1
0
Fork 0
mirror of https://gitlab.com/sortix/sortix.git synced 2023-02-13 20:55:38 -05:00

Initialize the GDT in the bootstrap assembly.

This commit is contained in:
Jonas 'Sortie' Termansen 2015-03-16 00:14:21 +01:00
parent cf55531aae
commit a422c394b8
10 changed files with 293 additions and 429 deletions

View file

@ -31,14 +31,14 @@ BOOTOBJS:=
ifeq ($(CPU),x86)
X86FAMILY:=1
CPUDIR:=$(CPU)
CPUOBJS:=$(CPUDIR)/boot.o $(CPUDIR)/base.o
CPUOBJS:=$(CPUDIR)/boot.o
endif
ifeq ($(CPU),x64)
X86FAMILY:=1
CPUDIR:=$(CPU)
CXXFLAGS:=$(CXXFLAGS) -mno-red-zone -mno-mmx -mno-sse -mno-sse2
CPUOBJS:=$(CPUDIR)/boot.o $(CPUDIR)/base.o
CPUOBJS:=$(CPUDIR)/boot.o
endif
ifndef CPUDIR

View file

@ -1,6 +1,6 @@
/*******************************************************************************
Copyright(C) Jonas 'Sortie' Termansen 2011, 2013, 2014.
Copyright(C) Jonas 'Sortie' Termansen 2011, 2013, 2014, 2015.
This file is part of Sortix.
@ -30,7 +30,6 @@ namespace Sortix {
extern "C" __attribute__((noreturn)) void HaltKernel();
extern "C" __attribute__((noreturn)) void Panic(const char* error);
extern "C" __attribute__((noreturn, format(printf, 1, 2))) void PanicF(const char* format, ...);
extern "C" void WaitForInterrupt();
} // namespace Sortix

View file

@ -63,6 +63,8 @@ const uint32_t UCS = 0x18;
const uint32_t UDS = 0x20;
const uint32_t URPL = 0x3;
const uint32_t RPLMASK = 0x3;
#define GDT_FS_ENTRY 6
#define GDT_GS_ENTRY 7
struct interrupt_context
{

View file

@ -93,7 +93,7 @@
#include "x86-family/gdt.h"
#endif
// Keep the stack size aligned with $CPU/base.s
// Keep the stack size aligned with $CPU/boot.s
const size_t STACK_SIZE = 64*1024;
extern "C" { __attribute__((aligned(16))) size_t stack[STACK_SIZE / sizeof(size_t)]; }
@ -276,10 +276,6 @@ extern "C" void KernelInit(unsigned long magic, multiboot_info_t* bootinfo)
// Initialize paging and virtual memory.
Memory::Init(bootinfo);
// Initialize the GDT and TSS structures.
GDT::Init();
GDT::SetKernelStack((uintptr_t) stack + STACK_SIZE);
// Initialize the interrupt handler table and enable interrupts.
Interrupt::Init();

View file

@ -1,67 +0,0 @@
/*******************************************************************************
Copyright(C) Jonas 'Sortie' Termansen 2011.
This file is part of Sortix.
Sortix is free software: you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any later
version.
Sortix is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
details.
You should have received a copy of the GNU General Public License along with
Sortix. If not, see <http://www.gnu.org/licenses/>.
x64/base.S
Bootstraps the kernel and passes over control from the boot-loader to the
kernel main function.
*******************************************************************************/
.section .text
.global beginkernel
.type beginkernel, @function
beginkernel:
movw $0x736, 0xB83E8
movw $0x734, 0xB83EA
movw $0x753, 0xB83EE
movw $0x74F, 0xB83F0
movw $0x752, 0xB83F2
movw $0x754, 0xB83F4
movw $0x749, 0xB83F6
movw $0x758, 0xB83F8
# Initialize the stack pointer.
movq $stack, %rsp
addq $65536, %rsp # 64 KiB, see kernel.cpp
# Reset EFLAGS.
# pushl $0
# popf
# Push the pointer to the Multiboot information structure.
mov %rbx, %rsi
# Push the magic value.
mov %rax, %rdi
call KernelInit
.size beginkernel, . - beginkernel
.global HaltKernel
HaltKernel:
cli
hlt
jmp HaltKernel
.size HaltKernel, . - HaltKernel
.global WaitForInterrupt
.type WaitForInterrupt, @function # void WaitForInterrupt();
WaitForInterrupt:
hlt
ret

View file

@ -1,6 +1,6 @@
/*******************************************************************************
Copyright(C) Jonas 'Sortie' Termansen 2011, 2014.
Copyright(C) Jonas 'Sortie' Termansen 2011, 2014, 2015.
This file is part of Sortix.
@ -26,6 +26,12 @@
.section .text
.text 0x100000
# Multiboot header.
.align 4
.long 0x1BADB002 # Magic.
.long 0x00000003 # Flags.
.long -(0x1BADB002 + 0x00000003) # Checksum
.global _start
.global __start
.type _start, @function
@ -33,34 +39,31 @@
.code32
_start:
__start:
jmp prepare_kernel_execution
# Initialize the stack pointer. The magic value is from kernel.cpp.
movl $(stack + 65536), %esp # 64 KiB, see kernel.cpp (See below also)
# Align 32 bits boundary.
.align 4
# Finish installing the kernel stack into the Task Switch Segment.
movl %esp, tss + 4
movl $0, tss + 8
# Multiboot header.
multiboot_header:
# Magic.
.long 0x1BADB002
# Flags.
.long 0x00000003
# Checksum.
.long -(0x1BADB002 + 0x00000003)
# Finish installing the Task Switch Segment into the Global Descriptor Table.
movl $tss, %ecx
movw %cx, gdt + 0x28 + 2
shrl $16, %ecx
movb %cl, gdt + 0x28 + 4
shrl $8, %ecx
movb %cl, gdt + 0x28 + 7
movl $0, gdt + 0x28 + 8
prepare_kernel_execution:
# We got our multiboot information in various registers. But we are going
# to need these registers. But where can we store them then? Oh hey, let's
# store then in the code already run!
# Store the pointer to the Multiboot information structure.
mov %ebx, 0x100000
# Store the magic value.
mov %eax, 0x100004
# We got our multiboot information in various registers.
pushl $0
pushl %eax # Multiboot magic value.
pushl $0
pushl %ebx # Multiboot information structure pointer.
# Clear the first $0xE000 bytes following 0x21000.
movl $0x21000, %edi
mov %edi, %cr3
movl %edi, %cr3
xorl %eax, %eax
movl $0xE000, %ecx
rep stosl
@ -88,45 +91,56 @@ prepare_kernel_execution:
movl $0x3, %ebx
movl $1024, %ecx
SetEntry:
mov %ebx, (%edi)
add $0x1000, %ebx
add $8, %edi
loop SetEntry
1:
movl %ebx, (%edi)
addl $0x1000, %ebx
addl $8, %edi
loop 1b
# Enable PAE.
mov %cr4, %eax
movl %cr4, %eax
orl $0x20, %eax
mov %eax, %cr4
movl %eax, %cr4
# Enable long mode.
mov $0xC0000080, %ecx
movl $0xC0000080, %ecx
rdmsr
orl $0x100, %eax
wrmsr
# Enable paging and enter long mode (still 32-bit)
mov %cr0, %eax
movl %cr0, %eax
orl $0x80000000, %eax
mov %eax, %cr0
movl %eax, %cr0
# Load the long mode GDT.
mov GDTPointer, %eax
lgdtl GDTPointer
# Load the Global Descriptor Table pointer register.
subl $6, %esp
movw gdt_size_minus_one, %cx
movw %cx, 0(%esp)
movl $gdt, %ecx
movl %ecx, 2(%esp)
lgdt 0(%esp)
addl $6, %esp
# Now use the 64-bit code segment, and we are in full 64-bit mode.
ljmp $0x10, $Realm64
ljmp $0x08, $2f
.code64
Realm64:
2:
# Switch ds, es, fs, gs, ss to the kernel data segment (0x10).
movw $0x10, %cx
movw %cx, %ds
movw %cx, %es
movw %cx, %ss
# Now, set up the other segment registers.
cli
mov $0x18, %ax
mov %ax, %ds
mov %ax, %es
mov %ax, %fs
mov %ax, %gs
# Switch the task switch segment register to the task switch segment (0x28).
movw $(0x28 /* TSS */ | 0x3 /* RPL */), %cx
ltr %cx
# Switch to the thread local fs and gs segments.
movw $(0x20 /* DS */ | 0x3 /* RPL */), %cx
movw %cx, %fs
movw %cx, %gs
# Enable the floating point unit.
mov %cr0, %rax
@ -147,58 +161,18 @@ Realm64:
# Store a copy of the initialial floating point registers.
fxsave fpu_initialized_regs
# Alright, that was the bootstrap code. Now begin preparing to run the
# actual 64-bit kernel.
jmp Main
# Enter the high-level kernel proper.
pop %rsi # Multiboot information structure pointer.
pop %rdi # Multiboot magic value.
call KernelInit
jmp HaltKernel
.size _start, . - _start
.size __start, . - __start
.section .data
GDT64: # Global Descriptor Table (64-bit).
GDTNull: # The null descriptor.
.word 0 # Limit (low).
.word 0 # Base (low).
.byte 0 # Base (middle)
.byte 0 # Access.
.byte 0 # Granularity.
.byte 0 # Base (high).
GDTUnused: # The null descriptor.
.word 0 # Limit (low).
.word 0 # Base (low).
.byte 0 # Base (middle)
.byte 0 # Access.
.byte 0 # Granularity.
.byte 0 # Base (high).
GDTCode: # The code descriptor.
.word 0xFFFF # Limit (low).
.word 0 # Base (low).
.byte 0 # Base (middle)
.byte 0x9A # Access.
.byte 0xAF # Granularity.
.byte 0 # Base (high).
GDTData: # The data descriptor.
.word 0xFFFF # Limit (low).
.word 0 # Base (low).
.byte 0 # Base (middle)
.byte 0x92 # Access.
.byte 0x8F # Granularity.
.byte 0 # Base (high).
GDTPointer: # The GDT-pointer.
.word GDTPointer - GDT64 - 1 # Limit.
.long GDT64 # Base.
.long 0
Main:
# Copy the character B onto the screen so we know it works.
movq $0x242, %r15
movq %r15, %rax
movw %ax, 0xB8000
# Load the pointer to the Multiboot information structure.
mov 0x100000, %ebx
# Load the magic value.
mov 0x100004, %eax
jmp beginkernel
.size Main, . - Main
.global HaltKernel
.type HaltKernel, @function
HaltKernel:
cli
hlt
jmp HaltKernel
.size HaltKernel, . - HaltKernel

View file

@ -1,6 +1,6 @@
/*******************************************************************************
Copyright(C) Jonas 'Sortie' Termansen 2011, 2012, 2013, 2014.
Copyright(C) Jonas 'Sortie' Termansen 2011, 2012, 2013, 2014, 2015.
This file is part of Sortix.
@ -18,7 +18,7 @@
Sortix. If not, see <http://www.gnu.org/licenses/>.
x86-family/gdt.cpp
Initializes and handles the GDT and TSS.
GDT and TSS.
*******************************************************************************/
@ -44,6 +44,7 @@ struct gdt_entry
uint8_t base_high;
};
#if defined(__x86_64__)
struct gdt_entry64
{
uint16_t limit_low;
@ -55,25 +56,15 @@ struct gdt_entry64
uint32_t base_highest;
uint32_t reserved0;
};
// TODO: Do this in another way that doesn't require a silly structure .
struct gdt_ptr
{
uint16_t limit;
#if defined(__i386__)
uint32_t base;
#else
uint64_t base;
#endif
} __attribute__((packed));
#if defined(__i386__)
struct tss_entry
{
uint32_t prev_tss; // The previous TSS - if we used hardware task switching this would form a linked list.
uint32_t esp0; // The stack pointer to load when we change to kernel mode.
uint32_t ss0; // The stack segment to load when we change to kernel mode.
uint32_t esp1; // Unused...
uint32_t prev_tss;
uint32_t esp0;
uint32_t ss0;
uint32_t esp1;
uint32_t ss1;
uint32_t esp2;
uint32_t ss2;
@ -88,13 +79,13 @@ struct tss_entry
uint32_t ebp;
uint32_t esi;
uint32_t edi;
uint32_t es; // The value to load into ES when we change to kernel mode.
uint32_t cs; // The value to load into CS when we change to kernel mode.
uint32_t ss; // The value to load into SS when we change to kernel mode.
uint32_t ds; // The value to load into DS when we change to kernel mode.
uint32_t fs; // The value to load into FS when we change to kernel mode.
uint32_t gs; // The value to load into GS when we change to kernel mode.
uint32_t ldt; // Unused...
uint32_t es;
uint32_t cs;
uint32_t ss;
uint32_t ds;
uint32_t fs;
uint32_t gs;
uint32_t ldt;
uint16_t trap;
uint16_t iomap_base;
};
@ -105,164 +96,148 @@ struct tss_entry
uint64_t stack0; /* This is not naturally aligned, so packed is needed. */
uint64_t stack1;
uint64_t stack2;
uint64_t reserved2;
uint64_t reserved1;
uint64_t ist[7];
uint64_t reserved3;
uint16_t reserved4;
uint64_t reserved2;
uint16_t reserved3;
uint16_t iomap_base;
} __attribute__((packed));
#endif
#if defined(__i386__)
const size_t GDT_NUM_ENTRIES = 9;
const size_t GDT_FS_ENTRY = 7;
const size_t GDT_GS_ENTRY = 8;
#else
const size_t GDT_NUM_ENTRIES = 7;
#endif
static struct gdt_entry gdt_entries[GDT_NUM_ENTRIES];
extern "C" {
static struct tss_entry tss_entry;
const size_t STACK_SIZE = 64*1024;
extern size_t stack[STACK_SIZE / sizeof(size_t)];
const uint8_t GRAN_64_BIT_MODE = 1 << 5;
const uint8_t GRAN_32_BIT_MODE = 1 << 6;
const uint8_t GRAN_4KIB_BLOCKS = 1 << 7;
void SetGate(int32_t num, uint32_t base, uint32_t limit, uint8_t access, uint8_t gran)
struct tss_entry tss =
{
struct gdt_entry* entry = (struct gdt_entry*) &gdt_entries[num];
#if defined(__i386__)
.prev_tss = 0, /* c++ */
.esp0 = 0 /*(uintptr_t) stack + sizeof(stack)*/,
.ss0 = 0x10 /* Kernel Data Segment */,
.esp1 = 0, /* c++ */
.ss1 = 0, /* c++ */
.esp2 = 0, /* c++ */
.ss2 = 0, /* c++ */
.cr3 = 0, /* c++ */
.eip = 0, /* c++ */
.eflags = 0, /* c++ */
.eax = 0, /* c++ */
.ecx = 0, /* c++ */
.edx = 0, /* c++ */
.ebx = 0, /* c++ */
.esp = 0, /* c++ */
.ebp = 0, /* c++ */
.esi = 0, /* c++ */
.edi = 0, /* c++ */
.es = 0x13 /* Kernel Data Segment */,
.cs = 0x0B /* Kernel Code Segment */,
.ss = 0, /* c++ */
.ds = 0x13 /* Kernel Data Segment */,
.fs = 0x13 /* Kernel Data Segment */,
.gs = 0x13 /* Kernel Data Segment */,
.ldt = 0, /* c++ */
.trap = 0, /* c++ */
.iomap_base = 0, /* c++ */
#elif defined(__x86_64__)
.reserved0 = 0, /* c++ */
.stack0 = 0 /*(uintptr_t) stack + sizeof(stack)*/,
.stack1 = 0, /* c++ */
.stack2 = 0, /* c++ */
.reserved1 = 0, /* c++ */
.ist = { 0, 0, 0, 0, 0, 0, 0},
.reserved2 = 0,
.reserved3 = 0,
.iomap_base = 0,
#endif
};
entry->base_low = base >> 0 & 0xFFFF;
entry->base_middle = base >> 16 & 0xFF;
entry->base_high = base >> 24 & 0xFF;
} // extern "C"
entry->limit_low = limit & 0xFFFF;
entry->granularity = (limit >> 16 & 0x0F) | (gran & 0xF0);
#define GRAN_64_BIT_MODE (1 << 5)
#define GRAN_32_BIT_MODE (1 << 6)
#define GRAN_4KIB_BLOCKS (1 << 7)
entry->access = access;
}
#define GDT_ENTRY(base, limit, access, granularity) \
{ (limit) & 0xFFFF, /* limit_low */ \
(uint16_t) ((base) >> 0 & 0xFFFF), /* base_low */ \
(uint8_t) ((base) >> 16 & 0xFF), /* base_middle */ \
(access) & 0xFF, /* access */ \
((limit) >> 16 & 0x0F) | ((granularity) & 0xF0), /* granularity */ \
(uint8_t) ((base) >> 24 & 0xFF), /* base_high */ }
void SetGate64(int32_t num, uint64_t base, uint32_t limit, uint8_t access, uint8_t gran)
{
struct gdt_entry64* entry = (struct gdt_entry64*) &gdt_entries[num];
entry->base_low = base >> 0 & 0xFFFF;
entry->base_middle = base >> 16 & 0xFF;
entry->base_high = base >> 24 & 0xFF;
entry->base_highest = base >> 32;
entry->limit_low = limit & 0xFFFF;
entry->granularity = (limit >> 16 & 0x0F) | (gran & 0xF0);
entry->access = access;
entry->reserved0 = 0;
}
void Init()
#if defined(__x86_64__)
#define GDT_ENTRY64(base, limit, access, granularity) \
{ (limit) & 0xFFFF, /* limit_low */ \
(uint16_t) ((base) >> 0 & 0xFFFF), /* base_low */ \
(uint8_t) ((base) >> 16 & 0xFF), /* base_middle */ \
(access) & 0xFF, /* access */ \
((limit) >> 16 & 0x0F) | ((granularity) & 0xF0), /* granularity */ \
(uint8_t) ((base) >> 24 & 0xFF), /* base_high */ }, \
{ (uint16_t) ((base) >> 32 & 0xFFFF), /* base_highest */ \
(uint16_t) ((base) >> 48 & 0xFFFF), /* base_highest */ \
0, /* reserved0 */ \
0, /* reserved0 */ \
0, /* reserved0 */ \
0, /* reserved0 */ }
#endif
extern "C" {
struct gdt_entry gdt[] =
{
/* 0x00: Null segment */
GDT_ENTRY(0, 0, 0, 0),
#if defined(__i386__)
const uint8_t gran = GRAN_4KIB_BLOCKS | GRAN_32_BIT_MODE;
/* 0x08: Kernel Code Segment. */
GDT_ENTRY(0, 0xFFFFFFFF, 0x9A, GRAN_32_BIT_MODE | GRAN_4KIB_BLOCKS),
/* 0x10: Kernel Data Segment. */
GDT_ENTRY(0, 0xFFFFFFFF, 0x92, GRAN_32_BIT_MODE | GRAN_4KIB_BLOCKS),
/* 0x18: User Code Segment. */
GDT_ENTRY(0, 0xFFFFFFFF, 0xFA, GRAN_32_BIT_MODE | GRAN_4KIB_BLOCKS),
/* 0x20: User Data Segment. */
GDT_ENTRY(0, 0xFFFFFFFF, 0xF2, GRAN_32_BIT_MODE | GRAN_4KIB_BLOCKS),
/* 0x28: Task Switch Segment. */
GDT_ENTRY(0 /*((uintptr_t) &tss)*/, sizeof(tss) - 1, 0xE9, 0x00),
/* 0x30: F Segment. */
GDT_ENTRY(0, 0xFFFFFFFF, 0xF2, GRAN_32_BIT_MODE | GRAN_4KIB_BLOCKS),
/* 0x38: G Segment. */
GDT_ENTRY(0, 0xFFFFFFFF, 0xF2, GRAN_32_BIT_MODE | GRAN_4KIB_BLOCKS),
#elif defined(__x86_64__)
const uint8_t gran = GRAN_4KIB_BLOCKS | GRAN_64_BIT_MODE;
/* 0x08: Kernel Code Segment. */
GDT_ENTRY(0, 0xFFFFFFFF, 0x9A, GRAN_64_BIT_MODE | GRAN_4KIB_BLOCKS),
/* 0x10: Kernel Data Segment. */
GDT_ENTRY(0, 0xFFFFFFFF, 0x92, GRAN_64_BIT_MODE | GRAN_4KIB_BLOCKS),
/* 0x18: User Code Segment. */
GDT_ENTRY(0, 0xFFFFFFFF, 0xFA, GRAN_64_BIT_MODE | GRAN_4KIB_BLOCKS),
/* 0x20: User Data Segment. */
GDT_ENTRY(0, 0xFFFFFFFF, 0xF2, GRAN_64_BIT_MODE | GRAN_4KIB_BLOCKS),
/* 0x28: Task Switch Segment. */
GDT_ENTRY64((uint64_t) 0 /*((uintptr_t) &tss)*/, sizeof(tss) - 1, 0xE9, 0x00),
#endif
};
SetGate(0, 0, 0, 0, 0); // Null segment
SetGate(1, 0, 0xFFFFFFFF, 0x9A, gran); // Code segment
SetGate(2, 0, 0xFFFFFFFF, 0x92, gran); // Data segment
SetGate(3, 0, 0xFFFFFFFF, 0xFA, gran); // User mode code segment
SetGate(4, 0, 0xFFFFFFFF, 0xF2, gran); // User mode data segment
uint16_t gdt_size_minus_one = sizeof(gdt) - 1;
WriteTSS(5, 0x10, 0x0);
#if defined(__i386__)
SetGate(GDT_FS_ENTRY, 0, 0xFFFFFFFF, 0xF2, gran);
SetGate(GDT_GS_ENTRY, 0, 0xFFFFFFFF, 0xF2, gran);
#endif
// Reload the Global Descriptor Table.
volatile struct gdt_ptr gdt_ptr;
gdt_ptr.limit = (sizeof(struct gdt_entry) * GDT_NUM_ENTRIES) - 1;
gdt_ptr.base = (uintptr_t) &gdt_entries;
asm volatile ("lgdt (%0)" : : "r"(&gdt_ptr));
// Switch the current data segment.
asm volatile ("mov %0, %%ds\n"
"mov %0, %%es\n"
"mov %0, %%ss\n" : :
"r"(KDS));
#if defined(__i386__)
asm volatile ("mov %0, %%fs" : : "r"(GDT_FS_ENTRY << 3 | URPL));
asm volatile ("mov %0, %%gs" : : "r"(GDT_GS_ENTRY << 3 | URPL));
#elif defined(__x86_64__)
asm volatile ("mov %0, %%fs" : : "r"(UDS | URPL));
asm volatile ("mov %0, %%gs" : : "r"(UDS | URPL));
#endif
// Switch the current code segment.
#if defined(__i386__)
asm volatile ("push %0\n"
"push $1f\n"
"retf\n"
"1:\n" : :
"r"(KCS));
#elif defined(__x86_64__)
asm volatile ("push %0\n"
"push $1f\n"
"retfq\n"
"1:\n" : :
"r"(KCS));
#endif
// Load the task state register - The index is 0x28, as it is the 5th
// selector and each is 8 bytes long, but we set the bottom two bits (making
// 0x2B) so that it has an RPL of 3, not zero.
asm volatile ("ltr %%ax" : : "a"(0x2B));
}
// Initialise our task state segment structure.
void WriteTSS(int32_t num, uint16_t ss0, uintptr_t stack0)
{
// First, let's compute the base and limit of our entry in the GDT.
uintptr_t base = (uintptr_t) &tss_entry;
uint32_t limit = sizeof(tss_entry) - 1;
// Now, add our TSS descriptor's address to the GDT.
#if defined(__i386__)
SetGate(num, base, limit, 0xE9, 0x00);
#elif defined(__x86_64__)
SetGate64(num, base, limit, 0xE9, 0x00);
#endif
// Ensure the descriptor is initially zero.
memset(&tss_entry, 0, sizeof(tss_entry));
#if defined(__i386__)
tss_entry.ss0 = ss0; // Set the kernel stack segment.
tss_entry.esp0 = stack0; // Set the kernel stack pointer.
// Here we set the cs, ss, ds, es, fs and gs entries in the TSS.
// These specify what segments should be loaded when the processor
// switches to kernel mode. Therefore they are just our normal
// kernel code/data segments - 0x08 and 0x10 respectively, but with
// the last two bits set, making 0x0b and 0x13. The setting of these
// bits sets the RPL (requested privilege level) to 3, meaning that
// this TSS can be used to switch to kernel mode from ring 3.
tss_entry.cs = KCS | 0x3;
tss_entry.ss = tss_entry.ds = tss_entry.es = tss_entry.fs = tss_entry.gs = KDS | 0x3;
#elif defined(__x86_64__)
(void) ss0;
tss_entry.stack0 = stack0;
#endif
}
} // extern "C"
uintptr_t GetKernelStack()
{
#if defined(__i386__)
return tss_entry.esp0;
return tss.esp0;
#elif defined(__x86_64__)
return tss_entry.stack0;
return tss.stack0;
#endif
}
@ -270,16 +245,16 @@ void SetKernelStack(uintptr_t stack_pointer)
{
assert((stack_pointer & 0xF) == 0);
#if defined(__i386__)
tss_entry.esp0 = (uint32_t) stack_pointer;
tss.esp0 = (uint32_t) stack_pointer;
#elif defined(__x86_64__)
tss_entry.stack0 = (uint64_t) stack_pointer;
tss.stack0 = (uint64_t) stack_pointer;
#endif
}
#if defined(__i386__)
uint32_t GetFSBase()
{
struct gdt_entry* entry = gdt_entries + GDT_FS_ENTRY;
struct gdt_entry* entry = gdt + GDT_FS_ENTRY;
return (uint32_t) entry->base_low << 0 |
(uint32_t) entry->base_middle << 16 |
(uint32_t) entry->base_high << 24;
@ -287,7 +262,7 @@ uint32_t GetFSBase()
uint32_t GetGSBase()
{
struct gdt_entry* entry = gdt_entries + GDT_GS_ENTRY;
struct gdt_entry* entry = gdt + GDT_GS_ENTRY;
return (uint32_t) entry->base_low << 0 |
(uint32_t) entry->base_middle << 16 |
(uint32_t) entry->base_high << 24;
@ -295,7 +270,7 @@ uint32_t GetGSBase()
void SetFSBase(uint32_t fsbase)
{
struct gdt_entry* entry = gdt_entries + GDT_FS_ENTRY;
struct gdt_entry* entry = gdt + GDT_FS_ENTRY;
entry->base_low = fsbase >> 0 & 0xFFFF;
entry->base_middle = fsbase >> 16 & 0xFF;
entry->base_high = fsbase >> 24 & 0xFF;
@ -304,7 +279,7 @@ void SetFSBase(uint32_t fsbase)
void SetGSBase(uint32_t gsbase)
{
struct gdt_entry* entry = gdt_entries + GDT_GS_ENTRY;
struct gdt_entry* entry = gdt + GDT_GS_ENTRY;
entry->base_low = gsbase >> 0 & 0xFFFF;
entry->base_middle = gsbase >> 16 & 0xFF;
entry->base_high = gsbase >> 24 & 0xFF;

View file

@ -1,6 +1,6 @@
/*******************************************************************************
Copyright(C) Jonas 'Sortie' Termansen 2011, 2012, 2013.
Copyright(C) Jonas 'Sortie' Termansen 2011, 2012, 2013, 2014, 2015.
This file is part of Sortix.
@ -18,7 +18,7 @@
Sortix. If not, see <http://www.gnu.org/licenses/>.
x86-family/gdt.h
Initializes and handles the GDT and TSS.
GDT and TSS.
*******************************************************************************/
@ -31,7 +31,6 @@ namespace Sortix {
namespace GDT {
void Init();
void WriteTSS(int32_t num, uint16_t ss0, uintptr_t stack0);
uintptr_t GetKernelStack();
void SetKernelStack(uintptr_t stack_pointer);
#if defined(__i386__)

View file

@ -1,62 +0,0 @@
/*******************************************************************************
Copyright(C) Jonas 'Sortie' Termansen 2011.
This file is part of Sortix.
Sortix is free software: you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any later
version.
Sortix is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
details.
You should have received a copy of the GNU General Public License along with
Sortix. If not, see <http://www.gnu.org/licenses/>.
x86/base.S
Bootstraps the kernel and passes over control from the boot-loader to the
kernel main function.
*******************************************************************************/
.section .text
.global beginkernel
.type beginkernel, @function
beginkernel:
# Initialize the stack pointer. The magic value is from kernel.cpp.
movl $stack, %esp
addl $65536, %esp # 64 KiB, see kernel.cpp
# Reset EFLAGS.
# pushl $0
# popf
# Push the pointer to the Multiboot information structure.
push %ebx
# Push the magic value.
push %eax
## Disable interrupts.
cli
call KernelInit
.size beginkernel, . - beginkernel
.global HaltKernel
HaltKernel:
cli
hlt
jmp HaltKernel
.size HaltKernel, . - HaltKernel
.global WaitForInterrupt
.type WaitForInterrupt, @function # void WaitForInterrupt();
WaitForInterrupt:
hlt
ret
.size WaitForInterrupt, . - WaitForInterrupt

View file

@ -1,6 +1,6 @@
/*******************************************************************************
Copyright(C) Jonas 'Sortie' Termansen 2011, 2014.
Copyright(C) Jonas 'Sortie' Termansen 2011, 2014, 2015.
This file is part of Sortix.
@ -26,48 +26,96 @@
.section .text
.text 0x100000
# Multiboot header.
.align 4
.long 0x1BADB002 # Magic.
.long 0x00000003 # Flags.
.long -(0x1BADB002 + 0x00000003) # Checksum.
.global _start
.global __start
.type _start, @function
.type __start, @function
_start:
__start:
jmp prepare_kernel_execution
# Initialize the stack pointer. The magic value is from kernel.cpp.
movl $(stack + 65536), %esp # 64 KiB, see kernel.cpp
# Align 32 bits boundary.
.align 4
# Finish installing the kernel stack into the Task Switch Segment.
movl %esp, tss + 4
# Multiboot header.
multiboot_header:
# Magic.
.long 0x1BADB002
# Flags.
.long 0x00000003
# Checksum.
.long -(0x1BADB002 + 0x00000003)
# Finish installing the Task Switch Segment into the Global Descriptor Table.
movl $tss, %ecx
movw %cx, gdt + 0x28 + 2
shrl $16, %ecx
movb %cl, gdt + 0x28 + 4
shrl $8, %ecx
movb %cl, gdt + 0x28 + 7
# Load the Global Descriptor Table pointer register.
subl $6, %esp
movw gdt_size_minus_one, %cx
movw %cx, 0(%esp)
movl $gdt, %ecx
movl %ecx, 2(%esp)
lgdt 0(%esp)
addl $6, %esp
# Switch cs to the kernel code segment (0x08).
push $0x08
push $2f
retf
2:
# Switch ds, es, fs, gs, ss to the kernel data segment (0x10).
movw $0x10, %cx
movw %cx, %ds
movw %cx, %es
movw %cx, %ss
# Switch the task switch segment register to the task switch segment (0x28).
movw $(0x28 /* TSS */ | 0x3 /* RPL */), %cx
ltr %cx
# Switch to the thread local fs and gs segments.
movw $(0x30 /* FS */ | 0x3 /* RPL */), %cx
movw %cx, %fs
movw $(0x38 /* GS */ | 0x3 /* RPL */), %cx
movw %cx, %gs
prepare_kernel_execution:
# Enable the floating point unit.
mov %eax, 0x100000
mov %cr0, %eax
and $0xFFFD, %ax
or $0x10, %ax
mov %eax, %cr0
mov %cr0, %ecx
and $0xFFFD, %cx
or $0x10, %cx
mov %ecx, %cr0
fninit
# Enable Streaming SIMD Extensions.
mov %cr0, %eax
and $0xFFFB, %ax
or $0x2, %ax
mov %eax, %cr0
mov %cr4, %eax
or $0x600, %eax
mov %eax, %cr4
mov 0x100000, %eax
mov %cr0, %ecx
and $0xFFFB, %cx
or $0x2, %cx
mov %ecx, %cr0
mov %cr4, %ecx
or $0x600, %ecx
mov %ecx, %cr4
# Store a copy of the initialial floating point registers.
fxsave fpu_initialized_regs
jmp beginkernel
# Enter the high-level kernel proper.
subl $8, %esp # 16-byte align at call time.
push %ebx # Multiboot information structure pointer.
push %eax # Multiboot magic value.
call KernelInit
jmp HaltKernel
.size _start, . - _start
.size __start, . - __start
.global HaltKernel
.type HaltKernel, @function
HaltKernel:
cli
hlt
jmp HaltKernel
.size HaltKernel, . - HaltKernel