gitlab-org--gitlab-foss/lib/gitlab/metrics.rb

146 lines
3.8 KiB
Ruby
Raw Normal View History

Storing of application metrics in InfluxDB This adds the ability to write application metrics (e.g. SQL timings) to InfluxDB. These metrics can in turn be visualized using Grafana, or really anything else that can read from InfluxDB. These metrics can be used to track application performance over time, between different Ruby versions, different GitLab versions, etc. == Transaction Metrics Currently the following is tracked on a per transaction basis (a transaction is a Rails request or a single Sidekiq job): * Timings per query along with the raw (obfuscated) SQL and information about what file the query originated from. * Timings per view along with the path of the view and information about what file triggered the rendering process. * The duration of a request itself along with the controller/worker class and method name. * The duration of any instrumented method calls (more below). == Sampled Metrics Certain metrics can't be directly associated with a transaction. For example, a process' total memory usage is unrelated to any running transactions. While a transaction can result in the memory usage going up there's no accurate way to determine what transaction is to blame, this becomes especially problematic in multi-threaded environments. To solve this problem there's a separate thread that takes samples at a fixed interval. This thread (using the class Gitlab::Metrics::Sampler) currently tracks the following: * The process' total memory usage. * The number of file descriptors opened by the process. * The amount of Ruby objects (using ObjectSpace.count_objects). * GC statistics such as timings, heap slots, etc. The default/current interval is 15 seconds, any smaller interval might put too much pressure on InfluxDB (especially when running dozens of processes). == Method Instrumentation While currently not yet used methods can be instrumented to track how long they take to run. Unlike the likes of New Relic this doesn't require modifying the source code (e.g. including modules), it all happens from the outside. For example, to track `User.by_login` we'd add the following code somewhere in an initializer: Gitlab::Metrics::Instrumentation. instrument_method(User, :by_login) to instead instrument an instance method: Gitlab::Metrics::Instrumentation. instrument_instance_method(User, :save) Instrumentation for either all public model methods or a few crucial ones will be added in the near future, I simply haven't gotten to doing so just yet. == Configuration By default metrics are disabled. This means users don't have to bother setting anything up if they don't want to. Metrics can be enabled by editing one's gitlab.yml configuration file (see config/gitlab.yml.example for example settings). == Writing Data To InfluxDB Because InfluxDB is still a fairly young product I expect the worse. Data loss, unexpected reboots, the database not responding, you name it. Because of this data is _not_ written to InfluxDB directly, instead it's queued and processed by Sidekiq. This ensures that users won't notice anything when InfluxDB is giving trouble. The metrics worker can be started in a standalone manner as following: bundle exec sidekiq -q metrics The corresponding class is called MetricsWorker.
2015-12-09 15:45:51 +00:00
module Gitlab
module Metrics
extend Gitlab::CurrentSettings
RAILS_ROOT = Rails.root.to_s
METRICS_ROOT = Rails.root.join('lib', 'gitlab', 'metrics').to_s
PATH_REGEX = /^#{RAILS_ROOT}\/?/
def self.settings
@settings ||= {
enabled: current_application_settings[:metrics_enabled],
pool_size: current_application_settings[:metrics_pool_size],
timeout: current_application_settings[:metrics_timeout],
method_call_threshold: current_application_settings[:metrics_method_call_threshold],
host: current_application_settings[:metrics_host],
port: current_application_settings[:metrics_port],
sample_interval: current_application_settings[:metrics_sample_interval] || 15,
packet_size: current_application_settings[:metrics_packet_size] || 1
}
Storing of application metrics in InfluxDB This adds the ability to write application metrics (e.g. SQL timings) to InfluxDB. These metrics can in turn be visualized using Grafana, or really anything else that can read from InfluxDB. These metrics can be used to track application performance over time, between different Ruby versions, different GitLab versions, etc. == Transaction Metrics Currently the following is tracked on a per transaction basis (a transaction is a Rails request or a single Sidekiq job): * Timings per query along with the raw (obfuscated) SQL and information about what file the query originated from. * Timings per view along with the path of the view and information about what file triggered the rendering process. * The duration of a request itself along with the controller/worker class and method name. * The duration of any instrumented method calls (more below). == Sampled Metrics Certain metrics can't be directly associated with a transaction. For example, a process' total memory usage is unrelated to any running transactions. While a transaction can result in the memory usage going up there's no accurate way to determine what transaction is to blame, this becomes especially problematic in multi-threaded environments. To solve this problem there's a separate thread that takes samples at a fixed interval. This thread (using the class Gitlab::Metrics::Sampler) currently tracks the following: * The process' total memory usage. * The number of file descriptors opened by the process. * The amount of Ruby objects (using ObjectSpace.count_objects). * GC statistics such as timings, heap slots, etc. The default/current interval is 15 seconds, any smaller interval might put too much pressure on InfluxDB (especially when running dozens of processes). == Method Instrumentation While currently not yet used methods can be instrumented to track how long they take to run. Unlike the likes of New Relic this doesn't require modifying the source code (e.g. including modules), it all happens from the outside. For example, to track `User.by_login` we'd add the following code somewhere in an initializer: Gitlab::Metrics::Instrumentation. instrument_method(User, :by_login) to instead instrument an instance method: Gitlab::Metrics::Instrumentation. instrument_instance_method(User, :save) Instrumentation for either all public model methods or a few crucial ones will be added in the near future, I simply haven't gotten to doing so just yet. == Configuration By default metrics are disabled. This means users don't have to bother setting anything up if they don't want to. Metrics can be enabled by editing one's gitlab.yml configuration file (see config/gitlab.yml.example for example settings). == Writing Data To InfluxDB Because InfluxDB is still a fairly young product I expect the worse. Data loss, unexpected reboots, the database not responding, you name it. Because of this data is _not_ written to InfluxDB directly, instead it's queued and processed by Sidekiq. This ensures that users won't notice anything when InfluxDB is giving trouble. The metrics worker can be started in a standalone manner as following: bundle exec sidekiq -q metrics The corresponding class is called MetricsWorker.
2015-12-09 15:45:51 +00:00
end
def self.enabled?
settings[:enabled] || false
Storing of application metrics in InfluxDB This adds the ability to write application metrics (e.g. SQL timings) to InfluxDB. These metrics can in turn be visualized using Grafana, or really anything else that can read from InfluxDB. These metrics can be used to track application performance over time, between different Ruby versions, different GitLab versions, etc. == Transaction Metrics Currently the following is tracked on a per transaction basis (a transaction is a Rails request or a single Sidekiq job): * Timings per query along with the raw (obfuscated) SQL and information about what file the query originated from. * Timings per view along with the path of the view and information about what file triggered the rendering process. * The duration of a request itself along with the controller/worker class and method name. * The duration of any instrumented method calls (more below). == Sampled Metrics Certain metrics can't be directly associated with a transaction. For example, a process' total memory usage is unrelated to any running transactions. While a transaction can result in the memory usage going up there's no accurate way to determine what transaction is to blame, this becomes especially problematic in multi-threaded environments. To solve this problem there's a separate thread that takes samples at a fixed interval. This thread (using the class Gitlab::Metrics::Sampler) currently tracks the following: * The process' total memory usage. * The number of file descriptors opened by the process. * The amount of Ruby objects (using ObjectSpace.count_objects). * GC statistics such as timings, heap slots, etc. The default/current interval is 15 seconds, any smaller interval might put too much pressure on InfluxDB (especially when running dozens of processes). == Method Instrumentation While currently not yet used methods can be instrumented to track how long they take to run. Unlike the likes of New Relic this doesn't require modifying the source code (e.g. including modules), it all happens from the outside. For example, to track `User.by_login` we'd add the following code somewhere in an initializer: Gitlab::Metrics::Instrumentation. instrument_method(User, :by_login) to instead instrument an instance method: Gitlab::Metrics::Instrumentation. instrument_instance_method(User, :save) Instrumentation for either all public model methods or a few crucial ones will be added in the near future, I simply haven't gotten to doing so just yet. == Configuration By default metrics are disabled. This means users don't have to bother setting anything up if they don't want to. Metrics can be enabled by editing one's gitlab.yml configuration file (see config/gitlab.yml.example for example settings). == Writing Data To InfluxDB Because InfluxDB is still a fairly young product I expect the worse. Data loss, unexpected reboots, the database not responding, you name it. Because of this data is _not_ written to InfluxDB directly, instead it's queued and processed by Sidekiq. This ensures that users won't notice anything when InfluxDB is giving trouble. The metrics worker can be started in a standalone manner as following: bundle exec sidekiq -q metrics The corresponding class is called MetricsWorker.
2015-12-09 15:45:51 +00:00
end
def self.mri?
RUBY_ENGINE == 'ruby'
end
def self.method_call_threshold
# This is memoized since this method is called for every instrumented
# method. Loading data from an external cache on every method call slows
# things down too much.
@method_call_threshold ||= settings[:method_call_threshold]
end
Storing of application metrics in InfluxDB This adds the ability to write application metrics (e.g. SQL timings) to InfluxDB. These metrics can in turn be visualized using Grafana, or really anything else that can read from InfluxDB. These metrics can be used to track application performance over time, between different Ruby versions, different GitLab versions, etc. == Transaction Metrics Currently the following is tracked on a per transaction basis (a transaction is a Rails request or a single Sidekiq job): * Timings per query along with the raw (obfuscated) SQL and information about what file the query originated from. * Timings per view along with the path of the view and information about what file triggered the rendering process. * The duration of a request itself along with the controller/worker class and method name. * The duration of any instrumented method calls (more below). == Sampled Metrics Certain metrics can't be directly associated with a transaction. For example, a process' total memory usage is unrelated to any running transactions. While a transaction can result in the memory usage going up there's no accurate way to determine what transaction is to blame, this becomes especially problematic in multi-threaded environments. To solve this problem there's a separate thread that takes samples at a fixed interval. This thread (using the class Gitlab::Metrics::Sampler) currently tracks the following: * The process' total memory usage. * The number of file descriptors opened by the process. * The amount of Ruby objects (using ObjectSpace.count_objects). * GC statistics such as timings, heap slots, etc. The default/current interval is 15 seconds, any smaller interval might put too much pressure on InfluxDB (especially when running dozens of processes). == Method Instrumentation While currently not yet used methods can be instrumented to track how long they take to run. Unlike the likes of New Relic this doesn't require modifying the source code (e.g. including modules), it all happens from the outside. For example, to track `User.by_login` we'd add the following code somewhere in an initializer: Gitlab::Metrics::Instrumentation. instrument_method(User, :by_login) to instead instrument an instance method: Gitlab::Metrics::Instrumentation. instrument_instance_method(User, :save) Instrumentation for either all public model methods or a few crucial ones will be added in the near future, I simply haven't gotten to doing so just yet. == Configuration By default metrics are disabled. This means users don't have to bother setting anything up if they don't want to. Metrics can be enabled by editing one's gitlab.yml configuration file (see config/gitlab.yml.example for example settings). == Writing Data To InfluxDB Because InfluxDB is still a fairly young product I expect the worse. Data loss, unexpected reboots, the database not responding, you name it. Because of this data is _not_ written to InfluxDB directly, instead it's queued and processed by Sidekiq. This ensures that users won't notice anything when InfluxDB is giving trouble. The metrics worker can be started in a standalone manner as following: bundle exec sidekiq -q metrics The corresponding class is called MetricsWorker.
2015-12-09 15:45:51 +00:00
def self.pool
@pool
end
def self.submit_metrics(metrics)
prepared = prepare_metrics(metrics)
pool.with do |connection|
prepared.each_slice(settings[:packet_size]) do |slice|
begin
connection.write_points(slice)
rescue StandardError
end
end
end
end
def self.prepare_metrics(metrics)
metrics.map do |hash|
new_hash = hash.symbolize_keys
new_hash[:tags].each do |key, value|
if value.blank?
new_hash[:tags].delete(key)
else
new_hash[:tags][key] = escape_value(value)
end
end
new_hash
end
end
def self.escape_value(value)
value.to_s.gsub('=', '\\=')
end
# Measures the execution time of a block.
#
# Example:
#
# Gitlab::Metrics.measure(:find_by_username_duration) do
# User.find_by_username(some_username)
# end
#
# name - The name of the field to store the execution time in.
#
# Returns the value yielded by the supplied block.
def self.measure(name)
trans = current_transaction
return yield unless trans
real_start = Time.now.to_f
cpu_start = System.cpu_time
retval = yield
cpu_stop = System.cpu_time
real_stop = Time.now.to_f
real_time = (real_stop - real_start) * 1000.0
cpu_time = cpu_stop - cpu_start
trans.increment("#{name}_real_time", real_time)
trans.increment("#{name}_cpu_time", cpu_time)
trans.increment("#{name}_call_count", 1)
retval
end
# Adds a tag to the current transaction (if any)
#
# name - The name of the tag to add.
# value - The value of the tag.
def self.tag_transaction(name, value)
trans = current_transaction
trans.add_tag(name, value) if trans
end
# Sets the action of the current transaction (if any)
#
# action - The name of the action.
def self.action=(action)
trans = current_transaction
trans.action = action if trans
end
Storing of application metrics in InfluxDB This adds the ability to write application metrics (e.g. SQL timings) to InfluxDB. These metrics can in turn be visualized using Grafana, or really anything else that can read from InfluxDB. These metrics can be used to track application performance over time, between different Ruby versions, different GitLab versions, etc. == Transaction Metrics Currently the following is tracked on a per transaction basis (a transaction is a Rails request or a single Sidekiq job): * Timings per query along with the raw (obfuscated) SQL and information about what file the query originated from. * Timings per view along with the path of the view and information about what file triggered the rendering process. * The duration of a request itself along with the controller/worker class and method name. * The duration of any instrumented method calls (more below). == Sampled Metrics Certain metrics can't be directly associated with a transaction. For example, a process' total memory usage is unrelated to any running transactions. While a transaction can result in the memory usage going up there's no accurate way to determine what transaction is to blame, this becomes especially problematic in multi-threaded environments. To solve this problem there's a separate thread that takes samples at a fixed interval. This thread (using the class Gitlab::Metrics::Sampler) currently tracks the following: * The process' total memory usage. * The number of file descriptors opened by the process. * The amount of Ruby objects (using ObjectSpace.count_objects). * GC statistics such as timings, heap slots, etc. The default/current interval is 15 seconds, any smaller interval might put too much pressure on InfluxDB (especially when running dozens of processes). == Method Instrumentation While currently not yet used methods can be instrumented to track how long they take to run. Unlike the likes of New Relic this doesn't require modifying the source code (e.g. including modules), it all happens from the outside. For example, to track `User.by_login` we'd add the following code somewhere in an initializer: Gitlab::Metrics::Instrumentation. instrument_method(User, :by_login) to instead instrument an instance method: Gitlab::Metrics::Instrumentation. instrument_instance_method(User, :save) Instrumentation for either all public model methods or a few crucial ones will be added in the near future, I simply haven't gotten to doing so just yet. == Configuration By default metrics are disabled. This means users don't have to bother setting anything up if they don't want to. Metrics can be enabled by editing one's gitlab.yml configuration file (see config/gitlab.yml.example for example settings). == Writing Data To InfluxDB Because InfluxDB is still a fairly young product I expect the worse. Data loss, unexpected reboots, the database not responding, you name it. Because of this data is _not_ written to InfluxDB directly, instead it's queued and processed by Sidekiq. This ensures that users won't notice anything when InfluxDB is giving trouble. The metrics worker can be started in a standalone manner as following: bundle exec sidekiq -q metrics The corresponding class is called MetricsWorker.
2015-12-09 15:45:51 +00:00
# When enabled this should be set before being used as the usual pattern
# "@foo ||= bar" is _not_ thread-safe.
if enabled?
@pool = ConnectionPool.new(size: settings[:pool_size], timeout: settings[:timeout]) do
host = settings[:host]
port = settings[:port]
Storing of application metrics in InfluxDB This adds the ability to write application metrics (e.g. SQL timings) to InfluxDB. These metrics can in turn be visualized using Grafana, or really anything else that can read from InfluxDB. These metrics can be used to track application performance over time, between different Ruby versions, different GitLab versions, etc. == Transaction Metrics Currently the following is tracked on a per transaction basis (a transaction is a Rails request or a single Sidekiq job): * Timings per query along with the raw (obfuscated) SQL and information about what file the query originated from. * Timings per view along with the path of the view and information about what file triggered the rendering process. * The duration of a request itself along with the controller/worker class and method name. * The duration of any instrumented method calls (more below). == Sampled Metrics Certain metrics can't be directly associated with a transaction. For example, a process' total memory usage is unrelated to any running transactions. While a transaction can result in the memory usage going up there's no accurate way to determine what transaction is to blame, this becomes especially problematic in multi-threaded environments. To solve this problem there's a separate thread that takes samples at a fixed interval. This thread (using the class Gitlab::Metrics::Sampler) currently tracks the following: * The process' total memory usage. * The number of file descriptors opened by the process. * The amount of Ruby objects (using ObjectSpace.count_objects). * GC statistics such as timings, heap slots, etc. The default/current interval is 15 seconds, any smaller interval might put too much pressure on InfluxDB (especially when running dozens of processes). == Method Instrumentation While currently not yet used methods can be instrumented to track how long they take to run. Unlike the likes of New Relic this doesn't require modifying the source code (e.g. including modules), it all happens from the outside. For example, to track `User.by_login` we'd add the following code somewhere in an initializer: Gitlab::Metrics::Instrumentation. instrument_method(User, :by_login) to instead instrument an instance method: Gitlab::Metrics::Instrumentation. instrument_instance_method(User, :save) Instrumentation for either all public model methods or a few crucial ones will be added in the near future, I simply haven't gotten to doing so just yet. == Configuration By default metrics are disabled. This means users don't have to bother setting anything up if they don't want to. Metrics can be enabled by editing one's gitlab.yml configuration file (see config/gitlab.yml.example for example settings). == Writing Data To InfluxDB Because InfluxDB is still a fairly young product I expect the worse. Data loss, unexpected reboots, the database not responding, you name it. Because of this data is _not_ written to InfluxDB directly, instead it's queued and processed by Sidekiq. This ensures that users won't notice anything when InfluxDB is giving trouble. The metrics worker can be started in a standalone manner as following: bundle exec sidekiq -q metrics The corresponding class is called MetricsWorker.
2015-12-09 15:45:51 +00:00
InfluxDB::Client.
new(udp: { host: host, port: port })
Storing of application metrics in InfluxDB This adds the ability to write application metrics (e.g. SQL timings) to InfluxDB. These metrics can in turn be visualized using Grafana, or really anything else that can read from InfluxDB. These metrics can be used to track application performance over time, between different Ruby versions, different GitLab versions, etc. == Transaction Metrics Currently the following is tracked on a per transaction basis (a transaction is a Rails request or a single Sidekiq job): * Timings per query along with the raw (obfuscated) SQL and information about what file the query originated from. * Timings per view along with the path of the view and information about what file triggered the rendering process. * The duration of a request itself along with the controller/worker class and method name. * The duration of any instrumented method calls (more below). == Sampled Metrics Certain metrics can't be directly associated with a transaction. For example, a process' total memory usage is unrelated to any running transactions. While a transaction can result in the memory usage going up there's no accurate way to determine what transaction is to blame, this becomes especially problematic in multi-threaded environments. To solve this problem there's a separate thread that takes samples at a fixed interval. This thread (using the class Gitlab::Metrics::Sampler) currently tracks the following: * The process' total memory usage. * The number of file descriptors opened by the process. * The amount of Ruby objects (using ObjectSpace.count_objects). * GC statistics such as timings, heap slots, etc. The default/current interval is 15 seconds, any smaller interval might put too much pressure on InfluxDB (especially when running dozens of processes). == Method Instrumentation While currently not yet used methods can be instrumented to track how long they take to run. Unlike the likes of New Relic this doesn't require modifying the source code (e.g. including modules), it all happens from the outside. For example, to track `User.by_login` we'd add the following code somewhere in an initializer: Gitlab::Metrics::Instrumentation. instrument_method(User, :by_login) to instead instrument an instance method: Gitlab::Metrics::Instrumentation. instrument_instance_method(User, :save) Instrumentation for either all public model methods or a few crucial ones will be added in the near future, I simply haven't gotten to doing so just yet. == Configuration By default metrics are disabled. This means users don't have to bother setting anything up if they don't want to. Metrics can be enabled by editing one's gitlab.yml configuration file (see config/gitlab.yml.example for example settings). == Writing Data To InfluxDB Because InfluxDB is still a fairly young product I expect the worse. Data loss, unexpected reboots, the database not responding, you name it. Because of this data is _not_ written to InfluxDB directly, instead it's queued and processed by Sidekiq. This ensures that users won't notice anything when InfluxDB is giving trouble. The metrics worker can be started in a standalone manner as following: bundle exec sidekiq -q metrics The corresponding class is called MetricsWorker.
2015-12-09 15:45:51 +00:00
end
end
private
def self.current_transaction
Transaction.current
end
Storing of application metrics in InfluxDB This adds the ability to write application metrics (e.g. SQL timings) to InfluxDB. These metrics can in turn be visualized using Grafana, or really anything else that can read from InfluxDB. These metrics can be used to track application performance over time, between different Ruby versions, different GitLab versions, etc. == Transaction Metrics Currently the following is tracked on a per transaction basis (a transaction is a Rails request or a single Sidekiq job): * Timings per query along with the raw (obfuscated) SQL and information about what file the query originated from. * Timings per view along with the path of the view and information about what file triggered the rendering process. * The duration of a request itself along with the controller/worker class and method name. * The duration of any instrumented method calls (more below). == Sampled Metrics Certain metrics can't be directly associated with a transaction. For example, a process' total memory usage is unrelated to any running transactions. While a transaction can result in the memory usage going up there's no accurate way to determine what transaction is to blame, this becomes especially problematic in multi-threaded environments. To solve this problem there's a separate thread that takes samples at a fixed interval. This thread (using the class Gitlab::Metrics::Sampler) currently tracks the following: * The process' total memory usage. * The number of file descriptors opened by the process. * The amount of Ruby objects (using ObjectSpace.count_objects). * GC statistics such as timings, heap slots, etc. The default/current interval is 15 seconds, any smaller interval might put too much pressure on InfluxDB (especially when running dozens of processes). == Method Instrumentation While currently not yet used methods can be instrumented to track how long they take to run. Unlike the likes of New Relic this doesn't require modifying the source code (e.g. including modules), it all happens from the outside. For example, to track `User.by_login` we'd add the following code somewhere in an initializer: Gitlab::Metrics::Instrumentation. instrument_method(User, :by_login) to instead instrument an instance method: Gitlab::Metrics::Instrumentation. instrument_instance_method(User, :save) Instrumentation for either all public model methods or a few crucial ones will be added in the near future, I simply haven't gotten to doing so just yet. == Configuration By default metrics are disabled. This means users don't have to bother setting anything up if they don't want to. Metrics can be enabled by editing one's gitlab.yml configuration file (see config/gitlab.yml.example for example settings). == Writing Data To InfluxDB Because InfluxDB is still a fairly young product I expect the worse. Data loss, unexpected reboots, the database not responding, you name it. Because of this data is _not_ written to InfluxDB directly, instead it's queued and processed by Sidekiq. This ensures that users won't notice anything when InfluxDB is giving trouble. The metrics worker can be started in a standalone manner as following: bundle exec sidekiq -q metrics The corresponding class is called MetricsWorker.
2015-12-09 15:45:51 +00:00
end
end