#!/usr/bin/env ruby # -*- mode: ruby; coding: utf-8 -*- # A Demo Ruby/OpenCV Implementation of SURF # See https://code.ros.org/trac/opencv/browser/tags/2.3.1/opencv/samples/c/find_obj.cpp require 'opencv' require 'benchmark' include OpenCV def compare_surf_descriptors(d1, d2, best, length) raise ArgumentError unless (length % 4) == 0 total_cost = 0 0.step(length - 1, 4) { |i| t0 = d1[i] - d2[i] t1 = d1[i + 1] - d2[i + 1] t2 = d1[i + 2] - d2[i + 2] t3 = d1[i + 3] - d2[i + 3] total_cost += t0 * t0 + t1 * t1 + t2 * t2 + t3 * t3 break if total_cost > best } total_cost end def naive_nearest_neighbor(vec, laplacian, model_keypoints, model_descriptors) length = model_descriptors[0].size neighbor = nil dist1 = 1e6 dist2 = 1e6 model_descriptors.size.times { |i| kp = model_keypoints[i] mvec = model_descriptors[i] next if laplacian != kp.laplacian d = compare_surf_descriptors(vec, mvec, dist2, length) if d < dist1 dist2 = dist1 dist1 = d neighbor = i elsif d < dist2 dist2 = d end } return (dist1 < 0.6 * dist2) ? neighbor : nil end def find_pairs(object_keypoints, object_descriptors, image_keypoints, image_descriptors) ptpairs = [] object_descriptors.size.times { |i| kp = object_keypoints[i] descriptor = object_descriptors[i] nearest_neighbor = naive_nearest_neighbor(descriptor, kp.laplacian, image_keypoints, image_descriptors) unless nearest_neighbor.nil? ptpairs << i ptpairs << nearest_neighbor end } ptpairs end def locate_planar_object(object_keypoints, object_descriptors, image_keypoints, image_descriptors, src_corners) ptpairs = find_pairs(object_keypoints, object_descriptors, image_keypoints, image_descriptors) n = ptpairs.size / 2 return nil if n < 4 pt1 = [] pt2 = [] n.times { |i| pt1 << object_keypoints[ptpairs[i * 2]].pt pt2 << image_keypoints[ptpairs[i * 2 + 1]].pt } _pt1 = CvMat.new(1, n, CV_32F, 2) _pt2 = CvMat.new(1, n, CV_32F, 2) _pt1.set_data(pt1) _pt2.set_data(pt2) h = CvMat.find_homography(_pt1, _pt2, :ransac, 5) dst_corners = [] 4.times { |i| x = src_corners[i].x y = src_corners[i].y z = 1.0 / (h[6][0] * x + h[7][0] * y + h[8][0]) x = (h[0][0] * x + h[1][0] * y + h[2][0]) * z y = (h[3][0] * x + h[4][0] * y + h[5][0]) * z dst_corners << CvPoint.new(x.to_i, y.to_i) } dst_corners end ##### Main ##### puts 'This program demonstrated the use of the SURF Detector and Descriptor using' puts 'brute force matching on planar objects.' puts 'Usage:' puts "ruby #{__FILE__} , default is box.png and box_in_scene.png" puts object_filename = (ARGV.size == 2) ? ARGV[0] : 'images/box.png' scene_filename = (ARGV.size == 2) ? ARGV[1] : 'images/box_in_scene.png' object, image = nil, nil begin object = IplImage.load(object_filename, CV_LOAD_IMAGE_GRAYSCALE) image = IplImage.load(scene_filename, CV_LOAD_IMAGE_GRAYSCALE) rescue puts "Can not load #{object_filename} and/or #{scene_filename}" puts "Usage: ruby #{__FILE__} [ ]" exit end object_color = object.GRAY2BGR param = CvSURFParams.new(1500) object_keypoints, object_descriptors = nil, nil image_keypoints, image_descriptors = nil, nil tms = Benchmark.measure { object_keypoints, object_descriptors = object.extract_surf(param) puts "Object Descriptors: #{object_descriptors.size}" image_keypoints, image_descriptors = image.extract_surf(param) puts "Image Descriptors: #{image_descriptors.size}" } puts "Extraction time = #{tms.real * 1000} ms" correspond = IplImage.new(image.width, object.height + image.height, CV_8U, 1); correspond.set_roi(CvRect.new(0, 0, object.width, object.height)) object.copy(correspond) correspond.set_roi(CvRect.new(0, object.height, image.width, image.height)) image.copy(correspond) correspond.reset_roi src_corners = [CvPoint.new(0, 0), CvPoint.new(object.width, 0), CvPoint.new(object.width, object.height), CvPoint.new(0, object.height)] dst_corners = locate_planar_object(object_keypoints, object_descriptors, image_keypoints, image_descriptors, src_corners) correspond = correspond.GRAY2BGR if dst_corners 4.times { |i| r1 = dst_corners[i % 4] r2 = dst_corners[(i + 1) % 4] correspond.line!(CvPoint.new(r1.x, r1.y + object.height), CvPoint.new(r2.x, r2.y + object.height), :color => CvColor::Red, :thickness => 2, :line_type => :aa) } end ptpairs = find_pairs(object_keypoints, object_descriptors, image_keypoints, image_descriptors) 0.step(ptpairs.size - 1, 2) { |i| r1 = object_keypoints[ptpairs[i]] r2 = image_keypoints[ptpairs[i + 1]] correspond.line!(r1.pt, CvPoint.new(r2.pt.x, r2.pt.y + object.height), :color => CvColor::Red, :line_type => :aa) } object_keypoints.each { |r| radius = (r.size * 1.2 / 9.0 * 2).to_i object_color.circle!(r.pt, radius, :color => CvColor::Red, :line_type => :aa) } GUI::Window.new('Object Correspond').show correspond GUI::Window.new('Object').show object_color GUI::wait_key