diff --git a/ext/opencv/mat.cpp b/ext/opencv/mat.cpp
index 9fbbb28..45e6077 100644
--- a/ext/opencv/mat.cpp
+++ b/ext/opencv/mat.cpp
@@ -1247,6 +1247,7 @@ namespace rubyopencv {
rb_define_method(rb_klass, "gaussian_blur", RUBY_METHOD_FUNC(rb_gaussian_blur), -1); // in ext/opencv/mat_imgproc.cpp
rb_define_method(rb_klass, "median_blur", RUBY_METHOD_FUNC(rb_median_blur), 1); // in ext/opencv/mat_imgproc.cpp
rb_define_method(rb_klass, "threshold", RUBY_METHOD_FUNC(rb_threshold), 3); // in ext/opencv/mat_imgproc.cpp
+ rb_define_method(rb_klass, "adaptive_threshold", RUBY_METHOD_FUNC(rb_adaptive_threshold), 5); // in ext/opencv/mat_imgproc.cpp
rb_define_method(rb_klass, "save", RUBY_METHOD_FUNC(rb_save), -1);
diff --git a/ext/opencv/mat_imgproc.cpp b/ext/opencv/mat_imgproc.cpp
index 07adf5f..56ff53d 100644
--- a/ext/opencv/mat_imgproc.cpp
+++ b/ext/opencv/mat_imgproc.cpp
@@ -311,5 +311,37 @@ namespace rubyopencv {
}
return ret;
}
+
+ /*
+ * Applies an adaptive threshold to an array.
+ *
+ * @overload adaptive_threshold(max_value, adaptive_method, threshold_type, block_size, delta)
+ * @param max_value [Number] Non-zero value assigned to the pixels for which the condition is satisfied.
+ * @param adaptive_method [Integer] Adaptive thresholding algorithm to use.
+ * @param threshold_type [Integer] Thresholding type that must be either THRESH_BINARY
+ * or THRESH_BINARY_INV.
+ * @param block_size [Integer] Size of a pixel neighborhood that is used to calculate a threshold value
+ * for the pixel: 3, 5, 7, and so on.
+ * @param delta [Number] Constant subtracted from the mean or weighted mean.
+ * Normally, it is positive but may be zero or negative as well.
+ * @return [Mat] Destination image of the same size and the same type as self.
+ * @opencv_func cv::adaptiveThreshold
+ */
+ VALUE rb_adaptive_threshold(VALUE self, VALUE max_value, VALUE adaptive_method, VALUE threshold_type,
+ VALUE block_size, VALUE delta) {
+ cv::Mat* selfptr = obj2mat(self);
+ cv::Mat* dstptr = NULL;
+ try {
+ dstptr = new cv::Mat();
+ cv::adaptiveThreshold(*selfptr, *dstptr, NUM2DBL(max_value), NUM2INT(adaptive_method),
+ NUM2INT(threshold_type), NUM2INT(block_size), NUM2DBL(delta));
+ }
+ catch (cv::Exception& e) {
+ delete dstptr;
+ Error::raise(e);
+ }
+
+ return mat2obj(dstptr, CLASS_OF(self));
+ }
}
}
diff --git a/ext/opencv/mat_imgproc.hpp b/ext/opencv/mat_imgproc.hpp
index d2e4514..10ef711 100644
--- a/ext/opencv/mat_imgproc.hpp
+++ b/ext/opencv/mat_imgproc.hpp
@@ -15,6 +15,8 @@ namespace rubyopencv {
VALUE rb_gaussian_blur(int argc, VALUE *argv, VALUE self);
VALUE rb_median_blur(VALUE self, VALUE ksize);
VALUE rb_threshold(VALUE self, VALUE threshold, VALUE max_value, VALUE threshold_type);
+ VALUE rb_adaptive_threshold(VALUE self, VALUE max_value, VALUE adaptive_method,
+ VALUE threshold_type, VALUE block_size, VALUE delta);
}
}
diff --git a/ext/opencv/opencv_const.cpp b/ext/opencv/opencv_const.cpp
index 21c7c81..cc771c1 100644
--- a/ext/opencv/opencv_const.cpp
+++ b/ext/opencv/opencv_const.cpp
@@ -386,5 +386,8 @@ namespace rubyopencv {
rb_define_const(rb_module, "THRESH_MASK", INT2FIX(cv::THRESH_MASK));
rb_define_const(rb_module, "THRESH_OTSU", INT2FIX(cv::THRESH_OTSU));
rb_define_const(rb_module, "THRESH_TRIANGLE", INT2FIX(cv::THRESH_TRIANGLE));
+
+ rb_define_const(rb_module, "ADAPTIVE_THRESH_MEAN_C", INT2FIX(cv::ADAPTIVE_THRESH_MEAN_C));
+ rb_define_const(rb_module, "ADAPTIVE_THRESH_GAUSSIAN_C", INT2FIX(cv::ADAPTIVE_THRESH_GAUSSIAN_C));
}
}
diff --git a/test/test_mat_imgproc.rb b/test/test_mat_imgproc.rb
index 229d463..3700320 100755
--- a/test/test_mat_imgproc.rb
+++ b/test/test_mat_imgproc.rb
@@ -284,10 +284,48 @@ class TestCvMat < OpenCVTestCase
assert_raise(TypeError) {
m0.threshold(25, 255, DUMMY_OBJ)
}
+
# m0 = Cv::imread(FILENAME_LENA256x256, 0)
# m = m0.threshold(127, 255, Cv::THRESH_BINARY)
# w = Window.new('Original | Binary')
# w.show(Cv::hconcat([m0, m]))
# Cv::wait_key
end
+
+ def test_adaptive_threshold
+ m0 = Cv::Mat.new(2, 2, Cv::CV_8U)
+ m0[0, 0] = Cv::Scalar.new(10)
+ m0[0, 1] = Cv::Scalar.new(20)
+ m0[1, 0] = Cv::Scalar.new(30)
+ m0[1, 1] = Cv::Scalar.new(40)
+
+ expected = ""
+ m = m0.adaptive_threshold(255, Cv::ADAPTIVE_THRESH_MEAN_C, Cv::THRESH_BINARY, 3, 0)
+ assert_equal(expected, m.to_s)
+
+ m = m0.adaptive_threshold(255, Cv::ADAPTIVE_THRESH_GAUSSIAN_C, Cv::THRESH_BINARY, 3, 0)
+ assert_equal(expected, m.to_s)
+
+ assert_raise(TypeError) {
+ m0.adaptive_threshold(DUMMY_OBJ, Cv::ADAPTIVE_THRESH_MEAN_C, Cv::THRESH_BINARY, 3, 0)
+ }
+ assert_raise(TypeError) {
+ m0.adaptive_threshold(255, DUMMY_OBJ, Cv::THRESH_BINARY, 3, 0)
+ }
+ assert_raise(TypeError) {
+ m0.adaptive_threshold(255, Cv::ADAPTIVE_THRESH_MEAN_C, DUMMY_OBJ, 3, 0)
+ }
+ assert_raise(TypeError) {
+ m0.adaptive_threshold(DUMMY_OBJ, Cv::ADAPTIVE_THRESH_MEAN_C, Cv::THRESH_BINARY, DUMMY_OBJ, 0)
+ }
+ assert_raise(TypeError) {
+ m0.adaptive_threshold(DUMMY_OBJ, Cv::ADAPTIVE_THRESH_MEAN_C, Cv::THRESH_BINARY, 3, DUMMY_OBJ)
+ }
+
+ # m0 = Cv::imread(FILENAME_LENA256x256, 0)
+ # m = m0.adaptive_threshold(255, Cv::ADAPTIVE_THRESH_MEAN_C, Cv::THRESH_BINARY, 25, 0)
+ # w = Window.new('Original | Binary')
+ # w.show(Cv::hconcat([m0, m]))
+ # Cv::wait_key
+ end
end