1
0
Fork 0
mirror of https://github.com/ruby-opencv/ruby-opencv synced 2023-03-27 23:22:12 -04:00
ruby-opencv/ext/opencv/iplimage.cpp
2011-08-12 02:26:54 +09:00

576 lines
15 KiB
C++

/************************************************************
iplimage.cpp -
$Author: lsxi $
Copyright (C) 2005-2006 Masakazu Yonekura
************************************************************/
#include "iplimage.h"
/*
* Document-class: OpenCV::IplImage
*
* IPL(Intel Image Processing Library) Image class.
*
* IplImage is subclass of CvMat. IplImage support ROI(region of interest) and COI(color of interest).
* Most of CvMat method support ROI, and some of CvMat method support COI.
*
* =What is ROI?
* region of interest.
*
* =What is COI?
* color of interest.
*/
__NAMESPACE_BEGIN_OPENCV
__NAMESPACE_BEGIN_IPLIMAGE
VALUE rb_klass;
VALUE
rb_class()
{
return rb_klass;
}
void
define_ruby_class()
{
if (rb_klass)
return;
/*
* opencv = rb_define_module("OpenCV");
* cvmat = rb_define_class_under(opencv, "CvMat", rb_cObject);
*
* note: this comment is used by rdoc.
*/
VALUE opencv = rb_module_opencv();
VALUE cvmat = cCvMat::rb_class();
rb_klass = rb_define_class_under(opencv, "IplImage", cvmat);
rb_define_alloc_func(rb_klass, rb_allocate);
rb_define_singleton_method(rb_klass, "load", RUBY_METHOD_FUNC(rb_load_image), -1);
rb_define_private_method(rb_klass, "initialize", RUBY_METHOD_FUNC(rb_initialize), -1);
rb_define_method(rb_klass, "get_roi", RUBY_METHOD_FUNC(rb_get_roi), 0);
rb_define_alias(rb_klass, "roi", "get_roi");
rb_define_method(rb_klass, "set_roi", RUBY_METHOD_FUNC(rb_set_roi), 1);
rb_define_alias(rb_klass, "roi=", "set_roi");
rb_define_method(rb_klass, "reset_roi", RUBY_METHOD_FUNC(rb_reset_roi), 0);
rb_define_method(rb_klass, "get_coi", RUBY_METHOD_FUNC(rb_get_coi), 0);
rb_define_alias(rb_klass, "coi", "get_coi");
rb_define_method(rb_klass, "set_coi", RUBY_METHOD_FUNC(rb_set_coi), 1);
rb_define_alias(rb_klass, "coi=", "set_coi");
rb_define_method(rb_klass, "reset_coi", RUBY_METHOD_FUNC(rb_reset_coi), 0);
rb_define_method(rb_klass, "smoothness", RUBY_METHOD_FUNC(rb_smoothness), -1);
}
VALUE
rb_allocate(VALUE klass)
{
return OPENCV_OBJECT(rb_klass, 0);
}
/*
* call-seq:
* new(<i>width, height[, depth = CV_8U][, channel = 3]</i>)
*
* Create width * height image. Each element-value set 0.
*
* Each element possigle range is set by <i>depth</i>. Default is unsigned 8bit.
*
* Number of channel is set by <i>channel</i>. <i>channel</i> should be 1..4.
*
* note: width = col, height = row, on CvMat. It is noted not to make a mistake
* because the order of argument is differenct to CvMat.
*/
VALUE
rb_initialize(int argc, VALUE *argv, VALUE self)
{
VALUE width, height, depth, channel;
rb_scan_args(argc, argv, "22", &width, &height, &depth, &channel);
int _depth = CVMETHOD("DEPTH", depth, CV_8U);
int _channel = argc < 4 ? 3 : NUM2INT(channel);
DATA_PTR(self) = rb_cvCreateImage(cvSize(NUM2INT(width), NUM2INT(height)), cvIplDepth(_depth), _channel);
return self;
}
/*
* call-seq:
* IplImage::load(<i>filename[,iscolor = CV_LOAD_IMAGE_COLOR]</i>)
*
* Load an image from file.
* iscolor = CV_LOAD_IMAGE_COLOR, the loaded image is forced to be a 3-channel color image
* iscolor = CV_LOAD_IMAGE_GRAYSCALE, the loaded image is forced to be grayscale
* iscolor = CV_LOAD_IMAGE_UNCHANGED, the loaded image will be loaded as is.
* Currently the following file format are supported.
* * Windows bitmaps - BMP,DIB
* * JPEG files - JPEG,JPG,JPE
* * Portable Network Graphics - PNG
* * Portable image format - PBM,PGM,PPM
* * Sun rasters - SR,RAS
* * TIFF files - TIFF,TIF
*/
VALUE
rb_load_image(int argc, VALUE *argv, VALUE self)
{
VALUE filename, iscolor;
rb_scan_args(argc, argv, "11", &filename, &iscolor);
Check_Type(filename, T_STRING);
int _iscolor;
if (TYPE(iscolor) == T_NIL) {
_iscolor = CV_LOAD_IMAGE_COLOR;
}
else {
Check_Type(iscolor, T_FIXNUM);
_iscolor = FIX2INT(iscolor);
}
IplImage *image;
if ((image = cvLoadImage(StringValueCStr(filename), _iscolor)) == NULL) {
rb_raise(rb_eStandardError, "file does not exist or invalid format image.");
}
return OPENCV_OBJECT(rb_klass, image);
}
/*
* Get ROI as CvRect.
*/
VALUE
rb_get_roi(VALUE self)
{
CvRect rect;
try {
rect = cvGetImageROI(IPLIMAGE(self));
}
catch (cv::Exception& e) {
raise_cverror(e);
}
return cCvRect::new_object(rect);
}
/*
* call-seq:
* set_roi(<i>rect</i>)
* set_roi(<i>rect</i>){|image| ...}
*
* Set ROI. <i>rect</i> should be CvRect or compatible object.
* Return self.
*/
VALUE
rb_set_roi(VALUE self, VALUE roi)
{
VALUE block = rb_block_given_p() ? rb_block_proc() : 0;
try {
if (block) {
CvRect prev_roi = cvGetImageROI(IPLIMAGE(self));
cvSetImageROI(IPLIMAGE(self), VALUE_TO_CVRECT(roi));
rb_yield_values(1, self);
cvSetImageROI(IPLIMAGE(self), prev_roi);
}
else {
cvSetImageROI(IPLIMAGE(self), VALUE_TO_CVRECT(roi));
}
}
catch (cv::Exception& e) {
raise_cverror(e);
}
return self;
}
/*
* Reset ROI setting. Same as IplImage#roi = nil. Return self.
*/
VALUE
rb_reset_roi(VALUE self)
{
try {
cvResetImageROI(IPLIMAGE(self));
}
catch (cv::Exception& e) {
raise_cverror(e);
}
return self;
}
/*
* Return COI as Fixnum.
*/
VALUE
rb_get_coi(VALUE self)
{
int coi = 0;
try {
coi = cvGetImageCOI(IPLIMAGE(self));
}
catch (cv::Exception& e) {
raise_cverror(e);
}
return INT2FIX(coi);
}
/*
* call-seq:
* set_coi(<i>coi</i>)
* set_coi(<i>coi</i>){|image| ...}
*
* Set COI. <i>coi</i> should be Fixnum.
* Return self.
*/
VALUE
rb_set_coi(VALUE self, VALUE coi)
{
VALUE block = rb_block_given_p() ? rb_block_proc() : 0;
try {
if (block) {
int prev_coi = cvGetImageCOI(IPLIMAGE(self));
cvSetImageCOI(IPLIMAGE(self), NUM2INT(coi));
rb_yield_values(1, self);
cvSetImageCOI(IPLIMAGE(self), prev_coi);
}
else {
cvSetImageCOI(IPLIMAGE(self), NUM2INT(coi));
}
}
catch (cv::Exception& e) {
raise_cverror(e);
}
return self;
}
/*
* Reset COI setting. Same as IplImage#coi = 0. Return self.
*/
VALUE
rb_reset_coi(VALUE self)
{
try {
cvSetImageCOI(IPLIMAGE(self), 0);
}
catch (cv::Exception& e) {
raise_cverror(e);
}
return self;
}
/*
* call-seq:
* IplImage.smoothness(<i>lowFreqRatio, blankDensity, messyDensity, highFreqRatio</i>) -> [ symbol, float, float ]
*
* Determines if the image's smoothness is either, :smooth, :messy, or :blank.
*
* Original Author: yuhanz@gmail.com
*/
VALUE
rb_smoothness(int argc, VALUE *argv, VALUE self)
{
VALUE lowFreqRatio, blankDensity, messyDensity, highFreqRatio;
rb_scan_args(argc, argv, "04", &lowFreqRatio, &blankDensity, &messyDensity, &highFreqRatio);
double f_lowFreqRatio, f_blankDensity, f_messyDensity, f_highFreqRatio;
double outLowDensity, outHighDensity;
if (TYPE(lowFreqRatio) == T_NIL) {
f_lowFreqRatio = 10 / 128.0f;
}
else {
Check_Type(lowFreqRatio, T_FLOAT);
f_lowFreqRatio = NUM2DBL(lowFreqRatio);
}
if (TYPE(blankDensity) == T_NIL) {
f_blankDensity = 1.2f;
}
else {
Check_Type(blankDensity, T_FLOAT);
f_blankDensity = NUM2DBL(blankDensity);
}
if (TYPE(messyDensity) == T_NIL) {
f_messyDensity = 0.151f;
}
else {
Check_Type(messyDensity, T_FLOAT);
f_messyDensity = NUM2DBL(messyDensity);
}
if (TYPE(highFreqRatio) == T_NIL) {
f_highFreqRatio = 5 / 128.0f;
}
else {
Check_Type(highFreqRatio, T_FLOAT);
f_highFreqRatio = NUM2DBL(highFreqRatio);
}
IplImage *pFourierImage;
IplImage *p64DepthImage;
// the image is required to be in depth of 64
if (IPLIMAGE(self)->depth == 64) {
p64DepthImage = NULL;
pFourierImage = create_fourier_image(IPLIMAGE(self));
}
else {
p64DepthImage = rb_cvCreateImage(cvGetSize(IPLIMAGE(self)), IPL_DEPTH_64F, 1);
cvConvertScale(CVARR(self), p64DepthImage, 1.0, 0.0);
pFourierImage = create_fourier_image(p64DepthImage);
}
Smoothness result = compute_smoothness(pFourierImage, f_lowFreqRatio, f_blankDensity, f_messyDnsity,
f_highFreqRatio, outLowDensity, outHighDensity);
cvReleaseImage(&pFourierImage);
if (p64DepthImage != NULL)
cvReleaseImage(&p64DepthImage);
switch(result) {
case SMOOTH:
return rb_ary_new3(3, ID2SYM(rb_intern("smooth")), rb_float_new(outLowDensity), rb_float_new(outHighDensity));
case MESSY:
return rb_ary_new3(3, ID2SYM(rb_intern("messy")), rb_float_new(outLowDensity), rb_float_new(outHighDensity));
case BLANK:
return rb_ary_new3(3, ID2SYM(rb_intern("blank")), rb_float_new(outLowDensity), rb_float_new(outHighDensity));
default:
return rb_ary_new3(3, NULL, rb_float_new(outLowDensity), rb_float_new(outHighDensity));
}
}
/**
* Note: if lowDensity < blankDensityThreshold -> blank;
* else if highDensity > messyDensityThreshold -> messy;
* else -> good;
*/
Smoothness
compute_smoothness(const IplImage *pFourierImage, const double lowFreqRatio, const double blankDensity,
const double messyDensity, const double highFreqRatio, double &outLowDensity
double &outHighDensity)
{
int low, high;
IplImage *filteredFourierImage;
int totalIntensity;
double sum, den, totalArea;
CvScalar scalar;
if (!(pFourierImage->nChannels == 1 && pFourierImage->depth == 64) ) {
cvError(CV_StsUnmatchedSizes, "compute_smoothness", "input image must contain only 1 channel and a depth of 64",
__FILE__, __LINE__ );
}
high_pass_range(pFourierImage, lowFreqRatio, low, high );
totalArea = M_PI * (high * high - low * low);
filteredFourierImage = create_frequency_filtered_image(pFourierImage, low, high);
scalar = cvSum(filteredFourierImage);
totalIntensity = scalar.val[0];
cvReleaseImage(&filteredFourierImage);
outLowDensity = den = totalIntensity / totalArea;
if (den <= blankDensity) {
return BLANK;
}
low = (int)(high * (1.0 - highFreqRatio));
filteredFourierImage = create_frequency_filtered_image(pFourierImage, low, high);
scalar = cvSum(filteredFourierImage);
totalIntensity = scalar.val[0];
cvReleaseImage(&filteredFourierImage);
outHighDensity = den = totalIntensity / totalArea;
if (den >= messyDensity) {
return MESSY;
}
return SMOOTH;
}
// Rearrange the quadrants of Fourier image so that the origin is at
// the image center
// src & dst arrays of equal size & type
void
cvShiftDFT(CvArr *src_arr, CvArr *dst_arr )
{
CvMat *tmp = NULL;
CvMat q1stub, q2stub;
CvMat q3stub, q4stub;
CvMat d1stub, d2stub;
CvMat d3stub, d4stub;
CvMat *q1, *q2, *q3, *q4;
CvMat *d1, *d2, *d3, *d4;
CvSize size = cvGetSize(src_arr);
CvSize dst_size = cvGetSize(dst_arr);
int cx, cy;
if (dst_size.width != size.width ||
dst_size.height != size.height) {
cvError( CV_StsUnmatchedSizes, "cvShiftDFT", "Source and Destination arrays must have equal sizes",
__FILE__, __LINE__ );
}
if (src_arr == dst_arr) {
tmp = rb_cvCreateMat(size.height / 2, size.width / 2, cvGetElemType(src_arr));
}
cx = size.width / 2;
cy = size.height / 2; // image center
q1 = cvGetSubRect(src_arr, &q1stub, cvRect(0,0,cx, cy));
q2 = cvGetSubRect(src_arr, &q2stub, cvRect(cx,0,cx,cy));
q3 = cvGetSubRect(src_arr, &q3stub, cvRect(cx,cy,cx,cy));
q4 = cvGetSubRect(src_arr, &q4stub, cvRect(0,cy,cx,cy));
d1 = cvGetSubRect(src_arr, &d1stub, cvRect(0,0,cx,cy));
d2 = cvGetSubRect(src_arr, &d2stub, cvRect(cx,0,cx,cy));
d3 = cvGetSubRect(src_arr, &d3stub, cvRect(cx,cy,cx,cy));
d4 = cvGetSubRect(src_arr, &d4stub, cvRect(0,cy,cx,cy));
if (src_arr != dst_arr) {
if (!CV_ARE_TYPES_EQ(q1, d1)) {
cvError(CV_StsUnmatchedFormats, "cvShiftDFT", "Source and Destination arrays must have the same format",
__FILE__, __LINE__ );
}
cvCopy(q3, d1, 0);
cvCopy(q4, d2, 0);
cvCopy(q1, d3, 0);
cvCopy(q2, d4, 0);
}
else {
cvCopy(q3, tmp, 0);
cvCopy(q1, q3, 0);
cvCopy(tmp, q1, 0);
cvCopy(q4, tmp, 0);
cvCopy(q2, q4, 0);
cvCopy(tmp, q2, 0);
}
if (tmp != NULL) {
cvReleaseMat(&tmp);
}
}
IplImage*
create_fourier_image(const IplImage *im)
{
IplImage *realInput;
IplImage *imaginaryInput;
IplImage *complexInput;
int dft_M, dft_N;
CvMat *dft_A, tmp;
IplImage *image_Re;
IplImage *image_Im;
realInput = rb_cvCreateImage(cvGetSize(im), IPL_DEPTH_64F, 1);
imaginaryInput = rb_cvCreateImage(cvGetSize(im), IPL_DEPTH_64F, 1);
complexInput = rb_cvCreateImage(cvGetSize(im), IPL_DEPTH_64F, 2);
cvScale(im, realInput, 1.0, 0.0);
cvZero(imaginaryInput);
cvMerge(realInput, imaginaryInput, NULL, NULL, complexInput);
dft_M = cvGetOptimalDFTSize(im->height - 1);
dft_N = cvGetOptimalDFTSize(im->width - 1);
dft_A = rb_cvCreateMat(dft_M, dft_N, CV_64FC2);
image_Re = rb_cvCreateImage(cvSize(dft_N, dft_M), IPL_DEPTH_64F, 1);
image_Im = rb_cvCreateImage(cvSize(dft_N, dft_M), IPL_DEPTH_64F, 1);
// copy A to dft_A and pad dft_A with zeros
cvGetSubRect(dft_A, &tmp, cvRect(0,0, im->width, im->height));
cvCopy(complexInput, &tmp, NULL);
if (dft_A->cols > im->width) {
cvGetSubRect(dft_A, &tmp, cvRect(im->width,0, dft_A->cols - im->width, im->height));
cvZero(&tmp);
}
// no need to pad bottom part of dft_A with zeros because of
// use nonzero_rows parameter in cvDFT() call below
cvDFT(dft_A, dft_A, CV_DXT_FORWARD, complexInput->height);
// Split Fourier in real and imaginary parts
cvSplit(dft_A, image_Re, image_Im, 0, 0);
// Compute the magnitude of the spectrum Mag = sqrt(Re^2 + Im^2)
cvPow(image_Re, image_Re, 2.0);
cvPow(image_Im, image_Im, 2.0);
cvAdd(image_Re, image_Im, image_Re, NULL);
cvPow(image_Re, image_Re, 0.5);
// Compute log(1 + Mag)
cvAddS(image_Re, cvScalarAll(1.0), image_Re, NULL); // 1 + Mag
cvLog(image_Re, image_Re); // log(1 + Mag)
// Rearrange the quadrants of Fourier image so that the origin is at
// the image center
cvShiftDFT(image_Re, image_Re);
cvReleaseImage(&realInput);
cvReleaseImage(&imaginaryInput);
cvReleaseImage(&complexInput);
cvReleaseImage(&image_Im);
cvReleaseMat(&dft_A);
return image_Re;
}
IplImage*
create_frequency_filtered_image(const IplImage *pImage, int low, int high)
{
CvPoint2D32f center;
center.x = pImage->width / 2;
center.y = pImage->height / 2;
CvBox2D box;
box.center = center;
box.size.width = high;
box.size.height = high;
IplImage *pFilterMask = rb_cvCreateImage(cvGetSize(pImage), IPL_DEPTH_64F, 1);
IplImage *pFiltered = rb_cvCreateImage(cvGetSize(pImage), IPL_DEPTH_64F, 1);
cvZero(pFilterMask);
cvZero(pFiltered);
if (high > 0)
cvEllipseBox(pFilterMask, box, cvScalar(255, 255, 255, 255), CV_FILLED, 8, 0);
box.size.width = low;
box.size.height = low;
if (low > 0)
cvEllipseBox(pFilterMask, box, cvScalar(0, 0, 0, 0), CV_FILLED, 8, 0);
cvAnd(pImage, pFilterMask, pFiltered, NULL);
cvReleaseImage(&pFilterMask);
return pFiltered;
}
void
high_pass_range(const IplImage *pImage, float lostPercentage, int &outLow, int &outHigh)
{
if (lostPercentage > 1.0f) {
lostPercentage = 1;
}
else if (lostPercentage < 0.0f) {
lostPercentage = 0;
}
outHigh = (int)MIN(pImage->width, pImage->height);
outLow = (int)(lostPercentage * outHigh);
}
VALUE
new_object(int width, int height, int type)
{
return OPENCV_OBJECT(rb_klass, rb_cvCreateImage(cvSize(width, height), cvIplDepth(type), CV_MAT_CN(type)));
}
VALUE
new_object(CvSize size, int type)
{
return OPENCV_OBJECT(rb_klass, rb_cvCreateImage(size, cvIplDepth(type), CV_MAT_CN(type)));
}
__NAMESPACE_END_IPLIMAGE
__NAMESPACE_END_OPENCV