1
0
Fork 0
mirror of https://gitlab.com/sortix/sortix.git synced 2023-02-13 20:55:38 -05:00
sortix--sortix/sortix/x86/memorymanagement.cpp
Jonas 'Sortie' Termansen b0df5186e6 Fixed two very nasty bugs in the x86 memory management code.
1) The PML2 was not initialized to zeroes, thus leaving some bits behind that
caused the fork code to go crazy, forking the unforkable, and mapping addresses
that never, ever, should have been mapped, leaving behind a trail of page faults
and general protection faults on some computers, while other computers worked
because the uninitalized memory just wasn't uninitialized enough. Yep, this was
a schrödinbug!

2) Fixed a time bomb. The kernel heap was accidentally put such that whenever a
few megabytes were allocated, it would begin overwriting the physical page stack
causing unthinkable events to unfold and would probably be even more obscure to
debug than 1).

Oh, and some string errors fixed and removed RunApplication from kernel.cpp,
funny thing that even linked in the first place. Guess, the optimizer actually
did work for once. :)
2011-10-20 03:52:08 +02:00

104 lines
3.2 KiB
C++

/******************************************************************************
COPYRIGHT(C) JONAS 'SORTIE' TERMANSEN 2011.
This file is part of Sortix.
Sortix is free software: you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any later
version.
Sortix is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
details.
You should have received a copy of the GNU General Public License along
with Sortix. If not, see <http://www.gnu.org/licenses/>.
memorymanagement.cpp
Handles memory for the x86 architecture.
******************************************************************************/
#include "platform.h"
#include <libmaxsi/memory.h>
#include "multiboot.h"
#include "panic.h"
#include "../memorymanagement.h"
#include "x86-family/memorymanagement.h"
namespace Sortix
{
namespace Page
{
extern size_t stackused;
extern size_t stacklength;
}
namespace Memory
{
extern addr_t currentdir;
void InitCPU()
{
PML* const BOOTPML2 = (PML* const) 0x01000UL;
PML* const BOOTPML1 = (PML* const) 0x02000UL;
PML* const FORKPML1 = (PML* const) 0x03000UL;
PML* const IDENPML1 = (PML* const) 0x04000UL;
// Initialize the memory structures with zeroes.
Maxsi::Memory::Set((PML* const) 0x01000UL, 0, 0x6000UL);
// Identity map the first 4 MiB.
addr_t flags = PML_PRESENT | PML_WRITABLE;
BOOTPML2->entry[0] = ((addr_t) IDENPML1) | flags;
for ( size_t i = 0; i < ENTRIES; i++ )
{
IDENPML1->entry[i] = (i * 4096UL) | flags;
}
// Next order of business is to map the virtual memory structures
// to the pre-defined locations in the virtual address space.
// Fractal map the PML1s.
BOOTPML2->entry[1023] = (addr_t) BOOTPML2 | flags;
// Fractal map the PML2s.
BOOTPML2->entry[1022] = (addr_t) BOOTPML1 | flags | PML_FORK;
BOOTPML1->entry[1023] = (addr_t) BOOTPML2 | flags;
// Add some predefined room for forking address spaces.
BOOTPML1->entry[0] = (addr_t) FORKPML1 | flags | PML_FORK;
// The virtual memory structures are now available on the predefined
// locations. This means the virtual memory code is bootstrapped. Of
// course, we still have no physical page allocator, so that's the
// next step.
PML* const PHYSPML1 = (PML* const) 0x05000UL;
PML* const PHYSPML0 = (PML* const) 0x06000UL;
BOOTPML2->entry[1021] = (addr_t) PHYSPML1 | flags;
PHYSPML1->entry[0] = (addr_t) PHYSPML0 | flags;
// Alright, enable virtual memory!
SwitchAddressSpace((addr_t) BOOTPML2);
size_t cr0;
asm volatile("mov %%cr0, %0": "=r"(cr0));
cr0 |= 0x80000000UL; /* Enable paging! */
asm volatile("mov %0, %%cr0":: "r"(cr0));
Page::stackused = 0;
Page::stacklength = 4096UL / sizeof(addr_t);
// The physical memory allocator should now be ready for use. Next
// up, the calling function will fill up the physical allocator with
// plenty of nice physical pages. (see Page::InitPushRegion)
}
}
}