mirror of
https://github.com/ruby-opencv/ruby-opencv
synced 2023-03-27 23:22:12 -04:00
148 lines
4.4 KiB
C++
148 lines
4.4 KiB
C++
/************************************************************
|
|
|
|
cvhaarclassifercascade.cpp -
|
|
|
|
$Author: lsxi $
|
|
|
|
Copyright (C) 2005-2007 Masakazu Yonekura
|
|
|
|
************************************************************/
|
|
#include "cvhaarclassifiercascade.h"
|
|
/*
|
|
* Document-class: OpenCV::CvHaarClassifierCascade
|
|
*
|
|
* Haar Feature-based Cascade Classifier for Object Detection
|
|
*/
|
|
__NAMESPACE_BEGIN_OPENCV
|
|
__NAMESPACE_BEGIN_CVHAARCLASSIFERCASCADE
|
|
|
|
VALUE rb_klass;
|
|
|
|
VALUE
|
|
rb_class()
|
|
{
|
|
return rb_klass;
|
|
}
|
|
|
|
VALUE
|
|
rb_allocate(VALUE klass)
|
|
{
|
|
return OPENCV_OBJECT(klass, 0);
|
|
}
|
|
|
|
void
|
|
cvhaarclassifiercascade_free(void* ptr)
|
|
{
|
|
if (ptr) {
|
|
CvHaarClassifierCascade* cascade = (CvHaarClassifierCascade*)ptr;
|
|
cvReleaseHaarClassifierCascade(&cascade);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Load trained cascade of haar classifers from file.
|
|
*
|
|
* @overload load(filename)
|
|
* @param filename [String] Haar classifer file name
|
|
* @return [CvHaarClassifierCascade] Object detector
|
|
* @scope class
|
|
* @opencv_func cvLoad
|
|
*/
|
|
VALUE
|
|
rb_load(VALUE klass, VALUE path)
|
|
{
|
|
CvHaarClassifierCascade *cascade = NULL;
|
|
try {
|
|
cascade = (CvHaarClassifierCascade*)cvLoad(StringValueCStr(path), 0, 0, 0);
|
|
}
|
|
catch (cv::Exception& e) {
|
|
raise_cverror(e);
|
|
}
|
|
if (!CV_IS_HAAR_CLASSIFIER(cascade))
|
|
rb_raise(rb_eArgError, "invalid format haar classifier cascade file.");
|
|
return Data_Wrap_Struct(klass, 0, cvhaarclassifiercascade_free, cascade);
|
|
}
|
|
|
|
/*
|
|
* Detects objects of different sizes in the input image.
|
|
*
|
|
* @overload detect_objects(image, options = nil)
|
|
* @param image [CvMat,IplImage] Matrix of the type CV_8U containing an image where objects are detected.
|
|
* @param options [Hash] Options
|
|
* @option options [Number] :scale_factor
|
|
* Parameter specifying how much the image size is reduced at each image scale.
|
|
* @option options [Number] :storage
|
|
* Memory storage to store the resultant sequence of the object candidate rectangles
|
|
* @option options [Number] :min_neighbors
|
|
* Parameter specifying how many neighbors each candidate rectangle should have to retain it.
|
|
* @option options [CvSize] :min_size
|
|
* Minimum possible object size. Objects smaller than that are ignored.
|
|
* @option options [CvSize] :max_size
|
|
* Maximum possible object size. Objects larger than that are ignored.
|
|
* @return [CvSeq<CvAvgComp>] Detected objects as a list of rectangles
|
|
* @opencv_func cvHaarDetectObjects
|
|
*/
|
|
VALUE
|
|
rb_detect_objects(int argc, VALUE *argv, VALUE self)
|
|
{
|
|
VALUE image, options;
|
|
rb_scan_args(argc, argv, "11", &image, &options);
|
|
|
|
double scale_factor;
|
|
int flags, min_neighbors;
|
|
CvSize min_size, max_size;
|
|
VALUE storage_val;
|
|
if (NIL_P(options)) {
|
|
scale_factor = 1.1;
|
|
flags = 0;
|
|
min_neighbors = 3;
|
|
min_size = max_size = cvSize(0, 0);
|
|
storage_val = cCvMemStorage::new_object();
|
|
}
|
|
else {
|
|
scale_factor = IF_DBL(LOOKUP_HASH(options, "scale_factor"), 1.1);
|
|
flags = IF_INT(LOOKUP_HASH(options, "flags"), 0);
|
|
min_neighbors = IF_INT(LOOKUP_HASH(options, "min_neighbors"), 3);
|
|
VALUE min_size_val = LOOKUP_HASH(options, "min_size");
|
|
min_size = NIL_P(min_size_val) ? cvSize(0, 0) : VALUE_TO_CVSIZE(min_size_val);
|
|
VALUE max_size_val = LOOKUP_HASH(options, "max_size");
|
|
max_size = NIL_P(max_size_val) ? cvSize(0, 0) : VALUE_TO_CVSIZE(max_size_val);
|
|
storage_val = CHECK_CVMEMSTORAGE(LOOKUP_HASH(options, "storage"));
|
|
}
|
|
|
|
VALUE result = Qnil;
|
|
try {
|
|
CvSeq *seq = cvHaarDetectObjects(CVARR_WITH_CHECK(image), CVHAARCLASSIFIERCASCADE(self), CVMEMSTORAGE(storage_val),
|
|
scale_factor, min_neighbors, flags, min_size, max_size);
|
|
result = cCvSeq::new_sequence(cCvSeq::rb_class(), seq, cCvAvgComp::rb_class(), storage_val);
|
|
if (rb_block_given_p()) {
|
|
for(int i = 0; i < seq->total; ++i)
|
|
rb_yield(REFER_OBJECT(cCvAvgComp::rb_class(), cvGetSeqElem(seq, i), storage_val));
|
|
}
|
|
}
|
|
catch (cv::Exception& e) {
|
|
raise_cverror(e);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
void
|
|
init_ruby_class()
|
|
{
|
|
#if 0
|
|
// For documentation using YARD
|
|
VALUE opencv = rb_define_module("OpenCV");
|
|
#endif
|
|
|
|
if (rb_klass)
|
|
return;
|
|
|
|
VALUE opencv = rb_module_opencv();
|
|
rb_klass = rb_define_class_under(opencv, "CvHaarClassifierCascade", rb_cObject);
|
|
rb_define_alloc_func(rb_klass, rb_allocate);
|
|
rb_define_singleton_method(rb_klass, "load", RUBY_METHOD_FUNC(rb_load), 1);
|
|
rb_define_method(rb_klass, "detect_objects", RUBY_METHOD_FUNC(rb_detect_objects), -1);
|
|
}
|
|
|
|
__NAMESPACE_END_CVHAARCLASSIFERCASCADE
|
|
__NAMESPACE_END_OPENCV
|