mirror of
https://github.com/ruby-opencv/ruby-opencv
synced 2023-03-27 23:22:12 -04:00
update tests
This commit is contained in:
parent
61d54cb3f0
commit
e2e9b1a382
3 changed files with 23 additions and 27 deletions
|
@ -13,8 +13,9 @@ class TestEigenFaces < OpenCVTestCase
|
|||
@eigenfaces = EigenFaces.new
|
||||
|
||||
@eigenfaces_trained = EigenFaces.new
|
||||
img = CvMat.load(FILENAME_LENA256x256, CV_LOAD_IMAGE_GRAYSCALE)
|
||||
@eigenfaces_trained.train([img], [1])
|
||||
@images = [CvMat.load(FILENAME_LENA256x256, CV_LOAD_IMAGE_GRAYSCALE)] * 2
|
||||
@labels = [1, 2]
|
||||
@eigenfaces_trained.train(@images, @labels)
|
||||
end
|
||||
|
||||
def test_initialize
|
||||
|
@ -32,53 +33,46 @@ class TestEigenFaces < OpenCVTestCase
|
|||
end
|
||||
|
||||
def test_train
|
||||
img = CvMat.load(FILENAME_LENA256x256, CV_LOAD_IMAGE_GRAYSCALE)
|
||||
assert_nil(@eigenfaces.train([img], [1]))
|
||||
assert_nil(@eigenfaces.train(@images, @labels))
|
||||
|
||||
assert_raise(TypeError) {
|
||||
@eigenfaces.train(DUMMY_OBJ, [1])
|
||||
@eigenfaces.train(DUMMY_OBJ, @labels)
|
||||
}
|
||||
|
||||
assert_raise(TypeError) {
|
||||
@eigenfaces.train([img], DUMMY_OBJ)
|
||||
@eigenfaces.train(@images, DUMMY_OBJ)
|
||||
}
|
||||
end
|
||||
|
||||
def test_predict
|
||||
img = CvMat.load(FILENAME_LENA256x256, CV_LOAD_IMAGE_GRAYSCALE)
|
||||
label = 1
|
||||
@eigenfaces.train([img], [label])
|
||||
predicted_label, predicted_confidence = @eigenfaces.predict(img)
|
||||
assert_equal(1, predicted_label)
|
||||
predicted_label, predicted_confidence = @eigenfaces_trained.predict(@images[0])
|
||||
assert_equal(@labels[0], predicted_label)
|
||||
assert_in_delta(0.0, predicted_confidence, 0.01)
|
||||
|
||||
assert_raise(TypeError) {
|
||||
@eigenfaces.predict(DUMMY_OBJ)
|
||||
@eigenfaces_trained.predict(DUMMY_OBJ)
|
||||
}
|
||||
end
|
||||
|
||||
def test_save
|
||||
img = CvMat.load(FILENAME_LENA256x256, CV_LOAD_IMAGE_GRAYSCALE)
|
||||
label = 1
|
||||
@eigenfaces.train([img], [label])
|
||||
filename = "eigenfaces_save-#{DateTime.now.strftime('%Y%m%d%H%M%S')}.xml"
|
||||
begin
|
||||
@eigenfaces.save(filename)
|
||||
@eigenfaces_trained.save(filename)
|
||||
assert(File.exist? filename)
|
||||
ensure
|
||||
File.delete filename
|
||||
end
|
||||
assert_raise(TypeError) {
|
||||
@eigenfaces.save(DUMMY_OBJ)
|
||||
@eigenfaces_trained.save(DUMMY_OBJ)
|
||||
}
|
||||
end
|
||||
|
||||
def test_load
|
||||
assert_nothing_raised {
|
||||
@eigenfaces.load('eigenfaces_save.xml')
|
||||
@eigenfaces_trained.load('eigenfaces_save.xml')
|
||||
}
|
||||
assert_raise(TypeError) {
|
||||
@eigenfaces.load(DUMMY_OBJ)
|
||||
@eigenfaces_trained.load(DUMMY_OBJ)
|
||||
}
|
||||
end
|
||||
|
||||
|
|
|
@ -14,7 +14,8 @@ class TestFisherFaces < OpenCVTestCase
|
|||
|
||||
@fisherfaces_trained = FisherFaces.new
|
||||
@images = [CvMat.load(FILENAME_LENA256x256, CV_LOAD_IMAGE_GRAYSCALE)] * 2
|
||||
@fisherfaces_trained.train(@images, [1, 2])
|
||||
@labels = [1, 2]
|
||||
@fisherfaces_trained.train(@images, @labels)
|
||||
end
|
||||
|
||||
def test_initialize
|
||||
|
@ -32,10 +33,10 @@ class TestFisherFaces < OpenCVTestCase
|
|||
end
|
||||
|
||||
def test_train
|
||||
assert_nil(@fisherfaces.train(@images, [1, 2]))
|
||||
assert_nil(@fisherfaces.train(@images, @labels))
|
||||
|
||||
assert_raise(TypeError) {
|
||||
@fisherfaces.train(DUMMY_OBJ, [1])
|
||||
@fisherfaces.train(DUMMY_OBJ, @labels)
|
||||
}
|
||||
|
||||
assert_raise(TypeError) {
|
||||
|
@ -45,7 +46,7 @@ class TestFisherFaces < OpenCVTestCase
|
|||
|
||||
def test_predict
|
||||
predicted_label, predicted_confidence = @fisherfaces_trained.predict(@images[0])
|
||||
assert_equal(1, predicted_label)
|
||||
assert_equal(@labels[0], predicted_label)
|
||||
assert_in_delta(0.0, predicted_confidence, 0.01)
|
||||
|
||||
assert_raise(TypeError) {
|
||||
|
|
|
@ -14,7 +14,8 @@ class TestLBPH < OpenCVTestCase
|
|||
|
||||
@lbph_trained = LBPH.new
|
||||
@images = [CvMat.load(FILENAME_LENA256x256, CV_LOAD_IMAGE_GRAYSCALE)] * 2
|
||||
@lbph_trained.train(@images, [1, 1])
|
||||
@labels = [1, 2]
|
||||
@lbph_trained.train(@images, @labels)
|
||||
end
|
||||
|
||||
def test_initialize
|
||||
|
@ -40,10 +41,10 @@ class TestLBPH < OpenCVTestCase
|
|||
end
|
||||
|
||||
def test_train
|
||||
assert_nil(@lbph.train(@images, [1, 1]))
|
||||
assert_nil(@lbph.train(@images, @labels))
|
||||
|
||||
assert_raise(TypeError) {
|
||||
@lbph.train(DUMMY_OBJ, [1, 1])
|
||||
@lbph.train(DUMMY_OBJ, @labels)
|
||||
}
|
||||
|
||||
assert_raise(TypeError) {
|
||||
|
@ -53,7 +54,7 @@ class TestLBPH < OpenCVTestCase
|
|||
|
||||
def test_predict
|
||||
predicted_label, predicted_confidence = @lbph_trained.predict(@images[0])
|
||||
assert_equal(1, predicted_label)
|
||||
assert_equal(@labels[0], predicted_label)
|
||||
assert_in_delta(0.0, predicted_confidence, 0.01)
|
||||
|
||||
assert_raise(TypeError) {
|
||||
|
|
Loading…
Add table
Reference in a new issue