/******************************************************************************
COPYRIGHT(C) JONAS 'SORTIE' TERMANSEN 2011.
This file is part of Sortix.
Sortix is free software: you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any later
version.
Sortix is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
details.
You should have received a copy of the GNU General Public License along
with Sortix. If not, see .
thread.cpp
Describes a thread belonging to a process.
******************************************************************************/
#include "platform.h"
#include
#include
#include "process.h"
#include "thread.h"
#include "scheduler.h"
#include "memorymanagement.h"
#include "time.h"
#include "syscall.h"
using namespace Maxsi;
namespace Sortix
{
Thread::Thread()
{
id = 0; // TODO: Make a thread id.
process = NULL;
prevsibling = NULL;
nextsibling = NULL;
sleepuntil = 0;
nextsleepingthread = NULL;
schedulerlistprev = NULL;
schedulerlistnext = NULL;
state = NONE;
Maxsi::Memory::Set(®isters, 0, sizeof(registers));
ready = false;
scfunc = NULL;
currentsignal = NULL;
sighandler = NULL;
ResetCallbacks();
}
Thread::Thread(const Thread* forkfrom)
{
id = forkfrom->id;
process = NULL;
prevsibling = NULL;
nextsibling = NULL;
state = forkfrom->state;
sleepuntil = forkfrom->sleepuntil;
Maxsi::Memory::Copy(®isters, &forkfrom->registers, sizeof(registers));
ready = false;
stackpos = forkfrom->stackpos;
stacksize = forkfrom->stacksize;
nextsleepingthread = NULL;
schedulerlistprev = NULL;
schedulerlistnext = NULL;
scfunc = NULL;
sighandler = forkfrom->sighandler;
ResetCallbacks();
}
void Thread::ResetCallbacks()
{
onchildprocessexit = NULL;
}
Thread::~Thread()
{
ASSERT(CurrentProcess() == process);
ASSERT(nextsleepingthread == NULL);
// Delete information about signals being processed.
while ( currentsignal )
{
Signal* todelete = currentsignal;
currentsignal = currentsignal->nextsignal;
delete todelete;
}
Memory::UnmapRangeUser(stackpos, stacksize);
}
Thread* Thread::Fork()
{
ASSERT(ready);
Signal* clonesignal = NULL;
if ( currentsignal )
{
clonesignal = currentsignal->Fork();
if ( !clonesignal ) { return NULL; }
}
Thread* clone = new Thread(this);
if ( !clone )
{
while ( clonesignal )
{
Signal* todelete = clonesignal;
clonesignal = clonesignal->nextsignal;
delete todelete;
}
return NULL;
}
clone->currentsignal = clonesignal;
return clone;
}
void CreateThreadCPU(Thread* thread, addr_t entry);
Thread* CreateThread(addr_t entry, size_t stacksize)
{
Process* process = CurrentProcess();
if ( stacksize == 0 ) { stacksize = process->DefaultStackSize(); }
// TODO: Find some unused virtual address space of the needed size
// somewhere in the current process.
addr_t stackpos = process->AllocVirtualAddr(stacksize);
if ( !stackpos ) { return NULL; }
if ( !Memory::MapRangeUser(stackpos, stacksize) )
{
// TODO: Free the reserved virtual memory area.
return NULL;
}
Thread* thread = new Thread();
if ( !thread )
{
Memory::UnmapRangeUser(stackpos, stacksize);
// TODO: Free the reserved virtual memory area.
return NULL;
}
thread->stackpos = stackpos;
thread->stacksize = stacksize;
// Set up the thread state registers.
CreateThreadCPU(thread, entry);
// Create the family tree.
thread->process = process;
Thread* firsty = process->firstthread;
if ( firsty ) { firsty->prevsibling = thread; }
thread->nextsibling = firsty;
process->firstthread = thread;
thread->Ready();
Scheduler::SetThreadState(thread, Thread::State::RUNNABLE);
return thread;
}
void Thread::Ready()
{
if ( ready ) { return; }
ready = true;
if ( Time::MicrosecondsSinceBoot() < sleepuntil )
{
uintmax_t howlong = sleepuntil - Time::MicrosecondsSinceBoot();
Scheduler::PutThreadToSleep(this, howlong);
}
else if ( state == State::RUNNABLE )
{
state = State::NONE; // Since we are in no linked list.
Scheduler::SetThreadState(this, State::RUNNABLE);
}
}
void Thread::HandleSignal(CPU::InterruptRegisters* regs)
{
Signal* override = signalqueue.Pop(currentsignal);
if ( !override ) { return; }
if ( !sighandler ) { delete override; return; }
if ( override->signum == SIGKILL )
{
}
override->nextsignal = currentsignal;
Maxsi::Memory::Copy(&override->regs, regs, sizeof(override->regs));
currentsignal = override;
HandleSignalCPU(regs);
}
void SysSigReturn()
{
Thread* thread = CurrentThread();
if ( !thread->currentsignal ) { return; }
CPU::InterruptRegisters* dest = Syscall::InterruptRegs();
CPU::InterruptRegisters* src = &thread->currentsignal->regs;
Maxsi::Memory::Copy(dest, src, sizeof(CPU::InterruptRegisters));
thread->currentsignal = thread->currentsignal->nextsignal;
Syscall::AsIs();
}
void SysRegisterSignalHandler(sighandler_t sighandler)
{
CurrentThread()->sighandler = sighandler;
}
int SysKill(pid_t pid, int signum)
{
if ( signum < 0 || 128 <= signum ) { Error::Set(EINVAL); return -1; }
// Protect the system idle process.
if ( pid == 0 ) { Error::Set(EPERM); return -1; }
Process* process = Process::Get(pid);
if ( !process ) { Error::Set(ESRCH); return -1; }
// TODO: Protect init?
// TODO: Check for permission.
// TODO: Check for zombies.
Thread* currentthread = CurrentThread();
Thread* thread = NULL;
if ( currentthread->process->pid == pid ) { thread = currentthread; }
if ( !thread ) { thread = process->firstthread; }
if ( !thread ) { Error::Set(ESRCH); return -1; /* TODO: Zombie? */ }
// TODO: If thread is not runnable, wake it and runs its handler?
if ( !thread->signalqueue.Push(signum) )
{
// TODO: Possibly kill the process?
}
if ( thread == currentthread )
{
Syscall::SyscallRegs()->result = 0;
thread->HandleSignal(Syscall::InterruptRegs());
}
return 0;
}
void Thread::Init()
{
Syscall::Register(SYSCALL_KILL, (void*) SysKill);
Syscall::Register(SYSCALL_REGISTER_SIGNAL_HANDLER, (void*) SysRegisterSignalHandler);
Syscall::Register(SYSCALL_SIGRETURN, (void*) SysSigReturn);
}
}