhs(vf>tkMsQE%)Wb1Ut~e7&f`P?N?L$m|5P~4MB^QT zz?U%+nq9_^85nBGaQu$(#KyQ|BJlwQ0GI&N(iuY|NCHTXkWc1%o?F;r{W$J+n z+otlgRb`%)rS5fA84P<-{%ql1PsJA-zXg}h5 z#6$?ql{^MdEru}#YGsX1)o##r8}+S5Jv;wQgMW3QDf4D$?h8ae4weD{Z;ulKT=L#T z`R}GHrCUF>o)=g?aQ){A0PyDT7ghlb0KgkVg#f@SJ-M%RWM1z`KUb4_wmkWCVFH(| z{f#x}`xl)bY(3vmQ=MQh&?Q)6qbQNx$%%_RM(%^r^PZ5;n#u6=3&N&(wiSQ_*aRChBa~Ts8 zYyw2aONuTz!x>Nt0BXUFp^( z(kSpd;PJqp0iQS)eHra0X>DniY`?7_kWxh6Z_IDP$t|Eup!(A{&^;gwWp5xj63E1M z0@Z1XCc&by8Dgv$Q`Z)B!TXos9H(&t4_QgMn3ZF|lpiM$^Vd!^XC4>znW2{G97LGyCkd*0b)L ze077LP3GMb3!8mwzC3J73RYFM2S@Li2N3>F3!ujmJIh&%{yQL$GH?2jGvW6n1^^8- z0O31W0T~(oG(R~Y|8go13QzLB3m?w2fMVLPKwZ`V6#dvi9{K%GqY1U`-+Ej7q1vX( zwDTAqtjcZYw6q^mWlU8tD@MjRo;umzgGucg$JzH>6f|xL8^`has~kU@o?UUc?jXh9 z3A3@Fc4kI{cmb*$sT&&raJ7@VIYSUQ0$5adFajf5^(ZESA-EtYMG?#pC_v>kZ!0zt z8V-OHJ<&*qgS*7;1Ls{30``UL4=S?jiSpkT)S+wc0zi{ZFS(Y;(o$q1b%^fyct~YQ z#|pd0kv_%F03@nK27xoxMyqwOkEsBehn_*g`hX}|3bbx^g`e4fgvB3$syF5DQSgtK zZ^_wqED$@8;0AmD37VSAn}v~3D;X+lw?Bd*zVN_@^$P-|ledZDq%YX+hZ37-^6HA@T9NSr7`xz6YjJZ+6*>=tKSKWj zaYVQSZfgnKRi(6qlXt48<@VcIjm>n)%z70<3de$TxsBGepW{h$W*d^f2*{r z{??nSO^0Rg#Ug%%hzxVqx3#TM4Uc#TU38501c~Q_YJVI-hlN6{e^8z^0z1X`QCg7H z&xGodJ@i_l8Q=1{tEuzReo7Xot$1obH&>r=y5dtSPl;Gf*igOG=ERrl)jdbJcFAIy zJ_)|(1II7tr%G%NWy|zeJp$mxGHKhxcCKxka&#op+iV0S!(IwGhF^@D7D^0%iD(%C zU%lDwFuHCqG;9${v@wbmH;;F-aC{+8-!2)X%R4X0alq+VUW&~?A)2g2UWHBehzK{e ziEP6#UNa(lS<*kqn7i4`sD@>@A3RmtKYC{@W=i$qsQl`2@9iz{U&KPt(8zuWy_lg( zyk#ZVl!de;LVrlz4>Q`J1Tq(ADHtdY3F&!H%~3p+r%Vmte!wiVcdWCh{km$f`Fg!L zaC9gG{@BN4&SS3#d-Jo3<|13C{(p87dijvlhVN-P0q2L0vo2UCtSBsUFNA`U_spS%I|GZ`PtjL@`e+&%7L(Y!50plL~sT;p3)!T>QzYdI}z5WRn9^1AmlvKmb`l z&fr_F{HB^ej6NU_cD_1zqLBrvU>b4JPl2*W$eVTNt6aDq3BwSzN?PD|?k=3H=gv+= zx`00~H&DRl`6LEkpR6X&1+!HlTHfkSQc!-JP?nG#sR<4kD+`9H-OZhC7fl{N;7EzKp#MPJipc* z>~;G>`mw(s%uLyFYQZ$6Q>OpCD0D zxC-2}&lcFhrQT92=;bDHT!VRX+^b^Qp>nl!uc>nmix~Iz4@r2f>dS)+Ko;%Y1FRd1 zGZBb8l^?)58I{xK%{z5NxNehr0ANif6?Ke8!iu%ui3ZdGD3ER+g#U%4j)ohjxRuFp zE4PmvuW)HBw_nrh|O;{%ebnSBS;w?5x_p$*!h&yBhnm2>juB`2s-&t|VH4 zfUM0SAiLu95qhx$1kC-0 z&8OEla4|VA4FG3-@_H10R9hdJI{}dYMK|!F#H*8;x<_u{J5 zY;I4&f%&;Y7@27t!evYvGz0fTiJT&SK`;!(dGCLz$n#kltVwwM(dd*(-N`Em;ce(V zUsVcehjbOq8OiIYRn79Eh0p&|&Er#c#_5umQ3oI5K|F(BGzAro{u`r{MRZ?MMcDee z_e%c60am_}(FvIUFQs_l^jc%aTIR>ET2AJkYSg*m14%6QC|$a*6B9+;^z%s-zcp|W zQ48b01#RrfDynZ6CQdVhto^(vrUQ1NLVJ_#zF4rF1}SPPw&i_OR6Y7T>SVINbQ95d zyaZ{|3Qp<%Q{A*EE7M(^ZL&8s7BkyX*OD-^vD~j{FocPTR_gi>C6_iAkL1R^KaSh} zVsC>uOJ}NNKKNrlJnb^BBw_tx93)&djML4Y zA;0N?<~_g_fNWZWXG-~|BaO2#G_ z)YlM42nxQgT>Ot6MLbO|1bZU>k@r@8JN*rFw_&+P=Yq|8n7z90goc>`4tkuXS^?L; zMqAUeFjT)lH9w^>Tr)j{9^W(4ZObNl!Uc!P&_Od#ty$Sn9z2M91WqxP&Nq!z#^%AXokS(hQQ!e z_LDEZS$^_@K3cGvmQc8~!$xQNclYcJ2mIDLM1&NI(om0X_`;+Br8qo*Qb#r@Ev$*^ z-q|Hr_hB^02{MFZRr*+7>>_UUC+N<53f>xdNNMWgSQ+s!YK>RhM62`y0^L%3VLy2{ zd!*5ZPES4=p0FL{kz-XDu2q?1)$exh=LY(bl^?btN9 zfxln(j{QUN?%&<_Hv44ZVE}Dj1PmCs)s}{ji6?=2-K@K5Z?_WzG24y#9@hQXxf4!7wr3Xdk`cJH_k+`|3UY zWZ25KMw|76(ugaY_Z$Cnz9BpS5YpAY?b|c)YiW6&n%i@m{Eooh4_n`n_CZSAAY{?B74KB;u+nozn0!>_i${HqiuFIN#X(|$1n|lEjpQM zI@w=NDzIE>aVUvJlv$Z%4ei#Q$kX#yle4Q?6Lwn%1tU@_OU~q9i@O*aBnXWj4jh55 z;fVrZ6DSxyIa-wnEEI6IIET~uHDIloSeT$zuTU+Ni(1G#yH+z(Dlr8Yr)#r_MW{js z9n}4w!%L<@KXX)j__|3LsEMV}CyoPISJ||`|WBx zRY{YY;y(Sxy}avfozbrAkCnU^lb=QYa~dn=$`*v?{f>#=GB{GF5WOkZCZ|y_lUI)s z%opJ0iOm7jtkB&v<&)Eh8i~SUP{HKE-08zIz~m`?CK$9nz>D(h&eR;I7|#>BTgpih}`etD_Isx+cA`?&Mp}SE%JQHWkd>W zoCMe?zuF;-o{8uag&44!^1u*c*g)Q`W z5kKq}4zd`UBK6%cZniP&JBpd!N@M{01~LL5j*biwU{P&>dC{YO6)bbQW;m9 z5YnKoP$$sAJ;{y_zu0vVBoQbO`1Rq0?@}jblHT{Vm!TXq9gm=Mj)wi38^N$_7N~Ok zMe67$j0SMsBD4%OAC$?p(ev$Wx)1Z>Sn!EFP|$P_S&(}M{^J`v8{DQovW!#r&5XR5 ziXWLj2q^kTd-4)Qx|$-w3#bLKMLe2roVvlM)SmlL+S9BZF?!JO#(U#kH{a{r)R5ba;d zBe-TRJcozS-S{%Ua_CLz&*Z*1*P)R@KwS~PnTrm2s$0cJ!K(^fi&f=QuQn!iDy|tB zrinqCwLwx|pNAoduxU3BE=Kx9yzq#4r&axA2OTneSpVO#-2sCAVh!FX(&k+P)D+sB z3b!m9*Idi{tcx+hIl~P-3&APlF1EOrllho~P}ewv2@3;RFmv8)>l5#O@M-LNNffvdTA6ve+HZYO!|AH0`_N2%ahD${ zk(;Yi)hdk{i$)Q-`tQ)YMpU;(wI^wQpi&d_mrZy^$)7Y$d8&NaUy?TRP^R{G1egFi zT=!?zr>l#J*>+ydeqzWfqe-qP8o&w{H`oh+Z!;b?2pHc?5Ta0SU8~_4!z$$`tbVCc zfLOSb+M8_e&ewBtVCM8aCqlBi{X`bP=-P8QiPxL1IA-xM6h8_&NwjlaqN^wwrqmJ=s5W)*u@zm69$kb zq-xcs}gs3P^T1j)u#z&3?Dhm)InMD_rh?C7%x?*s0t(dHkY3j!p(9E37(#_Ve2sMi! zUtyQQ%cn-C;h-O_knZ*Ft&!)fOpte!Z5T-I#ELJZ&|7I)KRD$h8VKq8rSG zwb(mCO!qg|^Kq4sP&4R0M*G8n{5pQ-@-_}@^Yv*>^^Rkd=D{XSV0ERXqSL@q#N+|V zPq&S?LJ?<>l>QG7@n?>U`kRvnA|gE}`!i3gBL40AA*C1+&Cab~K9zVT#oIWac@Idp zeP3do;VAqyIJGbUAQa7_D6ExhD6BUdw-VP#i+yQ;#6#VZ({>DFuuc&KlnKQH5}VMU zdo-`RNTDLh{<2<*(Me5NB^)x&_w*B`G5h16zkB1rBz^kgo`G^7h}|%ohM-PnCMPZ? zx*Ejc!7I^4FW^wR(Eofsg0jY|&|6@97Bw@Q7hx;`rv3`SwF3y`1`)t$ySt5sqoZ3z z=|CPy)5-5*Y8#p8l|-AZ({UN_N$F}NP)i1ZvOz9N=K??DeQTJ`R6uQ=bz-i^g0E;y zaWFt?rNnCC@O?!bO?MPX|3d=H{_7&>Qu8@31bpmQJxk3d`qPSi%MX%W+3yCre<2)&>>?7qP-Q>I3cQ$9cbLGdHqrVWGn!J)8`%hym%# zo(Nmre<1Is*3?KL`R<{UH0a+S7CU74-N=K`(%?VuVo3j`*#8rBLuCnoG9*xE4}u_b zLke$qaFF205Z~T!2T3Pv;h-0hQZgW_)7+ZVE8`=eUOq4qj<{&98RSbTLYS||erkVAjc{TRR(9`9=4*Pw6gFQ7qiVN@g>4bMsh zx(UAi9RfrN2JxPQ9q>chbgd~pF1_Cq7O@+m%1ZHnn$lK=EY%|%23 z;M_r1MJ~cOeGp1tTuBcgY)`6w8unkRPjf&$bis3E9C$gP9PDFZ@!0~By@?}XqDI7` zmP|n5*qVa$F!SFu=%Le3y}#jqu)k!Fxv*Tf;T~w3H83I1B$&2e_1B@p31jYVeO@Vc zy%^v^o3y&|`RO(NoqOve(bdKOVm#T!uByg=?&*5iTN~`#+O%uOt@dH>viF88d!DOB z2ifZ9sDeR8=|+q}-8`S_Y18jsuTgk-sE2|B+J8}9>|IqM%m00R<0-s?tFV2p%$9u%w#W>PtUG3VCL5+Rm4AlNy@By0 zIet4eD3fOUKi(I0B>{G2yb7!?%F7L zq#gbw?tii^{m}U?f#2|;j+t_R9pBdMBjVM;#U@eS#WUC0Nk_OxN+MW~ zm3Um*w^32ixBnDhzimpjYe$~JSiw}$-TczXY5M1v5qhRzXe^rin}Kchbc%0BboP>! zljta=2}~KASmEZreHLC1x0u84=3!bOG^v)AjX(UI{<3A{&JkXdvbiU{@W!7cgT8mj9Vtw4A4b)^s5Wc2O;(u_TqoDg(V^Fr}UN={He@RW!spC2aqN9pVzq8KZsi;2!JI6+!GKYN8kA0h(s27nb*3u3D*DHMIgYvPW(I*YE9P)SR%p0l zx3RTTQFG?b;56pFi3V3unOn&KDQc1M9TB}F37w39X1edJ-M7!uJ=ll(y6ni^>Rsf} zu)udbT3KS?b@E7bA>5mflmZ%-feI%M`)8A5;gw^3|X* zb0Ux=8U?RQTI1u?^p0~6Eop@w-YKva#CwQlE;bY-clbt4oLfa`EOLrg`CKGmPy(AE z3p1k+2R#Pu+f|Y1qaP(|@DZ#^l;6Wg+qL*jf>e0z132sQAy^<3YzF8Hz*oQP(Z+vfK&+ovU!A0o)t z^0L32KF?{DB9c3}kC8!|m8}j!qzsqt7Ov2>p?($cM$JJ#s!+$^!N5cUs07|~t(2LE z;7=yTCs&lRU90B0x@de%l=cTlqFhXLbK1iEt#NZEiFALQ{|!mH_f>-N2StJ0$)ALU z-+tT{FEk;yn`SXu2p<9ZzGbKFlp)>t5-LyXQ0TVk&Oq9S$|i8ErM#`9M$_C!HJUeP zA_x_fid)3Y48|MLC*xOTfa}F#6@s;B4AwAunmE$_qD6yzV;%Wg&gk8|w}c2`8YVxc zZ42n0@v2?43ko5-HOt!6RA#T2O1*xO!`9K-Y!i%oS#CJyUYPau_;X>$jSK4|T>9Z? zv!}4|a|VVL1q}6k)Jp|iz6A#pnF0^7XhQsg-XE9Uzh7Fr`1v2_de(((YW=(%&LjJd z%uW(xRF|4x=)VjTRz_omGP*kr3Mj^Y?=u}wf8aXUwcnq4 zT=Pv9`wTFU@Y`oE+UAmc+t^OZOR6&OCK9Rl#e$nl_qlCJbN6e#=+<~tR+}LxRK|P6 zDAE`f7K`Cq0~Gp~GdtKHq=+Br&OxZ*iXp;l_T{1FVXRhRaEUz~Wt7-gP6yj0r?L$^ zw{RnB_Edz(3tzMg1M!?NDEoZ44yoaP#F{mz4m=R~cjr5h8&hOtIgo6-5;_rH6F*6d z-mxJWXHWa#2{)8!%nzihM3Dv|g^h#h926hC5|wA7WB6rFGbYZbG>!<-)2`toJ@}_f z9C4`*Oa{Lt6a;4myXGXk)~aMz_UkIeX^WpmajavM*8Q;#9yrHLC6DHLYzhKzD5cm; za{oa3Cd0DjbmjHhp2j*7w#eGJ z6}+Yzi@A1_rRR*f?2x{$Y1inQzI~l!Xf=r+;#RDHEl2v#DES3bTsiLhB5GQ=+y4ry z0}p=IxIYhHc?Z*MI>v93zYnnmqauqvf3A#zg4)>+-kw!3Z5oaiY3$h-m;OV}Bwog| zedT9{z{JF#-V`YS4x_{8c*i+J%ySd3Q20ZZ6x2)0M5T(6Z4=e^Dc}+v13+ITHbN!B z8>whUu|!}NiVnuUq6-;gn+l#XxI0dR4bKR6T~lt$0CnG=_R9zHc}6GhFCs>wy3)}) zqhc#MavB!dx91>)jD^Qoa2~hWAd0!}RIN1$aevx7Y<8ZBr&y?`;I)cd|;}}Wps30{Ag9&7TxgR-3Xb^^=Ca$HVN6q=+|AmlN1{5 z{#h}z>2U~c+k3ZAl*`z>Q8C{C3jZIS!e8XW^qAh2YLE7k^9}3gC*c=qLq+$GRNSQY zf04D@EsgFAM?&{E69ZF=@{bZ@JNR{ zzo0LeE#B-^xnH{NzF2yiHK#9-)*khc1_T2s(48os1AH4Zd%le1rrSMyd8afLfyZ6v zlVRwN&{x?V;ggzwx3?wa0AEbnCduU&zX;NxKYTfDll{K?)Ik&^?APY=T&s}t{C*q{ z|1(Cg)#F}IxBdOV3BIe-{_zA7DC6-%=YM?MJ%{`0XyPa;x~Oe!2Kbghp?YwtInV_< zP#8gHJ^W2B$`ps~-y?IF*x^vs;Nz2tX~NOfM(3H&XrvkyIWnVkbMjelF6pkhZ)c8P z%3Qqc-Oin~7Jp4_D-E8$*ie(AK`GS#lb2;P?%O;F1l|?rRI5uaLG9|0C@5W_J8C$({Q4HaOj-qj&w=3X&?* zhhzQDgu)6IyFPt|;8f7DD(zgFe_vjYwRQ}tx;Y<%*Ru{h*=@gi+07U0 zmCJRg=QuZ!*=k9y`oG>bQi|~*pIKRX;r^UI2$6(QNr@~RAGNMm@rwxfgEly_NL%0- z9)O7%lOkyim$z@st?Cc!oWxHRV6JDr$0^o6s!w)6JXbRO5*?7}U;pG`&V=NqSVqYT zLc0siarL9BV4NLZ%Q4{^XxcFpdqNSw#?q4o5>P_0u7=(EFtONZfR4r4mdm6|; zlFKa|SojMXvpxKyGO(*T;xtdWOxm`6Y~{+AKBLZL8jee9@K-`V_QYdGl_k}=H-|a> zXjrZ&&9r=3sa&aSmpBSxitXSO`llVgF}u=PQR;Hnn}1eWI{)hcr`gy&^DG9gkuq*O z`sqyjk;R&1|LvJnx#W30t5T3aW{ z-juQa>Q|}?}s{0u6>M$KmU}fpawP(fp&pAAy9W)>jejipt*Ja|FOjivwx2E0S(z_yqW!t7xU`; z()&9#M(~frb5EjKSBK~8`uGef$;#ArgX^xl(({ZsZ$a9dq)C~IC{UqRPlO6w(o|D1 z=(50bMmE>QU1472#9aSaGr@a)9n$oPY*e04_LxsHv8(wcymM;pzj9?$J{hpygBNzJ z@XjZZ8v-d#0Wcon2}FZ{l2~6(;bYdZh`FekU0<;}p0iNXY}mfFc&VwjOa3Xui?`%o z(z{7<&ZfLxoMUblxB9%E#_VPE z-_uE?tl;9}V<|DQI`HQ1yVVzo{IPdm(WR^PI+H9Rq?_UCZhIOUnb-{$hY=t{hCpl9 z`Z_kwFP=^H4!FIR|DkqtG+h=?H66UHEv!H+kg8UW;{yAK&EjI&5Vb^n{b6KDO&{iD zt6hi4H~r{~#!FeYx(|GqxnmsWs|?gc-COMn<0=RXajf6JviD4bTh=^7I0 z4p*KpD$}L%Rv%UJQ=b`p(gg!dIvY=cv}>C5D(bQr#mejjA;yUW`Pu%T} zq_gPHeqWh=o(YX^9oGBMwCCx6m6X_&`)`W|Rad+R1_WSA${HdPwz#8)N}U*~97!6s zH>s=0^d@go3q*`|>hA`UUmK>Ax#!s~a&5B2_7VfEL6VxraBl6RiD}sf)s`dG)Ol=z zGSC2+cUB}43I2d;9=RJOiPg|T7(u~EI@c^k7?s*D%~;jDVRiT!=iWyBt!#h9oLw#o zq3Q1z{h|mX_{fo2eQ-r(9GpUC(2C zjp%sdT`LY#OJ!jNl2!P9cg*1yjBcr)%$S;KZ-*$@i~pqb*K^8>C_O2<9mxH3urj){ zw>qh~+B&=QU)~=(9lRZL)PnfGZmEya-8~F-d!I=EOR$n%Z4uaGhL#_nr+YJAIZV`Q z&QbqmXrv_-E}(j~=(l_E>4fSZg(Pl%95O(59O)QKHbfgaFo6Z_0Cbl`4CFwp&F`a_ z;8{@j%gx5No|O2@;K+X&DZBtp2Rh#oFSV=i>!mC}Mm+%U))TNl9p6qcQmTZ9P|=V4 zIW?iv7;B>ttC{Ej*~en~k>u}Z)5dqEde<3E{Zla1TdV^Oby0MWxr+2UWb*mLvB|%w z(_59tI{tbFeE{8(slJ&D?%j5jyC=X;-(3L{5@0iJLlWMeDbBIt-(P+J1pr`PNUL6m zo&nT0orT3a<{RlaGLOEi^aLFkLcs7<>$vEd1F2Ij8xGKBa1#h8R>VO?Pv7oTz!xqK z?F*e&g8*k%EhjLlg^}0oS!4dNx;M|t zc@Y5~JNd5-l(fO8nkNwB)$QihW=`>=iLliggBT4bvG2uQU1o~+T=o%RLDV$ z+Luhh4_#i?pWwfcb#LMUf80!8vS;|tv)4WW(y{x@`kS5JDvn7 z6&R!7R@S|)8EKhTRxYrz@t*5I4C{*AAkJJM|K$ik2$tIED(CWZAs81yjf$p1`xFtN zjwk%FQ@9!nOEfyt7?iXwN?xzCk3mdDX6B3SbQ!DGG}%-NTZcs5IN~@_EF6 zv2gg_>*%-LDtglF_;8*Ph0J`!?b(n^dez07{m^DYooi?NYUnh2k(%t+7TSHVEQGP% z)*N&5bZ$G?#UuP`Z*t!y&;bW@!^Kd70C+%O0!*`cUjJ@~=Ir;Y^er-*ShsQdo$MXi90e%yjYZo7!%zzREIdY{Kq@1b+D zA^35=gLK@DJI%*`yU25DLBc1>@;Y3j?yh&-wZxugs!Cr3>oJhb4tLD`>CQzxNeSQx zs>5Pf^^dS-U&J26R($Mv{@cTmgC%IR6hK9%=w#qD7e?zMr5v{E4vYq|)kWt=$H969 z(1D=qVMZF!(QOvucWaCYN3D7}@+&%At9Ywfhqik@say&n$Pri%T52p8=zz5YU?Z{_ z`K2&?7hqm{oKC9uHcpf{(w~=v7oy0f+z?73=!q>%ClapS2Lh+%2iYOSM zKkZL%;imBuql675%^11`1$s&M&va8{6}Svp_LEVL(RnynoPu1D7Z5e}%#ISS8KGE`#A@E%C&fmjf^b@}^ zuOBvQHYRrLV%4R}IvCS)^ZkuMmT)sM^Rii+pZcm(Ogywu)7D_z+-LB+Y;i7vN?091 zxKC{AgAVkK!Nt8ut9l}OrhvFaQkMH`Ne_%4<($4Fqqo1IF#zu059C}Fi42%HBe5&C z=NBnlA{K)U`-`SGjMi=s{pmXx7B=XaBkOoFg@6?u72-?7&EJ}e_mDYm3t@3_sIX9q zuv8~yH$>1$qtZ(?NGJcgVt}te_1~O&ZSr2fYJNuw zgP~?YFbGIt9_3?c&&?GwlECtRtexcun9_!9ti~inO7Vl>cSl*1 z^YZ5H$c~oMwl^kF6+>ep3>ccO#BL>{!S%P;MILM~9E*KfWt5iC4^RcZzt@}T1YeN{38*>oGf z><9PC3sZ%C4rK3Ig*~6ThSSFAuX;9CyWY_!ee366nmK(M+XxvxcE+PONHi}OWI6oW z+VO$MT7~NOlW3CwsMb!HFL|4Hekf*&0DyGZM(G0y7){)J~JyA`Ig|j^nV>>v~pob5}34cX3z*#;`4@G*Sy@uzB4A91>!fU&YLw zvllNkn9${QOnoAWmWZj&_P^h#nm>+>V?wpG)@_@APDIyBRVIkK&|lL9Gl`ZaZOKpG zZIr1MJjAB);gzG2MtJ%ByUjI#ybAx}1duEV&XJmu7Qlspy5@dl`~byWpF#MiN3*>zt0vKON5P7*zfa2kcDmP!eoilw{(@3 zRTV{TJrLOA)On^9G*|AI$=)2-B}}+tKb=y0#5DBICS+7qfT;5Se+5sS`gu>$5H9DLEMJMF{MZ5RB?m5^w%FzC76#L6WK zd?tW2n8=MO(@-9$Pz7_Ql1n>AQBlLLxD>5VRWL?IH^L? zBuyo*#$M!)Su1vCS%DJrAGbvke;K-~MrX@nhLeM#3Ds4hnRPX+ZQ9Gf%t;2|W30&X z|3}#V_vLL~N5k~|UC!Z~$_FKAbc+8ZKFb&owuE{Y01)^>G4XzpKqhTvj|GRRUSF{J zSW+N=Cgtrwc0Y&m(C02~N*STA*((r+4L(?K(^MXA_ke@>8^1+BZt#J{{nc)tnHDre z9s>0YKH$^HH1q3(!FLbW2R{WTD6B#@$O2hE`P7$6qxcS44wwr25#V@NttN$@9JFfYHX%rwKt6SL!L=PNYtv%_qzKr8 z;!yTOdTQCDMQ-vg;P{J#0_SZ*NHP=MKi&}8x|PYwpcri;;=gY7Zu)>es2GVB`o?c5 z#oxkDu9@2^PH9)BMH*6RBi7TI-`s8PQnd&>*XSqK1geFI()|4F9#S(2FV4@NuXYhE zCrBs1zu(LaJiZu#`k^lMYQEs$+dF*&$g)YlFb6^P(j%OG5HEg+L7wzWrL11gn1@sI zp^VgV=k_1fqX?Il|B%;8xP0Vf+mUk3)H>qiojenwi#jh2e(7rD2arvFH814b-h<}q z3!|)|6}hS;JoANMbmxlsCR!yfWb|xWxQ*+zv^hK?CWa6trIfO$ zv2j0t2Lsn(8@hi}NQA-}E`wLP{aXH`CB-HkO`{nx=bvNVh@YTosn-EZUQ zjHUo4EESY7-CK{CEeeQz3=Jlq)IUG2$L2oyr7eSzmQlI!R3>{n{M)MEQx;FKCRYB4 zfs}f&K`Ri+EQx_(h$c)HR~HmX(ImV(El$S@Z!*d~x*eiZ&R8Y9rxB+drB+HeXEt;4 zlt|ZW)DHJs$LOoLRR^wJdTnd(PpRwFdqfivNrG?P>3^SE?x&&LRC5Z$Sn|of#x6=v zLn-fcI0H+#LfCN=J{lXi^QzIL|9;QkM80HN=* zw0yt$Wq^W-86l)dMm3a;B(J*+!l)7H{VY8)yL*Y4f)G#ex7HESen7ImRF^K+;$MZC zGRn+Sa@GeW>}i6N)zW$LamGro{dC7z!L&(I|zFVu|@dsD!yI3AEh3~sNRD$o5*m3sGbT`ss`r!`; zuov3BH!Ykv(U7adPln*_L@U7;y)nSOr#Oc@xIJ`RH`S$l)gxNI-tiz=W+CxYdbhAW z$^JH$VgMBMv<$0)1=^-Ygs&M%DBfh@#}V^>`#&8r5a2?}5{4=q0HVuVkYcb82cYW^ zk=R9}^}7kNqIqEBai7+&&tn(RFtO#PXqloGf)KlYH(d1H_4%nQsJ8=PAzQ*H?+fhw zOEI z)LNUf`Z63sGgK+bI*-H0a=q8Wz|+?Ll)~g$<@~7QC#2j6*v&;w*rhISG;vRqXX`=? zAP)@y9tQz{#sZN%HBAR!rXv6rsP4>`U&0sZJGCqS zyZ?;F1%@#Xa=%6m&BON=1A)hr2{=L4h?^uxfVKH$ZPl2%Qha9xLuTL>TBltvb}NIK zj~Gbdm1OZwM?1kE1N~e44~g}GJq-$i5)|Z?s$dUWcfSz<8uU}YyBFd#sAyaaH2NqZ ziN`h}6B=5N|6*K{H(GyD?MW9NX!=b!B?e!x)V_IZ4Y_%>b*-;GpPdh0+;gritvqiE zKLiTc=-F939;tr>_W3---a`X^UF?xZLhnK!ud~acsdyjmE>{W*DXT(4!IYfZal_C& z9M5O*okABE1<-$-?B7dQK5uBKT`sGfkLxb{^&CCNyoo^3$z^L0Bb_mtZ_Y^4zBF+E ze9IOMr{UC2G$%Cq><$YJCaKJ)Rf4|>{Le7=lN4Ec9#|0s0>*&h4@}HF2l5X;zk^SD5`2F)M)7)u4vho)Q=Rz?J=8w~;zR%bv;SS(}i^wVrA z%3N}6>auoPIL*jj5!1sH3tnYun;$jAhf93^dv-AOPY$HpQumTb@9gT7* zXbKz$jQXYj=v&n6jK1smDl4TIVnbV|3Vyf$F~yK7sV=+&i_OP9XmQ(cnS7zYz)i2Q z1E4I5kIGhG7GryjX}F3pIOy9pMt*|;-T+}NVNI$4l~CN3g7$=f=ZO;ksgUrgWr?$| zSa)B21atx$ZFT~yf7mep=tEXxI?85|lT#9Uhv~EQC}WZ+oMam`YD(b$LS<{4G#&>L zHaqx=Elh7!pGa|aI-cF1U$;Zt!Z^FwLBaiOP~qX&1X+qUa)!NP<)Re=jAj=6@jQLu|!ScLBs;C1ZcK7DS9ph>}dWKUh+6V`<0~K8>8U51JkX z*9r%K*)c<=MS%bFS2G!CzH;&NaTRD*p0Y=f>0Pge-)bIw9aA?9m5(>V-4iZ|upV}Z zGz=GOV`nz#uIPEeO7)QBla{GVuli?bU1`B-sToxt*^%-~_kEF05XL2k@Qd&Xz1l8YnAjg;^RWMy20N0D{Q_;1HKax0&2DI~Z#Vtyk z0)`xUztb2d<^#G@K{SplG(V~vUiwDV~fZU~(mw60aO9xyz%{0M-2IfkS7kB z0!a&^7ZCpOgn5VmL8c;XhE9iCbdJg|v;qP*MSx{uycuuShAQ*M|DkcJW0J3>ITeYjZkZ*oDl(V5mW)RK5HFB28Hxq z8bFuE#6x=iLP&_*16*$`%)$jIb=%$prjavSkS2*~d)S+SR}m`sOb-(O%i|Vk**KuW zw)WqsC*uxwqj^RBQ~39^=*Suws7pCKvV16hYWXsr^zJKvM#}BB_KoLubMaqCp#WOU zM3-0DO`8vKncMlfx%;2myV@bVRlddOii53k114~t|I5)JlJzEuc1AJI{|{^gSgd+h zv!Ma5?kmVL+~}H(-nr$Qz1SULucbLrXHlLD(* z45GL^SvtQ0kpSGnsx>B3>3Idi_{<^`vQ;DQW~z5S9Q69`GO+&rMs|g#U&&{{-H!8P zZL0TyW;6^0+53$|ME3IG{1~r?q5#2&a56pSroLS39#8mG%sk0S4W5E-7fgUVYX^|T&a9li4~0kgDHy9xak{%TJZRH@gxdf z6?Mmk*I;SVNcmtje4&4I2)qbRzw^2Xm%dEJKi=Cz(ne_n_Tn-8Kiz}%6VpJ7Yd~Py zw|ob-WtGB8syYO zB*AF}Osa*Q51Tns|78-%H&add_0Q^lWvAUDg-NR&3y_{~h@t_yu^^VuI^OQI9uxX1 z7E2OaV*Dzi!wOCH4bGKS&ZZ)}s=gm%j>1|m3Dk*%QiNWg8arA2|!zWQP0pe~^H>i+2E#+Tc zjbmw@4sWUF?^2FiZ;1dfObP%y3S=UfP;AiXsc)OZc)+8{E8}v2;Yv%d@kFrU$`htT zKXDgJv?8l1FzWzpik2smvr@l1rk^OMznNA)5Qxux&7nP+$+hff=e=_kgInxA0E3#K zrh_(@Adgz{w&lf%HEIWf8i0BstI{Ys5juEiv{CUxO$7ghm)XEKpfBBrEX0toM!35z zy*{KoTqfzh`kHLOSH65BwIh0YJN6f~IPK48=Eed2xOKdx7t(zSlCH6jts#L2>VhFY zRc#?u$i(qwOfN^k?_>MCYnAtXdg7}KB3z%Hua5EeZM{|UA7OTZWzvH}WZXq@zUM@A zWZuPa%F&q>L|zO!czj3`O(n#Z!%G@Jf0eY_%O=}-*`U6^w`Ddo&$~CPcs+2wC_PF; zDNYe_!cnot(dFHJB^U$#JVFC2Rz8LzRlI@RE$_886PiE7%%j{&$XqBEVus-hf6smO zWd&OOX3hHEauFT}s-Tjd(xi=E8e3`nnpp$;kOg<;8#e0$a~N)-u|42#h<0Ghy_u(C zjgGFc(n|&eN1sK9wnE0V`Xnx@E8YyHPPjuQFGw?A-)9%~zI=ylH3SP~6L-25U4$lz zx&2;v`0 zt5^3QXI_<%a`>=qZKr+FdhLhx;%4jxM=;vT?eJ?RXM=BB`4akysfuCVXu93h?@Se9 z)4SLH#dUELy#mL4K8sGJwQO^I8NBqtu2#iV*Fxrp7C~}Qz^jK{#cRjWv>Q#NP*%;m zvC019G}+bc#VsOLv!ai7<2s(hU+ycXxM} zG)Q-MGjrxU`~tYR*u%5eTK7$#uR^I+!e>Cq=2an5`Yx`gf>o7gQJ}B4K_RhS9~s_+ z(JkyE)0Gu2zU{#lp&K9#P3QU40(E6@RpB}m17TWI3?Nh3Z)=0-_d+g+!|BPwtC+KB zxU|WOKYza9Z{$8Z)n47R<7{Zo^&h&jfLEqM7r7(DckJ-M`8H#$o4g0=syXN`V*laW zK)!va+XyaXa>GSHa0u2Xp(@3R{Fx?-vL@$Jk|RoMlx6vmpPNn95;M=-JT-GbMe_$+ z1h15zu0?VwCQ=D4AN+ek{ZDOIhbCv$O79BaV)#Ki#qtZuH-&QDF!70BU&lYg-?yc^ z+KsfXlo0=y;&$g2{nJzVmas0V`G*plqpJ60L6Q$sIvKGCSJAkgqN&Xpul}03eI44; zaT{(WEw7HvbTGrsEVoF@@j$`Sc4=XQfkCZ>r?N~RQ95~ zV&1WezRnKjOCyz@C$|ylT7xBC9Rh~q*Z)2$asON}CLH188E|Uqmz%)F z49*Qwfk15t-uib-I;6e81%;C5IxkDnHX{B$VPDq7o4^1KSrn+NF|1!2Fr7M|wBLTY zy)rbe1B(3F_(p3tse81Rdq0~xl$?dx-jNf0Qi z6?1YTtL$aU_0IUKZ>GZMnG*dnq#-j|rt1EURW81e)yBcrLDmA*xGu=s*d5t8YTxKv$b#Q(0S>v zukoU>+E6wRwabMq#)bIK8vjHYZt9An%ke}nCojuhJ1n?0)056vPc0dl$9OkJz)i7;15q&mt(zX(IaIvfqIka2e=e~f zoexYL{TCpZvH)qReO`+&@$iJSv~9t$JFh8rdVVcUFNLn7kR3IM<;`YpMJtL(hv-y9 z9*Pl)0MH>Rc-@=dk5f4zf$!VJ_mCY%Qt0HDjBgBwn)^e;XfL#6zDX{vJ%rWoo=@zw z%{W3zR(xv&Y?KO2|NAIl{MY#}^JXb0ZASp-I)lMa!!P+iL&+>?fm4dCh`Ap;!T4i- z{kM{GZ>{H)Tk%P}%R5a8epRTacFQe5&YlV2)$;>Nt_L;3sGR3P1zALT0(eDNI*x#c zcFo(Y>|oq^8JxV}nsqwrQ}gQ~QW4m2u^5R6?4y5_%lNlEXQ5PEuE}{h&tx_d8sEn+ z5aLrIkM|_BZ8Vh4@M1Q7yA7pD;RR@-@py~0Ptcd&^$z%h=rCy%hXV5GL0yw`**F%{ zJi=pdc?nG;Qn&&{!mE`}+Ad_<3e0w#r!TX1w)T?y9o*^XDrS0iGyp&o2Sy}<+=AG_ zqgr}RnlK#CK!7JKmV{l1sKl_|DrXp!Hp-VhxkY+@@ti=NlSOW!#`^dtkfK`>Ex{Hm zE$$_rR&hJJ_A!1{sBe=d@waOp^RqZB(!*4@DNyw>@UO1t@Qgh zLS{LfpITQBFT4lVWcmU=5+L_r^HAWqN;=a8-;yVazcmQ}eTWyoM1&7|;sJD1`j#sH z&$C?e8b32k`{`OW`7?1v)5;7JlIz3=n|o6}w28KME1ZM|AUafw;RF8KIsKQV_57F1 zpPU5+6A@Kw`s-t_h;28EJ-JM(AL1lGgw96wU#9O6 z*(Cs}{!T+iuB%MDgI9L36n4an$;~Ysz-j6kBf4nJuUag`a8o*MR~n6t24@a7{6wL$ zX`7U>&;4QQmaLk%*OoLB=h(~`$cKHR*UeegX1xBOfQGqS@0t2^C4SfvE|drcP=-d->(y#3KM?)rcbMZ-B#n z0)>tQoKKv5^E#aJ+`mHy9n^1oa#NYY0Y5XUM-m@!d1&}SVvm|x_t|1GY&YHYzKsjf zL}XQ8Ew~w&7r`F`KQz(fU4@2wMa1H271`@~AH^|ob3GPjyzH+;HYSO%Tn;|z zegsDiJ&dpXBVD8oZ3p3@tS7dj7(fV|FQ7_4n<-52mPt31I?#7xgd9TXgmZYi`XLtX zduz$2_K+O^WDVn;jnM1v4HH*`?vnJfkNsc0Xy-d{AO0X3Obj)CC}7$u5q6w#4D+-2yI#rhc-+s}bNy%zi(w{yadO$f(|Z29EoqSYc${Pb`|dh- zzd#HZ))^X&U~ZrwckcAOMU)T(!J%W;&} z&H`V-U%u8r@b09}{vy7Z$WgL)=wBOAb8oissy@9KZ|thZ;Y1;ZA5n|-Q>6QoJo_r& zKSUrP02OnKL&3tD=EAzhOIy&7luj1W1$IYCF~$4RV!^05LMMx+Z!QMZ z!iUW^`95>-AV!kjg;skr=u_mech*(kVgOE;BuB~>`O|#X6nF}BS2h;ilgvnpt0Dbg zsxmcAnuV98!CHF9Goe?HMA55aH*x5kNCrnha6d#_$kW>~a6EhG1{vgk3A|x#dcvjb zWj2%Q%ML@wK;AfDO^=EtwF*qjG>MW8YDd-1$FGiyLx0>>4G+Asf1`s|9EuxanYH{Y z)gaa2m_NUDOUxK3MbKuO&asW7XJF*y>TEFQ`J2g-flz$gBw<@2u;q+N zYx;h#*kUB>4qCs0Q${Q4! zne#qAe_*l4*`6O;3=i}w7niob?pfGuLdlP$3qK}L#EXkveJzF#xh&#s!%1-f!n-{g zOu&x{38gpS5YUG9Aow$yi~)RRf2@TD)CdYrXYU_|8OFWh(_bn>Skvom_D&_(^C3Zl zRnzQuJ;WqN@etft=>=4Iu)Od?B?I0*E6MkJN<%hoJxCsnTEZ?6s~dqeWf~+ zfr2L7SMo~~eJp{I^2xWNZ4Gae!=P=wkc1g-B44hD{m2vPNAqi%9dnbuMr=>WfBm0T6?#r2weFTFW=>g{y7(P(u)h4|vOO$bO$!=TG@BjVfu z!r61%-kU_^Uk}i`{#L=y;%#tZw*vFv3);@>)}4t(u}bciXaK}l%PECiM!EtiEp9}- z{?MoNl+=o<{3dJQDtEEDWvaQg+{I3vivrs;%ePAWw&yzR7qFH`>rWQ=n!+JHjpR@~ zvaCkC1C!kE{SQet^21&2Z!rhw>PQxEfq<0cZ+Rj--vZlmlE{bMhU{`j5x4Q_ z^l*`Waqd2bTps@k(ST_ogD3ATCHS-LO+dhc-6@O;$fBb5w&?G%32U58kl0k<`VzvP zHvMUM3Krf!eV~1oCEXa5^OkM7AcDD#ECdXf*XP`z$bd~L zIY`0u=>S_zDg*n@kyF0HuQiSTmX~VkYI3TDmfoXm%nbZtjVB%qwkL!LYTGwY{88?* z!Oo|DqT9n=JyzdA&XnmF(8*JI6CwSkms;`TmbRGqs2K9JsdJRzI95<(=$HEi9KqR}S)zKRGVd3OaxD74+pWw64L|QHOGi#+70QcQbhVQW-`gGh8PeA0WZv1X*wRKmd=J z#4qg5GwEL(dZm`WWZgK$lr}Xyt1CyK-Np-al11x% zT*qWE;&UGu?NGvV-tJb^YOek9M(cU%3_NZ#z82meu_s~w)k)}UbM&kLpZM}Ty2PEz zv$`6KKARRQoY3KwiTvblQ?ZqSA>dD$tK8)J`xC&e@J3)DdKMSe-Wm-6G$5OlSgf;P zB{Hw{f6vMKY!ajwqyMOhWsSRD@LB&0W%55#mS#`_2#ilQ^KwYx$-u@GV)(^Snx#GM z;>$N5RSfvN8Bpf&XN2dO6j1ZtE*bJq5=&xNhj)kEp4@>*Pqy4Aup0R5v{%#ftx9YT zGqjC~YW{Uf17Dbs0+0b|sfxtj7#tOn3TN7wXg25;8>07|j6l0E`kKW=B2fer#=`G{ zb%Et#X*40cI8E-*XJ+Nq*1G3GtBTVj4(UBR3@i8dAmBnA!A10vBFe(%(@rNbOFhcb zUtYO2om98LO?jE=&-yt!SGJs@v+6DNT&_Ov?*gJthhLRaB?Wg*Y;u@!t+Wt+y*q0l z3x;(#X!ekh#p1pN6yJYLRh%DD<38>nw{u-Yq6d)(DlGlv1M)AG)Qy>wZEj7{Tkq+0J1;jIgx`ulgBET&|otHf-EB?KzZyYHm?;dttJ{4K2aepF9mRL2zl6GEun(GtfaB3ycE~~aUEocDcT!>=sV5?| zk(lWg0|mD5lF1PbUMBe)MiNjmqIgLJek6Ubmm#XrC^a%*tX-Z;Fo5a*pLZx?aCr5P z-Ji9l*l|U51v;+(blKU#JHR&hSF)PMkzF4SHb5h^=5Xgl@E4V!;i&AgI^2R_l^Dlp zW=){R(sESg?*}=*TFG)See;Zzy049c-slG-bt|i{Ih|z<%}pM=4+92vcLL9LH3V(W zaUzV}0HG`h)-(RMWh{LHqOV6w}+F`@0@nAHr2;5$6q&-1NU zYJJ~G1iw*;N0yPuI}~EX(=aQO=qVHHP7vxAFVDV0AbB9b4ema|E6f2OKmI0k%MOR| z1c?Tb*7f*SkAXr_|8d;WZQHbsf#m7&<6+-PMywY zT8X?akUy9Vr)bk;b#8zt{S!&yeQ+hUBf8a^SI$Un9dJhp+qoz3wJTsKM zJ{aybG7@^?R{qt|?oqwZU6`Zcr27u!=C{Xuz_0`f{>R9l02z-Rzl5$HtDjJ4l6VV zj=r^3Ma&rk3a)7b`Q&`4C+n|iW4pLHIo&3oDBlVub9qpg* zc;+C(Mipfbm-7PXrQ1XR*d*HSTg?W5^IVWL)eKXlK z;^OK7B_6@ALO?zhqtk9Gq3#iRY^R@g)9E za~n`_%j)USGRl zGqTgA+wTmm>)`*9liLSl?RK_xF^>aKPe5o*qouR9X7U()$YPvTfYh9JJxU|@!;aM= zlU6PbAwKlLy6lMHw=>SX*?debm}`m-C;nL|Noz=oF_ifLdUp;Fg+i)%#w`5_IpuDx zbVtEj8bYBdyxzslr@{^&8`9%5=R@NQt_YRC=+l*9a}ba~Dquj=)B`;XC;9dv)@caK zM1?kzkGO+oaO@kzmeqBG!JCeaCPN~m54?qfKWACW zHT<<^Y5a{td2elRscvLzB>1Ni5r(e(H@);vg~S}EnVkjo)!e+qE7ReLLa)}ZFG}y( z1v#`=4W_h{R8^BTE#6v?5l)N*X7NYjaAs)#Ra+&VYN>~jo{knTxxVbBZOeSiWSeIH z@M*Xwtt)Z^QQj3em-;1Q@aAmpH=b#PQQDt{T7)qw$xmEpwAWjvJu2ra-!(T~t32;> zp7tGCSuXR?a-Oysx<$tV0s`O+SA5dgFQA9VFz^=KhU_|E45rwOMi1%gPIc;I&@+v5 z9Fbc~wOC4a=pMnMo;p2r_IZ_Sbs=ap?{oYd1DDC^+5hd7yrYvr9HvFL$ zk_5?5>FtMm*>AErWj8N2Z-2~=GJ52K(bw)-ccp<5J|`WvoymNc!DhOJN3~L1Y|TY3 zt-K$U)ohhcVHM+23{S2qn0BTQ-AL})_Fy9>rl?q;CUB+S*k2GL7nw(7{O;uO>&u31 zjz7G70Q~P>HpLdxhhhLz1XAejf^%Ju#;O>*SqG%@FrP?WUX)ia3mn;t&8stI0nB$G z-x|L}p$BCFCBHU{17$rDX^^k4@otJwiZis$@i7~xtjR~e2?lX>8}EgW{EP#t{4EJc z|JTz%a@)U|=#)Cov?7uMfPIu?Kkiq>hZjDy*m>{);1ufR2B-IvD8DW+DXhkXLJir|yB5UFni+XWMs&0dVtF z7ZZ<%)PEoiSo_aMJ@RXTxgC3!NpmAb4OlunDQP-Uf5nSHb_H7_1!k+HVI`MUP8#UE zDW0w z;T+7xclv(yNg3PqRR*IE15p}hlI|{>5ixWUc6c;GUC9C4yut^hcqAD>nG{W~b^DV( z%V<$AmRh~p^C|5DX_p$6&n^l_muxFc+0GFP;+8)t>xSa)osi2)XiLGR``EQ=q!NR@ z&!e;<>9;>B5Pb`IOC|#;-A)n*>o`{Uc4w6fkF5T^1DfX2d|O3P(8Fmj&I?N6<-oUy z17}9)h{**VP7>#zwc5H&FFwFqW7_>_1>s87T8BW(Td6obhqM{Y4S6Cuu~A-o-Wg1k z<13H4q!>%{FGX`{whrI(^a=O}30Vsfx}-u;*-TfbXQZxTAEO&5y5u#hAp)+=O3P}hV*Bm%b*juQJ`EsY#dOW;QKJGa5b~zQ~ zb;HyU*}p4pO-VZvX2=&xws?&7-_ z!>Jp#flF#AD;v{eZl8Qf z3}H2>yrwsP81ax-9Vuwn%?AF984yBw258n3?g7o?&XOnu~4 z{=9Yjvqi%%A`ZT~Bu0XB$k3240-Dq^hX0?Ar|;Os%?@Dn;cEYehEUaUb`d~jbn*R~ zjrxL}0iXibgdk_4vi75p|SW2%(37iCu$rHQCth&wGQb@OO>JPC-600jJuUWPno}@2jld@Q2@8_!BwAppw7C6WH&k3z|rblejex<*Pp9+1e+-^BG2nZ!X!AD_Jd&wsz1XUp$FQ? zZYPPM_cq|7X9e_30FaCA)fvWcjkl~Ncmtc*Y1Z0hsGQ)XEOTvZD!NIaJYA=x_I5KF z?p0u?S_ObR=qQFA?3>*<#MhSA59eO_PVFA{&Eq6Yy>|!}0X%Q^V7B)dRh0jJk~GD1 z@_tlKNr8EJ!`+up5LjQJ&mep`p9zsz*LV!u4In{LcXSh)oE61M)YkI8t>qfGu5sbf z5jPdQKtyv2O3lvMQ|mYR*Emk|*(b9^v+_V-5T1Of-~Kh+wr@#0l8pN;-4;x4O?~a4jK}{F8_UtHmKJy_ZD;Q32C^OKReCoB1HCE+_3X`_bg^4Y5;Mp!X^Vs z6&0 zFYkc%3Hd4?oHJSv=iHw zT>PNTd(A$n-@)oHq4wWu7gWD!@vrK_1Cv#qGy^OEm)bIZ5Rcye3)!}*JCjAGjspkU ztYAH+#~fB2$)sb+Q6>Aa1Iw9>eFmw0nt@22$>T-9+DwHaIDtCS;~+j+;O6VEbjWVu|VLGclkj0IrW= zF0KAuG4y{>dW}~`bQTsIA}%S^fFkJEv?z;hv0o)iWD7(jtpj$;85wQ7O0`R+!UxI> z%_&u%W{d?2`YW#vJRb0k0|fHPQ}U0V6|VwQnP%yCn81_ zVp}ks42Kguo(JsE>+Goqm?J{Jd$rN*GX4EWhu(6nXv0Q~=Owyca&5#W7j$hBLo$KF ziF*y-k}w-PmGu3_EH~na|E*4z`g@>33G0HM*`pE_}9A5OW${t8m3O+PF z{DGMOG~i&nzb0M)a0X2kmjW3$Du&&~)#c6*0LG*=8o8&BLP)&G{@~vS3ZHT-F_TRR zFUcahwGps1JH&Ob=Vkf#?@6UmGjc-LIc;BiXFg|9a~yhknp`up`z)gRSlNi$fvCUY zih>}ELJz~q5tE)=i12cO*|b$FF{HzjHLO+gvNQYK=K;hDeosuvD_Xq)P2q}|3S`s;wnF%n;-+2Jjfe}%)NucMn;R57xVSh6_ihR zW8IK;zm1;`$7}?@6U;Q^@PZ>o9^#aLB=)|t^=3Ks1!H@w-D|E0T4ppp;olQ8QB!7{vQ;@7Eh(Rmw>vf z=sL0+xY(%FN)A6=ucgOP#u5`+n!GzFSvi)}(Rw-S8ME?Huc*s&dR@oksZ@+H+6x(6 zz+R~%;QCwiUisGOU^c3mV0qiL7>ZH$^oX{MG~Wc>@dAtkG$qEElxkdhis`HDozrcq znf>O=VMM)p*ofGcIE#=De#VNsOwWQ5V=vNc(-)ekHyqfs3 zOC`;E@dGXsT3mGmUiBW25JiaC2O(ZmWlIea+Ur2t_RTAm#Avz!VjfiR`#OgE4|NDg zA55Lh&CP|Hc~#}H?ypFFYYK~6OKh5QelKr&+NziSMHl%Vvcy(9ni^X)|Krk8BQa5& zbv$7D?t+?sNb^%tvZP_4;;9%`|clmidse;9DR5j-Q4&GYz;Ji3Kdm;7N zPkHb5WQiu6uVR}?dl_xV8@%kKIm~vv?CL}UrnbHD>?v0W+9Vw1^iBhz^Oy3F_tBg| zM>x)o;Xfl&m@OGm)au{NTU({KqvBb)Y8t68y);}smiPa9uViLczJ2mm8LQ$vyE9m6 z1L-t!{7R#LTOQwd{y#0jo%k0DvVfvt_mM=fBoDEq{MCmz3<7LV9z5 zltBr7qXpQ+m;&cGHMHYsU8lg_x6U8n7>fEdHeWvaFMN7Ebh5|E6)&?-iMWB}ng!k_ z@u^|q#x;iO($cgZNY@06^P6t24;}xx))!k^(E#+>s=yh}jA^h&oM9qs}QLRj{Dt+R!w&;Hkd2K1B zLxOg-RWEr8G&8?cNDO7W4NYC7tZ+Gwc_h1#!vwn#Y`T2vd)#Z8PCw;8>v|t0@Y`sO zq)~Wz$+YR5?ygo$es2)oZ*CA1=ywX*=!~Sq9gE3({@(F#l8I;3$Uc}CGqwUY>4t}+ z5`a%gEUSw`KpXeoV)B-xlYj1MMD{f@h@bnemRjX*&xvR*`+DHNf(!R^&O+ z0(C#IjX%PR4ru6>c=m*M*)y==yJE>x!-u7{kC0W~*Wrc`09b%k;*>vLch4D7>RylI zsdddyqrbS>?Egz3?+|~-0JuX$NiPnz@YtaLT;Z0aZ!ckXg=a=$Bi?SO|1sebzB*2x z!tPerd{VF_n!a5;ABREO7|UoLF3u-^!4A`0cM!jOUmiS#n%+A?-?#P9yhxgFvQE>k z;<%}{^s(HwY?V3m-%*0Lt84P!6Ag!@!!J;zhW~c9&poQ@A7r(fhrA9s42@ELt`Z2U zuswH#u2REJvXNw2EvdTZDG@L2sIB)6YJrKK|;X`HIbg%9VG#k6UVfzdV(8Aa{JBk1CZ%CS%AO7awhycP+T%@mb z7Rh^}Ryu$O`8>&@mSw7El5oY{)4HMI^=`!(3Nz}R?p>o@DWpZ?mHY62tjh}1utOuK3+(kD}IqD zH>`qnW)vryLuo+VLXOH?2&yCf)FPIm3f0u1Gxy%=@jWL7W z#gkE4#j<>6jl0pYY@LQ(8!v|(SFf9{KcyS)_^L)wtT4CF6MI2>LjF0JsH?L$ucx-Y zgU`yfml|wZSUJ17`-z){>CM6#JPj+_+v=gh!ou%=@h6qV<0IgdiP@P?EyI%s0n;2c zBe@^O@c5qaI~a)n(6%Yi(px5pX?&k zOe9g1;JQfD@nkRM=)y9wMm%6hd7K_!?alA{0}78n%x@WElL&|8hekb85P+XV;xlY; z_VT;{|FnegT8ptMbjJ<$BRM^HVtKP8y+bjHQIBdNL3Jg2Wrw#w$KWHv`(y0MOzoB0 z+=h0D2>n}`!ibn?*)M&I^!viU_e6H5Ia<46MP|+6A*g1d;Z8pG8qspxJxhOfFNCe@ zIB89|=(tDLj8*-|D?&!}kqaFdzF!=ao!AsMu{e5lbjlm%jCty3a?KF@YFMWx1OUV~;Kw4`>lVtOZ}u1eP+)zvaK%NKPN;(uc#c6t1-x<_ zPnOP1HKbC(a7w=s85hJaXD1}!XkmcNh_b@hq?(PNfambko(9+o^eLWj}214bu$myaDp#$Amvf_}c% za|<$G2;khZuGiX?4)JO@lGPyw7n*kFh>R$A*V zN76gOXyhk8|H}5^)U~M=Qxz8aZGDdkww$gQhohg+-pNVbXcgK{M^(e>|Cc%ID>>Pf zu@C7B`nurZ2J}l>KLY@C;cAQpl)4^}!++F31mHo@?RQf!9bymZ=NkCaJ9x44KQpg6-jt1)J8wjKhMgrs@JirZnd%AH*9`5}( zDS@gyR&xG_k7rKD3(sVot2+0GOjjFxMifI$Yw_O-1T2i=yv?G&X%_hDq+3?&wGZX% z9PlX?9LcEHy%Jk=(pN0dB|_huvoNCb;O4IvP`af(Q+{KiIfIhQa9@&Htuj?8b+*6{ zBR8#y+Ur;8jY&iymJ1XF04|!+@`EGXI^nxE9?8G?9Fgs!sxN0BHuc{7mB19l4e>CW zyI^j$&z1%%$hxK$j8-xQHub%2EhCc0lNFlyGLdu2ga8mg&(@)zgj;GphtVCQQ;dug zOcXo>`yr=PRg=jmYpWKxKMwB`0Bp?w+O|a+g}4N14knQ$vh^b)D|V2+7#!HB^G|qA zDXo64A<8Y}Gf9C!Utda-uOItkub5jJ*f94F`A~6+W;5-xA)+YsF4{r~-ggB_fD|5n4=hlQDBJQ@J8>YG z#oaXc$0ka}w57%GmGobmEQ+)&%rWT7fM=TklkklZc`!@9F6pCxNv0)M4q9YQ^GXmiyvo zY9AlAObvKl@xH!4Z3&ARk03W5*{ zcvu6b#8qAdwQJF39Z`ZfWY%kTy#K zY)Gkma4SnakePgR8Ov-RbWyU3v>$XKh~C%vKtWmpL&x!Z$0DS2wG}^sQGGgLsT(W`o!`d4yL=h$sw5X;75tRO3hUQ4yjS9o~c`V0@J&^kM7;D*b*UK}{qDws(M=$em^w0{G0S&xUO`lGMxor|4U z@WIw~ZjyEYe9HOc`Z|agE(gp??%)s@_vILOy+($8L~**^X|%dC!JwTFs-*UTiGmC6jb0iji7^GvSpOgWlWErG73MK69 z;x||me+P`M6w-3eOKW&vXxZWwUK{SffImB2Mp7a2%dN^?|BiiT@xqi8 z$cQ;`)q79%LDGV9fEw5c3HPluXJ2G&%NhNfdhe3+fQ0ekN=rB(dLp0kgEV>uoE@-B zv{V!XPd>$!y4*}eFpTJhxhi09`!Gxl{`OuI=i6BXosB+V@Vns+%%FmwJAx6@!uTGcKtDHzsGS~U0J!i7y@G}0B-Oi zEFpNRb6p<;2tR^&qfN))Ohiiv347hkE-XB!ORVc$KPHdheA$s~?DB3Mb+7KmhSk2E ztP?Om0X9I5Vg{XkrEpq|$AG;Ep~U-WFWv8-?0nH|dluuuJQ$#`p{HXSxkaw@J@zGoL7gz&nnunYiT>slbqSf##FOx1B7yOv>&U>HaU}RcD)lF(i`t z41;NZ1ZA-$i-M%U^P!th>Jg_nBppQyraPry@c%LLna?=qFZ{R9Ofu_!FT;+`AE44O z&&RBgR`E_}-9TUS2%V-14t?B#v-Elb1LdUH9JCd&YY;Jl^TLEU_Zpi%?b~wD8AYv< zQrMewaF%|oj13vkpb7KJ&T$P1y>y&P-HtsLmrtm|RwB4*kuw>(A3*(OMNY%~{(WAQ zP65ucH0PXn5ao5os1Li@t^1=A=ST6MmsEtWADhR&s++7DX%bglA4|J48i-?=W!{Yh zR4jK7SA-D!!q6QN(VqQbZr=3wKk+1Sf`8YdcHd<520S>HJItVGYatkg%wO7??hiAb zCk)pb&K|nDoa&^Ye_&t7QxCtqbxX@l81Ir|eM`?d3ZUFbezTAE7M9R;DYyL;r;{)> z^Rs?&%@(G?g;a%Hs|0R$|;klH*Gi_zD{)YTWrZU#s~?(@E%DV%N(^~Ru}~E z2ai){OlrFdp<|9fA7I^e@{T; zj^HExB+h%hr+?i;LHUK5@k;Tk?@+kpzmcyo2}D&?t=_9Px?8+e;!ZWIG21I?YUjmj zlWFqFojvBQMx~K)Cqs9{7L>cnBjcU^Q6y1NZ=(7RY+*?Zqn>~7yhI!O^RfN)Bs(0X z5k?*w-ysH6UXaN_pOiAPV#YAv6>&C;UNG=|Id)I_?0Wn%Wp(7J(~o9TsO z`@U?xE5z(Y%9B$8KxtuXnEMcO_r)-Cz4}kBxs{fwl?>W*yK&dR-ggPYF=YijA_&Av z*b^o`&M4-3Od|O7DV!$vdBcThh_dtF-;3k&UB^meMe??l)Arc|3EjihkE`E1EDRK7P^!2lo7haX zDW;$~_DQ0tTp;_fJEJD0l&FZRqkUq7N{Mozx-r5W`ZVY-do@k22eqDn=2@jBzCw?vfavOAKQ8GH{RsyNgFNT_ zA?hPO6l3ERVp6HI2;#Sl55vJoztu3zkkjPp)rWb5=*jsEh`;C|E0i#ekjqEq#UF9j z_Gy(64K#5({;ug5+wx#_#oecwj!TAbrx24Sam?vPFw=%F?VSbD^fE6gvSlo!k{Hm$ zP5c11#gZ_;|!(X(RpZ^&wQ|Jb?mA$!c%c_Z5x)O$&&RTt_sZpqUtJb@c*JEN{BbLvE%#VVU z`0F#06z>0rOTx_7t1sUe+|!@5kcNYALYmGjNZeg5y)|NZ;7=R&InU%xEHRNtw05Q)|xiw$mWY6hGu@)FowF957Lt*=X<0ZstI zgqGlEW4s@l6egGJ|HL0}%grbTde+w^xxdqY&3+mEM*wMdy{T-B)_+qm5@w&7Hjsq{ zbeRtc*?H6&c>m_Vmohj}Ny>;kjUzk1%tEI~^>o+xMe%h_H6<()Hmkk88K?U_z{9OL*m>4V&VC~b<-tigiM<2PyFbPDwPJxLCha{4+;QbA~5ifx*mnvj|FpT2TZuyf&4X1 zj_Z`e8qc=E)q$=^dW%Y>FYTY!&h__NzzB!{heLc>t~c)HIYzK1#d(`Bb$%=_kNvbAb+xJHYs{Qc% z=6y~|F|EVaCzy^Vw^n2pWF4tuCP5==Z$6Ke7b#euo}FYC^@DC1Z0n|=1R~tp zl$)6E3Q~CjCqhf#wG-3}8K6^!rM>O^JrqG`H(<*B?gs@f79#IW(*er`F;QBaU;DpO zK850*;5S7xiOqMbA99NNDCraNW=*Q4GPsl*{e5))>m-=+Qvi8hndeq}?l44ybrnDmnHpa7(hs||d zO`u-huQPjDkN@7QJ5XNh#UuQyr*};`UGF$q{IFi~yNxN5wnW3b8r-v&yJl=iImE8I z8U6%I9#+w`mDk*(3+jz-Mp7VJolYE~tCvu&GJGT8jZA?ZDtRHix^b~tJ(<=kicK7( z$#2^+@;JWuMsec*4&#BNV-_?Rap%&c6h!f1<68>)%DWmg;JW9LYzI00>DJUabe^`8!vADvx8l^TUwU^SXW3_wa0zUGidSf{rIN z84NF6C=vjGY{?V~B@#ZsgOZF%+xO){c6^kcXcC7Pzex5cB3qxBaouLfW($eTh*6rk z4oXIjh&`<}YEI}H?mqyEJMPF~{XD$&RXb-P#SISdlN=5iB#MsW;gRA%fbYn=*BGf! zbOxX#Y&5ipB7yiCWAM-n@c%ym8$sm0&(3cD^5X9At{tKq_|uu~-;)1z^)PvmAOQy$ z5Wdj2PH>0^5c$A&0RX6>qdfm`?=%3w(!kfZj(mRo*k7K!KxZHsh~g>zw|i$^-@LHR zoXrY|N3Kelf$MCuXAk)dM{3-Mn&YRNqURd?XIrDE7#6lyZf;EMV+PPuaj3WA$Z+ks zg&kYk3itLgwk?GDk$n6q_ae^=wuj93`T};ows$6>^10w|X(%NAm!dCh9vb7szhM3& zBEV|$sQz$1kUz|RNrV@f!1a0jD5eP9{h@$3QU@Tif6F3k>Pz5%MEHAIY;`h1Kp6S& z#J_B;3~s9QZ>(^&!1wnA0Q~!X1fV2A3IM?W=hNc@AMS2_cXRbG*Hu0< z7P{5pI#X>qRh6^1#J)ZzZv6~_*XJ9cfTRv!zE?wWmjHn4KVJV6LCZwI3;;~J40BzK z2P_K%c4QX|JQ}M1qJU{S*Saw5cnAQmj90ugR{HXInPmMYwExp}?1f4BFd`BXc$ink zJ1m)i=jBe7_WQ~i%N6zr*tZb~$C z2J^ZL%Brn_n8J$Clf5dmgA_!kn2QR(2T6%9F5?tsg$%(DgI^))$KpRr!BjvwTbR*f z9l@bvNPRIrZYn)vWTlBfNBH-U-WD;KsZ+YNS=dD5)IcG_pP9v4@>}}i#raATX8iyF zERcwNNfmLCB}ru$ql8SF0IGRFXNedcE&_ft6pVt!FDKFy1sNr_(o)vbqCt_gL&WEr zY)p3p1_v0x41kHW(5=dJbN~Tspu}I8#Mwb*$8uQ=t7QNKCe>LuMmVz7mN|rFI}`qr zB7b#7L3dexcW=u=2%@ISuD0YrV@W3fP!n(MZyH-LxU8dQprx`ao>$jg(^D2L!)&g= zkW=dpP9|#>)izEp*tBrb&cV4$JDQqWg2lZpp(DwK|G^~!Z=VvaF<$}zWhQJ7`w$ob z6&Ni9z53EA_X^g1A&A7h7oI0eI70}lcl57n6+;4P?^i5^5ep^DWXHJ1s87md{YK@G zQ88sx5&yD2pxYAG?aDVCC^ShIe~AKO3?NMccn4#j!=+xF;QEO)(rF45GWv<2Rsj{( z<+AplsbUZ703{T4+I?mZ2@BdDGKIZb6m3h;o45&=KB9k zMf1Ld2&U>V@|65v-2MOI2j_?SrwQQo;X{Q7oB#l@i(m*WvH$|?Rn-~Q%2><{- zJh&VR=!5+$0DwOnUH|)|>j8j2pV~$T@Y%T?-&{HH`T5jDTyZydr4`tz$t|8noV$c~35x_%Sn8(evH$=NDIhxVP`iGZSB3m{oaPZKY`2t${(&R`0Cu)H)lq^Jw5o< z@t&`bb`$A^FEls-+w+$@YyWb8(+~GIe|vuuF_2RD7e9e7Ap4ixN4y_?v8wK=q42GC z-^mK|(Q^CtLgVU)W@SvjK~#T(L;;}!TIkn70RaH;{?I-nUc*ShH0;q2+EplmroEO$ zA@>5mjm+((e$#xndcu)%hxQmAyVDYSexT&F@k(-C$o3Krp!3M9ONd%Ons{lvjMC35 z&kPB8y+2U+V7TO|(Zt=s;=6+-PYfsTj3jRjl|C`ift%}@roxM@MJMW``>Vo->I-*N z#@58^`XY(>%{{#ZRY{XSs5av>%r#R|@rymL3}Rs(uH%Y%tWusmcV_nKez0y?%A5 zu+HoEW~%Vq$KBI|(35+;lpl#26==y;q+zHjSK8HjpN7k|833R_3*H8Xip{bV07$X->9FZOiv0+G@sYlcOvN_qI;;wv6`GO|+Hw0RW5yS}S^nS|=MyJG$xz8Uwj~ zMHK_3P35jgM58aYnelGRS15-azJ1*-dpkRpR@Ky-7%&!_`_n=cfKK-x|m^q+<3gqwlkz>0hlI0ngQ?%0Pt|Az=)P?QI57< zlU3;!_wrc-Vxc4+g?$q)QVjgbv{-;~>SOdP(kc+)DCeJ+F zti@Y`b6{8?<_7=(*MBhp=p-?w z_&#X?9R-pMRP+Qr3A~`6>t`%n^jv=eA_xF@aisp$iRM?vo1f_~dSSTqrBMvKYJ?T& zbnC10n_goZV7ld(%X=6OzcR1&%_TiQUDf}SmECWx?s|7a|F1U>y}xY?H;DIfgV?c< zCIC;+cXuv$Z|5Q~fJLxBpWOV>iA?~&M<=$>4gBuN2Kb-P&g}vKzPNONSJ;0@p@#r~ zIcN$1I8Z%bTscH)JQw`$Z=c|OHixCSRZEGmm)dD<}3uUKp`pn~7 zQ1@f}AOXOJ`Y0k%h6J!c001f=Oo0FZeB#&<0|3@G7DEIv09e;p$_xPh2N)n1emdc0 zZp;LDQ$=uN!o4AGJ5(P&j96f#92e-{?;jxIk>p;H?|5_7e?7J4e?PV6uQ#T@IyZs= z+*c?1K0nz0*@3ptP7LGi!yW(t@YlQRSQEoF==-O(007AUQ~b}AF#kE+_v>v9KU=>Py`08l{VP8HNYMIYtQfJa9N zOouLg*sNIMwT?S2b3NvzLE93aajsLz#CUPU!C3gQyWIu%`-&t-AlAWNUs(6{QUqu9 zKUv=P(){`t=GHzx)$m}f?&^ZFmauG1sp;%y1#7aE$+PLRrSMHH~+jM{JRPWfb!KrOii?$EV+txp|v1e+i zxT(gIuxayM>TpCGEYN$bvt`2f)a>=?-3=a1y*aZ*IlELfJ12Xl&uE~B^JlPyH-~c1 zwT|jf2Y^+aSOs8LK#|3)59J^JUnGlF8VyxyS(_R5Uq{H-bdGXEP`f+de6YxVxFiQ5 z5GHPWqIw)4xcj38I+YBbN`{Un0=omc{e|u|QDQFSEp|gReRgoptSXCz5Sa0hXEIC@ zfMs2QZ(oULf6Q>T(tWAQbH3b30u1|K-1kM@uMFR)qy7p3sC2}7mt+iAFOY!yyEqLv z{)=zP!f?P0$p~8b zgSO<~traE{B1yO=IFLsrZ4kon%>;yd3n|QjvOb|X})lc;nKQq8qO(hNx zk`WNk&kvWU%t7lVmr&9Ixb^>RamQN=Ne`|;^Mn59&FSvfrn_hY-dWrC?#2Nu;Rp$U z0(x)b*n6891`rWUAF$w)Q|o_saLoq?mI46G0RD7p{U45PViD~3CpL2acxv-UXSRQQ ze%B|L_kVWvAZBpDfZ&2C_m>3`^xchPymEfHeUANruWp=TMS!s|3enH6oe=B6squg` zAwWBnGLSe8Bs{-oai9E0-i&|4@t4_KD8sZoZavo!+8H;VZ7U!LW__9eP*2T)o@%b} z`@2Dc1m@32hnu#v#7<9k@w|^uwZw7s#N%^)eV*9w?JDK&&wQBRm$eOvjjd&zO>Jdc zyGl2<#n(2)*0<#0D!~^M3YMaJ$_V=<=9esAl%te>BtTsMQ33JFfi>D(9^G7pH8iP^ zMQf^yS69UWk2Mux+5({vtqijg3t} zUG`s3ZU4WYT=T#0uLc0VxiBUY!A|!5`EWbuvr_|KU!F(a%NI9Re|2Z`U!UIl_Xm5w ze_{s)qL@Xq{PpG8!Ou?i{^?NruQpe|v83>|1qBxxjprL2he|C>%eF>Mo1>PEQS+*( zZe@fJB>l3mVR5c*I-mmsrq~6GT3HQ)2ohnCI@z$x$Wqv(2T7=bk?&lea&c6%G@{{) zm*zSbdR*8+7e75ziXAj|Krhd&dUH|3&z86TWO3u`)AcXSt$KcL_489TPmfhSGg0^4 zR1-*We_qqAvFax#s-K#wdoWq~%w*-Wla=>|iXQak-|a2D+n>1K6Tj0MywMy!*-*SG zSu~z3T<(o*uWnqItf|tOY?uV-)R4{+qaqf;RB8?nQm{KyU%|`c)9??I251((fO11E zmIeUa-=%A~&uS|&n)8hoS_;+7nS{LajY7n!F)}vbI*&OI06=_W#NdwTT*dYf)xXf@ z1^|SgPnJ;l$kNg<#Uw-?cL%dlN}c4^FAmGS3=AHw4YM}@Jt9ad+(t!%A|h+x#I;7g zGH7-NOgRL_C|L*7n_N0y!00aa#wvWp`4$@sZaK0XkJ>J_g-KK4=gTx2((2{R!!3p^ zgV&x{T-aJ$IWXKky>M{xlD_$6{xTBeTk9uVYezb&ds~w2l|{`}6@9h&HFPjBLu917 zk2b|LTLq%1(r3acsb|fk2P$?&>p}^}wzgS6vi*3*teHQ`p7k%5j2|ig=YOj)$tbD) z<~ai%$C{9JW1e$Qd2Cl@!M4WahK|Oux~leyvV~>!dzNiFaOmRr(rx+0E#=|Tsj`}- zCB>s=bBo>r00Vx0lip=iIMQY^G`27dkcrhWIsj$>94bE4zqAj`1JqD~T2rCZ)M@3t zIVKv?c`nWBT=VWi$NnPw-h49$wHTt|qb2Y^$TxjrA)v^8xX`sPCgR=kg~sR&+c*M^ z!*gZ^X3wObz~X$+YajMGSa)2X?>&?Z94WM7^&E?)i;0iwg0P}OLCYHhjAJ=dI z;Cg-VW@89D=vz%8X_Jd{yH3n?0f3bGkC@_e!Iy6Id`i0Dg8_gCzk~z;=!n1o&b_vx zTh;giiA)&LDDds{6Sza8{^Sc9qdeSd&AUrhFf34O!Lw~eJP;8q*}y$Xeq>Jx3&76| zB%kh2004}9Spa70OZ9(tuU7&{i&|e@+=Myk&)Ebf9A@JfERe8;*gpULoeRYPfLySH>;7KfSyReVyFBN@QpzjHZBp>+7A>^U3Jq&~?@r-;C zgR%|q9kIaIVTVo&Tp=d zF~5buXOO$PHU{;-t|4ztU35cJ0bd3HQ0O^${;=Y^t+jkpV}dA{br3|YCEGd#S;RAE zQ%mvM(%cFQs{r%$fICJ3tb$8kSy3798g6}VleS2>B%i}$t9`5+^MAv60`l<4mJ$!X@ z^|yC7{r$o2e}Az1uXnfnaDDmr*B0@q&rkRN`Do{ddm4YSF8S(o{)=-9E;Lxr)#n^2 zvFwgpwnU7ZW2SW>9d~~Y{LhMzpn#@*T539H(yhYs0e5K3;IINE5p2+=o^TsR?b;E$ za>A`x5L8Wv7#FLDEUJEk_A!zmpB+hZk0A0F0O0Qb(`8L>Eos2-0n<13eu;s6cCwr* z|J>Y~rza|(pWpE8yqXv0*S);3{`t9;FU~Db4S`FZ?k{+P(%)Tlt1WW9mQZ;2!HVd* zlKcY$9fu3c_a~dy7u8qm9Oi7uVtKVjFEQ!VYr(>&O25RhJUS9W2$%oVsMeKQ;F17< z5-e75X$w?p1dGtt><2J8;ERPvzltD9o#YCqn2}*u=nL$A03f8vi5Wax#=|;`Td4&A z_<<6cgB}!>kzJ|e^`Y}bDiNOfGf;u^Fuj6g2Q6Y`GQ?T{4=gTlq#-Z>5Vm=oN~3(1 zm|NJD4xipx;?1whEydnW|D!Y-0wkeMl~pxM#F>ddnoOgfqjc*X9+Tgy^M^gjs-n*E zj)har<71V*?Zs^XKxgZ`;l8C!iH@)-QW~jQFmKaP^H{OB$edkU z{}EWCPMeJ>o>O6IidSLZW=((GGCR$z)u&~ro91K!4eY=I}4r9&29U1?}`uCPdz)-a50LXe=8@BE& zumJ#c07nwe<7M8%MGg)CK=o%1e5}NKJmEVOC*3!Q73gG+rr9X3G$}_h--dp zT*Lx*iv2GU3)4{~_QKkWPy~Sil2NFb40jcQ0ki^i0IB;vg}#c?&xb$)cmOt}L_q=u zXay+!qWaGh2GP(#q{A}=h5~vEI%rwv8_U|>T-w1jm?i)%5Hayw|9{IUn1HZ-OT+}2 zQShNv9Pa+oGBDNuPiMB$0sP_QmOq}}_VIZU3;f0P!*D^AdoKPQ2>^JY8(=vA0N|R> zs}vW*QrI_l&wO^}2pB;1r|wJV`@3fWfUh2$KiN?bOPg(1rQ6aCL0R^$^6>5=^TA}! zvHH+Sgr4>J`@5^)?%{S04%EQ@@9(YIOsH>r1-8;B#@g8jhQOg-A57j=I+8CzCexI!30gkk?vp}`@xz&6!Jw%10tRr&ycJ=I>80B#HvJvTS;oAvb{ z?QDkXA^!LKtMmWk%G7^eo%{Do6`(I9AWNKr;dU z&j;K8^T9S@2yt^cZ{q#%$%&pn>~Hz?mYTPgm%KPPcCSBjs?u_@(y_b1xINFbCC|9M z$g)17S>~3l@T!*iR7qYD!$VbztIu`04~?~=m7RM)?S_HI~Xrr;E(mW zW93Q*3!;e1Ap}tPNYuYHR+UH<$(U0r{f~|W43u?l+|uw?LIt72L9?ikkq0S-JMs$D{z)}X`KbGSZ!Wq zT`U>Y+8Fi_fQCoy8u#lsuCf+{MG}Rcb&(r3X`YY-a z?aTwnvB`55TV*bX22<0)C8NtH+E@5=exEMTUo%vdS48WBLBIIjX3nOA(PwCyN@{~< zgDL%SoK~@1MIvQsS1E zU!Ln&iGQuv(5ac-Xpk)^E9_|OFsqfeAOBBAd2x+4k|9I(<4>O>1V89HFnQ0)#wi*V zknsG;&cyox&(4raS!6K8W!a4;Evvs1ZsU|wzu0TQ^nY8#MD=G~>qNQtFjg=nE@=YH zD@W3RG6uN9f52fY#8IowP^y7CNGnog*IM-Gf5vm&<31}6aXX8AXX|2!e;CrHXdf`( z|CDB_KnowYT9$Yr@r9;SQhDOx!w6T5g5mK~gpvJkAAmuSgd&u9DJ2HA4|Mg- z=_#VzKigl52K04AKI1hw$6*}ATEHt~)o?@@1X2At5(^}%|CG>!Vg?5Q&;+m#%mDxh ziF{*8`&%o!{}}*MlYj-kJH!&e+7Ava{>{D>9}p39V$C0qZ~fr#DkcFaf_`^=!|zXQ z{^<0!PcH2J;tGCnDGlh=!&3E^9>4$r2{#{>c*;F-F;Z4A`(L6VxWSZINJak{00@qM zee+mJ<}7R0ELWC}N&Z2u>JjbUGW+TFg7X8F=sp1ejG(FDyStM6`)l{~BJ3&M+n3zk zU43+{epgoo$&TFC5$$kzmh}GQf*t57KhT?GLcn$yH}uVzJv5bZcD7VP+6bqIrXmiW zKVX0`dTS`!-BYuzy_}{2{f|(8rjB^7%U@a+_Rc-(MR3`?;aNogMuCWba>2 z_jA5D)b{DVrf-h6GYbCx{P%o@)dUEsM34*`5^oMKHU!NcSqH5E|}kh z>YsKQxm}k{O9#OE_JmG!SrSH8Nif;NX&f+6t*lD>wz|2iR&^GewUcynIa3lnAc2a4~s zg~YEq_#ks z1c=Zs$p$V329kj1VVsLX$sT|~r9#t5LqJWJa$|(kCtsEdYs@t{Q0Pn2Nqz&^O>>0@ z0PJe5803N|3MHZN002r;DJ@b009MRGS~KY=d_4dF0tv6WG!nH^a-ei#7t^guZHg>1 zFmJFk`^}UqXJ&KL&(Fy#&n=?~aLP=`_W83Q{)xHskp{v3^P@C#6h5QhI#VAtgc9D; zpdnHosV4!rGE$vu3d_?>2>b^dhKF0m>yw>PZ$h78bF00Kg(tfg_czQpW?6}uT+q8P z?r{=PNxx!JX65L$nmNkaf{L)+qM7w0Jv($6=&AIyP0eO&okla`@qZ(T**;Gm-atYv;Ix|Ju3}LR^?_9zm++bD7e~Dy|JvIy*PvuC$X-%vJA)U zSth-T)E9UjA|3_#BXt0{e&Pf-XSN@MIfK58ocip{UI(`i-GoiEz-wj@mzfc>&_W9!fVSWSvNa63W|2$KsB>-S5E6F-jivHYd2@7V-|_ zA1OCRf&o6nCr&!jA{a2hE6;QA| zX9)lqsKos6D%JunAAH0D{cz{h-<~}G*Zb#?drCeK-#u{}J0OZarC;oe{Syq(1pLQy zH{LtAwB06>g*;hu{?%cjv!ys^XR#RoI7{AdecsW*2Iw8c`@6f#_w-az;Pr9s9(aFMO%&LG zo7zwl#R+bEO=xdj?(Pcr=0fw~8vn)i@b#YX%L__=zB-9*=SO=RpnCp#y8rtVJzpJe z|K@1t4<~!SI@0mUz82=dUmx#dEBG(h7i0QH66AkAwfR5pt^eztm4Cglvi@ejSAqA|{sv{<>->ewRQ4g8q008hXn%W8$UtreNs1%Qhe4_r+SH`Q}T2PPt zAAf&r9yp?=FG#-4^OEYF3{7}d?iPu!Hk!P*Rg`wPwE-VUHdRz}1Jt zJQ0dR8K??=2Bb-?8Iu9Ywi^5iZNa183IE#jL`V!LZj>=#JOMYHRb#ks)bkir=#`EgQ$T!a#9Ru*f23`%2?CdtxY44WXpB z%&!lU7gkr?T36DB;K%PNDGHRemoyL74NeX$X|5Y803_5thbp%+UO#tmb!+uV)Lq!u zFxXYmp?h4+#>rX5wNx{c6olerC}hl-rN_8bk!3}hV^Y^Bv)r^@nX?5nDraTSmRS}0 zT)nZ-Y|7WEyxC&3YfAq&lTPijncQX_${#Fz5&m11O1)0gV|W||^zpgf6GfqdtT_=> zp6Tf@X0Sc@Jo^<2;RHu?F!}GYEQeC&oIMNMpAv(Sm`Q9KM!gQ4d?wAZMFHC)5C4wM z2eExFaS|CsZYUKW!slQ?4o6xDz{TNwP3T0KXHV3$*r6P7=vqC_s8Sx0XJG=`>$kH5 zOb0N}YbHnjNSW_^rI7hwDD}YkNQV!p{xJ1$K5#WR@rADNVe^Rw^bxI3u|~kd06_Tp zNZVVf97hf^9%(Ght0eD{W&q5YB}EXBAaO+ai3%IhY7YP)bpVWiC5*ux`ay5eofeva z2-rYIJmMcdyxGi#aGX_u)HVPBfF3k{zpLPhjy%a8PFfIqaj5*|k;<2bE3l3GM?ye@ zGzU(3g$h%k7snf4n5Y*3u&DWsC9PciSqA>e@;>?iGUBBUfFbaEn! z0I(AL)twVU1DaYGe$)y;2LTCxd+OTP*LN?7+wA`~li^UA#dx^hzq#18J7GQ66u}b$ z0600`1^{peKQvSa*N-L#3DCa&h7C=58yZV6g5J?tiMEGXu7m;7a<3qNnneikzTQf# zfrPtfW6`!2J|&I-kB$mrAR&L?g6IPP00sj{eW3L@JfQu@{D;HCl8W4AHL)c%1&ay( ztto;6B1e8rRg}O;*r9b5p{>MB)T4%Ye)5Psg|Ki}fJH=Osb3dtXGg-9nmvaTraf_7v-BIorqu!M=D2;iU%A4qUglOUb`ztmM%vE~ z@D#gUUPF&f*=m&axhw<%ciRnJCPlwlKG$m)GG!zDXBaT#G_;#l^*TkX-BO`dJ|^7B zxp#~TBj{8FeC6AV$~iwg7Oz8OGp9Z9cd8^rs$P<_*AeN!0;;Y zU?6s<8>vI?6U{ybWrr*B4mLDwX{lP}_II1jZBBQ-27&%8N)E!-|}EZsXrbuM~rDIqE~bZRpyV=J!WrRaZ`b( z2$~3otdK40H(>!(7WWp%a^mH&8XV%9lU<2;OIf6<*i#U(Mr(`P2ig`84%`^4@mnJy zS4n%rz-Z5^!S;nUg$<((3yU2w&CFR``HdNK;FLX=%GS8^8lnlI}tg! zG~ISxU5*|1X_91;dU<<}ZouoF47#WN*6oF^)0II&V1(^+(t9B(NPkK4&;A!4{a^t9 z8vhvpggier*L{k0+!X&K#sFmYBHU~d;f`F`QE*B{pRc6KOZ?BJGAGGmRR7zIk#Vp| zZGPQv#snh&c8&L5bA;;8r>OoMu}8-Ew=17X0|0=u6v-)d|8{fuW@}gi033nDLw6z4 z&nLU%*hJF}fB}?#4iCTp)&G@ILH$d0Ul@gsArPvk1K|8*nn0Kikqfr8^|i%KFE40f z8TbuEL8%$QFV+pbyJ7U*O$dP|5dr}K@9kRfn?1|`mZAIn{gHJa9A5s1qg%0o698~> zb7~&2jq|6|JO6xU7w6-%yG6Obbbtr33UK}C=NI<_37=lvPxVLi$$10-pWQe@^{3*e zmV^Zn#PdJ8fs6lffB*UE&fFO@ahj@knYNUeHkP>@*($${9WG& zxt|B!zrId10Vx;|zHbZ<7z{|RpA>xnU_(nO@*$p)|D!TmULB+EudFLsQCmzP3?Y#? zK&&ngktYNHv%My=yC(NQZ7#TVrZsP0(sHuibF$WTwIg_^H}vYf;?%L8n z?5O|Uj>cbas{YNE`VV)sez?2+5Bs`4KQa2{xq07RUy1$0->?i~3EpS*u7r=g+|BTBF*+Z&DN*^x2sh?!ot!( z(Vov?@q{ceIso{bHy3b9e!i#yX9zGrAVDhsoudEBROzd8%OtzdRAO-b8`HHcg}pXi z^TJ^0nW6k!ouM0z-kWt!I)FoE5dh#|cl)kb;iSji=XRGO_(3kB#~#^W%*GMo}pAdK8qzX z0)cUz%bGD$>=I{WQOCtEsxpxAOZ9gfOfW^1Z)pNSO&6hK*%^!zh?wV>5dA?K3dn2_ zC1iDYO%{PVa+xA46CsdQqm__}pP-yI2MUOF0R{jhK|;kaf3{|uV1#1!JZz{*1S@nF zRfLO;YP}NmYFb9dk1_?f)5Nl#4=ZUK{?O(?#9LS#ECUJ3LzV4i-HnB!;^XI_F*KF?W@mfSXT|l(LRD72JUyH>%bT6%(hv@lhET82 zq>dRhKCRMDz^^j9h>Ls%LEbVOVFMYeV!~<+rnp&0FpEEP7FT{gCGkHfL0JG6aqwzI zNG2m>xKORC(9vni=6Y>ohU`Ul#qyAIUDQeRBe{=6{^Htpyx5898@A#5^KuaXAOpn$ zh$x}srB1@!H~UmXhP4=!Ns|%CVWptLs008;!om3w|FW=ie_0Uz=WLR@Kbjw(0Dy`R z0094Uy)Hsd3&Y;a)r5bc>IcEXacDCRC9?Mf(4S;f63VS(L6vr z)Ow}rf4SUwA>p7WNc90hW&lrfoo|haIdFxp*TO&{P z6@fj%4v3Usu?oOGu-N~iU7+Yw@wxbOzyO}<000060228lj6zd$U}gZA0=+cR{NiL2 zj-jtDB&?|p-S(>sJAS%qNSXl%A<+5}2>_sg*a%|+{QkbhAM9U+1PC_>wErI-S&0%9 zNhk+{XsW*u1)bYNp@;MN!-;K_dkFyka{DCDJV=Yde|w5#m=m1u@16e3lV|_-;QVJd z4ol@;(gI0(P##E>{N~n`|9W!o+sC%Bzs*Fg)+XCrY~F+cR7?0|TRs4Qz8=|+P-nIj zBl6+0Pxas0R=%Svv8kCi3uyxO4b&3a#dV$|YIlk#=>PpyU+*FH>8FK#haVSdx>s9GuoD1(^$NuGCEDPFV}qJ|IG>dgT+Kb))a1T zt40O1JQ-sFcugY6b}>n0v?-e_f;+1M?0+4r&)rwdct&x|Htn5-fa06h4@cpsma}%X64(2`I9elDqe6qr~r<{DB-kU>RJIdpe4t{x0 zjme~&GZV4}{WwM6qEV`4!sQL;NMa%=$JyCjz%!(V05S)&WvAXO>3N*mY)$&C)ZADF zeE~hK(;4J)IRU?%pxTJF9MXP@GBp~rHb{Jl$LH|vXmzmocgTec5ay$}Q1JCkgYlx^ zovhij;fq8%m?R2HX-oyz1c{_jhfNOFjFq#}VT6RKXSR~;0a=z@nJFZv7zg1m#Ppco zIX#3X&0<%%LMA^Ra9)+wt#Vl8j;3T+)LKj*K+p=V*Iba}{`{u$QKz{yAe-gRRF->7 z+e+&4EXE?MvCz1v-c;Y>iLSZGNo6zAO*7|2t>)TDu4l$fwE~uEHlZ#~(#kT@Nq*1DmS<)^uAj*} z89o$Q;Bls~^2h5<&_@|*NP`Nk=CD@H6gQ&LBH~POJG4#Nwp7p~{JuGT4n%*R)gt(x zIb8qcwzLeM86*%M5D;z+q5~*3=&QAwCbfLRZdl|tv&@B~=cat;a*ukoPlpjS0gwla zz5DWWj+A(|mpb;d5Ri|VvxhX8W0ig;!v|s(R(wZnnku6PuOYFDtWh7qT9?t-}RD z1YIn3i8!#P2v>XV{@6B13jxqUqyazKn0J#s04jc!kL@sa#BNl2o~REH14$MMK?F6Y6hZCaQ{Z-U zE=>Tc(5E_ahc0?)n7e=C`GGQV`paJ)uI5wHJm59lp;H2(7sjhFgdi#YCsR#7nb-Wr zl$Zyw8b;mc?*Gc7mN%EO$J0nUJWT-GVZYfn1rhYY&V}!7TJYZ11s@$;O+GNmz<)Tl z3XkXyk1qS<#Ilpe1<;Y1dt$&f;pdGI!sO^X_0?> z;yjUI-?IU5`CiXV&wO(8+?u9P?*H}Q zMt#anMUJD@vBOoqi(N%$x=RkW6&)R@=K4=XUfWu_sy?x`qngV;er?b@dwZ)P=(l!N z?d_~!0eEM3#k!`#%^fA&^!eL!q*oho*gTAcC7I2 z6}7+H-Ti0$qE8NfdUovlTg(4;Z^Pf7+Vt;FZNUCPEC63z@aLlgA0O!ccyG(^H`lzg zyyWGH(2Z8}rN+Qv>_I%&S}KH!Q#d4(orPrN^cw0k}q) zL2h=B&xYo^TA$wQ(ZTqSxeN&KP=&S{Rds4vy+I8tTdq+hHLAyMcNaW4Sn}K`YEHa; zs$QPtj-Lbo-k6IiQ2pEZ|G*0gH_%EbAf!Pr&m$DRp6X9JJOChlJz-%OLcB7s@|hkk zP41iZ9)x{I>q;*U4_xkP*^-FOby}x`!Fnqs!yGca0-0(%%nwyOD_!If%9S3Oh=3P9 z`zay_M`hR*am!9QbP9Ln>`Y1+sM@}g>S!}#VN65W z1=G%%jVVw`q@ky6x~`zil3}o?J4&5NZ??<>8M6>LVatr$ z9n6?RrPT7*$PHa(WKjSBpi=uXvH$=a_H)!Kd^nsLv-6Dlph^J%VBY&s+(`^_RtD9d zLt{Z60E6F%(ZGG*nV#jADQp>-1!Xf3#yW!UW&8_ql+bA^l(JThaw-S6PSX;%mezGe zKnHP&dSP?awkw_k2JFta5ed1o#C|B@0sxNY*%AL7EOClFfLy~WA0`m0a)XLFvtO>F z9jP~{5VsBHI$3gAA8{Tj@}5tKJi9xLub30IpSH zA}yK*$R9}qDrte36I`z*ITFs(F+ODk>G+_m>Y))qCp$V0Dx8eyD&mMMbGw@ zJ?Mh-DUliiS^)_Fp6g2r7#OVr0646MiT!|y>X#;K@Pv4CvhmHiO#pzH3M^=b`X?UX z^`*doSO|D~MfcCv2!DuQtQV$0^Z}#<|8nybi^0Fzu>eWv?~kl{AAit85J78c2m}js zViT%Rkq~fhC#FE3oZCw%*k>2^0|Q+AX$8OlIs=m80RW0V)t_gP7k2G9&m;$s8~n{J z#sCb2&+))JJpcXXnXhl0{o?MWqZ75InKMRx@?91FV>MAMfX;Upo$4%NvWnT~q7v`i zV&CfK(&Y__^=$mY%)q)}^4wg4UmHZtuGaEBUDf!(;R?5*rI^4kcz^Z=4);|YO!)XQ!AM;01&ukQ4+4D)7Svz##sqiF1Gf?)wlyutU<3O8?qA zv0<>ap@cv&D4?BnvHcCvL-n}`KmmZG74D<8uHy~iqb=?uO`)R=_LHQcvHfA4HdF!t&khG}wpmZt26hz~H{_~T1r)@;EDdOvip?(r)gSdI;vcvjnEhdwNP+LL zs5>m$7Ne@)YiY5mTdj%_zZGpaQt2M6w$r5Ivu##=yTe>>)KzHJ#q#XOSl?wAj8y;t z01YSwokQ>oE^Fb3d@Un3NLvh4nF@zcZXx#V7} zwp^)l5C?X;rQ-J7u}dBG+Y_!Xdbud~000#nu11zk zW){(mLf6lS;wFw{MXBW&W{HqU7KX`ggh+wKX8X5<>?@5PZz(CQg{WR37J@-igAx>I zkt_y914j=_0|0P<8CW3JyBGzd?Sbt{X?{}KUa1MQBtLz$hQ^jM--|aK>%Ia5W@oX- zs}fey_(C&A*0OZQkA-D|&!J0D%v4nuRE@U|7C1uzgA+#HuC&=yj%28zI$EEflk3&# zA(vFMWG0ohsj7cy-oa>~HTz$5hFRvAucSQLVzmTSndbahLo(hrIkLJg*-IWkMYJZF zTOKw9yc&mLwo37@S*CQeM;A!s))e}xOLFVGIu=Y0EUPvnIx-rynj*awo(KO7{cM9? zp;!L+$Ld+Lbh0eNtRExyM5v1XC#+VnlOeeK47B{&uyaOPmS2&@r!e~Gh#c2UA@M}E zL6(CQ>dPzdbASitz_@;55h@&{m9iWaF_4)7jglW*ocib0Y}5|h&BI2;q*<{lXy*FA z%&!FlHpg?e#T`51IeUxUVj+NGV4)2q=!v-VXw*s*AXK4o$I$`@rV%VO7Bi@jXVU~! znT)L#9fPc4pN0L#Z3Ui_CB6%#J`w$h3aBo`>y?`56}bDRd;ow_d%vX+;ih!=r|9DW zCzbw`8JxJwOJiP0A*tL8W1s54Q!II*k0(2X^UauVsD*TpS)G0N?@UM<`9Plwb(VnizFI^}x5VJH{#i7yoOO`3>FzR0KW%~d z@E-ucm%T(%7^Q!d&={1UA|;sWFP+yX8>H$lyy1w7Bq4G|Hy8i_@cJt0!K-_JwtC>F zYX&~pIUfL^75L?rakwA=0B6wO9bWz01FL>}P|Spx3P|P%ApdpN|PNJ0SsNncYAB;4X!i&^^Rb}#mUJ1e(!S3@Xq_lNvJ`2&h@m>le8c+g%Z z4F-fTv?ji&IKV4Ee|=M#RQkyWrbQ4YarK3C2|JpKw$nY-u1H!%l0PUOwP9bNXF|iJ*PZrtLM#n)Qly zvrzst8P%1{0Mv3i0M;`fyV@KA0O$aS1Q2@w^DEw%R{`PkI%)5Vs$W@9!FhFY^-BvY zUR+TA+R|E<0E8Lb6!-mdN`Hz1Dtd`5u+d_`;K^>*=zZ7geJ7Ia0hFHWYP#CfaImgq zds*R*s>U3Neoe|6)q4rnc%~ z*waa`B^_RYl(Wd{sC9YU{6YMs*^K25E}{jna6rIAbymnNI)g|&&w%jJc{C=-A7Q_v z(u*}NLMYh+L($KA7vh=JLNbaVDQ#GipGxC_lt@&@4~g2`OcBugvvnn!5_*+6Y2q8@ zYK{}0U1K(7Yt*yl)@(x}5Ks8?{rVic%wWkR^v2>)m;>hgn*8>fSOpn4*f#LT$(}jO zpsPKVEsyGb=vniu zUdA3MO}z$RS*W@q){^h4DUWv#^(|}5Z}rJ?%3>u=k%Z-6$?Z~^)cI9aEp;x7Yj#>T zI5&HiJA*%I77BgTp8=&@zt0D@v@0?KvDT7wGie$b+so1>p^S1oaCHpCoom+PXIZN<*5 z1$NFZ5+m|0V8EfG9J1g~6}gYaY^Rw9$8(MsyAI{sMopSJbyl86#&3x*$X2JL&uJb2 zG(pS0#^cauTAFJ)kO-VfiUeQ)fIWaq^x0tuKcxslRwTH7=`i(`9;6Nc0C=(!RcJo9eyIcC0Y%Uw0C-`bg7;q> ztYj^K>W@JX8^RI*&;&d`RtfVXDT1(vV6g4BL^p8#^e0yie|_)zyJxnoPUiJl zW^6BYi(1(j1ORr|1h&_OiFP5sXe{45S{Upv3=S4}=mw_pol8o53kuxJ5)t9eP?<-i zhM!qcmycWr9jBPbtaQENeU%judhWP>GV$OlVCgJXoIsyjZ@jJ>nz)9*I-WNGA z+uAF(usGI2C|Dtu5_rI^t|?fPN{2^NguxtVcXQ$H#)3VKc?VnakF@3=Z;c*r4jpUC zJyx50sws4~wfJPS|7dOWXgz8Y3s_Lr1Fpz{BOfyk{0A-`m|GOdu{Vfb)U* z`S+){2n=|zf&DK$<32w<{MDJ!KkRAwaBI!amlwkzU2CylX|(Sz&4K?}6Huc3S>#rd zn&s#3;*MGqUrF`F{Pf1H^DT7kEe0F-s;VyIs&1q~2WV0SjV}YYXj#^*_ zw|&@9FJV9{=HKeH=3Sm=<(*y5tTsnVEe%o-<5T8~5ST6f<8m61sT+*{O z6Qdiq?R$Csp6ACG>?tX3#ISSG*w$t9HkJ5mG+FMJrYRQ0$PVkO>!}VD7v=<$fhau( zl2b#PI?q|ySv@k?v?xbc)Y-gn!;(G4IYs&I!Udi4@>Kyvy0NTo;kuO@RwtwJjI6A5 z;woYPHEz8UoxV5a)+yZl6*8ov6mdAB0+UX#L-K5jIF>%JJ<$Ck27uT|4Q*BiI&P^m zkT3w`z}%aWK7$SB1W-V^Y9$HswK_$UUeRmOPCE2+?ds_q)pDPHxnH|E&x(`DwtPE* z?_2WB0Km4Gk%I#STOmAUvDsrn0pPbRl1LjQWTTWo<<<(@CI-ffJZFEcY>U@ZVHh$}x|APIz| zBVmR__|ODM*MB~g2EPEn{dTH9esCnilbT>ez|d!ePHImKVRPm z0KC6z{)hXP008grCnb2T0DzP&=pT=7{_xnw-yPpX#sAaUT_2s=DM6E`|MK9@m-kLxp6Z?F z&Dd06JKGut08V!n?5g(fVB@c$u*a?M54(E9?w)+#NKtS&nlr!9J2&6CxHzz=ICo`b z;gaGI{yf5&r#erB^i~t+l7|Nz)()&|!Sy2qqHr@M=4#KO-0$tKV!TZCm)619Gr;{# zyFpc?pTMG6y7aV97*Z*U!u@h}E zT%eEgn{SDoYRNsR;|``~3XGH`k`W zxxNJcM+^X--1P7F*M5I>;SX2l;Su!d(cX{tG{3X5_!rAdpBc=(-r_u8XWyT6Z!19W zuU{F|F7axY1&qr{@**BJN4Wfx_{h>P?0=6#i?pBd@BFZfir;ThQ}hW?>NctSZTc~f ztxm6Mu^O14HJJ1XMHT>1X;3%VO^;#PgHr85zla4!_QUlbLjM;_>Ljh_YYQvhL;|#| z{*?t)&rg<7{b>kzhyH*LfUiLn`t)EP+MyRl3!d%^-)?n3*~M!_bO1H+b1l`k2I{X4 zHXf`kUF`Q(Y1HI{vy57(b(EUyc*DX+O8|h~f|RzXSIJ>2P~%8CODZ^VE0#>99g|Lj zjbx!pySrF#64A9>-Vynv)HpCXVz(<**+pU(vAr<(aQ#YMuFi@DDbX$@#z5jj{vhiV z*L>`zQzKuIj?2a@;gqSiKy(HvuTY^h#jHXu6r5hOz04oshX_EDi`SsRkZU#rKO`6% z$b8r4c=TQteKCG;E9o<<_VhAS4Wn%XeXFcol=HPnnZRSY`RKEJ_J=88p)o|wfG)SF`t zm*41!=0xfWTgKZL$D{3)vG(n2k1ZHk>&+={FC8c`lu4F7{c zv;+V&0o?sL006-N#76QeVE_j%h}5v3t|TZ}V89#85C!%BZ0+DrR`&jUolpe5vw7^N z>qdTwC}{WeulFwf@X(sy00W2Cp$Pim=!W+Xulw!cjlVy+O;rCgyZ*p%_`+^r0P=@n zz&F>93jnxw>OY>mM7akBBn+S%;Lr_7i(nLev_OBoe}T0Co;>gzPNSlho^3T z`{emIcdXh_VqTT2JKLIjx+4O04ghRO`j?jl+jBH6PE%LF*%@>WMty_1jvlvmBH|d% zwT;C*BT?_%Jm12i(1McOd1axwr2s%496dUpRfM|K$D#gV_No440N@6}zyP*~>c6L} zl0(ra|BLFsqpO^G004lTbpJrZrj#5AL}B)T^YhlWN*V$p1lCu_sQw2#%l5Psa`8XZ zT5zZ}?=W}&w%DnT{FCjX3Aor7Kh^3#)fhzxbc9^%I`^sO*nt|)fg0bLj)GHddC)`v zz-y}-pn(2(w4dt#&Glt}eR3m*Iq=_~SdIVB_ZKI=INks0vF`V`RKK?-`TG2VXGfx! z8cBeGDYZfVtdE)bZ)at$i7Xegd>8r5tVUA$2Xpk8zI9lXSUt8|)jd$79-;IfbsF)= z8e$K?tVZ?U>lCCvb}Z!@MU7D_j#-DWg4f6HwC6q9Tlmaif=B=f0N$7?|2dJ6OVNN< zvFIxj0+xtKfE4dv|MGl6{r~`Ag9H*UjKx_QBO3mh{ty^&zcX~LQFH(YOM^$N3a@lk z-kt0?)?CgUxI(2AHASv2HwUV$E}v3ulxJfwK-3q@R^0cwxg*C^a#Ky4OtqlF-(R>N@Wy_@iK#il+}c=DHYGkxZUeh8KHv! z02~b?CZktJj^%y}X^V=KBM><;%JO;>!QRG^Z723$Sk+J! z%lcRK%pY47CWk_4m(65KOrAS40L)pjkziSjba+P7F14D-cvm_eK3MvY=$l1z075|V z!|=GYG+UWm^LbO635%UCk^3mOrVAC2*a*wYjH}dfg{se??$Bnif4Ima;=0&Zg!x$= zG2rjEGuM0|o^zm)$0P;|bLRku91^^302O!M=USHPrv$ezTtRH`8 z)8yN0N8S-T0Sie9{_xO>-yB%_{(&_g9$pUsd~jsbhsUu4q663s0N@Vv<(0h{1pR{o zI{EdL6W?4t`3L|g`qB(Q0sw^n?EOkGK=tR9>wn5G=*P;U1MR_ zXr5;%&pEd=cS&U)T+QmL{CQ$H>}`pqUwolS0%*n@LL>yh`LHp-99S#^Hx)8N zhBc!4g8@PdgpV{B(2`hMUkCtfX~kJc0KnSH(2j=ugYAh!oh66c@{e_hbDWyqk$<+k z;7pgmfb)H^<4rlIo5Pno0%sc{C!4${8pFFPYzOO{mwV&qI-<;k?~E4zY<=7B_Vu#_ z@ZHT7-`-lm^ZkPW;y>owwVNF=a z-G5m?jo-suyL_QbyTEOju&IVUrU9qE-(le5Pl<1{h|_Mxkr4Rr>1kk`(3&jS)pfM;iRpKHqk`6Ppv(u^UBHuAX0Et5E z_i6zEDDRxvas=#*g8kMUL^6Dt5Pf3&sndc1VjV0~1^_TxV4T2+ScJ|C<9?+`exH@D zR;tn-pGhadssWl*k|UW1pnuoTnjv=Clp0O8)~WXt`^x|Tp^eFsF>lbpzh~>{U_6A~ zKmKDpumKwYpv+&vdY4UR^clTwlR-QC|7BLEsf3@9?B9O;BU$K;?}Zy`%_0yog{mgOz;(OSYq}Qv8G?c<#cFMdT#YQDT|I~W z!{vVTYI;Nqn+hD;60V(o<2H}xV9b6r?jrAn@b~ROExTX`;`SYRCag{ngR%#J3B*dT ztXKChmHY+HndMMt#Q4YUw$1gqro3h<1#1My*!v~+D~a>77r%#dWxi`Q`4=lg7b@L1 z8;fxL#CwM!?d8gxCz=W*-d}0o=pkry)X#N8Xd# z3oD?4i&EYadZx3KpLV0pN$c=zFXP+@6cBU}D+MWz$SYxhGz3QMFHt~`001muW*~lA zM+p?r{f_)p^?wKe41p>Av;~NQ*asG;r<5-P2DtmDV!|o`0KDOz9>T-192V$>iCPH& zxcGCx08HZES=No0I{-ijzz~>KfS<1$0t4RNH1YPTv0rYU_wJVY!~>uLdT-Cd4-YSY z|IlIpfa=fG7vVp5|Buh_<^1vNZu~*NxV#5NP-^^36L5s;|K%ld-;4 z4*TH=4B#H-g?)PY;AiX)-#YQ_{c9iJIP~q^YZyoW?cUjY3mevjOaQ>%D#xZG!^(Wa z;ylY#)KR0$tTw3|a?C9z!+1ErI%}gob0BCPjJmoa&IZ4AEZ02|^-L872O`eleAh_K zxv)40J2YA1TT+vUqJL$T006}M>nrotRm3*47+fD`iI;6&;Ud>5HpMvLLCPGWm>Iz4 zjtZ*(nzqsvO(kgmH#C-F84UoeNd`Anh4wZV9_=cn^q=U8i_@NWsR)f|{rK?c-w1-gz3RJLtI_}b z^~ufu3;@djs?1bnkOXahZy387rA)b|iE~8SfZSy#| zOSQOcJ-Ob;Fzm@F&`Eso9U}U z!z=1Wz<}j1;UlfmBF$8#<7uOX0)i+f(^2?tW@Lv|`h+FNDFWrys6vqyF(DwjodWHY zYdtcZORJ%p!$&!ES{&t=Eekx5>5!`$(gZgWFdCV5a(M9R^(-au>xw9OG)L*09Hp%x zR$dz@;=4p-4Jl@sfSHWuz@ju7(={fwnf2h(Xl2Mz=hqgp0}R?>0TeL!RgcT{bFe1@ zE!1d=__KqB`WZ4ZBQbw&O?LJ+PA(qbR$qnzeq%&0sy1r}rc70ihW!Hr21MG&X9uz^ zoh@@4<4tX`%558uuUU5B`p%=5Hmsi)kC&MBrtDeDjG2mAGhoROHEGl2#RmRXv$@DK zZV{e(8F2lIn885qql1hv{`PR`$P)R$Ea*8kYI|0iu=rPGiA>-u?C|7d517+3^7-3K z<4su(dGXmllG97?2^TqN%;M&P=o8~Abf3ZlF04OX>fVy8B@7Z5Xr!O}iyS8^ z1N%d4{{{|~g%2h?hl*{x^DTr1cPmxl424fkD*fzQg}lpVZ}mHegQl&yreo#a1BJHp z#my!Vjzr+BbAx2MdvpG%{JlJpz%};aeW>fTZi35^HY<{I&KRK*@N%lTZwu<## zQK`9`r*a(svD_<$!+gCI@WQwADZUY54?<7z#my0k^q0oJm#W;7%JWVWu5iI8Tlvb! zgVxZq-NjHWZtnRA{isju*C| zyB7U=`vL;Oezj}yJ3AKsX5X^+NDA9K{ri1OiI4yDiFKcy-ojEC-f)OPzq)h)@lWay z5llj)DEh+P;pUOQK5_E<+sD4Xe(1YfM|t2K9^n0dc;W)GAL0SNy>sE~JLf;Sdg7BS zCq-1iz0;rHy!PkoXTH6E<(>W8*A|&DR5(@ZTAr&Nbm_XCre2q^!>%n=%iwscj2Ycd z1A3trho;J*E-`19!6A-Ti(iQsAk)z(iD#LgRVfiG1JO!r+3E@N_AG zjxi1osZf{TvhoOX-4&HFg1tCmJWvy50=%iUVtHNZqRK+PjD~u!+ltnwoI!=a zv@O23A#|uQ7sKi^-9;A$iZ2ZnUg*z1-{f&Oc5CQDga25y`($GPTZm)T zw!`JRZB@48?VadEG8QMVI(A~|9Rza%@=zBLg_y@$zczGLjU4O;hT%<#P%;L zpsBJqnHA3~X9CP&9qjqx!l!z|_d0U#wnqqK;y>&?MXue&ksHGu*9ST_7epF$B!UV6 zC?y!(nG-je87DFc;P%aM6?R26=O0Osnc2duO|D|Ji)@iY_19-Vj0={0q`8c9zyl?+ z`jkx&WmkBgDYP7mT2y}~z{0RIQx;O|1HuC?TM$QbHOm1ahz5;mHov;gr!WW=yi8a@ z*tHtFR%BHYUkq{NW>SsNMWyl@35O^ZI$wdWZ27#cOQyEPe04FifsrhKGuCXqLv2mD&gBMmcFQce#}KHBRFpU( zLv8a`FWNs=JFu{#wn!$o&-jrpeTH6CR!2-N_sc2e0s#2?`hJBM$`tKpprZ5%`{&ApijP>?}t2nYlDiv*CYaq)2)c*-=GyjaJd7Rdg9u z*bt6c6iYqYjbY2yJloDf_x1ueb)TZYJ!0UW$G$?L{Ra<@mHYNYZ2JqnSpV;h+xFxc zwuB7x9GX_8+&eqdtIEvNX0+%v15S5e*t;<1z$O|1z$xe=8^7hjYgOSJ^?4VoLsuGE z0SkzSy66qIa7hCu>#?H<7ih`;K`Q7H06a|ZY85U$5&%f|C-B9O z7QR^il4L);Uaj>>bAr3gd<{xaBt!luo4M=@4U!0lX^K$ph0RUW{yfPC8 z0DiurkMpZ_BfnTb`peCezt}i|4D{E#m%O)oF^)iBzz4e*{ci7)kFbe8xSVw`B%$a* z5rcktaX+H6N=5((vL^;p&WtNVEvmL_CI9;PlW`v8K6lLvxZfakX*&aUJ7~q~xpz*op2*H+E z10Ae(vm1P-(Y>d^4FH_(2;CkjdTV{_?+=Z9bbL(geBD|C0Q~*I#=kwaL4*Kbn)l_Y ze$1kOv!jOm_tzK40f4)mzKeDC!wJK#0yXacYl6Dv0o|B23%x%ZFg*@^hgH|0q3A1W zb;>G@vPvs&F{^uXbc0AjU3zB1?Pdjc|2n<0&a8#&$GodhrvU(xCS{#XTWgS`r5^UX z9|FK#glL3iSOwtv|Ffm|$DuoRZ&NK`G_;q4)b2%3YSL;39iZh*BRpXX*T22>Cx*5E=IPbnvsEL zoLO$|Z5rOXa({2jWKg3w&(6emnqL$WDbEorbmbM;!cbe*G$kPfUX7E+0v%Cb%}A@w z6IE!3r7vhyDRU`~mA_{$Lh zkTUw00D!OI5Y!xm0>Tk53#E`;C^Z#X?4Y;nloKAyl-q<=r(pks#?4{V`drh-unnSr zPl0u7NCyD$Ou1+0i)RjCklOz;ZDr%pCGRq1CbDL;gq&+omRVI@R@0EvIS_CykJwMe zovfN;7E9l1_Xp&sM`HR zgP0++F2LQNil5RW5fUl1r_!6C0(ij1UwQ=t?lS}EOHk-JSV2fmaA1HK2&dlU{GY5C zF$rKRn2j)@|KU{%i~k96!Hb#!fVY>mQ~jk5fCB*hbj=V%5MzK}vlYB+;V-t%|J5D= z12{$h;ox%Cg8=}R1GxU<4*>vtets{RFpmJ>%PU900Oq`EjQ)q!CB`BSNI3oY+ z0=r;eApgI8{+qiOzPf$x%bVvuy>|Sw>&L#hbrk^k?#b(X>hf3(nO18eR*dQE3|csf z8lyU)oKvLEF3{_$?Yb^sPNUg?`D>v`S!mH#+4(Yky+ub+t2U@e2WoW~+nwfKpRLmEULC2vG?+ZsS9qo;O7%a}6+6}v zI#?grSLNDXX5W&qZAGt{aEOKW3irWE*YU0hUwLOT`OLx!uK%B$n)jzuli%K0{_U-0 zf4jd18R++Sh=33CTY}GTQpS$MI#y^kA2YV9QJx1yV)MQ)gk7<004UcuT4pN z097xKmhwz8FaQAKj~5UW5S;-UP^$m4%(Vq7RKGA%`22934&b?AqU`b?^hTcPjy~BH zz22OAqTJ0DZ&Spxw-UareO*C88Jk3`5vlbRwp{+hW(FVu0QFJI*y0e*B^Z1b!BXl> zxOli7Y$3>dNs&MJ!95HQcoZqagGh$aiVzs;JNBOxU%cT^e_GPzT$X(XGgo*DG5U9^ zzXSkGcOj9ubO-f9CIr=k6)2Z_p+QOskhqN7GL>`y5&#JB5L(GB){j}LQf16Ru}Tl2 zN#{Op%yR^}hMQ*5tSDS^gNLa4Y_(W9W?M?Fri{96!K!3`O-V2Nx+UR?!G`Ikywpz!nMzVAy5Ms=VtqNm-uVCK5f(=VHB|TyD94x6-s+q*s zSfe@lHPM=Ke_4Gz+2GH&X6g+YdgmNNRlIF_cv%HxPL@(TYc`8@n6R2M)6BDHu%=s} z*SIq0aH9tR*u>@!%b(6Ibf01)jOs5PJ}bt*0Dw{{=DjlNzGxcknQ%TSnkZWq#*KsO zpOwW4WTx}4twj&{qZ@PRCLG#je!~i{W{p?9Dc1}PU;#u7z^;7T=3G6O1L>KE-39hN zr8ah67zU6Gyw0l`x5;a@Y2ob0ZL??lHJRmBRj0);V6%?<9hhNVFY}+l`?EGop}$ZO zMEZHPHY&OS9_nN8KTt#08=_zUQS6c*9Hn1MY?ods=ns>7QviU6kMM6uu{{z1NKnC* z9{>W?bSwQgH6}&v3B_# zoKBy;JCM^8bdKZ)`@^2$yud)jO@FW;5t~<(%c0^=76vAZ!*dhSsglToWd8D+A`X6V zVgb0W2!}Y<$9A_Bof;^+IGnuDo47h$eswr;8475i;8a)iXlsap@bTWFO%<*capSsT z>*ms&-Bmt(;`XwX-jjE6py0X1wXdwG{lnqW&(ALW^xQ&B-~RH%s{ed?!+$=tp8YSb z|KFS&{p4uZ2RmwiyS*Ma=@-T$w>!M&YMqD6tUC%!8=|@;KK(+k@Nr}DrCFQ7-JeZ( zHf&0?#zLjGL`l}3uFfa`03|3!&@^dGyhIkDi)Yru!)M7Cm{5h28)1rVGp;U=CuV_M355zHk2^~5Mg0U z8lZrX2K{1r<0}&h-lq?EZY=TiU_KNOdjR*_f~*3Zsq!2wvTi8|Y$}c%Z*N*tSe(>o z5s<(_R67DBjI-JARj55G4ds=4D7Stlx`=bo@NfVCK4cOr={2RS7%4t1g#j6I{60#ygCaII8KSnT{gA>=!R`4N8O>>5d zxGpFrw$H?ln?j!mwX{^tOBU7_c;bzT-lgMIMZfIdW+G3D*xj)lw^wgcK0ZtSqZz_+ z8iA}__zN-C7R^MKI$(4qLq!d-q+es#%#>-tfY~aC%GF!bUlp#M+cr8_(pc;%^k|(q zb1<3?EgG3$uTBFF#j;yQ26fz;$q0RxKPx>iwXwzj7yOYy9qgF+<2xDiX3dr=zW8D; z_^F$|)D1iY13t@}Yy*fL0+9q6mS>ajBl-X2$+Kxl832qr3{-#Q|6Ko9d9`bOnvFr> z0JVM{0RWGx zzhv>o;8#Sq{}TX6?r#zRNC9EY3HUDT-lP!%A4-PLQuL$L4e-i`D2^nGUsyh*3?T#& zR4Y1wl#n#FjFt+Ak!XE!+5ZRcFLeMgLJSOW10^tkoB&9FYCU*>SubE9x`EUl0ME<` z;D0#Gfu$J$N16dhhn3*hr<*tc0DEClWEiHQzgXG-#!|FEgXlq727VtI=+1?>L;rfu zA{e3HA6Wi}!)pM8_YYtYw1$B&i(sFg71q$HT(HAmV+52^`_KV=cKL*G__=uwx1aBB zU-#21s=PMq{fpI)HJIyUF3#Zj>ZTH#-@^ah#&Nh#Y_dC6gzK|PWKwvsn6dug;kL3Hu z;=$1ZfdmUG3Kv!uK^X}cs4QR|j3L3U)}j-AiId&&^WDXSzuz1$zdn|@I$CnJH~&am zl*#b!mdM&N>#8E-`h&5`#6NGZib8Nwtz%pVI&E--v3Me#l{LG^na|3dH^t{Q`xI zzr#|srrM})vKwpk7(wgCBmN?R6_?)a1aC1gXsI0gnJ=>s^gj^prC2?Znp z0Lfn>`(>(37{)EEp#zX?HCtX~b;HOzGP0Su=43(sfC_*3XRQ_i45s-KyXdp^vM z6ny~X4^sh?QYX^nXQy_C*#u6{;>sVgSeXC|>z-`%_*%cgoTFzN%+4yQ!t?v1mas5Oaiew!8~t8lz~CuiE1xvU$8x725?T}16q{}3xp{UO#nRs8IX5d z;z)y#X_CQ93gaXGhk{O(=auR&ETB^WfQCn?cT%%~M--4m7X4!?AihN?g;Ljliaz`g z)nD@bq2kkONB|&$#?Xwi0F3^pPRsx(?ovV|TLq6U`_dPK2huP=qJ}uo{Y1n7073)W zUrO}{2AKL{2r8`th`5+R66D1z|JicomxjPJ0aEp+1K_+oua5K9(l(aDIOK(a0b&xc zW{~sdiXQra5BDr)>Wd+S=mT~w{NTVcuK&Nx)@I{=@({zXp>B%T^5 zd3Ln))hV(eD}jNRMiQ?~BzYE+f1Dxaizpc6q4+>B1^@=|h-L=B06e`? zU7>qz{wG?3mutO;3XB``eamD1^`(iq;k=~L>egtS3I!U_sLq1C$4$&uN`gY=g;deV zGliNnRcFO|7cOHYL6ZJRH;}rv{{tQvy#fF<0qFpMHcNa8@<)(1G9}@Txfnhxbt+1y zN&}gWz@H9)+q88K$zmh{h}kUkJ@e9C-$mQAfEZ$S81WGX!h zJyQ+yY&nY&{Ix)QF=sYr>kHjQ_4y6{l<{1-C%?uWD$6Y@jU-z_k&>)`Q>4v8#)DE5 znjQiN8V9w0NXGnwKb^Syvp{EO7$eWNWzPlx5Q9QMiN#?4x-!L*7d#K!Ui1o}1pvT1 zDc4UtAxMnD^>a2+!z?irsZ`YlUAsxg3gVbmgZh))`3)g6iM~4`)~#Xdmau(8u8m>9 z_B`9BkP(F#Ft8)vzO%r=!;vzgfNi+{PdhY?8g*`_g8#G3bJC~hZ@K{p%nFP8lKnUqbe32L+rvQNJFWLU2*dDPe3zyP)os6tr{V+vmT#ZSK3<=DoRogeHLM z&-EX32ms)B$F{tGWFyPKe@eMQunCM0#OH*9{bL63=Sv4azkZA`$d9p#yGAC=ab7to zJ81TS&jATi2LJ%j0epS;Slsng4qF(zDAtdmY(ThAcE`rDh}b zy2+|5Q!8T%Wwp)Fl4ECeRNP_p>Zndxq*fNEXU3E=`d2WZL=O$3Oz3!(6KzdTz`qla zfLE$N{Q<8a0hYAoW+Pz|oUWj+Clr8L0w?M`&YB!cv)j@gu=fNVJz-CGEVnHj><_xe z^K<7W@}|r3Q4J9{zqcjtU~Bk7SHX>;#HIcM1^}0bi%#_v>~9LO9mX~PQg7sHPw;BD z|9XG!mA>3F-MJ?^gGZbEXWISGE-L-mmU;l-yX(upy0+?vd)xoxnXPR9{_WC|ZD-CjqjQs_8g zb+{o_s^s(p#J|ukcQN>-3CJ-Z?`h^wr&nS44E3Kclaa_>X0}x63~dg3r`y)!vG@7y zP(VX|cZbdL*kxu`-9=9hCU69z2_P5}+6MrD0-^)p8BYj00FnR%+cQ}T)${h!M(+Fg zK!5?fDdeHppU$g(ex&62p@Qf7_-7rw--Z&ycQ9YKy(GLMFR&n#+ih_sbe4eGgaZWd zRb+LM&mJP2uPH8*7n4b_w4g2dgQ>aR|pqsdf| zv}IB19U24V4@<>ROi(eZIhmR1847%dkOL8ln^N-R%+3TS@O0zn*pU1S$)+5ah?p@4 zmIEGK_&KKlfZ{HnJqKDz2><2k6xUDqjFPbd&-`!zAQh|2RKt*yr4`Tk#wB{;{qdc#&uW`6Dm=~V;ujKzC*vHV#K4*>v(>J*sxu;*uz|#nk*QKS=FnQI2 znj@?g0FZQ_BAbE#Q?R>8iGtYk675k&2E77*Q4Df~nkxkW43qP;O0NF||6=|O01TMb zlR3I+r*^g9xYnx!0Py>y1K3sI!P}V*fO1cu-JxWFSE@g)01re0?9SD#bIM2bveImY zJ6#3Z@qb)GZ>Z8MyX~5BpLsg$+?EWVWwcvvIg{|*Y%JjVf2KMJBp~~_&Gv6aNQ{DO zqfCa$1GrH`MWzIE{TGrRskn>5Z%XPTO?U6Nr1o`FW)J@i08$Kq)DZjw6@+qBs_Xy& z(O`U+G&~UB-W0oDLtrFx;Gh^Dq^uwafuZ6{mwl=FKTMn_FTO2b%AS;x1EfZQ(*J+P z!Yqq*#z_h0pbG*I1p7ZwCanSh0Kfo-5a@q6QuU_^kdS~)U?#v|z#{;l^uId4<+TN^ zuP<(sngHCP-(f9)w191M-`PHood85Z41|BRcR7X-ECYXVY%{xHBnC^4K={EC0)q>* zGz0jQz{p$2iGtyQSLvB-NSXs_DnJMD@ug#*UONc|^x3u3tO0*@>+;9fPkw&;`X|@U ze|&lW|L4UUzd5j^&zW9pOfR))zRM|yFb-teT5?!rI z;6z-jDlzJC8%!9~NwW^!LB2c_Y6vhWRLP3eavpHH$3T$xv5y4bvSxuH2>;Q$@QUvw>C8WW^V@z z!2fZ7?Uz?q{{6vjEPxRI;QjEI^CM)$|7myQ&(@T@JRN0A$>UXI6?1KDhx9J+pA_f5Ur^tIzW|PH~ z&}s{{x(b`UTEpL`1pyT@iXN}E*KHg0xtfjo$1ZS%Y0tmcU(6UFH3=vcx$ukF_^rhI z;h8bP?EnKvLKz9r6YyDK|2dZ|c;Okx(g2bnR>s~KFMD;g_=SPkbA1sOWbU;wf{XU?IHr>D)#N=w(I%Y~!|jkz4z ziP+8s1{8DBu!s)T+oS36)q?hV*}Z906!eymq8zL3?td zy}YF|TpKYL=NjVOm4ic#BL&XFRpaZX*Sy+UzsaTaalbaoQf^4uc=1~*6ScXH7zy&q zAI)YVATK8uGD?%7PFl^5481+w7Pkak23xG8Y-DtxxxnMg)MKg|G3$%){PQ>#78Z0l zow+}LTrzJEl)X&uQu0^IU#y(4c$J*43x9vPmuidMKQK%fgDjKlKh>W;fXlv^2M~b6 zL#i793|!e_ZjVEp2m)j8m;Wm>MM^t5guWc>NRCLL#-4Cqz_2c4SZK>w?ond-xxK)_ zO`j`2gwKYAeLJLoo_9~gyCv#gpXb<8=-6H2JRX!E4x1(|BBa8v)6ik~Wa%E|>@r<; ztIynOR}ubxq{x4@EO4XTeJN?BbY8A-pDnSSN#v0D$jFy-r8Yz?42L){4ipfnki^2= zsE=are7_-v%RhTwc>X}n+#&d-PAL6F5LjyDE4ji+8lh(~Yio=?*$}}Tf+{a9aG~+% zSAUxLFp#4@#Pb8XgvQ9Ttq)y4B_R-VV4{Qh_b+@PFp%KQ)SLjEkfz7tG!aH0da5J# zfGx0AfkPNVJV22_h*+zL3J^iT;)uL3w!>Z>tPonDo)Tul7=nrwu<@!Fr)pjp5h|c( zM=Ciig}sCu1asg;tuIg2ys;2Z2$2;-VC0)n|Ev1nTHf=*bk{qZ=DxVN=O=4Mf3{)r z-5t{}E${#3_J!|lUH0LD)dWUH>c+9}?wn#0fbBCG08$tL&kxU?vtQpi`_=6;EChUW_uLOp zUi$w2Mc&z1VXl&A6l+wqK1+?=%=I>*$t*J|k?}CAtk4PFdYxTgVb(GmsI=+1^;6lQ zfFjvxjEjqPVrCGPiLzLzQY4LffC0@rEh*EfJYkEg%2Q=?iu9T?qduXBLDKSCYB80V z4260v4uf$dk_H`+P)3l3JEzg(Vr;xUCyyuoAf4aH#{r!EPoSyj0jV1qn zXT@J{E&2ZD;%~2F2{-orrO~fX_Tl~c_Tr*fCZf-FcrMl3ca@tq6JoK!M41`YWXF_Q+_XyRkW^U^{ap4N^hzEud2TUlp@U$Dn2@te0dUd)@r|X3 zL_PK{JDOVENUmo%EZ^m0p6Hb#iywLLIQ+ZluZ|Ik>$8_K6AFk1Q(Q@?N8Iz<>nQ63k=ydO@@|F1vb}_ zdE>9HTe>qGLQRA?6-PF1@x*(@_3E%J%Qb73@a@`)Z7?^00S`I5Ok2F{J}FWGlN%Q{Ge7vW$FC4*Jd}h8&ur} zIUZF2z?4V3Az}gpuzuT9;t?3Y9zcPEdBBo@VwG3DC1~9q%GnsQZ;V=n8)(e9FIT`uOar-V%n?*tG>-`>T;-7M672k!#64jX7NJ5aM2dVoK;>--#C>1l;|@| zDkMdp03Jc%zC#)eNWdrfiIrI%8fGo8^ zCXELWO7IMX;GKndl%Gjj#9%Ps#okhwA_mAp5j0TxU{IW=N0Lv0 z3PTmo3|9aE*g}8-&k`RtUPI}B8#jo>t*int2L=*|iUbDUTs8QsZS!AS-uL$U(YLS$ z+BWaym3?#ozuCF`{k6e4P^XpsZzPfq#%NtAu9-c3*pQiLn0Kh_kSPFaMJcoDA z4wqpY1*cJF1^bowQ^L>GyNs<4J!(Y&px&;lv1;S0^irb=0N{QAr=NP&LjLdy25`8A zfC>Offl?k-$ViSOJroSc*UBlKA$ew0C1dv`f@XoFBRP2$D%eE^4+UCnT&H_B4S(&ffRBAiW;6vblZMf*gWeq=B-~P(_`j^*Kzp%LY z!Bp(-Q0~Qc_n9Wo#jeQh@z{&YD}S-AvMyj z9qA-M_>BemFN~l-v!AK9Y)=|j6&R8Ij98Q%hO8!2W*rvj8a16wNSP5)XGK+640TIY zs#>+Y#iVOB>l<_`x&bm?cr90CQvJ&`@}yS50|yM?@001sXvjMha6$Wwg#CR17u#V> zlJSFk>82mp9#ybSj@sfFIi*HN zj!5y9sg&95?&4D~g!5TKx`WX_@_%8^sZfd>^HeVU!z@O&z{qGM5k4&q-#02U)ISpi zKjb*hJV?K!?Gu8D?!rQQcC=CD{nP^hblOUpw=#r`lqfeSU#)j9ujmdoI; zE@>@~RAUtvbLLU^E<e5JQzN@Ip6NJPMsmujB!=glRWr3@1){pqxU@yVSzI1jv^p3>u z)7%KUCMDh%ww(xgvII-UQD=&;0TP%Eq{ahiqO$P_5~%>lZ6SgH3?U6th^T;62awYL zh#w`Ye^!>rlab4~V$_;+TtL|T!ghSbBA@FbqFRIH=dKbrrvF=F)=d#J03gkNcO+N` zbL@$`cgNkS_f7i>Z3pu7WP}Y`4u zmK6Dp3{*J)0M~yGUeLJ0Ny)&tKy&B-V1Xn6;KQ4hfjc!J(F7m|62ULIWHdg*F77`l z{zoeUl1TJHQ~uMf`OkF}KFcs5MGy(KXnXW#g@?O875_;9qsm7&00!JaEYuQ}Jb$SE zT>tTh-~lj@IsoPb644|bS_*1CKS68`w+S3#5#e?_>BNzT)n7yfJOltRfWzG%06-cf zDM2BH?)Mdg0nZF10e}aC$)^|?&5e!6E#zgt@*&qy-D4 zgf2Ozm4%hrK}>4pnYnTz@G?0(U|NN4jYK@0Ymu?xU?`nDtx62ENXs&+8|`{F42A;s z(OmoDxOaZUvOI3xUFSyz`plB*pKNIQ>87S%>}vV>w#K)~a9>vP)OhH8tL;p4&W)kG zyOa5^tg89dp6=ft83q7wfu{O@cWvQcZccx5dE(2ngP$GmCj9-EtIKfydAi?sv)*;A z(vC;oqNsr@RIfqNq|2@~W*25<6w0$g@^qhUPFRx-6~^#`X?e9q-e}S`TlCQV$UPYj zmuqCDFh6RU7!j*w82&Um5JcHp-F7^GsQx2CZ>Q7R?Y4Ki9QeVZp#mx%yUxEnlxHda z=fPkCPf+goLI^ak^3f5u{?twY{7>pl5gWi7Fxz2bIRK5&+yskbFOP~D08IcL0Lj4D z>S)HjXG8vlZYJ-Jfk@G4q@YBjK{ihDiWyx6T6>|+Vt#xU<6LES2Bw>uIYP;UE`?-W zCc4r{lX!_!KqNqt^=o zE0Rr2p=XP!gU{lKnC-Ahy0kg^EY`~CSF&w-d#)$iT-HMMw<+vieTWXAF5XF=S9L*M z#^c%brLDVnp5L(Xe1WgEzNkMDs&bPxN$NnFO8(#eB`R0-=2ezjqXE6IqiSST$K+&r zdzsmbZG%gdX_d_}%P^(*F&W78E5afIM^$DRav3hxcIL)h*t3MKn{f10FeH})a!~)6 z|8Ub!NqWTfUo8C+7sC%pr2@bLNn%h*1tfO9Qe0392JitDagyAyP!sXbjvC!*)eTw2 zwFUh?ODod>-73FE0sx$!IZ!|V00RKg5J-dHdK==tRFlp~nS?SQ z{y*7tyRrryNf*X(w|RXb2^+x+HSW_zmP=*cJ9Pzg091dHxv&BiO+Za90C1X=$J#J; zAMyw0ha-W3kc3v}-m8xi^8x^*V!s4I|9~;TP{Cj9ED|?&Vk1+ezf|sNP$VIcT5X&p?cgL;dfCN^@ooP1zXf+Y+<3nV0=i~;60AP{0i z3{50P!HYyXm+JAB1Pho%r1JVO>AeO>7 zjD;Bt@X9muVT|FH7CYnVKVo88YRD=#z{qRsEJ)quQ1cBo4OJKxsM4gYwx~OUIcWbY zP{P>sEDeAb0Du?*8&%|+R~WQX695auKOW{%{1eSpWd{_3PV~v}xW(r@lb{Q%&iMz7 z>n*;AIA8I~Gy5?F8R3zht5m=X73#!KMq1kBFn~sQDdV-dIBq{ec*FAgU+nDq&A!fG z?`e5&PxG($Hodp4_NQyhURW5rIpDq4=f5{ubboIAjkUGE-PiZ0V7JcDA<0?ggMhS-b z6dAc187vTV7DJA5MRu)TgST^)UQM~Dlr#Mn18}_xpC5`l06^()bJ<&RtUUpb@KMk8 z_IMl}PVpw!|5~%L(QbW=%t?U(-H1U85CTaQ5Qi&2J`mEu`Gn%>l?IbC zgR2ApFoR=@_{GuU=Y|UIcjE@?x?1nORP8-cY&#qZ_ao=hnI?-X7nfC38V$j0Id!?j z1yk-VG1@INaR1Lx5#!EgR+gFxFo(J z9FnmQLed7KOB(>vLI8(f7rsSY|7B=2v%m~EAMi#sI|GMmP=QM{6_#N&zZ1Pot(9qu za`S47Ys+JGPED>;8z>D|cGe8^H%>&HMdtLJuDY?U8;&iTyQQ|Gzqfly*im7dmF`!X z*->BykY@=u<<7$1`2(iH!WbUVItVU^4k z4Ki#bVzR7)>@3Dpoi_cXKWEsg#`s}Hu6cQ`esNF>{{z=g>*=aXszghoj6 zjesxWZVq6e>!;jP_h|wkg1Gww1H4{Ox}!9$`( z42_>)2#3WGqhK%q(P~><^Z{LkVif>eh;A_n5O@F75LhyWmb5?&1D+e;;w56@rKEV~ zz`y`wVdlV$g;@xI|9N#m!z z|KB=Gq31~Ne0T4XkFrd|uVAOi!!N*Tshs8P!dDv+kpW*UvU zcQnUuEvR{WYll?*-`QFB-tM~h_cXk>weqc%g|AHKKRFS)JsiF>5r43t@U0CEzas?r z#MtL&C%(Nr|A%YS-(8u9_vcqi`MX^W@2oxj-4l& zjtz)h)$#(ZSh5Lg6wsmUMuatTl9BS^_W=N-&pph^ zB7YNY~!fIv%0Du$-!*akw3|LsseE5YC1k0=`7ToO!-fGDO01iYA%UteCC0ia= z0ANvRdA-vS)#^eDOR+1Iu=z@n&(9LYiw*z)uw{#2FLXPC$4}Y&2+k*iq!G0!>udu^ zTLPKvuZo2)tebJR5h~A=093N_7kdL4nNUE?0D=l59e{{nBpN;&R!0t1!UQ-q#Z`bD z002g$h;wpe8l;wN4x2M5scO=L+2JCKM%n;KMbl)8?^3Ec{Pv`20lq+@hsemr#EqRY zG)2NsBDHcXSu9ANMJR|6_4~}8=44lKpvtCnIn?g5NKJ43L{}rriR~~yW$uch_KB(C zWlI{@y@u)rIPd9qzsFgo{ zTvTe(8MD=vS$J#X6{=*?i~5s)=m_?i0q_Na+~+rzTA`5EyQFpBhj1kjD}&yJ>puVh zJTL};{RaTtDls~ydk_jyIfmZp6l*$DWXSdEEK*;lJk|wn6Tbh5msb&95!P?Xx2+Ew znFLVoIn;eg@WU%3UlM?K7FbvV-X3!-_34MK*)fe;aD5LaemZ!+n%t_)iD z6#6dIMo4={SbV)97h|6r)$Cirvx~!rf(5FUtl#pv{=@i7bzd6)0s}k<_8(fGX|R|8 z6Z9CQpo_|$s{a3c_m}p?p2nP+;x0Yo7}^o%^a&1-pkNe3_>X2J^_U!88^yt%AZ z;)1Y=erNq4Mxng^awBoUWAARAcyH@mJfeTKeKErT#GnAcA5X0P6S&7F&1+&C*lK{w8R zbxSOWeRt=|YdaPX`86fkGix0B3X7U$r9SShPE&J^kpm0V<+ruD4XrLcXVC9xwrZML z{xYjk^f$Y0>qGuq%nUO}*01PlWU@NWNX=pehsjD~cB!{hp2-TeHPT^(PX5 z(qCsW39!_t1pqJxfC7U50RYGaV*nu5!K8yZ#9R>;&v|KH#S2qOW&PqQF;J zSKL~a-yC+t3%sS(@utq2sksw7+8dXYgxl@9+`7W1>AvM_mh2g5TWCqsENkq&ykuRg z)lq45cNVw1biq8G$CqtN*rF|w#*RosSY~AbO_7Ro;a)EYE*$Y@%tp9r&X{4&p7{s> zsOAy?uyDt;0N!7aKUfunu)(j{7P77l z+Q=-W-}h^@L<@LCIA~@dYj&+c$qLML$hJ9ZIav;EQgEeQ40|b;7c1Rpb-4R;iRK0k z0KhcD|9}B>021{tVZb8*00tm`V0C~2DdtyF0o|?Jy|iaruU;72oIHU`8JKJTz@ z)*Zh~7tZ!TXMqF&Viep_00ks<0AduJ5`#*9a8d^#kwTPy0N|OvvIjj0FyQ%NQeuQN z=*yFh&kPBH5PJXszzcJ0UtQGr_R5Z5uI_(t?ch6W2Y$Y~kHi=PBY(cO|5uw)1P#8u z4n}C|-L2EV*|YL@hu3~^aQTNvR{Y_}s*jGXp${M@l9;eRpV|HCg@fclN+VwYK=OWI z67czzlMDu=%RbegSL*(w%Rc2E44~pu{UrckF&LN7AD+0uGQrk{NTp^bE56lu-8hYy zlu`P*{^RIC_3sJV`hvDLr>4`R@AsHn%u4)!_!rV>Gc-Ca2tYYhe@2>u*VZYJ32_~! zEYbuNDwWXAh(Xyk!>b(9AJcM7(btj5Krl9C6D*0Z5CSHiw%N$=L8h zutVdpm#}k78<^|<@nFxNj&}d?c;Clo$38mT{=x2spRO)`ekyo>*mu3xf4NsAz`VV# z{{7vZA0Hd}{M6Xj=O)p8a=t!4{`v9#&q@B;*YfL4m2WOBdUhn2+{dFO>NNrLgj?5Y z*Pw+>s?>NmvJ4T?sSxSq;)$!I#LG)izN!`2W6&In>aW))bz1l?I3h}aNG+p9K=Z>6 z1Wf=f3p(0%hqcRL>$F>YJkItU8{I&i*$DZ=T3of+RH9Nob{^?MN(M>?Ai{x%6CxQH zttX`a)WcN(;Q+e0j_W@d@Z#KZA_2ev`hYhUi7|jM3Y}lZH$K^$hZ_XvPG|5=2Y$T% zZ9aLzq$P8_D#tewEA4c-OU&A!Ruhz&aL&ooJFsZB!SgT!$Vw+?kq*GC)KSqWwcO&l zstZfFOqqc}G081T6_Wtb9FVV)o(1hwu$|!RDf9%<$TPEW|JP-z$%MhR%_-Ac=EziO3i)h$0 z)dcO)^4$8~wv|&W&vj1jsVW}u%Dg_geWQblnDR1{v-TfyOWf8&qM)Z(9m>75 z@hf@5J(2?f04!&5B^TJhw4f;})Spcu>AnvJ!2U!1^P%+4qw7CKpV>0s0vPZtg#^G3 zNixt!s?f_dWW~gBtH!UCa*tcl1=7cw1O@cZ03h){A|`&Y45Lsw0IEN$0Kfp%U$h84 z^Z^z00lYE{paTE{sQb^4*1kAi|LR=f1uZ;5mo#(UTG9T_>Yn%3_46v|pcS1YN4~pp z@b|mt{%Y&UPuCCqcGr?$?^yENeXIX;V$*N-E&1^1vfm$GNfYqLW9tZv{D`Q4Q#(I7 ze*ggZ=-eLC0z_cIg#%(5oDzNV`e#}Jz~J^-&S#iH-#+{Gy^B9QeT~vDRey^9r-(1wCXz2}@`l@oY+}HKVk)A&v>HhuEzK_m~ zes-e&cY6q4E_t5o|Dg9$hv!Of^yvk)T>pQ!zxR{lqmKaKyGv7FoEf6}e|Dtnk9(Wn zU7vhyQNfe_-m_JtpJp!e5Z=o;H?vrkMfJ}oH<$m4v(gdiad8f;@?k*`yO7C0v1r3y0!0HE_3%=M43+U9X_xc*c9X$TsuW;XWuQ8;ZN zoPF$4OYCZU!F8@4y@jaCUYe|aakAo>k;F?=Xh17pTTuJ_L^g|#ottKz)8sP4u2 zm9Ne%dvjjmr_<#>T`Z!(UYIH+#_VZiphKm%T76G;*zUC3PBnNJ1uP{>U7^LnWq&eW zJ{e&dSPRKZrd33v4=Oc2tv2NXl>TttmsMMZ5~_zfj!H-H^(41oR;*I9nk)Ep>U)a4 zVM_q%PC#Xlq?wXM&!aV6A=Dw)B{fbE{Q=dV1_HibuSJ^4XaPdQt5SQ}6Q%=@X>}PI zhejhD(-Z<-Qg?h|8j5O&-veC;<%yp|a51e0?Sm8@c3Me3fK;)cFwh1PfoWTa$L`T4;+im0AZf6@C1IDStojbQ`-siXeTjuuk)Ku*{ zb##;|vA(_5`a)G(ZDB3$J>}W;^X6^c^u+lE3->hFjR&2@9!spaux;k>in#-;qsA~o z<*wrDsKM<|4b+#6*esskKRU%>vuAl?xvo46Bs>OZNSEkJe$0~eDC~ZTvJn?Ndqt=q z%Yj50eHl0Uw1ClsSp~y=%-w|P#E=Jp1(W?r2Rg9^!jof?1*A(O|BH#gmi3rQOCc1X zG{VAC3rspprW!I*hds_&P9vG`6K=zzfN@PMb7QV`XNh}ru9+yi$8$1;3xp+jDHcH9 zUHPtExz4AnT{}vwTMO-*3p`6g&NfSWwmuo%Gu9NC5izbU(IvE7(&k5;TZ$rBM_?#I zPFBDij67of@S41EH046BgU={%KN_~v{ zFCIYx20>S01hwX0ZkQzV$empy|GYY_R59@(|9}$^fuIbjRWMJkbNvS}T4F-ttdCsl z&S%cUNAe1|!gH?w+Hi?r874x}3l09~82B*xAv}Oj(XfZF#u2@kW)1XE2!^sjDaDjY zoN|Yrv9zo24=mR)kKRNN)mRYxV&cD5T;TJpS zez|MGxBHjhIlPLj80J6h00@gGC>UN4YJhuZc5`kYqx7=_IKa`Q01Snw=H!1N2snx| zfB})}40soE0a5{A{@i=^>A%0oMCgdPL(2&0Sty}DT|D*2UCY~@=}qnwh8u7_+ryF0 zprhSuq599r4^InPdqXy0U?6N82s=h|{KIh%Y9?kuI38mP-5*3Wpr_EQ ze0vwo!Gj|MzZ{+Wx8w8w_w(}}9P0b^==gU}_ubz!?e6Br&lVQk91K0v=HFCoo8?dK zb2X2*uIqZnYc5U_)qj8!=tDo19G%~oZzSK1w=7TY6dJMzx=6kX^q zktxtv)gR_G006I#i|5be%6CyCf&ec5H|N*AI;;FT%78_U-1^^{R{;imw5;*nrH%9i zZ_h8rAn5w6+N-@e*9XE^rila$N3haVU8&8LXL8Idsa{-E!hDKbo;S&e6P*0JYYq)q zu*tYTB~8qHG?tD;@}{K1=b^$<&N%Ds;J zAV(~h(@_g+VZu1a>2#7A$zV$RMt}rkrKmw#3Pn|-ji99fNUR2nk`!n5GS&*bI4SVrsLS(GZln zY6dIXhpP&^3o4tks=O(QEY*>RxKk4BiBpjxdo3n@U`s-3=G0VgiYa8V5wIgEm{X@t zZl{wHx!|kn&mX!NJV5ls>PPcBMGmdBU_4U&i36iAcBdvv_OBKqpJhm+zlMp?VKEFi zEaNT{0D$w);-G15+`1{x#&Ca2o&~4R%~_e7vTd9V@l4hLJ4?KrJrz!vKfJg!WSwT! z#klVJovk5v`!(*Uu=bDmWR#jRgafE4?aN78p00U-wFkOl>ZJ_x2 zaK-C0syMKHlrUJd!P;U#`U3>R6OFRcn}bhWJ)2?JLGLW=VKMNR)%ZdW006jzQu;r6 zd;ffLgAtJNa;r?@Z53S;$Z#&0C<7|0KZ&3O5GQOpiAf28T{jwXFfl*XHiAC z*`>qvk3mq4!`2;kb%mT@07M`Fpg-amjJs##`ltCb`$P7=plu|}kEKD6*WMR!0RVVN zv^q?99b*qC$8KVI3kI+arb?m=fEY^khyI_Zmst?A9dztc{qZzJ9K&@jHBD|gx@22& zg8WZ`fX?4MY2k?pRc`x}b>S;>8{XU4_2ZF|pN{tZc%<0(Be?BuyDN8p1ptcqb8AVn8veX8v+T9;D%JqFL%+MQ>YW9Z zA1tXSEDWhGsB$=)gRylDEnAx#r^kbkZL{@u z#>zq|F;MZjQ;W`)TPi#pN+-2mVSw8DO43U*v9v59C&@WN3ev3ExUD~AYO*#^rV)y+ zgFb*VEi|DFBc+)NPVwc-vId|g1`z>3atAZ8giAHTvKJw4YAQ=zwhL5nOyWosV5zGt zNV(vHH^LE0lQn}}LnR)1?rTYW)uSM5M|{R}*U=Fi$Tdu&^G_p18p>1|DeEtO+UrJdRC9BYy{ z*H_q8J1ftbKeMQIeR0msMblrLJ9AN4M~*FI(5JGI#`KN*yBGIq)LZ1NvFAuP@Ph#W zafe%7_8IS(6F>qXgUU5W0|3%=$7K(jsn+_@&FwGslV_$aevb$``JXV zTxyG)XARIK8(`)4sW5=VM~c20`#f9#s3ovU1C|u{CK&{w2|yS2YCC*?x`DV5@U>dc z?w1J+M9en^Dg+O>@@sP;Rl5~E^yQ8yt-x!Y#RPu6+L;R;2pGt{9@?mI`6>P41KJe1 z+)OxSj;iuf)-}1A=#7CK%?s$E8w781)SD`YQn^Oc2Pn&+m%6jB^%uQPn?7B1Vb_Mr zZ;VuO@QcPIj)@R;AA@LIgK!BYF!HVW*g`bCH6O1~@eAUx69xcqilzfl9?>7K8~${| zD4T$9w$FWk%?R{R6%~L@G!~(nG2Ak;0q6jJI`!oJ<4@25e0y};o#WfTJF$b}PTfZs z%=!M*UI5^?RWKZ(gUp3^uVRaeUW}O!d*Calhy=hC2mlaWm<9l{2Y&VJFIS&EFteFe zP?KBN83|Q0(6{S}F6j!`SOR0#rcHrdzyNoDngC#6EH^YWFHH5P1L#66=y#~iFvLxc z7y)S*Q15m!B?kaFD1`G32EtI8u0RIm?~T7|7Q$eFNMTZC{p(6e;Ll!j!%Zjd!kv`J z_PECDe4^5SX?E@V>pSl5n|^;^_uakiKOXEM$MN3Y<`36W6|*i3MlK9xzc?=IUjX2X zCwjlz*9F(}$3ruIJ~;gErv~rtZN9g6+Bc8ae72(O?Xj#2t?mPrj`jI29Q<+aEJ{v9 z4aZ#`$pW|j924qygB_C|Kc5PNk-I+!)2)JZ9hZH<30+EVI(8S_>t!K~_d{pE z-5nrW$43XyAM*1Yn>>t_8r+j2YCwW)fHJdKL=+hOJ5$T006lAEAf}? ze&^N^07?EAFaQRy0hT^sLXhCCg|#0ntNU;{u`rShj3^8fX{~!`d3Ac}&7mUPKz9}g zhb;OoyM=Xjt=+kg;$Cj+ejYp+@i5(ChuQ!pki`o`DXoWz^0YWiTK_iZ`s#g03eqb3Kr5l1~YrfY9 zz)gL03kmvXS7Yg)kbjdUyrV1F7-F7Js2T-dxc+GO)C{YOJPkaHMbT z(7@W-x|!u=!xAA-IaHR_6m#ZgIg4s?n`Sl6DYCk9Qm3?g($-Yht|;$a($ES!nAHGU z1bQZXEUbx1%gUc|~kiwZnK={T~7VuhSpM`j;VThAhWe zlm!hs7!;9|L}(TKzrvgccPdFGbr|OQ%nL%6C1DHvA5va7=iAYCaj?2(?DKSmWI{Xv z-LufOy)3Y)$h$4(*cf-QG_FpE^`8j8h!9OYf1;@=&^GwW{D0U`ifM#@f3fpSZQxX0 zfDzEK3jZl0f17h<W|)s~rF!=2s1W6bz`+uRI|@2tEdvH$Z}X zV5&cdY7PLX4q#IMrF8%RfJ%y2mTp!ona<4u{-Tl=^f&?l(Mw!G(D?n;fZ-E@r zB8iM2sYDSbPSMjV{y0*DJeb{pv;t!_Z_H_U4N3nTEJEwvoGW0UBI7?=(T__gK5=jH zxCmdMPBj90Z$%$mppVv$eX(WUH`^DJ6M!J#o2PIFUBmfm_loZiu7?G5_vqH!hc{so z_ua84!2s&}-P8N1{>*eU9c8!X%;7B$J zyMeSMM^Xa3XVUJ#1O5laQj+StuE+BoFAP_{y}bF$tsQrFw*R=d`>#i)|9WKb&hBO? zKqvrSo0I>_?1Jm_O8&I6`hyLP-|iaxeqZZ)MU=riO(H$)i8mt$y1_6dXzK~!{dZ%He%<=tzX^!ardN~ zVe1PM4-B9QV0Y5wayC1i?QRd--L8OdFd7+(MF+wmnEv(nCS@Ax+&2ClIM^uhPeJuB zx7td~mPd{^MF4;+2*F0^0Lm2rK>DPntH>9*-QxzjNXS2LEt0JO&B2@VtKVBz_tC1R z50*+QB>4dV03E;^bLyo7m|o1i4Ex`i&dl+6xJ;kXo0ao;ee>g$W=yZvcR(L-M#x5pPly2FQLQBZD89Z^7c42BI(!CDGoENAz#{GGx7?>@}ct zGx7leoe{o&wmH;Z+CAF8w5+H*C)hC9vS4s@OGo$0zJcW(EfW=a?Ig|@d5a63vHDm= zM|rz5)0q5kQ++!Byq3|?@}_Dp3kebwjBL4uG=;twzGg~-W9p;)RQ$9dn*)9-(>6et zBbu*&8vdyHk2;c?iRMd-0igQJ{3kidpPmv*m=aBziZmBLDRjTxnd$uw{g6|?IBLVR zc5&FWD$5G%;C@E>n#mC7hf93!5G# zz^W!8sW>&6Tnj?3$-dZHqhDmYB-qQx=@sc;WF0097{2Zj^`0Q_mRP7H#^BrIO^U);my zHgOeuo%GM;1AbO7(J?0aYV^v^cU`F7{h?{+N% z1JH$$4e;RD<}aU;C+vjp9^OJmm=+no6O*{_POu4hT2*-!1*0%P69zK{I-x9pDEQ<`m-< zfl|zt$+em*HuN5pUmVp61Ytd-CNPSG{mf>V(NI(;t`e-2*XG#I^c257zxL1T8t(4s z6aY9p_+WoOcl@sjbKlhX;kt(R*2?+t@#c>=wcOi1dT(#{?VU|O?Crh%WZO4S)_uID z?A^tcuk{5lb_Nbsxt2#veVICl)OqQKn9hhGnIDF_?@65+)Tac~ld~cA=%Gg&*zq#7 zfy=}yyO57(J-|eZ>pxU%Xig>sYbL6HtJBpR3PbJh4*L5dA*%m0zYoF>q5;x%Fg^lE z_)`4t#6wd0836$UbO7P=J$YIOAOP^jY0N|sgEkwR(YA<>74--{9N;1rRNd)`T z!rEI)Yd%=j_|d8sEa5N$0stfvW>)#j1Nk@l3)$CU|GOaMo)rtjHtmUJtt_uyl3#!< zttTcxdO23k&CN9_m?Gm)D(@ z85nKoEsaJC+yxDJEfIH7R=B3IW^kabr#MWodpb^~0yAmpWb9z!z(vNIG*z`kf{2ej zCV^=D))_iu;#76_R|%K@RsF^EUkIQo2L=G3`b&zWF}+ZqN{fo=Tc5|?W6kI?BoRwJ zCxT_UVPV*`CeKAPE3E%~s=urO))e{H<~jg_J;jdQ1-7ROoB#lK|53NKGCk3o@Ov5y zLMT}Xq1Wdk(`C^S4Y)AoUYqM?czB{Na-!06vdnq1*3SqCj|WVixztnf0RVOY$O2>> zq)mai-K!>mA&5OsZXNYvACCp|2rPe|Tf5#w5oByCL1`>dWiwz-m006_qrZ{6C zuKz+>g(}Jgzq{acrI#wt*W?>1NKihYY7flEDAZ91qz#AwC+tF{`a}Lv*3giD*!rrR z0J4JV0FVbW0=l)Z{nnx$3O$#7gu&tm$2NFr*B|CKG6LdtHoy#m005>yoLkG$hz)$Y zan`px7T(^u7(oCQq2KIYcJJWYZ}+UC1Gsm1697OHfFqC?1fAKVuKzqT|4}M19@+Xb z3*vQ3|8Eg7Xa0Wi%&*T2K}ds#W9$#mj`5rqe?E7byZ;Z*pdvp0}!gjX{*aCiaX1_1^z4x$f03NThk!dF;K{NrADqJ!B%$U>?QKp^&T1XSxVbKnRe z6cBSz#J#A)@RYV?;;2Y9L>xec&4%YA+)$7}7fMNuq$8h9;Qr)FN(KP1lf&*16j_sF zKS-7*{LZzFclY$*;vm(3Uq6HX+q=8I-qrEtj*ic_wST&~?UPNdobPuGf4jZ)(~Xr> z|G%uMd4GA)A88Q=ik|5p?8UP(+m3psDbvCzCRZ<9PrkJ@A_g5NYEGy615x~hGXIgA zyP3%k-p={DG^#%@3h`gB!|9q;aJ9wU;&HdS-2?G>cP!E!4t4qb9WHmX-2qjU4*(}f z*@R1)Z!+R~gb5M{3@A34A351V2atDps009bZLH$voN83QoDY{Ye}Lvo;@}&=002O> z0&mTc(a>Aif3B>5Z*}8`E1Sg)LUP2grYe4IR^h9Ic>uuSV&{gKV_CLuG#moE1`En2 z@=E4JvpNF)0;{{wk;4vF*$)_!6XAeD%~T>Uwa#UhA}TGC9Zfcz+WaX}G*vC0)PiX~ z5DbEpT3DGhP>X>9#S;~fNJ-NSqGfh3pQ{b-qegt+Gz$mJFF_#mz!}!K$;UW|sUMGO zX`Jowas6k4Pnn*aIAx^cuK)n>^%?goS-_-9K-&t?9{>XxiBtKG1x_CvQzl3(00^9k zrQ6vkko-k~=Ex#JMo($d<)m2-vZuA8r?+Y5%EjwfEZ)9g z=GMOESy_(KY-gm_Ulq6bi{c&q{p-8C7tHGEo2U#7+qKLb?)V9b&P0&}V^qgV0BXMi zNO4Gou}Z{PYBCsr@Zw)a|6=v5;Q^lr3u2NLha@;PC2Y{=*fCuZl6AY))MGXDWoGnQ zQbt_*d2z>Fe+FBu4aMG##cq^ek7rvpW?2~EY$=OvDU{*Q&OFnud^6dW66eDm z0PvtvB-QO(9ZE0-ntd#VSmyp6B~1Cr`xRjU`{AxQPk;oaEdU0zF%edy5(+N>&=BSN z4*)1f=ofH<=*$BN001@fQ5S#3YL!WmwhC4$0+SnH*$KY5Di2zB$ zT>sGtGZd12z!*}^j@L%(X#%hY!VTiaIDJ6lwVBmO!vFww0Qf^73S$Y3CV&p$<8_0d zZJhDtwpm|noBi?Tu|IDb{p5)`U+kR!{nKmj?qB!a{`I$?e*C*bo3wnG-B?3ET>sJp zsJp-F1AqbEMP3-gpZjMH{dDfwKQ5i+FbLvfNDO9&%!*iK!!Mlr<@}kyUVY}lxugGn z@g(ODo0s+nEVcI3N~azGzyl5d=mGFy=EgF06!-?fZ~h{uK%*kFzNG%`eLqSAX&@FQn%X1ujy;@x~FBu zIGw=&-2h6ldUgi14&3)G#(a>B*^$Wz5=;UBU%_Hx2^<3eE)5pHG+Y7zVE#6W~YQt26Vi zjpW=I$bUL7b8X1HBG)(I_0_vQgGH62@xt+FZnM{)o#`(06h;juQ6Z)4000x|wJ>ZS+Ky(@Tr5sRVH9f$C=(|H z1O{CiY*gM4jNu&DAB6k24m{?NlGh=BsLS5)57!64uqmeQ- zuravV`+L1;eW4^#xcO;|oWY^0)`^zEx!prUZG%JIWB2;F4XprcgTqzfqm_PqL^vmEd~^U<{Sf*H00{N7H4XqkpP!@vwdQIr z{8HIrd2;Jl^B-0HA36dlu02*&L!v( zMJ^eQP&v7_bHp85NIoJcyV+kt#m6vCYJG=LLN7K%6bpzQ0384=0@eR=6BD60eSoPz;4$Z2}Y@RJ8&?g4ziy4yYPEUGJw4peZS!`g7}7%CBpKRgm|fZvX>a z|7il41-*$Rc(@wx&sWCkZ_H`AIj{BB(yp8Hn-GHW$T9$?1`7Z@q7?uz1$u8)|Hte5 z|GaMC&+DiEWz+CyTgN`#HuJOXMM6 z9RT$mFpyc$xua_M^Yi)Rf4gw{f4zAAKdwH9O*HSqEC>Lg1CTM%h10)2clM`?X9ySj z>-kfEfBxWChxg3RbG7))4M7%%I`QZaxw<2s={Z3F0A3KR(9wbr)qfx^@?dQ)u_x@Tk6eWVxu)UvZmIY`pBTG)c;vz1;RlBY?;Yspm9Mt9 zeZH;r(=Dxk+1T>um5uK#$-h3!cWY6}t3#MQ1fFdQA1a8BhYizQ>1b$jb$aoqBj0MxHkoi?D0A4s06b9XggB3!s1Kn*$64@FZ^6sM zB`g47bG|-auKXUj_`lB}NW1&roKp!l+?ZSW<^q-hbzs2Ti)sLXcbC?`ySV!LyoT!& z4bS!EUz<~QtuO0Lp<_kBIXx$vir?jSjE8+o3iC&@i>hpqVw11N8Ok*~$SYU8PvLrI zhy@$77ggUCWnMY|s5ixvCqvK7hvB|KpN`*|3^x*zxs|I7ceOA9LK(g0pmhKP7{x#? zQVH_P`GBKhgvA6D^9EgpUavRm4TLXxl1YvCN;D0dXXb!*2Tswrd!i#l3`{7zkRwqQ zXy$a)?WUyvi15v$CN-*>%lg($aWxIlmjM9JiC=Cijp>lVm7Q+m0PJ2PqqLEcgCwBC- zEq7V7BhH-q+{!XnIFOibe>5fazY}0Uu$shmaTJ|NQDX(G`1c{{K8bLfG(bY@dqnZe z@8~qh_C@}Qc!gd;WWdRR#54?r#3GdZ0Io$DItU5;6*lRUdtH`ZJ1({9<00#Kz&z8h zUy|cm6tt|2+SbMFWPa@{3-2upVDGaH_|Hz+TA<%vVBVZ#SrW7N`&@-)n=LWJVKJCf z7%RylF8{GdI}9m{WA@dsLZgPw#h$0DBZn$OM=ON*&+hj~h38aNfH@D3r>hZyP11hO z)P&S5MK07$F||r%k}j3Bt@J`e-o<7y0X^3kIa41v-xj;jB_nlKuZqeEyI&m)pSi*- z&u3~hw|J_#CKJoQ-kpD~EAJKN`<=NrdI%E0OD@h6@$%F}WMU(sslXtTUjHp{SOjHo zIw6C$(iUX#S&H@})gRN))*K#H%p_*f4_%}21f{YoKT+H)uJ)7ycvpLhFKJ$(oEO@& zULr((05P!4{h|LeOn7Np{);_%uTIB)u@qM5i@k-DTY-^kfB{+l+w<^=Yq&YH3Gxr4 ze-^@joG1AK?=R}UHLv}h`5ov3K3hHX&4!sgAwgcm0W14I-8A;``q3}8O+X3#a{EH@ zh~B;Ot37MK*}w6dgPU(3AsawuIQLFItzrmEwcA8|BSgj?l1%dB7zB~l(hDkRf$snS&*g-@ME-X1S@1!LKBpCMncMvKT91=c z?XnX%L(xYx%OeLz9mvyoJfN^84?weq&dk#rOU%|n1Jfayyz?pC{SjVOrR&B#X;0Q? zohOZXUEgOrW_ zOFf~BUE#BB(Yr}!RiG$C_^cd$W=2~WV8~7`7VZdm$-HFW+ZPRY27P_;NL$cLGy+hE`!c7@i$e`v&&XR3Ct$^JTW^k{Kmb2gm0O$jh*#i~--6c&b6%z9w zUb!*58~}J{Y2$m#n?G35#Cd;7{o4yF-k4WUk9lDr|FxO$79uAK91DS8f1o80M2Jr!0@Zl(+F2US%O|0(x8$IJ6yF8B`tKyLlom6mHbmvL3}smMSA zvzt^c3+A$%#+00X z0`{jF0AR1H41f4`{E$p?sMiXd#4%KdN+2_w>4r|~CMgmOgHUW@Az@^q!W@Z0U+T-p zDo)TsBi#$_G6j;TE6Wy%*#f31Orj(^K4NthhqB`ie`bQ-K9%jLt<)2X>D>XHt0BK> zdfS|t11lTb#+w^Q>dV{wEYW}WD0^M2F~jAwigBB;IThDahW=`Ot2A{@c_)|F@1xE%-;%EjBdMe#BU$+S_j>RnE}g8pK+E?zbMPG z)R*{pwvj3i*Aw6WEhYYS#hxwIvCYwR7@ycbERQ+Z7#EQs1_dkCU`B$u>qQFm_`8r5K{*@ova5C0cb~zoqzL_P}o5Ae-XVHTp+wc`9|6f zfTQ*SqCG|()&@6eGCzPf)e*^pEV1)gMAI%@>B>U}e6>6O<-W34ASP*!KvaAVY5>j~ zqm_ullr9V+5KRC_vxgG^(1@We=z-z?h*)d_VyG4vIk%N%0K6de_}-Ep(u2_lzzD(_ z;{8>FUpX)qNriI;Og>l9{jQ+`Xr}S%f5k7JwI(_&b*Z_bIzk|}xp@C@f zdAJ%kcwF55VFWQW*J5ETI22Ua&7z+&88Eda7=WT*XcB@v^^trS4#N|ig@{&1MvEwY zPg~)+(VCkpJ3rYz`1Sr-Kbs+FC9G06_Jh77cNFBcV>eAVCY5=Mc`1tcV5Mq|wPYnhQ)8K#t#( z>AwO19v?Y{c_DTsy@db(nZQK*f&s8Ux%*S@RURY&pf#q|IHJ`mjf-(TJc z0KBuPip)qB1}_fhUmGuasV8!(%s=6=ApvU*;6WN#R+PJxplV=&=5^ z`l~(wyn&!;n3`zDH^Km5*dsZ_J?VX-I{g)~N>AL>2J@Zt;8zpzYeI7*Ew1eWJ)+q zk0?g4BrVaOp2Q#$np(Hrfjc?7U#|ZHHXYOdncj>Ezi~e6--3)S<<^ZwmUY=ie16vD z+8!@(Z?DUFD$n zQyo579X?RzKUm~BR^|f$j#v69{fv4j{T#*lQM+Hos8Ikw6QDM3N_uT!_E3gOFa%L0&@CX8dL-Jz~7Dl){?xDoWH$_!|j6{hw zWhp}l22h+!jGOw3U+yh>5xp_-GTM2mujrM55|IH9mA=@Uk0yXOX#&88Nu$tVf?^8s z^^)wcnN2sxB`OkD=#BAOkN^x&vH(gyV8B*@gIxpw@b2KIrh}|$9Dq&tb!i`0DEAS6i;dxcYpjI#P$bY=&R=__xGPW zaqrwoZvE8#A76O(hv&|Id*;xc(+7x-ffs~0;KQf4jOTdj4O5`-WB1<{bazI4zyRF< zPddUZft^%*b*TQlNfRJ_K-f#-IWWKi01RMx001yPqWY`S4+bbCKxIZ{uX5TXSJGx7 zDeNIJrpRbwVF~Awrh)fjCQ+MdfcP*H39Kmb?d>Xg2A1ur&QEp@e{*p5&*uPuRd-L! zdw|>X=~+MQ>%6zKsyQXDN;Bi+54tW$up!kN|*am=OkZ@rT01%}GKojTsbrI6p%B2?sbN z9>W1eM#tcY?52U}^I|!vFyAr-g)t)w2@70piwTqTxjfaBE@Zo8!f|=2qVrE512Va(z0f+1VKR z=9mEO*hp4P8#m9Hz_2%FIxqWPwNL&nK<44jKy40WIn274@BlQrNg37zq*CH_!(5)y zDZvAbr?u+O;GRtY3t@;o5b8M^sfI2=JkfCccN#L7u-kN|V5To<@YcnvxVA^l4%^gZ z0wdXTGLQ0Sy6}Fei4;Kw^`;pSiwTP0Gm)O@(A&Ez`bS!4ge_jvltkeOrDc``OY3r4 z3d7ae-r}CRJ~HCrDY3V}xT4tWZ!Ya!FtlR*_`0#i0cJ#Ojoc}Z`3+N4kS|9Hy6OPb zFPoIe6bN@uNqp1{fAER`05qUwe=hcLG98-y^b|Gx(M%u`!s$t+#x$I1`_1NFm#N35 z8*pZD{htVBGPhZlWnUCBuCDehFS2edbs_cI5H)Sd%6zK8{X~{^Y0SmNKP&MuM?#|J ziYmHde_CRpJ{dhaeC;7veGw*{_NqztwfB-=G zOML}A;h+p)1Oy#OS%lu0QTnHe`gi8Hy)(b-)`D&dJ=CDL7fEg~)gKJt)(-~o$YDT) zVH~_5H3Gsfn#g#pfj-_eo6JZKQy{Gg*z}bQg0>(9pbsE0l2+i(Nnr%tMGP!ykr+Z8 z;1K|T_sRSR0QlkD(Yxo4{d)QQ56_*xfBqD8|CdY8J$U{c=cfzLF$jVN$_KMEAWiJS zh2tBVOWJKoT>mQxdC$~S`gx9&i6`B$06|?$c=}@g-l&h~-61!RT=@Zj{;0nPz|dYK z>=z;_Fwhe8U=~euFhux9pOfdP%*a%s5HtUw`ttbge`5YGr{?|j_$cYV-)yS+WL5be z$8#@r`S&*jo~rh*EwIiCWOUhdNWFx@pMhx)dtJ5;5?BWRO|-tLX>z-V)x$iBpGqUD zie`;zk1mZ1J3|}EFVlJgen@6JbmWb8>$Gr?qE83V74i%HKN@5x)a>`lqFbZ7@}+SJSqTSz{PhF065cmXBAq{CNd|0py64yfv%%*6i||<0Ws-FMne=pIsaPfVQF~6dx}rTw7hf zs3^b99RvW1ZC-v3@kv$zTPY|`g&(Qh)*jyd)sx98_FL(fWEhQk`7oY^4&eU<0QFh_ zF9yiIAyEwG7~Qavm87sV)M198(IFYXiHR9gr*Qq(v|Xw8q;w|rc}{<^FG4Ik*KHaO zCivW%J!X?v&y|^tf)%(q!SZ1gxySCh$Q{;}oUjk0lCeyXm$pn+Ks7(h#r z?e()`u%sBRy3C*l31BF(ICOaHb=SF z?IlVfQq)<}+*Q<6<;@G=LYkDAZIuLqNl$;8m{jSa)Is)z?pFZ-U5j#j6W@O^xK8FH zH5srRCH+MY$<|ktU&hozvluh<+cSqPCSuvAdknKsCm>y||<3w*joLEXke z*OSG89YulNB}tQiZeSr2bN}nZ`6kU#JNQp;MN?RQw#oT*|0N z+Je>`^k0;0HL_QdVEGDK?3YUQdTknu1VV=SYFWxpRBJEfusKi%yy4c*;R#11U|I*j z*HK5!f>eAMhc|%%Sq8Lby*jN((U3s9YrVx#fNntY8LW_0$lr7TS9)@p{(}d!1pt5w zj%Pni2Y^50o3k6=oZb5R%qFZL5C&hL#a6EcaR5tTbO1sGTHK8&OgV;%LU={rCmTmU zTr*4ufH^1t@Ru#~Ki;qc__40*Zh={p-=BMY5BNt#% z%oOOKA8FN$U2wd4-J7}K*$XM4CO|K^P*tDKvu9P>|yJR#lS!;zz%@- z${slEX8zL?_4dTWEq=H7MSC33fq3LO2X_aeAL#&S1*n+yE_s~~Add{?6#h9h5HL_- z7U9l6BkbAMkaKjP^4wU}wWUoTZSDPP&&d4~b03^paR11}Pse88+tc^urn(Q7mApAo zaJe^jxZ1Wd&%QXvHX}fyZ)!zGGPY~17II1Lw&3p%{Z#Ul6aW;YL+{Zus8Kw9A?a%y zf=T-d(#mkM)8_uPCUAaG{3846k3~2=p+K9@-4h97hsWF>!YeHfkVbK5gvE}55fcag zPoCM5V?;a*0$ErBtHl73$d4SU590=L7T&^8#f>=)ug`6GYf0-zYkO4(K+&i4s{|Oe z3E&Yf5Y_+BD_Z}us`b;=ZQ=(vubfoKH^hl52GJd@|RZ1h0yZbq=?JDv^DbC%s7b2ymV%Zvy< zsEI5vGw@L6kHrX;w374XS7DRfWQ{3_gs0;qL2WgqChHOt4XGIcizjCGWt;rH6|G$M z@qn{UC3Ho8DwfHHDXC?llBR+h>`wK+Phd{PO2C?8fCK7Cc9n)o>hr4@MzKPO*@6Ls zzsO(GQ8Rt!z~aTT*Ef}SNKkOHDVS!?!|EdW-_jGNU^NU)SCJ`OZpUx zQ720pOxV+t5cdy7tP?@!irm1mEGOErbqEDY0^16GPvm=d7THh?94vJ+{5f3_e5P6) zJ)dca%f7cU&L9W?;O-9|$Y2LPPdmyl*#JLe&d?120Oy+IU`4J5N9+Txwij`PQG>r* zJ5*6*x|sIJ`j^ai$~}0%(4RNi11r-vaeQmbRRExr!2jh5L8c>j^PWPgKRJ##JS+2O z6)GTVGHp`C0+}`P>(eIV=GCqLq4l&{0t=A9HNp{E!vNI*ywr`;QIyDddCnK_<|8Hi z0M7{^2N-}3giZ9zaFgf~PzVo}&<7}EINTr@0lhW5>E>wtAIGbRcfB>Q_3gPGID;|* z0sy$)QSJc%9u*T5Bp@(==Zt_@0>cZ!Ao`u<{iMYFdDG0#pP2s%nt*K!KijcH20?q* zeYNj#ngH~`Umx0xEd-)4%@cI@9X0`H*#jTBe|FFPXZPaptjWGk|Lrmv0MGsH>hnKd zIQ`4zXMTncdgVD<0qqDF+&;UX#lU?6CePs}edKSKPTtr&f4VQ3yFW!=t%7;NEC?82 z1O&YYV$VQMWO}aHoZ$wF*A1~ST>k+883aYV{qX?9AFltbf>|AdC4dJ&!r=*rexg3$ zX$X27{2o~ncpMbaR#pfB7cR<}rpXq;XT^r7%VWWsu+L%KQW-tgTY6!%`pu=SpFJ^f zd-u@&BeQ=vKJmkWSwHL_{d{xlN2_b!m|JvZB>!l01h2yx0rNDczR{9KI6FFIS@~*% z9pt+zqEhJm(2X?PXF34&UJ5tWpTiRw;Alz(8Q_=~0!}ss-`H*@IX2k|#5k$XS z|2blb>UYuK@VP1iK~;Z}ZL;~MCR47-9M8~a>B+n_3lr2L)xXN+_&@*A0lPX%xBmbD N002ovPDHLkV1f_hFbDtu literal 0 HcmV?d00001 diff --git a/test/samples/lines.jpg b/test/samples/lines.jpg deleted file mode 100644 index cbe8fcd209e2ccfeb98c7d8913a09373ca8c0dff..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 3096 zcmbtV2{@GN9)HIeGhZmDe9idzHoe@ch zGs&JDV-Lx4$d(ea%$WJ^r%vZ|yU#t(UH;$m`@Zk_-uL}K-|xTt{?JQk6l^(cWNHKu z2mlc91)w2d05Ci}XdV;>jYea!7+!vy06!le|MsmSLO4kY!cIvEJYGspg(xMXEQ`l0 z?BA{Y-Ch!jL?9l})>QjmMV+L!=>&nrV)^;_#RUY!)ui##YX7xCPk}H7q=9lILI!XN zBap%fr~we*|3o1^8Tic*Tu5#d4;q8z<%2go+5)%`NF*0G5{2UChIfa+>wsGrwN-kr z9*>CSDYT3)PVI7hI!0E%v`*Bjb3so1G$jJdyG=}dyM+8MqQY)PlE%LMng_HD4jCF5 zo0uN9K4wFVr?;>F<-p+B_^%U_Z>FYaWEYYWYMP$@2V{rQM>7{j8 zS#_%g(bJSp-feQEG5HUh)IKr$&xl3*Pt1NN_6M&)z>h@0$wLYQ9k9-!Dx`7!pAfwD zEa8Tuj_~W^+N|!u8R`PNVDLb%_^@NTv8w76l>lgz6Z$EZ^ zd&+Ow;(v72mlIjyG`IgwfNh0?y6&JWi}T*N{CcE(5iLv2NPNq4K|M*O8??we`Xasx z0uRX95XiE&Kxi|7oH{rFGv3919~prcIl7_B@cCn5Oh+##Ho#dL z{ti(_;C_z59i0{49{MuXb80Sa;oL@)O4wV`{ID5Z52B;f5C<&3fV@1cwq#rDXeQ48 z@H=HAUEa*Xz27TdZY2V88!?Jxp76uq{4}dhGNasJCO+!c>^>p=Up+B+7;pQcK zM~?vPfcNqmMQ8MEcE@;ATwuSW5AmYX?RR&yE^Up3K!|knm@b|z+8J$DKbSv|@8NbN zY57SvRzavxe+tdvYFpMYCNq3US=0$L(buU5WcY?CM<~vD6I?|H3xRQt0#XsKEWyb7 zkwxSOH+DoO1iFSCHc72+gm2hG;A9>ImMi+Im_Q+e`a6{ViF9vAzuxG`x}XyTUMg9^ z9(Ly;Q!}UvU=#Uoi)b1reBPG8jWF)p{naT(j~diDmSzSZbFs z!K9~zU5*1@TG2n>bLS8`v&oORL(1m0Ubkp7*AIuzt~UMJDn8|&5zeasqqkGzaaUHt z_6#wH^DTTA&P?$su1G`oV#_?EX% zBZ>}gxp=y)Fr)h}%l4U8VhRLEgT4}1^R@L8^3{a$6d+} z4s~_i$V1-$5>ohyOj|h7K5i4v9=hR}CmtLXVaTc4P)emm)zv@meRnSQRoR2;1Dw?5YRsZOGj8q z*t$&Ynu$N1DMHd=u`fcPRkWiM4&{cN)(JK?g}~<2LSTZbGbY^yf$1X*2)zIJ9s+W< zpT#3?CTw|^d)O*-6#@y0CN;L+onfTF`ddwvrOEwZ$G`27V z`#y=WQf7C#SBO^E9=8Ten`eDUaZEsK@WqQo_OooJ%25+wFUAt8du_e(xVqC;X?Txt z8LUX5dZ}5utD^0_wdPh;y&t!i&|ZwJc&v|1cZonBm(Oe9i z8?$Fcn%@{W`^gZ-P3&S{@D_cjIcjyt#kbe)B(>*m<4&o{+pYVaYh-h+ek5B@$}C%>%L?tVw%>pQccZw>l$vm4rWg}w>h(- zmx8y=xBrW_0zpAzhiU6Zt`+&nhHb*L1!;<}#P%MSk_5MrPlf`|1~mHhSfCA7%(1UF zIz0!o<8>B)8E=(Ga(H5}5cnA-)m^hktbPBrbFPHpif)QIdsXH#^V4kcqRnWX(AsrV zV${E;=jGAa5c2n!ehxQ2rs=_ZRi8&Ys#MZ7XBlC8qEGDD zlNcqt7ZR=+>tyoOnuxY}Vd;9(Dv<%yHbn>q0avD{XeLrlk>xSAj>w{5w4?pCrhjlV zyU`Grku^^o_$a3rPOMXcdp3?ole0+IHS{~rSUbkfWjUJqSgo2T-wrnAU4L#&fA<^$ zPdkc%U(Z+b=Ihz>lT(>W-SdALIzVBx6I)F~&myB)%}`Ed<9maOJP z?upHh&OweKYk^<+Z$9DqMT`}7EM?^j)IVkw@+Gnnw9x83Ak1w#rLSy*AobD_0*~bC z1=bJAb+Fpzbn){zOI_5T!Q3s#H+MuY$V@r z3d(n^<7MZ|l0G_xb?iH!7&c0b?>K1dUrSy!su3fr2T{Bgo`$!{+%I?@=&D`EO@3%P zcF%b#?uYc@$FGH@@At;$Z66U|S%&~Gm{Ooca)ht#NUAYQZ%KWlB(i55gT RD2NNNv@8Ew`Vr8;KL7=7bpikY diff --git a/test/samples/messy0.jpg b/test/samples/messy0.jpg deleted file mode 100644 index 918e943f43a79b9a79b202f161ac69fc0977f0ae..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 36315 zcmb4qbx>Ph@NaN;hX5%FF2x(%io08(xE3#3+zK=VhZc8t_dK+_HSG7V0;aAM`1Tp(AtG`#By)$qjOj zYD4O9A4PRwHFi5T!@4il$*~_I3Z9&Qv3{b>;#QaR>l}T481^N0O~LzD2w0v#>KLCd zIEh44Lqjj~sZsmMy+$2LDj= zo4&fi{~i+t|HMXNlC%!ey4e^D;OR65!vv9fNj+zdI1b{+^&>Fx24QnOH4=@|ynssa#l3 zlO=BiwC%dJ%Nn|zAXbgx-&;yt4hc;)raNeE(w zDTMlrD-cyCqoBY1`a=y|DQe|~02SlaNU(wcy9?1yY;5Sp2skU1gnmQ6(a}%q{2kE$ zVFnxQID17%_k-H|R0F42UClUUA}q**^V@&y29{J?R^r5Z#6rUIe|BMo4`gnf;fG)J zzVUE!UDnGg)(>u=e2xE?!{miyBw`K3jK;iojy7rQGu^ zu3wFx@kL_L6xU=3gGBlmns>J4>k&L(e<}Y>oc9_nLM{{r-5561OquGsd*)^I2)G&Q zx3+Q%5M=B!p<(c>8HX;19M6RsG3)#>f%zrU9F!5hvw|BVIGtz|Xcs6^M^GoAZEH

    v2}$ZRE#hne%1-~Nb*ibJ_zL& zd%kTw+RWABomd}EITk#WkS;mhxkeRF`cJnbfrlY9)2CI_=F}2Os-A+x_8g&%Hc8qW z1xOw^>Swy>=+qua+OXAHN6Zt(Sz0#13J%gq<&H6*{yMQvB!C6L0(bbOpeYK<=Pu1Y z?5nqXi$#(;sA8IVCoYCX!m*Dy1$aC-#(Ckt80jL|p7pU4#TnJ3m8zr$1ZE7Oww7lE zeZ=H(ou~QhZr{-?ev;Bt(<6{b=rLWSjG@Alf^vPp@s$Ab*az#r;E6meqB$pha32Z`$=Hl%D`@5h+eR z!@(X7c;lj#l>(gWOHCvwIePtnxPGl7b?{jKH!SoSmkz- zK-Jn96%>?JAYsQD1$h`F9)1bkfvlI-O!uO)l%iFZ2%?fHfssP74uEHN(~t)tfaAwW zyLPP}>C|n;lBIcKjLkFJmC!!i@4;h`c^-H>eEI0k>g|fPbl6)+o;^`zc-5`cEU|51 zz#%bYXD0Go8uH9P{JjjC8)?wi$HYTI}fsD7PWhVFWU>vF1g=!wzyuz#Q;6 zW1u_Z+9HJ@CKKQJRd)N5Ei*#&W0B;UpdUvRSXi1Si~!_gpKxNs`?sIRKtV%F?oB$y zlO)uv1`8Ufg*xAWN8xRdo0Qj?ea044Y>Pj-FB42SH?D5aY zz`z4NYk}gR+6;pk+vc^tT2qNxjlUJ0O<>2|8n%}l`eb#ku_nEGtX5!(r-mbNCmF%> zfsY_`=3dd&X3#Cq1)VKc)G8oD5nzXVEACcOq--ps`D5b)q&?9x4RPrmJ@pFDEON(k zSQaLB#8MnOk~a?rkU9A$s%m<)=~hT%sU#+~VvFk#<8TGGqYPs>1m`1h`-s33sR2qj zOaq^xoVThQ!Vr+)lbHD#?NiZMoKvFF>9EBp$~5tc@T<#}+mMP#18&iPt%l&Q&4p<+ z`OE5h#-nZ&SyE8|WoX$MH*6rO+@XmdgNz@?QIEhR6+Qu3@)NhhYz$26imE3+>ows|D@9~_Rcv_O^VOguqu$jJUE>UykG zwU}$(O4ZK5CG_*@lI5~WoFLDu$Xt*J=Z>0po|RJOovO!S(Jaw-kz$Cc0hb&SM1wf7iv2A@YKXw|0-UoJ=ii8&m6fzA#T#Tl_8`nmzj>V z1P!6W+Pqd}w{qs4I>_k~utOrsq!k(4gShYjz+gE%^unKYT)jdYmNg5ODJe@4`lyI3 zI=;*>VhHy{*!*COo~145RxRt7wHqqg*vP@sLIFw=9H17jIEAYmuMN|k~55SjtwIIqZHE5 zJ!#SqvKd~(G8H%>92ogx7?H>a10xJN8kUI5R=%BX`atg!&O}wcq#c+5u>@lSJa9kH z4rQ>*VYFE`8{2E%fn_UMQM$hMK^uOnry!76d8^lA(;cJLSpBERkAa`(r9252rO}j9mIPShYY;t@!#kByRn-Z>_O>!P_#<;+ma3Z8 zt!lo%c-U)imU*H?cyNBho!fTtjCjB&o_h3_ge?KGW81i>K?peFPk)+eq-i$nT@hI| z_Q@XD$I~DP#Bd5{?gtqs?L712s-06vw%(MtHIGqUWLVxR>Ruu-n9Aql2cJLS^VdJ8 z+&5caiN%E!(XlE^3dWHQq;3qY_yZU}Ac8VFr0&_K*ZY1Xn&_JSXYivCsL4?5Kqq$x z8;gG3qk|5k5k|bfY5I{VS1A)-hG*dg(`n_m06QjJ#T~;Z$ z!);a}omU`d937+h=|vcA>sridV@cD!8togrh$Ls)$13H6U@;7S<-ytyJ_){rn-CAb zy*Gm)GFC_(B7Cb&Ui{j|ngmqt)QNT_J2k5W#A-S9JbV4a!N;6~j;Scq)MTcRnI*es zG2R&fgm@IG*MAI^R{d97Yc z4izfp|ow)?P^yf zqJQo#f89pS9%EpA&5la|UH<^vpM!>9tRc5vmYl+xlO&n0k%H1BWPoTntS22xE9Tl492z9X4J*b+&VQnmH-VTjMF(oAaYI%5$8A< z`QwqEylRodtY|efO-7wc-kgv0_obC1Uv5ycKOu&Hv}ZkY=D9wotS8f`LqvOJYIAJb zRE#TNACru2Z@B(C-ag{5HlI&S*Ws}hI-Alw*!`IZWh5zeP<{>p+;frAIDQ$$;9KVC zn2okNQ{Q#9g_N7CIr`P6fe+B>QE5VH0#~Z=Z1i%B@v$x!1KbWzBN_M|6Q{Gm+wx5D z$t-hbXysblcW+UHu}RuNt14q zG#1q)ft*jLm1q4htqa)ITk9-Vxo!j{Y(?qG5Zq4y5&-tF$NBNrmu*|tZQYwmTXvmm z?PDtKS(aF~tl860tv2~2_kBRw*_Yo=Xy5++Z5N*=r=dsYb*W;2w>+XsJz(BRFG{NyE1Ql1L}>o~RBXNFrfFUyr>==q;%wVnN$a zK9;G9T9aA0wDssN!*eMdDoOOzrs0_eaCa5k{D6EB)4To9%iH%W+1X~TIK+?i(XRDb z8`InmgU|jm#~muxeH%L0>lAL*w>x7I+nYN>9l2%z@&gl-j1~Dj8f_a+(4S7THl;3= zR_(aMVI={iI6wMioaJ&c?Ia)1ljW(bOHnawx0xSNZ<@E5pp?KQk~WBqXJbjmt7A`s zz3MGuj-zDBvI%K2`ij5~3ouqV1O5*_Gts~5iK6Wq`i`RMUJ2`)P&=+xWGT3*Qb_V~ zlLE7O_E6A{~r4bU6 zrI2hwLnar%VgSz#z$Ep&Iuha%c$V%om^8=KKq+Z{v^{>?8uq%B<<@mZXjB&z=2?A6 z*;IpsT&@W}8S*&m?|kU-cJ0b(R!QZxU}jp=N<%{q@S*Yu2R=wSz#e$&pS0rCv|U08 zwIz;7<7Jk4A#lb<_Y5j1qERC_TmB??fdp<@u{!S>T^dr+Q zn-*f!YBXhQlqmNXG|eut)5%EhtF5JH_8dHb4ejKWC+FuG z{C30LI!W!RD^{}`&tXImrdCCf@&I4`F&N0poM@U*!)3}tNLUbTR@4Wiy6!j;X zh)5}%uYE1lROS5&l`U3{YL!`Hup?OmSYswP1Iy%Y7~FX|2gktbhq86qY-pBkzJp(U z2^1VD8iii$Fnm&R3#CMQG*?Pt!_hS`wn#uL9nB6IC+Qqgt&wYf%;IO9Qvj zf)xS4VsZcrfE&+Jdgh^KeL*T*?VA&@1~!w^m5PPr0kEjZ3JB!qBOr|CjB6IC>5E|_ zuPs1?#J8lvxMe$2gXcVabAi{*XScK+M@h9~^rok*Br({M!cJZtUi2_B;9-ebvE9n(oW2Yqx6U!32314AYpKu{a$pJT15D1u;V zz30o?kBDtBl7cs)zovb^p+1LhzOM~v*h%!@S(Getst+n~Gq=64OT^99SP4o*EnsqTra?Zw$RaKX2spG?7ourZT=dWcRA5X7JjLLxP^y~Ji zT_>{iwAE&*ZoHK&K|8#s>Nli?S=F0i2Y?rzNEyf&9aeW9gQQoMjY<;E%Pen*sIvOF z*gznV0R^xyamfdsI?uPO!Ki9BbuB&v9T3T4uc5UaK3pBge$ydwoa6J6)c(7w(3W39 zv*YRHhV?-yjv_5PWo&-CFYMm5e%!R;IBUSZPvK7(19YPUC}+ z22KD31B~QrWlg7=u`@aQ(J2U0h)ImTmDp}}-jhaKcIri}eL#ShvtG*11fyZv%I6;g zJ`V%<=o?W(PerpHv0~iOv_@t+lf@i)8Q!^7AOVoL1Cl;+I?|^1)8J~eTGdimcgbTB ztPjGMDpfZUa@^qlPtQ~Rt9wsLEH89TPID|oL0VZB!o$HEz#x(d+k&8do^W|r4~bqS zszCsa{dP63EJP$h5%%A>8)~n(f=D0$ zKH=voI!&cMq`mQ5S@q*u!n`uc1e3^;&T&I;9P$zT#o2+OyV*1FXVe3^86=z~-} zXR&#ww%)LkEvoGhkCi82Z-e8Iei)I?0j~m5aHlUnGeAjKh`{Mp_O#kIG&TB&l6!C= zA5pgja=bQ2!vHw($ovD;uCJ(Tl-BJUbiG!TuyDf_HmJ8RTQFE=e@KxPmGX!#oyuW;ZeVjeyFfaD0LX9(c#& zq!g7IK=-2#U_lDZ)c5q#(_Di3YqaEy#L<|nF%O3s$ZYaS{Qf_{>Aji}*zM`Wqks-QcGzypGD_~d+i zbQDlpeNJmup4?h=iL|7aScC;s7{Ou*+*@wqF_!by7jbr-TU06QaC)YkEG$b+m+DN+ z4tHm93GL1g=N{3|Sb`M1Dv(D^?XI*zM7PWt9rV7Rx|q_DCYEXMY1C?1vQS3m_ocWn zW@Kf~NhPvQ2=ERG=GCidRJ59~M6f(+f$~m#_2;>wk0Q9EOeC^KwQx4$!BC`}f&IK=h4GAJR_fbN zJd8sq%cS~IrG&V?QjB%6r#-=SCy{FCZtbZfv~3KP@&Qwa-UqpGfB5TLF;kbfDVdtd zy)-h&u7HSx0L0}1$l@>#PI%9Z^t-VWRn_CtV4GHg9XaCk7P7gHWI)6PG49%V0|y^& zIsDz*)1uI373LML8EZS1obqHWskx4M_OTex+NYvuvde+5`Z)ngSyOT%kV`y+1G9e%7fxu!Qv5R&|eXSH=z$ zbH5-yN8o=sa$8fVhyaUUS*^sBx=i8`rkyM8Saf97?Z@24v(#eA47M1ghXD@9JH5nZ zKp%iO;BHh#?>z5l$v}xX}ELH5h2{ceBj{qso85H}QbLa7ajPMe+3YJup zCIEshKfMKVLVyCm8P~kJ*NWPucDZVm3okno$yPkPYZC6^o8uggK>7Ib)dz4Z>d9E? z$lID_IcPTkPDhRkoRR$gdikf)(km?P+FWm{Tbf9XxTFNe-k+(0I9zb}!0<8A{{Zzq zpQH9}of432F+W#UFplcSKB#aBz|JxF+vBQ|1_6KV5gT;>04j2?9He9^VrdaWr9lR% zC6v}|!z@P4b@qoFjtcTewmh7l&sk_EP}KceT7_zKTH%%Cm(na$_+=PnQ@bO{K1t`G zyN=$arTSty+O#4;yeda4GT$t0eGdk9BAQ5 z-Gi}D_byk0zIpSGqVHUq_MdL?PC)a{2*CLAQ0uB%oFqk{ zbu{PFTLYFS*Gj6bqn&C9>^#(M)rAiGGgcFcNp>oL5;1_p6Q3b}$4&HIMRh-`(1`%7PHceteINQX2Dn@gF0msHV zpP41oJL6ESC5|X$N7(j4DU&X(k9oi&Cm?6qI`ya2)upE`dlOfdU^c3KKcYqf zBXI|DIpk#gj+@k%rBmJ4l*(b&OrkW8?Y&*h%VLcC{@@7^kb;Lqyd5U`taS?QLcG#RFvBeI`$MvAM$P~L z9COA2C(n#5(xIxDOc2(N)U6)UWZqewf(3LTaH@P@4m|UWw_P>}?a3WoW?61P<7GQ) zk*}ip_NmAj0A!zxXE^Fwl^8W=4F#o%<&+{ru$%*eU5GpZ{ysm)QNFb$%nc(Dz2|K9 zuSbSurLBh{G8`DxfG1;sAaQa6^J}elx=i_KJEvO*)OccW#LAjcFy^GawO0yK+Eb zl7#R{$;ii09m2J1h)_pbTFf78gC2yq&xPD@2*JTQ&6ff&X z=!;H0BD@!jQMat%+O8TSmK%ToU@-&_@woWi)(SNr)>UAyR}etbeNOoejo-?%GV(_U zgYrCcPe!hf^dfoXVJxvTNRuJk7C^`cjGX5uBx4;ei}dK})3)+G2xlu|(t4RO5LBi{ zcWrDdX9NY#NaH=qQ)mw>FMo}4qgv9rYH!}OzN1s0P}1dV25M^$r17hkaHk4zL0^_6 z5ObUn$2Yx>

    nhr?j^bFoCQX@ER{O?1 zp}hWA{kl=!Pe((gW?cm*TM^93JaV>uQWTY7R~ZKb z;_bT2saDi#>etppc*}Nb?vfRfNST#Txl_9te~06qah`<@wuA*EJ@xsdt<^ZAh8ds17E<*y!+yLNmPayf@rn=UZTl9O@{{Ts>nw5`GnBkjq za0yk)u^)haykn+EDFH!5tGm`9^H+sdAH27zjT*L}+?J=&^#0*lBAAe3dgp4H0dh0D zfOdH*Kp*2BJUz5~PfDvu-FfjF&k%$OV`&vtFtT6}GmL;f6yW$9>H37?Rn%XzS}AI> zD#|7;%x-gq$Is^!o2bEpXG*^R_zM4`-fJNTDgnrHwO}{ z88BOPWN$;hL zrJB5nBxOxBMO<;$4I1_mG0fUN}T$2twm<^XBesD%e_~{>HT)U;!imsiei5Q~ED3P`#vO2H4w%=(| zNGcSbe~wh@+(`;br%2yx@9{^=D_rO*Ls5@UU3gyBEwuLG4HRO`Di_o;d0>QO;I=sO zLE{}^sx3`c)kr8%BDL$xi8{o)Ban@t79bVN5O4|4Iq;{e-C8D+Ddo8e%T3xTA&J)# zE0W&E8Ej(<LlB}$M7gZz%H2A>VR6W0AQNPdpK_+XiTa#mSafB^R~0E}`D<;li+TQh!* z+_OzjNsS~zPpuq`0wHBApaQ4h`2=tdGsj26l{T4LzD!Xpx6FVfA5WzkG;K#uisjX{ zZl#FXuDaHcHa)L^L0@DlMlZfqFi%&8`wKuCwWJEkE zB>PDRoMV&HopmWpBJ=Gtk)mz9M9c{KMwLHLN}IUW^w8e4^TuP2Ijv)Eeb_2M`0z1 zLC*xS&fTm@2Wj1p81q@JXnnaqWa_$u;w^FOJ4Ieg3>jE1)E<^_G8A#QpT}CuO|pqe zgIeRNab6)H3gw!2qcxh5{-thIxoRrD_`xVkswQ%yKHPu_2OpEwF17WYr&!7Q-O7|~ zD|Vc>XG`8YiAanf_#dS04!8k$C~C9a4Na8!sgo6Bd891caxicL`T5WAF`l1C_4>WVk_CM_7+kZluf1HT z1S+sN+Cs6x$r-^XAauu6(d3pyf$3GbbQtk*VcCKP3ywkgJQJLCD_lBSQEe)MtK5%? zrm4WN6^6rV2Tbo>HiRa$w+**Ag(Q|elghYIt;+kDWQ>qT2l(o9xqFVi%U0}&g)JJ~ z;V1e-yAcqpxaS|~`-XYXiwZ zC9SE~g48xp5n>2QXx+hLjH)>xFy}ZVc{m^w?iP|0Hi@`uF!~D1TckA^SkrZCx~g~6p&;A8%>}RIih2A zQV-pHk?zg_Br_9}jx+u`R+j1hsT2Jyis(y{$rvMP1we1LNdSS!j^Ul7?%Vmt`*n_|-j*)hy>e+RR!L?A zveEz+^p!#P0>I!Al1B}U{0362vT1TlY2I6rv%*+NT1LYja=-h385tcqzfM_dwHe`q q=+-2U(_x7+3Jw=`a6x07c=Oc_aILoHG#DgrrqwIlK~OmF75~}w)cP*~ diff --git a/test/samples/messy1.jpg b/test/samples/messy1.jpg deleted file mode 100644 index 7405cf580ec3027b2a3b3f1c2c04d156d696758c..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 625989 zcmbT7Wl)^K^XC_LcMTQ@?rs5sEE?P)xGWOfA-LP(9)i0ri@UoM+}$B~fPa3cRrl)d zdTQRxGc`4znyK!d`u6kw`+W<5EiVI<0l>h(0KWZefcG;1&KEZ`kQV?301p5FME(t3 z05B!Y9Zf9&=H35BVBS{&QUGK`L?lE6WF#ac6cl7sbbJhSG&FP)Ts$m%3epdh6r|+j zRCH_%R5UEKa_JU%`DhYRK(=l`_-4)%X=;r!!*g@=cONBR#J46Mh$4u=DeK+TDW zE1`;H;)F-T6^M*4nV4VKgF?%#c12+7JcCL|$Fu$M`afv@jqLvpEa?A>?0|*p zIvmWu!-K;Chy(0azR#RPX5InFZ~5p;iH2+$5a!uY}~&CpTo24=x%R_j0Ck$FB=Z%~-qz83G@z zcoR+B+?*<>Fm{Kh8=a#=Tv7mxe`}qLV!pes6;0qjdE5&6w`g(7KQK z{dDHYdKfc8ciVu1lQ^_PiYaG00{!*JG@D>Vv?wpx*ORp?dQ#%K^jQOuSX?Q;-| zxNpCz%F>PEz?v`k4zQ;;J~gzDD;k3L7pq4-+4Ct zz3=t`W24e(t<69dqv}j3MC+KGW3b^%G$}TK4iHfhM-;PDG{XbR!#F-QD~9~RX4{Fl z>iZP$G=|_D^ZR*8qGA&*nsJvwxZs;Ot!`^)LupkErSz&y{VoflezEs1ud()iQ&v1$ z#C=(H{|5FVWcja`SCK70*2gGa5)-XJY~1SLFyz8rr`;xR*QyVs*7x3v&>|_HgOISr z3v=rt>t#dVYUe`AgXSFA6(y;`#A1wHzC2;V1X`R(>UThH;E%tN2OXHlO3=u5ar8o> z7mRtoh~XPi*tnru%HHNW8yOpR_6Z6CF|4**S@2`z-3UE+kok!rZWhI&p6_Z+@dgK6 zy2B^P970yKhUx5biqvtZ!_*WOPi9n zRlg|E6~)zF8P6V1+I4LrMJm}ONR~N!*W(IIe8n8ubsfB67>_;Kbl>VSsEJdkHi0Wr ziik%8R9CEARP@N?;wN_@5 zR)YD`h8B*2u9__Iv@t>d*SxPwk*&I5oNzO(+{QPs&hXC=wIMdALHs{GqCz`Alhm*5 za*h9LHjOnQZ<*4xcO+&WG@-^^m~X{p|cxIxyfG@7Gu-vQP+g{q{it=vQm``u_@ zm)U$jb&dMgmYB9x`7enE()-9a@<1|2MVK}_Fq_=)nis*6r~Nx%8}BNH^t>u9XGhd% z``q={*nyW5fMD+n;O|SMBBinn3|X+|Vms;F>9lnw@5CTUtT1%(TwO~y{*MiU*d(C&7yfic*imBSDdKWkWR+( zZ>FD3aX>m#KY2n+hBdICt#EwA22Yq5b;|;sZh><>T~i&R7CE+rVvwk?#xr}c9)`Cc zo^DI?jK~))LDw>pA@GfP0$R0~2m+HQRh%5Ey=US-5SFW$=ktZMq#aS3ZB{q6iv6cV zY)v{>D&LnMikLE(pUEV<&e3_Ca6$zbkSyFBAy>S!s!0zHx!~EAHPMuXjl+6SYhy0% zHAcfKHP6zC1_ides(v0pwZ&{Z(l0#}Bj(>fG17lmuq~i^eYiyJ<0v|_nM=;= zSbF}8`H{^5Wbfv9I)30!T@_chlO>z`4p55+&i*+_PF`X5zX0pKbDXKl+#$h)>gtDgs%@jD~@X^pz?eAT# zf7S#>U$?l2tK+x-xL-{L@a~s(LN%fva4b1F5awa!$SK-$U!NxV#}1Y=XTjYXy`!Ix zUOW0g`gyBs>ZltMjD9vkT=a~bdWmRq$oS^NrZN!;^x0R4V4&(g)c$+zcqi!CWv#yS z!&&p5$7x<~Q&lImCn7Nkgjx5T-E{B;l&%Maxfcl%JxXOOOlwnS^qmZqj9Qpa+kUg+ z@HO5=Fs<4FbxRClRMor#NULjla_JY`Ft9Z3^`3GKdHaR5Vp|HnDxC$7+2!Va+ItgEVF+;r`JA&GtXW$5{=!Y$*{k+S`ST7?+<7?>}+*JwIupHjd(_=>$y1*K{KJGz)NsHvS-0&YR zD=pjvcdfvK6Zf0eLESsFU#4dJDxYMsS{q|b)yNKL1U0r(+e$+?x`*PktV8 zdIb^nr#7u1matZ}e=S(u%xX48?w;yoP!p5399~-|h@&Ox9-&0EVyb5BFiLyL$X+wk zbBdaM_GidLgEn7dW_VGjoL^*0ICg49V9Zvgug^pk6srq7eZFY9)K{CUVqvSsJy^7Y zxJGH>mEv$WOW$H$VGJe3{2&XGVUD!N9qT7uPwChnleMF1&IIo0^6QtZaGji}?@L=I zc*S9(r!wp#o3veVX7y`5W5gsFEFWK}-CwK+CV${feDFV)hhB_m2wx%haZoKLSIm_t zPkrg!?ZT2*i&DK6OYjpV&NMX@HDapr7J?AC3aAES5Z zNDWj0i^&L18A-eQkSZ}N z_{C{!6|I0w&*OVG0bOY>go#uZ-`s)U&tNE`>Zo2Zr8TcT`U0@%V|{2wJk$6wQd?8E zixbGdZRgQB02tq{whrM4dDw}SJht`izpT^2^Nrm6j9nLg`;cQe|5pJ}rzI4E=Lk4M z%k{%V@Y3XTJ<`6{G<}mTQ9;szPV_HLj4)a17-`4A>n*kWeJ4n#qhcj5#za0JE7>}WyG zlDM2MZ^~AdZ(mILxlHsmJa#R^`pJaN53Dj(} z_JEh>F5BXs;4*gRx1uiiH5(XLRT08YuX!B%qRbWEj5oKz#gi@0m!ZT5*>#dTd)c8y zQl*uCJu2cY5|lBYEmsOJ-kwL&(HEsQXa|(gIY)OZZb#QbxHru%`FG)mlW!xy~9`o2zFp_MZ4YVCy$m8oSP*a)A$kb6i_JFx-aK{ERC7vq_=QWXcS!6XB zM6DX&Ey_)b_ikIi@q#J$Ab&U`N& zJ-l$z`pvYLZi`n9SF2kN4Y<}@a9*6qB!|rtn;Zy+rTJwG=`jBQ?SznFd+Jk@ERM zw3nF~R@9l@xHcwRs!W<0FebJfYvf0l5rVx60m+2);L@#PR6-i_o=ul*jQwo7_&jbOj0|)X#HtfMBK{S}B%JxK#&4IsTaeX8-L zC|5AAw1PzOr2-^aXfLv$=w@|&A4~-Uff-sOqE*6Gr1oe8`mmqfGsJq@N@MC`j9r)2vQ>kz3@ZUTJ0kpw|xF zbPqD8Ekan;R=oC8?*%Rhte~;Q*>GM=Dk8$LPZ)>3b5$o3lHcFbGMyJ1KawXalJgs->wYadB* z3@Mcm4-r(DVYghB{-{;$Vqk!KRN*z`vBo!#2#Tvl`6lerUB$Tl$&s(uIWw)*ng0#> z$};&Ly5f*uq4W8cMO`#@Mw^&={%?0K37nq>&M<+Q+?9Jxi4kPI!B!}>hAn-T1&=yx zNu~8g=%3>jn-aJ+3)R&85ko^!)!+==^_*RjgXo(@QtlCse#d7f-^~?z2heK&#n@G7 zahniU%+smo_%S_VZO*~m7IL+0P7ACT;>_9yy%wjMz?5m2n4kd_6nC0*kz+-6j;jQgeIAr zt{$une5ohD`TbQP!`RHrXoYyCCY)zXc)#m~_bzn5pNLD!iD9KErJB(5zOfC(O_ykr z>~XZ|%mKEgf*t)>DCKp0$-|@7bX=zpxcx-8zn`>+N*vOQJiMZ^xq`w3JerEVJE!sU zWAl}9-8_4msXV)&W&OBi;V%9C>j*d!H`P*&iywPj$rQAS!}}_w#lNfbVwpp+(A`)E zO-W{q)cln*9aA5+Otpbb&rhtHD4A7MsCoYC_6k&0d&pSyG*gQ2d!r#W%CoS3juCQ} z*<4}W3rn8hY5OfnFGH;;^|1%edJ;u-`l!sJx_>2f?3Bm@EI&6uN7SI#2Oq@Fj*xO+ zM<dhcf9MuiU4W zDu&t6;l&9BL-v?Blm3O)Ag`W3;*W|VAIyHCZ9*z0XtMRiNcWB5&p(M>Dmn-lg}Wm& zOtJggJ}1u{FQyJMqlM|v-^Lm4n&$t23%L-^CJ(|eu#tCIWHc!U@+E0?cC=-RA=EXnkvY;t&#?R7V%^e(c4f* zhX+<>Q+2qv3;ih2t8YllFLA9opGxQ~Te9Yt`=SH2mo5&-R=S^YPD0RGP(E76hK@Bq zePb#I%=6^ocxK+p-h6Cs0Uw?L1MWRC&&EVlhr7g%p)t(}lKrq8iP1Q98nbgeMBtN) zRh32dU;5v`LpYHO8Pm+v%d|hRQ2Js_H1^O*=NEZE+nmP;*rYO; z;)kmep4p3^V&4!G?CF%1E&JQf-%4w6KI*KvZ)T;E_}a!rN%pLr00@C(6JMcaARJD|EKd`^tGGnXYk zf@kWJfM2f~-M0I#|HP`(U%}N}r(BTZ*Pua|pA%+YtmE1beA7}q+>Hw4i0(1SQ3w`8 zD<9FIFdFAQYWQA@&{7+|%#Q<|8Krs~HqjOokW3L}Blp$54IFk8n${@FTW0#ZE4$`CNG{$An^c@!N@v&9$$~Z6D zjoq8hmo#Stv%q+M5FGpZ2jARRXP3kJ&(9M<$2~Qd_SIsOyc%BSNj|UDo9MyfRKM9! zaL!RV6F4A?2A)l5Ih1I@et3}y{K;Q&$zDp}{yxuG_*fNt9$YX-ibQ+SglZ&<8C~XC zTMiO2032vtun~a+Cg_HOGxqeE-fN=})Z|0uqSs~nH>4wy=V@BS z8^R*TvDlf~vfp#%;7r7H498Ko>U!vK#^l>dSG@h+0ZT@Qii};BMRWVFu5-idQE!ZH z=cIG`^Ow7`)N}T*MTIv+5m~~DzKMI~sScPNx>@80ZSMfM(`f_Nl%xsfb+%l~R)rtk zm0LqyOy7wRUJ<2WxiCQyGdb1mLWt#ctF|~m>nr@HAEDnM<^m%hgrrHtUc)$q;?V;7 zr@k&?t-y422Ht48vv_JmD$fjEg`N4^VLrtu^Kr!dg38*XuhO) z27v~$bkB{`ULm+8wiTrmSmdwFQoznx2nC}f`U7VylZ=&Wsr(7@ioaRgL-}{kHrh+{ ze`mfD*6MnRu6L|P$LeGMeaD)OcC&WBjZ#!7KrgE=lXZV8n70aem^v%yZ(TsFv%j1) zw{|6Zn%T&TVAFQI)N(c%izYlE!=$Cs+W8J}hrYzVx)`)T=l;A(R~f(X9pE^kV#v59 z|Kbq*sAKZD|70q_B0*CeE+_Pw8d-Ks8rNuF#o(n>zNsh=K5gM@acs3Rd~K#(CK;yi0K)rC=UyswO*6t=EW(*iuYb&?sDLuM`HUDg=IfXBgo_-by))k4Af z@H8oH!(vcYF>?Ii1~r?=A?4KGTheSh%Xtt|3g~YVLW<$htsy*4bgf7cQ)=r}1b@~* z$4cK}#6*-s0|O2kd_UBzTIUkYth@uX7U^T{aEXEx1Xj?rq`$u83Iu*GBzWEZW&(9a zA$|uC@+{X7skFT)TB3nGbL4!2T-PF*<NfW# zLo(=R&7tk%VCm`_4;~!dAuef$EhLM*(xIojzZD-|a6x__jKeNorWzQgmiH2AgoW#< zp=KmjyVjGkBIIX(h1$auDpn&kQo{sxVuQfWE(x5E{*Bj=eJ1SE^&+chy7RT2FvOrT ztyfY=?)k<$AW>eYaf~@kx3NR*ng82N3d9X{)MdI1iJW5N=Xa*P)=C^}Rr){{rz~t- zxl9k;aWgo00r>mFy#8y$^L{JUFEJ~8(>);#82Lgsh*DNJKdt!&RatVi(-Gk+kyQ?Q zVx4CDHIfU|iuSD*R-c>IOU`mrp`d_1@s4c7w6fnK>WpbRE#RXjof9=!BnAKxr7nrM z3m`Bt=9>a#WRZ%QXlU}B6w57SjCD2Rqf1>+tR-Eo_RFqq}$-$^GGC<6rgdignsPZSRcvKHk=FO`WTr8_r4Z8|Jmb+Q)RC*oxzY z)x-HdJT;D*j}pRcui{g~`@G_{*6#qUnm;cY_UD(;n}cSlpR0#_Qiw&eD`aFF$}YI0 zcRu{FH&Al)5MOrK2^2Zy-6Su0n0g)DjA2*Kss~j!w@}hwy=7FBRYd!g5}X(E9q_6d zCJ9GZ09vHa^Rg(I!m4aMoLMt{y0~tpKRZi8}o3p zp<3W2-k2G8A8i;z8%p*M4r(EL+7+M`7#59-zskR>z$;rlNxk3j8I@wqyPU847U0#k zwhJ%|ObSj5=nZeZInZ3PH?#U$Fk1h+AY47M`H*_bX?2dE3f0B`k6n_UE?Zapj`Ja} zrd;{gwrul@RsYnbYp6N@_C`qsg~^}g!do-zy_PY>SsrV;SoceR;|zZDT_geGCzU#d zqR)MZx=zQ5Zv+R7+v)8TyD80cg>v~F5&4ZDc)o`vqMaXUaDM)LRHR?meRkKjEYjBGUw%nq_O$Kq z!hPU;&ZhinHqkDP(I|6)rVtib42C%%DPd~+D7%H!%lFl{8*T|6*JbJV8RrKR_>hfWOthq+r?b_!7NzB?i?z#!bxjpo4fW`P=-QAl>|4wz-#4 zft!;}#Ypk`DQZ-Mi6oF`R!&bK19_P$rJ++9NZTZKgzhKVrwT?>IJa^=cd>^5WxO^- zcof_oNZik{Vd+6B&@(t^xR@fsT&|DyXz62SRl17U5T>7j=QhjLP)^M_+9|Zh<}!(d zQf)}VblR`2#ZCvEydPxz6){3M{5MkT^Ka%jl)c0tfu6$;jtnYFF9F80Pq?+37=@%CtA%oB|V9Binz zVC*2*&$3B4xbR7D(p`(I;`WNkGyy?kI!xx$+4JJ7v!y9efX`l2zWrN-eV3bvi~z2# zvbrbjLm@_A`ce=kR$7L3iL#9<*kegKS9>X-x3AZPS?EG78qy{@?5n*UfZ+!=)Y4yV zG3n$6I_?kW%4f(Jec5VAYER(jN0%c8UHyBT9g#= zs(jEl%&U1U&Ub*6Mr~xOf3W2ZBDp!3@1|Ui0i9s(Fv!XN>9l11ky}@i8=PenPUh$0 z1>)`3%dOgBAg$$_)m15#ixpC!k=a4Mu%nItev5=Us_7DhXj>A_b}_3j$|a5ssV-hr zeImT?^~pGBeOi&AVHw7m+k;nW6;IAfc2xB+m^qkpbjx}b2ZplJx+f7bBY>w7`RCmj9rtaB|hHB)s4OYG+GtxQQ~k#F#K_W|et zrl-pEgIR;ApYvb^Kihkh8pm(*yYmw>+y+DQin0;Q*bnp z`(y@*N#UZKcR=`saZ`~VM+&c1!+D9(@x$=~iB>MrJnNmluszM8Mq>vKfA%+MqPZ5H zJfi=xVo6HSi|o|MS4?5+bD9}9koml$8xE}zbfs#XURWlICCdv(lh1+Dum-t5Fol*Z z)EV2eL^bH;Uoaa(Jh13UF&9ky7>!%nvw9OL@^k(EVo2PhrX}E<(f*9yed*p^ZWS?R0daY zcmJvFn_2KuBX{wH5Ays5nZAvAY<0CB&&C(68y26a&^6yyU)d{V2&#*$W3*3;z!`C!Fve7N_1<^6NquNzq*Y4Y;K zwV#P*Y{O*MBz!Yj`cveBm*%~=WHrXo+$4x5eG+1 zv7}Nxn|p13qNXt>K94jQ>4DA-VH3@%pHC6pTPhY-Wqp_-@I7m z>B0N5KW1Sm6fiP|M-x~7YR4^#GA-&N)H8YA*k@=I#?`jbB&?Cws>T&&V>%hJ=6kA* zeT^HqESkq!g`dd!L@NEYm<1b$IDx;@Y5GSyw#0FT9(D>iAOoLTPjRA`d4%qrn(*zC~Gb;8)3!HLg&og7zNk*;>MwTM|0|qzK0Z*W~}y@%a2hh%Kksc zxv~s?Xiyg#6_jP`)-|W!Yh$H)a&ZI~3V=#^EA&7qxWM7zSC6 z&{^WxBgr&(Qv_^;d7Sdpp%f@cIrB2P8}y5ROCU_3A@;jdtd=w4t*A#Byd6Y9?Xx= zRi7ZVJ|%LCzc@Qa7>VHkyEUf2_5fM2Wovqh*)AM%gTJzP^nc&A?efj4*g?=mEX9i2w5$TUD(r|c}- z^m|O4Oc?9q09FX?!`*%SW{Ha}OgjrKU)D6|-T^-x?|6-3X!#c6C>Qr33MEZ}BNj>n z>ECb?=Wg%IAeuUrRr#E4#2FgQY&*Z<-FM22I;vBgJUqC)`1bV?24`J@e+VW0DKBq* zdGz1-(#lLXO7=?6(g-?j3(R|HnAcdWJeZT!L>Coen$}`DdS0jr_qDM1sSr;hzsDOQ z9W44?mx_*#{tj?`2V`rjiN-@h(ALF#(cj2cgP8nHNy$VAudkNCLNK+h7N_f#+qJ3BJ&~hq&E8rL^%i(ZN-X(_rH;! zn%4?wGgr#hV)E?`yJ{Y3dT)GGHthZUcj`~-vv7*CMsUV2Jzk5rW$L{cg@tKl>gsge zhd$xdhcc6yGipbgTuV0R_2H~dMl!58;_8|qencVyq#QDClJ9x%X~i{c-+JAbu{4gL zv)Ees>psOsrt*i#hh>DLOoM+02;=n zJ*c+SB|`o#$Al%y-9xqb7QI8J0_!Vr{o%eZe-09znn`wQd8>-d@Cq#qa>MuOTw)%oY6v|WUOa~9 z8czditqH|hbHH!n?E%_?44qtFbPfEPEKxdo$yf747rSE>M+Ln69*b&uU%;v=r8)W~ z3@zuR9-);YOcj-$zwQAhR0DS5?)uQS4<-h(F?ZH(>$0jz`mI8C2j~)xEE1zbjVT6> z#_1PGB3s$tu4FZG8L!+^%13Byykp;r9OTA=_gOEkTm;~^`Iw3@7 zf1uac*X`gd-1hsWAPD=h#n8@L4s;M%L#Hmag@l{&5$iMnLD9HO#@){}hFZZvN)0MSW$S$bU)_|vmT9c0pHpBlr zxtOR7CJY@a>0*hCy$!MbFg+c!-ENHAkV@IW7urulDYoI38$l(28 zwD6k|61d~;^GD6i@WbT{ADELam1z@c)dX|ykTFw2k7t+~l zjZ?@vc0(Zq&NB`7?4aV@GNl;q*Bbn-0QUv8?`jpOI6lILX0K!!d8c!D${3&hhD_lZ z^x1%Tuskaeei^C=g?kwZEZpGK(c=1lgS`;YG*h{H-GG!m2Iww9kUHiH>e}i(cO$r@ zo$jLx{#B83^&@1+^}#^qvoAijja4X!I`#;Oz7EVUYTbLA*R3@+5mkae_n_UPC+;K1 zi==A7V~e`{Roae~?Jr*X0$pS=VpW^4cv0jul%c!1KW8i6PL-k7aCEbL($0m!=w&01 zH=8M8QxMK-)tFANay)DwRUkIW;3#lj`mo)cIkrn?INoD7Ufazn<}c z(3V-^Qtn5Lr!*ty6=x1@arNjmS6bBDW(w!f_hqj7#`w(xfGSgBh z76_p*7G5=66Uk;Zo6^T$vp}>X=6;8SJ*J#>Ht5{JXxCNSFML}l1mtsgIV2o;W%33a6PMr+3G(J z_1ME~2$k-LI2>cXH(!1X8fu$5-~@SWU3^8kqwpS7QqWki+(fmx`d!!B0#rO`Z~DXzYE&UQVFS*pfp87rUvDO@u%Oj`>)CMqivS+qs8(hPC=*j{C>2MJnkPV*4N zlI+vPCH_yjeW(`aWxR7Lt%KmMJ4(-a4?H&VRv2HjQwWdt2^g9id-0Mxe#QF{WfEv; z{AJZ~bWyABG{Mk@!|=DB9v$on(94sin+X{n7wLmkkXQHCF68BNH7tdZ>x?f`uu9U| z1MZr^2+goc^4B_@A*C}9ytwArxD6CN@56reLgD~j`gDK=djHqfgO*Da9+}ji}-*i>88|#+)jO%xoYhb=7hAt z%(sFv16|!sPcK+Q2@p!Kx|UB^aw#HbT_jq&gFts500^&TbFKLh3X$zv_(M`SG5495 zIl9r)+_TX0z9L#p<0AI)NgqxC4zcZfI=Qq^lp8@8H&asauXz>VRcfNh8^SaNB~?wa zK2CG??x?YC_q9qd<6oc?{GnP?@F?9@ukm-<%@6ZF+R~uP56GS#5;GUnx);>7K@8S= zy{Q^#gRS@M7hfAbJ1cpp~{aiH>m2AK!MmlSjVz8W*3=sQVnx%yN zel(jrtmoKQ#mdU3#CB-{FR~z}Y0+=gCGUz?`9V8quHT3TuhEI9C33tF+)XCz&lmp= z(B5O5>r<`J;tpxFJv47nRQ#lXqRYyXRwB6{R(UUmx!5kn6UHjGs@j$;bH8fgxv`z2 zOa~UhrGsbe5dol3k*=sj=P&T2vu#0g>@G5T4V2Zm{^@0VnEe2kwRop&Ez!%UMhZP- z7G8U{i${sFA^#xaZN8iH82Ux66ig2N8j=+`i_x5S0LEjb(W%}=LGiKtDP|VyYex*m z%Q8uXFo~pZJvY4^S*HyaLs@GB*da45v1g35{QBv4X7BTgD76WHZ4YM#yhS14LRj+d z9RPy+Q)cd}o37+;k!`p5Zxh+s zIyFMsGy|z>K2+FNRIUtD8>A;LXPB*|uLj27X3i;8Q3k+@g_nu&E%BGmc3V3-ujfIb?05j80k^araq-gOit%}xK4@S-0eo)b)BhT z+O)bg@}&|=TbPh5(V67RibnGRMLeFJj0_1&D3f+k*y#bit&4@#Sf8u7*;M8P|1!_9 zve>z0MU#!3o95W>;pxj)bzdM4AEmp4!9(I-Kbl-(WSZ9Lv+gHAv? zslb?MQYGYEYO(2_Ts{HjdVaNbzb%alKwoa_qoY`IF10>Yx6I=GJ%}JJbpqXTQZ~Kb zWZ#Z~8hNZR^s`m>nTX4dA44CsDe?1|SD9#U{qes)B#`Sn?^Y`RK6$dxjqKuV?b6i$ z1zq!Ps$}`aKc`pDy0(a#+qiQL>?fdtL&Sg-$V>vfeQJgHNqzy`gEd+l+Qv@Z3fq4E zWa>`#gr!UT@l+AWY&51XsstHh4TJbW0Y0G)-k;Eg+w!nLE=TT7^-AVRE6ViHoAcj* z0Yk$=dP_Ftd%@w4Ep&TPw{_Q91ImL(tGchD<}lro2JB1X)tu)>WtJjJZiNbEQ(hoP zcn6uqdJofV0)H-Ks^A+ilB5(O%)Bdka?YRgJu9saJw2d9&5Zy%flZnoH^{>sZ;JKu zH@N|wdwr{NQbx@3r{9r86JCg~eViq9K`KhSeg;S0eBmBD6k58K7Y^nf(72TuBiF>4 z5iR!bXfnSnRUu+uOHs%j9P+9+SEiht0=C=MB`$vvCJo)oasuE8wKR3nFo)uHqo#w; zZZ`E!mo^ZWYCb||@swRt7dH&3=`8Rk^3r(%>nq(8M`L>$Vl^2B`*n1M5?4Kn!zN22 zFE)BE&cvqNP&@jy)k21mqiD^7Z*uxWX_K1465Y3#_@2>kIPU<2%}2?}9UEO5@JHsl zst^RJgjlF+`Uc*mIko~Nz<;UV!@J>8`C?20uyI0~EflcQIX}&sMO=U=<4P4o0&6DH zfY66m*Ro0I>7fpp89=e+YT^E-gp*Es2o(IH0to`O>7?pcsJq8A%L>t%vJlv%iZpyOY#9+C$m(fU zO>5jx>)Le@k#@8_?%@N^y%FDrT>Y_-SG3=g2{mQ0zozQ7A8nFD68Xc>^c|6#g;j4B z`C^x_?`$#BEfA69fh7as!78uciWq?Y!8&O>Iq|o&ryB-9iZKR@yZ37W#=eGw)^}|Z z5+rz+LC?bI?JwRD)^}u8Ou};2DOQmp!UPrL5k0j@bQ!3p@fpBwQ%qv6$XLO%Wyq`` z7UsH?4MGE`#ycia!sR=QPNmFuzGB$*`1fk9Bl8d(c5@z^(@SU!u>`ufpLpPPv4Mck&cn;eb?LZk-VkAfdqUA~K5 zeQi=!yFNVOecFqJH!^1rP(CFPOM@!%gb81q!Pm)gfG zs>x2D>-oozOB13tCH6D1S|h*}ItSfXC^@;`ppLC!Cq-suae9jY>}`=l%bzi`U5@Nl zbsm4c^!c-2Th;{7k@^=DoG?>HEP=;ae#1biBVpcjrP#-6uLHqlgO84V4{81+3+(XD zmEaJ*v23p_XBCRuY%K4mHA~buT(GUZXieMVDyXF9i{D4mM$WJM*LkS|XxLgoc0Z*$%l5iT3|5=DT}<}5pzKIE45Z3fRIWfuSIiHv6QP3P+?GR08F zDJ9E|-5(36f=vkof>W2Gz@rF&_fMJkq`WcwAi)U-G?JB(YCR=ak51CZ6*JlbprM9$fbkqr|BBLm1x7wJVgv`Gvk59sT$+#9Q-b}c!U7QmS(eS1 z0AjWY;(&nOG$o<8Dm$y%PN;(Dcr9V@#3r$6xkrJ$AYAFzZLlKW2AjQ_zH|z@Di!^H zrS8`*BUA``C6 z!;rv3b-;GP2xb8bE-jS@u5&X3YQSUWD%cp?h9Ae+09Z1~Iwn`EtT!#k$945$oa=vq z=)LEZaj;O_)HP$j(rXC~mepOf9HtPq|veq?Vz32 zQiQUw*@2=}p2h2nn|YjO2gjYBC0Ju(l6yq52#`FY5b+2G%ylI2$3F0DX6 zpS4*cITdKfrr+~Dzm~sl{R9VvhN&M}PiJOxpXzS`>k%gy8L{5caiFp_C)>^(%qn?8 zW{!{%6uGCN><1t|;cRplxLdWyon_^1EWky);V3V;sQE0e3`uck|1SWWKxDt{G^_1g z7K&J+G6#_1q+!q=#msI}%E&fi=@FMVrs&qex zHuK!Z@<|=Uu}FmNA;gWiA537@-KUGb+l{tmbN>KMbNwrly0B~C0LdNP#uuMfxVb-N zl$HJDk~m$(K_d=2fuBm}d@Ewt=@Q9vezy_1jpJEz6puk(elE3W+EkyrWzhBTRB-d9 zYWmAvUCx)pcdaLkEzHq*DI76<{DSVDVOH~!{gKta0wuFc8E4{G`vljee5mZy;ja?QIOB))s2Ew-1Y+yQZL zWLxOG=;UJ|!x-{DWebHl;5&?b)gGatLkEE0QoJ$$0B8`JMU*y{l04T_c?%LNm5?h9 zyO?~rQU@)KkLcbKZ}^Z#O336-aCU+K{{US4n&3w1{HsZ>=PYfC<+^p_fHqM6@IiP;s3HJ0pTXZzKiaj9s^aI@&d`W-l* z{hF!jy7sFck22|(5?jw{9kQk)Mo9rk*~{(({nj904p*tp1;x~LJCUa)`dLRK&ur2v zObeghDac&spOoXA4Dx!8c&}*fAM5cuB;6?UOY>jkab6Xj>@@p8k}NY2Rz#JytBjrx zr(EvrGt`_Ib*Owrs_c1fG}&R8E5guf4#18IlwlWc2qV7M2Np%8=fTCkb!kSkHuXiwk*e?o2jT_U<9ttr6G( z-X1}_Xy3+HaTv%2jdswDI&MyPcWv*r-R%E@g!&8W)4)_gFL1B2AQBuE(G`l|o>pE_or0Y(STFC_0EgCRsrb7}u%(o1=ErIuOfB*vk4tmz+Yy0V? zkxaMOlSw0$a_%N&<6Jm}E0VM3Hi5N<4U*CQAs zt~DD9v)g&?8IYT(fcg0& z9DZ2uPrkQ}Y*%lEwF@hISC-%yHJHg8l>;2KY)=t`_@8WgM~nO;scPbFB3r0s)+6xl zn{O?|%voK;^0bUxseVjZ_v%Lgj2o{7c;4pHYk6ky_>O4V3oFggjBs}1yD<}~&b^ve z>vNu!CmL!l@655`p95$*iPJSWHGN83xCOoIS;=^h!MbhS8s)#49MeHZ|>u{X;Rgbc$6X+VU7v;RPZpz_CgN?9PYIO=?q4}T%1;^oA%o974X7eX_G{*@VMFA(}^NTPm76{4CPtv<9Lz(F8*ZCaOC2QaM*t_Ac1;uZw zJKIjv*~e_~IGuPZW4DhRhf|0>2jA_EYHB_kn#aOAgz{d&EuD^qd1-4LcI9L$QE+5( zGBbYLL-8etfN%93 zb6FaKYL^;h_V(iTONi}rcBG;^7s~Bu{$N`q5%XX(IxbXOsTpp+BRp;vE-wzHdue_3 z>ut2Z-?>M^^SoM+gk;AsE9_5S^YyL0M#_2B)FTBT?s6~ytSRQzQ&P8z-q52*Cg941 zCqvIq>03IL-m5m6>ovHBC5*JveBcEGlbxseSAm&MrFzhvB(+ID^ZTrHHpqAcyqOr(#2K({!2T9P))x1lhY3Xky zZ9Z06LBWW!sdkX#CvSca9qR3_x2MbC>#4O1WW3YW+(#VHi5(*{S*h8$5xsoo+H-)! z1CR-*?IzQsxY6yT)AXB`gwJT0f;kfUM26M(ZXlTf-#Cnn7A+P>B-g)QjqMn_CHVTD zO?ooMa@FSLZq2J*ZQE;@dXAH2;hjq2^GVV#Adp*1q*&eDFOaDeGEE_oH!_jGV(twd z={G(VFx>C<{*$IhsH72V_ZM=DE}*>BC zFgFS^G%Rneqn^p(d6eE<9ZDEdC`53Gtm3%Z7s~s_If@qqe8+au30hlSViP8WvVEo6 z{_sa`WidL!E-kH_%W>roF*9;9yO%y%o}gmf=iJdXeM*+PCXJ+B38T|vwl@}Wlml0I zqYviJB!4k?F+#D$kCgRXs{F)J@dnBC=*EdP)EBvCl~+@Fb|PfE0{9r(ti!n&%7)^$ zd^K}#WBr|^MLe^>w)Rq+dx+s;O~u8#NL}`CKk@Z|0RstxoaU)mU1|54LZsTJp=lnq zG}eo6B+Sei-YJ->!w2sPX?yHAJ3%1jc8ywg_v3eO>!FP4w=1S~_MR2D(zKmM{?6h_ zt}P}p*lQE&8_ZC=Xe79CxJUb~^BucaD;OP4#!^Q-k-CgO)7|7l&)HID$-su*zOB^;aUTRkpLUw@gM=HgXz~^xrpOL$T z`7+%tmZz*8W+#(Mv4dE>x-hlG=V%Ee54`y)Je@wn76~iAYbXixIp$J|n~(I-T(*t& zI6V^9eO^l~KHp8gxz*$sEq4m)6UQC1EUB<=X*pF#8OGzv@=j~Ik_{)q7BD5god&0= z$g3U9v)-A4lafM-3l&U`!z3!_Bm-HN8jXdYjx@_VM7Fh-BWqx~d^Yg;cL{M7yss;- z-y{g+1&08Oamd~aG)tRVwGBAzoxH27E4WB_;|u2|n1nI}$5~5!yGB%w`5M!bQ%+kE zIL)mdq}K9I_VIx>qh)SBM3eh!{o`B#$IAV<=qt@NYX-gk)VsNPE-s{diIVPFq>@EQ zOD^2IoxlW*K|KERzRKzCFYNB_mrQuBqG?40vBBIy zmg7*;An<+EH(~D**{>{;Ya4=*Ohd-mK5~~CYqA*bAZ%g@$gb6hqMhKZ{EQVU>v>$j z@cw~gtH*a7I#r~m(aE@);_6jkh1?B_rv-pR*N&ZQNB$7YJx^V+yN5(gCc^I03(Gw| zdzp$)5c1km^C*zzx0O{;tOgl^5Ef0%M#9G9#Cpf}R5Ctw{gS`@>^>=TfI7Kdw8Id%_EL|lD*7wt4}4q=gGJ0<)InCJO(`f z09vf&@ws+VgCCuSdM1Y;y;lb(+K?zGtS z_qK#hsV$@$pnWPi^iHnwFg$L!{oi`Nuj~a|68@W6D zh;)w&YuenN6F2&u)x>w!ZGPfiYUzqb7Trv$am1(3kZm6*4UNaGW5pGmmTz-&73KA% zj+t$7dM`Ce!oRbUTx6p*NFxt6WE6rb{KipA;Fiu`%Sz zK~eJneofD{O9SPEYI567+INSvSTD4@EkgFn(hIpJ)Be*O&a8gMv{M2)=}3})%wi7_mAQX*B5gkqqRg~QXdJs`B@JPgIxj|vKYFmvO`s(9My||jsPSUifu4lHl zo=Bh(OA2|5wiI2vnpG$LcHkIcGHJU@N3jkOYRwvvy^e#SUtHgKcE;w-FLgDwb)1=9 zpnI7W9SnFy*$XHknDDzmo_z>Yx-Xl+c=?o+koEGCgd4S|H4umB2q={1Me?sa`a z{ie9P(rjn@ArMSV5`#L4Q}?7oM%b8^4na|Zqyt*gr+mX^O!3|#YpeZFOR~Ju;|)Bf<`alfgG$dYndLn4BYfMA*I=$0kOd$x(1*iz z7P0C!)A*B8Tdhhs?HOZdwh~N2yuNnEo6meqxh_P1zS zM6l~q>}a0e;!G+mtjM9G3Ij7aF_XIuil0!vgG;{D^vy0gt$g>?En$K*MYghd?OIPZ zB?Br*5o6VwbAgeZ4RR}Jb?EeicdJV_tFGI5moi*Naha}dALa6}L5?RIe&!qiyH^b9 zH5px+P7T4uJ2%v^@bgo;7L94Ft>wL}){M5$+FQwWBp)ntM$ma`8hrB3ny9+CQlHsS#(=}+NWr4>ef81o7LALMuI&rsmuwu#Mu1 zSrtvN$Clr@Xv1X0Ps}sQ)-B6xT-novy8Z#D{5$alj-52O=E8kS?@yLFBe|JihSEpd z<(Rf3Zjm;zV}(*=P^@so`kHt%!!HbMbZcC)gOIi6x{r!(@4P#4t3wR-@;ou@M3N9t zm%WXItRuvVe3Z&yaujDHCEg;|*4jONzSSkInqD=CBGL=hV2O6lo>PQHQMG@($6!_@ zax`?HmF#k=G@I5d?maL55seNzNv#)8gj-HAELh4&IQzq)?Os8n=?$oOdfo_kmzjx; z5b|XCfc!doV-m9!pbzN zdr0(7*6*Q}qI^EQ)AZ@u=ELn;o61pw-)tcp8OaTRKU{m)Ira}24OVlj+BezaPc9^8 zQp*~a3ygBz2+t(@*Qr33;p2u|`zdVXxQ;7lc+upY+^)&DftD-|?2IYT7#J1EzOQXP zwdabZlT?}r?Aq9A?Q*0RNnl;&wqyQY7x+m53CYd}CMGU%<))W6q2GnADpftT-iBp` z_05-wth6~_#By8R%LHWF>eJh$n32&LnFdGRl}0{L4hMR(f8ptsudg*(wM)Afy12ED z{NGO`kR&%UEMfB7P8ei$!RLZ%e++nvKL$s7ZDxDW%WHRgHSNykhSB2lkSNE`CJV*5 zlv3|+$IpQWhJ0J8>AD7`s%o~@sSU=YjXkBg+GRIjOXfa9jiDQXg2Z4FyFPDHl5t5Z zHj?@1u6dOuCY-$A;?2(w=<;4(#czA!{dBy6nm;dBoC((oM&JBE`{P97&%m=2s*xPynDBzvBM@h<+i{E#+A(qA`hUPPg(juD``Og|NwhL8mF#m|32p6TA~cf-Kx31STocVFhqQ5e zo@`gThFUO7nR9}B6IHG(E#F&xE<8hNrdqAN#1J5gDVt@~o1#z%hb>C(F#n9Jb;MMNYTDrD9$h+J4O^XdIESccrR%eIK5A1hG8mjXIo0z|P!tAT^G4hPCUy-6n~yWK?#XgcNA z_AuNjF^2owMsc6dwQxQq@a4{}CaUl<3w=9Gj^f=VW)0yndX5Q@B zq1v&mqIouw*~E~DgE}b8oMe#IU&H!r`i1Hb5Z_v(YIn;OrNyj*B$7mZt+F`bWo19Q zZn3KgKJg@x%?v!~R8vyFlkL>)`phd(l^L#8x@*5fR%^XJ?@Q2c^*uvXipNrl?WVHS zHOZxnO9b&Ma!P~zM<0(k%{x$+!7JgIE?}2UlTkAjlXd3z5#_rUKkW9dZ^xQ~+<0?A zmsGcwRQno5r;B-nep&k^tc>zyU(5xi00FZB4<~j*wEqAJTWL4GE4eeupV`x2>DIBy z%SfMMx?*2})l~>1gY$97$GE9sr4QaWce1hMN(z4xOp{;L^aFWo7J)syN}+xnG#=z|SNeLGE$tIQrR%`g{Nb_+GG zsizry-`{ijncYL6?QxVdvbv-`IPVm%LIL&6`53)jyDyo%^ zOuH~bq^qyr4UVcgYvCv-?l!dSj%t`SCwM+zM8B(8 zQ*h&ar5KaK_EEGBx!Ig9cCN36HOmW`f3Y<+4R}T^?h`7r3~(?w2mC)SsdueOmO@3W2uclh9mWG-_!)PVC##QiyDLEM) zxIbOkHO<-^oj*^H?cN`@p4D#RF0(-ixV_vYKqesUm-mvyz_t!llac{FM3JO+J{pSV zL<%ol0*is2&9n}^@H1XprY+X5Z@uhbd9|5@kd(JnQ779YQy%r-xeuAhop1t*-bs6q-=r^%xJzZ0w`Xl(U+oo2$T_Ab{qx~w-a!)#}UPY_)Bk;^G?p|;MzZ^9KFaO1ha@hvXy=R){>YpH2B zR% zMzAV^!Hv1e4632P0Amj2D9TBtq12%z)bvd@$HF(3m($rnrQg8`Gu=x)__-05%NJ&m z+Zn+m@tkCyD$bW3yy-ev_x|NbzK|fH96*k=D{Y&?^7nXWtx_o*qu(x1b#T+W}lh>dG z9&uPY_lC6p02la9&L6SCrd|hezAIJ*aOH}K!0DGKk~wA|b6Gw!)O73XC_dHpoBc8F zZIvRiyl6bnG3Q2C+?bFDv?uN<`M^>zOTS9Cytna@OPj0Ku!`qUOMTb#lI9DD(M#q+ z8wx_>XaowLLhhOHmrH`q7{0?j#@5{{+)L%GtT0AX zaU64xlyFEnsr3&5M{%pdVz;&zQK^+*mSKzz4;?Zw&;!Wkr|?C^>S>l&w_--~?4x5e zn!UxtNX!)E#N%R<$>5xH91~k|-WfGW8CZf<*C6Ar5B|$t3kl5!b>?$Ux~*0;rti~z zy*1F~wfhf49hXy&@dm9nkFV;WTb@UH<#ACz?wP4B)iDA<_3*RwX-Sx>TtN)%YgcKE&l)r z=AYuI^r3$|T7BGmBzb`S>iw=iJ=0@`JE4m>#^#MAB{7BNjD6k2sHYn?{_|R23EwTe z4QX*^r%;ux@nd~Fa1tPrWnfXZm1xi$?fyQQ&2lN?8)$WAXkI;4&E(A;=A|%{JZlzA zY_d$G49IZXlsSno7=i~`b*kyt6Zn$GO*(eA)AeiXotM5<#7{Yb`MlLb8srZk;Y%J{ zu2(0A(lm`XT+t=e?xC5-+OA4LY2{mFnQWs`ksFm!_Le(-U^alb%M-O4bZq^rX(H7n z6=kYDBIi=@l=_XlkxihiXo&3uZwjGf$qelLj1V!j5JCJMWe%6Y0PU!w z$XQw@40e?n-2_ePkWcY8eCty1{iHq+wh_xTs~opCuv)1eb1b%&Qu5ft2!rLw8<;La zs+MT@3iPm9ZXUFGqq_7mbfXt^l75HN-VjYD`(C^9-%HdX(%^(!-bRr-Tc#XrMj0x& z#sDA=eN9z=8Cza>giEPBtEZ_YV@1w?x+%o*6o*{@1m-(>04o&7JuD*l@eU zt0_M#DRIF+s9-o9L8r3T<&tR_TieGHNTvS(b~ih&@!RhO=ce7=c%_1t7H)E;?w*P4 z*7wosntC+V(^fO98OF%=j}CZ+JXfjS>GElI@z{vjl0;lGjNooQr|`vNcwYJ)V^RLW zzPPz)JjasSOM9sxbaf0e8a7jcr18_*xla%Hg)KY*GDSODNG`1-mUCh+4Blm~<_xmB zkGv1v#{hh!l1|TsCl^OY)s}zV!vUCWw@8a2eMR~W-e3B(`Bar0j&P(*s#8#!<+NVj ztEr-dxuWl?BGzp+HPJPzVGf~r9uAzc&*BTUK6Het6CPO@H<=dLHd_ETG+1~G1jh5jcltnZk72xh8k@I02Xf@})B-9~IZ^J$yn%-O6X`qVj?Qdif zJc}HLHc2Gghb`q2TWI_E!NyNx9gH3o);H<57O^&uJ;tLX7Vb%VW>?ybOR)jg&M%p_ z4BsvQA$NHap+dF2v=g^=f6UsSJY#E^()iMA8ReH!(6sxzsFKoIWtrlJb@^a2AX2-D zY{(7)E9Md~620$6j>lKhUrdV9d8{tX zHr8drK`O@)fm&C?NEkPpyKl-@VO+LDR-VFyCCyF=dL+JD7tJ>tNuI8@aE5kW;Ja>O zvard(8SCsnD)Sv@#C{dkCc2ME@Wc3y<6wpE3WT98MeS$FSAUq zy;B>pf_Md&KAV?4MQKf^@v{s^w2XgplYW1Z z8t*%Cw_?UIg*XL(>sk5-k9<+3X?DILyps1&j^f(pIPJubIx51p$>zA;c4fEak3#G~ z!wU7QyGR*OO@xfditU_XO8`z!r&{sNe@z#9#8$WVwpRL9+nMEt*2*}igu@h)Fb)7> z#Za%#%rnUij0>%WjCG0UW%$=$N}4{Jv)C^+>v`_%?V9onku-?ALgzWaJddq;UbBBL zm*W`pq2fJS$4`z_k7?FtjZ!l#DaLnnR*?PSfVn&_*3{N@t5`HUy;$!Rh{ zEI2nvSV~p5Hf=#0QFe#w+exgC7F$aV#<8ee>UT;kR(R)oG366_lExq^q_)*Nk+Zvg zBbx^R3iGHcv7)0lcg^3Wk9!vB%B)=-7hhdV8YSfVjjoZVT_@TW{{U0Adz-t><(--f zB4b(P1a5Tmj=<{QBJCsPN9ixM4F=ZMN%Te4lR~t(SPje?#quny#INon2W+v2>QS;b zF$zY~-gV)^yM8?cOC8 zk{B-5Kvktyl*1bc42;Z502Sm%Mx6JNWr&k9$Pjn1=B@n?$h=UI4v$&7M* z;<7RP1A;!7CpA}4@k8r=1G$D{ok`_brhyl0F6n>^hW`L(9e6&yYnyB7wQmtd*H?C} zZ>Pw&Qbjylo5_|KCXJA19%^Od^Eex%j0GFW8Mfl`V!kD+s9|J;F%{XZV81!J4WRlIuZa1>=h5CPPIAHapk%?Db}3Z zls4{qRrZl3?yDW-x7Uz^7)e&v`gjB5IN=#b1&=2uwrj{np!$rOitAd2qb-J=s5*&m zbxVzi+nHlg@=ctpKScy=&f%OM%Rtq&YpXpD;_p{z^(iK_xt`FgAe=<`RXEe6 zt#0C%Jl*F10IMA8=z8`40E;BkEpKDDh|94iyO_fsf4i6Yw{;tETY@pcuFZTCsCa8i z)HSaV%V`8)gtoSp>QKPr_)3-D+5Q}ifO#FUb<1_P(lqq8y}8r{zNLA02ig`=%&TVv z-^KwdynMw}uqBizJVSe|UEcU(M!CC9Fg4bxG!k7+roitcaI9WaI~?u_mjssOat`5~ z-8d;nRk!u}6BlZ3ol9wFbhXp^yYKiLI{m!Y5n1V4WU^aWM;wCfj^eVHMd-2~#yl04CkW%Z7$Q zh@xOskQN+)(2q`euO__H?_W_j7y8A9p?Mve*$LAA=2+aBZE-I1Cg#fB=L2eG8w-KY zZ>VdIz9QExE$-E3Xs@k>w(=mi5JJu*MGx|}8rz;ZTaKSDHlpE9Qk1p7_1IOMrwGMg zOaA~{ncCgzCBCC3pRa3MAhq)Y$E{qp*7KuW<=79p$FCgcKAhYdb&rQMn_K3ORe`Rc zy-glzbv1$Ga<<7FfQeB=eq^@?BRNOhL0(5i;sN%L7~A+;R=B^G9cJx>X5R6Z6pe0P zGL0GP#Zz|WDxtQ3n?r8r;kB{Vw7n|Y?&Yecv5;Y(?RdwkjBi9ly#FeL#D z6%|a4fN9s9WiDu|BRVjWm75!DCZ_sjlv>}3e&3t$E+o0Vn)=A9$)~c3F(8j>dGc;8 zl_x3=N-*v`1>|Xe4Rt>hExZzHwsvnMQp^d-TV#HD?!@Gb5)WGByfJ#Vm)cgTrQY1! zTiC$Ma`D|}HYp7A{h96C3QHtkSiakYOy)7l_c~c_d zHs2;ba80;#wNZ#=Qg8)xyID$I4JQlA(bVhy9(aSqddG@2yB`wjyXLjHmKg0V;qu{7 zjmsnK48xEH<_8>*#N~Ys<3!VLnns?{C23=Lq%KQuM+zBFs9=Z)@3d#2uQ2eZh|RCW zokPL;fBHSRyqe(_^~(hT*hrA53x(RFVvL0a*t274z|g)XYFdr+J^j@2K{RbFU=j+P zkCb8Cci!uS#s?hWD%JgzRFb*A9}6n-ac@)7wO<1GM%Kbvpzzk5vLFN)?NqSmw-w0v zZ^KqPg!5Pxj?#GJVG{j~RbC>?ybu8Vx)O8hD{5~R+BTcKUR}J0Ag%~Buxeu4#TrfN zL}MnJ#|469w!{8KWlFUiRViK?#@fF(YZzm2b#StcNj)Bxx0)ZW_!`>R!}_G=;7J@d zvpEBbENrqpv$0SL&&W;e?WUn&qnpm4@&J!e;+$owjiM1P;;<&!?CFQFp*csxv zNEa(KrDb;7q@+P`Lpfi*r$0L8wXUN*&xiauWgfSzLvKB;)z_4)tu$89H0|X_F2R-} z6;OU%zujeEsd8O^}Io0JQBwQmlCbwyTs(H7`Civ71>09sV>XG z$RHEZpAG4fvV}KUXI0-F{KZB{9XIj(tA+4pn3mokwy+;<^Q~UO{{T>xZ%B%FxMc!1 zgb<*Ca5CGN5e_zuDz+iEs3U3th0LnF-3jmk$xnDqqInzx5F4PeG~9WvJc0LtCv zi_3VW^7D-C-6t8q{Do}68po!=i0xfqvA4_LIbf@YR8v!wu#y>rC)4vwp|A2B&zLSn4Whq8sTRo z+P;l-^wCRcEH}uBV`BT1CZ=}diTT0bF5$9L27O;Z6wwfTWH^MnAt>FE&Inin-$n;J}i4J8$!Oj zzGT!s$k&qGG|IB-AL&xZFw)z$3qv1U!!YkOVyoF> z0rqmS0uM&4N#*gRP)&I@zVp4iTSW!k#;ubZTn7cM=JPgVbWV=JjsmuD18v^aJVT_# zs=&84HhHwLy|aI|ys128{?sFbYD=|{tg#K_JUKhZC09=I9lPsSu+OboSR^-g^IFAa zaO)Y0KeaGck#`mbS)-Cqn6}q^5LasEuWe4%dtIEht;Eqmb8&mD>pAo0ks%Upc?*PA zW&%({vdRI-!5JAiBAq{qH3ZQkajVRmp>p;iDlw;*DV)L(yw%o(xMi$ zoL;iX>*X0sh9)r_jFPb+7j%;Z29elipwqjP4rjBm#mj5rKeI`p-`#3_jKtzOShjbuLdvlpl#lgn7#)!_Hy3-R{{Rp2HjJb2xUa|j$i5mrw|C-L zVvy>x+s_iZsFxAHmQfXs_5qa_9XAj$fq`D}plModmY$~4!p<1}( zwfjl*>zHhBFv)9uHS*d>^L?bm5m@}v?1&GQc~DoLRa;9_Yi|vBTf?Y)M>HCB)&K6r}BR zV7X@$bMtF@HO{1Td%3k3bOU$_+832#HpU&wReoQUqzND!MnO}I*HZvZMmvbV;Uc_N z)uNKiONvS6Xr^;L#7ZVmP6w9I9LNsfPB##14$D>3G+h-ftb9RlZ#lMRS!{&Xe)Nd(Bp zB(XJ&qiHvN&Ap^;W^(XLKEAj5lp3a|d#7n_71Xmp(-RcCE(B#(Ssk|*^8RJ}p^3`i zwPn4RiEm`Jhf|XB_Uit^JL`41xO7kLKP>Jn&l>-sWiv z?zby9ne#?={{XAT?%{E8(Q5wkX72spz@-<3R_^Ohy89-)tYf@Jxt7-R%#K-63S{GP zMs}Q@tCwv3G)@b$&T-mGk*($eK+caa1kARD8Jh}r|U%Qaj2wWxLta|xo))muwF5G0HWA)M z8b*<~lOqzzA!&gK7?r_~Yp%lCC6{V~S6=na{iA8SBzlYyX?Bsrab=^r7rK_z$rZp> zR)$FlXCgin$r-^tORh#quQ2hHvFQFG(l0bMeIVS14pLDWLX*6CR|+<%2s>kL+=Gl) zZKinA+TTKvzqIt|?f%_!`_m=JT)fgqqbR#_Rk8;M9Y8q)kMRbl;oGAG(rWg%Hx?F~ zpb;#jG~Z}xa1PP@KPSvFnKRDX^eWJ&>~9FJV~JL(!_+A*S?_rK9C7Ml5?r$y@Yj1(ds7@@xZ07O^1X;wKDGa(qqQ=Blt&TH6X@Rg)@(n%U# zis@a(io2S6`2I^AaOl7$8 z!B|R;trGmaAS|J<2{@L12k|DgqiK3=#*?W-q0I5zUB?_Y@yu?cGb^k}tg9YX@Lp^m z-GP!qBUMJ5R@oN|B<&r8203`z&%SH)-}CiYn^6Gy&!q%X{WOZ zA)9XYE%!g!=)9lrdm2l9VrX^CG?wYjzASEKBpk+x9A0oE89SONkQ4s*>Urzvv2 zzoH%**Oa&a0EQoVYiEC|>HZly#A&U_=H#@`aK`0Lw2`^qW82D;leqoDyq+qBqh3Rz zS!&Vi*Ykb2MKqS8SrnON+qHKR7jR;Oc_W@qFlz3d;*B!LQA2feedY;mJgZ5qE}gBJ z1Zg9p81}|kdEa*|-e)J~AX(BbHJvlVx@4NXmlqm@*6u#jawlhmm4TEeC%My7lag1u>-~8iZ4`Qx8dam|J|>z|sEB307I)7FktBu`B5kbuowpuX4w4)k zU~9VS_pNPkd_c3>S~0pFcA}x|!I5@C<@T%+;F1-Y{&)s3s%xx^#S&WE-rnC^18rw4 zO>c70ylQ1A6}XU@58d-Ox8CxIJ6VXUHd@w=tm$^G3`z%_s|mTbkVPR96)YJQf&07z z!7MY-sV4;8+qdc^RV8M(GS@`C)-|?$X8TZr-J;z(!*G(x@)rP@q(*kyNnC}%`MP}7 z*3G1&Y5xFal1VP^E^UMoJ>r9vRAY$`M8GeFV52PDbrs0nYY-*QwRNWxaVD2%cc*29 z-ebd#NSVoYrWP>Xp(f&f2ss2~nG=rRUtqH?7; zCf~e~%;h*XmdBslf5Jlrt*(Z3bcan5tj`9*I>>hbGwUR$)2 zNno&C&AQ1N((e%h!xrq!@F-L`CM@7>0AqN6Qqk-_)v4+pA-uKLZ!BVYEoHZwSM#HI zW{%{x!lxk%fOmop;@>$@!vvb=k6-KhM{8}R&CutexVo3hOX&!+)e;-2rfD8|q=qvu zosJ2?luIK98$-se$N--E!g~V?nXhTTk%rsi)eySR+Amsy)@BLkrDyDS$e%$j28DVC1U=-}jYp*6~Jxs9IZE zM+L3CH?I0|iVJv{#F8^j8@0N-20-&805Zt%GUWNJ29)HXE@rNbszaJBCvP)C8x0O` z4e3b*tO95!-1irGvXN;MBcYUGV>Na25^G|m* z!rNU*dd{rJKWJ4#7YNF%&gbs;!6O8Cp5I=#)#cM?xSv&(XPs<~h`f$7Eyc4HUoe$r z0u#wlGD!hRRjYR1BhoFc;D%)wLUBfk*a)L6u$xiUweZXkoTs2hMpUvj*!a zHrG*8O3F9AjjQ`zL;ez*B(Ys##5-ZMx|TF(ZIx_BIckOgJ{vcy0c{x&X!K+q&BDB@~N2bYT;xT0QPh%{m-J}bB0T!|O zav1j#Qcpd0I8Y3r^ekwx@s+)%p>Mk4($d!0#BQvTJE>>4Xr)g+M?_-;d0{JWP+5a6 za$Sf~S9bka~KD#i(?xmFP{*%@8Hh|4xMli6F226}Q@ zWwUGARQl$%;k#=jj`K`?FHmS6H2fA-lCKG4w0+tg$t?_hfFV7&KiW~tj~_5?{hy5-y! zSCAI4du={>k`a%WdZ8tb*T~6UQE~{}rg@SGd@B~8WvMgVT*YG*>@et;NMw>LlOsyA zOY*71@?A(F1_FWc9!VG$C>SY5^HB}c)2c{ z!8O0l7}Atw6yo&$zf-I5=fmwsSn$r3f2nw8)1}q`QHiOZ2<2ykZ z$-#YpSbZbLO>=3X?bEJfTiZppmEpXVr7C0~$_DMro!d(`7bk&^drbJN;tdB$eIm+O z=eCG4TU=d3`{<+Sy%>Rx!0yLPkN~CAyg*Kq7K`Dwzi$v~*Gnz^-PEZcoWm@!p)Pu{ zJd&)(j&}tZQ^MvHs#KmTNx{lIy%b`l%`51+S0ZZ8?)!H%ZY?fVsoHpJO?$0wD>0F(c zinNyT#P(M=H}YtyZjr|%b2GV^?9TG9gYy<#rdRIcBj%~J-x2A%bk?5NTe*9ycbav3 z#f?$_0CkTjhtHHZKi&CF9ol*sN7~!tW%2&uVQ#J6$VSissIFZ13c_ zxoG5*ah`b0%=^%8jBWBZmJY=1jmrGwigp7`v$?po)g_ANC|t*PXLk$DGrO5uwE=ai>ru_A!E14G zb2D5EE*@ojQ6ngL<6$=mC{Uz)&(NLCTK@q1drSLu#q3tzAJk@wIGP2yl1Slw>QY5u z%NRSzDeS=Za?2A-2+WQ!JLPEHKA%0d!!_R0i1G<8f?l9P+HzwEa3bJ|x=ddRr}p z-KE{jU*B6m%`|bkyW60WK=HDe69oLC7rj7D;%&byK$ILl4@Ous}(3Xy_t_GZ7Rw&FqK76sT@hQK;Bk|L$sl(LHmm5kUA0Ro-@W1 z>Q=fXy!xmn8|Y^d2a!kt5o7zCk(tc0FC6StEr|v|=U~z!{@ORtM{9W%u&}@KZz6S` z<`#5~frz`H-tsA6>^BBhOe12v$<>uqn$aCGy+ow6I%c`l=Uq{j;_}x`)nt}=Eud|t z;7l{SC4f0r9I~lDE_leT8{3(ridn3!ZmcfkjnVF;NSMy9*?8Y%g^uQ8-Fa?(LF8{d z3nzrND;*-YBENT zad{oUiG{%{6;cb7NXypYDzmysITHa6sbRFYBv zM&rWA#{kux2UEVWhUV@oId9tf8Exj4IAU0yBP3yQAKc2uCfk+5?^MB6#bs(<6V>dz zEH!;cO1+CoGqc4!Z5s$(+8}pEuYf*BT!l=w%$`DxsnmxuSL&Pjck;b~O-n@1ibzub z0L3;Q7`MCBt#th%VY!m#D=U_}mPL&h%vkmph~r|ecu=d!0Tzu;+f4X#t3|2!dg=9R z2^3js7S~W0idB&oO`>3eG8r};0!ZNDfgp2wtonzB^{)>7QeU0T^8Y_Vlm z5wG4mjuA7-J3+^4Y(5g#7r@%3=DVuHdfNP&P>dUwxl3g?dGf=%HuMWBkarxC+@2Y^ zJFCq?*Gbm=Z>e2e>Dq?0Ry`)(8_6Pfk0UHZdrJgOyGw9SBpu71s>sQx>V6*5FRe8@ z%Uiu73;UU_ukNN zS)Lf0FSLmnl>t{@kb}z)F^IadBd1(sS2b)+M`*QW<^KQ-XGWCfq~~a**6Ul}XDcqA zw&+LV9YV`iv|Gt;?=JNz6LY+%c)*Q*XCRm09&$0j`q;75WxszAM;c#CXLV(;y~*5F zp^2U~axl0H6O|ax$haIDp>d~NPYG3dgCdiOBm^rezv(#3&IYmuI{rB|!Lz0|fC{u1$*L3%3bknc&$#r`jPR~rc zf(>fwD{U4CbqFAhol#^r1~n)*pDl-(ox_qwPb8Z5WYO$&{{RIYR>JALJDYKJcQ%`C z98BRu95Rjk44e$H9P)elev#ogb&W-I_-(Yg7|7CtWqW5djDk-vs(|f=*b0rnCU6M~ zYhS`+P}F=e;+uPGOXJ~LG|Tz4%geF$VkA{X^2($6Awg&7XbeN1Fv>cy4j$3+Y$|G8 zzVkF~yb~RDLD!J@>>3G#xVLXza9WT_8^t!drQgy~zP~ z@93zb%VN1*{DGWqkDu|Tw|%1ctq2~!yBn2kzS#9OH(;k+>X#&RatXn^o}D?D$iti9XYJ0wTpMLDkXYjLEbUESM-;?k@l_ zE3cy2$)v#ry!yqq+iSx%pdgik>kywS5MY2@1zDGDp;Iyp9i@o#>drM1g{^0E+~kxR zoY_8ycYgjI;zzStY~zt(goF}7=1IW{=WzYzISc8xjFc*}M;7Mlf3nqaDU(KmI!n0h<43Pq>rdykN)ng=pL1uUf z3R!nYoQ=EOrCyIM1xjG_R*^zt3VJIZ~pq(RWWq`mOKxn6r3}+HVfu+%=Mm>**tg(p6oJ zYOu(XZ{Pm_Egj3YPgTIi7ib*ZXHmb3?g+lwaT1exa)=q!ZO&zIGt+VTk4?v(YrfLF zJ$pC9y-QxXXqE|3ywferQY@H=?BC{YK4+T1{G=VyGW@InTuTi*#d>&?!&+oYU&MBh zT`!d?t4j{YZM&F_qn8X03E6;1KR36B#4I%lD5&250BdekuHF2WznfdFDZ{0#k&XWV z2}g*0k0<+oRPwyvKg$=AZSyzzoAIB$zvj~W36d7h8pEn~!27vn;Q?Y36Zx-IMC6_)^&05Q&30mov)BmTJr1F49#|uUM3*uv2vhA6 zJEk*$85j~e9qc*Dsctk4Mp+tY;*NNO%N@Gu@u2mDUzWuKp+a^d9@hP zbP`X_{df7I{{XXUPEm4vv3lFnzpwlgqS9l&XPWNe4EkQ2g(kX%T6ob`B#;7j=Ll9a zjBrs-I2iODF3QpfC$oo5&aQ2QnuLo1wR@86+gXSyl1j;g$pueL*N5MDb#AoS(F_*X z6W%nJ5=w!#E?;TfptjsF$Xxc|;A7DSg>`GFS!t%i3mGi*TWDGto;4?I*CWh31Fq-B z@&Pz5Mp*M)5TQa)_S2r5J+1hs)%^4{tfx)Ni(0R~&u{n#ZKOx4E~k4n&9v6ANXW>K zFn^ooEO?Oh$m^e=1D+ejUMAD@{YLWVQM8Ws+U5ZOx0Gkh{q$|e1Y{}}8Nm5^=NX>m z8&9*E?%>!Y5P_K*RaMWXOjXX!H--FTrdiiEcfxKCDai-Y#ZrT}I0%r3q6fVK#whj+J zF&?-mPai2gW~1QU7UC2I5gJApyj(myMU^C*|5QPDV+> z@VPs9)M-(QQv7#2qN-Mtbl=@@pTjU{*4K{*iDoX7`O_@ye7P?3m3b95=0UTs0F?|* z;2N>CB9UBNcy=3ShQXo+;p1o(CUfR*-Xkg`UAq)*L;lwoHPCAp*Av-l(=MTy?ruPg zv#`tq&G}C~K5@qbo|Vt|qW=K?CmM9tw^Exw?IpUGOob%fem>MC-?tkN?#li4UQ-=~ zZmLtO7s&NS5{+6ii8W-+;m z9i($H1LxoXsw6v4%yG#70Afa(uDNM#c`dZs4UgN!rNyeo&O)(~GKv)K5(V=)-?SCV zkU<b<(GGBm7(cC$uzE)Vxu zmCt>-?_FfKUJ7St`&GVJl5sl$pU$+728}t?p*dYe>3=kz>T}OAZl|_!QF61g>1{Oo zi+3?bz8#K2$IJsOmBIW!N`}r|Bl~Ad8in1&7gAUOZn3+fvi!TtI{n^u0hR!k1Cl_f z{{XdoFpxA6-`fb=g1&1UisgJ%MyYul>054XlTDu0%ncvNSfd~X{_cFUh5(f~`qp$X z(Zf=xuA6&(=RPAB?b=IQU+?~rv*R6C!yXLqrm1gXrFnn8HjQlxd1|st5gYUFs(I%- zab7Tu;!6!r&%2uL*ZV&6>>h2s#vayYQy5j)dHG=5l?N(;c^gG`c1x!l%ZP4Zw0m*o zOf1ck#E$Vv=48eY1H2)Jb`I5*iO9${bnA^e_RmPYHj^XABi(9j9PSU~JPUBm@|I|UTcNZz$H=^n0zYCl)SxB$8$F=aHkrD>m;jml6^Sh66YN41t-e>c)Kv z`Ur16(Rp>`LoLFGd2SbV-a<5>Ibj^o#7k{ryOd>m>0Nk|!0VIiKW(R<5nh0E#oQ#QX~ zbm=A+u-V+fHsoZ(v)gXK2MkW-2j*taIRmDf!`gg0V`=s}T=7FYq>|YEfr3r7(3UB; z4URhJx3zgy)|!(`rQKS|e`s~P>yVd|z_%02Y6Z4lV5gs#&v)y)<^*kGN2d5z%U#j6 z8}k;IVQ;8IqdmTvV+0J4vLW*$F6KrB+DTnpZ^$XQu?`sRQVvg6Z5q6;=_6-Qx&F`7 zw8ECxcJW&qC_J%b`*(ctssK}O4)GD&fsR0`Ixdw8-Rc)cE5x|FyacSS&}Ex+rI;1| z@HpcGwksmv!7bpA0bgpZa`%^7l=@}G#k@Ag+$@WBtX4D%83r6EU7&)!212ftuDd13 zl6A4Zvzj}UkVkbD+<}xv>z)2tBbFR{b*P0X`(&i_^EP#=IudbK+hScp8%-+S;}%#$ z6RWIO*xalJ;lz07X!ql-aTk6h(R6)Td^cz!wA3y2ISSp}6pq}HKbareB=Xuq14RaQ z6%4rC;2rxxUl&n|r%I2x^x)ir?KBZiR-> zVVY-bGsqR9BYSho?QE0FDDJOLf>HKqUtPTqHP)|Y=XbWB*JGTv)bt&HO3+Q*wl>z^ zZ&|Ih+pT5~CMAY9K^@TYRf3d`Fs|!66+nfPeoT6ghI}^qrlfzj^h>BNG}(>4yn2zJbu1E$e?LOV~cUvpjF3!0# zUrGLuk2TR?vw3sIfCVvyase&5w~!Y*Yl^k-Cbg)~r|DLg8Xe8W&z&SuTVLBtAaIPu z9HSG;!ZFD}TymwFx8LEfi8KiBzqa%!=eD!5yJ+UOdwr~l6yLokD(7sHM8iKe(Tp9c zp~bZBOrqX~E~fLt;r%;LmPVcCwUYW-9%9)t<-&j$e$XS_dE4eT<~Rd7EU^^S^_#MS z&82&#b%sm9b2yq*Lg~F?0C}M1OoOlh8+)nKgGtryQ&)y7f3!womfq@k2oK~87tX*&TGZ`MT+>!3vaaF+G=+*pEYB&NhPyp@&*}WmD#|EynwEGV4#){w->|u zJ)|0p7k4v=9?tb;X>1VAv4K6J{H}MTyF|}`p^iYwaLOytwJj4wzK%&F)~0zbAuo2f z7vgU-Z<2Pfb#_!O0utMaTwn%MftRHCRx7CFaK3TzE50)-_#n^H{pnuhUw#k{NF_#@a3S#9fM* zzE)Iu(;p~16_o)9M>*kLH&C}0`k#ljt0*K9tan#;(8jP>7gED}W%`vU3#jFQ9FdDK z_-gs}4Jy}2@acP~8WVPJP+Z%T{{Th=95awS@jEa~HpvegatBkX#dtg=;!Qt9(;oX+ zzSh?6{_blJE*aCzc~{9?Ucp{h<^xNPg^PoM0k^D)>RPt#aD$fZI;hEdJAR2A?FxMxB9Zp|@Rw z${BQ1mt>c>J5C46O?JNuE_^{ZkA<&@EkYz(RFFn|pb^4MBmfbW`9$SHt`%2kz`(C= zcr1@tA^!lrMLty}xx6b`Xp>re?0ntfi+fmf`-$eYu#QVuR$J7(j!9lHH-8K6$K7rR zJaRf$Zzh#&d_ikxHk+a&M$pMDaM`F08?jN&-uqkf_vg|zJ4<%3n89fq$OctZ08dKt zFA!Yn7Mh-vy0)P`gckQJDoo)E#Hx~l+ng{Ymqq!391i4@%PhW1YO<8cQ*P zkFs=@&0gQ|Hz3u;#)YfjYI;+ypADps4382*5;T7(<7|pY-ci#BKU%;(D$o^w>0WKd zO=|S{`Wz9=BSMEH>91F#)%vcQn>PBEkEdGrCrHzE0wEF^n)^M3%sSCenKB(55;W+!Q?H#1gWu;s}cG_*0u46%SXZ!f&g+}*M z<(GDF(T)`IRObME-G%S`CU=@{n|U40&FIutDIF~!hBSaUQ-Qf1xa5*s9Y>%(GpWGw zYZ2%k9C$SwXk&3}aJLIPg8KxC=KO#n%98BLu0)L3B2Z6h;BOIl&qmW`)9&nJeKOxL zEw#uZMPNW+q+pTPj+t&LdnrG4YHFH_I(=73@eCKMZ)I_+-tCoAMuc7gT|67}#4usZx942 zsb#?{c6iFNt`im86Ck%5qD3k8tZi-J5~Q)h$-Jdf zoRntlnmOZMoRp&UckBIXX2YlHwi>kXCGy;9)+-{S+)6Fpa^S`z%052yoRHYquEZQ| zJx+(<`-@K$Xa>T2tx_|mok}A2Ph~4B#SD83##qJ_6(ebEkCPbW@peSm>Hh%PH+EM- z+Ehl=C5LI2NM1{MJh+F)AuoKw_hVM z7-#Q*)S}gr>-ZIW$KuxCk?VgBb!!iEa|u%7S?jontHmGO19+4!9eaC;g%7E99M0X*KT)>8Tty*MDZU zhA3pXSkuXH0ys^delvt0J{fkY1m&w54+iRfeZSgm-WVQ0vc7ki*N>cq?aAYxx_z?} zlq0(?5ve79R()Tu=@+_%?5S<3Y0$-SZh@`tY^0h`-8(Rm877RWQtCk*s|6r~io}z^ zme)F}YFg!&hVCPVXSk4CXrdV|U6s`NjM6^k`S*J63P~8}f$*k}qA<_Iuqf(Vg zo>(;L4aDe@C}`m>2vO4@1Cy2~Xd8E;(ys5dRWa%}mpU|PP{{hE;&|l1`CEL8hVDiN zIP07aYM7WuOW11M+^>GdPl@~&bYWwnS?Q3&6ksG4_U0KT3a1`nRsqRA*ywT86HOXq z3w`~Rvy@AqsBRFf>ZS-=3=R+9G7nBTBmq}{;TgJ{T6m2zr+;va{4dfZy3t08Ftn4*@-$jYtxWLCHb8neEV{{TP8#}Nu}y!md$_=KtZ!nX7^B-G zc|&Fi`G_Z{EHE>YWS-wq)9-Z&t+b6kdx<2tRk{|^7mS%@{oQ;p(|mRnt6yg`3Gowdx)nw8Q+a?+AON!=IcVow1;=dcx_Kg2CdOJ>vc z>rXM!RoU7+kf$IL>IlaNuc79-xh*_FF01w{&kd*AZ|^0$xCp2c@VA=#PUC_Xen56O z+1EJA-S`W~H*n6D`gEw0+Zcpmdvc+7%F7-La00kdf&lH11#l{K6TE6!y?!Kmvdk(t zDs^e5l1o(Y_wH_5>bhRBtE~6X+lxDUdyA6=VtierbVO5rDu(Wn#qd2RY+!Z?#vn)LT%{ZQ6TR{{T#%`!q^-NddRt zG{v&7y+eWgQoFI`Le;4^@jJ7QqK7kZ*`CdNfh-mbrI;OSzDQ+9!L8@u5YEZ@DE z)H4fwsusuHc31hb8LOVt{vK;OcB3438h?hiX{l{I_fbagya^)V2En>aS{=)glW^RP z_!yrCwJUMrYj`ASFK%w-h7$KgVg-&HjBH;pl6E9YA8*R6>GFmJzK@a%L!7}6{qicT zx|u%5fCSdRvuwxq4xax2*!F7-O$D>FT*(}eNH?hpa(s+qsou-Rax2|ESv4 z!35DYm5f$m&Lm63xQt!ghm}LK2%?z^`OAUzeMX6}6S6y}hNyvnyO%Cz%OGMJlo($j_EQ7-Z}BNy*wYXj5Fx-)sHP{J*OU z>lLdu?W?~}Gc!+yJ6ZKhiEf)rO-RM%-9-_9v!|a7&H~1Xhd?uxz#c@Z7m!!2()>Sp z02)@6u4%G)FLU9oP2{qaJ**FNA}bs*Rx&)uSMHpmjFm}<%DnIm^!jd}WndsijT$+W ztAQl!G2Jg(698{fvis>$vw1EOLKODZ!_%-(|L1lXHrJ-7!r-DTL3JC zHteS1e|KY8b2WJ*xY8{yJUOiB@aWo2n}26ry~I~{cIgXTTFom$qFIx3m)S6K8DjF) z7_vSW4~ImTQjg0XAco^l(ywjptZXjyX<>-l%Qd^ZVdPelH7dcDLjM3Pc_b37INRIH zv3%&4cRZB}t1D!j4gk$`ULf%Ht)b|;4b9B=aZh&~g5eCT3O?e>4?T7t%}DKC4-S(_ zz04LNyR^16b&rPHRfW`YTx+%s1d;i1%VVR7R@-9+NX#*_JcY7Pn&g~Ewaaf5!=+hh zvFdRn>QcuSmhnxe>9E4Hx-GjS9-DT`@*EIG6}kBs9L3YGW6`W{{?&Fw^2r${R>#YX zckj>r@@g$sJCFEB@3-7eSIIdBRv`4Kl?yAW0;$aG*W%5anWC`q6_AD*^2&`9?LRUF5kkjwam$^@ zB#5#?6d&FI9A)Y+;z%W3VqH5{gHVzv=7!{XLN##&USV_y#1inX0V|y23PA^$(Y0Ms zE_A&j9bIC#`($_a!YCt=lI0YnSqC36+M@-wjoCfTbJCqfbuPcx=ycA7EhQDR{Vn+& zv-qyz^^J0U8d>c0i1hh}mw0Th+#ALS%`=-Vh%$XBl z1q#060-&u^yS%j%R$6Fwz8~?HjCD;u^IVQuMZL0H-2}3P#UQ$kcV#0$SPTs3JY)b# z0M&|r0KwqxVi|7rJKb{UO}d)uS?%N`O78MZT=Sw9z$9M$NA6G~3&oZ!usqMFTo{gn+5I0yh%M z0P0H*TDhjLiEQm|t?VGx5*j=h2IA&ic@r}LI8jKoVij!R4 zHk}lDoCyJxnI>^IQ{^~}y~-lv4Y>wJcC&R_EvAGKYM5#Gv_6Kq^9vs3sooPWU_FT|F3D>$SOKi1n#ucZkqM^o_BSm8?PJdx_+H$;n*x?p2W$2HHs?Q z;y*c>7~JheD3eI){{SgS%9boZX4z|6UZddc7CV{e3#2T}pJ+*z%t#}*RFT>kOCK&t zP7voM&SX_(M%#zMK04Cj)@3&T0B+QEJ2$eK(kO&&9?*+|R5%+(c-xlPSRI5nF{t=k zR?}@#eRo9FqBm&>QHDkXF`u2+EwhVToT{W<&c55lT9=Eb zz56bcpz2Z0e75k*d7{p3u4YA;i7;httRO`s?Jx7HAC&`FJ#FD_I`3QZHA_2K=a%ik z@;BNIU0NS!P=)oC}+2H@}iuWMHX+sNcN`Ifxtr2H29i zcV?PfRCY6IdYW6qbZxAfElS!mU}uH@0M$IuDUwzIkoc7s3D7$gV9KGpjTQA< z!M7==+j+>gLj7#+HrsEsjhO)1wVy2f$uhZS$zFwT|lg&I7LO<6BZtVQE5?frVsR=A(Uu-w{dSGSQ|K@FU+ z#RP3Kl?B3;e=!(Kb(hxs$+VlTLCmWx>Xz)v>_}$~<>2++F_k#(I5iiDbZtt}q`TDgSaj2I zJd>!mP!Mh)`FnSeh`j9>&p0HEW6^_6CSlDMz1P0SpbryR>l){Xd`&Nh^$UGs?g&MJ zg8d{&E+QFIAl!p!WP!Fiz6@mJpsdY9QP8e0HEY}bO5(!x@BYzgXc+v_&2r5roK+-M zD-i@^BpmSE1Il=FP1JR5XHC&``_vD5;Qr_4Fs=z_?ehiQz&XIjrFOb^!fzAWYnK+% z*44A{&nz>JfOUuQj>#Bc;eDw%IFw{$yERX#UXvkrmf7d1X!z#$8hcWOGiB zG?bfb=FzLyOa5Q*{{V?E#BDw0)->xqHZ4;2-p5Uf)Jt=x%L~V}z9ZVmrvXZwkWbC` zk8Wzq!P>^B32SJ_2MnZ;%6$(NyKUq9{T9+q66W?>D1646=y-VAL~dj$@|2npwjc^X z2tdT{l(QTJ9hZSb?{9Q&1osn(Ns!&i*jH~*M&T5;tR&qwRuu`wkj8vK^mwX02lyw>5fmSHQRV&PVrxdV7j`v(;&Q< zTSWp-a1{NL1d3IChki-Vl5xiMLccB)jXx8=+AJSRD-E+;CjIhU22q3cZ|7YAyKO^2 zy}J=agUOL{FC=9nY3Kmje@=L=dBJ-q#VbZTC2c(tLrLFr$TfLvG;fER)7xr#Z1)=d z;D+MDHpRpqRm`#^&GVdspe{Bj!y(Q=-;~9BG>gu9yDYdL!ozmN8t*>K={?XHC z6Wy)+a7`qTENJS^@u~8Q<;F6j_n8bxZUOB za}KO=@~AUdd_3`{m%1BRExyPuE+r90=?3hn^2=bbB$mNk5TO?Zjtci5+V}H(BA-~$ zt|j|ykV$iEEzC&LxoH`ORYu=2fyMyF>M==3=X0qH*aT#dg{os*=Y&phBBg^URJ780(Nv77FzpqOeRIMd0Rnv5G zdOne0mbwLpjD^S=J8ihqmq)q)$n4R=@;V74oEK6P8$)kyP6{-dt^WXr?ltKxwA};y zS3R_#hG7m0Xr(Q>&`@P9?RAOtjM?eL5?Fbg_ulBlCdU zyrJNna6%#L_v}%B9KF{UTbHrAIODOeR}f;~ds z(rC@()}kbg#Tqb9;Q`|TRgUQfci8bhqu~oL7wA#x9wBRaEG!)()U93{q>UOtk;Q^a zkdd_6<9;@ryH_`%_@;d?z`xlGuBiJw_Ve1=HK&l}jJDHm^PCg`Tg=AbK?Jb{c7bLc zR`Tw_ZglI52*0x8p7u6k3fzd=%Hzs*5uhb@ss%+&qBTwwWY;t+ULEeWUDm7SwDZ(+ zgp_+0Y;_GU!WO?|(7qxcvApIH7WNlP#x*@1nPgcb9aN#%*w)C_o0+ zmNV#~TX7`|y&n#@g{-vi5$Zauc8z&!BfXo5_st=8W*booG=MQt_q%6uuiYLJojR_+ z{JeKf+g-PA_h%PgSx-*g3p&4nn_jgSCRkvG83B@OmOEy~1_xa9_Q~R<@h5_{N#K$n z4!)IXa~8sl88F-^KX~L1kYMxbKPpcRc!f1xH%OOQlE+NAU0IdkhU}QdxwCl{*(8y` z{o^Pnj4%ts0xL_zz9-XSnj0NHb-EF;Yl-~OOoWaG@z<%(VSp=&G5Vzi4~on0{=XyD z_KOo&NBEpYj)kac`f?@wkxZfoaN)2<6yqTBdvwig=>8hfrm(V_(tWnYBA-~8z(i{s zeWEkJ<^`2zgofZQ)3}|Ru-_Bw(7n7?Rw*USlQ@ihoNr^EcCS2=0s8dsTJgG&)BJl6p1FoTIXc`oBw!4ylDOHYCB1R6}g2lPs z99JWyXN(@`=`CY<$bNOJ@q%X&ZDAo%oRiEK2PJ)y+x^b8CGK=AQ9NmQxt*?XB&lcwJ|@ z-RC|RZq@|mB?DklkCbQ7e6U&>!V;UZJ!8R|^|ScdbUi1;ce>q-YkPHbESB*kD>F^G zLOP%@Hj|+^4%rR~=dZZ-tDg&PbgN$zPHZpk5?Gq* z8Fc%CfW|!2w1we@)eE~Iu4Dilf(KzYgO|@TE%+RqW*m?{yQ-B4;-jm!<z#o@i*11m?cuwx_??k({(w_aa^W_+3w@IUD*&GtlyP#qiM~|FiB;ezW zu$VVSokcy{UxOzVi~7`{r0$l#kv5m(tqvVp)Xuk%$!&WjwZ_XSWKl3#6JXei6B;6og>3G7T5RkBK^8e(c8#b zl~zd6_LIzrNejl{PCC{2XYhB0H7kSSKNU}?>hZ}P#P;w(AdI*Q>H`6W0G^wIo-(-= z;;l8ovwJ(s#8`CfGTFKWk(rt?B7#$>+B2NvZvc#%)=vsgt9ZTiJqfMu{^|4JpUs6+ zYL;UlMBo$s&~x(gah|L_8Z~7p;$>*1cJy0YR{aiXQ@yXRW6?ZM;;)DLq^~uGqpC+a zoICFGUMVo)zEJrwjt&Ba7-9(MS3b+dS{#N;SnjVJ>XZ9$q z<6$VnZi(H%m+$gPSvq4oM*t8;ZS0o1wYpAhpnGDbI~!=?-0nsfAZO)XG0!Kj7|GSu z^#1@8$MCnrx}S+GV1Z>8Q)#NuK$F|4xx*xeIMDCg<>!I-v4D3d$3t7Ar7vYsTUPGX_D`+fnd!d` zG=z&qmV50gKkXZ{-UT9*P_()zeFPI}mAy*hj zQ=B6AJoXvD&$rUNS$X04B%Vz}OudYRgHMT-AdV$f!l#q&ynMq0fIudyOX0mp=@G1{ zcrU!M=9w?2FbClAnFpyH;AKh37$?lBQnINjMOoeIzu+DCbqK=W*Y)^z8)x?YIqdXH z)1cW}K^)QAOL=27keFDIVv$et5c_oI_)3jX- z#TqGR%*QhACx>33kCm`64OQ{RnI@Uxs|C2!kc~ki`%S!anWH2~xhlkyf$V?!-g$L> zJeLav!8b~_rqU)`c$mh9Vp*_M<%=|js<3AtHyAfYtG_h0G^q&AEp%t7=pF%r?&fPt zO-9Wix0T{sp{A*s#4|GV;*w}Bzq8(HB$7Y1!)+W$(Xf$7Kv8z937?h#fFl4d zzy+q&C)RvGFYoW|=DNC;+(|69u;DSVXKR&@3I^N~5rUoA7&W9RUvKNFa-6xX{eQzB zRd{Q}vuhf@t)|TsTeR^L3F8Gsfy|4Ir#Q!ydCxn#40E-p>iTw%Znqkyp=)IWzm~FG z%(1C#6O6F~I0uhoUpHu)7Nw6qs$e^F_vXQRAq+12pClm zTgiJm!+ER0boT1zOQ>+mB+StO#y~m0NaT(|A3A_~WVjg=s;MNDcYlYecsSCjDwQkA zs6(P!$@yI5Z9)m)jupBg;PNG27zHI+v9tlR=H%|k-<)tW@Alf&&DM{n>i2T$wyCJb zXO0+kHGeH|hma$}kDq~(Lha58Dn5RTR~K7?+eH?|i)^v*kYU#!F9EpVnK!Z8yz!d! ztG#bShsm_iFJ!v2wSgl^Byi4C04{hKCu!pVj^K2v=9DSQQFdzInRr|@aagK!CmX3Z z_$JP_RMB4U=UbJg7v?y_xu0=mK&msq4V(<{IX%U0*xuXf76Li0F(Uw~0l@zNKK18w zm}c<()#6E;pot?OAwZ3!U@{LrXEGy6}Ux>_}B zS?PU`BRi6zigc-_;~h2ccYnn7s~btJu2@^iB>R;~GrH^<0k{QN_x7vuXwx|}OLr7( zdaN;!Kb}AF+UC4Htc#s0)_wUVJ*-LRDoXzVAS-e8T&6cyyBs8HliW(n z{MF8X!q&pu;>GCP#6@J=GB7@Jnd$!EtG*?OXjZy-^8EXWrDR~Qfc%ZUezk=9wceHE zi8Tu=81EUZNs>7xF>o1IAcSs4;l?^egCuK+Z6KAlDZ>%5kOj~C!|=^-j)ZB$-B$R2G-jsSyq{J1 zoKK7NJu(YhtBY&9Vz$zlWp$NEjzNG?k7LN-^UYN7uZZ<42xW(OaAGDFW4TEFxb4@| zp{*@X!a9}2dUdpnsP=kwluz@tc`>BuaKj7%^9dLS?%;u%ww6&?>GrV5kv#UHfO1O) z1e1bJ3G4au_3^P8lqt0btLxo)ixpOr_cvWmlSqHI*g*2ZZ*??}C(m-M_z1CZK41sm zIX;7)l^==k?R+_;++4MulJ^M{n4&hWH#i+J=4Tn}(*qg#js_Qpd`oX-qT8bC+8h^2 zEaF(N^%HLD8_Oy{2>$@wJ#pBM#B~ z06b)#=Di#xI#N+}WRmLH+mD7Ko-R0>bz5IM$Cr9ty`XDfu+RRF7s@go z0IiJu;kfhEZaCtzEHrILQt?zee5InkirvrJWL?a$e7|{e0}#P6+{`;7hiFVs?$;CM_uBbW*tXK@dcbHf6&q}TpX*1K){dA zu{6o;A&yaYU`Z`oYyRjGcn3MpzoD%SRW#G#OW*9tVV&+3U=I_AX`Fr4qMg5SdY;v#RmoB|)2HF7$r(3ZFTea2PvMK!k*^`ScM~IvZW0EHm#2M3|>giSkY6Fiqv z%LVJh5%Y%#6%X<8-1FDoxxW^r>iE{`TU5Uin{0m)Jc9CRl+Vq3a# z@BU|cRPMc_vi|^p&tTLwj}F+*&|c~~U95@&nBObHeveZX(vL zVoP@o8(ZBC&5!T$cMtcn59e8a6VbHK5O_IsmAaot))Glf_)ji*NR`I&4jI6~8SKiy z^dRi&It{+7y2WpG4KgHvZn$_|2xTN?pMZGj&N4gnt}3&g_xw#_quAoi>!V!X>bhaF zy^3VSmp1CC;f_vR0n>@MAF3j0}u-5cl*S1(>3az6Sn^Vgj2%S_8NukA){x1^@C(# zn2@SSQb#%GCnWQX0q5fyrqy4x$%Yk5r#wubi?>hxlWT1lEYeKwR31oJ&-m3}2Kb5% zJ3!KO`)f(1)8x1|(cSI~hjP+wWjy3$f_f4O91%(49ZOH~4~Z=n9b(cOdw3)=O(O3= zSgP&dj!4h{0A8&4KHExL8@m{8ZEx1n{iR2bploo!WRcEC=U$FX<55a;-{<6WS8YkS zzRU2x>KadpQ^TGm)J^Qs#ircfc~2yV0yo;YVtWpm&jYSN2By*eB_A0+rKdrq#SNNi z(aA0H-ia1BmL+d2uF=Zn!RM@G5HrU=e>7J5yt7P&;$2P4s2RxeMP%x_=7|hbM-G}} zSxIL^ffO-4Nx|fr#}kZnaSocM<$Jw7S-x9?tB8c$U6PmlJ&ykXO7P_RRL1fRO{CEy z277x+N15dkp+HFq;xM_wfB?zo98^9d@h+id;5&_W$4`tumgCBqLp*Je6^Zl%C*O{h z!FV?QElc~2BQi{=2mwd#-1^s3f2Heox>~}i4c(NJx0_=sY>|!*PV#Z+0N@et zMjlRBo_ zK)^WX9f0Xx=`Z$-o)NUt?rpB%zmmZc^$L_Tt~R)D?}NJpjz;bXCbD!bb5ZcVt9|8K z&bn$yfN5-1gkzlSQrHJR{fRwl8%=jv*1TnVez82$-J?SdrNn_&-Z78i$sC2r#&SXH zUiBP2;Rjj8$}jKjx8iZtUuo6D;dIlTLyZ zRd-z$tGmC>?tC`qxY1I3cx@Nru`riWPZw zq6`81wl(QusZ&r&+okyKd9swH7MuRGJmS+yxcMXtt6S z>k^#)0=6{hk~@pEjdwA!lx-Z7(!9D&$tK@V(DW$3-AB;wjrx zxLIs910Xws82)3P=boAG&2Y;U=)&<=)%Ei|S~wqXHyKLJThDd!?0VL*XK($RKb2(@ zI2j740X62oW|DSYB6$3XZoWj4L{=acMb8}fJ^8IEwd4Jmq-j^4Y3#!Q)^@*nbsnRm zUE830v1GDFvT_T983Df@y((RLc+52Up{!h5ch_`Gu#>{oi*nLeR_UkSbo%dxpo_x4 zVzi8evqfmjbvtvopK>=6eNB1Ry<}6unxva}SPv(sQC(CXKJjW2FT5#lb01IiX-en+ z079lq4cz_}mhQt(xOvPIh+Urq&YUu8k zLJ7o~9Jk8Dka@2yj?YB!)&1Z0t+BSc!lZLsNd!Q}p6*EC zK2j?pv0{KG2icqtEH+GiNIy0fk7!hBm)7rd8r$AV#$q8T9yW()0A=_Jx!=d#BdO0+ z{uG~4i%hq=OBwY+4yy(1tm_ZtV0T1jZVh?V8|L4j#UOW&PhA_5#N)^!k#g`;P{hG z@NbCiZ?3KFUsd{t%P;icIKB)^vE$>vHKVT~kJ-Mec1xaSzp&5lns#`woZxYGPtsKUBK zMI4UPTSl@YW-`pG$EE{q&IU-%4yd^4*QEHy{{T;u#L($y3ws$c=g)120lgxW)gpQ}nJ8%gDuc;gYMsbR|vU8%<#Ngp4$hGKY$Ed1L9BQu> zzTlx5RT)J)09bdGZkz*?)k2mW zfn6@U;APP4=hkm^h;8)rxoEuOZ#0ESa-gt9YywvqJaPtdK&fqf2YGqoJrh}u?@YL| zD-Gf_jUty;3_(GFRk>F0$WlkkhU23~FsIJnytKEMsqN<2sMnPhN!}_N?!E6$r+cbi zm9p6yypk=#$OcXhB@e;edi!HOr>$vtUgP^h%H~U;(mG4DG}vR0u1#~7x^};(Nz27{ zhdd^E_QC%E>wikq(f-w{=oi-VKrLq8tF?h%pEiG;aN#3}jw*7TY^SUBvP>BN0#7wJhx}^O>Dpp8n=pcD#hADTO2JCsQ zwZ4_7c)l2~H4BY4^2#}-6L~i?2+$_u5-q%l=nt7Rj&p&qax&qvv~Ldhvrw{`GQ&4>-sKU%J#hV-T{^bXAq-WO)qcD9e=xCwXDzs*S^(58>yYc$_ac%F;=_+PKAvJwC^lP2OMV^8SBkz>H6&R>F`}#EOzoq8nlrQltyv)Lh^Y0ed~nP zyhC#qsU4bJA0)_PNW!Ro0-T)!j&bY$ev*7hb$vY~wzg8u1n`K|0gdsn@5dbb`g2)&E}wHe&#YX- zAhv*&h-}F%&QGTwpL(U@t#0sJvzSZ~qR7xlM&iy8pP=u?2;=FU@RS}O0Oe8Y_FLPr zIBHerI42it{{U7c@NbDDzWA|WJX%P!ig@K_jv2vt-H}<9l@Hw9hX~mDU2_yeFn>^+g{o@w~|H@DFCc4*!%#m4)}@T z>o8)u)ZIjeWb+sXiIOsYVtz(FGtSl{`=_Dzfn#lfy;@)T?B(i1h7Z{qI;Ox7ATwVW3hmzMf$ zaVZzJD-$D1qB&ql@g$Kuyr46H%+etwoT=ORa~O|C*y#(Dz&oWOLFb`TGy0DH^^@Rz zYU^0n$A>SYmJ18`bmVJEE_Q7(M+&Uythr*sG&oW+t_cpQk=f}HXgYVqRq$SqWjyw3 z-c+~gbh9K9h@_Lsb$CeM`?nYjcn6$@QR%{VO?UqQFxKO|T&e#62))@02_ZlRGRFhz z-2VVN>Mu+OO}z;A!Nd*RdP`OaYJ3t(q z_O1K>02AoVr_TV^gUInRBymcvxghXxryrQAa!NXh$wzj0f@pF{c+*?hUR~XmEb`k( zlEDhT#fN^t#a)P*cCk~;XR!ysi6hz#FJ_D;~ zqWtHvYPqF&W={|4&*M9r*HxCz6gqqnsZfPtR%d1zB>8CM05De>Y@D~mHz;nWk~m>9 z9XOSkE*k}i{@(xcX7`ud4qTo5_gxA15G;)eiw`GHCisUj?4-?&5I?T;xWc+~+48cH{G##pylY zkF2kvw@H4(Z3OJ)fH8qIha*0uD*ph$vUmo)6sDmmN#0s*w!2#XN1t1kn}lMtyI1P% zqq^y4cLP9$eijW5C`H^bA0<+2hJ$*?KLp5%NIx!k9Q5ECUNj^0NL_EWVa3j zBvG?DApZb#oEGjgv~=hzUsS!nlSrRTfv;hjdw^|~(8jU?;!ZOjLC#0s#~H{RR42pn z-OF#PU#+I0Es_B&wl_Xwpw50|Kr+2fK5qOTYstmYh9*i=rsR_J*XDL%YQls$xz?|1 zb7^I+nrr5HuCL--^K|gb6}miZRg|j+1bXvZo(Z^u@@tJlS&H4PEr10v{;|(M26^@T zE2q_d8d>WXmm13J2?f01OT-)0a58sp9eFi{qv`PIcCdZ9!$W-;X<;J3y!6zgs=QO>R(igkXGi0mT0gYuS7^baSSKNY;DTbTT_SmB zi%rz!xt?Wfw*t^AmBN+)jx+otl5jiLz17W$*7V1_Sk0nAa99-Fpkg!Ao|ybA7TBzb zacv1PHO=(#Mxi#C;WD!kw~P~FP|tn6-7_5IGrAC`0aRZAQ2ksC`Wo*>J= zcHr1i^D$w8(Lv*%PHFL5+iEuR1+kC<9zgzR1St8w=H4))``v#k)}0!YyQ>8V^jpi- zy%O~Ij+xX^_#ZRx)9&l|8do~bm8)p_tdPB$%wkj##+WKcJ;z>a!A^~9Zw-u+x-v@> z8DH&?vNVe!C0A=@L62t*hTMB8&3F3Cog3{I(*d?s3|I^h!v`bkE1K0jRW6{GSNGax zljTDcixs`C$&I!%Ctof13=#KO4j7ys+|{T$Q?>4CN@{JtLju~vZQY(NZY7#x@g#6+v9OC!wT8w!ex`Skyr}pk*$2uQnMohJT;-WThex&4WbnnU<-OE4ky%|uJQCbr zp(y56MSm=VwGqs$bGJTbNo}0)Vk*uWt1H=G`s?y%WjLuT6m%;cS6bCH$s>*LW4D$x z6Bz#hbp&ycPUkoP1zhbv-p}4AJp)+ZMWG8Dc`q$=xU5#{c+I`T=I3e##@ro*p*yl; z2j6W`ZANM2j!*5CYnd#qWR^C*mgwHT_R2WH!~DbK*#3U<4iS{8BoL!+31tA9;Zv zl_9>>W4lI`ido$lK3p%#_~4E>2X0PD=Q*!ej^5``u!8vNHlo^i!$j9J>=I$HKm~_v zHhuA)^}y)*W}R~c`ZdM%_^}d7%jOAVbj8G~HY4FzAqH7cFf8g%ETh-_Jr$j&g|z5= z%}2~Ms`qtjK(wAbH{r3F*r9Q>dDUW?eaw!{1bmHNsH@th?OeQ zvB6R@Ty^I-$FE$D1#$i;^E@%HeV+2{d6HQq-@9yr#zq8kGDpkkIW_9-;tNYC);5OZ zBH(YHM2zFMeAf(rQ(kBBOGUBPJZlr&OLVTfY+HPZHmM$Dy=w?y6?rIANj5xPDjvqu zR$6S8&PK*t8}_}p({C3{lGf*UpUHKM$MY%qfK(@c)CD>DL9XsU7HPJYS30%6vzw9y z&BEFU=V_8X?d7VGlOM|`+$*%19Fg;|@=bQ-tgj@rOSVU}w;yF<6^PnnlrA%#JfX?X zOB|j6H!tqj?6Kdw+r=)UV|fe4_Zt;_rMO>_!sjKn;C#EYvn;YU-g@|IilU2?T(6_t z_G3#9uyCAi^wIbA?QhpZ)I4dbSqKiRZLL`@y=QgyZT7OmB$004h*&b5oU7w17#+Y7 zmd_;71#M5l@!s3mYI9pN-Q9;qSz>6}&z$ZHa3m~Sf^vE9T-K-JShY)=kh+8t*-IX* zAx5}W!Io1Zg;qob94#+`a0~kR8%_jPnT+MG!9jo8OgZ z$U=XMa{6$U6&D(bdcW)b9N=@S6x21p&96hF)qFu<-VxI0vDAgT+}+PC?G3`Qibpa? zRgXYEVgNkyr;;;PG<%q@wfkEc&B{k4epxbHGv;BFxQ+%7OmX!G1aVjTgKB#GTAl1} z%Cf~Amh2ffzGnwGQosVQ$V`p~(c8VdyOQ(9`gP&3dn+qVH7>4WcwJsSk22&bK-b-@^m3w@m0z%o|Ns`;M^2F_&@8=5V?{Epi8&8yi4tV>gkIy~*3?3fwJ@%cdX&Qa4q;D1G_p`XU zC0<34=jRzOjvH$*8-{w|vDrp*afFq>50T3_D9zM|%+>M7hpxWQeRCzPs~ecw-EzQ& zW*b!VfCxAso`hz&T{Rlc&&Nv~vA(%FBv#2BsVtL2EQO}psl$Hk0!UC)WZ`+QOxE>@ z^*;=}m)7yeHLj*0kt1xWDC0QKt$D}%B-iQS6LTzZ+uhzs^IFQQ1V|AJEQpc+02l-y z`MzcnwiSXB%Dfw@;bguR{Ov3K(&e-DWYC{0agM7`#^lPjS9abN@QhltHhK-+qTcE^ z5xN5NoyC#gra@Fd4?H{N4QYL1UVg?(-0FNOguw^_F!`78pREs8hDZw`1%Qq`w@3inQeYwK}sZxX{QtH`l@u`a+2BjxLWMtv^)9@KRk zpAtIiDRr6j@pEoX%g9o5Nb zPS=H16(kV{C6QPw9l^i^vwBX8ra^8e)pZXfTw7XOz}A{{28 zBLwtEM%L=deEsYF_gC~rQI+(Sxx9|TJ$~Nxnms)xyOB-`#~BKz{iZkr>74olQQv90 zo%WqJZjuT1?urU>Pu~4mq3VAG_oc{8`8e<`XKR*F)1&uyVV{CKFNQB`fi%|E+se^Z;;K~izPhdr)pkzZL| zT+OH?a$MZUB3VTui6&-b%VZJ&ToMn=3uCATr_}sJnpTl_rd{gRdc}>?TMJn1rHykM zvlmGMk6Z4OIYiZ5s4g!D+2)){vt$<&BJ1)@$SeB$G+|!r%zi;tjR-=VCU}F}HWaekij^+R;2i zt?C*!k7&7tB#Paw!Ug@|F*>xdB7(mmkTK88fQC+EL-0-U*R;z`I@xX}(xkP!)DERQ zF~u=5lBsS$W)bZ&7Ubt?+=10p*@Ro7&3P^CfNI*T_qN(J7L6zX1~E?#=<+aK8zobG zYQU>wX}n{UDOo40wwJ%1t$l5_%KNjPE-O~{G$gaIweX*X=D+aeow{B9pJZ@bNA{bv zjws}5nn2+SGZ3aZ22OYN7#+ul^&89GTK4wK&xK`C51!E>9$3K}c*_+#@sd;-Se)Th zb6zFNS!fpVyz^NIE@jguDxxp4x0mEc9|6f&f^OamZe#N|ZS4bFDIeLRKpGGLQrP}} zzx{f;G@`2V-qBjUUbpr19NnRGwPyCQ9+7P#Twg~u!$<;&E}}Ctob+A@87F`M88`q} z72*rEirBy!XpEogZ6cM5L7a@LgSTs$*Qf5eE%`3* zaa`_&tKQsyYieTUUdk;#Nlan|0c2ygHQ$Vq2Ym2FRw|8bLR6HJhv)hnwJFq_P7>v@ z$!Y!{)y>S;Ryu!)W&QTYd2NHNj~f-k2UDCCAgd0<5!$=o6I%GE#C94t+H~ugXIKj| zm_o=&3Ave9q0TeF8R!LaUK#Puso~!YL8jSTT3s!y4n$QIeg{4ypD6jeje4+ONbjI6fYw@W-wf1j;Dd!z6ZTOS9{A6 zV2&`a$PXdi$oA>{>!i{=d#1LUiJ8*bReZVphSL7mI4r*7ae za%0Q5H~@?fp!BZTV=B2>tqdLtgP*i(QcntKR+qAs)b1v2Rwx);qc<)Yl!Am{1zn^O zgPqE9IvhP)Sh&#dPL~XgEu7lLqP4M!-^9?!VJS0AXNX7h?%lOUIOmlkrg`aJPCC1U z6He_r{txxA<4c;nZ>F}tm7nXO+1z-iM6_SDPiZ~454X&c(`XIX89o01TB$y)mpc8e z^eHk&91_QwqbNxZp|PJs!Sp;DnQm^N(JgMZ?LOGZmr>tY=0dWq!m6MR6UTtNL;Tx` z0|aetq(wHfV+N6__=CjPahWaS0?duaYrg*gkr5e7649be^A;bnvu<>Eaxm-x&M;SL0D>#6@K&YZ z?M})aMoXJ_)qH>_S>@z8>-WB&r%J~WhM`*%?JaBBv~WBQypCTpR$JR$BHvCowpvA< zl-6irlI}}b-d75{hz`RekbQX^3TByi4F3QSbt?&U(QkRDS|GJnw?t6vGczkDRFIOu zIXMBy7!1VZ>d|;t##b6Wwz=aiJv19_B|=%jsX-pw%xy0DY~(8qqYN^wouexzXNbIF z_WmI8HP?pcw7qt_fxg!ot-yvhwv7uzhQmlow;y-+L>!W$vd7V_R}U(573A%0eAfP5 z`q=e-q$zv#9*0+PZKYp)J&(k?{lrmUsw~TOdP2sn9EG+(LYze=(gP@Gk~duMI2F$L zgHexH@g0_hb}sDWSX$;wck=T&2xMME9v8}$N#qA8Ks+$7toZEeUK7)7G~IsU+GS6% z-N9u9axKI{HU-h!8(iT*Pcc{x#BKpuxh1ljUhxu$JVASPHNCUT9n6-G=OI;Q*dr%* zJaNuwfmw^iLD(r{Tt}VD}etMFqimC9z%7 zM>?!>awIT){r*tEag44&1hCE3^|@Lr;MNiiT1lm|WlPqQGNbJ&ox&Z*=CzP*+Bhmp z43N85ari4y@us1x_=4Y2)LQjmj>apkCh>#OdG_S2?z z)RswfsUtj*1q1K@028SlyJznXb5)A0md^Be+7hER6_yZD!= z&_fmnp1ltrQ=D|SW8wFN^qm(^(seksYXPi%s^-?( z?JlK1=yFC|Y8;g%RhzfW-4_ZRd`;j(s5jZ5w|h&ZVI*)_6`Drc0)^Yp9P|s04sZr~>k4$M`_fixMRa3Q7PnH%Xg&_Sbuw5* z_9lg-d!)IVRz@3kt|U#|g6HMnY~*q)YAr)V@Z>Sr+S^=tC>3LtJ95hVu*2sadi`_n zUS79%i>=#eHt!?@Rkwr!?q})dWU7_{bHK(&7(ZL5T-0IE^_wS_(r7e0wQ1rpxo3Ye zQL$LQ6>$*2!+rj|RMM$0XU!cn?f(D_b3S=NINNLWIt@=xxYs_^w$WZ7lI`VZjt4CW zF#rnyIOn$q9Q5X}d{<+p+34DBn7>JN1uW&(GNMG}AD@tLK;W@%bHJ@pt9XviEiYBJ zy_(xZy1kalD|o>MH$x}QoZ(;$0;?~~pSD#F{y)CTB2wOPrt&zdn7#}OlBpstT=Z<FoL9RK4w1nz$b%+X6p2T;WqKL=ZiJZ8tKAG_6^@0e!F#9MS?UTF*5PhiFE)523U-ol_khnhUP(DM%h=vs-RbvBrx}f~yd{hl z@<_n$-lqtqzUr{)kDCOFvEt2U#(Ujn;4YyYhTb6#>nn)P?c+Jh3=O&K!R=lQX-k_| zX60>HMlb&%e|YTb|MFAh`){WOsQX zC;;-A8}8WekUq%~(+iw`0UUbgoK|)Azh!f*K)10-QW+lQ z?U*R@7A4%nc6%zZ@0|TBqO7A9qdJP$?c3(hHA+(5t$*Nolr;YU26>i;SeHoDK2Xvd zxURgV+v>f4hv`>zs|_mRM-M)xl0rdn*V3cLIKyz~BR$8r10uQ|GRkiiUut)E_xDg+ zU0OvvR*=H;6^dnJ6JZI!1|o6XV>?MIHtsw#Vz+Q=X>o9pTG*K952i?>ZLy!5EwlrH z>(5NrH44_I(^hF|zO8g?TVKm#*QMTlJQrj3_i+ZDadP9# zxw(l0Kg_&5vW%0ooM3b(*F4?iawm#y=G(Q6nos5|s`1MVh4vLHNI!MC^uZOWt1gAB zS?GQq)jU;WX`|WQT&}HPZ{dnrT_h$olP{2fs{^!?mRt|xMLNfXwB2$`Yiql0R>s3Y zvV|syrO`x%=L}e;K)@(T;BpQIMP#Ydt1o?Tf5fQOoi%l?-+{k7z}_4i8*``x;kRJ_ z08i8Nu47%C$EfI1gq6zLDcKSicEd-)sOo*Yn%lDR7LTaH!p_3%#ejL!*%hc#dC1kJo zo0gs@(`@ZxyuZ1c#@bS$CBL?o-3cI&1IVFCz$b!u8Lq@?mXOCcnK&lgg_RT+XwDU| zRAhs-l;f@lHRboK;VoNN(=I$rx}D9vu8=I&!hJgRRtZlJAW;`A%5l3Oua=~4Bovy% z#xUOatHep9SlwR3Uj(P{Ht`X{q2r<%|bUbz8MyS`%c#G38Q)3 zGAyw$4x>5hG5u)qE~VmIKN&5*g^ zTxge~c@(-vjIQJiWPmbw$gIeGaSn;%3%lR!4NCV?ySDPJt!<&+<6$}6+>oq5Mpm|moc~QJIO4b zT0;c8q%G8rGBc0%c+Fq%hO?nrTk2BjdWMmrUrS|iZxpvokZieKn|EYkg0lmV2*+&X zR&G3yc7K!C~5`X+BoKG3+SdXd5#ftv5!)J zLyncr-RcnO^D0iFSl{l;oDt7|r}-7yUFqHw(*7Q57Wz+#AivkOhp_uv&8S5zvrH~S zvlT{voA-^KrG^k3la_8?ZwqR7dUM=B_LmZ@sTbMRn7cd49Bau?gDooKa}0pQXKBVN z5^?6Xh|$R>%haI-&Z|7``eo#3V`8P7ki(2twWZFmbgR2-zYyuRt#usGNRybA+9?%7 z;IJ$MZ5hXOUgE2GcfejJ)uFe(k4(Q^KJ7$?XeGBTw60fbJgc1X)QkdsFlkBQ$*k`@ zj}mA)^G)R>yY%T}oFr~oF5nb_lCS(jr%Kxm8d9lh&e8G--r5~ig#IDa^;Qq%Q# zA-a_XDdz(3Cxv;f@du!Pwm0U@;YJ%YM z&Lm78G7jKzk}I3i{5RnZHfS!+vEq#yc^#rh60C9@91)n+hzHl9>M|?5)O2_>FAHkW zoo`;$((O=5CZlvN1PZ4lpg1ESo;k@2&5&e7L$m1g0M?5=ALZdJ{> znH{Hyv<(YJyYWT6kM^?bEMk%vVNhag8BW9Hg&a9>ea1l}1okPa#iHs1Pri5~y}M;F z+qBluNckl|R5KFUJP%XHQO^Ue!{Uir!Y>qRe{6=-n}!j{u?3Z5b`pHnh&BZhducRiV$|SRpej}5ByP!a=t0QF*IY3m2~fkQJa@KS|fwiY^T(`Q?J2oc=nUWIy7=dGD$0fr`v(_KD{e)!%1iu zXi(1b?O<;wE?C^o2hINg0aK8ppusrFCac)}yJV78;fQUg8P8v8@T*~JRjW~^xo>x}cJl9Y+refS zd_6VJ-!e|h&dIjy-$kciUc`PTu<=icWzcjV58uh7EIL5FZ9ra25t)jF5QIWE0Kp43 z8(?)jWGtAv^w&}RT)t>ymQ{mLj!_I?Hu5Z0e&}uF{K^It;4>WYgU?N4 zYM=#OUQ7T7Y)M@Qgmt}dK(xP0n{8VDTlb1+=e20=WmgBwZ!x5N@}V)*0nZ%Mb=63| zMD+f<@7Tu`gQW;x+tZWmrFZ!o7e5j7ORW+qb{L>I3RJ7c8yVY>csM-{2<|Ha+5_T~ zYi^Lu7L>ut(a z!z8Kg$@Cur%N>`4t=i+xwlYsNjrO*~vpkIC^BjG0Pux+DQOVYvs#J@N)uR6Pzplpx z-#SWLS?&7YU%>NyC&Cw6E})kZFOsob+-(uI<8vD`h~$)pKQ)I^ACu2uz0J)`WA?1K1A}BnV~zGRNx$792{qo2pvuaO>?&z z<;M2@(rK?Yk{L|yst6=>RRWQ(EH$ec?JVQdtu7wkc;jC+!${8ypd7AGT=AZrhcr;j z05*}wTN_Srai*TWPr0GtPYgY#k)`RPmS zkw%f;#2|%;ae(0o0Im-F2Myae#-4%Lib<{nmIS6N?;o zHaFKA)czQ;mI-w=MAKIB1n{FlI}#+0Fg&o+sSlmVVnphotjZLWJ|BCz6sbOKZ2cCZ z_={VaH9coVX>V>W6~4=E7V2pR;QL%Q`3^?hXknjt8#;89dh&DBlpL%&e2OySsizrHOyKj3XBmp11FB@+?Ju z+EwK{&tso>5 z$?2Z?tr%^*GpBe@#G2Nj;`<###oC6IeQ$Lq_KYkiE~9G3ipS+1TI|LS8wFQ{PCr<^ zwXoCTNFit-E4nizL>3;Tk<`~ND+LuK>8Gyt{P}_IYn80r*Ffn{Em-F)oip| zu?3~VT%_X#6R`wy^~QLuN%gpNpA=83&20BE+G&X~i5mronSjr*EF0>e*P7_swl0e+ zTU^YWS|}OFd0(BXn^m&JE7FVYwL5PyKQG$@snM=`}{qq zS)}lp+z6sgtDVEK9Ou_RN?kKVpToW_YkMoCFsx$Y&Oy(c5&jN3j=#>E6@)tHhHfUF z8?7?)R)ASaYSB4J3}+~I8rSsVbhgns!6=twt>(>gL!i(`mCRURv6Q2@vxRFzk9LeuFqAfWbJf zZ^X9a&(r3)yN>4W;iQsVi&+_!0NJ%d?HEuA$5KgRdg8ht?43Wvx~f~;-rI{iBzVIx zCQ`eyrE(#h9;0n{Smgf3MEe*ka>_nzFGATehG^{#w<0t8in#b04=!c0sN2=IbL8@tw zcOEZblgvOxv;crnz~k}n>0I8cDwyN@=W)(J@6I!TMsZ&3 zYQ@1hG{3IKe6N|Pn=clX;*W`z_LJPp6^uoGc-Wwj{HUs1A1HIjVoR!nxPW5uOg;nC z<+HRppNOu)s7pI*Xtw>H+_#vrLnFqkDsPQcJ2Qf(jF1>m@cyf$cxeFFT5DUo$!zXi zn8Qf|!*k}6;kFz$!NhymZRBSPceF`#_;nYy@T*uxbku8Q)W(|?vn+cGG?Fhn$##>W{?&DJXOqUM~EYijHq?R(ur9N+&i){~qmH?;$ zJMB}#cC*K;jV|;1IL?+<+G|BLjBR3xpf4vf5$2HuU}GFZAI*})XHDU2iM6AuEsl*9 z^2()dpu2cb#UGZj#E|SFB`FX?^R_p?Bw=fsRAW_g)zy99sk5octtDso{{WGTa&1#n zY3=S{xzsJ%B?fsE+rr_dQm&!*mOg31@rF=$9F?j!9uuDa>8?_H+o;*dy<13vv%7hW z{R0IgOmHx8r@lcFN#X5dMxRQS<||E1M!E9vpu8ck(35QL>JkPs(c`o1PbJnR| zwvwH{uejo^ejTmH+HUWz?&3%zY0RjR#3PN}+_U+U5}5hFi#QyBK`qzm_nJFs`c16Y zkxggznJp6iUee(No?FTDF=q-&ry~cFqc}OMUNYBhMW(Z7W8!-aD^a+zw-CzraYrWK zGEXzh-pV&^+yTmfNcorV4t!boUqQ6c^lt@fmYS^XtQ(VTnyQy4>{7e`Ig_VaE_+dC6?azb1w$Q{YzK+1HyVUZjJQt|nM54z| z)!k%=Go+wy4tFVSp+hJ*I9JcEPX@O%-vnznF#U?|<5JSCys3gDkgG;sNaT!#+%wOd zWv(?-)fd~r%e=#`+%*Cq2Rg#I*=P2;ISb%!ZO+4zfVIQkP zgYUns->%jxUTCptHqqJH+us19KwZDtX^~21u_i)R1|jzp^S2zby8;L+)szF1LATKE z^wDi~J;7!9jIv5ZnIw``mm5jR>4AnL0Z9iF#{MO{)Z)3)p33a$@RKYT(>@kqu;b(~ zqbb82Ok%S4yJxvYWrl z{E3cZINA_Nuj|ayi^KM}I@?Jry|tulL@w73&b+hk+#h~-JDle~G0E*(t)@kNeQjl8 zmk_{Y5zRYKx@*G3@Z)yZ86^DuOEDPS#<@$s4I4if-DyG)#yjB@YmDU>g1?%uu7gdm zwD8}KVtbh(wzagsQf8ULD#loCB%TM#MRa{alvrm>FCREa{^A0u>sXtRDf~c zk^Ve!4vxMPZyR2Cvt046opY;0dmykQQ-DJip+{7WR5wks9mIt@(BmU5CoQ6QvdSL| zX%R=IJF?nG7?b-S%vl)}D`C8|y9_$>&r@5_#JoPJ&k=%Hrjxz=jX7!ES))PRpOjK=52*TiiK0tRlJdL>xw-=1#@U+XK>RN5hz0)L@d6m@^ zsgcJSKkT=$13fCfwyIY4m38~{FyxLNKEj%7yVTh6O_jB;gsrS>P(^PXkVO)MoG8Mt zCzHS(d9Eh!NwK!lBhaiaFC>}PXrV}UIauVwJb5dPn}9hvVUNAkS7QbB?~QEYiq}ZF zfGq1Ii#wvcVI_1slQ~{vkaXm!9gS#7;Vo9$d9G|>i6_SBShouQ0O8l_I5gc@`~J?{ z)=58`CDL=7mEM;7^*HMbzYX|v!+OT9-esn%YkeU$(&`h&FQrCQZIS?d;gDNt^8y(T z;;Q7--`l!P(tB=3)?jZC&scUoL-xByg z!Wv!oiL~86LO}1S>5<>Z6EO#LNc-g8BLon6X31U&`Ot(E7KO$MB)b+haUb@Y0|bWJ zOIU=GtE7u9yrw||f{b@CSiXd!oSgBw;AmpEo_KEOgzC2Wwh{jT8b%It@0^Z%0HYil z=kNSY;Li{EjvH~RJ@tjYi)Cd5mUl}cu#M*hWGKKBjfWoRj2s*Khl{*4_9)Y6+Ks$0 zf@75}JijZi-C#y4=&8X@F?vbf-hF=ad_`#0_HIhjigCU7SGr##Z^rt(wstFHV5s_? z;zb$F%P8$UJEyGCOBLKJBy5s1010!r?an)Jc{nEr1n19uQLjfV zt9NAjp}Mv6mE@ikQmlyEQyIquKJVfKapa6vhMj3PtF6nUMXF7z7Mcj*y_CxoC(O5& zZ}lEvB!LSl`P7Ca5tSg_I-HB$jqlXssIK%Sw9qv7yVUh9b4z_%+Rf*O>|S|M5p_G| zRRHd6Y#b0k1c1&I4UKF2Exb2j3{Nata!Q2~+XOn{xb4^R=dm@h;cXu6G${mDu&b@r z#4;F*D!WB1#hf!S97Z_F{Hq4Z*Pl{_S6Yoo z{g&HZHP>J3sdVEAVP^@-+j;2QzuZA3){8!)ae1U%Txr*AphIf{fTg$`g~-PMkbnJE zH60&R@wL0&L2U|LBgU?>Nwh~IZux-0^#prlVCK3{4(KbOMLwr@G8wkChDitnf;~SU z$E9%VFxquxT2%28&HSi^2z#Z>ufp|@n?1fEV#O;Mlh*7lR? zcK0^-c6N^xbID_O46dR_2%CaCW0UWkA4)t8;>)M7zmrkdtTg>b=TDXF?k}$Jo_mDD ze)E7g0CpIwOX`9RuNIX=7&rkBM2 zDAFhJnrXUTrE7C@EXZ0Yq|Om}IrQ&bF1u-AX?1HQrl&ru4D&n>aGG?>6mAF@T!JJ$ ze(CM+SM-k$&!l*c#_|~M+%P6KxYMP9OP+%g0lU{Lo)2u+bR9)yJ1;i$H>nytj!Ihg zv2Md%)ZXgXOSjT|F?g3zG!qRz!r_`k!tUNa>62>b=TgcKKp29v-zCgG9=6qd6Rpb7 zDG|Xfx-_$}mI-EUj5kVIRr1(f`F~a^&gr%nS2o)9m^QI$6JA9-25_K68eGI?kmm%f zQUK=!MyET-71LXIulqk&&?A!O*_u18J{7t$M=Dyu_Iq!%0WMC?QN~y0A?MCX1a{Y< z4s|FiTKayk`sjJET+?p-hxlbY17tMD(IC^N@kN}Lv3as;7YMW5Gb%VhRe=n5@~S`t z9tTbBAIFp1{{U=5rTAVcBDt1(=-wOYLf<(dW&1pW*ck|N2PZjT6zvKJIifC;Z=~p# zQd(*7&eK^Wau_Y5E9Kopk0wA8=L?O+h-McV0YYa>OTW_^FA2hKtgWoA;I@_lWH{T4k1?qV&KFa6Yv5}J9 zzEVE!8zhSCbZupI3n?_`@nO3XoHIvr4)hM=rsZ z=&mfTJos+l0d6pYc32^Y%shGPmu;BIAM(sqSf5XuO^WXN+S*C1=apU!5^Gtd#Hyk> z6hMJLcE4$5BxPhMbB1C$szJS^(k>L^qn@Wr;k{nNPw_L`O{iQEE!eaBS(4xP(_ui2 zplqGKWMe59!TZ<&jdgMA9v$%=<%7pPj;|>jr-a_X?`0m=JBr3gZ=9kWWPJGqfJyV+ zBKO0?Qfqb|8=m4BV_i=8%KjpDj=eL8-IcZ%+OVdBe~msHR$ zH_L919Co^F%FbdFs31Q616=&a-9RdNt*cEAF9z65mUkLu^b*3a=3JE_;Z%{5K#HKY z=JRC9WBat&56QZu{@w8Yp<-<{JDU?>1aQD-B`1dln9*hQU$M(V82SQY1j*{&(loRzu11bWpfQ=9i; z%lE&|<*yTXBTu{1=hUEWcPqVmv_N!2yDd~=}P>lSRYU0Gb|_jZuWEWcryZWQ^9tY2!nwXob< z1UPK%#(CSFD^$|uyw_m5WLwKAf3ud-86^XMo3bP^5+f*vAg4P=8%qQxw(RfkXSj?B zbY(GGS=&Ob9kQT&Si7pTj5gmU;Nv8zMaBqPXM|Z7Jq3CYY>hsAXxU| zIKr;t=3a5m7;ZSOs8*FU?fqQJq!g@5_FDb+wKdh<&ZA{<4A%^!`!eEXg%0r%`J2ja z3_vO-_9O-b?lqrt{kCSek}WU95Z=QT#BrES>q$S&Z}TqvNFz95vB^a^$;$$JnQjHH zv2}HOeQgrQsRUB;g=wREt7#STPs|ln)Sfn?paX(y7es<6wS>L6hSt+RW*Z>BS))5{ zAtj0P9ON!fP%ym@Ipe8@jcSpr_Lt-9+`eT^TfT=b*1DC;w7QO;b>|(eE8U4!LB|`^ zk&*^DBc)Lq#+QA47}em^tR8q{xq?e5mEJ{>l}6wegKPkt|*glP=X?B)=7m*FH zS)@i8W4wdUbCX_k;XN|zNxFSQ&yH!Lw2ByQCAx+*lWd#c_m>FjyIwRP00}M#W!lx> zij_wdb!7W3t@C#CIVe`8tv6?P*57fXZ*Sqo(zRRLOKo=iS(6>qg&72Dqs(j^AYZ%4 zVjCy``@l9Aj%_V;cos`-5^FhODFote(UR?kjhj45r)A3SL(3sMitXLkOL3;@`gX5t zXwWX7b*bD9NgCi_ z4#XyB3fN{PM&NNE9UY8P={lr;*hflR3oAWBD^+;XM-C^tXosGEcogOnfX5-abCUV= z^A)xG+IW9Ov$m4n>M=T8LFP>ikW3LgsA5L|vqhYNjz4~jg)s9t+kWt zdPul|WHg>WX z8{CGJZFD`_e5fXc(l$uh0;;jxFmT;)Hs>tB zRw`0!M}CE>aaK=Fzv0TaI##o+d_}y}#kZBFHQmH%bZmp7ED1DfzF@%wg(DgM;b7Z9 zuD1J7zq|13+udoG$vxa=*T@hznH;ea>dw7zzzkp?zQ5k#BeK@KIi;<)*=?F8y}!7U z-bPatV5-Xr+rI&FrC1N(X>fVTi~CyI=E_NAmrb8qYbGJ?09;{>|nRyFec!4&O49kg96!mEDxd36~(89=JO+kTjHCx)wCO6U2HP^Pv9M zf;WuM1;l!F%K+j>RSW~7?kXc}O}R%QvGWGmzVQCHuK258(h^(9Eg*E2rIsljrro%z zWN^`|G@uUNTzJk2tlMn@?oA5X3r{kC5NUcn#0~rHu_SFR#D6?~Sdm}KmCEiaLEDw! zgS~NPtvn(qv0+GxGpA1Qp2ASeMSE_fG!+ah#|r zD+#6CEuT+=!jMI&MzE|lR(Cd+Hgj1(mZnHnSp2jedMGlE zN%_fqs_?|+wmco+omR_A@dE0Xo8X%AMoVdJfnykt3j6p{%sivOWl)T~F<`k>t@V$2 zKBd#47|C<&j12?f^j7{Sv1iim#P4n9MROcdT1O7Xb<2at&l!kq`P|`}MFh2J>%JZ05Z*md=5Y;NjL_ZZL7g$;yp^@&TTRkyS-+M?AMDr zUProV13BK}B3Zx(Xp{SB!7Yqh)=%JvZ$$S=-4h6Wm+O0z~(L_RD~Z`(=w8 zFyKEO39KFhPNJ7HzMXV8Se0&DFSuP!PYV1`y1UhNuM+)^+IW^7BHrTi+9Rg$cgZY9 zOtUk^(+4Rca(czJqwBVM&5(xfO*_id^$kk;XocJpCE#|s43X|-%59vI@@yE|a8=1% zi+w*%8sOCIZK1S}PrYWcxm(DC%)VTox|hp|UNT9DIk_&wkV69|WR}v)P?}`ZVAHL& z{gyhEG5xV5g(S9?SimhF*!GCpCE5a7cFP_Ij z)aF}zd9QDyxdL#rJd!lNbAYT7RD9&`QZ|g_@p{jTAnZc6}*nycy`F3D}FxAIvLDR(g_t|VM-p^VOxZ7cy9I+5zl-8or4 z<2*I?c3mFQZ8Y93?~!=AYe{P)bGMUvk1S}V5GX4i;P`cA+DRdEscZ2609dxY)Moo7 zhx|<}?jeu&Y6XFDCe{1Irw*&~Z{u*z0AnTnoci9Os$IS9jL}@`@L5N3XwWPDif3qA zIT|dx5U&Rk?I5m3aB|HvTC<89EA2O9(CRpo2jLugT{8d93k+eh2_)UmBg4}dj4DoKsY!zk1&)?0Ut z!Yd{tE%SZ#E;nsZ9xg#0IDKDQ(y#3==7#cXE31o}tCxm2R%m8MX;vjhJ6TwHvS)g) z$i;`us;%i};dMPC;wh}GC)I43ql(r$>lRrdI|KaEB$17+fr10zsW{w0v3vH|?Cj*T zxw35(OQ_0{36RR~B-bkgtN#G4AhSffko?|b1CUL0K}9DNv}3D?uUgZr+kSp#4~Pzz zrFhJ|65Bo0OR27)Me?}4jhOj1>;o}Ufx@?#iU5q9us}yM7N@7^+w~|FPy-*C5(H5r z3yXO`O^nJEh-Akn1~LgOa(jOeM|0w~y1x-=(SF+45eIrW>X3(Y{Kq+TDkw2dw;S{R)zl2ln*M`PxYQHq6+t2j`naR;HY z)n&Yj?^*E#ml`VFHk}@oC);i;{?}?Qm`eLh?VLvWKQRcb7!VHQUeiI+wQXxp2GY*R z+g>HcqYAQIrP9Pn*gT|20op(z7im|?JHsirp?#}KlGbk$UfW-$uXAl8&lTjeMY0)f z!JcF|RQXV4+=ksEsa$RWYL)sL-D_f=x8aA@HJ4+p>2_1jl1ZltE|+xvZPm-hS8Ef< zbRmF0e*=(3XxLg?PZH>MI=$7CUf&x#yLGj;Ge%;H;K+W>ZlzEcL>q}N;d?3q(rDWK zq?%MZhOKX6x4NCY%jL$4X%v8Yaw@vW8X^dq=jh`jZ4%~f zIvB5ALtjZ7NW;#BlkX8eaLS*1Y1&ksWmlRiE1{HQ7kle-3tjOxv*Aw=Uszf_&C1Gt z%Vxh}KfRe^w=0;*QXH#*O7Kf=*@6JYiu+o+yBB}jR*_tbSngHgjI?l%K1f-Wi{ZXv z5dGmHaHJH=RhhmQ=ypB_gIo1-J6A9vZ^l|=QsG?-WSnBHVw5DB<$4tLUl_yU zuLZ+6xQfZ5w{v+Qa9O8&JLFh^KP+l|vI5|T!JZ!UGO{qX7KgfqH&#nm+nixf z_h~uleXpg+~#vyAj7X~-+IoJb(Bn_i4+7B)~=+u7;2 zaYd(Fq*nq`*5YOl0tp)c++}i4%18i!RnuxQ$)O~--|&uHYIc^hO>b=zTgVZU>;rz= zaz@}HoPp2CxFDb^A;vO$4mBK8vpT`7CyP8!aJmPO_iVE>l+>_1kdWc9kw`-yv=qSL z7@Lwo#eI8K);v)ykg?G9mx|CZmN|{Zq|wTG#DXor61!Mupm0VqYaha%7S*&nts7pw zyS9?e-5PlYr*Rqc9^qZ*bYugV(G;s-9g5A!#bULb`frD|X)$XUxUq3-98wa`{+kPo zMigKLZp832#aA^tlJ-?4t5!x8aBtbVkXl~t{{UWRQy!_WeXi?Ki$T10x>Sk_i7j48 z(lIUDE9OT~avm&v>IU`NFan)xEn@Ol)0l6%0{YJyXntJNc>FmE~xkR#)d=f|YSjOd=MrOo~ z!id6hU4CK0m)==Lf1zo*CDgX5XKNzJpKFm|d7)H65X756afS`w4sZtc*v%cM(6n75 zDPz+X8w)GQ=5k_rmhIWq8YB1ioJaE~%0rS)0V4|0agx7J_ygJIf~J2lsh-cD4t|7blRby*iQhddKJed6zgod!|Wc{gT>C zMJ21taMgrtrbv`f2y ztQn~P0B2}Abb2|RL^_n~JgIFkcDb>*H=%Y9;wTv#oT|3dlU`@Hal98>nnsWA(kOVB z#@GHA@a~DAT3JSKE^TAGY3^Bwjl`tH$hiX`#EdhQJY*0^s~!sR9q)Xd5CjU zl5Q{l9NH0#Vxp7gy7Ic){ut>mV71f#0JIEKUdbicl*k395N@7n)920rA83(VuJ4qM zxFF_uvtO55)FgE>#cH8dA~KSv8?eQ5w{hHg9k4QRD=Wep$NVKWcS+(85KnG^1WQ|3 zC2|p!Sy;+47w?gbFU-5M#deqe9@DO&Sk>KRg_#VSi#vc$Hx|h!806%hq?+V(aaf3Z zHqpKh8Al6<=B*v}?z?H|Vd)wjhNq+3nNmq4^VpRa1~pbfq!YK2dUqJd*0=7oIBe{i z>{!cpB9%c6g{PYAuV%N?-B*-pA_;Z{O{vM_DJ5Ga3O4ZU#9J=jAxger5XS)Wg#M0B28oY4>P(xU5GuGD+<2 z{Plk_y~KJY-OaV_&BeBzJ&U`d>eE9XlRRc8RXAcW%OV}gxF|f3*i)DB3tO^|`%Ki1 zuJJfT)&miGir`Ij*?QZn%KE~9%T6Q8?CW#E!Kj^#J*>*TRCgZ~Q9wgC{(&JZ+mr#yK?b-;0LCHbD5Ax)qWPy?a9Py7w z@Q$SZGSY4}M`p7TPvv<*i-0_#CQENl#lP>KqazslHj8Y!t(CCR>~8F|_~DS;!zI1E z_V+1nKoX%}H|CiO0_33#4hn%X7+_JGA3p%Fat1ivkEG8Gr53qA0%3`9 zl6?OFiErV}gi|~*+}p=+7REvnR17x*7q5Eg-fcaEQhkd`K+Xe3mSK)Qryt6*{vXD` z+B)Df+FSrg{{U(lpHb5zv%dRTv$%p3&zQzQ$&z}H{{T?H?OfSpXvs=7Roj!d-YjIQ zD@qQ@Eqx0bMzNsk`fS&*_*&1z(Rk2ir-I~&CGVGkXmtDC$lDIhF;Pl8Kc>bQ^3(Jd1u0q<) z=D{Vx$fh`!KuZNlYCJ0Kz|UGg??XOtZA}rSxAl%A~O%MDoj$ z6(iy%RQtf4q04fY{vgwI%|~Cn(d_hDmJLlKv9z|gic)QqU9^%e))Z&Xg)8reLKWDh5gQ-r`=7Vs@So0hD(x?T?BoEDDw}?!U8!{#&(U} z5ZFcH4NFfq(!I#CQ7ls2nI(_r=Z7SZygj~Q>s-l)O}6l+uWRAU8!O9K`*o3&U7_;H znqdG>-Mp{zNfF3!oyi}(YU^zLJ$0)1ukF%X+DQaAGu%OS6zv{kkjPb96i|Wx0C;lk zxz0HNup^dOl?XUJeK$7tZc|flQxJS!wp5H5brFyX?zD&!Kkw~Meky>w&6cPa1n2Bg zV;}eSyJ)-#qua!#Y%EvGO{&csNWgQ@mLJNix5L{TnT5oc*A4r&k7Fu@$0IlZbN(M( z;ZD73ld_6Y?%(KXR?&*(SABaN7l`leJWJutHam?v`E9NXT_L)b7#8I*=AWHif^afJ z?K^XW!6TtY(|jS}op(ijLdmZ!U~8E4^}jMm5;(lTfH~YgRO~PT&MP}o_;ajWcr00J zS2lLv*>(&q&7{pQpCZCz`S&91TxTE#CwEbgn=4+o)O5$P@OGtn1eZ7Wmn&~|Ft}A| zE+DvG583vW5?roGk;rD}0O36d%at|U#m4fvy?w2x{3QTrsbhO@HM>b}q4y=m)gY{U zavbF!rg>KGDxQP!2J$;gM!U7Nhe=tZwtLAWDxk5GJfD~4+0Q(0Us{o@pug2^wXI(p zp_y!@iYtVZ%V_lpQSw_1(Up+y`A5mP9tjmgK(&SR4K^rXgUGkpJRiSUXIrncIA(0C zHVpfR?-ZsEa8Lkxp;A1S<-hdIWe3fEW0&!a+L+hIucS`WT8qU9@ym$IVJ225AQk=4 zV!+`T2(aW76$3TYJ4jNwbP!bs8*z?W9>Fjbm_y;J4VNf-{DPQXr+Krrc z)}~dSM4EV6+8|vc+^x4{jnIb27;UUUI5e6?-;CvCk4n`w2EhSUP{^bH`p6%ku8z~f z_I7_0W72GGBhv272|dKIk1{y{iH6i)A}|18eq>-99I0SLb)~<84Nt`yUXQHmR`>cH zjm6nP6m4wYP#-FhD`O;%FgEfC1Y)W)j3dio#}623OGI><7L59KwHCAEU29G{&DyLs zP!~wqi1~BI(C>!}fDSS_Cm4stap~t>lghb;u5Im%myj!FND**%y7g7s64uh~es1qnb(F+mC26w<^vO8B!%z+C24eq#UCIwEg8fdJ&Lt z4{~m_%k5aEkdWG2+QJxEM;P;M$=xHyVNOE^W(7w(fgP&1h^!}%U(>`8=}`DpwFn~A zMA5((YF)RMqa$~h<(P&Sq=y0-d zg_z_L#eg-1YH_Wkwl~Aood)Gi+1lSGORDNx+#VFu_5C&-I$K+bBE3OzZy=HuF|N`I zN-^?+8|=X)7Tw_A9O_C#BBSr>gvsS)WB?7vk^#j{S}EH|ypGN*cf7lMc`sHG z3$qX>P0SXe7?y+o=0I~T>@vhttmn)x9&2LJYoSJUN4y~5QZQ}cjTfuvCr_FUdu}Lg) zM>T}&ZrgV(iRXEHI3b5{*el;7CsXjvh3ndwH+4MT(i}d@vr5%X)Pl zJV5r>w&@(1_Sa<+AWpglvzS_o#T_p1gR1JAES7-r~(>N4>n7OBvno2$fdYLd*|1GONVL zp;nn!?+V*nQK%!|$!~9Wt)-Y!*Lzunrpr%K(wTln+O2Xz%5Yn7A2vvsT_wzpxW|&* z%IBTf1hD7c zn*&bFNAGrRHwX8hAo+ISY_5;PHn*N2@CE*z8rZ`n+?QaWhB#3-#ETJCMHs;x>>WWT zImxK=!aR#+W}_88Zl_tJc%supw~NEtZ-#Y~CA>a+Ko;3qcf5^~1c6549k7FF1ONcQ z9R{Io7l^dzBuj~5MjL?uXP(Bqb__9UAT#F66iSOC{o&)W;GHxLvr(CvoH+HgY)?-9n2|_K}s0t4%k_C37=VOXI9b zrCAy7&Afplw@A!~*E>h!+l(I7$=m~Xr6tr_W$doHirXxZ$1c}!>4jBQF}of>1(fgr z2LM;0Sz2m$nzo^R9gA7sOBKRNDqLl)W;V^TFjpD*ov_P~xH@E3JF4!*jHj#AzNVppW;$5Pg%?jqv#WMK|r0OtR>9+9Aa2YUIY4Si3Bse7<&~v?dV~mqpMt;r?32*nE zb+MmXyLQ{B_3|w)qiNyT?Cor{%~-_uV*2w*p2UlWS6`Q4ZMoV(;YlZBo>dr(zxYgb zMYOoF@eI>VJl8PYY0PAajB4B1zC&Zk+NUhLm2v4yABQzdTTM=FFHh2m z3YfwpB!y#bxGbUZmIDOsR=nizd%oYHlyLD;v{jCqS@>CHZKq8w*0RFV7@NtC8#3lN zk^J@r8Q41zjnFPju_3dHOhj?%Z3ud4^R6ZNPxyTXF&96*)Q1 z1l|bMH9c>~%M$7`Tsm3Y#TCqxOwtn|$C?$JYI1?XrZ62wPBJb_e*wMm4wTmy+K#EC z#`=ZL#Ki$C0!pMLqDLXr&I&ObqhuLeuG%3{+RV2eT`Xitq-uJsNn?L$V!Qc@jz3Zj>M-VrE^tbMmh|Rqa;wPO)R7>N>UU zn-K@wUA1S5-q~W>$Rk{ZNt?k8UJTs_jk!sp=>my5^%1z!NRGQ^*PWLdV`$OeM z(8{~jhW`MVaP2!;@XnVN>)KyQr(8=U2xE;VfUHr&5)jH<;O<#S$&lg4B$Hh#T#H3> znx{KzQ8py-cFUW+R`&YdTZ@7LSYR#eBpXoBO^8wq8mOY2}NzQtnE1c6j zTP=o;23#P}+^PTZd*f&olN4U4R7)M0g8phN1W0ino7$g=t zAs$^yI%a{bw6}gIyLcwHX`TtRsqTx5h@KPXGs^%82xU}ck%FNCT(;1qv#+$RNi4iS z_6;_7b}`t!!rxm-4b9{K0IBk^xk`^FHDmW%%48%kW^FAW#h2pOL|r{zd#m5G+lxCJ z$z_%}ZSAGDm6;G1iP%4wr2zmSY!almQGKV2y)kFM@maI9)HI_dpuUyv851Q;rdbHy zT05y@3$-|ra0?)6cdmbU z0NA$90y%86?YKdL5C+^i7&VQj>-wWwB-WOe?2IGB8#!?%>6Hg8>Z)+*fEj@*-!K@i z%5M?q`fb`lW20Z{I?_CI%$j>VL0@EGhIPPHWsW?jC`zfv01S;XWYQ&;eOthnv06RS z&l{!3nzqOpBoU$v1Ya==9k|HA!2k;Cp^Is`eVb@1*jZGKt@vEmzVQrpR#}*XAW^<3 z8_WRl#_SCL0GFR#sQ`J1BCNqGf?P#e3s3;mKiSz`?QF}VKm)NnD!-sGGR z4lS>Qf3s#={X*`}D|eh*`2x}8c2-h;_>n*-YjwaF$0rJ8*R-oW8$wH+e^ZXzPSspU zs3UnJlRv!j)eI1?7w-xknb8%``F=q|f0GQx2tcjHb7W0f} zwFRJM`$EbGn6E^yzyUd@tty@~)Swn_mvw-U;u1$RW3Ard3q?Q_GbA zAd}=`>cHm;2smQ6HA?CAAwI2gW4X4T63YgkaQ4VNlvtK&Fc`ZP-7^M8AT)SA3YzjQ zlp0yHX}9R`#S2^cb9r;ZA!lUXT^V-*?9ahcPX}n*S1+&iU3%8`8%EUD>4nm*n%!)K z#VfNC$P{^uyT~6h@QcF@!Mh_FIY!A_PwAYnr@MF4`q0JDBfK%(+G_r6xze#JHl+xb zIef?wg9#rIIP(t@Z6ty*TN3G>C6mJmH-;@|g6z&=iC*|D#@v_5a)AOiRwIRx$INkz zVxMQGt@e{0-1hgZE~A#-X)dQ$yPM~X;ieId*k~6U)rbX`rULgmEvyoFcTSC=|#<)4QA@sl28%%K+ZYp9jbW8RJ6I0+6%}8(ZXll4w-Q%GCR+bs3amj6-PPA zke)Dc-s|@BY8pnjeQg}bWr0<^_9zOc&GM=GpH6e`P6mN>VGZt^_KVBQH@nl`BPvK^ zh=`?>@$%rX^T#`g1&0|1x#`l9mn-Xc{eM^W6Ngfw8iQ(@ zZh1};)4mQz2L9eI&l zVRE1zbNnr*;%|u-wtC5i(^S+oKe5iwZ!%87Lv3ZqZ1vjgG6CS4*6^;IF1@DenyYBH z*0&kBYk?%PEb}bzY%LfOl26K8?zZRWk_ImkMjV#C_8kh-l)e^-uJz07lWim?NVK+@ zoej;*QdyYDNSMbYQ%STx??VD5A(RpUBL+Aw*obb$K!y_}-)iGa)FPf+(=?uS=bI2L>mdrFHOI}jx!_>t zw&euc)Z}%K5^FwNXcza^li7*w(&9;>%Y4Vo0I``rs=Mn;BSN-Egtl3r@b~53#Ob6ZMoM3Ss-t2AL`F{{Vs z<#v4AIRI@c0+Eeze7c^cVj;JRb2Y2pSVsl4xRA&8=07V)?UOSe-972X1bSGHgni`hx=aZQU3r+NUma7iO3S-GalBFnJzFm3$;hg zRMv;X?FYp=j;hl**0kTY+o-qH4xA*n3eJvMyvzcpYTzd%ka83dV6nLV)zm)06~*1u zHh1k3Tw6(P9_3?p_#5`Cs{@~$5CM@vP~lsp@a~goF1wVzxr#QrlET(lM5!!l-)T&t z^F(p{w%hoOfb0NO0AsyWsQuTm#G@AZ(%11h?L%1C^pMh8c!Kh4HNE_p>4|9^vz4* z#+yE}x|9Ig;~sd zgnOHF5(4#RJZGHh;Ug&CPj54NSgG@M$g|YbG5UAPa|(QBDXczVYSsFmTPNJZX_3`8)(@h zjqtu+)*$DEQgAl0TzZqkQgM=MD{Z|$u7_qP4Lm#}QNCu@w!3%!w>Pxt^+IF9% z+)XOq%p#TVbUTG`$!=9jub8BKkRaR1`^}xWP?laD)I3MyI4w0;?WNOfE#jPpvH43h zCNUdtW(AXieqKoEykgFor09{{_+r+5a@SDRBfHFyMROaFq6u)$F}VK#4oSvKeJjzg zcS6GE+wUmD#yT?nJwbX<>*4<32uM7Bc-ZN-y6|I^90k;i= zROygCe@gPLbHLMSy7UPp#@!m%Y}S_o8;RzL6U!kLqb(u~iBBIQ7bk`(k5@wXC8UTM zK_e}Y2R`Qm@c#hoQfm5Kx`vG`r4jVkP-fCLC{-LgF_8QA1I!yN(bOMFP$in-PAB% zLZ|=+Yz%)9$vgqlX;NCr;hPhotgos{8Lu8#nWB&T*#NabO26o!0nma8z!@ZwT{wry zgXMcIRqU7L)XsuRry|+CZLaL2J>`y_AK30h_qGt}SGLw^bu3fH%^XNuZ`si#S6GSv z09m&x=MJEf*!tb3o2q!4YiXyt)F$)oq)CiQR#ePU?LrbT>fUPdssR8TunUyb>};=o z!*8fV<--Apn51oh&n(vKG5I4>2Gwzvk^WMcD~t-d)vM?d>2IZ28?9}Mo2zwMTg#1P zwJ;UfzyTw!@E03={hSq2I60MAIH_-M%{WXOVFl^ z!|7?SPaXW)g`^DGe=2CvO7C_p!vZi);KYoAE1`}kG_MWXUwDQlwuUHBEDkoyJAgh_ zUcG8NolX2ttZA3tBi5~~EUe?Yh8;ss0^SCk`5$&yk;JHeY<D?&o|@IVTgiP2 zM{-?l1*;_L7#2VYB*phxiQLVOGB)&&5csRc8XlLSCDxrWD{CQnt>p8`i)7oRc6J<< zPnnSK+{7;3rL`{gWKA~WIdA7Wf_c%&Y&2l8GeswrDNBJ6Qh~S)kbY$!D;xuv##T!2 z<^E=BT#dzD_j+mg{{Wb}-Mm(w4%2jfU+j|H$Eb*|qY`}ak1ypRRf+r3z&qeb3G154 z)92AOZ39iUUkXpCO0j@$EhSrbbB^u37=!7PoB~Ebs#?~*+U>>c_coBnCE6mEhl3L+ z#`GsRbBOYJ&y^SV1zpi@gcfH~it;-vXg*lsNQ0wo%8~bY86&?2F~Awk)}tyhbsDqL zYi7SQYE_j;sxfa%nc9DWWxeqQoO-UEdkxf$2{J74Bmq`5^LrQhnPnkU1Lsllf=Jx8 z@DphEnp~6V8{Wn@f>RR0377XIT%q6he|G%*vU0yCCbl(gBIe@u$~pW}_Lr{C(3s+l zWS9fH05)Cj7fUSythmkkO7CdVTuB!xhG<;m=79~X}hxYK^gqg!cF-oLiz{!Vx4}BMLUE zql}%wivTzzh_7`$Lf2YrzwGx79prI5rf=OzZv^Pkl^Z@%%MxVnVapw(BN#%oqaE}U zvr286{sXXm6H2(fn%3Um?NOt}V{YN`nMe<}gSmvLye=^s9GrkO{72%QW-UVE-$&DJ zH4xT;?OS+pyf9wvk=l>ejJA5f;%&EMv-enSNDH zNfD-S-P@-@ovv!vTEB;EMvY^wU)<_~RElfZq`EfI3GL*0G3AoTHpB+hBP9I9s1?CZ zlxxeK{{X-`oL4U-U)*J0>v{#1g!0^IHqARKh^2@U9bPXm5~T8cvb>NoWWnSUSyt8% zU+NZiR@ww_f9C--D;!%--fgOPZ9ghMB#iAR1AugOZwT8yxuR+J$tAPP;pne#6vnYQ znchr-p+FmV?E?d9qOU=Uv!v>JuZQ*dEcC$hrNP5O7jO)EGB2U$k6iS@uYUreLk%?+ zuWfJJRQ`RJpP}YX)Z3>Ux1#xWUV8pNBS+!XLtM1cbYCK9tQAI~p~= ziuBv)E}qW7#S)E{GFk*!Nh~o=@ zgDts$A2u<`&PO>o5xv{kn|W-~8;I{9mD1o#9Pvzu$c{cnAdJWc4tw*FQ2n*_9|SIm zu50$bAHBNNBW+gIt}X5EKFIN}$`F+ckWik7Zs0>4qb{v|;av`06HD;^rv>ed7MJKF zwUus~KQd?}3U-`<_pn>C@=3`(IBL?N7aon>`n~-LohVe4YR!AeTkbQpe+?z}p4y(9 z8lfPx)+3U*&PpER+olHfpINrk6aEp)Ypa_JnJ+D^ zgqID6+{?Bw%^J%bY6})`bD0A5Vsku2YEFbDW#6s4f59?^7|LAH(SKWinX`Bx(X?rf znW^a)@@6$?46V82E(C>3PC#v?+kwdggTSmi-6qe&UM|t?udi*OxVpMYEiH_5GEC-A zx+D=1oz2KC^6pcB2(3*Kg8VbniC1C$j~B{_U61ZZKr&BG**trEx%b+)!}vULf8rkz z-d#yM8)0Mi%Nw*dW;`~;QyAJyAbjVY%)3C`WbiPRV^zDWH0-s1=6V-!k1E^I89Mim zH0>9{w{{wanH;*JUC(U+gessh%2AjQ20rJfa1C-^6;B=b;%R5l;R^2}XTf`nC zxA=djXlcVNfn<3A`d{P~tXGoH^=vA&PP_A=@p+3RACx{GFLkydPs z+mZlQ4nmw2a9ef|jBO^y_V318_lGo#doZ@G51DQ?d9EXcLc<H2UTQJ+xIEtwg<`%V{R}3Z27e% zI{lufX{9~ggw|GT<|EJotVBoaZjoeAoElzyqRe!j#tZ7#|-lcmDoxSQ=+(2ZBp}Mq^)(IagDQ6^spOBn3 z;AC(4>NCyiz7p8hl17qUU7JT)Vv68Srb8{vLO9vf?qX4Ps^z{(8>kIef8j5C{YJx2 zZ|&>bZB`_LG<`}&ot5Sp*(0hTVDO^wj2m=-$-vvE4x=b(VYktxyqm&e>h3~Gku9f7 zncYd1nmm6AU;`OcAC*c1y)JF;D8=FC+353WYD`4mfb7 zzy+0L4THcvs`#c`TZyDy3TCp*s~ESFebW?IY?v@MqwG5yaoxT?2L3p!O;<@V6aBkA z+!9%Bce>S0aSxoXzYo}^=@IXsF(~=A%MpTI8!n8}Z zj{x_`!6cs+zp_)5b^LcXbs-q8X(ew%s+Y%eE}I<9Z>EQmNfJp-{DRusXkU_POaQ|v zE&z?ydJ(ub6z|KZ-T8JA*(^le84hFz1044JYsk*Dx~05u+e74AnHzC87dH(%9g0N1 zFcWo+aOH*yuR;YHr^QWcK(V%qPlnS`wMaa}Ikk{tFycMze9U0E+n$-@uNBjPvXgCF z*ZOBXu~eq{X}hzw)O=Sw`W~SqlUapG%1Ii6WFfLXPzfad8Lai6!I%Cv)I3Y5ol8-Z z7R_eQrrwccA|bGfBEtOWA9i`(%d`!}@;pP~_-ynIO3E8Mty5opT`aAQvaCvGYjv0t zyKxaJxhI~h)kauX*4t9>HNKAbc9sz8T7{+6t>QvIazs+7jzqx+EUpPHlhcJDiuM|! z;=Sj8LSpLQWnx<|8R;=CExm$D-Uxaj1d`*o9GAF|}N7FSjp(c9mVn zBw?|OsQ6aTNimspJuZ128cnv+mSC&*k2{p(=sIy!E_LgRdu#W%)-)*e?Lu2fubxSK z+sIYoiR5&RSZ|FP%HeX~AsvYwU8FYpFNSQjJrj3`^=WR}%S~tyM-;|bcmDNQmQ_K& zBXA&w&e4*&(`t=IB_m(#2gPMDV@rF*4}ZEV6=Q za|Q_`s*rjx{6}%cXn20+%fmJvBe;hC&dDt`642Rx_cAw?4$!EQE_X2l?wtGd7Brs^ z-f0r(`gX7*7ZXK)b38FVVh<(M3-VuHE#1-ShKan`(2>p(QSM^ta+r@ZPtmYF;qC z@eZS9E#>8^L?XAhmNj@Fk!}Mh^CVSnV~aQ>j@ipIE}1@=7sHF47eMf)pk%wZywmNj zXFku>&^*k1r8j(FU%tH#ReNbQv*WF5S90D?y% zmgOy8(SFh;f;@)}9P&cPuXG`Z=iGi&-wkW}eea0wKeQyhn@@^K(hIBm#<@uY$m$s% z3ZV~{Lha8+1&#(ad|Q2{*=Unp8#k5}2#A)TGnZ#Y$Q*7Y_V@J_>0$A4inNu^O88ZX znwK@L*y2PwUH<@xwCLfnkil_jG($f_g8n|EY8Fh_5@@*@}dv9u7tbF5N@c}hzCwCQim zl?NNfH~zIdFBECk*Pb1{y}Ps#-y3uc!a_`C3vJrNr~1bk7|3!D2NjtegnlUS6h0f0 zV`T(-jPYIKMv=pbjGN2(j4^{F5asz(gOuG^y4Q-eP<0J9>uW_6b1aew&<1GM=WtLQ zwhLP@1gPt|g8aLy=>8(suPyHFEiCPBV-O=rd21vAqh@JWGAc1bOncJ{$P5^q;Ebm) zZ8V^bDf20N+AAFu$A+}~yLc`&NcB1I62;@w6o28BxiO&op%-|%YFt(?g0Y1X}oE3tj_mRY1*^HaRR|QA1Wjf zv#alpLZ=S$g=`SqJ1FR+Z)iRxj(KcvZ@{(F;J-zJ;z`gTA_$5jxxmiLe!s+J1SsGP zX6FR_y>53U8zpv0t7$ftIt*)XrTI3pT#KcWYshWlQ@Z7LhLP0ek;4w4u1GilR!4@c z{{XgaUh>}I;+HO$e;klPokxC$6E6~dNI4&VoQb)#KDYYSe*b9)kkE>-q5 zwBJ7P^TcBz`RdsWI^+_~Rix0M@cxWeIkg5E^BO4b0tqDY#AADTY%w;h`&Sni8!bsdiGv_M!#D}5+@P)vMO%axZD?SPNa43Qg|au)U*vI zO+QeEAOwa)k~wz+oN~5GAreAH|MNILJBeUG%H_oQZ#5dFRyl^iSkml4gTQ@pO^9 zq=|PCR*lM$mO<2WT)Ms9x#5js-fR1*B#z?H!16hr)Txp7#*BVvZGlxXH!)F>oYmX4 z)vt70(_wOM5_S?_+bls`5sWbENcl%Ykb7X(PlqD9xV6+R*vz^$$_Q_aL3c<>uv9`( ziF3H{262nq8)$G*|53+3g6P z4Px3mN%JDe*dM$f!x$h1W;=-raf7>~>o-vta$sqg3_ww*C2g(7+$;Fae-D68h zbbTXNxzn#BFC249?F0(&PZrqFAqoed_d_tmYNG%HUpYA@)Sv2lczQ8{ZW>?u>O(%W zd24GVI#rBbWxQ`A++1q0BufdFMUFV8=0Evnaxw@JvgEL0AeU6#scUjwz~5)nF0SB$ z;V+S|2a&jz5w_CmRZf2P3bEj1i_vHhUujRIi+hyQ*2XlrYfF-nnFC89%Md_Z&oC;% zf%$QaVC=S!sn2D58IDNf)SB$U3>Sn%{&bE>6OWfB=Nl_XIioeEsPTUj zL3yuhTE?g*n)%pCdll@B8hMs+Ie}fH2){OCQQNL|^);pN{j`a-?Ig11G@ay??kBrrTuDA8G z-@lBwBT}K5WsamdwZI+m*{@Ps|Dca=0ol+W61H zT7ScP-5W^o_Ny76PQ8xW_G?IEGX@)3x0y+DF&_Py{{UBzs;U)pCh%p}lj2J~8%4K| zP}FqcKbdfc>`^MWkatK?{OLBVFi0zmZ8W6VJspNz_`_3&S=20Mmrv4O8D)ZfetQN(IE|!Ssa0XP z`BH@&zG94{k&2=4&&SX%qb;M@*u@xl=aNf>GEY8PQdtbefL|;#OMw|4T0TnPx!>_m z!>vbD(jwAqnd7#TQd_Cyy0?-`fDf6w611(oLrWo4D!JTAZN-_myRU`!I!(NvV!V~_ z8s2EyQw+RjO`riE-Q5o0!0#V9TpaEg^7A`AMP(gZ7soy@(Y#;c#kXxjBcWQPvia7Q z5<>R`fXf>xa$g%j+(HbNI0FW`{d)S|c!{&IeLBrbrdBe}@*)B$MNCTWIflp+SE^W;4N|DTnZbL-xxRhkh7jFP( zxH)szpvG}r$*zYsAtzNf?$<%~i)Q*PmX~%)_mfP3NccvM5VARu9FV6hPjU!AIN;YS zJP&UpM)(CuU&MPJf0b#?ajD)5VK3|8x``=2IOGwvGD-D&;+8#fj z<-#c&Fh?Zh;mOYjaKemJQc-%n&Z<~i@w?@2{!jYY?|c=jY3buVLsp*Z??+jowpE+M z_Nw;K2@y$+)5(9By2iK)0bt`NjNeQD00Y`s$#ZMstGmIcUQ4N4>8o#Xv*iXmWD^*} z$AuQ_mSUi;FnBfQwlUaGKBWcK&CRiEF%__mJ;q7XX;gG9TMe+TSMIYZz+8&xnr$}z z+QU-RZgnH4TIm*+(j=ZlQcPCm7D%BOQz8ToK^b6n?_e@3R$Z)Y#jfA!QEB$8;*CPa zI~d`367Jn)lF^KJL(2imf)yB{Y-IeP00OA#tvqXRd=owSyN_1Y9`-v_+jA>RB&~p} z_IP#mB~WN(`S3!i9+t_+wT2Q>b@P* zWY;t+*!2?>J|X)s-ft0(D9S|@%A%Vyxaa^9O;r(Moy0W!_E@x6% z1e&wp{{R_X_=Ch#KBF8cmhm~YVJn9yT!LgrmQ9EES=*7+AD9&>`u$Zs_?ZkjcbN>JWQ|(ec=ZT=1;f-zI z0OS58^L*TA1LyDm0PDqT_@eITQ?R?YwvO5CVrb39#E!#zGbtN35x~eK=M|`+Phyua zUt3+t8)8{)Kq?6C04>fiIVX?99DiKIVOO-}jH0)Vwq91(PoK=FR#jx^!c9K+-+qko ztLt)_-RxKY0NL79yP{-!vm_CX&NG3r$lb@F3%rxitokp8Y^?PyN?V<%zb5xi{iE4<-VQ?4_;l5*!N}=LU8Aqw=lj)ux zcrK!j3zc{;ZP?Ew@S?F#B(ge#yJ$EqxgX`)rK^(g+>zYt(oLZKso=Y1EU-&8y9eDS z)$bjyVH9dj9|pa6S0NVO-Dlja}_EJ#Sry zOfm~=$OY}xj3sB+_QZ@6)sazH&O@ji>;$RMzXM3Va9A=oE-h=WHeE)E%XgS_qg z#{gxzlf|r3r?>0*TT^$3t0&79ul3h&#NO6*iDmFzwD-^hy2-AHP!E_2J1cNV8<1zW zEzlkYZ-jhV9=&3kY%^X#Wn|z7ga~AjPh5b^1_|SwALUa}@ddL>Wu@r;AGEg9Uwn5k zyUm#6^8&j>!PGb3KPW;*3HgCI)$sfpMul-GwAx^1QluP(`A5s@IV9lVg3aq*T=6xq zwB-s?cXH#JS=03&Vmol<*i*z6>kBD#W0cl&&XV#wo`!tL7K zeMi>0{a3>p)S5kxnJvwzj@sVp2mce6zw;T+C>t2U%s>?mT+iMx67~z5t zKR%V8e7ehmMUsxZ8J9oKs&%olYO<4*y%*iF(Hy@Bm$Pe^&ielVm*9DafV={p9Py2g zudHgCUDchjXY%2W;oE-F6yU@M2M4bh&2@L$rOoz{;$1JqI`oe=qEK4Rr&wHt7Rw_y zlFX2urH17shrp9KalyjYbh&Qzn3D4D<4Fz~WRYDqI`t!SutaXSY~*?z*CiY-+LWrA z@JQp-8~2l3`GQql%(z8W0S-VUI6^_jep=obin5P0Nj}2_PERDUGpCL$+9i~(vE{Z1aXW1}^gezK zdBoQix3^ZFP5ef70Eq>=LVoc$FThm)0A=&XB;wA$|H}_03~j4J<@`wDfCBd)Iy4lK!>|@ufn3$`Wnb_gt-cUEl9rwKgvNb*EqH zw<%#g#FGVG-)X%4)M{i%$&>vc?HO_RhB8KY%|YTBd^UU;Wv5yjo4t0{KQYq9M20Bb zEY9+>e4a<|Mi>$@+!Kbxm!228)9lvSFSQ$FXwhY6k{F~WH%E_iugu#DjfAl%2GO(< z4>zyf+uB~mCER*0sfdld5#ISBVO9Hp2$^;-Y<h2X-1TrD{fq9C64?K(e?Hn)S=rW+bfx4@`8tBmfMq+CmX(OZUUC}!%>>>PpL@v zlG~idXA2dq2h=Dhar)!vdRCLKZ*}keeA!j2s!Ht?ppHhcl1tH&M3=Wp9H|n^yK0Od z_cQq#aBVr+RN(oqz+^Ae@2^1an@6W1w8?ma@eh^QD<)l1s+< zUU{*N$?Uz4JpMzR)xICzX}X<-^_jQ27P7z*XLnXaLm%-1SNItH&-rNQ1cd_(E@ky< z)>5*5T0fspKQ{F+!eDAvjH^jqe_Hj)2tjSz zBYmp7mHuVgN(CiP%)LGD{2^ME_LiO=)TCQcrQJa~`7H_56wMobo;74pU7AUVSX3P0 zM$xw(MfL*81-O4PQxT6oDZmoQsqzI;_m!EC`&$XY$PKXq%^i)*+Jaokr$rU47Z5v6 zs~*;cv#`4Pgoc!D+@NnPrE<0D)^4>)RPSxQ5z`)8aZ&!aJu*E%M~d#s4FKvx#P;*O z$CB`~-Nuu0Lm5?sYCO_DakuxIj!7(H)iupPUg}z{we`d{#E5P*i(7aEo=RI!Ja6Yn zrAN&ign$`<&I@5dx$uinvetZIuU}~QT9uWIlDiEyY2}?;aF6%y%nFGZqxE)Uxq!e- zw`F(W?*{3bvTD=H)|crUM3(~b(U3B-oM7;FvFE7j4nQ@|m$;Wy{{RhtTUgD)O10C` z?!4@+Z`9*$bX#3I>t9V%#kV@NT2xld?_+Tdx0fW6%Ns`KNeYHvElvw5`LTj=msx8| zqFO_DZsus-X%;z42}-6<&6VNtwDcqq$T-Dxml{uj?ci&>6Q{(&Xk<|Wq)26qzm`Bi zxMAi$BMr}91~~_w>hXL}4bGco9lRPX?c^6$%{s^@$0U}JjGgXJ89u#oohFw)x~qNV z(w!PrxgTB79}izkIMpZAvaP!9<<1>jYnAzi4h9f$gWM5-18;8*v#H*_(nv_s1d&fJ zH-Hn&8NdS|zCHHT=6yl@Iuyi~{glz^^4~mh4d@YLa?PE?rx+k@V~$Q?bKw5~2zVOm_fPR08iuiT zE}wIJlIjslH1fxEva@YQd^gV7!C{04B;}ix;bAzbTU4y9ULLjSD{cLJ&sMyNiAI0` z2OBZK_Z73F~aV7MH9g%l9i~wD*I@bfL{9e_(xjxNku;Ki)K_2I4J4hHj zu0hBpKy9spaB<0A__iMs*%|eyjPj?LPui}EMo=LN7h-~2%y`b#&UR(Cu1Lm}9Bo)e zolPRX{{Z+TRGlqdB-?sl{vT4-k#%iztzTT|52_}sXB3jy4KGe}F(P@2tlv8Vn0P~O zQ^wWkr+x1c>yP3qZ?ov$D!!Tlr(Rvj2(+|2JQQ5l44mhl81GjEZ>P`^EL7e5d6l-5(o&}9C|x4lWD zvUp&cFu&;jX3|2l1LPIUZDw3f6K)f=7lpV=+ZMQT?ZBeXE_LJBi#?M|LVX=v`&vom0d5 zsw(ym?2{wDGmL-NHIb?c26h zPC*QQUbL4>V11>jB#9)a500Dp3!<~ul3*L zMsJBzsTy?JZaQ|`PtRi?!kX5-7N@Rwi&60SlJ5Qp-Z^7qZ5zrwxKb2pPT!k@yLRGo z0-gn59y_wMw7t5YTC=?Z=vv8bZ)VmqMJ^eR<(^J56!j`HtN|^>Sn)rCmqgMouk3XO zx3i4JG_LCI&;yem0CIQ+xveusy4Ey(64y`EckY1AXR6v?y|j`=X_!2( z`1ex?&CHFRvN8FTu>>&6vW*(fwKu2rz0O!KX$wtib=qf%Bi35b>2|YStg0lLl1TAx zrbmx+lGtIoIX>q90Ju*ejoF?t@im>kjic+*Njz&UT)9 zXHL(-_nKauk71~^T8hATnI!XKxNz?xtj_9PhWQ_JCc@j;fWIoPJ@%2MZneI=)#Zy$ z(E`U{w``j&$Yd%PVuoxO&<*8@3&|v!9w}lpr!Ugq@J#1PQ%>uByPQvlyjLfL{8y-H zI**2-xQ07#vP%uc$XVJCkOjjzj&GOlpahWE4T5tXrQ&H9PSZ5J zmrrin!@gQVGn^gFeFk{oRb!P&MJitYs{L)V{<@u*Oe?=Ki?^3^kMUoKFEsD4*-rz# z*jawt9R6}f7)`aI1I%F}sfE|fRw0%`2n?jvTQ3pV>9^lzh7_{0*&9V8!I{_0`!4?g zp9khuh_c9`PU2lc?g}$CKMCDh+r<^Ue{8&2Oc>Mcr;%kF#w9W^3U_(d`#ijcSrDD9 zM*N9v3>W6xP+#olSkRS`7?G7-q>fKH41ET0Gle+Yp_C${vOOPO@jb1`ybym1x2i*KfBy0z|~Y_9~ONbW8H+!Et>EKisN zX4{0^gYRGxRPrNBv$L>^QPwQug4XF|`!sN@>m-aL-Y{Q)fXa)z=E;q42rS1s_8S@P z;}*9KD1tUzLu|o_9PWI%z{x!Oo-hEYjiT1AnzeNFNbDiklFcqGwM|n~u()SQ3rlf$ zCXHG&ZM$~?)VCxOLCD~PUB;8DL9P5Rw=%~F)ZW$1hBRhksUt=inB?WQ_dhWVK;Yxe zZEdxkOU2g0=TTI-)x;1r*ojZeaSUj~%LEQ1xdWi-!3QLEJ{Y!J9}Cz=X>hF5MgEYy zB0ESKmph30*QQ2yDqw?!+ueqgC#&21?0NW>?74N<{t0T&#_8d&1Zq*<+D!zSt?IqB z)7mWXT||P`Ipf$^7RqnPJ5=(a!wxuYYhBcA?DQ0d<6MS49?2FaSBfKVCC$3Xtdm5! z+Wh>Dme_~p1(+vEf8jk(Rgw#P>$^MK7$R70VHf5jX_*n^b;2-Wz&hlsADwtR6jwju zJLi|;EWRK~wTW)xmOGfDp58Hbe1(j&KE(2sLZqZHSI3w0E(tZy?B@ujHDa*UY08{q z7pg~K-Y(K@H4SH8hh4tZ7Q)gSO)l#C6=^TyTp1z^Q7~2ILdhA-QeQtCjN!GDj&u8JWIi zUCbA0nI_Y==SM7WcCLEt9}=x>SH#zzTz59%1lA(y9p*+b;x~Bl^4mztfE@infIqv|&o&_K7ME33<^DBkH(CQLC+=aR}n42{Dw{_&BE@K#Xj6KPS~t-hgk zrCnSkU$}&oH$f!wqed!n!_Hz*V|L;=;e=6X_x8HXHkVe5Z*r0#WVu-s0>g5n1?6`R z+;u%Mk(_BLK_{)cnno(5l4|$1Sg_J;Af7d7 zV#-GK;52?;$ zY1$oznQ;ud9o>zk(DIO*+k}X2!EK8?TNt*)>KNuVWy2^VC5)#lxTkNE{F#fw*Mqd6 z)%%#5HnU{}R|4Nz*6%N^qm~;ht1)d5lGficGBU}TBSRVn40H1{0E}Zh`p7(erTA~f z*3tNG-tWa1H{mT~yt~w3N0FRF%NS7}GoQ#uV|QX zM7OCdA<0v<<4D2e#~ylpzWZah`t`LvA>?TH#%LG~p@&Y?VO8%SkRN<^%_ zU}6i5#LV12;;B``N_K^mzDbnu)zo>M9lP64y!5!fA$WgG@YU7SdVS2TcX*S+lh`7> zvIs4uYl&466cF+u-I7^|DBDWy@}Ch&Z{n>_S-+CTNCnABEY{l26#2k%-eUy}a?Wyc zOL3g-Txmn8rNkEYcN%TlShbzJ5b6?JzmzT-*1?J$z+>dKd=Z_&!2@s1dl>CB=KZ)nlKnx<#}0G3$_Zpa`V*pG2i3vC_Jcxy&d#Z_StmR0SK>{=9%<@EVJkC*nizR>5)^4PL+PDTkm2+w@iG2)MfeiE?IWQxu?>|}VnjqyxDbr0rY z$MO8Yee98i>9ui;VC3x`$0?}A%3B^Qr`~J!o*KTM9Y;=?VOZyNmPNUq7}xCag-~}Y zqlw~1UN;B|HUbqre}MHb5MF4LSS{q2@=1GUu-I9>y2z~^v6>k?*Fu1gvA~29*b69R z-d4HoKSI=W{{RrKog&=N;kj-i7m+D1y4~(z3;!}Md6JeRZ#?Jg(n1M8J)b$$@8IUl5tN>e&B@THO(EE>p84-Ux&KB zuc!;7;v1VQiue> zPO_R<+Cva2BpZo^mt>+5edgxZbN55&Lm~W%%>h& zvRCR+U%+?X8gXl<%XvPPseQg1nD1wb%)<)DnzpfS_Ge35KM&7- znyI#u;LS9WN-dP_c+i~fx{QJ4@EnXYE-Ln#_tqMIw|6bAg52rXF@o?}{g?-T-Gk+r z)Sf1ALjiz(U8f8*gdF8$h?P!Nc8gm0mrT_pI@3jIdp_A-IWD}yi+~XeoNr`|My0vj zRFX+KIkuWny0y61;eyKg);&%OX=9Q_0!ZXQfRoS4B-zFro^kS%TRLR=hmG|Z4aL4M zr?6?(D`r^y!iaVvmMj-`(epMyCnR>QYmW%{cFOKcOP>_kL}j{%{U&?sKzz94G6{UP z;GvTdlpvB+HbP}jMOukdP=D9V$`s|!=6Qfv?AsSMEe+rhHUmTyD2Op)+e>A(5G!h#;bCd zSIKU%tKM3!_LI0_TH@iB86{n)uq4tc z`FT6kFPqH(qtLZybukEzt=GZ@nC9 z2qHA=$Ymn~sm-+UhM{_s+-rJTIiP3 z!4r&gQqq40 zPpC(%J-y>;vD(~2G*06AlIxh#N8wCy3r5LF{GIFr zILP^iU0ATr4?%0;Sg!70!Z+G|ubFWq5jLl7Y-OGk3>JIB;u2L@$Ub&uQN4=}&B^In zgqB)77gAlK&u&xtN|>)n4vXjMd- zgENJS)Joo4M3~0r#iRf;KF~P=O~H?sLzzxeoV2@NmA|i%)jDudQG`l*+?U#ChHo#l z`y_yA77^G)x0Htt2*A=q&GJs zPL4GGB9?iT;q!MqOP|& zTeGp_9ue^-pJ}Cd;sm*{YwM94TFZYsKiWW+UGo=^4bm#g2pbf((0sCY1E%_Kho!W# zOWjrAxfiJg>>}FX+BpQM!Z4y0D(xQqyORZxlxGBu&lUVQ@c#gZt;=Xpy`AilNSc~!DK}NksN}# zO~5p3wV0t?S^P<^MWbD52|kl^pig!#Ze9ytvs>OW{hSn0vNri~9#%D0`I(MKA)3v^ zI!rOyS?doWe{@OP_j+#|XtVf|JDp!uxv|sl zMynO1mvY(5YaG){Z)z4iN&Cc(HA!5&fC30AK5`Y>#_1%iirUk?R#o-tD?#QwWGv^RYctmgYqzKey zNX>Q%N$|bCgK2lDT2H1+r!KV9HN@f<0lc{5K>PWbBN>AnGL<9_IqS-Bapiy4U941T zrnNHcJUw}7bUZvH@Q#(K+fQw8EYn;8bunKmWih7Tm@(Vb9mEk@Y2XXL4&G_#*VgxU zHg*jv*^7&teXH`U&m7TX1UXI$4a*~EByO(C&&7^)3!OgCM7xspcFAy5Dm$MoFzy=% zB@BOi3_egmBLX=5OZ}s%%VwG*OQ=R#H;By$ka~<3&-AIO%~A6EMYri=B~d4SSNND) zb-f=Jw-cp;vbtelT8Rzbvq@30kjVv_uS8sna zTJ)>pD9TZGO4{kC`~ftJSJHfKr$Zj6aXGjSw~))_gfS{RF7Uen+aOVr*aeF9BpW^^ z)orw|6J1_P11es}ByhqPe5Fo}AxPIaEwvbc3E*|W&0n+Ayi=ngxwiWgz1R&c%iBpA zWgm5ZOQ5?{6SM$01d)?qk#oN9D#?C;=l}qIr#nWr;Gxo^jU# zw)XI<-S2q(nH$YKDP5hs5-~RxP_s(ms zAH14%6SnHxJ9jy2Ms7|GYQ0ST8{#gs>iR{MzMXk+Zk7llo_{iN`_PO;KOjFSErTL} zIotp_-qxVH@h^t_Hqg&*+9a2A>KB*M*)d{LLnMA$w&M_dzb*Gi%2?-X`R|Es$Ag88 zcKX^~3x~Ke8LWW>5)K(y5ZpNgV;IF96xIab#jxj*cCpG?$m;yA1t z*5=d1G0QL_O|jdsF)$#E?u-x1BZ}^x2~?Y$lfR|^0AA$AScpYJ7PqTjT^D1h@Yjd0 z^~KU*(XSQ)ntTm*))JT?8AU7R1Ot4XOA=cw%s2xBte4@=rJ_P^Y?8+OftHF}Wssks zaDPl!4dLBhYZ#-38JZ|nw``5Jf_NRhzc0?c1`miAR)~aRRT#?1bDzeq*;caTvt5oE zSET3f-sUarll(!~G<&&pjSd|)NiAZPt|2qs7BI(our>e@;k>`a&N%|TUrMokGfT76 z)=?yO(JVo+wTJ^9jd>JWezH7Gq-uAXZMK(ZVQ?){c83fVVv+VHRY;Euuyh-x;4$EO z_1)yLX(Ia774QQxpYHekzomIji%{izzr(TV%1zJRElavH7={d%d^b9v)GoD_ zxI2&X%3fXqg-BH>V8{!k`F2vQA?JU-v@397{EE?4sZ`ici_9tUs;kpPJ2|o z`z5{fv0T}#@y7G0jne@D*+3@0hFN~dzc@HMn}M9yOj?XuO6~suU)JNT8jg2L$#v6T zEq|}q#`S9pJu_CiwR@&^w^k4^Vpe1Y_C9~Q$RlBl0vr*+6>423)#E`NGNVXvrPYBw zPeMHbuU^&u8O5sK+sxO{!5lVgW`56SvF1gO%LT}Ngn`otFgA{WS2f}tF?=g=3BG%4 zyLOG4g}sxjE9 zy@m-C%8{U7GFNtD{Xj^Y<>Muno&vW;4}^5MtWwX;X>UTKED~HmiF!k;HPm80xy7MHA>Ni&LMna6cyChD)41t}emQlvxUqywfLNSd>?#p-8o*p8Fc~`t8 zq0#FK@9`&4m6~9SWpbs`-RH;62N*z4-B!o@wdeYrx_*h`>uZOa?i*)sCh#@9*2JL% zZ`kMy1ju4AdM`|h^bZqBtZ6p-n%e5ta$a3b*Jj#1K2Y1FJ7SJW)rzm(L{i9}VL&sU zM-%ZM!)c`WTH54Xyw0o^;iQ!Q_F_1Z5txPkKao2=afHa^ql<HWuN zv*n*RQ?b!}U2AE5J&3upy%I5OqX3hiQ=husJ&%5Q8(-T#8Mf3!`i8AG;a zl^=9Cz%7nWc;8WiC$_K<}|#5Ti>!<1u!guQEjJ?Bg)Yt{IM^YlDh!oZ$n+5 z!%q^~_;S`~)K*z1X-ldg+~<0s2PXrO@18z_rtr<3h0ls@^vhoj>4NDjohK4cIYBQf z>&qVERXi2o5OK*}dq=W5Mv--)Y4SrnkY-C5)=3ls>;oel<%tI)B%U}O^~B*?rOvm~ z-`DlA-8Fri&ECL3&R`{ndg#NgIL=~@-*to9fkylXaxD2 zhYgZOb8RhTzO?fo77?R@2mDIxL2ksW#~&WWTk`8%%aZa*3B*%dHtD0A2+^{*ToBzb zP7XoGaatDF*LG8hQvU!>xDMHp5qlZjeSlTxr`Ei>lEg}t;VVn?D?h@zZO1Kl+4O%a z`TBjv@0A9V6tjdwb33yZ00MHwv7QM7J$*1eG1>e&)fj10nGPCDmT|j{!)jptIIlFG zU$@@N6!Na*T(YcykiuBgYXOo6&V4hEy>sc3XbnN%^<~00Xyt;PBNWFKt)iXU*lnkzg>Y7y)EZ`?cLwxGtu?ErD3}{mUC3|;(xve?ia)b_ zNiL%dYkL*UK@bC-rvQ8UeL1g9yKZ}J+j5_XpH9|wD-_bCmE(DK$!_N*Mh<%9{{S&b zAA;qcQ4O}1&gbX{*0X#&r%iEpbE;2d@|hTgjUQ-3{!MjXYQECEDXh<@TT5kj^4h|V zUwaVlRO6;P*G?7Mo2snuxAk)xQd4egXSc|PZw2X|AA{{0h1?IQ2_g{MMA_=#bKIO~ z^3OGmVXNsn7M)>ZKZb2J8?P;1?&jul&2Yzhlk=$={o7+F7+i1&#L3~EPSWPrS-#Ql zrF6K7jor=4lAk!}oB^Nad)7CJA~E=aD>#voVGPD7TZSwyXOc0Gb!8dpwX>XaR|vvb zsKTt1ZETw9>FPSpN)5-M(s<)uw9ss{**rg@+StoHFH*&F+A$AitMd5EhfeowH223 zI{~N9ZzL}ogOjy{jq;F%x#y6ek4kQhr0LqB(`MBYU0LpIj8n;c=1CFb+RCFGt`7D8 z0BCSY1m~$xcCuafUVr3s`$fAKPrRF45Ni5_kwbl}SxF4@A{5-oBD#ITrLdqV=OuQG zo&nf~Z5|Cb&bU;#zKDcNc>!R<*KsE}^&_vZTEy4xBG8N%HdfDV1Xq{R!x4+i41zm$ zB?0~%?gJPci@e0pRks^{Ci6ttHwOTX-a?0Gaj-X&d`6Q03*F1T3Xwa2b>q7Q@ z?fDwYH769H(q3^-^EK>si@i@zv6&!CXf9-EK@1yfDzQ9q{ln?&S-vGpr2fi*CP6Hc z$Q^+yt~Rk5{XZJ9ed4LL%Sm+Y5oV74t)yp_)ppsqFB!kVN#wR&OE!_e2%sCiA7oMZI@O3Y8%Uqtt7p=OP1?s>&`h-+4H7D~yL;ayn&laybMM$7`#}XRP=b+-Z^9+D(0@yac*4EJ9=ff!l-E zjokCj4@2e`?rvsSV@8y_Fo{(E0Ig=~LG zk&vijs=$s3IN86J# z;~{Bpqgv_*RI-;)m>tmVUVppK-6Bl#NF$Q*kA`%;FT}Q59j)itb8j2U zZXYNmDnoq70e5UnX9^3FSrl>TacNHt?}&Uh*0WpcSMwy69!x9}RuGM@W!sIhwqJ(G zA-00p2B(R%U0&l>)aJO+ukLUB`3y}il{MTxT8Wwvp+S!%t*FTLVBvw0PO-zvl-qCq z51;vHbyKYv;h{z`>wiY=f5_srzYSbmYF3vrLo_#+7xz(!ZesHD<@tE|PauYO2a*9m zI3qQup?o!l=J6xFytJCyOIKxhE)BLul%FtJTt7`uMhvH>Uo#lJmr^$cA?t7HF&4!%}3wLs{GsXx6 z5>Mqq>y{I)Vz~@GkpBRMdB?Yp z3IQO3J7&C$PBN`3jU=t}J-Rp=H7KcbT2}6@`4jl5ZzG3O)vPriE6ItDV;fuplaF6s zdvk&fWB6y`^qwa0q&E+#{gN4{cT`A2?oa|_IT+@VALR*(7e?XB$Ee0K?Q) z>!MivI@0x>R{rwl#>u?+^t*uwgiOrvmOEoIYz*$%%MdvVNDE%9aTO|4r&noPriVIj z2Tr9r4_;-j$?55-!RtFTeNJ5({F7WNeWyMW^eUjoN6- zaUAzH(1}@RRblcsmaIVMcT5tBGNguF{byG2`)jc#pACu9(AkXyTAtNxC$U z1q9639FBJJ_d)^O!{DJBo5a*-if3Hzw~jc}gOA}DbtG~}1b`*i?zLHDvKElF#pDxt{{Uv$yk{H?av88e$6&*$I33FP zGf=zI(rIk;^t6WZTlg>Flr_(mW-~6_pz`{Rki_9gz|KW42*aj9r$^#j$*mHs-@hy4YbkX6BWXkDQse8+D*^v7E5d>P{lyYCX(>B8b& zEBi)vduxawLQY076}Kwq0Fpywmf#Wy=r8^kzMmzO7Y{zG8d`;#SS^_qA&Ogc+p}|J z{I|Jq2P{+orvx{42a<|$wU?Edz8?_|XUz0}@J}3q{@yiBS4y;$i!1A!!=}B&#v3SD z!mzk>DEqgtUBQ7SG{_zGw9Q1^TScl#CzUf?3rMYsPQvAnmARFKsJoB^Bam{jmSV+P zxAm_CK(^QCPqUo8p^xmb&!k+$F3TcsZgJ&&`@)9K;sSzjO=@ai3S+mnR82w$^Y1>x zIQtVrC<+XjMl!hhytT$gFxl;jiqfXHdmQehAwE>@dGwc2L!{|4t&OA-*)N&C-qiWP zZ-IoepEo>`;dfwQi~t-JtP;gQ)#!uW{oB`hI9|^3c z(`CHVnqY0`B3p8&%qp%!BDp0)ef$zJff(TKW@ew@ZAZl)Xqaf%5!iY26AhZ%hl$v; zAVrbFY*KJW;Mm*12Q`#xMrm?0c%^P<@cDj+Eu?6Y&uM4pTG=EPmk#qYM$FeFH$%0K z;5HG06adUdNhZ5_KFe_%FS($1S}2Ow&3^Wp;u>jNy!oLgFAo zf~PydY>;@s9qj90*xH0wvRK>CZEtZbHj{|iR#2ySmNYMbxxnGDxm70s3_DN1I;OiN z%xw&!1t!uBz#YxOYAG$0)!nRr z*|w>BEEX5vYFKpWB#FdcRI;Frot{KHHu;;y1Vm`>zn|6TuX=^JzBI+{JS`|6 zyKDVtSF+Hwy9;}JhrC-vQErh;%+f4Dm~Fw3obUr+_hJAfdHDL1f`n=A*}Vpna(xId z{1@R@@ZW{?X(ZLOy*}pHv5E`kku6Z$$#m=ktK{Y`iWi(PY0*ZJ6EswsM(G?YI4OnfZ@Jz!)Uu zh^y@=PATo9Ixv%T>cXqlEq_5g7pFm~c(O@u6iNM^1XDnVqRQ;+=3~`D9C{Zgs04b> zs4SC9Xz$J~r700}leL+Gsn27$t`B2_k&M?7;4cq}Za?89j`HbaxeXn>4tFcsZa!N! zdED6EIl_k9j!8S-In?ckhV@+)CEcoC*vSp8upc~)ASk7MaLfrK?v73ccHwFJ96Vt3 zw&obh{{UIU&aX$Ym*W2b4nwT#nlveJ&}wod!R`_@W-uZXmItbdS|N@P?+ysbu2aD& z9p1RUbXN^|3rh?#*^R~tfoNJ`yW|QK$bNi|fCgfq^()}7^vSPh)^(Y$r%1SJn6YzHMeJd&Tqsvmzs8gXeQRByR%OaG;vLFZx{_YisanNs)!1! zOzxo@cHb`{im=6qZfCkt9ku$*;AE_JMUFoOt0Tj9ntg_iqgz{F#|(ZWZQ+_}V2;{P zwRsH_KIrgK(e>(TSAk-4Ze?QBO8b}sNK9|BMbs|^x*N@rtx-- zbK$=M-A8w-Lo3ODYUwDq3$O_nB&g1RTH|eeZ>#GQCaRi?SxlOI33oTyw;71)$73%C$QK?gs}+Pdk`tu&HaZ@15|6580$;>|)m z4&TJ^!6n){7LLnlDiN86aJ&@+9!5bRhc;5^X{=sJsYQ1c#PfMl7*Tw+OPQB* zI^%xk1%TiToMR@qT`vC7wR?5Hy0g`-inx0g)6@xmR>vhk;Nboob6w z!sL;Jg-Z||?F5w#vw#@%I3!h10_!L|UtmUwsht|)8RoLn)=6ZJ6@{AMrMBiKSqzr& z64_8&dX&KgUDqwwRkjv(k=))(cNkWV)<)rDkt8M6NZs;>z`-T9?HR>I;Xe-f7E#}5 zuv}Z}_m>y8wr-O&OzHLsN{(1<#LJLQ2*5eUE62vQO1r1OW9Tpxr93OH-(6QH(Yf&r@p~9;XG7)r1R)H7z*P$&Z!Jq0&M{G%#(V8MPtvq#?60o1 zQ(esWtBZfF%&RG^zC0Kos$AtrIN^|#i@7j1HPg}Rtt~C3ry9q7|UrQd9cW*mK zBvW~~^CWwj3qRSz72|1O2@gFt#U29D^@;UeN_{s~YvDDe#hj+v?qfBeirym}fPBTX z=H*FQhTX*DlaZ;7XXSW*?U75REX!eP*0akc)!RIiMf<{>%-YSA*vpSux-#`7*l4oa@lyzT@OoDQsblfw3IZ>+A7b$=zbw05v+vPB$mkeh%J znO%Q~wn~Hd@sa=o3jYAY>2%h%!t&PH*-6`Ue{|m~5xclKP&W*f+{Xu{Xn1Do!Vd`z zAI7#8F+&45ieI+FC}n0Xj3kBg$<7BOuNkc7=I<;208h}kq^yft*NcP3E^jnTg@BbH z+|2+^dSLm7HN$w8^4@D^vrC(;JgTsY!sv&D86lD~$lQfHWG5Sfk}`VcyX|9B@a%4~ zYw=jgVI%@Lk`|EpgC}TFunw8X-O%?OSDpCFRiDI{vFf%~64_|>@yIQwc=9A@;gzT&n(^f=1U_=RTs%;!oJXuVi4cx94DGs|Kw76=*<{m~zsLHe^uvIL#Z&4IjeV z{)6G5isB7Ll4}|5FXXu*MPY6Gpy3?F2-}>N*aNN^*Kb6JP}8+tI>z?;>{)1E zYt!uH7Sb$tj%S!iOO)Hf#U2nd0fiuf8ANiaG^Fgl;^gF&Sy1eqodQz;I6$BnhSe0BMVfVMuMh%&mJIj!ZMSEw{|v0GAt` zi#Xg$p$CSpo5V9icj4)8V70tS7kq9_qlMYW%*9h25F5A4xB^Xc{t}l^zLNON)7vXT zsVtGk4ihBp+}|oQ5TFu9IpF5JoMslEwdAEHmc4ub0A7Aaxre6ZhLu{M61MB}{=W0n zY@pJb!Z~kP#!9Zy9lE|iL?oY(o~_s3rjJSR?d(%a9n)-xW=+u|6&|=K4nIm=5(|6Z z4M_JAh`go@v*ZIFB2IbZ9=(X`TvgTFcWo(wip>Lj=s_77;eb4pI3D2ec^R&mNkt~n z^D>_$u8r5R@Pv~^58G!FOzRwA!L$}605j!|_^cSbGpFm*_?JbMV@5!++RX7Qd2PC6 z&Irax$0G-!1Q0QI!nc|%dXTu(uEEusK^43$8*PX&+Ph9LOM3R?amhA3F}eI<;#Ure zBAE+rB!A0Ey^s0nS4Wk}HoNWU#Gf=&v^?JLMev7){7I+BHj}E}OJy*R`!?vr@?C;o z7)awA{{VRL5M7C745fC327AX#9T&wqwfu{3eS3X;+I5B8Aqh)}S!dZRalL*`z&m7xV<^;1eNT7PPa2D6P7mRKEP}h3S zup*k?;!6t{?UF}W=e&wU3mk0Nm+d2ARv@~(L={nyv?iq5T@H$T+ezw2rg)P)Ka%3qK(4D+0v~l1N1zxn*&6cDuVzi8)NWr&vW{uq) z-6VYc%;BVSmSPJK#1{dEeb$+(X%oe#YFd1@(?w`*?g+JlD1_58Aq(U&MP0V5v|uw8 zm53Y)WrfYHwzH=_?YrFCo0SqmoR=P*yW@`IitVL`qgI=hNZ!}{jH=bC8K}kD=b=I3 z3+eAIwL6)hw7j2fnnJej`Br{2@1EWIb>gsfpAWo#C7Mf%SsU%L8RL+|W6QP}fDb|m z;Afv)gNvGrT-j>&x}k&YdVE&~NUS7y(?(gF5$nfDxGOqoVxpi7SJh#{MJ(@VV(2Qo*t##k| zali!s0CybLfxo@d6`|H_8|+fZ&bKgp#Y-_iI*j_CT=yMnzln8AYkdwT7l|&PdoPyz zK64-epKdw(+cuN_*I+BsNkTfS+wc3%8k3z_^C?>W7TXYh1;^|rtCGz}} z<}3=4=U_X0q4KCC=Q%kw=e#?eMOjMHvy1JoP1e4DfK{yzX5rKE(C55MExxCzSxWof z@LP!P<8|2R{%`;~gin|&h3Uy&IKZqZ?4EUuExN?=vb1V)*o=l?bKLx=jyfKh<66?f z-%S@5`ks@i+uoaIM9rhAhDBDAL${3WR*FNrI2b$(V&&An9MUcbOAGBbW`|S!TGLZiYy5@x~cX%m#2( zJx2f@4l9(?^=sWPz#6}bEvMV8>bj}2n(JT;h)~MLG633Hk3T>_1OhgxjIT~`qe1*U zuHVe(DJZ7(v{x*fwy#8<;!#fRo_SrSiQw3^n_KNIq`0#2WDVxSV|Jo6xQl2dMn*)P zPdsBCvdik<@TI&p{{RU0*uQ=KqvhlKM|)>~UEW@H6(@&ub<{OECi@+guw0V1c8dZ9Q;tEWYWSGVRnPu6vt-D^&>)od+e#Lpm}-dw3ZRD*8Qlic_1(xlL@ zFXhll9hl1!I`k@F$Q9D|Y29D~Jb&7oRqmP)rxaD+%^NiD9Vf<+`S`{=;* zW5-Ww^X+e2)%-bnG`Iu0MTJ|Jn|n$QcC&8>B=eKkIqGW~O=`LwRU^q~eTy3YgLSUm zS-pX_L2eu5ov;}02N=QQ>w(&=YkqZ}hkBZ|`dw?6u$bY7+iUE*UTO@n+N5Sg5;0(*M5zuloM$XCkaz@B;d|RH7WVlxdvNP5#1b+} z^2qNTj~VA_Jd`~4rB4k_*Y=Tmvz}BGX6nADCE(MjeWOpiitbpH&lR8A5n`3$c3BP) zq>aMiNzT$Za1L@Y+v(ad*0sG_eP2<&y||6i(kYpeEvTEE3`VF4{p0pE$M{pmu=r2I zhTl@t=6FQTQKLuS<^WC(S1BGx0KH$GqYg`-mz!zVB^diNmJ7m$}Rq- z;+wN?b9<{^LlnDXRMX%i42zQ6MmwG`z^*u`8~Z_Z9TQyD*e`?^gd=^f=j78fqnclqZvPY^Ja<=jJc9uhndnvr|S(g^GA1O{jFzo_`H_A5q8{IV9Nd z%r|=7)OHp&)6aRQNo^de)5aw>sVYh4ZDs+Ax0o=b;K-npfKOt4EvadGpivF9lFMrp zUVY=ZiZg%$oB~KzP23g9kPI&@-Zbc9BHN1Vr|H*k%X6llGR-N+*Z%+|{{T5Zkw1y` zyMG61x;Ck*UrzB}+N4oi+gnE4cA}h>X_bk_21ZnO!6P>`k*GuQ3&b`v2&J|1VYFL_ zRH;Tp5`gK>1AV3NazE9PjFC-Mwi^21YCZ_n?{D<&20L4r8ar9>3mE`0k3XH;XHvUa zh`<|iL-D>WxxLmkEp|kn4IbY9TYH$Iz11Lq-$ZTEIV&z694m~Y5XMfqjIDZ@+$`}F zB}$V?yK4Gbr++=R>SNCuKJ~BZ=6WK+bgzTHWzL)~99x^BAd)DYkbKDImE=2o(X|=d z=gZ`P!-MCVt@qn}d8G@DZ%>QtHquXNb8iALX^dy(%${Pa`H2}&M@Aqv;JdP}wfH<) zplNVRr|I_+SjR2IGhE%Foh{);-5bV^9DokscPp?!O1M^bO*6vM>b^KSIqQ{aWDN*qfvg zIEvxX7nRE% zXgYoD*D&5WX%}Euxl*yNbA|7Zu4@+h@s{f97{q^OhC-{~a^M{Pro5X)*7XxT?c|GZ zdXYvNTX!mrv}Y`U3~`Qe*p9tM!rWasxw*BO#0?zsMI%Z)q7+@S;R(pkkeCHQ`7m%8 zZn)G^ZSt$Gmv5$*)6?!as$r`wQn#M>{0_@Rw~EKd_WHua>uq?gysTu1@&=d1y z_huyZHR*y$ZP!_z8K8z3Y?b8?7&!yYCk)aeuYOpC?nvaBo>Q! z@h6!mnlmdPL~)I+oq&=L-_9@%Y3p7mv%B#Av2U&EceB`E$>hS?dZfXA%OsB8VDk~m zpDelCw+L_;5xTaiQOc4{S)*zc=NEY#$B3_?*1RmRwZFZMq_3R#8u7BQ4ZP=lPq%tY>MKN8Ul~y+%(U zWOQY?$WW-^QE4yh?mmku#M7kZ3aN6-(4RM-Wu7@T76|S8t1&yUXΠ=^0&$a#(dN zNzOUR^i2})#F~zn`kbC3)Ge+g@}L(c!qa4c^AOLImIuunMtL%E_qpQi{3qgVQb|_Q z1&Z3)m`!t#?1dfGimGMUhKbY#1e1(#b6S2Gwx3Y&=9hJ)c!N-!-Kf)yV^X++J8QV@ z42m{Jh&BNjR{O-|NNj_jdZ+}LU9+e;c3UKzN8Yg=Ct3nOte zTs(3J)n~hDBo5Bl##vdoP`FU|$4a4RWo2!u+1tr%ky)+k#U%3#WCk16v-0}nU>tj9 zvNao$?tG5y)&12xn5o5j)H*jhsRE!hmw zT-`_H${4AU(+To(yUKhQ^2t)943Za<6@`qTrMF!d;9>QeJhD=u89Q$O05W)>@cosA z*NAVSw~I`U?V^?_<&}~LCxt#tYy$ECJPuT36N<6oPY`J~`e?JU(ygO=xU~I3)Y`~T z+R)1EfQCgQ{agjC#gRwh``sQ}D6ghS8%yUjmzw5m3R!oDy`W@*IH zp&GHPPjt8Keb?Y>o8{%`bsijsOaA}~Sn9UY#c8SDz_$_@ViG_L421~XfB_r=IqrJa zMXs&mO-AZ_W!DlXw_qeNLlYqfJqb_KAdkco$@qS66%PjKc2-srF_Ow#h4U@~dC^45 zr(%FlNe~U#2L$ptHf=m-d8WKJR@z;RLSeaNns-K#@>P^B(#+tl3V>TBR~f*sD=VXo zRi`Xez0GX8@42QXRHGE2?bj1pE!Dm3K_z7oi2Sh}iG^XahsfFi z=aaz3Wv7HZLw})b-Zt0ui@6o_%|)Zr=DPD91`*2|ESONaQ6<1C0&F~BWtDRDt35DW z>Nm0KcM)rzd-<^~gvL)M z4SR2OI?DF4hJXQ&yp6Xj^AbkgykLsxz9A_80E7!#1QpwEaIMdA(zxq#x|UAe6brI#!xw zvldr6To=&X%?Fn{$2XanOKxle6lZA}a$$8g&l7pA zxH^M6ki%*aS#ZBM${P&0+J>Jmi@bMhE}x=BZKp$|Bxz}N9lNuv7bs+oAd)i1-dw>{ zwgJvKA2RK9%xP4OEJCYRJl5&?emeY&H4xazd3k$ul1`xI;vnsee+mPRPvAIF zzyzMZQNN4B`n8SCfkL*HQYxl*E0R=UkK>-8li#SWTFXbYZxjs<>ra_4b2>hsZ5Ent zK3MJKM*a3z1!b3oVn|GYHnuNX={C@OJht&I?ZcqdBa3{j{{Xv<$lHM&P^utiz{`>W z$IJ^I&ZDVLgsDc)wZ8uVnU+4KJY8tlj9go{HQoBJEi84KGDWEAmWJ%4QUG0yBN^R- zH)lOD?fq)a_N5k;IR3_t)ZS_{sFFE8L^5C?P)6yJ9CZW{8ZHih zm*ZTVz8*dt@QwZT&GEUop4}`W{no&$%nM_aoSwB`Q`Gfs14QuEhLbc9PpHZxcAh=z z3k})FZcSx~ljc_4{+}aSP=cQ;S6lu_?QgW0FMPOWlTnt~{{XIzZBFRXBo=s z??bM1;mY||r#XA#NIYkwYLZwyjV_lZrHqlivK5d`Kb4ed=5WXF9F7kd&TFRd%FU-K zj%z!R0)GxDeA{8NhFd@ z?K@WS4x@W}Zzh*-Y?k2)%QS^nUB$=Ck=t)Qaky7Qqe{Iu8GYw7t5Tke@hIx>$}~R_ z86zl?L;~#Biq_fY!#xBqxnZ9{K0_s$jHZ2 zXT)-9%cn_h@mk_^*c#ex(gtTp&?vzhi^zay13gF?HI;LzYT8ztaBjR~I?V)v0Tq^^ z1=}lw^C>}Ut&!+5MZ?3qk=Ov?PX`&rJ5dqox@`Be;H*k;r>i$bQSMGFooLfroo!t;Esr&aQj*`pw|WJ& zi@dj&_SbOB9>5b}S)YF92Ld~G#sT}dILd>gtH*8N?Q_E36&@hgp}BTQ?B2=0c6Us6 ziK6qsATwhoJTmc?+CbyATc@+uZ8L2Y(7*wfR+(e++vSfSv#R~+mn7r`Vt4~1u8+rl z60-4LwXDzKtzv82#I=@BI@Sh~J)TfSL+5kLK-&P`t;-XD5S*f>)%uuWqc3K0cUJoL zqpSFm%Sw3V5MIw`a{}#)E4_ea3_^^I@tzKN#w$+8z?zP;a(qwYR9JL(xMMUBPZ~0e zoVNN7TUw1q^5apOJNp-q+O95~3AU00d2u^=XF1-C zp|O?gblVGSJ$6s{OyRmWB1=gv?4?V1Ad-1})z6m`vK%eHR&C9*0ZG~$mNX+8j-{2q z6RpphDl2l2guE@K_-|f^TYD?psV>Ze!D<_y22ZZ@#Op}a~8;!sWki#ck)uPuSg254@x)&($I4Z$q`>IJOa0cw0 zV3EdfNHr}ryZt-F(D+vGQ?Zv;nG45m@Xo6u?JbbTGNfTo@nb4SQHtoNI(1;B2mOD; z7|s%e++Lq?r1siekVAE?>5}SK_L1dpUfvm{a0@U%(W;O+Bb7nx)RX6zRscNv> z+3D?PX>!)F+d_g!vK@w44udBEVMky&HP-2#GSYQj2m4K7`#r$56SNS^kgc>5y!w70 zN?9kd@fM3b)5#RD%^O8?9CGd|3XhcIkV=v7^9)fsDMy-XPUaG$8Ob?45z4^|*jU}& z!!D^IvRiv-rco>t3#lIrg*FG<``BCV5=4!+cM2}){{R#n>Sb|1@7tO z{{XMdz2Y0o>t6|YmittkX|cy3GmSQOX=6Jg3eil@4?lG6z{$$t@&WT*dsA!g2l!4% zudeUx?jyZu?ll<4+Rn*QNO#=X89fFD6?2>nby4Y1+*(_Bdh^3KSF2^HrTl3MTPzcW zK%_Ff$VoYJeOnAe0#&B*wu7s9o@*Ad@TR9^wvgSjjrMqX<#^Z<1pNtDEPCaE!O5RH#wC1<$_iei+t9=%U ze2!XlD#i{lmoApM=NBFz@piWz>&b07T~^h@+9S$UV7ym~%m#NB{{ZV6ER1{83CvTu> z^IY1z5*Y36jg$s!sUd4ANmRsOvn*2NZ^qUoa!6&*8+|^4JVmKoSpNWM#iTWgSWJc~ z1acse#E?eM6O@eaRPy3z$SOb?0FM$el%0}0B~ma~Ws5%)1L7+?hP=L-=K5J?mJ2xM zx3#&I+R7_3?S|PIi^-9`W@YmVws-kW750Ox-@|KnZo0ziFhG*)FDIU*ZbXp@4Y@sj zLv#M4D}Vs&7&feYS>cOFF4FeiYlgj=LobmW!gVI%Nz?axK~F8N2@VKgN|DK2J6TJ% z@b-hF_*MxoHLXT@jC!5aF-wRdlMgM!NQ_QHr$7mAhd5S>)EoC^tQ4!le*?M7czaIP z^?w&!wwrOOTUkYUD3WG(+$2x4^Cz4OWb$y`M&JhB%TMsmiK<Y8n3+D5HI8;#0fD{4G za!EIQIq?U=@c5TZI(LIU$8z&|C~TsMWRSQhsgmGevo9p$j@YV(U5S)kSi$mJqH7}BMab;YW*QZ2eFfxbDr;DQKlL9aQpywa?^5v=%IMewGiFJiH{fZRNG zs>9FTp`?F2lbHWuEYZVnyzYg5&kRl@`$7~`u>mX)0!OjqjuQS|ZvOyAv$4IswQDPLAIlS{ zl4gu$T0&ik<#%=jDmsOpKQ32^?}t$4I|*V4fb$JBop(KjO_#fswhq4`7hgE$HrPZ(65dpd=0BD>Tc0M{02MBg364isDs}-KwaMGGXJc?#`OeW(S!ml**6uBI`#ad@x3RX8))+X$WO`NW9b8UD-@=ji~Yb3aY%$m^>j&sJSY?tae%=>!)B1-X5pCS`Jx1Q{*zva*uO zxjd;Onx&|CFT)y*+?RTWg=2MdCO6GIA>FV58Dq}?0r*!Z;@uxl(`WOv`xJs{WH%E@ z9C`Cxq^McjsXJzVr>kbVp$9i;nN+FBuFikPx<#e$h(EP7`zfHcns>F9=LjR3UXh6HJ#K* zpo@ueNXF>UV2*o__JFMUoD=L4YMfiPhoRZryT{@Qqr8D*x3p1os@P<}kd+d7k%-t1 z`+x-JD~#8h>9=rdJ{z*tZ8cqAR*r2^^wa&cH_aI^G^EFg7!SIf4p{Nm2Cbx;RlbR- z_-5xyxVVQ<5W4>WXULN%XxzW=OG<>~ft{sz&KXZ5rq#83$UR-ZTQQ396HB?bxSeg0_pEa@tN^n>OuvzU0OWoA6UR<^40=t^ ziabjV%o>|`ayxOBfkWyFVpn_&uu|CV(MEHUaa8QDHSZQklIsa&X{Xr8v#Ulw);>W| zyNnN%=RJ5FXCqZwa*nan*SLGCT({S;hxScA{#3Yv%>A0&r0W)|^NW$V0kM3c=7L#Q zH<5KB*LJQl3Ssp_g#*eUqVtC_UHG49Rfks6`;%jH{{{V*X zY_zLO%~xBx)Dp{2ntv|laU(*qW!_-lAXR+iaJ*$l%(=MTSm=vuSGj{d#G1|9XqQhU zRxdW?XxjoppgRWX>c2sg*91RJ(!a5_%_UM}J?-7vgEQrVsPfK880f>N0EPsdfrxc| zKUva$;T0O9S&dmE)E4$w5-8F|^PyC4lqkm5L(mX9fz3uWh-~$EH5a-!t7>Cqwz0&l z{{XyF$9D=a0P4fI>P1|z^yZ~nQc2(N{*{7w`jn=rEh)I`>$mEgHZCr0*Twe#01pPM zcOBcGJV_O-O%q}*z(4Ox0s?d@4sdaTrl8UM8>;I%HkGZnh$D*P;?_HrQDQz_=oqed z@;UUu^sW67ZL}5CwRG@arUm8Xnw#CuY?4U#D-v0n zw~2KtYrAC@_g1j!my?JBDO@8*l#`IX2pD2PH~{m`oLbRb##G??8sG4Sc$(i=k5ILf zM@b-)d|8%42eBJE5!aug1OhMkGzmOm;?`#3IaGn~=1+>|FQV~d>c-PX)iq1#{FPxP z#Bx}(NX5p*ONmgo-5D#KZt2+UY5xEY^|Nh#e)_D&;^3;ZBlm7tGiS^qMjRH&A&>E6 zJZF})C+ym!tp5P3krxVY;cndu{wKN~BGqp-GaxY9T|sSVp}9LHR(JeZ0r}Q%hxGdm zD)Lz4w~WgqVPJLH34xW;NY3?)mczvn%ZWbkLzWHec76@;<-N2PpIlwdSl*0b#reR z6W&`+lgDuy`E3vH5fBzen&cg*gAAbVE1Ku+A-KD_jH?wMVvjYlLY$6${+(;y^p6VZ zmXD?C3ktlNqa$6$(Z&)+5X|9-3Nk}Ga&mA-Cj%TjG3&bCh2p(_=S+&_EUWm)ptVc_-y&?4gNtpy6#9-vth3DX+QP@v|xT&iv{&w;D{6+1+X@ z1FS6#vw61#flw0}Jh9+<*H3Y(FN6LcX*$L8i)byRNEY7C7X=x2CIZhgGYkeBNH4VH zfwYz2eDHoH+02#_vs>On(skBK!aT`uO} z+B|SadArT|)wr0kb;4!aa8?ed_kb0~SV&=4Ej^vi?0q!{8$0j$`Xi;X)i3-*Kah`V zY_2rBO+g+=8C)#pUzLzK2Z+b<00}*5m-;21mvd=-_*Iu^%WTX)la?TRak7 z$EZg=k@M0!h+%}s42b1XZYE+Oi+@pxABJ25y-ACl2XEs)6(zrhnpx3^l0JO3 z=*{eT1F_3@#bIdPEYf@%rfPS#mQQq(7LY=>1V5Ys!j*G?2p@R{aG(&x3gxvspA%mA zX7cuU!ld@rQ^=+m5X&9ID2cbLlec=xKfEy++5@+jI(TFL6B`-h(zUHAH4$$N5Zg~1 zsW^rNavYJ~IdO>Fi4Jf`*)7Fr)}%_5=d2dRon7yIOR4HBsc1TunLecVP+8CS7B`do zKG`J9s*-t3R4b7fZIcxM{Mf*Y#8x+#x{kkLd8qhuJBPZA>VIV09MZ`5ax8Bwamd^8 zHMU0|EKGj#L~CyE;nt&}#tyl6VX0hP+Rg_17}`%cnH}AwAhVF!!ESI)FbNe5KMK50 zu6Sa`<4wQQ?Y1ky1VI@a?CjGq-7hVYXORj36_;rwkSbL~eFam5T8xa?&7qD;?b-vW0qqSw?XztCSmgyK@edk2vuSLI|;92V=bqJ&bu|N;ji?j zwbC^wi5`7F%$n!y{6m&a>vL|PK&`hMcBlfmB=EMo;9XBbO<`>A?c$!vJkbP1TA;jX z50xolAUR>5mkcFfaj{8AG|P39A(=^tV9SuL-vtzu=9_kv?KWu-m`^ z81go2;eYr;d|E8p`h7Oe^40FGt|E@Xm|id%H`gg5Cir zYe=JE9HK*?^oM+8$VN*Xxg?TFG?Zs9R_(HV8ne3ln{9Tx?g~p(x*i+<013y5Kj9z# z!T#2p`#a0>ysfLdXZLsGcHY>|F~?3Tv9*Iu@io1yc9zejco#!qJ>|vQ5chJBySD^C zG=yPB+?5T-RZ8VY!_O3bi|v2egUBu;4fdG1Vl#j@Wbl8^4Q87ieQi@uYdut3yuM=F z7^Dc&V;KvK7RP?LuVWR2!ObUzoN3DK-CK8~m6ncnx{G(U?`CHjmiVt!7Lh5_q+vRy00`4}t zU?>Tf6wNmvYF~@_pQeLgiKZ>!;pue! zUMUPy{l3vzgT;So9BFZIsSrSshhRwZpFIeTRTP?n&a?7}%)CBq*zxGjL$8drwy>_oy{4^_AeBybClu-uU0 z!bdX=+e(F3oD7Vdu0oYL>aT9B=g<>R({*h^>rYENyEx&FF(h-~Tq?-S91P^H4%{=M z?KtFBlIY)Rmp3!mY8JLPR`+o$-Kvfu!K?c}iSEmuW`>N`sqZfvh~>j05j z+=l=_?5L`{{`TgHRCOe%_2-$n@N}Lr({#%it*xNa@3l+Ii`(_G4RAhS!BL8n8GVN= z*!zm4^hd4YohtK4)t5@Lmf}fmd^2HYmv;C@R*vMbkOJczM8sf|oD7b%N?gsixb0wC0UtK{nUo`QMCfgcHQKRx%VgzN*;;n|y16TeMKeB2Uw-MXj+&I5`gowm8kKWn3 zMo#7k0JdZVXJ{%w>?{ilTYWE6Rk*lOcRF3(O(Y8nlwUQ7AUkAka7Ib#>N(-WVyRHK zGc~78$yp+M-3P??t}QhS`-yF@Ea$d$hHJ>e$jGZ7$>s!;05{xHtOIVzWi`F<(&JRM zw2}Nx7ND1j3J*2zZ)O`xhHo}GOC)j(1CfusKmZPT9Y@7bMDc3YHy2QUX&F@VUn|rEfKcoHUEbY?{v7OqNOQAdDedgT|R$Gnb4rCV2BPzmjp9 zgRP4D@CT|YjSX{#eieBF(yGGWw*KKoiWR{alG(RkC#7t7&;vmR2 z1qq$x77gdI>$<$w8lQ+%M`=8oOmiE7cXDUP+S=TCZf=aFequ;(lXPkdeb#SB(==@| z>c(Zd(xTkjeXW%9f1^piV#US-({PTV%dAvf3E*`)C}z zj$!h|sx$XlqmUjMN~s(Y4|HUtlSFN~=J);q)Ti-0);HSLiFbLCCc`z+Nghjuw=yvZ zM&m1OU>Fd<=b@@vM}h36xti6rjTZXtF4DO_DzBH{Vrmj5xsW zUB;i``+E-&VOOKo=rt)k)zyZEIE1)gioVIC3RcNoAS`XWP4Z`M?EV1fB>z3JhUs z-Wt?~oolGu#}fH^Nxc_Oro6Woj`rK09r6PkDNnq3ag9wukl&Dh*a+9++*eD~rp|vZdyW2bh88b`ourDo%~Ku>`0? zB9WY8tJr87#*t;KUfODdQP(w1C>iY18K;tX?uzdKl*EmRB9nSQ42-2%5^7%(>v4G9 zZl=@cwT?Txw4PWl{=;NrWJUlNE+n7toHK0zXM#`5u_g2xo`8)GGbRo!=5vC}mV?c=FSsPB7Ntf!5nX*V)F5};6B6tPy^agJHrKQU2) zx|FRZlP!jysLQA5`mMUkuOG@?BDIAV8<+_*83V50GXaiGa;e^Yy;h=^yBnK{VW_37 zmKQO=x`g)tTV2eWmz?1faVV#B*c;t*<{3)0xGKt3r2W_V6+Ajr-A45F z1h@YHiA~n2Z=mV=g2{b%X9c`6T?>U``+?e$V8@qV6aF`%QD7e1(WCV z6htKl0|imLadrGrrkl$tZ{p8%}xdbnBF#4ACOX<}8lR+k)Xv1B7(}epRLMMdqgRH-_}9 z4N+v2uBCTlVWd28OaggGq7p-_SdIX|mIa-T6rfhpI<)>8PYngN)D4ZCw>oTg`;>Xc zXJH(wH(-$&JTV6&Zg6*1OKpElk4w1GH5I$K(X`uGqP(?|!U!XtSDmC%Jh?%IhVr>q zE1#J3!&kVLyBak1v59H$^H5z#K^4}&Z5+|rt)$Xe%z-7ENcX8_1qg~ZeZ;aI>wq{l zQds;|;MpVbED>rqmaxjvIn`{Yjz|cLX!DbC2oKs$&z$7?9E$4njYmwiw9@r8w$&w! zt%PeTTgK|%TiJpXETxMdvH`bm1d)l58-xb^0Sle3Z zIzE)f)=PQx$d=mOR&18@f{BhCp^V557=~@YgY!~qTC{e$ggUmRqU#m|Pn!P#?8WU> zmA=-_RhhiOwB}F=5? zz2Ar;w$&{4H?h6dZ-UI}s60Y7m6|4xV2xyCkAulvXCavws4cnSUlD2_*_w@=zk%(e zvbZu_TrK7HBb2xS!Ndo4?oZ904gm@kMipHgDs!o5_ZqLSv*y>a%4mAGiJL*Pl6f?} zJ_`sfpp4$!Tq@jo#y5rbL!ujR(Wc8_WaVUai&qkXjiY-r!t7 zs~COz3EcSu`+M3stFfnJj7x$#P?Cu<07Gs z@*BNQOIbAOw9BCl%E1h}bO_B9&pV$kVxmRBcNkHE7pN>q)=+Txm5r54?Cw`>OT|~V z@JP^3Z}gaDYqc6|(g~#rZ!A&C5DHMX=8rs#d5otABbe79lT`6-o{tJJ)2_9Mk_|O&-9`+Y#F%C6Sz+>Ik)IE!>(^&p(Hx zzwqURbKHw*p|~(dBMooSjTN$K=KQyhSq?TzO#XPxEBqiAGQhrhQKp0S}Ijd5Vy+|#Qq$AI0 zIaz)`*T}15FNu76r>(P3Xu5ndEB^q;yFk(sG8kv5{S6-zY+4Jw0`eVR4Jg|An_lhY zWb+eaC|J>4lY-f8xC3Y>B|-FwEwrl}lJ`T&)2y`lCzW9=f;5k3J7dA&bAUeqUTnhm z#eN@}{{X~VQ(4)?acwq{cx;|SDorSi?v6>%3?q*#zlD7K!IYW9xl~H5pK#=jCem%a zHFo_HGdyQu<7LsLdG!X?G?>w6xW$ly77Hw@L2-g{<)OwyA2E32HPlD0>sM3R+Ue)) zw%3{?PirjJB_k4~Eai~1XK&93K`87oh9()b9Zyrbf#tZhXp>L8vYD3DB$70rX$Z

    v~6rmF!~@$1+8jtst>b)^Yus;uXxJnQ+$&%j2UF$sp>vUWKO*I&-)r${uy~Wg*7}^>B=MBHSQZlCl`P1!^hMgp2HrxN9w^peg628)Z?n||v&?O+V2vS3 zW0Eb!z|8pjQ@Acv9j%d?w$|cVyr;mK@IQO=rv00? zKLLgaBUxG$)VhDcGmKqIjy-?iT(j{{#5dP^oSJ%GY8H03a?QQ;%ONzu5<4l?-*cfr zBw}}hF||eyCcODHeO)Go-p4_keT}uFG*T~g;_W)(WP8Gsl`e4IS&Qvx`mFrroDi-6JL2sE+>uT zK=Mu%um-?(o2haGo>f631RZ@lL)0zT#U3Tqq=7XpZ$Q??)tnG4X>BAD#~T1uh-{qm z-118jNvGl;3)(#G zIiQ2eyCvsc$g@WzdwyJQ2mYFS94{HhE!Ik0ugmdz9Mh7DU0Lf##=dy-i|NjK?h~?) z%W3{~&+6VImsoX??`{0J+#*cDlGX=24uG?{=N(7^juZmJnQsl<-fA{co9nGoOQb;V zU6JG3z#YuI=aH7`M{|na*DNfwi#fClmz&C$Q8zZi%^K=RkvI%ga^HIgBpkAmN#VDI zpS5w6c~af>4`otRJ*4E7_FZ53e9kjc@a)$5*D~r!1g_8snYTs>RVWT4 zz$5r(IUp{3TdxdXU+Wr;;yulTDLY*&y}YutqwQgH8@pfu9i6-K7=HBd6rfuApNMp= z9_|BdvO3!5T8(X@MN5D}9I@Z><)S|_@B8^6W18u&rPMX<=;D7#@kt*+=C%d%8UMv2InAg+h#_xN^xmvaM}78Hs>kz73!WK)~zq3)UWlIZ8G9*F7;k0 zn|x7*m6KpXkHYX2ZOJ46ob9KK^cflH@~JuG?PcsZ!wi%usNKIeyZ-=z z_b$Vhti#iEol$%*d3ZGWt?o2^J2R}H!z5%wyXI4ZK>+0Mrld7^7p_BR>}UYko; z<$`(c2p)UxR{^`W&BTm=2bgjESdeOP>AF4jf_R3?(&{COTTi!16fHV4H<|J?sAGV3 z{OU8eECD!ezMJ9euL;e2X(i11CG4MSyt%%+f<3axu>7UNC?5WUkedKHIwkQ)+j%ji*A9%XxcbmaxwSpPH?1 z$!cRs0!Wg!+=6)v>)xrpuWc@!0)4VsV3tdUy#qmkQQ?!y;#5fhMa)E*ODlZ59tj?O zEWZy%P3-NK7)Vj#4C;y)MBm1WxqbP<5u}DBE4I z2*^BSWRcmFQ;#gYlX8xl`R)EjSc&`TOMmPB3DQ50^~JxqvpO}xNv0`#h-0$zXVef* zA}?=4ESY+(W@fLR8Ch-oRqTXEHYqtvVz<$h9MT%xfqbVSNwW6`yLv9i) z7eaOnHZI#++eP6OgIJSLHuvv)X!G0Iw8cE>VdQK>hG`?<5&>s81OTH#ZBD>z*AraH zCA(Y2X?t@E>5B`=1SUB=-#2fYARbRE#@6|H+k@((2+2uZ4Dft+4Xd3;LRHf(rCIK# zlJ*&|k~W^(PMMXY-lVZ@=W{n9TaQhj6==5?J`}&wto0j7Y&9FyYgLleF>>YZc2vSjF>>Gj0m{LpHi4(N z_Lx`-tF-Z@qeVTsuw0l~NGSV9B<=(d2qWb?-`gG~w9r#pwY+ca`+3dHrk@bD4;(UY z3S*W?7>92)aJVh7vXWWA7%g$2xt~v(_rxowG-(`?*`!LulQEFUfU|jOv6lIAal3a= zD}Mg~OuW$NGMzKQuclu&onZbX@{Fj36LfLq)GT3%ArxVE^clePrDtkzR`quL-H$en zE>C&AUG!ToPOQN3r-UT4i%pKhUR(RwqmIEW{>s)~WHBLa#pIBKjj5i4C3+kK&*?fR zh%~KHbz!C?tD;J`w=tW@S1T0G7z4QH=7K@MVsV^cjOxwdtyafgOWzmV!Fwg0%GgU4 z%lV2_TC~8H;9vr$-HQ{>N!z>D?QB)d{{RQ9h9>f&2GV8o#@AxWx&gpc$<7-D9AGv# zS%q9RCqgq^t!wk$U;6x6uOe>t7Cm-jsd&oN#)8uN)_Xao^4O)IkL@ewNg&U1nN7Q! z&0V071L$aap1)^9a?I9WW%RaMN9hUqK0=r-dAjJ9pf-jAqh$sM+f zW2CmPWcG8xV;cF9e(*6Qw%nB{n}Hy8T!tXj{{Zln>DTt}1TrP8pGAO{iUJw!R_LG^w820dXWYH#XK6 zPR$d=G)T8{qbT{9Cq7nLfDYmL$&{oo%wWzQ}GY~ynfPeX0tjV{N+x=y#CG{GCnv%8Jr3e!ql#9L{} z59crk=PDO=+~8-MvWRJ#wwX1=)>g7>khIZi7crzl+9rZRS)X86lXUpN+q=qKfxH#l zm&X>(eQls zAZD_BN#UvdH4TQFXRXI^rNbg$L1}nA=^)=EP_#|7u2Nq)*sjr$8v)gct##tPdAvt= zYc{zpmF!STsTi{ehwitQq%mMh{_}qFxm~JRNG3fpX>`jiUTq^xvwNF+eJ=XlR@ZdW zODovOBFYd-ZeA1sNn_4Udzf!&Zdv~TUB4rmq|>P5Zi$*Uc5;2ARK7aKn-rRS_VL24 zZ7$VAHI#~~H?a|`fTBFAsgbbC2@BUxsra7vPtxMlt)Ulp>KP#Z%#jQ(ut_r}*OYmT zc5M5}g4rjvb5}kd)wGWRYg)FwtF_Pe+;+DR$89TJEE0LjRd>9Ha+O#YcxE^s#1Tto z&Ej1m4P#nl+OX?)p`9{{{#2`R6P8?j%s$YqjNt5Vn0M>BH#?a8Rcd@VXT9*Lia1%| zxtU}C09NY7es8_7o<36KscpF=WbitMkE>^fbZr81?poR*4O#?@7$mO`RgCOet{1mH3#ZV-*&u_IFBJ}vQn zqoOVJ7cpuYTMYZ}U?6icZVIT(yH1=yf`$e{@AL761?Gn!IXXQ5emlf;&*_H}~N z=Q5(cqHQHeVT{EwD#LRf$jKSOVY|%>@{$^<>s~U|v}C`w)~`OrH`*mO@e2tNrioYu zk!KE2rZ6_`Rv8&M<+CsE?lp~1Rlq5A0^HlisbLGdE8N{eq)c-no=TKZbB+k!akCzs zZu)Mh(P-Bq>r=aHi@4iQU{2t~qc9&jjmHGzJC6eCJU>B+)!+gvlF}jldl8zk8?f7)9hAJ-P$P^7Bj?8KVzOc9Zu5z;7u&^w2N{jHyJB!pDa2!5+9X#MmQrN)Y7$o59up@{wmXL z@AX83&9}9S2GA=}OrzB{zIyuD)rTio1gkzC0MLT&bg zD3K({QbT#zU_i*-oMdO)g67?IJOkD37S*70Vi6?nvj4Xj;kpB5eB!>Ol5T!|KzL(MXhgFME zwU<${SBCl&QKy*zYo?jvlX`I*1-L?Tz>aZ+ZOzY8F;Y^p(RMbY2`k1gf9vrjiv0Ma z!#*aHPnL;{87?Gisa)0NrEil|p2g!_NkyPtNx32#H=l=i%YYQmK=@m8o zLt4GlHGK{=xSsuBx?6~2(}Na)qr^LKo3}BNF`g8Zn;6)ovph%QO;h_9!ncoXlU_Eq z%J$N2w=812eTdC~s(*Hik~rj%$*FZu58P_nH}+-C@Q8>b^R9$3jF{xOJ3x|E9E*|8 z?2U(moQ(DweV2=MO+nz$uOqynkwr?hqaJQy zQ>9Wr8EeD85H;;XWtHcOzSXNpPAzR@3q(=xJd1)4Lo{Mn=8d%KSlYA}n4F7M*Ky-8&nb2ZGKQrzEsu(r%LBhJ!x@PiA0 zcJErWDx~8Sy*iYWTC$aokKXgdGWdhUat&JI8zr}n3GCtvB6)<7m2}wIJP@*w9f=2R zcVBJPG|fZA+BDAtSn2P3s9X6_h~sF^`9vu<@wjA_N^IlHm*zVP*B7dID_DZ=#!Gt} zJ2|Xv;-28!+#?X_96^uV19!??jJM6d1d=ngGR{3{e$tl3y^D1zuAKpW!Q#!uNa%xFxZo}eh_VA{wqu=RQTCSgIdM(ylYiCA~ z@Dep&o6C`BFdedFm3A94yG*v<5jFVqG$%l~opk$QJ<2|w>IJ_hGrY*9GN{>ot}+P# zfrF8Ac$a=Kv%Q)-_^#~lnd8&rf;RKe-u58p1E=1jYCkh z)gY5cVW~i5Nak%p$&HyeiE$tLw83+h^BCUf95H!E{- zYZ5(zwf4(dG`Y!6FuSXiIksQv2YWCXCmhRtTze$D-bb#<%5ZuXKt*{z|H2!6=1Y$~$(Qw_3) z&&b1QOzk*Y+K!Qbd8W^!SZTMH;y0Bdx{f3QR!_F>%77+`=pXHfM^$2H}(5H zM@bssk5JX2WVyDA&MCE9k>*Ff)nq7Hi*4T{jp_*-h|gkZ9xsDVv$C4*Yw;xaOjrFf zTf~|$pc1Vn3FM9jK*&8!MXl&*BkDIcb~0LBYI>V_mlrlI62@kLq+@!5Sw+c-fglke z4YXr%qhn&t^(g5on7do@{S*|f3B z28H2837l=g3I$WqrYz}(1RU;Lp z)6?z<&e4-@?Jw)_Iv*DJLqd+${^LxRZBJQe^5C{>)yJ8H;DEdV=10axORD4-2E4z; zIxYQ|iAJ4aZZ#agmkd@*G^=%pW0b!D0yfGRDwZqUk%n&PQ3A(VyaQI$(tA@hmlH=4 zJd!2MQAC9m3KGcH;f56LWmY8M)K@cE%i-;*b9NT~(I6LbtWro7ptE1~eqhe;vK_&( z!}T13>DHP~sb!m2*iWnSON&dbv%8I+m4BNzm zZrtTD&mdj5web$8Z#IE-;rUxwg*^3d>~(vg0$Q{xj99MJ0b<9>TXSy&xKQ4apm=`V z!K1>n-8HR^t=+64)B-%`n{pu^Gof zR$)sW4^@Wt>f2EooKVco+Tx}c;-Ep4hI*{EnrwfVXm%8-Q=MS!UlTf@C@@g)#%cjRVMRF!^ zvk;f5mK(lOOhW~5$GZ|29lwISOM9hTPXzKuCYc_gEP%2$_^r(H#^-kJxJEHKCjn#g z4>%a1eW%$zn*=}EvAh>ky_7BXZLVK_4tEGC2nrBdFqh zLea;l-stahaME0xgqnDwjfJdoeVK%6nF>^WpJo_?h8QOpKHMoflC)9t^(Poxn9uRe z=ZHLArdeHR)^Wu;M{zlePV?F4LTt*&gUd!O``~$A6fw!oSc6pY3;aFRn^D#8ZQ9>W zi%`>itBK;7nf_TfyW&UKz#L?*CR4~U?S0DGYF0Luu5M?rzPD(F$wg<{ky)L^cMwTy zLy^0H*~!K$V@=bbhrzbm{G>%?YW6qs2`t2{4ZLy0+d`u5AfY2?e=nAZNfQ21Zc8_1tj76<1rg@lAtkaoyd+E!C_O{ib!f`DBJD z<8)Al9;$C+Jx1-U2^<=wQkz#v>Wu3`ZWg~?zhCQ97IxGwZl_Dxt|yKuWr5P!kt7bT zSCb(sM+cw>J8|Bzd^>Hg$**aVX>vkuF5o4gF{QFX z?h&G#CRu?*AAPweI6pG=UXQX$&i2>W=lA|cB^b_}uG(wyvCk!@r|{=h(&q6dfNpgC z(wEb2ZljVLnN?X!UBzY{clS{o}Rzmrk57e`Hy-Z~#DakgPHBSdz`_fbJX9E{^|in%XyzUtZ?g{Oh+ zAh)`XFBR&tLvUQqv;C4#`8O*1XmiSFd)B8Mb(# zons0bM=@ndUI64|X9F3o&g4rqqAWvx+oX0rYK?$O7@lPI?Sr1@t#e)}vAUbbUL4h} ztX_1o^99Asa-nUcVON>A9396T0l4ENkwyus)#}r!qK)kDy`gpZ=p^4HW!&dHQ{ep` z*WxaYmydOS50m|%#w|MC+Gi8TxJn|8H={1>md*=jkVrAK*9okQ-XR?@tReG#Ts4HPXuiijd025Kl;XOrqRQOCx1i10Of~T z=Klb&wVU5BU42EOj{f52-b>rN_7OvB5#upTUJsD6wh_<#^iU8UnZ@%fKJW7@n$FDC zH<~@-LvdqsWfi8AG&`fQj(G&KP3JHflm-NBBk@HmX zS!x=Z!nXb*jvE_DVvlqS6wE>MOS9~EP|C3rwOO(X@(&ey*F|`>iSE-;gY2?JZZ-f3 zEfi)kyN|oEnMm#!$t-HSxBRIR9ycz2PzHLQdGLO>hOIRU zP;z_idpCRU=Jhvll{L*LW%>FPuk@J4mn4^IcXCzY5XSmz?et6drHaPM^=E=nD+Ya$m?LPmtFZ&i^DWhs9PP;`Zq?6grubf1bgN@4 zgLG}7j%B!w4=9-BM&$%@I4zEF$0VFT>{vA44jZj&Qw40=;u-G#&E_))b`O9<9IErt(J#{huX za-}I-mtVxrbvbO&=h{?yY!}G-Y(vDJAW}T2AcTuZGQfF`%rf|5Jpk%X1$Me7hpOma z7}YNIEko?OzM#Tcu2xXw6M(6;zFpa3xf$h$CjzMO{MfJ9BvyajGS( z=H}RWOp%4`(t;T7AqdDDv!pG?r~RJy{v?{->f2GUv$WFWyWB6K^C12EqYz|m%_c|~ z%y|A1Y9~r@m7h~uRp8y8`k2?U>sH!FhwtX!beF$o`(s#*^F<6Y`H?b*Cv=B0(fET@y4P<10JjXt z@wAi3Ls-f@wcpMIhr!@r?mKco>!T<^UQxUJKJWM>&E4Gd8!-fD!?4}o>nU@1&?GlD z@Fruo@>NW5$f(l!f&nw zEov~L>E8zRkxM{ELsE0qS^vY(T3 z-n;Oxh3+F$K7pggv9{o2vq-tY9F+qjlflT&4l)58SiHuT7D^LMx7ga92~I9b$sP@< z=$iaeS*_ibth3oz$R|+2+(i_##>QNpcKJ+!mxWb`0uIqt>@=JGOHiLfx3k%KXpKhxYTRk%3dr57~c0x%J3}JT2Pt7F5AR>Xej!S+1;va=NmTawnv(xnZSfxUc zU8K)5NFq{Sb*ibzi=2W_9XZNN;n8V$;?nKqf3innqS&Y~#~#9gWeBgqjd|WkIX!xI z)vr#3Z&BF}5WSR6Ha!9h-9J+ECcAwmYgrxyOFL9(u49%c%!>?eAwRph3%hV6hByUK z)1~n1P4=ft53_34&@JOM5vf~MaVd#okqLHW`%S(;L4j}b79j!Z?Q|Qf9YPz4=!@!o{OfP84EWYflis_YVY`ea)K?RVJM8R0lhEtXqoo;Ijd> zKmY&+bn#ev&)t^AN}Se~)Zp!WJvs0?UAB*>>RNR{IK~Ayi*3;?%H_!D7!NGM&!b zhs<)s?#mtAbbD%UR!qy;RI_}g3;R1ue-LR9t+Y~WlWG^TNq-y-BdkTPVTm428yRSj zbqlkS6b$qJEl8|wZ?46)wb9jV?1ZLhQWjQOR$-YLxJE_8ZUg2psL2c$x3O!s8|Ks2 z<}w%%WC5FWo7scDT$+5M#hI_kMbz8<~x|UmGHX|o+P!*R4a0GgOwcSe% zQlz zD!0jjjB}D3l5z;evWrc#@esb3RJ69dSMw5iV^lxt!g8gF+HiBv@el|jaCoe#;}x+n zT&brYmg`Qpzxi1h(!@nd)ZVu1zx+4kb-ohT^!+Qxlf$W{y_CmHx3_6#oDU*gG=?vH zu1@~|x(WfDuoceho<29eD$#Y5Z>JTO)fA*Umi2?oSriGM%N|=Vnn@Tq*nbOJUxVWD zkBIe&w42*Y=ZZ)!B)O9AWdn4wor7T@{_RA4usHx^)}%iMHOOPMCG<0MXcNhlO?CH` z(YG>^Mo3J2yG9+j&eFN!YFcuPlfA9?qpl4kzsdgqkdYg^ z(nlgJ(83ji7S8WHXP^aGVCN&17BOo6ExcQM+Y7jF!~*u-GikNtT|(KKMv4|-P>COD zk(xvED;|ZmX7D$U7GJi>aiCsZBed_b0~wlMmuuk!W6WKrYcmozw<9^P@Lqko z<4w~dwz`%hYi(j+kY~%35LJLu8(_}O#6~htQNudWrmr_-T|H!>6fzf0L&Sk1@YRgg z4sW5-^sBpQUMp!8EWE-1a~=!t!lvJym@_WsWW$R_y}nBwX5+Mu*8XGuaQasj;q&P8=xxBCm=OLJP z&0EmCF&j+xuRq!@eAaiC<`{`-2tZ|0s0uzKPE&4h3EabQsx|4>zq5C-tkb8gv^akc zUR>JvGF?vo$`~hwlS{UUtd|kT6J3Rrs-y2X0yGP|ckTlQCC+noTm1)9SR}K!v(;{z z#`HlYq8nptG4e!G6`EpHh7ZU&$01HLU8Fu8ypv6|@Y%D~V$FlyCyf<*GTS*+2@V}L?%!M~PzJ5ZvkduyUF8=`Hwy%AS z4pgz0#@!O>BuJh~W&1f31!r01#(b<6C9#~G46wVQ>0UsMu;W2a6U}rv3FG) zMp-eQP917IkaBkUY!qrrQn&m$=rjCU`x@WDHk=yf8H{iy*NtaiHP><8K1EQYC9q4j zHh>9QP2>GDQP(v4`82^b)KJR=F(`&o(z`}e?>HkH9A_L7F`e10SW^E0PuAhq>@?wH zB+%P7oAy{_x)w3qO5eP4%HC_>I$`oy%az8(QGdg->i!;rUk$-=5Yx_}w}R$vCgtW5 z!}e)DXx9#@%62*Dra`YhGNT!L->>!kc^%S~dtd$w`?nc?YpQA*aMyJ!9Y)dzvbns| zWQpze`ONa%XD-=ZBvbN%BP?Wr^6^8(39C-WQnk^<5bMTS;Gc3uB#}uxygtbZZ2hVX z?%F;@Qmhjt+LRieq44tVO;1p~l07;bGh=OQ6w*L9K>+#W*|9MboUZJbX2w6|r(xku zb57Fjq5jj+G`Q|$^3kprOIs#J46a$pJg9ArxGJjb&N$<#&KfB@E{8jmm%VT6&w`Z!e_?J%eZdwTz;!QdiomM#ZviXB+eC!dp+81e1Fi5Wr=6HHI z%F(GNmDetkd&OT=n%uW5rFO6Ca{mAm^_QPlpG%X(^55L)ziffbsS2wjEG()#v{Ab| zk%n0Agq$wy32e=!rkiOVnLe8twzgK4+U^)&xVwzQG+SNSL!a;MJAh>jLEDaYKNQ&6 z-bWvWv^&iikld@>Tj~Mjm`L%JR(6d1h$FyXeCIohZr=E!*TtHrhjh;tCC#>h6|&j+ zao(bpxFDdqbFo3j;m1Y6Jc7#Jy#1V_=}O-9zYUI$tJa-0Q9<&@uC~|k8K~cBH@+v9 z>i*u|DDDzj!rpB1+jxM&%bfk_e5N4s8J~bS3$3N*lI?drqg`7`ECAZv5Dd2Ka%6}; z?tW!u2XNd7`GF;|KCk0TE58xy`pk0LMz=HDPXZas9llIh4Ydv!U~U6;*4()`+-mBc zFpp8v=aAjQEb-cwSxc&bb0X|iATxZ(tTG46r$qaDbV{4Ek5gHy>w5tu6dGA znaM40{dy9?qN?6%Dw=+qaj9KA@!8qkJ;#u-yoweZa~9llD~2zzesmy#<{H)2G;3W) zS+kDUR>&MjL3aw3ff}oCzXt zGFZs_jEo{BTNuGCgb|Q)k~;gF3r#-x?W}cYxf*iB_ZPO&TR+*hOo|eBA3B7!{c`!`F=`v7)59V>Fx;~XtlLF1B!X*{0z6K?cX55BFbkD@C^f$e z>s}+Www~(Z^F(a|I|;4gvz_rX&yw3hXB*Na+`N}~z|IL;`WKCEuXP!Xt>&1pUz=$5 z$pT92aBZN8kt2E1K)Z(B!ASW*EI=euKuc@k2(;ZvEpK(pf44&N8~fR>mAtE_g5|!@ ziRP2IF;AXB69W>F%duKsBJg`!>7F6gh0{K#tyld&O~ zZB@rmTXpWP_3sER-NlBV9;bC>E&NM$rbQxLx+)@VP3&4mYlT?L?j)A^M&J$|{{Vxm z?ln^!_mOIM7dPK$jjU}@DYrJN$nmqtBUKG|1ZWF^^28T73VG;GGK`#4-LIN4#q-4lY_N?qHD3+-0He^wP?4NSF10Pb0Y~Xp_^ec$r;_{10suqxk1{j z&4amWX(>`%yZ#@ka#4EU^M9eP=ff7d&xd?B;hWoiM%nE(C=x4cw4BH0Nfg^l1Hi(* zH*efCB(-p0Vmd90Op3YgWV~+&K9DhFI30@J4Dz*bQRBZ*TMEbviyfd$O zTl)sZZf@?-+O?#&OA<>YaIA7gB(XC5vH;tjRUy>l7+l5Si(eL9>lS(^_RW=*{+FlA z0EO+Nm7|C)qYUhF2x7wxo_x085Y-w5P`a?u*Vzsip z)2-%4`$Eerkda#?vH767sdtVcgAiok5(vm@T0e(0WU<$@dy9Xy>QF$se3Si-Gxlj# z(p|a85ZRFH=og)BX}2JnJ^lPo==lQrAw7-_28Lv=gu>KP$S7VWnOEEuck;2m;d5ncZ5yn2wwi+6t0Zl48eJnhI+o$pVIvEb+81B|h}W0#zk}`k zN3UzwZmAs7UbV5AVOb;ymT<}$LpqG+)=0p}{{URaAOa6V;Y}x1zVdYqM^BDbj(gi( z!&jMER8KJ4VF~574nWHuFna(Y@g|$%iydTL!1jW|NUkMROL)A*oWdbSm6(3_9%HvS z9YYc^U2$3%^F>De4==j#!$m%l@CLcC2+XP@i6&^m`B^c@T0ixvD`O}9X6_h}H+(&$ zuBYL3N9*yFuH0>`yy}A1Y=GxEfb_eY-#T!T#Co#%QgsERH zFPr56wi#C-7^tBnoL;Hlr~Cj_RNJR6zP(qW5Bwq$-gw3hJ#C@VrVSXD%G&PDW@Qo1 z&HIrn2FkhvxlUD^_;a40R*S;EF`r1b*F0sXrh{*!s7pw7C?nfgT#IXiU;u>#;YC9uLhvD7WW43_{z49KzCJnT0w}UlhsA)4FDi5N*FWhIoM2!nKGN%GF- z1S<%+cev~C59!*@rm|W?Br5ince7brSV3%(31YWT-AM8>f*wGAWdV1|^Apzp0D(0G z()B4cy*l34`$ZZ2m>T(;%?}I&BvU}%Q#%+=;^lI75s#P*+lg+SyLj{V&6sU8Tg*Y4;}LSnihbw5ddvV6+J`i3%K% zzFaal20Y}K3KC7b*o5TX)-?2J-Sj;tO0>JWxVwogCcKJek{G5FJRV6Bt2ZdK2(y5} zR5<1sz_)2-r)hewh}O2*;wv zeNVy~4WEPbjaKgN*8a;)h7l{J`L|-b1GJ7Kwq3ml`L{E+z_QCA^kt9k!>bUOlp8 zGpg)KF_Eagwssb`&`YSrORYZjQ8=Oc3}?JP&}@z25H9cgUl z*H+s~u@M`o8heY&bbG=CsIfXP%_M_31-@bfVTSTgBjt-xdbRrcg-h0-v}tMD$$p6* zi*>C)tD(ytpp04-yqoQJV|$`9kajh|Dp`<>EOG*HGQ5!OC&9;4_@j5@8?8zsd1G|; z>u+yo<;UfS-Y^TEWPPt0FUSR120#UT{^M8I;j+}NkNhF`Yo}?dvpg)aJ4LoYV-MyA z{uj!Of2=<*&CSU?J0u#iYdWrrrCncY+LUqms~SxNfy%3>h&$kb9$nlVgOj%^YE_{Z zt0~3W=J$p!JSh)_v~ND<1i4!%1fiy2Rs6Nc#(3tnSHyl6lI=`dwTsURk+e;@m$Blq zwBLpLw06E9x0LCY!W&kW=luXW$8m@P?gC$)UM2nL$t49^MkN#EILqQU+tTYhr)1jv4oO0$*U|Z$<==!`R=K;>AZaH{ z87<)ZJ;7-_I7v30}*63c3Ep6KJ+TPmX5;GOdOiV8FV|uDfg|>_*VVp(| zH;T2(ttU{j)9ke^O(mAtKAx8{%C09eK19LUWaNnU`Kri!VRC4tB@4M~%2AYJl6NH@ z82C&_0F_l&A0XX>mH>vmqogBFi&@eZ>fNqq zf<}k!ZqP)Vq=rNYTLf*jU;$EBdVp}585$k`0EqP~OI!P^zd9S{l*Ou=W30;j)kY{S6WKkPiQTsonLjW)O({FWN^C@NWnw{Aryj9HjJFtHF~gh z95vhg{{YC_4H-G}9FD8uYnudX8($EtS1zt(H$P>F-8>WXAt@rvT(l&q+aU$;To!UB zzR`x0X{bxCUbW7imi}n_CYuXFB@br`y}GlQa0fPR?B5nfOj@WCpG**W8yCiwXU(MYF2ulnFNA4?BcSH2*6^$ zGej3-;Hn-$wDqRI9-Q}|=%>$>p_bJm^BZF(GnU;vWrhn0HxL7qSv6k^$r-lS z>@>+_(e0v*?t^M9s-O$MwHbHrcG}W>>d~_hT{iN|T;;xlt0tXqs8~hf7&QllB>PI- zd2roLEyNM1if#@aW|6*ZbAy%ulb}DgH9Jd8N8(BBuQc_P!EvkJPA-ADxAOxajT-_P znM)$N6**k8v95%reRMIDskkp@?z`JxPfp*Vv30LZsSS<&m88va_P@1Douv^jW{4^> zs&j<<%%>-5DhN5=vTZlR%?_Dt3{c1R$)!&xete@k@7&Lm{-}JN53eS;O(Iu1WY;=9 z+yce*DWbJ)jWWXCTyh^SX=7Jc%bXl5pDY}(O~YQoJMXZpXsS#Q$r7i{sL z2a;JXiQ!}7eJjM1+1SS%kwoW45n3!w6tUqzh#k!PrA8%&2FCe_2rBiafiShw(KRUK zc8IehK^%yP9m=jGMjMr$Uz;0-_5k4GvV2Erac8e-{u{HnQ5<5@+2tww(jG-s4=Ulx zf>Q%_K2^pD7^c!!Px@l1?nBS~&7CS3G%I~CPmbS8i(G3@->s~(K<>tWE6g5PRKY5_ zCkKOoK*873H9bjn-DT_~H+M^AI_a@Y&e6{zF-9!TMn8ChJZ?X5oP{dS!Ymrpei-oO z{lAFxWRmX5-}_5biXtI!=-x@5NZpHWX-?h442(ts?XHW%?{$59t?HMMY1+l@m^y{M zv=&SmXG?2V0xkQU3BW)$gOte~6>Y`c$Z>08O+UercqhSkI<3Z_vdgJmX;(L3TYa4& zb-Y$PQwmjZ;B6|TY&;C@T|Gwk!J4eXYuB)zP%*wm$;ES8H-fJGHQ=PxFW*aezhQYUViE+D?kuGQBO!=8SaLpQ-O#kiG^?FXd8fCQE17r1GmwkPBcF3#em6P( z&e>hHf5j_)rTtb_{uZ<}CetUI!t0`2IJvxiHC`fAMdz;ox`Ti@##9rtdV_$=o^Mw0 z-nXdT>hM_UlFrGeT-Z!jSe0X$))^5_=LF?I=m;CsXFImPQc2p@dmjxxyK{97q|(Q; zR=e`Rh+u{N;oR9Op%*7Cy#`3xxA0Upo-eptx%JDNJw^nY2}SkR(J(F@UD5c&Vjv8M zoB#2`sAaDQE{?qUfpc_zQ%H=7)zBq`hQ+#M7|oihT`PtwovKU4XAFlWSQ;u z+dL4cg_;&t3+GJ}kPbdc8-mKA7swpl#qY~j4l%mFUL87Do87F^d9rF%soCh*0!-9p`F5y4@7gqF?_ zvRRKh@<;MkMJ0Y;C}lCsVD8wP>u1jvaa zhmFriW*OR{x*H><>i1Uhz#YxtlTeQCIU#uDXdP9Ec%0ydoBsep=OUe9;o_H#AQtgP ztQbda0z?}b#^8!GjGPmkWc10b&8>6Jd_|=^J|4A%XqL&UN?OkT_su?K)5jc6(+ob> zFS=41LA#NVGHWx#KMXFl?-*I?(^|9|N=<1yrNz7jCy&c>C(9WLk1`OOa9eDu%sS_~ z@x#Lnz_(ddg}8a80DZ@F2p8%{KEMxJ%ht3jjZ47y7VD*H_d2$*s>KDx)cB2Il&=#r zucI+l9n671ZQB`6YA!MA@Az2CI@EUA8(Jox6x#i*?Z1ZNN$s`mPD`Cw{h55&%iTs4 zo&IV0odycy<@5m8OLL*blS_4`tai6D9J2{QSNe?c^%x`EWF7-r@b%7~_Id=#(7b1kU?SQl)n zfsZE#g4j=&Be~B6gG0iXHc?0CrKO>?ia8tYRuat7U^<15WUc08ERhkwO|O+CU{?!k zJeSuEX&#>?%+u~jpo3e}ZpWB&wTuzQo6%bgMnY{9l5_~$}`_7!OU z%_BmH1BE0sKqzh7Q2fB3kxqCR>8C03`?~kH^p0Axwvt!$IxS}CY8v)~373haniXOg zk-iw192PyKALCs0kBYUW@a~DDX_qjjq@u=o8SRWnAeh1c4ZZh#*C@Fv0rKTI$N=m` z;p>Y@WVp80tfjs!=BSb+lt#b-`>??Id@7HW4iQH{F;7j=#F}-KaB3tn*+p&kh~ia{ zh=?dRV<4{7>D*_MO+RAWP-|Cz(&sy!C3#Cv=_Aawi$C~D^xGX;&|YfNOM8DM-1FL{ zyn$9Lb_$?K*$b8`H+3uk>z_i?ZM1(5-D_6yM?Joe=H05;B+?NJTO%{b&ATo!98ZpU zxd3NjHPlO_Sf#5?sZ~*!#Rf3~uA95{u-u%D@P-& z(Z5OK;KttL(~(|OT-L4{FFXE6xhhm-(u~#LmA~K~+i!7asR^NHlgzZb!=$C+WPT-H z8bv)F8=?A=Gh9xN-XMeGBWdw?ivIc=Me{WoF0K_KZQwGjafdj@Mip8#v0yu zWC;d11vv#nbDp_Bl{Xd5&Xd=6lh^PfjQx~l2inG0#orWa-WTzXi+iIwi@S|6?f&NS z!JHmC^N=yg`kwtAss8|kb5)m5yuE@rW{K|BLjGE#CJE<`3WJ{5Urg5-<2kfniF&}j z4XIjbx^9xvHO#SXA=s9W2 zgvQ-p7kGaAU(&SrtP*&Z;_Bkb8Sfp5WO?P4S_MF$G^jpp%yz{Yz#xj?to$_{{{V_0 z(rvDu)6JO^b4B~eSy49z8?(GKoQ=Q+Q^4RaMHot?Q@2A&NhPV#U3kXMRI}9Xf(!Im zm442)&SWbLZ!5|$O68rlgRLP)gXa4hkO-v<2?rE)(iNop^8$lp2d^@?CGX!wj$9dt`oQ=EK=jR(T&UqWM0`bQ-yg{tm>vsMg)9%t}HHZ@6 z>K1=xba)lkH+9(GHaalCKPopMWY<}&{6B+CvHM-5781=Ih`}zj+Xso1FfJKV*%kN@wxcQKUD~tjFj8s%3?yDl< zTJ;leXLF|0H2W=D3yUjD8)0t}F3G|Mc~yvQ+r2j;pJo~Q_P2f)@OGD?c|X~sWz=9j zybZ9pVS-LEjyu-@4yJ8&R)!53^sQ3VZIvC$`RYe1Q||M@2iFHASET7sTVCiE*9!h; zofyeIdx|K{uZ7s{#o^+lr8xV)FYD0IwD2E?wEh18VzL&yuy(@5R1uzb^v}LIzy~-O z^4Iao_+(vacD^dRVWY8WBacUo%bz|qDZ~D z8{%IL&8|bMvra@-x|S`Y^9mI%3rYiRZJ@A$x*lU}1>VG}vXg1a`F_8l<|xKB5^Gm< zMJI_ZwOMT8)jU_OL38Fb5^7e;x>GtX#~an>34!OHk?$Z3a1QTA(=9ZsF`?>L&wQ7{ zCAcYnsNItbJWQndGDzSz&dY*M&`-=r=fylF;b?VTU&)^T08_KLfp8_ZyV~+P$m=5p zAm?t#hZy5;86v$8?H790=r?b;z0*Sl&IkHLA+|*~7#})-*-!z_Kng$=hL1eCBx{QI zBh3%%p=;t@wt?bnc@?yK%~McYDH6u!E7gu0c~~8!qfDIc+DX`QFfwt0gCBbH2^5v<{mJhDC7{lWDYB^yzp<>Et=x*RkeZy#_1*b6lCCJlY!1F zA5()#wX~k{EptzqV1cAI_Vc63Ay7^bWMz+G>s`Lek1Jf?KF6C?)tgD^{Ga?CN*)o? z?_kt!ue?QmC7mVnZNjudGR-B)X8AeK@0^UBVs3xZva#`=-SBG) z!&6(yCyl(2@i<-3%e@;Yt<A1hnmjW56y9haz0cW6O%?02ZmLaExv6u zZ=&B#5bM>f=jt#5ym=?@b6Yz zxPH?Z5;%)E-LovCk98H}_P!Qr)9v>%T*&hzf5mn=>X74sOx zqbuId-#_>t@K0KVWj5m#bFlEAiZ$(5SGl#-uZvlE&bD#h!xBq!S8}p%jdmTqeozY# zaKs~u)Qb8EluKa^-OM*oEYXN9C6Pj~`B<=Dmm{&{`f*&NO4s_ew2JEtF-3=8IFPZ0 z#xQY~9COs-y`Cs;ynz*)#S}3yjRDCx9Cyt>V}_S4SjEn1baw51?R~{5RD`)Xtn_xZ z?Y*`+EBl+v{{Rn6mijf+I)t&wEHgEulCo~y7IGD^INTXe8B(kX2Z)L-a?{5bI;Zv) zsUMvk|?kJ3AR&-8C8O)!Bj>KfOqa@uVZNSRp~TDeSiAZnXBs;8g!%1%yGy- z9$RkP*Qwz4_onAs5OP$Wo@xFiSl^Y=w+X1Y2_)yOKu)diMN{ zW$Uu0v9CuaouuDJB#9d3rH~X^3ot)1IU{Hvbacl9HPA~D@jr(|rE^Et+>Yf5~vl6(GN zHXbjZNbwAs zy`;0-O>HLRSx(?v%PZwHB#)Gxz_1{wVn;X!)F#sY)fDRsmRRznO1oSU*MLa$$2^Zp z?z|V_YYi_)v%kI5wAnQw^GAA+11h5o09=6FDaX@_?ZxBh;wUOqs;ODt-A^`_Usi=z zIcjaWZ68a%wgm5*f-1v91;l}fyJ9Igq|0g%0#rgylZAEV?Ir}RRhXzmoVYM@?r$G z?BRjspFV15dSXL zVkb(pq|_Cf{{Vn^&ZF@z?^kQ+^!7_x@7xw^)Qz_mTSPJWhX5(^A9nu$k<*4=n6;w# zj^9A>#IW1=ip1&m_Rnz@?X`qf$#cCSm7-|Ekf-;1a4`FqXdsZa>X(*26@nQGz55+q0L)2#B3HLVPVV)BVE^AWKz z%x%?{MwcQ7SmV%JRdH<_iJ+WEENePjG%=`hrZT}<7?sIw{{S|?q~*Suj@oBolN@Io zin|@($o{34v^ZRgwRaEPCImIdiXp`brF4MaV%3`LmW>O>m#a0S@twbm4+qH$fp^}$u*l}r(S8g~wtmr#mdzEeqB%|9(RF#6o( zDK!Th_P3{VHuu9;w(%tTr;Bt8X>{buBR;I3)?&pHBTdb*%k6`wjIbhr~<{o^73kMqe+@lssVCx-8nfF+H#uYMo(31DuzFIW*{1>5{;9Vobdfts2 zd2co31_LmjaO)eG_hk_u3b{BPKZ!^fAbKUYg|sV7+(&N`PmC6dB|x}j1t#H;* zUif>&w{}wNI*z3Qg^|!Cu8v(~!w54!mJdMO6Zmzndn=_3MjzTI z*ZSP}jK>pO>n<9%V}bE)g^AX67r8P7x3svpR9T7%*>(g+z$KUOe4werG2A&dzolxr zH2yfa(e+FbzvNwF4y(cF8ot#Y2uF(e`w#urrGLRqiOQ)v6@*Uj@U>< z@XDkCAds#;Rw&G^gSVV}$@OWpJDoR3web{sE!Cj%UPuS}SMDKLL6R7x1-7X|prVyU z3`1`%)M-Bm|%0dv1`ZJ@FK5Z@7K*IIss_N@Zv#53PpuzPsUofgmakw`dL20$=FfzehqQH2|6 zb)80kws@9Ubtj49f;mD#CSzeFjI6oG&5RzL9=SbhbHfK%o*ffVH`jL-w-8J&l1Bv) zkGX-@*VeM5k+l81YqXr3<>_~;TO9Jl%}+d{+!#*(aj*%p-V|yAa#F3Sf-Zmd3 zLMYEnQ(J5*Va-;Cm@r z=4Ozyu^w8-kikf74cT0=zy`RMDtyXQUhB7+^!U6k78n&%4|gtWUG+-;03~xj#2RJS z_8sk+k5#(XiN6;`l3@(c80Qca1NS@0`!^B%*~laBileT0M$<^SynQQ0j&+v7S|2(h z@cpes`=xXP$y^6ad5RDh!Tv6N$_Uw`P3@H%MrM!iV;iz~1dnC=K206ZnD^AIm5&(K zZZvs3L#N1>I-BT{K<4)D^Up_~K(3O8cKMrxg?55KBLHNa%QuL09YgymH9bxvX0qHj znCkOLv8=meQmgX@XwMA!>5>UKr+A-8vej?o(zJK^#^OsxZN#kKIcXL05QbD-g;qOu zu{p|nE}i1*drKQzd4#NDf;icvoXY#cjlrCNSm!@619sATfnIc@PHr{j)2H6HU(>QX zDdHsQI&oIMjrMwV`5Z69Uy0V&S07{5buBMXu|#>JhDg=}8y9R3H*i-ZWt-(0FP!xi z)m-?)!MgsTZT^uR)#67aP^=e#KGxdIFs?KA6#H%Z)vasA*B5#`(CHFMXMG}#lZeEo zCKxyt1gz|9YccfZ>H2+{602*kRzm(LkLDKFGy4xf#7DWsH>-P_Y`cDG;n zWn&pZa@xm?>)tcC(lrfFOVgd~(%R-$g;E&V{?M1^RWdWFVgiA{Jymm&xEx5lb*|a! zc2{uULef|nOj3CZi9E>+j#v@S=04aRFi9s*U+}~?UMkf@S2q*8-OAf{FPk~@O8)Im zH?cVY4oM>!;1z!eMK6T(d!)FFTe^0RIP5g5<2A~OH_Xb(u!w@HIM@`O@;jCw1g$I6 z4^fXoRD#k0mvRQ=#oaw~WK5!-7?=5D_Lo?VRJB^(PcVoFeL54$JB$!Q=DR)=(y_oX#W7n)m4qQ{E7E(Y+JzhF?s5c zr~tC*o)f-NzV=~kWmF3)WXOOiU8A_|p4?z@)26Y~wEIb!=C_&0_hV&^q{rPQ-|_99 z`L4=Xde3Ote_I|-BQc@RXnuMgd#dU!Zv>Xc8+(Z^?BR}QxVOx(JZv%LyE7H}P%p?r zlsMWjF}NeLqmvuLX{zw^BXb%x=UJEIXb^+sq)uw#m6$Xe`4cbb0AKXJMx6 zdJUUtHnCV=+N`E{(2%kw*8Ve+PB=N>i~>Ld9Oi{<9*3;kNIaXlV*5KqE5NE1gyurX zROI~8ZQR>iV=yYbV=rS<+NxHwcelvio+g~>x!&m=^|rBbpm;w?@fD7vE&hw9PV)Vp z<`fe^(|L%l;dYl`v*eAyIpi?TM@w(w-D6ah!dW(<;prv$E-yrB_RD`DM##t`zzrtp zGxxuMqJx1#$3u!HveRs*o;%Gl_S?)^k`5owHL zMYm=Jq--R4W6K}M{{Yuq7@1U0mXf@m-Scl{=6BKdclY+~-^fjC#2TEd1b26fH1R{_ zJHrAaQp5J3^@{I2ah`C%1|V8+fDA?a`;7c(oc;zm+oqgx!=RftTo2zj(kf z7{^h3Ec6TKI*sM5w+wzjyuYX)=M|Bv_<~E=mfGISa!5jw+>kiu&|7HupXpzq7isw79&}V7N;`a}B!~3Jtpe!l_{E zfDuMiD8a!eFI0l|%fzWChf_wkndVD_aAk>GbH#A7FP@K-RzLv(fegsNt1vBd!MZDJ zH&Ix|Wwwn&jnT^KwfSR$q!kCA7X#aqTY8R)o*UJXxj$@jnx2FY7y zRGa`90u6df+Fa}C)5)kLth^PPU5g*K-U8JvPUhOuSrXFu7!Xy2XMAisgV>7ku^5?i zDY!d5FVTFz;P*Y8P8xV+7*qG#z4=qqZoYnY*z)^(i)&k3H8;L=@W8TzJ-VomcaepU zcR5hb+qxZ~;DM8~{{RVLj^@ht%1c@2)8Z4Y#l*11F5fLMZe6=l}e zn@-g1Vz`nFOZ}%Dx2mkfN(!=;Y?IdrIt&8++n&e7I#e2^&Xq2pB)PP>o(ovvArT-F z0R3-WGMxY zE-deF9LSN$_6K<~2bCd^5+e+DasdF4TWRr&9~@s>HIda)#DZz#l0_wBdzMj!jaPWdXz;ni z3=%p?e`kl6N4C?Ci=^2E^3DO%#@xuUsleZy{_JNgM@#{NTiT~lRF5(|`gJ2#Jjlj_ z;(v&5bgdTNPY_t??RRRC%Pi3-Uo&;wV6z4efwn`rl}J;D%8!-tG~W;z^oVXR^?g>- z8@Xe-y8BE}&bRj|B4JhjR*6rPFwAz6k}iLC#kQgNN3CeqM#kv_s+GBtdkeHK@(ueu zz3>J?xKZ;+2hK<*EC#9YeY3so&Goa3n}^I&z}(vHa>&s(GK_K=xjB8u7$hF5RQdL4 zdb1k%h|$%i%-;=sOIr^HX_{@gk?!D)^5VcUEO5oW!3N=X5C(T-WO1|_>Gb~q7elCc zcVF=iw-edLr^9a6s*favJm|!UkdC{_X;gJiFb>{G<#jKI_xG3g7H@6~OEj+6^CV$I zylU)Ug#d&A@s2^`oYww{;jKeKvA@&pHE$06iuHt!rGm*Dj#ZJCKoym~U~o#1F^mj( z>Yp|t)RNZRxAIJ?6&p^`YjS{nXIawp%h{~-{XfM~YX1OdMQJ3E#{smGOgglT%1I5! z1TtWNL94f35%EWf%obYyyI^$1kz|(M(gLp`2ca$h0M{PW?NZ5fI}xu(C5)@57X!(e zW+l9`%%>g7wt2_i&wgwF0K$EEw*GYX_R9uXatI`X|9W3 znY?i-n&qmU-)q0fpH-48UldtSX{b!#YH?azV&R97qy-R&cnk?4i**C0am8(8Thu%? z@ojZ08#pdv7AYOvl1gLS7RlspaKtDPd4~whe4wlMh-C@Und8D-Zbgvne0-$V4{!aN20W?j{7dZ!Z z26Ll%yTxsxy-L*FG?nkFDd>JVg7e{xriJ1gr?yKCPT1K^EK<)6v*? z^I`L@;Sk!utbEL<+SaVZukk|L8wFf-TF%VojMT4Vst!PxrAV$^Oqa8>(*FSFbSOz{biW_KhQePEY8Qb9 zyLD%G8ez-Fybs-@#y(YZf*pGdeB2T+a|WT}T@%D^9!r(hZ)Zz8YuRLtM2#V3SK9El zW6FYfRsn$HJbFfvppLkGqWNd<)}Lj$sYqMl7CG&}t8FGNE7IDR|>mZ=F{ejQqR09AmDM=T*3e zWyYy-5|Rl5Ck{Ut(LbF-;q6xX4-{N!msbosh7~BT#agXI)amPWgXBnq{ ziQn+@2~(6k=|!(Qchj-r8s@F7#V__=ud8bjv=O9N9%aWy0v%D@gZsU&hT1d8 z02L*F;Vjl{?d~q@86sGr6GqY?c@Qx`IS+%4{Yrpv0a2U}Q}ND+Yo%C8t7GjfCrJ!4 zpbF(m<90gz)gOTLuQnbUT~k!nbbD*Lt={KZo(U!M9n6UsoMh7d5U;rLK{Wy8^t*!ol@Z?FwO~n^9FN)fxtiE*6*(5WQ z6d_d$tn3qHVSMsr8I=KJ8LQeCQ-NO^*o=SZh$4J#YJElo#441c8{$>9F+Egpg6G)1=UAQa5j(~OQNj2$u z{(<4WS3{ z3qaH~I}Zrzu-)0&S!x@_tc!W%q?5rWA8E*3)Ge%hLvgBU`qr(g zLL-jO<5Ri4f=i23GF`1K`zyTf8K>)3BvB*BIg<1 zE>{doRV(?dMyUm~@av2Xoz&Wd2J$#s7C>m+_1Rqhis+J*8m87-*054Nm z(sdQlhvBQs>mL(dohn}|Ub?)V)>NPUB4!&|w{0qUET?n%r9tI@P#U{?e*n!suP(2y z&Gy@}LlzqXk^ljZLBIfX0Ar_8c~1|9vYmWEeW+MGYpq2Yx?6@*G?DhZLY1ZAcc^|e$i|hUoJ~8@3GZ#6CL>WC@n81^5}VU zhd$3w>-yZ%kHYrz-d@kCLmPA>I@4--4Rk7JWpv9XTcE17~xDh;cGN$KfTR)GcKQ%Zp2Zl7XCZ0p(BEw@*)DlK$jf zJOaW}s+;%cf;|VnwRzWx?Tz5O)uFkKsWow>m!3FD4=Cpe}GLX8}8vC5D~R$TgjGuEAR3|=L- zdqfK=L_&z|l}UsEia>S0j4;kP7|6)U$iVvh-gUYnmt@QTuuC9IYI z00FZ2jy*e0xVwj1E#l*5%+&E3eSITlo_09*UUWT9JEd?O(hLfj5b8uTvidbUU`+U-X z0l0s_N7BBt9f(zFDN*dc_hW-A!uu+%SJgY|_t@+#{7`T363Kx*yv+XqO2XGIEcJ=5 zTH+U376SO+l{mouqw8G1g|zk5(h0@hq8-;SiE>l_0Igc~x_GhF^#Em-Nll}I&e_Py z*O!-Ku|HajB=qZ|*!D5_Tq30@L&>fCm|qIC=cnx#i6E~Z)zjU<_n9Y*zLIo%wUcO z1ObL~z&|Sbw3=2&lT}@|U(jw^*Tr5hTdy*E1cq}hvo`SPBz9#g+#K(a^T95}^);`p z$qmM-2B{?R+gaP`#_Cz7Lc$~@VC?|p`VMk?Fvvc2;SGONx7T%TLhex$oswSu?6;Jn zWNDO*zc22@+%{O1!sL#6O?Ok)?BTqcc&(OEWw!RxX(D0dODtwBqhSQczTq>57=wEZ z6%DRsYLMiNcenNU9MoyPZ++?gf507}>9<-Yv82C<<8$H`)<}@q#O-e!QdqgzRw3l1 zf!LPdHZu7rcOC6#;oh05>g}kss~IvG3_{u>jKt)#4Zkrx%VeJByrWyyd{wFHk={wD zO+U_MNnm*X&pRSUjVJEa0}vdcZKQ#O$=XPB={H&(i{4(n(P<$`?qHAv7m2wG454B{ zUHpHfL<_?qX= zf*jt?62+hIs|-7ZJ1$W@Q8B%XjVp>rwdX?N`QE_P%Dr zHKG?`Rbsr1{NzmK136;5*yPHsxQ7gSYrlv( zOd4*bs9aiVD{H3RHKp6`L*>e>6s`fu<%c69p1o_#x=!{z1&Wn8@;y`Ozx*-VSUhQN zpfLH)K>FgofAK^zw}|!MFj-4ya3!}}S)oZMp5>sCVDc2Ha?2}54$eoIr2M%f(+7<- z$S)e!Ek5<{U<_K-T^dOCf^yNREEj=;j5g)QcP@OR#Fv+PmZvmYMyG0Hzq(X)ZIVHB zLq_YhcDJ3eko==9^Qx#N%Cc>{Y1i~;9ZHH-BG-S>n_d*~>>eQS<&)cL7Wel0WwaAs zK=!LBE@KR0+vT}ptMdGqZgI;4jk~WH>3X%t_Wh;8Tw294hw>IohF!le&WLlcMR7I900$!`fDlV-=p4 zbu7?BsM^PI9mSNk?j~!0n3R{Fo6FzRAHBffbI}UCvgemY`W0R>lq`w0%~E;T>N?cX z-QM!z30n}`2FJ>(dT&jF@f|AG~q^*f4qZAC-LV zI90_#R-EkLO>J(LT@mcYtvn>78Zb?*+ts#mmf%=Kw-C0*mO%Fr9(J6MnQ{Ke0RI5` zvDaw+F167$$TVplRk_tKV~Qe>q^b*SP+#}T$}->G!NI{K5IJid3jY93(~>*+BArAI z;zeu`g*eDOp4~HDE`zCQUJB8!JVCB#Z*>c;tO<7#!0e?}Bvc+`z>~Xc;S(cf;>QDL zt$@XQY%7iL%Iu$)LxV7*P8iN;Z6$WQKBdieNoRy=GnkC)d3A2<7$~GeJH{IXoMa%+ zJ#$`<9-K2~(=K8+w_1(Vam?!+ffntz2UDG_ zttx^(xXvr8u(q2-vx*PwsktFH3zQ&w4{!1M*L`eECq@z1nRzpUnsKWwG=5Ck)K&`* z541`{q(gIOzfx<@@8XwIia8;-pX{ZMX9Kv$>HbZ1_pLPAb=Z>2%8g-Wb0p!iFnAk& zqwuZ^S=8PQ7Ut5|Q6XAkDMgh2=?amIXYS=r2OSTkc=(r1OWMjUwX%C(yIo(do=3Nq zVdaUJB9)@rzefK6;1Fxj*y)-*!do(Zpp`F!mn*mv{SV<@vvH_Cn{LG*GQ5{YFqy$Q z?rwd-C zc%@V9xqdvqm5I%8RIr$b?4QJ!$?N`iGTX%0OxG&53R>A&q#k!bI`*kGO)}3~f;p!W z3?^4=k;h(Z%{)YrxBMh}gG%7G4Y5~c2Qm%cT#DH6mX|Bp=vuroJ`58r*lAer&j@gM z;|J5VdsL|M!BvdEt6%;B;Z&*3E=L^==&uY4aKe9#q=QA zN9BnmEx4A>PDIo3wBYRnIm-GDx$zHNzSeJF!#Y*IrK5==DR4CD9G6u_%N{;uU@^cW zYM#K=9}Re;Mb|^=`i_C6L8?4LD|@)D5EfM!*_>s5L9-bnZU@Q+4@Bz5F>Ncg)4!3l zFcm&3i%z=iy!w^A5355io2pM631gD)Zr_$AVDT_ui?;v`$K?Rv1B?zwPiHeV!pU$$ zO4uezBrW{$pVphudyEridV2%$vqZ-Wk4CKXewr90df7JvYI6b+!B# z@asC+2`H99E#ipI7!s@s@(wx48R^O9xUp3gPDx8ob!qpT!cEF@OLqSNt#A38z9)Fw zO$z8;&msKHrBAQ%XZ-Ry*A;K8Pc`MV)5y&vcd^MKav7dOG-S3gIKrUEINDEq4uj$* zg=c?r4cqD(lwe1(lG=TUNXZ1Q)AJmTeKE%s!orH5WVJ~H1(GE=kKz zPS1V+0Ii8_^~AlnwRr8wg62d8e9YiBIq6tm5zy)aH(gOJt@OLZvbc^}VYhiV#~hB( z$twi&1af?#w&1G}at2ufCXcMiZ02;d$&p;d=)*jbw17r?9AiCz&1`ta{{TtW{5fdi zXk>twDd$^7J1ef=;gwlI0FX`z`M5RDfmQ3iTtr>fxo`bz>T8brtu_0dp8o*TJhx8P z^vyR`)9#TCz0`Wl&vqn%BfIj9vh7*b0LRVc-UbC|c<)}*HH(<8qbpcC37U#H@9+|i3u#(EuEw96T*$y=O>!z zqVV09i`H!g9N1e0TZ0-8Fs8zx7oH9Q#(6mO&3biJdNYb}(Y^b1)ZwRA7>Ld{v$mbt z-s+wxk3<%bHM>gE#29@0ar%22lH0^>dZfo@!-9X-XZlwO@g~s9wpY>3a3;63jEK@q zApwp~J#m^(4(Q_bJlJn_51KG{w7J1OiLWmgUlC4i#p&pK^eAB`L33#eL&c2?K= zR)U~N$gH+*lFG7j z*xBYGMI}z+6OdG7dhn}Kt{$JYce*@U)M>*JIKeJoL%WP>3mjTa{4vL`Tu9fRMZL^H zxmL?4ExTqz44yl6sF-P9mGkdzW+5Pe5ef;p)Uv!Xx5 z^RM3c(@dJuFt+-938+Ej!4pKrQhsdjG9c#wVU%ufx}5Ab-Wt=qC*n` zO1`(cf9)7pPF+UTjTMi|Jhj=395*VwBJkoc6mb<5Nv(XeIw{tjIJm8jt5egWwzm62 z{hZvvgB&5UdW@-l0OO$GgY8r``82!BXm4SX-6L?U7&?U=bDz?yT-)k8mHmVl5<%hn zTj@+N8@bS2$S{87Y{U4rE*C5duWXUV-S}fu)Gxd<;pYbPCCV(5+}bi*I>r@z#6(sfyEs29htE=3zGEMY{0FF~gRT5Mq!Xx1 zWvaBy^Gh5>l)wo;GXd4d^YyK=>NI7I_Lcg|D(__-IhUpN*UZvXrB02T)$6C9_0-}g zzVZFGj|Q!AsytR#5j?O-E#;y#s=s?;77WLy029dLkyrj6c&A&{JZ)oXd#cTKZ6tRa z<8Y)LK_d=>u>jVmhAjRk_)XcYtZlB7$}vX`_M;TB!lZ(BD4cE1265MqO1GluJ}$fX zpuQ>B^y@oOB1&d!d#H*p`ZGkhQ6o1$FRv%HeJxL`#Z`o(O{+dxMXmZ-Z-4U8!Cy_v z4IKBAYWj7(qRS=Z7I7@>*btvKY<4G;#~nKK73jVcw7$~(J#VL9LmEkL3Wknd;m2I` z82RhGN%0R?X)a7N+dOf! ziyj0;&crz-1e?GtrynmMuRPaDo+!T*CRB6+V)K5xyy3(fOIs2!@N#-F`9}+i>`#ZS^?hzx^(`VVF=L4S?atwX*e(?gbJGWmC*UGjsVUQ^6}|6& zPwM(J&ZSvSZt4Brr!k{hXzk)F>#ZseF3qHCa-#XJM9Q0+&Jva+77~5VtG6VQ+;-P5 zXt1)aykSgYJPpKc^#1@nn!xbhg+73)QhaLX_rBl1R9!$7l(E3yw&CHS}lN3w=msYYHh{y~j zU8ny59zT^%HxC%lym~eI8DJ~T)O`ChmH4CJ?PkfW^>brpmh)UlRw!pP5X>4+m^5er z+J}xu2Dw`uPh8aPbhw1}5yxn@_RFYUNyHJECPj`?jsEe=NvEOsdfNX0#XcUkj{P+muPl}CUeyrAZEnycD-(qWWP!J%6M{oV zz^k#xr93_p@a3L`rFcH(&t8A+pS87$UB`0lMVzs-;d76=8>RyuFfazDi?8cY>Uz}h zXn`cUzK%J5(>B2bg%p5BHy@SI@H^CVJEd!zN>;M5#jn9@dzj<1hWkv8`|R5tB$1?X zGKK_&Sq2Hakf&7o9YHRxjxqOIF?3vMwdq6A+3~;Q#WwXX|IuN847uUwxq;_%J!jMK06$|Xk zF&+N7=ju&;O&L^lAmXmc_2h0Ar!yIAzb6kXn;R1PBOrJtwzsHnRSb;D(CD& zP`S?SIz2)bkZ@l+3x@lrJvt20V|%Dr&uHEt*6pRUx71dB+o6sde96iA;0@KBWJow{ zaxx9wAb3#t+V91h-;FfuomLy!1%dw4fI}6jMpTVdH%+n~*$Q{385wCjxj5BLC!y}( z@i9{Nw4L6^5v$HMd+S^1U=0<>ibV6avDlA8M`$ z`HA-YGsvia;TzWnh4d@YrpG)@Z)xO8W?h8I<*Z|AAnx4CIl$}AGhK&UBWD$rZ+Kj2SH!A{;8*;eE$}mY_zD#hEbHAzeRdf1KrlCzaJ1-@-R{sD? zoWH}}PWs=(+Fh`o-aBw431}o#l5k^Y-?X7-=ZuB}{>XkG~1ifyY8pBb16Mk z=No?xm44^KUJ=u;77HVHZ>WMivX|4o-1{??>7Ks44C1(Jt$N2sxE8bC$nj0GSK4q| zLZFrQQD)m~Y9a3F(TkGllEl(3KuSX3BKeXRYuT4L$+UQBE*epLeawY(V z5w-$@*^f`dui;op4D#G6iHvH;A1aL3PpBEE2q*G_Ak1;Y{;fgu{`c4N#dFtA-)UGO z8>eo7cK5G3Q;jsK(_GT(-{`hW*6jL>Jt?@nMlPk7WbD3eYRqjy-dGn;jTEU}y6urZd>xd?(knOE%NBZyXzqHdaGC5or*_%&Nfr ztO?k7>H+r$rFyZYHyF8E`t;V{=hyJ)e1%%@oobSzz1H;C*5@T*;wzs3_;!1w)n>T1 zyo_pAl3RV0$2{yzO$?>TX%&2^w|O8ki5qbrDW~c1>w0&C;`LZv_@*yrdf&ee49?Mnx=`&8D&nHWn5Lg1?g7!ItxyMtW`a>mH! zjCo?BiW*3^k4;&iv{hv+QZNSx{hv(#0G=^izU@z1)B|5>Hx?Gr#=qAM%fNy$Sytp zU;ekTt)t8HGLoOj;`FIzw2t#h-id7++{qMwW^!cz07W^FO`V)>+GD|P17`#Z((xaN z?X(*+9Bi^&I3xx<5zoxti`VPO2OF8QCGc*irfV11Nq?oR(gEi+^er+;8>>gLfB>Eq zzVRSrj&p%h{{TR|)9l*e?K}-9%(0|#_*@B`BkTT4`azGi$AY_7;B0A2djq3b} z#o;})loY-nx%PJZ?SJ?NPMmJMSKwVv8+K{#^&M8?D2t2&-(-)kA1LFForW?%tZx)( zGimpt6Mdw!&AJkac2;SDQmlh07ddX5kIWSD-_hXk-JA&ph_`Ew~&CVuh($vFW*A1dN9+)Wuel+)Jw`tAB_ui#Bw8-!q%ia(a;13tMukg(M*AeJpm zHP@dR^SsF9D+(^=nVGp=zcxn<02v&?rfK@Lx)zyvYaQFP>i3I!NlSZSYRa-1qAJ2@ z(Ibe4RT*a}e8vGsYhmHJpx100P1Y_g^?Si4E~Hr7VEF+%c6LCwK|u&C2f z=4<-v`keQL^zBbhV_~V^MGl~%)+i$Kgp81j_qLT;#~D{AyJcBGAPzgZ)5TJFqUS}l zx|U05lFC?G-Wz`|INDMrdA!e`b`kdZWS$o|B-TrKUK`CW*HF~%uWofYE@M#{nmEK4 za!(-I#S@LQ+&MfF3Xlc{)30ga#L}Bjn)dSK-Rp8k9lWt#-X;MG-dXa>j4owm4&dP6 z7AQ%#%P6HKv7>T&bUW*F8{4F7Zw!|b?F#ZBArwTJC)j7Fa(fJs41q1a(<&r4D{R4J zibx|F`9p9(9hg#CnO90%_*Z$i`{|yjVvlw`{!#p@mE6}C?<`gtG|=46yCk}}gUbMV zmN+f{0P6fccJGl{9<9Ciu7^(zrkQnZ9mH04%^av5Tgn`R$n9QB;yaeK@tuN0EVk<< z%Uf=@Az4G*1mizn%Dbz{u5?{EL2Y$*QVVhrm5itgyl3S09qWSe1(nXDVLFGm{euM+-M6bnX8Dr6T6Ox}C3tu4BHMS!Rn- zBHmfB%+c-}3GM!RSDPT;cCB?JXYDrut|gt(BP6!s(leu|1p1>5#Bq~e!Q%N4=&-cb z?>Y;ZOTeqWq#K4*4&?Oru1iwVHRrpzz0tfkbz`Ai>RN5oL97>jv{9<8%GT;c+(?le zAmm2GFb5~q%qYsPAxT+TFU_1-I=qf**ScS+o#B|QFE!i!UsH0;q7t<%jJxrj7xgi*#wAS#Ye z$}&ZBJ{Iuqt>K$pH&d2fUr35QHr#5LG1)|95wl&f+^mukP>W^$^2R}BTw!*v^`8sh zX?D6__T|)e7UnWzhA86`h}l^;VlYz$2MM#O7#soPD!;nN$Aat7c#{MqT6^x=tyIuWT9 z<7cJxet#xKB-~t@)4t}EnmwKU!q2JsGX!GWVNJ2A!TayQbIBcn&nrg1ewKO^w$^s5 znULGT9s&j=5%RAY0A-Isg*?@=PYvlBgFc#Mw;p!j_aFSFr>M8 z4mY+>-o`fjZE?`ktu;yxQChvc+0h8|J3Ws*y}Pv@A-b|lo4M@diS4JFKt!yMxn;;a zZvlbbfHx_~AXjB)b*gE44~ip5wSCvNw?j%>OKGJdV{vxdm&;S-gXmx1DY!eyyBt&V2(Bo)3Pt>wX(QVbX2kxFu$S6oJEaB|r!3{c7PC z88!V}i}O^I@?Ye?56JQF9r$}$*L-KFq;~hZoPJ!PW|GF@B#Fs&L{)5~ZBjpYg9jPL z7tNZJw@;1Zg#pg`za13Q65%1)zZM6RY7UXVlbAi9(i`d}tEVhE)eM&u6 z$|k$Cva?&enBsxSMo67q4(TTx$O46l@Jp4&KMwd~U(__&p5nn{YtIkM4TbaH$0T;r zwAVgLsE6ev$+%29C&mr=Njc#3h<{~l~v9u`K0&Z1lX?RdWZ{Wx+(d;jtSS~GX8c3vMcQQ=Poxox? zSkbY7#|#Jr0D9dYL%*|4@-pfqip=7hpKv&$kELt#RY=bES!l zCmlDk^Xsj(MPcdB*|}cNVmr(CxR@0rDjcu){{Wxy$2;Q)ysr-GI)r-{?GTZ0xyDG& z7<>AT{{ULtYgM*jw@v0b!6Xu^k8E;J<@EJ~UB9u>yf1&MTw2276e1YpQ2B4+``Pb` z?5l~V8cK0mbk~2(<&8N?P7V5;w~4GgQ{q{49S6hr@@UHrkS|+M7m~zgVxa^f5RJev zLd}NQ9ZwkxBejioEjz@%BeXXT(@m&EQqmOPB!t>qjP3X7^Kp^KHJzv5Y0_wyH_}~e zmT+6C5kk7H(J~b+8HyqHfw=EX4hDCq;N%N75NIN1yVMq238T1Ml(^NdR#%cmM#Bda z$WFyv;fMnOj+q%Wn%O^7s$AChcQSl6;)XX@UMmpZ-dWh(MQHYxSe8Q42UTIXuH(7U zaJl>3WDM75Cx>L0!rD%qXTAinjKCwiaAXQTTro_p;kTS{PH=IG$a@P|7JF?EUt3!n zi+Le?J7^$yBxMhn!bq+Le|lLL0PSK%OB3h%Pm6q4s9Z@ic!T#6&vO(lJ6ppXjExcb zNadRoXJ}q{+q)z#keW{N6d^09r>}N;j+3EZ=@O|!XR$^w9gaUiQ`}lgw^x^L>O)(y z1q74W`wrE>%$_xuS-G*X@ol`;)>qJ3-QGrHXN~5PIKufrXDZSk;=%IRWH2B=y0?g~ zHC;nWyVqc{c$VO-lTNJw*(J<-S=uqqdk+X1ewXHQp*7nJJ!mI6V$mE(U_#gfe z4M#@s{f?tO&CK>!S6AAWl@+zj$t;XQ$1AEv%E47pcJM!VNj+8i9Y@FBAModhot4lbcF-a4tg{Jv2C=76}pW~Xy@U+@ylc(8V-CtYjx^x$pS8>I6cueoN&WmA# zZ_2@6ovg%_103<^ruFx*lelAbc_L_68iGePrIgoJa!eKyj#MxK_}-v}0K0o(K;Y)4(%)6k zq`QeOF0DrS46ALZOA#(P84=(%GC?P=V}LV*#`8t++R zUzzCsD%Ec^kL+7d3h9rjc!uLkTbrmzxO`folBaq~xEr^Cm~587!5}wTYv;wOc$U`Q zc0NV=CBNET<`IKy17nuXH!~b$bv4O&SH;(Nay8A?yWyQD?ACVh#XZ%#13XTp)m(k3 z4aZL3z?1U-^`Os51j&Bn8=lbt;9hc2mwwGdBIRK$si7z*o9jC%p**QI6W&j4;rlZ#t0YS`$keeBDVWvSi~+#gjt>9~?F?Hvw%-yjt?ZI?cwich#FsYq z&Qs+xT-+QNc2Tui4qV_3!ys0D@wV|*uA``0Sy|e>yhu{kJE$U-V3EpLg%L*~R`bw& ztMlwDo>i99_&y`19VF@+73IaV#`kgtzk7IOYmgv`on*!xWtavLjiWq*;!5ReQS0{_ zTiUBTs~dV(jdk5qT#ru|T1-*B(p!0^^43Nrv9zirq`r4A+}r`k&OyVp4Odc4d+nDR zy@kEK<@9z^X#(yvySj>UBJjJ1#bIK1JUofiNUposx`)^XNG`QaCekRLU2V;^-K_K29ZG0?_~MM2HpS(u4=Jr# z41nT2il8>o)i;yfwm8s?UC&XA$9h(=py+FP;yLBGl_7m(2~0*XpE)b#?b(SBRKpRp z5cQ$_hoJl@VE^oYKepnj|i4bK%s{x#vIa+1x^=DP1Nvh4IXqO%&)4#CiI@3kvZ3Pu)r11c-zEN_=eWYN!PUtTX~lB zJXWyTnB``~v4g%Tu6W!eQWY47PzX>#u5$NJc=VRkQ(B%|Xd`*`ML>}~j_f26ykX=U z-OOHUGpY!mL-5Cv91>lM+rqxqpIrO?e{R8=US(>sP+63I{TlAes7Dk>zkW> zA!18et^C+EVKgAh@SMAZ0deJf{qgwq8n24v(=^C+7t?HRZKskYjqUE)!wDEFu=#l$ zj+x`8Yt6O0oflEnto7YnQMR(w<&jd_&}tK7Vl=6_rc}%sX9opF-zIH;kOtNfZ`-_+J56s(g6`N@Lqq3zaa$YT~FU01XsIJrej;B}g zjm_Gwj|$poiGOY8Nvun9V~*7s1Qx3@PChEXYI@@9PR1*b!m$!6pLUkA^rPo54EPhT#^ zxGa3I^;Jm4xi0HXyuD7h!FQtjQ?ayHmS|GuGWP~etV=)2200vO2ZC{tT~?W>-Cz7m zpGVPjxg_wtz1)`f*UR>p+B>f;-Nx@X4fC%pv~u8cm1gpbJKKvt66p8VdKcJr2(Mja z5?Or1b9tl)6AZ#NexqqBRB$k(s?$Cy_?p;iPaAkb2$toTq;oSF-M;fgjW_{G!xQp? zS(^omR@7*?E?A>_xT)eBt5<*P)a*r#_ldq4X*PoO1h-m!vrjbYWM(@NiOzbH)ST9r zhVKP+z=70CC=Kj*c1&YyLwS>0K9a>rVg%#CerXLWZxa9b5?M3-t1 ztju!3a20^x5F{2Ev8{Ni^j{O|R!ys1-B{_R1?-Ve9_aq=LN8ek>4Tkl|VUW_p* zLy+T@7tPF2vhg(D7x4krA=78Pjw^{#)um|T8;b^!m@5Dmj@ifKT6&Mf2sEDozlLoz zy)qj+>q#x`L|U1Vqe-^_+ZNms7kT9T&9sut#FLp0r)#Wu#^ToF#g`gShbOwZ()_5d zpUAn1V3U02NdbUvCLjWg{_q?E12!yfkZJm4dR(zwi?e3enr_KF{G>6+aR^MZpC}(N zWFIpaz};Lfr6|hMR=xG<^EZqnleVW*b>p2P_fUa~+saJw$0NCTMDi?F2@AkbcfU$ZQz4YYRGF2F`j$RS1I z%IuQ5=O1At1(8lRoS&LDrDboTX?Hds+CCbGO4T4MB(G_zy}|{>#Bvq~a2S#hHisl{ zT(`=~Y-zIidh5cPMw<<#m8G4mlHAHgn_fXAfux7+5@aw{AzXta6$5}zmI&tUA=7Q{ z?ydDXE{)}iybxcsbIWf8Fv%*2!hs{HD-^Ab%7Ikz@}1jNrO!q3^;W-M_zcojYr!`M zcKh}9?sncNxwTCLKz%n$O;f~I_j9hBZ*d&5DNX0hAc+t~h1f~_#xl!|uS2XhsixXm zX(+FCqFP;C+uU3_M{9ECY@aRnKT(1QKPUu_wVIz1^=%JJ@cqrQX)kT$Tuo^$#4qQ^ zADYp!$+CQq#dF9CN~sxT`B^W-jYj)a)U|2j((7U$Rp|(qHZ%eX?HaoVVX>tm&3dK{(IATi$T=W~W z*n!V!ka?P|k&$H(rRu!W2sfZr8_q~M&&UQgobT!g0k;>%i>+VSY5JAMo|=4C8_z&#*M!3y$1-!S{cbYW98=({|PE3Acl>|Qu`2#q{ za71CDD9f2Ef5AF&$-*AaTDSdt%^PdoD)&^ezO=g2TH?~#Y~^8c1e3&ol?FKw6~mp_ z+%wefDy4Mi7TSdCab`8ow~^XHISVA1P(GxMqo;9Rl`356w$ePMDJN!# z@AbVF>s4(&YY8W`^TNH;&c(|NjDehE+rO@Aw3;>kt*h!D9MjZ81*O-V&OsoDjTag8 z9$)@ED?Z@p78=;QhI@@vD|x0XXvjjt1pMueGme1%G)v=cV%Jr=lT3K*?zLGFfkjy( zk0u?bd#=-z&!&99d#-YFe-$@oy8i%3aZ#;OH2y2Szs!?R@ZP!L!}gPT_M0g`b(9-g zHg1QU@$~KK-%r3AmX)c=t{r8jFxuHoCHt8h%a$G8aJXaghRU7U;P=I5*lM>o-WI-n zcG~Xt_B)@mNvO{xCMemwy{fn&f|ASpBn{cf=NylPyiI$fYC84KlW(S9TRxPsUM1XL zx(kF1g0y951vCQJ(iKBU+FBswW&fe^0N{@LH%pWZoVpO zy5@koeZ<;zoubKavT%|afsNI{-z2Y-lpMC=er)myrPMrIuGzyR=Ulug3B-#SizB}| z$G1*-98}75Wglf#Ugr2}6|2ToD79$sf4uZvcFK5k4R%2~2`7Z?V#nnpJd^nL>5eO! z@TRwSr|6LQS{+wRD-lb0!r4meIF=-k;^)i}f?86b5!Y`7kPdEU>*a&B8k zTgdDZOK~N|(RT|10*#hnv5>ee^Mj5+tW6?)L&Lfawa@${@#?m7Tf?f|>GsztC)vye z1To3KlsnC;e7HDQTo8&*@|-zhqp~>pWp?GeFYB`1i*F6Z4UNQBZqIQY!vtYEJg|je z6qZr*kGvP}jx)t{AKMaN=*@E_mBbgC?UZu7Oo*t`4PI5|sbHiBN zX`@ZIlGnud7m_ZW65T^`@-Nu7TwBOiA(bqkBk+t5$S^@Goye>-dkB_my;?(IZZ8%R zViwz2eVRxj#HHL}vdSOkB0h|n-BQHVlzCppYY!KDp?pi?ZA-y2V)9{zSMr%-ZOmI6r~AZnyFYX@3@OSKrTfI%9ZFN2RADO~gW>NEh;;e&8RbNb zL3JgitQknqkipw%;Bw>z91gwkE%=Uho8n!*iK1wq+K|BZ!&{nVxOTQ#9aIq~ngKf) z9Bn&7lad1j^UXU^pH9=DvD5WArMZhohT=HdR$yeBRWps5`P4(ybX|<&YXWOUJ~Mcd z*GRk9VzAMY>RY(&t|C}pX~bl!mHS5R+!fvB;DiHt*c3(6lWS(q+KOrrQs|QVj)(pc z%?w&ukrCTg0WDO*eG^v8j z*aVhtryX)mNhhE1?}o2DMd7_qThgu}5euh*Vz~fGJgpEeNdWBwcq0Vv!5=SLNnyM3 zhLz$$uTO6lsi#<_Hmhx>T-;dccef`}w_z|b zi0$Rf@yE6_1NWbQXUJ87n*c7tT53{q)jKlbUB)gEw!7%RHm<%$L9E#7nkIuB+JF;G z0g+)5u)?bqZc#SjcfxYmSHat104F|`P z9~$acme!XAuP!8wW`aoWrHLePJe)cooCXVkb}mQCxaOxu3AoFDyYRV%g}HXoDx)Zo-FX~wyUAshqJqV zgY6FunwZ|`qMfm^5aff$|v6-F_l*DjVi`x#^Kzry2rEv$oCYtsgwXo+yZ%_vt`b_Z7FatY3O{yYHETv+P& zX`o4cr~QLgxVOLiZMc#410BRDhv#R{%6K4Ns<3AR7dfQ)UtQp{URIrWV^X=z=OspN`EZAs3 zJ68a%HynXl;pEhpFZKBoi;AqI-t67fbV+S=`;T=IO=-Wp&H*LbbOYZCJM^GUY5u(^j* zj^|XjxVE;AZ9Z7qc6DV{Ku{JxIxl|5jGXs=Fqcl7;tzzbBa+GOq`R|tWMF1PyX_lF zd4KB59hfI8ArX=C!1<5Geme7Yy(dr8E@P7J*HU3E#BuLSW@MHXR@z9;WXCuFkK*Kx zDb$qtRkT`Lr>V1{2+27&b05aGH(oM*3rwENRf9&bvOy%V=vPg0E*vr)xr><7Y;4Q9 zcMRaO1q;?_+HSY2YB%?H>1Nh9m(OsVxOpHd1Yr4cD(_WP1eGTWIVYzpqiOKmTIiaN zx2bAZcGntXO>-^X+^(Wu+_I=7@JMNJ0UNM*;=4ET%t_&ki@QrhZ77%Q_NvSn9s%9c zu*V#X;AfiVok&62O!TN>aTtg0M@yxD>+vm{T_V?Af&p}b^<#Mc%4K&(Ewt_`#QeZ1 z$0LVsxfIxRh+^05k!-E4)=3yM+Q;NbaT|~~DF@cP<4e>Q%U6$7yYppBUH6jh!#gS| zcE(7_Ay0A7dhR?$;~1j;#<b-q9#N0FtGM9uPf)6?$K?cu3)}14EB^ooHoxK9IHb30 zW`;W{3&N8ffGBH|v=1>tuR)biFaWLnUr?~qFRXP4{8JUp%UU^x)@y_&<~a;yWmQt3 zs1d#hQ=R1Jj2_x`s?vVzvE)|6QLMfArgPSw3h^e8?RKf5%;*a%O+3t0djNobII3P2 z@V29MHPDk=wzm5_w3EawjIp*!JGYlp>M%zea&wy2i{fN$WvokmZ*B#Zn@_afTj88! z2#(1dhGH->GwqTA@+md;xxc@X8=IJ+on)SCMZR+z#M|G>2nzX%7a-)Q$8K?1;yGm> z-X`VHalt~YZSKYq)!$D`d7i6tZ==n4wsyWWu!7}OgA-Y9ljio`KfE!=rYXAU(ln?e zwv)tG{{U(L7KJTXw1bXHh9q?zc*m))Iej`S+u07EWVZG<3u(4%Xc)!v%o0-^n?`z) zb`gQNWbHMxW#M^j{6h$fOVn;4hIU(Nq=rnEVQ%V5f^xfrxh`2T!8{6zIc%F!sFGhl z&h}r4Ai~@{;1Z_Mr`MW?c`LPx{fvorIeKiz9TqZIUr;V)!zu+ z__o4rTf=i*Sz4i#+)a0B82dnZFn(8IgPpC*DPS-Gz#DnZVkvA=d3D(}JAnUuK876h&|X{cAbw=3z_r{THi(!*1uMXGAjeSEHUx@1#-Z(3Ok^~7?i`$g8( z$=(9zXi<{PssP4v2YRRC`0cC?jc4J%4BKknA-U69^6nWe=93oX2xi{0E;k+Pw+D9Y za7u>f^y@uR3vFKeR2qb{*xK7(UBsyHU<;_^Vvf=R4%lVEhy*y{feI_G(7aWuHoXO? zztL?>76}{P+*nBv5QTRe)vi}|-zobNyO@9hay?8;omY4*5<{Z}Ola~j*lxtn1&@U}V61(=_1PjOsku?DrLP9eCqog}=qxVa3f2IY!2k%uI30OV&N z9Dq&%^+;~?f;DYJQPwnj^Kp9|(rOmPQr!SZquG-q;Eka2-Cwm~YC6@Pv+*NKxfjc2 zW2)L*=>kh;hJQIl!=muX?aXvzDl@%8j8 z_*2HxXc2#8=@tf9FQk~*8>9kMV-2&!(%>dj_pZ)BVi%QWMGSoo=fo50mh(raYN-P@ z0vI43dSH&8X60<)kGe(=ZneeT+4wI{)own@AbZOzgtckz9b3wdIG|PvbN3NdRF}yN zTx4YB`ZlDxSdT}&zPFoN+8X<6#*YypNsAHV2Bo`BISpnk(6aar3h;vt5 z+^I*&wewG3(B}5@c5!y~v%kv9%ken9PvS1IpzAkRiE(V^cr5J_=IsG9BKgen1x=tb zvz{zYNCwY#!k*g+CTkP>5f<5k+BSaE;=>IwJfHPLH69*WOJo63?r z#RdSSKw7`Z);NNysOY0PI3H0|E%b-K@cplebf`Slnlf%JEy{wfnN9I@8ToKj@O^rd zoaj`e6=vVg`+eV++y1+)>t z0a%x61&n!7vIfhLag_kE0HT3~y^F;9w}iBZ)GXUU)~4|cF+u~)u*c+i(X%9u;jrLj zdZy9=2N_-&xc>lzYr^tdTk3jhCa7Y$`zECcS;~|0Nfyc12Y|zG%&Z3>fNP-CHHmy~ zZ7p@55NMXVeU1A`a_ed3v}JtAu*Iifo3h(mh6Jku2o*IeQ<88_&FQn<=)FmJYO!4Q z{8vqToqmI@Xt$mr)wR1_NhglN#uzSAz_jYj?9a}?Oq+3qDmdRLx@83^yUV=3530IHR*;Sf_vk5|<^Np~Kf7T67izO+P9p$WCaCBlesTn&df z3P4gynp9~+4M9>>FUppz!iFRFpT4Dg^t%4OMpuJ;NhZx$we{q;m)e}OE}A^HEYf*+ zk(eTYNg;E<&qW<6o+H;hL!oQ;8bh_rSJx3N;@TEj5EGA;nDoMiV%&_5gOWOTkHe8` zS6XO_E30eRA-aYcZUeQ@XQivaV0i9|{a7?=tL3p!#$Kv%j)PM1%jvp?x2b8+>X1()YvnzxG0El>iP;ilF%?+U zr0iK_5^ZC_3;VUwbv;q9?&i}-vJVg}@~9$Abl~S5e)U7C_#XD+?p;e_+!MD*YN5S>Jn-*r171MT(cVFBa&Qz9Ih8I*y%V z9CmR{70e!3H?kp3pxSil-Co&MvPmnn z1kPI^V>`}NoDs?RqfUpzI=#lBZ*O;~>Xva^UwyXnQ*jl729#}6B*In%EX1hYlY%fn z#=hDsRPMXN1sK~H0h`Ct-S4Ldw31X7^hgAnD=?O zU>N`{umQLZ>dh{Vs6(iDUr3tp%Qef`KxLKhpxo`{u2}ADxkeSMyvcB!V$GDuaYV*4f6zY&PHW2CtNK)J+5yc=-HjTMv z!2k_~j&J~Mmkoc`atMbw_=@sbNU{JCWlZ+JsFRm@`_ zk0gw8GsSA?6X;jB5y^k7+T7lWCWB<9Tgq7f0C>&2Bx4AqIKty_+;TwU!(nQ|vX^JS z$=jmtEKVkbpy_hAf0nmTeRi?Dv-p=;kK~RgXr&THC5cr_rsiDjf4WFOaC$QlouhU~ zh&~|vK!xI2AWLhTDGN;voxaG}?UOs5McB=~L>lOR8#ipKBK}S@CR!B$I1% zw8}ihzyt1;W>J;h=XY9Wkv65`jW*v?)Th;SODmh%q_~bZj$kkV{VSF@rRoYf24J@ezN;>CsffUmqcq z-7cHp&j_}aVfOz36y3=2>99y8U>7))g0dip09P%asK!}&YmW|GTX=!A*ITI~Yk6mm zOLzp1!8Y>CyI>8t1tHkwln|tlC(^zkYkED7hPQC(cKai9X2#ZOCfOm60PUGKh7txK z0zY=A1(XHg!9q}S=IQ=s*joIVdc#i1#!cy~X|A@vT@OjoCA)1+R_!K&S#(W4>T5Y# zR}jwaapqwij?U$o0SE%EnY?mt@yW)%Sr1-B))FZb^md?iZ;o~p2a7gzzI6UBfeN9R8BTn+Sam?(>uFk?&k89TUV>dVRWUy4}XLG7DSel*ox@&kT(!XJUd+mgpCD z4^kK@QIjNJuRhK{S84!>B)bnb_t+NKkQ%@6BZFOrs~P zWn-=JCyK8Y;kDZcWP9r3PJlgiZ zEK+H$do{hR5yGG7*D^nxOm0DvB3f*#CRmgiVX*<|VbrZBv@(d1CpSqN**2KcT$swn z@?|3~Rf0bsc|j-`f=Y`PQ|U5jx^AI<Wf8KgN{O{eW<#<@I1Ig; zCogQ_4rH6Rr_ZURX}c(=dzL(9r0Mql8q}po=SgpogX?kpz(8Fb|-CeX-Qhlvf;F3lW$YR(9hETQ?%mkXRh^6s8 zi&*Ja6W+}PPv=Kyfr5}mU3wW5uG8`cA3FDC&Nqp!ZZ#Wwm~F3QghOux7cz}~x6K2| z8DBShHu#9VIFpbtN8JN=T}j8?$Tuzp&r<8hS7jqsPO)^uj)D##-)E_KAmPSwAnP-(dUQlFiUn3%cD%=l>_C; z;q#IiN#kraTfYc+YU^0i^p6j&n5!+2PaV)JkMP-#fc9n@GRY^ZF`MKvf#!>c>ZLjk!&y@C^PsDm9s{a6{ z-@v6vJ9p*3AI5$o6O}A~o;f`rzr&2PDq|)0>U+MasMyGk=4O2vd;{N7IZ4?Qa<+umW zV(yD024Y@MmD8p|Mn8mRy%lukUli!t4!3!%UtGtl$8OU$u^@=bfgRZprbf{qP{KuS zLt%5YS@25uZuZLeO`hLMmhG*P1-xP?WRxVqw&lw2Bg+g!6P$e61XP-qovd5FA{|>x@fDPJSDK3H zS63>hOSQI+)Eo3-A@W@hlew59L5F{sE0oM~FvnH>jdnF{Gefk}qSS2#l!s8ZwV4&< z1}kvDznFuGB7>s?fJY#aPw{_-wJU8WQMlB!lO2_^-N(Rmt}t07f?qk&{$my%77CtG#9NEx zsZMP?tM3WjY6d%*FC&R(8jaMk$Y+p9Op%C(IR;iN@-v;Ga;xT`uA59Zz8}|Zyfqey zWp8t)-Nyy4p?Db{E4!G{;@*(V`7#(vlev^B0}7#$wypdnr)zqL_C4=~qF2)`(#fM) zwoe@G7?D|3Zkar`Q0#MzyDVi%(>Gg;FDHh@=F`6O8%t5KFK-`VdsEFj15_qqe`9tv0EySd?_#Q&jN1-Ts+0 zaa+l0cObjFjw!C7`4I;ow*H;L;3&%Ak|}t;{sq?cYnyl@l^x7+$-?<^#;1Av`5=^F zeo#6PcpJSY-oo1Z?HY!qr`p9d*OFbvW{p|lX2HlLXFn>8@P1YF6<1ZzZ0@x?Eni4F za%%RsDL(llz?iNvxQ<8jJPg)%gO%)PtMa6rk2UcYk~}L67WP>Si<>L+E25bvjxc5j z!GF||A`}dFWqD9QtJCS?TckFz+?`SEEwu?R=eS0WWA;Nak7$e-_(=#kZ<;m884S99 zFKtrONYXT&Vtc($&S<2#Y2}hkx+^JI$tS3kMCf+9XkDBP@z@~VBrLZ2ebugkcdAUuoGVmjG#{`OD*#xRFTOa;=Ve1*oR|)3x))f|R}++ve~2*tPKM z!%1P{1AQIk(7v}8CJAlsE$zyEs?teY<(*k%BLQ$QNG#an11$VLp8iPUeNM*D5H$9- z=0>=7w%sGMd5D5GBW!~psA8O86(-d8_i>G9Lyy9VYa?HY8s^&E1%)Dc6oC;ej!*hR z;K;!4F@jY<9Sn~oGU%4~qffQ7zO?cz^%ep*Hq8h!l`AIL*Y~m1kfw);%2c=r-t!*{wECn4r& z*-UuO<$eR6JBCsOEvnCP;hiyVbxVuu+v_E`Xs%r`g?t!`$9YSy0Tk>vL~A+QO?#$cRO?QU|cX_R9LKkJSOSH9k<7w^>`o~A}o#YY_I3VXFg0XE=;mK%9O$uy&G`&&3=A0m30xsgV4v0)y4* zwpUQ-Ha2szi;uBK6HKT>5TF%P^WXusISLQU)a2%_yxN_r`H;nF8^xa{;BGAtGMP52 z7b(F!e5V^!f(j`e5Q}Qa;G0fOlt1ARw75?Xiv$t)a!a7{i6y&2_SXO`Xc!bmC9Y&# z=YH2!A-2d5F{x;_QE0~g{_{{W$fDxuB-GjM)+r2MI;n}@Kk4n%u|m$-knr`aZ}rPt zTYnM5;jI{^l@+}5&eIUd3Nt_#bdumPHi1`S79)(3#68>1Y8?y0F<##P0At^+z&5FB zmrl15MHI^#vNAg+-}FSosxAWLKJ%7^WKFJ(QQ;jb>%P;)Q6!Q~(gv7YzST&TSy%V1&=(>0 z?F<2}d8D|!@lCg#qCL!4xA}DNH z^2}S?OLW0rFm2*1@)ik&SInHrf_Wo3n9dy5y15cjirC_(yuX7*mcl5^B6pWzks3FI z+AMsAI4zZrA9W7=^u{Xnr-3z1KTVe6`sQi0S+wiPkq}K1d4k>Lj4*J4vd}C1o5o^H z@Kl}6QpVcH#51{r>@h_T+GV)0y%*kFOjt=HwCWs^Aq0d3<98=^D!2S4>Ls{wrCS3m zlTUef3d~w&5ll&wrtnKb%vVz9%S-EXWce9stg!E?J$T=sBxH#RZB4y0g;!km* z`IeXWx2IUyEu-odiD|4lrOa~NI;23!6SJ{Pl5_Ht=c=*>c4N1p>1(E3_;xExDWa9N znKbRqb(qjX({Es&R(@eU$O>HT+L>mL_4 zjlhs=n!FU&s_V?&4X;zK)I2Ar-0Qkdp$U1eF6Wv#1jI!>PLb7GKU8J_s9|{S9{6Tp(o2ErHD?F3f&vbu#F-8F{ zVUv0pLY94{%dXbTF~bvs!-%HpB&Qqxj?Vu8fvg&h`G4Wgmrn5Aw}^E}tu-q|j!;B$ z$t*L298=s(N0cAS#DKeuvN{clK@19;Qg~X&UxMP%r=AF|F5!^Emn(Ia7h5teV^W!6 zdgIGsxlYDr+D>`BA5_&^2G?3^XzXlt2ohOtZY8;J5@6Bi=lRtOj0DEutWFLI(!cR7 zwuh%j29}m~Eah*!kh2zmi>Mh(moJtp6j=iyOl`s3E3%c-vwC#=4t`3GZQD&hugt6C z9}nAK-C5pQ-rHJOY`lih8!Lp2H`<<28!3ns9#zQ009PnRKp7J1z6Fm)@kIJ%lh%vEL8ynmrvYc?@y%OhE7(oCh{1U!MnNWgiGAYru$ z-MALye5Vf4YhEb6hVtHPgtJ4bMfUjO5=kb=Clj>DT~IQExB@vNC6$zxYTBf44L_s` zPBOaF%+b_-A0@VfBvVakWvC?S#{=yj!My;Q}#sY`EGvQ4u+I zCbIQE4NIqLj}5~qW(HUp?d0FLdg0{WLB>$0-Cf(s;1xBW;y)GK_*=wUwY9~JqVDSO zPkC(j8%`P~B}%6B2wts_v3Yjzr8K zabR|h%C1J;z<>?I*{6A{qZ+X1SFtvaq-q`@)~$5Qd$}IRiCEw`Jt0Aj z-B|K7!#r2vJ)S?c(R8^XQVqSdGTb2Fl!ge@mLEWPUI}b<;yn^;pAYyV<6AFwtu3rG z%&U47-6z`NP$88WnQ)?2lkTz^P!&8HWY-$4pO3C=Zef&PnD;^FKKVlrCO~j!en*sX zx?#a29Ds*f@{LYq1!Zjup)X-5&RsvRz?)BxO1pw>G6d9oySQ#=Yn!X7KF$nw@)ePx zL<4sC(Xb4pZN^C)RUR6*8gyDNk8J~8>N-@0d-$66=g(ETgzqsewonFz)Brjhvmcbb zSiF02Hi;yHEh^Gwjz@KbIvEL!z*I-SZdqjv3WWp9=s+N7YZ~IiqQz$>oo9Kc#pQW% z&m^d2EUz-MDitk-x##BjLygOwr1MaNe&aN+IXSsKZ>a>o3iT0xb!ly?+FiI(VuTWs zNTHrNa*7OM-VP8;8nq z^G=>1M}TWr32!y^>{m9$A(CQ|kF*IHSO{5_{L7u8O5m>Fnj%g%9~_O`WCe@F9}F&Sw1~&{rko+tR&<*2=DB^*2^E+3LMHO@ z=Ym2OUzn4E7?;W89e-B7g6xCK5M1YtZZb`@S(pGN1PrhZ&-iZ1Z*27@e;R38T2C#^4HT;%?-EU$*lut@ZHtb* zI6Z0hS|rzgB$nLkv0Z9$D7?1R<6|(HS89T+tPb@k2VDK`y=$I(-LbpU{o+mjpK&~P z@ZMP4S?QW4s~X6$h1Bk@B}iH*g2?P4RKd!`(rw)5KXkSfR60L^FXOekzFX}u!E&!{ zVIQ3&GF{IiNeUt}qPmUVXxiIDnDE143^&VomRsF61koe5x3FRwVyuExWho#k9LB23 z$AncQfV%+V`MA|IQGExQrK9M#*3um*E{Tvttg<5qaPCmG#v35E^4M?yO46O=z1?4t zbFQi@t%@4ng{eV#s@@G-M6}bSnt2v!=e%W*UNyukykMfThLmm!FhDJkNjkcZh4no) z^I5sm#-Dqm&86K~A~nE?tyxx3^BB@G5M^&ZFe6p}09bQ^(lOv|yhww>tz&tmSZZr* zAc_s?FO{|=xRCDJ>i%Fek)OGRY<4HQ(bGxQbxXfG{?AajHg00nWlfVtE?VG9fF{&D zvo|V8G9E|(4IC9HE_Z90!ZWDfBDqogAA5VO>vr~6{{U`|+FOfbJeLw zEwWe4KQPDuHV#`Adsfl(-wpUG;?*u1*6nU(dsS^-;bVao>45n|ZC6YTHqs08^I(zB z>N7TCBaE%g-iKYlLssIg(&;^Gaf!w!~X!QByk1x)y}q>O{LDAb83=H zwWPMUV$sF+l#!hy*b5Ke9AN&xpO@;~Ybb&S9?#7o> zgHdaSSCxdwFI=hZ~*S_kdy` zPf|>0?>2LlqiOT%)&$Decc_-4AirdpRu^k;Eg0=Wg;RV-dorD>bEmX zZ>L(_%8VmP8q(a75#y2~uamVImD~csn?G>i{LwlT+ve-@E!CQQ(Pw$6cv{ay(4rSw zBzle0uh`lq)S!*q%S9?75=333Z#04vl2BtLfm&BLx?ZJoZKd5`>K2z;{giXtf~hPK z&wUv~@+?3D^77l1pEgt7vxWVM;_3AJ8(nY0@#}WQzSiw@x`&>dmJuK<8-~E?hUFgs zBt^A=+y4M8!4=qPui{II;kVOe`*CYlnklamYi}=XvhCbe%YfwD;beAZNaZX8 z6T4{DsFj=0Q-nG0jvGwy)z^qG?L0)9t+W=VRf^v32ya_^G{!R)=R`n`*BeOy{nLfw zLt1(snL6q)UdgW7odU`mH%Tq-?hUoo)FRRnte649lm$p%yyyvStgE$hJW86bnSXny z$RW5`t~|uFneLfZ?Il}x3c@HzjUiIf0fV@1Ic61f%`WN>59)L3x=pT~6}|k3!fVM4 z8Q%`qk*AqmzGz|~hETvRF}Z=1f-zB6Mm?W~5O}Xgcr`fg;nU}`xr!5dsD>TtkO2N! z-rzh8>+*&38*Y5?RzC{(Kx%qhG-+>p3{$~mBn@$LlNFj5lng127YG+PD09PwQcU{v zE8$6WKkSPe8=ZSnwX@n@Nm^Lqw|J#ibW&H!3j!%PRsuFTZ=YgF@D=H1?gZ zV!Dde;}V4q3~KPelB-Tx;*2sKz+*cwa@BELRL;tK-8aNC&!rWW;ucGN6sx&GVA3I0 z82LyjK@HC=FgBXa@co3oAk}Pi*J3ST-0zMsxyv7^;AiPt9}o0MqQBFXZHwuCPm#9n z!J=a-&wg1zXKlMU%AL*15>(_GP{*$8dKZfI`<*f?e+u1b*V1W_+*@0$@sO%xbFl*e z%3p6Mh2)==o1Uc=Qc1p_iRt093E}BZnpbaU*fiZLUlQti&9#!E8;dKnh_*r@k~T%o zGl7>LymqdS#yS;*rg-h_?k*+1xtWYs&Ldz=v!eyXZg&3p-xxnUvN`Up$U~s`f(cqg zmfqLP84M;Mx6rRj!n*PHuL($Xb&pXH#_2GZfYOc2yvO4-O1h6vzH8f5Z70u??aa|koUh>*2Sv4z5hq+?lqW}=Zsv}}w{S`Uke|mZOPI!GoR@b#lEkxXSein8N zml~_bBg1O9Bp)pmP6^#|7=8H^IpFOWwmeHGi>FvFv=ug5s;a%K$m+6O8DdE1G9vCz znqm%cgkuYm0qJsb_mSeZwlZ#fIQl-Qq3T`(?)4dT=;M^hV=cX!Np#wIou?-wU<~n-$U=CG^vE@d;Wmn~1d?LiSBQ zK^r*Uq`H}yFfTde2!Jf3Zy`la@=9`gEiOWZ<;xX!xwM+wTi!&|Fnj&yA~bn|HsYYZ zk#USZnv%j+0?`d#TG54Qp*B%SXMlEYXPyDke)XT%CXtsfHi}lbK=g z%fj%!#PfNM9fo71zq8Xg+l~-xV{o8s1FmeYqm25Py^%Xb0j>=MnM;~XRSM;&gFN^f; zehbY){u|h1(xZW`NW4!j?gqStT1DLgw#AYZJqJRkX(tswu;J6D)GQ&?tsWa=dv9?+ z?{>kq!sav$`?0v~h?d#A1skS7IC`eLd^B5)4fLBQv=)y9USzDM13lAExqP*adZbH? z1qL-BDwa}<;w$O(3(GZv-s41eT3V!;x-?Km+-}^-(6f?5Yox#F`LdZ#xS=mWeJReW+QP@%^DJi zil?o!X&x}Y@@~YIt8qGfuJ4IF)-9dryI5zCyO%AIo^#ZHW@{IBHfyd$rlV?;$}J@q zAV?ybK<*-pz8eNYa#5LgXCnZM8n1^e=e^Y~E^RH7OG%k-^<~u~0Nio8o;Lw^d5yGy z>NA`Gc&)JWrwXsytF64B`~wVCIaQ^}6~4Y_Iiq-zMb+&il2he0p96Ep)-_9gnygK5?Gi_G93T}g zWr{fq1{ml(qIl#9B0t5(Er*D%ye_t08nJNmncgVv&B+CK-aH$(3rAg>`m-{UbA=gD zailkw`pwfxEHJF?bo0ifot|_}8x`dGkHjxfF;#7ReRE-|UkLO|Ekfce_x}J*is-1r zTp5)H5Q3qkeDZPgayZYQh>ZD^H?lpfE*tjM-07mq-bvxv1*87>%Qcmp^#;_=PQ5&r;ZuZG$; zjlp|SEYgWt(nTQrq^T+9ebpR&20Y5RdOZBnR%zd^`yPyEU0$0{v%k!r#~M|YzlQGb z3TaI8TSFDQOxIH|c_qD(gmQnZG8SMrJ`u{XWl%sIABh%!2>7mh8*NE$?X=mJgKi^hi13BJZ0>n_;}`=2 zpnd-Uj(lTlG_p?<+eVVKR}CBmqn>pwysp$wgwml=$vqcq{{T$Z z@XE`lX&>8G@?9NnR=9}U&pUZrW7yI~#qf_nstIT`-Xh+E7* zF~At~9XR(Qym!IY5^FvxwbL~ascjlgBX~&+!K9X9oaARNeK^O|=-POtCAjfrzKGW; z7M-Wv+}mog&XYrPBmsB91;~ChnD=-kSYPp?1C7Z~cCUZ8oJ2 zkF4FaH;}cm5gfZ*6^2uds@qfm&AD(h)Z?xzp7Ba)x~8YC-dt*hRc(IDZmD!f@2!5( zEU7#|gpo1TPEOY!cYbS@xzv0!;@=W#7IQhYW{k&bE-a(DH&ZmT2ioNtO{DDFsOU$` z7Z}KfT~g;#)O9P5>`U0fkG}+!QIQT27~Vpg|q2^`4h;cc#IZ;xmjmt;fPARN zPn>|c1Ok5q$D#O7Rg+eGONpN5GZfJL(;UT)y zB#T7StZXf%No0GqTd6#`rSjDow;poIHVHt7uRJLlRyQ*0+AK|dZEl(@s~nzGN5Q1@2)nLI=y{o_|x*0ocwYtlogM>KKIZDAp_grG%RmsN^F zky3@4_8Rm%3y>8}`>=t(Y-sL2r&fWpwD8UD3LGXmy)yq zSm#i3$Ube;C@NO~DLaWE4e<3>e`%1F5)yVamkoi(Tu&e4yW2drgkrSux>&=jSlUM;O{PjVtj6Lp?J?Yrp)lD< zvA8zwnZXq}$;L7El+~Nvt@iE|Xw*&=>P^ZkWcFT&>-8)6{AuA`wz{2_wxZ6<1=H+? z28-?9Pl!)&n3^z7Bw``1JxsMijb_>0BYs)Ft-oQ-PD|vMxCJ4&g&+{y4y#Dh0 z0I6bfxxhlk^`V$Wq1wR;%W7@+M(e6cZ6wBDvfCp_BVUk(De`583w*}|Il7*stLPSM zX+4#t?6Dh*2`%G}Nh6scwy@kuRz?6UD&&rZNF!+^a^b4M%KQHSTAfuX@~aVPUIA04 zK#P57PN!`$w8XaA5-Ed{pDtq~$b6Pllwq|PhYLdg0O9q;%W57Vdz~`VM3sKo70f14 zZ5m3>5daaH1{eSbmH_~bz?IH~dfn>7Ykeeb6IofuaU2lED77(5H2!M7^xi*pJE&wW zl}2sFfFjMmh%U74Q7>&Q^tdD_sbw@*bC_UXGDjg8F!LD5@{*2DK?{w!1F6RU01D8B zqSUS7?}w9IS$P_sp%Af>^3@*B0#@Zr(!!}JU<`Q?%%pQ50!A2CEJtObcxW9X1m@Pym)-8K+!t3&m+Xj|BEV+7l|v47=`OWMH$9gerpSoNwKcwBd4V zChawSjU!3UEye5RdS{6IJAYxVP2z1T_B6Sca>vZKX(L#gI3r~tNF?SIV0R7~hSGVc zEj%x)Swp61+G~rQHRRLoZ!RXcK)da{l_6Ws4!KKY`Fy7tZ@dBddApAtz7tE<<#9cp zr*yX;XOKF{4$HJeCt|M*iZaRu0=XldyNU4{&%=Hnjc!6ss1@5B5Vqh?{qnpHalqpl zAez=r3YVHNjA}XF+I4*w%;zKUUX7&quGY@l<=02KiaR|*DH#%JUPzGHq zm}PO2gBCnL;p-T@9%NZf#P^q4Rl-ZB&ng)$p)nxHK)*N(J8c! z#QMamV`pnD6Qnq1Pu$=uvW{B|pUtt1kzR!QEv}6fta`4oWoKa<$-VDcl^#OOLW1(+ z0ds(J%SeBS))2j~&~ciRZESJ=F!1Mu7gW-8t4Jk=Tm41nhRDt2My)HXYz%um#YQ&a zcq3-^Ax;7wN>2x;i2O#QNihAYQkQeu-OVhM1ewdnEW5r#^34kTvNIfRWyxT^rQ(xs zXLn;$3AR}$>w<|5YXMvI-0Ou}EMe4yjwv3H$!g^GiHk&??beC#p5KAevn$kJePqa#o zyO*d{VV|F(bAUm9q2NtU#@%$b)^v+~-!p~#K=Oi5EC-OMC}f@W?dJL3Vyv@tVx%&X2^klp)V1#wTS^;9vhy!W#q$*& zT2FfgzymT9CR*Yw@PR{jIm79xX|(Q{%Us#t+v({I-Mq0)Yh{a2^IHNF&YiNk8^_FB zh078%kP3j!cG(~)6D(56`{VY=oJi8-HqhQ%3~{h>F`VP&1UG%EJ@u1=q1_w#uWes_ z#MXXVWpRmP+)$JrV8Q+3k&nH}F4Mews5RPY^IOFL1yMvZ%^IN3KgN4!9R_=W$l19; zIHh}e{PsCv9%s!_+4&sjhct~!O-}Az6x|8qhg4(zopx2kOCRnPL~ITW+=U-|t_T^f z&%^p=t>KRlUtH=pH=0(IH3%e{+UCh1w@9~uu4Ijt)Dk|=l7PrvS#YQsng0Orl3mTG zX_H5)rJeSp0l13R=Tvylm+~*(1&L;MAqLaAQHd(RprLK!Hf?g!Z@21qT1wi=nKkj6=5ly*_zD87sKu^j> zG4l{xZVsFACRpt5uXRmFP2zB1uz(3J1b%aG4JXSPD-u53ed17(G6PY7mfk3}()<%X zlY4KX>QF3V)QI(XgGkoS%(5aBead$3UEnM1+qJirLr^Tt;Dob#;QQoJSYD6+k5*G5=3Ped}`|Y(i5Emo@ zR2F!vT(|KajTWn8DoJfK3^Egp43A^jb;dh^Stux_1hl{W6Di51Vb-Gh{uR3r83Tet zZWtd*AbGF1q%fH_V{j*@Us}1LT?=0h>8yV2l9*TjnMYg8vPL^D3I6~; zTGO7_R`es5_IEJuBe&GvT?bf=_AnAg!SN(b>aETg4CAOHAc6@7mCuLtt8WHJ;pv*! z{SL<8SH8CME)MyWDRm|S8I6%F3C-N1cFT`&O=$EqSx0-F# z_ZG31nW2O`5+gEvnChW&7_m~PZv}TUtEAVOxm4b*6ejRjhb<-4e%0ZxF4SB`ZDh7- z=6k5sWp#~w#@gk~C^n|je88h0D;k~}(KNX)?Gc%q zOp3zE^nGgjc%R5iuo6g(#7QUa)=j*D*+zB~jtLmYR*+cTYWBV^w{?9IHoJyBNTUgs z;w5<`*u}$`_C~A}vHQ6gP~4WOqcpaVYL_}>&v!g>0&l~4hDMSysr$k=6pzdUrb1_o zgIs(Xf=6>>{g(uSV;jbZvMiFU&7G`-rWcZgZ2^G{11Z58#?Cj`s&#p_wY^VXx$)a+ zUMwH!b8hl&e9t#mkk|!lSl=pw-GEYYh6izC4+==GCr^Vyn?!hZJ$laO=H11VA83%e ztYsvPrig9f7tTikzH|0v`@7UFZ|yBG>dAerX%j~k-Q2fxKqd^YZpvm=1dtj*=L3wO z!Y>=2C!n_R28pM`4YZm7dkdwxpU)A7NYvb1ZH%f07~2{9q>c|@O;;t|xvlq#bDH>9 z_4kqLmL3?^H9bnpNLVC}<)fAnrpIn0g$Icr`ktTIyRfCUg_<8@R={2t^<{#eMLIvZ*!~acecKKma$!k;o259|NpG7f+ZPhp_=f9MUlZ%fklVCL2Bkfs8DwOM ztm0(Dd0|N^hpsR|=NMxWp$V>6rO#6hj;V*5miAUj?2QP%BwoQ7w$`i)J}|CR%5Te| z{VI&Q?XI_|Llirtja$r;Hp-Htk}@&|dVVzqxp{48uMH!_cjDUI!{8o|DybxP&xe=%_%`OtoGy#8l_*}36WR0UdVyuobsiA6muZb_%*sPvZaY;9yG*P73 zXxUYI79~-~%t#sPGBd9Pte1*G2My5l?^Z(FUTYR@C7rZ^7$nIm?pGY-kaL0*jAPJx zkxK(cP0Fpbj9b5@n_qDm#w*xWg&SQvdh2v^GWcd@y!%^eHZa?)Dh+|uBUN?|mGa049V95y{)PVlCMrC!N# zp~jZezXYqD*yH8rJY;9TJoW;k)GQ8}rOuNs%Rw14EDhxb7{)L@Q}Td09lHMjdkE(= zWmA^gcQ*QkXu-8_M$a?7&@QfYD-AxuZdyxeyR#f7-I@wq6#n)a@-V ze$R2E$s@o|?xK}QYm^QEZKUS~vR4Hd*E6U1Vk;ZFn@v+mieIu_+edkEd2}I2OG_HG zd5%mXf2{^wNOpxGBRMtdz6bb;pv$G|T91fcD{IT^p>iQh89r#%-4&e`cas{myr8yl zHf6RF1#fuQT+wa3J*Hk-LuIHzf2l!j6p@v9iQY>cz~haLgU%QX^fl1p?W6oZ;G11V zJFEWyUWb=QrRmyK8m!hjEx(GJbk-4DMLXSE*heStqVgOmXA8N*zwX#GVQ@)fPgHqs z^o6mq_-A)$@WpDd%uLO_;bzQ}BBIALGO=8h1a4!KkO!^Y!KMv2P%Cc=cgS*#FTTwNGKtYnEIL~;iygdlDQmMfeP zqmt=Ed0?*7b1BeHmc zt=tF+E{8kibY9&7C)yp?&Rfk!8Lf($2J1KCSlo#`$kBjbFXe8h z3>Yk-d^f1+6J5z?CcSnoz9ixm>n3so{M`Q@OR1O4C^+8YF2f*7jF2JgfblrBu6SK1z9G zX4d(@`H48W<2a23c2 z2X3fxR*m;Jd@bRA3DxX0O-x0awOak(f@h?ri4D(yV1zqKcrO-Yk*`qB(0!o@ z-6U;>{mMtcBxW_oD!8HI9}npoCYRw2L+qB*31E31Jw{85lxaYNVGyjDKPqiF1uzv@ za-zA-D_*ys!yjhUEf8DT2pUP_hA1R4`A)k-F4o5Y z#q>Me-F>YiXrd)VXssN9kIF{<=Q&)Ea7fNm=SrlNlKa`6JUvHWlIz!7bn*`lcw@uq z;XPt4R{sD_hgXf2tc~@+Kx1qPOmMu43o@w-ydwtMNkRb~X0_lACdHzH(?(rOPKIp2 zr&f3hWfyz87z&(}0FX%|Zx{z2ZhS>?b8IzDR(OuDcPh;*1kiU{4}K&9T}w2cytfmHHN00Ov~A-H`)OIa;i8K(+;hbqwK8f}7Yx!J@LIzi!^J5<_f@fOGmrUX4oQ^NzY*&Tad&k!w9rVmdTel@ zl0C}mWqsqJ846F{1ZMz(IIdG=m7UeFmrYGp#7ioqH!(vPgh-Hb2g?}4$0mO00k>r3 zusV>9R|}(u4@#{{F0U)HZ(BPr!0dFnf3q~EjzzslAW}Trg67`;02Xt|T_rU_7PmU2X{=x9`l+8%h8eH4>w9_S-5_?2NQoXP3ZS%+MG^^QQ@x~-<{Oa+ zD4=}DAn#F3io*O}YMSi!+I^Oq*D7Upo(#wPsG}?Ax}yNxa4-mRJDk+hHH|OCH?~iA z1+}o2DDF1c>SA|}Fwv_A*cIY&ykox&$ScggZfiYCi&nZ4Ej2~klcJa)TT6K!7L?yh zFP&*TxJ~coDOuu)5Ju6n5z7;_u5@xm;rnTCbiEGd3$+&Z<_q6G+`=Ri@BP}&&Va4F zAAQ)7i~yx;(?8)F@J-FN&B6O?!7N@}{{ZP%MPyMQmzGT7j=%=&6UK9%Ys+<8ON$$8 zOHU5ytm$s3zGcnObYX^4e6m8LbS01}CEK1(bX1#?=8LhE>aJFyC30PA8B!fLM7Nsq zJu1@TO*G!eBg}WldnzOk5}mC33~~S?G8`!%C?$BU5v?KDZS^=eNq-IUCYWZ5;%iCd zM~y%QaVsC*dAPv9K&4p90`+$KKZh8QKb;b?}aQ^ zmWCzAIT8VbvzyM_sp+QFTzvayzF!npE&Rse4-R4*!akbH|lgTq%A zmvh`|m%1#V#4MmNJAIhJ5;U@~LFLLz!IliF&E*EbBmr|?OE~;PW#QXtqFZ|{Lf(0n zHQytcZOnfnhb*gzF|dYVxmda06c%b+vQ2uLD_ci<9iQ5@Ys+OxW4#(>`&i2*>AjrD zCZ6&SIs{-qSi-SD6e(Se+>=>X+Lh*^qW=J6YS-gV8k#Nkr#u(MHX*%^)>QrJZLt{G zkau!at^$pfBKTik@lj(G5yN2}>y?nqQeBHVk}%N}TpgPSEs@mx*;>D;cp7U-S5m%b z7Vt$PIW8MJ*$#7@{{Rn69=_c5#|;*}>7@I0F?F9sbC>Z~iSIPIG@0PHn!{0^-|W|G zb7+uBC5U9iVmTgHjAlpqx1c6A>$DYX_`gN*Kg3HdYhS;PD^<9*Z5|iY0>@&jB0HHv zBY`UqEa9+$UD2cs78j_}W72#N;m$)Z^5 z_jfSf#eCNh3k!IXNZFlZWnmc4n8%W*Ebp{@#AgFaxV_SJ-9G;NTGMT1Zrhn=r<`+ipmP(718JqrzeUpW{1S~GfQc4Yo*!5@JE?oOUTyU_o+`g zlgUSHD{hYp9ZAe|hi84wd9|clt2hm|xo}g_^+NVyE7&OQ(CWcs=YrtVvi)>8L zBM;rh6S}&t6`9uymK7dpG@Oi;Hx;XFy>F~fsOlCGOQk%TY`T5D!4|^eQK~Xq#FE62 z2?9+lZrxO?N9ArL>>%BeeLuqUXclRw+(swWU|BA1+{5+=fUvrF+CFxHf%n~+LN-~s zHOp$=9@N{$R-PVP2tL&#C$#yNSEhRS- zy^IB7aOcgPOaX~wz4syV^NcPG*B9pN!&;=*dOqzb^jmn_QCOuaNRkFGFU`W7M4E#qndt+ML$*mO72ZXx9>!xOiY^DY*iJh=BQ5 z&}5e(5eY)2RtsQPl@GGSQg2roASys+GK+IE}Qjo7=`0B;{K+FSt3^AnIP>K+8S z)eP??+z~X>d56ijby19kK%QpMstyzZzyN2iY02=$M}{Q(d}?FQ&Mp3C&#%wh@UEJ; znaZN67iN{euaOim^y3#9tFF(j_cApf5<_u%olEs`~GSbUgy%4NJq;aa3Si}V z+CrA(k@s<)Db7k2WvO+sQCzfkNocwy{dekg`u&Z*wRd5qjWX)q2v&R9bnCU59^|TF ze$QksgBC2(v2T-h);pUF8AgGj>6(s{de*IAZS_l86wG9|g2_ZSGD+s4EV0ObVe`2p zz6o{;%fuv?mysPWP1Cg}n(7GcS7qhV@?&0eB9sA_Z0Mv9loVnBR~hW?yc?!yntq$C zTwTJETw2*mV7&s`o!;Tx{ZF8x>qDxZr>glecz32|{w^ zOe#X86Lva_?PJ3p6xMtvXW`vXPP?pF2|)Z#>u3ZFCO#z(JA^IjjR>pHV)ui|M@_UaI%?{f@++2VzxRSc-g@gbfl*UZW{ z2N@uPe_D!o<+2GTh{n(9{c?ybAf{RahifPW> zFWmGAyh#n$iFExj=G5l0aSR#_*OGOw~mR1geE!p9jT}wwV$^z{?-GoqIL9N9l{*`Y%<-M~*EHUhgBZg)N z%S<8iLx#ZqCQ@=(RM7k{@rB~NsdYIltrMA`yp5O>xrQ1bNF|B%Cp}JUdNn5%&ly|u z>HU0-;X0Uljlx>(b=c}OmC+@+eLmw&eBMWxrFaL$^UFI$C^FgJ zZINbM#bjmNcKoT)#JltNu=xaKvs+g1H;DA8t>eDCkWFwUjwH5*;z?&=9M8yL2;5kw z0~mHh<5BsRAZO*~5` zOCmBVD}to#KyeAiNe#dPBTCCnjJ>4gX(M!af*%as=+fC~Hu|mQm7SoumJ7sEH(JJm zLZKX#A%GI_z~Mesa3#s{R;%Jq6zlNnaOjd+EY<`pQQa5bkjXO^&J&z@m{K$H`+#J* zg2vav*Vd3|vOyS;q>-gbRByHitC@3HVBY(MUwJGQUgJIdsUs;X0xOYc^<-ktvd0(sn%c2@Jh`J&H-?=^o6_-cK6 zT@CK8;kbfGtsYV)mN`qn0%2U_$iwC1AwlbadO7a(Zw~k}Ee`8J()3FkrJBmsr_@qq ziQe8xP&)Y`83X?9i;`G^TYgJ6C5Oh351S(vt6>3>doLz*kjTZP%BhZ3@`w?g@-|hR z?NgQ9LLNQ!T~Ab7eLut+lh1E#&n@-5k0r#G>Zu9b*heVJB#{rwpfb2Eo+@Qil04IY zs|9rwqP6Y)GojPc^xxkf5kaWQap&HxjCZ0^^I3~)jmqGV?H)?)+;fuKKaRAti|Y$G zG*pB##~zt?GDjTqpxUP7>@hQyWf&vo1+o_;(rA{NW|816E5w?NaogF+1VTqcAXRRe z#89zK&D7@vupPjw`h@y4*5(JZvq)vLg8nP7G_aOAjDbsUMI!<+*PolQ6{RS-KY7?( z^;YXb7tu7GK1pSdM!20~-6fN%O?55v1Ldm#(hoFjcYGr%;Im^Dk8K8#J;t<&rNs=^ z_Qj(6Pzs4Bm$_C*%d~585XxGaeHxd7>$pUYMx^Z4!Phej=Zq- z#bm?cJ3DO}{{T$VEu-?TVJ|#^jm)AD`$;I zvg+0_H;Ermn(k2I+wC&R_J~76DcDOL>^#9117vOl0m}nc{>l75;YQMC(&W^piU=;A z8J=k52$EiY_X~}I0>n852IbFCYcEdmj*$8trG#uU zak0ag$ou);asbYIT}#HE44PRdYn!O9t)P}MF}IK`DtxAqNygpT5dsg)7^>hg!ONa4 z*}t8ikW|CeYioA?lRW6^-XzyF(RiP2meu7*{KdDC6&2kPOR$fUT13J{<}n+NI0W>1 zSxpktO_*EW>Grm%sU_{&Tgo=1uLF6D=0~}<#!d-E%S6}&4sz{V;p%HmXQ)Fh?w56D z@;tKH-0p;+Nfbqd42$KlW3vml8Q_ZadruMg6}&xhrM1<;hW6M=G&eC^{i5psoo4va9CX8LvY24vvopfsxBDSh;>@6QhjtM3z1d@f3m3*`y zZT|pC0h0;^tYaV$S}O}HjX%V?ck1CZZ>N0wXMlw=2Gh+VQp-8B8B;e zRN+AFV}Ae}BrA8Q$sEjE%#wT7lG|f47H4C+*k^bwN&*99l?NPlucPQzH`3qPmuq`= zxSg49rxG&3D=epecVs-IZrzi+f<+YRCwCXG^|5toI3;+tV@apSbN!zKTV38xmThT0 zwXu*o*`}dzSs)o^k&4CTge(fLKRDdc*7FKoR)#xkJIht`=}`nl(8(Q=3)wiw|3$bWQx-8_0NPa zETM)_(`q+LmvURi(vcZlVDD%Sgn|ts@pV{}%Tx@{zsY%35kvAUM`i+fK_Cy3TfYg}!7qlbwEGcz zb2Y@W%?;hd7^f*B`GtdSRm!8}g~=J=vIQ&}#)+a$acbIZb4zs~xI$Q$R!}-Kf3l+k zf_jmHYL|+2m~6Cv4r}qkXGrg^F2rT_7YlH#7dSZ1Jq|r93`~8T)Oz}_F2|{r&UI-z zjcKn(XQS`AlQxng)Mqnka!YeH?aZmNN4O^w%OCp2!!`(RTLhn*88vrCT?0wHEq|rX zE)ZcBN8tzit?ApJ!mL?%yX@AYb~1c1@`gHbGsu#|#K6cI~e{hf~w+uI=QTO4BcHE%bPVmh#xN#olpj$ti7xQwC#? zmA>OISyvj<{A34MHoAU+YHg*FJehB9B#E&2AjnA|ee9Ex4<{!%ttA=Dt?aL-k;^2c z+m49evC!@>d`!RETDF;KZDFc^Yb&OsJj*e8UQMYPaSDOC)Q~rVxhsbR@%qE+Z{lmO z>}Csax}E&YZmyHck|&hxc%x?|3>Nv3K|78K&2*j@@#d>{srYM4)U=&B*Hc))ypHU% z$Tp47u}{i(WOM*Buo>Dw$-UDj*M1`EI+VIxx0bdx#5KgPEDHpSDJaW@JMa|Ye&#vI zQIO#Mi&K`*zR#d2^f?>77g*E0L3SeWv)|i8bju4%rya6JzG9E{YM|$MZ1*aspv6t6 zS!=)AH!uGH2-(wCa9Sy&)2?x8DyPWtgv$op1{>xoSda!-A7Hs#(Wq!J*;r}vThDg? z0Bn)uw-OcmNC$GtyO?Ya2E&q1ZJ;)_)wF}+9hHO{UYK;F8S{WP*#~5e$`R&gJ3j74 zInN{w)p$xSKFufJ`u?sJ6M~Dq@7t%Tl46w1;}q34w#cE%eb zGE0IuK+4<>ro0{-I*y?n){ru{o-o16iM(2=~`nQ%8AcBtSl z-~g;k`&)|!6Gb!I%HumDIA$F4j>oS(tIGbSP0_WS<; z;2GLBi*Nm=-WJq6^hj=GarQNoyy$lAgh;#rg+*=bIgLj+QZ%kS1udjnb)-?>XL5x3vbe$AF~P{e z!N}`g)oY{MYT5<7cXu=0ERi8I97gQJ1V}IeN66d?;Hwfr2b$W7Z8t3+t;}%|R9tDn zwyoOR{{UJaInUrZH3h!EmgL*O8s=rbxVE@R%m%O+A>XZsrhANRf%tx7%;P(KWDbUj_?B3$W`&XJvO+NciQdj}FFm-5$LxOzia($F! zbCuGyEpqQif=vqE%5x>_+*#X6Z!E7FjF^n3aU@$+wlKksNmpfHK{+WmIO?_k0D-UK zRNPdWDqo#O&rk5s)NFsUuO^E4U0KHOkVBFV4NpF`aWv3O@+p!c zN&urA)rN$jbm%`S<>mH{Qd70NEf>wSjpNTv zEA{*T00MuB9t6|0O&K){S=FO~78SRi+9uj}JC=;7U72T@ijc@mfCW&97s&4XGHtv! zV}35xukKtcX`m;ZibFEFQ04GcD*{jg92}g2edEANd|PjGX{}FlBH4Lzz@A}^;bXt} zf!&eYo-tj--V)NJT{tqy{{Rx$3>LpXF`)_w_u&_llgD08Of)LeZB9w2)pq-hXU?y9 z+FhT0cRpyd@W8cb(&l*0tRzW%&l97T!BY}QG9EnSZbloo9=K99uB@-Gyd)v8w!aM( z)N!9gkOj%#`@k~5C?31wzX#~!N_k&!a6wY%ARc>HH{eKZbl(uJ zqjC0IQzJ@eee43q9BqQk&9`V%=nerSp5B9{%^1mRz2Bm}w|X9Ys?=4ImzImo*yFWF zkHfmK(IV4D)w0>c1h)-$c!qB>2)xXMpKcp!ji6%)qo5T9&E}nWthagg;=(>O5_FkK?PG>q(=QHu5HlL~Y39%0i?O!3U0eis|iqC#Lw)$u7|a zxL`M2L@?XCsT~RT{{ZV}n+IByoTE`}dRSa_FKO(m!v1Ugk1V+U#JruRo5I>-%GliA zb=WP&GI2L2)b%GMP;L5Bd+&rloMQ%|E82hSo zo|WBeT3kLDf=eWUQfUS^^(B3C>HT|ksQfdk+-VB3TQ299P`8M$*=3xS@~#D46$(_p2<$a$Um4ig_+ni}ptH5|I)o@omqy|-atLa!mArA?Jr!rnQjnIde&_P%<^+@8pdOV(6$Is^5Ey? zES#wz8e;zyp9fadf2^UK?qt^H?g8t5=cyTIl_MtxbJX!9E<< zE@zung|6qB#E-uAV~lRw{CH3|wgA8Y@G6u)4LlugP}*DhO&p6anH}`&wb$;j#GDb6 zgVbk=$MH0}uZT5GJ4`Pvu9D2g?QJCHV#J|`e2?(tN#G-t~D(OQnI}8wAT@; z%)e^1xRJ~<$NXJ)9M_zb?YZblMmwWY4+QvQPcp5oq*n3G5Qp!ox1J4xs7 zWtfwaN#i_6;mt2YpIg+erUOp4g4!KNPb}=l8J}XhlaaU_u=$Av4+A{<%RzY?7dGH= z^GHDe3iDrxn%{=(G(QmOw{p5`7w=`5kzAQzjpJ|wV4{(kdh_ZJ0*Y!=lTx`gIaDtZ z{w$F+*z{dL!(JbYRM&1a{{Xk$Tf8$q*h2pRtlY9L31Gl34oL%pv^P_IqUbtB?fumH zT8%yl5oDfg#Ev-FqH+7j9d`~%>ToN}?Y=YITSpAmOK&cr1*o^@N|ATQpEu4{>*m{n zK`Zj^Y+y5IsJPc=@jrwOhlo5ur}%#U`%*)zTE}x8yvEGNtF=~F%H(V(Cp&ixH~O~h zjGevRKLd)SBU0YcU)NJrwEZJey|s%=Ng$5$38uG}-dLrD#BPegb~_A$V3v8V^rw+1nn1*8D<3%H-lG~G`3!ulQehcxdGU&p9v_OM@qmUjtq@QEdgKn@OZ zoPnR43)GNJa#FR`--xed(h^&gl3l|Pl_!p*w@!Yw&nh%I`Q(++PZ!9X9R61|weJh~ zcT~8!y3zEBZJ5C!^CkeP8*o@5&&|o?jDvzX0=bPl!S`CM8kA^O%FbBr6iE%RFEXNS z!Ni;cCdObv+`(G|7_PlE9bV!*>bjA(gs#&CvD=a8NcHYIA4>Gk3FvllXz|Suni&eT zM25lJpZ@?=Ys#eW9W;8FLQTr)d%tnwkbD<+COqm*A!LXjDO3ptcjvDhaCif`JXXd3 z0E6`nF4haXNiVGIZExVcOL+k?Mt4UT!Ejq}*q~*JRmcDaIrhkO^J%-uzPmfIpEgq` z{)L+4{C#_K9**`Nddue+;aoQu$M<{Z@TRcUC4NTR9a^dpa@fPw;Tj&LVWesr zg{8gzqRSnsv~#p_F(GgWj~U4s1-RTZ)Edaqd_7@%XRF$*O)rR2>PS5D>LQQJnV01Q z2j&RfSJRQ!ueQ7J_UFd;{vy_It}gBy?8eMXX>@+XVj+s6i10pi54aw8vh4$Ld%hoi zBI`)L)T5OniuY8zm+c#jPFT$&A?F2K%fZJ72c`}i9K#nSN-AFRPS*1NzY$9>QH|6r zp8M)S{{RSm$A`3VR&;yG0ePKQCp>To{Cfk%ak{64rPQQoOs^@pwU$R_JDEsi+J1}A zan`i8KNadS>Pe>C-=*9yBLO=`jG+{_&5^?%2Tbx*5;8Mq!&}dZHBUC_rvCtmOJKTy zT$lN=*agDyKj)`CMRroIu{7ZuX?-uJ_2hEY_G(I$V`slkpLyl_CxzwIZ?)-N<5kl% z`7Edsyu}upix}i*jp1NnZR+GQF+Y5L%q{^O zw84m`tG|o zhvn8Z+uc6ZG}gH(1-hA1N&KT4q=@?(JOGQp+l{y**P6Yft)G{vjHiq=v<+%K zTF9*0vDEy?)r1hNilqb!9gbB-S!6k5ljWgoZr@$kiF9e=(yc$TEiJV@PH{9Z8(A3d zfR@&1*fql(NRgQa5GcZ;4B>KeFT8nerRx)}`EQ=ie=2Fx#z;_(G9-#axiH1k9Gsyz zdn%qr=)m&=5Cmz30~L40 zo9^{Cy0_HtE^QykWV{hwAu=p-I_(p?yAUKs;jy+rKmg{hc~_UWkWb=kn~1H3V3I3= zB)1PAn6KqJ;K_}}2;b9sk@uH9lp58nHXv%gAF~lG&TXTTBvKJ`8W5!Cn9&A#7z>U7 z0}550dcMvvwUzJFf6VKzhj?Xs^Iy00juzKU(`U8S?w3>5Wou}sxP~QThyAm*0SB-Td=%WkL|Kt2+Uu-4=0#k zFS`V0N5I-Yha}*Wo+eeJQaD(vx#+jI_20;>9w*qv%5UMb^S%0X{}H@lME6>>WRgkFGm9mqI#KMyap=e6@SGyR)xy8)B^WN~Djsxg9j_Q$3$2hb1j z`@{Fpp}2W5pN3 z!&$IhCsW8adzJ0m%V79zyRd%u-RsUUE9fcUV$2y6pb|;2iITh14E2 zQ{oXR&J`L&W)iVDFTDEsO`P`)(1I)1HE1KA^e*L%0*qi}pFjt4Ym4!nh`RAC(?Y`D z-^+$omNy7k{Kq_zxrp<4+W7^z0G3@1BUiY*LSsjPn=!4~T!KbFc7*T=9r~W#vEbCC z>%*S>vFiHzCExPv(E2<+B6wNGf|7M5s=nH<(%(Lt8M>9K#d9LWh9=L<3HiSs!}`?& zZ5(z}%Pfz*a1n(zx%oG-=|vVg-K3a zlou>l-}8I^i1o3RFu7(G*2T-7Z)Emw$!%`zsXg?NX!kdf&g9#O+s!MFExywR=E+l> zc`=TRIOuv-UWYEb;=dBeWYsQU5yqENMm_K5l>mo^yQ0fD7y;Vnl))8LNbujR4Qpq*n$BT%rZb&_HjAT5%E z8DrlW9WU7YUD0grOpSdMv6aDAmhFyxeq|%{&%Ir}_@kw3`X&99vhG=;Hq9()aUhMP z1s6DnsV4w&lf`QC+*LT;##(tl_+sSZ;?zw?@ZX5FC>CpdNi@r3AL#aRrb%ALM)f|O z1#-=8J+LV{km~Il9AIu8MQ+;sP_(p%Pqh0nebUElUQaeG4>cio%ftcNSY&58;Nz&# zHuk#qiGL-dnGBb2aRlduk+>f(`#fXZ^IddmP7<`y%T}CuS4MeBd8D`R(x_u+cu2sw0d>VYz}-*4R&j#GmR=TElNIo^OfWPdV1oz>u-tPB9MT} zoSc6T{{RtLVqphSPLj89q3*%LZ$nGQGTLhX0hZF*T}wnkbfWF7(n(SXw!fOwEMT#S zpmB}?ZJ8is*MWF%!q>Xqu{M$|q!%dSJCru^yw;JcW?6zR0Vo$~R^^O=RZ9>@wP{z{ zwzJ?ZdF}1(?)42$%Jj9e$jZS1bjpQB-1)}U<91IY9P=9AiY~0YtscYe*4mx5)Y9o| zG}D=(xi`0a_*HeeXHbxm%)@h#3Cx6YR!K`ku7hqK_UPg~F52dquj#*Omiofa%7S-y zj2BxKxJitVqpNOJWitGV-*uRRp{f4>543qT4Sk`DPWyG-ntjCfEgax|mf-^!q`9_1QDL!LZ8I<9tzg(bt^4K`s8VscJp0d&vk5Ijy0cnZW=3)tmG=O5-YO| z1W?OrO>bH7?w1w)&E#5fv@fMw7FlIT#F1}8fFywsM%FL2n{gKM@XXJyLK2?ddf6_*XsJ#Dr0EzWiwY{0FZEq!!E>Yg;-r-|aWx`12VvUE+M(vHXjFFnJdEtAF4jmg$*St`c z>!(H@-rmSEs7>hPKa&!-%<%#VZN-xymIT%~x4G1{A$O;wuOL|DStC|iBX2G|;EWJM zZ~EubwJ&t*Ul82EKZtxwa~;$&E2`dDd65DD0AMj2c<5Igu_NXr+QF_>H+OwZo+2F1 zE4g1@xA67#-K~Z9i=j(N1dR!M8Kkz0abT*7(~m7tPSx0ofNcbpT#lziy}rLqQaw*l zZA#=x4AI|}*pfo%+jhr*BH>0?oHpZ=n&$8HEnmVu9o6L)ntrvT>b9){UE44T23)W> z3-YLDV}XDhA21*aZM>SD^u8Xl(XW2RHTA4&_XZ`GYN?%h1bV~i+;%kq?Y6U|XwrB%T;nDWa9U#|yZ5s4z42C)g=9ucvDo5~}%{#+;<~ zH%LFNL8*K_)Q6ROtm~5MR?}Qs+q6*Hn`M4wWVzI?(hH2uBcmWmADzs46&2@UYC{VM(t7o8qWkRs00X9u7Ifpv_v~vXx8cyB z4R1^&^aAY(Kdmt8x@5o@wHpwGk+|F`&IV2wsp7CLd=;Q*Cr!I+NRmJdPv*xp&)Qqd zV&5VM#|mFNKmmJKU#5I3(_c@3YSYPd`Ho$Z#;y>E*)|Q?;|xFV+IkArW1`ZPtritw zQWbd;O)jSmO(aE+(DIjH1af6Y`A47#<;r(KJ`-5c! zKuvcoy4y!A-c)ZJf2>z`Eu5g_;ef#eV~z`fzWRZ#$EE{ma!EcpFEE@(j=j2>t`02G>Z^PP6 z_<>tYiSF&-jyUAFmPpp>Ev8c0Jgj*qo?|4jG6i1p<)?zmb7N;TqJQ<5H=ie%yp9xe z`Qz5PNwpa*Gz;B6f3(H+YgyY*cnY$tq!OybW=>nVKG^3q*X%2MD7u#B>u&x?rBX1f zb$e=XI!1$gYjb(5L3Mu-k4~FXOOmAKSf(!;x#&sq(a3E2kO%~6*!WWN_S;sPbF0Pn zZ8B+Xtu92W-~n?SaDlswDclJ&Iv)Vh;=Ti!^K3*j4RK3X;* zIB)@9H<6KABjRQC=ZrPfwz9CfvVz*=Mn%@b$r#*STjt-8q=ixZSZj;QrK>(!<%K)sBf}<=WYz(m#lP$5hm+Wxg zwfoztOJNLhGCJV4we;sGq{^9*Lp+M8NLdxU$i@yy0~{RJy{4sOXADr> zYF45^0_COyByrt|{ZH1s`{D(k+coQ}bs#*NWHF-{!+=@lA9VHlbUi4mQdAc`^xNff z=u_vMD6JEJr~CuUH9rcALk^Fp-(0*#9r3IYvza%v>RI+URry^LbKo{HkfDV`s%Y0b zyNj#K=cWpudW4V{FQ`G0TYErLKq&exUC*Sn% z_ni^JQ*)GMS6-G^{{SGm(kyQ0QKKX`>pk?+HITP=x(tY2Alc@5#y`HL)Gs8KVpT%Z zT@L!&T%18_b!%w}jNTZQRA~%CW>s}(jK~If+}-#+D_YCN?leyiS>JgQ*=ctM?i)BE zDW<##XzcC+UvZtt0iJQG)AzSQ4D7q?K|>Az;af_tmEA)Qt~JWi%j5ONhfz~HiN z1ik`f0CiO5$z?0QKlo#km37Z_t#4KRdYzTC_-y!Z!Is`9micV-e=tvFHHFf{G^Bp* z&LS%&-KXW_B1SpDD%gH1)pRXK#kz6PA~!lko|y%rq_N8w8w|KnyawS}dFSiat>5al z@3T(TWVyLMRkh3$jp8e%n~@}Oum@^`$tNS`7~tlG#QG~Nu-jWmmkR2r{#&R$2_q~= zLPsO9`qnh+)N@drdZg@|T|BL^yr{*~l-;dorTuz(m1ptHlj*-=eJb2qXLCav1XegB zkg79|qdCI`ZlDoQUxv*!X)HBA55&{h?uU!17XZ6Rco^zkkG65p0bTEgz8b}0bq=9) z4yomZc;XSd#;x~(U=_DxBaGwN)sGZ-I{RGLrPX7$k_VPFSx`kIZe_^bor9>r{{VpI zy&rFfy^_<=z;aoI5`A^(rX$8{pI+%he)`L2$C{_IU74h&~vbV z4hP{}>Oz-3Cev(ZwmYGcR*@KIq*8SU9SRyFR*a;YTKxWJRU957GfsaE)%9KdPFgE_ zX>X#vvanki;gExEX)M8H*&shVmoLdd(Uc4fVC9U{_-^|4d(B$bOOG;RJ>+*bx?RAI zN5pcVibv%^e=sX>*iLi23h1>+t!}kfxrrJ)5EMrvBDOn~2M3_*o&X)H--!H8uh{C> z+7*@EtTu@}vA}}WRUn0AR0GfiR^5_9fSmxZGBcHWla(!_Z}Ri%dU>q~;3G}Vd{^7b z-ktoAMt%@vK~v{x59V{2m33vGZIl^8Y#KaVFHRD+NWU%JsJ@FeixD7cy2 zG`7;**fcSa1cL-NAC=D;Q<0oH?Q^KQ(AjZ$70|YaQL~Ro^6uJ8h6?e=<`E>4s;L5L z2;5aM80nH~eO+YK+t}70BV)n~dOjX}OB-ZplO1Hx;+( zW5&Z)YFz&ScifF_CdXTQS>gK*W7Ndf@ZyyiXU0^?MtuxGiHgf?MPPk^yy_TYx_6 zxFwh>?#U#&jC9Yl+iF8q*0200tKZmN-NOtwENs-mO0jR0#$CuOu^V>oM61Bywlr|A zja4@*{H^_1>aUAcp(rR@&hMe;5qLi4ZC2uA1k$a|7CYYw=Pxjl@WgvwUkeq+9)AZ(} zzqq)vw36fPtVDPuIxY{_0DnrVcxI(|N#E7}haGnckV>k$O5ZQ(9vC%EUrxKew3|h+ z)jXSqK_$dNypX>xz*}hh%FV`dS&1c!8qd|`*8E>RhKzhTZQ+3Vn6rlwq;AJ?Bod=O zTjQokVacuUK5au;xw9x5d0OJ|1UpfIlO!jreEmHE?~2#(qs-cb`ji)zk!f&2{+%p~ zw8*;|qdT}CC~(<1`B-}9yPgh;f|RB2-&MEW`rFjyp_^hQFJkH1Eju)yXXj=29(1+~ zrR$Mg$#U%lz3W^fNoMyj!14(dx0U&s_eXDxupqubJxq31aNKJeZN8xvp>?24-d6bR zr;N=S!wFKme(--F401qH+#E2|y}aHcU$wz)VAqpfTp1xVNgl?Dl*tfa>WpIp1#&hs zXKDF#Y~NXLvuXC$vWYacl6yZs%&M4U9$1mz%p1RU;~**!%%`UZ1vvetX$px&b3INM z?6X08qupyaZwzo$b{X`eeQ~Z!ZxlL(#-#T4;qF<4pj<>oK=OEy z_RDga+N{QnUh7c2_=dLrB>N@h)Ur!%lgj~`HCX3l3Xuc2f?;$35Xa0XmphCp@?W#M z`5jc_%@*6Wza4+3dSAm&1zOE`y1n(Sgpk-r6nZ<^>K|wkfYO-@G7uP+VtE+OKmZI^ zU8!pR9Pquv*vA{odolCc))@;p&Ia}@*g?SRM<5Uh0=OTBvRr78c&AX4O|#Oj=eM^j zYYt3N$gVz7<~!Ha4U^n0`u+LB)W~2Sger3jP3X^To26iQr>tE?N|1<@&5p5 zTfMVxiHz!nPp)}CpsjwZP1?x>Ys%M>x2rO3^}n+TEw1imw=zo8NF{^IXxk?$6C~$8 zzmK7xQ)wk>lr(pkE^$H?a*}RiqG*?w}(6(rs(Yrg~q3Sd1Pd3IPW&e3?eL< z0P>#*0DegXZOG0Tt&Lu2bdM2hIzvk%!C@p~29%B4Ofk0H;AiGz?}O|s&csr5pxqtb z@2m3iUSB?^xs%k4t0>~NYvH@oMfv&v08VcV%MG`P<7p&F)Im2a*aP=$2kJ$2+NX(R z@b`rDHjd&rT4=HJV3xpMnd{cLkB2ifpAao1oZ@Mrl0;H5`>?DsJ+sHYJ&kofE0AlR z64Nd(Y(=Hb#8Sv&opSch+?C`5l|I1n&{L&Cbnxz)df%X`<`l7*-)xt=s#oh}zusQc zykc&oRG(M21p6-^kfzJ3+v;~Wu=%k7ra)Q0Tr_sf;evF=2Vcbc)(3-aAiIj(Tw2=+ z0-fceA2I&`8rK%kS!$YuFr;h#ivIv~VE+IQTF)=~#Bq^?+tYnY$4d(6%217)O51lw zCj@fp9v9MMwndUzH%O>gAg`a)k4~BG+qk0SU&p9C7cs^xe7R9%iZoX&LhK|fF&I1f z>4pUH(&mY5qd?OIwbjX)?2rq4J%b9_a({WdZgSZ>lpFvCa4H|M!kP@X^B*>14AID_ z70TolM9wj|U}HU4^UZbB#70t*jBdQw~_~0AvnE2RLta zKEAmJ+o8SGp7K394MG))`V%B<$bn)CiF_9TvN9GtuvmMo9G8z0vVpTU;7e~jN}hfj{~cy#&1HnZU__pw%B z6&)30ZbOtCoT_}mPcEfx_;T_m)ogD@==O$3U8iu|2-}Zl$LMN5i=HEG3;QxMZOl{o zj^b_E1sCOI+dNE2W>PV@sl$viC_ClYg zZ9F>6`&%=y^Id$D^76eqk)OOI$91`3kw>O+N2Z@m>De zE#b1Yv=_6ZR%R&y4Ia*b1V{RdXy3bwShn?SfUr+r#veeV?79DVe+=+6#OlBX{`SMYipYQ z(^%hLO$7RV+qa)^yI~4RF`~t{1Pm&xec;)^HPGm`x;D0#P-~aEeDN^`Dc~mAfhI;L zouoNtB>I-;Ij?R|meNe{@YsmctdzC;jQtS~gwopTHtQ6UlXGn%NF8K6Zc*G3)B}Tz z_7&b;Uf$l_+1$GudswDP3~JcO{{U$B`gE@|zwnUICusD|P7PYtcP15vRcoYR3w^=& z@Bu$BI1ESwHQsn{#4vb^N{Ft}JU~S{4lu)v{SW^DTeT3^Mvqdw6SZn@nLYfzT@LE! zn_0iyZ{=P;sNQKdm)A0CI+9s5k}kxUqV7PqrY@&aiX#M|+KLH4NEiWFU{tnO8qJS~?5*xD zo)j9QB$7!gM36|3TdJ(g$l&2f0Wb=AZdf)xUZ}z}VC79MQ(ev~k(8I3JvMv&66$r4 zwLLP<)*G4NXzp$n*~>=TSaR88oDe=-E2$%pD}%C*_r~^fY8JN_`WRNkOC8J1vkpPR z<$7bUa!z|xdM}D(&~-oU`)w)B?yDrqA+suDodRP#%hF|>@cnGwLl06tJXO?8?bzM-c0M^CY~ zy<3^$m0^S)$CopS1oQCw#nFhIlEx}K-1j9)vyO)asEo#L7> zZ#-1?msj@JI?#qoRehkuK5`BK>E5;NyhozzUR|_zR`cAnWrTZq>CQ7;M~LkvO$%Pt z#7Oq~f=41slB=jwBC?Q1at?a?=cR0TM^B3D!`>g%8Q4o{48cI?L-2F?3iavHrm1u5 zeZLF;0Khnm6TCyp-KS&!p-XQp%V}WCcsYjM#8?Fx(U|#tUE^ z7AI%Jx7vuB+UM;S2KlT-)cU5j=nOGpD94d7Rw&2KAo+^RyPOhRcab_&`Q>%HK7y_y zwOTQYljVwCf3HK)Zu|>#tm&zJU~FZcRs%Px@sv@JKxpzuIOCzfC!nY`ZA-(R4Y?X_ zsF7*+(&^xRvO7m;=Ign4B9TC%apEINkWk#h|%|DN}i+<#t%Y0#x$i* zmT`i5e_ede99OlC2RdylSy}Jv^8WxLsJ?i$XtZrA#0k95vc(KhvRlU{!zRNn-GGG4 zkTSpy6rK+k2ZiqReQ!e5riCO)yh#OwmseAH_cF~KP1 zVzM1pc>e&h^&@p>3qfj3l1!VWXEMzhc*mJKU~O#52zJ;)c0Lo*F3*TI?&I88&7SuJ5iTeJj zr$+#m%HrIHxI)p$e27RxfN|fR4?TN{wXH_x<{=-D63@(uS={BAw2Ghs)3`nO&38fO zzq|2$*|?id&|$xMr_`1ZWPc{!DCAg`m9w?seauvkmuiM2vT@d zR!bh6VPYe`y++jSzt-ICnplPU{4sY<@Fm1LGNqK-5}C?f!nZhiAkG-I1i?)rIb zc}@QShMwiFBhzA<;^nSg#Ct~A?fl0vfaUU7F2H!kbCP%_=Bc4HP#u!qTU)rJ>rBankr>p9}67PzD99M+FKcCo6PuJ?h_u^!rQLL6*|lNsI!%SO-1vURE_%gq=vYYo7KVSZ6^-aaT*SxX%!35Nf^{ z@e89zERjKhAWRXE-{3#Sx$g<2pHz>JG9Cbx3!yQb-5a?;pap^*AGo!=5FA z6^$_f8C(IMnx*j9gT(rFg@0)(M=gZwAafqWB7()EJx)$QCnN%#4y5|j3Y>yL=mnnsnU{ijKS(8+ahVU|cy@WM0_Gn8S5JZ<2w41Q%^ zZYw_$YgYa$ySmYS&7)oEcf(B6t}NhN$m9SB$y7k&ch9tPM&3#JS-m?z&|uPRf))My zqNL2MO19G2{%7;2YBoP_u`3O*5<@N!72A>1jMfw#Nm)rH-^kLW)w!duspHaV8t%Rl z($h}6Zcm#t$K|2Ns~!RA#Z{6&>?^yANo@?bkg$xB!~{D*<7vl#U&_5*p_fV4v_SHJ z_cO?jqoF|?9DmVX-OvYWI}TBOIQ;QSj3Y}BsV8{)Z=uVItvqDo zTM?^GFE53?yxylFb1~HQ2+PAPw>zT41HuU9RybAu5TJ~5JMoJ2Xg(BZdiu+%O$;j~ z#PYKOCM2IRfjmkFIP|VAD+jgIkZ*B3X(Rbd4%85wA#LTkJDUUmNXR6N*RyzcSJNQT zV~$-$(l-*ycD%|DGPxb=xmT%9q@_u?-?i7NylL6Ht@SxS_)-2I{{WtFf8R6z0P*UU z4}+Rbva(ywU{+;j5k0~NWjRuDILQZ*=xfm}Ztd@&7Z$e>TtZotNfU=sK`KT^p#&d7 z4Oyz5FA-8av#8qa+hwSw(D4r&cpA^cx^S#22>{-QAh)0lL|T`5=vn zSmOibREzK7L+47Vw2tfDvE1dLAD@-xnH`TJI8v1tv%2Jq|`xA72s-zM3J59lz1jAPcUcpt-; z(%)Tb8oizEnp%`G$0SllWOBo4#~BOGeKVh0&134~Wy<4dt#|5cS1N@XA6a!1muq6e*;%Fg^4bK#QZb?)uM&=#K`g8yRis~)3uK>s3okPR+w{u&)%uGzT zFgr8MFj1M55yJuLf%uaizoo%{cK0Gc9vK;ARUosj)%&?1WD(Q9J-`M{DsKYmGDjw> z71Z-E%B9`5_2U^k6kzoobB-&&nR_&w)gEjh)Sb31ctgTcUU*LO?r6$?X+j0Mp1ViP z8}V#o)Gm4vSynoEESXFaMn!sD9}s*Yd9_Bh3~YD;Xr4TNU<$>1dnxs4=F{f4yS8a} zBf%(j=LC$eLJ2vPCNS%*>31 zGlC92R#qGkMJ?f70Jk4941BqBR$1GQNHk$QCz*QyZw`CJQ2ll zYiO2UOre#TH~F!!%cC3&jmo*k0X2-ON?JItU2pl=DbuMLHr}1Tq-FS?@5H)qgsyGw zZLBnVO=jwASG1Y_)X^E>l4%`g41f*$#@1HDZYs>1R=EY6K)KhY)HT~*?RZ)rC2dXL zmkdW>h{~zY&SOZ1cMq9M0zOclh^ImE9;t6MRi;pF#TIK0(tzQUGv>>;+(?rr?LbDMLLR4?y;c_3_t7}(36g}I$ZbEVRSby5^T3}>&SAsOlEp0!)VJ}}hADEY}ypcD6V^JHT@ayjN~tZg)HM@+f2zMASbD{ZOD(aabOM#IaE;#LgG zOaA~6z&$txz9rOk8_8DF2_>@;C9>OF$g1dt*LE8vTQBnl!+q0?V4Uezsr8iwIQu<4 zUw^yM&QM;>xjW0s);%A>9xJi3vr8*$2;hMS-!1dVf4tu3{{XGfR@S9w;olm@*8Xb4 zs0I0403ZJVvLEM)@k?vFn@CzoA(k{iS(%W40PbnGI?M3r?5++~l;Dc?-3m|NrzmDN4v_*g?C0&@#ZM*I}zM)MnDxOhxGd^ABh*1)_0=w zOtrU5n+A?;>l(b#{J)2q{CnpaIjlK6ef_Vd4JXAmr%<(1n69HCZeTv3o*U?Kp68_> z4^rJcPpF+au4lJvbcz<5Adb#viT2@30(QqEU=m11I2btdadEvlIW2AXo|YGv+Cn`p zw>_TdEcP~0x)~!YVi^nkpftSYdK};kb6lR8Z>?*85@xxx(qV_e_LoxGO&!IpxHCx_ zNUbD)Chsgrsy^{KKAV*$yw~itJwDRgM)3u(lqHv%_LD_4vEiI3*mr-+QwsDyd=B*v zoIFDM?ah*SmrzNGX)XkIc8ephF)m0jjFB5AdXNl#ii77us)|u}x#`rQDK{k5y-qj7 z>1*OY1zN=o?8|jvu%KIOdFOG6fGR{FlnytcW>-)P0;G{%(QS7$>l|?HX7a-pErkP$ z^3MWzBHzP4Ew#PVXVhhwnPFv?WR4jI%z(uM?;m)9o~oyebJEA+*mS1XEF(7eI;M|g z_g7Y>r-{6{kaRB&4sr+}oQ4Esb6j|=Easx27j1mK4B=Lr=9F4~j_X6B)%8oAKI+QZ zEsf;&Z2KaPUo2s8PG9jJo%!r=>}RyR)^#0j_T3|f(lmu4S;UJZm}cBx{grOLIrRdy zHF=elTw7_H~B-oUbl8(3iRk?qZS+_$$ngpCR}l!wbuA1awx)i)gbAolOi6&YPM zh?JvF$*XI+meLA1V@)gTX zYd8Aavd-N?$l1r?(!DoCv(T(;?h+FX<-`8&=HQUdP66Bg&roscwDZBP7sOh8mRE$U znJt+9?Yoa-{(1ce*x=(zpSw+K-R}PYuFFHlug@=fZ{^W^j5$n15b#Fi9qZ;s9S^f9 z;Pa2=TY4XWE-&?mytR%kQBpWG>x8_sh$Jeh8hL{<9I#XefzX^}@OkN;LorB8Zi*L~ z*?B06H!=Ja8uc9;NbzTd@9gYsO{_-hTcr@oI>@q!;gm%zh_LTS_XsjXryJFFg7_YO zVK(dXLG8ITl;t}u7hmhY=y1Lv_%UUtneHt-NgdRNVj9W_VONN9Pv4zK7{&)V#~pE2 zABXohHff_9*iM}Vyf-&@8f}@HXPn6*plH>Lut6-OFjd^DRN#PDyz$ntduylY-Wasi zF08ID?`L_naMGlzt8h~hqyc>SU7sFW1CFIs5bH)i7+UFC^ak%+y^8Y7O4F?`+}X%v zXJ0*~c1dIN2nyl%?Z?bB$ra9;iaXkB);TRR;qI4dadT@Iif>Zu&PKM9KMYt6cM|H zZMf^S{cbCt6l!m4Gs~vSZEtgLG>oC=^BO|Wg;gpJKI?KegMpk2`p&OwZ17xu?gUt* zR$#aUl82xBTAHaphqY}cDW-zPNp6q=lg6HI z*5eEhIRm$DmDDZbvh9N2X%uh*M}_)MT#yI$bi#kF#{4CPt#j*1w$ z_EX5}JKG7s)2+G5F)2TY2E2?^)u7VlR@oicXYDET+j2Wi9bt!REH>!e`BBG^zTBLC zg1L_$>GpPhACl#kNu}J7s(hhYWN@sdMisI$In8#zXcfWyNtj$gqG`;m(cfy;&`4LR zseBXq{&?%sv!_-woMM+$Zn>7PW6P~{J3DUqSEs@9Dp(_7lT#P;Z{C73TO5Ev&c$^aPjI6MR0>}ph~nYwRKmXF!KK0s_VA)2G$si zqSY+!?dB(Ps^R2NB*9>$>`|9ec7uxQoo7bLtK9H#)Mlf4j_vBtFuJ#b$6NbF&Y6D> zglyIgHFe8)qH>@s9gD)Acaq8v`pwLDIVX3+{uPNXPNAwkZlW;f%#|3pF~*O`$v9&D z{{V+R=cCfRW#MgF>JJe~;jL2q+Gw&_P3Bub=#j(}%FDV@{4)^QQdl~Hfw(oRuNU23 zc(1{FI$O_SX=ahheI?D$mK}nj^0tTaxXVlsWR$JdUuy0?flOG_7$J3D66?lw$*$o^ci z07ERHlNsa#j-+#*)soRB&qc*ba)ede?EK8_R`&bFdaBxKw=ZjDZsBe&7m*%Fz*g@k zPhbvxGsnN#TjCC&(_B1LMROxX^5ta7nM#w}hRE&musua~Ypm&!+1cs3aE25&7Vip1 z`-F(oCRiS=-zTnlJ!_lO^qW0XSn;jQ>IKb}%tqc)Bw-%uWexJCNyy`&$G0Z2s~0#* zD|Vmc&1Ei1ZKY(bZ@nDHlO?{ls6-@@?MdGj_?-YHpKwz7+y)nw`F#M%sXS32`*!1mfr0ZmN$NkAt3yyNf{>_vH=7O zmm2<;CyeiPad~FecG`o^O!G8B{{VQ~Mgla4oM&n=83cf*aOle8EIm4sp6w*PcK-l^ zdHK#U;;2%m9o7E;8x?Fcr?b9!>@-a`QB!dPMGe)QTW+FrW(bYhn_+LXMUC-{EUeiK z3XZ$N8m!Hx=}I)MD%RUYwYH2&a~KjcPXLkRj!=F=!M7FIOLt&N+e=T-E%h%B+xWub zI6lCaP+Hk7nwOYDx`Z()M@VCzazz%!C7wnPpOEEE*?-|3SG$Kv&~I*M)HM4wg8CbO zGTzETZiOQA*yxitGY^-F8JpZG^K z*xJ?Yu9r)RG8MM&DZBt#wz~6x7D5Pc2!5yG`HI)X&1Iyj#i7S;?*a&dGqDNtIT;Sv zU%iq@=ZxTSI+usF6!4symF=;D?l}}PZUuIpGk{NWJLj(gy(7Xp^|haeyfvms@PO8{ z%`B}j0v1vNsUEH75;+_pz&*L})hAY3)l&3UJ8^U=Qir(~y;}VX8m70YX*PDV-rtyf z^2$}B0Imoglv;SxNJhMZ_gaQzjetoRF_j=^pvPK|#ArN4duttw!E!8JW`8bpCzJBz zXO2+)aD5GOUK)WlFB*2o>X%`=ESRu31Ci4qSku>OrGEsM9t&_{s@8>78gaV( ze)FoFRH1h4WW%PNH^r8Bt#2LL++b;UH)}1zM8ff7Es^~*aWf_Af9_UbqQ?F zsby&%nPsT$x;K|_Se>_uvB3LGO52N{wQx%@1~%aDAXf0liM%?#9LR!%L@lZ&hqBn}iy#vQ;!q?X@E{xd)!Fqh(c^V+S{#=@ z*_QDL)vn9Md1K_i^>;}tdTtYAJ;D@`dN00z|=_dNcejd#YCClw^_bIzV3Rb>dr z{Eo*#_oo$35lSJH-ef>_RbtoF8u3$<6`rO^xNH?X=NdPa_i3 z-c4~M%vn?}OoZo+qm1K>V-=NW;%mEag|~LPeWk_C)upxao2b~Y*kck(6AjcARTu*p z2)N)!=` zFU&Zvbc0NWUk+*7ez&P_zq60ao@JXRNe2va!zUzXCzI6Iklt%Lo|34x*3%o6(awJo|DROVAtv-1{b7;?Ax6?GsDR;rC$`4QV$}{-^OFVXpZZ0F88drs* zz>prk!`~I<`Y((VRF-W@!%Xmvgt~?5+naq#^@Au#<$d_TAz6H=!)I>vBq-i-qMDVq zui}esA#^=EK`gfrOXgg(o@A1`I2rQSY05J9`D9=*n%zxvI+2IGf^DT~N!zj3=w4Qp zVRIyxaHK2c#hE19zG9-Q633=^80Q5tIV27)R%wL5(oMeDq;U~!Y=xrD`cOSE_<^E{;2>5yQ%b71Uh^G>hpDID}ss8|A z+492g|ZDALRB}Ue!)UP3E1I{mn+;Rq# zkP-F(;3K z0Z>W~tf5z(!!_tpqftI)w6}C|)U8eXx9WQikD};$1oBCzT@>>N&W&}sTik+r{oUL! ztZfvE1yDmpTk;J=8b!#+0Uxn>a*EPHJlS__fC%SlnO|B3UMRH_qfkJ zjyYcqcz(;pdYqEl>q~Q`TfrMmc$P^6PUmntQ(y=;BlbKf>Pc$gd_k}3_cL7DUZush zoo{P%3S2`i!Ew6@wac+^k3G2?CdpAF1JO$K9s|4aB%UO-hf%n^d)c)Zt!EN>lkSQ! zF_U|=q9#AOb;E{m324X2qPQg(RA~iDN_KKu9sZ%=zYcg@+TX*j+C_S@thUkWchK9# zFjgDBaT#uzUh0<9kG4Z< z_Vz6-jrM#E&W(?}tCrih8&^3zDY@Xg-D67lWv}W(PM%Bah#`_FrI5h8BrK~als-gZ zPV)IoZEjQz)ml{6rPM8M^=q9@Z7TA3;?uJ<%l2s6;p0V-R1oB=LdB+KW1YV_1XdM= zq`C)&F52tFtzoE3rnSsPH8~-2@k9_?nAOw?Q0!f-2|crhRnl%rB-?&kiWK6c+Fyz3 zS|)?9cxFEh+H3m6y2aaTk19^myo4#!<^?kR;5dAGj2r?;9aZ+36xW|_wzFt&umPD9 z9%BChb^U$2kIWw{yVEtBdwp9}xV+Wkxzg4jvT66%^IS@9Bvw^)M0o=%w1OodoRyFg zq!C=F{3IIfm94#$t*uXKE!1~L?t8n$mN-qj7B1p3n2A{&Yy^)YPrNY36ty-}ae6c8 z!8GC*SAmixjk3gJv92O?7Iy7CB47luytcP7DOP4jUPBgj;xr@X2O~dp;Q1qKde!ca zu3m$yH}*=$46s~X+y{bIdAgtstPm&+W!s-DXO_iXd;MO21W%}l;B{NlvPA}>=H*Y? zNA8By^kAb6_eePCD>=DcHK45Jq3D;|4W^^w^Qgrf@jja%jyNr15;Ks^^D^kP#xM!>A%O>J;v z^Di%?mNy~xzSnigz!?DJC)2HV`lp94yl3HW3}|a5x@fl-6U~2j41Rlpj9C^Z!3(%= z{ow#$0iT#7=^FJVcunYJ=tb^~``;8_*=zO^Ug?(b>Q*Lc;`5+jLR>R$`^SJvoDqf_ zF`cD@FNrkO@i&RBHKTcVX?<@JMIYGRRWPi~2@D%QeEVa!TIaldrNyLpyGYV*WYjJq zu<*^iLF~Rpk)n~;ab4@%JOWNwV>H*+wMk%)PtukvsaC;ey}o8djmcIgYrCM0K1TVu z$T`5q4?Z$7sNwA2DqH>*HKh43eOc3ZPUlU7S-jKq^@blaP`9~TXcuTz4H`4;Py(qT zeX`!XR_2dk;+<>aZRdz2zmmg7u)UJV>0fM>{PkF!M9m&{p(UbaU8|KLy&6v z?vtiPX>)f9SXf-@f#Qk?zQsAYoeG(qqiB$XB>e1tQg)EPFGa8F*SdbOsWzW|tzK!+ z>ZeSEonGP<5{UPdGBo9~7&89=s|s)%e`BN}?C$%!iCsk}(Cc)YZ7W&$d7)U}T;f0M z`(VhI8#9R4gM-a#X;5i;C6KhVydP%=Dw14p+w{-!uL9NY-%p0!4U{l>LgvgoThXGC z3T+!!T#^8c?kvmu!+^yybTwT%!d+iaxot~DwR`CzhT_^AiB`oOVg#v{D7J0+q6`tq zLg(heEWMQR&BaA63}uH`xz^eIO`gv4Rq*Acb1{P6_EepujK{t>WR$6l#ga0GPtDI< z)lEBCjje6AyHC_2k#x7)RF4hI5%M~OXX74MVRO-%>_g?3*=${buN7ZK2?%V8B#PdSU zHN+SV7UKB}A$0&Foy@AZ9dbZCSH`=2GF?Z{xo93~EfkVIr*~D zFUr6WXiA!`r1-tk?V-4_yt%v89^&q6xL}TGH>-u*%rHlo(%=BZiETEuw#GFoE!(!o2XAopk8pJK z@|xxgm>8r8i##$c+gEDH4?BVRivh3@NQ?q%I@paOSXr%q(xQ=saa%w_sF53LMykB; zAd{Wg!QpGYwD8W4;maeb>RQEx+bnkL<=fl|8wO@+!@1{`an4tBb{GPyd`H!6{6lHs z5vD=*JuRiXD-4YAp>$aA=U~qpxH!+udlGA|H6u2o1%0))pYY~d^XU{$Y5d%Ckx{HJwHL1 z-`eRj9amBfYhkCY%tqqIUp8bC2-kVZ*%sE1lF0u6I47KUby86%cB!pd=$BmuWL>T&O$D~s?BtKvy~S99WBW;fKe2JqDKLkwvm zyx}B?(MQYW<%0kOSp%ymV%gHR(fmoJcnbdjRo3;@yj@0pGUnPpw>IK@S+ulStvpruBCH1g5JhC zqgJ^)_LCS`Uw=gO9QDaibFQNMb3u0;lZfWhY;V>%qz=&;jN69rtB^LJ?d%3?rw@sT zvsB)Xxz9Wow5{!1(%TunGS=<&ZAJrY9O#f+tOQP>Um=+E8TA#{cu!xqHuGKSwl}v| zdVY$+OL8zLk~NPB9yc7FpmfhG!QfU#rKMT;nQg2jpX|D<(2}>Po0)(BF>naU1CVkF z$6WQ{HEnBGI-GIol3eK#t)G=|Wo>;dMO>8KlAsrnS0TLO;+;=aw1sZxz0~ZikJ_)6<50OidZBg*>Sfxw*o19X z!RI&yYo@=R&R-VZnEWXZ{3H5B#q2Y&l0<2yhT7%4pD?)$8DkDeKv!^6k%InACl?nP z#_04MWUSL@?mSAi7Ty=u-^>z;ZP>`GAS8ef10RiU{6D|8ywc>ii*OOh#H&ahfglr- z0PanE!LHuwaM|hBcQ>sxFKUyZ5h`uoI%IO*nLPCa89DS1h9_3gw7<4#A?_ac%aOlu z(xtIhoIX`p7hsDMY*HMos=yoocbuc7Eo&T-i)l}rOX_>A?z;Ap+*|#byvVXf4oi$= z1@}A;t#Ljf)VyV3Bucm2q`8cfX=e`q03lCLn{Qsc=eMRSq5jfMPQuRpCKF99s>qYW z5sXS1G6++W0nR`qkDUjdfg;V9Q7L*Lxb<}^u;iZ>pAuU?#a*x0{zD(d~e zulQpOXESOMzP-P%&qCLXCzAWb8dbC*nV=HMh2-^&FZHYqJH|sw*1Sh~du9HFbqS*V z)SKij1a42rKpdF7$lC8#^G1Rx6^6SrQ{Z{C91iRf`-Xv0IIfdHUsV}&u#8B z>sju#Tb(!iO8nbRs9$N%cOu6WwUtd_Zw0OglvT|o}6rHN25(XS_wUX`oZc&Ef) z6c_9l@@ZOLhW4*4e{7Y1v{jv5vk*H%1@lxk)47nYNC(UC+o>6~cJopRCZ6Rk9#=CQ z@a#TgCz;01yYq%T=abo8_>S&NEkAVHrkeK>2#krWUC-t^%41=)&KeK8NZhUnf4m6E z_VKt`QM8&`==R*&71Kwpcw=AEthC#^dz zxbVk^qPCqH{?^*&YjsCb^N|VLy@(5S6K^rDJc!V!;fJ2uTb(I4vOB+sdcB6DYod!g zn64Q$TT;rWJbBUABdO^#Yd$-IQljZ2)S|UpE2yG)Nc$tp%9U;p&7R;MFhY?_!oC)b z{8r2~T{_b4<5$0y8J<*V8VHWj1OsWqtbnjSS~kRD4l)NPtay`7xVqMLDeiCHTgc~o z2-aDmg``)G2xm+IpWO+vTNxd}$!DoA>MFTEmz1<`jdv}rI^5uP*Q3|2+8*9bASx96(81W9B zt!Se1R|02&AIgpvcZD`7Up7MQWFs3)hif*>?HH}F^y3bGrdWHJ5Fgd79N8NfL>=bf$TR$olh6T{ZJ zrl+nOSehvrK(%QVV?)jY^T#Cd$vyceoYSvii$-leYwOjyyZaT;7nXAchG``+Pa19m zF~#P@zytFZBX>C-w6SH}7~iq}#fYMsk8z|R9A`ObH2BaED2jF2;2 zrM{JacjCL97T3qO_5w*+QcFm#BaE`8t}z&t09eYvl1?^f_=Y)Xt}gW}SZ_7Bt~Kj( zdaywq<>kz>z>=ae{NaKC3q%jf3m)T)c{M9SQ*(>Dz0X3@rAq zePaOs04&!{p?FV6(*w1fQpO};&Yoc^NcK6$;f~qpE5m#xt!hcD*)X%cg4X3x;ItQa zF+#`92unWc2u-phmnsGjfB_($t4-E^Binc_HGAvrFYM7=3rBQs^q({Bk;cWarZxZv zLA0nU`-vn9N~bX4uS2=Rl8!mRw=C{ z(ydouwo3Dit~xM<$y-U#HomeE!=xh*8WDP|)eZU8eLiO^>P?u+4z zJw8*c+03?+$e~P(#<_9g9}~eHvX>hX*z|sm?yb+UD3H| zqjJXs1nn#V9-pQ#D)e3*vC=htHsasRGCbu8kb{Bb$)1C`0H1!C99IkA{{R_l*EUvq zZMld{ZDW=0uA-jcke0TY;p9P;*0MM_`k)Pz5I}A`i_sNta>9}OE9xw z2Hb`u2l-_Tzb?bZ21=(TajN(iQrzt!kQ3 zY2mqyUfszZ?l;D;;a_s^eTWVS4ItbI1x=ehE;;nedtsnjTwO?(E|;;(Di+>si>H=n z#EyR0szzZ@GQoj3PMT9uz09h?%GNQjQ%0Ipx6#*CyttLZ#a^s zVrzwpIN=i>RzU&5MPJ>XPC#cmyvQliY3aF(t=sGK=od?Su0$+tZ*OI?XhtR%&@}Tj zz^cczKbI~DXHn(=6c7sM>iWHog{_D+d!0@19i4BC7xOYaZM9e@nYhdtM5;rC4Y3AU zaKqE?HG3Jf+dFu){Wku8?Tt?s4L&#IUw}^LAbFcu64_6ku%iPWe|sxk+^B@ldvgqz zHj}Jz-73mf8D;x4&SY^h4x{Ds8zY6vQpDqg%tiAkaKL;!9?j>vq<$ zTulYPodU~leo`G{SfNs~ZrQn4E0V_~^HvSNg}g7|tzy}u)a3Ck_L-=w-rVW;f?LhQ zEbLw-0DQ5NoP^2wj#-<}buDYfKiJaQ+-TClZ3?@n`!vWPB~D#=!kiP&p+2Ui()D{y zA+-4Jw2f9>P}$vEYAZdtZ$3GlB9Cqz8v#k~UJ2C9v^NiJw5wJU@RXjIikf z^|b}OmLoH5*dYjnZUKT8Y&O8^c*t2i!%*>9T~%Tp6}!5IFsSWuaeEZ9HsvG*^V}yA zB7v6WmA{B3K>j+{uI09h($iJ4wRwPsJ55sc#(=@wlm6FCiUh?A#U4|k->{w^rEhX0G+AC(aDxW}G4>9X#1;c0W?BMaF- zxqnOX^)UPc;G0<_j@k(p8<;%e*MbZ+%wk4V+`G61TsAYGm2yr7DPHP2cZmEwtz2pM zw=sWY+*?IDNeT$qODK;aa{WkJ9O*Z4oe6vKV z&6iNX0Q@%KNf}Zrii5;<_I???(k(2~)ovxz{PXq{%REVL7@1aX0d#i9mfw7mL1VR1 zuTnI*B`x8b@eW(%VnGxRx=n{JR%{>TAgEulz-)MW@KAExTVw6~r>z zsZglR5dnyAm=Pjprz{6@2TP&JHobGZQ@@t(*52;k%IerV0W-@aaqbQq<=SM)QX4x6 z+&5)-r9u_?eWvS6CUaD)^+|g;d)L|j08dZE?R0%d#eOWel6wWP((S~BQdyCwG5~S8 zKq@+dKVJ1?Qt%Dlrwoaxc#iH{xa5xF-J?Mfh$|xyyGZ$oLx%nx!-I}^ofhWm$HPYA zIdwZYZL~kNJ-x*3D&4=5k_LzdaH+d_f4US)7Ujtp)v>kLuP-66)FgX*tJx!t7rcoT zlQGWZvDyPm|`O>KJi@<9}4+D%GQff2uV5guR|URVx7=Z<)mk;a+&lj83HRpr%_V1(&LkT{LP@ zy!4eNrk~gK_nyh4*m$Q}_?vm+2`}WZ(X20IvN~7WC4W6uCs8v;ov2A@nOAD%NN+}y z&UDRR!e_(UWOuiEzn+$HB!V}GXkdy68Rs6I>z$j$ej>fHvbu*>)hwa9xw=IusNKlP z5}4n6e({M^R&kXwAl6Kmf>P)EaQqP5Zl}sqx(FCqK-w8A^W*v z17wi0Gi<7JMbDQ-*RjX!+P0@>rs>e>ehs|wMz=HCo2gQFOBg_Tq!MKv_h)klC4oIU z=CdtsH0=TyuIw~DD&p4dfNPnpzzRQsN-hBJ^Kx^Z1~FEn(-uxU#m?ri;isfe#kL$=kdjU{o`LK>&)msKMe5Pr{xS@aBNhWEqIX(H_NZDqBQis1x`Hz4;p z2E5qny55&<;p^%3O>P}FSXy~wi%_{Kb+$h<8^d7?j3hz;%3!x3gIHnfMzkE#<=;or z&tbLf<;#1c*ezCFD_u4^z3Rz%ABXhlXPu@wl0|Ef%o(swPI=(-nyqD_XgY4F`jw^R zi*n?d7~U51GyUw7pYnRwlxmiD(8{sudW71Zvm{Q-ADi~S-LB6mShT}vFC?JtX2DOo zbDG!i&YYJ%UcIcXg4;oPZEP$b8=Oia+a~Zp0Yu9G0Ca*Bf`5v;DC0R-ELX0lHAu>G zO+@N^V`{q9-`Qc)^t;nNliMZD?ZP5jypFM}sVd(vE)N(dZUHPnJbkx=?<3dZOMemR zTAj7y+!&;=x-!W*iM+!eGxE7vN#MRe9Gx9EShz>lEp2rBbky}L$n6%^Bv&@6BytuZ zyulpbEM-O+IppK+)`y2Y52@-pHLMLP*-sK$+q4B5NaL2)>Qg7qi?flI;g8PD2_0%` z)svSrKRbR$N3vGskh&LzZ_SRUqUo3R_XwZpx6ws1JfapxMTx;ABdI4R3(RByIn7-@ z!%XnI-0Ly^Al-NxC{&^at~GE?}e9IUHol5>}d_G zD+E$SaWt~Zzb;M~s>70i?OpiD8ToS5zRz{2_$xwqCDbhv%ffd_Jc)0GW3t;37Lf?U z1#i2C`3?xdt_e|$l$84Uy?6frf%tYV>I>b|scXhpHa9V7maTRZOT3ynFD??`#*b{+ z3=4ujMpkU|jCaLwdY6Z+ye$yD((Wdb&Gier+bQkm4`T78Qh7<{Ln_=fiosAbGO9DU z0OXhJv>ht`JAG11lMI)dh1H$oY7HZ^KiT}JMe<4eyVd$KaM%ivT%U88uyI(oHg3jUjHXOp;uLU`m7x<~DDTW1ex>6&==%;vF;L zZndg-hg&z$YG+Tlh6KKnb+jL83{fO@Y_8Ui<_vN{rK@)9X`nwHJy4lwh`F< zmI-bb?5`n{%p?Me3W$MN_b6gilkz&7cJJb!8fbS39NM+~QA2EGvx@S0#OE$IF=r~d zC>V?$RAX;7>Z>=YjA+TdHeGsjK7-SB4Ho|ZPJ-u8OJ@Ql2_tRmKwKJp(}2trx*|b{Fdc zS>Ik?ywXL65(wl;3T`|wWN857mh#5~Io`NSO0tX?vAao}<>;-wSPRYeLeKb!?`JB$usN(+s%klpJBbL@=((ZJ5 z1QFWYYANBrE9|ncgJcHTC-W3EWJ*+mRaB{6jCtg)KAqv68$#5Y<~Sw$M~APZo#$(k zWV~o2x@A-wHbSNBi6DnKd~XC{wl$9p>vlGGmfzdTwyB}dJhrhzBEu(@5kMJy!U@~7 z2L2x{2GRxwr-;5DYT`&Vy+g%1lv-@QRB>t^OxFl5BzdCp0-4#OLmaWDPEmjWusk~!S1Z!$)>`$v){DvFiv>%v)Wb4O)pF>NVv8SDG z?%^Z0SnSESTUe2di{*K@8IKQw0yqj)3aXGvp)Q?saR$vA%7hlpqnbkoiDA%ra9T93FFllZ5zt z;muCMJwEp8-rh?K_^ko`?nqM6k(I|e<3C>YxvR839MSIP8Z;KsD*2#8sYpw>`G?BE zl#)w!Jxg>sI+0C%dE?jc^qPdJ0z)L}G;uGOB#KB%o>Yu{$Eft@JXZ9jDoR)TO5fMs zbFNCfvxB{iT|(8hy<5aLT4s;rT3So?S!B3)?c>=AVA3uC1$V5YB)9PrMgp#Xh67Ea zc!h7|7tQ6y@~y-#h{@g`%Pz%RjEtZF`ePOAF=&Zv7Ns-Y%{14DJo#EU(Vu7_XJW57 z<2`Ty&jTJ$Hl3#F7pC4fYg;wlB=WnwrBzh3HzbpVQ-S_9FvCv~7Z}f#CI0{f*;a)L zif%mDf7i%g5dQ#SnIq8|)(d%(X++5&Uo6QGToqW{wl*Q-Z@D70q=pSr`pGZnw9Kxt z*jz##6iaX;mPSpcb-dKwI z-KKLYG?Vl@T~EXdZFgjDbR9a|Ti1kkpt7uj=zXzccx7;ng?KqVIvzJ6sYr5*y{o9tFO8Y_s^Z6X1bzBn+* z0Dm-XldkSYF>c!KZKlQ?_SVNx(QGw64^M_Mrs@|>99l|E<;fdJ2G#PHJP>w}12A6X z7QNs*-5W;MZ!Sb@FP(1$QC~r#t-5Y@EFvuevVz;<#!g%1;QXZNcyGZMaCqNP*Dp=I zmAp+pn`5Th+IexsZM)1z4Zu6H#D&Prgk%s^a&->~>X-fvlf$|`p=~aecX?%Jdpwp- z(#9i#1oM|`^vp4hn@%?pTqq@7fabK}W2hn5^(|@PxxV`|CY-ut(?|qzB*W2}4t^3jX&-z+q4H8#uzo_) z0p*d9;~SJ&ed1kz|+N z67amQ;tTTxH*EL08iH@VQUQmBB?6{W?s*V#1Hu)dD( z=JGto*up=Rc5$89Br=>30p7d3?|b?VlC*3=f2r6@q&~B#%YSch@Uod_yphCFNb?Bx zd2q(s^PeB>2GO0Gq<0 zGGhnKHMgnTS)D@STMriB!+!R%THRjBr`%8WWD>k({KP1*{P8|n&fG+&fHHjF!&)8C z)S7)W#8PP2BGTqFb#rWOEm#obpq*V>NfpjcSLG401%yf)o9z_jl$HMgt&XEp(tJIt z-{=<_q$V9tQIgiq&H)RuM2q%!+>so|7w+aeqGfapMhObWO13^2(yuLMu}dk=rKwt2 zo14KCq%RcLR-qR)wy$jZVW+g5r6Noz0w!JaRi169Krg zxkD3fW_HRCnSdDIxVO}GUkj#zZ+U+%j{^xM+&1LyX2IEo^7Dqn4cmru&<==Doki}G zI?$%|FKN0rg>LO`wFc1BPq(%=5y@?T^M*xBMMJ$}FB!~;bG6USCVu%Vg{AyCTVEV$ zvd0o?dJNZ5qO{2-R5(T(muM^jan8^fe8eiAJ3S9rhgZ~e>&v}TacOVoBuuhAjv3bn zV;SU_yB(?*jGP1nlU)v@Z{b-q=qHZm`g4B_Y?H`tg}uOYloP+)VU{OkgrA=QetaB# zoV4@*06TtV#;TU9r}vch3EYaXzDQ<>e9ku!lHg+<-i>FV>N=uF zcd6<(_b#s!Np{4?I<|8e1e~Tx!nXk9jDb|)()36*1=D5ME=pL#9BHOae<4T)cA+t| zo~A@myQjz(9A#Fc7^dgbU348ROTW4PW+tO!Ypm#~_o=5^SuLraUAF7;?z7Y52^*NC zF>@gKl?ee9061lu*F*5LT}Kp_Fv$j|bq&3@lVcoh2{6DI?{v#6Zv-8Ql3BlqVjF!X z>rC;*ourzUr1o=MC)i{Xvk3P9j=RY$r)q^9^a8YPr@cNS)a<-3Z+&>s-u<5ARF$QQ zKeUXJr)y!hkaEtfxnMSs%fBiZo_MO1-i*9PAC>Y?RCAVXpxav69ZF|yHqTFwQn|Bx zMQdXuu)?7fbB0#C54&L)a5yT=Zrb>}O^VXnP1iLT;?tp?4P9<0(`A}lYl&ov@;J<@ zSy;MBaGSOv{o5R1;PSp0@U{Kkt*6~+di9;(i0vV^+K^p23H#Y&aU+7+NaBf5?bwB6 zK&-^5m2G@8tm?LrTFv5#%sQNQ@y@Srzj%^sDS>0VEW%Aij^p!ugk%RGbWUz=?9MS! zR!4a??XB;OZFFX`)1}j{=C`??-c1=p8;4j609^v^WRcyn8bwg}Adm!F74^B%Ev~g2 z7&Pmv>!;K9&*AV?#8xF(wif-|Wt*TSOEVGy&2bRuy3t)ZM~E)X?bK3g7Iv19h-cmX znk9{*+w*yQhmaLOU)``=9tCd=NvuJo-PqfCH>-blXLg@vj65(%CAMZzjAM&&Ylu;m zNh)L7$`pqZQQG)69}J5dYy10u58K;EZ4`+-b4h+I3rGUTFPy|%lJgP(1QN0_BW6z5 zitg;2RIqCpytyEbNSULsk>(&pZ6f)R2!TQby)Z(C0FX&h#b_5EAco6Ld!ubFy}Mg2 zzndVB$xPT>GY}cSbg2?EFi;1W&c`PeP5vV57kZYruW5Hyw)a-n&vs09#fBwoI5vFe z?K-l;wYt>7)q+X)>O;L zKJx?f44T)yxUhtHdd6G$FD0K-*S)WDrI`73MZRBGw?g zi%he>TYC{bypqWz1w$KkhhuF7wtht8*PM)yuxYx5>^cI$4z+i0ZzxrLI=~or0)b1( z^D4IOxaxDpM^HPXO0<%KR$ia*E^2y~f{8p<*6hh}m(Z$9i+I(F&bn6r0O13HA?glB zGq{R$ZQ=b-P}6j{big4%E-lHlg`)ES;yq&aWm{z- zAYhGd71Lp7aCVWh4pVW=YsuK8?p=6#{#`M=OJHvoNzyJPYl&^AVJ*xC;7+L;t_t~N z?qbD4oU-JCPd#YLGqkq@q42e@hL#hive|*6#@J7mK6E%J#dc$WGQ1Y4rlM$Dr?>dztntPai!~; zoX1SlEttMfkG?qCw$RyZk#e}Q!+(XMZqATPKan*lx{AvG03z;@&?&1VoY z>kH;Yj*QZIiR8DIFry@4fm~;4U}L=Tjn=*6t0}K-q0%ib;)dFJByG(SA(_mXmNeQv zVlr0)X*oC|v-NFqH}I~NW3B1J)ae%g0Apz*nO;H+bK0`0+HsQ^Za06cqj- zb*bImM7Gyf9&#H<;Eo%Nc@unviWlIFe8ss;o!F^04G%}vwI#XKEqtpqw~p!E*;mPC zdDN?7C*ED7W+Wo?B%FX6F9^%3X_2z)TAl6HyI~==j9f`2zQw^`v+XW}Y>ShCFz7lk z%e5~QSomYby1nQZvyou7w(>yYIFZoHBSvIq0AzwNyPI;b3Rqz8h^J&tJ6%4h+?04) z#?thFwz6Kvvol>@S?{+yE@ehigDgV@IT;u&!EnSYVAN%U#4umMr+9HMZ#3)OQsV9_ zP_5=Cnu{W{zWC9$#7N_IWG4i+GrS)yzOk!5i*p3po}jZ?%$o6rRgEAk9J8Y|fJlMD z&4a*|rD8&cCa!At4dG1{G~=e-#b;xuMw-h&*6$6=O)N2ep;OHL;bn$>yVoF<+@VPW znJA=`PTAC{IrG%l`tl{RSF+F-PE%uRda?;EwCgy+4>mVQ)g6_O?+ncV-6Jz5)g+U@ zZJFh;yVB#AR!fW4ji$K2w+OQByN#`3ZW$kb!6{tffeDo$99JK#9}#QX4Zf`=v#3oR zI`r|w17G42pfwvIAPrNjo;0Q&Al!79qqr4Ot)Gr8ilxj?R%(UgUeu#2zYJf`I`hW zA8A$KCU$2WjB!@JKfc$JJ4?H%t)i5wq!F)_k}29g@BopP#y1du8h(uyzoI%U0 z>}}ZEc7-jH0|n!fU0z2KfV@`nJZ2v|aE+o_P>f-VD(wtPtk>Fv z_6JPxwf)QIO}Kq4R+8IOO_wk`A1tXZzv{zEF#iA~X94lNs5$2CuETWHw>=k2@cxnD zYb{pVCyL_c?g?b_N;wQ|noWcuR{-up+l!679C4FQ*6znk)x1dswvNVYC3T)fnlx*N z7ZE6N`@fg(x#xEW8Sh7i?d^3#tl3AXPkW@sE?#&qF756bM={zoY~m(p-HWW`KRkvc z@7-MGtiB+%*YwRU=J!;R{yD8}*UGvswtU4Ls>~SqVC;TCDo1n37*xaiMSmlzg?CCk zt7E}#q_pNFo|F|NYX8YNP+yMaunq6Q@E=UT^5g~ z*;@QK)OhSK|2dFF!Z>h5(*sch_( zPm;4OxVMdWhRzj$!mr9*R1yYjZZ8`6VqG@J!&=Ujs$Sh`+JsY!c&&WYk)w=8W075> zc5H9Y$_DYAGUZF=<#$hFT8#bIsee%MwwGz(%@W`jp33d+))=m|sAVz)*b2Vs2tm1< zmEDkf3}Ey+XNdF-OxnSF1&B#)B7DsPpE5ZR8H%d|U#_KR z9=oLI){$IEbZwp_NoHXTp|KpKKg!I+`nc*zq=r8XU+LFcEwzV;?QBW&E^N)R+bfkD ziNh7-d3^Qzpn7MTt({JGuFat+#vGTj`Ivfli99o^l!6To!7Z)Y8SbpVvLbP`%N!+< zlXEkcb@_IV3jj_4Jr1E|XK$|DY6)*(l1p`Q=H1I>6w(<4(kMV&afDEPesP?FF-;o6 z!h2@9k6+X@crGKCPKBp|gf9{x*|p^82GSXN?_q(AwhiKI5b8SB{*!%wXD#&ia|Vv; z7}ibRVTn%D<`SYs191wcaR=oYQBg~APD)KQb++0bnWx>GUH0&5QcnrGTXG4JB$*=& ze|82>oET-8^V5^Iaja?5cpBtGVR1g57H1acVUWlsgzgwZH*S|BrxIUHkK^v z`N?hE5DKwuEh9+K?KG!~%KrAwJLx2_hkd(wyO9?%fgB9dv1xJ>dX7q~9C4{{Z7{Zk zS?af|X)NlHTP*VJGkMc}(0=ppf<`AK=WAr=HE`)S=G0okx3;T(f-?+}v_f!r+UnTP z-{c;dIigcs$qS*U;AyX}QALcmG3oCl3j^M)vK61mo6X0VL*s9gj&^!;y0awlb&a;a z;!PG0HuF|UrD+6~q2jroG}{_)j%GP#^3!PmleIop!q%^cb=0tXEg>x>xYX_LRz|Q% zpoV>>*CY3G$c@p#JaNc8f(M&L{fTSgol{4S&suAH_@tjqgr%rPR*D_3E0;1Wd5IIS zR|#*d!6+p8ivV&t8Ofk7wJkHmdgJ+elj-tI(cM~$(vC}${%t_bA&r zUL0qTKvyeOlFP%E8a$9p*IrB8Tk7)J+1bM(0b_}m=9bi^)K?&rGj8M%%_|C};r({z z3oSQC`#r=~HtdF0j_kR(k!49Tiu0stmtEU{4V-X6aC%*1M%DH0N?j|%RvLwrBG%+z zT51o&EBppgwtt@4h z_z6Nu6Hg{fFhpfssa7FNIl(lordrtBn>&f+7VwrAHl#+)2sX1w$>pSR#GpJ4l}2F2 znTrgPY3lKK&qua4w)#cQg|?$=@Ij~P(wRQUcRu-im`TFsRV9^9K3w3C4p)mVE-Z97 z#m1$mN%Bd2n7T4VkjW&m!;hSRvP1F!poI)c1Dwq1Myz>v`^_j;lqJm_8MAKoGU~c* z`}lW!_qt`_o%hE1K(`@PzjvL*S8n`)f)uI1#%`t(+rbc9MWsAe(51E11)Uk-WVm=h z$lJZ$xhHCXBx9054YS~k+sA9BNVic$u{_e3YymMldMPWH4CjOLr~u<4vAkB=q`FLY zE2qU2cjh&@Gt1^Ju|U(9mmheNjn7UFakvrBMiNyV8u(ZI16)kggOcn201jqZY0ZD3 zS-zQLC7edW817EkQLfw=i(m|f;Uxpi13qUt%Nnt1;kc6GIj(f*%qs-o3)F?YvP@e> z)B#j+DZ=D@%t-}^txX>0;bIz0IyACsHoK#e&cZa{AVSa75BX}D00J!X=ovf#(K41wP;(4dds?g_)*_b*`u+~;uu9+Qs}?>qR1_DtBZ(l7D*7b$xB<(vajyI zM%=l{S2<)Ljifgtr%kDd!ob&&FPQ7UE&_oVY>a?8^@QQ!})T@bLQ>bTg}T8obV2E8>dU%D;D=OXYl@ssd#4Ed9_Q3 z^;_F}ok>u$+%SwuCeta31Ll*lgF8BG+)myKo~v8a{3~r9u_4lRNa54<0b?Rt+FHgZ zXJ-OH9x|i?n^$fK+{b|A44rD`3$F(o3wbYL(Irh8CZh3A>r1xQ4Ea2P9t+#p- z%FB`H^3b*4+PSjr8;VxdM&#pd_|_}7MBrf33U*8H1-X7u_R@WCj~;RExULj_Hnl$R#%B-`#G_+ zw~a7&&SY{<2?IaKQ?w5SUQcJ?`J>Pxp2A41FCv~lCuC*Cm!4f+m6d|p$a0GN#OEY( z4nB|JeO5g$OT4zy?QN`|N*5AMcwvl4F&i|bqnw531@^EK9y;Rb%h@L2?ECgP>qSZ} zJ-+gt{xidSdlEP<&FUIs0wzphm?HhsM(go zWCBh=+y)52gIu=0nQv`vZf24z$y(~@i`f8>7cw6)56U*=oSoe>jFXO9ui8{@e`@~# z)Be6kqlCmxjup$A$~_+1*(8@s+sPdeveI>XE77BCMHf;N31=+iNiUfhVf~`-i%lD5}vOA4S#QGMWs%lzsiYcVi<+zgG z#A$-vP+QwG6-k#M{DW?BkQ{N018OZ(K$pXk{g+A8;L)6Ys(Vvy7>&HIwHMr|gn^wS`O5Xp>w>BzYD|e#a)~aj>jzz-OS7Cj?fehIXiQEmUcG!$TdkR&Wbw zkV42*nWhS%(gq+e+1v%#F~6wJ8+ojBj}y%XiuTb-91)3D*5=w(h9pU4g$l*JLJ|=1 zfK&$SyN-JI!(Je|@s^)r*P8yFb9r%kvubI1=5DlEe8|Ljk&HuVjd@kUVZ&g9Jys}|F^77uWe%-lsWi!^+FeN(+E#QE+QwyZ3o@&22+OpB>Y=v` zbp+LK4eBvVuh_lvNi3@S@8rC826sk}$ZW26osyDyTwoUURcJ;jNd z^9-N5bH+zWX`;(#rMxz6J*&%mcy$M`l_QpDNV)RKJAfzVj~loIf^mac;jsSF`|0X! zjjb9MhL&rmpY>vvm*K4p>B(~qtXEPp+s$z=?%6G*gVX@X=@U^ z9%Y~UqZ_)chBRgJr2B*%1=_t;c*{GV5$hfzmf_EvyU4k}a?zp%ig;K!A%i~93aNd} z6|gxbyOkP~gr>DiR&lAtB_HcUuhg#eYj^QYrHqm3)`=47_m*uCge(GfStNs$2Mav7 zP_LFL*KiGs;LSEDG`T!Q4b$n@V3m!~9lwsR07jj~{{Zlf>HZtta%Fpqr@3-j zTVpk}qY71+5HK)v&t8@1%bJ}(Wd~&1{Le;=VAGq`ueg@h-%qmD^!-j5Zp8K_ytOwG zZ6Ug=dmeo|`f;rmuWKCNZMamB+Xj>EQ<(E^jCSA@Rv>O=94S2W(2=)usyr(!>2o85 zbi{c(w_z}YkUnGT2^+fla`5=^JV|}_8*BLCmI+juY}kiY+^hUq%9bHd-9I*PKq9I% z6l|29hJMpaa-per7M-PC%V%+OEDPpbM}H@7oI_N!2Q$(gt25uMwK zCq7zd-4{IuI~KONv+(whcc=S;@lA2fY zGapFPAM9Fr(DYehlKw?iw}vweY-5COC}KO0KC93S^u;}J+dhY=&nB0r8J5K_UR8;5 z<$_@2U?8sL!Q6h};ACP?v+A0Y+uuAA+k}(NbdFabH_OS~=jP)bM?qTNC9<*q0E9PH zf(y4R1*<>V$s=xZbC1NCv%f zlJ#@FoHG)ugaGk?rvQxCcjsEz>bhN&Hacnqzcyf^K%^@9JSiOi02$-2VmTG(Yph$# z;uy6XyU*T4qA3;_CPtY977HU6D%d>dZ(JTQE3~ljE|ahLn!?COsR^%TlWVQys3Y4M zeBfjIfO^+^hq{_t9Mozj1$T3&@TRf-r81c0X;p)>F|jaUgVP|DZvFWDc+b;pBenQX zcW}Em&!Vwnu_}@Krs_b+>)fBiob{S!nQ5nxAhl(13i+}=<{+HoB$Me}G%ey5_-0j8 zO^;3*OKxUod0Ia#=Z*k4_aGly<*MxdPxKXOB>qqIDCx5sJt}m$@c`9jmT6|T4T8`i zT=_$iNF4eF#~f6;j;C)fqo~=7cpheZxR%|~N=9Ifon%$&4;J`8-t#(qwZ`b}qQgIn zq0nq+fZ6G{w-M^G-FeYm$q-Da4-o0*DIhTeu^@&xklyNVacOj#n40!$Ipt(ayKgcl za~GMo=W>8DSjm#Aj!43>9$c`sRYy`uO7`ism(TM(S`v$*mF;iT=sa;2h;1#e4YW^j za>`?sks3*02*2xaGFv+kVges?s@FslG64FE#5e0bho%wowq&W!|Cf3UT07$h-BZerNDGZW_3|K!b6$)b< z4>u<#ZrypTWbrS8B-bvlWLZRH%WAS1Ac-T8{h|j9!CaMBh`XJiC}juO4U7u zC`QoT-KVXeo&9#-shu1=D5q|xpX+*;igf)su3~*o7%wekm&yLqxORzlalgz2#_GCFPt@!E!##>Z*L^#Nsi%rCR>|p^3vEzZwPmE&S>Ddy#C7AmJveg{#lnlEQD;vGv6R_#XH1tczaa6(`{@t zyF+<#BL=v;w29ro!Q}E=033S{KuGN8xf+jz?iLX|m-g3DL#U{=@@9+~BYDvka(IQ? zX^owT+Ev}K$IQMWFN9xS&=E8t*Oc@b$4`U zQBF?j+ei6n_kJg5qv_x9lHBS#sqi0%WM-H^;{NY&-5A(eGipc#1sKR5CPIQ(wljEJ zS$hWUs_;bc%OtjSeYos#%W)$j<^EDU_UagNy>N4>4~LUmv7XyfxJ0%WH}gXb z5$u=uhJB>SS%Dj5CmRL{QImoVZx`F%-}t&IG{|DSTew7!t&{nxA}+}rlYxa`2S0Rj zGC<8cPtd$mVW`{OT!%GRWS6a$`h+qT1#hZscZOoo?K^& zb#2Scuf2%%=q|K%f-AekG3rW@TrHxyAc__&6f3*rmX(iCI2;U;dwm1NmJ(@Z$m#J~ z+Jz`1jkCf2XWzYfcZqcULK~>3HkTzOmR48tm|Jk{R;-QPcmHS4W5 zG@npi30m4Y56bcflVYAn1mJZXcNN(9Q{n!LYvHgS)W>nCExh;QAn_!VMt6d-uu~Wh zle8-1p-=_~msMV(v$Bq!x}KyW`ETF;0nTZzqmgC0vpT_WV&}_|kuCvb3&O5P?+bMc@{Htq%-Rj4v3YVyBcLGdaI7=oN<4vjx-FhCS97PtIte&e! z=l=i%xuW=%&r^6K)U-`H<5!)gwEIq>1lpuPz&GJuS+Es^zre?7OpwAw*|p*S03GRf zI>i1apG&oCnFMb=$JoTOB;RL=U1N1~Bx`{t5Tj%yt-OHBzJD#fipL~(Hu`;|OLt)d z`KlwDC59wfqzf!S6?TzW@)(hltf7rp&@ax5G1M}THH>k`D3&>8V`$Pvi7mrNh_V=s z&f_9%C{jjssm$W}UbZdMjCbk%bl34ck4NxclWC_#tjFQF^?4=J=6k>G2p#3Vyafzz ziPf4d3TnrPv|Bw?Pj5eh{67@Y$c1iX(qN5t{{R~KX(XKE7;XJul^cF) zuNBU}9l(!7m(LbSXQw>ULeHhn48OiCT$KCqe9>-y-0}em4sVD&BY9%iQd!wW9qy+# zsFJvq73N7r&ypGU{K1RDaB+gGk&tnvDs!n7cGcDP*ZjY&4sU4`ufODWJ|XbUmX#d( zy_T6}HTyv61IvBpW(yf;1A)Vo6wzo%=$&-vnhh&j_q;?)&!NU@8j6Ic0Uq(5~ z_J1ea%ly3lM)!xjKL)VI;={w<8g!C)?=AScSk1oY+&68)5=voqg<-gqJ216m@NS@I z({%W}J>k@Axb7`uxk={{#_>p4;}TfTwO%c{{W!KaEVh;+?b->f=ZZMmSB=Kd;d-6q0l?{i zFe+<(I@3;w%PYu}-NYf0Z6Ox$;aL2#Myv$C#1EPucIMAuG=JeP(!3lLOQ0K#RIm`w z9IrHTXE+GW8e#Ge8*_rVEs_H@JyO>4=UVcup_E(Pq>iRi%C6{*B7&!?yI_vTaK{ys zpzE(^hqp7?zP?&{3)GyHapPH)p zuf$EJc!N!YLDZnRx%;wPv@JXmKc5GcxdM_(mU0RW;D8kNG;REU@isdnr^g%@TD$qt z&Td)~VA`>=ylRSwIGsN8OOm}50uMbmSCJ{MSKGDG*(k<)O6ffsIw}4i_@hy}mm1cF z_bn)E%a~Ep;?h=%C1DFMDf_jI@TEEjr>)|Vqma3(7DvBa~hvH7=|%0?yLUl`kj$;(@9?(Pbjz0T*xR(EmO z>zb^0BFg2o=NBE0Oe-IlSb+*@c6>9E|Co&mZi5I9|-SLHv#>^KY4hQswBM@~9d zUHzZo=rrYyR`YIEeraTQ)D!d=71u(fA@LYD%NlfLpH|UyD|l!7106a!Whn}@ zOE{8Pn{y4|gh&W&z^p~G1gtA3S<$N*Gcd2R`q<8jGT;0rML}@ME5C8z(yE)(vl^x!pru~;l)3wO$#gr{A!%1xk zK77VmV+$If+CWwLhzA*5VDnke6H1hMG{f)z;@$x7D=?wOK}*v!l)ZkfuAL zj;2+@Vnm3M7;YisaoP@Ni7jk2%f++uW|}pz#+?xZ%XMXF*;YWg<#v7NIrCSHg~nVy z8kfXcwT_txySbd(B#S(#B8;x%yJ^~@K)!In8OeO)t_63}lq$te4@PrJGK{%d+38n0 zrQ8~lS?2cbBZAgRBe-c=K(k(M!^%XTD3K7C3!SVK6vlP6NT<2JlK$@7S5<3-kX_m| zhD&7gL0H})pD>{(3${cB*o=a6%4s@?2ibg>oNYAvE>4yIHtV|}>i=Q-W{ zSzKd{4GYD7AJO5JMY~uy+P5tv8vuxI;|g+E7UQY;h#hMwR^@FkLlqjeIi&@49nCo* zX#7Ecb!Q*hC6)*gFAOZjCP>i>lY&MNNf_Ecjk_^5oR|7On|C_Psk}nZ$(K`dAO0p$ zh~o?!1NVfy5|h6f^GGM>aZR%EK-6wLsAEKkfX^bt?X(qncGDYv=kU@-B-w(7}6dD(t{)~8T) zdnVG&y^gaSOqLN_Mw)fZu-=!76ito*!H7tw?-gt_6>KpLp9S8Jt9Wt?0@`#&>gq*n z`<-F!%yKvq%3o@qHCWrH%_A`k=r{pz%`?LbKZWGA)U}&CYkQliZiKN1xCn}p$0LVD zD8Mz$IU%<2z_2L5YoCT%o7qpS+v=J`5MEoimd|?45lJGJJ=@GnfL3CD>HED#a;++y z+NWl7Vra%QafGhB{{UT!_cwkV(=;7I!)3IktfZdm(m4TiAxuZ)+%^v+CNYjyGwx@L zP_d8uLKI1?BZVh>mej5U@((p;L~$nh7^ed}SmSFP9D;I_!FqXG`Xzixwn^exAy{Z8ey6+<~AcNGN&hQ z<~SsbH5qKh%Vm3#pAzYomUA>Z-HcgDW3{@rm&=U17&f4C6chW0$v-X#1e}phxbY3L zz4e?rtX9{_YSY|F48OdL?6WS#mjDy8T=WFvC*~RFEHqZqwcFcyCDWTwvl0oQ7ZZhl zGs)T#M@M;N7>RbO@?-!2a2h!@jXO|LXna}Wh^!>Ey17YPP>f0Tsa3+qAkWC7&pd$S z`9z(&f{l4(iMgk&c$(HdFI19UPSz16vp7q8hJt&U#0s(@3<^k|X5dtv*(^ah!*mmB z(=_*YORKVTiQbSSxLfxgg^kWDVCR3_9Q( zB~iyjt}bPJEq|{28j@<(I(>!I(LyB)sKYI+5rDhM)NZ6e23H(Q5$6L9j>HPEP2o#F z5NMI!*x2c_+T18}J7;&WkoyP#PXE@KO!{BXGMtN;z zw4GK{bdr}w5l0pR0Du$wpt%RR4VD7B8|$5CNliY|>OC&*J39$2E#`zgFBAexW%F5% z;3Nt&(`tOp^8vK>PY*V=S{tgf!`e|v^KEL=5>ob zPS;G+ZXwsBL{Ja*g{{rY#j-WBiFinrKt@Duz!FLYC8R|MrARb3*EQ`XO?_`8y}q7E zH8qlH72e_%OzemYe1@NCa>M((R4^ktRHCF+TvX==8zq11xZeg`cyjW`Rf|*BEG-#| zM+s@-iwYb$AaD*@S3P(b7_Udsyh)_nc)MSm>K3vHtz#~+&V`gAZT(vxFMmq%ZCk^# zB$u*UojoHkCBz99tt5*&mxzRq_hZd%(H=c#i@03!8Z2Mg;?q}>IF>tkE$Tk2_LQEd(YklUT_*nk#QNFO^lO{Ti*F{`?(MIw zS~;N`+A<5wtM{H>7bh6pLHSpO(c00jCv8tdj_lo}whBzKZ;nQm?n&cE-JETZuI0w< znf9(X!Fn#0aF?^{cXr9B?6)>n5|U%MR$rN!S7~emz()mHST_R))AZA-Xj(p}J%#0< z@*$GyEk4%U2_&O?w(l|IkncDcR$iQ7oYw_hOeoKiPhY(1cxtt2xzk#Fi0yUD3nq^4 z+rsxceYcqlt5@fkJC9YfELO0{*hxEP79)fg-O@nR8?x_4Zn^0DKLhdMl0M(n)| zeycuiWv`L5rfE7{+I&!3Yx&iftdL#JI>m8!3x+Kw$REu?Q1%=a2gMJP7~ zJckK&F~||RleC4}U0-nM0m|F9yB;Q#~48xovhnN5!k50 zl1uTQE9PjmuE#}fq%l8IPp7@VlwbHyz_6uu^TiriP zR#cwa`a;*~B#6fn#sCs*#_ic%>mlbVwV`QwrcHZ$;mLJ9J59E_@}XwCNs?P{-FY%A zE1*?%F{2RDVR=yU6S!1kBr~X=P)$|KO{(d47ZxlpbolLcBoUl1TpYDF!BRNp5&w3(uz8+37Q%vpU&3Jn|c@ ztmTqVl%ZTM8S$O?AqmGkRNbKa^cB=y+239GhW67yxxBu=jvJX0M2X?db4bBRMQ@kO zXq2%yC2{j${{Rau^w-`i@thIeTj=*%C5_G9)MUyV&y2+e!hFRs^ty=m=-9>=K6&B~ z6}GE=Z6FFX#+Bfedn)V}RMo>PMjGS3wI5GwKnIEF?s%SGTMlW{qP}^1lEm z17O$&(4~L9o>ebrO*)TFuHR6+r!RGUyt|&capEhREj|lvK1+BKH}aM^l}L>eIKWYb z3ykjQF~$MFs=CLDthF;~r$W{`tdm-Ohf#^7of0;=WQ|efh8Y$%W>;J>LO8D{J~P!H zOOoa#)7{e2Iq|iM;TdSML#TvB!6@t@JjjnXIdsKylsx7WkIp8kv zrM;kN&}9=0z^|FGD@dh9TfZ52Ue5l}t-Lp7eFXk$T){fYBq@c3(qwsHE>tOykPse8 z!2wCawSi~3u}l3kP`oi+4L&I@<0jfmZ?hjNG;h*uyIm#9s((nCP);hN*Qc8Px)-9j)I2+* zOsNIDw_4?#Y*yLQG(u%bQ0>?OlM^8F(;HU|K~gc>cw1i6?T)i;ESDNglErnVE$yO9 zbXMV}Aw01d-SVr&wTMFPoN@`QZw~x7@qLD=VRZ+C;#o9#9&`5F)CPO6Br*``w=pZE zWG^FgGMB+(xV|2^yYlQTn^w2ff3&qLZDMPrxsbk;$stFUPccFXSh!ra;C8PKx-(NQ zR_@H4VxKeI?{4pW7vbNB*7n*hyW8Gg3kNSfmCu!R#GUPDBFE7-Nb?$;zX1laSpGcs}*!S2|6V=ZY>Qy0^Do*CtbW9qf)K zkcgO&%Nq5OSqW7eTIouu2mzqFzN6vIJ4}5aQ;PcLRcn`sN%n`dcG>meS3sN{MRHB+?gDJ5|`M zBw&&A1sh+bR@JmAG%XWN(=Bgw(L35|G2Qt#qARZ{XH{V_-h9HPAMWK;M<&*F8|uZb zxn*(V<(tGB)|~O!BQzH&l|s4Sf{L!Eeccc z_tLhj;|)tmyJjERk_*-HZzeO%gR#|Ca2LqoLgigX0A&@?D$ta*hvLTLWpfAnb~}b` zdOcFZ7b$*Wu$oR_d!>sQ)*I;HKc{-mE~WRc`q zEeF~&gTM*%r^%Cy^duZ}IB9H`9>oL zeRk>LYu^@pKk!$Fys>Gc%f3tbo*y!JjC`bOcHtR@@LYffF`t+t%bDWucup1rteF!({%eO!CWQRl+y3Ya&i@shdgJDk;9uv zySDMf8fCYKBTong9%ab$5=3DUz)&VR8@7!3V;LhH20Kux$v$STWm=E5gN5u-yVVj4 zy;o7NwTJBDYnfh1r*?OLCS{G84(tM78C{@ny+s=zZfmo zha}MFy|L5p^$R&|$~q2#F{)_9`N^uJW;4=M%!LPC@_C#TA*~ESzaZL6}PTKY{nO9U8EyqZt)tN<*a#L z{nw`FWe3R}UG84c;DY)%8hGJ(F7KpP6B(7AS7BYDNFDmOx20q1=ST2nr6S#F8XcX( z08Ftws$>TZ*USX-`i#=eqj;vz!&*4ktu5PKZEr9&oDnN|M#@Ip`=uXsw}bxaIU@x5 zm4|}7UE*IES$}Wn+TzD`bc=O$HJqR#78yH;zyN*%y&7_iAe@qK`qbm83C^QYlS_a2 zAA#zg7T0v25NZMR*duwPxQ|QD;2Bgw&+@N_@u|0kAW?{r+~= zMUR5N;RWzb-mfM4$#JP&X?HgO+W8SfBHk;VsCE@xI2%Y(HXpm4tHD-`T}f8izQMle(_hi=hvKi)@AL4<3!i)#14?jWY{HePfF91#a34? z9$iO6cO45NXa4|4)vKLqd!0IH{L4$2B!rT%TNe(b9sv^LC+aJXre#|ZO;L0H z*K<=>)Vw#PTj}QZHMlx{XM6bJw}#eLcvlfRL=*zAF5T+*D4bw0JkJX!Chq?Luj{y> z>@V+b{MmAL*JAJFdK8+0Ri!4?3#_D>37D`VPs{2^;byV`OK~g zZH5O)h87*G2}fmcL2QD)gLC68J5RWl4OZsr#^N=0br#O?fRVI}M1crDDmww4#3|!E zQ=KI*cA?Wz#&Py-XxetaRGR%+$LlutmYP+}^JrJAcQv$dIla1u23lI||Lw{yXBV`9Tk^Cb^-z)j`q zA+1#z6yURd@IHLax!s(SNv@^=sLOG=7R4<@-etT@(~}HkTMF4?5R8lnhTX~zKvABT zRI;?c(_YyONg{$&FUx>BoMlHGbLsV{{4*>URsc$o`N@@V03Z?9*Y*5`b^9kMxi_~$ zdD5DJ5+bjG~65h_6@WjH*u5^_lU+>8;N5NpiG<~88eC`!pKbY6aG z{l|763rcCqU)IN0qIhXEdmB$ONS5xxM-0+Q`^%IU(OgCVB!mP&08mH`GaLiEc5lQ5 zxA9^}cWI|hG?&F?jw?%VCB%^7WLvpi%H%6ZtC-1CfDSSrAMDna+SDE%)ovEsOS8NC zEVtJX0VG)jiIszVo0|YJ%C6;R$QVBV0O9zoE<8J@OKSfBYqooIFx*Ome5rx8n}Nv~ zCxP@8o(JnS7d+>9`Y-FZ^{DGARP7k8Po6Z-25WZz01kXnG#Y}7melPm#v;yzwNhrC7pcM3^od4I$Y4BB7n24SGuT)HSB1X2BaYS?nOwmJ zRR>%TUN;?l?yO7(e`D+r}m3DPs zkT2QT0k}CU9#rM4ZcEKZ-$~N0MwzUp+jom|X;zK4@GNYNXo{eS@|>{Sl~u!T10Ij8 z*jq1#H7m&3S__yXb!gixz~elhuNBO{iG2CIHD@-LIB4SEZizCFHz1;(e;-QpRvx8A z`@M8Lsn)dh(LeJrG%>8rrL*{!2-zAKtgUQhhFFZ75+>g!>=sli2Yv2ak`z})JU4rH zZ{|qxq8*`C*dh!npaDk%3W_-FqPqV84a@e8dr^ww4Zc;axboz~81fm2&rYm)u9iqF zh~@}??~z2 z6IqKk0Vc|+xj?~P$ik^PY+&aZ$5T`_yA5jc?()-9cr9YMhT=P0o2eM%ay}5}?g5@# zEz^Y=0cm_Oi6*?&ZQ46It!{j^mMJCL$g%G#Q8t~!a}Mjb0P~zz&{3xzNnSq-*XR8s z7gfpcV=rE`yf^yPQ$;g7$$cfYyik!N7kh4x3@FQ!~(IWTmU!&&{s37Tc`~>sY2W_T&sR#no{A4 z^sj|YKD(fNKGwBA5^7^vwz{~}=Sx4fO(H@T>=%hzLdR)RgFSPQbF>rC*?c&< zn?ZYa@f?z@;U$J=xB1~9hC&YhcKVv*{Bs-{b=}^TEVq-ar_3;$*;3UG?ZXi(<2f1W zjQ(}Um(s6Br?Q&&dTV{XJN}+$P9f8&8`IU87dPGjy)AJjld4)=Y}$~kM{yA9M=yrz zYtvuFE1`G~!;;z09lUbeg;j7j5W7bJ{cFp7Ij3pY+Rd(?bz@}EO5ilonS-FmB<+<) zW7~??@wbK-NYt%u9`fRSI4OHLB)E~`RVS6&Tc=L^*Q<|iH0;F-a^=Ts}B17XafudgGo>38cKxbj=MeFZ?emTX~91_N=*%RL3~}?`}st z0(WC+@^I3rhpQTuCft2q-`8uL`22J!%2evnP<~B2HU9u^ufekyN%5bEH0UjKe+)rk zeJgZrfFAQ5#g4^N)0 zU@fyXd51E3JNlMxpG%&`A8t(kVhEY-kejMUuypV@hn^88N7;nee&g$2ZlvF0zH2N zgM-q#OQ`I1AGAX!f@ODEICz;OjmqZ@xwfBN9jAkw^NQibLarX7N;~-BFdU9dVI!VIv=%(UPl=@exAPl`cxKr z(&^eDw|i-l;w?a32?s)1%Cg|#pOKFvAm<&8dH9zqbW?8fe}B)f<=<0m7ACU9Q%!rZ z^3wL*-*$2yCAHTyeM-jLRMgQ-Fha0gKv_~WjhH9hP{gM8AmFwb<0Rs*X&ryorDX@YjBo;xFh=Jpd{kiQ};HNs!Qf|+``G227>hl~@qlb#A z6}rBOE4J+2y>{wzaeOg@!djeXU3I!?7AbAv+NC#O?hoCzwnjKs`A<12zO7*{pL1*F z%=wx?a>tX<*NeT4mx=WqXT{p1&pcOmGPRAgkMo4d*}DYvTn)WA?_BJ*@lSCKklH8N z#EPzgF~_IlU3Dg>Q%9oFuATJxY1H^?wIf!vmG5sY7nbLt_<^Ifo>f-J+zwRZka7>y z9ANbwMJ3OO?P7;c9u)BXz0ZlSgw1;sMKNi@F7n~hM9Um8+lD0PrvbQ+82DpPwzXYP zM=G(G5zTBEw#Gfd^zB&Q8Pihj^|ZLtV-;k&{MlJ$CCchXcTaTHzgBvM{{W38({;UZtuH*5vb{03oZ+W2`EjbqRz|@w zmq{_xJY+8LD?TqCL9D$00BM5n`!+b<>RUT$0yO;d$5v5>BrZaQB%BP7L-0R>VxPjd zcbb*_bFYZBdpJr#ZX!0ww%%CUOE4#E4sZrnIL8A1ui)8lV4qO9xU#v_z(E?tW47F) ztjo2cG7`j#iF5OgLUF+j(HY81mAyZ&pW=2@!$HZ&@r!G1Gf}(KG;4c%W|L5o$!7@` z1Pn|u$g-#?z=;xG0USuUVZ2s{h&2xle`DL}`gBG}??JQpdE zC567vZKc}V#K?kB!2bZGzb)p1dmkx59mf@FDoxw^(J#>UGMs9{$-Z6M-*4;uiF^j0 z7{2hyeOE|={%F;Jk?m317{rq8Aih3Ka5m*~tU7`RMQ8Aj7 zX*_-vUOj%o=46IB$#*0!P=HU=)jQONOIMk4ZW_$nf(Y6PALCwiE}^X2MQv|us_F90 z9m`12F4D?+4!wBK9<|*^4(dG)dX+g6xx3?i4p)ZbRFY_(ICCPd&zKzN`PVlh7aOBl{O^d}kSw6FDxyPXqXwA3!6o6A-EJc2JT%u=~-Ip}!&D~X@Q zJ|$JQh8Zte-av*=vVsvy0sY=EKRV~d!TUs?Zi2$TNy#lQ`P{3oMW)B%eQG;sq6)Wz z0T2Zo4h3u3S?YHhGFF_0M8aezQg_SQ=W%vk6f1OddGO$bvcwXn};_u~>;LJ9{7Q;1gde=BF19Wp7WzUAz7L&t4Ig z+?xKsP}i(eN7FP7PUVVc-JZZx4&Q3C*bjKB&qsgOP>bB8pR?l~3E10zQD8?<}{%j(Q72NxG9E?VDftrs% z)GsxSFHd+j3%k2Slpx?1^7D?p%KjOzs>x}|(7jdBzrFT8do-M#Zd!KezpXtEvGl75 zqCY&&eGHpNlB74;(=mDctfmexd3CJ90866bHCd5-VM@p-9kxZn$p_h z>@2ZGytrbD2vW)qCkN&L5OJJf_F@R<)HT1h+O5^ah1$Z6Y#ACrV2WOa$j)Rv#{gE? z2jzGF008l^ai*%&_FoO%t=Qsptxr|ew0%nG$7OOYXF%5PVzPOP&4Z6X27Pb^bkcab zeFMi&WMY!y)_4_Ti_F@Q5E-%uAOZpH=~;gc>@_VJ^$2hD`-nc!;zW^vE5>*@J$d?7 z%a@G!yIPJ*cxBtA3DKlnlx1a6j^D<8c?0qEvj|631ed3w=hAZbZu*@60F5G>T)7U< zZDQ)cp*AZv^kzv2mwrT_GDJZEaJ!U-4aSd!d{YLGrs`2mVP|44ZjH{!V_R5Ic}Tw^ zhH=s+WAkUJAPf_MX?h`xPdbjb9ok>rUE0BJ$OBoJr9UG-ImnO^y9Gli0IA4y*P2F; zCDgjEhBcOJ<+8T5WZs~dQcb~0!DGJ}=KugPmfgsyMs(LBeEVB_{{X|9#&x4vsWr>L zqB{Y3acf{n)HODTDj|wlknGyQh8<&B58VUjcH9dF$vLiS_feikGs;ATTu4KWz>ss! zde$%eC%y;&0HSqc{{VpTfALj&#J2Vf{vDr2(k!&))FX;rmawdBR#;i^#BzEk86Xwl zcRqeQEX7h>_3s_+c(u2w?%{E?DM7|iz4v$j0DyFscj7B3tt~G1+rUCY5tSXGjeb>+ z6&ySa$nIr-)+sEWzo0y=tw@Yc3Yv+`qSYiQA?alxL zD=8&0jB&tIS^E~>Gr!__^QkJaiksW|=y+AF{k6WHZRej+xVw`{lIGmH$ry$}nO%Tj zHa~jB*f$EHNFbB99qpVR7P`N1P_);qZgtpIqqCA3 zaU|1Tf)Xo$n@a;~4zwpVjqiol+8- zj`{B6!MC|q+Odvz9ixrMk4yoPgPiazT`RcHL)LjFA;n6arGDCef_z1@@a@zQYr1Mj zHM4(s7uOm@ zvgyfnZ+Rr*?$&rEh6th(BLqJ)F@eDOKqT@P=Ei=cA<^}DCGj7H;!vMM-}@ra>Nl5BM$Z})h)Lx|5NM<+_d1@$Wt0XZ zEtNg3h3AN3@cqt*KAo;ECWlMY=C@3IlJ46iY^tQ81@{y#Baear2fh_$CuuFVJf}`d zO|`zKn_Ay85q+#%S?UwPdt~gA%ARY(0!ob*+#i&zY8ak)Lx$W9RDB}u9XPQ|Fh0h` zzR@HRI)OXn#q;i!vl9&9wh3HgX+Eg_4Yj}UeXOu)y42RUK_-n7Xbjtbe9BH+82$Sm z=audaYTbB5+Syv!X;v4L!06WZh_?pWB!kQ{ggGPT-psjCjgKhE%Hy80u9|e|^IfmH z+v{t8S1n2r_?hP#--hq?zY%Lw+UPdcMn;AUdn8z`+BY)860*hT3@I#E%)_B9cp1uj zFN1UoZ5K#7UZLbhZDpT-*`h9r#zn#={mfJsAZL;}Jm$FQw0%nD=hkl%RhHT1V$W-K z%jFRuVicX*0CZ9S#tJD1AQ9*u3|MZ=u(_IOUMJ7mWb-6oe6Cr$x2g5!wW&s=DZ|=X zx7$^F9ICV`K3IMxggSSJZ*B#=cQSd*4%KKCGxW@3{A)V)!@^ebNRwX73}l8Y2w)G? zMnz<6+a=Vdu!7^wg4~Zb;4uWB`RD%d?!&iVn5!GI*z9Wg@u%}H1oFD zBuL|qR*oqN8AaLO1Z3xsM;!V-t)(WvaE0O1(F3!$nPw#@8?<>iU&UBuSBwG=FR1CQ zW2`}KYjA=ad1kr`8WnXe8-n|>#(D)DW3MK&!Acczal%7;YvjM+Xm-_-`m&X0Wp%G! z&-E*6)>p&B_gXFF@>wucW=D)hB-*QmW$m|OfJX!%!Nvf?w9s{ZU&B{gylj^d8Kb8vA!iGjBZWc2jOS}J^cc*Gk~lT=6{ymq3DbWXlJc^)t9N_5 zKQ5b|b!hClm}=~2GV}_%oq%V z+2|ThkRh5D(qoF`4<>z*x)#F*!NXwu%B(wNDIEnTfwkRNQ1K1LzNM+jcWn)|%ZoW~ z2?t`5g^&Po!2T>8^yF8jJ(MupJo8!UF(?@ut)G#M=ly3LkJFy&8_2DOoptU?%+D0z z7M!JP>E8bUBg>P)MmyP<*jr6uA&eF(6@sRIPnREfmB~3jAi>8J`|Ar$H(t_ibnPln zJ_(SBtmZ2tC?kN+oGvqwz$>_9XCrrA)nUBwKC^peZEbHQz09yhacvVu#a7)U2bLrq z%zZcmq0V_<6xnK8o~N5wiCCm)7i@(j-tbDxw;gg3_}~(t5&_L{)}va5Sf?xK`gULN zMNSXe)8&=#V^dqSeRs!J8orqc)J49R1nU$?jE-I9VH+7)HilgDw6NWsxdO2-^y6r@ z)^`?hMR8*twc~0qI7RSKId=|vCaV)1U3NRQEjAO-s<+R40B5H--G15NUs=;g5jBdVT45(;AfoHe^{Jb zPHM?^*YCZ$K8W`{pEk==V@|x&uRJNE8FblgZ7r;&mUyk=wUg~KC=2Iomnu%!CF%r+ z<_oz)k)fyfgy`NYvA=6MXJoJwO*P^q^TXxZxso)OA(e@V)q{ca2?z`GXPX`k)g+@r= zt+6oWUhi(^cw9HuFG)LFvg@{|)7~C}9|`zk3mdZ>OB9TQ%ZMl$C5H*daCtq>PkOTc zC({69_J$w~oJ7YTrBU)`)GX3j?vyIJKIvps8}vJu&-^;o( zuCL?N^jHmqw=r8o5+;o6E6BF0%6N4qZS8fVkFSDeQQV4Z6mnW;Ge^U z%VVg0hwQRRD>T#cTH|t+Eg}-lv=o(iI4w)!X>|`0c*%6#H%5}m;!6`8)~PIE)F(TGrc8*X8j3vu$nU+}+0lMAF>(L`@i(o>eL&`G0wU9Zqn;ml)4g zYw|hGS*7yW=Y*pT7sL3R++H>D4~Xp|lU4B?mjb|>$*sSr9i;73 zlDuUI_7V6~!8dx}hL>Eo(lpraE(Ysp-q{pJ!|u5~c9!(#7$YZvp4t@g>i+=R=Ty5o zpZxxL&F6jHzkfOVymjfvO7FCP3ft+v2eMr<$XvC|t0a(3aLE90!{;iv=j2~p5IqHL z93-&vQ;M-QxvIyOPewU3DB;#3v$&2Wgaagma>YhJi;nzo1#}SHz1*|f+DMQza2B_V zJ7X9lB;(Lk*|aMtEq>8yWd*#^qZRVkB%TfruOL^OSk155omHH&9Yb-)VjSkjAcWuGIIpdM&c>L+(oiD7xLu)Jl0Gs(3;b~Q;3C4Q2 zcVj*qxUV&PdldOltE>p4D;WxK*!HhD@n)}VZr<7{e$xzV<+HlvNZ-Z5&j+8vv~2uo zW8vx1@8BzT)4X>^L_6b)XvWWc=DgMvz1Hqst!<~42+3zP&Q-Mo6tG2TTyg62aMM(R@+0P^L}F!0J+Nwkm_yype$8w;>?K(TwL4; zV&ph1#E+B$gnRY$&uimv6I)s7+AXC20NK)|owB@%71x^#f$)))eSo*fOPnF&rbjj6 z;`w2Qhad|9)4;;k&OtS_vD|q|RFbN#ylyPg7CRYG5XYSS z-lqqHhKX%$1n&uJOHl`zZZ?)p#lB`az${6?1D<&~HN^N{>fx*{>?el6tJwMLIU;kHTJfsK5qBBBRo(uJtNa&N z-`RC&C++dl8~{LV-0mv@&&OBj5j7#}f?8AvA$zmuQGHDdn&T-Wpqr<`1Q5ET!; zBs2Ms)bRPiC;V#6_qv6yp*EAJXxHVTI5No*U_USNYY)UW9w36vuJtcIC{6++sRX`3 z;CACa-Rm`ojAo%pTcz9l`hCeA*o?9jaPF;oiBV71@}PKQa*HR;^M`Y_ zljiM~;MXxco)A@-Um5Q7u*FPv@fDqO40~E4VMQcL^5nk4L~F(iB%KxKi+nwQtZMr8 zt<*E1y)(Q`Y|AP@w&E zyko9t_WI;kntjZ33$5{@M;UYs$^l6XgSg0LIKkkG>OLXrR~mMaU_?_)Op_TJ6d@OD z43_7C$;V%>dgT8A;V9C)Ev;JXR}61$XOOME&6EJf=tPONW__dNVan%?;N;-rcTrm} z_&~H9TR}5en?{ZyD=Co2v<2K(E1YAdMtX5of}uHK9XA_0?en>$sz#P6O+6C*2sCYU zw1_{mH3=g;1yMAYpU1_#9ejK#a1UHgjT*nev+nE4s z$&Ay+!9t_?ilR79)hUrD-^-vp#-|0kMW$ZbnXTZyiSInQ9bd`J_Ys8+v}ff+)v zjDS5~NAYKor|CL?({#J3w6wXF8QW9XOmF_P*E^TbwJNXvM(E`#wz*&j(QS`~c^{!Gw6dD$l3rOo>E}wHGL1O`yf3nHF2^nGw zvNlf}WXAzcJtFcM>~)zM^x0n8NqTLKvA+UHpps=+_QsHg41#D&Zjpfmnvx462EYh>R{I7C>$H|SX$8b^)$&~?@j5i}CE=s(%(d&Mj?dz$vd{?!l$r$Tv zeha6|?>MbVJUb`D>)T5-(QbUmoTU17lnI7QX=IGbzH7R^BbN+t-!T{*)Ox&DIv1P%uzp51G^w(!-ClNE|-F{DbGqiR=CBKdKLYgdJYDU-EJ zGLWT?+>j0c6>C(vv9q<7`tIFXBT!w8VTfKU*ur9|)032+k>O$}RB^IeElYZ4l_N(s zpz}s%)ofH1Sjwt!PjYkqv)iXi=e51MPPL`j$7XKio;BYXlN;D>-O2iUR)XqUc7*mC zrThJkOT981P;Rd+qDdAkuqYltPx{lJV!RG=%b1f;)-LbvE?UZ6Dq#Z)luSpM(oeh? zjABvg-_oX&O|ET1Yn56$85%c^);%)jNVJ*FoEHIEgsc0Y?S&XT^);2^M!lEfOc2;Y zWtJv_=gSNi%m~?Glm5tW%v662TF&y{S+cn>%jQU}NFOz8O-@5TpA?eG1QswXX66Aa%XU^+8*`@6 z6tc$P{LPOshDgqKd{KX@S!f!5o&Nv`-I0(_2#RYNy!pOISA0Yuj1s|E5T!xfM+1tA zc(pj=w0P|_0K`B$zp(PFw9rdy3e9bT0`5hTvRfpKXBg)M;=Ib0oGLXP6X|B(=8YU@ z&F<^pPxvTh(1*l2o!iDG7WXm55MsLyLl01Wy?WFzcq+=~X`zPVLhzh8G7twOcaNS_ z^v_D(cSTDUj&1RY0FEUAK_!%(tH2!wM+4tHwALDOY2xg|rZStKz5rdM^ZX`4G0EUy zV~XVZ%HZ2FVMQ`Kj*(KJh~H|z{v;aWo*oPsb0?3ZK4(cEC;z5&^{ z(jd0buXOp9-Wzxzo$h03;aK)dB!!r}jjC{SjsorgjxoL-ycJ$;TNI%wM$CVKcG=u& z+O^84#uWNc?K_+Rc`sq}y9*sFFi*a@O!m zZ9EdhvaC-o)+px(Y9GX|csZr`Z#-*tslg$G=W!6@p3(!x z0B;(#Ph`EK=yl0Sq74hfb6m6@vp-LwfyY=03AM0%wt(b1s05TM?+IyM8irY{^r$6$HfvOd zIqp?F*(42dx?iDA@}OSg<--p(}1BmSBXB-CV z2&)=>%2{f*S96mTQM8+!juiP%_){!lvGAUg1MTe67b-6;kzs#pVog+ZKg zn)9>lO=aP({yZ%RQWnpIkGhM4sJ7BisllazdpR4H}BfZtM^QVh* zV>gl{3<#61PCIf4@Aa-iJyTMb#kN}I?@V2QIfh?Mx z`;is=6WowGk|aD2QfuR3N~)zkWTfn@t#{3Lb$+hNp2MiQl3Fjq-h;J|1=whwAh*>m zw0liK8dZ*4Tb#5Z3Bh2#-uVL^D$j^DuMXMxavd+inr)O#}QFeb5?J-GNxV#Fp(sp*&-epZ@?=au#;uP`nF4vt72-=jXDD-u`=} z%2~-Pd1(k60Ni>HL0wGOkXh+c$voa!BLU7#WplvW$tS12K9y<>7f`gf)NeIL)1%Pu zucns9;(OGEk(rq7`SH&L<2{d2TqdidUg%ndrH$;+NcSq2mhB9x>hQRcLkApx59%@2 zx$01zPkLJ~#PQ>n)Wl+yDz}PG*WX6}08Y0f)3wbyEA)=$37W{U-U>5hb~wdWn^MuC z)pdE{)7h==Y$t{@CiUAZK2`Yk#|MvEU+m@o0H52h`|gn}o++65@<|7l+r*8Kcsy3{ zlw&Ss`u_k|J!*JdB|556o4d03qWAJn=VfK$yNf*!!&Y(WfeE&^R$(Gf_Py@WqM=y; zjN&HF?uT-aHjUat#&=Wb9xc&7vMwIr!+g>pmNokGB<4)1g_)q_sGdUpKEua z=(j=ct+n_xD+JSX3OIK$PSJ%UcF=Z9xV{u9QgB8^vugJmJbK=jrQNof=gDz>sXvmj z%?9xIUTj5!zUGJrP>aItT(8Rhs*+LFZZ2EB4p+rqDc0>gN2^0`t0Y|UU?YNbr%9@|-%r1P&`LArz4Q+cU+LDTQjY3L;+gdWnGu{SC)uL;h#3S1 z11GA61duDJweb`tIi*SCdt|jqo=GDhmyT1nxW_#A`?bPJrRrLJ;Y+A&;-2>Q1va-a zyR=?smlw>*AYPkEU8g*ZkQALS4q04l!uBhDPR~@xc#_W1kgN$5r4@@al0*IBobX06 zI(RA(a##79PNS2I8_|E0*n>#cZs*l+B)7Yj(Va+QFbO%x{{U!o>zvnZcWGk;%Oh#l zuRAC&Aq=co_2@-%T2-hTi)s;GS>9O-i)dyRcTmjHG?FZ7ovv^RKVQ5?af<4ELi3xS zF4=x}J9nOuk6-ZjuS44DqrUrkj}YO0XstB-y%x79*k9P{m(%GY!C;PPo;e)EG64a2 zEtdWv>0W8}Z6{2u%GSRpAiYTq`u5^aHx4XE!u#e3V%si}TARtC~y6?$60CSPe zI8N87^)RNUmF2m>+}>(h=A&z{fVm-;Jh^r`X*QBrh7B0nFa>pE#@DcT zdQS}5_+l%WCDPv4&5m;Nptx9(832zf8! z3n)A??R+uLt{zd0YPWT*v^9-**`~EaZFT)(?8$9>Qo!6e7i!vc&R{4mGxwzDA7>f# z%XBDn)9IR>rP9PM?rrStRD(CzT#0W0>-)zb#-#OC%VQ&OtX(fqu-EUjn5FQ9cK4UI zYi=ZIOGP!jOBT|~yF+v>^Qp$f!QXbO~k^)!KJo*Hft1uOabfrD8Nik}G=@V>3j;KP5&8D$3xm z-M}cULB~%07K!1P&~G%BP>F7%%8oH1Z!hF-InH`@&*5HurfQM2&|l4eYjJNJ{#OzW zva>4#7VMr%lY#ixeA>m{ovv8vnw#3j-e7BJ=DmR~WDU6#d1d}%l14@|jAFeGS4MBo z@;NC>+R3)Rue|9k?=0+@q*1F(>M(rR<_ZVVwx{)|HN9R9OTs=OL>^nkVLtUUMC5+$ zzqsv>#}%8RS!o)$l1q8SH&D$iQd|9+&`BFdD@NP|Yz@kAa(Kb5eQMr4H^Lg*@3@>T zgv5t^+z8u+90B@g@EFAGO!Av8J$yj1*jQS;@hOH&o2KJzdym}*u68gSV=L@ysec99 z$!i_FvtLSzFdgt;Z=v~lA6|b7;V1D%t$(T7->tgn7E)_xkmgr9GTpC@fM&SY6G@GO7}iHpu+PU9u~uDirJ_9!7cU##JSGEB)W8 zoK$Z4<92!<_I8)2N2I}hIx^a%w$MR#QxmL!Awr}L{17qUJmj8l!q)A5dv$Mek1nG# zPRJM>nASKOW;-s#4b+A>ILH;`NpUs(&As*Jwr?#h?yXIQ~x_jFD#YEugSzE#rZ28dgz?0C`_?QnU250*mG+wOYBOAE=Fe`L z?CPY;9#5R;Aq=P)wzGn8ykO?H^*h+Cq`kVD(hH@wus2S-B6&Qh%a>(Y2XoYUR;%{=dv!S4>@DF0{=*MYGeSwP_T6uGSf)NnKVzH|9VAF09SY6sm&G z%vS?b(jmO?h1R~>`&g_O65l}s*fTkFUnViWn#~b2L59|7!yH9m#&8?-pQ%4G!Tot!y-vKj_7=e+Ik}yt1F)pm&b+@wkSz)SM zsyX{?R&zQtuI$H^iN0;aZv=oy$y^*wXRO-Eq+CioBWK~MeAPmbA@igkGLTnjBjz9h z%QkV09(pq@(zaz43hg^zZ8x>a_EAx5xwWL|!&|odMU~X^K;c7YI5@$_ZiF6dozS(ZqPF`IGpk8)E38AVUPf)F zAMbmQLVDK2>T+n>i!p^7>?s~x>7Oi|WZ?T}^R5_BlvLEy=8nr-wYB{ZJw8eEC1rbG zp}BDSwdt{wO19Cg?d&cDq6D>M-5`aaT(E3lM!*5LjfyjYio0uZ;#lpPO-fBIj`fWM z5Xg$o^*jrIuF2xfJ_#Vy zS4Y$0crEnzC_J}lm4NxAEs%^b9gfghM&G(Rr!Hq{ySBWH=>FoOlHX3o{-Y{t7O~$# z*+v*|_FK@`HFBM6MjLH2!)mXR{tCYc1%U)l?}9#xJqNpgZ#B1PaHicdhGfGS*= z*$j%n#zx@Xh_4qLLBZd-_c=~36=P`hF@(!$Kb+huf=N76yep@ti7xI;dd!xXIZ*?t zZg4(f)MT$7yn2k`UTP0p1TYslwI4;cls>D*R*?6)2W`$naw==yE@-s)d#xw(}*xg&RX+}qiR zRS6>~IZ%L-cL!oN^v!-7=vh)y>V$-l@#ZE-SL%3Sf-}<~A9!!B)s>XssRR&u5&j?N z>E5kv4+@%$Hb*_B-}uW(T{}siNVB%FvyR>wX1JO#V}~I(5+%lP4?)T8+MOqk?$-Y1 z+BJOqe!DNNr7sr`;;8?k9U9I86R|h@0y=T z*6mrZ;L`3ctf!x3R~E%yH!mPW+QG1QGXOD>U3gwzSM4U(-M8FhnND?TFJlCix-Poi zYjf57HR5}17e-rag$|}ik-W3W+{LlaUcS{7w>J6>vD6;+Gd=Vn#heioDr5>msolW& zeYnpfAdf86H7oriQIAd3blbaImxN8WRaL?gMt=9GBk(;wZC`i=jL+ZU1%p6#_y+>sZQ$3=5-?CK?Fyi zDj|XXe@|-0y|J}uO|rzQgy$o!eQSSO)T57Gy3=Hh;k$-FuM-e)`?ZrlDLi3^>N{6H zm-dZt-ekc-F$@U+@m=^@RH09nno2#F>)+Lmr!$r1t0lR;pI6j$SY~L&>c%2=2V#<@ zOdOmKyMyVT-K(-|E6aO%C1oiNe70cYYkk(ozH+2>$mC=KM;oE1+PqmFu^Y^m*1NX( zM`JlE%foYzz36k(zH76+zc+}eRr0bk?vhgMa;UtM-{t*!0mXP2-bmDNj>zbww7cqL z+}t!bFe=|^mL^4XGwK(K3Mk<42?e_j0mga8b6h=!p?i50GorIedZI)Ha?DwZaCpzm zuD+is^sho|sjTg;gnDJJsU6+B*-K|N`L$^lLGx{Wr9j$^lFXR-KqZI=L;Fr`cf-17 zfp(fMpJ}?>%73+4C5}6JqAtI?fe~2k!t7;J_mGttsGz-?=cM^$_kCH{PNY(`NU5%h zTBX+OZEyH!a1i)2T=6o^JT{t@ymmKj99NdH!-kS4WoBP8c+LhF3^F$c9kWmH?}Rjq ze;MB2Ygg$Vp=o2fl6%Wgw$C7tGCnRQZh25#{{VX=whej$>UY|8{C*ekZ}x1uWLIMD zd4!6M1-s3@XroMFz%PL7!mEVF@EFCacvDvi;ix{*q9gcpLlh!==R(2S23A;k#?CUh_}Bv$wOgo?SL8 ztBcam&d&s;TYkmbG629a*$a6@YmoAd(GtphrG8iD8B#ECXpMhloRYn@Icm{`Sz4mo^(gpjL%oYYODl^R zb?Z5Ar@6R$Ki$VFv{AR-kqv}$$7yb=A;5jRCdVO23$Zv>3n*Z~ zVz~WZSkwGDqw8s;O&PSex_Dx~whHjt$u3HVP(JKM(MVN)muMLwm3b&)tK&b~DsuA6 zRF|LO^0uAXzbc2j9)=f({7bIRt#PMLnzpVJq_Nus5d(sJw2(-dWA}(W72sx}zt;7A zS{J<2u0erNo8XNASvG)JBS!95E7WesJw`=YI&PDx=ofm9n&I2=Tep}Qw(n{dx+xU}2(e(SN?{!nCTp3lPOK-a>l#P@$3BO8V)in_rT@M7y4*9=sY{^48j&M~0%b(_*kXbj4x5j@g<^oEHleVOyXC zeb|?iwRZ%Lj#-upt{?EJ$W4oD%VdTaOm_eoM>7k65!HZwlbiWjxdgDyC^QVs1)>ekGTUQ>V=w{8>Hdw@tN#FPi=9Dq=zK{M-MR@QjqFPK zigSiiNDK}R2+nYQD;^2Q+1tYNNfPR>yc=Y^w=*bfVz~+C2G2XXbmpMbZ7+5CG~I2j zC4xDjwwzo|Fm`Cc5~`1ww^NK90l4+=&w0WrG|uFy&T?u?@cm6zo^y8;a_d(2nU)3+ z#~P~uWseQPJb#F;5BnO!#D5Vr-8SXritA*PMJldBD%=v?@txjL83Y}q9ymS4)x6N% z!86=%Upm<~W<$@LA3V7ok8JbQ^Pe!fvz5LpTNTZLf*sU0BLnWc)~Lox{;B5#xbIS^5Jqes_~AU z&P{Zhg{8lS4v7pGbET!d%a}<}#st`Ki-aVB{?KMQ*_r&ec-BW5L^;Db z$F|&_^}~adVOi6Y)mwi*>+w5d3rC*!xwob2uv>p_;B}((qdepW$ z_=zK){^A%WyHj}4k&NyqfJSqUI^c}sp0xd9(#KBFwQF&y+%@ISm2eR*Y>Wy(*b4$s zbS#`?{qJh!JWJv0O-IA}cClvm))36{DZ9J7j@>28F+io5bF>~XKJIaf^i-)-t9d;? zuR*iY4!Vs9Q28W)6mUs3!|OWaS8`k+J7j^(ZiIqVkEUx2Rlc~>8ao^Eg{HKQ9mUoVKe>d+IIVbB~cx*IZyqKJ$#D+lxFigM^9KlX zDQO#k#C+uBo=nP(InS0)r~EOU<$h?G(Op=hvdQ8v?1=~2;D!h;qrZ%VW|kkA-7=_0 zgs&w+d8$bY#Er{Ouv>U~Wjc(vhDq*M&WwbLLXx^Gr&3XZsp{V|Fb&vj+uUjQ7S_{= z^?SDxv%w?6hBD?kBH9cpBOrN?%4D$v<|+UVJ{AD!*E)ukeRFFKyh(8bO6F69xZV>l zg$3H&fEhsA{W5dr{ar%d$KHMS?bl!F7|OclNjtUue2m>5%I@m>PoKh;!0NF@ZzS_v z#7r@emoc*z+zHQ|ae4vX!;rQO(#@$eA)=34lvB;zBh_l?eSK4=ZsU5^wJmt4BW+0a4=kXQ4hxIEf zYYQ`Q@lJ#6tHHU!AnqYg2M4j~(y^&o(UcbLhcdK5QWREq;N%`LP_&4Qo+7ulF|>&HBgOtqfo;s9YtQZNFBb|mraKgPU> z_{U6vH4A-X!}nTkwx?xsvMs&LWe4%R?;buFJ< zllA_;TH(y=bMm=)?eaS4(os*BUAHw-%??e>k28~#^A%sgbC2istUnnWT{prSwD7|O zOf4Vh3Kx<989$9|{ioiz{{V=WHaDIceLnK=K@HT246LpLA{HBuIlu#{JPx(P3f$6A zNo!OWSsl-)p-_BQC2VvW{ZO$O>6<2_ajueSg9+cwcpt zVCxn)=+^gE)=>fFCC=rMP`8_pDn55M?BF|m!J290g5OGt@M`v!+Ht&+Snk@|?W3P` z%Q3gyASga~N6f6p_h$nHiZ#CpT|=sP!ddPt;nc1!gyJkr$IF{`L}W%Fn_JppBI=-@zczS6s+UECAy1$O{?$$r)igHJlL(-ypw3f5Jnq*-O4^y+T7rM)*Xl(VetL_y(Xb(eW>})_0@FJ_uIb9mbxA)qJu2YNg-AZwRDQ0eP|H zjeu_1BFfh@X-)aQBUXid%g28u}jSs1G^-hNifu;A6KL%r-{?2*sK zr)hD&*zR@PJ8QVrTK}X>8?|`qNR0=j@jes@~d} zPUazski{2i9#Q+)W7R=ik>Bcm8M(ai{FvVoONbvr%4xg!un5<>e=dsdN zA~!S7cCgw;lPFAl?4e@_cCKOFk-oDu-3kj$ajx|UG`$x4N<_H4vyRqOiZ)25kgB+8 zR!1?oljS?M$M<+*9ErTIqcQ%`;;Vf*roGg)7u2q9E~AmW%b1oKkuDXYQa{nzcOoz- zz^McQfsx-`>yR&mWirKdWwX;QuUv^7F;?A=pLYG(R z;jg#e-bnWGN+yCsjlqkm?q4$XIw#7flfyM?UPTSk~z_l*X*z_2RJ;bAAuFd_{YPnzYZX@fU+^x z6;)eh^usTX~SpBNRadA())w9D4Tk>M|=f zA02pRZGP(Uq-i2BC(doj5#Zx2NW$_*Tyn}fkzQw_Y13V4);88!g}TA0O%;X1tZjv7 z60y!=P0XtOq;5b2l`0ln4-ZSL_{UR<-07!CZB^1);DRKK!R8p9?b<-fp+w1q3|lfn zKw<+5mLh1)Q;TgQ)-`_@TV3k%=vH?vZ#)i=-Q^i%F7Buhah$8q9PPn1t?q1e z&llPFbuI$mNi<=^YnD*h>Tp0f&j;5y=Den4n@iO1?w;@@a7cXFBX&0vIgwp=NW(kH zMQpDFYY+h>8yY?T0Q@4_rkSZ-!1L-6I!$k-Lf%?Nx#NEX?qSn{dCBIy`O<2$l}ov8 z>HT%`>Uz_w&xVZ(dO>Ta+V%do*;w^wz0+^LD}TZ@1XnjJ<`kb)wz^%g%p!R_wowRB z{{XsvjCvE)GKc8bGu-%JPrjNOn*n_)s^D$wZaG_LGu+%kOCeumLS{*;_UuH<-StgM~>|Sz0 z92_Gaow4XEix}Z$$!q+MR~HY7SfQ!v)>FlEGrL;LKbZ=}c`Es=>6ps>*GB#(^S8;f$i=D@xtpEmPL_Mdw^sCU4HU~bB)W5!-~J~rQCA8&Z8Hf z9pRKZK`j1K{`N;F2%yRoxda`&FHyTH^waej{2!~EZEF2)p=+yaD``?RTZmaimkYDY z+)H`Sz{Xfbo>5Bl;HbBGM*jezH6){C&ZwUQ_(sD-u<-u?h^%FRYRz*m`h0UTAF#_2 zbGMKQ3Vk;|1_1z7(=YUBJVhR&JVU3#Biua&HWM7*?G)xW{Q2IKr!p_p$9O;@=NjD_f5c>G2rYt1HWf4c|HU>t0LaTm3%k zS-!Z@H3+Zouk|ZuirUUoB#h8o%o&&k0b@RFU&Kip`4}p-EM}X5Ss2>3#&)(%#PM-ueca-FC$C zxMbRfJ==-`n|cqFfraFZS7G8W4!nLVYuiicBDE+CK0rYB>^Nco7|Rk*QIbx6P)&Kh z-jb^tXOG z;3iok+&tcS9H#sopk$7nyy$8A)c2_N+N4((GsFtRLn8w`N)oT%NNa2u)WTcfXp z+s4VV*O&c>}3$3iy)uRPi%Ga}w!#XZECVXwlrt^Ajw0A}Iy9 z+^Ad4!u{RKG6Bx!jWmo^k~Lh{e8zr_E|A&=nr?1w45@7%QRDz{qlOi@JY%TFp&`~Z zsN+$EMF0RlI^%R(i&wH^Y9!O8n#R)I?jx0D5;|@y+vY;iu-g#}839Tu&O(tw9U*U~ zx3aWIu5Yd5LM<#t`0or^W+h54_Y39@H)n7e7$LS;*5siWU;650JRDSc=PyKdcit`3 zt!>`w(_YizxP@k(GaJUgyb(Y5mBA;bG4m1tDo7(v4Sv%?_;KN@-#zbjn~Q6BA=09q zQdtw`McASzCzbDjPC#toPbmHbxm|NmiqBcorM$d#vbeUkzLkV*@yjHhYx!dbb+h6! zt&EM>z%63l3-1qF+go1fkj-_bUc-G2;?Ctfv}mJs{{T|KH+_kYNms&wHy%D&c*`EELYmBM2Qdn66*b%8L z$9Tp%;=7G+!`>a%S40f~HWOYW4>hJ(?nA`tfg7PEnGaF&gU@5{ z5=oW}s0bi|lajoD8gPFRF0>dtb>YY~?N$rTGQ&uM)9n#Xvfv{~K4wlgV`)7)^rlJR z+hl_B;vHJT{&PLcTPL3DG^rp846+5wk%RlN6cX%r5K5iD5d1!g1Uhtg+Bug{Snc7N zk(xx3PbfnW^CV)51*D^X_Ti*OOzl(ADr=XM$S7B|(@yPbV}EOSTmFK-`0@V$3X1Df z@U*s*Ak<5egas^4e@b5w#WtO9cc$Izw^8a5O&n2L{jAPFmou3%6D%2`w=r_%_$Ym-aW7rhPuxTri3jH*&R$#A8s=Ngy%G3feN{g%SCRr*T-;xRwqNt23nM z8K>>4U2A7Gul`DMUJvo^uP(nFa_X>I+r_8DV-#OyR}(BlWO3w>LHXUcWb?rUVMkly zzYX|0&*B}fh%}pxPUldbH@})I;;m+8nOAg*A}RqgDFbl(z+rNv=4n0z)^v?VPqagH ze$QkiSzae(cRo^-1TJ>)2SUoDq3!4~_={T7^=(H}gTaH()I76rQhS5Bqg|?V_D$b+ z0~y*jHBwL4~&TjvUw zNQlhal>DlkVV5n?sU@pA;#=!|8pinehsCDO;^m`?^`i2UbC9JBziMP$Y({M2vR&QX%umK&ano-Z@lNCjFL_=PIR>|g?=ycZgkt$vAK%cC7uc5 z3|2DC+muRSEK~(@W89!Liu{sulC0}V%I@p>>WZB@w7-cPC%2hqd;3jE=eO4$;>H*Z zXsY{UY2--OMGq{2qT~U?F)VtK$Zng#{w33(@aL0htLVB#!s*vAS;-`V7-N|EZ5~6G z%K*qe&pN#%*$L0zpYOu3Ur zms-DlI_^6QRfY(svq{uIq;C7Aa^NY(NdWEyjFugWRNOgZyEvooR8n%k{5Ni&GqQNR zCE=d~T}`EUs@CUS)F#vBynBs831xYb>11gNhhdSuv-2>*4o@uH)}gLzdhV9@w%#O; zG#55@-)nL#qW$TaUAij}3NCTG3%KLuIK3S`EtUmiB~E(2qPbJ8$cX^#bo8ktd5q} zmO86>Y^|&#)~{f&8v9uvvq5uz2rDd!X0S|DoDuuk=K0hC$Rq>}S#e!xaYt)!4Yl>m z_nLjJ#q%}QwbM^_ZsTI<5oR7>MwJ4bxmhsC0g;-dTD`1Ib#orCs%?NhBdeXy3#tvM;5V396)Q@bWLnj}tKv`XXS=t8*6EfB?5DUeypJ~2Z=L+1hZ2b$ z$ll}v3**+r`zXTy4ZrnwUMa!7BDx04it01d6cd6i`Sc3Vh<}8F}4&bU4=8a0Qd(hCf_xHTNv%7Zz@R6LNR1@>&cEz1_&OLr)f=~_-9k_#-|pW z2Dz!)&ueA6`T-*(+ky-;2FCJw1Clrdj8!Y^NMn=j7P>a2b88-|;p3h+XiQ=|m>CO0 z8=fT(k%tG(+)ibDa@MNU<;k(rN)b?sYp3<|I1A4TTzG56w)5TJShtrVw22Mg?sC~jINIJw^Y(IpNDrII-n^j303og)yra*1wAy~7l5w4_WzgxoH}MFM6KeW> zqu5*N@M;%~+O_5TeVK%p4)KK>f^K1)VC1SZ4u-bV#VO)lG^VSs!=~xi4EB13waP(m z@a_|-iNiZQZTpkg84d^}gSW^$J7oHtstVmfrpO~VA_kBaSZw6;4(*^}fpAwO;fnGI zCr?PxJWl#U_km}4rX)ZhXaft{;7y0?U2@cqT+pCyd?rG#+W zX=?hAwU{uHNH~@^SMv6@^YZ{#1&Gc^pK2Ngw`-!`UR>PVTG{G%Mq9b1OSg!smT1}L zR545)m=NDKNm2*}u_E|$#SzbMdt$dXw{l$E%?;#IT%$NXQZPWvzaw*cyMV(73!0}F zG}KT{s7Xpp?PSsP?H|C>Xj+$vY&AQ$B|54tw7zq+V!$e@fZL`j3gOV$(-bjzQ!efV_nSYsQ&=MKV^R;QJHUTw8-z3)W-2Va|a|KTpYB75%TQ| zk(}UMsn6NTA|qWYiC=b$UNMs1(?{2?-%zl&)LTZH&ekir!Y#ydFf#-lS;C+TjyEvK zIj&~I#Yv&~+S^eA-Ypzj!muL5u?wYDaIWseY>=$1>Zj!)g0WHyFQ97^-Pl_{k)-{m zY26@LZY-WflPf7;qmIL#*sdc_({&g%>rW6{X*zwDscCS~wXL3wB8X#HBqm0MUvq9V zpzMBCAU8_F7&yw5YtA>e+U=_8`96i>s!7yvgst+w{10EizxLfTQ}Bh}kUVE)XBGCn zEVu3FrM1M?aGw%e#Out$_S1WPCx?v>y-XnqH6L3#(m9)9hM}s|YSd$JtWi zSX-T^ILRuxIq8zb5PFRg?#|a+yp9olb$HgoeMUh8EOyM&%QhKL%^58;q$?bSQJ#dJ zFT}b@vGA3m#~+z}EEcwL2+)aNMQ5fWyWp?3IGl0LsBLMUn zu15x=buQW+^Qo5no~#&&=PbJTnAD{|+<_WH+* ztga;y$LB`ERCvo|fOjrEdiBRl^Nbq0%v#2y@fs^H4e4-0qUmzmuB`J~+lc4h$n3Ee zLfeE-midPR00XyuO*3uPuCZZmuLD7;-n0!17|0)JlkSm?y>JM}<}+Ahu@z%AUz_{C zD_QDZ9+Hebi{HPVor#e!hs7mQm>T(Lrvh1aYirhn=B77|G|1eQS-@{JS}$xOPbGqLE8T z<+dr#dD;ob9f3Z?@m?JXQ9t)`!ywoj_ereUWVmx~3nGF%&oA!=kS5Xx&GO_DpwiTJdtGBk zzP!_IK!K$%G>qeVG_W*5LaLAuJ;vfoXM4%PC!c2?l^j%KLGvqJzhC%c=P6ZnqwR4K zQC($SWaC=)r}R8$~?8%j2t!!uLzhP zF1yn7=buQ>wM{;IVQco4Z?=h(19s?x_hYnRbvwQ53&Zx3Yqpw)+jM#Eu5aanOCK%d zK4xc@Nk+wFSIQ*)Sx7PAa7il-=YXEt{Sxn3Se8}aA-RFX>T*UI7jVv3pP#OJz3ra=sl$f(W>ux8A7P;y8m zFahB}T$ko$5KS$@yTHpQHojUZAH;upN6X6$sR4jJaBHIvh@(yx zoD*jSd@dq&FAAKi^7$Nn{+Vm1X|vzW6p^uyY*yEjJj)n3{p5)w72l7#gkf{JfjCjS zXW@-w#h(oP7ofzjrjK!RG`E)$DS2awWoC_IZLj5%8GI4|`Be)I+gg^dr0N$ozi!ra z``c|K^8~6EK!^MDC*B;Mj8v)W3t?8pr-w9+GDzarG#x5KE$TqmDGRs&!qTe%7Y&ev z5s*gk#XuuGHKkF$c*Q&PT7DnXJ0jYAi>Fur01RUIw^p+7w~sCK=`5|aMbWeyZ7OBF zivmU%kUU^9AmFI$kXVj-o~u@i!rn5t(e1U*8R_Yu+i5Bi(hW)o_TFP@k@DHdRvShb zWm`K&R!VkW67c(Lx0g(oa@)f=xm$QNi4MrjK^M%x`B!pCz;xW9vz&p>Nu*2RS?o2K ztS#=_Px7WQM;k_E@}YsHU`l6(h0opS?8J^i(lKrts}!ZEzA*7Nls+Qs_m*ZG)S2ML z>=K8FFOw4BGUR>Wa&y>^W0e;DQcEUyZtWnvxP>EGE*ce|e365(PB-w}mCgqz83gJ0 zbHR6($>95qJX=Y7G;(S;5zh_6MI=DR6?g1xw%Ld*06;O<8=uwed=Y)8-PyI6x3b+K zlJa;i+=CgONsX|C$FbCTg#??C#!Fxft6IcOLz2qH%AGXSqTSCNe-bv0Y|z1~YX*HN zA-}Op>%|9W*pbtEKG^diyBoPtoB_;adgg=TT^8~qX*7*J{An3B_Sbp&JeXf{4eCmM z^Miqs4;)r~hr_t-OcB~eq+3g+eV*EBtmbbr^JMnZv&;eyE%rmWCSRFzxBv;%@a!LE zu+^JTNLNmhRGH;6vd;|53^D8pxBZOgc5-&@?s+OACTYia;o0JzNtSpFLnS7egE0R9 zXAX1x{kavCbq@_seQjy|nSbWoNFzXGC$Dpf3Bcr^Knd+!<;~c-p!nPE79VO~v&kY#ZMQUwY8}J;r{y4gjhEmuslge>*0p_i4~cE>C%3q> zwfiA)9-%y?gk=YovNN0sdhXr0uLE%db$S)ni=@v4@O_HXXwo+GVKDhpDiO}$FmZx2 z>*-vFj=UFVs>5@smzEtt(ISw{iW)>O8nNBCB!p4{JG%Am3E|~ZKF#<1&dP1UrnI+j zTafAgCR?uuYZ1k-Tj)Bq)KPh9b#ok3#-3}I3LTf`F_W<6e){~%Fv1OGJR9MS2Sd|5 zGpO3?%l*9-!&#;DQ#_1q+AiG#FkF-JhI7zh3N{`QFQaQwCaoLKaAdfF?hp;LNgUBj zzi1d!9Es5I%e!s{(#=!D*SegsYJXwVr@R*`k8Lb|Vk`k&K}j75;K};^2d+WuP4=zCRESsYHLv2}sXM89DilE?;&zyf~Yl$rBHm7-Kb!Eqr(ll=b{nADk?Nry1Q&f3Z^PGeaT(7;kigb7f;}E~8!Xc@eBK2VPeW0NQc~(zyKqU0C=k z)=2KHVS+7IJFm7Z63ndTCUI`%20#yO5p^5B{7uHrdi_63*UkOq^}(Jx7gJiKye>Kdv-a}de zactM}7{`|oxs7%v#(7(oT=ZZSREfdVb!xdZ@8|wjG@;AwZqA!Y@wTaFbg&!SE4?xc znB$fyl1TMZtpabAVpJK9FvRC)D;ewej+9>!^h?{#J}IBXHU?=RxkIZYaKd2o6p2e` z8xAlJIXL$xLYVP$^&GjqaT)!3E{Gp6dQ9m~{AO!Hh=oZVfX4>Jm3ozXRqw zc9tkjt8a!rCALXYIrNp=2ifgPY6JIiZf7YbVIok>*>0H`UKH)EYf`$@j6H5f{QZAR z5lit`?0!wb@XnhFW(Fs1KWWHSa7WLdy68dlAm+I__500FS-sVx)%6V)34oe;EjIwf zvoIS~!Q^iWc^kHdDhXk&s{AoDl)+J z!?U-0i)~2gkR`60UeG)zjbH0R~; zfw{hGEhfiLy7H~jn&E8?yE?PTm}CHzWoVon;ei+QhPf)locbiN~CgXjD834kB6*pR>J2;5#K=8 zGL=H}JWgDZyv7O6{z&V!f4TtehG6NzQ;v_hHdQ0d7oiTHX&sH-wf2c}uY!>~TTi)N zfmSMhykvAEwlFJq#QIKZZ$nV$!%gnqDc%(BZeU7 zcX9K5Fl&z%-FZe_)_wc-A`^6za%$RGOB$+2x5)sKIanrAC z{{WF(hl~7AreCVZXu%fFM~cQcqbr!7X?Bp3a>Sxz7{(hp$j7sWq@<#f+3WXz!92%O zQk2s9dAI&T3E@Nxm^^}P-J zIVXlJyh*9rYGU8}MeNMFdrjub^F~RXUP0y(vKIawtOiTtC(Xb&auf*au^B_}GK5x%v1q^=MPr0)y#TUlO6h9UEAsF99Gtra+hMJCjb>< zf8~yM4WtFg9PzC<(TBjT@-0%WG@kdrUf+?_9}L46f;8_9$$h@t{VpY%@)V3l(rkEV zF|ltfgOQW-syu@V#DI8;SGu~@XVRt74aMY(=QZJg!7Nc+-Sa1zl_zPo1Ngq_2WU9g zlfgP)*{w8)WYNy7V`!(CK#B8?MiXhqc^Sdu92(|)Tco#y4wq@9YI8@gPKgZbr7?}A z%dbUT9(xY>{KZkXV>>0Oc6jb>HNj)2iyLb)nx(489C5`mGS7J=ajS&ftDhi%7!IE) z-OReSm#jYwVlerZK!yv{{U8vu>n8E@u&cwyDw2^;%&O578>rAI$Rj1 z7qQ#JHSCeft7__@q6C%MbIIBOVSq@%Y~L8`dIbI^(X_ofO*UyDf?Y}O#k6-TY5+%# zo!f+s#z`tw_>6{7K{PXwzt!}sZBAWQdtDkWZ0WLGNV94dvn-I}EW!J@e6sRJ(u6-V zoZ#gM6=y~98|s>7mp-4P*xFtH0Bi`YG`TEoWN#%cUUiXI_c_Fpmkg|!^E;M1tIE2T zmEo;EeJ54F)1L1y64$!9CnBEUFBY;6e z7bj^zNeEPT{u%z$)b-6><s1*!@RAXT!b> z@K=WHFYWwCt?3t9jq!}?Fo|N0G%EgJNYz5Jrc7k70PJ1>`Dsc@D(qG=?{94Fbo;@g zTOYOMKlF@wi~;2QO@-(u#L2L94d(Gc^rg&d@A`x@=SZ znmcQlzTJEnn}t?+gG9^c?K@{*-$~_^QdIrWajxvHfSW|qtgj@7KR)7VZc!2AdF|y$ zVr*alsHlWs1eIi5;I1ubTDOM3wY9ls(KTzGE&~yQTlIOK)qI%)36MF;b0#<-Z##(N z8rnv`6{Y^BbPFwh_FI%kntNopxRx`y@UOd(&hzh+*0iHKs%}zRY4b6hDYbp>b2=m2 zE{msWt7{Fn+U~Upq=xp{WGgaS#BKKFS@wCSXkJU?p%0P{?we^fhle~!MXYh#HMN|w zTS+gM8M=}?Nn{HNZJW1mI9S6k%Bi@JtI=sc54F8xShu*=*6KTG8Cc18eDmB84nm`E zCNaAQbpHSkT$?Lh)=LxKUn#gIX*`69Rkt}O0yxhrhcXC`KrT&6 zNw;A_N>{Qov@Zu_2_Ev>>3r9tx;#*SDPP;-{Xdht|sO%p^q-nN$U+rvCf z8G`aa8JIe4bCb($+*^a3f%x&n++N9js9)J!Pkr{tt&DNb=^$ngwL*o?N0!;>bAgXe z!%e!>7EUTPDm{xpGCgZC;NiTr<%b|;&zeIcsV5Vk5DS|>AGH@tE|`lCh~5EM9>>4 z1G?Y$I)2f+ zC4Qt5&8OVoy1o3@5ZYZ@1>X{c2#z6`#8yJX%-$q8QJtLR;EK{c+}2U8>gjKL{+0H1 zQ*L1gHlyd;`@gy7{r><(@3yA#cB(XuKE@3;(e(tLQw!PKF>?GC;YNAN{{TMOsZ#ph zAh*}>Tv;2K{Gy1TzYm3x_$797z>s+x_JP-LrB;)pCHfrkpEA^~OSs9D>Glc(k?s~8fzMSml`#dt+S#l?W6i5Ir zP!k{VqOQp-@EP1k%8_I);II7 zwt+9UDoP@eW5C}Z4yPopbC4@X!xxsiO|F5bLu{7z-c_8=X1R$SE(FLf353Vz0k}(+ zcJlB(TzsOpG`oE&7)9Ovg|v~iysL2_yxSs1q(1mnGGzJUUz{@RF@{r+YCSJQvANY6 z4R*n74wq|iKHojkNj#Bxp|de$!jLj^laTB|+QgoTIL4j{s}^POU5+!yBnk2K}5q~P`2R3^05FZbfyzy?U)ASCtv?rP73H7hM%2fsE9 zh_bX$Ni>EkPK3yfe43R249iju1@!^rXRE}EN+ zw?~`ldX1KWrTwo^)FxSHzf(MR@Q2+LUw$Us>+-(vIv==l4QJk7jV=!_Oa9KhySKHU z$(bO8yz>75X(UOOA+n}7$Wlnb4b&?O(b-x}b9VPZOi@llvv8noQ_1{m1>o~<)Z0 z*43>p&DfskYH^{Fx3RVXb~Mt3h}#jdglEhl@%zFgx$!mTv#)rb$*;G@x|fls+pMLd zky<;!5nxFT8_xFIx8^^c6yXA>%h7b5DJ~(@b!*KtQN7ez@w+P=QhlN*OGvyIAH8WY z^5tVWKQ>3GFN6fTOcs{*-W--2tAjao(erGfP=LZOH}4cR3smXJv&m^)z9RC1*No^Ipz_IU<;9{Ydo=X-HgXp@8_)_}H&eGvh&c{!gyv;TT zF(trtkqF#?GGojqgMv2#4stc@A<*H|TGPVoqf2pPBhPQYPZCQUPN7*td6DJL0`Dv` zp+lBAbGNXlmp3kg_RwzEIbAPY5^1k+@W#K{`vsh))ox;lG?z^(!zn^MsME-aopzw| zzyv8$Zrt2yI=kFS6qZv3^J0j|sdF1Io2e{3Hba9al0fGz<@LzUww0z>YBsw5r)_Db zz?zI(r-?|B7)cCEBwloEH-PBpa-Om=;j>seewMeoCWU1i+Sy4J)U&P1Ffu$skD_xRy*~=s^yex_ol|#GtpLM=tjFlO{ zj(bb3H^llzn765YXC1}8tO+u=%NUv_0Jcw45&}Q~4a6@XRqa>AmYRe&u-n{OSPQ9E z?t6J-l1c2Ypf>BV)zxq?6k}@w%O}r)ft_4C9_LL0e!ZKuIgpr!K4=WvnY|uxhsrrCVFH8aa~qUMpOY z=2|l(qs$^S7?7Xc#xj89r8v1?UEiPl z0LODis^?n0w*J4ZiL|Xw#^*_5eYxY)>Y73}YO{Oi75=5je^F;D2AT)}Nkk|pRp|HShd%g$o=8bcvYEa1( zw{fk+wlGI@g4T7H$-{#l{<*o4FgRVHGY5HvECOAfo_AD$Un|l5Y*0 z_qbTr+9k9x#~g|lHcu&T7#Rw?ZN^Hf0!thcK^n>ul=4Zs0aDt0^7%IQ0DMzqPo8Eyk>o+S+Lb$iR_BJW)JP3cr{HCmB-9GmV>x z^D~T=+dLMRnx?t0>UwSU%iY>q$tu~{z{;{Q5rgyPzGe`rh2XJFj*X6YOw;YA({+h% zV}jV+#V9u^7$gZxH*QWd)4mtm4wR)TiWByDvV!e?wPO z*WlH4nJwR0wzt{hMYyq=);N)*h>L&#`F6Uyq+`r|z;^Dh5PthO$p;u7lSR_QE}Tr4oF!{w62iih5?VX~w+$=q`_?+IvDI_ua+sObxA z(8T6jXfB;YF`7OC`Omx(je{a7!h)^TbGn3v#T3%y#Hz}%VnsoQKF1jD9l+DuDy@>}ZdXB?>UD#XD`sWQio8|M4K@!6MaW~l4--bL_B zd!@9yvnDH;;4C4GF%BIMB^2*0V>x6bjzLo0YOJZnxi3?ew14N?=KW2J?Gr~nC5rdO zUM*7kZLOr5BzIbjNXSqrcYKh~BS{h5O5YazR_!` zshjNnZZIQP6JZdQ`4o++N|Kmkd&D}{t1ZQ*i5ylJYaFWqn^Ctir1BKrS$7UokCn0W z0uMk5$+D7GwA3dN=tlPw-X+v*CGiYX>oFy$mQ}EEaR79U>@Jy9gaOgK!4}ge%zjWZcM`hC zj&)rQX|)S0X=H}ld1AChyo%&a2bXd~JW-;uDzq_{GB)*C*aM$5o^Mjpr<(eBE^eZp z%S{{7YwP${E1Q;r;bN4TIGFE-FhfYeN=UnQ5~1-Y~vq7Em#?Y$XWz^`dJY_Y-qiB(|vtG}o>Eh+DC*2*)4Q~@nid8ox zgpe{>i*9hZa~ht7u5DLdw6;xlW94cVGuykuiEk`W`71w=##8di=81_>(l*ZQX0RdC zbRAP&hW>lKLc>Y6OQy0Gcj9?1ppFQhHF*a4BMzx@-cvBf)(QdLoLBKynWe@k(S%v zXaI4xJ|NNV{4=e!?flEDO4jYCviXxuZ5g=zolTisJrlc9J!$CNWvF5shRDd%W!#`|=Jiec+YC6WAEUYwG=F#-TSGc#- zbzv4UGqS&#z8{z~P4g(*hEU2%DXle{3qJ;3xO&j=6g0!`&ZF&@QiTH9L!`VzgVJB|)`R zh?fnwAvh>L?(zY~Ksd#;vb(jjz0&VqJ1;Q2#9!UQ7F|N$XPSk~nfaK+equ5SBLLT( zT2ZpXR%Sq4APyhzgmnVB(I&Uy9|enBWRB=+Rg+|2dyn44-@0KK+yNwR zV>Esy)AVguP(SdF#eb;ye$?7q68MthHN5*egaQmlw|fDxjzg-p_5`LLvwGU7x6|hE z#1?VtD;~RT1TwthI6Q%E9D8Gdv7LfU-~gmA%6dfO%&lvRZb~ngbECNN6_x&_HImB& zHZQ7451(wbE#Y}3;u~@Lk zY;FW?>M+Gva!_j#CCH9@c<(gCg{S)>&TWj#<%vFHwfB6d1OiAQhCsnP{wmUA8oauF z)`w-IS{dx^q_DQ$%R9H*400ri0c^Iw2E=2A3d9h~zGN^qukD{ldtXoK3OI_@DRNX> zKkM;1%e-s4jGFiEEu=_bnMJmk$r?u;ylmny(sYl?CEN6LZ_>L!s%5ir@cPntmk3>z=u?}yUv$5Ym&2_~A?OJvAn3?pdFa;Yu% zf^H*)AxTlV9tCyB!&+Xl`h-7c6Qq))(#U6IV)!eSZU&*c+QQ#jmdZPcP^E-c z_IDmZR*XjGMpiC&41(V{DU+NAH1)d!qf4e)#cyu9To6xrc^r}nnnX_~J?!pJx7VX{de=kC!A?{6LMnwHjjQt1S0GvCKBo=+`p<%TTkK4rUZ2jwck;W^wDasU}7uK0#+M^e9a{{V?a{L&cKOX%&< z8Qb>@@<M$zFA|iJg)0k2DD5ETe3$rB`Z@ zlwk){|yRhVy z2fMKGKA(Ai;#PaT5Q|+#du=@o5u^(X#XM2TAy5RdGrUMi+!PQ_0~1`#5W(V$#M(8_4a{oA!B_d1ft(X^Z9PLm)}5?d_w8q+5A`d)^a$01PH)A;2ZlQLR3%MDx23k(*;vS6-seW!? zRu@+HFvAa%auJbT9i-kBfj|U6<*|Sm_9SN{?V+VUTfSnw$B8Wd)qc7~+enk#OBAfP z@a=g^7@}oTk2C)7?AR#6GD_|sd4x`NIJM7-U+|7fl22uEb1bWSr`^Vj0~C>hN~s?b z;ujcp-Hv@lPi3T8t&zKm*4BIIrnj0WxxE56*uxmO%l20sXFoU~<&8poM!p=dlUsic zX|UR+s&0#aYRQ;pm3+683vZTONavlz2EvRgsLqY*CY*L1c*Q>Gv!M7I*H`e?jjCMh z8o9c-w1(ue%781f1|)o$9FyOrCbYlVJ_^6Lu(ukvvv;Vqjhy!O(B)()yzbr^La0{_ z^ln#{UJprc4nv{Y>FF1Upwt!_AeCi>QaJBbqEi_@Q(;TX$t}4C&_-Aa?7UYOifq5L z^p6aim?gQkiuU8}(OWH&NTCrULnLIG+EE?>ZW+|$l2)Mvn|3+l1f_crc!N>YthJ|# z<|rb$zdFhbtSFL5Qa3i~ydFXG6Oa055a6lJx%H=m#x})HpY{d1XzmtPfIMsVh6?Gp zhw}WB5%~c?H)oyICaYnp&#r+Vh&7ZkM7FTp-stfd7~GhT?&gnR$srezNMJzgT*dB( zW1`%dV_~i8g}{4zyOe@SAJI^`GB7wET7q|A5tEA27jorHRa}zyRnDhL)Gu`#D_L~` zYvr}$waQAU3fp9C3Jy*{-ZGhUfJr2RWShiEVWcI>t&|d&%yCC6#UixcTWn{MPE;8@ zuvPE|;&Xs@=if`Mv_ECiv`cr5;6rb8*O7t?s48}6Ip=_RY#alFSR+7qG|2os1aq{y zjk7x>sM2hFeC(UIAS}s-U;*5?JdFJH8rAAg+Es?SdA?h#`ddvqoz5|Yd1C(n;m(%% z-&pYUw(lOEZf+xhPLZrq#z{8;wh@)#N_@%4&row&dcD-qUHF>cP>)YKKBQ$ZNpEWz zk}orQiAanFXBim}^Kwo_Nu_GnwpwkShMA%Z+nut?OG*?7mSYm*sU*HeI`_soqgb`M zxJWLgve`6Iw9{ML+@nSEx-MQ&*b2MUw@fQ!kh#xZS5myO@uN~Urz@-Jvc9(Ie&$$+ z{_C0&w3A#NSWKptsiJ8lH=& zPp@5DD7=p1@nCc-YQ+dF6KNS4EAxhK*(99n!48XjXSdR#G0V9a+iEjL>o#|Cj*j?Y zx19FJ9Ok649un~uy87DOCY7MUb!ls5VGf$}O?4}s%p}?v<+e(IDbL+(4m{3kbY;)a z8z!v2UvU_UJhM)YtItRJobs_H%=fiLZ6w1uz4w{c3P9@(L|HsCtvoyQHkj71L6a7n!er=wfj zYI@e8q(;y|cYY+jxw0jeDK4a6FKaIBpEqv9kG^+cWQXcEkm?$P-o2<>D6QT{YoeB7 zS(Zpu1H7445&7lDcQ4L1g5ZU^g?9klInX9cs~0jotkk*g(;NP>ub z!e2k@`HM1>w6QEyo}6D>_rRBvd2^>*+?#zi?mLe)nWG8}Wp_oFx)?t%#C`cxwK};>%9Z^wd|LX0*L~**6lA zxZ5V(rwj&na90~nPJH)N(=<&R#H=pe@0Fm2>fR~JMv{4;zF%k<02KKbBP@Pw44z7o zk2{oBn%L3~+B4JbHL0~BuU%NZypjFB*6JT2ZQ42Q=ejZe@j_%bml-6v4l~FbdA%m5 zr^?0|t;`#^U=XM{_Q2!m{{Yvle}*q`bbWVLTZ?#7*}U8cR40}b?ygx80NQ!T9<70z z8{%%2;s`D7+TK|$jniAabJ(nMPy3l45dQhMFlC8ISQLUlMO183XRQ=+tqa?^c`~LuUu~UJJ z6RWFgmVP6T%he^)?QIZ`GilkpoV!B{?VzpV6Gbla}mho4ZV&G+J}g(v^UnJw<=_LF2wf| zYB3~^@yk3=4W&)Ps8zQBqXg@cF(E9{d|7Fv+G&e%qsge;&35xyU9_^7xsZbw2Wxq) zwZio$45I@JSw1cCHJ+{E``c?@56x-)pLX+IIB6U~EQUoQOrY79cIrks0B`{5h8-uBjaTU#0Jo$Zlj-MKE2O32KSN{9{|IZ$$2%vrP_ z7Nl0z(W5}Ox3T( z+{BW=e67LDGQ}yz_UvmqQ{;@A(d=#5c;+Z#TPr&oL-tvTzKL(+jbe-{Ze<=%@4j(9 ze1!)o#z8`I?ysS1_~h2o#WZngV{i?-A)Gl7$tjUy9%vq4o^sqDmmHO>ON&1X+W4~f zOp*;jECiqjmfGQFRPv%HdIb#MGoQYvhtE0Ztd~IWb+QB(lIj-|sv)|6HfwbZfn#0c zF)7%{0O5+Vfy0c=H5t^jwnjGR(ex_+0B-sEg~H9J>CLG_Xj(W8{C6wN(JG(aB1Wfa zmyTJ0A;!R<<=tQ1ok4WitTf?w6ppVYjiM2SSX(%G69f0aXUsgI;|GXtZ8ZM?4wM$> zZQaa@l6j8K!E!>Ay}0GQy62o$CXj4(+s!*lnU*VA3%qeHi(KJ^X(tx&;qZ62Jw8@B z>y2tTDLZTZT$s&9PBB+zt^Tmux>(!AcG`Hhy-6=jdXy17kvuW~0I8YTP_kw~0X+Gc zQbBOFq1EqK!}h=07nYZ>!KUg0@>%YqxVl@CWsM9>S)}sL*al+xFj$g)Vkzm~9k|#0 zA**ZZ9=049{&g zn{r&n%)9qV8ZnWuCqVK_PncIBKqj(jwW+e^O8reOQdxBS%b4!qv6jv)c-vap*d#JD zTS)T9B6(2b_oH-0cjdRQOzss2hcE1|d}FKKELJx*Iy%KQ<>T!jtZrGSO|ie2M)^V! zvAng62F`QNtm&gzMQmSIy77EEg1e`b^IJ`HE)|NFB$FcTWi1#4oxn3G$+w~DH`iCU zmSWPv#>Y|nUDWcyd<0_M-YEQ}o*9I46)XnFU8}z(TXVsGrdy8+UEA8t7M0?Mjxr~ zG%h07Vpy%^@Yb;uI3nH;x7vu}!^t2Kjrd##3IOPlpdWKJ%}X-Jd8oOu^DQU3NT#z$ ze8#+VxPoBM)XGe8%ZD~xTZlt)SZ)2+=OGJM&-ex8Qlcoj!@FErykMYxZl2 zwFH7CkuI9aJi+HF5D7fIGq6yh_MO}Fvx?O5EV_icUcGmD9h|>nx_fjs+LX+YNfZ&t z2EeM4;nScH08rCBDRXHJ?TlKN+N_N1x=qZ%p|kT{$r6AB%FOb~kKKW=1}6$bHC=B> zv(_|k4;PO}w~BJJT-nIN7}R7SW3fXqWhl*^tF^O&4&0v}_`grpGz~J-Nz*`%C@xm$ zO%zi!Q#p(rODeOL%Wh^HS&OM8I4Zm!hBWlLeQjsc=+9hZC;ba9jgbUTM z&KK`z8$J=&?I+Z=WV5!mwue%?iUqie;K>Lp4Du2gkxOG>QZO;*DbFAta?3&cK7*xc z$5OONuXOdgkj1A2mvqrgqkMt$Ced(44h9iG3zAP)ccHeiGGCoi%<3_fAd4ngSrRF* zyFAj{vn%B8#|y^?J5hels)RSS_5AkOVT7tk!_4!Fh9ySg#D!pRK2^Y~dbX{5;yq#;Cy3uY z8Rm(1!08v3Rl>ph*&ksI^Pz7u7-z{d z&nb1eyknut-guWzwDBrl-Ck>6CetjQTX@aY^R8Uuk;@g0fFyjtzRo}Zg9N@H@Z?sO zw$f;Kws(JEjw_rh0dfpkS$XA4ZV$WW`B?CNQaV`dw95%^?cY|_Z>=>QDNpu+))5-& zBRn!pRu+$ZU+X21hAp{#!Or5trH@FGL1ZssyBchFiE*kU-P?U*3F|~o^z{9Hr zJ6VmrE5_PI?h{&$=Ez&luw2g^F(gpjGL^_Hy8+e?KtclyZVE{}zJ=h{w%4N6q=wGJ zPL>OVwvShpZZ^&Kauaa!z^lj)#20a^(|)HLv?L+bk{OGcbik@hGclsRR`z&`2dgNRpXu$N6|Fv zpAXt!-D$BVp?uR^wVk$|VsbpsEm0(v6C7%Z5I7}wv$4rM9+N=u*}m|VzLlydhGO>( zHp#bno@}y)1^Hr3PB}R}Gsvlgd0M;JnLb$St0=M&;rlyAmr;h=OL^joDDMc2f=&dA zpcg+m=j8`#^ovG{KGBO3r(=!lnj+5zX1I&|aTt$NvJCbkm_sbXy#U#_-1+(sJ>I_`G6 zeLvtFbH^NuslD`beW4i^Ib*byqB9mzw{TLRk;f!*!=+Jz_fLtD<(Y=|Q66G^&69!U zjC}n^-Oo^Z8tnAQQ0SI#d#Y?}o7gU9v~3pROQvw%a8v+>2+Io%+ZldG!yFuNS3Vfh z^jPk0)_Z&DtspFse`Y&I#xU!d)8;Xjkd_3g#nPRw($)3q$)$%$UQ1FNC^cC0 z#5Q(1bm)Ti_A!5EZWY#1tMvMcXDDH9$DIr&Iq&T#bU z{7mU0cng3;7;BAURc5k)Lv`oJ*MS3iQI~YRj62tm}*%^g?*MOu5m# zDKgw!?ep)FPcwKt?O~29tvX6ip*8v;mf~F$TKPpmR~vT@KN3B~VCq_2o-MmJSN_E$38%LZc#xLiuC9RnOVh^FX4P_k2(aq(yp|NYpJ|PxO~}PYIx8zO z^1$Sd2ss%tr-kK?^j<}(TzN9fJS}eNZy%IG2;&aXJFx@H7&uTE?e%`r%fZ+8S}oqG zXQ#*ZR0uW%3+8QLa*K{}f&956jz0H5ylpP&#Gx#$VQ?74fu>!_v}7^qv3Vg+$_5Tj zGQlc(^2Mv`tGi>y#&E6s$zDxr*4OR%c0DV>`oG%Yw>LJ=Wgebj`y_MDRg@w{8CESC zZaZRLK*r+7Cm~l<+ut~7bcmMbIM!$$cqvUPs-C0;hr`=Z+0;8ESfq+<0F` zx06t?fwc6S?Y6g4!{#v?On)H&?b@X0ByV533Eg;GYPS;JO4^m=A8wFKJ4J2~76_5# zHa=gK6mUmRQfs~uwYipzD~*1&S7<@$nXn)vZd3TaV^918QGKmvQmoM zj?uKRd>!1Kgp*wO&sCb*$|*0k53~#IBIZ_+WZKa?MvuV+teg_KQyT!JV2#}~LxWtl z)e>v{T3dg%2l;NzE-A`!lR@l#Vj70f1x9)4X6VaCf2cUGTD&!ur@Xyh|mW-O9#5Sc)Q}oVUyS<|ikO zk;#meHPL93-0HB~#cQJlI?%e7crRqbFOus7qF})KqU{;rV1NcHJv+fxn%&F`qI%m?^s$$Q%Q}$rZ(3Qge*eH+6pBqyGSaZlbNr&b9Ub03*vrqhQ*N zj-jbqTiZZ{K+i3Na)B(iupx4#iIrnJ=G(C0ih^@4RI$};lTXtEzRSg)DJ4m6Eu^*! zm`2@=GLw-hVo6QASuyg-B6|I`y^gi2MLosErQPk4qOJRBi!ctqHrSlD^MXm?Kpl9< z&FQpwbsH7a?%vj0D^?2?z0RK>mb+H~qBNXf5(fhufyGoOS;a48{`LN6Ke3|XqbVnE zQ_i4|MY-`No8kkcX~|)EeLR;M8eQ8u%N$mP1i=f4OmWQ}-|tCW?#RwStql)V@V&;X z3>v-uk9{%J;kCZLxt1qe*yGbeuqDp-j9f&l3ogcTjHI5OM~bDAT|ZXR?r#?C#boyl z9JXp>Axh(`obgawMH01fRS&IWfA$RL$d7dlXK zsS7^WT}*K}h|#iI-{e-aHq%^K++14e_jlJfws$M4NJCCMk03N^=PX}r669x=X6emh zT<8MN#-1LuyJ?nJwzP^*Ddd5_cM?Q!z^NlKk`EZ&^{e;y5Zf5S+8~Kb%M!;P03;l` zV}r?T;DepO<2k5xTWGFY`tMZKZ{XIg?Sa#t2Qr(hpY?G=78Hzb3P=NUnHhmlja?Z| zCf9YY_qW~sekK%^dDG?e-?r$t4xZ6?X4AtrmZIDOl0_;+*pfLxl4MN%_4)C+Nh!TU zVYY&KcD5G!R2ETpn+3rN&LxdQq-Yv23-sflT!KKV%V`r|+AW}pOR4R&`->~t9i-PTL&T6FW+}a^Ocag<}Yf6Qq)b`@kyvsuRpuo#G$) z3d8>ZV#9wsde)VCHKM(h)7I(qeZKF%riK;aI&gA-)s7Kuc{1XlIAZf-sng2bxG-&B7?j>t1)_JpmxQ zp5sqf`xew?1ZM=`5&8a=*Z9X=xVVxS{Dk{LpjVzo2#x85InNzW12uzd;v1`bHie7`aNx_)V0cOag7dyfrxPS)#CGC>#G_gl>o5!>a# z;D!aaaC>0-(!p(^M}4NWcO*L8#2xLXSY21mC7BtU3PP{|vtf2*oOI8<)HM(6y%y4K zlGVg1yY5&1tp0b!7xhdgGz zI!Y3z=1=TC~)Ovbofu(#ej>NR~oxBy1Pmx33*n z^{naP@vhENjh(yy0Khh#TqJKDZm-k+4&NiRyVSJ^G<#nZ-ZSZKZ*ryxFQyD`SgaA{ z+=VBI9f-ir;&|E#!kfgpj;(7RpKUGW#kBSpEqK>=-)R6g0~VDPLLz}LKmo%6oG208 zc*j!L7UJUW#U=|HM+E#vH7Vr`bwb}ZuJi; ze1Y;5ZuyDju&*rbE{3SuUXQ3*LfUHi5?f4&0u8Ll#Z`RBO5EEyl5d}Ce8(i<)HUs3 zY1(2&nuFQOvB@^unGeea-NO`DJD4~6qqrQd)$B$fgI)0}Yf#^4aNWZcTgAG~G}EXO zFp^#Fc81*Hi7YpK-O8aH@|0omI~@uVlzEcS&AQR;bp3MIQn;|Ti%8X=yAZ5bQCvq8 zxOmhfKE);`k}UkhWeWxvJ728J;V67Lc@CSWL~rlpjqOxSWRlly)!08UED!F43AZ3N z<$g%bbh=gKnwN`N{6l3la$Q(H&9Z1toQrQisHk46o;k5cR z9}hfBtZOI?HZm!T_iW0tFpmI6jJeE-7a39VDazv_-mIP?{{Vy{!usPw{>Rs3){@;K zf;T(hYhx$ek(?9B_XRP4z}B^_QRx02o=q0VPJ>Cln3-j~x$@q5Q1Ivm(Gvo@mu5DQ z3W0%+iq~D!yg<-+g6Cko(M-ycESrQSlyAWp3<~3tJ$>tjwmO};=LfHn{{S=4mRDX2 zr)}?N*_qm{rk8DNE&bYCL*+p6d9o0y1MSE;$=n1+v&Q@x>dB6GjA5?(>ag>!yFD2;~*Ro0XR4& zxGx!KHd`#bQ>IUG7N36Y4a6oz1{n#%AUVz%OoyT9N&DCwxLT!AH5VTulSsm4kiXD#dgbld^1&ns?bsaDJ z2G>k|Dp$UWYe$amNi#AajwEG;x9@Z^EaU{-m~|ru7{t-MK(=s3mlyYvg^0$#yg#@` zk{!W8=Q|O{2alAD5t^*}#4m(1k#A~(J4oI$F6Hw9%kE$a0aW0Ehi)({(|4AZJY`c6 z3GA$HNu$B2+iBL;+CxLA+t@SRJdiYMyIBZ%I3YpAi@rb?=F1QUMh2~-YIxuhfqix$&LwzqcqmHnvyEQuPBmSN~8W+Vrfq7|HZNo)Q`9iiznG&)n>+TK{{(zMpsH+MIw1WrsQL{%*ld0CEJjoXBq z{!%bV+OvH#QSjnvnueFDrIKCP!)+PZlB;kCV%Y*URs&&S*2}EvM)~gIxmd2}nP#||Zb%>M<&C_&094{< z!OLKUJma2!!LsR|71Ch2xbdX=J?^7x6whr4hD8x_V;Pt+<9l#0ImgY7&3fH@D|+@C zeYeCdRoxM7Eh2>5hFpOfh1$8_i~!$zlY`03rq;$&Q-28tjpDVxj>3C*Z|?6dB!U^N z?)4Ko#~VtjvPxYDly06ZDup9|7+}mcudTG5Q^68gz1WHwtPSMX5L!!f6gh{?%ejbv zLXg;PvS6+Pu~I1bTSm3hZ+uB-75%`o)1lMuk?z?})V7{U3h)#tZz%KFyAoLBn|9W> zaA<4c+dIocZLH~vhs=+3lK%jrrLdMZR{$mwBZ3=}erzztk!@|%ZFhSdUyA%Bx>dEt zxutlD?%=)5+KO8U=bAGaky%SP$-yxaC3Ch>8n8H0)z0{8)(cM&m~|}??rmcb#TM&i zk!6xOqjyy$7jczst|LX{v2B?@F|TvgG^O!G*AcbsR#IO;Z7(gIJjoh3oxw1W%e0R@ zfh?}MW#f;VnA5y3XQTLz{?;dGV75pNr;`!#;y!$Gt4gKL^STIw5LB{)I6F$IK_zlM zqEA!I^?g+>{70hro((eS3t4R@@}xzLSz))d!iH1?WcS(=4y8vXwtgS@f*V~&!&-f{ zrm+p=^ZBy9yy$Q^ONd~!(_9a<&t%8TC1iX$uHQ3~yoM)ik@Ntn z(@}=+bpHSVRW-9aT?$P~_r?+Fx_*;A#+ze#V{LVO1d6cDX$*mrt`0~5wgQZRK`g9e z(qCJ>w($FjHB;tTTS#R$Zq~7wg0c}7F}&?emSzN&J3%0c55yl5=vLP7%HAKf)pcoM zx`R#@H*$H2KHSK=9k#ap`;aIlmDmPm8?h~XW;A~S+S%GceLkmeZwi~6m`qR-=p9i; z;7-(K8QKE{-JCEd$jl>%v{o4{TTjbP{TJiX=T#>Q``Vqu!F6Rcvp_&*x{g?o^RW}l z{og=XVhDNbi2CJ@d7ly_&}q_W&}q|)+v3n$+1$*f_;LvbW81?+O?&W+CK*e3jo>*sHQ%|(8 z)1mP!)9Ci^r@&XrYkO}kV=ukO3i}IfU;?vn!J85~!uL_xf2HZ(AG(HU?W7)c)}a%5 zG6^S(&D*%)QR5(l3Ll3azf^Bv=aWkU_SfX?g? zysrut+%DGl_IkyS+6}GE{k??I>XwX`0!N+RNuzc0$`kgt=(|ql9XKA;qZ!KbM;cbu z93HFV%`;K4y0n@i(lv@aGUsqxlPk7x0saXSc6bINpdJb2q_e(T3msAoIbJo!$Kv5j zL>qBs!B95GoG>7&5;8Yqw$=3Q6H}L0@hy$exq{Z>H@1rI)#hv9pbiV0?!yJLJ zhA>xeF#^Ljp(0yb3E;hzY~wc;>HC2>5(bS+qO7aP$O@Rj%7O`{1i!EAu(|H-*wD1P zmqXK}ur?6J&2KDvmivHM+B9o~R>?7zl^wy`jn5a}R{^^}3N4POYkg~RZp-0&9V%8& zHa*-ez-c7jh@w(_h|W-Bpyjs~!|_*yZ={tjr=4fF5=Nw4>K3+cV*AB8kf>nA{%jCg zi3(R0V?xt4uMTN9x{K;|FL|uUkX~<+-t5U7lBi<8ykNxcIm$4@cI#Qwlw7$}-Pu1g zFKft`v{rtG&Xe}}wCleSFNYUTTxk*M)5#O5xruIJP)OW(K0+O!8|bbBMmL!ikh=yM!N?ni#_Cv_>a_hf=KWcRjl4=gZLG_F<7*zw4hZf& zGoEPHJUy$~+UZ(VkBhZP?U*&NTZ_VwMG8jp64=1Pg*=?#06G8$e^-=~Zpz!Qdj9}( zR~xSs>}Obb<4)H+Kdfo`otB|BzM&|RJ8MYebh3sSH;CK`5xk+fGXDT3a^Nr{b!c8| z`d5fGOSm-6A}dMs&0%h%j{R-p5X6>=0f|saxSui=`C|kPsCYOPg%5;mthL3m)33Cr zmR&5|wd{(Q*6sd~v8uv_G3I4TpS_aI08@cX)%9I=$5)3>TfsQ9yq0%{HwhpP$ul#R zWeiW8@$?CR*d50mNyZT6T03YJDx|m6T`R(RzO$`M7MiwF-Pzki9Fd#RfE6Q)cTD~0 zjz$hQE^)?KJUI5&mX}R?rpIzM$F`Ynt~|6H%pKjGRZsyD<#(3I00se0hk&)z@V31s zr>ID&Hlbv&6q;R;G>!IWjm(ETMkXbITq3C>cLKEao7eDHi8Nt6fa;OmOQ}f&8>P%s zNif+F^2X*0$2+zTn9fOBg*iHH)q4Ja*O?Vl-&VUn_!hax_*+W0n&v6yusWWg=>_A* z_M2yhP1jK>TkP8VS=o>?GsaP5U{QeECf05lpGDXQ};+3Rdnv7PWyHKv^W0i zI`0h0EzgW~8@bgbg6c^wiv}T-swfG!9Wb49?T+=3ekAS1!0^3lrU@@;Y!l7_>ZOO*UNip;Z=%tV!;0ZY0S%$yFV$&$If`hI&r|pMEbXe zHF+8r(dE%ZhjQIo+`PdXw&Z@P>K6yo(DGDNp#K2bRPt#FO4!S!vouhuN9rl`QS{z&zix#;B>iNI$uE&PdMggo?t{bSLoOmG9w# z7^98+sioLw4yXh>4><+VK^Vvk$AR-M%ohIu*oGY?AWMm^E^YVf_V8tw&Jn3-XA%a5 z2I8YA!P+*-AhIPN63HAF?Wn`5OB86=D`L>054qelj?6kPWPPWMg##x9*C#x_v2FC% zPuKd==b2j%O0`GqRg-pC{YmtuUlG|~z%6a8rH)e|xfYW&aYEq4cbq?yw8muI?cJAh zscNeigQL`1Jx0OpH5(Wh!1l8x!n4hWRgFYJnoX*K$Wyy$$-u)GXolZbiuCGNc5>aa zvrluVSQ%ss9#{xT`BePRka7aX4ltxwS>T;!6KD1tM`&)WCjQci7iFo9kMw0)BcYj{x{%yNicN#4aL^TzPUv+wl1X#6s=r-Q{jqhbiDG2bEtWa%E$0xBK!+fi7zf(QuFO~f01KtzDVxN47Ncz*m8nCd zG){tHdW}8B)6H(pxx_#dwk71DJTNRv4ZOLY`%BS$F4mL9XC1YPzVp1bQRlVeuq2c_ z*sZi+1KK}8LG{Z^`81yk>0Twip4Qh#Qe<=y%)rX*es}WYZMiw*@s=FqfmyWNTSk+U zQsqkJ4-#m1nk|Lwo_x-4t>LtWBDr`m6G7(ZA2SHqfgdj8BN4Y~$2oJO>XuqWklxum z+Enb5BrskSmL^T%Kz50@E*$>=2qf+2f?KZfCysobN&@i1FWPLa?=0nwiz>q*a8A}$ zJFuC_{_q$WIfuv4!>j1fS|r|6Myyq~?gMmf8OZ+tb!D6%k!z`^HsUh=A4Uf zvm_FWwQQp81r&LJZ748M{G&TpXHbVs)U@a<=4~7;tbSdyi^-V43hd)@kVf7Luqwlb z1Y}lth)!~iN^a7Mx06@BpLF+rdaGFUVJd#j#!FlNoqr2<)U)9oKGu5}?IFIB`pPx7 zM3P4g2#CtRAq?LkWGn{bfY=yZ0ee(!XH(W931x6Jm2d+>SLRXNbKm(_JK)_-^xqk3 z&|Vuz?dI7ew^29{&v19MJb42PwnPMA{K$T0JDI%-4MxLB(k(vGc7ifCBafIqJB(Ld z98{v6YRM@*@6o;A_1xv1C02a2?{43rjUCpa+TYn^@Y2Vl5L8T183!MDfuEnX-Rh*9sdt-ygtwr`&LzOr8K#p=r3&wNvbmO1M`Wjemn|rd)Gr(hD!f;nVFH9f8 zt_?z5>-9ZoVQ|!@nv>Sc;)~zOJD1||1oz9MN#;h4Z)PoKj4A0J#Y2quO}{rxmcZ>+ z^nViSR%xacpU#+sBQbBvU;~`UxjgcB4CkQak3q82t@U4pHg|VQky+WrYc0gD7?6V; zaRz;<0e|&>F6^DF$;evgWAJP`tLdNF5^0xqdZJuUZz+X=CMgjcA=P=yo_6$7dRMa= zwCx^iryVZ3t6ImGR}E?VOJ7_3?*4s$1ELz_QWk5(`F~B1pwWr{VB+;(5C-d!1u!1}#v#ToX-I4;6fLCq@94}5Qqkj`= zodv@ZdI1|8{*~rp@HFui{j-#>($8;A4{HmLsYeg&R3mFOuKxg;=i0rM?WMGr5?jcT z#tUvE0c(KQV7s4Gv%9gmxVE?pZ4tVHLmNP3S()Zy2sl{L^T^|pa0ou}epg)5SXo>s z3`pF`k=zhPdBj?KSzY+6!`50{`i`-Er8H?QK1wVo=+S|?M^YDXT!Eju4mhI?mBR^1 z`zgCVkMrz#k%Luyk2Q|X^!v*VDJ}%@t-`WIv9#$tqV8xst-Hdm`1g_v4Z#51GEHC8 zEH!9sby-%*)inEkU2O;`@y`njn48KDti~kVLE)bboMfHV-fCYEJW>Au2>zjaHNS@S z9Xb$^-L1Bx9m0i?wgBoB@N#%PMr$`l@fF6UrcY%Kh2bkp7H!g7%%Nj;{_$0WgV1yA zD&rb-{wKNUKWgIV9TGhDC^egyY^^PfYA!8jj0<;vct1Fh-$#mt&rq}KM!6n5iOBHL0k2;sy#iFP>vFp!4a!{@+a5E{R2tUrhJ zy$nrfBP{k1Or!fkNdftG?!&L{$pCz-@_?!VBc{!u((TsgPdZPBOf7JQW4VP?leBH< zhdAE&Cy}{_O3v{N^K1IPov2N1Z7dCLtctQaq=-p9cwyJ@t+5hrig8x?KlowbBMP{+ zN?NUNy4f?Jy782E8X{jU#igpRn2V>#!RBT@R>n{lh52X6I3F+^oMN4qitlZ0V7Zb& zFWY0H1qy@`c)%sja6kZe>s!7X@b`iB+mEx&qt9ii;E@a6$jZQV*xBbEoO&`ox@~SClob7(cp&YuOJzW|~_D{C9>-d)M zwXI59O-B0XL5|~2lFE2yw3}2rk#++j7g)(wDx(Y7vwXnh1o0K$iyOi1qe0=gVm5{& z47S%^bcgKk9D{60ZWo=P0fiYo02r>hd=QCp3F(8*a_|~9tOBUZu7u^Hp0N|DJeU^!Q8k7 zu-M9#TU%Fs{QZBfr*vuIsmAbX{{Yv0f8o1oU()13M0UI|AeqzLe zyeI=a)|v4KO|TcEQ_ytj?iD4qd&EbLZk1PrA);pawy47q+aW;X);uTUEeye7rP^tC zT1(Ei1{+DN{>-S+KG_gt1!u`(LT<*^-L&yugf7xuPdT*PerK6ZbqhUUX(w5hQw^|^ z(n|}sRVvGvwmRVL#G~8r#dUWviSDg*aXgEofM&nC4Trv%^4q_Q1pfeEYUj0N6Zq;K zUJEEKtl8GmD`$n`k`)&1u&O#KRU#$;<8KTGaB=iF0002M71xZTMx-F+eXXNQqTff{ z!wX)uDzf%%eA9d0*41re%P;j9?DXF!MuGxVfRP0#pm*bs>HQ5DHT_6f&azl}cV;FK z%M^-Ne>lh|{A;?@d{6dI65H5Bh2TZa+p3eZKX>x#eT{VBf&m90*PAS}3au$AYyIW_ z0LY!R@%8y!Ee7wqjIaLyrJgvxC2tByb(faP6%*~kVCP@wsHv| z^7hffTT<5Uuk9e7>S?DIv9XbqNh>&9;Ag1pJ;1H+i8m=1i20ChYATxW^3EfUrkybT5(H^}0nE2pitm(I&YYrW3zNwc%@E`=N0Ud$$fQv)Qcg$=MbA2Vch^#1^K zaZ96kK1;jVUsYjkV`?|b?D*a}=z9(hPhnL&D|!8a;0-!So;YE+ylCROxs_1^t4>*1 zy9^(ckDCJ^;F4E5w!SyfZuHy8bq2h$x4XBDBh7B<=PaoyUoRsqksILS<~Rc+;8s?Dx9c?>Jz4K(Wk=9MJNiHH*bs2KK zK0tPk1_m-POz`VoAMs`Wscm(tE}UeBJ5>`y<~p*w$j`KJ6+#kUAyWX7IIlw!PKu`< zNAF+fW0%_1ocVn(`Tqb+iuzk7@eYjzj-x%|+oQ!c_PGd>Wlj+%k;?pqKI;&FLDyWt zJK0Pv(*7ygKvO#a2mUw>aHVGd0EC9k{?8gi9J20_BPz!(IesvB#v4404mR`AUqmLn zwR1d>>GsO<-V04Z1i%~wVim#L^2we(I5^0O)b@0vE$x5I>!jS$zU;fq=wp9 z;fi*SbQgy*NrlP5E9yDUc*ZInL5v%d#ARV%H}1xy(nXlZdD+dZuwQArooO(Qt4Hf?`}@fc3~du~*~K^;tEEZK01=xX=skQW2RXJa5TTIo-H@-f@yfIc3j@U`>84 z9?D2=uBDMyq5t_UZU&O&Y$^rIj~-Klpu2q?TW>S!sG@ys+PC_Ndnoyk1Bl!2yQs zXLFMypvf6TmY3Z@>fG@_K6T3`MgP6Hy4HxO5x)>Bcj)4szsyTcLOSImsAkrHidvl%xB; zoerN=)x0&WOQOl*SGq_v>#LiK%{1CvybU9u~L6C9gfM^qq4t_IEy)4>3Ni?3Bi z{FmGF-{rZ~uwKe9+SOdkqU*O?uI0T`#8%qHj2E_+-X)&yG%{FRO<>YQUjf%YxjT@R zjgR}P!wjlMMTNA|X%8tE9#)y6wS&FPFB8bc(5}^Pa27A1%7L65bUL4pblaPBxsKWe zl1uq5X12VyK6E4`nP!Ye&Os>4kPloO5Ws0!OK+#>65CC6V|6<#ua^wU;rFrmdICVm z9^0_%OT!n+cPe%*yr^!%JPtr3 zp~6v%oUO`?=();Dn*5*UdJW%=Ep2tVwA-%}+98CMk<_8sz;dK^!N~Ont!bV-@Ybtu zWotIGr_FgWR1p^$XD0)WnK`c$v#^HEJfMmQ18RZSH4WyEX>!YR_FTa77+IA3q3}=i zKaFuiFpd5nnd?g|cKG!-yk%<~{v*9sjTu%_0=57H0=d(sLUKOK4?g4kYfDVjwL`1P zU~DAS?j(t(Nm@k=Q52RgTa17@@LP_g^DVE5B)*CVv(U}dlR1t%YiVMV;fPYl_bZt( zfKGPf-nr)*vy`eqd#$(k>)ha!tJ8kZ*7DX!;{iyH;EDJ)>443#aOGBOARXYi~TyiG2j zso84g-p0YS+4C$HbD@}$#ur~DNRSoz&IlL^4{@8%;;Fnte_^YAoVbj__it?+t|5|H zVp2Xuez}usu>_O{B;i|6Whv6Mm%XW_FJ&3hoZ{1sw7Qd4ZP~S^t6es|w>$Om62ql4 z%cfr|k`VzycQN27$0U+K0A!QE&TBJJyRz5p^qU<;r?moSita0jo;QtHI2)CMw!$(p zG0}h^gN%DQFRwK1HFc!FwvztK1rRRK`16ovJ$x~$IfsLNEif?GJDMfPw@V;;B7-f(CzO)xrvFmxVLZK zOg`fm0Iv+Afz$KNPX%~fc#7WBRq+s%J)C&CS>q^Ng-iwoR{=mH7{)Qn0haVj9dR#S zOKm0yqqetEx>xy81~~r!K9%bv}4{<&(c(yz~77z}I$~4yZL-f3sX&Mk7d> zf!l$&HbzI@$NlrqQCLHo8!jkTig+ z$l3d

    R|x31Gy@dQ@dUXkIQPRvCj$>vmxRAIT*DMK9l0xtf2sXSaX=h=t z_%=;CX<9qzbx9`Q!D1aqQn|)gaa@dN1ox_5GV%4^wc_F7ts>xC>F~;8xu4GRjl_eh z2kg1yv1}f3jQN#tbgIoxYVB=)hOSM;!cuna(A2QdEp!oO7N@P~miN%W@k$NQOp`9* zv^EYgkH(hg;qCW`H2ESr<(e;Y%PXM!!ySmo&PFS( z(|6`d*X^+|sRg228`5ZgAPZMg^nuei$JKRe4@azh~BaiQJ7;H%Y0D*9G_p_SU zT`T<>SmA=|Cb+W!Zlr9+SS?I=%0O z;?pd2nwy;c3R!ep>&dqX%beNc!Bv*Lv%$Qv(RVjRsR6tWO!@))_?c~asL3utD)iBij3Z? zxBM~a{{U*#ZO#cRzHYa@@87x4>K+!?wI2=XdVFvMdt&9)6+T`mxk}G{50Bi z>%G0vxi%m{ z^rd{Od860}+&4QX-ch$W$r&Vd>sTZCb_5FPe|mI}LzIV!vGyzhl<#JV1yan{;1{{W7P#uJpJ-LzYE zG-)-j%^Xeq_m`h%5oovAO)}oinrlWST0CwkjQV3ea8Cm?o*jbf$Hh85<;{ika9dy7 z%`5$qL$ww~W;hFzz&$J3A<~tA`F~1TH27i}Y!9t_v@^U#93#QSE>@cBeRu2n5a~tB zo2lpiA=Qzs{9AEp_Nboj#wa0^>@%aX{h+*~c>`*Be|Q`Q1arX#Ul2ofJZyA(d1Mjk zgon5hN>D`q0B30uBobv+H!u;Q1RziebGYw#lE}A)wO5MXS5>o>i!5Y-Ha9-Q-n)B! z8%(^`JVjx9Wewf3>d`Qc?R@YFw72Ky&peU%r4Go7>ms;{#ce}R(~r5^#C479CYKQVCvT174ZhYFWW4&1-zCR zq;mzL`N7m4nNo4IkH~sgcPptR;i^x!lK#AoIlfhAqdEOETGq7-ZB1jr*5CV1 zN4YXA6aAtxjgOZ5v!2$Q6!NhM{$9t7>;v+NGtX%B`N8Zzb$(@r9KLAh|e= zR|ZnWPcikuVBW|701}&z3)-72VQ~bOX42IfAY^qQFO~*7>=_&kE=~Z*;%+=5nvjD; zT{hZXK*)jRnji>7kTifCs~m-XHzsmMMsr-#jq2N)&MCjiA-OqDJgVv5{{Vqc!IA4W zw%R06+la4`mfjfP)9uaOsx;T_Dy!TahyMUZW%-yYtc{dr0Gx}%bvU}Pl0PmBE7yt` z9$4B))+CPEe8Q|ieYWE~<3BQutTWJG_z%Ny&#me<*FR^T-IQ7;n9&Ke_JJ5}KrV@S ziwMhZ8<>W`R&dL(ehBEtLyA}N2BB|gArh4VFaa4P@$X#f5SnUx9r39ua#DupE8v}0 z+T&Up3r4Eahjn22%MNk*X1Y_TKC|MlvIm+Gq|UH?rQs4=z^M_DOYe|lbc@f*s@_y( zSzQ4y@W+PyHK0jv9i{S1GfaNZb$en9s}YPVs{_x!>62SNAkqz`<&2VF+ru5i?k*B2 zjk??e8v-R@Sdom5+_rKK2CwX}dP02teaQI0smsQ&1xmVwxO+QG*YYtTW?N>*?(>}EYK()Cl~dRn^Q{iRO{iT#VS5sb zT}sO4)I|}MUDOb%=Yz3N%tj7(Fab$DeGgOCVAM3}VZ3>!Sni@(1mu`lWNuTQGmq0f zs<(%1ZTu~Jbn|$jV1{WDQxdc*<`7O*gQGW0ebxlz^flcm{`1;Y(?zF8t2kjKr6|X? z{{VTz>Kdk@cj72~N2lILajQMA_K|%$K@hZMw)v5_7X$@NvYZwO%YnO$%{5KE?w*Y! z$Yr{SsKG#>JbhI2+7JX#k?GPtn`5QxEd{GV9-J=ZI|P3rj0qd%`4}IWhea%K z*xFZ4&?nRUFQ-d;{hK?@briN&R@ch!Fj*p30dflkRT%?2cI1FYM;smN#jRH|{WT(7 z(pOrf{{YKVuGHUtddmyKc3w9^{R7NDjdGD8~XFSIZvl^Yx&{vLX9)M-Z(TBawOUk@iO zywYtu{p!~FoR#oY)E!96XMMZ7TYod1pT_#C+}i4zjo6=27BR6BK#ArkGO+0&Rm#jj zWm5Q3Hh@?CL-nrs9p*KY)g4l^7D6#FDGKC*FW^Lqc+BU99Ve*MD+UYuFzlC&` zz?Skz7GE-GB9J1wsVEWAkc{Kz!F=cD!6K+%U8uRZd0nQsyYkXmB|GF`zF1IL@_CI9 zB=R%XxFcSdwYyiA--*033biBkjV!fZoBoE4#iUZLm)PfuV{dc&$n9mghwP)swkn0f zmh%(r=RYYq8N#sIub)G@m%=g2y)Ug6<~w_Pxo&2Ry}WXKh+rVAE_dU5Wp|YvD6ZQ| z)1{g2bqgDtS@kPhHG%E zs;pBwB(f?jiZ`I#0WcyG56asaRJL=4;jJH1(!671bv!J#-bKJy&h|{(x@{~}91Xbc z7oa)LeKPtxO+GTVOsh16s;j5BCL3d z9cKDXFYU`E=AtbObIA}7ml8;J{Fxb5AbuIIZ9W~+q0~|fm$@QIF_Sz2Pjop}|2bIowKOpaxJyhwd*=cjlsZsmWwb?9|w~*P)O?`6Mi1SRAnV)E#mn?f4`?h zyAWQF4r!2EYAfN-2VGl40Hi@I zrb8>L1UEZ;`AZOE3+1uoWCuxa;$1U9u$o)7Hn&y>TS(%Q%uVsUQssjpw0YbMDmnR> zk$`rdd`qmFl^a{C*8c!4{_n)eM*2WhJhkrHC^+o2wfIizIo00d*K5 z;|VAmvQ^Qsf(g6hYu!%&0Kz&xqaC_gNbyN?acw^DG9&V_PJ@xiIRoe`&F^mfM1idz zT^dw2@&##9=ta8WZDUntxkT%=&dN!t~X=3$F4mMap3S1 zqm4=IuFpdmkBwRnMR#vq&I;Pc!@B++DYm{s=Vj$nc_xg7_IySee z_=3vE!rmW_J4?IEXyCe*FzRihj|4~bw%*0@p-k*E9UcD=h)%+QycrFpC8MRsTIK0V{J4=~!6pX3^0Z&rNhFyJUUeatlLE(|%dwK2bEY|4GA5OTAC`HRFNB7We zStU}SkCbu-00O*|Uu{0$#JBo&sl2|kwlYE^ibhSbB!QV#j_mD4E0zQefv|7|TDHHk zeHzwHLrT?Wp5-J+wFQf*xfVMewL zjUX^ZFGA#JG9KVy3fhCTk)2hc$mm`q@fGHisa{)LM8?+T8KD;YjGN!)!R?Mueg$ma zYSy}Mi}i8+v!`i#gxXw*Yd!4A8my;pmQL*C2KGDy!Kxn)>@_VN^$0Z$KH?9wIFTe^ z3h|x}3Fn`uy=QpF^8POq$qk*tAT4J%lu#FumgXJ1GC<(4$YQ-l4mV@B9^nM+tiR!m zFr3Zm^(9z*5#hfD&m>+YhWh^iQJ+qiQxa+sOEk=vOC*oA9lmTkgN9**2PEa2jqzWK zyg#YiTg79hSwnJ$SDCG%RgP3FcKeq3NhJD?dgEhHvwNL73rkBOa`rLB63=~oJg9a& zGi>tnvM|Cm%BPq+bAy&Wx(3DBj&)&$-Yv*Kxo_wUbI(G%EgdYNzB;-GTM~LjauOK^CKJ zu0wZy5C|4l3MP%Dk-WATRSlAP0|VB!WAOc}?%&~w6AVJ;(o?v4)jb~W!aWM(R??$| zW1dX2MyG6Xs}QVHgTkHUbvefa0D1GoI#AL&y%oug7`by5u0@htrJ1(4mg4P@y2!Ia zvN!{`2WsOz_V9T#frR$s^F`Q z%s>G0K*_75=GQF$0N@+KPMp-?x+$%bTFS6rK=zj~5JLvTLfx4hbwk+o9SFxp!Y*80 z*-a^1h@@?@kCdLQug8ABh^yLXiX!-d7Lj{u?H#<@oVt7YmcCSgi&vW?61tI2+DOs(`iqcCsi@T^f!+?S^202aGWzGQ?f8iI7^3PC)F1bl}vsmp+%NnvrRXt&q0+v|2QKAU!9nn@vHhL-ARSiT%=!1?i# za7Q)P*?5mx@-?JBH1gGfT(Ad>mCqQ(JH^@z-U~~ksA|uz zUEGNYxoZ&j06nF|Lv;Jg1sg#s{1BUvost2gsQ&=MJF4oJx|QFG5bIieqCYk(S<)zc zwUvtOE?DrgoTGu2Tn=#E6sbl@BCz_$iJvsr1v-+YiI z%CI0Y8RkxU9e@ti-^uY0QWh7o%{7gfN!#qVe`1zsCP1TfOPLV6tK=8qNCV{zSyP<2 zv$NJ>(O|UKt*6rObw--qL`>D)|!3Ch&11ZHyXA3O$&j7#VHJJ<044rHrx__ZZ+m_hC(=A=s7YyUcW5Gl zIipGBjE&|;b==#S;FHg{(!DQD*KPF~o&_5wNaK-|p3F1)SD5%u!?yQc6VdJk!^ghL zBIpzxor}}!TDI_O7W&fP#cHV%;RI%7B&WI0Q~dsw=uV9~kyg>z;Z^EWo4%^$9~F3h z-^CvguXO8zpc@%{ws^yc-J*>{;Qs)3c1IxObrp@`ABUPonPaP6+iDtRwfHwBE$6pU z<_RO0%Z@+ZF3fr5bMpdXjNok`*zsnsf2H{AQPeD5qA*+AmVYT-et9idYX%^4tp5PS zy*OdXtUF&4EE@H`si`ClddR|AF5OyINhh@dgbK`J#BBQp;#dORIIlYt`DgN9`bs?< zB{|A3muBDQ&0SMY@aKpvwCxt>#yTyhg`&T_xce2fut9MHGsw~8yW?Qq-~~WHWd&Ge z*CnkyHKuFUwm;fhPN8paYib3~m1LnLV7D=!G>J&_K6G;2lZE+kIq3CY5eut3=`O4- z<+XzFS|m4d7$jg}jzIZ2z+KK;fr$QW{Dd|XcN(3Y?3NcgexE!LT*YlI%<;rsccffJOvr8A~b3oSbe_It=!%YwbEEo{_0T3_4`@4W&&lof^cqD>R8T zZjR3(d?;Pmiag<$aSM|A(wySdWhi{w&jNH3+TbDGjSzW;pPoF&vR8%dpD;5b>2D zpO_F-bk@En@U{GBP`=YIb&0LSYc%CvbcngagMdQrZUEywD&DK(=Xo1I(ew+5bqvQ4 zwrET(5pt@Vw_|85@rvy)huP)*8?XCpz%jK6lnVCjPwg(%wn`$@(k)1@DHid7ddR)J1OX zpTrOAUWu%Q*wyDg1J<<77V_px>E0@w4Q*$u$0cfqGj5nP7PFFr#<2VDH4*s>D;k_{F z7gu)|a4od=N`OXjxdN8p_x>^1dkW+HSK>WN%I+ETz9(71Qt@SS@yifkbBvAc)E~U3 zrw4PwnhW@!#8*(q;*CHo5j5s6CP>0Fh2fT28do22#`04+#_X^gQ=tlYnO9x^07QKB zr7DTSGShF@Uz%NyL-1U1+-mxr%-dS-HdTxt;ZITif1PuC@4Q9vJ5#i`zPq)zC7_hX z171)rUX zDG{0XNb($&=hrphdXI*6y=u*9 zYs1=?i0<_ZSgoypa{!sji6&%6M2SE-%D8O$4oDeg#M3Ud)P;%Rrxok}?E7a@<$_r z!a)RJ@=9P}1pz4C_|sePebu$aj-wmNs97b&%S7rV6G;h?11qT^5KkEc=2s}hFlLZ1 zRpH+l_{Mo-vbedj`!Y$Vh7iI-EH`l~#shZPUN$2cEs?tz2OG-Qk-Q??we_zDBFlYtJjj(_5T0^c!4z?Mr2oak{gKR znlyJ0G zytMqsOQPG_>JdS242vI}hUU`QwngWmzY;Qy$~G*Ph(|(JHOiJ7PA86agR1;c*JTem ziW!BZYccztRuO{oaHYeM{`PPQHQd^2ns%XMe{5jV=AH&yR=I}aXng&s^5!<)SikS5 z4~H(>n7PB^u{=lMpAL9`$2xYIeX8ox-|I7mjiX59P|{0}pLD)vHy^w~$j>Z8V;Rre z#i;)PkyIrbbuRi9G`W(+pHi32D;WqHG!3^Slg>ZMu8UDH>;4m%i6RGjy}a>^0^_DZ z>D(XAsrY@C%Tv{?n8zYpU(E(Ka8)E^931ru4Q*;Gqg`8E!+o*~NWgXgd0`08AdWl# z08CdTVHl+uZ*#tLa+92PvE*JUXml-D7^5>OisA%If*6I89h*gD*l@-rlsP^ zb?70NMAD|zRv2#Vt|PKrb@H8954;tdaxnvN#^Ijzmwj(-tG(%Kt2i1P8E&o3&Bv5J zSrDqA+IP7?R4*Ak=Zqgxo5Hr*U8U};Z+T^Dp+Ousu?R2T*W_rHF#dW*?oQ~R2muad z2RncV(4^-IFWJedYj4N;*z@rZny20R7}~AAp>26(;hi(hy}yEXxSnf?zR+i%V~|yM z20+U+vO4lX$s2&&`L+^j`qrCypig+Xj^5W#wrJiDD)u{h9(3FaHgJ+AHj&3H9|TpO z2k6(jt)`i&TP)gr%Uwlh6n8UZO)Pc|D0cnWDH90b18FQ$Nk-xvS7E34B0Uqw7O>g_ zC99Q(Y?89?foVXbWYrG_)u}dQx6KfiPn70ZuU9lD@)1jdGqU9j+3I?Xbq=E zZ7fXJ4;=8u;y`3)NSt8Carc{M+zu3}Og8Pdqi1vBzZGg)5{(gU)5(cpvW%t2?hE{n z3EXB<9FiEUX@)EJnP)>Eh-`dacW>e72ZonSzne|f1QSH_Nf=ybbc_$)Zb%!76M#b~ zY#QzI>6)*E<+Yo{Eq3B~WxQEtA7&B9yzKKCxM77WCoj8c4yvt|B2^N+7MJP0y*iZ} z-`+dzX59FH;r-36x?3hLj7|1SVQ!muo^~$-JZIOFft(LGi&E4CGg#Z)N+G#muM(al zCl%Qyt!H`gvi|^BFEm;{#FAL2XP)6$gl5|$@~+|;jz7JDv>bqV?Uqd!hP6uz>DJFx z^W9$NAsmpHWJJ#l!>bec4{=`ZU5ciua!G34_VVg+;%QCGnQV2so5kS|2g%{~lg`xd zh?aF6tRUn3Kd+@r;3=BtMc3^nB*0=;!R$z2e~_+s#MaVXc&bZ#JLxrvolpr724lxV zw~jwATHMq@@JE79m9!i5hz0qX74F#MKs-8t(Jot zdtVLD;k`;tM#kFC(hG>Jtb^z?I51w)g^fp zLKK zytbN9rDuq&e==b1AAJwb6ye4J!2^}l;nl1>IcKR{T}Ja=+QW4)EM)sb$#E>1bzy)u z&4Rcgj(Nd5sgH=>E_;cjx%(yj^OY>qTdO`7g#ht|89a2$F~(Svg&aq;y`GCtnCFMS zy-x4J_OsdRH$`B1W+4Db##rD#%)a9}2OJd#99Hj&kbR2YTbU;}X8OHfIAQCPRV;N|UjnARf2Iia8JH1c2JOs*s8VyCr>Vv|W1-+drD?a`CDiO}udL+L zRLUktGHyGNZUK~IAmhK+(AI9OA&HIN?SED(G-`VXe?oVjIbqf8-c&<#849fUEtD(A zuR;0Jzl1a$AO0p6=(4*-8ICe=0P@$G&Ap#Yp8o*E`c<{e@2O~37dLLw+s0vkD;x$% znDrxq0UU#Z2&)>lr=)9fMz^-Qx;n&>u(r63SLIN=We=qph6Z@$7*Uf;nR7MUQx}WG zVW_y%YBG|w{It210@(P5eOBJyB}m}3X#oQO5h4tKMB>bulep<%x&8ttR!>nAq zCf>k3tVm^fWD+=s7~R5+yT0id-Hdf7rx}Hzg{Gs2O+i^}yMORmt`;$EQl&RhwRZf@ z%S+aDty{yfYLNYsc_Ot*u5Crhk!=;4R&Drfs9Y~x4oM>?H3qk>X_|bN5ZGJ6e{XoQ z81EvuCpfxT0R&}8`N2GMw2Xps6HNGT;t3))cXM0WTAj~(D|EV1)8ub2L) zryHGjZomNx^0wL(Uu~JLwQDO$A=D&EA(G}jpc%)$Ym(KahRaUWwaZasf2V1%M=>&8O$z<3nUx%*XvN6HKn=(NP;1QeUk`ZJ$HNfoXH~WS#e&6d znm7Xa!XX~u2Iz?0jCIKO?_PytaW$>_&2wU6o%A~knPHint+dW(^Kh<7U%Ce;jev7d zc#~YR@K?jFD@@fSX*B&t!|aN-*2vQZ@`93gOr)Ks?*$+pxX1^G4THsD+vRG`-#rcL zRHr*=dG3XM@f%&!MeUxkX%tO2l^kRMKLO-Q}{G5;u+_pD&XW=NUZaL;6;+7rKJIq}LAY(Y6F5 zCL@A3eMW1pjd`~vS9|P&bm6=38~niDkc+Q=0nXYt@qWD@zGuffPWBFh6;g`6EAga7pX|$JVq9OD_cL62gE<9+Psd zAW)&dc7Hxc;nJTzm8xrh4i`kz<(^NsUfbJh7kZ_;%{*vfkIayx7CZdF0OW+uLn^3s z>ZIMTvCmQ|n|>q6y4#G${ zg=>5JH&6I~b>XcpOXK!Sdo4*~nqUDT?k(g1fhW3>@)y$@c=0RC zA5{63LmYJZnMQqB4y0GDgPo%$)|R)W{{SO~yc=mQh5O5BG)B@Pw~A-7-7TWQ4(F6J z#>^Q21m#s^=aMs?nXYrh8b62pFAkG=aebxT{f|!@be(1tXObj}MqP@`3Okk9PS*Lh z{J$>K)>~@&7Nd0cb6$yUH0w#PWRe*i7`EYe{Fph~WgK&Y!?_j2X}a%^kr!@%Az z)rHg=_OUd$ns{{&-IwzoA2WJ{@?%s`;|wtv3>g6ddw&pGUuxeCTGLEq7qVHz(HA%b zjjfFPfNPzzi9AJRcdbXOUR%Xy6WqH)sZPFf7M=XJCE-;FSnbX*6>|G?ocMfU9=YL7 zD)Ub>OQ)^*(4?Hj`S3PBr*CzDLj<+XCfCIJ*onUO#U$K@QdTz7DA??ihb@6}gvgHm=OMU9FbM54bR6 z_ueVWardfy-3;A0&Q^xM*KLl|#hP4tAB8TVz9Gfb%x%mBllGq~PcL>xHs`NQcR1kj z^UI){y}B$Be`?Pq@};(+Xtz-^e*LY)QM-^Gu?hjS<$`04%O>B9yg_T?&kc#;wzn4+ zpj@&WqC|@x8c1Je8yt*)LEW_EaBG(E4dBx>$@M!w7&V5eEQ@RQW2Ko!=H2CwJfo`T zmf3;7%fTy+%et*jt=etdPP#t3nLI5@GE$mJy?Sl(HZJuAwv)vgO_Vp+F-xaBQt6j= z^02hGh+MQ%gFnp}P%UHtwlh0zQo&VvEiLrTU&me@oOqS4q_Wd23PLWe&zo>&loWMB zGSSB);3}L0lEXhd%O<py%ac zyS6sB`i_gMeZKY~J^uiRRx>SucnWzk#|J>$mp^9&;q!;!jg{$c)~A- zuW<6+OsxCOsu#qe^#-8d{#4txw;aThV!<=b5HKc^g{VT||7yNs>oqTzRO(V6o(5t}(&q*US88 zb$J%Msx_6lmV2v*w}v)}n8+tvsQyqnB!@eF@xkbQmr#mEg<2bnShwD7Y4tp zrebQ^?u})n+vs*SP|1G;5J38*x1=b2rHc7@WF0o-k%D>XNWWp>)YUYWxCx{s?WCn9 zL8!>nJED1vq9TA3j!xF&Yjq%iYaSD_v6JmK63ulS2@<4Dc_#T-`Jzr&?t|tA$Qa0B zfxDYpUxTAvUR_T7YT8^3HrrgwaQmJ|UC*?RO0v1=-AsU!#wB5tedzChFV}JwCT=!z ze|s-@2GU(t*7n-j%y(w_8VQ7(Jf~RXJGvggjANYR*0y|2ad;Sumx@c9c>=hG7KkHZ zgWx_3XKvtnV2lz7CqquX@ScmQSn4(rBB!3ww3c?VO2;w37)2+pKAct)Tj^dO_adn$yKW+)z@dW{Qm$m3^X}o6yDFK z_VP5A?X;aH`~4c;bt@Z1EQyvRoHlv{{G;J#a{M3KrDj^ZUk1G|3?NFbbsBpeY= zn$`~t_zug&H`>Ov9h=A_`xIABLXyqLmeZoJ;N?Ik8OSOL9$hI^SclH+Cs@<*r7sm*D2%MF6L+MvzlPD#ig+=zq!0DXR4rLonoWz?dA;Zagdjh;|O9B25X z-Oy+5e03?OId+0tgNnLz0<7kZKRSENe7%|8(2JzlY~waJd@WVyNgRpOEHUE zSRfe2BaAN}g>@b}JOf^^T~AolEoJ`zgnHHktX_$4wJ6nPRe2sJ*zC#(K`E3jN6i=@ zlfj{{X)#T6d2=P^jjc@ZK{&VY<;fp)mfc|yfWZj+QV7@smA4sP&c?bg65PY4_@d0p z=@q5cvm|$oEX7d5*GeQ0&I%O-GPYM~Ja-A9_~1wIy607n)!SPaG0k$9f>*bZ+IMB1 zDA|e(x;Z;G;zVu+7L>GYKA+^6sHs(xhn<(;Kf=1cqv6XpjeHGfJ@~n4VYN-kcW$OA z&(E>~3vHMZK^XIPg+Kxe9vIU+M{%Slhl|>2_L0E0Sdt}2Gc*e;Cd`AltCuI1>PQE0 z7?^ks1zq`D^GgS5NV5*Ls|A%fCg{VP+Om z+2tUPaT7v|Gz=YZ6olLtcvTC~0x;)KMJpzB)yiwM@3QEub@qDZuX`?~3SY#pr(Vfr zAU1;x$i;G}cYZxEc=xRxA6tem4!~r*TRlG0Q;g4ZFhq`KGHxSrCkhD%KPmZCX9R=C zN8`T?XtQ0#EHjCvzm(o@iA;i0J}-*=_8`_6n03NpNJz#)R+b{1HYk>|? z5A0xCZN~44fJLo z-H4gDV>ly_e?eMP#Ix!olmzq#9M>=6{Zi5!Np$#K8HfCR%BSUt2PJd;=Jf0`PB^C& z+erlMqTGnIUl(Z2ZD)CLrdx0eSNrk)ts(U?Od1bt=pli1Gp4pyX>h^qQ}P zbq!ief3n`ToinUp;q9BtECzTxfn(1HBeipyr-baRv`d?tyW8A-sC}qKJc}d+kf{gE2qI5A z82L!EH^kffD6XS}N`geUxoA|h?^%{{-&^=T!fisR_00Q{{W}{XF-4QCi33ySW?0n(IpWqp`BxsK1LZBs0eX9lia_$L1VK-RSB;D*~;xq{uJ zjKij|kQ7)gmv`^5K#nJWoP^Hh$Y~U>H{vz$#-HK2_FGAPb8%@bvB76=Eu1hhn8GHJ zNjM7V1|Kb|o20SVF5uOmyDxirwh7~vg#qHZVJkl&o z8atUl2*j*eltYIK4qF*Jh%|gDf3Dx!-Dwu{++AC%B&iJ1&ZN=|&X)2+`YZwP9lTllPJGTe

    h6zZS;v)-RcP_1WQj&5*e*4Xq-pI2TE$q zbo^w#(LKe3!L2qw(_>Zm8f?FY*ST`)ZUUxY7M*(9rhTqKNR*6kN*yi_-ynF^1LkH6 zuqV|kIhsF_eF2@eL*90(*nRRy(5%bNF;m7bq(mu~Te{Ozs-(l9xt(X*+GB2fJ94-` ziNVHZ*y9L}fafw8YU%X{6yCX?xFd@_@3?&z|4cLv>ky0{hn6#Kb}!&vpV{_QtrWzo z9GLVrZ;>S)28V7oc^&ztvvvM2V8+Pl7XA^DAI5uG2_&y1tj3OrTahgGk~Ep?ZjoL6 z*VQo23gOeBo1M|YDsc=VzH_;(#g~Mb-!iS?odt78GM+^63dRw%`XuMt36e^bZ(Vyj z)A!}W^Gu~P&JnlSOBH95&bNJvs~I~u&(5B{BRAyr$xb>QhL z^mZVz9+cd?%&jzqZB2mV5o;m8ee&2xtMF4kMw;Ws6}Oo$l;MEPSYj4OhC$|i&V$hz z_OAerx&QFdAZv~FG_^08LDbNp%a(WHnS3VPhU8cxwP)P+ThvK!k+YGNj2hUzFVu^L z5Z1xi_HFZwWp`5B`YU;prz|cB|0l{Ph>}rL&~n3qnOJvCgFI_3&yquoI_i~_L;Fy| zKR8@^ub97c5zNWAlYn=hj_il7c#G^Ei~18z>!f<;{emuf-?1btc%u;G%L*rED*w&? z2k^z}!bJDCI(Z@=2AL78)mLp8T1PU43Yo~Q7L%m4J5SNncy#!Ofz)3>b|*>Ni=At- zkdmuX0T{)dMo+NQI8~h;bi6_UH8n?UzmO$9bJTLFKLX_-zN8mztxC95k0~dezEZhz ziPwjS>G3NYZe{V2gRA+1O5uFKV;pjUBd_k5tcv zfm6;X0pnbOIDf`ks&x?#n}JPsp(+=8RH+1$zT4FBkT!9JC#~I8hI9=irHDdZ#X~jo zSb0^ZX=prt5}B}_8CNeGYQ;AodeKWCH{FE3fs$txS1kmky{ns}wJy-;o3lO#q+uAK zhqMnQfqf5lq{~hYcLeF-|8RvoTf;dKM%Ip86aIdoW%Q=1IzXtW*j zBm1WSj7Nyytv$}!*YIQE5!*uIf9Ry<^WpWN=u;o0S0_k%QZC9n&+e%WL{fcwa_Ta6 zARFFcaB}j~k+4=#UD5b#hty@gTFACxZm}BFPYhlsPr8Np3w6dI>TL!#C=+;;HXaI_v|GeO)nomM X&XWR0E#33Q`wD`m+C((^@2~#@n3H0w diff --git a/test/samples/smooth2.jpg b/test/samples/smooth2.jpg deleted file mode 100644 index 090958ed2cad0c25f9689981f9316ea29e76bf9e..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 162019 zcmeFa2Ut^E(~c;LZ< z#{&R3%vn7R8-yzYX@hWL7UmNGB+jX*5wZij$Kk#6FQ?ry0`x9`AzcRI>0r<74s$`m z5stDff_wrj%rHkN!V>OiEz6>-qsS}40+Az=IdxuLLB~+z0<)7n9O=rep?mIS)S0^cceh&{1KJ#64 zJ}AOr7ZJ&?;ev32xwu}t1XAS%EAUymTC#xceQoA9zCfrY9O^1ZMk-?myCw&c_(sgh z1@7p|r(tdlQ$)Bpn1e|*WrPdd3*qQ$Zm$JH%JA>vgVnxO|MU8;aHt*3l@ICyGj~O} ze6K?)gLDPSTmP{+5aeL)2sQ~~e#0Om{aeCtSD1smi;MZSpQO!qvmj$&#qX^B1&#k& zxLqP3>-KWuLNfe&iCwyX%MsKb4s&$`;4`Ti3bU>@w?{j|iFaK*MqX&+IaL{c22aZ^OBH9nr*&na|4~$pe75s<$^MA^i z^%vs(u%Z3#XIB;9r#Jt0_k(n^(D^#+butHM;bw40D}>qCnasa8aQ!wdmAABYL%PB& zcY#_k=+BAe4=eop$;2Nf-v4km`ggOkf1P@h%6y*`?kev4RB<=`UoI{FQq0}jzfc8p zdqbiCA2>DrIXM0oU~viIKf@LkmHZ9-b4~)b`sYl4pOOA?lK&6&`uEiTb(#-q^H1mb zq5{9o^Z%CTKbz?PoT2_x`l1@D6YCrtN`a{h(w@(N1)W_I69`Y*r| zLLz^LEh;Yl8+hM#_ZF;Qm%Bgu?0;mt;N?>R`)Y8bLu0q&zHILBbEW;WH~Uk=|K2V9 zo4qZclLMay0_my^b%8s9UHZ?xj=#Nw|Mz>`zY}rSTE8&@MuCO;8P5MNFtERo z^)LFx{W1N|_U`_+NBED7=|4M-U#}?${cjx9|1UG(KMMO77W@}O_+Nnk$ByiO*nR%L z$AX=lEdO5^-Tz9=Uq*QO{n7pZ$msrU;wP`60`8{ldi%aF@qbK!1O)hmz{SdbIwos_QkUU#6?yn)~DIYj0w^JIU4A+oAY{tsnaw zf7iypiurxU_(v)Kj>?}1Df2_dzpMDGh~FFjR|&s6EdMCtcL`24j)uU>4jADrXw@w2vvqYUs{S%D??;F;)Kt*?-$ z(J?;JyR`Q__MqJO zXTN^GX^{~u0f1dCe$@}{Zi)Z~p1#Vnn+1rU0l>iuFhK(d0RrGh2rvV$KOBI8zvh4= zfB;+p8!+dx2R8?Ds}rMpZ2_v06Y9|gM?>l@tB&E6i&?V2T# z1;WkI5~*%s3;kKH1$7k!b9-XxfDbR&BOI;4{N8a1X65>8{+uhq;cNaY8(P*j-^%wy zCPLc7p)jPL{Usz=9q+ex4(yeI;3MFdcrT-J{ukQB)-DJ)r{6$C;4=i)a7UPWf-(VC_n7zFY%+pl`sjQ=R$pV3}-z7-$9sC*l8}>< zl2aWdJ4kh$lAN6KIL* zDcM1A2>QJc98Czm7aj)i2=NH;3GojQ6OkMsAQuJ;sR#&99T7YruW5di#o1qo=ve5} z!gH)_$F-hY2#dJf>{cLV57YiQ{RxT`J&{~=i{pH_j^%|HDXwDFJ-TmU%f+`}_PWii zC~`hdy;BnLs_)%uTIuWl*)=^Y_khUsvc`eAb#WzqYmd888Rbob^BYtEK0e4T;T})K zLi#IqW-;w@GfYAII20-JiJfSd0b&l(7d;>o zDb$u1bj4g@Z-21x*Bo&EWC1qg~*fqLa#&aTPbCh&Wq9b=A z%PF;oKdeqv87o1DqpWz-hEMbvw?CsZ%eV@=yE-xNHGx?iS@#WJwN2~mzjdL19OgcZ zx+_?QPly@fp8PUd+3r{GvD{yuvsTm*_U3^pt-T*ADBYgIW^}r6RJIy2HFzqV^Mrt% zG9yiE`P((GzwK%{oYQdeW>*iliAff0ly<@73!U zA`N_d!vhTLvT}26WY4{DfTyJ(P$!wDAqlF1PK{^%CA!3j&BnKvqCeDr0{4svY%14y@JZ&fKw4OXxKPEr@=xs!Z{%2u3sNfL-_OU}0 zN6ltraDaOKsdyQv6>+2vlQ#eCN8;k%pz0^%qvBirI3Rml8)Hx^Bf4>-qR*jtIosATbF>iNRB$4!apvZOM_p z8!Mph)T!weXD=gdss!QmFi6|17kQx9QrcYk%?(Pc#q&yKg#4$lEmj_yXuh?P4NGdW zZ3)rJWU;{z6EPo#*xEH5kh;zJ`NG6oYkJRPi^C8fSHN*8+l!=kSc$aDZ&ReEkp(xV@&=^imiqY3V7!VZpEZc5tIs?a~t%$;a`g zRX^{RjP5FkCMvhN>>;2#5(P*kUoNC zyOK~-#r4I46$ZKaB^}=qH^;;X$f0r{L!h4iX>TV$_(ag);Eg`ZKOR0Ao5Ubrf9NVX+H6YWx6(N)4 zqSD45#K$aIa|F8CJcv@N--M^1e{g!5z$)Xl1f1(IF_8}X5Ji*}@NqFF#xTTA1gTKd z`hF*s{JL4LEF{xPgdzbU5^G9p2TQxtFV?9&GF}~n12iYGyjO=t;^Y~7rjt>=Syw6Y z9`@}NVC)K7v!Xq{ql}F?r0X(<%DCmD@qJa z<>hid#k0Q&H4!UnRmdr8#Q`x6?g+h4RX*)axlr9lj8`UmunyOVjK>#|G$XZYekvI2 z^h&OK_n!D?F+Y$ore_jwT{K|T{)~Dx-h%f0Jaj5*$YW>)byJ-BhVR4kJBj_1XfMBt zdtc@&BySLv;CIdBs@7lFs_zi2Un`+rC9k0z$RezK6?;3X1FaVCwn)UN_+adUa`Aw{X29=~kBXPIykQO`OYs2vJnUP0H@E z%MWI9^Ycoho!F=uT;u7BGh5t6nI-3a9Qg{9d;o~x2ODD?po1NJ&_1Y-v@3wGj#e=m ztM@wM0OattdQTyQ+(o_j0g+2pXwJR2po#8O6Mhc`pLsq zBEci%mUa)DdT~GwwQ5Wg)pN=LWwO;ExxpTXf_3*p$7I)yH*`^AO*GB`ajcm7%BA7O z$<@niv(FP&uqTjxt>I z;Ty)RZ&7RNajIRnG=%cJ%z-UtRu+ePH=&<64&wm$r{SfJQ5@iYM!(WmX-Ev##1+1f zPq~>ZG)LIj|FXLit=5cM8<>AqHrO{RmT>lZ%-9t_$v4LF10yX$^2pMN_htq{W_{w; zmZeYMtiN}=CO5V84hKw9ABcW1cjPk#eYli}FY2HwR85QYL=S%`a9!qDtR~Wu;rj6h z^kzZsqOLkyyhu|%;o9Wdo>rexh-&p}!mFV-!fealsYQ>(88?ES--Ry?E4JF_zPx>e z-9fb4h_Lg4)l_e|om$w)koSHzPy54Kqr& z-1!#17`l?z$R#fp^a)OCXJ4gB$SCtTR4HvIhXdvqJ`~d8fcz&6oD@}bs_~JHczVJj zSK*AEB?c|4poWMhd;MM~yHe%{ze(Zb%+VOL{p2ISlPXiyG-Ui-%^-ixbYqKgyS>;t zW3{go@O6AB>yxn4h^H_ldTh9|a4Y0OivC;aO$tQ&Q;jC<>mEmx==_XvTdV`Ds_l~a z$dXp^5_GhB;zZDOYs!pZtGv@7d)0}2+k7F)Y z$AW zPXyCJV#`cxZ+(HfhU79pQ=r;C&plz)%Y`&&`3QXrtlk>cR&-+B{099R3Rue1jYqdR zUdEjD=J`Z_s2gKj*zEH8DWe3L@Z?KuPO){104uB8=!(r(wx+%IxFl0 zT-xRN)+>V(I}r0ZYUzQ-9zu_3=K?AR#G}UyYtSCsva5wSpgkj}yF}rh=afn)>&7`Y zxT-|Zh*e;59fJc%20yGj=rBF>h0V~Bl^gjqU`549of$XoQlD@@ zqz~4+y!R55WiQB%lE&Cm`Wy>3RaLdRwOOuhmIYQO#fsW4WfLFBzh;NMWuJ>V^^9P< zE}VY+#XPnHqR^|M&U|OG_jM`BCw~(Ue)cWeTw|+ApF1Iifkm~z-6{|02dqQ!hF{NV zdhtQ?yaoadwz~|;SHvCQkZDMF@yg)S)j;~Pt0p%DeU$WiA92+LJzW|b7)A#bfOibK zmT6v=7tH`gH(lC(f*e&C_RFZl-1RZKvCZZcf=F$|0jF@llN_dpF6*pXwe{zhc8=hH zDrMS=#gFV|BE?Aes1n)4R=W)7);8O~JAG4$8#utsIh@tJz|LKP)h`e26`NRXot{7Z zFi6_QzH&;sHyp!9|BR`}aJ!)MtUGI-TM(}u-r*?>3&dm7%UkzpB&SK$!j}_qLZcph zu}FeEABQyt=;e9RsjczKq-~}JR_MFgK0D~c=#smouRkg-rC22_xfBH12@3l^qwZqB zD&n6lyn$|5`m8=-G=3C4$8S*c?$HNhj>fu`J2Mz44GJ{D(HhZW4;`Y(;+C00-RUDw0_2Qb#%*;!g zwqRqeZBnHT*Qhqs`lt}ia{{(|$5FLuYks(%HL~HtYU8&{58~E2Bd&aD6+{(%i6XPf zb@Wc0I-y-xY%WaADw|g|=5>WQy>*O7$Y30^CM#x-$g1q{>Ie}exu=LfV+BcD4(Umx zeqR*m5)tFJT$K4bYtZy#w*en-DCdTSpXB6|O8>R)Vf;2{XB1CXzEl2KWKnxELuJ3@ z-SIC0BbAf6ex`i2L#1zf9X$JoM)T5_U&6}tmOr?Qu2n5{E#=rnQhr%z7Ol&6;(qPs z()D)QYOu5NZKpbP-FK!w^LFi62{hyZC${@;PEANV7LwFSuW@57CMuLa)3xrY-vAF? zY-q5c;1V=ePf-@*7UWTtA(@u9ePGS+me*8W<+c$jQE&30DUsTy;mJdV8#A-Ci-882pA$wF_SqMAHQU9yVrWf?CJJ# z3Gu2?E>SoK^QXl`_*goph8H&t5t~L?ynNa4`bGb1mCp-;RiwQAvS0Vhbs6~STFD&` zAXqOR>A7H9oo%%stFKvBbrJ78^MV%6R{VlCpj9oaRb?UAUUVW0OwIvef{ zfo#@3>=U+WZGN6PZWQZNQn;bVc6gZx>mfXj@mnn5dWkMs4aue1JTw~huy^r<@u=AF z>TTmWzwwy*xQuOvp%2AhSk?m*3VQ^j(Uw*-15E-3JzKQH=KW>jT~0+k-HqF+Bv9xBsjVkkd=_KeNNeivG+@X<79F%b~HBnPIypon=EfN?F-^` z6y9i#ucUV_Vh&SivnG5$zSp-`?aeBEuT$ln+YY?z6HP{y!P{$!Zzd9Z3r7Pda_)_y zMg|69f%)RwoQ8_))x-KLyatL#11q2;oi~Obvs_yCjiRRhGSJ5+5*<3jk!^Hgxov5+ zz~}5D(v)`km1KR2Up?ySY;X8uZc%XaR2m>$Ikl#@gz=6_TD$yk%{y;wUN@|b7rw?< z%s4u;VM#<{d zu!Gj55$P+*x?+*4MqRj_30g2AqiPa6x#*T?T2y5PQ7y*r#o9-Sb=p&ln^Ue)E{|1+ zy>rFGs#ZO`d_m3bNkbED9M$B6(Y>JkzqOuF`?# z$=cD{RhffvA1B+9BiNz#j%`ROe9bgr0FctN&RL+H7?5okx*SXijX7DC?tSH%13Ldz zLo3v-aPx9edC___d0u-_;B(}7wH@C?r}`$mCf{&2gq+;@#+j5Oob%|*p06laUvn>k zw<@kTQc-oq)GRu5{iejY-94s$tM>3@)K!L|`5-I!e?01z zT?eQ1I=M5!24u(dE<1%5%~q$nR{0hP=$q<}+YS~Fz?o8@3W@dI+jRCj*5I71*GKfd z>o&YOBg4G^j_#q_Ae+`TlDyOs2fqw$AF-vv32;Io?~-va(;>1l=6-)mUE7l($|BOK z8`_)?!F>?rTUPq01uUe0dirbvUlJ2h`RDcpg={x_4v|9@Lp^i1Du~B09ga&K>$+Fw z3Z-JR@N-fJBs}}dv6D6Zd9+9R{j@W?o+R@;E&!x6#Uh8@c`^e_@(anjssZ3E+wZS_&4mcnSd!{7d z95FR%inpf|4j30|y2%#m^+3TS(G=ZiC7he}xo?0whiM=!cXdQ;po#3E={yd2ftakd znp>y875{7mFGFsWD`+4xWn8Ccn0&rv8FK0=fft#hNxiHXXK%tyz z#pk}_F?&Vk`1fqhx`qnfRUTTX&y_>@au16QwGV#!V4Zb*QH;p2dezv#3;8 z??}}_=Qwag20V)@sqkOTb5Gb}+I*k;oQKZGWqld*^416)4v0?HKbyC;u`m<_d7p+M zU}ZVbJPeuo=+~_gPe!a*uK5aGE5DO&k~}K*f$s*X&0F^pzqrB=*lcwUP6bLF@J3%_ zK;)3|MrcRIP8!QxJP8y2c^uHs*~sRQ+{^6I|Ee(FQ`-dGnv1`XUKSt#7|4qGoDdz2 z>5ulifY#SRk9`Cu)rW_VbScCP`tWzyqE@)wD%N!sI;1ChPCBuDfYc1!eAd~&lly6D zK_9qws!V+bsTFX#X*LkLJ#-_>GPEnqw*c4YFVTQ*3ZE_sg&aQxV`IqWk#nor+_BS_ z7T2d7M-kfs(ixkk;P#x(@S_cZXQOtd-3|W4DEP+dVblBNT1J(r5)@Y>8#c2JMhlRH z4xNNVn3s*xs&;0JyH9}Y&qbB>IVZdk!nOihik$(rj3nNPgK;E_D$6*)#pubYWK8~- zF6DU9#mbT8MC3^8g3r76OKM93kjQz+hMz2#!)5Z;#&w3Cw>(nv!%NO~<$kYIGZN8T zlp1YFlPW~<_{<`=9lDNDPEHc7C$pX2u-?_#PRRcgOQ@dZ)J}?K?Vvi@Cun+AiZb8^50wUc-BW_sJ=Y;_)sIzDRir9Y zl%9-kgCgp3Yj>3kMjoNLqAqyESFWEGem`>aCJDHuVm!)c*UU4Dp(owixqqHxpd88Q z_D&?;FOO@$`_y|11q1P;hu$TeI}|OkY`k4(-hQjV-*~I#z{@__=TVQQmv=7SGF~qc zt2SPoT12{G&1xc^j!BC8-Kzc+(D~x1Pac*u9U_5{PT8o7)zfS()>=4-19BDo!Clk4 zwq|yvz0XLeXpZ9Xu|shEZ4&B{vZFpmrUMc+q8$JchR>rMX5=pJm-7K!;ob9cuE4tW zn`Nq3j>h024viQ2p+PEg5T>>4dh|fBSr@pt-rZ9z6u*G2G%J(}AKB;+9`Mh?n{gFm zSR5PhLtW7P9DOW+j)1nQJ)$J$O=r*QaHYMapX7ZUaAN5THV5VhiN*mYI3SZ0-qW9> za*J7DRL!xZ>_9Ly*7>l~`wwYNP@j}Z1d3|BuZRyx1XEufdG8!>_e7gfS-I?}??b(E zwH^P5IN%6mW#PEeM;ze4!^Jf>d|3gTfwCLDCv@obGC>>R}=zUKPCtEv1UAv}0; zfUEEgn}|WD=JU{uO8<4y>iX{LFRM%?t8syTT4lo}6(t08SLQy~H5PVEZUy-jlGQ)8 zUiV|a=K=0+f7S&DN^SLS_bg-Vm6fuxieL%m&TVQ@>E#4dysN<-2o^u#tF|;)zRjKU zw7w5)wW&=vmJW=bFCXhB*fJeto3^>G&J++#Ca$4?BB^W|bJ4v0mpb@!QpSgAGWxaa(50C8OK zg!acm!qsDF+_oPdV^7 zew73C%kKJgL4NW0@PE(-{kMC^@4WB(b3r}r`*ZjGx%>XyeShx0KX>1syYJ84_vh~W zbNBtZ`~KX0f9}3Nci*48@6X-$=kEJ+_x-v1{@i_k?!G^F-=Dkh&)xUu?)!81{ki|| z_;Yd7G^F3cqB|n_%y(b(+>46tY3{_o8#o;RBeOf1?}j92wt#`J9LsVpRo8Pe!!2bw z^+nYL)SMJxHgIJx7nru!WgV!O9r(%?=Wd{OPbp6aCkL3TIWrj8-4Q9}Da*M>TnbF@ zg84a__fTBzWH}AgG?-lx2zxuY>u%6^ULgq{W-Avkn3xB`#SRSLF2)HGbg{IO(mJpB zjU1Sh<@_a_yN56z!o`|jP*PHoUqFaoNQf82;6+{ogJ*m4IwD!Y*7n$d8~mvDo49a; zJ!!#)$e8zCmHj%CSjoC`p+BPE&1LoGqcQYR%-8MVr@|4FgXz+NfAjg zaUn@j8U8<(fz-d^Yrs8W_6FzS4lu{vU>b750s>&{j6L)}7X4nw@Mj%CNii_K-p@L} z6oJ~{-xdECb^JG|$my4>`P*dy3qS=4^MlvrKf}oPKQH+63+D8__?N5p116;m{&xVv z<(eEAF5^4i57>W(eOI{EUzpl%$uCUrW~F|Kz%B=dcKH|BuD$F54Zu*)2z$5PDD=Db z#s3}oSNIQP!@ofO75)SHC$6p|+*Ju518L8t064mR@eTW%D-U#s0?`8f2;bhxZerv zu@1&D0J~eczk9Uh7xuql|HrO^n%duA2M33}{$TG?sHsVvM?l@c-p^I#yxi9j#u5Pq zJL#YI;J5Bt{O`K!J#l|0_Meg068b|}Copct-Y8}X<%ikBc4b0>_pIPIX)U2rR(t;| zA_sQ>LmTtkI>ErW{y(9A&hOXm8yq;nA(a2epuB6z|NX~)BmYRp`|8?P*FVz0KSJKO zu6=d=BMtl`><(!f7L-nXuOb^Rj^{3GQ5 zRqG=AxvdX#1o!eiz)gEFmZJhdfWLd}p20Z11cXF{y9Wso(E%b-5;8JU5>iq!a!PWt zgA@lzNe@vSqM$r{nCdVY`H`bX4j%>6hj)qK?bak9BmpZPK1g~Hg#N>0FP;`$GjB zIYlH$e3WH3Vj{^gA^+p7=R&of7Ct}0CfrSG;WGV^TH)p=b{g$44iRW_Q4dIo;d@xf zuP;@BXOJ)$6%qhrMuNqXR9^!_f(?NjfZ-AM-ZG*hJaP&Q3`um9MbrG4vp*OYl2zz= z_s8SYpNNIeX`NuRaQQu$;-dnE_FnOm`F+`ko+^HhlQ3k14n6X|A<++ii@79wf!hdW zb3!eBak`=Y~3*hpZXLY- zpUb=^N$A{KC=#N3$q1T zKWjOD0ovHk9B~6aiLGC!6?V*fUtR08a0Si&AU|RxPK%n+IGB_WI<_;u)+~2&t+M3v zLj;;oiKOTb?4I>i^PA6onmMJ=;5)C{uI1;9v$#jb(k?E+hiNkT$NLxw!n~P+ETlHh z`CV@BWlTmL2*Lq^TWsl_jtu>k-sp=)x=DS*7@^eCLXzn#o*w4+R&NrCnz<^etcj`{ zw)IDpZ{+0$L_ZCscc$SyrA6PEBc_1x4)2n0!YD3LvgxAotnnkOchVg;g zMzcknF^^2*VIh{hdLxW}YldxsuX!?vFjiVDXA0!-3`$BvWe8=4Po7C-6y7c!bZ_Pr8s^H? z=eBK=J%72h)LDX(YN;5lyxy<-HsrPmZRCU2k%KcMC_D7wN7|4##s^vjIutWp=fQxE z9Aga9!HPH_aduqaV(skaINhj;zou#E!bEIBFS)oBnU{5#&}wrosbH|c#8!ap7W&i- zdvEd*Bh$34USyiVleEKA#RaES7>bh^PnCwJLG!XwgD+Nf3Z5P?6F5T^(qCL5NqcK; zdpl0eC1$uBBI?yT9w9_C&JU0dVnwK znW}ZIUW=fAq^*nk8N80Mg}d}_Rf?t$ZY#y$+rERy)omqx`4(`-<>zD@;sd}6^$<$h0@<4HCMsD+SuL#N{uv=I0&auOJ2})bGN-8`-2emgH zxbg0qH~J!TJ4KGYwzx1RZeBEunbdgq;->QJ`1;Py#X^Vn_wrxL3#L!)e)`oD>Tql9-t}&r+$yl6g&$W=gQhFUVesQ|WmC zLmGj;?^$VIbdE5~wL}EnottUsgJ)agu>Phqmk>w0RjQ)Pp3xUEEe{M{e3hK70%&sY zJfdXt{*)wsV@)f!kc(GvK7pDMYg(KjI1@(Fm_bd4DR0<`?|S<@592Iy%yj$W+G>QT zcJi70b2U)5Gt0!2n(}=?$dnV!_rna%lC-_#VkrI;e~B+lw9K`P?JgxVPqnHgBQ~Ig zfgPePVt2XaXfyrh{c>+_TlH=gsOfxjLKDaSQ)wvg8XdD&6SB+A$L^(` zWU8cpKb}7F>|(@`-l@Q&{@YgsH&JRbM)!gbXNyB4{q8Vg#g!BenVf04{MyCG{4Qk6 zcI)WVVh*z@$7?C$8kTF4Bpjx5;i{>6Tk)wqV_egou~iB3U2Vh)S5Rjzb!(D9xl4|? zD0d)NY5h#>@7#9MRqjruppT$uN_WK?wKL6*`0FW--BBTkbC+4TKu)uA*`)6@oQ~2( z`ph&>Xj2M({HAXC{djzSk|js0M@fiF?G5%@Asd4SJUgc+HMGp0=D=Z5$STB;Ck%or zNbB7(rE@)Y9;5b@b?kKuL17En)pTScPFCGYacD7w*YqCh$=>8)84tjIvDV3Z zb3EP0)TV?8X|b;n?@RagjhNA3*vhy5BDeO=gtKp1q5pVraYu3>MuPC@%eeKeg<@Ve zov>bcrn!&^a&z-nl`F)MFC7(huVPKuM{~|N4j6m+~3(Qe^lJ++b|6b z>vhSAOt_*FwH!hBoGjtJ@;p7G$kKf;q!7(S8eK^kQ92lsrA?vF$v0&{n!9IB={SRN zMC7Y51N0+eG6fbvdL(9}OG^LdfwanrLGX3)JBEahnov_$%ha#)6UHl7SyhFFjTdIW zysU9Ts33Lax!eeo@3G?{^pQ{M1vU9J#kp)A-3s&E#N@hKhE~vJXO7K5T79}kws+8Z z^=@gr$2({^qfZQRzHx&@51Djcw+>NW%HepedF*(}psja2~%%JQZup` zjx1;Y_Q#6!K6heH_#uiKt?mhuT9Qv8%xRysy9G(aAjnQ(|*Vi&8HG0big|xF1-x-_Ry?-DmB=fs9<#OR1W|)6HtR3i%Y-UV)AsZLZo%N&eOWCf@y-@4{(&xM+LX^l5DdsjMeyI((Y2w)`R<2OT<)PUOWxVjm?(6B?KTZO28N z71R#s3Z106Aufq`4`QOjVBU9Rv}zdZH7hIPWSlH_DNKw;PD1n3#sD&R_3n9EPv`Z# z^>>4A9^K2n$x4ciAMmy??S7W(FS8BVk}@kyU@IAsR*&wSJWYwG)JfB?@;UX3qK2!! zs;La`vvaVT@muoRf~|QXmy+h?J}A+A?hVfV)aR+{Qc$RCbRvDK-lgMsKKK{67een&wPF4g!YJ5h5Hn< z9tO`?9EW*k<4c;nycW`6iUZ~|&zmTz!)g_f*~Q%^k@WsbT6ArG_Hq=LbA3}(O-$&L zG!Iq-4Bj`Sw1A4*8bu1ZKhes#)GqXxM#D0JoRt54P3fb#mHaDKqY#u?p% z%!W4|G<4nt3un=+<+qX&XTW-EMNcObUAYot73MmUR-|Go+ljUHL1ZM~il&ulMYfU0 zBkzCG%E_>e+cA6+ddF?+s;#WcC#x9~p?)1bl@k=lH9PA&@(8<2bkD31w3POH_!d66 z2tUommxV|$unbPfp}VbhT$(;}k>Kif3DZ+7cGJ+Jyl?Gdw(%=G+e#d;nDyK|Sk|CJ zwm4t2*3E}^dG>-+LVm8g!rcIabgt679nvB326~fJ6Vqh9mvlCtu+7l<`EXnHpYnh; zF{u)q!^lOU@8zW2pScQ^7?W@5NEc`g=a|K;EamIHm#e*bAUH-UscVXY!ew~ytbtTA zZL5T(sW{%)#`YR({ELFns>^7@v3Ki?FAXe+r4VX55zHk}R9Y;#aCpNzsIk9&Mvr7i zDTav#^*u4*)tT1&S7$3gjFy1mi~B7ry{pQG+D_pL{?^K zLKl)PoB1b#qY8@)>L!S+qR%gtov8SSyt z7DPE@3)PCxi*bODY2y8zgfhdb7bso^tL0Lyra($72qShbrucMd@bdUW#?J%32-Vg) zif3dz{JFYMxCqI~6DV%$>psZ39qa6W(|J;@TyW8CR^qBJ#kG^YY$HdehaFfg-!aNn zbwQa!6TI!Lk*w5L@i;jN2)67@SO}_Gn8VIZUALoMFFW0KQ;E1tv@Nn~y?C@@u*f;c zWj4s$bg;B7suTnM@)-i*H-ubkbhO)U9=++@5!clOjLdGEG&hykJ$!N1jViv{7jGV7 za`c=)A8B4hvKbeA?A;Utx3*OhfQZCezShm4TP`yzg z#n_hJ`;2MG$6`nH7H>ulqPSg!fg8bnLXeA?b)g{9hgjv<3W4;@0R9c%DlF!+%)`uV zuX7K|L=AXJsUtIus)Hr^qtv0sZ!cQ&E(VqKck5wK^Y(>m^gdNiGPx(*K@@irkC2|+ zMXsvZiXcLU-ujA1|1;+7aGwDkj3hz4_f2u@%E4etdp^;i;gg*8y%$400~yD*MHhva zLIM}M{o{h=+%PV)7-*euib01<%}3#QO96TukRdhu+L{$OqB4MP38tJ}O6^P7uI!YW z^eVV2iCwtcN^5+e&qq_+O7!NzM@e3576Iq^-U#0EU-=-yom6GW8}-1nKDQv|j3|8z zD>Qsqc@Yl>@SY5w?2R`UdEuUIVB;4}l_2xvnb1=umy9t+#hafqoU*HWdWU(MwS)yC zMu=V=;R4L%D3lQSb!VE!$d$L*Cp(le+bACx$3$}K4zH<~={!t)#10H)-9$qaL37x^ z(vtGlq|~ehoZTv{EdD{WL44d{WKL1yOS{<@-acUo0ZuS{KMo7RY~mK#4sXh!vsEu& z>|~~(@AIsR#oUKQlqWOuG|5d)N_Bs>pI%*$lNXmB7L`BSR?F;f`}~X0keAS>KFuAN zhrZ%_Dnt1f^N~#*1(V0}bjIaP%8_#4!PxYOS7}gIgrf#K$X-&*e`vIX>Gt-Aa&OrfkUv zKh|@(AwCayq&R0c(iinS#`hsg`nn$4yGB&plo59SW%kvpeEQ`Ch21f}X<^g-+9uJg z9x2+SsRmKb&zqUI>)c+;QoVgWpE_5ewVK8_muU%i6j>d8ZUK>Jc$PZzWzBvVyOPPp zuMu<6!!`SkWmY_mknsGYyLHHwl}sO{r*mf+PO&Oav>VE;=9u-|O7m_hnl9aWYDD># zP0Q_eAI32e>W}!zg$&Hj(Y0VxAHhSR3P~_6r>=5xt`*Mkk zjxr-VzC>%74!=DGKs%UF%CGLK`OJPKWe8JM<%*T%qtCbexb<>DjZWo4KQ(1b3%!b{ zkl<=D{mPC>h>xrIZ8ru^`>>d4BXSGWS-R#hrI9zv&xvL0d4juP~ zra_GyhU@*}S$2!*qPN3B^WRAEug))I)++ExsM6h=uCGn}tP&KkIf8N_UcO_l z+ADJPP}&h)R{w+%N%Qp3WXoJKvRR#AC)pCB;C}bAY?{EMTGjW(LR)WrP)rvIyKmEf zj>N#J;rfC?x8P)`q_4`U1{0<)5q!vzMpQt_7x%MEu7aerB~nGnk8~(Jd_?u!r2LNM znDL!B(9z{hwbtCIQc*#T$OPf&-*;n4UU%_Dvj*TSFPq_OTW> zd%wzi&RXvSS2v`IQM|%VSb*Y2cUI8eEZ0`B$#|@yO&{o#-7p^qrB(BqP{Gfi6K-Mx zkS$oBQuYZJypa&dY$oP?FO?b{kDImeSYG~$Dr|Y??77(+G)zoV$yHmgV%4=r(9wA) zr(7%fV|eay1mT@cwBm0Q@8M%q^x;9Awl9z78cd1PSU~{0#F2s=w5?6p%>bYzbd&L3 z5k=4CnZ)bxj@TPWW0!RIsi9gh5S*A%epD}OQ10=-uVV%P%a4gzrs$ zk=(L;e>#bT;3+~1DjQLrbc1Y?9?MAG(r9Kpz~PY zCbq$g-fli*+$w@r8DuJs!r}2Yw?i#o&G2FH?`>@8pS^k7Dc>;}y>)ysY*^dXDmXHm zo$t{_DC{}IXdz|@-SF|PG(*fQ^O%pOr2VP4FZ-N5`oZm>-7(ePRavpJ=62zyCU3-L zEa~67=}PsPB){6xWtXwN7b12Lv##a6T^hVYA4sLB41_Oo7v;qs4_Aa*wVJ;TE$+0V z(%}{*FXB(YBR9E=Vw#-P1@|uF>8fn9lU1@wVrcqX37hCVKe%|qGXlr$oMbursI=8D zKV*)&c9jB{BKKf2#U`bp6W-oSKtFKBjEkylEjEqSDdKfBz} z9oS75WwUyGvq0oyztNeRf>XC)3iC3{lw;_2v|Q3X8pjfX>;A;)qAmIiE1&XVAJ5F1 z*(c@sPb&pm>)*S}9;(DH9HQsbjLAU<$2$&m8)*`pWrVz!WL`KqV2%SWx451iwRdjy zPYi6jG;B#nInXzmRJBvKB2p5?^`(-dA^ix&J4%htE!&pj%6qV(NXN_Sz!%#{lxd7V zb4LDA)uS(&ZTj978gDe!xj}IN{mq2Md!dptTs)}+YfKOy8!V;%b$m0~^H-m!f)y){ZXa;?yjVmb1T`|I+#ILKy~8!N?2eywl`=fr`gJ0? zomWb>{e}&yO+k5UmU~Q*=3B>x-Y(j%In)r7x(P@#@-}+rUvXH;RGO z8xo7i#EO2ZYgq|n%i8+AGD3=%EkZ9g%iWbNb@sgFhMuI58o73a=BmhAfu>rmcu@7{ zlQJ$9*dXnRGi$PKd0y$&*=Sxt&6q|)1=3Z%W0YfY)>ne>ZM`|W8 zi#Na27;kHn@U+jeIWU7&qOIotoM7 zK%P)+BD|Rulefduq;?>x<>q3q&4668zs~JoS3G%h?A?lPGRAxHoG+VRA~&|+oob%W z{VPpM+A6m3)7fnJc+VkfZc&#$8$nB5F=xi7g~t5&XfK3%Y6ri3haQorOEnzUQDJTp zZB4R~;WpIcLYYUNrwSP7WGrxAr!BN+WE^{MlahHeK7OVAjvO|=TVLx+jvtpSzM=qd zXRy3?DaW?^fb50*go~ajcP0r>e*mzy_7a$@X%xnHk5oR)d2gF}Rit0zZL$D`VD?;L zYQzMDXDY$7QFOqU)ze3&o!1Nh4Yed}hBj$QR_0M_%V`$fmNO~0Qe#-eN;GO@vk%E% zzW#O@pXN|}3!%*zQ3VGxWhb(^v-gT9ePPS97oToz!QUMbo6{9RJNco8trk0(t?sRK~$pBmnDZ*l8Z;wEXwnV!&O1lCUzlqX#;u4sKonR zVxsw{q!qV|uZ|lQ2fI+NcT01%ua=6xE5QLm3v|?P6LT_?V*FLFBsktWsR^$+C4x z;yByQkHw8ds7zYg_BH7nuN-%90ISw?Yk%=$m1hkn`X_oOct17<@oFiWt2zvfGi+16z1sTNy)^J-azQ*sOaH2$HOkQ0#{ zHr$P&?V2lPB)BE4X(h?YIjK`5t*IUVn%50nk@dp&)@7w_k@5tiQo8Jc%|TLynv?M7 ztjY@`vxBOW4&PUA66qO+u}8$H=P&!+!2tr4!c-xB!?UheF7k5ZQ4E%-FRzwl^mI2* zVyoe$8cNdr=bkMBgK+MW$HRt?XH{qoZD+NVB{(OQ?M75jF^eSZ`08m!NfMXcdu^(7 z`n)yNKS|1z>=vCR_(u_Sk0oi`QjYTKPPVCB%(ZJi`EKFpP(9!E=2Uyt*ocm{7+kD*o9EI(1is6$58gHcu%t8N*G_!r3KGW_D@j zKjsLVr7b?7XkI~CF*sE4e62Sf{)M}A*uld+E9a3+J6%X`C-e1%nYEF26Z1NChYD>K zHGO$ud67#3t!U+|zOU>m>IqDlQyEkoOUAgbms-6zaW$u63NMEu_B8)w)%_@g=8=k&OLgBrI=JrgnrAxaYM|AxD z$qizy!i4MduXIRb?I}p3Wu_?Hrbw0&mkN%qH)HK&*F+T!nt|}RAnUmGnJZzC*Fi^6 z)%N1jF+Cjzn+l&i8m|)x@r0^|SgOIDfm1;hTr-?Q*Mne0cnvg6v|4F0G0`j^bce4o z5vx3M4mvHy%YL}{5#1vv(JGsngWncV%0LMT$zo!Sw<0PMe0Pp)~my1^mpHXyN3r%u@ z5jO8SIPi$j;{oyysdK1@h}{`kNqnoOH+bl&rlk={GzTnES0!0}$Q)`PLDY2@%FBOE z$7!s^JPiW7REH8L8&1{XeaQpoS{#0#9PNuT0zCtJ=8%@QM>XA%E{CUvA3LXPK^}VD zsGdsYm6zSK+#bjF)#GO9$LWh&F{PE{k(H;4ATbm0c=~5SJSpjGM@-$NuZEIYs+mh~ zXtEO{oHw~TyQyj^>tm6nr^Aw>Gq;u=-?nv0*1D*gV#xUUc-R^$-9#(j=+rAeiM@W_hc_b~(lr{_Ux zo~q>&t)RftG=ycpOAnk53D#5UBxuq-`BaUJIzb~nAYbdsl*t2tu@c!~o^~H>k9|umt<%>Ym8zDarh<8CG2nt9!Vh8GPu9@^b?yB8ynIN>Sd~(Pnc$jV{ zZ(vCF*3H=RPlm@k`I}sAXiKz7L%O`=>#yLkT7QOFzb#7-lwwgK^HoT~k_T*^UQ`}1 z{$3cr;z|$tF^S5d^<-lj=f4f8sJg~kuJ;2SB^5PHWYF&S9F_U+?W=pMAhh)()Dh)8 zNle~EYamBSae#e@?c0&BI_j}wvUcM+ruWs)f8XT>L=oid@oH?|Em|&68;?!P6?9R6 zBtS@LnEwDn51+s7sQlMRVZT#W&(!TnRb5vUf`(qtAkNX--#xRcN5boDR*tG`EO%L; zlBS^+R8ZI>Ab?2V4EEPf^@m6<%1V2U8Lf&ci0T$+j0RR#1$L3#X?b74VyVZtIXH*h@sD{rK#t`%^_Q*x&ZKF!kX&eGpF`)X9xl<~2Jz*0tA2arB- zpth+JnGQA#fBs zQZTcrD+p7DUCMF6A0K@+m4Ba*qiOCj$vSIQQYw%_gA&D$TMozPN!#wz7cp1FrO~#x zmfODEcN);ommW*RPIuV$`+olb3KL>`Tc{*%y*QUDcaZ{#hDz?$0oC+3NN%!HtCcE9 z+*IK)_4&@aD&ufixQr3KPpr2Jelhc^s^xH|d-RmoIyRN1&fG68@ZU^p5#oGoNMvM~ z!_~q0`C6|HCa0xRwGtHwQL)JT_CH-CVCZS8?acM1rjZm#zF`Cd+rG0)ux?}qA2wmNs(Y)eD<`l1BW;dI<6u%kA_b2;^ZwctD`B%$M{!y>-6W4|Mh`50 zar56-JyoWAY>f-qltheKUv~%p0DVGk)=EnG%xy%d$ssVJC7mS;Ib;yxIDtSPm0Q)b ze3%?!cH)#rtD{?dCb9?-T?RH}u197E>+z^c(AzqOoXE4jBar_9EwDKqfj>F-8n=8@ zr54wDVU1n06@7o5-sVu2$Y1`baj9O@Q4XBn?+%@&?hoicGYAeiu& z^+$!HtMilgwK7pu6+<7WGJ}pt_t$#2P*8Mz zH{>fS(kRe*O;IQ6B#twV+Nte52p6l3#=%)bbF)=UWStjlwj1?*LC-qWcz47z;YTZE zK8o7-zWb-+m(Fo?!(qqDC*emR;2{OK~}+H4(}Y zGGuNuu1clpYrjZCGEiUY?sA||DPBV04ClG{8PwaR`j)e8G;c>VAiCw{oPh8BLmIip z>JoI>1lV#K7s0N66Iq@eWYLn>YWA_h=*vw#>Z)piEn#Tcf!@q>j{cvfjaORXbW>6K z0sTJ5@2DI-ZB=QeSKg@@3ysOyaobp+@oGBsnMo%iVF|uR-;#8`55^)Rj#dFi^?Dk~@#6@2{KwH1rIf8+FBB zOhqxNqK%elWhy;Uk=ci_8RuVE?D1KzcFJn{Xi`|EUEzrAeg6P`aTnu%!fC8sK@VL- z{&gMI)&)b6q;huAr)e{*0LAqm#2C_Rk|# zrNV}eo7GP4tj)2391pIw_>vb>$8_dE>{aRbXzIEu>gwK^o@4;UzBOhasCNsV#Oh_% z{Y7=7t7=#n`ASr)eDmyeOa2`?R_48LE&54BG!VxB0MBp=GZBCX_tn#Jj+$zcBx6(r zgq#cxdB{IaYq8#ZkP6FWv7%yBQmW-qEksW2&E>Wkz&T&vRzFL18i*32N~bJ|wbZxt z{DJeR9rhzVIC>;FfZ*VO7=1o<6aG8pOXQg(1Z7CvMxTyN1p}BJ!s)wzUCC7&(asX0 zHe4%7-x`7SXGSIY(x%-=%KO+6j1Dy0!^@pjw(AY1{{RP;lg5%nvtuO~dRTomd35(l z$6V%fEPhHh=8T+Sesv+0FtAiN{{Z#PE?2trHPW4={LE{VIrRGvsnkoTthIL78bHX= z=NTBvopsM$bjMFn!8J=%n30AC&>KHbwz>DLx_*wLj8sv>J3OqwAOxu6fT~j2p5g@|@f;87fdYXnyedeZ~ zL@Bk%0fr7fx)r96x{T`viuS#)YuZFB+V;J#YnLx;+V;J!T)nO1P|gE32hOzDwabRZ zIcb0ZC>$S+If^N&F^1R}Yjw(qC5j5#_tPQ|I5xiv_{4gfrp zq|FEjR!~DJAP@ciH0FgWBvyFi+m2X{1~l#{s%j9KSM+g%@uEsaDD1KMY*XXur1Wy@ zYMmk#0|NskcRQOYjxz|6#|faht?_tiT~Mjg3w7mN@)=+{bIYPxr*?YFobB$PFA&lzBL z5w+g6A9oxPhNjdKr2 z^*vpRwknEgnCah;j&|zxd#|ux_lQnEIX4o`1=NjebjyU0r8Y)7~4sLuhjoF2zIl=KJ&I9XHmrRrijFqIz0OZ6SGl zh=$$4`QMT6^wSQ9qn3i@JhRfg6Gu{UF!f-8{(05;;jd2F=xA%{<&s%znoY9FP`h3C zcELTyJ83JAMq91b6D=hS(iN9$#s)WnIQxC|`TqbnUk;K;oH?OmYdz26zN3#WHppT< zknW4RtccZ;Lf%Z0kRy@Ka0W}`+np_Rycwce{+oenYTXzD&9u1(l-z$#cmQ|ColDb| z)P7iMi5;C(%CQ9{VfMzH-z+vuMW(X08mE$?xp$bOWl`p12ml`AxjLwCmFIbt?YH+# z$s}dqj{7P?{dwtor9H~J^HV)7;st*;I%pn9M8xA8x%cB+_*3DxO~+?jwH4Lc=&Sje zl(^hfob3ubckQZgs(PoWdIqol7!*=NTJ;Mg)eY)d6LCI~*ylX`My=lmdj6ibsZ!3i zC}>`wh^5%18C%`kKiBi|@vZkz>G?QaInra3r0=mD59#@-T87{q!srhVXshR%AI-dL zNT1Uv!>WCDqch=HdklQ()xW0_zM1K$>KUYH!W=#c8UFz1 zZ6(%T6W3m->EWxYr&On83HgQIq>kH%zP#HSGn(%(wCTP;{_8hBWG>0MUqjhNLeO6S z05Hb3LoCyz!BwzW5s(4+2S0r2#iHk5)Avyn_Otm&=2&82dt_%ilSk4rTIt@Rww|BN zhBPlzuz75~_QnDB)P|eNA}=-=qiG`&DwoQTJ;26(`f^B!c9J$pH&Kg8YX+vBm3!kS zM0EF6S{ZAlRGM-M5}%-a?f2Csa-*bJsrpj7wW?vHPc9W${Y(JDZ5@x-T|v|mrFog? zDI%3Tt+Eh5ud&;mP~BDG0r{1UG3!0T=e9mI8<)Z>$4gyjskXeL(hV1g zrB$eAons-->0N`^jdOH#9Ysgfl)sdR0-8d=G<&?Ff2a?0jXq1?S;KLb8aZdIj#*G9 z<=Gl2JT~6h$s_5lA5iIIHKWRS4z0=G@a;$)sDc8#{5kV1y=!xlDhXzdrznMpI}|qo zbKkcIT|Z#zJ6&|Kn$aPe9i$_uWg6z+0%rdJh|;E7hyyh|jpxeb@)4B{MS9=KxyY-Yv0?l%+J%E2-7I^j^Rsbs;(C(W2l}#%SE|ZmHx5y z`eRDHnve63Q%fU6^Nf+4ZpUIjZ71iv^pJUQv6WlPmB#@{9|zdzgCnE)j;olW!j|vP zZgruH967oqI=D7}&A(+p=N3BIw>v2P-ht|&G)X9Iw)}_N$oC&QWln~sYFC<)6I742 zivkNM_a8bXQ6*AJCKQ8ogKB~Y2mC*6C;U1o;x!U^kkz0n9UlaP@vP=dS154p$oTC_ z!Z`~WOEC1^x_Y-YI7V+);CO7GufB`YSfHbVT5QJ1K-#(BeKixTj(FSiH1!n($Aw{% z*!tuB^lF#*gcC(mO%#58VMw^dfm zqB92w9AGaU^%u5BEdoT7)c*iE6qG=~?_Y99#)?)vRkk^dvxtPFZzmb}<52NtIPUX( zf&T!N*^D#)01d|5U|N86ZN{Sgbe6ScG8JPORsA{kI;nb_syfrB&01Nbr;d2zb*7S7 ziSr!i13iETwxpeV)fINTwLOB(MZaQsvdJ0R5a*2i{k30L_4RdS;)|zg5}p|*lzwsL zVBicNQjWmq+gCj&5@~98v^X92_V+7oi3nr?fO=CqJ=drz?9v{)yTx(5MIfjqHOPrT z$qqXc@;)^v@V?z)j)Fd+q3X%Mh}G2Z0yPaBV?Usv_WSA|cj-&J+3S+6Qki9)o=1!j znPKUXo8Kc#_$za;bQN`1PhI1RDQYlcsbr$whAQ7WeTp1JeLy#{ z9|ukziaIhxs}PPd7cAeTgZ{b;)E9eYq{$Uk<`|w-eSw?;*d2zTHzH}CT;_U->^2Ga zPbOr5wa4&G>#90pf=Q@gqm^cL8((PL+;RyzA8w|zHAkO#sEzBUVG^W%pgGFrdj=he z8mVgTy=PN&f;zsLs(M+QKg13|L>vLn_s%q3Z4J_ucI)kbQK*i(q$0DOqs`A5KEUIX ztM8y7Zg(Srz5Yty=~~w5)@=Uj>%Z4Y3c(_zW(si1%I%MA0zOWGbik#!R<%`}uaOco zlSX90R~^PZ#ye>nFHuum>Rqa?6!Igtmk3@%$OcL0+ZpOx3)gIW>ck>^#!=@iH?X3{{Tg6_+R3cyirGI6fC={%nKOEb!_1G?mhVS)j$6L zhzE$hJbGr|;p`h`x|*R^Aq+DD1vnr6S<&6qFLishmu%7`sOY!@%a`$^*kqT&$Ibh|KLto!(aCwSJ&#+Ud*P1zdaO zoqXun?e+Rye%hrbS*a#9s9_^^#a+iB`{aCS*Go-THNl&6EPJuHBn)R-j6A?a6`#t* zqhVb0T`B5kG_-Om$vFzj%bq@(8F=X_V-I$vfVl%ZNzZLZ=xW|OybjWkt0o5{BOUc= zL4JVQiKhv$?s6D&omnyA!qr>aV>GLaP13rW=@m^;k(n7rOA=HAz!~k2fv&FTTig{r zI`s)NGOFR9Jh9g{Td7;9D<|?GjI>NywvJSM>QmFbQD1CUv@m$1FN}h5f%MdvWDOLU zot|Y{w{N{&Yg%U&@p-W?W!w6j>#F|oevH$}aiFxu(Z%aX*l^hPKRSYVgW_l9>e7bR zq0vh3Vl$Jdoo|YDH1wt@WeQy2@&4LwY1?$VC<}c^cT*b6jZF2maQST^E#<0^06yBS zZ+$rRjPeYKz$I9Y$2vdN-Xh(QF8Ko?2N_TS9|u*v&#x-yk^H%QpnbEzKTTE0L%3E0 z(l=52-MCOl_+#I>_tQ!UOE;M0;BpVK*7XPTa(-r}p^9X&$3NwvwO2<)DH|3}K-xXD zY+xLwoa*5lnkC3(eX4(12RO#Ow;CEo^HOc+w7;I;;BO@b`okS(5 zSlOG*R#D3Q=R<05QyiHTXXiloUd3=E8@2AdxlMMtikX1i0Y6id@2I||;tD&wNff{d zN`tr@f3BR=cvXCBA-_;3n*tJ9SmAx9TiWR0 zgN_R0J@QV7tSKO7MjRf%XmvckP}mfXe^J&Tt}Qf(q$;LJI&~K7*EZN1Ja9%bestPe z7yN+;h^|I4jXJ7^DUiy_S;sy7^wN1Jr$uQ90gqwrq+LiS@Y>NKjiK5=&nJx{$nZ!6 zfC3JruvA4Lec#yo=_jS7si}-ixI_IQf1Y$YP!=TZRU&Q4AYKUIXq|Jy)QqJQxZ95S z&V@^E{vTG8$Gh_F_2)<7r-q^ofs>E6mz|1L_E-M^4$iTs>fge@Pf=A=MO8JDTB~JL zZhb~PmW?oeK_g#2{{R!d1=4tRWjlv&Y~&4IU-(mXjH!F- zuMVEBHT>ie*VCzTtR#tmZKvv_=Zxyw{{X}{!y$8`vG}cPt4Zpq99!$5kC4%xQGv#C z4h9d-s$zH3;sMSt$kFUD+jy4AhSYL=4UG$|o@iBkFY17AXHHEnaUK~v~56yW24MzooY(#F1( zFm|UF-Ky^QM$~s%;0$nEE1!d=SlTnre*N_$>w0I7v1?Uu8A7ogv#8o`P`ij@{+hGL zcDR91C2p4xR`@$`0-xJbeu8CNl#7G7#(&pQY=fPr82I(UhC@xO9(2|%}&WEBxjO``|Dkc zkBgg@=u32abARP4hPAzd7viPL#n<(Mv!|)ymRd$}ycP@PsmUkY9P|5V4@uwZDK3`Y zq!Yb8MHN8YSdg=S=E>mTclp$}!`_6OspxKZC#!3Gs}PYI1sEz6?@|xD4nF#h^$iuv zrLB}yD^CqbbG9Je!e`sms)m;f6Sp}oP zM71c?@L;t(bpV+Uw(quyNp6bgM6_1pEEQ}#xd_SHnfmtEIo5ULl|5|TJ8HB|OBCU% z4Qw@@S#7-X7-M%FDfiXa(s1AGcF*IrR}z9$-lBF;&5%e04}Wv6lMVRIYoxLW99JIy z0D_U1hUgdwbsodq{H=Q3dXJ*5YemzrQq(n<|WxLQ?{{SXx zrV-XbT%~-n2n@(O5P8AXfoQl>buD7OZO!QeRH}K{juIJzEsa}@xDtqr<-1u05=Vyz;L$d8|| zVWL-x3o1=gw-}@mGT`oR80U^PVN~>;pQdWsricj5TQt(_AFn^uPr2hz4-z^8{{VfW zj_qWxSM>h?HZ=rDs81{a{aEHRT6#hoebjlc z3o|Uw=`IQ2ob##exATj(61a_W%FFIOxzq0Jd4gXdr_weCzf~Kkb%|OW$VdctP=1&2 zkEgl|rRTC+e97dRqt2FAJhAo~n%I@+p=(r?Qp3B^k^x{b*k@YYZd1~`(6npYB;&Er zs@SfL5>+gKZ6UL_zN)0mbF)0sOTYH{REN#UW|>{N+!a=SApAVJ!PAo6Af8I7DT^Wm zT)r{EKLb6^gZ>-3_O>aW$#I&dY3bvSk_o`c!2O2=>eA~g^-XQGP#G0+cOG&JeL>X| zYd6auS;f>Ac+Z==Z2Le9Bzv;Uk8|&>79Lz#c(2B0)wn0I{>w>=44F74Jb`A7F5`wc zE;LlNFgmPK1!r7-ypG32uc8t&IK3K!9JzVzVPHlZh6~W$$F`OYRH(|5!ofO%< zKRoG`zs<#Vp|=U9Kx7B~8?tdiw4s=b@3JHI-r6ZZ?X~CFA7BEIg8PL16nmK5U z^P?=mM+$SZKKL4wrC^fdJhOsTRFX-^+CG{WCDzs^mPL>djKppr1~}jyXLB)NG8r0Z zZUw76d8QNqvNu$ncZS!x+w8K`Ur<3%NL2E&!9BUqPyUb#Ey=5EZBZ7dLdiOQsaX7H zjQeR{6MSp9P<8FErft0`Bv8vxkqU{Vz8}QTyjh zGxP8xVS9x{_8|7pwxsnJ%Tv}7G{9v9*dB4@42W`99p+=3uxTY$mur#fI|V&0R)08MXB7~(Je4d7$Iy*h9S>V* z>MKG`OD!Z7QfK*K{-K=b?sPhij+*}fXQofdQq@vP0ha}Xs6cQSF#TBg9B4$=DEd;4 zg6~Gf>EW#;l{-Q9+`s<-$yMpQb^Hz#8Mg{)x$&bb)=8 zeJP?fGA&YxBXPz%El{g-(Yn}RTS!pH(y>%@i{-s^s!=4x*J; zS7U~h5=Udle{Dr`i^_D6(2w4))ivZ9JBBJi59VCs#I+4M45^Kv z=XQ}jBr}I3xP!Z*h03R40 z+N%=m@u34b2O#H4Nq(qk_9;0(IzAU77Yf+}ZfOn+9iV&T<3rlCZ7ez6$2w&#Ys;PF zl6cS4NC3_|;0<-!OH0jFy~$PE`{}#4!SCN#Y>o-my5tUVTdS_!tUrBf*v|(##&NG} zkm}hGx6Ml!CRAPHw(iGT)ykL)831?S>5j5Vz#iJloVT_$$wR^_mlW7?#1rlFuToqOoOb}hk0U}gx-kcjeRA!4(vqb@=V=5t z2M6384Y^l8nq!U5&iNxxD(+Pm+Bj#as*UO>q4J0b6}+SXE=c`H+xF1uU1XzJ!h%yI zNE+8{{T=t_c|@p5*Y8ar1}7Dxg4H#GH?t|`z9hZ@T?B0 z0NE-FEXpLRwoeGVpe8N83u@aG1=_OVN z^C49u>`sp_D?#$WNeo5J)VTius5+jzq&i|KD$LghW3~!ojq#qrzN!v2&vr|9QC@n6 zqO$i?wAU({rb;>oCumkbtw|^A?Ws>$U#>k(Z=sg|037shP>r%^+$?a)r#K%cj>nA% z@Dsx8^$&`*ePh%T{(jwVh}F}xJGx6NXJ8p5@$avQdQLQWxN^xe!(K<;>##q%`cFW^ zh`bH?HSVo`l(O2ZtmVZ7bX8F~{LEw(VC%+s=brxnT`AVS8(A)P_nu+pQ@lW~+-?L8 zPBdz|=WDXfaJ?FOYI!6I@W-V1qkU~vRZNCuIBr)t{Tcgnja^l}U2f~Xjl9@8j%r$al_E(1gpx~Rm2}T@^!L{> z^nXUlQBzS{C3{3@rrr`|!Y*6>Mm zj=DN~l|3(;B@rc#BLEj)q3@HVm_x+k}F9`QCm%Ed`s z%JHj(h{%itYCYMr+d(Mit+w4@s&1jDWGbks?eC*qVNn(Go#<|<9Tl*E z1G|Hsc-4Jy=;ofPj*8jU6G;M2{{WhaThgk$fC%><+3lSm@|^PFx5|@(-B`_vQ}5gQ zs{-#7w&rQ+W0s+3aU`R8!m0lN4tsO$sU02q-XM+`C*JCSE=F*6w9BzX@%qOHp2Z)A z;RVj(S!51`oVGFBMDJHxYFaglCshhNdw%+-m#S_t-d1>K{JK-f>hWQl)CmEx?mpU* z-7D#Os?#k+y~0$k1c3<%O7}lcwt=ua9lowl!jUIU()ir(<@iX%v0f#fp{DYq$y1S# zbrR}6nx(f_TC0Ohw9Qxy(T>O5AGUF&`f_@kWzf;w8QO-gkon*roM@j~q<4SGS|Oap z6Fyo@;|uaWx|IW61mVpiNmk*nicrDAvASl<0tlY6y_mPCMmv1~_&@8Zl$J!6f=7kQ zI0pfbbM@38r)H;yo{BD$mZ=G3I62+O(Th#a8;!Xor}XU@ zV~+m-_tLQ9^$fSiFD(`az}o)+DqLGE5eK*Iqj&nc3vE1+c~S?Ik-Iql+NUq`zWReS znHW0}p8(^KPOeV15Sw?KRT18qD8OeQ8mD@mT4|taa_bzjN9igt-@bFKhgJ@5aA~UT zU)5}UHUVwcne(J2tOZBZCL*R{cE*dY^zSUC0mv< zVNy3lai0GG9sc^S?^JjAEH$*0mkAzqXMOU8%BRLVe&bagucYsda*Wd~AIq5>Go=+d05ut(<101}X&2O00Ek6qt~Qc=N0ag?!F z5wMKyk{NjQ419mSi1dZ}q2Xu(G_-MMHk_~=0k^l`on@PkEO0hL<9GOcC_)Ka8%vFl zs&5i%?zS6XthC`y^qd|!`VMu@op(jly(`odmpky7)!kr9wrN!Q z!weEIbCIiC#9P(syT%I6ov>EWMLa%XRFI%aNIR8FA4}sLXBf_bR&-B^U1QcZ+MAt< z@BBt6g++YTa1e-8`gWe!z#8^GfE&``Y?&pXIksj3P*oQY93oslO_vs-1FRP&GR!O z%FQxH(A2VIv8AHyos@sW4wavyS}vBi-cnn8$t;vK^AYC7PW-fE+^%u<#-jC$)VJH+ z=caFF3vH^@8L427U*=TE&4A#y>frIC8I; zh@BHf)V?9x@0Q!WH4Jo=#cHFC@bVS)0N(@cryzW8n8}m;&lh#yuPUsPj9qRequ=^QVdayk{FKd$2#M061+&e^}khDU90EaADbdlqOJsSlj;8e zzPe+fJWH}3hw84D>MP~Gpx4y26!A3SS&*pVoBTOF^~rrt7g|L~8ZX?up`+v&LWVz0n?sx;*yP?$89&0l*61WCMB=htBnpSJHY`K+} za&QA=iWx-muIh-R*%^FFc82GGxbAfR)7Dlx6sxy&Crwjcsj6Wy zE4-~0MKp)A$0+BI@R7GnEm2UMR+mDk>bpDf{{YX8UEwwRwZmmomO&PXUFZ@DaVmqz z+@y|4#(>cm-ps`F-H6Zasg?ZCB_Tdv^3-}U#~OzUlN>BSP*C4c!N}a_Lp65qR z2KOV5PtL1968ePASYUvvp-@0p$i_Qp)z^+mo= zf#X5n8%KY?+guHz(m+gr$>&)ieX=#;u7s%s5#LzJ`O>7Z-Fsdm8u#B=*CyAs?R#4V z-TF>&GI-Z6TI<@}#={4WMs=wLP6)=iEfBG#T83Z&a$cFvoEtR zx}Txa_cW)DRGyAyXsQ>?2pcUCCzN6ANBU`ovyO3|bd|lL4j@v>gOEqgh$UM}sTnvO zjt6}(WRg5?7zAW%cqA(#lh_}fAr_6U9npoWWQ3$hOJlwd`Dsfu@_CrRJm(~xD@6j- zgMbJ4N5RpHO^KSR79`wB18;oj#r8+XE1*0Q@PDXpcN;}ilx8Svlk;%YHC9GB~`a|MHoo4I0WRT?0P{t z<6SA?rRi-qSm`Pew$vw=*bS%T>cS|Cpm28~M4n2J0m7a2mAX31P?{xQGL=sDAm<-U zf4-tUHCg$4v@FLe2p|*wnz1UGCa0R6 zpE4sE`I;rmH(bvlJ4UAas41M#)tlI@qsI@>{O1h{F4xt@w zKqI)kyPdZHNh6MZw8jIpN?4u9ZL-vGF(ifm0QiTtp4enmy3;cPf0zLz=S)$MM#L}! zwm;iSTClb8Z;Tc52c#a~eOx?S2r2`1a91;sW6v8gllIj`b}B%9WC8efmNjs-s(##KZ8PC@P zR!@cADUPY6Xy_}Zj<<5el>96#!8sA*kUja&Cq@4N7#Al7PZuAj^^T3^(2eahN3|cvmGmPr zMC3h&*nf4>mTJ4L)n_*fW^{b{)OF)&^s)5}@<<(yqEp!I*87D$!oJ+Bl~GL{C44iJ z5bkrdavWo5=Tp9%tF_9l&k{f23zTkDX?5-uNYW0MIo;{{Y!c4iX9q3@+1J4ZiI)mNr>wo}MD0sde9w z&G2#CKH7o!lhn3`o$4*sEm0~<_1E-WO?J56W}u=kQ9$v!&ZPS3L0$s? z0Is-Kpyak(`l{bcEwUOahm`~q@)9{$7$-kb&bvCCEhWSF}b#=m?RY5goGMIA~vlfTL3J@D(UV4$srk*H!|vQ6gBue0>F z22}hFST~-!TYZi1OK^zMsbzT%F%i$F?z!V5P-UB@EH$*$l9=gg?lI+3rI!vnvXuUw z{q!TmDpjoL`J1NhD^mp=i!6{ME25y}#-MjS$j)^5Yh;km_^{;6AEv*m zmDXNjz0gN2S1DwHSUX7?4UT=({WGe{^WwyouB4-u2p*2xO)00Vr-cFYW$ajm?lG#u zh4o|rINhJ^t@?MSI)|?MvAULyz8ZQ3s}-JHYw0VF z!AAl9Nx;^R7sLMm>Fsox#0C*!&%bZFn#^{zP;SejXQGR%I(Fx6fuKsb<9TS3Y=Q}0 z$oTg7_s|~*qN%jlmOHGHM{<%$7_%u0z~PDaA6+d$Pf=A2@<&fJ>rmTQX$-(;01WfD z>8CXn4byiIF5_*J&yEa6vGN&n$i}m;msC#1VA{bSf>8}zS9jS7nx^H{x5}xZt&7N~ zk3Pj&J;n#Vef2P-cd}a|rmA@S*-4R>J_3W-AFhVnX~*zL z{{S->tCM<>g#9dci#r2_$^9daPxN#1;$Hdv5qw%rL{f~`Cp|lIP7#f(RG?(6)aGdD&jKO?~i?0X-!U) zxt;lZ1N7CGPQV%ZoE=(u*ad~^S&~5daODEBQ8;IYSjwuOOJ}}|LvDtRjIc}UJ%`S= zr!=(f`DouRcv9M4u40h3^-#cNG4HJg4jeGSWcr(b=iO3GJKp~Qf|aGLr<9b*FOF3E zf9b+ae#SygbrQu=$Ex(1OO>SZWMq|18LNZ9lZ`(#XR;?kGsU?s`qx2#8#-sIB`=b(t z3P{}SKmaemI%i27)DhLx!9SeOi6eOlDir$L&Ay?am8NtVF^Q9_m(o0Y(&>|x!Ax<{ncF)Fv_?|8|Dbbg>%~4rvr>dk18lC+_!zRJ{!TINtu4$;JxlZj- zMDn7@INnOBJ&q4-ch&3QP3E%K(UV!Ouq8}&GqjN@V$rB01WE96I2yO=oeCTbGc-gv z*cI*X_e@1Ok=j5~exK>Sj)M6xqP9_8?;n*lD^pTN!%%?h&>)8D0hs1~pqO9S-!%)l`>2DjL*%OvzSiLpa|XDaLSpxjg5MQfBnrjNAw3kV_a^4x#UNThj8Pf{rZe24KHJXmB)mKO{B(pJQ0gg9*-r6nG zbauH%ogGwjRTOAfWTdE*9<8I;W8+$N)#lx9x4lbEPfuR}A|E-&tPThRIUwsC>13Wk z5Eg&3iyNC8#2|Wm{nb@}wMRi&YrNd95X}8N)in;tz;2nF&q-ydyWaty{p3>8!%(HBQ#sc*jEDWLF!#Z>hfdzDiWfhT1N!2WPd|5 zaktnLrgb%v`D{w#VcHMAem=T;ai>ViHbSo8#N&W{zwMwGnv{BmmYyW02-y&!Bt|jI z4E=qzxP^e4ROFM%O=|8WwnDZP@^CxpoR!S#%988@JB|)>r?yKS*Qu`%S}gSKQD0OT z#G8OFLYBhkjF1iozJ*MSOwx(B59v8L$^QUvjD0n46Iu?Q>KwOLQ)%i9^C4E<>HzV{ z)tO=Ggh?&2D;AEps}j8MPODpWEk(-V6(znld8ct4Xb*GouK4^l{vF|p*qvMA1st(k z?XZ>s&KcYc>_PLKbFB^w2_TTDv*ZjFYK-v?+ZC?fRytD}fwYo1AP@D`4S1_pmCPl; zJodo<0Jgew$C{&BXQhUX>EjZ&mWR5Ia0&VCss^&-TWPV@bmP)dR8m&Du`<9KNF*QE z8}~v-2iT6|QgXF5<4S`74i@67tNE-kJCarveY?l$Cmpl%^wc80Nhc@E!8z4~)Ktu< zVOBeHkhwU|Zb!bMRWK}4fiZ2Hh-@#Y4&Ur_fP#ib*|i#}Edz#;hJA*y9b7R-ByUL1 zB%~FScL9DeqW4N`S*@G+S)NKYZ{;-L2P5l`u7*kZc>LJpP)>a#<4S?YWCG~L|P;`~NM5SR;+;`;ZY$0qU@~gC=nUAP#z|M$6 zYZFI}sc_I!r-nmz&aez6~u$FIw0?K*^DN--6LrjDuPM+X-qG&>V4s7hgUAKztd3CK+Gx} zAYi%1ee^=ybhRdpJg;=WgxBt=waZs(p?T6WH|-f=_4{Z|JVMNE-LHA##4?0XV^hf^-C@Ef2y&W30%R(J&RCKhA>6*{zUOmU1l_fZaG zHED2P7t+-`NLqCWyZu1%#(lK*o2KfjUF4>Zax0u?pH6%0wYtCXY1IqWQ^RDn;+alX zO`xkLeZIN}N%(QO(A=8C6|!Zlo=u}FK_^j8B%swP0!aB>%WJSzk`*Iv`0RV?%kcBV z+wI=xPelzQ7n#DSDo;82*H?63;G#1|DteOZCBCI!h~q&bx4|Uqpgc72gQdJUP1M^f zD#6d3$Tlk+`T*thvSqx7_OMzES>G@NUtP zVR9I37*#&tjYQI@Z&D7-ZDnwKAE(AOIiaYEuFldol=3Jg-cL{sjP@Ton)v*p96R!$ zhnY{Sl|7)UrMTN@>s84vq@OHhLk|A{ZALoA-VH)s(Rh>%*kS&^IoG->zDA0ASEvyK zw2v)+OCJ1az0wJ*=w+jgO+j32`jPTA0f)(&hjk#2GC!00oa2$L z`r?jvqx{@Ttc!r)jz`9#{TWo$Q>8qp(a5rbKo~eV&VG5-iCIq_!iGwD2_i*2k&o}D zYEUl=PfFH-l)M^cyLLQt+V=-c>5hp=bhj{$xkH2oE1!D zeRa4+n@-@^v0r8Gm@wounqB|{{Qm%z5$KMVv-n5VtI>T^)-c5hpkV7GVksJR z0Iq+ihxyV?Uk6Hc9CjM3Jo7vV@kKQ;5@ZwTVn3u{@^sqZ_WuA8y4vK|yMU$s7a}9U zQldFogJh=fV~&2kwPnv~=<6-Ep66|tG*eWxRTI2{rIDF?Wfu48_j&}&vh|3Oh&H(=awvx2?MJ;V1xKec$ zHNobnB%B7=gOJRlk(0)@@i)V6wx#Mij-awz>#L!9Ld3+uRH+yl1K<#L{EaR6Xz<6W zs;IA58@)u7OHRfpB9QDaQU@Wu$oI!1R}RTBbmwNXC=NX|IX%768JZ-};kUXg7l#%b z1xwV`*dwZxFi9gXjjzGVk;(23duq(TQC+F+_UiA+$xll;NY;~S^5aZ=j@`ZV6R559 z^zOps)6kkG*(Av(cVK>^Kf-=>Et0PNRnzwA>FT1duh`0AX8^Fk+mJ}e83#D`)=M)g zT%8g;>NZB_Z|tNx+FDwP^nXFXm6LT{>Y^zN(wJ#PL;jkdl7CmW6mLM2^GYYNG4aw{^T;IBb#1^_kV5+REqpwPm!U+8|?HCyZk=$f+^wRx1Znt%H z_NLkY00~x8MO2$>s#0t~(}vs%Ddls|8sXD)gOQl~0Bjqz3m>20qlinKUh}u?p?9m5 z(hjG3?xE^G%rvoWr1K*!y$fXQUf_FkqaGOb74Te^Iy99iVvy8TL|Y0}WELd-@u}_4 zqAa$VXL^{$!lQ`Dl~gQGjvM@0$G2??py^0vtfs$NY9X2v6U8h=a7zGlz~hZsNz}1t z$1Dx)K-SxPdw+E{FbilYCDON`W9kZ9efOuLnmdtL%fz82QcoQFsrSaGv3O(BbP{=1 zYHEvpC@UzZh4O{L<3IUG)hlA@pUvFky`=SPJ+(@*Oxw~#EyzrdNye?{x~`I*;Y(Fu ztyQU!3^KtdK41&L!TS5_J)RvKSqu^rx2xLwex1}T$Yj^5B5uD0U|M=++fIoja>EP& z{{Z&XWeDe!_tYz^>8NA8OIJLTR?Q$F%HZS=WyX$lH&WHjQujWmwLx#0N0htf+PFUC z9tZ8AejxP)o*(4UI!jeC%Ep8?SsjswX%t1 zkC@Lt`m~ki=L~LY0+7LWfOCRC_S7z)scWgK;)p3IKUnu8Qt4-(6=TAkI=jV3 zXpw3mf_5{u2+tq5)qmHWTW+eAEi>Xh=OB}Y!1(_FwzCa^{$XL%^!&RsJL36iS8k(KzC*LRXLU#k(KKcoK zyU%xv^H5dPD=<`)DxHkLb_e#I)0pTe>_v&LFWU9o>59D=fCC2*U9 z( zG&q;cjwEFmZSC!?9DODTbjI;+J?@o;HUt>k#y3{?Q`{*frCKN|gG)Hy{G*V8ImaFJ z!dlkqKAhicphTJwKx(Xwzb7AIp}i;4)gQnfO8VDpi5r(E(uW?$>#04miW-M8Nm7A| zmS8wRz~!^52l-guh>ez>f6mD%v9|q{XElgTOIHC^ioCIPo+S&Mj@drg*EO0O_f~bR z*1DORTCB7r41g7TpX@v9s=P|-UXAHn4Q2B6f1oQ&F%)K{GR!*w0VJQMzI=7hjaOK2 zHT7K^aj2q7oT;i9Sy>NoKf*n;-(I!gE}fs%TPxvipJzB42jlxH-m%tkFk%mTtosgE zRrPfrf?gNeMHf}w{{ZJ?i5yZw!beQ^K)LVllZ{rEe;fQHroB4{zFO_&cA|*<V=`L9l8B~wJSfZyhWtCbw$?YK~*fYznLb4`jI@KeJ9I3jyd_z+h2-3 zb7!k-or?K23$uSQ;v;i|-*$Lm^dnW1RZ4dUzyRP9f7?zeYr-ztiANoW&bEW5!rXC= zKr8?XARax|VCP8bjMq*k_W4)!gYj|WCA}iIRrL_5riXf{5vnqS+~q*e@2k(lPZ;3w zOY-)soys)1!s$%aGmMsxxH&xT0FZOsfvyv!tcFt3B#0Su2+v`nR_o=;)mWAGx~Hd+ zTOvea3m5LOPhHgV)Jy*WIZ14j zV;GbNmunG*Uv_LC?V-LjT-z3^uYw8R1Igk(0E3`hzAM zu$?4+D&icrWK+TI$8}p?BK1isK1nRfHyJYAJdHlpQkH&m#8iM8*ZqAP*@;f2wlu_?T>aGj1Kt5k|yao zy_3$77w}`I>FBBMzB2U#Ftc=0Ektpq0jjP%K^V#GTLk?Esms;kuIq5BxmQaWsIQ($ z@VrC|OY{5h-fGsJoueIiR0B`mSe zRWZqB8TKG>PB1?D`h(Urv{r7Fwe)q8Sl%jF{K|nJsCLc+dz|;xL*TuKr@syz0Z_F! z80l8EQACeUo@CW!ak;a}1m_;u2OOP09ZdtIy2$4NP=u zTuIol<2d*F{WZ(Ci#(H87)3tmh4tbiaOgx1u(VJnn>rTk7Lv*V!+A%CK<-qIA3>@|vl3l69 zvayZ8bvVv=ItXo5Qad#21bN0u@ATBA4GygHYFs+PtH)&hJZX=UAbp-$W+Q+<_R-3i zqlP7p7}$qAef6TvO+y%8NOt{CjQ-j%NK84Q$Z54yD()%moEC>L^TLtvVy5-@Gq+R&fRqIPV#D@K6=-|6nklsKv!$Wo_#~x9^Lg+&Z=M3K8MS9AI)BsE9n}@ z3(4Jb%vo$PQMGU}^QDBN2hh7)kCUc5m<$8PmJX{J*ua(?@%nXaTA{V$gyt1LnNz#B zIw?+GXUWFa;B)Pul=3)ZhQZW=-wBOTx8#*1sXyC|0o!EcZLw&CV5t}ZvFtQbnlQ*x zOznIE57SI(RyB~Upk(pE?0v?bqY&PgVi(du9kt2I1C;ifDAGac9rR9`O|p7a@Oy!w zlnol%9}3erp-C&|d;k9{+miZomKh;c44k)@QzrDpaed9pSGUYBl61FBajzb5>+W1 z?v{nooRR^_#~N=vt}|LHe<=${2c^o5!}rrWWkl;xQGqDroSymmX?~^Zs|QHh+V#~J zdTV7G5T<$GYL-2e4|AY(4^iPONdz>0iSS2^Dzi30`O=71H|J(g>gQ2Q4~t$KbzC2t zvGuj4rZ7sjXA!o3&4Z~t4NW|(^z+3gIBl*Q9{%5bAkyv%QXDx6d~#z4KG^vA(W?c* zYI>1K$XXf3)&;Nu9gaI_QWCNTjX5CW)29^iyGG_Gi3}sm+|7ggeCQqlZ4|BK5T{)! zKaqaSfRQ^6M{)t}w12Lr{{X|M6|XF+kw(}GbKH^dj@qg0?NZajaD~uI42aCng&^nK zSDZo%l{8fmzVP4>bKB>SeNpBe4+JUE?%GgjEwjbc4CMewpCb*o%;SNR_tk+&#o!y$ zZdWBq$sbKHuCzl_EHw=hNK*<!!CO1yX9oBYbYN1%W zhnfgD9{&JcMk{GuDdUWQ!MRxg#&Pr=@%7c0)B=QCWSZdRVuWwVBy*@qsI^?_rAtM8 zRmjA+c$;#LJ&5=3sd%}K+9x<#Zb%6lnl?uI8mY}WrYwCv#A8MJj)p4Q8ByG;Y$Pxl z#x)k{d1bfUaI^W5R2&W6vG5PM)aqcZ83bqc(=)q7`rE=LZrvx4p&bB^Nmo}*A{E@B zlpf@K>U5GRETM*1+uu-%34bNkPfDukxa~tHASb>)nbgLV1!iJK;xW4&^qE_{JKQdW zQ)zr*@h_=5hMTWz=f1R(HE~!@*>bB1#t7PeJ-c(K^gVslR*QE|SfMBQTz6EOX(S9L zoi~D0p1=X^-#X|u{4-jvcRA|l>mp}J#380DEDEG>N5968Q~n%avD!tys97s*txzQ1 z?l)65JuIXQfC&EpO?;&95_I3Dje5V4IIcisAlAp8w= zKUL6E_<=odODt4xu*L-S7%Wf?tWj~4k#X4f&UFFm4+?sA*kYo!P(*9$T>e}q4>VDn z2^-sjc^&k)o*>6|ILFA3)m66p0kJ2x+@ow;hXcQ|o7j9&mh03s6H7-?{1P&vJ&_l4(QYgT~cihJrIPHQ68j z-2`nuL1kshCbqzHC z0Fzv3_|7@_)!)$_15t3a!$)zE*f}jw!GG#89-*$58N-_dMA@N3 zf5+^Y&dFvhS0lFWpk5aA3U$r)<<`AGSS3|nV~x~=Wh0US?Tr@e&X%?G%?P3C`z%z^ zhH@Jp^z)pz-&gIIrs#TkR*ISt94Q!8jB*Gb{{Vdj>dz0U`nH`bXg5bVERqMv1bsDg zk>UK=;`3O2ZRLa5YzOuH)?yD5Fy@CmkskxtE?I)jcuQK`tf-kKxqbQlbovztnw>q;!1?dw63K!5-#2 zn?Kd4-&R^l$8CL(OP>Zl#DJ??jl$Vvr;gtpGP_6vF5W?Wb|=28{{Z6k2H>?afLRMG z#>fEj+k&|~9zT6qz9iXh7Kmk&1P}&jJZy9+>~Z|iZ-4(X@rc(0U2xz{dA>oTGP;= zO4`KUqZk~6pa%0x6a^{(jhJjALyR1AkCCd=seDH8^4n0>>z`3myr(R&LHyT4_1oL` z)A%?!neus9%yW-@AfMSwIN0s=WEyDqQ~Tdo)4Wew*9ch=hQ$Ytetq>tc!5Pz)OTq5 zzJf`rC~1_a3g>Ac^Neyn+G}6dod(u<&9kZ2sz;M^6^1|}`V)>1I@_gh)*3ofEO!{* zDv4RLlX;P#KThXb?w{e#qlDulA$flkT6Z1$D_C+cF`2Ehw!YyS=#H|6;I(mGstp-l zAVP#NBjEo4wxS**btU@OSn%1ZmbL)P8o*B8JMYNjKj)`CdqIArwaL`IKh*S-M3`Wa zQ$|=numo}s-&7UH#4ClNXRYcwiiLR{oEg+Ns2*^}e@wX^WggIU#b9gxWy8a8uC zb%XXHs=KN9g`GSH2+6)Uqxg$g6-EB*BoNfPhnsSl0h4;6@3#X|sV|iMLrF^o(&I^P zjb{zMSwvfy4hYYEawSiX7aLVe*IFs2joEMm4=o7Ce^4juomO2>;zv<+9c-0#wG2e9 zkPNK&ANre7kx~`=BszK;P|GU#h5+#^JDS7q9QK?=KO&YNzn(Drr9tii)`^Dy!saA8O&5nCIAXNjmEtx=5vnBimYdVmR@)%RF+cT=qHMq`aOYUwWs?vX}n=k)i+~3I^Zf+# zyo2xiY1ra(n`JWj16%__r!Eu^MxVqgjGLr8vc#79l27-}s?M&wEmd@oBB_jI6Yj_F zt53v>gq2lBDptfwFmT)*Q@0u?H7pbz{{TMS^$d_6SU6Hx-A&X~2Jd5*}O6gourY5?mOzpfYHE6ub_&qHzYJtWD)gJKda+WuDP}J)crwK zFGf?>M`tRg814?QGByV6mEeup#+;5oU80m}V9+&%TgzC#mH=MS+b;_ z`jpMn;!wt4NhA@+Z4R!dik?r($hauj$RL7#0n@glS8{?+wHpbZMz&Uy1b|p5=jok2 ztPla@22#Oz!R`0Z_!PSs@&v({{T@>&$0S_v?4?m1Q_3Q zFv~76wCAus`Y9EzoU)pRGAm>&9Ik%)k=uG=-tfn=4>CcJST}7O1@X#95=N84fIU3% zA6gaoCrd|6tb;BCbH=3|N7J=*swP@z6smE%k_XpO=*wW?K^&apu-87u$V6Z*t<)`1 zFo=v0d!8|)b5l3;sKSf}$89#HBAT3#L6OuIIqnJMXstPwqF~$u={Xu`ozv|UwxXnW zU?U>~o!>e+1tv}kpZn>R5QZW)pGfbcRAM;z(IQbrY4L;-tt=UQwMPDscdhMUw%mezYDe6qoEa5($xe=iB(^4iptVfXKn*GB>Zc8JT((bhF~`w@(!#TJ2e~> zW_hJYay>gU!Pi;|`b=P)u>SxT#-=?tO<8=oEjOFC2W2c-wtxpYI-iS};K0U>)M;^r zmpHDkw|IkOx6&iTs`3OJhU9(qGPB*kiqfTE&KzzF?nZUWon3abczX8wikqrtZOsH` zP2P4p=L7p{j`3gdU)CK>{{ZT%4OK;!*#=dGG^JjkjEt5X{{U@S9-`I~*Ycn{r;^b2 zor>%a6n_)_1L5TzUAEOC-MWG{WLkB|hA9Bx$ln9tch>=Uq2m{dek|YSy7ispr36xc zCY2;BPYBQSCV$NHsDzzQEpy2f)ryj_%QU%m&%R0b(5a-Fxy2-PaLissT)qJ$pYq4o zRk;~&nC@sN;>Tnn*f&$jt87zQR;Jfl$t*0pB*QRH*f{q2)W*Rp*LhTx5j!g%RB~_?2*_;v z4&3R8pX804rAU6H?$Exc_!r|`J~vvcZ**2kZPC#(N10~cOR&z~2eV4usIK)wt$KADi^$dy@nU5-=xbB)_*h24=v&^QYsYE}MAV~5{l1FZF?a3VK z%<%5yhSau}!o4vlgXMmC`s?K{On>49<2|rSDkZSgMNU;Dq^Y0)Ouy8@m4VlPejB`D z=OHs$-@AoDgL5#uTk~gzJfKOmZm6Vs#CT}cu~j){d21R_tkdU*0u_U zb3p|lQzp~u1mL#O`hY$Dgm=!f9aAvJrL9wNv9%pe2v=I(>h9Lh&7}1eGrnVW{KG^Q z4;cXQ$H~XGsGg<1)mvefD=qS_f?I+7zm)@~*D;(B$b=Pts32oHk>0wT@7`0T=PbeepKy%@qycO<+~pIbDdYc@-@Oj zcUMqEG>`_!*F|3X;>p((l2v$>c9+YQYAHwNaZM0X9qHXz{{Sx>7Gh2~_d5DFV(WOT zXecWyOe+;?s96?Fg2ZPd z+;o?VcN?{(yv#0|bdvouqZ@|AB?VWQR5?n4cH0>QPlPXIt!yL-M zU~cc6`+YTXY@F6h1Ef*XDyu;*{Iiptz>IN@F|C|AZOC9FvdhbkU~vU}h3THX>gx@9 zq&K^aP)#6dfSI;2_EJ7I-#!#|WnYMW6$M7hIUVBiWh*FR0`cni1pI2N@Wb$-O?v4X zYTB1Hmo?n8$255X$82X;A3}Z|)1isD+3UcooPW&32@%Qj$F{yx&&PLGI`Lp}uI;LD z{Qm%D>s?Pf3(GOSLFNL4P}{mIqA!nMRYMn^u$Yc{$tRo-@6LdAe@Ar3R8vRP7EYk3 zqmqbuw4neBp5!qck)j?pbVpknIOU?Vv~eSY`I;$m!GZ4JjFFFToiEV77~N|u^IUHd zNl!GeY>?oEk$szQvBt8pVdi0f3C%i%>_NKxdnclwAITZUZOsEl{{TeZ#o@&@Z%WTy zO0iefRsR4oN#u+cVZkHkA5Cp*@Yc3^#geWXXlWi(A*F&Mp!@@?i^9uXOJkBJfT}|& zja&L;1Kes;{1P8Hv{)Dfl^*%lm#26uGpS<5oX2eb0;9_DGvJy?N53k*xp+^}-Bm$L z4bsmOva&m}F+-95x-Pu~(6j+5q_b0yi-62Mj+{$bEuMERBM8(Gi;R+fG)B6bOP#%I zAaI_L!~Mb3+kD1c)>M8ZhYiPOmmP3)MJFog%T$RFTS^S2w>2tu-~PJvtRB>O+syj{g9$)vYYz zsdA?T>7>-|;KHmyBPG6{8b1^Ge+R0+&W*aeY8w)v;Po7wAyK%G*;n*kFBJl_Lkk8} z{$U*M_{Y~ztd0DYNehHSv|wk`_0*;da=?ShKr-El)>eipe7KE4BLD%cTz(dIF>BjR ztG{ab`BJ3nMr#k;m0ESDNmAS?Y9(hwODdAe%a&p6a(im3=r0AW7aQ!2E4;C^qiz=f z5!`)8ZD0306t{iF-PSNlvM(F7@1}ZUlG7KLNDM((oCBO{Ha9_*T(H>1F~@OrW4(Qq z)ID|hcy5iZ^&UPGNctnEx@z3@6{vxV2!yZwBiIk})gR(lh!*Q)?G?PoBSd_ofCd{Q z)%Vrs;%xF(^p#{ZC|*dm?js$CI^-V^=;x%ag1)8z)PwoN<36M8ewo*Jn+paGqaGFr zsKY_~p7-xZWn>I&JGI%*XVyP1JufC1-|@2M?2W(Ql0Y|}Fk z@E*W@^%?N4{PkgKE3T2GF5pI^1ntKQ@G;wsE7zC1l?~DAEwUM5D8)jNw2|z7b&H+? zW-$>&6{d4tEao69YqUoFY@(9cRZc{*!7ObXD!v_ZIm2t2y8FW$B@H}@)3(Z%gew;b zE@V7%e9rmQtEzlY>i4Cowo$<7?h6+Hl~ImHbq7wP>PMm9S6#gcRoXp2wtlBu4-H4u z`Z4pNn@A*V4?ll@#X9bv49wG#-CuPGvC?$^08d)w{Hs&bRaXtztf*BR0O3H!Nyl^Z zomahKeX6xrD_gH^Zjxp(mWENa$QdN6_v5#|brkVxvbNjQvfJ-iIVvWF^S!Wp9>D4C z6+{gSMrl0Bn0iGO(A$^DcGSi8U~X775GJe>&l2~&gv^#5UA|Fr(E{~ z6={}yebp5uL#chxIP(%<w!h#vV< zk&pBK+P|;8Lua?!_tsTGPyQmz6@R(aC)Isl(sz3JA-CMA*|(j9Fe*+D2TX`w)2IaL zk*{u&S2K8lQAb@^)wu*u3{s&7zoY^O@10iFN@PBOcsy#(@oT2$qNx@1Clpdh#3&g= zW8Y~W$2zVD@{|%uV12cBib0H0%VxBRh$#>%JfK`3K-vNJ8hHg@l%YlmJ^sJGkY<=B z?tNYLgfN)TEF}yvp4j*O^&pE;RgvNMiCsbA^}%laH&U@wmGb4>HwRC3Biw4vw)pdB zt&CN59VJY44!}64V9MP4ZaH2)`sX@jmP58S=i39mm#T(JdCE-A?4u_GvD6uGZmmtv zPj#LD04%u4LAxGa2LOV9e){F>W&W<*1H~h@7t3YI8<3opI!^nvu^nw2scg$G*p+hI>kXp1N_k{l#UYK#=WgI|ajBiFtCh%$W&$IE z!1BXYXIf8dq`f3oS=-3+QHpOYQOM_UKIggn>w5+L0{%tjB2C1v!TtU9DjCa2XJqV< zhcG!?_THk3q02Ia^2XhaKym@jvwrHsJ-w-^Wf|JUvvJ49t0%a!&Sj2P4%sLD^v$la z%FN9tIPOnzr$%R_wK3!q>P!gOH9i%?4CMa+@aTO) zm5InFpM%>{TKY}8J1A{;lPe@>tC8IOJ@pdnOLD7;DWf2sN~q&fqzMrvRhgUmiS3}b zkh2~nEZd0vc*nkoIYoGH3cZj_hbJT45;Uz0;we?!0&~wE+9O{{>6g;ZLv2%^)1mOw zv5+W0Pxwxq4g@GhHv_VGWvFCX+&n zwx6xOK+%|(97tGmz{j?VHxO(kQ<~eAHDxT6@@?|j1{8KbT~{+vz$#??oST)2JdPCS zQe?OyLTL(&D)QOw^!w?Rwu%;=sw4!bnaCp`jVzLCMjP&tg4lu;SwCL{kTgMIjcJt~ z0X_6W19Y5KQi#zDvj z?XP*e00+KsG}+0EEEr^ubNY3OB$2;J`VXBnc~S$D#&S3gc=!3!X<#)C45NUO?kDMt zYiP1TFM`9qb%>+}Urun`bM)6Ge&cnSp+GQw`0d|Y2;(uRZ0E4fwve`RT;QP^%VK`N5q4C4W~BUUUOcWba&Bd;@v{{StAenwmW04N_i zrYoysh^SN}13-F~`z=K((k)C8utu19&$MNGf%3=LX;|YQ@}O{Ot#L4sw!9`c?NhZ&m{NIs*8oi-dc-;ZZfB#y@$|!G;gNu zwed@Dxy3973Du-26K{BewmoCmliTU8bFb7+=vv=3;ec$8)c9dhRZS(uY2EVPwgdvF z>!wsaH*Sba9m7KvM|FG+dtiG+*X??>(Mq+MgvG`3EmiV7zZQOwzaun2hmdDVg8SC5@f;H}Pz z?a~(tx@r`!ilV;WibPdvpn@14Po$ncdDJVaJX$?C5! z{!j9q{>68-)A5zk9xw`83r|YisVS#I;^jK4Nl8`C(X;}tjrw!-9kHb8d}F7%T4*em zd$_8-65^muPJfn)r)eYDf^s{9j(cmGd={*Pb$t|8$XY9H;T|bz<<8UqXK+1_I2hHt z;vF3?hqTw8y|hBXA&w=ff=PDyn~vN>$B@GWkUfsF-B+)HlrdeioInG;owxZ4!xNy# z6k3lS=r>+<-5OCzO>bFRwgOUNB!sN7w|`D}bx`5p}l4{!1UwfKGdZ*rl&h+_bus=+E=$)&n?Cd14)x-HloS33zlgtmm z+xE_VwR@1+L_oA^QE}mnI-F|Cx;it(OHG2RmdjZYFHKRoYNdUmq@0oo9H7f*C%(E? z(c)#V#vci~hTU(hlCI@ph{rFUf2I3L=^zzTw~{bN2aM~0`qq}$)5^D543S8y9F;rg z4qbhE zqUPhhvAVT#6w|3Hda4WPmXf}rLq|KWma58=G-L*JJ)MJg1HKQ_UspU5n)h<>o29F| zmf`$D@PXfgq1srgM3|j;*Jf2RkdOZGf=newRbzlQqe3YdfEELc)(?Y6P ztV{G^9}wbB=y=BA($aa-vFxHGg(I zlkuX^T?XKoY(iUuClrIFnk)XK3 zl(I!3Jdu?rvmAe6sa3`psw3GZO1H4od~~snspW}PW0>w>4?Dhpwy}O9=sB3ZLGxfV zyH(wGwPBBw8{!elYLsWH?spmrLoFI?lrY9dRkPn(*uOBbrOCI3F_mHtK>f8fx>#u| zDV7SDfgpF&3uT@ve>E07BOgyW7{;=>J{!-(&ue8rZ-S?@J`;_g4g39-X?(I&UG8J3 zEsakMD8U;+!+iZ*L`4>oN%ueSrF9IU^guDz4FD^* zbV5sV0KLM-!viPVPUA@0pn?uvbgXXXR!Jim&j;s8Jv_}&vL-MOBk8Y4ZUlJbON`xK zpbKk#yZ%LHb(6D-QI&FI$89yMRf#}Tg~ud&Y5a<~V!g=krk|B&QX4F|$A0==t%&jr zY;BXl_6Z|(a);AMC8_cfBcA@Q+92^N6BfX%!`NxGP$eg>6lN*L4|Au{RL1CLsf3|k zFnQHqNX21cf@cQFcgLqs-jkBJ-L!0j*4m|eJn&RRk|VL)yM2zi1IJqjP*YW`HtJct znwfS}s6&M#+>`DzuG2Sd(=;)`xkdoeS1KD##sd|794uHK89~OXy2pjEx{KM7)A9zW znngGoJoou3>!S6!I!uJUmL2lGadc(IyQX5PqmpHv+1fgWlpjuiNneh6$k9>aAN)Tr z^*OsqTM-?!3CxR64B$QIHWy ze1;!wVV~17Wty_F$Ug$X`2=je77q|~>EqPd06!*`Syg-B|eZ5l?-nFu#2KYhU3{4Zd9Fx_A$g zIlCRKf5NNlUL%L;%vh3Khk`c%cU*VX9Zy}>m)h&)#--+-szWS}Mo-Xv032X@4Go3k zNZZUUuzQ8b(Yl*`DioNtMY9(FBfQ4lYN4CAnx>d^1z^AJc3Xk_SZmC zbfpF1r`e<7gSFhZ+v*axvA-%uuYnJDnDdUP&)TADXYTdtimPf`45qV7>ENCVGF z6OS$Z@)U3n)M|Z8begu>F7eJxLOt0Bfv8Mf0cYvEc!rMLX{p03j9N^)vWyH9liQ4T z)W4^}MpcB$w-s)A}OO$E1nDqT%5RbX+(dk{4^tLYNg3YlPqc1;6Q$}^Hsf)5Ah>8J-# zbe~Cd)hg6d?xUUG%#oy!@qvZGIXsR&G(uLrnvhEq;&=mvT6lp_u-X6$LG`}Y-kYi^ z>6Eq@;EqOA{Nv|T!}&5)I6<{Z$OQJ)t>P8_*HyprWU_29xzFmz@1KAD^;lFWc@{`w z11bO??sYF1Q*M@jsL*%-tklU8KoLkj`S{TGag2`M!%EHkr7FiPd+9IBzm_E60&oD- zpea`qOL(fDHr%b-kTg&DsHqCm$L2`6+;fe`+d5}OX{)$8!AT3u*}>YRg&$McX#M-c z>+eodMRc75(?~!pxym2>-}mjLHQg$0Z>W{(L_`-x05I4wt4pQ2QZY!fO#yb9%Zzd9 z`1}1eTUn;cq+UY#g~0?2u_N1E7j2{zw%Soq2uE0#IRs$fXHlK%G!&3@G!lf=&`aeb zN~g?UM=g@r90U7kbu~zWsU(nX5uEHJvDAv9NZE{S`c4^mBjp;}0=aw|aHkJf{20wjAD=Q_8mLr^c!R&tev^+ZN zst$s@)mPqn0@c;@Ra8?`Nk?-=DuIRssLRSS`!N36s=9%pdFGm$6B0Wg+^z2~3f%?XI z)r)nCg6Ir%)ap?bd2Nhmjajw^x;tsz4<&Ojv#^ntYF3HBISs}>zg;UGG=U5$f$R_a z>Uq`E7O9##np`|>v^G1BVW0QZdX|D&U~1Gx5UT{=x6`=$50k3*dPxc9$7KkTn83lC z)KGet+r2#CC%2ez*AfEpKZF&*|VL?A9-&w4ul9-}Op;^>88-d{V?X4-DJ^s4gCyjtyjtK)fC+)2mHqFX+V2|HO5bwF87-l%p015{U?O(JX zg?_BL_ybkr+FYrYf}A^wFC~o68n)fw_Qp^7YJ-BQq8NN-3BW%3wW0h<_2n0WRUQXW z&XL+GsyzCMi?^OrxP)_nn}$gD)h$y~vYgG>;}|F3RsA`+jdZ_OLAQE-8`vY9umPcM zbFW~Ap`;$4U{7s8ueX_Q6&NZur(^S@HFq{uWndq0`R$=ql+@24Xjn)YL+2RV@-eGB z1COr}IQcH`_cjESuNRPI)EnFrQUTVmAPYD-HAWmAH=9{&Ium96gQ zG-(|KNTYTUm;S1pdujqI>RX>MvmV*!PT{@PQ#^iCv~3u`$9(*q83(eD9J)s|tlpi5 z$!fG!&33sFQyS$GOqOlOh5rE6-$~ngmgglzv84fwZpt0FDn7qmR)5B4ea1(2-gjqr zJHF>q+bsP{Q%x1hNWq0)E0fE7kTk)Ea!++(24<}+k6=B!qPN;=+WUgYsv`Wb1`)sY zF~)R8v#8M?Dt4x+f~pXp$~lX0Zte0tvF-KKTAO`U-YDvlXC%wO_g|qOeKf1H-eaDo zE1{@OqbnE~+(tM#{`wQ8!~#dh_5Bow`LSD?HY9KQ{;K!z@1T0Ws%h>wTOI5`lv6~C z-fjZB08Y`I_xRR2+pfB*v!o>H%b9s?(bu^%w(l+K6Cj+Qe|&0L;U(_b(_J@bu**UD zY3@qKTZD20G%^!~V!z?k2d}LQOI26Xu-;~?rCCg&_7FVY#kT(di|Tde*x4s9t38k+oVz1vG6_h9FCFe>l(2rL{TCK zD2O>Z@2^0`f*9@WHVVdPWzO&;Eg=5@ozXl00EyR&^>U@r4q4S@Vt1XG#!h(S{IzcW z7P@8&?_JA9Q(sRN7{g0K@v${-2r2;M`G?fY+yXwjrYLQ z>KW1!&h=j-&=6xyv*2%4z`vvxw+$@&iZ^*2`A zDk?uN>=5qR$>EQ_HRpKvm`#sHbb+tF$M>$`Sf4e-z9!iFBDB?RRbZScDgE^RDOI0n z85qu)ZHB2l_?27yEHt&gnc<;m?aQ_oOKtFb6gWi601@CKwb6#oFj7ARUKV<5vhImWk+ssf^& zT%|;c2nXq+3r@@gk~T;fBilpLIxHezsKO+?2JdzUxHsOp{Si--Bb%Z71dB9=aGQNQ zdyOqjUQjm;xHuy^+9nU3xX9y3#z~a0%8~Kd>rW6k^0n?asPLj6P)gOsAlhOae^ySE ziZSKw+<4Z?3#g5pb(UNjwZHIQg5MI<$UPNMClDR+Sru9&m>E(1y z?8C7*&ONl^Tmm-{_xI8)^3EQeP>v29>W?vyX?#s>INetyk^cZYos*5b7MoB@49Y^F zSBzzcettEhz}pp?PZnPgJOb7N^A_t84J9#{!y0WtH9WTCn6OEMT+ zBzNhdM*Ed1z%~ApV5YX&Jh=@!2EjZ6bB!9>v7jiYIMADQxBg^KT!IHY@O1X)e6-rA zD()9*_^Bx9VR`CjlXUsf3+VeOVy2sm3Y5;iqr?IU7g25%I5!m&%!Lw@Ry>V3wk)d761=knSbhlFU!J zIXb)l02W?8+YNV3ZzROGP6bEzS!I?mw|qbrsq^T(&{_130V z++7t==Qsn8?X9F`8)C<)dy~eo`FBB?fn1D(^P)l9b)(HwyKt3@5IM*CYf-(vFC^2)5`&&(J@lm=wz};jLvEupJZfZOqq2_YT!(r`JUQwbn^#a%(JZ@ZDrQq6 z5ys#MQ}jIJU1`%-Qzw@pPzMKGV3AF1uY~O_Q6ASSz0~J8KU{09d_Ss=^Jb>0rjUO% z6_jcQV``kVeGel+Emj{<-s$C|jv_~%_zCbnNz{tNUXk0x@@0^&atEikeCo04I@%i= z6MJ(SOhjO?C%E#C6)o2FbeiW|D$`QP;u=tJ2RH-jeaSktx|^!{FQsT6 z2E0Wull4egvq<23A9Ma%=ARHNW4qT1%W^w4N||Oq(s|(OPCOStg;&%we5UCf`xFYg z;Y&Kqxg#gisoPCyWJN72sK^)`@MBumyjKfdws~5b3Cb%pvxF~zq=Hlc zcQEb7nAo~@p0@8TEOn1lO%#i?g&}47{XgGVu;|{L>H9xWblkmH71?cf0Sng4gH29` z0wwZ*8&+lAj!79Ei5S#-!;YDzhZWRx;72QFKIDY<@6T`b)1(HADmJp>LN(KUCkiA# zn4*p-W5Y)lz`KvhANSFl?XD}e1olX2*ZJ|Vay~z#bM+tFI&)ujr?(_g`Jv`xv11MT zkH)gKOG^lzc|ei#BOGu^_WNnKaFi2vpuHR6km=fic#3bg^VO3YF+>NyC)4!PQC8J}%QF!le3QT!_xRAezg)pcpO&>yNm56r%u*I2em5Tf z0JfV9+hpUUF5IV=HEK|0$qEKJ?TrGCqN+=bbgIaJIAZzqt~oq={AskEReqWCQ)`MO zAYq$xuh`&mtS$E7l19~*7|d)zS>lmdBp(}(ZE_Vk`eKO;swE0VjWddf>B@&o)fwS0?>83Fg9?S=Pc;f6WT4vMalwz`U@tInf> zIT2q6z78|SeU7KI{%4~4g5iIrs{VZ_-9=NgIL|8Jo(`!p9_UE`ZWgm0!f4v(8wEoA zUg>nSb=_UMj#%cT!nG`sf&oG@GoHkI{dEzmwAb4Y|v zie9y;%B^hMKeZ2jmutAIMVF!i7af*3Q-=hbljD zu5-&A7zWAKfOoad(-w5WCm@5zWAxC=)TJR09Kc1QOJFn|lDpH-Ie9}bT zpUgy|w{6Jf$=S4yJLejt>^6w2B$|4HQkIQ;*+>~JgZc(N&(5#gXW~o5ex2y6XGwG% z$!n*ijL6jyyLskPc|QSh?eC^@<(;i)gPT!e#uAb{s#aeF`j?__2FZQ4eqO$wp;CAT z3#iYz9A{lW(eYe|N!0X>%c}$yiDTRRK3G+h?jEDKjy=0-p|o}V%|qULlC5f_gpdm; z4Cgr{=k;<=I+pa!;=jZ`po+uOG=ie8v;!G)fffhA{{UQSbW!7V2C>qcBioAwcA2n? znj5kBK>CNHZFY+0hMJx*2Qj=u>8QoutSLHbovEax63nrXs#_&V`TJ|It-pnVPp8Afv#lG8n0!Z8bh{u21;OXVLABbaJ}u(w2)=w#(ub zhTnItutQT%OHTrrUVkyeBUMPhs3;^VuOr;*s&}0mw#huHutaQ!70t6F1}vodhd2Yb zY-8t0PeD6D9O9NhtXWn@2V;Nf_9T0aNoj4;*Iiaf(7N-1Ja zq3V>SrH)XBS9l{Kq+QNGmWQ6%C4e2d)hPQS-W9fjNhciX^zj8Gn8E^12O0WkZB&lz z(mLRd*wAC*vlzL|yK%F>#~-5Uoarc60a%_0ejofm@$T_gYUr96m{3B}&s9?8AdLS2 zN*C-Iy|o9vS}MAJ?OkTB9$ifg?@cnP3}#M4^my zU;(;owT9f|BLwMsSZZo&5}J-9Eb}(l<3L%NiQz!*NzVh{SXE5#Wy-1bda>`=X?hBa zh?GrhGRG|oequRc8)S>0)x2}ZvDBjKZpi}$?vt&GuGv!bb#O@(@HviHq!@H?a6ul# zdyOKj%%$TDFxmQN>8A@dM751sQ@W;UB=aO`Nn;}ul31Qjee{*aN|7Y7IxI+JGYF7j z0Y3xd9BYHf0C!0CP_#O#q^9C~x#u4G6H_55!yhDlPM+0A=gGG`WN<&*T2)zYi%%td zRFb?gj5z~1=Yn+Ua2pjEG`{F4m1mgixyBo}1O0WIL;`asnUW*MK+}trO4P>`5mLhx zlf5l8zatMX8Zd2kIntA3AYxpt4hl zrne;35%CnP{I2i(r%{P(>L-1*5)uj3fzzE)NMuWVHX&6Ss9nlCpPU^8nwTsLDcn;W z$3u-Kl-(ixVuuveRcj!S1>By2`}=4mZ%NltTx7Ra0RzT=tPl>b8y(uRYRDC9>8&wR zdi=?kI}fnhqbF6zU)(M$cADdLyDh@0=G~Go0%wo5q2pyt`Q01900Hmc@TG5^fsY0| zWN9Sc zf;M{%1nSGp9n;CFq4ND;`GXia&%UIy%<~SeJ1A2-8L+p=H16R&we)Sa_WuBxr>SV; zVS=sB*3mAXxLf){;ZtY1NGcs=0SFttKHz+68%1%sBqBOlh(Ou$fyQ-*b#_XYk-YHV z%*p3D(Kd0rTj&8 z)TwNudu^hV)@rH{v`RqZpXw)7zlOIdtL;L9=U%B#T!JH@_cEeIWckTRcDL z{{Rgw(phiQtnEl-sb`Q77=E?@_5}7PUQy$(5>MgyUSMzWUFm7$0C_)uWxB%0663a3 zaCfTZ-y_*_--~wMjqsxAI&-FN6*JuFVhLF#VI^gC{P&yOp`6sIHNl%XJ{f*D0C=AC?Yw zsEtP?p4io&gz(vs(;JtQ{N!0K_wTp2uuk11Y#*`qC*RL zQGm<`0Lkos-$D8Tx`U`8tA;x)AIgl%?jz@C^<(E|Hl?uc}K#G_rY*zMLI|hHeo@Yypln7Ec%9K-n###eY{Un2RH+`KLlz#JXNo^ zSJq4^Qkt$Rh@LZ13oMDXuz73}eowxy?t!SK0(zTmOc2{dAM=$JGHoh2-hhtZO;x>5 z(;WxaJ|Np}Ju6djy;~|POmzV%y)^HVQa3JnLyY9(Bet?VJF9(mY~SiEC6#Ue0Q20B zZTl;HjB}40SpfsL9IH2}I*!rRo)v!?uD;Q&0)?d+gUT|@NF`XW3O`pq`PV(#pTl1w zNad!lYJ(wWni_E?Mo8K-?c1Myc4ak+&(st!_)SsajRhqF$NA|dsa=rEC~n9B$;jtA zhjkC(UfF!FlA@9r`guXZtqi~QSLBavRdml1VRZ2JOkBX?TquqY7gxHD@8ZyXZSK2& zr7bOES>8G+VwDEPN9S-K)DET=`q|nb(u0=y82MNp$BI3F65p#jRO9tV92t&VrOL-}R9tk83-#SjBH3TH9mOkT7R#jMXM`6yMfxc#2-#MVcV0(MtvJyyb4(m}eGn5C^ zJ@ce0CXz9Y#Cvh3G}Q>zEwOBVzB{7md`d+~*|SQM|HK zv#QDNjC=jGCeu}&)aXx`7km3)eFlZl*Hc|?&u$aQmGD29rgRxAoWt-e!76q4;b0sASaSz?G9e4c*)0Jgq${{Z4I_^Np+s=N~L_TrLD6sny; zQxkFKXVXjw?gw}J;Cmf?5w$#{Z9L8x#tSw$_v2p_za1SNcktu!4c1i6M&^d&P;Qj0 za59pe>cIQ2ar7fznb7ef%n{`|#)k|wK#ot~Re9vFu5h@^a1%)-Wo+SNZLGoes~`NJ zcF;)c>K&x>U{{3!8|CDWwx8BrYAPd;+=_WyFk2k6_ZS0P^iM@xy5gp$DjKS4SZP$Ldppof0Q7vAh<7Y!NE8K zJa!tAbhTZ>qWXy~*87gx>aAzj8YnFC4#9}vW8aS2+okQDUbjc1Zlj}Mw6#H+YK_X9 zqGOD(_aociPO-KurXMXD2vrY+-C0dqW3QyQ$22OA)Ri;(nO#B2QON^5;P64w&YkHq zX1-NTTTLu9(JYj;Q3uMwD8qS0k0dY)A|6989rZFdyF*$ldZy7sbh`Ctn?~-S2@NP; z)TS~?Sk7^PFhdU7chx;Nck2t2%I0pLno3w2x}G?eT4pilW0wAz6-WdUO7;YUjT4v! z5QVNT*r*K`g;%(`ic-@-TFoOGM}+!k&!{;c&@t?Ld+PrHviM`w9v;_644;&E>Z3}O zrG}t1k-L7i3+}tJKm?v~rkx9G>CT#i0m7U-)C zfAbWJ<{$$MPxYrgvNQYX{i3$auT5~f_s!r^ zSevS8YD9MCP1gVyEkz*iWKQFcd|>|ita_&TaFFt}3OsP+{{S{f zLC7u66NdLXf%Ni+00obAd^(0ak?S%RIDP*BEtE^~5kqe3DQFhkVosioBz1+Ws)TPc zvB=DMJ8^^GRefKDy-R4MY2l-W=^Jvh(A4k19mWT7_SBwUqv+1FteJZD-%&|;mnK@$ zTrp$wob4Y%F|4mhb&pNP)jbDxH+m^Z!bDWD`fSMr{{ZRd>8lu`(Art)@(j<^P%jR; zTcocSO6Kc}ZRkCBQXD=IOR`eTm-Zrsj580S|kJrCe5qUmb2EoEHMbliW$Z@-o= zB;T1O5(;hVz09wSXN-5#n-^5sZMIphej{`z@k+Zg$2~^LHKceaLZ@k`X7CV*Um~EPKmu3b1Au0G(9_%xLfHde}3Ok%n2!C31 zMauDMnp?DH*9~>Y_>C|JdtGN|WSo+ufFr_yI{-NEoo#)*#nLvKdRiF3tB?dm;9~>1 z_!^ks?l*b*ll~I9+#|1}=yrQGB=JYIOsljrl;m#6+D>`fs>7&UUOKL5=W*oHrzMUC zGxPFz*EoV`Anjo*({R>QRkiN#D?EhaB+p=bk@wU4rO9IgTDLn#D;Vy7Z8jHarj{FB zs)V%CouWrgs6J2B52lH%G*Gd`eqe}&mPr97SqCTf2Y?3|&>f0fOzAE6JM4aa;%B$p zWWZWw1j`^Dw|srHT`W{kAVU#}002f5G^BeHc>_*=HYwRRCz(?y-?zV${{X+SKd{oV zEmWCmih;Y_An)}0jWAt&Cxbw9a|iI*fkIv>PxBKVmLDVQ zsd%M|W+*(s#{gwP`55>AsP?beCInwdNIWps$4`p$w`VtYDI2W5#j@ zK=%Fht-GYIl2p*!swo-aW)aB5b_C-;ajI;WxMbaIR*$EKoNzC2k9c|06zSpVZkL$W zRYr`{33#ZcAbPO9nGer#svoa9micxwSf!qJqNI_kJcfTjknqj{>`n%L+UeWvnLIdJ zdixB5o@kSHRlPEMVYN>67evwZm+@|~{N)|Gtk369MIda{l6^u30|XxUBj-*K7&ZF^ zAX#-PE=G}+kQ1ae;XMrTQkcXr%~};>@;G2m^s@FC z<4#ZE_rwbvDRQE-tyC(cvqZqQK1%&Gc=-^_&ozz(s7NH~AxHW~z_MGaEEF)SiP$vq z6&u)&zl5b>IsMC?)M5yrM)3)WRjn6ngPfp{{T<`>fDQ}ZBf$2 z{ClaRhM>f_H3x>1+xbJ)oaeT)c^*3J3@*_64(tFVeYW94pP}P0G%>s=rI+yE(X*SC z#@W?(FDjFK5qW`GAdr5dRk>&X0L|M_o40_SCup+%VJ)y;E_2kqKj;4d>+R=;G5(cd zk;&j_2a6sfuSnf$4^QjZ+>THI4DW!Ta|bwLcD>MM>11D`>dgB37-F`Ew3i zaNWb7srbhyolAd>`qnHA&YFy7g-{#+0A$np4m?e97EddgZ@-0~5UFY>t)ZkBI#?qw zy$B4-JCU9V&$gqo^cvdjalPWxb)>76iZN(ZLRT0?AJw>==i38cQzo$3E8_C*kid~C zJ3pYYCj=aK)k)%)g)|*OQxukaddm{ZsVEp3RXu?J0DV_=5BiIdG>r~smiMAZW z)MI%3_+LG({R?ZHnhTs1@Xb=-tgK1i0mc&@k3Vff?j9dpV(MD^WK`10OG5jdzyPdZ z<0SS6>8`NxAHgbXb?IzfGjx>CR}__R41g-qg*m`u?ayF&)gwLPucmHO(nCn6^7}<( zGPyCywYknUt?>Tsk&09r)pTwNXbtk2`QMa z?=erycF6el(<(X{B~++*9LCwnM!_6*`)cHut*W}_mU}(7rKsR(GUj(?B|$%>bJ%0) zod&;j1^1@xu~ygHe=h}L3;_pj(nwq$!#K~^TI?>nBkByshRJn6-TbNvx+HPjkhqrp zm3VEn_Y|duWrZN8jK>=y1TMMB&IU_;PsX2J`c?W;ywP4ztg=(2fg+t-DGeMPpB_}QNE!#F zM>tH4nvW?PEOvW!+M1%_X_oU&>QquB%@aG2Lh_)ThQ|PNpcjgI$m(hmu9kRO2P-5} zMnQ|=4o3uidC}Th+Pif`cM3SjtEP3DCsVY>%5tP1Vh#`Ot$L5Ey1S|>E3S9Ttksnl zHjYZ^G6$aP`dNlMjY)(^Ccf3mi!&Rbw}l&{qME8h3^aw=M(iNmKm#QI0B?OCNtUMF zQ*DklRH;QR?%WPB^yi%cgU)7Vfte0S%H(6@Yt!AQq;MgK|-dG}AOpPjT(_(o(H6gRzRR?SbD& zF7;wEJ_-5L_hOY@nBE)}pJKXK-zv>AgfA-knR^U>R;?Ou!?k~0bd7&fS?-jrNoA(< z>Y0>`N$($Sao<#5McivB>Xu|J<*5O-{AXR4Yw>2=)1C)K(e_CSTq_*UE5xgxD>*4A z__Orwtbd9#I+hDz9W+~<;11RRJd^lvw;mtI#m{5LP`$QXd3o^1scqpV6ce;kWTR{# zF!={jddq!Pz5JTWcZ{CfhkbQz+;lc ztG!39NE`*vw;HtRT|+M=r|V-3uJ``ILh9Wk8x#j(Jh-04L@bmNS5=C5*@4fn&ZW)L z)SE)2k~Fy{KvM%h@2QVUctdlcfY;8XkTOCrEQ_CY@2ku3`}lXZ__fr@Pt;dQEw;*R zywZ>Qk}h$C2an%TdY_53!e`1Q!rJN^rwdS*)NdQ=Bsk%=D&1W7N~COk;{U0bej@o;`@wN7Q!PnW&DEJDbN1Q5jZm zN}hSwqIAr0)Nw>{%S;ZvyN=;P>bXBfFVuNAtMJbq`WKWkxF`nkFN1WGaFBvF(5d_t!Vm+Nt7_wn*F$%dY68l2Qg&zXQH| zYQ^ZzxR#QGD;JY4GR>Y!k?wvzns=*sZx}}DF(dU6N;gOG1d~hUWjco{{qWM|OIvWd zMb$M>(#3Ui3^5jA7-BJvgSq5mR}Y4LF*iV5Dy~vROI2mMMrrC{jrN6}G73BAoR5uh z%~xAUme{FQSYTl?$g`u6*&iR@QVXYveOmPtQB~gRSs_t42;?K=V{!TR8p8E23g_e! z7~s~wVhG#Q!5=>>NZkBs8d?q2F0k>7#OZocriSHoy1_>QU*t_p=kp3P&eA`=4{&u{ z*Zv}JSA-Q1bzE{l8xevGZH#hoKhNu`nu_mgzg;M=9ZhhGrjn3<&C|=cf<1zcc|ST< zZn^0?NhNz-yYkV?Au60U)g6X$s=RLtMUM+$d`0gZnicwvRD&!{I*Wj6`+&=lxj`B4 zt<`e4(A1t)0!__<+#h{8hOuVA2thr;*RtUCj7*0Db|-=Eyb;m4sd(WkNjT?7RQc(* z%1z#^k)Lfl&l%EUT(MRdI6xa-+`?}d!KM_+!3hxc+yS;ZU%uJ z`2j0j2I~r$ec*G9V@>9fBB%yQKxZ5b>3QUkVIm& z`ro?gA0u2gyFn{xp`)d!u8u4`QL$Wi$R8Ss_bic7k1l32@!M<~j@wZLdau9PNsBS@K_f47 zUzf6REXhYSQg8LQ>li1Ea~I?5@ULI^f#{k(t>`*vh((nCS9Uc{Zd4ZdCM zp~}!2964W{E5)L^mj3`Xmit95wyK1>%}rLGUda=>l^`7Oc-5EFT@`hu>DljgTKj!H z9K;Fal=*EOfM?0UInD?_xYyZl8UFwaeg}BTccSV(w&)5tr=hnjNVL?_1aC2;h+qc{Hx|Lj7(IqJ zxZPtKY@>+V)CKTqGUh$)uoo2d4~3VT+y>_LH2dGw?dG8f6;G?uPJMwL@y^y-F(iw_BbH64?pGh@uBNMMIyYLYg|gLjinV{0QCmm(VB`$2%z5Nz-9g3(@2YF7 zZ1Mj95qgUSE21ML5(*20Is)u`yoX*rJRkiz)$nzwWuz#dOWLlIQPt6kV<2dyg*G~{ z4I*%IKBzyq)S8c@`me8PtFJc7GH54;lA5r}LNKWqK%gIf3FojGKH8D=w?@}e*4Qq= z>3WjidzsPc~lXN6>d`G;!yR5YENw_(TMPbj)FmbS|^=cjEI zbw;0``M*z_$OmM31deb?I*ZhaZ1ukGgRQTn-Kf%Ck(#c=i5$QY*Tc3QvR9fzN5QUUMa3rRCfD3;+t-rnz-e%TOy#2o>4qB(5Q|u_`!C-!vl}swx<^8VCwq}HrI0m6}zUkO0DaltV|bx zH+{dimdp@wzlm4*4nLITAz_xseBFfxbN?X+EOr2X(h;9|8p|KH`h8jsXPe&JZsaDQvV*dd9FX~RmRsG3mswax^ez<;KO2^+z)fUC{ z$i#k%h{x$~okgvkM_Dz^qq^0}6?m6$l%1iZ9_JmK>N!8_C{N10M2ifQ(p63gaT=_F z{{X~Z6NQ`~@unPqQs+d_2I(JmvvsYRV_JU@ZGz)O`24-^MOE|I@hQ%h{3w8rI@49K97GV-ij4tX2BBY}~kNp-R< zH&^wguK9GRxLs(il)W!QR4vtVMkH^|F;$jnLCeVO<swcd-4j(bmP=^9+vko-rQs$S7!MXZp*)|1`)iVx7!gRG@=Oo2$92>GBw8Y`=~{`} zHkPghF9NQ3$mAUc{5w$Eul+#+bp^iy-vgvd=t`>-kbdLqsV9QHLvQPwWnDemwmE9S z*wp=)COs?%$Idv^lH1{h_olkN?{<2hE(9R7YWqW}_8^REugvn=L(LVSBuE39!kzU8 zOWA4|TdD0-?9MW-u&zhfKF8~-{{XJ*ZeAU9)U|fIV_e%i0t99XqdSWqon17vRc4}^ z;pi=C>q~{cnypEwjafk?qmN0?&(~S3tmiP057-4|kD|aL*Uv8vChGy> zl$WH6ZPPTaW|aw8m5xbF`wdC_e*R6~-CH|6)m}+vl&H%`@;!*xT;4ij(M3lsWxCN1 zoKT=tKu9P3wMo`^L2c_AdyC!XnoFzfrlZ4^FuO^~+I@nC`e#**k&V_xaSWE{f~Eo2obNlDXDIk%F!ueacu6 z#c}c5I=*ZCAL+{vOMSNc!Va32ZT1Y&9XN;PQ|eaH>_5k&J>n z`)kj-w~3B4qaGo9n+J*|Ut_Qq2RQPe9T(#5UscwvJ?4N@Q`5+?t-)i<`MCW#`tyKw zG_LTrE2a9IujBmTl1Yxj8`Dfc#|nFcs{6u@j;^lj`Dv=?CwdC0BAv)MK`3uaWBj$) z(LD``X{hRH9!L-jA}BaH!7O|0FV$vdHb@vpNG;#kUq59NsAe1oHLY%^9^VU$JVxmz zzsqsC^$ntTo;sF-BOH8?qd7lPJ~e81A!=GHT?GKJRa!Y&Jjo&$ZZf;RIMu<{V#!}# zj<#?X7H43<0OaG<{zFjVQ#HQgwbt+>7{kEiw(vP6f6!{DE36q~`aATr>_Ij71mt;+ z&d1rBTtbxBxVm5Cqp7+`e83}vZVC_koa!s$Cs1{FM%;>{)GfXv8S~>%M5DWs2h)sd z$A_mV`htpz??XIP(==jbZzu)?f1w&1d$h%BrIw!kQ!QdvW!Xq92h{%n+d=2a3}Md~ z#r>5QK4d;?SVe#+wEO#o%-$?`$!EQE`%BVxii*30z|*}{knJIO$|?6b0DU#gok7)? zN}9=SxBi@_pfazOI*f@OM=Ez8_1A8AgVH@WYw7sa)(9=>QeJVl^hU#$+A)KYIoAsK zfpq>U*7dT~JDPe#YFcDQT$q<3d*}D}*QR(BL)0}kIH(KUo%>g?S99bxEPZhj2eLg3 z(O9}-rsLCyE^|Ry9CK}qN$Zk5s~$kf0B|wxbSC{z;!ja^I`q#}+iFthO-zP6UkK44 zP0FPK{Xsd$>iTFUzIvECHcC5miA_~cP-U6(w4OmzkB~=y?VvRE9aYnJ3Lc=kes(vw zk3I^CT$Ytd{d>vJCq4PsreI-tj+n=!xD!P4#>$gBA?$ktiPA>tYn86DjwGq9p?HTh?-o2Axp(n$H0nX-MjU$E>uXq0x?E)@$6 zpfr+43o#NeshAIco;!WDHQDdSU~HQjvYKu?Wp<#Uw}up`$Rq)Q!vWtKWeiZ%+uXFC zT|`akM#~3N>^=bb)q^ibSyGO+miI$&Te(Q)qhl(^5&|;8(T3(H+XMlq{aqa^K}!ui zwkktQ7Rgx|iK&w(EZO6C+l@%Y>X6A8Y-fLU5_}mp$BmU^wX1}5#vR2DzyU|TgQv(nolu__l z{{W!Wo{Y?}M41jZTZId)yBNde#Ly37pc6wZRFTy*afsw%sKJIw9r*92jQjGra;7?3XdFy&ksjHz;MNCCWjTA9e2RlNNay|joOKP^s zSy2Qq(#Pu|Rk5E*_dgoxe+^%#EKN&I(^hEqMw=z5FqUZ)o=H8v-%VvaSDbM$T@)k- zI1q1YAKhyFHH7TUk3LgjynWTd;k-2dC-{|dYAPxp$ic&^Ac{#4kPGA6>+hXd9tcrU zMRvScZ?yBna)zR0@+FVUG>BZ3PzNNH8PCR_ctPRKmYb|-ddk{jrmJOm<)n#m44Cdn z?lb<{4c47iWa)n%Dte{~YQHafK}gRl2S{oo<8RS_&tE&{&@Ddqsit5h`T?H%y@sQnCH^F#=#Gq}py=ufTFR@0 zLu~c=jK-a}e3r=?%3@&T^+{UB{{T5O4*ZXwj_Qjt47|B43+!v#W(bamd}TltA;5JMSq8dUTzJ;r`9tMZG+8v0ACU3!wb zqPDJPG1XB@#AFl8sUE;~2lmqrr>LW;^Qi7<<|>MSV5gHKc*a$^E9ZMnnK zgeyOnCRh)sJ+(ILe++9YI-+W8JBe!Qq!TQ1D38lReIWCJ`+E&nT}5%~n@UefT>_sd zwL9anBaEMs@vm{i%4TC2=v{kRUU8RcN~m;wPsND zjXm;?mLJXrWd=3DkMpwN_w^oiq;z$& zC}o0H1Y{7o&V%UV2HX^**5)k?j4#uTzVK?ysZi*T8NnY+Y2_7K$y0$Mup7*2@Zp&pc^8rY~3|{OMJ2$+#Uz#v1)I4^ZFmLgQR5hzGu~Kwig8(xsN9#OI7@ z=pcetf(YMs<8!S}Um=Q;oShMXQa&hygi7M;_1KUIG%G0?uH0>OT#tF`ds&RpW z3DESZa`Iz2E_bBt(OZh<_6EuQlE~J#)7>zhWb^jBV6n)@eJeZcO`s`aIQGu5RceN5 z#Yu7st}&i5q~t*~IAel4bE=7<%fo!)LHx(keaC;s&d9-QfTSMn1;oV(jKR0g22#MB zC;jy5;Yha#mMCX222r(w{{UmC_fbpKB6#4pF%g*ok=u|IeLM514A9A2K_8P-w4JTF zb%ey8JOJ%L62Fs^3nC_iY&h;{?g#f)5;f7aj?_24JAKodD|GP?(#ozl z8kl(a@A=w=A*U?YKJ*w+`@E5DCb~|L33yk!! zidtyUyS##ABWjLG`)lN7BuP}H+AD%SUPZQrXH1YrA)K|Jd9o>n*! zw}J6!;f%{}9R2A-p}xyg3PU8;>s?(DfNc_@F&5~WPqtZtlXiYy?&`{jz zZ@-$Tv(#5m%qydcG_Iqbs!XerJj|%aqzq+1KRU2&e}n%3#Qn;GDD3_obySx4n6z*` z2E+u65(6GMqHiVlNn1)}hK^*(#L9#-AUu5m_!^Qm6%^1G5iXDX zG1^UKCGW2)qKcjrC8;BUV|s~{@XDZJ6W{yk&t6ldRSXqkmMA}kC*&uhg+Pvz83`({ zuwjFroaa@g`|%^<4P=#3Luj+x-WggMWLb>uyc}RDARoVNHLdF2q`XQh>u+@uGsoqY zjEKQPIZ_m1htTIv3Tg*9)dXrQ!YWHkT~MYp;Ym0g4hcU8L8<&oOI*{@K~qx=nz@kF zeq83M=S=OEm3@f!e#LS%AFijR5J>eZXC#038J{`r#&u%!O^S+&+iIqwSYn<>N{XrQ z11?(uK|HPi$mbtT3+4m`Ug zjt*Fi_a547FND2m6;zeB+iffqHBlu+WeeBGn90Efamu$KuOCj@ytQw zifrVCjxpG0)K5E3mYSV`nxW~Lq%wj0%XlpE9G^%ha8y-a(#QAH2Pwy3t)uC20d6ao zy2rv!wzTi8HVNm3BeTtg(o+4%^rZq0IVj+xf37wdbHlqHZ zfAb6#@6T;@6p_;;WNe6T8v!s#lCpNeJ-0bhFu)ugF|6pmn7ztiy4fwYQagD`h~*f3 z;GNynCj+=l~6U(;Gew3Q2UNoIyA5iR%0D?GYeEw;L+6H>-DR{aFo}vr=2(3sI<|ZpVWJovwgT`^(<3+1{CFwPt1-&Y0 zp<>fZSl1bVRZw?rQV!s90Bq!7@O2)gvDo z5yGvX3Gg&Lk-8Psl{I$SFX1*jr1L;AC0vj^@y9&M*xsT-S(L9N5(ataM!FWtw8f-o zc6mA62fMc|^x$BBeK$1d{&qZM@(jZH!7RA_)Ms8Gf~lK^3#NbY}g zs(G>{aU?o|*kbhDcElRySpv`947YSOf}YjY`>b9ZqYR_`J zR8>$_Nl$E2!Z4hdkRHIF=^C+oN$W4oep{rh(kopqSd56s-4t2%$bJAB{qd<)3R z80eA(hMtxnv66j;qcpjP(p33jj%JN)T*2axNL_kD6>2)aGJq)EAYH77;DN{PH3PQP z*43dBE@KBDs~P)ze%ib)wcq_jz13K#A~VrDm`Op9aB@z2cOT`d{{XFgHR|qJ){LAh8ajDQ`k~GM7R5{%{LDvA=zrqy-JW~y_k0_5xJ9{7Rr!7M~F)>G3 zV*daSW8bjQ`g*#WU{8kfLNbzp$X6W>aw|beRQdgIiG8!j0}OBo(~z;FE6RG zB7UX*k;nF0oF)qOC|!fa8t$RL8VZ_5f&~q>V2ns_ZCFs=Exk{^%S!DeQ7U1*w`Y@s z-%MAdXzHt^gQ4Mu3dqLhE~IQe>99U^&kK0js>P1Z3d`Oz%@&+;RAoT?b!tTINP{{m^QDpNf`-DrBs5@~}<@ z0dH}kH@n>pH9Y2UwE_j*$Lef*bEaKK*5AXLu0JJJCOB)I<&7ZZC4IFtBBorpV*_sBe#VTP^<;k+}Z=sk`)(+mGK|o8o=Gwvz5FmA{yUB86QILCg7SJv^Ub?d`3n zf?nKqXuB@E9f!DD$iyzk(H{V)P44SkLuI+z;__MQrb>e(k$*8+cqB3HpMP%J8&A+i z_0Tt7yB$jFOJ%I1qBN7PT3MzHOCbknQI387nmu`{wnIlxEiD}!vr-Xdi%z7DayP7GfJg@%{dMe}E+;ww_6-iZCa;10M++_0 zB?f&5aHpMp;nlaHDeRXDKN323sVc4!tJKk2+2m?MR4`cy7$=-@*n_R9YTl9QZqyS) zS1>@*K@@Hp5Dy617~PI|$i{)wP1AAMAZzjG83{K)h8_ZaYE9BvJ{PD(`pBv9%Y@3mGPS!uS>Yc}w!geVAPf^x& z1$my~3oJv>2^lMa$JFS}lDnXrrzA_qP2BERuQ5`J7-lI>+0OQG0c?TD1LHyNJsVL& zejPJ&uZkL`RdFnJNiCbVdJ|uYWc6;vc{<$Wxj=Ash9=ZnO%Qh&p!HV;yT?Z>mEti?_;@`oR-`iH5ykmfe&NqTbZ@yx<^4;UPg{+QF+>kS>|IT{!O ziDX>90VMqDJ!+<^ryJ3-NZh0i!2R_hp{Ov(qH!t}{a6?TeCl+p(o5szGmR#u2xb-# zJLgN^DWj4oe9DEDLN@X0!1fjX2lAqQ(d!^g-cK@9SZqyz9zPt)Q%#P7{jRhH=2h@vb@W9)S9$6~LouJV^^ zpyj@!Q`(CavFoEqqRdGB$iZ)@(QcQvQ%zqyQN{sG?LPkibEBUvu|#C{-7|~QohB%~Nn$L5kjz*`%j3nAxXYGNHf%Ac; zo*#HIVCo+Zt@e(fvqLh}NVD83sL1@~Fz%l|k~uo9t1Z`_p6dyEY6=NxYprv-EjQ!FLBy+&V7D zYPVc0@JCHw3`+i75`d+DsAIS9u6m@k^{-Q#&r7dPOM155>l&gesNx7B$>EI0u}`L& zczyg)Zb^2#*(xoxi6Al2Rg)z1LPzRgdnjz3Ol@8>vURxV>q)1E%#q3#by5?|ZcJx^ zwDJCW^T;sg>5q^?JjVbDJ8fTX{{UjAMUHXf4UF0MDlOGrOLOr0uEWw^B~(3ao|Zv9 zElQ?gayUh(1A&aD@#iqZTgW$%+p6o7c4mbujyR-4(C&gwSvLo)vD`b zt%YhTB7i5C52RDejH%CKgYoUI8R~cHUkmzCE%5=< z3%tCT?2%g=-oWk7>ACV5hBe4G9IKDTo}TDSJ*rBYs3oa4hRHN&VUlBT|*X~dw0d04YC&(}<; z8aht)#@NCh{)%CY=XX1et-y;^@Q zNe#*OEKtw5!-2Gx?~MNdrl4I-(wAC8Rc*Y^l`9qXd{iyaH{%_Mm&d8 z{{WfXZ?I9yZw`_=l&7i^8K2V8FvD*>vG1g%@cyD`t30ZCWO{WcDxahSf=|;tYR0}+ zS#eQU9c)f^B1qFXEX{$~j>qKal`ZDO)4ee#=FuLyt_{EP^&rRPFzq15cLUC+zcOIJ zTH7S5ru6)I99Ucc0du4Xv=x8zFozMb1QFjF$-LG_Autew7z(3+HDb{COVu5FQ&CmX z7E0@^YB$svAS@#%lgQMIqCX0rCv`<#O&mQXUS@$j#z%#dYLkzAYFxcX5)=GqfPIMy zpZz-_#I`1y_g|n&i)_`bv3aW##=)4U8PRyCVG)G`fyw%vc_?FwLog(>eyp7=42s^^ z)^SDRRq{;dfB{>oMig*3*2yY1aC>pB1LW->YalFYNL=Th zHLGNxSC>>d*)T`CP=Lc4N+3vOUjoleMM%#4U#N3rC4plQ-~Oet&SsFW39+z<&33nPeTTqA=Lb8{ zverZSWRbupXeW;615N5~0-6P^kc5u`i9XpH+Pb1SE%UTRu)>$an;DK>XCx z#D5yBy)V<1cPeX)a2Q4!c_L>>#(6mR*E3xI02wq?*C?igs_xb72q9@LnMPdl4<7#j z-&GHXbsb#23)a@}5HA&S*Ho-g)4^XB9-6DQ)QgSMq6s6Z*#xlR zLX2eRkDl7XZ_?#Km21kh7dATBs?aqmEMym7*Z%jz&P|xyb`jqUnsqE^Je} ztKC?iA>cjmw*JHWE6UOMr}5s-S(f|JchbbTi6m7x_!w<<=Yzd>bnCu{w%`1zX1L0jhS1N!+DXNjM#d8gm1v&(h{-f!(USx*ty)EYBo^c2A_^u=vy9c7eFy>(n}A(#XPP>`%d~t=1vn1G3*5 z3D&(E)BS(aw=RzAniQ+HU1{2$q9*t~n0zoeAo~zBZzCDiANbAj7N^5M!}n741*55J zY`3!-!)cz0m1Z?0%JP6HO>u+^z}0?HPGO$G9Q$G-^U{6F};bMWdL%^h5n47HRp zB>Pe0Z&C>tksN_QR$OC_$BkDNk405%Fx(W)9CQyD|Yxb^++Yk;h^%~vI3rev004+ss^p&(R?5DWLaHhr*Xu*b{ z0CG1W;F0n>{OBWdi)?V5lr%d}e(FEe)}*$}BT~B7A(w0wTU0Yb4;z30?jUw=^Y5vB zB-CQtPbnBaTAkaznvKF~?=YH?I#m<{d62R)vE!U@zauAa7|*t}lIqaVBxBNc;DO1= z_W0ApaG12URsNkihSy5qy31CGR3DRoN7p23@U+r?MT`bON=6VdZLTnIKnL9R!THG7 zDP8KMma*y;+({DxkDTp2@_)-+P13hxbFfid)EMM+RFMD-Rz(0X=Yls8fPOgCJdvaV zt@>H@5T+DsBz2~6iRS`ZCz6%&t_LsZCxzUgaKk;dwMx@N0+AFc5sBO>600(HP=BX$ z?fM)aeKv(+i~k&04U80`Ae)N&O%KNh3G|00Ic) zo^=d313_PpP+pEhPb`k}h~^3@HnDD1lk#zL<-0D{_r z7#gF7Qn9Z;9DM3g)pf0MxU5puG|dDEgtIFU*ad(fbI%z$&{-Nd0YalBZ+0hvf$gbL ziWlyvI)vVAwR;VcaMMS=HJg-;yvH8Qf2aF*`{}Lb;T+o*7T`Au4+kIVq4#^z!iyXS z4JR(k+#r_%n0kMsDr++wK2GgtIURBF`a6@1JdZraun0HN36v?{ur4o|Ei!u&yS!yaa}h4DlY}`b!`32Tc4}@PDhis{0>QbWc^lt}kPW6w$!?!@Y3}BYkx6CGOIc=m3nsWLC-9?;5XAyd7M+u-dg0s!L!eQeRMZW zQb%9V)fR`k(8V2nM38K&Os+c|9^mH(jy;aK_pGTZEESakT+FdEKph6vY&O#0u?LM$ zhTPGqX8MFIjrSi1_xzK8&r2mrPM|24xFd`n0ME{i^ruqP^ru!@dXkjlqT6wTP)F(@ zI4AtL)FY>=ns^)Y4#ARCloQ+Ix5h!#x2G)C9c9+m{+hEu(p21P;D$9-$t=zX82B1; zRy44++)}M$i(Cj_Vl2^9RMJ6lfSr@Xk|4+QvW6e)p&eOH(Zm)YFyxje*n8?}Y_g@g z-A72STk`brLP;I=s9*NfL&STDw9~`3hI+p?Rg8Hg0-5Z`J;%^%#=4{<9wG+|RfUpd zoDftVvRX)ORV8T_U8$5=6Bz@NbMx`2XHZGkQ}p#eP}q{2$(iJWN0D~^UxBm`Pc4FZ z)ub);bx;_jx1;%G*^dXzBydR77p)z-=ys)(a%q)a@eM&~2yJ+*LK?NrjyB1=ex zqU>84&--e)@ba>$DCuFIG>#b8VB9cU16C-zMMWHmF7+$=a0XwGZBcX&r1Kp4=!0#d zJDw~0DjvM~pO9GJeW^XSQNvuAlx#7#13EZqY2u7V%eZ@;RkZzoU2MHYL03qT#Z<(m zIVtW#duqa4ymb`Y@W2J!bMdc3@V{N?#}&aPys@o-A^#`khufts>81OS}RP;b+*3fDjWz_E;b*gKi^#EW2NzaZmO=Ly5H(&r$8jYa)Al| z00<+tel==Z`l9(}>By++qL!{IWn`*JBqX~7!zO!wzO%hotg|9r!$Y}GtFB1tC0B}&rdCz=B}Z|beQ~Z<>dUND$P&I;mf%5B zDno5Z@^Crl1KXhwO?-Dn-#tu(B{AxRRp-KyrCGvu@*EA}z)Ijl-l$>M{yBNslJ+x=3E>9g~ z_Vam~7}BAYDeBpk6-NoT91=L>chpmF!AQH8iOH~bxKtq_=2FaH2q1d>?^9==xrdF}7@)NEEYNRnNv z8_3zf2LtGIE~W(z#*(AYMaT0t70Jd=AKYnbY0#r^1G1h!-&6jbtZnj{Y|bZs>VHH0 z8k44Csi(Tn71gBxKq>JNjDwc*bKg8|$8UWFSRj&8)iS6cfTuij?lGp8dE%a*$(gq0 zy$>PC2S$Wq^CcxM9V{>i(L=W5f9mf7?-N3OJ&|SJM&L;Bs-RO7+vX5mffqqLK=PU*<IFBvHmWJXvKk74br61&67 zyAMs%UM_W1^%c!3ne9=3)`k|0GCKo|)TcR!@@4DwA+m5r!Ia>k%@B3Jjk)!FwRH) zfzxy6W6xT4qNMcmEKc8nMaims;DOqCT> z@4`86ZT|p&RtB(rSH&4HweiOupb5U-pTFPoTU<_=3DYUq{^eRe5m{|?c4(~-Uuxd6 zN=Uru#7e9S05VU%@5s~76nr_i(cTlR`ZizAbsZ%*rgLk7L&FZcRKOT zrHh@?`hk>g9s&3v-M05uPh*Sq#%vDXKFXVt=V0*yo?CVDqPB+XZBJVIqnN6DHcw;E zKKyDYK-T#Bo?BfFTrsUIKz?Fuh7q1jjq=zy*F$wrO>|#d*hR;x)*3sjtDnr#vd20o z=V3kDjBs_#-BZvVX+tFU9)`P7buF@LaU+P_M>57=U{(#^p7=a!{{W%QkD4DFTv#{( z-^vfexIbc@`ipJ3wM%+$7i92){{UDzX8Rrff}jz)Y^%q?=f5~TwN`ka*7RLm&w02_ z3{zE{I>xvd`6TjAw(1WFyi647Q*i0X?Xk@^z{XW}bMy*NAHIOocsJBtMom1j&pcGF zT1Ab0N*9(m_r|?9rS$%dgClcaFcOYPqDUWYty5-X<;oo#F<5rns-o#vRY_3sP}DJ} zW*`Oyfj-zjeK&`#E8s&#PZG&g*OK9a7v)YjJ9W>{yL)g8|1A{jWzJ;>uH=Q`C772vufAO@Sp)oUz# zH<~33V}K`>%!zlt(|OdW)3VIopiuJ1P3M;C51TAgE8_(1J8|{bXG7tqOn(fgrl+;j zPjRY~%clWD5(o7UuBZJC_-*OyreW%x>m5ZiORz>TaDC6Vao@hHr~d$`Jv$k?-oyP( zC4Yl52)9ZJ`}?i{a8`*~x>t@^{UG{JvD1$+V?t908V7Z!uKdD^SeyArcx~7R>7o?1 zAkmqeV4=f|>Yu0ejE||47bIyc1cwn@cdvT=ldgzq4r#keys-xoyD-Q2f9<5I=and? zsi%F<#xl4ALhCLR(n%V{E0ZDYz1Q!j)RhWRshzh<7k1q9jX;OQ4a}ZQK;gJF;qFC) z&o#iLW(@#1gzAK{fh?{L;5Zx&IZB3-V;`149{&J3X!%H1W()#yMm@C{s_`50b3s%dWXB?RiS2!yp+;baTXIpaCc8pieKKLzs58;hvW zCt-VD!)o@Wx9D)N<1x>S0!{nV9MAcRpD_wXO5;2Op2t>yh+RF_)}Io(hpRj`qqkq}w<^Vg=MBo9Hx$yw z0m>HsoHudKc+~f#x=*KTpi29l9UN6M6&_cXs-eD_;Qs)9Kab)l`ahL80oKvqzkBvp zGGQFJ%L%R3H)!#W^=++aO^)R{7RcKP!wmZz>dvwLBpe}%;n5vHRb$3d9o+nKc+`^Z zNz+#9#EZ$K5w`%VcVY33Aq7R21(JHlik>LJJK9wl1Cz#nG~}K%`kmd558|6=MQe7} zRY}(VBiuTNt>`+QpQA3((^ApBD@P7fK3ds#<|evB;dR zIo*!@cN*wxe_QxjA}cpoS_h{D8ifsw8@BaFg;fPry0XhE_EPmIPJRw_!~91ney3uc z#drS5&KzNZqD4CCU&I%Mhovd+be(T1TsEvz(bi66{&^WOkl&<#=Exeit(`^F_qgpB zi!EKcNT*fbHh!;X)0c8 z6qbr9Y8T5hP}CwY9rys_KU{liC;GOtLL+u7@HgzKa{6pd1>wiP&-Ps#`N$)DNa1&2 zE`9$1eQ)TI_i%Oq!`uU)Kg1~Gp^A+rc~wzVGabZ?cRxDKJ=8#fDa2wja!DMK@2^Nc zFU4%4IY_Q{?0vr9KcdBbBdcJfTh#CyUn>6q@gecnPP6eolc9QktW;ULP)|iPYQt>z z2LsGMU7!Tdwi{i?_>u9-lfj<}@10)^`>u}}qqRo7maC8ugb#$}&;FmTzB=D6mG^s1 zZTh*@DooK=$x&4&n;~Z;JMCUMU`fd*SDibnf2~Gc7@!Sb*()FrTi&+t)_Kt@Dw3ue z3F+Z9v9)RfSVo27W%84bxpET}5r2y_y@~ zsHu#zyxH5fFg*w3)y{p!x;OBn_*ot}^;6e%XGH%14CxC~16eVYgH-*+JYanP08#c| zsT$Ho1Z)7R=ex{#L_Y>UfU6&hRWkUk^b4@#4SHgboYv#Uu)?K80l>Ece=`ZZ8S_u#}Z1)iVjJ@1K(eHyj8dLH%@p%)G>HR zXN2EqY|=wzq=*DmDw|bfUfEU7)%PF`et9~gJH6Wf08t&nHWlwxB2-5qB1MxY%x4FX z-#lt824YW|0N-l%P7n_WeUjVxm?fI2HzcH|J&)J>{{W`1euAI!bTLYd;+nFVJk(a? zFdIVDbDby-qdUw}1a_;)H*SsId9gS|7l5x4&U;m^Aa5r95(?WM{7 zMK7kiRMe-)uM}$3a!8>^r)oNG<7)1~z{v#jr&M2-L^01KQp6QdubV1?7~>tgvmb+? zlr1c2x(OR2AyXti;0X3QFG6N%0GT8qAAUDV6?T;hpktGq>bwv(D@HA+WJuPkNYtk8C}G+bG06auS%UY;#x*Xd zquR?EoIIgQ@ABnyxQ|%_Ilv4CajmM4<^++7S(cs6G%%|$iCvl5OLC;}cJq&YaNRsL zIM?~?s=CUjsjR5p?9$0A837n<=bk=vBK>g`v}b>$%-eI^m0o}CryWaJu=Rz~B`d_u zG;D`(D&szuz|Icfc^pk#Y zPtfY<@QcL0km-(_tgzqZhMuZfi^nv)ZUhVf-MHImX@wzGJ~rH8g@qCV1ISRgs7w{l>3<1FzmHbxalXwmXFtQriSrTZGJ*r|1%k9#y=2J!G6mVym#Sd6SvXPY=a06dePwK>>rS7mvduZCGN5>- zjN#*TISf8|_SHJqUmTr8bp0DgATl&-IJ(Bs?hCl`KAIaP=kWzcERw-(vDR!r7*p3Q zxZVE%TP60aPyc}CgnjQjjQwrXD8d=RmWId zzv3FZ-7tokT9#o^N{|epg@)V$4>%*gxNRfhb>_!Kak=!HO$VQJfgUH7hn76Da*7Xj zA-}NDJFR^kyRAgvIk!%)M$8m06L~<#{{TxU{j;kmnL?EgboS5z@4ALsCa$8sNhI@< zp&J>=RRs1QO!oct^tb;250Aqo!qSQ3$6s3{rmCuoZGw(<#EBaWHB$rIaL7UMOMGez z_!ayg^gmraXNo;*T@}if&vtrPth_Qj@r8AgbMBt7RR;&0oN=$D@hV257}Zr&00N8v z2Ve%NI;T+8c=7%}*+XM1a+|ub;S(U7cg6;V-7PU(07;_^6mC|s+r~AG>Ky^GJ6C05-lrkspLH3!^o^>bg_aP|n3sCA zY(WR-j`|5v6)dX-L2}dY3Y&rBjCT8tSOSIKorzpOI2*H_M=mxhg9LLsg_Z{0$7UJr ztfyb_{MhXhLlrf{diXs28npHrpdtyL_yn67iwbt1fVa7mcJQX*srz7KPa7rFSc zO=ZQpS72v|v}C4KkBs|%`k&rlr?|rsRmB^*?lH=YchxP{v=+P6k*Q-0NhTQ^z6Th` z$<`|}IXZ0g$qtuy8x^YQ@?-U9hR+`!+h5&+)S8|HO)r@AtlJi%E!-YI zsC??d={~HVsrk6Wbpi z+E1c7c3zUIHB{B_EHV<4LA0N))jq&!XM8yrBe8DH+OO`mQbin*006PZ%GT+Md2iB6 z@>`h86M0UkGI8_Hj>ph+)HeyMYo1BB9nr+k=|&y0KKeP(X4y)c;4#HH<;FqW56*^o ziQ)k1tJtLoYAI?F8ce7uA2`82+K-Qeig89$oOKgaH~khaT&%2|*JEP}75gaV@1ze? zxult7M`;L*pdcv6`|7{zUY@pe9fDgW&%^O~O4u5fo@k|SIsuPS5@UEId~$ns)%#$t zTgAPuhGdDINR2Q!1HV5%O(9b}R|Jlhc%qfZsy2{i&OOh@ulzrlI%R8lqqzS7bU$A! z-{i{QOL-sezDRhp(}IHKQ3M?|bfUJ2L((mK6Ety?!jd=&eY4J>5cI9mvZk&o8(nPD zMHiflNTzR2GnU6YK;-?k^y9}n_lB0rN@@H>=@_f2WRYp)+X*u4B#p`keY~A>?fb$S zKCive-v0m$T}?&&c9^n8iFQhQlL%fEsQ{KB`|*tDUiZ>`Qw+Gx^=-f=>+GAK3`l&^ zC@wdgnCRZFqPZlMAIgd-PRHP6vo1eQbIz5wRaZj)0K{qGLoGJfJCGGa{Vjvvo(FwO z{6^^-j+$Z99Z%AgRxYfxyz<>%s&@YXoK|3C3WRXOCj@ZAokprJ=Bm=R<+anm2G(|p zJjpD8U^_c{hDY>{GuUfs6ryGaGy*SwZ^2W!p^n`BkwbBhsBW-Ubp^%I>fKFMOmvC_ zcAyCgw%#`x8M;wf(`$%HB;FTSYJ+t)C+8R;i?w(*n90J1czI4V|xBN9h42UHo((~NVIoaZ^zT!_mEYej+Euv77+);Bb)o{VZ9w1%d(l&3!;|fXSv!tpKR%ViGt@x zLfuT$(s?Ky8X*$1xGmU%K2LM>(X-QaZv($i^z5<2S(lK!k0b73>ttX@sP-%M&Z=9E z=1X8~YQF^ZnFKbqB3=u0k44sACyKi15-l9hSLIC_?W>1wPY;^=B4AzLb%%C zexZVR(b&3L-A@6FYZ%k|2<|mHhs$oA@>ZX0ViJNfP6)?uolcTCa$|f>9F32$3amZY zZ)~uV4X=&BONEk?sxCLAsUo70<8WGSzNTMK*W77odXmpa(^A^)DN@qc`B6g$nf$a?{X~xC zhduc3s7Hr!Rdlb26cgJmty5D^GdvL=>mVM$kTLVlp7i5Yb&QfYkMf_w<&t@%iAs#K zox6bj$Ht@0)8dLCKbkgEwQ*#M;C#~N%;_KN*t_~EGFRRI0E*N3=B}xoyoxv!0tx^? z01iHR)xBk#q&z>cNk!BYLZ+s@73DEL3G)U@H#`Lx&Y*SouAQT^&{oG-e>3K+Y@xz{ zozB8J9l87HCHJi$P?L#8L{2kQjX#+#Kc#ZRuo%uYmdM7FsfM&PwYR-(WGg2;MhDq3 z>Z+;WuND0{SpNXRqb4LULzTvJo!-YFbMdD3x=yEnJ*m;@=_^oOA!0e&{7dS`Y=QR9 zrJW(xHk){g+gWW&`XL;ZlhgSsHVG6Hxcq_!i+GWLwpMhNtE(WW7TSA6h8ZA;;EGv> z7=3U;k~KJF%^Z!vG3<5@KKzfy`~0S!8(wYkx-sFmOZ1K3tRai@A*iUS7M_*axD_&C zi|610gY`O{_`xkVPjtlf5?o_S*vdvJ>7QZ7?%^tCgV^4#Qu-yr`0eMOVQSyS~UJ@53efk(f;=DJDs zFvt$XE1u8Pki|bI&Y$*xpZT^b+SnnaB(VOfMz@?+B;)8 zAHKaN9-s8}t7VGJ%GPw1ZcE~m^)1TPWfIJ^_0vaENkXJY2`{yX2aVeR`N;cdKa4&$ z)KXWZM!6#p$WbAc%uRxzm(G39wlXzUcv0d6JsQy0Ohyi0}yBFBBo(hU#T z_E?xPo_$UmDJ+w&2~aQwkV>XNShuJSG}S5zhs)YH4$w!m1w>Fx(Qi(NW`tk6`} z*3OX9sLBQ#at~~uoiB-eQ-a3*B!0QuwSjxp6z(=8k0IOyGE3DwH4)3Xl0xK2pq3#= zzDAF9?^IG;tN#Em6j_@aiO2N(>MGW1-l(>Z;S~^5d9r1sEDlKStOq&zYFp90ES)z3 zypyDrg#tT)kVnAx#=O(R7@b|+Qa1*c#dhLF3LTmcbN$uUZ_+XYXV=9kU}GjwkQKPj zg;!W8UBu52G7swa)m_(LiEfne>#DAH8;u1`dRr*cuBE67%`9b@3>40Pseitz8^``6 zeio&5O$`rE-ll>TBhN9aoc8?$=Yz(*W2)rz-mQ%0%)=y%v9n2`{fe%}=~?z46KD~4 zVRVfTP19FYCEP;P+gzyHd*JJve;K|mRCqzxT_bn4dDRUKJd#vWtmZY9bAg^NQL zS!1b^?^Smm&dzMP+@`|F1KYS~@Xcd9#lck0+bGJop4*c*T(fOGN2mFvrN-8XTf zq_y=8Z0k}pDm^IWD>2@y0$e?VvRNB-`F243?EU#sdP`{{US9>L|eclzwItKg`KKq4A;g@IcMA zVn7!sgRSg%k+Lxxx1gvb%#ggfrmaor`u5QPd|TTjfPGJZe%aAme_zIvtaQ&;9_AmS zq0^lG^<9Wz{eD{G-#zp6(K<%S8fCxj(#;dvv|4VxBOzZtB;5mTBztF{KV43S0T(J)JmN2Pa5;yq2U)w z!pQkO@0&NpZS1-5i6wN}=yO%a>ZX5=j}+wUj}Xs6TI&4EXG?B^Rt@NS#{U4Q-(9>X z{{V^k*Em=yZdYiU+$)3#u}vDfAUKv|VVikIL%Rex8-oG{ zIXUBAiP5@rT{9V&@$k|A06(hF=1l1c)!kXYhwlX>@!IENu-hpsXvu(2ajk-2ky6AP z4(tbJBpeKKPQJBxf6<*c;m=Cjx-X>Ye=lygLJ~Zk%_DzQj@{YV@=4Su@Y&!ki@+}r zDY{~oIA*(4s!MjRRpz37xY`eLiP>}YKKiidtCE_$MI3C($C3vCYByNw#{kD8kMM~N z*c$~zhAmb*qU`%Uv#*|C_=SE8Ah|tv;t#_MEI*%AGIbRcF#4oX-mL%~{{a2q{{Zs& z*U;GZvhD{t=UUI@NfSjfE5_ifD<~m>?g;l9w`8G%%zM2jgcaF-b%Z24CUVYkv$sDQ zne^o!@Wxq(2B8AWlikN|-Mz+j)gO-U!WBP**Lgf|@aEhk=_$^4 zOvjJ#o;zb)Q6GubhVM@t^wC2^(uJsASnNC#jyq>RwvFJ-%Vyz8!*p>z-e{{%M*PEW zN`p>V5$cP4Wc;x1H~?g6dU~Fsq+~5kNl>7#m$G(@H#q|Y?c8(No(Ry$$ta>nR~^9| z<$2^0!OoUQY9b`l)ULet!>0C577@A!`4<-I)CS=EGC4&~1AxEH|; zRF6-8ZF-9T03+9V^Th|4t2IkAK&>yNjes+feU1;?O@BK)Ay%w0g~D!Fn2;1MRYGub zPBV<@g~m&L<|>jNRVbm_suPJD8D(Cvk4= zjsfkCJ~akpsau!V57V`*Ex|g1+vlKIK|4vM9%=anC31j@n+GoIFcwXRK?$PF%ZnCAc=-if`R(7 z3Y_Su{LK|4H%nb1SmvN=eYEt!B&djj1j<(hx!T*l8$x59D(PXhQQKl@CXHmCnIzdI zLyqq9^XTI^$mdW&aNqp)S~oS08cFT`{{U})?t)ypGp1_mB{SNgtcnr<5kc<0Ri&Dp zS(S6!-ygQC3)h4;I?L3tS+7;rXdTsxz>49so;DmP`;YCbgjCdqmaV9oSYlGoBodW{ zR~P~^N2?vq;&X$8reST@m?2z_0mp0)+fv&gEwxbmXEEWo-{o_U zU36bZ_;qK3@RjEEd3jnWDXt``Y=WjlL?5XSVoo#iMxs@cNowhfbQc+tTXYNjkR#@h|_^W)p$x`(cRCUsr-e=${@&-xa6Sv12jP*6bPN=;qTR)jiM!r(W z4maSE&(FyxA59a_r)3f5-(JhD{{Zmd@%pdA?-hUHi}h0uo9iZyigP5Mm@4y#C+F%) zAEW&>_7XlEoql?3<>&-bL`-r-%2m+g4cvbD*V^C07mO+6SAw=~psTAA-R;ONmr1gU+YE_X;UY3y~;kSGJF|Q`^ zz95GxH(1~V$y5(OLJRj?xm+Q!SrpZJ6PTgHn87SqEyr^7`S(i8m z>!(x6;%)1wXzjnj=b?xy$L3Q-k-VH9N47ZEMOkWU?p2V*QE?N-w&ujf0van*w%gqAU!u}w_=Vj%JrlOy`6{mELH_^` z(Nb4a)0C~JjS^_%B!(F0pM5)8bJegcbrdQD$_oH8LDatW(X}<#29YWclfewbCqDW) zW3$`(ewEk_%t1Skf3~V|{56%Cn&{^K8yZcM@$K*TRC0BQ*#lnP)xj6j|S~R z?Qod>S=5mV9J9VS0BSj9>#EM7y4kCig{hXaYrfaX!wiMvzt{KEZx#GLwe@G6U3;jL z^6fi3Fgs;K?!oSO&O2&H;oX9d@=;VnOB`uT1YuNUpk5cgp=yE5YhYBoy5ptjuXj3XYmEdIaFE77G;Re*!;hiCARR;I{5<$)M@t-5D>QaW zh*2btrk^V!5Zk$N$v-^y#;seW!U*cA>C9k82sqo8Vm`jwZF9H^PuEK${%0tIZb8ps zt0#3?aRFoxAbSh1-B-snx>(XbWz1eF_)lZ&dWwo}s_SEQtf;|`qOLgJaDZS0BLu48 za89ZItNbI?bhlC1){e1Sin?S+ny9Lfg)$wKX9`Y086^B`s4x8~V!l-Q@|fu>X(~!W zQ8ITP-Tk#Byjx|tM{JH8SgMYT3cH8_Ffgt1NF?jfyffq2u(7n}JlQ-cS^YFhT4DeS z`z}Je_#M*r2_j0{X_B2JP-G0zBa!-$wl@sp+vI9n(w!0E<$|P8)^z17!CZ1$RP!Vt zXW-?qKmd0*`s&Q_SEK4CrG}2#D45AR8BE)Y5_?8{ww+U5NzuJq0GjJfNQ(_LOXm4` zgUTVm-V~gUILBkgy)UKsw*#q$h~K%rl_dQuA|~q`Db*K5bhI=wPi?idF(1~C5kudR zh8!QK?WE}Bw%KKlhSu?hc?zUMf_`uhZ`)0}Z^s)nohvg=vMa|>vF51m&O5V#zy$jY zokZ{bTVTJ|rOGm^R-vj#l7#J$3;-Lj&ItqG-&gVFYHpfUZh_Zo*R;^l^)HGY7Yf_L z8oG(wcuwq#pI7$RXms~V)6-GJWsG^bFTlXpH2xVa{Xf-RM`OH0D@`o~QWPZaj5!#P z4DuVcyC6b=00S7*tb9?F9OKy1sm{nTI5Da>C8k!DRUzI-1T%5BPlhR}njkPEQ`iza zf1le#WRDBU$olFB;ul#_^wlaxYNCc&xQIL8h8*V}vauJPhD!Ef6LTQ4kb@4vefbpLiSbxM>^yiZIL6FXIYDYqMA2aV@~69%o7Mm#{_Ya z*o^C=yi)2W>N+{@71u_UQD;vobD2>}<(f$Q9N>Z5?W(%zUvKKmRZXI&$fEM#j71?* z8QoXV+kMIRIo5ta+^F0cvfJR3ia;v2=!;FZin6Y*rZ%gd2%YJ-5~xCgNjW@o?V^@C zl# z7Yh5bBnv!rO|-0rGTT-70H3a>o*#6CR(}yHtSnej2x)}UIT5LicNSv4{{Vk)eSJge z{{RepJA(f0(O!U=})6=qrS4=oy zc{~mW1a|MJO~>%L)HWM}8;$KJu^}!t#r(j4KCLe*H{y48gxEeqaGDY57ovq_S6@|n!5X!N>tUQ9YWAK!aA|? z%!`0{J;(jE(^sDco37*+h-o2)9gX>!V|+f~2@C$3sXTh{&ZnjPHK(n#brkh92+>nZ zMo0Y-^O3>lJ@vNm{{UFV$;!u$M}H8IH{f@m;qc^09>8tKe~MM)J&+cYun7zNpTT;eDybt^r%63XSNgrc z8v0N8XR%p2^TGN`*l6LM)>MaJhz5ai-_yxC_x9J#E~lxdyHvwGaseWY$+Tkx_c_-= z{t|x@=fNA~y)iWO32wT7E$eP?D5s?$WHSizd-0Gx&a@IRO4gTlkhGQ!)n(%~ zman6_+pH<5x{880lc}m;TX&oTsE=v$AKak_9s7f-;%a(2$$a~VQBy-B06>j$pnL*# z6#PYaztw$F;{(%soT5{)OZrs@? zNp(f;m#6I&7dncBj6#HgxB}dE8PzY;d!MgvbM4XTASr`(J~#;G=Wg4UNEDM`l@N?r;@%O z&ClgTSUiLrkKb0^o=*?uqEw>3Q>3Og5)Q%0Biw_6dkpFJVZn%6G}-rBO)b(i3IR=g zF6us|7C0U{y0Bb6{4)nU_ucc4eOi`|rRyt&O+0IOt^BJ$l_u#906mF5{k2(mLM@f{ zD8$#gSZY>DJhh%tzh?gc)r|iDmZCj*_>{YNb>dYgNOV=+(|EQR;{3y`VsMo^$dCdL zw;XBV5t`lyAAOWL8XoEZ6ZQ(5{6X~p09TI~daCO5x0+f?x`q_>LMBz65m%Kt8<%h# z>Lp#$6cwE@J!L(vSZbgmdBA@;+C~F#B=g^#AFjI-#@k0x_?2UzyUBaE+oi4 zH&4Le{@i_-l#0p@w!qN{v2=cL3*>p&X}<(Q`>7Aws9WmWsX8X z`V}Bx{WV%eXRMm$X=r3f!3BYs<2co))wc?pjeT78H6p#T6i@m?W8D0mL7}|EZ0bT9 z-yGn;P)1Jxk=!4hSYb9s!~}uNEm zthx$`!Soj_dHR#w=p220L%eRbZP<37SNUngULjD*l7+Tx5s*EJIr!9)Eil&rie2Cp z)QbfKafty0vo>?~C$@pd()~u8b2LY8LBp&Z*x>>F^1(yN#RYvk)Ti+;I4o*L?40rm1pfN^MNd}~ zxsS6iel=CoI$SW@%Al1ijycjbC=yNLCVc#9 zQ9CQ0%~dcDZ@Rbj=YHjUUPJQvlKDwMJT9@5Sin1`;cAOtm zeEo-Ufv$eGRnKg#g1VkV9YhQr9C864Biw50v0tfgw4cPN!!SS$&=|lGNwD?pPj8bWP!PZjm>e!y zxfmns`|CAU!FFY+nz@!j(#oi@g3>lIj2<@oZYM|Pu8bL}^+GGe%+%`4uBH-#?nh17t zg-HR=_ByvK?ADpyx{Kjz2 z7|-=CTA@)Zp&UA;T1vu6z$`0k;8y18z!MlJOf_T_kK zA)HjLM4!y6sA54SJ1P!+L+_n@@1U=`be-}GrM5?=uArNGGXDTeDdZ9E4H=dVe!bP#I~|j1v?t00-_**E)|hCC5`$mKJj&kII{nc0beb-mdEQ z3hS++GSW1))NG^IQklU}nItE{2S3xE-x>wi6_E6`1ajP>U(M9OWQ7)Tu|ODlC3gKg z6lI7985r-zpuIu(uITvfX&+8mu5~lTA(}L*!j_XA-LgV2%BUoajy26)Th`rK*4H|l zwf^fY%~K(NAy}jl4Dg8<^s0|xrHV36<7AmRY-4I8WZwS3{{U2ft@`E*iF+STZcBde z=TsgZt+SHH;YrEIzZui6lAti#%d{efgq=i5-r`Z ztDo~akXorry_2OT2-gY;?m-^@+UxK9IlOI7f$?+x2D(;=?EPe`NCUT~I@Kr1Z>D)q z{{SsXHx%$Shc8Paj^#UuP+(h_=$~@{%>Dg>#Ld0T>_tfvjhW zaUaoM&!us7-#-5Uf9RN!2nz#%q;d+{OO-6sOhZ5kLJzjJnvT>dW~W+MmYzu1yJM0u zjR{+9lvJ*iGiFl3fCr3!wvnl+xIs)BA_^co_jfwVJ3e6#@!{0!I*kMGx7jw_VCR1c z+gho5&VHWh&mx>%Ay;-jP>yl9;QJi$_0FwMp6YcSIc=<}nPW+i0`g3yM;`5*Yl`~P z2s(n-)Q@waM}m^NuB;Yfq46OeUk5nk9BGe7c*)XN&j4;72vgQvDKD0os_JR#p-jgj zBbW5E9mBpb!?vI4z8Ns%jJ#*NdaySQ9m!gbqY#`&jUl&RE4S~yF8F6 z`n|zFeG0kXtEn2U7%HCvMo(IY^pV>q@84dX4}@cQKg6=(M{dXQSkOL<{{ZUa9BbqU zPT%hreyLhBTPK+7fwe!UKLhAATKm)$_E}`7rn^7WVtl<;Q0 zGebqzcG>EGPSxB>p2r@XYvlw!A@#87zu{ALeZlFbkX1b}n6zS3-Pj-N$G?3Cu-|S| zy!-2>E#_yH2eIJ)0DVQq{{W;gwWQ0CZ1F&Fk^N2*;53u$zPr{nqVo)taR7JAg=pIu z$8JZyh`jXOJ!MI1WCCJJyqk}t4%~a4MSK&bw$b!&PSjG|8m>x;2wq*_7HL^SIVafU zoiF1#lFcY_O*?J@CHQOQWuj1#ndPP`6GH#;&&T5L7M56@+>YnwEzfSPYR`}-q? zoo^7NxsH8@bZl|S`9EK-sox$te${=pv?Ae(sp9;rBvJ-x12D#YvIxi=cGXYf7mT#= z8jBA{c$5s2FpXdc(VS2foJ%YUAxejr@#)KXkJYT<0LO;ZG8%ec!(Ua%LzERy7K z1^@&e+E>FHWIx3y)niK8t7308DpUDuDjcftd0&2UjeEyW$#zC8a!4t}569(Uvm$IV z7BhfXcYYQ+X3^0R*)3EGDrcyQN2{ri2_E8rfT&J*`PWqL0CG6j4)_^*sIqk>4eI!t z9@zIBe|=eCbw*-F=D(6wYp7wq zS#>vrbE>+s*vdQ!r6d<9YSohNvXx+^SIjFQMdH07!>=}8|Rl5>!7IL|)X zuX?GTs@pk9rTpBFv6?g(+n!I~PhsJ(?0waYvbm>F?7Ca0{BG$Ep78elXSYDL7n^}Z zfQ zOLQu=>;zQp{KBLRllSLVSltU39!E)5Nxju<{bM3VXyIB`{{Rzuw%mc}@0~>v17a+7 zvnc222-VM1`0nu%+wd1Y1CCmj3g##|^R8eZE6WnMCz(i}M(g1(4&J>y@8w6wH0evV42 z+qG>`j=GkmRx)KgEQkTY7|sXK>h-*JU0p>1rs^wm)2(Bpq>!!>C*?yDdy~f+`FY_7 zR9_*y+pQE*(=@cQ88BcQnnR9T+<}3C?XKj$SJhqY7H*Wk^#hukh|;822X8540Jb)P zl23e}ro0ozz88Z7HGz))d-*gjm!ot{!PH_BJ-dqCSl4e8dUvF#C$(Mt_@;u8)l0O6 zS)3ksW8ZK@ZD9KTek;i>e z_3Vx6efWvC7qlF6TOf7;0lgWixEttv+DRmZ*u#-bNHq;bON zjuf+q<7W44_SJ>gmWl1ukyb<^Figa&1L{9-ri6HRTW9H>wYBvf=cg&I^t6+So{n*p zkY|yPoM&FA(ehgSZ#SRaW%{&k5*9I2T|?4!w`$MNR8~Zhp%JKe+}m^C`<*skmzt8^ zC?=UCD=Cn0Kmd(j{xj8d?O%Yl>1@_mD5tq~J?gi5z^g29tBsL)gVf454m%8Mk|e9F zE&R%vNgpnCr^a)#BfbK}WtQVf#_R2!@9|0EB~>5gKQl)~Q5nROMHU?Wf#X#-T6I@Y zb)8(bmwT;6b0c~hN8X?j&Oi3hy1VV0&6Z@Kc~fywy}@#%a8K9gNk`OnsqnH<&JlP7 zCPoPCF|Pyj+ShA4mFRI}LkIn~fP{H>Xe5pasx~8#9A`dY&l%&km5MsUy;)J$egdpJ zw*#piCC{dqB!Zl-xNPMA0CA%oR5WSQX+PvyyH%Za znrMn5teXQdAtS~<2jA(fX(;Qdm06@&mQYL6f_cF>+y}orYR7`FrIt;*ri~vg1IgXL zeHFIVbd2TAL%^)3hHMs-{{Z3l(8<>W8~mh|!wfr;s+Fbc>LKP^t`)E#zzl%of;*l# z)Oyp<_4HSW?kQg(b1;>}k#I?Dw7e8DLIR60oJ*vY? z3cyN|*j#VN#s_oXokwqpVqso!{)9G5LP0<8&6z)bPn>s&LOS zsfkdr#~I}7Pa95pp0Y}+NaKj0G071do9cPdu9~B#x%BP6yUZKu>p@~hMn*~h0Bu)Z zEZ-um>e}fd5=2P~%Ohklzy||bu8j}W^=bgyK?mb-qUT81@r#M(lrrUE>KQGs)U>cp zmiX#FDAh5OwPt0=LVj_R`)JpP(BEyHJARfaL}sPpE+$X<$}__59Q^UF=Klc0>Wje} z$As6)9}?^~i=4}P-4fT*ETIRIqlP}`o-}{|01%11CZ_Ojr>z|mXtz^-TIIGs;qWY9 zmyASy265YsXy4Yc=9$=K%nvUEP5QYVtMTWBn9}CWdLDK=*Qbl+eA~D@buvt|D~57d zQz0vlmO6*tC=6FAC5cIq+h|ZfPai+NreZY)MwHUpi&{O|SnRj!E0G<6Q5MH{jD*XLF@f&BwR*M1^dI%@Y;Xee%X7-^-IxhRalarHV}jFw|W z>15yneIG)BN-K~Yd4KfGgE#}{>#nJ_ejhvnt?5d;O|QkD&vjiTo?E>2 zNa+o+3a;T!rc6ANdtr6-2G{=pho|9I+R(FEt165*C(gJr3`fY*?xy@G{uR1n$<)0- zy%R#JZBv$wq$W5*p*!Ol^fw*#km_Av&!ojLj1T_+Y~S$Qsra*D#pt5r{{ZrTsb3f1 zq;!*O9znqeU3vH#>$^vWU3*Q`-A)oJ6a0snP_rtqBOne=4l}M@xknOQrx1E0F2**_ zeK|N8)uG{`dOJD1QOXcf&Wh#vIc^3uW7nSPa6{X%GGso2U6 z0ObDwrnPPV0I1ypP}2Eyzu1HQmTBE1DVI&L?`z`kz~CBUtFpfEOfUcZ-qxE zWC|l6{{X4g0QAL1&D;*echtwm4y8Rw;&)W_1SFAiyVX?v!%D~f^$dEFMjT_~BVL;k z4gimZOzoGYUn>9(JAL%((RZq|)}>?wap`1Wc1k_fhsK(Dg_I4$Xg>PX6(qLbZ)VP< z030Z!4s#8+m3DOP-rv+Tl2zO12_nW!@nM05nSfN|IS1K}dyL~xQvFj+Sn*fV%#MYm z3noyU3=Cl7wtv2;+ilvm(On(F+fdNY6NdzQ;O7K(BOr0BH>Ud9)zlGwR^%z^E0!_{ zWl*xQeB~JOrw6yw-&FY+rZQYO{g#6dIkJGqZ13GmCaa;UMcmG^M5`NsH*ef9#~H~0 z;NWw?(uERvOHtFwQ7tpdB?VA!#t(6v40ifxP0el;rK7d7RANGgCL~LNg5=`?ze@~g zl$R>#4J_1DGCe$UNM%)Y0w{>|fuBz7H(&|WGU^J|jMR7A{u0qpRMnJ|4+wdsjK&V> zIb4Sts1b3W!v$?oTC1 ze(TYe5fKW5R>W4HW!220~k2hSs#iAF{hs2?wrX(K-0gSQj##1 z6R~t%o)diK5@rvjX#!a!Eo~0%|2#n5J@1)s-{jez{eyIKAJEM>OrZsrM&+Dvhi5< z?5CktFGg4SV?7^61WE}hFC$Zz-O2rz*P|Ha{E7Y#mLpTMCZN>s9Abg%rIMDzp4&>Ee_!U*+ zPf0C2k=?15O|yrQy#!=#$Mzk+&sEIGBL%U5etrIfT|HH1{QOlA-Q+H$z-0zZkf(rU zZg4^1sQCv`8>fR^D^yF# zGL5;97#Yv)r?ip4vVYCXurDQBgWp$IOZZi4vt5hSRlL%P86zZ*K*uB>k;XoG_UBz+ z_(1$P_&@lD>kgyo{{R%NKg6S;vMbZYPb1T`S(y}-Wx*ILkU#Suog3#28jlJqv7FYI z61X;+rkDU?D!gGz@qzyOc~5ilj(3L7c2Vp90N-Cle-K~zN!w{Cp}hVXuTsNR8kMQC zU#mRG>JE5lryy)^Y&RbH_SeoT$llX;tm&()28QKqsgjbaotS!MMk>G`enHYhlN9zN zJCDsnEiFeW>tUTqfxON=TyhRQ$F`NFWOrtf$RKhL^=DD`4HJoBOb|Uq9E^|KPpRrf zKrRbLPB)D>TS)_}W%al4G2?}|#DBwWUxy5QuA%6QT(pu#?i=$I#5sy(9|JoG`VXCQ zoqth77fJPP0>LUfTqvAxAPoBVW8b*dOZZmtR!<9jVzgXp9sdA^T=&|pkp>_=EbFm> z`hr6P>_)6<`f{ENPhVWT>W8PNk_Mq{k{N{Tt%f6{G6mzO^~F z(_B39K}}w@PlpA83=13|d<}gI>wo+}JR+p9!T$i$?x2F}R}?{3I;t1g2wV-_xyaYd z8EDI3KNbk@3YCY3cPSmnW@@@5wPEJVEeM`fb-Brzz?jo;_>I_)`JO{S^ z{4b#p{{Z3*;)Q)NmW!wQXon=Uf|^co{{ZE!`Wx|?;*V7Lg+piRtF5xx)7A5N6&R#c zNY`oPIrR>4@2)MT>WZ35N?UERsuoD;gVd-&m6@3ESoh-^aUWb=367xE6`mp)0j33a z51m%e;fSPT+QyGit0daAk1HLtO9lKcoa&m(%r-l%o%^vSwT1LK~J*B;7I%8x50u8+66sVc7@km>5% zQp+Kyt(7F7I2dI-W9LzsW=o9qu8ojf_Z^5DEnQ}T`eLg69JM}GJpNklQpx7$vFElu z^d_d|AMsn7Qbw?=$&e#B11d9vt!^t~BIEbnP)zq~I*JR@mkGLmu4Au>gFH!?_O>uj z9Q*s|msc`O)5}VrGXo~sBpD~%jDM!0*0v|COBtkgb;dUnoFAP@x}FA0bh9eB%CX2} z&l;8^Xq(L()hNN_!9$BpXbV@`R-qX;u>NM_j&a;$S?PHEx~GOr1v3D|Hy9)i`g_oJ z7%qJ&J#zWsX(ID#9TbqOo;~?LO$_PsCb&TYG?|*MRN=|su;cq_b%!;~ZzFHA9aLE2 zJ(t+u4tjFO(>4lAjgD1%Z{hJ6*teohu>+OQ&c1Q@rQ?^2Rr6gewVhvhTV-Wjpin(S z2=*5wE(q<$uXPcgkQu2mf+p>F>BR|_$z9s3u>vF_mcw-tpUgzLe)%Qoy z`k(r2Ph-Wo+u8wN)Kt~idaL7GB`a4fh!JDRNXuh(8~*?=Y-!(3HMY@mrt)elD5(}l z5Y@>R8C0%0#z;B#J@kxsE|CBjUpom3NF`6(=k28GuXZG*-jou_AUSU-2xcGR!T8m? zA!At9w)OyiN~O~mIJoy#ZI8vPMV6A)6U#G6PD)jzQOFRSA6Vy>&JS+fYR2i`#xG4; zYd6;PWy)rW1aZp~AO!ZvQ^*8+Ynh(;XqumV6jf2F<&2T!=jrjLznoeB0GUe_Lq@|R zu>Sy2rrnCyb|@VEUdy9AO7WV15NsC?t?8>m(AzEYc_u2FxJ5_=VVPn)oP&Tz9r)KY z-g=kw8)d1bsQlj0j8Lks7nHypDrPkmN5xhrFc#Ypp`vCsVyan7wq zSiJW0DO@*T#RqLRk<4Y*2;^d*40&VxwKpBY7kXNS)5zu)lBpTzxU_)JA*yKoKrAeq zSp4L3+wG<`6*mgmf=l^$!mBWO5RKiqz#QuJVkG|nsS=QQ8;}F`JZTASwDlNKMM_X| zH^vDE+Z<}exxjW+=N|j24o}PpHZ+u+ahxzG_QsToqT@?YsG$~WuC*VDZiKD4Ek)Cz>i+V63R^fri2U`pfmN4s`yxILOFp)m5{IugP6>{;84EqVl04 zzSg=+{{Y&q-)gRE&YS59nt0wnCu2;ExEa9%*z>4Iil2zdI`-9F(ur%NqFbC%#Z^%{ z25uNIbGMU%HBicGqRCoGpLZ%U4uVfrTRhI+z@|F^{X++jj(OB99|H7TX`7K8XH$Ru zU)f8S#2HT%^ZF~T{9vkXn2V=v9YJcMYH@zPaVePG@r$-gJ~vD zI;mT8A94pehup5!Xotz^xx#JB4Wtlr+v}mV4P#l-W79PvNr2w*#>&{%gA1Wy;Wg$a zQFiC%)H!aj5L|5zsQ1t#iM-qp1TQANSN& zSz`LpuKe zsxE)<{SB1Y{$h@vX(gv!+1O>}@P52!>#C|k&fBng)x%zBYv_#iHnTi&=L*~&eg-%? z2Tc!5ODn>*0Gm0)h)y*&Cy2tVovxVKE9j&2F;_cf^9UG_vaSPs_r|sV0E5LF$C~gI z`huAAgZ}`1M$c7A8oY+GqF9`gLMAvrzM93=bG(UEl>}|d?2N8K(i3-H460E)O zkI2&Ubz{JVkqbX0Um}{-&L*W z!fUO?O38PbBqZ<-K_1x}v)c1zXhc$0N4S%05bN~)<1>rj+tO3m5%+y1C#CtzK7pBU#D(1`DiOl zf*OIaC_Iez*J9;fXVy&vbzPHN{^+GG@(fIQs$7QEq3Q{g7UW?AVN@S|SiT(fHP584 z^j%+KhAHc4k&r9)Ac8slj-@sJ0CaeL$y0KJAZ2%k*P`%}iriQDb#-<&@GuTWwwaw* z2Ra8r`ys<{LEif+ENp3DlsxbhKgCMEpz$}UW$JsKJXF(8s*|b=huSb3Ir!9GkD@E% z4-AdHBwP#ukUpI1-kYJ45W-5@wAw$Zd+A7gIeNHOM6Q%6-~upy{{U@8#_D4V7QqPt zjo1o14`nJyB9-Px184A5vUDd?Ko6HjHs_4WqXSmQ;r{@o?zS$!wsjTf6wy#fCq`ne zz5SF9f4+!I;a$Qoi4|mo=LGK@4Jk?Ct>KKp3 zGPR-Lw}aglG*IKpBn@#R<#tUsie{#wNLu$*9E!x08_6F}uA<&B_^TRtWz=xPa;RBl zwo4ff%oi=`+sW>8u5mgE5joGPc*rNVt?v%rvgOe?8%-2H zn5&wqk>W%IovO{A0Q+kYcnw1A9=79K3gr5BjIam%wLR#rhOpQv!cs+3Qrm!IPzc+O zK^VrpTdZ|lY4QBHjh(xGD?5RYBvR{l6uP^@i}N22tdv&nqJ}!SY5b>xPVu@El*a@x z`sq%-x%h>C=}PMtPaMxXA^ghDv5-T0hI7V1)eUQoC@Q0#J6upy#@=cZEAYem$36c5 z%<5*{e|Drqj#(pT$pK+g$@$|N@jRanO&(9xV^!HZ{F_>c@*yA05HJ3k__tE+B~^W7 zWG+0}ZUK~^+dOFo@TbOTk}8-hsVby=kQV0Z$_L*AQq}QF{SzX&!P+pVkFopxH1&K` zy7_8qVpdS3fw+2)#s;4l-C!FmWqrThJac0_B0drH&x%$nk$$JmH6y}8kI#9)oQw=^ z&U^Eze~TSaFGYA`)ZI}%$IDtfe8xP#CPq?-qwdT#15Xtyi@_VmG-{{T79zlBwtkwW zzZPC1*Vp)RmUO5K4aT`ukp=-+l(G8vBSF*rA(7U4%nrz=g5h8e!*lv7?y1xp1{{(% zkP6}}jPg`g%P3-5+j%-kNt1{6?tXQ%K-FW= z`V^Cs*y{}&1Cj0V{+ilFA%kEJJ9gHLKwZkj54N48i$-mV#hIHwPDj&8Gh;0o8ryLr zD&F1BlV$GS`0uVRA#mkRx--NhZHQa1QZ%rp?;=SM%3@|1IUUI05sg`vpUBtIHOAX> zo?2zZ!6}Sr5r)vr0}n^)BOd<%<*s$hj5focW2pyD^-a&Grjn}JSG1jlqi$oD2Ou(@ z2*?_THW-uC&Q+!_Qgma>laJM1(OBTB@}wCrADXeW>||}Y$UitEw_%)ubV>*)>e3ly zl1#gzf|6`fF~K+|`i2MuVB?)u_WuAFsS=PiZJ-*Vx6DYS1}RFO?pWvKV;{c*QoAow zRo|_&*QFG(#=c`XE4h`GfCx)qV+WN{j>lE*j!4bCY_7!6WB}OC{G#=7tHb9#e6r>y zk~NlRknazW*vVAD%JP0Rl|8n>4Omr*IUH30tB+3IycS{!!N~*x-x_fn*ZEUQ)p5xv zkiw3zsr0eK1>7;50x$=+eQ)`Cmnk3TPnW-O6JQod!3)3~j#rcIq|%T%pb<+cNkEjF zBbGC|n5a}ceAW%l0QDTN1hxi1I(OxSoTWHYi#P`_`h%5pM$9OEsG%nuqy zQ(YVk?>uy|LJFBCh+#JtR>n@i0Km>NbM(|VsXRro+qQ}yF6C7ldU!06pGX-eAdmqW z`kfO4-Lpb&V;o~s-MTe!uc5PB<*&K1SmX*41sh&W1;lC&KpDncl14jgvVZW(cr13# zuklBy-M=w>nmcV61JWUj*7!eiqxRR$+PmG?sxAppa+}O0y%DJNsQ3fpUr)Rcwbb+v zgnch(5D3@uDN`<21I(A!**`w4YNN!{$$^9$5%swKLz0>4%x_f4EqC$(e~)F>^?o&U z)O*x3mXE#xZvYNAu42V%tw@Qx1XUueHgR!+KNE{$))hY9x)6p2?n9{PC;LqdI@4Is(WoT{mo}p`;@lys*zH z9od_^6ZJaRWcZ#IuozlPk7KneX#77ReMssb3+FvQL-pMq(IAthZjjV0ia=^v6@dqi z2-WpNSJn?~zjW12nzgCtp^eJEK@uzO;1Pq#J-OFcTrTCQS)NEd#XFG|!nWU%JO0{k zl~hx_bNTTVkSJiFgMsgp&UK#Zok87CPn{U_@%OR)mFG{vZ%z*laXOdJZmj6utUgo6 z)3*si%&q9BVtf6xZhnvInNlPC0=7)Yov9lW_U*5r6I|h@jLwxYk=tvG@%8u5+d}8+ zC#G>MYf4apcg6@{J%)SdRs*TL(9$+S>{hfpepk==yfyI_)}pz8P`kp)dHQC-+pjk2H--yQqu{ZCTTnst?_ zWQ{&s(!>wy#-+2Y$OUN%A;D$cubj6300=x&dYK}AkGa7+xL3_F!N+DK_S5z7f5io0 zho-J_5^w^;-2UD5-_;#kPWxFTOcoorDI~AkNUvGiVs}YnWng>bZUF2?KDuyqcb;0f zVYQ;|eE$Hg@XN30WO!=2TJs!{undNcxcl+0p6QC~wSR&19Tij4^|bYI(X?@y6^7Zt zC0icDR-I2-2_%(@#AAH#k>Av#*bj65x*1jC9j1*3o`Fg(9f9ZR$9*%Alye#w_NOC= z#BHZ_#*=t^;yg4pHktY|;%VfSiBS`s@0@Q3x7QjSS>UgT6t~*MxAeW%dPZdt%Fr_I z^o-~C&bwd!Kd@9w6+h=uo?(JpjlcHRmA!psf>}iJg33-11B`oWTzRe=fl4fx+RdKp zh3GsF@lGD6{QLA}aD*-k72A*7Qj5QYJ|ov#rl*6ZYD1J@p_6DQA194l?^JL$g(yi~K< z9@L#7GP9@^19)xY+mLajx_`mX5UkhA3j422PZcn%Ss6w>Di|DnJ8QD8HFcG;5gk#b z3;IJOXD93XX#n)m9M#@wRIuZ70fFv$>@=TRcMb2#6N|-mQ5wFi9zb8MhPJY zwxZVy-PU;;B&2AfkOCQ0whyq+Z2dK9Q_sKOZ~2WJa5009P`U2qQgpo+ z=EoW>9EMIYG?0KlUcGMF`~7twY}yHuNj6nKZRyFPtdbLJsC}bpXOGed_WuC%Y1LOrRZh_u z=;MWZ0!OFkwsmGzB`eNR?ml5t=}^N1;AuIjX=ijTP|Sz*jl=r^*bQ|gD!P7>xH>SF z*03bg7v+betbaet$g{yj_Ct%4J1L#l2tjd^UMr4LLO1J6DU@nt-1!M%m01J{g zdyjvOD6}fFudsBI0}C|XXdK{^ocwXlg`S?X)=4B(P)bBgkjmbp^wq%hR7A$o%NdbQ zVpH|}+6Pf1TxK_VC`C1&+2 z%6pG~G=L82Ra|;H*$c>w9fFQY9RC1)BL_iP>H|h;szYOT0RI5LwygS!DpsUf&B!eK51~I1RrY-Fk z^QbD3@sI`vN8IY=mH^#ABEQd3Qk!dOL|7Yv$o~K$J@nOVl_D@Frao5U7|S5eHO*_e z2uTG})V(!IYD%!J5g`L^{EmK3G_2MOY;p(kswP#=LlOIAom_wL{Bmu7$tys8M41Qw z065bbY}By3MAXz$F*x1aV_XA@6Q|i#arBiHMhJ~?3C3_g&%V6f6B9@1ppAhe3Ln4Q zR)bloOl6iDVt-CRI0O6f_tqDu5?Fk=w-7x04nbLqt z6%lKI#@CQKx!uV>{Km2_A}p{gxz0!$4K-x%GQ}+{0pwhu0E3TVttOJ?2ob{)AN^61 zKg(Hjiry8+oc{oHc6+q(NEpEz-~*22{`yfmjF%G3kdQ#m*5nV5fuImpMGV-ff(+vu zNp0J|eLiZ+42o%~Da*-$f|&mL@1$Vtm(FlTf8sdm!pRgtb`k&}cl!-uJEhJ>-XwNY z*cDTcvG*DllS30cFvSXjHx@y=1K4R*tc~}y*BC*GKoP27DxZ&?aK*iXKQNx?gH_E@ zQc_5#OpU9uK0f0Ije1ceblXuRSeFaWB$1)3QBN#uP;0{gPC#v-ADv*;5TQ~+O38u_ zTrm1;zKkBoyyqhjPgt?5G|dyY=~he}f94}zf^RBA1;#jME_1tZ3y-nTi7JlF%0LQs zs3hckairgMNOJ5Q!tEI2llIV@DoOP&Qe>o}P0~|DnQUikkO=lTI`h?jTBBr^^^sXa zVl~dw_d1WS@j({HoURiK#^5kJ9VbsmBx))oxQEB<%M*|LX}_VqLQ$0KQrPYglOn@F zI>kh?RVa3vErs`EZaWWe zu9N9K!at~Tl`QnH3m7Vct1fU?ED!tXII6S1`OUOr5tIrK*YBWk3U!6#TFC)^#DT#1 z(!O%64AIuG2svOu1pH&)LhLKy5XdO3>q+Ov^3v~hIRkrR14=!@4=_s|6Gj)3U5WdQ zYC4S_Ugh)WcNhef+By3jB~wPGDE|QFXQwO(-M?_-z5)HTKS_Vgl+H?(3z|>0Ssg|K zgPe{#ldYt>QMTuh2HG=^WgqXIL!qR4ZR+y5^yD|0{=Z#5imE4%X;m{YB!Y3Y4GG1r z%Z5Td6!1v9V~u@?+QfJN0Bt>%qKO~?Q}K))tCHk#@2I^+(j{c_B9S9ZdO>tO8##>Wc!PC?KBR`cgW`XNlSx%(9#XW*`He=N}DF z^CeuUitkBH9>#Xg?@Rl4<54B5k(3cU5=y_RM*)Yi(?+|> zAR{n3vuy`C!w+Nct{6b=ONLP$)YJH~E3cTT!)Ns#bMvZ0@hN;tsVz3R7hGTRYnVv9f!y`?e^C3glwkVeNK}?Gr2(|05r6CU<+Undz0T@gaXB+ z=0_?{;xXGAL6EBKU=O~WNsRY7JPkK=kx!`L0pIJQBT7o$Hey$@jC+r!v|-D7wt?}b zWr(oe8=m+l-&os}4aYq9&W_R~R5(MHBR#d~0>>+FA=e#`vH8-Q0V8yqK<-b!+giy3 z#8fxBf)B{j>ZQPUSOjk>4$?jbr@kF^J+93KWi`&^lTdJ^ui?(ldCG)$g`3bqUBIEGRn+4{b#J?E0ED$Q*Ib zHMxABNE{vpb;1~%!%{mpA>y3!p53qatHTp?xzyD+d`RSh&#>*GUWZUYJp3JH-GTKC zd<=Ki5laQb4*0<1Mkpx6mvX0`74-1G^*z3ppyCrKdCoJ4mzF=+V_m?WBT*zP{{ZVx zBS#^>;aaYYewqUQ?pBQ6BHPJmr>Q|01eGzj`suAdUo}Q)sVSgVW!zk@N#~B| zwySijwabU9t(9aW8(uN{={2mR+{JHbj?01OMS+3+JGETQ76HPuc3Y0>)`IhRYG9X5cb{Nkm`|H*|wWN10<>HTi z(kdYc+4;!RF2fuVvN4crl{XhFpqa!GS0X9l9ItO+Gs(x-O(*Jjs-`eh)GQAZDv~M! zs}ue%K6uo2(8wv*bfeA*Cq23M(@)|Sinv{7iCRDjE9R4ur5*DsBSW>qllJz} z3jYA&S0;ukg;`plqN(y8F^_z4rvw2foqVYsefFNFmKjVHFwF9u>@Zcn4o73C-E@kz zLTaiYtn5iDSi6st&NZ~1I}X-&xqe*$;wF%TBX;AzZ?1+{r||GzwJK(eVl|LHSpEK* zHpBuKN=jL-@kS2na!f}hYp5Y4yQWO#}r$VY~l@uVgylsz5Zy}gz ztfDH<$6$VQqiaP`2sM$qE|<98V#_QX5AgAyu;)dhy2nc#MLL+lAN@y( zBP0xdpMLtTnkuQ9dU)vSLq~;QFnYbSqIUV-nN=Fm0=ZxuN}L>b&pds!=aLc`El;7j z*k%fo-)@V$^-iP}8TKHbeG`MGIu5kL(se|&u@C;#+&JgB+n#yU0pOOtvC&e~OA97d zN}L0quR7iio$9FSU818&RY-93;Hn>}B>ZUvJ8Xo#Shd|R;jM*WYFdf+NTpl(4Itm_ zPahg@QA5+{`{|WfHr!;S>2) z7aEs$c4v_Z4Cf!G2mJmthAlj<4!%@|o|^vv`H0O8wVpOm=Y04l>IQVAy;*y+%wQB0 z(eECjYShXUdjLC~2%h6K1z@yAB-?Nqrk7|3{5*4wdf?R+A*QLb)6VV#un~k21Kg<@ zEu{j|T73^&T_#ywXr*L45YlIEJK z0SYG99C_ZXe{DLYp{GI#5QI^Z0l*_f0z&&j>SSrB5H(Z^p2RM6KE9r6h~6pMIU?XH z`K19mIA|e}n1Z4=ep_e-N3a_6Tj-IN56K2xeyKSh=cN(a9c4$J-BzY3si&k!cJT~k zF=O&roh?q%Q^G`#87J5>u6{<1!DF>aPrja+To6}01<%t5NKIv>L=dvW8mZhzmJSEL zesoQbvh76;sI6$DQ3TY_0{*Sf$ocoylT8J3tDy|Z!mBPAKeK-8w=wt*>^OyFsD-2N$ee%Ov{+$VPm+pq}w>v=p+=t@Gg!>eh~HZpTM+A)l>Uc#)a9FNFpRdk_{{Z_!ctb#o3w4BNZv;b3fCC6CiY*cyTPC8LGdGR@R+D$7$9D`CAVr!I5$?moKK8_ndYhA88K zxyX<=bNAHNlcMWbBvrBsK{{e5l=AK0XdTq!oamfB8zNIo4NWnaFx$AEc*p=ANjjx$ zZ;)=)Y-MYCDh|bEbo}TNK0QPM$M@2(`AxAZA(I=n?<8tfPth+{Bx6$d)EH6W-|!3y784Cm|HLG*GFZ3zxTc(o2O(xjVdEpo}6{+V%=9nO)C zp#@>9lG9Zt-$`5o57(aKQuEOlDJ~C0^i}T~9giqv5s{CsjDNz``+R;xc9*y^4Xoa9 zRRfH3{+bV`lIoL!b`=8>Tjh0zZlA&At`C2%HN4-#5(J0xl{?r1Q4?qfKRMLGtEFqa ztlN5eQ!+7P^3Djs^x=K|{l<^d*>9Ahl53AnP*O`G6pkPfWcc9n8z&t1$o5jlOi&5#CKA7BSvwz0F*ya2(T0o+bStUL8Yu!CnPp` zA94nC9e6D=GgcHwvfsH3nf#4=0 zyTjypsz$@~)Q+>Mdfu9nDd&PH%*qPOPD2M7{-D34{WS8ks_&I)O&nIuf;(T5tp(GS#L zWfE!$!vy|vs_~YMyp zuo?9B`S#YI@YhpCT$0dVC@Or&io|4$Nb!d zeIiuHNjz05iVI~13D0F3xPSV8NU^PbWo1l*ag2osv8OpCFz>*|bowreuuVlI=>)UX z#^-A^A#e}$l0EPa2?t0zQ%T(k%N>;oQ~4RUAr}}}DomC zi|T@?;<4NXP^F`es-?-=V^wBj@-R8hoFf8#hz5r{XiTauBFy0O1Nt(O-z%K zPK_z2T9Uu0VOs~e=eD0kPL`kMQ(Wujobs3yB!%e=#b9DEOiD1kdw=h)yYX7?l)e~s z6%diiy%>RW7z_uPq%l6^>xk-4^NB5xdy}g?3`Rk3YOCrQE|!_uZw_`6LC^Z>Whw&! z@$Jr#Spjgn$pmmdx>b3I=Z<~59a^@nRh6r#02W{|i~-+GsuVGAR(+2;S;-!vNc-uW zvNICMc<=jYiK4hIQE+hNaoA_uN<|XLTXPZzIzdZEyN*}`pN&3Ty z_)q$CrtUpke4y#OJuA;wT{6On7|R@-YH9d}=?VHXt0^oqTat^&w9+C(r@E+Nxcx~4 zpQ+T#z|M=gT503!7^x-v-1$m5HjuH8>W~r7(0=-fek2<2KU&9Ab}rQ|M-XDflfgee z+KAb8^mJV5g;As9OJ%{Dh4tMCrcs_cK+DZlXq$$-7bn) z9D%~}ee|-THr%&3?W7ZWgO10)(@sM#d;`b%>1?iAFdMie0o&i5cmT(70FZe0I@&h} z)s4W9VaV5jP#KQ|^Ui?omXb2LJOw=b>w0A-RgDMgAQCl+Fizuwar2E#{2=LH_^Yk# z^e1SE>Q$uNG6ZYtVt$whNKFe$1)2+`JU#I0D|Lp{w*xe0XjVs7gtBFZ;!X#!@2O2^ zLt4#3M{oWeF=PCq6r)Hn?SaA1V0qP}LDse#91_<_vwBF8I?|zZa(y9G57IHm-%V<- z{W*5G%_SU|qw>p536RGkF~}f3H(-(f0KTYS14%FLRr@6^XlU%KYA%APdf923+>y@# zEhm|ZvnyP0k z!X_I?SLY#n0g`jb(s$!fX_}@7yUh(fF{YA@<=MI%95amI>%N_bvR^&dO0u7)si3TM zlG>5Vju&Cu<(9_-_wSLx)~BZEF2&ecXAn~5rFd5<9y{_l{`!zdYKo#rE2E^EmReOG z{{T}IaxUC@R4B_f>n4UDP=yo?{>pxS`WG|}fJ!8Hx`;KtI4UB!+ij^WP&>|J z0h|uR?ika1jL_Vw9qw{mDb;`>W5Qv+79^wWx4 z4^PhV#?>n%?YOxd5TN@h=S-MEP6?}(UPW%8s##j9;c<~%Z6J`}Y>qh5du5BI?PtxT zq?xNF0Kb_Z1pH&4e|=5hvD%(zHk)jau|_EPRt(twuW&WBRl4OBFrEulEljF}Ic@{} z0X&bsyU9ERzGy(=x4~C!CR!>A23+BY-oX6i_UGT*UMd}M-A!(jVgSfUE|?z2@b)lyssz*wtm(vfI32ctwka+&unMXn4U2R_K`g#~@ z+xfB?VRdIb_sG+_u9EQf@*!ZeIz$hbEju!er`Q3F7nerSd8)O0g}&u6a@7qv%P*Hs zL0&)08UXOMTMF7(s$)p_2i3O#^4yP|UF+e`NW@fI;HxU5B!^;fM{;z%uc7EENS2P0 zdb~E!wQb7}qMkp?L>N1y^G9`0+xmX%cbZ0|sHs4w8yGNB54a=!^((dbKRndUQ*$yj zttQllHQomu$s}sehTm|dMKpBOu2GNjil`m<86Lym=Sv%n)@2Y?Q$rh$9HbZ?_~$w< z`yjhf8b1fDbX4Q>lGDj40IuPNT>k)0LFY?dx@GNjXYw^utvnF~Fu^Dp9{&J1A6-hC zjw<2*06hwNK_wL61^MG!nyYOJh@z+3!;PU?hwttE_1o}=S9M%d(3v5BXi@weQ=0_x=%DHy}aC^%o4~d zV;l{={)0yn8E1^iQE%P>%Q7EO{{H~&rR0ujX7VB^Hn!onzCHE0ihN7w*O$&zDC8bH z>E^{q43?XDbui|g;N1wxjK2W?0G}UyYe_+GS-j=5#I+y&*q)8F*VOV1r@{2wR{k5dm8hQyzOtE+W z0II9J=js6Mt&L3`bZJ!7yBLfB&bd+bKk1|+Rh4|$sdggn&LjXFdz^Ej(BZOOW4ds) zG?mU{rm2XKyO{|AhJKyL+gPZjjsj$PM648$o3KZ~8W~wqY1zLk3%2Iuh)V(w7$@WF zrY2g4i9anlZ!yl|R~}eV$Uiyu*K9dSXRO;tZ5>JVczgp-SX;C-0`!AH=H3^4kn#5^gPy-_kyZ zN;XNU8*xiX8i-Xn86+vje%ftSbEadyX#ij{GJPlZ(B@g_%13ajSXVjW%a&8z9c?d@ zA|&xrh*O*w^)okMeuL?vBEs!UXS&l!<|w7}4o{>Z^3eQ~p*8CAD66YjWGB?1NW>4Q z0BQTv)U10_t>1Fxy?a9ssM0XOQV1rbh{jX^LH_{q`~5Y+s7t8Y=U)|n4?RiZM^#q! zWd&sf5mjtHRI^DQz^W9IanEf*)9`)QNilftc8NC)*jmXDh5PN-VpP36WJ>ih9yV=b zoRROL@>kJAx&Ht)Pq>Y{Um$b#)1kyB$OPKtGx#_01=Xq_sI17cKVvkF&)1InTA%QN z;yo=yV0AsPQ_3+RNo5PS;~3{%ZBJhd$PiPcyl%kHf03oXFs4B%r)Lk5f^)a%F{IW) zO(Am2ehRJ)P$j7A2vOMXD736sAAIPH{{Vt3FO-u>)^$6Zzm*D+pQdxhx@qd_Dh6h! z8xN#oBoCqg0JfbXys806Pyjf72-1lU2@GM}s+L=A(yf}RuI08x+KKG>_Q4$f{`ys_ zx|~F5e~Z*e3kCvTP*Ohs00ZArd2PlO6Vynu?QCR6j2^@G&XbanWHL`xa1pXI3>b2A zk7KBwSsWECp5+F&U%HZu&GM>Pu~Qj7So1a?aC_%Y7p$&PO2VR+T8O~IWRT2$xY1Xn zr>Bi->8qm5hzV(i20znShSTN+m5UT$OG)KrBsj>%Ip^4GgCA9CH8ldCsCt4}frbfV zfD#rNmvJgRj~V^+)~l#`l4xd;rZGUpa{*JqUc?`7wx;P|XeDXrWsVm}glBSZIXwNr zI#c*8%8fEiBnknMK?;X=zA@?_eF=!3N?l<!XI!OEXw-&p+bQdQmA zWiKnp0Vw$+oRC5G!PSE$m1dErOMNn_!l(g#Og+id+DlzhvzAo#dRqZE1s=eUZ6JsL z0MT8nD&B&NtuAlp$z3%ZQa6?e+;9{Tj1QeJQD(kWMI4p=M%2cc&zdEauq%!*4o}kq zQ{Uj%B&?R8)Wo!D!Fb?gf1b2UD@f7Il(eCiRxa}T*`L@P@S`6d`XLw1uJb!6 zT}MJ+l8z}UuHtfM2O<9en5uuM5^z2?=w)|@^zhfRRrNhfNE_4&9i!)I9geLjEj1M2 zO0>xuwlc?%-?p%{uA|DQMJnKlRzFTi`uyvRU<>Y&$mFO!i=b{4)jOfMti|crEE34v zf_Xm~{{Z088TuBd%Sfsw^Fl7vP&OFGc^^Ny)TShQX-lwW3+O^*&)YvAL9C)(r;+wD zAQ>CU$>X^rMBRr8ER(W^9}Y!il&d6?%`6NXcbF9peY^5>LJom3PZKjDkmM3rF+TqQ z)PHSB;-aaF1vM2AG7nmoQH=KkN=Zu~XQ^sNvq1ch`jR$@;0;$RHBxRNxQn zb;3rZAg4=lr?}fv*z#1);enEAU<(??JLG8@DywFAspzWWKjGY5~sM%x7%!)*hLIsa3jcO0zYGnd*k0-tRCxwKu`SH;(3z3t;R( zPU1a?BPX2W>7jIXfix4!^)km6)$@py5w%7+=OmpnxKQ-vOiM#7##vp)^jVm;M{aw8 zjXsP?P9ut$^9sfx19GWc9@*@Ex#wIY0WDg5ofl@h%8}AMl<`F#Knl#NcJj=5$XeFf-v9hwdfT}QC9P^K3o^zyaw}p}rDyIups>u7!NFBNO`OdgV zEhx22_~C1slfrw-&r<6o4+9E+Gk8(F4jbRUZE>wsF~uN`Pk!Va<6Xb_mZ~xMV_u(_ zjKXGs0I_X(4*vk3jy1&>Dpq+Efx`@p4Nb@0n=1U95+V2s;{cJ2{j{^mwjco94wIG^ z8RYSwx7$raxFF*oYDVEkN;H@RsQZ9VI&94BFscr>ZU|y>4?O#8L~b#jNcZdpxgy>X zBLEHv9@>8rf($F3MT3E2(==4H_B&lQt*L}C(9^Of=_p7Z2fbtar|mq;T=O@y;IUWLau?MmD?Z8 zkstMO+lJReQ#AtGA&w>TzbzbbM<85p*q|T(0343`qkk4O(9O~IYUfv4l&_K^qMbxejxze%vPSU`E$@v;d!3&Oa?eVRnW;=rc>Ek}hyaVs^uX%3XjBfiK zC^sH)&%Zh2OERuG_|8E7+C)TbnM}-?02~Ysb$@;rEVD^-xZl@m{$88%@iE8>(te}# z;2wUuq5Qu(p-^%G#t*UASojIl5OjTt8!VPu*xszYMD;(DG9e5AUVZ|PzD}6PeujP2 zjA+ZG`zuOEthPxUOo=p0wVfFOAY%oNIKboIJm*VUdV-osWr^i5Qh7wT@<9^FPay8( zuRi)vNmnH?k}5yXt1*=$S6KFg*_+=#O%9URbf}4vqRp~N8*)FIGQ4)r#;S|S;aTYi zm9=f|8YF9VG$@cmg+UK&=OB)8f$#>ko2Vn2fgr1^4;;y~nFe;?nU@HxK~Ma7XQ>)qJE$N|h#7NUCF+H3SXwWCA;kp4w*6)HOtrOAROU zKxm{%10Fg3{{YiRZcwC#S9^QNvWz}KIUTTZq$p_QF~>DMwP0AXBS|=6?Z`cblE<>; ztq7}tQ-`YvT$20Z45WOv-hMlF(KCO#(t{O66i($xk7IK9JT?xS)WvX=1WJepn!x5c za-%;wZBNnlPdJ9E`mxLld3#S8?~J#$x|}#mvPC+cx=G4aF{dmWbu&w~qaRb;=Uc(m z^s$y|uR2446KqD<3HT>YX)LxnTDNJXGSosg$^5LABzEV%od~ULzIumb-U1IR7$fIM z7~;6N1PY?zM^!hPv~s5A*|<0yeNTMpcrNorDl||I4mL?3FCwpO`xZAZ=VCpKSad`t(ku%Z$3<5C_k{+g?{s zNOan{$2i=7zKk-GYYC6>83Giyzz{}pGf(MK#QvjbN(Vv zAcO2QZld1v#=dM3GCL3n>_(eKM^6miT|8+NYQ>0*WBX%Cp(eEAI*Ns-6p>O#Ov~yX zV{SdY^vY;1a~!oyZsBmv=3tMg{q&>LB(f9^QJ9`d!8ji}Mhkh4MyQBLr12wyGDm)M z-$z9auL^bz8&t|01m`?A9{C?lZ!C2)?Q)7EE0!zYImUm}TQrp;3Kdpr z%S5#cBM=0VY#;&O14XK7Aq<8oS}?%wQUTBIduSy^ia7+WG^OMx*yVBU&XhOZa3F=X zA6G(Z8VF&h-h>jKc*xJl#+8StircqbpWkP6*# z3QI5KuyCl1%AkP6vo?9}+gjBARx-ilD2xJ~&$sL~9GdfQq1gpZd^GaAVCBar{`ye$ zC9X`tQCSPFH%Eb;*!TPEfJlf<4Iq`HfWXK*?Ie+b&U4>dr9Fwrl1d=R%aQ^B0r}G- zQA{Fggg{-!;(*I7pC>0t6+rj%`oQzR)If4-Ah z0c9dkjQIc;1COSM)XJg4iVCS)g#mkH^Zl`{4(OUPXr@L_>M?=<_|MLlMXp4qj&r&e zG6ir~Do6Q$-%X-Mv_L84o~leS+r31L2j98Ubu~4S$G(OL=3)AL)(RK@0GZP`?pH{| zdBT=0rvM|DC-0%6&B9JmxhN>71o@)}2b0eqZ7uvd1chU1SjQpUGC?^V&pOr`B#xab zBdCZdZKwHwfIYH)bV+DYpm8JcP`1?D zICO~wg>t6=d-2;^Lu34%XPrwdVU^AtxRbwelcz6l^)pmlqK0S7hDF@60oiffAD(&A zuC=Umu_`2S%&H&O12=qqwYyRULy4o@2Gu3A$GVL)qlT`o13dLq?;M$8@T#aO+qvzg z^i@*JTP-AYwz{|CT5_a2pdQDOxS#UU0+iWLOv(9=$^xO#1}VTGe)`Ckm4@{j3xd1= z0r|ihZE?32s0 zoX6^O6OD|c2We6>lkz)hX(f3iG%$4h<74b;w}#lHWMFn+KAh-lbV=jS>lDoFn+Z5A zoPGZQ&rYL(SS;q10$M{pDq}s#2N}T0<4LWyG^U!m znMsP9X^Jx;MOaAvLq3wg_tMZnh{BLW(@0T9^M~A+EPj7)W39ZX+8I;L%AA6&$r_Ed z;x&=QYZZZ$GODQrrhD$rGmSi^uf;#*DV~qXLVUErF30*nAm3JH$4>Dyp#45RO&hnF|6wzaLE}Q6zT>=dF%ZjtL0< zN}&NW?UUd3*A$kCM_&%tEx8ySo0<$JEjs;vXDs`91pHEwFH#uJW`O-MmS^wKW0?b@nz1>%7dBr7X}jx)}; zd1Pu<%tLTe8G+o($9!m2K#EH3iBSN7(3Auc;jnl=8d5nJMiKTjio1^|ANM`=$dk${ zHG&whH@I9m*@MsZ5%tnlRMf3fBWhyugTj%3H+DQ}c;u*U(SIA zC6p@i8#xE*q#+L%EKAJ~g^r+GzO-RbSGi1I|6Q+Cot3LS&-yg2y9aK;cS~ah&(k zvC>6NCgHd%449jq0pNq*8b5`Q6qXFJ00N3KbN>L&G?;^Ip_<-U;3}~^jC|{~gtmao zZ-GM2DkeY)$U~fGoDZkQhP}G&9oBJ0b68TUEy*K9au|0QJp23VaV#-57AjESpH?`> z?eU=ZI!Y*0^Dx08n45F1{00Qz^WRCNCDc_z_=~ky{{ZyXVJ&2G#|+RDf$GROvd$E60Q-AuDx;9VcG9T|?ik3&eF$x$PHdJNjrQRMwu%RqdEHSXP)j){fCjqn z!=DBq=!!@rt%gUuNwwNk$yi7K0J~gwKP312YCZT?@b;hbl|6BEg-aLwwF^51+Ca;) z{@i^z*Gf{DqL2vZNqpRSXLfQvK^?}cGG1QoH?UTi(TLltxlxKca=bzz9FZVLb_A8) zN#wWJ=rOKl{8QhlqOP}eWdqB$-lnd7?oab1;a8u9AO8TBy7HrR3nZL02+g>&gS#BD z80Q+{U&Li;y7;Mdx5g^Xbdb_fMKGwZsilGxs9~AdFjicCkV^r(kBwF3y5tR3m~EyP9_m4Fr%xg| zUW!8PHs@v7jHBu^{iCfdDLBkm1Q2QNvo>=04V$F3oAPhC?j^@u17z&I%d{Z zNtQ!sfJB&gHQSknKg05Io-`VN5w1468i`ejoFRm)ac*Z*+-^OzKHK6&P*s|qnqXug z2ATldM`jo~9FL}u25?e(yD7BR`U5H(ZN55IR#_RNjRC>zN%+SaTAHG)Ms zQm|q3W2u!{6{G-Vhyk!Wl6zx1*{^D|Jt%^$6vyT}V-bPy2=~+$9R=|@_hJU`HcHXPHH9WM`Z4?oeJLHfzn5P_neLRz?t~Bw7^Fz#=cZrBn*vI$I zi&J|cq7^|COCnpcS!NIgIj%27{netw#UN7Q#0osCn+<;yqn z#XO~qWPghz{IvBh4Om4x35HZA1~NIwU_t)?EiL;br7B0M*sWDayq)UG!Sa2$_Sd0# z3p~IOLv0&ILHZwqsO?4CtrPxgU6I5tWnlYDbcNp!Q zX(gg^fK$}Wo?#9M0FX)ktnrdGGMB6=tCT@WI|$U}vx2*G&OUzne^FCJb2ss&l}d#v z*@}aZ0PUsJ7jB%<+W!D83~<3a$>lq_4#DzII6pY{=UeYs(Vlt@?!Vv}WBU`vhpkN< zusg?Dwl@P{MZw$iq^gA-YDXBZbdv`zhb%|Boi8a7Dv0YAm1n1T+s$IaAl{^3u+wkM zL^rfmQ6!N8nA$~L=h?aU(58w-^0!pU<)`w|f{cOe5Bli}yG0#enFT~D)hfG8k|D_F zIX!_o;%#z}Jwy;do?(VJlyFpnQ`mEzYc)-L;la%tPqofH!?KHn|a+@kk@e!4ap70;~_HlgDqjJ@tw2*618O zl(RH=-H6n=+wutDXF_eZXhpzQNlwRTJWMx+$i{Jy58K;Bjid50JT~@{D4!TnDNsr7 z4tsqxbxW4RsVE$7rGi#NjQSgpeeiv?=jusVG<5Vk;!(I^Fxejf@-*JA&2h@k*V(s5 z0oqr9J~Qv8Z7k4E)z4ImJg6b_+an|6ALpG3E0HhbOw{tTL}5|2fFli`jA_WYq{|$Q zOSCcvEU(7n-G6NhiQ=Ae)fanZL4=Gm91-!SGF)o^03;TkrrR`5`xgLh!SDCc>qv;l zHAzqA+8fKxG9&@Jdyj2;IhHz5^3u;1dDy&=Gut|5(oIDVnJZ+6ELC3s{{Y;3>9_GY z<_{}OBxz37Op(Xb4#!=scE@yB`8#9`C5^zw9ZAU7rmdZ+{{SQ^o-|jT%9_2VJeFYg_?L=x%*1^(E<2IjWZ%pMK^ndB{&~6_TYSMuJ5Yt%H|55yu?- zeD>!`O(z!BlvHAP z*{T7TX=vqnjuhtv`wsd-g2iyTRZR>}EPyGIiI6DZXM%B`wu#o{&=mgv0NX+UB_VYv&3{Uvt3fiLGGH$C95L}iyJW3dC6COD%pqY`3c&_FN=e2$ain7tTxw*h zs)|ZU9ru4NNFjbQIAe_e0BtGTV3az-WU>h=e5h#Y;5otbWN%NwKN-{NOYJ2sLq}I~ zr-{noEMs@jV>%0UN?OTlCbeBFXMoKVP%T6SS)|TAWDmYHDxdfzoh#wFSZi(0sZ~KhWt3AfmNDgQ{(CQ%NOVe24PGlPd%*kA2;=f$Kh>kYbL$3{C3_X2=8N zoNBUyt{a`QN;zV#j-@8@VTz&#^2z?J5<3r_K8vJR^8%V`%1TJ&D;a&H?vVG|2^+EU zI2s^r3Y))OSYcl(rD2RS?I&;r{rDaIw6xu8(y=sANlQ@|n-HCRwB5lykHOV!ZFDp> z@qTieTEUUJShlhS1g``2Zu)(7GNroOZL&2ymWk>LfUC7P;YZGKgPifM=VG}LkEbYU zDPnqxdg>^X(pDA*IT(HL1~dku>sHloNS8TbrZNDMAv=#b8FSm7IM%m65m0|Fx*GVF z5$RO}C9~=ZJ@KbKKjP<4TT51d3Z$IL8C8nmMoKv+1dI{41N_dThYLipDs>#NtJ7TP zouhA3MG+wfKd6rX0DWentF0o17CXSH0B&Gm;x^B?@7s-Ho2y|p6;;;sgrRcF7%%0Z zJ;#4x{qd(3zNWKKTtuTR=o@g34^b>K8MEJ9X%KZJVNRij29@h4on7!_LO?-|#~$BJ zBMnX5B=r(gO&EeK?jEKOo(4zh&(4ih)yX@CptjrRNeGqKc~&6&s+^Paq7vTii7(|N zw#!alC1|{fRn+syeb^&h01J!#lx~Bpx{_o8Vyi%_hkS2Lf%NCTh)?1*?P$_J%GG{- zHlr-QsMs9xpmGk18lg-7067(=2^4=aSmKmMWcv)^vGK;2pubu!)RIM0(-kz8vc4c% z&9Y@d&T^+9eKeo|5*HLEUlRI?8hFuZ9!-OLfe7BK{w$9A+<3JJrwdgSo^HBhmJYqL8{6k28eMw3 zq@^&Zy3ogly4u7swgW6_mD`+=+v7~6x%7|b$Ph;guQBe7fW+~YVgCS^>!hfvt~BLf zo_QxlUrbX0y`m?c{{XAMbIym{s~$yKYAbK$)Hz7i*MbSaApHFfhtv}6b_zlHYaFd4 zL@bRe@w+Snb_|RO1fQK?Rod3FH>g=+mJO(5Qhj7`yZ-=J(^2YrX;mIM?ozGHP7pxI zp%f5t%Bbz%I@%jIR#(vebk^H8Qq(YE7<7M(p8JV9T}Ohr0FJ|Ok{aL4(ozWmdXc=L zh8f_Hd!MP+)u}aAZ|0mq8qC1$JTv^`9ki{mxY0!^s%&yxgsW3KJF#CXCM-DZgvJ-Y&pJZq zM-@%T8n~wt$Ay40w;hKJI0pl^lA)d|DJp616BRP;ZL>lMCAc}`IPIfT$!~%w>#3Fr z5)?#pzj(moEZO6nV?;7dvFM;;_jZg(Xl(%EXb`fXFxm5Km*L)|g-TWa=uU zl2$sZ|v^tjM6qRZutvje#EUJh+w zS1^%ej-&+Jl7UpQ2jA{BycalSrxS@h%#EbD#@6@k@5ZXe@dlL9JJ3lo!T?b?ML8qb zf&H{8dit#=kkc8bj(DBfBmPm&F}RMzj(Paf>uOyjtFk-16X1dvG1-9G$sPN4)|C}h z^ThPu%T{%4DSQ#}`)ivl{YQ4S)kis!oXVw(DmKy=JYy#ZBOK#KD?C@Yer>LgSd`zE zh?59V!Ph<5{O28xgghO9N?W8^D9_?Es0BZTGdylK%`G)NfO2_|?&t2BkXDnZdwQv}3-8zoADvxzevv&yeUqJZC+$)@cazfs_7Pluu@YnG-Yj)G*FnWPHbHya0X z+4$|;>6s)9X>s5u7|m`C3$H9GS<@CODkyBwwKb{*q=^HKt58QW6WpEICq-84)zoy+ z)Xi|UDoz5lZlzUZKcwye>>qq*I<07K*ElMRL2yW8kJQl4Op7=@@;!<7I`zikS8|c$ zmbRQz)u3&(^#@{~WZHeP_0=z$*9%vzZjnmErRvMgstxxBwan<^T7kUCLy~eA9@zH! z>zDrk5|=vbw_U|oR|-JSLYq}r0T**%YSp>kX()tMu`N9+jgF=jR0;=tf%>zKbE;Rz z3*9yEsbi|AndTpqT)zC}nTsF$U}{zyhnYj!M$8u)ty?Tf9s6lWhqE^-J+z+=MnEKR zGIil2a-ec}Tx!gURa~dkdPU*5^?Ty$|ZI|lYmB@zyZ4a;b_1tEf=}nMo>CWr-Xgx4wXb-7TV0 z^<_m6m&&Rom4B8bJP(to{{Z}7)e_WAJJjutQ?*bK!MVxjJPkQ{ZO&DyD(T*Lk&Tbj+7W6qgr}>z_A1dBi!WjH6v=> z+pbf2`l9D7v6!WHrhGiDB*gpY00I75Fgo7ev#K=$?)4(=$RK0i2O0P}ujg35Dk>>& z5Q!8n*y3Os%*%m1G0Jf$9>uuF?V$vNL2{5)^>w(JB^1)9mciHr zB*=aUJe@loV?zZ2tfI9%lb>5eVhZ@~M&qc}e^W_O8&X4VksP@qAyTJrYyf-lrhmk0 zj@W8?cBo^~Az6kL`w{ff*xV#jdv{w{D`{Yrtc8G2Qh~JnLHd0)w0%Womhu+g1w|sN zg0bKf`+|7YeRjCl{zj?k=qah#099t?K^$@hvU;wPij-%}^BoaH5x5|?xdYe@4&+)u z+E+E6=V3>ZDe3CaF$FxgP0T>fIP5c|>T9EzJg6=y10ypuk%G#8=f0{aI+D8AEOQ9h z#JEsHD-L~+xjJ(%SKVcBvQGX~V6ZH}4t?{YFRhB;+U~4arL3z1X_@kZL^66ZJ_sGY z`rr7SeG?BR=-zXku}1H?ez_U%s>YY7Z|+t&*hrw3TuMhi=juM1Qb(eBpfWd?RwVOW z?<9gf$2t=3=|Z=t>+h3N86_#_NS3K+aBh?Wt9}uOWJj2ODK=rbJ@F2hKYkIN4fxKw44f>dL>&q*78O zzLKDM061aq-vc^&y;AiOK$WZ2Yll9JVp;bL=W}^{FB|LSkt+bVi3W9&A@D7*` zw6=$6>8Tc32rdiZiTeZFL}U%_f|T)kih?-|Yf~JBMot@f14u1(wzdf+j%ejQ$&g`F zpM%@)sHG=V+2#UCY0?7VZf_%KZ~a7nwzjRQw9F%GbzpN&ClYZf_k9nz&)R1K0aUBG*T zj(^`t3x%pB+V{ncvIuN$Uj4P&#nK?q6#lL|iHQo^qIq&XD&>Ls$F`V4vsC$>ZKdIn z2?Y_yKTM59TdJ+pET-YrP|}tlDvmP0IqWm7U#cjLJVp!m=1i>0OH>Y5Jc2#G`cUgg z8l<(C2(2)Fa=KYyTmzX2edp+E6m4CI8kR76;3umpqcjRCk_HAI#V2(Rht+jkNn4tCjC!w zLa-W|N|i5?Kp?9T?~Vx2HtJgpc}k9;j#oHVR>1*2b+okhI*DSM8_hSERJy2bxgCce z_tMxrE~PC_tnyVqFp+{t$%h4gp)b>|cL2p(OjKb= zW3VX)kl6RosCsm@ZB+u_=+an-U5hy&XV~d2%eGQ8;spvx6iO};2ImGQWjG((S(mCU zi(gN6d(udeFpyKocL@f6OJskZh0o#if(m%5tEk|8tj^0LcKOF6_xk8q=-A_p=B25I zNY%Eh2R-wS+9x@~aJyw7uIgy&uC;eDIyzLo^@zC;!aHGpKH6~w)K*6IiEy86V2ON& zVxe)24}NtPq^LIH)X~$$S0`Z{(DDdA*zKm35LCf4&rMA|CiA)5Ernyw0QS;{o>G03 z)`tEPnW-M>8wm?6jQ)uVvB&_9MnArlw%lkV1=(5Ymne!05~OGK6OudXzc-4;2}uii zfW8)46rB8$eY2nP)7n}({{SpGiAxp6RhgIod$u?OMdlD~2pevv>2RR2$xB&suZpIG zNF-`_Dl;L+$UTm6k)-6R>7JyXVN)fvO0M-0nVTXNJdZ80={WDstFEE9-BO4D0M&JS zs&^AMVmMGvc=^!#Ojk9l6&I;#jUs>=E&f|EBfd`>;UT^k5ZYE$7C9Lsl8&}2h}nY~ z#bP=Y9Go0yCyZ+qYh{A3%B#J{B-?WGOELq=-~r!IsO|kiu z_~Qp#Q=n1*0PAj@A@XwK4^eM^PqvH9C_ry@8m+cmqn>MuR83z=8@3~9GcqncCur_I zz4Ricm#FO%q*o{=mYl~NpsX1yxb`Ib;PNzXexR`1<4VYj$t)x^-dh5kjPcHrxpnOI z@xbpJx}r8v`rbtYg*^A|-%Tg@S**KFB#T3Dxhp|SDPXY>UN^wW-TucTPpNv+8741T zR}rXeFPRzIK*ztZ=TRst?)3(;TAOa!Su!>t3%4Jne~9bUt!|mZ-EB3M3Kh13pTMR(UYXaGqotC?hy; zj{gAPM>=lfLv^;Z%XF%?Y#UfqLHx!&$OL2z=?3ZgYS|^MzR2~G$n7&LI!0Wd=?6K$ z_8Q*TWv8X6hDdDFK^Z3|HUN>>HsVM)_a99lVC5~EOlszGvNxM5Qz$AKR5KoU&%yg? zttIxp*;=nfeXDkl2!xP#C&mZ#>Q_@^uc)PFk`q@gMg&krC<@FzNCO_)Mw_E9@WmCz z=Orb%PEt+y^#$#W44om1*>he`E8p?u)}h|F^M-k0I5Ipr1o42ta7WWmr11x-Zmm!pF5$g5Z@I<3ugJ8`Fz8eHBxg?LsE{Q%FOE<6}WC8K@*A}(h z6hQl?(*FPvsUC5=-5z%v46fUXj9 zM>D+6Hmyk5w`yEVbdYXckvKOf7`1Ugv z^{J9ITpTb8cN6#HMQ^=P(=>>cvGiiw3)1b0+819nfX@6L2*V4=Dm`LIrWQZ_z*Jy^@u;PX$FCx` zI(M~xVPnWH(QfCkKK;jiOzOJ#sDZZDT3Q683Fin23=E?<{W;pa`{-Mt#*rH-l3OWg zq9&HpZK)zcqG_UUG5v!D1N4#euXV46mumiwtGJ+{f|i*K##&@_4YU%&3_U-%#(Qbn z_5T1{Q{CgY-zh7SP9}N$$nXj50065FMm_Z)xOlzN)|(RB9$MSg#;uCinz($J>9=u& zQU3r}{Dz%t15Jb^*ezT~a-evsBzE&92cKE?{j}1R)hXNMhzIu7QPd+Vue*6?7$6^R{QK&Unw^Q;xQu_UtRr@@YN_lonk!w(8-~dr<)-t#J9f?w zKKkEeili37?b|xlpm_?ZT&V6_ft@;<`Ax9CV33URGBKV$+L!cI@|ugNXr!JJAX#>^ zk`$mk40~~?*nq0~h#x`isV73&t@j(u65XmrH54trSqhfUJ17I^wuV3hNIWMa1h^2o z1bB5lMZ!y*x9UZZg;k14%5Uw;{EkPql&|TkuQegL+^Ojk7*t$HuE1oRuljeHO$^5Ra>U&>zK3QXd#%v zN_OBF)6xz;xc>k>bOhJgER=V8m8*)To|$E5-G-TcIZ>Zr4;lE^E!0f&xoL)SOED+w zsaT8+vZ3ZWzzarJC-o40w4y+&yp#3Pc|o)*bM7?ZNR$DPGy7*#R1@;Hi09H5AaUPL zMLzZ{S2*P9I#`#@1<5$zojwvOF&G^7Aajitl!=^_`M_l$9^V?8cw=v;ld5gaRq2Ka zJo!k*eIp|oW~F*TdF7pM76NbQ@7SYE{f=$;IF^GBTlF5+f}Y;>1iXHt`>+SkjllC@_$grKig2* z;I5rS(A_D4k+$-ro!;aUGmR}Z6m=VU7RmR~Y z(VL^J&?&t&(4c_AgKj0o}$j?1YbqWF8ydwJm zKAM^PL%X=Q;{ZA%OuK*J;*uj`)g>rV&_{NsceK)MoK91Nqv$M zKm>bs@7qHdb<;}XP-|@jQSKp#LD(?BW*zaTlC3k!r}GQtkV~Nfh#uG&(O(jLKkBZC zj*XIdE0rlCtgb|nf8^wloJPQMM;wvcJnAJ!d8d$h)eyq7;Hre~0Pa3C_m<}F?ofvU zEGY~!$xlwqmgt#W?F|_96g`h@55AbxTO^KIXAu<`{;{|3cO_(zWHT&dZt>33{{WbL1ECIa?1_4ovYw!t4TrG@P`8s5GctrtsUEQW$*W16$Qr)7q7ucy`3zrkN!Q z5p()UI@*@?RkmC~8&gbjtd0w=eU6ZVH%JYn<(?WG)Ul}x2n~(ojCR1!_tTngs;Q`* zA-B|FcIDlZf|&O|KTR>7=^a$B6!4+kcKTl~KD%^1VJsqsl6V7cZ$>tmPyTG4F{NmC zDGR9`exRwSl+S#*JnqZnjB-kL0e|+;i^G{!;(*R036@aatovhH3q{VVsU#J&@J6La zmnvsy9l#^DbU|q=3b3P%<9($Sswu*;!ROxu4mtYi(G$C%F0>8Ju5^NtDdcHDRrRQ2 z^<19kTU1)@ipw2kx>O|OF5|U64oAkFo}Nl2mP+dSd1V=L2^lZ$00)z%(9dO}+ci|J zQVHTX##OE~BfgK*SZ$_}l`BI!CR~G;UVZ-n+d$-@veC^HF~wU{#diix#48Tx zzKa72RYc2AQmq_5sdkb`_&(Yfl6YOEy~4-jYi;K=7a5j0T#qnJz><6LILFS0rHiO( zYM!NTu8f#=Ec^W5jTu|zqPnGRLI+xwTq;O5jt{rrTHJ3|$~jC?(n@@Z6i7s8`F{$2 zr`zX39RC1hlrLmvpQ$>U3IzO}bk%bO1j5WlKDqw@Z9Id-OYO9*4Q6=-LC6IG%$Vn& zzqWx=Tp<%hQY$~@q;g0;jDO|MizU{{ArdoxDksW2AM5%Pqz^4LQh=V+c%^cRM0c`N z%L6x>=#XYepWQ+D(NW?@O;*t)^3w`hiL#P@nlq3e3K#8>^QBd0hP^5vsG6V< z9zzvCT%rB2Mxv6<1gQ~}QOUpc$1Grz&jUX?R=T`JZdupM51qMG^$dG)t`Bb(x|GJU zwA87E4C$3S-d&}M`T^hn0Bs{rQ)H&7j7?cm%)?}%;TuK=a5>JPbT?a#R7kU|(dR5& zMgsw!!%MBsXDbkCr``w$AYlD*#&zCfL8O&xPH#1q`P}s7Q^ghwI0z8FfAV{2&9kdI zm8Fo!G*TfPer1=_^csRmc}OdP6wVn~8BX$KWAwoP04+72s4FWbkia7`psqnoEfZEkTm?Zlc1waZS5@7N<_V(5%YenYU5T&My-&CloB##If2qa5j5mAK0BEai^-9iA5SiO(-f| z8A;vo$?x~nmhWeV-ziR|wbqI1BQEntRT&Dz{;VcOK7?r$9T{B&Pds;O3XPitk}#4J z@Ns}gKEp{s8%fFmAiw!L)+$H}qJrqdfuE;+3c1l;XPIP%?dP;{mcfvZFZ*%!)s&Y1 z013<##_@i2qjHR?)A z`fHqvRDx6~Ite$9;ZzO*A0&I|oyNt`G1y`jc`0TU$j?0G_e}zpI2g#m9g2+U3mitt zOTgt;FVl|*FCN(3wp5-A4{k@cmY}s7N^@Cpqe$f~u(U`pJ`O%HqL(`B9ilX*rn?Hg zv9Q=7b@G57oaFPLk8ML>>x;cbxhkt{vL!l9%F?845V+(9Y;Zv59~uJ3gK2CPCh9x% z-asuQq;bL$8Ds#q7wy~asH^o=+Y(jA8d;bG0Fkh$_gy(1Z9`pDC?cY2rD*|8fSjKD zK^*tfhorpKTqUQ9+2*873qsgTaoa2~HO=)M!dnTgyRYi2W{RF7yUXE2KnVvOiTY|! zPc`!Q4sR1ZYQ{`p$tf=se%J@F`e^q^_-{SQ#IYn$ENGL;V<4iJIP#c~Hjv%VZ;eW4 z=_*Q^<8A5)BBQLMr!t|UsYswPuO(%XLvA2s_6J1x{AAhcr{DnodJJ8jYG6sr8-@*R?=Q;aoMNQCsSJf?BCreX0LlPPP0RE^23QweN zVT|_g&Vk%~KEK$P@|{I-TV2jnVqvH(%>3gZpel3s(;_#6x-jPUQLc~bX+PpgEp=5D zeq=Qnhsm6>s;T3@{{W*`CCjaC>sD&2x?YCn@+0%ws;T;F;W|1OhCvvOWM6%uj#z!QOkC@#{{Z4Eof>{!slPofG_VCzP?*5wPwE*R zhdgnqa5?PUj#NCIFRE1g%}nG3bU8ThjcC(Fw1kul9{aUyy^7sL`(WuijIm7M`P6Q$ z7(XRj^!;D;9eYG{N4i=!6mhzzxBGpJ@g}lc& z0|z{xY-^)>Po?SlKc}rN9eui4>QyQ$6{2VIN&c4hBN+Yl9q{v_>@wS`ZglnV%_MW2 zISaXf{Zc3+2a*&4+YPDj{3|0w)wFa_#Tqz@RBFCz7>(P=JPtF!)LG;&wuL?j!$z`^ zqNuV`+!|`y@D&u5AUgWiPxXweODtS z-eeR}M^6#SIl$+?zDd+MiOC1Qx6@WJHkzwuHsq?Rdk{uHwwHl|p#^e#jWq-hZ`6Ig zwZ1_dXO0e>x+$dU88)%?lY!ej=T2$CeedcgASm`4Ye=sl&cU~j-$Wx*3T?pz`yXu< z=Y`96kOu%^QX}do&EsBelUYQxL0Aua8k2WlyMqsMSYKUY(NXZMoId6jchW%r-6#;6TT}w|y&G zZt)<4bduB+Q6z>y0Nc-~{d;Fsu3!gYYRK=&QW&Z$(v$MC)0(o1Q*>i$gYZ62{@QbB zhMHJrrn_2h8`Ty_w$zB)T$}+I!7Se753YpEdFm@=6jG&{mTGw;Q|8YgED)cCB!iwg z@20JMxKLbDTAuM8*rZgeAtPDa9x7m|B~s?p-w<*JLH9 zC>jPuZdkhmxNRI0+d69#YHT+u z+IXqzBzBS+36X=4b~8UY@83E-{{YpSbEQmkS`D#lVj@|iP0~ofj#ZDPTRyCf6s!+# zp>teE^C^7&8`Y~zM_(Lt`|FjwsKrW_Qmg9RM+4s(?~MVj>3c|JbeHpX(lJUgw!9~8C zYbz_mh)WUrfF9%gUG%PGP8;&LxS_QDMHCUdb@Vetw4{ZTu?OJk7Mj(3StW{C$0QJs z+>YR%bE8)qjF--wlGy}tO%%_%NTfcOa0e=T@s9oV45_o(DP=Q7ZKyRxLL+hP zdyOhCLd4)ZvqN297RFT_89Rh_7xwm)cLdY^Zst?_{AuN# zDdBi$mCHMD%EuslWS{lZyOY`J)5}pdNI2SfJn{xK6g!l*N?}vebW$JA)!nL~5jZfQ z$XO0M|g)&wV6rw`yq*<-moDDuL(Vu>SxT$vRj)&Y5PO zqM@aD;_|>%*g5?tKKgEwT`H;ZQ(5_$2MaVf!oRpV{a)R)<0y7qTWQkAJwr>a)+zyb2gehJ`{ryA!-Xe81aq(7FDiWsF)G*IJojVV_rCyow~r?tI2 zlTRJSB{LEO-UM$8)1j1Q(5Ba1dlvT~XR+r_Qj+AfYPSlAY9>-0qgYH~&#)Nw(SQeK$?c}g z9TZYV_gF3hQ?$a=+k(gR&(F4rS~_OADJv=|>5`I^6-9fLsThC#7{P8n28Jay(%B&r z+S;Bb3hMGcMOmtx}Gjj-jh2k1_?p5=_sG_TcfYE^%LNku6Q?Dwxtl zSt-Pn?27T@Amz9@9^mL*sE2&=f;rv@)r2u|#K5)W{7r6uy!bMum_85*%e zY^Qk}4UYT~f^qfIH;%HY3oBAu>Wcu8w0>DC6+j*SN5+g_bSGqf4=x%wEA8}%OB057 z*x2~Twm;8JDlXGQRU{W$keFS|<*5U2u+Pu>=sI-;+a{*2idYs113W52E3Qwg9rN_o zWV+E-(}_|o;#b`ylLA3sZa#xe)2_

    y2zO)ryqZvg9z3L{1O4*o|*J1eIsbudR1R ze=)`aD-r!fd*eJEDJ}MBS|XIl(IyvwcO0HQzBE<`N`w*1BxY$h821iUe|8x{{S@1R1w1P4wFG9 z*Ci|IDwV_2vdFkOEO4!kGlQj`>2QV^qj{+5qJC9OfDfqz43qTJdP|E{Q@p>#Y9|Tl zd7d!45BPE4NnB<_LMFH^G^URZuC7AHg#M;p`O}RBriem)l9ua~-fW9kvw%V!;F6^F z$NlxSOqT?S=b{S~aGx_{Fbe16Sz3E_NH=PD(6sUG6962$9^JbPXOpP8`VR7HSdy}VC z)|l($Ng$R`6O~BMJb&}Hv`S?{V`_(YUrTKy07u_Q2pfdIb!~KaPf>M6ZC$=wj28NM z5v2Ugz^eU5M|}SPgzBp5?v}jO-X);3^(0jE0!H+-WEn7VyVLXVbZA^}U_ok{=_GKp zgBwGIi=F`|NhQ9$C#S0y8kpLh+hEuVoSx%6ok(d8?MbR6(v4d@DeB6bpOG(AOi)La ze6RsM_&jLBcyC!jLSm}D2@nE`$iAb`(C0dwQgt=O0+oV!=T$1wEFf(kC)-TL&N(M^ zsH%n+akq4%Ay3NV-|Ma=sY7W-BItUE?ewno)hkaQq9YTBk=s1_eg?O$=_=}Y77KOC z1Li*|JOE^lNX|Jp_|B$rRYylzKkgWP?A+JaO27N%k5ES^N@DK9;(Mv6&g3 zVv%oXMmWjG&wVSIVu(V+zbXY)C0kI&C?RQ~WiF*hVeONS4wSZBp0Q8!CUX`QnfEMU zk8a;xO6gvTDtPHFizI5>y-NvJbM5KpBkDA#@V=p|c81^6R~wmC^8~b1Zz>fBoQ}lj zOtrKslZ2?uqpXCoO!U<7Qx(dYQ~{6m#y#|vwyNV-TNNkdVT7jO^TtlZT>heQoM@f8 z^F=knOJ&ZEs7gl6NlsBtKcfxX2Tv~crnk{UEj6Y{1yd4O${4ZwWasugd}xas*&vj= zV24!*si%v{ucwila9KALQZvc*a!1!l&r4&To+oOzmProu^4W?o&pc`2>Y-$?TrD*n z7i7DBbS~Pu_|Kb9^S5c|QJ$Ymb!#p zp#0fLe=-_9k)(he5QO$4gU5Yl3#C;p%33eYd6BaT7CMJ4Bi+shMg|9bXzizvxB@s% zYx*Mp06|D@_sh&|fg`Aaso-fARV-I(HZi;INAIGSioSrUvO_~fU)2>fsVALPO;aA) zb)1Z3kTIWbbSAP|`uYhF#L&iMK3jS6lz)Oj<3AYJsAamLdKy5{Lpm2R?PcGO>MPif zjSiqT0SRuQx@a#wCvA*T*=ZhuAyV&%jIxqXVBii(=jo|uPxzN=vC~BbLQgk#hyZ){{X9=;~L?yv|4tgeSB@HrGa9!^!c~L8V5+@V=Q4x;CY0Ml0K)7c+|_I zYVN<3{u>N+l@<5qHI(#HQWzF2j(?a})`y-xx~i_-O zZyaYQzB8$E)kwB7DQ?xP0{C=kda1XwteNEFho|v{$bu87LGjfJVOCv>4(jh=H z@%JtVwoh_615oMwMzeK|whL|EI(D9rET5Z&LdqA6r~$U;k~a~?Mv3*6?XJBK9aW>I zEtXmui9aMOrA!L1qDe9~vEc(ln?+Z*3Ti9liG8e!OMR}UMlv-zw6T+p zz-Q9Lp3RL8s_9xE;q;dae0NVSCMq6fAzDIsP;s@m_&jQHd+T@?p`hs-eb#iA0D@>F ziVq^E3_V4VexZOlBz)shyFH5CECu?Dtgd$IxMtdsG*0y9Cq9)_JV)EO)O`c8cTv65 zdcP6w^$i#C8v2TeX^X@mmaV~cBn_p5e^1jI=d_Bys4kV(d8(=D>FH}_mM4jjI!qXl z;MlVviWe&hD1Y-pElqpe$wBErnF)2`n+vFYJ)&wT2_yvYrM%OsG!uFG($V(lBq(m^;Ms4hkZN3j~M zx^nT;R-su{cC@X1Q?NA3KnRDNoSr-5+frjYT8`npE3cs|AcLhStF6?rQYuZDe8_FMj5)73T(pS!J447HQSV{E9vjNo7%a1K57R`dslciyYFQQc|H zzLGkMSkIR&Txex>UBhCYNdw=uoLqb*>Seq|Z=}A#*|bf>?1kv zq<{eK83!OAeK;StnXgqbeipSRV;ImDD~j;1pC{=PDJ_tNR%$3xWGp{cIE&b2a=xoPSD07C)* zR$_TP<4y;M4VPW0wRO9u9pRdux>|@BDV3&Nm2Y+c933Q!O!>5mnn|OLS>cGF+CzJl zZ`1o~UvBVcq}KHyhs8)JXrxt9{7Mn#M^nKlh&!Msmi@Ie>94~x-Dpk9=hbmlDlD05 zdIRV1NCRUY%tyKHr&}AGEFd#6yA?%6(g{;9n^`K-86*YSRLG(*JsfEgGuJvuIf(V4kNjzmHl*F+rC^$RAHaPF?q^^D%QBc&) z6$S0Cb3*Ep#~m?Z203C!r(pLa=u2d(D7?mlvaIOomWEj#D@7oxbS%Uiq+s?rJe@zM zqv~6YB#}`~NlzSOkRoQt_Wmv6fY`M$oJXIbI4AZP(51ZIXluo` z+h({`yfns17Mhr`SpA6}<4n6>aJV=W61I}>W~cM1>RCLj@sCI!I*iYAzC5(@y;4b; z0~V7zRDXm4+f%A(UhzbN??+JtbDWLqv@+-19^Cxty?;;JZPxiKNP+3MG>iE3FD9m<3D|CW{&JbM;$YuPCuBcu3tP3{{R}4A5}bbQKcGYMl8_B zf_|Svq%GDvg$!)>8<}{eV#~b(lwY{hrR@!-gejCgJJeOO$0@mH2{>^hgfX|q26-Ac zYv`Tuh|Sunl0lq1NWe39?eKeOg|16-?6!(Us7=L;`*6xY=aa$jt?oTSw&bUm&7K%z zVh-$&u_xc{p%OFM8ENd9+PW&fxug?MB&$&D6v@J--{~X1ee@n{FHze8x75&4yc@}l z5D~m&!Q?8@`Rxmu~O9A?($sLHCm>V4vtTh4to*VzWR_> z)>mB`Nv`F^Oh77ZRyY9g2gn~9gwyqmb%Z?}J1Sgd;b`)woOk)uneUR)+dn&o62`$w zGk{J;PSNkc(30WXb--F(?e_+mt7EFEluCeka>zg^J%Bnw2;(W`%(K(6eE$H;&63OR z2_NWm-rLj=H1XHm9!Wh6(WczscLPZtue4lhR^Lx$sHKtA$t0Ud+CRi`o-~b-#L)<8 z7^z9?VQR}wNTrMrS!4vWDDTdGG}24QGLM;i%2Yv15N0J%M41EFlZ*qeS49;P@wG!szc|v&usqyo|sQBP1~oYNu{WQS9AQfc79K}2eA6-E4{kv z)G)-gb0s(+kISG(AAe>C`{-2HddqN*qNds^$12R<^>RB7bmo^<=uX3BDKt@u)@Vs+ zwib5U2w)Fm?mqefQF*71Q9%v1q#=-&eSy_M}MfC~esl@_Fk zp{2P^RFQ%VThzM@chq3iNhB2!2;Me=Mr7QaNWT1gduXLCeLWk&ROMirKns#fGb!!g z+exG)C20k&IOdV(npc#1_Q-`@2S22aG{9J^D&1wNm5U?uA_7=@jIO41mpgfg%+n36 zk%dAI4`YMe{dE+sy&-C0x}KDvgZvy}$C1 zFn@g!r4d!EOI1?PREY3Dltgnk+t`gawBPr_)79EyNTfybrG`&1sqA-Ww>n+f>Sczu zq7zOjor*V>K#;csC*MVMH(g1jy*kwuMl)Qohfgt_$X5;z1A(kT(-mzLiBofgw-%|Rnt2|4nQsc0DW_TTn#7DC0(GsFm(v2=DSJ29OUCn zs=B&Lnaa>n$uL3cXpaX!>!LGL(}`q`3FVqolyX6C0PJ|sPsm)WH%Bl0v`BLpjRJx` zbRsY}OKRfj`U{1^<5y8`w8d1F5Qa{)p;6xT~f}dXai!Cct{igmi>A^qAlLMDeMoMR+l8vGpZqMD?eMt#>Zs zs#}c`EX_{rG9!0moMWB_rUp3HkeLo>G*o)wPXtj4TXfYeSvm%I-aUbjBr+WGG27=* zISEo^hQcm`S3P$Oj0&PW1IP4HyQ0 z&jF%-Wy9~Q} zVxrAePa`Y-YDmz^6kv^<9E04F27=XiV{qyU*0(`&f=0Jf`Lg+u?1)G`J3PR|G2Na= z#*m8IlCOUK zJg9uNqAetn4(2!D0CIivqttx|)Hb^B;db|?t~EJX`3KKt*dY0KK}r5HB}APwixOoV-iAZ zM2cj_L_B&`xzS56;hN7!(sj2^s_|0RjcP1ECkbcrrOzmTsfi~Zl|M}o$C2C85j1Ty zsp?LtLr!1<23>_!8k5qb`;(#aDWrKLrjDLAb{k%wBX&n54srL@n4S~Bmd1jkE3Q&%a5nhF?>0UqSZj(#-L<9*UF_MO6r zLr+&dIWSCSkT8jsFkC3^cMi&ax^Hx~$yW-cRTwb`5sHs9X=m;?XSnvprQJEu9ZfaT zu7dF}wHOthW6zjGp|+HDToLo{q6y$viFaF~TRMNKZT|qwN0wKZIxIuJHn7}t^zEc; zON}mbgGH5G-KZ`VHD8ukW20bEk~(QfjYwQ?$?dp|k@KhUS!+Cqspy$yMq%f%8;Y^+ zp|Q`te)^bO{2S|<%bfOkdWOjh+tkY>&e=jo7z%w&pQg5N27F+es!FOD#oZ}F$jwJl z0%gu+;O8Zx~{fetSG|U=A?zFs$rgJVP^%*jKNGpMMWLO znEr^~R^Gz{woh-ikQRQej;yS-Q`XWlv6dJShF_4uj!rT1bpFRl)D~$fkXmikl=bk1 zS*M30mk0GIKh=Scu9^%L?2goe!Q-b=bj2jr`&~V{I=OQ4+$(8Pd5VFxRT;e?06PFR z5{m6b*Ihs>x{s_YsQl%`^HQR+sm=fj00ZyrH7C0CB3}h6TY79ztk7nrMj?^d{{UE0 zc+bbSqnBQkxOD6yr67u0O{&q$0sx_p01^H!IRi>8Z%ABkWcumhe}_}l$6ZT(nJOq> zd^5@X-!uX?fW64~$=32GOv;s2H+!V_HAzY$kYaab?!!NzcNx`XJx5v3aY!Jw)I!X~ zqJ)4OANswAzb8eg?fpkGtT$+5XcbQlAa+?jvcuaW8Z+)`2moxR-<#=qW`Zu2r>CNt z5@eN|`KN9$%1aN`pKP`jl0N?0H7)b1?={OD(NS%VHBaX9RaZQW91p+KL|l}#6*-2g%W$cP zthXe$)l_*iR7M@)Q{1ZO3xVA8$r`%+BlAP=l#MN)bZZM;ly1()RcZ2q{&Am5>$^l%)ExrrH>&_JV*p4yIx&bmC&EW?5S=3eY!(yO%mbbJXO&&!eu1)WfV{4y@a%N=O4+S*UTq6=p4UqVrl?reO)fy~$OK^H zkae^-Yi!i!fZwXqy&v>pZreMRd$F{8i5LaO!()IGW1W zt3_1drv<)GE<=y3yRlMI_VERa>AtS~l3_dk|P)fsHw>>N}-LQF6N6nxoS) zsok}J_AQ)}KDyu-({;KpP}E^ zP+jg5Ne!^miciX-2?2eZ2?HBI$Q_18H0skm`rUG>xYDgf9Mv@9S~_a_aS!I83<2kZ zv<}+k_3K-0ERkF)4P4X2tRs#Zke|#ak8VL4xo&@m`!(LfZldbGiCc-LrD|$Po>z`& zqJ)}K`j+EC|GKpT!SNWcPcgs1GYwy@AD{9=8Y$Er*})|N>)%))8D8lZVLiN zDd(k|%ktwqWrha)5ON65*Fmd?O4LU5T`yf4igSZdB{=1{lVRX|V0>#eoj*O|-P6@~ zF-26@W>lv9wA*GepVN}Ql^=Zqx%BnI${?hc+Z<_EBg0Jxr_EiDhA!*v#(4ngw~G`) zHjtfMq_@~+^Xe|GIFUT0Y;E-)^3f@zNF#; z3@mF?9{AsnOKi_SeKvHjs;o+AWHhp~ZrWIw$2@>OKi^S|UBO3a&1{zFZ!m4@3AQ;K zWAhY52pshrF;!_ir*}>bf9i_tB*bKPR#N?!0IsFGd<6H&sdSxJ9<|fW8c4T z+eWN?J8GtaSg(`TRZOfw5J~074p$4bci{UTG)-ej*rX@f4z25(b-LhbsOd}q5L_}4 zxCfjMuDso0Z%X7d)HrDudP5p}d}rrc-TGh5YP$BWEkanWGZD3vf%NXbI*(DARz$C^ zqL8$zQ6%O~++lDBU`WyVO+A+f5T^F~ymiYXQAm{rW&Uaoaqr0PF|DoDCeyKIulXS*1E<5Dv4xL*pU>T2>PCXwujuhg{?s?wAALB z8lunnus03F<8KEb;Ct!phDxP|Yh0V(U|sSOkLI2@2ixnX8q(8g4(SKzz?CiJ?^3>( z+@}RU@`3O7)1hLabP!ZmveRJgSHLPybB_N2wwupKUo2)B>Z=T(lx@VPr`)rHlaFj^ z^|H(%riFauDDAkak1_L}<%!O8ZX{OeXa&4|H$g*B=kI}Hgn6i}UwpvuK*t<+(oI3< z-D0byj!2qVfLT*00{j*o{@N-Yy<{yLEU_w-Xrwzlu6P+7V*@%HTYsLCm`gprQyS$_ zB4f4j?nw4N+5^p{LhlsSv9T3bCa0&9abHPqExUIEzLSE|Yi--*zSJ;@LG=&Txa4id zM>>&HR4fS;)pT;xq=0%|x4R5~RtL$})m5nKDdM77LJ#K3$-o}RwtvqWO+_Wz7t_5f zO?j_cXrXtez%i8|9r)o%Bn%(&(Q4ZbH6`XdHPVq`sRf-QX@je-Gy0T~+uJ${E2>D2 zo}LC|mOwnn-3WH)`bTXc6|<;fuSBe6T0nBa@gw852HxL&9bF^@c3VsQB95Xox(Hmx9zDc6cp7%`83iPjC)QG2cLo1=w{1w5k(b6RH;$Cs0xIh{1L{DrB$vd zB!&u^-e^yl$+)YA_{X>!P8TM%HDE*_io0sU{HRP|`z{W#S6XS|Bl5ARE*aic##iGX z_RzbZP<0it%(nXzRKYrj-n(2O9_^k%_Txw|QN?qJ4xxxsq?2vTnFV;{d|+#XPh^Sg z_j*a`B#Pazw(LGTk@O!QT`+2KOrlusEx8Fhq>+Oa{{RRc!#Y~N&uNaHTFL`7u*RWG z(89_jE$jg~82h|RE&Xw0|iKITFre%dEr>r7%Cvlf1 zG8p62^ZV(f7u@WY<4X1Js$%@SEEERL567qJsU1g$w{c3>Iqnv%kh>pUTBjqD5qb8B`1r=2z$@pr zOe$uhAM+~-bSfNzys=j9pItG6%Oq9IDO$8k4#}DqpSoip`+=X3bX8+&>q|AR+7_%6 zy=6rpP%P=Gc{wWb=P54ByN1ifxQzpZ@^MxYpH|+3e@|GsK1 zwB>q+N=uGa;fYBH%sqi#$32NZzLT08o#L^slvBY`F7TYh5saS%4*vj6C}ND>t12XUTWZG6Rz*+-a^HVqJ88P#EjHRoE3OoVo*2e9Lih}Qjysd4H(r#ew@Fb= z)D$&PRm6Pb0guaUw`Tf-p|YegqYI6$N1Ub=S2)}3$DV%rQou?;;yFj|7szU;Vy&>; zqaT8n;=m+CqTjoc+Hk;mr3 zCXK-d3m^vzk7MoasOL-crIOokH%r~J?MVB$z`5^2^m}6rHl*?f2aKQrCP~r>GUbd&(oAqQZ03KMzWv+)6^ks7~Pnk zN6-PQE1+)X?=Y*Xw@`^A{{WU!kr9Z;Vc*+E8uywfWEzJdRk2ww6c=it)z@h%Dj|u? z=EWWnT=EpZ>mL~HrxqHk$5GoP>4>aT&q+}-!v@{L;TSEJb}jmd=eZi3+AcK{*T@?S z=halfCc;;8s~l$sp4zA0?Qs%cE|68p1x*~yBr-;DRHtr!K7Mr)NBM8G`1OTxQQX&| zx|Wlq>FmgD)znQLx|4d$=A}*yvdTvc-Ixvs&a>1OtDjm}?mxt$o2TwQI_XgqbZh5A zjt>mZGDzBa1GcN%9qz94(sXqf1V@=5S4kAIvTp^L0uKXsIt$eOWq#;>pO30~ey!rJ zYO@RZl01>g82}YzEruU{bs@SWG(u&}EZ7xdRrqj~9WM8p6o=-T{8PZ-kb;KP-1+tU)eKjM* z9ifJsYL_RLCpjej^dGCdOzNJe>SnCE&kGp0K#`&qj3~}MIpmL>6XaxOfcXCaEg);0 zXqDAHFW1$#N(7*TqwJS@YFQebR$MBg5<02I>bThN{6sbD1eCUOzYz3lhnaLB|~YYE9Bg_X`z0y6Zfb z2r6WjSr)8`31r6JPdFbPwZ?sH(@6vYt`ADsse1Z_Zfi$d6%=)oC1jGcvH7zHIV>BU ztiysAliwPbUHYe_?R1Mp)g2EFthrW_y&TJ4!yNvj$Rj-Q$sB4IxWJ}lr)DKt=1>j@2MTo+r@K}t9!@A|>J&GsW{qSgu~o=B zM{P`RP*h*KQF@}j>0D~6ClrP?n-Hu>q=i&D_tWl>>T3JwqO{%VZS`m#3RvcviZ_-h z7f>Qm7k40In#(^XecP*hDl42R2lnwOB0RC0M4Je+)LOJVX`P3F{B&#!V7 z3DiCqbUUKTmV1RwW1lDTlpsgA`?Hq)BxmDL-}oD+=bUA|t+~?w0LnCU)d@PY z$Y+eRHc1#KBaIGB9!S)jhEXoWD)OhJzcpm3yGJElG>J1(tq=lv(|`eOyzKt~&8@Gt zUWaIC==yT5;Z0W!DjSKZht2clU@{{FZe5@r57Qd3`WDkia=X;QIFV9%Vx&hSF3h1L zZV#~>XF3@L1s6|r#8&HlG8L@^&n(2rD;$xX#OFBEaYyC>@|BK$F`e)946|wm$y_@BrExJ^FWX?ZN>`xbH~Q5>jzKt{rOq7?1&_zG0nI(1e3jA%) zAbje@>R$-DR^QUG-RbAKerQv@Kyy>bU`7DrJ9+J=eFfo{N8GxS<9@qan&B-Sy<~MRl7`&kI5xD57ljA0!1>e8lQ)0KH4Q8? zB~@g&MTtv0NKOBvG~)i$8+|yCGBScRkcdvU6hTmzeqJ+xLB_Kmk z@-dhMj1U9oAQEy%Z>G8b0HrUrv!z`u_>iNjti|8V8P7Ql&(k_buts#QYm0`Z2^}l{ z02tQEXSP^stLrC(I#SY8ZzmnVz~Jg7*M1bQMZ(ng3uRrl!g;7Ndpxgf&Kpam)h)kUjU)d6 z%&X2mGp5$cRi3Vjo#c=uLy-7C2OMbK&d*CnpDE-xP~M^s`)RWJG>A7+2I|bf=Q#QA zuK|VU0QT*rz~twWG0uwEZFIHQC?TJA(<+V#*E!TJa0IJ6!=9D9Q*_Lc!BYhs*CrB| znQ{zxz+O8O{`#B4Yr9+8JR}S140i#wlzVZ`aqq1y^s&cNTSi%)DtHy+40|4V{{Ssw zE7itYWrgSTw518hJAN~&*Lt0(t423VKnVRE*5hw7Nlp1dR{=guaMJm!P!BsKZ1x`~ zI!?CZ)j~Ix>q%>*Q25#?5-B2LG6MnXC!h1wQLdHnNd8?*1s#-dIXM3SZAk5?Zgi5> zTxOc4dC6%dmO{?Qj_i3n05!qekcf&+C@z*sX`OA_#b~)o zAi7iBhBrdadjs4Mc=*PV>Iyn)dwkXD3bfI=MP?cF{{V;Wt)ru%k!WNT6zJwZ)RBNk z+gu$@2`H_tomoi@YsP;hQb^cDhDMF4-M>tO{7k&y9y!puPs0U&h_KgnRj!`l6*76U zywOYqaI<@rsrsh-GPutZ*2)3Rn;^U&19qMON=)41(um6A~146 zI3GUxCc3#u=9h4*i?4%{Tajdgs;9)KDvc5BK2CAQhg>{3yu%E1)E!cll@hQE3gvnF zpSG@B9w$L0^AdSlng9MPgXIvyH3~f~j@c#hBX#lFJ zg%C!_tC<1MILQA1eO^5)Yq-?fmJXqU12i}rwg4Y*Inz6VdMW_%%I-icH@1EC4WFtn zRW+uo^KB7He4UY!6s|qSnvl7}WNm0>%ERiBaiK8N+HKK9wF|kVh=pKy1P`u($<t{fGr;lg0n%jvd3eFjf2&2mid5BF=wz57e=Pd&ayk3zKl~EeM^{@_9X|O3q?wh= z<(s+W=wqT17Nb%1Ozl?%3*266S}EuALanqKE=L1 zn#I0o&3!xzM^1{6=hGeu$>%5EO0|yF{73SFjRaK{c#scqw>|#)=MY^*F9=mlRlwEpo`b~kuZKUoi^>p$eJxMq@$V&DcT68Gnu_C?n0>j_}10drlK;}Q1ug2 zO}R{xq@HpV##vkI>@nL~b*J*Jv)3+6vG6iZIRo2KTAJCd_S`hMCkO$9MZg*4HBDj~G(?CE|gjE?JgOi^6Wi3qa0gugKA;4T8+uvD^s%ZS89Fv94dC4ak z`{^|hm2Y2Yf{Jx{qoA+l zwmb5BXk`pZcA~DTs?VDMLWK@7&X9=&R~aiJ!c9*iNQ@MIudf{G%SlM&wtHQ&6o&Or zSbsbVKqOPPL7sLWxzkcDR=B+A)uNCt)`{3|2tH4~lJy^%F(ic+dQW{z9ve6SgQ%4-ZgU1|s^lt1=&pq{v zjh>#qnP}pLXQu=y1@>(i<8D5KKzfRaEYZ->TjiECsa9!D?3dthewuMhL*+*kiprwT z4&qu&k)^ab_88T*b-khtK^DHLo&P{>LW2^se~jZbTe-FcN@si|QM4C*A4 zcR11)mu^zR7O~80--Cw8gQBms?(K{S>u>fL}ZN*EV2#{Y-1V~ zRZm$uraFCQOb`}E8;3ruXX~w|>U*4XJP05QJc_JDKoROZjC<*0S27yFNPkXp{G65= zMxCu9Oi{r|kiyR_GE5jOB0_P`rz8W;nSTwx(_GeBZ?ffb3Zds88PmzxVy8=jM1oSz z%rWU=I}$Wr2NByvWKkq?N$NXSvB$Q!x{W2JAE&3RrI;)g(?K9o!QDL0;N;-P%DDG}F3oG|$NXw6>wxY~IoaPXigRQ!XXi7eF>2^5ns^8$ut05KWH zGmRN>E2$NV)pvp#NGR$<$25n`0;DH6;ISRXic?r?Z8j&VwrrA-AAGE{WXkwC@5#o4 z)vH^o15wQJlq{nM+ir9Y<8Z5}l6qO@X(Ny+U{8Ga?W2t98>Zc3aHUi|ReKQyTG3AM zUzqBGr%<8#&2$W*W=Y=FjJ;GgL~<)D={5|~{A_G22W{P^FhK(oeW^3yxVyX?bXxL)q-FI zFh~ddK|8|-sx|$Qry&Rqhxi}}B7;a_`yoOA!N4B`V}OY9Fa$Zk7{9}=FrKe81b{{q z0wKf#Zf}?v9;O9wd?XSg`kFTf{I)<8n`a@2d+)bjRVTCqg3Z_kjYVTz(4K7SX5wsc zdq<=PE)I!_h{(u^NXv2W3){#m09hL!Q;Vu#w z;a3?+ey#_M5Py!W5qWrx!iP9wX&J3s3Zhr{V|8luG4$xa;( z!FFaKYJ3cGI*ZG>(+8c0D9Omk$jK$NI*nDOiDsVOh_pX z688}j9oa8RtZHI^fZZ!hjD$8Jt4xi9lg{)H2XP7SbFJ#6M-$EFhUXnIlJvLkg>z{n znLBAd&c;d|Y&$lBSh#<_vE65MQHwh{=R*0FCmmx;xfM@4KP+3E_KmojSNW{#y#(ApMA+$tC<*ap?t_$}#w9a` zpsSI$ZXvA%B*s(B;ruG?W0}YWT@ZN`|5{(O^GJ2h6~i-yRGosP<`I+e$0VrqNGf~) zx||L!ZWUH+EmR8<|2y0b~V0B#QWrE z#bwqmFPj6r>t(I;xAP13h%E|6p7`ul4O^)mCzZXtA#bxqAF-Xm(Z0oA+%ne}YF-$j zI(*(}F^+>JJAWo%uxbl=Y)Z;3q0@UNlcdE>Ad^~AuAwP^bFv84Y0$cQZ^J2pj9T{i zgrOaqy8}19vS-kuf~ay0P1_E1So-9|^?c@s{?zWTSVkttEchcr#cMFNiYuanSB7%) zyL#55(=i7vmp#go!qVDbh9joEsMon3MJTg8t5)`&MBQJXN)6V`DUY$z*HL1d=JC#H z7<;U%)I%b@k!15KOlI^I@!{CRJ5T_#)rE_Qs2&H#>vt;rt#S(xQ7^A&T3xt(VW)M1 zibanr?r08j!9-$>|B*gZlgZfmN&4Fb3u->(UPoW}kO^m@ z%HSkzyO4J?zwPY0#qEh>LwfWn7*?QZE2Bc#@=+u#L+3D7oLhJ=p^u=H#C5g+$sW|5 z)zDkZDa#R)4J)xkum$TFsm?GLr;5sluQ2B?A(x0NGR73^bsbN-zTqp+JSc3mJXO+Dn34u7Mkl5h;f}* zsa!pElBWu}-+*vZME>+-u#xFi>+OTBp?Rf&##tl{VfxH59?EFTtgqxJ?`=e z(eb$B&u@rMWIU@sNWRZiuKb`yN%h`z>yc}Z{u72>G_gfIuTK6k8#+p2cEF^VC!}lD@YbD^ zQ!|x@jCTi7UhntV#o0a{56vFfc6jzeu!?<(ammiHc{Xo^!Fl~QhU(4zT&qUQ@>vf> z1BP>lY_80pH@OR51?)h>e8u+rq3(|gG`pko$Ca zbO(YHUJpC{?A-X?7Fq7s>V-aXWh^bNlReg9_X_(SmZFx@LQ{Jl?m*p^Qp@~zXyi`~ zoK%pGUpeq;I;rMUb;YSMMZ%L8smM2(6`~C#Pk$k8XS?yGAhtHDQJ@KPYA+U*Miltr z?MlcFRNuNxC+B&8JzCLv!Ki24r))``u+QvH-?Vdkpp;O4Ua-l;Or{+QW9MGtN!5Eo zk;-ahI=SAjk9VE*Q?TCWrRig5Zhi?{PMyehyw-G8?Y)fZEt#UX%NaZE!=g$R&hI7C zGi>~?c?i*W)~L;nE32&5)4d8*Ol36!UF8pcI}4?XH%iklyoPTy6i7rh#&%3jplMpL=61IbSh*p8tV0_asjZ+ket zJaT5_E z>y<2aWMp{8yQ8cGD@J|CgCo3Z8FnD$rOwggo88%`HS2EW#%zlRD3;%Qb&WxPHPBbK zg>miaQ?Fy*-Jp+m^cJn9sKl zP(N78K!u;Q@{Jh4L~k*?o3fc$4}BBbciHU4 z6gA~8r97~%yo92Uy|V1v%jYsdZ{sfMUeeTU1N)3QF;s53-sv$=wMJRLP5ty$cYDC; z_F9smEjl8bW$3wOMU5|ygWtw% zKVgB@(_HY15w^RrMB?)bHG`0NIO|gxaIBFD7FvUmek57=o^&S zA%UVM(P?|65Q=&7-80de{wBBnhbAfgfxP()DW7FZJoBp4S4lQfeLp_ju!(?o& zba0}KKo|Mo@N#g6912q#=M$*>eg}%rO1+R|Ytj1&Q}9TxKad|aaH8PAB-$TU zD_j;To%k|%c?arqg|Alx*IGR)xx0RET}j55zo6(&#KB5iR5hxwV{|NF`d0UL1(@)? zr{?BJX!K6YW2~>*=oELov#v27a&E&^$}ffFjayFMZ`*p?wr^46MpK7k5O;Lss>O}Y z*aKMwL;2CG>CS}vH=DZKyaYM>^sB0`K`2k*W{+dl71MoJRzi)O*Co?3EZln}oPwi< zSDLo(J-hGmGCbu~v{Xj6q2Ufx(O$K66vz-}!$r@coO?|Z(LE>>dwT_yW;W$+{}#oH znQ~r~3UOzBU$6t+DGG+yAM?8Xs=4fjvdew@S16Kalqq58VvEZmQks3+Ejy6@TIWff zMl)fP86^+l0cWK`*r9iXOQ`lOq(s5`{npY(4>POoXu`DWkr6-A9<$u^I&o#4b-x|R zMst8Q$9P=YL*5rgBy~$8W_>HGCsgm)o0#Q{$t#B<9^IKjmMh$?YD0~YS|a>re55Mw zJiJ=91m8v;n+&y5Di-GuTynP674V@!P>DODd^|8IuG#H<>rx@(o2*|n$(vsJB@lfQ zc%E|Di~L2yzJsPEtZi$)XV7>2B}RSDsSH@6n4~@nUhf@V=jyZ_=&V_*zLvFhvf0;G ziA3CrDio2M=b(6D*=DWg<_^@_^>+P2lk*ssrObJn)JOP!f^qTnH3Nd~6O2^UzVeC` zg?@$3J+pr6%I(KD#@B0?Q&)nYSbjReLsFF96hDyrCbV=~Ij59)a4NK2e92|;P<|3E zyXph<*j+OHxbv~Rd*W8dSa&+!7f$#nP|aX2PjMT)uUJ=Boj8b4T#H1w%bCC2!?>xr|^o}O>i z{Q zLfvh%j0%d^SIRPL+%j%4NN&=4vDB{Le`6b$EvhBn=eS~Fb4Mbc^6l~!ZWDd0Jriz8 zS$mxq3YA`*V46-%$M(-|Ocs2;#1=PWrnQWEQ*OD`<`GdYMShk@d$7}Hq&oT}mLty5 zD3mRIGu7_~6c<(M{-oS5)?iX;X*fVMQL<#_t={Wksn=&pv+9ut1K2BTBV7Vt_D%(( zHTyy}KliLlwwQF@IdckaQM>%ETc&fJ;dSUO>J{r_N~P^v2W#tJ??8`361*Oqscbik zW?+#%AYR%kIJ%+d~=^rIw^jH^Z#$;*Lf1yYd&ke%+>ptAC5wA0Tq1C3F_=Lx^=H`$W^SAC=5rr+e%272hWKx!$uUM=9 zbX)PdmqrVn%R0B#B(t^HYIny>le@u^CDJkXGbYXFa#_rC%59$+bGcdg^Tv7(mN%u= zWEiGC){9L6bpvre&$>^{S`^1P7jDPct%r9`D(bXyv{&30&*WImC7t3nex_(GSrXxn zv1&4EBlR7hyM0>fh>BOhgF9aOo0b8gAEms)XI@AJ*TH1w)`O4Rz0vO8fnhpO)^*F`-@Q*^+R`AccH8)pM$`CaLYkS75q~LzXLFiPjm zvzV%}sVvptZP)t`XKsbKe5xGpx!a#)*&hBrwVTxP97Rde8MtK8dvD`*?a(}DH}*3M zEXotag*UncgQ=)VtoCp&5}!I1e1LW7fp*PW_R>h8=j~^;!;Op5ind+Z+WG63u6Oy6 z%8-@QxD^EZG;f_*iMfAjl}7T~vh_NOBUCx{?TR1A7AB)&>djzl%|>8wR8IW>M`iJ+ z?)w3O>4O9Q{s~KND^;xaXNNy#++HTE2&)a7<>$^fY~MU`pkStVFvRn^mT+iDonV2! z^gv|3RoesW6Kged-uyLQcgm5ZW)-! zR-?GYM8|_wNw&3zyqE^JMI6_;FTQw?vD33NE&k@m?wPod2qdGX3n#+uVL=cn6WEi( zZOh?tNAbA5pXN_43jc8^>sFw1@l&VHYFrxOBrc6nNkQ4)-Hpu`;f+C}JrvnRg+$od z5FUqucN`%`*w`EGiSWjrF#ya2 zK?WfwtP?vZW|#Xf;sC4@(h;jfL9T#8oKXTSzB2Rl2787=#`ew#Ews10JyvM<2MZ)O z#w8)V6@+m)K*p~O{+a_8>4-vLg&e&R_E_}yJmd-(Ea2k&Q-Q8%hh16);jd{FBjehrrs2iinE+EaTsl z@U`L?tUVT?SHxfD|Mzd5zo{0kZ9tcDQ<4U4fd_C3{Kx+Cf3YQuypagd4p{Ki|L3&B zUsMXG@oybi^w+-p@6r@zj`nU~p!v^fhCfy4`-1@V|8MskSb$jw2^!!(YCQUjN_}sH zf6LM6o4|kSIsfx#hQF!U_ty9~c_c7C4(7Y7AWwU+F0(^=oJQO2&b)s;EE&U%jWvvM zwCZRlgrU7V;v3yh>ze;R^ZEC6%#ZcmUoN-)anSzP_14b|uAe0PIt~9rEpRRLb!FvY zFX)EA;+K;@mVLPNzgmudU9SAqO#Wjc`qQF{{QC+DF#W!)`U#6K$rx^qL_6E#mHt0h z;eS(ye?N8q=!gIEo?#4Eb#nE=U=dEZHM%Ln5&J)}^Z&0^5Z6%O7XAPRG5nM+A_V&M zkIDVNKub%>{1vsN%&+L5o&{V%|92m^|E7At2>2h~0sdS=TvPl-4-mw?a{g-%_#3pe z%wP5wDUn~%|7JY^s6rRaj6%k6b@2G3-SK1bf5x-_&sD><`DuGM3_=*cb@6ZTF#eGD zfAoa-ucORARSee*|6Yrdf0F;0hy8!#H2I^2{-K6{GfMuyFi-xqegO7AXQKS?Rq=27 zz~4-Xe}n#?JyUvmI)T~pKXi!xyUP9h57S@YQdNz0!3G8H%g>KR%-8uvL_|moti^u3 z@cz^C8+*p{r}zJ_dH!~4*xhOPiTC%{-+wCOUuFF^75-V&f8z49q~G%YtDxV$DE(Q| zZ-Oca_06&~Z*x@mDDJBr3!d`u zuW`afe4HE~f&jMrMUMg>2j|godBB-^+(m&upN@m@WfCsqKp=(i>C+&^4TRt%Jh)(A zFWI-qfNq}1lvI8+m z$O-&O0Z0OJgrp%6fOWuS#O40e^%D-q6UY14>nDQm315ZB#XWr7+`td+8!d?g+Q-8Q zW8~oK2x4FJnL1)cK@9&n*BqEfxS>6qK^%V>AWma{j;n!pklpyM7^coHU(@l`CBe8M z9T6A{Hvqup=}$-bd~AtrZ0dk3hx zA)UWzie|U+;M?ae8ssE(LY%hual-QK3ELm=Z-_+20GHeU@0BYSkR&V1-}P0vCE&y@lPfXt{{jK z+%V-iJiPl9(&AxU7v3EOaTL)0Ok5n?xL*_i-$PI{fPtmWAz&x-+p^}jWzENx- z5>SXTy_VQHtz%k2P#3;Kpp~Xm13YgpjD9qlmZ^n}n2*n6#9%n1}!y9PPoT zg>YaKm1P4ydZgLJ#NU&_G}uy^)?c(*!mgM|-eMj#Xp_;_lYN-t#-#zf{;a zLMO-Xbe>=*7+<)PqcFk^;SNk6FhIGYI33`bdVX_9^gYWjtiLDYTjX0N&_ZzdUuXE% zc<%1si@+jJ|Io)T+;J(tFh&5^On=Q6m-3C&-cwE;9JsU~U_Tn{iGS-yKdjS!@$JOU=Hw`M z8gHtl$c}UeM<<0{JrU0AY~Qsjhu^^ll7i}p|BTmFR|ghjr;%BwfPt;Y5h z`7@~wuqZ=&pTYMRT>HrBdVs^Y9*ziI4MlbzAEc9ZYMO5 zK!>}=g%VOSKPOrKlq4<+DumC4?*e9EzynP!2(*Vs{#r|MDH$mV0SOV%g!mB1FD)vz z8;apEyP-J1ON#E&NC@C^N#jFMS5Oat0U^Lh$ViIdLr_lugIa;xSBf~$EiMFkL5R-_G%F!00a9@xkQRiy7->8#g9~MWoFK&0$VviO zS`3Gm2CV=>&{h(nvVbQp#O0Nh!R3{e!O_Ud;AmuJ@ielcco@e`7SByq7FVJyo~JBM z5-|}`DFM))0-z5FNC`*_$Oy;^0M&?!3W$mch>8n{N(g}V1w^9K0-!U15nl{+5zs?G z=aB^c2y_F`V?alcm(q}tkd=^Bmz7l0kd+pb0?&<@y1J&ChM2mBsEm{vZWzapjB*+X zZ_qcLw7k*o_<`Kh-W!9!eYjF&$8~2PZ$|{XFrXI3jq*Q@`rlAsD#3x@Co-jPbItGH z-x~O>f!`YVt%2Vf_^pBehcxixRT$v`-hchTi|)<{u?%=UuroF_($Y21#J{x@^WfY~ z5U@dzy9d@A_o8sZ(u$3=4LGu;!XH>V+ls>a3!;H@0O(c*r8y;iz*4-K^o{&o7V z)PIUmd4mGM3qKpc(>m|M5;)jl7seeCr1iskf&)OXlQ`JX#U7lQg5mZP1iZ~n)d74H zz|_t^!45ycPT(CG(A)tu%8s7ifDeH=fOUKwopC%r16afZ`0xODCIHJgVI0AsEds!k z;4)4Z00%CtJ_IQ-g9CFff8eaZS+P5L5Ok312ae|u1koLbpa)nd0_et`a5`6CwMAwa4!qA!*Ot=QvU)3r3?cn#U)@nrxJpU zsle$qS%}~)P}lB_1&6IsH4NU+G066|MQcD-WxPw*HwX0Uw?K7jw|&I2dLg;G%B$6@CO+ zLT+F;3<-IF&;#s>nL^r-8aOiQ33-E^vC|+02`G>Ni%UlUEE4ROq5hK64eY6X%jE_r zw4n)*X9Azc3-STEar`YHHACo}z;_O8BHbd>BAp^xA~_;c@eDpZKT^&C>t)BcadUt# zu4J4vIKI0w;`rla+U4&Eq*Vo}Zjdv;x`TVSPMGiXf9a6_5f{D(4#{?%IYL~aI&4UDd=Zufb4&+)vl&- zwfb4}jz7`;tZT$iuBuf)+wQumCis340*H_Zgut~j5$+-;A;w=MB&4Kdq@*O|QMy_EUCerlzm_7pt%#av2BEm zE1aC-(BbpRnp!#K7VXD)7#2nsaqg-SJ{PX+x~%>ikJU0dCtUn5UN3mi{O;2iURhmB zin)8s}YGmDmJGOyU)m zAeL1&NBc+XFoznQse|{tIH!dAIr>DiqqiLIJtoDpNsefQA2d$_j=T>Y=91E6;C8|u zlU~Ta-^jz;KDu~5Ij8(rk+ptuv;DJ|?O$a62a$jEhP^g(>PrAcT612{gkkJW_dgVg zRi+H+6XnN4h`JGR z-d#nM*g&n3Smj+%jYHF|Mp9RYSFurWGJ;1TuXX2}Z`H(?l@>9r2dSl;s?nyZY%y+2 zo|8#JiWVoQ4COzDaRj;h2NYZNM6O7Y|W%Ki9l9RiQF99L3j> zE{qPKjN?qWcPY9!)I!tW{4#dv;!st6T`OgL0W zOySPD#vVS~-0L!wcq1w@-|&l|L|*GzIoNb~5emU^(B#fgyDx6b{bfeFtyNT?hvpVkD?wBxE{iP;@;&YIC45>hXvni9rdB-JYdR=tZB`ZI+zz75a~wXa(9Zp# ze=p%8%Yb(4N!pi1;hL2r=`4o|na!;@>K@n5iE{XGMKAj`U&UrVFN4fOWO!p1Dctu? z7-m$QU36lnP2pSG*cdajFsIZm2JH>YAu9|B+}GZ~M0~_P?t>M!nf8KIY+BW`B=cL2 zz4@5oFcjhdYe49|c^Uevhc-#Z^IsBM^O-vJ)^62|nMavA%`-AT^<++(HRa*e!w!~D z51&hR%V}2NHDcPMUUXe^XgHI3;izaX`<3at6JadDv@bf`x4Vuibi8Q!EVrzDo8XQU zqwoC6AI~{?lM9DDsk8{91`JB=GTNgG@6C=@YIQmaw;LuuX&H z?&a_gwrLkcjvAEORL(Wz2=H$rx4Ve$@WEYpM0hHsR2p+>;tbr8_I8xSQ8%XA36Ld< zI}j7G+GBa@FS+jW8xEyAt@F-VgUR`BOV!kAL&s;Q+X+SFikGNIQel0}2@iVU#nonv zM$|9dNw#>rvK%Te68u=DxEN$Wvn9xld z*ulUs3$JG~&1`AQ2%&(RCTUhh)=`)|P%oEfz;23&=8~LUWtR6JDK|H;(Q_+Oka90D>3X*8d zcBrq$1(V_4np0!@W!s{)ZJOL@qbkG?_c`dyuTCd85nQ@F;|HzC&?j3dR!+C2iO|6e znrc-hh6wqF5FD)iz6I0aDUcZtuj=p+yEg1A=6ER(3ISAeru;r)<)k5B z@)K{^RChOw9WyA_RNA`BUU|Z?Kh$VAjEfJUDK`^vlUR}V1|J-*G8>gpodIjBIb}6? z)pLeQMDWZVesxpoFBEN$!$Yrrp@qsOU!ADX4=$nzxue$HQ)7lGR$8YdJ7Q4Mw>hsV zz)@8dM83y=v(BzBhJUAR!KicHjY@7jw>pKsYI3w;uRN2Qnntsmky(L={@ zKUZmx^J9(Wq%}5mq25wDk(TUn>r}2wHo6IB%&XDYm9|Oq64rCYPLdFsD?QuPf2+FS z5H#0UdiE(nG7Ce8S;#}$g#OHypvZ^QQD-w-{8uxJ<$}uKJQ7NSjc&wzBzt*C8Xq+1 z@l~3*1az0>iij0`j1);J%hj2>w+6P=PYTC4r4E0dng zH$2~&xNIlc-q^oaklNTHjl7sd+cSSK$8n9qH;-SBie>0!0FIy;&mFKC*oMK;HBc>kMXjV2YyF28XPLoRz7pR{ccZP*I$y}*Tc3~kA!C-<=B zOpIviWPSFs4K}}_t=iX^2h^FI)!$W*Y9x7zdaYB;--_yYsQYli1v%8jZr0qE%57q^ z1KASsUdfLbFmfX=GUbzI&;Jm{NGz7Ryfz|bwP<>ZT>ic807|&RkT1_{or&y-JtGax z;zSsqTg5smi~?J%!pNj|LCU6*ZL>^ukIcsOxmKf{_C?{&Z7^Oe)%ZwMO+HH>WNjjM zqE8K_2(x`~SU_qZWQ3Y0mjkWZVwQP`SL?;;q2MOF#XcI1uF2DbHKq|Y6z^?awOC=( zvx`p(W=&ma)THGd>huIjs~Tf?6$5xc7qQE3It(6S#{InYZZUk!nNy38FB~8an6*vr zV^66d2@8J2U&onjY>e_6ZeMmXQ{hpdV^N%+Ow63~Q@-C#pi?fdrZ_cx$tHf93gWa# zKSax;V52*Pt|2g><~7(uw^QtbKmAW|PbL6-4{wxcBkmA6`x)|(s5 zEN(sTcHJ&|pUcT3;X~VpdC**{Nq;d^Xh4goJMmI%hEc?x8Dn16#2Rcvj#ZMDd`jq* z(FB1)gJ<$vU-lCus1PHoLe^+Id1>hwJJNQbJc3(cro3HgL9mAOpky0qHlGsc9BmJ= z^xy*uommqn+BF9EsLl)fQ_~0O8lnd5)fbt`rW4BBQh7GzPVw7V(84IXt?NM4ybaSO{hR<)SKO%fw{z+ti=8?-p zKJQ|~_h-LN30Kipf7qPX18b$We;2l1#z*SS{GM*YY$Vi{C?1U!ZydZb|CG!xGPnj? zI^U2e-9tH-RuJghV5$~&u7b4wBvE$6in_!xIyV2CU=@6id4&6804r1M3sr@d*@JrS zgUJmJ2R)Waqdiio;v$F`O#KUO8ra+u@e@kJS{uP{p3{1+V=7G1{BlSG^>`n<*=y5oqX+eAr!I2x985Z?Ynti% z#e9EA%ISRT-go8qh7;&#YQ*nirk;WUx;@&C|54X9v3{dZZ#}Fp3e$>;FvFH%u2pX1 z-hmcGMeJLTcOX>v#Mb%!O=qZBWy!X~=k)BxM^?=rdh!-E zscbUPI;oh{p=CA~b8$)ej$1;tk7AJcnZx9eHusgA2D+pv;Yay+A56_gGnnzJKisGp ziRVvAI?4~P-4rQq)@hBqF9R`7j@yQF#3T|*jQSU z;+~gP+b*4Vu!?*yf(fmr*<&uqd3hXREY0~bx~fJ^PEqzoeB5YKOQ2$pvrXaN z+i~Lkq^3ryA2%}ecA%Tq9TK%ly36q6`u96WVO*_QXV57Ghj?Sn7_}+xg>>#=Y3Nq) zvzew{7QauUGj(?hv6B9#1-bON>|K3u&?Qzmttr;USkq5d3fqXqRIZr3CVy;_W9CtkP~4S&iz5oqCjIF{$hVy}7^|3Ld#@TZq+ZoOfLZ|Jm0 z9}bW)vRPXT3wqijwNUyB{ZeAHKJKN}?3HC}W$`uVSN9Yvl6oT!diFoL`LUw9ito@~ z@{!I-`PoR_!dM3_mw2tsm6Ew}%C={r7_aPON7m2m4e^p!3S9I{^eDD)x9TY#D|b35 z5m8`un2PQk%V;(Y(`?{@UY^5Eu<9}L!MNIC#o`ryPOq282^rTf65I)_TfHWMrJH{< zGQ>Tc%N~ib9hf(kE2L#ynr|>QKP;EgR7Z6Dn3RbTW{AB=Q$DOpJ*w@QT_#J%^jQ); zP2>oVsN-|pWa{$_(+Os(I;F!8`sNzU{dliTeQ~trOR(w=B4h7(5jy~;YYMd+HihkU zw@na}{7dg0Evhb-n%FgtNBM^Cbe&7JLthODqb?9Yp*`wk+TeGj@*>V%nVSu}Iw^>% zkXhY<6z4ickHU*9hcM@Euq+>NpKh-t<`Z`BxKM2PC9^llI*{-r(~Z3msF1YCmvs~a zAs@IZXS~1=UZ8L_zlpXxAl!PNDM?chX%d@!{Kt1Yknme}^CKyJ4#=fb@FVH{UFFPj zr}`43)g^1CA=vs|+N|`!E4>x@Zp29H7HPHeZJ9RBEZdv&YBD`D><5M{Fa!%QiEX?Lag^j9eGh%eC#T+BsS!&iEZk5gId2 zX>ojgk?uA1yk9P|k|2jxT+MfC{hmaW`XhMP73RAbQ>xx*P1TltL+tUlT4!AOhG(wIm|-0xL$n;vp~48T+d(5Xr20! zRew?V&C2}SA|n|B8&>^C#w%AnDUNYJw9@5wJI0e;_?BpT%h#~&jnmPM2T6_NL&9|uCTEmb-!?zC zLq$1Qj!??HHq^*CxdU~KS~qJ1pTfv9KU|1=iC%kY*DU-h4Q07mx7l?5Q@Yurf3V!! zr6+>S^?M>l?i$JM-z)X@)l8{YF~+`dMcyXw>~%u-&y1x?J5X)c`1GB_8iuLdvyN@* z=k*5y?FLXF{?7_alhe4%Ur+qygrTP zM0xc>N$Q<7Jw$nzyDf?t{gUWdSlAhzPc%r2SlStyBg3iG4V?~clR7US(Yy;__4#a* z@9NMswUqcY&Mje(du@J-@Z%RpJ?K}OPg*-(#k0j_c14B z+`oSa!L+)XdpS*Yx?S8xn|h<*O4cM*phJcJVd@RD4Kbb;YMo@^`0GHNoII7zI|JvA_Yk+M{nM|I7I%do-pIz`(hJ&Rfz^i)_JMS^WA zRrMD~y}TE`^Pfa$_vV;+joL&=J>q93Cp{Ig(npYhl1XWcxZaE0>E@Pt(st|CjY*+` z!Y%U^y19lIU5xIreU7>maFmt15!&qx?|^P`fcwxXFP^$0II7!Gbvg_+cxz=q$Lb5s zaF}FJGQ&HH4Q!K7k4o>VM6vwFDZS|4Rj9o-c>Ba*)-q~$SAO+N#so}#3>iVX#*u*@ z$)v$m&3W;!-Ss|)oZ$Dh*<0+!r^!2flE^A6rGJ^dcJ8=FEST%2Ocu9qu$;UR*b;*d zLt*)?Q$*M+6h+Hn_YS|$RT*M$UOQq%sAqcq_z=uVp^`^Cyrg55d5+@()zSL1Q%3oO zd}_~0FLFPwIo?N*%&!*ck8My>qZa^9UbBMst)xkS_QWf8`#8k;UfKg^09|Mv6UlYY}g!(hV0B zXg=CWSs&1R5Yc+BxA#E%7T1Ra-u~ku8uJg?FC+Rkheo!H>_5kbKkH!1|H4y~S`-zc5Fma1`0dc7kdF*aD;JZirm@ud^-)Mq!Guf-_58jY2I z;iSd!D5FI-gKfP>W?m)T_`HX9HCyobtZ-P+;<&PC$f+~2i?6nw>#nYv)v?R84y4GR zU^iisnmcE7XjFw3Hhgj={nh9G045Gv=@REVxm_At1C7p&HOI@j@4WEdryg=>VJ~y% zYI@#t`wN6YLVTBbUiguY-$-N*>OVBQ5X}0)?#+mVeL|I-qtMoa}{czto?Jr zk5Wq0bq?}p&dP^R#+bdls^qYkp7b%3yRtRttvh!Y2kCjFZ#nI#+M9j-z&G zU4vcxD68}^b6S{!urO|*b8cwd?+W)qXo`mf|EHARh5o8+M&Zx&^6qx`t%3^Eqd!aO zBAR&p+>ea6zE^&KLqU8lpLLYUSeb$2{aoAm4s_X&BB^upx#*)Rll*$0kzuG?3GgYK z8YlC!Ipz%h{tnMIlQ4SSC0}H-OI{$TKh}zH@fn;CdaE~Pk?g;`soId85-r^CrAnLg z0`>`M7+&_Q^|4&Rm7$?JP1?H!j7xK@0_MENcjtx(!d%^wndgWSRQ17}!#iPRzV*dK z{ozi_p{}%v_R4^>N4h-kNY(Nv_Z}8Z(lqGJpsI;uV&t?+D5uMNa=e7c6lK`)hpw?y z>QZ0B@S-+*PFMb2g}~_qJ?7#dZQF20qoX91BsJz=oJLX6!h54*kiKyb=l1?@>vkeYjnPVm)3VTg9M?)E7B@|yuGExKn zJCy-4fiRKoy>cS~nd&3vLL-(n2E;wO;atz7WG%7D6Nc9pP5LkR!{N$Id!CbX(n;nu zO$^b-U+|CJ@S$t&W3yN4xk&KAcThuw|{Fm_HtR>%l(j z0tuUl&IVIjhP`l_C0T-$e%@5a7K%97VBOk&6(@E(`w*iutdsRu;-|djbH_glm5R?% zkZ#1Zop|bDReR=*Q|JnZLTImT$GlIQ!V^W&FTr-=t4a?)H#uLHI}vp&SbIpxjt90F zP_;Q0atX2KvjfRYjoAq%Mt`(>&3t_6%{{$XR31_xv4@!dsndgmjDDWEms?l=7@Zuw z9=k@vrnoQrqkr5VkEgfXVij606+FwDO|HePX=o|$-+XnIPf{-3fPZ>vJijr1wGJI` z!cjz*O_VudZ1@i9=f18qCi(PHQlo&*M_y)~Sk+G3j6F1-F5Y+U9_HXlH|@Dk`-WFb z{U*HLLJ(aV)U|o5mqdOaM<)kO)UTXwV zu8Hb@(Ots^-@Y$NXc9}Zs<1h=e2!H*^o2ko3#0wdCX7lHWIU^@Y={S%Nq>k zd6xIF@*AgL_RO?B&+d#T*1{_5YzZ}01|DE_@eP`PIr+ptyUL$QeW{N3>i!Fn0WFj( z29`wcIpre9H@_IlzED(ESI|70ui7#8(vJFtFf)|z@qjk=!vWTi`iOUXVWy&S6k&Hc z&FIZ@o~t$H`b|7&E_|0_!b1j`i%!j+&7?}UG#p7?ZB8yoE{%J;{}G=+MC9_wvt$bM z?y3mR%sqT=sUA{ubItj;64aMgpVH=8WKP?$yraMBwYE7wS~HA_BBzaL+@v1y0l*FxlYfD_>n!uN zG0}365-Sas)Jyz*VOHU@VPwZE!FL~Y z6M-64@us$_-pGmb0#|n+*YHrLXpXV-f#`*RQ6zmh3Qf08b8?T4uHeMW;h|+G%l+pA z0}jkhC-9O!Cz*4HPs*FolDnM`3`u2*=3mQVVJRQ#BQQpjo}FmlA4R4eURq`ByK$Er z%XD@7$?-bsXzR?u0|R~>?CL@~+7W5Qye;o_$h0FW`X-)y&c^aTod*9FO{KXvxY;7S zZ=&fopPGW?CneC{3FYw-U_WeQYfjKF%S!MPbD-mM+RT=??0lwZHiBpk`KXOCeZB=# z7p_yLJ$w4~b&5xst#rwBn%Z8GIJ(}yER!3*aFKg#Y(nH_Pxj@|eT3tk>j@tQNaVr8 za>jX~Pfs)PM3eQ9x6Z(&i@Jpz0K|_BF7cWO~<&$x}XM%HAn9e++tCpUOQ+ZohH9@mE@+Ld~O!T(b;_Ge8&XWCym4!Cnh1_OLBrogM@GIk) zYWqm8iM;EWu0MS`HQcUhemh~kaU$fEt5GDy6l*0(eSdRM>Z0_AhDQta*IB!xs(Djf z+^@)7h#0#Vl^?(%cJsr7@w3ltV667R`kKW}vX`|tGfOYA=B{P_Pf z-OD9`$1W3QuDy30%zR#NI3U8ySSS`{npURD$aAkPZK{2UxR3$?r`b4>yvKB;v!t^j zN@04ZZR&Khf6%i4)H!-aW%n|K-s$$f4^b+)9L|Q(dLf63qAfRkhX~9W+QJbfygk%i z8Dm?_q7|8ufp+`)stm|(t4rp)1|PDhX(>IeoNRp4or}lsem>g%T=xaCl{6#f>U~iV zk9I{#$3)-$Osjp<+V){c@}pH|+g+Lx6#J%Qmua6Ww3u4^j#dT5nWtaW6}(+bo~PBW zN_zBe-s8wTf@35rTLI>)YhN4^syLahg127EgL-Nd`k1!lnY;(|r76_<9+`31=NpL$qWrqJQV#Q!K{LY8*l#!6m@$)`V9O1c+ zuvbS0Iqdd*c`xuV>y?VTQJUCM_Hc>Ks)dJ(&KW^vSphHI>7Kr-^7Av?BVc^O`lato zqepuDI_AbomF&}=cEX#@aj&*Bmuz2aFk??^UOZW6O;cX43f}5yvA2;yYoym_ovzB; zaZUJb+jksVn8;UsBR00YHO#882#d895gQW2Hkwt+r>Y50ZgfMWMOS-t~I zuXL2jV-Kve3?SCR9SfDJeMnLI^2O{k@;8`~`x9tm7zD{VZ*bUoW8ypPm*y5Z>*BJ` zKfj#)hO4PzJAeFIs$0nI(#bcMo-sy;E0EhpdlF@%S1cz7Ur&XKXFogoMiknCQYW@( zk~dI2*}A>5&a8RfBdp_L!fj8}k+8-p+}==Em4be4UanX+#a80 z$!Lce%XffxH;Xz&{xCoFTS(8!l30N%RTqe4#IaecdJ|Dh*ijN>%8@}FsD&Ul+ zY50+$`uAR%$5Wz@$_Il^c8r&{FS9g=KA!dls>9fa%y7mfl1^2o%SW(`x8~| z>DPyOQNyx zV``NyoA>V54{2;14@+23d5#{ul5aq+s_Wj7uqnoG^XXt!fxOS8sI{sBvkoJ5$EMiP zBSdplx62wVk7bTkP4#BGp86QepsHBw0_E2cG*e&HWt$xdW{iv$`yFbQ)E=qj&&|^{=(9zLbe&5JbfQpEi0)G6=7LL~ zT=XsD)O?olL4V5njQmrnLIEk)9Z2NDV$@2#&^xakNay8;yBmXzJts*_pC4&IPgAKq z6HJ`5?XJ3Jw}u=)bkN|;a_OrrhS8Vn@J$aQ-@EJchX>U{IG)3fjSiJ~SL^(L0O&v$ zzkYLAA<|VJaK0&g#A)e!LLLqgl+|K9e)(4nenwXKGfbn9M9zb=b=RHa>p!v2* z@e)!pzXcR-ppCvlm}_RTZ*ZVfl#Bt`(Lnle9m)XNW35S01xc^nl02AmFKPb(oN>B+ zKl8WA48LblYmGADX|qFis*Wl0-#EW*@!pOnx=&&3gs&!Xe6jI=r8f5OJm_af^YxB_ z4WrvxSzgU(Y{JwCg~KaNBOQx1O-b9fa4{xW=QGTJZ_l~)?#!G)fxp2P`IGZkMtvX5 zw^l59h*3~U{N9VaAnoj2K;)GAi;_`-!gY-~SJIBiC zf`({^LA`$*2V@A?L$pL!dQ|oKVv`#3Q7PBOj@9e)$drpwX#4iSw4mv~Pn|LR zc%Kia4Wf@X|J3z^T6<@u2M5VXtp{3H+xX$NQ#N~jp1#;EDh+A{cB#hFN`u*r_Q7ei zJ6eB|J;pYWQ0CH<_-lsL9^@<9ccp!)fhc#iKg;idAe1B8dv)oEO`#ss{GEU z-LWYMN3`~-AFCtPl^~wlr(s_cgOZ@$*RJ0zDM86;>@Zp>0VSum$ou=?wD6#0wLO68 z(BRo=10}6{S9(_(M^qczSGP=yBm|b-`kV+tJ-Gf|`-)^sDzbr++uF70Fk021B(|yi zFj{@+8ExxbhW)!>3s!@8D_Rfp85?APlGyd7e+&flPYI+Hmiw9y^}tk84oG}9pxXjU4dK}T026@h%nL!hC&S$QjtgE$W`>{F zB3S^2XlQ76p`asix4uM`4`ckg)2`t17v?6Yk&|tzYZ?xOCZIHEW4ga^4~+_(;60~@ zjjqQYk%!tzd#`3?;b14NpO(>Y^HSiZ<@b z9a+A4ul8yY{QSIxzIzX{-LJG+1hgg~?o2Fo0NLNT8hqh>Laf03t($H4{{U}28>8n0 z?v%LTSPrzW(mo&KgQ_h+APh(!WoSLl_##swVX~ZerF#H($uS-5*Yd*s^iRx>B5LZ~ z4VJG9i7C>x{+Z1CTMjJ&J<^GKk7NG;$BaLpk0gF#-=iO%m)=~v^T(U?O)>o~V@|)8 zO+pDFB1iQKO&=KrYP4^JXPjxU$`P_Q+z*+33$ruG;m2ow82!(Mzvm#JjCs8!h@K4B zF%ZgB)g4?^5Dwm^b{@mbL}!8ibWhGT`W+Aa5V4tJ(od%jNS}m(AA9HaPmmry<2%R9 z!WrY_2|as(-y36Bx*emY{XwSL8%P8w6+dT>h9snSDU=lZKNoZTnG(znh<07K=}pcJ zl|_{N>-XeVsX>yo@Hi2=iy<9>9u&dmw4};SYAfO6ktyeBcTUINr~RxK+=4sM?4Z=r zhMz_TG#iTF*J7NwkfoHJ#@Uak&)~<3uW`%G%hG9oF+K~eiL=XPFGzCxYxZkj;q%Gy znz}4JA;nxn?SKE(_Pbg1s2=e+RXm|EpfF& zJ)gE4N*%2>J9WScX$;nz^y}BY3!t8;XSDX;!wsY%WVHVPCmT(m-qYHNz@WHZa z10|{6gKr#GsR1Rf^rdiGC?I6E*zN2_1fV3gH9Jzd9!p!GWVSuW(UB~z0VT0Ly~f!a zO(12qJt@6vPDa^%=m{;lif!YKs2d<8x2};q$;sfP$6**N@${3#8HtOMTAOrbL!NS2Prmo$5PvI28o&_2et#k+wh~9ur=j zdYlBZ0SeJ?^zMDK1&|MY^28C_{!Qso2~Y$TwImZZ|>4J49W|nB$WoD zr4L*l%f!npPjHz(=T3$EBH?zI5E_X~YnC{R{)|kGf2Mw6Uq-5o2iYyepQk+pnhz&d zZ7P~FT_`F>$LG+0TyD`+6p;aW8-6MjD5qYgxY)D^ns3qM#F4V?Uw-*0@4A{Bbyu}A z+v*x*(0nsRc@sq53@gOukJ?H)4438iy)UvO{dB@R?0>N@(eKaahEG4)>pC%t3;XRh z!spCE>a$8NG}~wW(Welj$F6x~a~qxVvrnP+79w=`_=VTpBtzyu`O0L9Pd!CEY?39- zrIpB%G8hv+nP$yGDmt$DzV<6A{Ki4<{VoT!*g@=^1dpb9N80&bMBA@y^$=epmnuWN zf9+ripoe(3=ssTf5@Y0`W2m9_py`oF8z?k&-h!a)dVUxQT2XZI9Y**r*${_xq4Dq( zz=9M?RQOa>`(U&H3X>rtxcz(NODZZY81Uc6whLYmhjbJG4)mr(NFa&`c8t=S)5is% z#Hjsd+TGkwaU2Zsx{gc%uM&3p22q|s4g159r!^vPm?P{;zf5TK{{W7axBL3sqRbVwjrn&W9|B~CR?OM0WGgxtB(>YlId+huH8C#;6Mp{ zw#Rr{5w=IES|RVtaAqpUZoHh|G0;dRbGdkv5=_jlNN5oOXbWwVC99onIgx{{XW1 zp{0Ny%^#=ryvOqn`R_d2=2d1gLYHMilTf4zP_|IcjF}LPF$z#_qhfmfKTcQ<)WpYiYbb%#w6Vg!>5%Mt6H`I-=8xJ>_|MDkA9#9y zW5@dMgKnq&$$palY3Y`Co@KYyA}ezYoX1l?CC1L?nDYn~C{{Uu0o!JPev|xj^ z1!iD1x+&@kn^00aj`X&;hxp-IQg^3`dGag*RixETBdplYgNoY3I3fZ)lEW zkzCt|DI>QSy;UW*05I5bsjg~u9jbqTQ13kX*2DF?T{mP7ASO(S;iEEcqYk{-Ks!D)&HNWH(?@xf_|1>&W4`|-5_3Sp}O zPP7LDC#Tw3`Wgr27u6AxS?%vHuAH}4ZCdKI@Yw**E7n}K8i{n`FQs;Htv)g2KH%~l zb((E=UYm`1-#vbGAICbsW@E#qm-WBihe7Q`uTc@*ANR%Jf0>%5wP&jNdc#VEMXk(l zbEr=&Ww%LHQWbyMEnUZ29L?=LU**6(9X^XqJyubUJ#3%Z=Jt5JhvsQujoQ}U7iATS zu1KitY53krdOMz!Ss05kbb^h@n`Mwd^uywoC! z&SrSoWp((OSJQSo4eOP5mu%?!LqnQ6e4=ClV|}+A><2Tjdly;R{ilL?;lc?u%X7j{ zLi;Q8n_GiL^A?|ENs{&azo4SSAM6vSL9~t7jkeAsv*U4<>^P+KdO2PwSD*W$`D^o> zBpTJ7g2u6!VYFA_xGnW4nV6pvO-^)v$m9o8l;1dk{>ZrA+CoROu!H`qBmTrZQRArE zfc@h;`+UEe5#ir;2YQ?~jszpcTKqLX=UfTlwFXL5Q*YLACz2VGorc?2BWMG486({H z9zF*J?8;Hy2UzNt#A^MHuov;BDDZlf9a66LN(1mrF!rExGi{X zFw;Dnb+6o|%pSD%e3C1hJ9MjtR%bH2hv7wJQa9`la-FrDV$HuYIsK1Y*qTF|3H2Tj zYP#%h{#!j?Nb-K4q}uCNI(UxqYddw5($k7ak$Nh$OS_q90;n{qRFVk(TJza6OCj|= zP8<-xA|e14UUWGGCa0!-cTtWPfpuH>CY2(!hzY`SATWjZSx8Z_-lK7r96W~&a;N{$ z`hsnN@XptWxJwPFr$L8}DrVSkwN5-rpw`2XUimIHQEN|Zc++YRX->lklJi5oueZ~W z5>U@;zfSn^B?|V{sN=tUc#}w1w)XlmCP9@U9@l=KPCQ8Dg_75EwgV)D8`^fKUYIzU zS_(^F!|}mvhUh6RcGz^r(h34gPQMS!2NNKd%W3V?2NN^|mXxozYz9dQe3rWrPizFU z32c_6R->u!xWHt{CGy+TdQ%=Gjgt9o&xSl!noH%kJ{a37OJ#)M;#wA#%K_<4@Np@} zx?3bZ-Erba3STT0?OI^sPY5G)zDNi?56cCog#j!laZjBxCQC<=OQnLfJ%|**B+iog zVBWqxNyzap4)&J32Bc6^8%0`QBpv)P88V2p1h9K`!Ni~-B!jNQ==^YTGU2p0pc&K= zUB*X`xtWc<{{T@s*v0ccteo|IeSx6*{G=Yc5WDA1?C1Eg{CkFvXKON- ziVLW&1a%-85T8t+8gUccA1D16nb$F5z=^^HE&W%SgAQr?@nW@j`6 z4*)Zq?OeyR4l|As7|rzFJM^!cz3gty9j`3jHf)C|t`Wtt+PznI+>f&IebdI$!})>c zTG!FIi`9-dMnT7efTon~ofbVjGDnIhop(IsylgTtl;yD_pTM%8ENBwhYPx--nzo^; z$$hEY6LEhptm+q)IBWnN&S<-L1T@+#ydT6x^51^1S?tEACVh4;GhzZnSto>1G1fww8Kl)ge$`Nq()S+o?QuT2yyA#beH3C5o(qUX!qdb793H z-TwH#ZvOzBhq$)7{Lj357#7mipt59uC{P&bwx!Jm!mLTAZvBddWXXNteWbXa*JPLS zc9;{nISu@4?s#*c_5(d5ljfTt9V_>3^x(8s$W~3a>)7D6;o8v7hkwJU86G9Bst+07 zzjZP;%Y>nsJ-4MXw17~~fYP-2(`sO}5oltY(uDV2y3@x2Dg~7mK|(gII(XpXPY6>e zMMl*JVh2oxvJtDdq3KsPT2Gg!l4~35xP-7>JS%WuwK6}zS@`^JXh#q>QaA6MPih(E z%xvxra^wTt_CSUlBZN?pv%cj1f#jHK8pZaiZW4H*lS+;>j?HZ?{-Mlgge0OUeO z38~zQ_Bn?faE!Lxk>B{)&NGpKzeoqKzx1v0&Ay?o$)o9-Wu@+|sol#Rww%91VPtm6@SJe18)2`XC;{EM!&zE19JMwy4{{REy+v&UMRd;-282_kMjkMc5{GC9h7LPTAzs*ceHihkkk4&eZI2ph2PLW^=Af&hUrUNEaf|B2^+hfPNP;x=vwhkhY68T{87&w^%fR@FOt`Om@Sw~q_*u%jy93W0WGNC;rU?VW|mEB*1ti+#c4}swWd5tOQf_1dQ!dc zaVLc?lGImmzBZ5&>8*OyZQ+2)JRvTY-n&yH#pa$K^tM}lymBU1%98ml{l0k)CUt3C z*5p>B+agV*0+ve+3GwZNi2^Bnu%49pU^D8F68Rza>C+-)krV{55mD0~J7vO9UX>k4 z>IgOI-vOFLS+(No(|LFDdg0mTiqlNJwzI7%8bhpIr~}v*&pgy%GRvFFN9DWS=yHLM z1KocR9!Yx<8lJk0O(MR2N85rN==%m=;O4vk06=u!(8v5DKh^yujNV(9<55G*Ng@6j zwjyt=W7^+&l8y0E+RakenY6K zA%W@%8L92O63wH?BlQ4C^R8p!9k*g#!NshPh zFUbUV4PbU5q_p|-tnif&TilQDDYAq2j}RYKr6ghi4` z+wc1upm?$oKnVlSd)U_9!u}yw^vz> zTGuP^N9K5IuPgm7!}EXZUx~%NeO0yc`hP?J()#jYZnVya#Bpg%!h4K-MqDaw5bh2i z5h5x^729k+Dnv?yLO1J=h_r`j2ZlZ?Arw18JSj|kMA8+Z_V>Z!r-cadHq@>@DP_VC zuN(gWE)Nv4;Rr`o?zs5HmjEb7Q{j({kpvT<@cM9g$?(vQi_@kjB18~x1$VCa_=w;^ z$pJM7r)+#g(h5s+gN-N|Er_jtj67)p0VTQc$BiH*@OzCI%^6uL`(yM5R=*-~9K zx$vjU9yHQhExGX9pvS~!B9_Sj@c#fm98N}JDSWUGpNYZ7kp#M1e{4+I2qluk*W2&M zjXWt_umCAf8Vnq10WX#jL$_VBCQP^jSu8zh2HrUnB-d1~TXWP39{C%Td?uE)ul#z|{-&Bek`f!-Pv84kZS*u{_;x~T z+N=h{@y+p;?t_PPt>6*41O}oK-N_?n{dnCiSx{)0N6CH}VdCn;s4GG~>^xg;kUnpx z?KIm@J9%Ex(m*+DmWFEwJ!8IrQdF;rr!T)ehfp$hR=$28JaVz;1HF5x_01+seWjs~ ziM(=0hF($~ec-(R0P-I}n19Ykeq3pnHelZAx3gT`#>1-GGB7MVfyC!m+uH0}j2JUx z^T5=d2Iao^CqV*tLCk8>QW4M6U{hp2AXG*g!_ih``Kx5 zX=|a8KX7@^ZE=5vV~G9?aUXg8DKjN1cRnJU=TXG*q9qK;TJOJ(M9Gkf71EU3f8&wj zWx|GZ-@qSkxD1(a_aP)o7U-b(eUng5Q~4ZyZOZ;z%sn7SefGY6 z-S(p=pFGtWB0XkHXy5maB2`K^b4qo?9S$n48)?nkdVwHBxOV0RSItBIRu`N;*Z7X_ z?0S4Y9v+>3&k9nRKji#3d;!P*07M$T4j&ZPbqe`E|I_;*VBWjt&%|g_Fq8X7+YgA! zsSaU~)~1x{whs`p04W$>pr+V-LduZu9E0{j$Hgl_49h0}00zcE^+aCpT$ z2zGB6tMbF+CxH&`zwfd>Soq2C(C!fQQ%`(8C{GDOym6l0wmA5qA|(p&DH|WB9}px0 zgnLyzu;zV$)fAF*f`m6 zrINxa)8&sEcv9(N2Y$Ww?~&qU0$nUZyL3HkfX!(GBx8NI8`CQ?ZHiMgRVQw^@u0yh znlHPd81biq()Wl|ZIR+;BW%0Nnk}vOl$`Qpo*y*oR`a&RD&1PzT_r2i_N$z4X~ceN zciaoq_GUsc564m-vHA1)WujPU9!LDk(ZuoJdHT|L{K6f%C#|Q*A&j8tm5hpx{c?SU zoZ~z_C1>1YE+4pu6I4!NI39RN1NyU%7XJVc_}2Oov#6&b7-u!^duLWBZk|~9c1bQ{ zpeCI@6aL6h{y8%(m7#^wxCq>@;e>JPuOyBmA$LTO+TwK_TwL9fp_jyd9og(G6gk9PIH#@+8|e)k4D9=T)@mzamE?0lv9 zmt%Ez=3REDuD;_A}cM2hC-D|sD5Byuo9z?xK4ih^>p zo)%+b`>mM4J{#dR-nGH4DZfAuTIB7Iy@mO|Qq(kyC@$=0jsxrZQpWKKc~wdMqA5yt z%q>o$c;^r~5L~<(SY*XH5$3+OL-5p72LIUfHyg1YRml8}>zej2ejP&v|=q zWTWjFr9?k*Am&}$i77?{atFSib>`nWXbq#@+SqD;UB8h;cJbR+fh7H>aLwfM%aVi1KA5Ao6ZMfCo4p?|~2{C)l#^iMDG z2h_bSzR%WuK0X~jjJNY&;GQl200sSyyZI(R%RiOj+sEPm05^}9$^X>*LpKdMYrP+x)001PO*)JJ@iW&z?m@V$1VDR0;9Pm1j!K0M}qXH@jD!_s^IQZK# zG2t}RsHgGA#tEc33)$#S5tJu|N!5Vtaq*Nz11gcf5`FM^&5;NuVZA{fJ75{xI0}Ol z{$Jsbj-CRb!am}dd|;jupvs-F_`x)y(1I!{hr|g(JUjHm;--`u5PM_eCxr_nRQC7B z#$FT@h{C&^2QxkdzEpAa$x{Tt;SM32dgd_&W999~F?smCIk{+YgM$K`fYWQVu>dAq2KwJM4apd{D?i zEtDlXVseH;1SOIMIQXHEf?F!C`{40IAp(|6i`Td7$HfWYOD09!{y7tokb+ezfzp)r z$Hh+qSt#4D(TT_z2qm)ZS{=Qz9AS`&OJ!Y-)WPB}2FYxzx!$z!z$VXv()kp01bg`7 z#>;{0f0xj~clmSqr)}wvt>`{s^6t2j0ao;HEp9aT9^=%7cJa$1b7@re)fWnXcAXzD5!QmiRnMEg)@WelBM8RKI&btr$Bn)L6_m+H$7 zMxl>%IdIfqKG;_LPD{jJ4%u(z{{Wev${ugh^_3jqx0uC!6?T%^;CgbY`BXR2n%>sZ zjb@s7k5RYvhT+c8WjHfOCvo50dA`^Dlk)w%mcN{uoO~^!^PijFOSHRS3~wHfZiZ;+ zO&CchZuHM6)fpU62b>4Xf6(_`qna_*W39wv#kYL@ApE+%X7gRerIPv0rweU0jF8zi zu{As{Woe`-UCM}|>+eIGk(fJP&OVg-C3E1p?ooTWYZi6`Dop~J1nU`MAS8c7lAhsWR8>)BSPoTy22w<{Kfpf()6D-!>HcFu3g{hl3QrD zmMqTcc<#QOzM|1oAgMKPY|QNqHf=zF#A>BypyBK9blOhW(P+%&n2CcD1V-lid%gF` zQRn0k0P z4*Tp$`;b0M^X8*@s%TzTmfF>{yNOMll9<@aQbOEFJb(tLs2MGOpZ5gWxQp2R{q7H9 z_SEOD$B%|QGnWamW{LX?&Gl>Ri#c(Dmq)qX6BV7?imkk?DaxTuC_C4~AuN#{T%1}= zvgHDP4{7|r{G9WroOEqRTG3#2g39S_S|3Ea$ar&l63U{AYeUyL-qrSlO{2>kc{e0q zK3l$*?3b{b?$XoGJ~@n4As!h-nNMx&Z~)(}ZuWm8{{YS^`QOgBI#tb_TBYuVJg_y@ z&90oW$Zh1AqIVpwDOL2}-mC9i(CdA((`iABxMMFlSO=f;eBP!$z{ePlO-`r?#_l{G z9Oc8#H^e|Zy;N!R@8%c$;Lqi!l{~F~f8@W+pD}sw&)R(OwwL7z^hxxX$6QmmR;#~l(U`IyVqR}sS)j=#0&fAlGz zk$<4SjlAFg04rnB{{Rqwfxkts)jv#f^**8Xu6#K9yLz0dP5rYE{S;vQw}<(N z-B%BXD*pgaecgCm@8nHi@{f)AIPme`AC52j{2y-*!T;6ozw@2{0P~yQmj3{gzE}L& z{D(_DYf=2)*Zin->o_B~5b3tD>-O9X(%yQaPEp&+&&6ZisJw+s3@ltz@(hR-&ynT$ z{col}=M(<`GQ7X}vHt)#=lMzJA1lo1X&0C5v<**6c|At3)U;c4vbnV+jz)$tB9pmB zQy|z!g7G_aD@5KL@c&zH3{VWL;NDdp0A`vy#qLWdo>bmS9bP)yR1A zV;EwtM*aT)u{Vp>kRr_*dh9?V8t|#`=eYWELo-~U2QFS{EiY5kb-g;vSkf<|)O4*% zFI!K)gw`pesa|ME6%_{lNgr@#q(mwjs(A1r?`X_tV3lIc(E z?tC%v)8L@wohe#2J~Dh1x>@7*`f>4>!Aqr$fr63I#Ug(>Za#AV^7a*`=cylI1tkjF`EjMXRa-ySwX0H$6~veflIIQ>UY)XkK0 z`EyjfzOv@(m+7P!?-l~9vp5CWIdq}TH*41jnHN`ok0)o@^5K^cc>o^k{84><V>d5bgu_*Wf6n89 z{{T8SAGR;gom{!OxcIt;6wb#S_H}t8Z)QDkIWX^8g??Oe-ZqmGfK>)ITK$Cp{rGtH zNP-&j>N^PTH3u|~2p(q##x*9NNfgM>Ac!Qk;lnA&L~|y;L+)K?N5Ar4 zF|>=VUd|nE%GOCHzOifFLIOTGVnVj1` zb&zn^_O0*jO7wVdZS}Z?z4TgL{e#IYH*&BG9Jb)U zS`bZEgT&>TrxT9IG6$gZar-|{kZOcuF^+H~f_VcC{{TkHHW1q1UC#Qw+}82U4aCcH z9Dbucz(#1)ijAG<3GG_src5K~9IJ08tPmQEq~?(vTt@2dT>jGZ&&#hZ*lSu&r#0#) zsU6D1k{SjI$yTP~r?&a6?HtmCz>jm*`zxWxn@^C=Af758C$jl_$``(GwDXPLjpg-! zFMeNX>38NGLP=I7wt!5KBC0(LJdVHw8x&3H*8dS)ULyKF$Oe+<<2hi7Hf zYVgi65{yCOzC(N6>^lRswE8_BaXFYs?GQe>5-4za+v%VA#w|nq73Hli{`XqH(q+27 zmVI|lxVf~FIq4V$S|@seS`a?hTAbqjtOHe^QG{b401+S^o{ve`*|K(U#g`fJ2)|wN zMn|}gLb`YJdWFxMwC!hH)9>`na?vzM{dd(2mvFSRyC2=6F_4rg%BQt9rfH$2mMms7 ziQ?L}J9oRNXfor)!bP7TYwRDjG5s^-pRE3h{UV=J^*w%nq$BmKPQTuNHvK;gkA<6u zinsS|_b~jnvxknoT&ss~x&PMq!TFV>dD1`3C^Ub}pEO--USrf^(tk;Ln^U@y_F)aw z5j18==XQ4xqlMkNEjAgc(DsHsR+#6-9fuVT{t`#qPgmOB&*bdx(T`{6mZ*bdTyWQeL~{i8)>c= z)tWvlY^^IeUPp?j#0GMjt!ATN`|0DJA&3)Dkm8Wrp2KdBrJrPUU6~l@p`R9Wmo`6C z;%kHndIt$L#!PmxV|&;?Ux)nUwvA=^LFT_cXquIW=N`BDb)?6sdF#p^S=IFU^<6gB zIDgWv?iOO4k~tKTIEN#ks*!`T_1dhoGsMJ8=_C>E;`xo<7q`1R29HrV;u}Up8ar6C zLvu!f*!MpqJo*0sKQ#XUoPzVWp7dt?r@OcOywGj5%a|k3F0JjZ{Ngao6+f z{&N=2$MQeRUzeV0@^9wfmoGWkAIWwWmYU{`q-pY)Sn9JqtaDq$LkT{x9m!MQahjQS zh8WD_mlSK1s^KHt4=w)9$s(ScTi9|uS>y)^F(&RZjASY#58^N*hIb#TfQ-0-e)9QG z%HDH(TSxQWsiE8I*DU@+wEpmEgsV6{*uzIBFWfMeELOjutw19YF{K`fGfR&92<_br9U}@`HOkWu<_kXsDxU3pX-@sI@zOA*GhQy^m_JTFJ0XE9p5$**q!HtfjLX4F zUS&#!T34y9aE!~~CGy<&`St0C#ZQAtY_}t^8}#2KGTQh>EtY<}50!BlS$JI%$)!F3 z_-}+|UkNOhYVJnIuKVHfLm`a|Y36(1CTpHw^QDcVY7+Ts^`xIqk&30wt?V*cT*Aau z(4_VGjK$TD6B!?lP53d?x7Zrod+qek*s`<-Z(|pe~ZExqMk(p!^ z7Wb8DU>+14+Aok9z-w^c0bJp~>-}$5Av^*z#y*N4){igR!M`v3`{i9H^S4;?KEEBi zc~j3(N9Fi6X@DP6mf6f&TQj%&szwD|^aa%RIhTjCC9Kg)F#4m&c@L}Y*_ggvSgZ)FbK3UavA8P(* zOboub`epFsej(HLj*b~5GhzPkFQ`{SeyIEodj&W6~hG;C$awkYc~mW*|a~sD*9_PDiw@WEY8$I-Z@~` zh}?u~_)q$8)YUI%j!_&^nUIGZb{x2O=nuPgK^Nt|qpl16RkXh_>eusHSX^089-lE1 zUa(O$yU4%}D5LFGz4I1btB(akiV+q;^$uPC02gVG*{Y!l+0rxQ9N8jYTuv$ zad$HfEBO{rvw}+%v0d8tPq<^KSua=aep^b2K4BOf;b zejTbldGnNYbGkCg{+Y^$YiVaV<0DgJr;95G<-Yy?;Thom`jJNY0d`!RToSzRtclnK9)BOJc$KL+{ z|JV5arT%s4#^XSj%-@$jT-V!1x?72FXSR}Ci-_QYXzihunsqN4JfWFbklaOf6wYTa zv+@y`!=EGsg-{>>Nd`o1u^@Eh`d|E<3|g7up0i1ca)B2x37L#yL;*4;_(}dN1a!JD zMbQ5M=PRteeL^2L{z(2_Yx-N-%9<^AQm+(FoRl!@x#%g?>2zKcBN@o#;Q(BKyBy`q znRtHC?MUh+BZnBp#Uf7(rMNZ28FGo?-*Fh(kw)n-c~p77PnOQ|YY#8QXC2A1mJhdN|kdOvs*28MOjUII#es4k9SbI15TO6S?3<3gPxq7&` zcZrl}M9O@JK~`U1{#1X?LTNrl^G}m}&E?~xX!y^1*0>DV(iV5O^i<*uo;?&CwBn)q24#0E~{&jWX z*n6IrMWlwOO^QUH5<*0RESlWPNBDTZhl_c0dCr~r<@MOavw3G#wnAy@EVkDIqqo4o z?U{1)ni3ytGueB7##5$#YU!G^Mr%fy<3=dtsQ6fQ287V%bIT}fSbrs&u%0KKt)=PA z{TUz4Fg==HGw1L5${!^DUuxI-4fc=bUoh(WWu#ZP_PQpY^@M^cfM8{nexTXGMx4h9F_IubG$4<4HNItnS^x-DmSJrUy zasAq{Bb!iHCmm;~z@Jbge7VbB**o`KHO_FooUSk5Vv zJGp<84a99OnkhqOfUa0AF*;DdL_gUY@P_5GKN93ztnMHrA0>IeC{?OZ-0_$hq1>q?XIt`RlxlIbsy zj>f$*Tui(qx?8k0I}PdWhmA%wu4}0G-k#O%lH)7E(JYqfH{ATau<@^jX=Il`bZ?$W zWK)bFrMewM{Wy5n!|H&N^Wy7LdQ%=W_(?XZe!Hh?7D0?=?%qh1!KE3L(Si0mj7;yF zF^rB+sQi!TldM0K{PKs5-nV0GKCrAfnDv_qS?T~&uNfotYJZ#GIUQyxW5{AQ-pAwK z?X<9tT|WWoWBlG@<_&xvZ~p)}9jkto{MFa>(`c5T;wyMH36%vC>wE-PfjmH&3s=7( zod;*?Mqw#(B-tMRb>vODxoJ)eP{+(fP(DEVZ_kFGI;G*2t`(?#8Dxbix5A-FufF-R zC8S4xi*m_r=*Ki~C#@gDbG1-=*XhCHQKH;1Sg~(u{Fc*F-%;~+qo`Y}+DE1cHOXWZ zYdtpA()Q#s)Kk}yVp2M?p##2h-M6aoG7Mvse$)FM{)0u~VT{k$DQrFj57S8opQ($@ zKg~X9dz-5}tBpxx)9l#t{p{>XnHYRZu|-)(q1-NO^+1CdZOiaJZ%5gfO!9z7r>^^O zj(gla*{xp;=Y~g~D%G49x*vPzXFPLmp+`_bS zdODN)SS2X-e!Gr8+~hQSfgh;4?#|NW#wDYW{_q@_uc7`Z`B>%TM|0qrq`0F17%uxz z>}x_Zv=ffRIyvK*u~kgN%AQ>EznXN9GFfZdCbh2pUeA`Hrr1psODqo}gjj!e@)-#m z?kYMQ=lgF}slai|9HIs6P1rTe^rxci9S)aO8RE(%auk1>VtRBV-uL}4@<;NrO$W|t zeffQ>>y!Riu9nso4XRv*7IQxtVYV^12cq$!l_WOV!{_bYd7LIP#v>))q+R*FOgk${ z3F-9ks6t#oabE~AjmNJp{ppa|`76oRl2gmS^NEjn3@zzJcd7|x;~GFDjDaXoyoZPt zr&1}H`8C?PkKSu5-M3o%nZvWRcxW9&2QQ`&?-X5SSkrG82H_8=Af-q*(%mpZx>G<} zxP5H+;e6Bd;Zo1VjJ$mHr&n$q z5PrIt&z0FUlKVL|O4JMTE+R`trXgMt?ar_nq~YQrh;jo1XmjYBT1`_AfhW)3gwxV0 z(MuDn#jhp{cYf5mwkkd}tL(NLjhy{)F!|*_ti!23oEcSwpc5eb zt(PQx$sbo^t4TGv!ZWXhYxjCJ?%MDGVvG_6zg5Nef+atH=y(E{-^kF=p=C%@swhhY zXjBBH-wW$41%q_-t;f<#LBJI%e)p!-_yUAa8<^nNaX3lXshNl8#R_6T~Zow$YsD+FwTY-NuA>M+$6gOyZLO zJS*%l%kVV=UkR;sz=tEWcb%a$PXfpL>V0?GT70K0#9#)B=wdVeMocM))Rt3C-d!4N z3ZMu7?${q#>EzdX?88Hl8-F#_&o_>z%R*=aJI-9o^%7?eR7lwxc!xi`1m$N|5=^S4 z<--&Stt;QX4El$0WZHK{xWoa{elk7jGcJ1A>XB|R(M#KX?9@Ly&qNiB-EYtDqKUYq z@I;g@n*6~MY%teb(6@LA`Zt4aA|SOx=Fy$y;5Q$POOtEceZ<+R`^6!i}WY7Zio)wd4W~cuZumKtVM!3^u&}Cb~ zGyC#Uu5j+X6U&_CeE*rt8)#dOf@5!Wkt{qsS>@a{<%?zY$WM9B(3}7COj;<~hE_U( z{m_Ik+0E_h`TC}d196E+zbQ=|{T(eqlGh7zr7rwPko=_$r4{;CD&byP213?)+?97?O)m7s@dQ3V@_Y2A+ zNm`1bvBNYmk=_E5UhB6V#jVUPjt1~XMSriAeAVepnL~kYMD3>oyI>7rf4 zsl@(Uf6)dZyWf0SA@pwJLe^(P#hRJOv_JMm zP3dk;inWu}av$rX`RS8oCF6c?TR-2pIUYUr$qrDbWpj35yTAU)(6%6(dPke(HgK_B zz}qLSFEL!_|7+`5*L3AL8`>us!*)O1II^^K{bXhHpQ8%3yv~a_xbe!v#mxEh{q$F~ z6u+b5im3`;@z7NK!%$Cw=2cQl1jtc5Pu=m8%%;`@Fh8{%q&O91OPef6clTN#$6!+( zZzk#-ybkrl-9wu^SQnY&3{>BLOZ{F1Qo+i8XtjsE!muXxg5iQvE=X$J+|sJw5QeQpx>>ZF!jHO!S)s`gbbkKEwePzNOB z5SrfvC6scK5KXm;nP~YM+~sCdIbcJzDav;E3>YG(!4aZZduX*(E+F(!c>+sGR?;i{ zjbBX66#7#YDj%AD6FBJsbBLh+WHZFXB>0D2jj>0daLcc)J5&>WrQf3T5H907&Z40o zo0pLbuqadg-jm(wvjAp|^-|MM!(tSvD=&aY_KNf&5*-W_DZv{e|7S-$l& z;wK%?14`>4(UODQkbfAMCn#MQYeor31V}31zHs|~f70&`B5AIcBvb4G1ir4{ASY9* zpe)?p7yxy>#fBHiR5Ep^PGy`8rLIN(U4u%FxF2P;C@%N;lFaz^dxSkD6hBEYesn< zLg+S1w=MbR<@o97uM3-QiMXM(?~JN1M&DGcumrSUv8a7rh-;*!#m_`)h%3}3LZ>GX z{!Me!27~+uf7rfGS-!IM=#ZMIo9N4R82yY0)s{g>PM}m$CM7-u_WsD8ELt1#cV8f2 zsRn#q6(_>2h~8Q#Gv;QF#G(58h@t_k^PlpKjJ=be1Ku1@cbZ<1$LAo14z~GSD0xz# zmYm0dv1>>p_co)olB5`Y+XPOQll67Adcnc&Bp|;>iJil11}yfGbF&D^iw#q8C?J?G zQqls3b^8-ggXlU;5CMWUV9FUcmaHz6OQk^swFTwIr=l8bkxA24cPTBMa@8c&g5Brj zvK;HSFdJ|*wU+?a1m4#tx4S-0=b?OkdSXoLNtKaheIneduFf7RxC~+P`I}y@1bDBJ!e~}+fEv1aaj)vg==zdrZ3ih%g zFQ&KSXF$u!uD#zXTlqMTy+;fj_VI-pBJxj1*XojmJ-AL2O-wgS+j5BAbRiuIj{E8{ z#w<~Z$vcVL&-H4Qv0r-aMkemCe*fZ6TWh|#xw%UTDArAg7V`h8JR7p1To?2V*@e7n zfrGM4$1I#Bl#@JOY-9#chE(D;+q*bUnY)(0A%doCM|~DdQDk7mxQG_wJ6Ifi;sy~ZW3k9ZCFaw6dW&p&fe{FX7-;z zkFgi?+Pq6KSa;)~vNIc(tA-gu~1Ti1g7O%SIFvc{(ReWlr^ zxtSjH!mTVkmXMK+QDyNStVE5Xo=Vr0c4d0U9l_)G{IY3066R~{Z8vXEG{zxp4}Kom zTU=0H2NF@OR6o>Yo$OVGwM=JxTKb0pwZl_R&Qa-$mRzm1O{>|TcXz!AW#gGM_^JGf zB9z`K^T9Q-13jrqTC~@qWp<}P&e;A()FBqxs2_6c9Yvnu-N!wC_UvZ`B$I+Tb%z-ktleR#} z8Du-!(J9$AxUW_&1GBk;d0}bWsPkJ=_}Uyhg%zLB7Z{M-i!FdAPWiB5fciS=CAP7^ zuOt{&`>m%pbRb4Z?2r#nSeKRf?}#ykhK)7|9-vj0v1VUBMXr8EY% zk|=012t3nTs3>(=YoWk{Mnxt{(ptC&M85k)^Yxzi6T%fOijfNS0)i$x!I|j9f*L~? zAn&H{CB4+#chSyVorl1%S}e<;*By%64ZH2vM91=#`B=0ODmP0e7;MPuXBL;_nVb3{ZGi8?dCXZo-|$~1D}4Q@#k z#9RI6qMBeT#x2d>6URg0H7$C+VPquPQm0~*ZRi;yNH^JZJc4_pHHV6V1^;(A%>mqo zP3tY4A;J3ue(N*sX*Il|wFhHV1%1mtmOQGZG(qDg=3{f)9~Lm=%Z7Ze!wzQct^Z;w z8h_wDw^@^xW;-VVAl$a0ZA0TTj@PHxm@)Ja$g@vG8o1Ylr)b>>iss@j&^}Ehs(jr7 z=wa095@HFrxO+M2?2?Ab;K(sI&B-(SLQY>sY9}169Vxequ5$j@GS0dN3z` zvA!$#oAt?#9ZL?3W?kIePeUguleRv+WO~55SvES#k3v%fPY>c)QJ!rEbHSG$xcQf^ zO9zLFb8Z)8baU*iIL*q*evwKQeu;*)73_EMrqyR57WgE~M&G$UXfN=5&DaV6qPgig zzxVIz)N@*`VyLT_@uu|R`=cP#{E)5{1z1#4ul9t@I3X7*Ak-k#o%H}WtGlq;($T`+ z*k^j8OEARgbB2i`T+ceOlBc3mxAH#9jI~>6G837?{T^-)wf_etCtfopDNa zaIs$#YD1*`oQcJzhFgcJC?IGG0L)QFPQbY=KFnRdn+aRrUUwl23|oIMv6ap@Nush- z@Ifd0g;&L7gx%d8AkdR~o=jxJVjI_VttZlVRjC-;R%~djbU>dfQkT|8IQae)+Q+)u2alw+Tk1aE@0*fR{+O;QZ;>IFOkox_&D@$1oUZ(Q zRrT4=4_|Y6TTC3CO5^!xb8ru6+T0zkS&Fi5zE<#GtW|wGrV3#)>r^N8tyz^9@;Bk{ z0HWiULTgWjT=e=bHOhBu`%{^OXhp$T9g@eEZ`>B%>M-I+mk82X9Fc+Ao<-}IJt=E+z0xI58n8!O_7p?VvrlK~CiEQ38+N<415oa}C+Bn+fD{!h3yV+x*C=-cuf)5>65RpFGic^ z`>brPCgFjXwG0dJ!_Y(4M)>|HxxyDF{kTn-DCb3S{SlC_7)3hIa}%Nm*K3dSxfIx# zFl)kmv)6xebV}`z%_datK|KZr{1}wo629^$oj;tW=x6dK3W406wgn0*%md1TN1@gH zf?HDYeU-Htt{HkwiWPmV9Z3oFc+Xj!e^dkU;1_C4P2e z=}wCOFTCRa*m`aYEUz1-I17bsc(%qNKrGPVVg}ydf2y>k2vtiQc!p&+ehhS;=g~D% z!V$>==KDWoCNJ*+e_JH*v*V}pfjacpw5)VpDd+*MWz@+CHs|2ExuHy^U3(~-5^LylE* z%Kjy0LaqduMauL-bbvn#(XoU+;B9T?RlV*Gs|juV-W|)Te5;l@00Qw6AzFD-!w^EJ z)SS;NXTf86l30yplG1H12xb6eOV2MTz3GnJ0A|efWHhjUz1fc?+&g$Mg>}83>AoyQ z$Z0x5_dMPiZ@2{7{K_@-Z}4PNSbTiH80a8XLlTSjd83Mr>SOS|l%mmY4t!F!pB4?{ z1*2cF9nYg7Gz;oCk~h9>gta;$Y6YbTH*mtDljRHjZT^24$t(yh%C&B7c(BaUJ?{Z) zFx}7%s1fvU_MZP;RM4qK3GtIPCrNMfY~q;sQ z4kK^>HdUS%q|Z*0DFCTDHs1o#HB6@Ci!&wkvqnZ|ya_RV67C^xeY}=xQ-m2o-)4h& zel2Uk$0IaJRS62&O~Il)Se1bQmLaL*g-i8rnAw;@SpUKm0X= z`(!)h9xj~wT(SZsXr$E}Dr3TCCmA}T?!iY5YA-$`n7=}7$QrVvom{VogXaAj!rh^0_JiK@8D>CMeCo~vs%H-sxJFx^}>k7lny zShnKJJ=@ITZsiN|(qj7&^9)vyApIuqyU?mYvw`K1mM4$G0jBypy@v+yTQTUkYAz*^!=8^Tk4$396bDrko>-;dw0oLP})i#7s6;%J5>8Cupi5CEGBfcKVQj)AHNo_OYl)AkDb?Ed|7%^9|%hpci3l zmD2CL6TUl{mO!mpMhthRkc0RIzm>mVcKqrZByw4K%t-T|ziiL_l--dn)FgQJrp9$J0+R#Xa-q zDWzi2(6+gZiKNU5{ydX-2ASAbMy2&6--&S#2=j}ru5HWXK6rFrwuw?Wv~L2$d0LOC z0#90)7ktQgKj)rLQIo&4m|3&HHIVwgRF^8cnxDIV%1G4xxSS4uxJSXA$ACmEfsjw8 zbOc7|5z#cv{o#^$gpbG)|4(5@lmqM3rBWT!^qB}U#Jw{B;HqkI-N+NklX3*c%usk>FI?N zVI^@EtjG~Hk^+oGTBC8duT)>2`6593E(vH9W8z8s1KiAC!Yp5Z7N@j)y_-<*p+<;U z>Gg0}u8lxz{}-(BS1HZ)C;ZP;o=wZ&68yf;K3H8h&q(#80mQaf7!gTlxiPA&JM(@M z&Y|&JHiF~lTeNp1PwV$|h8O)1jn#Hu{%@CgLHDDlU5#K1MZIku5kVVn`}_g%tjkUP z(`=#uwEzv|?$(m$uoBI^2E(Vvr45#m;ZSoiXIgEzH(0u~)O`n@lw`uQp);caCrZcIo$&ENO&YxVuM!p`tJX@*ldT>b0Den$|>C zAXktFu)B6ZiQ6rK9E~%@uNx^XQmsFJcst-O$3UuvyhNigxt2pf@Zx7LL<{X2OV!AAg4VTfnDL_2DOR__#r8sZNFWqiW2Zg-YS_-&?w0%?RTDHlX zGcM(OW0x?Os69wuN2f8f*vR(>!`XoMIK?K5eoWH1*y6e;?D%j6#j^i}?~Bal7lom( zo}>WTR}2$*MIM>Ep#g|Gly?xyt9qLI*{RWkQVp79Cvt58E?r+IrM{pJ9DlChNvJaL zLcc~!S${<;uYy0{SUp-ALG3~!29Qv+b4l$ zBdsuHN_ArYy7E&gT<&SJsSMlW;)s68zIFwi>ZWR?GuOPOCf|cnM}UNkX=2>nEBEUy z)>ud4Q1>XJ2a!`9GfDWdD+T?HJDn`hZ~B3{+fv<8XeawCIBX|B;r{yTh*z2I&e;L>AGU0V6%1}-G&~w391nBpDu>dAJ7NE0fw7}>_bc*h$F9E z4y4qE>Bd~7*rgf$w6@7b7eFK~I}6 zTjp%VzMv(Q7?47C3Xsrn>+U79o7vPf2h2aqCxqPmSd_AS@s^HX)2)095$CfW#nRB6 z$lsNhzh;eOEEku?b+}J(rOefzR`~jxYc^xtz4!f*koTYBj50lO0?Ywg(hICWJw(60csAWCob7FJ-n$+b{1-G1AL?LC<#OeO<2;!-;?6voxhd3 zpLY*Z{RX(nvSGwo#?-@+n{>ycT1=Twa#;?w(J!E8h}Qwzztc?@|NY{SlY~FBmzJiz zBi-|C}mg;Df#Lgj7j6-n%` z>nNg1Kjzw7DmFh~r&H`bh0CeCeMVOuIDLUgE(JadX2st3AJSp0)FmFl4aCehBt#h; zg^ivF?|&E^hwv0r{aX$>hS&M(PRE`qIbW$7)M2U528gCe4wt9)=Eh{79WscWdEE{P@MFD<}z}qe0|MqYh{I5i8II4(PWEl-@p-a^Q1dc zc4;VXpYuvn0bkHM0Z&xnLK`FlGTd6?8^U7KxKHlfjp93O$S9u+IwJNTXgZ_gMtwkO zAYlB5mZNo(eGT(SQR`QD7AHVqM| z^{o6nzT40n!X>c*Uzk<}#}FrGLbjfQWmU+xJ=Y`Ll|xYxhyrw%>xup?m#m$%p?uKy zW8jGn?K%Xe&gd+S&ykvV@E3!&K0$bE*ma`cEJGNJ3&lGJ2zYYwtj3Rm?hAyAzVg9#fiMWPHi|`)gB2HPj;MCO;_Uga-3)&ILeR{7y`p zh=`gvZj5^0gR5>Zg7|@R&LtBllL{EG7DO;^Pj0C+F3a%r@s@Yw4~#FTN4ZHsEVL2= zX(2?7qs*~l)#9HD>e=un&aJ{#Y{nl)y^HH%FglmYvp8wh3F-%LYJL$y!n)|{=&!p% zfvzkge|wK$_C5PG-tUp4aN&XjkvxPQG|ol8B|-z)*VBO>5;IPXjM5gk+I^t?Wl35z zgEhi0dHA+^AXANqJoaQ%MrS+J!OOXg*Ht+4YQlVc4kLZ0SI&TNr%^h|roC4Xz1Cmh zZBS1nr1jf)3ZVcnNO@jw+yw4kz?G6y4UQBT$I`G7sAiKTXsQS3YBHM4Y)_MC`NfCyk}KQ6QGUVTDZ4L+PvaXcwfT`o@@ zSeF4!9{{%kFl=<>eR{$xrJtq{guLM6J??s?vcOBKY>Pg6YDVx#5x z-NL-PH`&-etbyw}w^%680yyWmg>wUJXgia)9N7tnmQ<59woM-me6Coe3@@3`VNblU z@p@5TmHg_nRPpK|j^`iF@GyKJ_)&6T4zgso@F{6LAyASIa_>*KVp;5Op=~+c#|Jc- zdNh=WZZlfOY)=rV^}pvSsFJ6AXgz8yCSL;P8XB0)l4nPUPsOZSOo6-+y?CW+{$XXwTj}nNHDVWuzed#>eoI zlnH5Bc%k{sU(EQG^>63tRkBk97qwPf=A5pmBY4V8jfk+aitA4sE>7mx&5J9=cFSiJ zC^V8f4%n{8GkXaumRW01pFmUY<1UAfecZs}@$C4xpDKE5{d24jlXW<$@2SX>6v>6< zX$|mSeBsROsm{<{YoJi50t{lV-=Wy&{QMgqH0jCzbbkX8#Z4{wA4x_G_9~+fX;l~U z5t*cNyD2y!$O_$G>pE6UBTeg`9Q&wh@kYUi`I#og!aSjapI?F4Zf28dusBLGchb^j z0msaDK4!08Mk=A38`%ZNX+n%5j4Dq}{IhQ*C$+~ZZzwejvV_UM3+7O~Hq&;72r4NG z5K|G4YO>D@Jr(|t;C5wTizj^+0E|KB;jZ7gS5fAYTupkCxK~_bQPpv*pIb|RfJbBj zdJfDT&=I`?+s>5v1x~qog~B%mCgj$x`NT5J<|Z@`;e^=F4w(q2>>p|&d#Ccm*xAi3!K9!Y?I~0t zc~H<2P@Y4~loqmZ!#6}X-cH+SqO;`g#}bN8iTwj0oigoDh&%oM*B4@T+TP=ue1#@6Y> zmmo1;^{$dwS)XgfM`l*~;HGS!d#M)QmK9|rSL z7-7cx!HF=1V5Y2XtV6uQKH%u{lYk@~n~-~p70s1XgiiB1ZYjfCVkc!!F`^?Nd^oqN1-$KvsJsqW0kc!LMG7&y^nG8H z5xp$zUATSXSQ^_DmaK8nXbKzKataY9(RpKS7S7QuNvd&6?e(31WaKJxB-xUEI)=yW z{s%uq{hiq0Gwsl=E6Eh}nBdq;^?>}-2jl;s--}aii4EJzem~ZJa)u{h=R>6b7N6B% z7ypVZRAP1o70KV|!!AE8)qq$)od3nA;naoT7MF#{o$MGZ{3#Ep`b+iToQhq550{>q zACPfAh|0iA>N=e9pI^DNXDXY^=fvSV;yQ1eB`jjHY2jqZ^w>htvAafZk5sE0l6{Hj>teqCAU00tkui zkMn>(Ki~g46_LTg(sv?u+My-R3z zeX7V`QB|wYzE2|9y&@VU@&td{`NL`#bWCc;6)QIEPlH_e<~;WX_yt6)@>oMJ_Tq`SP79 zib;%%)~$g-R5<~&dU6IN23!*uxM|W;2DB^FDRhKi1%OzTsUb+&*?YJ7oV;(V zy_1v$6Y9nZ)X(32goR%CgH*plDjrAEk!JMzQuXNnkXQ)*13m4rCPa+TjRl!vVzz%% zFPLl%iY(rLJzP6c^IKQhLMabc;kQx9AAl#dKd9c9_P0agABIEy6v=mAaaODkOwnEg zb4-giRe=hrKf<&W zxj|aS0oq>$4>&zeJ?0@No_DXf=|?eteaAWc;khe_<*})f1CV#Q**xoSL5HORdB^{* zIrSnTGak(=8K=4*fzFcEaC^8Mjg8*ue{>oB!_7*6B6x~y!N1cIdGwe-pcAi_*|QC6 zahux6AL69c{INaE(d}vggKb-#^*JIF!ZZ-~?s5$hToLMq2r_7$zjv-FI+bv*I1Oab zWoT?yAtISthz(D~>Km5Whn))NO1~DGqv29x>>fsoQKXVqP;BUgcqNMGB36II)q@_Q zb~oI79XeSOKLWw9%dv-=l5CSS!I zlu;XU58Y`6??UVNH&JdbCi$g5ohyMZ<=~&A|K;@ey^dZc{QNFn$vTuJZg@Sm+8{!| zYTkCBqTe$r8WQ`x6;7)WBqM4+V41*^U`m}!Z9tuQ_(GtIf32-clp#d^h6*ksg8&yy zc`$B)_j_~@+8=(n_!mr8*R5}(d4y99ngj3m9&+c;d*XO}Tr z1!Ph5o?;7pI=6fIkjlZ${!yE6eHG8D{o{FAyo{DgHHYZ$8YaS+g*sxhKBJ$D&bu*y zT`wF{!ZJoMer!Vs1-0lsiOhS8sJCPREK8Q8<({?n>rnBcQxhjd}$05*EyGUNq4eC5lc&B zvJ*qpDbiKOqubkM+xGP{+=T4*CicKyLor-TKR$tv#hLxb$qS0_ zJ%Ii)ubb(nWhQ*!=ucay%PHmAwQ}j!T5TSH>}v8qNa%@po(7veQ6tgY^nJZ92b(^?74_Ue2}LvPhEXa(U@=(awRDO^Ja|R7hC0n;_}r^&$c{}Qyc#Gz(2Q6 zs9-EX2zY1-yZY!_JYU0L8Wf2iMQ(ab+|EFn&cej=hRS*nL#tqDLX3a>`@TTEYYGEM zW!o7V5}e<})1*mAs++7Nb|0YNs6>=!`6kJ`{Q_4$$S1`Apa3yQIHk>cM7f;Paw&Sc zy?e>Sdu;A7Y4lLj<+8MCzCzGH58QzyJ!_!;ASbK|U?PyS+I2BO|xpsBXHLRT~uz^5teRz2Z|QxF(+e3AjMK@Ljo`MIs6I zcXpGqV)?H`t~pL0Q1G6iSV40zlY=bjz12TwfmN6 zjXVMJ+HdQFU)Wep=`!ksNf`0pW}9WPKz1{CqA(OZjo(GGekWmzPjwmHI1U2I7Z2b| z98DbDs!Y#eJliu9C6x`rhNs z{#(BBF)a&lh`Zp$V6^+7o&xfx^ zyq`qtN?>ZYypxub9)F2Cd!}=43aU>kUm%h%$lXesTf^p;@;AQ6GQTQaatFx2228I} zq);nFX~&b`2=|NP7&Tli~`y9k206(>+8EXdmCNKTs3x=4TkBE7f|g z9j)%BI$q`L9a{f+S%myeW}-Rp5m+}ZlK~GT^z`(oJZ^1W(l_H8(_?$~EdDoNC~fA7 zpuMy?PqFw;=0N(h4wWpO$54?&aI2&=Q3ruxws)FmfUGQqN6&+TvKsEBU;=zv_lfFF zYc(R~mvh@+(d*BPt|fEl4rJ9-%G}xDqwtd4D)Tms|2EaJ*sT{R0zG9hB%e@9jhukvaR?DuzDM5%12G|Wu^A%b#X;nI+qjJsC-S*bS ziYvJhLm_QNFYV{V*AmE|A#!)|xI5O9HH1H4$!vw+MS*4Dq?hEsYfLlA3$faZFWUt{ zchwfiJmgonhW?f_x`YMZHD{OQJy?udWzU_k$`4Xlbv`6he8X_0RjU_1&qngk$uZ{+ zA7x`C5_Y3AAUt(1J)vto)z26Zjtb8|UmnYlU(?b_6Ps^rIU#z`kk>gPWM7+IyAmM- z-Haez=KO~FOHFq9L%yuPbZQ~Yevu!Bm zlDL5oxf5+R$$~-_tP2&)R7qAm4RT&+q-pqO{K(zy6a2&pHaKVZ^TN#Zt<2(V}cOFCWZ@%iB~& z6g;6>jDxP0csDuxotMy0u8KW5sL$0Xuj0{8-dwj^y2(Dlp~6X;ZqMz_k?ZweFIa4* z&I{Glx=U&>*89xBi$_hLmOmv%tx7f^aHPKId~P_ENT7_yVw>g~qci&TF@~hf{}RoqOWe z((nMXf@I#642F5B40?Q`@Qqwa1oUps?pV*9-mDQZ?Zxs#_%|qYB|X*Zy3a${T<`zS zh|da~GvBo2O+_LKoyc0l@Zu&H{6)sS#9z0YRyH4v%hSL4Aaw6}I2Z!hLbNk{WMfA1y|#YQj%zXNw)&gIL=hzDQ4igN&1*e<&9vMkg} z`CC>!nb#OIu~_3^(I*N6`K|lxquE?KDY?vi2T0re_Z$*4nzMH!Z7Eo((tN700vr6> zdlRbrxX@JrBxpGyZ7}a6ML6B-J|8?@^{32f?fKHpxab12GBsCkW9KL0uo8o#65n!+4?xJrsgPl^-LraHI@^c!XB&NY9*%~E%o~Z$@#H8=4 ziLb3$jKsA^lU4KIEJ1M(WPjVUiQfqE|zlf=dC>ys4V96q)9Wx7%@ z3Pa@?SKQtDF$Pu}$9nbOQ`Bc=o%!H_|1+Y3_CcbKZ@o_f|NBu;y5^K`KgZnI)7+;X zG)rn?K213UPyo{v=|dF%W2s#{Zh3GGDJ>g%9;U$5uMnYYmaw^T5+ofMhx1GQc`=h8 zPb8c=e(O=Cj~T7TCIy_67feYz!89_mpWxa-HGis4a2})#fX}&SKRpwEPsfA7I#4f- z1?bcx`Z^SYmlU<3Tc^!GHhH`4y?D#@RQZF#-FT!=vicGb4vbi4hY}c#(Hiv50>Y~Y z_VH?Y^xTvcdlp(-Q%zBKl8$l!tkmMYTc-W>;1EIVN7c%iZ@YuC3UR%~lvD`@%fyE* z>vj1AB5iExWw=t`+FujoMOD3v;1D*a^+jyEabFZvoD#2?67o8)`KDczmaLT|nhQTD zG@5U02*5tsDgGD0_Q>^-Onl34sbspzilHxxm|;BVt@4J9ip^O*X@o&CNfHk8AgyPt zdjw&7zCy3uTulvh$wynn#Myhm;mrg)l#OfWp;^R5uqg+~t-`1yFGwt)`$cH;3)*PX zZ`c)qF{)&+!8tS zM~AAW>u|L^^Pf+U2AlC^CcKH~Y@dl=ytOz&&vAf8XqSfxne+@l5z)V*`2h<)c{Zjn zXs4x#v&6pP!%92_?|IQ4z6y527(e~fx|griD`hfn94YRROz0QkKCB5fB zlJZ9D#LKxqm|(C`Vy1qp*vw}N?oe)sctZ83pnULt-IyhPsB5UADG+NSF+l`uSH5~A z?HFOm&O9Ab>Z#b7s&uZzO=O4tZK-QnG<3?TeoAMWW=i~Jf)?jCa!y?N9H{N++gU?a ztDDJ4fysZ^{Z8EcWo>z%A1`_&j2NmLesTnMc{Aw8E~NFCh!OoAhV`PTjo5t~B6F7pJz=!WMc$r325y0a9Yns z;Lx`S-K)>ndIffGr$>Fa15E>V2VZTFVcx)!_5)oXBAT*)t#zPmxRppyN5py<(SQ#w zi!bk*ukv-xT1LYLJlFzsvQSzHTPG$!-aF)#fsV)FAEs&`PINK z@S4ibyjV<&NPt9;AD7}a)2D^+#Z#8E3~i#02Sc^<&iK0t>U$psp9EstZN<)>_!;k{ z_VW6age(z5+pMb4ICAY8U}ry~`CM|j^-0F}wT}8T+&F9>YBEN(s`=d`9AB}XqyZ@* zdqvyCC{Y>h*AWuCJqZ7;jkaL05!x#w#Majs+jEDHB##bdEuM8XSSN`DZ2c?r3QJem;J1H*B=lMtnTwi{ zyblaww!E-GGX0-8zk#4adDFp)(V89D_{h@SQQbk=VvCfz((ElaT8l zOY{Ujk}vv28GU(5#0?kBM&7iTc-dhPzQui$P@QK)_$Fr^l#{a(x^xiXM#Iw?P#7s^ zrnh@FQoV~4tXwAz(+=tNM1Po>kR2tVKE_VjE!$bR87Jr~osPA9@Mqlvb}@AM)M2W|`S zuAaXnN%(KJ))oUjiOtPMM$I7OppRn6FT$10+7onKW+%&cos0i4mg^ka8yVDwI2lR) zVHn75Wy72qq;PB%oeWM}0CgJ4V^Twqoiw5D99g{xd$MbC$YcFU9vtNX#-J0jXoL z#&1Sg9DlnDHWauhqhpzA#XuBf{!+ARQaKU$g(>equRKv_YI4H;{wKU4y&j^=LQa6p z`0G5aWy{9!pTt`AupcU!LyQ6pP#Qc*zPfmXJ6Ew@fGzHGX;A5OrUXC4IyLsoddAW5 z=GF)x0s%fS=jR4A{W@(l0a_XKh$YX7+ug=^Dd;$IoM|0eZFPKG3!UDX1bX%#UasZU zSp^vYjBN;1sfCR!s#&|ePoAD5!_Z4u(Tl8Z&=y9Ft2Zn+hj6H(6|!8WVB7SE{A#~H zI^(Z@8g7v@+MMv~8$!MWE5zGqu7VZU#Nfx*QCiYP%prU$@o0pWv$XY5du7diW1jrJ zaR|&I$b9uV?jJ@cid|*q8JK{Abc9X`eO>0J(M||-r+vGUpex+tgzLA*+lHX3(3pp| zn%hgc?%pQtjjK9Z5TV9gfaNYIXLoxLa>aFZpKCBM)!`A`UG1QY`f7zN*bOKLU$x6b zob(k(R}Y{#4+r{0|IOb^`DN!_eX(?|H;YkOqOwarrkalnPdgMNaR{4d&wt%EIn>tiH-;Wu6uABNQUH0%#{5ZTU--Bj_XoN%Ee zh`VPSF2$sea*Ytr69vyE3Rj06O#e%f?Eild_+F*R(6i5vIFxqj@s z&d_m3tTrW1&c4(?*CD~#M8&E+k1Z3yuG=H36DQC9Fk=MD5?i$(zm+U5oAt%}Rk#p> zBjWv{q@?2AkBFT*-T@AZ9lL>`j^wlMy|=MUpD))hx;zwTg$V*tQi57hwq0q)Y35Fdzc3i!mk7zgs|TXWK{+c=_E_B46H1HvA~CRkrL;aKx-Ji; z0cFMtvQQzgo~Mih5OTjDmvv!h@uHT?myT!s54FCjMLp0a`{ixwmv~MZ_Cb0AJFDF|lDWIqHrP zw?pMnw+A;7SDT>)Em9%vIacn!H`g!Tn$E+O;aFpqXzE7}$|c1D{-&(!K=R1vx^y+m zEtywq(L7hFh&jq>bY&^6@-(k3L%VF&ihNJ(3&Gz@I4^(2bxUB>K6z>TZgox8U#N19 zj9}j(-ED~B-Ja5N4NkcgciMuk<%Wqc^Ub}OPhf%u%YW>xt6yu*Gy+e=yarW1c5Wp| z8%$sN;kLvBSjozqW zO!++{iKRRFn^=&^FS~5v7nB8rx;ahd{DTU6UhARkv|0sHMX2XODhtT0uL^r>1`&#b+OKhDdvV#Z13q7=D>H}rbN+zU?K z0bek%sd}EkNw}VE5}V7%jiH7PgGsq6MQjFf5PuRX^-!aO$90saAj-?q0$r5@kTr0^ z^g_7A#-^F`Y1Q|3T?U91f3t2B)_?m8?x_`jCuzHAo5)P&1{E}7m_~@l>qLLfJ4wn| zmc_Po;Fm@cn`;yI21$z`q40~W!%Hz2iBl(ib9oR$_Ew0tPWnN>=A>!tx3VYp8GCS} zUB7^`e?#3jAsx* zkrgRk-l9IETUp+oOMT@nR?V(I+{_LyZPpo92_05YtfVBKD^&;PGhvDxV0w8Q->19H z=e01NIZOAyTtrBXjvxryUGdxO53YQ*=X>2l@|Virm6v{Wve0zjEzN(Zi9dJ~oZx=s z7?nxoN)6~c=OwD_-^=Rfsqj2QDjfdZ-&E|L)yJsNLku-TPmo83QWh=|z8DH4VSPT= zosZ0&L;Nv+GY>&+_i;y+d!r;<=OF>t||4F!7dn}gY7#*T50qz6h5Ge2oEPfI-} zO#UQE6~;`ex`J+)hMA?k-RO$PPSBcZ(S&jdiB;wZ1c4sJW?p=xLgf?q__~b_pNlW< z%q;o${21n?`CaB6Fj!mM>ee4vfINS?n3m%sawUn_b?ud5)r_1*F*JWeJx^lf!ZF5q zV{x&!I+4BY`T+j`^N{}lnchnBUY+D0E_v4aPb=wOTer~dTXKyiEa8{5PG05iYmB!4ya zk1kzD=3hF^soD90;@$^X^;s^Y4`Xzif_jBt;iQNeNd~8;`LM&F9Dhl$I)nOr-9~QG z$BPg?kPNoru40MgHrQ96CTr*a06BTf^GegmpP70r`mdPv{a-{~Bh0t4B$8U&+v)cY z95#NZr^Yf;VNh7rn0qd1J3C7qH1cAUJs{rV{ambk0H@Kra#}yhV9lY(BRrh=BnK2o z6PTQAQR9@Zgn4caTMPWC{{Wm-{K5R%)@SlRm;9q~qff5hPo_iWNv67r)qbX;>5as) z#VCn^3XYViYK^IzdG?$JNJc)X5(QTxcHg_HeBxb{G2qQSvfzYwu{)HbVvJ&WoFt)mmL2EK|mxC!N%R(z!EdwykUaz;} zF-j1JK46-n4)tUXzFNBa!7z3doi-++I%@BD4UbW{RE`DhF^2buJ zlg{H(wX%*FVe*Cj__7~Tw2#w=*M-(vFi+V~Y0zeuP1{&B(vKDsf6n3J-^jb})a;y@ z?l|%Y#&kqSq#N(sspqrbY`l@=8}G`k7s-Bi{L=ESpX7L!JDZ&v(?WSQU#*sj9@2z>H*aqLO0r(V6hYXi45`oc0ds3UR>R3foEhN#2Yy{v9i6QR8kyve<+juGTjnC>8pP}Ftl?&8ztRgcs9po&H| z=?m1fh9D8D8{apXdwVuqK!K3R^OqqYdLQBaE~77FX>iW6YOzCZQ6Q21Ew{hM>|;p$ z!Ti))!)U*gS|8-qzvShdy0(GkeN~a`ARXn>@iXocN`~#sH%rFK?=cpQKyw56S-kJ=y7gSkiS}Th2aN zoOz>4g8Y3|7TjAGjD+=3C!VBnP!yG=2s`EvX7=1Pk|!*oa~&>5JnN2yUHu${LiULeXK#EL8Ppdyl4R`0U)?Hjh!a_VS;gAyAS7)a!`Ck0l-jn9sy!fU-M(RCSRfIyb$09hIX7_AAb@0mID8MEXWOn6A* z6(UVgvncR^Lj5&Hx!URV1F<0}W69!6h7#h(5C{`I95UiEH?W=U%7)2@nm;KtpU63F ze>am&(ls4tT7|TCu#u;P!*13eyS29nlZFC2b&euJs@ASmMrty4UaB~wJd*&-N>pxD z<X$0|j}YGLXOQ``^Rx2<@@w-0PW-<5)vkkg z=1Y>EVAbsAy1090hSXgxjmNEQu*oyWB9|#riU$7x5Y1km8SvoCJaU{&b|UMD6Gr#C zzu5G8Z5L;D)Uk2nGl>%5x*Lz;jS_2PK#|__9Z&Ov^CH(&^Ut0%{{S-B>FKFzu^WFe zl`+eG6}&ORMDm3Ig(84#1vVLn9vqT~7a5rw?ra||?CkYW_J2v>j1z$1#~O@wB0Wz& zM$b3K`tRpwoxH30r+Mb>7hlleypGb^Yh7U+T)^|7bz?{mux`gg(e;M8{{TNV{{WnX^98-!PkW;2w)Z-Gwii}*c5x^w&CE`Li&AB!0}rw~ z434w2vg&r0LIH@0009y%`ByvSM&qS4Xf)l4rm22cicyypoRTC^t{!{GydHg1OCS0A zNBrb9!@`vE&CJOQ2~65#Um0o#B!&m$>S@;_F3ij)$1J4t=NSJ07e1YOq8blpata!0 zgU@Wz+PQQ;2b2D6f6jIOY5r*5C8oCpu9;yJRxKWprKz-7?kohW48eh@YE1id0D;>v zf6&x&)Tbb50klAm2owhh+hA(lpJsN}gRx{|rqhy0mh+L6y<`$EZM_3(_w#waxBmb+ zsrmYNTIqguyz+jW{{T^GbloyW3pDmYTH5Yba>U32AUtRoD5%WM2eP_c7|aFAKCJUGK( zBN)I&x@(r1?rlx$^gvb$?FiT;8;89BB;Gtc`53 zhb;0(@l)U*Y~~Jr!owWVmYWnrtQmhchx3P9G0|&Iha6j>H@0aPQM0|dH&&7v)}lF+nMpR@fcM8Y zVr%i|$KjJaVk3L{WmPS?ka@cf$o88=d|2l(hV>Cf%sE6Is^|^6K6Sp-^sP#CyR?PY zC}oc3ULu87IYUsE=*$HG`g41W4qQT|&WQPsxrS|CmsEJ6d?1M(xd@*=r;r_a@_S~X z=Y0pwmOfjDM9}B3)?&AY2`+}EGe+E4mX14S93cnoGkn{=X``f`my3*oIi0zl`}+X+ zJqDk&&uK^qUpk28!ye(^w>cj&^xyei{#pM34u8tB^shfg^W*+2<-gXe%Dk)3(e*at z(~rmYvq$`gpT+#%*Zj}u{{Y2T+qWm9{#ep@{{WZcKTi)A@bP{>i=V@1|J3+8zGA*g zn4q$XzsqY5-zurhf6GU_{L8c*uat6(2l zd}F16xVJE~uk#*Y5^|g}hFdU@m$=)Xt0GB>@*0jINOP?ue{!-PiwE3!C;+^4y*QsToQ=Err_IxF*@ks!_ zquAY|2WLh;872`R8XS*t>F{BGZIjM=yn1<;%Nm`fvuOCQWmE9{CAJ;|Hu@Y` zag$U@@_A0!)Mv}WYCsP@Z$R_DyZMW%XkVB5PN}2bMQ5Ve`Z{4cv~EO9)ip+zt6Fp; zGBmht8l02KC=(haf=<>*@9#eLN3UObzWVdal3eIFkuAM~S|dfP!(U7gK_w*H z<(&3Ba2$J$&vV)8Gvp^3;UjMF^p7k}uf=BZ+S~bpBIlHgZKzGhk3+i6L-Y*QYVpQL zdUGL=5xDt)Sg)GAsjBLhce6|8%~MGD$^QUIytpht?0GwWyq=a(goQ*GA63L+YE<(p zPs(j>`Jd4I&bYUcs7Pt$BYxj#@0$tgp&oeMTr~MlEQRMjdi=K4>q;Q-xp5ekWHY&0x}z}L5bw85UqS_2+M{`b@S7RgSy>5 z(t9hFmKl;jg0*PPN6Lg{dBBiv(Ox;&Hk#fUF6BmTW*9*G1>=&6PhE>sG4Vh|a&z@L zC6YtdE8?Yd74ct64QkHf5{9(f=67OAIb;CtE!Z}XRvh{2kxU8#CK4iF1`2N)28ho%9>qN1a%&nUBpaOMPJcALd^qvR>T*k z>7ID}xs&rJ&Ntfs0OlT-=RYX^X=)bsHrIMCp><<;vfR3Hl4fROC)MMG7Ay+-j2fhh z=7xGqu+zpP7C>>0#DxkSPY*wLT6>KLY~;tL@Uc%GITCnCB4>+)jvQd0P2V_C18%hT z9e&ULadXOkaq|tYne5W?Un|>bmU>)MdCbKX>)b5r_ttY2j7Us!MI(YhiBy!X`7Ji9 zQI;GyF^Ry9_m~8OM{2$H^#1@v_qw8WxnYkkT;3ed7d&9fB7p)?y@>Tu+?y9n>q?XI zHeVp=UTo8RljV(VwB0J$+*|8f`Ag|9uch?hneE~x34IzNVOm7Hn({Qj#h)w*iHvxF zqkMNMS-C`P1$Pfmy|+{O$Z8G~o_r=m#KI9c_#y_}XVvQ7iQY$*R^uW3%kx*|*Ov6# z(fL>8X*|g@URc}faN7%)5Jk#iD$M9wq1}XaU$ag4&}G_e(h@L)#B6imjqmTh$3xST zMx(Q%tdyj3W-tUE9x?^;>Co2xervqr`K9^yaTUM&m-5z!6n4|Ye$m*vOtD+IQldpz zsX~BM9)g=>jK1-~<3W zR98CA%=T_M^zzGt9v~wTE#-fq!qxVsOj#q2c_szbLOdh!=KGWWargdlqgwpN@+IxC z{L0llvXkm@d6pS1t?iYPONiRt?9@T&{^8az%nsp&K;5&J(RMfTrfI@l5%9;Hte(8b z&+Kx0U)r`+Ms+X$pdOTbl3W7OldIMZzCI~PMNI*f40B5c;=`b=wnWBlLH=<)XcpIR~z10PKq zBh?ulkadk1%Y>u*iyrQ9ZW08}cOXIq%Jw)It&UV+JzE!Y`POjjpSo!n@v? z{{TZN`CqF3Y5r(y{{WocaC==2(%R$8{zTA4jO?*Lr6q{GiX>I^%n?M+gJL9@wK-QY zwVkgyWHTChND=6WBBEGoFURg%Xx2P4rJe5xlrzTN93RU<#(Ap zljq$U=lnf)=I_g^Jyz#cni%apFGA;2wre~4n{TapVcOz47mSrwt#)eWhYq{)vyM#D z7ZD-Dd|y>r*z@}@qtMT=Ka?@g9-kD*n27Nx#8gehSpxV@;MLd3^?#qg=PD=s!n4!A zM*d%oC}}ZjntqQqr>fe+I@xMA6WA*}T%-m_)=2sMTv#UAuI(RbH2JZdLI=y45v%2} z=hxlb=k{Ox4s+>+%O&wjGLWD*iQ@0&cU^Zc5d7t|^H1l(`8MIC(fo=ODaSN--8YtsLEFz%dO$888D9&#mZD7D;cnsws_Z!~#JG-qnve~rfgiP0P zkJAC^5RWRM)SdbDTd%#6d1l+oP3N5!9WvGhwRoH}e&`z0V8yCMb4!Pa<>T<>cW-ML za9QE2?<2at=gK~K@=xXQwz~fSkg?>(l0y7o;dc|&=t_UQ&AoH3?EPk_5m<5`m+N^h z*T+U4|kBv3Bw7XqKTU3%)5jjJ0o5t!s%!ytni9R4_d!{)hj7ZnJ z^gcVgTwT*!p@onCw%AANN;gJ~`!qeF2d zU~aTD`f|V`d4S?hc>uUbg*LgIJIyWBrgz<(wOs!ItWNvngauFnnogo|CQ_Ndx8r^2 z8E&s6k>q*#`l5|ePf_~)^4P*4RX90y8Ko=YyV*d`bU25QltKvxls`WlmkfKFWt%Xo zI}dl@x_v_Cd7)+it-6$g7Tg7`Pu_RK98rk(vCXZ?mmnm4B7pMds&yG8w-7W7NSM4k zR+aleA9`ebAPwI()322A@EDD^AEixh1d^IU2ye5MG zPp1*3V_NwB*ZdDk<`L4I^9El?P{*fM! zFRshVzNL8@*1ap4eirZtouO#t250%MdN3kAvnI?K;f!#Bv(Zd?O~fHioo@mIx++2x<`ELUZhT0mm-*vL^4Wq< z^cbC#8lZI`d(l7{lc$vLV%3;Nw-1)}D0J8^U(vLRK1A^>MHl1-bXZBQZ!xG5GUW8n zFWy;xgippN1oec+k=Dc1T-<#cK#l$1GC$srS$`hrEqz2Lx(6>6DxS!#gZDw(8yg~w! z{{S%gYX08KP%W-PoQ-`YRC@lQhfkU$jhgb4DD1|3zZRwGy}Vb5oYscutYv`q6f`-J zn8xj^9~D!?KQ^>s%@X4ECiMC|g*gv%L7RTd%Upw_?TloN-Y{(h7ES1DGV?#N0Z@jW z4M@%GSe4zU*8`s-8lQ2xBbnT_&t@p0ESLv3@a+v(GCy^?e% zkyRk=?niH)RUraK&C!&^O_!BxTE?O3v5V2CBBfZ=@A4VA!2w&m=C(x0?1!+|EpR~Is&-!N~n=aS5reP@)yWIm@gmKOq6fAsz6^gE3HD7oFLW+3MnG0 zs~YzmGaf?a$=O0gV%kqUyB2D#J=M{amg&Nj_cYAN$np-BagAJxjiAyTe)8r;jjOO- zuw*B>I(WeIJp7Q8*=e%43#dFwO*jP|ef!{yk8>=Li9FEvS}lz@LwFgKRI{N2@!Je$ zTJm8PK>dkn(jbjF{b?2VsHf^Q$#FGsbx$=LK|Y(J#TK{#L}f5YpoOWf#E$uegjQMX z^&P5s^jdg{-2<`c&wnoe04#jb=F8jYG_7{VHMX;9pVf*P6_=8ZKAZe4Q%u3_T~;hH z96*~s@3o&}Xfx(A;gA3hpiAsKA#A@R^yoa%u1Ts|Tg`W&{Z``HZJW}z7cDp~SXH=j zG@%_S+ckR5)yd$*VBx`I+Y*%~<@)`G2HaUcsg5<3pECaf{h+md=UP9Nr$$f3E+h1y)Tej7_ zzk4308Fc%Fx^=h$B}zKU9TSW4DmMnXydKkP=aw+^5G6;`^$Pd*_fw_+07E)RNXiq) zD*ph8?YB?c#kS8)@?VjEB6ZKp%Z+2qUS5~YTIIc+yhiM5H<8@|5D_B!Yk3W5iUoM| z&33Ckw+?d{ON0~r*w+5=UB~6|=ZrTdAXd_sL0t+(`K|di`5&ig{#?A!{DrM)ZGCC# z-#lJoy^y;%*({P?$wT8zzeCzu=}3uWj^EIa>T!=`>FDtshR;dNewCJAkpBRX@_Bzk z)$P2w=50Swx?(jOt8X*R9!I4CptyEgdyE-7XI>;?Wdc8_KT;vsT2e{8gS+>W2j_1w z);}kFoo#({X`^|I&N_9t41KmhW?0= z_QXDC{LlXYoI(7#x4gaA?*9Ni{{S&=wd8I^Wa)M*R2G$Qh9#P>^G_^(#aWcjJ=2}wsd`w z?EZ(eI7x>IB$Hd$TTZjKyH`cTKQLtx9j+jK-=XyGpZ@?p+5E-x6v4GW`N(ZP3s>DG zhsvZ_SdsoT_!*<072_BRsNRTIDf$-S%($ok&*6*1MN0`$ASL<&O(3A z2mWmSSNU@5R(fq}47%IAXvbwRjG5D&-G^x|IGmJf>rqOB!9N0mZd}YKx*#KS7 zW_w4k_J(I3nB1kNL*G&0i{{ z_hRnHQi1|Q+*{npt^WW6DlT;TPiizek|V-FJ>Y(an%4Ud+WKEqGe&-VL?4lOtoj$5 z9{Ke5x0dewN9nbyRo#_OEsZy!-)!EEPM$I1x*hK`le0Tcc?<~Sl~oPN9M{}g`NKqI zI+l%nYE445-K&H@%qq%3rbaWy-1<{ zIVx*1BasR%D;=md>yi;^mQqxi%Meddwh$?o73UJMW~C3=$%xa5lTb1nDt@Zh z-juIwG+O*f+yB=26BrS;;IXg5iZe72+gqp5$26#i`-MF#Lc{UIY}jms?!r4z!;={a z+NFlsT*-1Y(T(nonApQA{AdWJc+>Ud0WMBR!ZQzb@-LY*=%7nRyq*|iqdTCbNbS;x zH2RG(GUA~17&}Hj4*({E-)+A!bR<-Y+IcT!G~$JcBf^V8zF|)UnPb#M^|bcO^Ak;- zqz|UZW3^zC@=|2vdRK0rEXAIlLC%I~l&j1d-ko^_g)ExYO4O^PF(bD1u1^d|EHg+D zULA3FrHRRg7MZz_t;B&^_~z;ol{zeth3xd56J9o&ct?ib-~6{L)8|UpHJS18PWO6^ zCVm_s6srFK%{ph+qcZ9#9S_(-wfPLn#fX8)(rWWYQ|5@c^AFdqY{k1X#|Z=qZ?}4! zl!pvUZk}9u2b0hj%zDGDMBc0sr9CLrqY?)~X`KAA#1i%+EaV37MDpL6W{T2zZ@j>^ z^c;eI?RbwJo33j07{NOSHx!8*vClDnU}zG@G+(ETmj!+pnS(PE^4lka1cyf-K3LUT z#z&o?iDg)P+3AY8dw2z3=S_~;vz87o;dPPJ2#uuje>HiIZC-O4-_3Oz3ec%VuZ<4o zzdYIK@bGk}OWHZkLsw}fht*msBc4|ERMZuE5IhL}xv8kb!eMKuNVPbiML;E#8^au6i zah;j!A~?Aej{YgqGG(-AN&rKNIf63CNM6Oo%@PLSkBbwY{^fZ9k`68QHWaUVoV*7P zQz@Xo6I#Nz5J}BX+a11tMq|b`B3-_tIGz}SIWq4mYx=H}aPnyP6TverPaf)|H3+Xw zvlCy26BRJ#c21`zB78DlgXLc|-dtPxn(q3_Ylgjy38q!uc(r#G9rH)8(!?Bb1PXmW z*v``JwA8>%UyZk7eW;jHp)?xhJ%- z99+%Ub2suI<^`3H<+aV6x>e4jbdaDEv@pmUe$`6;IghTd7EmtNb-a@$(NXTne2+puHf!G%D|bh;JB;S;!hDZ z)$#uT=XCclTT30*jiB6e1QhzRMp~XMKnLZWw`)Tj^h9w>e>C%>_I@o<(?I*!x&{XB41|ElQ>mBL4W5Me7j?$SzEkT&_#165_v`> z1bB^30_}SufSBt<;FYs`5(h+%o?F9CaP7tD`E6 zrCo3IkJ9+oryOOI)g$(Px5l6IlG?VhujzMMMbs8+3ZW=ar#hO78r1xW&miqS(a)^a z_?ftDe>710IljC900Yey4L(m2CPbfoKQgXAGJL`0{T59H?jkmcBQFVV3ObTVp*5lV zvpO0mXP*%JpG?oEj4~XAZt#COerr9}nLd{_{1QC1D;nMgp*@*O*YVBni?euUBmvvW z(d+dieZ~93&c7}->wQ1X7WY@CIAVy)%6MKmWj>;816yg z`M!_T@AUmwOjxAUlI{^uw$B`9hP5D?Z{eK8%;Q|%`$32Td49K=N#x%s>MY+}@}`}B z3lhbxlaW6$?9`WL%z@Z$Gtj#~wGL71BK^;gdr9n8Jt4h3Wy9UYXYG0GY0OxKj#NFt72n#Kxf#5} z!Ar9wO$f++zjB*eO$~WN$w%zE(udm!$R*XTdOVo9#>bd$KdRP}TJdUcy;i?@#PM`1 zkHNoGDE*18y`GONFRbejZi*a+uX<$@$&_+-7<76$k;Xv3J=>c|)8u6lUr87yfHLx+ z_uOEPqF`?n=IpE!KADm4-}NCR&`m2Ap>E*TfzJ+}Jw{kHUGYDAi9W?Vl`-aS3! zp>oensCFLR@dPP}J9AB~^p*HPU`J8_<^7o%N}QZntvs{QP|X^JM{dJ_4fujSjHXjG z=EDHu-Sh{Oe3_@pk-f}J{HVk$)9C4%jYgo}&i?=gk~|^p_Fh@Bg(DGZ(896Mtjc$& z?nq46%P~D%*x`sf1mxSYr!{M6f}Owxs(pzfnT%xR0KxpjC4?}@Rwb9Y{pCnMf8m)} zEVO2z9w~pULM9<1RBnJS>^-~Y+7LCnsGP?Z!8WzjZT_yUG!&&t4Y@w_BAJVj9w%*z zap1BNE1g?Pj^U?<$yvYUrNAb>!!ognRTod5apSNQrPijsXv}EJpzNs`RU`G|FaT}S z&g42WIHP$|IO0gntdc?lglx%Xvc>fw>;JLON}+9hIqsJ$e<%eQ{V%l{5f`< z%aP>cYWR7Csz$XiyKoXbl_C-G9mPqhBQuF3lYqlT-~!Yh;7gg#=Uark2hVGM#!X@B?!+%XvwJx8kubOXvBDX!V~m_o}o`h zLcOX(Q234T2<*t_-heG?QeI58C3x|r6wuS(7*J!V;w)a~S<-}xFGgL7%Y%kVw%+F9 zBaDC^04N;wA3*Ds#0zt?PDdE-4^{lXg59nzC3t?aTGmtOvT-%we#;O?-Xc%_mjofp!5l*x}4gHj|w&M;tl#OSs3_a&b3cH+22`NqpZB) zght>k2jSZ=@o6OzU5V91gx<%@_EYJ0wu<$5h$+0SBlC;P{#J`u(fq@!#c6MH13+XU zSDN^rmTNmBS~OaTlk~~d`%T$1*J6RjJyCjpn7=mkn6>Rj=GO8Hs3&siBu*$){El|M z$YmZp%)gAfeQ##UI%ve~Kzxn)<>whZ!DS=bTu11we|Bm~C%)iq^yi><^lM8{I|l=? z0LPY&BgC5XMd(cb2YTYq+oFR#HtCWN+W?^dS*s_ zEHYy#C^x~J{_seJXuUZ9Q%jq4}*W_B(%*oSg)F|O<=g1$t z=ammmpzw;L%bV?QbOR=xsbEA$- zfY>B^p36}PNYNMZd2gHay(MiK28W}=!*+P#RU`eDY;?IN#q~+lYH(w%;}yS_zF*Ka z2a+jtODRt-K*vR)J_Oe>yIVe3ZX{jbW8=glv_O3@JgcBbrrW~09VUd;Zc4_=LwnY> z9k$M6KCW~(HuTzg5i)F1=$2aO8f;ShI&}qTIM99la~gVy5zX2hgbj*e<_$8*v@3`r zw0OfQL9)a^Zx*sm0n>I@ga>xI{i85U6-omZ#&!Fnlj_` zhl#FzI6`9lx0W_UrcDAZcuV+eXgG@w@seq&B5({%rL}mHeOSC z9EmH?Z~)Mc6P*S!2z-lMigCz#A<{`j6R&WDf0@achaMSbJwIY|r)iVl$;avu$R3qo zSqS-1<~D5c#y+C%yEn4(YUN%OP4%-Mmh7${Bni(Jj_wn+3}GA-^wTx+?M@!!^AA~z z*m&hMMo9a(WEFqqTxuSrKC?fi{{R?%I(+$4BmA`rCz>LAT5hb1wv`#?KA5c#fj& z48EKQtkv6(!Yl53=F%LUG>uAvKHY9)h&0d!sNOX-A8|R4A_SejFiaBLvBT66{3iY>O}3eHczNm*Do^>`dmoD zQ~HWkd8Aoe6EI>~nEYs=2(M~!70k^%$#vSSLOX;EkXu2)V3K6+?C;B$up8}}awLu1 zH~={+{*ttT0&(QT>_V>9>)SCU5>2_$oIs@uuQ8aS3L+dppcFL}$wv!7| ziQzFCo$3fX_cX>(V~;iMRES&4iI~v@l|KOtHXkvO;SIcUDpxlX#H!5=JS*}2_izR3|6HlYHG6L<&pAQJDWgcJi zCZVL6eI+N9Z5U9Zp8K4{)ZiI8yAIFR%MH*?qVsZnRg!v^dY?^&K=-XP4ti6?v(jk0 zW)Q(B%dbz`m0S6xB6nq-qYQq?qYuF4^3&Ml=s!FJiN0yGdAi=_(c@iAB#S_?NV`+M zR5Zj(lX2I=a6YZs29f4zQqU>5iTLfrH4oAaa*Wz=Waa6#XNQ|Om&~4}q-xRCxB|?q zKUmBmhj(rHn~Hg$d5?p|$pn!&p#`_E%P{pgJDjaHqTf_`KF3eiZ5CD~{vF4s%!&=g z25WLiMh;mf-kIg?6U(u@k0?jt(T25Dr} zQP@5tZDHn`Z%$GuNfjhh<(>nq^-9a^dMQ+C^)LM6x8`JeR;>g#T=mK+p z#!!`qWit&+`FcysNoM+#(UOr#6k*+uS`x}f-=0T{5!GwvA~q5)v3moijtv*)CUzt7LGVV4 zu0^PMYHdyVU3$cp^$7c3AaU=TO;!VsFoW3O$TIFX4<7Tbr(pUe%;L}_>PQVrjr>5{ zHhMf#834VVS7>Ds1f?I6H1BPjNR8H_;=*V)|MaUed+vRyf> ziv)Pi^hG6)(sPN-3)o&kAxSb@LS<%&4Qtk?DKj;@u`?iU-m?wS(q{`4j}TMK;v0SY zHM^aeMy&mh|Z^ z3Kr9?`0eqjYW>GKEoNaK;xDfDW&%Z+L_KT#DIe55f6>u$uhB|okMpOFxQo5~v^%$d z|IztF1>MsTNa!n2Y2%qR9Fa0vC8@Y@34S!|)A7g`E&(}&5Ez+T*p0UOaxJku_f6~# zta7Wk^(bn28rLhyxNXNk?)neOdW)i}TdJUt24bpBDcXZII*1E*np~!ywv))}J!^(0 zqu?i}&@)^>c0yFLOY}ux0**Zy_sAHwaZq_*nzi4z7`jH|>^}ihnRqdW6H%9+Cz8v5 z7pfbZF($Oyr|!*+L8n+{xK3l$QaHsTQ&I4@$x48U&G>6Stv zqb$e_M(*f`3ep-AS`OKl5bCmI-DlPTjB=5^&2Z8B(!IPXhm#O&tIITH zE610xIbAt?TW-g${WHt=bRhR6{;aY#;$)<$qfig27a&D;HK)G$Ww_u2%?_%Ov3QiN zJD;_KpEQ9+!BjIeh|4RhZ~H`oKN@6fc4l|YD4HZv%&qZvsiksYw20Cl>nj}-iArxp z-FLxFrh8W=W20O~(K4_kk+Tz3r_V6;19xkpkg6@cxRN;vl{_o()}QU=CRAOn99&q* z?qPGp5!t>Ugwcl812aLln#~>(mNbe<+hNcVx8IYe6rIyMHevurWl`bN=i`-3Ie4Uc z7Gq}DTtNEMxD@zFJwADZlDnP86FTQ_Lh|%-G_i!ZDIq%sB!imGRJL~-IFrck`vdaw z_gB)bDHYAELBQl4O9Fdz&T~{m#XSxfk<2}xMAUrGZynV3_Lg^1-xD0O^5p*j5H$;0 z5Ds8sfaK+q-X0x3wW(+t{IyvT(o$7ao+75F$7<)Hdnu4%%NYll_JZe(h9mjA`K7OG z_OQVvfwqbY2;_~4W}xb8{4>%$q3sFkuyF9ucwWlHFlFKf$$ax;=F7OHZ&WmkCe&?; zpSwJhRip&IlcDVi4sW3U04Q~!y8V;$SfzOZ*@YO^pa$p0rQ;43LW8jQej4W+*tz)iGRQ{qB>dk}_G`0agR=Y} zcLQ@@t@-_9=LvL;B7HiqI#i!ua7gw8I~>}78z7e^IP#4=NV}(<>)vmdiqKOm`Pq7&&lL92ykmJb{jQyeHK5zWI^Ch*n z=}7d}dp0JrFT@w-Ms$6j+Sp`x47YrD+J9#?61n4zhm=EYb8jl7uobS`0sJ$4DaJy< zcnlhRxMl>S_C0sXkcRZYkgE^aBl_n#+7heT_0MLpTtyer-dc&#qWH@6J5q=5&O2Ek zZS|c5NQiv}=|A{$)%6>fKA#VUb2t0ycHhMR0RPhYT>*_~3vwL@0)S>oa^v^9lna-kl8rry*+cwUTcQUXwC}& z2|H|loYrTByS+Y245H`H^2tF5#6aEL(MR2wo&%aS7IsNz^K{n=-lfTPui53rD}%yh zb6XA7yuhlgePpTZz5blY$Bekya{$1m)#R2=N?kXtXg`R|p>L63vCPYXwr0Ub-HE zLR24_uS|%B{G5ZEZhwz@RCUPMmGwzbE66De^n=$e5vK}yfh`R}_U1$pRqL^CG+KQ* z2>{)TEU#u=rK85t`j>6UP_nA=1H@(qU>)w5kz2iUO4XJtdb1Y*Y+b3h%DJe^4c?Cq zQ%N?f=7^cumDGi;elCaTIc_|C94$tD?SozUfKK%e(h_OMayRWzPGv_OI{9Y=q|@9> zA*uMd^&wblTOY|ft?YYL8adlW^HL0h7smW6g zB}TacX+hI-m58|~C;={-;kWpSui3Bk$;K``r)W6t1xGii8;mA9HO6XfIua=T`U8z8 ziqO)^c$SV9dE$q{LD6d>_D zHlX9T>&mi3o^DPIf;_fP;?x5#!Wh(3nLotlG@$MzS)D4F5d=0T;83c zOK!yt6{Iwwq5KYNH2}N)F^@O4Xu8GaoJb;()j$BHDzx_LntZr{cUZC!v)jC-=XAG7 zZKawqZe|T2co~SVfff2`m}dKP>O{dBpK^w~NCA9Gi-H6i*qL0=#O}r;c!X$nIXd zv*aiOA5?xyY0*!sS-Dk}1E7%_tZ81rZ=9EC=HU;gb~c~W#2>dGmYSB8XQM?Fkffv0 z0LAJaR3608{IiqQ=ZOaByic@xY}qrC2^;r5OaB0znX`*fu)S?DBPcmJid7td2EVd4 z_NHq)E@Bz1@_XN9V?WE7&z*c9l)AeMcAh<|2_==Q*QlrVXQScuQFZ#*m=f|$WGjZN zii5XsPq@wA67ibBzcxkWS>*cQick>^IJjO^Bin4&_M`_5hpYByG`Q+qpHgT}5m%Ju z#~QCBp!V;aPOIGd=8urwKN^FFC;;|iPxZ_%4cUap>(@_fGV+Kjq2f2|_YALq2{h-} zTjxJ8>omH!PC-}`$gM~5&Yw-E^n&O$8om-hd4<-v1k9##NNU!(xQ3M1Cz;fCpc11d zQJ`z~;nf+Vqmjsz9sFyUnw=@;RbMx*>X(VCd1_5M*vBkfO<+YUT90hh;ep4P zNVV!n$r1-w#eQSZZ*=`d_(G5X#Dy+4-($aQ@AP`8WQOM7DD6(n%ZE1<03RRL%Dk;5 z#ZhHQi)~g`8Lroe^A`4A&K#5kz`r6NL3w@n@CCpIgl8wJ52xt)J*(9};r_fB)0@FCENrnzI5&0WJ;E@>-wanN7gbFZ8&HXf_nC-F{o-X}C&)UoNdQ zy8=M|YH#@Bjxs{6rNoZ)W@BD}oQ%0L#z|)See6&VhvRcfu{#d|zF}k*?QqNl;9slJ z<&f}Qxqit$74Mkl4rFG9pHW!}<1_pwidur7Axr`(l+t_Y${L;~oAPD{@5^z9jI(0X z>QZtm%Du_xK93x~g~a0|s2hUyGF6oI1L662<4laL3k@1j#R@HV;oc#=ZIbso+Em8KQow9cNmEY@@foF2PzLjq?!PIhG9%@ z?BO#^dr>Jfd`c3ZWdPgh>6ha);O7>GNo9l|P3ithg#Zk)hgO}(B&PQGt$sEX{i=$e zojT@TART^r6rA6JwW0UipVgPshsG&#Ujjuic;5+1LnUQkbxErYlr9H>XBPg@Skhd11QmPxjLVvDRD1zkU)RD6Bdnd%m z-`*)gd_n3r!@wAv^0G%!OX8QGAjFRY@81N4E;(Jhl?`{G@U4D%0?VpvWqOK2`n0M0 zC#GZMil?`vr7mpMY7eOBqc>2pB?p@_Rpz^aA>{lM*=Aj`!H@)aJ{V)yX<|0V=Q|=PCT)!-9DceqUaTr6@Rl$ zybVrqx{o&>v^22evhvT(-BRY~PP&djDg^_^c%GCy?lP?;M~Dl$>|H!@z>(GYTjz0c z1?}6okJT<%xCLZjO$AR)v(o!IQ85AKdwUe4IZB21^>|jPdoQR;O-dS(?cX{)Fcr!3 zoo=FHUXsYXp{~mf(yJvYLFy}QPnK)@Lre^IdOv47M2vtC`cp>NkD>r16V+?iINeU4 zciHqBn~urSYh#fnyJjKNyNGH#)h~S2YZaqL@|1F<4pkU2=;UQ|)2r3MN1NvV05NLq zCDiTfaz|sum4W?P)@d~L5wquAr`i=GzQyO0Un5Fr%+xevPYm0~5vPyKu8E$+r+Q`c zMIsiHit?#%0rJdj*sMDZHlU8XK8VqEHGL!1L}gV@GP8Y?w^cOTIh@#ibo3bYHw$Ad0KN%6~@;$AoiI(JiQtby)irLkX70K+KKM|AF;4&Mz-HWb< zGAIM?d&if2%?kQrOLnLNpl_V6uS9wm)HEHZ83AD1+5Z5=wqK$>KdPQxe#r37fATW% zIlIryM!28<)cDiu$^6_q*KEsMD5%dP%B7ECwneoSRYeRzV^Lr87#liSYB}UqQcn?H z-F{gTv5^MT`$v*aJoz_(6sO~u({r(>Rf#w>(g$JDS%3rX$_+gI#{i0DkOnzEuWfLykln`e4TC5yY4XdX3UTL__5~)TP1hl<8GAz6t(O)zk?IcRcF7t^~Ecp>p!zphV(sN}QJH@3QviZr_prnLM(%4Qs_ z67va^4qBY97bIYu7G| zi8*eCYk)s%ZnPOTo+Ur6SN4b=_LmiUdDr6N>*unDD3 z$LPXR3d1?<=Dp4Y@%gO!!4(CoX(D!{&PbtQ>?=cp znQ@cMp}{Ih095p+%OXNSt(*0kNCu169z)d?9L>tAYvaCG zAl(@o**CUhCda>B#`#3{a`EoUEZ~-)!e5nY4&SQ1^9vyzU8WeGjMGcLSlME`GXlq> z7E$!mFmmJSDcfPq(pJdc(#?n^f{N0fqaL35L}Xm4V+Z?MoT9=$t633O;rN%3>`fSE zW(g2ne4r7vmJ5G0yvS(F08iOvE%b^E+(LI3OE5&aeaUPw%Os=IiPf0yNK;I~&PP{e zqsJme0{TbtpIX1uuV7o4-b4(SuHg^Mjdc1Uh0uOyMhA(D?%%dECfj!y$o{RMlm6}dmmRUQye6Zx$Jrd zyLOxdBvSIB-im(kMss?-BoBM*osZhtNEQM69;f<#_w;}FOT({Lr{9_{%EOPF+Wvli z9n=5S_`wj5s~Xq#oBJ~?tZ4H_i9%D;0aw^`z|Bfqz9EY7Qh#XVQ+rw-8?G)kSvT!c zP6Nr5B}F@i{lX7U15@^^MIYBO4UFTiC+A;}pJG`8yE@<2ny z41&D`U{~f?Zq$pf!1g$+*>xQdyp`& zwJ%w=-0jeIz)}j+F{O9uxW!3nr*8dmq;VC7O4q$QeDJEm{{Zb|Spv71+sCk`0+3uD zgKfRCC9*Ojl96*=>Av0=XfZM^qY!_lLQJ4&qLILEwD!u$w)pH*YiA_vMSK4MwUo)q z##yeFAzn35`}H6iW(HvHG_vn!aILe)@y1!0Za9%orn~02nF8)&B1Y&b8STwbw+j7= zpTy;{qSqovB^fnY9@xjp(Nd<0{EyvC$;XTWfKoex&MQpdyF&>k-%rO8k`&4O`KsvpzMncm zwy<0(5=S9ZLC|ohHOvhxB?*JQIT*1RM2Q=IZGK=|J+`HABlV(VRy>Zxb@)eydS7Ma z;()p@mHSbKQOZnshvTEfudhox3B`L<_s)wRIvYM`tJK*%YpfdB$Qf9T>q_-MPDeKt zH|P#IO2Mb3X}1UxG8mEHr42ru(&vuvqIPyqNa`6ZSMeeHE)6OVZ`YU-!b{QO)$32yoH2n`<{oBeSgutw67Dqc=Ke5b(XNsEmmrh&{rG ztva2-{u#0m+2m)a0$h_j8_q5bNvCY1E-MbtNvxx9OM_bDrO6sdytt4Qir4SkH0MwI z%P&DKXYTgq@I87_E!?l^fJ=29e(dVBk*JN|C+)m~c}b*Km!t`C9ZuB%j=zRitQQwQ z*}Q@|gXrxN&r79Q|bUtNqsX WuZC&=05?89TfH~(b}tUPKmXb0S?f;# diff --git a/test/samples/smooth4.jpg b/test/samples/smooth4.jpg deleted file mode 100644 index 2a3fd16fbaa2ccb2a9ba293e71123ddba9839ef4..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 28808 zcmZtt1ymftwlIwLKycR(+$Dn~XmI!7?!n#NB?$@c5_E8P_mJQ&gImzx0fOs4ZHNC5!=AV86*m6>`QUC}J0L)+~@N@{DC*f{t>kWW_7XSdL0dVlq z008O*qyTHc1uzFZ0Y})~7H|b9VKpzn39y4f%wT0ozyWqOhP6@xZh+N4h#KGxYkP)! z!=OqqY;#zlrJfj6-8 z9l-kkxy0GoNRlJ<~q> z;Mr6EHwMp|KI{3veZc}&cljSr{U@6C|71P$dB*vV4jcdv%fpY61U@qOm;-1h8A zHyDK{to#i7Pt^b4Jh=XGc(&02M&t7T<6{9UKifn3uRq(s;Q!%C3CO})%wg93UrCgJ z_`kaGzrOOnm~JrGb7U!Dz4^JfKl|lBy8OR-=X0NX_Ne7QPS$`AjPltFl(3&MjLz(z z-zWh_SbtT9L6!f-=Gjg*;6MG+76ujjADJ!y6YL>91~5g<98F-I>pScj1wAbRp8z-z z2m}X$gB|eCKX}*`9{vUF4!a_}_;(;6AR;0mA|fCoqo5!oqobjrq5t=ICWT=kBOoB7 zp&+54Vf^R#hk$|cAH4s${g>$fmY%)?ILN>WNCX~)1Hj>c;Bi1tJwP=~K}2{E2zL9Q z0}iGSA`$>XMnMI^MwkEF1OV_LI9Mw-%$jEl5I``MUmzgBEQ7~+fdJqlQoThI#Zxh+ z#z%Gz&S9rPiK`J)C74_{;UGlqc8RAw4arqAJrU=mlO%%a00(*jf`@wnkBA8WEE|La z2T%1D_l2km9s)JKv2zZ4Tn#~R_oSFf?z*Z=JPqQ>DdE#1fDR8+3kMzt5C%@uLtWb4 z^VnLD9kM#J+jOdQfK}T8mdXiE6)DKM8Jc2tWjG@o6(5rzfV5tOi)$Zp0R_zK6A*7T z8;(>A#B-N}H^%PXoZJOEob^9S#B^O^s7}bK5?*rX%hu#vaz6nsIGF70j%P;boJjC2z~X5k+jJ^gbtt-*0qW1(3n%; z)=z^!pe`9P^F$DK;q087PSut} zB-Q4VI2kUWE)q7znPNwb-+iVeBd1_NK)^J4o5_cG_39XhwHh-!QvOMd7O;7#Zd@ehaN`LTjN+ z5xyXpPBb_tz=z;JSXba`P$|-UK6_!z6qV@7>T5%SOuqO8ynR8<6Dw5;p2}`b%g5_+ z%+B~8C&11>(lJzXYkRAv1{#n@ink1oX|ly!3k$PVf=1~!#BR|wk8K?9ux>hR$cpvb zyKw=B1T0_3o4+1v$RgS2UqA_n9BQT{>1Q9uZW}}xmTqjeg4`&MCjbw>E{`BiwW^;Y z0Odyr2A4l4fVd)O1-wwcnm{ar04e7ah(SuxL7aDPAc&+j1pPyi2tvL1#4gaNy9;l) zHZDSJEDpi=uU|Q(#s5wqc64P0v9gM9XGHaUHVvgrgyh=*!sM-zZ|e1ysjglk%Iaj6 zj@bC~W%3d@h;a)Y-^OxN$KIY#z#U59gms%5E=Jgi+Fma)S>hG$iGdW`B&9D8xD~=A za>pY-xGZ?$DyopR8ptbm_*)?+4S|vaF&?wD+gItT4sQzbl@ybE>?$OEIMn3*D&l%76F)NkrY%MB;J<7vmjC$YoX)$Cs)zmim zriTgk<4~svE#q)baRKzO#~1e3*v%c5Fm+wXy>l1 z;B^7Cn#v$fX?ws{1Qc)!U7@fJ75W`!}aMM-0Hf?bhVX!g;RV+~U`^{A^rSZCBjPihE{G!7MEHU`96 zU*45opJCK{!0x>~%a&POJ+7uuR!BXuUZ12V#f{R|IB)%C?yC2!%9~t?@9*Y)p%_f- z3Q>|QX=fI4k2_|q8pxxQ8XiYa!0>cogGpa(nIVFn0cfi8_3^6A}avG7TP z(IM1u0{0tk=MR&k8_JMXwS-!oyd`#~h&8bvr9AM}Su;h7x9%>xs?gw{(Wg0t@>EX! zN7Qxi6W_;6v6@HCuKbXYos&WEI zO}e{4VK6749!npD7QYa{XRRE@(l%W(0aCzE6yyZtd&MDe1MngUwQzy30VS8x3TRa9 za07(~y8##g0yF`FVgKyYIHk*+}UEsIO3-V24Dy;A_VbRi*ueg>**&%n{U_Y~Sc!|;D;KJ?v`|x^Xa$%h7 zhJ3BX#}yG;HT8KD)1n=%bLg2-MAw^^moZ-M`S;-@!(m6)8ok9YU#2AM>?WET zI}xeMZl-@gx{lrCUj@Sw)p>m9_82F0f zHLq1!{te?rYgf;{2zuDr1c(ji8Wy|A^F0V4=&L3IESyasX1Ezs z$}5cF*A|ZYoXVc`1=GDZram!G{5Nq(`G?M z8fVC43yc5a(N%3w;Jf%KCD@(%ng9mC6{6@ewr5-$&=5zcR9*S=n3J=Il8`_A#`32TF0r2VCOdn(qEH-V;rdb@e6g*p zxUcqcnv3)kz#v>?xtT98+-s=%^Or+)C(W6}?B#t~)MkNOO3YTSGoskyl#WEyQONsA zhbqw~`MS@;-FAfAEs~EC0VFPLgx=$^C&Mj|hrcSf2vhprgn3%6859f=nBdFfA>L@o z`iD7gTG260S;9$;qgfOw zJ}Pyw7*f$7b-W?lTAqu)KN{lgI7(`Wx_UiiVCHbhf)l@p!n$Ssibk3)sN{k{w{^yC zCTXxTZf&_-ulc@p($uH0;&udHhg?%cwKxRE z>TNn*x0P3l9ZQDK{+N21<(=;^5C@@4-{RZ9;m6V8jX+EFO<%omD0CmkZ*mx_lPb$a5_4$bN zx82dO_RWkkY$BNwx(=w#Hqph4pxv3A3!Z|Ip|0MK_Ux z6LOd=E3_27l0dFX*8u~Hnbw=trEvNLSfyQ@OCsGQU7uQyd1*!6*j>hww2#4! zlO=i+sASpc-CY$u_i|+}T=xU#{9GZ2U$r9diGLtz67&!sufc45%(lJc`;(W_& z95(+Bt{n6C<2~Z8QI2Q(_u;y^BpJSbTy8_BIP!L&qY_5?H1aPZD4EEW`7h2s(brF- zev*}gO&3LKYa$4Vf{H4fY^lrz_&dws(#Mz0v)iK{7n?_qOVAV_zi58EA~7g zSOmdW@50vw;sqk{_9ryo8k}S~_K+l%{~;9;9QlB!a z0-poi#OL9rCeAGTK1|mo5AuQd_iMeB>#N4=&G()w_K_UuG>|G#ug%i>rCXe& zHz@CQR#04PW?wjibZ(;5`&EBAg{~qgA4Pf8ZQCep8S1XikR6iLPp>`EKFO8Dd8ADc zr>Um5+OV_HXEoe#@spZ}iq9Ru^R-7`-Sm zH@(38tiXq~eK3AR64QQ^H*a@3hqrkhiO^9lwSL6BY8xrNOyT28)`J$oM0Bz16TYA7 zknp7yZ{=Vd8Yd7<#4xyMfK4pBfq~I01gR8iUfPl=z9zFzJQ^5`9<>^z) zN=%A~H>I!6;^lecp-nacDV!9`?Qs9npgnNhH3C_C9}$T?hP4hRS;Kceq*iD-nQKyb zMfDwf1kwTrnd%~AqcGYn6=SoG&wtFPh{*8R7YHyJLOGp=P52G*MtTfwRL$s}KMp-0 zIm?QR>cn{SHV;Fup^jotfXdL#6R?-p+dLO`Z;)J5jl|$huHen8sP6UoVraR2Vvy3q zTpIiQyqI8)jgC5e?JvXqxYqok$)yXMw9%G$V8vPlujlKte&p_7c4mWmr=8%hb(cr| ztvIW~ZY6KiK3?oMbYB$gNk06}9A2)lncEm69ef1NA|2kWp4sX+;}EM@Tv2&2Kv2sY zXm3Hf2f2s)k+AOYoTx$k&=Sj9KyXYs_u%WZ>6{7^Sr$wd$;`CA{ta zp~=Spncm;z%@~qm(mfZCM^=^UYIKwgyx+YwvT%p#+#}l>`?k_F`pxK?;`wb0gMwdo zgBfK})g2aneD;z?QqzsCqE{9s$iFDO*AshX|CtltPMTAluZc34v((*ez>4lJpfwiN zoGefQARIyr0{USSDq<#VDgRLfWX8z{0I+|(Jk?f!0&y?|tN~T*#3gej$=({slDAW(oHuBh4}xz#ElqvQ_Za3ZEbe~=v0Iy%<)0D@TvS(K2 zs+qktHa8ML7$`@sVjca3EHxXYx21I4-m!mcP!gqSun+Q;H45soVp{Zd+Lr9Jsn;F9 zR&#mh^7RI#<1eGBvQyJgS8yc_S*O&WSVJ85@aoYm;mN;KdT}Dx0u^<`;ay@rpOQI! z&WkHE_UJ3S0&(^2jV8LhQqX@d%l8N*L>qkb{)2I8CS%7=xMrKQx$ruWsnUL4W|BQ^ zaw2tYBFNpx+*Zo+k6X>!eo>~W%gRYi~51q$9M|_%sc@#nF`%iET(-+3mFk+w80KX(HJ4=Y~emWMmCYF@;TZUbk~2-@tfGc+-cYT+m9nWd6efwG5;YN zyxWuHn6g(v=JSKSiCHbHH_Wl-&mm_aiq1zwNQ_esE%^gxRmw}slGJ6oj*OjmiC;6w z3xc_9ZtW@7auY)$Tm-kr$(=`zahJE~E~oL2XyoThYbT4Xry=K4ch^a!{20x3nXr|z z7dactk2l=0OWTI?OUr{V2$u-*bsSKNqeT$3Rg<0o%obi}NyaXu`>}CL7XQe&GW$SU z89$zD;|)?a@OM7lVdsSEzQw_WyW)rbto5+C!pz9XoZTglU=hUD)Z2^1Ct#|p{j4MX z?i=p8v5?)p)2Z>MU;Gu9EycVgJB~tZS4${Q3`u0ID~*78lRZL|4{DlPW39(&_vH2M z=_om-?TJ><&F{D;fT;zGE*nc2@nnabvHaL;ONHdcuqm_HxHZ`!B~$8n4K3H6_}@8j zMf7Fz^v8KmU$4>`t(o{z25-mlt)g@Iu|U*!W0s@(d1C@~2%pla!1Vn6?S_}g#=WHJ zlufnCr*MZ}6}ZteYAr#P6-O=hhpzlQ6}bHdvlX{l{Ev14d^_#l+pOYWtSh|nFSUXl z|9b7}Z{TkH^(zgdp?0U!MgTBFGZE|6n7!FI_2<|SIJN_6y@%62yc=VPwP1Bg9V0P) z{MK7D+Q3qiEIAT|kJDHB(X~ORwT@Ul&3Yc{O^`sF)G7XXN8|FLt*&OV7{BiAH3E=O z0j_SZ5gP44UX|+3btx~9;e0KLEL_;AI{596HgP5OLCI^HWTDm$853`6=pcwWkuMfC zKD$cQYcg)}DW^ieyEv`p5M{j*n;Pe@$N98z6WUES$JN|=jY zX3i!W&cIF5Z}N2Ejck@*s6Vc)*|i6}qK#-?{HVH2@o>@!rnLxPT5anPbdSyq&<*&# z*R&r!_XOmW52tl$Tm%v?iFENja&Ut)#E{SiPnLLdBNr8XnT9xdg4AxbCP7zkrqbo# ze&9c!PR3-LK6wJ7f4^*7DKt<`_c?q5j&#W|uGMy0B$|&I##mS!?cYo#*LHM$6=kIt zeFBd4Mw#fuJyH2@ZMAgrFL-ZWFTz%GG(SV7ZrDc!IAlxvKK)XA#!uY zduOxD&9>%@MS9?}ITM1Ob|v?S-&NkBu{ujbYj=0}X(hH!e6!RWp}fGJVP{%ji^i_i z;iQh-avg6GR_}Im!7BIJj6-g`u*&@!Lj6JX%xIw|1eVA8J*{?os_ z-P^}!t0Ub;SDq_FXs*2#s-8QJji%613e54B#FLVtCrvceH8q}mU^O>w<%;q7C~g!) z!FNy=_rUzSFOMxICt-P@>AoRh!I{j4Ac%H)D!Z`mf+deCzUMZHJX3nSLE6Akg2XCu z0PCkJ+*NzvAg$rrul82X?F4BEP-cXd79Q zsNyZT9j&AB7y4beTEDMU*!~2VvQ%hG>wK_jbiA@g0IgT;IsXzO+id&8?44>T+jnZ| z-bt>LVQA@yHA9N7?T8F5Yw*>oQY%=H;x(N!D6G-4EaUaK>R$dbN)gL3f4vs6xIwwa zGs41b&-}PbL}LO((`lN8((2;MR*5O8!QO-%x}Ggo3{DFtQ+#dzd&+jIyYstG-(vAD zeGonHqA0~dXx1-_#R0RgX|qx7PcqS5eTw0Vw3Em|aRtk;YU7bz3|@Ci2cGWMsZHl${^fkWqJnGC|m{Uu@ zVzF{HNHRiW41`=sA zDY2;MLu2Z5o{JNxK?vE)v+C&vy?Aptybl(yT&bZic*W!?T^tj$bjD9=((7DnZ9gM@ zIx$c-k=5|v9v?kp>{d}6L)TNoz3?-&!PRDNB+9+PQ|inEYeF5Dk3vE9!Cj|yWuN_< zzBsu<1@UI20z3|luLHD-Yg%5ep!VBE|rm6Am68v~58@GkYaJ!r7?l zQtru1v`FZY@MzG&X%dcH#${b_wG=4F=~nY|YXPI?Uhni048q8)#9iE9&tzq9(bC{i zVm8UM{-B!;V1Nrcvq^0*-ucRIYc@r7ZD_Txbq83S9hKj^Cc#ogQ~GdI5^pz5kgs%T z!-B&c%n+g%qk5PK1TP|v*mv~xY2D5|t1qS-gvx}Cjybd5+`Hd z`W&!r3RbbTB(9uGQ|;=J#P(#+d+YvCz>qwc)Wc>Y_ zcyU-L;MJM(Cd(2rvQ+cPR-w7~Pt8wo(hvia@x?k@$(*HYrO*BmJl1kr2M=G8yOIn^ zdYv4p}zdC7;ppRFCG>F=Bo)n4zoxE^uM`1 z^sF?1CF3Im7_d?df^XjiXkjz4(mfxrn~jl8IzHwc`}=Q`mz~ zU>(gOg((&(Q4B8DYkVmxdIF@KoFBoP1Ml4CGHl^Z2khzNK1%l#a7Wl91SBv!I!&o# z)?X@(tN3w6;de=JPz>uO^7Q)DjQ4ozyY#aNwA);L}MHD_KR>T9MF{%Y`6hSNj|=!IcRhzP_2MsuZYgHak=MO z%l}29DT!wH^{9=Zh}jbKvK-W0IArZ#A{2unw0ve1$Ctgz^^sgrO{K~j zb5n=JBV5Cx3>-}9@Wq{RMffj#!LQo#qF-csGSW#&Gy}diFTTH_`^+OD7oW7Z^vhlU zB6Mnn3-|N;=6@I9ahnBxU!qB9F=R>R7E+v-ITor3eOJ_i$N;c24b0 z8-GgBN*L#iT3z#3Cqcs&oOlI%_M@DG%FoH4ML9mpqC%4e3BPD806!CZ4OU%j%@WI# zHBaI%&o#?O9|dQMA$#S@NAA0FW+4&y0QI@b1ZF+)f^KgY9MQOAL~vC)m3wXM@uCib zk57nClw}2jrp;h7r!V)1%D1f5aOcd2tvo*Bd4TnVT~pC8*HsBVTh_U}Jg$ za0LS{?0JdGdEWbEb*3TIaE>wE)ei-I8=oly)T8d)0KLn{QQ#$Pi3+mpd`=;%oK66; zkOJGk698#r5Sj%aFf9m6MY^8w0W(VdB1A-wtw4?aPCRcD)oa^j@>Z4H@;U*Y?U73c z{ufogOkpy#0%tD(zr-jSR<7oIj})X*ici8>hP<-nF7}D7F|mshaXq=mw*0c(F-6W| zSXT!ro;EE~R}y7RvTH)v_Y-Yrp+a_wavRK!lyz|(5qIj2K4xSzvSyN8H*W~0{se+u zi%uWpruVmn_t;{PZ+v_Y^s;ydIdG-ZYfZ^Ippzte$%Y%eDDZ)DDwh{z2Nh%izv=px zYGG^8=~BaEy1a+sN23Avp9Ax&u&fe7Heo+4dU4M75@{Qnl!MfD&k(*RMN$s0e8n|1qAbb7ulRHyfM>+`Q~u5CFYrS z`;S(luL#g9L_~9r$`6_xR6ng@#tJwKc`cxM5eBuF(&uvjN*+@Dv2qt~n-kME?8;Sx zO*M!sORT)6Z`!`y@9YSfZRr@1 z3~mX8!pAPqwO12ic;bdZ^L`DY%E!Hpdzd_PJ=FU`jd6OnhBrtgP2Y>5YNYXue zSVt+ktI;KeTkEX=N6)Vdt*GzdTQvh_usHk?_)v3!w^XqSDwz>^C2{X=lKV?;ei;LMX%4F1+4n`=! z2}6@nG0i(lVh_$)<~m|Bp-M|VdBOa9(d{STGjC6C!57|bKVi-YVp;oy;(>53Ow;{^$V}=#cmu02F>5hE__~MipJW>|2p-y(IWp81wkAC@eP)}mXNzg`oj~D zPwaE`D@VeIkYe+9dSz{@d-cGw-m+PF$YHB0G5>txRj?%c7QOVUH<}hRGGghc8{HY6b!+p8a6AXu+2x0p>_M*=#z-Y)39yJSv;4 zE)%+`lj+Ni`jL3Kf_3az`Pe^U*@HQ_t4zb+mT()tqW)qHHf+8+C^I^bz5I3`&AKsl z!P;6jtdS*46B~~JkYOh2M-yLIKLIwRCo^={^j%+Ll5e69*s}V6qD`&7&*5PorQwa1 zC|1WeOd>0F8#ZWSZk&-tzGjQ3Y})Ey3RN;$C8=+fj207|->?wV6e$&@PCB32i_0V1 zRT3~BbJ4!z9}k#`XG~rt%4aM)MlnG@s!#ijE<;h6EkzB*@BM9e>~d)+Xl_oyKl=|%T-7Z|rk_4`by!i^}*C{*P8_3RYsFp}^ddO`mCkQkfjQ9TTRjwKC zr`EqQti9mOD54;zm){dg1nNz4YaJem;d}_siEEGOWY45)??Ib1uV-Td6U?LX>3Yb3 zrmumhxCruCh8^c)Meow%(gX;Uwqtf;K&O?Y9S0~bZ16*kqs-2|=9p8e8+-W>-K^m? zxkHa!)mJn9Lqi^C-U`D{Kp9f-+boBO1Q*gQ)4}cD&1F-n)^q|(djU(BH;F=2tzv$> z;a5(Z)(@w%^_TYCS|Q}Dp$@t)cI0Y4n96Aye-x^sU6=S}nkIFzf?#XRx>EFHqIziF-R z6R@2#fNv&%aAyVJPxb~!3T3{>J`C!|kD*jo-MU159ayK~A@3yH@j1bHxyQp^AU1VV z1dRi`V-!j8Hg6!Sx4EHtRaQ{AO-l)y7Z79vo<6VA)w-BTc%S*6rfM%I-U5P|{wu>Z zN?-3VZH4Tc4D;x{uu$5z;o+`o*?R+0$YTkmSTLyr69eXmnaC zYNc2`;7FQU#r|4&nBu%pZ1kuqCthYnyS{iQ#xOML;P0$ovq986$LnJsificyNxzSM zuG3pAXCXUt`6=3WYGf6yL9YYCnA&+Nz?GW%JiQJwGj>S>xmZd97{4j7y!C<>%$;2H z*3Ue<^mJ7;XZJnuslZKkQHvitzeQiP&WN)wru6NY6Z}qid*gsNM&05}kdtgbdpJ34 zuUyeGAq`?`#(WU+87C~8GcFz4$8k0m*uq48RcRGM|snt?qbRb4ws5z&{tT(%?`(Q9R6V#s5p7Ejr%%aev<{(a3bi#UPknXnNv7 zEQ##Gnu+${bZN-z?*2ZG);Ohc$R^V}-y>FF<`26;A$xN1AMzrD|?kJj^jV;{epjH}>k za77}oAy&Mna!^XkKplWK9&w|`FzEQlDOc2-DbAuZ+oU>l)W}V<=dDqtGLN9}Co-WH z-TTja#1je5oS=F4%wVtz=7ofcV`M>upS z)cnC=t38k(@H+0N#^~Zsqs3?j38pb}kNx<2DW!v)fR=FZBA+ZV| zfHntF9I>m7e^}afgY0gXJ#6hMmN|b4*a0VIw2ji%Buq&PDpn}7WW)V6WU=&#b|{i> zc%*QVVp5r(^f?#$sN+l2g3+52A^7s1^smudLJVWi#D;fvUolK+M`llddcQ)@(Vv_N zE;_lI!=p3MnJh?(QSh33yGgEd8vN_NatDm5g^v@MXF>Lvd{6yrR^(DXh8WRwg_S?& zqJfc=NrwR`w1C;MMGLpBV?$@4w|;)xvQaP8BAO}Jm~^uDf}&_2z3ZgGEn=Z?va(eD zHY4W7cw66%+@x35ky7t{DOdYpTL^R5tEFSl7g70eZYtaZ9gv(Bqcq2j-u~z(K>aS2 zWhaX>_Q-03d^sIt(6w%Zdf!l5Z}QOXUX^;owO!Hi*Bl&uM}(5A+QbM63_35NU|}(Z z#vj}hogwmVM*RL`neb;T`ekFdI>2mrh+9Hcid^82nW@`tL#V`i_W9ESx<)jZmhcbV z3)CS~f^aS}93qfvSu=SjWKI)(W}?n%)wyPKS#F%f(V6sW4oHOr5IL1!A@kj?oC6wUix9kU%;3j>{*u=gfnz z2E-2Av1hx+!U8n*hI6OZVVAc)-2xzl{KqdBc%&!Z&ZLa_Jp3aM< zG!4*pIuXAc*9gMdJ9RvsV`x}%+|wgtHjs#;PhP6ANGL~(yyzHJ)0ch9<^8<(|&%}2*#~>^c za%p=-Y@2>V&&D-UD2)$66xR*tu9Bar*HZgDKf8$0e9vkDo6L`n=u&-ZtEPlieXNs5 z)$m}#d{QQ`YMbodh!t9a!`@`V~3d4C} z3u$x=_QAdB_N0HC)9Zj-oU%I~8?xbY zG;dl8g&bqZ+#Dz%7*6mkY;8An=;XQNlV_{!-A*gIDT5R2x&-`hs1iv%hR|+^_4swL z<#9Bv;$FXoig$K4%<=GOR;f7%R9N}&U(Y6OMqtGf*7}bSx}eS- z@6u^veymWkcXpkee4sy6&~wJx`tzGD(dALR--6AhB-YCQSCbhIvr9)U9?7dz%u0>o z(E~|AaQ<{sMoo2T4r$5_&5oLDMzq)X*?J4!(pb4|twX+QedT`E;@*0n`Or`b!}tfg zhI?vRbli8zT&}up-?i^ujz982zn71a_*-`@2R!;x&Hxs8|oWeHu6=AGTTTeK{`+>qI#nQkc@ zw4?w;<;`ANAzNYo{a65Dgh|K2-b5JVu>T1taF6m!qQ?ldw4muY$!3j0qv?Ko4jO`G z+f?_4Tg0kLOoUT5GNOC3Tk70YbenHsJ3UnAuJ)j#dUo{JcA>4auzasaS}9#^-$@`K zANmAnx61XC;MZu9p?}Pi5j{6jaOGe5I!V&nj5m{P7CWKVHLf3CSGWXk8yUaxi~5{w zr4wGw)=IM;8mG6J6OBX6h{`B(ogH1bIK@k&s)u!T&&4UPIy*^CvU7iDa*ck*h^Y4s zcLl-s3zz8~e!zpx^`gsQWnaKW^X5c|SASH&L&8>-u`I!SgtoSWGSYRi??K+e$U*Mg zixaSoeAahgV-eKOAONDa#b--UzD$zjRj7JjCycS`N`0r(G!SN|9t0;QbM%+^k7;Rz z>N_5X+4!EiGkURC9(S^002%V$-&tX6;)hvby&Ej{3CggCY9(bz%&J@ZI&qzq3=;Mk zs~+Z@JBLJsE{Bg_>jB@V;WK;K^EZ?Z2gJ5juPoLsw|wPE6}KbIb~gL$>LdsCQYm=NnwCr>7?7?uJS5wuoY zP22h1^KJ5HJP++0xiX&4Pa(0R#2lQVefhhZAU=2~BH&h8tA(3jP?3YWlTqng#$6E>OlL)FPi^}N@nYGN={BO&^#H{a<4hhSz zdlY_9Cu_%PYou141dSlb7RZpd=Jf@ybg!*Vtsc-k0rx9g;7Pmby9H(;cBYU!7le4; ze##^pZNCk&t`e!)l$UZkJYLvoR6PHd?kK9J znE0?byfvo|!6N-(&haYF+@7mmO~7@a!qc4~k+UhR!2GK4bF4;0Ag28)G&7>QvP|X3I%2I9H_W!%W6w$ zkc=tKK&3zq=gmG<9K2c{-h}&kl|4s1W&Cx2s)2JAc*B*btc2PY98|qh`?c`$w>Wxw zkR@EMSm7tA&9^R#uNGiBlaQ5|l*XIf%ws%E$^GWicrn0NB20A{@y}xJ6e0E1!+4&r}AJTpqey~;Hr_vWX z=tyt0!yaQSb5MQdgjLx3&|YRX=4pf%C5iS1L+UnIP!x(r>U<;bj5#aViuL7aM#Zwm z)T>LFV^Q7`;i~4C&3*+9vjfD}pF*B@x+XTVE`S%Q6cNAnCe{q&7YmcskJg$e01RL5 z&E|7x+pm7bq{Qx3iB9k74{_@octAWF`?9`TKf79KF_pkzikd9ppRXMpSq&CLutA<} zvX@}N{vA4`c$&+_C{yJB>*JbygW4-Sb`{Iar1BoSL!2;t)AQsa!_0>CMd*B;HKN`q zX*IqHSv(|YrT^$pp#*+xmAQm7g2i$JYd$Jd)dx{7{KCp`!OyS}ow_zB)G{(rgHF5Z zI=D#e^=q*BRK3tgWtPWTAEpOhZ?Zm`6OJT9S!Smt?ca`$kx5H5gO)K--Ij+4v=@SH zwkd1A0hWQAFCV#`J(+)dlhB5vn8`*k#^r0t(pbic($;2+Sr@JUB;Z~6>#wY(UzV=F zBD~bg@oAadQ`PFvV!j_zVbexoA!$=wAPgIV>NiuMCbeUM2rS!(u~` z>r!Pa!J8Z6tjpa7jm{6#Rexr5sC6nC1Z~$^V4e4;$P3O&krxw~-*sf{~kV)5gVYpo}nRw<9kei;jqq4alS(M$G76arCZ%8#)3 zh;yo)VzPIvw5B{8Le^I0yJ21s&#*^`@EI3o{d9{O*X=Csx}VON3rZ`ARH)G7`R_$B zemA6&hqOk;8D-Ww)80RyK8MoVjwEYK614tFS@_!I5G>A1Hn=AWdlNqRgY0ssREOo4 z+KSF zS0HoBw7}2ZPXK*_{|_W^o3pB|u6yxepn^K3L#t?gEMJV;$@MNMg_3M0$+oFONq1VY zXMnVNIc)=4+@i+Pb)A9Q8WS`AyL2nRS|U?u)k;-6LzeWTn?oU_WXfKfm4I4(T3r*i zcb;8ETOs-tmcUl!H&5x%#*kUzpft%<=o0{SpKf?)$JsYu=cV=D;vRJLG>N&!rgXk{ip%023B8QB9%Q|=kEwVi51RL6}{?Cp2`x$U}_%Ic|D9#R(d zXeXpZYE`tqD9`@F*cIZ$r%vK2asA=uSmNjLRQRWLct+3=8Q2z))yO)^FO8XSH z0*at=YbqreF=w9yVh!CZ(@@vr{s|=aDb~(qg6f zXt;$15)IQ=b zP+v}@`HPTZxmaYbePM?XQAzYO5;5Bst^+jkAq~1=a5ZoZx1JaZTE)e#PZvD9C3#eay95Wnj95{3h!&2^XFGh@X+k*5R&R>M@)b)G|t7Jh`Jw96{i1sd+ zZ(OrGXw>|QQRhzp`}#EYN4|A^9b=#8kNQ_(hyK^eUP5uy<7hvQ#ClL>E^$NxAU;`{ zV-HdU6%G-Oe7IxQ>U7?pHq8y*6P%?Rtn zGee2iHrP}be_S3va))bMge4pq*GnWE3vRzAai)^P{;rHITAVNLOQ7Hl8hE#CGk7^b zrCuMcqm$9N$8=%82Tgb+Q^QLtu`4AH*2$t0ti&R5y&{|%4n+UkuCgM{(Npt&qTHn~ z@vZP=Yot#JIv<%Lza#A`zDNo}569J|&a0!NS<$E_9`-NE@887~@ z`(r=yRf3zhuI)ZIoNJyfR17&bTAR3qufyBfsH;G+B_*YjzPU>);^$)Q>kV%=ViDr`MP08MdoBI`fpg^$WQ z=J$4ZTRlk1z9tn#*Zxv9)GQqK0hu_ZsyZ%8PJwlyxu#vXDvoA=s0;e1CS_CVaG66B z^20iI_JW?E>0J}RnZhPIsp_WzMNF?o*&9!X#fby9U6pI5p(lXqrio{RC}Wlbec6%% z(PXd6B;GeYLU#KSRX5kIbO3Q<1#$g!mLj9yYg>u<34oXG^{|!ez2DVbl{o2-_4D3Z zhUI9taHOv^c@_wgShjQ?Co78H3U?~U5m`KvK`AhAe}6chx=w(NmC(ZruMYB0;)!RG zLiD2!torfiD5!y?4Fw{zX{MetHWq_uvUKmFMG+p^!Kp`<4N~glqd$BdFHl4BDn#Ms z2J^nshpT_FCBJvb*0Lc2y0f)zOt1PYDnWSJJc+X zkstJ0%m`NiFUd!_gqEGiL8yp{GT9TiI!>L?9 zo?eQZh#e|NQ%VhK?dPIjUdedf{s?9crLs6q1^z|F$z#i9%(&C@ELH8{d$=v2 zjV`U>++2wy4RET-N*6`i2<=+ywOkL|d~K`RQqbi)C3QNXZMg?BU0mF6f<=yK0A)rcDgo?R4w|j(pr;!qPp}-W{>t@blmw9yk_X!* zLF_^JYa_;<%yn(*I^_9|2PB13*;43=ZvYCNEn%`_)vEMcmG#~(^>3x!3k0d#KxhZZ z3Tstvnu9H?s9l%6?vwztcIrQ{d_^^AL_-~ICz>hLH_|$R^%@_S%TZ`W>d6FA=P#|I zjb2INgMYONX4xOOcQ`~RYVKoGO)A-{w;f75Y(Mc%6U-AoVRrcWE+U5F-Q^CR;=C&B zyb#L_nAxR@gisI* zZPz}kb0zps_8p$*(S{!92Jvng&v`xOM&ApJpC>jWA9a<#jsm1ZkFo&VToBAYlmrt> zpO(9Ky=v5+N~+Mv;F|SiJC|uwLsr^B9+Vn(f`KHLil%0Xl}R8?w1xOk9>-BWfQMU7 zDUrX&Sd3kb&E?;5F%3UIjH=@T6S0=QfYJsXekUo@>VTAlT{DH{HVwn60 z$jy>?A+WZ!$ym=l#P=)~6pj>}yECz%AZ;h5YpdSvI2gK)Bn6k_Z!3J!$4Q0E+Fvrq zWod0B5hG8VXJz|!X&C^HsKb34jJr>LWy_w)IPh!7)=OJ#O1anI&p)!mTCP6_%1%cq z20HG-(<_NgHL;57+|3|)E+z+Zv0rQvM_Ru@L9E?g{;)*k&G+ro`1*Y{k07t9Tc9_wg!BkC5%K z*~_^x&>60vntOO+npkFvCougp%LHXwK&t0>*rbtDKzW(ILmeD9ulAiDkHzHdYmH2P zDSt3NT=B1xy&EAy&0x z`yE?V>W0YtS>@h4ak5@He`9u!B!b%d8DVva=%LwJBRvn(*Xgg%O3B&BYij=hL6pUo zwUt)|k|*)x{{V`7rqd^c$R8$T^EkM$b+lH*+wql+-y+{~TYPs-FoYojn>P<#Hx^F2 zd+NUdH(7U&)T!;i>pWKD<;TXZ-N+HlOillRiQ0X0HG&LwnadvTGsr9yelWo zusQki7)|m$nOk7o3F|<0N1Z?1r5COQwq=#U{07{s z7mc{Q^B))Er;|x_4ocHAdv-2uKF*AiWLYC%R$>&!+mEGn$G^$@S8+5QtS_!?vUdL8 z+TKAiig^96;3~_vs2~wvT|3@MXlMIW+_Nq&GjqW5OOTn1zWD)QOFFS|N!woJ{PjxZ zjU` z^=)-Hll})s4{tST?a$J-Vi`QQ=NzT;;cVaM`o1Zmlw;(*#juC zj@_~Hi=`)Rz=?~t?}!UStuG~Os;X=*BQYxW)`@g5dQ#f2H70P?J-{4hhC%Ss;=fgQf<=6yaZ3{5_1zi z=rPx*?NUQqIH!7^wD@VY@6|2JTcLNTs>AWe%W`pR{zRCIsWBMKt6MAkvWf&(SIX~i z8AAKXaT^doAXBY0Kai)9e`S)Qz9Wm}_IE82vydvE<_axTuX>uE+RxbRR?9tDh=PB$sbtYW#586HU1M17)#o2t>f>%{!;VwJ6;Pj~Pg9C@sjylP!P_Zs-0GjDC- zPC18y-p7pNc;xq@+7PiwG8cDJwB(@LKCX;d4!ZArSIFY`s~h`k`JQv+y0*!R)~?*z z{SPlNymOS{?tby@gqF~U6I-;(R!F^it5>B%d_fxZzk6HRXnBhD?OM4FJ~qF5=ayAh zhDl7&w)3_{bz|++(DWpA((T$r)295Atj;Fl@5LA#1@spb!rooaifMAMC8Ap7zTK{2 zwy+WHiHy-ajVAv9s-SHfYEf?Y9gSaOR)-!h#yEa2hN_DgF0;~I-8{J|GB?)p+hbY- z40fU$V;X%-#f$rdkV-PsNw<2>!8p1#UPPGAA;TAsD2C1pZ2i6TQ&{Dry_()cvW7Ai z(IHg`r62i%T8F73opqw!sku+LcD+7aY0c@?|*{mUB0mo+$1i z`*m3{u&@tFq>*Zhex@Y#9d(yCW!C=ynC!iWd^>7~FBJF_nP&WB)muY4vPH_=UeI<8op- z+v73$D-1RAVlA;*9F$YayRGDKiC`yLBew|6Mp{O#^okyuzISU^iX)`mGFI>YP^mn# zbseS;JCT~pH#fQLt}^Q*BFPjshuXD@?jf`o!bVLJLMR7rwbh5+YPIw!OJjQ5%V$Az zPsxl=81f!7nA&i@3!TcWkRsgM=3~j=#4^Coaj{FAtJy*orH`~0sz{~ zR4%a7t&uHKU-fVLnmZl*ceIF`$pew(TQ|-59unUth057J3Kq&(@(T=&weu;v4wrL% zOK&wLcwVvp0EuXNYH{_lJ8b^|g#Q2oql@OU(+k6iE;e%8{sk5NK)l<|F`gwiN0j6* z?KwtDY<W-gd+PakB zg!vE2cnp^#B78p|wuZ|fW&Z&BYiRMY%8?)W0fO$>NUcv@b#d~IQO37jOsfo8Um`W% zB)G|4$qn7b%#SVHvOHVnk-E8H5GPum$^i5ONWK*JM%)jI+|ML=F3XVRZEhS%3R+s* z*+me&N+q?b1dcWK<3Z4Ro~P8EQk`hof3{0oDsO-HK%0|!8q)KR<8iQ;OMGCQTSq@=^Qah;H8AjJf1TrxlzF>`2^c!;}tJ(o-ZZ`l4Ne(ItKIo>IAFL`j0%#ui6 zSiR7!``EKlw$h}ZL94#2RTuYFad-2h}-ZhCRv7~A!hzD;@wKY01^lj=E?NnsV zc?s_D7FgmUNNgmymH}AJB%g1%#DxrNv3eFDQ>8lVMSAv51z)jP5-*YLV&Yf0sNh9w z_k`Wtd$F;QTQfXBZbIv|n4hJEeQT-qEyz#3SSA+!V6=&NUq4h6KjfU|b$Fq9 z3bPWjMH?qxpaJLy!&6`Vb^408&(=-F`B}-~ynBe@j7szy+8E7fC@Kg&hOck^c}A?G z`Re)%nNP@`NEpnp%vjfVwe%Caxgk_^`Dyt64zUtt$@AZVAG`CWZd?BVdPKS`0a7=~ zU8K~lDf83+0HP)2TKR^@wfwg89j^nQj$@~i(~sTBYc=8vQyiBsW$t?dc~XK+hG$?{ zZtF_WQ(8Zx;%o5{{Z}Hi&+-}V{Kd;Bh$(pyextM6mZqY=;jeS3{+B}Qel6;1)1;a2hC-tJrVzPGxFmvM6(*6J20m=IJy)wF^}r>E1dTP)O2 zqCbNv*zK;BE!N28yE}g!4?j8IJioNVM~1b`+hnoqr7n^Pp>=S-!v6R|;EuhRR-JX~ zDT0+#8lFF~*vUKSJaAvgz7uJd!$+Orw%Ke3Hqq^_u~ze&JByi$&|QngQzEc$sI5x= znq_*JywuNb=4Q0F@;ht7Gk;GmSNQt|LoMSK;n`{B%G}{D@AFqLCPNuw@hq~7pME&Y zM>N7Pth&l3FMW^ zy#*QEnu0oxw6ASv%hkf3h&uh;{{ZG?Re6-;CeOD@P-E2$o zlGg5C$|qnLE^*52uvwciZ)th{uWl_`>hjJjtBW)eEW7OHldKXFfEP+NDmxRYuUiuE zCjFbW4d^sQk>ruYRbHl~?^tLPL*qGK22D%(Rdv1VezQ5Z*PvbxLAlC^}bGNUtzf_cI8JZvjtQ zZ3nOI8aN_-)@^U@6L<~$UH*~&%|oJO`;G(bvQox91$&UI{>@UI1TJ`zUSJ;P?Nj5-iWeTHreuF~Xk8{xIJ~8;qe|lKU zD@7VcUFF#A8ZiF=1ymE(oeynt@_dYJX~*&D`7NFa{WUqBV;=W0!8$_G2e+TwF0yXx z(MQy1JM zy2)HT`M9yRQG_t#?_-W@sRd7Ff{FmcXIhE z`nbFhVf_NUf|#FUA+s3-5&M^W7|h8b3{i?uou-r}K_a!)mu~YiGwi6;5v=F*rSX3s zipTG`{{Se-&vHUuLt`92`&u2QebPn;w@<6RPr|y3cQ5K*zaK)s{HgFq0Pr7s*Xl0Qin?x|hXr}3&b)`3 z`7e-i{E3-!Is5yI%e#k|%2GEwA%ru1TVjYR3ZB4g(DeGN4nJ*do`)~L-20rK=1<)a zL7MLEt_+OTbLvPYl%}+BIrhr-djZ^ON_6K4e$Ck^>OkhQ^ESX}YUR#|N#SS@C|w?S~CHVl$H$Q9jy8+x9{(13K8)o;mc zc~adTr~d#)AL#3m{D$z{o>lS(3*+2Bhh;tMUKMR;XL{GUhK53y8CgBcx-2T{V?aNQ z?md977rTz%@k8g6Q&^14qR*}lM0DwA;b5~;} zO?B(zdl8J6{keV%yT)9kwwD$+kuK{=EiO!!(!ztG=@K$KdXG;=r8L_1vIFW+=kFtb zLn}-rSX@aMAyt+p+{}N$Mxmi+<6kqZ=%UP;CI7Aq#!_tsO} zOBk!Hkr>Z%DmPGiYgRm|qPcN#8g5L?K8WNb3b8(e-KiQywx4v*GsYn8wAjh_+h-z(a<*tq)s3p8K>rd{~ab%nO;(An_ z4xk8Ku>Sz#s)U%=Z|Upbu805+a!LJuf9}x$!laSU@SopZSwRpJC%I0&Y24RR)RK@y zvYKdB2tB0yYUSQMytiRv$)mVR$7OSCZD6p;JIYB=tZJ-C^y+92QLhz|v(-@~b{~r| z-aS&7)c*igxGNXCG!Wt#z>^R+MI?X|P&-g{I#dkhsdn)WEny$ACOZjrc?4{!XK^}& zb0tC+F-I6+pr2hFMshEX565j46i;a)#!0T|8B?dIGJwXXwvGbrke%W%*p_6P#~Bfz z{$VPJ^>f(&0A+qUemqiS$(fQR$HbBi?t;COq*R~;uG)3$tuL#gjpt#K+98QH`zpIs zM+s1c2>G=^`D*s-XePOwjhQH~YJxdpEH_i784W2x-h=h;tXIPZs$>v8BOfz=?$IPP zJIh9l7L_Z}K@|9U>1iWFyNw2m>G;WsEu?}4_rWTca1f0feFTIjsAg(Y_iAAhtzww` zv-}bKQuAMrVB!4d0~SM%{p>es4lmrWxffR3)f`O(sUTG@YNS)-b$l0ea*Ex`hH^hH z{{XdD`e5X(hx&d;nQ`mMwjBQ`@p1!A9KHlC(TP=JNYuqiX%st7Sx_t$S zE4sZ0VmepUQ&@6hNsXo7fsXP#MXYQhwVkJPQlKyoRU>hwMKrAuer%z<{m1z}a@K1r zEHt-P;5e-DK`JDb{xxY-P*l*C1 zQY%49>b9ttcsUF5dku$<&+S_)bk^*X8t#fYqGlV41-MCA6>4?e^>!M48%5Qt;E8)lvj?LoJ%N@xHkLRY@wpaR}e`e*>BmZ#JEHF|(kxd&Dx*ph>}u7EY~ z5!mPeLUJ0kI)||Uz51Vr&r1VFV_FaIrho#|65X@_TgYqB4FDGGO?zpT*aFM3J@q7? zM!p`j<2Lx1n%9j%9lWt4L46UkiYJ;exQDg(q;Wqj5V|Dfm z3~_A|LuG6TiR2XlWG&oNsnj5n?&5iDinRs2u}>+g$umb214^hPb65Lnbl3-YCRm(? zappo6-6LY5+!F5XUZo?c1NP{ID%lBjqGhWZO5$p{3+7%TV@=VL!1@_ zJ8lWJzM@S?O8jeIhs*TWUltEj4esO{TgNKbU~t`u0G^t)sF4-8p6eMC&VpFgmYpip zsrmeA^VVD8Ome#$FZh-%=4n3LX67=>{KnYqI~D-`?PJTeFa&t<;2L0rBt8<21?XYoee!reRXw=q=SzaH@_MFTF@QGU@h0J z75@OgPse~;sum@ipZSKLA@bKp6_7T? z=~v94y({W6Z1cm+9wzb?mj}L=KaaxO zPaMqF%Nkq7GDlLV8Kx1ewQ{vI9ZznZ8(Y+mZJb}^o6AdF_Ur6D&=$psYny2;i%33( z*s+i#5tC3u(Cev>@FLZ+AQ_ylBKF2fNivYtiR2Qqu@p5^Q?zyd657{Fne60>WY)nU zMp>%vTil6N{)!%*Tnf~6?rEl>Z*ih&6q8Dk{{Rv1ra}Ws9Eydn&s4Dn(8?N=rF(wO zKp+xKv;*hUSE*J3{Xg5Q025D``JTD}7*kR8DgBxN*nsx#e_cb^ zgL_;LQBMB4SOGEuduRX-#2R&}>}jc6fLpWb@Bnu=$5KcKCb|InZ}E4Mah6z&axC`g zXY?(+32F9i8js>3=}8R_V%qSPXQ+bp;oQQ*?WVZOM|Caj&eIu|DJ<9Rl#o58>IpwC z`mnZK94C?FWfp$sIk7P-3M{*%l1PftS;o`UpPrc^p*_XrZ|&laXrPKua5Ae!8^Ba3 zCY9Pl5`H64>_ehtgNoB~q=`~wxKDFw=nAW-0e@)IDV8=e>Y5EvQ`%k%iuj@nDR z3ZS`bAXDv*QnB^hZJbEXw+TH*XrEAPwgYNtt5s0 z$}6h-!)fWYM&qcKh_E=VrQBIq?qF!_c7PB36a!A9Y+DpS&SO<}4y*A}r}j{ht(0u5 z6w$q};h+YUDoHxoS%FOjOB_wTXc&>{MkC|^)ooh&B~^t_RWtx?=sFM?K=}2pvuB}o zWcCtWO9DpfvNFgNnAu3JJ!nlvvbR{!Z4+cmmvY!5vUZMf8Gr(;R5%8esi6n^bN}BX-Qb=vHoIJOL=eO7li(O+{d|YY^ zUt44v^7h%lD#8SwS4T?s6h9@@G7@JTc@OhXolIwe~|YaO6wZXWn;U7;uu;OrJb&*d~`s<;B z){-r6Q=a+G4~@Z&iW^Ode33@;1V)bDXK$^T`^ykU+C@PIzK30GcGFWfTB*>kZrbi> zrmn>(r`!zDF4a@ggQ2hJH1uX@Yn^CSgOVI{?b4s^(?9}9!1p!(0B);fKwuJ<>J3M2 zM-T$aJ=zr@`q#dWEWCwCI-gBhBCIHiF6x?k8X6znsRIiU{{X{40@&2AO+#b>=nqvV zQ0xHI^y)uOhQGU1CJiw=dRCvO`*aY{TaoF|4%O7xa0~YjrkF@u$U}9efHcf2pbw?r z8u0A%S)^Q-G9_DS{iMZ7d}D?gY0wmPJ4p2^Ds|xMdWK!zKgVL^g>BOr9rD~eZN8Q$ zo>kmv94zZoLJv`^3uWoVF?fp`UN?61dhA4-aQcT@snapytmUq7L1_(0GM|spaoOv1LIHGtbCcNB#3_|Y{%a;bETZ{yliH*hwda{PRLhnAHS_NN;Twt zQYe2d@ZNEgyLGv?w1*vRNJ;MHySH0)b=jvlCvcG?_eYgJdl&Rfyaq zB3R{RYW+%rp8|DREU0mB0^~N4Njso1t93i5Z(5JU^Cgtu83RBRKb-x72 zStE=5(Pw_Vg>0BwJ>;ny%Pqgx9F5uAbASUd6d@Rmc5v)t%@S5zj~R@#6oTO{q*fus za5AcoQeCJhJ9HiOu^AZ3#xh7C#(GdHfGO&FchgFlGsEqoqEVwQSL_%Q^wdzA=m4M` zw?oywbQM260A%YTy9PVh9=}yV_!^A>7KLln9=@MF0AowF_Sfn3@1PAAO4p(I1KU6Y zMYnYCwU2RM_i1+AfY|+yXpiGRGeAFXpb%O~33}`x_NX-)3xZ{cgWjYX6HNtJ4VJrW zLJ9eF)YozX9Y>-4$NidNA#WQ~zJLR;)3^sfA4Q%m@^2iDEE-u{SYxtLhZk0lbk`S` zA&DYcWRR%oUqkZOggrsi-YMj{RkMm{t`uc18zi|Hm@|qf*O%}2y?gwwYj(bIT%lqmop;DBuN-{M!0j)fg z8Crf#WA3v{cFl1$xs5^g+#{nB2VKCpQTqm?9o+6#)j?nD@K1Wt%JN4fBXo)){!D|@ ztw_|{E~KnLZ}XU?o=4XwxAxM z_WsRNk|%=&WO4FJT~M)d3lf`&K9xO)(4eDCGFZ^vZV{kDDqCt)wR+RDS54%C1HaWR zP_dFt+Xw+vS7m)j71I@w5E~83%Eat&fQ_V;3PJdfH@WoAXE}65npT&%n0;T zw0_#?dAO4j5SP}n+Jq-8OHQaTX~#+yn)3Ib_L1prs58eZ(B>T;i){DbDN`hxQx7cED# z_N2CkM6&jlH3R(o{yXB&@5^K zoq-7*>SzUjZkSXn`PB}jk~#+!{`%+uvU*X82jQR%JZO7${ki}H0uOIbj({+*prHff zQ(XXJp1r})1~-17{>=~u(5PNIm6*yt z+JTW=o};xj;N76~@^pWX{9Bn!t-am`{^A>X*gx4?LJh28C>oH@6%bHU>2vC7sZ5wU zFM`2)cQBR@b=q6!qN?fycZN@T&l>Yz^O*XcImaBqwiL$(T8}5Yn5k@O3#b{$< zhp1ULR6k!$wAJmjiEab27QXIESZ1=6+f`)}eVfHI)Bgaw8f^?eKz@2%T$Q%c#|(w0 za!lH-td|RHh&{_&dpNhY+EJLuqjf9WMyX6FH4}|0y%^;Z&ipKuLj3|43E=3RPr~7t9 zaz@4@G|~l<^5ky^++zX)L28ey>f29%8g43Br?`O2W0Y55+wT{$%_^#tAF80JA3nO9 zQMrDDX>}qCcFEji8Q{CS_N~h-kwainBrVwcvZEfK@Qp7YD{E5sybPI6E#zz5vd?Fb zy0w6Ug?7UeAZ7)K_h53}sr(@8H7R!Ba?3=GWN@5|A37vAm-z|8fU&qqB<^TE&txj7 z^*#Ptl_|8zSu427lHpv5+G*v;UqyW^YVn9BdzXfw?EpFez54w$)y8r~ALQ>IM*N2A zOwLOF)^s#u}P{#)W4deb{4#n-*atnG;la5Gm}o9|{o z545sfqeCD7bwGC?O;)Ufn>?$|If~+MY@^^Ai_RgwOUt{{o}H!^>sAm3NWj{ig-IZ3 z)Udl$;qM~d@vF>+S+UpB;<1@0mF?rcX_E5TZXiK*aR3P-Qj}$gwz}A>26p9WQrV2g zR~d16Y>bw0%@4V842ZJFaD(X^49d~~-Oo|eT?(n#$m;94TxDyO6l&-I1(W!< z6HoA;{u%(&`)s6@U~BT*pa31C)B7|5n-HKqD_`L12>JHV*cw>L1pffzs7!-Mq*Are zz#B+G>MA`oULXT<7VJs+(^g0Ti0jt9J_n|xkR@35Isgk)9AcKSwD&5_Ubhp4z(lg}H%lEf? z_IJ+ywY$%abMATab)R~F?)^M2Jgx(T?-W%O0TdJzK>6ta9*P@+0E#{hDgdAYs5Gb$KwsD1hCv?e!|)CavhiSW09ku^c)B}S zIx|>$+qhfW*)Z7JI6E_l@(8`=VgS1{@bU1oa4~p-8LXVa9ySbM5QBk@^;1r3OJ4>{ zPX;kAq1U23{9-hy4uF8J`%@Xt3_6}*D<=kS20f62r;YW~qowClO<-FFSr;332P?~` zD0Lej1|zV$6AdZ`fGHx%Cn(1Mng-Pv!20h98vspDN0tVa06=-VYXZ1xmhPSoAO=+% z8;}hRDhOcElx2{0x3YKew&B%uxAE{`koE8YTRB+%hnhjf#gYcq1Hk$3L^P;&0E4R~ zx3!Ij6Sn{#pBTS@AU`)hpP+~^AGd>xorRDfA3qH$8GvnI>26~W_VReDMijvMucZ6} zPlzu7T&1VV-Jf38Q#(B#mjO8d4Hfl2=Tks`Ix(;?FwoI4a4<2SVd3K7;y%ZD{u~dV zm=F)22>wlB|A6!IFT&U>iXy};#;X*<6dAiVu&@o=}KO>ga z!nAZFVH60#dhs^-dsP=Ulb|-7^rQPE4jHr11`FapX#Yj_e+L%&|3&t{!Ty_T3BW}| zdFnhgB0vT>@?`hASJF_?KGK)8!zt`AUJqi1oN2?$O2=LMozcS8@dEq4BZFn(bBVNR z_VS;z*6B4djo2}2B#e$99Ve~_rHK4x&%C`ncX)n?Z`?iE$SdL?6=Z&o6@!J#~DKlIEFKDR^YzaQ*2g zYnhe98h$MsFNhbqGQ_p(K`e34A?k;68rM7!QrA=3HF8&m>|Ud)es$d;#ILuw{ZN0W_FX;#7k$OEZK)0-uFG%4@Wx zQb1Oa-5gm)a=$@#1q#@{wUbMvwb${@F{b6j%ZVf&zV;$LJ^uYm7F6cJJ)-Ks$}bl9 z*J1CrvWXXIFrQl&*{wl&_h$b5UP)o<`+O~=G(Kx_X{>6Moy)KWn^Nn`E0t|xWlBa9Cx}Gr8NJ=40rmN?m&=#CiAj6+Jp!L=G$ZA$ ztChJJ-*^xEkY~BEGOsITN6GwM2@L<}KmaTIxVk;V3ubL#K8oOs4CO~E>en4|<+aFh z)FX2gCB9k#t_t2kv`wLF>V(fUjfN=Kb7se&I?9V{X$u=i?Ud#R4X)`>C&QXQJ#I{7 z=R>xvWu%8xUjOP(ecpBpCu@9-Qjt7gRqz*sXn(N~ki4n>l@oW*mU@&>0Mf+T(<>7? z_*JmNtUvBJB_3lXL6&-Jq=_JgBD|z@cE?GAhRMwtksA&O-2G^p^iGZ?-wzRJQfDXT zXXH!kaqPMupNZpCdgW*we=0CD6n(|Vk^OgTkvjs^0;;MI#u&@>VJ1e$D(?x?8G@lF z$Wp|sQUzbO@C_-TrbSp9*=MA88Sl#{RlLD)aLG<3>McR)_03E!f9?7i?5Id^Q_1$O zn~kOL43(BiCS13vsx9NQbsT}EN$wJ&0t16@pI`c2KfCaRt#EpldlF2oTEs6|TO`YU z^o#Pq9lCz;S}&huvHlDUJ?I4S%c)9H(Ef_6X(^C@15dD8;hbzGtPatkSnpG zY;B^JEy{j-hc*hAs!SUj4={){nQ}lU=8K7G@(5PXp1yh^HIF<*`n)7SnV#pFqp#+% zjibJgK)1HoB=$){+R*q$ps~ci^893qUIKKld#6dY5wm$=eJ7-rGGY2h0)Rv=e1Y9? zgX&CgZk?zw4`@j5#s9kRH?{W&JSSIZO*x+PeVJo!ks2X1gD5PDb@3M-9T9hDP8b+@ z-JPIHD4_enjuo|a+4R1|+2T!A#{~CrU8a{P;a-WyLo{vgXJQp*eykX@8bZFG-x)%3 zxw4u9Cf^N|*GKvj+_ei@?_x?CNNf^N+XtbhjPVjd2Gl2xD=78nmX43CpzAd*S~S+j z0S)wQlJlRDJ(sOjb<5Vm)4so4U&Z#o$(5B9ebS;0XXrYll?nrVZxs&CAXzY_dAvx(cDD)!ITf&|AL8#T2&l;J?x?3O9e|d zGmi6#U=SU{G1H3P`(J!$gsx4JAMBA##u~W)2v@o`Jab?gUx&QJqUTxTHY{kY3VpA7 zI?$J#H2>D#&XSln#@Hw_C^Kbdl2*;iz8-i#U*jagAo(wbSlEX81xhW@sy|E42$I5O z;#`z2Oq;ut^>=N+wktA5C0)eKe7zn4+^@+l#Y|7R;8u2g$*1O%Y@kl0+*^bHX#2+7 z>3d=Rb2&v3(=q-F$?5EG)TryNS+l|$G;?C9h?nU14%LJugFkWOc8dRkQXTOH=f2i6 z)kX~qDi6;f3~&P#`BiYfc86$JT|2DEb7GIl_E{oNZ`A0!#mlx>ohM9Mqm+J;HWOqF z?U@ervFioV9UQv`PclE~Vj-0@?(^GO_o1AQ4!=zb>{T&1XV9imevu@Rw zuOhugTscGF7Ln^s@Hfe^mDa4lyupSP8Jm!yw%$_De4QUr_?1|pPSqsu5e9-^U8dIM z?4TO@2-FhvmJ)kCw|WGC0y-*XXZ-IBhC&z2!WY9>WfPA;9cNN3GTGF&0l~Df78zDH zAD!2psWj^HgcP2qHlP;yvCV03Xgy0EYdR^|F>QmKr7*q=(xXcKS`inBv zs)ScSCAT)f9MQj0cRq2HJWXByY0X2%)vMeJmN8H!(>e6?Lb27qb7w3s#6nIM$KY7F z5AS88v~pAc1IpW%=FIdp2`MOO!~Tc{wAxeAUk_LAn2iS({0|Fs!czfG2=7ZZCf!`! zhU$9Nmkde5wV=FX!yv8Bk1EcUAJy?Wg-a?I&)4ESmsJ-6^g&+34z>5%lZ;LN4oil_ zXjCmWJ|eyR(yrf)hI^l>mIX}1{P(;{;+1q78uaU@^AqN%W!+CWO@=v=TJc(PS(g1j zR9e+Iz4DecKzMXNu)))c;y1oN0vq&GE@X?jauLk+zBo*j6zy*OZv{$PJj*!l@|4cp z+h0t4N0@zs_BS3CLR8hFy1Y2lqIthbrcfJZ{WQunek1Urm`62Wl=G#a!2A)NL>pu< zbo@=7XO=cp)U)1(+JnZI6-)V_c>Yu0m~A@My9JrWjVMc9?BQ?j z{!NlOO=T7MdlvATx;288p^rjqk$W)RiQOqnPPE!1v==-jgP7q1@JI$?702oO`g7gt z4tT1uERD$Ar4N=C-}h(8OT_iGhNieiC>*l^0a;EZkEt+7yc(b{^S*(JwKQ>TXSj!o zBf^i62GnqtxJLk<8*W((`QaNfK=VoV-l=wGO6T{VD$t6z=Xyd~nGNFR5y<>Z-?R6i z_>e%DkF|5!Wg5=#4Y4n-rMFp^#*LuLm9iS7?6gYAq-86=(cX?87WNMOcZ0XCfxL9r z2;!)k5T;4u&N`#tG}rE^rR^bp)#NI(h;6KIK~0Pd<+Ve5Kr>fJk+Sia7>^VN)`Z(p zP8x&bg#(2B##BBNl;CVyz{>K`34&cuUw8kg9Fp!d5ZvTl6776I!IxBl-MUbDQA6i; z;DH4MTBtiZPbyeWji>uU$`#^%avP0oEO-(gwr3q*q$@05AlDvn%+|SyUo*jX(qJ;A zD~T;!slj$j4U=o09pB!zLl6UZFH&JYqa_DD2@c1xP3VZq7@d}rWR_Cg2Q`}e8}A)w zwD6Vo&)cbTsC{3hJK5(&`$$%+gv+j^Kv3J=kQcYg0gUjqaIb8#O_+I@Z;1w4cREx) z#qm8&oMn8oc#*_0V+Tj84??M5hJ-}`+0c745Y6XPV4QuPszmt+d}Q=yxYWe(e*~hR zrZ7`y2l@lu5~O0FdcncC(C%tM}<{QFh_*&#PAiA^8nb%Na* z4c}2yJYMb{4`2#0Kc->%9Z3oGNy1RTbd2CqUXECQzzdpaPLGDIMW(m&%)Uc%c2}I{#m()-2uyy1!!=Hy?hFw&U1&xdIM!N`U;5!PaZrrL_ z>CbxwsyjUbMD2?)@8Hp9t&MVQt8uveT7!)3A5X9DFKsW!FalX_B_IOxFpCi34(tGl z37z+dvdd)B$f!FN7~cE)Om1`6G48ws5teWLG49VM+T2wtaxTnXp9h*h0vgF-Lk?~% zHP!IvOli#i*1C+D`eL(~fARt`3{P21bes5!NQ1ONx=AMfS!6ePFBw zWRCI=_}dBHuj%fk~k!^@3N?{MR8;s_TqA=k8|GL}Ag0vd%l8 z&;v$K^7^{YzZU%w7?+a|5<^Hw^}7|Dnig(`-M`{vkK%)T!zb z2o3+YL=akl^xXgxI8X(}+kx?pW|HsG^#i zCbxl712@py9wxSx$`1w480=USr7!Ojx2J;$g2vj(XD+}iYMUBFrTjHCv}ZDlWnGVe zby@o(ke_NH{IIfy_asCxkci-4CVks`?JQA_RiyN6-?AH?U!0MT$XqOFX0Lvpi?q0v zzGH*u#ysT($I!9P)Y_li$^FDLILr_n<>YQr_^HGUN(Piwc>7YzuAjTtre%MG9V1vMw+a`v1D|SiE?JwUsjXf~jF(Pu~ z9z+7(#P+n4&R#@yY%tEaxqw-i|ExVL6M45WEv!UoG{Ur#5bZ^ z_id$`k`Ia}xgVHuH{&i3!s6(IXC(vS{_9s^tu{XcIGX0`?w$I)HHy@Het(Zy`m=aS z!^Yn~vhWdwV?c~0@@1w?hAh`V*cr6hkg)NJBkNBTPkKveU1NNpm?-jY^5*#l#xxD6tQ`)KRi7ApfMZLb~XGU+fZ1GA9Jtv0a^ z#ZHP;QKh)j)OJee^`?}dvVvnpB)C2T%2KOwVkQ=QE}7e@oh_kW{|F?;%Z~&%IT0~E z+&Bj_>HQgO7H~_LUAz-URi5(5^*JyyqcW-)XvhC|Y0ft*yv!Nhx@^IzlA~&!vCT`{g7G)+EJ9~~ zs;xwe$i&ImPcf=7B#GcXl^Vf@S?(w3ejsBvmgH!O#G8CKG_j$5x5kT$;?n9;*R zr{81<%82!XPmL7l{%2++8A7kuE`Eo`7yjue!*5VY<-o|BaW~*En=( zMCN2>V|;q4-RNnx3*8r`dwHMdTsy4buv<5InCIe1#7u`idN=zWErCm@5B%pH78^>Jvbr#!oz{7QTxWU+g-}Ff|EZ_{^daPgdW>bhot(sH#5GA#{ z6pd`c?>WYwwy*WvoM-TaZy685h_s7yB9t9*irQg~e8CK7|48F&rOqHJWGwtZZbs+? z_kcWyX8M9$g{M&K1s*43nl_7Dn=AJ1=U|S`x!qK=R?&7Qgz#A1la7}vOi>*QKG`Y= z`aFB8k~)&;g>*qscgoaU9Z79+zw7sDglij)TmF-1 zkbLS*3~~pRujcRz1TvpnKURn^`5lq-Jn#t)mwx`O7-qk4H zwS({c+UVcI!6A1qF`?<{-)G!7i+1VZj4F3~KS`@;3ukjh{yk8&%x04-!$((dMORXG z-SE!)XYbYgd?Gq*PomlxzjFhviDZ2sDAiYH- z7&Zp25;7om9@=*hPhX6eYue5sypQl){FG%ncMMvi7ceQGm4WjRoK;xB?G7u}+lZbo zJ1iGy15nN9n+GAe{q={^f{>s;&*DZTJ~`B{(VSCL&`_t_jRW{~v8lGj?9@7UJkw=I zafCuu{gD!c8y@GS{uQ6ebnJ*VnyT)+1Oq_uZCLL48gp_wsrK|Hewfrs*sX#VO6Q8( zyUi-U;f<$tl*ra8zL-DsBJ1}ZZ^W*4GOW2VkruT9wcL@Ox>e@mb*ff${SDDnmC2@U zyq8z~^BJ?1<9y8tyXaP2Ayu{4M>|bWqoUJH0mBCL^OLFSqacz484^jY`|!e2KC`9e zx|t(LziZccsI?L?sgBD5f#~Nd$7uMFj1;ks{_(sv!O7B(+eyLo%KDnJ; zxKaf#&Kpk<3%;tbqU^-Tk6xqCVXGkQn5?+)XQqm1DBE8S4!zQE$_zfqNJ<>kGNAKp zU}?0l8sXlU?%PdujT0Ml(;Dz~y4-vBiRAbvX=g=DIezh^U~ODp{KA28vw8{WBvXZp zs%gq)F`K)@9`fxMnUdBw)HmZ6j#u9bGhH9`vxRxE|9ArZKLZ- zX6r+&zCkt$+zOphUuQCrD;?2=^Wion?oVeTGni7{=Xb^prLEj$G(o2W@^X)WsFZ?)q&rqwqC(+dCNqecS`>UsFeO(zd1vyQVr3ZL<)nXP>M2HK%Y1G6}a`6~!dK zZSRX56z?05-(0rxobVJm9D@M=-{y+WH7zvHm{U}SMtwvc0fO4O)X|QPmKmF4NW8}U z3H^-zYEkNsy-$IuYN4#O%r<8<^qQk7GH4p=T@@Z9=l7Igb9y(8fL&Pl!6U z&P7ABb%r80bM>=hFiQF(Fi=uGecpj7)+6xfno_9cY}{Ko4<$4{i$Q z2LG0N$n^3Ok2uY6{7y4{M_smLgtXm(sqza|i_EhA`t6b^H{&en^nu%&AFC_weznc9 zsBH7uJonPdQmJO+Hp0-4r^fEd=7M(Nrg{drbG#HECQ1zc2JM()=`tukjnh=e0VFN|IGQnV1YFrq z+;E-tgK7`SnH~+b4lo|_2SVsm(N{81{@srGEN7kbJNlKE$H?=}FRGsSNsV6Bns?G=|5QB+=~v8SrId5JwTQ*F}& zM7`W3B{LJjlc+;+r$I7Y0$F^EKoH4iaiXSo?rVgJ{FU8LG>c6)jeG8)&%D#Nq zoT^wHG*F5d2)3j;!l!_GI5vBJ05P3bST!L13%lro`Y5gTIa(kD@2yisl+^>--IaL~ zUnQDOO+Og(ZfiWv$i(-yHuz1X|HvKz{Mx}Sk4t&hJ^5UGp^n$ohf%N3f7eES-)?B` zPd^%a?iXS-`fHC(<@tO$hQIt8{&{75{g~uEC(nE*m9LR(t$O30N)fqItdn1M+@%Iy z^~Sf&Lb;7SXXhg*bwsDmw~uW@(lic5Qbn^e9O=^=5npaqYIG7EUz$m~{1G_fWRRKr0Ck3@rIbH^`u8_3(>=;H$b8Ef%E8$YVQd|)YRu#4MF}Hz z6nW3TgQh7p8|`lEV>B>WD~<~tqqd6P}NcY+S+{O#8^ zX>WU5Q+(_I{f^UP1HRk=Vnp(rcw!!vjpex9_ufCE0)%1QZ%NbFl$)`D>#tZnRtE|8 zWogRG9^~o<3&*_9%p%oHMUeB~xoRoP@@GHdBz}Mf%6x9-G6-vut^+pfY}*o!@H%On zg{Eo~BF-gwc&Qv4igdvFtv^IKl!bj1W-suJkCnkfJGEv_`k;%J_3Oh@>1CSf0TSP` z9vYwW2;sUJqxNxT_cZ!$kC-K#+Zy(F18E1+ubL+=V*NR@-c-F?mR}9`A~Y(k0-4Ks zK&KGFp{c!ol1X3a+~fL@TU2MGXnh7y;es2fEuJexLk5}B-*aI#_cr8xD8Ak;hoLp~O&vMv+NkMzh>5sx>R-bFiK1zS)fjMs zdahS~t*faLQ#w5d^w5)=(>Be~8?hae(WGjX*(5=`c{4CeLxv;>8A8)XS zvHb2`gil@l)RB%?-?EkcIjPA;aF#QVr+-!S(Q>$ST3mK^tU{Tbn!i6LlULl z+l6Qjq(cYuSH_?=r=KhpP`lfT1p|lm4&pwTDqr^uBRhG?XXBnP$Ol}AcVnO(70VnrPW|FR)#?FF#SVB7C2bT zJj`lCOeofkv=k?qp&!_qpw98wNF+7vDL3JbslAO7s$3tlRJ3DADt^JsoNhxwS5)|9 zQ??8-&77~|b2Bb=_4Q(EQE#PnUAss1pyjlj9dg#q--(0D++&I-zodF7Qir?t`V*4_ zmts;S)LM0C=c-*}ec{m`WH{>l#m;R7CyNAlqaI{txe+2wU=Y?InLdgea&XMPSX|e@ z!cI|1CnU7@oECYYpeLr3W^cznoSAFjR3CPz{lUBRXC2=6cA4GG@okeF=Hwq!JA(tX zP9hHZ4e-UJ-^~54FWlAGhX0DzC2!?W!0|Im+YaZwADlz=DaYHqs4PMch1j=5k|}x; z6g^CL!eGN|_(ML_|1x~Aj?K)-=jv+{smz^jreyC^-E08U+EgAvV?_t-{++Z#EhCfG zsia?F%uqzd3y6j8>eU5iqflR6 z8=O3mSww$Iqi|KkMxN&7MR``=19p~S%9`n9*5T4OIR?4}DLkcG8~1GfYKqsSMqFRm z9|6Bg&o%nhMY$~}DurGH&My0T_gq&;e<`pw0`E|3VeeGVu0ueLm&P9ll-KlLhW6i3 zpugpd*k%#8KG5==;6#DKnk~h>Lx2@-q~3I|YilfZ=tzEE`P>ZC+XA#fQt}qsL_S2u zr}J!1RYBurtZlp*s^dEe`?4R#Wb~&a`gXm_i?xY76y^>_jaY*EN4z^#@Q=;iJL?K{ zRs*l|v$U4wKDW&rZzERw?u)Wm?%SZ(>0GVmU z>D|DaTj3R6nhAFLCoc{SIFnGaS$;2qgp;Vzi&B_ozVgsDm@oj( zEpIJ8SpIE+hmgvOo~i}mGNeLpay!Z;S%6t?hU)VANMDa_pO)f7*x%OjlTLbgA`&)r zGbuCiGj&(%?$!4eXKjPm)XQSE8ZrGQ;aI7kvP8VKbAo%`paO;hFpiW2Pw<5i;Gw|D8<#uB3Y77pNd3w#SWc* zr2iCl;j(csNFbdA+ zMR%e92g8Mf2gR&a8}jFH{HK5%O@hil41?(lc{KrMh?$WhPO`asMysEi1WJg(C-T$c zJ;Li~t(?q0X*F%UUSDwPGO6mVmKCn#Zvj6yV~>|cDWy!3Yz&fQeK|w#_Yg( zAIo?&qhZ2A0qgV&kGyT`(8Zt$^$C>|V^wDWz~@X(>|<8GJ+eisT5>X`C+lRw$WK!~ z3ey>j{4xs^U#0scbpl0gS{U{{*5p0P-szO~o5_}~ z-{@((ds=BrCZu0;82=vP5(82SLXdDQkL?b+nd?3)-6E46O-HYA@2y|sMVy3?1kr8F zq{Kog$@iFe&qKv=wRhxdMD(Q!a6bgHK{4#c1n}%Sq5zc7_&p2SGSOKh&q==}NF<5t zp1nM+kv&S&Q`VG%6!n2q-nnQ>Sdmg6WMa3^y^+{(sCHy;Bn{Q*)b(I&GGZ$6+vv#F zZ;DGni#tnxA1GVE+5A_5@*pN~^bz=z|Hm00xsxG4&q+>sFscdtL-{3v2@72 z@Hqz`_+1H0FQa7BhliP_B=_oP(|Jo>AN2+YP+PTM5P+{3bCDVmSor2=c!{m^MqbHjZCs&2@5umGj(5qlP*5Ka}e3*VxP!zQi_0oH~ zTlWQPD5*UScn5ucQ%?$0?-AIX1a9>HwNvhK@NwtUYpE^{G+t+J#@@a+bY+I$?>7Xm zPP*NyE*{z@zG-nLfF+V1=mc<1jeL%^f5=kcxZ{{C(4?D_x!w8RE%j%|E=KP5{c_uC zEB400cdpVGmj3hk#sMZ!vB{!|^0dIWb~iH*JV;d+J8NE{Si|^3?lu&2Ja?vkI=*@f z4hw=VHX54Xn-XaQe|eu{FN0uWR$s~9Ngh<9f#FABz8G)wU~_2lXV>K;a4;|Bwy8lr zh)O^pj|o1D`TgYI5g8XS68vG{AsC07r|YLjB|V94{k3|mJ8*9C&?cyj9C()TQ_bJ4 z&@}1?r8|@GxEw5zJcR-YVjVZVy61qL+$q6+Gfnf{31ifKD@U*RC&NJu_QYSM)F)V~ zQB6u}=H4@3Yc81xniZFKr(KfTC%A$6R=ll8D&;RT=2pH^rtJJ(fb{zDO3*s&0ZrqJ zff&nuiKiE)cUpkVQAqLB!z|P}lW@<#EjGG<( zI)`(lx36hOooHmfT=Upr@G_HuXGOwNa1>YkQGJ#VOQnQQRHE_zi8SFqUg|LGynD`( zT%DO9`f;!PMWipN^nHYa+nO+eT8z1!*^`G`n1-JAlFc+-$NrPk$-A>G|AlSeB3&DU zMmt^036dn4o4>Qaq#5=VqUi{?4ERX2T5|S1KbJuY>CF0*_@_&O(&hjGq0 z31Y4`vEBfBqw8Q!V>aR(u6zaD{{X>yJ~Md$u3-#+h{=Sz0~>T?W-zg2Iyg zv=mh3-fM~BjY_TnD|RomG>5qq7#puY36oz2)>dT4B4gO{3|_WQZ9Gqlm*L2#%f*Ds zco#gCROA1}Wohpc#(!IPr|>?V5G9!^(UtATFIi@5H)zOryzEZ;?ihCdq_)rM{0%O8 zfn2{w+zByW=$d_+3*8Vrv-T!^@)D&}MOCVMq21OmqMA1xsZG$PDMIF>)~r0yFcrhr zpxLBz`)bH6Ye;Ln5CV=lLPa*1;Jjn_woahlbMYhQZ)C5fg>wFA*^#CbIldJp2_Jf# U&t~BZEt6>#({8mE`p3op0m-)J^Z)<= diff --git a/test/samples/smooth6.jpg b/test/samples/smooth6.jpg deleted file mode 100644 index d4448e2450612f1930e5e367ff9061753068d88f..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 35063 zcmZtt1yoesA213J-AF6l!jRJ4J@hbiNh#gkNJ%$Hcc*lS2uL>!Ie>JBw1VI_`264X z-FMx)&pK!CU*};s^>^v-1^^EvuOtsZKm-6R;Tz!Z3DS_PhlQOF00Dpu006)MM5Gb` z0AU)S1aJkI0UQA~|Bf^OXMjC?Wdq0104(5ZCxAP^8ej!*gTu~n$R19!fWr>({h7xc zKAXXLXy8X0xT$A~6P)4($31IyheNJ#iWgk&S<|z`f7oZ9X9*8D{n_4oIP|Q;84f>N zeYW|Z-uH0)Gsl1MfBw+G>Gts50?uRe&ms+6?pekIj(7j3`@bk4aI7_)_8cY6|2RQ# zE=M??2EYa21+c+qZonJ(CIsMsuXX-ueAe#xFV<&Uu5bzGe_mO_Io|y*s{iAQ8=S-9 zpYCU>CES(|eE$EkZ}!i#XD^-q<Ea4zeAmGOXMX#i6HAT#*-KPg){ z-4gJh#{a7R9MOOIwt(}R!S(-_kN5v_@vPAXZifb-2#?wgzFGa#^o)0c`{)Lj@PuRj z>!IhEpJRHq{QvKR=c+%~`Ty>#=N@?Xznna;pKJF2uJm(`{_DEu`MHmtJ$TmjoWtiV zK6j!OJj2f`n}5Ez{j>L9*Zo(S|C4DaIK>{o4v*(K)6YHn+)4k>Tt9b(6hI!J0iQMC zF{=Y0@SPK&1)sri95Wni{Vy6PIArlp{@L!cN6)c8=fwVB{Lh-7b4>%c$N4{0}O1<~KMV;V%pj20%nWKtM!5 zgb$?W9T|Q^LPkb{FOZN?kWt_Ren3S-LqkQu_&2cs@9`{(jEszqf`X2XfsTQV```G- zgp2zh@BgO%Tk!utf4>3n(Gjcx9Y_fH07QHQBz%Ow-vRA#|4`trAt1m#{Ws9z{-B~^ zAR+)T5#WD;{vQ-LDX0-z;8~LUExZ4B<{Hq$m3Mxp#(m^8$=Y!t-|pfQ1QglV!Emyq0&TRHn;BN+hCiA^!lQ{frk3 zR{B{$SB%14bx(tLe{yc^;)~PF#_Xcxd*ufyWneBLakxmuE!^T0&$1|-EvwD+Q$vs` z3pg143kY+1nshaa?wEX4XOjBM-oIpdW)&!HEj9vz;1+`@-n9+!E%_Lv{skp%<#p?C$X;?mptj{qfC*_Ijt({uS!N)z-fN^|xPLvmekYgpx6Hc3M{sMSaIP5%5C3QmaJiCj44G+{R}R9;I%t7?p;ABgq|k#(;Vh z3T>o*&8G1Ie*w_0`lNEK$-SYQx#lIqGbUSQD-;1zPlWrF`6``sE8&O=(Qg%kZ52OW zKuu zN0&uu@B*e^*c5EW^BG=xv=DkLf@dR=d2>eUyKa5V9Djt^M*{8JWGkim6yoIlfuV-J zznNa5W#j^X;i1!zA*#v#tfw%nWG#Z;Z&K_aH}m|ea3gx<+E$!|X5?ML5LQz0wBp>4 z^NwNbLo+n`LKmU`WD0;$h$6z=iO4ErfYjGcCq_ZbnbQ$Sec!YEk?XXw4UN=E+Q;%Q z;8U`#La71;a@a1iN^W^unzsNw9)}B9U9h$hrD-LAQmpPPNDm@rBQAWiw> z5g>_@{t-k2MEV}>z5QO9P0){r-`}-l+r2dLLvj|LwNwR7ISXEZ3)J^jHbIPY3fb0p z1cf2^6|IWsO0-UzZnPpF8fNOj2;+7ErP0y5;bZ=#)dxl!`Lh-^g#(~V*)DGfw^Tg2 zp;{ak)}9SeN4}l(bF~gNw25-fsJ^h{+~nzD^+;3*uk9}YT#w}{1aa4YW$5_{p*1?O zEY{9X6Q+S$5RPI#9$>30AMKP@KTR7LCjwqwo2wA`jt7hTsI$XSl&Z@u6ATVr1?Mlv zJB>(mFxVd|R|m>C8eekMGWKDjNWP9tC>#=M@*;)qWh^w6>fUvhx8Buw5}Y<}JIYo5 zM%O?gq;21hl8&Tyv#Sv26+Ci3$)%s}U8&KVd`c##b^)E!O}vq#X0?dqw(nqiI%P~# za2kp-EHD!}Wl?BfQ@9HZJ+EH4etC9Y)-YWy;tIoE)xppJ3I; zt=Qv|V5P$3MtO&mRrKR#hA&|TSuR)?Krpiu(ilmfFBkA#PSJV8L-5g8SU34VhUaL4 zyV8QGxy%T7m?5>s7N|#mfyiatdDD8(+Hsb-Y%=K=oCM|gaeI5BshGi@r@D+oDc6xS zU-*5FMJEJuGlZ}iRqdPm(*2fi&RHu9l&F>`jvC2ER+5935$5fR#(JfEBOk(ZsQ4n>xvHLCbxsKp|&|Kc*}B$AgX@H*%|{g^_o0 z>z)e-gF~(3X&7S@3-`yhdKCwfdEG|QfnIQaHQ3Qr8-|Zm7x=X>O0skDG0?6V5 zc^A{Usd(Db#AgnIY?;Is-qyaaRB!dXgHG-0_^l4-EOph!av`}Wr!PAmd*;>RTRP~Z zRqHIh(lGC=!Tm7_e9hq+6w!$#6+lcHt0S(F7GnqOHTkURIRhV%22GriQW^Re{d*-$ zV|AiEHE*00XOE+y*@s4)wGNZ6HGbrJ0>+Ai=K`a2<1NbQ3x~P$glNhE?|_4wg4evfuZ7ir z%~n}NUgEk+SQIa~XoRe>F>-{X_UbE57aqw;mHBMb79uJ@)yrVjt|u^MH37!1fKG$F z#4`N)be&~sodT(0DhWq{>q7O8n5N2jPhfK$%&^^hYu*KNyC)rxIVQ!Yte_kP6(dQC zJTEyahEnR@J%v+$t;;$$407{YeBX7&(w%1fwiBS~kujOe;7w!$eE3{lTZ@9>Xn5<~}6?azgUb-!5Ya(K}30{Tq z&CV_SK_vrO9&L>ef;r(sz5#>&tt%dk3~#P_nSrF1(k$Yu;(9*z3qxEMTgibT{0xF* z2(rY?kfg-#aq_!64s^m)2GTc_40x#(9~7_3+hbRTmeWKdEREm-RgBp zEVq9FX)?yL(Fj94yB`I9Q$Wt&*EV!^t!(qKk8~MlmPVO(@Qr~n-u>Oe^!}M+nO8eBd2C_9Zz1>^2y6*VX zV$J#~j4TY)AuHx*d#QU=`ZzrZ5Q}jKbevn6hd)i&ikmJ8*RB#v= zvh0u!E+;8bz(5Z6&=vKe`VqvTtiLd$AG+us$Vq8uqMePxX(4dnB7E4j9b>qFVOX?2 z-}m}Qq9F&H!4D%{6GiJoB;}7kYk3CqN-mT-;v}H`m!IYxo1?J24}ILph_ZrhwlmHL z=RSoq&=NCr41K&7)Mu*-=-Xs&%eNSJgDf%Z?dTzT2KF>X?4^RebPpfe%h4jU)za>s8OJn^=pn&d7jt2`on~I z8!Q81g0uRv_g3SOMkiVuknTcDEW=+s2G|nDJKsxCJPg0`yqQP%0%E+pEfD z+Zr6l$DD!FVc%Tq^sRX?tSMzm!K^GtPvT=KP0j_&z6(n-l*q5HaiGhi4`=e=NUl>w zzAzFKD?CpM+&!$&9uD*vqcq962(z3ln(f1dO^a>LiGOm)KHH7LUA?_CyK3XV-zv?( z$qi2ao{{N6Q_$H#EKS5hP@u|!%H!Xrv`9AAl>d-x8hIk{UZE;PptB9>cYtdf|Gbk^ zw!h8>|1TR>zr?gKpz0MtT1mOFBB@1a47m@n;q~^y9*y?ecSiHfS2`U#D!HUZ+a^J0*nm~_pJ>Zf6i_3%^tp5K9T-m?=q%D7dWlCX zMWv?5y8=MFHDdJUUlUxHI7fgc(uDnT zI;mmw+DeyKLrB{{VOJNqtQ|+MsXg2DaT0x|~xLuH9+R z3Nz<~TuwrBmUCE| zP)v;YhM)?x(R#sKAO(t|*+UqLKJ)h*@?2;M8oraDyySe%n-W78vi?HDb5U)wH>tJm z?v=3(!F%JgJL^lGABSD88w8&;^4^tx_1gj7=#)z-YTQ}O`g^HWW9{^~E%EWPu~tp_NSrLFwq*r?09d6vFcLqt!e%1D-o+ozQSsMde^L!2MOh+^$i_J3L!FM>$q6lV@#AeUPDZr`>At5V#9d7j6OXQ{9tX^0nSc$&+=;1*Ii{=pXrTn$zi~KSdr@N8y{zQGzt3s*sR}fE zR>}1WN3l{$qd-`aZ>pc|?Qbk5ACvHIUp}4uiuZL$W^aiY)j~A$^!H=2=OH{#MoM1# zc1kSsphXFgIfL>`we_xd4d;1CZ|;i<}AYjEx(f_S!~jUjj8f? zdm6cK-7XAJ{?z^GWc_^aabK?>Y}cyYslmtR{6&Vxs)iS&TP2+~g@vj9;oJ34`M|ug z{3gYii3eIx)eGB$BVBc}BYJ`)=l0X~2<%^R%uj}dYs!t%iEc6WLheF>Zl^Bt|0}jG@N}lUiGq3t4K)xcxlPOL$OONcpO56 zQ&cW`z%!KfYclO}N9Sk!`N%CWIzHu&r=csbe|oa@dT`FQ>vYIL-Dm@Ci*~+wVpfc# zjM6S^4Ge*OER+sWBI2E*YT_WaeH^~jPQ8A6x5!!kCog+t=ZxI`V3C!zKCBZ7D^9G= z2frjQie&5`uJ5P*zLB=xd~Z)|Q!Xvq?1UFzmA)lal)+m2EUegXiK!#8iyzI6d92OpLq{J9sDz3v#Bg+ZimBlu6P&JI6grLFp&S zV`iWJ%vVktG7mEfN6qHbaQDqd*~f4u!90PJ5|MYCqa~kgq~4abuoSApwzxbuWG3pN zlQpM9?hdCTZcRKjwQO>!S2%?O7aAZULQ@0tY73Rm`lZF>9H&9~ZYkp1!g7QDX&H>G zR>BN) zIgsyCH+O;Hb`%DyD^ITjv4*9M=6>w5@J%DMF|$@1ownwOVfM$yK5&8PP_tTh*>VS=hP8WuGKOeOy6ITd**z1BrWVy+`X={8eMxr!Zv$qA-*X z-}k1L*uI+q;P+!52c`yCLTu4gF)(HcZ(kVs1!icQf6qvFsZU9ZQ)m+3Vk5sQUlcH} zZC*RoGE!ZDhT9qleZ4B77_~DnpHEWZa?q2z^Il<7JAG*O`2GTR&Xqo}Ao3QC1on{` zw>)x>u7%3IJe_QQr+~PrI#u`frQHMBViOz5qIsLRRVy9-YadB0k6nOH=Pz4LrYVdM zEkkO2GcU3k8}*mZMotf{ntNgQ>?5%Wi8572o-tNt95mraAYB8UuqM^x=us(Qp`?wH&|9mjJZnWm5Hmfe5nrPG z1UmyYHNs&O&FqUHp0JR;l4A8%^U#{sZI(F=9JQ1*dCrT1lbBAsjI0z{yRY=^nmWjGe#`KQ;xpcK~WZR#O^10pmNZleg%DwDrX<;D*TAOdz zt=v(ix|u=kB)dRwv_LYMiA^M$M)E;hvI=vKA~rX@ZrkiQ8cZXwKi$-76BBTZy1Pnl zGf4WZ`&@y_zS^XnW!(oB>A~1}EWL>)S2Bh`*So^hDZCMU*Q&JcB zmb!f_D6kvjvHFGsem}1m&03S))^XEiH3Nu3by((yA767UzYl+WCKS~P`Arc!yFI#Lz_m>WCu8V?u z!j5ASicM0p-fup9{?wv8J@5B+<$^;@!Roi;o9~7OK1DLsG7c;T-8FPo1$D($d7qB| zsG-=6EtC4`*ftpZ6|PO_-}^ZyAbhJlc2EMP$gy*DoK}o|vsk)RcFQ&hJ-3XTTJ|g3 z^-0Vi$W8$6FD;bRxZafV0iXDQed^`Q@jBQy-PtBsHCecV0S2wg?-)D{wC*sn&|`@u z=ai>D9rFDJ6y>p8lWx26tR$+8u8y@0{SLHilu^VmJZBc%8Xiy6K!&Dlpwg8G&%UJ; z=|4i#JSWHW6LGcoE+bId@1WxOE}Vxmqr`z|_Z|N*yi@ z`Mtsw1>9LGY@~#&#fZoKQ*iHE#54tb(i}IcFdtfQYsj&({BViWagdV4H!Ko;gF~wl z#RW|pgw!%|SlBXSUMXG-3H$|^ABbpOYAYK)im46t-GOsFT||N^wZ3|)FTHn%1&+D@ z&^k{)ZXGro%&?F2j&X`^R>t|V9gP*=QpqGqHIK+cJg6RX!W2!fMeT(~ejj`{A5&qB zd8nH2bSj>IdLx^&s+-lKZZm20>SDTuFAE29m8I&&ON_Z4H^RB6m7;i0(Vaqj#{e86 zF)~auSSW&&GG{?kwzae(t?2Ai!yc-K@DuM!^9LS&Hk~M0UK_r#QOmG=fVj<~;D~8Q z$|m;S>)jDI-@2^f^A4IFmWB%5t*SVmkn{yB8B{3BMC#=8m}2{IKBnL*_%5s1`_?}? ziL+eRwlM^jP;R-)_~{kuopNoj*Ks+rj|Of)I|x>6S|hs=?94DkM=S71I(1s=DNS*p zW4fcGgmMymup!$jU0vFTrT3bixj&lY^Ez-c5=WW~BQibYrL%rpwNKlq;bBH2@-F0{ zvUSGr!A}DT+jsf&E`}OM$#`2IN7QIBX{a01zJHW?h%KWXV%bG-Fh%FXs=Vlf-|dFc zI_h``sudLuX%b&t3)V)PJ^r|TB=`%Mrd+1N@Va4uq7HKW{Z2`!PTQ4H}N_cdg1)>xVpG z4wW``S6VvNd#njGYDlE!xKi{1*xg3DIYb7GAs?G_%u}1Ixy@?L-fa4D^Od7gIFj%vU z>%wa6T7*z5s>&6!S+zCZ)?%53u9kiZa~D!W%|U0(p!9r~D#SIvg` zEfW)#Uk$^L<^{QDJIs`#YFU*-283f%8(O~=sjtY3QJen-%r^N+Mf7w_;@rf1-p6mD z(p6(@a_VZ9inQqxZCQb$+DiJc3qNT86yMz6Parj_e& zwAY>JU|W8PS!s*SfaXDrMgk^EvxSld4}*?yv)c_b?0ug3QuRr0*pc$(K%3V{0v(Jjq{w9N;Ut-B7VbDZpCYmR5=>qMf(oEn+_9Is$o*AZCuhu`RBgSqN#!0+lf9UR*i zWh@)=>Dx@;mCO;+cua9UKE?E}B`U29j9Z@-)Db_pjzthJf>}YV0*5Mm<61kfGj{?4 zoQcl3Z9PP<4XtjZ-_5P!v6EA&9k#0GUH3rg1`QIprmZ#WxD$8zY=m=&D$Cw%o$d|! z&1f$RbTo0W3Di1_Xb*lrE#&B(ar9k%tW)vjf9$vo)E-RD12PxPsW*{bloL9T=KawM zyXM1PZyon*)AQ_ZaX5C=9tqyI{RPt4(8sI~nUgt;3jj?*-j6;lP>QX2P#S8P(|?L2 zc%10_I0HTKP6O!5l36CoTP(8qQRv%&3{DT?&5K(KFsVCK0;Ti8A4oO|QL73tSqfff zzE5CWJvHR}O=++9YXL{12z)Nj?a-i6zB6jd4NgY4K}Unt{6x&m@pXzG8X~w8%8gNt zGccZAvuPW3$($5oZ$!RJCI>Sx^B1Huf38HA(xX>G{o*=Ci5gu5>bm1=gsDwcSNUI2 z#HYFTX>IWB*{Y|hp=6W#VtE)$xo6BpX}MadDq!uD5S4OG7bw4lBm(#tvQiATC0ye+ z8*g#gU#d`X@_))ewHU}IQjGl*@z_#OZM(pSD5nM46O|X88n7_U)+%0h`l#fAWj_`I z3yr*9WIt(Ml}}x1E({rWX`U&eWhTuz5al}fDt-92ZF+xm;o#fO>-8~ODG%NBw}^qO z-VyPgDTzVwpGI9jU%oL5}J+-fx6^Bjo1p-t*z?wTuU+=u1JC=El?7*d9y=3s;*5b9ZhXZI>y zn~Ff~>>1eMBI6{Carn0-=HkkLH0ELo)d3;42IV|eOV#AfXRbCf;IKnvNG`xu#u zKcSNhidRx(5yI9@Dk-tN5u#kBUfk~KzUU~gw)-)p?)fDg*zV_vrLi}{#>#nDnWE>i zpQA^t&0F3JR2-xDvi#d-qeDkRdTzyOk>%ortD(J^jlEh6iy`%+DMFY+264j%rqQSI z5=Ll9CVOzboJD2~+V*fwD=&OV>^lQ+WS6rf;+Dedt7t*ZS)w8Y6px+W2PMh=tZXnJDV; z?-iK$6h6G!?=>08c;Y2YGslO|->q($2_f{i(l9~=n}urWWDCNX(jkPW!_nJqQ1y$F zNBzmEhb8QeH26O(%)nyh>7uWmxCJr)0!CeE z!>Nm9Z} z75w~;6}{OzuH4)kl>;V?&Ka}i+qf9-CjR4UJfpacJ_PB1&i#CIr*6*iSU%$1Eb{iE9Ib2t2HuG;~CXL%* zDAy#GK*)%5fv?m0Zvu&{4XIS!RsH-3yDxiY>p%zDc28w!FfacAr4{=QN8=y6#b2fk z?Q3h*aAd$lagyb4q>y8W$}k73EhoJMEU5xYA2nJXwyXUDq8e5js=%STuktu0M~|6YA6u2XR$sMwpxHG)mNr-J6rG~%Yiunm zk1;k2t9dZkpnfIYu1si=>yBQd4*h+3zwGrF(9t=ySPenPR%^9qkHfcj_(*7h<(FKl zs1K=*-o8NDN-aeR+z5-FPUf0Az15zrS`Okq;f<3M30hgJ*7p_9mcM~j1^#yXkm;pd z@`)fv5A=BLaN9jRi(W|Tv)%96MHv|g@%0wV(5hb4`?Y4fP%yJPk^gSFt>e9u3Irx{ zTKeD@!)gGN9>H_~>0t`PuQ7s3ms?fb9HvBm94}I-@wtAmIB;2O>9M^--Rt{`obC8q zG45SXqla84zj9nNW*j1Qp%Qh1(tz>Kuj*fhe*x{nt!i42xP9}8;ZtNNvnBDoo5!)( z-3OESk8kgLo!4^zILWf}#k8zC_B*I^rq*Y)l~u9S*|K;HWc}9ar>tR(!=LQR=Euh1 zlL(8aAHp5bq*H4WCF6DV{*ukQyHQQCREl;ydlqi$Y5Qi`x+QAo&<@iXL_17otgMlnX&5 zQat@Cs(&Yg#^bMA&2Kk$W?3uBPACs)zx-|Tk@DF7nC-ubRC8o3CFYw?1d959mLQm} zg+Vc&%5rVjZmHVbH^*d~+k}@%RQB|>tdry2&P$uoNS%SWD5%lyiMA|U(8CI)Md;4m zS+;y+!-M0p;hWR5LMOz9!K3c4ai#g?nqHj`1R$p*D!!`X4f73O0i0LBZ=0Nn4ZPlU z)8j6!NDc}C7GQwvHc%xkoRCv7Xg|Y(+*mr@#aM0q-4$&Y@8u4o0(UPn=W1vTKwzTO za9fEh@2^uP*P}VV zse0U}_=p;s_9YrP!bLI(p-3|oB))m|pC=X+4#%NT|%CZ&51PUrIql4dsUj>%kgDh!7b;5_RY2&111EOwa)0aul! zP3GxqP>2{LtK&453L?6>=It&NV9wob8ivF#2GF#YWOJHji-5tQ?!KF@;8d2POdbjl ztLYg(*TDEb{kw7J3PMnpPJ_pyBA+gx~`PTivLkLsm zuA~zoB_HG^or$QM066#q^R?F%A7GHl59KF6`{h5>%B{xX&*N=zD^|aCp%QMun-9Y@ zUNK=asOmr72=VCOMG`jrM|tLY?Pnwq0Kj4k*FrjB2o1#6QH$PS4y5x z91D_u`HC(1mN<`lN3nNg@b`1xshb_$Ny(kXl$!L zPICqexo|LXAwcT|_bb}kY~LR^zri02Z6R%ZqTBRRU@2h_?+ZTh_QmCs%kYEPC1)Av zgS(0i^X@Q+AuKDbJ++=?wp?S-Q4OnBcDO>s&;j@ zuw>T#h?d(Vn>a?Qf*&^!$AfbzHVhVu!uH~0=ai)1`m{6&Y}Us@yVuN9jqe5Tp;!3q zxLn4x8zhN&Km+f&>3G5Ag^Z58{rJjjah1S+{)n4Mdjl(nwJFx$6P%6u0jlfCGhzE* zquEeDIRLepAx$cnmf0&k-x{Ga5=h1&J@;JR(Q&qpF!t63M4dR_qYqfNN@Eg8(KR)B zMI~`wwg&v)V=UcV-jO%LKpL5qaj(!w=|cSbmR$>CAD8Mn$d=w~$el^C4;_`BvAn}z zj(z%6g~^e|zu(TJi%Bb_;k{jywN)S+d$F5~!dJjxtGKPA?1%GtnYxJoI)?u9rw05I zv3K38^xZ}aL=SNzsz8D&g+=+ZcHsC+WZb@`>1=hdqI`?+6?{|1KE&IJj?UG-|{{$wiwzi*T^S z=j{=1UPslXL>m@hdd*jTj#1Tk>yAqq|3szmEm=t&BoaxrO}z>H@$%LDhbC**CXPo5 znDY)OYc&FFiI>(K$%7(_K6oUhR<87v?OECSb(!o1Gi~{qn@Q{_S_@98l6{E!dBOJB zpRA{*(CYc74X0b!58kp$4PrFm$Ds%={+*s9WftSg0VWM7`li9fwh`&u3&g7AF+~u_ zIx#<@D10NM$j+=^$R1`YVzb8ybhD1_9a?j6mc5u$5&R8 ztT->788N^)eB!)CYWWnZnS`N-nZ#p+6eZSwGE&nJt<~fsgC7R5 zY0Xg+n0IUC46F%68-6nQpgL7y?`h3+HxMP)Sv@jnMf*7aU`Wje1$>%ctV_QqdhbWE zd=wjIT=#hi7YIy-KVB_)NhB1FUO`N}9rM$G@Rk`WE?&s(%lf&?wqkoa#SFSzoJ_x15^ec&yj5L`0F_p$NI7zhH zeA|!bJi#MOT3i!K~u>V}f zWfL)myUN*C2|`amoWYNPt5i$4 zi`3&FYJ|Yw^d?J@mb~EYU%rnn=?vyCD8wjJsNA_Q0#njjA1aVC|{*1%Ql+cm5;?OXC+NlFh_8C@WW@CcT0y}J_x`mo;{wzseTe~!W2B; z%asKTp`U0WQ~1NIT3bw_#w^Il)QE0l_s*5cUGaK3M+OB%e=L(XXj z`ygX(nd!v73rQ@4IWz!Bq2W1p$J-D38C+AW>@($^)va5+jc3)(sPoc>g^;qrB6)Y> z!Th1YgazcXgV_5xFG{x~FZb-|gAC~2k0wRW`IZ%yKh07fHx=F>Dnc)N^~DRk%^J41 zAralXp%2v{Lix#3q))FrTL@&oTFvf%4a>tQ<>|F&Si9e6k^&q&m8a^sJXT zoSv?gUG(VpjiWIL;FQ({w>z8^vE%@PFjJT5=O}&qs?>YKJM4p&ekjGC_Bh#*)p0C8 z`8l$Ox>|kpvEfjSEk%q|gp#C>Dpm|{#V&hyHjaCw_9HdFDE+z)f1r5d##!$wf@zNO zS=pvkQPy2JwTrfu2HitCHR0YG*m7@III9yIp$cCtMPa29vpyb2Ru9K^-0{_}_xYqSU%6R7`lu&lmya4-HYjjAx&?a@f zJN)wm>+XbeaR-MmbTuNP{hVRCbSJAI+K0@-PbqUgwpB$R-RX*@Dj8A*h3?tnq82O8 zC>Fs#P5KEe5L84@re{=Rz&8dd7H((ucL$4h@Mmz)n)a(9u|QJ(0yv0!kVTZ2+4m0q z0^Y9)cxp1577W_&n~qtM%=AB0l3IjV-5DND#_`MDKDuJd1V~F8z+ZPGDNqEZqNC>V zGDVO@>#+5>UTFo@A!ic7onr^3EF-Zy4l;iAvWZYqXxxQSrim3ho!{rW z;v3Z6S?Kbajo-B&Qb-rlWSkN(NxL(Qd9Q$oHC?)ysJDCVODLsI1r1H*06@qA$N))9 z#1Wih)0#3ybEj5_E^U*XC)`4-k6;+Xta|xw;hQ#Lr8r$4!`ny6=A{5CtSSl;kg5_d z@f5O`HwC(_hxi)064j#&%T~7~#sToMwsFfRT8WjyPEC-1$y(u5u7y&T2r12fl0l#$ zF|p4*7y^mjRf&)f6(wm2?oxVnb1N-J2uVr0dT8n!EYwLRJLTSJ`;fS@sClL>Mf3A< z$%Ot0w+Gz*Fk<|LmtamErq|AWx-4nu(Z~`Jt@ZswDP9%zTHNDHocqi!ELpb~RRV&e zE*17Pyeq`x&Z#6hyu*meYWg|u^E*S}1cod;6iEv8TeGaBB$5(FM@^b=vasp>yq8Oy z;F)(z_#dTrfKqQuN`-@`Fy4{XqgA&K#}k#)3+WQ%UlObIDFFO0giz{b>Wn|3{RM2? zmFFZ=u{6rhjq%A@SA|;{gbq>2Kkaod*Ro@X7nrm;d@g=Xu4s75%-$m0XT=5CKXd4p z3;5L-PxYbwYwU-$fPF8Yul)EcSiWqpLf&?HNB3=u8;%ndusb5Bd`o?V4%CYkp_CDK z(9U(obQQo1rSp8wFb&o<4Wd(RAxh)P-ixH!&{iz+^z4t|9G3=GV@baz`Y{|l(2Bdb z|A+3NpNkQx>Vq)}TK8(Fo53rmE{@E|h|t#L4fRa25J9ES1X>m8qldM(Ylxz+=>^Cr z%!)+c5so=v)LN&;BbH+gD3V8*)I3Q4ie?4DDEO#vFTQV(>o+=(_#94`mTF7=3PyTi z8EzB~UTw_*FyJT%hd%r?d(-)wVy2|P7CDXDRx4MrJc5#w3bW=E9}0q9NfRhumIZ@nuv*&!N4^U18gOcI#Iz|w45Q73qfnx7 z2#8=I42K$Yse*AX&fGQeC4Z@|)+UcuKZ##%0TDEYFNdJbIiO`QV z`pVmfP;EXsxqeI$eM*=5xOb0*=t(Exm%`~Q(U88f)-JvVVxkgC(rVooT_p1uRt2!@ zgW8G;exjE{ELvyZ6Qt}MJcvW=of9S$<7YOs2NX`WKQ29dCXZy2vS}T)c5{a2@lCdq zjgVg)DLiEreNb*GN7xGd!=1{8@$p~>T7n~r;x;veDrX)?tHxiFN)z@6O9D?~J_P3g zts$CT+=L8(NsMgCBdB1$kRR-F#@c*Vc3OLOuH7lFMd;3SC7?D{7ZY&HjRWCDB*-}Y zBxJjt+3K#+230DmPxyIg~Y zCEw9|BDt-$FkQR+vtx%s>=uTkCUKR#{v2WrN3>$*IM;}_ZKkqiZ6#mryzNmP1-t_ylFw?RC*h~D> z99n`()TB-HFsq@64E2+|5q$M_cts%!J);ixu%M~+NBf?#x5F3s!fts{!xRT z>iuh6{?H(xY);v0ps>c5Gz|i7RS8Gd4TZ!2)P>-Mw9ty!18&~U%x`(Z;rW5mO!q-E zA&74B1=>W+6%R=}Qm8!vxO|Mv<*9hNG3{AixMEVr2W1L7);=$EWI~Kx9A{TLqZvn-G8r^}#`ft>m2@Rk`n}$*! z%^e%V$}06SN27?QP6hQyOA=?zk6%~eq9IfwTiP9m=?(3rZ`(AMCrLsiiGey6cN0Crvt=xIpSW?RY6n&)c!Oq595!@&kTdi_v^nN1dqOwUtKYn#p z+tyA%-UyVANi++qFu+vQ5Qkh1xHmSX?%0*j_BQ1m%DVaKVzVGJ>FyTbd=`=ceFQ z-STR*S+~y8>5An`f-PkywvVS3e$iTg^eGILFR_W*lYgjgW}>{mOikHMvx)3Xl_lsd z@?1EF++V$ijjtLtu{%gOt3=?DY^9)lbxllG#9#zu*W+lf!UU4sSe zIgDC}Nb}hDwj@GDRr@;NuMGWK~p&eu95U9F2Kc1ws3{wad3!+1dS(qwI!b13H8zrHc9-NrkVzpsMs`;oU@=@PxaHJTdWY9jnUH7Z4@0Bvd`V0HIEh za{eyMas;TcCl2KUprr$|=(uN9_+(O`Sq)ry3PC;KVIvu$0TYkF{$UQZp zr72g5}OlV)L^+>cJVGM(Ni$(6@#4lk2$FP~_>i-GW1EFti9a z%VtB8Z`h@8oPY?Yj2C0JfG-c}Bih`_ca;Q9d@?~h^@03>T@&7Zh8cDdu96B~G==`} z34~F_D2dCr(W_X}L^FW@9{`R(aleIBpAQ^JQbx6rlk!;Q>PfF3bqFMkjw?x%l1z=A zMS-PcERcLcfCtkJ#AkJ|CU2g!90Z}k^q{QlXyTOWD-#V>8fDxB&RqanwZgb-F& znodWL0y4sO?Q7z7iIYc3(zzziKgPt}o9fxnIqVxS+V^|j;)cyt4QLKYPb?42aY;zh zl++SbXa^i|`oA66t&>`RsoCvz@Hvp8=JL#y*>c(WKs|ipfVMH?Dt0uFN`*cU|XU^%73jxUDJXt%ilqZo2cT zQA!fQlw3wb{^@ESNXX%{bg^H=F;&_*S>Er`W50cw)H%zSwA|gcl*g4eE$eNEE)bcu z+taOXNI^qx#-csJE}bvs@wTig>X~J7s4yPbdvV+yM(ZV)Y+Kq|qsw^?UM8U= zqBXS&3VGEiWIeSBuN4q6%Isf)ex{67mKUq-@vWQR<2!qACH8EIKd3hqlD}=HLt57z zWE!cxUzS1QGB~c9wAYd~4f`D~=;r%2=`-!N>tojo;6pD;kIs#4i3&Qw4Rf8DkWzpp zC_)ykIq3s4)lIe|_b*+>$g$iyGc^}U4csF=9J}*OmV(%o9lm;W7U)B*sWnQ1M-L1h zS`jTk+3nlA;6;@wDQ(MqmjW&@fdwxuDFMe4kKro#jWVyH#(r%YTs=G&zJcE$zjC=T z8Zd8LO}gadpKGBcwv?!TB#t%5JGk^r7}tYP<=jFP5W2RZ@6U(^yfMy_-#Q7Y$I^t= z8LNk_FwL#O#kPEFu-nvIN?S^XU~sRX@Z*JcNPZHAvmohLFnjBnreCyp;LMe}z{zerwCZKW zCq5|@Ak!~gNN8?S;2yh^*nK$K*1N^Z(YN5+w?6l9N4s7aX)MfrgwakFtu#^9kTj)h zQ(S4r`8j?HZuqEPL3e%cdmh<<(Yer;Bu@3CSaX83Dwey=?|N>ez6gTdcEW z$h%)`T3q>+B`92lw;8~v3h1nwX=NxC8- zF>!WU8q&jG_Ej8^4d^gJ_JTlin6hDVh^T2szWlsi4u`k!hT^7l8adZe}w%Ycs z3Lg?k{q@B#;B=I;Oz50ga5w308>L8QBa67oO-nCGD@qdDID#7nwH!_|_WuBE61p2J z7pB&tk`e_fR0k90X^wZ}C*@~}SD?2-kyHfapTm_i&k;~}aX;2({{X6w--qHPvv^Y| z8LdH8&qy>meYk`XaJZ0kr{dy3`@L}y2F@x;T@s_H_)`nu4zeQiQc9>&6b}$G0+^g+ zX+vj{-n470Nm&U3g;|>UR+uiHK#!8s9VkrzO?Z-WH1xo#(2H@Lhf-7dsnQ1pQlJb* z*=%|6BI~FPBsRWcNj0GOXlsh>hEGif6D23Wr!FZzn3bruv=Pg2W~Hi$2iv3_C(DQL z!^Wa%5=CBblTgr9WoS|XB|vH<_+|aLimaTpKvDG@?#-({;t`vqtK1euSdEG)hF^3C zTw9;sNK$eiel}porlxBtdH@a9{W9q_*JnsFACR>=`_2+nrJ9m|el{p#ny+a+%g^cF z{)+2vI_BP%`$*gt#44fK$z2p%1kf!hB&7M}!vfglriYl^{+Rn?-n~2Dog0O__C?fO zcJ!v!#lAyrxg3SEkbu!?CYFn?{(`(FjUBdki*B$BCC^KI} zOra`rB5Jl0%VU(F*r5svCr~)#c78I7a#Mdl^fuGGXBghVZ+E+In_T(!c$MjpRke0zUQWTmG;R$gn zNgsA9mj$)2xv6aKzHj(ND3sf8$16)xVYu8jQlRMxqKX*Rq}PZzZf*f+X0Oug{_Ixq zN~N(CxKh|qj3cE{6vKnuP^MI+1>^t<7)rW7IpQ)- zuyXh6mt~Q7?p=SPv>#?PR@<6Voh1_10+tqNDrrIvc->5iQAt&CyIL2JYKyfu3AnWl z)*NeFscV=;6ICA-aHa+ObV=GvE7ZHPP;5IpwJX)bbz1Efhu)hq>m|61#d)qohTm~q zwJAvoT1paq)dz-n$<+BT%XLLvS<~+PO2tldr<3|4?c(O{*yy#7r+ZbWzfZA4j@+lB zg#6pBM2yr%(A5XEZiYcBJSuY-_jo9(quBE|w7Esb(Iag@weqH2;lsL28s|ns!bFA& z{l%lpOTZ{riYGIRlM$j}4_RkI<)&)xt-5OZUUgBEPYSr=5bj5YgpBwoVo5lGZ-0MJ z{j<8dM}NL8Y{lxH*OH+Ja#6r9kR-SBkz&g#1x~t#)TWa9z24O7B_{(nUb$0V+IxS{ zG|1}HIm^?O?fb!LY^5>gutH@;2P)Ep(D-A^ag845QC&ACijJ9EXWOI%vg4~|6)0qD zSwJ*201`;Uq*l#`V8pS1Ek+XLAD@m{4K2j4+EMW9ss$FRW;lJAOIA}%cWKcU)g?wF6~T3eNt5HRy~+zv3Pm^^xcXw0wHtII?D*=dXlR9yH5$|Q3Sr<51Z46O zl{lq@wv_5oQ3*hxsWmjFLp(-*3{IXsn*ypO+pjowZ(1J zB%cbLOCYM2&Y5=!(OvL|Ka{scuW^{E3wel7rN^5}_!YLQIFVlxoFataddnDh1J%n$ z$>}xUaomu##emT(QU|apY6$^qB8UWiktS?-g|oQ1*Nk80Oq`q zw6aJ9rk);n?DacU$h{fC?)5E=`k`5@B!ilO;ZI-Rjjp;J`nlY!ZmUX6W#~$aiO3Z3 z;fVH-#OMc|)^rSBcN(uPOL{D~5SE@w84jhw-9S;HNvIiD7C30B$}uhV+dk*D>^YYU z5*@m7(qEAcX(9Bb6eO~dT|{PS$IBI4sI7F(`2InvLklmXPe3<4_T2XR+%Vl#ohpmB z)gdJ=HpO(f>C`x=iVEjJ>yG!sd~I?4@MrlCkhVp_bUI_SIxz^_g6{66n`nF~*W|6n zOqX=%)u95a2?I(~!-?_7qpe`$@KC12$M~rTN9J;rqf(X-gc1J$P0-^0@k}oIg=nCM2F#tuEyzrMqU*0D$TC&_?AU357UPO{ zR-h8#t{LhtfJW{c=>yxA?7Up}cEY$^whW-^-f3;L+`CkX4!CHhV|yP;R!;<~o*_8T zo2g8WY_%=Noz*A=uC8=zs@*)lHyd=p1}x_baBtS-t#GBODfgu+Qc|YZOv)Alys9(D zC$ZDMH9MnaGba7T`elAvuFRfV8EK^{mf@hDN)oi@NLFP;(xm;=#y=ycCZTj@QLpth7 z%gE5;y!g|nx*cR`{Z7O8n$4hg$-X{%D>EU=w<)idc{-4#NO29cNc=%+3Lc{tbsXJ6 zPE91mdsXbiq}P7Y?TyH^w-x>6uJLraHUg%X+;PDj##TjJ<+Kw-q=fl{Q-#fWvz04h zv02w=v6{l_2UI#=)!*cO?xjqHsV-SBhy@(zWYM>hM+FWF9tR$Cz0-JKDm@wLzCX0H z*NyiJuAT0<7ibJHW+FrGH?BOY=?22(}_%beh(~p2+FdS`56r@ZMyJAe88q zz>5C>PujDv+l;ohLxIT3PcYQ$Qq#l|4s_1GSoWPt#S%IBH)ff%EL)1gw7+uPGB*P# zKpeT|GG#|(dq*vLTRKHP8qkj;jc}6^WLI!+t%#%Ze=^DCpZ+b?W&q*tIn&T!w<<$g zvN!qm(wKr&hf5H&l{Fr^CQATu)BgZ=*QvmiNIk&c+ewC77t7peq3S&@&mAsFmO|Ie zOMI44sw4oEjbv1hTpmD#UES&q^pgdr?DlAIW2IW!Rn6{X%!LAjEE0sM1L93E7NYH` zn|CMDySD7;KJm2N6vQRmtPUTTJndU+_}rqBeiYZo9w#Sd)xtYYzM*R5U?Y^e6j0a+1zzPG zsa#{^%F6ZL*2=Zfe$$X5w9+wpyzRKIt|W>55wGuIrTPFdQu3Ne9^1#9{G*O-EYF!N5(X71?+E&caE!IdZl#IQ}jNYz4-o+d0hfSiJ-A8E9 zI;pj7kwm7p?a~B*?W1tZY2`*kO8)>kE-A1{Y>fEiKt6c8Crk2Ct8B|U{jbGoMt={X z-Dv4l$guZXP_|=^WxDMdVas&3l0GI~G&P~kDgcixc`on9J_IQWxTtd@2d>3KS#l$Dr%vcB-AvC)uK{+FMBF4=Ev9#+sjT z%OU15q8XYXYaz-;eQ}CQx(xVt63p!eI*Yzj_QT9?Qy@Bp}@6HQZ+5O z!QYU5VCGdHSxSjD_t#gE$FjzwLk8qt{{ZW^RxTEqldm%4!L-IwOU^RG(c9;%B&8hn zDQ+oVDFpDT;f)%L$!un}ZtM1lp0AgevZ~z}k4LbIU z>e5!il$!bGPp&0cEvbzCSG%yb^vAIc*>iz(Z99*1v;4QWG$@x*F6xCP=Ta4)Af&Vr`ONupG;0=RrM z$AQSc=8ns9jrvyIpR82TYM@JeYCh~QC<3pcSKOOIM5H!;Va5w9BqgPkf<|8I5n6q? zYh;~;PeDKA!T8?)0K|9x-WFe}BiJOGy1H8ndA>uZ<7BH?8To()E#)daiY)}hb#(yy zfUZWTjVbAbu=PWU?zY+Ykd#yeifQyU!sDxGZzERk5g8g=r@PuzGf}~KpOSLdKs~yB z2zCbK>g=24%WXHOQf=#7P~@sH3uVXA^Cc-;Z5M%11QI?PoLh?nq_^l{yPblEZuC#3 zR%lHwOK#lI#+K5z*P#uiqoAD#pee{4{0(sUy7j6Vw#OYt-&Uxx*tRuCL#`+E_x-w? zaUhf+>Cz5qrD>QnII>g$Aa?F1#S?Tk*58>M<*dk-&B3V6sX+lK_j1sZDvebsSgG;h zjGfw6)#Gi8aAtIKUC(S?9A+twgf?0L1fZl1DFT2doIcEA{3(O-F$K&mpZiO;iLLPA|u0;*IRIHQWMmPL^3CZ*+%WVMryT7Qu>&$ zHcNbYo0oPWVacq|aSX8+n3R;4jC6nsl0_ImPLZ0FIAgci?5b_KO(ddqi!TyP`EsVtJ@(@lgpx!MT!$pd~p|d(TDLc(AfRDUXmfXd10xmh?JDF zLoGC?ibpYPLTZ3kMNW`u!y8x0<6lz0#bal;w)MAcu068d0?#G!NiIZAonUaP$OPa& zm7tHWW>=%$_dSu9CV=FXGL<~^XyCrJ1Ol>_(eWv2r2rgGLl0k(#QeZ5ipb>u0MwVe z9<+5It_`nqTV&X5)@GK@*W1$Bax2WoT7Z4mn{W^JhZF}ejsPSNXwM&OxA`@u*s>0K^~HhU0Hk4olqGmmVUWsBWhsqP)TT zvdaqTI|W(~Qg0I3Z`#^Yo)m0# zSRuqqEG3ADMn%?}Lv``3K&k!sy%2zY`D}i3jJCh`7@5hCtc-~?s7*f#M~8{QAzI#d zrHkV-dFVo8vbNO?!&R(2TUWUw!j1m?2Eb7Fj_|QY+wvCF)TIs$apNgKxYExQXgP#= zQ!G_zVT2W~s*$+r{G!960 zMb}n915%W(Cm8PD;vZ7mn$o1WR1!@-!RLv_BtD1dK5W$>kbpr|C=pyo6CgAG@wfi~ zR(2O?yN`cuwnVA+meRJ`ETPo2!>=WUNFaiAv`JM5mU&~n@z`3Ux1S%OnPhPq&X^l*OsNc^oNzLYf_a`Nl~dd=ibiFS$$LuWNyh$XQUM<(x#^_ z7_B)Ya&%|u;oPSDvUcNPZhD9^~H4(!ZGS_(8P1xRv zFyH8&{pw!x+zGU8h1-~x(;qi`zusI^R=ac^T1$#;s=E88zQ&PC@lujA!NHB$mFCOG zLuZT8UE6VZ3pL*Pc!>E8jnOHaTniy{hNMOj%#9vYckMoXU+n7EhCl8snUeLs`@c3H zQ9qZr3rT8Pk@F15V3Qg|bx|SK)T(7(BZ$X4wSnV%n{eG-NkZy|)#(RQ_M`TV*=~(+ zEe>R9D+DRDsWl2p&_dH+G>~ylEX_C{E;PlvQs`F7*qt9Xdjg~?3$x`-cuZ0kArCyT zl7gfqAxS_$2{Z(bIpT9|&z4b_6lk_D>M|>(v{fk_Q<$fj!ZoCoeGe}*wJS=MKtGF! zrdWANLL#eyKhhZdBm74T`7BSy%^_|(tO9t@X*_sh)S(d}Yi+eoOKqmV%y5LEuLTtz zIBLF3kp}D1J;P#&wpC?Anjd(#B04y8Lx~#Hljxz2l`5;CqPvN^sn8a+H8)KpAzBNz%@RvRNM+JXWaX)A ztxlumL&Fg{Aw}N1=JOU=kkhDfL0X7dsHfYv9;Wh!;%+5v}~LUIXPZ}QZI6T@9GcUQ0ZZ3{>Ruf-WZe4Ws4>vqJ2W@b6FHK495r28+zHfZFX5IwcQ}O zahl9Vxu2(}nM5|~3boZpDOa>*QYn@^)?Ck%b=67I#g2_doHHBS?rggirN(F58DvMbs*!f_@?}>qYD-LsRz~?6tOuDn+U~sO+P`#RHND_2FuQNZ9S| zN!*E#89(mU@El%4+~st(llH2o>`B8x3O8K3&(ocqdzj76Xy1qX&LR&Y@WGP_Rb)7?Go!S1DR>zs>ZtNQS2aD?+ur7NsO85QLhX_NpFj&F0a?%@|!kfnu9S!D-O^(YFUsMC+2ra9;#cm!lVBpZ&e} z3%Pc_S&}66eF8jK`i=Okb+u^pCuGi-T z6j_4kvl&%NTwYpe6`4_`KWW8S_BCZuxzJ9Wc5&4{ne4r^n3u-xjKyWCS0ujcA#1qu z=%#{XYXvQ!(G^KF_g1*+W1>}$CKmM?cVqQn+z>ipc-eQ&s>GP{;K_#K+I$v=&9b=q zfEtrucZc<0th@-R$OC$L)Xm9hX(rVrP!{jy%DIpMLI4P&H3LOcfgBGEaP6y;qOYN& zY->f^arG~lpsh}nt<1q7)TzT?X!FeBw+&XBn-5GkP4{oy*e)NF0GdVA6tLOK zuATssiuLdd%mlXG-b_umw);!wG~oATkzF&$=fvY(XtXd(L;nDrgZ_d4013qXKxo%g zMsA7ca~vX+;+lA7FqF2XmZ_k?4%)V@y_W(LpzCmI8LeL8qCI#IvmK0TDpuK!b$0n8 z?>#nHZXu-49Je`vr-^MjsdQK&01Uw(l6YdQ*GWjqLAPP`Ct=!Ll^zSO$wWzVQE#>| zgd|3cA5s!R)M}zrz#atG3tJ=rhw0_#^-Dq>dev~WTW!EC^hu7iCDJn=m;p-7cqAH} zT}w{jgU#~d{r*~}-Vr)2jxV*SB?@7rr~B%0NYqb~LBm;2`w=)NB3>pKP??DgwDj}x z`)baB5}*!BePhm^Cn1Tjth(*%bSrFhFv^npqtr;0pM~kG6k3K=DQ!N~{pZBtlGKc< zcX!y|X`7$5EALkK8~1x=?Awo+uBy{4HTscXCM+f%Y4kkWP=_B$DndevK?Lw2I}owj z)>89kdA8oQs7tN;4$;c z+cm7L=4AHnl&a%cg9_=NK=vcM*Kl69HN6d@!UCb$*;}c#{L@JUslc@<+Ug$Wil~!O zQYns~XXI~+^-=YoCpQnp(;~f_`gZp@nNEJs6W zSWzwzvbs=bL0ohDA1#4Z{nE~+ABWD`m7rbp_oZDw+Vnyv4t>x}OCnO~-2@;m1Nl8*lH7uwSvr(6( zF1AZE4mDIl?M>5RdG;Dx$3k99kQhpNuc^dlm6pIH3h=1)I2Ef!wn={Dd+FtqtZu_? zS_O_HD^l8gub%hj4Ai#>pw(KM55EOqVq37D$k4XMg%O_*&bW)4>oxqkgz@vK%pY7? zj}oa>@;AQ07u)0=!*tp2OlCTMNy&yY5}kR7?H3yjpnzUlbJUSMfY9ZB8$Q*>M0x<$3zqGvQoCLo~Di4p6a*mSTgq_U0NQHpwmo9p>?(uMFlA-B_OPdjLt*X z0rr0;#(cQAJ}jVg@1>h#arH{?^8WxN)aRdEfnk*Bh^JY7#Tv$5q!6$uN@_u`hB|oZ zuBLYMHIvcB$C}=kcLn<3!v6r=;6QR)FyjP#Aih+wRQQyWjSi?r$*2)G1KWZudx3j( z?kt77Z8GtFxaB{^DfKBxKu;AFd$1wF4IT}J8)=y{F4qR8?rVd3Cr@svj~R|4G*q0@ z*gRBoS2jFPgFi0QBJqs*TZfmTLk{n71SvF>fY<*M0s za^JM&G!uPgsOWu0LLCmaq^-wL5=MYVO3Yz0lYr?cI@NaXee-t%{!=ieR8 zuE(}6u}0o&MY6|hw6c^!L`H`(+K@f%>(&uqoZOxY^OU{;fqzqZr>(;gQF=x$dxnxgD z{;f&U+o_3OH>n#JmDEAH5{LT*#->5F`IwHu6dGC@)lg$*bxTFBIrPLanP z{@+6;MXS+xI)5MB$BF8-^(|YIzfG4XrYV(5MZXsZOMPNT=|V{kZd({vR!} zL}+?UpD&4Hl)=b%S-&?H?lGc%IHN## zWI*uyaO#{GtT!T$i}Dee3M<=xV^BI-lx@u?#{N7o(}JR{c1 zXy;edm!daI2UBkSMu^+et=o;VxeTWuZr#=^ZRsR4JZ&R?9 z8hfpZ-_hfAZ)=ZNw*psqxw~eAZ&Q-3?~>$0K0~NVRI+jeCs9ZqKV~&NRaQ`;nXR7o zq*>?`$akY#<9WuM#Q2DAKDg}Lub0=Y@sJZ1+Zy3+yxWwI2G+R^H0n|S;Gn8tr5h2km5aM%*^;F}e$!@Ud488{ zVRs2{9RC3LnG0nNAtUg&_j%wZ_Y1Cry}8u}w-w`G$y_he+)z_c+HGyLr5ye0BY^#w zWoZLYUGAIS_R~nW%K1BDTB4*f!iJc`@E0qkOFlH=_TjAI0u7tC>+Z{5#l5OZS-Cu2 zYmgVA_W5O{W>j@*%y9j&WB=w5KmK<&I71 zq?gwxf^Lvjh4;5z zoicvye&o<4c66a_3eYLXfk+1;Xa#YfBG4&$HiR9uDa(zv`7I5&l%>{?YTJCm6{rn9 zJTk)8(4~g5_B3ADyM4B}@^4aO1eJgKdquTZmUy|CsMI)mV#+>Rg{GKBxiZ^hw4nh( zDo#j9$bfwXacXeA#DbZ6+|nk>Nlv%c>cU!O8j6&)8UQLY{g}&}JZkhq(vHp%pma*u z?UCD)cb3{k#pe;sQ%mMJmP$bgQK0e8n8k-W$*oIrQ;vq05H#azG2ANv1ytm6^cd8e zVpb;U`^3`?auiurHdcSTExh>%4*^Tw*&tZjL}!FEEwMA|I6 zy3^P(4sysn(1-eK5EDxw9824HF zRnuf&ts6sZ+?~B{tJLOVN^vhP;MKV@9ZPC)(pFkZ#;k!guMl_?$kaj^HXj|jc8|06 zM%uRRn|!I4bZXUcx=t;L4;JcF>XOP^X|YOxlz=OZw8W~4osKYlS9jN1yOa8lU!CdQ zsdrt8(=@MY?U^CQ*?<|h61i`O99mIVT)dBp=bF^gdMYPj}@3~J+5<-R*rnB3Pm&kx0axkl~+g@;@jqM*{Uz&?rr}7 zhs(viK7jh|(fe$rwI!D!NobJtH$s_pw+Dd+gnDB|Z7D{lHziuMJqZ~7RE(xeQja+W zG*VPZARM@i!Scf;U_zZu+qGG+r0pp$>iLAKQqq;EReCh0fS*B1`rtRZBQsB`Nw+6# z?81a4w*;w`K%gZBwrXi#JZkH$7`9+?7WVl(%MZc;&E3QQa7`fCbbtjiNqMU9@;K6(NU5@sf8`m$rr$5g zaFWw00J^H>>_SOON2xz{5_B0RO4>VevfVAn{c-6HNm{iA;z)iXSxNp9rc{+EkbT7C zBU7Uav^^Q1^#1^(dltcK`AcMFC8DCWlD8gO+&olN;ZY>`n&MKZ64`H!Y+(v1Y-mWX zS)BZMVDVm{9aR4S=6~DvV$aBf#O7pPzg-|mN^dJ_;J{GjT%)8Ul#lfgJ{5T$80+(m zdEQ(obCC`j0fC`^D>LDB%tYWvXxX+r^gJguG)JMB!gmCa<=X7(?}6zEfDTZ zQOm1;14~;%iE#uFXrgL-kESr@!0A4NBC%=R_JqrMv`U3Zq6`JEgKYDrN=NI%OpuG-<>*%jpO3h3WLeJg%xlty|c6FY2||m`$NJ z>n6@??A9jUgy6FxrbX11j@MPu+*Yrt#pH*ergk z{{T_O`a{^g(&4q-N;iJ_c{^^$E8}D3>_SHcO6(`3YOSzpqn@_pwIvsm()xCTZ8+WeVLFt^w zzfNWi*52|IhgR~}^R6Y;DPH#~b(EE5sOTR;8@xm!K5JYN$hT&>p^^9YIz90IebnXN0IWIIYG?nNV6pr4r-7k(EM-NvD=J zV^LHgeeI*Rn{AhGHFUnl=I&{F6x%BRw+xkw3zcFm5@qB>C>Q=Cw8T&5Zb zQj~ZCwG}Ak=5bzYMuAL_jd0|)2nh))qK!dNr=>E+daYzL8;@h$qI*GDO2Mc#Ki7zt zu{@5yRv?6hl^;53_KMVJhfy07-2M8azv-*?j5inRNk=L6e%_V5x|g?h+YGQ5d$~r2 z;?kiP@?Ui!!c|=R%u_Gu$4y;Y zu*%YdUL8Y)aJLs4LoKA5X+vp9OO&tO$A~!Pb}>3XscjsQaN@ajyfJD*>gCO1I7$v^ zHK|&7&?Ev#IL580>dH#bSvC_k4yTCBt>+>+6{jNe4n)&Slmmb(6~V}$6|?Y3?c2MJ zvK#mc=s>1a!mCJKP(^eqE50b859@$RHtQ86k-v9*J5QdXTMD-;c-DInIqc;jXE zFR7eax;wFK{ZY5>iTv4iXi^sQ&>nHRw2U09@ zWV>}@T4z8_RwS^bxRul0LHE#Shj&bnXFG>z9YD>EL ze;w7m3s&RkpK^UmYJTChT$8zOR<_jL>u9+lP3}kukCuf%d?CUQfNU!nx|DRU7C&<` z$$m@8U+JGhJFZ>HP209z%6yooOqLZMjN5>RZRqP--cX_b4)K0Ga>(bKHdy%EBmr&!#4YU#n9F0XHr}%)+7CNZZgpWox zb=Ku_VVj&aHl1N9eU(wS4QZq)V@Uf>C{^?v&^O;uw_i=S1ZM6#ar;%V*t+A*=O%KN zq^N~+RLT+)Ot=iOs;iEut&jGPb86jta&4B;Dip@g{^0BEkttD`f*K-+OX)1RsJ;O}_%+QcBC)XM&M1aU%pY;OgV3{NoJgaQPl+25m zMylkrjsZjW;V(jJZ=JPYHjU!_F69w!Ey#_Axi2F|lJ!kgIem9>Tzv_tr^Wr7!|0l<{hQ2Lx%Jb+6_xqE_Y zl9DMv0;^x_#E8*=ZTd~4{{Sr4{t|FCBmuwEH)gkU?)t{#ZiObx3U$S3NG>Z=5z9%b zIRFcw`coUTEeIZcUg&Q{Z#URmuI~X1-}dv($b)}~;-F7TTTmqneX^3a&x%~A#VL@F z>SoyM9qqQnTgog^-~RyNqePSQ)7@z~^B$O>1u5W!)7Qrm(87%Kqg@Av&sbldxNZ;M zrPBe;Z?^!f^U;wmIaf|1r69iHcO zb(O_Kks}U6O`4Drnhdz&yIWL{cQ8Hc+3!gu&-u3P>V+thQv7umoUVC=Hd3q#T|WT^422{@K|z+6Fa+r1LKwCiJ-y#R`MQ^yrK4N$J@?GvZ_f!5r+#S$e_ zfqA81@ufyCt=usnuFLv&^o48E4A#;(HP2R@{HuZaEhDO;sk}P~>0Bi?l-@3Oh8(F| z!ILU7RgnC}l>0xU4_vR%SS}qZ?GJ41_|KMZGH1Isid>gMPzn$#ohe3C&bV9JSq&cB zYD0GL(?k@oRNy{54tf6UTZ!mKy$8ES<8^k}>;_u-rz0IsG*pzWOcUmK{g^vw0!_wd zF5&rYDUMruj)5qs!dq=k0dgB{C9t8XBB0W~7-WS$*ml^P zdwxIwITMsnusjGqe}*2aP+5N6EnZ^9AfrP_M={0l0W`=0Gr?eHT;yGDEU7xmjcA~A zC(ji%aNM!7AG$k zB)Fy)<7}910Jq;HfJ10Btp^%oP99ML-$I`|x(?V=bdPhjU!+-Ou8ua$mLFjX1ZET# zlA2{hLyMaB17?xYj<)PA)-E5*QXG_vLfdLYdulI}lq~xGGbsK?`A|a`i2F``y#2Kok5*KV~}% zsfxGc)VJi!^Ig}1aD$r5zNcKfWU}2SI+eL1+Yxfsk~A&EX+prrd_^Qagg z0u-X5L6T~4sU-cuV(=(J%E4L_Qr@9jRM+p%5vTf!tT4OxHPG&xH1xgSadn3#HkDiL z(HU}V$sDTc($i@sf}*M<3gui~g*LSoMdNoX(jKfKjl;6H3)c%|6s{c0Q>{G(=#xbk zN7#5Ih3PpHQBD|3L&O!OK)5}$_N)*=@ufy9R!tG1!-=)2mlV>qsMGjWtIzDn z<%pEPR)dR8+1P;R()I<1=^ARU?EBwt1mnyYoKg;c@B$Xv07_TSMjK4q~(h3Pq{WV zUXTwx&h_HevC9!t7n^dHm8q3J6o{zPMAce-%Fn=KMR9Uk=q02Nx`);kU+*8N-ljJ- zY!H^CX(?^C%C#sofHJR{Iksxkm_(m)=S z!rLN4DzKjVd3N*HJ-KtePrukDTJ2XB8cPe5o>HB8m69lmm1LD1$i^(zR#}j#L#3sP6b_bqCoR-RdLBv&JzUN~2MVTK^rEH(telCEnBcUhnd2SEqO;WEBjlDZR`S^ogh zgdB*-#d2^tBmkbDW_j$TI>XuhvWEK~M;CwA-iH&SCWFY{$c z_BAp(bbuIBO9@gHK|lb{z|#oPW7lFsp(|}WC+34rw3$*}ETPajytdCNI=N6E=F0Pga7t7f_PCwFcv_D|`oM}UMlq?GGnu(uF^a{mA^ zX1=w>$?-`EXC~|P{o7EjJs-JUnrB3v%W_-u6ls`-fgLpT$o||_X|=T$n_RC)c_RgOiSM+b5>CDlBpi)T>MhSQ-nuiZ=< z(g`}qjF%*-(W8Oj0a^v6`U$89?!&uiNE21U9>L{{W}gh(_cz|nzro?ugNS*JpEcczgGT!@oBHUVAGAZs+L#fiEQ^3&E4UK6& zMYEGP?enuvnRMFgGF6UL*W}Mmhn$kIx;B++2u_5jD*57G$?g+qY`T=uOC%lwyhaMx z4eBTIEP8&^i8l5S<8H^@PBnjs{{YLV$BgnFTyzo6A+-g3OG?rY{SrMf*u_&l=-H=Q zd+6>1WbS}0(;Ja%Kv|Pyn89PXFl(HM&CN(I(oLb#nARxN3q&*2v6-FI62R z4FDYir_Qym4Um1j$RoO$8;u;+tACZ6_?psLu&+pmZHu zqq4bZ5>llwrTgje0#0Wwoo`xQ+*F{q$;HQiQ(ttOgeH62{`a&p?+y1hKDW~S1gJTPeL5M zB$Xcn{?))vG$Qp8WfXkTHPw+#E8&I&XgMq)D@ajFhk&It;dO!uIUIy6f(leg&?tEL zV6?)IEhwQwRZ^kh>GooAl>n2{nPqcBy3`v@00O#luOBQ)^&}2ncoxMHR*Kf3*E;xM zL@>aTS!Ar01ty#U08+j)^>coeo$Xe;V`X;$_Gh@(bk|8tYV%HgPlY$MkmlcY|Znz59S z96M2#>@6B(PmC>!W-McfnL9eSb36C1d++yoeV*_0dY(%b05Ac>L`7kuaG{AIB*etU5gRrjBvA^AD5UgedAu?jt)QrcLE|*A%4&q& z8r$^M(HI>a9nC$&y=nvlEgfyG^(3J9`bC7Cq@OoaASDJ+0V)K<0wPi% zL<$r%02pDNFz}lJ|1wYn0u`1kCN8l-7*M(i5CI_&5hw%(gF=PTA;NP2Dh1oDqG=>5 zZRHNf`l7VLlhVa-#)Wk<)=V~D`_#p2;u5l3eI@&j~{|@Zh|3&r}*uS~@0R#jTJ|090AOlM)>KRmtZ+c?W$S1w6 z#@~0z8gwff-+5!6W>1WsTwrW`61QCC#G{XfxDTq16j2uv2gYj!K+u=a%qf?W{>1EG z8y{Asni2bY>0NK(J+=<5Wmg42ObJ)=e2z;!WeIuRKG1Y6%RD zTrvW}3twa)12c**6N4xmnN-)Q;@DFLyZLz1_5BJR43RkXziFdqv(h$N{Z*ZEhUn89 z%l0inm9rtyHUglhfWDA`Y~bs6J=7b?zE7Da5b)&flU0~8`0$PrUX8DRUcjBh%$-pa ziE{6xyUhnyHC>BG=*Z&%XAhTm=Gz9xA&UHy+U?11DJs?IIa=h?6{2S-!Dw+FK!ROy%)|J7W3uDNnEpGfPd3^_ZTNXM3> z>ZRkYJ+S*}cP+|>K}@p4W2PZSx6gw0A%;O*>v2?39aOImD0BV*2}j_6iFu!%TZJX9>!sQO>c0 zcq`og!jHL`_|*BDs2zm-AeIm6-~$`WXPR~Qt2QOC8Lp~BI=<)n?q6|4Bi&g_KH@~W=gEe0?B{~OXg(!3newui7}7UDSZOK;Yvg{c}PhBv={i=mY%>J>Yj0J zw<}9<16-WotoaXB0Lp}3pI?dU$nq?bpiISg{)o3kD7P= z_V+SsTkOf&A*hRCpi@fHr4cs?*TL36zXwk3zT049Nf7Dq#AOCjhV!LifVMev>gfgD z=V|mI*{|~+J#T|TLsO>6h-#ye*Cq%4==i+#^!t0c%WSDPlp*)tC^ceG&(ST>)w=MN zd;*jFJ{G=^<2BKt5LD$%);M~uB{_qjCo2zd1}$Oze|6dSZd>;cTk*a)a~#Z6{)`6| z{tVa`H(YJRIa}{U;yoUm-h#tgat-v5bkXB&|h{#!Zr>FWlMJ8IWdOQG0uO4X=FJC8ri+)EJQP znMqlY)bc& zsW#zdozz}fBp({)V|jVa{kT@yDxIWT1}c00CwGk;7>1Oy}j|u zqDip^Tom}(RhjoL+xbhhaj8B*3p#(=hV51zrdT?jIvHK-juy}V(Pd?Yvu)p z8B}@H?%H^idXB>N?T>09y%Ke7Za5(!Cm?YcD!Y;}=D#U&n&g&-Tl?H&VhW(F{w^q_ zyOJ0*(j4KpHh1{k&RJ*j^YUe9(rEfBW%R^p6gYNt1Q|y{{A985f}2l~4ZWD`5?0Yb z`#K)Z&Fgn-dz^-m{%i8n<{w=1ecFr01SXC6pqQavU3dF~5watSDu& zu~fx}o(iNwG5WEpI2LI_500_w3e~+*U2elO;W{QPMV6X-c{`*~JZKExd2mtEwx_8^ z+5la@OM2?e9P=2d<9Bq}b4I}gxWquZW>myu;+4QE>PyvufqhSoSZ8{#>P5llACb0x zx)~5R*|;xh5Sz*;tIDl)ZHQch>wq7A{1rd0t+g_9?13CPhO{*17D}bfSQ2wN;Z%}aa>*r~P{%Ei%ZQ|lBhC^>06?Szkh}xz09iO30f)&V5C|kvRt}}AfRdL-tyfl2RMk+&X=0fR+VP zfD{m-1IVBuAQ~cR2XNAJ!XV!Z_*X$>Kqw53kVVSLOB)_20WuH}l!1aU7!)e)PLi$z zP&70);*|iXnfez+ScCD$?AIc{8j(!Ki&+y9UK~GPfULJ_-SgI!<+xQ zu*eq(mzKY|AOQFmOFI7r`!5$->XLy%K`7#z3nFt`8W0VIY2)F_HZF+3C>0$-s;sIl zwT#h%)HQMCu03+HPfksbIKGkhjrLvkzroJ_E!n?e|8WfgC=epOJP-|#0l~82%@nzR zl)J-;zO~%BY^#a{VTN{VR`u}J!~%eE=lDTyj~m0I?>i!7V&XS|({o8xFTRNJ-p@|+ zoj}K?*S8JiBHc-S)?3bK`$b#MJ>-!(?)&UI7oSOKJWqKPw^Eq2vzRtdPvDNG*FBY= z{v1YYF6+`fI%5^DSV`_LEnTydth&0VFrF&39SqtvORaC#5hEg_vfFl>o#mWV;Fn($?oZiFswV+!n?IK* zZ=+b~n;Ogex1o55JL%Mxi3{0g^VN^EhT*7s*z>)Ef-KU+fplp5h2tdUe?w< zvs-_rm?uS9h~Baz+r_z4O-b#7ShRC=2tQ{>xAhE$#?Z}}uu_Zjvs7%uk2)!>8{lk= z)y=gNc+P*~Bvmm>WtbZ#a2Nd~Ks$b_kGyP|aXwN}!3ZTzNfj0d3YJLz%rLul@7#CT z{OY4;ni;HVYt34&gZ-fek)0RSA%9CraAxuI#;w_vy5c3eSGC1>SYz7w$Nbdai-Sri zU8DVL-@b(GRy_dszgQQy_(gGK`br8#m{Cb?9d;KZ;Q8Y|CvF(ag&u66Ua!`A;5cb( z)8djfx@SQ8+?N{I5f>!DeM(?tkW+m_$uv43l8_uI#EPMwuRK~PUR(*lXPqma*Xwyv zysta;nezlLPjMBVvYwmWjvE?LRa1TvernijFnz&qoy8odzm&=v>Tw@WA`YmnzK&~6Vqx)!}6NE zVt27`k`29d6=W+49anXOW4|MVQF2zBvNz=46FoHk`P1#hNE5Ppp3J8?d-1o+fc?>EI;H+3 zH-`2e)e)s)KQgG1Tz-#2I};pT&S_AKK4$StsJEHc#IFe%%WURohyR)qA0EG`YPb4^ zb(^*%)*KLh+TAW)cyC>$Y%6qi^psFndx2n+@lfr*NWh^$w~uAc)Dl&I_$ zgS~J$2M@&7AT*woabHY*UquV%*c-Nnp=WR+Qe0jEtEi-@rLD6~*NE_o@otknR{O1O zZ0!ylbUc2-$@%0dm$P2yynW95`h|psg-1k2MJHXpay6NJEhY2sS=qO8Zr{nJ6c#-w zeppgkR$29=x~BFiy{@&bz2kZ3i>~gs?->09gG28>FvnS+Cnmp4P0!3PEG}`DSGcRZ z4HpE!{$#E1f5QI5g<5w(MMPjChz%D68nK=*l!)jS1Gwy72ZTqE+*UkE481SoenksX z-S8M2;~D%$TwcS7sX4zv`zibHV2S^i>|d~dyFLI(7-aqNU?^Y#R(Lv;1o6L=RK&PN zdh(T7>nkLuexK8cQ8Kg@@?0!}#Q`Jps@IL|C5j0Ww9$<0TJnXArcI-cq|-4LvM~p! z=Ne3zirz`P<&Jdv@*`DCsqW0$B>Pl?BIna@&pI9lhh}A7(3pu(84Kb}e|4M1`J(-C z=Sxy{l@$VMOC4BG@qBu_sVIJgOVlO@?^nLf5DxgPe>eBq zFUeu@8D%}a#dhI^^vRDxFi$M3bw9l}rk0kJVTrSO#`^kw(;bzy*1^{P(}#ACf1Dd}W#>df%{zl^41%T&SRd-^SVZ|5nNcphL%sQu zXP;eR6)c}26R-4b3Qz;v^R$}SYYM4tgE`BORF?BT4N45E(cJcY!A{m4yb)DcTbmhm zdwWo6#MwT8KMbPIa9L-Lz*9r*e}uWSso&djC+6s|-Z09qz7+|@h8NrLJ|?TtX+eVn z4OL8^Vj1)-)@N(SRl4jpHfkoHy2W)qwb62>89mR zxNq}!DSu9X{K?OG|D6jO`ZjS>-wKB$rCS@x+??QnCh0IA$HW&I0?C<&OInS=@3tx^ zRo~r?*SIGm*e(iUt(d=Ru78{957E?t6wIRe$A!*Ctr{KlQHVAAD5A$*CN%p^Lr|%! zO}$5y*;Mls?D~-EK0ChNkO0jkacE*1a&-US;S1Qj2L@RdIjU@>F(RQ=u46fqB&h5P z;cOCuAAWT9o{5~3{pBGGT~IsQx*CgRKN-Ve|8627GJaMmjQUJGX1TNLE{QK0=g2iy zW$SXHAC^t``SDH+v;>vrtzoT?uytSrZza9Y;yjq7b?v2utxTgL^D&S zsWSYueN|7spw3u(VVdh~WsQcs;M2XLn;}oT*f&tq^VPnX_7Ok<&pkJ z7??_L(%;s0V?DSs{!Tw9hnY4jBx(G2k+~Yn{ElJ1ZfEn?@Bsf4^v;)?>+Tc3y%&P_ z{`a^KOZ5v`!+qE3J5B_&tT@~fg3eTNj`U?0xoJ1lnpam%z+V1070Rw%`3xawF0t&j zq@?J;+5|?C@!#sIYv|&hrWF&1Y<=jANymr`T$3xfFRU)-*- zq(ozEnU_A9!d`ieBF&53oH?wi!!g4JGw-+&?M}HVdWh;A{d-8av?lV40_h^YJ9TGr z%#PTS&&Xru|416KVa7Y=7Z7^*Tl$9W*=;i+Nz3;R@LOGJx9|#!tLfu<(&Jk9g#Z~r z4waUet_r*woP)1h*wv;cK+>B~ZdCz+mUm|cklF7X+C{2D zhr2{*AgX&M{PXn6tCt64Cvdz<-db85A=QV%Kg|B9r25 zUoU&U^ZE`m%_90pdP#SYYs=lcLJ%ngl@@N(PfORyl?F<_SYr1r+hh(-!_(9b3XTCxO=X8{LmG;n_1glVw&kvhJr?|I18 z54^sOLkJ937li;yqddCFz0N!pO_Jg8f(F5aHlpVd0Pw z5a1C}kx@}mkWo<3(6KSm(6P`_P%!Z^v2bwl@bFME2ng|U39)hUaQ|Zh1@mtXEF2OX z91<=X3L5VJH+}R0un?iPpo3tbC;`w|P%v0fA433A0N|fy|Ec?b2?iD#4gdv@fQa;O zSQZli1q}m>00##T_n-c70BFF!nb@!tlpJvIIGkcC##G|Y!IubJs!4^oCXM~G+lbU( zU9Ny3MR=ykYE1(YbJzGZuFX6Dco9JX{uA{7Bmw@HHyr%GF=i|%0QA3K{MX*q(up1i0f z+^GlIH+O@JW8%bl4~HLs{Ii?fvENQB7s8W&mTNL}2U0Lc6bI*IDsViVL_=_F%5!fH z#z@!%-m@TH8ayeJ*Ds9G5DiS0O-tDrGC;qx_b+8x=S-1*P7!Xu^Pz~P7B}l5%+Iezs+-)!8_vE3mW`Jfya08!L#7TB;MPJkDR5B8M|m6yiVk@efyrBqjK> ze0`zdQc4Si!kmdiU;oKaG+SO-l?^Ec(|(NTX(kFKY%nDY--po=unq(?H7t1 z-lmYVaM;gO_rcuQYoZ`j-dgz)qe56`|63RAVqiaF-(95``q&Z(G8;r4B8&cn(NJqS%y;hH!=tYKSs669H2HRrPXHp|?fkfCBVxA4CiABa-*ePH- zqtKo+{uoUJ5@WiKbr9^yf`qzn>y||yu$541rE_(6LF|1bRkpWau z6;H1{0hO6t*@LBMg_=&62ixyB?4f8Ae*By!h;iIg0Z7$+Dq9(ZTKq*Tp`QhpROh$W zx#f0VaVshC$dPvAKr^HVH_BS@;3zwAS_o@HByK7<45^#qk)l-{X%2W_Vx<;OEobJF zWdOfoV6+7ZFK^lzHAQ%YL*@tI#S(0bDY9RPa~K<;0t??HQwRvT!0ot`KmkVbQvrpj zM|;K=f>@1glgz7X8*HN@(i&}t`H9r1KjBXt7Q2ED6R$;A^fhtE94PeF{TCddRK#|4 z1T3PxHfo1pILs!U`H??4a;BJ#(-NpAm6@?n$0yHw*b_nUg^Pm7BtpyF(z3r=%_rEA z0}R=HLH8*o+!24UNf1l$4KM@fZjsKi9~TK)tv9BPmoV%*Ir~>u#)^P9xf9d3KYw)T z@zvg2ddr1ewcig$J6y^7t6ov=WF&9&Q2Xb2oUq*alx9Ch&i%y;+kgMrU2kLrQx`(r3bN@FGtAKD3BC9?gSEp6ewo zAmM(v`xhe7%)XpMz zjA*!7z!Y@U^yNwQr#i$tIII=@8>2^2ap zzFnmCppFrSKO14&tPJ;=C=FdXjRUmqm#SWrnFl7l!f~z6CJ2&PVZGPPc(;k&1C;qKhd1kbr@(%ZaKNIl@r%vGP?jV8@EFM;c9cVjsJ8JG5Ap0@2a8`k z{`ZP$mf3QLrHp^1m2H#*TNUSUn9>2*Eio1(o{q)3FioOOFH7>H$O8_ig|dYZwAsVa z?nqR+FQn>Pg`b5@nk}rLopXJVlsqMW`E33 zI#!V@q7grU4Mg6N`v%dk4S4qW%VZzpB<30^n%|EH$TyB$LTLh3HC1;s*JrW0NO9v1 zwi>P^hCM^F1}Z-Fv+HDu@2;!z1Yt7sx@l-t9wxQyx;+)CF}9z60AO6Rsf%FyeoMx7 zRMT%Q7*eN-u4?MDp7rZ_nwlgP{H;27*vPUD{!K`eP-Q-RK!;1%|AnmlEce&2`eX|!CEMGQjWUdrI|&xyF}-w z$UCW=>N(KH0R|;90_0Ufx5S#^Mh$=~n=d7c=zHUq=eF9-IaDSN=4e&=mE|;itTMam zN{b_i>5COH5uAXN_ikY$kqmV!>}N|4?pPq&1o>8V^rjC%zpB~grrqj^B^r~}ta4E+ z4+qZ5tA!|SH-a>XupDzkz0*|(IBVU*Vm}AcloHq*bxC+<%8nu|cjisLZK-an|E%*; zn+`$}KuKf1=^$J!udr}A3^F-=K#i))uGOLyU75NSE8G?tiL{Kkk{N1JO+YOmPQVq5 zKv1~pY2S@1a=ZJXd7Jsij)T4hZV=dF;@Ocs2#yt{+71kVdVYSaxzOsix0X|&bG>jh z3z%VEeX61;F&5--kR&+Yq4)s&y)#HFURlLd%4UoB07Uq^_!};@cM@@Y02u61nTOp) zv6Su%Z4a3&mL|ge-ilT|{;(C6{#ETNwD`)DYvx9%HCar25Yy=o7`&*e;Nx9vN4W0MNT(HZ7=L-9g(k+ihONQOEC&$->3Rbg zo7kbyuH{BI+}4r2{<_T|jlhv+mlgLp(jc>!i0ptcGW>C2U~aTU6{EZ%WJ%@M$qgal z#cM=t+=PXC+=R$g9LtNw=ai?H6k}iD=aP6IzEMV+Us4XCTJhu^B*TR^he3e$p&@vg zg5PG(7lLYIaiU|PXy^+$)xzO}MPV8Ll+_B>`qGO+c`cVwA((O(bL(K+P@*=L{#qpk zWW)*{_nD3HolZ^#w**JC@Zp9KsB@vB2oHhSf6d6#X7h0YS>m~ybUYGErw|txfnR9| zXUw91r?uelc+->cLpKx)BwvX#tcz7nIv34yl;Tqp2~_rnYAw`K$1+^#Rh<=`Gv5r1 zUjsjV08A=d;Q1Mo)A+?~%qEcW?l#_NGh;bLR$v&bWU;6z!zx()67&7klKM0EtIh;&{&~zMRsz$YJm>g@r^fS)}e(thxripkNob>84R1V8Y zJf~}h(=k*0wM2o4u1C2=k*E}w-F6F+=NFtLRFA3y1YMPyNkR&-;a6mLilEOIR2C%b z55TQ^f^=p&WJe;{kP~|7IBhHCN4cS-)th$1k&>mrLuD{*wib}4j4XNfRgr#_qAoyw z`G;c6!Gz3=C!cG_aw`sg?BH;VyhrjNY$%V7Ha;~^uAXw9a^1xbJf4;=J%tQ91$xcq zDCIFlE+iB@HRY&PGJJ68#=PI`wIL#IyKEf_hvi@fH!T5OinG?#4yR+fG<>VYB7x+I zLdYy^Wf}F}`<$WMF?y4bmRk~AD9{MkUc@wvg|o{0ZSIX=u`{JCdKzE;I?0@7&)wbU zji$@^RvkQV@C6A{Hp8m7ANk|041$z)N|KRxI~3}t#9fMLt|mayisgE#2*C_}*stw7 zFfR@%Z8mVL{!X>RL|v0yanPO@?)L5i28|GlGtH}?PT5~;6RP|?7lEL@GgLb2H4LIj zQ&XM`kO&Ap6%n^hmKCF#qn9=)(dja!;{j`SLM;B?X$2g~_xE3I9Ak-ln2asSk{bho zMk6fXsIaA3T8X#wf5*Q8^`N7sIkD$g6E5uv5euYUR} zKV>XLpd_VaLI^$_-~*t1xCE{k2&>+Khpmj#%t{M(nY3G(Yzhc~m(+7Z84gTFM0^Oh$(wO?>ClrpLrAV{3Ex0I#*4VXsz&gT9YSAx zRlCZInNvcYhPFzc4XX%X@I;?8T<~2CuVC$9?Wa2bftn^!jG+?=lXf&?}9xC6=2{^@IW%}{ZbE4%Li#P=9-u* zU!sW!0EK0RL=U^A2H3mdEu##2RqCyneSyx;H7$dtP+E>FPn@Za9t9I(YidOx7nR8N zO)y>HbVzBN18||x8VRMDickZW9-q&^8q4&wR#%z74@&IKQ20gF zo}!}juko@yhJO*tEEx`JTSLV~eg0i0bGSX6Lr&*f$){^3cjume!{afJ;*Rp**>na%xw)rVYg+=!v-BkJ)xqGU(Dal-f8{4{hc`iU9I=FW z8zGk}vEZMbTA#A0gcehVuCLR~%kVYl83D0&kv+%wNlcQ-h#b-xfh{Y^*NzrR^nlL2 zV-q_Co*r+HE1$)48(i5x)l?uP$w6NlyA=Vuw})(s0v?sLBKg|w&t_ExlT<{_%{`)v zYndFy`jZfjhKO}cJ28e^v#GbW^b$?ecxj1DtG_x(k7Y1r^*1yj1gh6+9LYf&+-8l+ zW!St9(hWhh)70H1nX7_1{F}?sE0n9oOJ5K*(u*dxvYe}H>c!&Z;69OKBWjtgP#429 z{yEH-=^U1vge$sMZV4M#lgwjWu;(=~FPp)o8~Omm&gY9H>!90Z!uL&Z06?(xNamVdalAjhZQMjW%eIs0=4j`lM=XP>QJgqtRvC=p=rII!;Y zhDI5GldFM^M>14>f^vItHAjx^mZ%BfY52BYm@gG%>QS;6QmK3sz{IbBemw^I7UG|7 zK3?>@j0g)AdbiEYEk+S#E(ku3+Bk0_5OM&wQx#s~KmZEVg!uaNT)w#ZtPqF}hzpt8WJ74-ucgFxU-5Oefc%*cXlAMU!9MnBU#^ z`jRyq(KixG8L4{KxY+ji)tT>hj-3+7X&W%h34Lw}mAMqbSn(Vh?ykBiqZKmWjV$}U z!#}h6_{+c`+HsjVzE>8L;M9CV}?xixyp{CxAR?cQB!c^UlPNRi?`fEzP1x52@W6cI%01{{o7ct z9yL|FK(j_M0n*Lvy7O^!%$slba)c`sfbT~8^)>9*w2;R-Ca)gk+~(b*%=NXo87{Z} zHiE%bhGsJuC~#x5M2WhQZVfCs-Wt z@!B_zx@Yj5LxLej!i4RVLu)!OhiF4c(BkyJj#8L3BkA?>YaN3$+ZbKX7D<DicYRY>;@!{Z@$KALkE z;MVzts95b&gPESxBY%C@AKC@>rz|X^-2~Zjy;B|`!CGg&J3XT+fiVf@ohOAkwW}^; z1+~nS9H%~7Bg9>gJwp>W)qe^JH$nc!oD-9AWwNUyfbI`toq?`k5C+-gNd!0|6kC}H3+ew)kf(IhE} z4cN0-Oee&Na8+$6*n;B>)gvm4gyqmUDt^$bk{#E`)L?`P76!q{g1({XG7s8>ewSFL zsL|;ZH5|_yp!H;Z9{-J+EMPK;5Uob@Ei0aIH9HTlhKNdj$>A?LAMC0kFXzr#8yXkt zWWXexuBGfV@YZOQQKnkOUaes@-j^chK!8B%_ydqZ+G6?GYx)5w`-5B_Pc8pzNm!?4 zL?R& zIBnxO!+afVmZm^#W{ShJ2*YwYZfvb?U6$Q4ZFW#)9G`&7Pl(PMBp^X8heeC42k*C> zd#IFUuA(bu`S-mhCy{{`H|EBYN=2bl&^`bQ;I8JEdK#5Cb95-ZXFRWS@_jy45Kuc*2$y_klm~AWV9;3VeXi1(9d#i6-cTjdLEtv z&F+)7v?afRLzGo8{Fk1eQG4@gmId`96rNdZZKarN<-Zu*m!7K03^jg!V{}H;?&5vO z3fO3WJt+k`WG?=Z>2K@fAm1<{>5&OY1U1C!U)sL+Xrk2_j01UESI|j&2MD@PA}Htl z$}{R|GbG(@hZ}yy+g{d|#)< z9=Bk5V&#DrSzjt=(~JUxBy{po5{wq}r(Cli!;!e?gI0W4Uyh_RI(+%w>D=N&EE-R! zdWuj41y?Cjr$+-{2$KAT6)kd?gt55H;xvo6F2%v zrB3QET``qGUO087_QzeCHec1{&|UWRHP%ZMe_19yG6CDNvCaDb2JfbR$MY&0d=Q~w z5)Y||_7h%}hl^&4m+5b}RuB#PGE^2$M219}C$-x^aYdc{i@dMU4!NIXz^;&x8j!xn zI5i?>Rd+{Eu}Ug)OwX)c9G;`V(NZC{=Q7TC2wrJ|B)LA5WAc$!mI1$^da+6ha%pbw zgJ;`}Q56^}R1!luI`4H??xg(JdTj;UHPB=qx|0x`7d-sy^-_qpcQQll4b~U;LfwC= z%NsYxzv1;n)0w+e?m||qP^3=tYP9Ip)9pOMO)Y8=WXjenk=LuNWQty_weXK%EUa6;P}03_VZA0r^E$hwRycd+JdC-5P8- zS4ere{{iUqx`L^CT;YUvT9q!t76`*p(S5`MU^kj}_VdWGGHc!3NYa z?@=L;ZtSb23-XR!S$Dl+@xe9e)vD8UM}c|sF~`nk8v|OD4*)J-MAVnnEWM@#udqn; zQ`fhpcv7pxHM(HqEf4XTmBy5<4&#+Zh15}?Okvq?HET3H*F8rKQ3hcVch1gA zQx&m@h+?~V3@+OCs3pPp{WbWFdQJcuQgS+ipGofY*ce1C660)ua>n~;-)J3O>qAa9 zZJjRvZ7?9EeEeU`6>ky0_5*N|XKVAtX|dL6?z!F;MI*LNGDve8x5`k?m;IgY)JFn( zuqJRqYT}Hgee>ph_(rkW20we@@RVnQS=6#8YC!G!=3B9~r8lv%>3s6u;*rUGCn=G> z{1VT^Z9d34n+%NB6F-a0_cmB1yRZY4D$O`JFMiROe~z;1VBV4r z6+Ii(B?GUb_hO8OvDi}81S!qoQ{_;oj_K(iAvL+<2);%BT3CJwH7mjVWG=CCrdjh; z_8e_jd2LSR=xz059-rzWTS1_<90Hgm*J=W$eRHd<9NzF}Fp-z@7%Ti4zFw02W=K7o za>T2;wPio@on{BAwzv@5RuXZeV>j3zXXeJSsIHk1R(p&OLCswv8NWEuT|KEtI*Z#{ zASOiaIj^H&n~rGUYX+QsA-BhT$>qwn#@e!2B{=-EVtdxW>1S4yRX3iR-?u`5NNB)K zoqTI_LtEW4*ecK*>n|UPMR|lK>kH`kOKijUd-wd2PW=pZ-YXq`mP#Hf1d#UDxj0g> z-Pdj0@gdH2Y7?s$A>)#QVC0H9qO4+I5MNr3PJnGmN`+l#p^9bF30sp`)<~0IM*7j4 zcB>X;W{vnfxQpM~4PlU~eFx3|Jxcl&zeSI8`c8+KnQo3%^Vos2cK6%Qs9 zyvJjP5tZ)Yp*n_tQjE|)41Mbqd0956hB~Wo7(QP`;Ey}dC3GZ1V^6^$H^Yb1mXt%? zDul!pW<8J`i=ozx9vAtgwNaXyR>5TZub-k+A*uz&!TVwV=*Y}tuUnTD*_R?D(Jb@L(fI(3!S>N{LUi)xJa`@Q0y=4;C&^bZ#)!}E za`tbw>3UHAcB|&&`EN)?1vWL~dwS86AXsk2jRLv8-;C=yO3>pY?H&`Dl{gxB*9w53 z)YPWrsDx3!>yA_7MY&58pbcvIPPR55|G?o9&#r7sF5UmmJkBm|{*c7W{-(ONPMH0g z4noP%+2e-}FW+cNQZ_*_GfHXIS{w9uw|=&%l?X4Au2;`-(x{%gn@|C2(ifLLgRUneM37NE3$gUbo}WA3@zsA;z7qXTLUe934tuY7^7jK^DKd0dHb}y} zI`T(a^8>&+&9u^)e_vn5ZK)3gHLnbONoXC69`?%&&meo6;?{4(`l9X*?>l{?MK#9O zg1noFwpX|JY4E3KbRJp~B%Qgaft7%^X!Km?!EWBvjbJ+&;r1!OlXh@DAsR-PSM9qi zEcK}SoHpM@4CyhC{jII!$io;s3IFHnbdaajMsBLfBQx*XBW5mq7{(oI0>97Q7!${8 zQ37)JZV00B-%E{qr&Jo45Tv@O)2T$==AX9C&{G1=Dt|xvG!tAeqhqsl4G+Z zJInq~kzjo!#8og6%;pXv=nW)Evgd+YGjE}eE4}olM>czjrU*{-mU&yLdhDzDS^lu- zXO~Dp$TwKTZx#uUkzG6lNwj&;w!&5Oy7LW2h!?{;sWEUu_imu6AD68Z7V2y( zi!&9r^o`&=(ZiAu=#34p=%jhIb^9XE5=|g8h=$(#D%w%W=f^f(KAH8}FDsdL`hGJV za&8`qvT%6hka_Z3-V_9^6>3t;_ z&h51=TeSC|2iICzJ#+qca?Rw&d#^GSeUW`9KGo5So-GQqYs@J8B@dolLLaT~{RJC?GQzU6!XaCCST*tJ_;Pd(x}8dN?29ljfJb4&VE zh*W*i)TnRshG5L1#O$>#`@niVfwf7G|_sOrtqx#av zjk*jq-It%@eboq#Ma;z0__ibdIlh520)LTF=^F>89fbxcLjRc$@8llII@XhH`uOR+Nja%{ZI|oin*;OE7B4{ro<3hkpb(_ zl76-~$;#|#RoGtZ6q^Vc^I&N)bg7r3iu3&FKJVe;D>o>VK#2AV41&9QJmNpx4W6|H zKMK=x*zh5p!q*sSxhvU$4JC2L-J3vge$eS#_VK(m3+sLIr=ZLIo*IhNJ}-f7;q>1+ z=uxYAMEQal{)zKrjs}a)HosOb-D4E?n>)tO8FTDw{%zFZ82kkHng7#;A!D>9MIa3p zK2U$wK%W~|>wRY&dYEf#G>LekXyy02srSHWJQ5Gcs&kGuov*rewDI|pB~@5yxivAV zqsyJv?m6Q{2OJ8#9dF?{hw$nZK-56R=PVUu0tjfx#=S{&YwEkCwXzePN$g#|yIF&< zkHz_&m9S6{{Aj2d>hO|JAt%WoZqBBJb!q&Y$7+tAT_EAi?zMv0+CN9XgR2bk4#Z4& zk80oqfC5SJd<= z)gB7$IqnVd*efOvFuo-Q{&NM*zNO(TzEzZCirAgp$W$J(ylbuvN3`XbSaV3!t2X`T zL2AOV`9h6vGp3)O3Kc{9+K8i})rXa>R~3J#1f6dwUg#{?8LxqV>DKQSio=rFn8Onw zje$t){F16_4j4Ln`nBz6x70(g^p>(0^oh&uYS9h{H>A_?C zyiOygku`m-T@&xfrv;Im@N^5*uktd-4~4|g7W%bvvg-aw#I@-^Y5y$>tHKmuB3 zb|~kBZfRMG1wrwGp;E@-mug@28J`n??4Vubw+9>IH|4Gu(i(I?V)viW`pI0h8jUwB zn?JvcPbbo}H#5M`pI7Rygc~s%k9I60SRpOXyx#4zFZGPKOEYJecfdQhJE|XSHP2;4 zqIj%wqPFp|^Y z5($o-lKw~zM{d|tnop)W_@m%3sWak)5b_I=ow$+gYT_^Fw`mSUDNA;rf5*TmkC@dm zZ$U5xT-B8)7}Mg?slU@DGiUT1)6W(bxVq1F?sHR$d;nUsBWs%V1r2cYKckb1)q}@B zrP9nQdKONu4p-KIkve{Gr#RTEX#?T+*OnAIY8A|8Fte3tljBX=o+_HhQ0&eJ`;*&h zQrN(%3!eHnibQG|*}h647e$IE&F(u2c;A0h_hhX4*X3g2Er-1Qc*^Tu((q7sLyF!* zDA$zHqWXqo_75n4V`ore#6JR|54cLfG&i9B)F?Nq5V0fu@Ci1RIrRfjP>8x;{)Vv# zh^t>Oq4ZriD?6gzJ-W6qT!&+XcMtzm6xk67LA-<(Es;+b+i-_rT~tKpwvrVzeu<() z$_Vk`F{G|(RL!BBB$-RE@XRcGU7@nsWP_clj|UQ$7Sk20qQz+rp{l#?)XX?r?`Fg~ zf6?QkCEd?xWvcLS-}=c~K^Jf`?x&&Oym=$encca5GuB_LNC%6_zxl|_7yQ#D0urdA z_-XoHP9ouwVL3t;U)WT2{IWn}vx!8;&hy<$Ig5<$ayJK=-N{m&I~_eLzr`pgv3d4$ zE3&o>BSP3bF>jH2Nu$=#a4$9Cqu=G3OJ5%`b&!#+ld#?D5eZH(H_N9)%1T zv5Q48rZB8NzSxEs@90k&fOH=l9B8uN<=3bdMIU65{snc7)U*fjo86A|!eL$Xx4NQ{ zwQKQaBb4;Nvaz!G`qQ-1E5syvjJojUH`-o0xP8>vqRcv+q=iQm7Vx_#<2?m0=(9xq zmYj&hgiRaBZ02Y9Vym3tWs_|BYC6jXi`x-p;SP_)hW;@}x#}&r`bng@FFU-#9{}}( z@Rr7uSZ5BlqBo*>F!F?B$Tl{n#6JYnyt4tr8Ooz?!%;ihXDRVW=!F%2*7a4Noa>u% z#b>`SJ_|psS6$U=DTv1GJR=?qET&n791WFTgx_geEb@(;tu=|c%Up)U|Gj@Z{5tB$ zAi$}L(eE70bu;ZLs4K2BERp8XlXnAg+{3lALl4E(Qq`GPUAIfaWi?>XBvyeWPQ*nv zkw>Fd9IqkFG4BsF-YVzd__?c^8#@|Tp0}3`5$@ZO0$-<@=Y>8jsup5xgDnSM#~(Xn z?cV7zNB3QewI?=@!j3kySUucx68}@{x@dFyy8i+RX4Mm_7C5@07r9m^DxuilTd`-B*x%-KcpP`55kmWsc^rPx@A3)8 zW<|Y?IWyycHo`)wh+AZde0bPpB_N6DP+MZLcmw9-5A@Cns3W`7sYaVLiJtmqMk8_n zhHo-bV{>IOg!|!2-{#G7*r{uM->v(lbzJS#)W6}ibY~s}Q>xJBwwO*sXr%8ncL+bx zocT}AhFPeJwWw`K%J`_6d`Pvw7w zx79oIGvbP+#2*JOt37n%AA-d3xVMT=5BokFF!V|F$NVvifu2tfxBc>=U2H*MhqU_(Tuy&bu7 z2C$fe4441x_k(hn)sd21jip*yqZwq=b5J^DvHx)>CuM9MgB)p_d%(PT^UTJkTLe}- z7A7UDWBKcOL``f)e@#wtB_C{3=vR7r^B7ATiwP`L$mVq5y#zlaXtw^5vc7_DS`DG! zWFWJLI1Seu5)1yt+0!(~rdrBv{%m1WL{lQ)KrpMVtpt7eTygo&d#qVmvXxDInfh2f zXkqGrLe8Cd&(p`e++h=t6n>BR4SXqG%N2l9zbI_;!XHLh&g#-(t1D^Q#niLQ!m^dn z(($~1k~#Bi#=qei0S>umPXa1~atkINuq#j8pLPx+~dLz6?O zvYeaa&e=(JrM=E;-9IS*!hnbLVy(s@u|>cQZ}MpTnPBPOOEHXDw6`#8Mgn%>_SAzm zK6}^hoU{%LF!oO*wbNW{AJ2)!5b_h7;Ign8F-hbWH#tKoSENBQM)tea}e7=>piR0meJ{L9HsN$cX_{ui$rGLtqcN2_Vneu_OFpYtWi!md}U=0-`b~S zu}3UQlH+>+nMMT`4P;G~b26m zUr%UK!8AGAD-YX0|4uy^@}5jL)Us69V+*HaNqSq5oEy6NXQL~KR2Bc*w8Cvurudjc z_55Kgp4NAUFC;`gY*X1cnFXtEZfaIFVj!h2C^d^1)&iR9f1^ZO663#d-5E-sJT&AI zmko_W;I>FgX}zaM6P^tD{}~T)Y*lSVo?#LsdhiE#PqmK4<<+D)i;Igh`E;{Hp|4+m zx18?PEmBz}V@`4`y3T&lH1W9Jd0 ziUVx8W&s}_owvc)+&=mWY*Lk_3-f9#_q8#^KMe6E%T^3+j+uN||{lWK@&=Ko+;PREL0new^K^_z-IV^fnG*}6-z+V zABw>!bowsgsaLXd+uEiR622^)A0!9w_=^j*?WsGa8NT<^FLBqBFXoQj(|3Ayq$ZI< zDxaR|^BO{v+HnVSu64|E3;w`19rQ0CuaIx1xaox+&5p+V{Yi!^*QNkyfG`I8KcQD~ zcRTM`@9}SR#0l53*ChUmW*$(}GiZ8|Y5pBngzHR@HZjz?xmsiEry6b<6B+6=W@<0* zt6<|5oZ~qZE&&ZEm^jvky!>>>~QIoZLDpqE4=xRyBePCh~{5BxgV_hxm#4xKTq?0O!@^vJYnZyVHXMt_i1yLX%&AsqL~yl;-*673D4?w^+~=;r?XD`iGS88~d40p*>Tr=-+V>i3Pj2*+P4IALV#%|0_otn2ykX@!v3Q zRIvS#78&6oGe_UcPT_&2MvK`(Hh4Rw4ye}T<4x2HE+|usHq!!3j<|{6s53)clVb=v z{uYog-pTfl(5YrgtojcTGeEdA6S6B+5=N7wBF$A-2yfKP`%loH9Tt#?Kef6~Lxk-Z z^fr(+q%S32qWXNcpvAkj=0)Am7=O+Eo|o0TN=-`T-b>F+AxKRw-P=vDwa;8n)?irQ zX{4aIQeh`*QbAi%rObvbYE29^1*iX&QMT?;ZM4=TPXL$%wz`d|#q1QEj=1%_;kPcf zYU?Wgxc57%+Z?0Mj_~MSOPIJOos=9H73b3Hhj*90fvM{st4U0(+8-MaTbL({U^0&{ zC`_qdC*0<)X>X9!W;N50Yi$d9d8~6(WAPYtMbY}J541BY{#jkpQ#C#c=j=0Buu4tk zWw*$>`=FXsV@x#NiG1R?o|~s&K2M~pS*z$|lA@nwuqGn8d>ClQGXbRaDmcU8y&cza z)C^%aMyivYFNmL1EnS#a(*IK^_)eB@dcTf-RynpA`DAWJwsP7CUt27coqQQ1`F*=l z=rwCbULLL~KSV_Fue-sz?fnWsA_r;xQT0ZzE#rRFz6~mt$K&`(;6^vDv3un_1CDsF z`vbr&QtX&TeB9Z3Li0mL;>;xFizhJaO@`DeMq=E6||GpEb7oXzFr-9-cC#!Ey>Kj%n!aLJ?}WsLiwmI-01(^h-x^43H3|>~oAwJOYZRwEGFC~C#0*0pI^%F~$qkity)H)B zJMXz@%m&a&rNg3tPUv>XJn$QQd}aQncFeJ{n>crVYFwU5+QC?;At> zpRo!+DTX=!a=hrXx=&oJ_s^GQnCTaERW>L&k6-!AHW;`f zmC7p_y_{u&JEnKz_c4&uE%w*m^zW4CQAATbOU@>Sf%x%rAQ!(h3HryUuUpId$JQ@Q zGRM!ZvT`VioFeXNAXW*^bFrFA6b!TyeG(hD0Ix z2DG(L_*mH}Si}WL=kBUpWc$`DnhNoubuHWJSnB8|cX~A@5-Z^h%%TDVKZnIj5uKSF zDrKMPxih&J#<*dL(sZzNK8^9iQ|9AkQ+Z&(w!h3%LKJ~^{2PS`goIaeZ(=t*zYCp) z!m%o}+hlA7No3McvtwNYVyjO_nEg`lQ!3`zOOC#q`8iz5F`P9{N2C7cp*34qwNXW* zx9ojK3gQv6#p8Cgf%*gNHcgS+kF)dHx|Nk$!+<3LhvGEBwbyGE^fN#dy^=owMmn?z z$$Y+}H+LuCdA2Z4HZil&Ixd-m^K&OfVi zs-%dg!82`mp{9g- z{}TW*|IK^mvOD5X-8G{W$nev}DVceqT56*TPQK_SM*FlSEm#WlP>sniY{>w;YIr=7 zB|kLTfH?C=#CjU8O3X@eAlicLUsX7HAlh&?E8SfZ@&Jv6@jiT7dGPi6ENehcLgK5& zF$g%$V|~xT5Tm_hH%r&ArR%0)!#MI*F^?{^lv@l%Hv z3p-ynyTN9)wR8iq#CPX6QENki=TPS_Op=2dZ6{JA+BAanm6MMd>xssEIi?~{XLr}= zs~$MaWjoU>TSEdn+jee}qE@gi0?=j7`|?gfGI`IMsDm48!Nt>7J3uzjUEh}^u-7Z6 zJOMfQ@=aFM;w4lrUA~Yx_YRBX;76 zokA^D$VV*jZ2GMfX(ZL4kJ^WEm64vvIQc3l(T*Hk5=|YZu*9U!*6{Z}Y7sYn{{R&c zI*0!NlFQB~iU{~b2Q=74YHvwHdF?u;4|97Og&N?72RhU?oreDa$cu@ijSo@<|Rx{Q*c7REU(H-{^_G=tSA&f~dQ0p{WwpC=TP5OCcj)oriky)q^ zQlk^hR#0jhpjfIAVY1B1-kEGlV8DQn;b0N z4ku=AvP)BT<1|k%FJ7}tJV_ojU8nuVeuy(rL$nNU=C0_R4!qS3m$Qoh0O4I#hoV82 zXq6YyHpysS^UWS*)8vIhSd4h)fg61tD`^_aStLN4-$OHAix1s5k`!!~L3)B$$pJHb z4}S#(u)<1o{A(7;FFS^Z@V*oY+IU@oc3@TFj#WXPwug~A-up}6S;&>Z1{VJ<1SJDy1n`hE`Qk^w7A zl9=a(3eu!IqLChODwKb%E~*b#H9zZ1EB^pBHvxObQw#%%M9zs)p&9FWDmF&PifI^| z{%N!C3Q8_cfFu&cif6q1kOO>C4k8i+ZR8L!GNo=d^C0)It70^KX%jj(lc{LKjZq{q zlJ>}$QD9Iz$XY_|Xazf$-FFn6UDs){Vl$;<*SOJ!&8N9%_sHpM1sW-={l~u_n(UBmy=msL5?t9lg+N5 zFJFQ*Gr=Iur*Sq<>D6A)Xsnt{*{0x_Hf`g>*X_b-En>$ZU#~?i43W+7PsKpmfs~T=sGXxyBH*S+C#1K~c`aG( z=FNXOt0vs$s)HF*m)=&@oexroR5A;=LZW!qZWU^8Og{!#Wxp)YXKbxEekrj%qgJY6 z9s|X4Y8l{`X;~-F1)U1Zi^*Zen=4IEf;P=F185sT1FWH@uUAc=bv&&Qp+~fV)9`$2 ztQ`Yo7i&G95Z5oNwgZW7iS~_$V)+26*w}1wBAiLHcX};2a!hVc&7g*c8&#ZZe&n-B zY284xT5M6RR!+>JW)9gafBL*jWKpyb44(IH4vT2CIK$dI-uzwWk@km(#)4KmQNS;J z9mGM#{Fz?+N73VB`#riB#j%S!*EG@_)_RruRo6>yse#E@zI=Z)h-c)RFLoYl8#D^v zdnMyDZcj98Y2A$`W!v71G%*7JJ!^434t&(BqK+IHZX`O>1dDzAcq2Q^aJxT>Rxmgm z!!$=c>rrEqFi-iKr6qT?+6@v^Q2pyGh&9o3{ZvSU1HA8_RM5URN`>!NHH~Z-Xa`c3 zk*uZ3YyP0+!IH&o?Q?0p>26j9j}C{wH5fauaU>LA+D&PJo_C0N?XZ!N~+()4ZYwfl4TF zP=mVYQO_g_@hn=59po1ckzTOQXi<*kG-TU|a=jxR%2#F4I8Srlle9iFr^Q|oHb4>0 z(y(tj(+?8lpn!~WO99NClNO+@!2~`DBWp2CFrb|jZz82ms#S(nUg}=hXrLIWLbW{v zkR^FKS|-+I8vKG39^tmJ7OuS z_*Ra|?{|so*U!w*7Xr{IQD_Cb_+SNHFafnw*J7wyS==VF{80gS z3NX3&WStw0&T!koQ^AZN$GYsDdtS_CH*N}Lyh)$5j>~vq`DC;a-@7Stbz8Lf?@R;Z z0v+yZRT6aZ#i%Fbu<8Jm^Wc^Px~HP0J4|nd(#n&9;}H5M%-g$isIwk3BL4uvI~pXS zeo9SY4jVPb*zQX)Fj^X-YB{nVQ_IxW9`zX-0oI5$AiG5V_0GpYEeARS_ba(XmL ze(LX02oFt+9{VnSDb_W)WAIF9>v?Evd>eSbxh!aBXVY=C)tg4@b&3U+7`Bp(MDZfC zUr%*&vF$PKHx=^XlHP=g16b@KX|oWY8~u8{TfT=ajWia23#*Jn8Htsw0J7QroqeR} z`)q4n0#o=^29YX;3A>Arhs|VYwt})jvDz=Q!774zddWsO3~OsNCuSZD$l(4Q-?rE= z15t+82LAxG5JI2dTp{Bkt2JTmH(7&C=}QiSun@(uScsy>E=EA9cGVX}oxNQ(H3aAV ziOr;dIV$KkOQh5Bs{w|wvt(_%)FtD!1Srw*=4pFwZkt7uyOiHl= z-C6G30yD+;5v4+0;z`?{YDV%`^)Z8dI8Tzb2-J+PRQtvTr)jlO3w~=dS$(i5J}Dr! zR5MiXY^o?is4=fV)4HvrG(Ly3N3zEV#~3sCFI(47bDvXNYnB+bZX5j338YUamx2`m z1}T)fNnB`c0vcq>XDO|`!S_yq4Tk!531CSE z`g#uk0GdP;V3WxRHxma&E@^c{Bm1yWi<-e$TdGy?!@<0>35toR_dRk!Wi*^!=1lD* zDO*NNsU?N6Fijk{*(w*4o=%uJl@1hrl8vN0B(QtL&8OT|B%mrulNqH`PawpWGv7>+ z+E7e`Y&i=o%;uwP-B;oX*M^if-!&sSC6XZlt9+z|Y0bA06k{KDm0|MR?#^CFuww%} z%Jo{&>uyZRm?lhhWM6{lc{sw(3~_2Io4Z_|Xw#E62Ii^)Cd`{0o1!h8wua3nqUMyQ zp-VUh%rbZ4q|q77C?vQ~tDgxeltC^ERC*E8PbyocNry3(ZmVINnVU`J>hyNB(CqUc zl#*6fwU~>)UH&PcH=}0LtJm(ShA~sWBJfXyTHsJOH^#{=bp|5_@?gw@6vf3?Lx@jb z>2fU8*)2foH#4RpSIQXMSEu1NND!{Z?9O;t* zqQ{Qy3GP|pu0^v)?I-h;)5rbNRF(tT#m6f8D>%`oDes`-O~Z=QpL0HoTTavOW|e?o zZ&xe&Dc7@b<(!nBR#meYCxVs$#;S6pzKO9sf1+l3G;9KkX2$~+^5~Q~7<2J-Ya>n- z`|3QG+0tt6yIZv~D1DZ3tl#=f_peIPp51g!s?R9#9?uo>t$5w4D3|Jydn6+|iV)8w zJ5u*OG3_^3VZ%6~X|1?`E)z|AN75Qb97`^Uh4yGCD&m^ve#HPGPK=Y=HUVl?vgkPwOYe!j>K_@asL43Yv7GFV~J&r7;KR?&_@IQi|gNG z9?|p`iqv}zp4DrH)`&yjr{i5wO6hlbSG~1+JzpF>@!8LVOV_4dj-|vPcHmsv<-=&N3vcVw=T89>?F{<9ub#Q7i(oj4r21n{vYKYUdY@yfNVM5m6AUX71g@B4R ziVE?aY}X4uo7ah0qdCD7m0-PlL7cRFCT6Xt@?6@}{9d+~s^E8<#Wu+i-gMhA!=6mJ z+l-?da*WnhhDZmvx5=P;?u2Gc3k?c307)nWwwRRTZ@K{c*HVgjq$!w#yog(jfCt*5 z5zSIVcc~qUh+=^I$n%qktn5Al4|<=1s|S76gc!HbnYU^rygXU5m8iun4}Z-o5t_!F z)K3^FcRy7Jjr_ebOw(h-B@i|z;G?#sxS_svrSL-c686JWGouM5?Hh|$Mf>T#;!*d( z8oUSs#`kB%SDB`*C)g_b>OeaT@Zmy?bSMY@#3=D4dUXslLbYQCG`(aE%@!$OMUt;P zkhXT0YB=xTnxX`p6q3~aMk zXjlYSXAJJ;^-_jl+$55C*Iroo&6M`cL%u$0FubfGMcM~mHzy&yuuev*V8mw`)t*3p zc~)FAQnP0gZVz9KlMv4$WnZ@NQnOq+Ols^S3>MQ#+ z0H<`ha6*d{w_yjDM9p+3D4)hT};Z#g-|_CW{EiTvoju&*Hr&8Y{U{iz?e4=>?=dW>dJ5y)GqxKr;`&U0D z}&zYqVKm#f7v7c4>0IKgCrsk@^LYJaIuXcVYCZzn3H_h-TD(jXu+|=W`+XNx?&A4 z31#4)iK{v|ihC$z{MZb!hYn_R< zfoHV|vA3;Pv>Z{?F_`ruBcx@%OVECAJ;B zzTPLbmwz?&#;t*cfFT+1UOl9=Tq_o|3&95lh)(x$yFXl)uxMz8_E)iw=S%JrPOMB6j-`6y=p0AF6eeS?Fvlw%zb&&6Vr@wZt5tUVNn z@Sw$8sUaH8Wutq|3JJ{CttM<&Ae#yd%`kry(x7uJD28}aCT%(<0;+j3NU}^pJT#z@ znQeEG;P=w~^u!(H8!ZNw0>*bET5xCbN`y;|GTb7-pV{}XQLWJ69t0C+a}cRSU%bm7 z-5-Js6o}1eHj}`&4kc<4w^>>X?JG3KLy1?ONzgvYQ6_)sX_~LBd8X^G8m>QhfMgE} z37VK3gYG5k#YzKD6J|H4#w;1BgHCHl4+6guC10r}OtGebKKP|#_9e*#!#Q4}XH()@ zGw=6*bS6Kzs6I&hMESa65nu}Gtt16Qjb`&lfeRr~ zBsT2yH^uZ!3DRy#8XBrtr`BpfbfsA4?LarlNKDzesn5yd;bjgZySW2#M}rD-J?zOp0_f*X7GxYs z!m?@9V24>5?zKXrS8CtX@=}3Q#H;4%EaV`1n3JG$JS@zs0P)l`zcpb86ki0Cb}_Nx zmB{chj~4Uw>S-v(EJrYEx}w70tMO$rxH@te(B{~=qn6_&nA#+E{FIES+>lcxLO0_LU4u%K@^@rrr*eJzkIAtkHhe ztgmVdBhIP3<(IED=y0v(_E(EZO{YG+SIe;AFj}4{wd{PSCFmjTF4`6+2WBX*eNHl# zTr%K`Qy#CPi$uqh&myrPoQ=+`S54ezyPay%Wu-_Z*|eo}`Q6rczov9eaWGM6#FjlM+DBMxYnk3s z^7Zsy$)kPHc&`%G=u*;hx=%Z%y~{+0^5XoGyX5+>$g_pKnG7jtTgj1Wp@4=7c)(Pq z0v{4f#mUf+JH6B>!P!=&UO6a5?Kd+(2qEJPA2pGJW{Le}8%{}(APnVq6mRPK=7KC0 zJvk=QL3G3&&m^fPAp5K0_z$|8?$i>A<4RjwhI`Nu^eQM3R`UlAb%0Q+NeilJD_|RcdSfYozOYRb2 zeaWDKGoW$qpx%xBBCRHxL<6s?6l^8Bj3rkIA;i4dEysjmn7Q(GksZ<{Zq0WH6#^hTxdX1bfOYJ3R;p?Z(2Fz^c(|kGK%?(zt zOhcJ{6Hsk6o)upNnTlkdv#{+O^GgB`96{QNi}|Ol^{~IqRaZMiE1f@PdIIiAD0jNh zcX=i(-|7Y*21yCZDUgz43I6~zDpu%VSKLvKc`PfbquX91G&$)g zAxz%6N!vE{{#kbV#KTxHlan>fPWiN(^zz9~xe*zHn!F79O|ogcpRcdUdq$6ctbMT3LEFA=76%@iu9im;CSY)QB|GD!XMI7Y;pOxn+~HB&-`Mv+#4Fdq60Y#7wSHu?#@d{7F;Y6%_zl_^-* z$sP%_3cC^!Gl}q^aWvn5$sltAHEJ9HY2HCISO=OhjolV$1kR-bd<#bS-O$c93$I#i z7$j#)A)Af-(PJHb>3AR$)@V#4RFn*`Zv51Zh1;i97^Vfu0$&=r$fw-RGz8S{QRI@^ zj?#`i(@^-g&6i`wgCU#Gb2m(8f0wTmnETI^k?Z5`!DTH>v0%BS4sy939G#%~q`<=L zQWjH(7WOuNx1?(d#}8D%M82LqRdh3|TwgCiaGq|FD3d-;`6VjO7S?F3 zyy5vKti?zXNmju*S<3t#35X|HpA^E&X*)L;eBMiTXoA^eh?h9u%81VI6&o|V<7cHy}r3%vwwx#lt zgcIDOj}}>JI^z)}(W<2eQn?lfx=DddZ)P6{OooJO3ta!vFjBe*N z=tk!%KLm_pJXn+?9?;V9qfG0`NaABmEcVSr`k_|&cR4I5jzc6q@9L#UAI6vu_N5L# z{%E^SiqdL*t1d6vk$*18u5 zUiLfs`rw(ivAvsU%0iW zRY9}d+_O1N! zV3|~!3e|md6EG>kjB?At4rQh!2k)%`k%|>%@gVtOwFhzxW4o#)6P-yziI2rr)@+Fr zwt5yuFw2S*L+xEPT8}ZeFs@RSA1hkoY>Ci06h%NZFqE;*m4PnT&i@ zbZzRD5uLE|bt8*drR&8dIbfQ8Ce(ZrC;1@6df|Q7SaBsfxb;C8cqfxGv=+2DfMHO* zZqk&m?kUL52dES`i^UG9HY|Udl~>i?=AKgc)C^u7XD(N!K-*-04s%tZ7U{M86E9ms zcRTzf%dzB{?|G&G=;P*r4|zxqT|5?RfyC&MBJD1lwA-AL^-S`p5g|N|d0vu?u~2Qg z99cF5V9eRwb7qi$Ts)IdV(iB&(gt7|N%6bhtN_M$$ofrGz#=G($+&v)RuBqJ#$F0= zxRs1Ilz^F?vQma~hR>U%h9f>)ZbgW0-00+zj>0T=HGMNqv1QA{*F{(n9ouo`%^oAt zQ7X;n$wcK*gYI+za^oceI$rsF){1lwJF`nXXLdwEETNmjheV}Q(J3Y&Ue#anRn~JM zg^E(^$utf8yYOxI=D^GLet$?Tz`teloV~^Th_`H>t)`(gB zk~n7EMW!3+s~O7B4o^Q7RkgXyGWjbFA9P`tCPBlhs|=J%DI1)#@j-zR;uFusWI{Ix znSRSQ?1d8q-SOX=X3o+Rr!`r&t>?`&9h4)JcghU=n2Zqmt>B8idf{I>q8~3>;t;G8$=+7se>u0?jE;SXUXpJ1nsD?Yv@8Rd` z!A#D$hY((t$>jd0cdVx^QwM>e?Xj{45of*p_@$tft2dR;d)&?IKTN0Ot?27@Ev0W8 zr1D;`VL#Sra2-s(XJ7K02$L|reA8fJH{f+xF*YtY zri9ugYGoyxn#aD=(L^!UgI>fGV3{jok;Y0HfvLtkXi?6O1i~?}7X_%tfe6nSERDL5 zWczOFHA!cbbk9 zg&KDgrY?mGi!*>YNI=*b(b@KJP_d5ZU25KRzj_EO7^$wdqNmjCI9qnYYt$9`_sB zRMsYMP2*N5ADrA z1nY%2X)3sW@Z{d6tZcoEF1$@8=P5&KAh>t=`tnWK;{O0Khk{7n{toYWBk0L(8cy*U zxTL393F&Fcsp^)G5RJO11I>ZzzF#yuVGhcdd)+T)oFs8E;6|>os;oXLyKHjl;+umS zxKp9#rbJ581Xo}HY56B>!!=F^@Lknegi6q+qB~COhk_}?pyF~%l~NR1>mwd%sMzC% zHz8NpQeRZW9ok#CmAIh&)gV8$hSFJ{c{k{%whm5{r?st{K2Dt+<}MTPQ?@7A{{Z4c z8@C&-uU)ZRLd%EtsPndoO{kse$FtSwza!482dOU(sAfc<6Et872;EXb zKZ%#H2Zb*X@l>pVjACmK-6+QHEUy9r2US9g{aKO$oWu=JX`M-vQJ%NwBv@OC zb1Dvd>Tr*IQDYJ=Iw?@^VwwzNdiRvyc_bgN1u|7pca1z4;YlND_ofs&bugnDP!fF5 zcF4yLv7%y@kt1myjk#A88W_*?Q#1Zw3SV&5fwAoK;hF)%Hu6(wnBq(5qqN#q8KD5$ zpvaQp60}=POgALB;liy)Z8gsS03@ZRst5H=l(tRHD`_b*%K$p=t!#^npc@reXVFf- z3RZ=bo~e~85aPH>OLb5Qc80)oWYXlxqQaTNi)T97z?F1kYVbWuan5deC8r_s;;K8P zAGEa<+@ZFtPWic^J70mgUg$3ER_$cS#fvccBzLI`oBX5G-Iqy8EfYRB@^vw0DP4cd z%ctzR<>tYhp~>@{?|haOY`|{P6TYZ*Y2TX%J$&%n|k@92~JOvQ{HY} zHohMOX@n-lb=msM_DcjXl_fOP?vhRuY?CmFrHGPLABQSi!-{edz6UqK#npU0=e<}% zh%WDw11V9ayWwEywO4;tV$8{tS@Gnk3-t9nj)wxHnF$bR=NLtml8pHw6AUx=MjfZZJ^(DizTlugmJC7BC=}h+{cnlgsG4h;gWi$*0RD=l<3RUr0k~W0Ot!W~#44q5Q5M$Zp3^cQkub zivx@JXPQn385Rxe_@?x%2$nee7>!IpoZFA=w0$H<_Pr!AbX+SlQ&7JI^@?9-XRdO4 zou%v7g6B!3_d7qD=-}An29DY}O`kiyZztz_&Cr`$75GLRg{1`1tv>S#3~GP#RFL9sI*0TSV#Ms0LqFwlrMXSkbk0b?SmsGg!*vw< zf~5?I_2N*0U02@9G2-lUS!Fe^)Y6T--YPs)ttZ|}#53|yV6m=|bg7+jl)&3$mWl5T zFv|V}FNt8D{Yn*pRDf>3<>*V1qX1WD_!93;IF%ARe}qtSi- zbM@=2l&gE9oo`H(ncF$G%rN@(_@*KI#H={AJf}bN;+TiN%1qoRkUxVb!LE}$`tnt9 zvc^{@h9&pUY0iFXC2%;Kxw!;9n>ojn-=U@={}qJ&2? z&k95g8nOHK_j|Ke0TQ6A#Yv_wU-v%=ruN%G2jKnpl1L&mz6;x$Y8kuW`ac9nI&!$3 z`%Y=fKwAyUtTGx~1e0*s4vVPk%}Sv4j+ZK@)mWPh8!q348M3Rh05Luwm;V5gw2Wb~ zAp58`tDwkAK~Dxx=#qvJ$loZ+=t z$LO1b5_u_5#}S?_UDUuvm`{gQTRz^3tGzioJ`5_2W(Bl`^iZydb)bEt4>gboo(%6s z6_Dae8`N9rfII&HB&i;YA%S4lc}w45ZI;^n(X$ zLuSf4Uq;#Vg^rs@yLddGnsMHHx->PvM%$s{7AOYL+93frJI$o|tkRJpT4Ibt7jl*5 zFI`u86IC6UAwr2D?)^TCXQ@%5#G?6v0-B6!X+SR-#)BGWpbSH(4u4-2hYYjE`GXe37$qO@)_aW-Po`k*o6nw_X72_qr`d`JtBF{YmS zQqpuq1)%pyTS=8%(6I>coqOmNZ*^J%sS2zK{Ze`aPRZ&)G8_m1Rl}Jqg}RVM@I>Uw zbQMhKF^Y(f^IEE#)tIrO(F^V*cG&u(#fd|Bq@$g8caoBmM;fuGf&)gzc~Hv?!k!)( zrHt^fW|Bc87yGBlH5MQ|9p{tf*Q%}p-oyUJMxD}E5Q#A`I1+97cqNW4`Q!0W+D-)P z;G+_|<@88p8%YeAp7g9!c!uW9E{ai2m`c>wMtUID)+2qa2{{Ua%9v#EO$#&bbiaVKe znRh&7q(wlxG^aUBk_#y_kaKURtdcV_p{Q)HM!KK9G_XmZ8%+B8^?H$!8%pMD)Zu2J z#FO4zHtFd)Z;Y473R5_#VULpLi@bgfk!dKFt0(gS#^L1YcoCmKrPC_Q1 zKP4vyhMsq+8PPdzAXPHUXx)Fp*4DP(r-a!_m;>T2pM}2p=GXZuy{pj9>8m-oml+`7 z)uth^KQt&L&T$&-)NK(Q9$Y!iY5~qI8N=erO=1^KI41E0*u18zYUs((Hx_wuQwu;# zX%dq_uJ@j8FKSd?nuT}!_tmfqo*w9f8n+adOp zeeMdbBuqfu?o8QEQC|7X`eEKgh;&$vA6806X$2B?V^cH!Uo1U%Ak{@|>@w$?m545T zYW?3C%H;eLq5lB6RRmVwYlYLH9il$<{E!wfN$?kYqJGU8o#<5-c*R~k0-gI#PWb#% zYZ4@A)W;JI^xK^|s#sB9Z@f2gO>L=*%zkJYS&V8Sc&Wm)lt@*42`a=L#4bgHA7=`j zo0BDzOwG2FmOhD_JYmXzCsolSJ6bPJgku34=A4`?tH7_1-gv_U}41;Fip(3{Zv>Hw85_u!@&dZrs80(j`|IuyD1k`)jr`oWC1Zt){{X2qJ2C7ps~SX(aSrThh$n*|(KKCU2C8vn zu;X^92Nw_GvulWEg&2<)yEM6*(4!c!1>&`7q=OI9D+mD2vo_6XkF%$W3{CT`2;+=9 zIfL_>ECq(rhG1)98~J~M(nn~dem7DB!-ZY|@nf|c^Fx6fwrVHxP&m{9C;_!w_|ZP1 z4ID`U&w>G*maPRqzd7(jEJHP6WdQ1fgXWdC9x3VC0yu4H!9eKq(eA1^K23ypu*z zIMg|oSE6K2hyf*GQ5t2!n5tUEwYDfp!$ RR3_tAN+fmFCZG~G|Jj!06vF@j diff --git a/test/test_cascadeclassifier.rb b/test/test_cascadeclassifier.rb new file mode 100755 index 0000000..7e271bf --- /dev/null +++ b/test/test_cascadeclassifier.rb @@ -0,0 +1,61 @@ +#!/usr/bin/env ruby +# -*- mode: ruby; coding: utf-8 -*- +require 'opencv' +require File.expand_path(File.dirname(__FILE__)) + '/helper' + +include OpenCV + +class TestCascadeClassifier < OpenCVTestCase + def test_initialize + c = CascadeClassifier.new + assert_equal(CascadeClassifier, c.class) + + c = CascadeClassifier.new(HAARCASCADE_FRONTALFACE_ALT) + assert_equal(CascadeClassifier, c.class) + + assert_raise(TypeError) { + CascadeClassifier.new(DUMMY_OBJ) + } + end + + def test_load + c = CascadeClassifier.new + ret = c.load(HAARCASCADE_FRONTALFACE_ALT) + assert(ret) + + ret = c.load('/file/not/exist') + assert_false(ret) + + assert_raise(TypeError) { + c2 = CascadeClassifier.new + c2.load(DUMMY_OBJ) + } + end + + def test_detect_multi_scale + c = CascadeClassifier.new(HAARCASCADE_FRONTALFACE_ALT) + m = OpenCV::imread(FILENAME_GIRLS_PLAY_AND_PLANT_FLOWERS_IN_THE_PARK, IMREAD_ANYDEPTH | IMREAD_ANYCOLOR) + + rects = c.detect_multi_scale(m) + assert_equal(3, rects.size) + + rects = c.detect_multi_scale(m, scale_factor: 1.2, min_neighbors: 5, min_size: Size.new(50, 50), max_size: Size.new(60, 60)) + assert_equal(1, rects.size) + + assert_raise(TypeError) { + c.detect_multi_scale(DUMMY_OBJ) + } + assert_raise(TypeError) { + c.detect_multi_scale(m, DUMMY_OBJ) + } + + # rects = c.detect_multi_scale(m) + # rects.each do |r| + # puts r.to_s + # pt1 = Point.new(r.x, r.y) + # pt2 = Point.new(r.x + r.width, r.y + r.height) + # m.rectangle!(pt1, pt2, Scalar.new(0, 255, 255), thickness: 3, line_type: CV_AA) + # end + # snap(m) + end +end diff --git a/test/test_curve.rb b/test/test_curve.rb deleted file mode 100755 index 9e8430c..0000000 --- a/test/test_curve.rb +++ /dev/null @@ -1,43 +0,0 @@ -#!/usr/bin/env ruby -# -*- mode: ruby; coding: utf-8 -*- -require 'test/unit' -require 'opencv' -require File.expand_path(File.dirname(__FILE__)) + '/helper' - -include OpenCV - -# Tests for OpenCV::Curve -class TestCurve < OpenCVTestCase - def setup - @contour1 = CvContour.new - - mat0 = create_cvmat(128, 128, :cv8u, 1) { |j, i| - (j - 64) ** 2 + (i - 64) ** 2 <= (32 ** 2) ? CvColor::White : CvColor::Black - } - @contour2 = mat0.find_contours - end - - def test_closed - assert_false(@contour1.closed?) - assert(@contour2.closed?) - end - - def test_convex - assert_false(@contour1.convex?) - end - - def test_hole - assert_false(@contour1.hole?) - end - - def test_simple - assert(@contour1.simple?) - end - - def test_arc_length - assert_in_delta(211.480, @contour2.arc_length, 0.001) - assert_in_delta(32.181, @contour2.arc_length(CvSlice.new(0, 9), true), 0.001) - assert_in_delta(32.181, @contour2.arc_length(0..10, true), 0.001) - end -end - diff --git a/test/test_cvavgcomp.rb b/test/test_cvavgcomp.rb deleted file mode 100755 index 2207fd5..0000000 --- a/test/test_cvavgcomp.rb +++ /dev/null @@ -1,24 +0,0 @@ -#!/usr/bin/env ruby -# -*- mode: ruby; coding: utf-8 -*- -require 'test/unit' -require 'opencv' -require File.expand_path(File.dirname(__FILE__)) + '/helper' - -include OpenCV - -# Tests for OpenCV::CvAvgComp -class TestCvAvgComp < OpenCVTestCase - def setup - @avgcomp = CvAvgComp.new - end - - def test_initialize - assert_equal(CvAvgComp, @avgcomp.class) - assert(@avgcomp.is_a? CvRect) - end - - def test_neighbors - assert_equal(Fixnum, @avgcomp.neighbors.class) - end -end - diff --git a/test/test_cvbox2d.rb b/test/test_cvbox2d.rb deleted file mode 100755 index ced01d7..0000000 --- a/test/test_cvbox2d.rb +++ /dev/null @@ -1,76 +0,0 @@ -#!/usr/bin/env ruby -# -*- mode: ruby; coding: utf-8 -*- -require 'test/unit' -require 'opencv' -require File.expand_path(File.dirname(__FILE__)) + '/helper' - -include OpenCV - -# Tests for OpenCV::CvBox2D -class TestCvBox2D < OpenCVTestCase - class MyPoint; end - def test_initialize - box = CvBox2D.new - assert_in_delta(0, box.center.x, 0.001) - assert_in_delta(0, box.center.y, 0.001) - assert_in_delta(0, box.size.width, 0.001) - assert_in_delta(0, box.size.height, 0.001) - assert_in_delta(0, box.angle, 0.001) - - box = CvBox2D.new(CvPoint2D32f.new(1.1, 2.2), CvSize2D32f.new(3.3, 4.4), 5.5) - assert_in_delta(1.1, box.center.x, 0.001) - assert_in_delta(2.2, box.center.y, 0.001) - assert_in_delta(3.3, box.size.width, 0.001) - assert_in_delta(4.4, box.size.height, 0.001) - assert_in_delta(5.5, box.angle, 0.001) - end - - def test_center - box = CvBox2D.new - box.center = CvPoint2D32f.new(1.1, 2.2) - assert_in_delta(1.1, box.center.x, 0.001) - assert_in_delta(2.2, box.center.y, 0.001) - - box.center.x = 3.3 - box.center.y = 4.4 - assert_in_delta(3.3, box.center.x, 0.001) - assert_in_delta(4.4, box.center.y, 0.001) - end - - def test_size - box = CvBox2D.new - box.size = CvSize2D32f.new(1.1, 2.2) - assert_in_delta(1.1, box.size.width, 0.001) - assert_in_delta(2.2, box.size.height, 0.001) - - box.size.width = 3.3 - box.size.height = 4.4 - assert_in_delta(3.3, box.size.width, 0.001) - assert_in_delta(4.4, box.size.height, 0.001) - end - - def test_angle - box = CvBox2D.new - box.angle = 1.1 - assert_in_delta(1.1, box.angle, 0.001) - end - - def test_points - box = CvBox2D.new - box.center = CvPoint2D32f.new(10, 20) - box.size = CvSize2D32f.new(5, 7) - pt = box.points - - assert_equal(4, pt.size) - assert_in_delta(7.5, pt[0].x, 0.001) - assert_in_delta(23.5, pt[0].y, 0.001) - assert_in_delta(7.5, pt[1].x, 0.001) - assert_in_delta(16.5, pt[1].y, 0.001) - assert_in_delta(12.5, pt[2].x, 0.001) - assert_in_delta(16.5, pt[2].y, 0.001) - assert_in_delta(12.5, pt[3].x, 0.001) - assert_in_delta(23.5, pt[3].y, 0.001) - end -end - - diff --git a/test/test_cvcapture.rb b/test/test_cvcapture.rb deleted file mode 100755 index f6cf078..0000000 --- a/test/test_cvcapture.rb +++ /dev/null @@ -1,183 +0,0 @@ -#!/usr/bin/env ruby -# -*- mode: ruby; coding: utf-8 -*- -require 'test/unit' -require 'opencv' -require File.expand_path(File.dirname(__FILE__)) + '/helper' - -include OpenCV - -# Tests for OpenCV::CvCapture -class TestCvCapture < OpenCVTestCase - def setup - @cap = CvCapture.open(AVI_SAMPLE) - @cap.query - end - - def teardown - @cap = nil - end - - def test_INTERFACE - assert_equal(CvCapture::INTERFACE[:any], 0) - assert_equal(CvCapture::INTERFACE[:mil], 100) - assert_equal(CvCapture::INTERFACE[:vfw], 200) - assert_equal(CvCapture::INTERFACE[:v4l], 200) - assert_equal(CvCapture::INTERFACE[:v4l2], 200) - assert_equal(CvCapture::INTERFACE[:fireware], 300) - assert_equal(CvCapture::INTERFACE[:ieee1394], 300) - assert_equal(CvCapture::INTERFACE[:dc1394], 300) - assert_equal(CvCapture::INTERFACE[:cmu1394], 300) - assert_equal(CvCapture::INTERFACE[:stereo], 400) - assert_equal(CvCapture::INTERFACE[:tyzx], 400) - assert_equal(CvCapture::INTERFACE[:tyzx_left], 400) - assert_equal(CvCapture::INTERFACE[:tyzx_right], 401) - assert_equal(CvCapture::INTERFACE[:tyzx_color], 402) - assert_equal(CvCapture::INTERFACE[:tyzx_z], 403) - assert_equal(CvCapture::INTERFACE[:qt], 500) - assert_equal(CvCapture::INTERFACE[:quicktime], 500) - end - - def test_open - cap1 = CvCapture.open(AVI_SAMPLE) - assert_equal(CvCapture, cap1.class) - - # Uncomment the following lines to test capturing from camera - # cap2 = CvCapture.open(0) - # assert_equal(CvCapture, cap2.class) - # CvCapture::INTERFACE.each { |k, v| - # cap3 = CvCapture.open(k) - # assert_equal(CvCapture, cap3.class) - # } - end - - def test_grab - assert(@cap.grab) - end - - def test_retrieve - @cap.grab - img = @cap.retrieve - assert_equal(IplImage, img.class) - end - - def test_query - img = @cap.query - assert_equal(IplImage, img.class) - end - - def test_millisecond - @cap.millisecond = 10 - assert(@cap.millisecond.is_a? Numeric) - # assert_equal(10, @cap.millisecond) - @cap.millisecond = 20 - assert(@cap.millisecond.is_a? Numeric) - # assert_equal(20, @cap.millisecond) - end - - def test_frames - @cap.frames = 10 - assert(@cap.frames.is_a? Numeric) - # assert_equal(10, @cap.frames) - @cap.frames = 20 - assert(@cap.frames.is_a? Numeric) - # assert_equal(20, @cap.frames) - end - - def test_avi_ratio - @cap.avi_ratio = 0.1 - assert(@cap.avi_ratio.is_a? Numeric) - # assert_equal(0.1, @cap.avi_ratio) - @cap.avi_ratio = 0.8 - assert(@cap.avi_ratio.is_a? Numeric) - # assert_equal(0.8, @cap.avi_ratio) - end - - def test_size - @cap.size = CvSize.new(320, 240) - assert_equal(CvSize, @cap.size.class) - # assert_equal(320, @cap.size.width) - # assert_equal(240, @cap.size.height) - - @cap.size = CvSize.new(640, 480) - assert_equal(CvSize, @cap.size.class) - # assert_equal(640, @cap.size.width) - # assert_equal(480, @cap.size.height) - end - - def test_width - @cap.width = 320 - assert(@cap.width.is_a? Numeric) - # assert_equal(320, @cap.width) - @cap.width = 640 - assert(@cap.width.is_a? Numeric) - # assert_equal(640, @cap.width) - end - - def test_height - @cap.height = 240 - assert(@cap.height.is_a? Numeric) - # assert_equal(240, @cap.height) - @cap.height = 480 - assert(@cap.height.is_a? Numeric) - # assert_equal(480, @cap.height) - end - - def test_fps - @cap.fps = 15 - assert(@cap.fps.is_a? Numeric) - # assert_equal(15, @cap.fps) - @cap.fps = 30 - assert(@cap.fps.is_a? Numeric) - # assert_equal(30, @cap.fps) - end - - def test_fourcc - assert_equal(String, @cap.fourcc.class) - end - - def test_frame_count - assert(@cap.frame_count.is_a? Numeric) - end - - def test_format - assert(@cap.format.is_a? Numeric) - end - - def test_mode - assert(@cap.mode.is_a? Numeric) - end - - def test_brightness - assert(@cap.brightness.is_a? Numeric) - end - - def test_contrast - assert(@cap.contrast.is_a? Numeric) - end - - def test_saturation - assert(@cap.saturation.is_a? Numeric) - end - - def test_hue - assert(@cap.hue.is_a? Numeric) - end - - def test_gain - assert(@cap.gain.is_a? Numeric) - end - - def test_exposure - assert(@cap.exposure.is_a? Numeric) - end - - def test_convert_rgb - assert((@cap.convert_rgb == true) || - (@cap.convert_rgb == false)) - end - - def test_rectification - assert(@cap.rectification.is_a? Numeric) - end -end - diff --git a/test/test_cvchain.rb b/test/test_cvchain.rb deleted file mode 100755 index 06c543a..0000000 --- a/test/test_cvchain.rb +++ /dev/null @@ -1,108 +0,0 @@ -#!/usr/bin/env ruby -# -*- mode: ruby; coding: utf-8 -*- -require 'test/unit' -require 'opencv' -require File.expand_path(File.dirname(__FILE__)) + '/helper' - -include OpenCV - -# Tests for OpenCV::CvChain -class TestCvChain < OpenCVTestCase - def test_APPROX_OPTION - assert_equal(:approx_simple, CvChain::APPROX_CHAIN_OPTION[:method]) - assert_equal(0, CvChain::APPROX_CHAIN_OPTION[:parameter]) - assert_equal(0, CvChain::APPROX_CHAIN_OPTION[:minimal_perimeter]) - assert_false(CvChain::APPROX_CHAIN_OPTION[:recursive]) - end - - def test_initialize - chain = CvChain.new - assert_not_nil(chain) - assert_equal(CvChain, chain.class) - assert(chain.is_a? CvSeq) - end - - def test_origin - mat0 = create_cvmat(128, 128, :cv8u, 1) { |j, i| - (j - 64) ** 2 + (i - 64) ** 2 <= (32 ** 2) ? CvColor::White : CvColor::Black - } - chain = mat0.find_contours(:mode => CV_RETR_EXTERNAL, :method => CV_CHAIN_CODE) - assert_equal(CvChain, chain.class) - assert_equal(64, chain.origin.x) - assert_equal(32, chain.origin.y) - - chain.origin = CvPoint.new(32, 64) - assert_equal(32, chain.origin.x) - assert_equal(64, chain.origin.y) - end - - def test_codes - mat0 = create_cvmat(128, 128, :cv8u, 1) { |j, i| - (j - 64) ** 2 + (i - 64) ** 2 <= (32 ** 2) ? CvColor::White : CvColor::Black - } - chain = mat0.find_contours(:mode => CV_RETR_EXTERNAL, :method => CV_CHAIN_CODE) - assert_equal(Array, chain.codes.class) - assert(chain.codes.all? { |a| (a.class == Fixnum) and (a >= 0 and a <= 7) }) - end - - def test_points - mat0 = create_cvmat(128, 128, :cv8u, 1) { |j, i| - (j - 64) ** 2 + (i - 64) ** 2 <= (32 ** 2) ? CvColor::White : CvColor::Black - } - chain = mat0.find_contours(:mode => CV_RETR_EXTERNAL, :method => CV_CHAIN_CODE) - assert_equal(Array, chain.points.class) - assert(chain.points.all? { |a| a.class == CvPoint }) - end - - def test_approx_chains - mat0 = create_cvmat(128, 128, :cv8u, 1) { |j, i| - (j - 64) ** 2 + (i - 64) ** 2 <= (32 ** 2) ? CvColor::White : CvColor::Black - } - chain = mat0.find_contours(:mode => CV_RETR_EXTERNAL, :method => CV_CHAIN_CODE) - - contours = chain.approx_chains - assert_equal(CvChain, contours.class) - assert(contours.size > 0) - assert(contours.all? { |c| c.class == CvPoint }) - - [CV_CHAIN_APPROX_NONE, CV_CHAIN_APPROX_SIMPLE, - CV_CHAIN_APPROX_TC89_L1, CV_CHAIN_APPROX_TC89_KCOS, - :approx_none, :approx_simple, :approx_tc89_l1, :approx_tc89_kcos].each { |method| - contours = chain.approx_chains(:method => method) - assert_equal(CvChain, contours.class) - assert(contours.size > 0) - assert(contours.all? { |c| c.class == CvPoint }) - } - - contours = chain.approx_chains(:minimal_parameter => 10) - assert_equal(CvChain, contours.class) - assert(contours.size > 0) - assert(contours.all? { |c| c.class == CvPoint }) - - contours = chain.approx_chains(:minimal_perimeter => (32 * 2 * Math::PI).ceil) - assert_nil(contours) - - [true, false].each { |recursive| - contours = chain.approx_chains(:recursive => recursive) - assert_equal(CvChain, contours.class) - assert(contours.size > 0) - assert(contours.all? { |c| c.class == CvPoint }) - } - - contours = chain.approx_chains(:method => :approx_simple, - :minimal_parameter => 100, :recursive => false) - assert_equal(CvChain, contours.class) - assert(contours.size > 0) - assert(contours.all? { |c| c.class == CvPoint }) - - # Uncomment the following lines to show the result - # contours = chain.approx_chains - # dst = mat0.clone.zero - # begin - # dst.draw_contours!(contours, CvColor::White, CvColor::Black, 2, - # :thickness => 1, :line_type => :aa) - # end while (contours = contours.h_next) - # snap dst - end -end - diff --git a/test/test_cvcircle32f.rb b/test/test_cvcircle32f.rb deleted file mode 100755 index 8331939..0000000 --- a/test/test_cvcircle32f.rb +++ /dev/null @@ -1,41 +0,0 @@ -#!/usr/bin/env ruby -# -*- mode: ruby; coding: utf-8 -*- -require 'test/unit' -require 'opencv' -require File.expand_path(File.dirname(__FILE__)) + '/helper' - -include OpenCV - -# Tests for OpenCV::CvCircle32f -class TestCvCircle32f < OpenCVTestCase - def setup - @circle = CvCircle32f.new - end - - def test_initialize - assert_equal(CvCircle32f, @circle.class) - end - - def test_center - assert_equal(CvPoint2D32f, @circle.center.class) - end - - def test_radius - assert_equal(Float, @circle.radius.class) - end - - def test_aref - assert_equal(Float, @circle[0].class) - assert_equal(Float, @circle[1].class) - assert_equal(Float, @circle[2].class) - assert_raise(IndexError) { - @circle[3] - } - end - - def test_to_ary - assert_equal(Array, @circle.to_ary.class) - assert_equal(2, @circle.to_ary.size) - end -end - diff --git a/test/test_cvconnectedcomp.rb b/test/test_cvconnectedcomp.rb deleted file mode 100755 index 4105c40..0000000 --- a/test/test_cvconnectedcomp.rb +++ /dev/null @@ -1,61 +0,0 @@ -#!/usr/bin/env ruby -# -*- mode: ruby; coding: utf-8 -*- -require 'test/unit' -require 'opencv' -require File.expand_path(File.dirname(__FILE__)) + '/helper' - -include OpenCV - -# Tests for OpenCV::CvConnectedComp -class TestCvConnectedComp < OpenCVTestCase - def setup - @connected_comp = CvConnectedComp.new(9216, CvScalar.new(1, 2, 3, 4), - CvRect.new(1, 2, 3, 4), CvSeq.new(CV_SEQ_ELTYPE_INDEX)) - end - - def test_initialize - connected_comp = CvConnectedComp.new - assert_equal(CvConnectedComp, connected_comp.class) - assert_not_nil(connected_comp.area) - assert_not_nil(connected_comp.value) - assert_not_nil(connected_comp.rect) - assert_not_nil(connected_comp.contour) - - connected_comp = CvConnectedComp.new(100, CvScalar.new(1, 2, 3, 4), - CvRect.new(1, 2, 3, 4), CvSeq.new(CV_SEQ_ELTYPE_POINT)) - assert_equal(CvConnectedComp, connected_comp.class) - assert_not_nil(connected_comp.area) - assert_not_nil(connected_comp.value) - assert_not_nil(connected_comp.rect) - assert_not_nil(connected_comp.contour) - end - - def test_area - assert_in_delta(9216.0, @connected_comp.area, 0.01) - end - - def test_value - assert_equal(CvScalar, @connected_comp.value.class) - assert_cvscalar_equal(CvScalar.new(1, 2, 3, 4), @connected_comp.value) - end - - def test_rect - assert_equal(CvRect, @connected_comp.rect.class) - assert_equal(1, @connected_comp.rect.x) - assert_equal(2, @connected_comp.rect.y) - assert_equal(3, @connected_comp.rect.width) - assert_equal(4, @connected_comp.rect.height) - - @connected_comp.rect = CvRect.new(10, 20, 30, 40); - assert_equal(10, @connected_comp.rect.x) - assert_equal(20, @connected_comp.rect.y) - assert_equal(30, @connected_comp.rect.width) - assert_equal(40, @connected_comp.rect.height) - end - - def test_contour - assert_equal(CvContour, @connected_comp.contour.class) - assert_not_nil(@connected_comp.contour) - end -end - diff --git a/test/test_cvcontour.rb b/test/test_cvcontour.rb deleted file mode 100755 index abb697d..0000000 --- a/test/test_cvcontour.rb +++ /dev/null @@ -1,150 +0,0 @@ -#!/usr/bin/env ruby -# -*- mode: ruby; coding: utf-8 -*- -require 'test/unit' -require 'opencv' -require File.expand_path(File.dirname(__FILE__)) + '/helper' - -include OpenCV - -# Tests for OpenCV::CvContour -class TestCvContour < OpenCVTestCase - def test_APPROX_OPTION - assert_equal(0, CvContour::APPROX_OPTION[:method]) - assert_equal(1.0, CvContour::APPROX_OPTION[:accuracy]) - assert_false(CvContour::APPROX_OPTION[:recursive]) - end - - def test_initialize - contour = CvContour.new - assert_not_nil(contour) - assert_equal(CvContour, contour.class) - assert(contour.is_a? CvSeq) - end - - def test_rect - contour = CvContour.new - assert_not_nil(contour.rect) - assert_equal(CvRect, contour.rect.class) - end - - def test_color - contour = CvContour.new - assert_equal(0, contour.color) - contour.color = 1 - assert_equal(1, contour.color) - end - - def test_reserved - reserved = CvContour.new.reserved - assert_equal(Array, reserved.class) - assert_equal(3, reserved.size) - end - - def test_approx_poly - mat0 = create_cvmat(128, 128, :cv8u, 1) { |j, i| - (j - 64) ** 2 + (i - 64) ** 2 <= (32 ** 2) ? CvColor::White : CvColor::Black - } - contours = mat0.find_contours(:mode => CV_RETR_EXTERNAL) - - poly = contours.approx_poly - assert_equal(CvContour, poly.class) - assert(poly.size > 0) - assert(poly.all? { |c| c.class == CvPoint }) - - poly = contours.approx_poly(:method => :dp) - assert_equal(CvContour, poly.class) - assert(poly.size > 0) - assert(poly.all? { |c| c.class == CvPoint }) - - poly = contours.approx_poly(:accuracy => 2.0) - assert_equal(CvContour, poly.class) - assert(poly.size > 0) - assert(poly.all? { |c| c.class == CvPoint }) - - [true, false, 1, 0].each { |recursive| - poly = contours.approx_poly(:recursive => recursive) - assert_equal(CvContour, poly.class) - assert(poly.size > 0) - assert(poly.all? { |c| c.class == CvPoint }) - } - - poly = contours.approx_poly(:method => :dp, :accuracy => 2.0, :recursive => false) - assert_equal(CvContour, poly.class) - assert(poly.size > 0) - assert(poly.all? { |c| c.class == CvPoint }) - - # Uncomment the following lines to show the result - # poly = contours.approx_poly(:accuracy => 3.0) - # dst = mat0.clone.zero - # begin - # dst.draw_contours!(poly, CvColor::White, CvColor::Black, 2, - # :thickness => 1, :line_type => :aa) - # end while (poly = poly.h_next) - # snap dst - end - - def test_bounding_rect - mat0 = create_cvmat(128, 128, :cv8u, 1) { |j, i| - (j - 64) ** 2 + (i - 64) ** 2 <= (32 ** 2) ? CvColor::White : CvColor::Black - } - contours = mat0.find_contours - rect = contours.bounding_rect - assert_equal(CvRect, rect.class) - assert_equal(32, rect.x) - assert_equal(32, rect.y) - assert_equal(65, rect.width) - assert_equal(65, rect.height) - end - - def test_create_tree - mat0 = create_cvmat(128, 128, :cv8u, 1) { |j, i| - (j - 64) ** 2 + (i - 64) ** 2 <= (32 ** 2) ? CvColor::White : CvColor::Black - } - contour = mat0.find_contours - tree = contour.create_tree - assert_equal(CvContourTree, tree.class) - assert_equal(34, tree.p1.x) - assert_equal(53, tree.p1.y) - assert_equal(0, tree.p2.x) - assert_equal(0, tree.p2.y) - end - - def test_in - mat0 = create_cvmat(128, 128, :cv8u, 1) { |j, i| - (j - 64) ** 2 + (i - 64) ** 2 <= (32 ** 2) ? CvColor::White : CvColor::Black - } - contour = mat0.find_contours - assert(contour.in? CvPoint.new(64, 64)) - assert_false(contour.in? CvPoint.new(0, 0)) - assert_nil(contour.in? CvPoint.new(64, 32)) - end - - def test_measure_distance - mat0 = create_cvmat(128, 128, :cv8u, 1) { |j, i| - (j - 64) ** 2 + (i - 64) ** 2 <= (32 ** 2) ? CvColor::White : CvColor::Black - } - contour = mat0.find_contours - assert_in_delta(-0.7071, contour.measure_distance(CvPoint.new(63, 32)), 0.01) - assert_in_delta(31.01, contour.measure_distance(CvPoint.new(64, 64)), 0.01) - end - - def test_point_polygon_test - mat0 = create_cvmat(128, 128, :cv8u, 1) { |j, i| - (j - 64) ** 2 + (i - 64) ** 2 <= (32 ** 2) ? CvColor::White : CvColor::Black - } - contour = mat0.find_contours - - assert_equal(1, contour.point_polygon_test(CvPoint.new(64, 64), 0)) - assert_equal(1, contour.point_polygon_test(CvPoint.new(64, 64), false)) - assert_equal(-1, contour.point_polygon_test(CvPoint.new(0, 0), 0)) - assert_equal(-1, contour.point_polygon_test(CvPoint.new(0, 0), false)) - assert_equal(0, contour.point_polygon_test(CvPoint.new(64, 32), 0)) - assert_equal(0, contour.point_polygon_test(CvPoint.new(64, 32), false)) - - assert_in_delta(-0.7071, contour.point_polygon_test(CvPoint.new(63, 32), 1), 0.01) - assert_in_delta(-0.7071, contour.point_polygon_test(CvPoint.new(63, 32), true), 0.01) - assert_in_delta(31.01, contour.point_polygon_test(CvPoint.new(64, 64), 1), 0.01) - assert_in_delta(31.01, contour.point_polygon_test(CvPoint.new(64, 64), true), 0.01) - end -end - diff --git a/test/test_cvcontourtree.rb b/test/test_cvcontourtree.rb deleted file mode 100755 index 9ab0dd7..0000000 --- a/test/test_cvcontourtree.rb +++ /dev/null @@ -1,43 +0,0 @@ -#!/usr/bin/env ruby -# -*- mode: ruby; coding: utf-8 -*- -require 'test/unit' -require 'opencv' -require File.expand_path(File.dirname(__FILE__)) + '/helper' - -include OpenCV - -# Tests for OpenCV::CvContourTree -class TestCvContourTree < OpenCVTestCase - def setup - @tree = CvContourTree.new(CV_SEQ_ELTYPE_POINT) - end - - def test_initialize - tree = CvContourTree.new(CV_SEQ_ELTYPE_POINT) - assert_equal(CvContourTree, tree.class) - assert(tree.is_a? CvSeq) - end - - def test_p1 - assert_equal(CvPoint, @tree.p1.class) - end - - def test_p2 - assert_equal(CvPoint, @tree.p2.class) - end - - def test_contour - mat0 = create_cvmat(128, 128, :cv8u, 1) { |j, i| - (j - 64) ** 2 + (i - 64) ** 2 <= (32 ** 2) ? CvColor::White : CvColor::Black - } - contour = mat0.find_contours - tree = contour.create_tree - contour = tree.contour(CvTermCriteria.new(100, 0.01)) - assert_equal(CvContour, contour.class) - - assert_raise(CvStsBadArg) { - tree.contour(CvTermCriteria.new(0, 0)) - } - end -end - diff --git a/test/test_cverror.rb b/test/test_cverror.rb deleted file mode 100755 index aad0129..0000000 --- a/test/test_cverror.rb +++ /dev/null @@ -1,50 +0,0 @@ -#!/usr/bin/env ruby -# -*- mode: ruby; coding: utf-8 -*- -require 'test/unit' -require 'opencv' -require File.expand_path(File.dirname(__FILE__)) + '/helper' - -include OpenCV - -# Tests for OpenCV::CvError -class TestCvError < OpenCVTestCase - def test_cverror - assert_equal(StandardError, CvError.superclass) - begin - raise CvError - rescue - assert_equal(CvError, $!.class) - end - end - - def test_subclass - errors = [CvStsBackTrace, CvStsError, CvStsInternal, CvStsNoMem, CvStsBadArg, CvStsBadFunc, CvStsNoConv, CvStsAutoTrace, CvHeaderIsNull, CvBadImageSize, CvBadOffset, CvBadDataPtr, CvBadStep, CvBadModelOrChSeq, CvBadNumChannels, CvBadNumChannel1U, CvBadDepth, CvBadAlphaChannel, CvBadOrder, CvBadOrigin, CvBadAlign, CvBadCallBack, CvBadTileSize, CvBadCOI, CvBadROISize, CvMaskIsTiled, CvStsNullPtr, CvStsVecLengthErr, CvStsFilterStructContentErr, CvStsKernelStructContentErr, CvStsFilterOffsetErr, CvStsBadSize, CvStsDivByZero, CvStsInplaceNotSupported, CvStsObjectNotFound, CvStsUnmatchedFormats, CvStsBadFlag, CvStsBadPoint, CvStsBadMask, CvStsUnmatchedSizes, CvStsUnsupportedFormat, CvStsOutOfRange, CvStsParseError, CvStsNotImplemented, CvStsBadMemBlock, CvStsAssert, CvGpuNotSupported, CvGpuApiCallError] - - errors.each { |err| - assert_equal(CvError, err.superclass) - - begin - raise err - rescue err - assert_equal(err, $!.class) - rescue - flunk("Failed to catch #{err}") - end - - begin - raise err - rescue CvError - assert_equal(err, $!.class) - rescue - flunk("Failed to catch #{err}") - end - - begin - raise err - rescue - assert_equal(err, $!.class) - end - } - end -end - diff --git a/test/test_cvfeaturetree.rb b/test/test_cvfeaturetree.rb deleted file mode 100755 index b133298..0000000 --- a/test/test_cvfeaturetree.rb +++ /dev/null @@ -1,65 +0,0 @@ -#!/usr/bin/env ruby -# -*- mode: ruby; coding: utf-8 -*- -require 'test/unit' -require 'opencv' -require File.expand_path(File.dirname(__FILE__)) + '/helper' - -include OpenCV - -# Tests for OpenCV::CvFeatureTree -class TestCvFeatureTree < OpenCVTestCase - def test_initialize - desc = CvMat.new(1, 1, :cv32f, 1) - ft = CvFeatureTree.new(desc) - assert_equal(CvFeatureTree, ft.class) - - assert_raise(TypeError) { - CvFeatureTree.new(DUMMY_OBJ) - } - end - - def test_find_feature - dim = 2 - points = [] - points << [99, 51] - points << [52, 57] - points << [57, 42] - points << [13, 39] - points << [15, 68] - points << [75, 11] - points << [69, 62] - points << [52, 46] - points << [0, 64] - points << [67, 16] - - desc1 = CvMat.new(points.size, dim, :cv32f, 1) - desc1.set_data(points) - - pt = [[50, 50], [11, 40]] - desc2 = CvMat.new(pt.size, dim, :cv32f, 1) - desc2.set_data(pt) - - ft = CvFeatureTree.new(desc1) - results, dist = ft.find_features(desc2, 1, 10) - - assert_equal(CvMat, results.class) - assert_equal(CvMat, dist.class) - - assert_equal(7, results[0][0].to_i) - assert_in_delta(4.472, dist[0][0], 0.001) - - assert_equal(3, results[1][0].to_i) - assert_in_delta(2.236, dist[1][0], 0.001) - - assert_raise(TypeError) { - ft.find_features(DUMMY_OBJ, 1, 10) - } - assert_raise(TypeError) { - ft.find_features(desc2, DUMMY_OBJ, 10) - } - assert_raise(TypeError) { - ft.find_features(desc2, 1, DUMMY_OBJ) - } - end -end - diff --git a/test/test_cvfont.rb b/test/test_cvfont.rb deleted file mode 100755 index 5c71843..0000000 --- a/test/test_cvfont.rb +++ /dev/null @@ -1,58 +0,0 @@ -#!/usr/bin/env ruby -# -*- mode: ruby; coding: utf-8 -*- -require 'test/unit' -require 'opencv' -require File.expand_path(File.dirname(__FILE__)) + '/helper' - -include OpenCV - -# Tests for OpenCV::CvFont -class TestCvFont < OpenCVTestCase - def test_FACE - assert_equal(0, CvFont::FACE[:simplex]) - assert_equal(1, CvFont::FACE[:plain]) - assert_equal(2, CvFont::FACE[:duplex]) - assert_equal(4, CvFont::FACE[:triplex]) - assert_equal(5, CvFont::FACE[:complex_small]) - assert_equal(6, CvFont::FACE[:script_simplex]) - assert_equal(7, CvFont::FACE[:script_complex]) - end - - def test_FONT_OPTION - assert_equal(1.0, CvFont::FONT_OPTION[:hscale]) - assert_equal(1.0, CvFont::FONT_OPTION[:vscale]) - assert_equal(0, CvFont::FONT_OPTION[:shear]) - assert_equal(1, CvFont::FONT_OPTION[:thickness]) - assert_equal(8, CvFont::FONT_OPTION[:line_type]) - end - - def test_initialize - font = CvFont.new(:simplex) - assert_equal(0, font.face) - assert_equal(1.0, font.hscale) - assert_equal(1.0, font.vscale) - assert_equal(0, font.shear) - assert_equal(1, font.thickness) - assert_equal(8, font.line_type) - assert_false(font.italic) - - font = CvFont.new(:plain, :hscale => 2.5, :vscale => 3.5, - :shear => 0.5, :thickness => 3, :line_type => 2, :italic => false) - assert_equal(1, font.face) - assert_equal(2.5, font.hscale) - assert_equal(3.5, font.vscale) - assert_equal(0.5, font.shear) - assert_equal(3, font.thickness) - assert_equal(2, font.line_type) - assert_false(font.italic) - - font = CvFont.new(:simplex, :italic => true) - assert_equal(16, font.face) - assert(font.italic) - - assert_raise(ArgumentError) { - CvFont.new(:foo) - } - end -end - diff --git a/test/test_cvhaarclassifiercascade.rb b/test/test_cvhaarclassifiercascade.rb deleted file mode 100755 index 9e65c5b..0000000 --- a/test/test_cvhaarclassifiercascade.rb +++ /dev/null @@ -1,63 +0,0 @@ -#!/usr/bin/env ruby -# -*- mode: ruby; coding: utf-8 -*- -require 'test/unit' -require 'opencv' -require File.expand_path(File.dirname(__FILE__)) + '/helper' - -include OpenCV - -# Tests for OpenCV::CvHaarClassifierCascade -class TestCvHaarClassifierCascade < OpenCVTestCase - def setup - @cascade = CvHaarClassifierCascade.load(HAARCASCADE_FRONTALFACE_ALT) - end - - def test_load - assert_equal(CvHaarClassifierCascade, @cascade.class) - assert_raise(ArgumentError) { - CvHaarClassifierCascade.load('not/exist.xml') - } - end - - def test_detect_objects - img = CvMat.load(FILENAME_LENA256x256) - - detected = @cascade.detect_objects(img) - assert_equal(CvSeq, detected.class) - assert_equal(1, detected.size) - assert_equal(CvAvgComp, detected[0].class) - assert_equal(106, detected[0].x) - assert_equal(100, detected[0].y) - assert_equal(89, detected[0].width) - assert_equal(89, detected[0].height) - assert_equal(48, detected[0].neighbors) - - detected = @cascade.detect_objects(img) { |face| - assert_equal(106, face.x) - assert_equal(100, face.y) - assert_equal(89, face.width) - assert_equal(89, face.height) - assert_equal(48, face.neighbors) - } - assert_equal(CvSeq, detected.class) - assert_equal(1, detected.size) - assert_equal(CvAvgComp, detected[0].class) - - detected = @cascade.detect_objects(img, :scale_factor => 2.0, :flags => CV_HAAR_DO_CANNY_PRUNING, - :min_neighbors => 5, :min_size => CvSize.new(10, 10), - :max_size => CvSize.new(100, 100)) - assert_equal(CvSeq, detected.class) - assert_equal(1, detected.size) - assert_equal(CvAvgComp, detected[0].class) - assert_equal(109, detected[0].x) - assert_equal(102, detected[0].y) - assert_equal(80, detected[0].width) - assert_equal(80, detected[0].height) - assert_equal(7, detected[0].neighbors) - - assert_raise(TypeError) { - @cascade.detect_objects('foo') - } - end -end - diff --git a/test/test_cvhistogram.rb b/test/test_cvhistogram.rb deleted file mode 100755 index aa58353..0000000 --- a/test/test_cvhistogram.rb +++ /dev/null @@ -1,271 +0,0 @@ -#!/usr/bin/env ruby -# -*- mode: ruby; coding: utf-8 -*- -require 'test/unit' -require 'opencv' -require File.expand_path(File.dirname(__FILE__)) + '/helper' - -include OpenCV - -# Tests for OpenCV::CvHistogram -class TestCvHistogram < OpenCVTestCase - def setup - @img = IplImage.load(FILENAME_LENA32x32, 0) - - dim = 1 - sizes = [8] - ranges = [[0, 255]] - @hist1 = CvHistogram.new(dim, sizes, CV_HIST_ARRAY, ranges, true).calc_hist!([@img]) - - dim = 2 - sizes = [8, 16] - ranges = [[0, 255], [0, 255]] - @hist2 = CvHistogram.new(dim, sizes, CV_HIST_SPARSE, ranges, true).calc_hist!([@img, @img]) - end - - def teardown - @hist1 = nil - @hist2 = nil - GC.start - end - - def test_initialize - dim = 1 - sizes = [256] - ranges = [[0, 256]] - hist1 = CvHistogram.new(dim, sizes, CV_HIST_ARRAY, ranges, true) - hist2 = CvHistogram.new(dim, sizes, CV_HIST_ARRAY) - hist3 = CvHistogram.new(dim, sizes, CV_HIST_ARRAY, nil) - hist4 = CvHistogram.new(dim, sizes, CV_HIST_ARRAY, nil, false) - end - - def test_is_uniform - assert(@hist1.is_uniform?) - assert(@hist2.is_uniform?) - end - - def test_is_sparse - assert_false(@hist1.is_sparse?) - assert(@hist2.is_sparse?) - end - - def test_has_range - assert(@hist1.has_range?) - assert(@hist2.has_range?) - end - - def test_calc_hist - img = IplImage.new(1, 1, :cv8u, 1) - assert_equal(CvHistogram, @hist1.calc_hist([img]).class) - assert_equal(CvHistogram, @hist1.calc_hist([img, img]).class) - assert_equal(CvHistogram, @hist1.calc_hist([img], true).class) - assert_equal(CvHistogram, @hist1.calc_hist([img, img], false).class) - mask = CvMat.new(1, 1, :cv8u, 1) - assert_equal(CvHistogram, @hist1.calc_hist([img], true, mask).class) - - assert_raise(TypeError) { - @hist1.calc_hist(img) - } - assert_raise(TypeError) { - @hist1.calc_hist([DUMMY_OBJ]) - } - assert_raise(TypeError) { - @hist1.calc_hist(nil) - } - assert_raise(TypeError) { - @hist1.calc_hist([img], true, DUMMY_OBJ) - } - assert_raise(ArgumentError) { - @hist1.calc_hist([]) - } - end - - def test_aref - expected = [0.0, 102.0, 189.0, 244.0, 285.0, 140.0, 64.0, 0.0] - expected.each_with_index { |x, i| - assert_in_delta(x, @hist1[i], 0.001) - assert_in_delta(x, @hist1.query_hist_value(i), 0.001) - } - end - - def test_min_max_value - min, max, min_loc, max_loc = @hist1.min_max_value - assert_in_delta(0.0, min, 0.001) - assert_in_delta(285.0, max, 0.001) - assert_equal(Array, min_loc.class) - assert_equal(Array, max_loc.class) - assert_equal(1, min_loc.size) - assert_equal(1, max_loc.size) - assert_equal(0, min_loc[0]) - assert_equal(4, max_loc[0]) - - min, max, min_loc, max_loc = @hist2.min_max_value - assert_in_delta(14.0, min, 0.001) - assert_in_delta(158.0, max, 0.001) - assert_equal(Array, min_loc.class) - assert_equal(Array, max_loc.class) - assert_equal(2, min_loc.size) - assert_equal(2, max_loc.size) - assert_equal(1, min_loc[0]) - assert_equal(2, min_loc[1]) - assert_equal(4, max_loc[0]) - assert_equal(9, max_loc[1]) - end - - def test_dims - dims, sizes = @hist1.dims - assert_equal(1, dims) - assert_equal(Array, sizes.class) - assert_equal(1, sizes.size) - assert_equal(8, sizes[0]) - - dims, sizes = @hist2.dims - assert_equal(2, dims) - assert_equal(Array, sizes.class) - assert_equal(2, sizes.size) - assert_equal(8, sizes[0]) - assert_equal(16, sizes[1]) - end - - def test_copy_hist - expected = [0.0, 102.0, 189.0, 244.0, 285.0, 140.0, 64.0, 0.0] - hist = @hist1.copy_hist - expected.each_with_index { |x, i| - assert_in_delta(x, hist[i], 0.001) - assert_in_delta(x, hist.query_hist_value(i), 0.001) - } - end - - def test_clear_hist - @hist1.clear_hist! - dims, sizes = @hist1.dims - dims.times { |i| - assert_in_delta(0.0, @hist1[i], 0.001) - } - end - - def test_normalize_hist - @hist1.normalize_hist!(100) - expected = [0.0, 9.96, 18.46, 23.83, 27.83, 13.67, 6.25, 0.0] - expected.each_with_index { |x, i| - assert_in_delta(x, @hist1[i], 0.01) - } - end - - def test_thresh_hist - @hist1.thresh_hist!(150) - expected = [0.0, 0.0, 189.0, 244.0, 285.0, 0.0, 0.0, 0.0] - expected.each_with_index { |x, i| - assert_in_delta(x, @hist1[i], 0.001) - } - end - - def test_set_hist_bin_ranges - dim = 1 - sizes = [8] - - hist = CvHistogram.new(dim, sizes, CV_HIST_ARRAY) - assert_false(hist.has_range?) - assert(hist.is_uniform?) - - ranges = [[0, 255]] - hist.set_hist_bin_ranges!(ranges, true) - assert(hist.has_range?) - assert(hist.is_uniform?) - - assert_raise(TypeError) { - hist.set_hist_bin_ranges!(DUMMY_OBJ) - } - assert_raise(TypeError) { - hist.set_hist_bin_ranges!([DUMMY_OBJ]) - } - end - - def test_calc_back_project - back_project = @hist1.calc_back_project([@img]) - assert_equal(@img.class, back_project.class) - assert_equal('2a0097af1ab4f9343e4feaae3a780c93', hash_img(back_project)) - - assert_raise(TypeError) { - @hist1.calc_back_project(DUMMY_OBJ) - } - assert_raise(TypeError) { - @hist1.calc_back_project([DUMMY_OBJ]) - } - end - - def test_calc_back_project_patch - img = IplImage.load(FILENAME_LENA256x256, 0) - template = IplImage.load(FILENAME_LENA_EYES, 0) - - dim = 1 - sizes = [8] - ranges = [[0, 255]] - hist = CvHistogram.new(dim, sizes, CV_HIST_ARRAY, ranges).calc_hist!([template]) - back_project = hist.calc_back_project_patch([img], template.size, CV_COMP_CORREL, 1.0) - assert_equal('e6497e45c6f2f715328bbc2fefe31581', hash_img(back_project)) - - assert_raise(TypeError) { - hist.calc_back_project_patch(DUMMY_OBJ, template.size, CV_COMP_CORREL, 1.0) - } - assert_raise(TypeError) { - hist.calc_back_project_patch([DUMMY_OBJ], template.size, CV_COMP_CORREL, 1.0) - } - - # Uncomment the following line to show the result - # min_val, max_val, min_loc, max_loc = back_project.min_max_loc - # result = img.rectangle(max_loc, CvPoint.new(max_loc.x + template.width, max_loc.y + template.height), - # :thickness => 2) - # snap img, template, back_project, result - end - - def test_compare_hist - img = IplImage.load(FILENAME_CAT, 0) - dim, sizes = @hist1.dims - ranges = [[0, 255]] - hist = CvHistogram.new(dim, sizes, CV_HIST_ARRAY, ranges).calc_hist!([img]) - - assert_in_delta(0.7446, CvHistogram.compare_hist(@hist1, hist, CV_COMP_CORREL), 0.1) - assert_in_delta(30250343.0, CvHistogram.compare_hist(@hist1, hist, CV_COMP_CHISQR), 1.0) - assert_in_delta(1024.0, CvHistogram.compare_hist(@hist1, hist, CV_COMP_INTERSECT), 1.0) - assert_in_delta(0.2955, CvHistogram.compare_hist(@hist1, hist, CV_COMP_BHATTACHARYYA), 0.1) - - assert_raise(TypeError) { - CvHistogram.compare_hist(DUMMY_OBJ, hist, CV_COMP_CORREL) - } - assert_raise(TypeError) { - CvHistogram.compare_hist(@hist1, DUMMY_OBJ, CV_COMP_CORREL) - } - assert_raise(TypeError) { - CvHistogram.compare_hist(@hist1, hist, DUMMY_OBJ) - } - end - - def test_calc_prob_density - img = IplImage.load(FILENAME_CAT, 0) - dim, sizes = @hist1.dims - ranges = [[0, 255]] - hist = CvHistogram.new(dim, sizes, CV_HIST_ARRAY, ranges).calc_hist!([img]) - dst = CvHistogram.calc_prob_density(hist, @hist1) - - assert_equal(CvHistogram, dst.class) - dim, sizes = dst.dims - expected_dim, expected_sizes = @hist1.dims - assert_equal(expected_dim, dim) - expected_sizes.each_with_index { |x, i| - assert_equal(x, sizes[i]) - } - - expected = [0.0, 1.437, 1.135, 1.092, 2.323, 3.712, 3.103, 0.0] - expected.each_with_index { |x, i| - assert_in_delta(x, dst[i], 0.001) - } - - assert_raise(TypeError) { - CvHistogram.calc_prob_density(DUMMY_OBJ, @hist1) - } - assert_raise(TypeError) { - CvHistogram.calc_prob_density(hist, DUMMY_OBJ) - } - end -end - diff --git a/test/test_cvhumoments.rb b/test/test_cvhumoments.rb deleted file mode 100755 index 080f239..0000000 --- a/test/test_cvhumoments.rb +++ /dev/null @@ -1,83 +0,0 @@ -#!/usr/bin/env ruby -# -*- mode: ruby; coding: utf-8 -*- -require 'test/unit' -require 'opencv' -require File.expand_path(File.dirname(__FILE__)) + '/helper' - -include OpenCV - -# Tests for OpenCV::CvHuMoment -class TestCvHuMoments < OpenCVTestCase - def setup - @mat = create_cvmat(128, 128, :cv8u, 1) { |j, i| - if j >= 32 and j < 96 and i >= 16 and i < 112 - CvScalar.new(0) - elsif j >= 16 and j < 112 and i >= 16 and i < 112 - CvScalar.new(128) - else - CvScalar.new(255) - end - } - @moment1 = CvMoments.new - @moment2 = CvMoments.new(nil, true) - @moment3 = CvMoments.new(@mat) - @moment4 = CvMoments.new(@mat, true) - - @hu_moments1 = CvHuMoments.new(@moment1) - @hu_moments2 = CvHuMoments.new(@moment2) - @hu_moments3 = CvHuMoments.new(@moment3) - @hu_moments4 = CvHuMoments.new(@moment4) - end - - def test_initialize - [@hu_moments1, @hu_moments2, @hu_moments3, @hu_moments4].each { |m| - assert_not_nil(m) - assert_equal(CvHuMoments, m.class) - } - - assert_raise(TypeError) { - CvHuMoments.new('foo') - } - end - - def test_huX - hu_moments = [@hu_moments1.hu1, @hu_moments1.hu2, @hu_moments1.hu3, @hu_moments1.hu4, - @hu_moments1.hu5, @hu_moments1.hu6, @hu_moments1.hu7] - hu_moments.each { |hu| - assert_in_delta(0.0, hu, 0.000001) - } - - hu_moments = [@hu_moments2.hu1, @hu_moments2.hu2, @hu_moments2.hu3, @hu_moments2.hu4, - @hu_moments2.hu5, @hu_moments2.hu6, @hu_moments2.hu7] - hu_moments.each { |hu| - assert_in_delta(0.0, hu, 0.000001) - } - - hu_moments = [@hu_moments3.hu2, @hu_moments3.hu3, @hu_moments3.hu4, - @hu_moments3.hu5, @hu_moments3.hu6, @hu_moments3.hu7] - assert_in_delta(0.001771, @hu_moments3.hu1, 0.000001) - hu_moments.each { |hu| - assert_in_delta(0.0, hu, 0.000001) - } - - hu_moments = [@hu_moments4.hu3, @hu_moments4.hu4, - @hu_moments4.hu5, @hu_moments4.hu6, @hu_moments4.hu7] - assert_in_delta(0.361650, @hu_moments4.hu1, 0.000001) - assert_in_delta(0.000625, @hu_moments4.hu2, 0.000001) - hu_moments.each { |hu| - assert_in_delta(0.0, hu, 0.000001) - } - end - - def test_to_ary - [@hu_moments4.to_ary, @hu_moments4.to_a].each { |hu_moments| - assert_equal(7, hu_moments.size) - assert_in_delta(0.361650, hu_moments[0], 0.000001) - assert_in_delta(0.000625, hu_moments[1], 0.000001) - hu_moments[2..7].each { |hu| - assert_in_delta(0.0, hu, 0.000001) - } - } - end -end - diff --git a/test/test_cvline.rb b/test/test_cvline.rb deleted file mode 100755 index c372ab9..0000000 --- a/test/test_cvline.rb +++ /dev/null @@ -1,50 +0,0 @@ -#!/usr/bin/env ruby -# -*- mode: ruby; coding: utf-8 -*- -require 'test/unit' -require 'opencv' -require File.expand_path(File.dirname(__FILE__)) + '/helper' - -include OpenCV - -# Tests for OpenCV::CvLine -class TestCvLine < OpenCVTestCase - def setup - @line = CvLine.new - end - - def test_initialize - assert_not_nil(@line) - assert_equal(CvLine, @line.class) - end - - def test_rho - @line.rho = 0.0 - assert_in_delta(0.0, @line.rho, 0.001) - @line.rho = 3.14 - assert_in_delta(3.14, @line.rho, 0.001) - end - - def test_theta - @line.theta = 0.0 - assert_in_delta(0.0, @line.theta, 0.001) - @line.theta = 3.14 - assert_in_delta(3.14, @line.theta, 0.001) - end - - def test_aref_aset - @line[0] = 0.0 - @line[1] = 0.0 - assert_in_delta(0.0, @line[0], 0.001) - assert_in_delta(0.0, @line[1], 0.001) - - @line[0] = 3.14 - @line[1] = 2.71 - assert_in_delta(3.14, @line[0], 0.001) - assert_in_delta(2.71, @line[1], 0.001) - - assert_raise(IndexError) { - @line[2] = 1 - } - end -end - diff --git a/test/test_cvmat.rb b/test/test_cvmat.rb deleted file mode 100755 index 0187551..0000000 --- a/test/test_cvmat.rb +++ /dev/null @@ -1,3036 +0,0 @@ -#!/usr/bin/env ruby -# -*- mode: ruby; coding: utf-8 -*- -require 'test/unit' -require 'opencv' -require File.expand_path(File.dirname(__FILE__)) + '/helper' - -include OpenCV - -# Tests for OpenCV::CvMat -class TestCvMat < OpenCVTestCase - def test_initialize - m = CvMat.new(10, 20) - assert_equal(10, m.rows) - assert_equal(20, m.cols) - assert_equal(:cv8u, m.depth) - assert_equal(3, m.channel) - - depth_table = { - CV_8U => :cv8u, - CV_8S => :cv8s, - CV_16U => :cv16u, - CV_16S => :cv16s, - CV_32S => :cv32s, - CV_32F => :cv32f, - CV_64F => :cv64f - } - - [CV_8U, CV_8S, CV_16U, CV_16S, CV_32S, CV_32F, CV_64F, - :cv8u, :cv8s, :cv16u, :cv16s, :cv32s, :cv32f, :cv64f].each { |depth| - [1, 2, 3, 4].each { |ch| - m = CvMat.new(10, 20, depth, ch) - assert_equal(10, m.rows) - assert_equal(20, m.cols) - depth = depth_table[depth] unless depth.is_a? Symbol - assert_equal(depth, m.depth) - assert_equal(ch, m.channel) - } - } - - assert_raise(TypeError) { - m = CvMat.new(DUMMY_OBJ, 20, :cv8u, 1) - } - assert_raise(TypeError) { - m = CvMat.new(10, DUMMY_OBJ, :cv8u, 1) - } - assert_raise(TypeError) { - m = CvMat.new(10, 20, :cv8u, DUMMY_OBJ) - } - end - - def test_load - mat = CvMat.load(FILENAME_CAT) - assert_equal(CvMat, mat.class) - assert_equal(375, mat.cols) - assert_equal(500, mat.rows) - assert_equal(:cv8u, mat.depth) - assert_equal(3, mat.channel) - assert_equal('ebc0b85d3ac44ea60181c997f35d13df', hash_img(mat)) - - mat = CvMat.load(FILENAME_CAT, CV_LOAD_IMAGE_GRAYSCALE) - assert_equal(CvMat, mat.class) - assert_equal(375, mat.cols) - assert_equal(500, mat.rows) - assert_equal(:cv8u, mat.depth) - assert_equal(1, mat.channel) - assert_equal('f0ae1d7f2d6b3a64d093e3181361f3a4', hash_img(mat)) - - mat = CvMat.load(FILENAME_CAT, CV_LOAD_IMAGE_ANYDEPTH | CV_LOAD_IMAGE_ANYCOLOR) - assert_equal(CvMat, mat.class) - assert_equal(375, mat.cols) - assert_equal(500, mat.rows) - assert_equal(:cv8u, mat.depth) - assert_equal(3, mat.channel) - assert_equal('ebc0b85d3ac44ea60181c997f35d13df', hash_img(mat)) - - assert_raise(ArgumentError) { - CvMat.load - } - assert_raise(TypeError) { - CvMat.load(DUMMY_OBJ) - } - assert_raise(TypeError) { - CvMat.load(FILENAME_CAT, DUMMY_OBJ) - } - assert_raise(StandardError) { - CvMat.load('file/does/not/exist') - } - end - - def test_save_image - filename_jpg = 'save_image_test.jpg' - filename_png = 'save_image_test.png' - m = CvMat.new(20, 20, :cv8u, 1) - - File.delete filename_jpg if File.exists? filename_jpg - m.save_image filename_jpg - assert(File.exists? filename_jpg) - - File.delete filename_jpg if File.exists? filename_jpg - m.save_image(filename_jpg, CV_IMWRITE_JPEG_QUALITY => 10) - assert(File.exists? filename_jpg) - - File.delete filename_png if File.exists? filename_png - m.save_image(filename_png, CV_IMWRITE_PNG_COMPRESSION => 9) - assert(File.exists? filename_png) - - # Alias - File.delete filename_jpg if File.exists? filename_jpg - m.save filename_jpg - assert(File.exists? filename_jpg) - - assert_raise(TypeError) { - m.save_image(DUMMY_OBJ) - } - assert_raise(TypeError) { - m.save_image(filename_jpg, DUMMY_OBJ) - } - - File.delete filename_jpg if File.exists? filename_jpg - File.delete filename_png if File.exists? filename_png - end - - def test_encode - mat = CvMat.load(FILENAME_CAT); - - jpg = mat.encode('.jpg') - assert_equal('JFIF', jpg[6, 4].map(&:chr).join) # Is jpeg format? - - jpg = mat.encode('.jpg', CV_IMWRITE_JPEG_QUALITY => 10) - assert_equal('JFIF', jpg[6, 4].map(&:chr).join) - - png = mat.encode('.png') - assert_equal('PNG', png[1, 3].map(&:chr).join) # Is png format? - - png = mat.encode('.png', CV_IMWRITE_PNG_COMPRESSION => 9) - assert_equal('PNG', png[1, 3].map(&:chr).join) - - assert_raise(TypeError) { - mat.encode(DUMMY_OBJ) - } - assert_raise(TypeError) { - mat.encode('.jpg', DUMMY_OBJ) - } - - # Uncomment the following lines to see the result images - # - # open('test-jpeg.jpg', 'wb') { |f| - # f.write jpg.pack("c*") - # } - # open('test-png.png', 'wb') { |f| - # f.write png.pack("c*") - # } - end - - def test_decode - data = nil - open(FILENAME_CAT, 'rb') { |f| - data = f.read - } - data_ary = data.unpack("c*") - data_mat = CvMat.new(1, data_ary.size).set_data(data_ary) - expected = CvMat.load(FILENAME_CAT) - - mat1 = CvMat.decode(data) - mat2 = CvMat.decode(data_ary) - mat3 = CvMat.decode(data_mat) - mat4 = CvMat.decode(data, CV_LOAD_IMAGE_COLOR) - mat5 = CvMat.decode(data_ary, CV_LOAD_IMAGE_COLOR) - mat6 = CvMat.decode(data_mat, CV_LOAD_IMAGE_COLOR) - expected_hash = hash_img(expected) - - [mat1, mat2, mat3, mat4, mat5, mat6].each { |mat| - assert_equal(CvMat, mat.class) - assert_equal(expected.rows, mat.rows) - assert_equal(expected.cols, mat.cols) - assert_equal(expected.channel, mat.channel) - assert_equal(expected_hash, hash_img(mat)) - } - - expected_c1 = CvMat.load(FILENAME_CAT, CV_LOAD_IMAGE_GRAYSCALE) - mat1c1 = CvMat.decode(data, CV_LOAD_IMAGE_GRAYSCALE) - mat2c1 = CvMat.decode(data_ary, CV_LOAD_IMAGE_GRAYSCALE) - mat3c1 = CvMat.decode(data_mat, CV_LOAD_IMAGE_GRAYSCALE) - expected_hash_c1 = hash_img(expected_c1) - - [mat1c1, mat2c1, mat3c1].each { |mat| - assert_equal(CvMat, mat.class) - assert_equal(expected_c1.rows, mat.rows) - assert_equal(expected_c1.cols, mat.cols) - assert_equal(expected_c1.channel, mat.channel) - assert_equal(expected_hash_c1, hash_img(mat)) - } - - assert_raise(TypeError) { - CvMat.decode(DUMMY_OBJ) - } - assert_raise(TypeError) { - CvMat.decode(data, DUMMY_OBJ) - } - - # Uncomment the following line to show the result images - # snap mat1, mat2, mat3 - end - - def test_GOOD_FEATURES_TO_TRACK_OPTION - assert_equal(0xff, CvMat::GOOD_FEATURES_TO_TRACK_OPTION[:max]) - assert_nil(CvMat::GOOD_FEATURES_TO_TRACK_OPTION[:mask]) - assert_equal(3, CvMat::GOOD_FEATURES_TO_TRACK_OPTION[:block_size]) - assert((not CvMat::GOOD_FEATURES_TO_TRACK_OPTION[:use_harris])) - assert_in_delta(0.04, CvMat::GOOD_FEATURES_TO_TRACK_OPTION[:k], 0.01) - end - - def test_FIND_CONTOURS_OPTION - assert_equal(1, CvMat::FIND_CONTOURS_OPTION[:mode]) - assert_equal(2, CvMat::FIND_CONTOURS_OPTION[:method]) - assert_equal(0, CvMat::FIND_CONTOURS_OPTION[:offset].x) - assert_equal(0, CvMat::FIND_CONTOURS_OPTION[:offset].y) - end - - def test_OPTICAL_FLOW_HS_OPTION - assert_in_delta(0.0005, CvMat::OPTICAL_FLOW_HS_OPTION[:lambda], 0.000001) - assert_equal(1, CvMat::OPTICAL_FLOW_HS_OPTION[:criteria].max) - assert_in_delta(0.001, CvMat::OPTICAL_FLOW_HS_OPTION[:criteria].eps, 0.00001) - end - - def test_OPTICAL_FLOW_BM_OPTION - assert_equal(4, CvMat::OPTICAL_FLOW_BM_OPTION[:block_size].width) - assert_equal(4, CvMat::OPTICAL_FLOW_BM_OPTION[:block_size].height) - assert_equal(1, CvMat::OPTICAL_FLOW_BM_OPTION[:shift_size].width) - assert_equal(1, CvMat::OPTICAL_FLOW_BM_OPTION[:shift_size].height) - assert_equal(4, CvMat::OPTICAL_FLOW_BM_OPTION[:max_range].width) - assert_equal(4, CvMat::OPTICAL_FLOW_BM_OPTION[:max_range].height) - end - - def test_FIND_FUNDAMENTAL_MAT_OPTION - assert((not CvMat::FIND_FUNDAMENTAL_MAT_OPTION[:with_status])) - assert_in_delta(1.0, CvMat::FIND_FUNDAMENTAL_MAT_OPTION[:maximum_distance], 0.01) - assert_in_delta(0.99, CvMat::FIND_FUNDAMENTAL_MAT_OPTION[:desirable_level], 0.01) - end - - def test_to_s - m = CvMat.new(10, 20) - assert_equal('', m.to_s) - m = CvMat.new(10, 20, :cv16s) - assert_equal('', m.to_s) - m = CvMat.new(10, 20, :cv32f, 1) - assert_equal('', m.to_s) - end - - def test_inside - m = CvMat.new(20, 10) - assert(m.inside? CvPoint.new(0, 0)) - assert(m.inside? CvPoint.new(9, 19)) - assert((not m.inside? CvPoint.new(10, 0))) - assert((not m.inside? CvPoint.new(0, 20))) - assert((not m.inside? CvPoint.new(10, 20))) - end - - def test_to_IplConvKernel - kernel = CvMat.new(10, 20).to_IplConvKernel(CvPoint.new(2, 3)) - assert_equal(10, kernel.rows) - assert_equal(20, kernel.cols) - assert_equal(2, kernel.anchor.x) - assert_equal(3, kernel.anchor.y) - assert_equal(2, kernel.anchor_x) - assert_equal(3, kernel.anchor_y) - end - - def test_create_mask - mask = CvMat.new(10, 20).create_mask - assert_equal(20, mask.width) - assert_equal(10, mask.height) - assert_equal(:cv8u, mask.depth) - assert_equal(1, mask.channel) - end - - def test_fields - m = CvMat.new(20, 10) - assert_equal(10, m.width) - assert_equal(10, m.columns) - assert_equal(10, m.cols) - assert_equal(20, m.height) - assert_equal(20, m.rows) - assert_equal(:cv8u, m.depth) - assert_equal(3, m.channel) - - m = CvMat.new(20, 10, :cv16s, 1) - assert_equal(10, m.width) - assert_equal(10, m.columns) - assert_equal(10, m.cols) - assert_equal(20, m.height) - assert_equal(20, m.rows) - assert_equal(:cv16s, m.depth) - assert_equal(1, m.channel) - end - - def test_clone - m1 = create_cvmat(10, 20) - m2 = m1.clone - assert_equal(m1.data, m2.data) - end - - def test_copy - m1 = create_cvmat(10, 20, CV_32F, 1) { |j, i, c| CvScalar.new(c) } - - m2 = m1.copy - assert_equal(m1.data, m2.data) - - m2 = create_cvmat(10, 20, CV_32F, 1).zero - m3 = m1.copy(m2) - assert_equal(m1.data, m2.data) - assert_equal(m1.data, m3.data) - - rows, cols = m1.rows, m1.cols - mask = create_cvmat(rows, cols, CV_8U, 1) { |j, i, c| - val = (i > cols / 2) ? 0 : 255 - CvScalar.new(val) - } - - m2_orig = m2.copy - m3 = m1.copy(m2, mask) - rows.times { |j| - cols.times { |i| - expected = (mask[j, i][0] == 0) ? m2_orig[j, i] : m1[j, i] - assert_cvscalar_equal(expected, m2[j, i]) - assert_cvscalar_equal(expected, m3[j, i]) - } - } - - assert_raise(TypeError) { - m1.copy(DUMMY_OBJ) - } - end - - def test_convert_depth - m = CvMat.new(10, 20, :cv32f) - assert_equal(:cv8u, m.to_8u.depth) - assert_equal(:cv8s, m.to_8s.depth) - assert_equal(:cv16u, m.to_16u.depth) - assert_equal(:cv16s, m.to_16s.depth) - assert_equal(:cv32s, m.to_32s.depth) - assert_equal(:cv32f, m.to_32f.depth) - assert_equal(:cv64f, m.to_64f.depth) - end - - def test_vector - m = CvMat.new(1, 2) - assert(m.vector?) - - m = CvMat.new(2, 2) - assert((not m.vector?)) - end - - def test_square - m = CvMat.new(2, 2) - assert(m.square?) - m = CvMat.new(1, 2) - assert((not m.square?)) - end - - def test_to_CvMat - m1 = CvMat.new(2, 3, :cv32f, 4) - m2 = m1.to_CvMat - assert_equal(CvMat, m2.class) - assert_equal(m1.rows, m2.rows) - assert_equal(m1.cols, m2.cols) - assert_equal(m1.depth, m2.depth) - assert_equal(m1.channel, m2.channel) - assert_equal(m1.data, m2.data) - end - - def test_sub_rect - m1 = create_cvmat(10, 10) - - assert_raise(ArgumentError) { - m1.sub_rect - } - - m2 = m1.sub_rect(CvRect.new(0, 0, 2, 3)) - assert_equal(2, m2.width) - assert_equal(3, m2.height) - m2.height.times { |j| - m2.width.times { |i| - assert_cvscalar_equal(m1[j, i], m2[j, i]) - } - } - - topleft = CvPoint.new(2, 3) - m2 = m1.sub_rect(topleft, CvSize.new(4, 5)) - assert_equal(4, m2.width) - assert_equal(5, m2.height) - m2.height.times { |j| - m2.width.times { |i| - assert_cvscalar_equal(m1[topleft.y + j, topleft.x + i], m2[j, i]) - } - } - - topleft = CvPoint.new(1, 2) - m2 = m1.sub_rect(topleft.x, topleft.y, 3, 4) - assert_equal(3, m2.width) - assert_equal(4, m2.height) - m2.height.times { |j| - m2.width.times { |i| - assert_cvscalar_equal(m1[topleft.y + j, topleft.x + i], m2[j, i]) - } - } - - # Alias - m2 = m1.subrect(CvRect.new(0, 0, 2, 3)) - assert_equal(2, m2.width) - assert_equal(3, m2.height) - m2.height.times { |j| - m2.width.times { |i| - assert_cvscalar_equal(m1[j, i], m2[j, i]) - } - } - - assert_raise(TypeError) { - m1.sub_rect(DUMMY_OBJ) - } - assert_raise(TypeError) { - m1.sub_rect(DUMMY_OBJ, CvSize.new(1, 2)) - } - assert_raise(TypeError) { - m1.sub_rect(CvPoint.new(1, 2), DUMMY_OBJ) - } - assert_raise(TypeError) { - m1.sub_rect(DUMMY_OBJ, 2, 3, 4) - } - assert_raise(TypeError) { - m1.sub_rect(1, DUMMY_OBJ, 3, 4) - } - assert_raise(TypeError) { - m1.sub_rect(1, 2, DUMMY_OBJ, 4) - } - assert_raise(TypeError) { - m1.sub_rect(1, 2, 3, DUMMY_OBJ) - } - end - - def test_get_rows - m1 = create_cvmat(10, 20) { |j, i, c| CvScalar.new(c) } - - row = 2 - m2 = m1.get_rows(row) - assert_equal(1, m2.rows) - assert_equal(m1.cols, m2.cols) - m1.cols.times { |i| - assert_cvscalar_equal(m1[row, i], m2[i]) - } - - row1 = 3..7 - row2 = 2...8 - [row1, row2].each { |row| - m3 = m1.get_rows(row) - w = (row.exclude_end?) ? row.last - row.begin : row.last - row.begin + 1 - assert_equal(w, m3.rows) - assert_equal(m1.cols, m3.cols) - - m3.rows.times { |j| - m3.cols.times { |i| - assert_cvscalar_equal(m1[row.begin + j, i], m3[j, i]) - } - } - } - - [row1, row2].each { |row| - delta = 2 - m3 = m1.get_rows(row, 2) - w = (((row.exclude_end?) ? row.last - row.begin : row.last - row.begin + 1).to_f / delta).ceil - assert_equal(w, m3.rows) - assert_equal(m1.cols, m3.cols) - - m3.rows.times { |j| - m3.cols.times { |i| - assert_cvscalar_equal(m1[row.begin + j * delta, i], m3[j, i]) - } - } - } - - assert_raise(TypeError) { - m1.get_rows(DUMMY_OBJ) - } - assert_raise(TypeError) { - m1.get_rows(1, DUMMY_OBJ) - } - end - - def test_get_cols - m1 = create_cvmat(10, 20) { |j, i, c| CvScalar.new(c) } - - col = 2 - m2 = m1.get_cols(col) - assert_equal(m1.rows, m2.rows) - assert_equal(1, m2.cols) - m1.height.times { |j| - assert_cvscalar_equal(m1[j, col], m2[j]) - } - - col1 = 3..7 - col2 = 2...8 - [col1, col2].each { |col| - m3 = m1.get_cols(col) - w = (col.exclude_end?) ? col.last - col.begin : col.last - col.begin + 1 - assert_equal(m1.rows, m3.rows) - assert_equal(w, m3.cols) - - m3.rows.times { |j| - m3.cols.times { |i| - assert_cvscalar_equal(m1[j, col.begin + i], m3[j, i]) - } - } - } - - assert_raise(TypeError) { - m1.get_cols(DUMMY_OBJ) - } - end - - def test_each_row - m1 = create_cvmat(2, 3) - a = [[1, 2, 3], [4, 5, 6]] - a.map! { |a1| - a1.map! { |a2| - CvScalar.new(a2, a2, a2, a2).to_ary - } - } - - j = 0 - m1.each_row { |r| - a[j].size.times { |i| - assert_cvscalar_equal(a[j][i], r[i]) - } - j += 1 - } - end - - def test_each_col - m1 = create_cvmat(2, 3) - a = [[1, 4], [2, 5], [3, 6]] - a.map! { |a1| - a1.map! { |a2| - CvScalar.new(a2, a2, a2, a2).to_ary - } - } - - j = 0 - m1.each_col { |c| - a[j].size.times { |i| - assert_cvscalar_equal(a[j][i], c[i]) - } - j += 1 - } - - # Alias - j = 0 - m1.each_column { |c| - a[j].size.times { |i| - assert_cvscalar_equal(a[j][i], c[i]) - } - j += 1 - } - end - - def test_diag - m = create_cvmat(5, 5) - a = [1, 7, 13, 19, 25].map { |x| CvScalar.new(x, x, x, x) } - d = m.diag - - a.each_with_index { |s, i| - assert_cvscalar_equal(s, d[i]) - } - - a = [2, 8, 14, 20].map { |x| CvScalar.new(x, x, x, x) } - d = m.diag(1) - a.each_with_index { |s, i| - assert_cvscalar_equal(s, d[i]) - } - - a = [6, 12, 18, 24].map { |x| CvScalar.new(x, x, x, x) } - d = m.diag(-1) - a.each_with_index { |s, i| - assert_cvscalar_equal(s, d[i]) - } - - # Alias - a = [1, 7, 13, 19, 25].map { |x| CvScalar.new(x, x, x, x) } - d = m.diagonal - a.each_with_index { |s, i| - assert_cvscalar_equal(s, d[i]) - } - - [m.rows, m.cols, -m.rows, -m.cols].each { |d| - assert_raise(CvStsOutOfRange) { - m.diag(d) - } - } - end - - def test_size - m = CvMat.new(2, 3) - assert_equal(3, m.size.width) - assert_equal(2, m.size.height) - end - - def test_dims - m = CvMat.new(2, 3) - assert_equal([2, 3], m.dims) - end - - def test_dim_size - m = CvMat.new(2, 3) - assert_equal(2, m.dim_size(0)) - assert_equal(3, m.dim_size(1)) - - assert_raise(TypeError) { - m.dim_size(DUMMY_OBJ) - } - end - - def test_aref - m = create_cvmat(2, 3) - assert_cvscalar_equal(CvScalar.new(1, 1, 1, 1), m[0]) - assert_cvscalar_equal(CvScalar.new(5, 5, 5, 5), m[4]) - assert_cvscalar_equal(CvScalar.new(2, 2, 2, 2), m[0, 1]) - assert_cvscalar_equal(CvScalar.new(4, 4, 4, 4), m[1, 0]) - assert_cvscalar_equal(CvScalar.new(2, 2, 2, 2), m[0, 1, 2]) - assert_cvscalar_equal(CvScalar.new(4, 4, 4, 4), m[1, 0, 3, 4]) - - # Alias - assert_cvscalar_equal(CvScalar.new(1, 1, 1, 1), m.at(0)) - - assert_raise(TypeError) { - m[DUMMY_OBJ] - } - - assert_raise(CvStsOutOfRange) { - m[-1] - } - assert_raise(CvStsOutOfRange) { - m[6] - } - assert_raise(CvStsOutOfRange) { - m[2, 2] - } - assert_raise(CvStsOutOfRange) { - m[1, 3] - } - assert_raise(CvStsOutOfRange) { - m[2, 2, 1] - } - assert_raise(CvStsOutOfRange) { - m[1, 3, 1] - } - end - - def test_aset - m = create_cvmat(2, 3) - m[0] = CvScalar.new(10, 10, 10, 10) - assert_cvscalar_equal(CvScalar.new(10, 10, 10, 10), m[0]) - m[1, 0] = CvScalar.new(20, 20, 20, 20) - assert_cvscalar_equal(CvScalar.new(20, 20, 20, 20), m[1, 0]) - m[1, 0, 2] = CvScalar.new(4, 4, 4, 4) - assert_cvscalar_equal(CvScalar.new(4, 4, 4, 4), m[1, 0]) - m[1, 0, 2, 4] = CvScalar.new(5, 5, 5, 5) - assert_cvscalar_equal(CvScalar.new(5, 5, 5, 5), m[1, 0]) - - assert_raise(TypeError) { - m[DUMMY_OBJ] = CvScalar.new(10, 10, 10, 10) - } - assert_raise(TypeError) { - m[0] = DUMMY_OBJ - } - - assert_raise(CvStsOutOfRange) { - m[-1] - } - assert_raise(CvStsOutOfRange) { - m[6] - } - assert_raise(CvStsOutOfRange) { - m[2, 2] - } - assert_raise(CvStsOutOfRange) { - m[1, 3] - } - assert_raise(CvStsOutOfRange) { - m[2, 2, 1] - } - assert_raise(CvStsOutOfRange) { - m[1, 3, 1] - } - end - - def test_set_data - [CV_8U, CV_8S, CV_16U, CV_16S, CV_32S].each { |depth| - a = [10, 20, 30, 40, 50, 60] - m = CvMat.new(2, 3, depth, 1) - m.set_data(a) - (m.rows * m.cols).times { |i| - assert_equal(a[i], m[i][0]) - } - } - - [CV_32F, CV_64F].each { |depth| - a = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6] - m = CvMat.new(2, 3, depth, 1) - m.set_data(a) - (m.rows * m.cols).times { |i| - assert_in_delta(a[i], m[i][0], 1.0e-5) - } - } - - a = [[10, 20, 30], [40, 50, 60]] - m = CvMat.new(2, 3, CV_8U, 1) - m.set_data(a) - (m.rows * m.cols).times { |i| - assert_equal(a.flatten[i], m[i][0]) - } - - [CV_8U, CV_8S, CV_16U, CV_16S, CV_32S, CV_32F, CV_64F].each { |depth| - m = CvMat.new(2, 3, depth, 1) - assert_raise(TypeError) { - a = [DUMMY_OBJ] * 6 - m.set_data(a) - } - } - end - - def test_fill - m1 = create_cvmat(2, 3) - m2 = m1.fill(CvScalar.new(1, 2, 3, 4)) - m1.fill!(CvScalar.new(1, 2, 3, 4)) - m2.height.times { |j| - m2.width.times { |i| - assert_cvscalar_equal(CvScalar.new(1, 2, 3, 4), m1[j, i]) - assert_cvscalar_equal(CvScalar.new(1, 2, 3, 4), m2[j, i]) - } - } - - m1 = create_cvmat(5, 5) - m0 = m1.clone - mask = CvMat.new(m1.height, m1.width, :cv8u, 1).clear - 2.times { |j| - 2.times { |i| - mask[j, i] = CvScalar.new(1, 1, 1, 1) - } - } - - m2 = m1.fill(CvScalar.new(1, 2, 3, 4), mask) - m1.fill!(CvScalar.new(1, 2, 3, 4), mask) - m2.height.times { |j| - m2.width.times { |i| - if i < 2 and j < 2 - assert_cvscalar_equal(CvScalar.new(1, 2, 3, 4), m1[j, i]) - assert_cvscalar_equal(CvScalar.new(1, 2, 3, 4), m2[j, i]) - else - assert_cvscalar_equal(m0[j, i], m1[j, i]) - assert_cvscalar_equal(m0[j, i], m2[j, i]) - end - } - } - - # Alias - m1 = create_cvmat(2, 3) - m2 = m1.set(CvScalar.new(1, 2, 3, 4)) - m1.set!(CvScalar.new(1, 2, 3, 4)) - m2.height.times { |j| - m2.width.times { |i| - assert_cvscalar_equal(CvScalar.new(1, 2, 3, 4), m1[j, i]) - assert_cvscalar_equal(CvScalar.new(1, 2, 3, 4), m2[j, i]) - } - } - - m1 = create_cvmat(5, 5) - m0 = m1.clone - mask = CvMat.new(m1.height, m1.width, CV_8U, 1).clear - 2.times { |j| - 2.times { |i| - mask[j, i] = CvScalar.new(1, 1, 1, 1) - } - } - - m2 = m1.set(CvScalar.new(1, 2, 3, 4), mask) - m1.set!(CvScalar.new(1, 2, 3, 4), mask) - m2.height.times { |j| - m2.width.times { |i| - if i < 2 and j < 2 - assert_cvscalar_equal(CvScalar.new(1, 2, 3, 4), m1[j, i]) - assert_cvscalar_equal(CvScalar.new(1, 2, 3, 4), m2[j, i]) - else - assert_cvscalar_equal(m0[j, i], m1[j, i]) - assert_cvscalar_equal(m0[j, i], m2[j, i]) - end - } - } - - assert_raise(TypeError) { - m1.fill(DUMMY_OBJ) - } - assert_raise(TypeError) { - m1.fill(CvScalar.new(1), DUMMY_OBJ) - } - end - - def test_clear - m1 = create_cvmat(2, 3) - m2 = m1.clear - m1.clear! - m2.height.times { |j| - m2.width.times { |i| - assert_cvscalar_equal(CvScalar.new(0, 0, 0, 0), m1[j, i]) - assert_cvscalar_equal(CvScalar.new(0, 0, 0, 0), m2[j, i]) - } - } - - # Alias - m1 = create_cvmat(2, 3) - m2 = m1.set_zero - m1.set_zero! - m3 = create_cvmat(2, 3) - m4 = m3.zero - m3.zero! - m2.height.times { |j| - m2.width.times { |i| - assert_cvscalar_equal(CvScalar.new(0, 0, 0, 0), m1[j, i]) - assert_cvscalar_equal(CvScalar.new(0, 0, 0, 0), m2[j, i]) - assert_cvscalar_equal(CvScalar.new(0, 0, 0, 0), m3[j, i]) - assert_cvscalar_equal(CvScalar.new(0, 0, 0, 0), m4[j, i]) - } - } - end - - def test_identity - m1 = create_cvmat(5, 5) - m2 = m1.identity - m1.identity! - m2.height.times { |j| - m2.width.times { |i| - if i == j - assert_cvscalar_equal(CvScalar.new(1, 0, 0, 0), m1[j, i]) - assert_cvscalar_equal(CvScalar.new(1, 0, 0, 0), m2[j, i]) - else - assert_cvscalar_equal(CvScalar.new(0, 0, 0, 0), m1[j, i]) - assert_cvscalar_equal(CvScalar.new(0, 0, 0, 0), m2[j, i]) - end - } - } - - m1 = CvMat.new(5, 5, :cv8u, 4) - s = CvScalar.new(1, 2, 3, 4) - m2 = m1.identity(s) - m1.identity!(s) - m2.height.times { |j| - m2.width.times { |i| - if i == j - assert_cvscalar_equal(s, m1[j, i]) - assert_cvscalar_equal(s, m2[j, i]) - else - assert_cvscalar_equal(CvScalar.new(0, 0, 0, 0), m1[j, i]) - assert_cvscalar_equal(CvScalar.new(0, 0, 0, 0), m2[j, i]) - end - } - } - - assert_raise(TypeError) { - m1.identity(DUMMY_OBJ) - } - end - - def test_range - m1 = CvMat.new(1, 10, CV_32S, 1) - m2 = m1.range(0, m1.cols) - m1.range!(0, m1.cols) - m2.width.times { |i| - assert_cvscalar_equal(CvScalar.new(i, 0, 0, 0), m1[0, i]) - assert_cvscalar_equal(CvScalar.new(i, 0, 0, 0), m2[0, i]) - } - - assert_raise(TypeError) { - m1.range(DUMMY_OBJ, 2) - } - assert_raise(TypeError) { - m1.range(1, DUMMY_OBJ) - } - end - - def test_reshape - m = create_cvmat(2, 3, CV_8U, 3) - - vec = m.reshape(0, 1) - assert_equal(6, vec.width) - assert_equal(1, vec.height) - size = m.width * m.height - size.times { |i| - assert_cvscalar_equal(m[i], vec[i]) - } - - ch1 = m.reshape(1) - assert_equal(9, ch1.width) - assert_equal(2, ch1.height) - - m.height.times { |j| - m.width.times { |i| - s1 = ch1[j, i * 3][0] - s2 = ch1[j, i * 3 + 1][0] - s3 = ch1[j, i * 3 + 2][0] - assert_cvscalar_equal(m[j, i], CvScalar.new(s1, s2, s3, 0)) - } - } - - assert_raise(TypeError) { - m.reshape(DUMMY_OBJ) - } - assert_raise(TypeError) { - m.reshape(0, DUMMY_OBJ) - } - end - - def test_repeat - m1 = create_cvmat(2, 3, :cv8u, 3) - m2 = CvMat.new(6, 9, :cv8u, 3) - m2 = m1.repeat(m2) - m2.height.times { |j| - m2.width.times { |i| - a = m1[j % m1.height, i % m1.width] - assert_cvscalar_equal(m2[j, i], a) - } - } - assert_raise(TypeError) { - m1.repeat(DUMMY_OBJ) - } - end - - def test_flip - m0 = create_cvmat(2, 3) - - m1 = m0.clone - m1.flip!(:x) - m2 = m0.flip(:x) - m3 = m0.clone - m3.flip!(:y) - m4 = m0.flip(:y) - m5 = m0.clone - m5.flip!(:xy) - m6 = m0.flip(:xy) - m7 = m0.clone - m7.flip! - m8 = m0.flip - - [m1, m2, m3, m4, m5, m6, m7, m8].each { |m| - assert_equal(m0.height, m.height) - assert_equal(m0.width, m.width) - } - m0.height.times { |j| - m0.width.times { |i| - ri = m0.width - i - 1 - rj = m0.height - j - 1 - assert_cvscalar_equal(m0[j, ri], m1[j, i]) - assert_cvscalar_equal(m0[j, ri], m2[j, i]) - assert_cvscalar_equal(m0[rj, i], m3[j, i]) - assert_cvscalar_equal(m0[rj, i], m4[j, i]) - assert_cvscalar_equal(m0[rj, ri], m5[j, i]) - assert_cvscalar_equal(m0[rj, ri], m6[j, i]) - assert_cvscalar_equal(m0[j, ri], m7[j, i]) - assert_cvscalar_equal(m0[j, ri], m8[j, i]) - } - } - - assert_raise(TypeError) { - m0.flip(DUMMY_OBJ) - } - assert_raise(TypeError) { - m0.flip!(DUMMY_OBJ) - } - end - - def test_split - m0 = create_cvmat(2, 3, :cv8u, 3) { |j, i, c| - CvScalar.new(c * 10, c * 20, c * 30) - } - - splitted = m0.split - assert_equal(m0.channel, splitted.size) - splitted.each_with_index { |m, idx| - assert_equal(CvMat, m.class) - assert_equal(m0.height, m.height) - assert_equal(m0.width, m.width) - assert_equal(1, m.channel) - - c = 0 - m0.height.times { |j| - m0.width.times { |i| - val = c * 10 * (idx + 1) - assert_cvscalar_equal(CvScalar.new(val), m[j, i]) - c += 1 - } - } - } - - # IplImage#split should return Array - image = create_iplimage(2, 3, :cv8u, 3) { |j, i, c| - CvScalar.new(c * 10, c * 20, c * 30) - } - - splitted = image.split - assert_equal(3, splitted.size) - splitted.each_with_index { |img, channel| - assert_equal(IplImage, img.class) - assert_equal(image.height, img.height) - assert_equal(image.width, img.width) - assert_equal(1, img.channel) - - img.height.times { |j| - img.width.times { |i| - val = image[j, i][channel] - assert_cvscalar_equal(CvScalar.new(val), img[j, i]) - } - } - } - end - - def test_merge - m0 = create_cvmat(2, 3, :cv8u, 4) { |j, i, c| - CvScalar.new(c * 10, c * 20, c * 30, c * 40) - } - m1 = create_cvmat(2, 3, :cv8u, 1) { |j, i, c| - CvScalar.new(c * 10) - } - m2 = create_cvmat(2, 3, :cv8u, 1) { |j, i, c| - CvScalar.new(c * 20) - } - m3 = create_cvmat(2, 3, :cv8u, 1) { |j, i, c| - CvScalar.new(c * 30) - } - m4 = create_cvmat(2, 3, :cv8u, 1) { |j, i, c| - CvScalar.new(c * 40) - } - - m = CvMat.merge(m1, m2, m3, m4) - - assert_equal(m0.height, m.height) - assert_equal(m0.width, m.width) - m0.height.times { |j| - m0.width.times { |i| - assert_cvscalar_equal(m0[j, i], m[j, i]) - } - } - - m5 = create_cvmat(2, 3, :cv8u, 1) { |j, i, c| - CvScalar.new(c * 50) - } - - assert_raise(TypeError) { - CvMat.merge(DUMMY_OBJ) - } - assert_raise(ArgumentError) { - CvMat.merge - } - assert_raise(ArgumentError) { - CvMat.merge(m1, m2, m3, m4, m5) - } - assert_raise(ArgumentError) { - CvMat.merge(CvMat.new(1, 2, :cv8u, 2)) - } - assert_raise(ArgumentError) { - CvMat.merge(CvMat.new(1, 2, :cv8u, 1), - CvMat.new(2, 2, :cv8u, 1)) - } - assert_raise(ArgumentError) { - CvMat.merge(CvMat.new(1, 2, :cv8u, 1), - CvMat.new(1, 2, :cv32f, 1)) - } - end - - def test_rand_shuffle - m0 = create_cvmat(2, 3) - m1 = m0.clone - m1.rand_shuffle! - m2 = m0.rand_shuffle - m3 = m0.clone - m3.rand_shuffle!(123, 234) - m4 = m0.rand_shuffle(123, 234) - - assert_shuffled_equal = lambda { |src, shuffled| - assert_equal(src.width, shuffled.width) - assert_equal(src.height, shuffled.height) - mat0, mat1 = [], [] - src.height { |j| - src.width { |i| - mat0 << src[j, i].to_s - mat1 << shuffled[j, i].to_s - } - } - assert_equal(0, (mat0 - mat1).size) - } - - [m1, m2, m3, m4].each { |m| - assert_shuffled_equal.call(m0, m) - } - - assert_raise(TypeError) { - m0.rand_shuffle(DUMMY_OBJ) - } - assert_raise(TypeError) { - m0.rand_shuffle(123, DUMMY_OBJ) - } - end - - def test_lut - m0 = create_cvmat(2, 3, :cv8u, 3) - lut_mat = create_cvmat(1, 256, :cv8u, 3) { |j, i, c| - CvScalar.new(255 - c, 255 - c, 255 - c) - } - - m = m0.lut(lut_mat) - assert_equal(m0.height, m.height) - assert_equal(m0.width, m.width) - m0.height.times { |j| - m0.width.times { |i| - r, g, b = m0[j, i].to_ary.map { |c| 255 - c } - assert_cvscalar_equal(CvScalar.new(r, g, b, 0), m[j, i]) - } - } - - assert_raise(TypeError) { - m0.lut(DUMMY_OBJ) - } - end - - def test_convert_scale - m0 = create_cvmat(2, 3, :cv32f, 4) { |j, i, c| - CvScalar.new(-c, -c, -c, -c) - } - - m1 = m0.convert_scale(:depth => :cv8u) - m2 = m0.convert_scale(:scale => 1.5) - m3 = m0.convert_scale(:shift => 10.0) - m4 = m0.convert_scale(:depth => CV_16U) - - [m1, m2, m3, m4].each { |m| - assert_equal(m0.height, m.height) - assert_equal(m0.width, m.width) - } - m0.height.times { |j| - m0.width.times { |i| - assert_cvscalar_equal(CvScalar.new(0, 0, 0, 0), m1[j, i]) - a = m0[j, i].to_ary.map { |x| x * 1.5 } - assert_in_delta(a, m2[j, i], 0.001) - a = m0[j, i].to_ary.map { |x| x + 10.0 } - assert_in_delta(a, m3[j, i], 0.001) - assert_cvscalar_equal(CvScalar.new(0, 0, 0, 0), m4[j, i]) - } - } - - assert_raise(TypeError) { - m0.convert_scale(DUMMY_OBJ) - } - end - - def test_convert_scale_abs - m0 = create_cvmat(2, 3, :cv8u, 4) { |j, i, c| - CvScalar.new(c, c, c, c) - } - - m1 = m0.convert_scale_abs(:depth => :cv64f) - m2 = m0.convert_scale_abs(:scale => 2) - m3 = m0.convert_scale_abs(:shift => 10.0) - m4 = m0.convert_scale_abs(:depth => CV_64F) - - [m1, m2, m3, m4].each { |m| - assert_equal(m0.height, m.height) - assert_equal(m0.width, m.width) - } - m0.height.times { |j| - m0.width.times { |i| - assert_cvscalar_equal(m0[j, i], m1[j, i]) - a = m0[j, i].to_ary.map { |x| (x * 2).abs } - assert_in_delta(a, m2[j, i], 0.001) - a = m0[j, i].to_ary.map { |x| (x + 10.0).abs } - assert_in_delta(a, m3[j, i], 0.001) - assert_cvscalar_equal(m0[j, i], m4[j, i]) - } - } - - assert_raise(TypeError) { - m0.convert_scale(DUMMY_OBJ) - } - end - - def test_add - m1 = create_cvmat(6, 4, :cv32f, 4) { |j, i, c| - CvScalar.new(c * 0.1, c * 0.2, c * 0.3, c * 0.4) - } - m2 = create_cvmat(6, 4, :cv32f, 4) { |j, i, c| - CvScalar.new(c * 1, c * 2, c * 3, c * 4) - } - - # CvMat + CvMat - m3 = m1.add(m2) - assert_equal(m1.height, m3.height) - assert_equal(m1.width, m3.width) - n = 0 - m1.height.times { |j| - m1.width.times { |i| - s = CvScalar.new(n * 1.1, n * 2.2, n * 3.3, n * 4.4) - assert_in_delta(s, m3[j, i], 0.001) - n += 1 - } - } - - # CvMat + CvScalar - s1 = CvScalar.new(1, 2, 3, 4) - m3 = m1.add(s1) - assert_equal(m1.height, m3.height) - assert_equal(m1.width, m3.width) - n = 0 - m1.height.times { |j| - m1.width.times { |i| - s = CvScalar.new(n * 0.1 + 1, n * 0.2 + 2, n * 0.3 + 3, n * 0.4 + 4) - assert_in_delta(s, m3[j, i], 0.001) - n += 1 - } - } - - # Alias - m3 = m1 + m2 - assert_equal(m1.height, m3.height) - assert_equal(m1.width, m3.width) - n = 0 - m1.height.times { |j| - m1.width.times { |i| - s = CvScalar.new(n * 1.1, n * 2.2, n * 3.3, n * 4.4) - assert_in_delta(s, m3[j, i], 0.001) - n += 1 - } - } - - # CvMat + CvMat with Mask - mask = create_cvmat(6, 4, :cv8u, 1) { |j, i, c| - (i < 3 and j < 2) ? 1 : 0 - } - - m4 = m1.add(m2, mask) - assert_equal(m1.height, m4.height) - assert_equal(m1.width, m4.width) - n = 0 - m1.height.times { |j| - m1.width.times { |i| - if i < 3 and j < 2 - s = CvScalar.new(n * 1.1, n * 2.2, n * 3.3, n * 4.4) - else - s = m1[j, i] - end - assert_in_delta(s, m4[j, i], 0.001) - n += 1 - } - } - - # CvMat + CvScalar with Mask - m4 = m1.add(s1, mask) - assert_equal(m1.height, m4.height) - assert_equal(m1.width, m4.width) - n = 0 - m1.height.times { |j| - m1.width.times { |i| - if i < 3 and j < 2 - s = CvScalar.new(n * 0.1 + 1, n * 0.2 + 2, n * 0.3 + 3, n * 0.4 + 4) - else - s = m1[j, i] - end - assert_in_delta(s, m4[j, i], 0.001) - n += 1 - } - } - - assert_raise(TypeError) { - m1.add(DUMMY_OBJ) - } - assert_raise(TypeError) { - m1.add(CvScalar.new(1), DUMMY_OBJ) - } - end - - def test_sub - m1 = create_cvmat(6, 4, :cv32f, 4) { |j, i, c| - CvScalar.new(c * 0.1, c * 0.2, c * 0.3, c * 0.4) - } - m2 = create_cvmat(6, 4, :cv32f, 4) { |j, i, c| - CvScalar.new(c * 1, c * 2, c * 3, c * 4) - } - - # CvMat - CvMat - m3 = m1.sub(m2) - assert_equal(m1.height, m3.height) - assert_equal(m1.width, m3.width) - n = 0 - m1.height.times { |j| - m1.width.times { |i| - s = CvScalar.new(-n * 0.9, -n * 1.8, -n * 2.7, -n * 3.6) - assert_in_delta(s, m3[j, i], 0.001) - n += 1 - } - } - - # CvMat - CvScalar - s1 = CvScalar.new(1, 2, 3, 4) - m3 = m1.sub(s1) - assert_equal(m1.height, m3.height) - assert_equal(m1.width, m3.width) - n = 0 - m1.height.times { |j| - m1.width.times { |i| - s = CvScalar.new(n * 0.1 - 1, n * 0.2 - 2, n * 0.3 - 3, n * 0.4 - 4) - assert_in_delta(s, m3[j, i], 0.001) - n += 1 - } - } - - # Alias - m3 = m1 - m2 - assert_equal(m1.height, m3.height) - assert_equal(m1.width, m3.width) - n = 0 - m1.height.times { |j| - m1.width.times { |i| - s = CvScalar.new(-n * 0.9, -n * 1.8, -n * 2.7, -n * 3.6) - assert_in_delta(s, m3[j, i], 0.001) - n += 1 - } - } - - mask = create_cvmat(6, 4, :cv8u, 1) { |j, i, c| - (i < 3 and j < 2) ? 1 : 0 - } - - # CvMat - CvMat with Mask - m4 = m1.sub(m2, mask) - assert_equal(m1.height, m4.height) - assert_equal(m1.width, m4.width) - n = 0 - m1.height.times { |j| - m1.width.times { |i| - if i < 3 and j < 2 - s = CvScalar.new(-n * 0.9, -n * 1.8, -n * 2.7, -n * 3.6) - else - s = m1[j, i] - end - assert_in_delta(s, m4[j, i], 0.001) - n += 1 - } - } - - # CvMat - CvScalar with Mask - m4 = m1.sub(s1, mask) - assert_equal(m1.height, m4.height) - assert_equal(m1.width, m4.width) - n = 0 - m1.height.times { |j| - m1.width.times { |i| - if i < 3 and j < 2 - s = CvScalar.new(n * 0.1 - 1, n * 0.2 - 2, n * 0.3 - 3, n * 0.4 - 4) - else - s = m1[j, i] - end - assert_in_delta(s, m4[j, i], 0.001) - n += 1 - } - } - - assert_raise(TypeError) { - m1.sub(DUMMY_OBJ) - } - assert_raise(TypeError) { - m1.sub(CvScalar.new(1), DUMMY_OBJ) - } - end - - def test_mul - m1 = create_cvmat(3, 3, :cv32f) - s1 = CvScalar.new(0.1, 0.2, 0.3, 0.4) - m2 = create_cvmat(3, 3, :cv32f) { s1 } - - # CvMat * CvMat - m3 = m1.mul(m2) - assert_equal(m1.height, m3.height) - assert_equal(m1.width, m3.width) - assert_each_cvscalar(m3, 0.001) { |j, i, c| - n = c + 1 - CvScalar.new(n * 0.1, n * 0.2, n * 0.3, n * 0.4) - } - - # CvMat * CvMat * scale - scale = 2.5 - m3 = m1.mul(m2, scale) - assert_equal(m1.height, m3.height) - assert_equal(m1.width, m3.width) - assert_each_cvscalar(m3, 0.001) { |j, i, c| - n = (c + 1) * scale - CvScalar.new(n * 0.1, n * 0.2, n * 0.3, n * 0.4) - } - - # CvMat * CvScalar - scale = 2.5 - m3 = m1.mul(s1) - assert_equal(m1.height, m3.height) - assert_equal(m1.width, m3.width) - assert_each_cvscalar(m3, 0.001) { |j, i, c| - n = c + 1 - CvScalar.new(n * 0.1, n * 0.2, n * 0.3, n * 0.4) - } - - # CvMat * CvScalar * scale - m3 = m1.mul(s1, scale) - assert_equal(m1.height, m3.height) - assert_equal(m1.width, m3.width) - assert_each_cvscalar(m3, 0.001) { |j, i, c| - n = (c + 1) * scale - CvScalar.new(n * 0.1, n * 0.2, n * 0.3, n * 0.4) - } - - assert_raise(TypeError) { - m1.mul(DUMMY_OBJ) - } - assert_raise(TypeError) { - m1.mul(m2, DUMMY_OBJ) - } - end - - def test_mat_mul - m0 = create_cvmat(3, 3, :cv32f, 1) { |j, i, c| - CvScalar.new(c * 0.1) - } - m1 = create_cvmat(3, 3, :cv32f, 1) { |j, i, c| - CvScalar.new(c) - } - m2 = create_cvmat(3, 3, :cv32f, 1) { |j, i, c| - CvScalar.new(c + 1) - } - - m3 = m0.mat_mul(m1) - m4 = m0 * m1 - - [m3, m4].each { |m| - assert_equal(m1.width, m.width) - assert_equal(m1.height, m.height) - assert_in_delta(1.5, m[0, 0][0], 0.001) - assert_in_delta(1.8, m[0, 1][0], 0.001) - assert_in_delta(2.1, m[0, 2][0], 0.001) - assert_in_delta(4.2, m[1, 0][0], 0.001) - assert_in_delta(5.4, m[1, 1][0], 0.001) - assert_in_delta(6.6, m[1, 2][0], 0.001) - assert_in_delta(6.9, m[2, 0][0], 0.001) - assert_in_delta(9, m[2, 1][0], 0.001) - assert_in_delta(11.1, m[2, 2][0], 0.001) - } - - m5 = m0.mat_mul(m1, m2) - [m5].each { |m| - assert_equal(m1.width, m.width) - assert_equal(m1.height, m.height) - assert_in_delta(2.5, m[0, 0][0], 0.001) - assert_in_delta(3.8, m[0, 1][0], 0.001) - assert_in_delta(5.1, m[0, 2][0], 0.001) - assert_in_delta(8.2, m[1, 0][0], 0.001) - assert_in_delta(10.4, m[1, 1][0], 0.001) - assert_in_delta(12.6, m[1, 2][0], 0.001) - assert_in_delta(13.9, m[2, 0][0], 0.001) - assert_in_delta(17, m[2, 1][0], 0.001) - assert_in_delta(20.1, m[2, 2][0], 0.001) - } - - assert_raise(TypeError) { - m0.mat_mul(DUMMY_OBJ) - } - assert_raise(TypeError) { - m0.mat_mul(m1, DUMMY_OBJ) - } - end - - def test_div - m1 = create_cvmat(3, 3, :cv32f) - s1 = CvScalar.new(0.1, 0.2, 0.3, 0.4) - m2 = create_cvmat(3, 3, :cv32f) { s1 } - - # CvMat / CvMat - m3 = m1.div(m2) - assert_equal(m1.height, m3.height) - assert_equal(m1.width, m3.width) - assert_each_cvscalar(m3, 0.001) { |j, i, c| - n = c + 1 - CvScalar.new(n / 0.1, n / 0.2, n / 0.3, n / 0.4) - } - - # scale * CvMat / CvMat - scale = 2.5 - m3 = m1.div(m2, scale) - assert_equal(m1.height, m3.height) - assert_equal(m1.width, m3.width) - assert_each_cvscalar(m3, 0.001) { |j, i, c| - n = (c + 1) * scale - CvScalar.new(n / 0.1, n / 0.2, n / 0.3, n / 0.4) - } - - # CvMat / CvScalar - scale = 2.5 - m3 = m1.div(s1) - assert_equal(m1.height, m3.height) - assert_equal(m1.width, m3.width) - assert_each_cvscalar(m3, 0.001) { |j, i, c| - n = c + 1 - CvScalar.new(n / 0.1, n / 0.2, n / 0.3, n / 0.4) - } - - # scale * CvMat / CvScalar - m3 = m1.div(s1, scale) - assert_equal(m1.height, m3.height) - assert_equal(m1.width, m3.width) - assert_each_cvscalar(m3, 0.001) { |j, i, c| - n = (c + 1) * scale - CvScalar.new(n / 0.1, n / 0.2, n / 0.3, n / 0.4) - } - - # Alias - m3 = m1 / m2 - assert_equal(m1.height, m3.height) - assert_equal(m1.width, m3.width) - assert_each_cvscalar(m3, 0.001) { |j, i, c| - n = c + 1 - CvScalar.new(n / 0.1, n / 0.2, n / 0.3, n / 0.4) - } - - assert_raise(TypeError) { - m1.div(DUMMY_OBJ) - } - assert_raise(TypeError) { - m1.div(m2, DUMMY_OBJ) - } - end - - def test_add_weighted - m1 = create_cvmat(3, 2, :cv8u) { |j, i, c| c + 1 } - m2 = create_cvmat(3, 2, :cv8u) { |j, i, c| (c + 1) * 10 } - a = 2.0 - b = 0.1 - g = 100 - m3 = CvMat.add_weighted(m1, a, m2, b, g) - assert_equal(m1.class, m3.class) - assert_equal(m1.rows, m3.rows) - assert_equal(m1.cols, m3.cols) - assert_equal(m1.depth, m3.depth) - assert_equal(m1.channel, m3.channel) - - m1.rows.times { |j| - m1.cols.times { |i| - expected = m1[j, i][0] * a + m2[j, i][0] * b + g - assert_equal(expected, m3[j, i][0]) - } - } - - assert_raise(TypeError) { - CvMat.add_weighted(DUMMY_OBJ, a, m2, b, g) - } - assert_raise(TypeError) { - CvMat.add_weighted(m1, DUMMY_OBJ, m2, b, g) - } - assert_raise(TypeError) { - CvMat.add_weighted(m1, a, DUMMY_OBJ, b, g) - } - assert_raise(TypeError) { - CvMat.add_weighted(m1, a, m2, DUMMY_OBJ, g) - } - assert_raise(TypeError) { - CvMat.add_weighted(m1, a, m2, b, DUMMY_OBJ) - } - end - - def test_and - m1 = create_cvmat(6, 4) - s1 = CvScalar.new(1, 2, 3, 4) - m2 = create_cvmat(6, 4) { s1 } - mask = create_cvmat(6, 4, :cv8u, 1) { |j, i, c| - s = (i < 3 and j < 2) ? 1 : 0 - CvScalar.new(s) - } - - # CvMat & CvMat - m3 = m1.and(m2) - assert_equal(m1.height, m3.height) - assert_equal(m1.width, m3.width) - assert_each_cvscalar(m3) { |j, i, c| - n = c + 1 - CvScalar.new(n & 1, n & 2, n & 3, n & 4) - } - - # CvMat & CvMat with mask - m3 = m1.and(m2, mask) - assert_equal(m1.height, m3.height) - assert_equal(m1.width, m3.width) - assert_each_cvscalar(m3) { |j, i, c| - n = c + 1 - if i < 3 and j < 2 - CvScalar.new(n & 1, n & 2, n & 3, n & 4) - else - CvScalar.new(n, n, n, n) - end - } - - # CvMat & CvScalar - m3 = m1.and(s1) - assert_equal(m1.height, m3.height) - assert_equal(m1.width, m3.width) - assert_each_cvscalar(m3) { |j, i, c| - n = c + 1 - CvScalar.new(n & 1, n & 2, n & 3, n & 4) - } - - # CvMat & CvScalar with mask - m3 = m1.and(s1, mask) - assert_equal(m1.height, m3.height) - assert_equal(m1.width, m3.width) - assert_each_cvscalar(m3) { |j, i, c| - n = c + 1 - if i < 3 and j < 2 - CvScalar.new(n & 1, n & 2, n & 3, n & 4) - else - CvScalar.new(n, n, n, n) - end - } - - # Alias - m3 = m1 & m2 - assert_equal(m1.height, m3.height) - assert_equal(m1.width, m3.width) - assert_each_cvscalar(m3) { |j, i, c| - n = c + 1 - CvScalar.new(n & 1, n & 2, n & 3, n & 4) - } - - m3 = m1 & s1 - assert_equal(m1.height, m3.height) - assert_equal(m1.width, m3.width) - assert_each_cvscalar(m3) { |j, i, c| - n = c + 1 - CvScalar.new(n & 1, n & 2, n & 3, n & 4) - } - - assert_raise(TypeError) { - m1.and(DUMMY_OBJ) - } - assert_raise(TypeError) { - m1.and(m2, DUMMY_OBJ) - } - end - - def test_or - m1 = create_cvmat(6, 4) - s1 = CvScalar.new(1, 2, 3, 4) - m2 = create_cvmat(6, 4) { s1 } - mask = create_cvmat(6, 4, :cv8u, 1) { |j, i, c| - s = (i < 3 and j < 2) ? 1 : 0 - CvScalar.new(s) - } - - # CvMat | CvMat - m3 = m1.or(m2) - assert_equal(m1.height, m3.height) - assert_equal(m1.width, m3.width) - assert_each_cvscalar(m3) { |j, i, c| - n = c + 1 - CvScalar.new(n | 1, n | 2, n | 3, n | 4) - } - - # CvMat | CvMat with mask - m3 = m1.or(m2, mask) - assert_equal(m1.height, m3.height) - assert_equal(m1.width, m3.width) - assert_each_cvscalar(m3) { |j, i, c| - n = c + 1 - if i < 3 and j < 2 - CvScalar.new(n | 1, n | 2, n | 3, n | 4) - else - CvScalar.new(n, n, n, n) - end - } - - # CvMat | CvScalar - m3 = m1.or(s1) - assert_equal(m1.height, m3.height) - assert_equal(m1.width, m3.width) - assert_each_cvscalar(m3) { |j, i, c| - n = c + 1 - CvScalar.new(n | 1, n | 2, n | 3, n | 4) - } - - # CvMat | CvScalar with mask - m3 = m1.or(s1, mask) - assert_equal(m1.height, m3.height) - assert_equal(m1.width, m3.width) - assert_each_cvscalar(m3) { |j, i, c| - n = c + 1 - if i < 3 and j < 2 - CvScalar.new(n | 1, n | 2, n | 3, n | 4) - else - CvScalar.new(n, n, n, n) - end - } - - # Alias - m3 = m1 | m2 - assert_equal(m1.height, m3.height) - assert_equal(m1.width, m3.width) - assert_each_cvscalar(m3) { |j, i, c| - n = c + 1 - CvScalar.new(n | 1, n | 2, n | 3, n | 4) - } - - m3 = m1 | s1 - assert_equal(m1.height, m3.height) - assert_equal(m1.width, m3.width) - assert_each_cvscalar(m3) { |j, i, c| - n = c + 1 - CvScalar.new(n | 1, n | 2, n | 3, n | 4) - } - - assert_raise(TypeError) { - m1.or(DUMMY_OBJ) - } - assert_raise(TypeError) { - m1.or(m2, DUMMY_OBJ) - } - end - - def test_xor - m1 = create_cvmat(6, 4) - s1 = CvScalar.new(1, 2, 3, 4) - m2 = create_cvmat(6, 4) { s1 } - mask = create_cvmat(6, 4, :cv8u, 1) { |j, i, c| - s = (i < 3 and j < 2) ? 1 : 0 - CvScalar.new(s) - } - - # CvMat ^ CvMat - m3 = m1.xor(m2) - assert_equal(m1.height, m3.height) - assert_equal(m1.width, m3.width) - assert_each_cvscalar(m3) { |j, i, c| - n = c + 1 - CvScalar.new(n ^ 1, n ^ 2, n ^ 3, n ^ 4) - } - - # CvMat ^ CvMat with mask - m3 = m1.xor(m2, mask) - assert_equal(m1.height, m3.height) - assert_equal(m1.width, m3.width) - assert_each_cvscalar(m3) { |j, i, c| - n = c + 1 - if i < 3 and j < 2 - CvScalar.new(n ^ 1, n ^ 2, n ^ 3, n ^ 4) - else - CvScalar.new(n, n, n, n) - end - } - - # CvMat ^ CvScalar - m3 = m1.xor(s1) - assert_equal(m1.height, m3.height) - assert_equal(m1.width, m3.width) - assert_each_cvscalar(m3) { |j, i, c| - n = c + 1 - CvScalar.new(n ^ 1, n ^ 2, n ^ 3, n ^ 4) - } - - # CvMat ^ CvScalar with mask - m3 = m1.xor(s1, mask) - assert_equal(m1.height, m3.height) - assert_equal(m1.width, m3.width) - assert_each_cvscalar(m3) { |j, i, c| - n = c + 1 - if i < 3 and j < 2 - CvScalar.new(n ^ 1, n ^ 2, n ^ 3, n ^ 4) - else - CvScalar.new(n, n, n, n) - end - } - - # Alias - m3 = m1 ^ m2 - assert_equal(m1.height, m3.height) - assert_equal(m1.width, m3.width) - assert_each_cvscalar(m3) { |j, i, c| - n = c + 1 - CvScalar.new(n ^ 1, n ^ 2, n ^ 3, n ^ 4) - } - - m3 = m1 ^ s1 - assert_equal(m1.height, m3.height) - assert_equal(m1.width, m3.width) - assert_each_cvscalar(m3) { |j, i, c| - n = c + 1 - CvScalar.new(n ^ 1, n ^ 2, n ^ 3, n ^ 4) - } - - assert_raise(TypeError) { - m1.xor(DUMMY_OBJ) - } - assert_raise(TypeError) { - m1.xor(m2, DUMMY_OBJ) - } - end - - def test_not - m1 = create_cvmat(6, 4, :cv8s) - m2 = m1.not; - m3 = m1.clone - m3.not! - [m2, m3].each { |m| - assert_equal(m1.height, m.height) - assert_equal(m1.width, m.width) - assert_each_cvscalar(m) { |j, i, c| - n = c + 1 - CvScalar.new(~n, ~n, ~n, ~n) - } - } - end - - def test_eq - m1 = create_cvmat(6, 4, :cv8u, 1) { |j, i, c| - n = (c.even?) ? 10 : c - CvScalar.new(n, 0, 0, 0) - } - m2 = create_cvmat(6, 4, :cv8u, 1) { |j, i, c| - CvScalar.new(10, 0, 0, 0) - } - s1 = CvScalar.new(10, 0, 0, 0) - m3 = m1.eq(m2) - m4 = m1.eq(s1) - m5 = m1.eq(10) - - [m3, m4, m5].each { |m| - assert_equal(m1.height, m.height) - assert_equal(m1.width, m.width) - assert_each_cvscalar(m) { |j, i, c| - n = (c.even?) ? 0xff : 0 - CvScalar.new(n, 0, 0, 0) - } - } - - assert_raise(TypeError) { - m1.eq(DUMMY_OBJ) - } - end - - def test_gt - m1 = create_cvmat(6, 4, :cv8u, 1) { |j, i, c| - CvScalar.new(c, 0, 0, 0) - } - m2 = create_cvmat(6, 4, :cv8u, 1) { |j, i, c| - CvScalar.new(10, 0, 0, 0) - } - s1 = CvScalar.new(10, 0, 0, 0) - m3 = m1.gt(m2) - m4 = m1.gt(s1) - m5 = m1.gt(10) - - [m3, m4, m5].each { |m| - assert_equal(m1.height, m.height) - assert_equal(m1.width, m.width) - assert_each_cvscalar(m) { |j, i, c| - n = (c > 10) ? 0xff : 0 - CvScalar.new(n, 0, 0, 0) - } - } - - assert_raise(TypeError) { - m1.gt(DUMMY_OBJ) - } - end - - def test_ge - m1 = create_cvmat(6, 4, :cv8u, 1) { |j, i, c| - CvScalar.new(c, 0, 0, 0) - } - m2 = create_cvmat(6, 4, :cv8u, 1) { |j, i, c| - CvScalar.new(10, 0, 0, 0) - } - s1 = CvScalar.new(10, 0, 0, 0) - m3 = m1.ge(m2) - m4 = m1.ge(s1) - m5 = m1.ge(10) - - [m3, m4, m5].each { |m| - assert_equal(m1.height, m.height) - assert_equal(m1.width, m.width) - assert_each_cvscalar(m) { |j, i, c| - n = (c >= 10) ? 0xff : 0 - CvScalar.new(n, 0, 0, 0) - } - } - - assert_raise(TypeError) { - m1.ge(DUMMY_OBJ) - } - end - - def test_lt - m1 = create_cvmat(6, 4, :cv8u, 1) { |j, i, c| - CvScalar.new(c, 0, 0, 0) - } - m2 = create_cvmat(6, 4, :cv8u, 1) { |j, i, c| - CvScalar.new(10, 0, 0, 0) - } - s1 = CvScalar.new(10, 0, 0, 0) - m3 = m1.lt(m2) - m4 = m1.lt(s1) - m5 = m1.lt(10) - - [m3, m4, m5].each { |m| - assert_equal(m1.height, m.height) - assert_equal(m1.width, m.width) - assert_each_cvscalar(m) { |j, i, c| - n = (c < 10) ? 0xff : 0 - CvScalar.new(n, 0, 0, 0) - } - } - - assert_raise(TypeError) { - m1.lt(DUMMY_OBJ) - } - end - - def test_le - m1 = create_cvmat(6, 4, :cv8u, 1) { |j, i, c| - CvScalar.new(c, 0, 0, 0) - } - m2 = create_cvmat(6, 4, :cv8u, 1) { |j, i, c| - CvScalar.new(10, 0, 0, 0) - } - s1 = CvScalar.new(10, 0, 0, 0) - m3 = m1.le(m2) - m4 = m1.le(s1) - m5 = m1.le(10) - - [m3, m4, m5].each { |m| - assert_equal(m1.height, m.height) - assert_equal(m1.width, m.width) - assert_each_cvscalar(m) { |j, i, c| - n = (c <= 10) ? 0xff : 0 - CvScalar.new(n, 0, 0, 0) - } - } - - assert_raise(TypeError) { - m1.le(DUMMY_OBJ) - } - end - - def test_in_range - lower, upper = 10, 20 - m0 = create_cvmat(6, 4, :cv8u, 1) { |j, i, c| - CvScalar.new(c + 5, 0, 0, 0) - } - m1 = create_cvmat(6, 4, :cv8u, 1) { |j, i, c| - CvScalar.new(lower, 0, 0, 0) - } - m2 = create_cvmat(6, 4, :cv8u, 1) { |j, i, c| - CvScalar.new(upper, 0, 0, 0) - } - s1 = CvScalar.new(lower, 0, 0, 0) - s2 = CvScalar.new(upper, 0, 0, 0) - - m3 = m0.in_range(m1, m2) - m4 = m0.in_range(s1, s2) - m5 = m0.in_range(lower, upper) - - [m3, m4, m5].each { |m| - assert_equal(m0.height, m.height) - assert_equal(m0.width, m.width) - assert_each_cvscalar(m) { |j, i, c| - val = m0[j, i][0] - n = ((lower..upper).include? val) ? 0xff : 0 - CvScalar.new(n, 0, 0, 0) - } - } - - assert_raise(TypeError) { - m0.in_range(DUMMY_OBJ, m2) - } - assert_raise(TypeError) { - m0.in_range(m1, DUMMY_OBJ) - } - end - - def test_abs_diff - m0 = create_cvmat(6, 4, :cv32f, 4) { |j, i, c| - CvScalar.new(-10 + 10.5, 20 + 10.5, -30 + 10.5, 40 - 10.5) - } - m1 = create_cvmat(6, 4, :cv32f, 4) { |j, i, c| - CvScalar.new(c + 10.5, c - 10.5, c + 10.5, c - 10.5) - } - m2 = create_cvmat(6, 4, :cv32f, 4) { |j, i, c| - CvScalar.new(c, c, c, c) - } - - s1 = CvScalar.new(-10, 20, -30, 40) - m3 = m1.abs_diff(m2) - m4 = m0.abs_diff(s1) - - [m3, m4].each { |m| - assert_equal(m1.width, m.width) - assert_equal(m1.height, m.height) - assert_each_cvscalar(m, 0.001) { - CvScalar.new(10.5, 10.5, 10.5, 10.5) - } - } - - assert_raise(TypeError) { - m0.abs_diff(DUMMY_OBJ) - } - end - - def test_normalize - mat = create_cvmat(2, 2, :cv32f, 1) { |j, i, c| - CvScalar.new(c, 0, 0, 0) - } - - m = mat.normalize - expected = [0.0, 0.267, 0.534, 0.801] - expected.each_with_index { |x, i| - assert_in_delta(x, m[i][0], 0.001) - } - - minf = mat.normalize(1, 0, CV_NORM_INF) - expected = [0.0, 0.333, 0.666, 1.0] - expected.each_with_index { |x, i| - assert_in_delta(x, minf[i][0], 0.001) - } - - ml1 = mat.normalize(1, 0, CV_NORM_L1) - expected = [0.0, 0.166, 0.333, 0.5] - expected.each_with_index { |x, i| - assert_in_delta(x, ml1[i][0], 0.001) - } - - ml2 = mat.normalize(1, 0, CV_NORM_L2) - expected = [0.0, 0.267, 0.534, 0.801] - expected.each_with_index { |x, i| - assert_in_delta(x, ml2[i][0], 0.001) - } - - mminmax = mat.normalize(10, 5, CV_NORM_MINMAX) - expected = [5.0, 6.666, 8.333, 10.0] - expected.each_with_index { |x, i| - assert_in_delta(x, mminmax[i][0], 0.001) - } - - minf = mat.normalize(1, 0, CV_NORM_INF, CV_32FC3) - expected = [0.0, 0.333, 0.666, 1.0] - expected.each_with_index { |x, i| - assert_in_delta(x, minf[i][0], 0.001) - } - - mask = mat.to_8u.zero - mask[0, 0] = CvScalar.new(255, 0, 0) - mask[1, 0] = CvScalar.new(255, 0, 0) - minf = mat.normalize(1, 0, CV_NORM_INF, -1, mask) - expected = [0.0, 0.0, 1.0, 0.0] - expected.each_with_index { |x, i| - assert_in_delta(x, minf[i][0], 0.001) - } - - assert_raise(TypeError) { - mat.normalize(DUMMY_OBJ, 0, CV_NORM_INF) - } - assert_raise(TypeError) { - mat.normalize(1, DUMMY_OBJ, CV_NORM_INF) - } - assert_raise(TypeError) { - mat.normalize(1, 0, DUMMY_OBJ) - } - assert_raise(TypeError) { - mat.normalize(1, 0, CV_NORM_INF, DUMMY_OBJ) - } - end - - def test_count_non_zero - m0 = create_cvmat(6, 4, :cv32f, 1) { |j, i, c| - n = 0 - n = 1 if i == 0 - CvScalar.new(n, 0, 0, 0) - } - assert_equal(6, m0.count_non_zero) - end - - def test_sum - m0 = create_cvmat(6, 4, :cv32f, 1) { |j, i, c| - CvScalar.new(c, c, c, c) - } - assert_cvscalar_equal(CvScalar.new(276, 0, 0, 0), m0.sum) - - m0 = create_cvmat(6, 4, :cv32f, 1) { |j, i, c| - CvScalar.new(-c) - } - assert_cvscalar_equal(CvScalar.new(-276, 0, 0, 0), m0.sum) - end - - def test_avg_sdv - m0 = create_cvmat(6, 4, :cv32f, 4) { |j, i, c| - CvScalar.new(c * 0.1, -c * 0.1, c, -c) - } - # CvMat#avg - assert_in_delta(CvScalar.new(1.15, -1.15, 11.5, -11.5), m0.avg, 0.001) - # CvMat#sdv - assert_in_delta(CvScalar.new(0.69221, 0.69221, 6.9221, 6.9221), m0.sdv, 0.001) - # CvMat#avg_sdv - avg, sdv = m0.avg_sdv - assert_in_delta(CvScalar.new(1.15, -1.15, 11.5, -11.5), avg, 0.001) - assert_in_delta(CvScalar.new(0.69221, 0.69221, 6.9221, 6.9221), sdv, 0.001) - - mask = create_cvmat(6, 4, :cv8u, 1) { |j, i, c| - n = (i == j) ? 1 : 0 - CvScalar.new(n) - } - # CvMat#avg - assert_in_delta(CvScalar.new(0.75, -0.75, 7.5, -7.5), m0.avg(mask), 0.001) - # CvMat#sdv - assert_in_delta(CvScalar.new(0.55901, 0.55901, 5.5901, 5.5901), m0.sdv(mask), 0.001) - # CvMat#avg_sdv - avg, sdv = m0.avg_sdv(mask) - assert_in_delta(CvScalar.new(0.75, -0.75, 7.5, -7.5), avg, 0.001) - assert_in_delta(CvScalar.new(0.55901, 0.55901, 5.5901, 5.5901), sdv, 0.001) - - assert_raise(TypeError) { - m0.avg(DUMMY_OBJ) - } - assert_raise(TypeError) { - m0.sdv(DUMMY_OBJ) - } - assert_raise(TypeError) { - m0.avg_sdv(DUMMY_OBJ) - } - end - - def test_min_max_loc - m0 = create_cvmat(6, 4, :cv32f, 1) { |j, i, c| - CvScalar.new(c * 0.5) - } - m0[2, 3] = CvScalar.new(100.5) # Max - m0[5, 1] = CvScalar.new(-100.5) # Min - - min_val, max_val, min_loc, max_loc = m0.min_max_loc - assert_equal(-100.5, min_val) - assert_equal(5, min_loc.y) - assert_equal(1, min_loc.x) - assert_equal(100.5, max_val) - assert_equal(2, max_loc.y) - assert_equal(3, max_loc.x) - - assert_raise(TypeError) { - m0.min_max_loc(DUMMY_OBJ) - } - end - - def test_norm - src1 = CvMat.new(3, 3, :cv32f, 1).set_data([1, 2, 3, 4, 5, 6, 7, 8, 9]) - src2 = CvMat.new(3, 3, :cv32f, 1).set_data([2, 3, 4, 5, 6, 7, 8, 9, 1]) - mask = CvMat.new(3, 3, :cv8u, 1).set_data([1, 1, 0, 1, 1, 0, 0, 0, 0]) - - assert_in_delta(CvMat.norm(src1), 16.88, 0.01) - - assert_in_delta(CvMat.norm(src1, nil, CV_NORM_L1), 45.0, 0.01) - assert_in_delta(CvMat.norm(src1, nil, CV_NORM_L2), 16.88, 0.01) - assert_in_delta(CvMat.norm(src1, nil, CV_NORM_INF), 9.0, 0.01) - - assert_in_delta(CvMat.norm(src1, src2, CV_NORM_L1), 16.0, 0.01) - assert_in_delta(CvMat.norm(src1, src2, CV_NORM_L2), 8.49, 0.01) - assert_in_delta(CvMat.norm(src1, src2, CV_NORM_INF), 8.0, 0.01) - - assert_in_delta(CvMat.norm(src1, src2, CV_NORM_L1, mask), 4.0, 0.01) - assert_in_delta(CvMat.norm(src1, src2, CV_NORM_L2, mask), 2.0, 0.01) - assert_in_delta(CvMat.norm(src1, src2, CV_NORM_INF, mask), 1.0, 0.01) - - assert_raise(TypeError) { - CvMat.norm(DUMMY_OBJ) - } - assert_raise(TypeError) { - CvMat.norm(src1, DUMMY_OBJ) - } - assert_raise(TypeError) { - CvMat.norm(src1, src2, DUMMY_OBJ) - } - assert_raise(TypeError) { - CvMat.norm(src1, src2, CV_NORM_L1, DUMMY_OBJ) - } - end - - def test_dot_product - m1 = create_cvmat(2, 2, :cv32f, 1) { |j, i, c| - CvScalar.new(c * 0.5) - } - m2 = create_cvmat(2, 2, :cv32f, 1) { |j, i, c| - CvScalar.new(c * 1.5) - } - assert_in_delta(10.5, m1.dot_product(m2), 0.001) - - m1 = create_cvmat(2, 2, :cv32f) { |j, i, c| - CvScalar.new(c * 0.5, c * 0.6, c * 0.7, c * 0.8) - } - m2 = create_cvmat(2, 2, :cv32f) { |j, i, c| - CvScalar.new(c * 1.5, c * 2.0, c * 2.5, c * 3.0) - } - assert_in_delta(85.39999, m1.dot_product(m2), 0.001) - - assert_raise(TypeError) { - m1.dot_product(DUMMY_OBJ) - } - end - - def test_cross_product - m1 = create_cvmat(1, 3, :cv32f, 1) { |j, i, c| - CvScalar.new(c * 0.5) - } - m2 = create_cvmat(1, 3, :cv32f, 1) { |j, i, c| - CvScalar.new(c + 1) - } - m3 = m1.cross_product(m2) - - assert_in_delta(CvScalar.new(-0.5), m3[0, 0], 0.001) - assert_in_delta(CvScalar.new(1), m3[0, 1], 0.001) - assert_in_delta(CvScalar.new(-0.5), m3[0, 2], 0.001) - - assert_raise(TypeError) { - m1.cross_product(DUMMY_OBJ) - } - end - - def test_transform - m0 = create_cvmat(5, 5, :cv32f, 3) { |j, i, c| - CvScalar.new(c * 0.5, c * 1.0, c * 1.5) - } - transmat = CvMat.new(3, 3, :cv32f, 1); - transmat[0, 0] = CvScalar.new(0.0) - transmat[1, 0] = CvScalar.new(0.0) - transmat[2, 0] = CvScalar.new(0.0) - - transmat[0, 1] = CvScalar.new(0.0) - transmat[1, 1] = CvScalar.new(0.0) - transmat[2, 1] = CvScalar.new(1.0) - - transmat[0, 2] = CvScalar.new(1.0) - transmat[1, 2] = CvScalar.new(0.0) - transmat[2, 2] = CvScalar.new(0.0) - - m1 = m0.transform(transmat) - assert_each_cvscalar(m1, 0.01) { |j, i, c| - CvScalar.new(c * 1.5, 0, c, 0) - } - - stf = CvMat.new(3, 1, :cv32f, 1) - stf[0, 0] = CvScalar.new(-10) - stf[1, 0] = CvScalar.new(0.0) - stf[2, 0] = CvScalar.new(5) - - m1 = m0.transform(transmat, stf) - assert_each_cvscalar(m1, 0.01) { |j, i, c| - CvScalar.new(c * 1.5 - 10, 0, c + 5, 0) - } - - assert_raise(TypeError) { - m0.transform(DUMMY_OBJ) - } - assert_raise(TypeError) { - m0.transform(transmat, DUMMY_OBJ) - } - end - - def test_perspective_transform - mat = CvMat.new(1, 1, :cv32f, 2) - mat[0] = CvScalar.new(2, 3) - transmat = CvMat.new(3, 3, :cv32f, 1).clear - mat.channel.times { |c| - transmat[c, c] = CvScalar.new(1.0) - } - transmat[2, 2] = CvScalar.new(0.5) - - m = mat.perspective_transform(transmat) - assert_equal(1, m.height) - assert_equal(1, m.width) - assert_equal(:cv32f, m.depth) - assert_equal(2, m.channel) - assert_in_delta(CvScalar.new(4, 6), m[0], 0.001); - - mat = CvMat.new(1, 1, :cv32f, 3) - mat[0] = CvScalar.new(2, 3, 4) - transmat = CvMat.new(4, 4, :cv32f, 1).clear - mat.channel.times { |c| - transmat[c, c] = CvScalar.new(1.0) - } - transmat[3, 3] = CvScalar.new(0.5) - - m = mat.perspective_transform(transmat) - assert_equal(1, m.height) - assert_equal(1, m.width) - assert_equal(:cv32f, m.depth) - assert_equal(3, m.channel) - assert_in_delta(CvScalar.new(4, 6, 8), m[0], 0.001); - - assert_raise(TypeError) { - mat.perspective_transform(DUMMY_OBJ) - } - assert_raise(CvStsAssert) { - mat.perspective_transform(CvMat.new(3, 3, :cv32f, 3)) - } - end - - def test_mul_transposed - mat0 = create_cvmat(2, 2, :cv32f, 1) { |j, i, c| - CvScalar.new((c + 1) * 2) - } - delta = create_cvmat(2, 2, :cv32f, 1) { |j, i, c| - CvScalar.new(c + 1) - } - - [mat0.mul_transposed, - mat0.mul_transposed(:delta => nil), - mat0.mul_transposed(:order => 0), - mat0.mul_transposed(:scale => 1.0)].each { |m| - expected = [20, 44, - 44, 100] - assert_equal(2, m.rows) - assert_equal(2, m.cols) - assert_equal(:cv32f, m.depth) - expected.each_with_index { |x, i| - assert_in_delta(x, m[i][0], 0.1) - } - } - - m = mat0.mul_transposed(:delta => delta) - expected = [5, 11, - 11, 25] - assert_equal(2, m.rows) - assert_equal(2, m.cols) - assert_equal(:cv32f, m.depth) - expected.each_with_index { |x, i| - assert_in_delta(x, m[i][0], 0.1) - } - - m = mat0.mul_transposed(:delta => delta, :order => 1, :scale => 2.0) - expected = [20, 28, - 28, 40] - assert_equal(2, m.rows) - assert_equal(2, m.cols) - assert_equal(:cv32f, m.depth) - expected.each_with_index { |x, i| - assert_in_delta(x, m[i][0], 0.1) - } - end - - def test_trace - m0 = create_cvmat(5, 5, :cv32f, 4) { |j, i, c| - CvScalar.new(c * 0.5, c * 1.0, c * 1.5, c * 2.0) - } - assert_in_delta(CvScalar.new(30, 60, 90, 120), m0.trace, 0.001) - end - - def test_transpose - m0 = create_cvmat(2, 3, :cv32f, 4) { |j, i, c| - CvScalar.new(c * 0.5, c * 1.0, c * 1.5, c * 2.0) - } - m1 = m0.transpose - m2 = m0.t - - [m1, m2].each { |m| - assert_equal(m0.rows, m.cols) - assert_equal(m0.cols, m.rows) - assert_each_cvscalar(m, 0.001) { |j, i, c| - m0[i, j] - } - } - end - - def test_det - elems = [2.5, 4.5, 2.0, - 3.0, 2.5, -0.5, - 1.0, 0.5, 1.5] - m0 = create_cvmat(3, 3, :cv32f, 1) { |j, i, c| - CvScalar.new(elems[c]) - } - assert_in_delta(-14.5, m0.det, 0.001) - end - - def test_invert - elems = [1, 2, 3, - 2, 6, 9, - 1, 4, 7] - m0 = create_cvmat(3, 3, :cv32f, 1) { |j, i, c| - CvScalar.new(elems[c]) - } - m1 = m0.invert - m2 = m0.invert(:lu) - m3 = m0.invert(:svd) - m4 = m0.invert(:svd_sym) - m5 = m0.invert(:svd_symmetric) - - expected = [3, -1, 0, -2.5, 2, -1.5, 1, -1, 1] - [m1, m2, m3].each { |m| - assert_equal(m0.width, m.width) - assert_equal(m0.height, m.height) - assert_each_cvscalar(m, 0.001) { |j, i, c| - CvScalar.new(expected[c]) - } - } - - expected = [3, -1, 0, -1.0, 0.15, 0.23, 0, 0.23, -0.15] - [m4, m5].each { |m| - assert_equal(m0.width, m.width) - assert_equal(m0.height, m.height) - assert_each_cvscalar(m, 0.1) { |j, i, c| - CvScalar.new(expected[c]) - } - } - - assert_raise(TypeError) { - m0.invert(DUMMY_OBJ) - } - end - - def test_solve - elems1 = [3, 4, 5, - 8, 9, 6, - 3, 5, 9] - elems2 = [3, - 4, - 5] - a = create_cvmat(3, 3, :cv32f, 1) { |j, i, c| - CvScalar.new(elems1[c]) - } - b = create_cvmat(3, 1, :cv32f, 1) { |j, i, c| - CvScalar.new(elems2[c]) - } - - m1 = CvMat.solve(a, b) - m2 = CvMat.solve(a, b, :lu) - m3 = CvMat.solve(a, b, :svd) - m4 = CvMat.solve(a, b, :svd_sym) - m5 = CvMat.solve(a, b, :svd_symmetric) - expected = [2, -2, 1] - [m1, m2, m3].each { |m| - assert_equal(b.width, m.width) - assert_equal(a.height, m.height) - assert_each_cvscalar(m, 0.001) { |j, i, c| - CvScalar.new(expected[c]) - } - } - - assert_raise(TypeError) { - CvMat.solve(DUMMY_OBJ, b) - } - assert_raise(TypeError) { - CvMat.solve(a, DUMMY_OBJ) - } - assert_raise(TypeError) { - CvMat.solve(a, b, DUMMY_OBJ) - } - end - - def test_svd - rows = 2 - cols = 3 - m0 = create_cvmat(rows, cols, :cv32f, 1) { |j, i, c| - CvScalar.new(c + 1) - } - - [m0.svd, m0.clone.svd(CV_SVD_MODIFY_A)].each { |w, u, v| - expected = [0.38632, -0.92237, - 0.92237, 0.38632] - assert_equal(rows, u.rows) - assert_equal(rows, u.cols) - expected.each_with_index { |x, i| - assert_in_delta(x, u[i][0], 0.0001) - } - - assert_equal(rows, w.rows) - assert_equal(cols, w.cols) - expected = [9.50803, 0, 0, - 0, 0.77287, 0] - expected.each_with_index { |x, i| - assert_in_delta(x, w[i][0], 0.0001) - } - - assert_equal(cols, v.rows) - assert_equal(rows, v.cols) - expected = [0.42867, 0.80596, - 0.56631, 0.11238, - 0.70395, -0.58120] - - expected.each_with_index { |x, i| - assert_in_delta(x, v[i][0], 0.0001) - } - } - - w, ut, v = m0.svd(CV_SVD_U_T) - expected = [0.38632, 0.92237, - -0.92237, 0.38632] - assert_equal(rows, ut.rows) - assert_equal(rows, ut.cols) - expected.each_with_index { |x, i| - assert_in_delta(x, ut[i][0], 0.0001) - } - - assert_equal(rows, w.rows) - assert_equal(cols, w.cols) - expected = [9.50803, 0, 0, - 0, 0.77287, 0] - expected.each_with_index { |x, i| - assert_in_delta(x, w[i][0], 0.0001) - } - - assert_equal(cols, v.rows) - assert_equal(rows, v.cols) - expected = [0.42867, 0.80596, - 0.56631, 0.11238, - 0.70395, -0.58120] - - expected.each_with_index { |x, i| - assert_in_delta(x, v[i][0], 0.0001) - } - - w, u, vt = m0.svd(CV_SVD_V_T) - expected = [0.38632, -0.92237, - 0.92237, 0.38632] - assert_equal(rows, u.rows) - assert_equal(rows, u.cols) - expected.each_with_index { |x, i| - assert_in_delta(x, u[i][0], 0.0001) - } - - assert_equal(rows, w.rows) - assert_equal(cols, w.cols) - expected = [9.50803, 0, 0, - 0, 0.77287, 0] - expected.each_with_index { |x, i| - assert_in_delta(x, w[i][0], 0.0001) - } - - assert_equal(rows, vt.rows) - assert_equal(cols, vt.cols) - expected = [0.42867, 0.56631, 0.70395, - 0.80596, 0.11238, -0.58120] - expected.each_with_index { |x, i| - assert_in_delta(x, vt[i][0], 0.0001) - } - end - - def test_eigenvv - elems = [6, -2, -3, 7] - m0 = create_cvmat(2, 2, :cv32f, 1) { |j, i, c| - CvScalar.new(elems[c]) - } - - v1 = m0.eigenvv - v2 = m0.eigenvv(10 ** -15) - v3 = m0.eigenvv(10 ** -15, 1, 1) - - [v1, v2].each { |vec, val| - assert_in_delta(-0.615, vec[0, 0][0], 0.01) - assert_in_delta(0.788, vec[0, 1][0], 0.01) - assert_in_delta(0.788, vec[1, 0][0], 0.01) - assert_in_delta(0.615, vec[1, 1][0], 0.01) - assert_in_delta(8.562, val[0][0], 0.01) - assert_in_delta(4.438, val[1][0], 0.01) - } - - vec3, val3 = v3 - assert_in_delta(-0.615, vec3[0, 0][0], 0.01) - assert_in_delta(0.788, vec3[0, 1][0], 0.01) - assert_in_delta(8.562, val3[0][0], 0.01) - - assert_raise(TypeError) { - m0.eigenvv(DUMMY_OBJ) - } - assert_raise(TypeError) { - m0.eigenvv(nil, DUMMY_OBJ) - } - assert_raise(TypeError) { - m0.eigenvv(nil, nil, DUMMY_OBJ) - } - end - - def test_find_homography - # Nx2 - src = CvMat.new(4, 2, :cv32f, 1) - dst = CvMat.new(4, 2, :cv32f, 1) - - # Nx3 (Homogeneous coordinates) - src2 = CvMat.new(4, 3, :cv32f, 1) - dst2 = CvMat.new(4, 3, :cv32f, 1) - - # Homography - # => - # (0, 0) => (50, 0) - # (255, 0) => (205, 0) - # (255, 255) => (255, 220) - # (0, 255) => (0, 275) - [[0, 0], [255, 0], [255, 255], [0, 255]].each_with_index { |coord, i| - src[i, 0] = coord[0] - src[i, 1] = coord[1] - - src2[i, 0] = coord[0] * 2 - src2[i, 1] = coord[1] * 2 - src2[i, 2] = 2 - } - [[50, 0], [205, 0], [255, 220], [0, 275]].each_with_index { |coord, i| - dst[i, 0] = coord[0] - dst[i, 1] = coord[1] - - dst2[i, 0] = coord[0] * 2 - dst2[i, 1] = coord[1] * 2 - dst2[i, 2] = 2 - } - - mat1 = CvMat.find_homography(src, dst) - mat2 = CvMat.find_homography(src, dst, :all) - mat3 = CvMat.find_homography(src, dst, :ransac) - mat4 = CvMat.find_homography(src, dst, :lmeds) - mat5, status5 = CvMat.find_homography(src, dst, :ransac, 5, true) - mat6, status6 = CvMat.find_homography(src, dst, :ransac, 5, true) - mat7 = CvMat.find_homography(src, dst, :ransac, 5, false) - mat8 = CvMat.find_homography(src, dst, :ransac, 5, nil) - mat9 = CvMat.find_homography(src, dst, :all, 5, true) - mat10, status10 = CvMat.find_homography(src2, dst2, :ransac, 5, true) - - [mat1, mat2, mat3, mat4, mat5, mat6, mat7, mat8, mat9, mat10].each { |mat| - assert_equal(3, mat.rows) - assert_equal(3, mat.cols) - assert_equal(:cv32f, mat.depth) - assert_equal(1, mat.channel) - [0.72430, -0.19608, 50.0, - 0.0, 0.62489, 0.0, - 0.00057, -0.00165, 1.0].each_with_index { |x, i| - assert_in_delta(x, mat[i][0], 0.0001) - } - } - - [status5, status6, status10].each { |status| - assert_equal(1, status.rows) - assert_equal(4, status.cols) - assert_equal(:cv8u, status.depth) - assert_equal(1, status.channel) - 4.times { |i| - assert_in_delta(1.0, status[i][0], 0.0001) - } - } - - assert_raise(TypeError) { - CvMat.find_homography(DUMMY_OBJ, dst, :ransac, 5, true) - } - assert_raise(TypeError) { - CvMat.find_homography(src, DUMMY_OBJ, :ransac, 5, true) - } - assert_raise(TypeError) { - CvMat.find_homography(src, dst, DUMMY_OBJ, 5, true) - } - assert_raise(TypeError) { - CvMat.find_homography(src, dst, :ransac, DUMMY_OBJ, true) - } - CvMat.find_homography(src, dst, :ransac, 5, DUMMY_OBJ) - end - - def test_find_fundamental_mat - points1 = [[488.362, 169.911], - [449.488, 174.44], - [408.565, 179.669], - [364.512, 184.56], - [491.483, 122.366], - [451.512, 126.56], - [409.502, 130.342], - [365.5, 134.0], - [494.335, 74.544], - [453.5, 76.5], - [411.646, 79.5901], - [366.498, 81.6577], - [453.5, 76.5], - [411.646, 79.5901], - [366.498, 81.6577]] - - points2 = [[526.605, 213.332], - [470.485, 207.632], - [417.5, 201.0], - [367.485, 195.632], - [530.673, 156.417], - [473.749, 151.39], - [419.503, 146.656], - [368.669, 142.565], - [534.632, 97.5152], - [475.84, 94.6777], - [421.16, 90.3223], - [368.5, 87.5], - [475.84, 94.6777], - [421.16, 90.3223], - [368.5, 87.5]] - - # 7 point - num_points = 7 - mat1 = CvMat.new(num_points, 2, :cv64f, 1) - mat2 = CvMat.new(num_points, 2, :cv64f, 1) - - points1[0...num_points].each_with_index { |pt, i| - mat1[i, 0] = CvScalar.new(pt[0]) - mat1[i, 1] = CvScalar.new(pt[1]) - } - points2[0...num_points].each_with_index { |pt, i| - mat2[i, 0] = CvScalar.new(pt[0]) - mat2[i, 1] = CvScalar.new(pt[1]) - } - f_mat1 = CvMat.find_fundamental_mat(mat1, mat2, CV_FM_7POINT) - f_mat2, status = CvMat.find_fundamental_mat(mat1, mat2, CV_FM_7POINT, :with_status => true) - - expected = [0.000009, 0.000029, -0.010343, - -0.000033, 0.000000, 0.014590, - 0.004415, -0.013420, 1.000000, - 0.000000, 0.000001, -0.000223, - -0.000001, 0.000036, -0.005309, - -0.000097, -0.006463, 1.000000, - 0.000002, 0.000005, -0.001621, - -0.000005, 0.000031, -0.002559, - 0.000527, -0.007424, 1.000000] - [f_mat1, f_mat2].each { |f_mat| - assert_equal(9, f_mat.rows) - assert_equal(3, f_mat.cols) - expected.each_with_index { |val, i| - assert_in_delta(val, f_mat[i][0], 1.0e-5) - } - } - assert_equal(num_points, status.cols) - num_points.times { |i| - assert_in_delta(1, status[i][0], 1.0e-5) - } - - # 8 point - num_points = 8 - mat1 = CvMat.new(num_points, 2, :cv64f, 1) - mat2 = CvMat.new(num_points, 2, :cv64f, 1) - - points1[0...num_points].each_with_index { |pt, i| - mat1[i, 0] = CvScalar.new(pt[0]) - mat1[i, 1] = CvScalar.new(pt[1]) - } - points2[0...num_points].each_with_index { |pt, i| - mat2[i, 0] = CvScalar.new(pt[0]) - mat2[i, 1] = CvScalar.new(pt[1]) - } - - f_mat1 = CvMat.find_fundamental_mat(mat1, mat2, CV_FM_8POINT) - f_mat2, status = CvMat.find_fundamental_mat(mat1, mat2, CV_FM_8POINT, :with_status => true) - - expected = [0.000001, 0.000004, -0.001127, - -0.000005, 0.000038, -0.003778, - 0.000819, -0.008325, 1.000000] - [f_mat1, f_mat2].each { |f_mat| - assert_equal(3, f_mat.rows) - assert_equal(3, f_mat.cols) - expected.each_with_index { |val, i| - assert_in_delta(val, f_mat[i][0], 1.0e-5) - } - } - assert_equal(num_points, status.cols) - num_points.times { |i| - assert_in_delta(1, status[i][0], 1.0e-5) - } - - # RANSAC default - num_points = points1.size - mat1 = CvMat.new(num_points, 2, :cv64f, 1) - mat2 = CvMat.new(num_points, 2, :cv64f, 1) - - points1[0...num_points].each_with_index { |pt, i| - mat1[i, 0] = CvScalar.new(pt[0]) - mat1[i, 1] = CvScalar.new(pt[1]) - } - points2[0...num_points].each_with_index { |pt, i| - mat2[i, 0] = CvScalar.new(pt[0]) - mat2[i, 1] = CvScalar.new(pt[1]) - } - - [CvMat.find_fundamental_mat(mat1, mat2, CV_FM_RANSAC, :with_status => false, - :maximum_distance => 1.0, :desirable_level => 0.99), - CvMat.find_fundamental_mat(mat1, mat2, CV_FM_RANSAC)].each { |f_mat| - assert_equal(3, f_mat.rows) - assert_equal(3, f_mat.cols) - expected = [0.000010, 0.000039, -0.011141, - -0.000045, -0.000001, 0.019631, - 0.004873, -0.017604, 1.000000] - expected.each_with_index { |val, i| - assert_in_delta(val, f_mat[i][0], 1.0e-5) - } - } - - # RANSAC with options - f_mat, status = CvMat.find_fundamental_mat(mat1, mat2, CV_FM_RANSAC, :with_status => true, - :maximum_distance => 2.0, :desirable_level => 0.8) - assert_equal(3, f_mat.rows) - assert_equal(3, f_mat.cols) - assert_equal(1, status.rows) - assert_equal(num_points, status.cols) - - expected_f_mat = [0.000009, 0.000030, -0.010692, - -0.000039, 0.000000, 0.020567, - 0.004779, -0.018064, 1.000000] - expected_f_mat.each_with_index { |val, i| - assert_in_delta(val, f_mat[i][0], 1.0e-5) - } - expected_status = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] - expected_status.each_with_index { |val, i| - assert_in_delta(val, status[i][0], 1.0e-5) - } - - # LMedS default - num_points = 12 - mat1 = CvMat.new(num_points, 2, :cv64f, 1) - mat2 = CvMat.new(num_points, 2, :cv64f, 1) - - points1[0...num_points].each_with_index { |pt, i| - mat1[i, 0] = CvScalar.new(pt[0]) - mat1[i, 1] = CvScalar.new(pt[1]) - } - points2[0...num_points].each_with_index { |pt, i| - mat2[i, 0] = CvScalar.new(pt[0]) - mat2[i, 1] = CvScalar.new(pt[1]) - } - - [CvMat.find_fundamental_mat(mat1, mat2, CV_FM_LMEDS, :with_status => false, - :maximum_distance => 1.0, :desirable_level => 0.99), - CvMat.find_fundamental_mat(mat1, mat2, CV_FM_LMEDS)].each { |f_mat| - assert_equal(3, f_mat.rows) - assert_equal(3, f_mat.cols) - expected = [0.0, 0.0, 0.0, - 0.0, 0.0, 0.0, - 0.0, 0.0, 1.0] - expected.each_with_index { |val, i| - assert_in_delta(val, f_mat[i][0], 0.1) - } - } - - # LMedS with options - f_mat, status = CvMat.find_fundamental_mat(mat1, mat2, CV_FM_LMEDS, :with_status => true, - :desirable_level => 0.8) - assert_equal(3, f_mat.rows) - assert_equal(3, f_mat.cols) - assert_equal(1, status.rows) - assert_equal(num_points, status.cols) - - expected_fmat = [0.0, 0.0, 0.0, - 0.0, 0.0, 0.0, - 0.0, 0.0, 1.0] - expected_f_mat.each_with_index { |val, i| - assert_in_delta(val, f_mat[i][0], 0.1) - } - expected_status = [0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1] - expected_status.each_with_index { |val, i| - assert_equal(val, status[i][0].to_i) - } - - [CV_FM_7POINT, CV_FM_8POINT, CV_FM_RANSAC, CV_FM_LMEDS].each { |method| - assert_raise(TypeError) { - CvMat.find_fundamental_mat(DUMMY_OBJ, mat2, method, :with_status => true) - } - assert_raise(TypeError) { - CvMat.find_fundamental_mat(mat1, DUMMY_OBJ, method, :with_status => true) - } - assert_raise(TypeError) { - CvMat.find_fundamental_mat(mat1, mat2, method, DUMMY_OBJ) - } - } - assert_raise(TypeError) { - CvMat.find_fundamental_mat(mat1, mat2, DUMMY_OBJ, :with_status => true) - } - end - - def test_compute_correspond_epilines - test_func = lambda { |mat1, mat2, f_mat_arr, num_points| - f_mat = CvMat.new(3, 3, CV_64F, 1) - f_mat_arr.each_with_index { |a, i| - f_mat[i] = CvScalar.new(a) - } - - line = CvMat.compute_correspond_epilines(mat1, 1, f_mat) - assert_equal(num_points, line.rows) - assert_equal(3, line.cols) - - expected = [[-0.221257, -0.975215, 6.03758], - [0.359337, -0.933208, -3.61419], - [0.958304, -0.28575, -15.0573], - [0.73415, -0.678987, -10.4037], - [0.0208539, -0.999783, 2.11625], - [0.284451, -0.958691, -2.31993], - [0.624647, -0.780907, -8.35208], - [0.618494, -0.785789, -8.23888], - [0.766694, -0.642012, -11.0298], - [0.700293, -0.713855, -9.76109]] - - expected.size.times { |i| - assert_in_delta(expected[i][0], line[i, 0][0], 1.0e-3) - assert_in_delta(expected[i][1], line[i, 1][0], 1.0e-3) - assert_in_delta(expected[i][2], line[i, 2][0], 1.0e-3) - } - - assert_raise(ArgumentError) { - m = CvMat.new(10, 10, CV_32F, 1) - CvMat.compute_correspond_epilines(m, 1, f_mat) - } - } - - num_points = 10 - # input points are Nx2 matrix - points1 =[[17, 175], - [370, 24], - [192, 456], - [614, 202], - [116, 111], - [305, 32], - [249, 268], - [464, 157], - [259, 333], - [460, 224]] - - points2 = [[295, 28], - [584, 221], - [67, 172], - [400, 443], - [330, 9], - [480, 140], - [181, 140], - [350, 265], - [176, 193], - [333, 313]] - - mat1 = CvMat.new(num_points, 2, CV_64F, 1) - mat2 = CvMat.new(num_points, 2, CV_64F, 1) - points1.flatten.each_with_index { |pt, i| - mat1[i] = CvScalar.new(pt) - } - points2.flatten.each_with_index { |pt, i| - mat2[i] = CvScalar.new(pt) - } - - # pre computed f matrix from points1, points2 - # f_mat = CvMat.find_fundamental_mat(mat1, mat2, CV_FM_LMEDS) - f_mat_arr = [0.000266883, 0.000140277, -0.0445223, - -0.00012592, 0.000245543, -0.108868, - -0.00407942, -0.00291097, 1] - test_func.call(mat1, mat2, f_mat_arr, num_points) - - # input points are 2xN matrix - points1 = [[17, 370, 192, 614, 116, 305, 249, 464, 259, 460], - [175, 24, 456, 202, 111, 32, 268, 157, 333, 224]] - - points2 = [[295, 584, 67, 400, 330, 480, 181, 350, 176, 333], - [28, 221, 172, 443, 9, 140, 140, 265, 193, 313]] - - mat1 = CvMat.new(2, num_points, CV_64F, 1) - mat2 = CvMat.new(2, num_points, CV_64F, 1) - points1.flatten.each_with_index { |pt, i| - mat1[i] = CvScalar.new(pt) - } - points2.flatten.each_with_index { |pt, i| - mat2[i] = CvScalar.new(pt) - } - test_func.call(mat1, mat2, f_mat_arr, num_points) - - - f_mat = CvMat.new(3, 3, CV_64F, 1) - f_mat_arr.each_with_index { |a, i| - f_mat[i] = CvScalar.new(a) - } - assert_raise(TypeError) { - CvMat.compute_correspond_epilines(DUMMY_OBJ, 1, f_mat) - } - assert_raise(TypeError) { - CvMat.compute_correspond_epilines(mat1, DUMMY_OBJ, f_mat) - } - assert_raise(TypeError) { - CvMat.compute_correspond_epilines(mat1, 1, DUMMY_OBJ) - } - end - - def test_apply_color_map - mat = CvMat.new(64, 256, :cv8u, 1) - mat.cols.times { |c| - mat.rows.times { |r| - mat[r, c] = c - } - } - - results = [] - [COLORMAP_AUTUMN, COLORMAP_BONE, COLORMAP_JET, COLORMAP_WINTER, - COLORMAP_RAINBOW, COLORMAP_OCEAN, COLORMAP_SUMMER, COLORMAP_SPRING, - COLORMAP_COOL, COLORMAP_HSV, COLORMAP_PINK, COLORMAP_HOT].each { |colormap| - cmap = mat.apply_color_map(colormap) - assert_equal(CvMat, cmap.class) - assert_equal(mat.rows, cmap.rows) - assert_equal(mat.cols, cmap.cols) - results << cmap - } - - assert_raise(TypeError) { - mat.apply_color_map(DUMMY_OBJ) - } - - # Uncomment the following line to show the result - # snap *results - end - - def test_subspace_project - w = CvMat.new(10, 20, :cv32f, 1) - mean = CvMat.new(w.rows, 1, :cv32f, 1) - mat = CvMat.new(w.cols, w.rows, :cv32f, 1) - result = mat.subspace_project(w, mean) - - assert_equal(CvMat, result.class) - assert_equal(w.cols, result.rows) - assert_equal(w.cols, result.cols) - end - - def test_subspace_reconstruct - w = CvMat.new(10, 20, :cv32f, 1) - mean = CvMat.new(w.rows, 1, :cv32f, 1) - mat = CvMat.new(w.cols, w.cols, :cv32f, 1) - result = mat.subspace_reconstruct(w, mean) - - assert_equal(CvMat, result.class) - assert_equal(w.cols, result.rows) - assert_equal(w.rows, result.cols) - end -end - diff --git a/test/test_cvmat_drawing.rb b/test/test_cvmat_drawing.rb deleted file mode 100755 index d54332c..0000000 --- a/test/test_cvmat_drawing.rb +++ /dev/null @@ -1,349 +0,0 @@ -#!/usr/bin/env ruby -# -*- mode: ruby; coding: utf-8 -*- -require 'test/unit' -require 'opencv' -require File.expand_path(File.dirname(__FILE__)) + '/helper' - -include OpenCV - -# Tests for drawing functions of OpenCV::CvMat -class TestCvMat_drawing < OpenCVTestCase - def test_DRAWING_OPTION - CvMat::DRAWING_OPTION[:color].to_ary.each { |c| - assert_in_delta(0, c, 0.01) - } - assert_equal(1, CvMat::DRAWING_OPTION[:thickness]) - assert_equal(8, CvMat::DRAWING_OPTION[:line_type]) - assert_equal(0, CvMat::DRAWING_OPTION[:shift]) - end - - def test_FLOOD_FILL_OPTION - assert_equal(4, CvMat::FLOOD_FILL_OPTION[:connectivity]) - assert((not CvMat::FLOOD_FILL_OPTION[:fixed_range])) - assert((not CvMat::FLOOD_FILL_OPTION[:mask_only])) - end - - def test_line - m0 = create_cvmat(240, 320, :cv8u, 3) { CvColor::White } - m1 = m0.clone - m2 = m0.line(CvPoint.new(1, 0), CvPoint.new(m0.width - 1, m0.height - 1), - :color => CvColor::Red, :thickness => 3, :line_type => :aa) - m1.line!(CvPoint.new(1, 0), CvPoint.new(m0.width - 1, m0.height - 1), - :color => CvColor::Blue, :thickness => 1, :line_type => :aa) - - # Uncomment the following line to show the image - # snap(['Line: Blue, thickness = 1', m1], ['Line: Red, thickness = 3', m2]) - - assert_raise(TypeError) { - m0.line(DUMMY_OBJ, CvPoint.new(1, 0)) - } - assert_raise(TypeError) { - m0.line(CvPoint.new(1, 0), DUMMY_OBJ) - } - assert_raise(TypeError) { - m0.line(CvPoint.new(1, 0), CvPoint.new(1, 1), :color => DUMMY_OBJ) - } - # assert_raise(CvError) { - # m0.line(CvPoint.new(1, 0), CvPoint.new(1, 1), :thickness => DUMMY_OBJ) - # } - # m0.line(CvPoint.new(1, 0), CvPoint.new(1, 1), :line_type => DUMMY_OBJ) - end - - def test_rectangle - m0 = create_cvmat(240, 320, :cv8u, 3) { CvColor::White } - m1 = m0.clone - m2 = m0.rectangle(CvPoint.new(20, 20), CvPoint.new(m0.width - 20, m0.height - 20), - :color => CvColor::Red, :thickness => 3, :line_type => :aa) - m1.rectangle!(CvPoint.new(20, 20), CvPoint.new(m0.width - 20, m0.height - 20), - :color => CvColor::Blue, :thickness => 1, :line_type => :aa) - - # Uncomment the following line to show the image - # snap(['Rectangle: Blue, thickness = 1', m1], ['Rectangle: Red, thickness = 3', m2]) - - assert_raise(TypeError) { - m0.line(DUMMY_OBJ, CvPoint.new(1, 0)) - } - assert_raise(TypeError) { - m0.rectangle(CvPoint.new(1, 0), DUMMY_OBJ) - } - assert_raise(TypeError) { - m0.rectangle(CvPoint.new(1, 0), CvPoint.new(1, 1), :color => DUMMY_OBJ) - } - # assert_raise(CvError) { - # m0.rectangle(CvPoint.new(1, 0), CvPoint.new(1, 1), :thickness => DUMMY_OBJ) - # } - # m0.rectangle(CvPoint.new(1, 0), CvPoint.new(1, 1), :line_type => DUMMY_OBJ) - end - - def test_circle - m0 = create_cvmat(240, 320, :cv8u, 3) { CvColor::White } - m1 = m0.clone - m2 = m0.circle(CvPoint.new(m0.width / 2, m0.height / 2), 80, - :color => CvColor::Red, :thickness => 3, :line_type => :aa) - m1.circle!(CvPoint.new(m0.width / 2, m0.height / 2), 80, - :color => CvColor::Blue, :thickness => 1, :line_type => :aa) - - # Uncomment the following line to show the image - # snap(['Circle: Blue, thickness = 1', m1], ['Circle: Red, thickness = 3', m2]) - - assert_raise(TypeError) { - m0.circle(DUMMY_OBJ, 10) - } - assert_raise(TypeError) { - m0.circle(CvPoint.new(1, 0), DUMMY_OBJ) - } - assert_raise(TypeError) { - m0.circle(CvPoint.new(1, 0), 10, :color => DUMMY_OBJ) - } - # assert_raise(CvError) { - # m0.circle(CvPoint.new(1, 0), 10, :thickness => DUMMY_OBJ) - # } - m0.circle(CvPoint.new(1, 0), 10, :line_type => DUMMY_OBJ) - end - - def test_ellipse - m0 = create_cvmat(240, 320, :cv8u, 3) { CvColor::White } - m1 = m0.clone - m2 = m0.ellipse(CvPoint.new(m0.width / 2, m0.height / 2), CvSize.new(100, 60), 30, 0, 360, - :color => CvColor::Red, :thickness => 3, :line_type => :aa) - m1.ellipse!(CvPoint.new(m0.width / 2, m0.height / 2), CvSize.new(100, 60), 30, 0, 360, - :color => CvColor::Blue, :thickness => 1, :line_type => :aa) - - # Uncomment the following line to show the image - # snap(['Ellipse: Blue, thickness = 1', m1], ['Ellipse: Red, thickness = 3', m2]) - - assert_raise(TypeError) { - m1.ellipse(DUMMY_OBJ, CvSize.new(100, 60), 30, 0, 360) - } - assert_raise(TypeError) { - m1.ellipse(CvPoint.new(m0.width / 2, m0.height / 2), DUMMY_OBJ, 30, 0, 360) - } - assert_raise(TypeError) { - m1.ellipse(CvPoint.new(m0.width / 2, m0.height / 2), CvSize.new(100, 60), DUMMY_OBJ, 0, 360) - } - assert_raise(TypeError) { - m1.ellipse(CvPoint.new(m0.width / 2, m0.height / 2), CvSize.new(100, 60), 30, DUMMY_OBJ, 360) - } - assert_raise(TypeError) { - m1.ellipse(CvPoint.new(m0.width / 2, m0.height / 2), CvSize.new(100, 60), 30, 0, DUMMY_OBJ) - } - assert_raise(TypeError) { - m1.ellipse(CvPoint.new(m0.width / 2, m0.height / 2), CvSize.new(100, 60), 30, 0, 360, - :color => DUMMY_OBJ) - } - # assert_raise(CvError) { - # m1.ellipse(CvPoint.new(m0.width / 2, m0.height / 2), CvSize.new(100, 60), 30, 0, 360, - # :thickness => DUMMY_OBJ) - # } - m1.ellipse(CvPoint.new(m0.width / 2, m0.height / 2), CvSize.new(100, 60), 30, 0, 360, - :line_type => DUMMY_OBJ) - end - - def test_ellipse_box - m0 = create_cvmat(240, 320, :cv8u, 3) { CvColor::White } - box = CvBox2D.new(CvPoint2D32f.new(m0.width / 2, m0.height / 2), CvSize2D32f.new(120, 160), 30) - m1 = m0.clone - m2 = m0.ellipse_box(box, :color => CvColor::Red, :thickness => 3, :line_type => :aa) - m1.ellipse_box!(box, :color => CvColor::Blue, :thickness => 1, :line_type => :aa) - - # Uncomment the following line to show the image - # snap(['Ellipse box: Blue, thickness = 1', m1], ['Ellipse box: Red, thickness = 3', m2]) - - assert_raise(TypeError) { - m1.ellipse_box(DUMMY_OBJ) - } - assert_raise(TypeError) { - m1.ellipse_box(box, :color => DUMMY_OBJ) - } - # assert_raise(CvError) { - # m1.ellipse_box(box, :thickness => DUMMY_OBJ) - # } - m1.ellipse_box(box, :line_type => DUMMY_OBJ) - end - - def test_fill_poly - m0 = create_cvmat(240, 320, :cv8u, 3) { CvColor::White } - pt = [[CvPoint.new(10, 20), CvPoint.new(10, 150), CvPoint.new(100, 50)], - [CvPoint.new(200, 10), CvPoint.new(200, 200), CvPoint.new(170, 200)], - [CvPoint.new(30, 10), CvPoint.new(0, 0), CvPoint.new(90, 150)]] - - m1 = m0.clone - m2 = m0.fill_poly(pt, :color => CvColor::Red, :line_type => :aa) - m1.fill_poly!(pt, :color => CvColor::Blue, :line_type => :aa) - - # Uncomment the following line to view the image - # snap(['Fill poly: Blue', m1], ['Fill poly: Red', m2]) - - assert_raise(TypeError) { - m1.fill_poly(DUMMY_OBJ) - } - assert_raise(TypeError) { - m1.fill_poly([DUMMY_OBJ, DUMMY_OBJ]) - } - assert_raise(TypeError) { - m1.fill_poly(pt, :color => DUMMY_OBJ) - } - # assert_raise(CvError) { - # m1.fill_poly(pt, :thickness => DUMMY_OBJ) - # } - # m1.fill_poly(pt, :line_type => DUMMY_OBJ) - end - - def test_fill_convex_poly - m0 = create_cvmat(240, 320, :cv8u, 3) { CvColor::White } - pt = [CvPoint.new(10, 20), CvPoint.new(10, 150), CvPoint.new(100, 50)] - - m1 = m0.clone - m2 = m0.fill_convex_poly(pt, :color => CvColor::Red, :line_type => :aa) - m1.fill_convex_poly!(pt, :color => CvColor::Blue, :line_type => :aa) - - # Uncomment the following line to view the image - # snap(['Fill convex poly: Blue', m1], ['Fill convex poly: Red', m2]) - - - assert_raise(TypeError) { - m1.fill_convex_poly(DUMMY_OBJ) - } - assert_raise(TypeError) { - m1.fill_convex_poly([DUMMY_OBJ, DUMMY_OBJ]) - } - assert_raise(TypeError) { - m1.fill_convex_poly(pt, :color => DUMMY_OBJ) - } - # assert_raise(CvError) { - # m1.fill_convex_poly(pt, :thickness => DUMMY_OBJ) - # } - # m1.fill_convex_poly(pt, :line_type => DUMMY_OBJ) - end - - def test_poly_line - m0 = create_cvmat(240, 320, :cv8u, 3) { CvColor::White } - pt = [[CvPoint.new(10, 20), CvPoint.new(10, 150), CvPoint.new(100, 150), CvPoint.new(10, 20)], - [CvPoint.new(100, 200), CvPoint.new(200, 190), CvPoint.new(180, 50), CvPoint.new(100, 200)]] - - m1 = m0.clone - m2 = m0.poly_line(pt, :color => CvColor::Red, :thickness => 3, :line_type => :aa) - m1.poly_line!(pt, :color => CvColor::Blue, :thickness => 1, :line_type => :aa) - - # Uncomment the following line to view the image - # snap(['Fill poly line: Blue, thickness = 1', m1], ['Fill poly line: Red, thickness = 3', m2]) - - assert_raise(TypeError) { - m1.poly_line(DUMMY_OBJ) - } - assert_raise(TypeError) { - m1.poly_line([DUMMY_OBJ, DUMMY_OBJ]) - } - assert_raise(TypeError) { - m1.poly_line([[DUMMY_OBJ, DUMMY_OBJ], [DUMMY_OBJ, DUMMY_OBJ]]) - } - assert_raise(TypeError) { - m1.poly_line(pt, :color => DUMMY_OBJ) - } - # assert_raise(CvError) { - # m1.poly_line(pt, :thickness => DUMMY_OBJ) - # } - # m1.poly_line(pt, :line_type => DUMMY_OBJ) - end - - def test_draw_contours - mat0 = CvMat.load(FILENAME_CONTOURS, CV_LOAD_IMAGE_GRAYSCALE) - - mat0 = mat0.threshold(128, 255, CV_THRESH_BINARY) - contours = mat0.find_contours(:mode => CV_RETR_TREE, :method => CV_CHAIN_APPROX_SIMPLE) - dst0 = mat0.clone.clear - dst1 = mat0.clone.clear.GRAY2BGR - begin - dst0 = dst0.draw_contours!(contours, CvColor::Black, CvColor::White, -1) - dst1.draw_contours!(contours, CvColor::Red, CvColor::Blue, 2, - :thickness => -1, :line_type => :aa) - end while (contours = contours.h_next) - - [dst0, dst1].each { |dst| - assert_equal(mat0.class, dst.class) - assert_equal(mat0.rows, dst.rows) - assert_equal(mat0.cols, dst.cols) - assert_equal(mat0.depth, dst.depth) - } - - assert_raise(TypeError) { - dst0.draw_contours(DUMMY_OBJ, CvColor::Black, CvColor::White, -1) - } - assert_raise(TypeError) { - dst0.draw_contours(contours, DUMMY_OBJ, CvColor::White, -1) - } - assert_raise(TypeError) { - dst0.draw_contours(contours, CvColor::Black, DUMMY_OBJ, -1) - } - assert_raise(TypeError) { - dst0.draw_contours(contours, CvColor::Black, CvColor::White, DUMMY_OBJ) - } - assert_raise(TypeError) { - dst0.draw_contours(contours, CvColor::Black, CvColor::White, -1, :thickness => DUMMY_OBJ) - } - assert_raise(TypeError) { - dst0.draw_contours(contours, CvColor::Black, CvColor::White, -1, :line_type => DUMMY_OBJ) - } - - # Uncomment the following line to show the results - # snap ['src', mat0], ['result0', dst0], ['result1', dst1] - end - - def test_draw_chessboard_corners - mat0 = CvMat.load(FILENAME_CHESSBOARD, 1) - mat1 = mat0.clone - pattern_size = CvSize.new(4, 4) - - gray = mat1.BGR2GRAY - corners, found = gray.find_chessboard_corners(pattern_size) - - mat2 = mat1.draw_chessboard_corners(pattern_size, corners, found) - mat1.draw_chessboard_corners!(pattern_size, corners, found) - [mat1, mat2].each { |dst| - assert_equal(mat0.class, dst.class) - assert_equal(mat0.rows, dst.rows) - assert_equal(mat0.cols, dst.cols) - assert_equal(mat0.depth, dst.depth) - } - - assert_raise(TypeError) { - mat1.draw_chessboard_corners(DUMMY_OBJ, corners, found) - } - assert_raise(TypeError) { - mat1.draw_chessboard_corners(pattern_size, DUMMY_OBJ, found) - } - assert_nothing_raised { - mat1.draw_chessboard_corners(pattern_size, corners, DUMMY_OBJ) - } - - # Uncomment the following line to show the results - # snap mat0, mat1, mat2 - end - - def test_put_text - m0 = create_cvmat(240, 320, :cv8u, 3) { CvColor::White } - m1 = m0.clone - m1.put_text!('test 1', CvPoint.new(60, 90), CvFont.new(:simplex), CvColor::Blue) - font = CvFont.new(:plain, :hscale => 5.0, :vscale => 4.5, - :shear => 1.0, :thickness => 3, :line_type => 5, :italic => true) - m2 = m0.put_text('test 2', CvPoint.new(30, 80), font, CvColor::Red) - - # Uncomment the following lines to view the image - # snap(['Put text: Blue, thickness = 1', m1], ['Put text: Red, thickness = 3', m2]) - - assert_raise(TypeError) { - m0.put_text(DUMMY_OBJ, CvPoint.new(60, 90), font) - } - assert_raise(TypeError) { - m0.put_text('test', DUMMY_OBJ, font) - } - assert_raise(TypeError) { - m0.put_text('test', CvPoint.new(60, 90), DUMMY_OBJ) - } - assert_raise(TypeError) { - m0.put_text('test', CvPoint.new(60, 90), font, DUMMY_OBJ) - } - end -end - - diff --git a/test/test_cvmat_dxt.rb b/test/test_cvmat_dxt.rb deleted file mode 100755 index 7246e8c..0000000 --- a/test/test_cvmat_dxt.rb +++ /dev/null @@ -1,150 +0,0 @@ -#!/usr/bin/env ruby -# -*- mode: ruby; coding: utf-8 -*- -require 'test/unit' -require 'opencv' -require File.expand_path(File.dirname(__FILE__)) + '/helper' - -include OpenCV - -# Tests for dft and dct functions of OpenCV::CvMat -class TestCvMat_dxt < OpenCVTestCase - def test_dft_1D - n = 32 - w = 2 * Math::PI / n - - mat0 = create_cvmat(n, 1, :cv32f, 2) { |j, i, c| - s = Math.sin(c * w) - CvScalar.new(s, s) - } - - mat1 = mat0.dft(CV_DXT_FORWARD) - mat2 = mat0.dft(CV_DXT_FORWARD | CV_DXT_SCALE) - mat3 = mat0.dft(CV_DXT_FORWARD | CV_DXT_SCALE).dft(CV_DXT_INVERSE) - n.times { |j| - if j == 1 - assert_in_delta(n / 2, mat1[j, 0][0], 0.001) - assert_in_delta(-n / 2, mat1[j, 0][1], 0.001) - assert_in_delta(0.5, mat2[j, 0][0], 0.001) - assert_in_delta(-0.5, mat2[j, 0][1], 0.001) - elsif j == n - 1 - assert_in_delta(-n / 2, mat1[j, 0][0], 0.001) - assert_in_delta(n / 2, mat1[j, 0][1], 0.001) - assert_in_delta(-0.5, mat2[j, 0][0], 0.001) - assert_in_delta(0.5, mat2[j, 0][1], 0.001) - else - assert_in_delta(0, mat1[j, 0][0], 0.001) - assert_in_delta(0, mat1[j, 0][1], 0.001) - assert_in_delta(0, mat2[j, 0][0], 0.001) - assert_in_delta(0, mat2[j, 0][1], 0.001) - end - assert_in_delta(mat0[j, 0][0], mat3[j, 0][0], 0.001) - assert_in_delta(mat0[j, 0][1], mat3[j, 0][1], 0.001) - } - - assert_raise(TypeError) { - mat0.dft(DUMMY_OBJ) - } - assert_raise(TypeError) { - mat0.dft(CV_DXT_FORWARD, DUMMY_OBJ) - } - end - - def test_dft_2D - n = 32 - w = 2 * Math::PI / n - c = 0 - mat0 = CvMat.new(n, n, :cv32f, 2) - n.times { |j| - s = Math.sin(c * w) - n.times { |i| - mat0[j, i] = CvScalar.new(s, s) - } - c += 1 - } - - mat1 = mat0.dft(CV_DXT_FORWARD) - mat2 = mat0.dft(CV_DXT_FORWARD | CV_DXT_SCALE) - mat3 = mat0.dft(CV_DXT_FORWARD | CV_DXT_SCALE).dft(CV_DXT_INVERSE) - n.times { |j| - n.times { |i| - if i == 0 and j == 1 - assert_in_delta(n * n / 2, mat1[j, i][0], 0.001) - assert_in_delta(-n * n / 2, mat1[j, i][1], 0.001) - assert_in_delta(0.5, mat2[j, i][0], 0.001) - assert_in_delta(-0.5, mat2[j, i][1], 0.001) - elsif i == 0 and j == n - 1 - assert_in_delta(-n * n / 2, mat1[j, i][0], 0.001) - assert_in_delta(n * n / 2, mat1[j, i][1], 0.001) - assert_in_delta(-0.5, mat2[j, i][0], 0.001) - assert_in_delta(0.5, mat2[j, i][1], 0.001) - else - assert_in_delta(0, mat1[j, i][0], 0.001) - assert_in_delta(0, mat1[j, i][1], 0.001) - assert_in_delta(0, mat2[j, i][0], 0.001) - assert_in_delta(0, mat2[j, i][1], 0.001) - end - assert_in_delta(mat0[j, 0][0], mat3[j, i][0], 0.001) - assert_in_delta(mat0[j, 0][1], mat3[j, i][1], 0.001) - } - } - end - - def test_dct_1D - n = 8 - w = 2 * Math::PI / n - - mat0 = create_cvmat(n, 1, :cv32f, 1) { |j, i, c| - s = Math.sin(c * w) - CvScalar.new(s) - } - - mat1 = mat0.dct(CV_DXT_FORWARD) - mat2 = mat0.dct(CV_DXT_FORWARD).dct(CV_DXT_INVERSE) - expected1 = [0, 1.599647, -0.765367, -0.906127, 0, -0.180240, 0, -0.042290] - n.times { |j| - assert_in_delta(expected1[j], mat1[j, 0][0], 0.001) - assert_in_delta(mat0[j, 0][0], mat2[j, 0][0], 0.001) - } - - assert_raise(TypeError) { - mat0.dct(DUMMY_OBJ) - } - end - - def test_dct_2D - n = 8 - w = 2 * Math::PI / n - c = 0 - mat0 = CvMat.new(n, n, :cv32f, 1) - n.times { |j| - s = Math.sin(c * w) - n.times { |i| - mat0[j, i] = CvScalar.new(s, s) - } - c += 1 - } - - mat1 = mat0.dct(CV_DXT_FORWARD) - mat2 = mat0.dct(CV_DXT_FORWARD).dct(CV_DXT_INVERSE) - n.times { |j| - n.times { |i| - if i == 0 and j == 1 - assert_in_delta(4.524486, mat1[j, i][0], 0.001) - elsif i == 0 and j == 2 - assert_in_delta(-2.164784, mat1[j, i][0], 0.001) - elsif i == 0 and j == 3 - assert_in_delta(-2.562915, mat1[j, i][0], 0.001) - elsif i == 0 and j == 5 - assert_in_delta(-0.509796, mat1[j, i][0], 0.001) - elsif i == 0 and j == 7 - assert_in_delta(-0.119615, mat1[j, i][0], 0.001) - else - assert_in_delta(0, mat1[j, i][0], 0.001) - end - assert_in_delta(mat0[j, i][0], mat2[j, i][0], 0.001) - } - } - end -end - - diff --git a/test/test_cvmat_imageprocessing.rb b/test/test_cvmat_imageprocessing.rb deleted file mode 100755 index 05a4019..0000000 --- a/test/test_cvmat_imageprocessing.rb +++ /dev/null @@ -1,2085 +0,0 @@ -#!/usr/bin/env ruby -# -*- mode: ruby; coding: utf-8 -*- -require 'test/unit' -require 'opencv' -require File.expand_path(File.dirname(__FILE__)) + '/helper' - -include OpenCV - -# Tests for image processing functions of OpenCV::CvMat -class TestCvMat_imageprocessing < OpenCVTestCase - FILENAME_LENA256x256 = File.expand_path(File.dirname(__FILE__)) + '/samples/lena-256x256.jpg' - FILENAME_LENA_INPAINT = File.expand_path(File.dirname(__FILE__)) + '/samples/lena-inpaint.jpg' - FILENAME_INPAINT_MASK = File.expand_path(File.dirname(__FILE__)) + '/samples/inpaint-mask.bmp' - FILENAME_LENA32x32 = File.expand_path(File.dirname(__FILE__)) + '/samples/lena-32x32.jpg' - FILENAME_LINES = File.expand_path(File.dirname(__FILE__)) + '/samples/lines.jpg' - FILENAME_LENA_EYES = File.expand_path(File.dirname(__FILE__)) + '/samples/lena-eyes.jpg' - FILENAME_STR_CV = File.expand_path(File.dirname(__FILE__)) + '/samples/str-cv.jpg' - FILENAME_STR_OV = File.expand_path(File.dirname(__FILE__)) + '/samples/str-ov.jpg' - FILENAME_STR_CV_ROTATED = File.expand_path(File.dirname(__FILE__)) + '/samples/str-cv-rotated.jpg' - - def test_sobel - mat0 = CvMat.load(FILENAME_LENA256x256, CV_LOAD_IMAGE_GRAYSCALE) - - mat1 = mat0.sobel(1, 0).convert_scale_abs(:scale => 1, :shift => 0) - mat2 = mat0.sobel(0, 1).convert_scale_abs(:scale => 1, :shift => 0) - mat3 = mat0.sobel(1, 1).convert_scale_abs(:scale => 1, :shift => 0) - mat4 = mat0.sobel(1, 1, 3).convert_scale_abs(:scale => 1, :shift => 0) - mat5 = mat0.sobel(1, 1, 5).convert_scale_abs(:scale => 1, :shift => 0) - - assert_equal('30a26b7287fac75bb697bc7eef6bb53a', hash_img(mat1)) - assert_equal('b740afb13b556d55280fa785190ac902', hash_img(mat2)) - assert_equal('36c29ca64a599e0f5633f4f3948ed858', hash_img(mat3)) - assert_equal('36c29ca64a599e0f5633f4f3948ed858', hash_img(mat4)) - assert_equal('30b9e8fd64e7f86c50fb67d8703628e3', hash_img(mat5)) - - assert_equal(:cv16s, CvMat.new(16, 16, :cv8u, 1).sobel(1, 1).depth) - assert_equal(:cv32f, CvMat.new(16, 16, :cv32f, 1).sobel(1, 1).depth) - - (DEPTH.keys - [:cv8u, :cv32f]).each { |depth| - assert_raise(ArgumentError) { - CvMat.new(3, 3, depth).sobel(1, 1) - } - } - - # Uncomment the following lines to view the images - # snap(['original', mat0], ['sobel(1,0)', mat1], ['sobel(0,1)', mat2], - # ['sobel(1,1)', mat3], ['sobel(1,1,3)', mat4], ['sobel(1,1,5)', mat5]) - - assert_raise(TypeError) { - mat0.sobel(DUMMY_OBJ, 0) - } - assert_raise(TypeError) { - mat0.sobel(1, DUMMY_OBJ) - } - assert_raise(TypeError) { - mat0.sobel(1, 0, DUMMY_OBJ) - } - end - - def test_laplace - mat0 = CvMat.load(FILENAME_LENA256x256, CV_LOAD_IMAGE_GRAYSCALE) - - mat1 = mat0.laplace.convert_scale_abs(:scale => 1, :shift => 0) - mat2 = mat0.laplace(3).convert_scale_abs(:scale => 1, :shift => 0) - mat3 = mat0.laplace(5).convert_scale_abs(:scale => 1, :shift => 0) - - assert_equal('824f8de75bfead5d83c4226f3948ce69', hash_img(mat1)) - assert_equal('824f8de75bfead5d83c4226f3948ce69', hash_img(mat2)) - assert_equal('23850bb8cfe9fd1b82cd73b7b4659369', hash_img(mat3)) - - assert_equal(:cv16s, CvMat.new(16, 16, :cv8u, 1).laplace.depth) - assert_equal(:cv32f, CvMat.new(16, 16, :cv32f, 1).laplace.depth) - - (DEPTH.keys - [:cv8u, :cv32f]).each { |depth| - assert_raise(ArgumentError) { - CvMat.new(3, 3, depth).laplace - } - } - - # Uncomment the following line to view the images - # snap(['original', mat0], ['laplace', mat1], ['laplace(3)', mat2], ['laplace(5)', mat3]) - - assert_raise(TypeError) { - mat0.laplace(DUMMY_OBJ) - } - end - - def test_canny - mat0 = CvMat.load(FILENAME_LENA256x256, CV_LOAD_IMAGE_GRAYSCALE) - mat1 = mat0.canny(50, 200) - mat2 = mat0.canny(50, 200, 3) - mat3 = mat0.canny(50, 200, 5) - - assert_equal('ec3e88035bb98b5c5f1a08c8e07ab0a8', hash_img(mat1)) - assert_equal('ec3e88035bb98b5c5f1a08c8e07ab0a8', hash_img(mat2)) - assert_equal('1983a6d325d11eea3261462103b0dae1', hash_img(mat3)) - - # Uncomment the following line to view the images - # snap(['canny(50,200)', mat1], ['canny(50,200,3)', mat2], ['canny(50,200,5)', mat3]) - - assert_raise(TypeError) { - mat0.canny(DUMMY_OBJ, 200) - } - assert_raise(TypeError) { - mat0.canny(50, DUMMY_OBJ) - } - assert_raise(TypeError) { - mat0.canny(50, 200, DUMMY_OBJ) - } - end - - def test_pre_corner_detect - mat0 = CvMat.load(FILENAME_LENA256x256, CV_LOAD_IMAGE_GRAYSCALE) - mat1 = mat0.pre_corner_detect - mat2 = mat0.pre_corner_detect(3) - mat3 = mat0.pre_corner_detect(5) - - assert_in_delta(0, count_threshold(mat1, 0.1), 30) - assert_in_delta(0, count_threshold(mat2, 0.1), 30) - assert_in_delta(380, count_threshold(mat3, 0.1), 30) - - # Uncomment the following lines to show the images - # snap(['original', mat0], ['pre_coner_detect', mat1], - # ['pre_coner_detect(3)', mat2], ['pre_coner_detect(5)', mat3]) - - assert_raise(TypeError) { - mat0.pre_corner_detect(DUMMY_OBJ) - } - end - - def test_corner_eigenvv - mat0 = CvMat.load(FILENAME_LENA256x256, CV_LOAD_IMAGE_GRAYSCALE) - mat1 = mat0.corner_eigenvv(3) - mat2 = mat0.corner_eigenvv(3, 3) - - assert_raise(TypeError) { - mat0.corner_eigenvv(DUMMY_OBJ) - } - assert_raise(TypeError) { - mat0.corner_eigenvv(3, DUMMY_OBJ) - } - - flunk('FIXME: CvMat#corner_eigenvv is not tested yet.') - end - - def test_corner_min_eigen_val - mat0 = CvMat.load(FILENAME_LENA256x256, CV_LOAD_IMAGE_GRAYSCALE) - mat1 = mat0.corner_min_eigen_val(3) - mat2 = mat0.corner_min_eigen_val(3, 3) - - assert_raise(TypeError) { - mat0.corner_min_eigen_val(DUMMY_OBJ) - } - assert_raise(TypeError) { - mat0.corner_min_eigen_val(3, DUMMY_OBJ) - } - - flunk('FIXME: CvMat#corner_min_eigen_val is not tested yet.') - end - - def test_corner_harris - mat0 = CvMat.load(FILENAME_LENA256x256, CV_LOAD_IMAGE_GRAYSCALE) - mat1 = mat0.corner_harris(3) - mat2 = mat0.corner_harris(3, 3) - mat3 = mat0.corner_harris(3, 3, 0.04) - mat4 = mat0.corner_harris(3, 7, 0.01) - - [mat1, mat2, mat3].each { |mat| - assert_equal(mat0.rows, mat.rows) - assert_equal(mat0.cols, mat.cols) - assert_in_delta(0, count_threshold(mat, 10), 10) - } - assert_equal(mat0.rows, mat4.rows) - assert_equal(mat0.cols, mat4.cols) - assert_in_delta(90, count_threshold(mat4, 10), 10) - - # Uncomment the following lines to show the images - # snap(['original', mat0], ['corner_harris(3)', mat1], ['corner_harris(3,3)', mat2], - # ['corner_harris(3,3,0.04)', mat3], ['corner_harris(3,7,0.01)', mat4]) - - assert_raise(TypeError) { - mat0.corner_harris(DUMMY_OBJ) - } - assert_raise(TypeError) { - mat0.corner_harris(3, DUMMY_OBJ) - } - assert_raise(TypeError) { - mat0.corner_harris(3, 3, DUMMY_OBJ) - } - end - - def test_find_chessboard_corners - mat = CvMat.load(FILENAME_CHESSBOARD, CV_LOAD_IMAGE_GRAYSCALE) - pattern_size = CvSize.new(4, 4) - corners1, found1 = mat.find_chessboard_corners(pattern_size) - corners2, found2 = mat.find_chessboard_corners(pattern_size, CV_CALIB_CB_ADAPTIVE_THRESH) - corners3, found3 = mat.find_chessboard_corners(pattern_size, CV_CALIB_CB_NORMALIZE_IMAGE) - corners4, found4 = mat.find_chessboard_corners(pattern_size, CV_CALIB_CB_FILTER_QUADS) - corners5, found5 = mat.find_chessboard_corners(pattern_size, CV_CALIB_CB_FAST_CHECK) - - expected = [[39, 39], [79, 39], [119, 39], [159, 39], [39, 79], [79, 79], - [119, 79], [159, 78], [38, 119], [79, 119], [119, 119], [158, 118], - [39, 159], [79, 159], [119, 159], [159, 159]] - [corners1, corners2, corners3, corners4, corners5].each { |corners| - assert_equal(expected.size, corners.size) - expected.zip(corners).each { |e, a| - assert_in_delta(e[0], a.x, 3.0) - assert_in_delta(e[1], a.y, 3.0) - } - } - [found1, found2, found3, found4, found5].each { |found| - assert(found) - } - - assert_raise(TypeError) { - mat.find_chessboard_corners(DUMMY_OBJ) - } - assert_raise(TypeError) { - mat.find_chessboard_corners(pattern_size, DUMMY_OBJ) - } - end - - def test_find_corner_sub_pix - mat = CvMat.load(FILENAME_CHESSBOARD, CV_LOAD_IMAGE_GRAYSCALE) - pattern_size = CvSize.new(4, 4) - corners, found = mat.find_chessboard_corners(pattern_size) - expected = [[39, 39], [79, 39], [119, 39], [159, 39], [39, 79], [79, 79], - [119, 79], [159, 78], [38, 119], [79, 119], [119, 119], [158, 118], - [39, 159], [79, 159], [119, 159], [159, 159]] - - refined_corners = mat.find_corner_sub_pix(corners, CvSize.new(3, 3), CvSize.new(-1, -1), - CvTermCriteria.new(20, 0.03)); - assert_equal(expected.size, refined_corners.size) - assert(found) - expected.zip(refined_corners).each { |e, a| - assert_in_delta(e[0], a.x, 3.0) - assert_in_delta(e[1], a.y, 3.0) - } - - assert_raise(TypeError) { - mat.find_corner_sub_pix(DUMMY_OBJ, CvSize.new(3, 3), CvSize.new(-1, -1), - CvTermCriteria.new(20, 0.03)); - } - assert_raise(TypeError) { - mat.find_corner_sub_pix(corners, DUMMY_OBJ, CvSize.new(-1, -1), - CvTermCriteria.new(20, 0.03)); - } - assert_raise(TypeError) { - mat.find_corner_sub_pix(corners, CvSize.new(3, 3), DUMMY_OBJ, - CvTermCriteria.new(20, 0.03)); - } - assert_raise(TypeError) { - mat.find_corner_sub_pix(corners, CvSize.new(3, 3), CvSize.new(-1, -1), DUMMY_OBJ); - } - end - - def test_good_features_to_track - mat0 = CvMat.load(FILENAME_LENA32x32, CV_LOAD_IMAGE_GRAYSCALE) - mask = create_cvmat(mat0.rows, mat0.cols, :cv8u, 1) { |j, i, c| - if (i > 8 and i < 18) and (j > 8 and j < 18) - CvScalar.new(1) - else - CvScalar.new(0) - end - } - - corners1 = mat0.good_features_to_track(0.2, 5) - corners2 = mat0.good_features_to_track(0.2, 5, :mask => mask) - corners3 = mat0.good_features_to_track(0.2, 5, :block_size => 7) - corners4 = mat0.good_features_to_track(0.2, 5, :use_harris => true) - corners5 = mat0.good_features_to_track(0.2, 5, :k => 0.01) - corners6 = mat0.good_features_to_track(0.2, 5, :max => 1) - - expected1 = [[24, 7], [20, 23], [17, 11], [26, 29], [30, 24], - [19, 16], [28, 2], [13, 18], [14, 4]] - assert_equal(expected1.size, corners1.size) - expected1.each_with_index { |e, i| - assert_equal(e[0], corners1[i].x.to_i) - assert_equal(e[1], corners1[i].y.to_i) - } - expected2 = [[17, 11], [17, 16]] - assert_equal(expected2.size, corners2.size) - expected2.each_with_index { |e, i| - assert_equal(e[0], corners2[i].x.to_i) - assert_equal(e[1], corners2[i].y.to_i) - } - - expected3 = [[21, 7], [22, 23], [18, 12], [28, 4], [28, 26], - [17, 27], [13, 20], [10, 11], [14, 5]] - assert_equal(expected3.size, corners3.size) - expected3.each_with_index { |e, i| - assert_equal(e[0], corners3[i].x.to_i) - assert_equal(e[1], corners3[i].y.to_i) - } - - expected4 = [[24, 8], [20, 23], [16, 11], - [20, 16],[27, 28], [28, 2]] - assert_equal(expected4.size, corners4.size) - expected4.each_with_index { |e, i| - assert_equal(e[0], corners4[i].x.to_i) - assert_equal(e[1], corners4[i].y.to_i) - } - - expected5 = [[24, 7], [20, 23], [17, 11], [26, 29], [30, 24], - [19, 16], [28, 2], [13, 18], [14, 4]] - assert_equal(expected5.size, corners5.size) - expected5.each_with_index { |e, i| - assert_equal(e[0], corners5[i].x.to_i) - assert_equal(e[1], corners5[i].y.to_i) - } - - assert_equal(1, corners6.size) - assert_equal(24, corners6[0].x.to_i) - assert_equal(7, corners6[0].y.to_i) - - assert_raise(ArgumentError) { - mat0.good_features_to_track(0.2, 5, :max => 0) - } - - assert_raise(TypeError) { - mat0.good_features_to_track(DUMMY_OBJ, 5) - } - assert_raise(TypeError) { - mat0.good_features_to_track(0.2, DUMMY_OBJ) - } - assert_raise(TypeError) { - mat0.good_features_to_track(0.2, 5, :mask => DUMMY_OBJ) - } - assert_raise(TypeError) { - mat0.good_features_to_track(0.2, 5, :block_size => DUMMY_OBJ) - } - assert_raise(TypeError) { - mat0.good_features_to_track(0.2, 5, :k => DUMMY_OBJ) - } - assert_raise(TypeError) { - mat0.good_features_to_track(0.2, 5, :max => DUMMY_OBJ) - } - mat0.good_features_to_track(0.2, 5, :use_harris => DUMMY_OBJ) - end - - def test_rect_sub_pix - mat0 = CvMat.load(FILENAME_LENA256x256, CV_LOAD_IMAGE_ANYCOLOR | CV_LOAD_IMAGE_ANYDEPTH) - center = CvPoint2D32f.new(mat0.width / 2, mat0.height / 2) - mat1 = mat0.rect_sub_pix(center) - mat2 = mat0.rect_sub_pix(center, mat0.size) - mat3 = mat0.rect_sub_pix(center, CvSize.new(512, 512)) - - assert_equal('b3dc0e31260dd42b5341471e23e825d3', hash_img(mat1)) - assert_equal('b3dc0e31260dd42b5341471e23e825d3', hash_img(mat2)) - assert_equal('cc27ce8f4068efedcd31c4c782c3825c', hash_img(mat3)) - - assert_raise(TypeError) { - mat0.rect_sub_pix(DUMMY_OBJ) - } - assert_raise(TypeError) { - mat0.rect_sub_pix(center, DUMMY_OBJ) - } - end - - def test_quadrangle_sub_pix - mat0 = CvMat.load(FILENAME_LENA256x256, CV_LOAD_IMAGE_ANYCOLOR | CV_LOAD_IMAGE_ANYDEPTH) - angle = 60 * Math::PI / 180 - map_matrix = CvMat.new(2, 3, :cv32f, 1) - map_matrix[0] = CvScalar.new(Math.cos(angle)) - map_matrix[1] = CvScalar.new(-Math.sin(angle)) - map_matrix[2] = CvScalar.new(mat0.width * 0.5) - map_matrix[3] = CvScalar.new(-map_matrix[1][0]) - map_matrix[4] = map_matrix[0] - map_matrix[5] = CvScalar.new(mat0.height * 0.5) - - mat1 = mat0.quadrangle_sub_pix(map_matrix) - mat2 = mat0.quadrangle_sub_pix(map_matrix, mat0.size) - mat3 = mat0.quadrangle_sub_pix(map_matrix, CvSize.new(512, 512)) - - assert_equal('f170c05fa50c3ac2a762d7b3f5c4ae2f', hash_img(mat1)) - assert_equal('f170c05fa50c3ac2a762d7b3f5c4ae2f', hash_img(mat2)) - assert_equal('4d949d5083405381ad9ea09dcd95e5a2', hash_img(mat3)) - - assert_raise(TypeError) { - mat0.quadrangle_sub_pix(DUMMY_OBJ) - } - assert_raise(TypeError) { - mat0.quadrangle_sub_pix(map_matrix, DUMMY_OBJ) - } - # assert_raise(CvError) { - # mat0.quadrangle_sub_pix(CvMat.new(3, 3)) - # } - end - - def test_resize - mat0 = CvMat.load(FILENAME_LENA256x256, CV_LOAD_IMAGE_ANYCOLOR | CV_LOAD_IMAGE_ANYDEPTH) - size = CvSize.new(384, 384) - mat1 = mat0.resize(size) - mat2 = mat0.resize(size, CV_INTER_LINEAR) - mat3 = mat0.resize(size, CV_INTER_NN) - mat4 = mat0.resize(size, CV_INTER_AREA) - mat5 = mat0.resize(size, CV_INTER_CUBIC) - mat6 = mat0.resize(size, CV_INTER_LANCZOS4) - - [mat1, mat2, mat3, mat4, mat5, mat6].each { |m| - assert_equal(size.width, m.cols) - assert_equal(size.height, m.rows) - assert_equal(mat0.depth, m.depth) - assert_equal(mat0.channel, m.channel) - } - - assert_raise(TypeError) { - mat0.resize(DUMMY_OBJ) - } - assert_raise(TypeError) { - mat0.resize(size, DUMMY_OBJ) - } - - # Uncomment the following lines to show the results - # snap(['original', mat0], ['default(linear)', mat1], ['linear', mat2], - # ['nn', mat3], ['area', mat4], ['cubic', mat5] , ['lanczos4', mat6]) - end - - def test_warp_affine - mat0 = CvMat.load(FILENAME_LENA256x256, CV_LOAD_IMAGE_ANYCOLOR | CV_LOAD_IMAGE_ANYDEPTH) - map_matrix = CvMat.new(2, 3, :cv32f, 1) - # center: (128, 128), angle: 25 deg., scale: 1.0 - map_matrix[0] = CvScalar.new(0.90631) - map_matrix[1] = CvScalar.new(0.42262) - map_matrix[2] = CvScalar.new(-42.10254) - map_matrix[3] = CvScalar.new(-0.42262) - map_matrix[4] = CvScalar.new(0.90631) - map_matrix[5] = CvScalar.new(66.08774) - - mat1 = mat0.warp_affine(map_matrix) - mat2 = mat0.warp_affine(map_matrix, CV_INTER_NN | CV_WARP_FILL_OUTLIERS) - mat3 = mat0.warp_affine(map_matrix, CV_INTER_LINEAR | CV_WARP_FILL_OUTLIERS, CvColor::Yellow) - mat4 = mat0.warp_affine(map_matrix, CV_INTER_LINEAR | CV_WARP_FILL_OUTLIERS | CV_WARP_INVERSE_MAP) - - [mat1, mat2, mat3, mat4].each { |m| - assert_equal(mat0.cols, m.cols) - assert_equal(mat0.rows, m.rows) - assert_equal(mat0.depth, m.depth) - assert_equal(mat0.channel, m.channel) - } - - assert_raise(TypeError) { - mat0.warp_affine(DUMMY_OBJ) - } - assert_raise(TypeError) { - mat0.warp_affine(map_matrix, DUMMY_OBJ) - } - - # Uncomment the following lines to show the results - # snap mat0, mat1, mat2, mat3, mat4 - end - - def test_get_perspective_transform - from = [ - OpenCV::CvPoint2D32f.new(540, 382), - OpenCV::CvPoint2D32f.new(802, 400), - OpenCV::CvPoint2D32f.new(850, 731), - OpenCV::CvPoint2D32f.new(540, 731), - ] - to = [ - OpenCV::CvPoint2D32f.new(0, 0), - OpenCV::CvPoint2D32f.new(233, 0), - OpenCV::CvPoint2D32f.new(233, 310), - OpenCV::CvPoint2D32f.new(0, 310), - ] - transform = OpenCV::CvMat.get_perspective_transform(from, to) - assert_equal 3, transform.rows - assert_equal 3, transform.columns - expected = [ - 0.923332154750824, - 0.0, - 0.0, - 1.4432899320127035e-15, - 0.0, - 0.0, - -498.599365234375, - 0.0, - 0.0, - ] - 3.times do |i| - 3.times do |j| - assert_in_delta(expected.shift, transform[i][j], 0.001) - end - end - end - - def test_rotation_matrix2D - mat1 = CvMat.rotation_matrix2D(CvPoint2D32f.new(10, 20), 60, 2.0) - expected = [1.0, 1.73205, -34.64102, - -1.73205, 1.0, 17.32051] - assert_equal(2, mat1.rows) - assert_equal(3, mat1.cols) - assert_equal(:cv32f, mat1.depth) - assert_equal(1, mat1.channel) - expected.each_with_index { |x, i| - assert_in_delta(x, mat1[i][0], 0.001) - } - - assert_raise(TypeError) { - CvMat.rotation_matrix2D(DUMMY_OBJ, 60, 2.0) - } - assert_raise(TypeError) { - CvMat.rotation_matrix2D(CvPoint2D32f.new(10, 20), DUMMY_OBJ, 2.0) - } - assert_raise(TypeError) { - CvMat.rotation_matrix2D(CvPoint2D32f.new(10, 20), 60, DUMMY_OBJ) - } - end - - def test_warp_perspective - mat0 = CvMat.load(FILENAME_LENA256x256, CV_LOAD_IMAGE_ANYCOLOR | CV_LOAD_IMAGE_ANYDEPTH) - # Homography - # => - # (0, 0) => (50, 0) - # (255, 0) => (205, 0) - # (255, 255) => (255, 220) - # (0, 255) => (0, 275) - map_matrix = CvMat.new(3, 3, :cv32f, 1) - map_matrix[0] = CvScalar.new(0.72430) - map_matrix[1] = CvScalar.new(-0.19608) - map_matrix[2] = CvScalar.new(50.00000) - map_matrix[3] = CvScalar.new(0.0) - map_matrix[4] = CvScalar.new(0.62489) - map_matrix[5] = CvScalar.new(0.0) - map_matrix[6] = CvScalar.new(0.00057) - map_matrix[7] = CvScalar.new(-0.00165) - map_matrix[8] = CvScalar.new(1.00000) - - mat1 = mat0.warp_perspective(map_matrix) - mat2 = mat0.warp_perspective(map_matrix, CV_INTER_NN) - mat3 = mat0.warp_perspective(map_matrix, CV_INTER_LINEAR | CV_WARP_INVERSE_MAP) - mat4 = mat0.warp_perspective(map_matrix, CV_INTER_LINEAR | CV_WARP_FILL_OUTLIERS, CvColor::Yellow) - - [mat1, mat2, mat3, mat4].each { |m| - assert_equal(mat0.cols, m.cols) - assert_equal(mat0.rows, m.rows) - assert_equal(mat0.depth, m.depth) - assert_equal(mat0.channel, m.channel) - } - - assert_raise(TypeError) { - mat0.warp_perspective(DUMMY_OBJ) - } - assert_raise(TypeError) { - mat0.warp_perspective(map_matrix, DUMMY_OBJ) - } - - # Uncomment the following line to show the results - # snap mat0, mat1, mat2, mat3, mat4 - end - - def test_remap - mat0 = CvMat.load(FILENAME_LENA256x256, CV_LOAD_IMAGE_ANYCOLOR | CV_LOAD_IMAGE_ANYDEPTH) - matx = CvMat.new(mat0.height, mat0.width, :cv32f, 1).clear - maty = CvMat.new(mat0.height, mat0.width, :cv32f, 1).clear - - cos30, sin30 = Math.cos(30 * Math::PI / 180), Math.sin(30 * Math::PI / 180) - half_width, half_height = mat0.width / 2, mat0.height / 2 - mat0.height.times { |j| - mat0.width.times { |i| - x0 = i - half_width - y0 = j - half_height - x = x0 * cos30 - y0 * sin30 + half_width - y = x0 * sin30 + y0 * cos30 + half_height - matx[j, i] = CvScalar.new(x) - maty[j, i] = CvScalar.new(y) - } - } - - mat1 = mat0.remap(matx, maty) - mat2 = mat0.remap(matx, maty, CV_INTER_NN) - mat3 = mat0.remap(matx, maty, CV_INTER_LINEAR | CV_WARP_FILL_OUTLIERS, CvColor::Yellow) - - [mat1, mat2, mat3].each { |m| - assert_equal(mat0.cols, m.cols) - assert_equal(mat0.rows, m.rows) - assert_equal(mat0.depth, m.depth) - assert_equal(mat0.channel, m.channel) - } - - assert_raise(TypeError) { - mat0.remap(DUMMY_OBJ, maty) - } - assert_raise(TypeError) { - mat0.remap(matx, DUMMY_OBJ) - } - assert_raise(TypeError) { - mat0.remap(matx, maty, DUMMY_OBJ) - } - - # Uncomment the following line to show the results - # snap mat0, mat1, mat2, mat3 - end - - def test_log_polar - mat0 = CvMat.load(FILENAME_FRUITS, CV_LOAD_IMAGE_ANYCOLOR | CV_LOAD_IMAGE_ANYDEPTH) - - mat1 = mat0.log_polar(CvSize.new(255, 255), CvPoint2D32f.new(mat0.width / 2, mat0.height / 2), 40) - mat2 = mat0.log_polar(CvSize.new(255, 255), CvPoint2D32f.new(mat0.width / 2, mat0.height / 2), 40, - CV_INTER_LINEAR | CV_WARP_FILL_OUTLIERS) - mat3 = mat1.log_polar(mat0.size, CvPoint2D32f.new(mat0.width / 2, mat0.height / 2), 40, - CV_INTER_LINEAR | CV_WARP_FILL_OUTLIERS | CV_WARP_INVERSE_MAP) - - [mat1, mat2].each { |mat| - assert_equal(mat0.depth, mat.depth) - assert_equal(mat0.channel, mat.channel) - b, g, r = color_hists(mat) - assert_in_delta(4000000, b, 100000) - assert_in_delta(5860000, g, 100000) - assert_in_delta(7700000, r, 100000) - } - - b, g, r = color_hists(mat3) - assert_equal(mat0.depth, mat3.depth) - assert_equal(mat0.channel, mat3.channel) - assert_in_delta(11200000, b, 1000000) - assert_in_delta(20800000, g, 1000000) - assert_in_delta(26900000, r, 1000000) - - # Uncomment the following line to show the results - # snap mat0, mat1, mat2 - end - - def test_erode - mat0 = create_cvmat(9, 9, :cv8u, 1) { |j, i, c| - if i >= 3 and i < 6 and j >= 3 and j < 6 - CvScalar.new(255) - else - CvScalar.new(0) - end - } - - mat1 = create_cvmat(9, 9, :cv8u, 1) { |j, i, c| - if i >= 1 and i < 8 and j >= 1 and j < 8 - CvScalar.new(255) - else - CvScalar.new(0) - end - } - - mat2 = create_cvmat(5, 5, :cv8u, 1) { |j, i, c| - if i == 2 or j == 2 - CvScalar.new(255) - else - CvScalar.new(0) - end - } - - mat3 = mat0.erode - mat4 = mat0.erode(nil, 1) - mat5 = mat1.erode(nil, 2) - mat6 = mat1.erode(IplConvKernel.new(5, 5, 2, 2, :cross)) - mat7 = mat0.clone - mat7.erode! - - assert_equal('075eb0e281328f768eb862735d16979d', hash_img(mat3)) - assert_equal('075eb0e281328f768eb862735d16979d', hash_img(mat4)) - assert_equal('9f02fc4438b1d69fea75a10dfd2b66b0', hash_img(mat5)) - assert_equal('9f02fc4438b1d69fea75a10dfd2b66b0', hash_img(mat6)) - assert_equal('075eb0e281328f768eb862735d16979d', hash_img(mat7)) - - assert_raise(TypeError) { - mat0.erode(DUMMY_OBJ) - } - assert_raise(TypeError) { - mat0.erode(nil, DUMMY_OBJ) - } - end - - def test_dilate - mat0 = create_cvmat(9, 9, :cv8u, 1) { |j, i, c| - if i == 4 and j == 4 - CvScalar.new(255) - else - CvScalar.new(0) - end - } - - mat1 = create_cvmat(5, 5, :cv8u, 1) { |j, i, c| - if i == 2 or j == 2 - CvScalar.new(255) - else - CvScalar.new(0) - end - } - - mat2 = mat0.dilate - mat3 = mat0.dilate(nil, 1) - mat4 = mat0.dilate(nil, 2) - mat5 = mat1.dilate(IplConvKernel.new(5, 5, 2, 2, :cross)) - mat6 = mat0.clone - mat6.dilate! - - assert_equal('9f02fc4438b1d69fea75a10dfd2b66b0', hash_img(mat2)) - assert_equal('9f02fc4438b1d69fea75a10dfd2b66b0', hash_img(mat3)) - assert_equal('ebf07f2a0edd2fd0fe26ff5921c6871b', hash_img(mat4)) - assert_equal('2841937c35c311e947bee49864b9d295', hash_img(mat5)) - assert_equal('9f02fc4438b1d69fea75a10dfd2b66b0', hash_img(mat6)) - - assert_raise(TypeError) { - mat0.dilate(DUMMY_OBJ) - } - assert_raise(TypeError) { - mat0.dilate(nil, DUMMY_OBJ) - } - end - - def test_morphology - mat0 = create_cvmat(64, 64, :cv8u, 1) { |j, i, c| - if i >= 8 and i < 56 and j >= 8 and j < 56 and (i + j) % 15 != 0 - CvScalar.new(255) - else - CvScalar.new(0) - end - } - - # Open - kernel = IplConvKernel.new(5, 5, 2, 2, :cross) - mat1 = mat0.morphology(CV_MOP_OPEN, kernel) - mat2 = mat0.morphology(:open, kernel) - assert_equal('63ccb07cb93efb1563657f51e3d89252', hash_img(mat1)) - assert_equal('63ccb07cb93efb1563657f51e3d89252', hash_img(mat2)) - - # Close - mat1 = mat0.morphology(CV_MOP_CLOSE, kernel) - mat2 = mat0.morphology(:close, kernel) - assert_equal('831c513d6ed86bce3f15c697de4a72f8', hash_img(mat1)) - assert_equal('831c513d6ed86bce3f15c697de4a72f8', hash_img(mat2)) - - # Gradient - mat1 = mat0.morphology(CV_MOP_GRADIENT, kernel) - mat2 = mat0.morphology(:gradient, kernel) - assert_equal('1e8007c211d6f464cf8584e8e83b3c35', hash_img(mat1)) - assert_equal('1e8007c211d6f464cf8584e8e83b3c35', hash_img(mat2)) - - # Top hat - mat1 = mat0.morphology(CV_MOP_TOPHAT, kernel) - mat2 = mat0.morphology(:tophat, kernel) - assert_equal('1760c5b63a52df37069164fe3e901aa4', hash_img(mat1)) - assert_equal('1760c5b63a52df37069164fe3e901aa4', hash_img(mat2)) - - # Black hat - mat1 = mat0.morphology(CV_MOP_BLACKHAT, kernel) - mat2 = mat0.morphology(:blackhat, kernel) - assert_equal('18b1d51637b912a38133341ee006c6ff', hash_img(mat1)) - assert_equal('18b1d51637b912a38133341ee006c6ff', hash_img(mat2)) - - [:open, :close, :gradient, :tophat, :blackhat].each { |type| - assert_raise(TypeError) { - mat0.morphology(type, DUMMY_OBJ) - } - } - end - - def test_smooth - mat0 = CvMat.load(FILENAME_LENA32x32, CV_LOAD_IMAGE_GRAYSCALE) - - assert_raise(TypeError) { - mat0.smooth(DUMMY_OBJ) - } - - # Blur no scale - mat1 = mat0.smooth(CV_BLUR_NO_SCALE) - mat2 = mat0.smooth(:blur_no_scale, 3, 3) - mat3 = mat0.smooth(CV_BLUR_NO_SCALE, 7, 7) - mat4 = CvMat.new(32, 32, :cv32f, 1).smooth(:blur_no_scale) - - [mat1, mat2, mat3].each { |m| - assert_equal(1, m.channel) - assert_equal(:cv16u, m.depth) - } - assert_equal(1, mat4.channel) - assert_equal(:cv32f, mat4.depth) - - assert_equal('3c9074c87b65117798f48e41a17b2f30', hash_img(mat1)) - assert_equal('3c9074c87b65117798f48e41a17b2f30', hash_img(mat2)) - assert_equal('9c549aa406a425a65b036c2f9a2689e0', hash_img(mat3)) - - assert_raise(TypeError) { - mat0.smooth(CV_BLUR_NO_SCALE, DUMMY_OBJ, 0, 0, 0) - } - assert_raise(TypeError) { - mat0.smooth(CV_BLUR_NO_SCALE, 3, DUMMY_OBJ, 0, 0) - } - - # Blur - mat1 = mat0.smooth(CV_BLUR) - mat2 = mat0.smooth(:blur, 3, 3) - mat3 = mat0.smooth(CV_BLUR, 7, 7) - mat4 = CvMat.new(32, 32, :cv16u, 1).smooth(:blur) - mat5 = CvMat.new(32, 32, :cv32f, 1).smooth(CV_BLUR) - mat6 = CvMat.new(32, 32, :cv8u, 3).smooth(:blur) - - [mat1, mat2, mat3].each { |m| - assert_equal(1, m.channel) - assert_equal(:cv8u, m.depth) - } - assert_equal(1, mat4.channel) - assert_equal(:cv16u, mat4.depth) - assert_equal(1, mat5.channel) - assert_equal(:cv32f, mat5.depth) - assert_equal(3, mat6.channel) - assert_equal(:cv8u, mat6.depth) - - assert_equal('f2473b5b964ae8950f6a7fa5cde4c67a', hash_img(mat1)) - assert_equal('f2473b5b964ae8950f6a7fa5cde4c67a', hash_img(mat2)) - assert_equal('d7bb344fc0f6ec0da4b9754d319e4e4a', hash_img(mat3)) - - assert_raise(TypeError) { - mat0.smooth(CV_BLUR, DUMMY_OBJ, 0, 0, 0) - } - assert_raise(TypeError) { - mat0.smooth(CV_BLUR, 3, DUMMY_OBJ, 0, 0) - } - - # Gaussian - mat1 = mat0.smooth(CV_GAUSSIAN) - mat2 = mat0.smooth(:gaussian, 3, 3) - mat3 = mat0.smooth(CV_GAUSSIAN, 3, 3, 3) - mat4 = mat0.smooth(:gaussian, 3, 3, 3, 3) - mat5 = mat0.smooth(CV_GAUSSIAN, 7, 7, 5, 3) - - mat6 = CvMat.new(32, 32, :cv16u, 1).smooth(CV_GAUSSIAN) - mat7 = CvMat.new(32, 32, :cv32f, 1).smooth(CV_GAUSSIAN) - mat8 = CvMat.new(32, 32, :cv8u, 3).smooth(CV_GAUSSIAN) - - [mat1, mat2, mat3, mat4, mat5].each { |m| - assert_equal(1, m.channel) - assert_equal(:cv8u, m.depth) - } - assert_equal(1, mat6.channel) - assert_equal(:cv16u, mat6.depth) - assert_equal(1, mat7.channel) - assert_equal(:cv32f, mat7.depth) - assert_equal(3, mat8.channel) - assert_equal(:cv8u, mat8.depth) - - assert_equal('580c88f3e0e317a5770be3f28f31eda2', hash_img(mat1)) - assert_equal('580c88f3e0e317a5770be3f28f31eda2', hash_img(mat2)) - assert_equal('a1ffaa14522719e37d75eec18ff8b309', hash_img(mat3)) - assert_equal('a1ffaa14522719e37d75eec18ff8b309', hash_img(mat4)) - assert_equal('f7f8b4eff3240ffc8f259ce975936d92', hash_img(mat5)) - - assert_raise(TypeError) { - mat0.smooth(CV_GAUSSIAN, DUMMY_OBJ, 0, 0, 0) - } - assert_raise(TypeError) { - mat0.smooth(CV_GAUSSIAN, 3, DUMMY_OBJ, 0, 0) - } - assert_raise(TypeError) { - mat0.smooth(CV_GAUSSIAN, 3, 0, DUMMY_OBJ, 0) - } - assert_raise(TypeError) { - mat0.smooth(CV_GAUSSIAN, 3, 0, 0, DUMMY_OBJ) - } - - # Median - mat0 = create_cvmat(64, 64, :cv8u, 1) { |j, i, c| - if (i + j) % 15 != 0 - CvScalar.new(255) - else - CvScalar.new(0) - end - } - (-1..1).each { |dy| - (-1..1).each { |dx| - mat0[32 + dy, 32 + dx] = CvScalar.new(0) - } - } - - mat1 = mat0.smooth(CV_MEDIAN) - mat2 = mat0.smooth(:median, 3) - mat3 = mat0.smooth(CV_MEDIAN, 7) - mat4 = CvMat.new(64, 64, :cv8u, 3).smooth(CV_MEDIAN) - - assert_equal('7343a41c542e034db356636c06134961', hash_img(mat1)) - assert_equal('7343a41c542e034db356636c06134961', hash_img(mat2)) - assert_equal('6ae59e64850377ee5470c854761551ea', hash_img(mat3)) - - assert_raise(TypeError) { - mat0.smooth(CV_MEDIAN, DUMMY_OBJ, 0, 0, 0) - } - - # Bilateral - mat0 = create_cvmat(64, 64, :cv8u, 1) { |j, i, c| - if i > 32 - (i + j) % 15 != 0 ? CvScalar.new(32) : CvScalar.new(224) - else - (i + j) % 15 != 0 ? CvScalar.new(224) : CvScalar.new(32) - end - } - - mat1 = mat0.smooth(CV_BILATERAL) - mat2 = mat0.smooth(:bilateral, 3, 3) - mat3 = mat0.smooth(CV_BILATERAL, 7, 7) - mat4 = CvMat.new(64, 64, :cv8u, 3).smooth(CV_BILATERAL) - - assert_raise(TypeError) { - mat0.smooth(CV_BILATERAL, DUMMY_OBJ, 0, 0, 0) - } - assert_raise(TypeError) { - mat0.smooth(CV_BILATERAL, 3, DUMMY_OBJ, 0, 0) - } - - flunk('FIXME: Cases of CvMat#smooth(CV_BILATERAL) are not tested yet.') - end - - def test_filter2d - mat0 = CvMat.load(FILENAME_LENA256x256, CV_LOAD_IMAGE_GRAYSCALE) - kernel = CvMat.new(3, 3, :cv32f, 1) - - # Laplacian filter kernel - laplace4 = [0, 1, 0, - 1, -4, 1, - 0, 1, 0] - laplace4.each_with_index { |x, i| kernel[i] = CvScalar.new(x) } - - mat1 = mat0.filter2d(kernel) - mat2 = mat0.filter2d(kernel, CvPoint.new(-1, -1)) - mat3 = mat0.filter2d(kernel, CvPoint.new(0, 0)) - - assert_equal('14a01cc47078e8f8fe4f0fd510d5521b', hash_img(mat1)) - assert_equal('14a01cc47078e8f8fe4f0fd510d5521b', hash_img(mat2)) - assert_equal('30e04de43f9240df6aadbaea6467b8fe', hash_img(mat3)) - - assert_raise(TypeError) { - mat0.filter2d(DUMMY_OBJ) - } - assert_raise(TypeError) { - mat0.filter2d(kernel, DUMMY_OBJ) - } - end - - def test_copy_make_border - mat0 = create_cvmat(32, 32, :cv8u, 1) { CvScalar.new(128) } - - [IPL_BORDER_CONSTANT, :constant].each { |type| - mat1 = mat0.copy_make_border(type, CvSize.new(64, 48), CvPoint.new(16, 8), 255) - assert_equal('5e231f8ca051b8f93e4aaa42d193d095', hash_img(mat1)) - } - - [IPL_BORDER_REPLICATE, :replicate].each { |type| - mat2 = mat0.copy_make_border(type, CvSize.new(300, 300), CvPoint.new(30, 30)) - assert_equal('96940dc9e3abb6e2556ea51af1468031', hash_img(mat2)) - } - - assert_raise(TypeError) { - mat0.copy_make_border(DUMMY_OBJ, CvSize.new(64, 48), CvPoint.new(16, 8)) - } - assert_raise(TypeError) { - mat0.copy_make_border(IPL_BORDER_CONSTANT, CvSize.new(64, 48), DUMMY_OBJ) - } - assert_raise(TypeError) { - mat0.copy_make_border(IPL_BORDER_CONSTANT, CvSize.new(64, 48), CvPoint.new(16, 8), DUMMY_OBJ) - } - assert_raise(ArgumentError) { - mat0.copy_make_border(:dummy, CvSize.new(64, 48), CvPoint.new(16, 8), DUMMY_OBJ) - } - end - - def test_integral - mat0 = create_cvmat(3, 3, :cv8u, 1) { |j, i, n| CvScalar.new(n) } - - result_sum = [] - result_sqsum = [] - result_tiled_sum = [] - - result1 = mat0.integral - assert_equal(CvMat, result1.class) - result_sum << result1 - - result2 = mat0.integral(true) - assert_equal(Array, result2.class) - assert_equal(2, result2.size) - assert(result2.all? {|a| a.class == CvMat}) - result_sum << result2[0] - result_sqsum << result2[1] - - result3 = mat0.integral(true, true) - assert_equal(Array, result3.class) - assert_equal(3, result3.size) - assert(result3.all? {|a| a.class == CvMat}) - result_sum << result3[0] - result_sqsum << result3[1] - result_tiled_sum << result3[2] - - result4 = mat0.integral(true, false) - assert_equal(Array, result4.class) - assert_equal(2, result4.size) - assert(result4.all? {|a| a.class == CvMat}) - result_sum << result4[0] - result_sqsum << result4[1] - - result5 = mat0.integral(false, true) - assert_equal(Array, result5.class) - assert_equal(2, result5.size) - assert(result5.all? {|a| a.class == CvMat}) - result_sum << result5[0] - result_tiled_sum << result5[1] - - (result_sum + result_sqsum + result_tiled_sum).each { |s| - assert_equal(mat0.height + 1, s.height) - assert_equal(mat0.width + 1, s.width) - assert_equal(:cv64f, s.depth) - assert_equal(1, s.channel) - } - - expected_sum = [0, 0, 0, 0, - 0, 0, 1, 3, - 0, 3, 8, 15, - 0, 9, 21, 36] - result_sum.each { |sum| - expected_sum.each_with_index { |x, i| - assert_in_delta(x, sum[i][0], 0.001) - } - } - - expected_sqsum = [0, 0, 0, 0, - 0, 0, 1, 5, - 0, 9, 26, 55, - 0, 45, 111, 204] - result_sqsum.each { |sqsum| - expected_sqsum.each_with_index { |x, i| - assert_in_delta(x, sqsum[i][0], 0.001) - } - } - - expected_tilted_sum = [0, 0, 0, 0, - 0, 0, 1, 2, - 0, 4, 7, 8, - 4, 16, 22, 20] - result_tiled_sum.each { |tiled_sum| - expected_tilted_sum.each_with_index { |x, i| - assert_in_delta(x, tiled_sum[i][0], 0.001) - } - } - - mat0.integral(DUMMY_OBJ, DUMMY_OBJ) - end - - def test_threshold - mat0 = create_cvmat(3, 3, :cv8u, 1) { |j, i, n| CvScalar.new(n) } - test_proc = lambda { |type, type_sym, expected_mat, expected_threshold| - mat1 = mat0.threshold(expected_threshold, 7, type) - mat2 = mat0.threshold(expected_threshold, 7, type_sym) - [mat1, mat2].each { |m| - expected_mat.each_with_index { |x, i| - assert_equal(x, m[i][0]) - } - } - } - - test_proc_with_otsu = lambda { |type, type_sym, expected_mat, expected_threshold| - mat3, th3 = mat0.threshold(5, 7, type | CV_THRESH_OTSU) - mat4, th4 = mat0.threshold(3, 7, type_sym, true) - mat5, th5 = mat0.threshold(5, 7, type | CV_THRESH_OTSU, true) - [mat3, mat4, mat5].each { |m| - expected_mat.each_with_index { |x, i| - assert_equal(x, m[i][0]) - } - } - [th3, th4, th5].each { |th| - assert_in_delta(expected_threshold, th, 0.001) - } - } - - # Binary - expected = [0, 0, 0, - 0, 0, 7, - 7, 7, 7] - test_proc.call(CV_THRESH_BINARY, :binary, expected, 4) - - expected = [0, 0, 0, - 0, 7, 7, - 7, 7, 7] - test_proc_with_otsu.call(CV_THRESH_BINARY, :binary, expected, 3) - - # Binary inverse - expected = [7, 7, 7, - 7, 7, 0, - 0, 0, 0] - test_proc.call(CV_THRESH_BINARY_INV, :binary_inv, expected, 4) - - expected = [7, 7, 7, - 7, 0, 0, - 0, 0, 0] - test_proc_with_otsu.call(CV_THRESH_BINARY_INV, :binary_inv, expected, 3) - - # Trunc - expected = [0, 1, 2, - 3, 4, 4, - 4, 4, 4] - test_proc.call(CV_THRESH_TRUNC, :trunc, expected, 4) - - expected = [0, 1, 2, - 3, 3, 3, - 3, 3, 3] - test_proc_with_otsu.call(CV_THRESH_TRUNC, :trunc, expected, 3) - - # To zero - expected = [0, 0, 0, - 0, 0, 5, - 6, 7, 8] - test_proc.call(CV_THRESH_TOZERO, :tozero, expected, 4) - - expected = [0, 0, 0, - 0, 4, 5, - 6, 7, 8] - test_proc_with_otsu.call(CV_THRESH_TOZERO, :tozero, expected, 3) - - # To zero inverse - expected = [0, 1, 2, - 3, 4, 0, - 0, 0, 0] - test_proc.call(CV_THRESH_TOZERO_INV, :tozero_inv, expected, 4) - - expected = [0, 1, 2, - 3, 0, 0, - 0, 0, 0] - test_proc_with_otsu.call(CV_THRESH_TOZERO_INV, :tozero_inv, expected, 3) - - assert_raise(TypeError) { - mat0.threshold(DUMMY_OBJ, 2, :binary) - } - assert_raise(TypeError) { - mat0.threshold(1, DUMMY_OBJ, :binary) - } - assert_raise(TypeError) { - mat0.threshold(1, 2, DUMMY_OBJ) - } - assert_raise(ArgumentError) { - mat0.threshold(1, 2, :dummy) - } - mat0.threshold(1, 2, :binary, DUMMY_OBJ) - end - - def test_adaptive_threshold - mat0 = create_cvmat(5, 5, :cv8u, 1) { |j, i, c| (c + 1) * 10 } - - mat1 = mat0.adaptive_threshold(128) - expected1 = [0, 0, 0, 0, 0, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128] - expected1.each_with_index { |expected, i| - assert_equal(expected, mat1[i][0]) - } - - mat2a = mat0.adaptive_threshold(255, :adaptive_method => :mean_c, - :threshold_type => :binary, :block_size => 5, - :param1 => 10) - mat2b = mat0.adaptive_threshold(255, :adaptive_method => CV_THRESH_BINARY, - :threshold_type => CV_ADAPTIVE_THRESH_MEAN_C, :block_size => 5, - :param1 => 10) - expected2 = [0, 0, 0, 0, 0, 0, 0, 0, 255, 255, 255, 255, 255, 255, 255] - [mat2a, mat2b].each { |mat2| - assert_equal(CvMat, mat2.class) - assert_equal(mat0.rows, mat2.rows) - assert_equal(mat0.cols, mat2.cols) - assert_equal(mat0.depth, mat2.depth) - assert_equal(mat0.channel, mat2.channel) - expected2.each_with_index { |expected, i| - assert_equal(expected, mat2[i][0]) - } - } - - - mat3a = mat0.adaptive_threshold(255, :adaptive_method => :gaussian_c, - :threshold_type => :binary_inv, :block_size => 5, - :param1 => 10) - mat3b = mat0.adaptive_threshold(255, :adaptive_method => CV_ADAPTIVE_THRESH_GAUSSIAN_C, - :threshold_type => CV_THRESH_BINARY_INV, :block_size => 5, - :param1 => 10) - expected3 = [255, 255, 255, 255, 255, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] - [mat3a, mat3b].each { |mat3| - assert_equal(CvMat, mat3.class) - assert_equal(mat0.rows, mat3.rows) - assert_equal(mat0.cols, mat3.cols) - assert_equal(mat0.depth, mat3.depth) - assert_equal(mat0.channel, mat3.channel) - expected3.each_with_index { |expected, i| - assert_equal(expected, mat3[i][0]) - } - } - - assert_raise(TypeError) { - mat0.adaptive_threshold(DUMMY_OBJ) - } - assert_raise(TypeError) { - mat0.adaptive_threshold(0, DUMMY_OBJ) - } - assert_raise(TypeError) { - mat0.adaptive_threshold(0, :adaptive_method => DUMMY_OBJ) - } - assert_raise(TypeError) { - mat0.adaptive_threshold(0, :threshold_type => DUMMY_OBJ) - } - assert_raise(TypeError) { - mat0.adaptive_threshold(0, :block_size => DUMMY_OBJ) - } - assert_raise(TypeError) { - mat0.adaptive_threshold(0, :param1 => DUMMY_OBJ) - } - end - - def test_pyr_down - mat0 = CvMat.load(FILENAME_LENA256x256, CV_LOAD_IMAGE_ANYCOLOR | CV_LOAD_IMAGE_ANYDEPTH) - mat1 = mat0.pyr_down - mat2 = mat0.pyr_down(:gaussian_5x5) - - assert_equal('de9ff2ffcf8e43f28564a201cf90b7f4', hash_img(mat1)) - assert_equal('de9ff2ffcf8e43f28564a201cf90b7f4', hash_img(mat2)) - - assert_raise(TypeError) { - mat0.pyr_down(DUMMY_OBJ) - } - end - - def test_pyr_up - mat0 = CvMat.load(FILENAME_LENA256x256, CV_LOAD_IMAGE_ANYCOLOR | CV_LOAD_IMAGE_ANYDEPTH) - mat1 = mat0.pyr_up - mat2 = mat0.pyr_up(:gaussian_5x5) - - [mat1, mat2].each { |mat| - assert_equal(mat0.cols * 2, mat.cols) - assert_equal(mat0.rows * 2, mat.rows) - assert_equal(mat0.depth, mat.depth) - assert_equal(mat0.channel, mat.channel) - b, g, r = color_hists(mat) - assert_in_delta(27500000, b, 1000000) - assert_in_delta(26000000, g, 1000000) - assert_in_delta(47000000, r, 1000000) - } - # Uncomment the following lines to show the result - # snap mat0, mat1, mat2 - - assert_raise(TypeError) { - mat0.pyr_up(DUMMY_OBJ) - } - end - - def test_flood_fill - mat0 = create_cvmat(128, 256, :cv8u, 1) { |j, i, c| - if (i >= 32 and i < 224) and (j >= 32 and j < 96) - CvScalar.new(255) - elsif (i >= 16 and i < 240) and (j >= 16 and j < 112) - CvScalar.new(192) - else - CvScalar.new(128) - end - } - - point = CvPoint.new(20, 20) - mat1, comp1, mask1 = mat0.flood_fill(point, 0) - mat2, comp2, mask2 = mat0.flood_fill(point, 0, CvScalar.new(64)) - mat3, comp3, mask3 = mat0.flood_fill(point, 0, CvScalar.new(0), CvScalar.new(64)) - mat4, comp4, mask4 = mat0.flood_fill(point, 0, CvScalar.new(0), CvScalar.new(64), - {:connectivity => 8, :fixed_range => true, :mask_only => true}) - mat05 = mat0.clone - mat5, comp5, mask5 = mat05.flood_fill!(point, 0, CvScalar.new(0), CvScalar.new(64), - {:connectivity => 8, :fixed_range => true, :mask_only => true}) - - assert_equal(9216.0, comp1.area) - assert_equal(16, comp1.rect.x) - assert_equal(16, comp1.rect.y) - assert_equal(224, comp1.rect.width) - assert_equal(96, comp1.rect.height) - assert_cvscalar_equal(CvScalar.new(0, 0, 0, 0), comp1.value) - - assert_equal(20480.0, comp2.area) - assert_equal(0, comp2.rect.x) - assert_equal(0, comp2.rect.y) - assert_equal(256, comp2.rect.width) - assert_equal(128, comp2.rect.height) - assert_cvscalar_equal(CvScalar.new(0, 0, 0, 0), comp2.value) - - assert_equal(21504.0, comp3.area) - assert_equal(16, comp3.rect.x) - assert_equal(16, comp3.rect.y) - assert_equal(224, comp3.rect.width) - assert_equal(96, comp3.rect.height) - assert_cvscalar_equal(CvScalar.new(0, 0, 0, 0), comp3.value) - - assert_equal(21504.0, comp4.area) - assert_equal(16, comp4.rect.x) - assert_equal(16, comp4.rect.y) - assert_equal(224, comp4.rect.width) - assert_equal(96, comp4.rect.height) - assert_cvscalar_equal(CvScalar.new(228, 0, 0, 0), comp4.value) - - assert_equal(21504.0, comp5.area) - assert_equal(16, comp5.rect.x) - assert_equal(16, comp5.rect.y) - assert_equal(224, comp5.rect.width) - assert_equal(96, comp5.rect.height) - assert_cvscalar_equal(CvScalar.new(228, 0, 0, 0), comp5.value) - - assert_raise(TypeError) { - mat0.flood_fill(DUMMY_OBJ, 0) - } - assert_raise(TypeError) { - mat0.flood_fill(point, DUMMY_OBJ) - } - assert_raise(TypeError) { - mat0.flood_fill(point, 0, DUMMY_OBJ) - } - assert_raise(TypeError) { - mat0.flood_fill(point, 0, CvScalar.new(0), DUMMY_OBJ) - } - assert_raise(TypeError) { - mat0.flood_fill(point, 0, CvScalar.new(0), CvScalar.new(64), DUMMY_OBJ) - } - end - - def test_find_contours - mat0 = CvMat.load(FILENAME_CONTOURS, CV_LOAD_IMAGE_GRAYSCALE) - - # Make binary image - mat0.height.times { |j| - mat0.width.times { |i| - mat0[j, i] = (mat0[j, i][0] < 128) ? CvColor::Black : CvColor::White - } - } - - [mat0.find_contours, mat0.find_contours(:mode => CV_RETR_LIST), - mat0.find_contours(:method => CV_CHAIN_APPROX_SIMPLE), - mat0.find_contours(:mode => CV_RETR_LIST, :method => CV_CHAIN_APPROX_SIMPLE)].each { |contours| - assert_not_nil(contours) - assert_equal(8, contours.total) - assert_not_nil(contours.h_next) - assert_equal(4, contours.h_next.total) - assert_not_nil(contours.h_next.h_next) - assert_equal(8, contours.h_next.h_next.total) - assert_not_nil(contours.h_next.h_next.h_next) - assert_equal(4, contours.h_next.h_next.h_next.total) - assert_nil(contours.v_next) - assert_nil(contours.h_next.v_next) - assert_nil(contours.h_next.h_next.v_next) - assert_nil(contours.h_next.h_next.h_next.v_next) - } - - contours = mat0.find_contours(:mode => CV_RETR_TREE) - assert_not_nil(contours) - assert_equal(4, contours.total) - assert_not_nil(contours.v_next) - assert_equal(8, contours.v_next.total) - assert_nil(contours.v_next.v_next) - assert_not_nil(contours.h_next) - assert_equal(4, contours.h_next.total) - assert_not_nil(contours.h_next.v_next) - assert_equal(8, contours.h_next.v_next.total) - assert_nil(contours.h_next.v_next.v_next) - - contours = mat0.find_contours(:mode => CV_RETR_CCOMP) - assert_not_nil(contours) - assert_equal(4, contours.total) - assert_not_nil(contours.v_next) - assert_equal(8, contours.v_next.total) - assert_nil(contours.v_next.v_next) - assert_not_nil(contours.h_next) - assert_equal(4, contours.h_next.total) - assert_not_nil(contours.h_next.v_next) - assert_equal(8, contours.h_next.v_next.total) - assert_nil(contours.h_next.v_next.v_next) - - contours = mat0.find_contours(:mode => CV_RETR_EXTERNAL) - assert_not_nil(contours) - assert_equal(4, contours.total) - assert_nil(contours.v_next) - assert_not_nil(contours.h_next) - assert_equal(4, contours.h_next.total) - assert_nil(contours.h_next.v_next) - - contours = mat0.find_contours(:mode => CV_RETR_TREE, :method => CV_CHAIN_APPROX_NONE) - assert_not_nil(contours) - assert_equal(474, contours.total) - assert_not_nil(contours.v_next) - assert_equal(318, contours.v_next.total) - assert_nil(contours.v_next.v_next) - assert_not_nil(contours.h_next) - assert_equal(396, contours.h_next.total) - assert_not_nil(contours.h_next.v_next) - assert_equal(240, contours.h_next.v_next.total) - assert_nil(contours.h_next.v_next.v_next) - - contours = mat0.find_contours(:mode => CV_RETR_EXTERNAL, :method => CV_CHAIN_CODE) - assert_equal(474, contours.total) - assert_equal(396, contours.h_next.total) - - contours = mat0.find_contours(:mode => CV_RETR_EXTERNAL, :method => CV_CHAIN_APPROX_TC89_L1) - assert_equal(4, contours.total) - assert_equal(4, contours.h_next.total) - - contours = mat0.find_contours(:mode => CV_RETR_EXTERNAL, :method => CV_CHAIN_APPROX_TC89_KCOS) - assert_equal(4, contours.total) - assert_equal(4, contours.h_next.total) - - assert_raise(TypeError) { - mat0.find_contours(DUMMY_OBJ) - } - assert_raise(CvStsUnsupportedFormat) { - CvMat.new(10, 10, :cv32f, 3).find_contours - } - end - - def test_pyr_mean_shift_filtering - mat0 = CvMat.load(FILENAME_LENA256x256, CV_LOAD_IMAGE_ANYCOLOR | CV_LOAD_IMAGE_ANYDEPTH) - mat1 = mat0.pyr_mean_shift_filtering(30, 30) - mat2 = mat0.pyr_mean_shift_filtering(30, 30, 2) - mat3 = mat0.pyr_mean_shift_filtering(30, 30, nil, CvTermCriteria.new(3, 0.01)) - - [mat1, mat2, mat3].each { |mat| - b, g, r = color_hists(mat) - assert_in_delta(6900000, b, 100000) - assert_in_delta(6500000, g, 100000) - assert_in_delta(11800000, r, 100000) - } - - assert_raise(TypeError) { - mat0.pyr_mean_shift_filtering(DUMMY_OBJ, 30) - } - assert_raise(TypeError) { - mat0.pyr_mean_shift_filtering(30, DUMMY_OBJ) - } - assert_raise(TypeError) { - mat0.pyr_mean_shift_filtering(30, 30, 2, DUMMY_OBJ) - } - end - - def test_watershed - mat0 = CvMat.load(FILENAME_LENA256x256, CV_LOAD_IMAGE_ANYCOLOR | CV_LOAD_IMAGE_ANYDEPTH) - marker = CvMat.new(mat0.cols, mat0.rows, :cv32s, 1).set_zero - marker[150, 150] = CvScalar.new(1, 1, 1, 1) - marker[210, 210] = CvScalar.new(2, 2, 2, 2) - marker[40, 90] = CvScalar.new(3, 3, 3, 3) - - mat1 = mat0.watershed(marker) - assert_equal('ee6bec03296039c8df1899d3edc4684e', hash_img(mat1)) - - assert_raise(TypeError) { - mat0.watershed(DUMMY_OBJ) - } - end - - def test_moments - mat = create_cvmat(128, 128, :cv8u, 1) { |j, i| - if j >= 32 and j < 96 and i >= 16 and i < 112 - CvScalar.new(0) - elsif j >= 16 and j < 112 and i >= 16 and i < 112 - CvScalar.new(128) - else - CvScalar.new(255) - end - } - - moments1 = mat.moments - moments2 = mat.moments(false) - moments3 = mat.moments(true) - - [moments1, moments2].each { |m| - assert_in_delta(2221056, m.spatial(0, 0), 0.1) - assert_in_delta(2221056, m.central(0, 0), 0.1) - assert_in_delta(1, m.normalized_central(0, 0), 0.1) - - hu_moments = m.hu - assert_equal(CvHuMoments, hu_moments.class) - assert_in_delta(0.001771, hu_moments.hu1, 0.000001) - hu_moments.to_a[1..7].each { |hu| - assert_in_delta(0.0, hu, 0.000001) - } - - center = m.gravity_center - assert_equal(CvPoint2D32f, center.class) - assert_in_delta(63.5, center.x, 0.001) - assert_in_delta(63.5, center.y, 0.001) - - assert_in_delta(0, m.angle, 0.001) - - assert_in_delta(2221056, m.m00, 0.001) - assert_in_delta(141037056, m.m10, 0.001) - assert_in_delta(141037056, m.m01, 0.001) - assert_in_delta(13157049856, m.m20, 0.001) - assert_in_delta(8955853056, m.m11, 0.001) - assert_in_delta(13492594176, m.m02, 0.001) - assert_in_delta(1369024659456, m.m30, 0.001) - assert_in_delta(835472665856, m.m21, 0.001) - assert_in_delta(856779730176, m.m12, 0.001) - assert_in_delta(1432945852416, m.m03, 0.001) - assert_in_delta(4201196800, m.mu20, 0.001) - assert_in_delta(0, m.mu11, 0.001) - assert_in_delta(4536741120, m.mu02, 0.001) - assert_in_delta(0, m.mu30, 0.001) - assert_in_delta(0, m.mu21, 0.001) - assert_in_delta(0, m.mu12, 0.001) - assert_in_delta(0, m.mu03, 0.001) - assert_in_delta(0.000671, m.inv_sqrt_m00, 0.000001) - } - - m = moments3 - assert_in_delta(10240, m.spatial(0, 0), 0.1) - assert_in_delta(10240, m.central(0, 0), 0.1) - assert_in_delta(1, m.normalized_central(0, 0), 0.1) - - hu_moments = m.hu - assert_equal(CvHuMoments, hu_moments.class) - assert_in_delta(0.361650, hu_moments.hu1, 0.000001) - assert_in_delta(0.000625, hu_moments.hu2, 0.000001) - hu_moments.to_a[2..7].each { |hu| - assert_in_delta(0.0, hu, 0.000001) - } - - center = m.gravity_center - assert_equal(CvPoint2D32f, center.class) - assert_in_delta(63.5, center.x, 0.001) - assert_in_delta(63.5, center.y, 0.001) - - assert_in_delta(0, m.angle, 0.001) - - assert_in_delta(10240, m.m00, 0.001) - assert_in_delta(650240, m.m10, 0.001) - assert_in_delta(650240, m.m01, 0.001) - assert_in_delta(58940416, m.m20, 0.001) - assert_in_delta(41290240, m.m11, 0.001) - assert_in_delta(61561856, m.m02, 0.001) - assert_in_delta(5984288768, m.m30, 0.001) - assert_in_delta(3742716416, m.m21, 0.001) - assert_in_delta(3909177856, m.m12, 0.001) - assert_in_delta(6483673088, m.m03, 0.001) - assert_in_delta(17650176, m.mu20, 0.001) - assert_in_delta(0, m.mu11, 0.001) - assert_in_delta(20271616, m.mu02, 0.001) - assert_in_delta(0, m.mu30, 0.001) - assert_in_delta(0, m.mu21, 0.001) - assert_in_delta(0, m.mu12, 0.001) - assert_in_delta(0, m.mu03, 0.001) - assert_in_delta(0.009882, m.inv_sqrt_m00, 0.000001) - end - - def test_hough_lines - mat0 = CvMat.load(FILENAME_LINES, CV_LOAD_IMAGE_ANYCOLOR | CV_LOAD_IMAGE_ANYDEPTH) - # make a binary image - mat = CvMat.new(mat0.rows, mat0.cols, :cv8u, 1) - (mat0.rows * mat0.cols).times { |i| - mat[i] = (mat0[i][0] <= 100) ? CvScalar.new(0) : CvScalar.new(255); - } - - [CV_HOUGH_STANDARD, :standard].each { |method| - seq = mat.hough_lines(method, 1, Math::PI / 180, 65) - assert_equal(4, seq.size) - } - - [CV_HOUGH_PROBABILISTIC, :probabilistic].each { |method| - seq = mat.hough_lines(method, 1, Math::PI / 180, 40, 30, 10) - assert_equal(4, seq.size) - } - - # [CV_HOUGH_MULTI_SCALE, :multi_scale].each { |method| - # seq = mat.hough_lines(method, 1, Math::PI / 180, 40, 2, 3) - # assert_equal(9, seq.size) - # } - - assert_raise(TypeError) { - mat.hough_lines(DUMMY_OBJ, 1, Math::PI / 180, 40, 2, 3) - } - assert_raise(TypeError) { - mat.hough_lines(CV_HOUGH_STANDARD, DUMMY_OBJ, Math::PI / 180, 40, 2, 3) - } - assert_raise(TypeError) { - mat.hough_lines(CV_HOUGH_STANDARD, 1, DUMMY_OBJ, 40, 2, 3) - } - assert_raise(TypeError) { - mat.hough_lines(CV_HOUGH_STANDARD, 1, Math::PI / 180, DUMMY_OBJ, 2, 3) - } - assert_raise(TypeError) { - mat.hough_lines(CV_HOUGH_STANDARD, 1, Math::PI / 180, 40, DUMMY_OBJ, 3) - } - assert_raise(TypeError) { - mat.hough_lines(CV_HOUGH_STANDARD, 1, Math::PI / 180, 40, 2, DUMMY_OBJ) - } - assert_raise(ArgumentError) { - mat.hough_lines(:dummy, 1, Math::PI / 180, 40, 2, DUMMY_OBJ) - } - assert_raise(CvStsBadArg) { - CvMat.new(10, 10, :cv32f, 3).hough_lines(:standard, 1, Math::PI / 180, 65) - } - end - - def test_hough_circles - mat0 = CvMat.load(FILENAME_LINES, CV_LOAD_IMAGE_ANYCOLOR | CV_LOAD_IMAGE_ANYDEPTH) - # make a binary image - mat = CvMat.new(mat0.rows, mat0.cols, :cv8u, 1) - (mat0.rows * mat0.cols).times { |i| - mat[i] = (mat0[i][0] <= 100) ? CvScalar.new(0) : CvScalar.new(255); - } - - [mat.hough_circles(CV_HOUGH_GRADIENT, 1.5, 40, 100, 40, 10, 50), - mat.hough_circles(:gradient, 1.5, 40, 100, 40, 10, 50), - mat.hough_circles(CV_HOUGH_GRADIENT, 1.5, 40, 100, 40), - mat.hough_circles(:gradient, 1.5, 40, 100, 40)].each { |seq| - assert_equal(2, seq.size) - } - - # Uncomment the following lines to show the result - # seq = mat.hough_circles(:gradient, 1.5, 40, 100, 40, 10, 50) - # seq.each { |circle| - # mat0.circle!(circle.center, circle.radius, :color => CvColor::Red, :thickness => 2) - # } - # snap mat0 - - assert_raise(TypeError) { - mat.hough_circles(DUMMY_OBJ, 1.5, 40, 100, 50, 10, 50) - } - assert_raise(TypeError) { - mat.hough_circles(CV_HOUGH_GRADIENT, DUMMY_OBJ, 40, 100, 50, 10, 50) - } - assert_raise(TypeError) { - mat.hough_circles(CV_HOUGH_GRADIENT, 1.5, DUMMY_OBJ, 100, 50, 10, 50) - } - assert_raise(TypeError) { - mat.hough_circles(CV_HOUGH_GRADIENT, 1.5, 40, DUMMY_OBJ, 50, 10, 50) - } - assert_raise(TypeError) { - mat.hough_circles(CV_HOUGH_GRADIENT, 1.5, 40, 100, DUMMY_OBJ, 10, 50) - } - assert_raise(TypeError) { - mat.hough_circles(CV_HOUGH_GRADIENT, 1.5, 40, 100, 50, DUMMY_OBJ, 50) - } - assert_raise(TypeError) { - mat.hough_circles(CV_HOUGH_GRADIENT, 1.5, 40, 100, 50, 10, DUMMY_OBJ) - } - assert_raise(ArgumentError) { - mat.hough_circles(:dummy, 1.5, 40, 100, 50, 10, DUMMY_OBJ) - } - assert_raise(CvStsBadArg) { - CvMat.new(10, 10, :cv32f, 3).hough_circles(:gradient, 1.5, 40, 100, 50, 10, 50) - } - end - - def test_inpaint - mat = CvMat.load(FILENAME_LENA_INPAINT, CV_LOAD_IMAGE_ANYCOLOR | CV_LOAD_IMAGE_ANYDEPTH) - mask = CvMat.load(FILENAME_INPAINT_MASK, CV_LOAD_IMAGE_GRAYSCALE) - - [CV_INPAINT_NS, :ns].each { |method| - result_ns = mat.inpaint(method, mask, 10) - assert_in_delta(14000, count_threshold(result_ns, 128), 1000) - } - [CV_INPAINT_TELEA, :telea].each { |method| - result_telea = mat.inpaint(method, mask, 10) - assert_in_delta(13500, count_threshold(result_telea, 128), 1000) - } - - # Uncomment the following lines to show the results - # result_ns = mat.inpaint(:ns, mask, 10) - # result_telea = mat.inpaint(:telea, mask, 10) - # snap mat, result_ns, result_telea - - assert_raise(TypeError) { - mat.inpaint(DUMMY_OBJ, mask, 10) - } - assert_raise(TypeError) { - mat.inpaint(:ns, DUMMY_OBJ, 10) - } - assert_raise(TypeError) { - mat.inpaint(:ns, mask, DUMMY_OBJ) - } - assert_raise(ArgumentError) { - mat.inpaint(:dummy, mask, 10) - } - assert_raise(CvStsUnsupportedFormat) { - CvMat.new(10, 10, :cv32f, 3).inpaint(:ns, CvMat.new(10, 10, :cv8u, 1), 10) - } - end - - def test_equalize_hist - mat = CvMat.load(FILENAME_LENA256x256, CV_LOAD_IMAGE_GRAYSCALE) - result = mat.equalize_hist - assert_equal(CvMat, result.class) - assert_equal(mat.rows, result.rows) - assert_equal(mat.cols, result.cols) - - assert_raise(CvStsAssert) { - CvMat.new(10, 10, :cv32f, 3).equalize_hist - } - - # Uncomment the following lines to show the result - # snap mat, result - end - - def test_match_template - mat = CvMat.load(FILENAME_LENA256x256, CV_LOAD_IMAGE_ANYCOLOR | CV_LOAD_IMAGE_ANYDEPTH) - templ = CvMat.load(FILENAME_LENA_EYES, CV_LOAD_IMAGE_ANYCOLOR | CV_LOAD_IMAGE_ANYDEPTH) - - expected_pt = CvPoint.new(100, 120) - - # sqdiff - result = mat.match_template(templ) - pt = result.min_max_loc[2] - assert_in_delta(expected_pt.x, pt.x, 20) - assert_in_delta(expected_pt.y, pt.y, 20) - - [CV_TM_SQDIFF, :sqdiff].each { |method| - result = mat.match_template(templ, method) - assert_in_delta(expected_pt.x, pt.x, 20) - assert_in_delta(expected_pt.y, pt.y, 20) - } - - # sqdiff_normed - [CV_TM_SQDIFF_NORMED, :sqdiff_normed].each { |method| - result = mat.match_template(templ, method) - pt = result.min_max_loc[2] - assert_in_delta(expected_pt.x, pt.x, 20) - assert_in_delta(expected_pt.y, pt.y, 20) - } - - # ccorr - [CV_TM_CCORR, :ccorr].each { |method| - result = mat.match_template(templ, method) - pt = result.min_max_loc[3] - assert_in_delta(110, pt.x, 20) - assert_in_delta(60, pt.y, 20) - } - - # ccorr_normed - [CV_TM_CCORR_NORMED, :ccorr_normed].each { |method| - result = mat.match_template(templ, method) - pt = result.min_max_loc[3] - assert_in_delta(expected_pt.x, pt.x, 20) - assert_in_delta(expected_pt.y, pt.y, 20) - } - - # ccoeff - [CV_TM_CCOEFF, :ccoeff].each { |method| - result = mat.match_template(templ, method) - pt = result.min_max_loc[3] - assert_in_delta(expected_pt.x, pt.x, 20) - assert_in_delta(expected_pt.y, pt.y, 20) - } - - # ccoeff_normed - [CV_TM_CCOEFF_NORMED, :ccoeff_normed].each { |method| - result = mat.match_template(templ, method) - pt = result.min_max_loc[3] - assert_in_delta(expected_pt.x, pt.x, 20) - assert_in_delta(expected_pt.y, pt.y, 20) - } - - # Uncomment the following lines to show the result - # result = mat.match_template(templ) - # pt1 = result.min_max_loc[2] # minimum location - # pt2 = CvPoint.new(pt1.x + templ.width, pt1.y + templ.height) - # mat.rectangle!(pt1, pt2, :color => CvColor::Black, :thickness => 3) - # snap mat, templ, result - - assert_raise(TypeError) { - mat.match_template(DUMMY_OBJ) - } - assert_raise(TypeError) { - mat.match_template(templ, DUMMY_OBJ) - } - end - - def test_match_shapes - mat_cv = CvMat.load(FILENAME_STR_CV, CV_LOAD_IMAGE_GRAYSCALE) - mat_ov = CvMat.load(FILENAME_STR_OV, CV_LOAD_IMAGE_GRAYSCALE) - mat_cv_rotated = CvMat.load(FILENAME_STR_CV_ROTATED, CV_LOAD_IMAGE_GRAYSCALE) - - [CV_CONTOURS_MATCH_I1, :i1].each { |method| - assert_in_delta(0, mat_cv.match_shapes(mat_cv_rotated, method), 0.00001) - assert_in_delta(0.0010649, mat_cv.match_shapes(mat_ov, method), 0.00001) - } - - [CV_CONTOURS_MATCH_I2, :i2].each { |method| - assert_in_delta(0, mat_cv.match_shapes(mat_cv_rotated, method), 0.00001) - assert_in_delta(0.0104650, mat_cv.match_shapes(mat_ov, method), 0.00001) - } - - [CV_CONTOURS_MATCH_I3, :i3].each { |method| - assert_in_delta(0, mat_cv.match_shapes(mat_cv_rotated, method), 0.00001) - assert_in_delta(0.0033327, mat_cv.match_shapes(mat_ov, method), 0.00001) - } - end - - def test_mean_shift - flunk('FIXME: CvMat#mean_shift is not tested yet.') - end - - def test_cam_shift - flunk('FIXME: CvMat#cam_shift is not tested yet.') - end - - def test_snake_image - radius = 40 - center = CvPoint.new(128, 128) - mat = CvMat.new(center.y * 2, center.x * 2, :cv8u, 1).zero! - mat.circle!(center, radius, :color => CvColor::White, :thickness => -1) - - num_points = 10 - alpha = 0.05 - beta = 0.05 - gamma = 0.9 - - arr_alpha = [alpha] * num_points - arr_beta = [beta] * num_points - arr_gamma = [gamma] * num_points - size = CvSize.new(3, 3) - term_criteria = CvTermCriteria.new(100, num_points / 2) - - # initialize contours - points = [] - num_points.times { |i| - x = center.x * Math.cos(2 * Math::PI * i / num_points) + center.x - y = center.y * Math.sin(2 * Math::PI * i / num_points) + center.y - points << CvPoint.new(x, y) - } - - acceptable_error = 50 - - # test snake_image - # calc_gradient = true - [mat.snake_image(points, alpha, beta, gamma, size, term_criteria), - mat.snake_image(points, alpha, beta, gamma, size, term_criteria, true), - mat.snake_image(points, arr_alpha, arr_beta, arr_gamma, size, term_criteria), - mat.snake_image(points, arr_alpha, arr_beta, arr_gamma, size, term_criteria, true)].each { |result| - assert_equal(num_points, result.size) - result.each { |pt| - x = pt.x - center.x - y = pt.y - center.y - error = Math.sqrt((x * x + y * y - radius * radius).abs) - assert(error < acceptable_error) - } - } - - # calc_gradient = false - [mat.snake_image(points, alpha, beta, gamma, size, term_criteria, false), - mat.snake_image(points, arr_alpha, arr_beta, arr_gamma, size, term_criteria, false)].each { |result| - expected_points = [[149, 102], [139, 144], [95, 144], [56, 124], [17, 105], - [25, 61], [63, 39], [101, 17], [145, 17], [158, 59]] - assert_equal(num_points, result.size) - result.each { |pt| - x = pt.x - center.x - y = pt.y - center.y - error = Math.sqrt((x * x + y * y - radius * radius).abs) - assert(error < acceptable_error) - } - } - - # raise error - assert_raise(TypeError) { - mat.snake_image(DUMMY_OBJ, arr_alpha, arr_beta, arr_gamma, size, term_criteria) - } - assert_raise(TypeError) { - mat.snake_image(points, DUMMY_OBJ, arr_beta, arr_gamma, size, term_criteria) - } - assert_raise(TypeError) { - mat.snake_image(points, arr_alpha, DUMMY_OBJ, arr_gamma, size, term_criteria) - } - assert_raise(TypeError) { - mat.snake_image(points, arr_alpha, arr_beta, DUMMY_OBJ, size, term_criteria) - } - assert_raise(TypeError) { - mat.snake_image(points, arr_alpha, arr_beta, arr_gamma, DUMMY_OBJ, term_criteria) - } - assert_raise(TypeError) { - mat.snake_image(points, arr_alpha, arr_beta, arr_gamma, size, DUMMY_OBJ) - } - mat.snake_image(points, arr_alpha, arr_beta, arr_gamma, size, term_criteria, DUMMY_OBJ) - - assert_raise(ArgumentError) { - mat.snake_image(points, arr_alpha[0 .. num_points / 2], arr_beta, arr_gamma, size, term_criteria) - } - assert_raise(CvBadNumChannels) { - CvMat.new(10, 10, :cv8u, 3).snake_image(points, alpha, beta, gamma, size, term_criteria) - } - - # Uncomment the following lines to show the result - # result = mat.clone.GRAY2BGR - # pts = mat.snake_image(points, alpha, beta, gamma, size, term_criteria) - # w = GUI::Window.new('HoughCircle') - # result.poly_line!([pts], :color => CvColor::Red, :is_closed => true, :thickness => 2) - # result.poly_line!([points], :color => CvColor::Yellow, :is_closed => true, :thickness => 2) - # w.show result - # GUI::wait_key - end - - def test_optical_flow_hs - size = 128 - prev = create_cvmat(size, size, :cv8u, 1) { |j, i| - if ((i - (size / 2)) ** 2 ) + ((j - (size / 2)) ** 2 ) < size - CvColor::Black - else - CvColor::White - end - } - curr = create_cvmat(size, size, :cv8u, 1) { |j, i| - if ((i - (size / 2) - 10) ** 2) + ((j - (size / 2) - 7) ** 2 ) < size - CvColor::Black - else - CvColor::White - end - } - - [curr.optical_flow_hs(prev, nil, nil, :lambda => 0.0005, :criteria => CvTermCriteria.new(1, 0.001)), - curr.optical_flow_hs(prev)].each { |velx, vely| - assert_in_delta(60, count_threshold(velx, 1), 20) - assert_in_delta(50, count_threshold(vely, 1), 20) - } - - velx, vely = curr.optical_flow_hs(prev, nil, nil, :lambda => 0.001) - assert_in_delta(60, count_threshold(velx, 1), 20) - assert_in_delta(50, count_threshold(vely, 1), 20) - - velx, vely = curr.optical_flow_hs(prev, nil, nil, :criteria => CvTermCriteria.new(10, 0.01)) - assert_in_delta(130, count_threshold(velx, 1), 20) - assert_in_delta(110, count_threshold(vely, 1), 20) - - prev_velx, prev_vely = curr.optical_flow_hs(prev) - velx, vely = curr.optical_flow_hs(prev, prev_velx, prev_vely) - assert_in_delta(70, count_threshold(velx, 1), 20) - assert_in_delta(60, count_threshold(vely, 1), 20) - - velx, vely = curr.optical_flow_hs(prev, prev_velx, prev_vely, :lambda => 0.001) - assert_in_delta(80, count_threshold(velx, 1), 20) - assert_in_delta(70, count_threshold(vely, 1), 20) - - velx, vely = curr.optical_flow_hs(prev, prev_velx, prev_vely, :criteria => CvTermCriteria.new(10, 0.01)) - assert_in_delta(150, count_threshold(velx, 1), 20) - assert_in_delta(130, count_threshold(vely, 1), 20) - - assert_raise(TypeError) { - curr.optical_flow_hs(DUMMY_OBJ) - } - assert_raise(TypeError) { - curr.optical_flow_hs(prev, DUMMY_OBJ, prev_vely) - } - assert_raise(TypeError) { - curr.optical_flow_hs(prev, prev_velx, DUMMY_OBJ) - } - assert_raise(TypeError) { - curr.optical_flow_hs(prev, prev_velx, prev_vely, DUMMY_OBJ) - } - assert_raise(CvStsUnmatchedFormats) { - CvMat.new(10, 10, :cv8u, 3).optical_flow_hs(prev) - } - end - - def test_optical_flow_lk - size = 128 - prev = create_cvmat(size, size, :cv8u, 1) { |j, i| - if ((i - (size / 2)) ** 2 ) + ((j - (size / 2)) ** 2 ) < size - CvColor::Black - else - CvColor::White - end - } - curr = create_cvmat(size, size, :cv8u, 1) { |j, i| - if ((i - (size / 2) - 10) ** 2) + ((j - (size / 2) - 7) ** 2 ) < size - CvColor::Black - else - CvColor::White - end - } - - velx, vely = curr.optical_flow_lk(prev, CvSize.new(3, 3)) - assert_in_delta(100, count_threshold(velx, 1), 20) - assert_in_delta(90, count_threshold(vely, 1), 20) - - velx, vely = curr.optical_flow_lk(prev, CvSize.new(5, 5)) - assert_in_delta(180, count_threshold(velx, 1), 20) - assert_in_delta(150, count_threshold(vely, 1), 20) - - assert_raise(TypeError) { - curr.optical_flow_lk(DUMMY_OBJ, CvSize.new(3, 3)) - } - assert_raise(TypeError) { - curr.optical_flow_lk(prev, DUMMY_OBJ) - } - assert_raise(CvStsUnmatchedFormats) { - CvMat.new(10, 10, :cv8u, 3).optical_flow_lk(prev, CvSize.new(3, 3)) - } - end - - def test_optical_flow_bm - size = 128 - prev = create_cvmat(size, size, :cv8u, 1) { |j, i| - if ((i - (size / 2)) ** 2 ) + ((j - (size / 2)) ** 2 ) < size - CvColor::Black - else - CvColor::White - end - } - curr = create_cvmat(size, size, :cv8u, 1) { |j, i| - if ((i - (size / 2) - 10) ** 2) + ((j - (size / 2) - 7) ** 2 ) < size - CvColor::Black - else - CvColor::White - end - } - - [curr.optical_flow_bm(prev, nil, nil, :block_size => CvSize.new(4, 4), - :shift_size => CvSize.new(1, 1), :max_range => CvSize.new(4, 4)), - curr.optical_flow_bm(prev)].each { |velx, vely| - assert_in_delta(350, count_threshold(velx, 1), 30) - assert_in_delta(250, count_threshold(vely, 1), 30) - } - - velx, vely = curr.optical_flow_bm(prev, nil, nil, :block_size => CvSize.new(3, 3)) - assert_in_delta(280, count_threshold(velx, 1), 30) - assert_in_delta(200, count_threshold(vely, 1), 30) - - velx, vely = curr.optical_flow_bm(prev, nil, nil, :shift_size => CvSize.new(2, 2)) - assert_in_delta(80, count_threshold(velx, 1), 30) - assert_in_delta(60, count_threshold(vely, 1), 30) - - velx, vely = curr.optical_flow_bm(prev, nil, nil, :max_range => CvSize.new(5, 5)) - assert_in_delta(400, count_threshold(velx, 1), 30) - assert_in_delta(300, count_threshold(vely, 1), 30) - - prev_velx, prev_vely = curr.optical_flow_bm(prev) - velx, vely = curr.optical_flow_bm(prev, prev_velx, prev_vely) - assert_in_delta(350, count_threshold(velx, 1), 30) - assert_in_delta(270, count_threshold(vely, 1), 30) - - assert_raise(TypeError) { - curr.optical_flow_bm(DUMMY_OBJ) - } - assert_raise(TypeError) { - curr.optical_flow_bm(prev, DUMMY_OBJ, prev_vely) - } - assert_raise(TypeError) { - curr.optical_flow_bm(prev, prev_velx, DUMMY_OBJ) - } - assert_raise(TypeError) { - curr.optical_flow_bm(prev, prev_velx, prev_vely, DUMMY_OBJ) - } - assert_raise(CvStsUnmatchedFormats) { - CvMat.new(10, 10, :cv8u, 3).optical_flow_bm(prev) - } - end - - def test_extract_surf - mat0 = CvMat.load(FILENAME_LENA256x256, CV_LOAD_IMAGE_GRAYSCALE) - - # simple - keypoints1, descriptors1 = mat0.extract_surf(CvSURFParams.new(500, true, 2, 3)) - assert_equal(CvSeq, keypoints1.class) - assert_equal(254, keypoints1.size) - assert_equal(Array, descriptors1.class) - assert_equal(254, descriptors1.size) - assert_equal(Array, descriptors1[0].class) - assert_equal(128, descriptors1[0].size) - - # use mask - mask = create_cvmat(mat0.rows, mat0.cols, :cv8u, 1) { |j, i| - if i < mat0.cols / 2 - CvScalar.new(1) - else - CvScalar.new(0) - end - } - keypoints2, descriptors2 = mat0.extract_surf(CvSURFParams.new(500, false), mask) - assert_equal(CvSeq, keypoints2.class) - assert_equal(170, keypoints2.size) - assert_equal(Array, descriptors2.class) - assert_equal(170, descriptors2.size) - assert_equal(Array, descriptors2[0].class) - assert_equal(64, descriptors2[0].size) - - # raise exceptions because of invalid arguments - assert_raise(TypeError) { - mat0.extract_surf(DUMMY_OBJ) - } - assert_raise(TypeError) { - mat0.extract_surf(CvSURFParams.new(500), DUMMY_OBJ) - } - - # Uncomment the following lines to show the result - # results = [] - # [keypoints1, keypoints2].each { |kpts| - # tmp = mat0.GRAY2BGR - # kpts.each { |kp| - # tmp.circle!(kp.pt, 3, :color => CvColor::Red, :thickness => 1, :line_type => :aa) - # } - # results << tmp - # } - # snap mat0, *results - end -end - diff --git a/test/test_cvmoments.rb b/test/test_cvmoments.rb deleted file mode 100755 index c5d3c76..0000000 --- a/test/test_cvmoments.rb +++ /dev/null @@ -1,180 +0,0 @@ -#!/usr/bin/env ruby -# -*- mode: ruby; coding: utf-8 -*- -require 'test/unit' -require 'opencv' -require File.expand_path(File.dirname(__FILE__)) + '/helper' - -include OpenCV - -# Tests for OpenCV::CvMoment -class TestCvMoments < OpenCVTestCase - def setup - @mat = create_cvmat(128, 128, :cv8u, 1) { |j, i| - if j >= 32 and j < 96 and i >= 16 and i < 112 - CvScalar.new(0) - elsif j >= 16 and j < 112 and i >= 16 and i < 112 - CvScalar.new(128) - else - CvScalar.new(255) - end - } - @moment1 = CvMoments.new - @moment2 = CvMoments.new(nil, true) - @moment3 = CvMoments.new(@mat) - @moment4 = CvMoments.new(@mat, true) - end - - def test_initialize - [@moment1, @moment2, @moment3, @moment4].each { |m| - assert_not_nil(m) - assert_equal(CvMoments, m.class) - } - - assert_raise(TypeError) { - CvMoments.new('foo') - } - end - - def test_spatial - assert_in_delta(0, @moment1.spatial(0, 0), 0.1) - assert_in_delta(0, @moment2.spatial(0, 0), 0.1) - assert_in_delta(2221056, @moment3.spatial(0, 0), 0.1) - assert_in_delta(10240, @moment4.spatial(0, 0), 0.1) - end - - def test_central - assert_in_delta(0, @moment1.central(0, 0), 0.1) - assert_in_delta(0, @moment2.central(0, 0), 0.1) - assert_in_delta(2221056, @moment3.central(0, 0), 0.1) - assert_in_delta(10240, @moment4.central(0, 0), 0.1) - end - - def test_normalized_central - assert_in_delta(0, @moment1.normalized_central(0, 0), 0.1) - assert_in_delta(0, @moment2.normalized_central(0, 0), 0.1) - assert_in_delta(1, @moment3.normalized_central(0, 0), 0.1) - assert_in_delta(1, @moment4.normalized_central(0, 0), 0.1) - end - - def test_hu - hu_moments = @moment1.hu - assert_equal(CvHuMoments, hu_moments.class) - hu_moments.to_a.each { |hu| - assert_in_delta(0.0, hu, 0.000001) - } - - hu_moments = @moment2.hu - assert_equal(CvHuMoments, hu_moments.class) - hu_moments.to_a.each { |hu| - assert_in_delta(0.0, hu, 0.000001) - } - - hu_moments = @moment3.hu - assert_equal(CvHuMoments, hu_moments.class) - assert_in_delta(0.001771, hu_moments.hu1, 0.000001) - hu_moments.to_a[1..7].each { |hu| - assert_in_delta(0.0, hu, 0.000001) - } - - hu_moments = @moment4.hu - assert_equal(CvHuMoments, hu_moments.class) - assert_in_delta(0.361650, hu_moments.hu1, 0.000001) - assert_in_delta(0.000625, hu_moments.hu2, 0.000001) - hu_moments.to_a[2..7].each { |hu| - assert_in_delta(0.0, hu, 0.000001) - } - end - - def test_gravity_center - center = @moment1.gravity_center - assert_equal(CvPoint2D32f, center.class) - assert(center.x.nan?) - assert(center.y.nan?) - - center = @moment2.gravity_center - assert_equal(CvPoint2D32f, center.class) - assert(center.x.nan?) - assert(center.y.nan?) - - center = @moment3.gravity_center - assert_equal(CvPoint2D32f, center.class) - assert_in_delta(63.5, center.x, 0.001) - assert_in_delta(63.5, center.y, 0.001) - - center = @moment4.gravity_center - assert_equal(CvPoint2D32f, center.class) - assert_in_delta(63.5, center.x, 0.001) - assert_in_delta(63.5, center.y, 0.001) - end - - def test_angle - [@moment1, @moment2].each { |m| - assert_nil(m.angle) - } - [@moment3, @moment4].each { |m| - assert_in_delta(0, m.angle, 0.001) - } - end - - def test_mXX - [@moment1, @moment2].each { |m| - assert_in_delta(0, m.m00, 0.001) - assert_in_delta(0, m.m10, 0.001) - assert_in_delta(0, m.m01, 0.001) - assert_in_delta(0, m.m20, 0.001) - assert_in_delta(0, m.m11, 0.001) - assert_in_delta(0, m.m02, 0.001) - assert_in_delta(0, m.m30, 0.001) - assert_in_delta(0, m.m21, 0.001) - assert_in_delta(0, m.m12, 0.001) - assert_in_delta(0, m.m03, 0.001) - assert_in_delta(0, m.mu20, 0.001) - assert_in_delta(0, m.mu11, 0.001) - assert_in_delta(0, m.mu02, 0.001) - assert_in_delta(0, m.mu30, 0.001) - assert_in_delta(0, m.mu21, 0.001) - assert_in_delta(0, m.mu12, 0.001) - assert_in_delta(0, m.mu03, 0.001) - assert_in_delta(0, m.inv_sqrt_m00, 0.001) - } - - assert_in_delta(2221056, @moment3.m00, 0.001) - assert_in_delta(141037056, @moment3.m10, 0.001) - assert_in_delta(141037056, @moment3.m01, 0.001) - assert_in_delta(13157049856, @moment3.m20, 0.001) - assert_in_delta(8955853056, @moment3.m11, 0.001) - assert_in_delta(13492594176, @moment3.m02, 0.001) - assert_in_delta(1369024659456, @moment3.m30, 0.001) - assert_in_delta(835472665856, @moment3.m21, 0.001) - assert_in_delta(856779730176, @moment3.m12, 0.001) - assert_in_delta(1432945852416, @moment3.m03, 0.001) - assert_in_delta(4201196800, @moment3.mu20, 0.001) - assert_in_delta(0, @moment3.mu11, 0.001) - assert_in_delta(4536741120, @moment3.mu02, 0.001) - assert_in_delta(0, @moment3.mu30, 0.001) - assert_in_delta(0, @moment3.mu21, 0.001) - assert_in_delta(0, @moment3.mu12, 0.001) - assert_in_delta(0, @moment3.mu03, 0.001) - assert_in_delta(0.000671, @moment3.inv_sqrt_m00, 0.000001) - - assert_in_delta(10240, @moment4.m00, 0.001) - assert_in_delta(650240, @moment4.m10, 0.001) - assert_in_delta(650240, @moment4.m01, 0.001) - assert_in_delta(58940416, @moment4.m20, 0.001) - assert_in_delta(41290240, @moment4.m11, 0.001) - assert_in_delta(61561856, @moment4.m02, 0.001) - assert_in_delta(5984288768, @moment4.m30, 0.001) - assert_in_delta(3742716416, @moment4.m21, 0.001) - assert_in_delta(3909177856, @moment4.m12, 0.001) - assert_in_delta(6483673088, @moment4.m03, 0.001) - assert_in_delta(17650176, @moment4.mu20, 0.001) - assert_in_delta(0, @moment4.mu11, 0.001) - assert_in_delta(20271616, @moment4.mu02, 0.001) - assert_in_delta(0, @moment4.mu30, 0.001) - assert_in_delta(0, @moment4.mu21, 0.001) - assert_in_delta(0, @moment4.mu12, 0.001) - assert_in_delta(0, @moment4.mu03, 0.001) - assert_in_delta(0.009882, @moment4.inv_sqrt_m00, 0.000001) - end -end - diff --git a/test/test_cvpoint.rb b/test/test_cvpoint.rb deleted file mode 100755 index 14a801c..0000000 --- a/test/test_cvpoint.rb +++ /dev/null @@ -1,75 +0,0 @@ -#!/usr/bin/env ruby -# -*- mode: ruby; coding: utf-8 -*- -require 'test/unit' -require 'opencv' -require File.expand_path(File.dirname(__FILE__)) + '/helper' - -include OpenCV - -# Tests for OpenCV::CvPoint -class TestCvPoint < OpenCVTestCase - class MyPoint; end - def test_x - point = CvPoint.new - point.x = 100 - assert_equal(100, point.x) - point.x = 200 - assert_equal(200, point.x) - end - - def test_y - point = CvPoint.new - point.y = 100 - assert_equal(100, point.y) - point.y = 200 - assert_equal(200, point.y) - end - - def test_compatible - assert(!(CvPoint.compatible? MyPoint.new)) - MyPoint.class_eval { def x; end } - assert(!(CvPoint.compatible? MyPoint.new)) - MyPoint.class_eval { def y; end } - assert(CvPoint.compatible? MyPoint.new) - assert(CvPoint.compatible? CvPoint.new) - end - - def test_initialize - point = CvPoint.new - assert_equal(0, point.x) - assert_equal(0, point.y) - - point = CvPoint.new(10, 20) - assert_equal(10, point.x) - assert_equal(20, point.y) - - point = CvPoint.new(CvPoint.new(10, 20)) - assert_equal(10, point.x) - assert_equal(20, point.y) - - assert_raise(TypeError) { - CvPoint.new(DUMMY_OBJ) - } - assert_raise(ArgumentError) { - CvPoint.new(1, 2, 3) - } - end - - def test_to_s - point = CvPoint.new(10, 20) - assert_equal('', point.to_s) - end - - def test_to_ary - a = CvPoint.new(10, 20).to_ary - assert_equal(10, a[0]) - assert_equal(20, a[1]) - - # Alias - a = CvPoint.new(10, 20).to_a - assert_equal(10, a[0]) - assert_equal(20, a[1]) - end -end - - diff --git a/test/test_cvpoint2d32f.rb b/test/test_cvpoint2d32f.rb deleted file mode 100755 index e78eb43..0000000 --- a/test/test_cvpoint2d32f.rb +++ /dev/null @@ -1,75 +0,0 @@ -#!/usr/bin/env ruby -# -*- mode: ruby; coding: utf-8 -*- -require 'test/unit' -require 'opencv' -require File.expand_path(File.dirname(__FILE__)) + '/helper' - -include OpenCV - -# Tests for OpenCV::CvPoint2D32f -class TestCvPoint2D32f < OpenCVTestCase - class MyPoint; end - def test_x - point = CvPoint2D32f.new - point.x = 1.1 - assert_in_delta(1.1, point.x, 0.001) - point.x = 2.2 - assert_in_delta(2.2, point.x, 0.001) - end - - def test_y - point = CvPoint2D32f.new - point.y = 1.1 - assert_in_delta(1.1, point.y, 0.001) - point.y = 2.2 - assert_in_delta(2.2, point.y, 0.001) - end - - def test_compatible - assert(!(CvPoint2D32f.compatible? MyPoint.new)) - MyPoint.class_eval { def x; end } - assert(!(CvPoint2D32f.compatible? MyPoint.new)) - MyPoint.class_eval { def y; end } - assert(CvPoint2D32f.compatible? MyPoint.new) - assert(CvPoint2D32f.compatible? CvPoint2D32f.new) - end - - def test_initialize - point = CvPoint2D32f.new - assert_in_delta(0, point.x, 0.001) - assert_in_delta(0, point.y, 0.001) - - point = CvPoint2D32f.new(1.1, 2.2) - assert_in_delta(1.1, point.x, 0.001) - assert_in_delta(2.2, point.y, 0.001) - - point = CvPoint2D32f.new(CvPoint2D32f.new(1.1, 2.2)) - assert_in_delta(1.1, point.x, 0.001) - assert_in_delta(2.2, point.y, 0.001) - - assert_raise(TypeError) { - CvPoint2D32f.new(DUMMY_OBJ) - } - assert_raise(ArgumentError) { - CvPoint2D32f.new(1, 2, 3) - } - end - - def test_to_s - point = CvPoint2D32f.new(1.1, 2.2) - assert_equal('', point.to_s) - end - - def test_to_ary - a = CvPoint2D32f.new(1.1, 2.2).to_ary - assert_in_delta(1.1, a[0], 0.001) - assert_in_delta(2.2, a[1], 0.001) - - # Alias - a = CvPoint2D32f.new(1.1, 2.2).to_a - assert_in_delta(1.1, a[0], 0.001) - assert_in_delta(2.2, a[1], 0.001) - end -end - - diff --git a/test/test_cvpoint3d32f.rb b/test/test_cvpoint3d32f.rb deleted file mode 100755 index 2d2e680..0000000 --- a/test/test_cvpoint3d32f.rb +++ /dev/null @@ -1,93 +0,0 @@ -#!/usr/bin/env ruby -# -*- mode: ruby; coding: utf-8 -*- -require 'test/unit' -require 'opencv' -require File.expand_path(File.dirname(__FILE__)) + '/helper' - -include OpenCV - -# Tests for OpenCV::CvPoint3D32f -class TestCvPoint3D32f < OpenCVTestCase - class MyPoint; end - def test_x - point = CvPoint3D32f.new - point.x = 1.1 - assert_in_delta(1.1, point.x, 0.001) - point.x = 2.2 - assert_in_delta(2.2, point.x, 0.001) - end - - def test_y - point = CvPoint3D32f.new - point.y = 1.1 - assert_in_delta(1.1, point.y, 0.001) - point.y = 2.2 - assert_in_delta(2.2, point.y, 0.001) - end - - def test_z - point = CvPoint3D32f.new - point.z = 1.1 - assert_in_delta(1.1, point.z, 0.001) - point.z = 2.2 - assert_in_delta(2.2, point.z, 0.001) - end - - def test_compatible - assert(!(CvPoint3D32f.compatible? MyPoint.new)) - MyPoint.class_eval { def x; end } - assert(!(CvPoint3D32f.compatible? MyPoint.new)) - MyPoint.class_eval { def y; end } - assert(!(CvPoint3D32f.compatible? MyPoint.new)) - MyPoint.class_eval { def z; end } - assert(CvPoint3D32f.compatible? MyPoint.new) - assert(CvPoint3D32f.compatible? CvPoint3D32f.new) - end - - def test_initialize - point = CvPoint3D32f.new - assert_in_delta(0, point.x, 0.001) - assert_in_delta(0, point.y, 0.001) - assert_in_delta(0, point.z, 0.001) - - point = CvPoint3D32f.new(1.1, 2.2, 3.3) - assert_in_delta(1.1, point.x, 0.001) - assert_in_delta(2.2, point.y, 0.001) - assert_in_delta(3.3, point.z, 0.001) - - point = CvPoint3D32f.new(CvPoint3D32f.new(1.1, 2.2, 3.3)) - assert_in_delta(1.1, point.x, 0.001) - assert_in_delta(2.2, point.y, 0.001) - assert_in_delta(3.3, point.z, 0.001) - - assert_raise(TypeError) { - CvPoint3D32f.new(DUMMY_OBJ) - } - assert_raise(ArgumentError) { - CvPoint3D32f.new(1, 2) - } - assert_raise(ArgumentError) { - CvPoint3D32f.new(1, 2, 3, 4) - } - end - - def test_to_s - point = CvPoint3D32f.new(1.1, 2.2, 3.3) - assert_equal('', point.to_s) - end - - def test_to_ary - a = CvPoint3D32f.new(1.1, 2.2, 3.3).to_ary - assert_in_delta(1.1, a[0], 0.001) - assert_in_delta(2.2, a[1], 0.001) - assert_in_delta(3.3, a[2], 0.001) - - # Alias - a = CvPoint3D32f.new(1.1, 2.2, 3.3).to_a - assert_in_delta(1.1, a[0], 0.001) - assert_in_delta(2.2, a[1], 0.001) - assert_in_delta(3.3, a[2], 0.001) - end -end - - diff --git a/test/test_cvrect.rb b/test/test_cvrect.rb deleted file mode 100755 index b144a2c..0000000 --- a/test/test_cvrect.rb +++ /dev/null @@ -1,144 +0,0 @@ -#!/usr/bin/env ruby -# -*- mode: ruby; coding: utf-8 -*- -require 'test/unit' -require 'opencv' -require File.expand_path(File.dirname(__FILE__)) + '/helper' - -include OpenCV - -# Tests for OpenCV::CvRect -class TestCvRect < OpenCVTestCase - class MyRect; end - - def test_x - rect = CvRect.new - rect.x = 100 - assert_equal(100, rect.x) - rect.x = 200 - assert_equal(200, rect.x) - end - - def test_y - rect = CvRect.new - rect.y = 100 - assert_equal(100, rect.y) - rect.y = 200 - assert_equal(200, rect.y) - end - - def test_width - rect = CvRect.new - rect.width = 100 - assert_equal(100, rect.width) - rect.width = 200 - assert_equal(200, rect.width) - end - - def test_height - rect = CvRect.new - rect.height = 100 - assert_equal(100, rect.height) - rect.height = 200 - assert_equal(200, rect.height) - end - - def test_compatible - assert(!(CvRect.compatible? MyRect.new)) - MyRect.class_eval { def x; end } - assert(!(CvRect.compatible? MyRect.new)) - MyRect.class_eval { def y; end } - assert(!(CvRect.compatible? MyRect.new)) - MyRect.class_eval { def width; end } - assert(!(CvRect.compatible? MyRect.new)) - MyRect.class_eval { def height; end } - assert(CvRect.compatible? MyRect.new) - assert(CvRect.compatible? CvRect.new) - end - - def test_initialize - rect = CvRect.new - assert_equal(0, rect.x) - assert_equal(0, rect.y) - assert_equal(0, rect.width) - assert_equal(0, rect.height) - - rect = CvRect.new(10, 20, 30, 40) - assert_equal(10, rect.x) - assert_equal(20, rect.y) - assert_equal(30, rect.width) - assert_equal(40, rect.height) - - rect = CvRect.new(CvRect.new(10, 20, 30, 40)) - assert_equal(10, rect.x) - assert_equal(20, rect.y) - assert_equal(30, rect.width) - assert_equal(40, rect.height) - - assert_raise(TypeError) { - CvRect.new(DUMMY_OBJ) - } - assert_raise(ArgumentError) { - CvRect.new(1, 2) - } - assert_raise(ArgumentError) { - CvRect.new(1, 2, 3) - } - assert_raise(ArgumentError) { - CvRect.new(1, 2, 3, 4, 5) - } - end - - def test_center - center = CvRect.new(10, 20, 35, 45).center - assert_in_delta(27.5, center.x, 0.01) - assert_in_delta(42.5, center.y, 0.01) - end - - def test_points - points = CvRect.new(10, 20, 35, 45).points - assert_equal(4, points.size) - assert_in_delta(10, points[0].x, 0.01) - assert_in_delta(20, points[0].y, 0.01) - assert_in_delta(10, points[1].x, 0.01) - assert_in_delta(65, points[1].y, 0.01) - assert_in_delta(45, points[2].x, 0.01) - assert_in_delta(65, points[2].y, 0.01) - assert_in_delta(45, points[3].x, 0.01) - assert_in_delta(20, points[3].y, 0.01) - end - - def test_top_left - tl = CvRect.new(10, 20, 35, 45).top_left - assert_equal(10, tl.x) - assert_equal(20, tl.y) - end - - def test_top_right - tr = CvRect.new(10, 20, 35, 45).top_right - assert_equal(45, tr.x) - assert_equal(20, tr.y) - end - - def test_bottom_left - bl = CvRect.new(10, 20, 35, 45).bottom_left - assert_equal(10, bl.x) - assert_equal(65, bl.y) - end - - def test_bottom_right - br = CvRect.new(10, 20, 35, 45).bottom_right - assert_equal(45, br.x) - assert_equal(65, br.y) - end - - def test_max_rect - rect1 = CvRect.new(10, 20, 30, 40) - rect2 = CvRect.new(30, 40, 70, 80) - rect3 = CvRect.max_rect(rect1, rect2) - assert_equal(10, rect3.x) - assert_equal(20, rect3.y) - assert_equal(90, rect3.width) - assert_equal(100, rect3.height) - end -end - diff --git a/test/test_cvscalar.rb b/test/test_cvscalar.rb deleted file mode 100755 index 2d72f86..0000000 --- a/test/test_cvscalar.rb +++ /dev/null @@ -1,113 +0,0 @@ -#!/usr/bin/env ruby -# -*- mode: ruby; coding: utf-8 -*- -require 'test/unit' -require 'opencv' -require File.expand_path(File.dirname(__FILE__)) + '/helper' - -include OpenCV - -# Tests for OpenCV::CvScalar -class TestCvScalar < OpenCVTestCase - def test_initialize - s = CvScalar.new - assert_in_delta([0, 0, 0, 0], s, 0.01) - - s = CvScalar.new(1.1) - assert_in_delta([1.1, 0, 0, 0], s, 0.01) - - s = CvScalar.new(1.1, 2.2) - assert_in_delta([1.1, 2.2, 0, 0], s, 0.01) - - s = CvScalar.new(1.1, 2.2, 3.3) - assert_in_delta([1.1, 2.2, 3.3, 0], s, 0.01) - - s = CvScalar.new(1.1, 2.2, 3.3, 4.4) - assert_in_delta([1.1, 2.2, 3.3, 4.4], s, 0.01) - end - - def test_aref - assert_in_delta([0, 0, 0, 0], CvScalar.new, 0.01) - assert_in_delta([10, 20, 30, 40], CvScalar.new(10, 20, 30, 40), 0.01) - assert_in_delta([0.1, 0.2, 0.3, 0.4], CvScalar.new(0.1, 0.2, 0.3, 0.4), 0.01) - end - - def test_aset - s = CvScalar.new - [10, 20, 30, 40].each_with_index { |x, i| - s[i] = x - } - assert_in_delta([10, 20, 30, 40], s, 0.01) - - s = CvScalar.new - [0.1, 0.2, 0.3, 0.4].each_with_index { |x, i| - s[i] = x - } - assert_in_delta([0.1, 0.2, 0.3, 0.4], s, 0.01) - end - - def test_sub - s1 = CvScalar.new(10, 20, 30, 40) - s2 = CvScalar.new(2, 4, 6, 8) - [s1.sub(s2), s1 - s2].each { |s| - assert_in_delta([8, 16, 24, 32], s, 0.01) - } - - s3 = CvScalar.new(0.2, 0.4, 0.6, 0.8) - [s2.sub(s3), s2 - s3].each { |s| - assert_in_delta([1.8, 3.6, 5.4, 7.2], s, 0.01) - } - - mat = CvMat.new(5, 5) - mask = CvMat.new(5, 5, :cv8u, 1) - mat.height.times { |j| - mat.width.times { |i| - mat[i, j] = CvScalar.new(1.5) - mask[i, j] = (i < 2 and j < 3) ? 1 : 0 - } - } - mat = CvScalar.new(0.1).sub(mat, mask) - - [CvMat.new(5, 5, :cv16u, 1), CvMat.new(5, 5, :cv8u, 3)].each { |msk| - assert_raise(TypeError) { - CvScalar.new.sub(mat, msk) - } - } - end - - def test_to_s - assert_equal("", CvScalar.new(10, 20, 30, 40).to_s) - assert_equal("", CvScalar.new(0.1, 0.2, 0.3, 0.4).to_s) - end - - def test_to_ary - [[10, 20, 30, 40], [0.1, 0.2, 0.3, 0.4]].each { |a| - s = CvScalar.new(*a) - b = s.to_ary - c = s.to_a # Alias - [b, c].each { |x| - assert_equal(Array, x.class) - assert_in_delta(a, x, 0.01) - } - } - end - - def test_cvcolor - assert_cvscalar_equal(CvColor::Black, CvScalar.new(0x0, 0x0, 0x0, 0)) - assert_cvscalar_equal(CvColor::Silver, CvScalar.new(0x0c, 0x0c, 0x0c, 0)) - assert_cvscalar_equal(CvColor::Gray, CvScalar.new(0x80, 0x80, 0x80, 0)) - assert_cvscalar_equal(CvColor::White, CvScalar.new(0xff, 0xff, 0xff, 0)) - assert_cvscalar_equal(CvColor::Maroon, CvScalar.new(0x0, 0x0, 0x80, 0)) - assert_cvscalar_equal(CvColor::Red, CvScalar.new(0x0, 0x0, 0xff, 0)) - assert_cvscalar_equal(CvColor::Purple, CvScalar.new(0x80, 0x0, 0x80, 0)) - assert_cvscalar_equal(CvColor::Fuchsia, CvScalar.new(0xff, 0x0, 0xff, 0)) - assert_cvscalar_equal(CvColor::Green, CvScalar.new(0x0, 0x80, 0x0, 0)) - assert_cvscalar_equal(CvColor::Lime, CvScalar.new(0x0, 0xff, 0x0, 0)) - assert_cvscalar_equal(CvColor::Olive, CvScalar.new(0x0, 0x80, 0x80, 0)) - assert_cvscalar_equal(CvColor::Yellow, CvScalar.new(0x0, 0xff, 0xff, 0)) - assert_cvscalar_equal(CvColor::Navy, CvScalar.new(0x80, 0x0, 0x0, 0)) - assert_cvscalar_equal(CvColor::Blue, CvScalar.new(0xff, 0x0, 0x0, 0)) - assert_cvscalar_equal(CvColor::Teal, CvScalar.new(0x80, 0x80, 0x0, 0)) - assert_cvscalar_equal(CvColor::Aqua, CvScalar.new(0xff, 0xff, 0x0, 0)) - end -end - diff --git a/test/test_cvseq.rb b/test/test_cvseq.rb deleted file mode 100755 index a984282..0000000 --- a/test/test_cvseq.rb +++ /dev/null @@ -1,311 +0,0 @@ -#!/usr/bin/env ruby -# -*- mode: ruby; coding: utf-8 -*- -require 'test/unit' -require 'opencv' -require File.expand_path(File.dirname(__FILE__)) + '/helper' - -include OpenCV - -# Tests for OpenCV::CvSeq -class TestCvSeq < OpenCVTestCase - def test_initialize - types = [CV_SEQ_ELTYPE_POINT, CV_SEQ_ELTYPE_POINT3D, CV_SEQ_ELTYPE_CODE, CV_SEQ_ELTYPE_INDEX] - kinds = [CV_SEQ_KIND_GENERIC, CV_SEQ_KIND_CURVE, CV_SEQ_KIND_BIN_TREE, CV_SEQ_KIND_GRAPH, CV_SEQ_KIND_SUBDIV2D] - flags = [CV_SEQ_FLAG_CLOSED, CV_SEQ_FLAG_SIMPLE, CV_SEQ_FLAG_CONVEX, CV_SEQ_FLAG_HOLE] - types.each { |type| - kinds.each { |kind| - flags.each { |flag| - seq_flag = type | kind | flag - assert_equal(CvSeq, CvSeq.new(seq_flag).class) - } - } - } - - [CV_SEQ_POINT_SET, CV_SEQ_POINT3D_SET, CV_SEQ_POLYLINE, CV_SEQ_POLYGON, - CV_SEQ_CONTOUR, CV_SEQ_SIMPLE_POLYGON, CV_SEQ_CHAIN, CV_SEQ_CHAIN_CONTOUR, - CV_SEQ_INDEX ].each { |seq_flag| - assert_equal(CvSeq, CvSeq.new(seq_flag).class) - } - - # Unsupported types - [CV_SEQ_ELTYPE_PTR, CV_SEQ_ELTYPE_PPOINT].each { |type| - assert_raise(ArgumentError) { - CvSeq.new(type) - } - } - end - - def test_total - seq1 = CvSeq.new(CV_SEQ_ELTYPE_POINT) - assert_equal(0, seq1.total) - - seq1.push(CvPoint.new(1, 2)) - assert_equal(1, seq1.total) - - seq1.push(CvPoint.new(3, 4)) - assert_equal(2, seq1.total) - # Alias - assert_equal(2, seq1.length) - assert_equal(2, seq1.size) - end - - def test_empty - assert(CvSeq.new(CV_SEQ_ELTYPE_POINT).empty?) - end - - def test_aref - seq1 = CvSeq.new(CV_SEQ_ELTYPE_POINT) - seq1.push(CvPoint.new(10, 20), CvPoint.new(30, 40), CvPoint.new(50, 60)) - - assert_equal(CvPoint, seq1[0].class) - assert_equal(10, seq1[0].x) - assert_equal(20, seq1[0].y) - assert_equal(30, seq1[1].x) - assert_equal(40, seq1[1].y) - assert_equal(50, seq1[2].x) - assert_equal(60, seq1[2].y) - - seq2 = CvSeq.new(CV_SEQ_ELTYPE_INDEX) - seq2.push(10, 20, 30) - assert_equal(Fixnum, seq2[0].class) - assert_equal(10, seq2[0]) - assert_equal(20, seq2[1]) - assert_equal(30, seq2[2]) - end - - def test_push - seq1 = CvSeq.new(CV_SEQ_ELTYPE_POINT).push(CvPoint.new(10, 20), CvPoint.new(30, 40)) - - assert_equal(2, seq1.total) - assert_equal(CvPoint, seq1[0].class) - assert_equal(10, seq1[0].x) - assert_equal(20, seq1[0].y) - assert_equal(CvPoint, seq1[1].class) - assert_equal(30, seq1[1].x) - assert_equal(40, seq1[1].y) - - seq2 = CvSeq.new(CV_SEQ_ELTYPE_POINT).push(CvPoint.new(50, 60)) - seq2.push(seq1) - assert_equal(3, seq2.total) - assert_equal(CvPoint, seq2[0].class) - assert_equal(50, seq2[0].x) - assert_equal(60, seq2[0].y) - assert_equal(CvPoint, seq2[1].class) - assert_equal(10, seq2[1].x) - assert_equal(20, seq2[1].y) - assert_equal(CvPoint, seq2[2].class) - assert_equal(30, seq2[2].x) - assert_equal(40, seq2[2].y) - - seq3 = CvSeq.new(CV_SEQ_ELTYPE_INDEX).push(10) - seq4 = CvSeq.new(CV_SEQ_ELTYPE_INDEX).push(20, 30) - seq3.push(seq4) - assert_equal(3, seq3.total) - assert_equal(Fixnum, seq3[0].class) - assert_equal(10, seq3[0]) - assert_equal(20, seq3[1]) - assert_equal(30, seq3[2]) - - assert_raise(TypeError) { - seq1.push(55.5, 66.6) - } - - assert_raise(TypeError) { - seq3 = CvSeq.new(CV_SEQ_ELTYPE_INDEX).push(55, 66) - seq1.push(seq3) - } - end - - def test_pop - seq1 = CvSeq.new(CV_SEQ_ELTYPE_POINT).push(CvPoint.new(10, 20), CvPoint.new(30, 40)) - point1 = seq1.pop - assert_equal(CvPoint, point1.class) - assert_equal(30, point1.x) - assert_equal(40, point1.y) - - assert_equal(1, seq1.total) - assert_equal(CvPoint, seq1[0].class) - assert_equal(10, seq1[0].x) - assert_equal(20, seq1[0].y) - - assert_nil(CvSeq.new(CV_SEQ_ELTYPE_POINT).pop) - - seq2 = CvSeq.new(CV_SEQ_ELTYPE_INDEX).push(10, 20, 30) - assert_equal(30, seq2.pop) - assert_equal(20, seq2.pop) - assert_equal(10, seq2.pop) - end - - def test_clear - seq1 = CvSeq.new(CV_SEQ_ELTYPE_POINT).push(CvPoint.new(10, 20), CvPoint.new(30, 40)) - seq1.clear - assert_not_nil(seq1) - assert_equal(0, seq1.total) - end - - def test_unshift - seq1 = CvSeq.new(CV_SEQ_ELTYPE_POINT).unshift(CvPoint.new(10, 20), CvPoint.new(30, 40)) - - assert_equal(2, seq1.total) - assert_equal(CvPoint, seq1[0].class) - assert_equal(30, seq1[0].x) - assert_equal(40, seq1[0].y) - assert_equal(CvPoint, seq1[1].class) - assert_equal(10, seq1[1].x) - assert_equal(20, seq1[1].y) - - seq2 = CvSeq.new(CV_SEQ_ELTYPE_POINT).unshift(CvPoint.new(50, 60)) - seq2.unshift(seq1) - assert_equal(3, seq2.total) - assert_equal(CvPoint, seq1[0].class) - assert_equal(30, seq1[0].x) - assert_equal(40, seq1[0].y) - assert_equal(CvPoint, seq1[1].class) - assert_equal(10, seq1[1].x) - assert_equal(20, seq1[1].y) - assert_equal(CvPoint, seq2[2].class) - assert_equal(50, seq2[2].x) - assert_equal(60, seq2[2].y) - - seq3 = CvSeq.new(CV_SEQ_ELTYPE_INDEX).unshift(10, 20, 30) - assert_equal(3, seq3.total) - assert_equal(30, seq3[0]) - assert_equal(20, seq3[1]) - assert_equal(10, seq3[2]) - - assert_raise(TypeError) { - seq1.unshift(10) - } - - assert_raise(TypeError) { - seq3 = CvSeq.new(CV_SEQ_ELTYPE_INDEX).push(10, 20, 30) - seq1.unshift(seq3) - } - end - - def test_shift - seq1 = CvSeq.new(CV_SEQ_ELTYPE_POINT).push(CvPoint.new(10, 20), CvPoint.new(30, 40)) - point1 = seq1.shift - assert_equal(CvPoint, point1.class) - assert_equal(10, point1.x) - assert_equal(20, point1.y) - - assert_equal(1, seq1.total) - assert_equal(CvPoint, seq1[0].class) - assert_equal(30, seq1[0].x) - assert_equal(40, seq1[0].y) - - seq2 = CvSeq.new(CV_SEQ_ELTYPE_INDEX).push(10, 20, 30) - assert_equal(10, seq2.shift) - assert_equal(20, seq2.shift) - assert_equal(30, seq2.shift) - - assert_nil(CvSeq.new(CV_SEQ_ELTYPE_POINT).shift) - end - - def test_first - seq1 = CvSeq.new(CV_SEQ_ELTYPE_POINT).push(CvPoint.new(10, 20), CvPoint.new(30, 40), CvPoint.new(50, 60)) - point1 = seq1.first - assert_equal(CvPoint, point1.class) - assert_equal(10, point1.x) - assert_equal(20, point1.y) - - seq2 = CvSeq.new(CV_SEQ_ELTYPE_INDEX).push(10, 20, 30) - assert_equal(10, seq2.first) - end - - def test_last - seq1 = CvSeq.new(CV_SEQ_ELTYPE_POINT).push(CvPoint.new(10, 20), CvPoint.new(30, 40), CvPoint.new(50, 60)) - point1 = seq1.last - assert_equal(CvPoint, point1.class) - assert_equal(50, point1.x) - assert_equal(60, point1.y) - - seq2 = CvSeq.new(CV_SEQ_ELTYPE_INDEX).push(10, 20, 30) - assert_equal(30, seq2.last) - end - - def test_each - seq1 = CvSeq.new(CV_SEQ_ELTYPE_POINT).push(CvPoint.new(10, 20), CvPoint.new(30, 40), CvPoint.new(50, 60)) - i = 0 - seq1.each { |s| - assert_equal(CvPoint, s.class) - assert_equal(seq1[i].x, s.x) - assert_equal(seq1[i].y, s.y) - i += 1 - } - assert_equal(3, i) - - seq2 = CvSeq.new(CV_SEQ_ELTYPE_INDEX).push(10, 20, 30) - i = 0 - seq2.each { |s| - assert_equal(seq2[i], s) - i += 1 - } - assert_equal(3, i) - end - - def test_each_index - seq1 = CvSeq.new(CV_SEQ_ELTYPE_POINT).push(CvPoint.new(10, 20), CvPoint.new(30, 40), CvPoint.new(50, 60)) - n = 0 - seq1.each_index { |i| - assert_equal(n, i) - n += 1 - } - assert_equal(3, n) - end - - def test_insert - seq1 = CvSeq.new(CV_SEQ_ELTYPE_POINT).push(CvPoint.new(10, 20), CvPoint.new(30, 40)) - seq1.insert(1, CvPoint.new(50, 60)) - assert_equal(3, seq1.total) - assert_equal(CvPoint, seq1[0].class) - assert_equal(10, seq1[0].x) - assert_equal(20, seq1[0].y) - assert_equal(CvPoint, seq1[1].class) - assert_equal(50, seq1[1].x) - assert_equal(60, seq1[1].y) - assert_equal(CvPoint, seq1[2].class) - assert_equal(30, seq1[2].x) - assert_equal(40, seq1[2].y) - - seq2 = CvSeq.new(CV_SEQ_ELTYPE_INDEX).push(10, 20) - seq2.insert(1, 15) - assert_equal(3, seq2.total) - assert_equal(10, seq2[0]) - assert_equal(15, seq2[1]) - assert_equal(20, seq2[2]) - end - - def test_remove - seq1 = CvSeq.new(CV_SEQ_ELTYPE_POINT).push(CvPoint.new(10, 20), CvPoint.new(30, 40), CvPoint.new(50, 60)) - - seq1.remove(1) - assert_equal(2, seq1.total) - assert_equal(CvPoint, seq1[0].class) - assert_equal(10, seq1[0].x) - assert_equal(20, seq1[0].y) - assert_equal(CvPoint, seq1[1].class) - assert_equal(50, seq1[1].x) - assert_equal(60, seq1[1].y) - end - - # These methods are tested in TestCvMat_imageprocessing#test_find_contours - # (test_cvmat_imageprocessing.rb) - # def test_h_prev - # flunk('FIXME: CvSeq#h_prev is not tested yet.') - # end - - # def test_h_next - # flunk('FIXME: CvSeq#h_next is not tested yet.') - # end - - # def test_v_prev - # flunk('FIXME: CvSeq#v_prev is not tested yet.') - # end - - # def test_v_next - # flunk('FIXME: CvSeq#v_next is not tested yet.') - # end -end - diff --git a/test/test_cvsize.rb b/test/test_cvsize.rb deleted file mode 100755 index d3be266..0000000 --- a/test/test_cvsize.rb +++ /dev/null @@ -1,75 +0,0 @@ -#!/usr/bin/env ruby -# -*- mode: ruby; coding: utf-8 -*- -require 'test/unit' -require 'opencv' -require File.expand_path(File.dirname(__FILE__)) + '/helper' - -include OpenCV - -# Tests for OpenCV::CvSize -class TestCvSize < OpenCVTestCase - class MySize; end - - def test_width - size = CvSize.new - size.width = 100 - assert_equal(100, size.width) - size.width = 200 - assert_equal(200, size.width) - end - - def test_height - size = CvSize.new - size.height = 100 - assert_equal(100, size.height) - size.height = 200 - assert_equal(200, size.height) - end - - def test_compatible - assert(!(CvSize.compatible? MySize.new)) - MySize.class_eval { def width; end } - assert(!(CvSize.compatible? MySize.new)) - MySize.class_eval { def height; end } - assert(CvSize.compatible? MySize.new) - assert(CvSize.compatible? CvSize.new) - end - - def test_initialize - size = CvSize.new - assert_equal(0, size.width) - assert_equal(0, size.height) - - size = CvSize.new(10, 20) - assert_equal(10, size.width) - assert_equal(20, size.height) - - size = CvSize.new(CvSize.new(10, 20)) - assert_equal(10, size.width) - assert_equal(20, size.height) - - assert_raise(TypeError) { - CvSize.new(DUMMY_OBJ) - } - assert_raise(ArgumentError) { - CvSize.new(1, 2, 3) - } - end - - def test_to_s - size = CvSize.new(10, 20) - assert_equal('', size.to_s) - end - - def test_to_ary - a = CvSize.new(10, 20).to_ary - assert_equal(10, a[0]) - assert_equal(20, a[1]) - - # Alias - a = CvSize.new(10, 20).to_a - assert_equal(10, a[0]) - assert_equal(20, a[1]) - end -end - diff --git a/test/test_cvsize2d32f.rb b/test/test_cvsize2d32f.rb deleted file mode 100755 index b0b3852..0000000 --- a/test/test_cvsize2d32f.rb +++ /dev/null @@ -1,75 +0,0 @@ -#!/usr/bin/env ruby -# -*- mode: ruby; coding: utf-8 -*- -require 'test/unit' -require 'opencv' -require File.expand_path(File.dirname(__FILE__)) + '/helper' - -include OpenCV - -# Tests for OpenCV::CvSize2D32f -class TestCvSize2D32f < OpenCVTestCase - class MySize; end - - def test_width - size = CvSize2D32f.new - size.width = 1.1 - assert_in_delta(1.1, size.width, 0.001) - size.width = 2.2 - assert_in_delta(2.2, size.width, 0.001) - end - - def test_height - size = CvSize2D32f.new - size.height = 1.1 - assert_in_delta(1.1, size.height, 0.001) - size.height = 2.2 - assert_in_delta(2.2, size.height, 0.001) - end - - def test_compatible - assert(!(CvSize2D32f.compatible? MySize.new)) - MySize.class_eval { def width; end } - assert(!(CvSize2D32f.compatible? MySize.new)) - MySize.class_eval { def height; end } - assert(CvSize2D32f.compatible? MySize.new) - assert(CvSize2D32f.compatible? CvSize2D32f.new) - end - - def test_initialize - size = CvSize2D32f.new - assert_in_delta(0, size.width, 0.001) - assert_in_delta(0, size.height, 0.001) - - size = CvSize2D32f.new(1.1, 2.2) - assert_in_delta(1.1, size.width, 0.001) - assert_in_delta(2.2, size.height, 0.001) - - size = CvSize2D32f.new(CvSize2D32f.new(1.1, 2.2)) - assert_in_delta(1.1, size.width, 0.001) - assert_in_delta(2.2, size.height, 0.001) - - assert_raise(TypeError) { - CvSize2D32f.new(DUMMY_OBJ) - } - assert_raise(ArgumentError) { - CvSize2D32f.new(1, 2, 3) - } - end - - def test_to_s - size = CvSize2D32f.new(1.1, 2.2) - assert_equal('', size.to_s) - end - - def test_to_ary - a = CvSize2D32f.new(1.1, 2.2).to_ary - assert_in_delta(1.1, a[0], 0.001) - assert_in_delta(2.2, a[1], 0.001) - - # Alias - a = CvSize2D32f.new(1.1, 2.2).to_a - assert_in_delta(1.1, a[0], 0.001) - assert_in_delta(2.2, a[1], 0.001) - end -end - diff --git a/test/test_cvslice.rb b/test/test_cvslice.rb deleted file mode 100755 index 1429756..0000000 --- a/test/test_cvslice.rb +++ /dev/null @@ -1,31 +0,0 @@ -#!/usr/bin/env ruby -# -*- mode: ruby; coding: utf-8 -*- -require 'test/unit' -require 'opencv' -require File.expand_path(File.dirname(__FILE__)) + '/helper' - -include OpenCV - -# Tests for OpenCV::CvSlice -class TestCvSlice < OpenCVTestCase - def setup - @slice = CvSlice.new(2, 4) - end - - def test_initialize - assert_equal(CvSlice, @slice.class) - end - - def test_start_index - assert_equal(2, @slice.start_index) - @slice.start_index = 3 - assert_equal(3, @slice.start_index) - end - - def test_end_index - assert_equal(4, @slice.end_index) - @slice.end_index = 5 - assert_equal(5, @slice.end_index) - end -end - diff --git a/test/test_cvsurfparams.rb b/test/test_cvsurfparams.rb deleted file mode 100755 index 945b28d..0000000 --- a/test/test_cvsurfparams.rb +++ /dev/null @@ -1,57 +0,0 @@ -#!/usr/bin/env ruby -# -*- mode: ruby; coding: utf-8 -*- -require 'test/unit' -require 'opencv' -require File.expand_path(File.dirname(__FILE__)) + '/helper' - -include OpenCV - -# Tests for OpenCV::CvSURFParams -class TestCvSURFParams < OpenCVTestCase - def setup - @surf_param1 = CvSURFParams.new(345.6) - end - - def test_initialize - sp1 = CvSURFParams.new(345.6) - assert_equal(false, sp1.extended) - assert_in_delta(345.6, sp1.hessian_threshold, 0.001) - assert_equal(3, sp1.n_octaves) - assert_equal(4, sp1.n_octave_layers) - - sp2 = CvSURFParams.new(456.7, true, 4, 5) - assert_equal(true, sp2.extended) - assert_in_delta(456.7, sp2.hessian_threshold, 0.001) - assert_equal(4, sp2.n_octaves) - assert_equal(5, sp2.n_octave_layers) - end - - def test_extended - assert_equal(false, @surf_param1.extended) - - @surf_param1.extended = true - assert_equal(true, @surf_param1.extended) - end - - def test_hessian_threshold - assert_in_delta(345.6, @surf_param1.hessian_threshold, 0.001) - - @surf_param1.hessian_threshold = 456.7 - assert_in_delta(456.7, @surf_param1.hessian_threshold, 0.001) - end - - def test_n_octaves - assert_equal(3, @surf_param1.n_octaves) - - @surf_param1.n_octaves = 4 - assert_equal(4, @surf_param1.n_octaves) - end - - def test_n_octave_layers - assert_equal(4, @surf_param1.n_octave_layers) - - @surf_param1.n_octave_layers = 5 - assert_equal(5, @surf_param1.n_octave_layers) - end -end - diff --git a/test/test_cvsurfpoint.rb b/test/test_cvsurfpoint.rb deleted file mode 100755 index c1fb6c7..0000000 --- a/test/test_cvsurfpoint.rb +++ /dev/null @@ -1,66 +0,0 @@ -#!/usr/bin/env ruby -# -*- mode: ruby; coding: utf-8 -*- -require 'test/unit' -require 'opencv' -require File.expand_path(File.dirname(__FILE__)) + '/helper' - -include OpenCV - -# Tests for OpenCV::CvSURFPoint -class TestCvSURFPoint < OpenCVTestCase - def setup - @surf_point1 = CvSURFPoint.new(CvPoint2D32f.new(0, 0), 0, 0, 0, 0) - end - - def test_initialize - sp1 = CvSURFPoint.new(CvPoint2D32f.new(1.1, 2.2), 1, 10, 12.3, 45.6) - assert_in_delta(1.1, sp1.pt.x, 0.001) - assert_in_delta(2.2, sp1.pt.y, 0.001) - assert_equal(1, sp1.laplacian) - assert_equal(10, sp1.size) - assert_in_delta(12.3, sp1.dir, 0.001) - assert_in_delta(45.6, sp1.hessian, 0.001) - end - - def test_pt - assert_in_delta(0, @surf_point1.pt.x, 0.001) - assert_in_delta(0, @surf_point1.pt.y, 0.001) - - @surf_point1.pt = CvPoint2D32f.new(12.3, 45.6) - assert_in_delta(12.3, @surf_point1.pt.x, 0.001) - assert_in_delta(45.6, @surf_point1.pt.y, 0.001) - - assert_raise(TypeError) { - @surf_point1.pt = DUMMY_OBJ - } - end - - def test_laplacian - assert_equal(0, @surf_point1.laplacian) - - @surf_point1.laplacian = -1 - assert_equal(-1, @surf_point1.laplacian) - end - - def test_size - assert_equal(0, @surf_point1.size) - - @surf_point1.size = 10 - assert_equal(10, @surf_point1.size) - end - - def test_dir - assert_in_delta(0, @surf_point1.dir, 0.001) - - @surf_point1.dir = 23.4 - assert_in_delta(23.4, @surf_point1.dir, 0.001) - end - - def test_hessian - assert_in_delta(0, @surf_point1.hessian, 0.001) - - @surf_point1.hessian = 2.1 - assert_in_delta(2.1, @surf_point1.hessian, 0.001) - end -end - diff --git a/test/test_cvtermcriteria.rb b/test/test_cvtermcriteria.rb deleted file mode 100755 index b8cb1e3..0000000 --- a/test/test_cvtermcriteria.rb +++ /dev/null @@ -1,56 +0,0 @@ -#!/usr/bin/env ruby -# -*- mode: ruby; coding: utf-8 -*- -require 'test/unit' -require 'opencv' -require File.expand_path(File.dirname(__FILE__)) + '/helper' - -include OpenCV - -# Tests for OpenCV::CvTermCriteria -class TestCvTermCriteria < OpenCVTestCase - def setup - @criteria1 = CvTermCriteria.new - @criteria2 = CvTermCriteria.new(100) - @criteria3 = CvTermCriteria.new(nil, 0.01) - @criteria4 = CvTermCriteria.new(100, 0.01) - end - - def test_initialize - assert_not_nil(@criteria1) - assert_equal(CvTermCriteria, @criteria1.class) - assert_not_nil(@criteria2) - assert_equal(CvTermCriteria, @criteria2.class) - assert_not_nil(@criteria3) - assert_equal(CvTermCriteria, @criteria3.class) - assert_not_nil(@criteria4) - assert_equal(CvTermCriteria, @criteria4.class) - end - - def test_type - assert_equal(0, @criteria1.type) - assert_equal(CV_TERMCRIT_ITER, @criteria2.type) - assert_equal(CV_TERMCRIT_EPS, @criteria3.type) - assert_equal(CV_TERMCRIT_ITER | CV_TERMCRIT_EPS, @criteria4.type) - end - - def test_max - assert_nil(@criteria1.max) - assert_equal(100, @criteria2.max) - assert_nil(@criteria3.max) - assert_equal(100, @criteria4.max) - - @criteria1.max = 999 - assert_equal(999, @criteria1.max) - end - - def test_eps - assert_nil(@criteria1.eps) - assert_nil(@criteria2.eps) - assert_in_delta(0.01, @criteria3.eps, 0.001) - assert_in_delta(0.01, @criteria4.eps, 0.001) - - @criteria1.eps = 3.14 - assert_in_delta(3.14, @criteria1.eps, 0.001) - end -end - diff --git a/test/test_cvtwopoints.rb b/test/test_cvtwopoints.rb deleted file mode 100755 index 654b402..0000000 --- a/test/test_cvtwopoints.rb +++ /dev/null @@ -1,40 +0,0 @@ -#!/usr/bin/env ruby -# -*- mode: ruby; coding: utf-8 -*- -require 'test/unit' -require 'opencv' -require File.expand_path(File.dirname(__FILE__)) + '/helper' - -include OpenCV - -# Tests for OpenCV::CvTwoPoints -class TestCvTwoPoints < OpenCVTestCase - def setup - @twopoints = CvTwoPoints.new - end - - def test_initialize - assert_not_nil(@twopoints) - assert_equal(CvTwoPoints, @twopoints.class) - end - - def test_point - assert_not_nil(@twopoints.point1) - assert_not_nil(@twopoints.point2) - assert_equal(CvPoint, @twopoints.point1.class) - assert_equal(CvPoint, @twopoints.point2.class) - end - - def test_aref - assert_not_nil(@twopoints[0]) - assert_not_nil(@twopoints[1]) - assert_equal(CvPoint, @twopoints[0].class) - assert_equal(CvPoint, @twopoints[1].class) - end - - def test_to_ary - assert_equal(Array, @twopoints.to_ary.class) - assert_equal(2, @twopoints.to_ary.size) - assert_equal(2, @twopoints.to_a.size) - end -end - diff --git a/test/test_cvvideowriter.rb b/test/test_cvvideowriter.rb deleted file mode 100755 index c79fbcc..0000000 --- a/test/test_cvvideowriter.rb +++ /dev/null @@ -1,58 +0,0 @@ -#!/usr/bin/env ruby -# -*- mode: ruby; coding: utf-8 -*- -require 'test/unit' -require 'opencv' -require File.expand_path(File.dirname(__FILE__)) + '/helper' - -include OpenCV - -# Tests for OpenCV::CvVideoWriter -class TestCvVideoWriter < OpenCVTestCase - OUTPUT_FILENAME = 'videowriter_result.avi' - - def test_initialize - vw = CvVideoWriter.new(OUTPUT_FILENAME, 'MJPG', 15, CvSize.new(320, 240)) - assert_equal(CvVideoWriter, vw.class) - vw.close - - vw = CvVideoWriter.new(OUTPUT_FILENAME, 'MJPG', 15, CvSize.new(320, 240), false) - assert_equal(CvVideoWriter, vw.class) - vw.close - - ## Supported only Windows(?) - # vw = CvVideoWriter.new(OUTPUT_FILENAME, nil, 15, CvSize.new(320, 240), false) - # assert_equal(CvVideoWriter, vw.class) - # vw.close - - CvVideoWriter.new(OUTPUT_FILENAME, 'MJPG', 15, CvSize.new(320, 240)) { |vw| - assert_equal(CvVideoWriter, vw.class) - } - - assert_raise(TypeError) { - vw = CvVideoWriter.new(123, 'MJPG', 15, CvSize.new(320, 240), false) - } - end - - def test_write - img = IplImage.load(FILENAME_LENA256x256) - vw = CvVideoWriter.new(OUTPUT_FILENAME, 'MJPG', 15, CvSize.new(256, 256)) - vw.write img - vw.close - - CvVideoWriter.new(OUTPUT_FILENAME, 'MJPG', 15, CvSize.new(256, 256)) { |vw| - vw.write img - } - - assert_raise(TypeError) { - CvVideoWriter.new(OUTPUT_FILENAME, 'MJPG', 15, CvSize.new(256, 256)) { |vw| - vw.write DUMMY_OBJ - } - } - end - - def test_close - vw = CvVideoWriter.new(OUTPUT_FILENAME, 'MJPG', 15, CvSize.new(320, 240)) - vw.close - end -end - diff --git a/test/test_eigenfaces.rb b/test/test_eigenfaces.rb deleted file mode 100755 index 3552cc2..0000000 --- a/test/test_eigenfaces.rb +++ /dev/null @@ -1,93 +0,0 @@ -#!/usr/bin/env ruby -# -*- mode: ruby; coding: utf-8-unix -*- -require 'test/unit' -require 'opencv' -require 'date' -require File.expand_path(File.dirname(__FILE__)) + '/helper' - -include OpenCV - -# Tests for OpenCV::EigenFaces -class TestEigenFaces < OpenCVTestCase - def setup - @eigenfaces = EigenFaces.new - - @eigenfaces_trained = EigenFaces.new - @images = [CvMat.load(FILENAME_LENA256x256, CV_LOAD_IMAGE_GRAYSCALE)] * 2 - @labels = [1, 2] - @eigenfaces_trained.train(@images, @labels) - end - - def test_initialize - [EigenFaces.new, EigenFaces.new(1), EigenFaces.new(1, 99999)].each { |ef| - assert_equal(EigenFaces, ef.class) - } - - assert_raise(TypeError) { - EigenFaces.new(DUMMY_OBJ) - } - - assert_raise(TypeError) { - EigenFaces.new(1, DUMMY_OBJ) - } - end - - def test_train - assert_nil(@eigenfaces.train(@images, @labels)) - - assert_raise(TypeError) { - @eigenfaces.train(DUMMY_OBJ, @labels) - } - - assert_raise(TypeError) { - @eigenfaces.train(@images, DUMMY_OBJ) - } - end - - def test_predict - predicted_label, predicted_confidence = @eigenfaces_trained.predict(@images[0]) - assert_equal(@labels[0], predicted_label) - assert_in_delta(0.0, predicted_confidence, 0.01) - - assert_raise(TypeError) { - @eigenfaces_trained.predict(DUMMY_OBJ) - } - end - - def test_save - filename = "eigenfaces_save-#{DateTime.now.strftime('%Y%m%d%H%M%S')}.xml" - begin - @eigenfaces_trained.save(filename) - assert(File.exist? filename) - ensure - File.delete filename - end - assert_raise(TypeError) { - @eigenfaces_trained.save(DUMMY_OBJ) - } - end - - def test_load - assert_nothing_raised { - @eigenfaces_trained.load('eigenfaces_save.xml') - } - assert_raise(TypeError) { - @eigenfaces_trained.load(DUMMY_OBJ) - } - end - - def test_name - assert_equal('FaceRecognizer.Eigenfaces', @eigenfaces.name) - end - - def test_get_mat - mat = @eigenfaces_trained.get_mat('eigenvalues') - assert_not_nil(mat) - assert_equal(CvMat, mat.class) - - assert_raise(TypeError) { - @eigenfaces_trained.get_mat(DUMMY_OBJ) - } - end -end - diff --git a/test/test_fisherfaces.rb b/test/test_fisherfaces.rb deleted file mode 100755 index 298bfdd..0000000 --- a/test/test_fisherfaces.rb +++ /dev/null @@ -1,93 +0,0 @@ -#!/usr/bin/env ruby -# -*- mode: ruby; coding: utf-8-unix -*- -require 'test/unit' -require 'opencv' -require 'date' -require File.expand_path(File.dirname(__FILE__)) + '/helper' - -include OpenCV - -# Tests for OpenCV::FisherFaces -class TestFisherFaces < OpenCVTestCase - def setup - @fisherfaces = FisherFaces.new - - @fisherfaces_trained = FisherFaces.new - @images = [CvMat.load(FILENAME_LENA256x256, CV_LOAD_IMAGE_GRAYSCALE)] * 2 - @labels = [1, 2] - @fisherfaces_trained.train(@images, @labels) - end - - def test_initialize - [FisherFaces.new, FisherFaces.new(1), FisherFaces.new(1, 99999)].each { |ff| - assert_equal(FisherFaces, ff.class) - } - - assert_raise(TypeError) { - FisherFaces.new(DUMMY_OBJ) - } - - assert_raise(TypeError) { - FisherFaces.new(1, DUMMY_OBJ) - } - end - - def test_train - assert_nil(@fisherfaces.train(@images, @labels)) - - assert_raise(TypeError) { - @fisherfaces.train(DUMMY_OBJ, @labels) - } - - assert_raise(TypeError) { - @fisherfaces.train(@images, DUMMY_OBJ) - } - end - - def test_predict - predicted_label, predicted_confidence = @fisherfaces_trained.predict(@images[0]) - assert_equal(@labels[0], predicted_label) - assert_in_delta(0.0, predicted_confidence, 0.01) - - assert_raise(TypeError) { - @fisherfaces_trained.predict(DUMMY_OBJ) - } - end - - def test_save - filename = "fisherfaces_save-#{DateTime.now.strftime('%Y%m%d%H%M%S')}.xml" - begin - @fisherfaces_trained.save(filename) - assert(File.exist? filename) - ensure - File.delete filename - end - assert_raise(TypeError) { - @fisherfaces_trained.save(DUMMY_OBJ) - } - end - - def test_load - assert_nothing_raised { - @fisherfaces.load('fisherfaces_save.xml') - } - assert_raise(TypeError) { - @fisherfaces.load(DUMMY_OBJ) - } - end - - def test_name - assert_equal('FaceRecognizer.Fisherfaces', @fisherfaces.name) - end - - def test_get_mat - mat = @fisherfaces_trained.get_mat('eigenvalues') - assert_not_nil(mat) - assert_equal(CvMat, mat.class) - - assert_raise(TypeError) { - @fisherfaces_trained.get_mat(DUMMY_OBJ) - } - end -end - diff --git a/test/test_iplconvkernel.rb b/test/test_iplconvkernel.rb deleted file mode 100755 index 2e97c71..0000000 --- a/test/test_iplconvkernel.rb +++ /dev/null @@ -1,54 +0,0 @@ -#!/usr/bin/env ruby -# -*- mode: ruby; coding: utf-8 -*- -require 'test/unit' -require 'opencv' -require File.expand_path(File.dirname(__FILE__)) + '/helper' - -include OpenCV - -# Tests for OpenCV::IplConvKernel -class TestIplConvKernel < OpenCVTestCase - def test_initialize - [:rect, :cross, :ellipse, CV_SHAPE_RECT, CV_SHAPE_CROSS, CV_SHAPE_ELLIPSE].each { |shape| - kernel = IplConvKernel.new(5, 5, 2, 2, shape) - assert_not_nil(kernel) - } - - values = [1] * 25 - [:custom, CV_SHAPE_CUSTOM].each { |shape| - kernel = IplConvKernel.new(5, 5, 2, 2, shape, values) - assert_not_nil(kernel) - } - - [:custom, CV_SHAPE_CUSTOM].each { |shape| - assert_raise(ArgumentError) { - IplConvKernel.new(5, 5, 2, 2, shape) - } - } - - assert_raise(TypeError) { - IplConvKernel.new(5, 5, 2, 2, :foobar) - } - end - - def test_size - kernel = IplConvKernel.new(5, 4, 2, 2, :rect) - size = kernel.size - assert_equal(5, size.width) - assert_equal(4, size.height) - - assert_equal(5, kernel.cols) - assert_equal(4, kernel.rows) - end - - def test_anchor - kernel = IplConvKernel.new(5, 4, 3, 2, :rect) - a = kernel.anchor - assert_equal(3, a.x) - assert_equal(2, a.y) - - assert_equal(3, kernel.anchor_x) - assert_equal(2, kernel.anchor_y) - end -end - diff --git a/test/test_iplimage.rb b/test/test_iplimage.rb deleted file mode 100755 index c1f9f66..0000000 --- a/test/test_iplimage.rb +++ /dev/null @@ -1,232 +0,0 @@ -#!/usr/bin/env ruby -# -*- mode: ruby; coding: utf-8 -*- -require 'test/unit' -require 'opencv' -require File.expand_path(File.dirname(__FILE__)) + '/helper' - -include OpenCV - -# Tests for OpenCV::IplImage -class TestIplImage < OpenCVTestCase - def should_classify_images_as(filename, classification) - assert_equal(OpenCV::IplImage::load(filename, OpenCV::CV_LOAD_IMAGE_GRAYSCALE).smoothness[0], classification) - end - - def test_initialize - img = IplImage.new(10, 20) - assert_equal(10, img.width) - assert_equal(20, img.height) - assert_equal(:cv8u, img.depth) - assert_equal(3, img.channel) - - img = IplImage.new(30, 40, :cv32f, 1) - assert_equal(30, img.width) - assert_equal(40, img.height) - assert_equal(:cv32f, img.depth) - assert_equal(1, img.channel) - end - - def test_load - img1 = IplImage.load(FILENAME_CAT) - assert_equal(IplImage, img1.class) - assert_equal(375, img1.width) - assert_equal(500, img1.height) - assert_equal(:cv8u, img1.depth) - assert_equal(3, img1.channel) - - img2 = IplImage.load(FILENAME_CAT, CV_LOAD_IMAGE_GRAYSCALE) - assert_equal(IplImage, img2.class) - assert_equal(375, img2.width) - assert_equal(500, img2.height) - assert_equal(:cv8u, img2.depth) - assert_equal(1, img2.channel) - - img3 = IplImage.load(FILENAME_CAT, CV_LOAD_IMAGE_ANYDEPTH | CV_LOAD_IMAGE_ANYCOLOR) - assert_equal(IplImage, img3.class) - assert_equal(375, img3.width) - assert_equal(500, img3.height) - assert_equal(:cv8u, img3.depth) - assert_equal(3, img3.channel) - - assert_raise(ArgumentError) { - IplImage.load - } - assert_raise(TypeError) { - IplImage.load(123) - } - assert_raise(TypeError) { - IplImage.load(FILENAME_CAT, 'foobar') - } - assert_raise(StandardError) { - IplImage.load('file/does/not/exist') - } - - # Uncomment the following lines to show the results - # snap img1, img2, img3 - end - - def test_decode - data = nil - open(FILENAME_CAT, 'rb') { |f| - data = f.read - } - data_ary = data.unpack("c*") - data_mat = CvMat.new(1, data_ary.size).set_data(data_ary) - expected = IplImage.load(FILENAME_CAT) - - img1 = IplImage.decode(data) - img2 = IplImage.decode(data_ary) - img3 = IplImage.decode(data_mat) - img4 = IplImage.decode(data, CV_LOAD_IMAGE_COLOR) - img5 = IplImage.decode(data_ary, CV_LOAD_IMAGE_COLOR) - img6 = IplImage.decode(data_mat, CV_LOAD_IMAGE_COLOR) - - [img1, img2, img3, img4, img5, img6].each { |img| - assert_equal(IplImage, img.class) - assert_equal(expected.rows, img.rows) - assert_equal(expected.cols, img.cols) - assert_equal(expected.channel, img.channel) - } - - expected_c1 = IplImage.load(FILENAME_CAT, CV_LOAD_IMAGE_GRAYSCALE) - img1c1 = IplImage.decode(data, CV_LOAD_IMAGE_GRAYSCALE) - img2c1 = IplImage.decode(data_ary, CV_LOAD_IMAGE_GRAYSCALE) - img3c1 = IplImage.decode(data_mat, CV_LOAD_IMAGE_GRAYSCALE) - - [img1c1, img2c1, img3c1].each { |img| - assert_equal(IplImage, img.class) - assert_equal(expected_c1.rows, img.rows) - assert_equal(expected_c1.cols, img.cols) - assert_equal(expected_c1.channel, img.channel) - } - - assert_raise(TypeError) { - IplImage.decode(DUMMY_OBJ) - } - assert_raise(TypeError) { - IplImage.decode(data, DUMMY_OBJ) - } - - # Uncomment the following line to show the result images - # snap img1, img2, img3 - end - - def test_roi - img = IplImage.new(20, 30) - rect = img.roi - assert_equal(0, rect.x) - assert_equal(0, rect.y) - assert_equal(img.width, rect.width) - assert_equal(img.height, rect.height) - - img.set_roi(CvRect.new(2, 3, 10, 20)) - rect = img.roi - assert_equal(2, rect.x) - assert_equal(3, rect.y) - assert_equal(10, rect.width) - assert_equal(20, rect.height) - - img.reset_roi - rect = img.roi - assert_equal(0, rect.x) - assert_equal(0, rect.y) - assert_equal(img.width, rect.width) - assert_equal(img.height, rect.height) - - img.set_roi(CvRect.new(1, 2, 5, 6)) {|image| - rect = image.roi - assert_equal(1, rect.x) - assert_equal(2, rect.y) - assert_equal(5, rect.width) - assert_equal(6, rect.height) - } - rect = img.roi - assert_equal(0, rect.x) - assert_equal(0, rect.y) - assert_equal(img.width, rect.width) - assert_equal(img.height, rect.height) - - # Alias - img.roi = CvRect.new(4, 5, 11, 12) - rect = img.roi - assert_equal(4, rect.x) - assert_equal(5, rect.y) - assert_equal(11, rect.width) - assert_equal(12, rect.height) - end - - def test_coi - img = IplImage.new(20, 30) - assert_equal(0, img.coi) - - img.set_coi(1) - assert_equal(1, img.coi) - - img.reset_coi - assert_equal(0, img.coi) - - img.set_coi(2) {|image| - assert_equal(2, image.coi) - } - assert_equal(0, img.coi) - - # Alias - img.coi = 1 - assert_equal(1, img.coi) - end - - def test_smoothness - asset_path = File.join(File.dirname(__FILE__), 'samples') - - for image in Array.new(7) { |e| e = File.join(asset_path, "smooth%d.jpg") % e } do - should_classify_images_as image, :smooth - end - - for image in Array.new(2) { |e| e = File.join(asset_path, "messy%d.jpg") % e } do - should_classify_images_as image, :messy - end - - for image in Array.new(10) { |e| e = File.join(asset_path, "blank%d.jpg") % e } do - should_classify_images_as image, :blank - end - - for image in Array.new(2) { |e| e = File.join(asset_path, "partially_blank%d.jpg") % e } do - should_classify_images_as image, :blank - end - end - - def test_pyr_segmentation - img0 = IplImage.load(FILENAME_CAT, CV_LOAD_IMAGE_ANYCOLOR | CV_LOAD_IMAGE_ANYDEPTH) - img0.set_roi(CvRect.new(0, 0, 256, 512)) - img1, seq1 = img0.pyr_segmentation(2, 255, 50) - assert_equal('963b26f51b14f175fbbf128e9b9e979f', hash_img(img1)) - assert_equal(11, seq1.total) - - assert_raise(CvStsAssert) { - img0.pyr_segmentation(-1, 255, 50) - } - assert_raise(CvStsAssert) { - img0.pyr_segmentation(1000, 255, 50) - } - assert_raise(CvStsAssert) { - img0.pyr_segmentation(4, -1, 50) - } - assert_raise(CvStsAssert) { - img0.pyr_segmentation(4, 255, -1) - } - assert_raise(TypeError) { - img0.pyr_segmentation(DUMMY_OBJ, 255, 50) - } - assert_raise(TypeError) { - img0.pyr_segmentation(4, DUMMY_OBJ, 50) - } - assert_raise(TypeError) { - img0.pyr_segmentation(4, 255, DUMMY_OBJ) - } - assert_raise(CvBadDepth) { - IplImage.new(10, 10, :cv32f, 2).pyr_segmentation(4, 255, 50) - } - end -end - - diff --git a/test/test_lbph.rb b/test/test_lbph.rb deleted file mode 100755 index f2b53db..0000000 --- a/test/test_lbph.rb +++ /dev/null @@ -1,166 +0,0 @@ -#!/usr/bin/env ruby -# -*- mode: ruby; coding: utf-8-unix -*- -require 'test/unit' -require 'opencv' -require 'date' -require File.expand_path(File.dirname(__FILE__)) + '/helper' - -include OpenCV - -# Tests for OpenCV::LBPH -class TestLBPH < OpenCVTestCase - def setup - @lbph = LBPH.new - - @lbph_trained = LBPH.new - @lbph_update = LBPH.new - @images = [CvMat.load(FILENAME_LENA256x256, CV_LOAD_IMAGE_GRAYSCALE)] * 2 - @labels = [1, 2] - @lbph_trained.train(@images, @labels) - end - - def test_initialize - [LBPH.new, LBPH.new(1), LBPH.new(1, 2, 3, 4, 5.0)].each { |lbph| - assert_equal(LBPH, lbph.class) - } - - assert_raise(TypeError) { - LBPH.new(DUMMY_OBJ) - } - assert_raise(TypeError) { - LBPH.new(1, DUMMY_OBJ) - } - assert_raise(TypeError) { - LBPH.new(1, 2, DUMMY_OBJ) - } - assert_raise(TypeError) { - LBPH.new(1, 2, 3, DUMMY_OBJ) - } - assert_raise(TypeError) { - LBPH.new(1, 2, 3, 4, DUMMY_OBJ) - } - end - - def test_train - assert_nil(@lbph.train(@images, @labels)) - - assert_raise(TypeError) { - @lbph.train(DUMMY_OBJ, @labels) - } - - assert_raise(TypeError) { - @lbph.train(@images, DUMMY_OBJ) - } - end - - def test_update - assert_nil(@lbph_update.train([@images[0]], [@labels[0]])) - assert_nil(@lbph_update.update([@images[1]], [@labels[1]])) - - assert_raise(TypeError) { - @lbph_update.update(DUMMY_OBJ, @labels) - } - - assert_raise(TypeError) { - @lbph_update.update(@images, DUMMY_OBJ) - } - end - - def test_predict - predicted_label, predicted_confidence = @lbph_trained.predict(@images[0]) - assert_equal(@labels[0], predicted_label) - assert_in_delta(0.0, predicted_confidence, 0.01) - - assert_raise(TypeError) { - @lbph_trained.predict(DUMMY_OBJ) - } - end - - def test_save - filename = "lbph_save-#{DateTime.now.strftime('%Y%m%d%H%M%S')}.xml" - begin - @lbph_trained.save(filename) - assert(File.exist? filename) - ensure - File.delete filename - end - assert_raise(TypeError) { - @lbph_trained.save(DUMMY_OBJ) - } - end - - def test_load - assert_nothing_raised { - @lbph.load('lbph_save.xml') - } - assert_raise(TypeError) { - @lbph.load(DUMMY_OBJ) - } - end - - def test_name - assert_equal('FaceRecognizer.LBPH', @lbph.name) - end - - def test_get_int - assert_equal(1, @lbph.get_int('radius')) - assert_equal(8, @lbph.get_int('neighbors')) - assert_equal(8, @lbph.get_int('grid_x')) - assert_equal(8, @lbph.get_int('grid_y')) - - assert_raise(TypeError) { - @lbph.get_int(DUMMY_OBJ) - } - end - - def test_get_double - assert_equal(Float::MAX, @lbph.get_double('threshold')) - - assert_raise(TypeError) { - @lbph.get_double(DUMMY_OBJ) - } - end - - def test_get_matvector - histgrams = @lbph_trained.get_matvector('histograms') - assert_equal(Array, histgrams.class) - assert_equal(2, histgrams.size) - assert_equal(CvMat, histgrams[0].class) - - assert_raise(TypeError) { - @lbph.get_matvector(DUMMY_OBJ) - } - end - - def test_set_int - @lbph.set_int('radius', 2) - @lbph.set_int('neighbors', 3) - @lbph.set_int('grid_x', 4) - @lbph.set_int('grid_y', 5) - - assert_equal(2, @lbph.get_int('radius')) - assert_equal(3, @lbph.get_int('neighbors')) - assert_equal(4, @lbph.get_int('grid_x')) - assert_equal(5, @lbph.get_int('grid_y')) - - assert_raise(TypeError) { - @lbph.set_int(DUMMY_OBJ, 1) - } - assert_raise(TypeError) { - @lbph.set_int('radius', DUMMY_OBJ) - } - end - - def test_set_double - @lbph.set_double('threshold', 1.0) - assert_in_delta(1.0, @lbph.get_double('threshold'), 0.001) - - assert_raise(TypeError) { - @lbph.set_double(DUMMY_OBJ, 1.0) - } - assert_raise(TypeError) { - @lbph.set_double('threshold', DUMMY_OBJ) - } - end -end - diff --git a/test/test_mat.rb b/test/test_mat.rb new file mode 100755 index 0000000..fb97d5c --- /dev/null +++ b/test/test_mat.rb @@ -0,0 +1,456 @@ +#!/usr/bin/env ruby +# -*- mode: ruby; coding: utf-8 -*- +require 'opencv' +require File.expand_path(File.dirname(__FILE__)) + '/helper' + +include OpenCV + +class TestMat < OpenCVTestCase + DEPTH = [CV_8U, CV_8S, CV_16U, CV_16S, CV_32F, CV_32S, CV_64F] + + def test_initialize + m = Mat.new(10, 20) + assert_equal(10, m.rows) + assert_equal(m.rows, m.height) + assert_equal(20, m.cols) + assert_equal(m.cols, m.width) + assert_equal(CV_8U, m.depth) + assert_equal(2, m.dims) + assert_equal(1, m.channels) + + [CV_8U, CV_8S, CV_16U, CV_16S, CV_32S, CV_32F, CV_64F].each { |depth| + [1, 2, 3, 4].each { |channel| + type = OpenCV::CV_MAKETYPE(depth, channel) + m = Mat.new(10, 20, type) + assert_equal(10, m.rows) + assert_equal(20, m.cols) + assert_equal(depth, m.depth) + assert_equal(channel, m.channels) + } + } + + assert_raise(TypeError) { + m = Mat.new(DUMMY_OBJ, 20, CV_8U) + } + assert_raise(TypeError) { + m = Mat.new(10, DUMMY_OBJ, CV_8U) + } + assert_raise(TypeError) { + m = Mat.new(10, 20, DUMMY_OBJ) + } + end + + def test_save_image + filename_jpg = 'save_image_test.jpg' + filename_png = 'save_image_test.png' + begin + m = Mat.new(20, 20, CV_8U) + + File.delete filename_jpg if File.exists? filename_jpg + m.save(filename_jpg) + assert(File.exists? filename_jpg) + + File.delete filename_jpg if File.exists? filename_jpg + m.save(filename_jpg, [10]) + assert(File.exists? filename_jpg) + + File.delete filename_png if File.exists? filename_png + m.save(filename_png, [9]) + assert(File.exists? filename_png) + + # Alias + File.delete filename_jpg if File.exists? filename_jpg + OpenCV::imwrite(filename_jpg, m) + assert(File.exists? filename_jpg) + + assert_raise(TypeError) { + m.save(DUMMY_OBJ) + } + assert_raise(TypeError) { + m.save(filename_jpg, DUMMY_OBJ) + } + ensure + File.delete filename_jpg if File.exists? filename_jpg + File.delete filename_png if File.exists? filename_png + end + end + + def test_zeros + m = Mat.zeros(3, 3, CV_8U) + + assert_equal(3, m.rows) + assert_equal(m.rows, m.height) + assert_equal(3, m.cols) + assert_equal(m.cols, m.width) + assert_equal(CV_8U, m.depth) + assert_equal(2, m.dims) + assert_equal(1, m.channels) + + elems = m.to_s.scan(/(\[[^\]]+\])/m).flatten[0] + assert_equal("[ 0, 0, 0;\n 0, 0, 0;\n 0, 0, 0]", elems) + + assert_raise(TypeError) { + Mat.zeros(DUMMY_OBJ, 3, CV_8U) + } + assert_raise(TypeError) { + Mat.zeros(3, DUMMY_OBJ, CV_8U) + } + assert_raise(TypeError) { + Mat.zeros(3, 3, DUMMY_OBJ) + } + end + + def test_ones + m = Mat.ones(3, 3, CV_8U) + + assert_equal(3, m.rows) + assert_equal(m.rows, m.height) + assert_equal(3, m.cols) + assert_equal(m.cols, m.width) + assert_equal(CV_8U, m.depth) + assert_equal(2, m.dims) + assert_equal(1, m.channels) + + elems = m.to_s.scan(/(\[[^\]]+\])/m).flatten[0] + assert_equal("[ 1, 1, 1;\n 1, 1, 1;\n 1, 1, 1]", elems) + + assert_raise(TypeError) { + Mat.ones(DUMMY_OBJ, 3, CV_8U) + } + assert_raise(TypeError) { + Mat.ones(3, DUMMY_OBJ, CV_8U) + } + assert_raise(TypeError) { + Mat.ones(3, 3, DUMMY_OBJ) + } + end + + def test_eye + m = Mat.eye(3, 3, CV_8U) + + assert_equal(3, m.rows) + assert_equal(m.rows, m.height) + assert_equal(3, m.cols) + assert_equal(m.cols, m.width) + assert_equal(CV_8U, m.depth) + assert_equal(2, m.dims) + assert_equal(1, m.channels) + + elems = m.to_s.scan(/(\[[^\]]+\])/m).flatten[0] + assert_equal("[ 1, 0, 0;\n 0, 1, 0;\n 0, 0, 1]", elems) + + assert_raise(TypeError) { + Mat.eye(DUMMY_OBJ, 3, CV_8U) + } + assert_raise(TypeError) { + Mat.eye(3, DUMMY_OBJ, CV_8U) + } + assert_raise(TypeError) { + Mat.eye(3, 3, DUMMY_OBJ) + } + end + + def test_aref + DEPTH.each { |type| + m = Mat.eye(3, 3, type) + 0.upto(m.rows - 1) { |r| + 0.upto(m.cols - 1) { |c| + s = m[r, c] + expected = (r == c) ? 1 : 0 + assert_in_delta(expected, m[r, c][0], 0.01) + } + } + } + DEPTH.each { |depth| + (1..4).each { |channel| + m = Mat.eye(3, 3, OpenCV::CV_MAKETYPE(depth, channel)) + 0.upto(m.rows - 1) { |r| + 0.upto(m.cols - 1) { |c| + s = m[r, c] + expected = (r == c) ? 1 : 0 + assert_equal(expected, m[r, c][0]) + (1...channel).each { |i| + assert_in_delta(0, m[r, c][i], 0.01) + } + } + } + } + } + end + + def test_aset + DEPTH.each { |type| + m = Mat.zeros(3, 3, type) + 0.upto(m.rows - 1) { |r| + 0.upto(m.cols - 1) { |c| + n = (r == c) ? 1 : 0 + a = [n] * m.channels + m[r, c] = Scalar.new(*a) + } + } + assert_mat_in_delta(Mat.eye(m.rows, m.cols, type), m, 0.01) + } + DEPTH.each { |depth| + (1..4).each { |channel| + type = OpenCV::CV_MAKETYPE(depth, channel) + m = Mat.zeros(3, 3, type) + 0.upto(m.rows - 1) { |r| + 0.upto(m.cols - 1) { |c| + n = (r == c) ? 1 : 0 + a = [n, 0, 0, 0] + m[r, c] = Scalar.new(*a) + } + } + assert_mat_in_delta(Mat.eye(m.rows, m.cols, type), m, 0.01) + } + } + end + + def test_clone + m1 = Mat.eye(3, 3, CV_8U) + m2 = m1.clone + assert_equal(m1.to_s, m2.to_s) + assert_not_equal(m1.object_id, m2.object_id) + m1[0, 0] = Scalar.new(10) + assert_not_equal(m1.to_s, m2.to_s) + end + + def test_add + # Mat + Number + m = Mat.zeros(3, 3, CV_8U) + 100 + elems = m.to_s.scan(/(\[[^\]]+\])/m).flatten[0] + assert_equal("[100, 100, 100;\n 100, 100, 100;\n 100, 100, 100]", elems) + + # Mat + Scalar + m = Mat.ones(3, 3, CV_8U) + Scalar.new(1) + elems = m.to_s.scan(/(\[[^\]]+\])/m).flatten[0] + assert_equal("[ 2, 2, 2;\n 2, 2, 2;\n 2, 2, 2]", elems) + + # Mat + Mat + a = Mat.ones(3, 3, CV_8U) * 100 + m = Mat.ones(3, 3, CV_8U) + a + elems = m.to_s.scan(/(\[[^\]]+\])/m).flatten[0] + assert_equal("[101, 101, 101;\n 101, 101, 101;\n 101, 101, 101]", elems) + + assert_raise(TypeError) { + m + DUMMY_OBJ + } + end + + def test_sub + # Mat - Number + m0 = Mat.ones(3, 3, CV_8U) * 100 + m = m0 - 10 + elems = m.to_s.scan(/(\[[^\]]+\])/m).flatten[0] + assert_equal("[ 90, 90, 90;\n 90, 90, 90;\n 90, 90, 90]", elems) + + # Mat + Scalar + m = m0 - Scalar.new(5) + elems = m.to_s.scan(/(\[[^\]]+\])/m).flatten[0] + assert_equal("[ 95, 95, 95;\n 95, 95, 95;\n 95, 95, 95]", elems) + + # Mat + Mat + a = Mat.ones(3, 3, CV_8U) * 2 + m = m0 - a + elems = m.to_s.scan(/(\[[^\]]+\])/m).flatten[0] + assert_equal("[ 98, 98, 98;\n 98, 98, 98;\n 98, 98, 98]", elems) + + assert_raise(TypeError) { + m - DUMMY_OBJ + } + end + + def test_mul + # Mat * Number + m = Mat.ones(3, 3, CV_8U) * 100 + elems = m.to_s.scan(/(\[[^\]]+\])/m).flatten[0] + assert_equal("[100, 100, 100;\n 100, 100, 100;\n 100, 100, 100]", elems) + + # Mat * Mat + a = Mat.ones(1, 2, CV_32F) * 100 + m0 = Mat.ones(2, 1, CV_32F) * 2 + m = m0 * a + elems = m.to_s.scan(/(\[[^\]]+\])/m).flatten[0] + assert_equal("[200, 200;\n 200, 200]", elems) + + assert_raise(TypeError) { + m * DUMMY_OBJ + } + end + + def test_div + # Mat / Number + m = Mat.ones(3, 3, CV_32F) / 10 + elems = m.to_s.scan(/(\[[^\]]+\])/m).flatten[0] + assert_equal("[0.1, 0.1, 0.1;\n 0.1, 0.1, 0.1;\n 0.1, 0.1, 0.1]", elems) + + # Mat / Mat + a = Mat.ones(3, 3, CV_32F) * 2 + m0 = Mat.ones(3, 3, CV_32F) * 10 + m = m0 / a + elems = m.to_s.scan(/(\[[^\]]+\])/m).flatten[0] + assert_equal("[5, 5, 5;\n 5, 5, 5;\n 5, 5, 5]", elems) + + assert_raise(TypeError) { + m / DUMMY_OBJ + } + end + + def test_resize + m0 = Mat.ones(200, 300, CV_8U) + s = Size.new(150, 100) + + m = m0.resize(s) + assert_equal(s.height, m.rows) + assert_equal(s.width, m.cols) + assert_equal(m0.depth, m.depth) + assert_equal(m0.dims, m.dims) + assert_equal(m0.channels, m.channels) + + [INTER_NEAREST, INTER_LINEAR, INTER_AREA, + INTER_CUBIC, INTER_LANCZOS4].each { |interpolation| + m = m0.resize(s, interpolation) + assert_equal(s.height, m.rows) + assert_equal(s.width, m.cols) + assert_equal(m0.depth, m.depth) + assert_equal(m0.dims, m.dims) + assert_equal(m0.channels, m.channels) + } + + assert_raise(TypeError) { + m.resize(DUMMY_OBJ) + } + end + + def test_cvt_color + m = Mat.new(1, 1, CV_32FC3) + m[0, 0] = Scalar.new(1.0, 2.0, 3.0) + delta = 0.01 + + m2 = m.cvt_color(COLOR_BGR2GRAY) + assert_in_delta(2.1849999, m2[0, 0][0], delta) + + m2 = m.cvt_color(COLOR_BGR2HSV) + [30, 0.66666669, 3].each_with_index { |expected, i| + assert_in_delta(expected, m2[0, 0][i], delta, "Failed at m2[0, 0][#{i}]") + } + + assert_raise(TypeError) { + m.cvt_color(DUMMY_OBJ) + } + end + + def test_convert_scale_abs + m0 = Mat.ones(1, 1, CV_32F) * -128 + + results = [] + results << m0.convert_scale_abs + results << m0.convert_scale_abs(0.1) + results << m0.convert_scale_abs(0.1, 10) + results.each { |m| + assert_equal(m0.rows, m.rows) + assert_equal(m0.cols, m.cols) + assert_equal(CV_8U, m.depth) + assert_equal(m0.dims, m.dims) + assert_equal(m0.channels, m.channels) + } + + assert_raise(TypeError) { + m0.convert_scale_abs(DUMMY_OBJ) + } + assert_raise(TypeError) { + m0.convert_scale_abs(0.1, DUMMY_OBJ) + } + end + + def test_imencode + m = OpenCV::imread(FILENAME_LENA32x32, -1) + + results = [] + results << m.imencode('.jpg') + results << m.imencode('.jpg', [OpenCV::IMWRITE_JPEG_QUALITY, 10]) + results.each { |jpg| + assert_equal('JFIF', jpg[6, 4].map(&:chr).join) + } + + results = [] + results << m.imencode('.png') + results << m.imencode('.png', [OpenCV::IMWRITE_PNG_COMPRESSION, 9]) + results.each { |png| + assert_equal('PNG', png[1, 3].map(&:chr).join) + } + + assert_raise(TypeError) { + m.imencode(DUMMY_OBJ) + } + assert_raise(TypeError) { + m.imencode('.jpg', DUMMY_OBJ) + } + end + + def test_set_to + s0 = Scalar.new(0, 0, 0, 0) + s1 = Scalar.new(1, 1, 1, 1) + DEPTH.each { |depth| + (1..4).each { |channel| + type = OpenCV::CV_MAKETYPE(depth, channel) + m = Mat::zeros(3, 3, type) + + a = m.set_to(s1) + assert_equal(a.class, m.class) + assert_equal(a.rows, m.rows) + assert_equal(a.cols, m.cols) + assert_equal(a.depth, m.depth) + assert_equal(a.dims, m.dims) + assert_equal(a.channels, m.channels) + + expected = Mat.new(m.rows, m.cols, type) + expected.rows.times { |r| + expected.cols.times { |c| + expected[r, c] = s1 + } + } + assert_mat_in_delta(expected, m, 0.01) + assert_mat_in_delta(expected, a, 0.01) + } + } + + mask = Mat::zeros(3, 3, CV_8U) + 0.upto(1) { |r| + 0.upto(1) { |c| + mask[r, c] = s1 + } + } + DEPTH.each { |depth| + (1..4).each { |channel| + type = OpenCV::CV_MAKETYPE(depth, channel) + m = Mat::zeros(3, 3, type) + + a = m.set_to(s1, mask) + assert_equal(a.class, m.class) + assert_equal(a.rows, m.rows) + assert_equal(a.cols, m.cols) + assert_equal(a.depth, m.depth) + assert_equal(a.dims, m.dims) + assert_equal(a.channels, m.channels) + + expected = Mat.new(m.rows, m.cols, type) + expected.rows.times { |r| + expected.cols.times { |c| + expected[r, c] = (mask[r, c][0] > 0) ? s1 : s0 + } + } + assert_mat_in_delta(expected, m, 0.01) + assert_mat_in_delta(expected, a, 0.01) + } + } + + m = Mat::zeros(3, 3, CV_8U) + assert_raise(TypeError) { + m.set_to(DUMMY_OBJ) + } + assert_raise(TypeError) { + m.set_to(s1, DUMMY_OBJ) + } + end +end diff --git a/test/test_mat_imgproc.rb b/test/test_mat_imgproc.rb new file mode 100755 index 0000000..42fadce --- /dev/null +++ b/test/test_mat_imgproc.rb @@ -0,0 +1,151 @@ +#!/usr/bin/env ruby +# -*- mode: ruby; coding: utf-8 -*- +require 'opencv' +require File.expand_path(File.dirname(__FILE__)) + '/helper' + +include OpenCV + +class TestCvMat < OpenCVTestCase + def test_sobel + m0 = OpenCV::imread(FILENAME_LENA256x256, 0) + + sobel = [] + sobel << m0.sobel(CV_32F, 1, 1) + sobel << m0.sobel(CV_32F, 1, 1, 5, 0.5, 32, BORDER_CONSTANT) + sobel.each { |m| + assert_equal(m0.rows, m.rows) + assert_equal(m0.cols, m.cols) + assert_equal(CV_32F, m.depth) + assert_equal(m0.dims, m.dims) + assert_equal(m0.channels, m.channels) + } + + assert_raise(TypeError) { + m0.sobel(DUMMY_OBJ, 1, 1, 5, 0.5, 32, BORDER_CONSTANT) + } + assert_raise(TypeError) { + m0.sobel(CV_32F, DUMMY_OBJ, 1, 5, 0.5, 32, BORDER_CONSTANT) + } + assert_raise(TypeError) { + m0.sobel(CV_32F, 1, DUMMY_OBJ, 5, 0.5, 32, BORDER_CONSTANT) + } + assert_raise(TypeError) { + m0.sobel(CV_32F, 1, 1, DUMMY_OBJ, 0.5, 32, BORDER_CONSTANT) + } + assert_raise(TypeError) { + m0.sobel(CV_32F, 1, 1, 5, DUMMY_OBJ, 32, BORDER_CONSTANT) + } + assert_raise(TypeError) { + m0.sobel(CV_32F, 1, 1, 5, 0.5, DUMMY_OBJ, BORDER_CONSTANT) + } + assert_raise(TypeError) { + m0.sobel(CV_32F, 1, 1, 5, 0.5, 32, DUMMY_OBJ) + } + + # w = Window.new('Sobel') + # w.show(m0.sobel(CV_32F, 1, 1)) + # OpenCV::wait_key + end + + def test_canny + m0 = OpenCV::imread(FILENAME_LENA256x256, 0) + + canny = [] + canny << m0.canny(50, 200) + canny << m0.canny(50, 200, 5, true) + canny.each { |m| + assert_equal(m0.rows, m.rows) + assert_equal(m0.cols, m.cols) + assert_equal(m0.depth, m.depth) + assert_equal(m0.dims, m.dims) + assert_equal(m0.channels, m.channels) + } + + assert_raise(TypeError) { + m0.canny(DUMMY_OBJ, 200, 5, true) + } + assert_raise(TypeError) { + m0.canny(50, DUMMY_OBJ, 5, true) + } + assert_raise(TypeError) { + m0.canny(50, 200, DUMMY_OBJ, true) + } + assert_nothing_raised { + m0.canny(50, 200, 5, DUMMY_OBJ) + } + + # w = Window.new('Canny') + # w.show(m0.canny(50, 200)) + # OpenCV::wait_key + end + + def test_laplacian + m0 = OpenCV::imread(FILENAME_LENA256x256, 0) + + laplacian = [] + laplacian << m0.laplacian(CV_32F) + laplacian << m0.laplacian(CV_32F, 5, 0.5, 32, BORDER_CONSTANT) + laplacian.each { |m| + assert_equal(m0.rows, m.rows) + assert_equal(m0.cols, m.cols) + assert_equal(CV_32F, m.depth) + assert_equal(m0.dims, m.dims) + assert_equal(m0.channels, m.channels) + } + + assert_raise(TypeError) { + m0.laplacian(DUMMY_OBJ, 5, 0.5, 32, BORDER_CONSTANT) + } + assert_raise(TypeError) { + m0.laplacian(CV_32F, DUMMY_OBJ, 0.5, 32, BORDER_CONSTANT) + } + assert_raise(TypeError) { + m0.laplacian(CV_32F, 5, DUMMY_OBJ, 32, BORDER_CONSTANT) + } + assert_raise(TypeError) { + m0.laplacian(CV_32F, 5, 0.5, DUMMY_OBJ, BORDER_CONSTANT) + } + assert_raise(TypeError) { + m0.laplacian(CV_32F, 5, 0.5, 32, DUMMY_OBJ) + } + + # w = Window.new('Laplacian') + # w.show(m0.laplacian(CV_32F)) + # OpenCV::wait_key + end + + def test_add_weighted + m0 = Mat.ones(3, 3, CV_32F) * 32 + m1 = Mat.ones(3, 3, CV_32F) * 64 + + results = [] + results << OpenCV::add_weighted(m0, 0.5, m1, 0.5, 0) + results << OpenCV::add_weighted(m0, 0.5, m1, 0.5, 32, CV_32F) + results.each { |m| + assert_equal(m0.rows, m.rows) + assert_equal(m0.cols, m.cols) + assert_equal(CV_32F, m.depth) + assert_equal(m0.dims, m.dims) + assert_equal(m0.channels, m.channels) + } + + assert_raise(TypeError) { + OpenCV::add_weighted(DUMMY_OBJ, 0.5, m1, 0.5, 32, CV_32F) + } + assert_raise(TypeError) { + OpenCV::add_weighted(m0, DUMMY_OBJ, m1, 0.5, 32, CV_32F) + } + assert_raise(TypeError) { + OpenCV::add_weighted(m0, 0.5, DUMMY_OBJ, 0.5, 32, CV_32F) + } + assert_raise(TypeError) { + OpenCV::add_weighted(m0, 0.5, m1, DUMMY_OBJ, 32, CV_32F) + } + assert_raise(TypeError) { + OpenCV::add_weighted(m0, 0.5, m1, 0.5, DUMMY_OBJ, CV_32F) + } + assert_raise(TypeError) { + OpenCV::add_weighted(m0, 0.5, m1, 0.5, 32, DUMMY_OBJ) + } + end +end diff --git a/test/test_mouseevent.rb b/test/test_mouseevent.rb deleted file mode 100755 index a881838..0000000 --- a/test/test_mouseevent.rb +++ /dev/null @@ -1,17 +0,0 @@ -#!/usr/bin/env ruby -# -*- mode: ruby; coding: utf-8 -*- -require 'test/unit' -require 'opencv' -require File.expand_path(File.dirname(__FILE__)) + '/helper' - -include OpenCV -include GUI - -# Tests for OpenCV::MouseEvent -class TestMouseEvent < OpenCVTestCase - def test_initialize - assert_not_nil(MouseEvent.new) - assert_equal(MouseEvent, MouseEvent.new.class) - end -end - diff --git a/test/test_opencv.rb b/test/test_opencv.rb index eed0672..a329918 100755 --- a/test/test_opencv.rb +++ b/test/test_opencv.rb @@ -1,360 +1,68 @@ #!/usr/bin/env ruby # -*- mode: ruby; coding: utf-8 -*- -require 'test/unit' require 'opencv' require File.expand_path(File.dirname(__FILE__)) + '/helper' include OpenCV class TestOpenCV < OpenCVTestCase - def test_constants - # OpenCV version - assert_equal('2.4.10', CV_VERSION) - assert_equal(2, CV_MAJOR_VERSION) - assert_equal(4, CV_MINOR_VERSION) - assert_equal(10, CV_SUBMINOR_VERSION) + def test_imread + mat = OpenCV::imread(FILENAME_CAT, IMREAD_GRAYSCALE) + assert_equal(Mat, mat.class) + assert_equal(375, mat.cols) + assert_equal(500, mat.rows) + assert_equal(CV_8U, mat.depth) + assert_equal(1, mat.channels) - assert_equal(2, CV_VERSION_EPOCH) - assert_equal(4, CV_VERSION_MAJOR) - assert_equal(10, CV_VERSION_MINOR) - assert_equal(0, CV_VERSION_REVISION) + mat = OpenCV::imread(FILENAME_CAT, IMREAD_ANYDEPTH | IMREAD_ANYCOLOR) + assert_equal(Mat, mat.class) + assert_equal(375, mat.cols) + assert_equal(500, mat.rows) + assert_equal(CV_8U, mat.depth) + assert_equal(3, mat.channels) - # Depths - assert_equal(0, CV_8U) - assert_equal(1, CV_8S) - assert_equal(2, CV_16U) - assert_equal(3, CV_16S) - assert_equal(4, CV_32S) - assert_equal(5, CV_32F) - assert_equal(6, CV_64F) - - assert_equal(0, CV_8UC1) - assert_equal(8, CV_8UC2) - assert_equal(16, CV_8UC3) - assert_equal(24, CV_8UC4) - assert_equal(1, CV_8SC1) - assert_equal(9, CV_8SC2) - assert_equal(17, CV_8SC3) - assert_equal(25, CV_8SC4) - assert_equal(2, CV_16UC1) - assert_equal(10, CV_16UC2) - assert_equal(18, CV_16UC3) - assert_equal(26, CV_16UC4) - assert_equal(3, CV_16SC1) - assert_equal(11, CV_16SC2) - assert_equal(19, CV_16SC3) - assert_equal(27, CV_16SC4) - assert_equal(4, CV_32SC1) - assert_equal(12, CV_32SC2) - assert_equal(20, CV_32SC3) - assert_equal(28, CV_32SC4) - assert_equal(5, CV_32FC1) - assert_equal(13, CV_32FC2) - assert_equal(21, CV_32FC3) - assert_equal(29, CV_32FC4) - assert_equal(6, CV_64FC1) - assert_equal(14, CV_64FC2) - assert_equal(22, CV_64FC3) - assert_equal(30, CV_64FC4) - - # Load image flags - assert_equal(-1, CV_LOAD_IMAGE_UNCHANGED) - assert_equal(0, CV_LOAD_IMAGE_GRAYSCALE) - assert_equal(1, CV_LOAD_IMAGE_COLOR) - assert_equal(2, CV_LOAD_IMAGE_ANYDEPTH) - assert_equal(4, CV_LOAD_IMAGE_ANYCOLOR) - - # Structuring element shapes - assert_equal(0, CV_SHAPE_RECT) - assert_equal(1, CV_SHAPE_CROSS) - assert_equal(2, CV_SHAPE_ELLIPSE) - assert_equal(100, CV_SHAPE_CUSTOM) - - # Types of morphological operations - assert_equal(2, CV_MOP_OPEN) - assert_equal(3, CV_MOP_CLOSE) - assert_equal(4, CV_MOP_GRADIENT) - assert_equal(5, CV_MOP_TOPHAT) - assert_equal(6, CV_MOP_BLACKHAT) - - # Types of the smoothing - assert_equal(0, CV_BLUR_NO_SCALE) - assert_equal(1, CV_BLUR) - assert_equal(2, CV_GAUSSIAN) - assert_equal(3, CV_MEDIAN) - assert_equal(4, CV_BILATERAL) - - # Border types - assert_equal(0, IPL_BORDER_CONSTANT) - assert_equal(1, IPL_BORDER_REPLICATE) - - # Thresholding types - assert_equal(0, CV_THRESH_BINARY) - assert_equal(1, CV_THRESH_BINARY_INV) - assert_equal(2, CV_THRESH_TRUNC) - assert_equal(3, CV_THRESH_TOZERO) - assert_equal(4, CV_THRESH_TOZERO_INV) - assert_equal(8, CV_THRESH_OTSU) - - # Adaptive methods - assert_equal(0, CV_ADAPTIVE_THRESH_MEAN_C) - assert_equal(1, CV_ADAPTIVE_THRESH_GAUSSIAN_C) - - # Retrieval mode - assert_equal(0, CV_RETR_EXTERNAL) - assert_equal(1, CV_RETR_LIST) - assert_equal(2, CV_RETR_CCOMP) - assert_equal(3, CV_RETR_TREE) - - # Approximation method - assert_equal(0, CV_CHAIN_CODE) - assert_equal(1, CV_CHAIN_APPROX_NONE) - assert_equal(2, CV_CHAIN_APPROX_SIMPLE) - assert_equal(3, CV_CHAIN_APPROX_TC89_L1) - assert_equal(4, CV_CHAIN_APPROX_TC89_KCOS) - assert_equal(5, CV_LINK_RUNS) - - # Termination criteria for iterative algorithms - assert_equal(1, CV_TERMCRIT_ITER) - assert_equal(1, CV_TERMCRIT_NUMBER) - assert_equal(2, CV_TERMCRIT_EPS) - - # Hough transform methods - assert_equal(0, CV_HOUGH_STANDARD) - assert_equal(1, CV_HOUGH_PROBABILISTIC) - assert_equal(2, CV_HOUGH_MULTI_SCALE) - assert_equal(3, CV_HOUGH_GRADIENT) - - # Inpaint method - assert_equal(0, CV_INPAINT_NS) - assert_equal(1, CV_INPAINT_TELEA) - - # Match tempalte method - assert_equal(0, CV_TM_SQDIFF) - assert_equal(1, CV_TM_SQDIFF_NORMED) - assert_equal(2, CV_TM_CCORR) - assert_equal(3, CV_TM_CCORR_NORMED) - assert_equal(4, CV_TM_CCOEFF) - assert_equal(5, CV_TM_CCOEFF_NORMED) - - # Comparison method - assert_equal(1, CV_CONTOURS_MATCH_I1) - assert_equal(2, CV_CONTOURS_MATCH_I2) - assert_equal(3, CV_CONTOURS_MATCH_I3) - - # Fundamental matrix computing methods - assert_equal(1, CV_FM_7POINT) - assert_equal(2, CV_FM_8POINT) - assert_equal(8, CV_FM_RANSAC) - assert_equal(4, CV_FM_LMEDS) - - # Flags of window - assert_equal(0, CV_WINDOW_NORMAL) - assert_equal(1, CV_WINDOW_AUTOSIZE) - assert_equal(4096, CV_WINDOW_OPENGL) - - # Object detection mode - assert_equal(1, CV_HAAR_DO_CANNY_PRUNING) - - # Interpolation methods - assert_equal(0, CV_INTER_NN) - assert_equal(1, CV_INTER_LINEAR) - assert_equal(2, CV_INTER_CUBIC) - assert_equal(3, CV_INTER_AREA) - - # Warp affine optional flags - assert_equal(8, CV_WARP_FILL_OUTLIERS) - assert_equal(16, CV_WARP_INVERSE_MAP) - - # SVD operation flags - assert_equal(1, CV_SVD_MODIFY_A) - assert_equal(2, CV_SVD_U_T) - assert_equal(4, CV_SVD_V_T) - - # Histogram representation format - assert_equal(0, CV_HIST_ARRAY) - assert_equal(1, CV_HIST_SPARSE) - assert_equal(1, CV_HIST_TREE) - assert_equal(1, CV_HIST_UNIFORM) - - # Histogram comparison method - assert_equal(0, CV_COMP_CORREL) - assert_equal(1, CV_COMP_CHISQR) - assert_equal(2, CV_COMP_INTERSECT) - assert_equal(3, CV_COMP_BHATTACHARYYA) + assert_raise(ArgumentError) { + OpenCV::imread + } + assert_raise(ArgumentError) { + OpenCV::imread(FILENAME_CAT) + } + assert_raise(TypeError) { + OpenCV::imread(FILENAME_CAT, DUMMY_OBJ) + } + assert_raise(StandardError) { + OpenCV::imread('file/does/not/exist', 0) + } end - def test_symbols - # Depths - assert_equal(0, DEPTH[:cv8u]) - assert_equal(1, DEPTH[:cv8s]) - assert_equal(2, DEPTH[:cv16u]) - assert_equal(3, DEPTH[:cv16s]) - assert_equal(4, DEPTH[:cv32s]) - assert_equal(5, DEPTH[:cv32f]) - assert_equal(6, DEPTH[:cv64f]) + def test_imdecode + src = OpenCV::imread(FILENAME_LENA32x32, IMREAD_ANYDEPTH | IMREAD_ANYCOLOR) + buf = src.imencode('.jpg') - # Inversion methods - assert_equal(0, INVERSION_METHOD[:lu]) - assert_equal(1, INVERSION_METHOD[:svd]) - assert_equal(2, INVERSION_METHOD[:svd_sym]) - assert_equal(2, INVERSION_METHOD[:svd_symmetric]) + m = OpenCV::imdecode(buf, IMREAD_ANYDEPTH | IMREAD_ANYCOLOR) + assert_equal(src.class, m.class) + assert_equal(src.rows, m.rows) + assert_equal(src.cols, m.cols) + assert_equal(src.depth, m.depth) + assert_equal(src.channels, m.channels) - # Homography calculation methods - assert_equal(0, HOMOGRAPHY_CALC_METHOD[:all]) - assert_equal(4, HOMOGRAPHY_CALC_METHOD[:lmeds]) - assert_equal(8, HOMOGRAPHY_CALC_METHOD[:ransac]) + m = OpenCV::imdecode(buf, IMREAD_GRAYSCALE) + assert_equal(src.class, m.class) + assert_equal(src.rows, m.rows) + assert_equal(src.cols, m.cols) + assert_equal(CV_8U, m.depth) + assert_equal(1, m.channels) - # Anti aliasing flags - assert_equal(16, CONNECTIVITY[:aa]) - assert_equal(16, CONNECTIVITY[:anti_alias]) - - # Retrieval modes - assert_equal(0, RETRIEVAL_MODE[:external]) - assert_equal(1, RETRIEVAL_MODE[:list]) - assert_equal(2, RETRIEVAL_MODE[:ccomp]) - assert_equal(3, RETRIEVAL_MODE[:tree]) - - # Approximation methods - assert_equal(0, APPROX_CHAIN_METHOD[:code]) - assert_equal(1, APPROX_CHAIN_METHOD[:approx_none]) - assert_equal(2, APPROX_CHAIN_METHOD[:approx_simple]) - assert_equal(3, APPROX_CHAIN_METHOD[:approx_tc89_l1]) - assert_equal(4, APPROX_CHAIN_METHOD[:approx_tc89_kcos]) - - # Approximation methods (polygon) - assert_equal(0, APPROX_POLY_METHOD[:dp]) - - # Match template methods - assert_equal(0, MATCH_TEMPLATE_METHOD[:sqdiff]) - assert_equal(1, MATCH_TEMPLATE_METHOD[:sqdiff_normed]) - assert_equal(2, MATCH_TEMPLATE_METHOD[:ccorr]) - assert_equal(3, MATCH_TEMPLATE_METHOD[:ccorr_normed]) - assert_equal(4, MATCH_TEMPLATE_METHOD[:ccoeff]) - assert_equal(5, MATCH_TEMPLATE_METHOD[:ccoeff_normed]) - - # Structuring element shapes - assert_equal(0, STRUCTURING_ELEMENT_SHAPE[:rect]) - assert_equal(1, STRUCTURING_ELEMENT_SHAPE[:cross]) - assert_equal(2, STRUCTURING_ELEMENT_SHAPE[:ellipse]) - assert_equal(100, STRUCTURING_ELEMENT_SHAPE[:custom]) - - # Types of morphological operations - assert_equal(2, MORPHOLOGICAL_OPERATION[:open]) - assert_equal(3, MORPHOLOGICAL_OPERATION[:close]) - assert_equal(4, MORPHOLOGICAL_OPERATION[:gradient]) - assert_equal(5, MORPHOLOGICAL_OPERATION[:tophat]) - assert_equal(6, MORPHOLOGICAL_OPERATION[:blackhat]) - - # Types of the smoothing - assert_equal(0, SMOOTHING_TYPE[:blur_no_scale]) - assert_equal(1, SMOOTHING_TYPE[:blur]) - assert_equal(2, SMOOTHING_TYPE[:gaussian]) - assert_equal(3, SMOOTHING_TYPE[:median]) - assert_equal(4, SMOOTHING_TYPE[:bilateral]) - - # Thresholding types - assert_equal(0, THRESHOLD_TYPE[:binary]) - assert_equal(1, THRESHOLD_TYPE[:binary_inv]) - assert_equal(2, THRESHOLD_TYPE[:trunc]) - assert_equal(3, THRESHOLD_TYPE[:tozero]) - assert_equal(4, THRESHOLD_TYPE[:tozero_inv]) - assert_equal(8, THRESHOLD_TYPE[:otsu]) - - # Hough transform methods - assert_equal(0, HOUGH_TRANSFORM_METHOD[:standard]) - assert_equal(1, HOUGH_TRANSFORM_METHOD[:probabilistic]) - assert_equal(2, HOUGH_TRANSFORM_METHOD[:multi_scale]) - assert_equal(3, HOUGH_TRANSFORM_METHOD[:gradient]) - - # Inpaint method - assert_equal(0, INPAINT_METHOD[:ns]) - assert_equal(1, INPAINT_METHOD[:telea]) - - # Comparison method - assert_equal(1, COMPARISON_METHOD[:i1]) - assert_equal(2, COMPARISON_METHOD[:i2]) - assert_equal(3, COMPARISON_METHOD[:i3]) - end - - def test_cvt_color_funcs - mat_1ch = CvMat.new(1, 1, :cv8u, 1) - mat_1ch[0] = CvScalar.new(10) - - mat_3ch = CvMat.new(1, 1, :cv8u, 3) - mat_3ch[0] = CvScalar.new(10, 20, 30) - - mat_4ch = CvMat.new(1, 1, :cv8u, 4) - mat_4ch[0] = CvScalar.new(10, 20, 30, 40) - - gray_rgb = (0.299 * mat_3ch[0][0] + 0.587 * mat_3ch[0][1] + 0.114 * mat_3ch[0][2]).round - gray_bgr = (0.299 * mat_3ch[0][2] + 0.587 * mat_3ch[0][1] + 0.114 * mat_3ch[0][0]).round - - # RGB(A) <=> RGB(A) - [mat_3ch.BGR2BGRA, mat_3ch.RGB2RGBA].each { |m| - assert_equal(CvMat, m.class) - assert_equal(4, m.channel) - assert_cvscalar_equal(CvScalar.new(10, 20, 30, 255), m[0]) + assert_raise(TypeError) { + OpenCV::imdecode(DUMMY_OBJ, IMREAD_GRAYSCALE) } - [mat_3ch.BGR2RGBA, mat_3ch.RGB2BGRA].each { |m| - assert_equal(CvMat, m.class) - assert_equal(4, m.channel) - assert_cvscalar_equal(CvScalar.new(30, 20, 10, 255), m[0]) - } - [mat_4ch.BGRA2BGR, mat_4ch.RGBA2RGB].each { |m| - assert_equal(CvMat, m.class) - assert_equal(3, m.channel) - assert_cvscalar_equal(CvScalar.new(10, 20, 30, 0), m[0]) - } - [mat_4ch.RGBA2BGR, mat_4ch.BGRA2RGB].each { |m| - assert_equal(CvMat, m.class) - assert_equal(3, m.channel) - assert_cvscalar_equal(CvScalar.new(30, 20, 10, 0), m[0]) - } - [mat_3ch.BGR2RGB, mat_3ch.RGB2BGR].each { |m| - assert_equal(CvMat, m.class) - assert_equal(3, m.channel) - assert_cvscalar_equal(CvScalar.new(30, 20, 10, 0), m[0]) - } - [mat_4ch.BGRA2RGBA, mat_4ch.RGBA2BGRA].each { |m| - assert_equal(CvMat, m.class) - assert_equal(4, m.channel) - assert_cvscalar_equal(CvScalar.new(30, 20, 10, 40), m[0]) + assert_raise(TypeError) { + OpenCV::imdecode(buf, DUMMY_OBJ) } - # RGB <=> GRAY - [mat_3ch.BGR2GRAY, mat_4ch.BGRA2GRAY].each { |m| - assert_equal(CvMat, m.class) - assert_equal(1, m.channel) - assert_cvscalar_equal(CvScalar.new(gray_bgr, 0, 0, 0), m[0]) - } - [mat_3ch.RGB2GRAY, mat_4ch.RGBA2GRAY].each { |m| - assert_equal(CvMat, m.class) - assert_equal(1, m.channel) - assert_cvscalar_equal(CvScalar.new(gray_rgb, 0, 0, 0), m[0]) - } - [mat_1ch.GRAY2BGR, mat_1ch.GRAY2RGB].each { |m| - assert_equal(CvMat, m.class) - assert_equal(3, m.channel) - assert_cvscalar_equal(CvScalar.new(10, 10, 10, 0), m[0]) - } - [mat_1ch.GRAY2BGRA, mat_1ch.GRAY2RGBA].each { |m| - assert_equal(CvMat, m.class) - assert_equal(4, m.channel) - assert_cvscalar_equal(CvScalar.new(10, 10, 10, 255), m[0]) - } - - img_3ch = IplImage.new(1, 1, :cv8u, 3) - assert_equal(IplImage, img_3ch.BGR2GRAY.class) - - flunk('FIXME: Most cvtColor functions are not tested yet.') - end - - def test_build_information - s = build_information - assert_equal(String, s.class) - assert(s =~ /^\s+General configuration for OpenCV #{CV_VERSION}/) + # w = Window.new('Decoded') + # w.show(m) + # w.wait_key end end - diff --git a/test/test_pointset.rb b/test/test_pointset.rb deleted file mode 100755 index ded129a..0000000 --- a/test/test_pointset.rb +++ /dev/null @@ -1,128 +0,0 @@ -#!/usr/bin/env ruby -# -*- mode: ruby; coding: utf-8 -*- -require 'test/unit' -require 'opencv' -require File.expand_path(File.dirname(__FILE__)) + '/helper' - -include OpenCV - -# Tests for OpenCV::PointSet -class TestPointSet < OpenCVTestCase - def setup - mat0 = create_cvmat(128, 128, :cv8u, 1) { |j, i| - (j - 64) ** 2 + (i - 64) ** 2 <= (32 ** 2) ? CvColor::White : CvColor::Black - } - @contour1 = mat0.find_contours - @contour2 = CvContour.new - end - - def test_contour_area - assert_equal(3118, @contour1.contour_area.to_i) - - s = CvSlice.new(0, @contour1.size / 2) - assert_equal(1527, @contour1.contour_area(s).to_i) - - assert_raise(TypeError) { - @contour1.contour_area(DUMMY_OBJ) - } - assert_raise(CvStsBadArg) { - @contour2.contour_area - } - end - - def test_fit_ellipse2 - box = @contour1.fit_ellipse2 - - center = box.center - assert_equal(64, center.x.to_i) - assert_equal(64, center.y.to_i) - - size = box.size - assert_in_delta(63, size.width, 1.0) - assert_in_delta(63, size.height, 1.0) - - angle = [box.angle, 180 - box.angle].min - assert_in_delta(0, angle, 0.1) - - assert_raise(CvStsBadSize) { - @contour2.fit_ellipse2 - } - end - - def test_convex_hull2 - [@contour1.convex_hull2, @contour1.convex_hull2(true)].each { |hull| - assert_equal(36, hull.size) - assert_equal(CvContour, hull.class) - assert_equal(CvPoint, hull[0].class) - assert_equal(32, hull[0].x) - assert_equal(64, hull[0].y) - } - - hull = @contour1.convex_hull2(false) - assert_equal(36, hull.size) - assert_equal(CvContour, hull.class) - assert_equal(CvPoint, hull[0].class) - assert_equal(96, hull[0].x) - assert_equal(64, hull[0].y) - - @contour1.convex_hull2(DUMMY_OBJ) - end - - def test_check_contour_convexity - assert_false(@contour1.check_contour_convexity) - end - - def test_convexity_defects - hull = @contour1.convex_hull2(true, false) - defects = @contour1.convexity_defects(hull) - assert_equal(CvSeq, defects.class) - assert_equal(CvConvexityDefect, defects[0].class) - assert_equal(32, defects.size) - - d = defects[0] - assert_equal(33, d.start.x) - assert_equal(57, d.start.y) - assert_equal(33, d.depth_point.x) - assert_equal(63, d.depth_point.y) - assert_equal(32, d.end.x) - assert_equal(64, d.end.y) - assert_in_delta(0.8485, d.depth, 0.001) - - assert_raise(TypeError) { - @contour1.convexity_defects(DUMMY_OBJ) - } - end - - def test_min_area_rect2 - box = @contour1.min_area_rect2 - - assert_equal(CvBox2D, box.class) - center = box.center - assert_equal(64, center.x.to_i) - assert_equal(64, center.y.to_i) - - size = box.size - assert_in_delta(63.356, size.width, 0.001) - assert_in_delta(63.356, size.height, 0.001) - assert_in_delta(-81.30, box.angle, 1.0) - - flunk('FIXME: Currently PointSet#min_area_rect2 causes segmentation fault when "self" is invalid.') - assert_raise(CvStsBadSize) { - @contour2.min_area_rect2 - } - end - - def test_min_enclosing_circle - circle = @contour1.min_enclosing_circle - assert_equal(CvCircle32f, circle.class) - center = circle.center - assert_equal(64, center.x.to_i) - assert_equal(64, center.y.to_i) - assert_in_delta(32.959, circle.radius, 0.001) - - assert_raise(CvStsBadSize) { - @contour2.min_enclosing_circle - } - end -end - diff --git a/test/test_preliminary.rb b/test/test_preliminary.rb deleted file mode 100755 index feaead0..0000000 --- a/test/test_preliminary.rb +++ /dev/null @@ -1,130 +0,0 @@ -#!/usr/bin/env ruby -# -*- mode: ruby; coding: utf-8 -*- -require 'test/unit' -require 'digest/md5' -require 'opencv' -require File.expand_path(File.dirname(__FILE__)) + '/helper' - -include OpenCV - -# Tests to run first; check the handful of basic operations that the later tests rely on -class TestPreliminary < OpenCVTestCase - def test_assert_array_equal - assert_array_equal([1, 2, 3, 4], [1, 2, 3, 4]) - - # Uncomment the following line to check the fail case - # assert_array_equal([1, 2, 3, 4], [1, 2, 3, 0]) - end - - def test_assert_cvscalar_equal - assert_cvscalar_equal(CvScalar.new(1, 2, 3, 4), CvScalar.new(1, 2, 3, 4)) - assert_cvscalar_equal(CvScalar.new(0.1, 0.2, 0.3, 0.4), CvScalar.new(0.1, 0.2, 0.3, 0.4)) - - # Uncomment the following lines to check the fail cases - # assert_cvscalar_equal(CvScalar.new(1, 2, 3, 4), CvScalar.new(1, 2, 3, 0)) - # assert_cvscalar_equal(CvScalar.new(0.1, 0.2, 0.3, 0.4), CvScalar.new(0.1, 0.2, 0.3, 0.0)) - end - - def test_assert_in_delta - assert_in_delta(1, 0.9999, 0.1) - assert_in_delta(CvScalar.new(1, 2, 3, 4), CvScalar.new(1.01, 2.01, 3.01, 4.01), 0.1) - assert_in_delta(CvScalar.new(1, 2, 3, 4), [1.01, 2.01, 3.01, 4.01], 0.1) - assert_in_delta([1, 2, 3, 4], CvScalar.new(1.01, 2.01, 3.01, 4.01), 0.1) - assert_in_delta([1, 2, 3, 4], [1.01, 2.01, 3.01, 4.01], 0.1) - - # Uncomment the following lines to check the fail cases - # assert_in_delta(1, 0.009, 0.1) - # assert_in_delta(CvScalar.new(1, 2, 3, 4), CvScalar.new(1.01, 2.01, 3.01, 4.01), 0.001) - # assert_in_delta(CvScalar.new(1, 2, 3, 4), [1.01, 2.01, 3.01, 4.01], 0.001) - # assert_in_delta([1, 2, 3, 4], CvScalar.new(1.01, 2.01, 3.01, 4.01), 0.001) - # assert_in_delta([1, 2, 3, 4], [1.01, 2.01, 3.01, 4.01], 0.001) - end - - def test_assert_each_cvscalar - mat1 = CvMat.new(5, 5, :cv32f, 4) - mat2 = CvMat.new(5, 5, :cv32f, 4) - c = 0 - mat1.height.times { |j| - mat1.width.times { |i| - mat1[j, i] = CvScalar.new(c * 0.1, c * 0.2, c * 0.3, c * 0.4) - mat2[j, i] = CvScalar.new(c, c, c, c) - c += 1 - } - } - - assert_each_cvscalar(mat1, 0.001) { |j, i, n| - CvScalar.new(n * 0.1, n * 0.2, n * 0.3, n * 0.4) - } - assert_each_cvscalar(mat2) { |j, i, n| - CvScalar.new(n, n, n, n) - } - - # Uncomment the following lines to check the fail cases - # assert_each_cvscalar(mat1, 0.001) { |j, i, n| - # CvScalar.new(n * 0.1, n * 0.2, n * 0.3, 0) - # } - # assert_each_cvscalar(mat1, 0.001) { |j, i, n| - # CvScalar.new(1, 2, 3, 4) - # } - # assert_each_cvscalar(mat2) { |j, i, n| - # CvScalar.new(n * 0.1, n * 0.2, n * 0.3, 0) - # } - # assert_each_cvscalar(mat2) { |j, i, n| - # CvScalar.new(1, 2, 3, 0) - # } - end - - - def test_create_cvmat - mat = create_cvmat(3, 4) - assert_equal(3, mat.height) - assert_equal(4, mat.width) - assert_equal(:cv8u, mat.depth) - assert_equal(4, mat.channel) - c = 0 - mat.height.times { |j| - mat.width.times { |i| - s = CvScalar.new(c + 1, c + 1, c + 1, c + 1) - assert_cvscalar_equal(s, mat[j, i]) - c += 1 - } - } - - mat = create_cvmat(2, 3, :cv16s, 2) - assert_equal(2, mat.height) - assert_equal(3, mat.width) - assert_equal(:cv16s, mat.depth) - assert_equal(2, mat.channel) - c = 0 - mat.height.times { |j| - mat.width.times { |i| - s = CvScalar.new(c + 1, c + 1, 0, 0) - assert_cvscalar_equal(s, mat[j, i]) - c += 1 - } - } - - mat = create_cvmat(2, 3, :cv16u, 3) { |j, i, cnt| - n = j + i + cnt - CvScalar.new(n, n, n, 0) - } - assert_equal(2, mat.height) - assert_equal(3, mat.width) - assert_equal(:cv16u, mat.depth) - assert_equal(3, mat.channel) - c = 0 - mat.height.times { |j| - mat.width.times { |i| - n = j + i + c - assert_cvscalar_equal(CvScalar.new(n, n, n, 0), mat[j, i]) - c += 1 - } - } - end - - def test_types - assert_equal(IplImage.new(7, 5, CV_8U, 1).class, IplImage) - assert_equal(CvMat.new(5, 7, CV_32F).class, CvMat) - end -end - diff --git a/test/test_trackbar.rb b/test/test_trackbar.rb deleted file mode 100755 index 56dd964..0000000 --- a/test/test_trackbar.rb +++ /dev/null @@ -1,47 +0,0 @@ -#!/usr/bin/env ruby -# -*- mode: ruby; coding: utf-8 -*- -require 'test/unit' -require 'opencv' -require File.expand_path(File.dirname(__FILE__)) + '/helper' - -include OpenCV -include GUI - -# Tests for OpenCV::Trackbar -class TestTrackbar < OpenCVTestCase - def setup - @trackbar1 = Trackbar.new('trackbar1', 100) {} - @trackbar2 = Trackbar.new('trackbar1', 100, 1) {} - end - - def test_initialize - assert_not_nil(Trackbar.new('trackbar', 100, 1) {}) - assert_not_nil(Trackbar.new('trackbar', 100) {}) - block = proc {} - assert_not_nil(Trackbar.new('trackbar', 100, 1, &block)) - assert_not_nil(Trackbar.new('trackbar', 100, &block)) - - assert_raise(TypeError) { - Trackbar.new(123, 100, 1) {} - } - assert_raise(ArgumentError) { - Trackbar.new('trackbar', 100, 1) - } - end - - def test_name - assert_equal('trackbar1', @trackbar1.name) - end - - def test_max - assert_equal(100, @trackbar1.max) - end - - def test_value - assert_equal(0, @trackbar1.value) - assert_equal(1, @trackbar2.value) - @trackbar1.value = 50 - assert_equal(50, @trackbar1.value) - end -end - diff --git a/test/test_videocapture.rb b/test/test_videocapture.rb new file mode 100755 index 0000000..118d800 --- /dev/null +++ b/test/test_videocapture.rb @@ -0,0 +1,59 @@ +#!/usr/bin/env ruby +# -*- mode: ruby; coding: utf-8 -*- +require 'test/unit' +require 'opencv' +require File.expand_path(File.dirname(__FILE__)) + '/helper' + +include OpenCV + +# Tests for OpenCV::VideoCapture +class TestVideoCapture < OpenCVTestCase + def setup + @cap = VideoCapture.new(AVI_SAMPLE) + end + + def teardown + @cap = nil + end + + def test_open + cap1 = VideoCapture.new(AVI_SAMPLE) + assert_equal(VideoCapture, cap1.class) + end + + def test_grab + assert(@cap.grab) + end + + def test_retrieve + @cap.grab + img = @cap.retrieve + assert_equal(Mat, img.class) + end + + def test_get + assert_equal(0, @cap.get(CAP_PROP_POS_MSEC)) + assert_equal(0, @cap.get(CAP_PROP_POS_FRAMES)) + assert_in_delta(0.08333333333333333, @cap.get(CAP_PROP_POS_AVI_RATIO), 0.01) + assert_equal(160, @cap.get(CAP_PROP_FRAME_WIDTH)) + assert_equal(120, @cap.get(CAP_PROP_FRAME_HEIGHT)) + assert_equal(12, @cap.get(CAP_PROP_FPS)) + assert_equal(0, @cap.get(CAP_PROP_FOURCC)) + assert_equal(37, @cap.get(CAP_PROP_FRAME_COUNT)) + assert_equal(0, @cap.get(CAP_PROP_FORMAT)) + assert_equal(0, @cap.get(CAP_PROP_MODE)) + assert_equal(0, @cap.get(CAP_PROP_BRIGHTNESS)) + assert_equal(0, @cap.get(CAP_PROP_CONTRAST)) + assert_equal(0, @cap.get(CAP_PROP_SATURATION)) + assert_equal(0, @cap.get(CAP_PROP_HUE)) + assert_equal(0, @cap.get(CAP_PROP_GAIN)) + assert_equal(0, @cap.get(CAP_PROP_EXPOSURE)) + assert_equal(0, @cap.get(CAP_PROP_CONVERT_RGB)) + assert_equal(0, @cap.get(CAP_PROP_RECTIFICATION)) + end + + def test_set + @cap.set(CAP_PROP_POS_MSEC, 1000) + assert_equal(1000, @cap.get(CAP_PROP_POS_MSEC)) + end +end diff --git a/test/test_window.rb b/test/test_window.rb deleted file mode 100755 index 9236f0c..0000000 --- a/test/test_window.rb +++ /dev/null @@ -1,115 +0,0 @@ -#!/usr/bin/env ruby -# -*- mode: ruby; coding: utf-8 -*- -require 'test/unit' -require 'opencv' -require File.expand_path(File.dirname(__FILE__)) + '/helper' - -include OpenCV -include GUI - -# Tests for OpenCV::Window -class TestWindow < OpenCVTestCase - def setup - @window1 = Window.new('window1') - @window2 = Window.new('window2', CV_WINDOW_AUTOSIZE) - @window3 = Window.new('window3', 0) - end - - def teardown - Window::destroy_all - end - - def test_initialize - [Window.new('w1'), Window.new('w2', CV_WINDOW_AUTOSIZE), Window.new('w3', 0)].each { |w| - assert_not_nil(w) - assert_equal(Window, w.class) - } - - assert_raise(TypeError) { - Window.new('w4', 'foobar') - } - - assert_raise(StandardError) { - Window.new('w5') - Window.new('w5') - } - end - - def test_alive - assert(@window1.alive?) - @window1.destroy - assert(!(@window1.alive?)) - end - - def test_destroy - @window1.destroy - assert(!(@window1.alive?)) - end - - def test_destroy_all - Window::destroy_all - assert(!(@window1.alive?)) - assert(!(@window2.alive?)) - assert(!(@window3.alive?)) - end - - def test_resize - @window1.resize(CvSize.new(10, 20)) - @window2.resize(100, 200) - assert_raise(ArgumentError) { - @window3.resize - } - - # Uncomment the following lines to show the results - # @window1.show(CvMat.new(10, 20)) - # @window1.resize(100, 200) - # GUI::wait_key - end - - def test_move - @window1.move(CvPoint.new(10, 20)) - @window2.move(100, 200) - assert_raise(ArgumentError) { - @window3.move - } - - # Uncomment the following lines to show the results - # @window1.show(CvMat.new(10, 20)) - # @window2.show(CvMat.new(100, 200)) - # GUI::wait_key - end - - def test_show_image - img = IplImage.load(FILENAME_CAT, CV_LOAD_IMAGE_ANYDEPTH | CV_LOAD_IMAGE_ANYCOLOR) - @window1.show_image(img) - @window2.show(img) # Alias - - # Uncomment the following lines to show the results - # GUI::wait_key - end - - def test_set_trackbar - tr1 = @window1.set_trackbar('trackbar1', 100) { |value| - puts value - } - assert_equal(Trackbar, tr1.class) - - trackbar2 = Trackbar.new('trackbar2', 10, 1) {} - tr2 = @window2.set_trackbar(trackbar2) - assert_equal(Trackbar, tr2.class) - end - - def test_set_mouseevent - @window1.set_mouse_callback { |mouse| - e = "#{mouse.x}, #{mouse.y} : #{mouse.event} : " - e << "" if mouse.left_button? - e << "" if mouse.right_button? - e << "" if mouse.middle_button? - e << "[CTRL]" if mouse.ctrl_key? - e << "[SHIFT]" if mouse.shift_key? - e << "[ALT]" if mouse.alt_key? - puts e - } - end -end - diff --git a/yard_extension.rb b/yard_extension.rb index 46f68a3..6db771b 100644 --- a/yard_extension.rb +++ b/yard_extension.rb @@ -1,5 +1,29 @@ require 'yard' -YARD::Tags::Library.define_tag('OpenCV function', :opencv_func) -YARD::Tags::Library.visible_tags.place(:opencv_func).before(:abstract) +# yardoc -e yard_extension.rb ext/opencv/*.cpp +module YARD + module Parser + module C + class CParser < Base + alias_method :initialize_original, :initialize + + def initialize(source, file = '(stdin)') + source = source.lines.map { |line| + line = line =~ /\A\s*(?:namespace|extern)\s*/ ? "\n" : line + line.gsub!(/RUBY_METHOD_FUNC\s*\((?:[0-9a-zA-Z_:]+::)([0-9a-zA-Z_]+)\)/) { "RUBY_METHOD_FUNC(#{$1})" } + line + }.join + initialize_original(source, file) + end + end + end + end +end + +# YARD::Parser::SourceParser.register_parser_type(:c, YARD::Parser::C::CParser, ['c', 'cc']) # Remove .cpp +# YARD::Parser::SourceParser.register_parser_type(:cpp, YARD::Parser::Cpp::CppParser, ['cpp']) +# YARD::Handlers::Processor.register_handler_namespace(:cpp, YARD::Handlers::Cpp) +# YARD::Handlers::Processor.register_handler_namespace(:cpp, YARD::Handlers::C) +YARD::Parser::SourceParser.parser_type = :c +YARD::Tags::Library.define_tag('OpenCV Function', :opencv_func, :with_types_and_name)

    tN_t<0AVbd*IW}Vl~e5wzWD{fKAN5N$y2O^`?^y}Nd z2!l1AsjWe4s$M1Q-rdSX3j)ivz*mb-_SEWw_aeI3>mb*>KPIkq zeM7@Kh274Xqn$qPIhNKz8Y{?-R2ljmldF8JO6}!To&40_7;~%Y*ZMw@EycE>eHn=- zA!RM(M;$h=Q%MXRolICLsN6*Gv_kDQae)=v>0p2;TUs&-K*NF9)@8r=QQy909Tg428rHB-g zMM-vsjj+*j262+E17b^l8u0DK{{V+9gfU#fY|*rjb7?H2&33r8#9^gRBuq*WzFPuW zQCy9ucV(jJG3be4Z>_wAo;Vg|jR%_YI+i89Y*7TiQOVl+F-=tSD0?%+= zqsyr7dCvpC^{mZD#5S5fqWW%|1oC|4L&|ai8SUxTy5A0K3E~Yg^xbYNTd3T|Jd2ps z)=o+Lr>-`G-;-RJd{q}xafDUhSG(z_W6{Uu)#=fvR&U+WS$+Ed0Kp;BJPmz+@iOzq znzZR{d1-qj7Phe4ZCNdZPZ~2n@w+RdZUutvDsX;S_ps}gmv#5K$@1NJ-(A| zW~*TxrS;sHjHDRzGzT8wH2Txa=b%wkqHJF8=@x%axN)*CSxerCKz|D~;V4^am&C zeY3*o-w$su^FoK9vQ$>U`U^Fi8`6nbc&QhMXg7r7S#uaKWZ0xM}^MQ#@&0-r+MYYS7Yg=?#BXl`r^fRMO_XxxIN!#mRx(3D!4s1>~8A z`9IaBOCjI^^M484YMs8YAy~|$As`T;4hZ(+>+4+{y4|L)rojQdf+%9QUG|W}Hq?-X z4#x=JF>(gtPI3S}Dlav^PR5k5blsDh`^0(zxRO*UcIfpv8P%<^J%_pv;P34+HQ}`l7HSo%m`5RJRM={_VwzTn%hk7EtynAc4 zGC>LqDzQk=hGqjLm@mz=50{gi4{6bSRpIRiUDTnE!kWRG#YK~+dy>-0d&#LAC|wkjuy)n4%zSXNysaVj&pLfQJRcWyEB#ZL+&&KI#HN<8qg| zWD}WE0=ss;Na56DE6D;x)Vwz~sdaOpK<}zt>NcgUtYn(urjc$|W|Bu`@;uF{CN?&} z41_zW1zq5+H~T-tQ9&iPt#bCZklSl^HrBF;i%A)c7U5-?ywIzhY>XxdU_y*nq4kNS zrM~6DM! z=sJ{_h@mt_@)9j}CB5kuznAQ*UOw)x14>3*KEw zsWr6rYxX;~X_emPM%Iy@MOThEq}&NnjkqjZJiOIfdf3{PIzH7xvbyqi{8vu>QuHE+ zO1#sKrz~1zmxei{Yd4&>Fw;rpt4EKR%d-Ig02V^2S7j|;_r<;?(J$|zhSps>P7>V< zcnzRuirVtl8yzKVQC9gbgFtrf3XYM!{{WdE z=XE1E;DQ0y*A2w_^^y%GZ}l1FyEn}gEps@5ZypBR50Kv=^z9n+PLBDs*)Q*; zy0Wx|VU9s&1H*2cCYxh{wVZ+pEs>0K&qXGSqd^yot+f9D4c)8Dp|MqK0$99^!WCGS zJ;{cMHd_ZgkT&M7GH-NSNo;vdzld(UJ*sLD=~|bYX@3H}!{1t~wE2j$BX1cSi@M|y zxHfWlHK#7KsrZ9Wyt0SGnjNN}sm*R=YYRY)6o}ET=)*X}Vq{V>7Y^9Q=VPa7@ZMXG z3|vnC0A@>@^JS`9L8sbHb1Zhu#biYcGIooI*s8Oik#`Z5W3AwS31|v6ueMEVsM~3` z8)XvMlz8^8S)?*9=$EKD#tcn>c{Em&jTY&xQ(t%d4e$Am3i8)tKZTm4HW6!gXH~J% zZ!fGQ7I#;kO|(9KbMmhvYO{3PjDHVdzHEFOqUDL^0sLH++xt$Q2{l zt+RZJP;;C*h6b{gYpFusUv`%CITa+Odw*B|0D>C-0F8Vyo(5kG+4yqy(sH(txfYSC z6^>ZtA%K6c|!?Ogrj_{0({K0-=2_$xnt?;m%ZqqRCEoPcc9NKBRZmDGw#BU`sLmJMj z43U&FNDIaCTTk-`De|m}sMyQ=OJ{lFyS+W0^FXv07q`X-mh~CPl6jvSf&yX;tPtSk z%#w{(-bIB#4#OfNg#kQ>N7lp0nxv*r7 zu2t?CKhdFBk>hyEItBYY@15L&cLHJzHoPsV_=?pp13{mG6>5r22L^qF5(IKLB^w~*Sf4|szFN9xpQ2#y711A zq8pfWwwe@(8115zNj}6Vq_3E}io1pfiS1 zH`bTysN6-UUD^qY-J?wLsx*oOQpouOmSEpD18u=LCmzRV<6jI%u3mVb{t+#9=3Q-} z@|sH+UQ%HR%wx^Tj1`Hp7w?RgKPX-XC?m4een#i$Zujv_!CZQ{8lvIc%hmjgd|FyLUG<@CENDQ>PKyw&WWv%Qi)mWWNH zEb?zi*(6qt8ZyHJYT>X)Bw~FvthB9TT(Y&(e%F7Y{h~`tn~A=Amn#Z9aiXT!&JDas zs-qxl>7jN0jySD?>Zi(c+MHg!tzTc>L{YViI}2Ns8*DWR?`AUy?gRN#NrD?2RHhFZ zIZ?Yk&DV^zS$r>Tti>Iq8il_1jwvE}R_aBKmBJupAQmJ8lhcvfxjz|b)><-Yi*%+r zE^Z!3E}?lN5%1aNws_7)J%3uuxbVbwSF=H=LuaQQIan|@4dybSXA+6IM=YV619M?m z5K3;PH%^*d$=Uw^OvW*tR{37V`|lrkif<3!_;%XMP5U&k+}oJovA7~Q*<{L-h$vZ^3!OE7~ztVJj8w*WJ z*I)8A7f&`Da>7$D%_4vvE$M<`fB9*F{6%U#Uro6(-`d;W+07&uO&#=+dAls#7Dr}% z=&Zmj4o1zy`D4{VxGEJ>acz4408E)G@M`vchW(@HI)8@Z@a5i*t7@=l*Y?-vWuz>V znK2rvi_Q$&ncM&~&eB5+sp@0apTxc+iS*wGURy_}*<3Zvwy_G@WZX*|tE&9OmS|-p z;{@lNn&NcbN5h&&g0J9#G|4p_tN#FQy|NgfcXP21n-P`1Xk3Lzn*am3a9wP8ele)s zeZO1N^y}O09hs8jON!nzs&8ayB#ppO{$JUrCj|-1WX}qEY#~9(`G$K8bKdw%;-;k*qjhIt z;TR=-PWDOC2(F4Zn(`gwx0XwBw^&aj+<*7EVh!#BTcZVQbQ`>btea?9kZFV`7~b(+RLg*qy3}o zz)6Bs0fIUx13csJ6NAXE@BR|aCh*+Y-&$%mBmo?Ybq3M{5B5pydi4COh1RZg=sY=a zFB0N=NrOWymhj2)fWcXVZNg)y-+nMfsf*DM}BG@MZ7)Z_IA={xMjO!nQg9o*%g}F#uXdobPf!Y zfLXq7bHFW`M~tPt@ea9dZ>dH7r(`FJIbBjaOK5|F%jUd3V$J2k?T_9@N^ay0t0k1$ zM~r+Ob8zV7%^;FXjZ)nsnm~^PggA{hvas?8$}q~SoICTl3!3uR#y zpMkZX3uvAU)J5br_f`hs{>F?Xnk8Yq{PIaE(3UH~+AyF1tLArJDqAf!&r!J0ZxYV* zxVMzuArfrcyB{w>xD52p;nWa4LKz{m)*|rcp34onKw^V&NJw=II6yENoF1L|#a6V? zwE1+)IHA&Q-p)2?M?+~Q z4p02EJ9sNy72b!V+<1FY)F9IL80L{0@cFL97!`2RGcmyrfHRM}a1C^aNAT{Wb8D$y zXxA4i&P}Pgic&;Z^OAxtd(5e(+N%K?C^P9Cx{{R^qc|13# zXs|^hk!>cLM(9|G#JO}}50NP0a zKHdo3j1!z|c)hgW3#I**pKi92YPR!9dG?tml35)JkgvV6yVc|w9G&3gVzBj1Lc>$m zBNNSY1Pd8vXNo`p4uBnuR2*+CPf!;I**IBE4e4J(GuQB zudc03i84tXk;sy#m$pQ4v=+us1a=_cjT^Dziyco-vNPG-U#xd?`F8q++69V7hm$;) zF_z0NHU{Hv;uy9@dw9-MX*IRNwzsESkKaVr>d4W@<>mfk*s}IGAf5otU(!5n;F}K` z*!`HjzMmzl!qVBJTE`r+Nf`yol{niUCkOa?;N!!EOiXM0I*_tS>a|*V^!tvSLZsrI zC%K|^7#t9*|m_TDAc5;ciW>E41TsQHs3IPRm^uH4L ze^l{hyps4=SJX9IT`nymYk6($+#ziIqjbOqD$<8m1%j(*U`avbb%xZV@#WsNZ)H5o zXL&uP<@#99a}Bg!S&Bl^{H-BHW7i+*#tu1tqHhyxwq7_(n=LC!xV_b3wpg_&ba_F! zfZ>>?ZZhQ+(4CvO191TX9dMsCd8Djz@}%$8oV?y9*0ryR$6oO5q~}l7T|B#6i6V|k zkzxrU1AiFu80R=#E^)X6=n(kk(?Yhpid_#^Th(&}jKUTPmHLQ|oW6IOj^uAI(>J?cJ1Mq z^l5aRN-M2)!K1Nx8UT)FOd~USzbN_F?_&d~;MSBf=$?Yo?@r8*9x&bQ)!(cQLBm!jMH7^HB+8Vpy|f z9|{o*5>S-oe7##$T}x285)D&NzPGr!xAOLjILu1X$j)J6uBCRi?5e6Tz)%Rr@w4Q2 zvC$QFlQyny9&Iw->c_&G9f8#2g{}O!V1f2YEGiQ*$nPim!Sn2oX;4c1!AB_e3E}-u zTC$MF^2ub7fwn-4FWN2SIM{a#Dl?9Mgbs26>#lWsjVk`i?&m_&ZSCc?8kV8t+U=HC zh@+MTm~*+o0mk5Sk_qCS{{V_K8&45l*=u@dh*t9Id`AVX@Q7i6P#a`{PEL8ro` zWl3SB7-*#I{L~(VT{xuiR-ePkC*76w>{j(nu#sr;bGP zSb1)nxmU!T^_zS9g}MtQ zt!{|OraOrWh6T}xI~O5Na7YZiV|T?KEYQ4L;oq_78fDI%9gLFP$toqVK+)LU2-gVj z)IovA2!jM=Nz~Dr&qK31T>3Vq_ICv>l6#vdluC~B+_dZ8eXe}Tk<=C{ zcQ7Cp10$H!J{MkGc!C>kE6$b~?8V5B?DCNl`AH#+w%xcTz!)bP0f5LQq@=y=K}t|< ztqJ}gn@jC8RI$`0xF0hOh;VLq#9h>`4?At&=E(m5Slosn)~A5%^!p22eM0W`;t4M8 zX4CEE`y{46GizZ89LU)&0*1qt3ZSwAI2?GhGDvaA$C=v`4j5h3?3SSI(zRn5tlsaTr z($0$=yw^9v)zTG`N8BWuM=0R5SX5(=EH+CiW8CQ;0=ClpL8@wZmzsoMV_90{!+9xd zvSV2rY|0hi3?&40W{jQ)BE1x&%G+l=n@?k+&^4_GNY!q>$Kl(XtL;-#Ys8W{>?D{x zu{?uw3zLDf&f0!av9ZY|pOw;6#M)1SwB1JH{=woAt%GUz(?}K&&Mo;W{{Sf&$>0>j z0x~c<{Yv*lxA4@q8W)BHkj*%bXk^kJI95-S1<~VO%udX4*B*dYmxkIsW5Tfu+em=7 zWeFPF?L}4E@vvNBK;VwwDv?+zMbuH&=5+S8 z2TX(O*9_JdkY7aynn76Nea#WC^fXO434#XVe>G#%F9vBlD*3x-3jR4?4AHT831gfnPFlKhZ z=jBlt-M5dF4z;>;&k_7B)hzX9Wx7rh<)VzFZcaBRBcVCNcRb*I(G*hKc(=y7j5-y~ z?wh7x#lM{{ScfRL2_=` zX=S&KRp+#@F!@Df6Xr$|`FJO5NX($}e8geck-?Y3rD~NUQ{7Q^P3wI(@;vv2sfJEe z=H%M#xApQfrtt;uiR^84ja1srZJ}Df`Wz-ydDY;J&iP(PV}=XQB$dhPaiwkI&kb2# z_+rBMO4W5uPeEx?6}PpDRhYjbL_sJa!9^n=?fHf`ZDpl%stqGfu)Wm0IQF`XQ6wPE z3~&fCnF<-3L*^1$<(8$C6K&8%Y^k&pw2BP3)1Fizot z+gggHX(@AG$kKzvb2(IBm+Ad7*NpxmUfk;qb>R2B(QPBJx3YU?fl-M@kgBfD%ArJ~ zjmk$%a4KypP}jBZ478U?sIa)YL1A-ua?(4m+M!HicruUQZ6#F{Z385}6^*Fa>N;hW z#LwYd39c-i?Cj>#-5ynmq>erEZV`rK7BW}?fHBgePY>Khq~2d&+UZe4bfPF{k3*7p z=Z;%vo6UueBo3;louDbkP65J|I7*sr+4lbcf_1{A?|xCEoF<(W-liBNPVG)ngHIVwuJy8 z1XrXP=$NICu~(rmRL@#s2L zy~NLNZ9S^m+s`Dz-C#u+c@P#G416a~;=>+dqLZ7GYS!C+*8DnoofJ6~)K%82SEp~6 zL(XiqTgWuas~c;%tnO~7j&SKCMipa8zCy#hZd`WGbBt!RV6mH8@sy`b7f)sO(=VD` z#>n?EEYAM`Fc`-t2R`*Ki=o-vT57Ui>DrSefdY8#AUmNyKJPGWZJ=y9-Hc+a$#pk} zb!|sTX1O{->Qh>?2_6qH#Mmc#VJw`BHzjYw;`k{RY!xDJJ%BD(2XSr)+(?j&sZp5j^og}^6Y2qMZzH>q%O%Uj8?cF( zPq?#=HkR6UsuEW!GQfxQJ!8eKf8#Ab`v*=o+D)XEi>g5;mX6aIe|T0n%qCtTSy;CK ztYnOQrbrjg(Y3D@LaAsCquk!ZB4uNmAZ3@ySJ{HfM8j`m9Ju?39g&PDB^&asPZFhB z)28JGd1z$#S5ngaH>2v78o1Uk6IGh;OlO6ZNJ9veN#)AJ$|Nw!IUw!ae(0^A5ctbS z()=9{hphY|s@PruYO$Ft5(uXdPLeQF<~uOSayfovB$JX(2BB|btOIQ%a!0CI$vK-+ zyS9}f1!9(0P0G8njT7K)2P)fh$*J$4gIw^0*EhH3^ZOdwX{_Y8w`pK}6kVjWVS(IJ zD%c@#*w{lAO-0n@lhe7J>dnr{U3c@jEZ-2FVDip`tP)`J)l180Bk%H!7AC_1Fl5z>b2LZc^?R-IDXxas+y#CI4{=+q$ ziMv?>hIkT0`O0}}RUL55!FOcjZ8+m}%^J?t-Z|&BvA(pnifgkX8Bro2!sy;uF0z>? zRA`z!jfCzXjOQAaB^PyOZ#YwfO?%6){15B?2U~068RpS#F754QxVN~yx@}5jaHa&6 zW6VUhGa>*27sBQ^&rAVlQMbJDI^P!(>Cw&pksZXzZqg}Ro5w^@@~W$Bxlf!pAgRW3 zNbNi|@cTyaY|U{dsd*&R!Xug%kO-fgf=~>SIRhl{$JVxP?ff%6sI!t5wt(;qTcHE! zR}~bf)qAU#Qmqu)U)QPRI`*q-H9Ls~rQmRN7{e?}{*x8M-IOVwpnahU4UBx)1micn zITBp!+V_bDif-h;h{XZb4Z6c=aXDr&zUe`D@hoeVUCgdjD9#S2io7Frq+aQ__Os8Z zX-hE5NimQNp8K2v4;*9z#z??5(=UoI@0klT%%IiVNLV*HDvB)I7UO^u3M8E>ikhDxvIDlNR&kN6{SoW;zEk@$gQnA$`wp*BWeOTYyW?33dw!&oE z>XEVM&B!ae8+jPyPdu9DwwnG2a;2xAVp}az>iSDt9WL%*rq1F_HHMvFlSd(qS|J|& zfnRFn+j||LDquEoBulLmM~(;uypFTMC9r{QC4uA~d|{o^M`w_3S5R1hOoMLFrmoxR zH*i`k2TzU9ma)kH0A#!dK%;Lz=>GuYPL|etD|2vk*uvXJ%%t1h4WJG{Ep7tw?gyy? zvRJiyM1NPGRBKvKqU+u^l09iJ$XOD2?q{^O^UNs=yCkg{{_ILrs*|*^<0`|i)5+H~ zODz@_5qNh;h84P!LFF~}zy~8gBAuk3bIyA8;*xw(P0x&%=#~8uMU`~_7HBHK= z!xgf7_c-d(oTQ@{Yw!JbHzK;SXpWaQr*7#g&YSFX`0dm)ybPd5vJiQR@^TN%Ju_LY zsoJcD=*xPopz4s7j9bL(afF81cQYKuOG4QzoCi4Fis~(N=rxJn-Z!y=TTq^4Hj0Tf zWZ!Xibv(`Lms>~t8a#`Dh5tO=zNhMQ`1~JY@u6ySl zRI5|3B&od_6=6CQ+~l=e>}P3ueY{>Ji$t46Wr8WSX_D#}w=lK6!ue`HchT?w+CF6g zc-nBiABgo!2=y&q!%Uq;?v}%0<4NI3tNLxaHVnme?`C`Lmpi9~-xC5bG8(&d+EJvq^0fd-klQRiB9vox>y*FGD;q#qI4Xi;2hD!2CEZiy%R8BnZ>WZT!}B=MCEfd2q>xiFY_N!{*! z24kC3#@d}dm!IjW+iDkf{wRAZIOQvCa}>8w%#9S$N#!ylVbVj$G7oMKJXafGJZtfd zP+dhh5r~#Z$N`U*7aV7v--T(*tawMlx`u;gp=v38r`uZJ#uCb3wX`N{i*{8zGCV1Ic+zjzqCAA08WaYnz#wVa?_I&YnOkEZabsd3$jf z!jKP^M<9T1TSpwJ0t=Zu=N7TBHuwuA$_9*Qf8FW}V}pz-&l20&$#HKJE38wwjCnH^ zRsu;DHEtZfH!}4=F~}#3`E@EzbLY0E@sBNpLh|1(vn`F}4IS6pVM|#2<8T}7tvV=a z2HeXN0g`&>01O;GE^EC$c&50q)`P;fNiBqt#pS^q4{Q6+^@AmZ8~~$fk-H3?n{#J* z0J*omKW1Mv$kRrUvV`)78>HHDW=^cV`kVsv@`^+PT3opEDbKM-D`6y-FAk4oX?Z=o%Xf?UtYLp8jwKi(`ZBq-8E>==azj>mV%-+UCIfHjLp|1`-@HGLqRmf`b^^I`PdnQPXU7 z84c6&6XqI{{XGUXI|YZ*sY-I&71+8 zcCL3;DxykGQtq^0EiV561Js@k(!kEGRG^Y=ZsmTO-rsS`S!mB4jLNo_qI{jtBw|t( zM0sqN`9VAX0E0ZR$;Zp+m$w&C>FKFi={Bit_N#NFs>v*pBigVKtb@;G$CKu(00As= zdE{hiR#5AnA&TDeLm4&_Na8YZTzN^H3}>95(zkUJBv%%4K#^NoF05chzy?pdw0<9dOMld@3#~!}gJQLyZVAktn7-j^S&&?w@ z_lq7$uQ2g7l(t?Dxx55~n%3Yc0FA7nhxEv*g*tT;yJ*%^oEp;OZ0~n!`oy+27nb+; zziV|9X~2ZmcyJ5y8Ch-OjAjZ|&NJvrQRK>OV?K(0pS+fvqq*KsVe zS)*c0hscj{_v+tYU#P6Glx11+$4IT@_P=Dh+ius=_b#n#YS+B_cJ*Vfwd-5E%XAl# zOwigGQt2#GHi}<7%(5&f+X&pS=PWbj%&UE2QuYwA{Z-X6Kwk7*s6!G9TK5y$3W zXLB96ew^ek(ivEa&z=;u0yy7s^#c_Q+T7Y!p3@_!dqy`9u^Gehf%Gkp&bo2fDASGYmW72J`<<|8T)f+{+)Gm_#ORYZYeJ<+14S<{c5k2+PHD5=lL&enV>cJ}knb#JJ}VRxZJ zr+}&_n$fMECfbo17bz!{NWmvBlZ=r>aYf;YY;~m`AM|TzaHZr-WW;bzf7UM<%GN#JqoUsEHtC>AszD95 zopP|7*i0)dLK7Pe;mXM;n9&n}2kyYg+KXD+hPS3m@WTGW!^N>mqU_6cAKGJr?()>a z7{r^;Qc5X2oGT5iL5;I~ZzqN!Yb^^w)U6**(RACJ+jmRPJ!Xn)#3`c_5t0^`;LJ!#_wAQ)krcPtxK;z@VbHdD zJB$0ftDEc4y8WcL6Gp-~+C~NtBUUU+WXZK#u2`IN-n7N;pLum0W5&>0mT00XhV9S{ z6?qxnH4By-uyCVs8-M_uo4r`V_UQ+T{O#q0tPRSnWCl6hP-mk1f=I>&Yt^NPqZiDj zzpr1BCA&id!E)M^w-Z|2Tgw7{p;X-M6I#fD_s9VrVz~%PlA-X!a*;y+09Vp9yIZ|K z!}_JnH*#FVaF#DeWjw01UzREk+8cN0o;ExRJj;nXR} zMmvGOPIt98^tlWw|9-CSKRpWrUFF@%6S`Df;ro33mJSD zccw=xM3z%ea%~p&)=Pay$+mdqy0>W%&4cB+1yR&D3ReZA>~#%B%Snd(&h~I5lj>5L zp7mB=H|SI#jthS= zk%ECV6EJ?A1X6R3eqI424wu5x+nbFuS^E{*+ zB33dvCoIJBNk6T3)|#tcLSIa=4HBK9*o6kT--tSk+1u%wd@YEKCR`5Zp!~V~>yw95 z*7f*ov9P8SAzme%W?arNj8|fY+(_%%qTr02) zx$JXZSK`eM%flW!w(%Xr_o7AAmr;9oY|yLx%F^Ndz<-3Fx_0DzrGc_q63ndjOSu!~2VP}DWM6FGRUZ7(J&{!PrL;Tg$i`~F%94@cgx79Szb z%-7ahHQWOG#87G)wW=E{i?U*Z;wVH?#A3m6Br4Je`M@Qk0hr`$=52K7^^XJT>!>V< zl3ERqX(A%VV*7g}_W;MZfD%ErGR#&sW0oOwDaNo}&aR9!5xPW7fJU z^&f}&=B=Youisr>+y4M&EtS2Dwzpwcb_!XeQ6J3Ak|qcvZV-UkQkfdP_J^(Oz9I2W zm9JSd8B#cHr#@TD7`KUDMOMQc5ZzZ8RypFju=aCNp3Ip^L0qrli>S5TT-ZqjV(wSJ zmMKlT%N?MW7!g858Jc7;24Zsau23MYv*C}7cUBh(+uc`symS)sOO&c#EK<~Ztj+nu2985Pyd z@N-LlF|K5}Hw2x`fg@GpvMPW-m1|mpl}4#;=5kfX(xd!CR{BTr74f~XmK&QZd&RxK zMv4n~ql;vLgGtsx72B5D0M0?qMceyb16!8H;%!>?YZ<1OPk=!+lUqVs2{RU98@P{p zjFLw2>zd@X3(pdG4??}Nx4B>J`=pKrzqPhRy0uWi7Q*ck9h=5U50(wQVy5w`_#eXF z2C&n7Kdakn5Pxh(b2L$2M{ywk07hup@T72df=2^$U|P7P zW2n@0_X!QNYr3@J7^PN@Z{A0A#ieC0hgJUomV@{+lwM8%uQKsQy%pz*^=Rh5dk7O! zHwiAEX%bAVyO|j6C}fZlMp=nmu>_NYw_&O3IwhX_TOCF3CAoW4)35x`>M9yIZId3%NBLn9(4(n*K|4xVYUElWmr0nb{c++B~4GCUA;! z1`)Ky%UE36X(P_Kg3C~}w2aB~86in;qGgx;muX7v=p$f+k}}#iRyLYg@eEd;9ML@3 zbtSQady9Xx9gXMw`($QSY@(bhs`7HA00bT$@T4qs$dUuQd9(w&m`%bM<%vv{%-6}F>gX=;}7+syDp?E=D}D%H@oNi#>GOCht+=pqo z!-HJ~&xmwY*RQR<+HLP3n zIz{b-lMOV(33d@EmAM5#EIwjJdkmeqz&-05QScmIAk}@$1!|8o=a%%ZLIb|ANGb#ydhBtF~|HOCO*B?any2Zwz;ZnI(NiP zQYh`LuC!an5K5P_`4Gb>wn==)lVLl2xSt?o3}t}IlgUyxnqF`9DpI?TujtG_4%m2) zRq*=jbKkrn+V!%==yYa8ja<~qpG~p*^_l{ z^9an6+OSQs7V`*5-29u=7hDs(GhOihwCM4{_FXd88{3F<{T|Y5cw}A6ZyN@7EL~On z$j*06z`ou{1+Xpjaj#!#iKV`tn#P$0h0ybK;|jT)z{=818#B(?bXF{gK6h-4V8m#s z+m+k(Hk6c|>}dF7UABu|v(z;UrET+ENj#1)@%b{SjxeNvgJ~Zw1_s_RFlM{Cg5yh` z*56XJ!LXLy3rH6)_Rl#<1339T&Kr)L)%_nvk4VzBNo+4IH7QzYuIH7efmRZv?1JI@OKVx%?Q>rc7ScBpiIvtj^JFT?!zjXTQX?lPai>dqkX+qg#~=D-_0XPM zUoHt+Aka>Y(nj1@&t4=6yBNR)it0^0qDylP?7}-sKPCsYh9Kj689qbvFUq1IJrB$< z!vwwz z5Ni`bBg-_g!)k4kMzxCAFf7b*9Aj$WvEwb1l1R=5J=~3XH~@nq0*km3r#R{dJ%{*L zbAO;FqG5_%MBGLp6TuybhUWHi+sk4#n5z-Al2Mxh)RBV4a&^xSSZUfN&DDj^+HGz_ zL<2;VED|gRW0}!`^FC6g8CPjyNFV~=K(Ul5(ov4D`uvQVlV(Nrz2>cR7Mr7qC58yh zF``1C$PUbx7y#t1^!PKrsc0n z>CBo`_YHYsxAvwMMQOL+rQgh30b?&5yEF4`kpWP|)AUrzVyt#0Sh z=Z9syX5_*nAgccNX`L4iPYzDt11ny()kL>8*P0Y>VzOA<=+=#Jl7v2Q+6A*Gm@+~- zA!GA~R^S4JHg)}{vwq25T`#xvgqm8&W}l#?r-g48-8CzKB)JmFbEZQ(s4Z@Mw71;R zzCOw$8NdhTUz7~y+iNRtE{P_o4ehA@(2DZcbTF!36p9#?84;CW7>YLo=fT{d5`eaq z$B1sUzXU;PcWbH3b8anIw70Xx<{N=D@4ezNm)jbETjs-VBpecXgQa*w&K8#!7pPX+ z-ffcVR>+}ciDUsws_wvSX9J)(0E(+lF;};rZ;@1|McveGe6RQa08H$4ttMS*twgJI zBf-T*iEt5z*9 z&$BRXb!&*NEOhM-6!W9Je>PihINLOHED^-&X2goh=!G+Y8X&_s0BCvFI-Z+lrNyS| zQO9#)zFo?Qn5;<_pNSPriW}#(#tR_=MLdvHUe{L7NY*s1FT@%Sl@Hjoc&Ajm)T1m= zO#-Y&L2dImFv++8*%HgOfWWMKT|-gQyffkJjZQdq7SydSEbOhPn`AJ=o?CpvB@HI= zb!XEbbI$)LCn8wvbt7y_%-QNu^$4$MmDoVR3l-+?U0NYsYj2vzN`D!;G zyfv7SJ4QWO(+*Ny81I1S9XWe)Bj3aOqdTDSsZD zq+Dwf6}h>P#Mbb|FlKnIUv#nu0ZS>1gc5VPx41d3(?-xd72&G}SuG%xv^LW}+EmK2 zN#!#k!#M%YU+%9>#{ogc^0mFwCi*gtt>F7_7g%VmEzQlXjMCk(c&%c&%FA)*ZSw;W z8*tc>cPSq(c>&p|YF2(65$Kn*&lHxrDixVxQe*_#!~!9acM@&nBxGTE=L8OuSMQK8`SJ=;?eAHwAn8pvX=5| z6;^}HMPOQ8{{VO_k+Jy*U{B5%e6a<}(t8S}MxxqRI~@-1MkedTx~$P!#;F>kJeX$) zn>UfzkOvt!>646{Q61B3_PUFu)uq0rJO(>S2~{!0s91S&GGJkkoiDBd1B19%72@4K z-aD(k9>xo2juSoPcMhslLdpqp!1AhE;}{v;976?&4X5IbPhQby(p4jbO%18k0yLY} zd&zI0np<@tpUevCgetN=-RwmWC&U{47SfcD52uLDQ^@W&~Dl5t#_ z)JBb<#QLSZjPh$XA`7?-trXD5Y?9j`kEjfMlb3D4vjMOGcY0>9Ad+ioH4D<|Y%f}Q zWUyITj0WThS(hE+2g|@i_<(sQ88vvF*jGw58>+Nv`mH(~z22o2{;gr+o2y+&C61)u zXSOlNA(0KsTy8AV0IaIza5n++{KF(Jw}$MsNHmKLLQ5OjZ!K>wbtJgVTXhzG1T5xF z>yn9*%0^IdaHPYi>K2mdntIDPi%yOtxfd4p{{S@2aU{VHlvzRzw(L$Djp0Bz&2{>3 zi>x&563)_Tt*y*cH-dfn@ z^?OeuTR%1ntGU+Its43iRg%&shDeVsA>KfcHtZ{(ECyl-3&U!fy|lVa+B6Av%LI_D zbIls5kR#nYWCm@#+yDko2ua3pJuk$1)IVbLnXSIa_Or^@D|Q5%)udDcJ^3n1peJD% zEJ+w7aeBXqu5B%~J6pqJttOv3X|u(9V5n_ei9irb69;jKoMpDR3P9xJx(*jj9z|Ha zj2&0R4RNYo&uw*lY_H~fo0|zHc%t6zxs&&DeBg10`APohtv>+V&nJp*=hL*ibWvjC z%2{Ms)PlQ4=iYM62UF8==NLSd;k(wJA*E>T3}~cB6_hi`#knj=W@bOb!x8}K2RVJ# zpQb^tOrlLk?8yXfkx3M3b0nDMQ|Bt6kl1D3S8|Q4L93d4zU)ltxO1*~Ssj*%br!L4 zb#)^#8iHNLbP3Fmw6VG>Wd8tjcwC%(qmD2Ry`H!v}&LlR?fK~m#u z=kZO4op)_z1%-p#LZz?ck`2;k=F!H*irz6HPbi!fCk*F5E)3SLryf@uNh^71X~}6h zQkCQ8yPaBigGaKpwY9dI=I++c+(8slMV-ZDGRL_&7zYuPlHOTt5LlXq$lPD(MjM-> z0m5#Q`U`v69hQ5S$VuM^i!mU!+#{n)b0{da}xX$fh=qX3?K`<809^P=rMpR$zAU4%R_ur+a>dB%jde-6+o90Q;fXJFOC3v6){+~qA_Ygb zh})reWEE+HDSN*t4hoU zIP+w0;x*a$sCb`OgZnA9JAEfck_e+#f-+2qzy=a9`*Yl%ylU9nZ2NEFBzDpZ@HXEsQM4sqPBfu7UMDV`>$asHhZWzGmEb$}b_V=sL7owxJ8b8%q=>X{4OQm{6ZGg1`oBDP;-s70JQp9cPC1 zty@aE*SCUh?X7N1cNWM@aY&zRlW@Z9*}S$nBcSKz+u2f4ouy4#dG-GQFT~@taCP1VURv-pGWZ>_N`;#AGOL_%IMu&#UZm+yJ*$! z5gTWizd0($1Is*|08R~g*0^#cRj%3_Vtq*+opiBj9UC_>+HP5|>_(e~FnbfthWpy5@V;zmwvX*yNGg~QjcDP@V5~t0|w&J-1Zb8pA+pdT^iPHGSu9xiEdID z6q#0MOI68j%CQDzbz!kaN|PDg)%+uU@ixoD7WXnor|8k>X?YaU+lgg2E`V&`j4CKG zu^C)w%0Fv1ui_fpp{Y%XnD;$~T+c*uLGO8mnd;@BU^k77F3&yJ;qJ|g&lNvdfUzrTm%yq-jJ z{*4bHENn6O=dT{PA8ED!0HFT>hW`NYHh=yxUTm?rfp6rtjj?k8SC&lk`_SvT zfhwStD%j+baBEY*c2`=bjNzWrZ93}5Oo^trxwW`wP}0XNNf-?poy3xQZ2)!20Qyb! zqP%1k!5_nl^>Fw~c#3?rmc0)PFwCoAD@DU*dFGVbh1Q3rYbmTfmX|iOb8xqk7?wL_ zKWbgsWIIC_3zyH#$_5D)-{0xe1t#ZKR41^Df%?}M;j6*nFC1Ozt0v7qRf(sLG8ln6 zb=%Gc$N%n)(`XrCSM%5pf*Onqs(F0tUDJ0XVSNsX=0T~Fk1Ynf9aTO)pW zXUV`VoUv}&vyD&U2B{^T+uK=LSjtve0%LTXjiV=?{A3R2JXXW}JiF4N^ZY-m+$7*+ zuI++P#Bur8MjHu6k6u>#f5GT;VsTY#OPbfVhnrt(+E%%yYKd@-Wpigezu82$Vpwia z%&99X`Eikj=NvW;a5kKCTCa#S>pv1p4e+|TiPaKYyGDdfBrOzJ`I#AH7!G#fLHTgN z3|FDc;#B_8{>t&jmkrb;gf}e+N#G}=ZWuWFVB?&ghnDeAg(dJVsDn;|()Uijg~gnb z*~fF{HXNWT%D}$oP#6wZ9OElm*QaaqE5E<)FpsjSX*liVbB>mSOtsb?&Gh{?J8Kwo zZ6?WX_cNsILWbN+Tg{En7y$vnC!T(7U1G3ZK5Zolj_vLyj^MTx&H+Wn*FZvmz_Syz zNWmQXqeE)tA&S!U=m=s)j!5P+B88ZhP2au>7~Al?eeT=qH6xZ=Nd>x2nsAp4@23 zmbd-rn{-OfLbf1$007C{NWcx=_%~iuw7Sz{(G8^SJhIPwKAsXu;dy3L8~KeRGcO}7 z$D<+6!p~b(@a>%64U#!5Gc#PrA(k669K}S%LlqfvL~h@Eapx>IXBBKMU=wKieXrUQ z(Vfz1lTWx;Vv(^>(Lv=&DgOX$WA0^%=CY|uR&M(L09}ryqR{Ljc37a4&dYNG!Vy*_ z*i2jew#n(VIpYUAd*_F(o&Dr@Leni9O1mZzqD&E6a<7|>-zgE`WP!DDz{O$e+BUN{ zg=4*$H8`~?Z!D9@K+qpA>@dl3u@osJy1qv^WMH5%VBMaJA{g%N?ckmZIHyH{rr){L z!xLxc`LmWF=O-ZNoPot9IK|55l#-m>S&crMs9oHYhQwRj+ldM!k-%1BsKDl=@h^;@K-Fxt$aIUX zLhkA|kp;OKAbWnbPT%4p#eD^)wV`S{LQcXop5Z=C=ci7U7n{`Rbg8W_MW}dlT5C&) z?c%o+O_U5{jan3K#g!ZksrlA1l-br^yt7Hh)N zNJxMm-pp68`zkw=*nW5blWSb??yqY&@)q9mK^|iBB-pB>?-Dwkb>N?&&MUC+m7U9J zmXm6(WVk3B%Tx%F=Lc%2;D1{3v6cS-v*}(--)`FU^z>bS3zLqkEaJZ;A1x^T@4J70 z=jL(xXM^?k)#ucrVQOVN6b17hIB?lqbls5~XVe}D$YyF+b6EXp+4b0w^^tpVNCW5IKqyE3(9%LaZ3zlo%)O+gwAX^p#K`(R$G4{wrWcufRarkDT zzR}-M@RYh%q9L8+iMJ|9sJn>!tIq?reJGB~3&r!Jx}7c6SV&lc$Ux8JdHky)c&%>j zZeGUX@J(*MVM&+}$-p?rrbT+I4H;>Be6}Ifan*ijITnE}y!LSFt!RsJF36$#bRn)7 z5H>DcXOBa z4PN$ko>^8kR*oxq6D-_dvZ(jY0R)3nTI;v7>iUJYpJNU5GT+_LZ!!(Y(Y?&OTX@Rg zm2fgfamIMg6>7qS-8zjZ$3@W^!G7&dDYpJ)O?OONYlfcNCf$y3c`5$@*8c!MT&rCf zd`sr(UUI*sx{%V!!#e=R zNyaz;=O7H6;*1bpUH<@VTia=u($2bd#iK=SY||L!GNP)tmKY5APl8Sk)6GsJ8mq-q zhN(SYr$cHPeM!OMG*MdF?)6JW+g;tfu4|{lZ82@$7V%b);GPRwNxD8H`=m$@SI#*E zqURtGYTx(*+rr))ztk z9BX?=s?_ea4KfWb&dSF_)8^In9a7ZY-B>1|kjSx=L^6EQu-nmo@H}uE3`T~V;3zcv z-CEsj?*)@xES8gXc2f*Nv&Z*?bpxlTCSM2M-QIY%&-+KihfTeQN*2c9r7Y4SFxob} zN>`HS)cVptVCRC#_P!(jpv6T zxzi@o?%`Op@jbkQ%!Q;f1eIOHnE+w7h4cfSdRH-Vp=l=K`UKZRdQH@#<{N1j26us#p_2xvqwi}iZjhB73IKiuFcOMV* zn;Unwwbd5k5?Cd=g}1^Y=0hgY<>p3TkhVYvs054JMTGYAXlr{Ch9!2Z?Etry z7~pI*>0S)c4z*){ajT{8+b5bqCY^q{HUyX0BMvgZyK&A3(-py5x`fqPuW~+J{{XMZ z?2M?+5lZ)a-v0oWpYZ3C-s-U2=-S*+>WYo_NRi+&v}-f_a5?r*xTbqZ1X@ba( ztf=k_C?;7;eBAG1Hj>4 z-i$(}Ov}q|(2%V7jorwY!o_iA~8}JNM!#Qcdd{y5&K4 z$qHBRvF>voxi+1yTD11Xp4Us$XIr~%(JZYTW(fhe3o=$R`#`lST4W6Z| zY8FV+6loTA0fq_cPsx+Da(4yYlfcC`&i?>Nywf~!;(be4v9#3hwENpDZ8fKgIT=dw z#S3rT&Y?gc94>xsz>K9vjaYNVzrWY~$1iP0uPsQ~qkqQc81!8qP}eVQ^!VgJv0N0I zRbW&Qt+FB%_ZdB#8NtO*4QaZbo8#-G-)RTgZyBA8LI8Cd^zzx zuclny96m7{L9{eR5ksY)LoRqAmuSl((nyI9*NpLFst zI}TSlIXU$AuG_@Aebm-EXM!{rf?Mb#`$X?B1~tZUybwVJj&Xz27{RMCYPUA*G|vxs zbu?+EjI&RERSFIUaHN*+-}9*LCVvN5YO_l$cURX}LKAq>g6{3LQy^ytb9Ccq#&9uM zgDS}u9dg-;l z4qEtv!%ezPY7gx)leNXFJZ_fA_wlT0wMlsM_NQ_knTFE5V~<1d*1KzI4#5OT2qZ@u zMzN~@0KilQ89bZ-IXD8jtIl+(sWp94Z_WPz!xf0dDpp-t#CVH9)M4>8oSIatZD(x} znE96p5*Jw-U7Uieg-F#)jetiQl5hoLX#O0vyGZ4@j7?~l77r!8oQph+pJjO@?dC2? zMId2!F<+RVBiuGvU&JG5d#ye}U&9nWglgH5p!e(~m${hu>p{!4*f-p-_z z=Nmuk=5tZ67)H(9{A1NLD6`91N%&pFzRE{43D4BuSlT zRtuQJ6>bR!J*&?=S#=JBt!TIQwpQ|}x=5NQOoADd6ZHV(A5af!yR3NKQ&6+EjwQO( zF62?XxEno zZTzbt<_lQX)k2la1H5C9-ew3m73blx%2M~CrMEtT z!KJ9{dyOgsB%1QcB=E}(FvT{Z4-8Y$E!jxlv& zEn zer3V=ROf+RZHAd@R2Pt-$K8PzA^!l5jQ+J2zo%FoCg?>LWHB}!*t>K+&TG_;jmMQ7 z^{OhZNlwqm<*i}3dF@`=?c##kXy0@(s;=Z9jpPrRfG4hcpHr9WGD~TFYX1Oe0d3#U zg9;8G<>#Kib$xntsgmxGO)TR+I&{BUq}KfeWo*$ zo&t@)l5^9F!nP)qTE3bdg$Q!O(Ytzi@926L!+VG zrOVH971lRYK`W{jDow;xTVX@+mvS{}98il5zVRsE&-NnAvrm$#kwM+Z?V+!l%Lv0+2cM#+-E}@l~=LdFj0^|_* zUEdk_5-mFJ2bBa0JbHHHZ)vE) zCygBEkf>u-$H){as9!Ar;YDnwp&nT+S53bie*TA*cM6Y{>33_b*H8F58d@fhZ@dL% z;}9${9P2ct^w^Q@EhBbWmMx!fqZwunn06p=NyTMe_*Yl4(r?pHiptpN`a)m%aM|0b z6Zu$1lVIB?&i87(Wef`0`N?+Jcu!E%^gBpn)h01pN)ycqEOEN5t2{_VaxW_WaRidz zzBs{EA@*JX)$KHY5XSnBt0cOtLOJeyrc?!G-y=veOR>W)OAH5m=O(*3=)zZ86N{4Z=0*!xXP1L1)fgagfN0#j%|3Y~vZNs_J@;mHW?YCBB6`6S}3n zs|1=CUojg66g+%kSTP&PQ-Yub`p-er;DbQ0w`*kvC{{8aHBvT=V1)n=zz?A5SKiXl z4sBpR_RLnZnw_uHLQ=M;#@-#*bZrw@(=W}P(OX&Inpl{}BRq&7G9;T+pbSumzF^q- zn}JQV@jkJnL12iYBd1=8?ePLeq1SHk_(0B1*t3@Y5s*m)d%whA30dn`yPrx2YJum# z6&xVv0N~@lV~q4Q<|n~PsA_tB)%K??<=&wpM*HAIS8tRVH^%L}eeKM_T(HXwk_vRB znqAfZ0Ix$eh+NGzujlAuSa_dZfh_eXS)O0Ct+|qDBaYN;7UmTUHsGnZjGjQkE^-S4 zUVjjcdsMWZ{m!3jZz{=~D3&#V1q6taGyq8309I_DmN3nPEncI4t?4>-idtzl(ZvJ+ z!4qu5?ckqq4+s6Ca(!zy#WZbRCTp2umNg)<&NpGd-8uK|irrwUa`Rl~mNltcm+>>a zHR82j5Nh|4x0?p7e`rL~SSz`ZO@glyBY`8v^1fFainiaIf!*rXx(2yshevoXbbUrk zU+qaDBrKCjdu_9E;E75!`>}@ruKawJ!D?D=k2!|U6}5&>wm~ttoueBq;)R!H`95Ep zVgMZNEX$GssdddG{t;L#t*oH6QGem{XL%pnQ50SWD=WJ*Z97?+dYlorjw=pHr)euQ zvNa(!%@%fc+NG|gH;5pZEzQNHy{?aV$rjHxZ$9b_-~b1ixef+E^ETvwYsn(gRkWz? z;qdwvu(O6~_nFVyjM9Ztz^GlNPS6meeA|`VX#&;JgHye})T}Jv0y*T8ci(FuiYB^8 zjm&OIkd4Jj`9TE~kfDQY>B(oM-8Pvst&~tfY`6B(U)o9MN`g@$1eQjO{_;hAtN>k% za2O~zILnsJYDLxgqWc^rwxeYkwhASR+B>PGF|5iZG2u!nkV0~JBP259pOpb6x=#md zQd#Lb(74s&x4jZt&1Y$O98Cn9o62_rL|~;Oa7Nr6x#5%$G<7cq>bClJjiNq<7M(4` zN|VUY!EteN-)KSdIBWt8!17}Genxf*rk2M*PZ4-$NxS~Tw2tO?XsrC}>Dm{M?Y8m# z-Nlhrrt-prmJcK3GA{fZdm5&m#0%m}i&-?dTT`|s-%y_BJFAJ^-dPBVe8Vw}k~6(? zv?&OA+yhpYq46Hp`WYWbhRVSZO_-*NB4jTH?6Qc}8xIU>0aoM=PFD>0O=lW-iEmQc zFD7dl;u6InXx-8~c4gS(aCK+P9#pe@pepn4l4#bB@-s(GxVG-Lp#8iiUzrplAm1`Ht7a3E#_5T2XYYY@;C2F6A{{T~pn)_Z) z2LAxUL34N|lJ55E))>XKN*@s1F5|HSGi3^8nT{Q>GC{3B14AE)d^@T|dmfp0bEQKU z_HE+El1l~)kb+Q(HmLxG9F5JBf}mqu_<~(?PSVLUExom(K#3+WSq8^p^<_TzuEWD6 zv>yX&TII;vE)XTUo;Q(@zndIauU8Kk;XS0CudTgLB2_$$?j!KOSzU<1U6GKRtqN7D#VV8Np|WB3Wrlin%eVFwDBgXs==p7kpBQ_T+1Ya z2W6Fe5uRZJZAucaM3ZxPm=`m z&mH0w@Ku(9`@KM&KT!`IjBgW95Ohdm-h*k$ML?jFpPoUJk_UtBohj3ryH9?*+orGX zI}-Mgah~mMx3Bch8eb9W`W~BSdmQ$&!uNArubXWfvrJ@=2@%*gAfPN`*g#|%j+-a?CD@LMqa1`x}W8gE4e7W-&naCr#FT12whn-lGPoYb~{ioler;!e6wsZqQo12x$-V0RE+s-&n^k`0Z;)7PVC`xj(M&9L&YNNTGTZUw;fXE-4EI!Fe_W% zq*Bfh+$u(6lWLoC8;&>(t%hEH+fK99JWFk+nXj)QT|y)<7|8OihSZZdV}b&z=g|Sr zOi!i@8(l`~OPj}dNs&acY7ni=jzmX$u#rJV!w>^D)3_2y$-@^3I-JW(FV&hs#py4+ z?yWpi;m;KKorBA+YI8g;mbV&=WrCN9JTW-P;kIvdXqwwb0_%Vy|p zEXyld2-C?iISj#-&&~5FBkz38kfDy@;~IU`gI2aO>k-;X4WmVEERydFDU3yp=t)7) zf^Yy{0IyQg>~t%gI(=sL#t3u^SB>JcLkmSb=p|NSs96p~h&tq$z&rt+soKq@ulbxc zoVlZCWOdp?rl$f=Wf_2nR#t03$r~sDY!0L@0oGa)Q(0Rrc0DrRSPQdyyUTUc{5n}Vv$tbhX1#S`vDLU-g5z#G<&wL=-R7OjpyUS4jXGD>g_fNOhTi7l1)d9OzrDA5xd#P+ z#&h2p6_KZC3uhU&xeD&@nI}m~h}m*JOkk<)#sM63uU49j6PsJveagqDgu#0_#*}I& zCa}9@4sVM*8E@hXD+8n1-A|~;65E%Db4Liv z$X-w*V#SW(oT)6?B-g!7tk`ML+pXQg#PUW61QJgJ(z_LC@@n)v+W1^gOYIbsIfS?Qb&z#_HlcqwQ?` zzN8*~jw@O<;V3v#lD__I;>1v?N8fRJZ*$M|du=~Yjz11Isc@Dpt0d?yVHWa6;V&ST zP$bw&W*C@`c5d0rgS*ggA@J4fLvgKm$_+s+W7?3w=ne<6Q8rJ~sBHuA;E0(Hn>bKG?Yw9q^X`j3NjX&Ul7dxZ&g4EAdpc|^!2RT~$}bquMWl&cgCjNpvB zT{lJ7wQVBC-L6vl6+dweQ>j(*#oe<8)8WMSHTP#@DghjqWHLs> zejCe0Ku_-&df}J?104Csj6NGZuD5GxrrNX1t z&$C(hpx@vnlLC8rnf{fBtU+t4T~9Qz$sEzbWEhhm?ZEz`mLC&`uP@ zB8t0PZ?8|p@-GWVt<5&87L9dmEo~%plHX3&8UO;28tGz2Ln7d>CmVw8$T-J)rLL`` zyJ(&w)Msn^mh$Z#yhpO;NS*M%yD|@-ux08-E6@BtcWY;<&!}5m=-Ms4^mleLyi=;& zGLZ5sd2&eM0caIYV^8(CP)Sm|ji}h`K03G8yi?*>FEsr(P>L-p?0S{5GqBV`2yv|oSTdPbG4>DGD_*3e#RPHm@|Zf4ake90j( z$jaNCu^7r6VB>Em6|-hV*$332^sCdub<}eKCP_j`iZ@GO^xl@ znrP#7jKIw>knP>-S+EHwGbkcA0LREof3?I}?f0?TtjQmS^sOEBdHh)xp{QK65?)zB zeGADvo7ZXC8{_0-kf4=Nq=I^#8~qninkKrkg=4ms*Uxs1w)wg0t?J&#k9y|CbICf8 zSMs;~6ni)<93e_H-Dt;7shR%(4|FN~MdyfbL;}xi1!dd`Z2ti9BE3Q_A6&Ex_I*wf zj;c_VKZRuYE5k7OLrkAghUQC;w%RP^8~_t&-HiVLz`stFsQxCo^Pq?OJO`asqXukb z9OJchRK&_!Exis%VWAymzp0z!y#g(JMc;h_MR^JzF6IX0oD+hl_)ph9{Xy}aSHwE) zmxp8U-TZlq-gTPN;eihx-2KNK5zoFqEPLsAwcR!2yNRMJD_rx}kGKrwK zdwZE8ixNGwR|GoD=rXM2eeCh~cqXE<)nJQNwb-pSwqjd&7BGtO%NQu=oP424B;$b_ z@$#ChapSEV-s+l_o&Ds7DU`mYXBwepk|{{{R~5R`5x2 zCFR}S?WE^vzqXn+L$cvW@(!#$nUpd405KtZ(FmrhTBuQ7aB`h%X=t@*ra<%StmfkAt4}s_bb;5tBt^ByFFgs z*{)VN#HnQ^)bpRT*~xC^Nl0V6cpHxg2Lt5*a#WghFwv`4G@gl+s>X#W&I;`i>pm#5 zxbgOZsp;@tY6%s*sMheuiB*nx+JF5U>&I6%z7)68ZfvG9CCt-a0F4|T*g9D2fRn00R#7C6(5ZFq+!(_B5Q`AxOi3@3|vE$6if!*EY}_ zX>k${kn$7*(!A1r1W&BTugP%~Fz&k0epUs!6ED z_JSS|sdCY)VpRE=@R6{Qinh`U?M`fdT=6v&`IXaqtFDW>>_!H%j3oQ~w*J4X8j@JW zWqO_rLP{M%2?kCJN4MrbnH4RcinS|6T@J^}f$b!iTwGm5?23W7KPcfx@iF;VBP3?1 z_)|r=I**2Ri<5aRn%ksk=@f&@ZKzR549-(_{{WfroL~T(GurE#9i7kHq_%XodG!0Z zCK1FNK5v)0R^)x(FW7U`cknS4>2t<}*FE*y?JLIZck=W-D8fl|tv|@S;i>H|b)EWz z;OiF9NeasXNRUX!ad_3p+ROrd+>#7zaq_ktz9P}KTFHBP8d)9k{B0XOi-0?xVYC zrr1->13QrQR>lrLl~KKkw2u$TY%UzYh(K zLhJW%gR$Hk5TsXzc!u6T>@5Z<;z?E+wH9dE9n_Szw`?CQgZw>m0P1)KyQ$Xkd@F6G zTv*z}9At+}bLFbDJ2PzAfEUw@;POeyK9zhjuZeuiTbrM5~KlsO9Qy#WE(1{uvqr+tG-)b$I=yhUv-)!>PCSVH!=5rP0a zWNqC}3FLInFa|tU_O>oWFvMmIrCKlwXSg7*&ClV-83#3`tJpo1HnU2L6~u+sRaL+& zHnv7M95@_t^5kbV*$lpvEf&rhW2(tH9N&lStQH%W)pf53eWB)dd9|$}WSU22XJfdy z&)y!m1xFOOx7PQzR~9hp{uMeLPVaFBm2dWIiNdM#9ymh~S7_yq*D8!u5D>OI*jq^+ zy7%j6CAFm1&*a?s+e=8^Uhmz@AKm9Aw_qMIlbtIs3cS*4S5v;BVR3wMF#iCAcK&vC zVf(?o+_o6*-N`3$wzPg)Fzm*FtQ6wPF z;O@9rCPyH1IbRdV<2Sb92lB@+DZ**dpK227+K1lUP<<{ee9Bb`|7-njZAp<%S;OTJ*1JT z%RCc;;CDFNkIagFj#!m}r_OP|&w=vlez}&F`(j?qtGGsDt01by{%t$x{j;q6V7b~JPXcg|`oQ8Pz z54?kR3#)KWJ8~))~I%5aRFTy@d+U((R!^$UARwb*r=OG!l5_F~*e zc+VsvBfVSYVh+|WSFcrE4CEVL3)7;}^%)_ySzu{ne50@_l_PNV`AZJ@=abgGI>ITU zvqZTFW&;dWgJc46$VDIc=>E0N_>ejAK8xkP!Y!_kOyp)7j7A=%N^S~G-=>x!)Ku*z zyMAXTuv=+X`u*cr+TKo~Uv1<V9=5mEsSw8+En4mu5X#9C+?%)7}m#7P@)1~dL9y#D}H@Xf}DJ+zaVF5tVmN!Bgi ze&&uj58Y-N$SMl_xe0(z2D_z7cZ_fETmA>&bH=<@Av<0RTXf&>E!>&4vE^yD7dnLH zf}5O_R4PN@KLIdQ9l2Z_U<}hW3rVzjOd6#2@LWQwQR8jO%Gt&YgV00#tAE0+a3|)10BpZ*Kj!yyg+RjW!w%hKMeaE z4EC<~z}mK-9)YN~pw>1~*h3MKqq=K^ST{P7&9+5W`QK!Fi$2v|p?+r1*Y7ls5yPq8 zL17qsOF08f@c`2^eb)8)M0{tTpP_d#2o3TYa}qlS`I2nlH6QE!alfuQRS$K;t;W z=Oi#EkkYN^(RAxs?{wQs$c|C%uI&=-LGrCsKbB=c2=e6s=RDvHF(OMDwQWk>?BK9_ z?K;~29ai!cx0XwtM%dlUgaM|L%#Y^tHns*?no;*!K zHA8LT$!>47xkMgS#AACgY&JL~V*vE@srBgexpWlNHArGeT773A+Hl_rks9h@yII9Q6Hc;;0g2VAcJVSofzHW%7n znWjOg=~G(8sNy|D-fe_U{;}j7=@uNjnFI*(VF+Ac>^&a>V)ZeB*7=hff4=z#j z#up>+V1r(lbK&%o?8KU+cIV47>|1+Nh1tI!JMQV+fIILxuUi3%jA2rXUhdlU(?+-N z>vPV;;NxB~xyJY}S$12vUm&ST0Y03m{$ji9XTQCKy{vH|Ulk?IvR~$L{xe2`J0YpT1;U${!L^2V-y*Z@#&(Ul z&NJ7k0N~<_cv5RSZ?)KXnsH{qLP32DQcD^6m4iQ+fZ>t5W9x!xo-J7>@k}XoIeA|8 z&uZI=B*61x1>1m5G8Z3rB}Q3_gz0sk5cq$?{vL2|CM>Bbg&s*@H#0_CdV&D?w~`Jz z6M{Gbyxc}2w>oL-W7Wf8u&xbCH!}21A%C_beP36TQJT(q3>K{yl>|(n;y{BSxWU0B z<9`E;*QnY-3{b>mg?!SXn3c-{dB@>iU#siZdT)kxYinqrm&CUkgRQJAu!*2jqE9we zm>rP?Qb}b11J!f55>KpX5O{uh+e(vM^6xC}ZX$(DPEMh12s>ih4it_)QaJ|=kz5t9 zwQGL$&hmD)hR@kS`zleiQ|?mnexU}P;#;&3YBx-mthYBG+6!X{X(97sLhHIlRbA(* zE>r`M1~|du4MJTS%Qsq!UCVM8?FUzI^TGE5q(&{Pgd4olrGsJfk`}b5lV0&2r>)G; ztFmgrUG1%tVR#`h0yo?#8CJ<0^Ncr9N&Shh{{YXm$NmCA{{YE#QpD1w`?l5A<-9&3 zue{TL@H8YpXz>oCD`}Cz5rm{I6xY(+Dzmz*YG!05n6!a$&eM&>MscBQr0cp}+TXkB z{!O>qE+2IAaUHV+nDH6=j&_`6^OX)cuAjj=bNwU7U zw2~~z1dS6P?JEVzQ-i}?1|2#O52y!<<9;Z~2C;RbIrA3Y^G{MtQl{{)d1v=scP?;v zAhP;ob?bF;6zwT3{S2N4gHGR>z~7sTyFatL+$1k=C)p&HH&}^MV{M0T&T{c%X5*4Z z0l+@J;LT%4(|j`wckJ7wp62D7>~gSzH=agUnC$(^_4%J_{ER^$6I_D$pTin$_L*;I zrfL&udUd{`zs@ku@d+*>b0Z*f>Vpk}>KLg~19EFuUGcOL_$o=QG<`-36L%s-GNel! zjTmyu6iK{)t9JR63@^|g2{^_MarnC(m}o{)jV+V5r)Lj|v?B|(hc9J>IA4x5)v!~nX+GV@TEwr*3T5lvOE5;dkM#wDjoO-IB z!yKKbjU7k31QA-J$S%w{U+8vAnB577glk@JYoSZ@X{%A zV+_ojGoCh|yZ}3T@-xK@ZArdI4cBwJzF!z8B`c-nZ`9VG#$Rn~S+wg0o?TQ)BMBr} znJr5F=3|h>eAUWlov0V3W$IUJcdqI;5Zc7>*xXAMqDLRzCGgBh&mVUk7Z~6YN!FiB zS+tlh<%d*=0F$ohOh|Lnb1U>9{ni=i3WJa^ZZzB54L(%9)8~mUHAESj5*3l8UOD5D z`f*Nhok%)x(aELgo7eE)$l;8XCZ#2GuKsCh_?w47x72hS8`$O$NYI9qxyU2@YqHa! zI!2CT(lohV-9eG&mO&d#amxUC`e$hVb+t`N-!2<^>J!+M`vszhN!p@EaN>!DVk`FxNzt@q#^sb}Ax_*st z)7^_m7Ik61+{KN#+ygd8&PWFbkOn{`c{JV|@FyQ*A zIXDvP1mQiU>~G~59o9&C+(yT)<|{u7CQN@mwVpQzIVV{yKj0qD4;cv1RHU!J-*WY?ruUax zgksugVHS=-lYqx7+w-npz*;Q+C)6))%f}z~aE=>ET|)psIphBMIPb@$b<&kxUr76+zIBxyZ@(>CJjrIC5bj87$D8 zRWXjFRgzZx5ey#;tRT5ENgQ`50Sc10Bk~yi27A^Aias4jXB3)-l?*n{K@!`>-z?yA z2VgpVGwEHk_?qX=f*)-XD3a;e_w&~&X0X}rTCi1QeeMnwF~>Em_Vd}0aES4=O;Pf43ogF?*7Y9)GjA; z4Z#LWxSl!R4;wtP`O*A`AAQ_#PIj*+3PxtRplH+lN*Ye1e;%Eri$e2U&2W(%uw}q! z<8kBg71G~BU~fw47ioWOD;HasVA)?cx1*Z~RNMkI@$--{N>@xsB$j(L$GgOa3)-IXsMbuGAZnm;P8_RBu z8s}>5LIGS7FnWC}(los*O@~mo({2@RE-j!JERHgM1IDfhA2A^Fg(B9irnEZ3 zS>2gLFv?YkOsNdYq0gtt&PTt!T=6%EA6L1K(#a%v@D|<(1`B_>I}d-$fHTK9&RD4` zQN8Wxm6L7#`gMBw*;10XzU-EsZSVP5k59JIG`(0`=}L+gDTq~Fpl(69fyZ5mpIxiy zE2Hseis8|(FU8k~wM(m8c1a%fRpPgdFhxH%SH?1SD`0*&=X^V&+W2!^itof)=AWfp zrpZzpiO>lYleh*fIT*pldV|o6`Bl?tnv^!T7dn-^*VmeS4SRKWKc6?5=1Q&eI~}dD zV;}5{9CS6EdU1tEcg(ceXnHiNwMr=~HGk`&>*vH8b>-Z4C&9iVk5HB~I$KC~HRunxbvP~3_S`f!tR6HHG9qKX0RxYE@sIdPG@UcTnshc&PP)CaX}4FBFpqRG zeUbsXEaZ{5pSr+0w%`F!);v?KYPt`F1b4H|CB%s|)=d_tEQSD1;~dy>CM%JE`;-B< zE%P&a6{;sr5UBh8$DI}X$+=rrdM=FGn_iP=ZWBNxtZeNLE{AMpKq{*)Dk?a0c8JV%g71*As_ylzA+>XmiuVx~p| zqiT9km}&AkvbDdOf3(@$G;adLp(HU}a~g>jR9*`fD-glT2D@oxCFh7_O(Fb2dY9UT z(?f92u`dBxR?*qtZdsUI2Q7@Q@VGmLbyhwjyVf z0HhG00D7EzV>#ynyDctjdu6JgK|JLB57w0HI#<}_xRb+H zTuJ4}khqYH?>X6!7lE7}TOPIF>|&cqH|KO^8M`a9k?~B+s6%UQY_~C?x)RGOLdwyq zsRJ1uNj!RY#c;Dlr)m0>y0)jJ!Kx!ibu6}bcZ+Ic-7$13&ze^V=FgVPWt}0OBLE;3p{ncmo+|MYES6Um%X6u~-g3<}$_!0#aE443+9t*n z1qB#@xy4e^w5=^{?(Gu#H&)Xv?Nd)87fX`>XYy5*z1GzV^1Lqfv!?39e!ZX|SFsk0}b>PHzqfbCj%e(Kqs<+3Yq zu`F>+{{XxZqAt}4a&Q1Ak5bKz#FLBQ-8)hmx@tCSG*L$+rOfO$NL&DZO}mHPPvReN zdYtc45|6r_)9v#*XhMYWlEg{cacLy>1y1Oz9eL6&2IHO|3N4O2n&5~Pg!R!@4zyJ<~JSjez;|ra1%O0V1a*{II zz=a>pC3piY0QtJJ0J+KIBt>zeYDsOSSZm2@b(!?dQY(p|L{*ge@Of?WfC$^P@&V_N z4r|HI^Gm;_n+{SnBCUrRGA8|Qk#BJT`iQJDY=Di zb#Y-Gq>-~U5u1T56W@8DeiamB?VPo(*L9k6e#ekZ6`NBbk`2 z?~rz`ITi8Jn#I=kG@_p^*E818TQ%Cs@9sS*%j)pvlhy3Ix6tQ&Evso-R;>2|<}{wh z-JrR+w|BTYp1{$hNxCqoqsvANvIQf{+zHQ@VogE_KeKM(zSCrm3;EjS)=ep#yi6oj zmPaf%sQF5u#tW%nO5jvF-kqji!D(xK6_gFTbd3>_jsZC%uV3d;+}lXjZ6r64U4&E@ z4jX8R-=N1+pXXmuTQcX3qXw5o{{YI?UwhPeY_UePeXUD7Y`52?@A?hYe08tecv+Ik zVutk|*U!3&HMAsLSxd21A}4UbGY4i;9hdiN1_yKT9&77)wClKD0c#bkMZ*KUlEi&6 z$oH;)!rBFft^WWC7L)dftn}SR(k7qGO~njs+emDVa=?t|?tnq9ZFb{P@h6Ax=C-iE zifcI15SLa;i7IcyvbxISs@{RbT5uf29t z%ka2aC@ZPw`7 zi%96K(5ps(9lL=0s@u2cfHCIKHf`<$OR%h9pz`yRxD02v1fRnl>q7YIFM1)kdA`_^ zgLIc|kS-aHOoiBt^xRu-IRtP?lTEyk>rk7SRjy?Ut3CS?k+Ivg&U%b=&Icg$6`SUh z93va(YkWBIW}D!@8AYq!$8|ljK_qyBHQq~m76bLKX7L7}X?yVR!>gvvday%g#?cx@ z-6HK>f=#&u;0~N;J*&b7qHpxe-?d9Dw+49bM6$YoLXE6BAeQBD7bgSIX1;^bw5yF@ z;kSj>2_sV-jA4X?fI(IC2BlJUV&N?|E;SVysi)ukjE@Ux>#3v@i@iiUu3r-5r~d$2 zwe58AW2x!@%Pf+cM+Kd;k(H}jPKAG@N~H~+#TdYLIQ<1racL^uUR}GX4Q|L35>I37 zJ60H6x>RwBUuAVS#b$1;7Y8lv`JNkjsA_JpBHF`aZ>8CreNH90bRr4dN0&upc}7Y( zC|O&27CewsR@W`>FEqV6=fpauv8UcnhV9!@bw-J9=Ut^Gd?9GWE;q2*jFZksJReRP zW~6Vl$NNp%#&qk5)T+V}m^aJ31G{eAoyQ=Ylh>fp{5^YPJ=FS2UPn2F8SSMKE87IP zw11h}0J1PH7^q#UyI7XsH(cQ;{7Tn2lTB!K{u{f~HJd#$)5Z7p62!5aX|7s$86uE1 z&|>eByO~lAjB?C3G835^sKc!Iavf*ImR2GoE}d&7#+9ktl$qSa6j7vW`;hFvA!fnZ zus(Mt=RCW`tLR!zp|0uoH&*vBYA+DDNnFb;ZYPY-CUP^9(X5M)n8-fx$chWu*G+>> z)3rzjk9(+P?PF5EXPSFuMk=c2<<$g|N6@2rWAE=PNy&mp?)+(_#c@5&u7mxLsa=Vu znni*od-zI;7^||9N(1|_Hm)-o@<%q4UDo07yTH1wgx2cu!q=;Kj!7?j+SUDOzo@NjS9MZwnLwzD$M6IU$OnB*t(~SRGj!=4(f_ zgT>af+uAcV@-(;V$k@ltCK=ETt@4w%?-DXHHu}m-lV7;Y**o6X`;Ozlek9U-O?NHD zoxSvP!=_tWPxg@?mm;G|6sFc}{Kimo#scxyqVYsl*S;##QQvKyx`mh_E04W_$KhFC zC)Dn=MbRvLC#5!_ug|5e&D0xi8*QqBLEMtAK5gJ22PLpDNDbE7`SEIACAGJmkCA?f zZ}yjYgkajh*yXd0%*PoWO)3&61C=ImqWehv6R#Uie;Hp(W+L#5W8X zg2q*Y4C5UC0H0dH@tVPTt=w46eWbuASd>L~8J1ZI4Yy(jUW^yi5X^dj8^0SE2JHc(DEyOE_M$T{;0MEYCG>Jqo z+s7=+cY5hHsW<%4W+d@gj^K zr-sm4&FXC@IbEf1%;l^#UkX~@t6%AlcV{q)F>!G;Eg}e=kC}rJ8%mU4Ei=Sr4&XpL zx?hF#i@i2wL#9n_ZY`kHC0msbrzlyyVS3)&xlbq zUpLMGperIfrMhqP2m>lDz#Mb9NXC?8RVQ` zd*>RllXr`em-( z9lX&;6jxKD#Su;0gn3B;k@PCqUP6BO832qF!NCTfZQ&ml==$}vyX`J4l2w)Bx476at-AoQ$RvTsLVJ!)ZHmOo zq?E1dc@V-+4^cSkzpWYT_doILH~WqJtIH(SJUyk|{{U)U%-2`Yf#ljk>gpH(HxRiB zeb|ni4C1@HPY~Jai7W^ug6KxY?WawWFCLu;_fk~$CcbdHxw4l@v!40mg4V$xS>joh zCe(_}8au|JgAg`LhBzRTjC{m$R8CTjmDhgX@Oypdr&12AIbzZ1OBai-?lnnmY_#hM zp6yv@mO`?}#4=$Cg~3me6!t9{0Dk>-}jhr95kN_vQ3{M9=+f}pD>?ggn`!AP#*|t7YTq)ls@0CLrQZ}%CyFpNQ2Oe~+&WO^d7^uej8@gVJ zdk&j!Y~{Fy7z$hYQ^h*4`>Hr-)Uf1y+d}mx01!IA43gGbt4twfmdS}#$YzpaKCu@joe$fg^4C@uT zAax;^a9zbmKzoeV){U)ra@yln+2IXV?CLkt-OF&$Te%G2f*MaajyK2#HsM^15?PxI z!`>jU)-{bPHq&mc?DadN9gE3$j`OO%9J(TpECmF8?Cxd2VU`=ZbFQWFCQTPe&{BU2 z+0OQNSE4!4!8*k3P&b=`11JTyfC~ZLS+|uRWu+JQlUlT@>(r^?dmEiIOM>3|WtL<> z7>3*d`tkmKdeuJ}mP-*hx0dDzm^_ffD2>@iqZMJ-9gas8pW&0L_>$L8)9v+rKEmwV zMo-%(4?L&K4Urb$$0O#?LOH7O___%6+jZ62J8PL>NrE~1$m$po>_M-b`ko? zvE|B~W@-U3bIxf7lB86_wPm-N5%^>fz1ESei$TS8+fLKw>-=`F9pz2VDgE zqIfS%p5?6?IV~-pCN?i7;Dd9L#D@A2yBoOOv~fBukB9E{tBI{ARh*G2^KBx$w-I+n zjj-XF_9$c}j{Tqv=DTY<{a;b=H-T&jv<&K{txpio*bhWn9G?`LMD5PUN0hlrC&PN}gdeCcKMr&j( zqvM|1AsXBxadD2>0V3Y8xIs)c$Y^_HrvV6f3R&1qPFHZ)XrL6#N!M1gLLE5 ziobQ^pB?C)6p}mLJpo*UbP7C*KJociBNzvgFf-RUuQt5uy3hBvzRLRC^r=&)?3Jmn zHqqQ$=}_t#+&22BhCDj(N=cEv$s0K#SgGWn<obt_3^6o*>sPe0OChh^`~F)8a;w;z{lzSmRbn6$v2YmRx%0 z>NCt+YuW@JIa#mX`%)J3Y4cd>5=$ffiDQyEE)XE=7zR)<4gw4VlGUyk+H(H!-TnQH zu?i}pNd=hEUw6Q{{V3Ogydx8@I_eEF71Ee4DkK#m!n600JA_$zv6!pO!C8RIy3qCVq|A% z+9g~D1hxR{@_~}JZFQYL!oDN6n^M!h#U=NL?5-t=pq=B2;K?CnAP00kai8vxPI}H0 z4=NakQlzg2_WuBac$9FJs8yX$Y3{q}>$m1}`hSD%Vzq5TT_)8nA`d&u1h-yzUz=%1 zFR`C1&t>GEgbY1h<%7ifbIQf99>UsN$qD}eTPb!b#Qy*h^7aCG_>%Z|tH!ZT?Q5dK&_`Gby5h=1J3>$ zYyKY7blq1~*Q2twGPTv+^3`EMXLgWBQ+@l9gtPNUh_V)lK5=Ss5c-FkdW^SEFw-RlyM3>;jo_@& z^;NNoy#+c^w3e6BM1UxF|$ZRf!DSNsqQPxuKwBKi=8^wWtMpD zWV<0_x7#QP7H492;n1V*&Ib$75J2}`D@nMPO-|x{N$!5tA~b6xA$+Z)9AmH6yu-%! zqf*v&D@$uwzqHAU$}6Rm6(U$}e9j6sKjYjfzzvWrb}Pk}tEZ^|V`Nw_B}= zke@L9-qa>C#9S#X2~}(Qo&KA5sQ8}7=TW=4lT)76E*i%5Zf)*D#2r}5E!pxJUm+1x z5~>s`l05ZJ7RXsDW{v=prq+?2P%>bggYy-@ zBy9v@mh)EDwM~9qChacuX!NONTc|@t9C8@u^8WyKkGM&Y=r(fY*+P-VdJpZ(2(+yx zNHt6Ad&>#ohRr0mR(nW`h-C8E+k(nsCmZrk6qVdDS+`O{ZR71U>GDf?3~blaPjr6C z6H3o4@)@0BQh(H=F9k=J=r~c#CnsrWwbRr3{LG~aa(?Sg`8`bSH^x%j_;6`*>2fqm z7F&BrB1PXImLnLC5sWXG`M}=Ixw7Bh?=&xn7kALz+-h)(Xzd`4ifOlxJ36$20k`K7 za(jYE!yX$3xJ@27FMqQ}ogLa=Vr{t$Gs_d7R_p)+oi@76`mNK)rE3?qw%WzRMCyv~JGQ?n#S_kl#jGs)s7MhHHOqNA; z2D-U01&=bZXC;Vimz9oiGD+@g?z5;_T3AD>-1v_~ztyLmU|1~VjK^p|Y|oD|{Li>N zz1u)8tjV|qSf}x=)}7&PUdqQ=f;;<&Ar|+N&ap@%+i@e~YT=vrdlaZ%W{;3SCz@%i zU1<9Hf5Y`PScyWXvt3tj$i$z)`qlF>J}R@g(r+%MNM&oJxVIN?3%hS!?x@>$;l}0! zslX>AwA8#gs_NQ?lMS}NZFp>4EtD~s7)Gj6OnGs~5Zn8d{w^_r*175RPY!9iZjs@? z3<+kCU$yAb9bcS1Z^1QVh_jzVPyJkd)KviSq^`05JmrBubLD?%BSzApR#s#>w$>n`bqDT`O4hfzhr*u^t~Eu1@awYPeTvB> zvYrWNmA10P(4>KeMtLoqV1P~(-AMdVs!8FfFJry1)UF}F`*pl`R|YuzyNIJ%G4`m* zP_3M+wnJno1QF@rYE!0^YDGUj#uIXP)U9oMscYBMErsmYcP+YCiqBBa26-V9Rl7@PFBW~OOw$Lca<2#3bJ!xVw zs=SmUz16YPEF7s)=brbqyIno|JvRQAQ+I3ORPfN#(^I&0hRW*5yShe9a?2l_#h3w< zWkHkoe~Ue93LQ4cX?GeG_Ok`Vu-)EFbobP46(LjR?_;!y0|?po0>wsH;9wD3N!2tZ z)LPQ%wDq%w2`e?HZ_Ao|9*NJR2nJzCOhgO&DGOX=1D>8X-mof<-INkTW z-WZh)y8vwfPvQH&4oTrHCL6sBPUlazj%IB)c#x_C$=Y{wl0D99wfBiU4-lTt@5AV^ z>B`UX z7h(NW{W?>;f23;{UNM(jxr!yz?4+}_wGqGrymCmc(maQ*BvOF}NZq??gSq)};s|u( zs9Jr3JEc~hS>a*<5fIWbc+WT^x!{&idW`hm7_{);h;=eyOi3YPvCG)I}?z4<`tF! z<>uczV`Xogjm&ppzYLB#9lrGaC&qUY%D3<0ZwS~+dnA$G$23JGh2kuT?HgT;?p4O& z^JB^c6&Xxfwfz@G)$Z+XylgHZks9~T(-}OoEVE4VAY8sS{D&KfJHC~~sB>!H_4lJ{ zmxn{GkHmUJ8f+GK*3wSVuS0BPP5%C{~Vzn2`VDZ~v5pXO>PI&v+#WLFZ6Je=Y z!>Q|5?{NWXZzffSNFz*^D(<0IhB-YzIRs-O)BHRamcAX+uAE7v=*n6B#D4&*;(U|Cpvt@P{9 zO1I#xYfsm2XPOI3=q_#a>w7DOx$^wB2wbkstli!7oN>2~wUu+>IIeFZ7m}Eyw1F%j zj?5HPwv4vL`OCKNnSpHbHvFRmntmd@m&41XSa>%^7n=3mhuiOM);Z2#3;wfmN}QGq z0^zq4jtNlOb5zrvD|G4lztFlbnL9miuAi2#ujFiaqAP3P6=|sNw$9x`%n+5w-oWGV zu1CUJZ2I1ns+ebxUcqr2K;~vpK5Vys;2yQ;*1mjNmx*m{=VRnwqFeo?-eDLvur@ht z<8v{_M^ji{5%9(Dh2^>uUR&HlaKV@?WmquIG0*w+uTKqD)SkNOZ@*KXv=gX{7W(b3 zkMRdrdDYu)mM$D30!UX?A2D&TeCH*AP%_2TBO0l#c%x0Y@TJ#_Ev&Bp0JLuJBev4u znmHZhl%j1-kw`I|ImmB+nBh(?zin}-{6rdkwyAobXpZ0Q7LXxTNL9nN$(L{uG-X36 z{{Y&W?vr!j-AekvS?f1;_wiraw6Zckl{8A9ec1inka9uXNH{g3 zJY8|9T}1k%*7{w9Oc=%HZkA#?bJ>5NO7q=U$J*Yxb!&a9CY+6Cvc!vRZurBLB%SVg z{n*D&4s*{Qp#BiElkfS?!=_4{f8(_I>C&ecQ?Ja*bZX9|qYtyA^&-?Hi^k9P9TxJ? z$N-k%+_pBS3ON4&eEwC1qiS|GR{EXZoh`lP&6U-?t>`H{GQwq)Li!*ACH(gKHoF{pg3oVlaLz5=P${+f zVJ-+#RwcGSbTKa6kTOTO{{V!l!^Jm4LrFX{2AO{@m8vvTqsb&;NAbwR9G-BywjKct zqSuBs_OQ0GjrCnSPV&Z@iE((FWeA3(umiv*EjI z3#(^?V6&N8B#}=EnaEHBa6amc05AZrO7Xqr(B<}5cZx2@ps9>a{hCtiXgkbBlsB&4 z0k168EwtEtL#n5WA=V|d>2ktQrNS0ve=mc87~lrM7;F~iwKZP`#+v=6lcdJia$H7V zD{>iA2a;Q0$NB0=6@E{K8m)vfUXyJgflP%VmPsA9^Mz3!Sn`ridC$WmY>~U z{E_G3o1s!lbnnxBy!2X;Y90>ocAKEh;%IewF7>yKK6>JKH=G^jBWW4_?_Yd_z|7UD&Zi`_>Gz=}$dSF_y+=W@ z*KW0)LsO1OEG}=3mjIGIvB&0lY2@GrE9H;?+)ysu0fi$kQ}MfM*0+|o7BF71zH94C z!!bhxZQ6s&Fp%3+l*u5Uy_IY*?rdT4g|WA|hD{k{iq&m=*3;!u@vq$uKF~K~k_jI! z=EegyczNwFwNDu8FR4Ad-P}kdb8itu0TMX)1(^Q;2<~~!dD5pVYV>7uMZ0rudNzls z#o}v6)ox&l5hBSUNQj#oLJk?wd;b6k=hvx7ReUZyMXNjs_C&c^Wob8Wg?xxq{E;K% ze7lJlz$ZAtHCMv%rJkL8Zi*Botn5Pc$q|$KlUcqjyYTk0_MIB~>rh)^tfbd4L2GnU z=@k`TKQc67fWWo~c)$gCW#ol8Nxx}r8R^vaiV;g)7vyEwzLu93+Le@c_b_X(dv>=_ zv#U81s3=3Co(zNx{{VM5=DJM|>Ul4rwu?%8DL%_`pK6oJWssRmLI&3?LjLsOfWglh zHRm4@d{?GeUFZ<_I?8CR>=J3p$z>!_D4Io>1y=y$F*|hH2TlP4rMuKuPVkPexp3oae9e8y%+j3HHFmp!wQjI!xQiltIghRnjdl}ISdp}T3Q&7kUfSN3kD zcdBWcq^T6L-4i0mA#gIUju?&KA?SHIu8UN6RVlr(xyRo3TIRet4y|piEIM|PZ)k6{ zeLCk*Ntx7I&doV;BVtKEDHzUjtCPX5&sMN`iupJsl6IamU6>zoZA<sbpxulp88#&m~Dy~H<@M1e3JsChPDgWQlOe9JLiIzc)`ZME2e0Lf(y zlB&x4j~fFke8T|dcyq=r;cF}TlENdYYT{ejE(P;TosT%$0|UU>C(K#cmr_a21FIQM ztgo}!>Y~!6YixS9i5%Lb`mEZHk^P!H$jzL0DW5K6cXX2rCQ6w8&AC;=mq|tjPHF4f zcBg-@MX6p}M9{@zAd+YZD9*C8WFaJgS82h>QcCV@Wb)Tq?fsUacQ&o2xU`1NCy{Om zGNC4HV=IDKAjsSl6*wo7WF9Eh>?VdQT`^+3kfQ`ipU5c7D+VXaAM?fk0EeeLx`7ok z_{xl_#oL=r5aU+W6q>!Y=x$qh8rI*$mU@J@9#!K+K(&bh5w6q8eB;yW(z)Licm_>% ztuM!j3#3GkEZX^OH#ZwbeKK-$_kHVIMDeGFbtpBRcIw9N)#0^8x_~GNF^!#@%i2en zLrMWHjBbxO&1h&IGt+N8RW6~b+}PMy$rHy1+UG>Z#se871Cx{Oz~J#-e3PV=2s?CL zZKvXQ!TU?peKjKR4Y<*~PSD**v$U|ZalXtkIabLXJ$h&GuTQz28Exc>OciA+LGBHC z<($k zQFEusrd)=eKeRz5*2XNYGl7)@<=ZRE@4#z_GE)$i7_X1%e2SUtiJFvVg`qk=pAYuWax$5~#-2i4&h&0@!lyb(RF zm8a`k-l?VO(rPA2W|1SgbdlaikOIjQ6>XBR`Lakr20$jc=lFH6SZlhbnGMy8>RLaQ zBb2!@>{bF#F&To44Z}IX1o57=>Jexk@R4bjHrn{UhVm({qKi$DQduBWW!e%+k@v9$hO|4Wpc;|;exrFjR?^+d%#*k)3EVb}XKag*#E+B!J6Da)`E>sP zGp%lX`E{U4X)p%r38CGy&4Y1Xd;H2c&-w3N?w5J-0?+#wM2lER4a6Q~R{K}Yx3@(n zEUWXOd$%WrM9V*%DS1^)DkIo-?W0auoIS4-Bc z7VpHa2Cb;vG?EL6eB_LzTZZ+M${}#T{ExAY%mwIKs*_&`Ng)sKiLG1{)FE!_6-nAX_rdtbXSWG5;lWg!a;l~-<{6>GNs2h(($d6?N- zLRGEFit z50WmldE_OABX%mIYn2&5NnN0vb-}Mdlf@Q#&bx1UeWhMOVy|w#5GK@1YSz*VU z9{9)!xBa}2nMXwzf^;2H-sVfa3|mheE>gF683cmdle(2zIX>*t4(jaP(iPuD@cL-u zP8K@M)7&&7?t6KdtWvy@yNt-&Sri$ShECD5X&J%$14pI!pHy4hTN_IW7D-?-$#XH0 zkqW0cJ7kgD_pDDK{G%1E7mhqXdl!V@xRQN0P`9^+JDbQPh7TmPW-vUmjTzfflHFd-aUIMySNAU!!p`d$NfaPeiB|}Yal3j2-PSa3FWb~< zSw3s_+h0E|oxk8z>Bef(*yJbI6HD;@o!yMzZnk@smR};`Sl-rSwnvIluqy`}!k$6e z_|DcQl-hzkNvEaN!Cf^(2(K*fxbKa!vAF%#SpXqH!9DOZ(p>lz4UV+hrQ=yO&8#!p zvsuk;Y?DVSM&!gHjJ6U~0sOEBp8o)Nt1zYi00=ydr0KR}P__GI#-$`GmrFYRwm&Kd zw^iB>0Y}fyP>t%Of}bx_j8?CIQ*W%)jX!4>LxH!0wBc8U8d9kFul;l}lv0lOW=_8^h;*H0Y^^Wu zFWTNCJ;?I}3ekwp;y7YHVh?@>GJ4k+G+LjFb=!DULT+xf*ZrJKuL?6_sZ zvh6=G8Nshg)C5=1Y8t7(OKXWm<(nnUSYhObSw80BfE2eJoM#86a=s1l)%~`=4zuOF z(Z?KcKp}zUTY$~xf*23o{EZPFZo&J*lBHM=N16_e+tlV<{?o{#ZD)HPyK;1^MS0-W zE+<%{QmRWC6aqlw3jT-g;PL_OMMi+U=r>d&wDNlM15XN;hr(_!97YWwDy* z;PFda4a=hHc9v4yJkKJ)7tB&i0Cw}~>&9y1-f7zYnJuN1svwXRc1LEFay#edBzh6k zkVSm`eEO_il_kiu*I&!Y9Wlxzmo()0pY{5eY&D?KEP?a92M5Ss;U<6E1( zq85@}rYPcNSC0;JaJk={q3Un}^Q%Vi<)rN^cJu!Lfd2rk4^En?b$6%cb@#s${7G}H zXh!|~J%}|2kO(q`kR*{bfu)ckLXJw3%eax)9Q3;Pk9Ru$Wv={MgWfj=_IZx~c^PD5m{kP1pEEBwt} z$Syu1_@estv>Qts7P`H(P_JlJSz1JCGK@(_+aA{BuIy(cAPy=?-VX(8x($uBj261C zrtfUG7veUF0D@2nkZk!>qLO6EEx;fXTAmfrwL6~@>6dmF@LonCl19I=cFcPOXu(n7 zCn}R7g!0OTWdMz&uBN9Q#*yM5uv)`4wae~QWRVcu36|OozrBHDQs25HC}Np^yN#x? zE|g(-t#tnYf=wq=n_Z3t_2$y=wHuo|Eh!_O_SWVG0F;HJ21PNh6|iyvJ4OQ#a7Z;{ zM2_QA@hA3>(JhUcS!P<1~$ZQ%ttIn2+J0$n)Z;Ecm7i8Qo|{= zL1!MFbLYeunf8~IqlUtv;BC&<>4L*YPw|;fe3tRf<{P>=!l+hBU;f8<`0a zNg-DlRRra+w*jjeC`BZszW)IDCa{#7)ouNDI~@l`)9&?+LsAxZCdo(He4DaeT2Knh z!N_bDb>0aq@?2$@Fg4C=7MgXea9-R&b8#KAtY$Tlq?T~bHluEDoMpNadXbLR&)E3S zTGFp>Cec>r;uMN&gJ(2zPO)y4Si7V`lq33k|34$~o* zegSndaQa;LFz8=wYuop|mI*aTqhkI{cG6r%vMM*2l8JouR?nDJr_G(tLFYgM;(^}=EnoU-74bB!;5vr_#fKEPbz_*q%qj@T!O+h_xc4H~7);aAnOz~X4371g` zrQ7KCP{F8yGR*SM(ArzN?fa@xj3}p^sonuN8Rw+8n@Q59mR%IzU0O|RviU9^IN@|a zxLA%-L$)Ky9av>Z;QIBl+Uc{rNX{*^rh8~2WGn(8!i)alBn{&oG`*aqY3yUqS5}p+_?(TD-W<}rH)jm; z#in?M%TSIx*J&q|1p%c5Lb71xp@kohmAZu?O>1fT--xuRAhdl}eLf8~*)DA@BCw9( za(vbQ09_}ebLcO3Ks0xeI(n)avR zokG#|m$^&3d0_@i1+~hu6~iIi!<_S;MmX+xDgNCKoR=?sEK^_Fr`T=;@(ncp#bl|;5PpNmaE?C+N#Af!uNCA++9j+-dOP{Q4_Ao6-EOCx8)0h$mcl2S9K~_ zerw7t>F1|Ij-#sAy84||7rNvcPl=Y!>K!IKKkSz_x_%&vQE)jsqeLj*Iugn=ga~(l z4RYEhjRvQAbp(>8>3rK0A@d5x=X3mwR0&AWLczX5c^uT5c8dQ?+)eWegck01B(4ZJ=G+>pE_irajztGY7i5k*uzyGkG`iAtDq< zDBD&Xf~$-GSZ*P_YSg*Zl6KMC$@FJ;DsWfsy7V@n@rJ44y$-|6m&3@GF>ce_%D9w> zB-lui)z!Z2v7Mzk!ZtDi5O{}J*Y!*NKUj}e(c4kF38znO9kkF#8wYlbe)r}qM2t@5 zUN(RmBRHc%y`NA`H&~HvEj67=D`@SVT+J5Q(ixTqRd_<94VWyXtWh1HZ3j~K!&;w; zr1NZ99u<)-p`I9S98BS4eZcuRj|SyHFR*18h8QGtMx83uxofRnjdZ@c{stAPs*(0` zSBvg*TDOb!2=urZYRZ?A0MlBFH%5(GFzCw7!ztVW>FS}BhB4dN-m_n7U)l1@Y?93s z%Cg9@mDv7TGa>UFI~}~LkChj2-bl8-2A=0nyt&oyZB5A1pq2^uyQ~ZTh$9SbwC4s}=6OV08F(NL?*tDdsx)i2L3*LFJXpsZ;Zquy6@n9l2oeRA|#` zO3zKL^VZvcOwJT3;q=47EAA$qn#YFqWSYX$QPY)Vn#O41FoPsw=2-(m_Xx&d7D4kk zk9N#tl6J{8=ZLjCbkbziZojf3c$>&JP)4z$ODRbHNPx=uP-kh|%V3aJrSaamII|Z? zA}o^bSQ(@zVy%=jj489UE@2G-j=sLb(Y!%B(}5Pm_! z5~Z1fvDn$lqUDoq-E>|3e?-3X)Wgzsn&_`){{YKEYdsR$-Vd~Dj~AQ0ijd_|M&q>e zkDG2Y+c~U3K9gZJ^}Goc-=3$-o>n2EVfThYlaro00&occ#s-Eo`YwoXm(m9wZ+zzb$b-3`hDf5pAXG6O0G9- z1x6Ig0d?rk26KQfcpatHXP-;(^cqxlaJ|j7&Ca84w@-HiEN%PGDsm;0doU!hLas`I zf`iE(-tr53Pwi(%REAj=8@pK<;Bzdh_zQr{3=DB03)dq6k<-VhX_^J?--R^DHElxv zd+Uup;xxZYNaT`W&=pwrGHm;}ZZgOV1pyYi=q9eObH4%xZo_J=3u}Gw-))!4ac_Q%UGWoz?YsPveTq7hK2XRaTrDO zRV2fq$#Jq(^b6GVAYJhP0D`{Pq}v#Ep)@*u+%jEE_ZKk534&Qnu_6>#R>j059lSG3 zh8ZCGe9-CX2B%|hBsNgY!fTj`R!AB&f-fX042`Sg^b9_Hk0EDO7aCyVq@O{>1X! zGRF5FW+z`I9d|fV{NUi_Kx2&H*F&e+YPX&t(j>FgKeeZ@wY7FvwV5L(T)G5!;2{u$ zozh@{*d$@Gx8glYE8h;!YYaMkdWV>oS5~pjDFIoc`NR1@F(PpwSNsignUZ`+I{YuEYX#A*sKF?C0`pl zNS)3DDF={io~<8d?fCxyUWatCQS8zWm5|BUyoz5|y52xyyZi}l=4wIZbkRu(20{{jTq0)tSp%MIMFvo&&-l5^| zh}y01hxHE>zM;C`^ojbxeLs-1~ zE8EH%G!~O>b(Jn7V2apm@Wpo|N=hC`aV2BgX!2U=+FrM-=-+PBT1`GhSS)rv;U;{g zSt5yKNfJqNvH6*GLd~}X_Oy~#cV|3g+i9(f()g=Zi@~;@A&GPg(|INB)y=$?tXkQ= z)R|2Aha{VTz!11xa&igh@4P{&Yr2@%?0iLOYp6kQJ4J18ZE%yQ5fLF9QPdKEo!({u z86|LWu?@0oJ{{7n1+~@fv)e^&W|rE7P{HR)V2Vxf1Tw}1iV1daEu}!%#GoEo^i6V0 zYu!Un*G8ob;iQ^tNhb#8UGc){wb5Ol7mJ*X6_tP_u2(R?#< zx<#F><;IwhU)H56((NA+7 zxHgv`EM_(G8~3URVUVX7;w3ofTd`v4eVG0JrxfrLsVmBMT7FhEJ|XHlW}uVEr6!xp zSkgewtG!%jZU!8MFTvn$ZbM)k-CtC+j%#%A+TE>-K`fzUkp#bKc1JR7wr~?0Ale8D z41aeZn!fr>T3>`TYwb=wQ|(_hz<1Wt+3a8K5+-A}F|?RFQQ4FemB=Fox~)&bmp9ji z@9(wv6H308%H4Ho_nYX!XAc~O5GZy~rJKwEI+MZxd~8ykYRaNZOa4~a^k_mfVaoP1 zV)4emquAQn*&Q!cxHk)QvD`y6cM)6?KuEuMrbNQB0-4Cl5r+Y`A@TQ$wJ#Fs_f2=8 z*q^iB!EY?K@}O1Q9EGM;mnl6w_Zw=2N(ueE$YwYajkeOtnD-(EQ{Zm>GLD9L6(%nXDtIKc17>Un)j!@eW& zmxvz2P`lFJ(%bh_n@BvcV)Iy$!yFcPP&Z68OsaTo)vnEyUN^Fy%-zL3ybE=0buILb zJo3x-a~w|6DcG&Oq3YNSOMI$9b>6M0SZUgf`hs5RcCkwXTtjns?;XLGOSzcEJ+x;T za~I5^N61l+W4t99J2YiZr0p*M0G7Qx{GHLp>;4(O&~-tiOwe2yjnS#NaaD2UYBKI*ws78Liv))_-zEwBI0I-=^RnQDK$tiFD75gE_L8$fsM^JKDz>35+r7lF z$NSV&a{mB71gwAnIAej9CA{}eo0600dQz(-t=#9e{{V@)_MhRod_H6F__ex*Ygr<- zNm#=Zmr!EeDftRvlYpUF02^^!VeziAh6ejxl(D+0kfoxJD3X3wB|6||jl=869fynU zpTx66b2=rIF|5}!-Cb%hTtbniHgf`=e|-=OhGXV01boe%XW?5JAhEO5u5BfoQ`Mri zjl<4epkZw5CBGX%DRN7B-3Ht)?b&guI5)`bfl!4=UZt;hp@(7PtzC5$7e?Ml&^tQ9 zAcc<5Ps;3!J8{7+&~imo)6&mU4|#oaZzT63SUkDrW&0wpk|TA?g82-{s7O(>EOr7$ zuAShw)$c9FpLYq0cA7Vy+BtSGM1n^+bXEbp@QOC_+gF|2j=zL_C8%DO3-TFQfXh1NFMoVR1N@~Ci5tmmYd<3gP^crcLDCi@SN!190(>&2s99*eHHy z7{aMzwLo3+6Rn|Gw0iE1J(bp}B)0l;UL~Ntdxe4rRAJ@_qYm4d(<%Ywc~KZrWYl%p z^j|X4>eBroisB&@VSq@AKiXpmje>)0h>IBC3$3PBeumJK1W?s#cqYr0;I$M}MGe zceh&P3THQS#eWLhEtIPpM9C_^Jm-{KjDrvQweveS{IoUE>N?73x;4G^rTd*a2;^w2 zZ{fK6UChIN6U~{os4b7YhXb78jB(QZR=B^hSl>)>8n6OYP#7@x-|11OjiD~ra%o<4 zvB1k2l~sgel1K#bPaNR%1J^S;6%xF6G4_c@(A?SZZN<&~_N+9GZr*f>Eu>qE-9G7n zW-|#C38(W3!o+jGXz8~kn&STe;c9F8RkL437KA0UjyoSQ?dBe8e)ynmlN_Ji{JWH3 z%Gkn^&3408mq4_=)huu0n%Dad*7D}qumx^rX9yL7AG%7e30@y|eq2>OQp)PrLC}0F zuSpn5?k<`O$*pJo;}tO~q#jS0WCmd16~QVt$VtNE8BS4)mj3|NjWGPrS=m1#rJsqs zOX5EgNgbxEYioO|+iEavw3vpozyph3+@(j_byngnCucUlPif$#-;C z8MdRx3POcrWnc)C%#&^~K`9^vfHO;6u!`mH_02B#PKpgWdx&5b(vg-j%p)jTF&5yS zQ5$63vBDT*18#?eH7l5G{6!hkbsL-ZRJ@vNS$@vfMoHB%mVi95TzP(Tpe0KXS+;;kPT{pnZA(Fm zOw%l;nr9M5mi7WUqhBw|EUfXdTm_j(AdoUwJHA@MgGaQuywl`|`)1zieOdIIlO6I* zkZik-QbT>5lbIiI^I2Qv87w;K_*E}-i_HT53r${4GiA-J?wXu>vc(xsl@TrDJ5XoDTExCxc7B&GjHidJtJC-Y|aB6WSMzN`KZ_5T0_E<$f8(;pse6 zZr&!g7g9+D!$D>CDQ-z(V`XB9t-C7Ibq5d=+})>gko+O}c|mv}o?Um@sn{ zq)H}t1-zWHxeK&`xa6E-+^8y-vbXteVy98Z;%8p=x1Jrehe)4X@bHF9cvkK1W0B=D zsgcZxR!Gj^<}w>0ixzyT02;TN*0tghU_3#sY4)&M&i4xbAC6x;cb3SZUQNRUNhU_q z_do>hJ8?BjYpqfUZ{kVcU6E4S>KP^wtWMHd;w1`$2mLQ=7Q-tB=L!M2rq6VcT}h{1 z>30xWybC-Jc{;}D%iI&^k935TC!x;#sN)er@YiJH9bn!()JXZ&hu6cYjD8A>YL4&MsCv^_mRmGNxv4ZoTw@S&YM|OfwYakC@>S;8)>A}-LI_eE$$(?X-JfxJ_bNlV31>ctBsMI z{Gs!~7Bt;A`*~uHX*Fw`dz~9kz1WglheGCT24IQE5vCbHVXz#7ir}jjz385$3CBe( z>}vQqt}Z-T9JeOPCVe(wMUAnA5Uj|gVVSe@Dd&vwz{OMXM~&w2z0HhocRMVXa~Ym! z+@eC0h|V2UjD^le%t0&i{Jk_i6VVe>KO#((9I0QWgLVs{dH zR|WBg*8W7(tz*;fBxzpsN3aI-8e5cPP@wMJfH>RyYB@OqV&!k^$ckz%tn};p9hJ9> zOxn$qao^soH#X2sY{ENb6=X^tN}A$t+$&+Y7K= zOQed&elU4Hn8#s&1$ngAx(=;zHlg6XJ5RdszMBQJUqsews_zm#09}6n4QIqa+ZDp*X=Ylfoxjtcd`ny zNiD=*XMD1TRX{_1<@s0+5H9;~FQ;0jqp3XFq&9a~vjt0OGa+(T zB7_Y4pJ3ThhU)|Pf9;xtuwO>@c5!+44Lq@2?peQjpe93aiv!Kt0o}L(w6{GRb}n_4 zY9-2_eSJ(`6)HXC&a!V2>Q`465ozyek=eM8MY%>}JCs-2q!F-fW%;njB>cEhyA#5C zta{Ihbz9VnBg%x^sTg7;MU&?0GxKtL0af)64h=F{?6k}IW3{$*wRVO~G>V`o^9ezR z`A8)&KIzW@E`EojSy=e$JtW_1No{u%MIzfe27GxTSAoB2P(j)AC>y?23`e7mtxhyl zLgH^MNT9~U9J6C_tYpK^I0Rm(tJB@;>gCTe5J5HL=d985>g3gRvS)1R*lt9UBR4i4=~-_ z_`gflv|T?!vC*#NmgezncfmL|uq>>y8RZg>lLixwq%(Hhh+8khaq9jBwbXR@BevBp zW-v)@3^yV$(J*CcRwRhG68`MF09yz!peQ;kcj6f}9oAR3S9)T*+*(~*h^1ALX3x&(wt_%;PxSec$ls69$<6BDRZ4 zu+=pEReb5ENq)*v%#$cm&OE%v0o=rvY>4B+jB}^2X;#;N7o)Vew+(4^EOAK|_E1CT zelgQ=cFr(zSoI{-p-#r|jZQWij263ZVu^PvLKw!OPUKbwH6taCTO=KA zYB*oVT4k1*{keUr+StQ&9o+L5F*e^ZJouuuX&V_pdK0*0u1T$_N7+fq>YmzIhY87A z=cxG0L$&cuwy$dpc-3syF&S575+NIabp!_-$&JA6+{9xiEo~P@x6!q@E#Q^s(xN+N zn&L@ZKiQmp=VEq+nee}K7h(V;n)10M@s5Qw_nNPWFKn)$c4V!&~dSd1~@l%AS&xz(cl z{{SnQRIACW^!)5{UJdZ|-oN4fXHT(cQszlOfu~|4K5A@`IZ#eG3ta+i`A zCU%B)hbby-F#pb;++aZCJ^tL=~^Dp5cU(MHH^FW95uw zfJ^nl;eZXCD!96`0K`B$zj4^wl9Gbv6IHg=JR7Fj#cLjybv5+&kljah6U`j4O(}H% zZccDOAo24bPHC>Yt@x8cy72zBa}BfFPYO*1mXCXRCL)npNt`?2lNsfKCzH=w=(Q`m zEqdZNYv`g|YiO^4U>#C904n>JJxIrM#&LoP=R7}qX&$rV9XnLnaJq_lqBx}+t|2i? zDKVg6?YcGu1>|l3m93*1Zk(Ilf0{%&O-(M3{t3oUrPKM+_AK(q4&*qEKnjOF2@Jn5A-fBU z>s?1l)wR3d_(;CX6|;w$X(NJZ+(@vPhnEVKPe= z02#mpVx0$GCf);}N)jE>zHQl(LU4S{?G3jor)~yHuS{exc#l|$!qyv2R$JSBLu%X2 zBRcHDZpaIa3<1Yt4sbJEDxBuM)OJ;jDay&*v8woWyc^+JUi#}!p53Q&6e*PRQT(Do zC{*y!#@{If0fI=#JcYbhdd8g<-l5^hu3?Tj5hRhZBoV&n*&4|x1wnTq*gFh^xDcdY zjgwE-t@UkvA78Xd2ihT>j`;Zp%*H@Gj*arL1bdH9ztZh5{8K!dTsmZOPh_*T(3J0; z8wv`doHzgvnTN}~1t)RC_EU?DWcO!0=VaPE(?QlPv;`@rUtP(1k)#YRbok@SC<;)z z%*1d%hp7w5Jl9bcz2+me&Abm2g#FNFIND?*1&Jq_81s|QU@=_&x#8Eb)uu(eu(uIy z^CY>rNFyb;U;^X}{HNcF%hnC0Y%jtI2ZI z)vZ3`%5ubfP}BU*^xLnA=DaqVW|OMLBw2eatLL_paGpuN=tc}TIOlL3k9_c6G4XZo zy=-)iS4;lSn%dw@?AHw=??~iDOcV$B##oYYy-BWYYnK7V)N?FOj6At5r7Xd{umR0a zta#3CYR}5l;Iq5CR0VIEHd}zB)Tsfnf<9nz^{#nRgk^ZW4#?D~<7q8T9St*7$>V%zsX;7wuU8gK2>=> z{{YwF{{Rkgt$X%K7(t|3eVDAF;WJ1#?=cd2a&wqd&|^GvMV7Dj$yi5i0$oEVp8$}y z=tx9BQ|1A%BTu{!PIHr8MyKHGM!RpaO!1aLRRC!Uob@0Bkba|{^%a+bpH9@_)otXs zdy8^P233wWJuu%fI63sLx{}N4VfkrFN?w=y*4Fen;q|pqIV9K1{v7iw-7f3Onn|?X zK5MunjybNH5?}1=3ObVIwywywpOIAjgCymHbh5|cZA-?t8ve85>ltFPmI*X?qtqcO z5mr}XSAI*gA>F_PNsviDyY)>oTDI0~=aK@VOL>|JP&VzdDZ>DJ^WXVbnE3a@u-n_V ztEns(k;d3q*g9k$IVj3;j=_iJSBIq4DNV}#duiAz*W^md>!}5`@@rE4k41kx&3&j$ zmvdW%jaF8XWo5&#bpeJBc`T%X(vwWKpI3607WUFAwm)A#8HHrQQ3xk5Kza+aIgx@WkF3)HLh+NuEdz$_V!yGCv0g*Em1R>*v#y@67f)Xwbse zT#8Lj&quR;~2pRy)n;8qu+mKcs9ZawI`AjXLJ!GfQV!! zS%R=T&H&>B1YuVM0x^5UjCJ9AX)U-|ZFPoJ24+;am&ur-9I+#Gf+WK2C(Od&kVf_K z3QAPe64yqz{=G*>4a(y_XX$+oS5Md4?)K95<4a4Iis};`&E?4r9HKN`>_Y#VhQY*%o$QTAR=m8;moSf2%+Fc(`e>X_Aj_rgu zvslRT5dcrLBf5>nfK~EIFS$XJ-9U2K+rh5dO8R0Yt-bzqvtp7wm$2-Wyu}3J@I*wE zz}oC`GPvM;$9KD9m5WlcOLezT4Kx~S%QOvUCvPf8-4i(8Sg__OP8ERpSBw%2f;6@< zU%@7yXC3vTK!QUlYjs_KMG6M$uMlx3T%t9m@~m$pml#7A^I? zPf)s(R*ve@;^x6iv}lh6l0nu;S~J{_oF0B*#sylBOwh-MEqpt4w}Vr-f9(jsj57kI zkP_o5fwZPh0OPR)(9kE-XVvDh(yV5R;v!n;%!ramKqF#~Q~~<%JCk2KHo07^?!N1H z)!$X2=|VAX+Z8oi9Ukw*H}OvlbLscc#e9=ZxDPX&H^}Rd%IwFdC$=gLN<9+t&+PAG z;h3aGP{{;dLrj1kt};;P4f2k5;G7d(&W)g0YWkj=Znr5dwv}PFXu|x?Wlgc?x5}XR zI3Ymqjt|3r9F|WPCYy4GMz@|w?lZtDn}Z&Ga6d6$SC+S0glbfMKKp5N!Nt0it2jp7 zx9#)&Uc|buiFKs54;HZ#+Wm-GwUS;*DmG#<7G)%70|XxJ$sFJo9yg!to>r|CGZ7qv z%taz;i>3}qB}RT+umF*ql1lv-=kC45H$%`uhSbqLZB27d*Md*wxij^gD& z+D3gg^PFJu{urHxm8(eCKW89EAD$4isxe@|W09N>e%b3 zjClicAuafAC7bx};Da!h+eV7o*b#*C%dC=TB=QWAV;ex+M$`9>mx*kR#;>YsbJ)!G z;>tuq@aJoJe|z&CYt^F|)#YzXo(>_(l%*Z*p$tA1@b$)))7t5}eD`mB%WZG=*~ZIt znCv{y)S{zcZRZ1T7zyHgZ-*L9z1W9LlIHjv7}nzDcDP=o?gytIFC=kQd<&yPsrY)v z^+a*p+UiDACd{)S7%85;{+w1Piaa~4>pmd3n?bQRGsST#PF#gVRuL8Di06mtlfdJU zYVon11@KE>-r2BHzDX3f8`-xO z$>frGHy6Y@wy*`2-Gb|qd4-g-^;+ll^=BN1YW!Fe~Gjm3R|n| z5@Lud$?PRQTeWR^YQ9?Ct1W!(v%h)q6=ImlZEUu8S2Lykc@ppEXmAk}pT4Jl_Duxa-b}Bhy_#t4sAe^N^<`XM5f@JofC&IPUa~7WY_^YlOYCdq^$f zk)Jm6+rbP&ddP)$H<*QfR^^7!GsRq&#acbJg{HA8+e-{{quWMRyvt@lst=ZqBm)qq zE(jq)i_vLvrm25nAAzOR zqWdl6-)|aKjGN+UqnO*p6Em52MYm)F=EewS!zg{iwyf4SiKks^acDx~f3+>e=AC@< zLx|*$Yy$3+ z3|}jAmEfw>)o$;+ZF^%fUQMmr#FuvHFRjEVk~BavsYnLt03t!h%jJ{rSX6xRaoXne zv8sgQHx}CR(`)W$+v^%$jco8rE#7fCxQQZ=AdL6<^Ura{ax%RRDU4ZP0DAI;_hQ)WvZ6ax?gu@<7Xn?{<>Jwr;pTfh~PSGSf=w3HVh$H@7T zK*$QN)nphX9JM>c{t>aXadCThV>D)S1GU5w`Fm7DCg6Od z(Qozcb>cG`n7@xix+VJV{#q5ab%#*a+e6cCZSG`Z@xdULWi!n$mKSFBIYwu2GVC(* zNJv%-U0e8fUDI{=?e%Q}&K+t~B$gVryCXcZLp)MO%_B*$G>k-Bp&~Xd_&?Mak$1+}c`>yP@dIc`IM&T7lGOnanm9LQF|1iP@Yh zf*1D~&U2CnIjepf(q+=rd74x@UFM~-E6ZyqmfZr2$b!ijZ=Fe7iFph$u|k1@MR+v% zBsNg2Dr{2b9ZcU`M}vEHI?N`Fvh7A-SSVEhlB$^*3^evvmp#ngR-wyeR9_M3Fq=3U z7^Z7EVV2Sf5%X?i2p4V`F~Y|m-Yvom=OmhUHyU-unRj6YoUMI5yfL-XB#S6Sk{!AE zum;Eg;0%-<@=W@bmCdS4V`-*L^GxvG3v+EG4`@lgNhU;D3kA-@mv>*@^Z}JdqzhrE z{6f?%wNLGPhQFLy*hgeI(b(f5AEZoZ9%m5BMd^ z-wsc#X)2lp%yu>lrQ1s|jb(2*6%3LjapW0CmbhT0{#5{+065DnCr27oI<>9*TFs>Q z?PM+_X?MdXk>)cun2Jx!8f5eX9B^}YNY*s#?*rfIS6aQ)E2+U@V`kRtETzmg*4}gj z%SS1>q}YB^Gb#C4M?C9*ng%qnqfBs=#^fpR}~dgYjB zmL$-o)4Dci6J>U8H5R#!{qy(^rz-ydSG@4(jqGed zlS~l*0B276akMhKkvwef8zx6$%GVMv-(_wNIRSXRTU6JzYduCgRkMNJ?eAy3iu~_c zRl=i5Bg`U$bIBtGP#6>+C{P%6z7^50bT15C1h+YDvVd7Fq&W$eMg)L%oP?S-vD2;M zf+o`EvyjcEL1`<-3$!vHneKz&v}kg!pcu!?^R{j3H+uD+oQtS6lSy`(7~!p9fRuAl9RcP757?puAY{wje9JXcgj;QFDsD~t?S0lgs@qAnw0D9C;Yj5 z9ittvqtiGf9TDNUu9O*|B?bzK=Vl;w$QbAGKU&q(rUOm3yC5lqngqnkHn8#Bs|RSjkp0ADMyL z-`Cz0qwd=GexKEdrO_vXRn)v!rrN=-%XE!xX=iZDZyYOZv4E%_*`=hV9tPOIW|DayY25g2#rHolzYfd}{y_i%o8m21?xT}b)wKKO zp3=@oSZ*!e$Y;;DRQU{!#D4Measv(q7!nrB?iiNdXH7=ww%VEeh|IrcLu&+{V>y`? zAWO-HeaZ540SF_Y+@n5kb?E(kytX)JD&EzuoxF`pJre5jSlR|9A+t8f_m7stqbr;M zf4m0-Wl}If+A%Hv0EQ-!Ws>s7!sbb4ORI+-VztDoj-a>iIL7n$cJ>&+#Y zP)Qox7~?^3j~ueI4oc+gc=}+B5tYc~6MeNNxDbfJV?3TzeX`tf{{W8U4wBX@HZX_uTa*tx#5!LD6GVb zYSBA6lK>J_it`%_9VN6YyM?utH8^$KS$@*C%%P(<5HFU~ZQ4i8yJqa<2FDq%Me%#a zx((!OwP&0vf(8o^M}KPLjAeHjbZsNijFXCJ#I&?&e#r!OX$*6RVCGW9fU=`{cA38% zRzHjUJ*DVA9ciOk9GpioyOs=xh8z_*BO|CJa0oTe$!`o^B=F^u%PC1?L2{y28Dh*E z>5+=n@g|9?#o=4MHrC$i_Zo!n8bGf*q)ez|2N^!2pF>@h=&CfEjIVV608^3FbyH1k z`IL1Sblcn6V7QaRHdaq}oBK&MLb6P8qeAx6*vXA$cwT`EDU+-UkN(S5OIwMW%vRknP_*gzs5AP_B8UWutX>Na-8wEKuxc{Tfww$G)<6qeE0 z+`}oE{hK7zF#++yQ3bF&VO0-~Rw@=`dWucZa}I8ohKF7bw)aii*wE7^-X%|lMH`&==ZBuM9Lhndzg9Fzm>=L(ECTqw>6 zZ-*>3{{R>KF4lChJ;wbaNUg2(`2EB8mPYCfAhbX+$ zWVqCDS7L(=#@=A__!+ssqyhj$F;XCajYfUP~_U3Dg#7NkJ zrgYj*%@AdfkXLR__6y7o>N(ta|yM$bvy|_R-k8e(6MtrO_A_#EwB30FplT z;3k&#q)p|bae|l&!u-S$mn>ebH)1*4jnX|z z=SsBEY@-krhRVt{jU#p>svrSW6OwoXuP4^HuM$0smmVC_WYeOHOj~Pf&1&{Y;f?_d zut>wZ4Z+Nb*@qjrVUnrh8FYUZcxruG_fgdtuAe2;R%Rmxmr%j2T4}l_q2oh;V>D(N0|k>1OrrkmzTEM;7#*)UKzd1CveV2tKnNc8&pX2fi=yvMk~oa*J5G1 zR)jtf2_pb3o7e9n1~IWY*g@#DHM?p2EqiroeCcE1=;X47_DPg^{{U=Qo!907{_WI( zoNZ|MzyNXLu)f!qR~ELno`&?RC3vs6)6?Q{;w7|e*qSMwuH?L(^1^Mt4QUr{ za=?y8FWTrWucWDOHKnz^LKllVJJFU^CrXrnWbu$cM(~0xCo%F)GRYj$pY!dl{4WODJTA2i%! zfOzSEIlJ!>c!jlz^m}WWk~^JR>ej+zaPKI1Rv9mveK;eoAag{*`l+z zj@~PHQROnpERmo<%ELREKZUw|*64hHRMM`r2yCyly;e;#SdxD;&1mCzZLSw|iC|o#kHdX_;X=0~Y#yPtmp6E_Dr3${Xv=Q|%V(Fli-_${8e|ahOH&?LtoNrz%()={!lJXs}rw zOG}a~(R-=f&vPU%=f?uwT1yih!#h!&CsT~$&;i1mZC=kyw6XBTrR*Ls6U!a^mKI-S zGuuecQb4ST>mKJTxGJiYUD(?R9lgBTpkD^*Hg>T@f3&0fT+z(Xq)ifAwDF?GLN?|z z0Jvq^tW*Fu4VHjx9S&RFW=0lTb=IS4a~;@{TY{6@W?wug7%UL6mjSyo0C9m<^#1?? zO=Pwy_Iq|)S-#Mlt|WF6VL)^D71()ba_ZRFFf)@`kX>ErmKHNyM|J(7<-Xf1Y3?OS z-ajWQie$?iJgv@Hg~=sQioGX}+C4w*scC#6K`5F@LPs6Es_ud*WO+c0W5O6C3}f=KO)=9 zk~diiWsRF*C3pElDnb3@9N+@HZ-{&#CDWkMtS|1rvf^p(E<-SZ2xapT=XH;0Q4|Qk zva@b|xgW!fD?-b;F;j6?F)#d2;)#o**;}l#6p&oQ5mmV+NR^}wFUWTpK+0u7@!3T1-0#{Vp4U6e2j?u??b7t}@ zEb?4g+gonmy))co5St)&o?9Jmt0xtX0ZLzNJ@ z1cS_KK__lH6+AvB4N6Z=jXiw(XmhDlgqJ*iciZte*(14*U0+d>)(6!u*6ki(`+>V01r*1Yj(|JgL8X(c#5*JM(F}UD-r_jhWl=Rx~f-b zBNTjFEH=?K+RE}y@(jTxoUqDr3I70A>a21DVB>Gf-2A5)dVhrByzp+Ptm;|~%#*-o zw6%nZQd1<7d2nq|0-r8Xw5D=IjgU4Ve!Nnkp#@Jyw0)mc*Xm`3op(}7uHTWn7NKc3 zjBaiYv7!rz{QFC1O>^wF(b@%#k$0-QJD0d;$v-TRYmhP^Re> zi#akR(z=|m`$oqY02bZpHd=n3Zl}?Pp>byfPzx!dkRV2y>B5);08R=J7!U>s1E}J2 z6b01 zXf{nCx4P7IJGWL?%u5~Bt8XE>kO{O44RDgsJeU+Ow+KA z5iRt8C`VjnVUIZAmM0lvZvYlBlk@b~tIi0-G>G+9LVT9Pcb zkXz3yS~H9^?U_`>kGPP|BpFs905EzjI`>S@fZF6&Fm9GVvqu8X5TCHxHW()a1E0T< zg>J#BIj1QrJLzS=d;X+UlaswIH0$55%WE92j@qY)ukL5E(`_wg)U15JHAU_c+sjD& zubhN)unx_Vtigc_Yo^rXzR|BPrdt>;FD^dQHLl&wD3qj;%-?ARV=+N-J`?36M3`-e2|z*spoLNaPy@V2GP7V0MRWBJxR zAbgh@QIsm&;1Iy_2+g`RD#fVJmGtfYWXe*Gyu9Cs_46@xtsQN&rMa@2^6~DjwC6Vw zUY3?|=YYOj?+TlQ?Tv+0ZsP)~-OHqEH+GQg7d{z+(mSW~^vUldjjWy}5uozKp?2aW z45!Rog#mC_i<5YZL4v~1T(#3Q+g(dinm8^cmr8bZmAA~27=o;l?vflS2OGxhl7v=` zr-*zv;_X6s?cg@rnj4+-Pj1Q)VUx=lcU2*Z&AVvM(IYEho_wk^oeEERYkgg`dmX;* zOEsdg#V?AyFQ;6evFb40+e@R_SwzwY3g#x6cFFfy56KxncaC}R7WS9PrLUE9 zZ89{1MpoY>VTiT?+vW2TRU1^wO<1?^WIBL?+aK>I(3 zyf0&8YbEWahN_lLdw$lDh$QnudFay4?Hqwo<@r(|N0;*w5<+$Ly<=b2S~(@Kx_hfQ z=DD=ewLLq@j_!2`qijM+C3EFVaDMuNQA&@JLqol+D}Ci_RMjQ%;PLLUVw!E-ce6nX z-bE#qn6^lKu+mP^ZrnRPoW6L7bQ9+z)q1T#oKcA%m(fC3%K`B(tENx{gkGSqed0PPE#^^{8; z+Fx54ntRwHkUTbRZzm>P=XuCsk<{cKDO7xs=5oKNC^_lMF1zA8uMz3STiGn)7Z*`S zb7>40h#Vng23Ocem*x=r6c-}{aBwSL9~xij_t$oMZSI)X@M-W`K+|bAWL-lSndK;m zhAKldhGudI+ki-H@~b6^LvISjY$CTIql{`++e3eQ9(D=q$ z$mNpK?kS{^Q3++rNKQ5a0`ZZM0qIyQMc#z&KoII zq^Ozl-9Av{{i%Ls;mRQZa;4rK(k;_emiJd>x4Df}L2m`Jgb&x}+Az4zG53KS;~e(? z01xhTcsviPYZn)B!DR-b(W8b40C;Ve8U7xa_WUc;wB_*DtD`g;Tj}>&dS)`#k}IOH z8OG)B$UeO0yQ$PkDO*#TaBk}Q9xOaJYbKhOo?|Rq-HzU+S|){5XE@r026@iR zylA?da$0E`ZROmKr9*RQ=U+x_-_s(~?i|`?ol23#;$!t!m{p8|z8# zp>bx4?yB=W&B$gL!g=A%xQuy3iq}`K{4t~8dO%Xu{ilNi4u5E5CZY0&7 z!c_B;Lh*}PB@K}p{{RvJ$o>=SUcGA#tlDW3`EtWJC4uEw8uCqc#$5}=P@O*IP$cT{ zJbZORUgsB-qZrAUz+G&>BSB5OU&n}>`$GdR* zOv(>Ehfh!ESzaR6t*+y?o#S(3Ybcf=P=~pjqADrp9QE#T+a|ED^&b;?{&~`L_ii(L zYijbp9q@2^eJc(plJ;i0*AnJyg`NQnlSas@#zC|o;~zfG-r2@$&%xoowP?n1QGROw z0GZ#3$3l-aS9w(V{;7Xk9WIsPiS)~(rJX)$-KSr+&l*a_W|S*&h{_aIbOf`h!m-+T z-Ng9AQlG>rreDcuwu?TWad1_p+(dp*$>3nO&Tuj^0_3SA4yN`iNG?U)!n@Cq-ds|# zjo5wGWe3Y<7#KW}wR&J2D^FoucYgs;W*eUGMn+08HDn)>hiq*2HO~-NidZ_U&{8Mpl~9S1;uj zAPce102pD0`B-v3D8JYBUl3e)M$&5=2&a+dzcI=kQ!Rp~MpZc4qkt5h=DgaIpR(qY_rFuO6+dSd>8p0R&+1}rHp)FREB3mE#bk~= zM1U%@hHv2~mQmL@=ne@K%bhn^fpHifnc(Bxes$UCdIp=Qr=4>g zZ6W2|juJw1@-7^5KpnkLrC>{_rk!^r2{>C~p;i)ie5bELir|fTyIAt0jjf`KyIc93 zR+WEoKCJ{2UJF>Rr$v@n;8qKk19r|cj=1AB>Yf_4xYRrw;vcq{@2o7fTN^7InQf4} z;^}x#OI5KDA#_wYAWnPrtc%blELS3s{)~wZ`rlb`DieeZbE-BnrXs%iHQx z_;}n(lQpH>P{d=(?NoU17zQAdwMp%snd*DntvBKOc!3f8Ne!_}dy8A+aj9ZwnmJ<% zT*%p0R#^xj0(dHL1$lLH3Y4WDdbf+c^w-mNdQi-xB`By_{{UWx2Pp9s_Ng@1^IqFr z3H-f~Jgc;9S0p4T(rp{iebNTy1dM@QuY@Hwx^3Q|BfPqj;_pw6ZC2)F63Q+<%F7r+ z9Do*YpC>13?QERK$mup(Mz5gi_j+BPrKQPfb!M<$4MIs4<~i;}4C+jAzR%sC#B>F5 zSD(YrqiNH5J}Q>d#tVycC^9if!dxZE&CBINV|Pflyuib^UG(Id~3Zcb9wv#Yb# ztStOl;jM1{t+d-sYfo#_CB?#`M*dR#n~niLIQ05+#uk&Kt6S>Vw>qHIwT)iN>dx;{ zS(ZqoSpZ*4^v##kB%d=)EfRxD(ZWJL+&@q z12^$*{of$xryc9i{w!(6UkSr@t&?piRvye$XYEYlKKc?w$mKG~};k`pnie|Kp^$kKS!i&P2sfGX`fyH?zfc$G=;MlKhuI!{^GbEmTab>~5 z`5)8_WO`+*)BHc8Z*5~bwCNdKSdtXf%oliXewX}hZIU%T#k`hKDf zcnCaF?RN4DY$;@lR#MnNamTL$vR=kt?2qj^O9YaCCLm5rU=qhC(}Dj0>a20N_g*$i z&i8NS{{RH_vdo@QuTHI0oG+)Fvs->I$n@U_Npq`sW6!*h%Oc9?9l0b7e~GMpZ^Qaj zm#uSordr)G0a#8B(lR+X&T)@Idsj)|ctjoxvn|1pyPw66{{ULE{6Oj=l%AVSZ%UW8 zqM<(D(>bwn<-|?HO<(45QfOWf@dlx!8$D}AvUubBLJK>X+^doc#pMSCWOo6xhR9qE z*!rJ^zq5+l$>JNkd2F3!OQ*2&T6Oa9(iCPJKrC0=?-I=5j;~3+H@+83q>~rsc|>TS ztYF70DBaYy;DaZTl1~`LXKUj7#Co-xc#}yMmhlm`Ilv-z=%8Tw;QQkkAe?1^=ZchH zxoha#cl38o*F5Z9uAQ%^Z5OIJU4OwTKAN{MTuShO##tt{#u=HJjBC6V<&Rwb)fwX^ zdyfohx`%;cpG$`OP`bF)ZY{LSNFjzH9J9ri5(ZYlMUSp{*a&4@FkMf@^IBL97VQEw zOSdDHasB1>2mb)9aB?bt4){fNYYFWy?PDm@eWGNRPc4(OuHbW=0&&|Ub*{Hfx^BHm zE&l)m95s1!C^fl0kMNSqOS#jmb=7yiys*DpfUO(Gg(i(7k|I+%DK6}`NI2kQ72DbP zUL896%Jv(Udy7ftoXYX2Y1&UWcbF4uoO#cTDBIJfLCd%BW`|)FwC2*$=C_~Ciqze+ zAaC9L{IKNtQRmlhImrh<#1^IvCTZ*}B@^dt2?gA)k>rn(G!KPOx=Jn=v{p^6D_Qs6}lR|;AdW(7v@Imga=bHK%T<*POB zn}1-I*0N7=Dk{q*th0#0k#{sqib@jGCuZEZ84MIj={g68JWO;(z1CU_dBd#mdC4O@ zOr=>*-wVMWhp!}zfuW&%G}0~78|f##e>ydg!j~@^qaBPklq=DZG5+G53=DddYI{W` z7j3jWxXa#r+OvnSy1mvfJW{%JHr6e56xT8>{6X$5*?oafZ%lk@|DUTbrEsB025hFMBv?r_8d{{RB-UWN(} z5g&8mU0Z2@;7vyE5lQGgGPC8?xLD6-d{;_SC8Ix;8t8SPX~-{yk)6cTw492#{TQW@Lv*TKWBvej)(%RY_dCJhRkE;IV~nZ zRJVL8DJsC9bMIGR)1Kp7xzzM)Fd$oU3o!-N!$$Fy1c1d^H-Onz3AKm>5Mprt!fAAU zf3NHAF{O&1v{dA`I=>2dL&NqrGu&tzt^BfB-UwzBF~ZFeT&@6J+yFbS8L`d?>6-Xn zokY9J(pXAkkOI-8x0JFDjhtdZ+;TlS@N+ChW3$qqFA6dPajC&C_QAQbFLZ7F~`ip=CCp7Tx8wd!`XQxJ6}f%(0!$xZlAiz70#_D_uXu z_D!UDw+SjSmN!5G$jTdz_{hyxDH~nbXu51~IFjzxX1c&gqDZD$3Sgb(j=}sSWUnKV zI3>}QZD9{*nPON4+RBJl`cX72(l!|HP^mXBwU3xMIbb?yQj{CAcS(2O?(g^<+}EbL z+VeF$LE`KEE5nMgeTF|G>e|g^xsBZxIU}2MI9!wdtYmFD85>O>3_Ka8_{+mLpYW1e zT&(swo5S{Hk>FHds!sF-eBiSU&GP|;&Hw|2@hy|s?!1;2eFoc7fJvt$%@WQUGQa@5 zDETKD;Eynn4o!Pkf^^HR2fZzu^A>g*5#*HJ92grz}Wg zF<^0yInS@xitKOvLpGhQHlKa12moEiLlDQ^2hyx*o-NU}OItg6@2%y#lm+tHd1n4u zrA~`}^rLhYXQwKanc}(!gEcv4zn$G7jzG|tOautwcb_q`RInI0%N5)(Lmc&29vr*X zbl(ZwY4+E~SWJFl5f)ftRhhiD2atb*r~`lpAXYz(rLv1sy%JeQ^GACdMuP`l#F ztMy(pjAI!**Ky&yZ8GCY(eCEdp33k?HM~~WSE|kuNmFw!OA_SyU>u*kqZ!6Bb*XYn zoPI4=ZM6QZ?c{Mfb==dN-8*g3+eQBX1LkW<<82;gQhc_UF% zsP4MirTX0T{*uFdWhW^{`nUah7n@789xuOUX`@(ep^$k>tVt{s0lNdM4!wc(tJ8RX z&T!Jo`ngu%ovw-SG|W$onwEr+(OW_z$&Up6e~2FSrg1V$U93h+Cb6D zr3pH8p3dFZ$l7$3SI<5A`uY6MlEcE6>28u;*~=8M!kg4CKp+p|Jbpx+_N=W!E9ve& z$!bNpErQwH+j{3ePe3cXi^uv!-H4W3gKP^ld6@`Z%1B@vp~u#_JB?<-T}4|@f458& zByn0Hc6~Cw{ z7Sy#r6xwT0-`YlP0*Iq%SmXjv&GU2D+O@SE4%fsNHWrs{A_*q>o(9^$sylE<^-)|w zo5mN`PbQZI{{WaBjB-nIzEsEu1xv>pa(zI+`tjFzdOMgrOQu72eRXj-3}h0zl*x_r zv;pjUoOI^8<&TAEa(2_F`P`4I)TcGi2CwP(>!Ertg}P)$)e}_K5*s)S5Jw%}z^S>L z2LqqHdgr%b0H-g(KMPMHJdI@blVQ z-p3uk_KvR(p>KCA5er3#j0mK`Q;f)W4B#pfpk=Yq{2aIb&hb92arV`HI!kFKgE5q8 z)g&LhRU@nZ9kz zp*};F89xWErN8k;qpIpI64vI)?7aCIV^bk0!Xz9HBSLnl!m5q{#dqN$g{geS?LVfj8^ygPBn98zlfk+Iiw{XasLC)s*hB%T4mMJH`SzhwB$IPvCndUe5ZKmp;BJlhYi0v)slE65D z<(S4Nm~XAf?@_b}m^@0cv#C+B2IgS+jZO~c#y;MQnu?ll)fAyMCfsazn_Bpp zrg?7ko9m*{Nf;M4Y~cfzVpk*OJDjk_K4MREolCa5);v>fc04Y0h?ZF6iEQn>rHMp@ z?|iNqz(0F|^71joeFNhU5$Z8`mdnHXSt8qrmHHm zIy9*nZO<44E(;D0bNE)uF>b{<2}*EJs(=SMm<>*_j*h5;ngb^(lIrH%qLuqJBMJo35?)Z-TN_INDZV{> zi?0=HuK=DoEfp?>#BxZUTSg?@-!mn&EVbV4B>iirr1j?-NL< z5FOrO$W~AR+N5n(Q-Gw6Ml!Q|5T=^Y;-YO{_Vu(>j(d47E(jL)2m{(Y+aoec-blo3 zCU6yY;IKI9yQ%T+jd`a_1?+mY&B&6*Rk$s(Pc79McKM2nkVMiBR1<=IHun~O9MUwR zB)O8_>sVzUX_w6`!{$<|!bf)bOiO}Wf`p87Szi$Dpgshi($Z{}o6K;;NJ!ZE#t6sj z^vz3@5^=f9?I$LhvRzEgR@V2!-XF1e2AejbAs3pNvD4#4jx^`Ve^)8U#VZ{x}1{ui~9!h_6uolTJBa> zJL5?X@r|lkh+drhp_!DL`YPYRdPR-AP+MGTF~t&vi5B)i5kLb2pQU{N0N}3^O=YRt zy@+FNcdtO^35F8crCW$tD2xQjjzsyfA1DAuRXF$UZue5OZ9?U48XIeHg#nBZ*}y#e zb4e?rA)b)GY>owEvC9}7lOssbbyO8b} zJP<(6bGx2;_ZB`ivKJPH>syXQnl~~dM~^IwW1#QNR`GS^hOOb$yVIK5WqYJT{$Ax{ zxMVQnBh+`Tr$>^Ur8wE8b@JEoIVw->LGAdQSn$t;V3BowCtkC>x!g=%X=P9hvX(A@ zu5gk8_oKm#H$qmS)O6nn&u6IE+jy4Z{{HG{h!zY`BQM7!_L1pQ?J8&{iSm*e9 z=;|@r-p{4@enDs9tDQ4b*;{u zqD4F+*Uj@bwY-ucNg6^`u<96)*~U0LoFfT6IhoqzlD&-|5qMi!(JeGc&KtP^ zM488#kTadV3lI;Z_@_6QuyDPtxccFPk#6nS(R4S`3IU}xkjkNoXMm=j( zlgx-uH`(umYi{p5F5?<8I}S1TQ)@__ius*%ny#nt`@z~FOUnU!f25?aeVXQEl)%%p zo>ZyGITNv25X9)smCyh*8DY8Se|k8r(v=4M`7Mf)4gjLN?R+LN=a_R#1_!#GHEf#b2C`kpp4lu z1!Ru}K+ZFj;~b2h4n=X6-YwPit4pT0nrR#RRx1dWYauPMGC*BOF+~in;zh$@P7**u z$Z$`kTlkMf*1WrD?ycv!Xp0E;HsaJu}O=xVOKL zT}#dJg^n_2F92YyyZ+jChf+pR5I|;cJCDY9hQ&15BxSIUDa0$WU88v+m0t(t`B~;; z&Pt46oO9D%Y6HbHU)tK}sSUyVE}wIAG_uPy`>qt_-K9G|WkG}HGJ&^#0K&HTPC zYFe(XsoB_Gy`}{>2mrOd%y`0vu$uh}yOi^yf zn=i;Vg+*5Ty8#XXs!;1%u7)kO3%wy4&dSyeQqtP){%M_UUg|Rxai2JaP!d0z%N)j` zl;mf!ZvAvJg`d2-l_viHgn}i%vewe+H3?^Vu3lI%<+{unia9$m`{_vX*9YwloPr3Y zVXj@-+pLf^)TnLJOSu|WR^`Dv0meR2AO$x4;B$~GrSX@Eb%Chs24f1rJI`e@#Dx}S zgFiXTHUVhP0K+J3ZX|9#m+-&C`dycU?d}mGxsv1O^IkmszrqIW-~elmzABt4Cn(-Y zyLRdQf5RBm!%f!ZZ*-r@{{X}OrzPO~8MUde&Ab+KqhM7Wr`cd_kzi41Rpq2IhFw0(M4Kn5z4hU@#Xg(<3BSzKy3z6~(rzX=!%4U9H}q_LfA6+N$wJSnVR-(Bifw(-Sp327bLa{wp^ILe*C<9B1v zV_sh$kLIz`V6dA@w|l!o9D78!5k!2Qn;u0;g3A8@E;3YLBJ#rlbEP=SPg}ESsYdZ; zllX&C(XC)xX;i(mUuCs(ZcKASz8%e$+A>PSM%H1C+>C;Ev`ag?y;l1}yO5=Sx8a{1gXl^>?XX?5_mj5W0Kzb;>vF#<>Uxa*UMFl&2bJ$ z+p{MuBicxC4}T_~XucJ;xYRB0EcHF0OBJ-O9JdpB0y7$wZ0sU5Yz7PawP(OqHR`0L zO+KbKYIZ!LIdx4yTisl&lgSL0(nV`*^P^4WM$-Tvcb1>Kk@2@OZc&8=-HbO8Ytacr zHdk`#_i$WG1=Niz$s|)@ft0}8OowRB@N>8a%7xq2X}W%!VWsMFU)>~f+UUaW$(re+ z0_~Pnj40d#ksN54AnpoIIc(C^Z}eC-eLqaoZ{ZfRwxed!E%Urksd*u^XUQsvfn$B@ zOBLM29t-#sp(@Lo7P8Z++__^2uIS`+e-BS_d-e;qx`xW;BXtsP2xQqS!Wok%1RpeD z@;U5sdk8!W6WK#&_N$h)h2@bWWsR`XA|swq^Mp)#5D3BK;^`XihwXI>S*9-y%G)e+ z&R$tnltXN&gK)?pl43^C7a>D3g|7PB#$FkM)+>qcogk2r9F1!zMW}FtUvq66W|T5J=poJQ4lRbNSTo-~?EFp{eRZJh#XtP(EP6xZB(_egul@t-NjF ztwLdMrrk|>IT;bbXEV2M!9JC*b89k2rO}JKDy&hDm=?x2XQ$u|Co3&N$B^irFY!X! z>6#vwtbMOiZ9r;JOC7woazfI@D$E-pvxRcyQa8zwj^Mz9=>8P(HlqF=v(q&*qC=$H zX(1=Nol;1F6H9EdvEQ}BEF|s+Y3bZ&&UD)k7TReRiF%C=lJi{18tTFuh)3DsB46D| zyi5|@st4M5Ueg!4FQzQSS{4e@d6DfO zH`gDAPdyJsr+CEONU1)rYzg*WKOs$*RkzgcZ(%aUaM9Z{h6&Rc9e)$+T=*)uI<-|l zXJ+oNWWOV)7ly{ti<6#;&#UX^c=~C#^7u=|n$$5|%XxD%+|Mncltl!Q%V{Xu0mln* zIm_gM9!A_YdVNF2+Rg5TYi7-KRb?hkPDQzi`W~^{h})xe<$gd2B;-e-+}_yyB-9bE z?JQ%~F4iLj)Iv$+g5hGfStC&*?Knx;0uJ#WcmSHaYh`&qh3_?+i`Ww0*=||lOD1we zF6wcY1D%BR<2d)PN{247k>yr$x@d2Qp`XTDHQt+XtX#`|JhpQfrRZD3nDim;c ztAW`_z}uE3y03=sG@D4|z0^_|XSqU=+C^*Jzx3t?~dX_dfs?%IRXGbZJ&PjXo% z7B-Qk?XZ$ftlLp#`HU_ZNWlPtaN$p7q4>fp{{Rl%>QUUh8pfRxLST%*>RL`BRFM#k zuGk;!9D)EDGg5>U7qU-ZKhr}#R~cx&?LSm)cuLU)zM#)N$ZL5bhzmlWIe8gI3ygKg zrxeKbzY2Jd#PRr5?=^Wf541}QM(GGx-Zf@m#12QuM;Ql>$2GI4&2tBZW}eOqsjg$w zH1~-uki4aYj7HJ1`S;qubs&IiobYYNyLG8}dJFv;_5l{Dd3iL~5KgiWF)oNMO}udo znMW$zl0H$A7n-F>#mAOB*RtN$R^QLleNNhR)L~_^J3U9k(&+jVE|Y(8=LbZBIrcPr znbm$^066)(5%m@4TIK%$_J#3^XeYC~h{Fu<6=@ze+}SD@1=rAw6O3RGK-#*!@eTE? zmbZlJXd?;_?^eMUQuyUzYRF z?_Bd48%XlVm-}w&{>I9ETHfmKS!=61)s|@`g4Q@w$Y*H+DUa_7vR!^vRwVqWt&=x~ zKFf1=;TZ06*HYTW=7_KYg_Vo#2d3$If3wLvn$fwI_VU^dIyrRstn|4iYngQtL@34f z$CH)$hFcutEDt0CK7N)f*+n?MWxd{>>smdRT`h08>6{#&nO^QqQ0dYbDvrF=q z^D&*IqXj$>iqXH*B}=I-(^%4Bd95S5GEb-o;*s1kDNix*$QC3$&ReeB3SBo{)S!a% zKueidSb}3~acOS_iX^5c#!IwAfW+e@l34qi_Gnf5%p&8r^|8%SO-aVqvA?G4iQ(O1 z`&WMsY7x&gm$%RUi5tkTaUy-0-akJq$sd}e4TVIEpmNN4bk(MVOVUq>;)dEIrzNCO z80A?2iOTLH2N_a6y+%35eqqoY4yWZL zW@*I&5B#nw(U zj)z+gr{HT_83N6%#cvB0m4%yPH|`5|IX=W@vaYQ@7Ftb<#nvK~hU`sf>c`)cQcv*b z#g|vH>LW~uT*Wt?Zo=T0z%rR|!)9BSBO#ZJamP7#zYO*B3|5dqZ45EHzS*wBxn>Fv zAs37w;~u=6@ueC#WhLz&Dtqd`ufwlPUCtZp5tqA8*WTaoANBIrqPh5O;eAs?`)-GE z1-!Cb$8%^e+(sq^q*hat!TAOcY~c0C^ScX0x4D)pOFOe9g8tRaal45#ZTq;dnCf!OE@M)+U=-R@ z%m+SSAmENzXPgmOu2|H(UZ0`gQgW3y8Gl=nC4_O_$}P1GTHf;#G!a|avu&MZn`|Yc zZ~-`v1r?Mun84ae>2Blk9*g2%9!%P1t~C4cs6?5HRf117itgeU1pU?rC_YSX!NG2e zadE8c)|!5qr0KSIS2n448fsUUhE3&y{JuoHj_mpQWKtEGzTgg7toWvD`LFD)HS0qZ zF*-lmuP+fK%xc@y{U%WEjIt;Ilw-87nYeA%q@do7+t2#4PqH2 z)MvGot)PQZxNC;GSd=`C@~MVd6=Z#&jfWC8ODbSo)1$xDwB)(D)$e}MASAN}OyQV) z*E@#*clve3MWB2@{@L+fkEFz~TcN!XxPi=~;gR#7Gh*?;APzBtc{m-_+fAuz7k3ld zwW|w>A`!VcDvnWKpy7gs9?Us8&3GC8X;H(*adv#)qdRbzdNu0WvbwYV4=nhC_c~UT zY~8LdA-iL^%O>5scHv4*;AFzSXWxRbntvliyqa0A7|Vf9$oNvQ}L>{&zYn7`0y#>sJ>RT6O1_ z9kcFRSZ27{CzT+JCM*zHxCHPHNdy89bMU)Hn@_s4)TcLXCH|i?NS78 zL!Pwg$v4Q<-`)6|ka(1MMg_L9vw>jpp`D)l&fXo-U5Qqef*s6q0l*}To=L5#{6^Ka zohfcL8x0~`Vv8=%E>vJRKX^zg_lKm9Sn=JB)X@Q*Dm&Cnk`?@@7xBQ5{y05AuE$WY zw1(o+<~vwYcDq8-2*6{U=bH0#4APz&bg4of_bgj?-L#+e>Rw+$ocY~ld)+T99&s;^ zY$vx6No%3BU}FYX&*$c5me<5K>uif}r0LHF;OGpqy5w*=%0@l94tVQclj10reI=uk z;K6K8ZX6sD7zCbw0r+OT=UdV=`%OJ{eIeZ1OCpB_%PHK!ax=&~h|lBRy= z_M54}r^^hN7cPPmdfPctiyNj&eB4M67$cF!=7Ui2q%dd~R(7`c^EI{bN#v43h`%{I zccIFIh6AA>A46S7hvw0B?*|9hbcVFkn|;N*++O{lTnO^)JkUW5xNniM@~OZfTW`${_g>sb`)okS4@|}_eV?`vi|^OSzE@t$w?#^#QA}wP!}tL z3Y;Ce>5O8%-B!mXDARXxy7_;@ex&hg*O#6fx3Sl(bvwHV^;>J}wIF=T49PmF+!zwA z5DG8`(tcdz_P!35*Tfzw)qmk2OXwrAc5M^Ra~s+zl16Rn4jNPPmM^)9P)R46<*udh zOmjzlqv~3f+gz)y)K{Bgc!N7f<~)fBRUba?jCfIwg1YM;5b53{xVE{q8*b7jj^k)@ zk^!BPBRZ*Ieq}rZxfo-iJb1iCN>H4lw*LTtbYW?_mE#_d&t1I?omG_IO%%7+5(SXA z&l3FJg!=aN6kY0)UhMO)UkITTM{gPc2Tl|U+0=B@zl3yIlzfj|ec@|2Xrx?9INMoe zxXReq8dRI+?SIS5@;oxTXY5qo!IpZpjN+yJVqeVWQJ>dnIsdp z&2Mh<0yz8IbNvAxr!~u5v3S^%l52aw!r|=iBexrON()NrOmQwxCml~rFIGGZ0K|P( zCj_X*5Un=ew|_2&%Vz2jN^~i!^hqR3dEyDI^|)^|t3vk{%(wS2Ut8^rs{ZX{+T{y4 zXI-I4EXch|s2ZAL?mZD@aUD9I>m%C|MZFyS&(P7yv$S3lt=? zThL_J2-Eb7c6+NRq`G<8l*t$?hG%1dUG{|w!temvs8~UwY1%EWsT8+bCcPf5W?(kg za7}GHksMxFVkVKJPolxsIMRn8&DU7TV;&Vu{`e z*g+FU?DDK?Q2g$8h>yrzDQ}svoNL3W$eLxX+P(ejUQU8EcC~EAVv&hc8x5=(S1S0x z$i{L7FZe?5bT}^4{t-QC?5B59<6O0m&Wm$-d(~rN4%PteY!jZx6!~;(_#aWbm%^IB zp2{J2b8-Ea#=I58Q^XbAa1$OKU(wcdcyAH!QsojHrq&V zw#RdJ*IMKkHwSEOu>^5|MpfG%Ddm)s2Q;!jigZmz=Fd)B-D1`$aUJYX7LHsV8BRg| zU|`^pf_QQDXIitVMQC%>rCv1S3Q|d~@ACfuf^`@2-(KpMI)s-tWL#Udyo@c#+N1z* zrcb@oxvG|S_gZb0wTfIse$93E=$cz{2_a8kpQby0waiC<;~RU$oBJbFcT>0{+Xhfh zJ7%VbTJb{7B#q(w=Scw!zh&T`%=hR20M%TowmmLYbiEE5m|SvqQ;UA9?$`SBHGDyJ zHNKsDe{}>mP_udSMo`9Md=0qyj~N4>Tpwzrb$CaHEp(~1Z6@O8((P>*P%M%lNrY!4 zFvpgmh%3l%DYMYxI~eYDiLOtGE~L?|E!9{h$XNX6+yba(H~<_Ik~jmP$sHA?r-#wB z>xc0^k}hoGG5L*uZ;}U?6ktq8Nni8!7|NopFJ}s|d$;=Q>-nCZ29(rVtkZUTYrjpm z@6gM<)vaRqeQ43@b~eH-Vns%>h63B|&^euAX%;dV#)oGd%D63+R;#URk-vqsjati6 zv$US-#^&Z|q_>D%O2Xwbp|im<8C@MhmDt4s@&TmZXjhsBpMByV4{A4e5o%`aO&mz} z((e(ejH^ny%Ep)np+S(ta<prFc(QGp)VNy~Hv|5!vLKW*7@8=N5G;#d(Tgc)O%Z;Zvf zyO(K*jyH`=N99mT^xGCTTARhTmtHc`r@O?q7ME8xvS`jB^JFr`D;9AfP&u2*D0s>o za(2|$mzGdi9T4~$XcG1`A}gEHQI%CycLO-a7BB`#AgDch@wa-dwbqpdw9`uRSl%_< zw?%$`QZen%iK;?10%000n45k{P$1gX2j?5>N`%Xj7Jv#C}t7gk<>cl-mo@ou4` z8y#E3;OiFpjqHvs?Go@r!Is?umss1B{n27~bO#*Z4Qp?O`qlM}QV$tk+RHR5<|!k& z62rKE5c^R9ha0Zd4~A6+W+| zEOF^J4Gc(PO*+`9wzrdL9$)Y)DR42+6T7h|7!I`MN{s4q-NiR$)%NSTlw~&HruBRM z#!juHYJM2-&BTl1T^mBv;bmr)$3S7QvjM_+%nnHd?w-GmbKWS?HBSWiC<}RX?ONJ- zjl6bN+I)~Ryyb}4Qe*r~Fsh@D1~?;A#@4t00Pw9;TfwLeNJkFev&Sftcgh$x#2FiR z=W}B?>Tywc`sQ@_XQkZf+oHKmM$w>S7Q(UuG4ir6Mjh6)juM?5JTVlNr71N30PG}?*X?1UZbrs8Na9;WU0A`hq#$qan>!0;!=8FJ_>ceoa zO3=JbCYA8>LbbNAytcb&tfY-w$#1qJPXbI(?;vN*1LxR(cnHP`5ovx4)I4_3_>aYs z#c3RpG@selF>MksF)sIaXEe0HY z9mS-OMV+$8%DHSmvu)?^{8ge{2i2|Yl33DYgGkf7pD)jL1N|kFg3F!Y9^P9H4spBU ze+t;eV`(d2-K5WYKG%KnE6E##R@|WkWBp7x!VY6o)UiAkv1fAc;hVci1DjncG96U3 zfz;*8o^ygmJqy3BdGM7Kxt6T-uy|i-QXY5wJkHNjfN8c1tZVaL>X)e`Sb_)Ii0taB zsF_fHW*>X5Gwn&?zZz*;w~4HW@9j)xM%{8kp#fQ2ki>AsM>xqmWOG^8TFu{yOfc$J zHuiSQBy+UMcIPHH5)5W7xZHpouek{D8H(yK*vm&~6|vlB&*MEf!So>Dj@v`<&WGb2F?Ef5!}0yPSs!#) zAeVzITgyE@>0{V)o(D?Q{{V$w;Gg;zEdKx_{x$S)mKTvJ#kcBtKKDb)HNO!@;;jW9 zOMOlqIjrWD1+)+v|a(p#opLIXuUUlQ04@dCliXhXpw9+)2Yt0_&CNsj) zHu;Lh`;`PAHL|Om;3o2N0Ts&_(x-JsJgBF4xy4%F&8GN{X1mj^?k)lr+bSZ)TaC`U z6gOVZbBE*>$*#x4`rY24bv@jgxY2}D`4Pba4=Qks!w$@)vT%4(IL83;bM-FP`C)E`VwHvDZK)4t3q!4MkpOoXvkz|~y{o)`ynLz&lmWoE* z!v{I(oZDSZ{6*q>Z7SnVvVkNM$8uIicFx5jMQ2t!*Lf;10dC-c!Ws1c01PIbcO1ST zWS&V=H!Eo{js)DT<*J6-ncA4fFcbmD6?aY0bVI3IBv-TF%*^sAMR;96jhoCeu{qnY zHV#491`h(FrjT!~id)#s9y_~(O^n-W9%&ZAme@v-Lv5Cf1VDcAUHy6urvs8lXW*@O zTRt<6$6g3tE$nX4feHCOP^2!?_rJZI(uM5DchF%JDm56B#z@yg8my}71g0-j_~m8y;)FW2R`Sow7~Oz*?Oum_Y?{O(-di6sE!(%;E&`F?84aJxk`E48!Uo9gKYadJ?{_skq8I`u-=0_`?2itKQh?x@FF*tee-8do+sTSpLhl zA(ljtDGYZZ$}z)z<%PWZlrU=XL+;g4T&U^7*hpI`f z=sq)@JRxnQE6HlIUP-A+>aNUA-i)A}FB!=LcH9El#PJ7(H7^hg{{R*0+LfieaD^8p zD>-ngsH8AO-q_l}laqmy!0FvqtHec08a7S=(xF{@Z-seW}+nO3b$9Y z%+fUA7QhI8R0DhGA9$SgCZyLPxYhhNA&u7GPlT~oxC#W)h|kLy2w9sr$^H?$k($ca zG-T6lG|g7iQ-=D_RTH!l#T%wPrd4hn1J#K9E2U^G?-NcpuXY4FbaFI^R3u4`ditK- z$@i{#Q{{1T>1!R-@Dysc>A!W~WNi3W+rzD(M6F|MJ^lXx+RePvTE-@wS=?>i-L|j< zcLasV6(*743!A$gJ5*+|NbT+AnkSOc*hUUF5w*~XgC^kW>x`4vn#|K|EG2y!J6P@- zJB*@BB-vQx+IKF%206hT^TDr6X)W}h4-FsfHpb+sfnzf)XEG8LV4wDe2UDIp*JV1B z#7#LZzda8(AA$Ovc&NLkzhC$V1K|w^Mbng8Lvpt<%Xb?X;f`f_B#JTRv*Ju+%pPaW zy+L9E^dr}=tRcU#k_|-kqV;admr-j#cEc$;E^F#B=|Vhgr-{{Vc} z1(%GiA6K61T4`ieQeuf0DqGP10H1SSr93mAG^wX$_p{EGUR0E~XHO@Ed@n8KjL^y> zxUvecA2jd*Bm?W;-nm~J>0j7h9K42N-c8NvxiYL_)D}5l6ySQ`9B0y-921YI$LrFocwbTf0EDAM)I2|Y@1G#a1gd^`{)g302=x2~U0PLL zDW>+(r>^~P^D=5O_fp?xaPeQ;T6kkc*Zfi8i(4pUz56*aM$ZJcM%T@W3Ol)AWMIGm zRa!oFu;&v=@fL}r-)Ps6!v(IRX11`jG1({+Mq-RjD>z*5%T4@1e2b8NZ0TzrI`J;E zr%u|;dS#`)k0g>L#?oDrT&l?u!Ml3`u;kAaJVWw+3WE0zJ+DhG+{MA%+n{~W9l7C>5SiOsK-BvD1>3weY@+%D7(%^kQqO5@Bt?=9u@`c?k9 z4wH8_k8w1%O{q;BT7%!h;^jo9BrMPKJ1|sG#gFiSF@ag$OIr!loOP1FrpBMd4KKmh zmik4mv7+9PL&piytoKU<2)lO@sz`=2C_6@eZNDoFgU7$ae+FpxamjV!8i*w#}{AY$F*gSk2;l{d)FmtHiy#vHKmA(6gChm7jdDjhrYLJ4q!+ zJ29SWKM3i1yjr)0wHR&g#+1-O44ZC1i5(}CYO;nKhs+2iPcNPhannwWrBB*D5S3+n zSnK});Ue(YfIKZMI#k|%n-7~cxLL!Tu?!;zuijz?azInKlapQ*dE-A2YjbNCkk1Se zT;b<|QBTMlBMiel9CsNey(h#!+M1t=@9uTh)NK4Zv&m&GtaCHMghtA)S9TDSvB$^; z)>g^LEuY}aKMUDGEvC1lY4cd2i#n4q^8}2aI=d5%pqyY}e9P4HL>!;HP1;?$o5q}1 z?#J`IW+{{RbU8mQ0OZ6KEsso?pT&+--Ka?rQ+sg)Hul;o#%--lq+pwd1#-l$LmcD*=-v6O zjW=AIPtx^MYo}>a&u@uV*HD3{nsU;{gDNBeFw#eij!tos8yn(kLQ+b1y5CK@`gJ)Y zhn+rIX>Rvko%(g`QHR2JmO8w8b<`1)rEEWGOG}B);*k{C(CwE2{NfHmgU1JG9*J+J zYS6(H!WdraMMjuP5*)}!?-+>p46|-09A%FuspBnm4-nYs&|aNNJG-|6*us-+o#aiy zmE>s1`F2QhP7dA)$jv=NUb?*0H20Upvc+QayWA>jf+vpC%eHSb17kZK@@-9}j?;xW zHRjcg3`UhA-`)OyliTBMp`fu&Ki*7zeIEAlE;s_;M{L z!^2Owg40jbtt_57uWzpH(Joo6=eLa_V>aL&vR8Vb+Zz*tyH2E++E|L}!opabEz`{u zRx#x~rbG#}j3R@u;1(PJMshQ7rAa3$*0-Ph6Im*?WWAhy?G~O^MU{J-i-w&w%|+$F z4AJR{)9`<4m3&EZlZ#dHMZlFvQ4rGL+z+PR`K}LFh3+*~itbM;B#&$;j2tVLInHoN zBX31sIM2)TNbrl*melVH<+twl-7Hs>*or%$}wqEf@}KnJ$x=nR;*mA&z1K7 z0E2U-)%8}?d^M`THM@ycD1?vaS)@@&axjIJiOJ;qg=5&7;jOie7HChI#bZ zH>Q)+bdM=xHZD9n;A(d_JHk%85s&t@;T@0&MQVORL7?#wPW!BUD-K+>T*CV zqj=<+SYnPx&AHkYJk0OIe(gs997}00g)gO#!fE31HI=okymp0k3uZF2`H^``gvn)8 zUWA|C4mxI)NyTpdR{c?wsZFHQe}RP;hctH3H2ERE(*DZ~q(yUeXjDdVmRQiQ&69(; zW2ZuS8P_nTm#JM|M{Q?$4XlfAad&NOvB)#@z+uO5KIj1VuHNUvz7D=fbcgXX$SkC2 z7S=ncNrpq5h6=d{Dt`BIk80+;c(;BY*JIFZ0E@EJREfSmSpiRy)!8cqVDKi z1tUDDkT3@X@-f!ArG=eYx{ggZrk%F*y|?orRfZj??!J5edKr2ShaQ7@CEd4%Y@oQ2 zen}f_45)hms7^Q?aC=~4s%!otzlv!JSjQLH&gWq!^#>VHxGGC@^xKsuf(>eG_tQfu ziFI3+c*bUxmMliSc8`w?FSkTi;!R=FC}E9mSlh3Vieudygk6Ys z{M$l@+f)-&zpzga>S59iQr2s@cj4w)m_cs%C|!VeX<1p5X(fvud9Ihn7oI1*@U`?h zzL;LhOJ6jYph$MO8^Jl9n1v&z&`DF*1Rq=K^Y(G5ww3MjIwe*Re6n^p`)wlkN!RpY zrZ%?a(D`i@#G~x#=E=I(Fhx_J{wbdcLihFgsyMj|I2DtLAB*B%Ve6b3a>KO`vJkUWUiT7*k z4KnJ|J2~#%KFcJEgwMK6ZX@Pr$z#Ce zPV&(YnEwEcYl~uU$CwXaVfa>9e7D(R)mZ#Lsil0vRVg?&^|9u58iYEm&}q6}li_VoQ@D~CEz<*uji6mxS=`@T*+&c)QN%RZAhMNw!y|8EBY9NF z3IdVEoxgR7=NC-9zY|`|VGX=@R@zjzA8ans&u``V(US{+al6dq5ziPZ!CYCjx4pX4 zG?tReIYqscQ6Vns*>fMUt#Bf9-g7a5`Fi8=^bE%>(a(Gb)0;;UKrQG_h<5bd4MonWJS2x10$ekLISGV=}k!sq0k)%lPYP!AktkGLb zXQt)V1T&VHAzKM}*1>RYv5E?~GSkoYzEhrBS_XdT)fLk`D#=g4o!o-!6qYhMf6>i#wH zPN8>cX>=jHjyR#Xh8I~|>~Qex(6gu+QVO?R{Jb6BreBVQ2)IpYz5eYiQ-gL_FdxH~ zR+=o@js2Wx<~Nes+8Y}~EP*q;vdd!`jaLBVf-pyNp{@KzyuF9To*%x`Vz-&T#~^4f ztpw{L%RRhcZOFk5B9Vq1t}}vjzj@(X{ZmG~xw~msUAcv!bxY?+2+7)@FYo|<=^XQt za#->|6XVtk*`=-QdUL0TZ~oc}iG0X_i*!qo{7tlO`A8W(uy`wC>f&l%Yfg)?*;-aA_)Ad`}d|{?64Q%61(ygPGP)Un!)x?<22EiikImRPq;2oo- z@Yapu4Rb}7=GRqZSi~kkle7hb4#wnFm~j^Be11-Ws>HvVwQB*M+R9A&%nMX=XH5*uN=5DFlJH46Ia) z07&b{3>!&BQs(J0ofkefo zDI*=9y(#AI=LDU@p*hCA7B{eKQA4K73~*{U*H*>?iqNExGbC*p!UQV`Y^h>AqM!}R zPgSqUjbb%R)2PXF0JvFX$~j%lA0v=3$VUX=ZRwm=P0gj#HS8 zk%_=}8C)<|U>E{(l}XP2&BvBk?!P6s>U31YDl~qwr_T<$Jul|gy4&w4YkEcBgQnSV zXBYb|CADjLJoxvkNFsMKN1v5rU=>twxa1NBp|jO=pAKm1n#QRe#Nyl=1hJaY64_*x zBvuLXKIS{ONro%Q``9=9LE)=MUl9dZH3-v8g6l2IBSG8Yk& zp+mB+uYfh{xIPkVT7{%j-|A}?*^KwZW=SWPG8Ye+l~zFPa+uoBkPh>tU$sf!wyN6L z=S!Dunbp3h72`*4_xs*cwIgZsxZs=tpFn>iYf^O6^m~P|T{3M>_{Zi-vE+mw=lt_r zyXZRq0ETo84%=PUWYw<@x@Sq=SCFck8FHC^a2;PBqXz(z2U{d>sNW4=N7W#-x{@Ij z@yY??@%%q8sINYj7KJMA6&>A^SNWceTt#Y>RH352w)qsUk^`s3tLX16P|8elL{Hs3 z@$~lQzI~rX)%7bKLPLDf>5G3fk=sclc~2soGwlbi4l{y#abH7B)_P`<9+3p%<+qt8 zlyoeA&*@)3>sOO4gtp#UiYAii?pVkUyo{grw<-3+sqb20;{{T$uzD_EPPehgn99Gf zrrwgf)$eT#IPGMHNLmn(G@GJ%E!~b$febOh!BRmP@F34n4 zF6TWMtKbd5I`NP>MLR}CdhdmFEe__;-0KqB+c9EAkU)|{jDRFO9mj?pIAu9tK`z%5 zMuys1nInqSVNTXpau53|N&cjeJJ)<8Ejiu1tl#`G=0RdzrJ`M*_5Npv_cCrt0`jJK_zjX>M~U4j2^b`)inzXFZ8Pr&8Ehs1Wi8Y@{ttm!7#8; z0cB&m%Tu?tNOY@VadUAJ%V=(6Xk8(gf>pZY0gvW88#K_83A0cww4Y*t$w??Hoay=ctt%voP%1R4=J&N`^eyMORrOb&ns?T)`+q1_c zLRnEatAbtCOREgwvd1NWBD!YOb&0n;_m`5$7>04?E=cqZllbKH80%c`!;Ma3@efRf zX+xRrLZo#WG?(xE}u&-s&>^xJgd`-OZ1efwyXx109Ssg3wlE0p-6R4S^ z&eSBdOslnWq&K5U%ZS6qc1_>z9ZWl_z4;zhd8!>_M7p(-?pKaojgr|I2dMu5Jgm1c>7WxXTlq*ClCjbrFulr0Fxlg=2Iel`FUrp2bKY_XpEy9msvi7=SVdPTebx zq@$JHBPveazFRO;w2E@8%NQo~v(xVX0D@tPY2s=>?_cveuNPa`zPW3QORJmB zUdryoeVSmUyuTt;EPCMN za&n{*kU_61@ulXlFKo3*HH}{4MwWMtuO=hN+*IvAFc5`sjuZeMH&8I5x%h8&twwV& zn(E`sBsud5&UOQmJ(WKN9+kt1%ic06#&(Od>wBxO%knafR~cy=zw5~MKNx&NvC{6K zw1mkaSr%!Y9k~duG8c9O5{Hym|i8klnz{n_axP zwTMU19J+2BI0}wL2WCcBBL|G1x_v8l>%@9wa-=tR_9-C5ijq#Cj<`4` zsVUa=&xigB(DVr(OFE%>WYm)7p*D!0HpLO_5<4q45MU6Dc7Qi03Gr^$?#IPC1*V~K z_KWB|J8u=l+spZqE65qQ9!^e9Pc_Ml$tmM&#&VllMml*b8&kx(Flj69{`0-od`5;l zXlCal`d`qibPOxbMOPf!$Ravn#dklavzyqcM0H62| zuQ+V-!GEUQTguT~L#A3haxYaN$^K7b2_5UG*E~#(2mEyYRRyMpWp=5Opaw?`5iY^6Av(t6CM*uK8tS&+H+Bd*2Y-&v7(qbu6&% zTPK}kBI@2u{Gje7QTX6|qo13Nofl8DxbS7xi{c$haSU>`#iSP6eajIqmSa=?tw0=> z#&YaIC2)5?K>g>4bxU#*BG(Th!{r>d1Y>^wox#Unn>nt~L2U$(LoVYi=V~Nzv#}gx zkO9JsjIqLujz&dXEht65BA;6xZ2-Qt)t32|>ERdl*K=CIWhoLgDe}5A#t6ZA2Gfo^ zoCdCPKMdb2*O4G)hj@u3p2BR(o5#+$jf&#{o{fxwoREF(EN$e0CynEHq)^D}K~_`9 zAo^8jvscK5CzR(HjW-|Cw0GUHMOg6r4-d)q`z3<*%3HY%Y#}kb`3`1C_RNhL9a!Z~ zLC1WkZ%gp6hm%6Gg63Q3?yjzYS+M7IzSv{^#EO37qcg5L<8DCcIs0!AYg!-n!dlGs zQA4O)NX+s?izk%o{!0MTKrO#6!7fV>56%G(w-^K-%i%|eb#VS7n(OTvo!y13^TlcB zOCyE^e&81jf906Q3w`n5BDrxGY1fN`dUft~Qmm;>REpTQHQZ33CR7dT-wE`g$IAahT&O)`aQ1CDCnvKIbWU z6T#+1A{2EvWj#edOYsoUG+U=d4|61ipn9>aT~LvVpj5G1C><^j#PY_%WI80+e=I6 z&`%jd2mE{6^l-s`@gwW+QFtgUn#G*YsNPKlrjhn*Xf9@n(g?E|!kE!RV+srZ01yL` zF& zUo{n`R^du6?sM3T=e2PjBJnlM_ZqE*qD2M9tRGAUS$O$nk`ut>mgD$aZtkEB!`$wC zi<@SNk~v|ONM#^0x}WH4<{5O^bpHSm+*y{mxU*KdMlww%KFb{QiDsE&+FSv@fa{jy z2PIDMt403iD$9TC?m4ScoSbDQYuPx~{3WQ#9fYt?s!T2|F76#)%y^bJl01T2ckU*^ zAwl30Gm6r&@m{1MjV83cgrEU-Mpz%ve_G?bF{n$XS;mmxCHxlplvbDvFP0YKDKKN+ zKvD|6e|D^S8;Y?N?V7!ZihM=!L4Lu1CY7b=Z))<#_Q_ZKMOoF`F$1(9Uo}H*JDCdP zfPB8nSemq*;{Nq=YGJ8VicM|Vo^$^I3E*489!rD>#Y-6mK^e|h>;C}isZWh9CU7LY zkRqIhB;X&yvHVJ!ou0d@Tz#VTEoank+8~7j(?t!v)#c8WZ2EnyDH*xBl17mg zqe&E!NhnXs*vH*C!SZ`s4O_%ICYY8Nb5D7H6~MT*5-%7Md3eacR`SRso=M=2)_>s? z)NV9gI{qu2WBw7F;iku_BD|@BLdM}DU`+TTGOVDe+!a-VouzuUE6bXu{{W$Ms8XY) zG-_*FjMg3+(4g^SY4;b?>f+#BSVeBgEk&$sQ!tOen}Lox{K2;EW7xra;m;ZCaca6H z`L@4|#~s^A8IKH3*v?NI%V9w3#{#^@FAv;aT*GU9b9F7An(1td9Qz}U%yF~%Y2_8? z4o}@KN|reUw|hT@H01bQtlTc2JDW=xBZxeQcu*089AI$Bj(Eq*(-le%6x^h={{S&c zYE={?s~O{MS39NZ)K_^6QmYm?OOC$#kp4GT+9lnS0(lmyGFR{)lPXF4p?Y>Q=9Bx4(%>(Q_AwSJ82~g7VWq>IA4=@PMI0$xOEKF{8iw4 z-CIh$kHwl`iq1!ABa+b>pKt(eeVIZr^gIL7uzo7|zrxzrfZI#awRo>?8tyqva7UI3 zpq6X}1AslgwStnpqWZ7Q>!~#;MO$UB_5E&illa#|)^4JXDI_{<7p4z0k!Z2R@$P4E z3}hZi+`|d5;1(IiwAN?TJ|MmHHYo>$ZSD=MmQ!ib8=2qBm~V;|i_Y2RM0n-CS0@1^ zSp4S3#`j9_mb>InDbmchHWv|=jm$Gg9Bd>7*+Q(W2*^^{ML=1ZO+g2Q{8?!Y)~g7D z&NaM|nsa??1Su*r#kfXXDl)S^#$UQlQyd!XjVC8$*WQ=rb17@F>E0Xhbhf%~fuuUa z7&=69Bbf$Vq;X+DBzAI6GC)JdGD3K!{(UAb6HoB2kNu^tO<-@XEs9(?SP02*$tr=D zQZ|5h91af9-2I-H;k_42)NZvz)b$wcr@OJYxS4Kzl(h_EQf33o$y6#f5uAmz*aLhW_?-wUf&`1CN>`kL9nx#tm!$#I#SpG5b}= z0B1kN_58czpFOs*@kRHB{9oeDUj9fl{YOXCRy`4~C74;T18zeS1N^dvUzcIy10_?k z)rb5^uZBP6-cS7m{{V;S+aE85n7L7slAOKk^|sbJ;bwDMZ;CH&ymYH)ad#Du*e59r zv$TMbBsgXcSZ?I~GmM@|t?>fE^S+Og}&>VF* z0Fleb_GlxYT)Nfg)1kGqW{oW!4aLlE=r^jcKf5dx1CN-T~1X%y*2lj zC9Rm%V+Kg1CMHe7G{i#!Mk>rtmYeVcfPFj?oT$Z5;`1`9+*5H^HRRLu9cSYu{XF8-rC7=d+UcR^6{Q)DAt9g8(ph)^YqvH^*UvT ztqN+TRFY}6*KX&3qJL;;$OYZoO?3nd9mK)bM7Uvncv$7eTPoqf7$h(!sIJ4p(Y=y8LGBi#k{$AxZMJzzvq!oe=CX0?f%=8>gbbIHJnjo2HwI9vff-}*iT#meh zj1W#`=C$Js+xx31FYGLy*=BbO7U1C)*{}&C99;hZHAHnViGoVjj*A1kiYcJR2AWu%Rbq0bEjNi-9)o$*GeRU<)E3aM&B&vGO}%t z56Bm4ZT>k)*s=tTr zE$8r_pz@?XT#Foo3}XOCk_h=u=Jy014+fp2c$>stCAWP+t}SD>wre|2B1V+3^L(@n z9Jwb9`O9RGIV7Cds9Ii|tv>p4>g{gMgJSJQ!YgMPKEAc9rOxb?{${lC6Qs18M>pa9 zB3pay8_3h6gHC(mvfMn5Cq7hjZIPjMA~j|}18?PBMgeRMy>Cyx7aGOt>T+J#-rng? zYiGI1wlLhFn`)eZqyXiHKZudQCm%-f75=-ZTHER7CXHhAF64Vj5nw!gs>O!<^V1{W zn&fq#iF(G7{{RT~r7SjW4ehXbqePGu2g_#KJiw&#F_3YC&nBXhlF~7?n5S7+ZgZ1w z&vVr^S*>T#bz3I9f+?qibZaERazNk=pKqt@UO6u1+GGU_ouD@vI42*W{HwgO@m8%T zhdgC`nn_#BQEzVzv&vv7uD|OY)&5YvVRFHj3cRx5u!8Hsz9F;l){CO+diVB?^~Shn zj_PS%K#TSn2~58@4z35NAm9=}_3*ga(36Cg?_VR&sX{d(r5DpeuZcCtlSr}AbfuQw z$U?GCtrLbUad4PI)--sfM{wChVt zICe8YFm{flvv5C(Ld!8io6s=z^Aj#`ry)TlhBm8; zryM`BhVOs)eJ)HW$<*hT$mBjBY8U!{#9Pf?{{T+a;L&d*oz$(R#EPvUM#u=Kl2JiC zkCY7X4R`bSk3_WaexYq|r%c!8(nS`q==Z5@a_b(*!y$}eSy2H}PSyE$5Ca%5Eo0Jb zd_ietsNad<)vRo-p_^H`P$7S@vnV^*rc23}0I&?eam97ILOrI7a|G=SQnN8p{jW9l za-a|1Oal-1M+2{OUQawz-rqB^!du($F|Kt@O(Yj>;mt{Ag&9_1GP9zRrGU#G2}Q{0 zc8rcI&n$F}CrEitpQq|};gKUK>u%%aaLP+;^Ei-(IB(%x@PH1ru5Pr0JQGMEx4LmI z$j(%Qoa5`qwKG%IY;G+Kc9x41bZJK{MQO`7SJ=hgUxmBe^1Zc9+q3L8{{T$9zVW0> zr(RiT{vNh_c1b3?EZVxeLSM@yoG4iW241epGIxBMX`saVHP7~nUE4f&w<0ThWA?^XnHd-p4Gj62jkTjyUE!7EPoppOzQkj22!vQgpOw zroY#%bjd~Fky-Z4vdJ5=1aq~9M<9{UpvG}hS;Wv^y|{$9x1LrmF6ATu@4r(c;qYbLr~KgcooIANz4{{S}6me;oXqqNi}(yngWXVS0IPc%*p zHwnanO76%fKQ9<0f;h!Tszn9QgRkSV3~%)1mZtH;r^g_7mVKduDv#bS;0EC# zQd}`s>ij3-Ro1lCGsMwN84<{=cLjZ_#W#Nz1Ft^d9&k?8%&WA5NC$!etyg~MB`O}y zP2Y14-r{>*Qr6p3*X{KS%Z)nb9Y*%rK^K^-IQudAG37SNXU5zTLvq^z91gaV*=v{o z0ND{DtcPqrXG|)nj0IlG6chu3FdSeU5m4%uXTkcF=A$rcn@LQcW%8zw6vDf#Mlte; z)p7ynY0Gd97rNE$d_#NTzYTa}O1d^v-rZ03jan;-AP@+hiv(0*y_^>z2|Obla9u96 zAv#HUop@|TN)=q!YaUuOyQaOkySRI&5U`QbINDDtGrJqvP!3cu&j9UX+ZDVn-g6by zY{?XCPn1-t+5q+Mk~sdIdM#T;ocPy9wAVFsRkG16KHmOuFLf$OH}SR((!i2WCxO8^ z9Cnh^&7?(V8YFGyub5^65QmTNk)PM;UQQw~ZTP@Wcq8KaXMlOhqmAmd_}X2w}S!MCe;PgK&zn60Q= z#j35kqTHn0rAVQh&RCWcAC_ZASiWJirb^=~W$*`%F08yeVHMS+M^1(aVR_@u`2Iyz zEHZL9_V)BPAnVR4o%z<8g)_u6`mPgefVm9C@;mQc#_7Yh`l zAnXS_oOE1_WM`#xx((c#CYc_iW@m`l=$eJZc8zm4kX{tF^7qG;4UaL#NC%Oe5HYO} zXY8dk(|_0IjOwQr+2xOwLV%+f^&c-_FV6t+BBEZ3m94-KYL+f3R*+E zF!coIcpG@DEQsvQxpuUFFk_q%lYq^g zNxoS%qdH?oEyXu`cPc?|sCcGm?c)t;r>8SqOZP$kE>GTKbLvUSC#kNNQIANopTnAd zpK$|24a*h_C}Z~yS+V@aFG5PrLd@seCHGvX!;%168$!^$Q(A?fpI~|7vv_#>IOK%~DRS2=MEC-gO3V@7`O7WHi z_NC z_SI${L_5;WrjA&g62TeeOcRyE1CmZU<0-~`$=Q1Oc0BpUokhzfa{mB`^z92n@fttSO?gwapscv$v8P6uF?qv68O9`rQ7&H@9u3a z(XX!Jw6;?p%aX(9!1Z7UwkuNOKwTmfvx>sf<_lDGu$DUucX-`x{Kk?|ASAF=MqQg$ zNp}Y*9dVth!D`+Qf3)fCs5FyW%Ov*kL1Oo1WV%%@s*a!m7#n+x9D-R!bA{&Hm&o)e zttU<{JiFVu$nh0rCpPteBb!eac#d|C<}3MD%oyWno=8lEoGDTp$iN>u zXXQN`o<%!Nzt-ik)m`R?8uT{nb8tv$1Zx{BDyTr9w(Mv4MtYx`tVyTAZ7h;Yec|Yy z&Be2`OFEbz=EP?<{{SiZUycvT-iDzK677dgywI<1?k7m%wX?dANj$E>N8W{3sRWWo z1Fdn!jAQUcC-NMt)S9%U+0*EL7}IaGUk=-8{{UgN)FHXF)S|nJ1$lOhc-iB3;F4xC zH!MPppbP*Pqt*Nkr1*B+*3{G$+QYZi;6 z+1uOy0A?GTT_j!kv0Oy+Ng}9R0l#sK#hFI~vB>+i(LTLu_gcN8G-(7^lBLSN*WHNa zcHk(-5RuOAx#t)@q}9?;`QN|Dd)?W)2ZjaDz`omytT4}#@-~_uBu+=QIVk7 zVs-#5Y=m;C2hH62S3&UmPSZS5rr+u}FR8S~3 zGu-#bHEtaXO4F@Y^{wT+p5iGWKW?~|2BU4j9%SNPC|9-f~)}@F~>^Dcr51d^}}0OT3H(>U8`#ljTu~= zjiZjd)b@TSwwp${yqN{HlEWl^MZ=N+SBMk6V<(d`{{RU;FTO@))~{neopE8Ojq+ez zG;1k|*#sg_Gxvx*#ThtJwTNB75Pn{&6O3oJxBHQWNXf^2E%=-!ry|ATEg{^17esTD z{{UZ;Q*I?@X)f-V#EiKhk_bRQ^(d@d$|wCUu4%_EFr(7a()iEtKN{Mp$2?Eyg*rQlsf zyg6;DL8-2@Z8WV3f(R$Mwg-tfGi+rY5OUe*anR$lxzO~J2Cbt-1=JRHcjzYzeN<_)t9^8$MrbbYCzmp8lMT0a6s`_> zVK?f};~48#XdFU&2$8=Gfb@cQYO+C7`Tk$1lO=Hg_! z)8mroQiu04d1!p1sUTM|s0@JofpL%*rON3m8OAMc%aZBdAMn)EuDFdZl1s^JskE<> zpls_c}kG@W*p-2#P3UiLxV%htH5nV(a(0Lx5_<)|sc@PbQwro%x#XD+_y1C<$-wRe^c#2qn=QBpBQf$;RQ5Hh|M>5kY(6EBj~~ z=(eG51>9mSi{zx&Fzp?|Y+&RKpd1{KQ>KiXiiCgQ-@AX;mW0YWxi)!|+)Ea!%{;Rm z(m(E_w~>dJ{5=le?sBW1Ks`-fxJ^Nt%Hq-;I#DIG#bUmNWC#6P1Ld-i8B2l>vjfIK zx2kEg+3Rf;nl;^T_`3^yocKEO?W{m$7K}`h#hA2|t+{TU@ouDTy{j z3Snftvqt-1%x2Vdg~=MpvA#lM$UkJ24UMj z#~LbN6(nv_ndfjn!ayVdFaY#D6GYNH?Iy_F!9JyRWu^(BSTKeeE-mCDNY({TgaYp? z7dt^2a2K5MCY9mDgHB%$Y4Y4jsk_ApQ#-23n|-?)NTM&Cy5r{i;N%hja!K?zl{mL{ zu4HO=#^TNxng?j$o^qjgF(k{p~U7-ZT@$P$O?Ll_h>m zAG?m;naIs&!=>CU)RA97D!fw#xsFV!C0r|D4od@&d*!jz*K6VQ(`E4trfX=$y4lMq z5?gNtmfmtR6X9QPlnSe0WltlmWi+j3v^_ks^r^WGDS3kPtu)T4B4l#9YA{*TX+WrkJfYMmMo|;-kG>97bNK6r~ z#3Z6F&`Pja*_aY>t9tfuY8Dz2+CsP2w$_nYPjRM4aRGTCi9r4D%NP!KGe#V@nSu_$ z4>fvqWhnbOG?zvH01mr;W)p*LSiy%u@iwWg>zDo=KWC53G0uq-BOn1z019`qhCedp z+hK3K>KY3X;*DFxZ)2tE*DwtrNwQn!aKj9n)y}}pmt2K)=(r$b71(%o>gzf+-Q}Hv z!+omBr(PLstSv zbqX+&IK-I*KMnIS+;fgeZ`&w)t$&yKoitn;T;K5JzlJ^$)<%dY*0mea91`t{&D8AL z5pXjiWT@@2iXO+VdW1GM`qV8X!OSrdkf8t*{oseTGsyn{8iL;P^vx}_lB&j{ILuLw zB|8SfzUoL4O=bk#FHz@aMuE5XIvQh1Pt@Q$K}O2RKAN+xfbWo`nIEG zAB_A#b#-kn@3&pa`-(Zoe+pRNO|@!69~o$UCR;6}64OiZ!R6J4cBg>QW~yzDE0DkK_vIS%QFZoM17> zdfkE;tTm^y(ngRhE$m^`ZLTjZVLxrmYrIC&BQSE=RSL=nltTjLn!06mq0FbvxAoA! ztPMj++iR+78i$E=?M}|#=S!8Y?v*CSU7ko@OdX*^u-pQVFYfOpWYHt=_P=?jX|~#R ztU8UrxHz6Gm5yeJ{l!1PT|sQ+_66Ein1NR`{{RVSR=y?F^l0JKnJwmPYnC?<%eptV zx+*t$K4PdyRBbK8I+2}<%}4tJ3vF)Z;#avAix|ARV+El%aLaFXc7th)YV3H55aE@G zRsjMa8PwMacU`g%!s1!#mOtQpk9)9UUui2#_=wK zx<;`2G`A7z7nbox@U3?1hR+wq0QMvbPKqW=J4*lO1rmHmy1+CXd+ z->5K3Zf=`tk~?;7z{evi2*JxT?&vE|QM1z{@kCl+vsmSd()HrIv9*HLf6?Tae(?lM zS(&YQWpo={s8!1b%3RWt<$5drpVv>o-h`BAcCKo8I?5OAk z8s6elaRG)n6-MLHvzH)a3VYLa)bRedsN3mQyHe&mru$3~-a_vfRejk+b}NR)asVF2 zx#v!9qpx1cHEDIS^50)B{Ya}6qN7gwJFb`hx-*{E??$C*YOUhci$_!|C6$fbam}6G zSm!Lb#{=>;MLZku=379K-@yqZA&u}SKI+H(E3wwBt$aJ7$ZaHtaFQajU5JTo%O+46 z6oL0gVbZEfwv$5lvX@4--1A#U<&Q1GTkeZ?!-B0j7&-fx#z`c?)T0V(Npg46_U~`_ zK9@9g=9^ZFmv8I*j#;guzSSPy>iRp`-e(nJC7ImiX9@y?B?7({OtFjuxSjA7%1rRfSXtitU%z&iGQc*v)pLCH%EEb!CfgWTZI2clg8RTaohlMm77?|O&xqw;#9DP6_Y}W;#*sp zq4H3|?Qc9x6&e91RmsEebk86X2v0j{W0vdtE$!^m%GW}M@m?EP<9MYuDB+q#P|dzp z2t$$^&A|D#k%!gQ(|t8CjVZyV50sOfe#@LUKdXJxfW%!e_kMqSyDAQFHSQ=X+^{?60>-Kao**^Mq~ZSD`6xwvG8 zc>^cO`>~sI!QaF6?&F^CLY~bamDQCab1>wDT(;;*&m1-gBxKDV zbyD(Y(&jG;u>6!`ZCB*_jT(Tkxi-g7V*_gB3xOQVn~2LtxUq~zMpWYx6Zd!=f!66- z#gF_VSM%z2ZT4l6mTOpKW>Fc9PtGz1(x)dN4Wx05RSj@>ZVhtP^;qDuVfLXF&BfBk z5G!*pAwTD#UH8kxGaW$>AypTMKh3(+IV+#gALpY3xUPm)O5ReH3zq|niy_lmF03?b=VaVpF3hCg+ubj2^ic)-kqUZcz443O^Alx z-u`LhGl{KXx-ROFyRP{gG1ZW7` z(THGjHs;@WQ^M9dbb`S+hKL*NlhESs{&wog@kl<+$ZSaj zhk37f4Rjq(Mz_;-JBwK^wK(M5E$#NlG;2JOzSNCD+Rof`DnjrAwfo@8!*&;}-HNNxbe0;=v=^T-_PY99-9n~1IL z;?-U3ETOrQJH?aCXNC8@u-m+@0|q3hK;mfdGUSF$;Xe*p>bixk)!*7?w6&JX>Hh$E zapV~6Yq}MOfQF-_&lRSjtVpF{ zcTX-BismJjHZLw&%1^s2$_kD6i<4YVt>W8TZC2XfMbsoQwCeL}7tqGcszDh-fq-4E zbNjC`c?UeGT}Q&!Q&`w)Hrkq6g`dh@HtKe}cp=NbngEOw7UPU6HW`ji?aH{R;jLR= z)O70|HsI?w5?Vy4Bbc&VmW`xXOTHCZRaor=kClKq1PkTm(!mEBi<&Y<>DQp~9;tbE zX=xpyd2P&b$0R9>;s;+bf#{n0)Oia(5tbc81@A zSn^Lxt!TDWUF&mS=$b~UZEbz_c#^>u(n~vZ9Hfp!K#&qGxGX^218q1usY(`0ZGAQJ z*vZp{?sK}8{;e&A!`x~*q?WQlaAvY?O6w^a86!K(w;`G`yIB+=0(bihbsuCe^NPEv)AI4d#-_u`5Qz&iZrA zPSOmF>{Jrj$z)PXa2D;HG2iK$eet!^j+GpDQ;P|-t7#s{Now;#5P}4tc}#NUOA@<) zIVm+7oPFINb6RdHYHw7IYR~&x@wEG$PfvpG*o3t%6U>_FR#cQ_Lo-RAB;;)v-p2$3 zjSCx_trJ~=Y+-0@rq!DK`7j}l))yi<7Er*nArWO?;lK@&FhbwbHEWA+5O`WEbhnz% zRgxX{s%vGb!0UuVAf^VG<^=@V`o06Vq{om zKyKaRZJ?{Mc@S;d*b4lNn(911sQ&>gXi{;@t+BbPru&>Yr>MYNj!T?a+9 z8dPp03#Hs@5Vg|C3p|7=m74`Nant2vfs#*TU7L5)Uzx*35mry{di>6J#TMy%;yZ$u zo`3HGCzo#N=CfglMJ(9>w(i`y#~W)~#4y@Jr07<*k}5_4k%56ARAID-#!q57+{5Kv zx!_jUhi~jJw2dFMhs%8$8q-mGFH?U~L zcSJB*ZQ4E2GNP#Yc-p`swnk3?@Gx=j_jWdV)X|%bHq!1}L%JC*BUUjn$0|rAPs%!a z4{Gwe9WPE6ntan+PP%w&QEwbhi68;yIg(E=G920|;Zp)e<%kBd^($*D4-aYjb(FWoX9tB5@ocR&aBlG=K}AnDy(H&sukr;q4bnlIQz2(knYCnPZMPH|-9?Z~y~^ zECD^giMnRI{usQtd>(J(k#8JXY4+b|7V$g^sR3~-$c9|*mBB<{3XP`)i9E)?dpXf` zEe}swccEo8feWC9Y-w)1XOz#EAUN%@H-j~O}9)^eh*)0ch!0I%z*oTJGr-%j3T zeM3alwY!-0do4OghUM-VlTW;k)s>5k?%bd3k=3)b9x=`qmv48VTljCr7w{ySV`>q| zO|%fJFPAQM_F~7%la2rzeq)jb_5PnU-X;FRvxiHyv~5NkIA(n+(ae!Nim50&H!)zy z=ao~u;3|*F*O6`3BkwgNk?7DTz4=GB@~(2=qt#ar)8cVWK=>GugqZ{&e z3^Qgyk^v>iF>0P2)g$okp)RAL+)Z<9* zX&YQ(X)W!Yqmg7PWWXR70k^PcFY^<;+HJIQK{XVa+Z`)S7S}g=eU09PUN$XjXLi=0 z5F2S_x07K#^U1~rdk-t|gu_;z=Fu;;txnR)(WjO+)Y?emo1KyoA#Q^?1F;w*CcQIE z2|c;dqaIq>%Po(dV;PZ)S_1gM`2$=&z`I7kpa7(b^NF<6;w=tI?d^3dD7?f?HrPoR zTZtxycYV@%F|k!x(MCfK8AAa3*A(Qgueq$6e7b4W=Je&$wT*j6w@=;L-D*)mabk}k zR*juVIWA8CnE1v7YH~>?y{Ew58i!5R7g4vj~dCaC1oufqZN|ay(XfRmd zBDYWlaylYuT5pQA31W281)^X*t-sMM!v#eN;m+IWagJhEMmC&Yi+cbXQRd~GGS zo;Hyh24p41=3>jWo7C_~KPlrFCqqoo?q9*u>TX=#GVhKuaq@jX&tGcVhflfGtgU23 zjHaBeb0WICG>YC}!lJ7a(>TE=fC0@^kHvact7~a3tgy*rad$1Sn%x;#G;qfuk1`^h z74vX0%!VHFA(ZCx?Z7SZw|GsoLQMB2UWQJ;{yKx zH~PbXcJ||gT+Xr}veNuJr&&cZK|Q^!lf@mwfi$y5hC*`R#Hynl0qtIkt7!Uvh_z@n z8;h%{Z!RsBEi8nwL|uHz5U-eH+t)Y;1n8EJo~+o|%hR(ppVQ>UeD-jit6R!6aZW+28ksob}|mD4n!cB&%Ph8E+AAz^%e7sj z@|IUnMleUuA53rv7_PHhvbG*6yvwj_fvH}%-OlKwxWES=clQaA$>j1l#Y=4>&R-De z*LF9o>nu06*7}&17{sz0W>9vlNhE9;lL7Y-NZLr`%xSo;T{Zr{%ktFnt72;6@f`IP zp&gf9{{XMRyWs6wMA1A;qBIP3jXzLn3r87fOKpxED<0*dZ1-bG-`G9wcT<%9V}SZ$2w z<~bpkBj!_~1?HWrX*ODfcNVtKb#9Y2xtJY=lpVR_rg7V$8m9j@CyGDy@2M z^kZ|Al5+&N7pvh@Ya=T((+0LeLHU@oZya<#uU8Ma!u?fEWePb%qvu`?+EfTd`EcxdVtCn#jFJZNx77OcUWKWxgdQ=OkJ@9sl6$M+a}BHoL{LjE=$**(PUW|B z`B_(MsMZGXw;2FC}@#0}#cO=J{My zWw+e^^jhY-XsM(8KRUgDxl0R6D|Cwr2n{6X7$6clV?3X|*BtSWsA={V@qK_;#1UK-1 zvaB)@lFh(z)1UM0UZxtlsVg<1&sLj?x@I1UWi|GvZKc`*t2qi$cu=d(e*v2AEWAOj zN#QRJS?WK!n(jLZ;<}3MqTO;|oP(fib@s3+0@P4HRldAs!Xio(4w3xQE zNYf?cbHD`mIKUlEO?9i;*f7$qwD_%E9U+8XYEoQ0O&g;Gj2Am_=$Ta@5{d{o0DR^? zq_G&uMuc3Fw#&Bq{m58Kv}i_EXDeUT?fo;I@sE#W@lT0#zp`80M{DLput5sQ^1Nk+ zM$xdBZUzzhf&<`&JK6@2x}LLp4dJr1y0Zv;*)8Rfofa03Ki%tHTE%Or_&>x~6Wr=|&1GvW@vYtM%&-X}3`XRU z%yMDl&e9lsyo?c+K7pgzc&g@R)Z~_XNR(bfZx}^sV~$BY#X^Z3d%THqyW4P@UztWr zR-Z-C^({k4w~&^#lF?;pB)fs5Xkz#tIzo8AsW2^6T8vP?xpl z=F_)AuZU-w!&SRCdK}XmeL3DiB)1oSKyB(I6Eti|`5%|q0ONK6BOAh}MxRF4wQJon z(pfaJ0L6LK zcy~=c-ls+#Q;m4duT!k>--Y1P{4Z*2zQMT!exW4w4_L~|I~2z~<}_zBK&jN~3q zK29ywr)5V@XJ-2)+p~UK?Q-oG@5}6`r+@P@Bk-#Wi<^5rN@UdRWDO%js9b!8MFTxL zkU2R#06JE0h@e`I>=8x`8Yj^ z6?XGWk5Gbpd1jv%3x|>9c9HN12a-#b$?SOOMN-ypwXI6aN7A$#SSQx+-bQ=15lsvm z3K8wDYKf_Q_+)9Hu`>I zjt0GS=BI1Dt@_{o9OFZ_-mKk|{j1B*%J*7>-H#+tiTkJDSD*)7I0(Gwasz z?6{T>v`zN70|Md;rbS+J!bW4O6!`%E@+i1iV1 zE?xqB)RXM$3IG!%eCo)@Aj!I%n&*jSyw^0}?Ok17=6MCZ$J*rEZz3_odC$nCcjFvq zJXZ8xBfkF2SBF=F&63PZe3vrC5^1yViF~c$Nr;g0fF%xhM!5$J4&)l$#9bJYah5+6W!Cj0}qHY&<=w>uqf{_Njd@lEO$HSs9))!OD_y4*>Cwf}d&O zZxHF$pV=DMi0(Bz=%!2icWK#z<|m2JvkluxX$CWcg*aTWH!gK8Z$yR!T|FLo7=?>- zyA=cGZLp+`fJ)@;z$~L6kPcPqVm+dbE7|p5b(dpE)1g|LbuI4n@8G8%$)FM-{eQo}_M%8@TV+pH6dM z#JAFFGwPCF+#6ZqGC^zuHVlzz{#Yt9MhyJz3`Sh2VsLHhmk~pzTg^7Ce$hNZ{>+xL zNW+Y`0B^v^87ew}KqnQ;QxA%cw50z30P{D5u+mnYmAt>m&+urMSn=oCZ!R?}i+i}I zV)MvBkpapED}mTyMic}bbf-mqs%v&0CArh%y@SHGwilN=P3&!P2$EPzvYZ)6`^1oN zGEkfX8A0I)d_elt-X*Y;OoGks?d@LXNWA2e_a-H5d5C^i*f6-yiKfoulrk00002y-HVc-0~yJn^)B2gjxbLcNX3u zytFVgG-$DW@sXZNk4`wO%}-H^<`ZjecQkfIjFKx$lW^yf@^i`Hdh!M;ZD+$e zmX3+$c)rHsNeL0f2Ze0en;miVsB{kxYJMU&KW6bgltKWTjJ_AM1eV>#27kNP-=%ud z%<$@}i;d;m{uzE}1mKjtpE^(GVMx=BR@OLh(aqtBqn!d4c_3@aLx}m}Lb=PBBTuKG9h-5DC6dRP1>Z9c@q%xLK_yJQ=zgt}sQq}d%S?{%LyHloE zTciRA#lF=nM#$L%D>|Pq_h)a-k{xmlV%tE~?X@i`(k&ioH2(m$+KE)Q7~5R{N0}5# za#}I+hE^eP&C4M;8Sb-T9GtVX4)%3>Chq8a6318&;v z2IGRG80oi?G0k+^1pX$TO;Q_8LgjDciq`7(>UeJ@m`J%_Blls9h-6XFfD%bcs{nC@ z7mIXArPpK9F8rhdKO#$~G0AfpEUhP&-die`A|R^Zv9p zP{4rO5*#Qh&y^f5S#N1t4dtwwG%^L_m3yt+L#AoB zNY<$(+01Tjp(tY{F)1mKK-ObdUd++X;^ zS2|_nqShN&9Bp8u%4V7P4U7(_AMF!S>bkD6tlnIBQuAN4y_N1_hD&F#Vytr;tFaRB zfr^9QA%+irhh~T2`>9~Q)^6^#Igu7~YXL-P(;-u49{_GSJBiC4M*tXnJxEGQ4*vkB z-Tr13t5cHYpW&yO%-h%tKNMTRZvbea5}T{ZZq;!arL1kGECVb=8t z^!-{`$$=zmc1c5QQc5pOjxb2<-FpHxy!{qf8W^Lzx3Wpv>PbxZG4EzYLK)-BkGeSf zr`rG=?Qg|MnnZ>>rjF9u-g|Rs@=GIJKGzXQ2^e5A8*Xy1@)L}Ko!$~!#!1@uW>hf> zjW(%0UeB?M;u|=0`}=!)E%y;znPk*uGab?(5=_O3Je3jdJxSQTPAeZ#yqm-K7I*e{ zZ#v!u*(i{)j40T+AmnXPf$fZRuIo$j3hLe}zmgqR=IxH6#?Y{D^mv{dh50ke476m7 z1M-Xmi~=XtwM{tcG2MZqzLk1nxsnpHE!Uqfkv|cMe(Z|sKrB9Eg2yezJUnG9r=b<7 z`*|vomdel1`e&Kn+-rKeKDRcbd3807+FPMFZX}7xc0z}oW6CEv1QIywijnBru+gTJ zD??<_v3TXxQX?`0lZe@Yah2>2N?>G+4zl5-yU_)W)!W``er2he>Oms4$yT~0^D2is zR%lb^0Q|TBs0Ncz(N|NEt|YmJ3%IP}iLE9ty^L`P!BVJHh6oQOa7h@z40CP8+p*s) zOew`AqO@D`cHdQh$H>a?j*Wfdi}}< zOl>Lyxa^uNXDj=>F$7@rMoC8ZxSQu(>#}-n>*>_ae}tHnk zMb7(plt{yO&g>%&+1^+Z#N~a?;&rCs?mPNh{sGSpNxo&T&-{-r)h;|qX{autrD|Hc zE}?C2D}9z}US|X%#vQj3&xs=WdE4hG1cD1~cz;XP^xF%IcVJc9R?N%z={om5D%Zq(kY|Xxxe{*V* zPQPe@Csj9pCe!6^VY&9~QoCRNS)62@*h5m*tf9I4CyMT&mPyj!x$?`is;cFi8<>!Q z9zZ!D=OmuP#FiKOnbNfFB3P|1?X>9bE*?uokV_1V#0d8xUo&ug26(~ik_!~2;_Y5< z?c1p3zqpRVD_fXuY{YUjDRn8HNOu9jY|8-*MluH=jyfd?#YMU8rrZ8x(VZF8n{@Ae zb#G5izD9kZ)pVa1gQ)n1IkijclVoq81*DEm@WRV9YUzb6h*7s>sxc@_4Z3kfb8ls& z-0AwI(rCB0i!IcWLp8LwGEaw-cIE@7sUwlDyu>K3 zg^tu$feiI zVpQ!5TdyO|zcRA^zolb;UhsCQKaBWc_kAi zl|Zg1#a3Q7*6yt|{USYD>Gb0EvKyt1WE+fZqDegY7DM~BB;iI^IP5g^>8|miX`U$5 zH2Y0o`$i2$-ul@s!o8!~%v33l8-S4+SmPOGIb|T%cj2ECXmM*ECcHYmi(AQdr6fs} zgMgpIjOXyC-nIuTGnll#)%0yP`ukJUwFoXEwOeKTF|?jL8-iQsRWsy`%rK;X3CZM| z(>^tLudd{uLDfHa!Ix~7%rV=aJ0F&7H(Au9@s;h>hlefUVE+JUEdtJ>X(tx)G;+Fs z3}M7;mcs6k1CmG;E_FK{8DrHni+fkoEuy!*No4a?-W zqdVwC>q#za=yO`T>v~15y>~918`<7o+q|}(d^5@i+UA)SXuy4dvRcB81gw%>lO*8zJCKUExy4OxOpJC zS)o~O6e?|CNq_ZED`s^#8}KuqHLV>y{{YC^g-9x#(vLFrw!f*rVd6-wynSHWj;m*D zrrW~N{`y2j-{lM)$NmI5{{R(b={io7msVQ9@fE(c;`^(Kh53s1IaWm4#05kr2t1?+ zep87sLh!53X+AQT>Do-!*YP%{MDa;?eAhm3h^@IERI#J5WBbe!rGEZF2j<++ZnX~) zc#=Qtk22m!<&sElbpgIbB}oEhUWJ!-Gxv&;Gls`JA@2Jsis{`yozC1{N;8){Un@yj zZ+lz*9P2DD=ho(v8l<)p8)bqq1dM@S=HbRh8zf-&&lo2ZzhJ%7t|PZdBfEGMd4FPO zMv2*W{Qm$rz#&HV8c?32_ zLCszN0ECCc5L*azQx&w({{Y9ujm5X`SKM?h_~o(AO>Xc}a7vW6TK@o6Jc^QPT-vSw z0ILtzA=E8AQDI|uuIg6OYDH7ZwS30=io`dEBpeN(mfT1j`%&E~BGK zX9c&}ZS3R|%4C?9SrI&$7E)tteD2u6R45Kq3b*2m{{R(Dduga%rQ@`A<>9;2l-nVU zA(}vw9s~Jm{fXe<9+j8jy&J^Z{gX>=rpI@u*a>YSv(wG9TczZ1s-*JAAZVxGyO+ss zq!0pw6saWcn}61&)2OOmcCtDv9~f$~YL-xHJ|@%>?tkp&f?)PSG)a=#rp#`ehCJi6 zfZ4$$Vm39*jbh(W@P3o0USDe(j-P2gvs{Zyf<=lHkq9p&2(g{c0)oz@BQEs-6K}-- z015TmiEb~fG;KldZXVo(n(ZWDe1O*tE4DYWnXn4*cF1r6O!L~OgM35bs~g8{8&QhV z?$#@IW_a9*GaQe&CgZbuHa_Y5xjj|2l9tJTU4IRYIg-}rqUzII>%JS3?j2?ui<@NB zP-)tI+O&Fn5kqjRA~FS&%Wp0bm-!pb18B;D+~0T-%SiC&n+~len|TeicF(EAk^vkd zZ!wn$;g&p>%WueEncU#Dco&8B2(%bC6a{Kbal41_Q$`CmYCb~>*w zL)CRnHfx`Va9P+Thn=?DR*oqa`IMu`?YuVaugBi#!LUA8(b06v0#G1P=oUE(1H<9*4zw*~7%O7<>$=qAe zp|^+O_lNY$jYm?qwz0Z~HI3Rki2-nfIVz8^u;*@Z!v)}AMQSQ*mTKs#b!7>uM{}`* z!?y}|uZS}6Pqj!nw>ia9gLAM?{6gJIHLhgTA5hHdE#wm1nFGXFA1t;{8Rr=uy=t^x5KDG{ChGnm{#NlFB+^MSxVOwr z<*|30%Vuq-<_0me5&;|rr{W6;Z?!>xWp=lhaArk#@XGB4!k|00k+;o(asb>BkMUur z(zMw;SFFjVY5J^}&{^q#hj_fO=?u6}-QySmfx~aeB$5fj?3!y)PBL1qg)LuIx4N^_ zZ&1lKrPMZ%YOL1i9zQ6z?y(6)@|$K+9hO7nDLYgn9>Uu3;L=2TwwbN!5!$h`(&864 zHqijBJaY$~qm5835TId%_ zsRcOg{#p(8XAysWi%AyN##oX&8+KUIHik=CJgZe}rz*H)lMELubLN)7EH^BEAiLBe z)pWfo)?sIMlU@Ca=4kFx0)g1bhEyaKw*@k!IVu}>0c%@A(>y5t63`_}-P*OrwE@+9 z*wNO;*(78ymqM!<^P$fD%FTg;w1Mef8t_MhwSNg&-bn~t ze96CV5D*tQ>-U;h!^JslzSFi~#dWscVT#GGvyL7h}-2=3+8NGU4$odd<$CX<>C7 z+Jj3gTix3IzV1s^-EQ1TGMRp4is=Z975RW50>+f7&YiBT4XLX^n)bdV)0a`YxsOgV zYK>|qp7CxVGYCLN4)4D^aj@i^V`&^!{{Xh#&#C=}<4)A3)Vz}-#U!X@5ge&FEuEh+ z9-NU}^qwKP(6ts@yV%-u#d?*7za4_rCG_rK%)Bbd>=Q{yu=)Y@L7X{+5_8181eH|8-EFq?$^=wlgG zKYuNN14IrBsH(c}j&;o^O}g;a?T(3V9tjY`Wg(x-X3S+7gv_b6cj0;4@{OP#5*xei zdd}y=vg!uX^`W*6E!04WwhMzGXNd{g{(CWy{Nz2P| zx=|+o0QFvbEI>HH04oIz<`dK8YI@u{R->uKaiT}5O{3ds_O?;ZZX&W>_?6W&cDZxq zGBDepl;^9^=M*k}Ai$T`)Bga%Lo=-MTuWgPjn(wUHrFb!oS@p<;t^&h z&x%WsyXDM1$crQQU=RQ~AP$0W5a`nA{uQ5D*C&oENbeT%E4wR}j_s$0L|5LZRnN>% ze55jUD_gY4qr)kFC(NaRO+`(}HeTw)2{H2s{;~{EJ{rrjN3~L7EQ`z47(J7aP%J%2xDD6_4^H5P`SM_T+MRV@Al+mi4qXG zj7mnw1!u%~bpe1cj;*v$5{+uw@)CmAPSfq9)7p2P6YVP;X(W?*SaX&0Q!Dqe7$B(Q znmB1LROO-^swS;tjnaHetWD#MJZsvHs}7?T%nGr{#RL($ubcAh9$M{OkTH>r=a#Qo z)NFLECR^*vPY?x^J2mCE+Hms~&gDNgPgdaPl6`BIz0>tei;MTPc_Mir2JxYibQjI` zTXj@MIe7xf6r=aWc$D&YF{bO@A-J~HwRvte{{S-7>K5}s6wM;6mgXtU)^5c@Ms`Sc zoDxm|V#s!C=qDuKaZ07tm6nHD1>N$)8Me^%9m)d7D$JXJ0~~zboPLyAc$Vho83Y<7 z+{*-w422|5mB&ziYU3pFh0UgweW@nDe%4lUL2DP2YZ|T0MPc(Da=W8;^CXo)U;)~^ zfq|Q&_^#K(I%nE1b-TIdjV$(Q#371Eo+ur_jE&059$l@uS16;Q+HzI#iVu~>{+)jR z0Qh5;RDJZDcKIEqy{g+>_-|RW)efhmCHyc%lC8Y1vM7;@N9M$i6L`uTfdNXzl0PXDMvu)^ECx3aj&r#D+qqn-k2=*_7u4s|wEGB_3yb}YCYf&1dC;FD2%zl` z^93LShG*&lQdK(BuM1CmJLzvOz4u2_w&$O0E z%yBeI1aBc}6siEBNjL{?&@vfw&CmY;3C-R9lMbVLZ|D1CJW)X+CLMgB?2|^H!fqu5 zf>jzf$va3jG|Q-$>^dlp!rln98_6ZPmOZ;3;>8%a+6yrQU?c`@rTD-GlS9>XTQ&$h zLj#*8yL)Sep6b~Il0_JePBAfsW47D!w(abxw5SaGQ=+LZTec3Tv{!1wE&O4sYL@ZO zX=8p;?stOvNc9Qs9gq~;<|6Zf8QKWqwcnd<9nuSlErilVI9Omw2xmK;e8iMxvd0-Y z$R_o+r8?Wh?%}u^YVqBpNbX<&#F8>ik2Jm>LR-2i-Glrf6&W%7Pn8GRqmNXx zv6d&AL|cgrTmJxc8sS)@AU#LTj-%=mYBZb@yuAF(C(AmvQthYD{sGRfhx|(4YP7eD z#G!5_b9D-9)(z%6aNE>%C!x76Ux_qXMAtGKYddvVoGaFikz*)TV^#9LRaJLQzc3+HvM{QgmWAVuW;-n}!_e4jv0XtN7DIH) z5(#{;RW~~*3__eKAoj+1tS=W^+S+Qj&t(O?$#x_=0meqUToTQK+d6} zNft=(o7H}F+z#`N*aIO)C#J5e;Mui}R_fN~AM|NOq!%}mD@NtxSmfLj%bkaqeqMwl zk{19RqUN-6)%Px5&h|_0JFDF*#PRCdwxy$;OHP91$K^tAVMk#cDyzJ#qyd#6b;lm~ zvv=T2_KItGCb-n+StO3#Knoiww3bNZZpb|K5&Xn-^kG!|6L){&D_u*)8n23Ott}yy zVvQ|EK6Oaj?l@#n21i4o$h{I|yWE;U=bwvCZz-0+>R8Y2ZUgcxms@Hh@j zC{xp-jT}uyrpGQX>amrtudbih^pWQ>_;&6{b$Kl=bvtV$)h55wl?BLXW4AL#=gV$G zhHFJHhGh?&{E`L0zy8&>pHY_9?o&Lbb9TifJ5(2t68S5Z4W7hg4(*>{ZAVSftd~f( z&~IS0M=~v}mo6hx*gtWY@sJKNjFLd)ljgdl(P*uyO{TmSFu^CEHIr?{(2_+{8f1K= zE>Frav=f1f+IV`@q0Fq8_5FRuP_06woEpBGcKQDRUCb{G=pSvcI1Q7{#4at{4Ilxjfa7AQE zscP|APk(u=M>Y1L46$4pK3A0<-q}zGkxJw&+~6VFl6>Scklim^j@!kltm@Yh+e<#J zYp7kUe5aQ3B>7d^&UTI285sF`lY^_Q>O0L|%UkPxG%|3V+_|@E*66OTZJlFKmiEfq zR5x0auxoosp}dZ0mOZSpDt(_Qn^A$2EX1myDiyN5w}-q1d#ZS4B%4`V4L<0JMVgm% zka31_<|xm~4}anG#d+3&u4%eHt7~g6rv|h3i`9}jRVEQyl!|nR?zw^-iSeb%{{X_q*X^d=6azCnzbFU&9?*5`fD04b zk<^YhJQ;tccuwZx;^Jwi6T#)Fjywa-d*c<^3bbcNO(ds(_+yfE>wRf;g}z5GVW{f1 zfi5hyB(=EUtfJjzD0vwQ;Ee5O861G@GszXNrs`JOr-|;hzZG9wnB%vK2qn3AqE$I& z3ZnxjK4H(H9eZ;#Di&vkR}q#aR3<UyPxuCHpAmlq3pXE3{S5Rznv z&$wroY*|6IZWNrd0C?$xRJ9FLLe(s-@9!Y924s1rihWLNn~GNR}^rObFY z{3lnCOR;oK7@|kysyEs&pe#rTK6XI@2(a16C~;{Fl}i4;yK*+J!+Q z>=2hI?dCZz{k_GGt7{g8_JQL*+3)9mCpr$8@XO9OLm(Ek#7DX)in(^4PG}Wvw2K!AmEjg3e1P+ zISIFKm{c4n$0Zjy&2v7^{hqg9kDpG*0*s+iN>2U%0I%~IuK4lvI}6sd(`SnASZ-}$ z)FgQD9wO>|us0kAS3fXZ|nT<~1vgGb&P|cihrlb~g_=d)K;ga`G z@T1*ZLTq53H7@sWA1c8K18u;Ns}@|cfsA~eEyvpP-9FanQ&61r*SDAaKU2=2)vh$n zcE;{IO&aohd!MwycODs;#9I{{{L8c$mGO<^IaW>EhK7No-FUN6xU`nTPiUe?yf*RN z&m1a&raMv~*x{~0RRsnU83oym3FeyPOpe;#&erB>qmE=~BV#lYH8J<0=6!ykQC)rMYYvwX6by}FOXHmAAcD?ss@Gf*?VMmhmlHZ}t zcyqw=_?yHR66kjAZ>Cu?MGee=NiO7NCBa50#E?dQWWnHYG2B7$;A!y5_HAQTNhCy$ zZPNxxQ3ljULJGQt`F5}?w~S)7^pA@=1-`$hXx3T<&8liaANO$t^4a zTAT_lWso}HkP7FV;8)zyblj}se4b;OALEmUssb^PY&z4jpSEy+21AN!fkfOE*woR=VSp?qL(;k zEAs6il7rEFVWvTQq})R4q&gALV_rq!L=#ql`9Ejbo(+a9%|-D{{Xlo z+qJhKL|h!?<%yvhe-4S8<@mao$b0Wq_?kW()o(OeG_{7zC7ttG5pb^?6p_@&(OBmu z2mb3R4UwE@e&<_>^~;MnTJHAlHWu-~lEm)rWLU=`&flHK547`)4spnhGg!FsQt5hC z_NOhKuA$^xyzw;81KQzZCHCzRho2ZiNDe+iN(S^@8^KR!;;lYeqt@3-n^mD3^6O?-vzqd4PB>19s6L?vu2Ylt9$~8`GRO<22HGyDN-CB50w^jGxC9uIIY|74=#f$%6wC(+d(|CJXXGL*vzfE zMiI}$k04_ClKPE=p<}_Bn)h(StJy}@G2KWl5Xn4G z8S@f7&l{h(xx++A!l~PmRY)S0I*rksqP^$0>Rf3?d4&avcc&JUPi+>LUbaK*?Qa^$ zY72F1X03;c+(WoHJqwUV-1X?(9Q#*C;lB~tUU-Jq9ZOHON0FM{qY;Kxbp(kQjB-H- zvD~aN&T(hIv7XtXv3V!8w^*Z%v4bGN+Q08%dF#O4?Nl^Ibl2k4**6PEXbnxOT2`gOVL%BC*099**$lpwv$612X`UG(1n0EVWYk2H4EHCy}L zBUggKbqiT-W`^oSRdjGZSlQHpyJ^oVMmRmI27Rx6bK=YGX4>}jn|T>zl_F^iMCbtl z09?nlhssF^+2&7eMhIp?hboTj(==hItZIF#N!)d0U9U?d6_5c*k?@Y8zD5E-m1_mfmP%ib)}n zE~6n^a;e9dgOeNd2k!IMw}RxQ8fj>~FRrfk^CJm|_6~k*=^)i@ZeQi{Hdq}OV)BYXmaCQ>udaKALnMvAAsU|=p(;f5p`_y96(!zOd zG>gG(C6VTaDIc{cL$A*(j@8A0F9uK%hLF-!`ebZ*ZK{dkxdo^lS3BB-3b7% zI42{}5PfUSnWbyXIc6aQZe3Iy3~nTUAzjpEPZ>&6<+Z&I8k8r6pSv$VU+TwYec`M9 zMdVwJW)CXzTZM)#O5)l#x^q3jNgz}zWPO)XA1%y4Nh0Nn4Xe=jFj#52-R0%ZgQD6* zj3bf-)Ykgu&Qw3U-!zjIOp!kUQv@K(9D#-|?~RjM>H3V;ch4e61FDBY@<_3TbvYQ^ z!;#92k)Blbo)^8+lGc9?TU*U2u$4{=waXaR@>tnU7ll=X5DtDyWC%vD?N5;worY=UBDTe4SfM zy}G(v2EBq??A-^7?n{XXOb|vKoNfdKAP#`^o+N-;_?~VpY0T27 zQ8U?l_=SBEzY0*5}j`9>C!3e79$~4Du)a^62yQ%prn%S{_Yt}H}b5} zp?Oj`)B*t?bd2YMN$G&3=Zcp{(`@w{9Y$Bwn$phJRRn#ViQHJI+&IY`j11!^oM$_F zb&id1Wjqn;!c!n|<_jqlfXK_wJpJHt_4Tg$n7kzqc2Y^4H1OD}-t=PHJlj#cySCM| zx#5=K=QAu}ql`PVbGHgX1n$NL4o_p!sA+mVte}s!I2=+?d6gfmumdv zA!GMrJA*DC=Q(4V?zK+{=r3s~v%hZ40pZYlR{>!z&cY^RZQ^*Q?D&dRw8aFqoQgw3~zUT9zA6 z(PDtn2_f{ai#L6Obv*gQhi14F0R2@R*x_=D#hfB~k9WzkYC7!}HiEJ&P zWRS2_n)w7~Bm}df`6@|L%e-WQ=RQ#d_NOz?sGE&OJx(iV?kvPIx!g?q0e>}#VYWt4 z6LxnD{{S9z?sRQ#&i7S_-CwngcS6qkc<T?zj&=p}v*!i?bGvrr8^YFnyt-cI z)F?W4a+TXV=q~&Zq5MDBo*Rp+t#W-n@)`9xEbfb3w9Lp0yG8=;c)-JCD+U{w?q=v_ zu(G|=?IK|m64@kCL#)}tkwqp(5sEJ!TXrk*jl&ofw#p;w;gkTym<1l8s=}kgwo7|)_RW6lY?rbX*b%lJ$&NAe9+(&-kN^O6 z;VHtb`ERe6Pd~WF8CAv(OQ+&zUg)~C+R{gJr8T9^r|)FdSTB)hi4p$Ng~r^27Ut=> zRhNQEuTJpQ_LE`Zn@B9Ri(N|7PPK;7?yX&2OCp8-64)n$jGnd0c;Cvuk5sgh_fQRO z;hV`!aY-yuPUx|n?8?d{1AYL*A>QDSRD*B8S2K8nK-CVTcd6XG*F$sPF2@6EoGR@B zSJ(`4)y|WXZJjZXCYL(L@iv*93D}=O6CdeRwYx*F>9Kv1;xQb9Id#ZoKmMxaHS4`b z-^JI@VKPFt_H8*W7T`+8K3b*WeQ#d4(sav}xJhjq_*zR4gOyBYe($b7I_;x}l8>}a ze_taCwIcrjcO-B=GXBo6xwX^hnNoX6XDYz5Z95{^L0)l{Vd@4?rC5D7%fx;X(6>EqYOS3UC{HlIIfH$`Qk}GBA z@Mnp29XkI2S$#uLvb55E$M!>~-WcuWKYj4AkXWh4?Za=Dq;4fjZR@(0j|1Fj8mZNq zX|3XxR~#A|x3pG;t!q|YTf~~)rKDWNJ+0N!2;-4nDO{`(DIr(`jHw+usjB*= z?xn9qZEL7TEvJcaCM;Bu?~(pZ3*zH*aMD|8mdPUnx^ZtJ`J>l&;J4dxVxa!zwEP2>|D)KjT^ADNRQ7wfn!w^eDp%HF~urA4H$%H^X{Wm6fFM#PSQo zaF-%znO$FMu~VNw!2baHusTRBJmASDMh1A`=luOTeQS!e@gURucdRC*8hP`Wu9`T` z4*6h-zC}EoZ9IF5=;QINgmQwGlY$svZ2%L;{{UO*Uk{n!@h-LLMZGV7Gh8NRhM_@I zoUGbi`y=Q5PRcknDd8~$F}WLYj8t||#xEg0L^6RQos+W!JdPV_2M4||anOTZH;Zhf zzVVKsC6o+fk;4u!22_9b_^6jamd?UyjKsJDm!SJ_6Y<%^b$+e0W}YSfFJ zHFT4A=zC570E~3&Y3}W`-7XU-wiDc3*-o-7QI*^roNzXs-G(`?UQKFC7~t_8rTyes zSBLvX(hofuK2~IAF}jbs56m()`T{F5&cjf=)@>xTw)0Pkq`j8PM88AtKs3B$_(Fq#>sJ&X;k2e8ali^ zTAsx!t5$Pb?VM3tdG26?U(_$On~P|)jXKKW34|*QaqMe^c^4=Sb29Ebvl@}c0oc+k zb&E{{!#*6I+gG!e*vSR@#*;*&exV7<$S|+_vnkw!;Y%FjHI^l?v!3%(~v{4jhoNkN}<;Rfi%7Vb0sBW^$#Fke65Yl72xoGE7(D_Yl@f?RN5c+52iCm(ETLTr^7`|`_E5uhbgyPsFDxSMIlx?exW}eR$tM-DqO-hx{wW<2AA&!-j38_Vm>FUBry z?dAJLg~^p3;RMh{9A|3?o0b_X^Kp#iWZ+cS=TM5M?=K}~*ZTDdIzH7rJX($VySJxa zhXn?ur)fmB{Mxd3iCW}paa_p0L(U#m1*?do8*B@nv#TPev zV@hr#vxe4K<%;51r$=OYUPs-XrP;I|u1Y2AE3@Fcg=UC*j`fWaS|J>w;$@+!bf z`BS8#23A54{KVmbEF5eq*Dd@n;cYiu)U0%?ZAs>}(vtE6e`zFA7W1~rA>N2^qh>HR z{Lj||9F*-lH+(WkQ-0Jn!vV+Z51&f zC5a~lpI_-#JW1jUw}C9;UC$(=WME|OCm8(kPLw}%ntJvL)s*FSj!sX8?)N&ZqsDef znt)|=QrO$Oa8s4&Fb5dpBcUR)b)NwX9eeF|I*y-vKBIKz4Km8viU3aFFmSt6?IBJ< z+A^d9E1}Q@w0=0B`xYxpZ8kYBjl?n9A3iRlf=T+6METMa= zTT*RdNYw`R+4kDBDS!a^7}P1 zS+EW=No;YGQKy5o?Kes({hMl*m*P1*w=fo%DH13d`LK43;~TMqo-5WSpIE&3J*k~? zITrXqA`>!fW?cNFkL&GM=kSe}iFEBQX)h#6BC?Jt7BUIjw?Cgf@;$3%RXrLN?(BTl z_DgAfG;3g{K`90sfHn|zf{dhsFvWl=hh5poIIHpvN5%TZ#3J8MvWL!==39v2kIZj0 z$tNX%lxzh#B6TER5=qE9k7Lv7s103}y;4>&o&tgCa%7o@c@t?g7ArMbf0 zTF0lXV%p|OmI)BX?5f2GEI?d>RArdsAQQ<40<}C(X{_35v1$?Oi+5)%CO7@cD@GWp zBN*sNUVDB#@7w8?AwZu`OfVU3?o7ELlDOe;GtWHWV-=Y9s`JgJ+}wi<%p&s7CN=Ht z#d)#B&Fp!x##Fpo*4y8zIo%^uz1Q#TG>uDFYg-hB?bcChvKZsp(`dmt*rTpTT=mV{ zStptZZf>luOWo|b4-B6pLapVoz&ti$lN@fy1at-aemm0c7gBo%VIXILJl25u zJvhK(cYeL=GR9j~&@{KxZ5Uq1D=pJ8$D1JYSQRC(2bNKLe-QwlPp5@Ys`e0 z_S3iwxZJ*3AZHcwpNE>~{u3=4NuEex`+D26#6Q=vPLg4lJvXuwo(E6~7_X%~Qwm$? zx~1ex)@-n1j6rj0<8>pts_WG8Wc_@Mag@Tq%W|quAaS_$+HCQVR= zxPw&kLx{EqP{V6u-n(khl^RldJsbPB{7x#hBT+YJbaI|2@eQu8_N_X@PiswLb$dB2 z{?`d>ddHwSh{oZnR8207=;HibJ~WTdugNI z>-Q7I72DqGjcm55{-Riqa~r<`I6I9&AdTps%mbM zL#MQGc^+lU#)2VrCh1%44w)(l-ovQ?XKvB*siSHh9!cVO)_X|pEw{>FPmGd1irwmc@P8e?u^J8mWu+Z-{-Cs%3 zhl8WEp6xDeqIsHIbuz157H!SR5g8M3ZSVe$tDZ?XgMsp%bBc3c+}T>_BTte*lGunX8)0R&xiTwDBx>z34bbn0%WcG9 zD=R6PCwA;~LFs0F58!)Qd@10Ydrfo9OQpG+d(IW4lXR}?&#{pG67Yjxs# zi)qq0Us=kR)4jRHi}ef-&{4JJlCa z@h#Q7aoJp6NePHgCAcAii;!8exFGF_^uhG)T`!0AeRk<|S#Bpu?607kdaMC_qJ!o6 zz4`R%TsEz&!4HM?O%f$VpHRGUc{?n3EgiILB&TEn_wE}`7^p#?A@A9PMxUY7dsbA@e%&NUve= z?)Odb>>ePy(JdNlZ9><|vzqKXUPhbD;kw6$Vt@nDV>!v?>)FX+;MjC)=oV3Ndlc_; z1oDjA!0i)6L+t`X<=~K@9OPgTink}kJx5d0X4B)gwl;7}8{3hQAT0duJF%abfHr~2 zJC4!2nMpNs(&mk?a+%WgT?SM0O1Ht8Khb!BKUKxX~lIKa&<0$pRp+NPg*sXX_vi6knq z2!K+aK_Rk7$@|sLGW~}+HP^3+-&ehY&sV*KY3l?x(%f0uNfTRcwl_$weA3z39KUcj zFsF7&Rfkb0Ci*YW{us)nXC-*;v56mnrPQXH#>Y#ROJf9bhGLH-w(Tl11eG5R8Aw!?k*v@hD$>tI9=-`fZ)P*hH^mMxKv@BcziqJ4+~mqPvSoj z8{JD%v`C-^?cPF>&lzM4_#_b{WDYP}Ba>Llyd;`$Q=%=WbDPjEmqv-Ef*WxpaU#te zaP3)qvY993OKA+ST}R5?=WabQ-2PbW*173!=e@c_({zhq zRd&jSfM@CWbo}e5F@I>awZ+bhG8<9|kzGS3G1CO*yo$0;T=H7_n?-1I`e>g|(-%Rr zmhGKjGrK0#1}& zn}Y`!$NLHE*ox9xmc{7%!sojn@0zns61ot`ewbSPSa<< zvJ*wE-MBp%NW>rfda<|pdexjm#8*-iaDc+nHXG*qr|0kVtZHX+oD?MsDLo#CMLec4 zo#Q=MlRV(~YR39QWv1#T_2Gg@%rW`!8A1ud+De%QBBTs7+jn*?^J5zGNP!mPUDTn6 z$(DPY3#N`|i5239%tc1t41z^dfKg82w2ncqU(>$b7OAW}*Fo)Myp&tpuo#aLNx8BV z9!VS$*xQ`^+g6^Tpjuw&mbzT;a**2Hwd_*CHpx~}94jk~V`+WE-B+l{JIfgCz3qJ$ z`D^nzVV1c*WwTx1U35Hp&qC8JbydBz({5*sOAK;7#ih#I>CKqjnIRR7;)TJ zr$ZM;F|@ATt^I0wl`vIji1w;}?be=!YZ!bHqj-Z))FSfkXVb5yo6Y{v(%CLlrl6&?YGO0OrTk!3(AlYdf*!B zY(69H`ve-6w6-@kBF-Dze>&PWn&GY<8=o+;z7YZk`8J)dNgxnciMYHv#rBvkyipb8 zdW=xr+_lc6B7(wM7U9|yW)cXtgpF`ji8$$zk1la-S|_13B)!WUmijk`CzL@DZ6yqH ztK6i7`CzV26h$A*N+vlcJYzJrnpT~tG_$s)b8lr16f>d*BOK&qhaB;^`t>*!b=_Lt z8!bN7VbZ+$0>h0yJ+n)>|Cm9H;RY#eNRcS>kZ7u&(_4|&m zPVgp$b8Gh7ZEEB|P|4;6K!6UX(z$OC_&Y{zJYLvpvfRYZrz*imJ@_1cmDhMzQqn)+ zAC}}usbvHW9Q%}zqySiZ@Oo8 zO|e#K5C(0dC!heF5y=NRu0zDyb%vkf_Ou~qx3`%kkA7Ij*bF)la=G{S1Y{qeRQW&K4eydttV}892oo_?a^%Z%blFct3bd{uOi3be{ZZnQV5&r<+KIc5Ajyw-- ztV3^Y;e9VpTf$_yoLlWuQBhX|9;ax)z}(q5%Npo>L*gq9KSsLL?KLZTE={7@LlT{= zle8i*AAS^V&g048axs!IZ8Z%!?d8&rp7x#{x48RE5la4Wj?zda+m~4%r{;jB9TIsis6!%g{ghEeOZaD6w0DidVoOAcDaiVI8 zYkO;RZ75ZrWPqz}Vn98!$Zw$>bmzUk@YMb>@Q;Ob3s$#>!_!YRw^uORi5(Rfn35xc zBiy^j{r~_BoxvZ7_?_YF%P$dVnq8B_cP^ix+FJnAM+~#FysA97*|#}uzjZepmG8GT z^>{yd9#u>X9pxR*MAL*G7QOKE-|F(TI;ydbDH1S|;yw5zzWjO+tO42%+>G{5;w=eO zJIGZDBg}hQ6?p#uXs#>CAW=QdzNGf#->eH1Zs#QsWUAw*86u^<@j6-Q#yjVb`FTbO z(|z~6?$GvV*23x(ngq9&CmB~v6=Cc} zc;AZrC8b>Iw%48`g8m&VEfejyRE`-W3W8Cb^dV1S@~JrhsowA|w{X^Ev&Qg6Dyz#H zgbo{~<>&~=@zQ)wP*)8)>yWA%C_lPCZ`b_7Ac`?xsYOaa_hSOCCZlI8Y)t(pqTR zY#M#ljJDc?Th9%?nDMiTEyQ6*@21blu*HmI608^x;^4ebuIkoWjn z#yMW3=MG8EPV%z0mMUKj9@!H~k{!4Lzl^wUO}|oZ}p1 z0l1<9aySDgfsNE`k~VXTgM(T%Z%dQvdS0uf*tPxcnRx^#$_vR81yaNS57mes*#q29 zrwG5{9K7*dcK-lqzR=8K(is{+q2!TNx5(;F7d&SNIV0BQvEXm`Lw*kUk5PNUadWE2 zV?E4b)5wlFMaJS02vVzw0NPb?wD2>vb388BdPjsjO`z&_7dF?7Qgtp=rX!j)Wh5WH z`^0XXtE*=Wq~q+BH02Y`jv6#2?IEp`F57%k)#jCNXVG+Vc!Yr?TR!Fg0Cbngs}g)t z)uoWUntqsBj!D@s{{S4O_(EtdWRpp{iaAnqn9axb@0~HO^vk`Q!0VE zpkujW`g)J^$gfWeUW=rp)~Bg~t%SxeWmcNMo~!;Ge|m)_(e&9=@IVuQe<>@k zkHH!)fG%NcW+>BKOs*O7it;NA5X6F_II!P%821bkYm3yb66W!YY6NOFpaTN}y$)SM zN%hTY+sKkQ(kZ@n`>sO){x#)87O_~TP2ZKfEqs~lWAeIK3QDaQr0uG;y07ySOz^IU zw$sG+(Gzto=a`={F_R_4K*|vCj#e-UU8II!+2axE9tOU@_?da*OB^vZxnGGhgn{Bn4=>*{_z1%m0#sdhTnt06}2hGQA+yQ@%@c& zWUICYTyjcYxpiBnG3ArdsYoEFP#9sJO6;&|FPlwdNXst~X{Lq@6? zs}>!mqog!o$-dn~5)?&o9EaDCgyZ>sb(KnPE825E!|&UnKUk8oP+xoh05RG}gmj$} z&Myz@H@>Y& zLb|kT+j(v+Be}Sm;KO~jCPsN(*bq7m%yHL^xjo01om8t&4IgCP`Ig)4`)qXKCq^|~ zt63(x{JWfg#J0WCEo`Qi+<1fvqK$X%*#VMo<<- zV&sM>c)=SZ!61=YOW-*zKFpUEcc~@RX$VBmGWliPbsmS?=|Areg!MmHpD z_q?WMEtWXP11E4t*v?N+1PX|- z!#vr!jx}PWMBsh)$S$uL&qBG*9Id4GxT?Nb=+AJz(KUT?{NGKZSzAi+ED|i5rNK#~ zQp6;YN3|qhow#g*7=w^;NpJAuN0DbbyfMi&-1A&q%Wrcu9%Qob+%T>(p$PY(PI z&7O~2xxBMzq_>cH4mLjk?LCcf`tFl&tu&Fn^4#l^$+8P$a20LSlY%+t9G`RTlZ9St zQRiCU`s{PmoT#pEiT&TxIzI{cV#7kyTG~5!_D3{|yN2RaJ1X_b=m)J+*1Ub;?IQkL z5o-50F&(a!@F@YkGHasIt)9zBv9+59NFqdX4nbfBYmNA3o31=hdLs`Zydg3&ayOn2 z;w!TSPMt_ptywmsZ4@AY^4hf(>&wTHc_a4>b#)7TF{-P98X|(Fw?5^6nhq=O?#Hv+(9AAn-n% zBw)q&x`1^&IJb*aadsdDJ~lhXH3%kCzPNjdV#-s<~W$2Tq7=#3bMOR|ZA zZAlU=GY*|W?@!SrxwW44w7nk64Om9&3{jv#Gx<`;iu{fX;Po9z$m>`duDvCl)X{{7 zUn+NK%z&RQvU+koy5xISewlmbX!@np*7ldCFE;4IdkB^(8asJp`O}Q@qv(0*e89U(t~QT4jg)q#TF?6(mJ_Rf~zsAt4@5uGs*F77mG(Z|g0AXYD*W!Dr)w8>5>FM4 z{p?or+$EfsHrE$zdg&~xCAd+5u8N5m5=M7!3d3L`H~5#rNv8`vR@1|48ELf{E@PHF zs>mjEv`~RrPcIe`S7ewO`2k_))1N$TW}3bGe4k(GSv#E$%c*}v@a=)rZsom-cn9{g zn`lk_lp@Lqu35aj#F=4m!b6BiR@}cZ$zgElT5H+fE5uwpvB?yYU06NT@&P9Eb(#FR zQ!J-~u1|c8=Q~5x?_$$$ZnO~Aw#H3gQI;Efi4r?;3{lB!$e$o88dMufZFO?4Gh9z4>^RtA5KAfsJp_l#X3hif+=H6dlACSwTl)1!Jo%;3KbQOy zyG=59^>cLkHkYWzElhiDXM$9@Vcg{0pH?9FZY5mg|{ztrr=tXMO(wLSuQ)-(S{+7x3qTQ9&_F z$RsGbxGX@%c-@}jk$gSiXGL_$SI*P++4;x(58Mx}S^ofpqU-*CtbZs!`6{Kf@fFPX zkV4lsWJw~S3L(h^_QlCRq52+_xg*%$*~78r-xB;cZ=h>h9JV(Sn@h9!0_F>A0SxwuERdNVMxV>`M-mKe5k-y&JKL@}>b^6^WV+B9 zSSv#oqj0$y1jlU8kH>B)`VNzK2ZgT1&BQRk)SNIv4)VC) zxTsLgQ^lG*@@l#+lc-y^n*JSYJ|wW4 zQ63$-y*D>0X>ETsoucC55Xi{t^MX{M89RnXLbA3EZ|Zt3n{D<k<@K0rLvMMOPi~EWkoM-CCoDy zB1q2IQ6!NRd16(;+N8RI3g>F+eiFX%9kgc3()Mj0%Jt)x)n3!i5^X|%cEMp#yz$A* zg!8$8*p^KhpmvfbF#=SPeoirvdRz86s#jMYAGN&H<}%3*$M%%5-Y47RIl67df%7f) zu1dBJRX8|28p5iol2VIT?ydU2$W+{<{pTAl*Jpd9X}3Na($`Ng+lVbpa5EyTiX`%5 zEs{`u=3;Y!xryKsGmYZy4K=u4;>nRUcn~p$FbCRGkO3W!P!9{#9Ah<)W#Sz_SJ2dI zUKhBDH2qX+aobsW4{pf0RaMN$WhHWQfP&a?!{^4*QeY|tVN-C zm&U#lwz8j1))Lz8=5174s!I_v8*sb3I^mH6ay~$~8%SI`zXrCkHO>1yq?Xz(*wU@7 zC$x8I<7A0rLn1QdubLGy%g9~K0W2=uM4FX_?0Qa~;rv-BHq533j@I5q*&m#vF1UD) z-T6p7GcYQ0@3c`Di!XdFZyxUwUfgPTCoo%;ktDaAM!slr>5;I6ZM#dBIl`Jzw63K6 zZNK~v>72G`)v~tKuT9R0Vd6B8PS;CEZUumHVGuN5IE}!J?6x2-(VTFjY>6HJ021h0 zwWX=leED@>6kKYtS=#v)NEL{+n6BlUcGUt`W+xzs)L}W0b6O9Eb!*QETI)7iREBwj z$2Zu*mysAxAeelkb0bL()!&`*0N5y|IrNP#?k^PSFvAC<(uklaA=WxS4Vu5F>VwvOsWyNIxFEmh?KQQznOBm{DBeOCV0RgdDp z*RJi**;>YyHc`O{SC%;=XK5Z*AP}-CU4W7Y&9yYn(m4KKsGUY+4tyf{?P4~H~(BJ(yWanH(%qx@@u zx|2-O@BCdI#n6i4_er_5v5A{LYq}G(dy^Q)sUUJl2cwr+Fv1Ma<%83A1pXasi@u$8 zO+htFO|!=oiu(hEX+B983AliHaC-FhI0x3nVU!_e`kqz}wOZ5Wl6E$1F79XdNbUNyC|i()KdK?-l26_tdN{QFr4+5jsVLKC#`!_3X8Ug~#OTGiFm$)zlj z+d&LdM*=%;O|mkuEb^8+f!&qbyK!E7uV_>2-xO!m_4w^{JsQ&X-ss1zT|@-rqzciM z60%{E8AxRWF^!Rr%Y;50B;Fmp(X|f~U)ow3ZnX=EC%e=l-5{Dc6(z}HSzVx)56Eq~ z$pjPT9^duVSZX{_bF(`{s)_TJ9=7m`0Le)HtsNCC1r_Tx2wOx5&jeMsLMkYs`e zG5xGCVC+6pxKJ`X`VM;4cx}8jr+81qn%1G?3mrqnx`vf~Z*>0v+Ay%3x{a$ED<713 zYqJ%x_x zYsy=Gt)12X0E)CoJR5y!W2)LqdptrIqK-_lC$AOQcq78L`W3I*eBn61f;kF2V0n1w z@%#SWJ?o3`ufwZP5$Kk;!^Ag2V->sH#+Hx|EuIMFWdz61`otje05~~0$6=$RPkVK5 zKAnH3>O)7jwUsWO7L2NyLb7>o-^9{qIOA^}YiQlQRf5gC%_FOl3p3UjfA5i58qK*) zJ>O5aB7ER92WxzNqX(X*yXerU{q(MkYSf3q-I)wJY@RRiO!{WEaWppxr-c#kaAk}fHvNu= zo#T#F_vBYKt6At5{vGi>#+z|X) z3POW}g52@B*nl??T$L(PRV7X_*GK98X7uAORd#vR_3o)=F07>UBDX>oCJGmFZdGlk zso{rC#<8DBkjUF@Y_XG!=lpBXek*BumWQSI8%)(TIW-%|roIn%BeOKfWsQ)w?40c@ z#!d*pBmios{3FGNOTRmdNFc@{uB_3w{uVo+ZPW#`buh*vxx@lX8 z3xjmsfEzhmo-Z(+|pKAyR*M@y1_40tnKxmLW~N(C2+>mokE!C5feGxy+(5J)w1 z;f|4}>i!j$^HNuN7VN|y%we6|anSm;dNgT5FmslvXk$8(Z9*o$_SMeiXKOhE5LHYV z$I#^Bpw}8N7if1HY$wRRO|H=l63d_A$ph)g8Q|kN5owwXKk%Asc2~j9on)xUH<6wA zE6-n1^{hW0n0z7QeHrxiXyXwFkQXO%mLZ2e!}I31ojP;9IBwVIV&y(o=eFK`hUz{U z@CKD>rPydANY-Zl(eo}+Td3raAhnSW_fME6^+w0t-q;w(1D)3OjYCA!E_A4^g!*Dz z%N4wF!@4U(bRqnzw><0ySUO4Yj2EjMz6Zs;@(NZg#*iNzQegLdCBX8 zfmH3Rd{cel&lmW!R=<)RKT*;36^})0$z~R801KVOfd2q2p_k>@c)-b2^P0VmxzloK z^EKTZSBbSO`JS+Jz9&H!8x4|Ny9{ZmK0wwlvbo(mEq`%H2w$t+_r zhY2Xaehj2BjB=_roRT>^{YCBN7VWI-av517fJx;co=@~m>9l8I9&N`gcKoOVwi_;- zr%l^Htf6$M{x4B{C!=3pYe!1Co;@=Bz^MhnMO%%+2;(ZQ5D>dT0Ozhj$t0btPXb#d z^fuEVS=Zf2<)utA%&1 zl7Bzzzu-r*lXq;^@VuH{gQMCuq2jGp(&q7e$?ai|M~d5iOB^_H*Ew!Zd7+1(Gv`_G;Bd-Snh5? z1gRq;JoF@F4oK#;{CB2mQs^2!qW13`BT0%F=8S-2o;GHS=vym~sT>oE?xR8+keYkn z{s9xIE@?%rhAyfuggS1Q;ayfnw^=^br#7c`42Y@~n*(|T;f6AVzU%-nL1v8)hi+}| z<43pA{6FFgCI&r1=}3-6kw79x1m|k*0gG*I#9$h=V7j)s;yYguPpT%Jsp=YP;!Qpw zA^@RFZxV1zEAfxIz;(tCE#uuibZ-t@*;~%iC61wS98!~)7#8fgBOf=;a(L(5)_90= z$C;~tUSou>c%sAje?io=s|2}=RJ6E~-2}^N5DG{Dx0qOQ^8wHto=$O*sb}!U!&(!K zC`ARdGG&%&6^cI4M1%y_yZ->dK98iq?j%q?Ua;J z&}@wr2UC-c$AC!y0p!}gk8ypf$#QiqM&|NyB+%PmNOoF=n1YH9c74IeZJ>MB81Y7} zsB6c{*0o!ZCzcs(;?*RJ%T+IiO{@teRXJ=RX2yPR-SqKY{iS8Onn!62k{5Xh&)#oO z#QrCN(!A_U77Cv{b#0`2SSUvmQNmkT%3T^O8Dbanth1K^QAY536VLhQwKn?NYjHj8 zib-u4ApDJn{X2h8YD>QnXXm4#%9w)2epAED#e^f>y?zdn;Cx<>eq0N@lG;45URV>8-Xq*rn zH&6b!!N98ehr|1=Yr{SR(RBNe3fNv>?keiUI0Juk!6)5Z`CChDe~6?%!OR?Mgb%i3i!8Hvr9$LvAbA01W2@ar3w- zC0`MSgSw2gYtQ_TOJ8LQjcWHtv%&Dk#yUomb!nz+G8LQv@C8`XOz?Ld=eBzvN{2%D zQQ|8f5NSG%&B6ZwN4tt?V+w^pR}4UH`RsdV+PNJkOx3j=D)!S&c_bHhk-{z>>(27- zqmnmiQbLMV3i+|(GT^eDlDk^HV@|iUx{4@oH0ubpHi0I&wo7oKSb@AoPIoG?#{}am z&m%n&v?XObznA$J3X`6eOXki??7GIkyF$Xu4^Ml@afikYvQ2>uc>K^1=1*v#$g`egTdpr zDtl{T;D3k^CFSwIgHwV30MjpsGr$mTIdXBc1K565qt{O&>8BW@y4E!Tq{j`(j5gU- zfIM=fFwaj<^VYI;YpJg_b=L1b%@3QWN1e?6Sd2I-cI+g!ZZVOS>NAjPZxvhJ>Tuh^ zYaG+67BaQ8amrAPU=?|z>z3|uw-~G~3rp4Yo0B!I)VA=;3&7J~X%Lv)LhByDqIby* zgPae!oSgHVRafvHwJG2gHSO2Et@LH9{ZivW)1#5>p@}4wqw=FHFj1XPJ9c$b{6ye` zj%wbA;rkDW8adRi?GbKbW>j^GDH~??U8BuMU*HGs-6XZM|t>0M5j;OMkH2HQ`TU$w~rcJsWwncVE(cPAZvPfXUdRZe%#VVJxN z!^i5&TfU8H+h0_8ef__P&YNPVQ@*jcv5MUx6E(;xTW)riK=|_^fT|+0uH_))7Bnn% zDZk+&mr(O>EN8g4m8_CWi7lhH-mM&4CR6tm2$W?Dk~qcJp97)^1PB>feA0eq%E!ZW4J4ih)b&3WUg=OuX4??ym#f%kF7I39wl{4Lci zZN4R5Yqxinwwi6ryNT|upX6y3pUW~yfb6-$7Re+62?UeU!)@W6JHmb>*0m28*yd#OLPVPQFS8&)({KPd9oW-xHrD!d|RItr{gDm$%yM)d1CQ|G3v?Purebe5VY zhwi*Da3ZpFvAA!vPi`55Zx}ob@%Kj^IIcuJt@f)F(^;%qb+dVK+N1erZ})Tj892%6 zdBzS1>IaX!Ab^F}q8aWaTFCWV2xcqC|~D%j!UM&xoa_3kU@^4R|X zv?X3Gr+)fr`1U<4LUgFkRBWG5PR6#W@jBAZ&K*BQvuM+5!xh>nHsIg@v40WgAQn|q zfJQ+X;UKkbVjGLp)^vnYH%UC#>dhW`%WWiraDMl{9m7{nz0tJG5RutDv)sm-bfRXG zK(NTANLEE0vZv48c-Xs%UAepi_H8#!0oHrlOC?EM&ika5B!SgqZalGwodXOqhX)6m z_bX$07c3txzt{XR=feZcl}hUOy_flz>*4J{2(>F|A=IN*4zpNJ2$N`Z^vh#=j0PN& z*0S_AwbM0AOI=f0)NID03JaiM5k|{#IdLmUq=FTZ@P2RJbAVR5%?DYu((b2^Qn8lG zS!EIyc_g@XJ5_#nljc8kbO2)m9Ax2mqT#$rdvSB7X|uGNdb`g&6D%vdlD3la;O<;L zcsTkVIq2f&TBD6ee?1P`*>vbqPucRVJlE=6(EJ(UJ9*+7myLWcEEdesyl)ko3zZq# z>fysL%2Oe-ccXGtf@jmevgGjOnnjdvr>}@Cp_*wRjnUFL+CMQjM{WZbSqR8dqjP71 z6#0#`D}Sp;rfG|BANHP^91|~?$`O%O@^F|0n32dE$IeFJNh_;;;d{MCXb!D4w7T`x z)2+a5Of2d^ELGw1$wdnp0FRgEQZl7QcS$SuJk1f_>RKF-X?khZt}N{1nFGcyFQJ8I z01lg(N$NhC?OeZ#Ej1`5y72TGEz{mbA|#TTgCu0C$Ob^c`B-(vE4tO9@VAVvG<$7x z#(H{aHrh&rw1ZNDJ-3+JWPG-A6^7A<8CK5Gm6JDF)pYyc9c#C6c$Y?w#!HyCv)zKS zV%{J~$5D_+UaCiG!W5;2PFQQV+WH-?ym3uO6KgKE)ZOq-iT#n`OFJfYY3?P&g-72z z_c8nzKcKA-iY9mPWP;dc$ejlYSvd*Qi$P8>0UHJiCYSBBO(JCMkPLN%djhNEZc|S%-8xw zwavDnYdn{;%Qeim5h@T}0-=qcbdHi8=AS(jR~v6@(%tde12F(uIbrKkjc*C$^BNl|=W&iiQV_^grjOYUM(6i*)9q*LD8@2SX~A zd0LMx(dG~E<6fUrk)*oPi2lzID?<`HM&UxP42W0&#NdJos;E++Dz0Uhf^=#D^9EkekZFy8{Vj(VS zt#;ee{cqUqjuxJdH`RUL)r@O9I|=Nse#xlXUtV9@jkflhQnaz$6lobsI%P-t$irLw zqX^7X05_xPx^>R2;oVbEih1timIlS$<@!jA63U0nd1Q_@V%|)dZUUrmqbVqMU|d|w zr(QdFuHRK{FwYeBv1(9D{hDqiQzg>7Y-cBNlt#!L=aN}V6WPP!n>+6Y>Ibv0O^9N@LvH+AlL;Y_8=-4YwN(^f?LbG^DI?$_h!vn0jr3Sa}+Z(^_3yOK@#s zp3>?mktGqdm}0HL+Nam=4^drozA&2p&{)YP6mZfJgCO_+06h1sO-oMjc9WuL`WJ<@ z>r0^~vG%DIZpF)~7IGsw5rWt|0X$$AJq7@bX$m;|d|ueJy5s)Qlk30bS(uW#}=3!N78P_UV`yXhfVElX)yX<-lAq|2#?Zx1OYBPCSi30D~0 zGtEJu>9*buitt}OzOtg_Zy{NgCAUD6F4s|p0o%(%zpn738?bsi>2;q8-YZ+)Od||N z!o-38ABGKfnqQ8sXVT%8@;M1-3f@@Vv}62n_0P3?6zTHv!TMbJJVdKfisaVT>u)2& zb>+F!wWqt?NETn(Fto%0xO}AU`@c6sjFZjr-mVC%MC} zo)uJ88cDTl+voZd%Fv)jy3^x=Ij$oA0EzP42&J=-7upo{#?VO|Sj0mFg(Sjt##;=-ZVqb3r5?Se=$8H%&}KImQ|Z?FjPgSoTZm(c{$DMd4lv+8 zK2jLSy5=^Jw4v9=GZL01R>Cd1}_5ShoDutUMnUm3`xF3d+-1D`{zT)3mo2 z2Hae>Etz3NJCL}Paukx`e)a+yk4y0t^zm!5$v8^bZps3~F%dnnsy#JI8N4sEoiYDU^?TGYpb^rq2P0kdAq(S~dJSS)4tq z$u!~{RdaJBA~_M$k2$u8j$&8t0NcuiAofw4l2>-$Ss*aPj8(3Dx0*313lQ1@xgKL5 zx(FMHAOZ}RUNpFx^=G-7Tibm6t31X>A1WUC>GOB>^sA{!REloazkRpYZ^+@T8QDR{ znXR=xfY3Zs9k+rseNRJZBmit)U22N9KJBz1|sutCYs9Kv1b9x3p@g*5F;#a0%&FfvQ3SPS@Kl2*>>mQ1){ znFlz@%P$|smrc4~c!X*G67hY!Ru(!fm7~uT>nV^U+yw=bjlgnxec{FpX+qT0sPibs zR=an$n|Ym5S4vjZbY5oUZ-3$60O~*Rm|u&D?nA6lyNMf>z)*Yh&!DRx43h%P*SP ze7fTTBc8bA1vnX_bK;FQ*G|2%gHE|iiDSEop^hY7q2iV}-2VBGJJTa*7;YJ`H(&71 znP;n8>-w$Mn9``b5y32Ts1uiVgxip=85#WSZXgUuOA+##j?2XU50}ImUZoATuWN4C zGLa+860ex67}`++`$hEim8^)dWY-GMOSmK=N`j+o5EzvoG z6*rQSm-b@ z-82m;F-W0ONX|zkN4PlTWLHdM8k9Yxw0(@+=L(#u{LF19#1~M?vt8;JL2W07^54r? z+@z@}pWz+4FT|PT0CXVf=GT{qIQI9B$?h8f+3ugrEAof2DbwOiitX?*^ zrs>mNSzKG`*O%9)0$|&~K4%zKlr{pAcQX)jD++U!DRW13RN$t$S**4;`j3Wm+cdbg zyN1qaAh|X-kj?{5GOFaG0$-Z&;#lB<3n@e_6(L8D%!z!p8$MB#VcQ;C4DfT2E!Lspe+_B37PmKzG{D1h z6q$UfR#*U#-~cn394{CHIXDKOyVLCsn;g(I^55Qlpxvj~ZXsCM{h?8~iMM122(7FOt%2wlcN60C~`|ZIB$OUij>wqMQPtjK2=*Nu%4|%c%`@ zFClAYwQGO%aH?EK=CiACPwr7v5X-qhBOyroT5k*5-RQxsGQXSHvjwry#m?KvxfbAS-XvtdS zsaj9oea?$0MK41WN0##I?HBUuc8#eUP}dN=@R<~uY~qu0c}OEW6sTRriNIf*CB1sz z#0{Wn+D?OVEuhtWh+$YKynr;F5Hcx{Gh~7Qz{%qy72_~zv+EXbcm1_vX{A`-+-fSb z+yb)|xK+yKenGYHFwCqze0{blGhHq(EE0tRC7;8W^=W7AOjp zc?lb`T)Gf)F}2qWNCG)t^X4_2Y}cpx9i5kqbjz6?r_}6h);XnyNG|6@nI1VFGP^?% z22>E)IT_$&W6r)Rc(%oFV2LkmZ!F#vFb&bq9C8MKFqO$0wwQn{4+Zw)EnFncvk)dZ zL-L)2b|c@|e8mn(B%XS;6`WkGcjfT*bv?A&X)D>L@7Ztn`5E^UBd^NTJEG)0r{oPsh&eFjc_Bf-`d-XF5l^=oZQ zOrC4Ii?6dmsNa2^q4J6gBbK@wwb*Cq0+j^yCXV~O? zQ>$Ben_96NFNG4y?(a>unh>(V3&v78(R{WU+@s8h{{RbZfkxH9D??7yHCz{WcCkXhucBStDEOod=f zc^k$``LM>;sZmB>E9?DvdL7?Yq^T*UwO4EU(0%^^hWt&d{lCOkI_wFe$vJenpHOHK z5y&VG{9}hvj+r2#n4p~QjglDZ~_)g-+ z@8K1fhow2b@jEJ zcd~JOW&1L`@V{7_C#wYvMnL3}GJP55H6toR`Z!EO^B;D#a z5Zgr(<($@bVYxB1LRiB*Qo0Oe zXKMn(k@$4&#dwt*D$o?E*lEhLS(S(W^k#y7CW zSN&sPV6{u*UkqEpXMLzyUM1a{gb;bx2hX=wk=@a-2$wAR+|7}UbHO)$20q*aqD=kI?Gaf81VS$tBZ%X_=KyITJM(z3soV=P5f?@?@Z);|usdugX> z_J7*8Xtt0TU+nseCz*!%56x`baKA1);ZFxS<-BRAYTgs^CYvsy29rF9=HhETD*ky7 znz1PJCK3a;D9^V59lc8g73|V#4gIeLu)Fzui5<{O(C$E_{`1|xi1+m4=kJMeHlyP0 za#K6p+gT9LJW7P2G2vC&Gn`4bF}RWk8P03732aR&wQX-_f4xaZ^|=z!rQEAOim&9* zzq9Wx%n-KoVISJI#$=XHIgFS)SZ$s@9Bsl8!7L9&;EOT;0105VwbPBhpatwqkPw+7 zNaS2G##d`#6OKD{u0F#|)0*llL#SFyr@ZniT*-GWt*yvUv%8~iLh4HAISMxwD#vJ3 z)O;+u@aKpABD{~P*b8w0@~CIg<5pFFsdL){% z+FNRH$8j8|O^REKt9UOUl6ciQkdzWmYo%?x1Rq1XE!il#|Un`@}>9# zj)Q^^PAip$+rv6{g#1aZY924K)I43NX;;?wQh#W|!gA_1tZ1x$QRS}8VBxS;ctpk5 z{86atmiJ%Sg5KC$iA;$k+pc3+)!CVl0wW(L(f-pY$jy25a*8mi8OBX={wGB7Q<8T} zQ?}Qn((f&yy@pG4jg?q1bqYG?Kd0+lUDTHPi)!~V+w8D)aRv9?0)2%7gYV8Wg$x%N zVzoxf&q7HpBh_v+fWCZ7EzX^CQVqUU*UP^--WW%?=aA?yF_xD_)AWhFNvT_3UwC)y zQffxx-bKS+Ib$4=sylEayhGynZ*?fIv}L`zuuEucm2cv= zib&a7LWqd~17;5&E_#lD3g)NNEzgQ2w3=wv1iNt0CjF%WCkJA)4D{e0NcT0>K(?Bl z%n7gG+bnj7)vM&_bg;kV2|fJwy_5|9XZYc$2{kzmHn&Xo5`bu-D(%s!ns72+Z z8*-vG-Is5b^NipCFiQ+|wwmUPVc~BST3TDEzrRl)%M&-0>Xz6gNzUamEaV*SZVBfC zulQ?N(RB#zw7cfjg`^Y77Nt8$Bq=-w3x@LB$qSTLLfCVknep=P#a5{~SxMZ=l`3@P z{hTbH-fes`@n!yx;kCDeMn?NyqL#6Jrt)ybl(~fnr)@+vPEO&>M$!!8Z)-?9g_zVE>v#Y>T_Hav+2vC%c>>i)b$#akx1kl3P1Ev|bkRmBx>4u6WN+O$OUZP?nHtP)D}&8%&Ru&O)%- zFvBX@+A^|Xt?q4ZXR10on3GV}F7NIxTFPB2VFL@4Oh=f~PrMk6Vo~Ye(zyQshAn4# zZ>-r|m}T=MR`QsFN{sW5V~&26w-=4HG2)*SLvK015?x0+J(3yGlkBiB1u_rJj4{dJ z@x>x|-@}PGRJXZ?Vx)jIbN=PK8ApO+L2#4qBAuDXT4v9~ioi8wK)|yIV2y zJAgKE{{WAEohzO2){Ej#7)7aRT4nT!r-`R8x<&GQw{lc{%;cTtAf5;#80No=_5D9w z@k3o(-bgIrM1p1V2mqNBGPxrgNM3m#k09;n7h2?h4J<8uITf-da)=KH2uTZ4=~mIFiFFSZL3d%OT8(1T-1#uN`I1i+ zv~4O$<{T(#i)=;w>wB4bi*5Z>8oI=oV7_gYoWtkFRfixXR_+?FwhVv-p4ovf_BV}BN2 zM>;WTdaK^zl#Fv_ZjtjdRn5Ts$ z2qX&3uaI#W?0T=RYd69=^|$;XJ|(cz{7I*1w~r)gW_;*kF~PW!B4;RMZ!DZU>}~Dy z6(ex5;(JdDXnqvZG%p8hHdpdbuEQsl_Vk&9HM>Gw?a2yAQh3H#-~oU-=v3uuGuroO zJxW(i!&zCRZg|(l_R`$gTWQyNj8_tvjp|rwi7PW0#IZ(Ym6kOnSg^oz^7h6Loa&w< zzwrf~o~5c@TwPtQ(m)*8TKOuVv|y$r4I`78HsnTF5rVvlZZ5C2d37sxu#fjQ@kJ;L zaWWRSwl?fCkT4;$yPOfz9D`AdE5KqSO^g_U5udVNe1oSS=-gKgTw145#yt+G;io98 zqWAnHcZuQ+QsNy$T8?;aRNGE%tc=JABzdQP#Xti#5koM4nXnX{{U=+4U(l@->3Zg= zCDbxUcW5=Mh=<7>CPVYwkm%oNUN8?(M-|2kJIVDMeIgwm-bt_g*%mn#SXM?v-a+$W zP)WxJk(^|Xwbb}N+Rpn&)%Cl}9X|RE39sh6()9>;O}N|JZ5v4a+1&(-yn~Ib06dUF zqp7xp&YO;m^)L8HEVW%G=gjl$-2e|1pb1c%5x^uL%#J$an&qSLq?Z$0-z*I>$0?XB z%r>{k$@5?X(a%CT$E8relIuuO-~8l>Kd)?v1Z;(w{oOPQK5}Von=uT{yy^ajo){gzkKYh3*aa{ zGs!hy!ybL7ifr{wO8zJ;?c+l{_ZLjc<*p+Iu=rSVQ#evbY?0FI(}J9-t!<x4*U$jHq@766ZbNIM2*aU}^eRgJpZAL*h$)HSU(} ze$f;yH`(q2o>Y=JB=CBGGC4hInmYJRylr{n&2z@ObpJ|xp#X7VlLn_RfWj2AdxF5#49bjcaU z0O^?j0O1$#h4!K*n@ZH0dx-)y%=(4HmteeQjHI3bA53 z#>O$3;!!qtb~qpay+=F@@80;g#8(npvc~q7_SdUtaU^(ElIH_^{q70LKXmo`#E=Bw zs?N1_N~=vv@ayM(t48%i;;2S6n@aZlf342P#NQ8eJv&dk)NRsYBSKagWoZ;1I&LQi zj=g>B&wLjY+D5lLkV&fjjz#-C$!J6%@G!5vivjbGnJ~aHD09e5_8GNrCD-GD6K8iL(Zd4QmCUHFQ?*mz8kji<>YOyoA~YRnf%jf6~JR{G|X9J zESMp3N{#^~YUI{(i09TPp2ak4=}+0NXS_((Oy?sqFwStqcO#nd%{;tz##J$GP=NWW ztfT!)j(67FE(avMEc zEWCdjaMY(9O694tJt}akfUPM*s{X$bx_5`|<<-+qx_QakM`ABYy3Zi%Tus90KfZYyP)8PZ;2GN=s6 z#_g;L9Chi^y(ds98(rKwX`vEe9!ugCN647x9_Fy6MNymNZ%wuCj{247S`n1&`M1-v zvCT)}yyKm3#E($WTl22})ey5YzYC4C7EM&d3lENE%u^*Ef&Y@TnhIHJx z^A~p3;OsHwl&Kk#Zx-I`1}JVdt7~M5npm#g5%TM^V0L6xV0S)3sLHMmer)PoM{O(V z$#oX^r_rq~-bTBcC5=k4B&1mLMj!5yKJGFyNa^CfvA?>TU4jJjtnPe^q+SHjF(D=T zuLtNG+XUK-nsN8{>Dx}{Gs8-yH&zSXT3@F2Jm*!{JVKXuGDA4C*R5elE@6dI1d$_I zrSp5a}XAK_Tko9AR zIR?6IZfgxk#gk=PHdJo7%j0J(Vg9A4nS!SbC5?&9FtbG3y5s|QF*J`9WreqNbPLoT{25&b)H!xMR|O) zlb0@c5>5%g>IDxAYj^rv>h^l3qowGVvf15Dr^|UdBCOKNSZ>K>IBXmZ+;+}IDnsC( z4tO?agT)bD>ROG)oi3!!e-zWm>2|V6`w^V(0pB4@3?Ss3vuRB$b0Dd8E=hDf683by zzKYyO9JY`jn=S&$D*_cc^jx0jJ8HY#>UNgV!al`y5N3@Cn=*X4$UFeVZ8`73$m?9T zyW$N7>cY|;Gg6WfZ8w~fKA&*J%a51-S@rpe{J6(XLHtXnENdhlA!Lp+^Txq0*hCLT z89}>l^PK(v05FE=DwJ=n^)1&+-AeKEI&-7x+UJOTJp>Y8M|Y*^QA2HKd1-M9S;(Qb z$^?<&ixmSo1bJBjy2sR6_;PED*)F2hZsWUQxK3?kjF8?~e7OU5L}`w4LN8^mf5T89 z@t1}swrQlbkHZ!bq>@LoAc?l_P)G!Y>64CdPg;jl_?HfaeLOZ^8jf4ra>+ACcE2tQ zZUxL|fL8~nKb=hD2G=sw<&2w?id%Vlf0?7M_zOkw{{V(HE6+C8*47B*nN%QzZy)Nu zY>%68UV4*&F~xZG#)kHqq+ zJT){ox=h+--NcI&5GZ-)fVM(hI&4!AM+*CoO`wC4x#pimz0=L@%FQ~7dR z1{((AxjtHX5fFUF1I!JK;Yqr7=H_N{T<+-R^gFq)G<&U1?&5pow9^{uXr_zG2>4Qg zen1MgCFcwWmN^;aW7Q6gs9Q98g`L5;mPlIK@;Jn5!+6|?MnDZ2P)_5WqjBeT+4cJ& zXwhkprI%55tk%}cv`rP14x%DBSk1x^7nGA5Kwx>cnstxZwB~}>MvqRopKhenBwNfc z1-z1^8DPjaNjJ$C-Dcneish+E%6`&Px0&ivti6}9gcJNfF8=`V#ce{`^H;I(^qO+J zn@bZL0rHiSCJ858bG!4$8Lg`y8ruQ4T2{A`J{mi2XGDwQK{_)tm$3no4xINv@ zudm-dwaaLhwlAk#n~0>I@w}-s46&WW#;myW0sE&o#~o|TbvRA!)VA^cmgwpX;z^mB zH2X^nr!ELmSyW6w;BG1o0II`b<5Fo;SAIrs6H^UFaj5;*(*FQ6nbEbYYe_XR4Y`)# zV`Hb!=17JGP3@hjko*yl>Q?~dft>Xg-Zs^ApAc#~&H8<&NTg|vgwjbI$rB>1WwHCT z8Ic&323_gS0cNcm8w)GlKHE$hZKPJP>ayLevCk=-Kkrf3dE_W702m;!i*Xx{1Euhz zELRXi9lQ{Ma?vtQ$ga{PilL+1v~BYM-N`E$9A}SSbZR<^9JhA-4-r?TYuvf1c)sQb zpIXsU`6QlHSz0kK+2@mTBw)#(skS#6^U=5YgZIHlkQgXA z>3{-@TEupDTK=!7>XsHV`L~S?saYT~vW1nArShG8)oCKN`7SUQlehrHX5iuRs~W~} zdo!2t_m7}|3$3Q1E~JvAK5VjC+$Q%ig1d-gk@BK)Pt3&d1_`42_MZ-bVAL)=K{MY4 zn3B+lZY4(BnBN8VZphCk8Tm^NHMMOWb?XMOv9!}+)xlSI<7gsCq2G8gtc)VzX163O ze8(i@hQ+TM>09*K($)+$(A~h;8mf$r_-)&i3>8;Gq z3usqq|Yi=FDiFvsQd1~#r+jPaWGJp;uOHlb;!-drugxmGH| zGNv~K{G^-)1OtQWFnzo$!Sh*Z`t_UL!)ZJXI|A04jFHGphi@&_fKo=>sC+I?GoMef zT{?dlX_H&p{hG?!c58Uhk^{Mrlh?aS+;jtgIIh|h8>clW?3?@!3{7#0 zjtw%yNqY->?NzIv8O=Mj*FLiyXqc9k(_1E~1<;Jv+RN0sk({F{G+ zTIjdxeHyN*(q8vZ)AKdFY2)d%-9Jy$;kkQj+eu?-e$ROtIb~^M+l;W0GZXF&w;7Bu z1du$g^}I(kqe;~!xtsef9?p9x?_!T_ydX%yROF5=$=|f{vGw^u^o>RX4#BB!t~8@-UNhO(~FXIXkwyup|~Onc@hv`-j)9UP}{Yb3NSBGl16*dSnzs&MvoTbjf)4|pY;H#~3SJf`Wnl3D^;f_e= zba?iwAZIAQDQ%&7-~grarMbTlX?k_GkD=>YRn644y12P*w^1rOc}|JZSdK|O&ls-b zRT^@5lUiR9!(n-+!>Og^xV2kk4VAbl_J&S?ywHGV#^PCySIjk!srbgnRq>C8ETOWA zZlaQ41Q#(#v0Tj}v`!_A2#Xd}E<(D6cF1Q04tY|JwpyLkF|}#(#_yGME}c4CLt!qZ zq}@OuvW4E__7UBju4HRw-D^RcEqj-4zi9+juu$z?Q6 z8_2g7$QD>$CSxl)@fyjU&45r4IRw^%L#1AwGX85t(;-VV#4{nCq$UG7aEHzdwA>$` zjBUs8RZ)sb+o>3=L#@lDtgId`b-t0F6b%wckud}uGX^R@9j*C&D>~aixzqGZo2io# zM{ueE=MA}6`kJ?H_c2FsHF2l?v97IJ53>kbBp_Vj-67$CEHmHcQbPa{wyy3B`fY}b zFDnLtGJMfuA);Z&r+Z${VT-0 zJEmOO__o6K(kq3QQqx0cG&vU`VwB3e-BobgMhFZQW>dJ8IrS|=#M(XIhDD8uXwAiu zc;X`l9BlpD^TT}H4oAq`@H5WcnEX{1jSZchjg&UKTG~l2iWzenJfr#Waof;BDV-#Um0I5h9V* zcdC$2OzkRr-C!h|ovgQQbt9}+$de>&+Y@sIiCYfBWj`tm?k7Cp_dX~~Sz`~UYVP-% zHO-;1l31himPlL5kzy?=8FpbI80X5t$pDC#`z#qWohS=yPqNGQXAC)$wq_tfQp9Nk``s)cvOh1gO!$xpk0xfuePWo2on>1#APR2K6^2sYr)Baq1= zss%3WKni5w9i%&k1TzD}LDGVElTU5mM0C`rCeu;V(B!;3e|zG+X5nE&VWY)vZlk?u z!p0+9Zu4G2jy`1}af6e;3QKEv*TcFaU)acXYr!SGys=L#6YZ6b3d zsqQDzG{{~vq*=qH$qaDbT`kgyJflugjsqDC+vXypB^)(gpDm z+FC&rX>PEt8)~UmbGr*-XTpz*O)VvKc+z+`R=U$+wzZBgG8vNIMhgD`G?TI_2i}9r;!*3# z90Spsj)@+dX{g^`Nffr}I$9~WkWiStEpHk$wQH4<7?{fODuW@9 z2k#aPHxsm;ahmj-uN-U5t4XC=>9%72BH~4BhA|DR8y&6?6U5Q~00`%IJPh+XWv-nb zp=ot_Yh@67JuWx6wz%CazF*mkM)8Rls9z|YghQCrWaNh2xt0~XX)Z0a!L5Na#L8g^ z-|Cfju>IfN67c=eGssHTGPJKGXE-LzjRVJ8^pWXSfi5pL!)+YW802?mc+s+3VN=6` z%+9Cp93C^sYC2Z6;@=e5Us+qlZ*?7s)QndWWg~zQDw4`M+++g-oQQ*Gl(!bJ zf`N)VpPgj{MTZ3keYoeXQ=P3XVD@S)NgS=MrjnY@k7Sm*fuC0v^Rw9NMWxeYo=BQD zm4&kOc8P+sHW(@6a4nB>py|TOPYzwImj3|RH+RaKjBZNZOS{Wb@$F)R_i_Ewa219L zZNsSXCB4nZg|E+gr(c~;TZoK;NfvK3HsDz#!23=lQcDgvBq+*iQutYNl+K6j~-ppzaP{z#8 zzH`SBKW9`$JkeVgRSb{D5%7pxC+?N! z1l9SzAlm8?Pc_|(!JBv*C5HG!bd7cfa{q>Bx(vEJTZ7!qCv1AjmUa95U5)~VL@<#}Uki=}v^c%5425LK0musO8s zL9YJmNt09Y)9V_YorA|^FkKnIMsk7)n3+Zi{{UEG+8+g3G5{rubCF!>_d4b55znCg ztrX21ay)-5uVry9!IvsQ3p$}Yw+O(;%lA({BMnZhx#bmez8I>|R#ImvtlaB*#*;pu zCB%g#+mS8IOuR5|LffhB{o(lZJ9ZGai#%~YsjR~clSQYy*~1?xY!Y~teG8mQ#72f{|9K~~*<8RCokZtFpP zDYUzLElv?AXrz(uRLdknHhjAUi6C#3l|6YOh$vC^TO^ScD^91x?sN&HuH2RVD@0#h z=$;k3mdari%Wy*cfwTL(;|Jdr&-em8cIjr5#d_Q;X4WF^HiSnRg+@1dgrERny}-fe z)(s!T7Jeo0{-q~sP?;EYcOe7a7%_8}c7KI2IgpNT6kU$`c=#5Cq4aMAt2Bf1T zS{^p>h_}-&(IR}zt#NAa6n8TF$8&%V#qA65OkR(SknbrIuigLq=s&^Bzx6PxI2ID(h3H5r>3jWw+t}dK^W+gFHi~YBFka>1lN>)K_37 zsx85@X(NFY=2wT35>QI#1B{*AI_4YQQ^#v_t7%$&-MUNmF)hx4aF+9L5q|p;$X9qN zurTG703?FDeSboSb z?oov!Yc6^oK?LR7c*jtP+C9aluChv{ZX&j@aF*;FYn(97LkAffh}gjLD{=2MjSl-; zHX3vSZ!=Q7x}I0J^GwQ%C;KZTw#BFSISHr@3+f!Oq{_*qZDnG087^+L^pe`%{uf^`$#k0xv3~6i)`%Po10rW6`zHzPZ)(T|HjzJAFy! zg%;dKfJ&ZeLjG0(9&=!{!#D$HD_t$_hc(5tNq*@Bt7RRmk;5UB1z4^k$&rBMt;szO zHh0Z#=qadA;yq5rNG5qDjx9lE@`6V?wqjX0b_FdJ)d-zdQ~Us?UulBArxgtND; zdl-6Zvr76u>(udUPNLaZ%XC9-ZszPy#le6h_ z&vi>L7WhL(wh`&KFzNBhI-z-sFqLDJXAGc~3Y+>AV2VIeNT)xEwTS07*onk9cgWXq z#93xrc-lq+FP8&rCO&+Pzc*8#NL?FC{>RiVFLd@mVw_EH1@V~xeZkr#GO$TmSd9F? zeX?*`v7>z=+fRWfve8>ak5QSf45@C>gh-%fFvjG*cKLv+g82+sZ#X_PgjYkoD=Qe% zYCbQL{wXy3i0w67i5E@s9F~lQlJz5P+z?fwkYK49Rboa;hUxkwx7SBav$(T;K_rp} zvzq=UoJkpA<7r~#23Ns7R}F#CU$NA@Jo=Pcid$Jpab;y{@#+n68t<6J3}s$vHzwsp za85{7iDI%-mAfBVIzX$&L_RV$w016Ptu6T>eSp~SV3zda@uuRXv zbB70p`FRXObqavxY8q{|mc6Al#e^-U=1A_e%{?NPNMXXFub&RrpKv4%*mcH9Io{oP z)HNBrcMhQrjwA4pj2SGZvbPekFys{_2H%;KkYprnU`YFeSVcjmg@=NT3DQkjzby-X zHSrF+XRKM+=^CiFGNLxtbODa@xNc@{N{?Qrw_4>qQ>J*HZ3kMH#Ig`qO`OEdw3fxy zvw`ye0J4e>dVBL$H7h6|P0`ljqiHnFG7C$EX52EPs^GR%e8iqG25>84%S4Y*(Ek9l zO`2WClg?zfdx=o2O$=-lY>|FeWY0MSDc}-F#wn>dtv5Z1I(#V*fHZ+`dm=yUoe zhp1~FHt|NMWd($>tT9{7r|PS9c+w2UdfW($9K!hCMj0{kt|T08xn-}sS2}H`g?SyM zdUdS#k0qp#l=AJ6NLzLWH^D9mA2C+JCcR@)*W|Z@T9O^4neOdj+Zu(KNWu5yADe1| z3GJA8TzSBO^Kp+dt~}iBroQj^ zKi8S&J2R5eb%}HhLhj1$FSP1c(wiqYck-9BXr%e0cJj);PBE~YXOqYS)R)DR>CF(o z(=W9BDoJ4yO?huLUQw5B2_`=%1ug>?kw_}o2LpEpdbS$2`yDzx3SECxo*Q;{o*CXZ zl`fV^1dzsxeqSUIs8kXg9$_puB=EHNelgQ->@?WUfu@Vd8q8e;ji-+4?50LA7t9eJ zRE6H71wq9|m8H)26jF`sW$SwUy4uI8jXGN$K3$1xadu2m$+`BfUPM$4^9CUcfT<&A z3(q>&^JzNW-JROod6BepD1vb;WgawTDE$sW2OwbY_pZKM&ktW{$!m3Sq{AbKW11J$ zZRJ?w#M{+GWgE?f@tyP8zmz)xyH1<<*?qMHRG{@|#%%@l7C-F&-SS=NLHW+Nyc?I*dykG26?6 z(gwG=E=QJ)D{>TbwGT|N-H-_YS5K|pY5I1vd!fW6Hnb~cy3lxr_30nw$lbxSt1Od@$AH%tT#Fx>*W(xF1$TJnI` zOKGQ!3z-$7X#RFPae*ND3XBC+?OkS}rD_)!qr}3(DD?|SRy%idzBB{P-WhTO1`>N< zqMYE6VzxfhQGR9-%bcUkpKhzM$Le<)-<=)isT3l{Q*k6Vc5ywaQ)p*W4#@YR-!rku z8Qj~7_Q%zHLk6{A=Fdx>H;Pucl5=w{$ciZ>KO=4g=X`_bEH^Wgw=6N=__ohXw(#zu zWZHeJ+d)2|8U~gag{-D|S}_uNW@EvJh}a?817SnfEyVCx+uRK`G0V?MtO^ghjZ8>GW+$tu>n~6z~SAI#^8%6KZRx?>5hbc6ib4 znnh4sdMRMrN}K|481|Y)#uO0qXGOC3|W->U#KH>9jRRk03o+pn%@ZF3u#fl1;Y59;=skc(2cnVVtqrH(~)k+(B6f!}c(vI!$CoRgjj>ZgO8-nxHX4tkSN zS2{gn*F)1Zy?9!EAq`Eo{9IRf0m8r-6wC*|L~a$60YC;@!>(UO-h zPOn3*lxezZT*X{^Vt@tviSlED2SRH{!`^nUdn4(_ zYnCxXED=0Tk+#d2^2JHpyOBjQ^VI9Y*Ah%ygFU2)5mWUBP5aA`Su%# zO`(<9JmzhkPnbq|$5HUs;$JsS)Abe8mr}PO$g&pU0=L?-7s&ZR`B1h$yt(Am#v411 z>MrQw#+BnO4jp4reLnWu+FPkF;C}r^>P0I zfpCBFC3W`R2fncI-;4Zbtj`>J)~BQDG2Pg~ZRJG?AP^U!BpBN*$bGEDH07&T}^*Y)xnN=tQLPQF0K`qbdisuNdE!iYGfeCQPz@++;R6z{e5xn_v1EJU9OU zfwTVr@rv}%hc9)cct7nowh}bjq~F>Q!3zddiK2;6yoU;;i1%ZX0}cV;T?qR<8c7*W zq^di~-I;zk@SJdIw&O;#x3-ot^L?5KmN6&Y1pK%e>G}$z@aWv8r+0aAZ#qLAw5YO6 z8Q8Loq%KIt>~oJw>o2v4S4r^}t95QQJE$Up2q3hDBxvQ4*%CPSt7PtUIVyA4Y2i){ zsPQ(5rfKl_p5DfL$#3RwEntgc{{W$^k)5a&K@5)@9CEE71cD8EwDC$*J(G%h-9E<@ z@c#h3=eg1~_Nv>1${}T89wvoTFM!zPdf<=1k6OdH)^%1l7?va!>P)R9Y66~k>C~Ur zs!ytkAVxP^!rcW<8WX;Y*tO~x#v%(+FZ7rS)jR+c?XxZ z?t{*-ha=?L50&VJSQg5GiuRK1zT;+#ULn-%67t$jLg!Qj2w7mXbP>A{q-9ThpQq(n zmrtYW9wNV6n|}}{r#$M?Ta=6v{3uiduRfK2d9=Un3u$kp(IUSwK$kZXO={_FhLDz6 z9fC*-2ziSPq&5jVm8`Y)mUXQ@`%u(0h++Fhq>v#fv&V3g#3jhT}7O7@@5ppHhv_o?>t^99nqTUt_EK#Ik7lMGa zXCXibcIN4mHluqUp&gCZmks=~jV|dTxff2bqR%vmg07*-+IIq20rDIXjQJSMEjLv; zH?98t68znf*GjwgdfLnS)T0}%w!bcyErpG~lO^f2mUt~f3yGDA?UWL70p04P_v$L; z&WjI-BZ3_dOteY#+1$-BK_A_gRoJ`|7vyHfcnl5(MJAXl6v+aEz-yT3y>@A-+TR zn1cG?unvwTVinqtFi&wplH0;qq2P3#6V= zSnxU$oMRaPa5@fq!~PZUea?YBoZ4;NULlt0t){w`&gFy(*GFO8=p#nh00#f|ORuxR1Tsq+OqUT7%JZ~HrHR;GytfYIt_Xa9V7TzSKMcGx zqT0hP)~1cF8-frtQWk3&QL(cp8B*MI2LzlJIJyg!wV}N6v#nA$SLv^xb3?)3s8+@g#CzS)1$oSR;z!Im(fCScPDC z4w(L5TJ-R=aQ@9XrLpH?@fFosK4!Hn_*Y7_)FoR>s1j&~m1Y2Ol0HH>^gpd;OQnBe z+<30eCuf9O2vCvLq!~f=8L50dtBYG(8;n{L_F%ViM=B{xV3F(xAM)3Cnl_v;INgP& zz3g{#E#>w8ooS}6)N)C7W(b!u?aGADWmO-02P@85TD&Y`kG6A7ZjSr~dX(_=_>Cvph1R75 z%Qb{H>mmK=Xwb!`ubV|fEbFNgHUYe$jPB!TS0G)Q-3zTlfi0RI46)R0GJ7LT%|q1fV- zlhtfF0BxGYS1Hd1}#a8jAw_&E;Tc)d~U0Lf5 z8Ii@bo8y{2g=5@YDO0%sJ6ECIl19_e>fR#ITKSc%bn&PCidbxxYxqEx+*?nu1c(Me zcOru$haO=F24u_!R<`k0mj(Uqho#-YC6wuNG@><_P5aL+BhDn-lNTxSg3JjRY;Vg= zwWg>gT1i>#MHaoQY`xG1m#fXH#d6^P0A@%`PO->g5^o4yK=O+H+!6se-G$+r-g`YK zRC(I-UJAj%!14!`ig-)MrAiC1+&CmAD)X2VMk|a{?Db=v9A;*+X z(xelR=8G%nOlm2`G;L{GU6;daODhZSu|o3QTccjX3-7p*qIly&gbGelL-&_zoVHnu zKQ`8P`fr)1*xg&*OAWoeaoxi4#Vex5sImD)iQaZ`vvEHu;~-YHwXb+i9}wzVzOks^ zJXaH0Pi&LfT*TI|2yL4;MTPmdwsVH_7;P9V&eAS?L8{q*!c}FZ>H*}sMv}rS!3@$g zA!1~i%zwNYi#v9vH^?$_08&>*_<8b5=;=H=C54;4)2huK?YwfK+>Fn-Zb6Laa{@>m zTbySH7xa0oZ*Ojv;?CMA*dxUdbuJYD023~90m#P#sK#47-O_#l0hYo0V54H zVynh<-|rUvOy7#@;mtcqw|mu=-()+j*E2z+EyQUe z-dfw-TU*07nD8{rQ9~|w1==AS*;PRycN_y!R?Lyd9zI4T!UAvX12vIo*2xbQ*N$N8& zeLr>Xp*N3iBe{k{CFHPLNa-6KMgIUSz>l9S41vx8$>OmrHG91y!}b$4opBzOJ9zeb#>(4D)9xo11e*EJO@oNY6>( zg~f;3TH5X6wT3wtGDQ?N`x`E-QMPVnZ=cK=m00b9$2iN_*(c<`J1^^Qfr!I%`|@r2 zzw-|bUdIlE+QsFJg(KRQ_I9csM+HNCs&SktCyt7&c@@y_)8y23WWKq&XVRc+i?|_) zMgoQ<5zF$xAMp3k=Fr6eqKq% zYTc-{mf~l+Xm$BgXzr#eOj1Q51-5{nyP3kqPV6WWNLO#jN3`)ZBMxiX_x`+(Dvb(q ztL&n=rM;E!_X(y~JWLq19w%er3o|j1BMY^p46Tw+AOnT~k_fLl{@Ht5h{|bqJGCp>C1z{RH^{TA z`D!Br0Nj!Ra!J~`$<0}U=6@3Sp8j1T$^O-UW^LuUn1+SbWJz2oXvp%;N)UI3484Y1 zI@K!TAg3>db?9`$jA%{5%}cX1uKYpaT{B+RZX}SUorUCZ-R!e6MqWgdZ_bWR10m1L z!(eiGqT@@@G{1-1hL3-AF7=kRyoF`dFEhFKG;1q~7%WTXM5?UcDz+6}i|&3$#rjRf zte09-*e#>nYH(@|IvfOIWypE(4$t05!J90b3gL&$9jn-Ddd{J(rLDE2td?`zT?j9- zA!fX5yq}a7#^#S41BT=rsOFqy7^%IjzfbDs&{y|jj@mt2!zv1QO=5k8Ald_%df5YTc@m{UrNwh0(6&rQD zxJi~pv=<9+B&C^L$nmPloB;>=%mSfCc~IKAo~JIo;fvdax|(ZUOG>o3jWQ)7XL%NQ zfj~DE3X0z;+BqRcO;Lm4)zsz#ab=^(EiBgBIitFgDXtk>Es{I=WX3|qakREGv~WqQ zJ}$SHK=4d*Txv}Ek-3No1c7o|P90D4ZQw%-7IS-%Fd2?$j^L$dWtpw00(Gx-)Olvws20C7c#UuRe**$5-}$H z11lZdRoA$|!N5Fa=~{lQo*#x=El*CGS?$ot3txwtDe#-dL@FVDtl19EcXD@OiPO5$ zukO4vW28YNUE5lQns{$-B#mw}D@ZqmjH{fn?}cPiOALd>%>^e3v)jZt)k>up*fsAC zhL&4mP5N;wzft&YB9BC7>+vJqS=OA!8 zdN7-B-Q47<&1Ofb_`gMi$~tv~5H!JjuQE`~z?=dUG0)}&bUFp4vv_9bQIVY8-A6B( zDdh3Fa6LM7?bFh^4;6SuO)=L{wMfmR_ejB{n1>9aGC*CVAN41l!X$AWDb`6J z%RxFvGc;i{zmTF|x;B7F8Jfp}Z?t^{^y#$q)hskO@%;-yj!37=ZOG z3ozV5s@9H=;O#;`6=;%63=5{(YYiTpRaeb;;}cG~IOuj~1B|mA16@NV8hmHN5yQhA9rA zZFpsz83>M2eplF`M(6;>*8BaiNx_rFmWpH3Kd_Kk+(g!`0lNM1hsc32A8#M=>X|!E zLB;_9*E7S@tr<5PsP1>dRUW)xA&49N{bjtnb1Lkg~v@`>z*}_sgtCpFST4atL z%Nac5cdkECT+WrLM|W_R@#wGurKOOh(vL9|1G6m5RD7+I&)ygV9O!748j9#?CA95n zG?Fo%ase(l+5(?XoBsRt10J3xKUScrKXu1-eeSe(SJKP+x#G}_`Te8!uYdSEw2R&$ zu+g4k@ z!efDVW91%Z;08uG-N#ID;c*pfB?(FL_UY5f9d)RuQC=$B->v@l{UXyz;jKGQ)1Z|u zZgnV@-aN39dvzt_c_dGt9OrNx1C_|bVC-pnc9$#{!%Mf+u3=xZ&niJ`B)Mf-9fWYj zyDJvujIj(p;tU++c*W4KE_CY#v(l~F#U9mXl1UYq%PL!+lyQK;la5c`B=do-r|24e zwbr)U)r7K3ZX$_bx0W<$qcN#>1fz_M$B(;=o^nX8y1c3l%VS7inJAuxtX*k(Y&uq` z(V2eJ46{O(mT?AHp+h5OUT|;~Tc$uG9ZKg%?Dy%aY8H_!A>z0x4b_`wW&OgtDOGkT z+26q+kTL<{xd^pue-oRHZY>Jt=TkOU7Jh83s|-sgn#@&j`?;0IcMcRU89BA8YTj0_ ztX)`GPS9T6OC+x}0Ay!q`rAFB@LELfx$i`}@*QJMCso4%#O4Vb|qTf?w+8AS- z%+(zpe7(v?a06W^`@|@6T}RK8$l;N>XW2n`dNsIeC6B=s~C^Z{j`dgldJ>(#?c~6vtWe%rn ze|3N)so?N%cs_=>J!a4QDoeY)KHfQP?xstNm=56UDzdPd3XpTTRF&s;+<}~iexa&s z*LP+}B6kfSo>6_MNMcsO$cZ*#7n8x0`D9)Qm|y00)*yB=83$ z^aHhZyd`Nz;dVIwwL!jBB+gn75noGnVRFc^TuQM)b35G`T1<<0%k};sicbs%7oJXH z)nc>M^_w-eji9iBQ9RE*in~S#ZN6sDF~`UTFg|4r$~iV}?B$DJwY8c%beeKrcorbb z1iPb^u_yerVjv3G0atMVvD{8>k>OwMY3GryH1v%O7W;UNa*=Ijz`;Jf%WfyVa8;vg zRFm(w$n-M$QudzZxx2M{efKtObOzCj$tI6|dv|nSOjx72TX^v<_(MeQjkq5%e(;ZL zGW@JJZQZi)w}-q_so&h$E%m&XE#*z8wY+5>Q@j0BIYL#MQ;qvR`sG4^tDE85d1LUj zvuSrwiQ zSeW4<6sqopPtB8!qdYcrp#@WAs=xL43mrO?>a|(j>9V%=wwiY^Kj9J5udHFY(kx;( zAKD_qTTMngdw1Sq-?e{wL2y|Vr``u}AP{kzWZLv`+CidCBWcpgvBzs|e1YRG#W_Iv zMK1Wu0J(58$j_*!f^BqLeKtFkSBA$>T|yY`Vi0Cgfsz#%F~W>zZ(duW4bnV6ac^%0 zv`={Q+Y4hQq;~{cA&zL}3?jkW?d9^>4V8>@m#L4brpmf z^`v@*-MDLuTi-5EGB~anM5STaVp!Al;Y7uSfzpwHXXL%^>-p2m`hVh;;2TJuWM0H@vSbDyk0H;#sdZd<+PhopCu8?k|oLEa6Dx@!&MN1VbkmReWt*7et z@mSnRxHNGM;gyw_2Y2xUgUXThF>~cJ z3t~QXDhJHNfE&_b(KRcG+6ki6WLNTllI~+9pDB~89Chg{{Rr_ zRyuHbuitgV(p`I1nn)cm?;BwVd!2HyVmY>(2_#7*OyUSyphiw zvOpd|ADHll-l`aZmI?`F8Tp2NUemy^TzF$l({)MaeKd&RSGOWLB$;NoWFU~k8*W?` z$0b4BIR{Q%663=24y2}#*E$ZL_Bg+`bo)VYZlJfe z)b_|r#~40-z=lZ9#Vd~}{LBLqLkWC0;Opx*I);m*sk{(5v$(u`kmXk{h}c<9)stw( z(9f1^0gk$uik0akm%6{N>c<>w(&n;vf7kWqb-ogR7He-D5bN{9b!Tc~Mr&(EMMD+4 z9g`$Z8B3COgOY+KBypR%G`eQ2<}2+NddDQfj(2mqi{`eEgD?vws)5{m($$YUZvfPrs-rZ z%M1|%IcWDYAG3xaZ8>r}fJc`)kb}J0+fEXbv{lShv$gRDiL|7G-s;;bEtECZ_;XM`MX-|AH=f|9$YovX9e`G3-MLk_E(rh~>x0P6 zV;%OBYo^aM`lBYEEs<>v={BWcDYp@*TsaYpmMj5gJ3+x-czBCe(_c-B;vGU}v=)vc zT|tejM-IkKu_*Z+l@}$8a#)1~jj2MOCE73ETK2z}^{Iw7gx#kt64OJ{tc9b>3`-@x z0S_E+w1(W-4UTdKG7nBc0|ZvuTj`Oe;cF8J z&jj(6^~uK8hhOmThW^!Tmd&T$#UrqS2NBQYwhI+iT&I5 zwZ6NK+fzq3D<#05IjoAx0?DZ{R4)$$ozDA2u>hYlyY*AAz--WYZzO)l&KuFhzB7m54S;+7y$sEJ@@JSe#_y zy>%AbQP$m2@svW-WeY?UC>eAwl^a6y{vhz)rKak) zI#u*=#_+|Lm&@b#5lOW}9)*<$0G-DNumZ(}=A+^J=#91ciYp^6yz)bCUM>rbGrv_x4@CWs2fio6Lqag<=tW`Od<2|ppv$_LHIt#>{)@!pxEcw$MT@-Jj*5-+o@!!82{Ic1Ln>QET zw1&fO8%HE5Y!ACzdWNTC@fvGbbeR-Ja;D^~U=TwOm6c9MKA(AoV~VFm)Ql-=@7e3$ zUix)6yalSdze$(M-Y^ zhG)39(KQR#ySR{B*~tiNKfGcHqRlkKqGf~83X~h1}H}%im@0N$l#nB^(7mwYn+#qF5b5}E8BCW%dc44 zE}ka1h8CLY;`=m*F<4hKDZXP~S27uGS~ zS6mvWLT4rxDjHot3~9?q(z?PV9P-M;h6g7|SRE$sA7M&8oFXSJ4F=Zsjd+5{KF zX=$TkBReBZFn{9C_jhK%*6(k1jV{i6t!nQ?yO+a(lEMfkW2i)rb&dNl0P@rl%r=oB zYz4?3#bKt~!*hSAM+8ZzK&^8FI3*RrNQ%s$uJ4vs2d7@g1ah!wdfYlpx^&uuG}pQ! zX;46_i3>)nG;uTK8OIU^AUEFK$x^Df1tyi&rcj!a=6W2bjJ#LnUu*Y}UkSBe?J489 zu#Vk?c9EbK=_zuDCow`#&9s-s(0LX0O?G>|MRbSPuS{$sHpz1YNaff`xaZ3oN8K3U zlHCs^dJ_0=R@ZHHJDZp^%R7lKoX2TpG_k?vBZ(GSxFT5$h=^HL7^6AdPSCz<gUK(!B=+HZV+S=7jquGl5t%MZkmj*v)IbA_Mf}HjOx4@s!KkD zVPPzYZ!RT}t>oH#GsSBJRoa z!TOe?dvYGg#E>!)8d#DMydAqFV~6{vJ6W(n2M3CR*Gig8iyt-xw}xx9ib!tlplMn? z>LqoC;Tev_EO#o9xNMvT#cvLHrYo&)!}?{mo3g}eI&xdR#pB4}$15}Z!)SLccE_Ml z6b+}S^y?9QI;;&H)DYgXJ;;uE7x#wtAjL=^s~z(`P_6`_NIqJT5u&2g9nLdb@OGO8 z#fr(OX|H1(@muQ(bogLpoS*q;EOx_WSw_ne0983BARXH|MEa1^pT-*d-bZ-W^1_!h zq+@jN8Y)WBeCz_8j9~e4upv;?v3O@p)$DAo^&KJZ>>;!b9m~l3O~mMd85aHM!Nk-tsw$%JoEy6CE=nqdmk93+-!Fw`M{Z zMJCXV6mqLODP6f)7po8mBPRy1p3WUE*`cxU{ng!|ur~{&TnmKMCYa4?JjsC0IE!!z zfJ{%=Fk65DQd=QItk9`yfCG%9nCV z1#P0&yRnq&)8?|!n^Koh8XQ`^wvP?WQd?TcV2)Uf(lqM^&4{SY_oR_9%DMSSCpb0D zwxuAwj%c*~BwNQEjV0a9tjd09)>O)sP*=@T3p(d2HjUt}dTQFHl2*Gf< zoD@9n9l>6x#;cbt^)Zylt9wJzJUIt}Kei@Wr6?sYJT_7}07z9tujYuOlNcc~NesB$Tm#&AOTt=zj66O4 zrF*Bjp8nieT*#8JjiQ1?RKouN3x47}oSt`ZGl8n#3OqZdU$ojrnR1s646uiJnc@p1 zZ5w4vI3+Y8}D&dBDU9cYn=~RihVB2P+2EioJQ`E zi7t%3YA$&opSpVUlg}CQ!w*t5XQyu0+ik8BsqNzFUiQ`Z{{V(DZ0@4CvA4U`WVC{N z)q-nCV=U6jk1R3B$r|LG7M}x#K3@vMaT?ZISiILX$gD#PfpCR`M$x=vVUFc&GVz1R z83Yl*2Ad~_wJU8-W{qNwOQ=`uuv^J3%iG5j+8ETP&OJ%8QwmROS zDEl^_cXl%^)ztq0XYv^$w;RJeaw_jDFUsr31916wdbII%6lC7Iea9tAG~0^3pXdJo z1oZ12YhBcCHESo(^puvuMT240Br7A7icY_0$X$~4!8?XAgSdS0dE#q3lY6LYz8i{F zzP4zz<~oX_*o9`3C>3*^&X^<*y2=jH$~|MkdY+{x#B&~@a!t+QS?9E|+p;DWk*R5; zkp$5Luwdt@RbZt2+&+Qu{q+~rEG};}xUTeZ_GUVMLAoboj3kq91PrF&rIeCLJ8<46 zBBW@pd360xLX;soi<`{nwAAqJ)R%gl+>*V$-L${x&_`_)kv3vfLazvnV3!_bIbs=G zY*Sf`Mk+c&u$D+w^cx) z)pp|<+yG)tC{4U-_kw?-rZYgN{C-waq=>K0lSj@Rq8=Zel)&CQx+R!=z=*m(`} zi11$_+zd7du980^S+TTPH3{X@Ba%c}5_v7uqf24FLUXte-b)}yCvNaK2r-Xs;dyk; zCg$n2X=y7oDx+-V#45 zXwk!YEglOUpLeKW0LDYDL^qnv-IczLY4)4X3|SaaUg4hQ3fks3+bWZ_RQ=7l3U?F8 zu4+FDS+1RZDm=4!cUMM8hT&?SL^n>T%fEk^e5|j`cB_2Z$lXAke`^8UVL z#Z*_F{{Ry9m*e%*Ak>xg`J$6lju%#j;oa3%N#$u9WRbCE+%gf7d1HkbL#?Umb~0)f zizWQprOl;;H%|h?CAz#t8sl=mn0&@aNcm;ugn8arkjAC(%KJb`A&Tv<;DX*ufAniT zvlnkLD{Ue|;}bX_6u=5W%7a*Umio=acJf2vEpFRbT{Se&^LdgZLa>OPqmRlPODV@J zz;9vzVi;dHC{v*473SYx>Gk>a*qZag@WCdXr<;3;A5zn!vbuQWOOLQzBP){MK4bp? zQ7VwzLIEQJ+Zjio=`z^qHt7YHpK8&>?;1ay8HE*9Nj_%szw*&CPBK^wl1LP_jW5MF z8kM#5?Wn6mGhIrluF9(%hs@#++?7PcgdD3KyHqd%izFI0w>t!T_+TLSfS0I9Xt~$!yceVVEN|17C7U$E~Q@?iA7BqrPt`b;W%t|W+ zjd%R{S3~mWJFq!8ra|DZ3C*TlS*4rLE!b6o;gmNsKFJfYBf7S3*KH`%_X zHX@E0f((+(2`qMlfH|>ssk=UVX`)*$hL~z@4aF;&ULw-%t#n;0R@61<;y-3dAcAQT z9!vniQ#d1T{BBG*`AKcS5vSr!Yf#W_bZsla_7h+0Hx^B)UD^+{l@X9xrOHZxGd}(> zOB2|Y4IJ7AsdJ!S*(A4j2S|unSzTK|Gdy@vBt#IvkkP1OK48(~Bam}+{{R&HMN2zf zUr+GnnLH-SSm2ODBF!zlTS_#DCkl5K`2Z}~G86<8yS}6vX=!^cj43>_D%lLmr z)-HTY4y=+(_FX|z-f1RdEGlhaZK~wt4bI0I+m<|YT*`Q&_R~~tJs3}Hkpmf+?q&;x zB;y1V^}#vfv-JM}6nKtEwF9fz8#(nmfjop*%Mu^-c#~=~oxzl#2XgErHXM?w*^paB zW2p&B?SZ2G?aY!7l!KC7x3)cpwN@LI$+zCeWGBv?X7*Yy>Hh#-j^5`;w!LU|8LxE+ zJkS_H8<$b~uk@zD4w3z-3{qW7EX^X2fUIN{A%Vxtcq$KWKs`lhYjVY>+QcL{SkMd( zNj`$G?X<#|OMP;JE3M_ir$q!FGCKY2lid3X)~#7h#+tMB=#D8y(zFuuIbBmr(d=!K z(^{FWts}W$uChBMGb2CBBgqPdNyflEz`!-iX_l7v9u<(usZR^tM{gQiHRwmUZ#ooG zk@=Wlijxe!&@#9K1h1%gm%~5slIu-t16tx+M!I1sV94(jkODUG!w}~qlAvS^=Z^7L zf;9gC4(T^0Yk2Nvl>}CH@!v>1hIwS#-!Q=g%|U~VnAraS6JzK8t2%Ajx3Aoj^J~lQ zJLpzYrm4TPr}gsu%>5yB`1Lp~?dQ0QQEQQ8(UR!)aHzv6JGgd{a4^S*02MgIp-q*} zqiby%Ne!w?IgaY`N0JzKOs);P9i(s{4VJ`#x!wZP)O4%1(=O3$C4y9%=2yQ)mPL{x zvp1H~vH*8{fPBX#xdDk48){2wt?B+tJW=V_v8}vN#?hAy`rVO|cZD@*^!piZ#k8|+ji(aa$j)awHz_&i1CHe2 zj+p|o^jmYS&2uKA^UDRhE6BcP4AM!sRW{; zBv-dmROc#ftHoaH*Jg6%@pNfosnC}tN|teb(!J7q-?g=OMXd(cL)3J;j}N_|OU6fw z&59;zWJ2mgImR+iaDRuO&wWZjooFr zR}z5Bxx+~lnEq}XDw_uHl;8t}uJZT87TQmRBh+;{lG99C9T}uaq>?u-z?Z~sMq50$ z86ad5DxR6)JGuNtX9k~fXDYp&zNHn!aWD-Fv+euXBZTzN&DhjRSbZ+t(s#1owf#3Z z)jEoP(Z{dnr+bgG(dGL+yhtaC)>AFK(9U7ZcJg^mAPW#wP2NdNCQt86Oe_z1YOUW)(T2?Zt z2xQFV)!!R;1B_sRG3)@z095+6zb=oaLT#b9d8Q>}Gm>Fe7~!yfW<7z%aCsmQaj$$Q zrs|hWB)-(Gp4>EP9h}<~^WQtYx(-5tf^l5~=vEW>I$sXHr*|Z;mEPA%ZWx!&H{+cB z+!39;SH@A4WaA|7bL(1hr^&KNWu=#hyi?%x)@*f)i``0Qb(SN1(8V4dhQN`sfyOht zCm8F13$N3Kx=}#ry*o9=wx{Ss$dJwsgcgH@Sr;5q&_k+A&;Y-PmjMvcHynixX zNV20hs8zto=aa$Cea4OaUNVuxY1%?**98cg;UbIYJd?Dj+_~<5oqDc}=kF!=o_8{i zmpN}7ML&kM2z0}!d63Q#rMH(dh|bb@IW5!Zdy@G);r(C&48a{ddilU%ieN#1*zJi#OEbzCmY1q|^LNoEBG z(f!?(k4o1U%`hdTc7nx6q{yU%5ndj8WP@;nfI9RTIQ0()>DL-}iy^YRQRZp-e2~NCD>6qD&HJ>@ zJ4X@>wHP4=bBXExY06du(%AohlFRnsp_i-f!}wwRRd=NwC9N-X>)Tlb_e5UA(#sPeX(W?q{oy2!acar3*#yJIBdgBC+ag*Pr@NMtd zd@pZrGb~QCPD(l2z!{_?gX#$UE5OgWmJ-ypyrX-1Oa2G^IoE`Dt9$If$mulOcx`np zMk{z@iZSJov98h3`c@x_EHumQR7I>@u@iv}qyk1zcm$q1-*#c$pLb!sl( z8>160^MRh7dR8a=BrAKYNMO>Z)MG*#+UnUvv9o<2B@D%l)a;uAEYijrY-h zM`kg(C1-#5V>d*%8ZV80$t0PLViGIK{m0zA{wja3dh9Ktiq-W8)Nd9G8+g}g5>C>V zC#cI9)dDD71UWm7M}IxHyimruAx zXrTgcCQ{NO9PuFc0G~`8{XVZ1O0`UEB{wa%`!!~!uLE&4Kx!kN?YneA30gcLQ zavP}x)YkfK{FbRLo}YC*QXx|(k-RYnoxB`+dYm45fva=j`^50{D;=fGvWZqeq6Z9{ zg9jML`w8pVjAs??#|eg{lsX<;#8;i!)ONqi`u?nXcvjsc+t=|u1H$+AH&N?W+Iz;)E$qt)N8YU%W>wnV z#?=_>#w$MVEEWZDIT)@>!unT@EhqbAYc=$yR5E?0Nn>~!yw{am&Quu<%kzTFFj$k1 zK)JEHzKw2D+iS?6v|H4bKAa!(_277Tx>j~a)a4l1d=t^>zguW>R}qEiFb6<8Rc%V- z3oCUGi9~>@&N0aU00Uc^hL5Si6F>HK%YZlu86^8wZj+>IR{GLUK81Td>}r>Gijzcu z6rBdf4(ov2p>9g<&ej#ng~LvzORbLl>oucG3h2e&b4@QRt6l#9TAf|Ct*2_*Hko?T zvQKvczGH#PNc)i(FI?hBRO3G}QPhgeo;B01WVpFmKGcq5f+dN=MZ4utic~R?!5rft zFhuG}=VS2Kh_pRNPlkJKGHd0v7`I8CzCgLXQZ3_f@=cXc%mIFO z4WpbcNE!LEeVa_Y(ySmb+g>fmW4{)#s|@3?g?+QmPrY-W5G|p)e-7&?BQim8EDIg; z7$RhnGFyI7l{txV$EYKaN0(ZfYVE(jL(_&Lr3dXPJ2hj@q}S}D(C+Ssob%7+S$^_Z zQfcH#M>{v1?HfZ7Tkk0&?-APgUtW&pZ64!RxU;s^ZCd#?TXnr>TQeDT`M1dX2Gl1x z!Q|%{t~19PEw-WI>6+QJ8027#Ev+w(A&^MfkwPHziz|`yfwSfyoyMBlwyUVyX;(4X z%Wr5kTZ!PBP+f?gXKl?9#tdRur35ht2)uLW$izUtM(8DFtv zF7uGmK_slZRPw0+V0&zC4n{d~w7F<<%lV`ENOY=m;%Ui$d-OfF4;5(d;rlIW>r=3{ zv$_B*(p;j(T!WMjP6-%pI{c^5*8{6q-D=({j@HWUttU5bM4-$FUGi=pxpZzv`#^f* zsNp5kbsO27X{`q6Uh`?YH#XAw5v81Qv+dZ%MnN2(-9BMB2Z4^dvQKBG*j)XIZHAsK zz`JdzWRfVAWi8GGet!P|x_{LZ*9Cm<;@76TJHNT3){nVPZFTVhwb)>t^WXN{jxZ$FA_-=5h4BJ`EJBx%VV76ZO;O|>an2c^m05p6!9{v zFK=fan;iv>=C`YjLsPZC*1zEx)AaeSW7I}teL`D!kz6kQ%Mv@1<8rb2SPWpQ-Y^HK# zOeh&;Z>Wu?Bh6Ro4l!r1TmBN_Rafu3{tA5&Z=qjb~wYe#}Fo=AkAVkzZGBd_aB z(58`L*Ahf!&XI5iM|@YYQw@i3oYd2nx@q6zlaMWMO8L#>>wI=O60F%5%sd1MgWD zu(ZA+@b(qmAiYPGqK%{xua_dJeSqu*xCO8e&CV5w&b{#6=9i(xaWuNJT;PfeEcJF8pBFTdAnHiBUsFo+J<$n&>0{p(qo}KZ@R8 ze`B~yof>NiC$fW6H#fl^Iqt3QRp;{_2vS6Oq<#B$r#NN7QI0@4dW>4nZO% zL#bU^{kDBLS{R<*B~lpqirC4J5Eo%5?&on`)Ga>I7lX9(HPY%g#>&;KP}w9cVyks! z`@9AocK-k}EHg5Z<(@|N#5X!lwJpDh^&9oO({9o$i>tF|cMNg;u^Kt!8)9O_sq-=B z7C73#sctfzIJsTM#*l=_Jayu^n4|G!zNZEK{mg>ma~v0`9FjDW2-+ye zoJJMCMC#Z44|Yo5cljEACDv{9Z80Odx{A@JQ?+I*mmFkav!0{r+*cpr2yC_Q5?JZ8G>>6< zETTDJ0Z4HhJAC-({aE9iXQ0k&vGGaMbxkr7_7?XK23#!gtL$Im10dr#=N{d0TwjK~ zRy-G}O?79bE!>i*w~ERc8Y484I&g}Su-tYIFftdeKm}5Ssm?sfr}qwWjaqWEO&za+ zJRNPQcwbM|<-5%HR`EQ!LR8=r(6RZs_1nfmjFD1!pGFX=Sl!+vEApNf2R()dWBJy8 zf;FED=z2A!!~Xzh-N|Wm)7e}muA0s9kB)&N0 zf=5i}BTn&-{bI^JRrNNKDGSEZ-`y}r#@Ekgl+QoJ{VDdJ!Ey>T` z_Q}VVH7>1W#~Oa?TPAwVw~M?z9;hbNb$i==GjRaTJ;E6m7*eDkpPi(X$QjQHMOuA+ z-%`{8&?CD~C6C$7-15k`E#*5a6m#-nlwclC?3`eV@%ybdIJ`Edc&%bdl6awL?H9}q z2`#ytoRWOKrx^R>;Nu6>wGR`^2)3|YBF^Smo(W^RvVhx&5&X^ymVEyJsvw=?K4AHB zK4_DIr65Kir!v?Z*3;Os%Sdav36{=ca<0Z6W3b0 zCua0tui$GHqISA7U*Xl2nj~}BT?plvW#ZHw(PV#@f{P*U)Z^KsNKL%-_j!Xf+K7XxnI-iE_rm@p(^q2+O z!vT_cqmUIcxgd?%!N$Nl@CU7WG*ZQ5q}y6=0K*DL&jWx3bKzQzX(>xx4?{Gs3Ycnf zrM9|uOGSTGsn6;cKiStyatR2m1d1?sC-D!;yvxLzrS_|>S_?hvU{BhuB{7uU2b`_b z&t_q^P;h*#50onK2Xo>}lOlOBg7QkiQ9#Kg^sEmOX?lK>d9TT7V+>NAWf7*^nF_V6 zGB7T3#1|#8p1k$1PZd^FDY}r|FZc(~MiHFUUt4};o*L7kfIlVPSMwxhVoSCF&pyC@ zRp^#FC8h1F#c^*F!s=C#&=p{Mf-BCnOTwjb$@Bv?-)XwKqAbk-bGOY1at`9yCzc#zjEdvsNv6|o z?e0)X8bcnTWKfva+F8Z9^5X%BNYvf#Dyq3CnI{+?>EcVz?F}yG+;4W4Ga9UIhB@Pd z#tnI|io7u;y{@ZsWv7UvzO|9dv|eP0o2-En6P?eLoyR4KEWnl|*Vf=M3lUCkKV|;_ z!yX@2!@7KU}rb+RX#2vlajq3Y$*h8|0Ft>^aFGA9mNT z?qt^H(k$X)uv-g(0JkOG3!;(++@G1h@zc*0i=fRukg;O&^5w4;Ba8;jaZIuSBYAA<7i(?YMsQdzuY~Pk)AX%sI1*CA_U)os zOP4CM%7bxkSp2-4ocB2d4?In0S+J05x{Z&Bpciqao#mvKB@jw1-T^dC<|Dgd3zgcS zbSw&^S8?H2p3h7Wi6*$3-r7ZJ8Z=)rN4R-;3d{!*V1P&mfJo%}R2RN-RrpJg$*PF_ zw7&|Z7Q)X_SI#TWOyOEbTQ!!fGJr%T$aW@ zQS*MBVzRtimvZ=i<}IMfEQqlMJjzROdH(=EhAXQZUAi)aVWUswp~EUm*~(5^FTCTm z*!25f5Zzg5x9cvT(>=AC!+!SfZF0l1h66t{DLojo1M?COE2zA_A=c$)iYqXdP;mAEsT@Kdj>RV`U+8h=_O9n-CA1Q^-*ucPP zKJw*Rf8iatvbp}yp3XSd-uLWr*<0OR7qw5`D+S|_OL@5t0r|KAh#0(7B}25{K=Q#_Xs_1I=*93<1XPP!FgbDc7DVdrQ0fYn^CAC8%g}nuo}U_|vU#$x1!LPAspM|wJbD1dKsvuM!kvE!Y0+GGe?Zh3nP#(!WePeS{2cy5 zu)H&Q;%nV@EgwwN?Z2`k)E;RyIqc+fYjL(l0ZK}l1ym{N#G6|oz+)Q-#!*q|*^Mbl z&OG1N#T_5TdWMtY6EIYHZYCaTI~-t)1<54gbLx6l$HfFy@oY$v7?rG%w#K{?UBS;! z@vd7-7B?{3>T^S~Mo8u{LjM4|T=Rt_mgA9woMWl$T0S!I6~BqKXlMH~KSAf2VjY|SrGmq64~_8*pI zR@f)yNh(Hhk9s^ob))OHw<1XN`#A3}Vz{}zlJ?@}U5N|FmXD8_436L-RrysmkU8?} zQiWy9HFSEAn}pP(&|eVi5kaZE7rI=sUS0!kEG(qkEzE`Iw`UTBZ259UgZiz+n80LktGMji${6h}8#o68JdF0SXu3SQeXZo$IMRGgd8=A# z6N#mFj%%2o%#qV%jslf=!h?>yfq+LdX0n?*-`vWEd;jAQQ{ zU}TfdMsPDVdq%p`XVLWpxQO3a1`t~5Z;1TKgQSdzV~tpt3jXtH91?IC9=tXpGEPt7 zPRr23aQ1hP&*nbr#>woBovw`DeVh$#Zno(oZxGKi+>orq^0v`!A2C@biCK>Q)tRIp z?2Tq`^cB6izXAvek>$6Q9!uQ6l=7rrbURg>03;fPPFj%_JmVOG!};EO7kP0C?b+%MqoBG znFA`ugK8Cg05+{$6&cT(8;RDaqsrCM7lk#eIDRBu+G`=0R${+7z=mO)WNyl38IduswbsPOc!$poQ zMjOq$_B_^eK#)Wt5vba(tk?kT;clYa^AsYr?~A-gr}%+&K_ph5cI~!ssaOIejS(JR z<_ngHleLd0A+yNnl+spa*cua@wDaHbUvcgix}KSP8m+y|a+YKafO0`2AcO6i-Ins- z08CQ^^lp{rb9lM0*3#x%6e8*fT|&Rj1D(W@amwI+U<`6`+v)non+bU&)Gb7k$Ra>y zT#!x_b?R90>&7d~%p*BXK9(0PHG5wDn=E~|PO^1G`xU1CRLbiJKTbLS06g@lFSL*C z^XEsah!s!|GTBwgAd`^Ik@{A4t@btXd>2>t{(LWHV?blxyTg zZ*O&RZkLxXp#`@DGJpd0Yl*c9bqmHtxsl9kKAuuZpjh5Dj402V z`Q4I3uLA>heOFP@th8H6^xKP>WxKXm^%w-Gu?@h;%F-0&^DE>>jC8_~1$z^pHA_WV zBcJNfbUmcqr6 z3*WH~TH)*40YTSk|2TT3*>t`!ST z#P4PVu?$Gb`Hnl})KrqDj*J!xSeGcprOK{#z9ZBB0JG)t?z~&6Pj`*W8o_PB_x;$b zmImKYi6fknqx-H@{$mEW{86acX!<3(>v2VXj6An3g=TPv=L_2>xcj??GhT0@-6XnU z)FPc)IPYM#c+tl7^CVTyK7`}3BObW&^GpV1S~0{?Zr8GFOJC>ZxzUENgH)wTT1$TS z^gC$dxm($9;b;n zEHwLh=4-1$EvF_#xN!09N8ZOObBtsF8M-e5!lwOB3qH21D{iTib z>wj*WPPJ?FwYg@M;dq6_xokM&b+RubAufXFg(ft$(bL8LC$f_1#-*h}JeD&xrxQzoWnWbrWO1e$#4lE~*);aAh?M!a*c`h1u%(p)*?EGxyR|ph=9s4S9R!ZN2Evk=Q zS?E`D+G(Bx&~5xZrLEqtt;{~lVE$~0GQ@aiDJrP))J5}>-*g^;veVUPHk!7FWqE6; zTU$PhX>j^&vdYT@?dFEt8*bP}G3*zuWL)0_Edj z<{{dCUN&qbDaKPPt9^TUu3bUm9}+WLNYTX|yn1?=f%2r0hI1U@+bm8MhB`3x#-yPb z@-~yxsn>;^=+sqX8`}2!zovTrkEuLyTU$$OB3oPOHuH<34%rI^41N=|_IL=` z)BH(k;N3$}`z4jpjKgyjCEa9K+!hi!M?WYB2L*uxAOigh#GWF&(se7#YlxWI+@mxi z-*J0pxsi=?;!g?qk`E5~mv>skT6Oyyojb_5+bNo0sWaj>5*5iI4ma;3Jyo@r z#9BU`<9XrIo=ZqH?Hbn9CG-;8q6o~*CsPPQ7A-m7hE z91%r2GVXR~EgN}iFb9~Sfh(R52LLf&N6`EusCd@*QyS)`Ur>hD)lb@EGCX0K++czR z(lV!#NG=E&73NNa;|I+7Qns&scGIrMdvR}FZgh7)6tr8NDl4nl?=}B z;lU#y<2}Ykahi+6cls8isOvx40#RwFTT3bwm;rKV{5tn+C|C6-%77S{5YF{F>NotQ5rcRQR6 zVS4p7$`2iC`o*4;p=*=rcJSO?SdZK*Nhg+Lisme{&Sfl4#4OR3$t1ZvS5e{c+LFns zUU}Bj$2;4sR+n={69}Yr%ObuQ?hW^{2;&&97ZZ!4g{>7ey}EaLep;Q7gr`ZQ&qBM` zY%MMx38pI|<0D}>&MFu+yDQnem}Mo(mH?q#f%UAf6vVdrHmP|QOwy`nJdCLr#d-4U zI_0jd;oBd!#0|^?_vl(xZCYs^$a_yv)J>h)ll6Q{B5OO=(0!RDDii51d6E? zNr#nN3R9u#x%D9QqR+;9b-XrHX}%d$)Mber%_Kr7poEgYXe9jpK*7wLRBguM3B^$O zgLA1}{4>=f)bQ69_vRqtJ%Q0(aM<@1qzy*EO%`MLJNNRga^zi9fTvOLuXrM|F2|9ppB*I)H)^1anA{`EjOP z$QSp>xl|msSl|;}68O(txVW=z3q^)YJ#$dKk2<76SRN~hZGbW?ZI#0~R?bxK0B$D& z$Ac_9O{w@Tyij7%?lo(PKGSQd&mk9^pxYY4enFLgAftZpWo2S>$UK{9_OD~)+y4M% ztcj;u#S{r7%9@0YED|x1z>WT3@cgfp9&SS}!c&cM#n|bEH5(*#SH3ydFEtxq3TpPz zO=i)-b>vyuOxO61RdtGGo^Vmh$Cf#M7%(gj>d(~gt^6Z+d_8$&_Lj1=w+^~`#KqQD zIA7kOLW%>XTMWQ10*%XFV|S!Bm8;70S$UQ=^Oi6@z-{p?%^o*^q~xJp!AGtK749A{ z{=x9RkD_Wi(7KdfN0j>{vIz;=q?Z2xNk)FZdyo%Y78%wy>#F;|%u-Ul;y=QEDAIt^ zbPEN$OMkT6Eu-BoB$h0P4BJNDN=Q3#7(KukULf(eipPxgTRUA|=tT|ek)$yN`B7Ma zI3AymbIomQ_x9Ry^N0nz`9h6NAM!O=IunNTT#Rfj;5f4+IZXXlsjeR28 zn`MQiAsE@IlW9HJ@_P5@)|8S-S(OK`DZ6{&&3j$(j-_{_{gw#hDYoWlVkDCqf&&#N z{Nkd%u-E)Oq1b8m4-)EacOYYD5-OA`oqz+Pj(^!6m9?ke%81bFQ%KOY zNaDgYjP8mK=+KkYc4B%CwXLO1r{3tdOQk`o+lxpgn)=@2LKebs00fc!>`BY*Dk09* z4U<#*OIFpOlGIwub(AN|)2$g~U9v{%!^-C&k$F6Q4h=4s;4c$uKMxa6x3PlGNiN>f zxGqE=gN(4Ji~{;^9cJ;U%HvuoGx%I z!|<2J8g7)(+3H}r&hn%SwIg!D(=6M#{oA+jo~3$oUUnjkCsovy_2{o<_Z_q+DAG_` zTdtS^TWwnWq zn-86dl2(oUuo?&u=c$o~Fi1KY7s8JbSoniU)NXDM`aRrJOBhrt0=QxWZ_i`fKGg=R zeSH2k*Yv4A%l180rPD!VmNt*(noY(+rab=gPK2Mk#|=*bNy6$)zmxJa#??+quFtpV zP&$I#!=>J8mKN7Gw)$neLv1ugAXan??6IL$<+IRW4geSxYHQCaqiKE~*u@-yb}+Dz zZU?3aVb4!<=~%uXlJad<_TFa`&auG)h}e`ZjlU*I`Ac#>wbDzcYB6|XI~g@Fmy)D1 z8?$qjR+dRvkom?o#UDe^wlk6siHgNkqdRkM{{Rl>d{lWN?a;HN-02s0sSVDDZwi?T zNRdfAZjI9z^El_Is@nY0TiQb#$$tVs`iU17H*W*O6}yH+EHVgU6>`}joljsIe+*kb zvEr?BSiD&+QY)ql1A)76AYlGOKK<&)i6PNi!s6dk({+338&jQvY4-tCk`?mckUxu# zxaPWY+VP!L8js%mv`y`6+WwDbWr<$x(lB)WLi_#{`)glqxjL&$bPe&5jN}C4_n&)? z-0@xHI<}dm+-o+I>oQAu6|lLxCK-}Qm2%9?iTlM+r4L|tb-@C;JKGZ{g4aUQyfv)p zx^#^4eXmhuXyaKI1-B~`^cXoO85!dm+rbj*`Uk{M5nNwJle*4i^5Z*Qfr9XWgyjG$ zw>z6V^MSMH`bw2=DRS)p03*y)){OLvokHL3x;3;q&XaoE=D8=)ktY*8eKFv#o}Mi?U?Y@QncWQOmJq4{=i|rpRxW zK(QE=j`mT`?m*A3c&|C)X;k-O?#*jqtHzU*skF4+HP_7NH2W<&;_7&$Pqf3O!F6|e z_B~WwywJwB@+tEb(R#d#l|hxL z5SWm;!u{;z)d)5J01W6B7h0~lbA7CMk5z(OT~(pHwv`?^Lj0@cN^pbADhiNSoxwvy zD$bv21@5V*>aoXi66alLpr3d)&Vi-?$Ah@%0FvXc-M}PQbr`{P{0wDnW4D>>UJ&rB zX_{;kYS(v~mHEquzn!OOH)G{p*~dYe*uR*<%rH(l;cVKp+EhkZ22e>D{A-%l zwT}>g!e}jRQI<4ySmIcTS(KhhJ-Dr7O{pCcjA7R3)3{?T>~~RxTd0r8Cfws0;PlAr z$K`{9IV}XPm2EwyppYc+-7_ef);S0}K->#Bz}ipXPdu9MZ&oW!L5YRJoE`=Sd*Zy? z#~PGLu884VNr6KvMRjcq<~Cpvw(e3uDv6(8rA8+SJZ&{bn@aBb-=clJN~r15lyMF} z59(@aw|Zu+Z9Tp8mh;Cno@wel{nWQ{LoK&D5M(lH&r0-d`9#&>6PY(FW>W67a_mL9d` zEAqGB&2HIMu?n>p7%p4eT|1}QdJyRC;k`!q>Dn;R>@RL1-y%R_xPjC6pCJ+;FSSsX z`9op2I5|0&ce;#z5W3TEG>do^`C8T~Ej0URB8h{t%Yu?KH_Q$`Rn9ra?2d^v_#jlR;GBAQ2S zp_xE9!;FlBj+i*EsZ@p@F_f<2?ELI<(x|IBMlar1`_Y%BSlC+V{{Uu9E#kOCB&4cr zP}pVO2m8EaazXUXb^7Gbt9XuCMa9&1HtKEsxNf8ga6!u!Ozglp8OBd?cmo1!xGr^% z5UriWlj*4_f;Wazzz?#;xp!wE?%ke2+*`hDq|qXcZ1xn9*v5b|p2sBT*EPjTPIYGw zKfvi!`5_nNUeY{)8%G=w!WD)U5DbbnPYb4}rJ0%(l2WHCs1?ZW0Uyh~XX-D1rO$5m z(MG8uA)ai79Zop^06DIT+h2L?VRW}B?4v8!2D^QgH>HWYIQ<&@T5DHd+B4cm8Pjd8 zVU}rjnHD#g=breHbM7lzU0+C%;F@hh!g-)_P_)sVrwqH7o(>83!6Ut3>r16I{F7^T z@wT5Fvm1qUCt?_PF&N|#l1AT{9-P#={*7UAqu$Nn?JG&1`XxkfGf!C-H9Lmzr3qrA zb74agRYum~NlH?+t$S&5B%-!3ym2;_eA<1zxzpuYZ(ez$jH`!jnBL=@p4mMH0ON|& zw|@xgjiEs*rM=CB9z$%?-0*{xTY$I#9sCCB#9%cnJ_*x&0S_J_>8s0`>({%v>OT*zZFNm9?&=vMxP`6`$5Xja z%An)&$Kj6Eo8$ig2HNUZQEF;}DZIZc%|U{=$sd8qtUn0rk$4lqSC==see$gLqwMz2 z)ngXX zO=)oyu*~s0gkr&Sh}m0^#2!E)h&fV0`TXmq?rri*2wdc;T;x@|{eIFN7G+qS+Chlp zj^Tncb|hz@>sjNmG@VuKz3ZLXc1>IA@}42`TWy`!rOnjwuly!DwvRTeduDFd2Z|e8 zOF5GdHjl9g@>?^ba6=sb@o8))ya$+!*XeCmtT2E*H01day%b(&5x`mCr zdsbJ83P&VxGfEMHF&qr-KPG!;Zh6I5w($>#F0`vHHupfEQ@gR%qPtR&M9{iQ(W|Qx z;QYbz2MW%soTy<|EPOKugtUgbyVvdQHCror4DmE#Lm=9uswbF-IE?@~0OL64A%joR zf3vSN-4^CON+8i)GsvpZ#|$DM##YD$Pn2?aA2A)d+ERxutmpQTOPcx{m)%W_%pxNY08dFi|}EHLXfHa40~zMXI9$uV1b zA}CwRah<6e^Ne%oG3ktrJ3!T;(5|c^l-;G{19Kr5YnZXMpm`f7X&aYvfa{QXDnnG& zt#uoZ9zm;W_PT|(pEb;9atMmU50)3nl2!Te&78&wjF-GH^Kw1P)YzsPzDkHT7J(zBIY%{4}yMnB9oMX_#N}QrAz6s)M+g6lPzKZ>P^z^r$*pgY>X&yT8?u7-FA?c5hNa z$?0X+(%V?O)FQOBR+94EYZ2X9Zh2lcjpJx==W8l5@XX2?Hz)^jZffGq{3GKtbKzFg zr+g+dP@1gT@a*A$j(6{jp zsjb;~s`kp(<}VGyrr%GcYO%GiXH(BqLtr>H7o5wg}#tXn@qU4 zZH!m1PQ#~gNc5&^zA*6@{36q6mUjAZvbcq;<&A9KGZ&qN*%5n!Fbm*xRRKU7Mg(@g zDAKI1u3^>g=NiPZ6LRv#3dBy(p_wv(9peNYpm0by73flhS0%43diV0R&py1Jm$NAU z0K!o|tvpaoexQhv($dE;lnen-Sy9Up2;*@hp}_=KbK<>fO*2pM)0#X}U$->&bEETFpJAk=~IXn25PXj~i6*6L2g` zB9Z~==~worOw@kT!s1&CeK+ipGdA-c=?H$joGPwQCj*nz*MW@2`xer>zR%L>otb?H zImyZ2*XC27TkyuJEiZK&+sl~kPUm@=NZ^#8L<0;I`gS~%O9rRmogz84JvK|*cy9?P z(V1G`aq3Dp3Nmxg7#w1sET@+!jo>7VyjdjPb}sNpHvA1-alH?gu9)IIj`=H}>qkbo{r!mfa6&Ep1~;`&EYf zN1Ir!wowTt()UTEbtMDY%%qsaPAwfZ9vzizgKxraOk z3covZfPApbfR@1^1Gf)`wX4`~*5>C^x=6INYiJ}>YPV7uE_SKj%tLGu51oq*%F+$s zZN|}jYvXMX#1{S@)a>kMwDXofw#8)0<{2C!a+r;NXBo&u>ferLUbv%-hEVXoIp0F&|o?JMog4`8 zTW}x_QL;OFA4BQLX>L;Y z*OxZhtamFkH!lcY2Ixm4%v|A!9AJ<`8Xpbxm9X(_-`KMy?ftrvA-H32Y|xb}xnxw4 znDB#;21E76N1`@?;y8Q{dEsjf8$-3Un$~+*oBL8jnNwG?Ur#Qys`fP zj^eMbou*APz?RX2CRDaE-4AnH-B2+I+mZKOKW+3sbVG@ zl&!n6w^5D2VBvFLI#6!hv%a8`d3b*~KF+-X{J+s-Arl3^US%_~NmH#=v|K&mmHKsT{rj2N^V z+gQ9o1edo4+S|*TH)0RypgK} z-mAgtNhJKlq>SN+%JFTi8c&LKtr{kGx3`iti_9RphJrWFMn8#(uUXTy z-w@hgT55}-=#6?vHC{0(!gc!v8@*7SWO8{3HF zX=2pwBxs{pqfLPXafT<$KQ`gFesJ4xe58)sqdC@RxH7gXCM|m$A4UME1U5x zowkV{ZH3Zb-myAdaLtoyMC{vJ1Z4Sd7|+gkDZ_0GS=XDPB^hq^{{TNl*RZKdHB_F~ z-}>|DZ0f%dC)AcBHkEN}G&YZaZpr1i3Q>YcRhtBEDoXQ_o(SOd(qCO(>6(6>74_wm z5yDu#ysr$3=2j#y7(aI(D|F9H^zz&93)ty4up9e_y3`nLa9He*ZU6(n0|V2F?R-0N zj}Jw-v%F!;Ww$XoJ%^!zK`$?;VuMZ84QlX`2f=lEFS&M+{iT}Ff&No%H`m+E%Y z!6e@guCDDOShWp0Jlw=NSK0FhTy)Cvao^}Gk-PY(;)|_QP}etU$pmQ~gWOr$vm>zc z-W)8B90oh`djJmHfDfbiISgI}Gv7*w`#`nRZX_z9P^5Bte24s+@X7S+Ek;y}L)_MP z0b^K%rKfyc{gyQobgW)|_Rf`)=3Coo*6Pgyr!yughb& zvGG;+iD!b>TDsMLv1Dl_lI{&TE#5eQxNYkD*bFQ^0AfN)qb(Yi^t}&V@W!31UP-BF zP+8vCOLijF1&kmFBa-DKL^0+;wi{Vj1xFDPla<})Iyb{9H4OoD?M7vWM3}nEWiQJz z?QMcYC^s@Qu@92lU6X(mjlEytT=8i4g49WU9IVm{IOBog~@wnfxrZ>n4fkQ zK)ZnpxDXVK@ayphPZm&E4O3WKJ9!L|K?a*=Zn3e>N*K1X6S;vZMnf<>5)O8&Hjx&O zab(b3JKQ{z*hZgWX(4uNh1&5(a~Wlt*Kpbx7>Ha5kS|GNr|JIy+S;y(b)s9Qrwmrt z6Jp-nd2GVgDPlx;@tw~hM&0F-RFXj?`jDL%uih*C?V*Ef_DUQpGswn1?qz~O=QXped$y3VsgI$`vojr-1mTJ6 zFLd1!8E<2_hSJq7Z4RZVM;t-bL+@S7lZPz5equ;0JB2?pDP8KnulOgw8Obf~a~}`2 z-x~Ob#Mb&n?zwej_V(`-Q!bfo#x(?jo5~&uh;iJZKf*J)VXr}@PvadH!uDIOQ%#2N zQ@fV($`*=w5Q2Va^KibGiaS zDUhYPBhV8Ba9Qa801hwoJu||0u}dwD)x0-TJ(@fD$PQTjptCVwD{)@CMic<5E;3SA zV4GVU&x<@;eRJbkyd|i;5NC3TXCm z=u-WZ%^cCg_GOKyWVwk~=P#3zz!vhx8I)j#$nCApv!=vl{?5~u2xD1Go8qdewOH}x zbA=-~2Oo&ePNuhV+-dhxXxe49_2?{?K}_;X)T>Dz)f_MfcHmbBo(L`C5|1pUr(&T- zRUf+>vzNZP@eYlDVPhrK8g0ep+h06VtD^>r6$>1=fAw;08D2>BVS-twYMP#<;#;fR z$b|QkeVwgrnieq!D%d_-NW6tY-+Tbv@Q8P#Jab&DGNl@-HoER~EHAq5 z_542bhrZV2)3pf_(!v`_q0{G{Q1 zn}}siIVLG%Zjz)7^0e{DGQph*82N}Q3aXElbI2`T!C~R`zS3^(W1PneJdw<>zW8n; z^PSZ<6x={ExD1;~-II<0($an&K$@e?Ev>rPT*wkwqqY(Jj1@M6*KYvh7$lQkZAxyE zQc1~MzKiejCY~~NCCZnVZnpln89n8f!p%0%Rl2{txlLXOP(&e)LWVezaumvh8mpJvU5}ZB4Z`)mm0mAG}1gGhrG;A2T~Q3^>351GyoG!@e-MxV*B^ZQ;4Fh6_s8+j=xK{x@iwYDn(xC2@m9-V7vtlQ|it%i|xb7ylLEvK!Nrg@dpGSciM zgRxw;Ol0khfJQ+ci{Z}}*jU+Uf7<~DsjpjF+)Z$@Td9&qQ5q8vVIj`YGO?8z>Hs8X zjFL~1oUXs%n^Mu;qsm{y@8{j=vuW(`NU+(#aXcPlTLz3s3)~WsM%cI*jW=#Fs&SQf zp{r{emZ$bP(fp||OZ~B$IN?a9xr<;t?`?(|A{_=*3j@5dUqjX>(HhfJyStN9O)pWo zg6h`NS*>A$^L%5=b#sS^ZGbi%(}hutlC{8IL43CD7MCJlX=V#~O@vY`u4Ilyw~Vsn z83R0GGGK1t^x7I-NxVCf-}KqoaOG7!?T%tA?M1KctTg7nFh>sWN%b!Y_)}51ZxCK)W1!ej3wDmgu?uDo6y4H<<7Ne;R zN9^r9_Ujv&Cylpl+2$j%ji?H#$Xxu&c^nY-l`1tT=)U{@hV`majnsclzppcAOz~y6 zjVyG_*igx1KB*?3EO!>h839{on{w@yhw!goeg_7!b?qYdKOE_o+J29A);4>0l`3~( ziTQHg7^mdBS~bmb)uWp}o_k$g^-Tfs835UA5c z7`mPTU=Bwg(!5Pt+Q-E9lEbQ7MKUv^-CC0I0p%{zp^Bd6c_Wa1mD%{8#@Bu!(i=;j z$_rsMi?zgsh$?qB;fu19X-yzEVSa++{`4!F^UKYpyOZq|RT z{{RD1N?Uu618EbpY3Pw_G3ob_$s)$>8H-CxcrBENmIip^QcR3UQary?q7bvBjHGfLZf=HB&fomZ!?yC0$mdFJK03B&uK6>4rE!L)z(*g8UB`PXHgWRPXa3C7h4b0Y#Vzhy0~ou6yz#7%l`29oZ0uwG-?~9;Fm9W#vaf%* z%`IOuvDEF;{8{l9OFLif2rTtEQ4y~0T3O=6ajxbi+jk+b8JK*aU|@>s7sFZ|pTt-^ z8k(k}H7N&}k}Od?LlK!iW9F9!3(gBamZpH&LM!`AX1ncAGs{d za-`ekwfW2VDsFCdlfTEN^$jOCmz-Nc3AesXu7!)|$`+K%jLN>Obs7XCy! zjJD9kk?2=9_V;ZfD3V)-PcXExjfx@p--bC+lYmGBflz5a6K@zidS#ZA8tPNnJ@eh_ zZ9Hhq%WS4ZlN;qbyvD%+14?jM09#K{_2CZg0R{}EhY^BL?z$&3`7Yr9@8$jwTQ(W-=jVBu6I8AG9nxbrRou0u9Ft?hzW z%Th+x0O;ydgqJ;)_PMO+`@Gjr@h|DNHeO9hq`P%N)a#7*a@9D*Lhm zouJ@8^udL#Ce!r0waJiO8);feo?Xtn0VT3f=WqjH`Wn|hMv%{^&CGEY%L$DKK7*&+XqSE< zv$(yx&|2bDoEu*%4f5-M)nD>E=vHm3%R--pwb60n{Yf@SExxOFAc49S zS8g~y*sT8m7r&DOLaTUTO=nS&*4j35vBXhMLdb-G6qEA|V4j?ghr_-LxlLM0;JFgb zrpTgLk~c<;%7$Er3Qx+w@zPMhTeZGf04E#tXi^nGA(7)e$T4j*&C5!tL4LMsa?zG1PZT|fU|~d zUut(t3uXMPP)t&5y);NS)EL5tlPSSk`E`LB;?nWY4(;8TC8iT*trtRy^sO+l?L3R ze)U06TR$@{2G%4M2D?uR>$dhSt&L{VLuILH?_glkgeq+mglRZ!p#qzZ`-+gkiP}l} z2Q3?0pD*n7T~Xaw_|`uVS!y!r(>p$!d1q@n&u+V4&YVS*c;;}}`Hp!9j-c0jr=3$9Hz4}XUC7exj9i(x@h8dDyn-WOiWV;OSId-D9L}446KE5OY&5H@o2$snwAw$JGDcS2Nsd>M zSAyVd9D>;;Lu7W|0&6XD_erpd(@TN~qL%LR(rZ2T@;Mf4vLt2jl7TBAa#-P5?Hl%v z0v#?HJVIf#vbL6G(xjRjLlU>zBv)^gE;7x5oG&CUJw;ug>_+2Hu!1{1N&z7@%_1O- zpDtfDH%5g935BtZ*>yd^9g?Tc=Xb9&Uy02soUS%qFZdp5d?mHiW`j;^>x&Ck z`%S%{l_^FM9kMxQF4^R_0Gu786+$UzgTy*(0-^)q>j5s~jyK$6`qwaZ-z(vzrM{5% zT7A9K&vSf!OKr0>vAl6}8w2u4a4@BkAi#xEr<1v})a+olnc+dKU5R8{SmKR5_%>RU zWx|OFVdjn)Hsow!#F^m5()N^J~BFDnWC53P~;uZp8yO-L1Jn2Ox|uC2$X^+jy(Pkn1|vil4%| zw9k1g5lZvHZe)r`!tD#0zV1>c7+<`*iyxFP78;ajHl+UmP0sa*`o*IKuWrBQcQ$&3 z#;u{d-mEPu-d$UtEeKK~xRNC}B#=lzdY*IIpLaE;n`n~GHy0R+1sQo8(MS0MsUTOF zXuc?lNiNjs(ni-8w=1_c>qO`8FHbM=5#m;zyha# z$_n7&hcRt)V+V!p<2n|QQqU^PfA%D~JB&!@ek3f}GCoLSv>+Q7I9|H*!YQQqw@ZfZ z7_|#anTs#lV-6dx?ZL7M8SDJI4qH+)L8@I|UbgKf()!{Xc_vk4gJF%85r`#NjqR`; zkT(VHdNRt&bvY%csIxpbu!Lt$T-R6A=B@HNJ#SLebbEb5=S;WJ?5-c}wszv%Ojxch z8Z?=F(K=(6@{a%lzF_2qJEU8?i(P8O=#$&ZY=yKbZw--#BQ%Y4#H@a1)C4Mq>R8}{ zwZ&>TI)rPG`HU9vBc5wJE4+HoEP}Q#Q z{MOW`(=Klm+nZS7WxG~wsy38et_IvG8wtS3RpTstZ5^eim}R+&NgfD9%G$luzGL~2 z?sv$TzZDF+tzzWE$3CYR=NjWEl9+^r2y63`ab=_uZ zt*tGm`%A=-sFkfORFb_e={3iEv|S!ja}39IHLG>;w@79Nh0dqp_0-`;wo?$XB{~8^%bFK z@r%YDAh}<$=~_FiK1#dIZt^r`*<;8GcQ7u)3W1v)jw^pp)O=6z9t~ef)U4vQu(vS; zo$Q22Wy-pwsAO~9au+3c0&&1G8XT8bxzmWv9a%WvU9G!$gdqZ7l!DvXV>oOL z+lntatsPTDOBt{2HBCE8wVNo<6|_;9fpaacn#$|a1#0yCt_K_~+K)K9z% ze8(j5j)US|$M$}qrCBQ!wX?TYUibjx^b1c97~(74t1BK=NPSv|D&78n)A{+GE}^T> zso31bCZ#kJOA{hV3l$KO2n;YmIQsroo8kNW?-y$CrHQXB?KL|y3+6_YK+7KHBX&N0 z(v;&EFr0(XcUs=HqU!o=Iwicr?OMj3ZnVrq!_LAqnd$Q20Df#9aqU&~F)oRuXjXRG zT=%zj=r1mzwlOS#NRo{H@z7&&J@elkYp!yHsopBgh(=MJo4PpDccokSlf=;JPb7M# zg{IwHG))4vp)r!oS8VJ<65w{)qiz=)YMh=wj@Ho~ZXzM%a%B;`rP)9(IOByQK7$6X z==$%6+rhe@gnT#Qok{frVRr&tJT~#S?|xm*=3+@Wh%p=;g9-pu7&ra`yYTLuz9Q7_ zZ1g6Mc2KvtE?I!VLjiK#2?MD4$s2jE8x@vOtu*Q@HQ4pA`0ry%Pf0tgEnj=RK3~!< z__7^(89~)7nNry!XI0wHf@hd1J2JQ?5(gxb=rBpZ=B%&vEk9YB=SS0ExSktXRm#Vi zRf$7~UBI8X03Am5;Nu2Q4aT~ZcFk`srGl=T0hYxeG7Fz7V!nHfDsSD>JID-cM$f^1 z9J0TNY9=g66p}+Bjh7o*F_s0HS-xR_6KTtCTwn=}N;IPAM`-%`zQ=paE7!uRGfAu6 zJ+1v~{${SD;zgfD0(-kl<1Wz(M`0zjm?4-t`H~E&0Fc}%+DAPrBSO`5HoubJTGMSV zE@q7c6HbXU?<`8?OBQ0x!G1tj7(F){*73K7^nFGpp62%BQM^>y_P3E1SkQ8-gbIg} zc`8pVGr-3WZw0QEHM>W9J-Wj*F3xr{0J6oo##Ej#52wm9F~QBa+VtDM_1pZtP8zOp zrrTNi3gfX?iKOgHVXfB+#&1Cg$2+HID%HIAKR zV4gcgVz>7(ua_~DK5|^64=jboTaKe}By3t)!ycu3ai>0^J(#n9?Di4EE3}Xca~nS7 zDr4RePS6e$2l#=`xw^W|jS}27TSczEscmBvB3s6_go!7#jn#xE--J`0!CigrPC&g=GGQe9R1MJjBX7e zIZ|0j!BMz3Gr>}S##ef8h{o_f%opa5Cy(4ra=E}$oM2T$;;Tt4FSSi4NM}gZ=X7O(Do?SqN%4haW1vj)4VYZH>PV%Qc!IiLl_cBtso*n zxPZf;#_oP@Mh-Z*FLfL1XVz}@`K|Bm;4N=)9FATb;B9xvXv=Omz-{ApGmd(H4{Gtv z<4Z-=tZr`Zt|gM*8;MofK1GpaRacD&C5RhUMirGv45xL?JHQ&t+*#URCDL140I^Ig zWZE!MvgipdlNt^R@t#KndpK+o!$E&Eo!z!xoo%$5$u+Ou%N!bvFj`$B%_9YpID;fGmDwP5-ZG?}uf0LSZsf+6%co0kV;oIw ze*{rmUVW7#OO;EAqb4>d5 zI@4EYmrf9=E?GMwpMtbOCAOn?e)j%y*xna1q^2z@IM`?04$o)2tPrTV32*e|yf>(6SH>CA)sZcs zM2;aD+^XB;jFl{(z*pt@K~e#)NAUILpROAjEj%%IrP@U&+98%$;Ef9`UQ&Ru$j2f) z0g-^J26zIo(-RBT_?p+cW{rCpS{rl{&rZ;MA-MTL@9s!v87$0ueLCW|8t+pv?oBZ^ zV>=6s{#E1pr--jV;Ukw&jfa~Y?8qE$3xYu7*jC?#Ce(EudVdvaccu$FaK>o~!nYXM z2d7W}09|{M%hei5>9^zAFVyo@etEV1dYx^9>3XiECZnf7mfFk_l#vL*k#o_p)C17< z1fNr%Ig8>vv1<4B`j(}26T@_3NTXM0I8a<|T=Z?jpcutXVXrivK95kf1~})v04G9G zjye1}`qfVtX+LN9wR3f+G)Z#MtkM}_E{VKs$N`s<6R1Dl^{x!l18Z{MReN0Ya@<{; zO((B!>-t9St?>fR4-8yg+TTwt&{>uwksA#vD;ythk+ai*?kc{u;@e#(P#2O#E6BPu zr(ubsNga`20f+$i&fMdkI5f>)!c*M%bz%O~hC4qp;%MVGWXv99m0RcYFjO?mK-vxh zjP)mu@y~|mX)GSv;@#%Ch234_#PSzhd1g$V_}#Te&_b%Nc+Gj3D8FMipH=ylnMx8- zQC9x|JFebl?~6QB9o~fu+8u@byCC~j&Mc*n!hw#`@)jOYJ0$08WG-+9GlQjgd_RmW z;<-&O;z8@Y1w$pp^#XqXJxC05)pI8F>_X+JQ~)P5Z5de)(0x0f)PMWK%VD|=$g zZmLz{iC83zj^}n?ouhXI9j(ymUKg9gw;El{-`bjnt0tgWME4Hqt-iRHy zZj7;(esDrJqN{a-)B67af^tU=p{)Kd>DYCxzLlkT%Fn=2-P}H)u&T#!*73-J79#%u zH}8p4g*+7prT|h6XWD9l4I&Hua%DPo-JEw9QOLxh-576|sRR>&j&sL74`-o3nkK2L zJU#^09`5S(wI;Z9v)&p_;~rtS!6Pz&7aLW;BP?0`*TOem50)E6@r0=^p&EUf!WEp! z4YEQ4mkft#F6hmkK^Op$TEi1kJF>l;RoYwrB3gJ$R@Y^F%TfK6rpYGjb-0hsn66GY z54tij$IbZlsC-fI{{UOmZbqSXss8|K%7uS-I{9B9&&ZoTR0lmV$G185KMVNJ!@f1r zuHw;M{{Ybj){a>AFdxFecLyKRoq1|NF~~5$XM;n!=_v|558euM zo-xseRONWL!*{v_ejKs6ytS6r-d0O*DkcsF_?Yiv#1rxkfOq4dtf^35(ZQ?#09QQ< zc$HR)sI)u35%|YU)ifPS(lot>bX8Yb?Ib{jhEy{Z+NAM-#1cpV5=D7_u|37jm5eqM zq_<)T1>-Y?Vj5&<@G<@9zl3CM=dMqpc)!Ay?%KAtKE}^F$0UYpF(k;ys-w%0pOHvW zpOl}y^9+r?b*yQ3Q{G25lcq4%?j!`+E2=fBERE%}L-&=KDjcyYe9?iHTzUApN;MQ> zv})gq-0Z`~Gv{Axmg{cKb@l15V=3>0>DOy>JI{0=kd-kz6hAWLwg?1Z^X=EYdLYsC z?+ADr4-wwq-Tj_<1Z{5`q^zt-A1RU0zuo9QU^&15k;>h8V^r1j^FE8DYJzK+7t9T4 z;Uvj+XIVxOgKx;&!5s!VZ)pBB@W0tSEhX-csa;Q?2?SvwiQy(d7&2y6!!FbykU$yv zLE6j58dT(;v|4$XWzMB3N_6iZ^3(7QX2oSN8!b)j;<(dobt`#{epv!zC&=S*9T0Rp zA5mO__(N0Gbv=??%XHg|1t?gu@sbqdX!ke+-n+PUeHX>w5$wE+JB>F_{?3lV-YFJ1 z_QEur}X5$bxA?s99=%doT{r&jBgd2RFE z-_>qso97kcp$+fW_rK_^=-cdOe`BnXz?$BpCCb7A$7gKdgae>2jibNa4gU3H>w12l z;I99>NX__r}-$T`h=1h?ee+C!&kwqoW;)=c?D%I+B* zeFh0X;muzY=r_9egeFZwbT`(reWKoZ8v_K8@srydaz}5MIL8>`rG>;(R4GNJ*P{E8 z8C`5owv^`im!s3>^?sj`m1V5nSnE1yxPl=h*7L^{5nQo_oV~iCcPIk#%rk;{!tQ1Y zeSRB=1*iudI#-D3OQ#DoVkDYPvfIeF5zy zj~^%-q+^5~Mgjmh$f}+^@o$zRxA6AAeRbx>XPu>)t`_TS%1f%Z?&1->xIep9RuXUm zsLxHR!+WVo7O!O@$SfpZKGm`N*jSG+^XQMd38^!phl zzSL|$fk{v%GP|mb@E8G;`FrCeV)(+&`@^3PE%jY%QIb7pQe-x^5sjWt@iz51Y^v~2 zJ6V)txqi{O+AQZyOIS5?s?uQ8B({vfX>=x7Ldu0iuO8(pRf?zt^%(#I)B)KqF7-Pt z23yMoj^=2Lkil!^`L6ANz!b;Ko0$ju?zjMuOu8MrL!#SQ33Tg?J~dd{;zo&_F3=iC zxhIvu8+Q&kC%m&-t=n6rz0z97K}VG)RAuubw~VrkzY;V>~|&&Kw3gCKG|bz8VJ{7u;ucx{J0?HK?r&U1m~}aZ?#M9Hp(jtxsp_K<*F%k zAs{M24TfJS(Y{^B1x_+eUWVS(TZxts6;eYaGxd5C}{m94D6;3U;9ixnR3ScVLr|b#I`@cX_8I z%W;3B+uhvUJeo9U(8d-#e&~(290yQcx$}2q;2P(R9(2=P{{W?b>&)(@SwcLm?ydg- z4s@5Qd`5|HccyC=jJFyEY^KJNPF-}kdLa2Y~Mu%tv6u#Vg^qUBfSSq?b^aKJqT zx0iQXWu1k**9@0S?X(>m0 zHT_t@yw@j^&rjB8x4p2A{t*qu$rj;cc*g`hk^~#F+-?o~vw?w7=ii~T(!wKuWD3|nKsR)lp~7v*1= zpmDPVkamsetgWWhZSQYd=H%KSTMKC=4zLY@au_d|#ktPrAnwTr0Eoq6l?4dBn$vqf z>rcPZ{9eIUok?=v*P`^>=VOu7uJ3L9Z>(N;R?gDjOw;0)DQzK0OV1*se9j^PvF55^ zI~hJ^D}m-Jbsi4!1^w*OLv^UzUqU5>$1F1mh&ztuE|JE)l;Z`4NhbwGOR8B(dph4E zlxUHa;z5=2_#_-;0x&qwY=N4!9+5nA*tVPgmR&sJBOnqNZ+0X5!_vJB7BU!|9b4%n zo{PPi=hwqdIG8k-Dr;XWulOfdr`#gAc{c`Vqeu%WO!z|7Ad8_o)Y(w{8CbzJ0rNt_xJX)ihlrLxRgty0H`A+_U|f zR*XowjX*dfINIMpea&`YEsDh1Z)Uz;>5d}wXy2xf^E;0ZcpB?a_?dm<%}(RUx{mqd zwzY~Q<-NFtqC#BtW>$@|q=AN0$txch;eBq(>%(?YdAgiWZT4xdEue@zQ#=AKk~uN6 zD8x|%wUl9cWRiMaYr?)4gTuO=<(8GEG=&QJk-~%{p(=Lc?vOzT802%#Y7d8YdQIMg zGRbRcEy7O7%27+IakWo01jGSYDuH&T0}QCcGJmqY|*-eg=AJ6Su#6dV+0SB@m^)B*lHHCc!EC* z{{U$|k#8s2($eS7g#dMg2$m(so-Xi}K30~>{Xfp@cm7sYQZ1z< z_g|0v5BMghhcru_J+1DnG%JlW%{OKVkzPsXg+$Jg82Am9Wo2OOtYSb|7E&)JhaH+& z>oLIhfWvf>MR9J>vama_%afPPE(m4|$vFWIOEycL15$%Zig|2h5=j6Wd{*lWFKaw$ zm)+(}0de!Xh9L`ck(n&5FEl+fPVn}jG*RA-KH>;%9_|oYS(;@=MJ@@?ngKY@Qve!t zDk^%I;xO*4bl<=AhG@G66N8 z;oTclwZ5{teKPT4vTJp?m1Bj33lvd_qiG5mQzc}|DGEfJPB$^Gt4g-Fy_-WY za24^-O3rm^&*FAngAIe_Yro?AYI&mg3F7e})2>oGD{G6D`zvZ?9$ASDp%}%zOJ+p$ z=uaGG>>56iaShb5_=`*O?UYF)fgr*bMcgqSak;|wIp-MWx^^vT;yoJ9eK=~DkQjXF zcxfW?$`@~BwJZ@_KM+`O&~@VWS4ZA;DD*T7vXVwHXj|%6E2zh7G!WWoD? z1`cvZ9YsG3csXx$E8%i&h}HD@nhm#-6j_z-3dr#&LYx@08T5xdHZ?D{F$MEA{ zTf6TONoNAwO{d;0ns%RNB1m2B?xHcG3=_4M706N?%aF_gW~ZfmH`Ev5-k+(%aTSiK ze|BXzuQM!G)?PzCWpxB5SwZiO$($U4si)muYno?_HT%?oG`a6u>K44yp}M+_Q61wR zT$olKT9+D2l4g`E30)FM$qZG3APghw zg^n#rJqmK=)rZ5+0o&YLPc`(gNF?(ut)fjxO$%Ip=&X(QW*c$4mEOgJe+~g*dmFxqZ9@kh-}=gwjE1`gf`iWZir>NWlvHw=rB*YE2iAXF;YUuAy^=fwttE_Fmb?tat4&zl&+Qi4r$Ju zmcNP5XpGT;~DBW7jxpaNr#V$Sf&bBti} zD)^ql?oCpCMkyh*v9yxZ+==8Q#}t#Qji;fuLMXXK z!;z%hw~=?k`jS~{_qvs)lI^E?ts#OmFEylPS28G5j0W6FjzD}V1ORn4*)-ip?HYEM zEw$`#9CxzY!d;r%%_`n>L?|CV<=q%KCDp)Rn|BMN&8okIHN9COduc5pwjxB-8pho%uAD8rK2pN(C}8eB>_>A5*KeNN zhzBE*$`E|1*?ir-dY#;@yFE<3U;Ap(EhkTd!+NEfO>n~YHHJs~K?86R1a*;y)ON?o z)2IcjSI0IV+m=2Q(>2@miqC6j*DM+M_gnE6fel2^+}C$)>i zTAUx-I#g3zcbNJ!8h2jx~&{86sJ)uDKv=X=J%5%vhelX9wTj9{{Twy zN0VnP8lAS=F>^iif^^)n5J%1i@0WrGSb?x9$hz^0+xVANi~Blza4xS)#_}t)(>1|l z0aOqfL+v41f$N_2de6d!^Wny&FPSP_>6$&oh0n?wGRbn6%2$wiR@!slw;c1gvq$28 z5b877B-XIrU&}uI<0WKeVV*FjD;fLU+ni##s=^8umc>I6EE82J^!~N(ThhEiYZjy; zn?V}P_eu)IEU~CrIWM_njn^X}4(qkKyuQ%QfpIHQb;cayq$->uoF;qM#XL9WZ=Kd@cirkA!W zho1fr!U+|XW5A6|A262Oqk+L4>z{RP2gCZ^q}SFk&wXnJwZ@Yh+;5IVk|zxLMvTdX ze5r6yyAB8`Rjss%t$a1&Pqb-P(#vWsNx72aY?iy+{lxw~+ynjIwbG9kX;AA);s&zR z8&-R`^(MBG0p+n)W^Iz02~;4+K=RHq2P6ir*hS4;gEX=QIm|EIpOm>2R4mqwokQ0A=6}$EulA#X13m_5=Y!u?BJ8XEYf3d z$|~-sso6y~wHCW~{gl()UR?Q6MGIU<9G6xN7-+))&Q>=kC63Tf%mxa(PUPRAiKgkd z@8QE3u)1Sssykh%g^7R&7#;k4xIVbWb@~^GFZ7=e2=BCO%k2;$NbVzul~vB>io~ zVb33T2AScX5@{NriM0D$C3zCf;8-qx$pq5eM-+Ppnk2)<*@c)qeLU0+f&e`vx*Nu; zaxGwME`cMu=_ofQ8w2XCVA&rm9V6u zmw;~IZHIFzs^D|lrk@psr-^N^Ep+QM;u+dIwbXS6h3w`sUEDz{Y*$uOACv~h!E`Cf z-GZHEA9a3x-Twft$G z80Di`yTms){v))GID*({$#Q{q10B4R9m^Kn;i3xCFj2{F0W}V_Z$F8AK$B^AnpT|w z)H8KtH3?^RxQa`M^Feq{z}uuD6-fE_6#Lt7EaK8`yfvo7t7_^lEbkWOO|q#*Nn*A{ zjogvt5#=yrvB(j#VDZ07s&lhxq_6s4@(rkNeKqjNN> z)6H)kq=w-FKEfP%Y7W^Ifhqvb(U92{-e}h2OZahps@+=NNpWCu*2^4`Zb)Py8G}US zPwvSl8$rNgpdGkZkly&4O?!LyOE;f=$J*`M6BWaKqTn!vWRV8aH3a#c!xMlNj!2(W z@wJTlrR)>w*HWgPdoAoYDX=e_9o5q&Rk;XKLJMHBl{i9hYb8UOI%+rTYa2pJ4Nfl0 z%lh&)n@_jZ<i#93=TDKBPQQuf%9zcHDn`$5JSv`OA*3E;se-^0 zgMpKZrK;TPu%+IqE}bM=WzEgn+W{UX-*A#g61ZX%0P>df8{{C8NH|r?xnDOWzT>fG z6RS;9okr5x9WJ%1Nqv1`cMX)HcUFr@hDeIE&fsQFdMFs@(2{Y*a4qobQHM*^wM)^d z&#PTn%CBK*5)v4eSk^_6Ky_0HJCiKz%F%(aJ9g`*>bH7}Nq1{&DY&?Mi@RpFhBE|m zMJ#)FB9lJRGl0*tJ4iU*O5k6A!ab!c=<^$65~NF+tV2fw`Im3JAuhX=+@owK1ytlJ zwK^DQ2JNe4R>X6pwn){`wAMZ=y|b8k6Ad;IJa&M_Bb8T_LA0=3Dr4m*YxK=;{{X@| zBN1J!n$MafKOwofWfw(%8(zNKwv7m96cTGqwlGfknOOO4Vy zkg-PLSB3)^1&AbPHPT0_T-z%sa>t1y10>NOK4N~uNg6+i>JsrIARLtpvQA{ z=PPQj)6n8_rAi#qYRJLTts>LBZLdmoXkdcJQ2Q_XS!ZHiB?^8~l1Pd2SdY3f)aS6j zc6}P{#-y1x^0JX;NM#DyVf(;w!Sv{J-no5W#VRyyS~%mn@Z_qIGf$=wJCU|*jVGfZPUn-DM>Nf#;crgHgYg5Nhz_{zBJww;$;`d^bxBpXqY4 z1d!m3fybG_=kAP?T;`>&+uh$?-Co+WT-oV&_OAIwVKmQn3w)?N&%QE#KnZ3Ek_Beu zqq(AsmWZ+8&k8Q3rs(%q8h)W=V)~I5(9aZZ(s{8gl1^Gk#BC6Y1BD33IXOHj>O3K# zUrXclzq5-@yzttEw!33&vrNw&x0K(#k`$4^mL$tA6^rBy?+bc=2(8t{&CQM6npN%f z>^h{zD`lL)I1?PJyJd#ySF-SpfH#p=LdbPfr9QiUlTIR;uTs(hHN&Gxo!L^P?0DBa z;6lA}Kq8|RprtOYoK}^l-7kZz;=1ts(wS}Inh7_C6K>e5paOY2(}uvo0~sJ0wJir) z*6sBxTfG-hib!<%XAqK0+)I=(kgLlKw@yY>@8(U@Fju^ zd7)=%ILb$aav0%Hn4}+^6UXU3C(|M^cxu5ft%F56+}tgM5fd-&ot#Fp70xZl9OE(r zf)oOwg`AUg?`5n10D^Ya%%@g7l_M9~+g0gy7n%*OpDdH<38?*sdu6xVsE1XIhgM%C zN~*vBA1rvpgem*j-uQ>%%R7$;CbOz*2_4KjS(Yf)A{uOjQJfQ>o#Rq)0N;~=(+cC_ zCy9TsZf+CA7E`NjlHS@$?Y!t6Vv1z>gi0jkuPRTFZc%Mb_e2*rXrRtYD zlV~SPc%3cE?2Y4n*fW9@vw(7^cNoUj1=FKCP0980IciEZ5?0uY#FiSapW}I&+6$Pc zFL4c(#BsbKjMmO~N0Lb^adPK^NH2ka02U*?L2o=Zaa*i@Ln6t) zcucB^BX>>5l?Qe{RjmkMp7#F$RMmFf>Bm>s40ir(FwVq9Z!}UPCgPo?9Fj1k`e!2F z#9kB7wHv9{CxiPg_CGyEkhtXrJhU@6?%2F;M#g6O^OCWa9g3|UTS_|G#}uJe%SWM| z;hzEO*IAnC-r+4TX16UXBCnqtdBKj?R#WplQecC?%H@C+X5YfzBDe75x-2OyZ7uz@ zv1%96yLl}bwT?e2#u7KotfONSh?+Gog<_g-jo!ypl4-78EiJ4x+liOT`NToA{E{$u zA*IF`pPQh-B((8Rg2wvhJ_La6aRn)L5%b$}k&pC6; znCOIgRhiF2YvNe+-wRskT3x%{>Q>hZlFJMdi{;r9Hxd>Lu@O^gRsR51STlKq317i} zDwD+wk7xD~EtGM$pA2FUlWkOhxfZsRQlWP&%t>n9O%}&}$JjjwUG;42dy9mE1Y^$EZ zcYp{71Dg|CG-YB|-QmgX~QG?7d#;}T0OgKQ{DlpzINgbr|9AQRWU5L=o&LGlVs8sDGwLmtu>9Uz0J5;Qqt-hi6)jr7~aZ~ar2T2G7<8CHuUeaTX?Hb*Jrl9{?d#^ zryV!!4=YG*p54UxQq6*?8OV$UF1(Y5ZfXsGNuE1cW7aLBu?ezxCDAOROOqqpmJI-O z+A^_|Cz+G5?Epqt^}9Ewf;p-DAFFA0ntz#TaIs!m&ncEmCJh|nCR1!kKYRB_jtJZd zUI?o)PkNS`!&~aC(Th_J!(2jQX#jbU0rz_2q0S5K$spFgu-az2ZA2Hgws6_Bu|)!% zJ>v=IOv{FnbtEW|papPthX>{q%MTArs6(hcel#{#@tEwcGcBZ0$Oe(43V zpIu8|7wdi^z1DQCG)ES2d9HSY9A*S*pCrswC_Q$O!*DnY9b9-P#n%y7 zwwI~G%C?60P)C*%5sz$utZmA3$iom20iHp>cjNtAP)mp(NL@DmJut^)`eZW4BypLc zx&)ST!X=J3DYu1I;05R;){M=&w)>s#uj0$((qhy#D?14xxf0C{ykcQ22pRzxm}dy& zPNxTIkm^GWfZKi$)^*8zO9hS1o&CMQfH=0hg`kQxZTR`H+@C42$;i$*4Uasu@tRuQ zM)wx0ai~4ix2+A7;#eS5xU_A%lW|m3v2*f<0Sshh9yNRe;y(>|OU1YLgI2n~wNjG3 z`q>hL%1eO!MqH8m)x%?H!*l==?n`C;cFNLiXT+&%eQq!G$S1$J)68?LA|MQK%^Il( zaKRlz0x~(Pa!05ShVjU5t-rJW)t@9TB;AwWztXcUb?=7yH-Yu2ZFO^d;!Dd5+j%eE z3zm}Y<{ep?02_)S!Op|G=4`Vx*FO*$T@axeBRKOh)kyWoBdD)N zjy_7tqrI(d7ektKBY$_Pq2Nso?{!%9TZQuU`yym%8-->a0Qz+`G#C0#q2qmHQr09$ z;JCH7HhyG?b+j%VvfSthYG4yveA-odFpUUBNc`>7d~ZLO3R_ufWXTV z-5L#ZEp^ke>1R;z;#jat$QIe0M$BbxrHCXheQ>OC*MsR^QR6!cElc8dk!`75!EI#P zeWP4UGwe|s#kqh#-XIVMb}Bp9dY1Q}5d0@=J++H|=4F~Eic|`2SFDYe1cC`0dIdNH za7G7-{6VI8hWA6W(rk2l_?kwVMmGNdW{9zg@P)EVU}T;K7%1fK3ynIlQs%XpQJp`u!AJ71SlRwGJi9%M6O9LK|)aGhs${`Li6I^h!&TFkLU@yS|F<$!xU| z*?d9qE#2OVbiED(c@5LcX@5Kj()k1wQv+apuKs2@`G5ogxPrJh_L_HuCzr$;nbM%J z*4WJw-CECbVU^c&?U5rpH*$6!zcx4r8W-}~!K*_lf#SORYRn^!CCfxE&B13m;~U&# zoVHGRIL*1d@HV@sX&3$=xV^lxi%MGvtmLt~^5dO>%P3gz&dZPpAg`1N+;CHt6H=SA zIwq}3E0)h)d+lSS(WcUTJwCCa>DnE(n>1Go9mByXWRMt=OoBi;!;!b3#&gap8xIv( zYcSo*YFNVr%>vBdc3q%lm(_ETp7^c{#edqG*Nk;7Lqd?XmZNr-#tZvri6jEi4nSZV z{#i;6Kp!gOIXJE1jYGs*)ue4>X{TA)#~5!uY`k%%cKoOS1+%*go~zCQ1ozOyQHQ&I zf6s5ppFNmht5%iX-8x&p%#+6&v{CDN95Zii_mIqEj!lvn!-J67U8LiKk?WDxnX29C zm$!4BL1ekQ7D%>tCg&+;%`E<3pY#6nYI!@(B>w-C@Z^`8l(Sk(V2ozDj^asVkwDHLd2WL^3I+*m4o+~M zE?nIEU++3;(pY#ZOH#$u`hSQG_Kyaq ziLqe~=bfTnYLX*Or8*-Qkx_Pu)-2nqM1i8l#u?-+%gM^;iqU*S;q3b@hswYkuuv64wFt^UeqWZM|~ zGe(H-yeG=V2g#IJ)DTLi6QFoDS+qOJuH`n@aK$#udEhF_;yK%^fr1U242T{sSMN{5iVRWVzI#VQp_{ zi*aw57_+0IGRYF6llPJE6cTgBbI)I8d8hcQ^G?*@nj7nD%d=rTmdzwzze{(On{1J( z!3a1X-r$^Kxx0T7cw&DK_>05F@aU4>MH4Nxo|`NiV^Cz0GRTZrY|1pufR)P>AYkrE zu6Rlbw7nm|b~9XESn5r6b*IAw(6R-!k_L8ZR0SaUVCRy0<%uMPG^5MC&U%#NQYlqQ z+g+0R=z0h-K@4#KB8_nqM;RfNM+4>`HynC!Yn;}!>w6frePUT;iJs6#{%G?e+wy_X z20MJU>QCM$jPc30#w$gT#r=yod0Wb4GjwdS;l5v$jt>ok#(n8^KNMbghr_z0acM~m zaiYgP#m=J=EJ29cPV8_<;PfOA4neAFEZPkvWVZYYR^A`iLksh=5Nq zg0|C+2*J-r&U4Ld_u8A=RJ3P%kq&HysbgW~N!nEB>H+%Yb9P=sDT#iX?>#5G_7c1evi-}`sS#6yoft0p$xMY9h#;thI z!Z*GmweYQ_o}G0*n3LYYclJ2pX<|btbqZx*5T7WG`55WW;H^heiVqU}VmEqx%RQt% zT#q7h0aYA+c>QL9n~MfK8)XSzOH>*etL@?Q;JBXt!8g5JAfsv6m`ACw2hcU0B)1 zl7hCpyLuehera=CYn+FQyd80%-ss*OWLwMVw1gjMk1CL}&v7AP-wH_Q8N!o+ou_tB zhLWEdUdeGD>nK89+bx{T1Xl*9EytA^N!aG>(LkAOi zyP4WBN`NMA1ZO*Xjpr1i+Pc^kSYMXr)V?F|?Y)k%Vs+^CJ$}v^q_>*dJVAN34?E2H z0ad}=r9<*ik&J*c{6*qDx7MlQxng){js^>TX*iL?`OMO)fEl7yiAiNf`~7=W75H1P zPht*EU`<))oqTSr7HRH z$8{R4s{2|GF^Sv?vwx~!gddk26t-yGe7OxC#j| zA49nBW0z2>Kx0go$2S*oL3MJrgHI-D1X0B?c%?;Vf;k+hQO)S|q`L8h&2to&#wpfI$fcianKxxfXh1tyovd;&`8C|9!}}YE zkJ!`SqvTf1v(y*hZ#W1NCOZhM@A=tnsmVzgAI^j3b4{upwr z1>fes;Ij`%@iZ1%Es9zfws8y)TuG$BATCQsm6d}rl2aI)YkZ8PJ^?It+q~5Duj~y% zEe6ulO}32|X)a-9l1=I!NOv-vE?yuoNjsTF-tQ$w4Jkkic5D7UvL^X2h{3W0zpIKaUhut3i>)ZYgy^f*u`wcS3Rc$v{ggkdvO>Yc>+ho?w6{Co0R2S z<_4dHX7N6|@e0=6(gyI+mf-ozZ)YH#E%vLjNFYM-nH>h@P;le}l_W=}_@XO|cwoHo z1@uyBz|9m%U}TcnLF73xmdN1pJg`E8kVX>g#Xcanp32I@$F>&Q&Z8?!aJQD$$q0`R z<;wD`L}jCnAUc!1Ncl*|Z90watZ}}0%a%xvD@}1Mw4GB;vb+=j0AN_!$0fC+NF#;^aYTfvEW#UUaePc>XMIstnVc7L>?CKHQmLS)bDjm*>w5! z4=|agmPqcFM}4uDJHB_$);u8OoUxe8e>B1s(JxDuDhnmTu6}>wGJ%hf^V607`sanz zd?l}Gb~0Vu{{UrqX^s}^LdVz-Dyw*Q>Ps&XSsS}%ie!`qibWt0c*w{Z9Qu28rz{2! zF-}x#^Ejupf6U4l%D83kQ{T`0j-_?4v|BW=>64wwBJMFxS$L5f<#{+^vBn6_N{nTf zI6fkd-U#hx)a|7ZM>&|u3P5I6DRaFB{{WDv#3v1tnFs{@pn8>)*(!rPVphjlK7M~1 z!trT>cd;r~1QV(jMf;(MT;P38Rv#^RE^4uE=|0JHeJ$AKt(yH|Ds6s!FXqoA{{V!S zSUODF4xOr6MF_f-Df6S0&aCq>3IssoD4=kxOoM{1p){^^3pq7QId3&f3kcp@@Qrs0 zG$ za|XGfy|mW)i)seth*+6-hQKG(p2vZMo-2yAdbM9YHKc#Mn>}1U9-MFOCZgSvO+9t* zW1g__7l^DMNzrZKxK9+^NfdVGdwAM242T(~otYYTbuA*XQmQ<%Pb$HwHRh*d;_WpB zjAv31TZwO;-Werngp8LY>{U1gCX1=aiy@Bi)zN91z1`NAtTCQQFEsgEQMQ^qZ-8di1oX*W(le$A+xJ~SB;ZFTnelqw_IcrZJ4-n2 z_K79A)D;z2o)eV&+e45)*v3Y4TKb=in%4f--aCt91;pzCa0{KrPb{wu)Hfd7=b^5; zP1ILQLy=a3inm`TC4_pFjjiRh+D4+`wF|kUXvBL;y~L6s<-z-`4h}uVPWpxFzGKmK zD8>N5NQeHNA63&owl&Q_%BaD%RY5PvLJJ|d^EtIKPrtvkGh7eh465au0Hi=$zwH+BGw#X3Snf)an>hs!++`E#V#0T5Z*|!rhH<4xA!(x~ zZ!%b=o0bLJYt1>%ayH=)fwm#HDB0wU9IkSs724@SF|vxXIh{$j zcO!}L>=sLFr@fM;#ihBjpHPwok|2)P5Dk(MBL{4k+FNcvdP4o(y~VVD+7<@l&cZ~} z&6UrW1hX>BYjYIAVo;?3U7l=U%KMj_p zbv3{STdy#mHRA?5*8_Q2%b(mKC9#$m$Xo%}v{o0FUTjzJU`VoVNHFfeGW_RmSYg;; z=R1$7tc_npyS}=OZM7?8AxG|(1ywtI&IsB87?wasISxStR@CQ4thsrXzGT*;QW3nO z{^Ojq)-E+bs{>6su)sx+=OfgpCm)%|si^OC%}6qzv0ShR?uc0b07_p46Jz3=_mQKB z$!|JBR0zX3`G`dr1B5377y$8sT|l_IXath#Q^c&>5SbX{{&m$(mnI$2PRZL;weMrf zh8+YAg!8h87IVz!~G)`FmCmh>e^iqki!h4TUk)cX%Y7?9tU43N2aeaN|eOZu}489aiqgPg`g; z2p$`&cmy%eZ6(k<)P#8=U93}T?qu3jg345L5MIZ1tl#Q!!n$?Cm<5%T>E~RH){^-~ z1{(_e%NEV6g)&5NLV(_ncjCQQUbWQ?-hm#ar|MEg_C!g-ym2FMjO-Ce8*W1|V&Jl{ z!yyY&Y92S%yjvx_aQJS<+Fds7r&zBqcYURVGNC|?7{}l0*cl&EI9+OLF7nZDsoO=$ ztGzVcyDpz`$k~+8wJjjn={8n!+Gt;g11D?3t z$g)Wesjel>)uT)&gUz;)BAPo{F)IAeCgnEaw@bH@4#093p1!y74~dPIpMPUxVIAB} z=PWA=zuC~m<&x+#g3*uxI6hu+@`61BPw=9xxcgPiY8W>1kt)eCWMpQQg8uQyX8D^f z^D)mPo@_=x4To_~SC;nZmv;8lxI(1URLit*MR{ck!_41}%tq$C0_RN^tUl!C)?0QCxSkT|U2n9=r%oSmE7&&%iLV(7}86I!Hm{{U;c@UE|(Dj+#5Y9@|Weyz@^j?dZD((3BkE2wd>IvHb9xl^CwJn(w@*G)f!A6Z>3H))z| zv&TD26}8{mAp0~*O304Vx|hmMIh9mwPzP2LJ> z*4sv(UnbS{+WotX*Co=tMP+qkuWGAvq`?BEmB_mDUe@MGE<|OLDHuvbNS`ygI8aE; zkB&=N@V=WR<;)Oji5-Z&k5jmWTL|HX(q@YrcDZKSvZfbmeb?viXWL-W@1SP#bjZ-A z#YO$th^QotD9BtAdMM?X_c=$>wH@ml>0(QBnArJ|i3)?pPg1-NGI4>&0~>3x4lV9@ zHk;x3biG4IU3T8a6*qCM-IfrbiVKBSmH8pru{!b25r;d#u97+Qt#ilvo&K$@==y!M za)`A1dz&KG6TqHt%PNwJ(g4v)4)cQ`7|+VS$!(>{BhMW6B~oGKvq({ukSRbCb9tQIMyYL^yTeDf3r5K#0kFi-C!>yz^yz*6RX)?!yuOQ-xXg{5jf z4ZhI49}cHurrX>_A%f`35DT?pnL&AWfrfpLjP-2uf@zlW_*FbNuSo^Qf#%B=pe*4_ zKrWOPm&^If9yW9VSAx9p&sE@k7CF3Csa)SRyjPJHnj2{Ihu@9Tu789QM&3%7P*2?~ zYg#e0*RGT<5?1q*jtFi~{ym!NQcp;k%b6?K@gEe#(d!KhTS09Y3{p57G2oNP!mqbc z(MN0wi^I0@NvlO8%pn%#rCApETDvgDz>>1CRtecCpfQyDckLnL@)9lEDqrNS5v8#V79AkC$|WyMVw67im%D zBfmwacymF#)VwzonvI3LTC9ubSw$__TcP&pP;LF&e5DjB?sQ>{whl?^C-9bsap5~H z0?SmrmreU*clU9@XB$dq^7cBU#!(Pmym97Xx!%KyUk-R~!R|DtwYs}?(i_W&-rGd3 zvm}nhsY2f-_mF_uA-N1jDr(n_2y@8VojFyPEKH3W+g80>YY4nWsM}vF>G!J)7J)1v z63cE=WNP9zBhN`0Ok*sB?%$$7^eDsdowpHf(*0WWq3H1+kI_)xacywQx8X$iK9-jv$d;h>FI@uOG_D z45DFzIT&ybdXHM<1Z$)@YjlMH7G7)x`}Sxr54u_t-w{36BrQ4 z`P{A)D>9bY*-_Nh*0qg3*WxA4v9DMSQ%bYcF6^X+M)RK}$+YZjFUz+aw+pv{fJUon zmvd|1+EMG;O_JG@G!V;dBaBMN8`UG)ttrZno8~_#=NJ~XuLDPRpm>|aM^6nTvZA$t z5*Lx3+b)D8pEJ3}G6BFKWFJAkxQ7)TV=YU3=EkUrfYWE$HceZ0@O7t{_pBe;wkss8}A;+><3LjqM2HSFitoN#&^yNy%ET9Y5_%bSCzna#9~a`wUHRc2R{ zh(^G020msOKYJq^7uw2Crd$m-UDq`k*-UDY+N5zQAoC=TYJqqMrdhFpj)_30Q$_^1qoi(SILJtetYc?8Zh$A*o zTxzP(Tnm?)WMeOyBl%>CL@KKcj&Q#*5|NyIrYXDyuH0YEY%jBQBA}4Z3{4XxulurR z$C)GUop+XrN%{FWP<>~^dO}O3%`?95FZ zeg6RBE71BH_q{8^)*sq8;^r%Bsb$m!#Cz@Vw(KL@@?e3V-2;(~ZpULzm%-i}4#F=F z*h;F~OT}U_k=Lw)IO)cD8!`@fX*{eTP>~yLe&0U^d;9n4UUrE$%uiEKs zC(<wC#+!YBm-R?m&3h2^8K|RGTUvv>Q80m#@nJ*w~io(Box}qkOxhObH)b^ zs(drM&@_1=Z6e{oFUpT#ppgZsVq%S5nm!-zs|g z8{Q<=bo)Ddtv1V1yu8!y4W-qlrDr-smQzo4aA{O(JypZ z!FRjVbiX}WBe=M0Sz0TV3o&n&DWpDXN@T|3&aZ_y1JCs@hF*P?dR2$-bvt_~Wk{6nm3xU-dYOFPTCoIuj7av5Ti$Zg=G zD8^N`t2P{!7yxflT(NA*5$2Lc_NxW8zLMul@@<(!Y_eQW=C!dC6B=8j(?=R8csJv4 zTttddz#Di!5%_BRQ;t1mPqE%#ubUL|u}PY8_ZML#EOsLWSYuSeu0a5RiWa>V>%%dm zuOycZJ5T{{T>vQjX^G)H`0R@bc3Uefx?{{T%s)gKHv7Ud`rz2`4mH&c+uQnQLc=N1_O01DIc7T*Pe_Wb+(t zUoQ_R1aP5AZbo_Z^f|7r^t-#57Cm!RlgJDk>`)NLcTAjoiha)J9S9ZIO95VW8?~EO zZ9ROR-;RsS^RXGW8ZhKf-A_jJUVre)@6hJ0^=}et{$V~J)7opTH78_v(iu!P@-uE! z*c*I;MOApf%Met8ge6@v=!g(eLxHIz4AHZX*C$# zl@#Rcih6&8Exbji+v<1sH&Ftah4=g9u)g-n|%eA zpK6mV(8Fsi;4G3zBa7ulWd(yWwpf6;W@ZWlW4!P-r=$3S>McK26Wi)0LQn}0l`;&U zEN3Kj`jEUFk}Ik4H-#+p{{RokJ*&+3D=ZPCNWgN_BIh7_9DO@iOz~4`zEx$@U+em{ zj2%B`cQ>}@gn1U)boaKNMU?j*Wzt0&#FF_+ivC^((&Uy@!!s3N;~@2`+Qx~Ziz#&r zJyIzw{>3`02(5q@Dq|u&>VOi;NdRH6j6uOQ+TUMkNo9Sb%Qdx>YphEo6FjJ^8i^!~ zjBdy|h~OLoFhStqd~tbWWu;%Aw%hE~wAXl#nz)&O;HUSp7_cZzyG_x}JR&h)FRJDa}`=~_j+vCnsXXfE$Al_m0JE((ZVJ+Bxo zxSyOzLMYrYbH8t*cz;@b8&0#*=CQSgdw;bdx@H%v_NZZDE-(y(?M;aj82OY8V`l+l z8%N>mpjs%x&m5Dc7*FLgG6w^4f}_pg4yE}!ah}6O)b+h%#QF?6mY{54p5`~PxspAN zB))0@-@8WNH?MXA?e4U5cWDiPy_3sJRfabToRXJT z=QsmD>S9I5Ir8()?3~(7YB|A8T1S)WeiOCP?ku5uq`9=XSj$i5K?=v2l}gC!@~CVE zJZ`}Guzp~+?(MW+uszlGlcdLerrOCg+I5>sv8ib-qeYu9=6Q?fNJtIARN~vsa)R2Yi^o`vlN-Nx)WGEx5<5U z{%MY9P@Yqj-2wT|@7%Epc+9&;P>nUvp|AW#@rIwQJPEAJ0=2EQ=G;bu$ax`-LW3)i zs?JBvmcopZK_$@mlgBslM7J94waQI)woqF+j%2-+gk;7U6vx1obGer}AY_6C-EYL+ zRrS?^>(W}@OBvZL5>9OFBvy}UgcS2(%wlvQ11a+q0u+$3UwGosUTN=Zd37rP0B=Kk zeFeNsziJW1Y^A{Ce(5510O0o_O-1h7x#-3%D76LaW2^BSYg(LoHj&_sJ`t!Un77xr za$DQ9B?v00Oo+tD%^PEt9ZAT^PJhPIXnJSF8<=LkwbGbsVVX~~G{Pu_jCej;5O7_H z?UG67X~J6T-X*fIn*ID@myf0rw=+d=8$58dQb;2*OAhGS4j=TV+3jYcbLZz^bHgM4w|g$jRm#Eqx9+%f?=q?^>?ZNm0vU2A(6iF6y3 z(L4e#?&RMr`iYh~WsYax_shVbo(t_v3^I(2U|heqm&2Y6^R-KRiz|x@sD_^!LF6t+ z+8IN9?YJ>TWA|7bVTtCs%`e4Qw#fFE{x6;g#FC#nJsB=yk-7Puq}t`2bs~X2fs#=|< zsiodr7_7AWo6R;YNGuC$1Tipchk_{!+)VAf10>@iLlUUi9Ey`pu)VbtPS?pMp>qN? zji{CrYiT9L!ib3ZgxFM-SN&MRvxOuu2eoZF_8Sp(ZxT-?=C~tjZ^?}mDjlb0HV?al zjB&sf&D&|y+1Cx+(aNvvRg+e1Z~4&V>UPBl?+vsxKS zQJk#xXDf5@2T-~2-M*^YoyD%Cx9@Krmn@JUF4^EO9N>9D@G~FIa;FSH0k()Vj}dBG z){h>Scd56M1=7m!h^6zu7W+e&LJ#`a908s)oDzC36W!{Xm6RHN-0g1}y=R=o3#gG6 z7?p9ovg%wre9e+oScNzPkCySY{{Rc#{jT{fZ=zEmWVbR2-IM?qlvuzcKg4j~bZoVuDr*}j(qO)JSm$N8ot9^LBT+1)EZf+Eq^o3S zCmf$tv9{8a!+L4Ff-;xa$rP6{>>f-=Elj&N{Gpr7P+0UawoV;@^q&d%cHZ;D5{J6D zm6~}Zx44?#Shqx7ytV>TOCu;o1aLQFmJCea+BSX=wUSe5d3@1ah~>GBWAfmbsA7OS z1I%R!!jOJZoUQ@v>(#4!T|KS-MN+Sag$9$fmg)8Lzip064JI|#Y;{{F&@C+N=XaY> z(pS$&%wip@=3X$2H}6vfU<1&z0;5vb!xFcLVes{kX(hLoL-wdlNBtYkw7C-b#Qy1( zCg~7xJOJBU==TrfP<5}Z=kI23F;S`zNx7d zokhzDO@NLV!bDAXPu{C2+@P-v2N>a)bSAS^DPQ7WfxM{HTgCmy0DM1WH6dV=>0;`_ z@l#Z}yRcV9VPx#(7`|jr+)BrAPo0$U$*l{!crJWBaSorajV{J}D5JTZBDc4D^=q53 z5G<1-Dg}(~+aM-0f*24Nqt!e~d8X?O_d3OtqFcYTY3X#bELO2>kxDZnX#3CLksItBT|8t0Fgt9a9vl4S2!%dQi_YWQaz)dos54G z>B8H>@GgycW`jX%=~~_y#M><{9i+E>lgK!S7~DvZ6O0jD=DDQYTllw6(6wz=$|&Zy zc}4BYBdkE@)GFlpKo9rNJu%(4h@pX+-d_{>G7T=?7{}Wr4;;H;FT&;2A0+2$obM#? zb6GZ;mW|?X4QjX1S;cLrTUmLGBbd5{EACDR_v_D05nU0)RE0MPy$okY4qnl%QH`f+ z52YEc?KODx#k-2$a@Tj!2E#*aNNn4?WxUgd%Bb4RKnQcIs$JOlhSGZry*xGJ=z{VV zv$~bGma-QNvZJ{ne8obgeIo?*4d3{qR?ry3s2zIRCA&C=MV$;Yst_A%^e3P`hmU&4 zgHh8i*!g<3tHyTQ6&C3e$e~aw?jRW#=Zgn%Q@L@TDjg_QN}|?Zm&_wKP4de`_WrDK zP2rt0{t_F_GEGL-^ftC3n&ZiDK1n1uA#L5V2Q6-Zor{K(aBZp!cW}jh9A0#i{hbUk zw1ad(gGs+&`Q$}EDhB)6`M|-!BQwWWQ{Q-A-s%L~aM!IVMNQ1|A~{ox9)4r(lU@D& zwx4c+ZY7DQoC%#~gh;KDPIm1hJfEgcI-2HDja4dbZ2tfiaa4kw+Lw{VUPXBJGqS;J zaXdm%Bgrh=n66IvN|6~rfH%+c5*vfSFk9)0b$iV&4NmPA8QRwF;YZnIPm)L98;3k% z7yH{rc7g~e9fav;s3Ek9;u7;Lh$Jwb>{xU2mCrdj=cgSj55(F|uMxf0n(p2RqnW2j zVTDw-axnN&=5WkDeCKlxgoD`Brk7-yjY?3Br)`Xfu`zr^e+a*ewP>|V$!5AH&e8#F zhE4OZ0LbzuQ^Rx6^dO#NN7Ot`Evy&Xt@gT_e37f0h$BLr^!fa@ABS4(^dB5}Lq)s3 zx`RWzYrR8JTjgm@n7J=-ipj%VZX*-63aW)yV0jWT;wSM>h{uI&H09E+BeK1+wzY^% zaE`IZyL@>d0(OE=rhAczr%E*)r7LW9I?|@JjqZ2a4y9`~q!KOF#OnTQB$u0f;uN6C z!mj|i><7#<$<1&0bs@a*e1_+17+?)zJC{0aH z-3+f3-e2k;6fN}aKI(gBiX?}0Y;ZSanX&AyKPv5_({#@ccy8tkyNPGC`JQLGeeBuo z{ION+>^wzjEM9i7E+9e+Mo~jB9k&oq*W0-3To1&H&0ZNd-pH?PyrM;rh}>Wi&PmT- zudt^rRj;C54IG?R?W;WJ#8$E2S+s^*R9kZLmAJS_+0-NOfru{ObYXIGMQ3<_R-aGs z_Nf`WOMBw*!w=muv`+YSL6OEY(2h9B6}O}7ei#1$gg?bsx|uJlOKUxyoJG-u(Z7+f zgeM`ATt09P3lX@X2_~Gj-WR#K({%@m;pe&XqY>Ogvvdlw?q+uhv4p9Nwpgnv0PuM0 z&z^2}-&4N>$xb|#C2N0A{s+wFbisdNZ+&>;OQ(pO?4&dyDotx zORef-oVIri0i1ON9DX2!T;1-sr)h7eYLR$$d%aS^ON(th+`*V6l^h{uV>a!mS|X|! z0leSia`E%hs~Vf7W_DtwO(?okZTegK=v?qa1@TsxNx=UAgmx47`F6GF8iJXHua-A# zxJGPt12xJ^WV(9Ct>gb-&iI5Gskes8aFH#hKwKK&*Rd(JktS;#A0JQ5xV7y-EN|j>Wpx;VM;B{+1>tU zay9fM#nw^W>G4SnF-dm=i8BdcQv`0tdgGk* zKGlh7;tfXa%Uao5s&d8Tc1(Z{dMWg+y&8RX;K?MKD%?cG6nJi0Jn%mAI^~XY&rA?8 z#!Gk{W)6I*tHtc3m)^h6QaSMT>HD{{O>O%AUV=j<(6wulkK}{YE=fP<*A>p|7uQ#@ zp!+0(+ssqu2PL-x4g#+|JvsEr;<`JXQ(DpO?jpO;-|Q_fn2M8b@`gdc7yynBan`wu zoknZ4w-%ax*tCxBF(l0q7?DulK3x9*3CJ6L z>vKWYCcN;Uj2NxtH#Yhs2a@4RJ4y}K<{9~p8Fua`_y-C>13y)?)g;xUzLMuh)F;#K zB8=!Zm*^dHD#hin831p1^O1l?Ju%r?+-R4w>d@)BU)wb6jW^D`c;=8vI!Io2jU&eG z#cp>3F_SLPK}-#3(ti}U{=ch^c)o6GabE74+gq>e=6ME>qU$2dT=OiWOIWS$8vSH} z&K+XC*m1zx9x^u^?RAeFf&;WG?L%4dPMLKZ>ZeGDQ4!n8IhEE&^Fs*PzHOvMgST-2 zAvxrev8nirK>G%vqUt&}yk#<}xAK@>T&W2;`US;Tg;^$>lH0ARjL$XD#y;uENo9QA;*0q)eVp#-E ztiuPP^El@nh`>B@2*thdgclwn)3tkhud~N!7xx7VZXlD_JazOn)rQ4k;@YWiyY4yb zVQWghOrmHN^ADb{}xY z=5oEta+uECbO7`f=sNb8+RcL78GNPl759vj$8OlJaytz-PMNHgW%-{D(n~D9U@AMY zVmkEc`qu_Bv?@yQ?7ud2;OJGSQMoRk=6SWYhb6uCl@_NAGKucsSs7;%tmDl<6e}PK zFvo&UdyYUpHzF4RV?cPzK5aPr74(8BSnDo4V6 z-dIAUIp=6OT%DtX>CXh#+GeX~J=)yfTxj!?Yp3~aV$G>z_L!tkIxm>vNH`~8WmY(B zYkvmVr;HO-(X~@1qrI*z?B}+R4B&Fxyw=7E$U9CBI&~T_UQG^}b!Hjly}X%LW(OpN z=N|i*{{Z8@^`&fcUhG}t>TQ9^qlmppd$LyPs_y%3{zdWQEk^eC+w5AT*A}ZFSmb{% zGY!X=*s7<~01gLpl6#LFL3Z97mKzp@WfyDyw>Za^dSk!oUVm?;HK&WMG}dwEtnn)` z8-R1SBOSmzcFsFjb*xE!szo$5(noZnQ0(zr6jDO%;F%8}=QyrLH5}#!VURI*BSX6k;P&7b}^=E zDFl*4(wRY!g({nmTn=zQJXcwH6wl%-X#`*@hYf?Ae69X|oYpk3GNX!ve-7!KwX-PJ zqa>1U*7G^LSneS3{+%SUZ%KSXcF?Zkb}!iO7ard*W5*olsWq9X-OlO(^BgF`gOhRM*2FNVLgv^g&uQnS61SfE+mqi>nfu@O5#+U>|0>&{JVYj@W+`hJ;l4Wyu5PZW0z zCDe-WZe_C{dH7pOM4rcX#&)Baqz4iNdRHAbl${#L?N_ z__{l5v_juzhC}A0n^rW2R&vHQX8?Sp;Yh&AAPkRC)I2w+Y8tJ)T4t;EIHQ5yQ6#cR zW+d%Vw{}NmBhgZWL%Yp_OcskUt zPE^+`-|*a1P7<_^HtSS_NwtD2YYislY_H$V05tI2GQ7J(ouEj&UxT=vxapDyTL+5U zNzv@*iWs8P085LQ?A73m30b2Gh~F&Cs|X}{nJ#4H?2(qD_yXBRpP|F3LwM3%t;CK? zDv0=53m-RPC|$q8SeyXds-5=uZ!D6-XC{@XO&*s8)r4e0Z6RSOk&%l%(t=T@^Aw2C z_9q|_$0$;$oL;H!bwe9c%az+pZEZiy+SB}FWpk!3w|Q|YY0oE>Xk@lzkoDcT0>F~t z`Bor+0Xu;LD_<1dYCbNtxq;-1K@Ij$U3Q7&BPF@#jxqlL*R5@8<4^FfhR=v5wiXsI za9|pA5JpS{JAeWi)id&vM0pu3*grE?SBWH_SJD&g!CpVH*y@&>V)CT@^GXVly@o=l zJbUtM=J8o;Ri{>@Zy9NJ_D;(7w(9$~YYMlfp&i#tda{RuH5AjYZ#4_~L~vinJ=t^6 z1(5#$_3Kws)b#HgX*arNnDRZuun>k=nHMJt4sq&5IXoW*qo?R1XGKd$m`@SpxMCY0 zpIYcAo-2F1ZKwoL$sChxA9X_y^YjM1%JZXF7a2i5d)u-~F3Ih!)s0e=X-Pf5JM=j? zw58Nx)GlOpdpRvU+gL7lBy+XIN?ugL{Hj#o5H|;sY~-3}hHorvF0b!3oo3qYq_>r1 zh)d^)ZPXUpNdctbHc17$a(SodJ|og$he)*hTU{hNE}rEr+s`r0^D9Q!$y^a1%f<_1 zxD~X%FYx4=C?O0_QdL(2sq6tb2Y}W>XxF;UpprR6cP1F5 zT`6Np+BT1RHsT5afJ%Ve^#eJs{{Y9HBGC0)Tb4I62TLhpiZzV+hEhfcQM7f*&p^Wm zJ5Ld&+-qJd0!zz=SgfqCr4vaBkz_Iw(;Si%H}8izRUauJ5=rcpH76>qUOoQppQ$uu z87)$OB>w z-h4!c9cJe0Nv(XS);aDB+dt7|$sC`(fKEG}YPPMZ>93*3XQHGqJ^ohy8%QC^bP)$w zo)*CK712teD%-L0w(#8t!|x2FUNO0!Pt}CeTgH+-(MFmnpI|>JEt0-n!U5A8dY-3- zg<5sv&q^*T{d}3U(q7_8Z1hPkox13HW~XbZNvTTK@!c5CHkjmKy$7Yrf9NCe>T3Om zSpNW?H{bX5{{Z)UWKy_Oxq;fGU}vX1<0RKZl0$N_tE2dm!rxPuPrbRG zIo@T0Hkl+bG`#$aD@h`5&lubeeqK)l$h8X%M(@TRA)44he=D(|Wr%Lh8o235$Xz6i9tVeMS zFTN#cr2ha)ja$oO^I-hnDIFPsCmi|@g}fe`K8V(u%G+PhB#z`V`H{v6=$nUrr-71B zTFm%-BOWR7MTkWEExo`HL9}d-Gf$nX&}WXG)zK&`$;V`289OB{&ph!}rHo!RirIAg zWRl*~iDQoelnAyAbjtkLBOfVI&i|WvYJzBl~cK-k) zR&6rw%fpr$=AQomXtOGbs6u14>%-(0ah@nq>^?p!%lRhh8bcvNCcuw{B?nIRjHn@eZkdrCr(DOeDTYOt8JgK(d99#~|3)1dJWK!h@CE0LU7C zH@5Koti^0}tHZ1{yUT9{zn>E$xm9^qAXG#?QI-n6V-h}WFs>iNGih3Wm#J!6uBZ>0 z7)_R!o96+f8FtwFz}#0SImUQ70OyaTNx?!Y^1N)9uVcRs(!)tKlvVAbyKdWQ{an#7 zYBS!+W2)Rwsp?BChHGoKOL*hhVQsg~H*+nct8n$DEO*kGEf8r{YU=*6IuQf)@9K?6G5y? zJWFR`Z4h|GA)Ne?o(o8epPQ#s&}5Jf4v+B@K+ttY@eFd_UR&!COC{7PZmT7%s~`v) z_k{pq<{WMC@g2360g$>-@^FT%UK89X(6e;xI_w-+;+riM8N=mE%3>(xmivFZmI71@Zd zN?3Z)jFWA{rJJ(VTeA5W!kpDeHoKdaR`>C18s7I}F0PtOPn?`Dkja7R^P``~J?j@< z*L6!z5G0yp=_Z?HWo{P9l~r1KO~i4M{1KN(;>SVeZa4^Yt$(d9fo7f}zi1-Ul0t?< z=Qas>N6aIQwv4_r(>NK)0;$IqovrH^ccV|Yd9G}&FC(5isTC%IPdjKTc62CPk)PgR z^sktdCkRTUmY4iAJyj^lsNbQB;h!05`fOUvw^5B^JwJS!h1rp9$&DqQH^&%K8Hz>I zEB91xIV4N1{6HpqT~hZ<5b5@}_b?+vapp}SfrBwAwNzzeIK#Ij4|>~+!`f7kG&fd| zTSPYj6cS!ILW^xb(8PBM2eS225)}FIz zHo85GGQ8T+RFu8N%(K0;aw6O-w8@y&R!8|+mkj4<+;D7M=y4AcT4-=gKzms{^q6lE ztema@#&>xV4yW$(jEwyiMHfm-t-lk@gXO6g=0uvb)8EQO(8mlAnI&n9VY2F@?t*j3 z?cX)a-*|THc#7Kf{8ecbQ3%YIW(kOqNDTQqI1iFf`^Kz8sM=d<-Ye4dy+-YIZ7)uq zX=a%NL_|!jg>{*T`LV_Z0boEQ1DWyP#O+5_x3aO*H2(lB!5A%c6MGUs;C2}A*P6O9 zjHAso{zg^ZRW4dq`KSJ8YbBEESK3C+R?XhUSwiicnKBe-{a+t;i~S~BuMt~YTo53& z9&OaH$PUQ1sopm)ZR?&o0!K>Y^gjW3w^GwBuVnF@I%W2t8LX`2nd5oD?}3Ai42&yr zgWkKlEhkpId(9SSMbzieMWw{EN^=~I1PaZN4&oc>pIYF=(SpRrtTeT~f6MhcsLG_U z^P^VHKAk@uO4rKzRqXZw1-xqeWDw_cgSJ@m+;hpm^c8+xMg_FA`xc36WSb^6WHK;N zNay>+kb80X@s$PruCr|y`dnAn8dTQ0cA@2@*75@+!X)`+jA552Ad*hrqP+$vq0{X| z5Te4c@DWZ~l=6OVyz|o>iu5rUs?}Ohe5o#-UsinW46dT7H#ei%yFEHvx5(yo9UlJx zU-15^VXHdska?EPjv$pWwQxFTb}`&!^PYK+3ivkjQSiRA3f#vO*Nkl%NfDh44ID_# z86&7@^OZYaZq_*p(f0S+MZ4kTEsJ*}*(9%SDcLJmXZZY1v~uN!fLj&bx~7TRgn zS|ydlmZ>(VJew?}=(C?Slw%RHsmU1yvN8$AMRL>1SMC5b#bB69XJm8+1#t82jwKg-yd~YVR2qZEqGD`4_uuSbcJvay3H6@>fuI@C5 z#jdEZLwF**5iCFIBn4kFobi*_vFZS>$#U8vrzWS(*z!B?8+dI@2HQrr`Jq!FK54`A zoOAT666!GAX;59e+XX@Ph;2$aVG;AUDLuJ_kU9I^LE!iLzr#-v>Jy`n6vrHK#<7L_ zE?KesOm_^i^}w!kTlitDX}S~59sQ-<^jm~((KKvO=RIw@y{$12fDkmGU5n$VZ&&$E=abHAu z?8R;1i=s9~9CF*XK*Ff=<2k6tIy=&zHl3|wml2AdA`)}9iR^h8ux|=@$4k zqXo`b#3PkAa4=3KABb)}Yijm4#>>RIjB#7ZZzNYy?rB*FMw)4IzaicJw;#eXy+}20 zRn|1Q?8K9Jg2wJ;!Ub6sepCJjA3#kPz9Q0_z!#QBSF@Ju?5`Rs$~Qj;Zy!t#Q`f1k zsAch}>0+v@RZ7yf-`211@;RMZtHM7G&T0G^3Ps`wqSRoL%SP0qit7G5VQoByR!CkY z-c~e4-7a$ba;v~onx%1XYocks9Jsx*ONdt8%V{&leA}3$gUx%OP?Z4rrZFM;m+a_p zN;0mM&b#3qI@Jn)j+p_k_=<&@3~GT!k%v!-8K zcp}1R?C!s?w3#HoiSKRRCc-3P6_#8(6Bc%<-L;hCIRk-4Pjk0pS5UFL)#sbT@IIL> zoEnstI&3%W-)V^30HGt1B4yiy85{oqyvp0Y@#$@*ySTiyv$VLky|;?VE$KqGryPNmvaSRSRQv_=(n+IO*e~fWQNuoT|iyJv0F(vl3Rfi5wtOHy%6AZV#BZk zoxg~*Ni3#Id$=_iZLHYe$0eNcJl4^u5vV(W%Cf`;Ht~{4$<4Y?be@~}5Ty07tEtVe z+n1JmEgBq1VhJVOf<|qqioX*1{V$N0M8|`#=#Y>;<;8 zO6+$!02h+ZHj%WI+qlv1ZD5XTOJ}n-v$f1F_A;u#cE-ED>Bv=x9)9u8Tas&@y}h=! zx&Fw44I;`J7I|g1xx6Tnt9fLXX(j}==wsRy*O7uk?jV|kV!3xBoT^GsnP_3^ei&)3 zZFO^h1>wAg?c^hLEbj=oVIr@VKvJ*+x31zx$__?mzo9mtcc|XmM)1RBc^$M~RG%cF zqF3`HX61(fo_b3e7#(|`6rC#DMX=NSF{tS`(>2V|MQ)ez$Y6$BdDcY-e?Vk*1&R5X z43UMdepqL``yqrS+}e90t+elmWho&!lP(qW8pj#W@W!jyW0l4#=c`V=Stuth6Z|yX z^Ib~iZo=FYPc}&yyr2+U6d8(l@oYRGvjeDf5+y8#z65 z#(CwK-~-2?Xu2Y4)=)ODrCCoErPrUdv~s+PS}dXYhzs%z4nFe^jA>iLo)%k6TNv~| z5znbhJQ)N;B9I3LU8@_ja-L>B@fqvK3C=3X?s>SXkd0>+)z@o&AMg)5vUy_E;f`h_ z4jxrNtoXq!qpu_q3Z61>!;U1|b787YsOf8QY%H8el1M>d+k*BRd0=?tVVLA?%WfeKSgQcUfS@Ka6l5a|WNxcEE{#0e{2m|G^eJt>v}H)1 z;`Z5m*uxnaN&>$oO3C*~CkLJeB~)#zBQ&bCrx-gm{dPSA!JaJDbq@&HUCSywvTu$; z@Rb3BFx)+Jfym14EHRKk-D}spjZ);pumQbeKsV#L;2-Je0l^qBe`0uZTCw zE4){&X&aReJl0aeUCX;@`E~+M(grq@Rx8mThAg!!i@RjHxPm!_u_t*fpzxh>&s^gi z=N0SW6$vliJx)wiaVlTBvRz(=T$b8&y7k*kR2H~p0Oa9v0Q@Ug!`>T~z@k= zW1BLB3<8jVIlxui*dzd|4hB19_0N?o1xi@Hcsr+euT6h6VNQ&x)Qg|qcRJ;sm7w?< zYZ=(INfAhlr*piAJAWM4gxzX(QQX>D+*?~uEZ1-{i4!l4#c&u9LXgdzbCq62dJV>v z;$Im_9-($)wbR)=!Evn?P|^(ikQJjvHI+(wTl)T=N2=7&)NHhW1NhfV z(na0M-)hd0!q7sFiXK*7t_<74<&bA-$c=DG5@xmbrfzS9cbYYnw>CGjMl}m~*xY$A zT))Z{kN_M;>PMPJ8IBJtTNfT7(KIg;YP$BL;SFW(H6I|flH1$JV`zZDRuhm0QZ@hp z+t)ciC|Z_Qz9F&JwHxb?1sRnM&B93RuPKIUrI1IJcUJ1zL@07{t(%~+rBj45$UaXM}@5IqYVs_ylFg*CK-%R zh*+0pWCscfLdw_x$&Wy=3FUn$dMsloKK<<0pI5h?C5%aF9n_5NK5`7q@yQuu&NGQ0rqRz#00%8hxjQu-A7k5DoUiXR z-<^zq8fmlZcDgKf7f``>acm;AoXh1c#NKwzssOS;O}|J4U&o|HZxk1kO>XM1DP)ss?i-Z}NU+!(?Hq2w?Q{#h8^gNA_2l}S z$m?PDbunp+3Pk9jG^pNV2b1JtK*`B|2O_S+scA<_heFp^RPhY98jO08xt$;@atf6S z>h~Eq8`KTN0;)(Wl{m_(d&wkfsaBSj`-w8CDsvoD=YP$(AtbSg(WdwsNcDdWyqadSXBe=zYqCtTL~c&ayO)xkeEB+PL-@y^nroB1yMT15?F}F3r=s`Sk^Xc(hTWJ`#Ny|jh%QGaA z$0G0*Okk{|1RRpAGB9&JhmD}|Hl2GNq4N_?y|T2pN$tQ_6HX$^JX5$h8;*Ggj-b}K z2vme$wcVLiQF7*w`50GP?zN_AdQ8IRFtgrBRyKrX3gLeohOUoQxz%4q@g1J0BFrt- z3=;^vu_ChM`t&@06^Y|*Fy896mO37vEYeu8mgq*{h2BA4t=Hu~oO95Mz2Z+8*xqQ- z*;%VgE%XlDouV{dz?||AC_u*t8ORvVyI!R=K|3qE{(sUqRSL3mO76=404q2D00hjq zywbF-YR^sZ#AI|(TK;$c*7Oiz=hmM0Q}X*Xj-14!Zw>$hWg=TXyd_>S(wU^7UYkgYb)CAd*-}p2cGc3aI3%{zUcEPD^Niq; z+vqxdzMbLg8&cN^4ZH~wCB(lnB7mSa)3-PSIO93(it|g&TfiF4)`hBgj{4&3PHiOF zTHDQMbg>D6+at$_@a#iv+^jYfU%X0`^oW&<$c!jG9FNkz<@?ZLk~*w z@$JG1McVAvlvbs+%Hy zp!KetOaK6II%2atLwqfC3+ch-AaXvtO>#pWI4^c?{#q94MsCuIXM@4u%}4$f{+a!U zai}h%ajq&PfRsohbyCtFFC-@Tpe2~L(-Pn*$T?cSggjdgr2(34Z(5G`O`7fANaZaX zJZ`Fze(+*lu|v6c9zw3!0)XD7;b+q#@STaDR9i&1iZga+nNUWqN~`4b1%^55X>}c6 z!|_|6FIKqo7$AX^`J&*lAp$C8j_e#`Il=Tb^-#jWt!3+>=gPd6(L8fk*1SfVShv-* ziQ=(_(RAy1uHm@1SoX%jKoPJ7*bL$KjO6g7ikno2TGFJleMV%9UY05K23v?HN$r%! zA=s;*Ct+0tZ2^_?qz!~t=C!EVYL8{6NiO+rwYw4_xkgN)iBxI&*M;CAifX#nF}3mR?HhN*rf!nB%FYTu!} zHJ=1(dVho?)paT5(`@c8HrX|m(1z*r@-PKo%-O)$SfAb;vB6j4ekEUM+MkLv;h;>T zPO;KrvOzxRcI=Wtw0XN(um&^FJQJMPIe#dK&2M!yvRp|7miIf_MpXuHIbU+0-X5)o z0B{?V_hGj%$zvE)iDdE`Ss`h*B*!wUg;>t#W9F#G1O;GzUB!77Sw~o{O}Si`k?$H< zH?~$#hB8}Q#)}$00C!axWAx}hI_Rt>b8^wlGq_s7W@JMGU5pyXtK z^{ZD}&~IMJWr9M595bv(3|GD@3^gdiE%j~wX3}>y;?g0yvyeVfq+&x3)#tjEn`v{s zftD*aQE7P+QcURzBthW07sVQVH9DT6xi8vxo6s_r}yhU5}Q3*vkG5BOM1 ztyxcHdlTEO%0)bI&jX@bs8n@%2h7Z_rC2Mk%2YEI6~EveTSd|mKQmsoxi{9~Zl3HI zq=n*3eUSq45Xhn36zyD?+Zj+X(HYdM1f=bIT;Zura`P8s)4WA{;wVdLw${1~TF2W> zrPMafGabdrM!z(ytTBrlTI*Om|?h(8L$t`8H)17 zj|Bn4ACzMriKA=rU1{$kK#*;ocy@!F`EopY=sN7rwsFr|^Zx)9_=eX=@wT0M?*mG^ z=JMoc04R;uCt^7rPw<{W>B$<_p(s*w-o|t>p39nSJ5?Uf|zrm%*=O(0{UmeO)A?*@Vu6=%OtM1MBOV7yD5%8yTHno+QYsZ z2Lup2g&Q>3_E+)U z!v>=#mv<9}M+}k4*pb0cX;Mm&Ol{Dkpkvpc^Ze?+i-xHG024F?(tghs@wJ!( za0!g{&rfXC9YQ^STJe6H;eQj|TE}AJ?Q0#P5H1QIxsq}ZU-OD-Ds4=+1 z0m0)n=N=)`bEMIwWHNW8^## zD?Z#qqH6k&i*6;jNGKYs;gnklu zheP;*XC|j?F7zu4gL53>Wm79C{m}>;a3PA456kkmEC|Y6cyq*$;d^adYT)Ynt2Mmg z(1IkIKxEvdqygdz;E1D%kSmgYLJxlr#9s|2vt%vw$)ePCxXg~r3~Mj$l#EUDXDf$6 z*9BN{gHooq;N3gAF-_`u@{>zL!}N=- zQrpIQ1=JG3Jk!B%Yi83IKW{Kgi9O*iYHwmfBG?Ct-M6hp>S-}M{v^PIC z<|i8o$mG_BkK@k;Xj;_Tns{zzn)>Q%!KhBQt8kAniM9r5zV0VI3T<8rk|bdjAe*yS zw_n854~VH4$wk`wKR@c`E}h~5sa{8_U6{qq%A1!|$W>ws9CCQ=gPPp4@l4Xfut70Y zY>kL{AlEzp00}j&o#1ULUe?_%<$?%2lJWW23J7OS+rl!aAmfnAM+8>y!`ll;`iy$>Q0dU4MY&7fPnj-`{S9&Iu0C+8qiCd~{d(N7Wq$>(qq0j# zuI?pejxi$@Sji_O_QP#~Pi@DqS}99W%Rw`qwk6>DD%0Cc2vBF|?8+ zIU&wK1ai3QbKAK&BmhlW(ywf+JUZ87Pq?&Zoa9P8#yv;O2s^)A40Zy%{K~XyNmPSx zn}02|TJ-cQ1%j&xwbJ@|{szo($z!F%dRpGv7LXYLV(H6ski|gn^JjuV!2soTod?8M zx^2O0DDN3(ifbs~3lkA*G9T=-K#yM>{;(rspm*`1O|_bW3o zVn{v95`L#O*$!0`Dvo@|%sSgx-FRww^uw#mad)X*NRmo?*;yinH+7dkGJ*Dsh9ybv z7(PR-zYb|vx~1iex4MPQXH#85OYbJ=MGRJL6mRC8m{g3&&KMt)bbAVdthMw8r{RqX z%S4hZO)(%yfibPNP{)@>B{u!jxe>B4^CF(05#hIb9PoIl=eg9c);&OZS2q_IE*QY6 zxxmmR* zY3?MDwfx)OMH^#B>QCK33t$4uz#J|IZ=&8ZjEs<@b9)N;JnpRLH4n179`*v7jXr0) zJwH#didYWy1bTI@L&Whz;mL*Aj2k(mSZ*bfMM&TeBB*%@Angp})PdUrBT~;>RELMb zu4BjAhM#lc>yPay*5cMYO(X_UADyu7*|?F7*v3X!XXOlV4bZQKnx{!eR_*tg)S*#1 zP4qZ>Zx?B=t7=c=+-ed>b#HML(cH%zF+e`cv5OuC=^?jP4}zl^*h7k+OZ#Vu?Bpvu z+iCWeMmrl>WQszlJegKFnE?5LNC5L#@)#Y(WCAY;_)5ao@;xI^)-;_^0`gly3&kXC z&$rBY$@!dZhB2Hj3P>@Gli%O?o5Ok*fVb90!%__)fnV)vu!j+}g-eawepNUaB(o^s z9FD5kh(f=zqP14ly*^f2oJyRh9%k&kmj3|o4oAc=Eysu@mruPGwwgV>GwM^_#cH$O zq;B&60HUhHu)3?V6O~rps=$nv(9!fS4cT~i!>O$5AK8&daeB6ieRT>+8W~yC$PQP{ zMur@(Dj1b@IodiH*Gln+g`m2+(dM%^NK0GG6Efo`1RQiY1RgVxYl76gHR26DHMG;O zacevc`=^n2N*Qi9MyusH&SpJXcw#fiDd}NxH76%dq#A3kw)^aiCZioxlV6JUMs<<4 z@f1EK)#kmjI#JW_u59fmdq1`rQWS|ARE-p>oNfxZ0pnIVJ6XHG5!q>rXP_pKV!P3A zFK#^PVUZdsG7Bt6Z{Ah%!l1zlu&Bt|wZ-_DYSx;4)|aa5t$kx?Zf|6jA`!(TlbMxD z`Dz<^X@MwPVBSF`X>`3_X$7^C+*^H$-uKN|tm9*Dj9`#qA8ygW1da)58L)ZBtwJ91 zlR0bDP7Oy>ss6#xzvvZb{{VhPShDcWlW}x{4KCFg7%`Dz0H?lveLekws>qEwStrMm zt(J(UOK^JrdB?E&3p!r67l$)zIp3wWS{YPjp+DU|tLfc(ecTn{mUl*VoeFQ~(*FS0 zQ>vCtSyNSKzizhvx*oAC>2YV~A;>?WuNc<#4R+_ns|BU?&6b-l`mtuyOC#`3RwXJq zJ$`JCr=BSB7PUS0oqpm*j}S=Fs<9ggQ-k&Qru;ea9*=(w#;L99)>ijQ;q49m@>0jsW1bXPNe^V>`P=Nzj#uGG8rC2c2PZ~2aRuz%bh$hebIQzLd$2Enf{6)Idq|*GC@bOJlv9{l-6)Fdn`=|L2@AEQ#=x3u1+yZlz zTC!Gcea6a@PWSx(0L=3*8|c?p8qL* zOHhgJW`XRQK#@uu#Nt0NE936EourJM9y!KOgm{0%9y++a(qq&03zF9Mu-n@*M+lAx z+j1ms%r=ex04Vvs`z(3OBH~o1C(7-hLh+lwm+E!8uY|1h8|`{XE-z;>>rqHmjBDnw zw(~!QR1R(=7#Lh_1OPecd^h5c59@m7x8i*}!n(ctU7K?(vq5YcGam{RyufYDNZbsD zOqM?=SR2B#YH~OBt@gdDyz?Q|E-c#BEQH7v8E`_o1yu^$0nQnI_T?8eO($Nn(&FMLp~qPI!rQnS zhMwr-_<+Vgr>B2UL5ztkB=H`jy2ip=oi@~Nof1HeD{yhoQZPMz2TECPWr+G{)d)I(+b()6VxD1*MSi9j)D^s@jmv42lUm{!qcW?_4&c9fjY-7PGn~CzjgB zWRGZ<5yu$Q{&px?S(!_C6r-3P!PM7TR3#M;beatfR+jS44KitslUz@E z6sRViFdqpP0rN;OkU?b%Hu8E3x{cm}s%at!;kB1fC=xLmgAi5V1;-p?@W-`$<$O(8 zFM2vVZNH!Oq3zMa#;3!-ndN$o^q2QqW~&g@4Ykl)tCWJ=krl*1C!Gjo+R?7$1a8YT zY^+oiYPqJqo1toU(A`U_Y8q{{4uO{4;R`BX7F;P_11v~LIUuoIf&f-(8cS+kC$Q3> zXr)W%xD4ce^lpDKrFYs4p?D!(-H(=j?)3vgeN@M!t=6A&Z)a}^OF*k}8#;iyq*RcM z5?g4&`ACc~AP`5dMlh=dC>#@uQgN40>&&&{En`cc!1h`i*ZyD%WJCoUe6OwC9e7#4*a!jfF$ZsJ@ zq;c~*1a?y3bt7>EdMF)*L9JZLs>2_NY}6SfWwp8~mS|?iH?Dg!gO0c$j=0AqPG>tk zw)y^-H-)1eKhOHH6!L0vG|fMVnKc-oc^1|L-Q|TD+E`#OPJ=aLNY=F&?WWaikC&-I z7@FmG6^imcS9_|E3oiWU-#uz+{{XSHzZGe4=)m5^EGi~~*^I3rVYP>TN|xj4(wnE~ z^XdL7z0wSkJ+-B!&zU4{7)ue2_VoNS=tt6~r5MtaifZXyTW8&W!Tf0^pG zark$|x@U#1HH~7zOG_CixSvgy^+HI_OGNIVki~jzIR5}xz@7>JxK>1b>NQ&Pp;^ZUBjrwYFEr%uWV%9nH&AJ{_nkY zHl7Ezcw-kD!D-klA1cm5K4G~=0B&}&@woF_Q~I7NGNCGsHKR#AHSgzRmanzL%}OaX zWcBl3rOnu3p8DZnw3k7iX3i2ewsttl=p(G%QqKDB)_X`V>|>S#D(=%}h|2@1PcecZ zPn~~v)qw=4$jGU5?+n^$x|{~zTXeadUMTll%$u_tGXTLsUyv~b5PO51Qt6f&ey^o# zI<@Wor)>t6EZ$%&C=uF(~_?RC83zXj7NE+ge)p{PbYgqKW*@jTktO19aC5Q`^o=~zgD-g@_5Z^TVUyd!{@zssi zr3SNqtjZ#@8;!Zf?crlhq9s2(zj?9Ku&j&gu`T5CY0IeTx>T`Q+}hgRJ0-cd*#t<^ zOtZ2?;6oNhr*5opS?$$2aNoZMbY#q%jdW{eOv@wfsryK=TcJh!Qb zmK~`&n&|CrkE8ql0MDVvQZ-bSmY>)4`5uGep9M|gofRUmnmrpsf#ibGS})&S?qzmq zNN=6bmmY9-<}d<)paxz1EPHPjY5E`buy3`&B))f%fV+ERcQxC`;hW8C!d?;@UF3G~ z+4*y_wnpX{JBB-tn~#3Acf@y)Y2OiaTicdl3|3R_+B1yep;qPFV3dz1w$UQdwP^Ky zE>zWJ(pj#&nc-ylR~ccok4)#Beca%Iiti)5zP-4-)NZ2GtcI_qNgciIjfB&f*_JS_ z7A?%U18~V)<&y_v513%|&v9O7rTE(4!?wN^@azu|lKGss zm>ELG(@Kg%0N*ieae@vTaa@B~*M8B(_WrdtrzP~KfX{3H<1 z6|9LI=p}%pdD<}e!z*sw0^=l%4tS~0jjXj;;*U>Mouy;}_{3UcFlAd+`7?NCXR&@|{ypW;1hOi4V*qLC&Iw`koWE4~Lj7Gipyy=%<=AnH*c z61}UlnC<0?LaFkQaK*5CH5gHib$?Ikc^x-~ymP6a zJ5OupdD=(1X%S*k`{_o0ZZO5G6Hs$E9?khF~KLYnv`p}$=>O8>*e{FR-7kEIK?KL z`@H`EBYFHybLT-1_IM9Et40ji$T`Pql)PH*n(^Jl(G``E(PZQ@k~-Hb;)t!Ud{w5S zzS}!>3ot@gAA19j!nq#_X|wBkR;pp1L3;(nZ3CH^K>4!W`+$1avqFSiT-2>^^E{fh zT6~RO<;`2ex(oQeO+G}_C%cd!wz9UAD4hJn?_v)aQ3YT zcNWWRk=+RlVWqR(m6LY%DLjj{fdIoULw^MRJ_?>b`$U(Q*6JWop<;{d(!R-Xvb?e) z45@HbhTN>nf(Zwf&^6ht!&)x2J*V%Z3+7%dw!z^l(U!{<82db6Fv!4F$z0c)iHv=t zl$Fk!R3Rjtk?Yzq@a5)(_PK8^8rJ$drIt-X<6{)L0%_FX1VU8`y+L z9^!jzojOS7knUAgC8G<1cYk*bigCdrFAeK@Mz5<42gI-~#8-@wE%cX6(_2fnT(sdCNJZ<9y^``9j|%vn<~yk*)qk`!`4>*SLXQ;6$stJ{*}w`n7G}u`6rAG*wy9E1 z50xhT)&BsmGddLDs;Jg&EpGaoJ|x$zW$^9&g|&vIYi=6Yt>vO5vBJqAla?|sIbboK z4;@A;k<#=}v(KsNv5VBcywjwKV!nnOTp=KtFlT09HXMXjI0WG16|bRP#jm}#gCtVN zExH|s-%?nknBeYlwa1yt9#k>UQ`Vr?G@VAvTa_S>QM9l@7y3l^?uv&jSgg+~#-{*d zc1G=^f<|+vnN*BthK`)urQ4^O#|pCMwCS|{KU^TTP(6 zHgH`@ZwHqOM|TrEspY)swUwigjkv}zF@Q2S2V3kP^x^*il0W^$S+ z{rYc}vxU@rE2>=huT!^$Bh)SQ`)>XDIm{Lr$Vb50>7&*c8t(_9b#d>X=t8r&$ z*Hh)Dc*xohKo=)G01k3FY;7BNHVyv(if(*4@ka91&9qu{@>bfK+4BlTeQ4+(?9Ajz?U7pZ@?~ImUCtMZv+X7~_bawf3@im!78q;#;ZW@NT7J zsj!aqW%I(E0P*2Q_UzA4H}@q8;~tqew1h)EZ^;6qW)tPrV`epN^e+XPxUC81!9Q&%`%6&bzCdNu!&~lT4Ki ziVJjiV81H6o^jOr*6)h7Kert^^)3uT3)_g$88*mdjhP8hGr%d=f&m>fiolmz@g}Ki zBed10yLtBq)5XJio=)wBnD^xrr9m^925vF>x>e9P%-qK^Yyf*9SaM z)6SD+;(bR~(c{yv{?RSGZ}v&cylX6=O2?0tMnT9ORPs0jhIMCIxk)ADwmqyi5_IS# zQC{8M{_}GF+f&ypZJ$z#%-rHgnpd=w_h{Zzc_t|CNF=mimNId$C{h@apQ-q(Qnmil zVWe9}X>A43wMiWiFO?LMA>6a>mv@#k8pNeToVF7!(`z0hFKaEohp)7WZeWx_I>~UP zK+JZkkPig67(C=)16;1AZM3~HUsJrXx4IWaC6Y};aV@c1lEHAqFl=$d1JLna%Ifkq zjay35XEc0stI43e%c4;aH|T>MAzEBJoS z9Wzf0q(yGmC8H9=^2D;tilN2BNP}!eh*sP@w>-wAp4VI+6rRoPVZO0_`B_w624-A* z!|!{K%zD?2>H2HfT56Kr#pm5kZf)&=jebJunKpuO6c+<>^gIl10E&$`JsMxv`~w^lv}jU z5@uN%LFMqoHzkfnOL?C*Sg|{vAJgX4{wLhTuN1J`#Tv^4k_e60mQpi<2vdSEcm#lR zT$F3_;_6eq`D1kYbW8DPr8!2n5|pDGYVY4${uWB#J@hNE1OP(aAjb#ZTYZS@-opp{U%hFyWr{0qOgIj>f;u(Q$c3^#gw(%oCASpLrj zMB}uZju&=1-9PW$`7=j+q;zCgNp|+)PM~NnkK>&NJ5^P&-pR7vOuHOH#VEv5Q5z zvehkR5nf%u(#dZSSc^1Czi5 zz8+lYTHk>#G_7A&WtI!ncx|rDwao3Z*%5+AGC0@{{kUAJjAw?=UOEtiQ(ac1VIb|v z9d$G8blrOE!1|T#ritO3d8CyfhwPeqiKhE{FYf%-apfwl;swTWuqiu1-7Suf;!h4} zRu`9c@n(4J2NWo*c8U)NXN<3Z%#)b z^P1X}CsD~XmAw4z*yoK&N<7y7k=p2f9M-%S;hk37#IRjoL4R*0k!wl!c_Gp$V+VU5 zK%-<#KvmB1v@4~D!R1EZZUd>Vc71MH{6TH4UEFA~OJ+*q8?IzepDIs1 z03>=H)y0@$s!k8t$=xfYov!;mK1W^_ys4|{e(hiW0Y_BuJ=T}ud%a0DR1vzQt!D;I zav&g#zCdheAnohZ*126O6*JsSryfu-l0g7(3^yJQf8F4c%iAWs6?G^tJU2D8shd}M zQ59c?h_NezJ79tMS1oIKYXz>UWBrjU?bGgACXZoDV5^3ZZg5WB!zTsLI2bsu9|=;d zrOPeT`@gMEp|6Oj@Snba9=j!VYc%xRZLG;-@J+n-QfhD|y`{C;jjYYG?TLgUHO|K+ zh%zZ}yh|%?4026Jd!g!DzN4hQ*oM{%11l@rUAdS$0kzQiYl5t*N7L{=j}EP9VPiVs ze8PNjH(=4kssK_QyW}&>4(-IA*Fy0I zi3Wz(cGs{)ro7TMyE)iApm4k~&pe3vq@It%!BQ4ODuNr6mU~& zmBx1`+$4OSfEvTQvzqfuyVH%;NsrBOqr&ZYcmV#KYaS67YLK?xxKCjzrItNm|V(k`t=n3k6EM8TeUa^Pdoaap8K z51ZxdS3yJy(fpt(a1^jSbo;~n=9}UtZx8sNO7Qjfi8U!Mbyh@&%C?D+7jT1kGKK>^ z_Tck^NFZs3%kXLQNw;t7pr?qc{u?7d!t zwfCF?Hx>hiCaGTde%8{~TibaA*9C1%RFjVn)904R>eled36)xAG8NkyV*ImtQef^N4WO{# z4^8-i3TeIzzVKJsiThp4-CEs7P{$N+bLSOgEFD;7kYE)fY1}f(yoRkjmiCZbKu?_( zzo$HS86kq)5&G8dtKs|mh-H%gP0XxZ4~X2hIvgfpW?~P!8jP!P*`6kqFhXX1% zus}i1(24-T#~JEzjpDx%YBRjrYHJr#T*Gs7Z!#oaTxb$zMLW8ZRYAb+-FsE<2whw+ zh5SLM7e8sCC7X)cV`&u=w|TbN>FGo*?omPS^ROcO84 z<2>N<2|U+@kpGE$8Fqw4MGj(bbAz3|qU zx-!^b+|O=Vw%XWSJW7u2%YqTJ!Sy&GjGPl({{V{o1LN&t=*Tp$v?~Wh5zDj7P0CbY zumt?M&peVlE<2qv{^wTFW|1uZ(;lYlc=I;V?mG|OkV zkl0UhSVkFinJpR?pJskE5(&w zSu*z!qbVw^h1i!sa>JkE1Dek_+Md6s_;tKHYjU?1T69Y#%!Lv-HpM-;W@1RjV|MBH zLC-u_L!z#~ZQ+~g=d;qZy)}xg!uD2_B!Wh9C!E(PRF;ulTocJsq#PRKsFgQow#TCC zN>bN$Nv7NCclP=Ysp2gObiH6}4Q_x5a@Or+@{hjkd2XYzTo4E%w0u|Li;Z~cw^lbX z!+ob*tkFpzBoX{dNavm^(bRQ+5Nlo?j(tYLduDm>V4lv%d2Qv!(KqiF=0SjF1EA-O zj)j{3xv1ze0db}*i^y4_a!{YB`EQak z1~!gQP}@UgQZlNdsrO%TUe=q7mG@d4XNojSy+_6~jVjs;XvD8|Bdv^<(u9=xYZ+Pg znKF@XIl^v|QJfm1;lBy^f_-}S-oaW4Z6K9QFMWqivTj6IRVq&XtS~W^EDAQ#J#WIx zdw+i}qpQnle{+4JY4?%h*hI0bn}f5fX9xJW$nC{f@a}`G=^icAH7V_FmfG~N+Z_2Z z0@)mG8T~({eI_21Wfv#EL&>XBQFccs;vWl5{kf;fGNAZoVjgFq49ggPO3)!W7&XLNgY{o1!io|(r z!OVmbcYN8!VCqIPlx_W47eY=~zkksbydU8ccj72u)nwAOAF)pzyzsT*^C47afbE21 zApC=KbB(doh{ zc$372J1tTR>lL$)RXUBejns%la!Vr*n*m<~&2D#e=L5H4;17ttCGi)CQ%JWO6^XrB zFJ#$eb09{-l0vkq2I5IOcrCfPEJ=!#rMpK$lS;{prQg1{@cz>B+DRVv-q1xONOv=Jofgmb#XvnyOhv73IyiiIU=IB0JoYH#!gp3UQ9yd(?gxxYbuh)@8JbrSRUJ zq+GtAsf#0SFD18CA2OD2l;yn(Z9NEJI>T>c8Bkx(Wdtmdf123X;@<6+;_NWt4PD$BbCmo3k3rFRkmITeZGp8`$c z^s~FQw$ql=2IchP?>a-cMxQK>gtE@c@#x?Z8O{j3z$%VJfNHLl0y;!$Q_kv^2^w# zvR|p@Ll)}dYE_coU+eBVZ-v%gD75h!$#HjOKAAf+N@OkPxLCp?_ZcEICnTH}@6v03 z9vLrY-Kt$|SHgk3XRmJE51_5D2%Sq#)mka^xsy(eGOY0lBqfK+M%6+(?&LA))1Eo2 zu|2O=)9?>pUWFZx>@s`Obz-3E+2^q%(WLHmf6l>ww zW+N#f0J^Tf|^nqHZ!-Y$_8_i#;RJRf6; zBR3m}^N7YL+mhKVn?jG2zeXzxt5a}l*CK^yPHIM^TG0vsZoP$NYr4JDsex_`5KjcK z%IX6#4g!_uBb6_nhKlBW}Z1iY*}NmO89UCEd5#r?iUMoX*BC zD?c;+;n=86#~ZQ*bUJpAs@`jt4X;TWNpfSpx`TTXA@b*sU^w8PJ8nA;a!(b9rB5B! zuVV(8WgL2hlcL*8EMy>%unJol`9otk?Onyqj;DKnJBPf~mf~y6H;H18F~<$dDt*OP z#s@r{l0C7dY7mWhDZ&#<~x9S>iiFFAzE6CF3Iigts2nJAR zKQHOq9dTU@`W}yOaGDeqO6CVpuFR;b z_i@WG=il+Ij~HIvjb7VKv1W#AnB;LXC}v%S20maw`{0s6;Yb4{5%gZ!LOMS8x2}d* zh|}h}S}T4-tfbMkJIO39V+}l!uvw&bZ!Dex9S2f78n5Af4@$R!O;1+H(_*xi;#gic zQv|S)zED?|%D-&j?i`Y9CAB8-_N5dN+Fj~*aYQGcWsTZL4(Ejt##eXl$N{zv6mC3` zoqOY3%RPTrk4nmJ5Yi%BMgjXyz0@Ll65!N^7Hwe z@aKforMuJhUv-Oi*IJ&V;LTT6zR^yf0?%PCmvb6T5x9y=t&CY(R~ae?%bt!8A(Wgu ztC=om^5c-CN>7-`+-IH#UjG37V^(!9h+3zJ^t+D_++69&rom{}Qc2~_9m|V(j>y&I zl1#|{S{=>18{6*@&k?G4k5JOJJH0k3B7d<-Bn>Z-7!Jzpp@7@KBOGM+Ip+f!cuX}) z>Qy#NWViJ_31cx3pyNgA`nR(3^E(OURnqREL4{jM6b`rn8n1XeM!E5>iLaeENw9(| z(9dj*s7r1vi#^(|(G+KR3p1%hg(?RJaSOs|+V-ofYLV#I3Z8bN7SaNX93nX-AywS@ zY)X9Gfr4|v9s2Dv;w7Jjp}jh1hOTTZyod;iFP)q&zS|L8cuF)XKP15F0}SRAMl3g0|C1@4bNcyGoM-(8V0H6K=)$P zP`yATow8AGWdU+>cwBn$0LOagZG2K5-G|$j#?YUdJ9a7$v160@VzG6JJWB*R>cf9$ z<;!<-E5?yJtjJ`&c^Ip+1V89+g#es7g4qW&tUN2?d*2fs8q)s&O?$+OdAHqLt41S= zb8p=kH55Ou-g5oh@Iq?;iP2UoZthH$NcrEf8iIr*Zg04 z_K9sZzME^L+_s-D$}ZV$qr_Rp6czIZPZ=r*!6ZzgrK1nu@H=uoSQaneje(vF1v2}MZKlQy74`n_Rk!HO-6Sz!Jn1#V>>=T zQL}$yNjs0+tZLXJIvx+!W*#uO zvb(;L@glQX;g)qpaPG{ce2SwOPfYUJBw!A2RoARu!%-TO$aQ9sf{sr={=VLo&S-J| zI<~pfB9~0G32y`@5WY*1<_)q%x7Y5r4o@JSPkcwcy89B%9lR+RF~}b2^QKs>{gY6AUFf&E&1|K zrfbl_Vbh}PUrm3n)WQ?J<==0}^z9&Mns34e)SF0-eNyJ>Y^~ujOE=ptKo|v4)VAUr zf=)(w2LVk#5&2pMo#9zE%>o@T>I-{kt65tH3$Z0djHc#qyThr;9ON7t=X7t0I+urZ zRMV`W({3WOlwKpZmQQ5hWWep%`aU{Ef}GkTZZV0X3DT_=Cj0BbrDPQM(o~ zNQ)|I)*B|77?FUmrrr1l0oV-jlg)HmMz3q(ZF5oZ^}Uj_!9C29-Fd3=O%=bKWOo3K zuZVtF&Npt!U=HTvuNv{D{hCf*zl(pTUqa&I-@UQvJ|5Fz(5*$JZ5fRriZIBVH?po7 zi02tOJx)m{C#^vziS%6#-cPma7O8TO!I)ZQFN1Fv@RQ%Cr>+J=dG~}of2;V1#F}=O zacyT5cXIh=NaB32UU_VOy!7L@e`9N?NfX0o zN#b>Kw$Idz!`b4Zsi&v;9DbML^wz#2>GI8S7={?`r7UFmB44vhoVV&v{{X08z0j9U z(Qc)w3PWtlBlvu(Y(5 zghp2L3@)-F6^+Bmg#q^f2I5z73l5>+_$>TEqukG=X!bC9lFJNscIz2g6nu#x&e>e6 zJb;A;KP`YHWsjp%9}GoR3N+s=bZ+X`P2ac9#x!Vq7;@b4>wgT~#Wb3(p$w2Ew6@DF z%rX6*J9lYRWP|0h5STa$PtL4J$Ti*g7etR&@lBkU#@^#fyGf#g+9q;_J8+Rk=Piu> z;2e&CovQk?L1N7HqzW8$r*lBf%kEO)b$?}>%J55 z6@j&|w3AfRZOyE)s!J?0J1RR%^6XvB=Mr!-2;`8$t`KQSzbhJ5sm!AjsFn4?=N}^Na%5!Sv)W{?&eMd&pZ*64LZ}&+QlE*A1UKtx1R1dhAf4Wo% z`C*#nbw3sOi{dYfZS94?x0d>7?c;_vD2tP{WR6e2@~*ghH5BHx{=WmBr?qlw4O`Fp z-0t*$3yZ7v0H{D$zqlG>UD`;^7_=5P$@5|$j?tM!TfSLxRlkf72IdRSYyJ_`Zu~yC zlf!E*-=S?Ts6u5kX8B0bsl0gj2PX{A&zVkrRp(9ac-BHeVbS} zmgNZ`jFc>movhf-YpvHLPYR}!r}!Jg(OhfSx_G|6w}u&pU<<>Rjzs5hU>6ONa4<@S zcZPge`eZYo6y54KEnI}1bx<~_;bb{A-VBYj-0Y+mX07>LvuBxyZoRS z$L1iMBNE6${KT)Aarf9)T}o~`q;tlnbGEhf;?%rLYi~OrBK;EI?Jn~O!L@<0%V!&z zjxsu$!tjrVFMKa8(30}r;v0qx!DA}HhH;L6&#iOXq#iM{@dmWohOG=bz0cV$ZS8cp zWot>~kTtra%F&-FmWDiTV6Dj9xh%Pt+U~yv?9j!k-AFAi-p=g76tXJI<{lNyK}c0( z1hG;|u?j}g+d~wo(`)Yqg>|Z=otxO3#>RV(9gAWu-q8iM!>rTE4#xsjS64uGZQZz> ze**OYisZE)1Z$oj)bx1g(T1dKQ6wpDWVnjq1kCM_N646wRDh&+>c>4rhlwT{)HWAT zTi@N^G;l$BVr5x(NUFaxp$qrdC4AA;f__}b{l9Of_{!_U*S6OauA3y62`#3v<|V9g z!jj7xW)Zl93t>*x4f65J93>?wxjmoWYi6R7TYe@!x8faA@JkDLeoK3EaIz_D5P?-> z4c8gQ2l&-(eoM5~o=a(_)XlW<#z0bxzErFRV+4lCi#cPT-YCZa)){?9{ruUr$o$)k z$tL*aBb7%v*rfje%RoNpA1e&w8Pn87#-Ro(UZnKPh9nBRFsyUUm`m@YprO-re8c-J)|mH2Gkp5VS+dA#H>1;jvVb9ah^if zjn{~8ykImP2UD6UR@&$6-)w=wl*agtmvtN8np1{ zsduQokrvUsLQ8kEc^7bJIr;IC*^mMQDXJGA5w$BlPWMc)xwFG#F5p|t*&cbbKD>c%i)L6qkwx2q0AtsCx(mv7GI0TW&>ZBev zq~PZht;NQCve4>01EefgF(H#}j7MZJN{Z^k<~z>dMt3>%Jf7IDt5uH1#?@|i+T=J! zi7lX99y!U4kLg?vje9niI@``!At8c*`6LWyuTG=!IIRnaE<8u5Lt$$nF|pk&y`zi~ zmOnxI(xj>TIHdL7=5y!gZJ3&r66#(*)I>UNn|Q4)yIR_6llcoIvDz3)c?DFFy_Dpt z1LXh+2O~#BI;pd}x`$ChW|2g3HLlof)f6X`h_BEp?fc|mRGgi}S+LPA_225&cFghl>Z03m&AUkyf@dJqv#iR zeopJ7b9O{I+6<+oAZMNfuN?hPTF~&OiKprodSH?W@1VTZqFd2AZ3~2KDhzzX_lGT! zf;a?oUB0hvqG?usBfHmGZdXW+3P@uv5?Mz8Mv`YFv||j&Ph5o|kD9i<;vFJ*CDiPj zL7u`(d93v1wV2w;zAK3a@K}({=^EpD;O-?!M#qne!%9{CtR`6JV(R@7BCwL7gG zLqEiOofAOt^hd&x+?!oO@+hZ>rOHI@w6K>ChCnxM7%T^MX0?BK^ZXZvd1jhvrO{#% zJd94}F`*|X@%q;nY4L-_7MFJsS?StJLoLCQOj+C49*D~7MX%G)0N!g4}#efYNMe>f+7+;ueISjyqT^`a6I|Vv&RTF*AcfuMip1G;b zZFn|Vi0RXeRXqmh zRUS1V>Nm67Txvt@PkFNDXhfc2%9W9RZEj1+Bg&pFOOAd21BJUw@15{qk`k{GcO`h9a=?j2$0 z9$9H7d_8z#r8_~T6NK>InQ0H53xOHAD3DFF0F{js9P`&Cbr?NQHBM)m4RYV?P}^PH z`D&kMEL7pyR1g9XaLAZqcOSZUF;aR4(I>gmZz20csd@mK)>b({%bpl|az;l(&JRPU z;hiHyvUIi($k#Jn+XRv;nIqg4(EjxU4>9){95ZezTm>K^$yJ+JMJ9_c!-Rl=ArD%F3){UpF z=Zke|q=MB7%1p7No%v*uJhf4@=OlY$EUBl#YpHxolStBhHw69}w4JQ3uY@zBK{7<= z%MIpWfXD`RfHwv1tlaO1JZr96=-N0((%wrrPm?s(vl(#XEFFZ)xD$dw7$sG)l>~4o zM-5Tct1bMW_0akx-CA*{O>O3M)A*xW(lyHkYdNKs`$e+2xUrI1OGi62+kz{WAn}4f z*&W4pFzLFUy<>~JQ>R5L{K9e`QS?!e51}W6{3f|S3wWmb^T$i5YSLOi+HI1@HrD1f zj|}XmEbMYw_Voji#}(S0R_N){o01;x2|S06FwsXOg#4J#%t6TZ;FHB`1xCEN)~n~x zPuf$9UAOs^Ev>vE;2T|*kffJzs74CHYn{02a&oE%C!&G)SDowHu9>FCsp%SH#~z!m zUd5>`*kWGRMQGWO#8;o1FnM8s`~!?1L)3gVrB1P{i7l_td4~SmD8@tIZ*k8Zz{05* zt_Q^a7n;@2 z*H1H_@U$AMYf;(@mWCZF87)M@G7Eg^jtCt>XM)(rQIVfTxwX_|)wK4y)TEU}v5+=x z3^F)1lcDGu)s^JaTt>GuEWotU%AhipR$O#Hb%#(60OGo>Mk~9??4&Vl5lF1yusFd7 zuYc0K$zUh-m^HSKPrUV>VwD#kCbi#d9CX@+#*^YrO7aU;lgzu0)XMhLI6))CjhPf| zUzOV%m>lDSoE{@iwTn|4C9Afb8nj+vFg|5v@`~~fMsnjS!vthtfJJY3uJ2homZPUx zYF1X3GF_~*Bwkrj7_NhFEoq=h!KHqE&C*F2uSfYYAc|+J#cFiT7W%-w)X915H?o!(#qw$$%JTtgO@9f(W&7O&o5K zznZYTEQUfBM0PI9z#c(%E$R*kAb>|rI3%<)x#iaX0O{JEr*n6wYC2tmOFaJoX`fV# zhLOyYg$o_Kk)5o2fC1%>12*EyTYVmDiR`Y^Q&A%gJNsQ4O^DMglHX?X{$C}|1M&gn z9iaLp&xRvl{$-3zjHn(4l15U%GOH86Ioj?%_6~D`d9DY)@hPOh`o^y_C$6(YYy4UTYnl`kG z10*tC%;BR?+|DJFJM;ITk~J*25k#B10bZwLX*Ak4hZViW!doOIWPW3EG4kb32t0J^ zJBsGkw4A2y&X(OcsK-V6kZW2tg=smIXwgeFk|L8D0K~p>Nh)*xtbRk#R|DeT2PwQh3Y_H21 zS)4tufuXdvC3P6l(H3|ojLj@OJ&R<-A`QyOrz_N)5}`@1pF+|+SEB3o9#*e!9)cdq z-s&~Bx`f>MepD#mFxswnM5H8uFibL?uCZuINU({*(BFI zBXyy4(u{Z9r)8pPcUq;C`h*ioZ%h;FTP}jMS9dKN>{Q$SteN=vv$i>KNkNXh8%{c34)|W$?@PD4TZDfk+bm0OF?dhe z%7i=;2^#?RJGx|wNPZr}Y;D7AIVUZgrG}*5t5a`l zHm!XOog>7zdUl)kjXFI#;yL7&>QLH*s;awfuzbh148)nYVTM2;ZXj(Lc76=FhfRXt zRJnWG%WHLx(l$vFG36@n3XY4M0x;O;*C68FzhiOXuP!Yr-p<2n<}x=(M=+4UGm(+@ zc(^=ZA6(WhhvLSt@h|#ri4K>fLo>>6KGs;G&HJ=xR(2$@i9x{uPUbk|*Gy?RwRNZ9 zan4lddVRVP=~_pL29J3P>0;*E`tn(<LV*gWnoa;X zBe5a59@xcfOC0xc?3yT{gq*REhi}M&KOTOS=2pxr(yHN0OMVRNg(TveNb%cm48h@R z8`}#Va{lO>eU~p3&@e)tWSd&tqf6!d!N`q{?=a^W-CGxT?R8@Zg>_9+$ho-G?d)&a zE_N;E78RB>0ZWiokx$H|hTKR5q3v$8Xzyks3^*$Bw8CNt3<{C8ST90H-Q%xbYs)-) zug~EHq!1}c_F%Yd8Sr(2XSH+K&6hw$tp?jp0w!KcS@wL*!dfN>NYg|Y4d1S zT78uIF^baW8(UpP+-zwlvpFQ7Vi}}$$pmB`nBqNK#P+)F&CFq?mrFWd_Km7F)K;Ey z`Qi<-$o~K;hHcz`cWCNJt}{;Y;%FAuQ5a(Y3C)-lsY?VO(0+yFZzfB3xlLx>WVT-_-fi)GfXqWo7cpe8L4%1lw$7ie2fEQ@g4@rU z#@c!9?k;s0RzM`Oj^%+ep)I+bDUe{OT(QHjHGEMXq2armF>!09%HDXnvUvogLnLv< z8l9qCe4;q;TX82RxvVQaZqY@Y*LHTVai?0XvpLLW<~bAW-2VRnWM3jFV*3sPu)sJy zYKw|ewUaQ7SjtW-bZ^PxEo$>tz18KPPSRKG*0!$m-HVuW=DyZxV?e4iI2ize+<}}+ zZ>;#9>eEk>JDU-4eF3?OHjM2Nh~a#*b=~{);{^F$jnSWkOv;a5rIzY@D6U$2laODDBesLet}8lA|C6-JiYN^Qw0iR*P#O zl0{WuV+1HuxQ?8Xe@uJVqY7Ac9%`GJa>>3}^|8+D+82gi@^Kt4kXt3}cGl3#vo|rv zA$DW{fPZvJDhb2GkV9grS!px)V_!$mA=2!%D|sTcjB1xx6059?ZT>|_mm#J``H2Vj zdxC^vlg1|Q&Sbx`vTLa>=edu|3hfb^;y*2wan*{R0Oa6$Rw3~ecH%8l#M*VNSMh2~ za|CwmQh1$i9$sU4N6F?q;N%nYo<;#4YsJ}nH!U8YlRX-A4sEIAzlz0CCV@PIV zuslsB{48Zp%#JXpoDbq5Ymm@9S$!qph4fgjkuMWgSm2G8OC};c(!`~(#N-egBO^G$ zHSJM&E(mO5vWsQCsTq5JJ&MX&CXKKQotZ~v`8M?)i-hka)~R~5XE;K7OY?uB!dlr2 z2sK-a=roJSn%!WEHNBk1Lw%(t!+AzUe851+3-^d_fF2~&wCfog!nV-Bh?fvDT`aTy z=2-3|8Hxzv0y$Y?ea0YwnH!VT_i5nEX_{zQMI3T%%t;|_m}!{fB%V#gr<|Xg0{{R# z^TxU& z4}~;)3;E%PL-X#gwR_~YGD#nl%)mv%Y}`EGn;n43$VZDy(^me@#^N}3!yb)iWp6d$ z!=EU*-{r+7HnPe806hUxy$xesUTAv%0EczGNfHSJ`xF;kW4x>GAE2h>yCFmAh)2+T?m@}x%I^fPPzW`{ zLELSz3g^UrW$Vd!Svmd-c$DqhlfJI#@bM0k)Laq*^pyxEwORk%1`Vw4e z{vMmca9G+{8+8)gTu*s%8O6J zS=<<}BM_&T=EN=)92n+YZ&EjeP)@Am?OdJPfxJf~BWLI8 za#NFQnf5uS@P*%qFTT*vV{xcmn5LH(H$~z}B8WmuN=a-M#}53+1~8;7(D*|`pTw6h zroeBkEG>*u`9kh(*S|8UbyR1@=-84JrvP)1471;Ti&C(CKHE~3OU)9=qqv5}WESBa z8WtmCpZQ`pH_ghND-gSLpIcoz8D!Nw9dD-C%8fL(bE$|=E@o)i2_k1;SScWtQ0?+4 z0M{I487p5?S0`&TytnXcPvWzwL*QFW3)xakNo%j%Tg3xJ!ZJaI5w)aQI2q+pvJ~#j zJ_WwkWz;-HaSnxdYpS)i)z!Q=cMj0WG?E!sC07U&YcNN_89ba;ZI_N_kHa?p9D$)S z-djy^ady_i?l6)}@p(~1q$`zUv3jA{peYOh^NF=0H9cn0?BbH#+D#R_cTvTg0@5In z)-f0$jgP{juvTZbwlR=SPZeXwT7IXiS@>I4)->zyvm{^f zG?LmNtgS5jh>tumJGjP1NUf;FPNIu;Oiz28m!2v3f90&V(dvF(+(T>6VJ0R(PB2S+ zz!H5%N%b`!jI`@`4wLb#N*#12LYZ{3Z-H;_hDFk)1du1Ccew|Dkh zir7J@?bR-#xHgM#GNrU=m@$&X=Pk2^`G0j87{FBYJzfU5@o$6`A`-f+5~7d~%$Bk+ zBRpgf2=@Y}QMD-4mhS%mr+s?c&evKo*<9ssJQr_qaPKSWr~Mk@S=lYF;*J-M;`0Jz zw337NgN>jD?au;~e+yxZT{Z3M#|^U09MY|<^6Zr!CE4YGtm86*88;}wC7ZN2-XOZU zuzP(vD|r0KBU`9h&D;tZ7HMSjM3OK#wE(GX?OcW5k~Flx7~fw@s4l7DdwbQpj^cdj zt|p15W{KD_S$N_AcJAC;ZUNi{Wq8GJWM-*FXpZB<-wga49-E}kE|DzSv{v@c_b^>u zqj|eji3SKUq5A_&O)`Ps+bA0aLGfo_vZ)_f~HvdH&R zTc0Uy+BuRy%7|BJ>Hfl;^*+66#&MR-Ge^vmX*(i4d%>5w*1K!0>bhQ=Zxy7EaO-V- zH18zs;~j@gitgj_ z1(%9WrKD*(q|0**O5Sgj0={~Ixq5U2@P2Lx#%qbTnS4p3YSs|V8Z@@?%NAb*67pak zFa~4yILW{mCmc;^#|u;5v(nGzlPZKI9DOL%O-1kM*ZeU{#0>`9O=P27ypI2~ZLU3QC7!sJK?xyLeq<@-1>(J9IZ|cW-X63vq9`iviQG z6>r9o%i)~^!qLTeVASm+xR5+73o8LmcW~ZW+{bmV%QC`4Zu0g;7!L>y0xr^#E+SBJ zs0DKG72coWtxv*Dq}lzh9Wwg$nCn+E*`!HvDlkiPl-|2e&BWoAU5Ic+S`ghOt);B? z7I9kJ2pueKrD2DK<&i*lXE-f0=OE;5#@rmUS@9&VpkDc!E-&Q!dIv)0IAgdHGpJy| zo@CF=j0-L>zadg^bk*ge2vmd74u`=10A#winr%%k@9i$cHwHG4sxq;VF6jpBVk3-h z8-e5ln%A-LE}13NGeKcA(?uEuQq13TU{*i(!v6r@JvlkUhsF`={wpgLi&{s0sEL&# z4(%u`!6b9Nk$y&#J8&_$^MxbWG)Yq3W=NxHrICTk5t0DzN$t<)Up0@ZRab>IHj_>1 zA9j2ikK?WVnD6QprQr*QkSK7SBE z{eKFTtRN9KT4n)y848ccU{|S6GOnqp_U>^{4Ngzq?tI~CqG^}E5bdcb1J`|ASwb*6`V@!6l`tB0}aM|D9zP^orIcym*Zn{ z4+YtHPW5hX^bZu?!k6WK%Nd38sSHdEu^?e0pEhB`frZ*}xv}3zqWE^g<6ODB@SWxD z<;?fY(<}#ckxBB+iNkqHK3PKUXxuLwcR4b7#+~7va?)EJ3jYAZFro9F>M3;z3%pF> z5t%l)NkHm zkyRhFvU-GN&9X6kAK-a(e-_!j&Gw&mmRB<@vB&1(LkSByubCJJU~o@Bz~M^}K=gZP zZ*?z;2{nMzWbm{%4`+F1){%)4WsSyi(5c(zC?6}oAoGKTt2c))=G1O(VbbP;;^KMb zEgFy&uAo@t>ZEiaI1+FixvT*lJJxnE?GGYqNRrv&yO5$HfYtHrz}H-{(jmVs}e+W3a$ES_Mxjr=NO zbqEx4FhJQPKog88g?9YFuXW-{?zEd5okDx7ga+t@RFjQ|B!8aOI9w{CrO4ZIZNFD- z6^Q3@)@t95oy|Y^M0`D`TFxvqds}_mWMzUNyO|E;I2}klj^OjwypH?Bu-t3*HnP5= zEpD|1N1yF1w*$=BgZGcSAZ<=L$Xs#39mb#IJ4=08tq9d7cDF`oS{8Q?)ZlgLii5=3 zta_AwAJugEEdqJQc%;8$97s?W4CE1j3g@Wl$;EfpqbO2*=;Wz2DJezm_?~&B_L@`dgi!nt^tZ+YdEK{dEY)Rm2Sg&;`b=SutnK3a4YamM5uJs)PvktW3Wd^y@Yv>c47^fd66nzu`T9MgH`I9JV5xshUM-YopTHq#PdoSY0~ zf*bYBg&~ESiOFxF5 z#_Gb*-78ISbtk#DGf5HK8qUxO70X;R?UDA9?}a8oolS4Uv3PQ8tw_bB#dU8A%ngOS zO7NIVNEtB*!*kDO3Zb&RR#k*P3$cpo;_FYnzn<#q;y8o>Az!nJc7R97LE6JP`H4G8 z=my@sFN8EN4yL=MY0^Bm&m`_{n&7(tN1DVle9gG3{o%_N$qGTGhm_KjPS0&^`V;NB zbXNJ6<g_MG?g(Hpao=z9iBG7F$TT2VuSakbGg5nFsai;8;6e}X5 zZ(_@yGmWH-4B+#(Y2r)hH4&uhH_P_P*b8~qHQ6HJn1F$DBv7DjB<}}s95SX+rlRky z&0R+&YaUCeK$jw0OABwb-|Cj_8j*8wt1=j_0=S(oXNk7FEH*wf$lz`vAkggfYrR?< znH<{-MSD#~=F;H_5XlrSgffuKq`vYMhWP_v5ry5wpem2YE$3r$y015z+29Q#$&rs>Ps z%X?hH7>LSTiJbMtj+bUM-9p~SQ@Xm6<>QS_`AA{dA#>%0jF^Gnh1znP6y)QMp3>Id z!YyVvG(GWMST)R|?^-Hf?Q3i&LoAVu1AuokGZLI_+(2X+hNr3gMV8-9&|;HB((WgW z+RbjNZf5dcEUN?|V)Jdl-N^;=az0dNi0yB@DdAfiZDP_HW17M%DcToiR1qSa=K}}# zN$Z@p4+Apg7rE0qnrqO;u<$06H{P;)b&X>HE%BVm!tOp~WmJL&I0M%lQh2+;nr5F4 zpLM4r+FE%NNpaTUKd&Q@l6@9kq+V-)f3v5k$ieO>t^F@a@b;-=ZEZV*f*U8kx4dZlhcZcYmg+7T z$l%1Sf_4=laz`ZBJr0SheU0UgEji)03bIPNt+7QT{-SfYd2=^h2}=Ak{VktUm`JXZIQD7v-f*Gw*?)$Al=brPIjhE!@(oj!Q2&PEHpD(+7eS!pod zygF5d?cJWQ_TzIL^28TAOT;-IVv~j-b|etRuz0Ug7t3xSg6`_!e$N2~(=OOupyzH| zAaj5T8SP!Rtp>B9d_2F<7e&#mbmz62)))TOW+)^LfD~H|y@|HrcoManAA6IPX#F5O~%nhVI)+g3dLxiq-J{0BKk9{MQl|7~7VR zE-+71*k*k*U6Rt$NU!0vlt*t3x7p)Yk)=i4i}Hbze{s9zC+@Kz0nCTvSB4=}QKoBf zOt=lQIPgEDjPu;qx1dMG};E*em zZyf0UGu2k!#w*At5t3TsG*2@a{_7u`pMC{0;?`(wTFuz~f=i^jxVIxQPRsrE=-J~w zyHxYEW2s=>SbIpjwbT0l0DyVbaW0)t-YvSX^8WyWPo?;h&hJ^*^!*CX_7Q({*Ef*r zI$$!xFPK=ladw4DI}B}5$+1r?3mrcgUD$Yrc?|Z%jmS#|B(kE)s;9U7wv_ZAcx0Rk zc7>$bTWHR7$ZX=0Vm$V@h{mUA3Zn&>@Sq-8lEs*ulUbMc^4cthKrw^JIThgIv6J?$ zlG55AU6$Z!REM;yt@i%Am^RSq4SQyXM~yCS?&G(#f^Ax66Xs(I$adS6#^is#Lt-*Q z{oM2(FFGfLbS*mFE$?-Ety0(R7dC&|3?~sRd$;7o=gUwZ8DY2PARnBLdO5WTJV~co z={ik~{qCC3$!cz9kscDm&vSt)uFcK&nNCaX1mQ(`zJ(8nzqDf1SHn6~SN7Hkr@PCm zoXHqFm!-QE!v^3Ho!o}nrF}Y3hbn0vAGB`T-14nYOw;@^@f%*#A(+9Z+eH}jCNA3* zk{4pzFyws4?vU8v5OG+3F}jZTT>DgS1IIKeBD@i_aj-c#Rc=%s!16j*p?Hr*Nc?Yi zscTW#&3}C?FD{p9cGH1us}i>T(Iz)+JxB+3FmO$0>b?}y^-I|=8D11EwkTn^07iqN z@`oq!{3w++;?#SdjvpBaS5+!Ln);nihkvN+o*A^z>{Cp2vYyg;Ood zXeMl#7bgsdqhWEKy*q(ix5PO7DdAmS)o!fyC0$B3igmP+3eJG?vNWWWU!3xVPs~nu z80x1eM($^mK7X=IkZM}7mNkVffsJK`StTpESf0u`7yxw~_2??Ts*>rJ7CPRP`wGmt zisTs;U0d4>M+c08c;~fk>H3A7z8p#Q8%wXT+6P!JVU>4zK=gbO)BNJGH9rv9YcVCg ziZpt9C>~Ui>>&1UU&pcQ*152CC0=zoYbO_?T~q6S^83iEMx3D@W$$jA@8n|Ye-wOE z;f+RHD|>$qvs_HG1db`n%4Jn=GCWFCYin24t9ux8vkUxwb|8=YH8)o!n%m7Y7eFJ&HCEM(8#`A+sH z9>9z)U{1kSZpoqZ6lplIXsjeU}iw<5sp}F#?Z&-00Q4FRnfdn{kvgdt=?N) z*bCiNbo;1oWkO_&?2SB6yheq2F|Z?(fI&H~BSZ1PyVEZ;DEu}xsPAKiRZ`_*kpvr7 zJ<+l{Fp)KanvqM{xqLW@nya4n|?J5Q*M@tadJcv+sNb=S8#w0{zz<* zfwc5cNSa@X`c3AXAk@4YV|AqI;xQpCfn)i+u(2a18L%9x{G_5W-~)}}H_}FRFmh6t zI%%%wDXwdJh11(zn;T@F=~m`pJR(sdGL54QK2XDw268r>_8tD2tm^wLr_t>#zSgl3 zWdyr~Xk^A?z;)o@a8BL9Sd6G6h1W0aZYPsahh?p_gZB_zVOluH3cFWQSp!js79j4`1ug+80A zX@^t0x4svNbj=GngZ*4DDjzp?0Bxfslx+m$R|jQ2poKLX{UYw;PP>L3CMEJ)HzgJy zEfzJETpYoj$lSLct6Dx{HnFa2Z>MSnw0jq}HrFnZ!5Aqmu|_6f#03a|qZejV)ww+` z4q7=ocD|o+=hdSI(~`fVf9GRHAFy29PXg&kmyyWNHM{F*>kK3#iG-2DSIQn}AMAm+ zk^{1AO4inBE&MdPZ0~&%T-mkc(-)RJvEJ+Dg$foapJ{SPLGtb)YY)KMS=A-gwF^6u zrbsT#L|LLsxDBNI@);P0E0Q;|wpencgR>ujt>B){)(vj`Wr_o93PTKKqlvu0-4l=X z^8Ck~wsVjOa?2qII<+lr`hvvk?4y4}x}R6Qw~WUPjm($0R!dfjMRrbiI8lZnPQXau zZv(ih@2XnEJUW!|CDO&`q!O74G8MU%RCU{o4Ciir4mhr3#hxF7!FFC4(qeh8ZEYab zKYCDZRC|b7cVmtVg~-NFVVn%ZuGr1t*>u4iv0O(fk|!~oF*!W`WPY?c#yhZ;NJrvn z9S@0oL9fjf!4_AIroEz>9@aNxL*@SPNsgFo{p=mMJqXVx{tbq0V(Gu(9cPZ-S!2^% z%$xouh_<&3uEamh^Th`-Y#+Suk%Z7R={#5B>j?G9{M61uA?h>S{{WL+s`z(7jwxq} zERyAv#k+h&nB62t;M|aM4l|HPIL{;~N;A9YLZ36{TYhB^3|Z-VX0Gzw+sAFK%@p^t zq}Nl*)bd}lp{q;Z`-^4ifPnNZ1x4AQ^v22odV`G(@#ien>j9*N>vY;|oX`zF%j z)@g1Jml~zQ2IJ=7XPy-P0G@)jin(%jF&o6`9p0WVr&U=lWfDA$!L8g|+p|Undo!|- z;fTgMf@txq)}A5oxEeo|aQAm2-Zqa5y~zV^PCKyc$2H4cY2!%o*M@A`-^zH>H9270 zu}&qwgR;m04qS`GRyzSER+MCWqm0W`;->%G|V!x_rqD zYM_!rg*#LM)0_@Ds=gBNta>f3llBy6x3nx-i;T&XWhc{;z}5zz@XuI`c$ZnfmIl|g z+Y8G{VYQ7?)-x{Mg-&;Iw3Z|icjuA`Z#tFMr=wQS-7)-eq}*tJ5_NWkqn`OBB?%{X z*Y&Q#-p<_Ukm>;s+D@3TZqEe(-Td=R@q1~Os|=dfhb`F76@nvd$@gLJ`5$0#v=10) zy0{u9i>KZ|(#0u`HjO|8C?sGp{`ck^(!EuPrl6_cRr;P~zj)bF@!Idfc3MsB7t&f> zv6?2cm`36_VYhZCF}`r#VI4l;9ON2qqokR&jY8smGHcs3I+W8+ZZ1^ED$j7y!lfT# zf)zL`&iv;rpzL^SMUO|(C;ryA`z6PdafX?I%N@ILbBvzd{*@l1YoLF^WoxCIc}q=n zU@0BL?_PfK$s-5T)0*+A)s!NZsP!=TZhC1gY_9yYF0QL_;jJd}%E~3Tg4*)>7>shf zm`I^(gg?Ay%N~u?aBu}(m&MYk7^(>=LTl;|l{yIS?z?`NBua;oukbXNYhFZfpe;v36d2IAVIN*{EYhw`)VF&5_2rxr z#DOg>+7&A036QW;w;QAz4y-JZwuKq;Iwc1ck8XA{`t+f~|<&Imo@@;Is)i;+ZYg86U14jyskXd0R zhT;ecLWL#m&ubN*hfjy?b%4V+(j&_o4*>ekb{G$Jn~O5R-1!mPoS@sZ^}83DI|2*Cp% zN`m`Q({)?ax1K2U^;e!}zLh_AcV&XF2WqJ&xdVWB71`;MYC2znwVO+SvmIMdjZq@I zj7c0piQcclR@$so91u$6j1mmfok>a4j=E~UAgvlc&B{*Cr{ZtC@!DzHb*=kdSV<&? zIOKR80Bx?=$r$^p-~PI*G?#3N{g`Ge<-gjnzq@0TgD&nil-q*;04Lu60Baofk!7TK zUr5vRi%Y4l1Uj$V+}_3_3|iE{z!fe0XLb%Sxdf6j+h!NlCwSpjmPo?Oh*##$LgOc> z9e+I6q0G`ztE2NzT@F}s$-idrZOS)mX??6(!ycIo_Q|GdZ3$+TS)<=_fd~vfQlxW$ z-2LHESXtPk>3WnJF}l@b)8d*qMAExQ46@En#9Xil%8R&X0$jFFCq?`vs5Z4_b$O>| zIA+7Luy#KUt4=fJdR_j9D{rT0`hBgX?ww_-M79e*gBw_R4 zc#7jxh8bqGlIO`5F3O1mG+}@_XJ9dr*mcOx_w z>O&3Qu^bjDBxP1e32~T-;gIGoSC6~TBChLKwq7If<;!U%JDFya?9sY_36tgda&eEm zzTDTG_@_iVCBBJmExAWG4tEy^a3wt}xA7K0%ThB$mi7;qR>^apEc~DY{ln?o-xFC_+RgDcUmNPWj7xD1 z!=u#Q1coS0cvrw?^q9<3a7aP^~J7Ut!(zpq0d!nRs= zv#wardmB$;mR@*Jx$`pZv>fA(e@tVXk5|3a>{9O2O0$|3o_NbaZn#_pP;rjjbgwe- zt(C`zZY*SL%Qsl8MWn$Q@_EizPi0qU*>aK_MF!D8cbI9#iP8uhTJq|lvxL!H+PIF19@eM{%yPEV|-3zEm0`a@$ zAjNy?XxuOJ7q7DDT(uJKqRd*l4<9!w6?+np;?83SHg=xSPuv z1CRke-TmuRRMG7`MzKSvX;$;a8QiUV5O5E&=RckY*11oI?|v^Y{{Xb5g{NmO%WkdY zp$i(ap(Nx64W54X;6NaO=pSem;nb@AqjTS~dU_V1xmPKlABXI%t@g%|MyVK8SYVAn zP%sBVdSktLD|ly5e~Eg%jiVbYOS>8Eu2~c_xc$cMrLq-{{#yr)-3bgmo=L%thp4X} zZC_BdyuQAM)=Qgd^$FTliW1Hh5>7$RIVga1$300H@5>x&;!@dbbB8dTsZvfm-}GjO zgmin^{5ote=D7aMMP$?CpG}f>NF26OP!uniyoUS3us8%)IpW=4QH)slXvL`M@!DL# z#^PyYc_xTYvMCiDkfY??$lbdNZ~-q<#lAGM*K{2xK)bWPwbNGWON~YT%?sRPabytg zd?`DKB;btq8CK8n2a9y18fKkyWvj(&4Tha;Wt!b%c^28FV#=#8M&5&m1Z9qL06v_W zZqa7AYP9s`v$}nHwZF;gcL}OoLa%PVJMlqlXw%MEG*LRkl?*cJ866mR?^(BU+3FE4 zq;;J~Txkp12D`HISx?+#Sk*z1n|{uRsZpGfTmZE|O277<YfPCH9 z8C-2^SNFEI(&`Yx9a7pidz+HwTn{c9u&J*R}ru(*#~cNUJVz3qwdO;wePKur2XYY z+--H`{{RH_j|)$yX>grB5eU=*D_uN%?>zCI`*;=0crL>7$4&b}o2kCn63HA9DovV%l}0 zm87=QPrvcp@3k9^XHV6d(RJ%du2wHQ?4~AFW%LjK0N4C0nDLY7z9Nf2yVWjl5*Z`7 z@}r6oFU-oI6= zd0X=!l3xy9++0g@d#+zka+?_>w}}w{0IJ)yV{j0UB0f+9frFe3UyDzROS6wlf<=Pb z-Bm6mU%e~iJ4P~nez_$3&2!<43uc#4)8(6Os}#7mBP|nj$2^0U93F5%$0DG#mN{Nn zE@X)nIth)L}{e1d**zs#rpyZ`ZH{|>E zzv1dyo((PS#Bj$1NP%-Qlbn{u2*%=ioB@yr8La(JNm!u|X>w#j4qZbdDfRh)KAxkI z?^_VPnU38fvvRSsFh;kP@>nR&@WcDOe4ui8HLEJd_7~vs%nW0miswFX8J7m$@>n8pF% zrw3>UpP~FgtbHfL`qq)*j}^yb1)Tb&%yDg3 zLpm%@O1|X5-c@&&Dde`)umdw@}gsIMr#@u!IzQyf})TPYb15Y5No)BO8q z4)0OduNVuvjYdQ#1r!xreHRtuDivQ#9?dwai<%2hJ1@GrVP8$&anG^P*&4_;5qa5(4dS~`!8 zXM@C7b}6Xa#*j$MgR=t%7$oM`<&Z~(s(rnyq4`!0PJ?O(y$=?UtsP0C)*W*b%(su;+ku< zF&ScFSvG<$^CZ^2 zenu5(Iy2>GU2mw_UCPm0-doKg46;WcVm_c($y$0zZ>~WjwY1hNc^8_-SBfafcqIMw zg$Ph~?a1h3W5^#r)Y?{`b!|VJaVG&bh{W8hat7r94oJ1}U35?LM>OBR9=bo!-}q@`tlD^@$5OM>88n|M ztuHQZ;`4VhY*WwzGVr5g2k(=gnB&yENEco(=;};OBDKP$#1h6?P^z{GP&hItzdo6- zD$=||eXjTxUj*qIJ=E8ix31T6t)fdB+k=;Q_psROvPj0uWCbI3Nt*ZOv)<70d3Kwq{tqGI>+%^Ag+xu#z~1 zYUhmfC?87Fv`a}=(%wlP5b{6E8ZbMuPI$pQ^MTDxcG@w*19Q6o7-t%`w+2`$tE$&YT%;zttUd{;lhxI<>8BI+SrI7 zhRSPnx3q@KPglAUlI}4CZM-+hfUJ4iKIqRG2Hu`D!d1fqBLKh_83XB8rdu;I6GJG&tkbq@tCX2A`@=6B~PrTj)V7%l4aN3H!isrQGA@PzxWJ zq@mpmEcJMshiiS@8b6lDk~$wufmF35A=XQV1b| z6J#(r#y{EGdR9%eFxkuEeN$1m^L6cOPShZhI|yU@APfTrLK}J75VI1ch-{EZEc;r% zttPp190vZ@YdIgwlw8i%(goxY86jY~JzE(IyBOWLWejE>OPSfOod}gG(yF6QPfv+k z{sFP0UR>&42-EK`fR^cXOGpjEqeiR~Q;9f0y9RdT;GT2SpvUkYpJT4;HdZ%LODfuF zkxwQSg0A~LG)I={&zCP5&&p0ZRohG5Q(m~V(5&=(Ei&3ml=AQGuV7&sTU>`GIK{Xp zA`(+@*g;(SRNo8AC8oCe9-5J8sJ>R2ejsS2z9c8*U_DyE&`i+{Jv9E}~TA|#D(XrW02outSBCzU7V+Cd#n zXX;w@-kEh}4fd(z3xrlA#4?2Ej-9Hc8qS-j=%zH(e^uD`CPa8#W|7VH)tGrrQ|zp}W~?N;j2>-VV;D!y4bEIm$plaswqHLc@` zw7qY`a_N%pl-@z+MCiMMWF4gU!Q^q1jo7a_j(w)u@iA~C#iZgE3?_-b<0%5pX6(nXK7fDvxizI((W`}pT1wJ=KQ;1aMM^IY=Z2oLgWvh0 z^-u0ROHT0Yn*D|C_2Z&_lrS)uxMq$iNX}2Jqqp$;@hI>%t$C^H*RpteY2v!SntOR# z+&=i2n`R?anI7oa5~3OPA(y6I;ol z-0Lh9Y5$VF(Avb0h84Y_>5wVBLd1Ifw^ z0>B(QPY}bWYj#s!YWl3}Ycvm}bNgCZ2VJDmWmJ!{f9;fFR+Q8#)Od66wVd1~E z>UP#vR&mS?_LyzuxqscHP!eU@RJ?&m0Z0fJdF890jtd#AgxZz8#kPlcr372d5dQ!@ z(p)S`0-k>H&&)F5cEP>j?+nMRX>w_{(MxTlT*n|qmT@%u+E^Imgir=8&||19#FNG! zH$Ij$r8uW{?Ds{93|fY_q1#CEtQXs4F;5F7!eudS*v`$2s5mT7Cj<-u*;?x{K*B$< z%^#G8XNvX#X^8g)&(8S9P6tkFiSY-BGr6T`sP~g+Y}aSZ#@T%w&E(+{G6fE=tzFaBe7Prjk&)Mq);u9^tmxWx=8>ey9;I|8cZ%Nd zT!#vUmv9{&l^^BcovZ*P5IZ^aICVH|tnYODxqP@|nN=hyvQHr(JI2yT#41N4spRBh zkBaqa*Hv#0TiD*blYZeM`$p(tXSKM9EKzOw0P{)4S%-8Tlw)XQz;Zw>oGr8m)vI8US zZYl0m%R(US9IfRn9D>wwd8;7u#;< zJ~Im%(Q&@MMGp-;*6loQj3a28M9&!u{!i&wwF^so%gc*M?o7fP)UuU)psZbq3K!=f z?Ja+RbN&P?Fx(S;X69wXsx*5^@0r0acPxTofWSJPuDyp!lleP13cf(#>L?+QPbAvcqG5NZ%hNE?s038e)M z(GjN9H0VR&jR0JDhFLWU=b!sV(hI3BW4w*$NgfoCmxyJy?_vg24peiImpzuFYkPMT z*B0|b1Whz@tnnmMsF4tlG`7?u%m)PIe4`&QsdV>k7hHLs6Aka#ZLH(ouG`)}BuB;p zJIqP|;GO+_W4qMiZCyM)sLyy}nl=|FR@4g53}w;D4CnymBf!{mmIUMGN>$>tO=@$x zeA}%|?-*&q8SV8gHs<2mYeQ&bFDB*EclMPw~jR53|&QKy78fO zxrIvaR$_`ACU*p5f(|fz#2L#jdJhndD8V6ex3)$rX&QS=lPkG%o66>Il!C224>{x7y=F@!UDdxdg(m7>S`O6HkNW*|RA=ChJ zGnJ%w%UEi=9Py_oRYqER>2I06 zAB42#)7M?S(JgK@8<-i+i(_tlh{$NRvV?IX21mDTxoj6~fw=AUjT-LG!q)!)%UISw zw%koC$0|C8d0gd)V}rpM>JJ#`E5|Q9SEy;L_QbM^NvFXhGjD9mblsw#yaTm;>9)lII|2Xvhpk zM*}@a9OAI`5cjqhcY1T)xOu$imruI^nU`{r8wERXS-~GM;~W~I_UUgemFMTCk@HS-U7|$G0g#_&6*`y&ZUSz+esn2+u!1`ob1KDVeV`^1x z@2)1gxJ60We(g){f8G4I4o-gd2GQENyPpHE$k(EcOwA~@<<7}M&L#U z?C?jauFA#jns4p|&6~tlEp!axZc=OHI|c`^&@8o+4^D*IS&d@mu&~Sn*soC_;<) z*%h01UPxkQKljrU`d0p#=V`tcTbpGPPb(|WBXV0UhAs3N_7%t7T}h~2>ld<0vb4AG zNEvbSsD?Bpan~3>k*OmD5r=?gWkHsf;*&495dI zzUM2Evb_hy`nQGrE#doJN5noA3lm&N0-?0Gk;IJ=ecUk^7RkVWS2YjwlU>aGI(nH)aUvVJD`ru{81jMYVH{xa@j1kMT3Ww>L=oUxuzCnG}&ERuHLAY^!lh zzt499l9xB&0{TES>TaQk;Wzw|)4y6=B z&7Wnv7ftJhDvc;ys)b@cQrIN)Rz4S-?9qLh8^iW~A(5iL(jb}VOK4<*W|f&3D2hft zRAUQ-D4-S$Qi#vl-AdMa6IPWvwA2#T`~LvICjS70yIN^3ZD;!gY;BrEmewf|)QJ&) ziO*&|fd{z93E<5eRk842h9tYbpHPKwQvNw4-hRz&_6&<3&Bhi-+5+SdLBPoZJugDi z-^5YH74*{G&3Scacc(P_&8?ytOmgi%yiLX^K4v9Po4^@dbiOInbp12HQ|TH@86~oc z8+fh5N~{7hE;lQqWC8v0pM2oyR&>3hbo5TvBM(lxq}5$o-KEf>sc1STt9CW1B)pbb zl(I_%(l*e!KOkKD;4dWb0VfqVi8N&K9)&iP(qKxs-oqpvrw1O*iofvFQ;JWA);Bi` z6`*ORUA|+oj7sCIj_uAf_mA?cUM}%9mYL!Cu48zvU(ALv6m7YV`B4r6V}4d3z$MQ-o#A^&8=dpTgb-vx``qPc^^pT1bIA@zbt9hx*o>J}R-h7>YZNeNcam za@y!^W5AKMrPQ|GWzcQXL-Q5bep08E{$mx%cww*apn^ozWQl`$W_-fSeC#$*M>+oCaml48dni5okrA8YWKK-*^N8uZ*T_@uGq+qO2#wT5< zr+`uOz#ghSvFJxWj}^W2UMRO~yZI+Lf0V8P$~QH|MW@MOeGa{75-YKPak5zz7@fBF zC4d`uZ6Q>0#Ak8ZFbj8Kt4|S1pS0fXE{Bhe!&0S*Ue8@FdbYP{+Wwmuw785%AkJMf z8BRaKuynmnNNw(6k~?SAZDcmF-ZXiY@~gB0GD+v(py1a%;qMgcgHO?(Tl;?|;`~}0 zV-O5e`@ys7RCMafGsp%lJl$)4F_Cnp!Y%7u$8dN_wrtKAf;Nsh0kTT)21)esI9joS z+R=KyEqt%Nv^ntdgQ}-zuJ-ix?sOVHmvw969V=0WEB!VbMs&Wn33VX8LlIccaCk$E zD|Fn%5rLdoQqRGj715{EVAj&;Lkto{6kB%6A|-}cDE<;SVt&19zPoqgn{N>dE58+8 z=}@z?y~4)Rq<&}mu*WK@m`3MnkV|B30IqM3yj5qcd?N7uoHz2_YH%g2mvR(#!<$(% zx>7clCqKoUhV(e*bmbJ(7c#Z>cC+(p+x*vE)%z5jpS<<_PTuQP(rr9Pacg%xvE0}= zjh*>cEgHT?IX^3b&Nu_FKYZ?kmt=yrVVT0}F+98uH@*9xOfPMDd-2B9l6O7qBXW}R*PBL+w(r34GlhEF@PYOzBZ8O7hSl-*oBth-;_@kOO9AtDOa*#()mDKT? z`SV!uCy3;V=Rwz=O*$iop4KfgD`$5KS}`K3p(~Q7oZ~xyBmjFYFJ0Gl34B2&zbw`o z#I~_ZZ)9Wgn^BZ`QK|@>5_cF>pC~I5NX`O<=akc_%@wDfro58mvwE63hlOnQyIb8m z!%=NQBl~BSYNklecP3E}8QO84zm0l5y6ASgC5%`4RjgWsQSQu^X&bD#0i{sf{LPb) zNj&qAYsWMz-DAVrI1%4m+s|QlCYuV$6D%n-o@>h%^$K!Y3tp{--bonFEqDnowM|O) z4>2_RojTe(Lo!1R#KeVY+xN075HXb-2myA1z!jvbO1#`Dq@Mff_kWR!ps7RJIes38 zu;`j*rDLcI)VqQ0Zh(2BAgSbJ5!7d(`g-72jm@^NdHua^`k1%3yMbcUX^%0UgbppJ)*={zaS61=6?47>|ofIlz>A}Vc+t2t-C+bxaTx8xqD4UjwW7hVhT2x(-CNV^Qmax;K`3iKhRUh0#>Jl-bMns|oz z^Bfo(hu&N!2qV3Ao(k7)B(>G8^_^H;%W0?>B9di}HuC(am~f#-R&H^c?4^gT8hrIy zewY1GKH4&yjDHi%ygQ+5tEn4JL8OAxC5hw+SR{@Ly7PcCtf1s{BLI*{Jrmi>b*Ur| zBH3Bz2Ig;)G5-JpI2k>Mt$J|OY-f~39n23Q&J|n|Yk={Fm2|UDskCtmXvk(@+_HnX z0zc2zx^VR+Mx5nMCo5lG=O!vG+FP8~w__AZbdcU#-NzGc62l_4MluP(KI7^QdZ&dn z+jzV;r;EE766#BJ5|a?i=hu#N#%s^KC8XWz-Y1SNP8cJ%p2FKySmB-I1sut=9l!v1 z=NZqb?dZCuqT=M(v`rgtLmLC~vg8lWs=g*ziZD}N_O1R!Vd(Nn%0SZTnl1dWppM_q zDTvZA0QWc?XFd4ijB{AtCDQKapZiAI@nZWp^A`*A0taLMeGMKxw%3dXT^nPGC5ktR zurtrfa?OGBU~~tbNdtM3%7Se0Wp{LDsw&~Vq$Y6_rPEP}&>M@>`2A8AwhfMHo#;f8DY+psG zUTIe_LN8>vj?jIvSgJd-Wp=cGFk_q^NCBAD>=#Iq2>j{RRER_x%I;VQPBv^=LSi5)rKR5I z9=*+Y_3oSFP_R!eoJkC><^m$NP58!m81)@^&%SE@g`xPqTbL5^&dh1?xD&}U!x;)e z2j@~8wmBUA?WdvVS>xTEH*Gp!{sEt`sMBdLzy1N(0W`BUIYh_r|GcAuj%?EuN+M&D3QkAU_cd| zDcg{lRD5R}g0?e*Ry5xjd@;Y8N$0*>>*oMA>lxgtmI$dD?BHd90CIEnu9()1Dp7=8 z{WTY`bsKG1$yQU49V7tYIvj#MX|kd@fh1LAY2ys1p&Qn&T@52Qv*}j_?IOQ6F^?^V zW?0%u6OsHXq~!6Azj&&XkCli|4qOc?e9vlH z+1?>EhA}B5?*&tGGR8v!Kz*+ubQs7L^Hfx+%JSKtMOntAblmE6-AObUwJkjLG73gY9=WNXRtp z{#=VIw7`(-k>+pcG0z-gxar{O%Cy~9?Ax`YEp_z2`TWdWDym9Qn)K6|df!7^Qq(*~ z*3B#G(4s5(awU{lDu3Q=)?k(Niw#Q9-87;LVDBDs5zB%{rhR?*u6}E+ddE?bQtDaY zB(I+g9zi458_CDF2d5oy%R7BW@*B9V8dRQFNXoi@tjS%tB!7GHuXdgajvAAzPB*@r zK5v?PBh0ThlT%IpJDD&OYBtdPDAA#LaO>yp8%f4zlDq*mOWCzMTbM5(NuexZ zRYy<@F4N9)&)2Cn>Yogbu@`{gj@;T9lu9jC|ucDx=g5xXBnN zoYZb^oC4|o)6Q&~-6ZkG`exGYK(eLxup^!Kh4!6pd&UM{7OESA>ONdlGt z$mDI>GI{w~jyd2Hfr3Wt4Rt=aWV#U~jR_(&IU_7Op68FHdVg2;RUId?vhA+z{{UN_ z9eRBACwA<-_3~bb(!1~moZwm6cuqO&_Xb<2XJYI*{vpmeJY}-ZlvFpY1t8V&vf52ZeinH;J?}g%fgJY)2JaV8`Z9*apa~-^-FlW)cF}bli$mkG+6G{HFk}*TM}0LDg)v?N-{_Xi{6*?O+Wd zEViss);8pfkC&X2$5UEh@c4M(X6FaYwwKwx(zmI!@e{1nrM}PPL*c8vIkf)(5$Srw zi4L80b~nsU3~V5TspGF8ansi$BC+&o4Tps_NbYs`6(-TO3n=uVKHz4OR(R$4NkUjT zQcenhqbDaGvj>5+OB<;!ZBl5ak&CkliOJd*{{TS(vAkQRL1kcMONVJ3k_7HqPfk6n z%7z;eDviOW@1oak#uaLNE7Z00?{D)t{Tdq$ML*(NZ?05N3=<>@08cQG9h6DR3>=UN z11A^+iW;hFdeYCL=@#)pZ*M%wBBo0-#?Fj*9Gt1gP8esJyJdBKcj4Rkw0oTDG0g)! zF!`b2gtM%hLS>K0&C}-R}N@;uua9r{{Ytd9Yv+9YMv?5ueHdco@XX0{Kyq!iZhT^ zxae|w^e5K49Vf%y7K2qtVes9wTOd_ir6bMTCIX%iVZV9-IpdyA1$gzgp{(1>9<}JllwnZhe^2_avP|l)aAEV zlGH0~jxfQuxs%M!(Uawvt`(l+^Y2_0AOOeWkwZk&Woc~RAtPY{L{Nm;- zFz3xEuq0V2<^}uEwmw$R135SyY}ysArHrc_(}>kc+FNiPeQPhmo*+mXO(juWqn3@q zZc$e2cS_dsBCTjjYAZ(WV2_U41nVKPftzAG{{W>qS@Gprk^~HsADr2IqL2HUPy?;UTfUtbPKIlLh$E^?%}z3?&W(X6RWGUD?EUl z@;T@ZW$fwOtC*@?8hTv%Ha`87*!s#BG%aE5Dp`#(QGD zjJFejqNMS3oRiyU`Pe5Jwwh+bUEFG33GkiW>s;O3&w9RLicc|SxG;Pa2RcsJ_jtJ;LtgTDKx|Dt#)AXA?A5+sTboVlS zuT*$kukXCxe5d(|bBtkl=t%$K3)ah!KB=-PjXv=}D4goV4eZSkXE0V-`}1Yq){kJqm?9R3Z` zoJ+OtVrh71hGvbrhT)e4ayw(wrB)*o8m*?S)BMT8V53fzo4x-4BhK_`S{)}%v!7eJ zy^}jBQhf{_4SB7i(N}Trul4_ot;2()18;K^mn(=10WPtww zZAl-L=kCeJ-pBV(2Q?LFMK5X3YwK>T?x!frMXj_hX}X4;s7ZBseAhza+zE8MVFk*S znHihTnY_J+8&!ZTRE@>Pa2KT1H2Z5C3wUkUqJmrd)yQ~{!rm&euzT%7(A(+I-$6X0 zO?{;T5w(20NL5Z><^+&(Kpm@lL)C_@q{V4+K)CY6mhYU2lNlJ!4sp&74mrR%1H;Et zZC*OB)b{eK@TXUnPR;&5*KhJL?`$KIbd;#dl1~}WU-R_hp@U*vg=7U!7&WbQm?RO% ztSjl(%n3>494d~a*MT)DG?u5^(e^ZxF2~2?Ee6L zai5!O=9#UgRfP-8{{SR$pvy5ng1ri_*~So*Z!2l8miZqwmisJ6)-h^oG`XKeu8Q|= z_D$<=Go{k5bkD!J!oh&O=oA<5wYt;E) zsZ^7As$T`&ui5SR3#Hm=dR~=fW8w>yj`eJ0*@DDyPH|W7 zyg?6!H5bvL)+3fdy zHvs&sq=jFY9!4-h!C+1a2ItwO(Vte=dS;-jUu(hhqN>7z{>isXG^>_K{ZVzPPH|>4tFFhCC z`7fI}oBNl#7m|%V3>PpPc|^(&nHeFt2RJ!ZIT$%rAmj?Cci^;}!q7FQ8rIrppKKys zu)KGu+>t;ShKLE5=J+XN0d<2WY0 z3|<*VpEN#w-_QOS!mUb>e$p-7ZEdg8>uYx>4{*K(@RHmlw?@|ND@VAtQaj)_j=Tjx zJ%AmBS!;#4wbowd=Hh!vMA0O1*vF?y<_WFTfWcclN{ATecg!)|>p^XK4wGl9=~{)I zoOd?Q_9!0Nu3bdZwB?oa7ToSYRI3H@#tA%_^lu6u5=$Pm-XYZHx(Z{8<{PI|67mX; zayp-Xo3|C^)2&Lpoawuy+VcMZf_knE+EU!h(zKgMBeBuOv#V*B>uYKzx3amCGJ;8C zk9y)gnLcWgcekNY$yL?#v#Z5zt6WEWb}jU^wUP;C25Ag3Ajz4KXLs5%Sf@T&{`bq% zMKjt*HHG!X{Pz~qV`K>CHro4@#yAHcA6)nEOLwcrzEsh>MDcEA^2f~?BL}GmrF7Jz z?XKR>{v4Gz9Tw*ocWG;Nu31BQd3mNi`LwdKX1$SEx7ls`M+p)TWf>)+2cRRJwfr>J zHl84YSl<3uwz9O;r+H)UyRv%y+zf7R_er~hQ@fJM^&6{O>z$-sMJWbc z50{+!9y;fxXa4|VHG@qSof1EYYz%&0=khZWl~8=s(RN{QGyU9Sn##2&NvO}S+!Si4 z&zd*BtM68SfaJf@?JXYm>fSa}X=YE7?p9|Jh?Rlb2+HxLY-SpT7N>q^WRhNL`)XrL z4K-QR=FyqH9kYK0X}0rSXxDRGO=}P(4X|jwRotU=p^i#|c>d`k>pAHn}lZm7S7{<21zTBLpRT2GU`0b7?X1A zf4f!q9<>^>x~F?1y1Ve@ln^xQ8I;F|^4d7Sd>oK|PW8e~9i%=?F1DBA()3=+o=_Q7 zSqv-)Jck(N>pmlR zK1*|G+FreX3){@MFx$^|<|S}W9Y#*Z9P*%bKDEth{teW8JK@`ncI#JF&dbg}56Zl*&f8Jc z;JSkQ#1}E?;%7HfTxt>lwN4ZqgSnIhB$gNp#(1w%@YFHb>GIh`@;r9Z+rX_RcM!9( zf_?a|Nz_woO*Qx&q-m3Bv%>Stt!h$8Pz5XV9vO%v;4TK-WR7aiuq~ij)-5X9Bjio{ zzTM-734k&qJ;JndFblbNTZhKb58S}c@#>L$ zGVuMYB$my26p=2-U2a?${$k%RJbc8SG07&AQSj1Q+T2~qtKYPQF6U{O=NSN=dt}zs zu#xA}l+isI%OL5#+clG$Jg!OzaQ2S0nBwb9vltj(oE zDiM~9FdfGNyRi5lWl!AMu~x*qOqAx8(o60uU-)LrOVqA41fEx#Y>m0vfOFV?pK4{j z(0j|vSm#Sf?Ucx5EPFbqCvg7vx%33!S3P~>D6e&Un`quq^ zGr_EC_ZITpIdgLg#;~$vA1tXtbGw}GBMZ}v)6FT>(Y@_$6SsZN z^44kGLmFJ9VPcJ?-3S2#K+`Bv(sRNPOKl&nF>Jg~d3EAjYX$P!Cz-(^Fw7MlheAO6 zqq+K?wQo(f@b0l<5>FXxPS%PdmN3I)EXqMan6c0i#(3kQ=g{oF9QbC==HC9^(nPq7 z7Dh8O0hJ)|NgWBVKAk#^uX{!PYvg_9|+GK69a5km>JiU^Es z3bS${Vn^=cz-*DVzGmEO&YQ#6I)=XXmNpX29puvai!7?2X>>OP63W00%@gC~RT}{3 z1)J4wJZ0h=C`3u&T}D=jtYsszxNqSZA%uGf2aJX}BO@w7I(tfRYAx!$S&M2nv~=|U z03!<1z$o|eTtRoQ=~Bn%5iPOu*qInN-`X&vo-j$sIT*q9T@FOE(d{h+mse9HN+glN zcXq}y?fv79rnq=KRpML7WpUwqv?x?;mezD9Ju#FW`ucYub6uB)ZsnIvd2V7b&e9O^ zANgi*GCu-Mc{#L|qa`P2QkQ*P)t6%7L zKVp~8%OUxhQBeWMJyk*dYg6q4vHVYXV({hrp~HC&2h^z_*1VNnXp+~|>q=MhIZuX= z$E$od(~A%y7qiS141zr8<%T3U%d`xWbE?)j9r;^Zq z_bVpWZbD#{3`ow$O$K}dXGWA@h+pJ8<=$qG`M}wBogWE0ER=-G0Dmf zfx3_ZAe`1b-Z#~R*AT;SCz>aYHH|F!XLB#gPW`Keg`Acn<;mj}oZ|?`*;I?vQN+$I zMjD;0@m$ZXTU`_j8V23S;E+f4_7&r|x6`kQ;IfkP=38m5CW_w7Mnap35@^O4;A9tw zo_b0+;MaBG9ZSX@GPAt7wK`?8+T1;~iEs|#BB(#Y2*)62KD-_?2AS}$#Dm6`nwGJD zVswbEP2*ZyT*`4UQ?bI710lBl0|z66oH;3|LYj7uaBg)fIZazZnkI{CxdWVYjDMkFk(sqeO)K3f~v}Xq@f7UPiM;ROps8V~~HhXPGiEV$j^=Vqp?Vd>Iv@!W=su7U^ zR>>cDH(%ncJx@r|*2>?)_EtWAq#{_vl0wTYXdRiIPB1Wg=lHr4g+8Blt8a4ayrg%D z)Sd&V{;U50pjVD~*TeVH$EWG3adi#7#n81EcQQs#@1zQLAR~-t?)4cR38OEqFJ$%j zc3zkJ!n{+d+T-<)9a&pwF-I_t_DgG^E#|bkXk!ux*c0bPB9-|a#sDDX4l|L5WohC4 zSH(8crPif?d8tSCX-1*3!vKh%JdXR3pXC6f1D4td1T9x>CgSe?`%spBI7J=AQM49$ zXm+is+F@=!L+5nc!2TnSXr_~NCcB!-IUR+RzF3SB`}kxlj^UIM=x}S#l`dr_p0_lm zQPN5&CcMtYygR10rE{p=X_`yjYO~(kGHMd4ndUR?e=S;W8CVrkm>@rLK^gWsGTB&o zmJKmaFkPS=1DO|wHJy7)hfuh>5?kF|+sAn` z%_o&BOLoosxYVd+%;1sofOCVmoML#E-RJQxt*1!V_j-}kWQr)+e5l`ln#{nK%8>F5 zF7g}Y1U@SWCn+TsdKD!HNxoIGcV2%!$7$n#2HN;T!de%CZSHQbt~GsVT}1v;51c}f zvhv`3&ftzl0U(@=mGHiUf8iZZRJ6T@XlH9UWJQ@{1OoCXKf8Ar;P(gHp+0eQcW*qF z`utWJa@kqPw$WImYOT8sBz|ba2~;1DvwYGlcsL}H)O0-Q^NXu_JjFXvLg#jVr>{?x4#ur&jipJXi<5B@T}rDDmF57_=Nx0c z6dpYXwN<&*FF&zGx=XUqJ4UfaffG0l&N0__^P>kBn(|_yCj_kX(Qh_KjB{8SjX5VqpMH)`;I2%c_#k=s~j)G zpA$i6K1))x#0Rh;ACIUofyPsdD zr>|P_J!V)uC8%27-DvR3b$F;16Hu1n-wm`9^D^Tl@wHdw895-Gy0duy09}ejMEHHI zOCHr_k_%>)3XllHBNaRz$AiZhBD_dqDb5j5-7S9ewhhMV>$guNT=9>IC19 zH#;VtM*sq`#v3YEYh*W<%NFi7?+7-7MR7ouHiHOQc@eT$rO@KHZLEkxwCg7Ot6qpH52 zD-n&uRf3G9ot~)e=d;vqq4QSS=jI(uEJ>&|_SSU$(c9_Gx>+KRbQX=SkScj2(x~#|FA) z`KK8dc@Xd(RayvDU#~;+Et28?+V7T10sJDFavqW+)hCR zRPg4nWS$$E;H<50rd!)YuMO?ufh3WjK51Kku%`BP$WxKK3JBWU8tju_Xg9Wxs0sF8 zTaPwKgvz^Hb9|4(<7wdFH%^ARdp$o?)h)E$8Fbqxjtg%paRiDQCY0pH#P&S=1eh6`Rc^BK_KryyO(>*vRO7Gpk=(XnMRlmWiRZ zqPmv!wu%sBntASH0r2dgh?-H4m}D5n`1bB%RjJDHvbakDh=e_?ugj*VH{f`z^dA%3 zX!kloK_nN#V|j3($`(sIfYCcTM&V8nh1do|Hb^U;k6(%nKTFi6MY6vTDQGRH0!5oS z+m+`yIOD!Lj-!V0PPM4P;;%bWvYtmsp-Y>1(NS3z9L7$`Wd8u3nZYOSt7LB4x}F#D zTvn6ItV5ux3k5DCxR}OeEUXn!>}-;F9_2@R(v{sQ#qQJltaH{@sR?vezpd^5M!$sr z0O2CjJTrByO?h``V{dHNDh#4@^CJvoiC`fTF`VI71sO;zZ~)fUR((%a`!=U%6^5-N z0xqqQjBO6nw8)1flOh~$3&wdRK5V@P?CYA9fYt0^w@5AHhVJ#9l56P|glj9gRcwWc zk0kLb=d~}1C$R8z38r{z>e^V`wbR4oq=ph#X60dwI}PiexZ|O(7FyNh`=3L()Tc@u z^LiTAcYb94_}Kg+aJwj|wtRN+E}>3b2&o(t4||n(O#KxZ0i~je2dzbBT{!*9N@`wfLIm z=^%ExmgYNY784T6(Jaz@hz|bXjmo49k`1p9-s;-q+Hn5cy%0UjDR?erRt-B`s0kR( zLiud1gN?>Hage7QuXlSkp?24nvFZ0#>1(Owt>h9t&9n`0%Nz2D;x{7_tAH`aKousn z;O$GpvcaU@>iT+HT1RTi=Fm+9aft8TnWJ@L?Ub3i;291Vg$wE8J)?}HN$b-4957lg zWLvTE2BoRKv9DT1pf;_kT0u1T62}`GGOcckR11k2Qa)uY=(|}Iu;4257M?So!#bCp z9kbeBMz=|D;RDI$yiOo8WRT1mfo=J4RmZBH>*42xt+Xv7{{UFk;({m(TxscO>l?6* zrV*ItkN~o=bP5j(^B!0WkU zh?Xj~T5aAD+E%u`yzPB{UO`$3ILYt*Zfv%iT4a^b5`-U>NGG4AdN0F$YST{eG^=-* z%n{3VHdF3KWt)?Ze}VYq@$M_kZG3>-?PE*)5_n@T}fp&!-9rIXrYc)~CabMKzBS zHNK}2I%3+qa)BeFuq`8Dz-_IQE8sSM=;_HiQo}i?8tYFX)2&i5mX?!ic{yEc{n*;y zuaWQijQWaUt)^(LaCyicxUQ!3%_fFo zfD8MKQn2FhqQ5py99SRL6Ydsn-KqY9Jdm-W=-tx{2q;&$FD z)b!0~!TP+~bkN*M97S2se8A$oOXkKH5W|8GQC`>LO*$K08(+SSn7!<1&ZnR%p?Lf; zUU{kMNqcIuz*JlX865-v0H6N1)6v0VY0#f6wtahlz&dbwgmCjvtD=`)%&YL@O@mhP z>{fRpF(V4$+_IbFcu`}z_)*4p3cT8;kziIYsWn2jG!ytuK}65(cwXM`sUm{+Hm znZps&1cDgyeiPT{@Xw4OzlOzbLmFhP{W{rZri`qlZ=)mmOg$mGnOWNo?nr!F03imZM$6PyiKaa(~Yif_zh8E+VnBhDm2~78t+?8@B+Ee^1L5&ujKq*Pa&e{Pr-ysIa6E zyfOhT-~~Q;0Sc(VMtI!ZyA8*w;^otI%|B7LlxX+zvLYgROTQ=%N6#5MUvT>L>EDl< zQGWE4Utad_{UeGn#8hrjT5WWjJ!$oAYF$vsnzosuT`j0s;<%K`?+Wf>LZ%tH-Om`< zMmyJ4;hj%ZyYSYbIo06RZx&@#n%W0IqviQ_za;fJ>CJgonc=N##2T;KuON~LXN{Uw zyz?S^cLpFgMx{fXM5J)4P8g^GR=sP%dR?}OV|8h5JIXxJ&df&)K=k$kpRsB4M_9dY z>$b+YX;JnvQXt%CL6PHyI>-u|*OAyRQSWC;gh`ul#Ec zfp=?pVxsWenM6`Sbs7LZ;bdkEtiZUy!3PH;imyN0E_{Ef*=h4cFW&kGwo8O#5O~VX z^I+#6y5x>P&syc8xxCbTR#N)IMxDOU>v0{%^A<^1n`yx#{yoVD2OIhvR7#|2xm)co z)!*+fEz4QzqW=I3C;FN*c(+Qk@jbr3Etacst;sSxrcFWt_Jtl;RFMP$3aO1q+5z43 zZpwnXl6*_FxEic&74Vl*zP7#F_UnDnNQNduAMP+f5yUXtvJ<%^oLvXu&aA zO9{8LmF*{)(sodacdikJ)++dJdJ(}^Q2U(%O(xnMHDk1PFK;~4ZXwa55vwR0PC?j6 zB(LA-G0zSnr7CpXmWRKD!$TDR0CykE+8!^`MV;N#>OLWHCA4>5WuC5FTh3;icyw7| zTt3u05me#WDO{-%U-+ZLI;N$je_?4Ccbc4+QKPP@szpDYAD1{tgGq4s`Oa~`&fN0K z4+r8)Dd6z$hi|Xqg<@M6tqr_V11XQqnaeSC%uGtMjjF@tY?1d_*PavBFT72rz`Cr5 zQq^s8WV^fb9|GKOCPdx3HXFi~+zR1I$Z)wrE=fJlHxQuQpx0Y}O2@7EKUT22yVCEV zN49&*`7KSYo%21saw5OpMU%?qW8K1#cPYuv>gn~pS5nh$u5V_$Fv7Pj8Yzr@-bgvG zFZh3_-yaj{m$#Q@Yl&VP`Iwg2eAw<=36xL|@6?rDz!JxIJ4dN_!oufS(*=|;mqOv$ z!-0%vj%%q!J6z?vO3SDD6l{EJrpI*A-Rp5n8$hxKWZSj5$l!e{r--$k8p>TCRyPnw zVDd3Cs$@3@uvRDXHP6_yFUAoZu?U@Qz$uV=LZh{4>-t<8PK~Eo#PJlfN!}T*V)GU@ z2+SRqV`p#sr=@mRr3!TY+v=`ohMcESDeZG_;q8u=mlv9rkE=eRZ+UR?%3dV}B|UmX zrGMSvbin7HBTDeEhjlLn-s=7%n3$~6Sz~FX5h7yh=qhehErP`K3`;&R*i{|p!+jbJ zGexzyjh=b0N7`q(V$bF?54;OT2+!0Xsm*xiljD!F>DtGJ@ANg)Z6uxiw>KVM-IKI~ z3S)I*9m8OaxW?rmocU9&QgxL{KY6cC$9&-!%29^M((w0&yfv(8`bMyx9k|oo^^dZ> zt<}kuWRL7^Iyc;256DLZ5$X;qj)`TgYFciZ_RXx>#c2dgVzp)R?h{}jzxq@~LE1+E z931ZC0llsKN4xQ^iY{gF!^JZEWrf$smw!bzMd8$?50*cQW{89W?4~=#lGI@?An@ z*0oeciQ-Tj%PBG*H;cQWkTo#_hgQrS6NkT?XNn!bea)r>kHhAi$iIRT2+ zGX=6Ew%H>Dd1aTQKGaTe!QG4kbHj(NjD{*6&PnL{f5FxM2AI4(3b=O~k!fky{sDJS zI*0Zig$1)b0Kv9qG49!g931{WmCp|v1W6>g)=?yeL{ke!FxewLy)#{m7p847ZlI5U znYu(kz-J_$wd9^J(=K#x3Cy<^`+V!d{{X;e09OWUS>eSYPQVX!g+0rI)2__yJ_f7JLBkvRQZUav1$I$8eJ;Onw>l0lWt=br+u$m>2 zmQ^7)>^LpZaB@f-XEoAB`tO9S^$V!{KcdHLadRc@!5X`Oj^GwK`zS4z9rqubXu^d6 zYfViwTJ}8V*HD&S4%Y8d`7RpLDdb`R-WdZ27~`Mkk;Pr`R*?FJxel+XS`%(n&7#Og z+^7eqT#SS1$i{GS%IOxeKZ7jeZ8qZSb=1DZ8qq-)1S%4PoaI(GW4I{mf_Wob!`k)q z9vjlH^o=jXm-4uEn&s`9{yo7JSynZfe6SlJecY&A?#CRI@Q|m7ch!HIx!H@%D`N2R zqV!9DH+?=`eNN+B)pc9@d%HMom7ym94jHzQ_;nST;XMN1QPZxjwR>}Ae`h-ZbCHiL zXl>a%U>(CCf%1{m8o;y{y57I`i`_nbB1zs`qiua=8boD^(N;wg3}R-|C(o5@$Smu?MC?b(!WmQBB(ymtnJnT8i zJq7^hIo>*DpHH*0ZbjwwyevIb$&>u5t+utN=Adw8lK$XJ4?an zcMv(r;{1E!wbtRWx6ll;U9H?{AKr*GkClx>p4l|P2|vDdaA z-+uF7nZNM`G=B-lr|OoLvP-E+BHCH$*4G|e&6CfTzFY1iDmnpz268}dUt82Jt~D(! z?aYSS{{Ts|)E#DZW{1o&767WQcu+I#&=XVmUs=^xRk4cmLP>Rd31``HcdN@XqdJJ? zh&hUFyr4WdBO7;e!L>De2|P*TJ=)&wK56V@irzgs@XCxMX<3W2Mx6fe002E3o@?nK z>Qib?_Asp|D7$a}00kULp781|9B{0Giupjc2`3dT&7J%j-L!h75+wI5k;ak6&Y@Yc z%c$Gf_Z>5U4Nbp1;8ZKQbQ+d5&`G7uDJc6M+66Z380^G&zab?CLNKTyW*8W|<h$t*%S~KGAS8(MH^s z=bU!>*O!ZBympr6Sk`G6$j-kf%zJ^7N7E-Br>$tgV{W=>Yn@<8aV(@m51OHf0GwcQ zdK2^+^{gP4icIy+mKU|UoXv8AV$HY-7_yA>fDasIrqw5b^x5EwIMG@*8&PmN8s%*z zokF4vfsvAMF_Zm2l~&btneFZ5Xl*VoT|wa^AxZps{VUt2Mw*J7XMp`Y{EJGMS|gai05m{ZC9*#GWFbUGWyPb8DyB-{}_?ZKoBwzxx_Ugp7rK zr!2s^;}}&0kV@x^FsV(dbk^w}l@)0_^?DdXTRtc7Hoq03-085}{g&1XnPl_gxQ1!W z4Is=Y>%``O6gf-BIp({ne8bX%+G;Iq_iwArN8qgM>O8)B6JleG+r96oc1w)2+9 zIj-OMgH`Zq_Z;7y`Ik+l&7I0C=VDti)F{ z-Nr83PcnhY|)clJV}^3Citk6!9wIT=5j^b10}^=Y1{d`qYU;TW%NuV>vPV@!#_Y4*xI zsRmB$N{zAEh};t^oYzrtr(4|k{{T|cENqug(=`d=w^?C}$aweKM!;+!6(ezM5HMKr zoYt6{a-2DOJ8h?4=b?t32`kyAuHEea01x;lrg)QClf&8sw<2ialkFh^ayzE%4DpkS z!PC5O_a-qus|U}F3@%641B%e`C8TlqXjxtCyAfO>?~w;MivXPGoOiAh!mwJ!Zc_a% z7CUxr*E1jsv3s%XG2Gx+CN7nDtJ7}DEsne$OgpD)u~&E2%Krd~+smw5Uu!Vg8;EX; zE8_{CicWL*5Ad%f)UGct?(J-^WmdF~`c<`!5rc;^6%ENDfcg$IT4Ul3sPPNj==u`L zWg9SxcbCd(K~f6^*h-F0GtM!#6VFVj3Dq$S1DPWHm&!Ek`sgEFjT*T^6Yx)3)4cK|>I zbIJH;P!_%gpZhYx+ToyrI3r2h3-*a*w~kS{$lAcjPVN;;fyfzeK+yGlUVpWCmrwB4 zm?YKh;JB3zs{7v&{D=NMvz??2ZYm1o0818##-Aclj@L4T=dyp-r$Rj+Nc&B+&onxf z+;HFB!l)hvh^%)qD)E&)6aqL09Wht+OACw3dHk&gL2%K!q=diI7K;0wyo3t3F(tZ1m79%#P+tAEgi3! z65IevxDa8JgNGd8jz>5(d%>5pzl))>yxRrMww_Si2j0i-?sg-LlaGFT^Nt6@7J&HM zO=Ppyt)nw-E2_k??oJK{6lCx}`q{5yx4hDArM8e>+lh(;Dc=%>%AAfcLCF6AJXZ09 zVk+&l`A8`F}eGPHeQfc-+E%7Wm z?e&JA4eWA9vP;;5sB@pYyCCg3{y#_W(Yj~f+lu3bGWeO41( zs!Ol@6RWa^L$mltbFAu$h$6aS9im@+lS{P|YDu<6$y69okTwjE0b!G@ymmSthVN|b z?)2u=1?+QJ+{wM7cx6by&c!+V*%%ln2c>NIFISsV(jMA92To|Ty-)i}2_?Mp79+XB z;RFt+3a&HPox==9n5$mawgC=b>#Kq*S`%} zsc7_Cy>vVpkZ?`3a@w?#+TTeO>Y`zck2~v?uz#@4IFdr4 zi1`;0=crud;QYq~*ID7OhT0abrvCtF>TPj&)10AaF|vW~InHy=M-{E&F9K91#LX(KzOsbE2rAO|gs43aUl9!OHW`25QYiK!U>04??Pw?leQ6Nl!EUn_g1 zzK4R{L1Upqt7*0;P(87|4=hZPGJH35)_dVVi(RBc`8Uw7AkIvrCI{ zbP2O)+I3UrACrvZIbt!~=N)T2B~?+ot1!g7LNSZFU#|TTlWpT@5v}F9){usr$0RKn z04@(X1J@NNiZ#75_rhAW{+%p0GFrx2nMN28Gmb~KaQ-c^n@FFQ=*SP6Zg*7PF8sCtpZ+K-0Iiz z=|#TDHMOkl%_)?|XHW~N+GN*<5-U8hjodOz^75z5+)hBw zUWsv~>7EzAwz`Bo^Zl75jwX28Xyb|~*m;YC)g>TjA2&`&uaTA|OI~m5{s-cHJvWXxEOGdb-R0b(n#l;E8Ei7aRV^h^D$P9KYG|89jN|} zYpLO*T9jicH*Ictp3+q2(uwR7_~zlJmM=F*)0QoP29<+?W~qGMAQ7`mguCR1jJ9gMY2+YkZ>+{@?}9wviNwTn!(ySi0KA#mb3q87zkc%+HPNWvJ??*aTr zH~+G%o4=O&}4+RV~LVI0sL2^vWxX`9T$D0Ue8xC9Iq z!w))LBHvTeH62p+)Z5-$M{GhtW{RgO!Lu4|A2B1I3hmDs0=cSJjAPE-){F1Z>ZKJ? z+68?hQoqvdwGpH0x0cq8aA$%WTZw|SVmppp$I3VElZM(z!yG6qIvYP6YZ`^E)K@px zw{y>LEOwXC>Q`2g!#|xSGqpl7K6F2LDk}MEO7s}IXNUD$3yYbwdz+YUgdTi?6ljDI z1D6tIw{5{fHtsEsnF6hNf5G?K-M!J%>_qZ`Y(z2bg>G$z&E>bS8Qh3?VV2*|Krs5_ zsN7)vJDa>eF0wsa#MT}u@idwSf#Li4G-QWJ7po!^vGE+ zFN`cSPaOEOOuU>x&vgyLIUoW)%K#&6+Ty$jbX8 zg)tq$##}hy1M>`Ieakij!?vFhq}26$&28X&xhG4jh^|a?Km)2oxkEEZhset@1Lbx8 z6*6>2bmi{NwfX-5!7{U74yR$_PaMUl&tqk#g`P!rB#Ayyu8$t(VVn%eJ9hOVur=*( zS<=gVwH25@$sdB7%JE+@Ft_1#EAJhqpb>ivwmh4Ww% ze1K#J=-iN6D3KmN?mBW{i`T!H^B0wnhOUoy&l7Gl2H?t*AkHXC;Q44lWPbe6*ZLlMdAh z41=!MJY)=W$>X1nO+GD0O=G4kmg*vT5UR;=WJu8#F)FVB?dTUd+<3^_gRL0F>(%~c z;o|Chkk(HB0Gm4<3svySTWMCd@acn4xR%(9h~ZH4e*PvZ?TqdR2M3e#n&SLZVRNo{ z`u9hRFpG0fs`zy^5N(<{Y>9c&N8ZtbO7Zfpanu|h2?v^t zB{?M>PhO&h3_GUuvR~KgbDkf%()9Q(nn^s(L|$8!v=I>$tA@+Fwo0%PkP4{-%Li*` zaP>a`>Mx{xB-QRTjWuMsj@A?_=a{#=jKQUOS7A`0@=jN3Ao=*;T!n^)_PRd3;VWDH zO6K0`;s$Ac$igTQ7#SI&^LUVzQJgTsC?symbQAbz#9CIXHH@AndprC5`B9BsZRL@g zNj5&gC@xMw@5mq%*1B;nr8JX^^gP;Jvz5~|_0JFMz8&yhk!9iyY4vNT*Oq0S<#`IJ zvwWssoCgn&QGT+Bhbs{3Wmw9E{ypO@}e`{}{TWTiP$(5&RX1|APhKwKu*+(GB zp1*gucCpxKVUnua<&u`0>C=C}a>CS|PjjlVABGV>wWe2#AOi8RKXLdBG43(+$GD~) zV@A_I;UcyRGwauS-HW6##UpvqLeNMC;0gjie0qcR;<%3%UE1jv@mpzkH^OZBvy*uv zWmujG-<8KC{HOR%dFIZ6tmy5e+NP_b-^p~B>2lX;a2!e;D)~|dZ<$K8L*@q}Nk9XV zcEsjX@f2NJQEK|_{{RH%jv92N?)K32D{mT`>uY|8QYW3&dR@5 zQQT#>`i1VX1=f!qmhs%mjEoxMB2xhg%7dOarhNmc?laHDqUsT7+FI%QNwcui=N3@S zJ<`a=V|@-o0nU8*hI#-CW2nbBYpmbuw;H~+8tT$qDas3I3`qOLDC);)D#2rj?Oo@o z-~!d;eQy~%q^z~weZkaEs_g3t<`1oh@mEJrW7Ky|=TgH=2qsOdKA z_KSTE;q^DPc{HgewEJUCb#Jq5ap4PX+ZvMCTyKy9yFslzFGqh4d^OcIyNgTM(^OqH z{%NF&-Z(cc(!cJODGMrc{t*Tn135J`Ua8a0LNmPbna zWUuF{#Ofw!^R)>r6DsXosom((c}|PrJFAN;ZxY$cmYRLJjv4N*{jVMD$ zW2YNeo@-m#eyp=&buxHoNJ!bjoifxg9S`nOvF`7$qFELexJ7Y>36Kc)#dMlQh4!1L zSwLIJ9g6$(jql(D3HD;p^W3>M&~1+f8u_q(<%Rx2fLS(WGTUu$;J$=3&fy9ta&B{{V!w z`zY*$C+&KYJhR5PG7W*Pnihsk7X$aN3Hd<<1>qSYE_hpSh5C<&^vf&z^50^;lEO=Z z`hBVUIC&%7jMKjO*;&{S5tV>l+!j^RrBx{@CAGf;8%oVy$(?Kx_-9z~?w??9thCwf zuG$NmrhzvI(PeFl?;9wblOVyvZ^jvh-g8Z2XkK#a{W|V)IZdcR%{3oA?YI0f z&TINg&#u^8>0;W$PPp=;wUPx$V3K1L5+E{dD!Jb)@yl&s12zH6@Xw0j@ZPy@x}xd& zlibA%&u${i!7yM{t`V^7yCfZ?G;T0(jQ#vNEuOcdX+9cFQBqrJRyeL8kP^=gj7nSu zZ<#@Dt%5jWG6@8EmA-{#sB40~Ze{X@ecj$=pHff@?NU3VcP=t^^u=_PcMTWcd)msQC*D z5H|d;DB1yH0Bjc9jtR(%TF}1Jty|t|armO|5ZWi&Zf)+Riqr!bon|hpD}qezh{^%- z<2%TXWeRflXSMbF$*oCMgM;dEG0i!=StBM%+~IJ!B%Uw_uQln~SA@0A4@yg^w9A{R z=iMCk=*uJdW@|PvI0qYCMQ}TeHX9irGvS4Xov8SjMsTp6sb7|L!JOAJ$U*I+cKkzj3pQ- zDA{zriP>q&XF{B<8cgHEDe+6 z3>$MP7|Rgf4q0f>_#;)+;@7MZ5B@LyaR;aOVEqg7>#dPt&Z+E~tZ;l@rvsa*3q9lwoZ7j}0R_qxWJ{kL+r z631^IE+JW)%>fO2Bva5%AgS}vny3X8d>ytjhV8+E^1Ki@w23P$J$+&KURRAmDIl$%x3b*pVA_rq;8 zjdyKzclKL(Ws77;L~O@$pf2v0IOl5N*x^bF#{)`K=_+++&pmbJ_%l`3rO~YI zZttzp zBxGro0O{O(A)fNq_B4WPY4r(j}-#S<)MTUo5^_+r&0+ z3S-U=12$_D9&2AiPFo(87N=+}Vg}|QL}~~w2RIdju4vi@zi}Mb*CpOBxEAcHsrDJb z=qs1ibbqj1O(SVOBrMaUfL%0~46qR)e8`eX7DH?U?zm7g4=&W;)%+1;rr>yD>SM!w zqDW+sPD=oCN2)j;=)2J*I{6!_d{2~|Dk=^;H?B!IM zL%IBVn(>`RTe}H`vs_#Tz$pI!I;-)X4@3I*^sb{?)b2HOwHhCVrHVP2807Lw`JiNw zqrcQ=^A(MAr1+P_7EqY98`+=)NU}m1fejzZLk0A3!_;8+uF5$6NAE}PGQ(7yC-5g1 zz3p=U0EI8~3%vphEkb)l)#tc(N1EP7xRF9G6<8rWoPaZyZWI%NTae3XW$|6?uf?=B z@Ik%Rmux&j7@lxCWcy&A#<4sd;YaYtiS%7#T$lSXmOG%ZOK4-?v134TPdWQR=O6OV z9OomUo5G$Q*0mX=j{3>%+DT+{4VgDYN|G+$H*pwJ{{Sf2z(pM3lNfrg39he0JWsRH z)ONR^o+Z8VBG9z24C(iVc4^klCA4H^kZjxXOqeT~e)DhwoZEHOz_s1X%qo0iXnJJ4-JZ}j~sHxA@iGm?+FnBl-dU7W>Rn$ilwSm zX}wN}dukNDvW%1;TRVPViK*jH8tD2apJy(Tmq@bS2yWT!CPh?uU!zEv45XuNTsO;( zImcaRt?AQhTC{fd(b-$uT$^-#o?6^8WJur;I!V1V$R;vD>^#rLdK2mr&XG?&v@u@U z+$3@QfQBrLMtS?*LkGvF&n8!MDh@&Kq5 zFPFFzl1)ZR6ZU<-Es3WkQXJbJqp8cL>UL6EPk5p!0ao(o*huG$fnu}9sL?;!ToEBVu`Wc*ai$fm{!ovy*x!`kfUh!9{!5 z`@hKbO*_YWUX`ao3d6o@c-q?67S3gXK3&LAF7UrBXQ2KJ^;+Y6QK`ZuyS#=&B*A26 zca6NakwGK}#@0L>fO0U|#tste!qZ&OE3TuZCz~O2AiRUkk0^?EIFxNaCtg9$FhC&I z)qE+cU0BO!1@)`Jz3w6jGB+>0He5MVjqk<*#yRPq3)xM$dq*oS_qXM#>gCv}VJ@Jq z-(ID?deg(Rcy0|_Si00+B-;Rv3mwtNf>ilZNL3h?1hS(R&f-@J#6Z_}Hkz%)?wzIS zwmNN!>Cg6<;}Bg1xr{K|!{-X*Fv%wb zT4r26!c~;*UB7pd0X(OO+fBdmh0doXr1mjOXu*g_YeL2732CpfwjB84#}!nUfx2cX>RPGl4&6mu*$AfNTGMf z`@O(}gVz_0k!4t9Pqnmiq*sXGta1cmTdTxLRSKgd@q&BsvgC&&Pfb4q zj=WY^AT&Iogll!1_T`($y!#bJ1VMbxkCe&3_`YUffG z`k{(h?XN|%51!4@GOfJhWPqG)PcwdUryIO?wD)b?PYLYTHO=h{#Tt&CZLU~q*Ef=? zTfnIxyu5-dea|bblFU~zGmV(qqjvOC2hJA`&r7zs*X~x^Pqv-f1ZkmbhDf9H5Nu&K z&F)<=+2~6aCm<7FS@2G$;vIj<@?GYJ%FRv03+Bso>kW)@E*eDuAe>3K?ao^*j#db? zJ8K`d6*AQJuHBoU3{ET6RlVn!xo0HEHl=6=Yv73x%nZhrB%+eJVCFFJblX!5& zrRbwhk}W>jeAt@e>3|n)EUIC6@P!=Y)K99|l~k}I^D^4i($G}oW^Eh|SW%(4_LLW3zm zwfjT~z;XpmA56BmyRx&@AiUIU=ClC4yikG|K|E?4$m)?uknC^b`JrMmL26K7Tkz4huIEE(Ap8ED4OlsRE?w{a*Mf!=D{trWRtf7sQ7Qe`jv!N z7gOpm8<1{bxQ^-%IYi&QiRErUlz`HK<^~v%h7NO4QLlMUBpHkc_js1TXP`kvv~`(a);D|kFM&oc$My7Pu6dyvbT;B_Dgtf z3&`e7h{w#$g^zLPa0H%!ldY=wBTw+(!~XyeSjl@VQBSSKd2sVcR01HGvGV=WLWRiW z9CgP$MaG%^t0m&9&oT)loHRDl$g#$<&PjA!mJB5rd@kJeUahoot`C`|>C@8J{=V}4 zl{iP1{{ZG|>Cr8oin^7~wW?UzNh{A}wrtDg%1@N?vtWpqE>M@jB$XJ!BW?|MMDQnz zAkg%^X8P@}?o3xP+S!jP2|USTZ{0@9Oq;;@LjBF9assKTbKrR2!Ao;xaUHy=YjO6= z6K@6Kj0SS10XErT-N^&}XDAL?NhQVq0ET=&uixsAre40X`hnFVo@+~MrHz@U!eK6X zP_76HRlLMkB!a3iuZxxeu&^$kXCXA5j0`;{4c`Qa|#=!_gBXA55vthOe zUYQFgFDTWl^^H_oczWt<%Zcu8q=9Eg!pQG3`7dOxkSL(m;_UsNktfbjd&W&r0z>4r*{6LMN66 zxYb4cOL2ZRFSW(Bte9iW^DPUMn|;|$Dquqde?R5k6Ph;Ul-f_Tj8kw!F8w$JC?sT*362`Q9x6dbOQ`Q z>&`KPGl|33Qmq?a?e{C$sKw}!#9#P=(%ZtCrT&R|<=aewt^BBNE#f6ue6X`3u0T>S zr#n#bg*e^t_OYeDg`#R2l-Cb^91g~IidHeBGbw3X1S0&W4ES6l5O4_@+BBX9xbQxM zqUv*5v5wVc`#h5{VI!gQ4+lJ#f1%`K0~X@{0EKHTuQX|*TsG8mxti^4%U}lw7WGa_aCytGrA#JA{(z@fIC5Wm!Dc@~}$>Q1}7u3Vc7%V;hwZxk$2 zU1jbX;y}N;jaPHv6SxN)74*Tz9u?Lh(%J{M)1pUk9_sE$A`nQCwqP#L@=8pnF}My4 zYIq89=SitX$s19MloPgxuy}jLxB7>HyiwvS4JI^cqlqmnl2(OaLQG7}C|LegZSofk zHjItxRF%2^00@7H^uG(~mU_Op+NIQb$hvE(WO+<+8%9P!zn&bp9>g{VN{>C$JUime z7g^DC@vB|h*<9R38%1Mta~dRXFgPkox}V-YR|||}oRVv{@YUVT=8tWudH2&h+apY~ z-_JS*Dy(p_I|0|PQPbBm2MRNdIqm&#{${PZkdvnF(a~?7;`$9UPl;r>^2f~lENDBQ z^ZNBQ2(+yuQio60b&1mEXuQy4gb3An@6Y#5RnWEDZ8Kb!_DsAN5s2N8WX4B)cNHb( zj|Yf6cMh=n&Y3QrS|pCyrTysx_%;#Uv&MPPO7yBZ#%}J>>0^?bjHBLNZdZQ}MdA$> zYyBd3x`Y-(6~sFk@z-y!>FHb+ho?msi4F80Xcv*ayF%8m%Phh*W?6WRS+TX1N#Jq^ zai3`MSBtHDJ!tU4QcLomr76yKx7m4m%N2YBx8! zeS|uEPo_q)X}cu4wlgQ%WAfevS@SkG?ZkmuK~I+z8xlKmd zrn~z%j!1zr>^lzij0QjeVS)ac!k*yB!X3 zrmo$Oack=z5!z}Ac*57q)F*@}ly1x}V%^B^u$*Iz<0l!fEBKt6WDjGZ*Zoz-;D8I8Za!A(@E4 zyo>Bw@0aByO&z_wPN?eZxI-S|3gjHNPkz3%=ZTA?;|Hi=WeT;DQo7vgEUh=o1UBIV zNT6ko0MB~W)I2YJZ=_vcNi1%*!Co;7ZVb8kv%tq0{&boJtn-Ny7ZBX6N)Wn()aSpg zbk@nKY1&om>K2IC4H?W<#5j;}Gq zOifM%W{zuTe=p4iPSd*tf({NxTw|fHY0~^r;md;^oLU!%Vqo4>aYECSNQ93XZu!TR z%x(y6yGk(R0LRFDSLJF`X|@rGV-iUPt{f)l$2bEeSD^=z2dN!v(6qZ-XnbOtjh?G* z1c_|o@oqve0(+LY5hlmLk#fO~<^UMT9Q>tes!+F8ewXz5T=T1?DxAxy%~^P(MLsIi zyhW@y8eEf1hTX$X1PuhL5wnvfH>#eYd0r0UY|n9^-}u(ybcyV(^s+788W_UC7*jKR z&ZBHVF;+RocH@vuWa-kwW#SDMG?LxE!3>Z**OvZmyo&Ldomm47!>{pR9u9fOU8?vw zrnb;t+7vz?WRlYAT{6N(yOJeQ3YiRh{MIYE!x+M@(leF;y6_d_YjxH9o$dX7=Phb2 z!(Ev}R+>SsX_k>{mkF)N<<(zKy)p#a%v{D|4C5)c<>!)m16?h|`tON+72yppLy}D` zwV5Tjmr+}{jM^%akdkBX909d) z(C4joN^V-e(1}%0icRQ__R%HMwbNy*-z=B0_L-wFP7=t zo`cXFD8sw`NB%ubHTin{cTuiDel$wsZ{u>uHN3@qu(k@_=>@r>H z@yU4&oJ^3W{{WwJZQ)dweput>Y?FgjY+=#-JADn~0KGs$zqP9oa4m2n4VF9*Fg?#B zfI$T05mfb^F2W1BU|Hh0n$ZTGDY$`Hui5_qb(qHQmnB)b-PL&D=MpPcyuOYhW{(rh z?CTnABotxKJ$dU~bZt(*JZ92O-CIvinjXDNyd~LLxg>EhND=evhApju* zl>m}>;QLoi1aMoa5XOm~PSMHw*PeVilI9Hxf3~4VM_9u%51cCFdB+1ian3W0n&>Y) zRixMh_KWyK58zhZ$M6|7<DV9ExE&dwyRy_Yo7-O(>K|l#Ng4^3=1X#7m0D;7OP*XK>@q5jfQZWO zZ&NRYRNU&OmX^88R#3MrUC%?;G;If8xQ=`4lJ6JX3wBjk+zjA!6&}AdDd9`ocqdzz zSO`^lL$rirf_wh}oY$S&_*Uv$OY4X{A*jJ5`i;bvf@?Fn8(9X_LX2<*SRNw0hB)ZL)p%IBWr7&k7* zqWC9WvhkYS{e+n2wc2KmR#wK~a6=(rLBkHcxdS66wW3R?CCIfpRiwfsm+dz;kxbGZ zzc&ttJc7ItjC$nOuZOf)JTY^r-iw=yiDa}w{&Z1ByJId_9$aWMmu#L-Pil(qRJr>? zLLmD;p2188?Q%;De8>(*PUDV;n)0x?T1pA1>ithnrXo?O-8W=%+RlMxa${TLB){0} zBv^n)7o8#_OdV7v*uUf0t}xt4dB`QRJi9GjudbxNo;bA=B=IEEq-$>!vQG^7e<}Mc zlAJ1qSCxtROCI((h5f2dZ(13x+DKytZ}lXjMoJux&Bsna^sZJ-1kI~!7OSjXo7rsA zBX%VwU@{o(bCb@^z5ZN`4A*>Ud%7cvt!42{&d{d*$kNpKR@Uyy;?~CDlG=II)^qm5 z0Be{=KY7MPh}p^&0IDjrJNqj=KT46#k)!GNaZeo9lG~V~mK2fPto~z>&Ikcnz*Cl8 zp<>P?SJUafHj>5lmKHFDcrD>_-e;X~k;#M#7);R3DJC!+bFhWL6#Pr8YEvhM^vOI$ zai~LgZ)(@NZ1R+JQL`#3uO#O1{Xd3Gtc?! zT*jqy6}QHH4oRktG-Z(kNWnp7f>lw^a!3QzkU2HQgu*cFmkL<*rJY&lXlxz6SL*vQGMJ{s`#o`I{wJP&lYh2ok` zmn^Uqo_PNNcjWZ>M7RehmEC|y$7iZ)0u55)Q(`AuLabe%0B%q}!}6*yGinz$vC6W+ zZzwXrsV+cdImjGf^Ii1tu!~MA)<-<+N#5+k(5JGryplD!k}KP}qq(@YGP8_NIw)lY zHjIgo@Wk{5bDVQ_x7sY;EV$IBe9WTeXcAH8F<9-Hyw59U(}rAtWL$B{#!kPFbX$!Z z!wlL^rGFmTki`JFaT>Rn7!U#K8wb}s^{+J1HBCcG@dc!JI@YPCXr|#LnkX(yx<1{x zI~742kIVr3ynMt1Th~&Xj9b57y5@A~RFd|PS}Wh~{{Vt|4x_EZcj4HtZe#Q8C59=Z z5h_6Qk|%t$Wn@*rw=1x2$T`S4TBCiSY5IPhcc(=qi(K7HC9D@w>GrBxKeNqUq*=BmBg$+vN`8E@}BMz5f8gG^I|`cI*0T zdz`nLWv-WZc_jAHSwiyL#1=m#0Q+soU8XqX;}K(p=cyo?rv4?DPt~+NKGGGM`foXW z$)Yf((L9j?%6?$SVBq6!2_KlZ_ri)Vhbdi0YCqUvB24`>p+!uaN zUAfN{fSxPYBf7P_Tks~dTtG@8^2SSWF^;71@9$e-t3vOYXteu`>e7|H)9778SGmyO*!r+x%2+jZ)T9PmfklxL}EzZ;5OXt zatZ2NS-ekl&2p79w@bhxv;#J>T7sK ztWeI9DM$_&Ng{RLa5L+lLr+D6QGn{pEYe-r++1v131oJJ$Gt=4HvyfY@zfKyJan-7 zNNqq}Tj<+#>t}OsWoYW6IT>QxC|M*3tQt81DnaE=2`ol+C{&bfHK)qPk#UUg32I|_ zv%z{S66zY1)>m>xZ8VXsrIXv*g%Vy|s$lFODy%1{W^XY^%BhOItoVM`&q+F3!!t{! zX?la%-Q6v`$+Ft{B9hkSE;RdgCLOk+6m5)PfX;qEppr=kCYhyp zuG#Lj28K7hP$aqDwsBdJ8p4Q3RB}J%n|!?n0}fb$pKD#?c&p;k!CIn6C*xCglQ9R8O}4$ zQIZJgb$<+fp;`-VD@d`kSneHVfrRWp1Ivsv#;h3fH@4%3&H)%Z-wm{zT`CLRHf_?+ zXLl?&*^mg#sV3aUMh?xPKK2PaxW+5cuZ^tH$q|ArvJhV^Q~)|;oB%VAOq>q&v%^WH zD8Kl9f8Y~2(u3uaZSVblCoOxa#Rb2KG??JGj@s?D7-YAB1ZxME48+KwX9bmD?aTS+ zrqM|a#*Jg*jT^(ZmqsaCYxtl*fkbi1c*`QH2zGUW@$)EA#u#vJYTsr11>l}kw=Uz& zm5B`_NQ3|wXFHTPKXi_#o_wcTyVm?Se!4t9E4`O>*PDLLc+h!sxhss5z4jQ%G6KoF zXdn^uT#Z`kl??rP4=h_8;vD zV}om*p(NOPZDYXBG6BvC*Ku&ZCDk=8GeLsl>-SeJ_IdQpOoJ>ckW2ffnsb&BOj`is z?%B3y)tjivD_=uy@;far!g}4!skv*b%SVV@Ot$H8MlORFmN-F>F}Ds&oyUSm zAmxzH9lwh88yj0jhR9xAMv3OEfmtPBc7;)~F}DlOIT<8z&rJ@eaiSX;HJxZ)HTpxU z+-ftzu%)vZm0Cvg7_L+%1cc`xA!Q>qpHT4?uiM3ztsT{^q7!1#EOJI5j%iV2B$C@m zi0uowe9Ct(Il~!;c#2Lc-d8ZIP1IIh4@PG+71CZz^+GJxK9T7b4Kwk%rVb> zdvhhtwX~6`1Q^;eyZ3fnCaPt2Ejx{XKd1K3Tx85H%kgH9r>Nj|pOoHZiaIOyEah!12 z$4q04Q}xCE!_ivr?HBrlvns-orsjFc$y7Y&oSr%R#ABNJ3N>R^JkdMl?(T6K=C!Bk zKMw6IwCz1DrOk{{K@eY(d;q@R~W;em=dZFU8o8B zxfpjkjq^cmr)b)KsifPlL~Qu^4%TRi7fmxHkh{7`W2P5tpv9QNbRlEh~pOpke@3cy4$*j&Q!2q4$K+@ zMDX>uh`zz5-z!0*J>pGeB+^M5%j8@Ye=24unBK=~NID?Q!HYs)NJ+&7vG zYW9}%OK}(yLg6E1g&0P$vc+_Tk+!Dj*@+=AJ0A^cS9;EgJ*EDrmaC*{7dCcs-bf9_ zv&8VUepwsQa5t&jz`}*&nutZWXq(E`yFB`D8!oe{=`&wwvtM4>6^71O?;0u0OFVB9 zW;FwPsFgRWsXl0IWd?l*!xkEUi|o#&c_;R2UFy!3@mXHJa`8a8k-{^(@QlQ=Z*!LR z!PfjCdEsxe_>yf$O1!= z4gKTOws_3bE>}zst4pa}C83H_a~wU32c=llH2(lT>e=VGyi1_lV!2sZJYo3Y~O+bW*@te;%Jfc7Wmh9-zo_JGdx3${7~@U_Iv`` z$}3smmfGR19$_kzA&zBD#ZKS>H}W_GrvRK_4pUO__OGg6Yno-gWm%@j+9$h>Ndhu< zoze%vm4lJBfn`(MHET-KwfEHTmdi-A)8lx9eWkB%1k7B3&K+lH{KC*9F#zrx3uGGT zr$#hp`BjcK`S(WdllCts!_mU`kjE0G#iL0m;G3nlDBEKju+j$p5ONn7$*y86sO=w5 zyYTL(bi>Nn0vTpSFvg>HWQ7s1m;`J)0xNNmj6W3E>i!P4u=`HEEyRrrtH&J0QenDz zGWo`LKL-aSscu-UQ`9w0UPz|Zf3sob4yB zGrZiTsiq!uaP?z4i%qTG`Xkcr{v~*fXm<9oSj5+pB%kSwlR;@TfueQ`Du718h`<@y$R~nGCbB$ZeWc%N!J)WJ=#O}_!3DdiW@z5x zLKwyoU5&H%e3vbgj5lRui+LoLw{S8Rjb_Q0cbE=FN%iaR$*wQQdOX^7wY-)y>X%nB zMK{=%Imvr>@|Y=1u*Yr}EzE8fS>3n!`z1t!0UzTa7l>SqGbG zad6AMVFMuSY<<=8_9-Kho*oALNvvGzv%vDeBD&NsZf#jE@eP=3Y{*(aGs}CByTX%@ z8Mu%O+BTM!%WrY1K&4*g7UM;^wYDB>{hra@MS&D&YCQPc^C@)P05cPeQ_&Q?*y{E* zHE$A_8(Ol_&9Y5zs9wS(n?@GvZqa#@vk8-WNCKf+QMbI+Y-Ek2C2Zo7*#mvmDjqV-#GGL=NnkKD&n_-0CC%sO zsndpiVtOo=lD3y0EoHHLsV_zFYa3aL zE2W%r#T0?UvSpYVPtEcYIt4vCt9x?>kD$j2T*-7`#BC(t$fP2vEbGA}bs+QGBCFY5 zxf0zpa>}Au%#xY1!H(4oGv9&v4@&5T2;DS{XIfgO$RO8@?-1SR#PCeF6Wcs-tZ(Eq zZ1T$PQ~S2Ve9Cruk_QzPrjGs_u-01s>ST^9M74@}6;%StFUe9lY_8!NxjQn_FA!ce;j=dmgiJw|7>IgHf@&Gfg}q z>fSjE<$h40$k+@(DtQ1L?>KU#%;PR&J6G_1yn4Nju)fqLiUV^8nKbc76{K<8OKl4_ zK+2X_caQ;4u14a+X3mYLeTT!kXNFCc#q76wlFzD1Bv$OUQ^_17?n@Md2(u!ey4%A5 zKsc^LRo69LC&W5s>)$L(HNB>zZT6X3NHHnjI4Yr>W>%LcaAKR+kl-9UdyPv})$P2U zcJ|$_q<~0fxqmpw-)G$>H+A7R*DU=*f3+pMQP-1#yHkrDG5k?H`VN;Jt)8G{gCGtVscq((PXMf`T zdMQQEiS$<&b|UUse8>omBXl8d6(VMA`K-QK`^DHCjmpDXYBetrS8p>Sh?Wf$wsilR) zcJaU<63Hx_DOih<7eEY*F#HfPTwjWGO+w#9pHi{A(G8`l*y1uo&#Exbs=);L548`4o#S>(Yae1TLTWMYaGY!1UGttj%nP*kMp zOO{H^>on-0(zLrt8LiVwv4s-ZCW%Cmm3Kz-B=VfOV;MPAOk=s^(VN3|FzR|hSfP^s zEoEo>V#5?{!Ef1iwh*xaMgR-|*q{Ib2cc=Cj^YKkx02p@<02+m_MMK!yL9J2&aGN$ zV*5{(O~uWzH!RaEau7_a!0yN+oT%s5^Q}}a^)b3yqm$5e>uGfRcCc5m7RKT@i%P6w zQze*m8)IB9XCElXF^*1tT7DpH9{gI~mbj8@Xs6UI+6ho9w07{`J_(2r&SuWsoz#jS1O)zvn|2bl|6yq~$1@~tP!{6;WWJRA|v0=eBud|PoeuCwcRN63~o zc^Y|4itn+8WK};jYMI&&LaspMDx5iF(k?Q()bwXx4(hsn&W9`o;g?ReybmSXv&Ag( zL-Ub2X-mbN}inzq&B7fr1}G)Z@C(MY0cBu9*F2PGRg4V)2L3G?wytx5~%&NZ~-@P+BjS zEH<$t4VLGYIn6k8JH{&a9QhTcCu5`W$B1Ckd_8veC|(w}CSZyg#71ahc1-cVY^+y2 zZUZ?P73S~#n--Y`<&wf*MK@0+=AUqi_iTpDIWufv!+pb*B~DR5z${4Q^=}wz`nIjE zT3t)Fg^z+vKtZEXq}~Fu;Zi+_o5FL8|Inb={QmUS3&W!KhtaHZB6Z zPQo>CcV*R^VOB4kj>qQCebYvZT~X|CNv7*J#z`z~uOZZAf_tRYC66}Iy_^MI7t0}- z0wd2KJh6^9@y_0Of5X@MJ(PDBpJJNiMzEVi!7n5h#NsGz&zb)KA3$x~tlLx;JBeOi z{{U3+O2Oi-QY_k&HKaGvCCiym{Kh@32*~*WJF?j;oRUpv-~Rw@_;*gVp4-F*-fOKs z2f2#ZQuy|}5D}6fddo+(#jjqQPh|6_IYejvg}5}md0{OC_tkv*NXK9N6S)i8T-2%pf zRxGmsyll?a8-qv6h61>;SP0giG@sq`Iw{t1R!H^>uZoh%Ev#B?rI?cDc;Q94yip+Y z2358$PBD&u+Fx4F)#a8;+nrOyuccijmGs(LLnX0fM%uC|<_V7Cp^piS54=JQvUJ!4S4)9qL7aG8tmXz?Sn0_1sVEqouR zF5c(Lm80J1#T8Q$NLmLZ9gC2>;GMNg14fHdiqx4^oU~^(qiHZ5eszvp3)!I7ZKJrE z0D-K&&v6`TvBBklLj*us9}B+(9l3Tv;bpz>i5B`*obp)cGercp_W66sSrqx0F@hOd zG87ECEOX_sD_ri4FNiLDD`k6odvkRK>~DCoJ>xrD7%roYrd8SmMMSLS^4Tl6kx+IH+yyXF9JFlpMJ zqiuR_yhUYTw{c0SUc&P`DlClwQ7_8J=Mtj=41|?XKxHI1O}_DMhl%_*s;0X&-leL; z9Cq?O!dyzR$t%a@=1stS%E!@5VBq8qsif_FNRF4bhoeCryRK+nEb#@_n-#x>ZnSIZ zG{|l(t=4$RRWZ5Pfq-Q%x0Ay1Ps+_s(^QfR?LIqsn%_{oaSSLN2He;f$j?o~Bp&s_ z$MGk|I*y$-pLeg@!KL1Lk=&|UTPZ6e4>avm4U^^;$iXLZ2O#2a4_oRdN4mW_i|Mx4 zH{#Oa=hQrvcT~>VK~^X45;CNH?BIYKT2paNE~XfZD>k+|okAFIv`g!;a=L+QNlJ)} zk;Wz6Z?Nu?HOc+s<#_~c$z9nPS|*2Ws3a1}E`w8;O`5-#cS`>H1!Z^SJt;y>H|k| zZQ_WtZQ2hA`CYhQm6t1#-nnW|o8F$P=X~(drypeIqbqG|{p`h`QM1$ah$OVKhA^>P z$P~(e(>GU;YvpBDwoj?Uk+4Uqq`In8!cOCU`^* z3|pINAyDv07@@CQ+3TJfg4W@z?ez$*2^TA695F*|zHY?azcxN}&t+8L76iWqe|l!Q z)$Jm&>3Ub#bHESx-IJ zf^>m2aYoH*)^SAfv5LSHB*t*T?^u#o{#k*v5>08f#hYuZqQ_#%2CaDTK_p>9S`(+) zmH7f-;2tnj0T1EhdOwJ@tDSpIp4#H;QPpIaM56BX)X6-dq6J-KSq4xyiGrc z&x!QSD^PojNc9U_Va0IQiB#WPz zkUFcAg(TsI$oPfhYkv#cYq5BO7{qh`0A||4)|T%!1ZeV*#yo`2mFv`G@CnV?e_ns) z!YM6|!(6$y(mpEdwySUUXeE+AB&>TQb{6oKRXs8{0!Lq*dexmv#+EuPKWwf{Wz|R8?GEd!zq^0pobAr$s;_C&k=ow)axEfFcvvl) z-CbFjO}(^&*`dTS%`Au-Kb-lAC+>klilkrz`@Ofe(5-w+rX&gf03eH-n30x)@`%=5tr2Edal0l^7^)I;h84FedYrtmz3h6H zfnlY1C&S(_wT8y;Q=3he3shkoa!WPLil_`qP=p2DK2jg2@pPnpBURJ9J)%qFn|l#@ zn)1xELa@RTA!j6uxuZ}pk^`LZN*+q!pC!}0ZQ{Kq%6&4^#4yWh_K_<^awDA@G8IH4 z&QbtTAq99*hV-q!6L^=!`kOwFtayj}LgLF(lHOZedqRnjvPQ(o8Y>lL^8r!GRy=kD zr`AT0gPXKTv~4@Y`el?FQfM&GG;$blH8=wq3rX_r$vMhMG1ug8Lyot@7CMiIJSTr~ ztLU-$vui$Vs7!LaHu6XFGLfEgqoxlXtIaN3#9AG^&U{00ZzF07W%6(2SuP}X-RA`) z2HS!QlhuItt*QK9;wu}8?RDKsORHzoMAq>GY^fo~$-858<^JPuBOG!?VM>e_HCj8% zsW_-qh3Uy^x*oSPS>E5--w5odv`cH5R#dc!vdQNFz!e1j(Z)a|53O;2Ba>FuJVT;d z=<%e}Y7n$=6Kfm+jA5j4v`7X(Dajyn#&KHy12aC2X=!t+o4Ka7F9c}<`EiDtSlL!k zMt3rv3jDjVoE(g8S53dyd~atR&Fz@d;F8&FV7fNw&F6@`?=2=qN!Uk&w4AAU$mH!k z6)47~E?S$I(y38RH{1HLQ%%0Kywa|%^_h*k6pB{{=)_@(wjjX4O zR@zsL%l3({#3t1~%WUCQa%3&#u}nr7l@S5}IISH6!=5E;+vz6pRn&L4vd0SQRyx|u zlj3W5LpWC4_)CJy3kDfcfswm9bmK-TQ_$XR)RpI{&`;tUn?DOrs84;V$_AASJTTm> zEUY5a2`eVnIX-dDK^(9EWRuU^_^QiB)=V=;EUR&BFQvG-Fv`d#v@)UueWF%U=yw)f z#Y%+98Le;Oe-PQ}8in4Q;vHCD!74|kt*p)s<-7fv22>ovc1dV7LjXpsT+iuucy@{50_RFv6>r&PnEI`;$Qd6pS%I7TB_xitNO7D3Nljaj)rYh zPiUhFsYfmRR`%DD!3Lfqd7zLZ?AVa`aY#gl>M{hn8s z%OzUm;JYayS8K5^jGI*PY^EJ1d)uKKS=_rp7NW7F%a@Vmm7T&eGPyoyDC!0aVTDCJ zB`;{Cl25s%O0tzV3A@GgJv-rUsU^gB@U6|o#J2IrBczub#BJxwJg_iG`C}ZCO9HGw z&M9>m?5*|fK0$RBAQD93M1kXGNdh_fa5k|+^06R{jNnwi4E0Foxxdq*vzpvkK@@Ge zdD#mRauz8SL_}kdqZvI;0j}QaEzw9|NEUKFSCTEm@x~A9TVRuwB_*c&+q*gH&Hb%* zJjYACz11`;*sOd;$$tcvk;|!hw+b#K^DbD8!Fv0~)wmJmankr(!IOA;dCkqmt<*Cxas)&&u<4FS$N9}A z{*z@li1j^2;#-?_x3`GAkWVBkr~{H%qBjE{L7v_Fu@vI3X=(j>8PT2Xba0*%*W`)~ z8rBJ*c%c+!rM8Z1#7a3)H+(p@?qp?-B^0ww5?q zUPBCtY$J45W6-c9@$(a$`tx^kSlIkPxwy8|-N81|?z*s*XGx}#NgK-#lRwxMgmSjRA|YlZkglY#1pw!F9C`X|j+Xh`zNay9;te}W zyzv#wUNrNwPHezN0%#uLW?&9Bk1VsCo?FcHRTZtM{8-WKrn-glWQtITz2rlmpZ%VT z!RP1pHRig`k8`SBt;U}illwl->h|X4!l{uWC?9AfoGx$|l?QOkIFOy4C*oeCWu#i# z#b=^P5=gf3+}=jxa+eAuk@s=eB;(Z7`&mJxx|zB%n{M_=U#F*E%XiS}rTDj?{i0ao z^Cm@+l_Wv{bsZZAk)O`7HJx70^TirIq2>tMT}~TF;{(iK>9oJhtODRlfbvhyK~shT zEpNrT&be)SrMl=*#B8oEJj+Pf#X7`+$%;ew*bUt}G8}=7oxMuWN4N3rm8)E75ndm% zjWRh>K&5V=V-wC}EAxe7v4&<+Jf~THX(BqJV~M4!QktyG36|>YFnTtVsRN@RBk-* zD}&U$IjCvTYmqJ6q)}Llw~jlu*v!IQox8A4?#CUlE7m+&de(Y0cO+&+xQ_vFeqwMs z0of) z)(xe5dD!z^7e#|h)#1Ckv7Xfxw@%htyp1H8>xTIma@Ztp=L0zcZr5M7TRkrB zD>A?|A!d^*2=e~nY_Qq&z~?pVTJMQve-6ndgm)fe%CKU6yV;3e2GfC^-Ftdh7p_`s z7ak(eEhU=T=Tv)b+oX`BeJ5;g3de=xI622S&TE5{ov62?v-|Wt3LeT1rzVYSz4pKP z7cBfK1;&EccGgzOvh8jyL%g7f+a7N9Cn5fMuseLY0|v1CTVp!-CL2g$i^^-MjjV8% zELF12yLNfrWa-A;zV+yS8=hv+*f4@a=1ByI@ooX*a~ptiH!kHkBmzb<2SB&?=F;m) zwp}*HUovK0qTGVND;%Iu#C}J;X+sAp5uBye^Rc+kZyr|qo^sj+#<8PX%XabDMQ5d3 z!!@1jyiIhdu0uvqS-3ons!7J)cN+8`hc=N|cn;PFc;-l_nn2+s<1#Z2Bt&eC^(r!X z9gS}}`%78HCZ0mb04xORV;hR&{YdT4%vbOjCkw!rV&}sKK@2dDw%n*lS89w*!{4ql zeaSW32{|h^VB(^#ah@Yc*!Yi7X;=L~CUC}1fZSEm}O@QqrWsU&{j1lSYQ21|7y3sUfblaKXm_zc$@u^&o zeCEA4PSkmCujylsQBJ2Zm!N8?1+1a<2$2NNsS_~G!aB$@a}Awwks6oh`kk z!pm|*8>blsux>Y%VgVm3#=VX=4p%wmEVV0(OHF!M?CoZX+%R^Se8YT&L0_eHx)+G= zuA51UdmA|IwFo6KJS6T@7#%^bU#dyoZr1*ve)5sFQ>CBnJK zDhm(?-s_Iu_3RpLosEu{r;>F`Yx`?hp_b~_&Q=m^P!8q`wo%svgV!S&uQ;{%i*t7O z@yFqx4E_iFln!dREvoVIa*o}82IT8HB1qAnJ~2Gi~UnPF}EWY+Nk<+C~r$j2as zQotd6Fw_Qk(LvjGjXtKs^A*B!$*>w}Zm^4Ei;Uw_YUHWq9oD z${XI0ao&3BXQ(( z&MBT8znfCmH06d7X$-E+vKeFwta?Lg zBT=3W|;xbtExSIp`C;0Jt`#(1sGSZLQe$&%^|TSl?eE^X#nOg7@^szk_G$f#Um zUEfwXETl7F>-t5id1d#FW$oz3#cYv+su<6K4THk03BC7#}mz-do z!zAQWyiKcGYT9JFUW`%JWg>YYPnBZ;vFE2X$U&;hq1fq{acS0MPjuopB=7lfxIW)7 zuV*Z!R}{IeW0wy=5wDkn1;kWE0!iPiJ)3YRo3e6lV&%f|6NVk`8wsdSjaK zu7@t2pv_}tuG__P6n8Sb_RVtvk1}ch04rq#iM&MPARZhLFmYX;t*YMM=w2eRzqYrE zYaoD_7?p6!7-$=HBV9dhBC&9dAC}imxtnm#Oo0+EfSsLi0IJ2+_85p# zYet)IwXMJ2VTXLuYCV6>$1kpE_m)@3R56L>)TD|zV}kZr49u{^o4mjQ`{HBB8-#(I zkN~A@FYUC0qiI(DA-BHM)lz@#xo2g0wjwc;%jX}vJ9E%*1_lO~ij0tJx0Z41zIcLs zfZOu}6;{IMfx%z9$3D3N4+-c|YhEah-t$qKPqc4oB#eOULbGy8oYcHZblg-u=W9Fp zo`r0#v!(5v?GG*g0IQkSJ|5TgU1rtw4I^84M0Zn*kulqXU$Qim<{z3=nc z98{G&Jyj^m@4H>UGl9^oJj<(#C%C>3Z!uWaW#N?cIQ7MK*LpCt)wJm(xw@BZ(UtQb zI6H+Uw}mh4?o7d~%N7jB%wv=P0DRW9^{vI!*0M-!udFEH(`Lu z>IhQD7$-I9%bVJ_6U%nwvogF(;T=8?w`q!z$t~1=R992T{{Xo;PByPWx;0{Ul5)eQ z1!qg4+>Z^<6}F?K+bO=4?k^*{yjEtLB%s6tf{37wK`5k-fci&^;?pJY_M@mGrRn-dWfL^CF(^FgG(}2f0@OINQMhu|0)N zf7Rcq;2uzqgUK_q|&?8+hZmB58`LL=h{Y8-`C@ zjPbmH8up1kux_*$)@|jn)F-mke%Wc~O3{ao;uJyyyMGBdAdo|n4hXJVe(bqdaa2jG zt&U2@*3#$VGU=j8n#9{KP)y+e0ILVCbN91dW}gh&LGazarErF5S=Hn+WFENW`(mm$ zg|#&Ct9XoG*_Jp{7m~mg+86uBoOkJ--KoAeo=D$FXrdCxZde2^7bj`%Yrh*>)LUBF zekkU_Qc|p<^t(MK^6m+3WmxVZC6Iu8!HV-K<+;#}=h`lYpKqx_JP};NSpAvgU-haN zo;I&catBVeZVgLT8e5jqVg!%_i9rIgJWIOg!#YRWlq0l~?g)AxpX*;gg~xkpb5n{* zE8nh%tBuQ5IYLTWxh21Ip45ClX#N{l@MI9o+I`lZ@?=QqpC8Ue(Tx7yw(`+O(2g9oSLir|&p8ZgJ2Y5t1PIX`|cS+iMUIyHAz4 zF>XOwRP>e$1iStaxr=Ka*iC9#?-m_*MCrMl;Pw?^gEZjF>4Lf1OO zQ^mS?iL1En>wowLxSDk^b*G1KO+PRAC7bOk#_LJB()>B$^J}QyhlQj~HhV+}Q0IHi z@_;+@lh6WA3Tw%G4u=flEq32Zwz9W)gfd5Nu+G;k(3xUaR0k$Js$ijC;2TYJPvU7{ z(=IKc)ij$~TX?X#)>2D2C)i<0K@N8Y5`Cm>`^&Wn;D&9BZA(h=CC-hfuBD^jM=B(j zcGkB_CP`5l^2;2K3WwT9%yu#iGw#azu#=0q=hT9nZF?HJCBhF2>9<#GuIX;9(wFmj zBa^)H+4b+%yoX$fT6liy<)x8sKRT=Y`Bil?es-|IKG zT5Kcit1Z0DvM{)?S+F3(vM_SzmP|JU1A;Is=-=!uAO3+hKll!x;a(&0UL>{gos>3_ zh*Vk2v0_c29HVyW>;C}juR679O8kjO8@_ zgCiIj-~w~#z7_b4$)TG$Qrw7bWt+{O-QPO_W^SN5j=wMFGAjMe?xEsqoi5$2EugZ# zwprbh+C~>J<~`CPZXRAYgU;jgF9!ylEM^vhoGZrd=$^WH=(QYa)T+6u?z&xmq+Tb# zu<<63sNHye_f@ldw1POUB+}=O+7lGZAYm#+xm$9a9(inW#v=G9rA?#R>bAEA!a(v8 z9w=m4SOc>TT^A^JhEOy2+c?fC-UrpS9Tt17A*`>~31xruh%MQpjnv?P`x!Dem2989 zF@+$Cwc`H(5Nf)5XqFxtv$)mu>Gbn`b8jPD$QBKw=M1u_1hSA61GwODc810kDLeZ& zf9tS&Nz{$zntN?+zD3^@MQwZHtu-C?+1sdDf)cp<*c^IsT#tlw>Gi!URxr;Xy@KL4 zfy~UHeA#bfkPlw<=+?e`T9=7!ZRca;U!p+S|4{Y~yn=#(SE=@Q;Qsye}=# zlJef-8-@(QV=BOpPI`Zw*RO`FYA;=Mx8JGf)`Iqk<31%ta=tAW5Y04cBw{u($W(3v zaOv%z%ClEby^lt+zx!3$6U!uQeAdQS81LVo`{dVUuIU=Ti2PwDm1S*j_A(%vTe(gQ z1a8hb=PQwn9OtO&I^B1}P(|Tyv06q%c4)62?x${d6YfUu%-1yP^2?Ol*>he;jq0g$ z{{RU6_WOy-`6nTzVhwiMCxcS^!oCk{OPg;vSv~yG+)1`usSMWBazM`C-H6L_QA%*w z0OV`dMLa2~$+v}o<*gRqRhH?R+V%^^KV}M$E8z-lm+qm%W2nK%Bz2x6 zzmr+i;hJkHEeW+pK_u`1=t~emc^BV~qa5|GIPpf8bz|YL4ofDiW|r>J?=sEh6!R7m z6uTDQNep_9hkyVT(#0m9J(!zW)h_Pt#kH#;wU25h6f48A{^0>LyCde8Avh{_jabDc zO?%&ePQ#@~4_c=tE_R2K*5|C~`bNIiwi<=DtE0rm$~cgnHb-L?0abQOkdhVW4U7%V zw*iiMFBkkexV*l**0nqP8@aAhQu}R;NRP4vO{mWQ0K*I9?#@_o>CE2vgHqBos35l2 zHC;9C;9EDgdxcZES3Yw6q0f>wl5ra-IgA3l8jfEVYTDO>^=lZetgf`DYuI79xQ=I; zyt`jCh2J4%7!r`q?%8!4RYnH|EJPhkzWt4{IBr;S#p%)i0K*rjO&jeJ++W$+T)wM( zp)GD=kjAY7x6Dj@vk`O@WMFO2JY%C4X>ARyskk5PEPPMkN zblQB-ywQH~Tx3L`fZ58a##K&F$}l-Trn_N-oa1<$FBuws?9GdKEi5$)9VRV)_(5T) z!C`S5MCl#FeV#a0BB6@9KiQZP!{ss@aB^xxYdy`DjJ7(R+*c72f-vT``Y+FZI;w{<+>T4^3{vLuMo#;4D^yqHGm z@`+KviFUqJZ^`Jwyz1js)b(vQQI6g;`#FL@ZEc{6BoVZc0rH}9=0gYF0JhPV0AjT? z38A>Nk{ND;T0A25;iPq0Cov;3#R6an3h!k&Am?^*g{*z)R9;5Wl_=pQckewC`Rjhi zqr}nNS<4I;aa&qkT-)4R2_=joT;eOXXA(NGQt|>q7CTD;kCwTcj|6{cYiX+4YEfET zTwU7ThZd~nD~Sv&@~CMrFw({HHu3w`$4{2Gg#1f;s~uNU)h^??x%1Ly*$0~<5UU>O z(Nl6ZHUdxs@(i9UZ|#~B=}^x1dXci4C$)&KpEepfati+ds?HnEI6cc?9E=LDO0$|4!L}Yn#lyj;EYl)gNDO6iUQ>n1845U32g}oOW-{6> zl6a?5*KE{lR+_G$(y+FLur2=89mduZgi`+iyW6#MjqFPesvEzbTx~PKDgBdua3#08 zj@nsgh8U8OU?IpFh=Ty(xE)KV!gwJD>xR}Qw=h6u{C1>d>JK%kkS!TI@8 zN*;}MFjb?3`ovOJcD3I3{<@V<6HD4C%I$C4Pn$O3hVu2KnQe5d{aV`M-rX*R<=ip| z}MN`2%y3 z%1BH>s$JPPhOI0{(YaQ8qE`gSNp5?RH;@PC#wv^G{v%sP)$R(xZzO_6Y2l6MM!+6w zQnYp*)W>K$*)xwyT8 zO;B7&3twAHBoQK&W-_o*v@ZD7cFNmM2rX{YQEP~FeLGZp39T-z^puJgy=Rg~kiorP z66_U9nSX&n7*a@L4=QyXLdZuIox};{d0Ii;jD4iGF?h8EmzmMuL1%H{+h@4fE#iXG z>F@5NVH-SgPbpC#MROq-xkeu-3^~s$k`D_sP=l$qrDrT_D^D8U*o-1NL>V`zTp1mP z8O8)>l1hWh_>)$=behQ$32fznTix8rWS)Gf6GrPHa256yFde!1cH@D&Hl4oYq~BQ@u9QG|Krx88bB+EhtLQ&0N~MTuaN z=To|#DQ=8DNz^Pzk~NMg9hmJ2g;!wUF(H%zxlZBDYkEGg`ikjVwY|Ny%rjiT!p(fR z%(F!#>$%2R_W7V=pj@swCA}62d^@O-Yp8gyLytr1w$MG5dgVdmo0)7S^8zo z6Rjmp%VREA&B}`!hk#xG0JRbgR%@Bf&c{e0M0N+vi*8))={X0dF2o!GOtbJ_oBsd_ z1-<;AZn}-;lGTii%!V1}mM0EOrQdp(&o@-lG;>x#F9_H%w#~ExB-vi zHxKw1YzkKJ)GElf%MGfi8F(XAazPEt0iK{7XQ&6Tu1I2`yq|yTu%k&qa>rxHpzzg> zsp31UhL-K*)UOqwxVnbbBNCas(jwnB@BDE%}TUO3F3OYCnQ!%%ebAng_jBY#( zju9hmcJss5I&PnF1;zZAHge3%9BnKxKw&!>qXC!7Vxw|`3bOEiYV;`7_LRM%+i&S# z{s6w)kM-01%Qw;4HivU<4UE^9b6lxyK{qDLTcLdECdVN#u(6PqWdqGB%%u)GnRSg; z-%>~*)h;bG>0|Rn&Aqj?%yHsJM>78O?ZH3>(%CE*0nXEtr0Di?XqJaaxxa!dm?LQu z%Z5)iNOl3kqYixO0RsSsU_lrH!fLvdH;Tv_*HHNzW9);%7f)o8?1$}$&gV-17V29 z<xMgau{LwMh(w6$=<<1Qzweh|agsBQ$NRnOtkCq!hn_dNzY|6jDGd~A#0+2- zR184Cz$Afz#{(L1YBz7;%`?Q4UYQ`&&8TfK#~6wfxO7F@;dk#%>Ps^a+gl2|muD~5 zeziAJoRf<3vAXt{X!5Ndzm4xi>~k&A?DUpoyPt|8vb9{&KmcVIj5)Qpbx#ORvE^FE0lrbM&dELWm$ zw7ie|#RT=n)nYPZ0H7+Qax-1_v0-?gM00GJ|d!x3L>r-t; zcUSWJ%vSL2o~NWwYIW8VX}YG{)tzHV)T0tnNj#|$92RBC!8quB zV_auEs6BbE+Tzy6(mg)cZKv6zyp|bK>e%_xqJ%85lNlqHd>o)Vfedq+(+uHK7kiV5 zjH%V-j@CKLdsek;JGjg*ac1!wSl033LZaT@C-ZirZv@*f$-u)lN#Fr0bv8mvDM>-wd#kdfQ3zoHp8KUym-(=CqQ-XJoF<+g>@8diGH(4XwAeT_No+d|) zh0Wl1<(0lxBLHOw@b^5PF;_^JOSaMOtgLc0`K5}n26J9@u4%VArnjkH%jP8SVf~yI=3grr%`Ik{ z=2@;UVxLg+Cz?rPA}G_$Eb2fji8HXVIa~r11>Cdvdpz3L{7;f=t6AZZ?w;Sy*(8N6 z)FH~Nj#5?ydteiSRQQxBSA-N*W|HRLSF6$X(_fX3N^(+nQQV~tv8d{o7PdMjxv1P< zPjVw@fwrB3d2+s2WTHR$W_U6J0M0oXk{|60n+H)FkPyT9b42GpL-GyJ)|>!PYL@ z#1{*{!xs8$+rkKm=8AD5{i@ZOhzb;dsKXrRapNC)&xbT4Cxvb9MwMju6HBGd9L5;8 zm=P@t{KuSTHzapCI63Ckj*F}oySTj2HBU3h3krW|M%%L_c~gsE0l;R@eYnO>X|G}8 zZ5vLvu+wzk5?+0pC?Z!$?4pRMiFads1;*CO;O8J`ap_vtl^$>1y*$XF?Rh_aZf_&b zr_++k0|bi}pXBK`D{yzfpKoBOs;V5}{{VPZ@W4J0vV7q{so~v6Op8W>7QR?D2&NOp zBnM$A;lMd6yzR%{9Y;0mx(|izn9nA;;oWUsIODkrx4YU|;{~EIyka7fFPkb6g^%S{ z1e~>Vz7p_my`o)ey5-iFsJ5px_S4#ixoIWa_N~)LD}1RV6j0eC8QMk|U~|nzR@ZG! zo0lVuWYzn6-|^~Fx$x(SwOM7=Z8Y17F0O5E1KcgX`)ioxfJDAe%t|ppy!YIGVxTFv z9+jo)o-xv|^vi3DEfwU7;9A*vX@_Am5{!0`rHnv^8QR1KRYe1!wD7-(kHqVb7-~Y! zYl!2J*(@n6Xg4;+j#pR%HrSc|ZKRT_3BbivUkB?tUWsoFrM#DI9h`0D$gHv~f;9~v z-P`wzW0EkvbBy%Dv>W%|%))V$5>eEL#Jbk2W2oLHk*VFiv}Qw_zbNlH`9v=p<6$4) zUCYLIWQF18_=B&1Xr`ZS;t5}Rd4FhO7+*K|d19)nTL7^nDw1$<&hDx3^TqnJU$cgZ zU_jQ$3#hor-Lzp&7!kDY+PUNsGSyn!;SR2`>2G^%lPR4Z;uz9E=^F^cERqm7Ts8s* zKYQjm6)zKgo`lDm{L){6sck*qh&(qFPp-><6ta>YNQ8M%z>KeE9S8)BgN9*(eG9|a zcHd%_H)Ux`kUdELU&^dC<<6fWiqFEbutf?dwnb9okK%9}^Bj?$deRL`Q++}hn?lu= z*~ETi{$yuiV5PX*k`pXC9ou;K%Dp;O>GIB6_d3=o#o7_F(*FSFV%@VYgb7>$sl-R8 z-b&$qB3l0dYu|Wt&spTR{>fRVNF77rQQWZI!NRK_ex2*S)K^i}^w^-f@bB7jb5axb^ic^{%4qL5#4FtGycPiS6et!>;+cx;g&GoTp$K$(N_zQOR}lk z9#74|v3ab_`VF<*`mURE1eX!wDaf74Su^uOUvOM0&g8)yXXY92JZIpC*M1^e+-dqX z{CX=ju+?5kol^A`(MUueFe@23CmGmwfY>k7X?`0PI#uK`Tg?peUd&QUh~DMaFFCxd zd8ptIFK40Sk(zN_*5;L&f>Bz^9M9+eX!GNz>Mae_HvS)l8U}NBEO#)Wog|tWp-_bi z{{W~4HC!@) zd(7tj4dH@ABssAVHtnprQxt2ERgVqo4{GJ^{0*wByXoRsZQAW_aU`?NaJveX+Oi`i zcOWE| zhQeibl03%bV~fch&9{jm@U`cNnYFo;ym22n1c|h^LwO|#!nYy1sU1NSx>k?k%WI7X z`%6??mWJk8^#_XCytxz@%qTx}q+Oj4vCk_Ta0mk(Fg6pI@)ilS!LW)9v)VEp!c9J2-9a;c1#^+{88@ zZiqK*`GLUsisWN7^Qvn?-Z@W(b#|4dU||!)3LsU(5>p2xzf67Ka8F!ul$Ab5-sdE# zNza(WyPoxY7h`Xxz?T=&>aJjc@wP`<9hFZbfN?k)HiVWs9)RE4P+ZyTS8+YX zv@qu3O}fb%BxoIso@jR;bS~ncl?J^ScxPR^v4JO=>ee{tW=NoggsbK@7?&6r3dcA( z#&+c38#3sZ8fS$q^c^cq)hD^p(dV+gki0R^A>HzW6sagUmDeX|9Q7O@2M*mgDZa9Q zcXMhnyi;o0So2+TPnW`$BT>|J8+fd5q|L3guK+XVIQG88X2#I6bNnV?KaA9}*fqwN z5?g5yUfjt&yjJ>!m-<0vg5C}0JTIEup$7@EOXGJO_By7KeS3AI-^t+3R(soRD%#mu z=7vPKmMehxDB~}}(h_?UR6d+RL?;gKXRZcUZDT3o0R21T}P$sYBE zFifQG9U>AjPUhm(n>VDDJJ_q?Ul;4<>qyaUWYVr~tXZwn^u*H=SffY`k=)_b#$=b~ z3K+mJH?PZ+;y(~;9w70g6OB#8QYE}5O+QbQ%9au3$gJ^+T27ZvF~&~NIb*k>z4(2d zG{tFYsy*$zNdikcua_xBNW`jxmCuzE;h6A&NXa!$ABL@H5=YW*@2+DeSVWjM@e-;Q zHb+Kj0_*_%%bb-Q0L4O5PU==RYL{J3gGkdfe+qbF<6PF4Pt^3=i<9MEIGRO7`+#61 zr(r5cV#hnwWRf!V@T%(4()F8@VP`ZJF=>`ocIpyF z%EH$fP)hE|4udU>=c(qY$}e^ltJI|{!T$i4+*r|Pytq}j)a}~aQjCu>GmI1cE05RV(0guO#RVTR;IFQG7&lw?G?CcLi(~kHaokwiquA?OP z8hgWRv#h>yA2H&P5wwGq0e>DytBpuqU72Df&lk$9bDlEM^jHkHcQ%4@xAI;SJdGw? zqzK36Cj)LUIxf|~7#Q+v{Te$RFGal6Z7fa2<&64*HI%=+lL9G7WN5;SrNm(# z9jOubT}IB|R=$QS+e?WoT3HO^%8`Ck5@V(h-a*sSxCwMG5o>ynh^{p)GVVP(OB=+| z?C09j#XBHK_cUM(GRY_avttKwBr7*8ug`e2WlA5slb+oQUJ%fVACD{xxY>@2F$%PTPr z`^5wv2Y=$ot-T*a@h68h4NFqCvej;9ERaHw`B5~n=0ap8(UfD3HiP@lyc&I{g*-(z ztEFoh&h}HT^(4v&fQ95CvoUcB<;k~d>M1&C{3~#x4Bbt&2@JB z)^N8Bzb*-HmjHagdt`O(G_5(aVyH^RDZjo~Xh9Xm#r-u33wn)IlV%z`VVm5Vmj48SypAOdlKFcb@^ zsOw9n!#tWC?>jLKZmxX9~fxm2BqGa;tgWr78bHttV)k4xl-m$(dDC3igHo*f=EEy zayT{3Nxo&xvAb71%R$nw6<#}A2Db*yA-IZ7o2Pc#7=`3#Xnb$uEHW@!x=GW;ULBs& z%Sndn)(gwS8bv$XMo~m@Hb{sRQSw~<(cf_ek3Bt~hIJcVTF(6-m7};2nc$arHs{L) z%VIOof}km2PTqqoEqI?mx$#Mh&9X7YZF15ycM!Arz$>T90+G((!*((9@t#yNj@kFm4BA~iV6;Po9j2dKY-^FY+J zog-NBWzuRl;6nyC2<|0gw;_eIC?S|}yX6~mkaB3v;H#k(r^K8*DoP z+T;|ncKKM7e~LE)`h;=z%%Iqt62KGwmb6GZI_?qo$JGY~l-whl6IE6;pYW2E>S z!*(7Eu_otGypq~|Lhe|wUL<^{Il%eT3Zrle9G{uDH-F*nR_jjFwJUp#68uRO?d8N@ zAjQhbaV)Fl;P7zDK7E{#?~Y32!S_1$ou*vs(_cfV1zE1uVcf>ym3O&2FnLe_3__?? z04M-yhN(@}PNcLVvV5N6)VZx_(P=s-i0&&>5USwgw>^7uYlK@LvR%ie zL*eU7xh|)I@++(8V^@YKyq_{AbW@zN?K@PD-WDvxwR&E)ZF_Oyi>pZCy1ThB6bHyC zWIvDtKY;pID<+eABDS>u0E917pAPa(cy%X7P(V9Tx9&N>%6zCC4oLawVrLqX(n|K; z=R9F3%Jyd|rAGwTcCs&q^q;asnl-eS4vD>_-5ioIU56#a%B_+&06A_z*6@6{^4Qs0 zSomhwPm*m0WSVsr?3Yl3ZMtU+R5R`K0<4)Eq+Q2pay0F<4M{ZXc&6~})2!A}&377Y zh^_1^@~W!kRa?r41{nabB|zK)Uie<|wcRr6)590AM+PTopwzZo#_cc-5e;t6(d|4(dxqcPP;SQ+fA1Fe3w)s4vKoY>;2z)>+U=; z95I@%>UY1E&C-b+z5>#JwbrHpN9NF;&5KT?0swR1is zEPOwt3LhhELN+9pOb#*g65ItmE~VgK z7@NIKqtgx3No?sH(TO1q=1k7fs1lAbDJOUjH1`U~YFNQuPno(nGZwzKz!+JFYmg$lr ze9x8Hj!O(i11uzx+_1sVU8DFUX&0JAQE2{Lc9BON)xvqKmkhF5Ol1pzbLK6^4+jXj z%7sJI8AWwCEO9IGQ^k6gi6@3Fbe$b-^#~f$80~|$!7&OHF_?(J^8f(wzbfDXfwkca z-xKTlg}$FQwRsimB&#TwV2PXn>d~^V%$pewRJM2Xv=lEDm%^=LKM=ulsOl0*qDGbH zwT4w)sABS?3OutJ!nQW$P$GfQW2W#&hP7QH<4n|b7-UPEM-e=06O6>xwy~UGHcFUS zADCxpAaVt7?I8ttOYtXG^+WG9NMWB{v0X}AjYCJXmhS4s=9)5Ni~@Oh0+4dJAdo`> zGC8kYvb2uI&MRoX9#-Mqv2nbmQUh;VpQ zpO})&+Y)%o#RAG1lfn9#ouy@x5i}!W0Hink3oZc3BW6x=Gn1>$yD22LJr2Ah;?0Zd zpAf7pMZ&=x_EX0!jJevSRA(N?2N@kJxRb@6B3GEFh4nUA?NUS@Y(U8?d3&P=ZyPsB zl12{B4gpxsd$0P{_js?ISqA>w{3_t+_Q5aA_1Z zZ4T}98%sF!xh?KwN!T=#M#5%mc~yM86Y~7rm)J+k^73}~acGy8zBsp(S}Yn=*7q_% z;bLzpX`Li!ikz|LDJ0#{d7B0TjOICg~*IBIXUAw z17{%T713PJshMJq`pLC8p4$aswc8vsB01mlfZx0>P8G7*Vy$0Pn_Td8lV;h>LvYT7BxRX$l3$>Q&*u1vZ@dC=o6vr87 z7~FSAILeccnQ@knQj1pc4xJj!ZE03)ZC4tH|8`JAnt*0HH-m)Fy3h8ZtrS!7E{ytu&;q+^C=JrH;6Q|sT_ULVo) z{YO;sYuLed0gh7)vZ*C^VYWmDM~upDp@Z*h6U@qpZPg&e=TY!1;GJV^Bs&D5Md9Mdj7;N^|z|cGBOC z!xst`kFxXq4sI*Y8R#A$)Zl>F-%D#MLnN|BPV!<&2XWd#`BuapJ@IN2_U{SX+{e@X z8dACc0MP08pW2c5zgxIZ59)UocXtUaQ@~L{#k@#HACdDR{u7@{+=5$}C!7mSM8u`U zOmJE8yJ`ObSH|y@duKK3x{-ReaM`Vnc35ub@T|9XI(@_37?k~rNDPd_a19%-268eF z10#`vRLouI#jpcD4Pf|SA3-W*$ z8nqOfPjAQXBBePs?z5zGiD#D0&Zet@e1rej%E?~4KmhW`p|j#k9c4_@=z2Dy^4vybgc#5p zXConBb70|)INUhuc+9u<-XOiQn%y+Z{{XZ>ZzRhtz}%NJe*%m#Z$a|~1Lovsp8D9D z6cU95oz?um;J;g*6*@S%%2JwZTQ2Wj{hyLoMqiG+Jq^}@X{_Dd%Xg~j(MM;fU1{_A zZp+TrJQeDB;GE;02&;Y+@Rx^$m5kQ*)3vsxXDUe)(vk=6giJsf0hn&f01wW20N`%H z8o^@L!^2w3#eW;aaFRzK?$n$D{{Xz~0XR+B2RR3Tx*nf*r`qXoy`{n>xRiN*TQ`;% zoufGByy(7a@tf0o>!!!O7giKiIXn7#uh7HSJP&{34Px^BFIF*a2zLz|$jqd<8&v@( zh3E!zzy~$TCYdG9k8P;vT7-JcQ(m=*TWDoh5(t`O^16a>tNQy9UYV$A7dpO&uW4^3 z&9B>Hi4s_&ks3r-W@IcB?cAqfJ6Hv5?O+O=?-+P<`#-}L7G49>uB|4AQd_25VI)kT zTRbJVHaR0;Jmln)oRWP9jFPGD%R?`#!NToodBygomYN-%t?rd;b#k}&EYRJ_GCU*7 zx53(uhXjN7v-f!KTOJXiBy}ZZsa7{<0d_UIpolS21QykG+#>AUg;~>aJF@S?=srKiL05S+A zI8S*myiiU%FTk_mi#sOM8D&c~(dV(UE+PpX*7Gbaa0y&bg3BTP=>To{Lf1&P7VB~6 zjULV`m~EXPjiioP*Ahe&szj?8V5VNh@sNI814ml$&E4OL4eh?0bFo%7jzvPaVUl?K zy|Gud_<{;{MQ3UnW~r&l zjV6q+1dy~M8#Rot?h()nrkXl*>TSDb1&rEPaP z?+{$-UPhu;8+X#KwFJ73=Gr2wxIr9vBXQZ#@Z6Kg$RjD?pSNljV@`(3&P!ywF1J?! zfr@EU$s0&vleLM)4hBz9G0H(V zdjv7)`h+&ta>Q-f;T~G5$fej|mMq+ykPbNGq4uSm(W!#=9?#BBzBs=cE0vMb^F-vF7MwQ`6;SeNbxKSFMQd_Ku z=>L~n z`j(AzccN(8ew`PF^_ezBx<^=|7;;#)L6?lSP8T3<13X}0+7B04{{X^Ot4F44@?L5; z0c~{PVTm3y7R7mFU!8Ugf2(z3K8ys*h#`zy^h!^ZkW%%xU$w~jW5ZrcQnAyxTKSxHt_=dSYI z^I2Ngg?=Qqm#12+`j)Q3Snu7g9I=8?7z-X{ax$#akCj5OAeL-}j*55##j{N{#F`b{ zGH-xH5yI_6*f=WPKwiIlzDXvyF*$!cn{v^ox1NV}D$A+f>&p}x_2tQgMST{Y*GR%c zwqmoQE3|)gir`?7NWz|~q)FhbH!)i4Z9GiZcS~-_v5esz*d5v9=6OLFIr(`TNI6a6 zj}Xh^JMH#&$4@#`c2=^?#zsh_jsUgqi; zRCkfUuQ-Oo#oCXGzRju0s70VGrZ>2We5oWJTaf6A7=_-dIXkfGc8{BGritN;D7337 zbsZu{)S3i0CU~AwB-%FsPDfnyKaX+2JS}J|wfAauI_dl|``y3H=?KK(8k81)TRfysZtO zxE^$k8oWsM{{S)IxFj47#d#k$2ch(6pHhn8%zQtp5o>W9Duj0ydCj@|G-C@-Ale0zAsOh%M zp9|bWYkMWjS)<%d=1Kje1a0O<&$$pdJI)tq^4tr8^~=3C3##Ha9x<5GTjeDR%P&whK=A)?C%X}%?7I> zvGZSSjvb=7SqrPV7dOz3o_#@!FirU*3x-tb_lf=Zl zXK4!_R|lsbr=@bTi4Tk;v$=5Ahf#aUh>@0AW{TcPBl+|4;gsVXlIJ$b5^Lii1;~AIU7}jsK$ZnfTyAX?~oSfi~+_J84f4#Sk z;PNq=&mB@8=O=Z4OEV~`^TzvY`7@@yoOo-*(c0=7jBsk2%&4}kTHyJ-ss!@{L>_kM zEHDb>070s=Th6{7z0@MqbvtXDcDuBSJ9%C}tdhKcF3<=J(Sy)qk4)C_@V<+A<9q)A z5$dsAUrhf1W;P~BrvCs#@`!DyyLkD~KJ4?omuMS{=UH9r8gkx1JUx3dHT~SlB9H?l zml8;)2cC{8(yL8N-g+8Uzb=Mf!yG~3r?H+HBc3_ThB;y@!Nv&4_NLsZYY!Qz$lSv? zIQ}1M-a4+XdiZBh{{X(0vksN0O{HtBY%WscP&r6UWRbufM;^WFqP`}TNhcT9{{VwH NWeKE`Pwsu0|Jgwj*suTq diff --git a/test/samples/one_way_train_0000.jpg b/test/samples/one_way_train_0000.jpg deleted file mode 100644 index 457820e90aa2ff189ffb62fd7fdcc81d66c7885e..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 28611 zcmX_nWmH?w*L84rcMIofa#_i$Qc?@Eu`_VVh|0@Ji%Ll*7>ZhL^vN&12@1MQ29zH_g-)x?iaWPOK(XYxT z>)4;uqrFq$8_!q*k}diR_zRe9pGnEuzZexdc>Oc(-ayjYmEjb+pzs&q|K(mMV8AAs zYTvMg^|d|I4>~d|)BeAJR@+WNV#kIDjmKA$G@S;m)YB>1q*yGkH{{fgHOIX~3fek}h5 z)c#JFWik8x^7Zl`151M}I2*nOtmliKvU_w*fWqi^lj@twXavzh2#af^*RJ6yH5unLV#)`Ddxy za2?)GUg!H`$WH2dToj=z9v9<1AcCXNFXA&&lMAkPWIzW@Wl*XQX2M@-XC z-eifpi(vh!j zNgqZ2cZEaC)9g)X0p~{>CQgvT66vFiZr{k-e1Ce+NY@aK@mPG@DjpOiXeb?Vsp}dF zRs`resiI#M&KF{&cY<-~{4Hl7Xb3Nyi8fA*O6{MWlX`AO3%x%uWW{a_nym)7>Up=c z7bp4*eB~*5KRz;Ad?(d40(7e(epG}2QCSD7J?ReJ3V9suyByNr>+nGL#TysvJY6UA za(6;sYFj>r^LT#4Fpnvr7reDe@BSHoy`&KWyO;vnj5?_(irq+T=PQS}9$R@Zu*nUj z>4LvPD|3#0bm`(&(o+}`0tt5Qw!Y&uxke~Z5gu}U9I$XOWT#t@E>b=`q?fi>nkZ%R zi+)$lF6O)K(kQZueu^meCZ4lOpmr1?L$tUiE!$E5f*9a@-}29~+J{6|to76d=qN9g z*1YR5_xdnIUZ{j*J*$}t*VAOCKQI0CNj_sV{xaPqK9PcMT&TQbzLiojIt`38!?P=J zgSY4#5$#p}ira08jY3kMQuaSvz~EYuBcjyYCkebUr8gj%%srY zK!T7aL38XhAg7ocCDWKq?(a=T*YDH(GELTCy&3G_Oh zi48vcwI61^%~xdc>v4!!0c2gKw|c}0g)cDKP<1-_D55WUA%a{}->BLoW%22Us|WMS zUg#MC)CP?cCk_$8-Fmms8jabb4gmkOQzhY4Z@sY|_11H77EA%+L`4CadG&J={G-#cS1!r;9`$F1spE0o@ zg>E?Hbs4Y9iWx@i6S1fEA|{QyOp~O=uzklo&Nx6Wo<~kYYX80t&D_;5&_X&St%W`f zz0_X|*yv6|lT6wxIXOY(!@8=%TX~oRAD!yRxw46>fihvZ4$zcCkcun{e!{eA>!$m{%-QWjRbz^HZnmgv}E^ z3H9DD4L!huv?bBt&O;|w+Xr3n_+7sg8L1E>!Hox^y69~F?rctTrN3Yk3_C^(E?VRiFSd0pj1#b^tZYXfgM zgtro&#+H#FoFx`mcBI9km%L{%Ba2a$P^BvbL{%N@yZ|@aaEW3toA$U*t8L9VJ5#xQ z9J>w9bD9DgftFl#Jw&#wS}cjeOg7r;HfUauKvENNQw zgQv}KdNsX!w*-*fE`p;Kjo6B+OA%60TPkw36!{J+MWy7%-2MWWKtr-d&^!ma@#P^* zdZ8>N`7%|9g-d>KPP3s}a85OvIlT-;U8d;r_di|z=_+1}4YKIiWlKWK`7#~rTo3r< zGe}!0)hB$wNS_52=(CuD8`<6F^>HaYG(=t|{6kiDGC5H+!==ko?3=%UDG1IW34(=O znVUn3YvMdt*&4zIoOKzIi7CfSm?Ev0tduXL3}LuUp31+d#W-POyNuzc`L42GD8jHb z?w0~%sXMqo-f91{GR`Uf)w6D2E}?~z&5WRnhv`TC)rA5(Hd?}(d5uZg7I^G8&^-|T zj&Q5(G4t}CxZ^6hw0hKWwF(bI}ovij>fL=F`sN3*g zK=!rAX=W~lMPM6V<2+A>^@{!(UR(=Q2s8yBDhu|%YlZZ9+z@?SgFC&i)U1K%bd1h7 zV;7D_@>6QDk_CDgpaB&zcpc%`7D;I>Tc$X+P|XDZ&c6H@k>2do=Ms{Xk7D+OLIc}sy#A&gWTU^ z-qkfa+qU57*f^@B^qS&jv7ut+-X#y4T;V9yR z)vRc7@K_iuFqNF|H)UwMl-n#nOKFOd^6!$$^v>k_`#RtA>6q%+E2!N%fgMc!OE8A{ zd>yOvr#HjvrM?#8&e&*nXBHNvZx$zfG#lBaB!PHfn&_>g^c9v67}BATNOj3ihFOp5 zp3Uwabe~kH98@FOmQOF2nH(nj?H$-VcK_VV>%5$w`3RRG4I6{Ov>*5vuoXC{qWR6~ z1M>qf!Gau-4bZZtZ5e`tuHUPos*mI?4X!FO1lwm|>!;hxF+iiCG`#o=+`g6Rj%};- zIqq@4l?5mJZfR@s`Cz3YChb^0-p1vluC@xaaX%p|69FZpiI2%%mn$9&&GpWY6YF33 zvXd3IR7K!L2NN-6glpD|KQ8%h&CIp;l0-P?L$B<=cLfXBfMw!SQ=VWcyk%HV8L9-# zv2DhGJdL{p2z&-gSLE1a#U@D4o(l#lf^T4x$Yi&-c1=`)tQB!|Z{t>Kyl-cmmo8#L z1BiCKZeV)u!`P@!mPdSVM?0wP7269MKYYYp;v76}bwx-XC*_LcZ!~ZIrl9Gx+s>_^ zysViEUl}1h!|RKz_(7XH_iqs~3;oq2*ot_B$JeTE0{s0wJS`?Pj z+p;#1@>9^7y^l7hsrfY}42)C}GjVT*^cgGI8n5=|Q$+&bq})0ga|{aoh&ZTnea+Q6 zS7Imhb80d zO5WdDwY_%;valHJKdhgMTON_qm-z_pu`Q?vY0n-<_+{vT9O4&%;n+^uSL%D{qRO8& z(PL81{h`I%5%kLeonYDzwR8WH+vv4%;tf$`^9q}?e;=2ssQi+JD7P7l9qFz532WB8 zHW&HQVZL&HiJFH<<;Uh;z{Z1e}`3tKKqfFk=jHqiolTGw&zk@#jilTgjFT3n9TAwHp8EV!bZ0EoDj z8ToE@dwzHR0Y46-NP@wT;5#C~GD}0K3!3gxW4<2KgC4GeM0cNOx52d<>01g-!<@Vm z*jFh5t`ImbfBCcZ9+y`57vJ-=P>M1{h;kZ!1{WC`5N`4JGHuYS)3 zZI--(JMI?do866S#0aImYn*@S7RLIn!-HQ~4nc?e&X}FNuW2n1t`zwC$LmZAM(Y5| zi%Tt45q3OugQ>rOvfz)~&q63%Jx^PFx!L{T7$9VYV?A5Jp^0W|at3LGpSXbnDE$2i zZ)J&H^T}HW>54nvCj?#h9LWFZDo}3gYD1OO@kdJ}6puJ+wK^=$Uh{5ABjdp97MGW# z1|$exe~_YPbEud?9}Z1ZJe)+F{pc^2Mq(izIeBbDF4y^?4M!b zK@5hQWagO>+$f*4TU|5>k8d=|1pw1E)5-M9I(4?eb(i&=EBZ2yeP?jK>BL4U{ud3+ zF>Jn+rXA@rv@<^s5B$U4vv~FHlmvXkX23lR7%k{7m524*!Eu08!A~XaUjVe`*P#D^ zuj+9@z6wG@Gq`yDLkMk}AEhZ5>(fTG_7|YLH;b^!#_M{jp|#^$l5wd3EaM>#uj9k{b}lYI6qgI(Enhwe|;*w69S zPZx6o_`TR>q#O}!`d^WNkDuzy_KI1)byJG{GT2)%4>agxAosDm7yC&e-JEaM;c#-^_GM%B z%OL!tt3)Vk9dG#1-ZBOlWHnv5h#NbKzX(DOw?K0*c8QE8=W2ETCBE2m3H23 z137aVW7jvJjtSAk}L2m_(9TYh_;c&8^*IlJ@` zA?Vw|g|3est?ad+1-Nd+?yV<~H%g`nR89N~_@Otkvz8_;5amFR$Ihtb0yE{ono}L$ z`ifU4dVWc#;89KRERJ2-J+U-MjuSMzz2gXJUUVhUBFg2JDYp~m^6VaD{>7`{Mn@bT z`k618LCeIvIoZ!|g&=50l7?b6uvfZ*gbIZ@V#@gNr}D+QL-lP|exxQa-m1J+@9IkG zHF572EypcQovq2x(Dp#6j)axh(@zt8EslOPu^|IPL}SMFV0@rr*q|*gRfjRkxUala-A({CL$f;EUpbgovrnB@cYZm1U;L zr-rCmct_Mn-u(cnk}r&5Dq;v};xE!17P#FiQo!C@V~B3+1hno~z512n-CINW^IV)) znR*&R!11Nk{r}-GkL*jne{hjqi=yj%o)PoA7Cx~$nujL>8%qrLJgj|RJG;bA`Ln2& zo0SwB@kCaYy$qL9N&9Jw;@+NCI-M4iQ!r`08gzFX4$nKNv1C3jocC{KCXJ`$c8LHa zQl>gtSZ(OCQ&@0hjq&gK_GGQf(HSQw^KlR|y{QM6c<`9tU5WqRf`7o=Ud*`7ypi0b z%%n4knQ0h|yXMFChH($<>C*KjG@sC#LdFu2-j1I8#)PLgwHwTEO-^-zE19%@PmIKv z7{ks@A>KhT{9eu{2#?KY+3+?Gks^#GS^Vq`dLqT#&Icm1V}y1Xrw?|h1w;wFFB_r0 z8Ude$!u@gk+Kq001M&U;0P^9LM31uxmfIr zg9-X`9`xsd_TFz@$5fesV1OOz?qYf)8bL}XkiX|u>=WTyH{JvCA;02reS~NeJ?8*x1zcR8prBJ1@R>73>$V^72ABAH8Z9o zv83jZZ26-l5LPr&_Wqmb1pR;!dqpvuGpldtP@G?~a{il`Z~Bt;aibv^qAJX`fC({f z{uR6prbzmBEp7O`py(EDv4p_=je}N+CJ?UX>bAmJX|sT5w>^1xA5Ql|8khzs^TMT^ zJgGKkzMv|;uykbXYo^bG54mpthw6s=E18EL+ULCmjW6Bb)~5_PbR0CBixrq_@JE-9 zg)}+|(}L53j-1aa3RALYBs9DZd}qT2I7teZjpetSS{+=gGKF~g;-cqKJMabpzTnP} zF$%Az0tbDkzhS|-(bF}74LS**1*pu7Ub$fP{yOhE4v;{Y)4rh{oF;%?NT5XT4ZjLo z)R4w)^`>RH^)q^vrmhk@Xcr^FW-4k&-XPZ{@R^TJR(;%?<73`$%j)B*nucMoBjO+k z+j$G(jIhi3|9~jCX>1((?3Yc+m7=fsq_ZR){0R zUx2>TY3~^;uGeWCoMW|BuH8c5QW$urs8R8D#zyb zoc-nWvS!OtD#g=qX=V*OGGjO8fTe|r+pJivDVHPBW%{r`jBb*ga_1`g?Dwhz=t3^b0P z@iguHp?fLHp7}_>ugN~%YwMv?hr6(gg{YyZ!2~a1g4Iu}tPSwYjjE}l8DmTbbS~K$ zZY8epSh<#d>h@Tm0_zzutUv+*`Z!99QE8zW6ZLi6~UkUYl7uWQL&9CX@43cB{ z$8?f$(vxh2Q>SHq z+Qkmd>#>@2#B(SQ2+eY)b2~?5-B%V>|L}O=i+ve|lrAm8ba_e;69e@_oi20!N&bwG z1{bCr#jfKkTJQ^gV$Rwb7Zp6SG$+dADtrU+C^cp$S`3}H6y+7@@AWJcrhIt`+gvIn z-TADe>f3m65uJ$2(IwEA=e2qc@mlcYIW#r=fnKWOgaRFxLxsB5;WPu(O6wkjE+kdr z(z|K$bNk_%u?Wd~409rM`&?C* z54u>Nc~hTu10@%?Gs)|CtbMD79aL^2pfWxDya)2GB#_W9@LQ4pmt)pQP*a8t z_e1wv;-p-v(q0ZZvvb!tZ-0Yw%+eChCDCa-zTV`N;mV$*{hlrZS*(RA@0kZdsj4PHYuCkf+kf-DrjsTiU9I(N3Zl&ELCi5bA)R= znmp=la!tcsq1pglM-N7Pni6?NxpT;{dPUPwg2Y}fGbd*sAF0+Mun62m+>CRyI-~A` zOZCWO{M;nxhAFZo=KNQdkQ(ofgM4YK%W+LJ4=f}IEj4ttPe?=v4ThBlrJfg~GKjD{ zYD>e(fDp)fiZ$BzHstqLRYy}UHBVgjWivQPo0()(@H-!FXM2YfdT1&*`Kq$?Vfo>O z&x{SKJ{DfTBc7^rRf%93JGI;z+FNn#GWHQPHnmCbCvU)o?#Lw$TuF1)Tux@oUSq5r zB=1|3p?vq~>psa80SHkE0wxkKmZSSU@EkL z!$uBL=W16LpF*fA)u4I*nl$p~9o*CxMGszVI#WC@_K)x+Y;JITwM~0fzjToes}NtH zvkRwTF9VM>F?m)#uCsmE=sh6S1g7KluG5AX&ImKMG+RbMjxD-vq)(id}r;lNI}3<_Qtk$^}3#l#EzcE^OvPm@n#t? zzSc7PnaSoIveBMWBS93y2KU;}PmQDAX^Ibb`OnTp{{rG++MeRpUA)m=HZ(D{2(nH6#< zX%G%L&pkMxJZixFwUcex$ijg8RB!PT7>HSdr%q--i((jBjMfLOjX00@k4>|UecIf= zzS7=QC(1omRXo+rbSQVm|H|eM%m{c&v0Fu?G?2)IvH}0lM0nr;B9Qw2#-P{F}JJcJZN!M z2^sBgbVlc5*7_6c$uZ>5aS&6F_hZtDnovvdlHMlsiZCH3vmB-iV;Ee1?)XuSWjE&P7@Xh6qPQl7l5tOw;qgoL($T!!YC1q;Ty znM_#Ope|#C&M2=@gF(Cfju!T{^W&T5t~3vttV#Iz3sbKXv$l>Ioq0i(cP?z8(!rCCvP4fDSrWp!}HZ5i7gX##k{1n z0LrKG%~$8Zxilms%D+*!{lVh?4@;vw1AHN&wb>bW`y4P6AE^^ZJe4kY-)=h^+%FSbgLXn95s2MO%SaGOyDxms7^wV2!14T&m`MWmmHh> zJW7_x1{Ybo;igmg871g+zKx@-EFhoF*q(*c_erF}1fSWGYpan$AMFHzN&3Ntp38M(TM3kClqs-LB z3&|T^(7zxyfhD)Jm+&&jV`RugDdxPsk{+Cq##pmlm%Bp7KmS8~)YGW)5FA2htX}uDC(Dy%Dc)G--pugc zf?Ns-O+W&&p3iTE+I@LrHJP&(p;t8z-AVYTyZr&e4r1nM8Y1xwk%|HO@3AYe-q2Yd zp_b`~?|nlX*B;Q7IBfQ&b&=1@mg#k%lHc%vmq5D6=bH1e+Paya_;2MC|E+^9Eo|^! zEe}d~gV!D@q*&LqvVK&ZZHZ4@%vhZZFSVcLS%`qp;VZ;cjxAzl3YEjMhrMSO8@wU& zhv|xR_I0SgR(0f!2dem-TYL^ZEIh&`dDKZOZPIJ^@OW0rAEf^RI=@EFRwa4a0=I?~ zaJ}3Ss{h0dez2d{lJuI`iNN?s@W+XQol35Ued2&T3l~VVat;>b(6FUbBo5cd*+ZBiQ4e*jpRnief z6|uOXMqO<0_6yG%yo!yruk$GLjb2%Avs(4E)F51s6KsJ6%Cj{aNg{~DA+y)rZf!gP zj8u*g*@BJzwH|el(Bxs;=M`!eRmK@l0IYXjT12qg9$}f z)8ho)dXq4)O_RN)b-~-aMnlE_lz@g4#V6Z|37A0Jgy&Hgc*YjbWZcuFbAmQs%l3q4 z0igRwiZZQs(=5qaJ<##_YKOppT+ym5ad;!BP z{M4B*e!O?4wx6Gg)3AMIpnS(&%T>@XS7?&jx&)sdkw^&Xr45MB6}dWXVK5Y(N-Wlt zH+;@k;(n<)PxoxbOw}n~m6v=OzWgCTqWBBqQ!1v|vS514HG5}beqKt7hWP$0<_O1_ zJDaY*bIMM7Q^&1I5t+rsPY1Q8@_;#$+yXw5H{}5@nrq%`j+iyl5C4vVl?|MoGWFUB z6ZJDU!x}cs{_GfHWq{X)uS~g}cj!BFySL#Acw{cli0bT;=z+29^ql;*Ho`xQO7k(@ zBvjn2VygH#>|M4Grn>&aanik{6uH8*y}m(pK+m5EOVyj(I&@f|wTSQe9nPJ*snu0I zr%U$Lkd6nxPasQ@XTdfXhJTFU+)fes5}l(nv;vmb^0BkdjMgGZGhXIi%lO3C6rX-J z@-EP(ah#Yx+hIX45KH5|<=-@Wc<3AZj$8F0KK*44dg=F^8gRU?9lXWR%LS;;p&=x5(w-v}eZVkf&E{%Z!~d>DsjGm_Sclq(<74B9A+L z$p{MPC$AkHDSq$y_3*TrEGl1Y)UjG0e*qvKZ3&tF*gZQW_t?be?&`NC=tYHM&hPu> zCbHZGdQy^w_GNDI`DDG-PudT)%h)LOI?S|AINw z%3L-Tyg1n&pJR(aH^pmO;H5jv`oSuH3@B|#Q_QcI6V|up17?~Ud91tzY)l= zIgwh=p%}V&VHM-nXxFaw7r@2xLT<@o-XGA!Lv ztB->m(;nJiv@ULfCADIDA(9{o-st&S(@K}DCM0O-2Pgg`m#Yt==AVN1XLf0ngMqvW zxKRrG!9TuiU^rr7wfebkXjGU;JGvFS_$am0SWdx(i#6nw8ZQER^^3iGWYK7t+s<8D z6k(U!VK!>6VyaT=I;`bh)4RMmtstlztv5#d^GD06^4nPGXxyH{8<-YnK(g1Ic#L`U zj1qCSGM<%BYa_`Oh6AqSv=1c%_*iJ08KvJ-1p19nwh=!jyx4;mjO#V{x;?m_AAm7_ zF#^y;A8_?DVe8&sJfkCYahkn*QEctHM~rjI-i;-y^0S20i*KQ@HdHaE!0;{rj+7^+dcMzJOb64Y7E_D z*$JYyk$}^cddzL1bzN}-a7hJeslyZ*S60$jV#^!tqQ6Lfs z5V(3P$SGS9X#rQoIF_Z*92icjaOAM|Lrf5ZDO=Hx!u5=&S*k*#xBR=T%;J}6^Lv0C z-+AgZImIuXum1IbmTa<`rM&8ZHymeO!)Gq9G!It#s7SJ*7I%;^{}59F?G%)k^6X+p ze$%lM;k5iAE{IVU(Y;$CJor}35s}B)1Xqjp3a?S4j^1h*xcsNb16MORZwoS*DBI2t zaw_8PJ1o58)ogBQp#%Ur6SMs=zIj#>q6KZ9*>IgnI7HkEbt>KnNMnQmQc@`*VUwMb zi-LI{?DJw@8dD0n)TyRaCeOZ`wV7OH)0ru66c_UWtZO9v1=Lk|OY9Tfy{tl^cW3>6 zgz}WRhD=2*hbHc78pJzc5#8N*4z!Z;!$H~YKJ=^6-r|j&35tZEhOqL|yG`}f?p+hX zH`Zf3#B9w3GsAVG@f)4T;A08@t%ZrDd+?4eB4svjtARG_6*u>heQBr%wx$~XZfB59 zkld8=MAODEYBBiQ*h}HRfZn|pz$9#g^@X>qj_Mt>HjEPN8mW4q7u;xB7;wotFCAI6 zC2b$c^_)D#;kDg{@A8&bf?=XW*xp0TYNNo`^mg3~*S`P(Em)45&|~B1$LK$NLn~FI zH9Vl*<*|dKmd@?Cy=3N3V^pY-pbBxTg4X1nf!)i_ST%kkyI9LbMUpU+e0RG(3kUs> z%fseHEwLjlHhGht>J}63mi!;SxBf&=eytb^<8`hrp>TVTN#CW`2B}$hR^q^oeUzfe zFl=2flJ1V4km(Z76Q@wcTpYS*+%svx;pTp72~3PNdEu=zZ@yM9O<S;2S-+W%CC!+26 z>rbB63Jj@2WWGTg1HK?`d4)he}D*o=~Sln@DBJpYl5%4p;u9E(0C z<}W~PappOJtY-RZ>tyX{9S`iQI$e6Q1ys)PL+bl4q-Up{pT`dC(leJ@nyS6&R#&XX zoDTf-)S};w=)P(2;UsmVw)INro^oLGdsn$kA*|arZReLtbeH;^_b=ePu`W40IZfRe zw7)g(4s|Dx&U%~MEhd_N^scB#u% zALQJ6-|t3#xZ=yk#zOdtPW4@c zes&q&$|D5c)@j_PY>WF|sMxwabVaGZw?aHe2Fz{WRFw7MrNRtyV5hl!>s~I|Joc_U za(BMhMCVD{&xpUVq?{BpS2)T(>(GgeP3iDbX7WE`=^g1_+`leXeXh#f0 z@kIu&F0auRDotZvI4D`8!!?2>;djY0VqEfYOji@;!biKW3gmh6`K9-ow5#|?OLp|-Okw#Bmbd)0mmiVs zMsq2e!Y67I-dIS(_^voEWZvc}bsgt$(~s3WRm5~pf0pKPxde$dI{;lJAU0A-%HtsAVlCffd|>2r$|t9)(Gen4 zDi66s+z*8K<5HTI+=9}{;H6=qguv{$StENA{fvioq=z zM+$6qUy=6X@IK*Mh9$m_-NWYIHV=gq2a_I7n5@$2g8j@h=Zc}a63|5cv5jma{rTG^ z_eNkgnd-yOk7uwF#$gx0cCGyn`m7@eedM{X1(9+wkr1NZ%bo9SXEJ**yVmzFA-!3o zI6$&;kK0X|0zs3(-Mdf`>^puZlQ!jFXE7jL6`Wsl>Q97)r7&yqfN}U)Kv~H>ULyb zvlC=K)XY86T}poizw1BxS2})k2~^^Fq>|~0y-ln>xf8|jU z7>|(4iz&#`RsTX#Fv#9sx!$e?8_7qI`HCV>f#|vJU1lrF>SRXlQGs+t zaP$_CVw)9B|BVtg?Ncux$t;<2-b~6V5_*_+qwO07vkarkxxmn`8#(g7L}@m2WnKN=Nl#q)7?fo7`fTA{fX3Q{=>IwsXn$chLhlQ zNFV#6p{JQ1jQ7=GLPJlWGr*BZ?B_Red_MlgJ*6jplu*r}b_2_`m(U->dNcOfe;IO> z$3Sg8Z;tqU-$f0~2NmtnbjKi-$Bnd67S9mXF)hjf`fP}wg-oP+oKTsyVRJ2J9w&Z+ zz4ag5f33N;llPI&CKYflo23)0HT7TGcJrYu_)`l!BhNLhuJzjQsKC3$W5uQ1ryv!f z^606~7e7yky_N|qh(rD&xpGzltu9)8$!xVP?6Z%oqi*+u!_JOx1bQ$Zp{q|y-U>P2 zH#hZaV@~9({mdJ=@T0d&){RbmA4*~R;bWKWn9=keeE!-10dsnfBc9vUQNM0yGV5y# z3(8wa&ET;M-EHRdE$YJ_qBN@R+j(q3)#N`>C@E@5&vjv_(nWLhouw;#A^~W6YzbNHd64Ji%*|q4t#OO*~ z!%%3{+ zj@&?|?L^KIC8Kpsjrz!L`j4Gfm2Fv!8BvCP1!!x2xxEGCPKk?0RUU z(oHlWl!rYtRY?+6+zPj^@Ep+s?&&Cc_yO^!@vY8Ioi=A|PJaQhLx;tHRnQ{eE}sdf zZbx?}C1Hrw!bFFwq5C@#vL(82&ak^JNURRV5lL|h%-eWSs?VThxCLA`V2FGK- z&;7Nd^1JE`THsb+-bM3thTP0~uydZy+j)CwnW9p+ecfWUZ!oSra%yw)Xhpvzv-%B< zq=1LDw_1e@UnCBC_T{AhOC4rLjhMvwO@8YIJWIC2)b%;Bi-Q7z7i%FfGu3(~GDWTMIJJ>9AIxwSOLc*$$}Qx36o|3yd&E zX)$P-bjV^eGB&yUPq-|H+>t!(5{CGrSuU}5xa8k~gdP%>+lqz;8iZFKXKHKm9U?gR z=DiLrrGAYQq$r2Q9L(!gNG|>GL>%XCt2fOn7Z`w*e+_nKBG=$5BfPc#(Oq#iN9R#t9ld;77B{}|e=gIyJo zkKFVQC4Fskt4h+Fo-sKb06Kc4s8&icxz5947)_O}pugd*s9E1MQ@<1GNs;%(8uRGXx8%Yj z^)Rw=xb&iBQ4?tHF=oRUic8S77Lx>75<3+aZ&}3ZaGX_L(Birdij{A z;Z;?;Nh<^EGMv@2_!yeiE$l*@h+RjmTa-1gL`BJ5A!=5jE*PaFD<~{eN~&owWZoY? z@QnK5t%*m3fHlGVg`)B2vdTgdAW6X=;?`3MbAtRs^&_(RhKXx%SV7U9vLtBU!_vPN z(qZa0;Hmjf+$bG!<^k;Kj6YJ?5&J1RA`$|xYAar=!~3e548@J$3>IfKd~i+PAY$6QkQ#f5vfDcg|o)G7N)%uTf%+PvX+AehllNbJlRWSH|SMj3`bzsCF=-LHhaSpsXh9IB+1 z{QNG{2lWIP6x%sw{LSMIVCRu`%K`jK-iS4p2Q*i+C9?w+vl*1*>=N?_BU4XF$LJuSny2MmabkM>JD{$kr?V@RX0`%uO&a9)(mY{X| z4Io{)>`~8VAsKNs`un_}{fga2^y8wO|B$4jU5N6l&E3Iu%qg3ydhD+>N>y|mE9-U< zZ{hrmw<%L1Co@?WGjF|acrFygpF{5aiMo9Kt1;J2T8H$;Q+fG8osrruR13qHhi{!{ zANg>L3P#E}kLa&gdKxyI9iulv#Y@{!IzAXf-E}5Vn$pqpAe7^QUEN1nzG7$A z9cNj2BpKl@{6gX=c6oWxXi<2^S9_YO+oDp|Qd~tvymxh^jxE?tMKT#&vnmi}2lNYi zXBJxFjCJ?n50&2+OtGG^0fFb#W5Bw!g@s$>EPZ4dL}!Djd_)(g`imWH_Z^=8qJ}Px zcbn-#RklSHi|OfPPXW<@;nZMq%fIcWmCT^zm~i%EY@VY)j|%1=O; zmaHk+Yp*S(vI$C_zN8dIxEWd%jV=_s{1SX8X_*Z*bi3_x9XQ3U?_AhyqWb3Yc~R49 z5Yhr7I>1|Yqo2pdn&!FLyUQYA1yO5!rZV%Vk_4+AX^oj!sh$bZKBbCmQ5w zp4Q<$g`x9Fe}G@?)kazeRk+64RA2$){x5GXkkNFLBzEjiCy=`Gis?ADlF9d+N`VBC zU0%b}Z&XV?y-{GhOLbAc7@jQnn0&&eQGsFgKD|3ZJlZU>>b5qK;_yB3p62T+eT}MS zaZJaKmLX~E?L{6LPU?B*VIK1P<3Nh)|=`bvG^+d2Hm(N|=I%p6W+=2hl6+Ur9Hsq|b*8A-@E zU39q4Ec%xUN)lY>YC_9oJTvH&?%tKz%`e^Tw4!8m@dhwijq0#*Y(UQb6lcISw>3_h z11T?dQL|E{rHIy5S)$Cp=oeK^1Z)kDD-4x7+D6uHHLh$AZTuu^v9Ty6p^tIEI3Kjo zv*WEhyQa!$>KnVDQZ`^tN_;i^EJickUE1mi>f?#ykP9Db-MfNI%Q5j@c^ypAp9GF?kyw-D$G&+L?^C50I008=)OU(VMbIx5$-#pJ*`{1)Di= z{8_CUeXy%x`PkU;*jZ^owp8!1mIt@EAx((lZNzZbj5s<+9Y7g{#LY`l5j{V#I0p8Txc6ot( z2)b8EnkQcA@wb`LNHoxu;$#!3%;8Tq@A{s z1{?kmvnn=I50}+zm`_5oYBnxGa|Gayge5mc3;oe$n?A`iG2=tv(jy0*1yKcD#(qR~Y@~HN!AMac=NX81+>vo4pu47H}y5Z<=_`J&n4ME0}g4 zC2YZww=QR*?P#fEqNfnXJkM04v*mNOwn06?u5F7&x)qO%;gp9Ate8R?_Q3Z7GR!ot zZjb7){zm)~sBT-z0F#DDQBuC5y^*sr;;q-y7;6MGL_=B4Ll$!xVwb|*0a9_?0d+(~ zz4{QNA|Tz^rY&#Uxz$s3+-%T$Exb1hj-DY|h?@;s!>K~LzDl>-)r@+r8U+o^ky5K`Cpsfd6fnsSR!eTGvYd)iyL&k+{r4_+$ka4 zY5B)`$D+%1VUAA+E^27;Nd}>Gcnp$N4kN}~mirrSN#F#x1;z8SJT{#7e^ky0-Q-s_ zw6Jh1V32*L{0iKocKtMN{2@#cvPvqGdU-PYCpG29s%U0*b@#sv6VL%KUT3D7mHZ0!sc3N^0xlWwHk4dPGbS#@4qh z1nXH85E-n@ZnM$pOF^@aOO%E)G}-y9@-RLk!aS8)c}!2>$)_T%wA;xikVZjmKasx$EREh_RKU$7=qg=DRUFOx1#M$El{IxMUkiYf zLz2R^?84iDsT|XI#^kV)bO7gMVq@oU1YDj#E$Uhtd^RCbRs*FztZI#IT(xqSJmtu8 z3AB{*RLa=nX(aSp6Bgmj6qL4-t^Tuyd#ZXWK}ym|-G)m>V>K#ABd<@NEqUx~hy0f~0ui1ISrrRcv)T@96Rt zUy(OiH9I9+70ga-qoB!U&xF@g--%4{I@xr45eaXkJ;KJ|3$C>bp>!|NbNgXY!^2w; zIlaq-NhE=`g<7F}@2QSBjU4shz#MoMX+Hj*ba_Y14p3LV&;P~n-;bl}+{P`+t$%?G?SrN=uR)wr$R{s-L<(;MH_=@I^}q zWGt`=;M^#OjrYDo;+$k-eP;y=>uK5RO2Ou{v3ypE*j;2|b{Dz_v;oYPn=WpTI#_=r zehSW3RHbg~(?X6x;3(m=#;U21edC(xXT#~K8s|1K;cjH+xw;5nRaE9i+m{@&T?1pL z!Q;8Kl_&HIGNPtRi3{X$B&AJHB}{>lf=OE3c46%FS~iI)-;_WJ`#mCk<4vQ+~#^*Ae(Q{zB?VH2H z8O3$!bA-UAZcZrv{4t}(pYBF9J27IaWHu!zJP_m${ife z7a)SBgAl5K-Z`Ev-D^_qU2IkoZoQ+j)QfB2m4%YR=8`RNS2FB`&nHb zgoUpi!qcbQ7+qm34jx5m)9nr)HnRpEgc33FT9 zB}>M{c!XWCk9zL=C86$;1P*GYe*!9J$s-zUIe@rNmFl3G#-2jPlaS=DLA6!Pu#<7) z^4Vy^wh^4Ar*Q5HzYfyj^4juler0+LLY8s_GqL3I1y;tY#1zG#+0I<7Kt4;ju7ZaM zsHy?h+>h@Sy-f`@3>%Hz2bnz8db;Qs(etg>kyTrX(L^13hBrMolrP4x;eG0+`!1n= zKZUnROOLfzsM<_ANXrWx@K!9Cg%Oi|vB<2!v~g1BPf2GUZZ}EWTUuRqv7-HxAGJ7> z^erFlQ&VENo1%3@ukdIx)T%O8ViOWwGxO<^k8-8{w2~k96h$M>u6MMiO-H*=Bd?6k~K9TvZb_J{J*+md=#w z^_e7(k;Tq&B=agtT4&Try1|z-(P%z#Owma~H>P$@c;v0oQ8t;kCwf{6PH6|2UX6tS{4x#ZgWwv3`S9vl@{$G{_6stj zWoRV?#vH@gteTyVnYS=Z9oU6uXQ|E&JfgY6E&l*io@=IxXyt9=b6h(V`-`Q#kv*53 z?Hs&JW}~2WmQYC`RI$w~NZosfkzK_W4^LNy!s@1PNLns=s`VQqOz?Owa}RvhRYu9x z$8!_gAnX==*e!fF-lu)Kg-P(q8MD~tp5b=eCriMf;*p$&>v$kdlE1wS`7Up2>v(WB zou@ZuR~vMaO6zZDDP1K&nZ$-Oy0MDYnwp{k$Yd4xusWYdh{r5#e4_RtSQ|G`WMp+! zvPS3nwsEm54`?tt%pz9rPU)k6s^N8w!c0{-r&%4d$FF zAO_b8c2UR31#XiM62AMs24?Rh`j-hvYel1OO%~871a{8IhTLD8HUy|@+C?1Me=Xky z6(`lA{Da`Ew;+?o^kgbp5)-X(wJ_i~WyJ2VYI>ttiTF4)-WKyb%F8C_Gn%zUMlV^fOc=miNw5KW7RzkwaOj0aKn9`1pV?g^MA%(H=^(zqTq!&+8UmOa z#~U=~(4=D{qJpBX8b+5+_Oy2^E%@A(4lKjz-!J2~K?v}gy4MHdQ=Q-Gvn8kK)buot z5XRPl+cm)BHN(>m_FyWpPRU1v=g~+U=K7|}%ovSKKCFcHD$8+)yXm51{{Y$+jV?b= zx)|v90O(eXIF%%}-IcfQtTn;egLGFRw$372U@kl*b8*&GL~hAkJ*!TiX=~vC7l#4V zEjn$m(~k}NjFy}`NkcPpd1H?vxa>|DpIbDpiQBJnAlXo{9Fj>-LlK&;DD8W=4|??2 zTe%xrEnqC4bOE{q3uXaTE16EpSsx^9JD~Clh>IJnrg0F-W&@B~6#HFJ+^3DN9kN&A z+S+H^ekV8DuS1Sd%-;;{Y3Su_RYd5^gpF_lct!qPbHvtgnHNeA!t<9$H5fTxiEUin~zma#O6`}Up*2c#VcIoqpZK7&JXn5 zeaf{V{u(dHJ_^HA`6{xDJq}129@{h$8d3zSv{XiNUjG0LV=`2)o%6fVXhCdaCp~D< z(lVMo*5*#G=2Wvz%6Q2(za^0*u9@Y|DoS`vj>}GEGQPF3$H0Wyqf^ylxz3tE#tYoo z1>J16&Nh*PuC2G3!@|-%Rn(-Z&rs6-7C-SSTu`f;_4Q>wfi> zN_l0ebdRE)rWU%uI9};gM9PBGT|`K3j&5ODrZj|FpKx1{7P6c)j(1u3)Z8jkyt@;Z zi96lYs`NyOj_I-8KLnXqEN3HsHDQ>5`)yVkR}22tl!3tLK~4q3Fi2BDTTubKBy!WI z+8NoDpgegaS67GPo2IHa0?}cbp(YE5OMgeH+&vts&$D$bZuBo~qq5GM538rY5(kfB zWh`aYQ8L6`;Ct7l2x4?$u47JI!lzM!(NF8b(0gRFDmG4?;Fw-mdz-Ae_FAqy<8XNL zO9-HnixiFZjp49f#Pch&ifG<0#|I9@KX{yw-pMWHgS9n$DjpM0iRaw7l&+FM+eNXn z@X1qJF6S0EQFYVHgi%d$_(l4KPFi~)O0lPjr!?BNYWY*{QxiIJPSKyMI3q?_IITu|DvrRjjOE3>FAEM_mErqA3 zCDfC;6RzvLL2>n1RQN_Cz^JkCn>c84StnAETC_M<5rSEX0E>XMqoRsD+S6}4sSHeT zv1m<(gv~o+Yk=O;=}m>t6UY{Qx+<@RNd0Dzqq!bxNb07Dg4eivRmNiz+jZfu9onU4 zB}!f$Eh~3{y~UQSIL$1A#rwD9Rrsc4jl6Dahh*aGb4@N>rqgR~v zlDJ#CzXs6PLt(_;9m3FqYaTw9Anz=d=ysZxL*r>@n#=AXt{9%WR>i=C8tiRyRQ?nZtaexJ;pHL;z_=O$q7I= zY;GyennDMMce{<$S1#1=`D7H#V}afzc?BpSn^`QZcT;VcMb^54tOG|eAJcciR;53~ z#rX%pSPAVYk#JRDENq@K7qXt7I-EhkNJ}AaE~{#u21OWa1%OJTp_J^*__{2KC3Md& za&$4792(H3sGYR27^63F)yoQbi=Da+$z4{-?B@3EZDTUkjVreR0b!CV3Yle$2S*u@ za|2aQOj?b_tZ}=Eu>@$e7}kuy%%;sz90Kw>!DV6i%d0W;XWrscHn(Q<_>zlIXzkl5cL;Q`FQ=NfTgYI}4mF z-P3<^Y-XO4jlPo!-?nAV)T(q4dROKBo^6 zyTfo5Qv=3BH5;OkYQmTe&f2a9?(iXb^@6_RR$pI)Wk!& z-B*4MML*T*Lr+4hO|#WZ1jbt+?5RHttd94A$&gb>`i4eWL2&~xyXttE6+0u{761g< zDPWT)#MA6lCcvnqKBn)HRHfONkI_g+o@+XMB+xyw%OGfoh@k;VdA<_k5qD<=)8rKExN6{WX!R&Z4( zeg{!2svw=wNO^Kt&iUuP&j2#{9;!x$y5x+xCK5(X8Kfh*yR#|a0DV+|xkn%@i69M7 z0{qhCp{yUl&HcB06SU)r~55Zb?+tHU`)mxbj%? z%IA{j9MOf2kbnki)YCSSEyf?5I-ZLbrgBNKxhtUAO`LU8+gVuBBN?@)n(tcB#)h;2 z27n@%=e5MJIB#=VRh5+(V{apyGac&kAy&eu-Ca@XwFAR@fo)3Y9N@+m9Rkg*s>9}o zdPy!uKm%u8Q|&e*5oP(6 zBP;3mw|K4BB|Dl1chxo9vNFe2ois&`=!`EKIA*5dMDgNi{S-$Hh1voX5@Akl%OCDl zA4f9}tA8Z{W7(@nL9TOjBq^CwGd)+k^;0twscx(X(N~xSK-Fsc28+) zw#xc<=Gj`LY|MA6K}pZPL30~LGuu=2=syy`70DB}a(I7`LqBpp(Hs*l7N-DB_5^u=wf~ib@hmZ0P zf}N#2T{s+&kX^SQ0X;O4n7(TR5TL4o{Ak|kdXcDA zs43^gD(_NUVrHcL7f~A<8v_^vS~37Cm6eiGZ#~c#LO#$dDw-Ivs;Md@1~xQ}#)Fye zq{OPKXsr`!M4Q7qw=l2aamxBO`cMwOfVV)MJ{JU|!V3-WlB-dK$mUs(YllOUt0gsL zLxRokS4O*%w}a3auPn_W{DD#JE-c(Oh1Pe@I9M+#sF~Bs=^k!LOpon(CS6>@&8r%^ z3*?3KO>?;|jh>7()6}?JF}6}vHYt32qRtwunJ|c2@ZjP-sw#?Fz3-Wjmh#O<6jkxa z9dbY_YP$WwX(Bt`YP?lZ%5oMe+;aj)Rb)IlNW;jK*_sZPPzJQ>2k4qJ?^QfzPBqv z7V!KdlB)5#_YQ?>?Cv8TA5|o>w7ITjtQL+Vjp5a8-83cS^CSYXW%N^=RNJ@e>)BRp zK%WUC$fxd-055;}6$|NujqX9}oY>}Rw-el*xO982LU?FxtUpAWd|9GKc_axVG`oP6 z$jK{Md893o0VA2oLsj)j{{Xh{f~QUN5&lu|Q?)&%J*7KQnrt!{BrY1H_qs=2#F9|} zDFei9%T-RIV9-f9tGhda%Zt>BWduOend-eJ2xF&(u|&|;G*|$nQO!JXH+n|~jV@J6 zsAH9;rYX#B1J?&7jYU~sUx+cG`7={&t=)9(Yg>B&FRg;l#VRUcW#M5B8oX!jSkhuM z)yo_e4gwq9$r}2%Tw8JR7~1<9V5+yLh`+)#a)P2J3jz6 z0b!{k^@!>eYStWWR@J;6mT6xk(pOo5#@67+LS(rrtwS2X8r*|&vV@K3(_=YVG~{&2 zM;cp~cRwtCTflwO%ulWT>d)|#8-Fd|1xlOfWBjAwrfE+FJQVhn*NpCyQ^JO6LmEjcTn`AF z8LSx*3r~s5(&*_TqNi*yv^A|3Q=sE!lWW_OpfMV09Ac;(H*|Q(bJd?eT410qEOF2r zmrI6FGKQQmSiJhjsa7Wv7>I?yKb6)zn2ltUiYCGvHT+N10JLYrDW^NmWuNz(ky&!! z5;|7y%F^C<7P8x?g_Q8ND8-u5WU49KQ6A%o1G3NbS{i8xsCaYvTxhauoeb4ml%VeE zu0*bb4x|*6!M|wc;<=5n#&=uju)98XTm+`>QKv?1@O!6B-Ps&E6#64-mKD6xktjDe z0o1Oi55uRUb6>^0ZfB{`r9N(cT-9M<+bGElb%!*)V44Uyb4tMER1-oilB^m*Q^xV7 zl#XCJfI@I^h zP-NE=)jszZ=7wB_kpy2pXj>wj!fbjZ;b(S8-uj|*9EFks*%X>Bn9VCAqD{Xck{NGw zO5VgRmWmpue+f2PvEKzooczl_C{u!*)0%iG?LE_uZA}KjGD$;Qu884ybok9+jev;3 z@jH+U(=h4?aOzgU3qSy7daGy?U`oY)I9WLcB3XSjAyUS17%M{}r)hKVt+Vo4SRNQC z;o?XyEB(tRrI9(bXI<6L)pGaw%L3al>{`G$ktbI^^{Cm5m z*9PFDh}JfeoV!=MCO4@@fwIL$(^B&1k#}E`Wfga&%`j_zZHB?!RZLEvIV#5eNMoKd z1Zba!;XZb}G^RJ9q&exMW}JF>L* zTWoegIF&UUIF)fTtAO{e&aSPHPZUnd;O3~j-bWI37gbBSCYIbJJRt+B84!A=i#S-Q z5jRM-B<}{48Ro!rU6)ZAX=ByAUZoW#4@krNZ zp#zdbB)6`jd$)h`na7Q$#lR=FMz~~dn6<9`;rbCpd3g(K|6wYsp=Gss%n+BEIibWnTJON$t7z+H%+0WpA@QWFtm_PeV3+S*i<-OD`Jcd z>v)~jXr!q-6Q^Y6DIL0bTx3;TN96jc8w;M+%5-yiCSkY}X=+_G&k|eIu=uTcWn?jz z$nDmSYd;V)b5fbzC>x`~;N_WxP{)XuO;ak-H(-A5)HO6SE@x(6cBn$4t& zY)Z5`R};*h%cdoi&~$48^R1-C9ba1JwD=lq0_UYRx~-}Rg)GD7<9AS_VY7#t*^S;1 zo(jK#w~30v-uGQrJ4PxYVFz`=!!?nJ3Wl+!pVqR;HMOw2=iwxEvbRTwGNhK4mLBC= z4+kJo$;?a_zCkB9JA{LS#foF&?4UP|*8xn)H^3nq7UqudHcqx#CW1MlLrAd-yP8;0 zj#ARCvPQ@Na2hCPrpqsK&z0?q*B~fGWFze;W~k$MAsX{Rlx;q}$xbv`U5_nKju%H_ z<8o9rMchGiP`NiCR*+>6;Tn!G}# z)Nh;^ntV@awba#+ONP?}4N=#1tRX5KHm!iv@xvu}x!!Hob!A;uT!NlQhcr6g5vg4U z8AK^5#r<~=62;ogU(w+-@jJwFE0Kzk!kN_)^U-8Zb?&R8l9}ErX8sdpH6;V*ZuamT z)xFahEIHXc8wGm=s1Rb1y~e`!UDhTG=^Ef~VhY50-HoTAN_g7#gJ6A%oV1OWHwKG3 z+N_7+^-<>8Zl#7=nn=l+yX{Rl$Oq_;>WIeK&NKR=%vLS%cSs9Gvo=O=FpCt|SmbP> z-`qK9r(xnZBcf}D>U$h5bo*~+6l9dgi>MyvvsVC^+PLFBxJrCof<4H_^NOt%43&45 zVn95RbrU1YbviiM%^PBz?2rd6lO=xaV4kX_L${lpvFe5Ik;tS)wdRfU?1o^Z4bNmqO}&M#mF%IZckt5wL-1MAkDG6h zM|BGntdLSc3+I$a8*buky$fcrXz=(%k~Z?VXW4WuIjI$Tx6UFanY+#lG1&7WW7|~` zWP|LUYZi`?__cX+Te}tR-=nS`_s-TPTE1+ySF7=H{s3v^2Ps@=D@c7(NDFKN4%GBy2SGP8<5Po7gLmVKkA_ z@482C+U|INHA0$>s;*8fZ{LnLcz4dKdi+kZ2D%9&YhK~&0*(biyzfYmWDZy6wQ(xO zQBt}`8yjS}2qTjj#T_H=V`;flWA1EGaM_Stq^C6+NhwWp%_UlWdMP*D!uA;TgK*KI+I(^cV&jq(9CtXftcAuUW3x$y$%&8{r8=_T~4CO+DX z!axg=Ybe~%ZY`Kh;kCfDg%_hkY}hWN^jNQA!TKO*smLRS6q`l^Qf+&TFu%ov2n z#M01Hn}tbh$nt^1nA4bd>Yp7nQ99wdtr%PjZSG8ww|0sH5W0$CV`UgANJk4ks)VNU zIF71>zerX3VQ5;W(%~R%Q6(Tvk-sEbN>{s*Ip=gT3C%fYq7EYZCf@lWay%&u>7p0N z-;#=;-kM*^ehQplMBmC2z{wrlklYBe688qQT$R}D<_g+YiRNwOIs?gc(c3Oc!$>yj zt70`$Q_~kj(&u*Mv1zgSVJD8=_V!dNCYv0u4ULu_S_Ri()J&nKY)l?!s&!u9&sCcPX2mPZ zouiGdO<-I;(_(L|sq|<~#qE;R!swYnhGsl&7bS9-{M+>wy1;q6iU=Z} z&r!h!t2FMgva$+SQ_wmwRM9CRjyc%c%cpZ%-Nu8w+gjx^l0g+q;JvrA0a^f;WpE_b>iwKQ%4!iqTWhFPR9>a zA7W$a7zM*ZlAX+7uW2WA*+U!49h$K36L*?)Pz=r8 z`YQD<0k`B8FG?Wf!a^paeljg=)knJf$Ev04J!!GN4wg^pnkB;|0R-I;NX;Vb!Z+!v zIRKh6NS5fVrJMt_i7xG2NoB5I1tVD3TEw=a6=*^A+z5Bh~BU-z5)s}bWkSUKWUfAhEZ zMtz{dp^ojZrg`Yunt$?)8$*N56`x&9-_0XJ$*rFSu5-*dg)}a{u9N^(+!kyf4vWQ# zP`X2@^oD-xMqGCb5xB>R(3e{;;u-s_bG4B`9NA{4mE4OaX&&W9j~S+ptkzUbO7iUh znYSLxtC*(K;q?^47^R50NkYnE%4*tqNg3`+)9@>sz@J3=qf=K|PQ%DPR*#8Y z1%5Aw2sdJ{rE#~}nWz5%D}}^rW0s-LY>ja03eGMU)FpA%AmP*{anvapyJC0S<#gj4 zSrC5~GEdnK1f>*>2R9GZSZvJu?fp^XNBu_rsR^V0qkmPahvISYizTRxTS8s}zWhRs z+&M*50qqw0K(2hNL*XK}oPX{&_eyL^h1vRTG5-MFZ|2h55gFCN{{SmfnTSyVZ%e2D0FkJiLW}c9m4){{V0%wz`ny>ZmRKz?|CpNX@+}0y%u+Q{7)g@BaWUpZ-Ru zomWH+#atKu;8I74Qh{Sv1;4lyqZFiRxT~lC0FkOej?#wP(qR7pk*FM6iQ_uDeED%2 zsLfSI;%!w2vOts-^sNLMsC};r8F30$Jlc5O8$2npf-qd&+f=9)7M MfJobxo?(Cg*(yk_8UO$Q diff --git a/test/samples/one_way_train_0001.jpg b/test/samples/one_way_train_0001.jpg deleted file mode 100644 index 7f3990f4efb8821eda383b47854d5678ea9c037e..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 29553 zcmYg%bzD?Y*Y40A(jC&>-Kca)w;&x7Gjt=ZbjQ#j-5{;NAVW9O-3UX6Wj>(hIK4@|9yC z>Z!MmAdd=D_wk8e8soI}H#^Ft+xIN-RE-J&hQYK`teaIVCH3&G-goA|WpdHB@0nfz zm`e-}1@Q4V`@ANe>}6=DcQdc3xg%x z&plt>v+i%2xV_!)u&1J&Cx0S@qOG#f2nAeRddd{Vw_+|gAlW$AhirnWp1;WTiO7tH z!FM4ZuTAmt4}9sGXAu*Zf1dWQ6z}Bs+?Ye2UI0ZO<!%0MhLbng=P5^q|K(_^+Vd zq|7b*H!I7X%KG2QAQ|{qaiiPNy1VBXnLhm&zyy3)d>@sC7eF0+Bk0`HnqC0LcwPVA zre7vd{LjQR%|Ls>)#0lR0zs=M<8>_ptgtr7oR^O)6La&sc zDVv_1WfBf@o~fFit>F&|XD9iW^#3|VRpZ?!!55=>_LOk>8s3s$Z}$S==YjWnzzr^g zi;M9oM&_U33C&8>did{dMPb<s6b89HZEp>7whb0Qo{ZpLEECPuak=$+QSC-%Dm{+GaqYZcX4kDw|4CZ;`0)F@ zLaDN26_K8GwvGLjR3?|e1*w#5IeIF%B3&hd_tBB9rkFK5VM;4@QnRE2$J0;R>7je^ z#oZRr4MNsWc-(%X3H?=QNMs5d)=UrD1g6<|Ji1wfD%3O71g@*hB2e8h3x&bs*wC|E z#^aoZ)9~EnAP0e?oK?a5#O$E{^#;MG!!nnOEOoZB%8!vjad+kGlL0!=w_eJt^h&Xe z%Hai!N+AT6?<|6`cxGji`>7G%&pFMm(S1AEc>#b4v%!cUo!)De+0ENhHJ?QTpZBS_ zF_^N|^2g3)c>1rs-+6{x;2zmhcd#G=(JFmZXJ{&b8B#MjdA-cued2_vcJwG?Xed4Y ziHjD!PGOhJ2>ce%0YfSU1rZb`(Hv~OOdAKj)>K#yvPMEb@~3g7JAx91Z@|RddjFFB zUCQuCSv0K*!|xQhRKmKie}|+BZ4VPKTpQA8P$8yE)DPABi2nHu=6Y)?>o%y<($j3= zsiZN4>;ElZjn04COLD<+Sk-&`c;Uh)lci)FAh1MsE^3sC$T*@MvWySgNab>r=qC=lNDX%(2;Tq`gn$X7 z-WFrj9TfPyxAMrHCYs|^L{Wnz*YwVEjB2+QC3P0qm052{4UG*A%JwWL1B^L*R!90S37NxwNsV^8PJ%m_{R0^=Q5@uij`}GL@f8Y{J`_`Uh>g zd*o>y&>iEr-%|{x(@*5J5az^8FE$BgSY{x6s}9zy32856VA_H<7!?x57}EXDDd_Sd z%HiRx)hGI{<-tsm;>cWP5=jKyKCR2JkJFl+v*ykff$z4~!ll&58c zX-Hh!!ua--hB%7|xeDG=o;QG~7(;GZbetfrcikF0*3zK)z& zhQn-7K0}zV$>>%WRJ)Vu&&8s9uYXhMBJnlH+~8S_%8J*XsM$Wo>QBF_osKt|ykx%a zX_L%9ge5IcaPML(FAnEQ$@oG~9V@t_UQI-9NwbG95p9<-^o=$Zy~-!~zE;>~lrCtf z(IZv~?w|@SOFNPNQdn%0&j(#=W)(Yj;g!R36#JWr)luQw6du*_Hk@&s5U8v?drW}+ zG=#1W-=@@Qk%N@-9yJ#0nT|TqLHpbA`NxEZ6zE$jx&)x(n>KmbSlrx6v`XH@aAf?# zW|{DuBZ&(`^#lACkM%_Pjt#J4Djf@MjI4?{3r=#Wz33{++mqS1%tW)(Nu9(WxhtRC zYMQnqIQ(2w&%lAJgrQ^_gID82{)iHE5}%UWE}Epjip#5k`>!=z)~;I$X7;_~Z+2@A z({cyyze6;m@5MFmu)gSf+}E|ch%z|1yPq6%8^c)3{U<#wGLYG%;<12+)psMW9 z4jjj?#0q`g#HFvr?d|I}h!yNaBOrx57d(-~>U)fIzGEavxl$T-UJ^0_DheoHafk;| zdnrepFicke70lr!kR;eVLaZ8Mv}hUSlD=9f#rDFAm(oigoS9mbjv1q#ewDfwN`Lrc z2u(LrDJOSE$DjF1Nnr?2jc5)TGQ9r9>RIz?Xv3ylIXrWbOeuxzAl9##Oo2B%Q$bj3 ziMCJun))xNu);ns_Bi`(`_bh@>G2552ixm*d)Z-l+Bov6t7fSxPOgxRsHU_Z)-Roij zB?kK;MwF@LJT6LQk9bO6XDMa#54Mowg=7aR(|vHVuAJB7tJ27Z`4R`@d#L zJ~ZwPQb4C3KH)7&uIAs*69(T7{E-f#tzcv78fBTXRfp&ZrVz!s9rIU6M=UKqEua61 zFjeO;eUo*^L}Khk7r|gYkF$=7q^Qrbxo- z3t%NrJODpsE9v!Hn(_f{+!(j`Xypjv!bht0_v^`Z`oedwz<9|rOg05xn)ZugPl)=# zT!Ks(+Tj)Q(in=}g0M_^OG;*|Mh8rO;^>ZuLee39GEF@WO^-cr>QlnoPOG2_lXHzf zQ;Z4N(TU#2P2;9O?_oD-y>3Wzt3VeOUUKP{I?Z?;wtKIDm6JD@mp4azOJ7GW@Qo#Z zg1$@T%(U}J`8#tZFjQ>e66HvUqp`+*BVnhZ4bz&Q0ZcKiDc5oF%rHA%S}}N&{Lx|8 z;+8XHGu1gRnR`3rYE5aUo59;VEyoLHU=dEwZ^ZCLM42PZa4K1Ofn6;{t^2W6j$THQ zT(4~ND0!#8y==R2G$+zofLV-U^Pp+36xcc(b9dcW>nxQcmQ(f}LJgC?+Su4`3RO`c z^n$)!|MGUlC8aSk5E8_e@ciLv=maSZsZyTMEq+M4-}1EtJ=w7N5Rrb=8R!M@?R4mk zRxl3fENyb*WF8`wWQ8F=1g3hUUv6$$h*IeNzA4)=TK{kR~nb;PP zv0>Gmn=@o|KfdOc^GlaiMIVy+!7kFFNN}(7@9oMR1l#5~sS$K~XT2>c?m?>W3sBnZ z7XZ&*^LA3QpjbSv!-1S3*sQ`IH~nA%uCv1{e%|Je-be6wC*otAw{a^KC)K!rNRN4| zLKU0Nm#$!D;SILQB&_u98d*8HG>U)=aDIp>5>v83y409-!KVGp7MDiWg%K#^7#^Ii zltO{6PH7Nm6)wrHH2ZWdwzMXC-ZYBG%#15EU04L^vbb-eq3^7X7ExZhakQymrLNOt zT*{=Q!0034!+@xNw9;a)sM~{1uTw(WqMQR-p}Is#ua<_e-7jIehlcBv3|{61gPS5o$n?LPxx|l%Ht=3vD0?J>g7R`bGtrXR+hVVy;g;AEuc%$@=(i85KknJ?IhM zIR~SO+`Bxc3ZXjwx<=cnZjnUZkSt|<158ZdSEEOl*9vD;m-x1gL5RMnZtAP|o%*|u z;I7KbLvn1H$eK>%KJ`pgSEaz%mSpH6FI6baz+m)_i{#YkyaiqS@8tn{ca~2&o z)XTX+@R?;sa3I?`QjU;HHqqkJe|WvB&LKVItOlBLY3deCTtG#|k1MasnaBL|K}Ioc zrz*BvNDqpx~zFrPbxNrM|$46Aappe*OOH#Ji*OM73>BW;vkV`n&#}DlD2I{ zBTIDFop#7}DHykhxcNgP(wri|{7!@DS5o?FOEya-mv0|&?-q6VMX8i<5i|+-poJJ~ z+HTXB4%Eu(tjC0I_=yEfr&DCq1PF~S#llGel!_D0GZ0$a^Pq9GafgSpmYpgj7Aj zyMYJprl=!ycJehefm^gm=B6*rO%7+$uGsb4S&)w{PNp@Vy5{z+i|1;GKmAcF)i5ET z5{etXaJu;bT=~u<23k!sLf4FmRHpcS&4M-8OfBiKWUaLU+U90xH&&7-p(SxN?=9)# zTS#|h2%?_PB6;Nx4rGz$!s*ttu7c7Rh)RhZmk(#|eHLjG4^lsYN{rM)&RW5SD$;RT=qBb(0 z>@fXou{S)wtj(Batklt&nFnL>lm>CUrLS5{s1({hLh(BaSn+J+c5T1--uvq-NYfcT zPAY9GZyuJ?;t-b7aS}QPszf2cIi#pfChR}LVGo}Ebxrw~13_ty!5bswqinj|-f--d zx;)z3LYk{WdOButh4>?K&W2(eq?-Mm2*Pjv2_M>VR$$E=3%Hdd8V?nQK-8g))7Y}+ zT~V4RAQ+vTrLmY3e35d?Oi<^bmkZoxpcZI1!y`DtnQo3kKV$USu`vIrq0Dx!%IShC z(jGNehBeuY$$vya%U#B?XI++6(6$p;i3P^f+ZM9*$1A?Y!aPND6pFOM0SBK{I|*{l zd9j3^KUqe6ATy&yIm}xuzdLoYiUQ^BH(t4gGs<6@^UVgf>U(?=i^rpbf>uF`s~Cu; zRrg#hjuc>_<;&cZGirkxeqnw-N@FD19-3YK@f3v_rSxVyDTtds^%_PQD|2&v-1=&p zA*m?;lbabSC**;IDNcIM;FTbro1>-(LCwbzeRh@K;OWTJ1>@H&Um99%+oFs2klq(Pz`g0%>|l5{cr^8ai_{Tkv?1T$VcZ ze~s&({NU~?;j_P-Hf}`;{#7Gx#9JM$a8jXemAIK^6eJkJI!tffIqwUp(yb?xpbHq$ z4O3~roFr9BFEZ|F*mheYbt6z`c}kROyZ*gVB41%~g`O`Ee=0X;)r(5(&7vdu4pP=O zgOsePE6GuQvyh@t6yKX&7m53{h;^INfCt0DZ+D^&=Y1KQ*k8uqRg*Em)2x1t? z5Tdc&bm1;PQ5&1p%^L1C)s3@>YJX038M7G=^0I=3wLRfC55G6|w>l`YZ?arzh}-@q zjJfwd>POSXeon)ZF#EA8p_&a0SlD&#uVeQAx?;MWtmBr1j^Is&P-fY<=I<@7Ks)9Y zEl&jO#fA{{Lla;w2DBCDSb|d8DzhB#Hp3ozP%+qdxkU=aaB>qu?sNNAt15KbWTG0V zq9&>5N-8h_1b!$xEAL#Fg<^L0MttknKM%{}H{W>`wpSY@kRz->H%My`Lc=TYW7+kq zrV=kS79guIawFk3a|}75on7hcudcG~CZd);*Y-vwstAx!w8>KE6B$;Q5~{kt+{0@4 zDH7$icpLjK0QL3cFL{CKwB_qV#;)yBl?vBtDYZH!tA(YTzRHk0TY|2Vio5|Ps>dEA3HNs?bMdb*S(GF?1Hm-MQ8i`De`t7TNEB&RbjrTcjdx>0CXI06xl#qlpJhNK46brKX^D>nw_1qf`#ky*a1E!oBEa5e~XV!q^^!zd)11cye6}(c!M? zjj=M`m;=Y45L=gjqhwyGuDl0OT3{5Kp6}lGyRg6YFi}$T)z8(AlPf9Bn_nOIe}zu& z7iF)-XbiHXB(1@|BCg{aCUA#G#rNR+X1ZgpGq)Xv@?J>P^~&jwI@jQXTCr)9eP>_0 zzJ)r*(K3}Poak$2PZGJz+WD+Rm|ZG8*Rq_vFGP@H#W;yn#EukwidmcB`RnqKcu-l$}1k*<*5IT_1{`OBr0>71odeEKqR12z^3isiVqT=C+?$tFLu4&lPnK z`9VsPv%{WEH**I(`7+Nrz|08jL@RsbuI(=8Y|6thVhA)ouFy)e`{NhpvC40P9Peyd zJe#&NJ$PshS_AG=C1-{+!KI@v(pUM=C^AM5k*1zEPQxG~oT;&RCHU&6)XJpFPTBm? z0R?!@QO~Jx@A3jnRik2R`OT;&2^PA(Cj9Vw&R@&ePLiNe;l6oSEu4pU>*0C1S_xs~ z^@Wf{iLAVbGmnq`N=it#_q&Q?aXlZtD50>NtvY&4@*{(KK0(gl-!A&Ng?)ZbnSYn4 zX<51HsFS{(OQ%s%>UQ-pP!)6*nzWqEH?P?= zv_kMv|4jR+AmL`vtg|BO@A0jY4KBK^nD9t8HG5goe%>*GG%eBk9BBCpY%I;T>_pRNBdTeYAxyxIl7#H{j8WWD zD&L5+w{6^W*o@tD$28D9)Si{v{qri@$d3?Ie(!8}N|Ano%%Z4R!W;;c+b1kq606p~ z59{tW&|fsPn=5+Fz)X_+qqzMWb?6%eareF$)Ze%Cb5)vtsGP%bDsdjAE+LokJ79C4 zGeZAVPWuYB2acH3nL99}({G_1`rF?7kUQoP>S$*c)i7PGh_&${T^oe*PETvaB{D)1K6 z?v8rUAX%m1onsG~A6(2jIRClUK_Lm!HWi-biCJ9{!P5TSt$gn>ty@22y(?McYWhf; zF-~(xwI7!3Jsg99|6SBLq18#NK7j*I?18ir?u!Sv{DX#yRW{r{>|za@DvMof&$mi> z+mh#v29n~p+PkM0o8Y8=x5ax8pUIfYp=^=9DM}W$yGruppLQaWjgdun?O^(o#$>04 z3IOxwn3$%=I1|aU6`2j`wo;C3cpuYtz+0Ugxrt`G>$~^k*_Si#he41k*lv&(xm+c! zAUDLo@lb^8)n?x@%?>=Er)Q{lR!#uvKXFr)n$ULaN!PAAL6DtYD0R1Qs!o>VUg1F5936>Vb46O>AleVcBL&+nHDvtHZ2D9L(x0s@#R*+m7kqteXtq0 zL>e4hk%xu!^r%GipRZLUk4dw5T*9+{1b3+^xY?RS9>{3Ty^d?gLCfl=>GgY;`#Rz~ zaLicX6bbFrP{fC(IwU)}L&Q(Ut^Hwzp+avp>F(q@!Skz-LxH>VR6E?QzBxBbKsfBW zRQ5et%+n80fhC61yLSba1EItuv}ya^kKCkNN$9d>rw9(4EljNpKyzP{e2qVat;Jex z({Nlp?}Usazq_YpJw@Xq;ZBv#VSb-H!<)}LrXRSd-|f3J`u z#~)J|fVd31Uyoo#tZDVe0Usly=EGDwqL_kK7kJ-`8~ zK(mh7NRk0w3d$Qc2wIVktMyGYK!aG-xJD)9E(LM((qztZb*q9peJ)neuM=2*Y}R1Y zKf;iE&W8dB7+0Hq>laSG_*VK{d;s!T$k6(_6 z@{$*>H(Va9JWDq0z=g!kY8Qi~weJrZj1BZ7C0;7Esf;S{=*$IUMk+&7I1f$oAwi2& zEeVs7=+7duCNeP4cGuEu<4M?JA3A~6aSSB#V{R>ZU%MnN5@{vM?Y0P=^KdhagotgX zC5z0JvA?AkR{Soya!Vyt%vi_t`;_{P4m^ae_0Cu!0pdq6`Har+3&&>QBVIr87uz46 z{dRp44hdqP#;;tQIWk68Hy7D&cXp_N+Mvv>-Q}K&VFr@wPM7Q1;5k?^ezgOA zN;x+<9~?5IrVPvW!v})H8O;rT36FJ~TY+23kTx2$nPj!~Ez==n(x4D?NSQ2$RwVtU zF=At3gLZd%`WO~%zJ6`6*2b_tf(Oc!5xTITY$$OBOqQ`zvC3IBk}utdZG z;|6jVOJ!-*&%T)*>0+#L7#JcmCzG6_y7`y0m#9wEX^Bc2nL9o`!Wi2ZLHfE5`_%yN zZ-g5TY$rt<4mSxFi+g5uNuedRMxlIy#u|4aA30}ieu>#DLj$3a^c#Ml$W$li#RaUE z@nJ?gK1M9$wuA>@4Mri{13fk*wD1-7ByJ~v+ue(R%yQmb8_*wA3n{I2vK6{KTw#*u zk6-vRw-)^@p7vZGwfHMGB)vO-bl?4npxGs@5wz_<5X>f8qi>Bi9f%%?BEkzXYO zNlBsEdB`3N-nVd@#)_85Cw?ON+Jd9NO1T0H9Qj=sSKq&|0B}+OU>wMkh!7pgG+o7D zX`V7(h@2dCwIwUFRHkEjamZwo=k-azPlY8(y9xvPCX(^qMM!YBhpx|3_>M4y))b!R ztW}lkwypfmO~yOnV2KsN`#4QC&`F@?s|e}1BmlxoTf80Im@`jx2F`Wl@vlaMq%un3 zp1H7QnW(vamjx{YY0DsK@Zv94%u1S+naZvRn%qYPt9q}If?_DCCH?ozp`0UB%tKc9 zpe$DhMqY_&&ACqyK~TLkOUsE=?{JuIJ%_{0um&$A;mZXU0l6(`=tviiu>8c<6K;t% ziH*#&y5Z5chsdggGcs_*Z=J}SNsmaS^~N)>AXSbQ4|p-q8OKWcwSMgQBoTe}kU3fy zFC#R#WwdyVgUx_^V@h3jxF@p^%rtLb^8(n^J%4^9b1y$_afRs>c96$Am0^MBS7v8i zri=e!{8XXZBtTs<%NYmTb*tf96DMpm0hG{H-ci8fp}u#e&I539BeK=rjvfd+ctzMb zu3G>Q?z4h|{crRE5I&fZ#Yb%^%vQX261s6{Hhk_@d@Gf^QnB2W+%u8on5m-|2oua3 zdA;rdMwLNRb2MZiY;%48r$5+K9ww49AZ^m(Nbm)&RVOIvmb*!RRVD@n5I}i1bhSNJw!{j%N8eB;c@zin{F$TUp*{)GYu))>!CgGD+&jWeC z9Si}1q_tkBxQ@Cb?SHz*XvK=@ZKUEYA=z@b-wHg%?X7b$0K^Q>ZnEUQIu}`O6J?NBhW}agY51IK(_or>h+uK3fNlw)DFXU^z9h z%vL)Y*W@r>4$59pvfKPx)zHG!ic3nJm&7dr6rEE&71KI`EXFUW9#TUKoDp@WWz|5P z_Z(I`59!v$B-H2nuaCcd%%j6KeRn6_Y`ka#tu4?56wvnvyXr zDQtDsH-<4;1rg>$sJiQPsx*zK5IlT5S!Gk0D>;|uJW z%z;4KHbd7N6AH70eXZS07Ffd~~gN;6j~?TS&G_i66s?DXm&7+Bmu~U-tsy zEp$*&d47}>KE_E6WcF1#I5=0xa6{OR&I@wR;fj>1vjmC1Ins=k33pP*Fo`Wsa&t#^mrr@aI6G-j1Vz34PB4($NEjC^CDbyVJj@0PhQ&&4m!gccsy`u zW5?Cqe5-mC_4HX4GC+%mg!3M`shkxhj{f0p){nO_E%o~;1C+yHkWF&?9TE&3A zCTJ&l1)zNcDLpg_ZsrJVb*3`OJFSsHrJxA#Ac$>?`t6Z%NfV-)#b(G278iyb^qosy zmDkt5RSW)si_0)G+t6R$F2*)So6faCy<-are#NzJG~A)X{xW=m?mNyIET9+K%E@dEhto6%m(+FYR; zd2@=6rNN-WiL^Y?X~Exp0i4k8p(_gWvTU^=z$+R1(p0z9Qg`T{D_%VwCFTzG{H1Pg zPi4XhhqSfiW8n4588;yr`?)SVJWlnArEYj73J%*X5qrd#<*tYsqzuCBQjW5#^}B70 z!wRyFZ;=`gJf4L+Q7Ikb(!wS!YI8KVR)zPFcFw2|u64ei4tVT+XG3alU8s|gNd4Ne z8U2+1CS9k&ZMdi2_nW%}tZLyo`vaWrf@A*z0FleQ4N?i%E)qB@1})*D?n;Z=<`nc8 z-+RSuC90}EJ*7Vc+a2=Rdbef<{Ju84&mbMW$vhP3vs25f!b#t&zZLgx-=Br$eF*OZ zhG=i14`>rJfudd=5qHGz)=NFG31J{Dy&m{5&kklt0#V?9LJ9m{GUm&4^hylH9H3 zI6bQw6yp$ob>?dg zbR1(@>NC6~j?~L+rtyaS%Ii-~Yu|mE5#L6K!v3zHbB6<&{Q+P9#+ztztPHQ+H`c*8 z|LAdF+G!?ef}$T&y5y#cnZ)V`pVoZkCyPsee8hH7md@$m%B-0ChV;!RUGCD*3*)PsaJd=l$v_*Ibfxv}|K0wim5^tgZ6Qgt|;Ne7CburdW) z^-b56j9yS;p=xUH7CuOGNyVl^)JkqnQg2N?YI2FkV+dmPoI#DAIL+C%#kHpve8c7WU4^FV6Qm+C&@u(4lkpcWp!LEz8By;Y-j zB;E|J9ew}Tuz@i9R&ci@?1Pxj>(5g zL0{W42`2w2Rvd}g+rCSdQ=9k4LR~)n*qxf(?tG8W-M^S~w9aNmjmrtw zMrx6e%S-F!a}%}yCBM91$>^!z%zsx>M>lILu#&VNkfw*B&5^A}GgbbE47Qo}r=|F8 z!%1NQQ#Zn`OYPitW`S{+YXML1^MF`9q_xkc@KN#~E4XO0GD)@Uoj{DVEc%3c#@pMe z8eB6vm$fQ1{Wg~#BV%%^0q|wsS79;9oaB~%0qyCdmE!Tk-HR^IWfqu$Ck4t?mT>kw zr5&mw@89mf+D0|-63e1RQhsy0f}3oR{|jI^rhY(Bu5^NxA|=~vB1cSgRe`#)n(vm-KMts1q za`1;JYP)rtL|*M3F6pZ6_9swH+|}s9!$MjbM+H^RQp&D|*f#%pD!3zO3^35^b<^}4 ztw}b*v27h)`-s3&wEVMI*A8Va@6J3>Lw>IX7k{?Wl@cZL9{O{mzO;@Lmor_24^mFA zkfdtNAQio3zdDZKkD9O7Tn;hoX0XQ`CZNZP+5S^PR@rKJ%(yRm?>C%jP zjVrEnZ_<+%!bcfZI%u$J zwjI0rohQ3_o$+%x+FyebEYtRuQuDalsZVw9S*xuUOYfsDi~~e$CmOTQ0Lu3CuD_?v z1R&L-oh$mwP71?&!u1HT7AQR?4xd+&{KP!PB~NB7nIH40Kn*`gMKp4r9V`=WP)0~y zl*h1P^le8gskeIZHT&+QUndY;c`Yat6<$&Mc$)D2X%O3Nh$|l0r!3!m<<6A87Be0( zhc_g#|MQXC@#*) zbr56WNeksuJPNQQ9{jO1dJv(r&9Ay+!P$Cy=Sp1y9KP2n;cZ5X@t!C5x4E#L=9fQ- z@nIaJcMxrn7CXLLRMCJq=vMm<6T0!EP#LwN-WNF0?LX;UOJNO;eGd|Vg9%&^|Asd-ETgL{m;X6&LVZr%qfG=@_0>WC12B-Lmv z&6Q;B55oyrQCiIp8BFz;ovUej=t`-GD%ZGpg~!GMRGU#_a0HiYmi>3R-uG!vIm*kG zR?mqK8(%<(M~&hvdE+bGjxPWVM~@35+W2+DTb(nn^uIy{hud`W{BqO}Jc{zV(Mnrz zKB8<_aSS(QcJsuzF?Hyf5xP7+Y2g{M3})CqgLm!^tSUWj2anq3uf*H#G7@AmetXxr zD0R$cDpurIL7O0vyAL`g8WtY0v|?fOR_*bY^kZ}hdaGwR=EfHq3Olt!ugfY&Hnmds z$;r$=2{f^>g_k?iZtlWWMgPt(*tXSZXR`zlw7a}8=cHrF--d|lo)!xF(C(XXBYfu; zU&oQ-d>Zg;TC{y}rFMIfVGA>HfX3=ZIQ9g*6MUo1@8gr-U$Q681Au|R+fy8$6q!!X zRvJ?9T_k1Ql#tjt4AAg2adXV2{Vwvs-sGaHm112yM8Qo9=#9t96CL|P_ftBvA9;~R z7?5tI#tk$f6X|oJO1;<%4;iYIZX!qdaTjn#xJVwU$ei`sOco=q{mMn|^Dl_kf)|6yGKD zAj^es?x;nAC+tR`eTKB31YLzN9(Q*!7LOHrbOb*Z#KUJ4G-H27!LpGvGZo!v`3;{_ z?Q<7?u**e1|FK^+1;yBj)XLnx&n+PwW6IFjE(1{d;kuq$LN_`b#bLR@h?HFWGD6G5 zCAeDcF5P-ymK!J79_SsN<`X>{A{M{4Dk z*C}un()%zk@FBX=UPnB$c3)v8-ePz1{T3Jh4YHT{LiJtq6L2iL1)s?okU78?G42%a-XZ6m77sExL-7E=vf|34 zX$ORmTCat$-~+=MrHD;{Q1h-7nVov;I?)FDY`d;o7KFEax#_1^Q#Uzz0+B`}cT&R{ z2|_ZssPE$-JeM*nZGs1DH=-n>&G(->S2^B_|A-==wM*-VO^Ccps&F$~TJ$u)!nvX( z9@jK?ydY7hEOtAh;w_SIFVzYBb1vJPypLUHR)fT05KlHhF%Uu&Ew5*Oovu^Hc`Awx zFQB^^1$Js{(vRdFry&w%?*9v&V8$K6ua0zi7xuaBro8@?&xkIutt`|SfXu!2EC*RO z8rm9h)UQ_UVmxA1?`ENQo#9_SO$?tl-d2918+3>9!RU3Eeqh8a80@D##FYZ zLfVc&DgTmx%#og(k{B9_hbf2OWeaNm;@ZJ^oBQzG)>js&v-Lib=lHQQms0V6K?~)U z7eHCUQNobnO$B}Rp5k|}+wwo}lWn7J#&^B4>u~48l$?`}@3JwZfF;u#3A&L6t9B9v zk_{=#HYRUcnA<=4-6s-2@rKBtYncx-BGJLtf(e#`uFMivbMN}&gHmkCnjaxl`CK&z zx+|(!j)#+~>OY9$8JKbicpH481rL`zI(_0T_pir?9x1K*<}Aq<|2mkbPV>c<$`f#d zzH;8_kt1ndYP&y_ zl0WycS|aV_=B?Q3k<1Fckq*tfNz07Q{M*2gM%O^3n@Bn}=+>drp-vIleU zW+UL7_m|pnuGkb8CLR1O0#riqTZ>ZCnl1CFE)gaTO8&X;NFA7HSmEomcJbfL- z7=BBSAWdh+@CKADYo4zvTgIJ&EkchMOgEBX`lzo_*pnnPrU0BcNeTW1GPrZqDKeWd zny~nLOpe9a+`JJ>G|N2`!Uj_1DiU^0jtTO@DfM^#^vKytxP53uIN#4oivhL*E_D7`z6HNN%=fMHT zJKLTLvbgS68J;{d1(9j$1 zuNqrV;v4F*F!p$ zDd!l&`^d2ozU;y$KdKwEE^R0W(w4vZ%w+Qp3!F*WwI9#(pisKO`}ZSN*;cy;qv|4p z)7dYcProf~C2J(1$L6)d=yHHq{H8j4W6zr;AzQ>C5E`55@4_C70W_ep3{UGI?sHv(3vvr6{RKR7n{7`iQR{4E+%5)u zE>?^%?{0xz7mP1(1rCTYC?imbJAgo;u?cO= zYZ|JC6ACVG!elhI2a;?;^Rt0uy`VQ7kln@NVwJ7CTK=(*iXOOtY75Ym7nnzNu{?+0 ziXS@xuDHaGsLyruPEAyHX;s9UDxK9!@yv*-U{umNhiem+RK3M1IH(=Fi@@HqP5ow} zIf}2gzlrAk8LSJ+CfC>f#;{ZFac&q&08Ld_*I&*p zWBzhZVWBWgJ)Ff~#>u0wSO*R$Y{4@}TWvde-^QR%f)V|$6szOk2_qWsR=xYW`Lj6FI18j>T5u-coV0het}@PnwnO8ZfAuy?uIqR6KWtAPm-tYW$Ir{nY^Ld zE{Kh%TPXrzoSYbxeyibr2Pmp}%>1VfmEDoM1toRKvM?pAj%eX-1-Y?dir%!)U;G%@ zrnw?U_n>3>d0Z+FIfev z>(1rGJm_u(YI#DJpgS8a@9_!FBcn`-_>+ypr>Ojy%CfhhbE_FY9DbqQ3bc4t)Z@0F z-wUtOrN)dVohKS@%^YDa6#k;frK4auCzE#0sm<5iu57$$T;UGCbrZuf9&b-X1q3&QLf?u##UP>9BuN@WycRm&BqFXV>IPz%ckRseEh2PCHdr>3(Ei>m*={vb$q zBQSuJq;xk*Hw+Deba!_P(%p!Z#LyiAf^>Hb-2)6ET|VRe`#*2zT-TX-vCsMLz4lt4 zslS6Aq_jv>6j;MslGyZzE$cY0zIPbf7D}|F7m^sR$FxgV}HbvW%Ah*Bcstet?0?59zcZ+Nzq&u9r(Wb z*OWzYu*=@FMed7W!v#axNEP~l#Oj?KI=ke&(IYzPUaHD$WVVB zTDzz@4y>3Lngh3 z$r9m6ujkJ{(tI9EmRq;(=|w3t5{2QGE~Zeg*{65xj;DE`gbB?ei2c6 z-T+8h7L>xPE$2R0R)rqHy|d6{oP8SP`&w!34|2ldF%stDaoYyaYhCX;^;wQR~@mV2Oau6-K2LZYTnIbx`y;n^1#e_H+)yPT~%E#e>(I*;;8fj-J2_wRYwf zmQ^cJpDfyd-%4p{Bv~%$-yDx|%v6)9s0}Y);YNV_w3MGMNiWhH|4A%W06@=S8X78+ zNo+)ppTw+F*p9Zf*NjzawI$p>mz$wpi+VCF^bDOuv9VHa5O%n%ACzg#J8!>&zq-b$ zBT0r}aY!|97g%%j!|Ms=M?!JK!Nw`Qydqc}BC%xrM$AM;QtCv4lzI1_#x535e*{O6 zf;}Z+MH#jYCRB-DkN9=ny}x9qoOTnbV$wF#>rdw41?Gq+jOaFy zXXf6y9vp|1Jz#LThjl=CAH0 z33NP-x+^-$Htf$M!}bwhTS3!xZ@;XzQG%$sn(tIpar9!XtU_@h9m~b`E^TMj01~Q7 z=p`g^zDmx~iw0DrrUY-n+Rn3syf6MFd^4y{7CO&>=b|V{Sbjh}hDRr)Wrxv!ps>`; z=35rwIb)A{4UP15$k(({$II}EoPd~2{LOc85IeNs!;l~nd`x@@!dtD7Hujer{M@cD zBB`>306Q-@gnfN)u!VX}R$$xsRNwgr_q5m0v#@YuHu_@Ii*Xi_x@v}VnOcD;hA7YR ze@;|B<8F-(W>7rpU@~811Q&iG#)S8=IG&T$7E`I8jD_gnK0yr=)yMU+*oIbdF5A4BpJ<;I?|)}OI$4LT_` z!luvMdhs0pc1kri9=~llKOhSlL^!V*|S9pK5djHOsuq&0IWh7uk2+XCj&}g3A?wj;7U3o&r>Q3I851mNehrZDJIXtha z@6wuQzy4|9`T8IPbto22iD4KnwY{`WkqO958Ig4csnB4x;Lh#1oF8~1s@mJvz0Eo& z5sV^Jk4DR&%T2DTTV+`>f0+zq3j7*kgxydj@A0ciY4cj|TwCO260!bIXMF%s6Q;}J z7tSzD>tkr`wcWngosyW$gO}E^K;H`-rc`fO$u?~sl z)H`-N#Xw79gVF%9JdD+SN-dRSrf52ohX{gf@=H`#?Ol`jifd8hJ?_UgocGRN7=>m1 zO;vzVmq@E}sMzjkCwGbMbXG+Y`P%f@(Ji}y<`$()5_??!H0k}=Gcg8y6RN+TD66Jp z&?Dsa)lsnqs2jx+NbfZSw>sGJEi1$>0G&x^WC!anF*JYvj%G;w=Vq1)F9ambR!kLw zH@A2+p-fs2>3uBezza>HmP$q) ztFMO}CIwy}KY%1S(|E!+TU`^Hd{`6S`?x?AoZMsNN|R~F z$ssesVG$kDvAjYdVE<6-L95t;F87rn@~K*B`?~qbatLcR&zyn%2bPX}R{z2^m$LO( zx?i}&2WYc5V7(ms@x^i;({H{s46+`B7od1QAgM5*t*%AO3Jt#>(#ce9nrd~;*>S0^ z`I1caL!2HnENzck$lU1F)14m_m4a(d%?mpuET`4IWK1pZwA9$A~z z5xAzef@U;x^as{qFq3`~38^BlB+eHk*TzW}Q>PLDqvO_hN|?I=D>XX8;$PJseh3a- zOUDNH&FW?R4mAw28Tp-~FvooI*#%hSLE(N@@PJSC2>NmKN%+l7z)0^bYor^ouvl)1 z4yRyo(>V3x>}HdwPSkIfZ20Mv>J2`nXx_OHZ?$iA%}?mV`?_jNqM2EQG)64Ib*f+7}JWeJcCZviB=|7NOK-sKs-;3{0y zUNQ{!zW^MYmH~_Eg^nZc5uNux&RNIy1DLXJZp@llvN}p2-%s?a@1A${InM-Fr`Mp<>f=@~;2{lPub2h6Kzny;e=yp9gs1&tIS0&i_=SLvM?Z|&s zHcEbi*Cxz9O`|>n(msKTdeR>LE?efE#kI`9WGn0qg?{@Cgu9-7PM8W))ZO zPBvgW1i4J3e0Q+UK9=a-1+$56>ssC%YB<7oeFhC*w*loRjJ5towlsf>7lt%IlcN-sSrkEQs-p)M-TFSzGcZ%h{N6b zBnRnz+EyGHy{$|@YRq*uT|KP&fkit_dp?1RS=R9Yxc4#eFuGJ=!qB(iV_fL17hNU0 zb2$!eQ0CUYSpHu6aYQmu`C?6JTwCS1XzCMv(zbxZvQty*2^^jvGh7`}4T;@iF|~$H z-_oDU;F<#5*CZ`T*D%8Cn#OMk+_KuV|72`3M;+~0BG6x)gc>Dd)7mNBm zD{+@`qDfDJKybDBjb|{nSNLCmESq-XR-z=zG&8(Fc^BXRmWV_pmqKZi|*O?Rk z%?1q`W)k(D_Mk?nWnWI_CfUZ^m2oT_&mdQnRZ`Dc1B@rr)sI58X%WmLSHcIL9^EqQ zBR0NJ<&O&!>(jH7x=;p;R>sRH^c=1)Hr}Ez4M`FFPh$a?*D!2jl)}n+vPONH^{geN zUafCF7%x_Fv|7~N$6NzA@Qc-!%8f@Ats(^x9+Y3ZtwbTI)lxvK{c*&eT409bFF12H z9jta%2}j)Zr{0bYc1JF}#a0;})!Evfb!I)K+bV+1#z7+7ig1~u)kE2dgVcGAa;7o7 zu=rZ39-@^4Pi)KE`~}G4%sK6rBz2B4e_J*8K#LOT^Eau~lqUyEZEn6bi3Tw=h`xb*lNGvkX=H<8f-l#VZq4d2Nh!TTxaB43PsDiIP zdQ*vn#3Cg(LZ;Qw=Yx|+U(~61t*44tVuwX$I`#z0j9RG^(#qbmkhXUHo`9s;axneg z9)b*Q?Y=f!YnG>`XuW3sY6R1HCt<&2??8EL98xB+a-BWU@=ZrVg`5yf3cT7+L^t~K zjElTcQBomiRuza5JXd;gv_!U6jpR>EVD5&KnpiFQqpL&Qxu(yNNd}=;titki>bc@n zRDX^3u^gLw3I=!mX%c2yl)3_8lwx~r#&g65pdvJ7F+!}4wD`*Z_Hq627IQhP>3EpCowK-xYR;j3?a0bS z(62sEQLE$Q*7bp(-0exbk#KyO304t{pJY?uJDRS4MIKl+?c% z@Kr9U=e__Qn=yt5HT_BpQKhcfUzKdlB=_a)`@nZp`tbO3QPmPr?jb#l$C_~{;P}JEC>MdGgC!Nm8J1Fggp2H4 zX6LEC>hyom53Yi%x&WCMg`r+jt$jzJCh~Cg5`LBpm38e<2SNKrR?=cZS{wqHyef{e zchQhyM!KF)-!=1HvcW;>!;N0@*nPg?ExzWrh(E(4y~&N)Hw(Z?_0AikI6-uMdziG~T0z7&(Gi9A8 z4GINt3D%zlL%ST{dtbPppA>-^{_eMnyT-AcMZ)x?VtOLUp_~d%tES$?$7!>%d3Y%* zD}XF{ihXUtD4lIRE#}QI+2~k)U~q|TfD&zHS2+b}K>mc(Z-12&5JbZ_MLj7F1Nrk7%up-MxuvK$N#WX@pY`xM5rE1K~C^lV*61T z=^421DF>%3&bZw&3M)1)kYobMk3$QsS+9{;8k=%b&&inBVA#jL1q2Iqj~y<^|Mj!Y zcYd<-OBQfv6YZXi%WcG%tszNZwUGfa*>hLmUPDj2Qd;;;m5d&P&l?K3xd5)F()dJ? zLV>H5qTlY{UPesbNZ|_6=$0VDbzWlFzrkXrVr1@nHGs`bLhJ1OCFh3|uV>SSe7;6o zoOB4C6Zhc+#rjwfXxwP#y&9cf^$m`p{g0h_45#oPkCs)xWYcoepb{p4a2ixmlI)AP z4eL3>9#5NJ`%~+c(*mAUrdtOJo^Cm5V=IZn+__%EYQ=)@P|)X{Inx;VUX^(7H*ToC z$fr)8PX|cev#<%%>|}*A2cV(3B!WStj`Dj>LB5J4&Kua2Igp16z2RYP=7oT$(*{`$ zP>V3*vJGa(fvD|t@krgKPqC<>)&ir2r}(0eILX^Xg$TqeYAlH9@Y$W9uO;Z1lx|Pv3a_^_zIyfrSJ$ zeq*nGV!@LRNL~4vnb>yFYXoSpb8);Z6%B;Q@trBz{;1Jms!qgUs+_^ufY#V7wI{bT z!gbIic!E4ME^PXCC_1F38+xDe#K^9=QYpwb|sj>&(ABcN(fx5!lE9i`^!= zckjP(c81K{4dQC(s%3o=PR(8v^21N2)LszYTV5E)rlHluC1Z+$ov&zFh~Wg&qYQbM zs9!#3z>Uy-r*qL($pCo+j+6BWTW1iCx&68TR<5w;fphyD4JxQ+f@L;Y$|droGeJFf zsfBjZwW9p+msJae*@3`&srh`S!;2oiCHppf*QB?c?arxr5vfy|Rig|B)lXhWdhOi~pux6CJ#ml6cX_%Fuy+-LsU1Y7r zU}cw9Gb>*QzwiylTRlqd(cA(g1|9d+wkzd1_GW=6RFyYE1)whnLNK-bOHy{`cBeGBQ9AbWEGu~7Fp1Lyy zYbn3bQo(Y_998vt-JyT#r#yz=G~y1Q5UyV#X=Qres~Ex$4SMT|(b+q`sJg=wzo>jC zPJ=_K4-Crh{u8XojMXb_xrWO}c{Bv0a)gNjqsVM|eGFK_$0&389~Wh%r+VMC(^_uzbnhDj5d*#;S6 zl-_q&Ofnp4MbnH?dFLUdhdGuaS_Mx32uUEE^NW9vKj0*vP_u=Wnc+&F#dSP&{@6!E zPlc3l9N*YG9-xN`Jp(mpS9$DU#`-IGe8s9B%kK&uO4m_>cY$?cq_Ob`<%?|1oyM4q z$AYGcG-*%Z4VK0&F>+kq7DxW~w5+D5XDl^R<*q|tv5wLVrMFx0=5BvY#c+}X;OM4K zf!as`-nD4m7VuKKv{J1J-nQJ79D>{tlO{O3KE3;!wWw-OrE>C#y4wiZy8$_J+=`Eu z1T~G%2l2#mCudV(1I;D$8;jhc{y7 zlX&B#I;>ix`E;iI@tZYXw|s?Sp?61qttL!5q2>*A1p7MACSl z?VQe3{3Ub{FTr=ItUvuYaak@YtnOL+l%2NB{Im3y@Dz+l)GE^M_&uL#tpRPv0h?iD z(XaM2{Oz~g9RB-`b%ukS{es1KOW|`gM$=FsSP3Sz75m0!S0L#sp>kXi+g|56ezdd|iIrDnw@dOB9<#QaX+o{f=1B%H$eu>^gFP;ha6) zs!uUmkB6{3#j>^k{ss`qTzZHY+afiZL|Y(oKUnsL#8&0}@m|P3)2Ilvk&!}{?N#VO zRl&NW$5My9!~|Wf-7}}D{#P+fy{c4%)oUf%h}bmZMXtq_`o9kn2-v=OUK?D)`zI_j z=U0k+dPW6nhjqJ2v*KBUOw%8ZDBet`@n$V+zenfJ$S*Nf<#emXmN(Ktb3Wj7SdCq+ zd=tdG8Ul|?Nm}ZCMwsq5r|f~24_D0i*ipD{OHjv}T5|?FBEOV3EX5=5%bF0S1;PUZ z%tOjqs90=tred9LN1)sz(&c)e{LRxpHx=`11{$^Z;J`z~NPdAwt#oqU@^Sri!^57@ zukkLhkvhx%d0KnSka)L9^3ewdj>Ss#pR;HO1G_EdcNM<=z(wms487a}uQmt6I?6Zk z@O5Jq`FobRCK9MnWr@qGKWo^$qJ}trANd)Xk*;yAP@zR^J|3A{3G*g@Iiwl|6=?v zfcP+^dO7U1tDY3z4K+))A@cZL5u%uhYOik!&%;^8Qb|Mt>0qXXnepZb9|CXgp>e=H zMnPTg?eW;U1Ve&wx~CD*nA-F*>he-AMvBYuh=in!A2kbJY$N?(wUp9k>5A1kAH`|6 z`$@n^gwxT^zk{W*96<%?9UZBs<`Q>si;WB!hHM*Kj&k*wIfdI+u}L|eM$#mgI^pgZqWb+xdy;9;%Iu6cp2;hYoz;x{x+iksGS6l}*G z7UsQCA(OFq`!TQK6De?srpGbz$!VWkqNu_l#pVDBFvQBJscanEJcZ64uvDROMDUT@ zD)`T)KdPE;oufP%=HBn%(EX%P(5g_bR1Gb4Uwj{}Nx^H|G?pwRnBCCm*H3e0M{2_~ zHyt?abUxfm%tD_;rZ-FPdAnMdl*bwXc8ed=u~y+b+_+ zs>_Le)RCJ>%zHj^&B{HU_k@URfo5rk{>bk$M>Z*3WrS6z=mLezBl6e_z>OBOZjF8; zk!i<7jEQTen4**sJlSiE2^rm;@8BArmh+3Vs>Kl9J$_>v4VD{r;BWcUJy*%Y60@*D zCg}HcF^!@=l?gH>4^LrdpMa5$W4X1Sp=-2Q`YyEBpUSEX%NkwtKS{T*R`#DOA$d_B z&#%cs3dEudj}a!L(rQF^M7l%gXLy#b+LdeYCg5kc2iyn7w@(BeX1WKDT(YSQH+jk% zx+RyxrTACSJ783t%>so8c-a?~lvK_DrrZNt) zg~114EKTMoTQjjGWc>xNb$+2w8bT5JaX#0Idi928RvJO{vjYPIJp+J+xL|bfXtLJ6 z-#7Mf4`&wUMov5J;yP;1x?nOZxkV8oTpxc7TO9eZ-E4YwJ0)e1~c#4Sx33$f=smhaHBB*6Tm^_=ZzPQ zquuHR8=;E&80^PNejT3FR&0fy!lR%eJ7&iCvS+M}T+5g$5Kz%^rOhu!4k1*j^lW{e zi+I^HnwSe2%~TQX6~4)cYMf5oy|GQqh%fv^z@>Y+82a6X@(YvXzT=W2`MHmRf8xLk zn96b_H_Z@@P5g6s-O0T&4Xs5o|EodVfKmMdJVS6~+Y7C%6()EkS5?~{E#%9?HHI+; z$C4Ef7w-;4>xb0--NYTZ%v;%$;$?krzj(J8KJU;Y(!D--7;`rPbu}nIRS=Jv|m4gBfPjK@{1xG^1w)t{BSOi38x?P)WPbSot*}9Jy|6^{I z8NO_bSBTRKD|j=Vsz3=$6Z>e~d`sNcXusyVDhRr2eOJZ$XqUT*3hl)&AQ?_s}>$-U1!{b_tcJ{M-7|Lb*y{Xh*(%d zf*|)8_7?F3b|rh!$Fylh7V3n&11$91?5bCC%Xk+Qe`4KxG(P!dAta^T85T`ZRK@Wu zH+l8DN70twvK{T)2urNIbOs&3-CtElWyC8jea$Kp!)@@8 zbCg!osWCzR0H!cy!=Xy()tn%u2p9tBr zuT-d81a9eWj+F)dtzh~@O{BYyKp&hgg<}qa(d`zd>dOMPOn?4sM^Pxh4(VkFGpp-K z0p=g6O|ztN+9`0hzp5<-8k{~ceLU}|xhB(iqy^d&3%n&mmQC6rDn1#Mgdp z|2Mh8u)Th~F;`904fAjIDdH;L%WXK-3wyL=*1A5mye2l0=S})d4k5=v09+Sn$A&<1e6iE#1ByV~u(*t)%Ocqq*|e5RJV{EN>A4eava? zgbqH6QMwOUrZHUC+wIYuwWE~G!4-s(QDzjgF$;}p>I-yP8_nEdGfT=J#b`N;IJoS{ z+LOs6>l^$nWO+HVb*7;q(oCv-Y?PR*GAx+!=@;)s*(mJ_YSP-E32~EySeIS_9qS%D zl)JvN92z?_7D#7tnj#!Ftuezs@R;H)%P9x5d`x=`Gm#q0ib!tS5zt6HzzjuI6M2_A zRp{I+=_HIT18sTFq*zB;pWC;T`>r?vdx8L9v()GSQ%bBDV3*Z!9wr_M|7|x#*zwZuB7ucnG7h23o;m~d(Qig8rs9O!Q-la~EYPPvh z{&LRRsIbxYiLX&qU(A4$GeN8fac!08v zd1}?9xbkT&bs_JGb@>7NDecX{E$c%eob%387Meek>xG8g%cbY@#x;&br9iKp*5oaR z|HKJNsm&bCEVLOF-gme`!QXN*t8|VdQW8JYXWilcI2MW}k$xMJJ2`3Sbgu8qkagmG zmy9{`7tm{qkK7-u@Oz%FPI}yUKq(3#o=j0zr3F#Bz}hBTG6RKQJf>R;k{))yv$rQO zB>0-W$XP2))cA~r9I7#8U#DqPe|fOO&RFlj@^g^~0)Ae_M(hHKsx-P9P~0F=yadO` zD2po)6<+}NyJyi>7QT;*<>aeo#)baDSfI4DlKYdaFvdt%)Q$pTi`y87zOqLl;CWm) zrrbmOy-NLFdTRT;(RX~{DeH00wfBro*XqI_1on;)h@+?)`Gw$-OJf`NNVQ9@NRC6s!zRR{x*LpbrK zxu*ihMcBO5O`<0>kBqTgIR&tbwBOCzqn3rkhdunlu*6gy7jBM8L=`H({61U)S|Nga ziA##p2E?Pp)^y%KDXZ}u*Kzv@-vxHr&uzD@aN2UddrVu@o$~n7XFo8s9w39W-T-sv zA+We&MQ)iMWbun?Y$%z=6Q+0`f;FiX<*Q?||2t_Wn#jf$@?YARYlZ3Le-di9#p+t? z{c0E31KF3o339;&3aHma8}d- z(&EU%?j9FBK55_(i7Pj8FzxG@P$FG2XRqGqW;S*P`W7FPG<8hr?I_@LHA z``K+}Syh(5-ZH0<51gUO(jV?0m)=;Q|2UZ%jTn$7c^f*soZ<%)7{Pq$O>K`Wegy7t(cN=6^e(*FAd46O(dZ^O2a?=-- z-*{~;9$19diexJDoGk%@tnb*<+w40+xqeZ?BuUkU&BpK>qvCGhyKkeUX%=Uhy$?ns zzV=B=K^}$~GABf|^mL|j!(J->;|Q7)h6*mIR7mlD2Kk>0?ZHV)n6&G;y4XFj4|Hs9 zo|+3?wv}OpS>xhF4XQCGGAaZnnMeawbA%q!kN739S(i?bT3kdi|Wc2g-qtkzb zon|0!8}6FW4GbYVxkkgT)UBAR*JMB|<9lBNOZe8W_r#aZhAp`79q!=fb_KL+&Dlz} z;Z;J3*5oe!s4MHnieT3;mYXD1Z|mSx|TBtb-h2FmE;O>+kH=8iX2xP8hU}v;t3Wf&Ofk<*k>MIFTOntIYdK z{znzU>vuvfS8 z60GOlsl2cOeM03}9^QVBr2=2DW1~~fM9=14iknhgoZFVQ*&|;4@OhK^rDCoalZb;} z*e<~h(yX5b6*KM2ToI^o`f(`eFMwI$p$M(7*Q!gOzp|~3E4)rOM#=|BL6{@_O^sm0 zZCN;1z~l#HT{As=P+^8cDpve86IPHv7X32@20Fp9@B;`spko#v(P?>yO<2GG4i|P)WX~E(6Q$)H>(k= z+$X=XJ{%>HOU!rj>Hs{sH+t zWxaSI)BF5>Ya7>!~~6bpLI#5!>@I4Fi813`MAGKrHKF z?@%or;WZ#Yk!-tGX=9z19!D~!?INb{@|gL!DT{Ei(TqBx%-pZGZP8-Po|vLo<7#fD^=8preieOnU*b=Mr))lrcj*#>=`F$ z-k^_1Ujrx9L)yne>Y-kv39=Lg&PH1H=D3k@*;B27jB^{VQ(&~A2|oR7BjTx94%xgu zx@sNcf^0{_DwN#T(qbt;oU~pn?aB^&7MfLBCWKxj4~)*OJWCd>2%EK0Zci#mb9h)j z?OI=IZncg^2B^|eyQ#l-d~fxK5ps@TexpW*Su9~gtl&5$dKs0}?A$xnmbBiUclie< zCKdpE?ln@jnTL&RD=VTgT z&-yXdRhx9k8uUcHXgdBx7$?$&JYo&$i#Ltnj~Ku7LOqw^NBbZx%+QY4rgh-&(t#!D z36jU*9#)2ho|uwN9LdN$C(6AR7RytgEdx=+?xQTuYkTTlCcA~_KH4W*3<4ah`bZ+V zVC6nBh#eLm#jh>{H1C<~L__&r-Gqg#iO5sk$36b~L@fS?{5JeMdAy)dHX4d4NYTWi6uZp^C!8%pBg_=Bg@XU(#0EOumz7U)m_Ik)OlN!XXh z=%TlZ^Et=k)EErA4{Qe_zkg^)EJKeZUK>tZPG8+cdzOC~f|ae1J%E`!)>viEaNxPb9GCNdfmHFa*x~|FXyCIaYxYU+nXefpP$O7@rB)C<Zs=kPfk}>W_y;3KPvsvpq(?*(p=6l`} z9!Pi^c-{i?1nqM__v+8qd^8?%D|TX9-D5AsrukvQmOS@XMg-Sivb~NET&85a{Cq@2=MYk zi&Rh%HmVlmLW&D;`U~jLf&U7vxF)@*hmnK7fb4l;I9=OHzvgCWF2$Bme`d=TKLD{; zFB!_3^;DJ5$3NG}SZ~Y8&Csvn@^TL1*9}jJhJTy0L>-EcUO^SEz4VKH5DfKVYx2*( zj}`3u5)NcvHWQbEcW&$c0$Qn;!%w#dUp5o0qyGIpBm|dL`o%p6h8Afp*H;poP(>)) zd&&d9f%TW`Y?=#aO+NjL1lGEg<1yT0+`K34pjL*gty30p2)_6EUqI&M?Q4oz8B=e3 Nj^x=5NcZ36{|7p?x4HlT diff --git a/test/samples/partially_blank0.jpg b/test/samples/partially_blank0.jpg deleted file mode 100644 index 54c5b4891b10a4a6a2c77dffc85b9099143ab9a2..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 2696 zcmbW!dpOkj9tZH>+{_r)VW!L~mq82_<9?fAa-A^lBDT`FM1wJMiA}QA%0_DnWv#nH zByz3fnxQnz5E(XQFiD&kDr#AsbDllVbN<=R`Fx-EU*FI3c|Nb_v-M)@6(D=io?;Jx zKp^1Q_5-#i02=@aha=!(NCW~QfkaA3E67SqNlEX<>_91~DQl?XlyRzibWC*j;0^Jr zI6X4K(9D8FB5CZmrPx?Hnh;4AUx$E@5)#r<(z|43cUfrRv@HJT+UfvM2p|E-fq-xT z7zKi$KwCY4G5~;J+uMF!_}>KrL!dA*I6@pLvE9%p3xGio2p9^1!JyFX?lar}02Bq2 zQzekao%rMV3m1P%yOhqldM!IA_xg>zlG3vB zo3|<|tLpDHG&VK2wBGOP?s?qH?(2WT8y7PTO4`dbBb&9JQ zc)Z6PXL6A{)D2&2EPti_Q}%7J)c;HN7wkVSJ|GDJZ66PU0<3_QkIhcM6;s(j5I`7P ztFqgT&0Z-_Fk3vlg=0CBsH5WB2piUn5!@@_1?oZ9=@KeK4Y3$-MbzhZtSY+1j7e#aFu z+iSkM*^qM5TnA6}hnvmw^2F(^q*G-ocWmO{;4ybw){4Xh(b(87<5?AXjugs&kP-8p zeCu7pgb_Evzw1h6ZtJ7$n!T!^yolDRFTO{A0K48aTfI}i1$2!15SF-0k-RlhLeG;p zN~eVl45CSDt9wfhJz4xhbTvZVC*#phKXJ}98RiJ3T^81kC`X1v>95`&stJH_DDEBl zDggjoT{2GT#>R%Q#t$M6sGWs8q7sHzDs5S~+)H;K>S7_q3;i1*#W8IhJv3mdnJ*by z$VvOT;a8eu=M`Qa+J;&Y#7G30conGRck{}-X5N#M0}sEwIsRx8n)8iW~NB1rKSK%WmUE ztXN6?)*0o4{EYyFzKI;n@}jq9X5t~T^u_va#iln3SC#)k@>bg=dMhKsSmxw~rJt?u z8k1`P@b=?!0^pwf&?!z**051wqcyWTTj}>_TAj3BSXfh*OfIgRPthg~6c0oU?t3sK z^ESCU*M-F&a5b}&Ot79ZHp6~lFDxD!NLk&d=$6{unHTg+Z^juycJI4D3iDCm5g`)z zFc_&FyS%3q#%<9*o%Sp@O&CcObH()gmXG+vbv(UK{FTPEL9yMCmp~OYcPze`(IA{XQiasF#HgCG1q~tJk@k6rN>S5P7fnsZ&hQT3mdx}Ws3!&B)s}F} zs~-j%4}sj6dQ=2E+`BOJ_m}Ao*1sog0pFbr?w|L$qpETAWqt3QH}rLil}Q_#hg{Jo zUGoNor6G1|YF1$OM$)>`l2-gJU~M#syb!bl@Z>ei>X2&GW9_^A^L2fm zeS^E(WkkGczQ1jj3&DU8Oaw2&FAIsLY-QJOba>=W38XH-a21Z#z`a{Fby8BD~2tIP4=0~fXOW#OFGj$Hz)!-YXz18+(~?HDST9{zF8%@*sWMBZ&qYo}(z zHw>#I=FaZ(Tq-Nn#VT;@qo?LKj!lMp1hj@`z@2GdM4xz%D^Js_BTC|+`E{20YnGxd zVC>er7ru*zJ$Azw@8{PI^pO5AxJ}=}$J|Y@6ty1q2nGMXOnAaGYhlp&kmAm?rD;O8 zqX;$d11)McQ#*Qkq9bO;W<#*f`@l3W_SPEDjb&*(xE>I-QsQh^m-@QT^0O$@;&W`3 zX=af79K3Im92K*;bhfK<@}xn)0Pmsu#mG{uaxL$6`D&#iP9RDCh`FU^FBj4DbeL@< zc#LNJgkL%D$#Jcvi#ClQd$|KyE@~M+UEnx=z{rjSi+`Ni?jWyY+0+j$91(pwV;4TrzoVS4_Tbl`Iu+mcQx(@a3`e$RL3?3%f6K_8 z*73Pr*Pvj^5@mjfNfC^e`sX@G7lFm#*v0h7eMP$c2oHr`Ldz@6M7}b$UC1wCSulI< ztSOxrxe?#799PVXL)BTOCxk=NaNgC$Nb+P=PyS4LKt1M?aVzbDvT(u9zS%bRl0xFH zEg%E^uGcz|=TUHz)u7;RhX(#Gw<^oZiD6nmN%}V=x45hboUZk^fe~Fa@Nd6uDkw~= MBn9~mvDzB{6W_9^?f?J) diff --git a/test/samples/partially_blank1.jpg b/test/samples/partially_blank1.jpg deleted file mode 100644 index 2ab27b43c9308cfa50915cd62b847bbf6aef32ae..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 2868 zcmbV~cTm$?7Jz?gBy@s+AYgz52=!4E5_*vmd^DwrEfBh*36Yw|A}AKb&;-#9J_Io| zDbi7pnt=E~Is*ETPy&d6pn@V<+}(N3>_6`Ax%17Ox%bSO^WA%SW4tLq%)ypm3xGf% zfVjH=-UMI`2*BY8IG+Flfe;iB5EPLX6A=~`k(ZQ0N~2NA7$uaFqKby$FDhyW)D)F; zEOigyjm^x=l(i2LtWE3UI%~z01#|<+V2DZJ3wFv6vhWf@Cyj;7SxCVU=RcXhC*O4D0H_vcJ~~BB4Of+ zx|V!k^WVTzHe9pzkt+UX_DympD^#cbD3~_iP>q9oS zcJ>5^qi*gVo?geiNq+tTfkD9`)C=Jekx|hxmo6t>xq9t-QhLU%%&gnlckbrpKPY&} zEG#O1Tvc6DTUX!E*w)_B$zpePKOYzz8Xg%Pdo})cnlm#yH_u&IT>G%T@$u8=&8;ur zy+8ouUs`{e{f8HF*9#1VLZI;PULbJfE)XOXrl`v&Zs`j5q3lu8i$_RUrQNS=lcv19C)j|_Fe6tX8)a7!vAIVm)H-laX<(H+I>6-5-=+c=q6dloJ@TJg>)HaP9%)&LfncuJC>I>D5Wdl*~1lOxeb zZN^H?9dk`b&V^5X-hYv9^Z{s9s_=Z3Y8R?pEqHF6o)N0`q@)paIiN=4-s|n%R zmfc_I8cvJzhiDqcR8okFkVh~n{wP^JdI~gYpu3G*x!Y1rCmdGN!GK@4LYmD@h9?&8 zUP#fglLbR`WrUNbs4s;!;14G^N{1d*Tz|E3<4*Z|&R}SyK3kpvEOU$rI4&8~OE&E) z9=}lEl(iUY(2;_@dQ9tf&v?C@HV(fNTdY=a>tq96I^8bWF1rttHbfmQSKXQ}Z7Dx5 zH8&=p;9=Xs0&$YXDG5RI=Uskjk1J3v&!95BI#q80cNDLubp64gM-u_|DMFt^QNal> zgVJBe!>hA0^cA(vN~aUll1afV2@ZrFlA6pKIM}8%t?7{n)Mo5w{mfKEpKbw%GpVg*VRM+T z)+tpsQgWB1clIoFtD>$yI%zpDy=wXx7VHUK2Clq!f}6shLD%p0rs|XMzVlbm8EhU< zOg|G3?i4%XEvZn8bG5P&xY_AKDtjmQO>OpR{bL$3t@GeRTesKiq%!9%uI`p=Ju;dC zCQEF$pR?Fb$^FbU>puO>EeJq`TRceBCY&ICfbsK__oCDJV&)$S3nffrhl*}St#D&D z9_9+POkLP0@gzqFH4u-RHtBX3`ntTJCW9u*->x{GHM_i~Ze~FT+N*L~Q5+lFM0a}s zQ_}rq8x2I0d?jo|A%<8I&aRV-rFeUkzO=YMefk!%A$vB)k0`pnNnW~9sCY}$LIRnh zQ@q-dJf+h|P3g@Ieh_d?duq`WW#C1l(@4w#CPnC8aGCNR#hVW_tqGUXb>ONd`{Ca< z2rHgGF16jEc)^-_D+VzvcAb&3DSFD$DuLC4(~Qi-YwE>*FbXW3|KeLbiMi+7DEv&j zKY=nyxktvM%DuJ7n5_494emmV?hy%;jKTe{pMY!$#(DLwL=pE%w`j*@7J*ae^Lx8Y335ToBduMlUX)y!{^B_3 z`iVe!qpyK?3sf@4q{j=9Z*-EOwzElPWc`fM$&cO3#|pw0^Kn=mb~2W;{Z0M#bIrQs z2Q%m}M6ccX-S0Qtc{GQVq${&EG$VzEqAYvWM{?b>2+%}JC_^mn%SVK4TntSvd@e^# z^GWPU<)LoJy$fk$M%IpcVMNXSz}N9H7--RYgCpz5}1 zY>tu#eOPDfErBcA992XNaQsll3UgX%mlUt`Xfe<3Ra@8g(nUFYhn!pYl-qA>|EbuT zYe?n8>{PoYwda3(-(WJA1ig^{%9@HA7yrmiEhIhxTIH#uo3X~68ux~TDE9~}HhLBg zZ-{Vg*^^;$V3wO-mJ)%lO^rKJ(Z4)%#3v7#-pLD_O?(R3lK%fo*m^nH5Jc<764 ztZuI}W+!*}YO2AI8>q+U+B-aFqm*D`6RjOt>KCX$VoGzkxI$K)-pYiKMdPw5Wz?*B zjQN}$aN!i8tJPB>R8yKLM-1=Xy(a!d-v}W?^+Mr3_{At5fS;>~tJOA$uQd~~WN&RS zRqBki2PK@0`Je+cKBR)AX`Bz12Q=YiW&BzIk@+?An;1_usd?F34vcckJ|5uR@Nh(# zxc9jQT!CsaQUEzc4)3$ZS2sq3XKivhoUoQfy@*J19ifO#xaj)3l{!q66q;^ zh-Ke{%4tl#M_`|r8AbB|e$5`a!;(2q15AEv5r1JpGXr{h1K|2tFCrI}B+>mYw~YI5l5k^D2ai6BT)3GBvN*QPO{M+g{+R11!_FehxS^vymAEs;zf^2^sri5AGZG35rHAkDV2!qf^vyIC6mwHtT z1qWC2s-{L%E)tatzYe+8cX_BC?&vkzX5Dd^tTfxmthBU|Z~^@U@I9wsbpj9IOgn$> zTQB4Sc}dux0sc|H_#@?7NVwVnKZ9Vt{TpFtYbRX(M}`0=VRL^5zbX$%xo-Zad2fDR Pk{C?F)#7KMc(48e)iClB diff --git a/test/samples/smooth0.jpg b/test/samples/smooth0.jpg deleted file mode 100644 index 7b9fbb0aad1659c04df77d280865d9db22ce8d4a..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 7195 zcmZ8@2{e>%^#3~;%gDaPFp(up$iDB{Mz*o9WoH;WS(1t&G_nhs$YAVC2vM>WlAY{j z-(@c%zxnn*|KBWV?6(Cy7sOCsi|8H(@;+gyZGeKf+Ge8}< z16UIy#()tK{m1A5nnXQrqV65yqxp|90t|_q5b@%70a|qzUnf_&o1?Ay^!FYItgan0z{XAKhf|Pl*O~kur$}fpvlP^R97a0vQUpjoNqwzZ$S1|h zFU`h4EG8iZgTWLe6#p9j*M)(MN1RdJ#L-{kalv&aaLUJF4d%VtedH5K@&%`Wx)EMe zXV%MU;0h@*nSqo6PzA1NL|A)uo7!$pAfLKlUy%A!iVurtEn%lb zYO-d{f-zwdp*-Fl8k18qEvDBPUyhbEF}2atD}GnDB*M_w=9!NpspJtD*L$&~N6Cx5 z11@h*)#BM0^Dh&M{gJ}lY}v3NO%lV8LcJ@U_398FXJM!oK{6ODs&SMCMq$zIot+6E#CZpT{QMt$=(0d%Cv;c~nH0R6+fy$A zr6;S#Q#sZ>FjPR-!@BmR%b#r!ZVepquJPd{U@-b9Cy#hz>%;Vess_TLLO4dHod%52 z8jkI_npB1g`Q^NA_SgCnh!{}uMYqaq&mbyoZOobUlZs*jSQOD)GvP0^9A;+J^=Jfz zPZn$(C;h zTRJAp4{2b2uwmIak)g#Z(PDeGI8n=R^6-6w$O?eJ#gm_qckY%ljacE8SAQn!{npr4PS>oJ+JY2;u{C|H5v+P2m%JY}j;%EL zm`KGkv1VilFd~|nDm~wCdDoX%WC#he@myasY=`r3nLi8XJ#Yf6I8!(EKrMad${MUZ z<-s2W$Z@fxJ#egA66F*-C25oSApboekHFP|Nx4Xj=kswLi|(5AJQ=1{6rGpqEu>lTY=APdsyHYOCWkqK*#d+Opbxmw1{vk?)k( zr>nr6NAo$D@@OD(+is;wV{BQTm6qF2ZyBFZ%Vle_Z8EYEl6q^tCFm`+NuEC*qY%Tw zql~BBr0F<5dRqs27A=T^$MDk@|0ufKa!&ZfNl2a2AD+mvvFyt8peU=sF1colTmp-F z0-Z;MO`XEJLO>dn3Zv_;lZv^`C;Zr8H0$br_?ZMXzRjBk64p<}7A3(|? zRVV81A>2sP9b$`OxV|5Jl$m9jg!@+UFzY6!d1K4!%nHuZ7S+pX3PwUInm@M7xs4?f6fYcfy zOTo;AMdnaHtax&S@cQAQgRk^Tn91$MLc6|zBzWcXPOcSf@3Qep!XK}qExW@%tO~ik zo#`pQ;$VLJb=hl?jIc6aX7#4^F%={vnvIqZRvE!Ak8kE$#5c6sSwG}s_+^?2+fX4O zY)nq&$>{BlPN#^qN}Q;Evx{k248G_LrivNv#F#9Tno@l?Lb(Zeph5j`6=LtDA8kEh8BYYQ*dsMW9w}^GqJ0YR%B|GI>?C;tB%(2nvlM1wIq`vOZu%+<&c}2g2*7=oV_-gF{ z>kQex?vQP>Ub)C=D6BO(WdW0;n>xtTtUbUxRz4c_rgqo)z)u0E8pFtYhqvC|fN-Yu znP8@@J^d#1h5S|FLw+^>q4Ym}XfFQMa$o3O>wZhirkA^tmJ z)Q@}L+7FC(H?FA-$n8I>=y@Lc>NA}@=Ha}|pKcoUUfrjgZkqg}l8dw8c1|Vp(u5AT z8o4X@&&dzIu}{XHJ_=3SDT#9UQAaB&vT^50SLQh$v!`5d$_<{pXSA5bz{mmDp!kv4 z;#_sLkAc-mQZz-6=&XJ#1VcKpsPf26(S4GH~rYf7tQwP==n_qQ% zvQSXl(RL-S7V|1EH=b3|wrU717L&~EyQn--@nmQdTi_ALI<%;6@O*S?`;EtgN_~xE z>R|2pJk(8`N|a&my^Np!gG`36PasAN_BWW4%LXNsELM5ic(+^00Xrq9Gsd15ty;e?>NST4 z6jr%w_7rVQ5VC>l6M69)nT1YvpL_SS8iG9qx=u>!#>+{$V5Fc}S#QoUpU8&W38qPq z=}~(-adm5zr^qi>gzI;#zP-;5KBaTbGH8E47qMC8Yw^Sw{s#?>YxlS}br;Z<| z=EU+#&+u_GsDB99mi&EGdt2XS?95WV9mdIqJagl?1XLGJuU9M8?osF{hCHy?DY7HD z2VA@DAokU=KWsyd^ThhzMSZz~;lit_*(_Pjx9>vizc1ReBvqTTpUQd0)Gc{Yx!@pr zK#@a>Amd79#wh~akwHG*1-9*svUfYS)KS~iraz>nKN!9Q_KQH5fWa4kqdCn;kul_t zuMrHn*Ths58bySEsQswg3u7=+(dk;Wx71$3O+?W&+6jL-Ym}2V1Its`RJ+Sm2uoEe$sJ6hW7E7h{f4VmFe|K_OC{< z!w`sxu8=C>p%Wen9I{K(cE|mM6em?MKGskYyXJ30>R5v2tS=>HEs2fTh^c#Q5Ed_J zpPtsm;BSadkJ$kLc@XMlV+_^|AaK3HCW)RG=jtw+)u?iml>;w<8>!h>>M4zNXXT(? z$Q?Ga$NudToJoxv9$lDa4iiod(KnX>%@)l4qzaV((7L1uo{>ub3RO;%Nbc%nbWZ^j&yR^N&nto7m$k@>Ls8Hv3)H!6Q4-Li;z9ggB3yE6%e{9zukW*LixY zXrbC;QLSZ*Ru4YuFs|paAWVTrn>wJ4?KV!z(}QpRgA z`Xj_5dPvT6_URI}saSzQOSCJGMi<9DHBRsi{{H8iH+DXTN8B~2kFgMt<+RzUSDnj- zFpDpcChwFoPV0n~B%mfTM=a_X(-R3ez!-(NPad62y6Z4qKA7sPV_FJAkO6cw25J?% z$^tX#ReL#w8GX0Y=$zsF5s#`p%mu4ba#noDeA?Wt~p`)Gs8_(#gmg4jp*$x*No5K4M3Y31n;MMsf+L^fj4G!T&YHz zs$Pcp)tFS8k%Df-;l~IbcjF*$YVKl`xFH|I1V3Wg!IU1;?N%24{#M@0-cPh<;1J`L zsHYa~WmA++c3O?f`-|Rx7fvS@()7>mMfcvN=!Iugzw%zK37uMc{$gtSmhsxs4bp5c z9uQBzwt-5ZNS-mW`q;|yciMJ?a(!>R-t+9v)YdyIWXT5SMYx+y5${<{{kqv($(~(_ z(-6?Me1$z^CSN1Rl;fbW>8f-$Bw=r_@;hkeHwZ{vjL0#k@R%8KQv7=-1$*8D5J>U8sXEF9)qqo%D6~9e zRYQA;wF~s2Z6+V$hr608S6)~+Uqxus4)MJy|}zyI=JUe>e7;&;Z`$ zcQ7o@XW0Va7`NWHOXIA^Z1Y72w$G%L=UaV?!-A?rcsj+OIy}*xfpbB-Z5E0qM@cYu zKQ5b=A+toz%&TWmub1egUdQE{qPC42pd8qVDd(ar4!E>u9)C*zgEErB7EZ$bXgq%e6hI3u0Vd@{LL}w8vR(H;Y1<1C z)oWRC2h9^H!k#S}I1P0Q)=kYh2HNSp>Q$XA>#I zn{3|9G13(r*!~)3BBZW^K@+TmZs><_6e|t2C~!WwGxJ*%eVkai3_2F+yq&)HD!NHz zJ|p+KgQUl}-Vg>lKc6^m_x|Q5Kc)2FoGRkI!sl2uzc)^*$Fw-hel5#*lP496VLQ;L z5N3_8i2y%@y}D-aUdzY`GCzV+svgTi==miwZQn9)!rfg$1#RWImkjSjy^&x_$(s&F zV1}xOjlHF$H=R;aZz;!C`VoW`Y{m+h8xs;yw`k-@jb;$9@w_<+gfztPg64ZEhMq&% zbgXx5iPX$4Np|~A5N`ziIuDr;H$rW?&01H0@+2T%Q4e&gg-@!^q9Cj zQ!-vT=?+{u3-ePtf7@~kGMX*j%E_ZY-YuavrJ9<$@K>*y+Is#nS^EKNJj zxC34hc7HLy^RA)DQY#2TFi;kpc$uD)O_OGUC==kXHJ3x_U`>cViDaA3cFOehMc3I&`7JU`h`-Ii7 z3dPzviPukx<6EAD;{TdEQ;d)BpgmXYYX|FcQ)hL*%P`rj&J~1C-Oe0&Aqp+(B>vRH zKXpJhQlZa9@OA4VP3qGTe+Z6xAvdRPxmJjH3wj3&HH_pl%Yp`NYLY5Ddy=bqSzaE!-x3K!E7BLq@dS+hm2lb5cG4iu%YJlP&op+j|yrOdi=P%*! zkr{kN8XLy7T=_#Xh7yZk{L?<(=!ifDGuyPjmxmp$f5036GB$`8naE;ybQR)p2@fiq z^72}@32O4`1o!{F-Q&_o$0*s4?T9uWv)QIB3IF`Qey>t)%x+g`u|>bdG6IT)Wv#kuK7FL(4Bq0i~yjJGJWkcbBxdtYfuZ zGc&lB>+a{vu>|CD$xa5c_!H)&hnw~e3qS|2m|{ql5-u9bBSJYzqrL9*N`FojS*!To zQYpzwn&!-LYb^(S2^>BwIaK#V&DjffiQ!IlOTKEzIp*lNJ*Y3T(igRJ; zQy=`GX(dv%9yD)~nx{67ApK_ks&8qM&Hrel2j!vsQE0g0N!8Z4PGQq{dZqf>ZP#eM zeZ5H%i?vhE3QuvHg;U(-bLWSGr2~Wn3+S_vmq_em1sYWGUB-i2kFP4l)*8#?O2s?x zy96_Yc;lfSXkj5^?#U$b3TBZGhSiMOS%;J6wL5iFDRQhFzEylxBHt?P=5MdB&|Gf- zy?zw&XH2-pno=>9ipspwe+Jdq^=Pv0W#dcok{P6Chkg_s%2`{}>&Gp>x1(g18c{|i z&e&BliFg}ED@1bMVNk6-Hj44WM6ihuD`Z@MG1|Zul!T&Ygy4*@78=YC8TPN)qudql zxNrnG@BwwQrLWcILvvx;%}cbb6Li#E9$Qo|{l%5i<(G{266a@2^(I#p`yCBzSv?Lm zj3SNozbbWN-X<4Mq&a0!(`#wHvyJX(Nv|+eCENqIK8n`^C`^BP7JNVl&JG&6h%-_f zl>|^Ja&l7cN?Eyk?a3(y^w-M2c&0IEtZ~fiFkHk3B&)3Poys(n;W z)87#1$3k;%FO7wjdi2`jDvT>Y;ZO$Ai4M z-<1n;`pHART#lIjb1K~2O^)}0F}w~Ql$FR5lq`70x8zZ(pU1 SkBIXbC4S+;<{4g>Q~v`W;^g)K diff --git a/test/samples/smooth1.jpg b/test/samples/smooth1.jpg deleted file mode 100644 index ff2d09b9c8f195a289e54d549a7c64409ff95e56..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 23269 zcmbTdbySpJ7%n0)uoTNJ@+-T_as03MkzrIfQ`Z&<&$>BhoDj4Bg$`-3&9s z{eI`%bMIRBuY1nNV$I^4Zw>q1d%w?qp67k%Zu)K+^iWw|NgjlQg9G{q{DAJ}KyN|B zgoH$d1jIx{L?pz-BoAmGJ|H7|Ku<+YLCXwgWnls{J!j(<8+%qsFbwCe;;c`whjbDgOdJyb+t=M65Cstq<2?{A4io4e1r9C+ z&Rqux3+{(>E|QGynX>!qUpx#nsK-Ny#axY1uis zdHDr}Ma93Xs%vWN>KhvW{_E)MLU#A`j*g8_OioSD%&x4it#52@ZSU-!oSvOuTwYz@ zp#F;s2Z-~3UH>z%|4&>LKwS6m@Nn@6|BDOfo(J%YOM!>~T!7$_j0WK+r^if!0YsE< zVt-b)-)DZQc}!*MJVH#(BDBJK@?U8GBeMU0fd&2_MfU#$_W#B;3nInE0TvIJ0t5ja zFrWB*Fto2RLt2fG-GNs4>cC#Tuxpa%cc7V)47FEmkv>5`4i1!Ex5lUk;t8LNAKs4oWa{-{ELdJ;V)-QQK6JgR2&XOPr?wmYVeV;+w`n z@~2k{x%Zi2jmsFK!mXx|xo2~mQuv-5wOO&Xx8HwqZ$GAT9eQpYamrqxJo^BZ+QVYE zxSMZVs&)suw=bPl6K@HFxinNIOJaqIT%eV=W48@hx1Xs$$Oq)DQnA{pKkh@mjWnUL zLj7ZH5opx#z0FLtcK^t0V!xdNaHDk2jTR($=MHq*?+5OU0PUaOfn4uEhE}n-)K)qo zX5zcA-1DT`79iad5_6PICT*2n1PV?8?YYC9a2+K+S&iockKr#Rx1WNUrQ<#}oCVCg8?PeH5J3{U^gUF51R)O4_4u8_j)s8YS;sLf zne4n9!Zw{iP)~}oZ*z7biDL20)<~>W8^s;yM_Oy97Ix+i#H!v*-5ACoX~jXg#c zV1rcghYn#!@J*|s4o%n;A=Y*1=1bc#`MT8*w%i1@dIv&LF|vX87Fvd|ft-)A(sP*Y zwnX8!wRH>>8zc)mIfX4o+-MBrBd}6S*alz$e-b<4x<=iB)UvT};v6p6u?;H!-88we zW5>8h+z`JOqS!*-f!^oefrf**?m);~#Kkr&Hh&GHcN-7e);_v%O~$d7XG zK)#UFpX5jMu$^t#He}^3VhM=YSPL~AdIi4&nY_IN$xu>0g!O?@`%B%U@-P=L#vQgf z{>yh7vR4ITR;yhVgDl10)ZBYB>pN$X8+swM2favYyBxb2)Rc%7@?+AP^-E3dFNJ|EC!IfUY?$USA9g3kA!{Sp#8g65 ztiHBL0An$*lBE#k2JNjokiNCm;rsA2r{^f*b2zT?g5k9%cJP+f^ZVdD%DqAqb`jD7 zZs&O5j{uSy9%L*azR@W4(9+N;3gYTTzA7~K1K1$M-O`aZYLJP7VXYFd#bb5PCy-;f zA&j)j&kW5;9$Iz>3b6{soMEXd*AGL{?s$$n?Z)h&+mo=+Uolt?&`1DcR zH?8y|Jul7Q}fHEFGrfxp^7dSqoI%l4sxbsWi) zZb%}()nlCygbIBltOR`r%9OZ<-|TbyGYFn2eSK)DvAKnLeVW_fB7G!zLC-b*f%&AY z?l@DKG=2HS*2r9H+NpkQw` zJ5+3C?HbaFDFN``x=`8EjzRxBWxp6YFO!lV;V)yL_I%uGW?E3VxA$K75PtbZq7~+M z2Z~Zl|B}(ebe8XSL1zxdsD-gyT~bkjrZ4GrIcgv(#5 ze6!NCa*Z79nR9yQGQC#jnmn8Fu#>)HpCZGaSe!Sr0OXO|EAQ5G&!m|U5~`*9oVgFY zRbx8HGES=|;b{~1h>_qmO9o=F#*X=gJkz2H{fW9nJd3L#u!-csN8}jL#Q5z9MhgH7 zVFf5;dkH|mn2BlFqyiQN+a^e7eE{Bt;bC={FYiF*uv>wAndm1eq(pZh<##gvuTXTb zCHa_6=*7|X9cY^=gZyX>)rpQ0fJ{Pw(Qh*$;7jb2{2Qu-0@45+HSwPnkuSz$n~>;W z*|mpY)CO<^vXKMex8)ruCKnIZfw<^`VTcm|?5hIqHo{&iB0M2`-~Pi|@wV}-wv$6d z_wciV@@DG2hxXMeHX0KVYtyn3yBmpI8Ypf%u8lu7+bvG32K|Y+Qm}!hjVm zv$9z_IWS!;7DJbCxrCXVVBJbqA7g_HU=0}Rh8-W<*_)wiNkc9!a1H|lJKxy>Dj z>W#D4OfvosH-6mb9CP#W9ufT_~R+5l7B==UDtwivqx&0oJn8hbiKjDx2JoUlYPE3z`UK- zkxb%_imyI7j(Zl$7nFt5<&7Au@)_FCbc~|S&y=eus=F;ZTx+-kC4Hbxk_DL1cM#Yl z<7xYtt^?(azSWdfiB+=W-#!OVTYVWuad9W)CZ|HE+iNx%-vFone?zv4o{$$vDX58I ztdO0(gqC$$PARd-jj6{RT-6lr+Y<6qhL?-Kqh^Ixtu3TsrFp@_G`tvMOgzGNy1muCZ+D2s-jGb=+T+J*t50Sq+g z1p5VkV+vaUcTc>0K7`F{BgYUol)e6(X_EuH;6DeW9+sPFuqfVvzUOA;Y+HDWe~h>a z>-@Z=boqs=O(H00n_F4DISlvWqf2=2_|jnP#!RqF9L{FZyz;;2SUuQ@9Ep$&89Ivhd28M=tr0e$cXC^*^WqbCf@IAmf=+o@M9CR-8b8GmC++)$}`a6zz znudO3Sho7-jj1DdDWyTKg~Z%aOH*G_zpT?p zw2Q$|@l48+b5C`lCJsHJmoN$S=1{838H^IvV?8etvMG4m>(d_aAqPaN!+$^~S&fiv zYi>X2!dC)^**#C0t6RVgIrOXH+mP>eb^Wk0rtP+?CL$jZVOR^?A952r3Qa}?UUny!8nkZ7qH_z27zJ3hEXl)*Czo;NTRbDv}zVMf#^+ZbSsKK zj3!el%l}i@b;UdAA{p6SG_;{xV=O;oce#IhK23m4g3E-=`W^&=qtP zhy{6Nae_5%px4}l2&#>)rR^S;F}DUUd&JT_>9^ND2Jmt7(A8Vt$odTaK5bCFf3zp# zCX2sms7y|hljV~EYO=jDB2kubX|d2cDSIMR_EWotzssBW$KfyQzS%W}j-Q0o51cW7?N<9z?<*W6ER{5AQW<_w6s z0{&pPu8L5_`McAZ;+w4s`2kRbB`cvPIsQKxR8H_ zBRf|FkW_&{a_ImkBaz9;%aRQlN~gko(9qhRW>fw_i`bBTLPpBC#qdg)4cmTI{(mou+hUG9E7i%lS}>K^@b z(PC>Qc&Q-pfGu?P1g)cP6X&3CTcdEGgO?0xUTBO6N5Xy>dtMIP+x}Lj#Jq4aObWdU z!=AUHD9W||PKjqST{teq2#?Kz7ym<-{$a)1P|Q<))EfU8l_cS29e@|^*hE8s+5R*F z5a$UjrD*wf60i*pmqr7^3ScDwZ!9OnaEaZ4)~U0uZ~;O%3NS-=Bo?p;`jqVMK#ahy z-TQS18p-wt9(wo?)wxw&aHDHbMrI~xLt~`p{Un-jO?#jkan=j%MaU>$4SyT|Qt(0% z641u1YPr6(?$ABfNb-_f2T~6<%p*rt>RxE2{GAXZJnS@kH~Z|d4rkjWxXid1*yp7X z4Gprsq)xr=n1c$v_zOXUF@D53&+X4=;EVxNGSGyXtQK(6~Db$Q~ehpd%IA(NB4#_tRG_MDWeb{7~H;M#Q;fLcB z<1SI1e4OK24^y(Ij#RKGSl4PJ-yPT@03Y$dbfPrF@fm;MgLj7}Gu8gX5R;Z`O^`zq z6wCiN2lyLc+B7S#gY5xXc$Tl`Mk*mWW2Sm#O7N9Z6x9F$?-)q4%3u(ihaB7JhrSJ~ zAwtHl%F=x2zF&P@zUL{n%`JKTy>6iz5(Zh(K0mlOx~EcGpJW3U9u{DFN8mJVnjiny zed};(A-b)r0HwWNn7pr@i^lBouEhy$Y{uP z^|tj++G0HYw0DDr?9n&&8{IEWZf0)IpQ}?EsX%dgij1g-Tt+4&m|``=ETR4DZm3CD z-Q$)1FE9BooAX`|k}^^wrE9Xn(zx|k*kT5_M2{muQpFeL5l-HAQsZjW-84Qw#Q1)k z^hUofu5-ks9rZXg6P4%u@o=2`uq&W)mGzK@@l%Mpyu^f{rWl$+eBsK!(+l9PId#}S z?%H~oTlxhre^{C4Q24$bAnhns$cpzPHr$>J3gR&8eOi`M=ov20UPyY3n9vO)<~a0O zC;sfv)D4!=wySwxo!+|5P8H93)<3;E$<^8?$((< zM4DK4PORexv5PHFDrLQ%ORQAPDNNTgB!o~A* zO;t+udj?}VB*Z@a4qAe>;@-A(I2<`HP1f-%J+zbO7<3Pzm-n6$qhqT!Zc;|>1zLAt zSpyY&g>&p62mXF79Cj>r${D$bF(if9u}fGgA2VJmUT#qIx^Cjs(8q(i%{dG=wN1&_ zb(+U>H<{x2FAw4f)YOHqD|8MpSpXH1*4AC3*qE{f$X^61K@(nLr(-{Jv=?_jA zqp0Tm#evSxhD7$d->N-4NxgY7I2$M9D4lIPSqgiFBwezMx+f4QwnnDNasH>)2Di#V zAigxDsmXrmL*hezW@b;LXRTiFqM~6~jjE~}3u1R^+sX_iMPk~~B~SM-wumU(>jg#TbXx~K7OtGbyq{DeNHpT*g~9_vVSBEPf5w{ zDi;tX0Hyi}5vC61g#g@a?B3FeCX9;B&-$I;r`Jf>eH36j@Ir>lM6aQfX{Vn8$G^v; zvDKoB0Hr3sxhN1_{9#(L04pkWpvtf^TL2EpGTT*A2Qz(X&Ug%n{}vFcYxyBWV+N7f6NG*2IKMfa zEo!7zY)ia{R@j}jN~Pm0qReApA#=AFI$Gl+RY;<5pS=LjcqoqDE;rm&$l7?4&Koea zX86>{BU$vz;^_S^W|8~*0`r$Yqa^6xTDLXxwCoPl{&ez4;kBF9llT=o7caMf`@cWped2A1x z-^U0fdtKS<%Rl@Bj%|6yfz$ItPlv9Qz#L*!_7WU;7WV0>9x((+#zM)Av)OW*FK*(d z7XqEtGJZCB;6(OA@h|m58%FSgZZk6Kw1U_>5Z^k*&>J!}48q6p#DI$*mw=W2)x>F) z^w&%Aa}mVZNf-eu3`nBWZH;iHRh{?*eR^L36#8c(y>7J6R#Xp}A_J{9qE;?O# zHU1opXF0TZVs`=KpI)?P3Xsa{HJWO&uw1SJ9o&i^!j#F*-J|H~K2EXAd(rRe^9AV9 z#cfOAax&Lf+}K0mb9ZpQO0S_u0=F^M)p%c zPiP}>u~Zp@Xr__h?x#b?Gq5FDzl5YJ<{>8DW{nlvL%8G$)GJ2m3|3KxW`qppRH~{u zFP-tZwH+!SSk@bW+$aznxTt z4aA<2^(XN6gX##%F`h{EO`AYm6=r8=Z>`Aqh|!2-yEY!rW$*aeg4j!amck#kl+p8a zx~jAA*pgSQrDwlX5xnL76 z6X|dM&>14oX%vl`l;fKYQ+Qkd`25d~Dv9aWOLP&V$rTYcVT-ZL>s;#lfdRWw09$OG ze^Hk>%gJQLv-Py$K4PJ8Z6ME~UaCA!qTsz;w2hvL&n&Pqhva4E&@;t@i;~&1ZnGNQ zcQh8bbjO6kiQw;}1%JOd6gU*R$fNefRTwNQxi7|tK)pRgfA^H5?=|M|>ZQJ_}cph@^mu`_L_$F5rkbSbD*amV8K@G26>zGhvY0@sc$|r<2mLAoDBIA+tYL3IG0RGd>;AOZ(PD$Kym_NtZ=2}Njv5Z( zY-Cb&>7Q3-^jG9NhF+{gnSO`6P3v#OaOCA5IGvYLu4p=O&gODX7Iy7sd%%<== zn%}LU=11&Cf_Msu2*e3uXn}9(`N}2*lQhx%4(WAIG`3$oOQy5Kiw!a~)GhEdA8WS} zh!~LNd%YDn4Z7UZKa*&7EMMLAFWkx}V)UzND7f~}b9&(3}g?+J$7gdIirCMZQ}oYyJ}%mwU2A=Yl*hcYX7{ zy>)_cg~NKhp|K`w<7waiSRdPJ=gAZugN>nMf~)0LnWo?bk^MTw0d}g-r&KxTaRzD) zj;#?t{1~#Yayc`UbZt53v`|k<(a_qK$tB}fougtNR&B4ze3RnNOpr@GWg z|AJ_5ie!iuz_7`DT;T@hhQP(Ism2dH@#tJvEB9OsRrTLuR@%iSZ`1ykznaSmCjX{- zfqEL-x`)A+SLo9On22dzjzkHaez?2GQ@<-To_0{%xE2Vj!}qTqOEo;`WX2)@uo>N~ znCo#3*es-b()2mtjV^-x5({$vf;H9V3w^L}g`@(Q4FO6sLOy}SN?QLlFNJXe(B*;- z*89zoH2S+@$x7ev%kK(XH^hQ5U%`6EPK_>40Q}8M{XuJqv@V+IZCk&KWQ;e^h7iHz z_vhJdq&|kgCR*h{N5qhIJg!alg+B}Ohg74UGT(=(zrQ861{jNap7fYa2D7sMn1BDF zfE>?X@o-nUb=lF;lf6ZaE>^xtqnyH5wBlMv+jp;NN|;qASyRUVDQl#(MoeY6Y_}g*%{PxCB;1@WWui;p+2%O-XD|7)=nz;C*u*f(cGpP<$QTxSV?SlPeCv8 z!0AOK2iV5~CqU|Jc?c33K03@&^0)ykaR7>s_IEG$eI5s+GBECYl<3Ba^XISsYvJKt z4?$+umSS?@Q=h+zL=y3PP?hQOWX=>j74`3b%ooQV-fI^x1cVw2i) z;*Qdv8sx54aduY1Hjh9u{;QbV)4BIM?Hd85iW~(p*i`GF4Pek@&W{0_BAz zHC)RE`BdA`ZQsFxD4Ow2q$_iwIBPQaTJH;BOD<`cT z5j6-J99^6)|FS!|IJ%C>+~C@UO+Hj)Jn5#Qu(KTaj5j67Z)wO@YVKMW!Z8i&(@o&O z9cF0D(-~)M4%NMt&J%2Uj-MM9KcP>Mg}P7^rw7(GP@0hG3Co9nR-q${{`PF%{kTB@-D1!54!lip!Ah}4bN9;qjQaE z%{Z>7f=!r%CO^%2z5MOu-?KMLo0;EpA~Rgi%L(S7akrYMu_^_NEHEOvv+LESIU}ta zDpS^D@jauFsH+#nqh9o#W!;UnN_s6S+UNBQB#aeTEmB+?oHHsi?5=VzQ&xCN($0>k zRj&jjM84W5E-g5mhG%aHw||YBREVkA<}S`~6|~C<6(`fuZ|-p+7^IDnzFcf}JAkJ3 z%HH;=1wM*Hp1FSXI_s2Oan-i4Q~&Gv{0m@kh6TVW9y%I?iHVDYx5A47-g!ohX@RGd zI&BCrf@H)GhA%FQtDe29lq}(1juTUL?Rpt`S-9v;_EUG#_eY$cBM!UNpS7ZLc8;;Ez1x4GF1D`A3S}$6o%K!Pcq%;T+^>HJ;wm=BJ+e3z?$gLW zmnbaPpNSsiJUMIIdG{n(>Dd-+MebSt=dh{(Ti-S8b^+od6zJfRmp*a$$fZFSr>OHV zi4T(KVa(v0(gDLfwMnV*?YdcdPKJPI>E;4ZMfC(q8rv5CA1 zi4h`5z}NVig3T^n;(W!LH9>eK>+E#HFriG-;ofrxQeVerrv*5B=Vf95`ssg)joUOWs>@Z}blU^b#IYg^lpt{L+LTc4JpJiqZdWmvShxVN30CXO3C zayV!;SyOkx4wt)^4)geeGKXb_2SJOyIfovawcGY&(*pLdo z#UPw68|1f41(9v+zsmUtXT&U9<@aTF&V`HJjBYLIb+_A6$A6Kkd!0=->Xe%~e`Se( z*W?}1+?D>7!b>|7nGX-Y(!j4~r?w(sxEnEs4 zQG!-K;>40zabh0+Tar?98NQCP-d9k+7necimXTAKznKi-eL=4|OJ}GAfcTe^&Ab{& zJ*)`(C54!LK+E=wlIy4BF=(?`B5+QpxHG>v?X7Q7{Ge&mn|OaIYa>qXC{Mn0j?1_= z)5~#6>{0@%G=fP`kwty6H4oO-!0d*T)n~C1Gkho03}gycYxJ+iG#>4k1GD2{rmebJc8s+d+*I6!>@7wG^P%c$fZT& z-s1%0#(2dV>itzT+U$s+ZI=k+y;x01+kOAYi0)K@sLfTMY9pKp`(fly*ZrQg7W3;c zzO2j1#Z{^ZJffVx9POVX&7!j#Q`p9Mzj&AIeP6XQ<=l99e;4v#V$cQ^95q;J<3u(2 zDZ0`@)yWTg(T`W zjtiydFI~&4fgSMkZeZcR6lsB=TPQqHFYI8^mr?N-CT5~wTjQyb|uuu@Y|_~Q-DL= z-r%lySrvbhv4*Bc+N4uMz&>$CBt@ilsk(njIadIr&kc}UF7#z2VH+htGyD(4%nT+ymDPyr50;~?6deF5xbua zC|PEi9xTdBaY-PWbrA&_KakEIlr8$+X6CC7ZVW!tD zHc%f$j;(oRBkRriW#*}$=Poyc(prdG6HaMvoV#$;Y(tLdcL$)^iV=z?_;o?1ySvls zoeevgpZqtguzol*Ztf;k5;Gw{-=nK4B8|wCo1M1q_lXDUCA>YTj4{c57}dK)NE2$J zPiAXF$4gW5Q*T&T4iC(&2X)HHXP?X4 z+N^p$)`NXyH9CTKVct`+65&a>la^q83Qq5N=9iy??RUMYrEgP?kqMrwt=$ydc(|K- zJGph1t@cjHTbE4^6{Pke+~#k3>*w5c%`n}q2Xhz&uV_dkmrZOi$weXaZFb&n;N<5f zlZ%~;@{mb~>okLc6VD>x7$V*(Q#cyiGo~-KxHTO}zTG9?JUn9Sh_C=zyPNt1~a~YDGrvgt{cB zSr?)ek91hzP$gWW8-(~4<2w0Z3c@RAE|@CgnQFuAl#u3}n)__sy0>5~hRbBX53(}8 z3UoF`nGe8Q#sUVk(_A(Z?LC*T${OrQ#{TtlF{n*qX-(7*p6J3{?2)@5{QtEQ}lyBRsj2 z*jd)^Is4VbY^&FR`$fJ(P5w3-)uZccxiEh~4FAHn=qwC*cPOxlTVv{{w&w-r*)enG zYExj2RWl5i9b$i6#QY{1%x?gPBpP~`TX(rinH;(_zZ$g*`ZjQ)w z9M^D-`?IQ{efa)c_#xz5h7Yep{!WUm)+b26`c9&_ltrPi+*Mz{&ez%YeQanEY&hdG zJ0)n%yNLV&T{R}$Uz97=>ftV8Q51lI5laKyhzB$xd0RPvo ztDjY-nd4D-UK^^26^KFB*bxlB5I?^vRar26*5EU9Amc0$weV>h_uWAv<@xYG*P$QtRceS=?-k6{3uztJjkLCEu2{v zu+g=6;W*!0UiosRdhuuRD&ULmkJp-eTAh~%c759Dq&Xod%bgWxiuS%0gsz0O;j`sp zI~!q5IA}-is@N*}H#?_?r8lW1f#Ur8&sydHS4?<`b`<$fm*@`E4jLR*SBJ{zU-#LU z6^*cr*y(vw3DBXD(a;Tpal4=GEQ4N_YjFouQ(jq4dOsDJZ!{NRbcnHV6*aNNMRb({ zI03TpQxe1dW$xe9gS<3LxY&w*8uPD>5X#gDSLG0#k7GxYIrEtEtnO?@t(| z!*TJ;Yc882j~28>xfo^)sHbp^@-mCRUz^Wd3jQ!ADdADdJ@|d@F+5R*2lfb5R<)e4 zaAtiBzcqzktRlQ~b}!xUf67@vIyKY9a>+V+e@tu2moG#%j@Sxy|NZcfCt3Y#w9*@V z6HUsqn@PEmDq85Tw@)9OG!UM!m#Hoip0K1YTsjoY4#Qq*^eju+gR{(QqX>0v3jct$ z8jFNf8gys&yFTm0PJpp zudWeF<43;pHjAJ+H=>ZwMnwcNjEaP3oid+SpOjWwJzk-+nD-^OPV+7z zU9_%ZcvT75B&Yc_Oi!KQL(GHU7M8{y0(I>0OPCrf0RNfy`cy0>?JIH1Ae$&t?`QyZ z!cx&EF2zzdEwt{;^%QDU4Y!(4=HvzsEy|Pli)+nR@vZ!$QlId+{eS{0As+^t9}y9P zZnd4QIZ2CLE9JPaG}Xlc3H>rowev;4(V@VHYfT%YA&Ngb>15SFHNapT_e+F&_pn`djZ7x9UOlpwphO4NSD87iTkXJCY=6;{J$@gB++_Gib&pP9_p9V& zQYDG5JZwC10g;|(HT}=Q4dy_3+g$WS=le32Dq;EiN6+=G7}PJk08 zGbkl(-E+bo&Qn9iW7KZrNBhgRy8w6Z?CGXQgS&V)v-e&?IEfMoqOn0!i6P^}=<*eP zXKuF9wNG0@g67QZpJ?@0S=?D84nCQNJ&AnM*FEjH85iYoz7X9rJ~k^wgZtuEsp0%< z>Pl6L)!&+08exea=oiyvx=WqU)Vz$WlWxEHYr79IKPlb&Sr}G#1awI^Y@sF=__m?n zp9t`HvP(Vi4$@p*E!T{TuYBH^G-{z;{h*n?kNN;v02I?Ibjc=G6?bco6G`gngLr&7 z&)%HAK4DIoX$M6k$8})8<{eAi+TJd1^hWI)&L$x2Yn? zvsVR0W_1^(^luKw9ZZCw_3M6a3b%qDH+l7a-s=-KWrD66!{wfxUX(k|7h=}Bo7;LR zxpA3MiTP&ST9Quxp6d*$17B=Q+fjJQRujDVy7*gNE!Wfx`y+gFoE8$|90CuI5;2L; z$y%c)X|;`Rf8TfQ{|e@Ey4@IBV9xj56Pt}$dReh-ZT^fs)cO1)L=e(d45MPLN0AGx z_?=?i za;fv(z>R_IiF3=}g!V9OHWtLc))BWbTc@|`@Ct0=knB1>GbjP(?=!ShjX#Igv zkEK&*TAad}ojmK;11MLBK*N3X>!P)9->)29Fk@*N1$``^Q@`09O@T*$SGEa{q)WUd zeX#fFm|Rm$1#f1=F0u7+)HhV9Z(DY_SphVh$fA{JUhqy_N7a65e+ z{^5>F?~3Yd;qi9p)%);mJC?@ibJ^r8`+63F)XG2S13I-aaP^cc6~Ru9CvV4?Cv!?P)9U6N1~KjCCGTqDJWjKpd~GNvPc~1g!R<WOliwOv@F`EOQr~;Orsr-P>J%e zA#pC~Me*oYuT^Mjc^J?;wuYKg4|L!a>3H?v91{m~)XnG+%P=_Z{FCx({smH%&wA?8 zciQCoddU7A@O3RWHgQNjkCq@$=u+JiE16Ewkc`FWK1s=dDV|S&`&t<^DVCwHt=P=SN2Z z;7pbfm-u!cHtuy!tp#-@uyXlj9R>1ChM%2zU3fH;_sZS?x@m1@2T86Qgr5vNBc2i` zXTGxVioKxC52Oe$aWLgBNgLTT{#|XPkn^;HHTMMho5aWh`Ib2b!t<1mu7F(<#=juZ zH2Rh_Q1r9r*BxWh%f^gYyHg%B2OY+f>oQfLhV@^knWoX7y5o3U&)FgZ6(9_$QvFWF z%c8~wj9BfX-%rXrn{r5hX>}2SM;ldaY$8mj)iExg*R zfS4FXP&8y&C%I@(LI1bwFN5Z|X|4|Q42%sTPHopZO`hdtM5esZvS+9zu7B=H?2h59 zY=r_Pu8x!5-_rXPsvrW$3mcBtynJggjxdcNGv>A$r5jht8vL4aTk!HS!C|9eXqynBtHrVyj9@cTWj)&-+5y&`Po)2c|%H%8b%o zARViY&X!CW^H@X*?G|8iKsO%PZ1@3*bDL0G;eh98?wl0IM7UfpMN%MjQM(zo`L+H(UDg(NAYI*`G5sHJ`4c=`d4nRoHj|(iCcSkpYWmaX@2l7q z=HQ&2xzg|D*Nr?Mw{0CRNmLEpsH!K;aEVS-cGy=jFlMVu;FB<88843b=xEs$g!ya$ zmMp>^msmkUV?BJcJRAyfZzjt#^YnLPTRP)@>DMzsHM)_)b+x}Ip4>{bkQRwGg~8@b zhJ&=XR)OLC*XuRjm^H#i)CWm>;Y=Zrak*LSTLJaXJa7;nRMMn0M|1`2d|11*EkPs| z&0}_Vs`re@G?l11a)V6+dS=N{(npsT{?+ zs&7);?fB+OY_8pvQVFY&vsSr_O1T%SE&J z|FU_^;>j}*&3E3s^irl}Ky!p8DE(RYGdz1TPL;CvD*~A~kvT@J# z7CvoHR2&P863@5Iovo=Hdgl^ck=WZD6+M4;zyEz0Ax}}aZ9m2|d&C_Nt`XbD+#)hu z7cFOzZ;fuu< zdFEf(hdvF>{JAi<&isy_8p9VEgv{%)L8kDvrW4gpbZMeux~~MOIWG9(l7i|VVq4zW zkC%$Eh8-Rc)4IM=etrtB@k~(K`tPVbqAb^XF_I zSXoxFzmHkrZ~g^#yNzRIkRp5MFak;=m!56=I!Jf@PapREkeH{qa4cKxYs}f0;o8^3 z>v47pcQE0mQ4N=UvFj%w(*y)Tx5Ty~!SE!!YjJ^-W`oc|4JY(-K503+TMwhZKIfW` zWr#(>*3KbsUEh&Qd_L;Ot4va$@HZFk;+t5=0`uyxRLwEP*iGl*&x>n9poGZj$W*p* zxgmAFT={HrcbaYW=xwV;^9`>3f#vCJiOdj)t!*1Ut^#dj|ofKtbw_osDC(W*SE*3zEb5= z^TY8GvOd9Wm%0Xb{#^XJ`+OiZyb?esnA;%0`2kwP-4^{r?RU2o9-D2s9d`^?EU+nh z1fL+Lhw4d)&h`>tR#bm~a~WB|y`*(Q-ljr=7+$MjD@(V3@YDKb|*{zF5=R&4k9j2X3AD ztt<@S=EFUXxoe2Hi4^Cig#LaBRU)lD>>S$o*+N|DO!P<~Pl7V-VqzlHI1_lD1cpbcolz))6_up6`T! zmG1=GLwIn0w@s7tCXHM&e?0+|CVF7!-2VcU2O#Nf)CK=P778e`+5LHT(x*dJR^0o^ zD;BTOTVCsM3la~tw8nt_=3NB^T1Mf z2o=U<@sx@_le-u#lguPG?Yt@U_Z-^H1-s6*q*fl_b&KrRcYM}v)w+D(bbgp+HM{H` ztTx0jU9F`ikb@)|h5DtV4p28&sH^ylX&_hN9e+y(7yJkpTS?<>r6K{t^K2!LCS#L- z!9HL||44H32T}Ttx_9HYHh(NOCkI*Z#m9VpGd}C=nvTrd=6O8|O)r?jpp((p#7`|Y$EIl}?D$&P)w*w2)s?u!0GXL{ zrS+`m*!1jJ@#OV$)-F>QO9~TP#awoW`Gy|fJ}{-y_fblP2JOw1*GUUTCiBxvif?tt z6O1A|`c!zD2v7d@mVLvquDrRin|mcT)K&~Biu_PjMw{CP{j8MA?7GeAWl@8>^R3H8 z^rqdHFVgB6ztQ}li%QQd)cKY1tKFNejhBJk-UqM8uU}Rb#d13g(-nwSXAt)p#Sft6 zzO1NhxutiH+Q7#@mU?4VqI}ejR-3XE7tV*fv3Kbi&6`A-{;E8o@ENE1Y`kV|a)dq{huKBkhx2*x(yR>&$t)X>6G2{*mvKIjVZ@ zvb%1TJ{ONwnj!b4>7kADyrF-OeCDo}lv4j3g=UIw+QnZOe1E&k9_m(k)rD)e2|XQX z>30NtaYhXhsy{DWDQLT%shar9_2~3aqBDDci|NV7bGkn=tPa*qjQ{VMwp5kzQfpzo zJsamYJe^Fxx7qkqibW@HY}3tp2J@MVN^Fby7<}h1fSGJp%__7&!?m8#-@N6w5pIgS z$e-}}4@dP@-$22Ko_ih8S^jA|w|PuL!Q;}1hm9alCyU&!Ww9n+VQ^NZ^%%Ch^3y_r z;l4nF!&ChlXR_yRp3!GmYk&#HoSfy#@&of4LN7(N!Q9jb->l+YUhSGMj2*1&!<^u|94v~cm ziRGOAU@g(}+|hK2v6K7CY^&EA#pw4RB~&QLc?2XY!rOTYpCw=g4J5YBI*U!%P&wE5 z&YI%uZwxgf`j9mQI9&=DxZykP?BSho`TXn5qwvfy-&xdN18qtab&#S=z$x`Q8v3)= zTe2hi!lA()U#DFhQ%t?L?8AjJ6X3FNo;hw`M;RAiwAgT^v7q7%RKsG91UpPDqVDzW zaFK&T-Qx=c?zVNJ2cZ$eneb^0f#(66>4N#JSY)8<JDx(N?iYG*y)UTA?X+}wO91*?ysY3#8=Jg z5>xR|=hKz8d`*8rXE ztij-ZSZfy5{Pkdjg0EM`_>H)kv9Wcc;ckoAZt6;oSj&cMbOSf;igv&#x+Cow&1||G z*ehD)XHMo2QhqRnec*0fHc^)N0x&>x{IqB72iA*+SD})@9DAj!)FMD}jlrke^)Osc zib8J&p<-*8vz)UT$VwdX7kW!z*2D+$^$Y%qWSZ4$^^6CwiK&3Wc0n#TPv-&Qh5|6& zaIWL>)aBd6d?iaNoI)aZlJQ+Jy+L-1_nKy3KBSa_@=-qn(&&(nCbQ+oOpE0D4 zbxkFc-uV3m-0@M~TaTS%yMl)SQVTw^8Y+J8oA~NX$K~mJC;l;g3No_EzA_)Mb#sIm z6Zvy@1DX1g@#OS(a~pBh(l#uA9g*!2Zqi!8s(~6*Re$n|km>*MXL+_Z<7|;OHWd!= z00!dW`NN2Ow)j_3E?DbCxkJ<=1bd*gHk{;^+#I$30xA0eU3J%89cy_xy(pS~)q3%- zFGAgh6edMbowLPEQa3%X^Z9UPY~z+q^}Ca!q4SV#=(WGV4+q;$#Ka;`B&4Wu3nhhc z#)u4>{yFv#KPuEEeXjcp$Y_5%$fYmE=1)0`S<5rc+EpQ^mqn0Xo}dJh@arof_+{V3Ts8^7ha@W}owbSNvE;*?(OWER;0UP?(< zCX5X;RS4z4h^LC*-SycdpTXqkgN1Y@1yLnriDFkMCdYl-fhmZNHyF2VC%?)w58>xP zjc?5zX$PT(b@>wr{3Ku+Q7D-E9hkU8Xo+N~6exv}9|M`rtt8DQ3K6H+Fo zQyCmbMZF89fZ;cgkyADv2BGp5rK%8R$rt-3vjD_H1JG4+E@7HtQs%CNzDGwFB*Q%c zUkOKkGbyz+os|M$ymiU_(s`vD!L#k!+``9Io!qaXlk8+bdR4Lb^dk&z(gbxu9z6m1 z9{As~$UHylw(mCtTE~M)6S>+f!LOA(F@t2H)I_RumMyOIG+Hpy7xriut0TNu%;I({ z`&y!LjFYCYxh>#Y3|1382{o%kF&cYC!y)Qps2B*|!-qZG){3dC&Z3X_Q9eeK?6Xbb zxAnAd&vK`N2h5xI`MVmGuum@hgE~P zCm_Z0L2LPRTtH{cdVlbqA%Y9DUScxzkETYarRN*cXLFm`?irMpd~wTtx%{VROk~#&hVjR@K*D`foR-f&b1HbH*XQ#M`VUG zjt2Zpn*tZe)Alb)Lf?xJ^WvUP**7UXMX%YM~I7i#1S7mIsS}8y8c@1A25~##Blt2)GD?< z18Zw!+FRtngwuI`yp1@UUm3P^BuCz$dk;5x6)OA`6EbTFHSBEXo%>1-t7Q}1zdW0_ zRJ_9>Z30X@j#7i8IM?EE>g~|+%NvxRujNlE`$uA;z?@2j%_p#an=5V^jI2j58qaB1R8aH`&Y5RViH;0t9?dIO&$aeULjLZ2d* zcIj(eG7964dvCHptdFy{R)=@CZ(Q47Jz05{DVydZV3VynBF~%FvNBD**a02y6yP02bn)Ixi$0`ZqAje2>6v^|Yc8+H2vCPi+ z{%CYh)zqyBdapd~pz0`Z20$BPuLyl!UO^i$)1bASEv89S{IzN;*D!x#YpL-!PDWXI zNY8p7N9(|wJg=c7*+D@Ar}I=?eBER2!k4L#87H~t!>t1*Ky`k83&vN1U*(3PHJ!@z zG_26j(orN*PwI$}XNE{9aw+o56-x0Ga+Qmw%(`I(k_4aFk}12Z0=Y5A%??(3Ip&PY zl+&-MZk@IRVC2wBnlq^Qb!YWPY*t}Cum@KcwVv}ze~otdlIem!!&{MhII=K)vO=9K z!>!Q0dXDAUw

    |L`JzQCK>a9g(&Kh5PQcrA_iT8@{d0Fb@XlQACu6cv=XKK>$5Fv#sWNSLy zdm03@`b_OE&XK-7fnikqHgSRh?u^2^0gOna%ST#2F`Q;Up@3Nt{l2AI=& z^5h>NC8gU7!|c|~nQB?$mVhEyHu{|KqQoIuGON%jN{U-ak5TGsmCu7-#X$8ezhvP& zw9%x>L*}AcAO#s)=NHKc{sTk< zajuDwvqVc0sR}(ci&eQ$zAskeZiqr00ku%9kkKn31?*zB36pf={OxK$4=Y$ydCFen z)uF!6sXr9_4}e_z}@(w}Ol1uJy~0wsgM}|AZ!Be*g4qtu|6x$p`6EIle$Gh;PIS*161J^ zg%YgZ(jp$Oz~dR46jF-Q|ET$-wcE|OCFqU+2gz^wc$sq3j)VXgteDH#D4Djb-AX?o zAN_ZrE7i( z4mt~nhI-Tl|(B#>kW|%Sg3TvGuu6y}ADp`>%NI}x{t^N~@$=RsIG+4qv0A=^u zNBw5ox4-%xWcwee1)O%IR6hp#ZRUv+3K+dp>w%2ko2Dy9IN@S-DL#2iY95odgt|-s z`~B#{uTg&X963+xIP{*i*A9sz6L5_z&I$V7Qs_M_f0~V%4{HQFSc&$bB;WCP6>8GLi50nb-)O_3u3K z^TUFmT?dzpmy0IRNRa<`+E#S#Q+Qcs+vxLs^dBmWTvmN}Xzpk77!yodhoaV9RQ)5$qH#(2q7K>raw)FGG5@ITS;>DX z#ArCZGPz9bPP3O^<2y#JPG{*9V8-;*HwLE_i@4@vbW|@29k{R4K2=@i_A9oN{)w0> zN3Bg&bVS9eWJwG%4UCl+@;U#l&#d^j@;V=EsD*NIr6Ztd@;2!2t2%_(tn|+OkNoOM z7frG}m9B@_kROcR8h~1Msi}VesMPOGXMIT{FPR@JaSWWAMx@!Jd+6YD8BhJgE%hFc zFF`&v?vRTr0o*b|7lVL1^aBB$T&lZlJzuiWF~UX5s)=7%;}7Zkq#2L_B|f{1KP`o9 zRJ-?jS5<@{PqX{Jbd@7>J74YkXIaEtA*_w1VFgv_srE7X z{VMf^x-D&bI-$FNeczQ+IB7{5tM0;r-OYyzz3txa*v`f}8#8afKfog2xMLyphCTs| zEjLx&tUB9s`6dA3uMy=fDUf9GifN-5>n>C3npG^Bnarr@r=CJ1)u0$C!(1u|Jb9ZI zS6uU{JL@g&)KF)|tMv8`j+NAX@39omJi`lQ;tqRFrrF{v#_y{3i8`NCo=GZn##~Xw zD#?YfoD&AxcqGsBLBs{(LnEtciz;k>TH_^8PP*WpWrpll^;>V%PE{jLVyQ~Daz#4I zn=SKXe`*IzAK?@i;Aeg>lPe0U{GvSQq$J)%{{>?izB!lr9C)Y!qE;XkpsuV3zp zukW=v#DD#wbC49D;%3X~npW7lj<2{j2Bi6z4n@Kj>-h$a+Je+=Qf-&&m}JtimDYpN zJ%A`E_nba4zM?QkEbWIOOkC%=M%T;@tp8BkS65nHLpJ?sAN;Owvj##9HL66VhsZto zQ@k!MyNvqUh3+!)S--RxUb9XpBht3rr2ivq09TYlTk?c1s^qKj_z#9q1?n7 zJzaVMqFA{y(1zJq*KKVTL~WFONKq5xr1+makpRAE2nrrfUN3$$(m9kQlTYSnnN}5dPq!|^my$qapd|hDo3kvF+m!<>}s}(HJAj}$g@mCU3XEULgm9^=WHro<$C_@Bx^IH@&h1V}4P*z3+tG0Vp1xvW4y zTc%}_0No6m-i`u@^qP^CfwIQ-A&;Zptvi#X8cW*MdV*#vc4?)$p0u=lf7frhHY|kSFCDWtbRtBUO)xue?|S&g2KfTc=0y^QdF_IRmX`&$1((e}~hSVk!DQNw|+87I# z+H!pCm~a5tDpB&`q|rWn-||e3_?g2SQ?;HtDS}+QHiDgeAd)0luK#Fa^W{VHC&{*@inAv}cvLAZ68kpbA&Q;x zGkn0Qw+3U4MChf&wGmXZklhg?0BQDdsXp3$seCbz z>Pb#wq5ixo7-XP^Fp?!ji+BtBWi6@IMef){^1j}G7s>NtP~ustxRS)Z>2anfKI%&9Z2GR5{&u#&_~RTm^(R zWly6NpsWO&E?p5)FV)REKrrRyU7K<)Gn=)SN5)zA-x(jl68+_mk!UZT7Vj7Yqmin; zeNgJR7i5F!8dFjN3O6Q3ok?a9Kh{sw(&!fLz&~c%w9mCqHw1dbtMgXB;Y=v%oaV?Q zzK7zLI`dWfSDwt-2HMz?;Xl84{UP^GZ~mY|vC^Nc_&>ZJ3cpJf3U?O~R$@OYA#EZd zv%IflmWeN_N@=r`oqCFf(QS=6a%U8>nFZ(c%EVbMqLu|r&&RV4(*TV6?ts}!8K`seNfS0{G{6o%?3cNAhw=`!Px3?Yd7qg?0~kF8 z->7$~b;MhJo$wgh0u@eBd)X;01r&$dIo+WH_Zk1l3&zUWD&QY7Q_>907QpLZ= z!clU(%U!wzMuOFt{?je3k=i;Ig}y|iHGf zmX&QCONPf){y`-K>~Yr^Ypr~k-d7Bnm>hz)N2VJybK##9|Avpuk$rT59wmMn4_#fGGTS^a>HqI7J25Rb1Q76h^(mR~u zkkLJNchr+*rPJH_a%zB8xV4`8dh8AJ!oFFMrUQP4<)L`YP_P;caWC%CHcbgj(qEj~ zd%YZ8`MaeHiO!65C5Wh{y04ztC=NPf4&W#yFFn-e(&dT$B|@2{1tWXVkq1>4H95E< zWk5l1A5o$ASESM}1Jo-f>Q{{L4RcT^&Sc|R$A8OhHR^= zAQBzkU!2XbdQ#uT%<5630oi<&ir`%h2C7v_uJHXSuHW{Gf2DY!vlLI-Mdg3UhxHw- zN1czHck=tHet~h@s@>wFdH%^V*t-fXXf;7?7X6u4u>mh%FGRtjpis=2y6B~eaP zYlY)DyqpcHZ}? zmgDvL!Hz}zbd}orQq6rt>4$7G^00SW=0~S$x+ENu$nVrgmF`qN=6Cx+hCah72j{Z9CgO&r)!E*oCv_p2eNTwY!^% zN2pb2RPF^`FrO(N`e&>a*+|yU^&mJ3QR2<2saV1f`Z~QAG zHMTST<_+BR$+XE}b>W z_f4OUYU;jb+P@a0x>p(&#$eof$h<2pU%CbTRmp zcjeB7aP!u15QZB~@q^FM>c5_Kn^A_<-|h2VfhG}J4bQbQ#WD&rN!Y})V(!j$N|wlM zzr@$Qp4xjwhTC{J(Hm{v*d+>e;5SF!r?uEmRsng&R|Az6}py?q>B za<%jJ&1C|sf|D?Y-UYYbLNX)0-Y&;4W^xO5vZD?=ooG+o;^fkKvD74}_bgdi+C)6K z>)MWMLi+|$lDml#ybU1;mftGgL_3b|LP5_S%1k7uSG1V}Jz&q1L1dWQJeFyc4`Bs3 zJu*u2W^6W}v{U?7)=H)@=&2i+(i{udlF2R@D`R%P5baE#wYKoZVYd3Am70&pp0-=9 z%y9TmH1TNwQl1bLZ4TEfj^Itk5++!9x9}>Mz}I~rLd9w}=*{Y((iiWn<{$8g-24N` zy6*B_45RZUV-*%Mgj8wN9SV>8Tmo2_=nQW4S)u`Vz<`Y9JfDwyei%gls#>Tb@%AsQ zK_TKp2fbiltg~X@unYM#1%LN~diNH=Z--=;)Lcq?VQ!5k?ai8??GRixX>0G^G^}*} zxzMjCSd7~*e7-Mb=@gi)(qO1wcNy~!zVnjf8Uf+q!Tt46Fuz{cIaQ2F{kV|yvfDj= z#(!YWh37apPyjC@xC90xJ(rB`*b9T52iBiOh^HMUE{z40rWT|#M*p}8VVaW<3vAi9 zipXz!$f+xut$xDF`1yx_yA17CqOULj_vlr?HD}d$ZQ;Y)yXk^xPMqNfKC85#r4>|* za#J#Q=X86guS#E)v#Ah;>>1l8`Xp{UonrCAc8z8z^g>2D!Yw_wg(qE9i_pxB1c?Z_ zvxC8_Zi7`Cs`n)Ye^}4cZ8nH6Lz1Q^5|2W$F0*pLvyrmRM_yp91pyU@Eh5gF%!S3? zzK~x8qzJ#Br$-J_Ot@@}c7cw11ku{jnOvV_j>eRuXR$T9EIfh_%oj3w>L?=K0S&&ccQZpQF`Wu{0`*d`8+q8x;N!+SK9zmU&x!2!O&<|lAWojxj%cmi5UP^;}&3z z3ifzYFzw2ouQz7}7%sXbevw;lcOKW8badhW^V45`c{&!0FCbHpEo^K6&b7dB&(CKcWNrUi7c?w0Bq#kPLACs z`s%}5k7or(DjRq+b}aIY-;VRCygb+wf522Qz144_{s-7RO2J+eD78ZYVbrt%nFny+@Z^AU=VVYRDnOVKjGXnAnw$GAuB%Bakncn#6WzQ3Mxg!4^<*i( z5y%sy5j5CN7I#;i;}|qQQx~uk!cNMS;PmYyaQEt)JeEZRg%h*EH)T*st|Fn1837Fq zMxtU7#4|i}$u-lSJ{|~?fT#cFs>>79Yx3yEwwJZ_a=mtCoEbH%v9EC%4O`=JorP!t z14AR;yT}na=L^pW=adNf`vHSbBPw*k*%^Jp13K}3xmVkECB;nxF`aKNQ66d?j3!67rqgqEx}Bn57H6j|>$g59kz}n-E;o`i9?b zNlDgXG3rnd|FX!xDY$ri4~J0b!&XcP!iF(VetRTt6s(W|&-(0^Mpb}p64CG@_^<4v zx$=B9EYFej%ic{U@d0ZbO;<*DOkWnMF9BHUB)1dKddlImyV=evJ+q%P)2jx4jh*1s z#?kl?L?{@Ds)=Y@?+>alUpgY`|Mlr~oL`)TF=fp@gZUf%|Kl>vj0d{ zP+Q&F#*GK+ANjCPrr{xA;Mpw68(WxZb!nH=4d+y9u;l7X{{!M001SA@&PD(lvK2@X z$J}dARPk#pm{tdCCfLyqi)7a89k3I?6Xu%?pV|m5hh=DJ={g*IQsMA=;TTQ(Gie0t zExf^)b3S#j>BG#QlOnC0^b*P+E8U3;!|CatYzKA5Uis1cah&3Rj%M6V?~^S&nIhQx zrM+~)u4SGc$4_UBUT>k7`e;pxE>ZxSDB?D{(BBYt;PKLjGBtL{3#%7 zERz_nh#UTTM!iN~X<^8~NmtFy`TKvGrrpE;5t~PTCt}|?nalbB^=6@-Nqx8f!=l=c zLUMk@)XvV!=!dDqpQ<;DdtF~lLvnuQ1Orj_oA??6ig(B1g|F)ssuv}=Z&<|Hcm*ho z+=x;q9ms9)sr=Hzc~~CVnR8ByZukpWtZfL_yn+e55pXn$PY1Ww_sFeL!C|XzfQ&v6GaLtzeDMi0-pI4|j%Jif3 zF(hew|ac9)Q!d|h2@ZwxWcj-$I{@APKEh{ z&9KER%xq%6x(sWIzePA}MG#aE^b$EvfM@m1`1#gV$qe3 z#qCG#-ptt(svJAgJB^xk$;S3ZFha)3S;9FS+`q?$FBXgt-E9l=2UZ_&cH9RORSvQ~+4V_jgIa-Z5FI#ij@BI@K6U9kpZBLOx;f$)w*U)e?r2T_SZ zYwe#^Rcw_J3NIy|vDf#9(;xE9Q3>>_2d1_T%tSOsQb3vs{&JUhVOC#nXhoR_f6M2k zY-mfz14E&gXMJrMkINgASykmyMfj_U?u)VszHWYIZfdao^AM0LGHYa)J8KEv-w&_N z7;v{5j4V%EGdd|f{X7y-9F!gvE$do?U0Rzl9Pvj}Yw_*PhtujCQ^}edu<6oMZEOP0 z_TQMnj69~@j7K;N_7C8@*J%3RNAf32hn2IRsZHaLQcTwgWFi-=3v(VLucAg7b;Y;l zHF8b9THQK|bTc4jO_}Utf1>SOpkvv`I%!VLief&~sK~~){x2psxPNd(9Zx0MB1OYq zp4zMOKA;2}-Z=sEFC-gf;`Dn0bUQQaJ{qD)_GJZoGbPhsa7XI}AO{rSc^{osDpahd z_iA^lgj;hRrm=K#$=U|(ifK_N^Y=AX#O>~eQ;}cqRVQ-?yBU4w(;GTZatLb*LuBnP zOzYhDv@M#d^s$!JN_U)89T}U6HnF=SD&rl|6ltssP+obKlHujaB65>_{%kk*Om_(h z670K{rxn-6@h`07y1rc$~$0T z>fBoVf@}Dz`m^#s2C7~Et;Z_X6K=$s`@d12{X@{4SLwbaA%tvk=2vuTV_#Ocr!D2q zY>M?I|JpnG5avprxR4GM3D_O3&YR#}DDNDVJA8p*jWTW1v3{rL=H00;L|U#f-S%A@ z^g_h9aqX1o?_Ok6gJ;h#Q8Ux{Pjb>L&jj9>w0rZJQ237EpuPVAip0q`KS;D$<>u-7 z0K0;+Cl5^ZewKiD<6`~+HmVI*Ry&8njB9@{)#{3FOK4M9s59XyI!`x50nm?7gAI&o zTTIW0HVFYbH15xV|5^k`W0+I_=yV%}9so>>^c2Gj(>8!kz#ORTc7xp38^ek{cS#Mh5Q0dSlmqL$oWayL`1hcpVo`==X*WpD-F4Zm{jnE=_yeSX)2yyWqy+7=~h01!|FHiJ1jjAX{{#4nA!JDWBmL=A9 za_G6UH(D3e^tOeol4aBwn54jPLZr^?k1Lgn0;4w#--;#N$;t;Tu!S8*2>^DtgC{Yt z;`Hur9`kslM|FNo66}cZ9kK~rRqqiMJj9yk&eL2gjE+&rf;tJEIukc=DA+4R8&e3QdaRkT5(q0E&u-oG zYU$xoll^+A5gKxTT{Q8=u!Ur!2fqNDx=vQ?#{2U>K#TN= zJK=6=H!fy0)|&5Pm4^C1>}3RhQWTJ+yUqjt9hpLvTNpQB`}j=o3UTs%dLG!))bQ>Z zw~a#ty~gKE&7=b;r|Cwfn&NKO$s{{cr%Ml2eBjY$Spkh<@&BNWn3YG{F-T1TMUFM0 z=s*nbcQ1S1mkS<)e%`rO-2z@h#n~`Qu4ie)SaVRHQ!a>R<&uQPN6m!|Ow|XDO||RA zBmDpxm>p@>E{H9;lM}MO^y2#~qD=AXezm4L&Zc#*FVs9t<8}L*F)X6>KLOJy9z79c z3_NW1&DG(?1=(~5)W;NDBkb^!?E~l)qb(L&h~p%RIq1s!igW$aT&<$Ul8iAqgZ~$F zjDc}eY-9`wj~K&6wY(PJ_qAN){n240q3U*^P72~EWKGfloT{X*;ZmvtsW~@6*;BBy znyS_={3XSL6c(+4FkYP-OHJ-}S`DA)roJQeGOa8-a20kibk4S^vp=x}xPYz{Ak`{gIEFszv;`e`&%DDmok|mS74~&=r^zD1Cw14_ix-Z0VM;rYg$x!hOqq zcuK&80Q?2l=l|S%&MQe}B)F2pBhj4YtYDlUvZn}X0tJxVq_G`NJQD%gwKTM1O|6gY zj!N31%dJY6U8*Fqn?NCRheby$EK4v~ED;onptwvX{`)^bopWL-wV_I{0*28wVMz4z zNQsO8E>7A2fRs}Cp~A(}-9dfvKyB_;WMHZf7JB)H@vd1m+_5-2cgZ}-)#S_|H`JMf z=)-NOv4>UFz^Qesz16ac=%7_(0VZj>R9QO*LQbv#L{;TS`I_s$V6oqqZH|>%TyTHp zwP{h}fAT4Z@iJ3m`?X<%Kn}KweB+mW;ex&3|DYyf_9=X)zR&nccQlc#j@&NmDtKE$ zHbLXC|Dfx0hw4l+?Q6VoGn7haS!Z*KY_E68}M znGSnE#raA@$!l^d_9Htagz;F~&((DCXrZajCeOG@W-1-hY5*dO71aPziu9tO7#TzD z8~F+=B0*D8S?5M=NX8gL{ajW?k1VgeK4%&M0JmSVV^eO<*Y&|bzS+X?U zfDL83yp|Uhn|FAHP5=1E`n0};u_2zmzo=)q88>+i(dd$1Db{dk;ZTiG%Axdr@*ei~ z^6}f;g+Hdwl9k_>2;&D1zH`;b_kW%cjuZ6PKt(NbJZFIDB44&xg zX>veBor$KAS=+}_521S`!D?kj;~$^9%k}81EPG~!O%8N)i7Fz~yniU*%xMxSb_Z-; zRQD2(SF-nD>Lq5r?rF3I<*Xkg4vH&tD_y|pnuce++h+(O1Qz2(`S-Sn!-v`*mM+st z6%vh-e|qul>XjyO;Y7EIQLH5X%XN+({Sr)#%qM@IG80iADr{;_La;vly<;81liQ$@ z9^=Z7Pb##4&3a5=NOOD*(3BOsQcwkWulVNMB-~YdzpvIBA|bcSdu9U#sQx z@>^Y66L8}e5G=Pb>jbinkX=;c>!aNxet+DK`aNM)Moapz+4=TEgWgwUp9eJ28K;rb zPrHsJn={-MYDVe)!z(Maak(Hz?fL>*MLr)qv7~S;Na;bBwJin248z%E?>xluT5^W!| zb%?@^LWB*(^@v9(&JQ$vx~yumWl~=-%~qupNgR37BXWi9O94JB?(NPAG0z)vND1!g za^#$RE$1*G-=JodIVvmYAXO3=UcDnP>R0FoOV{+ykCDsGgWu*r=hk;CCbFw z9ZkTdF@-E-2VP)?Ka^v>nl#mWW-Nug>+Gbq$O!p!pUE3Af- z88CrA*>B$B#xP#yfD`S0;;REsu76W6y7#qRo>e^U?^K4tKGMp;F^7lJ#SOM(s^I)E z<5hS}ip@7CP5^`=YjTb~YwEYx%l_Ac593X@X(Vcfz6^ZC&A-Mb0e8=!Bv$nw>&A>oGUvO1{9fC6i`kP$ z(`lUvr$K(v0V5-9kupr@lRsPR9beXM(0-lC#Lh@PIfT%3A^c*}ynX#Eg>%uBFFuq# zXcb`V#{ad=zmjYq@V}C1kY?~RKd+9L9y_;f5Pm*uE}NmfVM%>;l;2L?hQnU>IeI_8bf2_P*=7DKZ zIyLZ;#mUM9-gc)!Lifr>dLa9U&nvZ5T=j?OYWKGq`(1SB>Q`#AKsT=jvb^cy>;M)% zih~)wPSMh3^Wa5!cvq1!v?jGYr5$k`jeRglJeG?BY&+#Bz$-i+YQkV<{Ft`pOE;CC zYI==6foZ4|r}?^UtR_zJyCois0n*x~!nTtB6&2?Pf%o0&aR-+?J@6ew(g4jgWl<)C1}2ip0r(+?IJjpyxQDAc~1pc(wCS&_hdw zM^D3yt6_lCCkM_7Ba|DdC>HvpglRS`BM4C>m|`y8^xV9K){XD8Q>$gPsVfA#A|_ql zvR&V2C)yprT<^KbBU$EmeoMv41BfWOExga6f2mzgrtu8O_$pZQD?mX;pO z7=mggyk#YXjlw^`+ZPMlgWT|otU-A2AVnhN5c+H{!n=43AAEP;hE3n$m_ z8W8k>fc_-(?2cmSBUfzqe~Z<{?KdC${s97j$q<&x&FKopYhzTpx_p?;2I3QszVe>_ z%T>5Wy%v0Jt8ja}mXrVtBUgY_btWv^54aF^J1&O+czU_>93LB~N{V|*;zJ_PmpodK z>EY<8;m*fq&aHezi4_rKp)5nigWclVf56;#y6x`>BM#_P3UG23vk!WoK=pk-oqYAI~S8ehIe*g_%%b6v?WUHa)7X z42Fy@o7$xViRHYpzJNI*&IHdGe=ej{a^HseLNf%V5f3k8=CO$~cDa(mu}N#myw z1aya387sknMS(Z9vJe|dPVCBbVVI1X_T4ku#sAz)66p{?wiMVfWwYA z$m~qe5qds^&pZbyAMB#2{{2O08Bm^D>IFeD0sbDV)_LkLq9h%tCe5#>bj8)gx`2Uy_6Y)RT(16z*PYpo~t6UF3_qpsxD!W)DsLyhyFd zod)k56E0<6?4wPh$9)mZMrgAkJ#Hc*R8?zTU)uf!0OOLYp8|n=rR@6>3Hj3rA)@d4 zBdY}5<>O?7SYG?9C%d``MWjT;#1I6D`bYHwf2s98FMa>{>U(GSa&|Vi(62Xh3qwI^ z0bl3$t*ly?6GMsdQgC=gC)qiB*nA0~P%M*OcHXXg!!G_*!LWI;!78TVGFEnfL@zG2 zCTH?&sKOlH!#g9-rR8NI;_Z@k3tD6}GWOeuObqvoxtfX{#T{v0`aYa*HCHwt}o?fb*-> zWgozaY9=lS9M@b>VNrz}qae(+Meb9N_&(hQu|zKFd3$3FyPvZZq?Qr+5AYazdDHTg zMvFv>R|>>p6_Dr1Z89rG5X^VfAZbQl$c)!P$w=&f9Ge^&#-!o0_dw^mZr^Fm^J~oq zlPI=WiI7sz^m`Ky$QswjjU`hFzlQAnuK@x2vE@WX__uARlOy)O?0*KuW;=ftb{_H5FH%VSVxUWN zGb>;GQ)r%9p!&4Q1W)}v;RbK7a~wUvE<*3I)-YWEP-I5JT80~@YgsB^Wi0FV0v7-n zk5yw#9mbNvffToY9dI~cC@#)>Oc(jbS0u~a=4t6iH@EG>VeF3>UFAhhkh|Yd{qcT> zcHJ_d^@p&1=MjM)spM(QP$jj$u;LC`2cXcH`=mLj!35((D#p5Fy~oU&*dR?t%*Df6 z+O2`hR#JdDmZ9Xv8mxU5BuK{eIBV=lxD5RvLZcyU zKeEufQu4fRl4=A1kw4$+O85-SI`$A*gFs0VwU?T?i$I(sjn) zG9DwE1Y$XU?|ZYaZ(vQ@=9jCDxZc;)gYbdiU2hhTG$a74WYmoLzn(DRgTM7$tv*uF zdxs(0|M|tjLCxSB0VoH_2=OZfZf~RVHMP*yQ>}Mq{g@XTPK+i~;03P6u9EsP2SV-? zCjQ*b7L$5xCSgtIQ4l_ETAFN{nDo7_sH&zzCdvGmpG!N0bm6mPT&r_CW{qS3j2j}y zyV%)eD{Sk@P@YI@$fP*@!H&-2r$zTOkx_!jnBeuzSkO>}{Pjf{N#BIs{Ol?Dv$iR) zCp}m;Q=L^GS>-LirkY7O&LOcUx2yiCv{caE7Ag|KCu6&Op%vI*aMM6HE{Nd_yKq!Z z*552m01C@G9wKCS>znkXB_WH?#U(n#O4L+y*EOv9u+k|G8F7nxfq&7iGB-}SPnU{A zF03g$Xdo~u71{7^-+IZS1-o1Vg#P4j{?>@+CT3A`>QzsPg%mN^V0mu?r@(jx!fiNm=lO;2%C;X75h~`1+%I(mR z$HIsLJZ0fElkMXAoA#-_x{TQEig8JFI+1K4slP}X!5DD?FIm2WpT00jO6#GD(Zp}L zXN?_y$f=E42uGBelJ$uAMP<U;^NGN2z?M)v9fJ3(`CXerM!_Ww%AqB z?}VPkN&@7+LUBOYp>jlx_kv&aSn}gJcreI4##e}IxN3Opv?87b6A8`s-8OlxC{2QI z8723Scx9Ev3lc@pAJcaCe(ydB8I7POUp7r}ddFlXMejB+wf7_q@fgR*XXq=v5p&-+ z8=vPG&(vmb=o-1oWLal9kab0)&sM?^Ey@#?uP*`<&61KLm}mjTL0L?Y?KmVi`)mMr zrM_hS;-0B1jw%UDYf|H_zK+;XMkEw?Qd~OT^~)_pQBwZH)sX2Jt!O9oBl|x< zSF>pVyAC} zemkW((s47H!ASejI#?Q}k)lF1%CZsj zAo&O&IWnbgG^2Y_8qbSxAUFso9m#LWmjb@&JP&FRCVeEJTF$PUNuXzE_B3q3E zqqAiu@hq5bDbrL@=0j{D3Iz-q*{|9k8giD=6Jr(6>;R2F1(D0Cq`$Ps1!hcbM?x{& zFIwa*&Ab;A#D8n%^K)o^ZrgFR8KE-+xhRX3T%qkRhX1zI+k~87OUQ&}n!7nVKQ{rj zewz)B%UM@?Wrxm)R<}xg?6v!^B0hECMio~-`PuvPKhrfFivpiH)E85e${jLO!cvBR zxZwz}aHC@Nrx3oU1_iihobtpmp-U z;1vAl+3j^k3ZBH0T%x-y*-=s>`{xm(HA}@?p82-b^;wffS~=qfGoM-pK)xf+;kSt* z_mi(1uy&HaEqhhTZc81$79AL`z-2o2hZn{ z45-I&3lk=%Al|?L_~38mUwb$0Bsqd6iE@~pCq>R76`LbuW$Hz{AUk^YUFK0OEE>=M z1GYd(zuT$(&^pnw!f(HQE24Kr7SMD|-mM!`nrBp!K^te1&J~gJssL_qPxkT&B0Es* zy%{Q9vs(WE(Y?k|RCi6-vJ)p8U$ z9&`7D$Mf@^lu3BYJd?hiQYi`gh|ED>oMo^W0CK)^esFyBP9-UF3W~jT>q}2DNG>HY zr}E6=WnWT;+4Tc9H0Fwy2o0IJfd2E~#Pg`ldt*2_$;*#xKLIPQ!M!0uv2M*W_ z-r?o2%rnM#<|^j5sEJJ|G^=`!m3*tKSdCelUE4r&85vwMA93W9$DW?{{>r*mtn~eMJ)n#rP<5<)0YEs7?SSL)*Z7S|We6h%5o*Td|%Krcy zN%zC(S1Ahpvu4RzSep>)Qa;vFN#LvJzM_y>(hW@Q*N}EfDDxRE>HO)N)Y#DM+ z(0<@~<2gAaJn^=tPUYMBBp;=`m1`DKW3m<9_M8K_0;|qX$DhX_w5@QEExj|8+LB7m z##>NbtD@9R7f}{&$NG(vx+!WM;yjb=ahx7-et5@L6gywI=I!GTFTsj*uQtFYdxs9H#VoK*Mh-8C+-Fk zMtR|ivys3#$Oq&OGtv47YA%AiKBAVO?6O5OnT#+bO&}zO+;U0qM+7M2&T^qwRMj+j zwFqrRRzkpCj!_c_P%s@)WZX}Y&cFfSkWMHs!quRc^yT{a>!+mxMzONUfZ;&PV{iv| zCy#IQ)XpTUzz+RBbQDdxrp__}8&tn?cIB;8RQi*t!4&gu3l(_%WmxjxxEwNp<7pWu zBc&7eor+c^mN=`KWASD7~v@@Asl;w z1RSv{#9)KTBk;`Y>ycfilDWw4uyy3ov%U#usYjZX6yt-~nw+Kuzy!>93s_ zCB+vAiJ`QA)=}YteJbd0O`(D(xU90A1G$C|oup%t?&BC8F2ABIqRogj9YapClf`U` z_g4`yATn$U4spATWPJ0Esr2o4POqd?iW;_R7*9Kq3j4v>OB|MBK=2rkIOBnDcMXZH zUV<$tZ3_<0U1muifKDB903-()&5AEKo zF4iDqKK;i4kU->d)Xkv{5@R!eJ5!cQ(lC*g7ui}Zy;7#9R;_!$SD)Das+UzHuXcKK){A-|i|PRqFvqjOQrKWXIL;0MAmO-NP$>ie zJ?j!0N)i_&l5#QirPFrp$RVpTX;h4gB2Z767k4a2jF75GKRF}M7>kU0AV(IRf*5%=<_xzTu4I@tzGG%~ViOhAFDS9BB&dWhBSxeWN^{S#$Hl9E=Qo z?%wW`xpb<#G*c|pr(-A8OOY&PPUc)54is>tk)D*KW4ZpibrfvAklq&aR&%B39@eb2 z^vgo-g)OEgKi)-C>Mj*M>e$`OH#x}ie?4!c)3CjxEVcBz8iM=fo<;;s7Z0~+EOEC8 za56G8(hVcIb?a3()2~t~h>R$CNOjzUYXHniQM3R~Kp7l$VMD(E07vc5Olh{P+7bF< zSdXU~$si$=;QN%YW*l&(f5~XVK#ae1rL?3eNpOkU`&M%5Is?HRl&In!86BFtmB{6osL5_Iv>Xp`&PW+vx9lGCr+>L? zXz}TiPg1|C)V*m}_gzu8tg)($ueq`0jz1*y^ZJjd$E9leHlq%g4J+1Qc>OBLv=E^P z_~C&#{ygW7h2WK{8w61_6p&Q7K6H0z(X(c~YPy6XD%K%0R$#?gXCyITTziSg7zz&{a#m698MT#;JyTGg{E(df+87yC zqrt$>IQwu<$@B4b-0rh>LDIDCF-=IQmPx~Gk~!kqr5ThEUo1f*8TVs7IldhQM&#Rn zdX%Zah*$v5lR4Y>Q60bBnw5I%rfND|??gdqEu4O_`^L zG@4=yS)4?sL6g8ZInGZX8UFxycx-DHkE>>t*yxz|$hCb;E=CUQZa&{R0kQMJ>VvWp z4MR`S>}ocw>KcCOW170Os76T)NlX?2Uj+E$2OkS@us}i#0lhb!B)aX%&w3lVJ9llE zDh)azc1H9=jIdzemi&3+`2PSnJGXmUTDB@xnixfOiIWh_9bE3q#t0lAAM8GH)BgbK zE~}?Utxu)b)MJ1_EK-fkgf8R*+q)aGtl9DgM}kL4^tMW{K$LY7wq#Qjf;koNz{bJC z9DF_q81amPdh*g9Z-`2gB|7hH{{UI_s-0S&Y=UAk>*v=`rnJXj(lnhS`ihP8bu6ff zM5tRu2p|Ye~VgUNo4C7G>gK6>=L2I|A{S~z<5NVRarCAvZGnE4c#?na1_XGIG zaC+w#+RfXN(|}DCxj}>JV`6v6tbY6)WReFb&p#yfLj{W(K80h`b3KUL-6e}auvAci z5l5al=Z-J|BPQ2Cv!`9{%Q~Ipf@|pq)GJA7j7TF4n{$B2B!7?mbtrkjO4DN&+uAdy zA=D(0E}I*J>$G}`)Z-6FuiM z<}3Gq4O(qmOSw*+SJZDbkVwWw!e#dH-?{1_qZ;F#@72JBv(mvlvfrG$of^u`7 zc*g@BDef!R^$y>q9IX^ud^^C3l!P+A{9q8Ajkw7CgZSa~IL4o(>ZS+;QJOo%%`1r& z#7)WCd4E$m$UZy|kYQ4_a|8_iJjwf0RMVlfrL{@OoqtvFwe2rOt8ts@5))VjtRpr9 z%F-!SDoNz?#~JbGscjy_v)X3WXk4cxl|sV-4Y2S48&qd|5#XQl2UQgBUZX-W-9*Bjzm6;vp)X-PC=2$#zr?UgU0M0ma?Z8 zg(3;d^}RJ1P>`h=8pfV=8Qhf9U0Q<4}4T!gZq^@5mTb@|| z04=oO@;d4L%MB|UjCU?+$)>eudhs<__N|psr-OGehCqeLR8@=Fw`HnNXtZT{8!OSX4;B~D4tN_&e})gZIz z$E#bdPy|>aQyEhq2Y4XkCnd3uoOMw=+LXPdl!_q(lgLr|Baq(* z9ZcHi5;YzF0F^`FBn1zs^z!woZr#-DL#EP`^!X%8ghW+P`bMFCu?b^8F|@tl8e&o~`)&fM+VS|k=snshVV8&xAyAy@l(T#?7W z0A%0}e2$iDx*J;6ZeEr^@Nt3p>92Jq8dR!X)ojdDQF0>^ zy6jTOsk@#rn9$_y0C@o8sb`$hlq|T{yU?mopcP z$^)Jej&`WuFQFs0x7H&W@ampPb2QyGmH;`^VXV*>H0>Ur8K&|hMFiuc4JMC@(_bT`Yy58v!9?^BcZ)|Y0@J2dpjMy~GCn(??t+;UhP zAQ-?SgPeW2J_5elB}inoc54;&l}BjPKA2O0tgDherw2Ln_&;fV+jd~r=~bZv8keOK zHJdi%TtJAbOKccE2_AUkkDk5D+mPrw)o8Ud{{T|ytfq7j$jOOvIRkemk(~ZP=N(wm zl9gaLC#@mGDMOf(09G&B7CVDSsd`xL#MUwyD8^31fHt`#6+7djGvnqk=V`)raU}qUQ`04h8-BoH*T^bLdhON*}=a7;&0hovZeb_$- z2S3kSycBoSmHww z2-B#}P6=Jv<2W372aJx7hf@CljFC9cykD&c5KxDdwvhtXx4nC_q>W1Ca@>~k%M&Wf z=1t8bWMh6?7$h&}f&TymL1$Cab!jKmMDr9_LC2gRrX+8@SPB(^037c?{+(Z1kl4{hiZYtUVU^sV0Jv^Q$vIGQpFHQ`cXc(o zbJR=rY~Qae3xbvQB4yOaxtw69#2Sq+cRZCgTVIy6KafOEzcx$TsnA{SE;Ee4Q{&b+hvNp;C;=KNCiRQk@4ps z^esD(SM8~uwJ?#qpyqd3q=1FNB#tt8UO*!Roa7#{?d@`4jcyND)iWCANa0Uz03Z%M zyS<>CelyeA32_92AQ(L0arp4ZvloFL{{U`!Tcp8q7$t(u zr7<+Z5-kr=89*lhWSyk$$o>Zy>)xTKjG!FJef;P(pKACUIgTNWwemZG? zNqt{NTddk@)QHNEqaiXoBFVhBvu}WKH+jc{(i$!iFRE3zrztQnwjg>}jVrV0qBfIm zTLz|}C9xw?bOAyrJ4hn~ka-#YG1S*}X*9;24Lvq_;iz!xB9dfj90yXYd~(VU3&-c< zs;4gpEnLrV$)<*v1#gU`uicK*Rq4sCmvhtL@v>l8mcow-0d2&USq@Xc>0o zv1Q5oNny{NpXaA5iEY)E(n&gf>ssO5LUE8IUb|Nw(ferW)oVJm*5$lNF3!)fl}6QU z0LKR)_{SXa)em^;T9%NqRMldNw4Y4gn$QJ68{%Th+rAjDj!4`*c+NzXO%aU>=Km7 z8T?f~p{Gk`DI>S38j?pKU)fetsCfVtQoBY-2gXnQoGqn(*VTrbYG<(wPg1y7Vq)A0 z8%_>LAmbiR2N*bSr0K~|u<2;i9V%OiR};Wf5*ZlfNGB&Gx(;~B0OQA8-kfQuU5`ta z2t;zt8~tcV(GeAt5}R|s#Df6*gZ;fZ*43Mb%9PuoG80#tEy1kNth#}vVi6e6*So0P z9kaNCGs@%>&jaKhrtHajjkm1@3vmXP8JJO35fhQl81j9CCqE}WW1{+9sc*P1q%}2} zEZADrP(_mO>T>VudsjR$W#cFL!j0W{*LACjCCDl1Es33?owBYFF$;oyxyQ6)Jm8Vm z5Ty9VS$ohf6=Rn4W{;`gMVHkUZn~$_NfRhx3CPO^z`?@&6M%mwp|t^TSh1%hm81x( zB9@f_5vDer0>=arK1Y%Vo{5LGYDP4pErz#3TW=%AOQXbtB&$dm@<>s@&mMky``-%INCM~cPa2h*e@!m8 z9ZBagxkYbDOBoy%Ai*cl$>Es#k(Ak;pOxKNTBt1)XR&l7&y`w2xS+qZ_o;GRxE z$2i;VCznO_9w!C`n9A%+1>AQ7kWbp64oLq19q8Wq*JXzB$4+p z*aIFhj2|aC9(pA@TTvxe{Z{~xj7HVtPNk;l@aY<`x|bM6@y%Icee1bhTXPNP+u)oW z?H`^!cWd0gNq&a6)2$fU9v$SnsoR5{qX!6oJQ8@p!(A%6G$^Hr@!a-7Py}ly<07`3a z3!q&3{{WPaL+#0Xf>~gpEE;nm&Sy=d8!)4Saqj$l0gk$Um0Ah(>xv@!S)>zHjoNa- zBPe51pr<1QfC&VJ1o_ELq9&JrQH*JE{d2_w&+4-hnItGyM`FZfNYAu?pMmsULS0i< zid}a^)pYm_ZmzFbR?bS5W#a^4aDV=f7}phrT)g5Y`{nelbv&?KnDn4~n?$KbwM{ya zOOi<|5iaFs#=*w#AYgOOJn`1ukEzY1w8{EJkdrIB6_<}hL|8G}r`$dJa0UnD4{FZt zo;a*jSR|c9^R!#5O6cqA8Sy*OH`LaI&Pgbq7PWhC9xN%8Au^f zgEJf{Bn%D?P7h3Uu(yM0)L0&oKW%9(xawQxs=#aSN;TaQhP$uoTBVwiSTdrdaWP~n zLg2P``@C=nTyS{LQd$fHOTA6sOqP1F#K>X{RmUyi@sWV8K79D|)t#MHTe#m&eLBN5 zaStNcJi(uPm<`Vo`&ha(sOLas2i29dlpRce71p zwE3+`Ac-SHP)cfbj5{IR!~trtfy+_ z&}TRxjOY9Df&jyB>Fr7BYFd?#rH=hSO>IS0r7^BUGUo@A?I(_Nfzkb|3_7Neu|X7% zGq5tmzOHhIXfhqjF}MN-+zfv>3ZGOOHm16Ls1r|trrywfJcZgIKnxV{Kq_!~@zJ>2 z($Pu`1sS&c{_BwPO2}C=5vd(IYx7iE#c8bfpV!#UO*Uur5~-R(VqyRXa;YkE3Gm)X zJaN>O71dL?7B{teFG2ZbkV@&fhzz^9BVz;c&x6kvDFmIgLR?3qz>ZR#=@;uv?q}2O0RuJrixchYbD?od9vH zSk{rRbLU!J)2v6^qOw}F*HUM4X0EbC4&%5Tr#Qp03NzsG&samF4+Ee1Bc4~tA@6GUE~QCY%(bLx?3rW{vGig&T&UWi@OKPw zGn4WLdP4oVMr(R}LTgjd4UA`NF(Xojm7)Id=Xl2w=h`+h{6Z zJGPvW^Mimf=L+9P)S4YF8LG9Ht`VYJG9jCLs8!sBvG6%7f^*|IQ;lLzEcsET&-wrk z^!wEh^+UO}3zqc3TUUjy^c)b9XHId|_$OqIJt6MtL4w zD={iVgluqG&yPG3etHYJsdqk{BeOQ0Su4r=QOzD*RD$dnu|7!Pq26NzK zoZxizsr6whxYNG!rK^-dKpu5P-NmkG5Z9?dJ)?#u7hTHX_cl&3gSD6Zwok}0dU|TQ z2$S^3Rcj(KGe>|<-2K33@c#hMPrs#BA=PzlM^M%Z#`KY9Lz3WzVxfux6@kgYIl&_z zo`~-~RtlQV#TsiLNJg@k^bj^l4h9Gfw5ZyAlsMpY3J&tZWWYZ(#JGf#h!U+%-QhCA22k<)1Ydq8i4|7C?xZ6ug6=R?jD$5MEyLx)Hl{FZn0g@(-D_W|H_rm?ABdNszEUQIcJowdwDMXa))c~Ecw%QGBgjGSR`Is;$+pX!lo z6Is(~*MriHSrr2USB!-j&QBlY6Y=4eh}N{-I<0F^(~8M~nqwqiy6#^E8JKbkl_X>V zp8#MMU`oJ5g-=^&r|za~sk4nkD9lg62K17>t9Gx-hJ|pHS%LIDMReg=)pko1 z8>VRiUsElS##=br4*>bjCG4~sE~d~)GB2kqByaT|mkW@t3CS5#{O6qY3(XL)@^cfO zRp_)+hnBkowsaP=sn%(&$EhV~ELe|xQ&h{aToO1`JBTjKK`MA3>c>|)ZnvmSPg~P9 zR;~J6RAt()fD8MI?HqB&K;U4EWOW0m1lN0s?^~H*W=urYXCa0$k_LAb_Jh0K$Q<~| z_jK(!;8~whnP-?vvU*PLxydLC0&+kAfsBj+o~db-;7aG)zLh(QZr8aLPguD5MCA$)d z8gV49fwuzOfI%PoPviV_rDANTgBu^NoBP(Z65vY4VBe+w@p?Ah{YI{lr$eWt3u37O!UBqk0HxZ+-H#jU*sC`*3o&&w;`4 zqmEBTrjS{{ZeshH6fQouIF%_j1e}CNezhMQF>3mrrK>@0;)hW6CGD zLC72dGW;Z)h*SrEUb?ljJRC#+}d@m;!}s*~J~#d$16Rw

i6xkqhoOZp2DLWKV^oLhbt(yk84=c7*!Bs10-UR zW8C-vnD6=AGDxS%ya^xu-B4 zamP%G?xe1ccI?l}`R8|Jl!3c~FgVE1YNc`!qa}*-kQ9zGf1Q28(ESlpO zN$drDMMRU(j6=NcTWtNDfDTCYuQ2iYsaXrQLCNIz<3Gx>p`}HAu5@5NJr9~St$R_j z)?~NR?i$=aRoO@k{P#U-?w>8q%lY?GOCvDJXE|a{d)M1lsHILVb~J@G8jkz3rF)x; zEfVe05aA(nk`Es#=Oe#=@vk+tvPiY)Z>B0HHf?a|8|6Ysz{mUu=Zx3UWi7@DzNd+r zCCx7_y?>^3n*P6_4+dK*-fz5lTufMPR3S!HbLcz%70i4O(brSgH9sHg_Db3%k{IBQ zaxpC6e(inmKx3b8TK6c*PnvCiU+_=RUkvz?Xtv00pm5~yz(z|Byyq3w6uCKHW1hNS3fj#ZJ|fXA z?fyMQdu3-A_Fs-PX`^t<^0P@7L!b7-)!Uuhr>`=lUewnypf zT;+zf1;L9-*Ayff2(rSzJY$@9=dViQ!Z_87gV&X`{{TB4rGIvO$FW`6cxT~n!jp9k z)Rvwz)TMQ|nOvXrL$rn}PZ=5Jyms!xRMcmZ{{5xBxt)P#RW9t$(>Up#X)lgalIqg* z{=XqX^HaQC)4TK2L)8BOWzPi8pA_vpW8#}8x3tog<%MTZ470E(pntoPe*s^hnl!#2 zy@DhcF)L*6S8>w-51{MCe9nD{i^M3cVv=9i-bTBz9&Y+1&DSdiCbLJgW^F7=LNjTAI@4 zbkdhyO^pIFd`+daIbrt5Kny_&3ojo1YufdVHZ}2FVbpGT_X1P`2`q8+sLfrXpONn6 zKkpXxJG}vAhA5*TXPvk_^~d@AYo)bkVYS=l2RJ`~#e8g==DI%K5wg2CESQv31x9%! z^dx`!t7_bZI3)bQZESSF{{SML-Hux2q;xH{3Wib--o^!AiI*o2^K!g;3U|`yol!8k zK=DWlg4o7C8shv_rW>0=;aU8)4hBf%U{MFHio(f8X};$#;u*EuoeAx{D>7SOu);g2 zAw76K>zvV|_@}1nh4sBc3)ui5s~}u1dSni3N>QTezi9pY{vL;;HC0tsSC8s+ei_!T z(&1z_uWKlfE1)^Z&jfnc)0#(#ub}XH%8Miu%^ujyg9Hxdm$Q^^-rdg&h^fN0I(OZ( z%XI`6^GL*(Qc2zFNzXOSYO`+}e82|WoM4O&YSPm~qYZ9Ue7*6*#IkDo;LzBJ z!9O#e-n*43aFJeD`_Gchs;aoAud&wI+q61Ll}83i zBaMoZNW&6%{41W<;1X)L${P%hX9qvs86TZp368x@M@+ub7julm_SJVuXAD01xS0n`TXU{$~raPT$sy zx%)8qPCYip>sQ)HxH(5T$wCG?_x}Lv*U&m-d#{>Zyegbv_pb*vtL<^JYoX{uDxC{? zBSPVr^S9Um$2Cq?-be+4fO;Oa#TKk`rPydL$L0eW&my9coz4RgdXfhOR>@dR#gM#` zDs2Gpa6YvJ$0}8hNgSMDdeuisXe(V=8CQyAkVL!!+gAg>rF(C~tt?t;kpeNa0q=_8 z&T1%O)O(6w18nUbL!O`geroNFrU7y~de_TQi4y zani??IS*LXdSGDnrpbcaRGR5d+8EilbMlr~5rjbT?<9eollg(~QOc0V83mP@iTQ%{ z>-ksOE{!wvn902vnQtY$S1Sf`&w@$q{&8OG@S?>bV0Pd$1DtR(Sz~{PWK|Z_n?3hN zRY=r-4+l6tmAP&ih|3Y5*1j^kw6r33ZtT-Q>jQ8Ck&VCQue5P)oK3lxwP&H}x*ztog+0cn zDq2{>0mOuW3HJKe&i)#kQcoD_Lh9$uQYKK+5KckQIXqx??TY$5nO#XseGdaTlE1oZ zS$Gpw@%7EL4Jz8{O*2b%a9iY#Fj<^~+@7C^sQh)~NW_-D5%9Ev-$Ak48VrSLKsYSN zzDWHm-D{T6PtBh(uwL>CTK?UcZ-_>RuP{ zhO6`-s5y=DWWi z_}5SUocQC(piV+`F-5c4M59dC5I%cI)l;x_VpAW@L@FoF+0b zI5_Lmk4$#2t*VrL*z99XDKzA@PpM18mhBgbH1W1?EA3D_qaiAAz;mCad*_Iul6`g? zgi=s33zfk8h;jMn^RFW{i{)O2x0OkKX>4`6R7K-f3PuP#f1WF9-DOf3AtR7T>;C}P zua2BrXWd3gtxa1vq-5#{spS_>PwBsrr zn>$N&IIFg&oma78uvB5PHi5gp{{X79?xKQJATN9{Khx_;Bc3g%bYNd-@JQ6PDVsk_c?`jwrNb)`vzbGI&fsI_P!(01dnyquAR{XVRc)qR!WJ z1-LlxTHY`V4YH7>S05^l1$0!Lrxc#Z`5M)wUomo%zx*-fI+W#uBaL zcyGh^nyt%udm}pmKY5Sc9{kpnsk*aN`?KkJy^SX)(D@4XdG9YDP?ldZS)HVjiNPnX zYQ~Lf_YWZ;;Ug~RIV+96o~FM3NkW~G@d|FGMJK(^;@UW4(llsf0aoT#m4gmc?%{__ z3goq0Rk)J!b{UbvMx?h>yk|dvKb?5=o$5E|`kuSGgSqX0u}-PvYx>@X-zwcII)?5! z2lb@_3p1Ohn|no%K?UB@{~|Fa)sxfIeZK)mV^J zkOu9&$28)tp~juaNhN+k`S+$s;EkCifxDBQ-{+-lmC-#&oiLaKfI1H5s>;Dwge6a* zt4;37wzfq*E+coU!5JhS;GF$?*UzGPB=BO z9DZ77rfbK;D=VH}CQAIHOAopazG`^LUWAN}wce$7p~E%Yb_)-esW}*-ApnLZy6ML9 zyD)Cb$K;F5o7d)2M+4^0bNT-Okx`462*3a{^8!gdyVu)tv-F6xky6SflJ#T^Ffo!x z%hdYU&_4=pl-r`LWqx768Rr#_F?*IngHB(0?>a*h7{K=#^sU$svjR!RdSbpS5p_EX zPpP7SyagF?)Mq&6yxYgQlg^eGmc5Ro*({$(x!3%$T z2j*{6fK7OJgtVXSd+)X1%#cTP3XRGY=4WB@s2rX+&pm7DGKQrYK8c?>n8%Xb+uG&t zjD9G(hW^XK9vr%k*Gsjt{{Tpi9u?S*jgGtz)Ylnxqgmb+yRkl5xC<)6*xZV$0m&HZ zbB>&1y-3Bmb6-=zigAQr&He_xv~%7q+Qv4tQl-QUN6RAc7z6BfpU>X9F9+*T4REc% z0xQ)kBNLLOWQEVDd>r}=R;qTo{=cgeRVhK5{{Rm)>n7H94-a^j?V{9gV<=RdBe;CV z;GX>C9^mz^-^bn<)ckWSQCUE3H7h&2c_a>_Zo`F|;DsC_!m<-{<(AE8wd=55u~3_r*UOA%nx(0bQ_XFLN%JY0eIk3`=}vbyApzU0DfmDl55b*smIz%ytazB&F}Yqr&cOn-xp=H zbp2oH_cH=mp;?MSDFM-l3_;p)ll^ONM7J|p%@`^jRY@gB1Qy8Y&UoUz3eDQ@$l4KB zFqQtzs@gP)fuo%ZjB&#c%N6uKuW}46cOwAsTtq+(j4Kxh2iqdKGZdu+pJsL7uL{v; zQKC+h#;qHSGKI@ z;g|uzEZN%JW9#|Ur(|a}7R8R?QO}l6MhMC8iqVGnFvA=i9x9fu=Pg(^wI_n{711ON z1_9JX=@TralIj)W%W4B1b136+(t}Ejstel%YEMrR0LuDN7 z0|bnIHC35Q74sJWU>tVzuE@P~JoKHl8HFpB0ONzwpb?cjuy&GgG2e>X+`ALK#003p zZ<{3K3~^MhrD%aDgq&j;$r%20J?sfzQeOutxYy&z10OLS{D1Z9=#4flwy~-Y;l?pv zJD%Ouj8|f6zja*Rv9}SZW?HoQBWM`G;<)Miu}JZ1K54c!kSNI<(~vX1M<5F8rk65E z=9|*xhEf*_PXo085(Y;en6CJ(PJV~ugqMbUk1#1xNEl)>_*KYfc8R>i*u6LyKj#(q zlaDT^=rEP^9jAtx?0|=6GlEWWUit8j843X;c*`jSbR!;>!HjQ_oiS-NeFvh(uBsIC zj2wRki zuP;T5jER{E2)|ccyE)?dGqf zE^Q`>B-?_`9xzC5aqIcjd-?AyE~C5!C1VI;pl&5jQ<3=bUcEilj}A%OmG(UszVxwV2pA3SE6`(#u~?mH5)rG7+=5JuIvZ;)fhlC z!#Ab@>+k79j9O|>$jZ7?k1t(*?f(Ga9JhqN6nHzve-NbcRffF{hM#Xap6=3h2NIA^ z?%aL#EnilA3(&5v;=4^&7_}WeWb&h93WbmZf%4-c*C*1xb2OAar@JdOv|f7O*H6Io zT<1##D9LX1eqZqa0EyguOV<1;@L$5S-`MGKi>rxHuLvY0O{Kv)$;LksZrIR_5Er1oq0NqDitxcf26hi{{SP) ze`!yNQ23L?ar`^*Wz0vz9u$zku8qa@=K@=U*x-Vz=m!Uy^X~y)u9K`?S<4zr_N!-v zyY$>a0|)W1q=hF>0mz=MU-kU777aB~RGQWPZ(q#C5=xhNpF84qjnJNOMloGChvbgj zsf=P-21Wn?eb95q`$n$2cF^vom8{GSaxrV-DWH=Ctl~g()E-CEt$Rh~;V|kp*3z-^ z;etS0jAk@Ed*$+f8s)|N)Zo`+ri8RJGdW z%U}>lJwBgG;dPIQ&8F&-S-zWi(877RMFoE@r}C?Uomn`?)WY$4$hD{ZOYr@}ERtRA zU~mJ*Q0I<0tLMksV@76-34&#b139Pr$h$O8)tue$WI;E@_-&)wtnm`q8(=>8?OIwV z#eGs%mEpaeRF9N`SD#E$blth8ijG}}sGJ&4@iaVL@#9>#jtgZM*W>`KW8qbE)RXPc zddSs2C3vq~(xKC>EM!>cU<=GiBL}uCu9Z0`sWoNzoFCcPY&;ZW8#L}3{;hA}9|_#+ znv|e<5VNo?jm_CX_dHj{nzpBNuWGaEcdzD6cI_iE91X+}2c|tetLd^RT~4d?K5saw z%_!6J5?Kp4wc&y`6$5u50&)3s?OVEH{hrQyl2j7O94BxYIRNrcZoiK;>sNP*UC%0v zEiDeE0GfCpofsQ(8JmuNL^${AYnQlbHDB#3NYPoMiCpdEE;-}doL7@g>vz)Mnd-YG zp>y_ryc$o%4I)WYg_1^v&+w7|0P6t$74^r7H2LrRT{XA zpve3={c60*RU6VGQcLIRGfitVMBgc)@Y)uiTrM%j0QIk=G+S-ZsrKU)^SRBZh*2@cK3Zv; z%NUM5fa8oG@TM>d#fi_hD+?rece@T*Mn~4AL{aP8rF7EV!lsKtVx^aH8Sm1QU;qMf z-|Jm$!87rCGJ^q_h9>~GVeeWnI1!P%f_o-$$6s!>`V~{}FzvOetKnj^UAt@!(Ut=^ z#yWpG_uqx@8Zbppjev8WwdLcTpwZb*?rq%nod!U=6pzO>(!>tlasg~$X1*5@q}erH zq)#zbw>xq&Fno{jo=BmQ!?94oat9qvZI)qWimsy{Q*14G(R}qCj}-A9x1fA9 zwz-2%b-M93q8TQfpZNBTyDy>ZSpNVFv{`&bu8ZsPUO11PEUq}n=bxqtue#-JrO^Z` zI7W4)yT9Gg)cBF&X!U&>@+swbt%zlf81t}aXdLw7 zdIM>qKNCfz&dH0bRkC&?Atf<}ACB#&y=qFm~VlG!y zc%lq2NA9+e2h`*7t{20;BR7*>TWXBJjyOkRa)Ih z+|}Wd7mrqo(%yS=jWl<04Z+CH7mg1+Rsd92;^vTL&LeMDtOTsu-yTD?5m(%*^Zem(IP zwejD^2--AGbjTUj$8b0Vf;`{IV1093-^Kp`8faewz8^Qk-vw$h%i^yPz$3i7ha2r6 zBj+mJL2T_F*)`9FUf&T6CAZdIomb{@;%PiK3K(eo{#yPl`6dV>^2uDtdHIHVd-`)w zSabk6;#5Q|4tXBDf1Fo$4x#p|tEP@jBf|%L zb&qdf`)B#rJ$-3MPwM5u{O-p^;C)S8BM8}7IaVwI+uQXu=@z%;qhX$^03o~Qr|DlO zj;Cs^A8mrE&q+3DTiqxNhQ@f$;(4uWYs6+%kl>ZbAoi|AtaVE5HjVX>XHcp-jB+vC z{3{Pu(e0I(!4mCYO9O+No@+f0Y7dp!>T_?RX)h>dvW+A^Hto0_YTcEUlt>ol$qJH4 zBLpAvYiQJyYnb+Fs7^eqbF$F9CE&Z*qB^1#ECcS120-_&pHJ|g!p%11HPljVXv1d% z8@iF7psz|5VHIvmpEr!2J~br_JW}jZ@!f}mAchN14%;I%j6oy}_v`Kc70<W{k|#Rrh_cx5?+HMfrboA43m?` zIO4bMrg`-nZ6a9JJeI*#$pwpK{{S#6TJlZ5Bt{-BE1k5^NfxJkLaTk2X-0j3=kVly zmCty34>MG}FA^cVj#z^5!#g=(NbGT5Z8vDi`W^FL=H@?uOWOF)Pn}dRmvGJ*dUqiH zmG_PPnv3}+k0ecH7bpA5z~}O=eE$IWYD@WF=5t}1RieEA0LXL4iKSK;`GCi{0<;}j zzUy_tfhFc4I3#?^{MsW@l^aF~X|^T=F^Nr?q72QUD7QIUM?d{(IHKeM{EIP4Ipb zajCgDIFkn;X1OmIyhi*Udld)6yfc(<|~ z6OE*t9@QX4Ly|tV(+fv)88*f=z#X9bRBdvAV|HmuvRf4jZJ&#VNe#n!Y$V`ga_v8r zJYB@GZZ1JQo;n^yew|hqXW3AxXq|6>?ONt(WdLkb_kcZX+Wr~by5C403jDxhB>HpD z<6b6XCX|utVUm-%@BSaT5|mIzazP@yD1wDhx%zrn#Nty@)XNa9B#ERa$Z|#j9<}Da zJJheOtS(`-xRDZ1yaC|j{{XLAV5_=%MAHdIH798;503m+?EWQ`%BD#f$jf>HMSC2t z7lix|rD(cxs@&^vi;J0;hAW;IKA8vfufC+eaTnwmm;1=mTVL`#tKzn|YXy~$hoKB+ zW?5!pP88?9KN^?BY&2il>dqvY{{XZ#9Zbt1Eruu*073KsfnMGgE*NO3Ezg_10FIv`G4&lvntw@u!N1DH zHp?E|AU`o1SyTbnr#SZJtM0dxP?1&_P7d7Q$+*XfBHY;y$It+eaoqBzS ztg=M1ETHF>On__WvnqC-&#TJkdTFzuvA#k|uijIGla8bOb6fV4DUC@^LC-B-OZQ#T z>gv_an|aveslZ+U=rjE~Rf~obM}}ZaFHu8KHD|qmDTTZmJfz_|I35C77ocyHYbCKu) z{K&0i8CIznt$(dgpTt%6jn#T0C_*C{{ZXK+boX)AcQPt zP44{k1K07dytgehk@1>NtCKFxXf2&fN5q?F#(4|;BkRbmKMdQ8{{R=-LO?@ucPS$| zC9%)q4RF@GjGvP`C`oRPzBr|p?^lsW?6W@2OHpw6bys@9de0 z&wYa*%Qc36+oK2lZjMSm?REWhBHXfEN>p;BwtozNpQTPiZVQev#!pdSF9hvmEKB|7 zqZM|jB~L5>=bA=|oRA0r@yPG({(Dx8nmiG%CR}e_}A2sMY7#VJngTZ z%oXu+XC`GWV!Vi%3Ho;Cq>3SoHZkdn!kX0bWX8(t5Xe2nQl92VZK^tY3M$R55L1s< zLdi4oO(?c=&QDs&Q*zatDJ7ym7Z!DQ+^7I3R79SwP>k7NSYLO>Z(bD#6+Q%2V|z^l|gMDc`3 zJVahRmS#P=bDZYAB7IIBZ$r`z%d*dB7`9EmfE*9Z=N0-k6{kiqeZR=d8+g=GT^syU zJj(LU%U9MG3)M&ekMPFs+5)ULEoj)q0Xj@UVi3PH}@Ht?N2@TI*e)Zo^N{O72 zk2TTthP~sd&xZUmL$qlm3zR@-ZNZfA2g*Sd-wD2-V-^0F6e$gj{{Z?`s|Vd2 zHv}Is6!ume;NzOwo!k@tzpwZQgY5Y!w7cK>`CR7p`z>PEM!2=pVKK{a`I>M(a8&%t z4{YP{$*BAxcAEEvwXGqO$`)475O!=j2PB6-?y`Z?_=lxsiBk3wYjf1WC{DdMExDEc zZo{nn{{RE%-WAd>ZhqNsd#Vs6l=KA)pvmikMt!qiM|?T>iQumcd=Aug-ET^`Nc0ys z_Xq;8l#_)KlYk2n2jiOgZ0=QYm`JKi;`}a;LcI^E&ZRzWV>RgQCcnt|KjRO?{d?la zjOOufwnCJRicX{%`Lp zO-gP_Y5xEKxnhpi$tigPEQ-7Hj(d#yRcm*7bvML=80nsenv3fub;(^T3B0wlI>^P4 zJbLu0?C%<7D<-gae5j7a*brAaJvl#^KmBSn ztEr-e9b_vcCjgRjh8X_<>(?%>EqR?bNtf&{Tx&ALZ0-_t$T=W$j=!Ei3hMkh;>eom zZ0?t(eR7cZIUT28YBh_4)@lffrHt#-O?!d*uYM_hsl z8S7s?Qt8(JMc@P-@24U3ISv1oFut@gv3)_^aY={mf|3Wur$lHo%ew5lCkrR^%V0 zdl_9Wda{%IG5qv7@s(U)q3Ql-n*RW;oXo`hyn&1W0mpC5*1d(c*i4g^RRM@ncr44u zKac5OUsp(Z;M4sI?WxQLE3mkfIL=D$IpjyBWupvNpAT;QBzV+?+kmU-_`r~P&~9+i{z z{EVF}3Dt>U##byolxH93-mfrH+eqZ+2EJ|z%_hvT5^kfna=9vzk{oh)867FUV-^4~ z`G!bS&U#l@D%}{xw6z&1$z7q3az_KDQ=Eht;EqW?+;Ljd)!50qYEhO!f<^{#N$vQ1 z)&{W7PT+HqoOAv~bW=&ODOmJh*~Zdajau&GX=PFXOn<>s(4s)<+jA>PIAO+_5+wr#w>#i3Sco8g9wz zHFvQYkS_snX^(KqIUHvm^)5{-8%7DU@mezyGYN{GK2wlQM;j@2jJEQ5#&)0At$xU? zwLO;Ik6Z8-tX|D6ZQY{?r8e*h8Sh@h;EQsB=aIqOz;x%*zBe5tN|bnQ*F#<#dg z{#b4pNw)(kNF4tFI_aeEG-THzvp$sZpN2-S@ctXEIphl31WgJ9#DQdI&mBJfd8fl| zV^`897Xt777UDKpAe)qt(DJzKNa%i*y*(c11wLBTq`dzC$oB|!yG>%|7rBxvNaI9F zcPpVq6+#L6Uv2~6;ygMxkYUHq;oN3t-4;?t5fwCj6`ELH*^ zVi%KWe1+g=`F?`4G^m5>GM9|25L+R5=t%yR!+(zG^qrE8x{=wa4ZW52u_-4R&j+zS z)c}fErFhjzD8PVn3Ho#Xaay&jGmMd=9ENCf7$JjgDb9ADG5&pOK#d!;4!c9B*u?O0 z(4WJ#b8^|VbaURwv?UQ;*-i-F4jktk9uGf<>rC+#mCQE-Qn!&6nBn%Ee8cqTpYxi< z#VN&0u7^b#$tL5_((uoXZY}X`cFmEFct4gs>)5<4;@dL_S+12?MtXuu{{Z#){VT!D zFm9B&qp|e33{+}D&vUub_3I0S-5l|i1P#H#_VxN#NvCRd&6N`<0PQ5OJoWyy=UMJ_ z)oI;a-qY_yVM;O+jEs7JoYzkc)Hk0XRSc>(bIx;1bIZg*rlhw-_W~3|EaPd$20uE6 z{{GloGAfP40$bas_|Uhp$!SW*nfT*cmrn4_{MOI5c@fB9-*t%K{{TApgG*^mz5Ia~ z$#8tO0Oui_C;3;=uWAa%OW-if_;GNRh12L?Z;_l1A*0*0eO(T0t~yFcu>z z$U8<9fPXxHlV3rIU%O||VWrJIO!XHLrNc2`Z$n1M9AIFar*6a+9NA251)^Iw0*EMrg7R!#`CjhLRNE0bAg z4f_gytm2ZrRc_DnIomx-+S$COl}liNKe{veRoQQ?1gYo^8xw)7H50dh|R&=K{`P`H;okT9pFbN>MAs)SYUOK)O~ zjtI#E1m~?_>hhIGP%*|j^#1?~=z`Rf+`ndhEXSu!c*(@Fah~|Epsq@y0H?QqO8IQU zeE6D=%=7V=b&@jxW+a}~It3i(sLgRxcF~zhYoP_i*iZo#LP>B-GhliXN^e~aX+gaV zU020gW{!;|?c8yyf=Oloab8E`uiCre--QxL&aoWxE{YD{gyA8ib*A@-uyYe5IV~2 z2RjeH{{UXSx8dHh*LsYQM(paO9#2n9SIXwma+Kd==QuKFKA_-aD-sO7#;rr z!n(B>D#JZSex9}Qb(>D;tVWZuI?5h4QUNE7^yAjNyW&mLrJR5^Uj$>R#(1cq4r+=k zc5i~xdY)I{uYoo?qh9=3_^+sqAHsTQ-n;T1<+~(n{6)I~)~e6qj}LgO#ya)mcv2lF zP4M=UG`2RA%DcwZ+Yux9U!>5g*Y4qKK_uUswx6r{A2W%s?XeYI-zvIR z>h!dUVP6u3|wWLo`aDt1}iE7$+e2t*ARq zKQbp9pJV(#yR)0&--a}ub^sDxDQx6+9I87qgOTa-=j&cWa65e~m+-?#*H@AxY|9n2rGp&c zV2t}$k55=sXSrMBf-0=IA(Wi%>e(Y01L;yv&B$`B71xpePob`+wJ?p+8E#e}z$qIT zV0R<8U#)B`=!mn3vhn=H70({^omH*PBKiq`auo*T0hNQV%bbjUT;{hlONe!A6CBaA zmO&U}fEAQ=CqGK!#5e5Jk=us1J(;zkd^b%_VLbAMj1n^%0(y2Qw?SR5o$y;vI5!%N z(xT@ewlnwvUTti0PSRIBYFJkFOzU*Ng?c5tWI?FO76wK-XWR9zgHQ0(cECiJ%*+l| zo1RBw?V9tYiKRUnIvgiTS9;j$GMq27X6mET}I{yIr>!5*QwqY>1kg)`u4m;pi zJf|HJUx^i`E^AwVGW@bxT_U8HGDb290A$oNcy)Cs#2S9AQ#b{kK^duwr+;}ff>r8L zkHU_B$A1F6SK==XT-s>bjkMEBtU@=*xZ?m<$UZUn8}Sq2?4^7`;j5H@5=_vcX!!Lb zu&<-Ys!^up2+LOQ*`Ga_=1RXTTD7jdZ{~5Opjk43kIdQKjz>(7PW1abm{eUO75(f* z7mzS`=aKF0UqxG3oS0VR%5KX%rU-)(JUUoPHbnSdd1Ig}6vJMmd|#m$V-#>#fVCJ~QqpcCJ?uPv{4 zQ@Wkpj9Bf>#m1FwDuC%UDx3_A$fN;|+%*-p1N8dVJ^8^sY?Z{_d1l zc4pw+d%oY~c=gV=c+Quo?S^JTIlw!PKRVL1@jRO{(h^j2lg53khm~%NbbZ@1QZE$+ zbRJ*~M>!oa#c4z0Yk3qEk#U}V4QSzXa88#iyDzQ%wDE$I4aXVws`E~+H!BSF>(}$5 zD_bOUN-b_?-OB6x(s<55AK_fyr7O!Ss3o^HKN{(#tjy!N_20pL6lp#dvPN7VEm^q6 zNv`VZ>@fs+X%NcWmRU9(v5KBq2!y?wk*Pw8<_A9G|UW%;K(sF-_`YYg*)5 zd`%&4o$KeHjX$)6eh0RYTA_KcLay#JU6?Es@wF5eQ`f-IgO@b+J}vS0$Il=5_IVR% ze+%_J9w#xx9X7UD0vi|{es$-%zJYOX=83J?=Qv@5&pyA6T?|6KnF=bTT%pvlpr`g+ z3oEno$IDh39W(sv(LNUVsUp?zNmA{CantntE6>bf?ISjiV+HQGDIZw)BJAATqlP#m zjC8Kwdt)ikW1LsPRneW8sM@88qVuL!iX|n8;9wm80H5nv8s?MX{T-&&d}PkaZk}RU zMS~>m&J_Oub$x4W8g!(q$$BpD{JWfvtdex7{BLhBKaujk#ZQTzGWet81hBqmO(#v< zbp0*{*>7$DBso#kfC(&lu4l#CEFTTN72UqKB!k6XD4H_1?aNx(47LvLn~n#qeuIF5 zp+*pnvXfW*+y1=|7a2-45~U57{64=u{Mq9gE%WJ`&7Jy#h#WE6LlJ_1&sy{ybX@9s zrJeqjZqr-bu|8tA%!CY(Pi{SX*SS+!CXOmvMcl~nrm<;r;+s2{moYWyE>2i&ErJho zk)O=gkBfXLnr^9i3<^>axs?ok*EjT!9;6zp zcyGG-@AwY*Mey&!x?SsA=^iSxzDtN5rc)Ra7|$H%pvd;?ReXEm=J8IxG|vx28${9K zFvJM?F4v9Br`Lgl>`iIS8BHiX7NR}p!uS$;1>Xn1n|<~vrlx}N5J66r)+*DB}$ z$P7QcKl=UaKSl7CvErW`LvuEwEpD`_;{MOP&d0fM;3~*}y^LYKK=rI^(u-1)(OLfh zUoZ1IX-!gcvi`PbqI^a1M~A<+r1*L90&9Ei9`;}C`R;_f+QLAXNnG{YzptlW#=cJR z--55c9r)6J3|~qvQ3#gWbiqlXZ0vAHP(kbUuR4U&rOACaUZ3zkRBeZ+Ds|La_>zA< zzo*_?lJJiT-MEAxE`S2W5Hfflm1KB5WSUJx7r^@@#loIQ!QlRR_pT@?#+66s{zuSP z{v;CYWi*ipBxF#a$+datG5&vAbRbU*i7GQRL~YJ^{Hv}{OS1^3nACWYL1fAMrzZnG zpnf%>rG=xkjK*m90m05e>PMlkkgWad*!t>r z<+3bWOhMSdgN%cm)|_gwwj7<=$ieB!?@-cOktphuG;J;nYD2N_k~qyu_wq3zSb_XJ z)N9zvbnfm;Zt_bgUBqX&9V@!1R+Zq~Qfkle!O43eN_Kb=fxC`n2>G<;oU&2=r068Mw*AN)G;yGwbX!nzis#J1>A zd2D^fe0T9<_H+1^@Sa(2ue4vb>44x}+bLw*>ch9|(!Rqi&DJS<8s8V^{{RHWl%QO^9g>939RAgt29zM0`{s6v-VH1cIjB=}}1Du=|>FfdgE7HdQ00{PQ zmz0~i)anxm{6na$N(oDi`siE5hSe_AyP=^IU11wKZ#@c{L$oR91?R}KGE}8nnG7sGVUzy z?Z)Id8;%JCarjny-d$S|9I}wu104Pp)fc73D5{zwOMetxL(I%Vg#aD7Bl7q|rI&k{cMW;jDRMk3a3wAd^@Vo|O^CBSgl12`HTJ7Snw=pfW zK&Su)Wl_fm+v#4uD!ZJ{suWZqq4Z3eb+!6Q3d9%=HWBS!bK@_Ds8QN0d;^j}QhEG3 zdVV!BynW;6uvnED@<{TZ5%_Fa*(#6*z*u$3=QWG)=5Te@je{@F0*v?WXq1%bP1yQM z4Z4v&)%bF!>@fyH7$_qH(!B~Y;0EdrGw)vmT{O>67T2_QEnCYyxoIMOtbdET*Pr}E zou;*vF=ltk^(3D4G@G4BtC59-RYxR`Hn;EejxZL-5~zz&Dg z=HyqmWhm(NJn6L<`5aG!z6pFogIo}5T6gw+lnh>bsbw1xLHpkPS9jvAbHlg3FEc<| zZ8p^u2Mfi_ia|SliNMd+uB3To%X_;M3CeBTqJMil!hHu=@n6IlS4y)n-_Leultjd& z5uSM?&~>k3)BYe_U24|e1=RGre-OqAwUXm*CNH}H=c8lk_|}V^NiL=}X~uB9?aHoC ztZSYf@C~i>mL;yWx$WA~QW*!AWg7w%p3M0qkUcA%@Lr`3p9FeFrmH5IbCDGI1lr1d z`=L4G{3~iwPVz@LB&8QOyW8cr-g5Oyq!h+?gSVdZdtPzZZTNOqw-_i(K%@mhRp%L&(qtQ#1g82>_EKj-YNI z!(LiaR8*y-y`Rrd$41XiGgRcE)(`JpKIH!Nc`Wxh@c6WVefQqmi02!z`kFiuY)AIH zyo7GGU>Qgl%K%RuMh$aLn~fR1@AW;2)K0Wlk(&0XAdy%B^RWasOb%$W1t*xP$YX($ zcq1pLewEW}#in5?H11i{Ea3t-h~zRUaK|NE{0$aDNeb*`K3f1rc>wYF_N<<<)NpR@ z=IdH5&XptW3T)&gs8R+8C!eKK@WfziE3^^4S;su^GIQn%^v!&gc%?Rx_1I?RO-YwyV(hU*pf*PHk}xZ7*4)UTxz7X~ z52rPZ^+jJ-F2vFWiad-Q44!-E{{Yqb)1V@G%Qqka&U(}*rI|BVPDb{XYR79bjQWw^ z*ZJ3Vq8OqmsUglf0a;JpR!4!DzG(8JsET|dvcEXv6@DA0NcNdI>w{R{$IMO!q!Nb# zfgE(JQrlVTHjib0Z56~44XqrC7!mX}tSUIkN-u4WTCh@!i$}-bw7={_VXIqRc+25k zxVO4RX=c-ue6P+)PebirALv)No*vXKv`t0>Zz^3FXN}OSfq;Y&>)yWS3yN8e7SG~a z{l>XvR|!g-_g{~1>$%tK8iZ%WH=xhM7|sAW=m|gg=&bvB5$z_KWOBt&ZN>pR&Idor zvXpHV@;-)x*JE$tRB5bySI~6UJ5?`YJ4YDAZgcwA)q0z??y(p`HoSsn4bweq%+00C zR-gDmU*Es={aCLpq80}jB}OsoN9k1VtxS!bnE7yUI^b8I8#yL(-KAoT))6x0)MLIm z$;D#d=&`dF5ai?>@t&N2D(Q}oLZeacbGna**CkO-@5qzIbDEx&a|C0{IT$oZP`_oSC{E0z(fF@A$R zabGWf&|kD{9t4W#OSS#=2^&dMk-+O*ZdaYos70icXS#S_#5Ol_l(wB@MLfQF&#(FPuDbHZ zElSzlV%^6X9SwKM9|2dIjYT8Jeku4dpwrsusfg{|M@$OvPXk7=_{LEf$yNXsZ0sjYZ^rc3)H4s7tdx+xTu<>`@YaVh2%=di1|54#GoxBFB=Kt@4bz?_ct7&$1`QWXZ=XUn~x_cui@<#=d{7u3nWpCi81QTRYnIqk4pGD=UIJd@4kR<+)KLPV}Z}t@UPRdl^9ZS zTco~s)cIEVX;Y^q(K2uB{V>XkE}3_-k_qF20X;EWdc~xcnp_cSQ@k?TF?l?h2xHh1 ze_zJEMJVW`v?56~+BNUIadb4BT{n?}k%__@IlJFQy!5Q;h=a5*F*P6ZXFILdJ zJ>qRbUl2^qs2Jpq(@G9J$3O4qM6Ul14HnKsJj zK5FCTVe5iA`+aMt@Ratj0i|BduczKV$lbG;jOY_D?PosA9tX~Jm8l6r^=g1bnH(oO9`sDtVoYHu9`~Lu% zJqi_FS;A|w{ED+gA=>iXD(-e{<2g7SSdr9_W8{Fu5)LwbD&38` z5*(9|af09H(zCvXQ+AGrOJu6CZqH6Q!1k@XDTHpNPU10+-Rn0io*pJHS4`Z3@stqR z`E!6rUwYMs@krd|w*mnKRx^5D$A?yx_BJhMW@TW0QP7SnX4XzIoM3~;S|IN3k2<7m ztZ6_)fCvN=f(?AB`(OUcuy~frPl^5n(_^8Xwx5QLDhgC#0G2K%JB~kT|SRT z^Vs53_Elp)ztj5E_(xOMQd|E3J>l6T(5P&N3>Ya=y?twP((VZCEn+CCzY-SSa4-qa z=6_21O0l$3xAc#yq@C`W*?!H|Fy8!XNl*ul#yMmylb@0-e?0zm^t#B`7vgnX?1yO} zeQU(dB%UfU?Gy_B&Q16K05ZhjF5Hl%Mo2%MR4kylAOny=&(v3+87p4LF0I&#WD)_8 zJKzJ(YMk*#6@#fNdCq(K*F;^=wle3mQ@Ki(-I5p{o$Dg{!a0y4p}`p-j^jN2Ij*R? zCQFmLv42T|NUfO>3aAG;>VI0B;rD}=R``c$FOpqhCCS_VeQW0`R`xTf`=)#Fm8dy( zU!nGx0nApmX|#%t;LRxUN?T3r$D;OSn6H*HW2a%q&X2VEp%jF7k zigUTE-jzqJ+3dy%B@}LIHnCb;h|)zY;AaDna(Mp$Ijl=NSDxt1*5K>}0(i;in#z;+ zZo%62IX{CwKYM%8XMH)$uk!KK^a8%n@L*frCMneJ^KedogmtfX7Y*CE4NVNX|h?h3Sg0G%cPVO_4-neKh!lHeTXCu?xy0qN~tnU!S#kPZMiuY$z@dr2y11SR?!LA!yx{puPZS@P7jFDT; zlRD!kYOo}JBC(?<8R@_EVc_G>%^UBb^Zx+t5u{pbm)eH6r%sV*_g31K?S<6RY?9_B zbRJrh*PoPnjQiKg_T{9vl0-%bc)>mRKhnQh%VinRO?iC0zDLSezcNpCqke0D#OVAj zr(0fXHqvShw#v~2_YTJZfKSRjNhAu4>MwhJaVvbje20D)NrS30$lC=CQLP(KdX6|L_b5i)8m ze9tMG@?8VO@!v%gAd2QYg&b!D=DL3s+FL`e!{coQe9boQb&^63?4!`cV`y^xX{O8mBJ9T}hq{x}Rx0hs)vB=0B zN7Q%v@m(;}RAAbSPMg9yy~Mh|Qx9^-Kz zg?#Psm&La}FYv#K{s(xIO_t%WrfpM6aEEoR`ec#ptfLqnp60yyQk3dBN26bzpWy!h z157PNJTg-0E8odG{{WggAKN!YowN^xUM)7rCe-{V4Xn&Y3p5It&%PSGE5UQhS5#5} z5e{c_O%dSvc~c(t0lR3`6@X*{{YFVI!mpc<=BaYieuOqk}yag z%CnZVtiP>7jon)w_we4t+W381;T2__PD#h!BP4#O^RFWKj?r3p`rcGKgUJ&x&&~I- z)AR3NKY*O2j+$LlK9d(6cV81w&olI+lBpW(QRUi3n6bB zEPI&ny-t7n_2lDaYOVe4(_^E+b{y+r|&c&qgG2a5Kjrj&b%_YM)rc!mnLV zpv&tzlvmyQeuuMu$Wf%;DDft_9A|Vku918-U!C=n25D12=ca zO8pXFf;->vbYIrL=2~LGa7SK*=hMAHSxUPx2Ot76eR|iQ7i|&D)wLippj9DrgZWev z5ZOQh1B?ORn(Kx7kjhsGq96f0FU&#D;aRfmK-+-boD2?wBlF_AIjt6F6x^(9XmHDY z7>d>%#~(IF;a;8alfn0ze!nKAcWTI`LZKtqlV2T-lZ@vV)b?=|V@nL{i}a)Gik;<0p3~ zc6)JOW06PM;M}^%`wTTZP=tGGZrRyMa)xG%myw9)u&vlu(@VDVCquoIjla_s-Bw>> zCtMdYyD+7`ms7Z8Qn=0(4%K?z+8b!Xt`)FP2d!%e*{C8aHlo?{cY-BYb$fZDE0vL5 zlpdHM=bpS*=#Rpi)VuKgsF787M7Y`j>Gbxmq0AS$nm!vbPE^rz;xCg9lRIoB!V;s@ z*XP}wo_ECQP16rB-Z98r4!jTZ>t1dVUKJbccI2(|MR}v|KZgGRys)<0*UMeU(!D^e zeo#@=@rwNK67MT{pI?pAW70p}FhVjiJu89n!Yf+Lr1DgOfz4w{-fG5}2Hi^^IedJy zeILL_P4O+n^J*4t4W^QaK}&dMCV5HsBLEM2`Khf*mOVZoT2cY|N3TKkuh(+8#bNCo zuI=gn01nTR#ZR8Jq`iLs0P5zg#Ksgh8}h_6NOqn`91IUZn$EXmm1J03g$E}GjB}j( zX1i7H?qz4oqB?^DNqVJN=;ytg}{%Gv&V~8(Y zZDW)Cy8BkrjjX$)2RqhLeG~lA#CW>NH7^m`Nd(C0f3&Dmkf7k>-v>XHTJY|zcj4yL z(io$f)H^iR&c&6``*!b9N>7y|dFiWV<=5F3e|z%(0Eaz4_WAJ*l-E8D@NStXWza1y9^oS!gkncsnH=MRn)&0wwq$6!-QU_! zD2E$}!NwV})42k?>nLFL@A{pYP1=O5(Z9c6)YkC~FgBf`#|sse;&zk~)Z}tMpFXwD z!U{?VmNqRWPZ`p8b&3wv_Zun+JjbkiZzR{6ZbPFi;Ek+3Z zkb+kk!91e!Ny+O`R$k7H-(yTV_LX!!>q?G63>KPHZRTJWmHH{i_yJy3@ovR!d{1D9 z=5448G0sRQ^Xs3&zGp3MVy}JEKBpZNu-3NLJ&VBcF}M3ODEV1HWj&Mu$LsmmaLJcc zLjM3GX9B#uU-8|~O9byiCW6GQ$|Waw?VMn7Qu&)4u0HtP(~9JB>|4B*x)aADu^XE? z=aI%eYWhy*EyEz5csVE7`t<#3lXf|(M_o(Sj2Hk|g~oAOmeR8j21zFX9+Zzdx;E`( z+Phff=R6ho(%mXnIj!&&CbZ3Q#TeNLkF&jt+8OR{@u7b(cj$1u>q?6{<@oMgD zTeAFs@;m)&M%F;5YahKE9o*x-kj-ncl*yzDWC4;7t#KI@XY#y_BOZs zH-7~cy+LdKLcz|)+x8Z^-#LXn-jjOKA_a~(&zUdOW zqU|Wz$T|7H3a=nk1#{Hok&%!;{dLI)t&Vr^BCM1SkO`k&e7vZvL z)^Sa923P>Zl3X<>d&vnr_PB$0wz^Fk=M0wJ~mb`NJ-p4$r#Vpx#_0rq+VXqo~OwF0JO%bsq3C8 zu(E>WHLSLfNi1PT44`evUJnNxcI*09HO8YnOKo8%q2iM>lhllRsxVqDk z)U2tW^==PBM(lCa(cv$Kwzhse)cz;yJ{GdEvC?E)t2?A7CNh}!Id$lEoSgpvI^%Uz zBIPHipL_oRUx^9(DlIK0?ycVae&%@p0L1T$9|}BI;U5(Edq&f>JyXSgB-9~TuBV7E zl##N9RXNTuI(wYgk7*`t7sHp9&$G<9xp;^K5>DJ49G?FGg?aVn>PL~QYohW!ysni> zeA1n|{FRco;7zDZCxzygPnzF_P;vm;yyNO>jF3drTdV{|e5E8X=s+hU9qSr?>PM$P ziQJAil1F%qOxyATdK1w8f2Ddq!;cFk_NWrztE^cA0|RL5-?{!(&6!qIuoo z4W6ywl?iOK5MOTx9Cgii5EPM0xFc}DAoHGcUVbJ1_DJo+rl>`h!V))Qr%pQYO~DO@ z0f%0^X1RH_H0VhhnAkDof(8d_zK-Pb0OSB_mF#oXN?MmK+$aTHZO$?2{&=l>W>n)l zuucX#)AC1~U3E0AB^|yJXn`6z6Sk*trds z0~qXS!D@W{eH%8QknB=dmKf))UV=pcaoedC*-cpUDyy0hGQ37NIT#?<t_83&q% zX-52W&Oy&SfBNbouJ$=Dij1Jd0VJ<+-~RxwRAtC!R#sAQ1`izPo-3jWklHgQlgb4^ zC!fb7{A;oJHKm-aZpPGCEN4^6pIgIkZ*OD(PzEXsC{xYe zquRbke6C3&z>J%VY_)YNM;Ro0=Dv6M`Qr&7vYN)yOtH^?{M1G+rXn!&J#3DTw5*%x ze4Bl5GP_Jy=5lh`^sO+;(Q-#UXR0<|ZM-EjfER*)Gx^qS{r$WUI>b)-3ER%m)4BZX z(V-h7$izvvq4L(8#cyLIZNm%`+nW6X{hx26y71kp4!MayBpin0ujk&q%zl)S^BC27 zN2d7J)#uXYIM2v(bJD**JYgC~@m}P`5-1ab3FuF+=y|Ur33leZjq*3|+tc$t+4xAz z+C{3iI7Q$eYV|e_;52S?(AVeKj#pK=d7o*GR+gQHtXDZ=(;NYSGhAniW1K5SnI=QD zZaEyE@+r}D<55N^#|L*O&7wY1{h%Y$ZEx+ZEausB1XnFIfDTQN#)$KxX#7k@VNIl^uhM6qb9DBGMS;^%j=Cl#&Bvg-DdSfj3$4Wql6$Heg6P1 zDgHZ_-sWp@ZUZz?vdDAG@xdJWoZ}tnlU&G-Rc2<}PcE2{=&I`C;!z~cmfU*<&N_3S z{{U5D+}lS9mKkN+iC-y_NE!4Q;PKnN3d%(-Rgt3R8;t_q6Xq;ZTojQ&`^mIzZ1%y& zuUywl<69%A!=w0iG9vnF!D5#k9HL~G8I24ANS8cuNBiJ?(+9MoJ=3Iy4v5K zhnjf$eRspA>&8A8v0IC#wOhY19m#V61I*8^#=*zERM0o0)NOPa=Fvm`n=hbtymA|cyr-zOr5uNPTntFa{$JD+e{1nutlf*Zk1i8>P z4OmSDzt|aMF-AtyHaGz1AbuyeFb@FyIo2+;zYq9-$D-C(azkH6K*>2Jjxad~sjf*> zQ(W~`pLMpEPegapQ^T%U`^w)x@+j+m1B=74UtSGH9}xclq`WTH2Xsip;BRn!0qN=1 zy!^C@cJ4wjjZ9&)k}==({c9Ai-JYEe_)nd4HD)`*)^Brt9J_Z$fIiRxqe?5t(TJ+X+mwbQ1fF|T4!I0a^NjlgpVzH(wXTDW>_rTW2+L=_N3C6iqY?<| z!0a9xJhEd6QZfp^yW>z{jP0GyebuJ@6pA(fl#-8r~tg(&6;$haHkZxpV&j0$hGI z=w-9^c6q5S9?b!Mz{zA6sbHN>rOQeQm+yLNazD^p{x#2ZxMo)|NbklU{rY=5JBxb%m z@y5FP*0m{_i!SrQ>EHFPoW35@66CrcQN#3CB&N?Z)QDFsA8H2qhqieBbp1C7%Q#u~8meTCo10@4sb{MZ*h>;is4C9bH z3jF&Qe`?b1ea<@SNR&A$*crerf#2G=pA-n?x`HtC+mCG9A| zqrkdw=@*rzH86iB9OE zu-$3$3#WE0t;s45?2&`-*CXlLm&CR&KBI4UZ*DxDLflS@tPjjSM+A>`&*CYho4G1p z^F{3^N`n6YQPRBprkiS{T*w#YLcF$5uR-}&Qzfc+;qG0eWz?)6?K*6UAPwc9AG^oU z1K*t1@Upf40IQi)ZR^|mXHoFV2Ka(yxbVyttE|T%OZ`4a^1?1Sokww=Nc!}zO16Vh zhe`WZrE?9op}JX%!U%?VV?JKuPpcEb&r0iQ^7FU-e_Ebhdhv7iYW&OcfAGc+gS>ef z>oRydThe27pLmGG>QwFxoR8ro1CS05ewD@eui<6RgJI$wFG04F^GnuV&f`uhpE46T z0efc~nSa8#>(Z3{RXEWv>Uusj^(n!?pC4EH}HvhPJW1CB-rADR5CC_>V6?r(cLBzFD> z(%L(8cR`nYs}6+YkH)>v!0_r) zak~W(n3LS&HQ~Mp^EFQpY8tz)GejK0DmRy&!t5eA$a|v2di}OAI07tcW ztRc5m!BkLwwYIRVU|^`o2RS*<9sd9d@ucr2&s}L16iMZUQ1Yqd5D2DD=^$dG7&*W= z2imcEJw~q8(EviH0E2;+&*f7rip_;Qenk3GlWSmWn7?d6;2aXe03N2atr*83AZ-L- zHb)~pYe=_io_%%P(zTUx8L~$?KHV!?3GuX}WZ(`5AB_)F$FB`+Z)vltourW27|%-S zZ01rjNi3iP#Sr+eeD*FaGj7&htf3DXvSjr*hLkB8RdPVlCj zCQt-6@FB?P5->lQHPXYXS=?Jj@XP_&GlP!Uu2_5Wlk;cS<|+GIFCkD9f{ZvDfCTb0 zpT?UdxCF>l0&((=)vdKST(q+xXt0|=?t6Et7itQVxbep$IQ8jULsL0DQC=HHWyy?^ zP6@{#`qxw7jdo88>LPVq#7GT;&tKNOywl%{ialH%H9As@d!FH8ds$Oy;~PZ zmLt9}xxl0?4Ww^!&x8XwBmzx#!K8VWHqiN<-5yokyZRR6fIWR{>p$6EXxB@_N=%GM z5wG1G^{;Ce{1d>%rs+ufZ&tUxmrHUJgB}8tUl@E=jGrEJkW_#}3}k1nYrv$^lec1W zFXLGHJK+Sc{gG+|E(Bwr!o7|*-56596&(e97Aoqbt=#+Eb(E}$(O9X#9W(gixNjQf zJ7=B|hK%k9w-t>Ua@0+(##kkJ*!k<@ZTQrDU8U-lvBvElmmy$5=3SV<`r!U%zGT&+ zNOc1ND(;A(fyg-^cgH%$q&v3$M&&(L(86@K)t$Gn!+~Ad)v9+aIn^>ZTMPJ@8+9ph6 zs%DXr6(F;cFgts9?e!H+-8Lrdtcp6OrtnWah1v-tRy{`tkPqX}zgnlMY6jlTEUhC{ zRaQ{WK72PM4^C+-wwFSzp1n=GJM`1M3l5H;8=Y=)%-zuw7(T_0KPuh$KcK;q6tmAm{nY~rSmL!{{X^QUJ>ya)GRJ!w4Us>&Ajn8!*LN}vPYhR zL~+NjPQs=5ZShxBvDf3!d`?>TNGtY9eCWxVD41ZC9rz^ElZ|m^(q;qUv_uD$#8(ZuBcgzqPzq z%xx+v`Gk6W*lc>Mbj~SNt0>aEKdC>x{B(b*@^#*`ec~NcQt@W7EN^#z zJeQLa4=&7b0PDths+JQZQA%crd9ulX0mv#kjt{S;d6Rce-_?(L5LDwBF2#F`&nPr| zLc1{lW41V}x@Mg{=#A9|5%9q92R(nE=TkSy8=F&Cl0B=yI!h#CV;AnifB_x-Yt!`Q zDt3@a100Y!#e7aOeDzuOcv$jM)Z)G`c#LTN9yW1I7JH+yLHomwqN@BK@cVt50Aku> zkIk2iWt*;l&#iUS{nlLOzSI1UI={WfsP;#)TPTlW5!?nCJu_G1GGk}}j-Vdg*M^(1 z>&n;Eu)M@0VV4CDIE%fp7nR?a8d2@N-_<>1b zmSs)7LUmuzit`;a;v9)@Y<|$B$jlj4y*Bgw>hN?NX}LbFpL1C(N>x`?f4v=ck?{&P z2=h(=>5_V%@++*<{A*=$Fw-wRNF4iClB3xiRVg&JG~?FnZX*o~fs?nE;B=>h71l&j zD{cf4*Qu%HXrqM+v~iNe=OeZ;>0e8`Ev}ro7{KPdOk;{}Npw7n;knn0ZhX`6>%^Oj zSw`d68@pG`n(n!63G#?6SmOh^?b5w`f{UFyuB`gJ5>#+;zWbS$QY?Y5rUgba0r`6j zao?q3U0$79_}d^pR^Xt4o-@<0(!R2qyqoN2Ia)d$U8F0d+lbWs>;nL!oa6QFR4?4i zDyRf*Y_o10dvx@zX{*ZT1xaaQV`yyP4$ODILFxW@u2;pH+e2tAVHpK-2^cv&e;?;v zP+ZL7m76>!NM}a?Bf01R7!~yY0PKZu@@iKu_}qXpCOA``+3(W5j8k65Ry<5fYK*RZ zmvtGJOm=0?S7{`5>t7lE&>C2@@m`;B#QyQw91i#+AI`pdjGwe;K1$SaDIUx4b&KgX zpfBA;2O}H`_PbA-Fm{Y%C;AHbd}6g%>V5t>-bt5X1(|?sagGgfemQiuvADRnIEpyg z+vo>1$rRkzsx!c}s#y7Z#g{N^R=Q@otPy9PLIVu`>R@~V<>JwE}}A1dGh{Htq6 zu{N>Cs@{Nz+k{d702G)U{v7`RI__TVY;en2Ty~#4mp0m!`$#v1QJmo9k_J6L4wUT_ zp@L~%Kb3aj@$Z~_{{SkfFLk3do0=W0SsR(IXOd7Kc_Y-ZJ^eb?6|^c=WVnlJs}1T~ z1atuXIjq*kyXePRYqt1z8b$5YWXABjE~mrK{;^4$>J*xm)g z+gxL8kv=*GI3S*fIj<$ueiiH1n)LP>#3?1FoeBuAkYT2U@D*G8!zUU36VFPi#Ve_3 zzpu&Z{{RkhVCpzc(t7n@h5rD|l`OnJ@ZSE@#&&vBYtX|9X(JMBHuHr$cY%|T$MO~D zcHTPH?lfz!4#_$-t@@udgaMQ@2PzLy&;#vWby-xE*2#ZP=c`T%Q|51bY1-fL=RJJ@ zj4gyS0vLe&9D~MJr$2|KM{#nAGQ@<0MGJxJ+>W2*)+@~Glje3HP?NHSB~I^@cFr-H z^nVBG4=9kVM{6=+Sob~o9QUp~eAPO4JFqm|=8^5*98T*Rcpivq03)M~7!^QpSE(K9>`v-{ z5}=Mce_zVH53+l5O7^I-_FVWgrl}1`TvNRIU@tJQe`;$K_QUo(3)pmE7rc=@h?w z_2Rc}q{m3ekSQ&Ay^56 zSF|yb2LeB<*`hQ;abHYAWdGm^F_g@Hj`pa1nSlS;xTaFb} zXP;{9bx#1v6_@s=scu?83Bcee`g--RhRi1{HA{7S9dU7@<9Dk)AKShWLC!1IOGFf9x9?~`LoQfoqTPX@NdRHh<;mOQ8<10(+c*G{pI&Y1a$zyr1h zIqms=Rl2%3rLN?f#mS8%FO8@OOq_r?>&1B8z(&Z?jegWA06Q~l?88lk4h9A=dmM9K-)5k| z2*D0HCx-5#LKUt6fD(CK#~J*yT-a+% z5f$c)aE{Yw%)bzckjN&u-bzM5+Ps01M_;Gbn+5FcGBxb1>jC*Y_TT~E z71o{gM=whbvvrC|BA!C=%eX!i44!fH{{TGJm69!`mA;%9GhR0KT=Tb%!`u1QJ*-W- zkGZsPE+cTqX^|8KBX%)?!O8ys^;bQ6cK1qw*%dl5Py;y6IW;M2IXx^*V$Tr%$-G_3 za&ZK%Mi7(N(ym`=BHrHC>^y?*Ey*Ze3dpCZ=Yh8eHA+q|K(cF7*1ie+U%J!pzQN*< zvfD_XXEVxjj;+(o9-|zQ(!GOR@XVU$geAD}{IU6Quyl{i-qET1=)S0bE^E0;GSXky z_4(PJ9eBJobx~~Xf9v|t;B545A5^i`EiLWL3HD_3wE=O3^AjYA6@UZ*z&&`u=Du#W zQ)aTr#1>*iWM?_fKA--&^XsW6B`*4U9^M{ty_UVm7HOee#QVr3{K^h<$3y;ksHB;t zn8&;gSSI=h^*DH!Xk1M09Z1f1@SdhCgRYVVxI&q)tUMcZg;uCm^>HIC>mT3|;D>;k) zS`c~;nl)f11&s#IZ`x+0IccS^7kHMb+rk7@y_wa3%$Se;+b6(AA zp(8K1CzS(^g1NI?Pu6iVXuQ7<>?kDnE=G*%Uy$8@AI79nxRoqP>(c|CYl7<5J9^lf z-)MAGk~;qYpTeaZN~rD*PaQMXhp45aA(cQ~%y}z1;Eem`x9sE~g+E`VcT&|O<}oVG znvl3$FyoE^?^mIafJhk6BQ?{yI3BF<{{Y()!fCI3E&kj{!%d;wt=4;p&&vM*p$G7< zk928L<^TW(Jmde?~l)8862&kShu zSlisA-8ztw?&SN|m4%@!b}kfRw`0Lmbumt(*=l?ns_S>2Bh)39NePX~&gLC?$KhI* z(!r<4dsj z>snb}$ik$Zu5!L8d1eL(SSe<}!OjO9*PCA0hPp_Q?*M>69Q|vil1ozr?W#Rb!ln&! zDCJP9GT0qQ1m?YSz;Rkw-$t1pVRg^HT-QG&zh4*(H0j89i9{B;0zOAJbuwI zt;(w+W!6++2RXwJ#<;arE_hj9n3&(Wq40@-w~Uq_cw`^Wy~@eiV?f<{<2mBKI~>1w z*PA~@#yj%ABxzd(2*pn%cdsb;^zz5xo9mbWSuM&;7>+n`pVKwXfJ^I?+wP8hKC)=} zv*QKWu<**uX2@blL}D$t%c*{*qGg_WAZX$x_FkyV00v88AjT=cKQ@-WT4QW<7*M=_FRGZ0? z*o2N^K3Lowsbkn5{g<3m>}>9@wCl|^+s(hWPqjj-{{S?om=Y%+>>Q8xY1wmGe_zuZ zm6oO5F)gliXrPK_~+~~u>(x%~kZpdz>Smk9^87sAw zcmo6f0If-+MHG_*8DS$4wRYrZJpBb_Cup|L%5iRXN38f)!-6j=FuMZfC zCyTr>;OJcHI+RhEkd%oVbDvxR^*+_{_}+X~PiIM8pI?LJ!_w!d?2kC{Kg6#Tc=)!5 z;SDn4*3rpHWMwMy4l|y>W4ATX{66?m7Lg*~UnrK~fw+)J2aY+es=T>Y8`wwVmh8fp zHfMByvGq^skhZuI_ymmo1BNGAwFy&}5H% z)QYZgB8~%e9Z2Sqld&$&?T(B#;6oFRNY7fG)VT{9k+;<2p!(Bp+6r6Uiy{|Qat=mu z&%Hw|C6KsA$m@=sI(t;T?kLL3QIWpJQJZW=iT0l?3=_4Vq1I^GwHJ(l#)=XG5vS^%gNha{1V z{{Wt~&E0q|JK0RZ9akjo&Iupq`d6n)tERb;i;A1n`akwY(&W}_J&%G$u)-AKP8=bHTQh?1T%RTk{a8_gQ9f?W~wuf-qQD$m0(&8BJhiqeJHfm_?wN+~N^gRhvRB7@@cez%>PmaPb zGjJ~`Dx(KEJu9T})`fL{I^5jEBoF=XO#c9$KDG5VWp?B!zF2B@SJPYRb`KO1V`}7p zIv)Q3hfmJ9dG8YX@tsB)fjA?Mx#{15QA##Vm`YsFQ>F06j%S!lAS!Sh3-#|^E~_(I z+cmYaaDy#@)~Pjf8m{il^Zx)6->sua=`I+64mzBS3<~80Mkt>4Sp3#zCxe2#^Y2|0 z?Q5AmwJdlC#FtuP$7=I3?q&d!>;8U~?7j-tgqplAb z)gB+Yj!iijoy4Fdo@>W`IoK`SPVt2fzdz+(G_I!Zc$sgziHq|qd?{lbNUYc=2ZO=? z06f>cY23o0fc*Pc$YZ~YD|bIe#iZjGj(ZoV;qeng+K4yF?s(cm$rfgg*^E&z`S$Rj zjycB_`z09iQ$BML)2P?=xuvCnE#wl$7^EoQC>c_D=eKcDO=#lgX`lr{=0rWf2O0Fv zdG+Hps#@qx?ySrHGq-zR5i}By{sxhAf8@57`^{Zi`5$DOC%#BL~#_4ASManqSxTxTf7j%KHBRU*vS2 zCDHAyH5Au8Fw-uZdox_x!25$nSxK7RzuHc4JA!f2y>sF2rJ-qFA6-iN-DlEuJ4by+ zFuchaB^|)^95MDLwodfkoBn;jL!S}NDrt3ppZq!HpAh^x7K5v{yW!i&?sOeO>L(7M zoFgj?5(Y|<{JpEm?QQN1lFb#nzT!fJQJ-$ybsT=R$28u@WjU@?-hj&mxKkixl@9g{ zq_NI2JwBa38nvcRc^v!n%QkoWyVMMW>0EW})u!x^M-O%HMO~duy@!ppsKjz=X4Wx< zAxTi+{Q&p%u8TwXQ*U!Ams2+vr4wOSd?@zm`2IaB#;c8?g^PwAYuxte<@NDWQp7zM zL)5fS25H)KDzU-jrUq3&>+RCIt6M8*(8Ulq1RRyGn6F#fNy)S6Y18D2vM)uLhSedr z5OP!lkFTX$wvc6&a@=wN{=es~ayFZ@G`5YFqIHoJ1RSnNIs6Cpsf??)%TiATasc3e zlTi22X+4=Vd*f0F>(rBu-t|0e+ejpC&d|B*O{=pxZF0ce+>kjL#(2#`Am6y5$OoVE z^`_O6F?KmuO)B0Qc2wSk1K*lk)W*xUIS#MR>N3g3oC=jkqJf@~(o)Rze0q7063bRToWsI1E>L!eOIzY6^J{iD1*JRk9&SXf{Y zL8t}3h>ii=FyHw1^R00I0LE$cUy!-5)vKL#S#qIiB1~^AneHNh7b&cl`OPEu+O^zGLkSNZfiH^u~X}zL`|^Ymy{J z9PgS;ev@L_o!Bxd+qiJR;Dg`s{2@RX@k1d>NV>VHbwKJ7NhvP|{8Cr*OeC)%Y> z&>OZmtd9^*mhsB`VMY@qALZJV70yY?xmfaDTI9)kZYKfAJAxjcPJW-QW@>tjtr3bO zEL;~VMsh#;-_pA2tF>~SlwHbp_fba*O3@9$wyOdLIXvU>uSWQPtlZpqhR)b9ZOl*= zVmQZI=yAGi;+^>{&(L21cxE{?3u}qa43P#4j@T8${BQ6`i$lA#6|g@WAMr(M~zvsa1SHC2Nmx6X;rpX1P(Er*UMwy@8#-#lZd;g4?|in zEN%>Naz`heSB-pr)%D#w!_!*m76NCxQya+SfUDma?nNxNlCO(|8`9|GjNB8E@Xh_n zDHW~Vy7}9kRB{ULIpBBc+~Tpy$!Miy^Abd#YoP!DKm)hbd)MpH+Q-jSPo1`1(bQW; z9YaU*I0TdPHb}re)piJFyDTPFZRk)Q?UGN?y8D{Foy7Z+YmU0dg&@`%P1jmpEUrO0 zZz-7UKY*WrJ}f3j*fIDsT+W+e*)3C`XJUf4ac?OUH4EFjiyH2(k)X;Kut zeK{RkGIKJ=g?^n*Hn(1c)>3zpWqeIOjeo%`cnUdvyaVGsOF+B4@Xv^BKYd{_Nl!a|auvQ))DyRia!I0`tlD4K^zIcQ%-Z?? z0AJTqKOb9b7MCMI((R#_Nw^=o@(xx8kZxSBJ3ee5PQ5c;KMaWrO9YbR%s`FiF5}B% zE5~iUc<<|2)lD~krj!z#Rg0E-TF7?W!{#wNk%uIoU!ne$>HZS%q`6rxBs-V_Q?-2N zWs6kTDreT^m{la3N2TccCAGSTa2<#M=cxQEZr<5#n`)^F4hI7VwS1LY?sL07nw==Y zSsKwsfkD_kPI&dH)W(tT&Q3V@{{TMKgs0fiC$V57Ng{$+o&Y3NkOhfZahC^z59TX7 zyXsQf$hNX81yn#u7zFhv{3=-S3x^yLf_?p|DQk2lwB=;!BQt_=j02o=(~6KXoVf%O z$0Pju(~EnPC8d#MFdIW0~Ah z`C&mNPkdB0eNie_xa5aoAay66pXaSvNbtaIC*{T{ce*m0zPB#hl24Mu1E=9zHd~5< z2^sDMTw3UPn1$Thv0|O!35l@2=lcQw@6%@K$)WP)(HTsNmf{&}wXtGy3>yC#{jX=xK6 zl&>eD_Q${DQrsZhk1TwnEWmZ|To|dnk>7xg<#tiLh{+xc;B(369CQ6^8f`XPxdNnH zvT?y9ii$N9PhN25TB78dJXUt2C^s)`VE+K0@vb`l##@V(L|ve^;z-D@tTjhgO|u%X zRO4dpv?--R)8$KmN#mz%;Qs)gE0)ytYx|kJlJ0PD7>sazKasCVN4exmN^dS{hClu zU*WHatd*~G!=k@@m!Il<_wdmPXv<><01W4+TK63+2`yDr^109H{x#ud3iX=vKS!?L zvWxOG;s7xxCp|`M#Xo2bYWqfmPg`VG7i}zHk(@C@gV&A+YOJQ8J~9z!7d@iiujG6; z;yKz&iFFrZ8SdC3WA3PI_4*P1MNy5|=`-qg1TbmUijqhqo}Ret=zZ(;sOXp6cvUSc zvwG6q?&bR`%JOWICSceD_kgz1=rTu6`K=8xERxj(&~9m1?O-||EaUaXIXf#M(_Za{ zTU*N>y>X=5M5fzU^3qtr;nj$4ho%qGy9U!=z<&t~$m-JggI$ps6lF{hji*2GBh%Wp zZqU0qY9yr?_kZU907H)OJ-k+aGqgq^PaXQkNKkfz$YJ<3bvn+gJ-5Vf5JL^bkxdd= z&uuE46e|iLJbiOob98^#LgtsW^-uFH{8iHJ{w3(E@ef9|OMA;AEww0{qhUeZ3HB$a z_*H)q!>32^Uq;r7x=k71YRmVMNaWc3`>Q9n%SuhgD*pi2LzXv;V+Xo+{6EOzd@rk6 z{j%x{+i$b|ty!c)_0Ls&ftc_O&K7eBzGUtYbf3` zJ6n1)yVJaSEiH796W`iJ_DR6f?j!QU7brjh1jmx*yPv$X85kGZbxAplEhNjhIqqEcTv1`MA85Ssn$(c%S#?VG_l0Th# zMu!Mk*oND?fB*yQn)obzM^a6*^h_Kh7}*^~oKclftXYufC$CT|O(It#C-_0fE=j=899DfUPukG1jgYGv{n4LJYDWZ}#1Jrg9=$3Z?Wv?% zxVh%3<&3^G_K6DpbfZZ2b0#9nhR@b7Gs!5z_Ok&HiO&K`BbPvw)Q+8yl0xx zC2N_q($4t*+p z4CUr9#295b=NKGuQ^Z*ckf7jg$Gr(Q^f8mVF05W$ftU>AJaOM2(zNZFifvK>``tMI z06bQa_q06v?Ks@fu$abjNj%`6U-O#X(`DmnQb-+hTSZyi@Ud~xv~(6s0;^=5-Twfc zZCcJ4WD}E|=j&aR-j+Uov~@J%lPQyq*&fyAKeYFSQ^kJ>bz5}+&uGbW5pIE%g>MV0 zkdp3Yg}iIR-O=!krG@s7BE>YOHozxi0uFh{)7rK4+sBq<5-#813=cWaBzjk?S~8_k zsUJp?Yfa9xO_}b1iVz7uToM-7?9yWZE6Y$BN<`_dUFr`=cXukOARUWzgLHQ{OV_@T1YrDs@qH~_`LcjqHRYv%s!^)_ zmko-oRf>x3M1(fAKD*kW;AI+Tp5j#un-}nL1HSG=7H+$?l**L9!_c(E%a9TO=;PvfU zzFez1wNJ=Vm&w$lJGVY0w;qi~;DLq{zG8p2Qgvlq>0@~JGn)uVP7b}Fa(W22v|r ztsKuYn_Sx_8&~3MJJVY_(`$Kb17gQoM-$pdQ>MR-?Tl86581><;9t#C{Ql~;eS#q+8tN_cFPyFGv6~~i`HH>h6V$sRp_&V>1;_mnaiHeBxM_)Q@oVx8>dh~+U~+h^ zEPO+Li$@~Ms@dLU9UmMTC@mW(9lC;iH(JQt-qpi7I-xn%Db<(n_i#=$_DgCuFl1YO z(Bt>8E1k8t);>7RcKzNh^i+W!f9?Fbs|W8y$cR)>>y@a+ftc=*xao$7*1Cuusi4kI zlRmMy$%&X5^;U}SsJ53{O0#N`;Mf`S_KFsBRbr^e=seadT6#Z&b_YfE?El&-FYgYuk+VOE z!qbV!XGPzwo={aQ#pJq{4Ez3`a}^!)_ziRZIX)nybtG=K)1rQ|d##@nTDsvKQ!*@{ zP@*M^SG7I=)~_$p`+Oym6y)vq<3>|<%`ZN4cNg_=7i_iOvO0VA1orOVA?CN!)f2FK-|BZk`&k z7dP1w*4Ypr;L7kcecDh>YK|qHYf3cA*)mQ>Xs5%!GLPAa=xzv_9wZg!1kMg5I^mHB ztLmc0rZnS`8;)t;d7b@YI2<54{P7kMfmOXU#?E$=Wk4jVN4cX59*f|a?eyc#-PY=3 zf7H6G@0xxtoDO^{9t|!&89-W$$GT$_)jnFtJk1!s!6_LoJkRp~b+r6z$=_MT^8}9) zouOn|W9X#po8Ht6<*#oSuV?3YW`usvEbt2Wx(YP%+%uMBYjo-V@(s!@f9n)raG`5^ zUU~hue5fEbIM@8GC`R{X)Ro#pH-eWUN;066hmyZXy z^aU+vS3j9NiP)JwRgCN!uEHmpk;MI`lW(7!k)+Ufy?yt(bQC!occ(A*!c2a|>TZkK z^iXoXmfYre&3|WuByQGNEyj#Cs{h>tBZ7I7!p$>z38@ z);7`WJbr|;?Mh+HZJRD)nQZl`emuDTc6nzncxF6tv>#qImwT!Ad}Xx>rgnI`ny*qD zt$v&>r-b?qKuE{By)lf*vDD(*j20R0yk|ZQURf>Mn-3a(Z#Dq*<;n{z%5s%5~MNzwvgYO zOStgybnVolyc&0){PB(hGo=&Ow=wR8v zZ&}M|pULa02dfeJ%(Pei%jzrK2n0BIhESD{?5}kjs?GQq-K*xh%fp&G9ZhL}Rc;P^ zYswZaWwn)`6D1Hh#DL4ZdCvx8$><{AhU1JlypjuAb&=Tc)ijU#|c~g+6~Ibn-Cl zuVLT6%7=3?a|U6=f=zbxSYP^pWDTQkPUYp{BC#LoufnCm&2YS=5F4cO@0B}4(=ScW zg*86jX!OqlY+jQyd?&>i@+D`nJQw{M?9%m-u(oZ^r5bN0RRvm1r5fzrsz z-9ajH_GNRR-}9%+$}2oa7SN@BdghJR+3#WOI49rw1vUL$3sz-n=t#OtU+5Qn$JzCy z^jr)#Azkwp40G*URWgw#APw^g04&JA()q#vAT=}7a6^r9t`!2;gaO!b&jA4d%k~oj zoPM#u1cWus#SOoTY3vB+Rw8k>!s_PRwp;dn#3d0@i(cu*N6P8fawhJ4) zamdFQJ0~$la#&P});WdA0TSCX$)|t+^^epCJq$&jxNj|gi2$3X`_%KC_WTS=wZAZ{ z8uV>?d-uitd(D}f`{UJrLFDDcjx*c-j*RJ_R{CUcNS}m?Vp04Z_$gZT2_Mc&Ht_X& zRy}%5J^m9n&Gf0|xt}-)S(c>ejgJJPB5jgV8^IA^VOKO6+eqzRZP0&CkBC=;|e zUQ1LUnw)wRNo;=91GY}D9=gt3Lrw5g}w zv*X_Jk(vJF8Cc=<->`4qo|)1Oua^N>;piK{DHELozGAx5KDqVmrS*)UFurI=yaJ2N zT*HYgJ6c<5fZLt*QLfXgfb+al&#{{TxYdng?&;lfTOh=@@xgNpz1^q%FcDp>qp|&t zR<-&WK2ZXuHNCL%Uy1iwooW0rtz8aj##F&2!#) z-NpE`wY%A;!3XRYkeWcVFNA`R&Ymk_<=?{}Ru4J7CX>CIMDM@I;xO&D9z}`TUxV$= zR}BtYXV=<|)b1TSH1`F~K8aI&%#5OtLz)*cNpF#6A&Mitj{0vY^p62{iWP@`!iNq{ ze+#YajsNQI*hdU1Ut#O+*l;xLRJml#`hKGnwPAQx>MFRZA3hEkvXLJpYp~FplHKT7 z$f}>WMB)B{Q;%9HdMp=f(Z(JY>0tXo2=C_RA==0|eQ~KNGfT+t=VEdT|K8kM!%4KE zukkBn3*Ks5TNq!K6K*dRvc;jyUtS9C=#a_>t&@SIk1kb2H~B>9_-Sv>PPi`AwwyaG zg~y!B#{KL1-HRCbOpe60cSO_`GUPH&nSP|={95v?XK^VJl^7S*+95Zm)7M5-BUyA) zU%Qs#2i8Ol&396W0$smPwJZ&xYV1gTy#4eoq$o%JLPw@;{xOv!tzV&)akovAvaOy^ zm4rp3O_zB4yfpGSL?fb-bj6ibt z_iNKQ{>i0j_isWR8htzAsx0e;X2u()wexNnA_&sGUBH$orG!gKKc<(uzPd#g zr&|`gGcqe3?hSmN*jslH2~Zit&LJCC*LSf~OzZNbZ*}n!3rpB3y!+6O+R%qhZA>*# zo6wQ__D}YkdMd8pH1Fy_Z(C`+6_ZVo1nzjku*Ih$L@}>^@sR(z^@`Y*`H|cpi&gk@ zyh*bKO?fSZb;}NwA_XnxEwHxNn#q*i6=r^|(ViOQ6!T~knT>P+^KRc(&q+5*aQn+Q z=G1J6B`%I_6HLo1PalWoMPPzRYyCx~gq0K5cgPWF-=5mOLOejB_Sy?@bM z8U**K{x$2kbJ^%pZ$ysYh$}{TI0Lmdf=!V(P^+9NEwNr4YfkIjI&efAS6#2#MTvb@ zZZ$T!n7A+I($i@*)w=Te*aNRBn6+2#X!v!|b!8o^y8|}U8V;kaQScC-%#sAm znGDm{`u$+s)OygEW<6cD5P^xf8 z`=RHAD^m1mcysjOSW$e)^0G_t0=d3K;qH_#l(t@Z!l{AzEKlq)kN0g^%`n2t`>1b` z9r2}LpEkDs>Bwt{i__EJ#s7&_pgsWZbxMx!iCBbpa^+sV%o3wxxhKyDJu8l;xc*mP z$6l@lxU}r%a#cNK5@#de63euBdZrFHH}YiF?xTk;oci0Qb@WMX1G%-GnSX@hS|(DL zQ)?VCU)P6zG?MO(wwT;0D`s_|rF-?Rh=dz7MuPqnzeL^1AqCF&(;IHA?&sIo*(_kq zT2wQLJDp3fb7`DQ{(aRmBJycQEOaGXaj~k1bdDmN;=jc1=86d{S~Z@enlpKq#%{3A z)+;VITynu{Jz3TvzasJn_{Yi6l;EEFADP-WvRkTJT}jUX6RI8Js|13x|Q&2%^v^&)e7z1ls$jN8S zfW#-qDLfniNK~9{4|nJLLa8=)EjuEepSA9EqR`E)LzKgbi3Du2&C2{!<(DSpe#J}l z)TcSKkF={%;D?Gpe4s|^zYV|be$ry@7U7yA;G5`VVEtvPB_Ld4FBROC`q+Vtdt+P~ znQ)u<-K9T#Kp-L~p(~{k145*$ean&-1QJMP@si3(e*>{rT>B*SH8zrwTb&xLv&SO9 zdM{lY=VtZ>pGH}TUd0P71`S%R$V*(pNX|mkS+LVEpbjQJ;Lj)FzoFzn%U}3mGrHTlkrO_-3}jtj z$s2#Yg$fIqs@46wNj#t=I!%}^J&q#6)=JVKS9Q!1Glm4rDe@zu*L{?1_ zh7$95V!WdF8??w;${_hiLacy%alQ$UzHF()pM7Ky^c%Q40H)Dau~8C?o<2?So*7WE znm=z4{W!R+j%tW6%nie4!-7{nUf;c~%E!G^=PnuaZPcEoLd9EQ|6CQEd@@0Fc>Wva z)@}{SNxaBf%6$XY{ghpGd3t57+Wqda60a{x2C>|k_3DCk{{(-L>Hgtkk)#-nG-SM) z{qyn{lPSlsg)ISzIERa^uh_5pq*Bh)bO=%pYTm+{rU_aMXxr5)zD9_BRuupGu}$CL zQp0omMnD(QSbD8?|N6PH;iLoK{rT?f0=&A22Kd$0hj2eV{pqPrWd)mR0eULk=xA5@QZ);=bHe=qrH=$*Co~*}s>EKM4#FtkS zH-~D=rwUFq?o70vB{=}{w+Q)nzrsdb5N+3jyADQ2H)Cx(C}3(ZW6^k9%3d2;zzT*8 zK@$0F10}M=U-`qx=dXD?j@JUuoB1WVCi>6i<%baWZL`>$bsXK0D0f2Ld2 zaY})+gLO4OBKuh|q9Zu3qkNoKf8%(Q!8-VuzWbEjP0AgIOvECkF^BW~BdPCAs@F~G zL!XkUHpP;VskxZCm6*yqBNo&^H0VG4+3tXG6GiJAT|tq65$D18BiMvbLTjK7^MFYi zh&j}Z9v4cfeB^oHe+h6V&yOV=#%_rKP?M920Ek1X_j^)_TA{XqEQ91fHNw8}L4j_! zxgV5EVji+fR7T(0>oyE2G-0LJPUO_i+s$nZ7n48{Ae{QUclI3nCcU!i(u-XlL=e1L z6rTbFnkQ#mO=m{?Xx-;vvEctepC^uo=hxm>x$YdDQNH<({^{C;(7swAb?@bsQN{>G zTwR!vj8aDu&n%;3g}{aM_jYT28OiXHuL7mUA}-c`3~~=V%luP1fz~Z2?+Q*3sMJ_5XkRb8~<3kl<4+9$r)4-iVvXpxh8! z;FofU2Hz(=Sha7<{LnSmg-vLSL~8=~Up=wd0*LJ&el(n8m=& z89k6E#B2_A1hJt2XSD=V{e9KiVWhQ8V2ssBDuXI)TlHvcQ;Jn=rLYDCdC1?YjXhgD zryR)u4fFLE4{>(|OZskSG2$i{m%V z4=h!dibq1t+8D{BlA~bf-=d2OgYR|8jz#eH*Goy`!Dn0?1S6wo<9g5>n?InUx>f` zVk-Uv*th0ss80k1$T^+f_2l}m3`ZO?j!+KIvy6tgex9erpII_Wg_MmpFk0vn_aDS4 zbeCe#ottgy;{Z-&$j}gKMO(+gPSj}$utZKBKGT{XonK?kUxbsS+$!yR7Z16QFMXMf zvOxy2A$}QC^vJeY_31_;qLgd3y#@AOe~X6G!+9;}9zNUxuOuNTlarEI00pv?%k zf$0ajGSC7w)bHGB-g!=1Etnno>^=ang{{72YuakojncA<+q03Mem=-`o~Bh%xZwZmZCXP0ZyscO2Ce2rB3p z&rqddgp3=X3AFXtZ%ET9MtT*#C21~B%tAF_N)DWrFqCmY0VJN)K{zPye5GdA6?U8i zePhAdOAz5z?0qnqYgFIzCThT&ymLQ%QkZsoBpMLrm#YbI)2%Yy!@&a`RnKZE^)v?W zepQSsZfgIw`J{zP^1TQyoJTy^v_``@+8JCvbp>{kRG&_;`xmVZz!y5ptmQuky2 zorSotxe#iyA>DRN$2OUg7ss*g5Ty=uTll`rCT16A40&f)I`NaTQacKKvm^xOS|=>> zB{G5p0z@9}KBKle=oGhvAIw}=iJl^jZP)vz*Nq6yg_;*R*4z8p+<_XtA?yiUUGA>K z)YPBNeWLHw6tbB6iHJcI8_P%Q($OHM&DyXV88B4soMntm4f-Z9Ar1>bZquZN{w|(L zwEoc3@2i@E0Y*bXN~D@rVbPZ!6^xj=-<$b+6xNYDM11IOCP_ha)k46n`*97M&oNbj zEpMpBfMPAaRjOIi&+~5^r`zS}iTNPMP1%weGC&ouFx1EAS#y6XVw9c7+V8{10H8@*&o>zxV}?Xri-~Fx$b#Z~%<%-^H7_iW|e<0W>GGTVtovL1@4UeSBE=th_wL-{y4oERUA1()`M+01O2I zPM2bJG5o-iAzAC>o^Lb5#U^zRL~Q0Pk+Blt5^%-E z(PY()F+wINS44(yP?KA5vA5A)3C14ob`WT@IH1uN7uo;)q|}p?VGmNF8aloL`!H~49hu0~x zwI*$=^wMs_!$k8`-!ikK9(k()^={W}IZ?IlO9+x)q`BE@4EoIKo_^i>?k!NGEez8( zb%TOlWWvsq#%8;D3>vVEOgA%Y%~kQsit~MmfJjvIOa+;}M~hg?a>k!QyQAUkj=_Zb z0s94-y2&Y>jNGMnrtpKM(DLZWknsj>7G`JKNRNC{dyfqDR0TLmv`Qn7y#2B{=>DM z&QbIkEAI~gd)>vP=0|@bhk$kCfVf#I97N z++=ZKOF{`CYLOG~yJCJi*+2}OxzV+>Jva3|Hg_d3}&mQ3hFPtu3pI6`8&P@RN5q_vqRI<6HPIF5#M#mITvt zhR~E4Kp#3NL(Y^Oogj7o=h5~buAG@u#ds-bP5+mtuw6!!)T^d^cA-u0m|vpgQ{a6> zPUAN^o8<$6e*hG*p0d}`W&2vm$9G*pY<_WEQn0q{r{}Fg{vHFyR~42K1{-z{she|G z4SCaQ+$Bd<(K1|7`|nPsbu!{XNoF*@(=-7sq8Dxa%(T_-n9m{8>0Y%`Nup<>q7ua7 zGTs~Q;voSF^h7cMpgj(Qy`#POQTnZuJe%p(tj z(J!(4@J7a%dU@IepO;FW@RT~0cp!KZ>V9e&A=E($0R^{wBYZ=L3kV#x-DLQ$F6y6w z(d-dl5WjPCjPHhA%fW5!`)1W{5O0Wx3te;PxOi4|E)KyB8`AUfH1`Np4H`zdjBsl{ z<|;jSc5A%YFL|`YU0Ja@d25Ci@iJI!bj+le!2N%Msv6{nFD>skQnJUzF)49kS-j;U z{oRn(f*PsWE^){kg*J;pSV&M1XE^d(C@vk!(KuehQ<8h$*(wMi%6pp5Z$ssy_*!Va z;$O@Su1htE1NZ&h3>yk|nku4xT&Lzdmm-KJ_geK{%tqLJ+&}#D{xwhaEJ>>|^_`Q+ z-OzLdxycV(b|MChLIy2v?#XmJJZIO-VV*^RDJALqd^{YZegQ4qnUpmsme# zhvQ3)RpN8QTy%6vln3GN7Dt1P=e&!a5t+LPPxwyJUAMmp2#P}ajc5`CSY^w&GCT_# zvETw{P?3SlCJD-gaO(iC~RGg<*a(XQK|!rm00Ful(1Y%M4T@;q-97ncv0r0E4I@X=RE*C?oyuyt0BjwtqG z_E~K|t`gZZ<+GscC8Q}Q*FliGeSClnBw+&uR;bx`gmympcW=3wA9SvJ8cL-#u>TGKCa)A|)4s@A0FFZwMWLrd ziSP|?)sgZy4kiaU0h%BA_JfeQ37WpeQ`sr2L*CGVEZts&>aEFRi`Eg?wBJ`biB-{4 z(Nk|DLtCNy44AX_ujpC-Bo=qzMJ`Q9@} zK-x7_<4ODTKhfRWC)eyi_@H)YIZe705(jki!3UVwi-~;nJLxK~o5Gl&)najc&bLxN zfR?w-8#)u`6YRti3OmFJ<_kbz#rQ;}I2Zp!aKGeyBh#b2H2Koz;yC z#uC%%s!=*(;(M#!w_mX>SPGArPyJpid5Z@0m69K^;oLNjMMAJEqavB(_e`5(hKx%{ zl*WFJ?(35=apFpv{i)rbna1(He{KoJKmu_^bc!0}d51yC%hD%hIW<%K(p6dkqLZ+TAIKpU zw8O3p6x-5OY)Edr=24>^KZzPkK1m?e@mg$zVSlFT>ibh)~)*O{FiDm(*Hit6GG6TFxf!iDb-Q138@J8r&0z(6{qN zLX#wZD>-ye9ZlVE51swHPnl?d(yYb~aAe09IB+6TX;(Qj{K413#KA{rq4mG4%Y{pC zzCe+vSJX{*$3l^_i)5ZglY-rzvX@+@-$sp3xg|h^dl5(7KG{d?HegEayb)zFWr~g7Wacn+7hGo1oCp-BGs^_#Br4!%o;QNGPQTscMe^qY$qC&Go01^tiSi+B z^q7*Q`cbGWF(C1+2RSZsDR8lCG zAC$a#El-lWI(R*BV(WXwh*5JNV=fWROtMvsQh24&e8ZCPcxe~YYF2W zOTs-eDiaD`vrKKY+49HqZ%BtF=PEPRmtX)e2O6XY@#8Vr`&W^n^!n{gqVbNooOKC7 zc_`awdcvF(a}TIV#hG1n+DQ*R_{*2Efd9D>AtSM zCZUiZm^gGj!V^}^N0a`L&=-tTl7ybeCmW}`5v0)C!g1bOcxzz)oVYVJnX(11ZzZSp zcGUeh`c9JQ;zVX8BGUz?vU}=j+6Id)p7&H%nyoCKU$vQ-i7#QI!5#r%>sbck^Op~;-Anjl zh|=gYHDdDI8uDJ_%GqopbO%b%@#Yl2djL>VZ86qrqzB&+KK z6y7~L`{0pz;gNaYv2UA2d`XbL$EKD_y`(P7nYACdfwQ5SR??sBLh2+#U~hu9-<4m-SMT@+W#Zx z+p(G|9W!$n-T!S>&27aorny08~#{w|`m4+BvYs24 z|KAA)L!~zX1&-)EUSc&?JZ1E3kobsrRBj1@>xd%1RmS4S_ZSaj6UVCtugX*(g&3$5 zDEP^{Q4`GoU|uYw;!$VINTcteq*0b38+j$Lg5g7eR^MwR7$#u!S#- z&C-Fvpc0^QB=!8&!}OLvGid-)h>IcnQDrj7AyQPCMOrt~0El(x;&u08OxoyE#PgUD zQpPp?M&j+5X?cOyGS5faTI&KtFGc_Vj*Z9+=35x5VN>p1sx*DGvhzZ01*0bsqQ4dkWpX(b#QBUIRjH6UN+7Gv;6aZ6U`cfxoZNzN_!8 z;8KBv?mx26ls`7LJF@b5$ZOYKkA^~G24VB<{hxoe$*9#cNuq}F@=NG;nD?=UQ@q)Iy3%^ zCbjq0q;-iIOWPMX$ejvMPa!wq5{Q;P$~rHz6*Go{EPqkK;0l2^ z>N%O?t`!6a^YY(?N%?ciF=$lhODsz)Q7^x)KbbHU86R?%+2FfXOi1op#h-r8Ig}Xo z`8fw^W^!t0aA}3Pa?tK9K$=Be>c%}Q`1}gyQSi|P@{maC%x<8$@F#a_mW`2iQc2NcPCnkeW48T z=1RP;G^PG|hBJYB!`%3->2x)iQrd#l*Vw1v+FT$cb}u&qd=6Xh^g6ysu32N(PK z8^RLmA~nX*@QbPBFT6j{l0Ovg1S|G(h{|ipnF=|QgLzit50!Oth(rI=iUWI-rR5S+ zS-?&7*n?8B{9iYt{LB$bbCw45L9YDIlCc*CIt%8PR_?SgoIpB+GQ`c`H7gZ1_-2I*762P$+Y5a zf~qi%p(_QB*Eq?>alljvrp%F|*47V(oyJC^V}D~>@l3}Mgb>A$XpWnzYy|=HH>w zA7q}IWSktD&@cs!EBdpPee?P(|NW-@j%)?)_W!TPJOB!Miy2bnx1N)h+UMwL%L^Jm z9G%}5IKFs&r$%>Ae0~#Jkrk0f%(O;Ek*4b1l$Rp!_I@xN>ND)6G6G^6c}R@eM=8K7 zGs3qBmkNV?MIsJN&dNrZRtZ5t?<0L{6yws;xM{vqHo^qg%{fx>V_^q8QN#_@N^_V& zRJh39JlsH(kg1B^B&)0N@Rx1MKP2*of4;*e(gl4UU-h(UZWDL#Q8IoX{zsRuZV7Zh zvE6#|pBMI#}&Bfsf>k#eCdL?e)^vT;vWOP9p8p53vz_@yPaOCtl(MOPE`!VA&KD#0`j=pXG4a>WvRWha6b`23ZC1 zydI!M;IUXz85D_UWv?79KN|z)j@_ag0!RRf4m8m%)2cwksgTpFCC2HMMHv!pcEY{Jv_-mO971|`45^D?Tj@SlNb)6^K%eDIpvqN`keQ^0t9t!qwh~g zg^EN+q?*VgDy#2LdsCk;6*j9!Jpw$wJ?VLR`1$9m!a9%v!%j0X%Ex8-uy()Zn{s)7 zv(?2YhCRoU)Teo;u>e|-ocjXTxGU#$~8}0 z5=p)O8uqxMureuMi#uhcVA=MG0+@`mOgJ^YcN*2!jeSVN`q8x|hehe@ae!NQtpsmP zoz4XtP+7yz2h0m#vXVkMr&-}5F{z;x0SE5Z|M(b4^f(RUGI(#Y^)LeT2%oeF#H&Mo zvIqPYRkNzUoc}Q)O!SyB@Z>Gsv>m&~NhaZ5^`Nb?Ju0s(P5zxD^=&$sCr4GN^gYwL zm8TK;I|0rw{I=YW(_aVK%(zQCq2T}W=ac5Ysu)>}9k}dNNVGZ*&F_71^uUVfSa~~} zN%cmgQs%6ZbMu3M);ktXC@31;KFZDuG;tJqJb%RNcy5$Nqd(FJ(mLYCq%lVNoXLk$Eo` zCTm#v68f)kPNdAah01Zd3?SunD_5WZqgqZRjm1cLQ$X+M$A3HToJ`+3n{c|j4vES5 zrJpimlvFTWbP@!8p|cQ9wH1rqE0Yl4G9o5WOz#w;epMH~rwqCJUQD5|~Id3VPNa{#y;j zZ$bsi%5P1zDIfbUw$cu^tl<|Z%_NkC{HeR;f3pl~vMK>LYC5pgutMXkByGiXn>{Wd ze1Z@M6#k>(CmOsfh8xgD(|%`=U;!o0oU7yIGT*cFml~+6D@si~zzsBrNi<@I4$h}f3&tBj=-V_H&=;@a~0Brg-qVhispYey0_oAex9AjZfK^Xr4 zIy~GElMo4N%gqNr4pq?Nl>c%z{zR_M}i^}>WeAxMx?2yH*6{Q4u}b$ zpn!Q}Gra-UFx_{dG4Cf3oxj%(M@56gCvqDR9VZ+y0*Kk9zFz2o0wv!@Dl_ zt@7|&d`iZfgW%XqOZ-$>A$(ZGXwq*81_@tT|0S*H4LL?yLL!-CQ#i0!~5qLo3 zk3GbS*4>TPRhsnUVN(^PtuDubdjxo-F9Xa2-B_XHh@Q!TF&cdT^E`xS?1MVW)8+65 zM6i9M18-K;FjrXLZso{mYP(;5d(ecIdlJj^TXrN?c)n;wppReEq8;Y#tA+k!{4Ih% zY#8Qc}*vqO|I9^{2b)CyQkTBE$M5x{%vEGAC=p8xpY16i$ z4Uck7{?qY3Wx%zCbll!p)1Pk7;)S8Pr-;UHf7RkfmUaeAcZ1-HW+~Y#pZhC@jpx4d z)(NXHV2-3selmjL|na>9a@|jJ|IaTD-~*jGqpi{3+E! z-wPj`a0l{ponA08OHg+ilPoZSkZ7l5M*F4+K%+3(XteOQ@*fw^s`2Ej?XZ|-;;|$W zZx@uqr1d8XjjZOoNvuB9$jLOM_pMRp-{QKsPUl$fuuEK`qiqRkrEFpblZ`2SsX!ul zVa>kn7utC`#CAtFW5i_{mLi5BY*%;OkPYT!4$(f3wOO45fHf~7Pj z-|IQt7e7`7O3=Xi54cWC$QqCXED7Wn5snW6s5=MloAN&POn|bja-Cj&qzQx? zeFO!0H7erQ-XVx3YVOU#(99VL7zQ@VSCyXZ;a3nX zJOmPD%qX7SAmDhc3-QbWjN_ychQ72No5y${eiPDKpM`G!Pv5?;6L8DLkjVdB2H3Em z32&}SUt-3UNnh@&g9ti7z!wZDu;hP64DD5DUZDG+u^>frs4fa&BZe+t6)i__v4VQ1 z=;!e9@qlrH7PHvZV2Uobr`V7Hn?9N@#y`vsNN7n&X>tJa26YGxpPT;=+EBhqB)Pn2 zBeOfTYp#dw2+|JWjvYPnnE(%a>_pI;ptFdF*UWo~piy$QYrm(BHN7#GA`&Q}&p7;r zB@FPXI)te5Kb}k6WhdwRd(R)5M9wtU&OWFdKJ_|y>NfDYG6v6swj^v65YGgBF(4c| zKjOW+I1kPn%Lm@1UCAY8!)m(p_CPh~k$e&WZ5%27f%s|rgH3)^9x?aeBVEu$TDpPr z9v#PjERp`ivZe$E0o5!b?}Qy=cAtc1Ja=1>4OrmhCf;0nPDU^{{!P*` zJ(4ARJW0?#gG4EifnJ1(Tzj2o`Wnch)S>YKv{(BWcHTSoa_R{iGi}sG+gRt;q|@VTm5o*?l_0TQmg=m6}kyskhrC~GasuAE~(B;c=ryePdf8s`Un z-oU_*4!p8mua#5k2-Ke`Ces;>EXP2kFtqnrf2<<|L$pfP?TFN0>W|vr6x$tIBf%tD zBSBy5fK2eT{=|>-S(NTXt@|4z{iYK)IydxgT{>>S_%ldpcgaI{$;CI{iLQksbG&?kPl&lfg zEJa0A$dCRJ`lnp6W;`f~Fpa=DfEVZVoq}562dx%24pD?)S>oP+#0OF!3=8ThVPnjE zGbX6fXo~QyighRsf=X=@9)p` z-uN2$*MEpNZW2$HEFk(W-{P}~>YmIoA=FsyjXMMu@UKsI6Hj=4Hfv19(pX22%EWQs zenKSqo+M8BMk-G#8vBf8j|pm)i}u04GZ=sS75!8G^GhZjj*NMrfL<^9cpK!w2NY;h zIe`d^Y^bxSf}W2+m}$RqQGtFcDe!(ryX~6;im16eY}Sp*9qTD)$GP6&!ZalBQ0$E} zw&!Odkv5@Arjkz|0R?`fl)CUu(CKXquzYf>QtZu(40L{IC1{D9LlBT)9$#9quc zqv4%K53xCF;BG7cT!C_li~|3lj)|y0pag>WU(uO`!bn_lpKE&YEz;~LVTiH;Q_kDC zUHYZNHEEpQxEuve?_G#%0bJ+yHM| zoZ8T>mG}7uJY2xY)p`RSzTl*WSLYnvZ-ojm`E>26Wx!>ivyJByIx z^4I}3riJk&DgZi;54;$Zz$Z{T*_LAoj5p;p{mo@GnU5VFW3UYUyoD0GiD2m)_AU|I zob#4bTgdK{XLpdhkTAF6wYR{JhudZ3m%Ar&836M*0Uz1+9gtn8G^n#%5+qiEZQAQw zj?>%aC;BDhQ&cqQbKfVH)`bzf%Rmr-Bl$kaG~*8i`5sHxMoHG)yZ=Im-q|rc@lE!R zklCZld5bX|kh7p4XS_oWMi-lnDGJ25dqhH;LXo-@`8@&Ux$DWAeLJ~v<*^f(PD;Rv zDL%9*B$#mR_3a5n?lz9s@aT9}ItIbRBq4?VkD{||i>hnG@E(TFp&N!qx}_Pq1wo~| zLqI_~h7zPpx;q6C5gxj`5$W#kj(6T)u)nNht$SZ_-Vn*ReR)BEBOVT*4w8QAdWeCZIz{ylcbyYHkW7uM-5AwHvy?5PwoI^dGT z50e3aY^z;%G;4Ky>}*NiF^n-qtPCg>iGifh1<1@HGEHhcoR7LL-VQ_EMe;;#qz;X=l z_H*yoqTgF4jf(}vyyDP$)cyoU3fS)Kzx;LuC7=7lX0>a1>XR~Ivc$axnq+}s$@JpM zyFsU=T=Vc52!-T)&pp1~;zzcw#_H+jmIli%rdZNC@hc5D%vz6`3Z<%r2T+}Lo>Q;} z#kU__QNEJIWeyG9_$P;!@wSzn*f_*@SK3*SF)m~h!fbdRTU|wAi*!JPa9!UToJq-m z@>Vm6A0fqFaPeCH6J^y*o~kaCJQG2TZk1K#CR*%Na%2a>&pB?-Uu*(V0lR&+ecB-7 z{D2Cc+YsvMQiz!EhcN%VuOBvDs|*s5R0Y7P5AS2wKI9>xcR!)D10RoAK4RpjjXGRG z$<}is1%DV^N%#K*r*sg8xx4T!y?2o&0k<@%6E7wrP_EP2bb&6m{wgf4Src`eY!HrEn-GudYI(gTM_0f6(Y8NTC#yyG z^NZJo`bn#^Z@`;gkJbm=Hb#jxCULx<{$9_&w(idTe=8r4c{TkPu3?5>J_M^|0HR`b zQXo$`g1tX<5){#a%s2D6(n@!=e`Y~&c>y1@z;<|%o}FOi&c9;LcAUB;D5Q|jaA4+s{Y{N6Ya-`ZofwEYtdw9s6*+u)|Nh+6v{tC5G_kbfy51;+mZXe71) zT3=7>P+i91G?p5$Y&@j`FgEJy7t!@0g7ZJ^A~eIyGZn}mRQ!$5Z1J&70`Tt*32k)@kA0>5e zK7euP3H@Nda9#vYnEncb(IOJwQJQNH5;z@e@{n-uCzn+rb8~t0Z|HA1EN*+{_SfXMcCT&`MKvr?%a_?CFL&{zI1V#P1A(nJ015$3v zw`HEn`G|B;E)cW-29Bx|-<5F4azw=jIDr6MGa@HyHibN-8?2oeI=ub#0dc|>6O5-% zSZYM3vRxOR@^Sv$WTy}6rc0PJPZ&$UIBqdjTI|CM4)9LsvH5YezqB15JYWc{nobw` za8f)A5?}$Pt)ch$N-vyn5GQCn(lQ`oQbqY|2qMh11a;F!p%++p|L`J<(jF2$dT-{h zU>0V9IEf6EZ-(z4hygO-;@47Ik2z4Od8tW;f#_aCXIsP1k<}aJLqk=_KGzO=R1F5S z%zL;h6EW>B-OnzGvU(C56IWc&zJsZSyrR=o^R8F<16D2Yq(n|P@6&kv8v+_Tok*9F z=u-_N0Zh?he?fGg{4^(Cn5wql=n3Te)QjHaQ~`z2YEoMGlA?=*H-Z#<`qHihaWXQ5 zfxK1HN1TC|N(Ucq^&u$2ffp0*_``q&Wf<44yX>wsmNfy!S0Ma>DjJk>5KQVIky4TA zk^J9T?enkJ^B2Ln+l!4XDKYje_?VO9)4nk`aQc^_0}=4?aPA9uu)ZAn$B@%Tc6Z*> zuM>+F;OhEN&Fy?Qw^!dLF@D?C8d1TS_fwqV%&&m5$%h$SN$J;nmF>6>6o2qQj$(WW zZ{P`p{AV)0#0;mdce>cV?4hcW)uk9(q%B_Ad`59XZ6#wQxoAk02Lsr6Y*2l~ceQ^+ z@xDc-;=r2Vhv9wYNGv3GeXi}nTEE!Ic#eIsOylR?X*#j;ziBGIb6xJ3x9g4nT@g1b z=}aQu9{D}=9bgF}0wtlOf7?FdNJZv@vFpq_aq;kVB}&a}2~e+F)d43t`*38v$Y-7Tsm9}Pv&w6C ziA?v^f?SNp!5~9zoVfnW*{S+D5@(OXjnBVFKm;7KmPQRDX{~b~7q(qxAXR^?5%mwH zBt`F9oh{2ML8}4*V!&lbCRn9!I77YiA4gnrpgkjWY9;6N7|SBXRv|t5UfWUk6bEOn zh#ZpAO8%1kiw*j$V-qZiE&1|Ce>5PEO^t~8hG+nXvy~vNcajWN7<>$X>u$49%iMdU zFJw)T-h@9xafks8`FE4^WZz;5Tm~eVb|dSe@Ofum6nz=MhAF>+hM2e_h*{B>1yJP2p9BD8 zxvSxJ%W9y+#uKZr@>^mvR)zOj?qwh~ZM>SCPO|W9 zh?Zx9mKZ`B;*VQ?;O}w#CN?m5`lIvs;OEFC$ticAV$Xc!tsIkb8w1gsQ{a;XMk>f+ z5`~i#6*xtRnClI1$y;$yrxlK8LTIK7hLT_!#nne^maPH9TaS2Px%X+6M z4qzfRivjpvSgvN21g|txJRW7luZS;P%nij?8*BL9S#GY-MEm;L+*ET{-Ir(&y;T3~ z-C62kDQ}j=Af(Bu7V<(d~0eqSl4_eN-vQzdCXq0HF7H zy^cg6gO)V(FkOn^(8U?k7`3o6M5|uQX;I{aTw##n8YNCGDB>og=M^Q-xM4OnFr*gN5HMaF zu(%o4*<^CkGDc+-edGHx)RoU_Rmuy&eEL`KQeu++^Wz-WxL>^i_Ln_79KAi9xyXIK z?fN-g!eoO+7bhcy``Vrp4+@fB_)#rfj^29l64mTJl8ksQhO>`Os?35Q04AzY+tyL< zX*EM7kjwL6Boe8!#V3^+`iv&^?W!0B9^$JM)}B6sVuEtgIFQgaXFqoICBu6OmGfHx zrZt)FGmgw=M%|%!;#)MkiPi=SlXmeRx=<>e)P#0757u;k$mstYHW(Nc-M+Y4nJNN0 z-CWvAYGLIhIfjw%0aq{v`(3d)UZIpPbT3=YJGQ4EcEtGXg0!*5G4b6Z89E4I45t4? z$82w{u(gNV`NOH5z*o5?bXXcSB2}wZMY71%_0~Hi_FRvwM26Jdmq(%dDxtGUBY)sk zL^fMQCTDaGXH4e6g(2IuNj?sQ4}vtFM^LjG;K}H>N;qLyDA{K*!@d=m_^LCFs*{Sp zH!S};Qn%cUK?TCdCzItc^@sjnUh4O2u$*{x&SK{H@Y)gmc)>iQrR)Tik|+zk&|!FA zz7VRG+ziqujrkao>?2Xu@YLSUfLG@9VZxm$a%#RR#Uv5U1t9PQ;k8^j5gi<^&RIc_RH7K@jNo2ABKP4 zO`sn`*1eb2qe;X2!``4?MPu8HQrB5Yp-VXW*T{CxY6XHSkbn4a=Gw$UvfIa2 z$6+sNxZR1PGLF_E==nAa93cdO#uS~LX3eagAR<~r)gd!4$(0!AjtDkmN?DslJZ&6~ zKunEvOEqa?v^dqZCRRxYKQh`+0vjO(TT7@?;4aS~g3BL&8&5beOxRsbs$G^!-Ha+~ zc($)?S_Gxib{W%OE(Wf1a`tWy=l@%goV{);Y0?DwUHNWikUogC`8B>Aq-qN%3)5Td z8!6ky4gYJcd5L>qyk&fldu-)V?LHLC@BNrZ6(V69Mn+4?jvKq_Q`Dky5RY*|aN#^s8C0oX`OH zg`JS)`{4|Ol-AO@)QQw4bikB}u~0LkXEBqPlq&(*Uyfe5?5BD23&gJ(#7p$MEvU1*mDW&G48a||1+A1jFh3-iP z&U`(0C~AoRX;UhK0w~^jif9-%cry7c2GCZ<7FE2_(2J3n~Y!rOKO>8>kh&jlk?NUiHSell> zZyNv%D#^jOd-t28@r8+#nQjC|U;rAlA+wkHi!%ljE(8EB7T;dnjdq>>JT#ee$AvE@?INpojx?`lcr7vV-t1S)bO zBtq7djU#E6*$2-3zHc*s;%5k2sw4&)78w0qUQ_y}qzDs{pu%C5G0xM%$AaFvLDwu| zYyn7EZkY1pf6^LP1IA#vLgPjlXf478`pPK-}8H97Y~(89k~s<9zpAu0Ln@cYBd zqBQa&5iFh5$@nksmLmlSH&FATQjkmG1TQ020sRDR9$bNaL4Mz}Bd0_+-&XIKFEvQp z8iENxi;&tOK@>rM6XH}2!~cYEevBNc=}Dg25Rd`Iqw(T1%bK+sKCUtoa1p$`ZA$|K znjmOG@QXBh;k!vhzd|&rK@FW@5FI6{ZVi^39=DEzromY+qH-kb-5*L4>q@skOE;4^ zdmKp?pLFp~@77X2iX%hJibqAAWk8fD-)7jYT!8T`l6=FQj9`xhMul}!y)KC^Ej$zE za6EBOdo(fj`xxk|gB;M^hr-#e@IT4j=9uTIX_=a{kG)bil|RlIAr+BAlzL=;(oE*WdPew2z}XGgnmQ(G6|{9UqUETJc%*JAgJ;W52~$noWH7!0TS zsZyi`Po?V<_^z$AM&HhJJAb`UR(2m7oo=f+4h#XWAQ0 z-@b%|rweq*6Q(|dX6Mgo60NFRC9#vOoh%E?fs;{Y{JL2a(B_{0D; z^Dqz0jR)S7U-&}B1HYsNAlPsT=Y&SXEC<5AoN88Ig@Ertx$pmLqQA6!ty+N{eQsKg z+>#yYfQxTffb_`_3@8?aQ*bNcFAlWEQ|?J}E-3=A+njAOpq*byRqL&q%x&GbV90dh z2b^zPnUlp1ND(tZj###*5f;3zmCAiP`u;^qZ0R`#jUwkGr(`_`kEW^K(O}S- zv6ZUHNBN0X+eG$g$jZSG{bJWC9E9wbFGacl7BTF4)+X7d0oG{`3(Nv*@OzMhn0dhF zgiLvUC^XMxmOtMMQ<8*h#r_9T-L?|JQY9J13gG#7acnq*c5<-md`kkTxh|uDm*eZP zyILYTeHOXe05)Lz;POOkyXw0**6#L_j(jrhbC{OuL&uUXJx3fWd;&HD`5vi}nK^K5 z@OcUZFAv4C=O^Js`6>uu%k5pP>&+atmgT}6{af$I3Uv>x`W?Xl5v84YIQY#I1%D+5 zotB(dZ0M}w0j zHh>IUB9ez+I+%K`fX)eNhoRg7H#`QRmRlGETQ2Qgn(>M`-d{IN=L+V@Z19 z-zkg;ftgZDwZkNtC}ODjqsfnV<^Zx~SXFCE8h9B^w;?G>m})P&Vjd~{ zuOuNo{}V~$w++VU-1K^3VnEXg@{7&5Wl&c($o?~8itm0Dv?JLgYIF1d zT`o=kfn<7vO0M)jvmbxWg}3+jcp_*(LU9c8d|Z^)bxKK&rhLh&KJYFYQ|~q)Pap@g z*%ksrRB#K}1eWMQ5&AWd@p2dXrosrN=U|2521eu>^4<=2W(w0eF~d1E;8XAU;<%zW zYm!MIS@f!#(Ry<|qv!8Q#mf@(RREyc2fl5yEim+@$TbPl9S|E_9M_@qR}Rp6A{CLu zH{`XD6jG{*u5b;_2_i7kFCgIZoP3u$ZBuJ`6oH3ABk)bPFohF=j_BFf(?X*)2U<^+ zRQ%Z<@px6f;Cg-}I9}+MkAZQ2+(~AgYq2L9s^lwe2hSQaJ;9SxiyxFvf3qNSCtL%C zQh$VzjLOf9j3}Dlb&bB;*%JL%r2im@8l}_oqN*`q5+(F_ID3vT{GJDT1Wi_!uCF%y zuX_TX%++$Lr|-`H3M0b1D{2VR;iI-F=${ZB#?wLpr_`*`rxtcTz4Qe;gIP1Zy3XuT z_$-A1#qjee)abqkVfx;%l$G$-ERDsWoq5xrq2U!00oVjWX93aaB2gejCJpseUgo$c z^D^u-l8G3OWY%_Ho7uyJMT)$f;qVgNn0&$^5O6B_E#TOrt?SN%xc!&=rw;_()=k#z z=CAxg*y_l4elB^KqJji!Qm`+xbUgs@%nTntc+WM5s%zl)K$h{i79WeW^Uzvn(kA<#^w1RWVM!)^ zN!5Y{LzxP%V7V+EE31~TVO)e@+psvwj$16h?$2H&$}vVH5fjAY7RY>>+x=E-WajhU*OZ}Wc=~04f+k4bkf8h$15;h}8;(F3ycZ49a+ zK^2O~D)rWM75Tb?U6j_yUI&Zmy_0zmr2?IpUCW~Q(7ypsxDk59fg4Q5n(S&Y|>iwCw(HCOtrxk(d>o-V; z>I!KT`1&Tz%jSGfCGtN)`~g^T=)kcR6yA&43eyeij3tMu)Pk&NSeR#{P*#5^jdtWv zN%6Uc8}bx(`gHn)j>Z-`mzab@@o`a433yzhqe6NC#S`WCxcYh&z^c^G_(17S%#=EX zwTP&Cvp^3AyQDWj-i!YC6jvL&IM<39jls$R5+nqDq#^1H1%fm%E`ZhC_U6&bzEVOS z?QNf*^4)vXGH&$WznWUyWXce^oj8&V`&fAz%zB_3L=KT?~9G*67D=n?u5Qve(`fY85b0` zC9{*_$u-@;&3$F$EJw82s=L!XK?O&@KWR#N>~cF8i*4Zsz6$!$CIZX%_9!3oS1T(10k>{uQ+vh0|ec{GZW zD(faTDfF{P$T6AxC+lYocG0(Rkg9MTTy_E82$Dt--#}D<0=lK5AO)Z-j`OK)X|WJt z|3+S%o2-O7`FO93qmxm=mOt&Hue$_nV$Oo`KCk%1T6og(c&?lt`!ufjrAYH!KGU~- zUmBdG0r|fjLPY=sRwcBEGatP#g;4>RRyzpz@qSQJ30M_~{L0ILy)y_+#VQfXg9CuE zqLI@KpDamJd$RRd31c8>xrV_zu>cVIM0}HyFO&+~wW#BI9FYY`y$iykpG%qJ5^8Bs zo5qBpXk)V~5??TU0R!zohrJJl=0uuA&W_$et@~V*IL$ZwIJktUQYqesX%mt=E~&sA zImYr)Kh+t9AYh6c(Ktz?L$W8uD7c=JX17N645a-; zzw##FWMQe?H8@ThIoXnyX`{LSJ4lG&1_TK+S-Xzo7Dn??vG0!oOhLF?qKn!BwsWjV zbdz3N*9;?Sz_yIts+JdefU}v;?cVMw3$L}1MW^L2KCYX;FuT%Z7P+k{Va zL3M9(!qsLcEkMnVdqJ$&tJ?6X!WCA}xP*ADa9kcZa+(Wv(+HzbU^ab%fXRJ}i`=W7 zW!Px06xw>YkF_vuDy=-G9ro(NUgHM|+4e}fbqBRcfh7Nr%>(ld$`y`xF_WmbGw*^| zxmp$6P*@d{I^W;;|HkO9)Qdw`_|#$zmko#hBJ$QJ@LKGeDnCt`K$S`gep}^*p2fSG~JZ~5R6Z$ zX!YGXeHmcM&-2hmgj%W)1P{BUnXa!E8z3G1{ef>g<&`=V4V9h3+YHz|iT>JT!{a%f1 z{^{3jD6MuQOr-}f(G_h)+c{9gw4pIv?;3_dxf7N}Dcv5fLV#v`eN9J_QO56FNt;07 zZeEpL(&B9in#8$-qhl3(92vXNFJUWG*4Cb2kj!J)GtmUy~US!wp|J3 zvwkW)O=CI^Kdx(7{2y7(B86)=lg|9W5^aej@erzt1SNsWKM-07>D(V@uLO+ zi}uqScOWAB{>{K>UoqzmJ*@Ettz~m`qTxkkJ5W8RAf=uh*)NJFy=9>qfl~7U6D+!-Do;q)j zStaG&RJlvo7)P-2ANU!p^N}DT9MK0MQJ6A3LG=6F2(kiQ2pN7(J_wu4oQ%obG>v+Q zI_U?4_Zr}1~HBp@w~0a4j-8C1oo<@0;r$1AiFl67G{Cg`VDO9SPX@R z&yArYIu?d}!pzzhv+jHv?V}z)y-98m22yrTv#S@)S(uAlKlAhHQTPe}cz&Ur=uJTF z@J&Mp7I2Ea57Ix~*g1O#M4=HrH8MSgq5SuA8jR}lXzY#ifz=ebi|{n50C>;n1a-;W6Ptci}GMXsGkcSZdYejnoP*C09s zLG-g>y_h4OUW4w*@Fs=$?Cy8Az+inMY}oE^G5dnPU$0lX!nvzViE>zjR-YJ;MvZEQ zGmR4Jp#nR8|1ul5@wP4fcEt8p?lc-t{9fCPqRr7Z;{ls-&jF{P96rQo@ugiXKa+U& z-A7vM9ipq^$L|6_H|wzg4$CMd;)JXoa}sB9@M!`79fSxX0mL`Rb0P+i$?&}^crKg;_&Mi zry;frnK@kNkr2U7ZEs=Sj3(HK)-J{T$dcLk@2G4 zc*va;HKI-hAx{aSgizTEM0BPLkUZ;K<{D1%7WB`jxg50<3T&BK&3Y~d`pOV-VDO2h z&CvPV)$8-kIS)9{i(!QoNrsEW_KLG;`+JfV20j!ZAYVvK@0- zwdB8v5p2B|Pv9A$tJGG2(~9dR@hhWE3-Ko9_7Wmd&YLCKZs;y~3s{?8b=yZ?Yv0B)|j5gr~+>E6*XLe7l`??IRT7kul5}v@wIvE>J5| zO#1@8E?TlmofWk{5mDfp$HIO5U(IAiHs7T=3%T(zg7gU(W|UWw(fbn56ET5RWSv9$ zQt23mlpuGp5Ad&lhf4P+e5FX!!!7La$l#ttm!TMIXq$?`>g#<(@1xr5KMBOi#-UgX z18^bZzv`yA&M8SyOrTH#jM^P?fR>LwjsRO2nJfp;FsKJTlH*DGBhyswfa~tEt|5O3 zxXF8aQ`2+)@Oy0GNWaHpk^)8$33aQD)Uo&uswN2BrKnHZ*30?Qwqs=h( z&kH}x;P!Qs8=$jlGMXimo38l|heh~31nD6HqiWZrc~{obv&P9^AKnT@4&c>8?t`{@ zx;Al`Zai7Gm{cgI=IHh2(*!AnF98Cd=@F_ZvO4~N4}UDq@ng(D%sX(=d6))Q`iaOG4qOM+b3Q;qZQ+A^I`S!2JqZu?bMx6 z2HkRDF#jPHx99Yn)Vu%u{`>ND!HwX-qRBre@$AbNefwd%dh!%<{-K@LKLQ9VSJhqhI-l7Uv33ePrK!eX z2?Z>KeS}(8j*<^YE}g08)FLLf5qd3&+YT3fF5$==w0I_r6X`$~Ss@H4kw_C2QW}wV z1`PH-(j25OUVgdmp)@3~v95fxv_G0VB~vuKhc#=9k&6=aKG(Q|9%-Q=FjeP)na`G4 zJt*!D_6cGf9`;u7;DxFl?Lc-am7jt)A?uTB3GU#7qkL+q^f}fya8i(CZIncsi`0tV~X7?r)VjnaSGQz>VPVLg#X z$S8IuchND_fuF!g5V?>z;z!CZw(jn4+J$k9^X341vq%ppDP8~@b2^Yz#+bZQX0#w< zVDi1fVrPG9?MwG590QdR_RH)|q&gmQtu1lf^_v10`BIwKFxR1PAL# z`Rwph&T5=ai3D~W`>j3}A)1J}6h0MseSqR6<~r z7o<3)`!5%!6l{wHN3oj^<#|$iET=vd9hb#5b6N4F;&vBZxR-H_!WRi+8q{?#av z=;^%>#YB1OI$5>E31^$AG~VZ5p~V;S#bSa#E3Eu`pT>icz%}&Va@V7itUCzZUp`8- z^py-5Q;&5VCT6GsQfaa?+n4BRwDju?!RW(L-5=s zY9yk~p0*;qG0|BjLR1uweaD9>2=sB;wse|$JyFXT-xZLdQp&HZz0ad7k??An!2%ZZ z-R;`Zl@tQ*J~brD{z@U$2oHOicx#O2E!q5EcNHEwNZqZ7%O#HjOxE{XAC75fciZN~ z{&?51okRWcxrC52XK6kJZ+8dpo)_hQ`>wUxOBeCX*_{kZhw(tV>-Fh=e3qhP()=IyL}&1kZ8;MET*N8Z=o zoVv!xr<{w&W4Tgl1#Z9o&6B#GsCnAr@zBG^5ZU(LzSMi;BRqE#eqQ%s)agS`d5G#$e~nlaLt!^% z;nZEW(_g<2@(`LS@A~J&T-Cr9aZyJ0k+5q9gF|J$qf*2_ndaqmBP^gkbS8softb_} zlYJJJ%1l*kx1`5vE%n|BFsu= zpP?6|ZT^j1xS8A-CLFi~uiOOw0Wc226}v-Z9uKg%Ee$MqyzHz0tM(*yP3c3{cWwG$ zpc%rOrNq)@%XW-4nY;gO^ZZB`x8S3zQrs6TX$ggGf=e9?gM2OPPjc|XUJq?fFVdd{ z_Fod53M^SHn3__?%jWyVwW@?|&T;ESv1lv&Haoq(5*E$4{+>7^%fS70vt@N&to}8t z4pUB*@R!hjK8}YiuvwLH-F}!o8ViZDD7+ZYnP*rr@jV_%$m-oLY z(kCZkswQm%4OlWrvOg;P1%IzLu19vDZoM=60%N(am<)^OB1a$hrjTS{H$H(p{i{7%eoBJFy7>>WVj* z;*ukk;sXn6!S*fl=UzBSz52K8vM9SAtKDo0n;qOFO_Wm$iDyIX9YhT>CqV{sAuRVA z#P_L%8G3Dorj5F5`Qa@0Ce`SCWY|D1a*N^C1S-ZM)`lrWuA8xyPDq ze*SGNVU_5c_`sqQN`iH`-N(vm@ag1nX79a4H_6lUBD?jL~Ib%~BKMzXq3ZMQRmAP!9rcD&axRXB9B5CMzD zwX{KpDOkkGpF})(-2PNWsKG!k6>OwwQ7^=2EhxxZM(W+G;n*lF#wE)$ff4kl$~a`s z)u493Y2YcIO=i1&dy0VU+S*b$Ism)WON0S zaFvwLz5lYsiI(z=HktU-3Gqt^ZC5RAIb^pX_tNOz^`Zhp5Ln&@{d@GnfS)!>m9 zCb@VWzD4M%21a;#Vmj=o?f0)Mh#kY7;Lq=KuSpi(q|D+aUm$%}&~B97l_X3)bMX$? z4Gy#wB^uEc#yVvS4<6Wb3Z?o9 zr223;N|5x}YWt>HXN9^c>Ijt8t^9pjpDRhqD%=l)9$=Au>u1t+P-O78%-V2Zuw6SN zzUXq8GA?h%JE#Ba1je{$Rk2X`dVVYOlqqhkLu?-Y^l_Y&U-^0YJ3iLwwD@&39Lx#FugRb?xvahn{*tvA2=o06j~N8OeZwOe$ySG?gQWih zqgD!zSos@A!JA3`GnoyYq%Ho~URqo?b)oy7+sVz|DYFN=_9`&`^XSNb{n7J0r7l$@ zU&N2m*Bk`>iD6en?+ssDgMc8(uj!o+9)+t2yk{tiR;Nl;=>$JWv|+`BMEgH2U53rn z*^df$ab*@uoa6awrn2kLYSM5#WNd=ilwz(&$p)E3*mdaduU|ft-$UpH64=bht5BwM z&X*b$@wJuL8&H9mh-b;H=Yq$#|M>Gv0#s6vd`W-?t)u@cc>tiDDWhwiipHg6`NH06 zSHmar#r^Y~hK5_`;miK~wg#dd5G4VMy+P!FcP|i9jd&vF>V=MlNo(5e`H26Iw#{s` zrx$O#B`I3xyN51LsbwR7hxg{?lfNgh01m?*9_{v!d}>$pe%f8=CwYq=v)PUrLK5X5 z!o?}d;QQB4&S~(nIgU zQG#%+mrI07~B*dYO{#4Gd%nx;qy+qwjNW(bB zo>vNwoxdJ3SHi2$tr4}%wG9-$B_AhbzS)6obZ$rPGD!z$;4twrW$+QAS*3VPDp4ir zLI#LSG=87UqxjYOa~q)v#OtdRGD!%$(;&$`bW0qbtokkr`^{Q(#=1tiE-7dEZ}eGn zOhycnJ}3Tuw;A}D<&w#A|I3|u3~UmDd-bkWAo_Q%5*w;-$Sw(tYa#%5XE)SD^RM`~ zWjfiz#8lw|wd)IWqmSwV*}l$W?9=vHMIMC|#E@eJX7 zubk)==v*+VEK1+XPv=M^_ZO9X7N&I(v@j8T56Qfapm!j3)F3#~xCkE-qN+U_9TM5> zC7c#Z-|5@3W;0E9w~6tY>fLDcDF`>)Jd&4pg^4&#dUuQ%cm&%RAQ2(ohku8->Uwf_ z^;b9=HT{@uGIzkC5IV9O49Utq?c7lM@Me1?NsO0!%dD3zVI zp0(k#Eb|ct<^@7#_v}Y!v^WJ|v9BZTplW${+N2nUaWT9^wzyGDhg33xuyo7N_abW1 z{jc23usZ1O2@knGcvt@m<^GGji?xrPUc`&6tpdst9MWI1dW)L~QVQNB2qrO%GbA(~ zsQp$rjcK|5U%aYAV3NrzSH>tLz!x2WKC--L;kr<|WTr4eUm?Qe!G0pDsRh(`A$6F3NOkO-btCQ2!?;g9d>wQI3f?O(8jec-ze{ zhja?Ck$tb+_pu74qtL~dFETO=0{oq}q^KR9+xiY9_p2Hf@t3|28g1#%ZVea{*2L|Z zFN~X|#->OXbT%;HZQl9F)N^T!QfM42RNG~&O!m1G{+5B$0rWK881FEVR6SqDA8(FM z0{Vn*o-#f1{F25mg7Gfb(q(sdpvVNzHZgJm2a8^r9^vQS>2KV3Yd)4}V@toPOv1_) z?uh6rPhU&!$^Mwf0-S5b7Q=reEpU?-ZJ7o+IKGDcRpL#fi&?2GhkL0aPf&Hm2z*AY2a#r z+*=(+A9E{7U%*+erPh9i^FfbL|S- zmPmZxbgDa1oce(rJqASCmi$^W;xZ90^r+)X+pBIOkBL_5yJ>=|lSauR&^~}%7$>fa z#!OEHw7)SuTK`dYovq@{(E zE_lqt{EHqK-V3zQ%cy4DR&0z#wY_HbSD?4dP@HWik4V2{BcqojgD!yd@Vl%{HAp_u zZii*@h{*~~=d81@jwUeIEGVsDApoFfhY{xWFbm+%<=E9%#Ez#bK*u4-Mm6gYy-AC* zv5v9(Xe*tEAQ!Q-wj8m*dpChDGygS9F9$&eV@Zm_SEgN||-nX&xqcm!{X8>UO@p2D=wC0kXJ|^C+a8LD2%TEYz+B(IUPB3IX^zmTvs381l*y!hD!sh z{P&=0Inof4-AJ8$%uwq4NB@=TA0K5TFFnvQo*hk=7M3FrtpAa~9`-D|3g6=2tdf3T zaW6W5PlF=vk0Tp}8eGLP8xN2g+UDxbZD0>NBgnZF1QP`!q}C|gEX}4gAEc5SPttZq z`yXvUaI90{UH|>{qavmfGe=VIhr`TP>W5^J$PX=e`gJek()QyqguYQ<6tXgy5yK1$ zqv~3uBLZB21Oxqa{}lWxi`m71Yg@{WRZIB=1pjX_YQ9qb%O2JlnvvZIsNsXbXJLoR zM$6*^YSaYpvzMPLT5SUsX0I8oI!H(pblFwLx010Xnb=Kqi4GGiO~M%*u2EA$t3z)} zqF|cS$s#%ah(1n+?}w<|KR%r6Ts8yUxTSr`e-DP2j(Q1}#K~%LLbJN?NkfP;jQcfi z(D(-GZ>tM9Ib7Sq6);;8TzMBSIq6ijn0sB;ZJ_jSlL5L=iYj#d?*CR7Tx3Vt*F6M} ztF2;cu{8Ol&&(9NWxOMmi0UcAsO2bel*8KFejBG@B#ib-UyYzf)V+ z@|0GTTMZ{kq~p-d<)fX*!C2nlDC_%szECD$kCF!TTVU`QY{%DiIgMc_;XjoD4H79f zt^Le|=2V0l_I?qon3D{;j$7hvRQTW@gZ4@0K{c$+Xa^s{KXg!;!cTlS%$o`7b8z(D zC=B>kUHX^E^ltF(l$AQL*%meVuyK2G;HSoT;t|W?elNm(PmKM3Gs>-UvCV2_AbLpS z4-4Ku(i3NgEZsl8-s)GLej|bV*WfG8DfVRSKg{)8VeWnG4+mOem_`c>y_|3R?k#Qo z#FYpH_Kjx`cyPSs2L%Tf;ZhF&1M5H(zke`GGJP4dVje{-D6}yV(O<6+;1|RLW>)d2 zabMYKqnuf_KkJMsG~Huh4_2+%DVv-b)KVHy-XEQ$(=gCWY`}Hx0i_uvFbNZE8sMVW z0>ukFGT4E`9TOh^{%Au}=AXqBh=zpPAg?EcxgfXDv=8lHX@{g7M1Q1yXnr7Y(Ee+& zzpeln_|i*aRlhe|c0)!SvI@p;7CQl7E}b*IUr+YM`?C7{nWQxcnt>K^$(CVYC+6fA zs)8~O))2$j8e!;-hQ!tS_{Ey=m8CJ_{)Gw`3nRIp5z5BIYqgP^_3`Ts(QEY)N`$LR z!+JLOW@DUNbUW-{Wc3P5SM(|_y^{-xIRL=iFVX)_qfY|><%Ra>C$P$6T4M+<`C2Zh z6`=m%b7Ub^r_2(g7Uh~-7$n_Az(ztZ`9d!Q`9lQ&06;y_SOx$z*AD zzuKkSzeIl&J{&MWPY7cK%>$@N2=`zB9pLj-ZVnvR1yrGYISxWif!AyD{(RSxzZ$N` zDf(CE)_s0$3mEYEy`2;RpFbP=4KATCN0m3+#Ah!ixaFGtk)Ph{Ww8vta({ien^++tp^%A32^Ygp;X#4eQ1Fh&vd1L$IQ`79el_U&OipiU!Gwq1D)Fe0s1 zBXKppV4nAb51e!6+pzebL#+R<;k^$q`qzhRPVT$!WByF;ua7PW5P<5#Quq=qKD70l z9;(*M7W85r`YJL7j=EO7mQZVS}zn3gJARkPywAt=Avb$%!dM^0_ZYi0suIG z)@IBvT{NFQ@RBT93&WB~DgcT84r50yivh&Ef&ML{Yn|9RNaL3kkLgr5y*>wKKG=D( zG#E%AsmCK|wLv)rsZK9+f0qfgkT2)ZG2a$&Fb}-dX9EnRCE%c>$N)2W*JNLkD+h%V z1quoHJ`$yXWhCkz3R?Gga>cFytsV<>@Zoc3=>I*0=QP}C5wFD5e|YAH!f_9*Ip|1 zq3S`1d9EaUIEj;i_eh*!RB0+|H9F2Y#M2{jxVaq3w8 zlEaNP2ODcg8tSHcHeMWDd1piMxt7|=6}wOO?07R!@^a(St6MiuZ`pZhFFhobqK% zdeZdbcntu^L%9VKxRWluR(VPt5X$Dr7BkhV75*pR#)mTftC%Zkty8-3=Fr|ya{&5n z1O|BUtfw~@&_{ZuB^XK3#;-}c<7po{z5Z86{8<>#9}@AY05kxQgG0#h??Vcu^AG+A zrM^kn#Q84Iu`eO>K4|_p^m5VuOWbFdh&P7|`T=?^aDULs@E3piTwp9ip2#K;xKsFI z>_TN@R6cG2Vi`@N3pE-_0oC^wPjVcsk^G;p@?KaHl(@e%cC{gOu{I`IaFvrffcgMx zh`lkFs$j#TdV?6zpIwq%+-gby0NfJyiRl^ui2nMZ=*MP83>cRAZ`Qj306gHp1KN$U zt6eQ=(MW&;j|Kqb{IrN4w)kd7$y)snn;0t-<1#Qn2FE%R2t8%ZZ!^7U45)E{h(iPc z08I80`ib?#@o%HQgnQis&i~Ub0YFa!==7f^Fc5XV%6Xy2%fbLK;6ZDM zm0|yLSM^V(WLvgM0v?)~i1?im1hF-+Ev1n85eqhNrTL%baQ^63B#gI`=; z|Bt7a|M^7Svn|Q9Eq-(j9p-{_d~x1fEhfPI~P?b2Ne+Ke^WqjRu$7-(aXPN zr7}HwbhT7i3IK!`Vvt(y#8giJfF>}F_&Zo7|c8Fl}1a~5<^YwkkD+hneB<*dWS!jiQzbKy3d zakDXdZPwx*r9E8*7JL+b?n%@`N4*oKkh2O-?{44rcJj8nqT)UdDhl^ zc1Pdi!L|3dlw4j@b!pqyn|p^}j`n_UPdmVHd+Vy3!~5=zPu<(o|9o)U&E5?oEe(Aw z%{ywVw&h3oKN-L>AtVdPCVXk&E)>d$KUd#^)-o%g=EWFC&^-Vh>jk~?Z4;p^Qg{-1 z8qR7mKzbo!cY$svZur*TS-2hEMj9$mMpOViUhnMG@+XpL-X&@vad@VGQ{)2!IKYqI zV54C`V}J$#ep5`&>wS>Q_sxndhkB7pl>7q#7!Dh;#9+hUWPuBzwl10Xy_ z5nBjmzqs3(i#qF4RQtwwE%ncDBOKQEU$mIRSVf%7v?Su?tK5x0;hT zn-Ujm0+(uo*C+@YqBj~@DIAr2yfr3E*c;ii7~n`o-&shP7{BG~^{(4ZK1NMxBQsl| zT%eN_4SzJdt=9B5>*AG;490`e z{%;B7B4l6g%-oFkU&IR0M=q;Pe##fmbA9*!biDfq7Sj9=7G}OXH|x7|jqiPc_J20( zC-K+OAJxBk4hsNgn!uVJq6w_eJNWsrX+bYr(59@?gb@}m3@az=A=_9OAXea%0(67# z)i`Ja&1;Kb#M2z_Fx`y=C2tb$Qo1YtL=keSGV-r@LC1ExNgS`E=jTgR9E#t}MOZQGK;% z$Ayux>jN8K?reLpqv6{2!8?ZzUZ39lcC7vTTRUEF-Fj-fZ>O6c?p%7RbLp<~ z`kp0S+iO?sDk&w^?K97v2-v5C-Z8g%)R(=_pFQj{kJ^00#hJr-86&a9qv5oPNR~)( zCN4$#;M5!tefLUdS1d=d$f6S0Y zvcDziKu18Hp$B)5mxin~mn%_C$?T0Brq6^vU5H?e^p_vjQE2DwJCcpP2~7^%Dc(U17Uc0M zw(RjC>=5k%*d$7dJ^oBQM-@eByI2!qrv*Re*>dlNssOydX8&me@Zq@%-^J=67aV;* zA94#9#JRCF0x(bq5c&ZF@B^v`Zb#?W+DnF5%;c@MTxJN13qFLsks_cei0VXyCp385 zWD~$0B9A&k>&v{c_>6v=gUSLj85UE!2PD%c)6Cla7;U)C!3qHcf2 zTGt}df4mHs6CNxKup^$i0h$DiPbKEQn_9fkwP>MzK9gKCmOh4e-#5KaYj>U|c0}es zXO7rE%#~x9H<#i-D}VF^02h2HUOG=VXLyI8?wjkFp0W8Gp~*zL%m2U~~iCnu{eC#PusJdmI!JEMHT95w@2 z%zszZL7DTlt1}~Dr2orpnE(JCT_xd9BgA9xvm$pPQcmWC5q)wG4xl9dbbxsPw*-BR zLNSM+Pcj1l>;zT-z=twPVOa!VZehCGp0U}on3Z^JMB=dj3#%X53+4j`3?zv-l)=l7 z#b^nbWk)=d0p4tW7VXeeVTcql{XbIR$4y9k zmXUaZB6?dP(UX*)d|c>zda9~c5NjH>`jub}0BBD!RDje0c^_`Qo zwY`;fduq$~l=ydhGly-NQyx*%?@4CMg2||HESxhM%@w8vzcxfl5d(3bV9h<;>V7O# z9;^`vfqGT1Z=|J!3n;3fs4 z+VVIvGD2G(FksM3E#}l!0)Hnm0+wXE8D*UK&dMYmw(p@_EjZp2M&y&hEu8?I9x#3& z;xl!R^iw9kFagB_E+AXQ(S|ep2w99#E@SWj0HhF}D0sziXRkYrk^WB>52I8KN<2ME2~QIQiE5a9E}0RVs& z?M}f=@9kyyIlBP>VVR_z8AVQh_ zdSm1a7H3R^HH3Ho{Eu#d01q6fDhe8^0o;ME(G6um=Gw&n7+m^KhdTcGNZY@#JO29S z-`w5tn}@qTd$x;K@TX7r|K`c)r&I&4hr}Y{#bItgdpz{Xo!(zu-tfPUb^c!yO>cTi zueN(fi@j?d3s+j^uk~c~#H~yQ;QWjuG?TzXMZs+$W0!SNi+N%3!uR6~<|NY6ZS#=v z5YT7lxk&%@(E@+n=_Tu@_nY~i9GV37`3s~~pa6gi$AX32vJXIdEPDMf`M&r-NK-{_ z^|l@EpK<L?!B^e?Zs`&kE~p>vnt-5=igiy>dkj=4`h$I?PEUsfIWM}k6D{_B9ue3cf!4h zzAL|Fj<7MxwI8Tp=QBZ{cU2UOxrFN{tRoxy z-vA&wA_LY;r2lkWQC{jIfELMlr#17HJ!@n8Y&cqZK6_UGBz zQim@dTo6VMh^g2Ds7Kss0LVx%4PkXC0vG{fI#l<-*p)=+*F}I<2jLieu*f^bh#c$c zaP=s5p08#!-9p@-JsJSW>pABu{W|OCT&;@|`ZW^JF$M!T!uzY-A0p^7U$w*s0Fcfr zS23B!0su%Qb-vFb^#48ps6~Wvg1BG+XrXN2?ujY1h)2KOEu#QHVE`6n`1~*#001a` zkst>%Xhi?(bxxjNJAI<((fK~NI{M4JTNPaahJl3?I$dTb`pckih3i7410o1U=ww0e zt(G`$ppZPMKXn5D5fm+uOO=kxOI%lK=mt|9_;853veXL(ppE>aZDoHo(!lO`)<*vP z;<}&T*!=5J8hXz0^<6YSPm{|;v2FXLL-|QjT7cU@$fB*pb zKKHCe5ye=5VIk3^* zEnP~yugyMZ*UF1XoC&NvF$KaP2(DS|@6|eDa#B{8&iW>E5Nv@^mi5G>eud*FoQbx~qe_86t(z5BA!Xu64=T|mN)fZ1K4IgVR zJ=$1stT}a}xoWa1Ib9pSvth->_NM9jy2*yhlm_a&`sEatv|ug}d4 zhXW3<-!`Aov*D0XG-A+1hafBmDW{00u=Os$Ye*)x)FNM-j{aivS?D4;km3&?B$k)y z#WiY=F@Ge|zfCy#b3z|1lW|G02_aD+?sEYQ=u$wd2IvQ9m8$-$&`ko!C7v08;qW}P z0fs_`F_D~^k*Hx!C@P?+88={bJ{w$VP{Z_rchKlk=|9n*3V__szek71q4V?1i=4L z0bE%cMla7a0E|Bq!bEe(8QP~X^>E8t4+%q=~ctp>{H~PB>u|aL5zKr!w=~{;vd!f4QgS}Z2GSO07%e>T8E0~T&3$0 z)R2@2?hEDivn3W1|8sa;F7fICU@d+XEiC>JwO*+e#2>bM(L$b6(oo0j^)GeJslCLEi}l^uN!$?-A}1{*(3Vqv@b`WJk}86SvHHYu=v< zV0I;>-s7X3S0l0#vcZcIRIh|YcZF*p@7=jlyLgI4jMUu-&QK|_5gyfl&EiEhIoXXC zBRv2Lf+k}Y20<%bW;{zF`cdz+qv&U#*DlwPLWuhD0c8@HfR5^)3j#X!4>B9`5qiP}fdPsU;u-*8doV7z2;(qA#|4E|Fob^8pB(;Sn3v%eJvH-_ zwAzrRa|qw!1sxMUM+<>q^U(rvzupiDXG+yfypU1e0zagI>e@*-kpFNYf@EolloZOg zUIPF{0L#Sy0RH(k5v+T~xHahYhnFhDY6NWNXwPSD_{`YRtoo1(?L{Mtz0}%By>w9a zh$**yQ7$s1O1hdfouH_f_N=%y02SH@hrgTbPR7YwcSOk0a2|W9}1qSh~r!| zU6X&Xu6Vk(_+)F{k*3W{TG9beu!u{8f^>(UFWyAC#0P1IJLXze(=qV4dq zhSM!IN9skyIn`P{zO?i}OT(4^4HtUaScm<5b?uejkt02QH`f(DUYUPy%fQ&?#tYk; z@2=~7w7Ku>*3D-}w!J*K{bg_6$3ugc_70yJ>$~2!^x@j_N1HZX+O_xeSl`jT8*gu^ zdD6A?>iYhJJ$n!IY`)gF=IW;ETYGli8|=Tgr~Af^Wp{dO9`9{`G1l{RbnyPr&bxzK zpYQMa_-Ow}(|s>Sd++bz07379t!^ojUt^iMQA`kJT>3xt@5f`D-cq&vzP6wN53YC??) zqo`U7`j9&41uy*Z===G@kcLnx79$q^COM@1sQ%IZP%wZBfCB*NBV|Edh^F`HGABQ#VtCm3>;N;6`q1=7@u`-Au_Fvg zsJtF9fFDW#LlH-3t6W#mjMC~@;)S95es|$t4lVuXW6S^P)XIN6zxtQAw|@Fy(tee-tu^GADsd42Ogoa+3G{k1;(!D*6~OD2DP^=R!dpFyA$xf`#QQ-n0uw8Uj`*w27>A|sP(Ta=LjfsM zKvoE0YR{yM5mx{JfU%vexPe;5>7mtt8)$lY+TzOeMPgJm|AS?@8A}$=>9FNe0if1L zv)^V~+<~1ZX+GjkQ|4x?taH&pUksu>MnXSGAWMd`=CA=qT!2uE8WuoqZnkAW@#A$x z?how)?=Q!ZO&x&uC*%(m0K%z}xQk_w`(m!)hyyVwjXR8hWC9>0wkmkdi`YM(Azrb1 zhPoknCn(SfAk$~+lK)jPE=IMDQm|MofA#uC%%2Gg-10xne=kS(1IX0$=l}pf`p?r! z9U#hU866-T=mn5sR7nNESXP-I4oB|{LGuHx&w<$Ce!an5w&oUlxaKjk@=$h8$xxC^ zoWksvQeHqDJC3o`g;j+G^rhLJNJrX#ht8oY~&~q_64C?sXTpbYI=S=W74z$D5j;t!uu!apUd1BiDwupWD9V zW_Q=gP3y*cHji)bKC!9kTvx@d?dz}X**7)Pa(AHZ&FaRF*L2_6u>JPr*roAJmxh}j z?5lq|xccqj-j9Y4z8sl&H9qkD13UisP|vNg?YGBwoZh~Ce^>3Uis<^Ff#O%LXTLPtGcCPjcW50)|OD>e@^WIe6jC2mCriIv4{+}B)?{<&y-oUL$!SW*P2Rslad z(Vy&|#sJ?M0D#^g`coO`ABr!LHc2g&liXgc3!W))@EC+iKi*RGw-b%5jRXUJb#>z> zcQ$=`Z`T)(Mgf4Y*c1-{yucsgIQ-AAo{d5T{r00n3T?f-Ls)3c5F zhpH?C$=pr8%$|sOOVF_1n~q@`f|}yAMSdK9==6Rt7dubOqD6+e@8k5D^TE5{%6lMu zaQvT>^}bO5`Tz_v^gBh>#hPYK+cMS7c1HMnUA{@4iI_= z8=D}>{au3YdZAnhA`vF4wd0f*aL1Q$s$uDQfn5abSeO+#Fm%J?Q+6U239Y0lAY`NG*cB{` zv1DH9NI~H2lCtBK<%g@vPA#jQswx^QEj?UUJ6>LVys`FtXCu|X@s^6S%WF?ANnLF# zx!PWJyryunJT$!|?_|r83oDi$t}8_Xbf~4|*wW(LtGmv3Ejihice!=x<-r37d%Lb~ zNWN~%f4I8)#Kui$*SB76s(iL~-L0Kn*Lvzd?CyBnx$5q~;N{($A8&2GySenun$nls zy3dRpI=Fl1!)>)c=&8Q5srkg#z5^S#9a>j?eO>BV@A^wUyDs%_yt=;n+4?niw{AJ# zzy0Ly4Hx$=zq_~n;m)r6TM&}=z8D>Pd1TMy=`~OGHND;2`h(qDeza@kqeFdf5BI&8 z-tl~@_rdU%bKR|D)rDJwF40PcL?cggbtsfG9Lhq?ERH=%i&kgOs)Nw!6QdzvWKK}r zr)7XZq(tnWNx8vVAc1T^wwU1@1*gPn-&pRfdYD3i=r84ha*(Bn)PFGK1jqj_#zz=jhpk{h)OIEy3RpHTmS9MXSg zfLSa~;;*xQnF^-&3;!8+0|44kNH#{$0AL+kq2pW`IeSEhMa`RQqFnb&X8}Mr17=GB z$RdgWN%r+b7$VWy;PquOrU8hRx}9*dQ3i%3#LF(m_)M@?q>Tmxl51MNd=>zpk*l`> zV-W$bK*lXcSqy3YK7K*M`?HBw0f6oS=;wqu((cUwfcEkPGZ5{lnn2nT006hT6hH#R z4=bB+sC&Sz3J*t@1>Bx4vjPAz`XG}8(iq^oljHI;LK&$!2|uk4&Y3FD*=q0U3YLC5 zFH~Beb_D+Wu5wKO=?4F+cm!?w?C!ufkEgzVI`M@>|2>}(?q3|l7J}gbX#>2O`W*Y{ z7bCxU(EGE?Ykzif4T_*E9f3o&&K zR-~s9{W(jRQa`1T20D$z90|2mBUg~pKvO^f0Q~P%9C^M|%RmXu zc=E`tYQcd7%5xDX9~7nzLAuxdWF7v%aYE=a2YCw#g zY0Tmjr0M`|6~HJK?!@r>vTRlcj@;)f7~l*Y_h;kBfTtsIpYbKC0Vw`cEErH?Aw4;a zkY6Tv6E>jYY^7fysxW$?zV1YA-GQp=!}WDTr3Fy`hiXfP3c?3#N>4N{Io42hnF^q} zc5h*LxI8sfk=j|B*jZVytG2Aawsd=S@kCuA)4T_3ibl(#XIqOeG?iX%s=nG;c71)> zwT|lB8#Z0o)-zIDbiT9pZvWO}J)2JN?6|dU&Aly~uk`kv-M;>#Y2tX*&25|R4eUKL z(0_HH`^N+AA8&2C)YE-taQDe=8_ujx-RW6=W9!JV&HFA4K>j42ZY+7Srs3Sw$r}eJ z?(AFp(O}D~?j^4`FMrV2bAMvuN?*$l4{!c&hc|z;tLy2G_0NX}ULG8Nb!zZ?`!~E9 zS^Ii#_xH!P|M8*W|8j8b$?)zgJ)8CvczPoivgWPM#r^(t);WOpV=>l{W$p21Ai|+; z(@WgIeim{ey%&~`kqg=_k!*Bg#8Z^Pcqma2NV1<&c7gQdi|_~$*_c{>$()xEKDq%Q z`=w(je1z6#;g?JlGLeul>`$36Y9{@c)!tzyznlbpCU|N2?u?pt#Vqjq!tw`9Qr+V4 z9C1Sa!1$y4tM%zd0 zxUY@a#Am-XezP$w>$k+GQ#O&Yo`tlMufk{u9!Upc?cqZa0P(%@Jczt;bV2DFkKOSms7YpVSiA91HXCreG|D{LI3K6-4J@4~`J zesC~@$D^9PS|7X85Ib4!=3Hz@p04(vDl^|{aQ@+zg1;WA`^V{~Umjon%PX5dzdQ8X zCkMZJGWq$ly`R4V07icGZ2aF|?Sm1*An219t`GuMc*G+UU<uQ!L2wE# z2w-4&Q<)m~E$|&q`H&1kPf^G-jeIcQf3DDY4$*pEF24@wog?vFI`h~aGx$akaJoFg z_c~A#*~GlyyRL})A7c#1Ivo{)uyJF6^+;B4OYdb>I?T*B}wWpZCrg|dE<$O(ld<}hdP=D zmR1~YuDH^iy1J_E+M1PDJFBjB7F}7h^n7>I*>$z|mZvT)OWoelePyKY+_t7WtFcF4 zes|#bldxx#MYIU``5hb>3`7E{cK>@gZ}P&n@S(8k3Z~bxiGkU zaL>@|J*)m`Z~I5vYVNLYzqEV!+~DNJf%Q*@>wmbt^@n@cz8T+hXKeb$G91E`*vL2(8Zgu!92g;x|o#%jDz5w zHiRlH;Q;l?;)mP|repZ$K+4OcE*LMi-U{`RUGZlR5hUiOp&ar2LFP|DFL2Vlr4CS{ zQWH93Ne;qRU0k9z7K?wi;9e{rQcgh;8VO8OC(MZb+3^GhjOF_#3Pa-s!I8Y6B7&Ua z0-bU(`Gv_jmKY-K_oWX68FkFs=1SY*%G?n!;||{wu7xH@1z|an5ym{RXZ$%!1W;AD#28Pj(GC+Wc=*m*2z-R!(uP;kz?GTx@mWN7vpgzJi^@Q>h#TrN~fEX7*si{@@ z#AvR$UmLe+?>X(_Nu=hpd`kP!@nAeeSylr_q_@^^!C_GWR6acnJn6J89Sjm(4K6O$ z`qYkJY3hotg^Kbd`}kL~{q#x&^o~usn9KpFnP<>~j;5HQDztzZ(}fWn*EyQT6am#f zea=+4$^9uK;E~Rj+K~z25%fnr<$pWY^wYzgKRvSwbBNzPVIpkg%O@kBJly;1$9ukd zJB~I~9OB+ifAV5d2E<;DfBj@Hp3+}k==sMpUH|o1)BUaacpYvwX2PK4WzKOfTtvK{ z)%Iv%5BxqB|8#)0?K8J50MI)Ce%}mE%YpQLtsWMc@5C0t9+0u2Coe_{oJ0o)4XBEWzs zPg9qXE?T|>dRgz~v*V6Ut3Z7UX^^aqWIxRBw~GOTZC(@i004x3s{2j$Op>6Hgnyeo zXTay!<*@+(LYqcpUR$?>u{bccq*wJfg$(^z2VUUOD ztlVbs2y!C^BvK2UM%sFwedQqlDk8644gby;s=oJR50mK5pX*~W%b zU2P}33Ql4VxoOk>mD^6%72a;jzqx+h{ta74*L9v*+kAUP+u7xN$JVU5++Xw2TL1Hg z;!|y#PHo?Ie{ji%{oQYOY`?a7)9vByj|bO1TG#ZvZ}Y9mp{aot*Y?ys*LcjK`g6BE4yH}`bC8LD}+t?F@i^M#&`7k2dC9ohG4vj0a1 zx_&g?{IY-Ln}NL#51xB)@c5nSi5DlvK0LYmPfzXsll@!%>%Q)%<2^5@ci-B(eR@S} zZ*hV##_iS*#(neYveI#7l#KVB+dWGj1q<59@?2UVA zRN()N;AbT1g!usg#O^`urUn2CV%!gRVU6X?LjC{% zu#bUT3KZ&B0N`A8m~*8ZD^Rbv|BDbvEHD)Yu=Gi`rGo+F*Gx7L{m)hT&(RX7rWcA$ zW<-#+XwAy$64sSZr_fD0#B1vwE!5#!(@+{A zcs$WrFRY&h0APS?SR-EZc_KSJ503{t8X_?JTmt~KYB?h6C!m)*iRpy+OYk-&L~Q{8 zNc=OU7Q~=u%dFpy4ND7zhiL%dcGeV#3oQ?&AD^OVnPx}|oXEQ?pX#{$l9xw&c0DvPjchV5n zEn>O_x^)ZyXcZ8*$~prVTx&lgU;#TL0>g11zR*Y}#70p@0Zdc?_ymx@PYAJ#{7yEN z%i7gYE`>SQVwOMUcF9stO1^w1Ci-79L*f`Hl#J~PY-r=*>q@kXX+2w^|{J`o*_JS2LIV@WPNzhP>g8|YNpz*7w1dgVHCyVg<7mI&<8suQn zoP@RpoWy^ELgaX9^mJwNczNtpRo>Ck$c3dPN6QmTFHh6mtu7u&MS8*>dbuNo$)iiF z&$d^c@2rCGf$f=I5+ANF8?7(jzqH~|UHS34vePxC=av*-tSTN}k~-ADW6BRNE92sH z%M#?F)6M0lY738cwC}2`+Fcep+E8+KdDlc!%f9B4%blrX%L7y4xRY-*IREjx)m@_xG%Vx;eXc`Gww< zxA%5F+1zxgyW`IA$kma-3%fdQ?XJ1ArT$glwo~i7?hfyGa;WF+o|X@{mHlW-{lnec zE)7lI*}eDa$d-@yuXsLC_k4HP52wdoPfgq#-t+9p#M|TJ-#@bR$A>n2Z?xlk`&NHA zwBrXO`yU>e{P4u|4~~pKAKiXtQ$v4^cU>f7eQ*)Vdf6Z6T&UeX=oR%lGekk)%Ob4n zoSjdJ9#q^xOt3n-)2sh@*xJZJZclz7Mik0F3eE?15fs^ z01pIZy{%p+{vd${0Lp^dh(9Z2BG!Wer2oiusAhD?<{r+uG6%UoVI4%Fe@W;+Rcs>q zpDrto_%kn?8Rq@cH9?pFZCA#nZ_zpN|ssQG$N*>d+8UaBCtB1DQ*xl4S+=-<9V2Du<_^Bs$%UAAsCV7o zSsQT}2aybvSdU_a@PH&MkQ;D-ksSbZ0Z787DoYZ8+!7P?C2W)?fE)lww2bdyrbPjT zCk!vUc|N1g%R!1~;q}OrUqb#V&?w<~V@us#nivMS96{(uiVJ0SN$dStCLkFop;_>H z#9$YNpCA|3dZWQ;^$2Nbs9vN2764KKlmtLa!IJ<$Wd|Tpp+ZSinHLfFWd|TpJ;FX7 zqwru@#E1}JNvIOy&))b%+77uIjp6g|VLjn(iJIHEm%*^B-WY8M%4-2WC~gi#c+V!r zFJ>gMt(}aI8H(^7iwQ;nrqRc_+S94V+qKTmt3JrLGt{ju&}SezWGLQuG%27b+;1=@ zxI4nNKQX8-z?lW zGB*yI*i>A|Oj=Y&dRSAO-(-B)OmcK{UVd$E7TM)ae$M3C^7i!e_F;9#-G-~%ZA~kk zt(*O=hdnhaL<$$%_i-7P_heXs=i0Y*goJgzj*;F`2=sf40S=Lr#XgyUP%b+IspF54 zZ>t9gV_Y*u<0uHY9Vx`H;mO)UH zuYHAszNGtN0)xU8vcTmk{7o(R^#lf#`~(IR_@K2O)e<@2ii22^2@4G?Aqa{pqIeAp z0M^~EM!-OaLm?r?RB!CzJq9*}J04Nb( zCIh()kRoveeW?}7Ye)usN>=w=f9BEXE@S;qj$NYge}~4ABL1>zkWfxOD>??nuwKS} zxiFBKfZvuVtccd}ZxIoh-&O!OqwS&fk^>~ISL*wd+xQppPh0u!CYPrA@j9Z0eSgj*zH_(DTl*vHR=Th2w9@8^2IsZILha3;L4zn?z$ zm&GDfLjUJZ>%VMw{?FU}!ZPd*eqnw8?P&17ACLa?!?C~KAO3F#egEySkFc9N<$!%!CS_FA_yw? z!#o2MnBeYp_Z*eJ7onenBfQXK$_4fWR3uhQztpr2eWMlnUZH*KIaH4vo0nrDT z>ah@J*z1?VfRm^ zy4>rEx3Mw^5-86=z(Qi{D`=(SN{?^HkXONtC`OO$`l#`t_zPr_N>YKC+6ykR;sP&4 zfuxB!p(+OspF* zr9@36#!kn__9sO4XU5K_1C)7N zxT&n5TUV~!D(N09&YdWW-aQ|+mm0ENoHAaRJeHd?c{yjdzG9^~=lT_D{OHwl5$lDS zOIPx)0Czx$zjrjQmt`Cj20yJjyH#B=R#LWDedShd=7Z|w9bCj?**qaKxZ4Y&g= zd2u%Ovw=~?l)uqMEOODBB{2}(1$IE>2FCrQ1Y@Bc;)-vCFa#B@mWr<&w;wm2G6NKu zfaJlwB=I?*KZ*XtdLj7C6~lLKS`RCpWC0-h5?3?WEzEzY_t^n33nCL-wHMl-m9DJ8 zL=(Va2Ug~4!7`xI#iq)|8j(2AL}rg=jAnJkrCkHsbt)qpk zrf^auATnF$%BPTwX2`<}WMm}v@gzP08>wCdT-g&aAmS>ALOjERpC-&v-Eoq9Nca)*C_( z&IY|trvH2i(O*)-NF;nK`5pMD@jd0gTG|5$k1$+?0VeAs_a0EAown9*oR#n!87 zZg&gAzHdwX;efQRS(?w#|#U*LC`=XEE~=O90T=)ZSPY=%hyZ&f0I0Obi^Fv@?q1YS?D zhX}@Uob)>z3=P$CfU?3tx6DeT&{7MtW2|6MtcL#;q^lLIryZuR8>*{G4oEdKNw+YG zV-RGlbJoHr&)O7H7~>!gd|<{wxJ5D%!rO}@Y`-k^WF}y>%h(4$NXmb*0`E*L0gCL+ z@QEY={Cot&4uB6)4}~zySCJKP24-Dc<6#4G6h&y>tMC9=0)zK&ayI7h#$zG`m`|9N zDBvFsL;CB9|+^qR?sT0Xj6Dg6CDbYZ8Mw25M=`{FzGV5pZ(~Juy1_{pAH0nBiy@^Lu*3a8p1qUqkZc`+!{jNTcdoMf<0=z z9h*Yj$5W#gGven`VVmv_vO(&#Iq-M3{MBOY5ThC1! zic4%xjF`#|+e!~xO;1ARbGa*Xt2pg(Ny%8s+1B)o+2VqotJ&K{v1?U~bh4%|`Yz>$ zE?>?YEiIa_Dp@N$|De8f=UVadm5S?C4cD8B7iweIu7%&dmU^$I_C{UpY(v#*-_=hB z&%f!-eo>ouP+7V;)V|zYb*HuZMNjc3y}2(sbNB0uZa2075IX4VdBU`3xaRRd;r;f! zr=8cHcQ!uk>4rYG%Y%XD*Zqy3_f>t?clD$0i<|8=0|gnEeO37mra5NncrXDFYIf36 z%5Wo!bOF-$6hfpddl~n`GjH~=Qfdof;X;W`XMiUtz@ZvDUG6bLyfC1KcZSyxNPiDu z_%7qV)PI)jUp|GeFF!>wchs*^A!lNUHQ5;0WttvLCG? z_Wd-6fnn<|Yk&EGSSjWwKLuI&fS?IthkPLRu5iKFmnz>%szlHS2(cigmX~!s!Cj7k z2^k)xD^dAqm zo`|rSMFl#Jn%x%l>DdTt%6US+m}SMGZp{?Smb5{mz*Roxn@D>AX%ze}0TA)!@|hpa zPvmRGj0o$oWVesYBY$X3{@cMU1cLr?iDf|PUsvlvh5qa9_J29({@0_Se|s?c?~f<` z{mIz>xZn40M;-sV+xFMR{NK0w9-XB{Glh8(r-djGdx9)80~`Y2g~1zOAAlqr4FQfZ?0Xsd(+!XbrB47@ zAObx(0A&cW0ttZE6xmzklM*lvdrJ{86`Bxs#teLloy-{)Q33Icl*t7XE;^F~7O&9bVgf_#M7+9P~N6T%lVVph&ZZl8}DPYD`Jj2Mm&7>M`niU?>5a<31t zt8jN{^;R{w+0hAg2DrESyViR;H265R1-X}bIhMM)w?{@ahkG}Ld)5W|wMK+O=4uOd z?T++o3-M_V^6QEWZ432B{jD|Bz0S|NE!=q~Gi*LBbS61y{%qt}dhkGk&rELoSVkaC zz+zJ5bY@&@qGw;C?@ChKN_t#JUQB0hAi@B*bJM#EF1O@o-z*58&ktD6k6OQ+IdvhU zKR<7yvGq=M`S!)Qsj{@)i|22~<<6hYN6csAYSN?1tiwy0TeX!dU2Q`xm5YrRnC(0) zh`gPjc%v|Lv--+T+okocoWsV+Qap`+en4IF)+Yv^0J2I&H@0(M{aEF!b^}2b~1q+Lk{3dmBYbf_Nuc5rn0ooltH|>-rJl6 zFcj(86Re_r84Ytr0~M9i@jy#rC1ZU`U@^%N{NA^-cw+0@y>1vAPEqfRt1!-WCM8Jn z@Vj6YC@o31B+felpT_BHC_Rczf9|#@HZJ0qS2S0I*CX z0J++gQV??NBj!bMf|W)NP)xx@0+4P2B!IU@0wh9ZF(AQ0@B@zX{64-G^+Q|Y-;QMb z;{Tu0fJFYhdtQ!%i2h;+@TAcH zZjRegp4a|acRGNh3&Gntz8s)I2(ijFfY5+rNpRNdIM0VYu)u((s8|9+&0q=42nZM` zy(H*@Vr%t_)`W5`Vf>EqE21IY=8PdSr);i`V*%wqI=ZzEbnb!}DLVj)cg8qS!|H7Hxk^n4f!kBocXEtN z_-1)4iN36ny985Acm)e^h_itDu}{Y2R+N4af>4+ta0fXJ1*^b*C^k$Y2Z)^^V!ucZ zpvQ~61llj|=I_z~p&vyW!SHg{hp#&iRfm}palzASD#GJdPTbe^sh?J+9-NB=ig!IT zXyI(=P-0+Pm^Yz+FwV0l(j91KQ=mhguU$(BrlYopX0m zd>re7y-VG_nnELLgFWg)y=nsdY6Jc2Lfq@a{hFf#D*aVg+^o3PkVt}jd*WmIBLhZb zLg+If1eAN&b%uEN1ba98x^$(5jU+`(W+e2SjhVZYwU(28Ju|H>EutsR^=7>1T5P~j zQut6o%35;hN{AzPGQ$ua#G6UplS}x>K8W(Au!mHgGgDy+7D}I8cAP z^XkL)j2FEZUJO?5cUCO7R_%`TJXx50G%@^e=-Nk9jgLp0?hZB$U(UG_;+_s7*-@yi zQJBMataLPBEQ3WC=%8yhnw1Ww=oG4CDiq2Hh!^mfi4dxV)lS0Ykz$|nAH-Ulzg@MPXghdDqJRVsz|BH-0BB*AxmW@F zVZuo(K>5!shy-xfRIS*_jA1EFfLM$<7}j~2RXGdsIMxZsOV9!I`I@5wEq9oU@$T?= z#r`(gi)va_>x6H1tqRD8C{JvaLv|VR7@%{Qq)SUhK%$U)_p<$nq>?l%7XVT$n$+?x z(95cy@}Db#Uao?rK-)X%W*+ldKsc;q-zm89Sb+M&ZT|NJKr-MrBq2$`2D!lC8U7(e zaB1o*=0CBHbBWFi$*%L5!Y5G9+mZmF{)(zU(t+sDep}Z2!UaAaIFp^s0qh2(lZ-T( zkyHZ&Cm13@gB6}){B*G*h7RpA6XQG`t-2MXfF``>R|`s>ZI|FPNp z*S)TP+UtQ4_OC|+SjPX$?fQS(xcZls3x63({;|sMFwV5u?o5QnDYN&)tj1nT3cVro z`F7SXH^9Q){eu%y?qBNu!x6Jm*R)jAcxMGHAIMohhXg>?PkNA!U~+0z##8`=*b^WliVqCq&RoOO=ZxVA z>)?OHoQIbQc&L?dLoIi*00&)aYglG)3>-+*Xby~Pg(FxaR2paCK&CjXQk3!Ll#?GO zxiklSC}%;9K6bokkc4YfnGvZ071AUZtB9Epf8JRm(x zuny--U>$b@+gHG&u)|mk%tU$NA|RMzL8`%MRlBb_xNOG#=*@vRZ1yr}4-^8$1FnuE zDpx>0oqlKfBdmAQLyyqHO$c9(4qQnHpA7RG3ig^x2p@N`EoN9m)`ZzWCyK}0%Rh@y(gW+D&v4QjPA#-uTlhOWcj|U>W z$Or5LY6IQN{G3~Zy<0+kDxrV{d5wh!Ok~7#C5LoGu|W1{4sz*<@E(f^9EtHkJ)$=) zqCehqH79N%D`PAj^-z!bjFh3Qu#*yyS)axb>^h0+L5Fyq1g77K?KR&V|q9 z2OeBa-Yw1_&dKh|&s!>rI4TX@x#)AFFmW-D-%Jtfcot~2Y(fp&qth=@8 z53Uw$w{>l|_3X4a9}P9$A1;47c>eQ&{7>t%pA7XJ547+0)Eth~9gS7Jn5uX-Sopjr z|EQ^Gr~2Y?XWd8RgAWF}?{+p$6r|+Y>t#4=<~it4aMY@7z*f>$k^|a2O^Dh|=izGA zvqti^BEo_YMF5;7!CNzTsJw2bjkvNXCsF#@^_|I5W(EUO)i8UAqRLyVX7_$zigW$q?dT}+@@7CG8n zb#?$Qfqq=QyHSm!IV)(oQZQ-A)lEh^4u{*%BzY75MEx5jbnqecf}2Dab1lPLMm^;y zy2??i#YiUrquV45MJ#9oLC{1uYU*(ev!Wfa1!n$3G!P~MN#1Xbg_C@kr7$L9kwA== z$w1i6#|ezTME*$IVTsk52(=PLcOr_UE=+GI$@$JaBUZSPc5?nh8UTJm2S6Xdhf=bQ zjzr9_lpG*P0HAkZ^U^LPx$%9NZpl3d`sZSQ8*U@NCyZq=BT_&>9@tALgP0f?b!5^20{;oIepB4(? z2LI39+W+6)*uUKw{%^2R7=bIhJZf`S%S!_@(}bzcf1YftjY*CA`%Q zRUkm55d9B6(0l*=Up%-FM8qfhlL?Ls0{HO$`9PkLp`Yu6`~VIK;7+CoS4Kb#f;N+# z6lFf=>rf}cZAbup-bPSnNB|{vLJA_qSSwOX4e(Edu~D#|uD_OMfTnt&rh1T;8k+!? z!x4JwQF7I_)I|D;F%Su?fXTAN%1@Pxc2={)H=UY_GYegj^f{KCBd3Ew?oOz=IrqWrpJ1KOheT0%TU z4)AlSaI>v;vup8p>j?5B2ao_7{auvf$}p$S*OkRUsjIEP1$x@H1iQlEMR2?|#H}~d zrysOvgnvg&P)B4yoxfX=lSQ?^D>*=1u_*>tlo;BCJq22L(SAd5!3$}zT^X_S*+J{6 z5kt}Oy*Y^!XT4Uk0%tOF2TL;Ma}(CGW3OMz=*fy5OHSA>$Yo$PoN|8oV&?7qz-`|4 znemHN*A~jo&82!gDT&*wu9$D>?5V6DE6d-jOFSx#KPZe`tF1Zc>fC87yHR;{yQ%h0 z>!rut)%RP7O*@d{ke( z-`IAewRvl}<8XpePto(Htk0TrUN)BBZfe^a?7r38b*I0D#lY)k9y0NO42U6ndac)ZKVy>w%kg)%;du=i(fT5e8~R` z7)_dk3TGqMt&|kVNp-th%L)VOS(JQaslk;^ve+280Ra*>9yN!e@+N?%tfs`5cv{wZ zvcEOq|C*iv@6vK-Q>g6herr9gv9(|d1jq-oBbr^A00igDiDiHm3>XxFAcCPQ381df z!MfPV4q;tb#I>#l*X)cKKrwUzk&KTwno;NmE++d525+JlWxF74C3(ognIj8c_Q1+f zB6W-lXAQ;Bw@zE4+$Q8PU?C3P%JhFbPe%^%~W5m zSVc-w81Y&X&}7^ffE;CcE1;H9_BwJRWAHSj{-@Ww|~s^8Iah+P_>cMj+^~H%tF%zyGgH zfp%N)4*SdUrN7J<{KHuG$K}3HbDYM!bE||d5B}SfiY2z1<3PXtdvI8LQlK}XT z4uBb!OaPD02R$qZB=qlRxXTUzP!J;^L^;?2@Snkd0|@}(LlOYcH||;>o2e$c4Eiwy z4$;*O($)^t5{ec`8U^cWgy?C44NWl9k1^090i>Gir<&>|8mOn5Xy;@2MfYH=nQEvF zUkuxOmIOq9mI?rY1o_KKk8ciR0GJSm8IjZl5<~%04aP*|2{OS&3vHIb?1#^rXn}!) z415(&3|r80!WvBKLUYIg*aKj!TJ2~kR&y>`#?v1dlLp=;0Myt8MF87KG0nH)T@6{k z4NicM8F(I{9Os0*gs>h2@CWsuF)q`8#KKyg^kBvb`xjJS0$r%N1b;Z#S+)XltR$>- zJstWzaglT#^ROLJ+|_Yf$K|ozE8t;!$@8A{n~An#9`@}X4yYS-xTq>UEIEwwTSTy`37oRU`nemCn{O0aSb1^Vw=|$7(MX<$QerKp>a; zKvi3;Pg}fSIdTa8_Km?VH9q#Nh}+_Vc|miaC$pfwqzD$yT?wHLQ7%2v-u-cYb+lM^$3 zK4qe`U>rBW^w8n-)W+o8o~-QE3$a_d!L#uJ8>Qt-z&&fvu2#hDmIUu#3R{COcDZ`C zB5$*?V!!G9ZcWr-L-u~-l{?+FJ6-K-%~y`Pi|;k&?3boKs4ux)b8YGB`P)6!2d#Pc z+p=DCU3lDBalf(sURTFnZ|&Yl&6CdDCoN){1R40aq2;irb)%zs;1 zks}^kw!(12!JyXOfT1Fh9i%2$9cDOmnGKF+#C;LmRmSDEx?GWYAOQ%2QaAPl3KBu= zge~ODxQeEe$DS4q-qr{_2p)i^9pq%;Y+(<$S&w^|TNi~Z)&S%N+#jpmtw{h3e=1ze z00NOJXhce#jaULJcnY)2j#f;Hz=_tn7||ueg~Sp74^bf<7$6o=SXwSdI$w`=CNdI~ z-{EtV(fr%!uZXe!SZ*qTnB9F8*cV(qHbh zfdu{c^~!(0arrNkS$`T#{6kCR%N*Oq5UWDVlfD|iw0!SZ7VoLqp3+gqKJQ7aj!Xb@ zohwoNy6?Tmp@gT97ZV{`1nK$y;RhV70w4xkX{cFfs+p;uCI<*Lh@ZB>KkpuXLA_77 zC;9^eJwW(V$pmx*2tP>V4_CPW5V}C;FmH3`00Bah2^5gx2!?V!P8vvD>El@e-hdf> zyq-E9kO%<kRhT!Qy`WBLL-_rfT@0# zg-N!hDL7FOqQd&o&X`R=AtWy+bB6nD2$%wi`y2Y0wE?6s_PtC(xzRa%Sgx{SVZfmS zU{@w=F&uErFhf42!Oe!kiZp;p0I&_%J(zqE^d&@35X6+nas(t5!GvTy(|KQes;901 z=N2DFHua#qK@D|K%DIbnf#k=NQusxxy|e6PGmJ{apudyI5D)?sV5l^Umx`fSz4tm> z4tv@UdDw9VJZ!sMEyn^~2BQ2vuMhcsh0AWRVW+!cO^8h!N)my#g8SoUEmXbyo!k6W z)lSH7SX8kBVb|wuRpw&N2&m4}vEIvxYpsU^maqVLsyysy4(I?V|678+8v;FQgH#Pc z&fU?zeX;(O|Ezh@f#^;MXbf^^6M!N)FTUz&OK(AA!F4*=eLmc0Jj81}S^z`mqQa)4 z!h0ivhogNv_xe>1@(OQp8k#!eT-EYI4Xz zZcu-ETuXL(Z(;IGQS8Fm*omCXfuj78;`G%kk@wDp-A?sg$x2wfbakq{7%b4nrPSSu z{Jr{`?WX#@){ecl)`QNHJ1u4R+maqN6&+RAt(MoWchuh*t|Ih5Ys!6Gopw}qc{<;?$^aXsYyR7KfldxpuT!A0r^X26T~OOHECAN1Ai_t)PU zY26=gIG${HFj4zz=+e{vD^CWi_d6?ZcUI#~ztdW}-(K=?u}x`ApteTsJgJZMkx|DvpgZK*8?_l*9D{sejw01xm@lD8Q_U-k!dnH>59?lF-t z+)VL%ApwXHlRJz)`bMH zj(~(j_bbwGBmfD*A^J;BuSE5TNsdyF13)7B13M(_P#W9ktlvNoee*loif0M9x6_6o){Y%piPS~B&u~XMo#`hxVzXSWrnf`w?0ZLYo zPrieDLJE^s0dT}f0M?oi!N?hCMTkv+m?r&1B||rqBX$6C?oZs`N9YX!ID$Sq0472T z_Mf;fiC{7x@S*VKNfbH|f&>tO7@QUB8WbqoTn+10hF5HKGxV9~sEcKA1sN=%<;YAE!x7XXb-_e1?@trnM<*sH~Jp01SL+1(^J> z{!P<6gEI`S1Mr98h;gzF&d?u_4D!vi---y?7?BCs2`juXVUUCv7FY-dL2@D_je=>b zA%zjdsl{Y7F5j8dWikO!%L_?&lv{vsc-uC*TethFTD=_`-3^g#QKY-;-#3 zczh!%+^oWR*bwk2g+I$-7-5o1_D)QK93V$P?0CCfu$dJ?^L@cC%zPm*4@CytI2V1G zYI;9dW5`;sz}Wbrix}mDEolpK<*>*l36TI;JYrAQ>ghnZXY|kThbzTCeL$TLqkmNm zn@ME{KmuR~Q0`{W6o~OoUzC4;qyZ&!eOiKhnraBEF9z8LEH32SVJ`MnI zS^3t7dbEalLl_}As9$>nM(HU zOOCHd2*`~^c`mBe= zfe%YkH_w#~W*4_!yf9XMVW%$n-j(p9%jfP?Ufx2?xvzD#zjCi9?@m?9L6O&k`j)+x zw$1+b^`6rGj=X2>XCKvM-ml8N-q3QZtMQ09-bqoP_ogTJes%uVm1`S~O?&;-E6w>k zE%|T8i@z8sdfr(4yuN9_uk~=a9es#<)9v@h>Yj|&yy!3gxUcMKXT{5*mdAa~4+dNA zbXVUQDBEn$+3Ez9RCvF;>iKBvZhLu0PHc{=6(Z-^Mg}Zwg(@fb97hvuD!9SwTx}^n zl%=ZyJpltEngcom9suYB=fhPZN7)I>!yJk7A7*cjyIHN5WvLSbRecz|Gy&)sQnm0H zNpo@lIR<+>ewLzrqDT2p0wDB@C4s9sBcM`86YMbrf==PpGY+Ntq2EOWo0T%P3kv|j zU=sR2s`+r$^>D|vShtlZCuaI$tdFr55gF#KEYB5Okg^6qHB&5s@kVDKK+|wN*<%U+ zMWwD^O!1hGBw0x@2S3YlS`9YowE6(81lyCpG@;}_aoYN{7NY-D z_m&KBewz76!k5HuvIBUB?EK#!$S>h4SzvOA^v)vYt(wru6VfX37h>8|5FqFN3Ln^8 zri9%LH~D~PXb$9OchX(KhT_IR0ssQU-g|P)7lN04*vKfU~8d4ToTy zF^afgC)f>Cew5og@nE6zC+LgMPb9g_q9uylw zPsb)-7sftSuC}5HAoK(Dbg`=UCK))A0IEG5%G_+qTeUk$SQ#XQgIdEqn!??CqJ4YW5{G(qr-b$-g^)!C zBRs}qLudlX4IO??GqGVq>5*-TzH`yu*E3@vDDxr8+I#e=Gvy}E|mb!7*2m+#c( z?o=flwp_(9690gurt;0s;)es5o^@Y%)=+fkTH$)}g*&a4J3|$>yDojySM*UMQgL}t z8(J9YY;@Kicjp83dDwC8NmtIt{k4xf+wS+a-|g={9%+6)+3{+m?agrO;o0{tWsV^<1+-9i0ij!Bs2WYIjSPz$62>V9YtGZ)5@>`qKn(gd((y6~1_E z<1on(Z81VXyaj9xSuNl(fE_#l(6Imu9HEherWII@MrX}kY-JO~T!oNIgoWvOD@DX; ziPo1^?^2vuY>eTKML7#;%mfc;1RS75Y?aZ-oJBh`0@ju5bd)QS=?n2*D93@ZAw9?h zz!$D2dEZPF-}&tt0B8_U&P0L35rd#8bmoO{n*@VOHUJM8`cv;q1^~aL>;t$8dw?XD zrAQloXKGWX(?X{JWq-xUo_Q3&B;k0YU^n^w2@Ko%43GO4{J(EX{&UaSza2mK z$AR=88X|sE7V;{~ecIFTs+D?-&U@BK`h57F<>^zFrvyvOQ0=tNdw;`+|E~$a;QjZd zz^6P?;$O=Bvk8zjzRUsA2%huKBtSUE;2CgA_(U3DH$H1&kYzxW*G)AyOtm)2zz5jg=$sA2U=77Z zKtJ7B`<#_A%SmQIAVi7y)HsZWcz^_HmZ2I9Vd_?xVxUFo2IvWdMX-&&SP|P82%$QK zFwFat1W@a2$rK1s5YQmXe`yi(^8`R9AimQmFy{r5fjlHcO{TYA&nVm7C zUesLx{|w>#iV2jb87p7rLNpfbu5Ko(>TKuW0auw%qe6VM#ujmdkHpEDtzb#8m4Pe+(H zVZANDt#U7?=c+WHyIW%9_}|D?N7ggg)&kTy~$w< z8BtrAQJv9V6>&kBf-PkPBP7?5;4zXFG?yIG6XoBRn=pSNZ6!AJFg@*N&e`e0T$CO* zFNNM@cI3Tm&LSo3l~=D;weNO!9S&AK z9=q~IYu=|V8LwJPA9r-`b+_#dG*a(B94Y){+W<_jumE{_i#uu z(Zb(?a)gLXEJjYQ%uVbAux^(=ba1<90jn&BoFa@KwpBmfT8u|PmZ;G!kCS5SYMrEn046efcE z_11KkP(Bsq1mscL#Y~1fjE4$goY7EQ5&&v(u*_y-+zI`tjV>knU{dr>J(TEA^1y`P zIu0{Y4kQ?nV^Ywe@nwo4$MHXxZkEYFD6)my%B?Tcf2`zrOcTHnPbLbNU_nhqIGWvL zw4E4H#Mp}gRE$UfOo0gK3VvT02FUFKKWIF}^4*d^5euU2z>UCND#uap6a9(%bO7(* z|8Kp5kxK$Nt85)Ol7%28tc4s!g6mA2I4fze;oOO$UslHczA@={{n=mFL_W_}Jxa7+ z@-w?=aN1w}l#PZK;h6ocJw{!pKQsphs(xBTc?JI?M?iAaBS%1dC}sT-igCWK+(;=A&wo+a3 zX4^^kd^=)`RZRq0jrd`QWCI6^4J!KMbO884hN-IuYiRnK8+se-xofMtsh#lGP>VLu zr87u0(2q6NVF5q_NV70FYa>QIOo7+|78jt|aTWVq@kC!Cm zVE{tV1rQE`BSyF<4am4JHAD&h@&U!KG>HTyE$NZsO+u07hIj_=g{OW$e#pms9Ui7;rA2wTU@N#-E9Yuf%CINM4kk| zpF;5dz3sYu5O@*gKid65KThEgNP4j3h_MsyaJFR+%#wgj0}}JY?z$^M=HC>@{m(-8 z-9X?X)=B1i@%kr9Y#i!c+$+662RXJm*|j;_wYb;}1h@|dyVKWK+8Z?aIMW2wy4y4N z7xN!KXHcPyfo??kN_X3qAa_!Npar?u7CTy!0IEXV$`F|e^XiHYV8YW9;nNu9Qx>2q zK|3$h4LP84SL-r=M?nVmbFK|`J@4&Q8SIH401RPZpd*o96Ul+i(JIhEBVk@cF#$bE zp|Fct@Q!DMwkC#j#Rc`nhB5_eiS-*u_Fv2hT{s&)oD z_NSe7_q&?!^>*y_G;eiQ9t_nyoUVU3)wJDxb$_7j(P;hs?wXHA`(7{19gK|5RF@Qo z`lRD-ZKZd~&H!EhDlgM(u6itQ@udK-S!xS=K%YT8ft%H?xD`FES?mi;r^<{%1gHk+!CaJ8Fq#m;3Bb*!QDp@vnc*bn69Zl*Xj%4=mmNGjWqY2 zY#*-dggGm5LXd~@pE#&ku8R_W4)LE9QNrnGqg>BzKivg)%^E8;{}29)$uCdnpETAxb%F$7!(9G@|6+XlJ*zV( z4Sw~W!B6;~cj`UwcwVyJ|GCMR>;rV(f8T(dfq;ZU6T>Xt;^Z02QvxF-VWZM5K>xHj zq64^{?RKxgmqVZ@4M6=x3mX2{;ki&~9a|Z$+v!fbna=xJZWx5^rHfTCI{;}0z+V|2 z1b&bZ!3I1{+nf!6Idi)conZna0Ucvv5Ui``dg_Gg#0S1WfQS zDP{&47RHQ#Fp7aY#*pW{tyzJMDSTkSpouys(+tlbEe8rH$4ZyC76VO&Kb%}^y$nn3 zWJ}E=3#?;=_5;N}J?}MFtIJNNIO#AQVjRTKgZBVcKNS#@A24vtOql}Fr!%gl;}(lJ zCqvY}80^q!zumL3E_N_s)yAS&NU?j_!~bmax9JMBhmc9z&ZpQMz}oK#R4EGpYrYk( zAROeNSsQSr$P%+49HYF@m&P-IO5c)Y00}_xj<*9^iY#!Kw+>QqgYH5h4wlw{mvf(! z;cTMEI2sJ@HpP|(m#mCSRo0~{3nX6vhoDPC0a%Aul)uwhu=iMiXPwHD9-p^2Gl6n1 z=V~w8%O1`x{*GOtKC~d!t~Tt(iRQKLc2xahkr3d@^uImSn~@Qt|E>U6$YN}^dn4RC zLY-lFkrir#-Dn`XLw$O~{Uo?(D%7th+@n9jZ92@I->oUqtuoZD#@DSq+POZ|p(ED2 zGt!$eQCF;IU!?m)q{nD{Xh)QHU!u=qR>*pK@LGEKLUzn>W?XMh=*pG2jq|8h1ofSb zA1lwfS&??TDEOnR7jG36%$Joe)s@_C%Elt~enHq_diq$wh4s4Hz4p@EO^NsG!tY#- zUCc`v$>@R)Qp8vX~^hJBm zz1HsizQzZW-H#_bJ{qZf-g@?VWA3Y-#`~Rp8@)|;M_OJ?G=4f(^~FfV7b7(ch@N%V zz3A_K+~4(Ny!&XR=}v#eA2jQ>VMAJFx?VdgBngpEUqrv>QJYbx|$NQ3&AndjH)cJc{}o7#vRLKM)0|WEu{(D zVCpCK`P3!sftXmr^8(fk%NGDN>bBD6TDW1`q5vucZm~$>G5ZEan(_fFE?Qg8Wh*>Z zb#w9CFw-i;7?Q75;gf30FGH8W6o@(oQp@!ici{#T!;sw_cbBz9Po_Xj|F@X1$Er5t z9PecM@gau?oOM(mVpY4TUUEY#i(e)I(vM{_$ZRg!T__j^+Y;*u@c@m6{VfN5%}D^r zTd{eb3}+U^_((M#Y=?)Qc?J=fZj<8({x0D@#sQnfFB7P-73y5|V5~oPQ3DTAoJ4=vGJW2Bb z;*+D)`(lzKbR$5u#0i4281JwlhszcY1_`fV`56=0b zaDAAEGq5Knk#}SV#Yi=vEB&d!abMGheJi*XRRAXhQvCm9g^Ndt(fkpS55)!-Kh=^xb~cS|rB z(o-H#2M`X9d`$l?^+DMiOD{kv5zG}lsBjlhIshRX=V?6e(OGVEDfJ%@hM2nAom8TUPAI#2LRo4AJF4*0m(o^r} zNL^X)=RrWn=7pD`2GNMIl)p1kzTVBQ%+0#iS1fyx#Rfdu8R^#?;nf)K2@JF*)TJiS zp)JC_(!=~ROod?Y(Li4^M0ucdg^y!bh&P#_I@EJ8)OUBH*N@UPbOw>SL+CpLCdOG-mjLn?fsk1qw z7gKMR#Oz;)+|5l}FDU7+JwH*Dc2tt^`daYgqR8z_g)=3kqjiNh8cL2@&OR=SKDv;; zUs8IrynLqY+EQ)HPJiLO_OvGzk%t%Kwl9^el{c-`Rotw~xz}IwY^e10aPH%l3)@u} zb{pD`dixH0`yY)pJsr6GqAm4V)7hhjYX_Y@4@O7tkMz74Yk581@N%H!Sx3R6jtfuv zs_zeW91QetjbMUmY@Ih7(5iOUtMIUe zqt0-KTahk-O#lf1u#gzkh-XZR{xH~~cQM<6|JdMdOR5lu+Qr#|ybi;WC9|~8lUoOA z1Ic5aME!|jpxBMs3+|-+L3F*vDkHWF+^aO8!eKN_tUcw_8;38#?pnO-cCyD_s^{%w zk9|x*GJJ{t#C@LJVj&FLGRA2K)qV)Q$Tb7p6wn~C9Htf|0Zd1@2tnLnkprl{71eYS zfCYmf7?hak;ckQ(JqAb8^pw#MU?JfrqgV@Ur26n}X+((rfHeg@7}P%&kFiJqG5@jK zO!Z$+@K}ulq~tBQ2;sJySVAHWp{Uanlz6dZCbJW!ieHX(=ldx62~&7B3U(~6d6EqT zcz zfFsQ7;~kbF%x44jXWaA}t<_R>-ggD?16NBi?Xpxv-{iDMCIAW1p+YB!OX+5Ixv~%7 z8L`y;UlYJv?Ek3`o}E59v2l*A(?;eK&^-tQ>i2Q|>2z@S1GnkE1b zPaGnZ1mJxq$K!UUD-MyuDL%tZN`cA*z#sH23J7|XyIGCBL9rDo4w|5VB6I}p%TGho zM@xe}Fdcxet`G&1F2V6^gSF2@YM%)?{XyuN_XTQ5SDg-k=no83=!2T*68*6Y=1}{y z`xVL%<~RfZ^}#?!@2sU>mZe^ir2(xj4gnN9427g}9HE~CAf3gK52ET9Lw}@Etc7y` zzLLTu&%ubYOF>_V^)IoWu+EiC(C+QfNv!m=BN;S$IDofN$?@65+>(GUAg1gzJl72H0>A2SpQuIL?4UL4l-AE0q z_An6&Fg{Mbq3$CwE+f&7RVvMDm1c>xwy-Q`{or9&=V4DoxMrn?f}E*<5DEcaE`XG-xjIuVGVy1n%-1sVs`a#Q4|MMc^5DC1x&DzG}(>yoF#NSfbYEOlUuO8yg;+F; zMx(r!vNNZ1(g$ezm%Zsv zx-ajx)~q*m0T2CXs{WIa`scm5Nc}u%X@1l*dNee8G|~BRxcEtT=I5hVUi4gk*jfIl zUq}EQ_cz_|uX!>oU_XzBu08B1eA;^Dc}MMoo>uDp&Ecj;(8{``IBn&21^1M}uq>dX#WRr2H2; z4GC@(_;)gV_R~ENGhqMt@*!t0&6_JZU^CH;D*^89up4~{1u7~vAuz2QL}Dn|Ru=oX zEBE`F5BOOiiv-IYgB!gJt9WNE9g+??#MKLQTF_01n z{qN$wWQ`H@x6?e>OVgb&EMaDjIpt&sqhq5gOU(?;_dMVKzpUQ>8!^yl=#MwAqUZb; z@Bgy|z_{j}Y=e9t1$<}-WCHl<;QL4-`H+mlRr&;oMnQOo5$;do6)aZ1O7s^(atet| z!iRoA?Jq|_g8iH4i}DW%;9kD4hDQ+e=)B;C3AqRb04gD&u)z3p^S2gD_DEYu0H}fD zPlC!Z8&qyGpqz;Ynz7XTfPb`gJk`&*tDPnR`0IlQRS(nFiZ?b$wKNepA2S2t6mKL( zMsU9Jtc}mxTjp3AlL^@Oa;1;PH9i}-Ck=t6Fod~iWmITwe8CFW0ewD|W2AA`P+hKq zxeAi7GW-D}MEOrcz$#c6gjwrTPZe9~RXSTqZ8*AY@D;!_#1S|j6NM3G!~<%420KEr z%gd(L1z$kCxj8m4^$GDL09phPqAb%mBoC%{h?ln zNnG_%b%cbr2RZeII88-*NGQt0PsMBgr>|{a&BGUa?VT-x`RCer*Ya+w? zGD9aXge?_@+{lTX$xa=~OPwo@+i!?I$n?9B61{NY!gT57*@}Yo^4y(*7^2VZi)nkc z*OnR@7n+(t<~+m%xFYps?b&;!1$#9$%Z<%jy>-XkId2BCKkdH!ad+F3R+wB>2mK94 zgZ&SNnx6KTyy(t(-kSTcWe8^Pz3H~+*IQmqR=*i6|ER6#S!?0L!P19=H4lb5pN)@v zJU#kmqT|zn($}4N_sJIRmCt+Ij=KdM2otfR@w!Lz9Uu2y_^9LZ*bfo1VB$rB}4)M2qf6Tyv*K&{V=xj+^e*t2smObClH)yYR0(z;!>2)vH3rAp$VgeewhH6e_}chFod9w z?lizta1*fTk;$SSqBf%I#TA3a09*m!LnHvG$V7h@u(BPIq7jNIn8*P_d|p)X;6B}? z8Gvj}$VMAnMVu9|CDs5EtIBUE#_`dv{L_@4KqLU#6jF#_y~VP>bz|1A{5YX>B=oKY z?^g&*uok`V1`Z#JXCI&e?jPH3dE5e06xI- z5c&`E1MmwI`v6XkH*0{s3>T>djTGp+5s>TvdR&buZxLIjcmb-9>r1r0PLP&HxSNiFAE6e%wWCW153(LrvaYm+Z_K6Nyy;W-}gMuAOVmY&a0^XE!%@Ud;A=W9gPY1g18W%A`=XTV;bX)U|f}tU9GPJPf8QPh5%Km zr&VQ;Q*n^J@Q?}fE%&j79?YJ3$cLSQ?+DhZQLa$iS|J34dntOv!O=%U;}3@hA5C;VpQwJ`SNOcE{!wey zN4-styXv0xxBPl__PD$Ll80@Axq7ULT8yc73cMC8vusm?bEdk*mWDZ2`sZwoNCQ+V zm+Xy&h`+4}@nTcuU?SrFC6D=(qbLi27-5nsy^pv`0XVJ-55P<~f>{X{)nW%T z%70S9&1wP&YxQTrv0BY*36cPX(fD1vNnKdC*aej5) zO+zr)_aNJk=ucvxs$D_yL5wwoTL5^Wx5fa`PFMwifFJ=-{&T|<=!H2NxCsRB08qG@ z3Ntl-apy~e1jeCqEiA#BLOKF2LV~-D{!-cPCyy{E;GP_UxLEcowlFdQ&;hLDADQ5^ zmFh0hpM-uQz5x3pau+Fbn?eg9G2jSqO$We}WIm!f$&b=r3YrS88MS|+Fs3H~EQ1_P za3cXMC{jr4XfN^`MhRX5qaO0aN}`YyB@4=Z16fM67qO0V12G+Mb3M^vjcGY!C9v`V zHpu_w>3ra=rD;bM|Emw!(3+~NlK_aqR%$}nM*?;JQv&$8nDaX_m!Ne0pA!HqFvF8? z>A{AlPRRuDj{o&e9**vT9r7=j|Ih^dJOQu=77;(+50_w|V0+jFXZ!AFdhMj40&NEk zSZYBF6(E-B5jOAuXaYJ_jHHb#ZS*di>t(al)zOI1(M0?wL{A?vI4@0g4jn+Gi693E zr!cKEu)t#UG!hK7G4lBmOuwc%cXz+I8Js`^~$h5M^5))YE zz|@Dw&m>2VVgde36&GPB?;w!c*k}L&QfOj02e7=w-3f|-i1@sn-buPka}NO!^05&f z0Nmw)j$DcUVmXF~uv`pyS@4CtF6)&xL_f9I)hod;%Lu4Kqx}vG8pbL6oqLp z$`H2oUUW0I91u-|p`JZKuI!3MPvB|O9PHj78`Kr%y%g#<6&KVM>Dd~nVh+Y@I-@)* zf*nx3?he9L22`RwlrcJk&Ipfz2#=e|k$s{5HU2ykI2G?dfwxSwUvXGKf4JvlQouy4 zFI0nu$dHDNn4!!t^g$=%A_w9lQJBDraw{)pBO_ueC2HtwM#tIAxuUSmLZ9{2koAnL zh4W{-3zK?l3a*!BKJ6}gi2v8Q#M{@-ZPey1)?{z@R2+6z-L1*Je=YfW;}z_^wmUl@ ziyikBJ?N|Zbg2Eyp7z)6#m`#19(0cGclB-epMNo4_M|)SMaOx<^quDZgPw`UV;!&O zO23)z_+qT#Wnb~*&WjIwu09!Vc{(xqXln7!c=f%png;`wkNd9OZ@YBAz5Llg|NXA9 z`*Sn*CiYc=A_GFb zoV|Tr1LA_>V%&m!bc{nZwX!YE3LGsisH_T5x3w0G7K(IIHGob9%?ZEPOe_FcM6tPX z6+2;2Kmy?J1lV6FKZE{cn8`v*zE~IlSnDZdV11#3Vrw9_Uq2-P5{wXvfE90r*(4>7 zkTgfSiUc4Q078Ai5enF5qK62n@hXshJL&FQsm|MJF1u-T0G_=46%2?6ACemw0AL76 z1R&bpN)-}sXg{#R1?V{zgnue@ck$LmsE$As?pbDZ6P5s?IGL~{lyZP9X0sNI0v4g0|5EMucRQ< zg#je7p2Y?qGTQ;d#Kb~;80`xCfi#0O5IF!V8^&3}*g(pBLLt)hB%I<9Ao>hRJ(KJ+KHSa#)Z{i1YrB}>$joY)6=|Ryasc#X2|5~h{0f0j z@HuMg%zwlxUElHML-Yu>__G z@X=9c2^_AY9ink2RP!_#&_wpY=0=&kUReUe1ZH~%gfv;`gX#nQlsVwMlV!HE#aWg4 zSvwPgzOa+D(9g6o$h0=3j6xDlqyb~CWbKpehcDZiu_Pb?fDjd^PzzBmi2*2ekRl4i zkc!6~rP`v@A^})dfYEj|l)`ZGaI+G5Yn`o00D`WGRkw@KiIWLH`Zq~qKXiRb22$6T ztMqz(=N`_dgy^HQ0XabU!1#+rG5SI@0VD>zzadHeZv5Kkwc+zoR7s9iP6)x9Pymt` zq<0622h&%9@Kc#q*)aanfv#2TZpD7M$_lH9&x%CN>o2H4)?v{IuEGvc=1R5Yy;x-y7`J;A}^f2g%bP?v6ZB zf1q=1tZQG2|4O(&kk-loyQ_ls>^v0aH<%PS9Ottb>NXbW(;DoFhA7CQp>U73Q0L}& z|H|mV^>FByAx$w6mtq22GQ*bgq88J_kdwO>7J^vxL{{*PME@HJVPhD}4U10 z!}9X&`s(eWroHj1M}3!GHsv7g@NrN5v(CD^&7BVh`(BKXzoM=mDR|XX_M)lsQCscZ zfwsMg_PaAJucvC>^j`S7ulP+*+0)+ou3^ z%_p}uo^5U3*}Ql2`tHK)*39I3XY*iwQf9cFy|2EOP{1`efd80gtO3`Z=_PO-RsvGl zpF*A{K-mwQB4o=Qh{l5e_`8~uBos`u&^iPf@Dl~hgy%W30}!r|cDQAjFk%7}hb}bV zieX^0i;ZwHa4@6xN3K12x^ zBnZ)#kSAm~V^op~fWGvwzZGV7V))~0O@FM2-$8*k1wcV*#Syp(!F#Y^oTyl++D{2i znG1ML#w>yzmf{N@6i$Fth?6^EM)}0<)g-YD;DAKuS0w>#C3$YfyHk?N9ROG2uUtro zkR9&CSCI_fB>+|(BmgWh=>YiWlLAE#q!`@@gBR*r#yA*W#=G8ttdQs`7?Q^Lj{gE-R^6V7hO`xh#j;4g1*e{}rXLL+wvVE-QWF zI5T~KJ=(wgC5L^loYDV00f;cI82L&S2S7Vg%Af1c6TsUIFlpe_2ZVkS0BJxD{rPeF zGyzKVmveuS186%G2q`&0>;SNW!46F7fJztm`{#o<(^Y$CJxKtd@s9F>53+ssvs_64 zOtl0aD^_4Y7s4@3e!B!lv%ba22(v9ZfGi{JM17rLH8r6Eq$A{@1q8@IFTg;XB``Yx zrb8G;M(b-PndqgM=#v1>*;|0|7c(C-BUFGmBmi0g0)38+@i_|o2%mgUhg2&=goCoI zjB{+w(k%_+u#mJeVi1(eXh`V{&RZH6+gqJC7t>X!VZvJ&Lm1vCgnm0C@D;qBL@%sN zONCOjqfk?UEyW6#y{^!5fuadzU(s#n-X#H4J3!DE34jK+FTe?g7ubK<+j1y#>Kt^1 zb+{Wg-$GLwfglcJR-p_U;KW_t>+jg%X3*tsLSGCV0<$pb&8_$l_|B)h{AD=yvvZy! zZZ4R&P@VNTJ65YOrxe0OE$$}mzLw2C);R54QJFEv2S9Sg+vc(>b73G%_Vp^;26rcR z0Kh;?-I05wTPt{hfjKH$~b`C;88(M?&aD25utMe+jAQNUv(FE<=T( z;ApISU9fYNztcp#&vJ@;zkdLI*lE^A}6Y*P4fJ_FZ3^T3cS;-dNwc zH#Plwef7Kj+dtm9^Y!Mf@3yx7e0={OA3gr_;rhS4eDs%>Prp6B_x;lc-#)lK-*hEa zr5mAj67)0m4L9&b#x;zC6xJ>YfHY4ZK>5!t%0Lx&Yp|g(zc>)T!4#dh6nZC$Ig&0e zr+C5u6QTv=%CZ;S(M4l!iuJfoGvugWWucLzf7(S;%}7lRWTy!OA2os6v^;}en+6kk z5vEU{)IBMHI`0wy(U}B5l6WTvBnS6m156zMSqJbI`GW%JsSi+pBl_#U|4Thq0%~VW zG&Bs)oYDF4LlS_55{d8j;R&Pn(TqD`_TkB2JUQ?GpuqPS6i|+r;twn|e^?0bWUD{{ z0lL~h8@8L}Lqo8K6lk{JtrQ1x!&)*ZE0@U-b68*q3c~9f0m$eoXtZD$fa|0f0rb>m z2jHuv<*s&y@*fBg8{iNe;VJM9^`Z^22v#Qn5dEqB(Rd(yXR`({*G)D8M0AE^z?477 zR1B0ZA_@ev*T$&W)rMjp6M4oyTsapUtk@p&9rA6>3mmO-Y)m=lfnM+qQ5eEtfjH7- z9*Kxcjz$$8d{*x=;A;=7YmNrx_;PsL@Bs4-5?B+YUwb14{lfdn(~?^j4kro_QU^lb z$2^dhFIdTwC!hyI?r-&VAf93s!1D+_wz=6fspt=|6|=(O9WEGrU*ih_c z+C%LIU=_sqG={6LM7!6=g-=C9^+kGJ^U|q?gBI+AMdgjmq{*n@iO7J3wCK6asM%=m z#ni~w_`sU180JFD7qjNlA_kLvn$Cs~<;LxlB!60;^Z0V~z2btkYn4-_%{xskw~_nr zymVBVaa?)+u%UXrs%o#Xb)%vDlZF1*LsuVH#JsM_xL;qm*-*RQGJLnS1@X>j-Dxj7 z(q6R}!}Ge`-m%wGxb{&=Y3QAg(E#;iBp#m5yT;85pU+Gkr^H%A8#=Eo1F2R>Pw z{kyyCf81I6Vs-Va_4RLVt$(+@`s3~O-yW>}?(XVu4{!eE$-O_^-Tl*p{l7dr{)Z<= z|M2Y5cei&T8yC2qi8nZnVhR;cx{(q0Ft>D`g*B+nJPYlMu)W+YuDF_AhFIfn#=)K* z1W}=l4k~YC0#-yE%$Jz;6Y-0zw2Q1YnGs#FHY_qXzF=%})z+lqf23LiUn2a)LTwhpY|*`dS1esPMJG;~ z{PKO`zNMxnpVd)6^$R?KIU)yO2bSke0+52Bw{u;I`+Hd-x3hyK9&{%Q@ot~3G^g!! zcJzW9&CY}s%4D!Dr`OG-*-;-DC_##?tdN4x*6==cB1m7~M^nfF$?_i+AmIn8C*+{z z4uD=*m;+lP>;pi;INd^w{t*WSH6eT=jdkcJifqjV``1#R9KZuO0Z2ykfcYt#VX+J_ z)f2A57KXxBjGSSr2Lyrx+yX*8hfS$469#=@p~ZWEQ7Ovla>aVhP7k>*RIDNB3r|-! zt41fL|048LBMY5(2S!751D4&C^C7OXqM_cWen-2w$jkyH>SEdE=LqVb_+I602}OWUHMrY1x}qIzfscHH zzeADA5dVOoAa~~SOoV`((hV^A0ouf92$EM{kQ?(gvOa*%Pc{`Q(IbHHobw_z!PxKm#azrieva37& zL`S&icvAF8W@J;cZ%2CAR94t*R6u89(r|v-Y;M%86u(=EKFb#q`!1x_XQi&^XYXE$ z-YtyWEs32wpF9WQt32~|OUYqp@p0qDy~`Q*%8MV@w;ohC?zUI250^d}s`#Y0^hM3p z-7AHg6&D!P9Cp_|n5ui+e*QsY=5b~6aaF;i*5*fp!$%`M+x=DdXFEQh>wVLk|D^it zetFrm;r>SxgLlVjpImQ$GE)9=cj1e=f+r1i&wIx2547JIy70K~A`E~#*uvD*-6$`) z)zY)x)3wymPDAi;VeX@~^@wzlxa>f8@oOF!=1`eA$H`>oaQHgA4&>&Dj` zi{EZ8{(e6zbbT$&kTcG~0gFB7axQ>@^Q z>7TVV&Jijms9K3@iOQ5>g-lRruXoW-mz@xu0kNI|ARPcTK99w`$W{ow!2u@vb4w#e z1V-+%t<^Ik<1ck2!VbswJ~N5K)b;IKK<@+fa8d-B?U6L8a8=5sR7%BEl`gs zE)3Zj0;9FSTKIOl+d-zcOaQEccL9cG`yv!d2S7K#K9;gq$Z+D-rTBlLels3!3+;;? zfN;D)yxLBjD-L>ODZC1J(90oG%H05HBGpMSNqDHiNv@fQ$(2azNqocThmW{CdRqpVo~kT5n9yh#8|{AVMqWCBo}kXc!~ zEJfJTZ3sG;Vg)01*D)#x3h>TGd{Bk4z{oa4>y*Rk6Z-$3|Ht~IhAi;q6zH8igAnSW z2{>_r@XeLb&wAjk$1g$-XVfIiS86{nz!6UI*#G{N0Hjr<0DS@nQdieKaYFNh_q9HJ zA9gX_00d*Z)1q%6h1jZVTHzcim;om=-v5>6=?~u~0FeXE`(q6+Rc8ZC`2*@d!$6aIpN4?ZKf@mq08i3P!2e>e zO9#NLU-|~~m;@kbmJVh~x+l(>i&htsFf~3F*w-8_sC_P)>xnmjx!!p&Lgsor120DC zGaf|?$*RSDJ^_nRdn2NWv`F<<-Eo7yU&K+AluptUqjMK5VLaFQ;KjXL=?#=9cf>+PJ^5`270Z=eJhATwf;K|M~vGZ}x6|x;*#Q=JK!i*1zAr z$@yVtl?3qF%G~ES=Xvnk!{y)K-TeLG-tX@o{_VZvKR!7A)8l)8`RM+aJB#JSn5ZkjB8+!VuiG=Hl!B*;}~6%2_O%15O$_;VM|O7;7Z&l0pyvglMH|W00xzF zf1cz^pdH`=P-q5+TySD8;|htC5L*N%G$+sk5&pp3v9bf04Ha@;ypf4<1U?Gw8__ll ze~>OX%n3Zq3Eoat2{34qm;wP0Wzl+@x-bJUC}1I1F@#YP083OsCr)%nTnJ?_fd%pt zPWQY!gnf;j5tAz>RQ&S%p3=vg-yFI!I65>}Xrs}=9u9HltB5C}#*cI&{cI>)Goiu2 zR6W)KezL;q5(xl&j&Otrl!=H%j00RSRsxj&tT716idj7NVW4+BrCNhDn&;mL$!jje zS_(_Z#j^Aw=I_7*IL5q&!H!fqV3Mf?TzSHN{R0vHNDM=pvH zhC8E1+?P9B9!tWoSpO;s;H?U?`UVa< zx;)^AGI27{IP(i?e{s(H5&cC1P}l&%9HzjReE0)hwNqo&RtILJUp$U*CB!U4uA003x$kq#sP ziTOz}&`3rN!cZ&K)F8=F3s4Z7UMhOvJ;K$<)+j;y1ciT!{ux3)lb>Y0(=rXD8J#S! z)+ur@FSaO!noVpRJl;19(~Yhqy4@X9LXi zvkjpLF!hS#JgWjAKr8^zgcu2Q0D*@>9FR~@m2A{mNp8!S{LmykQgxK>x}IIH0J84;O><8*>FF=g?#hw zc;}(?@adF**(k5+aNqu9_vUQ>(M;zX>A}M>VU^L5*u+nqOI=S7y_?}TmQy%!F=@Ue zcCR-5c4_R>`k4C_*?Wbhx5^6f`MS|kbi4oBcJ zWxxCKe(S}f+LDLmS9e?554)R=2dnQ5mmLpRJ?*bS4dS!v^KY6f7zYvh?@X4yoa=hl z)A_us1Oo8Ax^st3B~OQ1?)O*hHRm6;Ts~;2-fL=_u5Djv?${Zcd$zp%?8f>Rw>K#H zzr3^d)vfE_ZLNHDefFE{^MAgx`{$#BueVk|Uc2$-`t)ZvC%#&r`*HW?ulGa__;PLW z>-8I7+!|vR^moSxzdvLa^x$tF-v8T22Y-CD^Y8aJkJ~R_^RbB0{*bprw61Z8mSKX0 z$yp;s-PRTYqb}t<7&fki%UlyR;=3I2Q^m_o0M~1b2T^@6*I^|ogA`x^h%C5M_+sNB5&*-HnNZ6W#_OrxY*4BHR^#nJf>7NP=w$-n zD9Zp*@{c*ps=fr6D&&;I?H&A=zQX zZrA`sc{%{0SsmvDA6RTJQal;KGyfs<6Pg+9NcI-8ZnESD?Mh-G2k=?>jEG>k+bh=d z^2#@tb^?MlASeYOJKZGtORj&V_NO!;6XrG|k+{I%0X4gq?0hTQ_GYlK`@UkK&NSOy zQ%!7T)z9dk{FTv(zxh8WfRn`Qcjk`o?0luxo7Db%>*=V-fBvWFFEu{J4*AR(*+~E^ zvJl&2ff0fwAo;@*L?mBK0-#0s#eIf9`92)*pd29%dOqOZg+TcjLcl?e|8agOJ9qAk z%~S{QKS06Qz`V5s6W$AU$N>$q{{$D0BDt+0H9I39Hod{xnt@u{-e=Sx0|)ABBM6Ek zSfsutrtl1ZVszA#j9Bv;azwaStl@L*EZG2)1B4Zfi7w9l{qSKix4!5JD08##(d(Jmw0oirFzh6IoyKtZfVNO+Sz&b@)u><;aL zt`zU^0Ql#(c{ws5Y6_q2u*(G7JV*bU7%Rsv#4 z;A?jcM-hM9;V5^|LBLOYLp>Lg19vk6#{=E!!UL)!1Ni=vVQ$m@s`d!?vSg=`%y2}( zhW(sq9r_d9Fch0g^jl1gT}+P}&kCKn6nCp6?RH+$bbN4YLO^Yf&r*5r-ql>Zz_#-v z4~j2r73J?-O}N#0?RdQW^~9BzO?i(?^Y2xcp$@%PaelF_db|7DtDe$N>k6KhpWV2c zyVF{KvkrBj+WX_}C_I1EU-hgp|6$F!!@8@xjrDgr+g{A|J{fC!)zkM`PvOTs(FgSx zkGeUz_f81aCyW5-J-I)I4 z+RE<_ZvAlU`d5oHUoXu3W_{&Phx>mxI{4=H))y;dpDYf4x-|0b#{BPY-~8?F>W^DD zf7o34bam+4odwYW9Nzui!OmnVQwSdgGdVGeF#vjB z@V{8G?xndx3BH@{D^vi|y?En`aeS&LJ;7F@Gd;lu#_l+CC3~<<1;W381W>5mxIdUc z6P)fTWeD*UA4~@2z6Xf^0}Gf zwUXj>D=UCBK*-)n^O5=x95joBD0D3I7Nz!&RSBhvI2DP3%`IUa&7b*j0R)l)ZBk8| z=+6j<7f7{H=|um|dY;!vEWdQ3mp1e)IY2s5=0Y5kLT^$yNI?NPqNK!kSW9r^@3tOi zb2Gwn5s5tyeMAJ(^-p`NGr>Qlf9AA_mZrg(5A;6#zkfdb`T1kn2fS196l(sbMfv~E z6kZ}e-{ku1rmU;0}HicgESssG9F-u4HnT5 zkR=Hq8Ao^%!zd$zP#rx#b=JR{Bmh4hjR37P;kxRuz|eq;)z#pn80&Bd_h9^4{3aUe zrkNPBLuN5RfzR!mYpzA@K&&VFBMw3NFLZ$v=qHcql)*xX@`sf#0?`(_Ji|ML0*Y3e zHxG9hI{-#QVqIn{+*1V$3Z{fpHM(KpX&|fI)e0 zP#_?PI2GnN~Q%oZ}W7nR@w5KBhd`Ei+m$Bzl4gU znOKK+Q)^V0pXsW0PIt!YJALcS1%rd~UA=axu z#%n6TZNS$Z8bNKi(_pv?HaK)SzOXgKXErHlBP(<@J{%3ymH-r}wYwm59;EN%5qp3 z+-V!T-QT}GTz7lC@#*Nm^NuUeS~HM#IIQovb?wUC=G1$Y`8(Hgw(3f5*4Hn!G_Cfw z+?^i%cJD4B{?}U@Z#I^`ySwwl-OV3%ZhX5q{OkGt-``&UW^LiC<$2EMOS50EF8%iQ z=HK4C^UeCq=gZ?CFAR|ezFM97aeMJMyVp5iY)pK%Hu?3f!1C9WJQvV4z|1TA_df>0Oj|%KL#zSpjY$B|iRofNB499w z8;l5x$b3et2<0o$whGb59^xl;9z*|~6lW^^I~kG(fNZcA34rwg``FC{6_a;XwL57- zFPebMVT5u$(uv*zJwy@!9W#yWWeY9j9XXlCdTB=ZKIwvpkJlBL?_3MP-2sosJxsMU z9ON(@WH%q@Jsr#-$OA{or6kXr=^_&lf6=B^XuWR}fS5kf3dA{6`%7a03Vf=2G1-q5 z1YpGhSV%Ysxn>4I==+D^VQ$BfqkowdWYy1C5$@-sY`_93@m**|h?#z((0~IrDw)9i z8t*)Zl?4Mka5uIlwDQ0sXG6?~z0KMjz_aKEoIYXs;jcuYefks~fCA8b?_G`mzbpWN z_N$%Z1-SSUuek#3d8_Ys>NHegi3lR%zncij4`uY1IzRj%4znXBNYKQPfEFv?4?m#) zFxM1Ppd96wIjMg}fR4m7r%t_10QU;S%;zxQ2kbxlUe58kK%zg;Pi}=fnF0G5{xAUc zG973G>9)uLumSm_PY0S!1)Gxqu(fJ&GCt&c3;|K;NSSA1gia=n_QlIG0K?aUZ0DXX@ zfPso(#GhxPMQh3Jo?)z>VXBd3E*^6P5)PqI=wJ|MlzAx9xE1bJAf|S0C#z%8K5!w4f*0CNDSP>EoIgzy|J%~C6EhA?2g zFN5~uH*rQ{$g$Bwg_1LIxq`QoqY-1DR#*rqIeXX;{Xz8*yIE9pxv8pLT+Z9s@Neu6 zwi}Oj>cr{S8QPb9gTGU=yIq%;(@>P35RBy82D!AmgDZ6?_i6T>BNqTRvH z?Y?67TaUB@^B*VEwjk%`NS{6;c(~Un8gm|Y*h#iUx^@IRHTgJRb7w~6hUy^*kS1T7 zYk{hs)UX=~!4rwTLn*-xF)Ef2U{A*)ybvI22zQx}^_@)#T+9fcjrL>Q)SK!zUlg}< zIraW!Z@d8(vr^{sq8IWK_iOTw1kv}x$L0ASS6w}>tX`|GUZ^VGYPkfZ>%~Oz)0&*a zs)F6-*7^Ddx`dabbzhEmzaDIQQk%e3XRGGgT219vbJZ~j(TR@dlLIe?8XvT$-mATE zyRv-0wI1_;rIOT}7xM31xwuu+db59KWoGu^=EAd;g-;g7|895bH#_Tpcd+^EwOfC8 zd*e5on?G#Ly}mK>V7BGEjpZMA*1z3e`Fw5RljWHgv!k!)#(&M?cWr_5*^P-8)4d%RnR{VGCFJ;l->(HNUNtqj(})<%*oj1ivnI;FCq72wKaGJ)_zg%j>*cFx9( zYP!hIifN&6&$iTL#sUhC^pInrlVhokF#y8Rkjv1FVjjr2a?lT2tPpU9$1w=O>@(|#CWJ;q{?1~BBlL#+=)DiTDnd*{4~{`W8VK?pcHFQWhL9Iu_T9wY!hwV&-w0$?3~ z_iQjSaQoQ~$OO^^2nkj;z|js<0j8W$Kcjw7?Z|2>BOuy6B0D<(MnK`(dj4vn10Vs2 z5sb1>2R1r~@e!Y44vwKvXjFcyulHLo;eDay&W!BG-HA$_(5m+TGCTM0NF z-1;jv+C+Rx{(1*v%6T5(oed(Wk)gkxL9Lx(y`uqz40C+QToAqlch}WaO!kSJj8o9n z0blQEq*yzQB2RsQjR9FajS+E8`AqzVW?iDoII|H5S?F?B( zRNCuTT4+-)QNkCgOp9EEq48x?y)rus%zlfpvxhW*7fqlmR9+Upl>cH)?P^Z@0)63< zv-eduXLbNB{&q;k@jeI7I^b;F=xW#N=iZDwC+5KJc5IJPg=_V6Ds%#6N7ztuw;EFqZg`?p>kXvV@FSfwl;a;qQhyCnYLflG&oooGU*auMiclo(A2CF8r zJV#@^hkU%NLcK4AI<$s6jwSgH_&9XLd$DF1_IF(g54;``JQ(EN80d_V`_039-|z2yzq9zetsCFo9RL08&Cl0wJX>6PIyw65+go4l+HybzqaJc#39zOV|C&x$qmFHYd@y|#$HcPcOiZW1-G1LGT1l5rokY{6v?ja=( z9qmOc16o_$?${MG;%CT{?XTO(5aG@(CI zOCwb6G&N$1u~Ctu9Ru4ED=mNtym4U8Q(#R7IY13tO7NUZ@K{Llyp1Z4*x@Jq=;%bLNC7!xVR?%?#r`d4xH<#{pc2^UQOOJFu168yvSQgMjS z^5I;hCBmPIMzkm3Mj`$aZ95fex{L;OtOp4I(QI;nOaMXwG{K8?G-A{@BCUY~@$M$! z62Dkd{#s303KZo1Omi)bTJqhD3$*G{2;JjM`!(xa|7<>_=^c(h8I-;_Xm3+!FQk! z3TOS|vKZ{J800wNY0>9p-sGfDG0Sv?o{k+rl(yh}`RVHT=xNJC4!{~dT2C)tPdCHS z630h$AgBwtGdLuJG&932OCz*^IE;h9bQ0pJ`e|}6;BG-dgk!L=R)&E(hX>4>Xqn*# zXP9b<_->(l)!9PQVM-h=0ewmsCW}yuvztN;oq7j_pJq=-BzPCy@60yiausRU4f2+O#Ge9%X}=Ff*pDSow|LTOB}3=>@6V5(J_=c8xF?14+J^) zxI4Ccxv&+$QcP;N;<+aVK@{xkn zu?zWQW!00Fb(_OuJ0L+9*S^?Ze{*a3%eD1C?e6_>bMkKwR{nf%_p|H6zrQ~Gk9Tgq zxjz1KY3lp!?XT9Bzg}DaZg1uLy<1=3nE7Vy`Zv29pRG*2S)BN6dH&7Ksc)ATzgeIA z&F$T9_qLua4Bi`UeLmg(X0heX&AB%#l>aMV?`=N2vH1DzoxlJ1^=AkBU+v!dWOMm< z_iz8{{+&PG-nm|08fvKNV|XUo#FPpNkaV({S*n>y7Q;^)Jru;)kb#Q>-wgPT!ibI* zwJVz1blo$|)_H4il~8HkFT5QD2iVa9-4x&zsrnkM6OfT0uhUj?M?o(aYMr6>5Wx`Z zM}&9-GxQ|xd7PFvOX8@o=qb(Xwa$#f15y(qa+#ia%e7Fe=|EAFWttoNsEermu1;s~DwW-c z!jN)}e!~37dA*PWqGpGs1|73FC>(uPr?i^ILQV=SOVyN@IGt;6qwM2*7NCga{OavoM<*5e~Dk$su!lm;!UGwbiObuEfEF z{gn`d)6ojm(u4)(ff}f$nunIUueN$1nO{RA5>FT-U_wF&DBIlloQ*}EwYgybnj0nP zYk&%+rR8=91;jngVY12n&5@{3It-$}d{Vf^Tj_Jh0|w3EzPC4~F9sliTquwOq#&@t zqGiS!Osvja%vlj%vDC(5soc(x+L_Xu+P}`h5N3+R|KP4gaOW`2qUvWx)PgF5n>jvB zZBEA6XjG|mJ6%jz0@L2I2WBh4bg0?QxZTUV)x#8Pc&dH`e^~i~0;c2_I&lG*0XVUC z&VWv<-qTJDvg{3U4gk6X4ehe4;Wb}#vBN;Q!OyXRbmC>z=Iz3k8&(dh=6rjd zbCxH&y;ay)UO^reRryVb&vON^Y*Lrc54lD?TAoyM!VF9@ZP*~ zZue@gyc`{Q)?ay4n|g3Lb*CtIr{>&tL*ZdV>v4bC-EMUM%RlQWJE|(a(^~y#q~&3I z!|`ax!=7soYSQi&$M0Xx+ATTHIsv}%+~xdLj074h?)DAco|u2JF!6By#uu9#KO8@1 zL;Kyv^lx`Je!sc<>*etuR=U4ipZ#jS=ewoR-``sPesl5D^~KlA+eG=_Y_0wMoy}J( zH(o7Gez!97`ResItMjaXU(HW`w$l6gjoI(EZv42n`PKTytA&xLlkE>iYreiQ^39F0 zuld^DWyk^W27Wx;{O!HnUq62I<<8odYxBR^S^I~F_g~&vs!omyH&Kf;GKeuT!bl@Z zPw?c^%=E#?afee6$t4-;=!AHhV7cJUWk%#^cEQn%(9hcez%Vf-&Jr;K$p?}ohoU4elkxoQ*NB}YcC{}>p%yuaFr0t>*iDUPhN|mi5 z4G2cqPYHm?`_@n;$_Y(3CMOCQ)S4ebrlHunV5*&Hq8@DkCQ!{wUEN(n(_KT`Qv;1i zCIo5(fqV;-B1u;;6W>CT93U4xq-T(kBNH^f`)yv71N+ zn8N@MRfu357P+u_k@K7kw3yT}A^mu~PE3^bqeGaKBJftdTVGP1cWEB zuf7g@U^)Q&0Ah5t6U_}Eg2m}+(i>))8Zz@C`r{9C*4hLq&}4nhWPNoy0FeFwevtf> z3o$9JF1rB^5Arbwwlk(tkO_cwG5XJWECWonXnt7$NI_7@GEih$eo|Ho27s#tC?H`5 zpfVN5$++4{*rgKv1)|@}h6KRCoyiYOu{M=hnjyx}kLEMH0k$0u`qci?MUwcgZ~~Ay zwCVD-A_4FiQWfJMFh8OL5N!b-koJQAqIt=|^~X@NJT7{AJR*8(R$Q$QW`C?qQO zuH*xJb=dSO0DlqU(F&$;1JMthgGo-Ck263ZnE=274TpP=g$4JA_+ltFf@83|1*C)_ zU$@~PpGH(4*i<`P0sRCfRE{1CUNk{&Yyx<*5$nN#627VEha$X(!+l}@qVU`i?utR! zP_PSbWxN|ZLL4Sz9ET#^I>UY2!~Ad#m`@70LDY`*EqC#03-p*t_8f|WGwjw7remq4dtxyrrUu)vAOCEtSvOnpq1UHC=je?fm^~IR`Bl z54x+KbXL6@DF0-p>Epq&yY-i@=cmu7N3Z5aZeB@UEGZbcbb0A&(Y=x3NB#ZJ)>eu2 zUmx84Ve=-e-9J6K`=|R)*yVnAbNJ7@D__q|eKOJh#a#2(H-=t~cYZlH^~1*Uo7II^ zH^)9--u`BFmL0(NyQ`n9%)OWz`D|(O%Z-KCH>O|Dj=a3y{c^GI)5WRpHx~Y|xBbJd zjgJ<(AB^{XHs1W*Qtz*qhktu(;=7xppUn1txia>L{TtuiJNV&n@0-olZ*Q&s?(W`i z?%h5d?WswO2-Vl{Q&&erC5AbwiDsgaUaEL&Xwv4Qi9!M>urmYYDf<9KgrI#v6c_5~ z)JCW!+VC>Nbmso1TB2rRIZQsV70xhok^IepbRuGQw#(TugF^ z?^N#6u0T;O71JKN0R;?-T#vAJ5$pjlsp!5bvOI)%5&+Skpic)t0-%tW6+Kx2SP=<8 z0y-7NX(Z&l2<}9G8UhZ{U(f=Sxt4Imj1oQsq)D=lOaMXzG(ok2%22rVYJ^?Cr!lzC z7~NC$AHMh2s9kaK6@qR*alQom_kWH4g7bx_!>Rv>&JqAB@jr6ZBNxAt4IqL4eCl2F z7YRUVFJyeTR-=2s1^y>L07VLv1i+H{CxK|Rrcc5&CI^_DRu>(BOaOOty?}qw0SGmS zTz?`ySNT9$2YE;}C>BIpDURd-2qVieLJw}z-(<|ku*=Q3%1XT)vY)j+ZE1{_8VLaR zM-sl5h8j|!qyd(|!8%%q!C?u>{0AjC=mLy@$N>>@y%FF`DJM% zV!b7Gjc5WW|7il~09cMO*2gY}=ugQbX8qvUda+Su#sY{F6+?CazLfT80f~t`>tFCc ziu#)n_!I&`%0x(Nf(q{!6f!)`d4AYm1@anU^e#{4PI_QHuUZK|KYlB`{rC+_Tr3Km zObYA_komkK$O_t&|B4Hs*sC*G1HmcO;T_DY+-w-=v&Tjk2z@t9WzqI&^7gEAbr3ob zZk9~{!7uSX=Svz@HdPJ=OoVU*LkO(T%dx}LxyVr$gXLNWR`(|OTsHYzH#i&g_^CR= zgPTKb2gBS(G5PXz#yAYG#~B7Y@m^C2p(8PVjmY`>LG!Uj!)rL&yC%S8ILuM#IL5fP z1v<2Zxl`%m@39zd39A#*9Ls~Lgy0!SWT7rhmH-z`Cj_o!L@lL+alMflHI)=JmmRrS z5P$uA?COP7R8dz7B2j(#sJZ00B5(Ur%%h5PyA}DnjTiQ73m!IKJ!;9l*Ot9smVY-t zXTSdPW@G75E%Tp}=R=ntb)0|QboO~u*}d}oo9E)j)51p1CeK{Ce7&~jMq~YcZ`=1b zuRmN^{dQ&M>wCBV_5Q;@9PNB}bNr9HvwwHE`e{1lI85|J_Vt%5^N+{6KAsz;4|p*<_;P9T<^1SJ z(;c7BkN$RZ_Sf4pU#zTtv9a`etof6P);BZV-z*P*L$5H~^NJjBbNu7gnO`5@{lnuI z$OpZ-IrGEr!msb#LQtqKIXcGNBuGa+)=V#4=M)nX3Zr-fHN>ybI6*v)On_=SIRLAS zTx$cI2G|gAct*TatOO7!O;4bM#5=_lG@SuyfHDXcF4YV-kL&;#)3b=88D-LftNXIx z-wK%r+)Lp4>}D_m@|H6nd8OXxN<%>07js}V*Vw@-2|(ay6zOJAH+(AqGjPG!Z*_YL z+=MVR=KW~IJ6#KfU|)3&;y&C|{BNyKo$%5)OJ`N|ks;zlB4Iti zs0veG_QTVm)=VrJ^+-G@b1-UunFADbtdj`+iZu;92@(K*C6RaprbsxB@l&>=>{r8W zr-LzMHB2!)?VL<$7p(&-5o!YaFVLS79xBLXqD46Mq2BxNqdCFr^*F7LIV;Y`eSp0 z&E}ZDF{a7=VB68gaTE&XNb`g6q0C46Kg_@|*ic_6!RhNl297W`h%+-uHaEc!5+?v5 z{;X_=m;+)CLsmcq8bcVd0X7o?L1F=5BMN^K0EhCQ$tLVDLcd%LFbri;EVVxcT29gb z5mmp7Ri3?}aOg%e-N_v9Bv?_R;zkP8QIKq@sR4a51wz4;h%a{la;HikLjs_>XDii+ zor|*ofYvx0B5Wd-TCOH2`S5@Qz?CGyssKB9_E!XY1s-b6H)J|QVi34bf&39(U~Gwn z0Gt=}V^gNFBC<0=+_WGVK~%x47H-+>n(|IixfR_Ovx36~h* z@ypBy0XPi8NB~#u4a(hA6;5{KIWk$Rt0fRs;NIw6H#wTXg)Ve5K-H(m!v$>#W?B5) z317?35a)7lhZZlVE>CE{L~zF*FXN$L$Dwe%!`v!7?aO@Z(R`kY^<0c}8H^4Z32_Go z3h=o<$hJM)84F2V1mMS`=PtGsA#RfizSNRS@vaC$^v3vL4m_FUx0n?+6z|&@;E3Vy zNUZ1e?C6E;sNpzYs{WPSIF`Vx8PRL0k#l)zH!s9*6~-JDr#`rre&I_ z-`!exwlw`>YWU6U;EU^%pWR&jVr}Bn`KeE5`aWOmdb2q8`Re3v4maK`O+Fs&IT~z# zeSHFrpifq2A5IRuT%P`Pb>_RnJAeA{geP0 z0r4)NS%lfn%|m4Xl8qS)9RQosX*_}B+?S(V32oH%N&*1z?XjEg4ep+xFXKMlfP6qE zkO_cHz#$IG1fb*qH;Mx`r7!_|-3{AZ^hf|yTHJ3rSa%pQ*V0BF*jY`@7D1a+A^|v^ zIYDU{Wu(V2K#0Lu2=p^Xm{2c;R%oya(-_2}S;;cGL7RvKK>1GsP^2Kl{D)s#RPNyP zfpY$o04UE!GknRJmM6!%AG21??^NkR*nPl=QuOd?$=_9^g%i-3{?BuhXL zkCoXGS5!s0$|S@O;t#@gE5ZTl1GD0DmO4Q?XKc{pJS|4^a&+@<(<^{LiW|EO{T$~0 z9HPI)X^MR{DGekXBBfcQ!vB)O5A*?K0&qk!))T~;<4JG!t$$2=}t; z7gJ6p8E|t`>97+<=`f#B4;x^Ho>uzYXL+W&_yH8EEI|ISC@XcbVs4Ir8fA#0rK5+h zo`{(6Y>@!6H(>4$%a^z*aG%WmA*QQL81Jx*0`Sx1YScr9V9<}rmzx!c$uiKc4#u7C zRvi4iDDwe+f#wwBe!MR{?T|TaM*_&(M%Z6?TVlNgq=7j*nShZfqPR#5v5^DhBP{*w z0Owf?e{dB-btbu{nxre#Nw3-J^3I_Yg7hm)?d{DP{awpl?U)h4>2LKGJS-SqsP+R1 zg>`bx#l8w5IY*mOFK24`ZhzNq4^@AV56X8m4NWS%2Sg%)M+zHg7+er+wJ^61AIE-Q z$00w}NSN1floy`w@Pr$DZEAze(O;Qu}n>DeFeITz|aALTh14+{*J`KNowmFys2Aw7u%I`%UFfnu;G( z2zj5Ksw-R7=k{w-S8Ixo23t{XcvhWreEICH%V{g;!q=07Zk&yo$;%qQP_$50c`(ol zD*ub+xlb0CU(F0M&_{~r&$ri~EKL4xZHD3guWt^0F*)+Zbnhp#t?YY0xqjox^w68t ziEp>Izg%0p*W2~cMCp&Ki$88`eZIQ*$@TF!i*sKsFMP3a{pI4sn}w-gZ?Ccgcr@Af zYIfwyjfw9!*1uby|8i;O)x?BgoXz)svo-$m#=^%puRmR!d2wT&na^k2>&G+WA8)LD zb$j=#ovlATzW>K3_rE*d|9tP(tL6D0w%2}l|L|6K%~=m?U$xT-7G^2d`r$e!P*xZ1 zvXK_L0@>Ck2quyS(95D5;BFV#e^YJYokt&l5*IjZI|Lc&iG@HGlmb@4bjET7#ITVP zn+^b{My8QOYSI8=jw{hbQlaZ069B|d62NY{FIT2Oce4F~e$oo?p0p0HW=Xj~N{R4KW1@Z@o-I4LSgs09@47?a!#$ojzrM=CqTR8Zw#81~3Sr z?Bg9xu7bo4Js4pXa0-Be6s=I92`XFx;)MtV(O+%?WCCC;BSbxa8UfJ(2#?}u2NHmk zs2dBmnhdi=vwAklkt;YQ9`J7`6L5Vu8k%D_pty;#2Y$;EP*h088X(RU8Byt*CKG@V zo1=ROu!hnPPdh~SjEdlUN|>z^qh;0qR`ubh=r6>1PV)RI;}72^0B}Jv0Z{(SFL`VG zh1!o&`&*xRs{`@YE?AAd?kT>{yTV_Q`4qLkNC0XlO^E(yP8y#2$^MuAgSo$&nw5rF zCX-!+q$oe}j5-Ox{Itd|ZfCmO$#$0s0IC->5U~cx62(4E0J_jziTg@RD0~9Y+<-0! z_Dk8Ai{6Uc2q|z9K)ahz1EmAtrep^Yr>`5Ks}roH6Q~0RSQ|MY3}ILUgz4*s>uVGJ zc@5Y#*1x${X5fFA|3qN}i9x(ESwRqkh4+gx0wU;Nak7*sAX)p%OmNN3E(gCo{nO`| zc$#So14wgyu?Mp?XDUiJfD#s7tb|mFn}$P=UMAZxA-JZP!gHwlfl;ESP+_M}0w8u% z!pjbT5}q9?RtF*zc$(vTC6>cDz_ z567}yWmjTF;?#slTx(~I4FKwl(;?17o_rIhYi>5QIQ`g`1v*ozHwQWPMS4so1WZQz zFt_OrQFTYV@=q8DbE*!st%B(m;65GUHy7(Q6zM>NB8vTJ4_3sp@ty5MSC0j5BMk)F#r@f+u3uV)4= zWrQxDjl7W`vt54ffY9IF_^P|`K~?&lYZvcSU*0XxxmBEb+*JN(pyQLSmdBMj>qQYu z=i}$HVn$SPAf{Z9Ly%0ThA)2eNnQCb!loJiKV)WE9t&LO7_0ddBHqpwmHcT?r;3S)9 zq{8_!(F83miNtaV%sWUp>zRqp_@ag81>;lH7IXk;SYg;puqFbs0mh1p1b_;ru-Qs> zeU||CGW@9eNdO0D0~BpI(H02L$TUF*d%GOQAu`GR-3UlPcOrz*{HQ;BFH<&TfEP#r zkT;p`M(Sy!48{(?;nW%XQzsoxBX)nhA5BnPqdQ+rxN;+t>!~Ci%0-` ziEIm~{n;>!8b1y#Qehk~6M#5BErF%>r%V9SlM)KTVyJbyi(#>qR+P?Z)fu^WC2*fK zd;eE5`iptX2_el-)RuzJG6B3T|AnNpAZ?KVthKe}2uND>$}Iv{wAnbXD^ zYQ~!CQcZ|tL)HKGsGYPpgBTog(^UO$l_BT=q_Pm{0cGj8Qqq`_DWfOTlWM;>IO~4z zoX^usA%H<;2k`Jh(7n6>Bw_J`L=O&Mu-iF4oSiJsTWPMF39dM`!W(33MAqf*p_imb z>vS~&1}aS9Z48+A2_~?iJ}^*700EksBmhQ0LJ(A6J4jm-vv@RrculgtfPr!t2Qd^% zfBG2rgVF)$bHsAY#)xHr zkOj3v2pTw$`Bi61Z&P8eWUYgFeHn_-LfgjzX%v>gJm9bcpaT%_9(T(+2mLBLt#*5T z=J;*C)m5ELUxr@{3L8xT+E{F@%UsAz*4O~FdpI>X2u?C4F`t#?pBt|W$-fZn*^=16al{(T|9rJWmt zoLVB?8-pCiVq6gkze%`{_8W^0AB`7|vO;?+HDD?wVmQ)|iO^;yV*$UVgrMM{MXaNr=t9aQUk&KOr!=&T+mo@;7EG#jVq}K7vt_0r{5qSq=rmoM_s>|anMlu zsJr%VS;nKr5&%N$SCS5@&fc#p-n(|?Nn6wNw&J6j%pJT0(gGF|+{e?Shl;NCm$%RN zv~3Iy9F2~CG&b`2WdFAd1K+QVezP_Syyw&L_D|-z|NhQ4q5RYNo`=KD&qvxGFD!q& zvhr-<#>=&h=QqZ`-<<>5{&?s9*DGs}2Ae*aZeeQl-TKCNx3}SceYv_K zXuvmT;R(MXkt__;2Rt6Ad^BA3YOe3i$|C*2%bBsy=H|Yb8~xp#O?2Ww2l0Ajf_{In z4tSJi;!nr--)wELjriS15C8b=(eLiv{bp<9%dORq)+WEZv-N0ZtU56?NcSX6nj~{G zWD_yaCI>|5s1f~X1(NZYG}X?rGfC1tg=Z?|KRW=%L8Jjrnz zQv$F&C3XNZXNdWay1;-E_W=SK{_;J!3Z{OCRiOF)ufXyfstZ1WnEWWEJv;+z4N?A+ z08BK`7;Bt1RHF%yF7R)$Mr?-PVM)n1GV7R~Q2WJUhU1fbp9gs$e>@+d0(8y~DbR-( zL$LsTP#~`Cfghd^p)CL&Drn+~D!~O$b%zE_2LPaI(9;OyZ@-Ui6P|X~x;TP?=*rO7 zP1GR`82Fqy0}Bi>I540P!6J-wQ3<6vh(;G$7cFRArvJ?SDfu}ptkMj0A&a99gzF0h z4h?Ls83A4Qf*E=bxJ(i9>5_6L39I(CyWro zQWmFH2qiM40=UV(m$^`*zq?>m*=h;jU8N!5fjsiDQ0-UXo`M|UY1JJdP%$J7?9cFa z7simJ3LmT%twm=L z3UddIQs$ntDPmuZOogj8f)I#RAjA)$0bn1~8w`O*Lfz2z8T4~&v^Q^Xvc6`6K&b;D zoJwD(LR(D;YtTEv|DbzOYG+ktZ(C_^Rch(TpSKj_mq3RGZ)-?o;DW||ool20x+1+< zYmazX0K2XZa<~LZ*u{Q1kmZ|0bGUCysLw=%_jZ#1Mx5_bY`}O_2vT>ja=?twhkF7s zYVmf)<7F--d?M0oEL26M-yPvLnHF+AC3q#ub2i0&HpOc)-s^f=z)XVsWU@PQK>g`{ z*Ax6UQvAg@HQ9SK-fcQPU^&GfE#m9B@k{4Y7tg0G6eg@)OFwS9bX1d%J;1G!y5-7C z8*S%TYcK58SKq0>x_B{q?Q-(N;`qa>X&8-lrG>R-X7m*R@$5Pr8338{>Fn^A%QGL( zPq3kV+Sl;)bk`qO$3L5z`D|wT)9Komqa|M~kAAVb@@VqLgZabPH-Qh zeLT*b3DDAxvoMZAV%^Fh*+L(jw2)0S(@nC`4Yw3<>R4kPv~|-ga8A`p(o;(_fB>%# zeiWHScw`ry#1Iw60K27fcN?GwENps$RTx|k2HOcME=+O3fTnmOv>;SAlUyME+{^a7 zo8fvd3)G)bdXNwxxeAud0J#K~di_ERK@r_VyKOewX)?@uD%@r?*s9CNwAIH72Rgvn zBqRn_AzG)wgShKxqfsnWDk=X@vJX&m)=>8`&?Y)&6yq6NNn~XWIihms$u3u#U zd{N*&Pk&&kal%ORwDyS)wcbaCUqg!X2-O{Q*_5%q6k;>@)q8KvSblICTN zkN}wUDKJpM5lb;KVD66{7zqF=2ySadBt$dE+yoR5_b&H=V8dH5#}_C!=KGK#vy9a9 zOmqnMg*Il)h!B>dML;5yF_Cl&ka7`d1PPXaDU!Lm3JOS{`$@>BSm;7}x@4(KVZ!L2 zYUq-!DYZWUR-vflWP}VHt}IZlC_Om9(Wvn|JjKcvvKWya(OTp`c_7SA@p^O<3UPo$ z`6?tO+Wj5CTndpm;U26%6kK{6_p4TKhAk1&qZZ74FQ$AN`*OU(22#2P|SR7c1~{yyE9n4_P71 zz9N`n-(d_Z?G&HuN!}w-?ww&Sh)Ikjs)nJ`WJY!(0t%}uHLx?%c_ztsF5Im*NYxbR zG@673y!UdF-$K04Ok&Vjtk+z$J5|+6itj*-duNnePpH#;jK_F{tB{3=@}dcti}6`Z z@Ewft8i@D5o|nQ>VgG98?#1lG%Q<(iq}(ouJ-h%VIR3ae_w)LOM|BtWY7+LZox7Qt zbu%aGc6tOqt1mOY=R)>kYs>D$^pnX!_*p;P82fT%{;Rd?zumn4@l@Zdnc+{Td%u}# z``ev^Zx?&Mn45h%KJcKw{G;j7Pj7Ai`u6^>kM_P?z46DboBwrp`S+VMZ{`Pnv$6R5 zwd+skufLfa`+ThX^O^cra~&_Ir@ox){Q{)v^+{68%ZZ^cmxi8C)E|%4e0p>Kqw8y* zEHC|V=l(}GZ+yPH_S@s9KknWB-R`(3fldf7st(xBSW4 z>bLtF-yR%)b#VKed&l2CeD%%aCtp2$`OW6uw_7*=c)ana`y2bcHTgc)z8W8d85jrZ zoCr5ii!;%U7VaV%!TM@ws%Pozr(2t*ftau{%d&w+BXR%+c~t$vHBUheF&7f=4psux z8NyP+sEr{W(&aw1r#1|Nq=*}7K;kT^?F8O0!~J%u(?OcEOaKxBBp>jMqPZqE0T{?g zDbQPK-b8;6CH6!RMq`%40p^_^MqnuDO2J{10HEv;E764{0Z=asODwgMrhoH+^@-Cg z0~n!rYMw?XCfQgJ-@tQI4^b8Mur7*lqX`%f5qL8JSW5I_C%lpBBQh3dkSU&IAX1mK zkC(a*((FaZJOE2oMnFuZfc;3(f07nuK734Se6ECk{_UgzgfVV03yKzqPc%)Xu92Jq zEyl8i_F0R@HB)RL=mr>|HQ6(l)Ac!X%J#&2W@p}~?iPYPAADeR@{CLXqWqV$8U+!g zc=-xAzbx?I$$SdAe+B$Q(3ff8t#_j$4<{g=n24#Xkxn>bnsnkrDH6vO#(?k{W~B4s zNv^u@pMd8jCO>B&0i0waWTtUO@5C?V)`2TWNX4mXC_4bPUmRzxL8LnPAB0ptJ{09;7`+#F*3m%{Ev$m#L7BLUzCKvOB;hIkd(o50l~tS1@k zhe7_*P-h9u|GI>MvH-voKHfkNF_36&HRPZ{f06(M0ocm;f`dh-u>m6>;RlH+Jg_#% zFGP7`f$`6_&}P${X{E=YpXLCX7`GI#2WCW!J_-8ogd!9XA-N0?*4QKfp_+m<5-Q}b z_9*F#Wh}AM4vQEw;&QXffSEf7SxthzaOQF}r2J<|B*09MG({yNeMzfb0J1LG`50~k4hcLRLp9e1aFxN z9ccuy25>fK8w{w4pU!Zf*HpWK_jjaSz|Psn*@T-o>uP-RYvU zB^u5}ZkCl^4yZ!%VUe?t1ub(^Rk}M=1gd!3v+rg53Qnmxz#g;)FwOcP?}{LgdS6x) zu8Wc0FmvYhO^nBX~+5JFSZ5~`ZY2)L0RxQV1s znDcOihp7Eif@TwZmg2o9B0Z*)f^H;*Oh>pOeadctZ8KgpgKwnTa(JGzke z|EKFOgX_+=Hc#+=oe$Fy6V=uCW~S31W@ct)CfhQzWoCiJ%uGjc#LTi-mSoA2CCid* znIZY!``#C-tGZ)ms-xz&&)=!adAllN$B84bB-=V`?e(k&qU5o`EwO<$(f+09BIVZt zdvBcXi#suK=g3f8#9-X%!RzNo;!iH7o*ld$I+GIqI6h|h%9+-Su~o-B>S8=dqAx#j zyy{$ZM|$>hN5@WY#mnBdAA4Jw0N!`ied=p|JJkE4z3Ej;#a3P3Qfc~5bMjVO%NYUon;?tQeJnpzv*pRl~v*Gvs{(6 zP?EOUSTt9ZMdl1b-}SCXFUQ8#dOK(38OyC@IR5XnmHyMpDrqnuhg<))^7M!4;h!Hh zU>dR2SpBz&{vU>`|2EkML1?{REFRu;mA>ef@AP$`5PmZ{_-d%{_1NH-S!|-`Kab7Q zz&;N){nzzJ|GLmycjHK)!68>Q6(808LAvTe`kH>4%D$?~Y}cZ7^*OlehHEI1s}ZBC z4#vWXHPk!-aB5+w$kk9+2x4GS>+*ZW1R$(H-7WDm$FLUbP0&AX$6Wu>?gD~SOoi1m z;qS+>R<@fyDJB50AgKXJPZZ8Sb{IhteyfN?w+H`GEP;Vj?0^JBx>k?{Tzk^KxF<3A z@@vdag0_Saq?fuX4Zs4bI}PCA_a@)$$F#soNy!!u@H

Z$#mD{IjGvWePgNa$nGs$T|&Fd=zf6i6g! z1vzPbOk+9w-9C8w5tW&M_k{+=&iu$k^FSYr_+6$Zk za`=jcbBJe9xUW;uUBj%j$rO6acW25ncGS1Vr0{Aoy7cc7PkBSqkNZl>BJ#;n3X4^+ z#^#0qVx7T#Mn`~fM_=h@4b*2I^_-KN=Jt+LkD1rD>)JGF(CS;fbKJ!^8E-qt?4|l+ z^Y;1M7CQpjLZzTkUU-6mSrVI+b&G~SFpeUopX^^J7qT_9!0d-!cONXXN#X0*R-mRj z&yz5$Zfi>uq-lf9*qNI%S|;(Lh6#n69TLF49cvhqTW30Z?2VF!E!@ht?rzJMy!@aGe&Gw;nz}wya3@UB zGDiHc*$ApPLZ~j=V@;X!GozfJevET;X5w&rrRvXzx ze=#E{Cp|XL3o^w0lg}(7qGHx&@CsNCxyfv<*`Io z%?S9-L*x1K`gVhd2!40L(SJ;6QAdP%A&S?gdYQ-1P~-Hjz5nh*20k7;<+6Xa9DH%B z;Fw!|J+!Q`DzCh>Da*^0y)im35=21pDMeEDH9OHJ!-!78-yFZ<%|$Z7lF9Ca z)VakfI=zP1szHD1Gps#~2#x~9y9_BS6Lb8Lzb5D1Aw%v;#k%^XTy&7)6a0S-Kg7;| zw%{oXCv@uc!=xL(YmxgB2X(@bK_d5+30a^XsbaG)50$dC_=vM!h~}kL)xry^-KD1h z*{qxNPGagn&H><>zS7_o+D)MYAHUuRK6%vy-flWv_VU0+TX9S|pP4P)wm)hW@Rf0o zb3C@pzs)bgNgWwv#koeL7!Q@04LDb@tvn&#Ax#xt?6B#dd#?Seu~l%*WBQ;s3K9@( zc=T~%*ie<}-vv=j!NcWaZioACgs2zT8?j;nS4CWZEJ ztJLjt!%qRp??VOEk6R=P%&V9H8~v$qjjWmk6h&51X$1ZBmRbNzX2A=DYI--~j=GH_ z&_=^3t=Cv9;2%el4%rwFO)y@VXOzj^*vg2%Gs7!7-U&LUxwChV6Z8>tr8{t>diBlA z@4Tu;Zo)U29%1c*mT$yU%LB{|>+^wU@0-%3e(UIZKL3fvCBETe*beBGrrj_E%K+7O znFZUHQ!t7SGj}SIwHODH6El$oJKUt=!D3TNE!maoI;m{vgIc#f%}7c879IDkRlCSl zk5aY01v@IOg@Upc+(-FD$aC4{Yrp9W=h0I)#2x$&&fs6J_Or3k=(#@)=-o>T5Y<5J z-MMF^@P1TI-Lqt|@aOnHcZW+1-t2ltL!N0mozO(bm7f)HPbiSZgWz=GdAjLmo>8@_ zbexfuMc5%$01ryhiw||x1x;BVWt?myE6W=2ww{vwQE!?_1zo=ypL-I}?;nGz!VBedV-M{+a)yR$w zk*W)}0dc)T-pJGIF!6jjp?BpqLJxN>(rb!jBHMrf{P6MJ|kIor%<0Syj%| z_k>QwJb)e#wr)RhMwC^#mrZ-{+XWcdcZIt$zobQu&77 zl^N|f68fH3`=2^Y(X+Xk-`=t8Ptd`Xvk9;Wo8er_xo?2aN&IRAJkPB`qzkGu$0C>J)HH54hG86~oq!Z?rZj2UI>6a{d|E0}OTO{Z%KIiiZPtXV05qGdDYXbI=XFxl;99ApZ*-Wt)br|EIcf zu8H)&*H56Z@%70UMM5h`2Q~XrS+><`r##wzl{*O*#F5s7DL;3Q6Ky!(wzBl-TZpK2PUt05Gv&7PF zFh68`9O$o|Ig14_D-QogM2poeo2fB*H%Q%6v&(oNjkfh#kLsh{GV%+PJNE6Km(OU+ zUA+{H29i1dY?v1OOahO_&VE2dGdIZkRi1KS6~K>-=6jR{GZauL1K{&N%eBba3%U5| zK=-kl_OfdWVA=khYoKCW8*zZ`hsGISW|dw>cGI$Li2LnAoM&E~5*0u|}6+R?kPrC?qgAkE~BR8FM1T4%;T zB#2P=IUke-kfzd0zScY9LrWW*FYoF;*&;vx z?EEcisSm?KKObw$Dd}b(dN|{DjX@rqpkgJi)D=uFNET!Er;g66JV>(K3p{coQwp*BfHt9tKBxDbDN$rY$L){H^oRb{l}Rbv5Ue zR~3cxiJMI~(>_P7@Hjf>THTm_HZ5_zY(DVLKOAD)n<@COFI%?t40~l_;(sdR^wR8k zFwjyX*Mvi{*({KMjyYAWQ&|c#szoZV>BZPn(}rLkDJXWU{gXe?B(xV@*qoXd=DVD$ zl9pD=9JG%{SelCM1zwpN$7xlkTktJTskQ3Ok2ydt3iKpn#kEOxhpL@Ypu8;)R&>6w z`LjfQv1~2bod8@51v}U@dkEnw?hXig!#j|1TCE=qo@=kGkDpIA>q+9z|^4JJYex>4UUnk`4+O(*K)D@d;<6}y{ z8zjlAqHmwfFrm=HTdU#i;wa-LmRa!Mf&#zR_AzvjX5?E(#^xRxVu>ET7y|3{#M1+r zVBLXAv-GCP^#KD101`G|tHA10@+19?)a5 zQMR%Ga(S3!C$yCM(%|cp;s~mWfy2cA2-G*O=f9hRAQOT9H={Yy!Co!-Z9(|{r0|4& zQ?^~gVBAC`PyM5Yoj2>G$7f|r46AV=7?Ez#K2XQoIqmfwTQx>`V#@K> zXHo_0ooL~xBlxP>DlBUTu;DG)RY(Iq7P|&z9qUf*U&nYw@DhlBA0#>H3@^0+qy z!bu5f+C=QMjs{0y&}p2R!IAuaZMpwxbX^qhA`;EsTe;uQE9Z*)nJ8U=3=|4(+Xc z$hDr!Dn&&NMv@)6Dezi3>6!kV>_wFBJfRYxHDL{ZZCwwgmiwJ&9hC%T=wQ;(V0fUC zn}w)7M7Af4XL*4m$dp` z;?xU#MOXwZPZCs6baZ1p+rkN0drtKNrRMcpF1h@-5p1UVE4gFW54%j^7=eY1J+f+t zRYQecq}%QtbC^7dVTP%2OUBe(je^zeA_f18t~*wf_vbmltkegF`94*psd)L|Wrml8 zm+>n?V*gsOdE`+t-25^~BdwnrIJ@^JF@os8hQ6X>cRY=3S36Tgi_Su>U9sh4hg-lz z{XYVc^h+)7H4&3OPu2}P;|>D?@1fMhyhej3s*@bulw<{H* z;0-b$*7Fz@&J4oZ+@+EH3ee}oi zI*}^mc)mgYdxb0%4<>~X{#t0L57{y2J^JXntqUa&=-ig!u+ z2AjFz`I}Ku0F~SD>?!AGLnPyHp6=iF#3w1n;X*Eea!bi)Rg6GtpzLo^(7(-=!HUM6 z3#-}QB&l87Wgwp}t(wI%B1&VdS|1ngF2iOOEs#L7%8srZ;|N#B0fcmo4RaQ5g1q#q z{Onv9(@;wL?qX)xdjqU|qJ`?Ev}fxd*&FaoQ;!A$FBS9f!d=T}9OZiIf=0mwXFNQf zUTJr!R^6VX7al`=b(x>;)iKMSRzn^q3_#Jp;f>y&9w5^%0=<&?-${^?2?rL=2sw!^;byuFp;B16%M=KyQdy6@bV%c1rtC z3@emSeehn=Ps*?9ooE6r@ASmYHWZIbvH4+e`{-iG@&* zb;fXT#^4Lc9rzCYV>w*#-lJQ~KZDNIM^IN&dY|f4 zhXX-<_}rvSa4Io9?LjXg%6JtRrT#c_295#%sf}EgPBU_>2K|N#U<>Fpyehdh|8QyG zieGC?qoH8D=HH5bh_?;@h=57akU!J@{Seq2*p%k&E4&aW2~=+oZNTNqe4Me3ZvX^iKhnVZW1nxi0ioWm$}Q0arF?u4Nk@26>g`H=iSFaq!7c?bXL8tb73m zsmU)|Y9Sw<`FV6zny8;QS)2%gp0O%>T+T5pW=nupfM>N#qiNlr8*NL|cQ@RTu){e# zne|y*!84XhO|DSrB3HP)L7@fR!F9ewvM=+Lru)NY<@(f2Pb}d$t|W1NY6)(Wpz*3LJg^*+*3Z^f&4&! zIDBb#4s#+$Vew!(r+VYytX@-I5Psg8nXjIcu`|Mb^ZxLj%#|nVwKoUIqE(NSKYg;0+3 z|8elEuy+i#mfM{XVcSbGP_^+c2o7uAO_@AXIa01ft(~}**lxWxPaVJCD}C+I!e9t~ z_ndLygbV*Y=L~Ni$Mk*%Cv<8t!9AO;kf&qnv1VosZ4=ZE)DNpltc93tx4pb^$J&kg zEK4MbfnU7HsfiwoMjcKzAAgtszE6J$U$Q#t8(!rZgz%=Lwt(d0i;LQFx>}DbAJYzoZ8HvRuHRYttsVzMP&2*0lQ{C!o+*QF+PB0kz>CYB}H;@PJ66O+Y& zuR4rv73|zgmGS!ZJRHJ~&^SGQ z+-wjD%05JbF-E4*C^UX*IErjv@>#8%M93dxox*uGKkdEudgT=j7sj(1#Ku_-9Dp|w zBveD4>(ZyYotrH#dC=0svb6svIv-&hcRwipaqqjM(zqk3aGM$ckv$JXF0{Y4Y{7MV z1>&s^8EB`O?EI5PN`n0{%xpuI5r|Dq1t?=?(R^MfRD$U#7h)i%W!BUL~!%AfRZXR9_q}X~>OHnxK?*We87xU3~ zFJ|;co>jmP<~PM%RXhQ5#sT>v^apy8!s7?kua(7~yK7b5QT69(AO6f&l*qz_?T%iU zI(aRzAG>!`k-OBaCckiDd;x-zu;D>zeD4|%_Ji~XgeFnni6|a0jD`ZdHK*mI*YPN! zOO>k7LOt@bt*-e~WgCwl_vx}oatR1D9KXcMMdfi|)Ufl{&g~<9%ZH5Pk;z0?E=ur~BwCXTb!nV0NV8U*`#V_|>7FB1X8X}W-q~HoVe0y}! ztr&SOamRNVSo7j>KoIsRU*;zgU=kbIM&6|8+hH$1`~m3^ zXH6n}9Fxci;!ayq(p{VR!tvvR^T z9lzZ*>mpH8d4)q52~;~zH=EVY@-A3h%9xZ|D1Mr*=4>S7giZ5jzPAbN$Ygtap!~^E zQ5`v5(u{--S$x<}yf8e@1>D3WVn}8Ib{n@JV03VvjTHfNP z{l?IxSg6F8#1HI-J{iwt>tf{V63;I%IWw^)bPtwYlEz{P>_CBvV}*ka0Q?sB3@si8 zkWY4RZ6tOpSm8;{c(W|J{?G4vR(8R1xgTif%_MNs@;lI4HdGbpZz?Aq18kCS|lVu>^PyvH5E>jpRtcX?P(-geOwyQPUNQdVE$S+}$< zDK%cet*h@;MNoXM-^87=1B9|F*jxODet*>%Wo=FVIDlMBNVKm4V`*~yuq#M2M*?nB z0KgNpK?dKBIqFv+=AT1_k@CUF#_ve43i@}3r|lK7{BQLDzi_VYkdCg~ybuAw5R3B5 zg1ZO!v-A^p2fM4k>ZsTi?}@i=i|WXCYs`!f+v&xET&XS1p$TpwrNs9+LL#Cfy3-zv zhLc~njCw&5GGq*0gb{#7zcXmq2^s@achTEE!|Gt%x%}P7wW%))#yV$>+8!Nk7Lx1_ zlhs=;sE70f!t*LuBnR_pJV&+l%>08!n=1l%P`z21$v|HYoe^6%1mEvY*GghH8V{3E z<9n3%(!b=Ot2DLp)drfmXqv2)i^0kV8&mo|y6U>gff9uyWp`@x3W;+Q)d#SL8k#!d z4^cG^J0rxrucpvZxZrrKmS}+#%y{ zC~IofpRb)cyhOT~UbA`^XnzcT$Qz6*n+0XLaeYzM7$_C_vBq#>_u#HpE~zRN$v@Di z2+_f#l1yQ@A%!?aJv0wq(3m^9dwAEV_G3olNCLh!4jt$hHy2@bN8|;q!B!M_5>uo;QY8oj_lyk`bQU#|++RnVXp_c9L- zP**T;aj=t&rf8SY6US9RzWV;JvFuQf0djLl<=^}IJ{v#MFUcn(mV~GWL5C@Mb%e#e z1gPEs$iNBb>$Q9rZq&$`g=OIp)h-KT4fh8AT~-^;`Ahp(vp*s{M>TC}jp8=1$;5O)>0(?R)$$-kB~!Nv1C+pnpskpBptViamdOBvuZ zkTQHb@2icS}^pb9EzXpG++1vqb!cuL;Um+TyRYv?8xYq)=J93!x{zP`X!eQS*IW&XG{Eb)fw$+~R2`pHQg&-6MO@2i8` zXG7>$|#y=#6kn!*mh0T08wNaTJYQn#qxD8~n2-7=)zwczQh3xv-cfHO&x)R=`aT#BHMH`E7w{`-m~kO3 zPOn__8X^Z@j}NEIKKqPb5E%I>NpCNQ4$_0Yt^uM!uS=hnjdxBZe?Mo9@RA9mMcdp) zzvO%luW38DRWO`fq*BUPpUTslTLwaLzRQ({JPQ`@_$qZd;|wH{;=QOEDZE^o`z0Qa z6%a^|N#g)r#k%6VCvTnS`z%zOd|=^<765kSnvyd9_VHJl1Dz$X#&!{e9JZU+j^Z~0D$$?f^NOqL5g*D5 zgRBbQUFCN3O^QG5Qu5a@I~>kky3@j-`b%QdFc*1?9;zOXo3z~DKw##$+zn5 z&JV2@xBgSU3%H=i23&qnBUIV>%~V@vquWUrqg8Kg{Y(hg8j6{>M?pW+vFjSjlVTAl z$LF~aL%t8KrA2b3qv91Pj;8`%80M}@_C2E02xZ*kdp0jWllva{mN+3HaArdio`Y3D7mbUcr{F3nfF_!G9vzLfY&x8XWKum5T)MKM>|OKm+5FsHHi4xi)!GkW0h1QAVxAj9US7n!HB4+^f9J zVy?K-`WuV3+7aU5JUOlMp)qjEd1z`JKMb#@ic3r&AeNzEmSLTa*&90 zmtbJ9v*JhQ)jqgVBMy2oCiC<=XIburg&VXNVQ3|#cuKmDPYt4w{WMmfxI>H znx6x;^`<^%r7g)em1pOECdee0rI^jWHz1-f_Tz61L7lwz>YZlTJCOUly4PJh(czSN zYAFl6(XumoD)bkIjxX|l00(6|+A#eiQdo`eV-XoS5vBAwgh2-=am_fJV;}&xDjK#j zd)V9!gQu=W3ZBMg2lX4}7w@=~L1Zl7b0|wk+ctEJ(btG_W4+45jZS5~kUVG7rQ_hh znx0Z;as;(|%FB$*cPS0ql=7{zIoM>T`JwU=+guFwg-+JUlj?>JdHUlHa;a;ip9+aq zJ3>QiNdpI}cCj4j2`x5yKkY8ZyIS=Fia%!B<}>o6ZPXkcS^qHEQ2>b)7Y|2Fk7`az ze!nFT2P@S)s^nSy`oqhSgW^Ii&$s^+@~hZTyh^Kb*S*v9KLRd?kT!|PQgw_!&a%Cd z-lredYIvcEfP;b)CVKAltdFzQ|JGf$8}Aazo+pXsLKH z0_A2QkIE<7()9fU{k0UX8(+J;m)Fwjv1)U-7ZkEEE#)@aE9gA#$&LauERg?|*B?xd zMI6?y!T!_9cY5qP>80wr$NqxO8iWyr*%i<4IelW)1>oGvd|WRUM-w32Ekkk@ZwDvj z?^C}Hd;SZ%_X@I{QF7SYB-p5aTbtdJ0A_OFO5?#emm%lc-_Kk6Ip!^+c81n&DtxF& z=TUO$RThAtB%B_7v9I~Q3SU1ZKJ_|qoo=BW=LSuB{tj_upBM2UVu^8~<+FYqr}LbI zfQB%=B5UUgmiJKTj|=|{3X zerlR&arR%6)tC)PY6Gz+tsxMaU4Yjf%dB(A6wliQM_>r&DkPRpCKk2|d>Nv-9$dJr zRzipx|JEFKE>!vh*oC2 zk^fHGQ>7_)zV3M+B`KJOd2ViC_s4rF+J_RjiZ9y_wo(X2oY@B)+Vrs{Wd`%K#wlO7 zgDH-}S^+0{cUgbZGiH+(-68qyRZD$mD#W&QT#x8o4$`%Uw*KJp0ikLNlU&>s!gAGJ ztnVAcYqFv=Ap@cz(Ejr3Q4U9XbbEtT{f6HL2h`T<^&1oPhl4iublqQ zI#BCtq6^#BeX3ml!4;xu*89tGI(@jb)+)!{E&KM9h!>A=Pp^$ruw7kwR#9Jch zV8MQODJMbwcV#k2Uf`*mKiKSrAq$$*4L_?> z(I(LfJDm(Yyi(YJJQ8iveAGZqBW=+^u?5kIN;LX(9sBF?>$gy9Q&F;i&l~9J<-)B> zeOBv?zrD-JY{%yrac(TpyD&YU8`PQ5S(4$VGg8}xG)v+E5j%lxI_Ud9jW?KjydX3$ zP1RC`n2G3&d1v)oh2C;`x^wB}@*OGKZ=!3eSW{WX!s5=d{pf*p{Pn@~M>hlQ+y=gV zXa-mM7-<2_>-zHjh@4h#KUs2{G$|>42NRLS_fp*?F75%@lG&!3Sybypl9OJQj$X8D zI>6B_R~$Zu*NDlY7Neo~j7Do37Nn6fJof#z4A* zLG}fGk^%2bJh*~X`)?I*(U6YVHD32wB%PtgBQOL$yA7huGWc`cntdc0$AKML5pufN z+lyV=4*jRr8v>T%bPg^671o~#PS+s2NqSwLKcT%ms^*IH^dgTu&=i!Z2?K5R#Scd zYD?&1&5YM|h9ybrX_=e;P`7mv%sM1g@7&SO3b5BfVfD?^Ul7wikJRV&N?nAlv);1j z|L9fiC-f3R8`aPc)O1VGvxD^At`Gzt~B1zqSh3-CWD&q)bq-;HBY}m z_*FLyJ{{3}H4f0PgYNtOIzza(Eh85KPd5(c&F+kzgH4n0ow6yh;Hp~%zgL9KuJGY7 ztVjDxh69hFHAo*Pyp%6~iS=n9y;Itp|Ki``@+^{;9%k8_t2aC_Gd`#cV*ma zy!a_2WEU5^&;xX&D0>(^Y1?~6O=1|@c(dEd=@o3te8d}Ze82S9oETEZ@+)yxgC76x zdm2@dFl)lUh*glcx%lz!qaaViP%+dU<>o(ExgCw{R++Xf!oW3oBi%MZ?<#GvkKL8B z)D6>Hc)y{*DQ`*0GKs15P;^1dAif=(GY4&Gp0t#`(TG*C{-gq>v6FhvpiMzl)L(1B ztEutpu8F=^uA;(M+>Nom1s*JC!IyxmN^SJB8Wbdt}rEOT&|qm}GmyY&t^M zL0d1jmSEpmQSe2@5}UkVNbgx7#iZc8eInnRt(g+n;|_clfvv1X0xtBt0=?+98)JUE zP!M5+{!s}WQI`F4z&(Tfp~*86Ct_Z~n+}ycN-n+U1E>JLbA7MV0OX+7hS`7nRdKfu z@HX|$H<4C|4f_-5qEq7c9`TPRMMzuG$9Js#too6JKb4OG@u1y&d><)c_($7Q2$hhV zZz=tDM%L=aR?(q-3V?i}DLW@NodliWMaK=HO{}5-8FK32fL}UR2vbMHU|U(&2E%s} z2%y?p_LBbMO-Gx4z=m)l}-c(nAsou}ZHx~oT#fbq$j*s_mv1XT1X4&lDOyFSJc=h)>0)B5A zIPNd9b90=b(?Ps3n!GvyX02Oj->fgQshODxaJZzxnR&zM?p<1!OPWl`QXbOJLKo(e z;x}u4=ynmmtT{W@I7hEjq;BYE3P5E}wy(FRZs&BH?ipRnM@$sg!y95JLmhB~B?}fn z;}|Hp_oy;`B7rCf>?1Q4efHu-K-=c*ou50Ev$w#mA)igb?#mKGKDC!7-&Vc*@hB3Y zrp%xCgv~>Y<5jaHQg4e(T%EFbA6&J+U7Mu=-u`r)^{vH<3e>`Vl)GB^)m=HGe6%S! z4mROnDTyF(pvh3~aY&NDwfl2NEw$RJHct2q9oswmGu^Q@C)IMqa8O@8`IBb65uuaG z`dGdZ^4Uy<3%|@7*{xVzTPq?iu5!WRI|A56-jKw@Cjr_j$3lou6T>@vVWs5hVx17* zm0ZMqJ72W*XO%^U%@)A_053t%zEHTm)}z$*_-}4JHQ>8=+wGntz1VN{1w(+g(PI(D zTWC~3qa+-b$Sd0@E?8}^UfA0qqlp1W4?P3n2Ar+8)M)s=z!8eMM|`P;Rw zrgEdqZlV zOLuqf#Lv3%G`eK3r0AEAdw%hG7q_sT+t`20C{%DG9E{`U=eHHi8;gl96=j*Ca^Zes zw+E*qHTjl(R;^~C7kDRY_kCZ_e@k{hqj-A{OAkfWsT)+9O|GeZnA^!|=I;8ETd*v~ zXpE7d-MlHzGuEu!NJ@o9ECD=YoO=^q5^{`rT50;)_WuBeK7w|X(@#&xfFdXfBeI;3 zrvQu-(D9m8k)>BvZTUGXx2WzqbJDYQ+m|dQzx2NU0L<3h%bDy+q&$)8ivWpAvX%?M zBN+6q;^N~@gG+g(xtb}PX*TZ`Hv$hiIKb)u0N1arz+uy%>bu(AKQHUd_>9`TzPB1w z?Av|(_xT)DQb=!1?#!fsK?iXp^gVd*R<35aflOloWKp<~3XFmISCwA8=~I-c>1+1> zne_0b3Cb#6SM}&YCF(rrhGvo=r4=6_4l%d@asL48t5({~w(%;!iy1~S??uC~BcVCx z{{XFCeit{KYc`iRn_8`!x23<~%CCS`DX7au+oSdFDoO;T&XTG`08q|B1Gx9iEK%Fb zHFYv%gj{sGqo7Z2V&JvwakzPpB*eGZ>~ zmw#lpykt^5seW~1(B~Nc03x_mno&wCx7~ezuOs;;M|<*b|Qt<&kRZCCs`yQ*1h ze-t#iuWYP;u|6nh(0|0v)*Fu_`%VBbx3H9KI*@af-HhV|93M5g@n4Pf%hd39#JwI1 zrIaID-A5Ex7V={S9pb=8gn&sawekrVIRmB@rAl7TZ%3!kRG;;^rA|L-myDnkdOz;zj`-b3gqXrRO2c+MW??106+K!n0hhhjaAcsJ8Ad+ zr!Vl^#L{XunwNtT{WSQrLblGVSX@}#G?@#znRv)jGpv&dsqk{>Zi1ap=rqa1OLwJwdTLv$g~^$R0Dr)rF2mMB?mRkQxC zR|~ZUaf6O{H>5l5w?ja4q0@mg*k}IZoUB_ETWi#8T#3&OeX&Xukue;Fg;nS*t8|D=c<;Zp9yUqGH{6=f6ET`g_(Eq)pb91vyAe{8|$MVg3m@B9!*R!{MbY|64(o6dOzu}BaRFdE=tkW|tM$k_f1AsdY zKcA&_+7t~YHWt2>5S0A%O*Pb2#O06JDtY2Whw3}p1ON2m#5 zh2yq_Htb;0Lz06NEvK%haou6Ovug`Gta+}0Yu88{f?7f=#mVVh0hG^oL z0E9=lark@x04k!akzPwPNSj%d6(>0D+o|jS0M@KASa_!AFX@}no|cJ;;uvk?vRkup z=M$DyB#;kKFgo_Cx^kwErptBZ7QAtkMkJpxj|=z{&(gj+vy|qPcW?4X*3gq!ZdSkH zu2HnLzr2FpzD#3RW<-TqK>73vnW9TbCTd;!PNV4$_ z#-}X$g~j8>sT5n}EbI4GdC3F-Fe}{4<0`dcp{sXarM~ug82U-AS6|Zq0CBrDhLL6A zTUYT7lib;^qa)2`&H}TT5mE^@^2|?AH~_G0^shJZmXbV6s9$QHF!3z1SzE~&T|Ukr zzEBDPhBfILt`u|KkEMILmN8J2C`BgHi@n{stz`Wcw(@?bK2t(k)mvSq3KGRVGaJP zbXL;d-L`ou$`y=^db!ThMo%Z4@mgSEUYuN~Eh7i_%55w9UjC@l7fv+ls%h)Z_$b}_ z_VjGMrub7&zSKNDcdA*7*|htw-aKv~x3Y}^mNVt4KPsGnScAaG?^#|y@jr_1vM;n;e-B7I;hg9(TDQSNCC3pDkwT}W(bu07Y zAG;NMcC&U~eK+3vhlo5Znp;T*iQ+9;^?wm+F-<)2`HmLW-IVzeAR%Lql?9I_OXQA& zN5sB3@NdFqhUdih$qVXCVYRc3S>>2T7|XiG3k5{R7q88dK|Fe@QKho~0E77VJe)$F zEvTjMYV`8_v|p***?5CN*R-oWL|VS+ErrY$a@rVW*!fj08RZv-z&&=8T-S?qHP$q% zSd&h%)Wf_)+sy*JQAHaw9jXEI4nRatyPS2&t+}P7qoe+>_Z&3f)VW*v{{UV80N|Kj zBhv1CA#i+YsA*cCihNlms-~Y{lB`zNEg@A9LNS3MVn*-_1q^p6#yI}~5Z&tb_UU64 z(rR8U)lzg=>>Q8Ih*9{&Ij)rKCu zIZ5e$+eK?{H!Z*LB(-NNr}#HfyVC93NNIl6sJI$!sEc&>(GDb^sWC)7Tdoa0`uD=# z0J~zQ-^4y4w;OI9*hy(;CqSvd^IT^npOj-9o}UYh!BNZRu@YCZ_g2dKwf8Mwnf)D= zXZ5q{e^A5wu1)jJZmFv+Hr7(QkM~oSnqNP|<4M$HH+tpF*7i{cH*&^Qw2pa5(Qr8@ zuWtNQ7OpR5dn-$Kk>=vvBf( z&2DuQ+w)KJKHi0BRFhGAY3Zf= zd7>AQ<4~nz$`g#_F#JHtry~%@$p8{Va5sKA{{T3zDxBx-5_V71U+TwHqPcI=`szA2 zxS9U|c*AP~`$-@YKdmgXBb=~Q3PB1Vb~EXp=U$Z-rTk96=X+Y_cC)lPe^)oIpwMEt zvXtr<15CS28P+h)j0PD97~~%QhOsYEV!V4RQ1dcnq9~bW7zdmlnCCd}UHGgu88qM2Fjlf0tze=YCj`J)fRRyucsHOo&0Nv>RJI-ZYmr$aZ)Uh77Y$sR#`fpcRo-QbS6 z;fKrVUL){si}4Y^usloQn@b%^>eg`;#Br%;r34vLIRN=jeB9Kv+>TYHRiKrq_v-jETVvGX=^?{-{h7+@e&j^ z8II&*k_zB8ZumFEmcB3W&4-C}o15J?Q1GUxE#q0GjzEz*o$<&Eg2>@H0Od&C$OgTd zPAUmK{{XA~=ZlJQwW8Bey8F|!{<@xROicK+Pl!#?8 zm6l&DM8g?Q7e0hzIUI`fvkHna+v%#uYTVfE}?!b64jJJeLRd9 z6+9~=V|scvNf_rnwddAuMVHxiOIQr*eqfLil1kj8sKEqCGBcmN2d#Y8GoGd6J)Vob z`hJbyvFyP{F-?EK^Et%Vw4HEF_EvYXN~?izwrvxE(+mju{{Vrg@8;I+U2Oax;;m&#b@zS)kdzo$FRi1O^AYJ7S?Z-I&gZ$#VtmF6k zema@dYN~6g(rGrgjHVPuE`^Y zq?)nmzEj&jo4uY!eT$wz&r`?qr$Vn~631{vw+z`}doFnDc&~!?T#`^rZ|kx3v6^b> zl|{t&(i>}1t8WB^GblMN>C^uJuT8v?2%u1M zIVZJ@n}oP?5xG#Ic#LNxAM5^eij3)kJD8xllH`XwkpRIB)MuV}@9keT^>|dDEN^wT zpO&clMTt?Sq`wkpwu4T!@*>>PmtYAx^BzxMbtM z%b&}N<)YWt71o-+yZZkCfLx;~r8U>}Gp5vpmb!)1HYp9ZnG7jzp^s6Yn4W~@xRI+} z+W!Eg$u7wxmPeR|Ke|JLNPO^dk?oxGUrUwgRnA@i08i`gJeu+5hp~>f)B5@U07%yH z^~5XS-401)ScIN#qEurF9~&|BMM2Z4HRg7Dg~y6tQ@hhNhiGo#NfBg4^4NlM>|1CF zxqF^*j%%+KO{&tAos@Z3+?Q^;Uv1fV8MQ@9J3GHWi~bMldhfy?3F@EN`lMQ_?~Si5 zQr(39Vm;EA+*@eDMcfI&V#WD8Ibpcdd+-UF_{|RQ~`Qr};C#@cb86x@F{TZEDSX zXXcS`>=O-<2x0SJHXWPLY+CaDBwxRY^vf?c>gMB7zgxNFB&64VQ8FGlF~Bi|POMH& z1$($yI!=`-KFZ%U%)a~C+ScYrpU(+8vtGZ0x9H#ZxpzmTYNF@D`deRVHc(%9s!Ib5 z49a|{-J}LXo<`p>^SAhj1D(8h*ThNmPXTz3NAbp|9oLKeUiO9^2T535#F7$x``J_+ zzV>D+pa4cVzyy0WocZk)chj%+)A2mIFP`zexzkPm04#L;Y?}F|bzTqf{{Y1Q02b-~ zAMp>3b)n&STH;MdRgDy-#rO{1R0U2+KnoHMapnLpMSA*bt!d$P)I2|@-g);b;u9j` zMM6)^#~&yihi)^{yJ@LLDNSqF)g__kR&?ht-Fz!V`n7iN`h1aFR+hoF3w;tdajfeC zdw3^D%iAg`GPpg0jyDc>HaMb?JPW& zx2fCBzuS) z5;I;-D-Q|D&U=2J6MnltGxUxV&1+#J8g$;e$@II{5l!|=`t-7TnEpJopTqiIk*6-3 z_GqnvNsiD8T)M1=ATyTOjTk48Se%+sHlyK9F3(p;3>Vsgks+UU3`n>P7oWUI!9BSi zxcLlj8nqlvOj2J2RlQY`x1)FYF6ZufE@y|w<@kI&rGIMWe>Lw(uen+L%NI7+aY&vX z)8K23Nue{|nDe`u4yp*jToKrV`3m{$!VB4bVuDMRwYBfA{{Z5PEL@=@JbD_I!@~O3pq1wa|xeZTtk^SF#W zuH@}#rzdr1zPHz*?9|86!BX~><;xcAo%Hhi$+UZ@VreXI?4ly(F$&1b{-~3~0rmP- zYnw@|^(WHrtqMuI4V5Pg&&)B5kMOTfq?Kwhl;V?4&*qz7llzP#HA@jvDtoSFuWcXc z_nT9AYG`KrHkqkIcc;q>URqA;v@;+ALAR5Y9e$Nx!=59&@a4(YwA(9-r_)a9)+EaP zobe*Jvt;9-1d8|Y_-BN#2*Gn-Yc7h-ehoj7@tL+Vo@JL-RT`(Ky?v8+i(aZ%SMFzP z_EsJd@zff>hGmf!^*cgWP1tNLH%@;n;!RHU39_J4o*Km90Uct+dA zm$G;x#aA%Csc&gD$A`5QBv1AiVmz4%<+fo6B%I(A%9`J>zE2NpHo8W!Bf)Jch`}_? zk#Bl(zj*Vp+o8@0d~sJ!QHpDRpX78;4(cvgD{0KU)9Lcn8J`)vI(2^zU3h}Z`sU8& z&rgwOiqb9a8aGx9pq0+TU!fd1#eDtY{{RzdE1-C<#C|WGE=9n)5vm;g5{uy7+9(S5Er>0K>n)^J;$bT3X9bk(BGBYc~&ds>dC^qdOT^ z+C@nsnGP}X@wJ9}WcJ2M#ap`95%fr>TWl?<5IGDZbwCcr9rzqzj@>!09=;+GZ6$W^ z{cLXv4`{tV%&l>$+QcB#ZgsnKM@4vy#|%O2dCog$+lRI+Mc^>aMykwx{hl%m7{%- ztcYKX@%%XlIL|@|gwxv_0?Z`u@9$F7(}2Wp6IuPPlXX$YqtHS8Q;gF~)s4{3|D0mO*hJnF)sV z4g}I60%h%zcw_J1@UL47&g07L{{Y~BU+@nyq#SD9x3S9VWyJE_5~18=H(Uz{xF=I&}8^J?qrxw%UFL+A0mN>-zryhC2-+`Z%uG1GQ9b`GLoL zbNK%Ng;&;RNUyirKQ3|sYW#}$WrEC;|l#B*AIT;{l z{{XH1D?)jT-ZhMK6jG?F%0qTN`&UjI--C+jZ$HrGuNI|rdew#e7ZE+gs^wIL48sN6 z{gLVZcoh}>!$!B4YKBP^@8Gt=bLJ7zc=SDgm2fH!m%N`(KfLUP zSjwL&{dhL3Ld;x}0sazlM}G90e}ruHRs|ls6PT%<=N&W4=Tl6jK`lYt9b#M~q z^X#H^mTM#k(_YK~Sl1&V5pb9t0OXvLRy4ggL9o^5@v+iXZ$+bK+r7Sf?c}Z0#_;yJbE!wI z_~P)3=(O_+T8)k^t}b`vMv@VhjaWu%b zyH6~)(jq1Tl~Ss~T$U_LK6pYgmd$NtJGZZE?cHhR-@3VsqwJ#;m79;Ncm9^2%KNdt z2G=gNZ5sao;%>PVaB0seO&Z-Z9K%m6p?7XPdCsA;+yZ;oW8xWP)rhp7>&f!vGCHJS zfJn-wM?tfx!8l?nV<#o=f5UI5%VH{}PN%!7PRq{SetVeO*M%)?VLmFhgj`%{b}~Vv zLR2V@d0g*x9=Iqg3&Z~a4Lmoc>T=37lXme)g50@L@^a158bx9Y3crVJjdd+H+qfMlWk?DTpR2CcIpUaNX(8c;U!7VFuruf&U=8P zoxF6~#*3wBHrKk{`ayXXiS}&|NPw>wH-ir$QI1)z7zQI4+Q8Qr)T4P+OM5$fo44O@ z!24`2eO8qkIDTza)z?eP*YfvNoxI<6b1mSVOGB{nebUP{?xg11O18KKl)c2xJmeVr z**VGQ1M#k=Zv^SuY_-4|_Ro39q^++xm?=2)t zXAEOilq(q9lae?9eQQPR?>tSU=$g%~ui9@OVWnNfz<|=me|E&=a#xI=IHgAg8DT9> z9`~Ph%GcoJX^+k2M=?^VG^xccS4he;zpuRnTktoFY_#7SX`UC;kR_`y^!;XVBH{M@H7X5w7amwwrAn`c|LiJ=KXX=3VKx1fwo7g2;CcPI91E(cy5> zl`3^@tXurA`Xqis#Tm6)ILi2CFLtVn`Q5Ak0N_skq|kU5Pw^gws{A&(xplhH<85!k z+KQ=WeLi9sq2rLRjl;G<>?^A9{5~Ro3uw3cs>v?3p%&70LofQfn^M7DTc9HfgdA`i zJ&k*DjA_BR_WZU#JF6!;mU?S-{{U|*+vLuVRPaWZs_8b8HQlY@hC^>*G~^i`)u6(m#@6b`NVK}r=HIS(a$wqfy8|TgGLj-7ft|>#FgePcR096r;tzxM zNG6qs+pS7j+&J3t7B~^O2RovaV4p?}o@yw?)s(5fpRKI_01F<(r5Ir;)mFS+zwOrU zyt==*=KMe7O?$)M2C?x6#9JwBj*)uSTIyWeZ!)1zDm$>dvZL;X>$o!;5|MzN>k2;mv1AMi!Au9c?_x(6Cd61~w{3-Nzqz9A~a@P-?W-{68+*A2(98 zsm{>XdwQq-O?vk{{{Z%4_@UvC2vp0~el-=2pxf1+K#hxH!{_nD_sGC`gyl|mALWf7 z3|Q*gkA}~OrqjfFu8yYbPFW`td6DFq5GuLJQgQ(&AdoR!_^Ndy9%!vK`FxCM)P+bm zx2^T_`TqdH`-)a$S-Xv`n^Mz*?!!mrd2;U0pyxkQJ*#?49a`a)Ztg9nk)trmt8vWH zgZDxX zgm?V&%}9JLabXm8@M&t+DvV@#lm?N{8Noe2A?aT+Ds>@I!h3rE0Kq+)c%^mIuExHn zE}NoQTUkpa>t%Nhv^t=9w>%8UJgHP?0HEUw)F~d7=hwFSwvVh`>H3UP{_0kV<%V3Y z0pYMm8SB#+Ada=^V(_wZy59c)f9t)>sn@SkSG}ZKRr6OEfSutL|Ao#rrtniH*z3a$IB# z9{i8UfBKDS>JUeNX$GPjcK)t;^<^vR{eNHZl-@;AIc+IfUw*&S8fsMAd!D&r1S@Oi zDJrNy4awXA?UU<|(yzy;+S|hMTSVAVmzqF+{{W!>06w+g)T1itQ;wUr{ao~^%aQZT zuLU5fH|#3Lubs@WEbLr6~&F#Xq=I`}!0HZ#h zoDMQisq0=gVFgYOF#eJ|@UNMrFYDB+u1_7ba9-Si%L5Y~ya#hlCro7a2fu!tR|%=< zJ|&Y)yC!#My9*0Oqvb{E_w(Vrs%Pxj(P#^xV|fQ9LW9 zT1NzD?K4`eZz?ZL4#T%zp7oNJ);fNb2D3B8E~Mkjw?zYYn9aivTw^^yD(_Nlsdu`6 zclG^T;;kNPD&1Kt=xu+gtnysTBTpgo0l+^f=XXCS$t0fH1Dec}Ql8&hI&PmVji<{L zut>*|x8+xS4#7jH2m94@rlVJz*YeY1qZKGxD{FsW*T}VdE9sgV!{O8#TpGp0IlA4x z>S$F?RyfJzk-O1AIpp=~B-C`j0{BXJ>}~DsB+(Q}adm9__FlN!s_cK(NT}eFa0b(i zXOE!Dxu{_z+qb5h|w48)HM<+GVu8)19AO<&7PU#;bPc^tLswC7bTy_c)j{{SUx{Lvld_OGq@b{iiE z+`*yvVK0&^Tia1wEVyAm_znICRCmII#k2BoLTX{E`c>C%5>X;Ldj_csK#8MtO) zjnmw}IZ=?Da8FH~oSUg9q>}kX?Wf^xt|@gnYA8lAf?GF!?pJ&IehIhGUjX=D!rB$~ zt##r3HuF-{t<^0r?(SWrDmL$UP!e*?v7(d7%P2iCJr~4FWXYj;XID{kf2f6Yfxvj= zk~A+PxasAq1tcD%C>Z9xhBAVtxmKU>Yql3&x|8Cny#gEuMdU% zG>fTTO|S{CT0E+vC_gM`Y6K(=%C30_HLIrlWzueST^mM&N}A&9U6$G@C-Wo3Qq2-d zK3uWEMq|hP^K9dc`Lo2zGUaRfyVKW3b;Am(!oPG5k!EU(C&6VW+e!40~h+lQM1z)Hd^uFivST4FgS< z{{X{!eZm`vGy^To?ZIpVf3+m}*P&;50pw>OW4&)q7Iv3={we;KI`IlCm)ZXSD!;0Y zzZ;L#w2`N3+7^o1n2n0g$-EHKT|7h=819N3=hgbwJ(Y#-ucP>zS&r~q%i;y{tW*wC zARa4mp5Mmj>M>f*Nxo0&=_J1fbJB#IRYtpf)!ToHG-6@kj|u9x%C9xejfK_ZX9EIK zk;Z@n?zkS+cTUkQbnRclP|Y(iu+ipb^LGUUYOh1a;#}vwL*=P1R=a+G@C=-)(@JrB z^Dn`FnV;eB2Iv}1?wx&S6m12Z7g9~Na?DJH0uMyyOb@0rRJ46FN4xMwwr?#|N8$-} zNVf&$2%VJ=&;BG|~=(@jTXlR)lBI z+TWr&@Y(JnH06hl^={x zTg5+*d?#xhUVfc_4!dJ7ApGbgLC>KW^yazfV5!oJgI8^Sl2`u#$x-d*oJCt0szaS$&k3>c2Jj z6}&Rnx_lZkaL*X@6gE=Yoq(c1^EE{{Rp883#v#_SaN4=0Ry8i|pl`hD*qp#sT{L ztC8uR`K+r?5FLNR`h1s>$7`(ET*~hQVQvhNN@7+&?_*;h`fHr@tZ?+C>ZrY%Z}GbP z-`sjtYQfTSTg9bsCkspEb@-0)E}s4<@Z|bRT*n^06_Pn2im`pg?WNp$5b70&V=2vf zH^aXj-sw8MhNG;6wzb!05NZ&!Z??764&bwb5ALI#eo~}u+(tg=-RR*csMK%zzx*G` z9$c{wRGl~H`DyrR^F2CU5p@k;Q`5DUmA|(%+nqM%8BToDu)Vb2fwruXu>+QmuL8VV z;SRsz-Db-F0K?u3f*GdL5eZI$u3xJ<^KQ#ye$admQSZ&>+bG)9X{tQLt85iaC>ZG7j^P@vj!P zB5>lO>EAakl_F+aVDw3{DC8bDq7c20c#mUex~pvhHp)HQbLb z#)+iNKy$d@GPhuJ$-u8Bqg5&?C2scoS>Fg+9LU1gbqzjcnpu2Xc&#`Q${~n_2Rs$d zF@Q0SdQ=`I@f2<0jU!Ql=j}4Ryp~NdmohuR#Q|bHQ)%a?dQqK9uyT&Qe;@cGbZ(Sd zw!f$R1CPGdg~Uz{5bQ%Ii=_F(>KW&5Q82ev(ZfBjjn zS`oZdlK#C@{SGSWLg_N3w(x0e^4vx|M-@`h*?wjF{{TAXRi4t+ZI9+6WFTj;1F5W?UG9?E5Nb~IN=PiB zaHr@8PI1L~l%S_6$#hmnP9n2~D5tKbw}#=1K+>lX%4EB_az^5QQ-k%#`RPm-(p;k3 z!75L1WZ2S`1!LoqJx_1OzFRX+RGi=UzU>#{dRQ3VTKO1WDoFG=zRMww>f!S&uH+Jf zBMKMX_8dDIgr$N^MmpU4wg8eO!v8k1_;i}^Z!p5izJzbIk=ImU8-onZ=hrsdaV z^J0}(CX}}S0Dw2gTFYs+aYJb$EzSJDF$?pQzIMYTAL)FDKmiL^mu8HZk`zcw5B}O;9($?>ydcR&<>(_3lN32BN4biP^e0O}lNVqpIXs`R- zUipCDNCQ4Ze{gU&ZS*yJP}O`(cW-GnlOUH^)nblij#N~R-pN=P;Z*(~FoJRDs!nig zvZSQ34xK%hUq6K}lzE@{o9ab1PE=J|n>+sin`_oqOZ%xEu9Kzc9v|@JwxM3;-%Ggr zb+~QK5Sl>js~!#|3!R`I2?K#uCb8A^xuDc_d4;LALdJF;Z;m5^0(=EIgVP$uy>r9QTYEY^fQSW42 zLMAWwwty4@#fxNx;2Q0|4SX)wyf?0D9~8WHyD#I@RwS}A2@l#Miw`gW1yTm(0Z9Nk z8SPxu@YN~L+DUt=-!{L=-Tmip)*%W!sr%Bp^i8LC>$iJazt|j zn#!dGS`D?LR{Nf-(@l>{35u2$5R!Lo%THBn{O@n`C}WoPrlY;y^)v%brHs0!w#4Xv5e&BuhW+Y ziI*~<-nze%y8U!MgB^vZUX^TRD5VF<6qiQh&25*@%r37c*M2DJ*R!aS#>Ub{S(U>n zk=K@7XKxI7_O5C#7=x=`t;A?7?PduPjC|oDljZ!zp+&;xPeeJgHb~?w1^v1i?^vNvTsx71vA271-CPx|WIs@Og990ch#Wuz#MFUA1-hNAx;73G{6*Ow@H4 zZlh_e?BTPx45cwB8?lqro#L)(QfU_c9+L6x0JXHVx|_;ENhPEVNGGW$Kc5wzB5B<( zKhORF$s8p|6**~nCHOD%3pp% zT|Y{)wDFa_t+JTqou|9QV{;!N&tCW+r6!pbq+UH~XHE0p_)Zm+MSEU8k2r7o$z{WkvqBSPy{eQUz$sA$(hIp)(Qu^=`NnyMWJM@pP8L&UM{|xiCAK2nPzvV^DeQKOR@&xzzkKtZ3g8uWgr48eN=`%F($C zeRR?lcpXZS<-Qh7o`4*3L9V~yziHE7&zteN;?-_5jVIN9EhxXb&5zeScMZm|;IE55 z8-h!n3iuec7-Di~w{plOjiVoVd-4d#1Rh3w5902ZsQfbc!>l!h)zp3z@j-Xw7K%$* zmvgcV{rKM}93PYefKGIE;|hwbwswClpX74FF{8~-cWc|uE&dvw!SGkd_jj=7r7!oHNtFl(cG9P~u9~!^PNzR*+s$9{x6JY}GKDIfuV?vdZ_ORHzvD|iQDoKQ z3vFpMP@9Qluq?tklspp<0aAzfi5xmNV~T^q{uG|W?V3gP-keUq9{Wk{t&$Hg!-Eru zkcAm? zPSKs&!6V$)C4AB94s4^4+1{xJINge@?TiMFKn}usVDNia&togO&y~Ahug^oX3q>xU z*I&ExI===B(WdGi8`kcnNQxVqLv;Cjc3v1~xEwY)<9}M`bqyy}Yuk%tywxDMiI}26 zda}Z<26+I60Q0~Ek)E7am5Gu`RKAwC_2zbSE@q;?uOk(7KM~)VBh}&4q?2eXHI(hU zKIwoDew7TK9EVQPuC*E3Z!+?Kvc_SFmuzSQIABizu~Em$F^cnQa;|Aby`Sj1dYuZR zNkuI@{{H~b$GSl98{H}>BFR;q%I$P<(YYVRkIYtdmqyP)wzJh8Ozk}PQK~)y?jUtO zyK~20wYCbUy5Q5k%kN+0X*oG9^}p!RnHyZ$+)8x$)$Q9Gkm0)ej_Z@}Mcgp7NpL_5 zhAqbgk&JtPk=ngYTG!Y5zK11AN-|Au_axD-($;6UkSn8}7;sSFkX z$XhQGWwF6M{l2;P;a*wtH$nR zyNc>BkOozdkOv$S_;Knn`PZ!o&ZIPZTg>69OAr#BishdvnffD^1qL zyep?o3Z~(Z+i)|S4*dOny=$VJZ4Gt&di~~6T+5dG9&kCAI`dDZ&1-l}+I+f&)Q=HGEMtxN+(!c( zU=030TB)O4Eu7K3P!TM|?Z+dN+?x4p!U}ZM7xmQk@N!X`TYtbaJZ)hmt<1M-;pHSU zmg|h?KmM=6qk`l?b#3HA^G+9fBXhWP{zv)Osf4BM@H#G+IWaXIYUg ztEIUX;euL+k9qr>RA(6IN#pU&XKAoDji*Vd>W#MU?N>2IqjYWjC<}BWpVql?5m8U> zTJ-yo+ZkSzV!G;bnh%9;JX7%lPiW`B9%+1n{EE8`z25rd2jFHX3|-;8`` zcOB-X2ZSfMhJ9Y*3p00s3`kUrMghp#7*G^-X3i^%+BY=gFO9qRvRZuGZ1pteP)kIY zru#oHbsn?f@{)LF+fLLht?q8%Xl~NdK*(c~P{b^lI1R9#J#aYADHQ5D)}wiIEGo9T zY;6OXWC;?xDH&k62&$RFb;INWYtgAUDzJssmG1o4e@>6o@nse7&HR^?zt7LhW2LwT z$3?Nxbh!b#)?^_Y3>XFgG?*li0u1{7DotC%b{e(rnAeX0(R8I(iUd|NNiTBPO6y(;)S$*36DWrIpi+;kG?kLJufM0}^}lU89G`|wguW+jV*ch^G2$tTT9<}9dG0p0^(h*ueZMO%`CkW| z4r*T)d}i0Kbm=DWpNF*Rzk70@@i3W~JW)uf%nA^vspE0RFi1Zwa@DIT!;+r*-v0nE zKR@ep*P%u-s;507t+&r+{{X}D>86F}zPQwU4SRp%yJoR%LTK%whR8PNO^YVb!|x2| zlYzmm1+~jh3+XUNXm51X)h#dMwYQ#SmPwc@fOaUx50o%RA3sxGMBz^fK4~v`D?gl< z`Tqb&`>d7J#ZhzD=r=$30Ff(w&aep@YJd-+-kel{(5hWbIHUFgsxkv#7V z_Y46b$mBZ$J(VLLoq7j`uk7r61NNC2Wl0gf@B|+%P#!z-r_#ExxV2Kelie@Xrg)jI zPO0E%!VBZ6d-|l({0=HF70ssjTGLlAzV`B4$<@zyl0Y$^_d|jBR#NK6P}VdnrnwoC z=Hf<=3Ou)W&M;e=^DE|2s~E$pj9=py`F=;ehRMFE?Q5vtTB&&?rkCcTEes8=hdbQl^Cl}ZM z0CJ$sSR-yS_mk~!=Nu2)gI zm%;kw)V8W7wYj;PHnmBWM3FE?h=tDsl^OcuHOEsFV_u~hLip! z<=?wj`RsNY-J$r4;J9@=0Ub2r%Qsx=w#6b=+qxY_+%QmmH>Onm2dzi&FI-O*cy|8) zz?!bAR_{h8He=MqaT_U2V>nkl5!VByeKr=KJg?n<_TTUi%`+@dv%)$_Yf69puj6LU zH^#b7ukg#lIu*U$<+c8wWvscoiV%F*!?9SVUqkz;02sy?gPv&AwQXPG4}vw1hL$iJ z?Qg?~xB6wqeqB=9AhFDj8~DI(hn@#8gk$M2l=DObB#)hv(a6@{F(la{{SPN z_(LY0s8~jdUcEj?nT((BT;=g6ucNwuiogB5 zc#N8FjD8tMW#VlS;MJt?dnp@%N4nAFY)KO-&k|{#D6-OQVrfOE zi!|kfN{aneqL%94Y>>9$jf~OY5)W151XomK?ybM|74p5^k24UVTAHaHuKr(Y>!-p} z@T51IR+nk4-&$PCG;=MD)ORJG;6THA!o=@c6<{0L~0-^D4=VbDioB<_Y7ic$m3GO{sh@ z`s$6Mr38}Q7c|cn*<8&H&BmJwn50H~fpr{(ko>F|U=#A31J|EQtK!Ws!n&Qp>Vnqd z3+p)rvAK;EcL07vxr1;(BR<15!;9vXCn$fz+ikp)Iw{3--G5!o8{J;$IMeKGtXeRi zynESDNW>lvRDekDjBskNh&63e{?AX-bzM5e8rZbHa@-aRmnVW4o`7(2J9Az=E?CA& zFJ9d~Uvb$xb0)v74s!9eD^hOs`x_#Y#$%t!g=1qLafS`~gVT<^D+9zf_OZHO-@G?A z+d@M$FO!^btZ|S*>N@qsc44BEQfdDHUa$J{G=<#n7q9iXnQbsJ2`%uXD#msksTt!q zJ?nL^EtgHYv60M)b^@p)ERWC3IPcRRoqEt#R`p$c`ZJplxu4Je36tT?FbQFjX-SD> zD#}UEEP4L`^>-Prg6U={cc-crw}v)hf=FI^fHV14^i*lRGROx@i%|u%+J(uU>gVk7IV406&fNQS{{T3uR(CplSB3^)sSKO8t8h? zaTMiO5gJcqk6xShaB_Xv$t}OMZl3b>Ce(DCDlUeU7-Xr{N-UMZw4CB$Y{$<8_Cp4jHHwYxyJc3LOf zm6mB5Q@j;BkET9{pQ-Cy*qShmqh+z#gq)_EG_NhJmI$6m0xi5~jLf-N7$3SYIp?3k zy!XWVwS>B`YyCjQZycaU8XuXP7$hjqT!Ei%pc?R%CsJ~qwtdfApV_F}vi`rXk!QoH zd!gtrd8Ap%4ymZdw$^jG4q}bu0h`&GfF1Z8bWTc-m0NW#rCF!Ew2 zZs2((oteKbYucw-!k;2qrTFUK=9Ba@rrhegJstEI1Mszk_E&C>i;!R@R5pM4r z`x3>KHmayV^A+?Pb_0*^aampuyq+B*4LUZA&3S&X++O6F0g#~DoSYm!GmdlbipspD zPE_f~c9y=n{-EN ziDTT2xKIEd-Se`1kzdu!l6==+@ZAn-Uk=_+;>%4{?V*V+gG~F`kyNTMOsF}O{{X#^ zgMf3>oSM!p78u5frA2=nQX8ly)C$jf2f1+g8(OagAWZLGpaj490Zthaz`rWc*EI@B8_FcFEzuEag#ytDS z8cwaHTxhas*OFiAaNIS+U0g?)ZQ^O4{ba`qo0-Dx1E2%bK7M0D^y1+4(|?!wA7zna zlrb(9Vw4^B=)LV1t)a97xu16To zE1j{k*LCPWwQVhAOAtx(u^ebf`^>#McOxS?>0c+9##ox3&WpNRyZV2_eaGs&J&1-E z4J=+RE;5rzM_)T6m(BhA4!O98$&*O%=A)?H$uxpX+nB(P-+*{tH!_ZLTOW6Yt^G1> zFj}^+eI$0Skuq9ZXZNzI9jzk*cwBDa@^E?z=c5?7^K*NP&#J%OcK+kjtzKy;N*1d( zs$CSVZfDn)E7JNc4Et?jTk~y>%wg%t{5D3A^MFB@rJ8&_I>aKNJZN3xEhIUJm z@xTMHW@l++EQ23U(zMI!O{$eSo!n&pZ~D-Az8arC9-4|tRf4zoSNuM|@D6iUyLo&) zXKrnpf3n$uC?Keb-crou`i;n=r&HRrJUyp)`_0c~n4a(^E-W}B@lp)f*FfM^I@(ZKw3^~q8uV2~n!AXB!@{#hD>p9k`hm*Q| z$uB1!Lx>(H9vAUlkBMz`<&MKqm1YZ(bOatm}h4W6A;_X4bZX|lhv)%4w7+RizA zs0?5_Dd8V#Kl?$H$M4Wq5urM?8jp0>O&cQ_nNY*yY1Wg!G#nf2b-vzznW^w+U$~8R zJvUe1X{G8>wcWI_CS3_@7z$ zN2$P)Nqu1!rJ~);Ok3XFl(Y}Dh8vnUAdWz0uO;|>apDgQ{7ll?O*->UyoP48)}fkR z%nabhE>W1B$Xupzk;0yGF|6S!RZ2@n?fBpFxyemJoe5KKrT+A`{{XkN`G<5MT)a=UHnI(fz*zidLs4PpB455_& z0DG?P+}D>d41==6>)oj&Hq?2IDG<*@^d4xIGw*Y&RW zt3~>)@A{b5)-9tKLchAx^#*X|kr+q-A1EiEUte$KT~>*yJ=Nre-FDsYR|Err`D3a5 zYp#VJZ9m|CMw);!4k8Uo%X@#o{{S&ksiKed+=kxuA)P0YS?(QoK)E={=RJQ4 zNZx<#rG>3ngNB)zd-`Xf@5U?7$J3X;1-eIm9j;zv^uOW#Zfuz4j^$#CBBl9u01d1C z(dqtk=~KsRaLslmWgcJzGk*vK@yP!GIXJHe350HGx3Becs}YHftcjqS+E`3dIolD$ zVDY$){kzpmtLb$snBa;c&m5U|amXL!SJXm^N%|f$e9xIZjIB=M=3Qt<6e`ML!%7Bv zV*~vE09vPYrAu+*Ygx-~ju?w!M;Qk=`hWWCz^w_kzJJ!|t%s6Hr1Y_3*5(~n7KZXe z5~DnUu{;&T44tA=k z#^2ZV{dGFqYj`A+Lz_|6mRJP#xIq@hX5PC`a(|yvG19!`OngD{3&dLCg>4}hjF4cA zAPm3(!1T|*UiF>*$vACy{b~JZX@qZ?ORbmY%eL3oy0z|`;ExX4OK{Ly+_k_&Q<)@k z&df=|00NAh50nCHMh_DBL*eGB;hP1zvGFFoHo0oEn9v(LFET|}Do+n0h5P3`s44*f z*FN%{{S65U*&%2?KC}4RPgEXG`E(v?Q^PX zA~(ysIe@!>#q*YL_m4tPAgHd(OVG715LsJkw|6kv!y2MVa6kxdTPw097|S9l;YS7X zNX2*<8dJq%Qg21O^1tVHl3nyS#npuxGOZokc3+45A0(ZudM=@c_VD) z!$=pB7dvtY>Omu60~x67!)iA^W#ft6WXgok$Ou!POymxoc<4=ita0(g;+-h$ze^uH zu=1x*np>Ky^o2|KtLem<0R*yr~(=Fm{ABTY=pD$0=ZJE2diN9 zJqJO}cl}}tYLeZ*$ivyRoS#McmhNJ+mKkTbOh6T*W@b5*oCELv&*xmGwQsBH`aR92 zn``79t}OwVYoicBVS#~wat?cpaBzBR&B-W3uV2gY3_YPyPFpAc01x;ai|9Ar64UgR zx|MYeQEcP4w6>Qo4Xc)N(>8O?PZ-DC>w$`o#a3$QomF(>bCB@@2?2`<;8FJ*Eg@US_^(3B8 zu1$C|r8N~!3rRgaBEMVx=ilLRbnDOB)oIERT+dI6ZE5ni<#OfzoiuvYwwtD-yf-nM zWR=|I_7fY(GB_S!bAiq=&MRwG)L^jiXN4eWq>(M|4b{=|%aZSx8;Bpm8vy-l(xFe- zLbF>dq`a>ezoFyfv2w&!!zR<}?WVl5kLURqnuXo_iEbo>$sVtzLvtSBN-r_DIO)LZ zc;NjjqwwXU#c>w2Ue?yg=@&~7j$q>rAwUlt0O#MeXGfYfT75NtDPQ##I=mhVF^<#G zFE<#ie(&-s$Ewfa%N-u_RgO@Xtvu@-K#<;SY@n3{45H_g&JU$^pAw$SO_N_$6A2`S z&qlUb;Q~n`L=s3)k?491plnY#r~;lEy>d+eHUDgQdPyY zzbZLBzyTN>=j0ttX@{n%zh@=V-*@~4{{RkoIO?wu`P0{#wf_KbCjS8RrjC2VT27(h zKZtfZWS~yB8k@!CBC^7)a;&Sk{{Rv;;5j`9OxLA+I=jEP()I5QYLmvdnho)`(rzZl z?*I%48U7`VbJrMCjE;TmCp0N?uj=bV=JN)sH$No)SC#(&;Ql2~8Q9xL@iW7^l<+b) z+MdJhDEUdP?h(`@kG!~Y<379|*x}*TU&OaI+J3hJL*m~L+<~WEl2`4p#{U2^HhP{2 zWNhx_j1$j8nw0I|{FR^HdCOXS$?BKkc_yFA$722#)qFGKokzqT8-m(@x4g}HV(7(h zB63-y0R7e-v7F!>bMth51JZ50JlA)g6pnV&jKcAB`F{PeKP<~0KZL193(qn75nU0C zX*)gjf9Ln^dA0EpuH?Jh@XsRr#ELm3w$v z=xT;aCZ!MO`ovlb;G92PS@h}HU7ZMf zT5Ub;_uc9JbS~<4V@=ng*0hMAl0P`S@v9xIz~?GJ;hB1=>w)RdBjVo#+W2m5Quj-N zS_|{G;@n2TC4+Y5U8;C~hd2P>f3z#g$8yn5ad!UzgQH(^Z5?=K*DPOO(dhkdXZRY~ z>@_52QJUbMNezPY!yv~tk7R*c4Wx}4#Z{{Ro+MVenmH(k1z)F}xo za>t<=&!`pGg-ONRU&qg;!`Wv@y%5 zmI)3(c;5#l8Rnm)~JiP!rFB?6uK7L-1e(7%#vWB-gg6#anC$wxALyv z!j@5`wxHKe8by-?>;YME$m96G$m5#rwJSKy!n3IgtTv1h)2DC8rhgiGCBC<2sIiFlqvJn&BcSAD{{UQ9T%Wa{ zGhdhJ?r};gjWm z2dDDpyOns#pCec4-~I^|X}Q{b*7dLLS~_N( z<_mISRt)=pglDf@_7$z8U)xJyWp$7=%e)e};~hQ!02=h8e|k@)jBdS>*ZTgytC{OK zSQuSH<$T9u5yK4n`s4hH%emDjI*GKllL;tNAAZ~*9loUJ{{YusG@{+*{c3t}sME80 ze_z-2b3aOJt9whyr9}vLsYV>Cl1@lHcw}7N>U{TAUg-pZ%SsHKejlHVKyH!TZuP9n42S2g)8*?u;npk4W&pi*Gfnh_#F8-KQFxSX)3FF+hwEmm?TJ zk@f!of1HwQo;7)Kj*Tlu5qExXWZ$D}PTzSIsPoWuWxLTXi95IRYw!FCyg#a&==C{F zEdjKfDLb4yysegO4u|Hz9GvH%uSCh8r zN1CMSy)<@z*J~MK(t`GHT}qMLr2gTX+y|QC<(Dk{l1m=hBZ1SNc@?pvK^=qy z&v6rB420d*GP=u9ctdg{E+RIa_57~v zV^T4LpAe64)~UkyW`cxV0*%|63}xMzkWNSg*0@up3$KSdd6N1+ zKKoZ(|WZo<5}A7|!;Kep^Y~@D%x4F;TI}X@==(Z% zyZ-=!&PPE@6YXS`uh(UCmj0#fFT*ym&!u>*>3_U2J*E5zNkEOcSvme6pFDaD^s7D> z@EZ7kR@7}-Bsy-R7unbn#H!?&TroVA$r(KkFa24OE_&4r=Xrf1lual_d^k2idEBALnDQ@t%(^qo@A>Zrh?y zE{}eui?}_bdqB&mFmQ(@PfqSJd=QW@sJ2L z(ah7do}cjl0OWYea-}yY@6+$w?ma@=Mz_>0V6fHE&FnEm@JyhG4Y5?@=av}z-ow(W zL3Av2XNvB_%DJ~;yr{xRKItv~@Fbs1^O~9B)N8Bldwts&LWeXPW|xTcD@*$XR*p9N zEK@+NPbxN+L-hGb`~`W+%Xc%}=~K$FT&x9Beg6RKLY(1%IXDZ~IT;{kyd2XQs8{xK z+5UTezwpOS5}J4QGtRkvplZ`J%^Y@@%NE;!Sli3fD&CGa4t+<>Q~2XlwvN`*#X35* z#4;+ybsiYT>KkqkCl~{%IOjYH;Kf&UV&M8a{J*DvnbS@jvQ2f<)B3mIMc|3FxO_np zX;*g%ZyYxey{yu1J6L&veq+woUOv6+#un#R(ywOJmrZH3`-`6?ggD3tJIPVXk<*-d zdety*f)Vok-7-5jZ>1Xj zoyoP5;y7i$vxQOPaJZh^1m$EwkUI7Ir>=WdT~tw&xBkBao^3{Yt^WY8>;4#xc52q? zEKeY~F%cH_J9l7!Pfu+B07F@^*<3tM9I%qoK&-N!Gv7Yg1E0WGT^dfDRodR#TW^-8 zGn{YA;$qxSDH7dJbG;#7loNrR@G;-7L&(P@jAGuX((3*gwVFo-+A;$ZgU3K|gWEo} z+fEU2vwxRQQ&iHDZYzK5U)19@)JZQQxsGkD(QJ7LJ9s|5`*iF1*L~s3!6l{Dt-RZ< zt>i+?PYscbWc@#Gt(>tpG;WU;uqOKTA686s!AP#LCRdVlqWRhLj#xZgZLT*ml~ z269NwKAdCnHPufK1$S-!Tl)DQJ!d6mUbkEzySkKO;NnPz1_wAC@!$3JrmXYpSF=j8 zs@toOV;}_p4*5S`J?ojpIIAFvchu)U))9lR* z7GrEBe4aMoeSgTUt3g7WIqu~oyv}1@GqfV+<|~O59jcyS+P?TuIqU1vsoEshb4PI% zp);ve+Q&Ie;GgCB`qz-DKWECi{rm5+?80%BHFo)a1NA$pY$UvEsMJR}+Icv~pwH9O z1M6AIG>>I1<+_Ct;YT5qpRcbyJ7=2n@k)G-4gQBkH60|M;BuEb6dJ~?x|Xo9n>$Rr zv7-X_FPw<;oTxmOJmhhVns$Y(+}`V^?(PU~Qrwv!w^iE;05TPE{5d_k_s&gu_i&`5 zx-0zeZ_D#%Wa=qLeRlr0U9olU=?|S|w;^wwT-0aS6*Bai7^ji#J+ z9R}w58~CkaCTW?LE!$HhU?}Qy+x5tfYU)E9pC|iLO$Yqu~W}A>3T-L908;a4fGGk2dOp9yUjoHh%MuVPi9NhN)k_5NopV&@{X5`Cg6FXu)` z<&!a}$!7zg$6#@s`_wn^3#;F;92s3Bp5u8N5M+qs`W6}dDXP5ujs2^BD*phL&Zw?g zKQGfy&cSn}BoUJCg?5PWssHhCIq|}5*uk!K+KA}l$BG5I3%7z;Cu1g zHLT+qPnW6JhpTuuC7}C_JA7$<6DW??2@q(*g4>2$k)B8=BLsjbn_A10YXZ6?(jgnZ zX7bl827U6Mmr71bI$zK6{{V(MSNlU;+9h@UFI((lX_oC2S-F5mb$dKdIj^wlyl;&epy4 z@=o7@JX!*2nlIUnyq7;`X?(JXyO(+0k~5B{uhXSlfeOicX=!aEGaogJk$_KZb{|@s zDprb5Ykm*>j8#u;oaH5J-rZKI{-$lsuELVqiKdwuT&@%hgMu(W4z;DGcy~(EZX}Tm zvQ2*w-lf?5xg~Hjg#(Jtnu_c^KGCZ|1m{*Ux2Ne$$% z+-bT}sh!GPd6Ey6S+^6n81AHJ=}T#(-QLRtw^2fo$>g+<7`BL~Mj0S?1ZS^G(bc<3 zFHh-yrxdwTbC<>aGkZ$X?d>guN>r6*4hY=GbC&O(GRN~hDcXgK7^60%B(Xa(06{p& z-njlD-m1L4wKW*MZT)^n3(}`NmX{XpB$!(25e7pD3hNpBhiD@?=yQ&KowHQ+cx~>M zYn3nOz{V$VNpuGo&#n&E$EQm3D&iCrmw&_Y@@CYa-rWc2*XB!~?CaR@myk(-%bb)7 zI`ryWjQ7oX_lWJ}wvF{DVpdx>Qrp;XP@u2`9tJ?_Ju$_2JV86o6J6iv{{T}=B{ZkX z{{XM*#TzuVySR$LMkCXvU$n+1Wn}~Bc8sYXDBO$(wlGC;Hl8oF(WEvFb2JwId)rSL zUp5sl$~NLjUU>d4rz8$5nvH*J2~nR^zZ-cP%8$RywO70RNUW~)9XG~NUp+01IbBh{{Cf;sq>XioL%{~USaParM-M7?QBV3{JavC|k?Hq$GAzOtX;{gH&UgfM831RDgP!!;-AdwE zW1Sh@+^S4G#x1*%oc#wr*~f8RaEub=U#ID*oT(^Dd%Iuy{{TP0$kY$^ZNyf~ChwV< zgY6sgFscFT(Efb!iq(ryShSd|V^!L)q>7yIG1ITpj=Xco#dgq(a`&J0^Zg2)oRdrO z{=crbC~B-H&}|MCE*Xq$PZ(|4JdU{sJwL5<8ex4SMrrO>WLk@vgqxL46kr^5{Cajd z9M^p}%B}uuZ@m#X*(8#^&ac9=M|GxZ5z0((+$a&or1C)eeuwd|J8P%5zP!@!W{`($ zB9Kb2eEo2Kr>O6Z6fB$beg6P7j(TnL%FT5D0D@1WOJStVB)1G3Vc!&m#tF_i2cJRL z+XA1d>y}<3w3gYT#J2J~N0Jw4?T-C%$@*|{T{2E~vc0waH(HHGQ<|xD{eNFBhAj4X z7bYus?n*E2@Y!Mk``dBPJ$c6+eQP&T(oKV*a2S-yDINjK4xvx!$RpHNSCy{)H^1Q0 zI%8FQ3ETSqy?l>ahvKip%`Z%YOo!r!hUU9w%(KU;K+%jIKs&MAbUCY5zZ5Kb(>%l9W(QPo|VyusR+~LZ6=Y;Qk_S4%HPSICXMm0;OeZf+48!li@30p|<#|;N75{h1adIlgDW)@jSAJDrR(P){SepyLuV3{ABo5 zac4f6aq%m{Sl$Xqn(ej-&lo%S>G}IsZ-;(0d@Rv5x0>(bCx&h#ml2^Fy}O0uIVa4= z`R2J3P-*XD(2Xh8ykeTY`hUPIc%S0;!mG&G+WbZEl-^{YENiS=F;UN>@%5|+_^a^j z2sBu{bK&i|^CXdVC`4PbKpVGX->>OjPAd-N^btmt17 zz8=!{%5y%tK+xBtv6P)@P>i$8^cg&kj7-Zp3_ygl_!!-%_{~E&K!&`dI80D9uWB7 z@NZACTRX3c-VKUGQ63*$wF;z=RdeQGfDb1mXK*KjULI$G#!nEcQl&Q(l3G2L(j6+4 zmKxHM=5Fs*yWHp}`2PU#OHQ$tQ}K(z5=s?O6?{WzNhFb+2|9e-pFnC$FWLj(bdPT| zzZtv+fS{6W_>RpK;Gwt})GJJRV3vj~J{BiIEaFLfI#MWH%jidLTmFiTX zQoZ2f^=Wm{echMha>1xRYwh`#A^o5}1T0Z8_|5SBcDV|%_?F15YtGP5na3ZmuXG=@ zAHYFzGk?PD_ly z^Zu-jp(ygD{eN4JgZ6;<5gn38aq+9b61kY*9}?MNM&d(%tn3YELGhpVc#7`gL-CWq zn`4EejQ;?_M`iN{C7&O?Y_}SnYqFF6h%bUa&k^qs0-GkYswm3wYkO&Ktm~^*oZ}fetG_k_Dp%e0BI7vqw4j z&ER9Xinsh!Hiv?^ApHF}%}gOzp3{r_yFc~Hbq^%da**`zaa|qOf zZ(g0px5ux6i35iC(co;b!Ow_n@s0<1J%vFR?FaBa;K3sNYw$W4WN6Djh%CV>MmK+~ z?T^;H>`ZY|vZV=Mrj6|M*w&h*Cw^qtuaN6ckKY86=gx18o(0U&s>l<>R)6adoG=1T z0Uy$$z4+PiPEA7bwEO` zvArqMrzg!N_pX*J+5B<%EpHy0@_bnEUzrQd^R~Haae`P9JkB>BbMK6LaC-N~zlLXD zI<}YbFT*Vj^|`mYjkSAnpobet22YzHo}2(HpESZ^t3sQNDK@{l-`S6sbz>THf~z;o ztiE_N}LUNbvkpF>7OKHmz_zYWVx>8S0k8M1M?csKuiPz$nfMJ0kxAEqP zv4#u~YH*#Uf!w*@f--VFGuYQ7;(v&K8b})6*TvdI=%%jBnrXa4q?bah0KbjZcLBT=&pe)U_2U?* zw9gy(S>{-8JV~UBd0m4kzKt?T$3Hg%la_A3LNVDqC1nPq7u9V40LXRT+aAOi#z9ll8R^IbfOE}v8Yhl?1}?31>3nhF^@C!xl1r(> zwl)W%<$yf){Byw-yP;E+UJvg6tW9?XZeGv+0Z+$%J@6CDG19zmqDsL^7Kc=YgD!di z8}l9ghADhE^ZMCBKKIzErj{LJbv z-KMwKxBNf(mM=VY;CZx%wS&hR6B~Ja%>MvrKv4Q)4gEO$>H5FMF9=`g`hJ}Ui*!W$ zG=5&j)FC6&KYIYbm0 z9SPbSILEJFZYw8V_>J(&e-gH#4~_I9s^N^0>QNot$QW(^G81; z=WQ*_FBAMk@LMaspW_V*SmZ#vS5SqDjGT-H{5U=F)0)rIJ|p-p#wD2eqe&ZB0tMVV zh$GW+C;tGfbIu97HFToh{V(aWOzVyPnu=?n`|pXq8F%|tw~O>uU|LO|Zj6%H$3HRs zIsR34>*7CwuXN;&^Tql+jsq6|0850DJqXXY)6;{+{_;`0m-YVuZ&*@-x|Cm$|JmQ% BLF51c diff --git a/test/samples/baboon200.jpg b/test/samples/baboon200.jpg deleted file mode 100644 index 1b873e0ce1d17a8b225c71ee9e84e3f7cabb1385..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 21952 zcmb4qRZv{d8|>mv&;$>%xCFQ0?!Gt#4ess^fxyBp65t1mF0hNc6WoInoZuQG|gG^4~20k(!dK5S1)%cp0sMUdaI09m+qqfW+0*NL zeDn>l_O|DuS9Q1Lp;vXYcCe?Hb+vW0cMGET=i?E>{ksN`2cV(;um1N&`&a0g=>IEh zOiT<+9Bf=%9BdpMT>MuAxOjwkI5-3(1ca}Mh>3}D@kz)?h)Dl^6a5ba<$p8L(6Rqb zB*MeNBl`cYzr6rrY``dB6b*$DfJ%&lMvU@z5I_R}{9Dz(pZmXsfr*X57R z0QG;wsOV@Im>6gnC;${xG;|DNOcDkFDIcRO7MZR!zgHAFlN_W7`!!HNuinPHZ}w6i zy8VWNS?H?ae*`Fi|Ka~X3>cVb=ve>o0slrtiT@$~1IPZyf{ymTHT)w0pc6A-knmy3 z>RMltGI~Wpit77j$+oYs_~po%1oU1*`~R*2@X`JO6QdCWqyeQ(d%`X$WDV=5E*0k~ z9D=oqOjO?S`I_>b$??_^$)@8-Pil(22SNmuVG=3RC zDdihDiKhTuaD!^U!ZYCq1pARwvaUIYx#7Ip9gZf+gBJ;OKjUEoJf>VB);rL0>gVk7 zdOX;yd#;?GIzdpu@AWADRCp#}GO_myxA4RZY`G6D@lrT0oEa=TX? zt?y-R-f$V%rSz=Zx6JD(eEICuv7QiiykEvrukU|W#*9z14-UZJjv8AvUdqx0efW`+ z#8Y)dFFSvyV{GYME$IL^Y}at2`}ooLqhE@p0xkswOvqb{9~FUqwUESlD|pWtz0N&5 zuTurl*3|2y6KnVx=1LYz&`g0r555|n8E^}z5DL@$SOPy^EiM8li3pE!M5>hL%C^Tw zS*)=b_ev4VMSBvS$EsHxbG^xeBGp!k)L^@_`U|Q+Ohw537h8&RHur6GTZ&yQrm`Tz zqe3Gq8|0eq>-NtvMnfSrSxGh9n)<3B8vS>E7Qp1mqGUgu6Ap?@e^w~@@+&l)#W&RW zM$)iq%wOv3ru&)2K@72M_@fp~1VEW+F$o9HDQ%Ue0+QYM2Jw>O z_YpW_=)}p&jZf-bCXVo8p1%NgrtoLnI;*|iUv6!601QA(?`Yq&rA~{!!uObDQ~n8~ z5bo^;H}$~gu@~Vh@r{xa?*jTQaShdV>~zAOPc02~tPEmXX!xhOZQHs|rPZaS9Rgz# zi*6gy%I}r_VCo25Rs{rWBa&{?W=osPzAOY#aJX>!)~RanqAn^mbY!^ozRzpO!^D2ObtQ zq*%$=fFPIjyi3}8lBqxnj$bY`D>jFutpm#eg7n}S_Es+8Xug7H4QOyZw@9_mjRES0 zLwPMXLlqPokqb=hC63=wTx-=T?#iaD%!@Ub*Gky~*VyqGpz)idF=hXQj4xCwlU4XE8M3W?J;zmbzK&^3z1n4B;j?G3<=UuhJH93&%{q<82$wX1seEyPa zXmMqJ@nUAn#VH!k>IX}zF(=MJY=kyt^g3=Tx)Y@>_{(#=>jyp_CHIr98Q6!MUJ2B2NQe8n0xOyUDi*>wXy)h;_TenkKp0 zP@-aKGu$!x-M7%_I^jLCN85lj1lybjI=JvP1-^;Ts8x_ic@w#>jyA}M*$EbBX_Si? zA7U-c!|Jml4Z!^tJ+((DR*viuaiNYSE)8ywHa}2R$k@SxwBLOc!jK)Kz?ar$5r5KJ zNUql89yy@gGto0L$V?Ls;IZ(U+D^|L)t#PSIx%)nD&jl6O+~yfDRqI)8UaDKvt~nn zNEkM&d#L0il!-h_E$=7d8gA?g+jNgl^|)@o z5!7s$e$xk;0?Z})atO&d_|WOa(8qqi(#%?ePt;=!L!reTj$}guGm`@J_SkfiB`x(e z6z-qryvg|oxTl-MlR~<56j5gu7T2HuE^`#B+%+F3WoX7ZABTzaxQ zO7Li+BG$iW(&0bh1b+I3r_0-JWKx#Yyc$=|^wdzjE*C2-W?qDXZG{^vYTG`qZ)l9* z*l^7hpbBD2!=4m~#0e5{h(HQ?gED)u7R=G+F)(1kot_IVqSnRT^6#AMrp|K${{Xsq zS0|Ox8!n#A)_3uF+sN_;PhEWGI?OJH-yvAq6-4IOgu*tDwRJ%*WlhtrP$0x<&xGBX zUSi9;Xx$B;n#oZE6@~AX)!4+j;ykl)?bw;Fsb}Scy_`?;^|#H;%-yueWvn>7V^>>N zZvD@2$yB$Uc+uHz;$Kb6Wx`nwl%htO?VA{xQaGSQhgmAg0~0_ zs*GiYtE4(WI_EcboC}{!o0$cv0_9Y!*SCI8)S%oRMpJ$!1*=Sn2k+a|Lq1^G*R7Vo zQDteWfyE>%L7)PRhH+lG{1H(sP8jrJl|PHKE~w~vuNnUed&FJq!d^B>RE~WaM>iU& z>=mV(^)WDOyk%H@kVnH`X@}kUk=eMMot$H;Uyy^ZMOB@bOIL=WzB8F@nu1O?z0j9- z+CoucvH5KSG#aTUnSx0}rZYz(%F#Q94M^SbxQz^cy<1*&mrI8@Iuis5H4dYDPoSP} zE-QUb+2?{Yv7b9V&b4CbUVreIkktPRAPxtrUL}#=rrP3pU{NO}ADA-j$D$zy-I8ExRoF;v`vt2jE~PJ>=V-3|LY2FLrtcBc%x<@{NRD z15N{N$1dY$^8WaS6h`QVo;4y)Ms~w+bu8I!-9%-i9eoR&yB^Y+BTma8){%pm>)lxgM8;}!V9$M7iD?^#%358{@T>q?NVK@?^ z*-(^kO^*%FNL|0+LAkCSMhgz4+%k}VE*i(!-J#?HEpcW<5Q!L?2)-ToOwH`qeJ&y% zIicoUiF1}$K{y+4De6uckr+xm;n4Rrfl68Ds50#OAY<{)2py`Vmn285%jmW$i-yW~ zwx6oHbjFFTk8xr0hI&}w%yj?pr^Mo;RUnq(6#&) zAcluY8sD<$`~`3uXAJ%v1QXhj*k*`eo-rJhy+z`Bi+t zemwd6Lr8z`8hE2`*%d9>ojLj{%^SZ<$rBNWNQIivrTSY65YVf>=3Q1wCN?FP5_sACl0>@k5{k>uJ>7J{T`p zf2~HuQJ$&-v=eo#$LbV@U5^RLP$~7`%%t%o^hQHct9CTU@t!8mtE?0?!7-Q>1Va!f z=qN6aLx;)Z6vUrmU1u*StYrG`5L>pDgf6t2!#5ZpkkCD@xG0ES(|7!)Nw(#x?W45}NTq(NKg5VtEW@6j0u zs;H`Xx01EN?XK#z1M<)Qz zW}J7N)f@eeG>uqUgBo)%OsyFIHet~n|3fH|>?r_-_(@`fF*mJn`!ya{`g*_00jtS4 zyKDIzsqBVMKr8U$W(Z2AP}4q7!ci+d$v5^-N#NFoL`4V}M;?D4*Y*!b2!~2lg*yUe z?gm&feb6#qq_HiahwM-PW$+aIq*eH&LoM;=l5U3D(9+sxMwNwz2=fak>M%c}g*e2WGXSwiX*5C0athk2ls%3DGyY#;^X1P6|n`n%AbDu zKv!-HpG=-CoZ(+*obayH_r0LSh!bEm%yE&Te-l5IrFZ!@W!FiRE;!LP{-s52+_z)e z@RGBcJPcujDtks}py5flTN$&UgW=(tn zH^=hw+Wh1Fr~q;UCHi*iTuEo7|c^AyWkgXOmJeyS0oqJbqJ*72Q)wjHyy@ zGNRQ2~HUz zy5^Bz#U7DkFHq=>o1gR+lB!M;N?YAVZ2K4B=n+e$ynXhl^})B90MwF;_(mQ^Y%7RM zY0NoH&8!McEu{Cl+qf!TVa6Ib!Lu($k1NMfB$uK0NFs%LhQ9GM-d08!MUANaGml^J z+|=5nq&)WwShdKvClxp}#Td=Fn*DAUZl@rwe3W<`aXEe1%g@WG{Mcer zG9!}2)pIRw@-lX2;db?Ew|>6-3q(-;>-%^?&-x^IOUvBWCW(RJX2c z1=CmANKootSJ|d#$6TLRpabE+q>BIMBgw!MIBgFuioKB=$q_?o``ylR6VNK`Vh@zF%Fv0+xGqwac1} ziYfhpse<)VXgs15M0P{=D6Q-AYB;w*)(uC^K$Ik0CfZk6-OlgIaDwbDH~XJNjmaAa zTM{io+_!@wnDoKF^$77z7~xsir_zq{H$rRMC2+8W+CKKiT39|py==QFZfv?V@0P~0 z6jA-B1BuKHWGRE7$+9eG2E1KwREJOk-8@vVews=0I>DYTXvrmCYA6u!(Q>WTf!1Gf z*#^RQ%gA*i6GF8u()JG1AQOql;7R;TOyXh}cjc-En`t9S2~FUy!G941x~D>-^> z+yQJl8p6$o?|zAJ9hRyhoQ*X5t?oy#1Fomifk83F|^0Kzc)b^JKe#1>;3ZX+~ItqBXpi{lddCgQ8#tWG1Ig~mRG0^HlRrWhNK4o(PZ zm|M}KJmwZ*&JEgRiIn7jqld!%*tVdOz`<+0`;#~Looe9x&ENzrvtYck=LC(7Jp!=n zQ{w-qjFmDXMfeJq*(`MMK2u;0&NOXo=a`%1;-~G=Iz<~2*4y?_w-y5}PbT!E%n0;& zKKu2Hu1|=@TKtb&MZ+?yRYsV^Q^TECDhjmL zYqB~f(kXUH^z<>}g}fld4v>(xVUaVvHmRuZesmup&$p?S7)srtaP`v;J9S zfzD|m!y*2kfd1~ylTOx16GMr>b)V=Pt6&p2k;!Yw0U;eFi8301Ym|K zq{(O&cN_3kfWPSI$F_d8K`?_0-cdd|QE9YA=y(h;X5DUKqLuiMR-9JsB`pRPmnDJa zxh|h3=4Hiq11`uL+wvo$Efvv#Bw><)et<|&&DZI=7$bPmYGbRW4Yb;|#e^NfVwV)p zw(`-Ff~HiH#-)kBKqcKBThtorZ^C)dJU@-7He4A}^kzp236W_rqJRu}F9n9M3K)4+ zpWKpRQS0nh;4E+p^e+HJ@0y}X3!$)ELIF#R+I^)K9!P|kNU@1C4t)Tm8Bvl zeG-gDunt47SNv0Ui5tBeN@JSn2~ti5*|ymw@lS-W>r?>P_?g474IX3-SloFYzrN~P zS80;e2R(L_|7UGp!BD6FPkemC#V;=RP0i-FdBUq1`6s49v^83482Cp1mw?pwYBfLe z>hFj;U6a%m!8gY9>pQh&f+Jq-=9PvjTM)18*mVfIIcoWWaBT(g_oSxiAeQp@9CUpo z;=lbd&q9(ECXzV;+QKX@tVkoKGIn8A-J)j1=`g#*Ze{<{C#}r&9)y6Ek)(3PG>lX#EvM!GRI9I zDJ0f4mh8W|-mq86zhA;$7g*rv+hlg(_OGEcw`w|hU>{DOiP*aA&n>#A#o1gnam1vb z^kLm#rItwx%%u+H28PQmmhXPTuHF&t;~I>NoeIL}*QEaf z80(kKu%a5yQFu;wl)72r%Z zD>r16JhU)Pi8qKhpU{A83CHIphh3vSzZPM zcB3@n{ZDmjs=XLq-I)96>5D|KV}pe$A0a$F=uxI*$Emt!x~?TN zrn94MbXi<^SSDT_!sne=L~scjE>^`WZD3Yz3eRnB^sc%`#hTiUL^H0upfjaxABM`c zR;bs-?1Tl)++^l_H*s+?Mm!E3ZuTxciAhMpd;xw*KwTg0$F_LdOnc6Ht)>_2dqdy0 zWm8|!1>J3xPzve7icNX7Q?aeyg1j4uqm>S})8w@E8nlWs2JrPC(s!>{Xc4$2~GUpMAYBgUaz`|Wcc@kTjz z2i4i#g@6}i!hVp6b1}HgqS(8;ZpZnGULoJ9gKnovj+M|AI@z!C`ipTV(|J;U+Ku!U2Q4&XHmJEIjk%V!&QI10vGhBa za>u;_Hn1q+FuCKfrWw)T`!ML>h)C+!ie?B`Yg1q$E9u7k;vX%PzF=3gx%q{#^Us)6xS4o{!#+acL!74kzExxO0Rl5b=6#`Q;m8 z)SG#wV1o1F(w_tsZF$lXOg!uI{$V(~e`+6uvpK;3uTPRo&4V(1F_Ut!f7{Hr3Mkv5UW;L>9eZO4{;6@?Id;DmR9)KIX zSf%o<7JUEioUYZ3du|oE> z+D5mDU5a@&nCqKkpH*Ufb11?iOQ-1ySrhwc6)SK#SU*yS#>!YHxrNe3b^W--D8iLH zJW(>F>8(C_t*WSNR5zap{5hhvpQ!ud;FSopR+|4^M=fEP+o*4eWakmQZPW&NA$w~s z^v9?s>xttN_vqXA!s+{DcO^&;D_rXhw3%z~Hw4SD2~BH^z*-}v7%8Q=4EiVdYn0RU zRy4keSMDc*&1Iba`QUkNnv5b#Fl5!pU@t3`2^Z7&H4qvEv;rrMQ9&$%7Zi<1+vHPw z@$4-gmO@CDo=&+ea)Yx#m|QjZp(NBUXeU^(Kw8TOt!8IO_DUM^jN$i@c|@njej^LK zOt&WuFOw}tZd5!uN$S+o+GP9o8|%!UNhS%UH2~uEt~Hk%HU7Q5*hu`VxIMCTXlO|O zhP&R}b8In{(X;Xaf2f{qOM#bD8}4)AtqwEyPfa{%Gn)txrqsyI;RCpg%`Yc9&+QI? z^`pvou>@@KiPD_iN;x`E+QYrvaDIX~-bt;_Pipxuz~}zRT4#DCn=ykXzi@+`b?^_( z>2FRmg1>-WNWi7&$I!h9ZAn9NZzVtU#I@vxQJZzC5m-3v&&k;DT>5m~rnxi?16_vO zJV*|q=u_jOgDiGMTNanP-R^uEfB4h0RJV`TVsw{<8^Jm46B|=!MEN)7_X2E?(_mY7s(GE3^w->;MXehB&V>p1C;t(rK%G!`nypAqV|E-?1O z5Oa37_vl+KgKn|Sfw4yIcJsTvcl4^j_TjmsoPQqL*62h=4iDz_N?6Ss_+ERC+7t4N z;|3aHS{0q?PaJG;v2tBclX3e1WQqhVm$i`!qo?7~45+JLc zh89wQb@vxA9bRJTKrDBY;aZ?pyM%6SB(-t)=QLn`H8fP3m#yN-diHnDS#jv$|2s7%W@_(9SQflAz=!-c@4K5(yK(i8I) z#WWLb*!%<3R4}P<_Dicp0cBEVNq!$e8zmE0EzBpmH7)G&!)~0N;i;lTtund2g4TOJ z4S!52Pu})NPv!K{n>ldC0=rL1h4ZOq7-j6IxoEx{boO2nhFx5V?Q6amsIrRjZ*@|n z8&+Ib(HAT~_i?xj6^V#qqq9zCrIW6H`wj`WgvuJF>XT*^owfwjB>JlHBj6VN!qb=l9g6WTm(B z8m1^|Tbc-r_Fib_06~iaDAcUH+FxDJ1P&j1u+DkSRgH15rkXRP#CVFxtd1X)w=?G- zAF$zZjb>dc%DG~>P^_UR-<+`ikVLEPT;Z^!TR!vL(;JnO_;y;D^#V?tol+i74r;Hqx@cHh`r#k6F6nsOx&GYUF z-?1Z9w61sl8+SvQ^CvV_e9yX7mA`;_$&s6=n5cq6R`~n;)gSg9@Gv*zyv}72pR$&N zkd4g06hM{2jpl5f%;#sYPiZ5_>~&eK7FTcf_~4o520yCT3C}iaB%!SK%*`BzJ$L_- z53)tJjDyYcm{<)t^>obb=?bm*R2oN+e)3+0Qgjy`%_h3s{~-qJyOQm#8v$8vN0X37 zmfq5-o+4Q$M}z-+9%HDwoKcYIwR*(}XC63*8sxN!UG!DfvjmAyQgtU%*5!ORNm_4! z;eRg7mqx}D_}(+P>L)L)m|v~4y1gP7`4~0MVo3V^CCX|Jf5OD6<_q~K;{4iytElxMnbImM^V#2GnmZ1rXs_67JmFoQD3U!R7-f`*V$Zo!I z^XG!s(4!z`?&6PJ`!8c8aUZQIrchXYg!xP8=@8W#O-n8$7B$W6LjBlz0oEVBKz{h} zca`a>n%AQw0P*Q$SS=13;>ACmxPHMsQE|XTsvHz!f7~>4b@=s3nc6!5Ap62)ogoDO zQ&O+DU^vyVI9agcj6jY-jn|lL&+eK0<&*RF4q1yE9BJ!lhA&`zd&PqzL5{gdHOi{G zN*j(&2{STVtQJt9=*=mufb(l-ZcW#ArBZo)YW;DUEz|)Qn%@H`e*xVcRkzKmZJ}(l z!JD~x=Ov}(Ii>n}GAG5deUx;60l6`Iey(Ghn1%I`wwtpkO?%OsC^zW^5tDu`levZB zBB8WQZ|zZDv6uAp6#fMe&177wE0{?onCFFsCm_fpHLatoWtjs#`3b|n&R0;mo3J)f zX$uk2t&E|6oo&1*IGomV17Y3Uhp~ZJUQ4BgRswt;NP$RPIF|=F*=TcQHw(PT z3I^GLBEh-E2^gpe>k@4GyH^pU5z?)oyYxjrB{9HPAZ^LbUUJC4oH4hDalJfM*Wx&4 zYxIg9?Pp|60aL1b*6nKJCfiPms?A9`t~rTT=)a_D+IUQ1YL1N6`&-04_+&+Rk-Nc_ z9P$@{%f6jP5wR%fv+Bga>j7mi#Aw~htMSAX_!<6HD-GHW)i&KWLAj0UWV$)&{oWtQ zwZK>mKVUG4jctwZLmSiIWgWRYY2&vEG>#ls=6opFU+OM*Vxp8${Mz)}iP*K;vOj6# zg6{73T>ad4@Lnys)c0O6_8%!}|MIt!u+N*X#gm##WP}yt?6IO!Jr*ACsI~e(8%&4t_{vpt zT}N$@1%yOOf0^<9T5gCeHL`FX-~tgU*eC#yTW)Wycc(i=^zRm3^~6otvICs|3(bBX zM%TLwNgtv4^WZ1BlSC!hA|9M6J?V;n2$enR>Wq_ROha{xOg?2z1BboLy@8u@+PAZS z#ekW=E?6<}UWJ{eC-0u#q5D}nJp?(|_%=5#X1msr)au@#vRmPHF(Ja2#3=C1w|p)Z z3eHeWm)v|aI+t~0iIe-yd8nzs{snx{mQvQez1w^)N9ZAIvM1y^w{Vm+dcD=Mu)O(w zet*D%>=8D0h5fua7tDy=H(@1d|ZZwc%%IWmFbL15;PnlRmtH%8hks#U>&vGxT+*^c{5yXLOKTX zj3m{+0NywmLVmHmu=r^-=c7Ka>kww%bCI(J+S2$_61W4GTyNjVm^7994)xNHIx`P;2gM162iEDvO zUubTAtI+iZ-lQK^zcGUgm|Hb>a|~#FO9-Y4>qQx0EVP%8Y1$htBp(HA9hel&!MSm!r(;3#nKYeFCNr zhbL6>jFFFbL_I#vvF-Mzj8GnW?d^Y+0GEtuTQ!?~5B`G8Q6smef?o5eY($rPzsPtC zOa<#_48ru-tHpm9yJcqqa!20(5EQB|Rbe)ZSx{iUlYHy5)XVt=*Vt|gmCy?oTzm04 z#G<&G0ak2$#7;DB1yh-vdyn$lD3C!LqXA2_-xjO#m+6!Ke6T;wj0wCJ0crU(nDm*F za`+0WoO=5hEkhSnU|?kK{wAUO$JvaYzRIL^*~K_yh+&L_i05bB`&QDJsOdC{%R6cQ zLb$Q}{0^olNji1$f`FwT$)dprC@#BxE2-W>I~fwIqA_M<_fi(?L}lBrQSIcM1@AWyt z$o(5RN8OZ$XX9DwI*W0d%t%an@8OAC23bv)R7rmdMiaQ>Wtb|(FQ6~i;+>_G)#~6v zpkqryVs^$Zx+ji#^6&d;quK$n&9Wb~wEg_eM3n5zhA%8iOsqEmy6|qVrF-#(R40C& zuBZ~{UuElsnA-{v(wK`xrLb#h%aLa63cuuLHSFl?L=Y8Hq!@$(q#S;AN&M&WuA2V@ z25~dj*XE$*^EXE_LMm99S!?y+L+wwVs z)p1!GtDKp5rf(V>LB3A<*9=Y3XxmVzw5!`=4blFHdSh5uZ{~b^rs#Y3>Skt`Qi+-=lu zf9zs{4@e?1{n5EdLX+ZKI8?D|X`u)Jm22@95wLyx=hsnw7p}7|uzIa5o=M<0AX0St z`f3K*k|yui#G{(4jQm13-o^G8ublt8&StcLq} z&L`f#ej1?{Qb@X_JNOIuMCni-vLE^oU&1J2GnR*+OwcARBLKPc2rqHQOPFA&mlD!*-6c&Z9 z6U|+{9*<4hnNzo?aNZ8`ZTUVrMb~U-Ui$}^;1lOB@_`l$Q&cIOaMPis*MW}?d3V|0 z#6QB!N=a~7zfbQ*t(4JqG(w**c`j=YPK+yjhVsj zO-`F?wa<5Enkv=I2G!Emx)i9`UwkOZw!N#*VqoG6nWTCHOzPcg! zL@nD2%s!!?@TViLdh2j9S8&dV7*7h_vGu7_W3DcIHvx=JvvWgy{;lH0YzOH z0K^Al%KqDJ*Q#n_xV){+UXU3dKe8_Uxx}7{mqk63&Vw=->A*BB_KUUZ$UefGDiQo$ zYid75IKAyrnBQAk8?EZ}QZATJoJ0mZNB(-KT+OdMWjr|KqkLq9FdDt>*vMMpn@@Jo z{|0B|J+OzIwdXowoo1ee0;|nWPhPN&f>b|sC1bIW=ThNEYf zlgd~zohVSq=y!3kv3#szz(FG>z{Vytj>y;D3XUgV&QKVD5B*X#S$)89h+xZ~9GHT! zEffUR!@-opwj0}B-%sovF+Z)WULE3~b91wx2e%jS^+N8MbVpODcy(Uh4pyz8p77B#37KS8iJGpsHuW`H zuXjT-k4$JdEI52+A91HkujBCpcmC*SYVgR?4pBL@OY8ER;qC408O$&>nf|>54W>jg zK3HJ(lk2qw*ELUe7u*=}Ngt?H#!i$zu96`7fx=1+CaLC)`Cs%=uIU(4Eu4cHCUz)% zl4FfauC;i!z_exGV4!+Pu|=5UL2~4hFK#fqFs9Y%FEDFnqr`!=y*a-p!UXj68kX=q zNG|+gOmh7VL;Q3c_(X)PoXv%ns7^>Wgv9wO;_7QnF3gY6JDRkiP^c&wI7Iu5u(m^w zX-`$nn(_Iw4_c=hRHy+Mtj!#}_p7SY(R}x(QBIXS3-e|dvj(C4X1Q$Euo``Gt>If< zzE}D*qy=KVOsrz3wFv=HW`e>=$C_MkA|0T@DRP28%Y%2L>gP$&_CLS%3=Zop;8D*4 z7p{_cl^tD1d=h%Rt>1t18rfZ~2#as1*xrKJ8ZVP=0)7F}QX}R|$PEu%OeMK({hep{ zq9WZ&AK8Jw$97=|7nX9^qf^JR*=`O8H^WZZ&-iyb$K&c-Rv8ZtV-hsJzlwMoEN?By zcS2HB&PJL>7*?VwYCI*cB?8AzKutt4it*in6b*9=r4jAbY{8eG-o8Hl*8vnpYd)Qr zs}Lz5EJFM{f$j-yk=cdq?rMw*(`vBhDd-XH<=OZHDd)%7iL!Ff*#W~F8RfK^La6Km zi45K5%La?ngD$O}+#K1fUA(rug7WkSzvwgb2_I?&TtQ9Ja zC5?Mu|9H`&mFT@Hdi*53{fhQe*uTwHB)P;(; z32Ez--DP&Zd@P!s1ZJ_wg;?dei_&?&q4~}A5Phe9)B3skps2X%xYQ63CprFI$4Cqq z3`!i9sQX0=G6k!B`=G2%?nY}Kz?#U4;X{^jdB#W)K)(HHBJYw=o7OyAPM@c2ZCizK z^>wS>X$i>S`PEmILaqf8-SyFIkh;Ev-~l_bz46Cy6c zVU{i(Nh6OYsY=P;gtJDYT#KiEtZjG3{ZdGv{jVh^qmnXKWeM73cE4|pnIecrG7k2InOW({uRIGTG28jBvF)U*S{Au@cNF% zQ+66_>=L6VEpwHtB^d!2OcLc_aH4bEg!9j+*m3s=_ue!|ah^Pa-<*rTF*tUO9bO{; zM4FlEwLy&k#)I?lMmoZFRveU-#deIW!BM+<=jlPcYClcky0>+ew@1huNE_Dq?u<#V z8mOnL0r}z$FQqsfrDPhGeQ~G|d_&Bpf*Z;2&%s3Dc5ytK0WiS78s>ZInCj7=0jV;6 zpD!Y6NLY;|D5`HOpox%bM277xE9?t`_h3utO^|VGAyFM2XQ#%Iai=b>mnC7yrZ%(j)n6+h`lG4TOKUx;UM!VSTxp}QTwd3uwdzn*<3OITPW z;=*@a$->tBrs4B-$T`HoA8T&$SK`rrTYi#W%0~uunhMEtp)xVeQTv zzDqL`RXW-TzM3DG{8xc(b9jasZMsx;`Vs|#F2tdBl^pkDG|7DCklssipY9`$38lP% z>Nz(y8RauPxU$oKG`yOTJB+gZ^}F;$!Ckj-k)NM2n3*xMc-ij#OT<12@1}g~vZGV& zJ$zfB+Z-0{0?#U(RwV7J2hfu#4A4n`=I4qV={f7QJsr{dHYs?;@ZWq*EiT6ysoXha zIE$M5-Q+ZSD@Sk;PL=@_&(D=-#c%@aeaUdd=SWY{!%FYj3Z#*`f$>3US<j|iC87Ms+Gq4AD=|7^k`1GI0aFX)%p%W4-}7_BSMa*TYpME54??QzXcqhqGM zSXMFn65&7P`|VdDgtW*~ar$|%VWvu!PPLND+rVZgS<;ks>q-OmKfIU^|F8S_FCgJN zsj88X(9}M#menRjt)HTvzBAAUg|0S~F3nBbrKOL?kFP6^2zBs=4vQu%A@$+b9lYYv zh5EfS&yD_r4iDy!a@Nu+dG|wyHSSSn`u|WhLE6?In5d@+p6UBNmq^YzPBPU<()deZ z9}i$Qb#zyjznsT7${=tkVuEJx?9rk6yR&2L{(fS&Xs^_+l-SkC;lh~U(A4)aZhNj+ zZ@%O`!q8{&U#ePHgEyb1wp7rZ=p<4P!D$rGY*N~)ITgb);X93qME7A`d3pe@Q$M84 zmt=G@*4uk9?&+VLzjOz;7|rXMCmB&{a?3RdVNwdKuDVlO--}8upZ-J$e)4D82e|Xu zJxe&;zD1n)6)0KOK*lVti$w({z8%v^?7dioyWDYqgC84^l;$2g)(QjHp=JV=D7ciG znnF#|&g0`szk|$Vi-x$GoIC=LcaoIW6Raru=tBQ6!7|HxK#rWWxMsIMpF1sDnBy}` z4bK-K^8~C7|>1eIN|rQ_@YV=z&}1OGY=#+@WUz+8JI(nq2RGy8#Vb zkPPRuuh5%ZQvz+l`jww(hv$_{wEse|05+P)7#|0xd)aBULeP?`yOC;*U%;vp$2kQu z7i#*+kXbgeBJMvYjw;!ybv}=xb^m=uRl}X=vSQOrWZFWhpK1bRrTg8Nt6plKf`P+n zx$@?9y9%Wc)tpB1>{Q+8lfM_9{y1`v z{idwx-K?%|eCy}`XIXHTgFg4Qkxz62UIr8TR^~N|#O@G*+xfrtFK&B5J-WmP9fXTlW-Pg8Xj0KC0>MJbp3)ZnBww5O!+tG>@! zxT@s2CUm)_b%4XGs+d5^4>})c(!}+0oa`0-S}y57b85*t2lo5T_33J&F_M|oK}X(9 zpgZV^vF$D<|F*(r0!#R!932L4F3M-=vifwR5)1(-*-9POq{EeIVAZ}=(XXA8I)ml4 zPWCAba&|VoAocUaG3P^lBW*{t^O^(x^fMC*&Y7S4FanM7N2$52^Rbh3P+mwvX)0|C zYXx#Z8szr<80QQ&;^U^hwxv$Ca8g`Q_-(Lj-rkQGft;o1%OH!poU`W`Hkq-OMzC|vJ)Lg90Kz1o|J|PfFYYS zZ}*(*|5A&=psKjv|#oXu$H^!<^Hr6nuB#oyc8OWy<6oX?cx3=q^;=v$26Go zL#q-cFw5A|NcBxTzY1I~4TU*=OBD@hvql&>O|4#rE73=DSvZj^_bnGWW?NU-ge zNWgCdHg@}Cf&Tzs>5hrL{u$y3A;KK9BIJT{Mm*t+7|pIeK(S zUO)~`30!mF<2m>L0QhUF`YHZ$3!S+mO2|&rzwpYZ%C-lO&*}E*whALrO}ZJNgaS&F z$S1+U9{&LM=)9Et+A5R)pf?|)UIcxLhLB!+Bn~s|KHXP(Zeit>x!y>y8@)aZPSyy^sR2hRH`e}Y z)K_>0BHDD!_6YluYHI5AAeR-=ESdiRmjDr;*W0YPR*C4+0>OZ7!@$Q{WJ#j|=ag*R z0Nlj={{Ub9dehuB49xN<5yo7W@BsVxQS~PPbiDhDn0zwOqKVLa!y9spVe-mx!&Iaj znDK3_-!eSuHAIy7-%h(s#wgd)!B~ynLG+w1-bWx1HyY~sW1hN#y59{wOBnwEXvRhq z;1itf?8q^+tbjMU#z8x(42abh)E$W_-Fx$^4bezT9H5f`5}(5q&k5!MTh zcz7c)q&4;O$=fi`{#&KOB|DZq%AihAy6y*bm{2#SCY%!OwxVhPjwHqyZQ1wSWLq(( zg<*n{v80MJwA8nXXpiomD1aL3UE>)k?z@s%qBJ< z7WHQZ^GaFgw#52YOPzIecG$$QD@`ncY0K?tDQ7rlPr^)0SgytZg3P@}r+~FB6kM0? zX0E>RrL1(dh{)CL9OM<*I=Y7=&#NrC^X@*MPLwX%ZnDu?^RYcrQlLB7D;VDx@&Lgc z<3CT=tEFtT_2}zKJI5=iC0wvfkTa9#J`Qk4-{=Hb)6$>3yur^Viks**{{wSLae(VW9UW-~_ zr?^I}@^)UV49Bx?EGO9d>1R7)C`ix~{;INitVj~wLv zI#{W;J*GI#wTTpP7)mKFp^3pi=>Rbv{Q7?VKisO`)ovB^)Sby6aSC50j&Pv;xg7nv zNVy3Yd{U)wEO9Ky81yoMb--i;cZb` z43)C>qgkf(DPS>|AdoWPs7>IUoUb0EG*W6C&BmIx<=U9ZG<6U}wHR2?8Av4*Y-}p7 zHMNv>{6v=o& zPfU@&`DhVP@G^Zoeq^x(0ts`$l$M?@BSLieHRHH@K#7#3HV`gpuRq5a%_KryOBAQ9 zj;<*sp6>)ZWSXEzVs(k|0-_DT$-8mh+k70a{6qLp6)cd?VYOzSDs_UE2<6(b?jVGT z0B%`_apXB}4g`ddrY;new|zPN+%BStCQYn@RaY>?az3Fw_b zl-3q&O*M7amKu>p^>Y$`3tH@JM_KlhzsA8Y4 zvqxcuoXa#-QoK#vhMm13)BMN6gM?f#ZcYf>?At|}df23OtBVaBVdYGM(T&&}#&V~} zoE}Hlu7$j4^{t_ns?*s@w?Nf3iwX3UBY1#k0Qy*=Il*C%EKOT|_+wE;TW+Tm=#O1H z)YJ$vQ??bhsdn;9dUNl+Gta1{V;ed8m3ETWJUXpoc-YVCavNw$;)dh=wbRm^IhsN& zvb^8Bk@sgK1II;$Y)Pl01}x>^;9;iov9AExNX%NTiA-W`~dkNhl8R zJ-8CKJ%l@cr>%DzCCda{XEmSTHExGX%9eNv*5f6{si#?Q>lp~b!qmbc=u zp})46MB|L2UF4hGR9}_p%CH;fj4rzndO$0mZy!^^;B~ZIQJL5-HvmZ8pZE9bUE0T0 z5A7yONj6b0cWFXS&f`YR50iqRc;k25uM27~Q7yWj7gm-y*mB$Ug#NLeG?K;4`Jfya-y{+&mXRFM^J zv&yv)rs<*sbcmpHBCY_HK+7~L*bRLh8@fd^+v=cX-cmw{6;!t*GRQz9 zl>ndMJshU^TUlF0M_E@?Xl^#={oQLe*lLkVv}K9)4bgf*%CPszKv|;#z<*Bhn}2qL z?zW7lZua%JrH&Venw42Zdy0L7;jAG(kgLB_r5&)rQp-gQ*4mnho8@Y0NIPIMfw=bh zjyV_t0=hckRP=XB==tutf8;fFoX|C`Y9pbWfB4EbW!llP{4*m43KIYo3cTfZ+BLM6 zOFbpJ;antTp&f*IRb!T&m}7Xx0-wRS3@ZXo07b%o#X5_fWO3G7D4~k$Z>6lKl8o=! zafKo(g;75d0pVd649fUZmFe)lR5G{xbBrKKr4(`VKzh7tpj{=ZG{^UT*GETBTRz+I8IV;ibVXgWUrPSEtA?H(Kfn zQf=%b-c+JWBv|B8!3?Lt9-+=M%rHRf+r8ktGHY!;oT(M~z zfHB}G!2Gg&AF=6sQQmG5NU~8qBgrS9_8n@u*DcI4 zEg*%JM)EL5axio3KR+K{x9QY0aYnA`iBN|v&*J0${S;!Q0Wn@++NW4&pm8fT6-Z!F zGZ4o+cl&)YpC5j+p_G+VQy#>bdE;RoM;KB;JpP~8&so*p$BBV!Sq9N%Q&-OWj3u0!GJ?{Im7y7GSEbjp|6Lik%&VVDRsQ$r)GK# zj|vVvfHV5_vVo+QT7-rjvHC{P061ZTo^$;A8;MEeK_GJLoEDaQKKcmFL0HnoMz~WP z>`79fs_hxa-0_@v7#%~bqoIzfmPC;j2UMmApr{doFbB{RjGz1TS)rv+K4a9&#Br~& zVaQ)>=lXOO?1Ox=It(m|&RP6{hG0Itraw-Af1s9_Nh0Kud{5#Df2sDa@Xr+U2# zI4)N>sTi7Y^w0#)D&N8Y@^Q)f5;`#rZNk-6YZqYabgHLHbfakSV1;CT%y2M?w5~|W zWh?YNmEHs@~liHjO{Nb2;8fj066kkb^7 zwJ9q!I(Ybfm=`|53K?&{5v;IkiyfA>b9()ucDc?e>0noQX=#8GZAHqS3+J7<8&m*5 z$3$-R)b#5-wwvWG*{KY4dx27EnnM^Z+~7FcqXW)B{Tpg+)E5}uY4!-*giHUkP@P z3XS$0yf;8=ma(f)!M%GQ-o-$XE2Ni`)zW)G!wNz3x zbHh;eBI5`cQ5=|LoN>m|S{KO43m`o0JvGqWWxQDHs})uW>*(n}Xu`@H=Hd*h?m_nE zqBDD!su;FOUg*wMfm)!uUoP5t?K*~@mXlTKX_jc|Y7v^6xe&BQKRIATyD%HW!r9B5 zP19OJwz?WBx(@8ITWV#ER&^c7vxazIXv0MyXH$Xf8~}GIb-n2bX|-gxy4mECn!cR( zX{1uYGCfYD_#TjQry;>V#Cj@{8bwxZZ`u>)-R%{T7e9Zz2h#SMN$>S{2`hJP?hKUrZKSNTIn-zc&I$SrCchdGhQ)B^+e_B|o18kA4E)>FyTy zrMST)6)~ARB;e$(NMbN>6voQFI3N?A4?$}+3{|GC!ElL$w9?B=uKuTDhuwh%Prd=i z1o7jbc#b5K-5!w>GQ}db)(zL1!p%!@yL_slVqzh85V<60Bw*kGK?9M;(IWkJso6Wv zQ7ajM5``fdPVK?7!sCO0KQ5tNYLO;_NQ0K`nA%wCSpxn#IknYG|#KfPdxh{emLmdRVtOs z5MM9|*pYw_IUF821EqURqT^&W6w-p?q9=$c%Y&RS`w#ncVeb$^qJrYAwNOq7kPvb` z`26$J6rw0fsT5yDZ3ZiDGE+S*R8EpHQyav%^?4h<{9~-?aNg+XCTneda*2p0oTvog zj~wHy=*U881G^e-hZWV@cCxHgoBgmkCRcZ@jJg~SGEXE706mXHDRs4yFw=i|EpZP} zRr%PDjCzg<&Q5&z=N)HR*TW>qdY;lHrDHN6xJI}>pnr=e z^8C63TdMTsU3?JDt1SJAi6?bjVMFuyyfY`35mVKwQX*C%Efl3foDajcN0t8oB6H`igV0*% zP14e}mVIAkYKm5ss$?~hpfWUtglp;<*sX%Y$tT$Loo7L&5!p7EP-sb~)EHG33RE;5 ze3*2LS?F0XhgsN+H2#!9a)1KEBR`AS41K)y>Rn@^DmSz0%{~Grr#CnOCj@`1kEiNS z=bdLqWu01(4PZ)=61za!>!-u{1Zn;3)9$gZ;u_%x7#wZGarMrB->4PWT@e6ur_`Et z(Fl;ZxjY>6I2I7^f&9fk@1F9hd5T%WI5)^+hnO=txo*`9qH;#j-rh~N;> z>RmkwA_&l$_;&yo0Ddkw8-FZy7Lu#s%{609E~wMl?K~wSu7MQ9#FB^A$la6uea~6e zbpdfmKvGOmdBr%Ql|dENe-C4hbfwhx9g?fa%C`syb1TUFUPs?-|x!3)PjNqwML zc7?B5baRj>h3oCr4(~i6`De_C#m-~UvNCMZP;nTFHcJV diff --git a/test/samples/baboon200_rotated.jpg b/test/samples/baboon200_rotated.jpg deleted file mode 100644 index 86160db9ac680d4e3c3a6ba1a8500faf722bb4e3..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 11226 zcmb8VWl$VU6fHP70fIwto53ZxTW}}1>mb412^uu`;2PZB83^v~?ydRe(4E5gq{%0Ui+%0TBra5g7#&1?9sB z6kK!+G|W%91O%UO@$rdBsmY0mfh73&6igIA8d`b=dO~t$R%SX@YC3wl|43kvkdRQ2 zQE*UDaOjBeiRk`++gld^3mI?^Sc8M10>EOyz+u6>^#Mo#09d&9!NCCjZ+q`45*#w@ zf3>2R09Y6}I2eTY5x^qAApig{uy6o)ECg&yHbk5+Dkey{R8E2M?76kwctA1LY13_F z5Qn&PP{LnoPBrl5I|DHc00!ZIW&gh@-sc19y^4 zw&isYKg=?4Aw?HH!z-aWrUZZk%@<3YA$`039*v*9@V8mkUfH!1Jp2#khSstni$msX zn{XOwdubd>UIYm`x*j1-dN2y>ALfGiA*NM5_uehGSuWLe`PiFWwc+Tajlt=xS@n4i z3jOl{z|U)oHvn#a^9!VIx`C29x}H&zV*N9%qoA8`%W=Ph$AYsmYcee+d(?#sBv$hH zzU;F-lSS){1Lx%>A@Fm{ZXDm$q;3$;_&9g}BvRJ5yvSKVUL@WB8J(h_07Tip#p(X$ zT;)eIGG}Hn_;z`+zY!j0}|f z$J3u0XTU94NbLG#*R(=fwACXaqus=fEKxp+({9W%u}*c_=Cs5;+y3`tBK(a@K74Hq z)uo$X?4SisaKM~t=}DTVq*;gRT=}$5>suBNi?npV+zul(OYIjuP(isrC=lc4ET_C@ zGj*x7T3yv|e)k+rW%fI8tww!ZWMYF3qOir^S2Bv$2Fo_+P-y1{WTk$nvD|-}$*7vq zS?X?9Z1ysr5LhtmRG2}%m^N6e8YXrq8B|`0z6_(X%N+Hq^sp6W8_IJ=lm^E6E6d3` zlm&XVUXUnF*Jbk>di$Ofa$d3LS~`4rye0cWxKE~y9`4CmD9_4ny7zGxC{l^eHv>cVI3P+)zqp%r z>C|g`1Ea@}<9MIu1x!Lk_^40t8J)~xaYG7SE*Svqf@PilILZ$EpTCoY_|%bhsXE1m zJ?~`Mx7u`5hD$m`|0L!XgPD7{maR(OcsURdTIazPr;1`Fb&tK&Sft9fJV$_7t<0b2 zztR;l%Af3>OHDIBiBX53^a`2;($|BqF~~?6vUG1pUDa^u@*+L|=h5kve_u9@yW<6( zPh{qpN#q<;8c^9gaJhb>o!B>~-3`0}pFx!!M_v){7|k9*ZUn@()zxtqno-Y!q&Gk# zZtZiq-SqctcOSVlJ@wBe{MpW%Fpn@#^E-?JdOq}auBX~m&9OTlk=5Z2=z-1|eKPwN zXsAke{?!}&ADAWUYT?*xCWV7R-<`CWah78;@VXUEZx7riR0yPaZ}xIp%4c)mk4Dnh z*n#7St>Eo!j@yES{@)gp?Ds-qY=F5YQ)cy@k z5|$TUx!8;}5w`5`DEVKyN1)y|nqy*TX)@WOd%=cWydFP@agJUjOOv9-f{NIc>8k0= zHP@opEckajhra);Ar^*|aO0rrV#i`5_cc7W-YTmCOkgZgsHU7<^Rg*di3w%9P<9Mx zv(ji3{faf7UeF72dsSUEeW$xIDw}<<;w9dLcXi&vegSy#8rSap`HeriPS(o_W;Hm} z7Ng{{AieU+=9*MMk;xcDXr}QXLyGGK(e@T-@!c(mW`!!aT<|D}`6xkQpJYVS99@=s&NM+l+DIH8l^k~6Pwob>lH2f63tS0$&@ zndTJI)IZb^`C#xU&D2kZtSIuR2S_Y=7Ei;hf+?TLRx>kGb>>UG>eIBeN^;BW$nO&&LbXoOlw!7N~K2$Szg_2+{jf<+Rv z83mxZB5QOGxG7%58U+@6gg23Z|CW;T2UpZYYiet}V*J2G7#7y)*R+XO>yGfTtAU-E zIN@9Ye*fXQ737k`6ggxwEj&{Rn)l&xu9E_`O0avFT>#-IT%yS3t~-ooI%mnncl=Z& z@yr}mBynM!rUX9Ga>&B3f~Qo_7y|N`g~)R@t#2 z%e;%l`Lh{HjuO0u{P&;MY*%@)I94d#yXKY@hV%VpP|lJyPQgs8yb#5vkt?&@xh&z2 zER%Nl5QYw8Wsa`28F$I0`g^Ew61GE4b=`%(Ym_J#B?HEIkmL|I;Z%n%3KXxqAEWmO zCb%lOFFY^G+R@oI-%FX$Cl}+N;d8uT1KL@1ZAQJ6YnC+B{aDHY6K8pQskN<7nRxHs z7NXpHgqayUk10zY-c;SU+0KYwRMxO4$z{S^<2jsdwi+Id+ElA%gj+MXLN*2zbre2YK(#Q1k({RcbARDtP(y59t z=AGc-<_9n&E!)UviL12yZi>-l85>cN<@<-Rkd`+G-K7V|O8i>^D$ReItaU%GxX@ww znt!u(TO=klb>HiPGw=r^t~9Hpwn^`&B*fbYihd`E6ZOJalx9M#FAsP7z*He%298mn%K&sG$wFeBOs3jp+#!+8IEv04$W$bF&QXp+ZPOQh#oU@P9*LKKY zHV8#nT+|O!rY@kwA80=ZK8J_Hv8>@7Abg(N3L=D0Vdsmw4zmsN(|NI0tm9h6?va`E z#CnK5jC{xz$E!G+fQ?E0ex@8i)(EFuGdXRzU>XaaV163)!Y%q5N(-!#CYQU~D1~X7 zt1dhgJH{YGXNF+}aY>#?kN*W7{!!$H>Si+h+15 zq8;C$s5U8d|8q@jDuthC^%tQl`3B%9A!?He)L{;s`JItgk3=V@PUc3Nj5y+aCx*@> z;nTn)JJ!9|mio^Okf$aLNBytfCUi;B8oid{D5g;^D9q(Bjq+q6TRTqIh`!X6h{0f# zw=>^A4PHUPJ==JdIUoL%PhXZ})_b7{VPS!|ZHMAAmO2K6GTqEmvHY#;D|WSd$qeI} z2vNqduU<39*nD5Bdqm2eEg`4r^Lg{sL4-w833Lvw?sYD;nSd_@AkTUH)4Cba@e7{M zBx${L_Q;PUez(pS+aL~}9z^&UM~vA@s`(2RTXR{7g{#4bprO`sbmkjLlH#a1CMXGQ zoNyuMEYF?Hs`Q0*KYVf$k>s0g3z|_by=?F&FHdPxw{lvSQpOT6J(5x>J%> zyAcs>gV&X?N;(WWbL2zgS2wb7|AcwBVbQ)uQi>*sQOVi%^-7w`3HniuiMzXcd0hf= z0fFRs5b2NlvtQxBpXir#LvTNz%GKae=US|1QrJtu76!jc`95qva&L2N0Pa8X2mVKuQ-4&2tJVHZA@k@jX;%JLvzVdY78^O=j8$d z&lK5vTVbJOsO2A9o*zpl$sU6$PNMRigvAd&%C<(z6h{?UcU=bk47@G8XY&`9WO0_p zswH?XOZ=75&F^cbQz}=}51OvYTH223agSy7_a69Or3dQ*x% zl2RuL3Z(@HIGrA=V|>%qUAuEXPZp{h5D#*834Wz-?5Gzjjv&awRnY}?OX7Y-T2tjz zEeMx!qX-iG=q*y;d|W005g^EiAktD?*giNjjyKl((6)Outh(j+HvMITryz_S6!y2y zuL^Qf{YQ>;G+QA-c1>Mzj$0cTzriXXY+w~`Qk%;{wggKiYl<4UhtBs;b)0#Z2fMG{ zRt)u%N%G-o>_ppYffQqS`tHV8%gg@OxPNX>3znj@!>rOS*!SmxhDU3kd)!NI2c%c> zHhUR*Hhae?Y$w*Uq;t477JQt~(T?)y)VBEm_K$FjH-$!MZ0q`cXJ=gj28$FJpYO}@ z+CMGLplK=0ld5dX|ex9sDP_7Sem;&0R zs+}+|q0>lCmG5b$^{g%|25gI7Ym5{rJDUz>{caPth^30T2sL}foNN7tjz_>{Q)|nE z({X~L_}Se44JN8HdT&mavLDc8ccud+VxK;nqoR1XcHxElO9-+w2qSzBwM5g(z=&XV zS8*ODK=qQ4CxP{u0wxxyi)pRW%WfB}Izq=x;!gBq)bTH!Ad{{8VY+GLA1b|mhI>!= z;=7z2IjvP0d}e#9p(=edG_6I;i(cmLb`NcJJCq?U(7#~)^;5eTnhxd>6v^c6#UEA# z?7Il8PVyHk+ZXqJl}8{rf@`jY<&bv0U)n(=TR)7I7YCAL-7^lbqR^xCcY&uG)ZNxh zKV8jvIOHIvz+U5Q<&-Rzb`=-XyG8nT8FU>#OhkUIvug$^v(j`PjNddzyyK0)iwt;=Wffluk)gG#I(piRc9c53XiMaWjt2*s3lDMh? znm^Bee)Y7sKi7!&*uE#r?~R-&>s=B^Y&z$v_RignyEj*k@mALwbS1)bchF?-yYwhS z>CxWDOQib;vykz>`MzpXd1P+6xbEll4wxMHJkI6(yyq?F1CAG*=sGTjX*vSbk zZKP@EU3wbLltB54Ts}u29s6v3NDUh=St`KkdR)xM4TAsjjFoF^C-%YpML6jizMopz z35yeSp>9l2`gB{mgXg1>hSQpwfb1}KWp!KSMMy=E?VxQ*5h)fT({eA3cJiOuuBFk1EM-+8L-_~oYa5hz)-FjJV zXsH5E&bJks3jFD1acpz# z^o?`%91Uu}Ir`|k-ea1xt(re~(CJD~U;wYVqD)xoJtB{rYA&CVz?h`w-$z#_}gcp3vv$ z`ty)$CsJJc%_AQ#726R5!Vg=+1AP*lnM{2K>2LbCfOL(beP+TylFTbc!`6LA7x($7 zCQIR&wB)NL^a4lZah94nO3WYGm>QmF!#O{1i#KNSu;EkC+%b81pHG^t1SW~X+13I$ z61@MV4=nbV>o~|P_JuiSD(Hv~YOuRK-QZ#WJ76QmcLB|iV3ucom&PNLIW!|ZTIrlR z@%FubQkU5^3zA-{`1#<={@wSK?NBfU9DJTD86>kqA&1N)Z?-$+r7mkO07fwziNahO z+$bQ-m$$1bAyRV0kc)LA;u9;*+a<#-bsB0NPJdGP(J@}Ru)zwZog|s3YPeWiZdf7C z>cnN<&;)DRctvn}qtN9Q;4(I5p4)lAA3099wfrMlB%*`!pG_)kY)Ymup#Ivg^P9|T zQlyb@_6Pg=kiY>}F|{~8xe}ZDMbA3%#JFhfKs7_PtGp-78(@;biSc*b4t1Ii3F69x zDD77XTlhe4sUhkGR2s{#Bb5=kW{KYDPs?^{$VE!98A(ZFpYtfBKSJ(YrL*@=}y~! z0>NeeBkH|kb)KDk$uio#E4!UPjJkaNNAJ$=;UUxe)PB-kS>92h+Bym*BrI#=LoWtw zU8X~I20y-LWdslDV~Fc-MjLTwyX8+kSG)nj+MwxMmB%<9{1xaJ2sM7~no(Z$UuC~!poVo7Sai>nE(Qq7AAvtxY4MlSeB?X~SkH_}i%6bBR2s@7eC9oi z)XfR#kl=Ha`CFfqXdg(}FHX7tO}Y-U_4Pw6t|#<}JH00tE7nA$YBjOIMxLXDNX+wi ze>YW(cxC776l8cEcWH$U6SeD}QelNI);`&u4<_#hs#GywQ2QA>r>*H|=SWw3$A$zRs)#JBq(N4)nN1lF1^ zuOi^TTtI;jgJx%Ad+i@N1}qxDAyV+TVf7A?FA#hC6Zv?&Eb|e&4gH;^7jv^!ek8q5 zwWk`PNY1(L%kw9WuAEWXJ}(Lxc8+aGziN|6E7j50`}NzkuLj+<%dMV&i;;@FN)slj za2t~~@9_mb5lkBTo)83Sg+I-P_y#BP^8FnwbZXU0%cGl?nf^ta^2~cx@^I|RmE}e& zvy>sfxu3je3<=zl#xq>7H`n`?$!ldQP~RMX%_V$b1+0(8jou4$mKh?ivKAU@_ROqU zGKHoY@qy+e_nTyYeK*PYWbrxw9Lb`h`h0JE%;wT%hd;8}DuMYtwbwF+?ND2!cHQi_ zEpvgLKODq|I(w>Tp3VF@DSv0hD4ZO@0n0$b_R(5ZT7>^MW4ixysQWpkIF?{_PI&b& zkjGt3XQVx3SD5PeMXi++=>U@JGq+&*iI*u_y;RrP*7cl*?2e6%KKr>&m7LX8)bG3H zbJ}=PNA*j^2I!(EJcCZVqacH&-8mrM9{7yWuXPh+PDgC-UqYfqiY!D^rBRi3inmS< z%#EJxe93Vhk;;o&``F8SIMARMF{kG;>%DuZ)89u;GvTF{-e#~i@Q*7K8otSnv#aZe zqMa0)X7)$qFTj{L>AG-QMX5Mr z(3$xp2vsL7JOYd{-^?SZb^MT++B4L8qzy5GEZ?JbC29zAe;BG_Cy#|1oTxj>o_^)} zp-{sXg`Ls<;dp;Ufvm;yVkG~s926y#EoE_;LyG~7U zybd?nA3-8IGy*h?lDHbb-fxBg>SHakQ|V-z`Q+qZt5li8@R0>l<+u$1Wyu~oD)V#>5M1L z;}j{f6=zs|0bN`E>5o>V76NHHdViC?7VjS$RIlkP>GDRg^+mD^z72D#Vw8^38Q?zdt!THJ# zRI<|obL$O{@jDE&OLj)<7WZKG`;pc7K|m~(AcF0;%GKxQv#|v&=)FO{P2}+f6WPX= z`R;@x$53@SD%9pD>12I}S`7cZ;jU^LbI0p?Qr#-GGN#~(WaDttym3Ygqn$Hbbo&LK zy`y{{QPD~-zk6C=GR6l}QUcb=@Uq|OP-@~DA*b{P_nJ2V6@?Z;ME6Zu`+Ka>a+$vK zpZ*_M2*+wX+c&j4tKKKrT_}tpeLP}t&jB^#Qw?x^q;R8C4w&RZ`AXR4q_43|s~OQ$ zb0jIQlzZ&(h}t%e=C)!f{|4x`I9JhvDC&3+?52sEIMZtudkM64#XU2Cd}{_nMZBLr z{fjCS=&6GlVrfLVvPc$l08%@OG8!o5j2@r)=vj5vPrBtqpByR4(o^4nER*n2-NLsq z&* z1$~5>u~!75bXSZ0q;G>nAJH*3ipbsod{&rP`$PfXIaHwKW+Rmi>!;Z6vIDz&A9?CT zhvPq}^3v@^=JFO#v*_X~x(U)!>jd&rgqVwnG2mYIEE?>xdqlqh9EdSC3-xG%kN}Eg zQ@%KYIh8c+buoPM#J==L1NMGPW!3cWioH)lp}1Y3fGL8#n|@lYQ&qa0F)G?(5mI~N zWTdGOwJ%2=Rx~^3cXP18xzz22#unU-N3uB8+PxR18Z+Wu+FhOQu__N&beFHvND)w% zfRwxE*N{*wk^3G@!|2^V3!KQ(MEHXlUC;u%XuIA3&lQLbo5nn^=d0r1#zUYXi7q>Q z&NonolB*P+{Dm6d7J1&kbUdi6&)2uDne&NAOBeG$F8Dzes}k9v&@@!c)kYm7f9qrB!*#JofCIGLA>~1FDpJ^i z=MNcO6I5)Y>mnf2;nE6mEX<@I>d96vJZyK~z^l3wgNlmT$CptnHWv_kNvtkE8Ny z@=KY<3@f3S%vKA*kdcUr3NsV-KT8Y-sYgUgItt4dCVnlAqRcF|;R7<&7HJJGvN}Iq zJw+G(mHQM&8DR?TBzU+vyEg!y{Y|AH!-`xGA zlac%V?%YSeHYA(P6|##7gW@vduQ?Bg<*YzF(LiI=Jj83NxVs?2VEfhZ4~H?0re28d zL!_xJ38kN*M_X*+8Z$4FUOI&D%s$UGd+yld*OsJXVQi73KTx*(h6K~Mv_3LZ z->6otcSLB$Zb4o32j-GMd%xfMDt?&r6)sLc=+3{4rE+PU=9qvpK`i$LdFwUFGLvKV zObMMaAp4}S@gEPxYOj=HmEL*s79lNs&}0Pv^-PO93Jk){>@LgRE-*mQTWw=*RUXT! zAxH`xgLVS)4T0zczd3#kOg-xk7z_*b=RbDUjap0`TQ|^7MtwG#NI^8%b1Z@3eT3On zS6Z=RL@%gc(eX$jI8f_Sdqip1)`!92$BcP*<=a8VUgvl?n$h;>3MQb7jL;7O6Uw2= zT*bw;@=;eRS#~bL+@UU@0Ga-MBzXGuW-`8UktSzC8D8Ora=mGY95QqA7pCf%3*cyu z+8%;(qYec_JvTAoig#r2@Z8y|>5ZHJPwQ>nBnaF8fejz6Nu2b zk|9KzXytxJ$52XyKyB6Yu^OhIc$Wau zP*NU%bJ+g&LPFbqNdk^mS!hBr%}_G;sfRN@5b8v!|Gq2C$T5;cW^V}Ke1;=TpkJkA zAIwBpl304BV=$YY`|#aJwUQiEMfe{UZwV@rXc9{s?LmN>E3R3|Z9D1I<>zIn`PsW0 zK>b?Kw4c4IO2`=BO^Q+qGMgQuPG`Fqr!sTez#mYqr2QR3e;8@;k&5>XklZSY-n$Pi zDO#99s#ChWA3~o|rpckVi%@cKZR0nP{P5L&J;LZ1eg|@bQ#8h4BKB9?j|g01Ac}_w zvWjygcclX=wk9#Q+j8b2Znhq(_i!aRD3b0MhP;1oa`7LbgzQPagau!i?8vo+Ru5YWMZPC?apb~tmpi0^;1a;8=CW$C$;K^ z7$NXpNc@Cd{A3*&Rp^HZ-VyA2oL!CB4OI`KGQjk;8*quqvTj-A(9!dV)F7yZuRSEU zwka&Y7Gy^lPT3uGwy~6^MP(o12ugIGNY>O`T#od+Q4Wv=I=~+~kY};9oz2A=B%>&Z zCWGhV71D_0`Cx@d!T?!s-8Z25PHB`~TuPX^^lsRXg< zEPS)h7~MK<$ceKClU7?p#SRO zjQ-upsA;7Zn}QNH{BEMZRoh}`hNK?!eDNa&#_T2 zQ)V|bQbQ8Ftz{BLGsY~D02vfpRb*XRZ%3|Z3fqnPGXgO!MADPB!r*H8^~?G{+^2q+GKyS=d@* z<$^2Sp)x`10;^rKK&(2pmU!*;gYxg5+H3kFU71Pifp;Zbeq7tmTvvv-=$mr=A(^z* z7?fr1xjxJ-raY=V9I`b89$uoD%717D(86wZieZU=LNk;-b<$TkYmP zvyUUkWJ|EJd+l?LLiZZ(m(PlVvn8l|HisDG3Y|LP zBseiOT``Y^|448O@(uV)&Y@suH`qFf9o#xe@-R;{@F+QkZI)>vW$FmS z*352bFMX!^YhumFy;f49Q<(g{k534)&OSxG{j>JpM=i!<+7wqcc3QYLf@j`xY+P~ZhYd%SjE-VXtkdNN9{$;bVb|Zkx_U*2Iqh*VY7}M|e;P@cf3k@=K z#dq@lPIJpOQTPBkPc#QR&?K#p+h!HcdsLS97Wb{0;*I)WaOG?ot#1w)ULEKxW$rJf z|CHqC>Jg%hZeDtq&&&5s^Xq>@2j!W7I?wm0$WQimG-ebJ!Bbipr@D7=r49U{`Nort zpf7ZUmxSZMm<#cS0|)1z&oM?zl%9omP;iD>8mnOu`NLXgXn}jIX3fmh)9o|s*?@S>aK(KC*{tig zG>Ee7#W1N;1Kf2%cE&M!)xgxh6D}JG4Tx{tzDSXHToUQe}^jNU4wU*+d%L8(>UmeULX2 zVd&|m4C&kVj*}Ehh{Wu6gJF=YANP}Mg=S=S8xY}6n%>?#%-}rdo7*C|)Vi6y^fh2# z>x|*Im*C<)o-ixte=qX?Z(!(NQZ#X8nO)u(kqMO5apd?LCoMWd}PJ-s1v2vzL);3rK$3veo0>3 Of4_DB{~v&PTmB!xMl~t` diff --git a/test/samples/blank0.jpg b/test/samples/blank0.jpg deleted file mode 100644 index 878fb3b3c767d3208aebbec84baa369e311670e4..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 3890 zcma)9Z)_9i8NWOGZ1?OKdtB^5qHu93vys(UY!Y|^=CkZBRD5v$(8U9plsTEEs*u1o zB`BIMP9vfOwT=o}UG+oaW>LBhH4U1eT7(XXAd^MyR=#vALQxcg*rq8({Qy$c?DxFq zbIkf>e)PWg-h1!;p5OEDz1N#xY_4#gmtQ*a62}W1mxXYf|K_}jU;q5I0gmUa9LF8R z)PFd)nmu!>o6G8$;WxkJ-r#Ijt5vkxMA7z~4bADW*&I%nBsnF?<#Dl}$K~GU+2(d_ z-!9ABw>Q++*Ej5{{CKBJ%?HE=07->g@-1Km-{jI&BM?8 zzmV(XI!B$nQ^@J5PM748oV?l<35G>co0Dl8^Qle=KbMo6G#=>s(|lKoq*JQF@?aP~ z)O4)(3Ay1Gf>70d_)%%*)vTEJYYVoOX1-rk_VfKtJ!9$hYfpbGY}EN;T^YR5EBj)p zU-BxR;X*5f4ZI`LJ2m=?baPK!k&PJxk3C}x>k0gDC(Mv#G`}{fPl5>s4B)y`4;hdp zrxLC}I5EomVr50dkPsJg8@s-*XOw%b{lk4pQt#AHZ*g(z=?c5~^7IxfUyL!G7fQ}G zf2lctQn{*R)WP8a@o~-CuHC~h8di+o{3+=&9Kp8$pYQd>(lTR0@9G&g!NX2p)>#TO zky%feH)1pDVD72-*idptdGf6S*zZyWV3`q_mJbo1z0LVFq#4YvD($TQ?)64&f$(c! z#Ni)|HuLacRXofaZ&rZ+2#p~JE>-blY?ns%IUyqJ%`3Yrd*{CT)d`irDIMTW77`kj zM8)u)!I1iAN4N{fr4P&KVx+h%K=`AT{)xEZT=DCN{i9bH_gu4>foqi!WB}n;n9;~= z=E%Gk%iM7vVJ(6yT5%bf%<%VXgZ>?_FyB*ZwIacr`5pv_wXHr8f|JNmW-~_5^jcaA zY3U)U>)1P<8NNphX(zcGG8+Hc;QSTlvS#Im+CyS!cveq`iB{1vA!XYNV!<;LgQz{+ z3<so zHY9;3whi|$Zr4-wk-(nvJ0mRCMs$sLDB^}pF#`NiQz)B=)X>q{t0=hzqBz>FoKwzm z?Ic1oT=wAG6JMer&3LFil^9T*%W|0<6fX$X@{RyWv3O7BGbtCsDlFZfDP_jA4Tkure&V0 z2NmN!_TbLn26I&*F@gfSs|3z8Wn>?@jU=}`+a74BJV0!g#*wmNU4}I1jlK4Wec$Xk zgyRM_#7j^6er1H`nQ-bR?pBE9(g*@H1?QXc2et@%OH)}fsaCFXVCXoshg)Yd!|G;m z`0cNlL1u257)HL0l5&U+mQ~E<(uImy6=hDQuAHmO!*>tZr}Yci6o8DK^8JC@I}4xu z=%Z(<1K}@+fvUrdmr!W!VY@*kKTxIaayUC!+Efxoo=F{CYb=!BI+Bkfn<&$;@!NMl zUi&A@Idd1F@SiYW$=9y84_9UX0q^!TRpBYA) zt{Hj^o=ht<>GGEE3_X|I%6nSHk?9H3CQ?V~je1y5Mkg8zOV8hp!n%U6vfqObO}(~u z|HS*?2<|d4|CJU))&$KXsrQP+u0D$xGvl@q9erSkMM8zIDVaC8QWT1Kd;l z-RTDxK3Fgcmg-u8mRU4sU}P2F zIZZM06b+<7UP>|}`7T*Y`C?IPbcg!|DdA2?%7RT*hpxN3Z)bkLf-?-!5EbG!AH+?u z)YRf!^yi2wop3hd6QmTm$+9YB4T@Zm-UtJik9FF;Zl(3zL%U-|(UUqY3|lPk4s`#E z_GDrP8j?zW?k|=I8BVxKN7Rt@MN4mT0tH>k*N_|>O-Z~e5erG=Cgs?wxa0lL19Ge= zxoU3tHGTb?pIj*)!hwQFS<`$rb-hT(u|*vB9P`MM1<{-BK;USzU`|L%0a?)EvZ%Et zF~!3L13ec!!J$NQ6~M^G_xc(aSDLMKuG2FF!uKXu#}}no+L{UCaL*iU>*#EPi_;(m z_zr_CJP<72qTcQ~Q0fyd{3lR8iGF7PxC|EMD|@WQEaYHtY;q3v640s$g9DLBQqs0@`ZiDIcaY&a%nQ0njCY@#&HP?W3u=gWmtxsXXdK4EAKa2z8#xP6=mOf&FM^AbFavD2T11lWsZ?WGo9&T>#4ct5% zHt=lZfzNk*JUo2g@o(Dn-KI_aoB8pd&HREwn}r1Vw{G3GZR^&ZJ9g~YDgEt-gO`_A zfL}mt^JXy#5n&ODZx{Z5C+jtsFdxSmjwLP*VT@ClgG-oW{ZH%~hH-JQe&A8@A5Ja~ z?hQPAyc;>bUix|kqUM52ynLH6PEJk^ZuoF9v%jAMgKy^GKsO6>a&6hlZMi|_Xsql3p7magp9`)Ea|vTajQQm7>YK(# zWiG>yR_E5Sa?R0K>sY>%a`lTaV(pMpRnNR8@$<=f9+4)C;fFd0`M*Bo zW(?yA!B2K_u#N&4R*&&w%ICRu)I{@Q2dX&+26!|=bawK6s^%E<6&?)!$xdC5T+n!1 z*H%;II?XzMPXtL*D^#o9i^Aby+}NpKl$@%pNH(_+`;KgGW2s1z=``+Y$o@r%Br~{$ zVznoeU>|O&Xs$1}g>u~YPqO=-c((#EFSFb+YUX}}iNdUXRT`&l5-Dw36WR6D8*gkC z9K4g9o?AS;tc_vtaPY&09pT4z;?wgOb_T=F^I(Fo93n7aa0oku^F3%0@2>*hz;-Za=fo_av^eoXl8-rw#|sM2|DZ4w=?QVV}9 zJqnLa%DiN295sHhY9jw7HQrYqvZ%)pX0QmLUfgr#kkV;r7N`^ox8v*ZTa~x(- zs&0OKQLMhOd$!gMt!l07G%HEH6dgDo&%B}KYAKr7Y1}~;nKR2Br)FulRTXA8G0dw9 zROq}85K7!+Vf?--C5HqX7k@KqRiO%9p=V^Cp;)JeKRqrYj&w1OOl1ssz$ADO2k^kW zoMPyCaSDJ68K3}X!?%y)c<1lFr$S*Yc0W?UpGmM8YLe|T{}CP*0p84-a8CdaqExTb z!tO(sdMP$xaH79Wzc6NE_e3^&cFGp-S-AaVr+zL>J0mp}T4@wve+^sj#J;PARX@%g z?Lzodx{MRXQYcoZ;pv<3r+2Uw>x=iG7DkpD)0QJwW#&*IfIr3s4h25~Tp)c&iB_&q zjHeGo1wvw}rw{v74a`Ktnffj}jZheE!i-E}3uU{E;5qXYECujbPzbDvd8RoY0*a*& z^n&Ms5r_m)n!9^nAFYkMj4r)IeJi(&5+hs;(8)7pr{zc&;J{WEq;Z~ z282Q`26g#DXn!=xcD#T%D8grSoR!SZ*yxY_qu%c7FL-|(rH4192ckz0#ngTd=ZA)< z%I=*6{lN;!GNFLhHb^9nUQ9)lex=B64dvq`?6Z z6r+)#LAJcnsZc9*nZ3HZTP2K=Gk}FY+$P1A9f&#%0SRRcO=nG){fqMdQwkN^@ z!c^T8@#BPShmN!PwUd?_S&rLc{RM9V9Xn8DdgIh&@xB`!4hlYB<5T}em}r$p9*<9U zFEYh;oUw5&G`IH16iMt&LGhV%y+0wENBW(Qw!bcKGCB>fqs|!Cs=VtE*BNjS6rmil za&SaW9pvVaZV=}t7+>t(6kD*-N?b;XKPExWh8+o;PGE~%z?LPl??MnTlA$e|JslN1 z*WBLU2KN(oOF8<$`}<9a?D(!*>5pm27^jSBDS-$j5lsZpYYKXP5Ud9Z-I&cMx@cbI zk&nbG@>QBS5Mr!5#n%pabVRc=H4(&`=FXxObqOjpHC3$MY+hud2klgI)FR{ z86zuHPplXMc0XnlWh5dKx8;vU2$UsIdt~-VwL>fi#8r!$0b7|){X(3zbON|yiViCQ z5s@qg8(XvYp6ZM8h3NKgG6IzXmx_9OYT0p`BU*v9?1*+so5La2yqS@LA|Io5I2Ztz zW7lAu%&fW&ioI?F>MeR+u5DfP`~iW$it|W>@flL1XdX&aei}N(7-XqJ{er>nomDzM)a&vk_YmeR@Rr;3M?1(mx%x%ui4DuLUj;CI? zLL?uH*KVhDYyuZ@pUp=&Y>EV?_4dj#$kj@!G_7hS+0KdC;s}$jj1!`9ZJ`JA>_E|` zc(jn!`ArNmQzfYTQ%F=gunaQp!)kW;f}cjEgULeUH!vU)HXtMs6D<*g3<#*jqXm-x zCr~g~BwpN$ka#CJyP)W~z3<%Eb@H};9y@Sf3WrjInjRSEOxn_+)!LyDD3r<^=`JA$XL(S=#Q|;$ z!SaHdG2gFUix+N6n__THn*h7^-`GY?E?(SkXcY)T1BqvAx_PSP5nwr_Vz!BU{C($! zEV!gDXAN3Dj%%46_1HCT;JF9%OvA&5fQ9`f&}w|q^Q+oz?z8C;FaYx~K)#ZI_y{z> zU@_m-k}N;WmnwD7=PPQaPiRyP7#p;N^BZX%2BiwC<#HHww?ww1>_< zBnk+msOEq7~(y+3WDfihPP%4Tz!Y=G7ACM_<5ycJn zLZIv+zUUaPhB$~e!+3jU*LyT%SZ>drXw8o>wTn8{ORn$$owpW8nA%2etVoEu9193s zhk%v9=TcDd{VxT~=!4rqm*KEEG$o(5b~%lH=srifGyi!Ie=lBv<#6&@5`dP~_tftN zxb`;~!3=tFv_)ViHomO^C))r`>yZ?j@W_o_zue@6CUqmY_jeY8>E`##3d$U#MOj>{ zg5FE6>_6Eia8@`#@VbX{^CG!geO4b7;1TODQ32C&E%w4suzKd(04_MLRq;K*#U2z` zvlKgZVSfTyeXE;$S#gAQVcmms1UvP3{LIwunqD6O33A7CMbSY7++PWN9|V9<8P@`X zyp-GZo|B+oSjSC{a2iegGM|#}d^G(W7rq5S9Wd+xIm-&b4N&fD^2hAOYc(Jda~E0o z*MiJ0VdhkQIS$w_MQ)^dNhvE@zy#pfkayF7yVtka?QBw8sla7nD9Q`7t^tDg7yf{e z1;iMVK$N4z5^^tfSSL723^~5Um7!>NO$;sXL1FKy1p&Amg(1sWBYUC@Wk?%qNNRI0 z%f|rSs2nNAaY>M~+LEnu1j@L4!|5%kycMC% z3+!g>sJeCB6WLbEiX_?CkP;h&MKPRNYyRr`(mY*+2}ipflg*RWI~d3me9d69%N*bE?qat4)~vUHfm<^fhVQM*?~ z3ncXY0fns$a<;nyL+w*OnM?s}GK*7SbrVC~s2#bKl^Gh4Ce>nLfIbZ$@G>o00_i4F zWblAs2Dym)OmBn@xWmExbo0y(`I;N)uu%YfmWb)(ifvGZ5k#zhBbsG4C!yk1*gS7l?qZ6;o`B`v+R6fA<3(T2tBu9ktPp*QgT| z<&!<9J*rZE6kF&eTp|@*-O&sC@`9_{y|5E1ei}LB*7GB7$z-i1*~JtzGRVbeApR~F zb8wsj3F8%lj+^2bP2cEggn6Ojm|NGecEAQc_nwBOsy#qChC_J8Qy0>(@1;!?a`fUe z;OOv0xTC|jWguI3F@{-|CCubb9L!~aS9SK?M)<(%MQit)+!NkSvYq3<zH=* z7_X_X@S~7}*_%8$p+-Scv8pxRvkt-Tzd%SV0uZ?Ya*^9|4wp-%2r5zpK4JGV|8Xx_ zhVREL%V)LW4oPi29ZO>u7sk}bI`Xax(zgOII%1TuB!|xNf%;NC#}pdMw>A$dE+Y>} zD7GsHnB&C_(hA3f1q@v@zW~Pr=_CyVEU;NpUu^jB(+El#p#Kr)(*O_aHxgZHsX@EX%RMUR|v2HpVS zKWESS>fLUNA-1S~uD63%B|T%$s^68{BJtO@W<|(oNV2V= zqJ{dB9b( zy7He!`cI2iO?KBtO&>&u6gZqLy$W>}ata#yGk8w5gKy|t67}rykHsHZD53Qjn3&txC{|+)*?bY@`e5oDmtL8MQ+`TH2Tu ztY{UJliCtajR#8F5da`i%>-xX`0WijxyF1nR$2i33pW0jys5OGE zY8~4D*hU?~6C@aw@LNwnXBCt`pr{#5Iw!qxFYB(=c+lli%wBliQU5c_tXmH^1Q0+_ zt5G^2tvmU&Mvz{*lRmPp?QLDhR`zG@y_UnE9H$WtY$Hs^CLT~&lO{GmmdDz=L$D(( z1p!1PSvEw+?T6%*1Qd5iPN^lw&k}j3TMY5m_+PB<%CzHHg-06O!^`qsBq>NTRNxU# zMq`C{6ywB=dz5*;!b zAED44z7*j=nRISijBrryG4QFFU~Lq_o&es>p&gUI(At@@qDnt}E^yzLF|UQOCdN#bHIL+_ zh>oWv_F|M?0;Q+4HUW|lPrGxD5+!T=GpDKd7nEHCx5DB4X*gVWAAtU;Lj61l=!}PR z1Y1!nmOnkc0U{|RwLXn!P>cbi(?7ushKRAIjKJ+}3Aly;kgnryf#P3;Kf zKc&=_U+MXhZ3#?ft%RX{0KWlLe@%KTD~jJ#q`0yurbgmc}BqJ#Q`b2IAzE!9{Um4C*KPLQN9%*Kf(2FY9f!B^sf z;{7dcEZT!2K}{?bfn1!-ro-;GJ<}r)qzeTIo)f>TS7YB2ime*17=AC^8q$I0qdS|D z@5F&-xG&w++&%1eG3Iv3zVpT=9mcgtKpf(|9)}19J`&9vH@-V}h|he`(N}ShJG!Iq z9omyOf_0E$$$*@0{d10_P$l-cH?{8$5>Q8LNkFgTv%!oP z;}gw{&+2N21~dNZhd+b!Us(y36f|EI2Zz$S5hNJ&#MR%&ws0NeL)Gp96hQ<{#rVLB zQa$o?ku}d@uzh=VE2daqhrgrN_B806icEpJEcm#Gc{XDZ*P0P z`3(Mtz-$QqMPgWpi+Eu`>5q#sq?1m&4NqFf7=zi+G|Bb@TkH}J?apz_9#B*=P2OVl z7!=bqc%sIHBw@Z${GA&D9&orF+y;2aWf4jVw)E<^?vl8qi zLgeNoSoX)RE-#Oa@W6tZGh-L)bt5`DO9FYKsY_$${rw+I=Ftl>o;wIifgU<~kcUGC zHZd6aUEt=Fx7v=^B+QsuX}FtfIY|lz;e{^;wF~}~p2EA(gGY4aZgXy8G%r@TDZrRn zu$7V2*5$UfU`6Go=$(rH%@KqI?;bAAqai^JzT#gpm|>dHLv9XNmt~*u&Z$w`^SDf= z_j-{H-K;~iFWo&Pt8J3ZJ$&I}h_Su>KwQFK&724qW0OIUjMCpAnRiGsfDotZ<8FkP zajlGYlq<(ZSXUh8j;;*c84lVR-%=?gb^|sU@v#3wsa3oSn#VSWQ{+miu-q(2EA45E z0NtMXdfo6IfJY&mI#wm+lUF2F6|mw@loXViNiruOBbxAzR3rDepr&2>X0ot6z?Ag3vQ|;)WwL-d=`M)LFMGh+pT{nE=Hguvo?~nys*wGPmgLHP zs+qU)4DE;To|Q!;p_Sa84*zxR=TEKk^uXf_9b*-YL#7#{EB=2>=9LxYed;KvM^@C+ z)#`c6va!ENsiV8Q6;(pWNk&1Z=`5&B=`EFhS==#^()+1EcK?qvhL%Pt<`pcIyh2nL zb!%Gw;caj!69T2=mxdN!iXNchm^=>VI{s0*rrRfcmP|Uo##3HR3@!E%8gO%Xu_V#F zXgEu*zhnrIeR#@K_Kp~ugJ1gVGT=rGA^BOqa+6%%dtT2cL8mT`bXTWV9+qetL8hrE zHJ#!{?{yBt^b|nHI!}~WnsYm}(PSQJZ_a+6uWA0oh*9%Ag7ZFt(?h3mBMi@x6fK%> zNX<_S>HL)NZ!?b9yX{mcdLX(YB)XYxE7A^=m4g|zlM_i!){}J4dfitG3obntS?#TZ zx5CrLCq^gpDvL7vH_AmkGtkJRX`bf)WXHdSRZ%%s_A~aN77dXpSbk=cCRxw zp}5r0G;}xo^$LNg^ye=3m4-xm!w*T2E?8e_H<=r~*RI`^dOF8v=;A9khvmI~QF71Z zgWx=RUZUR5>0bMjIpQl1$z|ygvg4ZJa+J$6Ic8m1f9#rz$xOpKcA(g2C>Y&D8X?yQ z!F8qA_-cT-^oUxibLlHLsXD{uI|);#3P$)ARcz)ZNM&((_u3CfCg{90CR{D1*wS|g<4rrV{B+4H+|%HmIqsDoH_URtIsBN>AO z#wNUB&(dn+4lDK;`DT92Y*{FpZG7Urm6E+xR4)hq004PE4)W*dA{^K*_D?@Q0?tlZ6c_jv!#@?D*jFUZC54UBz z_@DH*zO~Va6B8SXnH6~*Gb(4DForVhp@3qd`)|zq76%IGS4I=vd~6P5*(-T;g$-G|Y9e|+qk?(s!0VuPDwv*EIU3%Vv#9H1#Z zL?)Hv*G!mU>|c%q-T>lf2XYVvWER?VK)V+HpQ$cJhyz)4UYAEeW8BZ;`~2?YAtubx z^!H(S%tU!YB%h|+nQkGGd1mK&K?wfOhpM(EA z00xE++=wcr#UB6jTZc#!Jm;-4Q*0l|Te2`sYaLivP;zpb2y|Lx=%fYzD!I5a<1`sJ zm@(|XQt3a<=zG*vskWrk@99Hy_~EYgQLvMwern|thQCOcSXSx+HK?j*Yt}6P5?XjIWQ0ezv@L|v4!prhHu3=Wqp-Nsy>jn6X!TDrX5lX5dxs& zgs8~9ZoK$P_}}wRlnDQo6ZgzXLzN@OO-z&+P(rsP3^#8ChdQ*eX>ODoucyO)7em(k z#8MqfD?$B9B)P(y_V?|@DcySw>63v0@eYF0PL>{1ffj{pec|ylQ!k$OyG$N--RZ3p z?diHd@ady&|LCx`p)bL@Nl*KY3v$Hty$9x>FnSb&Zgp+Dt1EEw%(?wB&rSZm{%22` zwyFKY>7lW~KWX*9e)yv0_sP7n_#dZVnMmPg4k3N(L@l6oIueaI~0iKgc1q zQdb$M9w;sFWKl-W``1RL{gGyx^A)uEpb_&_ovj{MriT|VT^LBR-##-mHNWOP zdGqh76nkLe>_3gqfCvv35yRyH3W%R!dc4~J`Szm+ZaO?!gsJ-$oSiw9@x~w2H6F!{ z-f)xZGf9;*TAZ_)lQ4vZSPvb9c0DZyPlB(au4m^5vB5(Mc^JwE-4nwg`nKUyL>4dM z@$fsiZNWKMlWHU6$cZ7K#1)kkm=Trhfd+tGjv4CM3^fT6mMDVi5bj|3Acso2GAb&{ zhETi{g{QVdH32Gwr$q1`=?Y4Xn%&fW=lMSFJ#YNvW-{lK2x!yYtV5DvLuaw2YS~R% z-h;7G>QQMsY&{w$$MRnL2iv@j)@}N{c)H)BiqV(%#VXqR&$VbD={(QM1*ru6?~SFT z8Nsk?YhzScN_=>1n9@W3FhkeL6QdR<{$2boU`M0k3$1FV`oZd#t2gZzw3+KzqGE`=?YcU0{y)NT$9}v>-NQ5UbT(k&WO}fY& zrUqy{@N5a`JdJ1|CqGiL|0DsUn~p&a;niIoQ=`u+qz{k)@)p850e*X-c)V@2{*#vK zh=9L~Kz@mr}4(-wvZmuA0Kv_-u`Cn6SJTvEtuxy>MGroa^7L;Ei)xK z_xLq{|zxaD~__T2Z;ISybwR&M!b+2b)K5$v?Ivae967ab!kWnJrjI)ZMBdp92>03yT!#eNG!5syq?+9&d%dJj zP8{}#kJg<_3w9kl?7bE`7O1g^oTzp!ZR`SUHM9Jsk7Z_Q)~^cB_jj%S48{yy>)?21 zQLePHlq++={xF3q+2YEl5dU8CDeW>e63;^FWEE!~8r+qm0 z#e4aEYF_l5Y)_JB`RF?4@+5kgaN+F~=}kw={GG?si{e^-YhFF_PnPkc&ZD_=I^S8| zng61e%4KzD5)K;*OfRh7)iD4HoP|bMXhCqFU}ktPr49Xuw=nl$8}RH_W_28$KIgkv4&hD?#f+`5TR8 zt;)4udel>EpEW*1E|og}<=|)yZR5wGUf(FQk3*H9`it@wTRMlKF2r;W(_n00{$@95 z2M`P1UHS@)9$M8buzLU;w2E|!B>w`3H%9s%P~q&yu^c63pgYe6NS{nKFkBAp2grTq zr0+@2GHYg_HfS$HZXneA;kb*a+`NRY6JH4;pl8BsBtNa4OhNZX4{U!b&8 zH#>Ur-O@ zw)%B%wyQ-B#D_MwVMxW|Ak0LB%RvNCc(BauSwK+56DGU??9b&Nuo>RkTWh)ls!ydc zpBDof)zaL}vzK{3UmXx!)WtvbaI-EwW{C?v{OIo4%bRC}1_Wm>bMy&?z|9yJmZftR?%j^kC{bW;jn|!oKUn=XEUp z#1FoAc{`SZi(?bU2d2L?8bAHje~tJ;aaDmaKlOP_aC~{%pn2u!^snof!n<|sKN6#9 zWl78=i_vTOEtF@C#j_Ggu+suC@hS#eTXS85-J8J^`Z7nqP>42UFhnXj zu*6jjkO59CAhc^|c>#ov;WeJ#KX7Sh%<_8UXOgW;0oWgGp&__A%!g}8aNu$%Kn6g{0D4@HrDbl_GQ+fa=XlTm zpu6)0Twl}OSwAP;N-tfc^5vV@@MY?giJXKz# z+0V6Xbgevb9Wz?-Tl^B?+V!SoC3s+Ra0whEv*$mbp&IU7$28r8E`Cv(m8h?JS`T~D zw-$56W=`0Yj&LrUP7#;E;Do*p3}45HBOF8Z%otDN2q*peIu<8HCBEWnh+dXiy|CuG z7CL0eyvvN3iJm7iTy*g3Pl@pFWZJI6E&G>+{ymXd{RH<%N-nKNPo~Xt1x!w9q|NdA z1xBwC8zkR_GdF)63Rc#rl9mCDg?-j%Lx!*dY-Q+hcr3k(4c9+HF<(KAKrn{BgN0BW zumIKp&UUaCT^>vCZXVHP!3?)u#UW-Py({Sb9PdYBOv}3;j;y{IQvECxL%hHY{Sv`N Tyc|~3{Nc;?9^w#j{muUY`PArBvdRC3p{%!PM|EiRr447niEX7KA31zO~OUcJ_yLVJ}^7AD8^vn$7;2@QBC} zBgapesGBrd|I9a1o}E79o6pUe`>p3Q=6z@Wg73b(@Rdc&mgla>Gp>C72W!{;uyB1* z@s_RI-q`-59XsDHEB{%=JG(2Z_P_hyfnOdx^!~37|Nh7yK012rkH`O9fBMYXbLSf_ zeEi9kzg_+G+VvaFxBhYaPRrfad-prO?Ck1(*z>5jj{wrH4u0Ad66k~Q6AGo0RH|8h z2t^@wGFVBCNmLC_e^I@(AY^P(sbA>qxAuKl=O3H=QhV5IYc6ZT$LX8Lcd#mP8VyXL z&5xy#Qz555%nb-238W1f3~A8Az@wL={TSGnQg3<`w}pWnG-(Svw>ho#g?6h=bCZEv zMqprD!OdNLAsbT|*nBMQQ5B>$FJ2#O+iDGD;O1|GY!l2uL(>dlGsK%AXAlL7`-gy5 zm^Gjq`Wk}Z|AqzRSaZNmNYcT1TK>{PR6(*qWrT|`f+qE_!W{5F7}~WCq7K352GxB? z$s&%M1Fyg;n)Dnzu??c+8w$LdYhSche8(G_Xsr`X=D?;dSk*(5g{L6uR4aVm zW>B>iL&^q={LQQ@L^ikDXF3oz87;IzP7p4RP%_WU5=jFop3NKOR?$?TA?#?D;tMH4 zxEb)5@#Le6;Md1}$c4hQtJ(R|xdNs-pl?~K}2*Jq(-_HR1!c+$#P zcnN0$DNLPu%Dl;&RiKFD$x*wIETKK!cTXuISY^bJKMvReAsn#svm&JEBTu5iq5h&a zL+H^ji@q=tg#rt43z00-i}t#A)Y)#OVLpuPodRC(o)G$kSSrqAI%l>*r_R-^2CYoM zdOE7zx(N2ily&O|Pj?dCw5VL7)#O5S9@t|IQ4?!Rxdl+ zgTr~Jh}F2nVk|NuFz!(Hp9ZyOT~&hiHGd3qmdS(hIK7j?A)>q z=a0atNwB1Ga%a&F$9V=hPX!vkm6Aj!zuUMg)#r8#E5&umJ7+^kSh+} zidR=YyUFxpG-4xX#1>Jp}0>PYF-2W0E}kcricAoY_626a`55ju^;#v71&gUabNMiw0bw^n;s?~9n; zY3u7Qi}d$pS}r8)#t7J{{s3!)ZnS?iO1I@ImI=icWyRrwiD_s0DOlk@-PH5*-YTVA zoc0ZwC(xcCvT?>4hyJS<%Byb|Ok_PRIdS?YXj)W{vQ$B~!~ z0PL)eAiy7a;C7GVab{0Kg!>#X63b;|+=H;CT*$SC)7CZy{<+_rRFPSg+1G0A3m!C; z2UFk=a36q=@nquOaAjn+xR!0ohr1DR#X|}CKqKONc++Nv!&gI&RT{^&3>3JVxU2_kUMHhN}AA(zg z2+hLSQ9TdMfX{e5fD$>5;`jrK8b^6BQIPH3fIEqt^=RCwfg=csT?;pE9%UG}ou{k@ z{~B}r%EJW(3@k}|xPT5Q-#7qMyUgx|uqsgwiOy9x#o*6+aCQEYOC<_EjJnkkHMuac zlG_ys&PMuO(UN5Wf2Wbwj$GEks$*i++0Q^~ZTDq19MzX7BG%JOksG5Oai5R>+&3E% ze4HJea4ngMRRz%!gq2a<0|%`|u7pVj{mq_dIGEiOwaY8iwkDTEctViAvwO<}(1Vc8 z?llG{9(6IXCZqPjLE8l#IW{9P{@wnMY%5B4w4gMejioz^74y3N)IiBv1nVdMQ!cBc z8wp!IpT5$$aN&MHf=P6aJr5z{dqVwC>1^??J=z)6?PoTQt#5tfLwpDOMfBJ#>R*Wr zteeC@J|>a#d#Yz;_gw0vmn9jYfhH%I1FFF7l2}t>B$BWqZRn;c>|}vNpI{C=ch%!n m`-F~@W#5(QNy#_>z1`vVJ5eou} zic07pAOQ=Y0s#eueo0&8FoY}MX%=*p$>@(;5nfbE_5+T?e zu>pa>V9;S;2mN^ovIg<-LiwP)e0)$o7>ti!KtwC5_>iGs;HsWvFg%_S~x8XP8Fk$*$o1Q!C(UX0!RS?Bt}L;2J`>k{`7!E`N5jt zLI_wH#3KrZh=Tw0gJeM<2=KDN>;8L#@IrY&U_Kb&R2Bi8ARZnb;Ff>6fhw<#C`AmZ zq#R+XyBh%fe*{nv-3{>f1O6R;H-M;;7*a?1&m2f_H@qlB6l4zib-R)SLlA#*B&Ig2 zijM6-Sq6L|ysRiV7c>LEY0Pulm~^DafakQ(4C1D&olCL-dN5pIn!PhN_6W+?(=r;~ZpPj0`L?6_gMuyB-ZfVFW- z6wyC*T)*5LTlR`SrublEy|g=0{Zp}VW61(}v&ZUP=WgfF^YnTkF zS0`5<*X?1v3{;zmwbUzZe5iQP@4y_qV}sF$n|ouF8x@p4Jx-Nj z>G5J3?@_})Og}+CQf_T96#U3*94>1ov?%XvRPzv>fS*T~C7YoWtP>oPcxcJ^9!2Cr za#%{MRbuS2da@3}2iC8jO}rr$9Sjqh-+S6RIQ@P^t{4fMA`a2))f|alMlDsB@?fDJ z86HLNhtvnaSSXplN!;JQRp5d}aEc4yB8$`!B6sV=7AP4NSAxa`*8p|dfzL21r=+&R z`Nj-nJ|k$@clmvaumpz);;QTz&q#R)SwgARVy0mOI)AYCaCHP?2}U+(7r7x7Pk^Y2 z`pf%^`V;S<>i2=#`P-#D(mjek3}Epf0N9`e#nty}1fh*_Z%lcN;xF!h^o~@sbYAP< zE(zb!jnN{&rM5T00alT|6EVb&0>>Kn5c|eiuE{4@-;7z0U{}DW@0qSYNt<4PT@n1L zupKcIlQ!*9=X9@A-~KFm;Mw4^&yr!qWrc`9nKDmH!$diik|EV3?8 z^+-hw&qo9Y%yG?!KV!I7t5r)@OV)TEQ1kSayz$oZ!=d?w%AaX36_4_5@o%56eR(pV zD)9VV+;*vI-RSVSb>nr>(ehE@CsT?0jJNa)&?N@fWy!=9L%OKD<8ds`lq9Rv={>^C zW=&ffNd3&5w$_f5yh0y?$c)Ik2(&~76t+~y*r4@Ft(cc{rBO)S&$`HJm$Ew2F!NJc zJ!ZIf3_FJ1OS3e>)0(A09#9X#eSMla&zH7c=>r!}q-timTIwdjU6;hEI;YD%^;5|c z&Dz~M|9B4yF8jONSK05i^Onu3Na?g&%bv~+lM;Hfy6DwsoEkQyUoOmgn_Q6@1NAgj z*bZR5xz^WXRH?8X8$kPVr$>T1<{VdfrCln34-gY}(Z%B4;%k;(YA`}AePlbhK%1*a z5SYr~zxhB}lmlMlE0w4xv_+orkza$ZX@A+)-qv7^T+G?J5jOGLF62SB=_BLsI=8nI z56O@$?njNwLWQ(k5@^1K@V zo&PrTj9qYsaSv?ys={jWGo2Q_7Ao1MTQ9bEr{RqCTG=x-x9l*fljMoTL}!`0(T#XR zIxKu*F{IBpeJx_guzXLr?5E@#-&pa1#fRp05Hpar7F?&4#N(Pe=gJ=AE5>>EE3aTPPgOW{rM zLU)%zdg8Sz?Ix6WLlC*&auGxSajZ7yld{0E|6-~GFfB_`@1`X7A+A7fgBprL2Kn#L zJUHM~uH%Kgid>){G=bQlYN1!*&oVqA?aru(;DaBIJ6(tPO|B_@z-V)I0O@5W!Ne%1 zPWF_xoWZKZr{nqApM3CF;MY+`ux$jD0D2nM1l)WM z&gYV1Jo*Ksm2h)DSL6=}emRj-i$K5Nn^J`@_CMt{S1D#mPNn;Ypk`;n5t!>|vH)ZX zm;VR3zbVFb#mBx}7S@mGo=$Q8jP{bbo^uSZF|h6vtKlWqjyQJc^y}hN1DK=G)?Qai z9xk6zWv^pH;Jc1?g9nJU=a>i}t;MVBF=yS7*PwIO(`79r8?HWqe-lGRUXz)P75XCD z=@4d>cy-+mMQGFa%ysIycG9QxM%yg#F;*2G-Tr-US~0B6_Qr=t(~3dd3sb~;&TsPE zi&PHZ!(%m_VP%aKCF*q&ZsK)+|Pr&lhNmkU4x`fJVwNQnIQyfV6=SJDnrrqsxxx{l!DL|^7 z-y^4UxumZ8^pZ>X?WF$TB?mEj;Xt6uaJ6SwmeN4|oJq6W}S5;P<9bTTR{@run+^+E(36dG%%#-FOkIK#6wX!3&j;dScOfm}e z4AqZ}JT3DC(D83XaPB%C5RJQ7V|7WPQe^QLs_Ub3DfEQjM|~q~!~#=Trcyli2^+82 z&EXrn^WVG@qB#iiSCL(U0J^+?nlcxmY>(wTcza`-4PeZSX?897<9ke^IZ3Ap%Xh4| ze9oYvkgOH&yAScAX|;QFQ~dZNW*^$)yq639`j10*ED9${^~fwetGmA6=D@m^jZlkj zt`A+q6>fvND#*+qw|thq&I;}=rIgxl)x2xE_Vw18mu)XU`M&?;b8#6}n;H|^uiY0j zKk_wn#C5r3iFunMiyLQHjS*V~B1z&DA#1uvdYs_i4Q`wpOWS&zct3wr_Evz>eVy-l zZ0N@&{qPqQS)ER&MAG+B!w-)pP9EQ`)=FBiqsNxb@u7NLOTe7a<2scl2VeU3 zgzZr9TIAae_OXK3i1$>=Wv3_d|AEu0MIP7rPqI0?CWceyB6~%m>%$~>rgSJNYjq*@ z3@XG8;K}Jd%wlJhS?U&O@Q!a{TSeW4nh>P7kU{-TJ$6C9T);|PYm6-|jMk@M zYG`xtN;Z~Tht6P|{G3ODvE${y)4W02pPmYM(#;hBs3M5s z4fF;?1NeHboAoqaqZS~`is#hR{O_rI$=JzXfxoJX%t+Tt{-8Z7hMut+*yEjlvpBHi zA9X+YBMGj(=g@GM?Cr4h0^1$pN`T)9n`pb00H1uN_#oZyGa0#tELm>^BmY2-%dd(Z zXi0qYk2_q5(zU*Sv@9(k+pO0V5**;%D2)_nAs7CZFew6EEY?to#%lIH6Jbc{`U6V) z%!UgM{gfu;>7i;Kpt?S=wPo1==vV77TH7F?K>vUD^ynD9*(mz2-P8d4+e~u5^R*uZ z_}21q@&=P~!^88tW*2Eb{fbPwBJ+SEGhMMp2DAR^n!#2IJKblQ(0jV}X+q9w{q+{8ek7R|Xq1J4+wD(G? z)_HTMboUxQHCtOB){DY0jB6T~l*YBq6CM~u7Rd*CWEf$r(%m0fv#X~fGo3PqU(|3W zvt($dGWm_@wvowpw2aN>ky2Y#i>lzh>89a7n{39dY|%cRk2j`G zyaVRMulhVP-DPE`1;Y@FYP@e4NZy_nXtJ3guskAA^8#N5GDDbw{RHpH(;S~dnwFa+ zNuzxNz4q1euu9N9n5&eV2u-qXR6F^E|JSpuk{ab{k?zN?jQmE9%hNCG*4_PD${*@f zf&`3mrusDw6K-igS9Zy+s4mr13H&|&?GFe)ZF&rC#pYk5_`<|1l2t!yrw ziCI%QDzl5xyU^s7QQq5<;sWsi;lHym* zsZp$EFkXlez%|C|Ysp>Au?vnrdy&6Wu~=v%XNr9nXV*n*CTJT=s*Yr?yt!0#pj3m9 zcB@9&{vcKmjfp&?F4Z+Q}Jv94raeBcG43y;hhd-D`8d|@3Q1oq{HCmTNFO3|i@2J6ns-L0i&8Qlc%1D@va3B^ zJ!|Ek;fnO*9sX+=QK*gci%_$$OB+j`qeS#+Wb5(-o$p|o^infMX@rg+VjX$9U1uJ+Szq%bZ26Z&?2fjpd3%!izetw9 z%H80?YdJSJxX@(|@hSe};XuaB4z?qaCvXSJ%rzakukxg+<`y@=k3;&Ld?f!@ zK%!3p?6hW+DA_=%)zW|3ye)$?l7-E10Zp8}cz}URz64R@nS&k^bg&6vHsQ(xwxtLK z#LR|XJ$6}JYu6k(Dbx^+CT9AxBnyp=N*XPjC(8__E3!_IxNGD}z5uJ^ulz%GFV}p3 z+Gr%G3U7MD9xT3SYJ_t6S+TjVK>m1iLfg}X$=~)m6)Rtdx!+TSX@hTSvz&{|xO>@p3g_cEjXH+ubeqrHQ4^Xwqi z_^9#+6y0Kpy4)K&@pcA=J{@h!MO=*|@tRX7GJ;ezRga1WDOz=$XTDa}I=lm#Q8_B` z-2C=$0Ao&Y+pjx2nj4~L%+zkHbSHvhcQj3abFNYLRR6_niSx|%$CDC;l_JFTqknh% z6Db|(fvF#Sl7^o=H@~IRF2+oK3I7$)m3GqOZ4ZGFuno>Wg);2$lrZ)h(xHxk-y zVEXu3mx_R7sX|xbuZ7u2*^_>9Oz84bN2H8!Q;}JXmIK~-%qG?)+knTi1Xv&adIjs< zW}p9dOj@_h=d+77W*)B@pW`;*i(i+F%^Y8+JTrMJykWd#&`qCym~q=bntBd0ZZT^& zz3?!-64X633)Y3Y@qR&f_n3@2;P&H2muSs8EBlX#pYT?&`F&rs{s`()P5hzjo04(y zCTtmZ*INKO?M<$0>mN{vWL%zsqNHch2@3_h8w18@Z_2r3sd?-leetgjuT@e* zz+?OZ?uqTtvwj6{1?ndTbPIed+mUOz3SKq)o_q}FHA#GBxe9MEnN6<1Ipw5|EotG1 zI;&&6v#AFxJa^DdR8m-!U?|0`-Q)+`%lb+3#HvDU?->%1Y7>N$z`y@Gy8*OxyLK5y z;hy^=Ikka{&#bT&V|{T9B|G_wGGMJO{%(pJR4&Or(%ZLhpyz7p*nqT7UC+BrB%}fI zVv5d~^QQF#rA!O!mXnHk?SvQzoRK&F`uXuxH9k8&hCGgN=z`0hL`)^PC?RQj03eV%7}EsEh2 zZ>-L+-MnS0XKiA@w}mIlRc$1I?0H}|`6Vty&Wes1hE7JbgKm3|wi&ga`!oArMCFSi diff --git a/test/samples/blank4.jpg b/test/samples/blank4.jpg deleted file mode 100644 index 7f3214bafd85b3e402608a256c4ce979f23c9db4..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 12853 zcmbWddstG5_BXx(Ma4^AwuXx3UACo(VrgpQB@|E;LAx+khNZws$4i>osljW;ka`s*s9i`!bIi&yG|kG&vYMLaoOe6t{l4$>{Qmm=e)#MM*=+W+*X^^` z`mFVziT_LkrqpmsIDkMPfJFEY_|Ib?4A4iT_0YQddU|>W2KpEy(Adb((8$`{Vijm- zvv!T04Gw4T?CECjxZVke!*7Dtdl864;#xQVAV2RwPamT9%1sak1_nlkMp$EGthWQs z!TbO7>p#7KnLZLg0w{zdfHXs(%n<+S1J(inLKlA8l?VRcF9Z^$ql?zlH^3Oe7j&8e zNCXOn)IsU$>gd2%ABDdMbj)n(Rawqz3+~nuKIczH_Jc3N2GUMX6ZQrqzm9%evatepb%Q~2yb13(4USUyj z$??(?g32mUbRe<@}%5e+B!0$Ylo0h1AhO>FBMAZftW1U%!z40K&OkfqR|-8VUn9IXv97@YO3ETMd83%q)gTD zZSpkip9N8L6gN+!t-?xB;LB)^M2}s`=T1m;R2!m2vB3r!0V`k_$riBifV2msBSQR=3(Q4GdN8L!B$MM`9v#*#op z*0CdutZ-mXaDN!@B#8PD8EjTRN+Xj9r^TEwZ>~3&EK@ir&crwg(){OY4I;(*O?-=X zS7@wmF5g&2{P);sl+Fy;&?0lK)#tnl=SV`6#JU0PE`W!F43;)l;6o7u33Od#L$HBh zGebj1h!Zqfa55f)FZTCO;zJk8T z^o_T_Wy43})k2TkcpdRk^@F%|tK^$qW39+DopHaW6;7U<*d!S+uzzsaa_8*2UIp5o zUH)NvQoxByE~lv_WU6c|V@d$PYRZuq?&2WpBf$IPoJ$Mghh>2pcC86^S~J!yo8zOF6^-24EaSS>l++U77y=Ix8hF5K_ z>iMtAKqV95L-K?Ih7l1w>TV980vQ?reCekG0THZdi!LYZ3re{=lL3U7N?c zt?e;`)`L#%|JeDYwEs}%kJJ+f;tp+O`4)Q-c5Wvp)EFUJ#j~l-^@Tg%y80CG9P6Y> z4{xB06gDs~5#Y*Ah7cStD*lpxkDg=ABOfEs@lknd-$ORk|GkS&m z51)`OSr8P-uFd3_*2$cDAh5O#K@c0;YYTkF^Y!~MQ5qXS?FBYM-L9fCs7n%hNJ>ls zYbClv;AjZC3hV<>;dqJej2w|Gb1gUDY?BD>{vvJ83(cYwP7I?ildRSD54b;KfP^_A zZlqd1V8=n|OF^@;+B~Cy@&w#)a2D8-|Z~NcS8>Jn zX!%L2`coTF;{4i!V7FGfmtub)^su6$B1ER97lMZ*VyX`8(aK&b3;*o}&;;M*#%*g~ zlV~0rfr}%Nee2kbBrieE(OgB10!7o4JNQetz*iev%Vz92rpGT5i?oH50&c0kOs*z= z2-XAF^1>*=g`L|RA|c!AI#_@{=^s1)_$n*=&w4_9{sXcU#yX`9^c6i6T1kqZF(g$U6kXRsO4JfYIiY)7po5Y7&zdm9y?! z&q+M+VVe#jtLiH=@X{*qf|V0yvp~N!>X_&ZZ8g$Ubj;HAcU~yo^u9$jYD`mqM8m|U zu2CjpqG_JG$W^z>|APA3U7wLrYsR{y*`6-}LO!LD<3x%3GC6IuZ^l z_?c_?7#5WU;H5o5!9&E7oev;`k1~l?a`xg7HKmgxNJ{7CTL)^(#Tg1yUeRr0@)-eP zGT&tIJC=cB9$CNvWNw|VnRpe!U|fLjCjrEdO(G2wcE={Z(Fn;wf)qpz8zaG=^B~xh znkoxcloA#WaS(bvVC*E{N`RLDCcNz6xU5(N18rY8S!J_6y#5rm>(bfXF4CqZYLRKB znBOv{Vq2(Pq86SYVy8{U`n(vQ^2wr#X%0Ti`|n#;#mG!-hpr!|vE6!2o#q0Fli{L<$JeDu=T`a{(SW)QTSI zhkznYvgiUuu}mxp*fOT!Jm4y74aBR6Pd-qM0iq!4>*&|fW1>EXxiczA25W1oQUoJ$ zcm_F!Xp^Y3L~CZ34?92*7mvsybGgOiCuh`>38aM6zE@W4mq8qFm%4f?;LW%rX?#zVJsx|6*!{pEWV z_DKRR8`^bqA!^W(-}SCHn|QtdD9=ZjEyI3ny5(~B11+&3lhc3rfw6C)iSjin*UpFL zrh(Pfs<&IDzk5sJu4-tf|ZoHWX@x z{pF}e5uXY@rg@GA_X|JDUs1uipM^Ox`A&Acy%?jt3&d`X;1{!P_wg6y7 zjgXM0BN2IjBOwUTIZb>FoboXcN5aPB!W94@ofK^f9L+l@m+ULp_8NZJ_{-hcSmS$6xJa2Q{}_ z&%sfa1~t&A$M&kj)A6Q788p}WXcDo2%TF0EheMP5fLofti~+l43Iv%3ihu@4kHs7> z&z6Lc>|PK7hLL6@Sl2-^@(10%sp?%5->Omor++vr;oriJrG(QzDAB|Y3(%gKS&?u- z27n5_zx-`5Qqw5v#$wNkhEWh_fSAn3q|3nP*2LO@mLaP0xX|W=lfRl(hO2L^Hc}Qp z3(swt3_aSmGcIQubD_7fpwbrn1uDKWl$SOxX>BuYUVGBvz-OtRD*P+sA0q+MZk>U0bJSJXyOxC zd;uO#26%*DQy~ekd(kAMBM-?}6wxF|^swVXT;Nbs*)klM#;~F6<=`PX*zaCHRzR2% zx2+nlH_#iG3z=(leM=%($EI!dd~MUYz$Af$??2pT8rLD_#4;lcQ~dm7{XeDi^MvAt z(zpT3U6EV6gI?sUzg@Ajho+lix3GPUs4rAq*137Ie&5_lerZ#qa)7a=@nJw{=x2p~ z_?CBiQ$H08o|@=Oanl&3W5W9oP+O7zTSc_CgC=#XW$Iz)&JVs^g(W`FR|k|9{y@|a z7#)g3cN7j1o4ix3gnUhvzeLxyZmOO<(6fkxev&m+-My`@m zsudmc0-*GxOtrbPwy@Kyj7yn=f2$*t6Je~95xcbI!w5@p-Ltv5^VBwo;byqU=--itxev2fm3=xr+z|iIw`-2@Sdp+O49ePtGR(7Cq{i*)u zKYai)R_%{P4OyQ%k$(1A_TBd6$3%*?cmLfdWx5ep4pFaXxu<;zSr>0;_24Goy=tGb z^i#c7&|qIl8nkY;>SrIOdKTO-@ZD0stq5*lKgv(WGLw?Fj1_Bxnbx0M)1JHReQW=n zgDNz{4`n?Bp0gHxYx@y1a^+HXxsQ>_pT+AY+V3w%l!aWkAFoH0J}><`UNrK!|JNJw zelK_@`#M?%o&Kti%Sy<(B&^k&x{}Pe*v}j8ev(m-DcJe&>#U7DBfzpZt-IHbTQ=RO z5WhFiXoR}fXxklaSHERamgUZfn+l7l5U~#>M4}7IG}+){b35RjA4y$3Mn^K36Bz?k zj@=7Dj%~&d@p7heCFmIe)Mqw+CRnf26`IgiiGjU}M&)~`eK9JGtZ0NNG9qjYDX~Gd z(#nYRp%wkRfz5IkPdNV)l_DTTKsEO8G8e8yGJIg0R;froY5 z>xJwyAXQS^4_z~%=3lGW`8(rorlay{MnzPKTAWdy&Kq}N7(!b*xi3BZu?s?TdBdHf`!(cl6vkf-g0F^ly9J80B7&8;seMCd zzz^Vy87@{gK^*F&!nPktb=`Rh$F5jD;q-HgUyuou)%3->w!=cb^Zlo-1~=Q~qfRAu zzaBl6@Tu(zYj4i7lRP45;BKOD}_$V4UVApymPT^TUC*E$?c7axUM{TcD&zAKE&<#M~VM6vobU?7w z|5elv?Le3~3{HY^!J^S*|i2F=oLl7H;4ON#NS06 zUJ3#kA@Tu`%{Q+R5Xh)@50o4$L5i}%b@6aJB9)UJ{p4n`858VzCuDp0`JUD#(%Lnh z*?|f~%kqvA^1%H@w{xmI zbOwCAPW&z!m?sL=PUgARZ568rSeH%}mNlJiy5L;vhKuuDv`O7IJ!<#UAbE)O50(83 zXkxqN+NvZ()J;aNni1-@{e8*nS&i@L=EW_Y@h4oXqw$v#j{Nf}cd1V% z{6IEqpkOkhL+{>3eUPkQ*NgbK@^;!y!%vnOatr|vF6W+k{+he1Y_OpJX$l)_QTFuQ z+0IMXNG2`1jBB})P|)Nb;ntt~qW$dF`Cq*!AYU$Wm_8({?kg-e33wR6wN<$LmVcfe z&vBo5bjD4`reM3#jSDdvxxZT{$-(~5cn7nK_k#mXzQuWyub1LX9&Wh*2v~Z-JEIu? z@~?+y32N8P0vf+inL>mHVj1V47f|W>@oC|5+gsGvZHn#SfW5$Towe&mJMQ`B?shA~ zLKQO|;Y&HuWKsxfpxLabAYO&D&P)$cTTdbit`PLV644R~*jQOpS!+NMXS@D4Q9*Da zV=i2=y9!hyf{Xr6R&r?%3KPxc!1*0yVBs$%dP%;H`DHvp^blwyy6Pw2He_kVc>wJ= zv_8M_qoeupx!L&m^5xd8bvOad*n2q>|5m+`bJOyg zEimD3`S1=pWEqqdwY9e#dUgiO9IxD{_t>%7c6*ZsGV2$9t0-gu_q}Kv&YX&oI}Qy! zl@U%MwsfMLHt1{<->IHHN?Pab^+jZ}eQ%O=leP5TY+@Gcz@0|=vAE~Z!q@mLLs2t2 zZrc24@%NmEV`yv;@4nUGP=D(l`uPKYOY2Mff2{s@=jGH} zEoLdd`x@0;2FSQWpXK+rFiwkdfurPe@9=RLr~)8}&!pY%J`A4e(l~#&!B25xfB$xH z$@^ODkQ~2%NYBz~UG0<1y!gYLet4O|GT-=cafo-ZW8arNW@z$1&qo-lwyi(%vE5+t zR-=-}uub(h8lVPu7 z3Ftzxo|Bwl{Qlk%%t?`nf9sW(Q1P8Wtr%H1%XAOXi1Wrv!e}m#OoFbU#Hd`nY^TbW zVdNIU)+>@Vn^F4zYj0y@4P28jW{CfjQrR{6#kg2C$Y&8EW+H?2@_fSaD!`Nbv{m#H zy@5*4B~G${oEbs&_kqc0!H-`VoP96;2xRu&X^{?4l_$DPa$EO1AgdETH@EuTl)oPg z%8E89lZ}Z0qtV|0n<(7`ZSBwivi#mU{6d8|H~VcI)7e6BsqL{pR=&3>b@0dIzU~p$ zi}aI{6kkW&hcXC}iRarEvM=7WcTSr-t1P0TqxIw*59Pje!p=K2<-ews1RLP~v}w&% zc$(V%QtfoUqjI(1$JW5NzB!k4;m_V%_UUCJKDOL{dMa#zr3t=V%@oLefB7xY2&25y zLEB?|^V`e&F153sq`>cysDrH__V}J#B{~df=>8T_DLU(44S}+YVd6HQ2hrczm?Q6{ z+AsT}w#rh7<5k>GLEKFRzla|8ZC!HPs}5Z%@W(wY?`>SZg-|otc(UxMd-tGU`|49` zKBBhjFT~Y(fOm++LtV|66UUO<&2Qf)S_ic%#N5)7%0f~sa&5Z{^oqGbq7{B-~8rx+ghS_%B1O?o0T=mZpfwEMa_0=@Y#@ zyqbID8qLEu6@tYX$y@QmQ=vPPtdp5j(hf&|y*q`AyW(#g+jn$T^v9yPk@M`jdohyN zbDP{=ZXVxSbJ5oBMcgUYGU~t=|AZM$#Q~?&TiEDNj+N(92kuNvKRdB~&dsrN{bEwX zt%8gfr0f)O=fTI%;p*H`qdoo?i%&9XOFWxY{>zoP(Thb>sK1hhBv9K*Ia|dusDfwL9&2c1yCBxjpG*b?_a()>LE1 zrtT+ZWBIh)a@4ifb926;#4^(Mnx~`ASprHS$+@`WgGJ**i!HZ5WHAT#O@8m&km0Xq zdyJ=yT=N-m8BD~qy4=y567L5x-IW(E3gcz21NX8j;?)Dbxb}Qud~*5cc94AF*ZC4V z?k`+B6B7M{7kBIN-`+LfU3a=>&zW{~l#O&Qabymc&UtQFbHBOeRqW}Z-JN^x?~SOt zev!4_bMO7bEhpq2Uzmn@@y@P&eu}vQ+Q!o2WM)TGW6zvz0IqoMpjy{k{gwCX*T8F4kCJ6M#Hi?UpeobQpfgvdRD@$&&l4w+(p*- zwR6_Dt{U&hUmhjBQd@df)U8hXG(f#&bKsR{f7rl}tXHWQ#>pbwUp%ez`rdajQR6&W z)AxcDpVTJuQYQJ%G+TPqdutVj@?F&S6r228`IPmB_OqGLk!@STR!1uxN#6OYgYS|! z*tXc<{E~3mZWIT5e(nux+j>wpS8)KDZ;ukwr|Y-v$FvcsU|wwR+{u3{0byO+Xh=oH z9}kD8#s-|g1fwdOR#kL9b*81&rIet9;T4Arq1&`JOKrx3gt+I|QL|3%EODY^3T{So zDW&VFYeq%9W#;#8lg@*72Iqq)Q5L$hDc$YNEZmN?>cY0Ezoa^*J87vpZ^Ag|))%1~ zJEI0e28r`W@7zi7Do$~p2fL@|+WMX#{H2GsEZ4~-p_Lr98;=F- z8ms&CH|-@(V6gKM*0RUZDo>waOEt``$2!_jGgf%~$_7fXu8SuO;jR!gMn`c}0dUD? zJ0-|jIi(AB!Rfw6gh`+y3#olLCd4%&kUWsJm}X0R+`P4d-B=`uO2V0P>&~qYyJ&B7 zA$%3l)hHwy>m=U15ug_ZD?T8TK0&Na6vF}XEuItg0Ihr$cR3P z(4~$Qcy5WB*IYR;;`s0v+1>=pw;JVQ_Ktf-tvX^A$2R%L21<%aitZ5dtjfD8B`Niw zt)6}Sh3C+Kjc*r+Up78KPIH7`Soi*P5+gPtqd4M9n`mj$r=eOl!f-qqq zV$LXzK?NTC!+%4Vi3tf3k(=lK;%1i3Uf!bdQ#cG^U{pDHAf!FbS%KguO-~H{* zVo{}F@|Os#c5`k1p^D3vMh?` zv^X)4T~7f(#sOfU5R32SfAHQ4lJky;8`GgugNPoI6 zI4}`aKw~=}zjUtj&#}x9yLFo^NKU)9=e^k-kt6V{ydz{<%Fw$nCM9=RoD^*>^$Q zk=jRv?Dp2(P4bS33Ku|ImwPS?)gK;W=QAa((lPgQJX@A@!$@xm!jtn0B(Gn{`P`ey#mN3GhiHC`|G-80Ky-0{At zt@zH&Xs6*uFU&mn#q`{S=C&wqtraDj@G;zj z2&@k-&3d^_xVGXq@b`_hZ|{%T9N98j^?N5{>yrz!=T7CFXei_Lm0cV@=4&BZ*Xw_7 z>t$U1e2-fm3#vr5dz#=?esGr7-JBmO2m_#AMz*#d@c@tAfL7o!^Tggx@4ueJ2@6vJ z+?d>p^O)3|JV{41=f8>}SvO7ZgGYNT>`6!A%8)IBhleMWwaqzAwZ?C$x+@Xyf|bu} zgs>w;3KC%MUl73jr9?<4GzoH`pcX)~L<03g{Ur>okdBC~fG00|#rWp7G>Ogt*w7Kp zx%-#uXqnI9)u(~aN=THs znK$o(AR=S`vU64;)xbk={#pu_c<$iYD}tXavncwBptwBpac7EQd7o)IDewu}3CC_0 zofDTonVxQR|GJCsx3EM1_7A&*-0$z4*q#%?J8pjAfc4F^P90%7b&XyI{r2#DJ>x!T zRG2@dxZNFnWMKy}B`DX|s0xg&su^G%95l(vi}$zu^noRd+?Tog__W+BrsA{T*Rf2z z-Ak_tU%Bw{{)senhLG9Fpxp7L`vtXZsD8=0^d_*|4YWLfeEQO3;srFd*Gas7-O1E* zy$UlbOrmy45YZ~E!hry56`E#X?=$(tcglB7<*&Eu`ML`>3Ni&Wp`NBbV6;H92xt&@ zC1srV$9wRttHmVK+Aq_i1!LE_NHK7eSlg@>ZX58o^MoegF`z3v+7o6(p|zDi3kbo+ za=l4mEEx&+UIH{&D~IP9v4RA+50ek%;UzktLg2*#v;so7za%s^GWb=(|7S|zT?YMmbP;GW}cz|9-J>lBxFH6yx4~*NPc~SS~T7UeV8TmFYV(?i> zfF@G;t#|CZLvqH}Zi6d18EPNwtMPhUYsKloHrHq3O-zm&kx8GqhL-Il2R_VD`T4q* z)MYzs+ru{6UVOGQ|0SuSMBmrb1+rb2NuR$aH$J%Pe%>~6SEd)uedt4y#5b@wYqfKE zO6E0|ASG2|!mUrb2qO5=xyusIkPUV`Pe|jROuVa1R;fUE0NR_n;aTKWp$*y%WH$&1 zDtl859p8)rkfQ}mQJkQ=^*|2RszGq?O(Ge=-#ML#9g0I=L9`*PJAX76Ax~AR8;u>E{wuez2b5oHzk< z7{Gl7OqbyiMGTEr0Hg)s2igNbI*Oq7g!&kCREB_+5Gw$pV0*xCsi1O}J~amXF*fhm z-Y5SmKF=@9QU&^l)obOV6Lw&VeSC7JNdR4ApcY!UgkP?IVL7{htOei{&WmYXxI zlgQ-DA5pFNMszFLBQZ^86K3jRn=vkvWRdzKt`N@>U@@*%_X<78J>1{{US7K^5;Z9} zHtBT~GU9+sD*NVC72qH-8vPaHGns$l6fYe-o*(`a$VG~Lz4ncc9KK29-%?>$ymZdW zx(qV@4#!B9tS4d;m>nuC+)0N2kK=lP!05Puxspx-Mmyj)s>5^iIqMIjIXr+93ZilSbg@LM>eHt`M1gCveejfPg zgA(*>d3-Cgu}P+HysnyU`pfcJ-VYnfL^=b+3js#`N1+^>W54t03chU_JST6Iy4G9C zJA?+}UDd8Z(C;kI0JDqWqGa^jjYcRmsokOC3!7i<#Y(^cMIL^FV{lFchJ(1hh{y<- zsp{62jUj@28OzN8ybl3{sC5`AIOcIDIXp+c&b`U~LtAbf8>4a;Brs5Vf4k@RwI_S! zs(@7NS2_xwKfj0Y2+>Mt!=4iHELw_Vu6#6uOL0Y2G_e+Dx4%IXb5$Tv+tje4shnnZ zWxfFkMrf3|5LT>h3=x>5{#}p3*#MJ}6>OwJ@S^Cei3#f?u7T6gpHR*R(!gFmv$t92 zQ*%+PU5T#VHR3btR?EW+%%%)YRTBAvV{Wl>H2 z6;hLNYsM~kcZDrPKVt4o6H37XE&q}9mx3-#0r=I3C z7k!dvp5JOAE{|XotH{zu-uE_Jkv@&?B%SQmPe|x&IM*o68-i8ALGm3?cCCMC>)|a0 zG#@a=!$wIbhyfuVA~03}qAF4u8!XXr0uz~~eE2 z9qd(@BV@>BX`m*}RU}Tt2aX;`*NuyeG|0QaEy|I?O_Cb;&v_)z$~x*}{jd zH`Wvq0nK5lz%Qt@saDuH#^ft1zPE-aAX9vE(Hh7Yt{DAfDs&YQ=#n|YOne$dh*=5O z*!<{q!7Lzca^n&sRgRkEJ3bDd;-xm7R3@z7YA&*G&CwLeGi0R8r}xufJ*_M2TeF)R zcq8Xr05>N#y<)L6Nd$BMHv0Xa6A_FG@@*jgE%IVEKwREC2&5P>k|$K+885N4CJCN z9G3bi<^{WM@xcz_)DiJ+V;wrG7yC+WOAaCt0dB}71lXi{W>J3Y^zvzG5{wN-8#~y+ z3?^Dz0F5QWCL>1>zb4Ria;288x}H<8`y|34z2EaTb>`Cj#L+P$<}F51)3d#2d?KIE z$qiI~ChlngrlkuxnA#1*cLhHQFJ9)?$LFu@^b3a))^9Ttmy?)Z4nDJ6Q6gOu0jn)5 z@)EoHmMXQLQRKU2B=T~@tv*}-+1N{Q&vO;2#0yr~)#986k*CY5U+E(2A5QR zsF+9M^s?%HFQd`k=Hlkkg@k>3!@1AgNkUj_T{})P8epBpY3t1uGmh^Uw*GVMCKRga zdL3$BZy~O!>RDIJx0g@q!VFx}rcTtQCr21w%}AE`W(z`M#5{~{P`koAcp+*Cd4{S# z&;t;PvBWn$Tw^bDL6`~{MruAOKFb&3y^aJy3Tw9rP+o8KiBbXIr7uel5qpDZ))G&@ z9@l3S+5)Ly<^x5XoSCQj+?=?!5%M9^h*$BKj%Q1>bzLL%!>g@?nlz~(5nWjW2ajZg zLIMI)K;3kiG26mgni}mi z*YNyEY{rfY=BGT*7uhd2A5PJfC3bAzj}KeeRutaw+$P~B`%*}Z*_ie_-X46J=mP9V zy^GQM?)#Zfn744t@{EZKPTIy6Ui!}sp0_C-6QwSJE@Z3I$m-rxX~x*)<|Q)Cq0}dw zq%*n-?9Iudlr0Z)DPK5eD zAcwn&k$gtX#_c}&ZEW9&7^rgEvfQvxCwJEJ*NQ{A#jTr?`Dg!)620UqVx2UQ zj=IK3>Dee8M&&o7TRsR9hEYGAqK1y$CApGug zYJjW%SL-dp!nVLm+^xCiFT|H_J^0KrO4|7ycp<>@+rRc~XyhHh(4{@A4b2Ycg4aor zWe^;75to=(1*~+?w?J)emUz>sVZ1Zy8e6=(mQ|*F?eMt8wH6u!P?6z& zG6~A>ZS)hGmmn5)vup>VhBGM9eX1f}0~u|rQ>CpEov*_&;OAoL=jI6B`%6In&n!=V z(I&8HUNCWr#PEJIP&T%#8Hqc`|8eqd>;u8`;p3FU#b&fl<#*KV4B4Zdy?nYqt4Hg$A*1n%7O@rUxp5)sc$^2Elw zj{J)Dl6TMj&oOgPeJ43L6Kxa9{W93^uc%g_GPzmgTzGMz1~J zEjO0AHYk$|biHiJ+?8g;UJ75njwXiA(I{)wG{8E33r?2Rv zVvR02!Ay{}0UR!|poqOm4r%ZTh6T;Ikmf;qz?}%Ymr@bM<}A{P8iY)3UEAgKLJ9L!v5cMApb}dNn!?KsWy=z{45S-%b$yXy} zjC>WuY$V~W{Xn1v;pdw+>GDAj8+3)l2+yGa-iY*ze^k z*8P8UpKcTtGTFxt>ZG)9*|tu)bJwb;evVf<|4BLU=;danw9eV~_?k{)E7)N<2z*o< z?0mAO<$3Skq1fo&4AyEZT58{(8{ywF;#jMru5SEu+e=Dq=iXmp?ONq=*|@Q1H?c2x z8y&9OByK;jX6$LTljS0<&Gbp4M)M~^3>v{fCJmmiDud+uuX(vM(~Y;~F}RA}uxs~^ z5||kiX9ek&M-^93x1|oT@@v-Ir>!=$R1*cKQF6b~9d_LcM^j@@_t4_JLdrD(AZ*8L z8)4o@1Qd$Xv8`tAu?EYsN94)?5oe>j)jfM^|*76P~FjDU*9KUP#d@}lpS+GQc!4E%>$4KY;e^emZ z^~O$g83S+=|8Pw7zMJ?F8*n^!l$d~aJv@MY#k^Gzro0feaJFFnyOS}7Eq8p^%eboM z{ugMyXOXT|wx$tS#p9=`1M=NFuNmd5*iWj66d&(h4jao32fZk{>6lb*%&ofK?xm_x z<6is6GQLj_C#Zs@cb${!k7Y}h)AO1p&Y`j+^jczksWmRKVsZOMvgsT6Y>5x9E=2H4 zoYL(Ok9N{&y}IL344sD-RaNG;TPcmgj8O5-m#wv}MAtf0G6{&^#xNnj)wJv1#UV4H zorj+Bs$5mMg|0L8sL6I&M+?f?;*~~TGA2?{T+TYJ)yS2^I{k9131Fb3tt!o<1ZCG2 zeo~agMdw=(Yz^!`qQ!cxjZ6D4qk~$zn2R6V6<4<>%*-vf?7JK$EO76>^W59U7x$^< zZvJDzh#1;!j6buX1wgWQZ-I)KXO7Ln-H$ICWx8b;95oM2gDhit>pl}7ca0t5m9_P{@2{DHckPdYmqfWSat4FFI9ng{?;FojTZh7sa@+7+ge zinKiMGy*jN2M`&7exF9d^t4aly6@Al1i}C)%j<;U0%GRJ^e+g*Pw;V{)I$KUHed+D zZwNa@8Vl2pwzGi}e9G$?gAYsCU-_TuT`K{wn)>1Cxhg&)%9PHEPmbrX;uB20nRcd2 z*m0}k(>TD+)|TXKYwv7lYf5l*CX$^APH?=U_v0KN2S9}U(1wz;2=y@yDFA=yk0VEa zIx0l+pQA!-KzuS1B;rF2h%LyEHLIOh)CPbbe9A|oc#eNELvZ+ha_IN~P*;p+g?Au8 zjz0mKiZ`%|D=#^I2W$cADk>_fD(b4L>e^G(rfBPGsjF-0>gnj{>gecct1Eu*9}_Qs zjS(7Crf6ttOx4t!iq+KA#L6R0>_idme^SACHPBW8A|OH`%m7jwfzn2d--E+e8~+92 z0eh(o`AyDp6F(H>Bqe1uMnzR^3gWMs2!KR=$eap!5P?D}A(b&`6=jsVJq^w=uOx;Kh zad0+T-T{oI!(|!lM9GX*K8qZaqdGr!;otYb>d!8Ww*hsOqD^h!0fwGdtlBKu{Hn(0 z{Zqq&UpSy|(zoJW;==b&Z~xgAZ>YYnmy81;<3oZj^Y?eZQSff}IOxT0d!HLR3)ec0 z5&X5KRm+C77uc<@6!my->DZ)--~aO~Ssko_ne*K^ko~;*=;kUFR%z`F5~AG7vxmWS zy1(kpyq{QuiHEM2JkQA+`C%N8%D-YhUU$59&)HH#nTnlDEH3Kgby}1>HxK5PzM)da zAxD5=-VW8`+4dj0_OXwlvn=?H?+3Bq@SB~ZT8qX(;7?E7&FhyesC!qiWc1D}26Mb= zNW9B`Hr`^FKg~3kx$XKl7h3i$5Q{HHpIAJ1o{K8?5y5@hmah$H=blLS{DJN`cR6wC zaAeFO*7|KXJzn2gWas(PqI8z2N4s#a^k;kr``tNub$>__3Vakr{w-lrndNnKMl2%;joYY zM{iHXk3S`>?R)uhwDa^)!NRJw+};^qoq6L#sEc&7>9&xX=Itu-7~x$!e*e0TJ34#o z+|9j@-<{u#^A8@sF)=9ekap+30I5Ii0m;;B1vZPed;_yC@BU>vD%y9ufIf}UvF6C^ zirfAgrzFRRdsiG5-M_M%Z1JS~)#F|JJOeAz9{Q=YZ0z&hR*sML-MlLznUR+tDBX_7 zvt%HzhFBgfV0CTbpRh=LVP*42zS-(Cznf8umWfL-yInW;_QS4NZ#xk}7`ghx>w&T2 z*&gGvp~I_o?ee#f;5BrVZLV*a#t@|+vgk;>hZ_gJ=$5Mf?3(Hyu*pAX!+HFgdj$W0&_^am7rjk=M?W0l zVZ8@ZF)wzakIj&BK}cFO$XdNZsktY=D19Mw(0^fGUX6?A&HxLgv6sPjt}NhRJg4d^ zsjQ61H|_VZ=upW@_op@SI~MpFT@E>F9CGCFugmpn_g1wzlra1s9Lp2$${(K~pGT~@<;MxyqCFzmZjePBf*mtZ>PS_+I&i9If>GZ_+A<}SNF>%lsd>)Ep%0nx z@=;F$%-q#t*;aW1TBs@wp?xp-hWXOWJ3oGFnCegCuFn^$wv?jk7MTW!C5d+ygvD)~ zzotJi@_>?dG3Ip3tm|GN%fdq3+V*By?}fc?wabFUh1d9h#Kvjb%oZcRHn{e-Mc+Af zm;v_b7^~tV91gllcVgGCOJgJ_BpX_!4rq^@+V3BrdGXQ$z2E&_1|30fG7yVPW<6U_ ze75H9e!RFbD>icQm4zga%M>;EthgEfP|d{TQczx>?)%~VKGaCsIt!Jz>)YQKUYb20 zbRTm+@Lm6{8~19F4RL}wx5(7J+fhns{=xn?-<3y?gdN!wNtvN)@SCs9WMr?^#_+t% zALeW>-xyy1SeI~i@3{v{+v;mqYW|A8ynJC-=O$MR@pAUatCzD4($n$4Dv-grS7FlM zQABj6c?Dg>2c!JA-SPOycajCaylhlCa7(|!>7M<$6gmX*W@AQ1#{rxsT%z^T-cjC# zw90p7aLQVTnjEqusA|iDYJ5aPIX=PaX;3rT*IgBHl+#&cntgA!-QL+2d9zHW?b~lr z^iE|r*m!b;3&z3O*#y+V`$}Br?8`T#(ywCU*6Z~;9P-N)9nxE5BaIZXb`?}m61%-T zMUOU3J+O1L(v`Y%wB^8=t-51Or?0~+hqY_B!8_G&n_o&zjY)r$t_}Y_`d)O}i>^mv zG2w^7z}`zi1MA0_({}B#$b8q*9%X|)FP0c7ZBk1PZkr?DmFRy+e1}I(9##%*;g5sy zn?ny?h1T6O#J!Y0ebBROKT%6*9Plksm;8);e_g;Y$gwptZnwnlKXuyZr^+4fD*OKU zY1VIbYkn@szd5zFaR;Y(r`O5i+&m2;oKD%MA0H+^Ik-17=>9^2C~Wy{=S>gB?u$<( zEjM15ebm&k;Sw=-1A|fO`jDuSC*XAKz3#e;@$J*PU6DGSlH%U2dcV(}H!Znqm)eel zzAB?9@>j++UqWBH^UOcMMV$Of9NB#!XdGDZ%k5RAb^NpM@H86Zpw4r}#)~DoFGyq5 zz1vj&cV9Z?jzD{M})ls1kUje`RJ0C$5%{FuZ32Mc9qR7Q^GY2?B( zlD-wFk;R(@Psez)aCd_(Z^bc~6!S&LoR@?fuT6V_d%Yxg&QD`?o4Xmzh@3Iu;;`$> zmfpGDcNdd7&E&*5VDAiVU%hXd6e{fEP3^M96+fxjr8K+ zMyqik*nBpKXEWob!^OVJ;oxtFpa8oK_0*|H|J1nc=i363mw%wrY=zD@^}Xu%@gdJc z4ZP2Tb_mpgdce=!p1~xK*6sh?q$D_P!h=GMND1=Kp{chv zK5n%+v7*2B&`kgSsDtPdQV(A@jr(Ia#lxu20@3fO%4rT z{TWO%G76T9N>BFZ_=N@rM8wChl~<_p0sI-VDl0xI!*eZr^#@96O$^@e0~nUXtcr>b zPg$D`ld7pvNy&eMzW4+9bMz?@tG(mb#wUG3Tods1{02aZZI3>~oo?sP-2NBTJG=-)o3#OA{;3!him^KET_t4Df5 zc;uR>WYdT!XvMjiJw1QX%#^*#&1{K7plx7+cNB~5mys03%m@mN%vcjiUS;OtuA%0d z?wlT*5F3>oZkisuHjd+*?q;T_-5I9kU>h@21xoT7H#7VBg!zPd1OmYfmQ;03S{3cg zSU`PW5WcyYz3*aLTH5?H`}y%nt8EBmGTFw~&c@De9>kc(Sr?Zao<1**W3H%UqLKws zoX8}0LNYr(&QxA$I5eD--OOOiiY_IyqyMb>v(d|Q6vLmWOx0BmaQ2T4UmdlCy(*dI zPOv4}x!U{{3Old*DQ-Yi-0BHr;-|>(!JlAzv6DIUs3c~1Y{J?oISu6X$a~C;N__u1 z@xGSrPI9%8=fKni-j`=gRPeFt_g(v&K1>YTJ3clcDT>2^RCFi2NB$J{$v6~#FF3nN z>`4E(+kYDDY}#q#fe{=GEv0AR{pag$m92|ewzPDv9JD{ zVxQ)JQtZ!Ci{jYHA4&KZ@FxX=;9ydt7O+=GaUi;b<6JujCm2XDkmuSt+Re3dBEkS+ zB;s5Lds`R?Fb&}(`?+>x$GP^lgt_(v5)9qMX|;?$&9Ffv&cVSbL2h|8#z@|k|LuZ`uigeP&Lj1zh7cmj!B!DN=>yYH z_P`iQD<^v>%j7Y{hcQ_mlOQIHkvd08?^jzcENamZu^4w;}x z%WESmY9o{7Es_;=lI1od6K&($@N7P_#)&iW}kw6I17CdNhvhK8mV^Q}zH=9(KC z;+*hvZ3#po(Zq`E2LG|{e0!puyb=Wbr?u)+)b%tp^z3FC&a(UBpW++8O7KHlpM2x@ z7hnSW`1#j;;m3VHe!zG97jSASKq64^BfcnQWhMBPF2qKd50tc(r_CaGqIE*TF=mNa z_z~S=6?3nXmvrG*bS>;7lCo6Qrq9sRH<)c{g~MAD9UPrVWM}UMK2%>ne;PA%(c&db zzY2?lUxixDV#jcjQ&Q8?*JWgH*}84}w>x;d3i-SD?A^CtaJWP)DV3I$ANld8ic_a6 z&zwDX`N}UfwRKmoU6(bt{N8%=*6p?jon74zdwL)BJsuny9vOZ9;wAjp9UK?@9`wXV zi$8w1_%GvvUk0A|Ffc|wE(9`7K5%U%7J{?K8rv(_ZiBnc+D;Q#xDu;OLVg_X`Pe^@pSF6G=GTf}J*_i&wO zb={wy`!oKg$Fp#oaiB|UcOMKlOqa@$wp@fr$#jg@hP2M1^udW$zWL>m;J>cu-bW(M z>~}gB^)@%%JifW3HvXM;X4emTCa(mejbnQCdZL%E)#UFcW^6cQtEAO^damE4Ke)Hg>#v2qP3`Bw*evbru z`tOkbQBD5{>A!7Gb?{~mW~~0h_E-Mb?GSZLi9?w=4n7}F=*4FT)34}{gDoEi%xO8F zOZXei&6m?YBbbK|NH(u4vN77QNKW?^@2rd9Tn$_ta#(ZdrS0Bvz&jo%Mp@%f$?5&I zn0L`1DL8BJ=672*L$re)k7mi|ec5v$)!tnL;(o{-Tjo2qGYoFwv*8wAu9bUXMcymL z9Q_I>a`9BXKL1v()6Kf&Hg)dSAJ`@+-Y~t|W^8B1{SP~T%^ZRm*Re78!b*>xj}z_* z3G~VQFME?xLKbOmN$;$3Cx>-yr1{6|=S zc0s;j{Lky6xu$ig!|xY=*h5ZWQ367)4~VaXT%-k=>%Cg>FY5{jW&hCtK3o0&!2tfZ z3H#T6A$+j(|CO+?h~V!7up$3G%)>EQbo@PMIx00EkKEHo^Y7W?J_2O6iGKLT7dsuf zYKutX!(3D=Z&{*0MHwqrr=xwqY^-qw9hEgLy#}9?M`J}e8>B~2;r|Om^&jvX2Xm%o zG8%(V;q9rkx0GK7i6j|LTB?<*e3UI z?L&%6xwA28W<@7=RVRkbA{|>uid@fMtdDVfTZSy8dOo(+HEgXJxDfIi@;LhL=+Ram zlqp?l-lfulf`wKZFX_%rpag|&)x!?A3f{v1TBW<*Zf_z=zjGHCo8aS-;D#4zoE0na z0Ao{(7stPq2SQr6iQ&$KK?SQT`@#W`b3Mh&`TL38hIAAsi{;vs0e2eQ;XT}GJe)`w zgEbDEjRoR}T{%5Gpo~?+fx|o)vV%-x>wzOgLGth{1nw{omifONL^t4MgiHin&n|w7 z2n_lMxe7dUhAH4NzW!=yQN^kzWHNE2mv~p_R&${_5#&e{#pc+qgCnDPn>H~LDeCVG zSo-B*c8FJjK3OgXKx4KIai0h&MEh83N%ZFoP^MJeIPr$AYRTV&=IXGeHpm0JSl2|r z(7H+;Cq}Tc1}OhTAxTUbbky!2DK%QH`-R4Mf2(5v zMkpiiBK>-}I=?*^-yiTh(@30ZUjs-E%A9(qf}q}5 z;6M#@wc5~(sBzWd0cMSDWmv(wh8W8?b^R33bEtBPz{iOFOHQO2*Fa%XwfGtqRN=38XpUS?hYVwMhM`#BAwlN3{5HTK_%GbW z)&L}iamD@`EOC<1tBzql@xoFBtkc5^;SW!@NDlfU}<}+xO{V-z{D_uJ2iv;D=#D$|Ftku0HUy6 zJ1geHMPaH>lH7jkKemjyEwLUDbLcb7gapAd%@&YJXx}R#X+Os2y*Sf1KvC}tLYW=N zrm~P;XP;7S34!Vx*%>?l=ahliGG^`2u)eu6)sm}BuAjNCfpyhLrL?=Z3d}KNYJ8RmrH~S`b6qQ3q1*3&jA3VwpkI?U@Aam4UZNVK(Pxzt{bxAaY zxA1UU-m+7eC;$nDjM&DE(1v!-p^T*5by$Rs;VLGjKIr;+|LO*7Tpi>o*_o#leW^z~ zsTi}Y38~!82}fxgVCjw7Xp>**-Z z8l~=*EgC|EAP-V>nov_2Z-OiBXabtJ1~yKF$v)GWbz!tL=Xr@$OA{)qL#BJJIM`LD zGfW4+@@Nc>pK}w!hkT|MUjam&{9OCMOCyrrb}q2@_t7H)My@97(g<;7ZY>up6nNor z^#IF|(Gk93_+MMOGkxZ4d@Pqk{~IzzNXTsgZE$138hq2w93^?z#TCL}Vhf?8`+ z%_j#RA%1Ibd2*Pq{6yK~VOpd6E|5^g34CjoLetTN@_y6z4)$(!A)j{C88s=5O`8)u`r%+7y*dqjSbe+}LLu ziM1BFrCjW3Pg1G$x5Qx7i;XT!-LG9y6wTWW9NLU_?#%W*T=P}0&NZRi)|nHx8ww)EtuNNt~&7$%F94P`nlbkT6@!Mqrd%Xf5PKEu%Q;MKWAd8hb4KgeO8_&KY@ z2r4zwjtnM&qD(rD3G>VeImD!>(lj-oHl$NXL$j#_&kj1GGNHWzdc-ltX&D<) z7X~6z#L`{j<{%e3(BskY)f~8+b@MnHC1(7Hf~#g+tkbX5GzJpcAuA69&IU%qx%gwd z?k0;(b1OhfOk(HOI&2pY`Hg)otLR8$wlq6P$zaXK$51^<@RZ_u3;eF98LENQfww1l z>C2s4)(nkGdmnZ@7b%-#xx+jkbQzUsO;^gUcS-zK#m#pE9V5K!bDH9m zI#M=M5*uT@u%Xo9oAc}Ey9lnuidP~8fSc2@Y5DqhyY2B92}So(ug5_!|6Yl{ShZ;6 z=`oTnnrkp)3U5X>t>KL8^RgR1LS25#FpsS#x!OoHhFzS$DFQEwmYA;2$5U2#zJi-% zHMY1iRdUO}gMp2DOrWR)63(^U((4Oc>81>bhwi<@Hk~zM_v+PH!aQY%bIn}S?vdh? z0ucDFrQ>dLX{miZ4cR3Usa&nM%`r$SS|^SR1XEhGTMGs0`YSSk5Ao-bb{~`l4}5cb zfcoT?#8mUJ!2Q|lCR9sjzEizyH~-K%{DGwgV7 z6wQ0NEnB)7i~@?P&%D{d#gNJ7)XWArNgSWg2WPt!D%A(Q`hVpaNjx7c0kd)XBvF=g z^Tlmk?QOU=#~!W*O{EQobbxBn;KKY2sD`PEt$6wBElZ&^D7z+>KEZ-wOqIGVURuOI zzZJ~4+h5jqTd%YUvG7GkNOq1ak_ZN0a00D}4`c=Bp%O<$6u+!7%O?a!XaJw5G)=Y^ zlLl2;sl-l*)?CjR6(K?s*l&ESLU@rV0pOb&S8Q3?j5U-sp_~kyZ=9^cryimKXGUfb zn?ESy8dI(9esORWj)+A{Z|<>gRhJrPgnrkw5eKN|4wg++_Q4FOW;L|$4!5wtbx9Uk z2h%cEX;WsDrWOVt-s#o>x2$3`%AmIj;INAXV89&7E6y<)>9!k6g(PS#8uu zAG^mw{88sHb42Q4#mil+eg;zoz^dq-+3mY+&0dtE;40keNh+q}uh!$kv+D`#h@k65 zxi7XY0nJs9i(B8kA34%UysXLgGvm(lR{Lqbe>dZ9^^qk?zo)F#u6IdydxTKqTC3`n z1LnT5x}uSL)liyYs`MpS-S8SfshgQ7;GlB(4F_3>hhFNuMXn4FS}xa+ioedy8TRue ziaJ&{p+Z+R1!>}LT{(paUPedi2xdIhI_8SZpd-*+-P**E+?j*rhPikQorUlgP+fI` z!i)HkrvO!x{SvxvnlbGnRU{W*j9xG6Xu@XKgISb~Z0F`3J^L%5l7Q+DFcc&`!^QD| zj4Upn@g(BF$?Y*97ArRRA4+?P80woLt=ZQ^N{5BPzxqQi$3CNA!F8PE5(MQiGplQ$ zp_-A)p1G$6n3AO1NTs^wWzv;hSfG9W7!G@~SicTJG?Jk zuxER*9VJ+qw9rpe8PG7qI#P_6C$+T6ft$FC8WBy!5>-o^9)fLr&$+CyR&bs$%P;cip6d zGRKv|?!~K4{&?K)DMeQw9UQh&uiU~=@Ljk_RX2$mC(AVqP zFKntKJIsX4qqJXS;4?t07Jxi*lG~$|s**Mi4Ql3@^)C8iOpiFhze~n7X)VatY2Te$ zv)~>JG(6Fm>0>r38ikss4-qAx_EWT?NfOMQfaMi`7&f8y^6U%!5Jv1*uULp&dmbgx z+fdf^a14i7B5dYfs$U=)W;}_3-h~TOjU|IC(h6 z1o4YT!0623qIN!a!>t!$O>25}2V9bs5}K6DmZ*-DM{fPj#*Awy?8%!u{psQdr_%0a zUC0o$eq-Em=liGMDSJNNe3?rg)-yh}G-vVK`Yk7R-@VFt6#Q~=WU*Q>7U74B3v~H) z1(RWXN?Q*L>UMBiWKv7vb{^Z14z8g0Wm{&q?t^%aH=YJYso7cEuETa#!}e>48}6|e zq69u95fCQQr21mZ1C(h%wI0KZ5l&^_sjC8(H(G@k)Z#h`$N~kW~YDx#!34sly^4HC(mqcjlrufT6R8C+h zc_6qJjYI6HjiI|QYYvShO1My|lOY;dm^9iq+ke1A(y3`Z!nvdM+nav65*R9@!Xa^-|bWk=7!3T@h>uYM#j^sWZAAhh;q9rL65xJ@l+J9MH+3B^;n zS}t&GjM>f>sobUzn`IJfe{pywMfcjPlQe7ZR>9*$igsmt2}z2|QCkeXg>hXuOqMz3 zf98@!cFVSzrj*Ju1%Q!+uNc~HR2Gs6ZDnd8)Ci>OR=08WgQnEcmc@2AXKPd-bp6h> z;kR+cJW$A^Bg#(lGV%(E;Q1mWWmFcvtgEPEtcPp)T~9+yHzh7iI;|+?ZV<{Q47A@6 zZCl~-+p?}WvUzKjKx@j&br%#DO75b&0-qgAmm0oy~&ZpiA>rbgqYJ2zqw`-@U z*L3~*o96Sb+f7B$(HlzEaNVq(P_h0lSzSNSxX_)N8M4RnpsXOH3AK(W!9JJv>KdG} zssco=7WN?f>pk<@w!X^4f=nM}Uy0I#lR}4r5gJ#qyz2>#4J_oM{(6n}!UST`N{nF>P?b~@cbaw`LuBfUFs3Nt zP$nK-49kT0gIdk<= z*^O=YYmZYT2NT=5`q+gPqx}q(C2swTW%t_5JXchGz5U9Pg5$$;^^9}ieoDHTgK9rw z$DMQJVsmL$%HmZP$J4D^-YjvC2)|2Lo*R9@^zu80=tZ+Gs{LSkSELmNjxOC^-&tqIHQMT6w&ivfb)$WVweUv86OpQyY2R4ij+u-k7&{Hzju`p4o8u`;#@M{S*Uw12gp|3Lb=4$~v@&k;Yjkf6p2%Uv#MktSEXY zHc#eu^@R>qT^;NDp}~5(D;?FXvUFu`(Wx1~hE!w*sSvAh2n$ji^mwfZdDV2q@~|2U z$$5Kb3;hJ&T@oEBtXI2~i)PP!N=H2}D?9M?P3X?6rP`D!Tiw_%0}uX`7xt~8 zEcYth4tn_+27sfP!I9!OW|?Dq0CAF zOJbEnSNgUj9#zE(1FI<+k*^o2Yl z(wimFhIGotu;nRP{-`*EicY;KxBK z*E~FnQtW#SuOG9Fj`D4cn%WEECbl7_35 zc{Yy`v*^uXu6YVdPuI9TBlL+q?>kbw1mIT0FaWmOW%v%(d90Lces#2jWtds-6kp}$ zO9Lq55&9CVW2Vpm;FjGwZ5_~AsNcyo*jZ;)WxkS^7@Wa^IlE_oF2Q0e>_Zcrn6q_^ zg+RElnDvOCgZMjIx!TvRVOu;K9t1@WH+}6^23!;HPR1i0cJ_Wt(l*cmCL=*oI|F;* z^m7q{GH+X-zgd}i9NxarQy*H=l`+eGX`U~RQ0#C>_w};DyS!!5`}!Nh0ONZeqRke6 z$-Z6iYj!Ia+ly82%Hy`j&dF)jH33(ij7(X5Y=N-jC>ND?k5W)3eg}x|l3~yE8Sw*?0CCa%b_(yk+k~ zA8yd(A9!1a5S!50mSUTsB5R{J5Jf4+cwL!4ak%wBWjl8&!RXQ4V5T2c10J8qk5K+; z2)a|t351q7-HuIr(}ZG4?mYE`$1=;h>2KMg-I;!44#07*l8kw&lRGoJFR06~IZt=y z#xA+Ft{DiB{EZK2OruA)pHj4xH~P%;{i(eO1B*9SA70{lpQH4AD^Bn2W@#J6sH=qEy_yeJ)OA9*m8!#vldlpc3miZdP3@cX_l zY>kHz4$+^(;YD;9vr&UGf#wq&(hG5|>{dr;@ur|tGi{7mKqJAp%k?OeUk(HeJK3R%(@6mo`+I<3BnxAS+W#J+yU z$?LIY*H>2odyrfLhG|R`xi}r3xv@-N)1`tweo!T;UcOlSbs{P0_P>2C9r<*##^ zzd4zULzK9%FYuBo&3TJ^v0y)`B)hdBce-FZJQ43Ap24y6_T@k6eOy_ho;Ns-5v-Ypr8H~};jYoFM3gfGk5-A#uRq7N&hHj5wod~mPpsa-x z)IcgNf+E`H^ri}U`nzpk5DQVCBV^()aoV?iQ}qa5+wl1ZHb0exNMN;X#D@+k2OBPr zURUc@hP-IbqwVgzQc(1cU;E7&$V=4VW7v+fPbnJLMi1{b?A-bD2q=HCb&j?mAhsu8 zC;*t{?1bPTK7aI01-Np)vP7BF^*N#)dlkft84dW0~8vGH-zP&FNu z*zXyI{ZZpsUd)bjbfxRnxf-^-h|@Q6LbnS*D9T9Lw(FGN1+{Q2IOIsO8ZP#1bTBJr zl1t*N;I(h|S+|`oM&*tJBGkbPGQ6Q|RBu!~^!$Yg({-lwG`qh^O+S$bymuCj8h5$~ z){#5&eb1yomhG}oqf2F(wHS#@+9^OdnH_+AzAW3zx1g1)cb(G3i+8(LuGh^_ZX}D8 zy!`uvETRjj8cOgsN7*%rYfAAZrhrPew*GdmaZ(1;Y3ePD z=3!n=&gqSh5OtUzh_QN)@F7mCg-l*YN*_hLL-X)Ht@=zx!8w81mDL_l!t^a{Tzeyj z0llsB6C1;*Yc(sx9nE@iaKl-AwLe(DbZ)v4y9UZiW4&Z6fnE;NzKCUI#+`A>5{G#x z(SVmkw$)e}J+kZCdGVOp!P^5AgmG4(M*CjUTE5wZV<{4 z13^RtWr}bfQ7Aj{ik+QFQ5A#;69Wwe1sE*&y*~(a3aZ!-PS)a(u9Zn_xJ?DR-Z&3^ zFn%RjE==sx=TaygB8~8gLnDw^Le4+zqX5ahTKmA@14LaYXx)~k5zlYSXbDJ__2x7w zT~8tr&mv2xmq(t`zJ_LX0&(j$=a%pvotc9aH9MbKeUw+}r9Z8NXJI}2DTTRwSrQHr zgctYhbt_k?0fvzRwz(lan53BTR6FMo;oHZlwr9#7Ok{R`L=We%;f@@Mpu^ zUl6&g;863x|hFoN*M=@si39p;^(7JClJK%M&_E4qUBc#Js z*CvjDS%cGu%EzpewVRzWQyRn4^@%wbpb?|=oOsBQ{pjF2$()=flx>{^XE=nrcUnm9 zg@=Y;Eol?@TMP%?E*dF@_P^39gAlmS#^JX^uT0{y=cTB68-Z`Q7rbq>1{sX)5Et<~ z&xl}m0*}#S3-1qq?^3=!lY&H=>-R$={{B2mXkvIuJR6AzUiHzmh(NNg0WW>{Tsosp zuk=t67x;E9EbyCAR6)AK19_>2!|h^UjBCr%Uk#FSqPdo{6a7@mvb(#mP?xo|&@GL% z5{VZ#C__O389suq)9*J>M~kV%f)dl_D>%c^;=QP2w(taZpqUq~fs3s@NKr|sIw`QT z_ugO-stl}ntg2m-mmHtgY1RFNvA3HZ8r*izL_?KP8 z`&IB#!@_Le40s7mdF6Tuf5S6qhv>FUftH#YtO0t{1B5OMt2n1q=bp*(vY z_!e)(M!1|TvQ9c&9G>MT!tf%KCEh|=N+)-!&SUl%Lm7FH2T<#q9z#o%&K^M+l%ooQ zN#;C4Ks|857&35cWlu=r#THGdvo#L6F%-Ls`*YXB&Dec8dwcFFQ_?q8Pm|{IF zq+KrFUo=I#cIk2Kv^CV`pd!{S@hmRsvGvaH4-qhxBgYHajokf);U}kwSs-!yd8~1go#Yd+}hpj z#Y?C7W&k#L4t)aRS{CAnp)uzbTpgR(UZ_SQ_(k1bph_-x%nmT`5h0jvf!%q1fH;i0#OocsEGu0bc`0)8LCm=yplvh$L$p@iPD}f zvZTSs>Rum36Lj)z%1YziTROU5)0L9{frex)v~?dP7X%0Vo&kASZR{lRJ1U0)&kjaK zIU!FM=8THavMwTGIN~7mo#U%J7@A=RE9i(j#C_1eq8H}VM?tKl;`t?o(EbCGHumFe zw@1)94eG_RNOTciZ&e`$SxKCR|Gt$!DpD%Pc>0xT9dpqWftJX(QGVpoNcBK4ce})D zQMJT8Ei9jkgr}0!lZRqBv&>KV9o~PT35DFq4V(uYGOc(kJ0*SIRPdOE(B6js z`K#xmF)320CjiL&ir;(09?5U<1*1gJQJvVnJC}XlGb3O0LWJ;Br9SX)>N=(F2oDyA zHm3!u;}KWywCxnpmHMFHbt$~;J$i&k*0mO@fj$0Bv-%ea7DW~a3YzQ;dj;EnMZxWk z;}=XkQ!R$)T!1$PBnF2RhFrBBfyV0@T{9t0SIu~{8b4WtBA&e}t})WYA^lo}&DEEB zPf?FAA=SA2W+mfJr($#wjISNcIW(*`Mf=H=)JL);I@1r0Uv$;2452o)#fhfBBZgszLpbh& zcOunB%eSMjH=zg5H-KR$%iRxe5-U#`Vum@AYOUc_(x4hZEu-SEppKavq5|9D)t)~t z7&5GdA!i0e1T5IsBUHAkn)xlfeOy`Scb{;zFJ#A*gv5ns@@Rm?xF9G<0+qosv=>H*%EKepk}R@;+OvKU*}dEB!&8*Pq6#6cD2dw#ZMV?rm?_U zG`zTU(b~(7Lxmo0`ELE+S;~y^n%UM+PQyFlWYIIWLWx2=?ua}_x~df!!o1tev*2o{fHy6FbnX`#FgO%Vj36xH?c+i$$hm^O%zoq9nGXd3xD<@y`REh7s;fmx z4S3G(QXN4Oyi?=j+T=bCx@bY|{4{vexKOV&vZo$;mSk}*Cn=hi``Zt;a?cXM0Zy>k zJf0Re46Ugo)?Ij`PX*ACws({8sna_mxC!_^=qZU<>CA)oTTf!Q`hZ#H?9w?oFUlRW zN=t5G;0?NmKLyp|9WxhFR5F_LyNJr@ECRI9H3{wcWB2f0JGo8pz^*#>lH@KP-kXi) z>i#@nJIkGa)Q{;!sDn3G(r6`0s~T6aUDE^3p7SM08RzKvCgQ*;kHPCi+3OG!GvrviCYk1b=kg5H_olC1@_%J1f2PNKs6{!$bH;c0(<5-(Wx;v5I{Oy7~`X z>JwxXDO)6#H-;tBrSQ5qhR5#V3!AfYP!#Pg=CXqonZe<_xTHi1GEMT72C%=4jR0|n ztYCL(Wmsz0X|68%MmB@+D#p}bYCo+4$T)#D%HNhgB?2sYASjMMLcgwBdewbJE!Qk= z1R5A_ec!ioP1^FA+*fS4b8as#d(5o2XF)|HI7+XBnK&SK#Qay6*hJ74V?duB8s6rV z7JBN5jeN-P4i5X0sszAGs6K9Rjka-kDm6F{H_ap#2pLve%oOlPv)O3+@TQIH2!ey_->)yRwy8~=(+)D|p85i3CTcGE$I zv5%9LdrNK|yj&OolY-b9l`FhNCawpIW1cl60V1@9@LyMJSWir zWUHHFhx$mSS&^9$1!n}-#G9<>IN|&Otg5>MSIa%Y`XOVCgKq$B^CCmP^sE|>i0hf4 zR_F?K?dBHPQg1EmhuJw;#^<`^(1{I(2{_c#qI7RjB2*4PN0{aj;>#O>AJgYnTP~&g zw*V9>GaQg;#Eev7hMvHtORO6RX6RKmV12N8NS7*b%mJ)ZZkn2>)!{n@CU{ij0@f4o`YSLKEOB{M>WFshTpkb2AEEMKPI(@9gvk-A z6%;*zgQMheE%zFAEff>zZ0>gJUYFUr7%p*#^U)a-)xP^I6#5^+bdjkh+?;}As+Loi zfrgW1PF<(HMnP>nq^7Ej0S?V0hX+#cA5dYijF+rhd)8U89Q_xIoi!sg55y@y_B4L1 zz?F8TjifzsPsjdu4m@$}Q_?JPWbRynw6aGGJ58sc2+zigip z$pN=pJ2A=GHLrlR8F4<_IXZZmnv#g%w<9?eoQd|!L$jA2;#Dl!PT=%0c;S9YU;Jm4 zs1-J}JyZLeF#a_#O+UMVChMyoFxh9d?P6ll)&2miSe)`*Fr23kPpGKhRQKcPldM44 zBK{3(&+}yf`A za46<&ljc_Y`zz~1FSY1r?L+eZ!q&G%LT}y97gKPa^VtL%aYraU5|Bb0_uevRNu)aH zjC|K#3};l}`-*=zdpy+9*1&#MtvP>2rq7pf@~Pj1k*)K-=*iUxmbWGNQg6Rg%+=+B zXmg$c4O?v}*&I9=US|x{C<0N2ajzToo2@<^N~6r^LE#hSB74rYxf>fncZ?d}pXih? z@nXd^B?h>xD`*o~N9IXs6P*iw==bR6IKoagP2fP zo+MxNT?J0Xrv9qI|+zV-q#AOU+|RX zBrt2>`_pB|+G!tO+JGS}YaA1D_zl=OXmZaBXbQF4r&mSb6tlg-pqF1?deW9+C|H&@ zp!o7@spu-(#is-RZZ7qg26r5EcDw&(MOQJiW2vq&b*9fdQlm}Wp$y+nlZ4(sVeL%Tq zfPU$BIG@AyaID3W;T)rvU^-Z_mij6)a_2%ux5c4w{PP+&XEk)ytDa#e90Yo|CO6&b zI(O#10_-v9^~7)?IsCSH`udsU0=xA)#PFI54nroHks+spTJK0YhUUz( z#D;ovy3)2`pI-^GnrnEkyjF4ifJLs{I2+OI!99xC^e+;M1>d5egnetXu_idO0M9UsgCnFv@k&TP3wJuAh6h;z8(OAV3C zRAejE$XC(rUeH;#qILwEACwq!vmP<&SZBd1iFR{-ruJz6L&GmR$$aU=C; zQ{Dd6=d(}!(Zeemkvz`3!}eg9gA?kF8=iA{HGPp~ym?@{8Zp}?{0Pfd1>M(U%L1~1 zWe3U&hQuV}P+qJ&;jUzl>PrUrmBh!fd%HYWknPMo;ncW0Qtx=E3>$K^<>jS#gN^C{ zN#z9s)&?@4#n2NtQnMwxgY}nFTd+SP!CRqE*ORa*4YpJmz5x=Cy$DUx<@JfF{NRo$ zCb%MoeSX4O|x?xx%)+?*-kPAtVdtCmVbN{rqJ5vd9stMp?yx!Ij1*MAc%7)&Ykk;DTamf9zUyStwp^}{Y$-ob*Z7g zYNwzoSoI#8BwQPNU1DkvTcDY5BlT$FH%dsQkt~Kau<*TRGW26)&*4vjCSrGiswG z-d!`NqMry6BL6Xenry$y4~!n6bD+TIDJxZY-h+(>vA*<1{~ChnsJu)E^{wxU<`d z=ry+_gRHZ^S?{wDY%tD_i|`hu7c;+klv%v-um(`G6|ui8Z(9`D)>|W$Nd@Aw!+6+u zK6CuH?`AJQyU|rLElrpQ#~WBTB8tOyw6ok_QqZ&fS?gKlg{PBj7c|N+1qpxM&8fVI zn}1Lrqis+Q(H&QhkQLdTS8=3*3%67oJ{XNNEGaESJL-`i^F{eV; zw_T~sa75B!&I|PD%JHS(+>3>oc_u%k-Vvu3OO0i?cEi%!!i>f+Zs=!Y(XZoHYOge! z%F0=%5v&uUM04K#zQ@hGIUV>-gZpG&MENe60)#ZE0}xD84nQC2>ZOMkxU*^F5liYB z3swyHaH=m-`_Hw=>0nkoC)G_maY^MBcA_{b?5QN>h(j^HOKjBU!LZoeG8XzQf2J># z-q4jUGrA#6_R*$K1|ZYFX)4=?CMO@N9_#uvj_n_Oax{OC~uzPtzPS%HKa zq^}LbE=3(Dfz8w0z_28U#ZiJ3&#~Smg{lfuI2i%SCB*L`$(@Jf2TW{*9`2Licfo37dDKSjY$D8;n_U0y5dWqKzK}nuYn( zn{MP+$4ZSFY+vfFsa23UcM?&*!164=jW^a=tc;2WKdAow_(D_d=4*6pp%myjtBf&b zRrLt*sB}>KgbyxJj|sZU=MA-XmbjzfKj^B!>?uv<+I>Kd@M^ylsR+05@M~_7_cRAV zt;54Ms)er7`1!c-`-OLM+1qE3(OetsK~1p=8=QgRU|1P@zUBuo*=UYs{Rg!Pmf2S9 zD2~wE7*ou_gLr-{bpONs$|Z>@rhsMz(y%uvlyyPMp%7;&nCagQ)MMrBRMxi4$E~nV z@U*hYEX;bZ{fBV;$J+;hOmg@wRn1yF)JDN&^FyDvxj$dz8W0#h(MD4v$F;q>x?k%l zO+0|Lr+(|65+67>9ucFx4$}Rghvw@d&sCfp5sLs>J36RY+WiDr_o9$f+9RJe0gi^H zBMy>B#x2;Wju@bED!?Dc04L>XwdOx9#_O4f_eWj7vQeCkHNM;Ip! zNI4Te>uX7@$aFvPuKW%>=VcLf*dO20)%K?AEQ8cQe)Uu3{IGC#YJ_CcQCf{w6J>+_ zIqs~|ZVK*adb$4G4e_}tae)|tg{njSR!TMG_ZIzbjq+|{|AZXmK<2=0O}5$iML6sUoT{~ zz<`%IL-eo=G5PoJe>7|Tq0*AijI+lg1VPRU+Rhmnp@gK^+%L`=w~txZp|`p%nfHuQ zarb6o(dOT#fhiG24+xV|!8S;y-u;OKQYI@E@{u)X^1`Wxp{@)Ph8&K!!MDhRBBVTz zGkx#Dg5a+-YC5QKk@C4lJMDKIi9$J>@kGH)<#y-jq;Hj&)+UZ7GkP)|8gWL&GW5>p zeZ{Z>r13#E_*9z-#q8~&DDbs^rI+=V?U^Qc=bJ+eGqsPDAT?L*gH3y*_}_l=r;TDCGJU2V_5=GWoougzeCSYPjX_2 z*kGQa1bB?8a&3rP)y5Cw9GxzBAWeHs!z&et)6G?8URWM0h~apHBeLVv6Fy@>MC}0a zk=xj&E`e$Pg?wsRe)WqyA#x9}ct)&+x8L2TnRL3?oJ^&`$#g<^EZlGs<|G^C=i)3( zdmLgnyYxHTm$b75|uKapk|mi6OZ;w=%dU? zPzJi&n6VxOE0Fn5xw#B;vi0`cx{USJw;b!yQlD^Azl2rP{I-0+87PeRziUqb*F@M6 zY7ZJJ(8R?SN)9MteLCDC#w-+npI<7ogU<1q+J1W~Gc~OFA;ajN)A`<_o4e`*y^>xX z@kU~CpkV?*?<_n6%fJ_6n;{@yXyrHbD7c3Ya)av*kQAJ?!UQ6k&~>DyVg+oP2hz7Z&*RJ|Fezb4R6yIB&>^qWAtaM zmajrf?o$Wj#YRo*G+?g!hckh7Frp7AHUds~^1;IKh+i@@2FYCH_!%=24X6V?#*MMF zKtv&WQ)6S+lR!Z6r6bNl#3#od>*M6-h*AI<*?TJ#f51uV?{FSw{=Zc;JF2(VrV6bH zB*GxW0Hp|7GYDwQM$&eFY&JZAQJ?6~Sg=U1^no$<+BzCUc!{~a@@;4B2Q`s00r-th z(#O93&3dOtwTs%`+%P#vsks*Mmo)LC7iF#4;C$bg_@J*etHyl_Rt>GYxr=XmeSF*L zz{SZUcwx(Nd2c8W)yhIJDFh|*5}SS9--52s%$Y7kh;auFL>^u@Mt)xEb5h( z^0jGVRFrSF$XaiUBmrTaK9N6a$~MzMyL7#edtQN6_GsiLVTmZlw=#^_?`AX^G45Q0 zn1)-iyMy7hzF8$8QFW~Y!p!%I@!(vB(TEA}WV4u)(VQ6#qeyVI^?o9{(nLvHS{a1L z^87KRWh`>v?`ts{To24>u41W=PIMQDe3V-pMm$G=oB|;-EN{F7C^mehQD~f7XfURBv8`lvTdnH^TJVJs7Hb) zwtMZrSR=HldU>32VyqB_yR*wDNMoUGnIKu{@nglBiro@q`rp}9>Vwy(Z#c(;G5>$^ zBH;2=Ehl~kpZ@opLo{JgWN5!qOMMoKmVVIPdZrO59WGWw(@c(#Xx2!?{%-*w-Em0JBWa(%Z}y->j_XZc63lX z@a_3GN=u;oXv#Q8>_?C{gRXjIobM?AxWb`?ZA3(uQ+TAlBJRHOYi$X*lLvNrQX+&$ zE0qS00CM2>vNGLGUEI}QMoz%V_IvYzsH3x3OQV$nlx>a_r}NpHYE77J(IzN5wj={% zuHSq2Jh&Vm=pEGUz|ATv8kCe_f%SF4I*nA+>fiG>HyloYsWx7)3Y%3B(f(oKH|06y zg8Ae^O5yG%s{8TQaki_?C7C|ALE%iiqT}wgrJ%UC!)H7iD|GWyG9xdi%Z&Yw7n*83 zDnoXOV{?K40Faq7)sA`M@bVlbhFT5(Y?&?3E)pNSc&2C@PK_)p%>L$F8} z=7!p=iCSM_FGe_-gmZa*s*nWz_TqI1xd*I8RF(6YW|<71Ky2>Q9UZ80yQW5H_$>D1 z@1(=j=u^z2ZXh%$O?G9b_Y3TZalS8!*-h>&!vth+y_Py2adSbIr^7WOGQbOi zNGif@H~aF=AJY%VKO5d5&id2Vz`s|)&1INo8OsBg%~sk-#EFOG0I)j~ z2kC9RjV8c(TKaKZdcZzT8*mziU zga2^*=cc7P%dX;yS(&j#NLu-t+)cw~wT(dCqHlgWn?xaGv$mNaj@zw@Clc+Cc?aaM zSY>ah2f!2H>_{wAfXjM1ccZCwI!W#$MtfNsJLP#h?wF7PE55+X1QV-p^Ektd{Ft4F zC-!-*hQV@W?8T4RY~IzB0M~otjQMfccy3ZgW!jR&qJt)=k`?rDtLe`7#C!Ahx5!K$ z$b{Sft`vJne>zv43x+`WNGh4bWh((@w4tb%_Dgw3V+A&O5^b~L`C4-q;7`M%NHM^d zTNW`azgSl})>=kN+>fvVsVI;8H8hq9de;8~&|1U*qgmH!MfciRfrBz>Rih8by%iFy zeD*20V11?#3ZYTfYa1uSg%DDS{hNOpo?&tLQ{#hRc2`LPMK#C^0B-OI1Jn& z%}rbCIT*C9WCkP^nPd4@oM+mhKVINkhOFI7R3>Zl6VQNSH6AS8QM?U@LGf+amDG_b zOuM_d#u;d$!N}e8QFdTg3NP$Y3Z$orPqmsdMz?tDb}O9(jtq~mRsxy|HQ8Dmd{Hd0 zyWcNS+J{H>7cK<=%e*)*RuDwiV7u}~kLT^86LCu$Wr%Le`x%sH?_>mzg}oB_AQ!1w zmjfvXvIjcp#81a=k;>N;njy?21jtn41gzqi@R5A#BRAejm@+{?H_*(oFcbmexrVn@ zf0`MD)iGrR{-%i6%SOP;u0rb)-;af4xeF~;ZGtMfI+4pF=7K}l5Z(r!_%=Bu;lsy* zPQhZoRc^p8{Z^!2nhc8@hb`cx_KGtw+%A(NpZ4tz3+t4zt3Ne_&ycu}O zJK(Hqqc%3!j^3K9z&+7B-&u4ELaqel%SNLSXV%v^+*~xD%P=AR(@`eoamDGN`vRD$@3S(_YNxYH z+++qTq`H~tJ)}y9Nv_LjXap|j>bSRS{vG%EviB!Bo)m>nJot8^dN~(yy%QECug4Ra#^2GI(-R+UVx{JIRBP%qP)) zO{?NcB&{g27z7l<0^TF{ zq7ah+Fq;2A=84Z=p9TKpvyMN4b&sdg57*-gW{C!%QU(cJ-4)|QB=i(f zmiya=Zab}yVEFy{#-5n8ne{d9b^k$evofO#X@hZ#EGw5?g^?mJ3`Nw-Q zzY-e0Qwo#4;>Wyybg!>OB;hKb!9MNdrepHtQ1@-79r$;7@p&IK8M&lJIkbRJu_5Pr zds3qUzOKqG0`91QmO86Et|wUXm+*W0c2)}cnxg2M4rfI?AN*31WA?LfWjWadVz zrWA@%0*a{}nbVk>i#n}{I2EGMLA)MY76BegG>hz97_z?p(v$v`S{V_!4A2aJZn{%P zAZsndJa;S}B%&Xri2)2IZTP5_nq9PDYY|lHKxKu}DCoUe*x;I3ho6_tyV2JrM9UZ!%y$i9k@%X6n!;<_ z6ZHH_(`d>-@NQ=lfP`3um>bT>!HUgI?G>#}(EESsdm}negVm-v(Z3PKe@<%9`WewX zI`knIqr%yl8k{&XT8s{CueQiEQmuGHLI18!+%g)v{hVTnCqgDh&HkJ6$lSXhI`sY4 z9_%=9P*<0gRQ>Z>I9eN3Sn(6x{qI5p7X$WU$P25t(;bC&aP5cqv-Ss6o^gX@O?3vG z;{&$o<#e0M7c@L}+^l)s9Tp1Ts^gI3#g2_*>?R7@GBWIQQ2X^+AY^Rvq5GnsR^sd+ zKIFs4eU*#c>JxDHrTd~NZhWI z4VOKi9)K2N=jIjdRZf4-lmmI?^C(q_Yy&gHYYA0OpSt@?LlJYl-LPnrdt>`hD9}mL zQ!pb&$8e3`gP&uGf?=M3>)Rzx#$yc-PE_{}3Zt~YbZZAUyQjU1N|G7I#7V19d=lGK znNV;Kw)NSGUb!Dr+XH~^pA_I1^O}mAyUc*_H20E3(gYnFo(z>C4-3UQgIi5J`HMv6 z^LbkE+Pkic&`7_Dc#C@6OSR$ zzoqPp2!lE10r=y9F9zG1 zVV7)il?y_zKxZ}$CZE-%nH^u}n=!M13v+=mm2_v~3+W8(>D@3$XbkLS(}8QJ8S{$s zsf$XjaWb$PrGz>f+7=A4xdJmI`m&gRBMtUWTzv4e z%9sZwZQF+xOZthpFCFs8sS%;~OfxqtPhN3r-?(`w+HIr;BBqLep_LCl))a~%Te3_+ zGv{4>#-@OGU)Q&WE+-ryPDsM_?@%UOwl&yWS8Z|dbLr5(CoCbo0b@zLg4yN|`l^yZ zkL;~g11$wZ^p?w0f$WT`b<7_U0)u*&vt=vV&|8&#y z$Of(SNOf!g>6z~E_d4v3QCnwP@u$l^#4SzQQHEXkKg5dU&c!B&A78P4cfV=*r+Zgz z$hpm)lYgyWC_P~6T1Fxbg=YM6avyz__=CsNr|twaJ>4(x>D-o9Yhcu08EpNr`@q$l zf1k)-dEwvw2XVLEaP^w*6?hDOX-XR(+q`X%Y<+XhP_yRp?#403e4rLKCzYhIZQfkY zyB&@Y!)Xqk<^^ zmVY|H#E466kIHb?0lf>!KNf_cF}3H{^w##y;x6bIiSJeR@8!>*5#t3*n$~eGYL+HF zQ9^`^UUEJ7BvW`wDFv@5u(OeZGU`pJhZXkbHbgjujEEsPkJ2jt4np+s!L}7+YWwK- z%Isq*WVAlNu<$`1u^5zH^Gq7)0XV`~;IrO9Slx5$uG5GAsh*I5Ahao!a8& zXT5_?k`bt+F=qCS-lDCJRjl<~F=8jDhD66Joc9OauziW1Ng3tWXrmm%=7&PgA2aBF zn*sfX%9aB06KIn8F^;(KxJn-a8T5DCdUKgGG7B){Gb~*XJ;*vddhCxB-_ciIpq`@1 z%<05>1E}z?%4(OCKo5dUIB6Bw#e)ECxtz{ea=}xVG|KgQ;L%wY-wNDOcD^W=RB4q0 zN}(8tN+rffb$z$6k2@0d?ElbxbnT9bFUi`ii5meQ@FMS_BdqVuZ%59lzRdXC7B#$+ zH@4R>?-9?z+xAjWRM>@PZ1qYCZl)tJQ#%#n4##!HR@(sDQM}+z31dCP*B#|EOpn}l z-{eos5m;x<>JNrL&nz?zN8Z`&u4WmQozgH;&o=Kui8%}PQ$xOUlvUo4@<`$OFy1HFO0snQE86u%x^u;kHOi;yI}Tcqda<}SJe>pb4>T0etZ zE9;oMX}A5+UfQ!!acjx1_oRQW)b8D7!!I7&d>&+~v}cncitzyCw##>vv>-EHY96|d zh$A042=a$rKHRM^9H5VzPhP*Ch@0kfo7}E27UJ_~#?VwWBaGJ@n=VVwEN@F(cgESI#joUdE~})&7#zigGcHZwsZFTJ%|2So$hmLlY!R{ z1?)Rnzf*7Txi0v(y?x2_v;Uy$zj#f3QSC-i63Up}XRJbi3ab7IUOC;Pua99WJ_$ExKk$e(3`^*riUK-=Sld+5j3 z3Kr{k)bn1hp$e0sz*=W9#zG)3_-jW6qMvj+>vGu7CH86{4|=8G=ESHxFJI~ha29?c ze$Z3VGrdpQp?@g5J<7khTXVD5;TS|5)2);ePF%es=pt75+8M3oq1X(kF>qTWn!8d#J281YWaR=9?Qbi+c0QLM**f7n>ZSn|a z5*~pE6I=kd4h_^ZTbrX2ND!2DAJ=KZ^Ih^Qw@5pu!e_}R$jIrPg?x;V?&nezjPle$y{?QCE z*^GHx_(K5%0d9!~DW1NL0c_)&R58jASYAu!w)RT`0@()0HFAG>-a^&V#QEcZ2hCrX z&#NUWZm2!L`??Og&4%J)@sC+-_fB~LxHnl}G5U0SZvDP+P8 zYJ_F~>MjhcW0-tx)u`C&^ReltRmCs~h2yX17HbMc?><&qy>%C!$~QwkMZqdJuNs>Q zy*-yQ>`lH;$=WXZIfZ%&TaVm;k^YK!F@SBScfzb=0rGO+$==Y8uNmjew3Wdgq+ zu9Pf{`};^#4f*-L@lOeO<>A;3fqUcqwkEdTuIGL6?ekl$?aQXsoYN!vhb~raJ$?8= z)^?}~Pv!B+8;hH(B1+DiozDE{&*NE{n}cnZLQL`e8&L4J#x)KrbmV@wp#hnmx!4X;c=R z%?{-jGfZxq^PU~9tZGz%4^FQS-@%b^_GA6-3{(4e3P_>N;foXC;aV0m18AmK6PgnA zd@ejuTXbEhPLdbbAWC#LC^6C$Y<^gm84B`mPt0nR&NKlXb=5=d=TNrD0f=4Yfy%Np zZz*pmy`uDx4(D*FS?@Sk>^S$egM^(SGc>=g6|{Sju)aYMz53n|g7aax7^*33qhR}m z!H$cXs9p=)K;%Lo{E@Ch@@eew3<@D+T4^v-7ju6#% zR!41X@?b2`!;L6dKbH=Gfu^T*(aJdc4*bPJ{+BW1BUgDZJbKS2^+K#cehFl42wWB| z@%-wCtgt4*%7CP|?l{~4t-pFt^^fObyMKEXczEl_#J1v?8$D~z?l|h4J+VUPv%2rc zJsShR>U|rz{7DRDoMGp|-}9T>p&Igs&BhDO0}b|dDa4Jten3JJw?c1iaC;W@ z^U#h$KKI>jwxds?cj4bwOo`9#eF%%fE=L}dHpN^_9QIoU<(RDf=Iq`j59AQ$ESm?} z_9#~>(wRvU_vhg{%OH-li1Dn0`xV31fU?^(oIOFo<;M7AUsU*9^Ghq`N`}wcB;Yoj z_IJek%dQbuBpdi1LjhuX+256~*HeG4A){(s4Ed9Gi{;6P(}|Za+^WnyRE?t*``u3rD9t-G zeEHHCdliV`c0aP15+5sngRsepJP0Ye&?OZ~?{^Y1NWK;mFMHER|v z9aY)W#@G(x0JyT?vr)yB3Tf}QpJT`;?5Zz}mW#sijrb}EP2?G?A$bq%1xPzQj#5#FjG4>lO;x zI`mpt(!-i>wt=qjF+t%B;=dBH;QAsDa$dOJ8KQN8!WWc`$APEXR68sJ3~0kzk9_JA z>~&u(gzS}-Q%$@Sw8K5R&Z2q)L=PV%M;^`YJneA{hxviZJccE9Ahq%Sivg!Ay{QXY zf|Ghne)<0L*8xUbM7b9?M*qzDZJ=Q^?E4c0sH>0bYJYsN#A_;ZOGsN4)qd*B;_4rB z3_YYS3qbnn!hq1)ChEk9?PcE)-wIqEb1bB#=Wm_jhl;T09~1PVJT{mP=g{Gnh38%@ zzF%GQAuu;fBlpOR^u&cZ3-V$`Z);_SdHp3DA!jqTBuve~uh^CEVji$9-u};INXM`_ zIl(hlF|QxDTGkQE?e5TLe7q<1;4V-q?2jFWbWCu}u5uW0kuNU3=lGUF7ghZ@reQPJ1G zU_+~JlR;!rT2{4=CY!f(x?6L?@$dZgHQShnFNX(5p$qX57fZEy=g97tOYGwW6us|~ z=uT42sf+2uS0)`bMWy31!kJYqPU7H^;)uCp>4@vo=`52O6iK{HdwhAO^1Lswyp+@k z5Vt)t9*Y>!X{6OhW5V^mcrVv~kJb5?5z*ayX&zx}HxT!vfJu)NG!WXhPJ42$k_3)k zBb8@+2sah_I?E34#|-Emn=#SP?w>Euk;RK39SsTM;ZBh#KJXnH_duF@b?;cPREGvf zS&>B{ghlpn`$D8mpqZ0~m&yjYYZouAh&{G3nS#ixysB&pSjiFKg(jr`qr2+O9Q@TMu)bylB@Z2A zMx7EBbER8K1I>^_rFu1MyXZs}!V8TRs-;A<*KX#GKkH-#@pA~v>ZtTrE^E?Eg~_oD z428D2tc=kP#;Lrj5RE*eG@xH1rgn<1Z@*B1OS9&2jOEkkJ2(^0QxMx$J+KfbrKWxM z=OyTw9WQ+A5~BM`Mv&3Ull0^piy}m%NruU2er>NtUJCaLr=aL zdXv{Qd3XT5G$$x=@i2fwXfFG`GPo;O6*$564#!=S@><`HU_B$Ym66as(z6?}ipD@Q z>W31Dc5^Ro&P=vR$A0WOo|J&&J!mjF>F!K~+>f7)0mCk9>J3;5A9iVNd66^#tg|a@ zL9m1e0afTanxe~O;d3Hx!Teilnp=5)KI9`>tXy1WaNOmKl*5n@)_5@yrF?v<@-gR! z90f~A*53e%nXltMTDh3tF*^x@T{)u}i=; zSC$uvGe*ViYSb&jZ`_CF2o_@+W2}$j1Byx0@KD#(U;sZ-x?S9 zR%LFU3Hr9KQ{*O3;s-;E_90u*>m3;yi~&!V@IehwP9z6ey&LEVWsHa z&|kKI447zPa-y3{==~}nvh$=romoG#CO_0tT8*WI_77+)02xi{(M^F0C&LvEXWSEhDRwwlrv zH<18y=9Zh)Tohsbx>Eq$&YZj8ANfLIhAFC|g%nsbr^Wzt%i z@jSdgxB6n@$%UM~%fXpyx@DeZ_~M0o`LmYXmq%Q}A6bL}yV#OG8fKCv+z}5Wj06T> zPPrhNmtw&WW|+4n+OOd~RRO^p?#{ZL8nQAqtPNV=yW&&c+Uy6C4xtCb)b9xP_HI!V zNweBnj5f%BUG~3~rf9?J;4)YQp0yXa6-%r%1{zcXa#2eKp zNY^hhG;ng$^+9V(X)>eIG4*}Zh}#_~cO~z`Z*LMkX>{eM2{?Z89~U!Wr&s)Vwy$4O z28a2xd3m~*eH(8|`g8{ay!dAMI`nUKlP~WRRpH+%GwMica|x#r zb>SXD7zypi!no785CT!w2k~%a$4K-mPD4Jocl^F3YkHg&JuWkLD*37r?vauYh*RC+ z;*kJ^of>f{+J@)22wYa0phEI=L@t}4CoXdmEa$%EZZg?$KiNBSH=BanHdq|eZD0Ub zpV^u78e+xuml+g2Col-_cz0#FVfS=|mo3D94UMtL2Q_vghg>n*ejBh6_uSB3pBs6R z3glITMGz>!Kpbi&_c{}VnQwW)&5KOvYCrm5hu-y;a;;=X`YgoGAR1NiuXRX&;dP+l z_@Qx~h1V4bwk$ES;n1C9fp9fau5GPM-w`_xHn=sxKrz8BH_JM<<%_7xD{%LQNZ5Tp znj+0!yA^&7kvMQP;)X=~YbaXo+7&L#d(1HPq3{UR3hiL}aQyYpIrp<|K zi#jFiXZ_&3*$!~80Una0%S+a2c20auKwY6emGeSlgIMWwC^ZEn)WKSr7qe|DU7mFYVvS%)PmyL4cUR>0EXpNJd20f-rG8F77BLLkY3#YWl369arA83!Y7ozN4k+ykwb z8*^~>6J_}ilXDPy-8ftE;LL6zo7ZPs5AyL7kbLBb?>blekLLLLYIIyuR>-sI5`eOx zE?c;_e%VoSDw_mJVyJVtkgBG>Q|N>9Ajypv`Ih=&V@d#y;Y-0)wJKdC8n38ipAHl` zEV@*-zWhQF+-X<{0rF!u;;>)Nt%@tq-vRTiw=A99du z(l7qG+jNTcIZ=|Pop%gEs*9Pe#T{Z4E3rNo9akS1{*QG^W%EYHf?u4(|3T@Rz~^4h zH9p6jF{JC$Se}DvqD4XK>(Cc1d|NagvMPV3<0%br<47R`-&I&q21>8e$)e4(kybCVJ%)_d)GS?>f$8+kMeEbR`H^P& z)K1iqoNy_-8FirUL0#;{HfpUSJW-n3Bqd>3lAX#R914#Va{m%;2+Kr_3=kFPR5q4B zd^@lQVM3&~@_pInZH)-MDt&HBYSE@M{{eM_W$7N3N0qOj8GDr74Yysec~4YU`1+-> zfQQ_rx^vcc?_YAk3l6>%sD9tCAp;|fy`u|^x85}bv z)g8DwUKyc^RuIJqOorFF(ok;MDOY_N+$tluNVwA>9DW$=Jx@E$ZSh&pFMP!#%ck&&l^MBxRo0VBgoxBl~wM<0Rui>o<7S2;tg0;pRAL(yCVCVN3vA{7+9 z-6O=L{=(GG;w5V-xW>wjkPP9T4~fNye!dIxEG(j;5RZmkPEG}9lISXdg*XRNgP9%- z0z{dVINHz3;fAPLpJ|5S^Yg?iD}2@JLmjGw@m zu&;^&g>8UgYFX5KR!MvznGW4s&p?%W03-!^>jW2SK|3|Ba;3Jp=W#*BU{3Df=A`-$ zD6ktdBVb?+;miFf#X#YP6_F?NS~V1;4}j z(tZC%f?0T^Dlm}u;=&2~$I2g1C*U5qRSzAqE3x@PKmR!^0J^kmHp@77SSJ@k2MQyw zTYj~D6OZk|g43}bbBA0eQh)KX4`8)?uT(x1$2bdNqK%&5xY(9f29w5uI|bJD0krZ7 zxQ9zK0iTr1FWBqx{=(!0pNmoGo4Ik8wYV;|D^~y)mL)`s)8_)IC%b1A%Z3Guo;xb= zC2IG-LCH9PI`CpK;gLl>-QPDr-?Aed|73vp9NR^b56&u{cn^rtynz}6Kq)tPbV)9y zKxOse=&Q@DM;V5#(U*7l$p#ymjYt&?|aC@pg* zuoEj7`2CpXsbWxU0_I~>+D&b>bgrUr9kL?+Jp~8&6aOaOvh5{@V}H2R&FIPPz1&g; zwsr%bY}Np++>SiZd3+VaY*m+-&6EE&z`1|^MlGZuXrxMEyxaXWH7yBjh2NVN&sIEL zlc@vquWthGXE$mjKO}xxa>AAv3eH=r;{!w=0mo2IVSf1;C@-ffU)`Z#rM9E~5VAtR z3Dam54=sB|^k#6jM|lW&aZfZ~(8j<+d=u-rHC(FtpqT^xL8lfd0IY_UyWygti)j)+X)CG zcv`1JR&XqvSvvs9hmhe3Z*D@rz=WC=#hyV!vJ^bB zitaCtnE*%Etx7OV~w920J(NJS4T$}bP&Qzi+eJ6+eH!bnvlCahYnbmL(lLlRfdYbETT;&V8P^&;_ z1`O&e8+I9r4Ksxh^tK{jbS#Tqy?=}q21)|Mr;}ol>kz>=Fwx0Q7dWxgB<$gg%z&Q@ zs>rX&YUVigi+1aG~{}Pdv7hkw}x4Ec^Q)X|?U_%#7h1>ji9~k4TMbI}} zy7cKD+_L2%tKq`m%yHmS`FDpf0k{|d*3N(Efp;z3WM{&b-l<;4Xg0_EmM0BhBaz2A&I*A)@a1q zO~V)MQc@XTYzYag&|dCYPWAQaLb4W`<{p7hWPV zCwn@AO_JfQ%FV6i>;IhJnu)lrm$vGYwb#d4we7wXJ-UrqL1IYcX_qqtQmP4<6a7^y z%qd-|9h%Sf_yKx(HYcro{Ii*QNVb-Gyq9es117a-VF~d%-s)YYPubG|wBd(obDr9K;KGxSF8i_{ zTAWe1U3>MDfO_&))1*dj8Fy!NOXo_<65<-uPmdYI2T3Hg^VxilE$@!}N1?Bd_e3pWUWM>Ll)f_;pu!E(Xwsb_KKY?UKEXk7v>z)*Z{SOldN zCk{EJa|%q|R7jWUXSuT~AKzep6>8Ar-GOf>X1~qk;#RfLWqRgt2Udp6b;5&bgb8f` z&TR5IARl9@Zs`8qClh4I^v)DsWD(&~U(imJ+woG1RV%2r6}VdE zUnG;jWy8(YyRb!b!R?8BI`I+sf$+j}JLee9W1*YLZ>Z1AGx-d&BtCoI+kc6F4G{aX zqR_Sv9rx^o0qxj}RuytMRYn{-^qV{L!PEYq=CUE#a1Yx6yJ_ok{lM#}i?#oV5#*-) zFOJSWp2_|HAL>4XmEL`D(aO-iR7cMGMpSlJDo zRL-GDPD(>JLz~obm)s`d6xGq)_xJYu@0`b@<7m6C&*y#fdOcs4oHEoYGa<(sfR22M z)QZRDFb}E4pCBfQiM}vbZulDXiT7mSKTXcOu_uMW<2%D2JojS*>6CzVP)42suI!>i zEYSY+AO{mO*pznSoi9(}%|=|8OzWGk*ytDFaK?hP=(X_K<8;+mr&Gi{a?i2J>itK0##eQFnfw+8HW z9wNk|km*INBfX*;F^i78p;G00K6hdS>h#^8;DwubGzmgcQVW(c5jaq}NX{!$7v{Zy zVpE6s$c4V#tMW}9v^$TIO3EQNH0)It6`@ovJ|GLX2t>e&klHn;47`gSTavva&hK8cp0(l;-!W4NEll_IZ{p1FSC1C8WS)M7 zouI|(lSZr5WvCBzs>{@|yXV{Ve^-_DhtQ6TZ#p*hPfNm8FD$m#Y~3xC!H=5||puZ-K{- zm=-N4?n)RmsuA2t)<&E-LCs-+rbcd|`Ie_Bl^$W+R!;>Lmdg27w&S>g<3&0%ptawk z$fL*;yo+RiL+S!jn999&m*}b&(6cBbQ2;^%K`f`C4^JZJ2px&&iV`Z5AvY-Z25-XV&NNKk57UNDtz^d#F_B z&2MOY>~qnD3?s0TBThLn1w8tL#k^pxygAg$5w;P4w{VbvSkDRWW$rED(NGe^s%H5| zxoL{V=OSu_23%{!u$eeNYsBPjeh34!a!87xp%f^9VW|ZS@N&U4UFMSJMQj!ATsx2j z)kR_&hd;r?)E1P-Fwo*Q~seEQDAl^|@4!P+Ix~psK}BZx``acya## z(4r@sD7i5q3I<%-X&ih$vEAo#K$l@h8YG)83#lTzL&5ONRA4x|(B_MJVHOu2s-guf zb=9|wwU_tFV3rX4fDOvxBqL{9*+CX2AE(dhzMv_jE)t+IOt!8ZDrKAmSGvtgg|`=n z^T+ro{b344rcb~Ez%uD=9IE#QFQlEDB{ok5@p)~~5}o#xP@@o28-opy5_$rOy4ovg zPL97r>8t-kI2c=tc)OxQx7z+(^erCGUvo$Q=}ju@Yk3u7(j?6)R7D8>p_hh4{IxIf zr_MFI&v-Sij?!!{rJY{(=IFj~i9uxC3FGsXRWbZ;W7oQW)ET*4R;{o}`}tjk;%RJd z)32MbE8ccuwVv`fh)#Acd-H3?w6fb~lcV>(_$OzUT=QiaBGI>}a08dG;#TdKo8;+A z^p^y8Nq3;|%cMezfkis5+m2`RjuA6l304(x zskTirL2EG-tuVHrU!`ld4V73}#$xPCw}E7AKX$ZhX#l3FZW=Ffq<>R7FFJUPybTxr|VPKDv0ShJ{@ z+*G-qm^u;*%(kD!gX$t=yp-st*f&bw23^Me2WnKC0yV{OFobgILMe~&<8)ldICY8s zuY?f|E%BeP6R)-*J7kcZ0>;SjwgYkQl`yQITcP)bs%yl`8`p$4f-Xv zMBle*YyluueC%1*ddus>^!4P2k{lS?t%@w~FWh)dqa>^hAZ|YgmxVDfBQ-C+Dkg%N zu<%TaH}#7p4F=L7zsw}-RI6;Yb&Gm(o1vb8MCX94>08*%zkG2(Gziy( zts?XNQ!yvYfTgu3>Kt0CQvi1%RY~;ZY@43wxgbE&B98fnhVfwuw*~|*mXH@YM3!hp z7t+&*$|F^bJ1anlHGdHIY@{no6bJotAiC`0*A;3B@6O24TKoG@td0ig%J-sk67aHJ zKy zPVEvqi|2*k{khak*09&F8y5Thky`bu`_DiA>Cve(R-Aa|C#v+OeregXXzrNNe@E4m zA;N*6%q7D2H|DILDPMaqK3sp~Ju&tD;q~Z$Gghj9m=F9s+xx9pf^B~FtBJv}#=0-% z|DDrJZ2x>N`)&6KYR&(U{l^x6@P77uPF}Qy;;8othnoGUh_y_8T8ZuX*-=kI&L}AW=9Rk_;f|}(EjR^qrM-muvfr>#Ynl; zuKUWv)yq8f>uq19f4Gu74DZp;$FA?A3pU{s8;N_ooI{sFmyE%=ES7#|tEYzeE4N=L z)egSOB%VOMU}u8%r-6fNjwwQOX+wOpG7nM+RbE?dF91_&SVv5(>XvH3U_Ib%*kBlc zNcfM-|B!BlvlfqvEeVVaKI2!Dv|%CC!!@0RjE;GJl8esMfBX1JeiCX}htLm|ZT;Ps z?ZlyAuFxj9r%5VsbH5C`uC(dYPD)pj4b+R%%Bsk~<+ts@e1}*n+}q>as}M_Z%1oZg zRDgu!M3g9mG|Q)4N`j38ffTzBElqX~?jxZ7{r;}a`{Ew~7UY4&4{kCKJwvDyoK+=M zcXK53)wXxX(?3+SwYn0uZ>Iz&u7_78=DinjgUHy6cwt2s9&R zedwS&$9rUJ>Cuqj5=$DQjsxXH=9IIibKJp}ueSg$=ABfzW~yk9Qs*SP&wj&U=wY8( zU{2o*V=Ms|OBxNp3aQ4J)eVhi(w_d?p!mfVvmfl6H9{~ z0bi0_>hCGq&0zxGN6Y>~x2%UY!QkC8lVE(-66K}3LpfE*rat|c;SePR79jVa>iC}Tt8$KCf8Kd47dc{q zIsfBu>YGP;t#wyb98PKb>%hef8EXDi{dMd7h?~0Qd+wlK9LwEW|IFqr>(QUl_z`0O zrPuym|3i&`LftHC@R0fF^qzg5b5l&ws1<^`-ObQsQ6_u%#K({FtJsC7TwTa^jR4lr zSGUpgF2-Ly<&j^zqu}t}+%1L2ZEDG2Kw{Y78Y?L{xe#s7STz4Dnp5CAA<&MswW<{waSlD7W7-*jP zx&r%<2)vUfjKDM?u7?I?B8{-3~Fjo+Z1h2KjLx(juAh$Zr>~@_LGyuL@~jF~K_gHG8e+TIQMBHk2m$9sfLEKueDZ zlAU|$Svsd8Z}Y8(N98BAIKfw%5%cgQYz9ypryl6LV;Hb2-6nPLB3?@#6Fu5$CP@V^ zCk;Q2drwR)sF!G=#ajitBboj0JJC_)sbt&Y5=-{@s6>a@rntUF+n&1_Wb(tnBREH% zVi+Kbvsw_9DmuNbP*7wb@cauly{(W-DYesqfF8YbMJnfZZNhH5*6IpjCL~Ur9ukIy zm9(iKio&GulydbuL27c`v2!4o$Wos@zP_f(8Kmt^Qr=y&sf{-f^H9gn=13%K+4+z) zi_BR7C^S*p^Pv56TQ(8}#0AZ99WzSh9`>?wFk@N-I1li%24w438z9`qI8-iZGEAvW zQb&KvL4<`C3X)h`M2{HmTpd2HVpoxd-p9Tkk8Gl-JdNW0H_o^CnAariq^?*E(g8`U zC^$^r;sb!F7b&pzeB6Fn3lRX*S}b&a#Lh8sI@8P1RqKF67ZA~ZrU0J3R}Tnc_y=M(I+^$~ zt;%MF+Ytadn6+~)a@3_pg91H-A>to-0EX1v4sG;2d-quSXj zetA@ol#4My;+K7S(23!zHhpzgQnrO9u7A*p;6H0ZI04|mY@qFH;ajPtj+edq--QZ; zpk;|>t{M{h+Zh=ml${k#q>}-}E9A-$I+7_2nqcn@?d1H#-*;bb0F#F+$2YLoJLY7D z{IY87@)tPrk{s}ti&=x##BX3!`*f1Vt#8g^rY0;U2C0)^Kb*p=zPUBUKJ9}rSM#a97 z!X8NyLb}={Iw`gUIso|j6XaPzVo+6ccL;q8j3c)A{D=gq`3&v*|E5rP$Dv>^90#Sj zUna=f04b00igQ>ef}jDtJYu-73L_&#Qgwrnq4Ra>;vfEc6GsRHuvH!wccB-ra?1l~ zdm+I6Q%S049mD|f7X(M{=UAl~R) zw-q^yQd8drJ3^!FU`6aw;&GA$xK1kADUdn`X{Ozxu2*eRn5C5M=d?SzeyKT;I6+;i z(=_;w>iuCc$SRe{jsUWy=JBCt2k@u{_Fow4^5~TJIUoPf?X&*X+YJ$vkUvQbO;+zl zx^kvUYqwCSk@qSOKl92(f-Oh(bP4(nTxrNutmb=kYMsmtc#_hceI8!C3pFqRwi25P>NIV<; z9>!th&s}-zK>*RZDn>+++KtJ8)c>%b6M%_zT@i8CIj0jbNsGk+=Y$9yp;bQtz2@RS ziY(zndG#a!w&+O7?yled$UAnCTCTlhw zq>agBz*v=pT%)xRFI@174~$d>mZngbw6u!VPG$~`Ykv0T^>zz8r=dGLPcnIl8{O!l zF5RXDz7v~=rnWa}T3ts#_ozacXpJt`W=?+H_V^(d#!`E)F+DDNlKy7f2z%b}4WKSZ zW;yQk)5A6&a8pgd`Ro$w@7}Eq#jOz;1fvP0yJ_GH(;6zc39IkEdQ%G`nveVTCL&&J zzy`ODMXiq|2hT!ZTkpc$eTM@;1-wKLmy=mawB#RjT}C9J(##pH-Qqx8zns4+#wLl2 zskRga59QwHTb+p`H4T1Nn=~vi7ChKX0=P@4#u)*-pTPFaZfPkuMdcje!t~kSiK&xA zuBtp|R)k=jDm`0zyG2Ia+yVY71AvU~P3A5Y`sEjOVp8bq8Lk;&d??soq_B++${g$q z&>*;>m8UVg?sdyaY61i!1pjD7mIKNNJF{?q2h!noLjrmdNR=;{E5Hr3i#_%A-wsns5LP8Z-Cc!6}dwzO1isligj{GMuZpo%5ux$S*cB` z6o4!O1l5Y0Cc5nzCpk4qwA)%-=!oeGKPHGa|FK$6B)WZ4*}wfL(R259?ww%ziAOZ< zhf9<;Bor?-!7>L{)_bjWuROMQR{DI4^>U^z%Stlh9#;DZE?E++yDr9||2a4MrJ3}S za<`Ec>lq5ex(C;e39{@mx;(yB`nCa?`N5E6-<|lq(?ge2PLUAdIIqo%_=HKD+LTaV zo!52MMTEqEQf?3IDHofBYeqXVpkzYLKAF1pV`=Tq!SQbCFYS~oBdfNQplg=+XtCXIw#b;r*X42<-l`Cb& z0OsZ67ophRVZT74hBY;g6Mf!wCx#2>%l_RB0I^R9&di%kN|JY>>rE}70ihLZTnb&BQi{9On zE6^o(T#=xAU;4Qag5YyeE2ey*rW-WJ?D-&Ft+KrYXt55QItVv-0^&-V(fq|O+D#CU zH_1ML>x10&K>8N&Cl8Yq=7>+WsH=VfOJPKnT7HoIC=~e5XLO=prDV~1Q9!QWNU<+z z+XkDNGx;(SdwS75i8f-rpi*)oJ2Zk-4TRTXJ=`}4{jO9Y&Ka5}GYK&wWLSdb6Ug@< z?Sz52<7HDcCbwxJX#`TS+a0OSw7?7`cTwic_m#%0RmjlsCV;>RoK-eo2D&hrbdU{M zvN44Z<%L-^Bak?@8|#Rk@RWAn-oVp_a;PGd*E$Rgf*k|A!Xdc6D4@UV<)v)yF0$@2 zfs`{drOUdR`7kM@A413ueh5kycF7F&=M04RQDQRbi|fAwEl-Hd)pwn`m>KU2SN%!2 zQWsby-1_-y$e+s4XO~+Mr9)y^B%ZP@ebaCdEzD+U{{;i={P?2ebScJG{6|Lw@@upw zt4>8$G;V_N($4%)+BahPjD7*=ez8E-CD<9#VF_=vMYPqbviYRSK8=M0KAvG<7DR%^ z08@ZOw04gnVIZOg;-g+sDIC`NpKLE1zR&YuTgM>-ek(*`%l{#VKx%iW^N-AK{tr=g zg97To$sCD`A?a(;9!G z`sMS+b%49A9)S|^)}@NJ$NOh!x#D+B!`b~aR9!zK{`asyE;f_K3VTE=#$n*Pn>E&vN09f*wZH-yoRGR%cXU(1xhn!;n)xqo+M zTfKCfQI~9u{W}gJ&mM}BS{#b{qjZ-v9F#B2#z2{8!c2aPkTYueQQlSuUsre7LmLAP zKBcJ~el%+y-lQ*77EiTlzMr$Nt;NxOCop+(r5_a)_^Hqnz3tpL&3o&@A$bApQ;w!%Ng`XBPxD7p5LmB2LRb zDNI|*O1#2nHOPERGc>p7#zY(tfixJUz{E5LYeq60zZTE9koR`Dr%Zt4BtaeFJ$H>_ zFSLL}uzX)pQtRQ+F7 zqCw5SMm3YmMH$!pS4wnM4$OE){Y>y4nDyxt){R%K1#GxQ0C8M|{B~C5p|xM9C@+2^ z0lj1g=?c_#0Sp~aSjnCb?K`?ZvE#5NIDK!7ly-A`>>B}fQ0bJzsaCoEr$n4T^McLV zCfS({f{mc&K-y%3Rj%i}CSDyx^UcYX;7|`59dERGRZT^8?CsR{G=S7LzIk|lH0__> z)`()Jb|6?(r&}qC0-ln9lK{Qp)nrJ{#lAwdc&XRKLcPa}EUm?3y$E*pV!(zXM~DxG z3XhVNc5a|1@;k$QWbA3~KgGE`4vrdZ>f02-PVH-qR5^pGm$H5bqBUx!dqf0v`5W@j81cVDMOC$@#Nn zN))yB>qn(FAi+_##WR8!R3cFlQ<`O9h**SNs`Oi&QPy5?tJd8ERPXMwf5$I#u!{G` z9#?coZejrWNF>3}u?u)_7 zxh3A&=g7%NChoxjYOWY-;r>T@_H!9U0m$2)f$UPTQN|a|y^0YZSA@LR3k^)pe~AU} z$0s<6tuV}7^7k`LPQ9IMZ5mHqx)k&*9Wug%%H8A0L=!wz$VW+@F>YCJ&&7t-YW~Xk z#);uHD{dgJzDb3w4}RBu(lRH{Yr>q-e>cK?1Ylc1xqZ=!`1DqIPXs4ERALdB;H>o! zIUSjJFrv8$Qb!lT0O`(K_i_sR7X}3;HlTr%FI!(wtUZh5F-MT8uGkv zCpfWIXPBpx$>rd@b{9_4APb?Lu~MQ%=^Z%V(FpLSXag1op}gicS#y%_~yw3)#_9^46e2Ft1$MN)`v9wdlIeB zU7qu&%qBTL5jjUbBdl#k@RbujVIv!S{3io(kEFhd_5w?mmfp5&G#i zh%o}-P)fc#!m`r>nWmEqY^8xX={`@wh<<9}uVP|d&B;GL?7&?*jeAj$=#|0Js{eW4 zqst+Us*oFpG-hZ6h^ZX*s?=XWPu`CMrL8_sEtXzqb5oQgaVIijDcT!*jj`5cqXeed zxo3=s=Og>RA8>mrh}MV0VO=|qgLr8N+|7_mv~0eck~~r^GrJ4pYzwDhKeczyP@!ET zxuRDTiHE@e6bL(wed#(3*F325n7j^pB37cH3|#;%i?-g>Jm==|^~jZXmerrb`483- zQ17(IZ8+Qc$=WVYR%>vm`b;l?8W~q@bqqc=xrN7g-va8bHGXD81(kgVhe;nSGB}t* zxI*Dd!cWq}hHXy=I5RCF^@mCWhoyPaPc|MHPFt44ba~YBOBxd;#b~rdy29PO$kND29FR7w8nTF|29Hhl;GxcLGbW7&U!S zyYJ$nU>&?fySLq$76LxM3w6qsFkliyMj2~qszteV(NtqQugb^#J0InL#E8?`1mvaJ z+}BF!wSyDEt8XM<{U9QOSCTlB1zeS^qo$V>e5q! zX!lS75*$;cgB5?@-}z#SIqL#NlviBe5r!4Fk$`Gl^+^IjzZL@2LkV(A1qPdYyBM2} zb;l0KW7;ODSgk`E{aZ5f0n@d8pCr1}kr?qCrW3K(`)JL3C=X3rd@uc`Sf89O7Xp@D zi+yswQpp2-ZO=fF+PPaUzjG)*0`a{!mQ4YYWTX;&R7JNa{;0I}kN(m!df6FYYvG?5lfUgjMe)`-v6x%K5Ti&G00ifZL^g*T- zw*OKC3w_r?un#Tf%924^51W?J)uk_sUG_DS9lYXDOMe6`v-VsfcWQF`Q z!)OP8e=5XN^n(*QUFMrbU4l9}5e&TrUJ2%$b&Up1pUVH^HXM14N_M7kQ+eG5@1So7 zoMsQC-62jYGMGtBe?L%pJXi9CrIkPrSZ;r67^heuk_I*&;r=sBI_~PFA|eJXboM8y zgYB830}^dEGM1$-5QM4_o1x+i^$Bb@xGr#Gq8(nZ`?zibL?_MYP?tEbrc;u_#2y3M zrmoU1wHz-4MgfUEs6J_?FaZg-ezsrRnA{WiH(8KI>ia%lroF9{h=TZb@Xv|*w>`@G zI#)URQ`K=S{rbL@+n+0rjc)m&;4d^3FOJYa>6t0qIl+#G2#qUU!reB=x&uWwelbN_ zX}O03o20dxwo2--*OeclT6N@>KOlBdr4=+S{oh2jiSFsU=T_+>+>MR?0o(S>Zk^s8 z)_Xi%73!Qjemw&5x6#}m`IlglImsqKWp~n;$J9UKNWFAhBLLIu65?{R%G9il4;oI{ z^YOe1+H$On{*Ip^iZcVZd8I>U&t;SPsn5^u^FMbbUeXDiq?%~$F0m6uqqV)HyF<_= z+irj-X^$YBBf>6XY&U{;>NnDWw&&qy(XY_qq8^&stjy^8wMpl=@^+`zg|2s^P}N4o zxH6b5(T-ukjYQw{i{1Z_D%vAmQbz-L)L^#kmcss6(U(HiuUC1H!Tw|b%bmba^>deI z8w8suq#-y*r7@!BH4HKV$HFWX4`l-^e^y~?GB-0x+X1r>{*D2u7OEp6%DP4x!#5R( zeyi+bl2x8L>{Ph%^qKM;_T^C}q9ttM!3KIxQM0>rPSXT1?@FKjoFsowXB?sL1qrdI zDGXvo87)YwE6myOxqWQ0K6etZEhc4+qKq>PEfzFM;g%QyUYx{5t>iw<9m)F4!o1q3 zJowOFA+isK@Tpsh?X7D%S1)TOW3dA@2ddmG_Sr?#(h}Qgz;!cr#`K8g(ZS*w)3#i747fL9y^aRcU+!ymH zRD-diEI~k&p~dM4WFM*CyM}Z8P$wc0P6qIpD+o&0Y#h9`pCrOyozmsN(ttp9CGN-o zAr#=7V9seI4h}6aR|DKM#&WHk_rI}zTgd#UM^Ryoq zV*RKFd!lpn^H;ceJQJO$=mU18t}&@`g44J{N!3RweRPU(reC>F;HK0y+Mv!OUgV}N zr5g8@SIX=AoQV0|Wx(D0g~@$w#5LUDau#G=yjLOWavkZ>QxhyWD=G##mAJ3R7phF5 zm__K(Q$Zrp{oMN{8JuBO(-4GU6QVG;xRezJ26o{&Y#0G zKgIv;`FG$XbE%s%&_NtS;)O6K*iC8M`vQcH7$l{>L{3zmBD>lkv4N=MfudfHzXwRcWj3Wm z+ED4rpE-~asbydkuZNrZ8m}R!sC@$D$|GM=%fuEsT5nA93m#zT@1LrR2n+t~mqVAn zu!jm~;GElnph~$91o?PiZ$TpB#ebAuhdSf1IHa4>W)<(SrEN(1^M|63)DU=u@)pOc zi!A3Z{XItfL(Ml-sEdpUeT=nnsAR&x-!)gWtlrq;Nhku@vvXUFh+z+J=o!cL-iJRb zgaJ>fhJB#@SGjf>go+(rQFUH1+En^3-8m^#qg^QsOCQn|9z85NEdw!j5X7h%7QacH zRS4d$ih|45ngd94Nd+|0!;mShWzC&V75_gKHpvcmGE<%rAsc~2yNV}bbIW<6! zePh&+MaN_l>ik1``3Gz4LS)T0nDv&_EGlZD}h ztVlgCItb=?HBn!5fVcuSCC7=)#|?EZ<`Gcv2_(?2I0x&44RnIpM^t19{FI3IafP}# zAdGVwTnmmohOdeO!S24@e6)A`0f)V6talfpR@n2Un$uGF_Qq`lFa+od*|ZE5j1maZ~sU%C|Vj@=Fo~Gy2^WZ;_#S zY|_+1l*Cpc7D14W9C4I;y@zkD>xivgIaI#YqgqMRwG$z@SCtP0vGinqU<8uO+$FUw z|562TjnXbe(4Ek4L&cRPzOeDOu8krsOu7AGnOD7J$s6(| z)}d!#e%-_6{7}CF%m~{o^SYj&JYHJdpi{Q=(hp_VEB=S*@Bh4W(bC25k4AqbU_{RD zwHup;ZaUP``j8#?4*S0bepuAisjU|_y@H-uFm#PBA%6}}dv(klx!RT-@3yfSt%&Zv z3;-mP^u5OMTQ_1!AIZ_7K`U)QVql^okjlq)c3v?=5J<9dmcHf%3x8806@~Xh#!E=j2mf-4{3}+HIvDg z-+04CsXWY}6BP*m9(Bs$(OXBLbp}{GhNd&k&;mFG#Ef4m$lPckIAl#gJ0&>>-4L)T zmAbGN4V#kwLYDPy%>+OO0O2hc6Fb!9eSR_L(i5R^;6lWc$RGG(2>XN}@qQz>w~ahh zWYr&sULQzDNh_~9smNp}zI94+Vgqv-J2XSxc$gd`XeGyymfCw}R1b#9X zX14liV2zOu#GzCw_wvv>P0)M=YF_DXM~Wp4%pw1#Fj`fc#jHEE2wvvMqX!W6hWHlh zf~0?BlXPu_kfg0OxS;e~8Rd_7TIQ%TL$NlginF$SD<)4FSf}~D5LR1uI6EZH;rNj& zu2BqR`z&fBWg>Jj7bT0P>fHdE;{llg7sMLK{nYmWhTwDWxa;KbdB9hw8?GWd+326X zafJA|hi{rqbT^0+_g9uspoP`P>$95#T=c~}Fnv@Gj) zqoD<8dyZHW0jtY5-@v}T*n^GA>w5dwfsRqCN%WYKw)hJtDQ%AYIZOh+4uf{GY|=0K z2$=vwv#>$))ORzRTl(0MFpN%`qyfi8*s1#->uN*;6VBMBQ>1@&P%||61Pk9s6(kYN z6pkbNB`9C}vKwDGfdH@e$hrr+Jvq0(y=-?LtTyl@*!-ycMarZEmh9Onnta%_n!!7O|@&buC#MZ z>EW;QwK&|rx~j8gK5^gF0%d-sik(+Qx(D;x68>M6T=aMx$AwXy4a2NPbazP+0IDev6J(D;{o_Q!n^ z7aeIPTm27l{C#`riwO=^5@WsRr1^w>p;iTjcpsv-qNncRi}as!Gk*R( z;#uvsoaBJVBSzt~Um3ghZ7^OZ1UhQp=#@)jRgaL!e0l`~@mqN>aw;4@7+$FZ?&+-s zhZ`Yl3-f;Lf>=G5|8K=TJIEYr!#-~3)+<-uqYQ(b4DB}hP$Kflhq=&*!>w_uk!S0F z`lpLv0n(GRE(6Ko3CuD{A2It(tzCNfODh!X&?4`T#`G;sa69zzLdPvReeb$2N5R^& z92WRFgSF15TX7g6WRo%t*S-?5uV_2vgSPbOE7~?r2rgBEu>c|7*x5BHBK+4@9scs^ z59N`b?^NzT-0nJm|HHzwD$7vsAIpy7sfb_B!}QZkv3`_TqN3daR50=kvPT>Q>4-Ja zhzi}7G+|Ja(vV3HiY}yqZcfP5AutV{&KP>E+AqO6k96%BD>`$Co#34f*V4gHko$ zg^9OWLq1wOVG!dm^I3k_bc zhxn#pqJyCNA1akDeF(*tz7sd|M%V0L^(!voL-w`v@lRYfip`I9`Fy`E6oSncNUF1R zO9-msHc96iBU6ipWM-Vj3B^__A9`!kp^1 zsV!`$FdlWW7Oc;6oJBYPE!z3ku5?K9%g8(GVpM~Sc4s$77#3@XYiWyyC7%wMo@*Pu)(i|4vREOx?0FYz`#E&mD7cyGwEiMNXqwux|U}^Ox>~lT|#m9ITBI3DQ5NYjl(mT z$z9P#iuEfOZOAP1-E1#&3Gls0^S;kt7oYZ2m3;L|lNP3|@>=Rx=t!w?gy>g!tXA8G zLtFM}mgQSyN_6cDmRn_nrzU0D%l0l+`Ppd0ot~Tb^~MD2;eEjk^oc9edhpb4Y}bi* z+ubZEl8oDyALt?DkoNx+-v(+rjeM1BPQmehznS-04PjNq;d*8>GipLS|@SPQ^pp@*W2L$+l>U z6bjB9!#-A2bYB>sFhOS$kd|q}3#yExay|bi6;2MI>SZ#CZ!obWDPo9hT27iFd}x!d z$}9Td0FhD{oD5v=&I3i?G}OgHrcZK#Ixoo>Y%tt@ow(g7`AA`27xHd4nW%as4A#n| zZHL0p!f*l6fd2kJq}a%4gE;#U{?Sm~&!CLfydOtF#Pa8|`Tl zB)8nYz=c|yd8iwYtA8^4#Mt0RMY;o=>(hXLDXU`Uh<-Lz}N$07cM^LDQ@dInTxvqdNT92|qQ0 zuBRh$%>B(x{3YyERUk-G97rgEuP7AQSH@4gYwg^$1M^EbFP2b1$$T_kPqODn z3=Hix-RB_6VX7T`xBz2UQv7YcyjX}pteXn{WxNWEh*Q`q#D*Li5Z8JOhoUaI^su#- zNG1g=_x`WajR@b@GfPcns<6{MI{iW&_Pqq9W4Jx{#^paURi4fmGs&W~tt*Ex+%L~) zZHxBHgrC-~H>3u=%%mC%n_6+1pA4d}<4z>LA>PTxcfgWf?^feB-}}#^p2Y8u&Qu}W zLq&y8^f&CkazDVz(9;bXfWIsy*O?zSxT!5nsV?i#r9Tut&zB+bN}FFCtll)Qd%T@R ze`TzCslIxovST|q{EWm?NnTejxLY{}{j#QM8Y{@m2V>9C47NM{SKvK8Kb(hWVYdIh zm+jo+=#bi%UhyRF(Dx#go#mN$A_ZLpkwwh{1b4VZ?&)8xvS`~IE6BK+VcDq_sW0rH zZ#hyoRG6~Q?q*yPl&@F*hxpKocX(X^N$YDUo=nd9L}WnJq}%uZDsk_qx=et~DU5!` z$pGe$;Z*rl1zhAl5K^&pZX&nu(?q~C2!F5a_Xj(QC*dEc>axsak!RxAUU91c7?GRp z%*2f9oL@O1Fzo=m+xvRilps{FF%Yz2sp|ct#82`w>7Wc3iy#)tJ-Si~=DAhvTucg$ z0JgeaMK}F{u6-Kn{=7K7ytxx+4pxRHAB}{6Ux!O*%_!iz2x1*zx_eZ9UUdH4b)CyS zUSP+c4e`rS@BYlABd{#{+DJSlO5EYyb*B?kt#my_XC0Zagq4+wBsMqVDpH};+u6Cp zsv@+*Hro;g?>~xMf;~<}2c4DZ8IlCyeIcYexU?Sex--oN$He{Qa)$(DWx3UBENKat z%YzeTuZcQ=y9gbPh(7nOl8GyUIm|4xUHbZi+tMd#I7qVih(!zI&);bD4 z9l-|mN|0wTu@Q({tXN%fPvX=Xy0IX{p1-(ERCKo%YbM{rLVuu0G<-a6@Jbxoa&~if zX=sW%7q*`6Q{%YOm<1?slJ21XZZNAso=5p5#V>I%4Q|;xRJ4{yZ{lS#%yjtHORXjj zMV;_Up=UtwwHl_q5WHe-=xM~g5ZZt6+ zR^(32lkmi4o_=W4xyU^kZi#cAp*PQGD;<}%!|G#0)N!{jn)PW1D#IXNMWVYXGT&+< zY+6CyDMob*VV-5=xt81TuBT|0x)Xfz{X%*pA@qz6WPcn$^OrcE{p#2inz(cPuFQF3 zUb8~B>t@`Ez*LtqXo`B%e{DFL-b&BRHoxt)WjN$e_~Q9Pw{oWPEq8y}>g7T#D4w7$ z1{ZQ3UXVz8!yt|3`NODAzW(b!D)+Hn((eZxb6UadX~N{vD%t~U-N%3I8U{p-pui2O zNLOUzTcB|czZEMGhS>g*+}Ni0V{VN9V~n(Y%awiqL*h&S+z z#(;-8QuHuOo$ulqC0W-Ik@z0ej%U0r6!E8xLS8Y_R*k!^C^^Q570TTKS8E<)ZGQ)8 zr2%v(Na~?Zra#tfNCevX?tIE#^?jbm2r__ewpf9lDW{NOhm*La%WMGhRkgv}g?5im zvY!S+h0m&};vGE&c{K+5Na(%(&A@FqQFdQk(h9I5GC0dgS1$xmrI@@pRL7@d=Kd4( zCSh>15dj^l^7+19_?CMowCsWvBu_NZmnT6WY;hpo6u)Kxlo6ah6Wp8qIqXV`SaiDM z33w*IRZIr&;y!o>J+;4W&P`(2QgId&wUGCaNBf@GSecR;5~U|!OdDjO8b~OW4Ym$4 z2?x*5_+5Yeypghjjj0=iUd_@V>``x?bLgKJ`!Irx)ze?9<{=kzGW3rGiZVF#MzZ34 z#Z90nobFQ$TwdK8!E3|ILC3=Kj)>+7iXk713~q<4>PvZCh%SMJ(3`kKLPv(43bCq` z-N*oA+YabKs_b88u#Zg0@~aRcMcTrxml;k2uubWDTN7SV${+(|32eGq48u3v6d`bJ z?r=`+RHNPyJgwp4Okw=$jc0o4G-h5@IQ$<4CoTQ0S$ zaxToP`6_IQn}q+jViBy9Qe`%Kz3VE{oZuu%QJ-_wb+DDg>ai%Q3~y0yRe8-jT7WR> z%1JH#y*?Lh$CEm$kYI{bN&F~Zk_6+$3dK^PAkR~*X?KR(P)FP0+|0&O3iy#bfY0>P zotW&2kX1_=iO}F!hFx3lsIzJX{rvktDAdF(ZNe4^D8Rztu;U!%GVltIyG1vW(0_L! zLuAskncyF1qwUY~e=wOgQ)wl9~x6*|^NfEyLWePK3B64wK7c23+W-nGZY0H$!;bZTM`NOA~y!bMo~UTj9p& zpvNV?sC0fql%)@{&|rvxba3_c-g))lFo-ODTuCb~;IizlabJLR!V!LZ@&UQcUbbOx zJ*XUa;QC*T;}!>%b1j8RWaZ(H;Fzq?+P`2vMtl-BW{C<`aHu;|B|4@LW&RL_Gfdhb zK71JnEoSoN9r2+Bb)-``L;^T}Mw=x&Yle#28zWlP5zh(A2jWyRaRVFi+cPJNGIFNs zQpmD@W@vX0hDkutWd~b4pLL+J{o5tv#f}1)2JiKN@m!9>BU_cGj8*wWnl)Qk zmhn6Mm26j^m6;4Tl7|aJ8+i9fhysjjaV*uM=*FPw&tZp(0ZOWk5pDE$G-(ha29bFwOqEZT`Vs<7qYXvpf`I9ZbcrES zbQpK_p!B9>+$ap!Ru2@Km6KtPx;TS{ z*7xf^$NiD^$ajoy@23{WFAl-mpBww&a}n8Y$R`50m--MbcEXYn$3b-|;dD`Thm65b zM~;ReWf{45!lk#k7P|b>#w(F=uPDF8{wpyUh1txVrR;}GuZ*m9wBLH~GkEk3Qs`LR z$%rCL19K$6gU2vDLr4LiFii0go|*K=%p4BCgPwa^gq(Hv$VijiqyRpMeYp3}6gahg z+U;&A(q(maRe{C8t`qARBE+JWB%MR*n4+AIV9RX9AvI>kGQCgf5b_RwG73fEQLuqS zCCgf`(-CTK!vRG?Ibr$DqeZLH(7DjTP~aRgOgd2^(XtcdUWoCU7(G?xo&^|?w6Km^ zce6@&`zO444jwwc&ZMrZ_Htw&B@PF24PH;_f+Khq$R+EHDbb8$W>pp@0RC*O80Rwd$9*9 zgyohaKsJq&hC2m^52d$3AWgIb%-xkvl992}C))O}fO=QzNbN&0qKI27B&ge(*^?^g zqC%zFFf12eI;$wyC&Z`4z3o1Z;j8QRf2}~7t9jX$&yN7X>3X#DtVe8AcpHxcoMVO;bn_(aqi7C5 zr;dAhs>N|-U7F9uwHB~4d~zaH?)=cc1jN$ZRn|2q8#75>*8_)A?xI(pKS{9ej|Ch1 z*wu!cn|6v>TAMV_{-jD4zVXaVSXnxbu(o0#b1Ki!xr|~)LgXb?S>n)#6CvT_LaNT! zkFxe@0=!gDOS=%$v7(#YKqhxR0htno6^zTw@bYLJY7d2|F1I6fzFZgKTlWcS+B(@T z7pis5+X{*9L-{hBA(@fa8@Cbgujck2;@sEYOHY>p?1wCo7vUwu#G*kd3lknl8a3O? zI#`|rIZ7-4(>m*-S@_Z{1qaKkJUh{sh6)VK=}}8UI8@`vSxmqXmjGH8AE!z^ zm2)7X$wEPb=4B0Rng+SLKx5V#7YV}*y7mke@9?fcKKb4dMTuidcdQmfLL`!ojk@eY zVQAKDR9S7lAJqupzctD>&r-*5o4g{#4l>I{Q8x^@^Ke|*CcQklZL3GT)+Fbe+nmIx zY@=rA&ff?7#VE6V=d8=W{u=+2et%k2&_Vd;)y1`Umz_ChY&#O|m=xdq>zaAn^nZ_R z`yY~vuL=Nc*UmLXKW|(}&EVU)S{xt^hZfF)VOiyozNn`_7$ic%i?czf z_MjRl-a)U4Cl)ghAF`yr)tA9(B~8~LM*a-ZwMYL9E4pRPM)eYGRxlvTS3-Cd=d1*K z$__-=af_xx>;S)n3}sJ*I@>Z8xUopk`L*nI#_8BzEVdgE(&4$tDpsu=E4_N*(9y8& zUtpp2B!!MM=h?+t@j@%2#j&#z%zy8g`iA6{mO@{N?oIT6V;4s=`<`Zrgc&JRT^yuu z_wYjQRrGHIjh3#OAV}x>a zwmGaN$I?k%(?O}1|G~DO2@w5QZOny2qLJ(ub@{~!k`_~su2j*1u)C3_2(AAPc`Rksc+bjq)Jtuh6GaxS%Eoj#7YP5wIjKiQh zF+LSv@N(ynE;sf0ni??QLkvR~m$99rg$#4wCcE*s{SWSoAH@lcREF_~N<8gmp@?Ek zA2cYjn9?8!dFmSEo(Jq&_TC=Q~6P^7~0| z1B-ZW%@~8?LXg_pvq2irryD-(5rl03=J;3L^aaJ*sZ_+*MmQ=iLrP5ZVpx%RuUl+_ z8tDduBN3R&%|U~?{gr|nV~wB@g#JkzI1EH?O2$;YUM;W*(_opAu^ggdy}JPO8?v90 zxGUskHM$`cC8p51fsgaY4^Kx!SUDNsNmf66m!+KKebZPd|K1hcg?l}2*KgFTebn%* z29MgYQXRE30>Z3`yZuuD-5-JrEN@8jp5kycSn=Xh}8D0;Cg^Rq` zUG;^ukP#w_Q*|;a&2b$Z&@{CiWqLeKSjitGIS(W$Wpcmv*Xl76vhgvY>9%`Am?4X; zPbQ>ruF(^tpnhIjT}wN50R%119rClz<6meGbD?(fb+h^XlAgS)M`z*OLgE`S+fEE7 znk9^#kZL<4@_Z~96XGR#{zYl?z+Slc=!Jh1m5eFz7T;$`bBHZ;J{vF1YC@)+O#Jew zZ!hmO=cxaYJMcV8+3v>{F~gaH=Mm+QF1rUj2)pt|^ocEfhMypn29w9}H~8HvQSL?) zyQZKpc=Jv6;i|-(KCyu9y%dTp>dLx$HXD5XHwRT8*jl3u9b_bF+l*G3_W z;2jCVl8XfwRcuwqa1~%JX!^u4?Yj0Z_1#;5k($3Tv+M?6-EJJ6kL4yUt_|~JUw<8h zIZM{qxx-&adZ8Gu_@&zTG`>rP#oMS2j84GH=!80&VbP-ONCm*Ib`LSYXV9Hz3;t#8 zrWr8_8tZ~kDYzWC_x?<`lb)Ll^o>5;2!aYLt&=`Ul~E>>PXksvN=$@#2b<}60`#h6 z>0p6iTIIAIN89mjI(reIOOx{YE7T9(U7Crf7arXD0-s>-?q=We0`Pl zv`HCklW-kMS}T$1dPgXRHt;U#J;4QAmiQg4-*i%)qh)RFFaad!eo@x%8hiTdKX5Bt zAd|Qo%>oxV7V=ogU5Bd#%pLn*jt{GfE{}*FAE1N zv*Ewr4912Pchud{;9YReyXec$uB-l%u7muoj6If5{cGAjO?4Jv-r_bN?zOAKW_d}^ z)&&`k1{84692(B7cfa0uxSkE@%I4UFHFR-T@3L3+g$AG~SPrcVfoU<&!#;k(3*l{A zD9tF-qLj941x-c8$K7rgZm0$~>9+0xD&Dm}==FTrofn!vy9 zA(|gZVfn9Y@ROG~pti(1Mj<^vx8uyt2!?gha(8$Jl$-T&3rzAeAm3~AClP3z@)dJ* z1&S(2FPAyfj2TTsjw@f~bRvmNT`=We+Zj0>MA?$tq#Vp$#a^_o`C~WL%tmnCUkNol ztGiRo>fL$26v{N_p%pDI>lt+&<^k@hOIoysh*+rIwh#IpF_Xb7Yb24q%pS;uX%ow< zi&CdNP3S~^55cHji=PzIfMP|L!!3{C@}Nx@3Q&Vx@5(SE7;iHyuRVNwt-LTAhI(#u zuJnNv=oG+ioXBl@eHiDM4{E!>zA2Vcy{vLT7cOtulJ@%QNsGv z^Z*4kGOeH^qO~fe=VE;W44X4+doG+!IdyMpIwL>(W&W(G z3l95+{t5_BRPt=WI z_r=gVy)qka5bMWGvCDi}U8 z@KR%GW2H^bqm~z%%tUhRGG;naMvarHWz$TLz1Owgzux!#?se8#`<%V@+Ml)0IqQ6$ z{yYnqQzIx500;yE($)?5{215)7(k&gD8v8;gBcnc7#YJ&j5lmBwzIS{gCp%XIU?;5 z2o&1G73I9u1%beB$8GiU#^dpuT!}#hpFj^^yw8^;AVWh#;|<2PCMLE%P6#KT|Fb^# z0~Q7#00e+R&VZf;2y6lRd>hyV03gVEwO*<3b z5Pkji=%V#~K;Hsl>Es;>wW9BVIdkAX#Z`?4E@52*8yOS7qkYr4C5A@UHnw*5n=!6f zoEzS6+jaucf5%th5s_pHH7-6OF)2BP$;#N9xi5>Iott+k|L~Ec1*ON!PMkb-nqMsv zpFLMoTPJC1Rw!Fq+uAQ&`M&$=wd*~-HwJIr9vU7QRozifY937eJpJ&|v$^?SpKD*d zTzK_%>D}_m>iZ9CAHQ&Y;rvhiJJ|o=vRLQR)7J;4W6-oh9P z@QnfE)1`oxXN52|2|(oii6aGaVu5+3lLBwN+?vJ_bk8=o5n8c!2*$yA>L5g0qc3C6 z=Jl_qbhT~Y&(bTO4V2FWN1k8y|{o{DE z3|()b&FHSzr8t08B1?lpcCD_6LY#-h6g zfP9!U3CBPZQ8~Vn(^s;8YVj|n5dcJHyHAS6Mu!q;cA|d#{t;W}4olMQ^0!gxoUtfU zP=uQ^(Y1qNJ{Uu2$||9us|GE^bb)gnPCKi9IBoWr~%xX?4ss`Ft za8^yf8*JR`>^@H2k0k?OX5#AI*^RKJ@1CR2@O$I#5Pr=R_TTls4t{iF%K^V%NT_#j z5*w&)y<0xaT{&dFmNJSrf@iRv@GrczG_>{8q_S_9F8v;K5u;U!&?S)6%sO{luG2kl zez8cJel_Fzi^eub2v{_(+^^VqTB7<{ulZrpE@$83k*UT*!_mwt_vDW6+gr?Ge%^2B z*LR(zRIfUts_st~#-9w-HZNZ=FQh->`!cq@cE`GaB?rUp>{|a`Hu7Rd*sy~lRcD?t z$S=wob?MknB*+D8E#Mxc2_O})zrKxS6lF7UK6en?U0ijE&jwJeP1KfBVQx~#h>LUM%lK%AzbTw&lyFhV+yg@B*{?!vXz$ z*(IDONs$LEhb(zeQu~irE#%J~uDAWNGsw*AL3hM)Dc14B829}ucn>6$pd#pYja+!_ zGWfVAF!Sc)lnUB4XwVjdYB*K-&@V5?w;wJf*)HVQDws;9~WPdlH)82X*g`49+_ zyg75gmIB{9dJnj8#nC^Z9U+xnr5F2kM?KtNfBGb|GY+hycLIs0PMjhWv~?xk3vpFL z_)7r^80Ty3(0K{F8LlQx_rjF$``$ZCWjEuf1DvcOO) zms@(LCb07ILZ?^H2Ph?*iO8Vb#3()toqqF==$~(sZH}2`_j#WBYxh6z1*Bi8U=MMp zTcfw+e90-D@oJHjrL!w0lr&ii4cs#nNMew|p8j7FsVLAaSYr=AM_C zIlBrN#ntRr0Lng^=f;Vp3m$li8!|0VCvnoZrTuDrXgn%kC&S4>8f{~ja!-=HJ$_bO ztH@Ls!)&!D=su3~eazEcCE3+oQ_Pre?ATCv!WNjqA3Wm6wIS$IsN3PE5i3~{g;%(g?|wL6lB@dkO7U|!1zmmY zYS`aS5Q!VVLq#c)&*j9TC70C2n({(P+dFU9&Nll{sYtZ&H>_Q+_1>OcBo|!*T6+B$ zt`hayccm?*f^9o}(&=keP&NjAKY6Z}(qXyzhci#{!!E8>kwFWFNbh*^#C%Yr{gXq#ckg&jPivna`K4;l7jc0vv;&|ax6 zzOO!d`+Z26N8$i=_>>f+`!MIuAJ_jRFv?joJ?&0PZen4ioc zXbczJBKWGb?i};EfaqrxHR5MVdC7LuFgB|M9+UxMi`ANXpHyunQ3%hQi)7uCCG1!x zHGO|3;HoEFS%?XWw$;|28pHUmw6bOd%l!hWzx_W7Qs?`CfMCrmNf!lk?QqBNj)fxV z4N5OFRt&xL{=}ZAp}7%RBh-9gPUsXF)ZU*Ln0~%W_fh>1;1J%VI>U7N^+%(VcWJp( z!aJ1N^fTV6=LvyTd}H}OWzrMMi^}1ea!w>RwPuVs&yRjxSWKUjLP=vLsQo!;8Ckjb zs1}NQLbJJ_ABj+xz@W7-{6Fh~IuvT6DykK#9K}42szu)gtgZ=p0l)XH z5svriGa#ke*Y-tw5_LlW)vT3Di)?G_iU_gaYJ>IwR`BOl2u{?%nCFf#vd0iw)`|zs zoZ}Y&>0-_h%5Jq40zVHpPzIp&Wv|WVDcxX6>OM&{Pj32DiCtC#^Bq8eBnfo$FZitC zOZI^8Xlt54bAAV<0$6E1(0Tw3iZQ|wO>gDIX46h~1OhnrwuDow1*H*B^59D`(c2{+ zgSW_lQ5Yd`azT+%r3+U%@DG|2;7dGOL}6Ud=v!HiFQt-(`?Zi3Iu^jcmEZnqQ0zQE zB`g<+YhC0DYh3v;xExF-5|l4FRZL4PK##zY^jGEj!-e*#o2dET;Wi*>h&>ZPvU4cw z%dMc%IWgc*FQv}90_swJPFO6pV7SO%b1lHfpGIgu=f!>o*bZUtYf=pKrR8%{^Y`tY zuH60YM^I_u`FqZgxiH|2SzYrV}8`ukrS{E;Bt1B zEk5^AaZ^;WF5=i(#~6;phn;egK{~42Sw%mH|DoTu>DCSOJ$AsMmZP${irMlE`krkR zDJLR#fo}6g5;mi)zqF-kf9Vir*5s?*@bfR9v$Plw6U<`4nQzq?{6LYUdkT-JMmW-2`zFI{a8)~L-DvrB9ra#Q)71ZeKt9;`V;Y{9_mn(;K0O1_DC zFt)=k_$tJ5A39BPC{k!*=h|o8lUiLvSdg5-?{n-n@%dTLhwqE#k^*6HcSvJ-SQABXXdg`2X2 zyBVOYF*r@{g-qQ2h*p&K#j{k#y9sXv2)L#(k;qQ0{w1uIA1YIB?Y)^9SYRj+7LvB4T)jr-r(;V`c zCp@uzKycd zdPWINW24kJkaa=0d^diwP+n#?tHzRgrP{Ti3$JK0#TtFxoSroGI;{ao#EqxyHmH@;4_OO z)|&^-8eJrl!LD+xym|?H%J|_ZOz^EYrL!yTtnDqU{(BK#g_TOb`Xo@T-cdlB+4f{6 za_d(S)J_CqW#s}yrEk>`%ku8|p15o6cTQ_P{Ln^PEb|E`Cxfa#_=!F-hdyh~kp<=hatQ&$+Um i4_<5t<9sR$i;1D2Wm*9&ZtBEu;H5B~*M`z0d) diff --git a/test/samples/blank7.jpg b/test/samples/blank7.jpg deleted file mode 100644 index 0a1813f7c7661ab5e027ee4fa953f3f99845ed35..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 196662 zcmeIuu?+wq2n0ZkOE`iPIDozTucL(06^`V|6S~`HMUR~IGPATwi;>rx`d7CJ5FkK+ z009C72oNAZfB*pk1PBlyK!5-N0t5&UAV7cs0RjXF5FkK+009C72oNAZfB*pk1PBly zK!5-N0t5&UAV7cs0RjXF5FkK+009C72oNAZfB*pk1PBlyK!5-N0t5&UAV7cs0RjXF z5FkK+009C72oNAZfB*pk1PBlyK!5-N0t5&UAV7cs0RjXF5FkK+009C72oNAZfB*pk z1PBlyK!5-N0t5&UAV7cs0RjXF5FkK+009C72oNAZfB*pk1PBlyK!5-N0t5&UAV7cs z0RjXF5FkK+009C72oNAZfB*pk1PBlyK!5-N0t5&UAV7cs0RjXF5FkK+009C72oNAZ zfB*pk1PBlyK!5-N0t5&UAV7cs0RjXF5FkK+009C72oNAZfB*pk1PBlyK!5-N0t5&U zAV7cs0RjXF5FkK+009C72oNAZfB*pk1PBlyK!5-N0t5&UAV7cs0RjXF5FkK+009C7 z2oNAZfB*pk1PBlyK!5-N0t5&UAV7cs0RjXF5FkK+009C72oNAZfB*pk1PBlyK!5-N z0t5&UAV7cs0RjXF5FkK+009C72oNAZfB*pk1PBlyK!5-N0t5&UAV7cs0RjXF5FkK+ z009C72oNAZfB*pk1PBlyK!5-N0t5&UAV7cs0RjXF5FkK+009C72oNAZfB*pk1PBly zK!5-N0t5&UAV7cs0RjXF5FkK+009C72oNAZfB*pk1PBlyK!5-N0t5&UAV7cs0RjXF z5FkK+009C72oNAZfB*pk1PBlyK!5-N0t5&UAV7cs0RjXF5FkK+009C72oNAZfB*pk z1PBlyK!5-N0t5&UAV7cs0RjXF5FkK+009C72oNAZfB*pk1PBlyK!5-N0t5&UAV7cs z0RjXF5FkK+009C72oNAZfB*pk1PBlyK!5-N0t5&UAV7cs0RjXF5FkK+009C72oNAZ zfB*pk1PBlyK!5-N0t5&UAV7cs0RjXF5FkK+009C72oNAZfB*pk1PBlyK!5-N0t5&U zAV7cs0RjXF5FkK+009C72oNAZfB*pk1PBlyK!5-N0t5&UAV7cs0RjXF5FkK+009C7 Z2oNAZfB*pk1PBlyK!5-N0t5*B0vB~o0Yv}+ diff --git a/test/samples/blank8.jpg b/test/samples/blank8.jpg deleted file mode 100644 index d352c0a6e4d0becebe97b63601f7588f1cd8befb..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 196662 zcmeIu!3_W*2n0ZkO;~~zSb+cQznoLT$0BAE$P#|DzZE?)>(0#5YFdoEZt7pX_Adko z5FkK+009C72oNAZfB*pk1PBlyK!5-N0t5&UAV7cs0RjXF5FkK+009C72oNAZfB*pk z1PBlyK!5-N0t5&UAV7cs0RjXF5FkK+009C72oNAZfB*pk1PBlyK!5-N0t5&UAV7cs z0RjXF5FkK+009C72oNAZfB*pk1PBlyK!5-N0t5&UAV7cs0RjXF5FkK+009C72oNAZ zfB*pk1PBlyK!5-N0t5&UAV7cs0RjXF5FkK+009C72oNAZfB*pk1PBlyK!5-N0t5&U zAV7cs0RjXF5FkK+009C72oNAZfB*pk1PBlyK!5-N0t5&UAV7cs0RjXF5FkK+009C7 z2oNAZfB*pk1PBlyK!5-N0t5&UAV7cs0RjXF5FkK+009C72oNAZfB*pk1PBlyK!5-N z0t5&UAV7cs0RjXF5FkK+009C72oNAZfB*pk1PBlyK!5-N0t5&UAV7cs0RjXF5FkK+ z009C72oNAZfB*pk1PBlyK!5-N0t5&UAV7cs0RjXF5FkK+009C72oNAZfB*pk1PBly zK!5-N0t5&UAV7cs0RjXF5FkK+009C72oNAZfB*pk1PBlyK!5-N0t5&UAV7cs0RjXF z5FkK+009C72oNAZfB*pk1PBlyK!5-N0t5&UAV7cs0RjXF5FkK+009C72oNAZfB*pk z1PBlyK!5-N0t5&UAV7cs0RjXF5FkK+009C72oNAZfB*pk1PBlyK!5-N0t5&UAV7cs z0RjXF5FkK+009C72oNAZfB*pk1PBlyK!5-N0t5&UAV7cs0RjXF5FkK+009C72oNAZ zfB*pk1PBlyK!5-N0t5&UAV7cs0RjXF5FkK+009C72oNAZfB*pk1PBlyK!5-N0t5&U zAV7cs0RjXF5FkK+009C72oNAZfB*pk1PBlyK!5-N0t5&UAV7cs0RjXF5FkK+009C7 z2oNAZfB*pk1PBlyK!5-N0t5&UAV7cs0RjXF5FkK+009C72oNAZfB*pk1PBlyK!5-N z0t5&UAV7cs0RjXF5FkK+009C72oNAZfB*pk1PBlyK!5-N0t5&UAV7cs0RjXF5FkK+ c009C72oNAZfB*pk1PBlyK!5-N0t6m`1AKoj7ytkO diff --git a/test/samples/blank9.jpg b/test/samples/blank9.jpg deleted file mode 100644 index 7bb62bf931a74d57819c7f5fa2db6273309174dc..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 2935 zcmex=W3kC&HER#Z$- zLRnr_MM+*sQBB)iUrp0QQ&Gvl(a^-w+Rn~SRnNuK*~Y`%*3KGa2qPCaHyJq?U}9uuW@2GxWo2Ojs;&jfGq4D<3Mm>ovIz$!vMUve7&T5@$f4}C@t|nX#SbdR zNkvVZTw>x9l2WQ_>Kd9_CZ=ZQ7M51dF0O9w9-dyoA)#U65s^{JDXD4c8JStdC8cHM z6_r)ZEv;?s9i3g1CQq3GGAU*RJ2VdF$b$$4{OPfBE|D`;VW$K>lK6V1{@L?lUxh2?G7a#KOYN z!VdBmBU3pLGYhh?DjKp0IR>&P778mFHFAhJOJkp^ZNJFtob(hJ`k!o>&Cb=;^QhkaFonHKE- G-vj^-k3EF| diff --git a/test/samples/chessboard.jpg b/test/samples/chessboard.jpg deleted file mode 100644 index 53ca1dd51b183ee5de256040a21074f2423fe8a8..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 1846 zcmex=jKe5@ci+Wc+`GK^){8Mh0ZS!Nv-dP!(WgU}R!tMUrM?VrFDv6$>*jox1swqo9x? zP?-ptW}rbJQ9)EAL87-9c$gW17BdSn*fY#Oz`!8>iy{621GByL%O}&frPYR-@cend zd{W%anO{RV8Wld*8V_-1;ylV2AVPepRZzojE_$p#x|j2oO?3zzPNi z*8Lk5{{*{z{8s1N$^U4UdH?2591YRGh2)Q#MiVxyH8W`f=z(WdX9kE_O zD0IjGhF$veTANAV&YWMh#9=#v36$Xe!@$5+SAO}Ve$JU+t6aDdOi+;TKL8@rzu&Q+ z`r@9``HTA={#oz#Nvy7Mf#l!s{7E7NxZ)<4i)!tPbfT3_`{qMiWKgt1(X8O;7 zB`IgHVFdCE&ino*~J4)P-cRwx8w_z8J;Z)~@vusb82?(BBQn>l%R z?mPG1_kHI(_a4-OI>0I>QkyIy*Q%v(U~?v|{ly%a*&ly9=FHKIi4?yVT9y)wl@3<#Nr<%;#EI z%ynI0x4?DQ4P5|hQy3y7Ou`Wu)&$doZL2T%jEK&cyjJM z+eJ@1ix#`Mdw8z!TIucoLO@{9i@_l;N4^pzU9&cN^Q*6IiH(cj`qtaY+jpew-1Y8z zd$O|k?vw97@WH`?Lmz&0xL9$l;-mYdA+3+HT1vT=0XZOVT>zvxU2ccELvkYLlcCf*ZH?wyM?MraR_JsPmg--YZK zV87yO1#>2WgU7T662@t{=qTe)Vd4P<4C;#SklK)0N@*h+IkkLgyEcq-;gKFHx>+_N zrf#*0c2JHOn4|5Zqmj zpgfGz$d@)Cm^v2z8+S+}{)i>`VH~_onR>FmT{nt52^Yle2;!CF2UP=u2;$TkVMG9b zb~c@oY6oS-Bo~3x$VHisSB{`*wZxvCf?&YjI2elHi_fVEmuMYNgP_%i4(=&LuyG9n zZDbiS!sdrdrkapy3g8nXcsAzFwZd>7_iTrF_~Tm>=+_eU@8FI{2Oq)%W@pk{Gz-E0 zot;WOI~qY>iE{5ut@&*r^+8yD%?SF%LRwyMKC_C_{I6X z#H1XHPFF-6^XREv1qY7b z_q?BYDqeS}QJlTz$D*~7o~D=0O|Nq2je2a8Lob3()(~aj9Tw7NI38VbGs1N`^S|U~ zggQPwQE-a?Hu*u^LdFWmMZ2;MnaA+?az>h`{v!PjU==W&)I3wIXlreEja59Gj4_% zt52j?#~41Qx{H1g>Uakb1b!ar!l~U*JsV$g9#TEwkr)BiKWAJ(aUg?=wIrE7tAYKplMloM-<);*Xo> z4oZZvO)?U}#h0jS3IqqArLPA~x~mN#JT->S0a>z|4&a(^}C}Q z7o{)4Vk%YBIa?p#%Ozep@c}hlf~)$^YCYOQ^@+9KM@qZL$u}wsdh6RNw~Q{S@S1li R>0=%=6w5{M2OAUJ{0BSi(h>jw diff --git a/test/samples/fruits.jpg b/test/samples/fruits.jpg deleted file mode 100644 index a89b84a58487c8db5a71c65b0c1050d498b801d9..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 82429 zcmbT7Ra6{N*QT4`B)B_4g1fsnGz51V37)3$#t9HSLDOh(f?GpyX$Zj`f;JAp-7N%? z$@l*=v*vPU-iunb);_1!v#Ty@pZDzZcj4~_fJg%f0s_#`0ROGOe*nDdHg5K=Huero z2JVjDel}hXJWL=rJ3c0mtBsQblcI~=TL;$wCSO55NxZ+yfJgxPv;XKnSM-0vz{2>C zaImm2v2bzl@NjW(aq(Ud;^RFhc#eyUPl8WCNJLCbjQ4_sjD(2v-#ro9e`cX$;QX6J z^c?p&(f_mleg_caplv(@prgG6JR?R!Cr10*hgJvxpkbo@m;PsR0JLZ57?@btIJkJv z(f$qoU;6Lx{}ChtJo^Xr3uoa9EV; zy2D3zNJ=TIr~=j0K^g{zM#d(lX6APG4vtQ5 zArUEkc^-T!(Z{)hYw4AY z!oQ3h1=|E)Q%1yZHYW9YnWIuaLB^OzzWD`uS63kw=_23w$hObV*5Qw? z3RGx`JL`NzsH!y%MArUZN(6&9YVut{Sy# zmkiOBJE&EAo=^bnQGJr{6T1u}Upj_8DtJH{`{krH1(re*jX@rYDU4jG zc{PFCYm&shAswEqJ}yf_`2feZ%o;aVA&ot@aUQ+sHxnM%=EJIDML&M$dS@f08D2&Rc#B zk8KE--mKp*OcF+qNHYnE(J6h4N+JoM*g@NZ(Gl*M!-tC?tO513zk7$Gg)b}aL}!b? z-o_j4Oa9tGcwS+KZbaX!Bl(uCEZ{gXVe#cSmXrF$~Au*vH zTmhW@GC8;3HMtug95Ry6D#saodv?W~cl#G$3KP9*^pqS?irDr1b)jNxyXpQi&3|Bl z=rQheP!?+LsR?pNp&m1K9XG#T?C7|C3x1;15gIRvbv7AwaHW|TS++=IQT#PmOS^n; z-otTStiID~xXKFW2mILMMP3Wu-Z0I+L>_Fz%<&N)Y>%Ar;EzlJHA19Sy>X zNKHn?wOCtZTL(N#Q*+}r5nQ)29}%qDLS6)1MZoGPyi3`tJVOhx7tpnINmwiIcX+G3 zxcRqq0hI!>y)P^^P>yb7qsLUQnwi|TmjV${%+9rFrYFEeVrWwFL?6ZCD?Fg5%~4nC zyp#?X&vo#<$ZN&#_i4_jZ2E25(d^(jfHwRWKtl?(8_A{W1UCrZ@PA}@HH&L9YiS^f zrY)Za^P_}Wj5uZ)!zc9zUu9cN9D77^au0fu^pVJClvvE%jO%EyF06{YxuKT$(ee5nJJXCa;SRM)PQ8C*Hkg7pa`_m5QUMRJ^dt*i)wImlJG} zU_z1B+?)ResI}VA2r3whr640W&EOpC!`edXH=Y^DP!Ul5Io*i0l7s#yekWBDGA{!Exa*N zJLLnL+W%d`T;;YFkD;Gli=yFd)2-r8bl>>=4JM7JBi~LdN{Y-sg1yj3Dq7|Rk+qFb>|IB z+xtf8G(Uo}ZxWRQQ?K9Du1zXidPBA2wCLs_oTWyea1!VB%gW?Zvr}Jul4KD*=Blg? z_|mp3A#%b(YSj@tz3j|?M)e6R5O2F@=+sKd&wH5sX3@o>ykhK*BKt0RQZE9%SRI%-8ELmd*od zY49M>)agxjNlP;|kB3fEpcrD)mF4GJxOb2ViG|B3`R}otgaD42`qeybS8zIBs-IKB zVc69D7~*SAB*rIhKc(~3 zy%}vSnW;_+l7f#91*DF#yXFg{M9Fqr0{QbF(IQs$@$Vt(xKKLMOG}zKDfh=^P){WUu_5mM6+dUrHz_JS1nF?^lXLML?J|<%C@aux z2-WXfpa7tMZb)Nt8`fP#&Sz71Om)+CY0pQ1D;}P@YX_b{ zv4V{)3}cO~rtuwMenSKB^;Z$z_;Xk|mjDh+%CFg_B?gtkjpLVWi8!~rVUtWhhLG;M z7zBXFeh!0$+exexPG?P;XF$Qn!)sz#YrJ1|@$bA+0?I(jLNqm&vezh`jRe~ud_C8( zW2V%fKN#>|TPA_YF?popWJBhA7>OFjWgzs`g6~)CJWnhJKZMXj0<)-35X(#_D-rQ1 zEvb*I>K71Wj~_p8Lh+8)o-(0d+;4;PsGqSujxBc4206iy37OF>>B35o?ZI#L zcj^x%y4%t(UgTk$r%`ayh1~P`zv?2=_?`dN$W<1%D0M)C0zXeUe#Xg+`ig_yuS;XR zXS~splf8&@Md_<#PmW{DMj)1QrraUBEI1qoGbhQhZ8wUr8^zWa)=leF0f8V*;tGG{bS{5YdJ_Q%K{6I!45ghgsES zgCsTXSVP8+f5Yk&W+v(ihFu66uMb_Ff*8VzdGo^?Ih%476Qw8r7&a8~e4=KN~ z&skmi+EP7M?aL3e9{stjZVt>8pvNiXXMOjkT_sg;%BT8FJ{g^_a}zep-j_{KUccJemhwfU`JMqvO zXROWr&s&Uw*Q!+|z@w}nUh7($DZO}p{%FQHspo=ahvq47zd9W^$L&h-uYF3oD8KP{ zZ%P+9%(ys^vXI1eLqv0*V&7Dxei7LbcL)w0x+;_MYCLjoY4Q6D08E6x?PFa0L)#*# zmK$v=2f;U;ey6rY_`;du)(9Xg7g&*?03Eh^MY{d$*|a5#k(R$&hLy>5a9EoZ@6^-La913XMm{v5a3 zRGk$irE}a9A{xV*6K#?YFxRomir>NmZVUA+urbCZhnjNowZNjhp87< zDhBnA%&fCD%@9K#u(6Sb-^RxRWwv1 zJNuPsiDJ6N?>VF|-5#|p5Xz}$fa+z(WnUBZ5u}T@QY6P^m}D1mnS68a zw<&q%oj${^HO}&aVeiP&zisy0Se907VY-*aURfuEYMA>*ZN#|jxb&c<(9x>M)fOGR zrruEhbju!Q5nZvdPH;%LJAi?mL*xMi_aBV%f)Y9P?yLsr2V+Eo>EjM)QY=)dcR)i2 zx**nvd`&0KZ~94GSxd=%buHLYAW8K}GumVQM3j@i|+vT-CRUk>n{X?0~FC zsa!3Wsoxd{a?m)ozuF8QA_k z@vK37=c*>ee8|2J8OB6)VwnDtbyulVo@*_qb0$x(x!8ngthn9YRjyOj@H6fv8|no% zOPMH&V1F+~iyT9fsat|Y=B|9Id9?21fafH_o!;Bg%lK7i8VzbJ71NM<_4=+>aQ?;# z+3rco$VmV=lxwGguD6Vdff=cVZY*cqr8ik0?M~@r_5ZRNp>7aT9vI# zgEXvw{xpncwIR{lf;{wxwBa$6Vg_}3}9to_tthrmWr!qdBnk7oDfP*mv^qNH10J61W~0eA4P>j zSsl5b8~sAN{tF;AxDVg)iMy;H-+|1(ar<*dA4N}^Q6-&QQQl)I8d9C#n@1l?qV-gG zvTd&5NhI?EZ}|eN*1ZIRPyc!Hvsi^*_&{?`=Y$b*?(?iyiXlsvwXw%H`YE5^3F@m0 znp`r~Uf<8L=aJIu(O$p4S{zD6h}6Hx-HQ)0R7#UFpPl=orZUfnF^3ZQxGiNJWt)gE z^%7QYfe+tnX{E13+|)b!;@a`{jC$1n${-=`d*ef1+j!fs>x5B9f-qSgeNYif(7$1g z>%H9@vLFfA3z1i>) z&Bclni5giN(v~_A(T>R0Iu3-FVUlyE=I!piZpWt_I)XRGqGrxY=ZS56(R!nf7P2-$ z18(fOmQCU{(W|=&1Su7ARqrxm7ts^~rR{F2eYO1hDWfleX|p*P`X1OemZCP3Z-pTG zQ2}N0Q7nk5NA@zv{9k|@ip@wb9!SfW%ZJzuCK(v2$;F^uY%Y8+oOqK{xp>*X4`ip> zlXudzds%jVTSVX%+b?a02^4V7L$W=#>k^E5LK#Pr(MMtjgm#n9etjA6%GRqWPG1XA zW0>ExUx~XSkf_vG+Begf8+IA1oN_O=|`<{&7JWIsS4Ue+DC3Rt+h+1Tm#JL!oPqZ?)numt5;JEbW-orgp=c8 zSy~znv##m4Yoz3}?1T{$YJr|f+&kI_pScVxx>mY;_NT6U2h>M7F&OZHQv;!l~j9_0=(eJ%o2#g~|sciR7C$yB~Mgl?ES4v^G4{ zB~CQ5Uu$n_QYXucl?s3^Y|4vSC8N;LDMFZXA?t}Rb9aa2AaA+;7G<2^|(A8_7VwlZC>sy8nIL#OC@emA4L{`SrQ-+ zRdi(X!#_wZ-E{k_pj_#GFT2hGT0Z27b?@t%{5Nj7;OHk6$(x$Y_$6@n?o)8CoQbf zN)8z~wb1+F$LEtxy@&ZZ`xL_row2JcI^{l-TiuYu$G?CLnp8O-N$P0rP>7mh?J8@}os%Q9>P z5Y?X5ct%ZzB5W59bT)BG$nY6*(MiTacfKG<4bm3AuyaaHTZL{XAT;~tjRn+-!Q`LGP3QMFG_aaU)j$vJP-Z(rj-f- zt|j9u!tf)~xEg2vY1r&}bNvWqqlSr!RwQVM+DT6uKHLiM@rqh9JTQ`5xV9Uz)>paV z$#R|_*58-uYRQA53SxJ)X1-EMAjntRY|gt5vVpM`93zA)&0Q=g-s>t^b}b-h^BN`& zU`wvFqqi@xZ;fkqd&X5=lh$#po;0jqqD4~72`g7S;J8Wh$)w-hG4U_JeufF0X}F;t z(2eLqTZNi;&bFsLa4i9gzv8~vmcsjJn5K~>`@+yEb{8RT-~2>C*x!OH*5oxs+$adR ztz04~60P2G{j$z-UYr**pMuPbPS!8~#e$R`Y9u7`PuR>bg2xlT-$M^m`yiv~{xet5 z`$>>UedCf)-h93~K;&C*-++j1`E;P41mp(cXNo21mhTAbX0959@HWIS)eU%BWOeG5 zl42iEm-~b;&NR|1jh7~Z{MDy zh@si8CX*9nsJ51slv!g&uHDs~)tPo2l!z>NM|pl0Gu}w76;x@DW!o3^ST)$hJw)Q0 zq|;y+-%RH8iTg)ts!d^oZ0y3ZF>^|qE2VZM(1)mwxFfMQ)hfJPu~Nvwwe_mN;_2tm zU%-(GDavv(txDU6HpN7ww7Kc?Q=2HePg1hDr*Vh;n>!GURWG?7JtA>du{cE#7N4wV zESLCOX1d@L|40W3Hg)-$Bq^*uoNN!fGX&kY(P4DxoCMXYyVjXlH|D z6xhz!IBw8XGT)segqx{louCR{Rf$nJ@bYIzV z9>dyE%qKs&Ac4vYswnb$-`^i=PF=2D#i$&NOkIkw6!WN`WRKo=baq_;OIn|efVblb z!rQp4V2wIbsSNByDQB?isSaTWC}huC@+vf(?I<6%VB%EF!|6N~lQ=OUx+)zujNTlS zbxmRjSq$y{3-~UVO)08L=x|=!waI1z?<0u2-QMI@sc$ZJM;d5`T8$zR-WYf({ z8@%CVJn(YN$qIJS+zacUQ86*zK?(9bbx*0_@{{?5U81)}mc0y!IMJaS@* zoa@Pyr(Tz%i^X^D=Y+WaR>3gcL_p-Jq~kS1)BYdfd6B;WytjJ$OJE+Cs>ZD|X+KfH zI~!PiXSsd?Im+aLLCUscwoHgikPpO8zWz??e7w@4`AY>+UGMjyGZSr+KP=|dUhM)t zC6`iv0Yv`mS~Jt?Jj?cM8g?>SSD4eHgd|p-*X6bm@*&Di3J-JdJX^+dt}V9@4e#{= zsUO)3$C%pMf|{{kFk5hlt}Xb7_R`EJ^B1%j0xd@;MUxsej6ZhWrfIv97ya07%EvyW zdAFrIrMR3!KFRpnnCGE`xHZCbT7}Q+dBNaTEZq*}I6jiV&H9YYs#A|IqttwD^|blh zN4o(<$Ac5_tsGIT*Oj$KAvrq+<2R^vwPJsO(98w>AtTcsVDyeYCfuE7B{~V`Bj?D z12(1hqxg<%iRzgoF}sHuCNEuw?1pA|96LjL(>+sybu>iUZ2V6H9cx6M$B7}E@FqD| zgjTlZJ8q|`PH!q);mXM#0unVHj&NVei~CHCywcTyPevHTD)4wO&tXxm>w9A3HK>nt zL;4{3Zq?G+m(8|i@S!KF-QM`mOA5%#%lzcn6{lt>sxgRHUiCaQ=NZVy^XTz8csa{c zP3BN->0tK8ByUqa5=W^F>kEwYO=s1wOCQOlF69TjVQ%tWAX5PbdN)fab1#n`HlA-v z{4FBcEAc~*aZ@JM)3lpS?jTE(Nv1}U0ExmuKZHEMVq(d{o)oO*VSIqqe_*ut@pY6P z3w9!RL$23RTW*e3#AXXH{v+8pG#TTdv#4Rk_t;ERS`|SEHz)4ZdfK!^U3w7fW`RHX zh9rQYx6?;;X;7rrF+#f`dY78SOiU{Ny~MbKmAQ(;Wm$rmWH$@kGIh6z-}4YQ4y_o4 zu2CB&P1JiB(rx6W4Ov54#7HpHnaQJ-2^8;YTZil9O^f{6SFWHSU>P?z2J5NF&qe@F ztuKj=lH6RM8q<3ni`ZnD#@GUTd(XTkF0HB}mD3=h)urWot1*r5ai;YOZrJ3zSuaZe z0t~w@jOKBS1$)X+OEpy;f7C`y$~&vK|CMeOFgfj1PQZn0OTr!>yKOx6f-?)*b}^5bV zmt{rN-{vm5qgf}{e9=~U0-jik67Mq^Ch_5ZmRZWWMJ>H zEOohzaLZ^D5Y{(@7T(DD(MEY7Bqvqwf*;`owSMmIWgu6Gw7f(f?5@P+dfZV)e`5ZY zIPEfpL~iZm!18hUsBREr_Y`%ruym1FAhP;wvUh5<8M>&_LPhsJh-SZOTxxBwx0%MM z>6m$y#mt`VqPwzqYwTA$@rezHO|IrIz&9rUzNr7!BVfrlx^gj|JuBjU&}Q4obA`^i znlSZI`<>6X3{CO*^IYJEx@Ho-;wOX_eBVSWFJ*(Cqu)g(BZXrW{mSW)dt&5Jj=4)b zV_I0a*+WO;-x4x>!NVF{v&Wk_kJ6qI;gz0j_aWHYp+8J^rYS98Sl9Xh20QU`KNcdP zTB5`B@I>ZNGlXBUp6WoR4JZ6fhGFXs%Qp6W#rmp$gvB#l@}ii6XttiM^BN~=EwApN zuFPTqQBNWL9zk$=J7xU!k$gk<%UE){XDi0q$!;idgc|g*`Un0Y7e#;bXIKGt?#lD5_#_M(+C!v$ZpzucS{I=wD##MFYD!Fv~XEf6C zb*>b3@h2{9>{{}6KA!+RSCUJ|W8wf&hH=o!HOEiLTuI;unIsBGXh%XBQ=;;_h4Rx5 zql!U7cu<+r<92eZs6|7>ov*}Rw0FKNHPs!>(TdnkbF2{IIYO(%KUR}^I7?ng9D}@S zFa5aNIN906Po!{G1oD&(Ph~SPPlpVA z(EhgRy=>o4^%cp%61#i(zQ7bH322wO4%;_yv!)58J(%&a{AkU~S52+_=pnwItPw8I zHlYoR-DAJ#KhEHF_ibH%Zx&=&O}ti^@O(Um{_Xg+r< zJ$E{<5Lu3cf-u^n%Jay7e)6dq6IJi=%r?=4<>`4ve9V96TEmte1ob2fN}NM)(xYYZ z3`^*9Vn&Q>>w6lT*q68N4@V}Fjz!gVPXu$7%&3fZzy~e#C{E!dK$qAOeJw57 z4hJ$^Tvoz~_S0mooU7NRhRfrrRIFQaa}-}FUS5gi{RQl;HAT&)01X-v7KiVXLCn+Z zqb^t*i8uZ9#=GK*93+JtXsp|KzdK^H3~9kD7lOJ5RTZq_<}M@a&?b9F$(5KAZpgei zII83jYeH#w@Tb*W3B6flCxSeHyHN3`tC_)=rYG~=g5qYjyRB;t(VD_Od6;wX7oUqzXw?;GjWPaYL#2VnEiUMRivcawi*)s6BCh=;2yuWh%}n*i3o00m(yiszU- zE~!WCWJR2ketKa3TsXqQ5WgS7k_h%*wrZ+G$=^k}Fdx}|=6=sk4*`1aslnfQ&+sPCXruZ&_*q{Y zjB<#Jcly8jQhAv10doge3QUky^7#dqB0 z@3F;};tnaN78ev4UcWD5cTRbNey#hO1d1Ee^hM5^zAMKvB18mZ804N@KABDGWG5e- z-3NS@It{B?Yima)J z$MiOo16wkV^_hhf=-}XQtaI1-SOsK$ytYT zpqrbfSXBsPNTF0METhsy1uVRk2Kf^l)cLTvR7G|VjdWpSt%n~a6lp7Q5PQ&$v2G! zMK_y&6#jYbE<~mKUY&|Or*e2Oqo6FV!j*b2tEJy;J6Uzw<#V`4O)olQl$XgL&I@3v zuZ|xVi)RzAE>xuWM$pu`$zfbX74oJ=W_j2$Oj1(vRU>vnc{QY|T_e@i z)$DYph)!0PAdwMwkyUR+*{eTSnZAtPc{Rt^Tr&)_EkGK%b&8#)I!n@=hE$ao|6ky~;7ti-4jF-c3djzr5kv?!oV zR_vf=z^VE6=#CTXv21WEHJN6RW1YyD^Re` z`Dv_AM#F3^+(v~}a$lQ!YUJQY&KB3%>MrO(ID=HOUlbFOIkCo@Wu-}89JOikl0ZVF zT`bqNe4Q4$T;~=^;pp~f4#AjMNZ)_3 zx4xgZX&jNCK|f{#|7SQ|e*xy2`>-gwI_-5PI<orm1y~A$e)Qg?8wUXe&C3X5zOX z;&h?K#qV1PFExTKLMUH##l+=~D)?;?)XZ3Q+k0qF6l(y-gAh9ra%H)ozX~6w8Tw{F zqKM9vIBTIw--kVF^InpAQncEt;#RWKYF>@E>cCDnT+?BT<)0rB^dz=9?Hg<4QX!Lf zb0;Hj36gq!1)V{CE@uhuSC@;_ODN)zJj!}VR3rB#Hg~pYn7yGDk{kEku%~llH6FTf z7$0MPzA!Z-s}v69uUc(0@O8ps;f(@M&!y)Na?qdd+<3a@Z5XK z`5Rx}+FyV%)mxWOr|L;nf%!8>*0OzOjUJ!*E}pJs7`kzj?}!W|?wzEsVEd;i><+GGcmTaV^^X zoSa954D#xP^1|D-YWdVrzqo|YY3(6^3MA9z619jqm`0sIq1fsrIE^rWD}@-FR!OgO zqhgc^1F<)A{@kDMA5F)VmR&DtxorLbOXaK$SQzPQ?wE1Qqqm*6mc>D1P?ED+4d{R4 z?2t>p>5#N*OBQJ2gXdKws!`c^R@Jr9g`V7$HDfm<_fnIuEO1yR{s`|~=05(ro6Xj2 zm3+M{6@J+jo0qIlD|uQWF}+6SDV93?l+Tq$VOc*I^=HmV9wz8d%Oo5opg&yPI;=w} zmu%}}QU1LeD~{hrh^wG2Z}Z-r$8u^{A0sLFOB>F&v4UY%W^V5~d&p!=vcV&Nm@n`& z>VDd%;1zgN7s8TyN%2UcG@1(=)!NJc)mKaFucJvCCc_8mvER)!T`)$ATsO41XnA;? zN@cZGd5a*}%nKs}|7hA_E6?!VxGJ!9lnTVZNJgKW@6?v{(>QO=VM*V2TOO4hCE;Rs zASZ+E3RxTyo7Wx=3Wr`iyE4z|F9DBw??thCG^R6PbfHd{buY;J>Rjf+0(Nr0S|@*==`P!aJNtSim1C7eq}n zzBBN!-#w&k2R1p3Ale4bTkW3?ob@~IgK8VCJKL|w{Q)glDcbkoN~?1Cs*$*zT$9zY z(W$&cj1JIs`H>^`Ik>GbLFRuB_Qs;Jy(qphHH5X8EpIc?-hnFtYj8TiH8#g}3{!RR5 zX@q9-en)z_SRe9p%6wPO+n!Qpja0w=kPE%akSh{ueK7(u3ad)zDnw7i2+%Jg45XPZ zH;!;qNy}ZtEaGuv%_7-gZ0Bk&$cWH|hP|~>+cB(lzTR&+riu53tnB8do~|pxt4F?k zHJ6z1-HKhw=%*=;a~>v2`)7~8kAF|-eAKgf_!FEphYTM6Y*a=w%>HB0()MAlL|DnF z)Pl5y&e-DPt1tYi1(~c&0IoG=AKUU_Xy_QZLieM z{s^8N2?wqK)9*O$Cna*Shv*d>)XXtDdlrORxq zm^2ekrrNNV8k+tB2p88ky(R3r<>xysUUB}c;(|+7^72eLTVs!sX^D{X6bQa3Itwuh zgV~ZO6I*8nCTTqVGgV6BN=_THgmhN9KKs(u|7Jv>foKgqm&vEj*9J9W6`nY%=z`|US!nn*sP@J@|v{=uP#v!AHmGt5Vk z^OlsN-7BLu>+5Wk_2 z$f|hfijx;B!+sB1VFhg>JyK^GWkX}&kDW*SVQZ)NZEjjm=Rm;#Gum$S4}h#QXk!! zXbG)}yvZr#S0%rj>%2`_WR(7}+c!J`rpjP+oh^gLW!h&cNjkdZm$>^YJ;>7PYR0wJ zV=E`7WjhNR??WSdH8Q@X$CPz%4&^J4QNrU#OrzbN61lPDDVLU=y$&gSlY+`60AoPk zu!TUA*Us#WFyjf(m3DEO?8E1zi|1CZ7M9K&rY{G+OQ4H(hKi+Z?thtOon=n=;!>Y1 zL8es3iqO@I>oziCtK?ofBwoh;dcFeOG;z;TkYG%(t~)2oxJ2xIa9dKdOQDh>bcW@C zVWF(96REiYwE@RS`shrX63E;6rQpiKf}OhYx4k~Rh`1H?ZW_DDBx<%`of1zC{R-9z z^E7(30CE~=+)z zUU9WTLZV!l3tTGB17KU!1Zl2=+Bs!2uJ+04wv9@D2^!nnb>&WsF*M6kYlZc^FUY&E zCL})0s%sHgKD)cc z#?h&>|Iyc$N5_raQhiNg47<>iWZg&0lrCA8#VCIwWNvP7yT28^42swcHV}BI^X}Oa{@( zb8V^>%Vg#+%&S{nIA!ZBeO`UNcQ%?v-eug}n7+AOo@6AI$~E65a;}L$PkmiZKWt^E!-EX|$+k zjqPh)SaGJBe}2N<$0o-d)->ekWsxy?t=}H&B(mdE5o<3vq+lyN>)2519R&UAV6ym< zUGmIomyn!?O_lZf(5pGUlzt-4&qcGd?d|Z+AajG&w2lB*g`^BXIP15wX}L+sSYGsO zeq()NS?wd+Q@*GU%_PH@TI>E2$VN0b(^!3yLf0(nhrWNHES}Mf_a!evWXCX?P1~M+ za?3iyQycQa>s?Bt(e%yPy%~+Ib3e#t;~V|D-yiksTx@kxGwu%pm!CY;j$+S_y@!t# ze!m7f`Zu$Wh8N9$nF4J^c)qu6CI{$I-1GRpLP>8*{=;9Sb9tXir9e4mdg+dmePmwi&X+Wdf)Jm>iMo&%pDgseolXc2`oe+?wmZ znA()Y*nU@x-6nYNCd5u0RZV+@y4DY&fU3>h1U)W1o6i`$1eEyzt*b zzVS`-I0Z>IPPq?=lkdshMC2rQ*nPR0t2C+1*{tpo+`Q|}7~f&_r1Vl`kDoU8*HKMd z9ZRI7=Aw-)u@pVyj*_vTn?p}R|I^<1a1+TfZDBd^*$vHex@|8& zRy#1Q=2!8M^}rGtew{nZ%>>LWE2;0fFHdtF=+$??8^QZ4ZDM`nkAm@sF7ZL@AH~Hy z2cjqO@80A8FqXaR!-whqVon-Lh!!fC17?3Kw>GX|{}vwjB97cb$}u(sCew| zpgDN1W8t9OJ35Mqe+m8~uQ3lwr{7G1*0*qff_*RF3gX41LSUdi#AcDG%QT#98c{%P!!34!|_Ws38A!7xS5a-F;nzKMQ#X`HBv@%i;+ zT(236>L@r{#zc1B9zzq-ufpH|UN<`BN!I>yUS9FYYQW?}3AN7BQ+Zd%X5UOsYJil8 z^L@ZI;<#$Yn;k=3sFi$j|)G*EM> zwe)eo>=B2tSIV?Gi}5rxl)zHaC)hhhUHd29yR9yfRj|eEqh-j5+r~!{AvrHH*J?;l zCk;0`==b>H1GV-)gyr%5cDjiMD1D>i+9n0lmS8ie8XGCZn0d9FVj=o<4l7o{UC!e(Y{y^e{%?SunNKbBPq(_l; zgOmD+dszE7&B^m@A<%VJ@#-d-~{2&MC#Y zY0%WDi45IoJIbRuH~ir|^ZGKWAs~J#ADQT1bM|_s5vrL^^KICk3G<5by|l@mai@t< z7cBD;r7U#=o|axXbQi^^7!yWJyQvUpu(tq={bGGqttNYK&2OUH-gGUIe#UI0-P6VP ze3aL?Wj7bAxCtoUqGS(lgaki4E#x6n^x=1iPdW`q4_09fmZkJ@WrVKg)|D}Y z`Z5ZWV6~;=%&MEdTmhUIEH69Lq-_WKT zF(C#_Na$L!OWwxJQ+=rqDBhF(3z&dZ74?^c6%rfJJ-JmoXWo(!#Bz7x#w697{01RQ z_Mq~rwPOQD77ji?HgB?toe(`4&pZ0eISmwFVtk>M#3v-uiZ;O+<6#?tM&cz`L>&0Q_(YwL#~QE7|& zcGHi#scEr(fww6|I=5gIfQ?C?haQyEPcQr^{~ab zbig-h6T7LEP(%an%a!YFcEiE{Dj8_3H9la%ItLp@3X|itbY^o|_VJS;ie0G0`Qu6C z!gF1|u`~m~ldqWhM$w-^y#>Rroq*>CDvk`g!H@d21n`knbQ~H97I4B zOQ^>AS|&5?xRR$dJWoDNv(gMAECgOAQ|NFzP-}wxE)6w9)-O`En3(&YN zhqZOgN5CmEhwxDR>ZzJ$ib!{^oYDv1;Do%^4#?wT?0V^_S>7S{Y)aubIy3jnR zyz*>O*RzHG9V->F`uxqotD2$4rOYPB6~jN5vL=0>4(=GVi%MQP$a5NDziK!+t9@q_ z(%iE=(u~n8n8W4evij~tvD)-@@)U9C+P zCc4!~oxBBWcL)$l>NAnvsN8%wyNUP3aL1BxM_Q*iTSI7Lsy!rjKMcMQ`L|PR8q|T~ zwvT*p9<1H7?OxO2>GfoPv0VbtM!za4;YK*GgwJyqIl0B@dwiGq{)f;srA@bGWQ9zvtShiu&f<6IW@l!+Sy;~ zM&3DP2_%eg5LPixw5dPH-}JXbEMG?)luQ;g%j zYL26Qb*o){uKAOCMzH{j004C2yK7X1D9VN&{EtU|tv9Kh6r}m*x!8Oz(DZG4Rl0{& z)n?P-v$L9UGRe1mfqqrZbMWeS7giS5rQIR3cak;);n=bHy{o1Xj4&{%O}oj;EnVoB zF01nSoRfU@Wfr!#&gqz*D~2aXZ$ySRc>rg|dGGbELsgDXDtCfS>Q2(c@I`Bew>pw~ zzxX=;0A0=H??TNUVd5QH-$c|_NmwFWDPq6v3gWd-5nt<9Qd`&@E3OL;EA>pVy7VA? zRwjdZmY&9S!`bOW%$74efR7p84UD?Xgp3dynZxbYTO&n4Ht;qtaSi<_OsiF2uld+Tn(c%w?Rw}*AG<$I2R);@%a z(-cKg!;o9GUq9MGIi{46+reRLYizeuzsz|6{{WsTXV)zvfJFpgfyu{0X=^P^+_|c80<(lC6)*bE0s(pGU-6-UiY#PxfPX{WUh3yd=05!SEh zFe9taG@e+DZq7MB;at;;=19&mPAQ{O%3(FbNI(Gm#FN^!jnrb+OL#*BW(1SQO=%_7 zf_ms<-9%P4^1;gz4;<8%>gfPRMJ%HO*ENgxWSZE~>td_KWDN@pdXg)N@qUCX?h{nf zN#7aVO82g+Hj;5>l-=(K)HMAwPVo{$sopyLoHSnj^Hpzd;nL@xdtj=ODNsPi;aw4x z;w4eaJe`lS*Gsvdmo7lyWbul#7KY^Drg+Cn{F9m#m7;wGO4Vz=YK^kgdJKdQldn9A zvYHEkONnuSna-iazL+y#6opjYgo6Z&dl~IR$F!IbUI~| z+T8-lkf4wU0=7|9B8kfummkIVMS59A8h2`2CjS6S9&RRT_eOr8(p)LGwI3?B=3;-X zb9(NddvgmluH_cvCwa=V9)lJ26>##NknCeZNju2$Um5CGcKYSib4?UiF{(!>gMqk? zLHsL@1}9=i9dgG;lY3kGVp5!7 zy{o%xTX!VWG%Sf*G5g$J(>)ZX~g{nRf+JN}sKJ64hAqoRn3N{Vv)l(B0gDxz8Q=rs^7) zjlx<00pNdAQFip`anzH3>NBNz!v>w-ZveLHd>2wc3~3>e8}BJR)3Q#fYH78pf{0-Wx1xf7N>0<$WGPL(C80v%{{U>JS+LGI036jMn&Rqh(#f3g zPp9EeZG!2wZH+BD<_mD*?oz=C3Z(HuYBQsTKtj8GstM=brN^2!2|K=2S-ZNqXft*d z7ikI$a!pauWP5jegaDl26HY0pv?jFWxvz1mM+Lt5nWQ9qqqSzjx7wi_K2*;Da0#Zp z)u^Jo>}o@z%p(gd`&S%=^r{!S0~tw#ZB-fEPkPo3OG8D-^kwZQS-jF@7Pr9331!0* zoDA2cL9Mo>0D{RQShkKq<-KZJY3OrK9?EuGGg{q*V}q6ea4S+d8_C}CDLs@LmY9=7 zGvvp)UvL>X9gQxW^BXx(Mgs$#*vZ9ZIPA+^2nk;>iNWAx3lj| z=NO23@GDjwATokeCmiu#i8_*#X`e~Tk!C$EG#Mxd80%6C7*uir$81(@+eS2p{gxH# zpH3+Z5#uEWMleXGnCv4Wf&lx!)L;{``vc&E+OcIZOzI}8ENFbzP~*!h?aGBRsu zO|8YtcVs4$Wfr5YE}CO_z)kHT7#Ocm(L5Qa&!@v>EuzTr9Q@t?0LH#+F~+LZoD$nl zy!r}MzNtknuU2|akD@M~BUHu;<6!7Gtr=|Nw6~FwH4bMML)AWVB zxz%l*5|1EFt6EN{Cp=b{wc68FZ@`MN z*H%Y)ZxoP!qd~O0?k*2MN`~1Q?nvVx%RcS9SCUWlttAM~NhM_Tw|3w3jN58F-Agx7 z+(J#f(fMo#%$fA8xr?)I0F07)_oaw)Qgr8~jG+~4qAN?t^y!SUz-}KIz$Yu|SY9J( z?dSVSO3iI@!K4Z?md{G+!BuLLgmi0L_g35Ga$J9TuU)=JG4Y$jx*ha3w;F2iw!eW` z=Y~fEpQU`?sn{onbqBSPgE()O2e++$m66wkl%Y-N)z{5`ne(}l3{f&;&w&2oaZ^Op;DI2`Sja+h0d!c1W*tWMgji->sEM~i|#Ic^H&vP zDQfOK-pK9y-@DvrwKz?0A;|@J;{u+fCuL#D9JdRFX4~pbM|Ego1;a7qWSY~JBvXoN z<#3JxB?i!lDQ=I?N==>}w_ib)QyX>A>tc#Cd!kYF}D4_e0=UC^T3cX}hQ13^`(ce2#) zZM54>TJ&nsY0Cte3AIOHJ*%(q-kWyUp@KL-*d&Z*zCxu*V{vL!<7>2fRb|Ns89kBQ zNcProwDVy=9c!2I7l={qac<19FU;sa5~1RsOxatT4^!N z>kKAcu`c4^btlkQH-8?xWvAJus|Cb1Q%GciTwz^+>z?)UxY%N9r(TkLmTA70y}uiy z>9Dlv(@GL+n4iN_cxF4BxqL#mvM98Z?9o7Qtu8)L$FR?(TD7>IJvm}TAHGE!4?xGh zYljC`juxdVlvC%txv#afx9f9y^yM`rD_cu`rbOBnz2W)h)nZh-Yd|HLqHV%3-lwHY zX{75OCh*>`t!TEkQLl&X{?l@YnI#T+Ab0xL*wUkkr2egB+^;11X{)#0W6g7?rAz6e z`}AL#ZVfBNUL^2-m#pa0X;$*uOR_kvRDG&U{{Rz?z<-fk-nXeHs7>ajbn|PUYVs~2 zSc0mej20wyC)%{c&cD^;QxPS}IIAeHw3eSY)S7&bU%R_$wC~&c*oNh8Vul%Ea>10B zPRf6+XU}}_+xf9NM)vL*9Y)qU>MPBiSV1_`eLn3k_%mpyHK@ypZyFf2OUrqZE3#54 z-ZH5sI^doU;Z>xPGZYer4H5L}yrC&t-Ex^0pa<#Uy8s z#*%1d)HFFX;cTUCoX*nc2Oo`h;A%~N>N=-?#ar|-s+4Le`hQ=E#dw<0+d>LgEeqvI z8REWm_@I#|h!Y2Ed0A@vJ{WJAdLAxvy~fTov`Z*_5q$1*3H2Z(z9U1&QhlmbvX*$uBu5$SJ5{~Qic;JX z))$1v5sbO}qKKlpw0}Ajeg`6nB_(7jK{alp{?dk1BSJ>-6z8Qr;?dsn6iDzKf-%Xc zmX~bJ^DlNsOBRhZ@dfe;9R}fn)A`W842{Mmn2y9Rt$Fn^@TRR3KW?D8Y+r-I7H9#G z$lZqKz&`bHyfvp=jLB}KjtBtst|?=xPgG{>Hnaw?wS@Ul+8_sl0Oq2TO0f~_dm^CZ zoF1Z`Jattq$W`Us&ORE`L;27ovAE}QwmGeBH&M9Ll~c@VR2%}w2Nl&%9V==TDtkqC zwKpyNR{}blgpe`n2SHl4ekIbbG8X6|2csYHu9)IsJ9BAsHCEe};<&e-Ln1P`10$S+ zOD)495Q?hV&IN4kqek(Pp2aJ&ZX#p=a;J7{#XL=7k?SoOJTvlf(zlD|gGW_6I5d8= zs;dkY{VCgDpct>i9JIOg$pDC+3wG=%XqP!7K9sI89y}al9FB2K*mIrO{3%}DM`Ae% z5fZ7m_5@;rgJ|5iYyvt1eSUER`Z@oA_1df6Vf8j__&RO@rJ(5>Qv+#!zyH{xru)0Q|R zS)ETk0q85s$s^BQS!`vCZq1o~Bh{l=rzOxw5|T?EIIkb^Cy1{#3kdDRrD2iIKm>R1 zUgm3A#d1aOf4f6Wwu+PHeGDbK)wIJky_NmNvfV^dKz=~TN9qk&)OQ!)n$}g-se76bHcFi^sC+s)oy>`Wc`Wy{f*jG;T<$Tdz^152PzwoA=*Hg>H#vGH9jqID#uGabJV)(g!e%=T+WK+vJi<@Hu5_X~qjhuja?=R~7$axso-g~KdUu!V_6 zO^w@{)~z~tdb5o^lhDrYc5J18Zf`VM^wSz`B(QKY`5gv*E9CzGinit*b~kp*n949c zh&ApxX@a?|m860gP0Y^B`J!)ZS2>Fh1KDGJ;V)tjvMk%X+f2dti2=TIh+B z<hp!4{9)Vo`mu#;_b+}*eEz22i3ONhh>4o=>! z{uR;LczWK^VpuJ~EAoeNmc@9uynCAEi#aM*a?u(qWMctXmCJGm2OiYFWnwnQF|_9g z`PY#ut-GAf_7}-Q18yhKu*n9QIwAQQSCHVb8*@<_k86|6(O4)|V4o>GWR97r|Htx04N~?~{X{+5D7JebNnm;O4 zDDR%8xNjQ3v0W|PL#_^ed9PN4`Qp*&VXAZ8GxcyFQH&0m#UKO#LVmfg!tVMXUt#4J z10;+eNk27<0)b)HKfwHLjx#@=WqP$|ZdJ^ai~w)W8`qsN|XB$HDDy)55JXfiKqYNcCRq1ohlXa)cd1r`q z`85mJOplvl2Sc;*9fm8nLMb5;|ia;3HA1_eqXIZt!XNj;V2GG}&*R?G4x3*&Fzz_0LmO^=&%V>Hvn^9Fln*53O`Y zr0S>bTY72txB8s2il*-!4t6a!P1EJ!Pnj8DfphZbt}5IsYcp(km@dM+9OU+`D7Yyn zC4S^iQhJnbo$W+Q*3JWss^v%r9*4a~l3ZLXAOW{G7#TS96{Y6A$g6+De^x0jt&FiT zE&Z{+1i-U^LXO$yu4@(|%U!&JI9eE1ebA}v<*@l{wwF zRJ(9yX&v`A(7iFzi`z?y^wrg2w^g~0*4l_sqbf>!=e0&$F*`#8)Q*C;gs$`*#=J*3 zQJiovO=oIW2J#UT$%f?Tu05;M!%ZilwJMyGx<6Hp)!>!s=|GV{$i_R@;@cmf+Tt|3 zxC9D~+aqz1b-=|pa;!vMcVLnD3Tc%{w~m9;xCv9$f8=z0f+^whWkZf#ElAaUp`v5pICWZ4)8X~uC& z3rZ4#a$2oDNW{(aSq-?m5L-Ui3&A^xzyiFY{{UZ$Q`Du7MqeT)+q{hMI-FNdI!c`= zQ*U=*!Bcabq`DlAsP=ani^v?T2_Xu~IV0FqvTD~?w$fQ#%@~AXvnSs>dJNZ@PO_&t zDi3?7eXY0rG4CpE#W{2-7~=b0VP7r*d3^+Ds&Xu z>!M#R{`6?mlSX5~G)?BJ?o8u2;;+5^<(1W?7EA@U?f8;%77VJr_T-;9pvrCUU*3#g~ z3l-#ydj9}QsifcBX;*RHLXk5s7 z7H^SqbDZX&xOuKy&Yoh@6jjS|aJ?%#)NtopH}~68Cu@zG-U%bLmI?PuFkv8L(;e!k zGTE(}Cjvm^=Zu40QRPj_4(YGOrE{I#+WiVL1xcL&48gOXQ(j;3mqT4wNw~Ws_o~6v z<0k^We5R_UjfzjHjdx%te?$w+3&YNacCCe7i zO3*Z=g##4A?aw3%>22UpnRNgGfPHJ?u~j*yix1hhe}C$LU&AeA_)nic&(+!m>TO{N$Bm!2Ig8 z_D}@DIdk{6p4Hb47490hW>hhlNo;}?anD*nmNSN3hBgBvcFlBMZj76=@*|emgjEW6 z0hT}3t39JB#~X`dfr4vFb!_e=Ktid?mINI0$ohYu)}fIzPjLF9K8 z4$oEtN~lu1Tb>O?8Z0p^5vBmh6yszBY|<(DvBye=Sw?u{=~Z^O3l*lA6OUhNqbue2 zbJw`$p~~*aX%Vy+lMf=!E!Q%y$O#w&)YV-MFAzm~nq#X!&4I9F9(k@@#a4v{QlIqM z=-`z;S#zG-;r%jQKHp=o8N)C>xT{m#L2ns3=avBXHQSfbbm=J6cWURGT72_u9)Ixz z#Dz4q)2xHE(~@O%JSzHEnA^%$2X&a1CjN@x0cdSqU8FrqoQD{7WQOnx(d)w@^oRUf6!=H;=jxd{t7zxM3&l zTDowOU0P}W8mpat(R)=Gr>cIMG*z&1=QM6)bHcb?xmkkhVoe8 znm{*68uV-rT1%T~W|wp`4TOb^6VFf5v#CyxJn2GOUD>|Lzs$7ctmL)oM=WyN+RbMx zoDHGXTje>cHj=%CsA#@Y*ck_$dRHu9=v3vC);Io