1
0
Fork 0
mirror of https://github.com/ruby-opencv/ruby-opencv synced 2023-03-27 23:22:12 -04:00

add CvMat#smooth document

This commit is contained in:
ser1zw 2014-01-18 18:44:21 +09:00
parent bd9af2dbe1
commit b52b6b2e76

View file

@ -4207,6 +4207,32 @@ rb_smooth_bilateral(int argc, VALUE *argv, VALUE self)
return dest;
}
/**
* Smooths the image in one of several ways.
*
* @overload smooth(smoothtype, size1 = 3, size2 = 0, sigma1 = 0, sigma2 = 0)
* @param smoothtype [Integer] Type of the smoothing.
* * CV_BLUR_NO_SCALE - linear convolution with <tt>size1 x size2</tt> box kernel (all 1's).
* If you want to smooth different pixels with different-size box kernels,
* you can use the integral image that is computed using <tt>CvMat#integral</tt>.
* * CV_BLUR - linear convolution with <tt>size1 x size2</tt> box kernel (all 1's)
* with subsequent scaling by <tt>1 / (size1 x size1)</tt>.
* * CV_GAUSSIAN - linear convolution with a <tt>size1 x size2</tt> Gaussian kernel.
* * CV_MEDIAN - median filter with a <tt>size1 x size1</tt> square aperture
* * CV_BILATERAL - bilateral filter with a <tt>size1 x size1</tt> square aperture,
* color sigma = <tt>sigma1</tt> and spatial sigma = <tt>sigma2</tt>.
* If <tt>size1</tt> = 0, the aperture square side is set to <tt>CvMat#round(sigma2 * 1.5) * 2 + 1</tt>.
* @param size1 [Integer] The first parameter of the smoothing operation, the aperture width.
* Must be a positive odd number (1, 3, 5, ...)
* @param size2 [Integer] The second parameter of the smoothing operation, the aperture height.
* Ignored by <tt>CV_MEDIAN</tt> and <tt>CV_BILATERAL</tt> methods. In the case of simple
* scaled/non-scaled and Gaussian blur if <tt>size2</tt> is zero, it is set to <tt>size1</tt>.
* Otherwise it must be a positive odd number.
* @param sigma1 [Integer] In the case of a Gaussian parameter this parameter may specify
* Gaussian sigma (standard deviation). If it is zero, it is calculated from the kernel size.
* @return [CvMat] The destination image.
* @opencv_func cvSmooth
*/
VALUE
rb_smooth(int argc, VALUE *argv, VALUE self)
{
@ -5638,7 +5664,8 @@ rb_find_fundamental_mat(int argc, VALUE *argv, VALUE klass)
* lT*[x, y, 1]T=0,
* or
* a*x + b*y + c = 0
* From the fundamental matrix definition (see cvFindFundamentalMatrix discussion), line l2 for a point p1 in the first image (which_image=1) can be computed as:
* From the fundamental matrix definition (see cvFindFundamentalMatrix discussion), line l2 for a point p1
* in the first image (which_image=1) can be computed as:
* l2=F*p1
* and the line l1 for a point p2 in the second image (which_image=1) can be computed as:
* l1=FT*p2