/************************************************************
cvhistogram.cpp -
$Author: lsxi $
Copyright (C) 2005-2008 Masakazu Yonekura
************************************************************/
#include "cvhistogram.h"
/*
* Document-class: OpenCV::CvHistogram
*
* Muti-dimensional histogram.
*/
__NAMESPACE_BEGIN_OPENCV
__NAMESPACE_BEGIN_CVHISTOGRAM
VALUE rb_klass;
VALUE
rb_class()
{
return rb_klass;
}
void
define_ruby_class()
{
if (rb_klass)
return;
/*
* opencv = rb_define_module("OpenCV");
*
* note: this comment is used by rdoc.
*/
VALUE opencv = rb_module_opencv();
rb_klass = rb_define_class_under(opencv, "CvHistogram", rb_cObject);
rb_define_method(rb_klass, "is_uniform?", RUBY_METHOD_FUNC(rb_is_uniform), 0);
rb_define_method(rb_klass, "is_sparse?", RUBY_METHOD_FUNC(rb_is_sparse), 0);
rb_define_method(rb_klass, "has_range?", RUBY_METHOD_FUNC(rb_has_range), 0);
rb_define_method(rb_klass, "dims", RUBY_METHOD_FUNC(rb_dims), 0);
rb_define_method(rb_klass, "normalize", RUBY_METHOD_FUNC(rb_normalize), 1);
rb_define_method(rb_klass, "normalize!", RUBY_METHOD_FUNC(rb_normalize_bang), 1);
rb_define_method(rb_klass, "thresh", RUBY_METHOD_FUNC(rb_thresh), 1);
rb_define_alias(rb_klass, "threshold", "thresh");
rb_define_method(rb_klass, "thresh!", RUBY_METHOD_FUNC(rb_thresh_bang), 1);
rb_define_alias(rb_klass, "threshold!", "thresh!");
}
VALUE
rb_allocate(VALUE klass)
{
// not yet
return Qnil;
}
/*
* call-seq:
* is_uniform? -> true or false
*
*/
VALUE
rb_is_uniform(VALUE self)
{
return CV_IS_UNIFORM_HIST(CVHISTOGRAM(self)) ? Qtrue : Qfalse;
}
/*
* call-seq:
* is_sparse? -> true or false
*
*/
VALUE
rb_is_sparse(VALUE self)
{
return CV_IS_SPARSE_HIST(CVHISTOGRAM(self)) ? Qtrue : Qfalse;
}
/*
* call-seq:
* has_range? -> true or false
*/
VALUE
rb_has_range(VALUE self)
{
return CV_HIST_HAS_RANGES(CVHISTOGRAM(self)) ? Qtrue : Qfalse;
}
/*
* call-seq:
* dims -> [int[,int...]]
*/
VALUE
rb_dims(VALUE self)
{
int size[CV_MAX_DIM];
int dims = cvGetDims(CVHISTOGRAM(self)->bins, size);
VALUE result = rb_ary_new2(dims);
for(int i = 0; i < dims; i++){
rb_ary_store(result, i, INT2FIX(size[i]));
}
return result;
}
/*
* call-seq:
* bins -> cvmatnd or cvsparsemat
*/
VALUE
rb_bins(VALUE self)
{
CvHistogram *hist = CVHISTOGRAM(self);
return REFER_OBJECT(CV_IS_SPARSE_HIST(hist) ? cCvSparseMat::rb_class() : cCvMatND::rb_class(), hist->bins, self);
}
/*
* call-seq:
* copy -> cvhist
*
* Clone histogram.
*/
VALUE
rb_copy(VALUE self)
{
VALUE dest = 0;
CvHistogram *hist = CVHISTOGRAM(dest);
cvCopyHist(CVHISTOGRAM(self), &hist);
return dest;
}
/*
* call-seq:
* clear!
*
* Sets all histogram bins to 0 in case of dense histogram and removes all histogram bins in case of sparse array.
*/
VALUE
rb_clear_bang(VALUE self)
{
cvClearHist(CVHISTOGRAM(self));
return self;
}
/*
* call-seq:
* normalize(factor) -> cvhist
*
* Return normalized the histogram bins by scaling them, such that the sum of the bins becomes equal to factor.
*/
VALUE
rb_normalize(VALUE self, VALUE factor)
{
return rb_normalize_bang(rb_copy(self), factor);
}
/*
* call-seq:
* normalize!(factor) -> self
*
* normalizes the histogram bins by scaling them, such that the sum of the bins becomes equal to factor.
*/
VALUE
rb_normalize_bang(VALUE self, VALUE factor)
{
cvNormalizeHist(CVHISTOGRAM(self), NUM2DBL(factor));
return self;
}
/*
* call-seq:
* thresh(factor) -> cvhist
*
* Return cleared histogram bins that are below the specified threshold.
*/
VALUE
rb_thresh(VALUE self, VALUE factor)
{
return rb_thresh_bang(rb_copy(self), factor);
}
/*
* call-seq:
* thresh!(factor) -> self
*
* Cleares histogram bins that are below the specified threshold.
*/
VALUE
rb_thresh_bang(VALUE self, VALUE factor)
{
cvThreshHist(CVHISTOGRAM(self), NUM2DBL(factor));
return self;
}
__NAMESPACE_END_CVHISTOGRAM
__NAMESPACE_END_OPENCV