mirror of
https://github.com/ruby-opencv/ruby-opencv
synced 2023-03-27 23:22:12 -04:00
Added support for DNN (3.3.0-rc in experimental mode).
This commit is contained in:
parent
ca813d4f71
commit
a524cda800
6 changed files with 241 additions and 3 deletions
74
ext/opencv/dnn.cpp
Normal file
74
ext/opencv/dnn.cpp
Normal file
|
@ -0,0 +1,74 @@
|
|||
#include "opencv2/dnn.hpp"
|
||||
|
||||
#include "opencv.hpp"
|
||||
#include "mat.hpp"
|
||||
#include "size.hpp"
|
||||
#include "scalar.hpp"
|
||||
#include "dnn_net.hpp"
|
||||
#include "error.hpp"
|
||||
|
||||
// https://docs.opencv.org/trunk/d6/d0f/group__dnn.html#ga29d0ea5e52b1d1a6c2681e3f7d68473a
|
||||
// https://github.com/opencv/opencv/blob/master/modules/dnn/src/caffe/caffe_importer.cpp
|
||||
|
||||
namespace rubyopencv {
|
||||
namespace Dnn {
|
||||
VALUE rb_module = Qnil;
|
||||
|
||||
// Mat blobFromImage(const Mat& image, double scalefactor=1.0, const Size& size = Size(), const Scalar& mean = Scalar(), bool swapRB=true)
|
||||
VALUE rb_blob_from_image(int argc, VALUE *argv, VALUE self) {
|
||||
VALUE image, options;
|
||||
rb_scan_args(argc, argv, "11", &image, &options);
|
||||
|
||||
cv::Mat *b;
|
||||
cv::Mat *m = Mat::obj2mat(image);
|
||||
|
||||
try {
|
||||
cv::Mat r;
|
||||
|
||||
if (NIL_P(options)) {
|
||||
r = cv::dnn::blobFromImage(*m);
|
||||
} else {
|
||||
Check_Type(options, T_HASH);
|
||||
|
||||
double scale_factor = NUM2DBL_DEFAULT(HASH_LOOKUP(options, "scale_factor"), 1.0);
|
||||
cv::Size *s = Size::obj2size(HASH_LOOKUP(options, "size"));
|
||||
cv::Scalar *sc = Scalar::obj2scalar(HASH_LOOKUP(options, "mean"));;
|
||||
|
||||
r = cv::dnn::blobFromImage(*m, scale_factor, *s, *sc);
|
||||
}
|
||||
|
||||
b = new cv::Mat(r);
|
||||
} catch(cv::Exception& e) {
|
||||
delete b;
|
||||
Error::raise(e);
|
||||
}
|
||||
|
||||
return Mat::mat2obj(b);
|
||||
}
|
||||
|
||||
// Net readNetFromCaffe(const String &prototxt, const String &caffeModel = String());
|
||||
VALUE rb_read_net_from_caffe(VALUE self, VALUE prototxt, VALUE caffe_model) {
|
||||
cv::dnn::experimental_dnn_v1::Net *net;
|
||||
|
||||
try {
|
||||
net = new cv::dnn::experimental_dnn_v1::Net(cv::dnn::readNetFromCaffe(StringValueCStr(prototxt), StringValueCStr(caffe_model)));
|
||||
} catch(cv::Exception& e) {
|
||||
delete net;
|
||||
Error::raise(e);
|
||||
}
|
||||
|
||||
return Dnn::Net::net2obj(net);
|
||||
}
|
||||
|
||||
void init() {
|
||||
VALUE opencv = rb_define_module("Cv");
|
||||
|
||||
rb_module = rb_define_module_under(opencv, "Dnn");
|
||||
|
||||
rb_define_singleton_method(rb_module, "blob_from_image", RUBY_METHOD_FUNC(rb_blob_from_image), -1);
|
||||
rb_define_singleton_method(rb_module, "read_net_from_caffe", RUBY_METHOD_FUNC(rb_read_net_from_caffe), 2);
|
||||
|
||||
Dnn::Net::init(rb_module);
|
||||
}
|
||||
}
|
||||
}
|
13
ext/opencv/dnn.hpp
Normal file
13
ext/opencv/dnn.hpp
Normal file
|
@ -0,0 +1,13 @@
|
|||
#ifndef RUBY_OPENCV_DNN_H
|
||||
#define RUBY_OPENCV_DNN_H
|
||||
|
||||
/*
|
||||
* Document-class: Cv::Dnn
|
||||
*/
|
||||
namespace rubyopencv {
|
||||
namespace Dnn {
|
||||
void init();
|
||||
}
|
||||
}
|
||||
|
||||
#endif // RUBY_OPENCV_DNN_H
|
133
ext/opencv/dnn_net.cpp
Normal file
133
ext/opencv/dnn_net.cpp
Normal file
|
@ -0,0 +1,133 @@
|
|||
#include "opencv2/dnn.hpp"
|
||||
|
||||
#include "opencv.hpp"
|
||||
#include "mat.hpp"
|
||||
#include "error.hpp"
|
||||
|
||||
namespace rubyopencv {
|
||||
namespace Dnn {
|
||||
namespace Net {
|
||||
VALUE rb_klass = Qnil;
|
||||
|
||||
void free_net(void* ptr) {
|
||||
delete (cv::dnn::experimental_dnn_v1::Net*)ptr;
|
||||
}
|
||||
|
||||
size_t memsize_net(const void* ptr) {
|
||||
return sizeof(cv::dnn::experimental_dnn_v1::Net);
|
||||
}
|
||||
|
||||
rb_data_type_t opencv_net_type = {
|
||||
"Dnn::Net", { 0, free_net, memsize_net, }, 0, 0, 0
|
||||
};
|
||||
|
||||
VALUE net2obj(cv::dnn::experimental_dnn_v1::Net* ptr) {
|
||||
return TypedData_Wrap_Struct(rb_klass, &opencv_net_type, ptr);
|
||||
}
|
||||
|
||||
cv::dnn::experimental_dnn_v1::Net* obj2net(VALUE obj) {
|
||||
cv::dnn::experimental_dnn_v1::Net* ptr = NULL;
|
||||
TypedData_Get_Struct(obj, cv::dnn::experimental_dnn_v1::Net, &opencv_net_type, ptr);
|
||||
return ptr;
|
||||
}
|
||||
|
||||
VALUE rb_allocate(VALUE klass) {
|
||||
cv::dnn::experimental_dnn_v1::Net* ptr = new cv::dnn::experimental_dnn_v1::Net();
|
||||
return TypedData_Wrap_Struct(klass, &opencv_net_type, ptr);
|
||||
}
|
||||
|
||||
VALUE rb_initialize(VALUE self) {
|
||||
return self;
|
||||
}
|
||||
|
||||
// void setInput(const Mat &blob, const String& name = "")
|
||||
VALUE rb_set_input(int argc, VALUE *argv, VALUE self) {
|
||||
VALUE blob, name;
|
||||
rb_scan_args(argc, argv, "11", &blob, &name);
|
||||
|
||||
cv::dnn::experimental_dnn_v1::Net* selfptr = obj2net(self);
|
||||
|
||||
cv::Mat *m = Mat::obj2mat(blob);
|
||||
|
||||
try {
|
||||
if (NIL_P(name)) {
|
||||
selfptr->setInput(*m);
|
||||
} else {
|
||||
selfptr->setInput(*m, StringValueCStr(name));
|
||||
}
|
||||
} catch(cv::Exception& e) {
|
||||
delete m;
|
||||
Error::raise(e);
|
||||
}
|
||||
|
||||
return Qnil;
|
||||
}
|
||||
|
||||
// Mat forward(const String& outputName = String())
|
||||
VALUE rb_forward(int argc, VALUE *argv, VALUE self) {
|
||||
VALUE output_name;
|
||||
rb_scan_args(argc, argv, "01", &output_name);
|
||||
|
||||
cv::dnn::experimental_dnn_v1::Net* selfptr = obj2net(self);
|
||||
|
||||
cv::Mat* m = NULL;
|
||||
// cv::Mat m;
|
||||
|
||||
try {
|
||||
cv::Mat r;
|
||||
|
||||
if (NIL_P(output_name)) {
|
||||
r = selfptr->forward();
|
||||
} else {
|
||||
r = selfptr->forward(StringValueCStr(output_name));
|
||||
}
|
||||
|
||||
m = new cv::Mat(r.reshape(1, 1));
|
||||
// m = r;
|
||||
} catch(cv::Exception& e) {
|
||||
delete m;
|
||||
Error::raise(e);
|
||||
}
|
||||
|
||||
// int indxCls[4] = { 0, 0, 401, 1 };
|
||||
// int cls = m->at<float>(indxCls);
|
||||
|
||||
return Mat::mat2obj(m);
|
||||
|
||||
// const long size = m->size[2];
|
||||
// return(ULL2NUM(m.size[2]));
|
||||
// VALUE detected_objects = rb_ary_new_capa(size);
|
||||
// for (long i = 0; i < size; i++) {
|
||||
// int indxCls[4] = { 0, 0, i, 1 };
|
||||
// int cls = m->at<float>(indxCls);
|
||||
// rb_ary_store(detected_objects, i, INT2NUM(cls));
|
||||
// }
|
||||
//
|
||||
// return detected_objects;
|
||||
|
||||
// cv::Point classIdPoint;
|
||||
// double confidence;
|
||||
// cv::minMaxLoc(m.reshape(1, 1), 0, &confidence, 0, &classIdPoint);
|
||||
// int classId = classIdPoint.x;
|
||||
// return(INT2NUM(classId));
|
||||
}
|
||||
|
||||
// bool empty() const
|
||||
VALUE rb_empty(VALUE self) {
|
||||
cv::dnn::experimental_dnn_v1::Net* selfptr = obj2net(self);
|
||||
return selfptr->empty() ? Qtrue : Qfalse;
|
||||
}
|
||||
|
||||
void init(VALUE rb_module) {
|
||||
rb_klass = rb_define_class_under(rb_module, "Net", rb_cData);
|
||||
rb_define_alloc_func(rb_klass, rb_allocate);
|
||||
|
||||
rb_define_private_method(rb_klass, "initialize", RUBY_METHOD_FUNC(rb_initialize), 0);
|
||||
|
||||
rb_define_method(rb_klass, "set_input", RUBY_METHOD_FUNC(rb_set_input), -1);
|
||||
rb_define_method(rb_klass, "forward", RUBY_METHOD_FUNC(rb_forward), -1);
|
||||
rb_define_method(rb_klass, "empty?", RUBY_METHOD_FUNC(rb_empty), 0);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
16
ext/opencv/dnn_net.hpp
Normal file
16
ext/opencv/dnn_net.hpp
Normal file
|
@ -0,0 +1,16 @@
|
|||
#ifndef RUBY_OPENCV_DNN_NET_H
|
||||
#define RUBY_OPENCV_DNN_NET_H
|
||||
|
||||
/*
|
||||
* Document-class: Cv::Dnn::Net
|
||||
*/
|
||||
namespace rubyopencv {
|
||||
namespace Dnn {
|
||||
namespace Net {
|
||||
void init(VALUE rb_module);
|
||||
VALUE net2obj(cv::dnn::experimental_dnn_v1::Net* ptr);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif // RUBY_OPENCV_DNN_NET_H
|
|
@ -21,10 +21,10 @@ def cv_version_suffix(incdir)
|
|||
major + minor + subminor
|
||||
end
|
||||
|
||||
incdir, libdir = dir_config("opencv", "/usr/local/include", "/usr/local/lib")
|
||||
incdir, _ = dir_config("opencv", "/usr/local/include", "/usr/local/lib")
|
||||
|
||||
opencv_headers = ["opencv2/core.hpp", "opencv2/highgui.hpp", "opencv2/imgcodecs.hpp", "opencv2/imgproc.hpp", "opencv2/objdetect.hpp", "opencv2/videoio.hpp"]
|
||||
opencv_libraries = ["opencv_core", "opencv_highgui", "opencv_imgcodecs", "opencv_imgproc", "opencv_objdetect", "opencv_videoio"]
|
||||
opencv_headers = ["opencv2/core.hpp", "opencv2/highgui.hpp", "opencv2/imgcodecs.hpp", "opencv2/imgproc.hpp", "opencv2/objdetect.hpp", "opencv2/videoio.hpp", "opencv2/dnn.hpp"]
|
||||
opencv_libraries = ["opencv_core", "opencv_highgui", "opencv_imgcodecs", "opencv_imgproc", "opencv_objdetect", "opencv_videoio", "opencv_dnn"]
|
||||
|
||||
puts ">> Check the required libraries..."
|
||||
if $mswin or $mingw
|
||||
|
|
|
@ -12,6 +12,7 @@
|
|||
#include "scalar.hpp"
|
||||
|
||||
#include "cascadeclassifier.hpp"
|
||||
#include "dnn.hpp"
|
||||
#include "videocapture.hpp"
|
||||
|
||||
#include "error.hpp"
|
||||
|
@ -92,6 +93,7 @@ namespace rubyopencv {
|
|||
Size::init();
|
||||
Scalar::init();
|
||||
CascadeClassifier::init();
|
||||
Dnn::init();
|
||||
VideoCapture::init();
|
||||
Window::init();
|
||||
Trackbar::init();
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue