---
stage: Growth
group: Product Intelligence
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
---
# Service Ping Guide **(FREE SELF)**
> - Introduced in GitLab Ultimate 11.2, more statistics.
> - In GitLab 14.1, [renamed from Usage Ping to Service Ping](https://gitlab.com/groups/gitlab-org/-/epics/5990). In 14.0 and earlier, use the Usage Ping documentation for the Rails commands appropriate to your version.
Service Ping is a GitLab process that collects and sends a weekly payload to GitLab.
The payload provides important high-level data that helps our product, support,
and sales teams understand how GitLab is used. The data helps to:
- Compare counts month over month (or week over week) to get a rough sense for how an instance uses
different product features.
- Collect other facts that help us classify and understand GitLab installations.
- Calculate our stage monthly active users (SMAU), which helps to measure the success of our stages
and features.
Service Ping information is not anonymous. It's linked to the instance's hostname, but does
not contain project names, usernames, or any other specific data.
Sending a Service Ping payload is optional and you can [disable](../../user/admin_area/settings/usage_statistics.md#enable-or-disable-usage-statistics) it on any
self-managed instance. When Service Ping is enabled, GitLab gathers data from the other instances
and can show your instance's usage statistics to your users.
## Service Ping terminology
We use the following terminology to describe the Service Ping components:
- **Service Ping**: the process that collects and generates a JSON payload.
- **Service Data**: the contents of the Service Ping JSON payload. This includes metrics.
- **Metrics**: primarily made up of row counts for different tables in an instance's database. Each
metric has a corresponding [metric definition](metrics_dictionary.md#metrics-definition-and-validation)
in a YAML file.
- **MAU**: monthly active users.
- **WAU**: weekly active users.
### Limitations
- Service Ping does not track frontend events things like page views, link clicks, or user sessions.
- Service Ping focuses only on aggregated backend events.
Because of these limitations we recommend you:
- Instrument your products with Snowplow for more detailed analytics on GitLab.com.
- Use Service Ping to track aggregated backend events on self-managed instances.
## Service Ping request flow
The following example shows a basic request/response flow between a GitLab instance, the Versions Application, the License Application, Salesforce, the GitLab S3 Bucket, the GitLab Snowflake Data Warehouse, and Sisense:
```mermaid
sequenceDiagram
participant GitLab Instance
participant Versions Application
participant Licenses Application
participant Salesforce
participant S3 Bucket
participant Snowflake DW
participant Sisense Dashboards
GitLab Instance->>Versions Application: Send Service Ping
loop Process usage data
Versions Application->>Versions Application: Parse usage data
Versions Application->>Versions Application: Write to database
Versions Application->>Versions Application: Update license ping time
end
loop Process data for Salesforce
Versions Application-xLicenses Application: Request Zuora subscription id
Licenses Application-xVersions Application: Zuora subscription id
Versions Application-xSalesforce: Request Zuora account id by Zuora subscription id
Salesforce-xVersions Application: Zuora account id
Versions Application-xSalesforce: Usage data for the Zuora account
end
Versions Application->>S3 Bucket: Export Versions database
S3 Bucket->>Snowflake DW: Import data
Snowflake DW->>Snowflake DW: Transform data using dbt
Snowflake DW->>Sisense Dashboards: Data available for querying
Versions Application->>GitLab Instance: DevOps Score (Conversational Development Index)
```
## How Service Ping works
1. The Service Ping [cron job](https://gitlab.com/gitlab-org/gitlab/-/blob/master/app/workers/gitlab_service_ping_worker.rb#L24) is set in Sidekiq to run weekly.
1. When the cron job runs, it calls [`Gitlab::Usage::ServicePingReport.for(output: :all_metrics_values)`](https://gitlab.com/gitlab-org/gitlab/-/blob/master/app/services/service_ping/submit_service.rb).
1. `Gitlab::Usage::ServicePingReport.for(output: :all_metrics_values)` [cascades down](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/gitlab/usage_data.rb) to ~400+ other counter method calls.
1. The response of all methods calls are [merged together](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/gitlab/usage_data.rb#L68) into a single JSON payload.
1. The JSON payload is then [posted to the Versions application](https://gitlab.com/gitlab-org/gitlab/-/blob/master/app/services/service_ping/submit_service.rb#L20)
If a firewall exception is needed, the required URL depends on several things. If
the hostname is `version.gitlab.com`, the protocol is `TCP`, and the port number is `443`,
the required URL is
{
"uuid"=>"02333324-1cd7-4c3b-a45b-a4993f05fb1d",
"hostname"=>"127.0.0.1",
"version"=>"14.7.0-pre",
"elapsed"=>0.006946,
"message"=>'PG::UndefinedColumn: ERROR: column \"non_existent_attribute\" does not exist\nLINE 1: SELECT COUNT(non_existent_attribute) FROM \"issues\" /*applica...'
}
1. Finally, the timing metadata information that is used for diagnostic purposes is submitted to the Versions application. It consists of a list of metric identifiers and the time it took to calculate the metrics:
> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/37911) in GitLab 15.0 [with a flag(../../user/feature_flags.md), enabled by default.
FLAG:
On self-managed GitLab, by default this feature is available. To hide the feature, ask an administrator to [disable the feature flag](../../administration/feature_flags.md) named `measure_service_ping_metric_collection`.
On GitLab.com, this feature is available.
```ruby
{"metadata"=>
{"metrics"=>
[{"name"=>"version", "time_elapsed"=>1.1811964213848114e-05},
{"name"=>"installation_type", "time_elapsed"=>0.00017242692410945892},
{"name"=>"license_billable_users", "time_elapsed"=>0.009520471096038818},
....
{"name"=>"counts.clusters_platforms_eks",
"time_elapsed"=>0.05638605775311589},
{"name"=>"counts.clusters_platforms_gke",
"time_elapsed"=>0.40995341585949063},
{"name"=>"counts.clusters_platforms_user",
"time_elapsed"=>0.06410990096628666},
{"name"=>"counts.clusters_management_project",
"time_elapsed"=>0.24020783510059118},
{"name"=>"counts.clusters_integrations_elastic_stack",
"time_elapsed"=>0.03484998410567641}
]
}
}
```
### On a Geo secondary site
We also collect metrics specific to [Geo](../../administration/geo/index.md) secondary sites to send with Service Ping.
1. The [Geo secondary service ping cron job](https://gitlab.com/gitlab-org/gitlab/-/blob/master/ee/app/workers/geo/secondary_usage_data_cron_worker.rb) is set in Sidekiq to run weekly.
1. When the cron job runs, it calls [`SecondaryUsageData.update_metrics!`](https://gitlab.com/gitlab-org/gitlab/-/blob/master/ee/app/models/geo/secondary_usage_data.rb#L33). This collects the relevant metrics from Prometheus and stores the data in the Geo secondary tracking database for transmission to the primary site during a [Geo node status update](https://gitlab.com/gitlab-org/gitlab/-/blob/master/ee/app/models/geo_node_status.rb#L105).
1. Geo node status data is sent with the JSON payload in the process described above. The following is an example of the payload where each object in the array represents a Geo node:
```json
[
{
"repository_verification_enabled"=>true,
"repositories_replication_enabled"=>true,
"repositories_synced_count"=>24,
"repositories_failed_count"=>0,
"git_fetch_event_count_weekly"=>nil,
"git_push_event_count_weekly"=>nil,
... other geo node status fields
}
]
```
### Enable or disable service ping metadata reporting
Service Ping timing metadata reporting is under development but ready for production use.
It is deployed behind a feature flag that is **enabled by default**.
[GitLab administrators with access to the GitLab Rails console](../../administration/feature_flags.md)
can opt to disable it.
To enable it:
```ruby
Feature.enable(:measure_service_ping_metric_collection)
```
To disable it:
```ruby
Feature.disable(:measure_service_ping_metric_collection)
```
## Implementing Service Ping
See the [implement Service Ping](implement.md) guide.
## Example Service Ping payload
The following is example content of the Service Ping payload.
```json
{
"uuid": "0000000-0000-0000-0000-000000000000",
"hostname": "example.com",
"version": "12.10.0-pre",
"installation_type": "omnibus-gitlab",
"active_user_count": 999,
"recorded_at": "2020-04-17T07:43:54.162+00:00",
"edition": "EEU",
"license_md5": "00000000000000000000000000000000",
"license_id": null,
"historical_max_users": 999,
"licensee": {
"Name": "ABC, Inc.",
"Email": "email@example.com",
"Company": "ABC, Inc."
},
"license_user_count": 999,
"license_starts_at": "2020-01-01",
"license_expires_at": "2021-01-01",
"license_plan": "ultimate",
"license_add_ons": {
},
"license_trial": false,
"counts": {
"assignee_lists": 999,
"boards": 999,
"ci_builds": 999,
...
},
"container_registry_enabled": true,
"dependency_proxy_enabled": false,
"gitlab_shared_runners_enabled": true,
"gravatar_enabled": true,
"influxdb_metrics_enabled": true,
"ldap_enabled": false,
"mattermost_enabled": false,
"omniauth_enabled": true,
"prometheus_enabled": false,
"prometheus_metrics_enabled": false,
"reply_by_email_enabled": "incoming+%{key}@incoming.gitlab.com",
"signup_enabled": true,
"web_ide_clientside_preview_enabled": true,
"projects_with_expiration_policy_disabled": 999,
"projects_with_expiration_policy_enabled": 999,
...
"elasticsearch_enabled": true,
"license_trial_ends_on": null,
"geo_enabled": false,
"git": {
"version": {
"major": 2,
"minor": 26,
"patch": 1
}
},
"gitaly": {
"version": "12.10.0-rc1-93-g40980d40",
"servers": 56,
"clusters": 14,
"filesystems": [
"EXT_2_3_4"
]
},
"gitlab_pages": {
"enabled": true,
"version": "1.17.0"
},
"container_registry_server": {
"vendor": "gitlab",
"version": "2.9.1-gitlab"
},
"database": {
"adapter": "postgresql",
"version": "9.6.15",
"pg_system_id": 6842684531675334351,
"flavor": "Cloud SQL for PostgreSQL"
},
"analytics_unique_visits": {
"g_analytics_contribution": 999,
...
},
"usage_activity_by_stage": {
"configure": {
"project_clusters_enabled": 999,
...
},
"create": {
"merge_requests": 999,
...
},
"manage": {
"events": 999,
...
},
"monitor": {
"clusters": 999,
...
},
"package": {
"projects_with_packages": 999
},
"plan": {
"issues": 999,
...
},
"release": {
"deployments": 999,
...
},
"secure": {
"user_container_scanning_jobs": 999,
...
},
"verify": {
"ci_builds": 999,
...
}
},
"usage_activity_by_stage_monthly": {
"configure": {
"project_clusters_enabled": 999,
...
},
"create": {
"merge_requests": 999,
...
},
"manage": {
"events": 999,
...
},
"monitor": {
"clusters": 999,
...
},
"package": {
"projects_with_packages": 999
},
"plan": {
"issues": 999,
...
},
"release": {
"deployments": 999,
...
},
"secure": {
"user_container_scanning_jobs": 999,
...
},
"verify": {
"ci_builds": 999,
...
}
},
"topology": {
"duration_s": 0.013836685999194742,
"application_requests_per_hour": 4224,
"query_apdex_weekly_average": 0.996,
"failures": [],
"nodes": [
{
"node_memory_total_bytes": 33269903360,
"node_memory_utilization": 0.35,
"node_cpus": 16,
"node_cpu_utilization": 0.2,
"node_uname_info": {
"machine": "x86_64",
"sysname": "Linux",
"release": "4.19.76-linuxkit"
},
"node_services": [
{
"name": "web",
"process_count": 16,
"process_memory_pss": 233349888,
"process_memory_rss": 788220927,
"process_memory_uss": 195295487,
"server": "puma"
},
{
"name": "sidekiq",
"process_count": 1,
"process_memory_pss": 734080000,
"process_memory_rss": 750051328,
"process_memory_uss": 731533312
},
...
],
...
},
...
]
}
}
```
## Notable changes
In GitLab 14.6, [`flavor`](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/75587) was added to try to detect the underlying managed database variant.
Possible values are "Amazon Aurora PostgreSQL", "PostgreSQL on Amazon RDS", "Cloud SQL for PostgreSQL",
"Azure Database for PostgreSQL - Flexible Server", or "null".
In GitLab 13.5, `pg_system_id` was added to send the [PostgreSQL system identifier](https://www.2ndquadrant.com/en/blog/support-for-postgresqls-system-identifier-in-barman/).
## Export Service Ping SQL queries and definitions
Two Rake tasks exist to export Service Ping definitions.
- The Rake tasks export the raw SQL queries for `count`, `distinct_count`, `sum`.
- The Rake tasks export the Redis counter class or the line of the Redis block for `redis_usage_data`.
- The Rake tasks calculate the `alt_usage_data` metrics.
In the home directory of your local GitLab installation run the following Rake tasks for the YAML and JSON versions respectively:
```shell
# for YAML export
bin/rake gitlab:usage_data:dump_sql_in_yaml
# for JSON export
bin/rake gitlab:usage_data:dump_sql_in_json
# You may pipe the output into a file
bin/rake gitlab:usage_data:dump_sql_in_yaml > ~/Desktop/usage-metrics-2020-09-02.yaml
```
## Generate Service Ping
To generate Service Ping, use [Teleport](https://goteleport.com/docs/) or a detached screen session on a remote server.
### Triggering
#### Trigger Service Ping with Teleport
1. Request temporary [access](https://gitlab.com/gitlab-com/runbooks/-/blob/master/docs/Teleport/Connect_to_Rails_Console_via_Teleport.md#how-to-use-teleport-to-connect-to-rails-console) to the required environment.
1. After your approval is issued, [access the Rails console](https://gitlab.com/gitlab-com/runbooks/-/blob/master/docs/Teleport/Connect_to_Rails_Console_via_Teleport.md#access-approval).
1. Run `ServicePing::SubmitService.new.execute`.
#### Trigger Service Ping with a detached screen session
1. Connect to bastion with agent forwarding:
```shell
ssh -A lb-bastion.gprd.gitlab.com
```
1. Create named screen:
```shell
screen -S