mirror of
https://gitlab.com/sortix/sortix.git
synced 2023-02-13 20:55:38 -05:00
798 lines
26 KiB
C++
798 lines
26 KiB
C++
/*******************************************************************************
|
|
|
|
Copyright(C) Jonas 'Sortie' Termansen 2011, 2012, 2013, 2014, 2015.
|
|
|
|
This file is part of Sortix.
|
|
|
|
Sortix is free software: you can redistribute it and/or modify it under the
|
|
terms of the GNU General Public License as published by the Free Software
|
|
Foundation, either version 3 of the License, or (at your option) any later
|
|
version.
|
|
|
|
Sortix is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
|
|
details.
|
|
|
|
You should have received a copy of the GNU General Public License along with
|
|
Sortix. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
kernel.cpp
|
|
The main kernel initialization routine. Configures hardware and starts an
|
|
initial process from the init ramdisk, allowing a full operating system.
|
|
|
|
*******************************************************************************/
|
|
|
|
#include <sys/types.h>
|
|
|
|
#include <assert.h>
|
|
#include <brand.h>
|
|
#include <ctype.h>
|
|
#include <elf.h>
|
|
#include <errno.h>
|
|
#include <limits.h>
|
|
#include <malloc.h>
|
|
#include <stddef.h>
|
|
#include <stdint.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
#include <sortix/fcntl.h>
|
|
#include <sortix/mman.h>
|
|
#include <sortix/stat.h>
|
|
#include <sortix/wait.h>
|
|
|
|
#include <sortix/kernel/copy.h>
|
|
#include <sortix/kernel/decl.h>
|
|
#include <sortix/kernel/descriptor.h>
|
|
#include <sortix/kernel/dtable.h>
|
|
#include <sortix/kernel/fcache.h>
|
|
#include <sortix/kernel/inode.h>
|
|
#include <sortix/kernel/interrupt.h>
|
|
#include <sortix/kernel/ioctx.h>
|
|
#include <sortix/kernel/keyboard.h>
|
|
#include <sortix/kernel/kthread.h>
|
|
#include <sortix/kernel/log.h>
|
|
#include <sortix/kernel/memorymanagement.h>
|
|
#include <sortix/kernel/mtable.h>
|
|
#include <sortix/kernel/panic.h>
|
|
#include <sortix/kernel/pci.h>
|
|
#include <sortix/kernel/process.h>
|
|
#include <sortix/kernel/ptable.h>
|
|
#include <sortix/kernel/refcount.h>
|
|
#include <sortix/kernel/scheduler.h>
|
|
#include <sortix/kernel/signal.h>
|
|
#include <sortix/kernel/string.h>
|
|
#include <sortix/kernel/symbol.h>
|
|
#include <sortix/kernel/textbuffer.h>
|
|
#include <sortix/kernel/thread.h>
|
|
#include <sortix/kernel/time.h>
|
|
#include <sortix/kernel/user-timer.h>
|
|
#include <sortix/kernel/video.h>
|
|
#include <sortix/kernel/vnode.h>
|
|
#include <sortix/kernel/worker.h>
|
|
|
|
#include "ata.h"
|
|
#include "com.h"
|
|
#include "fs/full.h"
|
|
#include "fs/kram.h"
|
|
#include "fs/null.h"
|
|
#include "fs/random.h"
|
|
#include "fs/zero.h"
|
|
#include "gpu/bga/bga.h"
|
|
#include "initrd.h"
|
|
#include "kb/default-kblayout.h"
|
|
#include "kb/kblayout.h"
|
|
#include "kb/ps2.h"
|
|
#include "logterminal.h"
|
|
#include "mouse/ps2.h"
|
|
#include "multiboot.h"
|
|
#include "net/fs.h"
|
|
#include "poll.h"
|
|
#include "uart.h"
|
|
#include "vga.h"
|
|
|
|
#if defined(__i386__) || defined(__x86_64__)
|
|
#include "x86-family/cmos.h"
|
|
#include "x86-family/float.h"
|
|
#include "x86-family/gdt.h"
|
|
#include "x86-family/ps2.h"
|
|
#endif
|
|
|
|
// Keep the stack size aligned with $CPU/boot.s
|
|
const size_t STACK_SIZE = 64*1024;
|
|
extern "C" { __attribute__((aligned(16))) size_t stack[STACK_SIZE / sizeof(size_t)]; }
|
|
|
|
namespace Sortix {
|
|
|
|
// Forward declarations.
|
|
static void BootThread(void* user);
|
|
static void InitThread(void* user);
|
|
static void SystemIdleThread(void* user);
|
|
|
|
addr_t initrd;
|
|
size_t initrdsize;
|
|
static char* init_cmdline;
|
|
|
|
static char* cmdline_tokenize(char** saved)
|
|
{
|
|
char* data = *saved;
|
|
if ( !data )
|
|
return *saved = NULL;
|
|
while ( data[0] && isspace((unsigned char) data[0]) )
|
|
data++;
|
|
if ( !data[0] )
|
|
return *saved = NULL;
|
|
size_t input = 0;
|
|
size_t output = 0;
|
|
bool singly = false;
|
|
bool doubly = false;
|
|
bool escaped = false;
|
|
for ( ; data[input]; input++ )
|
|
{
|
|
char c = data[input];
|
|
if ( !escaped && !singly && !doubly && isspace((unsigned char) c) )
|
|
break;
|
|
if ( !escaped && !doubly && c == '\'' )
|
|
{
|
|
singly = !singly;
|
|
continue;
|
|
}
|
|
if ( !escaped && !singly && c == '"' )
|
|
{
|
|
doubly = !doubly;
|
|
continue;
|
|
}
|
|
if ( !singly && !escaped && c == '\\' )
|
|
{
|
|
escaped = true;
|
|
continue;
|
|
}
|
|
escaped = false;
|
|
data[output++] = c;
|
|
}
|
|
if ( data[input] )
|
|
*saved = data + input + 1;
|
|
else
|
|
*saved = NULL;
|
|
data[output] = '\0';
|
|
return data;
|
|
}
|
|
|
|
extern "C" void KernelInit(unsigned long magic, multiboot_info_t* bootinfo)
|
|
{
|
|
(void) magic;
|
|
|
|
//
|
|
// Stage 1. Initialization of Early Environment.
|
|
//
|
|
|
|
// TODO: Call global constructors using the _init function.
|
|
|
|
// Detect available physical memory.
|
|
Memory::Init(bootinfo);
|
|
|
|
// Initialize the kernel log.
|
|
Log::Init(bootinfo);
|
|
|
|
// Display the logo.
|
|
Log::PrintF("\e[37;41m\e[2J");
|
|
Log::Center(BRAND_MAXSI);
|
|
|
|
#if defined(__x86_64__)
|
|
// TODO: Remove this hack when qemu 1.4.x and 1.5.0 are obsolete.
|
|
// Verify that we are not running under a buggy qemu where the instruction
|
|
// movl (%eax), %esi is misinterpreted (amongst others). In this case it
|
|
// will try to access the memory at [bx + si]. We'll make sure that eax
|
|
// points to a variable on the stack that has another value than at bx + si,
|
|
// and if the values compare equal using the buggy instruction, we panic.
|
|
uint32_t intended_variable; // rax will point to here.
|
|
uint32_t is_buggy_qemu;
|
|
asm ("movq $0x1000, %%rbx\n" /* access 32-bit value at 0x1000 */
|
|
"movl (%%rbx), %%esi\n"
|
|
"subl $1, %%esi\n" /* change the 32-bit value */
|
|
"movl %%esi, (%%rax)\n" /* store the new value in intended_variable */
|
|
"movq $0x0, %%rsi\n" /* make rsi zero, so bx + si points to 0x1000 */
|
|
"movl (%%eax), %%esi\n" /* do the perhaps-buggy memory access */
|
|
"movl (%%rax), %%ebx\n" /* do a working memory access */
|
|
"movl %%ebx, %0\n" /* load the desired value into is_buggy_qemu */
|
|
"subl %%esi, %0\n" /* subtract the possibly incorrect value. */
|
|
: "=r"(is_buggy_qemu)
|
|
: "a"(&intended_variable)
|
|
: "rsi", "rbx");
|
|
if ( is_buggy_qemu )
|
|
Panic("You are running a buggy version of qemu. The 1.4.x and 1.5.0 "
|
|
"releases are known to execute some instructions incorrectly on "
|
|
"x86_64 without KVM. You have three options: 1) Enable KVM 2) "
|
|
"Use a 32-bit OS 3) Use another version of qemu.");
|
|
#endif
|
|
|
|
char* cmdline = NULL;
|
|
if ( bootinfo->flags & MULTIBOOT_INFO_CMDLINE && bootinfo->cmdline )
|
|
{
|
|
addr_t physical_from = Page::AlignDown(bootinfo->cmdline);
|
|
size_t offset = bootinfo->cmdline - physical_from;
|
|
size_t desired = 16 * Page::Size();
|
|
size_t mapped = offset + desired;
|
|
addralloc_t alloc;
|
|
if ( !AllocateKernelAddress(&alloc, mapped) )
|
|
Panic("Failed to allocate virtual space for command line");
|
|
for ( size_t i = 0; i < mapped; i += Page::Size() )
|
|
{
|
|
if ( !Memory::Map(physical_from + i, alloc.from + i, PROT_KREAD) )
|
|
Panic("Failed to memory map command line");
|
|
}
|
|
char* bootloader_cmdline = (char*) (alloc.from + offset);
|
|
size_t cmdline_length = strnlen(bootloader_cmdline, desired);
|
|
if ( desired <= cmdline_length )
|
|
Panic("Kernel command line is too long");
|
|
if ( !(cmdline = strdup(bootloader_cmdline)) )
|
|
Panic("Failed to strdup command line");
|
|
for ( size_t i = 0; i < mapped; i += Page::Size() )
|
|
Memory::Unmap(alloc.from + i);
|
|
Memory::Flush();
|
|
FreeKernelAddress(&alloc);
|
|
}
|
|
|
|
char* arg_saved = cmdline;
|
|
char* arg;
|
|
struct kernel_option
|
|
{
|
|
const char* name;
|
|
bool has_parameter;
|
|
} options[] =
|
|
{
|
|
{ "--init", true },
|
|
};
|
|
size_t options_count = sizeof(options) / sizeof(options[0]);
|
|
while ( (arg = cmdline_tokenize(&arg_saved)) )
|
|
{
|
|
struct kernel_option* option = NULL;
|
|
char* parameter = NULL;
|
|
for ( size_t i = 0; i < options_count; i++ )
|
|
{
|
|
struct kernel_option* candidate = &options[i];
|
|
if ( candidate->has_parameter )
|
|
{
|
|
size_t name_length = strlen(candidate->name);
|
|
if ( strncmp(arg, candidate->name, name_length) != 0 )
|
|
continue;
|
|
if ( arg[name_length] == '=' )
|
|
parameter = arg + name_length + 1;
|
|
else if ( !arg[name_length] )
|
|
{
|
|
if ( !(parameter = cmdline_tokenize(&arg_saved)) )
|
|
{
|
|
Log::PrintF("\r\e[J");
|
|
Log::PrintF("kernel: fatal: option '%s' requires an argument\n", arg);
|
|
HaltKernel();
|
|
}
|
|
}
|
|
else
|
|
continue;
|
|
}
|
|
else if ( strcmp(arg, candidate->name) != 0 )
|
|
continue;
|
|
option = candidate;
|
|
}
|
|
if ( !option )
|
|
{
|
|
Log::PrintF("\r\e[J");
|
|
Log::PrintF("kernel: fatal: unrecognized option '%s'\n", arg);
|
|
HaltKernel();
|
|
}
|
|
if ( !strcmp(option->name, "--init") )
|
|
init_cmdline = parameter;
|
|
}
|
|
|
|
initrd = 0;
|
|
initrdsize = 0;
|
|
|
|
uint32_t* modules = (uint32_t*) (addr_t) bootinfo->mods_addr;
|
|
for ( uint32_t i = 0; i < bootinfo->mods_count; i++ )
|
|
{
|
|
initrdsize = modules[2*i+1] - modules[2*i+0];
|
|
initrd = (addr_t) modules[2*i+0];
|
|
break;
|
|
}
|
|
|
|
if ( !initrd )
|
|
Panic("No init ramdisk provided");
|
|
|
|
// Load the kernel symbols if provided by the bootloader.
|
|
do if ( bootinfo->flags & MULTIBOOT_INFO_ELF_SHDR )
|
|
{
|
|
// On i386 and x86_64 we identity map the first 4 MiB memory, if the
|
|
// debugging sections are outside that region, we can't access them
|
|
// directly and we'll have to memory map some physical memory.
|
|
// TODO: Correctly handle the memory being outside 4 MiB. You need to
|
|
// teach the memory management code to reserve these ranges for
|
|
// a while until we have used them and add additional complexity
|
|
// in this code.
|
|
#define BELOW_4MIB(addr, length) ((addr) + (length) <= 4*1024*1024)
|
|
|
|
// Find and the verify the section table.
|
|
multiboot_elf_section_header_table_t* elf_sec = &bootinfo->u.elf_sec;
|
|
if ( !BELOW_4MIB(elf_sec->addr, elf_sec->size) )
|
|
{
|
|
Log::PrintF("Warning: the section table was loaded inappropriately by the boot loader, kernel debugging symbols will not be available.\n");
|
|
break;
|
|
}
|
|
|
|
#define SECTION(num) ((Elf32_Shdr*) ((uintptr_t) elf_sec->addr + (uintptr_t) elf_sec->size * (uintptr_t) (num)))
|
|
|
|
// Verify the section name section.
|
|
Elf32_Shdr* section_string_section = SECTION(elf_sec->shndx);
|
|
if ( !BELOW_4MIB(section_string_section->sh_addr, section_string_section->sh_size) )
|
|
{
|
|
Log::PrintF("Warning: the section string table was loaded inappropriately by the boot loader, kernel debugging symbols will not be available.\n");
|
|
break;
|
|
}
|
|
|
|
if ( !section_string_section )
|
|
break;
|
|
|
|
const char* section_string_table = (const char*) (uintptr_t) section_string_section->sh_addr;
|
|
|
|
// Find the symbol table.
|
|
Elf32_Shdr* symbol_table_section = NULL;
|
|
for ( unsigned i = 0; i < elf_sec->num && !symbol_table_section; i++ )
|
|
{
|
|
Elf32_Shdr* section = SECTION(i);
|
|
if ( !strcmp(section_string_table + section->sh_name, ".symtab") )
|
|
symbol_table_section = section;
|
|
}
|
|
|
|
if ( !symbol_table_section )
|
|
break;
|
|
|
|
if ( !BELOW_4MIB(symbol_table_section->sh_addr, symbol_table_section->sh_size) )
|
|
{
|
|
Log::PrintF("Warning: the symbol table was loaded inappropriately by the boot loader, kernel debugging symbols will not be available.\n");
|
|
break;
|
|
}
|
|
|
|
// Find the symbol string table.
|
|
Elf32_Shdr* string_table_section = NULL;
|
|
for ( unsigned i = 0; i < elf_sec->num && !string_table_section; i++ )
|
|
{
|
|
Elf32_Shdr* section = SECTION(i);
|
|
if ( !strcmp(section_string_table + section->sh_name, ".strtab") )
|
|
string_table_section = section;
|
|
}
|
|
|
|
if ( !string_table_section )
|
|
break;
|
|
|
|
if ( !BELOW_4MIB(string_table_section->sh_addr, string_table_section->sh_size) )
|
|
{
|
|
Log::PrintF("Warning: the symbol string table was loaded inappropriately by the boot loader, kernel debugging symbols will not be available.\n");
|
|
break;
|
|
}
|
|
|
|
// Duplicate the data structures and convert them to the kernel symbol
|
|
// table format and register it for later debugging.
|
|
const char* elf_string_table = (const char*) (uintptr_t) string_table_section->sh_addr;
|
|
size_t elf_string_table_size = string_table_section->sh_size;
|
|
Elf32_Sym* elf_symbols = (Elf32_Sym*) (uintptr_t) symbol_table_section->sh_addr;
|
|
size_t elf_symbol_count = symbol_table_section->sh_size / sizeof(Elf32_Sym);
|
|
|
|
if ( !elf_symbol_count || elf_symbol_count == 1 /* null symbol */)
|
|
break;
|
|
|
|
char* string_table = new char[elf_string_table_size];
|
|
if ( !string_table )
|
|
{
|
|
Log::PrintF("Warning: unable to allocate the kernel symbol string table, kernel debugging symbols will not be available.\n");
|
|
break;
|
|
}
|
|
memcpy(string_table, elf_string_table, elf_string_table_size);
|
|
|
|
Symbol* symbols = new Symbol[elf_symbol_count-1];
|
|
if ( !symbols )
|
|
{
|
|
Log::PrintF("Warning: unable to allocate the kernel symbol table, kernel debugging symbols will not be available.\n");
|
|
delete[] string_table;
|
|
break;
|
|
}
|
|
|
|
// Copy all entires except the leading null entry.
|
|
for ( size_t i = 1; i < elf_symbol_count; i++ )
|
|
{
|
|
symbols[i-1].address = elf_symbols[i].st_value;
|
|
symbols[i-1].size = elf_symbols[i].st_size;
|
|
symbols[i-1].name = string_table + elf_symbols[i].st_name;
|
|
}
|
|
|
|
SetKernelSymbolTable(symbols, elf_symbol_count-1);
|
|
} while ( false );
|
|
|
|
// Initialize the interrupt handler table and enable interrupts.
|
|
Interrupt::Init();
|
|
|
|
// Initialize the interrupt worker (before scheduling is enabled).
|
|
Interrupt::InitWorker();
|
|
|
|
//
|
|
// Stage 2. Transition to Multithreaded Environment
|
|
//
|
|
|
|
// Initialize the clocks.
|
|
Time::Init();
|
|
|
|
// Initialize Unix Signals.
|
|
Signal::Init();
|
|
|
|
// Now that the base system has been loaded, it's time to go threaded. First
|
|
// we create an object that represents this process.
|
|
Ref<ProcessTable> ptable(new ProcessTable());
|
|
if ( !ptable )
|
|
Panic("Could not allocate the process table");
|
|
Process* system = new Process;
|
|
if ( !system )
|
|
Panic("Could not allocate the system process");
|
|
if ( (system->pid = (system->ptable = ptable)->Allocate(system)) < 0 )
|
|
Panic("Could not allocate the system process a pid");
|
|
ptable.Reset();
|
|
system->addrspace = Memory::GetAddressSpace();
|
|
system->group = system;
|
|
system->groupprev = NULL;
|
|
system->groupnext = NULL;
|
|
system->groupfirst = system;
|
|
|
|
if ( !(system->program_image_path = String::Clone("<kernel process>")) )
|
|
Panic("Unable to clone string for system process name");
|
|
|
|
// We construct this thread manually for bootstrap reasons. We wish to
|
|
// create a kernel thread that is the current thread and isn't put into the
|
|
// scheduler's set of runnable threads, but rather run whenever there is
|
|
// _nothing_ else to run on this CPU.
|
|
Thread* idlethread = AllocateThread();
|
|
idlethread->process = system;
|
|
idlethread->kernelstackpos = (addr_t) stack;
|
|
idlethread->kernelstacksize = STACK_SIZE;
|
|
idlethread->kernelstackmalloced = false;
|
|
system->firstthread = idlethread;
|
|
Scheduler::SetIdleThread(idlethread);
|
|
|
|
// Let's create a regular kernel thread that can decide what happens next.
|
|
// Note that we don't do the work here: if all other threads are not running
|
|
// and this thread isn't runnable, then there is nothing to run. Therefore
|
|
// we must become the system idle thread.
|
|
RunKernelThread(BootThread, NULL);
|
|
|
|
// The time driver will run the scheduler on the next timer interrupt.
|
|
Time::Start();
|
|
|
|
// Become the system idle thread.
|
|
SystemIdleThread(NULL);
|
|
}
|
|
|
|
static void SystemIdleThread(void* /*user*/)
|
|
{
|
|
// Alright, we are now the system idle thread. If there is nothing to do,
|
|
// then we are run. Note that we must never do any real work here as the
|
|
// idle thread must always be runnable.
|
|
while(true);
|
|
}
|
|
|
|
static void BootThread(void* /*user*/)
|
|
{
|
|
//
|
|
// Stage 3. Spawning Kernel Worker Threads.
|
|
//
|
|
|
|
// Hello, threaded world! You can now regard the kernel as a multi-threaded
|
|
// process with super-root access to the system. Before we boot the full
|
|
// system we need to start some worker threads.
|
|
|
|
// Spawn worker threads to asyncronously draw the console thread.
|
|
TextBuffer* textbuf = Log::device_textbufhandle->Acquire();
|
|
if ( textbuf )
|
|
{
|
|
textbuf->SpawnThreads();
|
|
Log::device_textbufhandle->Release(textbuf);
|
|
}
|
|
|
|
// Let's create the interrupt worker thread that executes additional work
|
|
// requested by interrupt handlers, where such work isn't safe.
|
|
Thread* interruptworker = RunKernelThread(Interrupt::WorkerThread, NULL);
|
|
if ( !interruptworker )
|
|
Panic("Could not create interrupt worker");
|
|
|
|
// Initialize the worker thread data structures.
|
|
Worker::Init();
|
|
|
|
// Create a general purpose worker thread.
|
|
Thread* workerthread = RunKernelThread(Worker::Thread, NULL);
|
|
if ( !workerthread )
|
|
Panic("Unable to create general purpose worker thread");
|
|
|
|
//
|
|
// Stage 4. Initialize the Filesystem
|
|
//
|
|
|
|
// Bring up the filesystem cache.
|
|
FileCache::Init();
|
|
|
|
Ref<DescriptorTable> dtable(new DescriptorTable());
|
|
if ( !dtable )
|
|
Panic("Unable to allocate descriptor table");
|
|
Ref<MountTable> mtable(new MountTable());
|
|
if ( !mtable )
|
|
Panic("Unable to allocate mount table.");
|
|
CurrentProcess()->BootstrapTables(dtable, mtable);
|
|
|
|
// Let's begin preparing the filesystem.
|
|
// TODO: Setup the right device id for the KRAMFS dir?
|
|
Ref<Inode> iroot(new KRAMFS::Dir((dev_t) 0, (ino_t) 0, 0, 0, 0755));
|
|
if ( !iroot )
|
|
Panic("Unable to allocate root inode.");
|
|
ioctx_t ctx; SetupKernelIOCtx(&ctx);
|
|
Ref<Vnode> vroot(new Vnode(iroot, Ref<Vnode>(NULL), 0, 0));
|
|
if ( !vroot )
|
|
Panic("Unable to allocate root vnode.");
|
|
Ref<Descriptor> droot(new Descriptor(vroot, O_SEARCH));
|
|
if ( !droot )
|
|
Panic("Unable to allocate root descriptor.");
|
|
CurrentProcess()->BootstrapDirectories(droot);
|
|
|
|
// Initialize the root directory.
|
|
if ( iroot->link_raw(&ctx, ".", iroot) != 0 )
|
|
Panic("Unable to link /. to /");
|
|
if ( iroot->link_raw(&ctx, "..", iroot) != 0 )
|
|
Panic("Unable to link /.. to /");
|
|
|
|
// Install the initrd into our fresh RAM filesystem.
|
|
if ( !InitRD::ExtractFromPhysicalInto(initrd, initrdsize, droot) )
|
|
Panic("Unable to extract initrd into RAM root filesystem. Your machine "
|
|
"needs more memory to boot using this initrd, as a rule of thumb "
|
|
"you need twice as much memory as the size of the initrd device.");
|
|
|
|
//
|
|
// Stage 5. Loading and Initializing Core Drivers.
|
|
//
|
|
|
|
// Initialize the real-time clock.
|
|
CMOS::Init();
|
|
|
|
// Get a descriptor for the /dev directory so we can populate it.
|
|
if ( droot->mkdir(&ctx, "dev", 0775) != 0 && errno != EEXIST )
|
|
Panic("Unable to create RAM filesystem /dev directory.");
|
|
Ref<Descriptor> slashdev = droot->open(&ctx, "dev", O_READ | O_DIRECTORY);
|
|
if ( !slashdev )
|
|
Panic("Unable to create descriptor for RAM filesystem /dev directory.");
|
|
|
|
// Initialize the keyboard.
|
|
PS2Keyboard* keyboard = new PS2Keyboard();
|
|
if ( !keyboard )
|
|
Panic("Could not allocate PS2 Keyboard driver");
|
|
KeyboardLayoutExecutor* kblayout = new KeyboardLayoutExecutor;
|
|
if ( !kblayout )
|
|
Panic("Could not allocate keyboard layout executor");
|
|
if ( !kblayout->Upload(default_kblayout, sizeof(default_kblayout)) )
|
|
Panic("Could not load the default keyboard layout into the executor");
|
|
|
|
// Initialize the mouse.
|
|
PS2Mouse* mouse = new PS2Mouse();
|
|
if ( !mouse )
|
|
Panic("Could not allocate PS2 Mouse driver");
|
|
|
|
// Initialize the PS/2 controller.
|
|
PS2::Init(keyboard, mouse);
|
|
|
|
// Register the kernel terminal as /dev/tty.
|
|
Ref<Inode> tty(new LogTerminal(slashdev->dev, 0666, 0, 0, keyboard, kblayout));
|
|
if ( !tty )
|
|
Panic("Could not allocate a kernel terminal");
|
|
if ( LinkInodeInDir(&ctx, slashdev, "tty", tty) != 0 )
|
|
Panic("Unable to link /dev/tty to kernel terminal.");
|
|
|
|
// Register the mouse as /dev/mouse.
|
|
Ref<Inode> mousedev(new PS2MouseDevice(slashdev->dev, 0666, 0, 0, mouse));
|
|
if ( !mousedev )
|
|
Panic("Could not allocate a mouse device");
|
|
if ( LinkInodeInDir(&ctx, slashdev, "mouse", mousedev) != 0 )
|
|
Panic("Unable to link /dev/mouse to mouse.");
|
|
|
|
// Register the null device as /dev/null.
|
|
Ref<Inode> null_device(new Null(slashdev->dev, (ino_t) 0, (uid_t) 0,
|
|
(gid_t) 0, (mode_t) 0666));
|
|
if ( !null_device )
|
|
Panic("Could not allocate a null device");
|
|
if ( LinkInodeInDir(&ctx, slashdev, "null", null_device) != 0 )
|
|
Panic("Unable to link /dev/null to the null device.");
|
|
|
|
// Register the zero device as /dev/zero.
|
|
Ref<Inode> zero_device(new Zero(slashdev->dev, (ino_t) 0, (uid_t) 0,
|
|
(gid_t) 0, (mode_t) 0666));
|
|
if ( !zero_device )
|
|
Panic("Could not allocate a zero device");
|
|
if ( LinkInodeInDir(&ctx, slashdev, "zero", zero_device) != 0 )
|
|
Panic("Unable to link /dev/zero to the zero device.");
|
|
|
|
// Register the full device as /dev/full.
|
|
Ref<Inode> full_device(new Full(slashdev->dev, (ino_t) 0, (uid_t) 0,
|
|
(gid_t) 0, (mode_t) 0666));
|
|
if ( !full_device )
|
|
Panic("Could not allocate a full device");
|
|
if ( LinkInodeInDir(&ctx, slashdev, "full", full_device) != 0 )
|
|
Panic("Unable to link /dev/full to the full device.");
|
|
|
|
// Register the random device as /dev/random.
|
|
Ref<Inode> random_device(new DevRandom(slashdev->dev, (ino_t) 0, (uid_t) 0,
|
|
(gid_t) 0, (mode_t) 0666));
|
|
if ( !random_device )
|
|
Panic("Could not allocate a random device");
|
|
if ( LinkInodeInDir(&ctx, slashdev, "random", random_device) != 0 )
|
|
Panic("Unable to link /dev/random to the random device.");
|
|
if ( LinkInodeInDir(&ctx, slashdev, "urandom", random_device) != 0 )
|
|
Panic("Unable to link /dev/urandom to the random device.");
|
|
|
|
// Initialize the COM ports.
|
|
COM::Init("/dev", slashdev);
|
|
|
|
// Initialize the VGA driver.
|
|
VGA::Init("/dev", slashdev);
|
|
|
|
// Search for PCI devices and load their drivers.
|
|
PCI::Init();
|
|
|
|
// Initialize ATA devices.
|
|
ATA::Init("/dev", slashdev);
|
|
|
|
// Initialize the BGA driver.
|
|
BGA::Init();
|
|
|
|
// Initialize the filesystem network-
|
|
NetFS::Init("/dev", slashdev);
|
|
|
|
//
|
|
// Stage 6. Executing Hosted Environment ("User-Space")
|
|
//
|
|
// Finally, let's transfer control to a new kernel process that will
|
|
// eventually run user-space code known as the operating system.
|
|
addr_t initaddrspace = Memory::Fork();
|
|
if ( !initaddrspace ) { Panic("Could not create init's address space"); }
|
|
|
|
Process* init = new Process;
|
|
if ( !init )
|
|
Panic("Could not allocate init process");
|
|
if ( (init->pid = (init->ptable = CurrentProcess()->ptable)->Allocate(init)) < 0 )
|
|
Panic("Could not allocate init a pid");
|
|
init->group = init;
|
|
init->groupprev = NULL;
|
|
init->groupnext = NULL;
|
|
init->groupfirst = init;
|
|
|
|
CurrentProcess()->AddChildProcess(init);
|
|
|
|
// TODO: Why don't we fork from pid=0 and this is done for us?
|
|
// TODO: Fork dtable and mtable, don't share them!
|
|
init->BootstrapTables(dtable, mtable);
|
|
dtable.Reset();
|
|
mtable.Reset();
|
|
init->BootstrapDirectories(droot);
|
|
init->addrspace = initaddrspace;
|
|
Scheduler::SetInitProcess(init);
|
|
|
|
Thread* initthread = RunKernelThread(init, InitThread, NULL);
|
|
if ( !initthread )
|
|
Panic("Could not create init thread");
|
|
|
|
// Wait until init init is done and then shut down the computer.
|
|
int status;
|
|
pid_t pid = CurrentProcess()->Wait(init->pid, &status, 0);
|
|
if ( pid != init->pid )
|
|
PanicF("Waiting for init to exit returned %ji (errno=%i)", (intmax_t) pid, errno);
|
|
|
|
status = WEXITSTATUS(status);
|
|
|
|
switch ( status )
|
|
{
|
|
case 0: CPU::ShutDown();
|
|
case 1: CPU::Reboot();
|
|
default:
|
|
PanicF("Init returned with unexpected return code %i", status);
|
|
}
|
|
}
|
|
|
|
static void InitThread(void* /*user*/)
|
|
{
|
|
// We are the init process's first thread. Let's load the init program from
|
|
// the init ramdisk and transfer execution to it. We will then become a
|
|
// regular user-space program with root permissions.
|
|
|
|
Process* process = CurrentProcess();
|
|
|
|
ioctx_t ctx; SetupKernelIOCtx(&ctx);
|
|
Ref<Descriptor> root = CurrentProcess()->GetRoot();
|
|
|
|
Ref<DescriptorTable> dtable = process->GetDTable();
|
|
|
|
Ref<Descriptor> tty_stdin = root->open(&ctx, "/dev/tty", O_READ);
|
|
if ( !tty_stdin || dtable->Allocate(tty_stdin, 0) != 0 )
|
|
Panic("Could not prepare stdin for initialization process");
|
|
Ref<Descriptor> tty_stdout = root->open(&ctx, "/dev/tty", O_WRITE);
|
|
if ( !tty_stdout || dtable->Allocate(tty_stdout, 0) != 1 )
|
|
Panic("Could not prepare stdout for initialization process");
|
|
Ref<Descriptor> tty_stderr = root->open(&ctx, "/dev/tty", O_WRITE);
|
|
if ( !tty_stderr || dtable->Allocate(tty_stderr, 0) != 2 )
|
|
Panic("Could not prepare stderr for initialization process");
|
|
|
|
dtable.Reset();
|
|
|
|
static char default_init_cmdline[] = "/bin/init";
|
|
if ( !init_cmdline )
|
|
init_cmdline = default_init_cmdline;
|
|
|
|
char* init_cmdline_dup = strdup(init_cmdline);
|
|
if ( !init_cmdline_dup )
|
|
PanicF("strdup: %m");
|
|
size_t init_cmdline_tokens = 0;
|
|
char* saved = init_cmdline_dup;
|
|
char* arg;
|
|
while ( (arg = cmdline_tokenize(&saved)) )
|
|
init_cmdline_tokens++;
|
|
free(init_cmdline_dup);
|
|
|
|
if ( INT_MAX - 1 < init_cmdline_tokens )
|
|
Panic("Too many tokens in init command line");
|
|
|
|
int argc = init_cmdline_tokens;
|
|
char** argv = new char*[argc + 1];
|
|
if ( !argv )
|
|
PanicF("operator new: %m");
|
|
saved = init_cmdline;
|
|
for ( int i = 0; i <= argc; i++ )
|
|
argv[i] = cmdline_tokenize(&saved);
|
|
|
|
if ( argc == 0 )
|
|
Panic("No init specified");
|
|
const char* initpath = argv[0];
|
|
Ref<Descriptor> init = root->open(&ctx, initpath, O_EXEC | O_READ);
|
|
if ( !init )
|
|
PanicF("Could not open %s in early kernel RAM filesystem:\n%s",
|
|
initpath, strerror(errno));
|
|
struct stat st;
|
|
if ( init->stat(&ctx, &st) )
|
|
PanicF("Could not stat '%s' in initrd.", initpath);
|
|
assert(0 <= st.st_size);
|
|
if ( (uintmax_t) SIZE_MAX < (uintmax_t) st.st_size )
|
|
PanicF("%s is bigger than SIZE_MAX.", initpath);
|
|
size_t programsize = st.st_size;
|
|
uint8_t* program = new uint8_t[programsize];
|
|
if ( !program )
|
|
PanicF("Unable to allocate 0x%zx bytes needed for %s.", programsize, initpath);
|
|
size_t sofar = 0;
|
|
while ( sofar < programsize )
|
|
{
|
|
ssize_t numbytes = init->read(&ctx, program+sofar, programsize-sofar);
|
|
if ( !numbytes )
|
|
PanicF("Premature EOF when reading %s.", initpath);
|
|
if ( numbytes < 0 )
|
|
PanicF("IO error when reading %s.", initpath);
|
|
sofar += numbytes;
|
|
}
|
|
|
|
init.Reset();
|
|
|
|
Log::PrintF("\r\e[m\e[J");
|
|
|
|
int envc = 0;
|
|
const char* envp[] = { NULL };
|
|
struct thread_registers regs;
|
|
assert((((uintptr_t) ®s) & (alignof(regs)-1)) == 0);
|
|
|
|
if ( process->Execute(initpath, program, programsize, argc, argv, envc,
|
|
envp, ®s) )
|
|
PanicF("Unable to execute %s.", initpath);
|
|
|
|
delete[] program;
|
|
delete[] argv;
|
|
|
|
// Now become the init process and the operation system shall run.
|
|
LoadRegisters(®s);
|
|
}
|
|
|
|
} // namespace Sortix
|