1
0
Fork 0
mirror of https://github.com/ruby-opencv/ruby-opencv synced 2023-03-27 23:22:12 -04:00
ruby-opencv/ext/opencv/dnn_net.cpp
2018-07-27 11:00:16 -07:00

340 lines
11 KiB
C++

#include "opencv2/dnn.hpp"
#include "opencv.hpp"
#include "mat.hpp"
#include "error.hpp"
#include "dnn_layer.hpp"
/*
* Document-class: Cv::Dnn::Net
*/
namespace rubyopencv {
namespace Dnn {
namespace Net {
VALUE rb_klass = Qnil;
void free_net(void* ptr) {
delete (cv::dnn::Net*)ptr;
}
size_t memsize_net(const void* ptr) {
return sizeof(cv::dnn::Net);
}
rb_data_type_t opencv_net_type = {
"Dnn::Net", { 0, free_net, memsize_net, }, 0, 0, 0
};
VALUE net2obj(cv::dnn::Net* ptr) {
return TypedData_Wrap_Struct(rb_klass, &opencv_net_type, ptr);
}
cv::dnn::Net* obj2net(VALUE obj) {
cv::dnn::Net* ptr = NULL;
TypedData_Get_Struct(obj, cv::dnn::Net, &opencv_net_type, ptr);
return ptr;
}
VALUE rb_allocate(VALUE klass) {
cv::dnn::Net* ptr = new cv::dnn::Net();
return TypedData_Wrap_Struct(klass, &opencv_net_type, ptr);
}
cv::dnn::Net* rb_read_net_internal(VALUE model, VALUE config, VALUE framework) {
cv::dnn::Net* dataptr = NULL;
try {
cv::dnn::Net net = cv::dnn::readNet(StringValueCStr(model), CSTR_DEFAULT(config, ""), CSTR_DEFAULT(framework, ""));
dataptr = new cv::dnn::Net(net);
} catch(cv::Exception& e) {
delete dataptr;
Error::raise(e);
}
return dataptr;
}
/*
* Creates or reads a deep learning network
*
* @overload new(model = nil, config = nil, framework = nil)
* @param model [String] Binary file contains trained weights
* @param config [String] Text file contains network configuration
* @param framework [String] Explicit framework name tag to determine a format
* @return [Net] Network object
* @opencv_func cv::dnn::Net
* @example
* net1 = Dnn::Net.new
* net2 = Dnn::Net.new("bvlc_googlenet.caffemodel", "bvlc_googlenet.prototxt")
*/
VALUE rb_initialize(int argc, VALUE *argv, VALUE self) {
VALUE model, config, framework;
rb_scan_args(argc, argv, "03", &model, &config, &framework);
if (argc > 0) {
RTYPEDDATA_DATA(self) = rb_read_net_internal(model, config, framework);
}
return self;
}
void rb_set_input_internal(VALUE self, VALUE blob, VALUE name) {
cv::dnn::Net* selfptr = obj2net(self);
try {
selfptr->setInput(*Mat::obj2mat(blob), CSTR_DEFAULT(name, ""));
} catch(cv::Exception& e) {
Error::raise(e);
}
}
/*
* Sets the new input value for the network
*
* @overload input=(blob)
* @param blob [Mat] A blob of CV_32F or CV_8U depth
* @return [nil]
*/
VALUE rb_set_input_equals(VALUE self, VALUE blob) {
rb_set_input_internal(self, blob, Qnil);
return Qnil;
}
/*
* Sets the new input value for the network
*
* @overload input(blob, name = nil)
* @param blob [Mat] A blob of CV_32F or CV_8U depth
* @param name [String] Name of an input layer
* @return [Net] The current network
*/
VALUE rb_set_input(int argc, VALUE *argv, VALUE self) {
VALUE blob, name;
rb_scan_args(argc, argv, "11", &blob, &name);
rb_set_input_internal(self, blob, name);
return self;
}
/*
* Runs forward pass
*
* @overload forward(output_name = nil)
* @param output_name [String] Name of the layer for which output is needed
* @return [Mat] Blob for first output
*/
VALUE rb_forward(int argc, VALUE *argv, VALUE self) {
VALUE output_name;
rb_scan_args(argc, argv, "01", &output_name);
cv::dnn::Net* selfptr = obj2net(self);
cv::Mat* m = NULL;
try {
m = new cv::Mat(selfptr->forward(CSTR_DEFAULT(output_name, "")));
} catch(cv::Exception& e) {
delete m;
Error::raise(e);
}
return Mat::rb_clone(Mat::mat2obj(m));
}
/*
* Returns whether or not the network is empty
*
* @overload empty?
* @return [Boolean] Whether or not the network is empty
*/
VALUE rb_empty(VALUE self) {
cv::dnn::Net* selfptr = obj2net(self);
return selfptr->empty() ? Qtrue : Qfalse;
}
/*
* Returns an array of layers loaded in this model
*
* @overload layers
* @return [Array<Layer>] Loaded layers
*/
VALUE rb_get_layers(VALUE self) {
cv::dnn::Net* selfptr = obj2net(self);
long size = selfptr->getLayerNames().size();
VALUE layers = rb_ary_new_capa(size);
for (long i = 0; i < size; i++) {
VALUE layer = Dnn::Layer::layer2obj(selfptr->getLayer((int)i + 1));
rb_ary_store(layers, i, layer);
}
return layers;
}
/*
* Enables or disables layer fusion in the network
*
* @overload fusion=(fusion)
* @param fusion [Boolean] Whether or not fusion should be enabled
* @return [Net] The current network
*/
VALUE rb_enable_fusion(VALUE self, VALUE fusion) {
cv::dnn::Net* selfptr = obj2net(self);
selfptr->enableFusion(RTEST(fusion) ? true : false);
return self;
}
/*
* Ask network to use specific computation backend where it supported
*
* @overload preferable_backend=(backend_id)
* @param backend_id [Integer] The preferable backend identifier
* @return [Net] The current network
*/
VALUE rb_set_preferable_backend(VALUE self, VALUE backend_id) {
cv::dnn::Net* selfptr = obj2net(self);
selfptr->setPreferableBackend(NUM2INT(backend_id));
return self;
}
/*
* Ask network to make computations on specific target device
*
* @overload preferable_target=(target_id)
* @param target_id [Integer] The preferable target identifier
* @return [Net] The current network
*/
VALUE rb_set_preferable_target(VALUE self, VALUE target_id) {
cv::dnn::Net* selfptr = obj2net(self);
selfptr->setPreferableTarget(NUM2INT(target_id));
return self;
}
/*
* Read deep learning network represented in one of the supported formats.
*
* @overload read_net(model = nil, config = nil, framework = nil)
* @param model [String] Binary file contains trained weights
* @param config [String] Text file contains network configuration
* @param framework [String] Explicit framework name tag to determine a format
* @return [Net] Network object
*/
VALUE rb_read_net(int argc, VALUE *argv, VALUE self) {
VALUE model, config, framework;
rb_scan_args(argc, argv, "12", &model, &config, &framework);
return net2obj(rb_read_net_internal(model, config, framework));
}
/*
* Reads a network model stored in Caffe framework's format
*
* @overload read_net_from_caffe(prototxt, caffe_model)
* @param prototxt [String] Path to the .prototxt file with text description of the network architecture
* @param caffe_model [String] Path to the .caffemodel file with learned network
* @return [Net] Network object
*/
VALUE rb_read_net_from_caffe(VALUE self, VALUE prototxt, VALUE caffe_model) {
cv::dnn::Net *net = NULL;
try {
net = new cv::dnn::Net(cv::dnn::readNetFromCaffe(StringValueCStr(prototxt), StringValueCStr(caffe_model)));
} catch(cv::Exception& e) {
delete net;
Error::raise(e);
}
return net2obj(net);
}
/*
* Reads a network model stored in TensorFlow framework's format
*
* @overload read_net_from_tensorflow(model, config)
* @param model [String] Path to the .pb file with binary protobuf description of the network architecture
* @param config [String] Path to the .pbtxt file that contains text graph definition in protobuf format
* @return [Net] Network object
*/
VALUE rb_read_net_from_tensorflow(VALUE self, VALUE model, VALUE config) {
cv::dnn::Net *net = NULL;
try {
net = new cv::dnn::Net(cv::dnn::readNetFromTensorflow(StringValueCStr(model), StringValueCStr(config)));
} catch(cv::Exception& e) {
delete net;
Error::raise(e);
}
return net2obj(net);
}
/*
* Reads a network model stored in Torch7 framework's format
*
* @overload read_net_from_torch(model, binary = true)
* @param model [String] Path to the file, dumped from Torch by using torch.save() function
* @param binary [Boolean] Specifies whether the network was serialized in ascii mode or binary
* @return [Net] Network object
*/
VALUE rb_read_net_from_torch(int argc, VALUE *argv, VALUE self) {
VALUE model, binary;
rb_scan_args(argc, argv, "11", &model, &binary);
cv::dnn::Net *net = NULL;
try {
net = new cv::dnn::Net(cv::dnn::readNetFromTorch(StringValueCStr(model), RTEST_DEFAULT(binary, true)));
} catch(cv::Exception& e) {
delete net;
Error::raise(e);
}
return net2obj(net);
}
/*
* Reads a network model stored in Darknet model files
*
* @overload read_net_from_darknet(cfg_file, darknet_model)
* @param cfg_file [String] Path to the .cfg file with text description of the network architecture
* @param darknet_model [String] Path to the .weights file with learned network
* @return [Net] Network object
*/
VALUE rb_read_net_from_darknet(VALUE self, VALUE cfg_file, VALUE darknet_model) {
cv::dnn::Net *net = NULL;
try {
net = new cv::dnn::Net(cv::dnn::readNetFromDarknet(StringValueCStr(cfg_file), StringValueCStr(darknet_model)));
} catch(cv::Exception& e) {
delete net;
Error::raise(e);
}
return net2obj(net);
}
void init() {
VALUE opencv = rb_define_module("Cv");
VALUE dnn = rb_define_module_under(opencv, "Dnn");
rb_klass = rb_define_class_under(dnn, "Net", rb_cData);
rb_define_alloc_func(rb_klass, rb_allocate);
rb_define_method(rb_klass, "initialize", RUBY_METHOD_FUNC(rb_initialize), -1);
rb_define_method(rb_klass, "input=", RUBY_METHOD_FUNC(rb_set_input_equals), 1);
rb_define_method(rb_klass, "input", RUBY_METHOD_FUNC(rb_set_input), -1);
rb_define_method(rb_klass, "fusion=", RUBY_METHOD_FUNC(rb_enable_fusion), 1);
rb_define_method(rb_klass, "preferable_backend=", RUBY_METHOD_FUNC(rb_set_preferable_backend), 1);
rb_define_method(rb_klass, "preferable_target=", RUBY_METHOD_FUNC(rb_set_preferable_target), 1);
rb_define_method(rb_klass, "forward", RUBY_METHOD_FUNC(rb_forward), -1);
rb_define_method(rb_klass, "empty?", RUBY_METHOD_FUNC(rb_empty), 0);
rb_define_method(rb_klass, "layers", RUBY_METHOD_FUNC(rb_get_layers), 0);
#if 0
rb_define_attr(rb_klass, "layers", 1, 0);
rb_define_attr(rb_klass, "input", 0, 1);
rb_define_attr(rb_klass, "fusion", 0, 1);
rb_define_attr(rb_klass, "preferable_backend", 0, 1);
rb_define_attr(rb_klass, "preferable_target", 0, 1);
#endif
}
}
}
}