1
0
Fork 0
mirror of https://gitlab.com/sortix/sortix.git synced 2023-02-13 20:55:38 -05:00
sortix--sortix/sortix/interrupt.cpp
2013-12-17 14:30:26 +01:00

434 lines
12 KiB
C++

/*******************************************************************************
Copyright(C) Jonas 'Sortie' Termansen 2011, 2012.
This file is part of Sortix.
Sortix is free software: you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any later
version.
Sortix is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
details.
You should have received a copy of the GNU General Public License along with
Sortix. If not, see <http://www.gnu.org/licenses/>.
interrupt.cpp
High level interrupt service routines and interrupt request handlers.
*******************************************************************************/
#include <sortix/kernel/platform.h>
#include <sortix/kernel/syscall.h>
#include <sortix/kernel/interrupt.h>
#include <sortix/kernel/scheduler.h>
#include <assert.h>
#include <errno.h>
#include <string.h>
#include "x86-family/idt.h"
#include "calltrace.h"
#include "signal.h"
#include "process.h"
#include "sound.h" // Hack for SIGSEGV
namespace Sortix {
namespace Interrupt {
const uint16_t PIC_MASTER = 0x20;
const uint16_t PIC_SLAVE = 0xA0;
const uint16_t PIC_COMMAND = 0x00;
const uint16_t PIC_DATA = 0x01;
const uint8_t PIC_CMD_ENDINTR = 0x20;
const uint8_t PIC_ICW1_ICW4 = 0x01; // ICW4 (not) needed
const uint8_t PIC_ICW1_SINGLE = 0x02; // Single (cascade) mode
const uint8_t PIC_ICW1_INTERVAL4 = 0x04; // Call address interval 4 (8)
const uint8_t PIC_ICW1_LEVEL = 0x08; // Level triggered (edge) mode
const uint8_t PIC_CMD_INIT = 0x10;
const uint8_t PIC_MODE_8086 = 0x01; // 8086/88 (MCS-80/85) mode
const uint8_t PIC_MODE_AUTO = 0x02; // Auto (normal) EOI
const uint8_t PIC_MODE_BUF_SLAVE = 0x08; // Buffered mode/slave
const uint8_t PIC_MODE_BUF_MASTER = 0x0C; // Buffered mode/master
const uint8_t PIC_MODE_SFNM = 0x10; // Special fully nested (not)
extern "C" { unsigned long asm_is_cpu_interrupted = 0; }
const bool DEBUG_EXCEPTION = true;
const bool DEBUG_IRQ = false;
const bool DEBUG_ISR = false;
const bool CALLTRACE_KERNEL = false;
const bool CALLTRACE_USER = false;
bool initialized;
const size_t NUM_KNOWN_EXCEPTIONS = 20;
const char* exceptions[] =
{
"Divide by zero",
"Debug",
"Non maskable interrupt",
"Breakpoint",
"Into detected overflow",
"Out of bounds",
"Invalid opcode",
"No coprocessor",
"Double fault",
"Coprocessor segment overrun",
"Bad TSS",
"Segment not present",
"Stack fault",
"General protection fault",
"Page fault",
"Unknown interrupt",
"Coprocessor fault",
"Alignment check",
"Machine check",
"SIMD Floating-Point",
};
const unsigned NUM_INTERRUPTS = 256UL;
Handler interrupthandlers[NUM_INTERRUPTS];
void* interrupthandlerptr[NUM_INTERRUPTS];
extern "C" void ReprogramPIC()
{
uint8_t mastermask = 0;
uint8_t slavemask = 0;
CPU::OutPortB(PIC_MASTER + PIC_COMMAND, PIC_CMD_INIT | PIC_ICW1_ICW4);
CPU::OutPortB(PIC_SLAVE + PIC_COMMAND, PIC_CMD_INIT | PIC_ICW1_ICW4);
CPU::OutPortB(PIC_MASTER + PIC_DATA, IRQ0);
CPU::OutPortB(PIC_SLAVE + PIC_DATA, IRQ8);
CPU::OutPortB(PIC_MASTER + PIC_DATA, 0x04); // Slave PIC at IRQ2
CPU::OutPortB(PIC_SLAVE + PIC_DATA, 0x02); // Cascade Identity
CPU::OutPortB(PIC_MASTER + PIC_DATA, PIC_MODE_8086);
CPU::OutPortB(PIC_SLAVE + PIC_DATA, PIC_MODE_8086);
CPU::OutPortB(PIC_MASTER + PIC_DATA, mastermask);
CPU::OutPortB(PIC_SLAVE + PIC_DATA, slavemask);
}
extern "C" void DeprogramPIC()
{
uint8_t mastermask = 0;
uint8_t slavemask = 0;
CPU::OutPortB(PIC_MASTER + PIC_COMMAND, PIC_CMD_INIT | PIC_ICW1_ICW4);
CPU::OutPortB(PIC_SLAVE + PIC_COMMAND, PIC_CMD_INIT | PIC_ICW1_ICW4);
CPU::OutPortB(PIC_MASTER + PIC_DATA, 0x08);
CPU::OutPortB(PIC_SLAVE + PIC_DATA, 0x70);
CPU::OutPortB(PIC_MASTER + PIC_DATA, 0x04); // Slave PIC at IRQ2
CPU::OutPortB(PIC_SLAVE + PIC_DATA, 0x02); // Cascade Identity
CPU::OutPortB(PIC_MASTER + PIC_DATA, PIC_MODE_8086);
CPU::OutPortB(PIC_SLAVE + PIC_DATA, PIC_MODE_8086);
CPU::OutPortB(PIC_MASTER + PIC_DATA, mastermask);
CPU::OutPortB(PIC_SLAVE + PIC_DATA, slavemask);
}
void Init()
{
initialized = false;
IDT::Init();
for ( unsigned i = 0; i < NUM_INTERRUPTS; i++ )
{
interrupthandlers[i] = NULL;
interrupthandlerptr[i] = NULL;
RegisterRawHandler(i, interrupt_handler_null, false);
}
// Remap the IRQ table on the PICs.
ReprogramPIC();
RegisterRawHandler(0, isr0, false);
RegisterRawHandler(1, isr1, false);
RegisterRawHandler(2, isr2, false);
RegisterRawHandler(3, isr3, false);
RegisterRawHandler(4, isr4, false);
RegisterRawHandler(5, isr5, false);
RegisterRawHandler(6, isr6, false);
RegisterRawHandler(7, isr7, false);
RegisterRawHandler(8, isr8, false);
RegisterRawHandler(9, isr9, false);
RegisterRawHandler(10, isr10, false);
RegisterRawHandler(11, isr11, false);
RegisterRawHandler(12, isr12, false);
RegisterRawHandler(13, isr13, false);
RegisterRawHandler(14, isr14, false);
RegisterRawHandler(15, isr15, false);
RegisterRawHandler(16, isr16, false);
RegisterRawHandler(17, isr17, false);
RegisterRawHandler(18, isr18, false);
RegisterRawHandler(19, isr19, false);
RegisterRawHandler(20, isr20, false);
RegisterRawHandler(21, isr21, false);
RegisterRawHandler(22, isr22, false);
RegisterRawHandler(23, isr23, false);
RegisterRawHandler(24, isr24, false);
RegisterRawHandler(25, isr25, false);
RegisterRawHandler(26, isr26, false);
RegisterRawHandler(27, isr27, false);
RegisterRawHandler(28, isr28, false);
RegisterRawHandler(29, isr29, false);
RegisterRawHandler(30, isr30, false);
RegisterRawHandler(31, isr31, false);
RegisterRawHandler(32, irq0, false);
RegisterRawHandler(33, irq1, false);
RegisterRawHandler(34, irq2, false);
RegisterRawHandler(35, irq3, false);
RegisterRawHandler(36, irq4, false);
RegisterRawHandler(37, irq5, false);
RegisterRawHandler(38, irq6, false);
RegisterRawHandler(39, irq7, false);
RegisterRawHandler(40, irq8, false);
RegisterRawHandler(41, irq9, false);
RegisterRawHandler(42, irq10, false);
RegisterRawHandler(43, irq11, false);
RegisterRawHandler(44, irq12, false);
RegisterRawHandler(45, irq13, false);
RegisterRawHandler(46, irq14, false);
RegisterRawHandler(47, irq15, false);
// TODO: Let the syscall.cpp code register this.
RegisterRawHandler(128, syscall_handler, true);
IDT::Flush();
initialized = true;
Interrupt::Enable();
}
void RegisterHandler(unsigned n, Interrupt::Handler handler, void* user)
{
interrupthandlers[n] = handler;
interrupthandlerptr[n] = user;
}
// TODO: This function contains magic IDT-related values!
void RegisterRawHandler(unsigned index, RawHandler handler, bool userspace)
{
addr_t handlerentry = (addr_t) handler;
uint16_t sel = 0x08;
uint8_t flags = 0x8E;
if ( userspace ) { flags |= 0x60; }
IDT::SetGate(index, handlerentry, sel, flags);
if ( initialized ) { IDT::Flush(); }
}
void CrashHandler(CPU::InterruptRegisters* regs)
{
const char* message = ( regs->int_no < NUM_KNOWN_EXCEPTIONS )
? exceptions[regs->int_no] : "Unknown";
if ( DEBUG_EXCEPTION ) { regs->LogRegisters(); Log::Print("\n"); }
#ifdef PLATFORM_X64
addr_t ip = regs->rip;
#else
addr_t ip = regs->eip;
#endif
// Halt and catch fire if we are the kernel.
unsigned codemode = regs->cs & 0x3U;
bool is_in_kernel = !codemode;
bool is_in_user = !is_in_kernel;
if ( (is_in_kernel && CALLTRACE_KERNEL) || (is_in_user && CALLTRACE_USER) )
#if defined(__x86_64__)
Calltrace::Perform(regs->rbp);
#elif defined(__i386__)
Calltrace::Perform(regs->ebp);
#else
#error Please provide a calltrace implementation for your CPU.
#endif
if ( is_in_kernel )
{
PanicF("Unhandled CPU Exception id %zu '%s' at ip=0x%zx "
"(cr2=0x%p, err_code=0x%p)", regs->int_no, message,
ip, regs->cr2, regs->err_code);
}
Interrupt::Enable();
Log::PrintF("The current program (pid %i) has crashed and was terminated:\n",
CurrentProcess()->pid);
Log::PrintF("%s exception at ip=0x%zx (cr2=0x%p, err_code=0x%p)\n",
message, ip, regs->cr2, regs->err_code);
//addr_t topofstack = ((size_t*) regs->useresp)[0];
//Log::PrintF("Top of stack is 0x%zx\n", topofstack);
Sound::Mute();
// Exit the process with the right error code.
// TODO: Sent a SIGINT, SIGBUS, or whatever instead.
CurrentProcess()->Exit(139);
Interrupt::Disable();
Signal::Dispatch(regs);
}
void ISRHandler(Sortix::CPU::InterruptRegisters* regs)
{
if ( DEBUG_ISR )
{
Log::PrintF("ISR%u ", regs->int_no);
regs->LogRegisters();
Log::Print("\n");
}
if ( regs->int_no < 32 && regs->int_no != 7 )
{
CrashHandler(regs);
return;
}
if ( interrupthandlers[regs->int_no] != NULL )
{
void* user = interrupthandlerptr[regs->int_no];
interrupthandlers[regs->int_no](regs, user);
}
}
void IRQHandler(Sortix::CPU::InterruptRegisters* regs)
{
// TODO: IRQ 7 and 15 might be spurious and might need to be ignored.
// See http://wiki.osdev.org/PIC for details (section Spurious IRQs).
if ( regs->int_no == 32 + 7 || regs->int_no == 32 + 15 ) { return; }
if ( DEBUG_IRQ )
{
Log::PrintF("IRQ%u ", regs->int_no-32);
regs->LogRegisters();
Log::Print("\n");
}
unsigned int_no = regs->int_no;
// Send an EOI (end of interrupt) signal to the PICs.
if ( IRQ8 <= int_no ) { CPU::OutPortB(PIC_SLAVE, PIC_CMD_ENDINTR); }
CPU::OutPortB(PIC_MASTER, PIC_CMD_ENDINTR);
if ( interrupthandlers[int_no] )
{
void* user = interrupthandlerptr[int_no];
interrupthandlers[int_no](regs, user);
}
}
extern "C" void interrupt_handler(Sortix::CPU::InterruptRegisters* regs)
{
size_t int_no = regs->int_no;
if ( 32 <= int_no && int_no < 48 ) { IRQHandler(regs); }
else { ISRHandler(regs); }
}
// TODO: This implementation is a bit hacky and can be optimized.
uint8_t* queue;
uint8_t* storage;
volatile size_t queueoffset;
volatile size_t queueused;
size_t queuesize;
struct Package
{
size_t size;
size_t payloadoffset;
size_t payloadsize;
WorkHandler handler; // TODO: May not be correctly aligned on some systems.
uint8_t payload[0];
};
void InitWorker()
{
const size_t QUEUE_SIZE = 4UL*1024UL;
STATIC_ASSERT(QUEUE_SIZE % sizeof(Package) == 0);
queue = new uint8_t[QUEUE_SIZE];
if ( !queue ) { Panic("Can't allocate interrupt worker queue"); }
storage = new uint8_t[QUEUE_SIZE];
if ( !storage ) { Panic("Can't allocate interrupt worker storage"); }
queuesize = QUEUE_SIZE;
queueoffset = 0;
queueused = 0;
}
static void WriteToQueue(const void* src, size_t size)
{
const uint8_t* buf = (const uint8_t*) src;
size_t writeat = (queueoffset + queueused) % queuesize;
size_t available = queuesize - writeat;
size_t count = available < size ? available : size;
memcpy(queue + writeat, buf, count);
queueused += count;
if ( count < size ) { WriteToQueue(buf + count, size - count); }
}
static void ReadFromQueue(void* dest, size_t size)
{
uint8_t* buf = (uint8_t*) dest;
size_t available = queuesize - queueoffset;
size_t count = available < size ? available : size;
memcpy(buf, queue + queueoffset, count);
queueused -= count;
queueoffset = (queueoffset + count) % queuesize;
if ( count < size ) { ReadFromQueue(buf + count, size - count); }
}
static Package* PopPackage(uint8_t** payloadp, Package* /*prev*/)
{
Package* package = NULL;
uint8_t* payload = NULL;
Interrupt::Disable();
if ( !queueused ) { goto out; }
package = (Package*) storage;
ReadFromQueue(package, sizeof(*package));
payload = storage + sizeof(*package);
ReadFromQueue(payload, package->payloadsize);
*payloadp = payload;
out:
Interrupt::Enable();
return package;
}
void WorkerThread(void* /*user*/)
{
assert(Interrupt::IsEnabled());
uint8_t* payload = NULL;
Package* package = NULL;
while ( true )
{
package = PopPackage(&payload, package);
if ( !package ) { Scheduler::Yield(); continue; }
size_t payloadsize = package->payloadsize;
package->handler(payload, payloadsize);
}
}
bool ScheduleWork(WorkHandler handler, void* payload, size_t payloadsize)
{
assert(!Interrupt::IsEnabled());
Package package;
package.size = sizeof(package) + payloadsize;
package.payloadoffset = 0; // Currently unused
package.payloadsize = payloadsize;
package.handler = handler;
size_t queuefreespace = queuesize - queueused;
if ( queuefreespace < package.size ) { return false; }
WriteToQueue(&package, sizeof(package));
WriteToQueue(payload, payloadsize);
return true;
}
} // namespace Interrupt
} // namespace Sortix