mirror of
https://gitlab.com/sortix/sortix.git
synced 2023-02-13 20:55:38 -05:00
468 lines
15 KiB
C++
468 lines
15 KiB
C++
/******************************************************************************
|
|
|
|
COPYRIGHT(C) JONAS 'SORTIE' TERMANSEN 2011.
|
|
|
|
This file is part of LibMaxsi.
|
|
|
|
LibMaxsi is free software: you can redistribute it and/or modify it under
|
|
the terms of the GNU Lesser General Public License as published by the Free
|
|
Software Foundation, either version 3 of the License, or (at your option)
|
|
any later version.
|
|
|
|
LibMaxsi is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
|
|
more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public License
|
|
along with LibMaxsi. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
memory.cpp
|
|
Useful functions for manipulating memory, as well as the implementation
|
|
of the heap.
|
|
|
|
******************************************************************************/
|
|
|
|
#include "platform.h"
|
|
#include "memory.h"
|
|
#include "error.h"
|
|
#include "io.h" // DEBUG
|
|
|
|
#ifdef SORTIX_KERNEL
|
|
#include <sortix/platform.h>
|
|
#include <sortix/globals.h> // DEBUG
|
|
#include <sortix/iprintable.h> // DEBUG
|
|
#include <sortix/log.h> // DEBUG
|
|
|
|
#include <sortix/memorymanagement.h>
|
|
#include <sortix/panic.h>
|
|
#endif
|
|
|
|
#define IsGoodChunkPosition(Chunk) ((uintptr_t) Wilderness + WildernessSize <= (uintptr_t) (Chunk) && (uintptr_t) (Chunk) <= (uintptr_t) HeapStart)
|
|
#define IsGoodChunkInfo(Chunk) ( ( (UnusedChunkFooter*) (((byte*) (Chunk)) + (Chunk)->Size - sizeof(UnusedChunkFooter)) )->Size == (Chunk)->Size )
|
|
#define IsGoodChunk(Chunk) (IsGoodChunkPosition(Chunk) && (Chunk)->Size >= 32 && IsGoodChunkPosition((uintptr_t) (Chunk) + (Chunk)->Size) && IsGoodChunkInfo(Chunk) )
|
|
#define IsGoodUnusedChunk(Chunk) ( IsGoodChunk(Chunk) && ( Chunk->NextUnused == NULL || IsGoodChunkPosition(Chunk->NextUnused) ) )
|
|
#define IsGoodUsedChunk(Chunk) ( IsGoodChunk(Chunk) && Chunk->Magic == Magic )
|
|
#ifdef PLATFORM_X64
|
|
#define IsGoodBinIndex(Index) ( 4 <= Index && Index < 32 )
|
|
#else
|
|
#define IsGoodBinIndex(Index) ( 5 <= Index && Index < 64 )
|
|
#endif
|
|
#define IsAligned(Value, Alignment) ( (Value & (Alignment-1)) == 0 )
|
|
|
|
#define BITS(x) (8UL*sizeof(x))
|
|
|
|
namespace Maxsi
|
|
{
|
|
// TODO: How should this API exist? Should it be publicly accessasble?
|
|
// Where should the C bindings (if relevant) be declared and defined?
|
|
// Is it part of the kernel or the standard library? What should it be
|
|
// called? Is it an extension? For now, I'll just leave this here, hidden
|
|
// away in libmaxsi until I figure out how libmaxsi/sortix should handle
|
|
// facilities currently only available on Sortix.
|
|
namespace System
|
|
{
|
|
namespace Memory
|
|
{
|
|
bool Allocate(void* /*position*/, size_t /*length*/)
|
|
{
|
|
// TODO: Implement a syscall for this!
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
namespace Memory
|
|
{
|
|
// This magic word is useful to see if the program has written into the
|
|
// chunk's header or footer, which means the program has malfunctioned
|
|
// and ought to be terminated.
|
|
#ifdef PLATFORM_X64
|
|
const size_t Magic = 0xDEADDEADDEADDEADULL;
|
|
#else
|
|
const size_t Magic = 0xDEADDEAD;
|
|
#endif
|
|
|
|
// All requsted sizes must be a multiple of this.
|
|
const size_t Alignment = 16ULL;
|
|
|
|
// Returns the index of the most significant set bit.
|
|
inline size_t BSR(size_t Value)
|
|
{
|
|
#if 1
|
|
ASSERT(Value > 0);
|
|
for ( size_t I = 8*sizeof(size_t); I > 0; I-- )
|
|
{
|
|
if ( Value & ( 1 << (I-1) ) ) { return I-1; }
|
|
}
|
|
return 0;
|
|
#else
|
|
size_t Result;
|
|
asm("bsr %0, %1" : "=r"(Result) : "r"(Value));
|
|
return Result;
|
|
#endif
|
|
}
|
|
|
|
// Returns the index of the least significant set bit.
|
|
inline size_t BSF(size_t Value)
|
|
{
|
|
#if 1
|
|
ASSERT(Value > 0);
|
|
for ( size_t I = 0; I < 8*sizeof(size_t); I++ )
|
|
{
|
|
if ( Value & ( 1 << I ) ) { return I; }
|
|
}
|
|
return 0;
|
|
#else
|
|
size_t Result;
|
|
asm("bsf %0, %1" : "=r"(Result) : "r"(Value));
|
|
return Result;
|
|
#endif
|
|
}
|
|
// NOTE: BSR(N) = Log2RoundedDown(N).
|
|
|
|
// NOTE: BSR(N-1)+1 = Log2RoundedUp(N), N > 1.
|
|
// PROOF: If X=2^N is a power of two, then BSR(X) = Log2(X) = N.
|
|
// If X is not a power of two, then BSR(X) will return the previous
|
|
// power of two.
|
|
// If we want the next power of two for a non-power-of-two then
|
|
// BSR(X)+1 would work. However, this causes problems for X=2^N, where
|
|
// it returns a value one too big.
|
|
// BSR(X-1)+1 = BSR(X)+1 give the same value for all X that is not a
|
|
// power of two. For X=2^N, BSR(X-1)+1 will be one lower, which is
|
|
// exactly what we want. QED.
|
|
|
|
// Now declare some structures that are put around the allocated data.
|
|
struct UnusedChunkHeader
|
|
{
|
|
size_t Size;
|
|
UnusedChunkHeader* NextUnused;
|
|
};
|
|
|
|
struct UnusedChunkFooter
|
|
{
|
|
void* Unused;
|
|
size_t Size;
|
|
};
|
|
|
|
struct UsedChunkHeader
|
|
{
|
|
size_t Size;
|
|
size_t Magic;
|
|
};
|
|
|
|
struct UsedChunkFooter
|
|
{
|
|
size_t Magic;
|
|
size_t Size;
|
|
};
|
|
|
|
// How much extra space will our headers use?
|
|
const size_t ChunkOverhead = sizeof(UsedChunkHeader) + sizeof(UsedChunkFooter);
|
|
size_t GetChunkOverhead() { return ChunkOverhead; }
|
|
|
|
// A bin for each power of two.
|
|
UnusedChunkHeader* Bins[BITS(size_t)];
|
|
|
|
// INVARIANT: A bit is set for each bin if it contains anything.
|
|
size_t BinContainsChunks;
|
|
|
|
// And south of everything, there is nothing allocated, at which
|
|
// extra space can be added on-demand.
|
|
// INVARIANT: Wilderness is always page-aligned!
|
|
const byte* HeapStart;
|
|
const byte* Wilderness;
|
|
size_t WildernessSize;
|
|
|
|
// Initializes the heap system.
|
|
void Init()
|
|
{
|
|
Memory::Set(Bins, 0, sizeof(Bins));
|
|
#ifdef SORTIX_KERNEL
|
|
Wilderness = (byte*) Sortix::VirtualMemory::heapUpper;
|
|
#else
|
|
// TODO: This is very 32-bit specific!
|
|
Wilderness = (byte*) 0x80000000;
|
|
#endif
|
|
HeapStart = Wilderness;
|
|
WildernessSize = 0;
|
|
BinContainsChunks = 0;
|
|
}
|
|
|
|
// Expands the wilderness block (the heap grows downwards).
|
|
bool ExpandWilderness(size_t NeededSize)
|
|
{
|
|
if ( NeededSize <= WildernessSize ) { return true; }
|
|
|
|
ASSERT(Wilderness != NULL);
|
|
|
|
// Check if we are going too far down (beneath the NULL position!).
|
|
if ( (uintptr_t) Wilderness < NeededSize ) { return false; }
|
|
|
|
#ifdef SORTIX_KERNEL
|
|
// Check if the wilderness would grow larger than the kernel memory area.
|
|
if ( ( ((uintptr_t) Wilderness) - Sortix::VirtualMemory::heapLower ) < NeededSize ) { return false; }
|
|
#endif
|
|
|
|
// Figure out how where the new wilderness will be.
|
|
uintptr_t NewWilderness = ((uintptr_t) Wilderness) + WildernessSize - NeededSize;
|
|
|
|
// And now align downwards to the page boundary.
|
|
NewWilderness &= ~(0xFFFUL);
|
|
|
|
ASSERT(NewWilderness < (uintptr_t) Wilderness);
|
|
|
|
// Figure out where and how much memory we need.
|
|
byte* MemoryStart = (byte*) NewWilderness;
|
|
size_t MemorySize = (uintptr_t) Wilderness - (uintptr_t) NewWilderness;
|
|
|
|
#ifndef SORTIX_KERNEL // We are user-space.
|
|
|
|
// Ask the kernel to map memory to the needed region!
|
|
if ( !System::Memory::Allocate(MemoryStart, MemorySize) ) { return false; }
|
|
|
|
#else // We are Sortix.
|
|
|
|
// Figure out how many pages we need.
|
|
size_t NumPages = MemorySize / 4096;
|
|
size_t PagesLeft = NumPages;
|
|
|
|
ASSERT(NumPages > 0);
|
|
|
|
// Attempt to allocate and map each of them.
|
|
while ( PagesLeft > 0 )
|
|
{
|
|
PagesLeft--;
|
|
|
|
// Get a raw unused physical page.
|
|
addr_t Page = Sortix::Page::Get();
|
|
|
|
if ( Page == 0 )
|
|
{
|
|
// If none is available, simply let the allocation fail
|
|
// and unallocate everything we did allocate so far.
|
|
while ( PagesLeft < NumPages )
|
|
{
|
|
PagesLeft++;
|
|
|
|
addr_t OldVirtual = NewWilderness + 4096 * PagesLeft;
|
|
addr_t OldPage = Sortix::VirtualMemory::UnmapKernel(OldVirtual);
|
|
Sortix::Page::Put(OldPage);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Map the physical page to a virtual one.
|
|
addr_t VirtualAddr = NewWilderness + 4096 * PagesLeft;
|
|
|
|
Sortix::VirtualMemory::MapKernel(VirtualAddr, Page);
|
|
}
|
|
#endif
|
|
|
|
// Update the wilderness information now that it is safe.
|
|
Wilderness = MemoryStart;
|
|
WildernessSize += MemorySize;
|
|
|
|
ASSERT(WildernessSize >= NeededSize);
|
|
|
|
return true;
|
|
}
|
|
|
|
// Allocates a continious memory region of Size bytes that must be deallocated using Free.
|
|
DUAL_FUNCTION(void*, malloc, Allocate, (size_t Size))
|
|
{
|
|
// Always allocate a multiple of alignment (round up to nearest aligned size).
|
|
// INVARIANT: Size is always aligned after this statement.
|
|
Size = (Size + Alignment - 1) & ~(Alignment-1);
|
|
|
|
// Account for the overhead of the headers and footers.
|
|
Size += ChunkOverhead;
|
|
|
|
ASSERT((Size & (Alignment-1)) == 0);
|
|
|
|
// Find the index of the smallest usable bin.
|
|
// INVARIANT: Size is always at least ChunkOverhead bytes, thus
|
|
// Size-1 will never be 0, and thus BSR is always defined.
|
|
size_t MinBinIndex = BSR(Size-1)+1;
|
|
ASSERT(IsGoodBinIndex(MinBinIndex));
|
|
|
|
// Make a bitmask that filters away all bins that are too small.
|
|
size_t MinBinMask = ~((1 << MinBinIndex) - 1);
|
|
ASSERT( ( (1 << (MinBinIndex-1)) & MinBinMask ) == 0);
|
|
|
|
// Now filter all bins away that are too small.
|
|
size_t AvailableBins = BinContainsChunks & MinBinMask;
|
|
|
|
// Does any bin contain an usable chunk?
|
|
if ( AvailableBins > 0 )
|
|
{
|
|
// Now find the smallest usable bin.
|
|
size_t BinIndex = BSF( AvailableBins );
|
|
ASSERT(IsGoodBinIndex(BinIndex));
|
|
|
|
// And pick the first thing in it.
|
|
UnusedChunkHeader* Chunk = Bins[BinIndex];
|
|
ASSERT(IsGoodUnusedChunk(Chunk));
|
|
|
|
// Increment the bin's linked list.
|
|
Bins[BinIndex] = Chunk->NextUnused;
|
|
ASSERT(Chunk->NextUnused == NULL || IsGoodUnusedChunk(Chunk->NextUnused));
|
|
|
|
// Find the size of this bin (also the value of this bins flag).
|
|
size_t BinSize = 1 << BinIndex;
|
|
ASSERT(BinSize >= Size);
|
|
|
|
// If we emptied the bin, then remove the flag that says this bin is usable.
|
|
ASSERT(BinContainsChunks & BinSize);
|
|
if ( Chunk->NextUnused == NULL ) { BinContainsChunks ^= BinSize; }
|
|
|
|
// Figure out where the chunk ends.
|
|
uintptr_t ChunkEnd = ((uintptr_t) Chunk) + Chunk->Size;
|
|
|
|
// If we were to split the chunk into one used part, and one unused part, then
|
|
// figure out where the unused part would begin.
|
|
uintptr_t NewChunkStart = ((uintptr_t) Chunk) + Size;
|
|
|
|
// INVARIANT: NewChunkStart is always less or equal to ChunkEnd,
|
|
// because Size is less or equal to Chunk->Size (otherwise this
|
|
// chunk could not have been selected above).
|
|
ASSERT(NewChunkStart <= ChunkEnd);
|
|
// INVARIANT: NewChunkStart is aligned because Chunk is (this
|
|
// is made sure when chunks are made when expanding into the
|
|
// wilderness, when splitting blocks, and when combining them),
|
|
// and because Size is aligned (first thing we make sure).
|
|
ASSERT( IsAligned(NewChunkStart, Alignment) );
|
|
|
|
// Find the size of the possible new chunk.
|
|
size_t NewChunkSize = ChunkEnd - NewChunkStart;
|
|
|
|
UsedChunkHeader* ResultHeader = (UsedChunkHeader*) Chunk;
|
|
|
|
// See if it's worth it to split the chunk into two, if any space is left in it.
|
|
if ( NewChunkSize >= sizeof(UnusedChunkHeader) + sizeof(UnusedChunkFooter) )
|
|
{
|
|
// Figure out which bin to put the new chunk in.
|
|
size_t NewBinIndex = BSR(NewChunkSize);
|
|
ASSERT(IsGoodBinIndex(NewBinIndex));
|
|
|
|
// Mark that a chunk is available for this bin.
|
|
BinContainsChunks |= (1 << NewBinIndex);
|
|
|
|
// Now write some headers and footers for the new chunk.
|
|
UnusedChunkHeader* NewChunkHeader = (UnusedChunkHeader*) NewChunkStart;
|
|
ASSERT(IsGoodChunkPosition(NewChunkStart));
|
|
|
|
NewChunkHeader->Size = NewChunkSize;
|
|
NewChunkHeader->NextUnused = Bins[NewBinIndex];
|
|
ASSERT(NewChunkHeader->NextUnused == NULL || IsGoodChunk(NewChunkHeader->NextUnused));
|
|
|
|
UnusedChunkFooter* NewChunkFooter = (UnusedChunkFooter*) (ChunkEnd - sizeof(UnusedChunkFooter));
|
|
NewChunkFooter->Size = NewChunkSize;
|
|
NewChunkFooter->Unused = NULL;
|
|
|
|
// Put the new chunk in front of our linked list.
|
|
ASSERT(IsGoodUnusedChunk(NewChunkHeader));
|
|
Bins[NewBinIndex] = NewChunkHeader;
|
|
|
|
// We need to modify our resulting chunk to be smaller.
|
|
ResultHeader->Size = Size;
|
|
}
|
|
|
|
// Set the required magic values.
|
|
UsedChunkFooter* ResultFooter = (UsedChunkFooter*) ( ((byte*) ResultHeader) + ResultHeader->Size - sizeof(UsedChunkFooter) );
|
|
ResultHeader->Magic = Magic;
|
|
ResultFooter->Magic = Magic;
|
|
ResultFooter->Size = Size;
|
|
|
|
ASSERT(IsGoodUsedChunk(ResultHeader));
|
|
|
|
return ((byte*) ResultHeader) + sizeof(UnusedChunkHeader);
|
|
}
|
|
else
|
|
{
|
|
// We have no free chunks that are big enough, let's expand our heap into the unknown, if possible.
|
|
if ( WildernessSize < Size && !ExpandWilderness(Size) ) { Error::Set(Error::NOMEM); return NULL; }
|
|
|
|
// Write some headers and footers around our newly allocated data.
|
|
UsedChunkHeader* ResultHeader = (UsedChunkHeader*) (Wilderness + WildernessSize - Size);
|
|
UsedChunkFooter* ResultFooter = (UsedChunkFooter*) (Wilderness + WildernessSize - sizeof(UsedChunkFooter));
|
|
WildernessSize -= Size;
|
|
|
|
ResultHeader->Size = Size;
|
|
ResultHeader->Magic = Magic;
|
|
ResultFooter->Size = Size;
|
|
ResultFooter->Magic = Magic;
|
|
|
|
ASSERT(IsGoodUsedChunk(ResultHeader));
|
|
|
|
return ((byte*) ResultHeader) + sizeof(UsedChunkHeader);
|
|
}
|
|
}
|
|
|
|
// Frees a continious memory region allocated by Allocate.
|
|
DUAL_FUNCTION(void, free, Free, (void* Addr))
|
|
{
|
|
// Just ignore NULL-pointers.
|
|
if ( Addr == NULL ) { return; }
|
|
|
|
// Restore the chunk information structures.
|
|
UsedChunkHeader* ChunkHeader = (UsedChunkHeader*) ( ((byte*) Addr) - sizeof(UsedChunkHeader) );
|
|
UsedChunkFooter* ChunkFooter = (UsedChunkFooter*) ( ((byte*) ChunkHeader) + ChunkHeader->Size - sizeof(UsedChunkFooter) );
|
|
|
|
ASSERT(IsGoodUsedChunk(ChunkHeader));
|
|
|
|
// If you suspect a chunk of bein' a witch, report them immediately. I cannot stress that enough. Witchcraft will not be tolerated.
|
|
if ( ChunkHeader->Magic != Magic || ChunkFooter->Magic != Magic || ChunkHeader->Size != ChunkFooter->Size )
|
|
{
|
|
#ifdef SORTIX_KERNEL
|
|
Sortix::PanicF("Witchcraft detected!\n", ChunkHeader);
|
|
#endif
|
|
// TODO: Report witchcraft (terminating the process is probably a good idea).
|
|
}
|
|
|
|
// TODO: Combine this chunk with its neighbors, if they are also unused.
|
|
|
|
// Calculate which bin this chunk belongs to.
|
|
size_t BinIndex = BSR(ChunkHeader->Size);
|
|
ASSERT(IsGoodBinIndex(BinIndex));
|
|
|
|
// Mark that a chunk is available for this bin.
|
|
BinContainsChunks |= (1 << BinIndex);
|
|
|
|
UnusedChunkHeader* UnChunkHeader = (UnusedChunkHeader*) ChunkHeader;
|
|
UnusedChunkFooter* UnChunkFooter = (UnusedChunkFooter*) ChunkFooter;
|
|
|
|
// Now put this chunk back in the linked list.
|
|
ASSERT(Bins[BinIndex] == NULL || IsGoodUnusedChunk(Bins[BinIndex]));
|
|
UnChunkHeader->NextUnused = Bins[BinIndex];
|
|
UnChunkFooter->Unused = NULL;
|
|
|
|
ASSERT(IsGoodUnusedChunk(UnChunkHeader));
|
|
Bins[BinIndex] = UnChunkHeader;
|
|
}
|
|
|
|
DUAL_FUNCTION(void*, memcpy, Copy, (void* Dest, const void* Src, size_t Length))
|
|
{
|
|
char* D = (char*) Dest; const char* S = (const char*) Src;
|
|
|
|
for ( size_t I = 0; I < Length; I++ )
|
|
{
|
|
D[I] = S[I];
|
|
}
|
|
|
|
return Dest;
|
|
}
|
|
|
|
DUAL_FUNCTION(void*, memset, Set, (void* Dest, int Value, size_t Length))
|
|
{
|
|
byte* D = (byte*) Dest;
|
|
|
|
for ( size_t I = 0; I < Length; I++ )
|
|
{
|
|
D[I] = Value & 0xFF;
|
|
}
|
|
|
|
return Dest;
|
|
}
|
|
}
|
|
}
|