gitlab-org--gitlab-foss/doc/administration/high_availability/database.md

1106 lines
38 KiB
Markdown
Raw Normal View History

---
type: reference
---
# Configuring PostgreSQL for Scaling and High Availability
2016-04-22 18:18:06 +00:00
In this section, you'll be guided through configuring a PostgreSQL database
to be used with GitLab in a highly available environment.
## Provide your own PostgreSQL instance **(CORE ONLY)**
2016-04-22 18:18:06 +00:00
If you're hosting GitLab on a cloud provider, you can optionally use a
managed service for PostgreSQL. For example, AWS offers a managed Relational
Database Service (RDS) that runs PostgreSQL.
If you use a cloud-managed service, or provide your own PostgreSQL:
1. Set up PostgreSQL according to the
2017-03-30 09:34:43 +00:00
[database requirements document](../../install/requirements.md#database).
2016-04-22 18:18:06 +00:00
1. Set up a `gitlab` username with a password of your choice. The `gitlab` user
needs privileges to create the `gitlabhq_production` database.
1. Configure the GitLab application servers with the appropriate details.
This step is covered in [Configuring GitLab for HA](gitlab.md).
2016-04-22 18:18:06 +00:00
## PostgreSQL in a Scaled and Highly Available Environment
2016-04-22 18:18:06 +00:00
This section is relevant for [Scalable and Highly Available Setups](README.md).
2016-04-22 18:18:06 +00:00
### Provide your own PostgreSQL instance **(CORE ONLY)**
2019-06-06 07:39:52 +00:00
If you want to use your own deployed PostgreSQL instance(s),
see [Provide your own PostgreSQL instance](#provide-your-own-postgresql-instance-core-only)
2019-06-06 07:39:52 +00:00
for more details. However, you can use the GitLab Omnibus package to easily
deploy the bundled PostgreSQL.
### Standalone PostgreSQL using GitLab Omnibus **(CORE ONLY)**
1. SSH into the PostgreSQL server.
1. [Download/install](https://about.gitlab.com/install/) the Omnibus GitLab
package you want using **steps 1 and 2** from the GitLab downloads page.
- Do not complete any other steps on the download page.
1. Generate a password hash for PostgreSQL. This assumes you will use the default
username of `gitlab` (recommended). The command will request a password
2019-06-06 07:39:52 +00:00
and confirmation. Use the value that is output by this command in the next
step as the value of `POSTGRESQL_PASSWORD_HASH`.
2016-04-22 18:18:06 +00:00
```shell
sudo gitlab-ctl pg-password-md5 gitlab
```
2019-06-06 07:39:52 +00:00
1. Edit `/etc/gitlab/gitlab.rb` and add the contents below, updating placeholder
2019-06-06 07:39:52 +00:00
values appropriately.
- `POSTGRESQL_PASSWORD_HASH` - The value output from the previous step
- `APPLICATION_SERVER_IP_BLOCKS` - A space delimited list of IP subnets or IP
2019-06-06 07:39:52 +00:00
addresses of the GitLab application servers that will connect to the
database. Example: `%w(123.123.123.123/32 123.123.123.234/32)`
```ruby
# Disable all components except PostgreSQL
roles ['postgres_role']
repmgr['enable'] = false
consul['enable'] = false
prometheus['enable'] = false
alertmanager['enable'] = false
pgbouncer_exporter['enable'] = false
redis_exporter['enable'] = false
gitlab_exporter['enable'] = false
postgresql['listen_address'] = '0.0.0.0'
postgresql['port'] = 5432
# Replace POSTGRESQL_PASSWORD_HASH with a generated md5 value
postgresql['sql_user_password'] = 'POSTGRESQL_PASSWORD_HASH'
# Replace XXX.XXX.XXX.XXX/YY with Network Address
# ????
postgresql['trust_auth_cidr_addresses'] = %w(APPLICATION_SERVER_IP_BLOCKS)
# Disable automatic database migrations
gitlab_rails['auto_migrate'] = false
```
NOTE: **Note:** The role `postgres_role` was introduced with GitLab 10.3
2019-06-06 07:39:52 +00:00
1. [Reconfigure GitLab] for the changes to take effect.
1. Note the PostgreSQL node's IP address or hostname, port, and
plain text password. These will be necessary when configuring the GitLab
application servers later.
1. [Enable monitoring](#enable-monitoring)
Advanced configuration options are supported and can be added if
needed.
### High Availability with GitLab Omnibus **(PREMIUM ONLY)**
> Important notes:
2019-06-06 07:39:52 +00:00
>
> - This document will focus only on configuration supported with [GitLab Premium](https://about.gitlab.com/pricing/), using the Omnibus GitLab package.
> - If you are a Community Edition or Starter user, consider using a cloud hosted solution.
> - This document will not cover installations from source.
>
2019-06-18 12:23:07 +00:00
> - If HA setup is not what you were looking for, see the [database configuration document](https://docs.gitlab.com/omnibus/settings/database.html)
> for the Omnibus GitLab packages.
2019-06-06 07:39:52 +00:00
>
> Please read this document fully before attempting to configure PostgreSQL HA
> for GitLab.
>
> This configuration is GA in EE 10.2.
The recommended configuration for a PostgreSQL HA requires:
- A minimum of three database nodes
- Each node will run the following services:
2019-06-06 07:39:52 +00:00
- `PostgreSQL` - The database itself
- `repmgrd` - A service to monitor, and handle failover in case of a failure
- `Consul` agent - Used for service discovery, to alert other nodes when failover occurs
- A minimum of three `Consul` server nodes
- A minimum of one `pgbouncer` service node, but it's recommended to have one per database node
- An internal load balancer (TCP) is required when there is more than one `pgbouncer` service node
You also need to take into consideration the underlying network topology,
making sure you have redundant connectivity between all Database and GitLab instances,
otherwise the networks will become a single point of failure.
#### Architecture
2019-05-24 18:08:02 +00:00
![PG HA Architecture](img/pg_ha_architecture.png)
Database nodes run two services with PostgreSQL:
- Repmgrd. Monitors the cluster and handles failover when issues with the master occur. The failover consists of:
- Selecting a new master for the cluster.
- Promoting the new node to master.
- Instructing remaining servers to follow the new master node.
2019-06-06 07:39:52 +00:00
On failure, the old master node is automatically evicted from the cluster, and should be rejoined manually once recovered.
- Consul. Monitors the status of each node in the database cluster and tracks its health in a service definition on the Consul cluster.
Alongside each PgBouncer, there is a Consul agent that watches the status of the PostgreSQL service. If that status changes, Consul runs a script which updates the configuration and reloads PgBouncer
##### Connection flow
Each service in the package comes with a set of [default ports](https://docs.gitlab.com/omnibus/package-information/defaults.html#ports). You may need to make specific firewall rules for the connections listed below:
- Application servers connect to either PgBouncer directly via its [default port](https://docs.gitlab.com/omnibus/package-information/defaults.html#pgbouncer) or via a configured Internal Load Balancer (TCP) that serves multiple PgBouncers.
- PgBouncer connects to the primary database servers [PostgreSQL default port](https://docs.gitlab.com/omnibus/package-information/defaults.html#postgresql)
- Repmgr connects to the database servers [PostgreSQL default port](https://docs.gitlab.com/omnibus/package-information/defaults.html#postgresql)
- PostgreSQL secondaries connect to the primary database servers [PostgreSQL default port](https://docs.gitlab.com/omnibus/package-information/defaults.html#postgresql)
- Consul servers and agents connect to each others [Consul default ports](https://docs.gitlab.com/omnibus/package-information/defaults.html#consul)
#### Required information
Before proceeding with configuration, you will need to collect all the necessary
information.
##### Network information
PostgreSQL does not listen on any network interface by default. It needs to know
which IP address to listen on in order to be accessible to other services.
Similarly, PostgreSQL access is controlled based on the network source.
This is why you will need:
2019-06-06 07:39:52 +00:00
- IP address of each nodes network interface. This can be set to `0.0.0.0` to
listen on all interfaces. It cannot be set to the loopback address `127.0.0.1`.
2019-06-06 07:39:52 +00:00
- Network Address. This can be in subnet (i.e. `192.168.0.0/255.255.255.0`)
or CIDR (i.e. `192.168.0.0/24`) form.
##### User information
Various services require different configuration to secure
the communication as well as information required for running the service.
Bellow you will find details on each service and the minimum required
information you need to provide.
##### Consul information
When using default setup, minimum configuration requires:
- `CONSUL_USERNAME`. Defaults to `gitlab-consul`
- `CONSUL_DATABASE_PASSWORD`. Password for the database user.
- `CONSUL_PASSWORD_HASH`. This is a hash generated out of Consul username/password pair.
Can be generated with:
```shell
sudo gitlab-ctl pg-password-md5 CONSUL_USERNAME
```
2019-06-06 07:39:52 +00:00
- `CONSUL_SERVER_NODES`. The IP addresses or DNS records of the Consul server nodes.
Few notes on the service itself:
- The service runs under a system account, by default `gitlab-consul`.
- If you are using a different username, you will have to specify it. We
will refer to it with `CONSUL_USERNAME`,
- There will be a database user created with read only access to the repmgr
database
- Passwords will be stored in the following locations:
- `/etc/gitlab/gitlab.rb`: hashed
- `/var/opt/gitlab/pgbouncer/pg_auth`: hashed
- `/var/opt/gitlab/gitlab-consul/.pgpass`: plaintext
##### PostgreSQL information
When configuring PostgreSQL, we will set `max_wal_senders` to one more than
the number of database nodes in the cluster.
This is used to prevent replication from using up all of the
available database connections.
2019-06-06 07:39:52 +00:00
In this document we are assuming 3 database nodes, which makes this configuration:
```ruby
postgresql['max_wal_senders'] = 4
```
As previously mentioned, you'll have to prepare the network subnets that will
be allowed to authenticate with the database.
You'll also need to supply the IP addresses or DNS records of Consul
server nodes.
We will need the following password information for the application's database user:
- `POSTGRESQL_USERNAME`. Defaults to `gitlab`
- `POSTGRESQL_USER_PASSWORD`. The password for the database user
- `POSTGRESQL_PASSWORD_HASH`. This is a hash generated out of the username/password pair.
Can be generated with:
```shell
sudo gitlab-ctl pg-password-md5 POSTGRESQL_USERNAME
```
##### PgBouncer information
When using default setup, minimum configuration requires:
- `PGBOUNCER_USERNAME`. Defaults to `pgbouncer`
- `PGBOUNCER_PASSWORD`. This is a password for PgBouncer service.
- `PGBOUNCER_PASSWORD_HASH`. This is a hash generated out of PgBouncer username/password pair.
Can be generated with:
```shell
sudo gitlab-ctl pg-password-md5 PGBOUNCER_USERNAME
```
- `PGBOUNCER_NODE`, is the IP address or a FQDN of the node running PgBouncer.
Few notes on the service itself:
- The service runs as the same system account as the database
- In the package, this is by default `gitlab-psql`
- If you use a non-default user account for PgBouncer service (by default `pgbouncer`), you will have to specify this username. We will refer to this requirement with `PGBOUNCER_USERNAME`.
- The service will have a regular database user account generated for it
- This defaults to `repmgr`
- Passwords will be stored in the following locations:
- `/etc/gitlab/gitlab.rb`: hashed, and in plain text
- `/var/opt/gitlab/pgbouncer/pg_auth`: hashed
##### Repmgr information
When using default setup, you will only have to prepare the network subnets that will
be allowed to authenticate with the service.
Few notes on the service itself:
- The service runs under the same system account as the database
2019-06-06 07:39:52 +00:00
- In the package, this is by default `gitlab-psql`
- The service will have a superuser database user account generated for it
- This defaults to `gitlab_repmgr`
#### Installing Omnibus GitLab
First, make sure to [download/install](https://about.gitlab.com/install/)
GitLab Omnibus **on each node**.
Make sure you install the necessary dependencies from step 1,
add GitLab package repository from step 2.
When installing the GitLab package, do not supply `EXTERNAL_URL` value.
#### Configuring the Database nodes
1. Make sure to [configure the Consul nodes](consul.md).
1. Make sure you collect [`CONSUL_SERVER_NODES`](#consul-information), [`PGBOUNCER_PASSWORD_HASH`](#pgbouncer-information), [`POSTGRESQL_PASSWORD_HASH`](#postgresql-information), the [number of db nodes](#postgresql-information), and the [network address](#network-information) before executing the next step.
1. On the master database node, edit `/etc/gitlab/gitlab.rb` replacing values noted in the `# START user configuration` section:
```ruby
# Disable all components except PostgreSQL and Repmgr and Consul
roles ['postgres_role']
# PostgreSQL configuration
postgresql['listen_address'] = '0.0.0.0'
postgresql['hot_standby'] = 'on'
postgresql['wal_level'] = 'replica'
postgresql['shared_preload_libraries'] = 'repmgr_funcs'
# Disable automatic database migrations
gitlab_rails['auto_migrate'] = false
# Configure the Consul agent
consul['services'] = %w(postgresql)
# START user configuration
# Please set the real values as explained in Required Information section
#
# Replace PGBOUNCER_PASSWORD_HASH with a generated md5 value
postgresql['pgbouncer_user_password'] = 'PGBOUNCER_PASSWORD_HASH'
# Replace POSTGRESQL_PASSWORD_HASH with a generated md5 value
postgresql['sql_user_password'] = 'POSTGRESQL_PASSWORD_HASH'
# Replace X with value of number of db nodes + 1
postgresql['max_wal_senders'] = X
postgresql['max_replication_slots'] = X
# Replace XXX.XXX.XXX.XXX/YY with Network Address
postgresql['trust_auth_cidr_addresses'] = %w(XXX.XXX.XXX.XXX/YY)
repmgr['trust_auth_cidr_addresses'] = %w(127.0.0.1/32 XXX.XXX.XXX.XXX/YY)
# Replace placeholders:
#
# Y.Y.Y.Y consul1.gitlab.example.com Z.Z.Z.Z
# with the addresses gathered for CONSUL_SERVER_NODES
consul['configuration'] = {
retry_join: %w(Y.Y.Y.Y consul1.gitlab.example.com Z.Z.Z.Z)
}
#
# END user configuration
```
> `postgres_role` was introduced with GitLab 10.3
1. On secondary nodes, add all the configuration specified above for primary node
to `/etc/gitlab/gitlab.rb`. In addition, append the following configuration
to inform `gitlab-ctl` that they are standby nodes initially and it need not
attempt to register them as primary node
```ruby
# HA setting to specify if a node should attempt to be master on initialization
repmgr['master_on_initialization'] = false
```
2016-04-22 18:18:06 +00:00
2019-06-06 07:39:52 +00:00
1. [Reconfigure GitLab] for the changes to take effect.
1. [Enable Monitoring](#enable-monitoring)
> Please note:
2019-06-06 07:39:52 +00:00
>
> - If you want your database to listen on a specific interface, change the config:
2019-06-06 07:39:52 +00:00
> `postgresql['listen_address'] = '0.0.0.0'`.
> - If your PgBouncer service runs under a different user account,
> you also need to specify: `postgresql['pgbouncer_user'] = PGBOUNCER_USERNAME` in
2019-06-06 07:39:52 +00:00
> your configuration.
##### Database nodes post-configuration
###### Primary node
Select one node as a primary node.
2016-04-22 18:18:06 +00:00
1. Open a database prompt:
```shell
gitlab-psql -d gitlabhq_production
```
2016-04-22 18:18:06 +00:00
1. Enable the `pg_trgm` extension:
2016-04-22 18:18:06 +00:00
```shell
CREATE EXTENSION pg_trgm;
```
1. Exit the database prompt by typing `\q` and Enter.
1. Verify the cluster is initialized with one node:
2016-04-22 18:18:06 +00:00
```shell
gitlab-ctl repmgr cluster show
```
2016-04-22 18:18:06 +00:00
The output should be similar to the following:
2016-04-22 18:18:06 +00:00
```plaintext
Role | Name | Upstream | Connection String
----------+----------|----------|----------------------------------------
* master | HOSTNAME | | host=HOSTNAME user=gitlab_repmgr dbname=gitlab_repmgr
```
2016-04-22 18:18:06 +00:00
1. Note down the hostname or IP address in the connection string: `host=HOSTNAME`. We will
refer to the hostname in the next section as `MASTER_NODE_NAME`. If the value
is not an IP address, it will need to be a resolvable name (via DNS or
`/etc/hosts`)
2016-04-22 18:18:06 +00:00
###### Secondary nodes
1. Set up the repmgr standby:
```shell
gitlab-ctl repmgr standby setup MASTER_NODE_NAME
```
Do note that this will remove the existing data on the node. The command
has a wait time.
The output should be similar to the following:
```console
# gitlab-ctl repmgr standby setup MASTER_NODE_NAME
Doing this will delete the entire contents of /var/opt/gitlab/postgresql/data
If this is not what you want, hit Ctrl-C now to exit
To skip waiting, rerun with the -w option
Sleeping for 30 seconds
Stopping the database
Removing the data
Cloning the data
Starting the database
Registering the node with the cluster
ok: run: repmgrd: (pid 19068) 0s
```
2016-04-22 18:18:06 +00:00
1. Verify the node now appears in the cluster:
2016-04-22 18:18:06 +00:00
```shell
gitlab-ctl repmgr cluster show
```
The output should be similar to the following:
```plaintext
Role | Name | Upstream | Connection String
----------+---------|-----------|------------------------------------------------
* master | MASTER | | host=MASTER_NODE_NAME user=gitlab_repmgr dbname=gitlab_repmgr
standby | STANDBY | MASTER | host=STANDBY_HOSTNAME user=gitlab_repmgr dbname=gitlab_repmgr
```
Repeat the above steps on all secondary nodes.
##### Database checkpoint
Before moving on, make sure the databases are configured correctly. Run the
following command on the **primary** node to verify that replication is working
properly:
```shell
gitlab-ctl repmgr cluster show
```
The output should be similar to:
```plaintext
Role | Name | Upstream | Connection String
----------+--------------|--------------|--------------------------------------------------------------------
* master | MASTER | | host=MASTER port=5432 user=gitlab_repmgr dbname=gitlab_repmgr
standby | STANDBY | MASTER | host=STANDBY port=5432 user=gitlab_repmgr dbname=gitlab_repmgr
```
If the 'Role' column for any node says "FAILED", check the
[Troubleshooting section](#troubleshooting) before proceeding.
Also, check that the check master command works successfully on each node:
```shell
su - gitlab-consul
gitlab-ctl repmgr-check-master || echo 'This node is a standby repmgr node'
```
This command relies on exit codes to tell Consul whether a particular node is a master
or secondary. The most important thing here is that this command does not produce errors.
If there are errors it's most likely due to incorrect `gitlab-consul` database user permissions.
Check the [Troubleshooting section](#troubleshooting) before proceeding.
#### Configuring the PgBouncer node
See our [documentation for PgBouncer](pgbouncer.md) for information on running PgBouncer as part of an HA setup.
#### Configuring the Application nodes
These will be the nodes running the `gitlab-rails` service. You may have other
attributes set, but the following need to be set.
1. Edit `/etc/gitlab/gitlab.rb`:
```ruby
# Disable PostgreSQL on the application node
postgresql['enable'] = false
gitlab_rails['db_host'] = 'PGBOUNCER_NODE' or 'INTERNAL_LOAD_BALANCER'
gitlab_rails['db_port'] = 6432
gitlab_rails['db_password'] = 'POSTGRESQL_USER_PASSWORD'
gitlab_rails['auto_migrate'] = false
```
1. [Reconfigure GitLab] for the changes to take effect.
##### Application node post-configuration
Ensure that all migrations ran:
```shell
gitlab-rake gitlab:db:configure
```
> **Note**: If you encounter a `rake aborted!` error stating that PgBouncer is failing to connect to
PostgreSQL it may be that your PgBouncer node's IP address is missing from
PostgreSQL's `trust_auth_cidr_addresses` in `gitlab.rb` on your database nodes. See
[PgBouncer error `ERROR: pgbouncer cannot connect to server`](#pgbouncer-error-error-pgbouncer-cannot-connect-to-server)
in the Troubleshooting section before proceeding.
##### Ensure GitLab is running
At this point, your GitLab instance should be up and running. Verify you are
2019-06-06 07:39:52 +00:00
able to login, and create issues and merge requests. If you have troubles check
the [Troubleshooting section](#troubleshooting).
#### Example configuration
Here we'll show you some fully expanded example configurations.
##### Example recommended setup
This example uses 3 Consul servers, 3 PgBouncer servers (with associated internal load balancer),
3 PostgreSQL servers, and 1 application node.
We start with all servers on the same 10.6.0.0/16 private network range, they
can connect to each freely other on those addresses.
Here is a list and description of each machine and the assigned IP:
2019-06-06 07:39:52 +00:00
- `10.6.0.11`: Consul 1
- `10.6.0.12`: Consul 2
- `10.6.0.13`: Consul 3
- `10.6.0.20`: Internal Load Balancer
- `10.6.0.21`: PgBouncer 1
- `10.6.0.22`: PgBouncer 2
- `10.6.0.23`: PgBouncer 3
- `10.6.0.31`: PostgreSQL master
- `10.6.0.32`: PostgreSQL secondary
- `10.6.0.33`: PostgreSQL secondary
- `10.6.0.41`: GitLab application
All passwords are set to `toomanysecrets`, please do not use this password or derived hashes and the `external_url` for GitLab is `http://gitlab.example.com`.
Please note that after the initial configuration, if a failover occurs, the PostgresSQL master will change to one of the available secondaries until it is failed back.
##### Example recommended setup for Consul servers
On each server edit `/etc/gitlab/gitlab.rb`:
```ruby
# Disable all components except Consul
roles ['consul_role']
consul['configuration'] = {
server: true,
retry_join: %w(10.6.0.11 10.6.0.12 10.6.0.13)
}
consul['monitoring_service_discovery'] = true
```
[Reconfigure Omnibus GitLab][reconfigure GitLab] for the changes to take effect.
##### Example recommended setup for PgBouncer servers
On each server edit `/etc/gitlab/gitlab.rb`:
```ruby
# Disable all components except Pgbouncer and Consul agent
roles ['pgbouncer_role']
# Configure PgBouncer
pgbouncer['admin_users'] = %w(pgbouncer gitlab-consul)
pgbouncer['users'] = {
'gitlab-consul': {
password: '5e0e3263571e3704ad655076301d6ebe'
},
'pgbouncer': {
password: '771a8625958a529132abe6f1a4acb19c'
}
}
consul['watchers'] = %w(postgresql)
consul['enable'] = true
consul['configuration'] = {
retry_join: %w(10.6.0.11 10.6.0.12 10.6.0.13)
}
consul['monitoring_service_discovery'] = true
```
[Reconfigure Omnibus GitLab][reconfigure GitLab] for the changes to take effect.
##### Internal load balancer setup
An internal load balancer (TCP) is then required to be setup to serve each PgBouncer node (in this example on the IP of `10.6.0.20`). An example of how to do this can be found in the [PgBouncer Configure Internal Load Balancer](pgbouncer.md#configure-the-internal-load-balancer) section.
##### Example recommended setup for PostgreSQL servers
###### Primary node
On primary node edit `/etc/gitlab/gitlab.rb`:
```ruby
# Disable all components except PostgreSQL and Repmgr and Consul
roles ['postgres_role']
# PostgreSQL configuration
postgresql['listen_address'] = '0.0.0.0'
postgresql['hot_standby'] = 'on'
postgresql['wal_level'] = 'replica'
postgresql['shared_preload_libraries'] = 'repmgr_funcs'
# Disable automatic database migrations
gitlab_rails['auto_migrate'] = false
postgresql['pgbouncer_user_password'] = '771a8625958a529132abe6f1a4acb19c'
postgresql['sql_user_password'] = '450409b85a0223a214b5fb1484f34d0f'
postgresql['max_wal_senders'] = 4
postgresql['trust_auth_cidr_addresses'] = %w(10.6.0.0/16)
repmgr['trust_auth_cidr_addresses'] = %w(10.6.0.0/16)
# Configure the Consul agent
consul['services'] = %w(postgresql)
consul['enable'] = true
consul['configuration'] = {
retry_join: %w(10.6.0.11 10.6.0.12 10.6.0.13)
}
consul['monitoring_service_discovery'] = true
```
[Reconfigure Omnibus GitLab][reconfigure GitLab] for the changes to take effect.
###### Secondary nodes
On secondary nodes, edit `/etc/gitlab/gitlab.rb` and add all the configuration
added to primary node, noted above. In addition, append the following
2019-06-06 07:39:52 +00:00
configuration:
```ruby
# HA setting to specify if a node should attempt to be master on initialization
repmgr['master_on_initialization'] = false
```
[Reconfigure Omnibus GitLab][reconfigure GitLab] for the changes to take effect.
##### Example recommended setup for application server
On the server edit `/etc/gitlab/gitlab.rb`:
```ruby
external_url 'http://gitlab.example.com'
gitlab_rails['db_host'] = '10.6.0.20' # Internal Load Balancer for PgBouncer nodes
gitlab_rails['db_port'] = 6432
gitlab_rails['db_password'] = 'toomanysecrets'
gitlab_rails['auto_migrate'] = false
postgresql['enable'] = false
pgbouncer['enable'] = false
consul['enable'] = true
# Configure Consul agent
consul['watchers'] = %w(postgresql)
pgbouncer['users'] = {
'gitlab-consul': {
password: '5e0e3263571e3704ad655076301d6ebe'
},
'pgbouncer': {
password: '771a8625958a529132abe6f1a4acb19c'
}
}
consul['configuration'] = {
retry_join: %w(10.6.0.11 10.6.0.12 10.6.0.13)
}
```
[Reconfigure Omnibus GitLab][reconfigure GitLab] for the changes to take effect.
##### Example recommended setup manual steps
After deploying the configuration follow these steps:
1. On `10.6.0.31`, our primary database
Enable the `pg_trgm` extension
```shell
gitlab-psql -d gitlabhq_production
```
```shell
CREATE EXTENSION pg_trgm;
```
1. On `10.6.0.32`, our first standby database
2016-04-22 18:18:06 +00:00
Make this node a standby of the primary
2016-04-22 18:18:06 +00:00
```shell
gitlab-ctl repmgr standby setup 10.6.0.21
```
1. On `10.6.0.33`, our second standby database
Make this node a standby of the primary
```shell
gitlab-ctl repmgr standby setup 10.6.0.21
```
1. On `10.6.0.41`, our application server
Set `gitlab-consul` user's PgBouncer password to `toomanysecrets`
```shell
gitlab-ctl write-pgpass --host 127.0.0.1 --database pgbouncer --user pgbouncer --hostuser gitlab-consul
```
Run database migrations
```shell
gitlab-rake gitlab:db:configure
```
#### Example minimal setup
This example uses 3 PostgreSQL servers, and 1 application node (with PgBouncer setup alongside).
It differs from the [recommended setup](#example-recommended-setup) by moving the Consul servers into the same servers we use for PostgreSQL.
The trade-off is between reducing server counts, against the increased operational complexity of needing to deal with PostgreSQL [failover](#failover-procedure) and [restore](#restore-procedure) procedures in addition to [Consul outage recovery](consul.md#outage-recovery) on the same set of machines.
In this example we start with all servers on the same 10.6.0.0/16 private network range, they can connect to each freely other on those addresses.
Here is a list and description of each machine and the assigned IP:
2019-06-06 07:39:52 +00:00
- `10.6.0.21`: PostgreSQL master
- `10.6.0.22`: PostgreSQL secondary
- `10.6.0.23`: PostgreSQL secondary
- `10.6.0.31`: GitLab application
All passwords are set to `toomanysecrets`, please do not use this password or derived hashes.
The `external_url` for GitLab is `http://gitlab.example.com`
Please note that after the initial configuration, if a failover occurs, the PostgresSQL master will change to one of the available secondaries until it is failed back.
##### Example minimal configuration for database servers
##### Primary node
2019-06-06 07:39:52 +00:00
On primary database node edit `/etc/gitlab/gitlab.rb`:
```ruby
# Disable all components except PostgreSQL, Repmgr, and Consul
roles ['postgres_role']
# PostgreSQL configuration
postgresql['listen_address'] = '0.0.0.0'
postgresql['hot_standby'] = 'on'
postgresql['wal_level'] = 'replica'
postgresql['shared_preload_libraries'] = 'repmgr_funcs'
# Disable automatic database migrations
gitlab_rails['auto_migrate'] = false
# Configure the Consul agent
consul['services'] = %w(postgresql)
postgresql['pgbouncer_user_password'] = '771a8625958a529132abe6f1a4acb19c'
postgresql['sql_user_password'] = '450409b85a0223a214b5fb1484f34d0f'
postgresql['max_wal_senders'] = 4
postgresql['trust_auth_cidr_addresses'] = %w(10.6.0.0/16)
repmgr['trust_auth_cidr_addresses'] = %w(10.6.0.0/16)
consul['configuration'] = {
server: true,
retry_join: %w(10.6.0.21 10.6.0.22 10.6.0.23)
}
```
[Reconfigure Omnibus GitLab][reconfigure GitLab] for the changes to take effect.
###### Secondary nodes
On secondary nodes, edit `/etc/gitlab/gitlab.rb` and add all the information added
to primary node, noted above. In addition, append the following configuration
```ruby
# HA setting to specify if a node should attempt to be master on initialization
repmgr['master_on_initialization'] = false
```
##### Example minimal configuration for application server
On the server edit `/etc/gitlab/gitlab.rb`:
```ruby
external_url 'http://gitlab.example.com'
gitlab_rails['db_host'] = '127.0.0.1'
gitlab_rails['db_port'] = 6432
gitlab_rails['db_password'] = 'toomanysecrets'
gitlab_rails['auto_migrate'] = false
postgresql['enable'] = false
pgbouncer['enable'] = true
consul['enable'] = true
# Configure PgBouncer
pgbouncer['admin_users'] = %w(pgbouncer gitlab-consul)
# Configure Consul agent
consul['watchers'] = %w(postgresql)
pgbouncer['users'] = {
'gitlab-consul': {
password: '5e0e3263571e3704ad655076301d6ebe'
},
'pgbouncer': {
password: '771a8625958a529132abe6f1a4acb19c'
}
}
consul['configuration'] = {
retry_join: %w(10.6.0.21 10.6.0.22 10.6.0.23)
}
```
[Reconfigure Omnibus GitLab][reconfigure GitLab] for the changes to take effect.
##### Example minimal setup manual steps
The manual steps for this configuration are the same as for the [example recommended setup](#example-recommended-setup-manual-steps).
#### Failover procedure
By default, if the master database fails, `repmgrd` should promote one of the
standby nodes to master automatically, and Consul will update PgBouncer with
the new master.
If you need to failover manually, you have two options:
**Shutdown the current master database**
Run:
```shell
gitlab-ctl stop postgresql
```
The automated failover process will see this and failover to one of the
standby nodes.
**Or perform a manual failover**
1. Ensure the old master node is not still active.
1. Login to the server that should become the new master and run:
```shell
gitlab-ctl repmgr standby promote
```
1. If there are any other standby servers in the cluster, have them follow
the new master server:
```shell
gitlab-ctl repmgr standby follow NEW_MASTER
```
#### Restore procedure
If a node fails, it can be removed from the cluster, or added back as a standby
after it has been restored to service.
##### Remove a standby from the cluster
From any other node in the cluster, run:
```shell
gitlab-ctl repmgr standby unregister --node=X
```
where X is the value of node in `repmgr.conf` on the old server.
To find this, you can use:
```shell
awk -F = '$1 == "node" { print $2 }' /var/opt/gitlab/postgresql/repmgr.conf
```
It will output something like:
```plaintext
959789412
```
Then you will use this ID to unregister the node:
```shell
gitlab-ctl repmgr standby unregister --node=959789412
```
##### Add a node as a standby server
From the stnadby node, run:
```shell
gitlab-ctl repmgr standby follow NEW_MASTER
gitlab-ctl restart repmgrd
```
CAUTION: **Warning:** When the server is brought back online, and before
you switch it to a standby node, repmgr will report that there are two masters.
If there are any clients that are still attempting to write to the old master,
this will cause a split, and the old master will need to be resynced from
scratch by performing a `gitlab-ctl repmgr standby setup NEW_MASTER`.
##### Add a failed master back into the cluster as a standby node
Once `repmgrd` and PostgreSQL are runnning, the node will need to follow the new
as a standby node.
```shell
gitlab-ctl repmgr standby follow NEW_MASTER
```
Once the node is following the new master as a standby, the node needs to be
[unregistered from the cluster on the new master node](#remove-a-standby-from-the-cluster).
Once the old master node has been unregistered from the cluster, it will need
to be setup as a new standby:
```shell
gitlab-ctl repmgr standby setup NEW_MASTER
```
Failure to unregister and readd the old master node can lead to subsequent failovers
not working.
#### Alternate configurations
##### Database authorization
By default, we give any host on the database network the permission to perform
repmgr operations using PostgreSQL's `trust` method. If you do not want this
level of trust, there are alternatives.
You can trust only the specific nodes that will be database clusters, or you
can require md5 authentication.
##### Trust specific addresses
If you know the IP address, or FQDN of all database and PgBouncer nodes in the
cluster, you can trust only those nodes.
In `/etc/gitlab/gitlab.rb` on all of the database nodes, set
`repmgr['trust_auth_cidr_addresses']` to an array of strings containing all of
the addresses.
If setting to a node's FQDN, they must have a corresponding PTR record in DNS.
If setting to a node's IP address, specify it as `XXX.XXX.XXX.XXX/32`.
For example:
```ruby
repmgr['trust_auth_cidr_addresses'] = %w(192.168.1.44/32 db2.example.com)
```
##### MD5 Authentication
If you are running on an untrusted network, repmgr can use md5 authentication
with a [`.pgpass` file](https://www.postgresql.org/docs/9.6/libpq-pgpass.html)
to authenticate.
You can specify by IP address, FQDN, or by subnet, using the same format as in
the previous section:
1. On the current master node, create a password for the `gitlab` and
`gitlab_repmgr` user:
```shell
gitlab-psql -d template1
template1=# \password gitlab_repmgr
Enter password: ****
Confirm password: ****
template1=# \password gitlab
```
1. On each database node:
1. Edit `/etc/gitlab/gitlab.rb`:
1. Ensure `repmgr['trust_auth_cidr_addresses']` is **not** set
1. Set `postgresql['md5_auth_cidr_addresses']` to the desired value
1. Set `postgresql['sql_replication_user'] = 'gitlab_repmgr'`
1. Reconfigure with `gitlab-ctl reconfigure`
1. Restart PostgreSQL with `gitlab-ctl restart postgresql`
1. Create a `.pgpass` file. Enter the `gitlab_repmgr` password twice to
when asked:
```shell
gitlab-ctl write-pgpass --user gitlab_repmgr --hostuser gitlab-psql --database '*'
```
1. On each PgBouncer node, edit `/etc/gitlab/gitlab.rb`:
1. Ensure `gitlab_rails['db_password']` is set to the plaintext password for
the `gitlab` database user
1. [Reconfigure GitLab] for the changes to take effect
## Enable Monitoring
> [Introduced](https://gitlab.com/gitlab-org/omnibus-gitlab/issues/3786) in GitLab 12.0.
If you enable Monitoring, it must be enabled on **all** database servers.
1. Create/edit `/etc/gitlab/gitlab.rb` and add the following configuration:
```ruby
# Enable service discovery for Prometheus
consul['monitoring_service_discovery'] = true
# Set the network addresses that the exporters will listen on
node_exporter['listen_address'] = '0.0.0.0:9100'
postgres_exporter['listen_address'] = '0.0.0.0:9187'
```
1. Run `sudo gitlab-ctl reconfigure` to compile the configuration.
## Troubleshooting
### Consul and PostgreSQL changes not taking effect
Due to the potential impacts, `gitlab-ctl reconfigure` only reloads Consul and PostgreSQL, it will not restart the services. However, not all changes can be activated by reloading.
To restart either service, run `gitlab-ctl restart SERVICE`
For PostgreSQL, it is usually safe to restart the master node by default. Automatic failover defaults to a 1 minute timeout. Provided the database returns before then, nothing else needs to be done. To be safe, you can stop `repmgrd` on the standby nodes first with `gitlab-ctl stop repmgrd`, then start afterwards with `gitlab-ctl start repmgrd`.
On the Consul server nodes, it is important to restart the Consul service in a controlled fashion. Read our [Consul documentation](consul.md#restarting-the-server-cluster) for instructions on how to restart the service.
### `gitlab-ctl repmgr-check-master` command produces errors
If this command displays errors about database permissions it is likely that something failed during
install, resulting in the `gitlab-consul` database user getting incorrect permissions. Follow these
steps to fix the problem:
1. On the master database node, connect to the database prompt - `gitlab-psql -d template1`
1. Delete the `gitlab-consul` user - `DROP USER "gitlab-consul";`
1. Exit the database prompt - `\q`
1. [Reconfigure GitLab] and the user will be re-added with the proper permissions.
1. Change to the `gitlab-consul` user - `su - gitlab-consul`
1. Try the check command again - `gitlab-ctl repmgr-check-master`.
2019-06-06 07:39:52 +00:00
Now there should not be errors. If errors still occur then there is another problem.
### PgBouncer error `ERROR: pgbouncer cannot connect to server`
You may get this error when running `gitlab-rake gitlab:db:configure` or you
may see the error in the PgBouncer log file.
```plaintext
PG::ConnectionBad: ERROR: pgbouncer cannot connect to server
```
The problem may be that your PgBouncer node's IP address is not included in the
`trust_auth_cidr_addresses` setting in `/etc/gitlab/gitlab.rb` on the database nodes.
You can confirm that this is the issue by checking the PostgreSQL log on the master
database node. If you see the following error then `trust_auth_cidr_addresses`
is the problem.
```plaintext
2018-03-29_13:59:12.11776 FATAL: no pg_hba.conf entry for host "123.123.123.123", user "pgbouncer", database "gitlabhq_production", SSL off
```
To fix the problem, add the IP address to `/etc/gitlab/gitlab.rb`.
```ruby
postgresql['trust_auth_cidr_addresses'] = %w(123.123.123.123/32 <other_cidrs>)
```
[Reconfigure GitLab] for the changes to take effect.
### Issues with other components
If you're running into an issue with a component not outlined here, be sure to check the troubleshooting section of their specific documentation page.
- [Consul](consul.md#troubleshooting)
2019-06-18 12:23:07 +00:00
- [PostgreSQL](https://docs.gitlab.com/omnibus/settings/database.html#troubleshooting)
- [GitLab application](gitlab.md#troubleshooting)
## Configure using Omnibus
**Note**: We recommend that you follow the instructions here for a full [PostgreSQL cluster](#high-availability-with-gitlab-omnibus-premium-only).
If you are reading this section due to an old bookmark, you can find that old documentation [in the repository](https://gitlab.com/gitlab-org/gitlab/blob/v10.1.4/doc/administration/high_availability/database.md#configure-using-omnibus).
2016-04-22 18:18:06 +00:00
Read more on high-availability configuration:
1. [Configure Redis](redis.md)
1. [Configure NFS](nfs.md)
1. [Configure the GitLab application servers](gitlab.md)
1. [Configure the load balancers](load_balancer.md)
1. [Manage the bundled Consul cluster](consul.md)
[reconfigure GitLab]: ../restart_gitlab.md#omnibus-gitlab-reconfigure