The

BOOTBOOT

Protocol

Specification and Manual

First Edition
2017

BOOTBOOT Protocol

Copyright
The BOOTBOOT Protocol and the reference implementations are the intellectual property of

Baldaszti Zoltdan Tamds (BZT) bztemail at gmail dot com

and licensed under the

MIT licence

Copyright (C) 2017 bzt (bztsrc@gitlab)

Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation
files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use, copy,
modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

BOOTBOOT Protocol

Table of Contents

PIOEACE. ...ttt ettt ettt e e e et e e et e e e be e e bt e e entee e tteeeeeennraes 5
0115 070 L Te o) s FO OO SPRURPPPPPO 7
SPECTIICALION. ...ttt ettt ettt et e et e ettt e et e saateesabteeeabteesabeeensbeeesabeeenseeennbeeesteesnseeeeseannnes 9
Booting an Operating SYSLEIM.........eeiuiiiriieeriieeiiteeiiee ettt e eiteesiteeeteeestteesibeeesaseeenaseesnseesnssaeeessssnssees 9
On Operating System Kernel DESIZNS.ccc.ueiiuiiiriiiiniiieiiie et eieeetee et e st e e sbe e e eeeessasseeee s 9
The Initial Ramdisk TMaGe.........c.ceeriiiiiiiiiiii ettt et e et e e e s e 9
The BOOt PATTIION.viiiiiieiiiie ittt ettt e et e et e e et e e s bt eesabaeesasaeesabeeesesnnsnaeeeannns 10
FAIE SYStEIM DITIVEIS.....eiiiiiiiieiiiieeite ettt ettt e s e e e bt e e st e e e et e e e sbeeetbeesnsaeesnsneesnseeennneas 11
KEINET FOTMAL. ... tiiiiiieeiie et et et e sttt e st e e st e e sabeeesabeeeeabeeensbeeenbeesnnnns 12
PrOtOCOL LLEVEIS.eeeiiiieiiieeite ettt et et s e st e e st e e sabeeesabeeenabeessseesanseenas 12

] 715 TSROSO SRTSRR 12
DYINAIMIIC. ¢ttt ettt e et e et e e st e e e et e e e st ee e st eeensbeeensbeeeabbeeenbaeeeennbaaeens 12

ENEEY POINL. ..ottt ettt et e ettt e sttt e st e e sabteesabeeesabeeennsbaeeeeennnns 12

L A1 (0) 1110 <) 1L SO UP PP 13
The DOOIDOOE STIUCKTULE......ccuviiiiiieeiiie ettt ettt e e et e e st e e e sabeeesteessteeesbeesnsaeesnssseeeaenns 14
HeEAdET FIEIAS.eeiiiiiieeee ettt ettt e et e e et e e st e e e abee et aaee e e nnneees 14
Platform INAEPEendent..........cccuviieiiiiiiiiieieeeeeee et et e e ee s 14
Platform Dependent POINLETS.ccc.eiiiiiiiiiieiiieeeiteeeit ettt ettt e e ee e e e sibreeeeeenes 16
MemOTY MaAP ENLTIES.coiiiiiiiieeiie ettt ettt et e sttt e sttt e st e e s bt e e sabeeesabaeennseessnnns 16
Linear Frame BUfTer..........oooiiiiiiiieee ettt et e e e e e s 17
IMLACKINE SEALE........eeeeiiiieeiieeeite ettt ettt e sttt e et e e st e e s bt e e e st eeesaaeeeabeeesbeeensaeesnsbeeesannnsaeeeeennnns 17
Reference ImMpPlemMENtations.covuiiiriieiriieeiie ettt ettt et e st e s bt e e sbbeesbaeesnbaeeeennnnenaeens 19
IBM PC BIOS / MUIDOOL.ccutiiiieiieeiieiieeit ettt stte ettt e saeeseessaeesaessseesssaeesnseeesnnseeeennses 20
Initial RAMAISK.....coouiiiiiiieiiiieee ettt e et e st e e sabaeesabeeesabeeesabeeennbeeenes 20
IMEMOTY IMAP....ce ettt ettt e st e st e e st e e abee e abeeeabeeesabeessateesabaeesanteeeeennssaeeesennns 20
Linear Frame BUffer.........coooiiiiiiiiee ettt e 20
IMACKINE SEALE.....ccutiiiiiiieeiie ettt ettt e st e et e e st e e s abeeesabeeesabee e s nssbaeeeesnnnsbaeeeesnnnns 20

| 331011211) 1 PSP POUO PRSPt 20
BOOUNG. ...ttt ettt et et e e et e e bt eenabee e e e bbtaeeeeennnbtaeeeeenanns 20
IBIM PC UEFLL.....cootiiiiieiiecieete ettt ettt ettt st e e bt e e sbeestesnbeesseessseenseesnseenseessseenseennns 21
INitial RAMAISK....ccoouiiiiiiieiiiieeeeee ettt ettt e st e e sabb e e sbeeessbeeesabeeesabeeenns 21
IMEMOTY IMAP....ce ettt ettt e st e st e e st e e abee e abeeeabeeesabeessateesabaeesanteeeeennssaeeesennns 21
Linear Frame BUffer.........coooiiiiiiiiee ettt e 21
IMACKINE SEALE.....cuviieiiiiieeiie ettt ettt e ettt e et e e st e e sabeeesabeeesabae e s nnstaeeessnnnsbaeeeesnnnns 21

| 331011110) 1 PO U PP RRRUPPSPRRNt 21
BOOUNG. ...ttt ettt et et e e et e e bt eenabee e e e bbtaeeeeennnbtaeeeeenanns 21
RASPDEITY P13ttt et e st e e st e e st e e e abeeeabeeeabeeesennnsbeeeaenns 22
INitial RAMAISK.....coouiiiiiiieiiiieeeeee ettt ettt e ettt e st e e st e e s bt e e sabeeesabeeenabeeenns 22
IMEMOTY IMAP.....ce ettt ettt e e e e st e e s abe e e st e e abeeeabeeesabeesssseesssaeesabbeeseennssneeesennns 22
Linear Frame BUffer.........coooiiiiiiiiee ettt e 22

BOOTBOOT Protocol

IMACKINE STALE.......eeuiiiiiieiieeteet ettt st e eb e et e bt st e s bt e et e e s bt e e sbbeeesnneeenans 22
LIMIEATIONS. ¢ttt ettt ettt e bt st e bt e sat e bt e sat e e beesateebeesaaeenneeenans 22
BOOUNG. ...ttt ettt e et e et e e bt e e abee e e e bbtaeeeeennnttaeeeeenanns 22
APPEINDIX ...ttt ettt ettt h ettt h et e a e s bt e bt eae e bt e bt e st e eh e e bt et e ehteeenteenareena 23
Creating @ GPT ESP PartitiOn........ccoiuiiiiiieiiiieiiiie ettt ettt ettt e et e esiaeesiibteeeessnnbaeeeesennnns 23

A sample BOOTBOOT compatible Kernel...........c.cooouiiiiiiiiiiiiiiieiieeieeee ettt 23

A SAMPIE MAKETIIC........eeiiiiiiiiie ettt sttt e st e st eeeeas 25

A SAMPIE TINKET SCIIPL....eiiiiiiiiiieeiie ettt et e et e et ee e et e e st e e sntteesnbaeesntaeesnsaaeeas 25
INDEX .. ettt ettt et e h bt sh e bt e h e e bt e bt it e bt bt et e bt e bt e it eab e e e bt e e bt e enaeeeaee 26

BOOTBOOT Protocol

Preface

“A beginning is a very delicate time.”

/ Frank Herbert /

In the last decade of personal computers era big changes happened in the way how computers boot.
With the appearance of 64 bit, for the first time in computer’s history, the memory address space

became bigger than the storage capacity alltogether. This yielded fundamental changes in firmware.

Also storage capacity kept growing if not according to Moore’s Law, but in a very fast curve. Old ways
of storing partitioned data became obsolete, and new partitioning tables were inveted, one of which

became the new de facto standard.

Unfortunatelly the firmware that introduced the new partitioning format is way to complex and bloated,
and therefore many manufacturers refuse to implement it (specially on small hardware with limited
resources). As a result, there is no de facto standard for a booting interface, different hardware use
different, incompatible ways of booting. Not all firmwares implemented that new partiting table either.
To make things worse, many of them also kept backward compatibility with ancient machines.

There are attempts to make booting unified, but unfortunately in a so complex and bloated way again,
that one could easily call that loader an OS of it’s own right.

Therefore I’ve created a specification for a common way of starting an operating system, and I've
provided several different reference implementations one for each platform. The goal is, by the time
those small platform dependent code’s execution finished, there’s a common 64 bit environment on all
platforms, capable of running an unmodified C code compiled with the same linker script. The source
and the pre-compiled binaries (along with an example C kernel) can be downloaded at:

https://gitlab.com/bztsrc/bootboot

Those reference implementations are Open Source and Free Software, and come without any warranty
in the hope that they will be useful.

Baldaszti Zoltdn Tamds

https://github.com/bztsrc/bootboot
https://github.com/bztsrc/bootboot
https://github.com/bztsrc/bootboot

BOOTBOOT Protocol

Page left blank intentionally

BOOTBOOT Protocol

Introduction

When you turn on a computer, an operating system has to be loaded. There are sophisticated programs
to allow you to choose from multiple systems on a single machine such as GRUB. Those are called boot
managers. BOOTBOOT is not one of them. It is a boot loader, with the goal of providing the same 64
bit environment on several different platforms (to store the bytes “BOOTBOOT” in memory requires 64
bits). If you want to have multiple boot options on one computer, you must install a boot manager with a
BOOTBOOT loader option in order to boot a BOOTBOOT compatible operating system. If you are fine
with having only one operating system per machine, there’s no need for a boot manager, the boot loader
alone enough.

The operating system can be loaded in many different ways. From ROM, from flash, from a disk, from
SD card, over serial cable or over the network etc. The BOOTBOOT Protocol does not specify these.
Neither does it specify the archive image’s format of the ramdisk used. These are subject to change from

time to time and from system to system.

The protocol mandates though that if the operating system is stored on disk, that disk must follow the
GUID Partitioning Table format (or any later de facto standard partitioning format). As not all firmware
support partitioning equally, it is the loader’s responsibility to hide this and locate the operating system
on a partitioned disk. Therefore end users do not have to care about firmware differences when they
want to boot from a disk partitioned and formatted on another machine.

A few words on the operating system’s kernel format itself. As of writing, there is no de facto standard,
but two most widely used formats: the Executable and Linkable Format, and the Portable Executable
format. It would be unfair to say one is better than the other, since they both represent the same
information just in a different way. Therefore both are supported by the protocol. If one of them (or a
new format) became the standard, the protocol has to be revised, and should focus on that format alone,
so that the end users don’t have to care about executable format either.

Finally the organisation of this documentation. There are two parts: first part describes the protocol in

detail, and the second part describes three implementations on different platforms.

BOOTBOOT Protocol

Page left blank intentionally

BOOTBOOT Protocol Specification
Specification

The first part of this documentation contains the BOOTBOQOT Protocol specification.

Booting an Operating System

The term booting a computer refers to many things, but at the end of the day it means only one: pass the
control to the operating system’s kernel along with environmental information.

On Operating System Kernel Designs

There are two common kinds of kernels. First one contains everything in a single, mostly statically
linked image (monolithic kernel). The second kind separated into several files. That keeps the privileged
duties to a small kernel (micro-kernel, exokernel, hypervisor etc.) and everything else is pushed into
separated user space tasks which usually are stored in separate files (but not necessairly, see Minix).

Both kinds may have initial ramdisks. Used to store files in memory during boot prior to any on disk file
system available. For monolithic design that image is usually loaded along with the kernel and (as
drivers are included in the kernel), optional. On the other hand for micro-kernels such an archive image

for ramdisk is essential if each task’s code is in a separate file.

The creator of BOOTBOOT Protocol and the vast majority of OS developers consider the micro-kernel
design more secure and flexible (and also most monolithic design already have their own way of booting

for each and every platform), so the BOOTBOOT Protocol is for micro-kernels.

The Initial Ramdisk Image

As the protcol focuses on micro-kernel design which needs several other files (drivers and such), it
requires that the operating system has an initial ramdisk image. And as the image has to be loaded
anyway, it’s benefitial to store the kernel itself inside. This is not common as of writing, but simplifies
booting procedure by reducing the number of required files to one just as with the monolithic design.
Note that the protocol is flexible enough to load a single, statically linked kernel with more tasks (like
Minix) as a “ramdisk” image.

Compression on ramdisk image is optional. Reference implementations support gzip deflate compressed
images, but other implementation may use different algorithms as long as the compression can be
detected with magic bytes. A BOOTBOOT compliant loader will uncompress the image once loaded

into memory. As the whole image is loaded entirely, it should be kept small (few megabytes).

BOOTBOOT Protocol Specification

The uncompressed format of the ramdisk image is not part of the protcol. Each and every operating
system are free to choose what’s best for it’s purpose. Therefore BOOTBOQOT Protocol only specifies an

Application Programming Interface to parse the image for a file, and a fallback option.

The Boot Partition

The protocol does not describe the whereabouts of the initial ramdisk image. It only excepts that a
BOOTBOOT Protocol compliant loader can locate, load and uncompress it into RAM. The reference
implementations use files over serial, ROM and disks with boot partition as source.

BOOTBOQOT Protocol assumes that the disk partitioning format is the GUID Partitioning Table. The
reason for this is inter-operability among different operating systems.

A boot partition is a small partition at the beginning of the disk. It may store files relevant to the

firmware, but most importantly for the protocol, the initial ramdisk image.

If the boot partition has a file system, for compability reasons it has to be FAT16 or FAT32 formatted.
Many firmware (such as UEFI and the Raspberry Pi) mandates this too for their firmware partition. If
the boot partition holds firmware files for booting, it should have the type of “EFI System Partition” or
ESP in short. This is so because GPT was introduced with the EFI firmware (superseded by UEFI). In

this set-up the initial ramdisk image is a file on the boot partition, located in:
BOOTBOOT\INITRD

or with multiple architecture support on the same partition (only for live OS images):
BOOTBOOT\(arch)

like BOOTBOOT\X86_64 or BOOTBOOT\AARCHG64.

If the firmware’s partition does not use a file system, or does not understand FAT16 or FAT32 or has a

specific type (so that ESP type cannot be used), then firmware partition and boot partition became two
separate partitions.

In that case an operating system designer has two option: either creating another FAT partition with a
BOOTBOOT directory and the initial ramdisk file in it; or putting the ramdisk image on the whole
partition, leaving the FAT file system entirely out. In either case, the boot partition has to be marked as
EFI_PART_USED_BY_OS (bit 2 in GPT Partition Entry’s attribute flag set).

Keep in mind that ramdisk image will be loaded entirely in memory, so if it occupies the whole boot
partition, that partition should be small.

If you want to boot the initial ramdisk over a serial cable (Raspberry Pi 3 only), you’ll need

raspbootcom, originally written by Goswin von Brederlow (https://github.com/mrvn/raspbootin).

10

https://github.com/mrvn/raspbootin

BOOTBOOT Protocol Specification

File System Drivers

As mentioned before, the BOOTBOOT Protocol does not specify the initial ramdisk format, instead it
uses so called file system drivers with one API function:
typedef struct {
uint8 t *ptr;
uint64 t size;
} file t;
file t myfs initrd(uint8 t *initrd, char *filename);

In the reference implementations’ source those file system drivers are separated in a file called fs.h (or

fs.inc). Each supported ramdisk image format has exactly one function in those files.

Each function receives the address of the initial ramdisk image, and a pointer to a zero terminated
ASCII filename. If the file referenced by filename found, the function should return a struct with a
pointer to the first byte of the file content and the content’s size. If needed, the file system driver allowed
to allocate memory. On error (when the format not recognized or the file is not found) the function must
return {NULL, 0}. The protocol expects that a BOOTBOOT compliant loader iterates on the list of

drivers until one returns a valid result.

If all the file system drivers failed and returned {NULL,0}, a fallback driver will be initiated. That
fallback driver will scan the ramdisk for the first file which has a valid executable format for the
architecture. So file permissions and attributes does not matter, only the file header counts. This makes
it possible to load a kernel executable with statically linked file contents as a “ramdisk”.

If the ramdisk format is supported by one of the file system drivers, the name of the kernel can be
passed in the environment with the key kernel.

The reference implementations support the following archive and file system image formats:

* statically linked executable (all files linked together into one executable)

* ustar

* ¢pio (hpodc, newc and crc variants)

* FS/Z (OS/Z’s native file system)

* SFS (osdev.org’s own file system)

* James Molloy’s initrd (popular among hobby OS developers for some reason)
Other archive and file system format support can be added any time according the needs of the
operating system, with one exception. The FAT file system is not allowed as initial ramdisk format. This
1s not a serious restriction as it’s very unlikely someone want to use FAT that way. This is so because
FAT is not efficient as an in memory file system. Ustar or cpio would be a far better choice.

11

BOOTBOOT Protocol Specification

Kernel Format

The kernel executable should be either an Executable and Linkable Format (ELF), or a Portable
Executable (PE). In both cases the format itself must be 64 bit (ELFCLASS64 in ELF and
PE_OPT_MAGIC_PE32PLUS in PE).

The code segment must be compiled for a native 64 bit architecture and linked in the negative address
range (with another terminology, higher half address space). The reference implementations support
(EM_X86_64 (62) or EM_AARCHG64 (183) in ELF, and IMAGE_FILE_MACHINE_AMDG64 (0x8664)
or IMAGE_FILE_MACHINE_ARMG64 (0xAA64) in PE). The x86_64 architecture is used by the BIOS /
Multiboot and UEFI loaders, while AArch64 is supported on the Raspberry Pi 3.

Protocol Levels

Now how and where the kernel is mapped depends on the loader’s protocol level. The reference
implementations implement level 1, PROTOCOL_STATIC. The level 2, PROTOCOL_DYNAMIC is for
future implementations. Level 0, PROTOCOL_MINIMAL is used for embedded systems where
environment is not implemented, all values and addresses are hardcoded and the frame buffer may not

exists at all.

Static

A loader that implements protocol level 1, maps the kernel and the other parts at static locations in
accordance with the linker (see chapter Machine State for the addresses). In the specification hereafter,
the static protocol’s addresses will be used for simplicity. For forward compatibility, all BOOTBOOT

compatible kernels must provide symbols required by level 2.

Dynamic
A level 2 dynamic loader on the other hand generates memory mapping according what’s specified in
the kernel’s symbol table. It only differs from level 1 that the addresses are flexible (but still limited to

the negative address range).

* Kernel will be mapped at executable header’s Elf64_Ehdr.p_vaddr or pe_hdr.code_base field.
* The bootboot structure will be mapped at the address of bootboot symbol.

* The environment string will be mapped at the address of environment symbol.

* The linear frame buffer will be mapped at the address of fb symbol.

Entry Point

When BOOTBOOT compliant loader finished with booting, it will hand over the control to the kernel at
the address specified in Elf64_FEhdr.e_entry or pe_hdr.entry_point.

12

BOOTBOOT Protocol Specification

Environment

If the boot partition has a FAT file system, the environment configuration is loaded from
BOOTBOOT\CONFIG

If the initial ramdisk occupies the whole boot partition, then file system drivers are used to locate
sys/config

If the latter is not appropriate for the operating system, the name of the file can be altered in bootboot

source. The size of the environment is limited to the size of one page frame (4096 bytes).

Configuration is passed to your kernel as newline (‘\n’ or OxA) separated, zero terminated UTF-8 string
with "key=value" pairs. C style single line and multi line comments are allowed. BOOTBOQOT Protocol
only specifies two of the keys, screen and kernel, all the others and their values are up to the operating
system’s kernel (or device drivers) to parse. Example:

// BOOTBOOT Options

/* --- Loader specific --- */

// requested screen dimension. If not given, autodetected
screen=800x600

// elf or pe binary to load inside initrd

kernel=sys/core

/* --- Kernel specific, you're choosing --- */
anythingyouwant=somevalue

otherstuff=enabled

somestuff=100

someaddress=0xA0000

The screen parameter defaults to the display’s natural size or 1024x768 if that cannot be detected. The
minimum value is 640x480.

The kernel parameter defaults to sys/core as the kernel executable’s filename inside the initial ramdisk
image. If that does not fit for an operating system, it can be specified in the environment or can be
modified in bootboot source.

Temporary variables will be appended at the end (from UEFI command line). If multiple instance exists
of a key, the later takes preference over the former.

To modify the environment when having booting issues, one will need to insert the disk into another
machine (or boot a simple OS like DOS) and edit BOOTBOOT\CONFIG on the boot partition with a

13

BOOTBOOT Protocol Specification
text editor. With UEFI, you can use the edit command provided by the EFI Shell or append "key=value"
pairs on the command line (keys specified on command line take precedence over the ones in the file).

The environment is mapped before the kernel image in memory, at address specified by the linker. In

kernel, it can be accessed with

extern unsigned char *environment;

The bootboot Structure

The bootboot struct is specified in bootboot.h, available at

https://gitlab.com/bztsrc/bootboot/blob/master/bootboot.h

It is the main information structure passed to the kernel by the loader. It is written with a define guard

and extern “C” wrapper, so it can be safely used from a C++ kernel too.

The structure consist of a fixed 128 bytes header, and a variable sized memory map, each entry 16 bytes
long. The first 64 bytes of the header are common across platforms, the second 64 bytes hold a set of
platform specific pointers.

Header Fields

Platform Independent

uint8 t magic[4]; // 0x00-0x03
The magic bytes BOOTBOOT_MAGIC, “BOOT”.
uint32 t size; // 0x04-0x07

The size of the bootboot struct. That is 128 bytes at least, plus the memory descriptors’ size.
uint8 t protocol; // 0x08

This informational field encodes BOOTBOOT Protocol level in bits 0 — 1 (as implemented by the
loader which constructed the struct). Either PROTOCOL_STATIC (1) or PROTOCOL_DYNAMIC (2).

If bit 7 (the sign bit) is set, then the structure has big-endian values, PROTOCOL_BIGENDIAN (0x80).

uint8 t loader type; // 0x09

This is another informational field for the kernel, either LOADER_BIOS (0), LOADER_UEFI (1) or
LOADER _RPI (2) for now.

uint8 t pagesize; // OxOA

The size of the page frame in power of two. Page size in bytes can be calculated as 200 pasesize,

14

https://github.com/bztsrc/bootboot/blob/master/bootboot.h
https://github.com/bztsrc/bootboot/blob/master/bootboot.h
https://github.com/bztsrc/bootboot/blob/master/bootboot.h
https://github.com/bztsrc/bootboot/blob/master/bootboot.h
https://github.com/bztsrc/bootboot/blob/master/bootboot.h

BOOTBOOT Protocol Specification

uint8 t fb type; // 0xO0B

The frame buffer format, FB_ARGB (0) to FB_BGRA (3). The most common is FB_ARGB, where the
least significant byte is blue, and the most significant one is unused (as alpha channel is not used on Ifb)
in little-endian order.

uintle t bspid; // 0x0C-0x0D
The BootStrap Processor ID on platforms that support multiple cores (Local APIC ID on x86_64).
intl6 t timezone; // OXOE-0OxO0F

The machine’s detected timezone if such a thing supported on the platform. This is in minutes from
-1440 to 1440, and does not affect the value in the datetime field (which is always in UTC).

uint8 t datetime[8]; // 0x10-0x17

The UTC date of boot in binary coded decimal on platforms that have RTC chip. The first two bytes in
hexadecimal gives the year, for example 0x2017, then one byte the month 0Ox12, one byte day 0xOl.
Followed by hours 0x23, minutes 0x59 and second 0x00 bytes. The last byte can store 1/100th second
precision, but in lack of support on most platforms, it is 0x00. Not influenced by the timezone field.

uint64 t initrd ptr; // 0x18-0x1F
uinté4 t initrd size; // 0x20-0x27

The address and size of the initial ramdisk in memory in the positive address range.

uint8 t *fb ptr; // 0x28-0x2F
uint32 t fb size; // 0x30-0x33

Frame buffer physical address and size in bytes. Do not confuse with linker specified fb virtual address.

uint32 t fb width; // 0x33-0x37
uint32 t fb height; // 0x38-0x3B
uint32 t fb scanline; // 0x3C-0x3F

The frame buffer resolution and bytes per line as stored in memory (see chapter Linear Frame Buffer for
details).

15

BOOTBOOT Protocol Specification

Platform Dependent Pointers

The second 64 bytes of the header is architecture specific. Only used on x86_64 architecture:

uint64 t
uint64 t
uint64 t
uint64 t
uint64 t
uint64 t
uint64 t
uint64 t

x86 64.
x86 64.
x86 64.
x86 64.
x86 64.
x86 64.
x86 64.
x86 64.

acpi ptr;
smbi ptr;
efi ptr;
mp_ptr;

unusedo;
unusedl;
unused2;
unused3;

// 0x40-0x7F

Only on AArch64. The mmio_ptr field maps the BCM2837 MMIO area at kernel space:

uint64 t
uint64 t
uint64 t
uint64 t
uint64 t
uint64 t
uint64 t
uint64 t

aarcho64.
aarcho64.
.efi ptr;
aarcho64.
aarcho64.
aarchoe4.
aarcho64.
aarcho64.

aarch64

acpi ptr;
mmio ptr;

unusedo;
unusedl;
unused2;
unused3;
unused4;

// Ox40-0x7F

Memory Map Entries

MMapEnt mmap; // 0x80-0xFFF

A platform independent memory map. If a kernel does not use an upper address bound for these, the
number of entries can be calculated with

num_mmap_entries = (bootboot.size — 128) / 16;
The memory entry information can be extracted with the following C macros:

MMapEnt_Ptr(a) = the pointer of the memory area

MMapEnt_Size(a) = the size of the memory area in bytes

MMapEnt_Type(a) = the type of the memory area in range of 0 — 15

MMapEnt_IsFree(a) = returns true if the memory area can be used by the OS.
The type returns one of MMAP_USED (0), MMAP_FREE (1), MMAP_ACPIFREE (2, usable after OS
parsed ACPI tables), MMAP_ACPINVS (3) non-volatile system RAM, MMAP_MMIO(4). Any other
value is considered to be MMAP_USED.

The bootboot struct is mapped before the kernel image in memory, at address specified by the linker. In
kernel, it can be accessed with

extern BOOTBOOT bootboot;

16

BOOTBOOT Protocol Specification

Linear Frame Buffer

The frame buffer is initialized in 32 bit packed pixel format, preferably ARGB mode. It’s resolution will
be the display’s native resolution or 1024x768 if that can’t be detected. The requested screen resolution
can be passed in environment with the screen=WIDTHxHEIGHT paramter. If the ARGB mode is not
supported, fb_type tells the ordering of color channels.

The frame buffer is mapped along with other MMIO areas before the kernel in memory, at address
specified by the linker. In kernel, it can be accessed with

extern uint8 t fb;
uint32 t *pixel = (uint32 t*)(&fb + offset);

Screen coordinates (X, Y) should be converted to offset as:
offset = (bootboot.fb_height — Y) * bootboot.fb_scanline + 4 * X.

Although bootboot.fb_size is a 32 bit value, level 1 loaders with static fb address limit the frame buffer’s
size somewhere around 4096 x 4096 pixels (depends on bytes per line and aspect ratio too). That's more
than enough for an Ultra HD 4K (3840 x 2160) resolution. Level 2 loaders will map the frame buffer
where the kernel’s fb symbol tell to, therefore they don’t have such limitation.

Machine State

When the kernel gains control, a serial debug console is initialized, hardware interrups are masked and
code is running in supervisor mode. The MMU is turned on, and memory layout goes as follows:

The RAM (up to 16G) is identity mapped in the positive address range (user space memory or lower
half). Negative addresses belong to the kernel, and should not be accessible from unprivileged mode

(higher half).

The uncompressed initial ramdisk is enitrely in the identity mapped area, and can be located using

bootboot struct's initrd_ptr and initrd_size members.

The screen is properly set up with a 32 bit linear frame buffer, mapped at the negative address defined
by the fb symbol at -64M or OxXFFFFFFFF_FC000000, along with the other MMIO areas pointed by
the mmio_ptr field. The physical address of the frame buffer can be found in the fb_ptr field.

The main information bootboot structure is mapped at bootboot symbol, at -2M or
OxFFFFFFFF_FFE00000.

The environment configuration string (or command line if you like) is mapped at environment symbol,
at -2M + 1 page or OxFFFFFFFF_FFE01000.

17

BOOTBOOT Protocol Specification

Kernel's combined code and data segment is mapped at -2M + 2 pages or OxXFFFFFFFF_FFE02000.
After that segment, at a linker defined address, comes the bss data segment, zerod out by the loader.
Level 1 protocol limits the kernel's size in 2M, including info, code, data, bss and stack. That should be
more than enough for any micro-kernels. If a kernel wants to separate it’s code on a read-only segment
and data on a non-executable segment for security, it can override the page translation tables as soon as
it gains control. BOOTBOOT Protocol does only handle one loadable segment.

The kernel stack is at the top of the memory, starting at zero and growing downwards. The first page
i1s mapped by the loader, other pages have to be mapped by the kernel if needed.

Using memory mapped regions at linker specified addresses is simple enough (no API required and
ABI doesn’t matter) and provides a platform independent way of passing information to the kernel.

OXFFFFFFFF_FFFFFFEF
OxFFFFFFFF_FFFFFopg | kernel stack (4Kkb) .I

kernel bss

kernel text + data
OxFFFFFFFF_FFED2000

OXFFFFFFFF_FFEQ100g | environment = KERNEL SPACE
OXFFFFFFFF_FFEOO00Q | POOTboOT struct
frame buffer {62Mb) I

OxFFFFFFFF_FCOOOOOO

MMIO area

_-I

mmic_ptr

0x00000004_00000000

RAM identity map (max 16Gh) USER SPACE

_ initial ramdisk
initrd ptr

0x00000000_00000000

Figure: memory layout on kernel hand over (not to scale). Dark gray areas are not mapped.

18

BOOTBOOT Protocol Reference Implementations

Reference Implementations

The second part of this documentation describes the reference implementations and serves as a user

manual and as a reference for used firmware functions.

All implementations are freely available for download at

https://gitlab.com/bztsrc/bootboot

* x86_64-bios: IBM PC BIOS / Multiboot implementation
* x86_64-uefi: IBM PC UEFI implementation
* aarch64-rpi: Raspberry Pi 3 implementation

* mykernel: a sample BOOTBOOT compatible kernel for testing

ello from a simple BOOTBOOT kernel

Figure: The sample kernel’s screen for reference

https://github.com/bztsrc/bootboot
https://github.com/bztsrc/bootboot
https://github.com/bztsrc/bootboot

BOOTBOOT Protocol Reference Implementations

IBM PC BIOS / Multiboot

On BIOS (http://www.scs.stanford.edu/0Sau-cs240c/lab/specsbbs101.pdf) based systems, the same
image can be loaded from MBR (GPT hybrid booting) or chainloaded from VBR, run from ROM or

loaded via Multiboot (https://www.gnu.org/software/grub/manual/multiboot/multiboot.html).

Initial Ramdisk

Supported as BIOS Expansion ROM (up to ~96k). Not much space, but can be compressed. From disk
the initial ramdisk is loaded with the BIOS INT 13h / AH=42h function.

Memory Map
The memory map is queried with BIOS INT 15h / AX=0E820h function.

Linear Frame Buffer
Frame buffer initialization is done with VESA 2.0 VBE, INT 10h / AH=4Fh functions.

Machine State

The A20 gate is enabled, serial debug console COM1 is initialized with INT 14h / AX=0401h function
to 115200,8N1. Boot date and time are queried with INT 1Ah. IRQs masked. GDT unspecified, but

valid, IDT unset. Code is running in supervisor mode in ring 0.

Limitations
* As it boots in protected mode, it only maps the first 4G of RAM.

* The CMOS nvram does not store timezone, so always GMT+0 returned in bootboot.timezone.

Booting

* BIOS disk: copy bootboot.bin to FS0:\BOOTBOOT\LOADER. You can also place it totally
outside of any partition (with dd conv=notrunc seek=x). Also install boot.bin in the
Master Boot Record (or in Volume Boot Record if you have a boot manager), saving

bootboot.bin's first sector in a dword at Ox1B0. The mkboot utility will do that for you, see
(https://gitlab.com/bztsrc/bootboot/blob/master/x86 64-bios/mkboot.c).

* BIOS ROM: install bootboot.bin in a BIOS Expansion ROM.

* GRUB: specify bootboot.bin as a Multiboot "kernel" in grub.cfg, or you can chainload boot.bin.

20

https://github.com/bztsrc/bootboot/blob/master/x86_64-bios/mkboot.c
https://github.com/bztsrc/bootboot/blob/master/x86_64-bios/mkboot.c
https://gitlab.com/bztsrc/bootboot/blob/master/x86_64-bios/mkboot.c
https://www.gnu.org/software/grub/manual/multiboot/multiboot.html
https://www.gnu.org/software/grub/manual/multiboot/multiboot.html
https://www.gnu.org/software/grub/manual/multiboot/multiboot.html
https://www.gnu.org/software/grub/manual/multiboot/multiboot.html
https://www.gnu.org/software/grub/manual/multiboot/multiboot.html
http://www.scs.stanford.edu/05au-cs240c/lab/specsbbs101.pdf

BOOTBOOT Protocol Reference Implementations

IBM PC UEFI

On UEFI machines (http://www.uefi.org/), the operating system is loaded by a standard EFI OS loader

application.

Initial Ramdisk

Supported in ROM (up to 16M) as a PCI Option ROM. It 1is located with
EFI_PCI_OPTION_ROM_TABLE protocol and direct probing for magic bytes.

From disk the initial ramdisk is loaded with the EFI_SIMPLE FILE SYSTEM_PROTOCOL or
BLOCK_IO_PROTOCOL when GPT is directly parsed.

Memory Map
The memory map is queried with EFI_GET_MEMORY_MAP boot time service.

Linear Frame Buffer
Frame bufter is set up using the EFI_GRAPHICS_OUTPUT_PROTOCOL (GOP in short).

Machine State

Debug console is implemented with SIMPLE_TEXT_OUTPUT_INTERFACE which can be redirected
to serial. Boot date and time are queried with EFI_GET_TIME. IRQs masked. GDT unspecified, but

valid, IDT unset. Code is running in supervisor mode in ring 0.

Limitations
* The PCI Option ROMs should be signed in order to work.

Booting
* UEFI disk: copy bootboot.efi to FSO\EFI\BOOT\BOOTX64.EF1.
* UEFI ROM: use bootboot.rom which is a PCI Option ROM image of bootboot.efi.
* GRUB, UEFI Boot Manager: add bootboot.efi to boot options.

21

http://www.uefi.org/
http://www.uefi.org/
http://www.uefi.org/

BOOTBOOT Protocol Reference Implementations
Raspberry Pi 3

On Raspberry Pi 3 (https://www.raspberrypi.org/) board the bootboot.img is loaded from the boot

partition on SD card as kernel8.img by start.elf.

Initial Ramdisk

No ROM support on the platform, but initrd can be loaded over serial. Ramdisk is loaded by an EMMC
SDHC driver implemented in bootboot source. Gzip compression is not recommended as it’s slow.

Memory Map
The memory map is handcrafted with information obtained from VideoCore MailBox’s properties

channel.

In addition to standard mappings, the BCM2837 MMIO is also mapped in kernel space before the
frame buffer at -128M or OxFFFFFFFF_F8000000 (other platforms may have map it elsewhere). The

correct address can be acquired from bootboot.aarch64.mmio_ptr field of the information structure.

Linear Frame Buffer

Frame buffer is set up with VideoCore MailBox messages.

Machine State

Serial debug console is implemented on UARTO (PLO11), with 115200,8N1 and USB debug cable on
GPIO pins 14 / 15 connected to a PC. Code is running in supervisor mode, at EL1.

Limitations

* Maps 1G of RAM
* Does not have an on-board RTC chip, so bootboot.datetime is set to 0000-00-00 00:00:00.
¢ SD cards other than SDHC Class 10 are not tested

Booting

* SD card: copy bootboot.img to FSO\KERNELS8.IMG. You’ll need other firmware files
(bootcode.bin, start.elf) as well. The GPT is not supported directly, therefore ESP partition has
to be mapped in MBR so that Raspberry Pi firmware could find those files. The mkboot utility
(https://gitlab.com/bztsrc/bootboot/blob/master/aarch64-rpi/mkboot.c) will do that for you.

* Serial: copy bootboot.img to FSO:\KERNELS8.IMG, but do not create BOOTBOOT directory.
Use raspbootcom (https://gitlab.com/bztsrc/bootboot/blob/master/aarch64-rpi/raspbootcom.c)
on host to send a file as initrd over serial cable. You can use mrvn’s original version too.

22

https://github.com/bztsrc/bootboot/blob/master/aarch64-rpi/raspbootcom.c
https://github.com/bztsrc/bootboot/blob/master/aarch64-rpi/raspbootcom.c
https://gitlab.com/bztsrc/bootboot/blob/master/aarch64-rpi/raspbootcom.c
https://gitlab.com/bztsrc/bootboot/blob/master/aarch64-rpi/mkboot.c
https://www.raspberrypi.org/

BOOTBOOT Protocol Reference Implementations

APPENDIX

Creating a GPT ESP partition

fdisk /dev/sdc

Welcome to fdisk (util-linux 2.30.2).
Changes will remain in memory only, until you decide to write them.
Be careful before using the write command.

Device does not contain a recognized partition table.
Created a new DOS disklabel with disk identifier Oxfa@0b86e.

Command (m for help): g
Created a new GPT disklabel (GUID: E6B4945A-8308-448B-9ACA-0QE656854CF66) .

Command (m for help): n p

Partition number (1-128, default 1): 1

First sector (2048-262110, default 2048):

Last sector, +sectors or +size{K,M,G,T,P} (2048-262110, default 262110): +8M

Created a new partition 1 of type 'Linux filesystem' and of size 8 MiB.

Command (m for help): t 1

Selected partition 1

Partition type (type L to list all types): 1

Changed type of partition 'Linux filesystem' to 'EFI System'.

Command (m for help): w

The partition table has been altered.

Syncing disks.

mkfs.vfat -F 16 -n "EFI System" /dev/sdcl

mkfs.fat 4.1 (2017-01-24)

mkfs.fat: warning - lowercase labels might not work properly with DOS or Windows
mkboot /dev/sdc

mkboot: GPT ESP mapped to MBR successfully

A sample BOOTBOOT compatible kernel

mykernel/kernel.c
Copyright (c) 2017 bzt (bztsrc@gitlab)

This file is part of the BOOTBOOT Protocol package.
@brief A sample BOOTBOOT compatible kernel

/* function to display a string, see below */
void puts(char *s);

/* we don't assume stdint.h exists */

typedef short int intle t;
typedef unsigned char uint8 t;
typedef unsigned short int wuintl6 t;
typedef unsigned int uint32_t;

typedef unsigned long int uint64 t;

23

BOOTBOOT Protocol APPENDIX

#include <bootboot.h>

/* imported virtual addresses, see linker script */

extern BOOTBOOT bootboot; // see bootboot.h
extern unsigned char *environment; // configuration, UTF-8 text key=value pairs
extern uint8 t fb; // linear framebuffer mapped

/**

* Entry point, called by BOOTBOOT Loader *
KKK KKK KKK KKK KK KKK KKK KK KKK KR Kk Kk

void start()

{
int x, y, s=bootboot.fb scanline, w=bootboot.fb width, h=bootboot.fb height;
// cross-hair to see screen dimension detected correctly
for(y=0;y<h;y++) { *((uint32 t*) (&fb + s*y + (w*2)))=0x00FFFFFF; }
for(x=0;x<w;x++) { *((uint32_t*) (&fb + s*(h/2)+x*4))=0x00FFFFFF; }
// red, green, blue boxes in order
for(y=0;y<20;y++) { for(x=0;x<20;x++) { *((uint32 t*)(&fb + s*(y+20) + (x+20)*4))=0x00FF0000; } }
for(y=0;y<20;y++) { for(x=0;x<20;x++) { *((uint32 t*)(&fb + s*(y+20) + (x+50)*4))=0x0000FF00; } }
for(y=0;y<20;y++) { for(x=0;x<20;x++) { *((uint32 t*)(&fb + s*(y+20) + (x+80)*4))=0x000000FF; } }
// say hello
puts("Hello from a simple BOOTBOOT kernel");
// hang for now
while(1);
}

/**************************

* Display text on screen *
**************************/
typedef struct {
uint32_ t magic;
uint32 t version;
uint32 t headersize;
uint32 t flags;
uint32_ t numglyph;
uint32 t bytesperglyph;
uint32 t height;
uint32 t width;
uint8 t glyphs;
} __attribute ((packed)) psf2 t;
extern volatile unsigned char binary font psf start;

void puts(char *s)
{
psf2 t *font = (psf2 t*)& binary font psf start;
int x,y,kx=0,line,mask,offs;
int bpl=(font->width+7)/8;
while(*s) {
unsigned char *glyph = (unsigned char*)& binary font psf start + font->headersize +
(*s>0&8*s<font->numglyph?*s:0)*font->bytesperglyph;
offs = (kx * (font->width+1l) * 4);
for(y=0;y<font->height;y++) {
line=offs; mask=l<<(font->width-1);
for(x=0;x<font->width;x++) {
((uint32_t) ((uint64 t)&fb+line))=((int)*glyph) & (mask)?0xFFFFFF:0;
mask>>=1; line+=4;

}
((uint32_t) ((uint64 t)&fb+line))=0; glyph+=bpl; offs+=bootboot.fb scanline;
}

S++; Kkx++;

24

BOOTBOOT Protocol APPENDIX

A sample Makefile

#
mykernel/Makefile

Copyright (c) 2017 bzt (bztsrc@gitlab)

This file is part of the BOOTBOOT Protocol package.
@brief An example Makefile for sample kernel

H o HH R HH

CFLAGS = -Wall -fpic -ffreestanding -fno-stack-protector -nostdinc -nostdlib -I../
all: mykernel.x86 64.elf mykernel.aarch64.elf

mykernel.x86 64.elf: kernel.c
x86 64-elf-gcc $(CFLAGS) -mno-red-zone -c kernel.c -o kernel.o
x86 64-elf-1d -r -b binary -o font.o font.psf
x86 64-elf-1d -nostdlib -nostartfiles -T link.ld kernel.o font.o -o mykernel.x86 64.elf
x86 64-elf-strip -s -K fb -K bootboot -K environment mykernel.x86 64.elf
x86_64-elf-readelf -hls mykernel.x86 64.elf >mykernel.x86 64.txt

mykernel.aarch64.elf: kernel.c
aarch64-elf-gcc $(CFLAGS) -c kernel.c -o kernel.o
aarch64-elf-1d -r -b binary -o font.o font.psf
aarch64-elf-1d -nostdlib -nostartfiles -T link.ld kernel.o font.o -o mykernel.aarch64.elf
aarch64-elf-strip -s -K fb -K bootboot -K environment mykernel.aarch64.elf
aarch64-elf-readelf -hls mykernel.aarch64.elf >mykernel.aarch64.txt

clean:
rm *.o0 *.elf *. txt

A sample linker script

/*
mykernel/link.1ld

Copyright (c) 2017 bzt (bztsrc@gitlab)

*
*
*
*
* This file is part of the BOOTBOOT Protocol package.
* @brief An example linker script for sample kernel

*

*/

mmio
b
SECTIONS
{

OxFffffffffa0o000;
oxfFFFFffffco00000;

. = OxFfFffffffffe00000;

bootboot ., . += 4096;

environment ., . += 4096;

text ¢ {
KEEP(*(.text.boot)) *(.text .text.*) /* code */
(.rodata .rodata.) /* data */
(.data .data.)

}

.bss (NOLOAD) : { /* bss */
. = ALIGN(16);
(.bss .bss.)
*(COMMON)

25

BOOTBOOT Protocol INDEX

INDEX

BCM2837.....ooviveeianee. 16, 22
BIOS......ccoe. 12, 14, 19, 20
Boot partition............. 10, 13,22

Bootboot struct...12, 14, 16, 17,
25

Booting........cocoeevviiiiiiiiieees 9
BSS.oiieeee 18, 25
Code...ooorveeeeeiiieeeeee, 18, 25
| D 7 VR 18, 25

25

26

Executable and Linkable Format
.. 7,12
FAT...coovieiiiiiiinne 10, 11, 13
File system drivers............ 11, 13

Frame buffer..12, 15, 17, 20-22,
25

GPT..ooveieie 10, 20, 22
GRUB........ooovevvveeee 7,20, 21
GUID Partitioning Table....7, 10
GZIPeioieeiieieeieeeee e, 9,22

Kernel 5, 7, 9,12, 13, 14, 16, 18,

20, 22
Machine State.............. 17, 20-22
MBR......oooiiieiiiieee 20,22

Memory layout................. 17,18
Memory Map. .12, 14, 16, 20-22
MMIO.................. 16, 17, 22,25
Multiboot.................... 12, 19, 20
Portable Executable............ 7,12
Ramdisk7, 9, 10, 11, 13, 15, 17,
20-22

Raspberry Pi...10, 12, 14, 19, 22

Raspbootcom..........cccccveveennnns 22
ROM.....cooiiiien 7,10, 20-22
SDcard....coooeevveveeeeeeneennnn. 7,22
Serial........ooovvveeeiiiiiiiinnnn. 10, 22
UEFL.............. 10, 12-14, 19, 21
VBR....ooiii 20

	Preface
	Introduction
	Specification
	Booting an Operating System
	On Operating System Kernel Designs
	The Initial Ramdisk Image
	The Boot Partition
	File System Drivers
	Kernel Format
	Protocol Levels
	Static
	Dynamic

	Entry Point

	Environment
	The bootboot Structure
	Header Fields
	Platform Independent
	Platform Dependent Pointers

	Memory Map Entries

	Linear Frame Buffer
	Machine State

	Reference Implementations
	IBM PC BIOS / Multiboot
	Initial Ramdisk
	Memory Map
	Linear Frame Buffer
	Machine State
	Limitations
	Booting

	IBM PC UEFI
	Initial Ramdisk
	Memory Map
	Linear Frame Buffer
	Machine State
	Limitations
	Booting

	Raspberry Pi 3
	Initial Ramdisk
	Memory Map
	Linear Frame Buffer
	Machine State
	Limitations
	Booting

	APPENDIX
	Creating a GPT ESP partition
	A sample BOOTBOOT compatible kernel
	A sample Makefile
	A sample linker script

	INDEX

