/************************************************************ cvhaarclassifercascade.cpp - $Author: lsxi $ Copyright (C) 2005-2007 Masakazu Yonekura ************************************************************/ #include "cvhaarclassifiercascade.h" /* * Document-class: OpenCV::CvHaarClassifierCascade * * CvHaarClassifierCascade object is "fast-object-detector". * This detector can discover object (e.g. human's face) from image. * * Find face-area from picture "lena"... * link:../images/face_detect_from_lena.jpg */ __NAMESPACE_BEGIN_OPENCV __NAMESPACE_BEGIN_CVHAARCLASSIFERCASCADE VALUE rb_klass; VALUE rb_class() { return rb_klass; } void define_ruby_class() { if (rb_klass) return; /* * opencv = rb_define_module("OpenCV"); * * note: this comment is used by rdoc. */ VALUE opencv = rb_module_opencv(); rb_klass = rb_define_class_under(opencv, "CvHaarClassifierCascade", rb_cObject); rb_define_alloc_func(rb_klass, rb_allocate); rb_define_singleton_method(rb_klass, "load", RUBY_METHOD_FUNC(rb_load), 1); rb_define_method(rb_klass, "detect_objects", RUBY_METHOD_FUNC(rb_detect_objects), -1); } VALUE rb_allocate(VALUE klass) { return OPENCV_OBJECT(klass, 0); } void cvhaarclassifiercascade_free(void* ptr) { if (ptr) { CvHaarClassifierCascade* cascade = (CvHaarClassifierCascade*)ptr; cvReleaseHaarClassifierCascade(&cascade); } } /* * call-seq: * CvHaarClassiferCascade.load(path) -> object-detector * * Load trained cascade of haar classifers from file. * Object detection classifiers are stored in XML or YAML files. * sample of object detection classifier files is included by OpenCV. * * You can found these at * C:\Program Files\OpenCV\data\haarcascades\*.xml (Windows, default install path) * * e.g. you want to try to detect human's face. * detector = CvHaarClassiferCascade.load("haarcascade_frontalface_alt.xml") */ VALUE rb_load(VALUE klass, VALUE path) { CvHaarClassifierCascade *cascade = NULL; try { cascade = (CvHaarClassifierCascade*)cvLoad(StringValueCStr(path), 0, 0, 0); } catch (cv::Exception& e) { raise_cverror(e); } if (!CV_IS_HAAR_CLASSIFIER(cascade)) rb_raise(rb_eArgError, "invalid format haar classifier cascade file."); return Data_Wrap_Struct(klass, 0, cvhaarclassifiercascade_free, cascade); } /* * call-seq: * detect_objects(image[, options]) -> cvseq(include CvAvgComp object) * detect_objects(image[, options]){|cmp| ... } -> cvseq(include CvAvgComp object) * * Detects objects in the image. This method finds rectangular regions in the * given image that are likely to contain objects the cascade has been trained * for and return those regions as a sequence of rectangles. * * * option should be Hash include these keys. * :scale_factor (should be > 1.0) * The factor by which the search window is scaled between the subsequent scans, * 1.1 mean increasing window by 10%. * :storage * Memory storage to store the resultant sequence of the object candidate rectangles * :flags * Mode of operation. Currently the only flag that may be specified is CV_HAAR_DO_CANNY_PRUNING . * If it is set, the function uses Canny edge detector to reject some image regions that contain * too few or too much edges and thus can not contain the searched object. The particular threshold * values are tuned for face detection and in this case the pruning speeds up the processing * :min_neighbors * Minimum number (minus 1) of neighbor rectangles that makes up an object. * All the groups of a smaller number of rectangles than min_neighbors - 1 are rejected. * If min_neighbors is 0, the function does not any grouping at all and returns all the detected * candidate rectangles, whitch many be useful if the user wants to apply a customized grouping procedure. * :min_size * Minimum window size. By default, it is set to size of samples the classifier has been * trained on (~20x20 for face detection). * :max_size * aximum window size to use. By default, it is set to the size of the image. */ VALUE rb_detect_objects(int argc, VALUE *argv, VALUE self) { VALUE image, options; rb_scan_args(argc, argv, "11", &image, &options); double scale_factor; int flags, min_neighbors; CvSize min_size, max_size; VALUE storage_val; if (NIL_P(options)) { scale_factor = 1.1; flags = 0; min_neighbors = 3; min_size = max_size = cvSize(0, 0); storage_val = cCvMemStorage::new_object(); } else { scale_factor = IF_DBL(LOOKUP_CVMETHOD(options, "scale_factor"), 1.1); flags = IF_INT(LOOKUP_CVMETHOD(options, "flags"), 0); min_neighbors = IF_INT(LOOKUP_CVMETHOD(options, "min_neighbors"), 3); VALUE min_size_val = LOOKUP_CVMETHOD(options, "min_size"); min_size = NIL_P(min_size_val) ? cvSize(0, 0) : VALUE_TO_CVSIZE(min_size_val); VALUE max_size_val = LOOKUP_CVMETHOD(options, "max_size"); max_size = NIL_P(max_size_val) ? cvSize(0, 0) : VALUE_TO_CVSIZE(max_size_val); storage_val = CHECK_CVMEMSTORAGE(LOOKUP_CVMETHOD(options, "storage")); } VALUE result = Qnil; try { CvSeq *seq = cvHaarDetectObjects(CVARR_WITH_CHECK(image), CVHAARCLASSIFIERCASCADE(self), CVMEMSTORAGE(storage_val), scale_factor, min_neighbors, flags, min_size, max_size); result = cCvSeq::new_sequence(cCvSeq::rb_class(), seq, cCvAvgComp::rb_class(), storage_val); if (rb_block_given_p()) { for(int i = 0; i < seq->total; ++i) rb_yield(REFER_OBJECT(cCvAvgComp::rb_class(), cvGetSeqElem(seq, i), storage_val)); } } catch (cv::Exception& e) { raise_cverror(e); } return result; } __NAMESPACE_END_CVHAARCLASSIFERCASCADE __NAMESPACE_END_OPENCV