1
0
Fork 0
mirror of https://gitlab.com/sortix/sortix.git synced 2023-02-13 20:55:38 -05:00
sortix--sortix/kernel/disk/ata/port.cpp
2021-06-27 13:54:56 +02:00

902 lines
24 KiB
C++

/*
* Copyright (c) 2011-2016, 2018, 2021 Jonas 'Sortie' Termansen.
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
* disk/ata/port.cpp
* Driver for ATA.
*/
#include <assert.h>
#include <errno.h>
#include <stdarg.h>
#include <stdint.h>
#include <endian.h>
#include <timespec.h>
#include <sortix/clock.h>
#include <sortix/mman.h>
#include <sortix/kernel/addralloc.h>
#include <sortix/kernel/clock.h>
#include <sortix/kernel/ioport.h>
#include <sortix/kernel/kthread.h>
#include <sortix/kernel/log.h>
#include <sortix/kernel/memorymanagement.h>
#include <sortix/kernel/signal.h>
#include <sortix/kernel/time.h>
#include "hba.h"
#include "port.h"
#include "registers.h"
namespace Sortix {
namespace ATA {
static void copy_ata_string(char* dest, const char* src, size_t length)
{
for ( size_t i = 0; i < length; i += 2 )
{
dest[i + 0] = src[i + 1];
dest[i + 1] = src[i + 0];
}
length = strnlen(dest, length);
while ( 0 < length && dest[length - 1] == ' ' )
length--;
dest[length] = '\0';
}
static void sleep_400_nanoseconds()
{
struct timespec delay = timespec_make(0, 400);
Clock* clock = Time::GetClock(CLOCK_BOOT);
clock->SleepDelay(delay);
}
Port::Port(Channel* channel, unsigned int port_index)
{
this->channel = channel;
this->port_index = port_index;
memset(&control_alloc, 0, sizeof(control_alloc));
memset(&dma_alloc, 0, sizeof(dma_alloc));
is_control_page_mapped = false;
is_dma_page_mapped = false;
interrupt_signaled = false;
transfer_in_progress = false;
control_physical_frame = 0;
dma_physical_frame = 0;
}
Port::~Port()
{
if ( transfer_in_progress )
FinishTransferDMA();
if ( is_control_page_mapped )
{
Memory::Unmap(control_alloc.from);
Memory::Flush();
}
if ( is_dma_page_mapped )
{
Memory::Unmap(dma_alloc.from);
Memory::Flush();
}
FreeKernelAddress(&control_alloc);
FreeKernelAddress(&dma_alloc);
if ( control_physical_frame )
Page::Put(control_physical_frame, PAGE_USAGE_DRIVER);
if ( dma_physical_frame )
Page::Put(dma_physical_frame, PAGE_USAGE_DRIVER);
}
void Port::LogF(const char* format, ...)
{
// TODO: Print this line in an atomic manner.
const char* cdesc = channel->channel_index == 0 ? "primary" : "secondary";
const char* ddesc = port_index == 0 ? "master" : "slave";
Log::PrintF("ata: pci 0x%X: %s %s: ", channel->devaddr, cdesc, ddesc);
va_list ap;
va_start(ap, format);
Log::PrintFV(format, ap);
va_end(ap);
Log::PrintF("\n");
}
bool Port::Initialize()
{
if ( !(control_physical_frame = Page::Get32Bit(PAGE_USAGE_DRIVER)) )
{
LogF("error: control page allocation failure");
return false;
}
if ( !(dma_physical_frame = Page::Get32Bit(PAGE_USAGE_DRIVER)) )
{
LogF("error: dma page allocation failure");
return false;
}
if ( !AllocateKernelAddress(&control_alloc, Page::Size()) )
{
LogF("error: control page virtual address allocation failure");
return false;
}
if ( !AllocateKernelAddress(&dma_alloc, Page::Size()) )
{
LogF("error: dma page virtual address allocation failure");
return false;
}
int prot = PROT_KREAD | PROT_KWRITE;
is_control_page_mapped =
Memory::Map(control_physical_frame, control_alloc.from, prot);
if ( !is_control_page_mapped )
{
LogF("error: control page virtual address allocation failure");
return false;
}
Memory::Flush();
is_dma_page_mapped = Memory::Map(dma_physical_frame, dma_alloc.from, prot);
if ( !is_dma_page_mapped )
{
LogF("error: dma page virtual address allocation failure");
return false;
}
Memory::Flush();
prdt = (volatile struct prd*) (control_alloc.from);
return true;
}
bool Port::FinishInitialize()
{
ScopedLock lock(&channel->hw_lock);
channel->SelectDrive(port_index);
// ATAPI can be detected by using the LBA registers after IDENTIFY.
is_packet_interface = false;
retry_identify_packet:
outport8(channel->port_base + REG_COMMAND,
is_packet_interface ? CMD_IDENTIFY_PACKET : CMD_IDENTIFY);
sleep_400_nanoseconds();
// TODO: The status polling logic should be double-checked against some
// formal specification telling how this should properly be done.
uint8_t status = inport8(channel->port_base + REG_STATUS);
if ( status == 0 )
{
// Non-existent.
return errno = ENODEV, false;
}
// TODO: This failing might mean non-existent.
// TODO: What is a good timeout here?
if ( !wait_inport8_clear(channel->port_base + REG_STATUS, STATUS_BUSY,
false, 1000 /*ms*/) )
{
// IDENTIFY timed out, still busy.
return errno = ETIMEDOUT, false;
}
// TODO: This failing might mean non-existent.
// TODO: Should we actually wait here, or are the status set already?
// TODO: What is a good timeout here?
if ( !wait_inport8_set(channel->port_base + REG_STATUS,
STATUS_DATAREADY | STATUS_ERROR, true, 1000 /*ms*/) )
{
// IDENTIFY timed out, status not set.
return errno = ETIMEDOUT, false;
}
status = inport8(channel->port_base + REG_STATUS);
if ( status & STATUS_ERROR )
{
uint8_t mid = inport8(channel->port_base + REG_LBA_MID);
uint8_t high = inport8(channel->port_base + REG_LBA_HIGH);
if ( (mid == 0x14 && high == 0xEB) || (mid == 0x69 && high == 0x96) )
{
if ( is_packet_interface )
{
LogF("ignoring: IDENTIFY_PACKET returned error status");
return errno = EIO, false;
}
is_packet_interface = true;
goto retry_identify_packet;
}
else if ( mid == 0x3C && high == 0xC3 )
{
// TODO: Does this actually happen and can we do something?
//LogF("ignoring: found SATA device instead");
return errno = ENODRV, false;
}
else if ( (mid || high) && (mid != 0x7F && high != 0x7F) )
{
//LogF("ignoring: found unknown device instead (0x%02X:0x%02X)",
// mid, high);
return errno = ENODRV, false;
}
else if ( mid == 0x7F && high == 0x7F )
{
//LogF("ignoring: non-existent");
return errno = EIO, false;
}
else
{
LogF("ignoring: IDENTIFY returned error status");
return errno = EIO, false;
}
}
for ( size_t i = 0; i < 256; i++ )
{
uint16_t value = inport16(channel->port_base + REG_DATA);
identify_data[2*i + 0] = value >> 0 & 0xFF;
identify_data[2*i + 1] = value >> 8 & 0xFF;
}
little_uint16_t* words = (little_uint16_t*) identify_data;
if ( !is_packet_interface && (words[0] & (1 << 15)) )
return errno = EINVAL, false; // Skipping non-ATA device.
if ( !is_packet_interface && !(words[49] & (1 << 9)) )
return errno = EINVAL, false; // Skipping non-LBA device.
copy_ata_string(serial, (const char*) &words[10], sizeof(serial) - 1);
copy_ata_string(revision, (const char*) &words[23], sizeof(revision) - 1);
copy_ata_string(model, (const char*) &words[27], sizeof(model) - 1);
is_using_dma = true;
// This is apparently the case on older hardware, there are additional
// restrictions on DMA usage, we could work around it, but instead we just
// don't use DMA at all, as such hardware should be irrelevant by now. Print
// a warning so we can look into this if it actually turns out to matter.
// TODO: Arg. This happens in VirtualBox!
// TODO: Alternative solution. If this is true, then it should lock the
// HBA hw_lock instead than the channel one.
uint8_t bm_status = inport8(channel->busmaster_base + BUSMASTER_REG_STATUS);
if ( bm_status & BUSMASTER_STATUS_SIMPLEX )
{
LogF("warning: simplex silliness: no DMA");
is_using_dma = false;
}
// TODO: Why is this commented out? Due to the above?
#if 0
if ( port_index == 0 && !(bm_status & BUSMASTER_STATUS_MASTER_DMA_INIT) )
{
LogF("warning: no DMA support");
is_using_dma = false;
}
if ( port_index == 1 && !(bm_status & BUSMASTER_STATUS_SLAVE_DMA_INIT) )
{
LogF("warning: no DMA support");
is_using_dma = false;
}
#endif
if ( is_packet_interface )
{
is_lba48 = true;
block_count = 0;
block_size = 0;
cylinder_count = 0;
head_count = 0;
sector_count = 0;
device_size = 0;
if ( !ReadCapacityATAPI(true) )
{
//LogF("ReadCapacityATAPI failed: %m");
}
return true;
}
this->is_lba48 = words[83] & (1 << 10);
uint64_t block_count;
if ( is_lba48 )
{
block_count = (uint64_t) words[100] << 0 |
(uint64_t) words[101] << 16 |
(uint64_t) words[102] << 32 |
(uint64_t) words[103] << 48;
}
else
{
block_count = (uint64_t) words[60] << 0 |
(uint64_t) words[61] << 16;
}
uint64_t block_size = 512;
if( (words[106] & (1 << 14)) &&
!(words[106] & (1 << 15)) &&
(words[106] & (1 << 12)) )
{
block_size = 2 * ((uint64_t) words[117] << 0 |
(uint64_t) words[118] << 16);
}
cylinder_count = words[1];
head_count = words[3];
sector_count = words[6];
if ( Page::Size() < block_size )
{
LogF("error: block size is larger than page size: %ji", block_size);
return errno = EINVAL, false;
}
if ( __builtin_mul_overflow(block_count, block_size, &device_size) )
{
LogF("error: device size overflows off_t");
return errno = EOVERFLOW, false;
}
this->block_count = (blkcnt_t) block_count;
this->block_size = (blkcnt_t) block_size;
return true;
}
bool Port::ReadCapacityATAPI(bool no_error)
{
struct atapi_packet* packet = (struct atapi_packet*) dma_alloc.from;
memset(packet, 0, sizeof(*packet));
packet->operation = ATAPI_CMD_READ_CAPACITY;
struct atapi_capacity* reply = (struct atapi_capacity*) dma_alloc.from;
if ( !CommandATAPI(sizeof(*reply), no_error) )
return errno = ENOMEDIUM, false;
block_count = (blkcnt_t) reply->last_lba + 1;
block_size = (blkcnt_t) reply->block_size;
if ( Page::Size() < (uintmax_t) block_size )
{
LogF("error: block size is larger than page size: %ji", block_size);
return errno = EINVAL, false;
}
if ( __builtin_mul_overflow(block_count, block_size, &device_size) )
{
LogF("error: device size overflows off_t");
return errno = EOVERFLOW, false;
}
return true;
}
bool Port::CommandATAPI(size_t response_size, bool no_error)
{
outport8(channel->port_base + REG_FEATURE, is_using_dma ? 0x01 : 0x00);
outport8(channel->port_base + REG_LBA_LOW, 0x08);
outport8(channel->port_base + REG_LBA_MID, 0x08);
if ( is_using_dma )
CommandDMA(CMD_PACKET, response_size, false);
else
CommandPIO(CMD_PACKET, response_size, false);
if ( !TransferPIO(sizeof(struct atapi_packet), true, no_error) )
{
if ( !no_error )
LogF("EIO: %s:%u", __FILE__, __LINE__);
return errno = EIO, false;
}
if ( is_using_dma )
{
if ( !FinishTransferDMA() )
{
if ( !no_error )
LogF("EIO: %s:%u", __FILE__, __LINE__);
return errno = EIO, false;
}
}
else
{
// TODO: Read LBA Mid and LBA High to know how many bytes we are
// expected to transfer.
if ( !TransferPIO(response_size, false, no_error) )
{
if ( !no_error )
LogF("EIO: %s:%u", __FILE__, __LINE__);
return errno = EIO, false;
}
}
return true;
}
void Port::Seek(blkcnt_t block_index, size_t count)
{
uintmax_t lba = (uintmax_t) block_index;
uint8_t mode = (is_lba48 ? 0x40 : 0xE0) | port_index << 4;
outport8(channel->port_base + REG_DRIVE_SELECT, mode);
if ( is_lba48 )
{
outport8(channel->port_base + REG_SECTOR_COUNT, count >> 8 & 0xFF);
outport8(channel->port_base + REG_LBA_LOW, lba >> 24 & 0xFF);
outport8(channel->port_base + REG_LBA_MID, lba >> 32 & 0xFF);
outport8(channel->port_base + REG_LBA_HIGH, lba >> 40 & 0xFF);
}
outport8(channel->port_base + REG_SECTOR_COUNT, count >> 0 & 0xFF);
outport8(channel->port_base + REG_LBA_LOW, lba >> 0 & 0xFF);
outport8(channel->port_base + REG_LBA_MID, lba >> 8 & 0xFF);
outport8(channel->port_base + REG_LBA_HIGH, lba >> 16 & 0xFF);
}
void Port::CommandDMA(uint8_t cmd, size_t size, bool write)
{
assert(size);
assert(size <= Page::Size());
assert(size <= UINT16_MAX);
assert((size & 1) == 0); /* sizes and addresses must be 2-byte aligned */
// Store the DMA region in the first PRD.
prdt->physical = dma_physical_frame >> 0 & 0xFFFFFFFF;
prdt->count = size;
prdt->flags = PRD_FLAG_EOT;
// Tell the hardware the location of the PRDT.
uint32_t bm_prdt = control_physical_frame >> 0 & 0xFFFFFFFF;
outport32(channel->busmaster_base + BUSMASTER_REG_PDRT, bm_prdt);
// Clear the error and interrupt bits.
uint8_t bm_status = inport8(channel->busmaster_base + BUSMASTER_REG_STATUS);
bm_status |= BUSMASTER_STATUS_DMA_FAILURE | BUSMASTER_STATUS_INTERRUPT_PENDING;
outport8(channel->busmaster_base + BUSMASTER_REG_STATUS, bm_status);
// Set the transfer direction
uint8_t bm_command = inport8(channel->busmaster_base + BUSMASTER_REG_COMMAND);
if ( write )
bm_command &= ~BUSMASTER_COMMAND_READING;
else
bm_command |= BUSMASTER_COMMAND_READING;
outport8(channel->busmaster_base + BUSMASTER_REG_COMMAND, bm_command);
// Anticipate we will be delivered an IRQ.
PrepareAwaitInterrupt();
transfer_in_progress = true;
transfer_size = size;
transfer_is_write = write;
// Execute the command.
outport8(channel->port_base + REG_COMMAND, cmd);
// Start the DMA transfer.
bm_command = inport8(channel->busmaster_base + BUSMASTER_REG_COMMAND);
bm_command |= BUSMASTER_COMMAND_START;
outport8(channel->busmaster_base + BUSMASTER_REG_COMMAND, bm_command);
}
bool Port::FinishTransferDMA()
{
assert(transfer_in_progress);
bool result = true;
// Wait for an interrupt to arrive.
if ( !AwaitInterrupt(10000 /*ms*/) )
{
const char* op = transfer_is_write ? "write" : "read";
LogF("error: %s DMA timed out", op);
errno = EIO;
result = false;
// TODO: Is this a consistent state, do we need a reset, how to recover?
}
// Stop the DMA transfer.
uint8_t bm_command = inport8(channel->busmaster_base + BUSMASTER_REG_COMMAND);
bm_command &= ~BUSMASTER_COMMAND_START;
outport8(channel->busmaster_base + BUSMASTER_REG_COMMAND, bm_command);
// Clear the error and interrupt bits.
uint8_t bm_status = inport8(channel->busmaster_base + BUSMASTER_REG_STATUS);
uint8_t bm_set_flags = BUSMASTER_STATUS_DMA_FAILURE |
BUSMASTER_STATUS_INTERRUPT_PENDING;
outport8(channel->busmaster_base + BUSMASTER_REG_STATUS,
bm_status | bm_set_flags);
// Check if the DMA transfer failed.
if ( bm_status & BUSMASTER_STATUS_DMA_FAILURE )
{
const char* op = transfer_is_write ? "write" : "read";
LogF("error: %s DMA error", op);
errno = EIO;
result = false;
// TODO: Is this a consistent state, do we need a reset, how to recover?
}
transfer_in_progress = false;
return result;
}
void Port::CommandPIO(uint8_t cmd, size_t size, bool write)
{
assert(size);
assert(size <= Page::Size());
assert((size & 1) == 0); /* sizes and addresses must be 2-byte aligned */
// Anticipate we will be delivered an IRQ.
PrepareAwaitInterrupt();
// Execute the command.
(void) write;
outport8(channel->port_base + REG_COMMAND, cmd);
}
bool Port::TransferPIO(size_t size, bool write, bool no_error)
{
const char* op = write ? "write" : "read";
size_t i = 0;
while ( write || true )
{
if ( !write && i < size && !AwaitInterrupt(10000 /*ms*/) )
{
if ( !no_error )
LogF("error: %s timed out, waiting for transfer start", op);
return errno = EIO, false;
}
if ( !wait_inport8_clear(channel->port_base + REG_STATUS,
STATUS_BUSY, false, 10000 /*ms*/) )
{
if ( !no_error )
LogF("error: %s timed out waiting for transfer pre idle", op);
return errno = EIO, false;
}
uint8_t status = inport8(channel->port_base + REG_STATUS);
if ( status & STATUS_BUSY )
{
if ( !no_error )
LogF("error: %s unexpectedly still busy", op);
return errno = EIO, false;
}
if ( status & (STATUS_ERROR | STATUS_DRIVEFAULT) )
{
if ( !no_error )
LogF("error: %s error%s%s", op,
status & STATUS_ERROR ? " STATUS_ERROR" : "",
status & STATUS_DRIVEFAULT ? " STATUS_DRIVEFAULT" : "");
return errno = EIO, false;
}
if ( i == size )
break;
if ( !(status & STATUS_DATAREADY) )
{
if ( !no_error )
LogF("error: %s unexpectedly not ready", op);
return errno = EIO, false;
}
// Anticipate another IRQ if we're not at the end.
size_t i_sector_end = is_packet_interface ? i + size : i + block_size;
if ( (is_packet_interface && write) || i_sector_end != size )
PrepareAwaitInterrupt();
uint8_t* dma_data = (uint8_t*) dma_alloc.from;
if ( write )
{
while ( i < size && i < i_sector_end )
{
uint16_t value = dma_data[i + 0] << 0 | dma_data[i + 1] << 8;
outport16(channel->port_base + REG_DATA, value);
i += 2;
}
}
else
{
while ( i < size && i < i_sector_end )
{
uint16_t value = inport16(channel->port_base + REG_DATA);
dma_data[i + 0] = (value >> 0) & 0xFF;
dma_data[i + 1] = (value >> 8) & 0xFF;
i += 2;
}
}
if ( write && !AwaitInterrupt(10000 /*ms*/) )
{
if ( !no_error )
LogF("error: %s timed out, waiting for transfer end", op);
return errno = EIO, false;
}
}
return true;
}
off_t Port::GetSize()
{
return device_size;
}
blkcnt_t Port::GetBlockCount()
{
return block_count;
}
blksize_t Port::GetBlockSize()
{
return block_size;
}
uint16_t Port::GetCylinderCount()
{
return cylinder_count;
}
uint16_t Port::GetHeadCount()
{
return head_count;
}
uint16_t Port::GetSectorCount()
{
return sector_count;
}
const char* Port::GetDriver()
{
return "ata";
}
const char* Port::GetModel()
{
return model;
}
const char* Port::GetSerial()
{
return serial;
}
const char* Port::GetRevision()
{
return revision;
}
const unsigned char* Port::GetATAIdentify(size_t* size_ptr)
{
return *size_ptr = sizeof(identify_data), identify_data;
}
int Port::sync(ioctx_t* ctx)
{
if ( is_packet_interface )
{
// TODO: SYNCHRONIZE CACHE 0x35
return errno = ENOSYS, -1;
}
(void) ctx;
ScopedLock lock(&channel->hw_lock);
channel->SelectDrive(port_index);
if ( transfer_in_progress && !FinishTransferDMA() )
return -1;
PrepareAwaitInterrupt();
uint8_t cmd = is_lba48 ? CMD_FLUSH_CACHE_EXT : CMD_FLUSH_CACHE;
outport8(channel->port_base + REG_COMMAND, cmd);
// TODO: This might take longer than 30 seconds according to the spec. But
// how long? Let's say twice that?
if ( !AwaitInterrupt(2 * 30000 /*ms*/) )
{
LogF("error: cache flush timed out");
transfer_in_progress = false;
return errno = EIO, -1;
}
transfer_in_progress = false;
uint8_t status = inport8(channel->port_base + REG_STATUS);
if ( status & (STATUS_ERROR | STATUS_DRIVEFAULT) )
{
LogF("error: IO error");
return errno = EIO, -1;
}
return 0;
}
ssize_t Port::pread(ioctx_t* ctx, unsigned char* buf, size_t count, off_t off)
{
if ( !block_size )
return errno = ENOMEDIUM, -1;
ssize_t result = 0;
while ( count )
{
ScopedLock lock(&channel->hw_lock);
channel->SelectDrive(port_index);
if ( device_size <= off )
break;
if ( (uintmax_t) device_size - off < (uintmax_t) count )
count = (size_t) device_size - off;
uintmax_t block_index = (uintmax_t) off / (uintmax_t) block_size;
uintmax_t block_offset = (uintmax_t) off % (uintmax_t) block_size;
uintmax_t amount = block_offset + count;
if ( Page::Size() < amount )
amount = Page::Size();
size_t num_blocks = (amount + block_size - 1) / block_size;
uintmax_t full_amount = num_blocks * block_size;
// If an asynchronous operation is in progress, let it finish.
if ( transfer_in_progress && !FinishTransferDMA() )
return result ? result : -1;
unsigned char* dma_data = (unsigned char*) dma_alloc.from;
unsigned char* data = dma_data + block_offset;
size_t data_size = amount - block_offset;
if ( is_packet_interface )
{
struct atapi_packet* packet = (struct atapi_packet*) dma_alloc.from;
memset(packet, 0, sizeof(*packet));
packet->operation = ATAPI_CMD_READ;
packet->lba[0] = block_index >> 24 & 0xFF;
packet->lba[1] = block_index >> 16 & 0xFF;
packet->lba[2] = block_index >> 8 & 0xFF;
packet->lba[3] = block_index >> 0 & 0xFF;
packet->control = num_blocks;
if ( !CommandATAPI((size_t) full_amount) )
return result ? result : -1;
}
else
{
Seek(block_index, num_blocks);
if ( is_using_dma )
{
uint8_t cmd = is_lba48 ? CMD_READ_DMA_EXT : CMD_READ_DMA;
CommandDMA(cmd, (size_t) full_amount, false);
if ( !FinishTransferDMA() )
return result ? result : -1;
}
else
{
uint8_t cmd = is_lba48 ? CMD_READ_EXT : CMD_READ;
CommandPIO(cmd, (size_t) full_amount, false);
if ( !TransferPIO((size_t) full_amount, false) )
return result ? result : -1;
}
}
if ( !ctx->copy_to_dest(buf, data, data_size) )
return result ? result : -1;
buf += data_size;
count -= data_size;
result += data_size;
off += data_size;
}
return result;
}
ssize_t Port::pwrite(ioctx_t* ctx, const unsigned char* buf, size_t count, off_t off)
{
if ( is_packet_interface )
return errno = EPERM, -1;
if ( !block_size )
return errno = ENOMEDIUM, -1;
ssize_t result = 0;
while ( count )
{
ScopedLock lock(&channel->hw_lock);
channel->SelectDrive(port_index);
if ( device_size <= off )
break;
if ( (uintmax_t) device_size - off < (uintmax_t) count )
count = (size_t) device_size - off;
uintmax_t block_index = (uintmax_t) off / (uintmax_t) block_size;
uintmax_t block_offset = (uintmax_t) off % (uintmax_t) block_size;
uintmax_t amount = block_offset + count;
if ( Page::Size() < amount )
amount = Page::Size();
size_t num_blocks = (amount + block_size - 1) / block_size;
uintmax_t full_amount = num_blocks * block_size;
// If an asynchronous operation is in progress, let it finish.
if ( transfer_in_progress && !FinishTransferDMA() )
return result ? result : -1;
unsigned char* dma_data = (unsigned char*) dma_alloc.from;
unsigned char* data = dma_data + block_offset;
size_t data_size = amount - block_offset;
if ( block_offset || amount < full_amount )
{
if ( is_using_dma )
{
uint8_t cmd = is_lba48 ? CMD_READ_DMA_EXT : CMD_READ_DMA;
Seek(block_index, num_blocks);
CommandDMA(cmd, (size_t) full_amount, false);
if ( !FinishTransferDMA() )
return result ? result : -1;
}
else
{
uint8_t cmd = is_lba48 ? CMD_READ_EXT : CMD_READ;
Seek(block_index, num_blocks);
CommandPIO(cmd, (size_t) full_amount, false);
if ( !TransferPIO((size_t) full_amount, false) )
return result ? result : -1;
}
}
if ( !ctx->copy_from_src(data, buf, data_size) )
return result ? result : -1;
if ( is_using_dma )
{
Seek(block_index, num_blocks);
uint8_t cmd = is_lba48 ? CMD_WRITE_DMA_EXT : CMD_WRITE_DMA;
CommandDMA(cmd, (size_t) full_amount, true);
// Let the transfer finish asynchronously so the caller can prepare
// the next write operation to keep the write pipeline busy.
}
else
{
Seek(block_index, num_blocks);
uint8_t cmd = is_lba48 ? CMD_WRITE_EXT : CMD_WRITE;
CommandPIO(cmd, (size_t) full_amount, true);
if ( !TransferPIO((size_t) full_amount, true) )
return result ? result : -1;
}
buf += data_size;
count -= data_size;
result += data_size;
off += data_size;
}
return result;
}
void Port::PrepareAwaitInterrupt()
{
interrupt_signaled = false;
}
bool Port::AwaitInterrupt(unsigned int msecs)
{
struct timespec timeout = timespec_make(msecs / 1000, (msecs % 1000) * 1000000L);
Clock* clock = Time::GetClock(CLOCK_BOOT);
struct timespec begun;
clock->Get(&begun, NULL);
while ( true )
{
struct timespec now;
clock->Get(&now, NULL);
if ( interrupt_signaled )
return true;
struct timespec elapsed = timespec_sub(now, begun);
if ( timespec_le(timeout, elapsed) )
return errno = ETIMEDOUT, false;
// TODO: Can't safely back out here unless the pending operation is
// is properly cancelled.
//if ( Signal::IsPending() )
// return errno = EINTR, false;
kthread_yield();
}
}
void Port::OnInterrupt()
{
// Clear INTRQ.
uint8_t status = inport8(channel->port_base + REG_STATUS);
if ( status & STATUS_ERROR )
{
uint8_t error_status = inport8(channel->port_base + REG_ERROR);
(void) error_status; // TODO: How to handle this exactly?
}
if ( !interrupt_signaled )
{
interrupt_signaled = true;
// TODO: Priority schedule the blocking thread now.
}
}
} // namespace ATA
} // namespace Sortix