#include "opencv2/dnn.hpp" #include "opencv.hpp" #include "mat.hpp" #include "size.hpp" #include "scalar.hpp" #include "dnn_net.hpp" #include "dnn_layer.hpp" #include "error.hpp" namespace rubyopencv { namespace Dnn { VALUE rb_module = Qnil; // Mat blobFromImage(const Mat& image, double scalefactor=1.0, const Size& size = Size(), const Scalar& mean = Scalar(), bool swapRB=true) VALUE rb_blob_from_image(int argc, VALUE *argv, VALUE self) { VALUE image, options; rb_scan_args(argc, argv, "11", &image, &options); cv::Mat *b = NULL; try { double scale_factor = 1.0; cv::Size size; cv::Scalar mean; bool swap_rb = true; bool crop = true; if (!NIL_P(options)) { Check_Type(options, T_HASH); scale_factor = NUM2DBL_DEFAULT(HASH_LOOKUP(options, "scale_factor"), scale_factor); swap_rb = RTEST_DEFAULT(HASH_LOOKUP(options, "swap_rb"), (bool)swap_rb); crop = RTEST_DEFAULT(HASH_LOOKUP(options, "crop"), (bool)crop); VALUE tmp = Qnil; tmp = HASH_LOOKUP(options, "size"); if (!NIL_P(tmp)) { size = *(Size::obj2size(tmp)); } tmp = HASH_LOOKUP(options, "mean"); if (!NIL_P(tmp)) { mean = *(Scalar::obj2scalar(tmp)); } } b = new cv::Mat(cv::dnn::blobFromImage(*Mat::obj2mat(image), scale_factor, size, mean, swap_rb, crop)); } catch(cv::Exception& e) { delete b; Error::raise(e); } return Mat::mat2obj(b); } void init(VALUE opencv) { rb_module = rb_define_module_under(opencv, "Dnn"); rb_define_singleton_method(rb_module, "blob_from_image", RUBY_METHOD_FUNC(rb_blob_from_image), -1); rb_define_singleton_method(rb_module, "read_net", RUBY_METHOD_FUNC(Dnn::Net::rb_read_net), -1); rb_define_singleton_method(rb_module, "read_net_from_caffe", RUBY_METHOD_FUNC(Dnn::Net::rb_read_net_from_caffe), 2); rb_define_singleton_method(rb_module, "read_net_from_tensorflow", RUBY_METHOD_FUNC(Dnn::Net::rb_read_net_from_tensorflow), 1); rb_define_singleton_method(rb_module, "read_net_from_torch", RUBY_METHOD_FUNC(Dnn::Net::rb_read_net_from_torch), 1); rb_define_singleton_method(rb_module, "read_net_from_darknet", RUBY_METHOD_FUNC(Dnn::Net::rb_read_net_from_darknet), 2); Dnn::Net::init(rb_module); Dnn::Layer::init(rb_module); } } }