1
0
Fork 0
mirror of https://github.com/ruby-opencv/ruby-opencv synced 2023-03-27 23:22:12 -04:00
ruby-opencv/ext/opencv/cvhistogram.cpp

717 lines
21 KiB
C++

/************************************************************
cvhistogram.cpp -
$Author: lsxi $
Copyright (C) 2005-2008 Masakazu Yonekura
************************************************************/
#include "cvhistogram.h"
/*
* Document-class: OpenCV::CvHistogram
*
* Multi-dimensional histogram.
*/
__NAMESPACE_BEGIN_OPENCV
__NAMESPACE_BEGIN_CVHISTOGRAM
VALUE rb_klass;
VALUE
rb_class()
{
return rb_klass;
}
void
release_hist(void* ptr)
{
if (ptr) {
try {
cvReleaseHist((CvHistogram**)&ptr);
}
catch (cv::Exception& e) {
raise_cverror(e);
}
}
}
VALUE
rb_allocate(VALUE klass)
{
CvHistogram* ptr = NULL;
return Data_Wrap_Struct(klass, 0, release_hist, ptr);
}
float*
ary2fltptr(VALUE ary, float* buff)
{
Check_Type(ary, T_ARRAY);
int size = RARRAY_LEN(ary);
VALUE* ary_ptr = RARRAY_PTR(ary);
for (int i = 0; i < size; ++i) {
buff[i] = NUM2DBL(ary_ptr[i]);
}
return buff;
}
int*
ary2intptr(VALUE ary, int* buff)
{
Check_Type(ary, T_ARRAY);
int size = RARRAY_LEN(ary);
VALUE* ary_ptr = RARRAY_PTR(ary);
for (int i = 0; i < size; ++i) {
buff[i] = NUM2INT(ary_ptr[i]);
}
return buff;
}
/*
* Creates a histogram
* @overload new(dims, sizes, type, ranges=nil, uniform=true)
* @param dims [Integer] Number of histogram dimensions
* @param sizes [Array<Integer>] Array of the histogram dimension sizes
* @param type [Integer]
* Histogram representation format. CV_HIST_ARRAY means that the histogram data is represented
* as a multi-dimensional dense array CvMatND. CV_HIST_SPARSE means that histogram data is
* represented as a multi-dimensional sparse array CvSparseMat.
* @param ranges [Array<Integer>]
* Array of ranges for the histogram bins. Its meaning depends on the uniform parameter value.
* The ranges are used when the histogram is calculated or backprojected to determine which
* histogram bin corresponds to which value/tuple of values from the input image(s).
* @param uniform [Boolean] Uniformity flag.
* @return [CvHistogram] Histogram
* @opencv_func cvCreateHist
*/
VALUE
rb_initialize(int argc, VALUE *argv, VALUE self)
{
VALUE _dims, _sizes, _type, _ranges, _uniform;
int uniform;
int* sizes;
float** ranges = NULL;
rb_scan_args(argc, argv, "32", &_dims, &_sizes, &_type, &_ranges, &_uniform);
int sizes_len = RARRAY_LEN(_sizes);
sizes = ALLOCA_N(int, sizes_len);
if (NIL_P(_ranges)) {
sizes = ary2intptr(_sizes, sizes);
ranges = NULL;
}
else {
ranges = ALLOCA_N(float*, sizes_len);
VALUE* range_ptr = RARRAY_PTR(_ranges);
int i;
for (i = 0; i < sizes_len; i++) {
sizes[i] = NUM2INT(RARRAY_PTR(_sizes)[i]);
ranges[i] = ary2fltptr(range_ptr[i], ALLOCA_N(float, 2));
}
}
uniform = TRUE_OR_FALSE(_uniform, 1);
try {
DATA_PTR(self) = cvCreateHist(NUM2INT(_dims), sizes, NUM2INT(_type), ranges, uniform);
}
catch (cv::Exception& e) {
raise_cverror(e);
}
return self;
}
/*
* Returns <tt>self</tt> is uniform histogram or not
* @overload is_uniform?
* @return [Boolean] Uniform or not
* @opencv_func CV_IS_UNIFORM_HIST
*/
VALUE
rb_is_uniform(VALUE self)
{
return CV_IS_UNIFORM_HIST(CVHISTOGRAM(self)) ? Qtrue : Qfalse;
}
/*
* Returns <tt>self</tt> is sparse histogram or not
* @overload is_sparse?
* @return [Boolean] Sparse or not
* @opencv_func CV_IS_SPARSE_HIST
*/
VALUE
rb_is_sparse(VALUE self)
{
return CV_IS_SPARSE_HIST(CVHISTOGRAM(self)) ? Qtrue : Qfalse;
}
/*
* Returns <tt>self</tt> has range or not
* @overload has_range?
* @return [Boolean] Has range or not
* @opencv_func CV_HIST_HAS_RANGES
*/
VALUE
rb_has_range(VALUE self)
{
return CV_HIST_HAS_RANGES(CVHISTOGRAM(self)) ? Qtrue : Qfalse;
}
/*
* Calculates a histogram of a set of arrays.
* @overload calc_hist(images, accumulate=nil, mask=nil)
* @param images [Array<IplImage>]
* Source arrays. They all should have the same depth, CV_8U or CV_32F, and the same size.
* Each of them can have an arbitrary number of channels.
* @param accumulate [Boolean]
* Accumulation flag. If it is set, the histogram is not cleared in the beginning when it is allocated.
* This feature enables you to compute a single histogram from several sets of arrays,
* or to update the histogram in time.
* @param mask [CvMat]
* Optional mask. If the matrix is not empty, it must be an 8-bit array of the same size as images[i].
* The non-zero mask elements mark the array elements counted in the histogram.
* @return [CvHistogram] Histogram of a set of arrays
* @opencv_func cvCalcHist
*/
VALUE
rb_calc_hist(int argc, VALUE* argv, VALUE self)
{
return rb_calc_hist_bang(argc, argv, rb_copy_hist(self));
}
/*
* Calculates a histogram of a set of arrays.
* @overload calc_hist!(images, accumulate=nil, mask=nil)
* @see #calc_hist
* @opencv_func cvCalcHist
*/
VALUE
rb_calc_hist_bang(int argc, VALUE* argv, VALUE self)
{
VALUE images, accumulate, mask;
rb_scan_args(argc, argv, "12", &images, &accumulate, &mask);
Check_Type(images, T_ARRAY);
int num_images = RARRAY_LEN(images);
if (num_images == 0) {
rb_raise(rb_eArgError, "One or more arrays are required.");
}
IplImage** img = ALLOCA_N(IplImage*, num_images);
VALUE* images_ptr = RARRAY_PTR(images);
for (int i = 0; i < num_images; i++) {
img[i] = IPLIMAGE_WITH_CHECK(images_ptr[i]);
}
CvMat* m = NIL_P(mask) ? NULL : CVMAT_WITH_CHECK(mask);
try {
cvCalcHist(img, CVHISTOGRAM(self), TRUE_OR_FALSE(accumulate, 0), m);
}
catch (cv::Exception& e) {
raise_cverror(e);
}
return self;
}
/*
* Queries the value of the histogram bin.
* @overload [](idx0)
* @overload [](idx0, idx1)
* @overload [](idx0, idx1, idx2)
* @overload [](idx0, idx1, idx2, idx3, ...)
* @param idx* [Integer] *-th index
* @return [Number] The value of the specified bin of the 1D, 2D, 3D, or N-D histogram.
* @opencv_func cvQueryHistValue_1D
* @opencv_func cvQueryHistValue_2D
* @opencv_func cvQueryHistValue_3D
* @opencv_func cvQueryHistValue_nD
*/
VALUE
rb_aref(VALUE self, VALUE args)
{
int num_idx = RARRAY_LEN(args);
int* idx = ALLOCA_N(int, num_idx);
VALUE* args_ptr = RARRAY_PTR(args);
for (int i = 0; i < num_idx; i++) {
idx[i] = NUM2INT(args_ptr[i]);
}
float value = 0.0;
CvHistogram* self_ptr = CVHISTOGRAM(self);
try {
switch (num_idx) {
case 1:
value = cvQueryHistValue_1D(self_ptr, idx[0]);
break;
case 2:
value = cvQueryHistValue_2D(self_ptr, idx[0], idx[1]);
break;
case 3:
value = cvQueryHistValue_3D(self_ptr, idx[0], idx[1], idx[2]);
break;
default:
value = cvQueryHistValue_nD(self_ptr, idx);
break;
}
}
catch (cv::Exception& e) {
raise_cverror(e);
}
return rb_float_new((double)value);
}
/*
* Finds the minimum and maximum histogram bins.
* @overload min_max_value
* @return [Array]
* [min_value, max_value, min_idx, max_idx]: Array of the minimum / maximum value of the histogram
* and their coordinates.
* - min_value: The minimum value of the histogram.
* - max_value: The maximum value of the histogram.
* - min_idx: The array of coordinates for the minimum.
* - max_idx: The array of coordinates for the maximum.
* @opencv_func cvGetMinMaxHistValue
*/
VALUE
rb_min_max_value(VALUE self)
{
CvHistogram* self_ptr = CVHISTOGRAM(self);
int dims = 0;
float min_value = 0.0, max_value = 0.0;
int *min_idx = NULL;
int *max_idx = NULL;
try {
dims = cvGetDims(self_ptr->bins, NULL);
min_idx = ALLOCA_N(int, dims);
max_idx = ALLOCA_N(int, dims);
cvGetMinMaxHistValue(CVHISTOGRAM(self), &min_value, &max_value, min_idx, max_idx);
}
catch (cv::Exception& e) {
raise_cverror(e);
}
VALUE _min_idx = rb_ary_new2(dims);
VALUE _max_idx = rb_ary_new2(dims);
for (int i = 0; i < dims; i++) {
rb_ary_store(_min_idx, i, INT2NUM(min_idx[i]));
rb_ary_store(_max_idx, i, INT2NUM(max_idx[i]));
}
return rb_ary_new3(4, rb_float_new((double)min_value), rb_float_new((double)max_value),
_min_idx, _max_idx);
}
/*
* Returns number of array dimensions
* @overload [](idx0, idx1, ...)
* @param idx* [Integer] *-th index
* @return [Array<Integer, Array<Integer>>]
* [dims, sizes]: Number of array dimensions and its sizes.
* - dims (Integer): Number of array dimensions
* - sizes (Array<Integer>): Vector of the array dimension sizes.
* For 2D arrays the number of rows (height) goes first,
* number of columns (width) next.
* @opencv_func cvGetDims
*/
VALUE
rb_dims(VALUE self)
{
VALUE _sizes = Qnil;
int size[CV_MAX_DIM];
int dims = 0;
try {
dims = cvGetDims(CVHISTOGRAM(self)->bins, size);
_sizes = rb_ary_new2(dims);
for (int i = 0; i < dims; ++i) {
rb_ary_store(_sizes, i, INT2NUM(size[i]));
}
}
catch (cv::Exception& e) {
raise_cverror(e);
}
return rb_assoc_new(INT2NUM(dims), _sizes);
}
/*
* Clones histogram
* @overload copy_hist
* @return [CvHistogram] Copy of the histogram
* @opencv_func cvCopyHist
*/
VALUE
rb_copy_hist(VALUE self)
{
CvHistogram* hist = NULL;
try {
cvCopyHist(CVHISTOGRAM(self), &hist);
}
catch (cv::Exception& e) {
raise_cverror(e);
}
return Data_Wrap_Struct(rb_klass, 0, release_hist, hist);
}
/*
* Sets all histogram bins to 0 in case of dense histogram
* and removes all histogram bins in case of sparse array.
* @overload clear_hist
* @return [CvHistogram] Cleared histogram
* @opencv_func cvClearHist
*/
VALUE
rb_clear_hist(VALUE self)
{
return rb_clear_hist_bang(rb_copy_hist(self));
}
/*
* Sets all histogram bins to 0 in case of dense histogram
* and removes all histogram bins in case of sparse array.
* This method changes <tt>self</tt>.
* @overload clear_hist!
* @see #clear_hist
* @return [CvHistogram] Cleared histogram
* @opencv_func cvClearHist
*/
VALUE
rb_clear_hist_bang(VALUE self)
{
try {
cvClearHist(CVHISTOGRAM(self));
}
catch (cv::Exception& e) {
raise_cverror(e);
}
return self;
}
/*
* Returns normalized the histogram bins by scaling them,
* such that the sum of the bins becomes equal to <tt>factor</tt>.
* @overload normalize(factor)
* @param factor [Number] Normalization factor. The sum of the bins becomes equal to this value.
* @return [CvHistogram] Normalized histogram
* @opencv_func cvNormalizeHist
*/
VALUE
rb_normalize_hist(VALUE self, VALUE factor)
{
return rb_normalize_hist_bang(rb_copy_hist(self), factor);
}
/*
* Returns normalized the histogram bins by scaling them,
* such that the sum of the bins becomes equal to <tt>factor</tt>.
* This method changes <tt>self</tt>.
* @overload normalize!(factor)
* @param factor [Number] Normalization factor. The sum of the bins becomes equal to this value.
* @return [CvHistogram] Normalized histogram
* @see #normalize
* @opencv_func cvNormalizeHist
*/
VALUE
rb_normalize_hist_bang(VALUE self, VALUE factor)
{
try {
cvNormalizeHist(CVHISTOGRAM(self), NUM2DBL(factor));
}
catch (cv::Exception& e) {
raise_cverror(e);
}
return self;
}
/*
* Returns cleared histogram bins that are below the specified threshold.
* @overload thresh_hist(threshold)
* @param threshold [Number] Threshold value
* @return [CvHistogram] Cleared histogram
* @opencv_func cvThreshHist
*/
VALUE
rb_thresh_hist(VALUE self, VALUE threshold)
{
return rb_thresh_hist_bang(rb_copy_hist(self), threshold);
}
/*
* Cleares histogram bins that are below the specified threshold.
* This method changes <tt>self</tt>.
* @overload thresh_hist!(threshold)
* @param threshold [Number] Threshold value
* @return [CvHistogram] Cleared histogram
* @see #thresh_hist
* @opencv_func cvThreshHist
*/
VALUE
rb_thresh_hist_bang(VALUE self, VALUE threshold)
{
try {
cvThreshHist(CVHISTOGRAM(self), NUM2DBL(threshold));
}
catch (cv::Exception& e) {
raise_cverror(e);
}
return self;
}
/*
* Sets the bounds of the histogram bins.
* @overload set_hist_bin_ranges(ranges, uniform=true)
* @param ranges [Array<Number>]
* Array of ranges for the histogram bins. Its meaning depends on the uniform parameter value.
* The ranges are used when the histogram is calculated or backprojected to determine
* which histogram bin corresponds to which value/tuple of values from the input image(s).
* @param uniform [Boolean]
* Uniformity flag.
* @return [CvHistogram]
* Histogram
* @opencv_func cvSetHistBinRanges
*/
VALUE
rb_set_hist_bin_ranges(int argc, VALUE* argv, VALUE self)
{
return rb_set_hist_bin_ranges_bang(argc, argv, rb_copy_hist(self));
}
/*
* Sets the bounds of the histogram bins. This method changes <tt>self</tt>.
* @overload set_hist_bin_ranges!(ranges, uniform=true)
* @param ranges [Array<Number>]
* Array of ranges for the histogram bins. Its meaning depends on the uniform parameter value.
* The ranges are used when the histogram is calculated or backprojected to determine
* which histogram bin corresponds to which value/tuple of values from the input image(s).
* @param uniform [Boolean]
* Uniformity flag.
* @return [CvHistogram]
* Histogram
* @see #set_hist_bin_ranges
* @opencv_func cvSetHistBinRanges
*/
VALUE
rb_set_hist_bin_ranges_bang(int argc, VALUE* argv, VALUE self)
{
VALUE _ranges, _uniform;
rb_scan_args(argc, argv, "11", &_ranges, &_uniform);
Check_Type(_ranges, T_ARRAY);
int ranges_size = RARRAY_LEN(_ranges);
float** ranges = ALLOCA_N(float*, ranges_size);
VALUE* range_ptr = RARRAY_PTR(_ranges);
for (int i = 0; i < ranges_size; ++i) {
ranges[i] = ary2fltptr(range_ptr[i], ALLOCA_N(float, 2));
}
int uniform = TRUE_OR_FALSE(_uniform, 1);
try {
cvSetHistBinRanges(CVHISTOGRAM(self), ranges, uniform);
}
catch (cv::Exception& e) {
raise_cverror(e);
}
return self;
}
/*
* Calculates the back projection of a histogram.
* @overload calc_back_project(images)
* @param images [Array<IplImage>]
* Source arrays. They all should have the same depth, CV_8U or CV_32F, and the same size.
* Each of them can have an arbitrary number of channels.
* @return [CvMat,IplImage]
* Destination back projection array that is a single-channel array of the same size and depth
* as the first element of <tt>images</tt>
* @opencv_func cvCalcBackProject
*/
VALUE
rb_calc_back_project(VALUE self, VALUE image)
{
Check_Type(image, T_ARRAY);
int num_images = RARRAY_LEN(image);
if (num_images == 0) {
return Qnil;
}
IplImage** img = ALLOCA_N(IplImage*, num_images);
VALUE* image_ptr = RARRAY_PTR(image);
for (int i = 0; i < num_images; ++i) {
img[i] = IPLIMAGE_WITH_CHECK(image_ptr[i]);
}
CvSize size;
size.width = img[0]->width;
size.height = img[0]->height;
VALUE back_project = cCvMat::new_mat_kind_object(size, image_ptr[0]);
try {
cvCalcBackProject(img, CVARR(back_project), CVHISTOGRAM(self));
}
catch (cv::Exception& e) {
raise_cverror(e);
}
return back_project;
}
/*
* Locates a template within an image by using a histogram comparison.
* @overload calc_back_project_patch(images, patch_size, method, factor)
* @param images [Array<IplImage>] Source arrays.
* @param pach_size [CvSize] Size of the patch slid though the source image.
* @param method [Integer]
* Comparison method that could be one of the following:
* - <tt>CV_COMP_CORREL</tt>: Correlation
* - <tt>CV_COMP_CHISQR</tt>: Chi-Square
* - <tt>CV_COMP_INTERSECT</tt>: Intersection
* - <tt>CV_COMP_BHATTACHARYYA</tt>: Bhattacharyya distance
* - <tt>CV_COMP_HELLINGER</tt>: Synonym for <tt>CV_COMP_BHATTACHARYYA</tt>
* @param factor [Number]
* Normalization factor for histograms that affects the normalization scale
* of the destination image. Pass 1 if not sure.
* @return [CvMat,IplImage] Destination image.
* @opencv_func cvCalcBackProject
*/
VALUE
rb_calc_back_project_patch(VALUE self, VALUE image, VALUE patch_size, VALUE method, VALUE factor)
{
Check_Type(image, T_ARRAY);
int num_images = RARRAY_LEN(image);
if (num_images == 0) {
return Qnil;
}
IplImage** img = ALLOCA_N(IplImage*, num_images);
VALUE* image_ptr = RARRAY_PTR(image);
for (int i = 0; i < num_images; ++i) {
img[i] = IPLIMAGE_WITH_CHECK(image_ptr[i]);
}
CvSize patchsize = VALUE_TO_CVSIZE(patch_size);
CvSize dst_size;
dst_size.width = img[0]->width - patchsize.width + 1;
dst_size.height = img[0]->height - patchsize.height + 1;
VALUE dst = cCvMat::new_mat_kind_object(dst_size, image_ptr[0], CV_32F, 1);
try {
cvCalcBackProjectPatch(img, CVARR(dst), patchsize, CVHISTOGRAM(self),
NUM2INT(method), NUM2DBL(factor));
}
catch (cv::Exception& e) {
raise_cverror(e);
}
return dst;
}
/*
* Compares two histograms.
* @overload compare_hist(hist1, hist2, method)
* @param hist1 [CvHistogram] First compared histogram.
* @param hist2 [CvHistogram] Second compared histogram of the same size as <tt>hist1</tt>.
* @param method [Integer]
* Comparison method that could be one of the following:
* - <tt>CV_COMP_CORREL</tt>: Correlation
* - <tt>CV_COMP_CHISQR</tt>: Chi-Square
* - <tt>CV_COMP_INTERSECT</tt>: Intersection
* - <tt>CV_COMP_BHATTACHARYYA</tt>: Bhattacharyya distance
* - <tt>CV_COMP_HELLINGER</tt>: Synonym for <tt>CV_COMP_BHATTACHARYYA</tt>
* @return [Number] Distance of the two histograms.
* @scope class
* @opencv_func cvCompareHist
*/
VALUE
rb_compare_hist(VALUE self, VALUE hist1, VALUE hist2, VALUE method)
{
double result = 0;
try {
result = cvCompareHist(CVHISTOGRAM_WITH_CHECK(hist1), CVHISTOGRAM_WITH_CHECK(hist2),
NUM2INT(method));
}
catch (cv::Exception& e) {
raise_cverror(e);
}
return rb_float_new(result);
}
/*
* Divides one histogram by another.
* @overload calc_prob_density(hist1, hist2, scale=255)
* @param hist1 [CvHistogram] First histogram (the divisor).
* @param hist2 [CvHistogram] Second histogram.
* @param scale [Number] Scale factor for the destination histogram.
* @return [CvHistogram] Destination histogram.
* @opencv_func cvCalcProbDensity
*/
VALUE
rb_calc_prob_density(int argc, VALUE* argv, VALUE self)
{
VALUE hist1, hist2, scale;
rb_scan_args(argc, argv, "21", &hist1, &hist2, &scale);
double s = NIL_P(scale) ? 255 : NUM2DBL(scale);
CvHistogram* hist1_ptr = CVHISTOGRAM_WITH_CHECK(hist1);
VALUE dst_hist = rb_allocate(rb_klass);
try {
cvCopyHist(hist1_ptr, (CvHistogram**)&(DATA_PTR(dst_hist)));
cvCalcProbDensity(hist1_ptr, CVHISTOGRAM_WITH_CHECK(hist2), CVHISTOGRAM(dst_hist), s);
}
catch (cv::Exception& e) {
raise_cverror(e);
}
return dst_hist;
}
void
init_ruby_class()
{
#if 0
// For documentation using YARD
VALUE opencv = rb_define_module("OpenCV");
#endif
if (rb_klass)
return;
VALUE opencv = rb_module_opencv();
rb_klass = rb_define_class_under(opencv, "CvHistogram", rb_cObject);
rb_define_alloc_func(rb_klass, rb_allocate);
rb_define_method(rb_klass, "initialize", RUBY_METHOD_FUNC(rb_initialize), -1);
rb_define_method(rb_klass, "is_uniform?", RUBY_METHOD_FUNC(rb_is_uniform), 0);
rb_define_method(rb_klass, "is_sparse?", RUBY_METHOD_FUNC(rb_is_sparse), 0);
rb_define_method(rb_klass, "has_range?", RUBY_METHOD_FUNC(rb_has_range), 0);
rb_define_method(rb_klass, "dims", RUBY_METHOD_FUNC(rb_dims), 0);
rb_define_method(rb_klass, "calc_hist", RUBY_METHOD_FUNC(rb_calc_hist), -1);
rb_define_method(rb_klass, "calc_hist!", RUBY_METHOD_FUNC(rb_calc_hist_bang), -1);
rb_define_method(rb_klass, "[]", RUBY_METHOD_FUNC(rb_aref), -2);
rb_define_alias(rb_klass, "query_hist_value", "[]");
rb_define_method(rb_klass, "min_max_value", RUBY_METHOD_FUNC(rb_min_max_value), 0);
rb_define_method(rb_klass, "copy_hist", RUBY_METHOD_FUNC(rb_copy_hist), 0);
rb_define_method(rb_klass, "clear_hist", RUBY_METHOD_FUNC(rb_clear_hist), 0);
rb_define_alias(rb_klass, "clear", "clear_hist");
rb_define_method(rb_klass, "clear_hist!", RUBY_METHOD_FUNC(rb_clear_hist_bang), 0);
rb_define_alias(rb_klass, "clear!", "clear_hist!");
rb_define_method(rb_klass, "normalize_hist", RUBY_METHOD_FUNC(rb_normalize_hist), 1);
rb_define_alias(rb_klass, "normalize", "normalize_hist");
rb_define_method(rb_klass, "normalize_hist!", RUBY_METHOD_FUNC(rb_normalize_hist_bang), 1);
rb_define_alias(rb_klass, "normalize!", "normalize_hist!");
rb_define_method(rb_klass, "thresh_hist", RUBY_METHOD_FUNC(rb_thresh_hist), 1);
rb_define_alias(rb_klass, "thresh", "thresh_hist");
rb_define_method(rb_klass, "thresh_hist!", RUBY_METHOD_FUNC(rb_thresh_hist_bang), 1);
rb_define_alias(rb_klass, "thresh!", "thresh_hist!");
rb_define_method(rb_klass, "set_hist_bin_ranges", RUBY_METHOD_FUNC(rb_set_hist_bin_ranges), -1);
rb_define_method(rb_klass, "set_hist_bin_ranges!", RUBY_METHOD_FUNC(rb_set_hist_bin_ranges_bang), -1);
rb_define_method(rb_klass, "calc_back_project", RUBY_METHOD_FUNC(rb_calc_back_project), 1);
rb_define_method(rb_klass, "calc_back_project_patch", RUBY_METHOD_FUNC(rb_calc_back_project_patch), 4);
rb_define_singleton_method(rb_klass, "calc_prob_density", RUBY_METHOD_FUNC(rb_calc_prob_density), -1);
rb_define_singleton_method(rb_klass, "compare_hist", RUBY_METHOD_FUNC(rb_compare_hist), 3);
}
__NAMESPACE_END_CVHISTOGRAM
__NAMESPACE_END_OPENCV