#include "opencv2/dnn.hpp" #include "opencv.hpp" #include "mat.hpp" #include "size.hpp" #include "scalar.hpp" #include "dnn_net.hpp" #include "dnn_layer.hpp" #include "error.hpp" /* * Document-class: Cv::Dnn */ namespace rubyopencv { namespace Dnn { VALUE rb_module = Qnil; VALUE rb_module_dnn() { return rb_module; } /* * Creates 4-dimensional blob from image. Optionally resizes and crops image from center, subtract mean values, scales values by scalefactor, swap Blue and Red channels. * * @overload blob_from_image(image, options = {}) * @param image [Mat] Input image (with 1-, 3- or 4-channels) * @param options [Hash] Options * @option options [Number] :scale_factor (1.0) Multiplier for image values * @option options [Mat] :size Spatial size for output image * @option options [Scalar] :mean Scalar with mean values which are subtracted from channels – values are intended to be in (mean-R, mean-G, mean-B) order if image has BGR ordering and swap_rb is true * @option options [Boolean] :swap_rb (true) Indicates that swap first and last channels in 3-channel image is necessary * @option options [Boolean] :crop (true) Indicates whether image will be cropped after resize or not * @return [Mat] 4-dimensional Mat with NCHW dimensions order */ VALUE rb_blob_from_image(int argc, VALUE *argv, VALUE self) { VALUE image, options; rb_scan_args(argc, argv, "11", &image, &options); cv::Mat *b = NULL; try { double scale_factor = 1.0; cv::Size size; cv::Scalar mean; bool swap_rb = true; bool crop = true; if (!NIL_P(options)) { Check_Type(options, T_HASH); scale_factor = NUM2DBL_DEFAULT(HASH_LOOKUP(options, "scale_factor"), scale_factor); swap_rb = RTEST_DEFAULT(HASH_LOOKUP(options, "swap_rb"), (bool)swap_rb); crop = RTEST_DEFAULT(HASH_LOOKUP(options, "crop"), (bool)crop); VALUE tmp = Qnil; tmp = HASH_LOOKUP(options, "size"); if (!NIL_P(tmp)) { size = *(Size::obj2size(tmp)); } tmp = HASH_LOOKUP(options, "mean"); if (!NIL_P(tmp)) { mean = *(Scalar::obj2scalar(tmp)); } } b = new cv::Mat(cv::dnn::blobFromImage(*Mat::obj2mat(image), scale_factor, size, mean, swap_rb, crop)); } catch(cv::Exception& e) { delete b; Error::raise(e); } return Mat::mat2obj(b); } void init() { VALUE opencv = rb_define_module("Cv"); rb_module = rb_define_module_under(opencv, "Dnn"); rb_define_singleton_method(rb_module, "blob_from_image", RUBY_METHOD_FUNC(rb_blob_from_image), -1); rb_define_singleton_method(rb_module, "read_net", RUBY_METHOD_FUNC(Dnn::Net::rb_read_net), -1); // in ext/opencv/dnn_net.cpp rb_define_singleton_method(rb_module, "read_net_from_caffe", RUBY_METHOD_FUNC(Dnn::Net::rb_read_net_from_caffe), 2); // in ext/opencv/dnn_net.cpp rb_define_singleton_method(rb_module, "read_net_from_tensorflow", RUBY_METHOD_FUNC(Dnn::Net::rb_read_net_from_tensorflow), 2); // in ext/opencv/dnn_net.cpp rb_define_singleton_method(rb_module, "read_net_from_torch", RUBY_METHOD_FUNC(Dnn::Net::rb_read_net_from_torch), -1); // in ext/opencv/dnn_net.cpp rb_define_singleton_method(rb_module, "read_net_from_darknet", RUBY_METHOD_FUNC(Dnn::Net::rb_read_net_from_darknet), 2); // in ext/opencv/dnn_net.cpp Dnn::Net::init(); Dnn::Layer::init(); } } }