2017-08-14 12:23:32 -04:00
- group : Response metrics (NGINX Ingress)
priority : 10
metrics :
- title : "Throughput"
y_label : "Requests / Sec"
required_metrics :
2017-09-08 16:16:38 -04:00
- nginx_upstream_responses_total
2017-08-14 12:23:32 -04:00
weight : 1
queries :
2017-09-09 00:50:02 -04:00
- query_range : 'sum(rate(nginx_upstream_responses_total{upstream=~"%{kube_namespace}-%{ci_environment_slug}-.*"}[2m])) by (status_code)'
2017-08-14 12:23:32 -04:00
unit : req / sec
2017-09-09 00:50:02 -04:00
label : Status Code
2017-09-08 16:16:38 -04:00
series :
- label : status_code
when :
- value : 2xx
color : green
- value : 4xx
2017-09-09 00:50:02 -04:00
color : orange
2017-09-08 16:16:38 -04:00
- value : 5xx
color : red
2017-08-14 12:23:32 -04:00
- title : "Latency"
y_label : "Latency (ms)"
required_metrics :
- nginx_upstream_response_msecs_avg
weight : 1
queries :
- query_range : 'avg(nginx_upstream_response_msecs_avg{upstream=~"%{kube_namespace}-%{ci_environment_slug}-.*"})'
label : Average
unit : ms
- title : "HTTP Error Rate"
y_label : "HTTP 500 Errors / Sec"
required_metrics :
- nginx_upstream_responses_total
weight : 1
queries :
- query_range : 'sum(rate(nginx_upstream_responses_total{status_code="5xx", upstream=~"%{kube_namespace}-%{ci_environment_slug}-.*"}[2m]))'
label : HTTP Errors
unit : "errors / sec"
2017-07-27 14:05:58 -04:00
- group : Response metrics (HA Proxy)
2017-07-19 21:22:46 -04:00
priority : 10
metrics :
- title : "Throughput"
y_label : "Requests / Sec"
required_metrics :
- haproxy_frontend_http_requests_total
weight : 1
queries :
2017-09-08 16:16:38 -04:00
- query_range : 'sum(rate(haproxy_frontend_http_requests_total{%{environment_filter}}[2m])) by (code)'
2017-07-19 21:22:46 -04:00
unit : req / sec
2017-09-08 16:16:38 -04:00
series :
- label : code
when :
- value : 2xx
color : green
- value : 4xx
color : yellow
- value : 5xx
color : red
2017-07-19 21:22:46 -04:00
- title : "HTTP Error Rate"
y_label : "Error Rate (%)"
required_metrics :
- haproxy_frontend_http_responses_total
weight : 1
queries :
2017-07-20 01:51:31 -04:00
- query_range : 'sum(rate(haproxy_frontend_http_responses_total{code="5xx",%{environment_filter}}[2m])) / sum(rate(haproxy_frontend_http_responses_total{%{environment_filter}}[2m]))'
2017-07-19 21:22:46 -04:00
label : HTTP Errors
unit : "%"
2017-07-27 14:05:58 -04:00
- group : Response metrics (AWS ELB)
2017-07-03 16:28:08 -04:00
priority : 10
metrics :
2017-07-04 01:45:35 -04:00
- title : "Throughput"
y_label : "Requests / Sec"
2017-07-03 16:28:08 -04:00
required_metrics :
- aws_elb_request_count_sum
weight : 1
queries :
2017-07-16 20:52:37 -04:00
- query_range : 'sum(aws_elb_request_count_sum{%{environment_filter}}) / 60'
2017-07-04 01:45:35 -04:00
label : Total
unit : req / sec
2017-07-03 16:28:08 -04:00
- title : "Latency"
2017-07-04 01:45:35 -04:00
y_label : "Latency (ms)"
2017-07-03 16:28:08 -04:00
required_metrics :
2017-07-04 01:45:35 -04:00
- aws_elb_latency_average
2017-07-03 16:28:08 -04:00
weight : 1
queries :
2017-07-04 01:45:35 -04:00
- query_range : 'avg(aws_elb_latency_average{%{environment_filter}}) * 1000'
label : Average
unit : ms
- title : "HTTP Error Rate"
y_label : "Error Rate (%)"
2017-07-03 16:28:08 -04:00
required_metrics :
2017-07-04 01:45:35 -04:00
- aws_elb_request_count_sum
- aws_elb_httpcode_backend_5_xx_sum
2017-07-03 16:28:08 -04:00
weight : 1
queries :
- query_range : 'sum(aws_elb_httpcode_backend_5_xx_sum{%{environment_filter}}) / sum(aws_elb_request_count_sum{%{environment_filter}})'
2017-07-04 01:45:35 -04:00
label : HTTP Errors
unit : "%"
2017-07-27 14:05:58 -04:00
- group : Response metrics (NGINX)
2017-07-04 01:45:35 -04:00
priority : 10
2017-05-10 05:25:30 -04:00
metrics :
2017-07-04 01:45:35 -04:00
- title : "Throughput"
y_label : "Requests / Sec"
2017-05-31 13:36:07 -04:00
required_metrics :
2017-09-08 16:16:38 -04:00
- nginx_responses_total
2017-05-10 05:25:30 -04:00
weight : 1
queries :
2017-09-08 16:16:38 -04:00
- query_range : 'sum(rate(nginx_responses_total{server_zone!="*", server_zone!="_", %{environment_filter}}[2m])) by (status_code)'
2017-07-04 01:45:35 -04:00
unit : req / sec
2017-09-08 16:16:38 -04:00
label : Status Code
series :
- label : status_code
when :
- value : 2xx
color : green
- value : 4xx
color : orange
- value : 5xx
color : red
2017-07-04 01:45:35 -04:00
- title : "Latency"
y_label : "Latency (ms)"
2017-05-31 13:36:07 -04:00
required_metrics :
2017-07-04 01:45:35 -04:00
- nginx_upstream_response_msecs_avg
2017-05-10 05:25:30 -04:00
weight : 1
queries :
2017-08-14 12:23:32 -04:00
- query_range : 'avg(nginx_upstream_response_msecs_avg{%{environment_filter}})'
2017-07-04 01:45:35 -04:00
label : Upstream
unit : ms
- title : "HTTP Error Rate"
2017-08-14 12:23:32 -04:00
y_label : "HTTP 500 Errors / Sec"
2017-05-31 13:36:07 -04:00
required_metrics :
2017-07-04 01:45:35 -04:00
- nginx_responses_total
weight : 1
queries :
2017-08-14 12:23:32 -04:00
- query_range : 'sum(rate(nginx_responses_total{status_code="5xx", %{environment_filter}}[2m]))'
2017-07-04 01:45:35 -04:00
label : HTTP Errors
2017-08-14 12:23:32 -04:00
unit : "errors / sec"
2017-07-27 14:05:58 -04:00
- group : System metrics (Kubernetes)
2017-07-04 01:45:35 -04:00
priority : 5
metrics :
- title : "Memory Usage"
y_label : "Memory Usage (MB)"
required_metrics :
- container_memory_usage_bytes
2017-05-10 05:25:30 -04:00
weight : 1
queries :
2017-11-07 12:29:39 -05:00
- query_range : '(sum(avg(container_memory_usage_bytes{container_name!="POD",environment="%{ci_environment_slug}"}) without (job))) / count(avg(container_memory_usage_bytes{container_name!="POD",environment="%{ci_environment_slug}"}) without (job)) /1024/1024'
2017-07-04 01:45:35 -04:00
label : Average
unit : MB
- title : "CPU Utilization"
y_label : "CPU Utilization (%)"
2017-05-31 13:36:07 -04:00
required_metrics :
- container_cpu_usage_seconds_total
2017-05-10 05:25:30 -04:00
weight : 1
queries :
2017-11-07 12:34:34 -05:00
- query_range : 'sum(avg(rate(container_cpu_usage_seconds_total{container_name!="POD",environment="%{ci_environment_slug}"}[2m])) without (job)) * 100'
2017-11-12 00:19:43 -05:00
label : Average
unit : "%"