1
0
Fork 0
mirror of https://github.com/ruby-opencv/ruby-opencv synced 2023-03-27 23:22:12 -04:00

update model function for cv::FaceRecognizer

This commit is contained in:
Adam Bronte 2015-05-08 18:20:34 -07:00
parent f041d17b33
commit 74f89f3582
2 changed files with 52 additions and 0 deletions

View file

@ -83,6 +83,43 @@ rb_train(VALUE self, VALUE src, VALUE labels)
return Qnil;
}
/*
* call-seq:
* udpate(src, labels)
*
* Updates a FaceRecognizer with given data and associated labels. Only valid on LBPH models.
*/
VALUE
rb_update(VALUE self, VALUE src, VALUE labels)
{
Check_Type(src, T_ARRAY);
Check_Type(labels, T_ARRAY);
VALUE *src_ptr = RARRAY_PTR(src);
int src_size = RARRAY_LEN(src);
std::vector<cv::Mat> images;
for (int i = 0; i < src_size; i++) {
images.push_back(cv::Mat(CVMAT_WITH_CHECK(src_ptr[i])));
}
VALUE *labels_ptr = RARRAY_PTR(labels);
int labels_size = RARRAY_LEN(labels);
std::vector<int> local_labels;
for (int i = 0; i < labels_size; i++) {
local_labels.push_back(NUM2INT(labels_ptr[i]));
}
cv::FaceRecognizer *self_ptr = FACERECOGNIZER(self);
try {
self_ptr->update(images, local_labels);
}
catch (cv::Exception& e) {
raise_cverror(e);
}
return Qnil;
}
/*
* call-seq:
* predict(src)
@ -171,6 +208,7 @@ init_ruby_class()
VALUE alghorithm = cAlgorithm::rb_class();
rb_klass = rb_define_class_under(opencv, "FaceRecognizer", alghorithm);
rb_define_method(rb_klass, "train", RUBY_METHOD_FUNC(rb_train), 2);
rb_define_method(rb_klass, "update", RUBY_METHOD_FUNC(rb_update), 2);
rb_define_method(rb_klass, "predict", RUBY_METHOD_FUNC(rb_predict), 1);
rb_define_method(rb_klass, "save", RUBY_METHOD_FUNC(rb_save), 1);
rb_define_method(rb_klass, "load", RUBY_METHOD_FUNC(rb_load), 1);

View file

@ -13,6 +13,7 @@ class TestLBPH < OpenCVTestCase
@lbph = LBPH.new
@lbph_trained = LBPH.new
@lbph_update = LBPH.new
@images = [CvMat.load(FILENAME_LENA256x256, CV_LOAD_IMAGE_GRAYSCALE)] * 2
@labels = [1, 2]
@lbph_trained.train(@images, @labels)
@ -52,6 +53,19 @@ class TestLBPH < OpenCVTestCase
}
end
def test_update
assert_nil(@lbph_update.train([@images[0]], [@labels[0]]))
assert_nil(@lbph_update.update([@images[1]], [@labels[1]]))
assert_raise(TypeError) {
@lbph_update.train(DUMMY_OBJ, @labels)
}
assert_raise(TypeError) {
@lbph_update.train(@images, DUMMY_OBJ)
}
end
def test_predict
predicted_label, predicted_confidence = @lbph_trained.predict(@images[0])
assert_equal(@labels[0], predicted_label)