1
0
Fork 0
mirror of https://github.com/ruby-opencv/ruby-opencv synced 2023-03-27 23:22:12 -04:00
ruby-opencv/ext/opencv/cvhaarclassifiercascade.cpp
Patrick Ting 08a9655dc1 Added gemspec to be able to bundle install from git.
Added IplImage#smoothness that returns :smooth, :messy, or :blank.
Rake compile will now compile the C extension code.
2011-04-14 12:26:41 -07:00

159 lines
6.2 KiB
C++

/************************************************************
cvhaarclassifercascade.cpp -
$Author: lsxi $
Copyright (C) 2005-2007 Masakazu Yonekura
************************************************************/
#include "cvhaarclassifiercascade.h"
/*
* Document-class: OpenCV::CvHaarClassifierCascade
*
* CvHaarClassifierCascade object is "fast-object-detector".
* This detector can discover object (e.g. human's face) from image.
*
* Find face-area from picture "lena"...
* link:../images/face_detect_from_lena.jpg
*/
__NAMESPACE_BEGIN_OPENCV
__NAMESPACE_BEGIN_CVHAARCLASSIFERCASCADE
VALUE rb_klass;
VALUE
rb_class()
{
return rb_klass;
}
void define_ruby_class()
{
if (rb_klass)
return;
/*
* opencv = rb_define_module("OpenCV");
*
* note: this comment is used by rdoc.
*/
VALUE opencv = rb_module_opencv();
rb_klass = rb_define_class_under(opencv, "CvHaarClassifierCascade", rb_cObject);
rb_define_alloc_func(rb_klass, rb_allocate);
rb_define_singleton_method(rb_klass, "load", RUBY_METHOD_FUNC(rb_load), 1);
rb_define_method(rb_klass, "detect_objects", RUBY_METHOD_FUNC(rb_detect_objects), -1);
rb_define_method(rb_klass, "detect_objects_with_pruning", RUBY_METHOD_FUNC(rb_detect_objects_with_pruning), -1);
}
VALUE
rb_allocate(VALUE klass)
{
return OPENCV_OBJECT(klass, 0);
}
/*
* call-seq:
* CvHaarClassiferCascade.load(<i>path</i>) -> object-detector
*
* Load trained cascade of haar classifers from file.
* Object detection classifiers are stored in XML or YAML files.
* sample of object detection classifier files is included by OpenCV.
*
* You can found these at
* C:\Program Files\OpenCV\data\haarcascades\*.xml (Windows, default install path)
*
* e.g. you want to try to detect human's face.
* detector = CvHaarClassiferCascade.load("haarcascade_frontalface_alt.xml")
*/
VALUE
rb_load(VALUE klass, VALUE path)
{
CvHaarClassifierCascade *cascade = (CvHaarClassifierCascade*)cvLoad(StringValueCStr(path), 0, 0, 0);
if(!CV_IS_HAAR_CLASSIFIER(cascade))
rb_raise(rb_eTypeError, "invalid format haar classifier cascade file.");
return OPENCV_OBJECT(rb_klass, cascade);
}
VALUE
rb_save(VALUE self, VALUE path)
{
rb_raise(rb_eNotImpError, "");
}
/*
* call-seq:
* detect_objects(image[,scale_factor = 1.1, min_neighbor = 3, min_size = CvSize.new(0,0)]) -> cvseq(include CvAvgComp object)
* detect_objects(image[,scale_factor = 1.1, min_neighbor = 3, min_size = CvSize.new(0,0)]){|cmp| ... } -> cvseq(include CvAvgComp object)
*
* Detects objects in the image. This method finds rectangular regions in the
* given image that are likely to contain objects the cascade has been trained
* for and return those regions as a sequence of rectangles.
*
* * scale_factor (should be > 1.0)
* The factor by which the search window is scaled between the subsequent scans, for example, 1.1 mean increasing window by 10%.
* * min_neighbors
* Minimum number (minus 1) of neighbor rectangles that makes up an object.
* All the groups of a smaller number of rectangles than min_neighbors - 1 are rejected.
* If min_neighbors is 0, the function does not any grouping at all and returns all the detected
* candidate rectangles, whitch many be useful if the user wants to apply a customized grouping procedure.
* * min_size
* Minimum window size. By default, it is set to size of samples the classifier has been trained on.
*/
VALUE
rb_detect_objects(int argc, VALUE *argv, VALUE self)
{
VALUE image, storage, scale_factor, min_neighbors, min_size, result;
rb_scan_args(argc, argv, "14", &image, &storage, &scale_factor, &min_neighbors, &min_size);
if (!rb_obj_is_kind_of(image, cCvMat::rb_class()))
rb_raise(rb_eTypeError, "argument 1(target-image) should be %s.", rb_class2name(cCvMat::rb_class()));
double scale = IF_DBL(scale_factor, 1.1);
if (!(scale > 1.0))
rb_raise(rb_eArgError, "argument 2 (scale factor) must > 1.0.");
storage = CHECK_CVMEMSTORAGE(storage);
CvSeq *seq = cvHaarDetectObjects(CVMAT(image), CVHAARCLASSIFIERCASCADE(self), CVMEMSTORAGE(storage),
scale, IF_INT(min_neighbors, 3), 0, NIL_P(min_size) ? cvSize(0,0) : VALUE_TO_CVSIZE(min_size));
result = cCvSeq::new_sequence(cCvSeq::rb_class(), seq, cCvAvgComp::rb_class(), storage);
if (rb_block_given_p()) {
for(int i = 0; i < seq->total; i++)
rb_yield(REFER_OBJECT(cCvAvgComp::rb_class(), cvGetSeqElem(seq, i), storage));
}
return result;
}
/*
* call-seq:
* detect_objects_with_pruning(image[,scale_factor = 1.1, min_neighbor = 3, min_size = CvSize.new(0,0)]) -> cvseq(include CvAvgComp object)
* detect_objects_with_pruning(image[,scale_factor = 1.1, min_neighbor = 3, min_size = CvSize.new(0,0)]){|cmp| ... } -> cvseq(include CvAvgComp object)
*
* Almost same to #detect_objects (Return detected objects).
*
* Before scanning to image, Canny edge detector to reject some image regions
* that contain too few or too much edges, and thus can not contain the searched object.
*
* note: The particular threshold values are tuned for face detection.
* And in this case the pruning speeds up the processing.
*/
VALUE
rb_detect_objects_with_pruning(int argc, VALUE *argv, VALUE self)
{
VALUE image, storage, scale_factor, min_neighbors, min_size, result;
rb_scan_args(argc, argv, "14", &image, &storage, &scale_factor, &min_neighbors, &min_size);
if (!rb_obj_is_kind_of(image, cCvMat::rb_class()))
rb_raise(rb_eTypeError, "argument 1(target-image) should be %s.", rb_class2name(cCvMat::rb_class()));
double scale = IF_DBL(scale_factor, 1.1);
if (!(scale > 1.0))
rb_raise(rb_eArgError, "argument 2 (scale factor) must > 1.0.");
storage = CHECK_CVMEMSTORAGE(storage);
CvSeq *seq = cvHaarDetectObjects(CVMAT(image), CVHAARCLASSIFIERCASCADE(self), CVMEMSTORAGE(storage),
scale, IF_INT(min_neighbors, 3), CV_HAAR_DO_CANNY_PRUNING, NIL_P(min_size) ? cvSize(0,0) : VALUE_TO_CVSIZE(min_size));
result = cCvSeq::new_sequence(cCvSeq::rb_class(), seq, cCvAvgComp::rb_class(), storage);
if (rb_block_given_p()) {
for(int i = 0; i < seq->total; i++)
rb_yield(REFER_OBJECT(cCvAvgComp::rb_class(), cvGetSeqElem(seq, i), storage));
}
return result;
}
__NAMESPACE_END_CVHAARCLASSIFERCASCADE
__NAMESPACE_END_OPENCV