1
0
Fork 0
mirror of https://github.com/ruby-opencv/ruby-opencv synced 2023-03-27 23:22:12 -04:00
ruby-opencv/ext/opencv/cvfeaturetree.cpp
2011-12-27 23:47:08 +09:00

125 lines
2.8 KiB
C++

/************************************************************
cvfeaturetree.cpp -
$Author: ser1zw $
Copyright (C) 2011 ser1zw
************************************************************/
#include "cvfeaturetree.h"
/*
* Document-class: OpenCV::CvFeatureTree
*/
__NAMESPACE_BEGIN_OPENCV
__NAMESPACE_BEGIN_CVFEATURETREE
VALUE rb_klass;
VALUE
rb_class()
{
return rb_klass;
}
void
mark_feature_tree(void *ptr)
{
if (ptr) {
VALUE desc = ((CvFeatureTreeWrap*)ptr)->desc;
rb_gc_mark(desc);
}
}
void
rb_release_feature_tree(void *ptr)
{
if (ptr) {
CvFeatureTree* ft = ((CvFeatureTreeWrap*)ptr)->feature_tree;
cvReleaseFeatureTree(ft);
}
}
VALUE
rb_allocate(VALUE klass)
{
CvFeatureTreeWrap* ptr;
return Data_Make_Struct(klass, CvFeatureTreeWrap, mark_feature_tree,
rb_release_feature_tree, ptr);
}
void
define_ruby_class()
{
if (rb_klass)
return;
/*
* opencv = rb_define_module("OpenCV");
*
* note: this comment is used by rdoc.
*/
VALUE opencv = rb_module_opencv();
rb_klass = rb_define_class_under(opencv, "CvFeatureTree", rb_cObject);
rb_define_alloc_func(rb_klass, rb_allocate);
rb_define_private_method(rb_klass, "initialize", RUBY_METHOD_FUNC(rb_initialize), 1);
rb_define_method(rb_klass, "find_features", RUBY_METHOD_FUNC(rb_find_features), 3);
}
/*
* call-seq:
* new(desc)
*
* Create a new kd-tree
*/
VALUE
rb_initialize(VALUE self, VALUE desc)
{
CvMat* desc_mat = CVMAT_WITH_CHECK(desc);
CvFeatureTreeWrap* self_ptr = (CvFeatureTreeWrap*)DATA_PTR(self);
free(self_ptr);
self_ptr = ALLOC(CvFeatureTreeWrap);
try {
self_ptr->feature_tree = cvCreateKDTree(desc_mat);
}
catch (cv::Exception& e) {
raise_cverror(e);
}
self_ptr->desc = desc;
return self;
}
/*
* call-seq:
* find_features(desc, rows, cols, k, emax) -> array(results, dist)
*
* Find features from kd-tree
*
* desc: m x d matrix of (row-)vectors to find the nearest neighbors of.
* k: The number of neighbors to find.
* emax: The maximum number of leaves to visit.
*
* return
* results: m x k set of row indices of matching vectors (referring to matrix passed to cvCreateFeatureTree). Contains -1 in some columns if fewer than k neighbors found.
* dist: m x k matrix of distances to k nearest neighbors.
*/
VALUE
rb_find_features(VALUE self, VALUE desc, VALUE k, VALUE emax)
{
CvMat* desc_mat = CVMAT_WITH_CHECK(desc);
int _k = NUM2INT(k);
VALUE results = cCvMat::new_object(desc_mat->rows, _k, CV_32SC1);
VALUE dist = cCvMat::new_object(desc_mat->rows, _k, CV_64FC1);
try {
cvFindFeatures(CVFEATURETREE(self), desc_mat, CVMAT(results), CVMAT(dist), _k, NUM2INT(emax));
}
catch (cv::Exception& e) {
raise_cverror(e);
}
return rb_assoc_new(results, dist);
}
__NAMESPACE_END_OPENCV
__NAMESPACE_END_CVFEATURETREE