1
0
Fork 0
mirror of https://github.com/ruby-opencv/ruby-opencv synced 2023-03-27 23:22:12 -04:00
ruby-opencv/ext/opencv/dnn.cpp
2018-07-25 22:08:17 -07:00

104 lines
3.3 KiB
C++

#include "opencv2/dnn.hpp"
#include "opencv.hpp"
#include "mat.hpp"
#include "size.hpp"
#include "scalar.hpp"
#include "dnn_net.hpp"
#include "error.hpp"
// https://docs.opencv.org/trunk/d6/d0f/group__dnn.html#ga29d0ea5e52b1d1a6c2681e3f7d68473a
// https://github.com/opencv/opencv/blob/master/modules/dnn/src/caffe/caffe_importer.cpp
namespace rubyopencv {
namespace Dnn {
VALUE rb_module = Qnil;
// Mat blobFromImage(const Mat& image, double scalefactor=1.0, const Size& size = Size(), const Scalar& mean = Scalar(), bool swapRB=true)
VALUE rb_blob_from_image(int argc, VALUE *argv, VALUE self) {
VALUE image, options;
rb_scan_args(argc, argv, "11", &image, &options);
cv::Mat *b = NULL;
cv::Mat *m = Mat::obj2mat(image);
try {
cv::Mat r;
if (NIL_P(options)) {
r = cv::dnn::blobFromImage(*m);
} else {
Check_Type(options, T_HASH);
double scale_factor = NUM2DBL_DEFAULT(HASH_LOOKUP(options, "scale_factor"), 1.0);
cv::Size *s = Size::obj2size(HASH_LOOKUP(options, "size"));
cv::Scalar *sc = Scalar::obj2scalar(HASH_LOOKUP(options, "mean"));;
r = cv::dnn::blobFromImage(*m, scale_factor, *s, *sc);
}
b = new cv::Mat(r);
} catch(cv::Exception& e) {
delete b;
Error::raise(e);
}
return Mat::mat2obj(b);
}
// Net readNetFromCaffe(const String &prototxt, const String &caffeModel = String());
VALUE rb_read_net_from_caffe(VALUE self, VALUE prototxt, VALUE caffe_model) {
cv::dnn::experimental_dnn_v1::Net *net = NULL;
try {
net = new cv::dnn::experimental_dnn_v1::Net(cv::dnn::readNetFromCaffe(StringValueCStr(prototxt), StringValueCStr(caffe_model)));
} catch(cv::Exception& e) {
delete net;
Error::raise(e);
}
return Dnn::Net::net2obj(net);
}
// Net readNetFromTorch(const String &model, bool isBinary)
VALUE rb_read_net_from_tensorflow(VALUE self, VALUE model) {
cv::dnn::experimental_dnn_v1::Net *net = NULL;
try {
net = new cv::dnn::experimental_dnn_v1::Net(cv::dnn::readNetFromTensorflow(StringValueCStr(model)));
} catch(cv::Exception& e) {
delete net;
Error::raise(e);
}
return Dnn::Net::net2obj(net);
}
// Net readNetFromTorch(const String &model, bool isBinary)
VALUE rb_read_net_from_torch(VALUE self, VALUE model) {
cv::dnn::experimental_dnn_v1::Net *net = NULL;
try {
net = new cv::dnn::experimental_dnn_v1::Net(cv::dnn::readNetFromTorch(StringValueCStr(model)));
} catch(cv::Exception& e) {
delete net;
Error::raise(e);
}
return Dnn::Net::net2obj(net);
}
void init() {
VALUE opencv = rb_define_module("Cv");
rb_module = rb_define_module_under(opencv, "Dnn");
rb_define_singleton_method(rb_module, "blob_from_image", RUBY_METHOD_FUNC(rb_blob_from_image), -1);
rb_define_singleton_method(rb_module, "read_net_from_caffe", RUBY_METHOD_FUNC(rb_read_net_from_caffe), 2);
rb_define_singleton_method(rb_module, "read_net_from_tensorflow", RUBY_METHOD_FUNC(rb_read_net_from_tensorflow), 1);
rb_define_singleton_method(rb_module, "read_net_from_torch", RUBY_METHOD_FUNC(rb_read_net_from_torch), 1);
Dnn::Net::init(rb_module);
}
}
}