
The

BOOTBOOT

Protocol

Specification and Manual

First Edition
 2017 - 2021

BOOTBOOT Protocol

Copyright
The BOOTBOOT Protocol and the reference implementations are the intellectual property of

 Baldaszti Zoltán Tamás (BZT) bztemail at gmail dot com

and licensed under the

MIT licence

 Copyright (C) 2017 - 2021 bzt (bztsrc@gitlab)

 Permission is hereby granted, free of charge, to any person
 obtaining a copy of this software and associated documentation
 files (the "Software"), to deal in the Software without
 restriction, including without limitation the rights to use, copy,
 modify, merge, publish, distribute, sublicense, and/or sell copies
 of the Software, and to permit persons to whom the Software is
 furnished to do so, subject to the following conditions:

 The above copyright notice and this permission notice shall be
 included in all copies or substantial portions of the Software.

 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
 HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
 WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
 DEALINGS IN THE SOFTWARE.

2

BOOTBOOT Protocol

Table of Contents
Preface..5
Introduction..7
Specification...9

Booting an Operating System..9
On Operating System Kernel Designs...9
The Initial Ramdisk Image..9
The Boot Partition...10
File System Drivers..11
Kernel Format..12

Protocol Levels..12
Static...12
Dynamic...12

Entry Point..12
Environment..13
The bootboot Structure..14

Header Fields..14
Platform Independent...14
Platform Dependent Pointers...16

Memory Map Entries..16
Linear Frame Buffer..17
Machine State..17

Reference Implementations..19
IBM PC BIOS / Multiboot / El Torito / Linux boot..20

Initial Ramdisk..20
Memory Map..20
Linear Frame Buffer..20
Machine State...20
Limitations..20
Booting...20

IBM PC UEFI..21
Initial Ramdisk..21
Memory Map..21
Linear Frame Buffer..21
Machine State...21
Limitations..21
Booting...21

Coreboot payload...22
Initial Ramdisk..22
Memory Map..22
Linear Frame Buffer..22

3

BOOTBOOT Protocol

Machine State...22
Limitations..22
Booting...22

Raspberry Pi 3 / 4..23
Initial Ramdisk..23
Memory Map..23
Linear Frame Buffer..23
Machine State...23
Limitations..23
Booting...23

The mkbootimg Disk Image Creator Tool..24
Creating an initrd ROM image..24
Creating an ESP FAT partition..24
Creating a hybrid GPT disk / ISO9660 CDROM/DVD image..24
Checking kernel for BOOTBOOT Protocol Level Compliance..24

APPENDIX..25
Creating a GPT ESP partition...25
A sample BOOTBOOT compatible kernel..25
A sample Makefile...27
A sample linker script..27
A sample Symmetric Multi Processing code...28
A sample grub.cfg entry..28
A sample mkbootimg.json configuration file...28
Loading emergency initrd over serial..28
Troubleshooting...29

INDEX...31

4

BOOTBOOT Protocol

Preface
“A beginning is a very delicate time.”

/ Frank Herbert /

In the last decade of personal computers era big changes happened in the way how computers boot.
With the appearance of 64 bit, for the first time in computer’s history, the memory address space
became bigger than the storage capacity altogether. This yielded fundamental changes in firmware.

Also storage capacity kept growing if not according to Moore’s Law, but in a very fast curve. Old ways
of storing partitioned data became obsolete, and new partitioning tables were invented, one of which
became the new de facto standard.

Unfortunately the firmware that introduced the new partitioning format is way too complex and bloated,
and therefore many manufacturers refuse to implement it (specially on small hardware with limited
resources). As a result, there is no de facto standard for a booting interface, different hardware use
different, incompatible ways of booting. Not all firmware implemented that new partitioning table
either. To make things worse, many of them also kept backward compatibility with ancient machines.

There are attempts to make booting unified, but unfortunately in a so complex and bloated way again,
that one could easily call that loader an OS of it’s own right.

Therefore I’ve created a specification for a common way of starting an operating system, and I’ve
provided several different reference implementations one for each platform. The goal is, by the time
those small platform dependent code’s execution finished, there’s a common 64 bit environment on all
platforms, capable of running an unmodified C code compiled with the same linker script. The source
and the pre-compiled binaries (along with an example C, C++, Pascal, Ada, Rust and Go kernels) can
be downloaded at:

https://gitlab.com/bztsrc/bootboot

Those reference implementations are Open Source and Free Software, and come without any warranty
in the hope that they will be useful.

Baldaszti Zoltán Tamás

5

https://gitlab.com/bztsrc/bootboot
https://gitlab.com/bztsrc/bootboot
https://gitlab.com/bztsrc/bootboot

BOOTBOOT Protocol

Page left blank intentionally

6

BOOTBOOT Protocol

Introduction

When you turn on a computer, an operating system has to be loaded. There are sophisticated programs
to allow you to choose from multiple systems on a single machine such as GRUB. Those are called boot
managers. BOOTBOOT is not one of them. It is a boot loader, with the goal of providing the same 64
bit environment on several different platforms (to store the bytes “BOOTBOOT” in memory requires 64
bits). If you want to have multiple boot options on one computer, you must install a boot manager with a
BOOTBOOT loader option in order to boot a BOOTBOOT compatible operating system. If you are fine
with having only one operating system per machine, there’s no need for a boot manager, the boot loader
alone is enough.

The operating system can be loaded in many different ways. From ROM, from flash, from a disk, from
SD card, over serial cable or over the network etc. The BOOTBOOT Protocol does not specify these.
Neither does it specify the archive image’s format of the ramdisk used. These are subject to change from
time to time and from system to system.

The protocol mandates though that if the operating system is stored on disk, that disk must follow the
GUID Partitioning Table format (or any later de facto standard partitioning format). As not all firmware
support partitioning equally, it is the loader’s responsibility to hide this and locate the operating system
on a partitioned disk. Therefore end users do not have to care about firmware differences when they
want to boot from a disk partitioned and formatted on another machine.

A few words on the operating system’s kernel format itself. As of writing, there is no de facto standard,
but two most widely used formats: the Executable and Linkable Format, and the Portable Executable
format. It would be unfair to say one is better than the other, since they both represent the same
information just in a different way. Therefore both are supported by the protocol. If one of them (or a
new format) became the standard, the protocol has to be revised, and should focus on that format alone,
so that the end users don’t have to care about executable format either.

Finally the organization of this documentation. There are two parts: first part describes the protocol in
general, and the second part describes the reference implementations on different platforms.

7

BOOTBOOT Protocol

Page left blank intentionally

8

BOOTBOOT Protocol Specification

Specification

The first part of this documentation contains the BOOTBOOT Protocol specification.

Booting an Operating System
The term booting a computer refers to many things, but at the end of the day it means only one: pass the
control to the operating system’s kernel along with environmental information.

On Operating System Kernel Designs
There are two common kinds of kernels. First one contains everything in a single, mostly statically
linked image (monolithic kernel). The second kind separated into several files. That keeps the privileged
duties to a small kernel (micro-kernel, exokernel, hypervisor etc.) and everything else is pushed into
separated user space tasks which usually are stored in separate files (but not necessarily, see Minix).

Both kinds may have initial ramdisks. Used to store files in memory during boot prior to any on disk file
system available. For monolithic design that image is usually loaded along with the kernel and (as
drivers are included in the kernel), optional. On the other hand for micro-kernels such an archive image
for ramdisk is essential if each task’s code is in a separate file.

The creator of BOOTBOOT Protocol and the vast majority of OS developers consider the micro-kernel
design more secure and flexible (and also most monolithic design already have their own way of booting
for each and every platform), so the BOOTBOOT Protocol is for micro-kernels.

The Initial Ramdisk Image
As the protocol focuses on micro-kernel design which needs several other files (drivers and such), it
requires that the operating system has an initial ramdisk image. And as the image has to be loaded
anyway, it’s benefitial to store the kernel itself inside. This is not common as of writing, but simplifies
booting procedure by reducing the number of required files to one just as with the monolithic design.
Note that the protocol is flexible enough to load a single, statically linked kernel with more tasks (like
Minix) as a “ramdisk” image.

Compression on ramdisk image is optional. Reference implementations support gzip deflate compressed
images, but other implementation may use different algorithms as long as the compression can be
detected by magic bytes. A BOOTBOOT compliant loader will uncompress the image once loaded into
memory. As the whole image is loaded entirely, it should be kept small (few megabytes).

9

BOOTBOOT Protocol Specification

The uncompressed format of the ramdisk image is not part of the protocol. Each and every operating
system are free to choose what’s best for it’s purpose. Therefore BOOTBOOT Protocol only specifies an
Application Programming Interface to parse the image for a file, and a fallback option.

The Boot Partition
The protocol does not describe the whereabouts of the initial ramdisk image. It only expects that a
BOOTBOOT Protocol compliant loader can locate, load and uncompress it into RAM. The reference
implementations use files over serial, ROM and disks with boot partition as source.

BOOTBOOT Protocol assumes that the disk partitioning format is the GUID Partitioning Table. The
reason for this is inter-operability among different operating systems.

A boot partition is a small partition at the beginning of the disk. It may store files relevant to the
firmware, but most importantly for the protocol, the initial ramdisk image.

If the boot partition has a file system, for compatibility reasons it has to be FAT16 or FAT32 formatted.
Many firmware (such as UEFI and the Raspberry Pi) mandates this too for their firmware partition. If
the boot partition holds firmware files for booting, it should have the type of “EFI System Partition” or
ESP in short. This is so because GPT was introduced with the EFI firmware (superseded by UEFI). In
this set-up the initial ramdisk image is a file on the boot partition, located in:

BOOTBOOT\INITRD

or with multiple architecture support on the same partition (only for live OS images):

BOOTBOOT\(arch)

like BOOTBOOT\X86_64, BOOTBOOT\AARCH64 or BOOTBOOT\RISCV64.

If the firmware’s partition does not use a file system, or does not understand FAT16 or FAT32 or has a
specific type (so that ESP type cannot be used), then firmware partition and boot partition became two
separate partitions.

In that case an operating system designer has two option: either creating another partition with FAT and
a BOOTBOOT directory with the initial ramdisk file in it; or they can put the ramdisk image on the
whole partition, leaving the FAT file system entirely out. In either case, the boot partition has to be
marked as EFI_PART_USED_BY_OS (bit 2 in GPT Partition Entry’s attribute flag set).

Keep in mind that ramdisk image will be loaded entirely in memory, so if it occupies the whole boot
partition, that partition should be small (few megabytes).

10

BOOTBOOT Protocol Specification

File System Drivers
As mentioned before, the BOOTBOOT Protocol does not specify the initial ramdisk format, instead it
uses so called file system drivers with one API function:

typedef struct {
 uint8_t *ptr;
 uint64_t size;
} file_t;

file_t myfs_initrd(uint8_t *initrd, char *filename);

In the reference implementations’ source those file system drivers are separated in a file called fs.h (or
fs.inc). Each supported ramdisk image format has exactly one function in those files.

Each function receives the address of the initial ramdisk image, and a pointer to a zero terminated
ASCII filename. If the file referenced by that filename found, the function should return a struct with a
pointer to the first byte of the file content and the content’s size. If needed, the file system driver allowed
to allocate memory. On error (when the format not recognized or the file is not found) the function must
return {NULL, 0}. The protocol expects that a BOOTBOOT compliant loader iterates on the list of
drivers until one returns a valid result.

If all the file system drivers failed and returned {NULL,0}, a fallback driver will be initiated. That
fallback driver will scan the ramdisk for the first file which has a valid executable format for the
architecture. So file permissions and attributes does not matter, only the file header counts.

If the ramdisk format is supported by one of the file system drivers, the name of the kernel can be
passed in the environment with the key kernel.

The reference implementations support the following archive and file system image formats:

• statically linked executable (all files linked together into one executable)
• ustar
• cpio (hpodc, newc and crc variants)
• FS/Z (OS/Z’s native file system)
• SFS (osdev.org’s own file system)
• James Molloy’s initrd (popular among hobby OS developers for some reason)
• EchFS (echidnaFS, a very very simple file system)

Other archive and file system format support can be added any time according the needs of the
operating system, with one exception. The FAT file system is not allowed as initial ramdisk format. This
is not a serious restriction as FAT is not efficient as an in memory file system, so it’s unlikely someone
wants to use that. Ustar or cpio would be a far better choice.

11

BOOTBOOT Protocol Specification

Kernel Format
The kernel executable should be either an Executable and Linkable Format (ELF), or a Portable
Executable (PE). In both cases the format itself must be 64 bit (ELFCLASS64 in ELF and
PE_OPT_MAGIC_PE32PLUS in PE). The code segment must be compiled for a native 64 bit
architecture and linked in the negative address range (with another terminology, higher half address
space). The reference implementations support EM_X86_64 (62), EM_AARCH64 (183) or EM_RISCV
(243) in ELF, and IMAGE_FILE_MACHINE_AMD64 (0x8664), IMAGE_FILE_MACHINE_ARM64
(0xAA64) or IMAGE_FILE_MACHINE_RISCV64 (0x5064) in PE. The x86_64 architecture is used by
the BIOS / Multiboot / El Torito, UEFI and Coreboot loaders, while AArch64 is supported on the
Raspberry Pi 3 and 4.

Protocol Levels
Now where the kernel is mapped depends on the loader’s protocol level. Some reference
implementation use level 1, PROTOCOL_STATIC. Most uses level 2, PROTOCOL_DYNAMIC (see
below). Level 0, PROTOCOL_MINIMAL is used for embedded systems where environment is not
implemented, all values and addresses are hardcoded and the frame buffer may not exists at all.

Static
A loader that implements protocol level 1, maps the kernel and the other parts at static locations in
accordance with the linker (see chapter “Machine State” for the exact addresses). In the specification
hereafter, the static protocol’s addresses will be used for simplicity. For forward compatibility, all
BOOTBOOT compatible kernels must provide symbols required by level 2.

Dynamic
A level 2 dynamic loader on the other hand generates memory mapping according what’s specified in
the kernel’s symbol table. It only differs from level 1 that the addresses are flexible (but still limited to
the negative address range -1G to 0, and the addresses must be page aligned):

• Kernel will be mapped at executable header’s Elf64_Ehdr.p_vaddr or pe_hdr.code_base field.
• The bootboot structure will be mapped at the address of bootboot symbol.
• The environment string will be mapped at the address of environment symbol.
• The linear frame buffer will be mapped at the address of fb symbol.
• The MMIO area will be mapped at address of mmio symbol.

Entry Point
When BOOTBOOT compliant loader finished with booting, it will hand over the control to the kernel at
the address specified in Elf64_Ehdr.e_entry or pe_hdr.entry_point.

12

BOOTBOOT Protocol Specification

Environment
If the boot partition has a FAT file system, the environment configuration is loaded from

BOOTBOOT\CONFIG

If the initial ramdisk occupies the whole boot partition, then file system drivers are used to locate

sys/config

If the latter is not appropriate for the operating system, the name of the file can be altered in bootboot
source. The size of the environment is limited to the size of one page frame (4096 bytes).

Configuration is passed to your kernel as newline (‘\n’ or 0xA) separated, zero terminated UTF-8 string
with "key=value" pairs. C style single line and multi line comments are allowed. BOOTBOOT Protocol
only specifies two of the keys, screen and kernel, all the others and their values are up to the operating
system’s kernel (or device drivers) to parse. Example:

// BOOTBOOT Options

/* --- Loader specific --- */
// requested screen dimension. If not given, autodetected
screen=800x600
// elf or pe binary to load inside initrd
kernel=sys/core

/* --- Kernel specific, you're choosing --- */
anythingyouwant=somevalue
otherstuff=enabled
somestuff=100
someaddress=0xA0000

The screen parameter defaults to the display’s natural size or 1024x768 if that cannot be detected. The
minimum value is 640x480.

The kernel parameter defaults to sys/core as the kernel executable’s filename inside the initial ramdisk
image. If that does not fit for an operating system, it can be specified in this environment file or can be
modified in the bootboot source.

Temporary variables will be appended at the end (from UEFI command line). If multiple instance of a
key exists, the latter takes preference over the former (with other words, only the last occurance counts).

To modify the environment when having booting issues, one will need to insert the disk into another
machine (or boot a simple OS like DOS) and edit BOOTBOOT\CONFIG on the boot partition with a

13

BOOTBOOT Protocol Specification

text editor. With UEFI, you can use the edit command provided by the EFI Shell or append "key=value"
pairs on the command line (keys specified on command line take precedence over the ones in the file).

The environment is mapped before the kernel image in memory, at address specified by the linker. In
kernel, it can be accessed with

extern unsigned char environment[4096];

The bootboot Structure
The bootboot struct is specified in bootboot.h, available at

https://gitlab.com/bztsrc/bootboot/raw/master/dist/bootboot.h

It is the main information structure passed to the kernel by the loader. It is written with a define guard
and extern “C” wrapper, so it can be safely used from a C++ kernel too.

The structure consist of a fixed 128 bytes header, followed by a variable sized memory map, where each
entry is 16 bytes long. The first 64 bytes of the header are common across platforms, the second 64
bytes are platform specific, and usually holds system resource pointers.

Header Fields

Platform Independent
uint8_t magic[4]; // 0x00-0x03

The magic bytes BOOTBOOT_MAGIC, “BOOT”.

uint32_t size; // 0x04-0x07

The size of the bootboot struct. That is 128 bytes at least, plus the memory descriptors’ size.

uint8_t protocol; // 0x08

This informational field encodes BOOTBOOT Protocol level in bits 0 – 1 (as implemented by the
loader which constructed the struct). Either PROTOCOL_STATIC (1) or PROTOCOL_DYNAMIC (2).
If bit 7 (the sign bit) is set, then the structure has big-endian values, PROTOCOL_BIGENDIAN (0x80).
Bits 2 – 6 encode another informational field for the kernel, either LOADER_BIOS (0), LOADER_UEFI
(1), LOADER_RPI (2) or LOADER_COREBOOT(3) for now. New values will be defined by future
versions of this documentation.

14

https://gitlab.com/bztsrc/bootboot/raw/master/dist/bootboot.h
https://gitlab.com/bztsrc/bootboot/raw/master/dist/bootboot.h
https://gitlab.com/bztsrc/bootboot/raw/master/dist/bootboot.h
https://gitlab.com/bztsrc/bootboot/raw/master/dist/bootboot.h
https://gitlab.com/bztsrc/bootboot/raw/master/dist/bootboot.h
https://gitlab.com/bztsrc/bootboot/raw/master/dist/bootboot.h
https://gitlab.com/bztsrc/bootboot/raw/master/dist/bootboot.h

BOOTBOOT Protocol Specification

uint8_t fb_type; // 0x09

The frame buffer format, FB_ARGB (0) to FB_BGRA (3). The most common is FB_ARGB, where the
least significant byte is blue, and the most significant one is skipped (as alpha channel is not used on
lfb) in little-endian order.

uint16_t numcores; // 0x0A-0x0B

The number of CPU cores. On Symmetric Multi Processing platforms this can be larger than 1.

uint16_t bspid; // 0x0C-0x0D

The BootStrap Processor ID on platforms that support SMP (Local APIC ID on x86_64).

int16_t timezone; // 0x0E-0x0F

The machine’s detected timezone if such a thing supported on the platform. Stored as an integer in
minutes, from -1440 to 1440, and does not affect the datetime field (which is always in UTC).

uint8_t datetime[8]; // 0x10-0x17

The UTC date of boot in binary coded decimal on platforms that have RTC chip. The first two bytes in
hexadecimal gives the year, for example 0x20 0x17, then one byte the month 0x12, one byte the day
0x31. Followed by hours 0x23, minutes 0x59 and seconds 0x59 bytes. The last byte can store 1/100th
second precision, but in lack of support on most platforms, it is 0x00. Not influenced by the timezone
field.

uint64_t initrd_ptr; // 0x18-0x1F
uint64_t initrd_size; // 0x20-0x27

The physical address and size of the initial ramdisk in memory (mapped in the positive address range).

uint64_t fb_ptr; // 0x28-0x2F
uint32_t fb_size; // 0x30-0x33

Frame buffer physical address and size in bytes. Do not confuse with linker specified fb virtual address.

uint32_t fb_width; // 0x34-0x37
uint32_t fb_height; // 0x38-0x3B
uint32_t fb_scanline; // 0x3C-0x3F

The frame buffer resolution and bytes per line as stored in memory (see chapter “Linear Frame Buffer”
for details).

15

BOOTBOOT Protocol Specification

Platform Dependent Pointers
The second 64 bytes of the header are architecture specific. Only used on x86_64 architecture:

uint64_t x86_64.acpi_ptr; // 0x40-0x7F
uint64_t x86_64.smbi_ptr;
uint64_t x86_64.efi_ptr;
uint64_t x86_64.mp_ptr;
uint64_t x86_64.unused0;
uint64_t x86_64.unused1;
uint64_t x86_64.unused2;
uint64_t x86_64.unused3;

Only on AArch64. The mmio_ptr holds the physical address of the BCM2837 MMIO (also mapped in
kernel space at mmio):

uint64_t aarch64.acpi_ptr; // 0x40-0x7F
uint64_t aarch64.mmio_ptr;
uint64_t aarch64.efi_ptr;
uint64_t aarch64.unused0;
uint64_t aarch64.unused1;
uint64_t aarch64.unused2;
uint64_t aarch64.unused3;
uint64_t aarch64.unused4;

Memory Map Entries
MMapEnt mmap; // 0x80-0xFFF

A platform independent, sorted by address memory map. If a kernel does not want to check the upper
bound for this list, the number of entries can be calculated with

num_mmap_entries = (bootboot.size – 128) / 16;

The memory entry information can be extracted with the following C macros:

MMapEnt_Ptr(a) = the pointer of the memory area
MMapEnt_Size(a) = the size of the memory area in bytes
MMapEnt_Type(a) = the type of the memory area in range of 0 – 15
MMapEnt_IsFree(a) = returns true if the memory area can be used by the OS.

The type returns one of MMAP_USED (0), MMAP_FREE (1), MMAP_ACPI (2), MMAP_MMIO (3,
memory mapped IO area). Any other value is considered to be MMAP_USED. The bootboot struct is
mapped before the kernel image in memory, at address specified by the linker. In the kernel, that struct
can be accessed with

extern BOOTBOOT bootboot;

16

BOOTBOOT Protocol Specification

Linear Frame Buffer
The frame buffer is initialized in 32 bit packed pixel format, preferably in ARGB mode. It’s resolution
will be the display’s native resolution or 1024x768 if that can’t be detected. The requested screen
resolution can be passed in environment with the screen=WIDTHxHEIGHT paramter. If the ARGB
mode is not supported, bootboot.fb_type tells the ordering of color channels.

The frame buffer is mapped along with other MMIO areas before the kernel in memory, at address
specified by the linker. In the kernel, the buffer can be accessed with

extern uint8_t fb;
uint32_t *pixel = (uint32_t*)(&fb + offset);

Screen coordinates (X, Y) should be converted to offset as:

offset = (bootboot.fb_height – 1 – Y) * bootboot.fb_scanline + 4 * X.

Although bootboot.fb_size is a 32 bit value, level 1 loaders with static fb address limit the frame buffer’s
size somewhere around 4096 x 4096 pixels (depends on bytes per line and aspect ratio too). That's more
than enough for an Ultra HD 4K (3840 x 2160) resolution. Level 2 loaders will map the frame buffer
where the kernel’s fb symbol tell to, therefore they don’t have such limitation.

Machine State
When the kernel gains control, a serial debug console is initialized, hardware interrupts are masked and
code is running in supervisor mode. The floating point co-processor (FPU) and SIMD instructions must
be enabled with a reasonable extension level (SSEx, Neon). SMP initialized, all cores running (see
Appendix). The virtual memory is enabled as the MMU is turned on, and memory layout goes as
follows:

The RAM (up to 16G) is identity mapped in the positive address range (user space memory or lower
half). Negative addresses belong to the kernel, and should not be accessible from unprivileged mode
(higher half).

The uncompressed initial ramdisk is entirely in the identity mapped area, and can be located using
bootboot struct's initrd_ptr and initrd_size members.

The screen is properly set up with a 32 bit linear frame buffer, mapped at the negative address defined
by the fb symbol at -64M or 0xFFFFFFFF_FC000000 (along with the other MMIO areas at -128M or
0xFFFFFFFF_F8000000 if they exists on the architecture, with physical address in the mmio_ptr
field). The physical address of the frame buffer can be found in the fb_ptr field.

The main information bootboot structure is mapped at bootboot symbol, at -2M or
0xFFFFFFFF_FFE00000.

17

BOOTBOOT Protocol Specification

The environment configuration string (or command line if you like) is mapped at environment symbol,
at -2M + 1 page or 0xFFFFFFFF_FFE01000.

Kernel's combined code and data segment is mapped at -2M + 2 pages or 0xFFFFFFFF_FFE02000.
After that segment, at a linker defined address, comes the bss data segment, zerod out by the loader.
Level 1 protocol limits the kernel's size in 2M, including info, code, data, bss and stack. That should be
more than enough for any micro-kernels. Level 2 has a limit of 16M for code, data and bss. If a kernel
wants to separate it’s code on a read-only segment and data on a non-executable segment for security, it
can override the page translation tables as soon as it gains control. BOOTBOOT Protocol does only
handle one loadable segment for simplicity (called boot in the example linker script, see Appendix).

The kernel stack is at the top of the memory, starting at zero and growing downwards. The first
page(s) are mapped by the loader, other pages have to be mapped by the kernel if needed. Each core’s
stack starts at a different address and has 1k length if SMP supported. Level 2 loaders can set the size of
the stack with the initstack symbol.

Using memory mapped regions at linker specified addresses is simple enough (no API required and
ABI doesn’t matter) and provides a platform independent way of passing information to the kernel.

Figure: memory layout on kernel hand over (not to scale). Dark gray areas are not mapped.

18

BOOTBOOT Protocol Reference Implementations

Reference Implementations

The second part of this documentation describes the reference implementations. This serves as a user
manual and also as a library reference for used firmware functions.

All implementations are freely available for download at

https://gitlab.com/bztsrc/bootboot

• x86_64-bios: IBM PC BIOS / Multiboot / El Torito / Linux boot implementation

• x86_64-uefi: IBM PC UEFI implementation

• x86_64-cb: coreboot payload implementation

• aarch64-rpi: Raspberry Pi 3 / 4 implementation

• mykernel: a sample BOOTBOOT compatible kernel for testing

• mkbootimg: an all-in-one, dependency-free bootable disk and partition creation tool

Figure: The sample kernel’s screen for reference

19

https://gitlab.com/bztsrc/bootboot
https://gitlab.com/bztsrc/bootboot
https://gitlab.com/bztsrc/bootboot

BOOTBOOT Protocol Reference Implementations

IBM PC BIOS / Multiboot / El Torito / Linux boot

On BIOS (http://www.scs.stanford.edu/05au-cs240c/lab/specsbbs101.pdf) based systems, the same
image can be loaded from MBR (GPT hybrid booting), chainloaded from VBR, run from ROM or
loaded via Multiboot (https://www.gnu.org/software/grub/manual/multiboot/multiboot.html) or by
Linux boot loaders (https://elixir.bootlin.com/linux/latest/source/Documentation/x86/boot.txt).

Initial Ramdisk
Supported as BIOS Expansion ROM (up to ~96k). Not much space, but can be compressed. From disk
the initial ramdisk is loaded with the BIOS INT 13h / AH=42h function.

Memory Map
The memory map is queried with BIOS INT 15h / AX=0E820h function.

Linear Frame Buffer
Frame buffer initialization is done with VESA 2.0 VBE, INT 10h / AH=4Fh functions.

Machine State
The A20 gate is enabled, serial debug console COM1 is initialized with INT 14h / AX=0401h function
to 115200,8N1. Boot datetime are queried with INT 1Ah. IRQs masked. GDT unspecified, but valid,
IDT unset. SSE enabled, SMP initialized. Code is running in supervisor mode in ring 0 for all cores.

Limitations
• As it boots in protected mode, it only maps 4G of RAM, that’s passed to the 64 bit kernel
• The CMOS nvram does not store timezone, so always GMT+0 returned in bootboot.timezone.
• Does not support AES-256-CBC encrypted initrds, only SHA-XOR-CBC.

Booting
• BIOS disk / cdrom: copy bootboot.bin to FS0:\BOOTBOOT.BIN. You can also place it totally

outside of any partition (with dd conv=notrunc seek=x). Also install boot.bin in the El
Torito CDROM boot catalog, Master Boot Record (or in Volume Boot Record if you have a boot
manager), saving bootboot.bin's first sector in a dword at 0x1B0. The mkboot utility will save
that for you, see (https://gitlab.com/bztsrc/bootboot/blob/master/x86_64-bios/mkboot.c).

• BIOS ROM: install bootboot.bin in a BIOS Expansion ROM.
• GRUB: specify bootboot.bin as a Multiboot "kernel" in grub.cfg, or you can also chainload

boot.bin. Both initrd and environment can be loaded as modules too (see Appendix).

20

https://gitlab.com/bztsrc/bootboot/blob/master/x86_64-bios/mkboot.c
https://elixir.bootlin.com/linux/latest/source/Documentation/x86/boot.txt
https://www.gnu.org/software/grub/manual/multiboot/multiboot.html
http://www.scs.stanford.edu/05au-cs240c/lab/specsbbs101.pdf

BOOTBOOT Protocol Reference Implementations

IBM PC UEFI

On UEFI machines (http://www. uefi .org/), the operating system is loaded by a standard EFI OS loader
application.

Initial Ramdisk
Supported in ROM (up to 16M) as a PCI Option ROM. It is located with the
EFI_PCI_OPTION_ROM_TABLE protocol and (with “-s”) direct probing for magic bytes in memory.

From disk the initial ramdisk is loaded with the EFI_SIMPLE_FILE_SYSTEM_PROTOCOL or
BLOCK_IO_PROTOCOL when GPT is directly parsed. This implementation supports both SHA-
XOR_CBC and AES-256-CBC encrypted initrds.

Memory Map
The memory map is queried with EFI_GET_MEMORY_MAP boot time service.

Linear Frame Buffer
Frame buffer is set up using the EFI_GRAPHICS_OUTPUT_PROTOCOL (GOP in short).

Machine State
Debug console is implemented with SIMPLE_TEXT_OUTPUT_INTERFACE which can be redirected
to serial. Boot date and time are queried with EFI_GET_TIME. IRQs masked. GDT unspecified, but
valid, IDT unset. SSE enabled, SMP initialized with native trampoline code (optionally with
EFI_MP_SERVICES_PROTOCOL). Code is running in supervisor mode in ring 0 for all cores.

Limitations
• The PCI Option ROMs should be signed in order to work.

Booting
• UEFI disk: copy bootboot.efi to FS0:\EFI\BOOT\BOOTX64.EFI.

• UEFI ROM: use bootboot.rom which is a PCI Option ROM image of bootboot.efi.

• GRUB, UEFI Boot Manager: add bootboot.efi to boot options.

21

http://www.uefi.org/
http://www.uefi.org/
http://www.uefi.org/

BOOTBOOT Protocol Reference Implementations

Coreboot payload

The protocol is also supported as a https://coreboot.org payload. This means it is implemented in the
“BIOS”.

Initial Ramdisk
The ramdisk can be placed on a Flashmap partition, or added to the COREBOOT partition using

$ cbfstool coreboot.rom add -t raw -f initrd.tgz -n bootboot/initrd

Otherwise it can be loaded through serial line, or from a GPT partitioned disk, using libpayload’s
storage (ATA, ATAPI, SATA, AHCI), USB disk interfaces and a fallback IDE ATA driver. If libpayload
is compiled with LZMA (xz) or LZ4 compression, then in addition to gzip deflate those are supported
too.

Memory Map
Queried with libpayload’s lib_sysinfo memranges.

Linear Frame Buffer
Not set explicitly, coreboot is expected to be configured for a proper linear frame buffer.

Machine State
Debug console is implemented with libpayload’s console which is by default redirected to serial. Boot
date and time are queried with rtc_read_clock(). IRQs masked. GDT unspecified, but valid, IDT unset.
SSE enabled, SMP initialized. Code is running in supervisor mode in ring 0 for all cores.

Limitations
• The CMOS nvram does not store timezone, so always GMT+0 returned in bootboot.timezone.
• Coreboot does not provide a way to set screen resolution, so "screen=" config option is not used.
• Does not support AES-256-CBC encrypted initrds, only SHA-XOR-CBC.

Booting
• In emulator, qemu-system-x86_64 -bios coreboot.rom.
• Otherwise flash coreboot.rom to your motherboard’s chip.

22

https://coreboot.org/

BOOTBOOT Protocol Reference Implementations

Raspberry Pi 3 / 4

On Raspberry Pi (https://www.raspberrypi.org/) board the bootboot.img is loaded from the boot
partition on SD card as kernel8.img by start.elf.

Initial Ramdisk
No ROM support on the platform, but initrd can be loaded over serial. Ramdisk is loaded by an EMMC
SDHC driver implemented in bootboot. Gzip compression is not recommended as it’s slow.

Memory Map
The memory map is handcrafted with information obtained from VideoCore MailBox’s properties
channel. In addition to standard mappings, the BCM2837 MMIO is also mapped in kernel space before
the frame buffer at -128M or 0xFFFFFFFF_F8000000. The physical address can be acquired from
bootboot.aarch64.mmio_ptr field of the information structure, detected by using MIDR_EL1.

Linear Frame Buffer
Frame buffer is set up with VideoCore MailBox messages.

Machine State
Serial debug console is implemented on UART0 (PL011), with 115200,8N1 and USB debug cable on
GPIO pins 14 / 15 connected to a PC. Co-processor enabled, code is running in supervisor mode, at
EL1 for all cores.

Limitations
• Maps 1G of RAM, because most Raspberry Pi boards don’t have more
• Does not have an on-board RTC chip, so bootboot.datetime is set to 0000-00-00 00:00:00.
• SD cards other than SDHC Class 10 are not tested
• Does not support AES-256-CBC encrypted initrds, only SHA-XOR-CBC.

Booting
• SD card: copy bootboot.img to FS0:\KERNEL8.IMG. You’ll need other firmware files

(bootcode.bin, start.elf) as well. The GPT is not supported directly, therefore ESP partition has
to be mapped in MBR so that Raspberry Pi firmware could find those files. The mkboot utility
(https://gitlab.com/bztsrc/bootboot/blob/master/aarch64-rpi/mkboot.c) will do that for you.

• Serial: copy bootboot.img to FS0:\KERNEL8.IMG, but do not create the BOOTBOOT
directory.

23

https://gitlab.com/bztsrc/bootboot/blob/master/aarch64-rpi/mkboot.c
https://www.raspberrypi.org/

BOOTBOOT Protocol The mkbootimg Disk Image Creator Tool

The mkbootimg Disk Image Creator Tool
This is a simple, dependency-free image creator that is written in ANSI C. It can create FAT partitions,
GPT disk images and hybrid ISO9660 (CDROM/DVD) images.

Creating an initrd ROM image
Assuming you have a valid configuration, you can convert that into a BIOS Option ROM with

./mkbootimg myos.json initrd.rom

Creating an ESP FAT partition
To save only the boot partition image, use

./mkbootimg myos.json bootpart.bin

Creating a hybrid GPT disk / ISO9660 CDROM/DVD image
Using any other file, or disk device filename will generate a full disk image with

./mkbootimg myos.json disk.img

Checking kernel for BOOTBOOT Protocol Level Compliance
As a bonus, this tool can also used to check a kernel executable.

./mkbootimg check ../mykernel/mykernel.x86_64.elf

Complies with BOOTBOOT Protocol Level 1 and 2, valid dynamic
addresses

24

BOOTBOOT Protocol APPENDIX

APPENDIX

Creating a GPT ESP partition
fdisk /dev/sdc

Welcome to fdisk (util-linux 2.30.2).
Changes will remain in memory only, until you decide to write them.
Be careful before using the write command.

Device does not contain a recognized partition table.
Created a new DOS disklabel with disk identifier 0xfa00b86e.

Command (m for help): g
Created a new GPT disklabel (GUID: E6B4945A-8308-448B-9ACA-0E656854CF66).

Command (m for help): n p
Partition number (1-128, default 1): 1
First sector (2048-262110, default 2048):
Last sector, +sectors or +size{K,M,G,T,P} (2048-262110, default 262110): +8M

Created a new partition 1 of type 'Linux filesystem' and of size 8 MiB.

Command (m for help): t 1
Selected partition 1
Partition type (type L to list all types): 1
Changed type of partition 'Linux filesystem' to 'EFI System'.

Command (m for help): w
The partition table has been altered.
Syncing disks.
mkfs.vfat -F 16 -n "EFI System" /dev/sdc1
mkfs.fat 4.1 (2017-01-24)
mkfs.fat: warning - lowercase labels might not work properly with DOS or Windows
mkboot /dev/sdc
mkboot: GPT ESP mapped to MBR successfully

A sample BOOTBOOT compatible kernel
/*
 * mykernel/kernel.c
 *
 * Copyright (c) 2017 bzt (bztsrc@gitlab)
 *
 * This file is part of the BOOTBOOT Protocol package.
 * @brief A sample BOOTBOOT compatible kernel
 *
 */

/* function to display a string, see below */
void puts(char *s);

/* we don't assume stdint.h exists */
typedef short int int16_t;
typedef unsigned char uint8_t;
typedef unsigned short int uint16_t;
typedef unsigned int uint32_t;
typedef unsigned long int uint64_t;

25

BOOTBOOT Protocol APPENDIX

#include <bootboot.h>

/* imported virtual addresses, see linker script */
extern BOOTBOOT bootboot; // see bootboot.h
extern unsigned char environment[4096]; // configuration, UTF-8 text key=value pairs
extern uint8_t fb; // linear framebuffer mapped

/**
 * Entry point, called by BOOTBOOT Loader *
 **/
void _start()
{
 /*** NOTE: this code runs on all cores in parallel ***/
 int x, y, s=bootboot.fb_scanline, w=bootboot.fb_width, h=bootboot.fb_height;

 // cross-hair to see screen dimension detected correctly
 for(y=0;y<h;y++) { *((uint32_t*)(&fb + s*y + (w*2)))=0x00FFFFFF; }
 for(x=0;x<w;x++) { *((uint32_t*)(&fb + s*(h/2)+x*4))=0x00FFFFFF; }

 // red, green, blue boxes in order
 for(y=0;y<20;y++) { for(x=0;x<20;x++) { *((uint32_t*)(&fb + s*(y+20) + (x+20)*4))=0x00FF0000; } }
 for(y=0;y<20;y++) { for(x=0;x<20;x++) { *((uint32_t*)(&fb + s*(y+20) + (x+50)*4))=0x0000FF00; } }
 for(y=0;y<20;y++) { for(x=0;x<20;x++) { *((uint32_t*)(&fb + s*(y+20) + (x+80)*4))=0x000000FF; } }

 // say hello
 puts("Hello from a simple BOOTBOOT kernel");

 // hang for now
 while(1);
}

/**************************
 * Display text on screen *
 **************************/
typedef struct {
 uint32_t magic;
 uint32_t version;
 uint32_t headersize;
 uint32_t flags;
 uint32_t numglyph;
 uint32_t bytesperglyph;
 uint32_t height;
 uint32_t width;
 uint8_t glyphs;
} __attribute__((packed)) psf2_t;
extern volatile unsigned char _binary_font_psf_start;

void puts(char *s)
{
 psf2_t *font = (psf2_t*)&_binary_font_psf_start;
 int x,y,kx=0,line,mask,offs;
 int bpl=(font->width+7)/8;
 while(*s) {
 unsigned char *glyph = (unsigned char*)&_binary_font_psf_start + font->headersize +
 (*s>0&&*s<font->numglyph?*s:0)*font->bytesperglyph;
 offs = (kx * (font->width+1) * 4);
 for(y=0;y<font->height;y++) {
 line=offs; mask=1<<(font->width-1);
 for(x=0;x<font->width;x++) {
 ((uint32_t)((uint64_t)&fb+line))=((int)*glyph) & (mask)?0xFFFFFF:0;
 mask>>=1; line+=4;
 }
 ((uint32_t)((uint64_t)&fb+line))=0; glyph+=bpl; offs+=bootboot.fb_scanline;
 }
 s++; kx++;
 }
}

26

BOOTBOOT Protocol APPENDIX

A sample Makefile
#
mykernel/Makefile
#
Copyright (c) 2017 bzt (bztsrc@gitlab)
#
This file is part of the BOOTBOOT Protocol package.
@brief An example Makefile for sample kernel
#
#

CFLAGS = -Wall -fpic -ffreestanding -fno-stack-protector -nostdinc -nostdlib -I../

all: mykernel.x86_64.elf mykernel.aarch64.elf

mykernel.x86_64.elf: kernel.c
x86_64-elf-gcc $(CFLAGS) -mno-red-zone -c kernel.c -o kernel.o
x86_64-elf-ld -r -b binary -o font.o font.psf
x86_64-elf-ld -nostdlib -nostartfiles -T link.ld kernel.o font.o -o mykernel.x86_64.elf
x86_64-elf-strip -s -K mmio -K fb -K bootboot -K environment -K initstack mykernel.x86_64.elf

mykernel.aarch64.elf: kernel.c
aarch64-elf-gcc $(CFLAGS) -c kernel.c -o kernel.o
aarch64-elf-ld -r -b binary -o font.o font.psf
aarch64-elf-ld -nostdlib -nostartfiles -T link.ld kernel.o font.o -o mykernel.aarch64.elf
aarch64-elf-strip -s -K mmio -K fb -K bootboot -K environment -K initstack mykernel.aarch64.elf

clean:
rm *.o *.elf *.txt

A sample linker script
/*
 * mykernel/link.ld
 *
 * Copyright (c) 2017 bzt (bztsrc@gitlab)
 *
 * This file is part of the BOOTBOOT Protocol package.
 * @brief An example linker script for sample kernel
 *
 */
mmio = 0xfffffffff8000000; /* these are configurable for level 2 loaders */
fb = 0xfffffffffc000000;
bootboot = 0xffffffffffe00000;
environment = 0xffffffffffe01000;
initstack = 1024;
PHDRS {
 boot PT_LOAD; /* one single loadable segment */
}
SECTIONS
{
 . = 0xffffffffffe02000;
 .text : {
 KEEP(*(.text.boot)) *(.text .text.*) /* code */
 (.rodata .rodata.) /* data */
 (.data .data.)
 } :boot
 .bss (NOLOAD) : { /* bss */
 . = ALIGN(16);
 (.bss .bss.)
 *(COMMON)
 } :boot
}

27

BOOTBOOT Protocol APPENDIX

A sample Symmetric Multi Processing code
x86_64*

_start:
 mov $1, %eax
 cpuid
 shr $24, %ebx
 cmpw %bx, bootboot + 0xC // bootboot.bspid
 jne .ap
 /* things to do on bootstrap processor */
.ap:
 /* things to do on application processors */

AArch64

_start:
 mrs x0, mpidr_el1
 and x0, x0, #3
 cbnz x0, .ap // BSP is always core 0
 /* things to do on bootstrap processor */
.ap:
 /* things to do on application processors */

(* - APIC only supports cores up to 256. Use x2APIC for full compatibility, up to 65536 cores)

A sample grub.cfg entry
menuentry "MyKernel" {
 multiboot /bootboot.bin # the loader
 module /bootboot/initrd # first module is the initrd (optional)
 module /bootboot/config # second module is the environment file (optional)
 boot
}

A sample mkbootimg.json configuration file
{
 "diskguid": "00000000-0000-0000-0000-000000000000",
 "disksize": 128,
 "config": "boot-x86_64/sys/config",
 "initrd": { "type": "tar", "gzip": true, "directory": ["boot-x86_64", "boot-AArch64"] },
 "iso9660": 1,
 "partitions": [
 { "type": "fat16", "size": 16 },
 { "type": "ext4", "size": 32, "name": "MyOS usr", "file": "usrpart.bin" },
 { "type": "ntfs", "size": 32, "name": "MyOS var", "file": "varpart.bin" }
]
}

Loading emergency initrd over serial
If you want to boot the initial ramdisk over a serial cable, you’ll need raspbootcom, originally
written by Goswin von Brederlow (https://github.com/mrvn/raspbootin) or use the ANSI C rewrite
(https://gitlab.com/bztsrc/bootboot/blob/master/aarch64-rpi/ raspbootcom .c), or USBImager with -S
(https://bztsrc.gitlab.io/usbimager) (which is GUI application for Windows, MacOSX and Linux) on
host to send an initrd file over serial cable.

Protocol:
Client → Server 3 bytes, “\003\003\003” (three times Ctrl+C)
Server Client→ 4 bytes, size of the image in little endian
Client Server→ 2 bytes, “OK” or “SE” (Size Error)
Server Client→ size bytes, image (only if response was “OK”)

28

https://bztsrc.gitlab.io/usbimager
https://bztsrc.gitlab.io/usbimager
https://gitlab.com/bztsrc/bootboot/blob/master/aarch64-rpi/raspbootcom.c
https://gitlab.com/bztsrc/bootboot/blob/master/aarch64-rpi/raspbootcom.c
https://gitlab.com/bztsrc/bootboot/blob/master/aarch64-rpi/raspbootcom.c
https://github.com/mrvn/raspbootin

BOOTBOOT Protocol APPENDIX

Troubleshooting

BOOTBOOT-PANIC: no LBA support

Really old hardware. Your BIOS does not support LBA. This message is generated by 1st stage loader
(boot.bin).

BOOTBOOT-PANIC: no FS0:\BOOTBOOT.BIN

The loader is not on the disk or it's starting LBA address is not recorded in the boot sector at dword
[0x1B0] (see mkboot). As the boot sector supports RAID mirror, it will try to load the loader from
other drives as well. This message is generated by 1st stage loader (boot.bin).

BOOTBOOT-PANIC: Hardware not supported

Really old hardware. On x86_64, your CPU is older than family 6.0 or PAE, MSR, LME features not
supported. On AArch64 it means the MMU does not support 4k granule size or at least 36 bit address
size.

BOOTBOOT-PANIC: Unable to initialize SDHC card

The loader was unable to initialize EMMC for SDHC card access, probably hardware error or old card.

BOOTBOOT-PANIC: No GPT found

The loader was unable to load the GUID Partitioning Table.

BOOTBOOT-PANIC: No boot partition

There's no EFI System Partition nor any other bootable partition in the GPT. Or the FAT file system is
found but corrupt (contains inconsistent BPB data), or doesn't have a BOOTBOOT directory (with 8+3
MSDOS entry, not LFN).

29

https://gitlab.com/bztsrc/bootboot/blob/master/x86_64-bios/mkboot.c

BOOTBOOT Protocol APPENDIX

BOOTBOOT-PANIC: Not 2048 sector aligned

This error is only shown by bootboot.bin (and not by bootboot.efi or bootboot.img) and only when
booted from CDROM in El Torito "no emulation" mode, and the boot partition file system's root
directory is not 2048 bytes aligned or the cluster size is not multiple of 2048 bytes. For FAT16 it
depends on FAT table size and therefore on file system size. If you see this message, increase the
number of hidden sectors in BPB by 2. FAT32 file systems are not affected.

BOOTBOOT-PANIC: Initrd not found

The loader could not find the initial ramdisk image on the boot partition.

BOOTBOOT-PANIC: Kernel not found in initrd

Kernel is not included in the initrd, or initrd's fileformat is not recognized by any of the file system
drivers and scanning haven't found a valid executable header in it.

BOOTBOOT-PANIC: Kernel is not a valid executable

The file that was specified as kernel could be loaded by fs drivers, but it's not an ELF64 or PE32+, does
not match the architecture, or does not have any program header with a loadable segment (p_vaddr or
core_base) in the negative range (see linker script). This error is also shown by level 2 loaders if the
address of mmio, fb, bootboot and environment symbols are not in the negative range (-1G to 0)
or if they are not page aligned. On x86_64 the fb symbol, and for AArch64 the mmio symbol must be
2M aligned too. Use mkbootimg check to find out what the problem is.

BOOTBOOT-PANIC: Kernel is too big

The kernel is bigger than 16 megabytes. For level 1 loaders, the limit is somewhere below 2M.

BOOTBOOT-PANIC: GOP failed, no framebuffer

BOOTBOOT-PANIC: VESA VBE error, no framebuffer

BOOTBOOT-PANIC: VideoCore error, no framebuffer

The first part of the message varies on different platforms. It means that the loader was unable to set up
linear framebuffer with packed 32 bit pixels in the requested resolution. Possible solution is to modify
screen to screen=800x600 or screen=1024x768 in environment.

30

BOOTBOOT Protocol APPENDIX

BOOTBOOT-PANIC: Unsupported cipher

This message is shown if the initrd is encrypted with a cipher that the loader does not support. Solution:
regenerate and encrypt the initrd image with SHA-XOR-CBC cipher, known to all implementations.
(Note: encryption is only supported for FS/Z initrd images.)

INDEX
BCM2837.........................16, 23
BIOS.....................12, 14, 19, 20
Boot partition.......10, 13, 14, 23
Bootboot struct...12, 14, 16, 17,
27
Booting.....................................9
Bss....................................18, 27
Code.................................18, 27
Coreboot...............12, 14, 19, 22
Data..................................18, 27
Does not support AES-256-
CBC encrypted initrds, only
SHA-XOR-CBC.....................22
El Torito...........................19, 20
El Torito,.................................12
Environment5, 7, 11, 12, 13, 14,
17, 18, 27

ESP...................................10, 23
Executable and Linkable Format
..7, 12
FAT.............................10, 11, 13
File system drivers............11, 13
Frame buffer..12, 15, 17, 20-23,
27
GPT......................10, 20, 23, 24
GRUB...........................7, 20, 21
GUID Partitioning Table....7, 10
Gzip....................................9, 23
Kernel5, 7, 9, 12, 13, 14, 16, 18,
20, 23
Linux boot........................19, 20
Machine State..............17, 20-23
MBR.................................20, 23
Memory layout.................17, 18

Memory Map. .12, 14, 16, 20-23
MMIO............12, 16, 17, 23, 27
Multiboot....................12, 19, 20
Portable Executable............7, 12
Ramdisk7, 9, 10, 11, 13, 15, 17,
20-23
Raspberry Pi...10, 12, 14, 19, 23
Raspbootcom..........................28
ROM.................7, 10, 20, 21, 23
SD card...............................7, 23
Serial................................23, 28
SMP......................15, 18, 20-22
UEFI...............10, 12, 14, 19, 21
USBImager.............................28
VBR.......................................20

31

	Preface
	Introduction
	Specification
	Booting an Operating System
	On Operating System Kernel Designs
	The Initial Ramdisk Image
	The Boot Partition
	File System Drivers
	Kernel Format
	Protocol Levels
	Static
	Dynamic

	Entry Point

	Environment
	The bootboot Structure
	Header Fields
	Platform Independent
	Platform Dependent Pointers

	Memory Map Entries

	Linear Frame Buffer
	Machine State

	Reference Implementations
	IBM PC BIOS / Multiboot / El Torito / Linux boot
	Initial Ramdisk
	Memory Map
	Linear Frame Buffer
	Machine State
	Limitations
	Booting

	IBM PC UEFI
	Initial Ramdisk
	Memory Map
	Linear Frame Buffer
	Machine State
	Limitations
	Booting

	Coreboot payload
	Initial Ramdisk
	Memory Map
	Linear Frame Buffer
	Machine State
	Limitations
	Booting

	Raspberry Pi 3 / 4
	Initial Ramdisk
	Memory Map
	Linear Frame Buffer
	Machine State
	Limitations
	Booting

	The mkbootimg Disk Image Creator Tool
	Creating an initrd ROM image
	Creating an ESP FAT partition
	Creating a hybrid GPT disk / ISO9660 CDROM/DVD image
	Checking kernel for BOOTBOOT Protocol Level Compliance

	APPENDIX
	Creating a GPT ESP partition
	A sample BOOTBOOT compatible kernel
	A sample Makefile
	A sample linker script
	A sample Symmetric Multi Processing code
	A sample grub.cfg entry
	A sample mkbootimg.json configuration file
	Loading emergency initrd over serial
	Troubleshooting

	INDEX

