1
0
Fork 0
mirror of https://gitlab.com/sortix/sortix.git synced 2023-02-13 20:55:38 -05:00
sortix--sortix/sortix/kernel.cpp
Jonas 'Sortie' Termansen 0095983c80 Add dispmsg_issue(2).
2013-09-24 17:09:48 +02:00

433 lines
14 KiB
C++

/*******************************************************************************
Copyright(C) Jonas 'Sortie' Termansen 2011, 2012.
This file is part of Sortix.
Sortix is free software: you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any later
version.
Sortix is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
details.
You should have received a copy of the GNU General Public License along with
Sortix. If not, see <http://www.gnu.org/licenses/>.
kernel.cpp
The main kernel initialization routine. Configures hardware and starts an
initial process from the init ramdisk, allowing a full operating system.
*******************************************************************************/
#include <sortix/kernel/platform.h>
#include <sortix/kernel/log.h>
#include <sortix/kernel/panic.h>
#include <sortix/kernel/video.h>
#include <sortix/kernel/kthread.h>
#include <sortix/kernel/refcount.h>
#include <sortix/kernel/textbuffer.h>
#include <sortix/kernel/pci.h>
#include <sortix/kernel/worker.h>
#include <sortix/kernel/memorymanagement.h>
#include <sortix/mman.h>
#include <sortix/wait.h>
#include <errno.h>
#include <malloc.h>
#include "kernelinfo.h"
#include "x86-family/gdt.h"
#include "x86-family/float.h"
#include "time.h"
#include "keyboard.h"
#include "multiboot.h"
#include "thread.h"
#include "process.h"
#include "scheduler.h"
#include "signal.h"
#include "syscall.h"
#include "ata.h"
#include "com.h"
#include "uart.h"
#include "vgatextbuffer.h"
#include "terminal.h"
#include "serialterminal.h"
#include "textterminal.h"
#include "elf.h"
#include "initrd.h"
#include "vga.h"
#include "bga.h"
#include "sound.h"
#include "io.h"
#include "pipe.h"
#include "filesystem.h"
#include "mount.h"
#include "directory.h"
#include "interrupt.h"
#include "dispmsg.h"
#include "fs/devfs.h"
// Keep the stack size aligned with $CPU/base.s
const size_t STACK_SIZE = 64*1024;
extern "C" { size_t stack[STACK_SIZE / sizeof(size_t)] = {0}; }
namespace Sortix {
void DoMaxsiLogo()
{
Log::Print("\e[37;41m\e[2J"); // Make the background color red.
Log::Print(" _ \n");
Log::Print(" / \\ \n");
Log::Print(" /\\ /\\ / \\ \n");
Log::Print(" / \\ / \\ | | \n");
Log::Print(" / \\/ \\ | | \n");
Log::Print(" | O O \\_______________________ / | \n");
Log::Print(" | | \n");
Log::Print(" | \\_______/ / \n");
Log::Print(" \\ / \n");
Log::Print(" ------ --------------- ---/ \n");
Log::Print(" / \\ / \\ \n");
Log::Print(" / \\ / \\ \n");
Log::Print(" / \\ / \\ \n");
Log::Print(" /_____________\\ /____________\\ \n");
Log::Print(" \n");
}
void DoWelcome()
{
DoMaxsiLogo();
Log::Print(" BOOTING OPERATING SYSTEM... ");
}
// Forward declarations.
static void BootThread(void* user);
static void InitThread(void* user);
static void SystemIdleThread(void* user);
static size_t PrintToTextTerminal(void* user, const char* str, size_t len)
{
return ((TextTerminal*) user)->Print(str, len);
}
static size_t TextTermWidth(void* user)
{
return ((TextTerminal*) user)->Width();
}
static size_t TextTermHeight(void* user)
{
return ((TextTerminal*) user)->Height();
}
extern "C" void KernelInit(unsigned long magic, multiboot_info_t* bootinfo)
{
(void) magic;
// Initialize system calls.
Syscall::Init();
// Detect and initialize any serial COM ports in the system.
COM::EarlyInit();
// Setup a text buffer handle for use by the text terminal.
uint16_t* const VGAFB = (uint16_t*) 0xB8000;
const size_t VGA_WIDTH = 80;
const size_t VGA_HEIGHT = 25;
static uint16_t vga_attr_buffer[VGA_WIDTH*VGA_HEIGHT];
VGATextBuffer textbuf(VGAFB, vga_attr_buffer, VGA_WIDTH, VGA_HEIGHT);
TextBufferHandle textbufhandle(NULL, false, &textbuf, false);
// Setup a text terminal instance.
TextTerminal textterm(&textbufhandle);
// Register the text terminal as the kernel log and initialize it.
Log::Init(PrintToTextTerminal, TextTermWidth, TextTermHeight, &textterm);
// Display the boot welcome screen.
DoWelcome();
#if defined(__x86_64__)
// TODO: Remove this hack when qemu 1.4.x and 1.5.0 are obsolete.
// Verify that we are not running under a buggy qemu where the instruction
// movl (%eax), %esi is misinterpreted (amongst others). In this case it
// will try to access the memory at [bx + si]. We'll make sure that eax
// points to a variable on the stack that has another value than at bx + si,
// and if the values compare equal using the buggy instruction, we panic.
uint32_t intended_variable; // rax will point to here.
uint32_t is_buggy_qemu;
asm ("movq $0x1000, %%rbx\n" /* access 32-bit value at 0x1000 */
"movl (%%rbx), %%esi\n"
"subl $1, %%esi\n" /* change the 32-bit value */
"movl %%esi, (%%rax)\n" /* store the new value in intended_variable */
"movq $0x0, %%rsi\n" /* make rsi zero, so bx + si points to 0x1000 */
"movl (%%eax), %%esi\n" /* do the perhaps-buggy memory access */
"movl (%%rax), %%ebx\n" /* do a working memory access */
"movl %%ebx, %0\n" /* load the desired value into is_buggy_qemu */
"subl %%esi, %0\n" /* subtract the possibly incorrect value. */
: "=r"(is_buggy_qemu)
: "a"(&intended_variable)
: "rsi", "rbx");
if ( is_buggy_qemu )
Panic("You are running a buggy version of qemu. The 1.4.x and 1.5.0 "
"releases are known to execute some instructions incorrectly on "
"x86_64 without KVM. You have three options: 1) Enable KVM 2) "
"Use a 32-bit OS 3) Use another version of qemu.");
#endif
if ( !bootinfo )
{
Panic("The bootinfo structure was NULL. Are your bootloader "
"multiboot compliant?");
}
addr_t initrd = 0;
size_t initrdsize = 0;
uint32_t* modules = (uint32_t*) (addr_t) bootinfo->mods_addr;
for ( uint32_t i = 0; i < bootinfo->mods_count; i++ )
{
initrdsize = modules[2*i+1] - modules[2*i+0];
initrd = (addr_t) modules[2*i+0];
break;
}
if ( !initrd ) { PanicF("No init ramdisk provided"); }
Memory::RegisterInitRDSize(initrdsize);
// Initialize paging and virtual memory.
Memory::Init(bootinfo);
// Initialize the GDT and TSS structures.
GDT::Init();
// Initialize the interrupt handler table and enable interrupts.
Interrupt::Init();
// Initialize the kernel heap.
_init_heap();
// Initialize the interrupt worker.
Interrupt::InitWorker();
// Initialize the list of kernel devices.
DeviceFS::Init();
// Initialize the COM ports.
COM::Init();
// Initialize the keyboard.
Keyboard::Init();
// Initialize the terminal.
Terminal::Init();
// Initialize the VGA driver.
VGA::Init();
// Initialize the sound driver.
Sound::Init();
// Initialize the process system.
Process::Init();
// Initialize the thread system.
Thread::Init();
// Initialize the IO system.
IO::Init();
// Initialize the pipe system.
Pipe::Init();
// Initialize the filesystem system.
FileSystem::Init();
// Initialize the directory system.
Directory::Init();
// Initialize the mount system.
Mount::Init();
// Initialize the scheduler.
Scheduler::Init();
// Initialize Unix Signals.
Signal::Init();
// Initialize the worker thread data structures.
Worker::Init();
// Initialize the kernel information query syscall.
Info::Init();
// Set up the initial ram disk.
InitRD::Init(initrd, initrdsize);
// Initialize the Video Driver framework.
Video::Init(&textbufhandle);
// Search for PCI devices and load their drivers.
PCI::Init();
// Initialize ATA devices.
ATA::Init();
// Initialize the BGA driver.
BGA::Init();
// Initialize the Display Message framework.
DisplayMessage::Init();
// Now that the base system has been loaded, it's time to go threaded. First
// we create an object that represents this thread.
Process* system = new Process;
if ( !system ) { Panic("Could not allocate the system process"); }
addr_t systemaddrspace = Memory::GetAddressSpace();
system->addrspace = systemaddrspace;
// We construct this thread manually for bootstrap reasons. We wish to
// create a kernel thread that is the current thread and isn't put into the
// scheduler's set of runnable threads, but rather run whenever there is
// _nothing_ else to run on this CPU.
Thread* idlethread = new Thread;
idlethread->process = system;
idlethread->kernelstackpos = (addr_t) stack;
idlethread->kernelstacksize = STACK_SIZE;
idlethread->kernelstackmalloced = false;
idlethread->fpuinitialized = true;
system->firstthread = idlethread;
Scheduler::SetIdleThread(idlethread);
// Let's create a regular kernel thread that can decide what happens next.
// Note that we don't do the work here: should it block, then there is
// nothing to run. Therefore we must become the system idle thread.
RunKernelThread(BootThread, NULL);
// Set up such that floating point registers are lazily switched.
Float::Init();
// The time driver will run the scheduler on the next timer interrupt.
Time::Init();
// Become the system idle thread.
SystemIdleThread(NULL);
}
static void SystemIdleThread(void* /*user*/)
{
// Alright, we are now the system idle thread. If there is nothing to do,
// then we are run. Note that we must never do any real work here.
while(true);
}
static void BootThread(void* /*user*/)
{
// Hello, threaded world! You can now regard the kernel as a multi-threaded
// process with super-root access to the system. Before we boot the full
// system we need to start some worker threads.
// Let's create the interrupt worker thread that executes additional work
// requested by interrupt handlers, where such work isn't safe.
Thread* interruptworker = RunKernelThread(Interrupt::WorkerThread, NULL);
if ( !interruptworker )
Panic("Could not create interrupt worker");
// Create a general purpose worker thread.
Thread* workerthread = RunKernelThread(Worker::Thread, NULL);
if ( !workerthread )
Panic("Unable to create general purpose worker thread");
// Finally, let's transfer control to a new kernel process that will
// eventually run user-space code known as the operating system.
addr_t initaddrspace = Memory::Fork();
if ( !initaddrspace ) { Panic("Could not create init's address space"); }
Process* init = new Process;
if ( !init ) { Panic("Could not allocate init process"); }
CurrentProcess()->AddChildProcess(init);
init->addrspace = initaddrspace;
Scheduler::SetInitProcess(init);
Thread* initthread = RunKernelThread(init, InitThread, NULL);
if ( !initthread ) { Panic("Coul not create init thread"); }
// Wait until init init is done and then shut down the computer.
int status;
pid_t pid = CurrentProcess()->Wait(init->pid, &status, 0);
if ( pid != init->pid )
PanicF("Waiting for init to exit returned %i (errno=%i)", pid, errno);
status = WEXITSTATUS(status);
switch ( status )
{
case 0: CPU::ShutDown();
case 1: CPU::Reboot();
default:
PanicF("Init returned with unexpected return code %i", status);
}
}
static void InitThread(void* /*user*/)
{
// We are the init process's first thread. Let's load the init program from
// the init ramdisk and transfer execution to it. We will then become a
// regular user-space program with root permissions.
Thread* thread = CurrentThread();
Process* process = CurrentProcess();
uint32_t inode = InitRD::Traverse(InitRD::Root(), "init");
if ( !inode ) { Panic("InitRD did not contain an 'init' program."); }
size_t programsize;
uint8_t* program = InitRD::Open(inode, &programsize);
if ( !program ) { Panic("InitRD did not contain an 'init' program."); }
const size_t DEFAULT_STACK_SIZE = 64UL * 1024UL;
size_t stacksize = 0;
if ( !stacksize ) { stacksize = DEFAULT_STACK_SIZE; }
addr_t stackpos = process->AllocVirtualAddr(stacksize);
if ( !stackpos ) { Panic("Could not allocate init stack space"); }
int prot = PROT_FORK | PROT_READ | PROT_WRITE | PROT_KREAD | PROT_KWRITE;
if ( !Memory::MapRange(stackpos, stacksize, prot) )
{
Panic("Could not allocate init stack memory");
}
thread->stackpos = stackpos;
thread->stacksize = stacksize;
int argc = 1;
const char* argv[] = { "init", NULL };
#if defined(PLATFORM_X86)
const char* cputype = "cputype=i486-sortix";
#elif defined(PLATFORM_X64)
const char* cputype = "cputype=x86_64-sortix";
#else
#warning No cputype environmental variable provided here.
const char* cputype = "cputype=unknown-sortix";
#endif
int envc = 1;
const char* envp[] = { cputype, NULL };
CPU::InterruptRegisters regs;
if ( process->Execute("init", program, programsize, argc, argv, envc, envp,
&regs) )
{
Panic("Unable to execute init program");
}
// Now become the init process and the operation system shall run.
CPU::LoadRegisters(&regs);
}
} // namespace Sortix