1
0
Fork 0
mirror of https://gitlab.com/sortix/sortix.git synced 2023-02-13 20:55:38 -05:00
sortix--sortix/sortix/process.cpp
Jonas 'Sortie' Termansen 0ed0082070 Added execv(3) and execve(3).
Removed the older libmaxsi system call.
2012-03-02 15:00:11 +01:00

765 lines
18 KiB
C++

/******************************************************************************
COPYRIGHT(C) JONAS 'SORTIE' TERMANSEN 2011.
This file is part of Sortix.
Sortix is free software: you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any later
version.
Sortix is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
details.
You should have received a copy of the GNU General Public License along
with Sortix. If not, see <http://www.gnu.org/licenses/>.
process.cpp
Describes a process belonging to a subsystem.
******************************************************************************/
#include "platform.h"
#include <libmaxsi/error.h>
#include <libmaxsi/memory.h>
#include <libmaxsi/string.h>
#include <libmaxsi/sortedlist.h>
#include "thread.h"
#include "process.h"
#include "device.h"
#include "stream.h"
#include "filesystem.h"
#include "directory.h"
#include "scheduler.h"
#include "memorymanagement.h"
#include "initrd.h"
#include "elf.h"
#include "syscall.h"
using namespace Maxsi;
namespace Sortix
{
bool ProcessSegment::Intersects(ProcessSegment* segments)
{
for ( ProcessSegment* tmp = segments; tmp != NULL; tmp = tmp->next )
{
if ( tmp->position < position + size &&
position < tmp->position + tmp->size )
{
return true;
}
}
if ( next ) { return next->Intersects(segments); }
return false;
}
ProcessSegment* ProcessSegment::Fork()
{
ProcessSegment* nextclone = NULL;
if ( next )
{
nextclone = next->Fork();
if ( nextclone == NULL ) { return NULL; }
}
ProcessSegment* clone = new ProcessSegment();
if ( clone == NULL )
{
while ( nextclone != NULL )
{
ProcessSegment* todelete = nextclone;
nextclone = nextclone->next;
delete todelete;
}
return NULL;
}
next->prev = nextclone;
clone->next = nextclone;
clone->position = position;
clone->size = size;
return clone;
}
Process::Process()
{
addrspace = 0;
segments = NULL;
sigint = false;
parent = NULL;
prevsibling = NULL;
nextsibling = NULL;
firstchild = NULL;
zombiechild = NULL;
firstthread = NULL;
workingdir = NULL;
errno = NULL;
mmapfrom = 0x80000000UL;
exitstatus = -1;
pid = AllocatePID();
Put(this);
}
Process::~Process()
{
Remove(this);
ResetAddressSpace();
// Avoid memory leaks.
ASSERT(segments == NULL);
delete[] workingdir;
// TODO: Delete address space!
}
void Process::ResetAddressSpace()
{
ProcessSegment* tmp = segments;
while ( tmp != NULL )
{
Memory::UnmapRangeUser(tmp->position, tmp->size);
ProcessSegment* todelete = tmp;
tmp = tmp->next;
delete todelete;
}
segments = NULL;
errno = NULL;
}
Process* Process::Fork()
{
ASSERT(CurrentProcess() == this);
Process* clone = new Process;
if ( !clone ) { return NULL; }
ProcessSegment* clonesegments = NULL;
// Fork the segment list.
if ( segments )
{
clonesegments = segments->Fork();
if ( clonesegments == NULL ) { delete clone; return NULL; }
}
// Fork address-space here and copy memory.
clone->addrspace = Memory::Fork();
if ( !clone->addrspace )
{
// Delete the segment list, since they are currently bogus.
ProcessSegment* tmp = clonesegments;
while ( tmp != NULL )
{
ProcessSegment* todelete = tmp;
tmp = tmp->next;
delete todelete;
}
delete clone; return NULL;
}
// Now it's too late to clean up here, if anything goes wrong, the
// cloned process should be queued for destruction.
clone->segments = clonesegments;
// Remember the relation to the child process.
clone->parent = this;
if ( firstchild )
{
firstchild->prevsibling = clone;
clone->nextsibling = firstchild;
firstchild = clone;
}
else
{
firstchild = clone;
}
// Fork the file descriptors.
if ( !descriptors.Fork(&clone->descriptors) )
{
Panic("No error handling when forking FDs fails!");
}
Thread* clonethreads = ForkThreads(clone);
if ( !clonethreads )
{
Panic("No error handling when forking threads fails!");
}
clone->firstthread = clonethreads;
// Copy variables.
clone->mmapfrom = mmapfrom;
clone->errno = errno;
if ( workingdir ) { clone->workingdir = String::Clone(workingdir); }
else { clone->workingdir = NULL; }
// Now that the cloned process is fully created, we need to signal to
// its threads that they should insert themselves into the scheduler.
for ( Thread* tmp = clonethreads; tmp != NULL; tmp = tmp->nextsibling )
{
tmp->Ready();
}
return clone;
}
Thread* Process::ForkThreads(Process* processclone)
{
Thread* result = NULL;
Thread* tmpclone = NULL;
for ( Thread* tmp = firstthread; tmp != NULL; tmp = tmp->nextsibling )
{
Thread* clonethread = tmp->Fork();
if ( clonethread == NULL )
{
while ( tmpclone != NULL )
{
Thread* todelete = tmpclone;
tmpclone = tmpclone->prevsibling;
delete todelete;
}
return NULL;
}
clonethread->process = processclone;
if ( result == NULL ) { result = clonethread; }
if ( tmpclone != NULL )
{
tmpclone->nextsibling = clonethread;
clonethread->prevsibling = tmpclone;
}
tmpclone = clonethread;
}
return result;
}
void Process::ResetForExecute()
{
// TODO: Delete all threads and their stacks.
ResetAddressSpace();
}
int Process::Execute(const char* programname, const byte* program, size_t programsize, int argc, const char* const* argv, CPU::InterruptRegisters* regs)
{
ASSERT(CurrentProcess() == this);
addr_t entry = ELF::Construct(CurrentProcess(), program, programsize);
if ( !entry ) { return -1; }
// TODO: This may be an ugly hack!
// TODO: Move this to x86/process.cpp.
// Alright, move argv onto the new stack! First figure out exactly how
// big argv actually is.
addr_t stackpos = CurrentThread()->stackpos + CurrentThread()->stacksize;
addr_t argvpos = stackpos - sizeof(char*) * argc;
char** stackargv = (char**) argvpos;
size_t argvsize = 0;
for ( int i = 0; i < argc; i++ )
{
size_t len = String::Length(argv[i]) + 1;
argvsize += len;
char* dest = ((char*) argvpos) - argvsize;
stackargv[i] = dest;
Maxsi::Memory::Copy(dest, argv[i], len);
}
stackpos = argvpos - argvsize;
ExecuteCPU(argc, stackargv, stackpos, entry, regs);
return 0;
}
class SysExecVEState
{
public:
char* filename;
DevBuffer* dev;
byte* buffer;
size_t count;
size_t sofar;
int argc;
char** argv;
public:
SysExecVEState()
{
filename = NULL;
dev = NULL;
buffer = NULL;
count = 0;
sofar = 0;
argc = 0;
argv = NULL;
}
~SysExecVEState()
{
delete[] filename;
if ( dev ) { dev->Unref(); }
delete[] buffer;
for ( int i = 0; i < argc; i++ ) { delete[] argv[i]; }
delete[] argv;
}
};
int SysExevVEStage2(SysExecVEState* state)
{
if ( !state->dev->IsReadable() ) { Error::Set(EBADF); delete state; return -1; }
byte* dest = state->buffer + state->sofar;
size_t amount = state->count - state->sofar;
ssize_t bytesread = state->dev->Read(dest, amount);
// Check for premature end-of-file.
if ( bytesread == 0 && amount != 0 )
{
Error::Set(EIO); delete state; return -1;
}
// We actually managed to read some data.
if ( 0 <= bytesread )
{
state->sofar += bytesread;
if ( state->sofar <= state->count )
{
CPU::InterruptRegisters* regs = Syscall::InterruptRegs();
Process* process = CurrentProcess();
int result = process->Execute(state->filename, state->buffer, state->count, state->argc, state->argv, regs);
if ( result == 0 ) { Syscall::AsIs(); }
delete state;
return result;
}
return SysExevVEStage2(state);
}
if ( Error::Last() != EBLOCKING ) { delete state; return -1; }
// The stream will resume our system call once progress has been
// made. Our request is certainly not forgotten.
// Resume the system call with these parameters.
Thread* thread = CurrentThread();
thread->scfunc = (void*) SysExevVEStage2;
thread->scstate[0] = (size_t) state;
thread->scsize = sizeof(state);
// Now go do something else.
Syscall::Incomplete();
return 0;
}
DevBuffer* OpenProgramImage(const char* progname, const char* wd, const char* path)
{
// TODO: Use the PATH enviromental variable.
const char* base = ( *progname == '.' ) ? wd : path;
char* abs = Directory::MakeAbsolute(base, progname);
if ( !abs ) { Error::Set(ENOMEM); return NULL; }
// TODO: Use O_EXEC here!
Device* dev = FileSystem::Open(abs, O_RDONLY, 0);
delete[] abs;
if ( !dev ) { return NULL; }
if ( !dev->IsType(Device::BUFFER) ) { Error::Set(EACCESS); dev->Unref(); return NULL; }
return (DevBuffer*) dev;
}
int SysExecVE(const char* filename, char* const argv[], char* const /*envp*/[])
{
// TODO: Validate that all the pointer-y parameters are SAFE!
// Use a container class to store everything and handle cleaning up.
SysExecVEState* state = new SysExecVEState;
if ( !state ) { return -1; }
// Make a copy of argv and filename as they are going to be destroyed
// when the address space is reset.
state->filename = String::Clone(filename);
if ( !state->filename ) { delete state; return -1; }
int argc; for ( argc = 0; argv[argc]; argc++ );
state->argc = argc;
state->argv = new char*[state->argc];
Maxsi::Memory::Set(state->argv, 0, sizeof(char*) * state->argc);
if ( !state->argv ) { delete state; return -1; }
for ( int i = 0; i < state->argc; i++ )
{
state->argv[i] = String::Clone(argv[i]);
if ( !state->argv[i] ) { delete state; return -1; }
}
Process* process = CurrentProcess();
state->dev = OpenProgramImage(state->filename, process->workingdir, "/bin");
if ( !state->dev ) { delete state; return -1; }
state->dev->Refer(); // TODO: Rules of GC may change soon.
uintmax_t needed = state->dev->Size();
if ( SIZE_MAX < needed ) { Error::Set(ENOMEM); delete state; return -1; }
state->count = needed;
state->buffer = new byte[state->count];
if ( !state->buffer ) { delete state; return -1; }
return SysExevVEStage2(state);
}
pid_t SysFork()
{
// Prepare the state of the clone.
Syscall::SyscallRegs()->result = 0;
CurrentThread()->SaveRegisters(Syscall::InterruptRegs());
Process* clone = CurrentProcess()->Fork();
if ( !clone ) { return -1; }
return clone->pid;
}
pid_t SysGetPID()
{
return CurrentProcess()->pid;
}
pid_t SysGetParentPID()
{
Process* parent = CurrentProcess()->parent;
if ( !parent ) { return -1; }
return parent->pid;
}
pid_t nextpidtoallocate;
pid_t Process::AllocatePID()
{
return nextpidtoallocate++;
}
int ProcessCompare(Process* a, Process* b)
{
if ( a->pid < b->pid ) { return -1; }
if ( a->pid > b->pid ) { return 1; }
return 0;
}
int ProcessPIDCompare(Process* a, pid_t pid)
{
if ( a->pid < pid ) { return -1; }
if ( a->pid > pid ) { return 1; }
return 0;
}
SortedList<Process*>* pidlist;
Process* Process::Get(pid_t pid)
{
size_t index = pidlist->Search(ProcessPIDCompare, pid);
if ( index == SIZE_MAX ) { return NULL; }
return pidlist->Get(index);
}
bool Process::Put(Process* process)
{
return pidlist->Add(process);
}
void Process::Remove(Process* process)
{
size_t index = pidlist->Search(process);
ASSERT(index != SIZE_MAX);
pidlist->Remove(index);
}
void Process::OnChildProcessExit(Process* process)
{
ASSERT(process->parent == this);
for ( Thread* thread = firstthread; thread; thread = thread->nextsibling )
{
if ( thread->onchildprocessexit )
{
thread->onchildprocessexit(thread, process);
}
}
}
void Process::Exit(int status)
{
// Status codes can only contain 8 bits according to ISO C and POSIX.
status %= 256;
ASSERT(this == CurrentProcess());
Process* init = Scheduler::GetInitProcess();
if ( pid == 0 ) { Panic("System idle process exited"); }
// If the init process terminated successfully, time to halt.
if ( this == init )
{
switch ( status )
{
case 0: CPU::ShutDown();
case 1: CPU::Reboot();
default: PanicF("The init process exited abnormally with status code %u\n", status);
}
}
// Take care of the orphans, so give them to init.
while ( firstchild )
{
Process* orphan = firstchild;
firstchild = orphan->nextsibling;
if ( firstchild ) { firstchild->prevsibling = NULL; }
orphan->parent = init;
orphan->prevsibling = NULL;
orphan->nextsibling = init->firstchild;
if ( orphan->nextsibling ) { orphan->nextsibling->prevsibling = orphan; }
init->firstchild = orphan;
}
// Remove the current process from the family tree.
if ( !prevsibling )
{
parent->firstchild = nextsibling;
}
else
{
prevsibling->nextsibling = nextsibling;
}
if ( nextsibling )
{
nextsibling->prevsibling = prevsibling;
}
// Close all the file descriptors.
descriptors.Reset();
// Make all threads belonging to process unrunnable.
for ( Thread* t = firstthread; t; t = t->nextsibling )
{
Scheduler::EarlyWakeUp(t);
Scheduler::SetThreadState(t, Thread::State::NONE);
}
// Delete the threads.
while ( firstthread )
{
Thread* todelete = firstthread;
firstthread = firstthread->nextsibling;
delete todelete;
}
// Now clean up the address space.
ResetAddressSpace();
// TODO: Actually delete the address space. This is a small memory leak
// of a couple pages.
exitstatus = status;
nextsibling = parent->zombiechild;
if ( parent->zombiechild ) { parent->zombiechild->prevsibling = this; }
parent->zombiechild = this;
// Notify the parent process that the child has become a zombie.
parent->OnChildProcessExit(this);
// Now, as a final operation, get rid of the address space. This should
// return us to the original kernel address space containing nothing
// but the kernel.
Memory::DestroyAddressSpace();
}
void SysExit(int status)
{
CurrentProcess()->Exit(status);
// And so, the process had vanished from existence. But as fate would
// have it, soon a replacement took its place.
Scheduler::ProcessTerminated(Syscall::InterruptRegs());
Syscall::AsIs();
}
struct SysWait_t
{
union { size_t align1; pid_t pid; };
union { size_t align2; int* status; };
union { size_t align3; int options; };
};
STATIC_ASSERT(sizeof(SysWait_t) <= sizeof(Thread::scstate));
void SysWaitCallback(Thread* thread, Process* exitee)
{
// See if this process matches what we are looking for.
SysWait_t* state = (SysWait_t*) thread->scstate;
if ( state->pid != -1 && state->pid != exitee->pid ) { return; }
thread->onchildprocessexit = NULL;
Syscall::ScheduleResumption(thread);
}
pid_t SysWait(pid_t pid, int* status, int options)
{
Thread* thread = CurrentThread();
Process* process = thread->process;
if ( pid != -1 )
{
Process* waitingfor = Process::Get(pid);
if ( !waitingfor ) { Error::Set(ECHILD); return -1; }
if ( waitingfor->parent != process ) { Error::Set(ECHILD); return -1; }
}
// Find any zombie children matching the search description.
for ( Process* zombie = process->zombiechild; zombie; zombie = zombie->nextsibling )
{
if ( pid != -1 && pid != zombie->pid ) { continue; }
pid = zombie->pid;
// TODO: Validate that status is a valid user-space int!
if ( status ) { *status = zombie->exitstatus; }
if ( zombie == process->zombiechild )
{
process->zombiechild = zombie->nextsibling;
if ( zombie->nextsibling ) { zombie->nextsibling->prevsibling = NULL; }
}
else
{
zombie->prevsibling->nextsibling = zombie->nextsibling;
if ( zombie->nextsibling ) { zombie->nextsibling->prevsibling = zombie->prevsibling; }
}
// And so, the process was fully deleted.
delete zombie;
return pid;
}
// The process needs to have children, otherwise we are waiting for
// nothing to happen.
if ( !process->firstchild ) { Error::Set(ECHILD); return -1; }
// Resumes this system call when the wait condition has been met.
thread->onchildprocessexit = SysWaitCallback;
// Resume the system call with these parameters.
thread->scfunc = (void*) SysWait;
SysWait_t* state = (SysWait_t*) thread->scstate;
state->pid = pid;
state->status = status;
state->options = options;
thread->scsize = sizeof(SysWait_t);
// Now go do something else.
Syscall::Incomplete();
return 0;
}
int SysRegisterErrno(int* errnop)
{
CurrentProcess()->errno = errnop;
return 0;
}
void* SysSbrk(intptr_t increment)
{
Process* process = CurrentProcess();
ProcessSegment* dataseg = NULL;
for ( ProcessSegment* iter = process->segments; iter; iter = iter->next )
{
if ( !iter->type == SEG_DATA ) { continue; }
if ( dataseg && iter->position < dataseg->position ) { continue; }
dataseg = iter;
}
if ( !dataseg ) { Error::Set(ENOMEM); return (void*) -1UL; }
addr_t currentend = dataseg->position + dataseg->size;
addr_t newend = currentend + increment;
if ( newend < dataseg->position ) { Error::Set(EINVAL); return (void*) -1UL; }
if ( newend < currentend )
{
addr_t unmapfrom = Page::AlignUp(newend);
if ( unmapfrom < currentend )
{
size_t unmapbytes = Page::AlignUp(currentend - unmapfrom);
Memory::UnmapRangeUser(unmapfrom, unmapbytes);
}
}
else if ( currentend < newend )
{
// TODO: HACK: Make a safer way of expanding the data segment
// without segments possibly colliding!
addr_t mapfrom = Page::AlignUp(currentend);
if ( mapfrom < newend )
{
size_t mapbytes = Page::AlignUp(newend - mapfrom);
if ( !Memory::MapRangeUser(mapfrom, mapbytes) )
{
return (void*) -1UL;
}
}
}
dataseg->size += increment;
return (void*) newend;
}
size_t SysGetPageSize()
{
// TODO: Query the virtual memory layer or look up in the process class.
return 0x1000UL;
}
void Process::Init()
{
Syscall::Register(SYSCALL_EXEC, (void*) SysExecVE);
Syscall::Register(SYSCALL_FORK, (void*) SysFork);
Syscall::Register(SYSCALL_GETPID, (void*) SysGetPID);
Syscall::Register(SYSCALL_GETPPID, (void*) SysGetParentPID);
Syscall::Register(SYSCALL_EXIT, (void*) SysExit);
Syscall::Register(SYSCALL_WAIT, (void*) SysWait);
Syscall::Register(SYSCALL_REGISTER_ERRNO, (void*) SysRegisterErrno);
Syscall::Register(SYSCALL_SBRK, (void*) SysSbrk);
Syscall::Register(SYSCALL_GET_PAGE_SIZE, (void*) SysGetPageSize);
nextpidtoallocate = 0;
pidlist = new SortedList<Process*>(ProcessCompare);
if ( !pidlist ) { Panic("could not allocate pidlist\n"); }
}
addr_t Process::AllocVirtualAddr(size_t size)
{
return (mmapfrom -= size);
}
}