
The FS/Z File System

Specification and On Disk Format

Version 1.0
 2021

The FS/Z File System

Copyright
The FS/Z file system is the intellectual property of

 Baldaszti Zoltán Tamás (BZT) bztemail at gmail dot com

and licensed under the

MIT licence

 Copyright (C) 2021 bzt (bztsrc@gitlab)

 Permission is hereby granted, free of charge, to any person
 obtaining a copy of this software and associated documentation
 files (the "Software"), to deal in the Software without
 restriction, including without limitation the rights to use, copy,
 modify, merge, publish, distribute, sublicense, and/or sell copies
 of the Software, and to permit persons to whom the Software is
 furnished to do so, subject to the following conditions:

 The above copyright notice and this permission notice shall be
 included in all copies or substantial portions of the Software.

 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
 HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
 WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
 DEALINGS IN THE SOFTWARE.

2

The FS/Z File System

Table of Contents
Preface..5
Revision History...6
Introduction..7
Terms and Definitions of FS/Z...9

Summary of File System Limitations..10
Overall On Disk Layout...11
The Superblock..13

Legacy Loader...14
File System Identification Magic Bytes...14
File System Version...14
Logical Sector Size..14
Encryption Algorithm..15
File System Feature Flags..15
Mount Counters...15
Volume Capacity...15
Location of the Root Directory..16
Free Sectors Registry...16
Bad Sectors Registry...16
Search Index..16
Meta Label Keys..16
Journaling Information..17
Encrypted Volumes...17
Creation, Last Mount, Check and Change Timestamps..17
Volume Unique Identifier..18
Reserved Area..18
Ending Magic and Checksum..18
RAID Specific Information...18

The I-Node...21
Magic and Checksum..22
I-Node Type...22
I-Node Creation, Change and Access Timestamps..23
Number of Allocated Logical Sectors...23
Number of Links..23
Meta Label Values...23
File Versions..23
File Modification Timestamp..24
File Allocation Flags...24
Permissions and Access Control List..24

Allocation...27
Allocation Structures...27

3

The FS/Z File System

Sector List...27
Sector Directory..27

Translations...28
Inlined Data..28
Direct Data..28
Inlined Sector Directory..29
Indirect Sector Directory...29
Double Indirect Sector Directory..30
Triple Indirect Sector Directory..30
Quadriple Indirect Sector Directory...30
Inlined Sector List...31
Normal Sector List..31
Indirect Sector List..32
Double Indirect Sector List...32
Triple Indirect Sector List...33
Quadriple Indirect Sector List...33

Sparse Files..33
Bookkeeping Free Space...33
Bookkeeping Bad Sectors..34

The File Hierarchy..35
The Root Directory..35
Directory Header...35
Directory Entries...36

Special Files...37
Named Pipes (FIFO)..37
Symbolic Links..37
Directory Unions...37
Device Files...37
Socket Files..37
Search Index..37
Meta Label Keys..38
Meta Label Values...38
The Journal File...38

The CRC32c Calculation Algorithm..40
Examples..41

Superblock HexDump...41
I-Node HexDump..41
Directory HexDump..42

4

The FS/Z File System

Preface
“Keep it simple, stupid.”

/ Kelly Johnson /

This is a new file system which was designed for the future. It’s goal is to be unlimited in capacity,
expandable, being backwards compatible at the same time. Features are optional, a basic driver is
extremely easy to implement, but a fully featured driver is comparable to commercial grade solutions.

It is built on the assumption that modern storage devices has no moving mechanical parts any more
therefore they do not suffer from the seek penalty. Also they do use linear sector addressing mode
exclusively (also known as LBA mode). This is most certainly true for flash drives, USB sticks, SD
cards and SSD disks. It is assumed that future storage will be like that too, not having mechanical parts
and keeping linear addressing.

If that assumption stands, then file systems can be significantly simplified. There’s no need for
cylinders, bands nor block groups, neither pre-allocation, because blocks with related data doesn’t need
to be located closely any more. The one and only priority left is using as few space as possible for the
housekeeping data without sacrificing the effectiveness of interpreting that information.

There’s also no need for tables with limited capacities. Even though those are usually allocated on
format knowing the storage’s size, it’s a common task that operating system administrators create a
backup of the file system and restore the backup to a larger storage. With fixed sized tables, a file system
can’t really take advantage of the bigger volume (unless a slow and risky resizefs operation is
performed). Not to mention how annoying it is when a user runs out of available i-nodes for example
when there’s plenty of free space on the storage.

File systems of the past always suffered from limited field widths. A file system which is designed for
the future should always overestimate the size of each field considerably, and then a driver could always
decide to implement fewer bits.

FS/Z is a file system which takes all of these considerations into practice.

Baldaszti Zoltán Tamás

5

The FS/Z File System Revision History

Revision History

Currently this is the very first version, FS/Z 1.0 so no changes.

6

The FS/Z File System

Introduction

We all get used to the fact that disks and removable media is capable of storing files. However on the
lowest level this isn’t so. Storage devices can only understand sectors, so there’s a need to somehow
translate a list of arbitrary length files organized in a hierarchy into a list of fixed sized chunks.

This is where a file system comes into play. So far many file systems has been developed, but at the end
of the day all what they do is bookkeeping how files are represented as fixed sized blocks.

In general all file systems share the same build-up:

• superblock: is a structure that’s unique to the file system, usually has magic bytes to allow
identification and records all the necessary information to locate other parts of the file system.

• block size or allocation unit: is the size in which the file system keeps track of things. Also
called logical sector size or cluster size. It cannot be smaller than the physical sector’s size, and
it is common practice that more consecutive physical sectors make up one logical block.

• allocation info: used to keep track of free blocks and which block belongs to which file.

• meta data: is the way how a file system stores file properties like the file’s parent directory,
name, size, type, access rights, last modification date etc. Some file systems consider allocation
a file property, so they store it here along with the other meta data. Others only store a pointer to
the first allocation record, and keep the actual allocation info separated.

• file data: is what you can see when you open a file in an application. It is a general expectation
that all the other meta data should be kept small so that bigger part of the volume can be used
for storing the actual file data.

In what file systems are different, is how the above gets implemented. Choosing the format wisely is
very important, because it defines what algorithms can be used, therefore having a huge impact on the
file system’s overall performance, and how big part of the volume is “wasted” for storing the meta data.

The act of determining the allocation unit size and writing the necessary meta data without any file data
is called “to format a disk”. If this operation doesn’t zero out file data, then that’s called quick format.

Finally, file systems can be placed on the entire storage, or those can be divided into variable sized non-
overlapping areas, called partitions. In this case a file system only manages the contents of one partition,
and each partition may use different file systems.

7

The FS/Z File System

Page left blank intentionally

8

The FS/Z File System Terms and Definitions of FS/Z

Terms and Definitions of FS/Z

• The terms must, must not, should, should not and may are to be interpreted as described by
RFC 2119.

• physical sector is the smallest input output unit a storage device can handle, usually 512 bytes
(most common), 2048 bytes (some discs) or 4096 bytes (most notably SSDs and some newer
hard disks).

• LBA: linear block address is a physical sector address, expressed with a numerical value.
Currently 48 bit wide most of the time, but storage with 64 bit sector addresses exists. The very
first physical sector of the storage is addressed by LBA 0.

• RAID: redundant array of inexpensive disks, is a method to create logical LBA addressing over
multiple storage to increase redundancy or expand volume capacity beyond one disk.

• partitions: are non-overlapping areas of the storage, expressed by LBA starting address and
number of physical sectors. Partitions are defined by a partitioning table, called GUID
Partitioning Table, as defined by the EFI specification. Partitions are usually started on 2048
physical sector aligned addresses, so file systems start on a 1 Megabyte boundary.

• logical sector: (or simply block) is the building block of the file system, always multiple of
physical sector. The smallest possible size is 2048 bytes, but most commonly it is chosen to be
4096 bytes. It’s maximum size isn’t limited in practice, could be 2 266 (exponent is 2 8 + 11).

• LSN: logical sector number, is a numerical value, stored on a 128 bit wide integer. The file
system’s first allocation block is LSN 0. Without partitions, LSN 0 equals to LBA 0. If it is on a
partition, LSN x = LBA x * logical sector size / physical block size + start physical address. For
example, assuming 8 physical sectors make up a logical sector, if the file system starts on the
disk, then LSN 0 = LBA 0, LSN 1 = LBA 8, LSN 2 = LBA 16 etc. If that file system is moved to
a partition which starts at LBA 3, then LSN 0 = LBA 3, LSN 1 = LBA 11, LSN 2 = LBA = 19
etc. It is expected that partitions should start on a LBA address which is multiple of logical
sector size, but not mandatory.

• integer: is a numerical value, which can be 8, 16, 32, 64, 96 or 128 bits wide. On disk always
stored in a little endian format, for example 0x01020304 as the series of bytes 0x04, 0x03,
0x02, 0x01. A driver might choose the implement less, for example up to 64 bits only.

• i-node: a logical sector which stores all the properties of a file, except its name.

• fid: file identifier, an LSN which points to a logical sector with i-node structure in it.

9

The FS/Z File System Terms and Definitions of FS/Z

• directory: is used to organize files into a hierarchy. It is a list of file names, and a directory
might contain other directories. On disk they are stored just as any other regular file, but with
special content, with a list of fixed sized directory entries.

• directory entry: a pair of fid and file name.

• root directory: is the top of the file hierarchy. All files and directories in the file system must be
descendants of the root directory.

• timestamps: date and time is stored as number of microseconds since 1970. jan. 1 00:00:00
UTC, without any timezone nor daylight saving applied. AD 1970 to AD 586912.

• UUID: a universally unique identifier, stored on 16 bytes.

• ACE: access control entry, a UUID without the last byte which identifies the principal, and
access rights and permissions stored in the last byte.

• ACL: access control list, a list of ACEs. The first entry in the list identifies the owner (also
called the control ACE), the one with the right to modify other ACE entries in the list.

• CRC: cyclic redundancy check, a 32 bit checksum calculated from the contents to validate
integrity. Multiple methods exist, FS/Z uses the Castagnoli method with polynomial
0x1EDC6F41, the same used in network packets, and different to the ANSI CRC which is used
in the EFI GPT. The reason for this choice is, many architectures have hardware accelerated
calculation capabilities for the Castagnoli CRC32c variant, but not for the ANSI CRC32a.

Summary of File System Limitations
Technically the file system is unlimited, because limits are so high that in practice they never reached.

Property Maximum allowed size
Logical sector size (allocation unit) maximum 2266 bytes

File system (partition) size 2128 logical sectors

Largest file size 2128 bytes

Maximum number of entries in a directory 2121 - 1 entries

Maximum number of logical sectors in one extent 296 logical sectors

File name maximum length (UTF-8 encoded) 111 bytes

10

The FS/Z File System Overall On Disk Layout

Overall On Disk Layout

The overall layout describes how file system meta data is organized on disk. The Logical Sector
Number (LSN) indexes allocation blocks, and if the file system is on the entire disk, LSN 0 = LBA 0,
otherwise LSN 0 = first block of the partition. All logical sector addresses are relative to the file
system’s first block, which is therefore LSN 0.

LSN 0 LSN 1 LSN 2 … LSN N - 2 LSN N-1

superblock root i-node file data blocks backup

Figure: block layout of an FS/Z formatted partition or storage

The superblock is always stored in the very first block at LSN 0. Optionally in the very last block,
there’s a backup copy of the superblock at LSN N - 1. Everything else is free to be used as file data
blocks, but there must be at least one block that stores the root i-node of the file system. Its position is
recorded in the superblock, and usually (but not necessarily) comes right after the superblock.

The backup superblock is optional, it is not an error if it’s missing, however drivers should place it
whenever possible and they should warn the user that file system might be truncated if it’s missing.

The FS/Z file system was designed in a way that in lack of a valid superblock, other blocks can be
parsed to reconstruct it entirely. However this is a slow operation, hence the superblock backup.

This layout means that quick formatting with FS/Z is indeed very quick, requires writing only 3 blocks
to the storage, no more. Resizing is also quick and easy, one just have to move the superblock backup.

In case FS/Z is used to maintain a partition and not the entire storage, the partition type should reflect
what that partition is used for, and not what the partition is formatted with. But in case you really don’t
know the former, you can use a jolly joker UUID in the GUID Partitioning Table for the latter:

{ 0x5A2F534F, 0x0000, 0x5346, { 0x2F,0x5A,0x00,0x00,0x00,0x00,0x00,0x00} }

Or with GUID notation:

5A2F534F-0000-5346-2F5A-000000000000

But as it was pointed out, partition type should reflect how the partition is used (for storing applications,
for user’s private data, for shared data etc.) instead.

11

The FS/Z File System

Page left blank intentionally

12

The FS/Z File System The Superblock

The Superblock

The very first block of the file system is the superblock, regardless the size of the block, or how many
physical sectors give a block. It is always at the beginning of the first logical sector at address LSN 0.

Related fields are not necessarily grouped together, it was more important that each field must be
aligned on an offset which is multiple of its size. All integer numbers are stored in little endian format.

Offset Size Field Description
0 512 loader reserved, exists for historical reasons

512 4 magic magic bytes, ‘F’, ‘S’, ‘/’, ‘Z’
516 1 version_major file system version
517 1 version_minor file system version
518 1 logsec logical sector size in power of two minus 11
519 1 enctype encryption alogirthm if used
520 4 flags file system feature flags
524 2 maxmounts maximum number of mounts allowed before next fsck
526 2 currmounts current number of mounts counter
528 16 numsec total number of logical sectors
544 16 freesec first free logical sector
560 16 rootdirfid root directory i-node’s logical sector number
576 16 freesecfid free area pseudo file i-node’s logical sector number
592 16 badsecfid bad sector pseudo file i-node’s logical sector number
608 16 indexfid search index directory i-node’s logical sector number
624 16 metafid meta labels file i-node’s logical sector number
640 16 journalfid journal pseudo file i-node’s logical sector number
656 8 journalhead journal’s head offset in logical sector number
664 8 journaltail journal’s tail offset in logical sector number
672 8 journalmax number of logical sectors in the journal file
680 28 encrypt encryption key mask
708 4 enchash password CRC
712 8 createdate file system creation date and time (format time)

13

The FS/Z File System The Superblock

720 8 lastmountdate date and time of last mount
728 8 lastumountdate date and time when superblock was written
736 8 lastcheckdate date and time when fsck was last run on this volume
744 16 uuid file system unique identifier (same as GPT entry UUID)
760 256 reserved reserved for future use, must be zero

1016 4 magic2 second magic bytes, ‘F’, ‘S’, ‘/’, ‘Z’
1020 4 checksum CRC checksum of bytes at 512 - 1020
1024 1024 raidspecific RAID specification

Legacy Loader
For historical reasons, the first 512 bytes are reserved for boot loader code. It isn’t used on modern
machines, so it is just filled up with zeros. Old systems stored the MBR partitioning table here, which is
not used any more. Its successor, the GPT partitioning scheme starts at the 512th byte.

File System Identification Magic Bytes
These 4 magic bytes being “FS/Z” are used to identify that the volume is using FS/Z. When a storage is
partitioned, then exactly at this position there must be an “EFI PART” magic. This conflict guarantees
that it can be determined if the file system is using the entire disk of if the disk is partitioned.

File System Version
The current version is 1.0 which is stored as version_major 1 and version_minor 0.

Logical Sector Size
Defines how big allocation unit is used for this file system, in power of two minus 11. Smallest possible
value is 2048 bytes (encoded as 0), and the most common is 4096 bytes (encoded as 1). On big file
servers, 65536 bytes (encoded as 5) is also probable. When not specified otherwise, logical sector size
should be set to 4096 bytes by default. Setting the right size is very important, because having it small
increases the required amount of meta data, and having it too large will waste a lot of storage space at
the end of each file.

14

The FS/Z File System The Superblock

Encryption Algorithm
When encryption is used (enchash non-zero), then this field defines what cipher algorithm is used.
Values 2 to 255 are reserved for future use.

Value Define Algorithm
0 FSZ_SB_EALG_SHACBC SHA256 and XOR based cyclic block cipher
1 FSZ_SB_EALG_AESCBC AES 256 cyclic block cipher

File System Feature Flags
It is a bitmask which defines the file system’s features. Bits 4 - 31 are reserved for future use.

Bit Define Description
0 FSZ_SB_BIGINODE I-node structures require 2048 bytes
1 FSZ_SB_JOURNAL_DATA File data is also journaled, not just the meta data
2 FSZ_SB_SOFTRAID If software RAID isn’t used, this bit must be cleared
3 FSZ_SB_ACCESSDATE Store last access timestamp in i-nodes

Mount Counters
When a file system is about to be used for the first time in a session (gets mounted on a directory or first
referenced as an X: driveletter), the current number of mounts in currmounts must be incremented. If
this counter reaches the value specified in maxmounts, then it must be set to zero, and a complete
file system check must be performed before the file system could be taken into use. With both values set
to zero it means no file system check forced and no mount counter feature is used.

Volume Capacity
Determined by the numsec and freesec fields. Both are 128 bits integer numbers expressed in
logical sectors. The numsec contains the total number of logical sectors available on the volume
minus 1. The logical sector pointed by numsec should contain the backup copy of the superblock.
When the file system is defragmanted, then freesec contains the number of used sectors, otherwise it
is the last used sector plus 1. Note that freesec isn’t storing the number of free sectors, rather it points
to the first surely available free logical sector. The value of freesec can’t be larger than the value of
numsec. When freesec is zero, that means the file system is in streaming or tape archive mode:

15

The FS/Z File System The Superblock

numsec should point to the backup but in this case (and only in this case) could be zero, the file
system must be defragmented, file data must be either inlined or expressed using extents only, there’s no
free space available, and the stream is terminated by the backup copy of the superblock.

Location of the Root Directory
The field rootdirfid points to the logical sector with the root directory’s i-node. It is usually (but not
necessarily) right after the superblock, so it is 1. Root directory is a standard directory, except it’s type
in the i-node is not “dir:” but “dir:fs-root” to be recoverable.

Free Sectors Registry
When the file system is defragmented, the field freesecfid must be zero, and the first available free
sector is determined by the freesec field. Otherwise freesecfid must point to an i-node with type
“int:fs-free-sectors”. That pseudo file’s allocation records are marking the free logical sectors of the file
system from the superblock to freesec. The free sectors after the last used sector always determined by
the freesec field.

Bad Sectors Registry
Similarly to free sectors, bad sectors are kept track using a pseudo-file. When there are no bad logical
sectors on the media, badsecfid field must be zero. Otherwise it must point to a i-node with type
”int:fs-bad-sectors”. That pseudo file’s allocation records are marking the unusable, bad or faulty logical
sectors in the file system.

Search Index
If this feature is used, then indexfid must point to an i-node with type “dir:fs-search-index”. This
directory must contain entries with i-node type names (like “textplain/”, “imagjpeg/”) pointing only
files with i-node type of “int:fs-search-index”. Those files contain a list of fids and full paths for quick
look-up.

Meta Label Keys
When extended attributes feature is enabled in the file system, then key-value meta labels are stored (not
to be confused with the file system meta data, file meta labels are just part of that). The meta label
database consist of two parts: meta keys are UTF-8 encoded strings, each can be 255 bytes in size, there
can be 65535 of them and they are stored in a pseudo file pointed by metafid. That i-node must have

16

The FS/Z File System The Superblock

the type “int:fs-meta-labels”. In contrast, the metasec field in the i-nodes points to the data with the
meta key id value pairs. When this feature is not used, metafid must be zero.

Journaling Information
If journaling is not used, then all related fields in the superblock must be zero. Otherwise journalfid
must point to an i-node with the type “int:journal” or “int:journal-data” (the latter is used if
FSZ_SB_JOURNAL_DATA flag is set. This is a special file that must be pre-allocated using a single
extent, cannot have versions, and its data must be placed right after its i-node. The fields journalhead

and journaltail are offsets and implements a circular buffer in this pre-allocated area. The size of the
area is also stored in journalmax (as well as in the i-node), and if either journalhead or
journaltail reaches journalfid + journalmax + 1, they must be wrapped around to journalfid

+ 1. When journalhead equals to journaltail, that means the journal log is empty.

Encrypted Volumes
The use of encryption is indicated by enchash not being zero, and that alone. If this feature is used,
then encrypt must not be zero, and the field enctype tells the cipher to be used. The same CRC of
the password is stored in enchash, regardless to the algorithm. This allows drivers to verify the
password in a generalized way. The other field, encrypt contains the encryption mask or initialization
vector, and its exact contents depends on which cipher was selected. With encryption, all the logical
sectors except the superblock and its backup copy must be encrypted, and unused free space should be
filled up with random bytes.

Creation, Last Mount, Check and Change Timestamps
All timestamps in FS/Z are stored as number of microseconds (one millionth of a second) since 1970.
jan. 1 00:00:00 UTC, not using timezones nor daylight savings. Good up till AD 586912.

The createdate is set to the time of the formatting. It should not change.

The lastmountdate is set and the lastumountdate is cleared when the file system is used for the
first time in a session (gets mounted on a directory or first referenced as an X: driveletter). The
lastumountdate must be kept zero during a session.

When the file system is unmounted (or storage ejected), then lastumountdate is set to that time.
This way a zero lastumountdate indicates that the file system wasn’t unmounted cleanly, so it might
have errors.

The lastcheckdate indicates the last time when file system check was performed on the volume.

17

The FS/Z File System The Superblock

Volume Unique Identifier
This value is unique to the file system. If file system is stored on a partition, then it must be the same as
the partition UUID value. It can be used to detect removable media change, and to identify the volume.
It is unique, unless RAID is used, in which case RAID volume id is unique (and equals to partition
UUID if that exists), and this volume identifier is a logical volume identifier, same for all devices which
participate in the same RAID array.

Reserved Area
256 bytes after that, and before the second magic is reserved for future use, must be set to zero.

Ending Magic and Checksum
The superblock is ended in the second magic2 bytes, using the same values (“FS/Z”). As it is located
on another physical sector than the first magic, this makes sure of it that the entire superblock was read
into memory. After that comes the checksum, which is the CRC checksum for the area between the
two magics (magic bytes included), from offset 512 to the byte at 1019 inclusive.

RAID Specific Information
If software RAID feature is used, indicated by the FSZ_SB_SOFTRAID flag being set, then the field
raidspecific, bytes from 1024 to 2047 are used to describe the configuration. Because this a flexible
configuration, RAID specification is encoded in a serialized byte stream. The specification starts with a
small header, which includes the number of definitions:

Offset Size Field Description
1024 4 magic magic bytes, ‘F’, ‘S’, ‘R’, ‘D’
1028 4 checksum checksum from 1032 to the end of the records
1032 16 raidid unique RAID UUID volume identifier
1048 2 numdef number of definition records

RAID is using more devices to be seen as one, and the same superblock (with the same unique volume
identifier) and raidspec is copied to all of the devices, except they all have a different unique RAID
UUID volume identifiers. This RAID UUID is also used in the specification records.

18

The FS/Z File System The Superblock

This header is followed by numdef times varying length records.

Offset Size Field Description
0 1 type either 0, 1, 5 or 0x80, 0x81, 0x85
1 1 numdisk (n) number of disks in this definition record
2 n / n * 16 disks n * 1 byte (if type & 0x80) or n * 16 bytes RAID UUIDs

If the RAID type byte has its most significant bit set, then each disk device is stored as one byte, an
index to one of the previous RAID definition records (starting from 0). If most significant bit is cleared,
then each device is stored as 16 bytes, with their corresponding unique volume identifier.

In an asymmetric arrangement, one might need to wrap a RAID UUID in a record so that it could be
referenced by a record index. For that RAID0 with one device can be used. Otherwise RAID0 allows
any number of disks, RAID1 must have at least two disks and should have no more, and RAID5 must
have exactly 3 disks.

Type could mean concatenation (RAID0) in striped mode, which uses the following scheme: LBA n is
on device n modulo number of devices, the sector n / number of devices. So for example with two
devices LBA 0 is device A’s first sector, LBA 1 is device B’s first sector, LBA 2 is device A’s second
sector etc.

Another option is mirroring (RAID1) of devices. Here all sectors are duplicated on all devices: LBA 0
maps to the first sector on both device A and B, LBA 1 is the second sector on both device A and B,
etc.

Parity bit can be saved with XORed blocks (RAID5). This requires exactly three devices. Two stores the
data, the third the XORed block. Which one is used for the XORed block is rotated. For example LBA 0
is device A’s first sector. LBA 1 is device B’s first sector. The XORed block of these two is stored in
device C’s first sector. LBA 2 is device B’s second sector, LBA 3 is device C’s second sector, then the
XORed block is stored in device A’s second sector. LBA 3 is device A’s third sector, LBA 4 is device
C’s third sector, the XORed block is in device B’s third sector. Then the permutation repeats: LBA 5 is
on device A, LBA 6 is on device B, XORed block on device C, etc.

In addition to these, all combinations can be used too. For example a RAID1 mirrored disk can be used
in a RAID0 concatenation, or more RAID5 disks can be mirrored with RAID1. Note that while the
RAID specification encoding allows any combinations, not all makes sense.

19

The FS/Z File System

Page left blank intentionally

20

The FS/Z File System The I-Node

The I-Node

This is the most important structure of the FS/Z file system. One common format is used to describe all
the different file system meta data types, as well as files and directories.

The i-node structure is placed at the beginning of a logical sector, and its size is independent to the
logical sector size. It is 1024 bytes unless FSZ_SB_BIGINODE flag is set, in which case it’s 2048
bytes. The remaining bytes of the logical sector are used for inlining data.

Offset Size Field Description
0 4 magic magic bytes, ‘F’, ‘S’, ‘I’, ‘N’
4 4 checksum CRC checksum of bytes 8 to 1024 (or 2048)
8 4 filetype first 4 bytes of the main mime type

12 60 mimetype first 60 bytes of the sub mime type
72 8 createdate i-node creation timestamp
80 8 changedate i-node last status change timestamp
88 8 accessdate i-node last access timestamp
96 8 numblocks number of allocated blocks for this i-node

104 8 numlinks number of references to this i-node
112 16 metasec logical sector number of the meta label block
128 64 version5 file version (oldest)
192 64 version4 file version
256 64 version3 file version
320 64 version2 file version
384 64 version1 file version
448 16 sec file data LSN for current (or only) version
464 16 size file size for current version
480 8 modifydate file modification timestamp for current version
488 8 flags file allocation flags for current version
496 16 owner file owner for current version, control ACE
512 512 / 1536 groups access control list (512 bytes unless big inode used)

21

The FS/Z File System The I-Node

Magic and Checksum
The i-node always starts with a 4 bytes magic “FSIN”. This is followed by the checksum, which is the
CRC of bytes 8 to the end of the i-node, byte at 1023 (or 2047) inclusive.

I-Node Type
The main part is in filetype. For files the 4th byte is never a ‘:’, and for FS/Z specific i-nodes it is.

filetype Description
text text file

imag image file

vide video file

audi audio file

appl application or other binary file

boot boot loader application (same as “appl”, but must not be relocated)

dir: directory

uni: directory union

lnk: symbolic link

pip: named pipe (FIFO)

dev: device file

sck: socket file

int: internal FS/Z meta data

The mimetype field contains the sub mime type, like “html”, “jpeg” etc. For FS/Z special i-nodes:
mimetype Description

fs-root only with “dir:”, marks the root directory in the file system

fs-free-sectors only with “int:”, marks the free logical sectors

fs-bad-sectors only with “int:”, marks the bad or unusable logical sectors

fs-search-index only with “dir:” or “int:”, mime type search index

fs-meta-labels only with “int:”, file listing the available meta label keys

fs-journal only with ”int:”, journal for meta data

fs-journal-data only with “int:”, journal for both meta and file data

22

The FS/Z File System The I-Node

I-Node Creation, Change and Access Timestamps
Uses the common timestamp format like the superblock, number of microseconds since 1970. jan. 1
00:00:00 UTC, not using timezones nor daylight savings.

The createdate field is set when the i-node is created, and it should not change.

The changedate field is set when the i-node is modified (and not when file data is modified, see
modifydate for that).

The accessdate field is set when the i-node is accessed. This is an optional feature, this field could
be left as zero. Only used when FSZ_SB_ACCESSDATE in superblock flags is set.

Number of Allocated Logical Sectors
The field numblocks contains the total number of all additional logical sectors allocated for this i-
node, including the sector directories, sector lists and data sectors for all versions, but not including the
i-node itself nor the gaps in sparse files.

Number of Links
The field numlinks counts the number of references to this i-node in the directory entries or in the
superblock. Special FS/Z i-nodes always have this field as 1. The root directory also starts with one.

Meta Label Values
When extended attributes feature is enabled in the file system, then key-value meta labels are stored for
this i-node on the logical sector pointed by metasec. The keys are described in a pseudo-file pointed
by the metafid field in the superblock. When that’s zero, metasec in i-nodes should also be.

File Versions
The FS/Z file system is capable to store historical records of files, up to 5 old versions. This feature can
be turned on and off on a per i-node basis, by using the FSZ_IN_FLAG_HIST flag.

When used, older version records are copies of the fields sec to owner (from offset 448 to 511, 64
bytes), but with their own sec and flags value. When a new version is saved, all the versions are
shifted by 64 bytes towards the beginning of the i-node. If the oldest version is not zero, then logical
sectors allocated for that are freed, except if those are also used in newer version’s allocation. The latest,
which is the current (or only) version starts at offset 448.

23

The FS/Z File System The I-Node

File Modification Timestamp
The time when the file’s content was modified is stored in the modifydate field.

File Allocation Flags
The way how allocation is taken care of, and how file data is translated into LSNs, stored in the flags

and in the sec fields. Flag is a bitset, in which the least significant byte selects the translation. The bits
10 to 63 are reserved for future use.

Bit Define Description
0 - 7 FSZ_IN_FLAG_INLINE

FSZ_IN_FLAG_DIRECT
FSZ_IN_FLAG_SD0
FSZ_IN_FLAG_SDx
FSZ_IN_FLAG_SECLIST0
FSZ_IN_FLAG_SECLISTx

inlined data
direct reference
inlined sector directory
level x indirect sector directory
inlined sector list
level x indirect sector list

8 FSZ_IN_FLAG_HIST old versions of the file are kept
9 FSZ_IN_FLAG_CHKSUM file has content data checksums too

Permissions and Access Control List
Depending on the i-node size, the field groups can store either 32 or 96 entries, each being 16 bytes.

These are UUIDs, universally unique identifiers of the principals, without the last byte. That byte
contains the permission bits, and also one bit identifies the UUID as a group, or as an individual user.

Even though the field owner is stored along with the file versions, and copied with them, the owner field
of the current version is also the very first entry in the access control list. As such, it does not only
specify the file permission bits for the owner, but also specifies who has the right to modify the access
control list, hence also called the control ACE. When there are exactly two elements in the groups
field, and the first being a group ACE, and the second being a group ACE with a special “*” principal
0000002A-0000-0000-0000-0000000000xx (which stands for catch all mask), then FS/Z i-node
mimics POSIX access permissions, owner’s permission stored in byte 511, group permissions in byte
527 and world permissions in byte 543. Otherwise a file could belong to multiple groups, or different
users could have different access permissions to it.

An ACE with full zeros (no matter the permission bits) always terminates the list, otherwise there can
be as many ACE as the size of the i-node allows. The i-node must be padded with zeros.

24

The FS/Z File System The I-Node

By default, only the file owner has any access to the file, and any kind of access to others is denied
(default deny policy). He is also the one who can change permission bits in the owner field, and who
can add or more ACE entries in the groups field.

The permissions are stored in the last (16th) byte of the UUID.

Offset Size Field Description
0 4 Data1 first part of the UUID
4 2 Data2 second part of the UUID
6 2 Data3 third part of the UUID
8 7 Data4 fourth part of the UUID, without the last byte

15 1 access permission bits, see below

Bit Define Description
0 FSZ_READ read access
1 FSZ_WRITE write access
2 FSZ_EXEC execution on files or list directory on directories and unions
3 FSZ_APPEND only allows extending the file, but not modifying already existing data
4 FSZ_DELETE permission to remove the file or directory
5 FSZ_GROUP is set if the ACE’s principal is a group and not an individual user
6 FSZ_SUID set user on execution, file creation on directories
7 FSZ_GUID set groups on execution, inherit (copy) ACL on directories

Permissions FSZ_WRITE and FSZ_APPEND are mutually exclusive. Normally whether a file can be
deleted or not depends on the write permission of the parent directory. However it might be needed that
a certain user should be allowed to remove a file (a lockfile for example), without giving write access to
the entire directory. That’s what FSZ_DELETE permission is for. When FSZ_EXEC is granted on
files, it means that the file is executable. When granted to directories, it means the principal is allowed
to list the directory’s contents, otherwise they can only access files for which they know the filename.
On executable files, FSZ_SUID sets the process’ owner to the file’s owner. On directories this means
that all newly created files and sub-directories will inherit the owner of the parent directory. Finally
FSZ_SGUID is similar, but it means the process or the newly created files will inherit the ACL.

25

The FS/Z File System

Page left blank intentionally

26

The FS/Z File System Allocation

Allocation

There are three translation schemes that can be used to translate file offsets into logical sector blocks.
Each file version define these independently, and there are three fields in each version that control
allocation: size (the size of the file), sec (pointer to allocation data) and flags (file allocation flags).

Allocation Structures
Sector List
Used to implement extents and marking free sector areas on disks. A list item contains a starting LSN
and the number of logical sectors in that area, describing varying length contiguous areas on disk.
Unused entries must be set to zero. Independent to the FSZ_IN_FLAG_CHKSUM flag.

Offset Size Field Description
0 16 sec LSN, pointer to the next level (up to 2128 logical sectors)

16 12 numsec number of logical sectors in this extent (up to 296 sectors)
28 4 checksum CRC of the data in the pointed logical sector(s)

Sector Directory
A logical sector that has logical sector size / 16 entries. Unused entries must be set to zeros. The
building block of memory paging like translations. Unlike sector lists, sector directories describe fix
sized, non-contiguous areas on disk.

When FSZ_IN_FLAG_CHKSUM is clear, then on each level:

Offset Size Field Description
0 16 sec LSN, pointer to the next level (up to 2128 logical sectors)

When FSZ_IN_FLAG_CHKSUM is set:

Offset Size Field Description
0 12 sec LSN, pointer to the next level (up to 296 logical sectors)

12 4 checksum CRC of the data in the pointed logical sector

27

The FS/Z File System Allocation

Translations
Inlined Data
Can only be used for the current (or only) version, when the file size is less than or equal to logical
sector size minus the i-node structure’s size (that is 1024 bytes, unless FSZ_SB_BIGINODE flag is
set, in which case it’s 2048 bytes).

Here appropriate version’s sec points to the i-node, and in this case the appropriate version’s flag is
FSZ_FLAG_TRANSLATION(flags) = FSZ_IN_FLAG_INLINE (0xff).

I-node

sec

inlined data

Direct Data
This can be used by all versions, but only if file size is smaller than or equal to logical sector size.

Here sec points to the data sector directly, and

FSZ_FLAG_TRANSLATION(flags) = FSZ_IN_FLAG_DIRECT (0).

I-node data

sec

28

The FS/Z File System Allocation

Inlined Sector Directory
Can only be used for the current (or only) version, when the file size is less than or equal to

((logical sector size minus the i-node structure’s size) / 16) * logical sector size.

Here version’s sec points to the i-node, each sec in the inlined sector directory points to data sectors
directly, version’s flag is

FSZ_FLAG_TRANSLATION(flags) = FSZ_IN_FLAG_SD0 (0x7F).

I-node data

sec
data

inlined sd sec
inlined sd sec

Indirect Sector Directory
This can be used by all versions, but only if file size is smaller than or equal to

(logical sector size / 16) * logical sector size.

Here sec points to the sector directory, in which each sec points to the data sectors and

FSZ_FLAG_TRANSLATION(flags) = FSZ_IN_FLAG_SD1 (1).

I-node data

sec sd sec
sd sec data

29

The FS/Z File System Allocation

Double Indirect Sector Directory
This can be used by all versions, but only if file size is smaller than or equal to

(logical sector size / 16) 2 * logical sector size.

Here sec points to sector directory, where each sec points to another sector directory in which sec
points to the data sectors and

FSZ_FLAG_TRANSLATION(flags) = FSZ_IN_FLAG_SD2 (2).

I-node sd sec data
sd sec

sec sd sec data
sd sec sd sec

sd sec data

Triple Indirect Sector Directory
This can be used by all versions, but only if file size is smaller than or equal to

(logical sector size / 16) 3 * logical sector size.

Here sec points to the sector directories in three levels, and

FSZ_FLAG_TRANSLATION(flags) = FSZ_IN_FLAG_SD3 (3).

Quadriple Indirect Sector Directory
This can be used by all versions, but only if file size is smaller than or equal to

(logical sector size / 16) 4 * logical sector size.

Here sec points to sector directories in four levels, and

FSZ_FLAG_TRANSLATION(flags) = FSZ_IN_FLAG_SD4 (4).

This scheme with indirect sector directories can go up to 11 levels, when file size is not larger than

(logical sector size / 16) 11 * logical sector size.

FSZ_FLAG_TRANSLATION(flags) = FSZ_IN_FLAG_SD11 (11).

30

The FS/Z File System Allocation

Inlined Sector List
Can only be used for the current (or only) version, when there are no more extents than

(logical sector size minus the i-node structure’s size) / 32.

Here version’s sec points to the i-node, and each sec in the sector list points to data sectors directly,
version’s flag is

FSZ_FLAG_TRANSLATION(flags) = FSZ_IN_FLAG_SECLIST0 (0x80).

I-node data

sec

data

inlined sl sec
inlined sl sec

Normal Sector List
This can be used by all versions, when there are no more extents than

(logical sector size / 32).

Here version’s sec points to a logical sector with sector list, and each sec in the sector list points to
data sectors directly, version’s flag is

FSZ_FLAG_TRANSLATION(flags) = FSZ_IN_FLAG_SECLIST1 (0x81).

I-node data

sec sl sec

sl sec data

31

The FS/Z File System Allocation

Indirect Sector List
This can be used by all versions, when there are no more extents than

(logical sector size / 16) * (logical sector size / 32).

Here sec points to sector directory, where each sec points to a sector list in which sec points to the
data sectors and

FSZ_FLAG_TRANSLATION(flags) = FSZ_IN_FLAG_SECLIST2 (0x82).

I-node sl sec data

sl sec

sec sd sec data

sd sec sl sec

sl sec data

Double Indirect Sector List
This can be used by all versions, when there are no more extents than

(logical sector size / 16) 2 * (logical sector size / 32).

Here sec points to sector directory, where each sec points to another sector directory where each sec

points to a sector list in which sec points to the data sectors and

FSZ_FLAG_TRANSLATION(flags) = FSZ_IN_FLAG_SECLIST3 (0x83).

I-node sd sec sl sec data

sd sec sl sec

sec sd sec data

sd sec sd sec sl sec

sd sec sl sec data

32

The FS/Z File System Allocation

Triple Indirect Sector List
This can be used by all versions, when there are no more extents than

(logical sector size / 16) 3 * (logical sector size / 32).

Here sec points to sector directory in three levels, where last level’s sec points to a sector list in which
sec points to the data sectors and

FSZ_FLAG_TRANSLATION(flags) = FSZ_IN_FLAG_SECLIST4 (0x84).

Quadriple Indirect Sector List
This can be used by all versions, when there are no more extents than

(logical sector size / 16) 4 * (logical sector size / 32).

Here sec points to sector directory in four levels, where last level’s sec points to a sector list in which
sec points to the data sectors and

FSZ_FLAG_TRANSLATION(flags) = FSZ_IN_FLAG_SECLIST5 (0x85).

This scheme can go up to 9 levels, when there are no more extents than

(logical sector size / 16) 8 * (logical sector size / 32).

FSZ_FLAG_TRANSLATION(flags) = FSZ_IN_FLAG_SECLIST9 (0x89).

Sparse Files
These are files with gaps in them. If either a sector directory or a sector list references an LSN 0, that
means a block full of zeros. For sector directories the block’s size depends on the level where the LSN 0
appeared (at least one logical sector size), and for sector lists the size is given in the extent in numsec.

There are two possible ways how to create a sparse file with gaps. Either an application seeks over the
file size before it writes something, or when a logical sector aligned data in multiple of logical sector
size full of zeros are written to a file. A driver must always check for the latter too, because empty
logical sectors must not be included in the i-node’s numblocks field.

Bookkeeping Free Space
The way how free space is recorded is pretty simple. No special structures, no bitmaps, it uses exactly
the same i-node structure as normal files.

33

The FS/Z File System Allocation

There are two fields in the superblock to keep track of free space:

The freesec field always points to the last used logical sector plus one. This is the first available free
sector’s LSN.

The freesecfid field must be zero if the file system is defragmented, and free of external
fragmentation. Otherwise it must point to an i-node with the special type “int:fs-free-sectors”. This
pseudo file isn’t actually used, rather it’s allocation info covers the free gaps between the superblock and
the freesec LSN.

When a file or directory gets deleted, which isn’t the very last in the file system, then it’s allocation info
is copied into the pseudo file’s allocation info pointed by freesecfid. Otherwise the number of freed
logical sectors are simply subtracted from freesec.

When a new logical sector is allocated, then first freesecfid must be checked. If it’s not zero, then the
block must be taken away from the pseudo file’s allocation info, and added to whereever the block is
needed. It is not mandatory, but for effectiveness strongly recommended that the free sectors pseudo file
should use sector list translation. When all the logical sectors are taken away, then the pseudo file’s i-
node should be freed too, and if done, then the freesecfid field must be cleared in the superblock (not
always possible, because freeing the free sector pseudo file’s i-node might create a new gap. In that case
it is okay to have an empty free sectors pseudo file).

If the pseudo file is empty, then freesec must be checked if it’s smaller than numsec. If not, that
means a “No space left on device” error. Otherwise the logical sector pointed by freesec must be
returned and freesec incremented by one. If the returned LSN is recorded in the bad sectors pseudo
file, then the whole process must be repeated to return another logical sector instead.

Bookkeeping Bad Sectors
If there are bad, faulty or otherwise unusable logical sectors on the storage, then the badsecfid field in
the superblock must point to an i-node with the special type “int:fs-bad-sectors”. This pseudo file isn’t
actually used, rather it’s allocation info covers the bad sectors on the volume.

It is very similar to free sector’s pseudo file, but because bad sectors are often scattered through the
disk, for effectiveness it is recommended that the bad sector pseudo file should use sector directory
translation.

Logical sectors that are recorded in the bad sectors allocation info, must not appear anywhere else in the
file system’s meta data.

34

The FS/Z File System The File Hierarchy

The File Hierarchy

The Root Directory
Files are grouped together in directories. Those directories can contain other directories, and by so
creating a hierarchy. It starts with a root directory, who’s i-node is pointed by the rootdirfid field in
the superblock. The root directory always must exists, and its i-node type is different to the rest, so that
it can be recovered, it’s not “dir:”, but “dir:fs-root”.

Otherwise directories are just like files, they use exactly the same allocation, and they use exactly the
same permissions and access control list. Their contents can be inlined in the i-node just like files, so a
minimal root directory needs one logical sector, a combined i-node and file list.

There are two things in directories differ from files: they cannot have versions (there’s only a current
version of them), and their file contents consist of fixed sized records. A directory always has a header
record and may have other records, therefore it’s file size is 128 bytes at minimum, and it is always
multiple of 128 bytes.

Directory Header
The directory header has the same size as the entry records, 128 bytes and looks like this:

Offset Size Field Description
0 4 magic magic bytes ‘F’, ‘S’, ‘D’, ‘R’
4 4 checksum CRC of the directory entries, from byte 16 to end
8 1 display_type GUI preferences: display type (icon, list, detailed etc.)
9 1 sorting_order GUI preferences: the sorting order of the directory

10 6 reserved GUI: preferences: reserved for future use
16 16 numentries number of entries in this directory
32 16 fid back reference to the directory’s i-node
48 79 reserved reserved for future use, must be zero

127 1 flags directory flags

The main purpose of the header is make the directories recoverable.

35

The FS/Z File System The File Hierarchy

Otherwise its fields aren’t really used, except GUI file managers can store their user preferences for the
directory here. Note how the GUI preferences aren’t part of the checksum.

If the directory entries are different to the standard, then directory flags can be used to indicate that.

Bit Define Description
0 FSZ_DIR_FLAG_UNSORTED the entries aren’t lexicographically sorted (shouldn’t happen)
1 FSZ_DIR_FLAG_HASHED the entries are stored using a hash algorithm

Directory Entries
After the header comes a list of entries, always lexicographically sorted. This means a bit slower
directory creation, but allows extremely fast O(log2) look-ups using libc’s bsearch (binary search).
Note that sorting_order field in the header is just a GUI preference for a displaying option, it does
not influence how entries are stored on disk.

There are file size / 128 entries, or as indicated in the header’s numentries field. Those two must
always match. The size of an entry is always 128 bytes, padded with zeros.

Offset Size Field Description
0 16 fid the pointed i-node

16 112 name a zero terminated and padded, UTF-8 encoded filename

Unlike other file systems, in FS/Z the current directory “.” and the parent directory “..” are not stored
as an entry. The current directory’s fid is recorded in the header for recovery, but otherwise not used.
The parent directory can’t be determined as with symlinks and directory unions multiple parents may
exist. A driver therefore must always do string operation on the path to get the parent’s path and look up
that in their internal cache to get the correct i-node for the parent directory in a certain path.

Filenames are UTF-8 encoded, must be non-empty, and must not contain the characters zero, ‘/’ (slash,
directory separator) and ‘;’ (semicolon, version separator). They must not start with ‘/’ either, but if the
fid in the directory entry points to another directory record, then the filename must be ended in ‘/’. This
way directories are visually distinguished from other file types. The character ‘;’ (semicolon) is reserved
for indicating the file versions in paths: “;0” refers to the current version (can be omitted), “;-1” is the
version before, “;-2” version before that, etc. up to “;-5” which refers to the oldest version (similar to
FILES11 and ISO9660). The length limit of 111 might seem small compared to other file systems’ 255
limit, but in reality more than enough, you’ll never run out of it with every-day file names. For example,
“The hundred years old man who climbed out of the window and disappeared.mp4” is 75 bytes long.

36

The FS/Z File System Special Files

Special Files

Named Pipes (FIFO)
I-node type “pip:”. Named pipes has no file content.

Symbolic Links
I-node type “lnk:”. Symbolic links are stored the same way as any file, their file content being the link
target path.

Directory Unions
I-node type “uni:”. Are symbolic like constructs, paths are listed as zero terminated UTF-8 strings,
ended in a zero byte. For example: “/bin(zero)/usr/bin(zero)(zero)”.

Device Files
I-node type “dev:”. Their file content is always inlined, and looks like this

Offset Size Field Description
0 16 major the device major number

16 16 minor the device minor number
32 1 type 0 for character devices, 1 for block devices

Socket Files
I-node type “sck:”. They contain a 8 bytes long numeric id.

Search Index
I-node type “dir:fs-search-index”. This directory must contain entries with i-node type names (like
“textplain/”, “imagjpeg/”), but names starting with “dir:” or “int:” are not allowed. The fid field in the
directory entries pointing only files with i-node type of “int:fs-search-index”. Those files contain a list
of fids and full paths for quick look-up.

I-node type “int:fs-search-index”. Is just a simple file containing records. Each record starts with a 16
bytes fid, followed by a zero terminated, UTF-8 full path, starting from the root directory, without the
leading ‘/’. There’s no limit how long a path can be.

37

The FS/Z File System Special Files

Meta Label Keys
I-node type “int:fs-meta-labels”. Encoded the same way as directory unions, zero terminated, UTF-8
encoded keys ended with a zero. Keys can’t be longer than 255 bytes, and there can be maximum 65535
different keys on a file system.

Meta Label Values
These doesn’t have an i-node type because they are pointed by metasec field in the i-nodes. Instead
they have a header. They are allocated on contiguous sectors, and counted in the i-node’s numblocks
field. When they grow beyond logical sector size, and the sector right after them isn’t free, then these
must be relocated, and the metasec field must be updated to point to the new starting logical sector.

They start with a small, fixed sized header for recoverability:

Offset Size Field Description
0 4 magic magic bytes ‘F’, ‘S’, ‘M’, ‘T’
4 4 checksum CRC of the data, from byte 8 to end
8 2 numentries number of key-value pairs

10 2 size size of the entire meta block, including this header
12 4 reserved reserved for future use
16 16 fid back reference to the i-node

This is followed by numentries variable length records

Offset Size Field Description
0 2 keyid meta label key id
2 2 length (n) length of the (probably binary) data value
4 n value meta label value

The Journal File
I-node type “int:fs-journal” or “int:fs-journal-data” (the latter is used if FSZ_SB_JOURNAL_DATA

superblock flag is set. This is a special file that must be pre-allocated using a single extent, cannot have
versions, and its data must be placed right after its i-node. The fields journalhead and journaltail
are file offsets in logical sector size units, and they implements a circular buffer in this pre-allocated
area. Each write to this circular buffer starts with a transaction record, followed by data sectors.

38

The FS/Z File System Special Files

Offset Size Field Description
0 4 magic magic bytes ‘F’, ‘S’, ‘T’, ‘R’
4 4 checksum CRC of the sector list, from byte 8 to end
8 8 numentries number of extents in the transaction

16 8 transdate transaction’s timestamp
24 8 reserved reserved for future use, must be zero

This transaction header is followed by numentries times extents in the same format as in sector list,
padded to be logical sector size, followed by the logical sectors with the data in order. The padding and
the data sectors are not included in the checksum, however extents have their own checksums for the
data sectors.

If the type is “int:fs-journal” and FSZ_SB_JOURNAL_DATA superblock flag is not set, then only
meta data sectors are written to the journal, but not file data sectors. If type is “int:fs-journal-data”, and
FSZ_SB_JOURNAL_DATA superblock flag is set, then both meta data and file data sectors are
written.

39

The FS/Z File System The CRC32c Calculation Algorithm

The CRC32c Calculation Algorithm
The following code can be used to calculate the checksums on an FS/Z file system.

/* precalculated CRC32c lookup table for polynomial 0x1EDC6F41 (castagnoli-crc) */

uint32_t crc32c_lookup[256]={

 0x00000000L, 0xF26B8303L, 0xE13B70F7L, 0x1350F3F4L, 0xC79A971FL, 0x35F1141CL, 0x26A1E7E8L, 0xD4CA64EBL,

 0x8AD958CFL, 0x78B2DBCCL, 0x6BE22838L, 0x9989AB3BL, 0x4D43CFD0L, 0xBF284CD3L, 0xAC78BF27L, 0x5E133C24L,

 0x105EC76FL, 0xE235446CL, 0xF165B798L, 0x030E349BL, 0xD7C45070L, 0x25AFD373L, 0x36FF2087L, 0xC494A384L,

 0x9A879FA0L, 0x68EC1CA3L, 0x7BBCEF57L, 0x89D76C54L, 0x5D1D08BFL, 0xAF768BBCL, 0xBC267848L, 0x4E4DFB4BL,

 0x20BD8EDEL, 0xD2D60DDDL, 0xC186FE29L, 0x33ED7D2AL, 0xE72719C1L, 0x154C9AC2L, 0x061C6936L, 0xF477EA35L,

 0xAA64D611L, 0x580F5512L, 0x4B5FA6E6L, 0xB93425E5L, 0x6DFE410EL, 0x9F95C20DL, 0x8CC531F9L, 0x7EAEB2FAL,

 0x30E349B1L, 0xC288CAB2L, 0xD1D83946L, 0x23B3BA45L, 0xF779DEAEL, 0x05125DADL, 0x1642AE59L, 0xE4292D5AL,

 0xBA3A117EL, 0x4851927DL, 0x5B016189L, 0xA96AE28AL, 0x7DA08661L, 0x8FCB0562L, 0x9C9BF696L, 0x6EF07595L,

 0x417B1DBCL, 0xB3109EBFL, 0xA0406D4BL, 0x522BEE48L, 0x86E18AA3L, 0x748A09A0L, 0x67DAFA54L, 0x95B17957L,

 0xCBA24573L, 0x39C9C670L, 0x2A993584L, 0xD8F2B687L, 0x0C38D26CL, 0xFE53516FL, 0xED03A29BL, 0x1F682198L,

 0x5125DAD3L, 0xA34E59D0L, 0xB01EAA24L, 0x42752927L, 0x96BF4DCCL, 0x64D4CECFL, 0x77843D3BL, 0x85EFBE38L,

 0xDBFC821CL, 0x2997011FL, 0x3AC7F2EBL, 0xC8AC71E8L, 0x1C661503L, 0xEE0D9600L, 0xFD5D65F4L, 0x0F36E6F7L,

 0x61C69362L, 0x93AD1061L, 0x80FDE395L, 0x72966096L, 0xA65C047DL, 0x5437877EL, 0x4767748AL, 0xB50CF789L,

 0xEB1FCBADL, 0x197448AEL, 0x0A24BB5AL, 0xF84F3859L, 0x2C855CB2L, 0xDEEEDFB1L, 0xCDBE2C45L, 0x3FD5AF46L,

 0x7198540DL, 0x83F3D70EL, 0x90A324FAL, 0x62C8A7F9L, 0xB602C312L, 0x44694011L, 0x5739B3E5L, 0xA55230E6L,

 0xFB410CC2L, 0x092A8FC1L, 0x1A7A7C35L, 0xE811FF36L, 0x3CDB9BDDL, 0xCEB018DEL, 0xDDE0EB2AL, 0x2F8B6829L,

 0x82F63B78L, 0x709DB87BL, 0x63CD4B8FL, 0x91A6C88CL, 0x456CAC67L, 0xB7072F64L, 0xA457DC90L, 0x563C5F93L,

 0x082F63B7L, 0xFA44E0B4L, 0xE9141340L, 0x1B7F9043L, 0xCFB5F4A8L, 0x3DDE77ABL, 0x2E8E845FL, 0xDCE5075CL,

 0x92A8FC17L, 0x60C37F14L, 0x73938CE0L, 0x81F80FE3L, 0x55326B08L, 0xA759E80BL, 0xB4091BFFL, 0x466298FCL,

 0x1871A4D8L, 0xEA1A27DBL, 0xF94AD42FL, 0x0B21572CL, 0xDFEB33C7L, 0x2D80B0C4L, 0x3ED04330L, 0xCCBBC033L,

 0xA24BB5A6L, 0x502036A5L, 0x4370C551L, 0xB11B4652L, 0x65D122B9L, 0x97BAA1BAL, 0x84EA524EL, 0x7681D14DL,

 0x2892ED69L, 0xDAF96E6AL, 0xC9A99D9EL, 0x3BC21E9DL, 0xEF087A76L, 0x1D63F975L, 0x0E330A81L, 0xFC588982L,

 0xB21572C9L, 0x407EF1CAL, 0x532E023EL, 0xA145813DL, 0x758FE5D6L, 0x87E466D5L, 0x94B49521L, 0x66DF1622L,

 0x38CC2A06L, 0xCAA7A905L, 0xD9F75AF1L, 0x2B9CD9F2L, 0xFF56BD19L, 0x0D3D3E1AL, 0x1E6DCDEEL, 0xEC064EEDL,

 0xC38D26C4L, 0x31E6A5C7L, 0x22B65633L, 0xD0DDD530L, 0x0417B1DBL, 0xF67C32D8L, 0xE52CC12CL, 0x1747422FL,

 0x49547E0BL, 0xBB3FFD08L, 0xA86F0EFCL, 0x5A048DFFL, 0x8ECEE914L, 0x7CA56A17L, 0x6FF599E3L, 0x9D9E1AE0L,

 0xD3D3E1ABL, 0x21B862A8L, 0x32E8915CL, 0xC083125FL, 0x144976B4L, 0xE622F5B7L, 0xF5720643L, 0x07198540L,

 0x590AB964L, 0xAB613A67L, 0xB831C993L, 0x4A5A4A90L, 0x9E902E7BL, 0x6CFBAD78L, 0x7FAB5E8CL, 0x8DC0DD8FL,

 0xE330A81AL, 0x115B2B19L, 0x020BD8EDL, 0xF0605BEEL, 0x24AA3F05L, 0xD6C1BC06L, 0xC5914FF2L, 0x37FACCF1L,

 0x69E9F0D5L, 0x9B8273D6L, 0x88D28022L, 0x7AB90321L, 0xAE7367CAL, 0x5C18E4C9L, 0x4F48173DL, 0xBD23943EL,

 0xF36E6F75L, 0x0105EC76L, 0x12551F82L, 0xE03E9C81L, 0x34F4F86AL, 0xC69F7B69L, 0xD5CF889DL, 0x27A40B9EL,

 0x79B737BAL, 0x8BDCB4B9L, 0x988C474DL, 0x6AE7C44EL, 0xBE2DA0A5L, 0x4C4623A6L, 0x5F16D052L, 0xAD7D5351L };

uint32_t crc32_calc(unsigned char *start,int length) {

 uint32_t crc32_val=0;

 while(length--) crc32_val=(crc32_val>>8)^crc32c_lookup[(crc32_val&0xff)^(unsigned char)*start++];

 return crc32_val;

}

40

The FS/Z File System Examples

Examples

Superblock HexDump
00000000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
*
00000200 46 53 2f 5a 01 00 01 00 00 00 00 00 ff 00 00 00 |FS/Z............|
00000210 00 10 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00000220 05 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00000230 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00000240 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
*
000002c0 00 00 00 00 00 00 00 00 80 a9 ab 02 32 be 05 00 |............2...|
000002d0 80 a9 ab 02 32 be 05 00 80 a9 ab 02 32 be 05 00 |....2.......2...|
000002e0 00 00 00 00 00 00 00 00 3d 3f 63 19 b5 92 e2 03 |........=?c.....|
000002f0 08 05 67 60 71 96 c7 e7 00 00 00 00 00 00 00 00 |..g`q...........|
00000300 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
*
000003f0 00 00 00 00 00 00 00 00 46 53 2f 5a 0d 17 e1 16 |........FS/Z....|

loader magic version logsec enctype flags maxmounts currmounts numsec freesec rootdirfid checksum

Logical sector size 4096 bytes (1 << (logsec + 11)), number of total logical sectors 0x1000, first free
logical sector 5, root directory’s i-node at logical sector 1.

I-Node HexDump
00001000 46 53 49 4e fd fa ac 97 64 69 72 3a 66 73 2d 72 |FSIN....dir:fs-r|
00001010 6f 6f 74 00 00 00 00 00 00 00 00 00 00 00 00 00 |oot.............|
00001020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
*
00001040 00 00 00 00 00 00 00 00 c0 95 b4 36 32 be 05 00 |...........62...|
00001050 80 a9 ab 02 32 be 05 00 00 00 00 00 00 00 00 00 |....2...........|
00001060 00 00 00 00 00 00 00 00 01 00 00 00 00 00 00 00 |................|
00001070 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
*
000011c0 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
000011d0 80 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
000011e0 80 a9 ab 02 32 be 05 00 ff 00 00 00 00 00 00 00 |....2...........|
000011f0 72 6f 6f 74 00 00 00 00 00 00 00 00 00 00 00 17 |root............|
00001200 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|

magic checksum mimetype createdate changedate accessdate numblocks numlinks sec size modifydate
flags owner permissions

Mime type root directory, number of allocated blocks 0 (inlined data), number of links 1, data sector 1
(inlined), file size 0x180 bytes, flags 0xFF (translation FSZ_IN_FLAG_INLINE). Owner is
756F6F72-0000-0000-0000-000000, has read, write, execute and delete permissions.

41

The FS/Z File System Examples

Directory HexDump
00001400 46 53 44 52 c4 ff f1 e2 00 00 00 00 00 00 00 00 |FSDR............|
00001410 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00001420 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00001430 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
*
00001480 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00001490 61 2f 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |a/..............|
000014a0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
*
00001500 04 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00001510 62 2f 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |b/..............|
00001520 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|

magic checksum GUI properties numentries fid (back reference) fid (1st entry’s) filename (1st entry’s)
fid (2nd entry’s) filename (2nd entry’s)

No displaying user preferences for the directory, has 2 entries, its i-node is at LSN 1.

The first entry’s i-node is at LSN 2, and its name is “a/” (so it is a directory).

The second entry’s i-node is at LSN 4, and its name is “b/” (is a directory).

(Hah, 42 pages in total, that cannot be a coincidence!)

42

	Preface
	Revision History
	Introduction
	Terms and Definitions of FS/Z
	Summary of File System Limitations

	Overall On Disk Layout
	The Superblock
	Legacy Loader
	File System Identification Magic Bytes
	File System Version
	Logical Sector Size
	Encryption Algorithm
	File System Feature Flags
	Mount Counters
	Volume Capacity
	Location of the Root Directory
	Free Sectors Registry
	Bad Sectors Registry
	Search Index
	Meta Label Keys
	Journaling Information
	Encrypted Volumes
	Creation, Last Mount, Check and Change Timestamps
	Volume Unique Identifier
	Reserved Area
	Ending Magic and Checksum
	RAID Specific Information

	The I-Node
	Magic and Checksum
	I-Node Type
	I-Node Creation, Change and Access Timestamps
	Number of Allocated Logical Sectors
	Number of Links
	Meta Label Values
	File Versions
	File Modification Timestamp
	File Allocation Flags
	Permissions and Access Control List

	Allocation
	Allocation Structures
	Sector List
	Sector Directory

	Translations
	Inlined Data
	Direct Data
	Inlined Sector Directory
	Indirect Sector Directory
	Double Indirect Sector Directory
	Triple Indirect Sector Directory
	Quadriple Indirect Sector Directory
	Inlined Sector List
	Normal Sector List
	Indirect Sector List
	Double Indirect Sector List
	Triple Indirect Sector List
	Quadriple Indirect Sector List

	Sparse Files
	Bookkeeping Free Space
	Bookkeeping Bad Sectors

	The File Hierarchy
	The Root Directory
	Directory Header
	Directory Entries

	Special Files
	Named Pipes (FIFO)
	Symbolic Links
	Directory Unions
	Device Files
	Socket Files
	Search Index
	Meta Label Keys
	Meta Label Values
	The Journal File

	The CRC32c Calculation Algorithm
	Examples
	Superblock HexDump
	I-Node HexDump
	Directory HexDump

