mirror of
https://github.com/ruby-opencv/ruby-opencv
synced 2023-03-27 23:22:12 -04:00
Some more code cleanup and return of read_net_… methods.
This commit is contained in:
parent
801d1e8694
commit
869e21ab42
5 changed files with 109 additions and 103 deletions
|
@ -37,41 +37,48 @@ namespace rubyopencv {
|
|||
return TypedData_Wrap_Struct(klass, &opencv_net_type, ptr);
|
||||
}
|
||||
|
||||
cv::dnn::Net* rb_read_net_internal(VALUE model, VALUE config, VALUE framework) {
|
||||
cv::dnn::Net* dataptr = NULL;
|
||||
|
||||
try {
|
||||
cv::dnn::Net net = cv::dnn::readNet(StringValueCStr(model), CSTR_DEFAULT(config, ""), CSTR_DEFAULT(framework, ""));
|
||||
dataptr = new cv::dnn::Net(net);
|
||||
} catch(cv::Exception& e) {
|
||||
delete dataptr;
|
||||
Error::raise(e);
|
||||
}
|
||||
|
||||
return dataptr;
|
||||
}
|
||||
|
||||
VALUE rb_initialize(int argc, VALUE *argv, VALUE self) {
|
||||
VALUE model, config, framework;
|
||||
rb_scan_args(argc, argv, "03", &model, &config, &framework);
|
||||
|
||||
if (!NIL_P(model)) {
|
||||
cv::dnn::Net* dataptr = NULL;
|
||||
|
||||
try {
|
||||
cv::dnn::Net net = cv::dnn::readNet(StringValueCStr(model), CSTR_DEFAULT(config, ""), CSTR_DEFAULT(framework, ""));
|
||||
cv::dnn::Net* dataptr = new cv::dnn::Net(net);
|
||||
RTYPEDDATA_DATA(self) = dataptr;
|
||||
} catch(cv::Exception& e) {
|
||||
delete dataptr;
|
||||
Error::raise(e);
|
||||
}
|
||||
if (argc > 0) {
|
||||
RTYPEDDATA_DATA(self) = rb_read_net_internal(model, config, framework);
|
||||
}
|
||||
|
||||
return self;
|
||||
}
|
||||
|
||||
VALUE rb_read_net(int argc, VALUE *argv, VALUE self) {
|
||||
VALUE model, config, framework;
|
||||
rb_scan_args(argc, argv, "12", &model, &config, &framework);
|
||||
return net2obj(rb_read_net_internal(model, config, framework));
|
||||
}
|
||||
|
||||
// void setInput(const Mat &blob, const String& name = "")
|
||||
VALUE rb_set_input(int argc, VALUE *argv, VALUE self) {
|
||||
VALUE blob, name;
|
||||
rb_scan_args(argc, argv, "11", &blob, &name);
|
||||
VALUE blob, name, options;
|
||||
rb_scan_args(argc, argv, "12", &blob, &name, &options);
|
||||
|
||||
cv::dnn::Net* selfptr = obj2net(self);
|
||||
|
||||
cv::Mat *m = Mat::obj2mat(blob);
|
||||
|
||||
try {
|
||||
if (NIL_P(name)) {
|
||||
selfptr->setInput(*m);
|
||||
} else {
|
||||
selfptr->setInput(*m, StringValueCStr(name));
|
||||
}
|
||||
selfptr->setInput(*m, CSTR_DEFAULT(name, ""));
|
||||
} catch(cv::Exception& e) {
|
||||
delete m;
|
||||
Error::raise(e);
|
||||
|
@ -107,12 +114,12 @@ namespace rubyopencv {
|
|||
VALUE rb_get_layers(VALUE self) {
|
||||
cv::dnn::Net* selfptr = obj2net(self);
|
||||
|
||||
std::vector<cv::String> v = selfptr->getLayerNames();
|
||||
const long size = v.size();
|
||||
std::vector<cv::String> layer_names = selfptr->getLayerNames();
|
||||
const long size = layer_names.size();
|
||||
|
||||
VALUE layers = rb_ary_new_capa(size);
|
||||
for (long i = 0; i < size; i++) {
|
||||
VALUE layer = Dnn::Layer::layer2obj(selfptr->getLayer(v[i]));
|
||||
VALUE layer = Dnn::Layer::layer2obj(selfptr->getLayer(layer_names[i]));
|
||||
rb_ary_store(layers, i, layer);
|
||||
}
|
||||
|
||||
|
@ -137,6 +144,62 @@ namespace rubyopencv {
|
|||
return self;
|
||||
}
|
||||
|
||||
// Net readNetFromCaffe(const String &prototxt, const String &caffeModel = String());
|
||||
VALUE rb_read_net_from_caffe(VALUE self, VALUE prototxt, VALUE caffe_model) {
|
||||
cv::dnn::Net *net = NULL;
|
||||
|
||||
try {
|
||||
net = new cv::dnn::Net(cv::dnn::readNetFromCaffe(StringValueCStr(prototxt), StringValueCStr(caffe_model)));
|
||||
} catch(cv::Exception& e) {
|
||||
delete net;
|
||||
Error::raise(e);
|
||||
}
|
||||
|
||||
return net2obj(net);
|
||||
}
|
||||
|
||||
// Net readNetFromTorch(const String &model, bool isBinary)
|
||||
VALUE rb_read_net_from_tensorflow(VALUE self, VALUE model) {
|
||||
cv::dnn::Net *net = NULL;
|
||||
|
||||
try {
|
||||
net = new cv::dnn::Net(cv::dnn::readNetFromTensorflow(StringValueCStr(model)));
|
||||
} catch(cv::Exception& e) {
|
||||
delete net;
|
||||
Error::raise(e);
|
||||
}
|
||||
|
||||
return net2obj(net);
|
||||
}
|
||||
|
||||
// Net readNetFromTorch(const String &model, bool isBinary)
|
||||
VALUE rb_read_net_from_torch(VALUE self, VALUE model) {
|
||||
cv::dnn::Net *net = NULL;
|
||||
|
||||
try {
|
||||
net = new cv::dnn::Net(cv::dnn::readNetFromTorch(StringValueCStr(model)));
|
||||
} catch(cv::Exception& e) {
|
||||
delete net;
|
||||
Error::raise(e);
|
||||
}
|
||||
|
||||
return net2obj(net);
|
||||
}
|
||||
|
||||
// Net readNetFromDarknet(const String &cfgFile, const String &darknetModel /*= String()*/)
|
||||
VALUE rb_read_net_from_darknet(VALUE self, VALUE cfg_file, VALUE darknet_model) {
|
||||
cv::dnn::Net *net = NULL;
|
||||
|
||||
try {
|
||||
net = new cv::dnn::Net(cv::dnn::readNetFromDarknet(StringValueCStr(cfg_file), StringValueCStr(darknet_model)));
|
||||
} catch(cv::Exception& e) {
|
||||
delete net;
|
||||
Error::raise(e);
|
||||
}
|
||||
|
||||
return net2obj(net);
|
||||
}
|
||||
|
||||
void init(VALUE rb_module) {
|
||||
rb_klass = rb_define_class_under(rb_module, "Net", rb_cData);
|
||||
rb_define_alloc_func(rb_klass, rb_allocate);
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue