1
0
Fork 0
mirror of https://gitlab.com/sortix/sortix.git synced 2023-02-13 20:55:38 -05:00
sortix--sortix/kernel/thread.cpp
Jonas 'Sortie' Termansen 2b72262b4f Relicense Sortix to the ISC license.
I hereby relicense all my work on Sortix under the ISC license as below.

All Sortix contributions by other people are already under this license,
are not substantial enough to be copyrightable, or have been removed.

All imported code from other projects is compatible with this license.

All GPL licensed code from other projects had previously been removed.

Copyright 2011-2016 Jonas 'Sortie' Termansen and contributors.

Permission to use, copy, modify, and distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
2016-03-05 22:21:50 +01:00

410 lines
11 KiB
C++

/*
* Copyright (c) 2011, 2012, 2013, 2014, 2015 Jonas 'Sortie' Termansen.
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
* thread.cpp
* Describes a thread belonging to a process.
*/
#include <sys/wait.h>
#include <assert.h>
#include <errno.h>
#include <signal.h>
#include <stdlib.h>
#include <string.h>
#include <sortix/exit.h>
#include <sortix/mman.h>
#include <sortix/signal.h>
#include <sortix/kernel/copy.h>
#include <sortix/kernel/interrupt.h>
#include <sortix/kernel/kernel.h>
#include <sortix/kernel/kthread.h>
#include <sortix/kernel/memorymanagement.h>
#include <sortix/kernel/process.h>
#include <sortix/kernel/scheduler.h>
#include <sortix/kernel/syscall.h>
#include <sortix/kernel/thread.h>
#include <sortix/kernel/time.h>
void* operator new (size_t /*size*/, void* address) throw()
{
return address;
}
namespace Sortix {
Thread* AllocateThread()
{
uint8_t* allocation = (uint8_t*) malloc(sizeof(class Thread) + 16);
if ( !allocation )
return NULL;
uint8_t* aligned = allocation;
if ( ((uintptr_t) aligned & 0xFUL) )
aligned = (uint8_t*) (((uintptr_t) aligned + 16) & ~0xFUL);
assert(!((uintptr_t) aligned & 0xFUL));
Thread* thread = new (aligned) Thread;
assert(!((uintptr_t) thread->registers.fpuenv & 0xFUL));
return thread->self_allocation = allocation, thread;
}
void FreeThread(Thread* thread)
{
uint8_t* allocation = thread->self_allocation;
thread->~Thread();
free(allocation);
}
Thread::Thread()
{
assert(!((uintptr_t) registers.fpuenv & 0xFUL));
system_tid = (uintptr_t) this;
yield_to_tid = 0;
id = 0; // TODO: Make a thread id.
process = NULL;
prevsibling = NULL;
nextsibling = NULL;
scheduler_list_prev = NULL;
scheduler_list_next = NULL;
state = NONE;
memset(&registers, 0, sizeof(registers));
kernelstackpos = 0;
kernelstacksize = 0;
kernelstackmalloced = false;
pledged_destruction = false;
force_no_signals = false;
sigemptyset(&signal_pending);
sigemptyset(&signal_mask);
memset(&signal_stack, 0, sizeof(signal_stack));
signal_stack.ss_flags = SS_DISABLE;
// execute_clock initialized in member constructor.
// system_clock initialized in member constructor.
Time::InitializeThreadClocks(this);
}
Thread::~Thread()
{
if ( process )
process->OnThreadDestruction(this);
assert(CurrentThread() != this);
if ( kernelstackmalloced )
delete[] (uint8_t*) kernelstackpos;
}
Thread* CreateKernelThread(Process* process, struct thread_registers* regs)
{
assert(process && regs && process->addrspace);
#if defined(__x86_64__)
if ( regs->fsbase >> 48 != 0x0000 && regs->fsbase >> 48 != 0xFFFF )
return errno = EINVAL, (Thread*) NULL;
if ( regs->gsbase >> 48 != 0x0000 && regs->gsbase >> 48 != 0xFFFF )
return errno = EINVAL, (Thread*) NULL;
#endif
Thread* thread = AllocateThread();
if ( !thread )
return NULL;
memcpy(&thread->registers, regs, sizeof(struct thread_registers));
kthread_mutex_lock(&process->threadlock);
// Create the family tree.
thread->process = process;
Thread* firsty = process->firstthread;
if ( firsty )
firsty->prevsibling = thread;
thread->nextsibling = firsty;
process->firstthread = thread;
kthread_mutex_unlock(&process->threadlock);
return thread;
}
static void SetupKernelThreadRegs(struct thread_registers* regs,
Process* process,
void (*entry)(void*),
void* user,
uintptr_t stack,
size_t stack_size)
{
memset(regs, 0, sizeof(*regs));
size_t stack_alignment = 16;
while ( stack & (stack_alignment-1) )
{
assert(stack_size);
stack++;
stack_size--;
}
stack_size &= ~(stack_alignment-1);
#if defined(__i386__)
uintptr_t* stack_values = (uintptr_t*) (stack + stack_size);
assert(5 * sizeof(uintptr_t) <= stack_size);
/* -- 16-byte aligned -- */
/* -1 padding */
stack_values[-2] = (uintptr_t) 0; /* null eip */
stack_values[-3] = (uintptr_t) 0; /* null ebp */
stack_values[-4] = (uintptr_t) user; /* thread parameter */
/* -- 16-byte aligned -- */
stack_values[-5] = (uintptr_t) kthread_exit; /* return to kthread_exit */
/* upcoming ebp */
/* -7 padding */
/* -8 padding */
/* -- 16-byte aligned -- */
regs->eip = (uintptr_t) entry;
regs->esp = (uintptr_t) (stack_values - 5);
regs->eax = 0;
regs->ebx = 0;
regs->ecx = 0;
regs->edx = 0;
regs->edi = 0;
regs->esi = 0;
regs->ebp = (uintptr_t) (stack_values - 3);
regs->cs = KCS | KRPL;
regs->ds = KDS | KRPL;
regs->ss = KDS | KRPL;
regs->eflags = FLAGS_RESERVED1 | FLAGS_INTERRUPT | FLAGS_ID;
regs->kerrno = 0;
regs->signal_pending = 0;
regs->kernel_stack = stack + stack_size;
regs->cr3 = process->addrspace;
#elif defined(__x86_64__)
uintptr_t* stack_values = (uintptr_t*) (stack + stack_size);
assert(3 * sizeof(uintptr_t) <= stack_size);
stack_values[-1] = (uintptr_t) 0; /* null rip */
stack_values[-2] = (uintptr_t) 0; /* null rbp */
stack_values[-3] = (uintptr_t) kthread_exit; /* return to kthread_exit */
regs->rip = (uintptr_t) entry;
regs->rsp = (uintptr_t) (stack_values - 3);
regs->rax = 0;
regs->rbx = 0;
regs->rcx = 0;
regs->rdx = 0;
regs->rdi = (uintptr_t) user;
regs->rsi = 0;
regs->rbp = 0;
regs->r8 = 0;
regs->r9 = 0;
regs->r10 = 0;
regs->r11 = 0;
regs->r12 = 0;
regs->r13 = 0;
regs->r14 = 0;
regs->r15 = 0;
regs->cs = KCS | KRPL;
regs->ds = KDS | KRPL;
regs->ss = KDS | KRPL;
regs->rflags = FLAGS_RESERVED1 | FLAGS_INTERRUPT | FLAGS_ID;
regs->kerrno = 0;
regs->signal_pending = 0;
regs->kernel_stack = stack + stack_size;
regs->cr3 = process->addrspace;
#else
#warning "You need to add kernel thread register initialization support"
#endif
}
Thread* CreateKernelThread(Process* process, void (*entry)(void*), void* user,
size_t stacksize)
{
const size_t DEFAULT_KERNEL_STACK_SIZE = 8 * 1024UL;
if ( !stacksize )
stacksize = DEFAULT_KERNEL_STACK_SIZE;
uint8_t* stack = new uint8_t[stacksize];
if ( !stack )
return NULL;
struct thread_registers regs;
SetupKernelThreadRegs(&regs, process, entry, user, (uintptr_t) stack, stacksize);
Thread* thread = CreateKernelThread(process, &regs);
if ( !thread ) { delete[] stack; return NULL; }
thread->kernelstackpos = (uintptr_t) stack;
thread->kernelstacksize = stacksize;
thread->kernelstackmalloced = true;
return thread;
}
Thread* CreateKernelThread(void (*entry)(void*), void* user, size_t stacksize)
{
return CreateKernelThread(CurrentProcess(), entry, user, stacksize);
}
void StartKernelThread(Thread* thread)
{
Scheduler::SetThreadState(thread, ThreadState::RUNNABLE);
}
Thread* RunKernelThread(Process* process, struct thread_registers* regs)
{
Thread* thread = CreateKernelThread(process, regs);
if ( !thread )
return NULL;
StartKernelThread(thread);
return thread;
}
Thread* RunKernelThread(Process* process, void (*entry)(void*), void* user,
size_t stacksize)
{
Thread* thread = CreateKernelThread(process, entry, user, stacksize);
if ( !thread )
return NULL;
StartKernelThread(thread);
return thread;
}
Thread* RunKernelThread(void (*entry)(void*), void* user, size_t stacksize)
{
Thread* thread = CreateKernelThread(entry, user, stacksize);
if ( !thread )
return NULL;
StartKernelThread(thread);
return thread;
}
int sys_exit_thread(int requested_exit_code,
int flags,
const struct exit_thread* user_extended)
{
if ( flags & ~(EXIT_THREAD_ONLY_IF_OTHERS |
EXIT_THREAD_UNMAP |
EXIT_THREAD_ZERO |
EXIT_THREAD_TLS_UNMAP |
EXIT_THREAD_PROCESS |
EXIT_THREAD_DUMP_CORE) )
return errno = EINVAL, -1;
if ( (flags & EXIT_THREAD_ONLY_IF_OTHERS) && (flags & EXIT_THREAD_PROCESS) )
return errno = EINVAL, -1;
Thread* thread = CurrentThread();
Process* process = CurrentProcess();
struct exit_thread extended;
if ( !user_extended )
memset(&extended, 0, sizeof(extended));
else if ( !CopyFromUser(&extended, user_extended, sizeof(extended)) )
return -1;
extended.unmap_size = Page::AlignUp(extended.unmap_size);
kthread_mutex_lock(&thread->process->threadlock);
bool is_others = false;
for ( Thread* iter = thread->process->firstthread;
!is_others && iter;
iter = iter->nextsibling )
{
if ( iter == thread )
continue;
if ( iter->pledged_destruction )
continue;
is_others = true;
}
if ( !(flags & EXIT_THREAD_ONLY_IF_OTHERS) || is_others )
thread->pledged_destruction = true;
bool are_threads_exiting = false;
if ( (flags & EXIT_THREAD_PROCESS) || !is_others )
process->threads_exiting = true;
else if ( process->threads_exiting )
are_threads_exiting = true;
kthread_mutex_unlock(&thread->process->threadlock);
// Self-destruct if another thread began exiting the process.
if ( are_threads_exiting )
kthread_exit();
if ( (flags & EXIT_THREAD_ONLY_IF_OTHERS) && !is_others )
return errno = ESRCH, -1;
if ( flags & EXIT_THREAD_UNMAP &&
Page::IsAligned((uintptr_t) extended.unmap_from) &&
extended.unmap_size )
{
ScopedLock lock(&process->segment_lock);
extended.unmap_size = Page::AlignDown(extended.unmap_size);
Memory::UnmapMemory(process, (uintptr_t) extended.unmap_from,
extended.unmap_size);
Memory::Flush();
// TODO: The segment is not actually removed!
}
if ( flags & EXIT_THREAD_TLS_UNMAP &&
Page::IsAligned((uintptr_t) extended.tls_unmap_from) &&
extended.tls_unmap_size )
{
ScopedLock lock(&process->segment_lock);
extended.tls_unmap_size = Page::AlignDown(extended.tls_unmap_size);
Memory::UnmapMemory(process, (uintptr_t) extended.tls_unmap_from,
extended.tls_unmap_size);
Memory::Flush();
}
if ( flags & EXIT_THREAD_ZERO )
ZeroUser(extended.zero_from, extended.zero_size);
if ( !is_others )
{
// Validate the requested exit code such that the process can't exit
// with an impossible exit status or that it wasn't actually terminated.
int the_nature = WNATURE(requested_exit_code);
int the_status = WEXITSTATUS(requested_exit_code);
int the_signal = WTERMSIG(requested_exit_code);
if ( the_nature == WNATURE_EXITED )
the_signal = 0;
else if ( the_nature == WNATURE_SIGNALED )
{
if ( the_signal == 0 /* null signal */ ||
the_signal == SIGSTOP ||
the_signal == SIGTSTP ||
the_signal == SIGTTIN ||
the_signal == SIGTTOU ||
the_signal == SIGCONT )
the_signal = SIGKILL;
the_status = 128 + the_signal;
}
else
{
the_nature = WNATURE_SIGNALED;
the_signal = SIGKILL;
}
requested_exit_code = WCONSTRUCT(the_nature, the_status, the_signal);
thread->process->ExitWithCode(requested_exit_code);
}
kthread_exit();
}
} // namespace Sortix