1
0
Fork 0
mirror of https://gitlab.com/sortix/sortix.git synced 2023-02-13 20:55:38 -05:00
sortix--sortix/kernel/process.cpp
2021-12-12 22:13:05 +01:00

1820 lines
48 KiB
C++

/*
* Copyright (c) 2011-2016, 2021 Jonas 'Sortie' Termansen.
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
* process.cpp
* A named collection of threads.
*/
#include <sys/wait.h>
#include <assert.h>
#include <ctype.h>
#include <errno.h>
#include <limits.h>
#include <msr.h>
#include <scram.h>
#include <signal.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <sortix/clock.h>
#include <sortix/fcntl.h>
#include <sortix/fork.h>
#include <sortix/mman.h>
#include <sortix/resource.h>
#include <sortix/signal.h>
#include <sortix/stat.h>
#include <sortix/unistd.h>
#include <sortix/uthread.h>
#include <sortix/wait.h>
#include <sortix/kernel/addralloc.h>
#include <sortix/kernel/copy.h>
#include <sortix/kernel/descriptor.h>
#include <sortix/kernel/dtable.h>
#include <sortix/kernel/elf.h>
#include <sortix/kernel/ioctx.h>
#include <sortix/kernel/kernel.h>
#include <sortix/kernel/kthread.h>
#include <sortix/kernel/memorymanagement.h>
#include <sortix/kernel/mtable.h>
#include <sortix/kernel/process.h>
#include <sortix/kernel/ptable.h>
#include <sortix/kernel/refcount.h>
#include <sortix/kernel/scheduler.h>
#include <sortix/kernel/sortedlist.h>
#include <sortix/kernel/string.h>
#include <sortix/kernel/syscall.h>
#include <sortix/kernel/thread.h>
#include <sortix/kernel/time.h>
#include <sortix/kernel/worker.h>
#if defined(__i386__) || defined(__x86_64__)
#include "x86-family/float.h"
#include "x86-family/gdt.h"
#endif
namespace Sortix {
kthread_mutex_t process_family_lock = KTHREAD_MUTEX_INITIALIZER;
// The system is shutting down and creation of additional processes and threads
// should be prevented. Protected by process_family_lock.
static bool is_init_exiting = false;
Process::Process()
{
program_image_path = NULL;
addrspace = 0;
pid = 0;
nicelock = KTHREAD_MUTEX_INITIALIZER;
nice = 0;
idlock = KTHREAD_MUTEX_INITIALIZER;
uid = euid = 0;
gid = egid = 0;
umask = 0022;
ptrlock = KTHREAD_MUTEX_INITIALIZER;
// tty set to null reference in the member constructor.
// root set to null reference in the member constructor.
// cwd set to null reference in the member constructor.
// mtable set to null reference in the member constructor.
// dtable set to null reference in the member constructor.
// ptable set to null reference in the member constructor.
resource_limits_lock = KTHREAD_MUTEX_INITIALIZER;
for ( size_t i = 0; i < RLIMIT_NUM_DECLARED; i++ )
{
resource_limits[i].rlim_cur = RLIM_INFINITY;
resource_limits[i].rlim_max = RLIM_INFINITY;
}
signal_lock = KTHREAD_MUTEX_INITIALIZER;
memset(&signal_actions, 0, sizeof(signal_actions));
for ( int i = 0; i < SIG_MAX_NUM; i++ )
{
sigemptyset(&signal_actions[i].sa_mask);
signal_actions[i].sa_handler = SIG_DFL;
signal_actions[i].sa_cookie = NULL;
signal_actions[i].sa_flags = 0;
}
sigemptyset(&signal_pending);
sigreturn = NULL;
parent = NULL;
prevsibling = NULL;
nextsibling = NULL;
firstchild = NULL;
zombiechild = NULL;
group = NULL;
groupprev = NULL;
groupnext = NULL;
groupfirst = NULL;
session = NULL;
sessionprev = NULL;
sessionnext = NULL;
sessionfirst = NULL;
zombiecond = KTHREAD_COND_INITIALIZER;
iszombie = false;
nozombify = false;
limbo = false;
exit_code = -1;
firstthread = NULL;
threadlock = KTHREAD_MUTEX_INITIALIZER;
threads_not_exiting_count = 0;
threads_exiting = false;
futex_lock = KTHREAD_MUTEX_INITIALIZER;
futex_first_waiting = NULL;
futex_last_waiting = NULL;
segments = NULL;
segments_used = 0;
segments_length = 0;
segment_write_lock = KTHREAD_MUTEX_INITIALIZER;
segment_lock = KTHREAD_MUTEX_INITIALIZER;
user_timers_lock = KTHREAD_MUTEX_INITIALIZER;
memset(&user_timers, 0, sizeof(user_timers));
// alarm_timer initialized in member constructor.
// execute_clock initialized in member constructor.
// system_clock initialized in member constructor.
// child_execute_clock initialized in member constructor.
// child_system_clock initialized in member constructor.
Time::InitializeProcessClocks(this);
alarm_timer.Attach(Time::GetClock(CLOCK_MONOTONIC));
}
Process::~Process() // process_family_lock taken
{
if ( alarm_timer.IsAttached() )
alarm_timer.Detach();
delete[] program_image_path;
assert(!zombiechild);
assert(!session);
assert(!group);
assert(!parent);
assert(!sessionfirst);
assert(!groupfirst);
assert(!firstchild);
assert(!addrspace);
assert(!segments);
assert(!dtable);
assert(!mtable);
assert(!cwd);
assert(!root);
assert(!threads_not_exiting_count);
if ( ptable )
ptable->Free(pid);
ptable.Reset();
tty.Reset();
}
void Process::BootstrapTables(Ref<DescriptorTable> dtable, Ref<MountTable> mtable)
{
ScopedLock lock(&ptrlock);
assert(!this->dtable);
assert(!this->mtable);
this->dtable = dtable;
this->mtable = mtable;
}
void Process::BootstrapDirectories(Ref<Descriptor> root)
{
ScopedLock lock(&ptrlock);
assert(!this->root);
assert(!this->cwd);
this->root = root;
this->cwd = root;
}
void Process::OnLastThreadExit()
{
Process* init = Scheduler::GetInitProcess();
assert(init);
// Child processes can't be reparented away if we're init. The system is
// about to shut down, so broadcast SIGKILL every process and wait for every
// single process to exit. The operating system is finished when init has
// exited.
if ( init == this )
{
ScopedLock lock(&process_family_lock);
// Forbid any more processes and threads from being created, so this
// loop will always terminate.
is_init_exiting = true;
kthread_mutex_lock(&ptrlock);
for ( pid_t pid = ptable->Next(0); 0 < pid; pid = ptable->Next(pid) )
{
Process* process = ptable->Get(pid);
if ( process->pid != 0 && process != init )
process->DeliverSignal(SIGKILL);
}
kthread_mutex_unlock(&ptrlock);
// NotifyChildExit always signals zombiecond for init when
// is_init_exiting is true.
while ( firstchild )
kthread_cond_wait(&zombiecond, &process_family_lock);
}
}
void Process::OnThreadDestruction(Thread* thread)
{
assert(thread->process == this);
kthread_mutex_lock(&threadlock);
if ( thread->prevsibling )
thread->prevsibling->nextsibling = thread->nextsibling;
if ( thread->nextsibling )
thread->nextsibling->prevsibling = thread->prevsibling;
if ( thread == firstthread )
firstthread = thread->nextsibling;
if ( firstthread )
firstthread->prevsibling = NULL;
thread->prevsibling = thread->nextsibling = NULL;
bool threadsleft = firstthread;
kthread_mutex_unlock(&threadlock);
// We are called from the threads destructor, let it finish before we
// we handle the situation by killing ourselves.
if ( !threadsleft )
ScheduleDeath();
}
void Process__AfterLastThreadExit(void* user)
{
return ((Process*) user)->AfterLastThreadExit();
}
void Process::ScheduleDeath()
{
// All our threads must have exited at this point.
assert(!firstthread);
Worker::Schedule(Process__AfterLastThreadExit, this);
}
// Useful for killing a partially constructed process without waiting for
// it to die and garbage collect its zombie. It is not safe to access this
// process after this call as another thread may garbage collect it.
void Process::AbortConstruction()
{
nozombify = true;
ScheduleDeath();
}
void Process::AfterLastThreadExit()
{
LastPrayer();
}
void Process::DeleteTimers()
{
for ( timer_t i = 0; i < PROCESS_TIMER_NUM_MAX; i++ )
{
if ( user_timers[i].timer.IsAttached() )
{
user_timers[i].timer.Cancel();
user_timers[i].timer.Detach();
}
}
}
// This function runs in a worker thread and cannot block on another worker
// thread, or it may deadlock.
void Process::LastPrayer()
{
assert(this);
// This must never be called twice.
assert(!iszombie);
// This must be called from a thread using another address space as the
// address space of this process is about to be destroyed.
Thread* curthread = CurrentThread();
assert(curthread->process != this);
// This can't be called if the process is still alive.
assert(!firstthread);
// Disarm and detach all the timers in the process.
DeleteTimers();
if ( alarm_timer.IsAttached() )
{
alarm_timer.Cancel();
alarm_timer.Detach();
}
// We need to temporarily reload the correct addrese space of the dying
// process such that we can unmap and free its memory.
addr_t prevaddrspace = Memory::SwitchAddressSpace(addrspace);
ResetAddressSpace();
// tty is kept alive in session leader until no longer in limbo.
if ( dtable ) dtable.Reset();
if ( cwd ) cwd.Reset();
if ( root ) root.Reset();
if ( mtable ) mtable.Reset();
// Destroy the address space and safely switch to the replacement
// address space before things get dangerous.
Memory::DestroyAddressSpace(prevaddrspace);
addrspace = 0;
ScopedLock family_lock(&process_family_lock);
iszombie = true;
// Init is nice and will gladly raise our orphaned children and zombies.
Process* init = Scheduler::GetInitProcess();
assert(init);
// Child processes can't be reparented away if we're init. OnLastThreadExit
// must have already killed all the child processes and prevented more from
// being created.
if ( init == this )
{
assert(is_init_exiting);
assert(!firstchild);
}
while ( firstchild )
{
Process* process = firstchild;
firstchild = process->nextsibling;
process->parent = init;
process->prevsibling = NULL;
process->nextsibling = init->firstchild;
if ( init->firstchild )
init->firstchild->prevsibling = process;
init->firstchild = process;
process->nozombify = true;
}
// Since we have no more children (they are with init now), we don't
// have to worry about new zombie processes showing up, so just collect
// those that are left. Then we satisfiy the invariant !zombiechild that
// applies on process termination.
while ( zombiechild )
{
Process* zombie = zombiechild;
zombiechild = zombie->nextsibling;
zombie->nextsibling = NULL;
if ( zombiechild )
zombiechild->prevsibling = NULL;
zombie->nozombify = true;
zombie->WaitedFor();
}
// Remove ourself from our process group.
if ( group )
group->GroupRemoveMember(this);
// Remove ourself from our session.
if ( session )
session->SessionRemoveMember(this);
bool zombify = !nozombify;
// This class instance will be destroyed by our parent process when it
// has received and acknowledged our death.
if ( parent )
parent->NotifyChildExit(this, zombify);
// If nobody is waiting for us, then simply commit suicide.
if ( !zombify )
WaitedFor();
}
void Process::WaitedFor() // process_family_lock taken
{
parent = NULL;
limbo = false;
if ( groupfirst || sessionfirst )
limbo = true;
if ( !limbo )
delete this;
}
void Process::ResetAddressSpace()
{
ScopedLock lock1(&segment_write_lock);
ScopedLock lock2(&segment_lock);
assert(Memory::GetAddressSpace() == addrspace);
for ( size_t i = 0; i < segments_used; i++ )
Memory::UnmapRange(segments[i].addr, segments[i].size, PAGE_USAGE_USER_SPACE);
Memory::Flush();
segments_used = segments_length = 0;
free(segments);
segments = NULL;
}
void Process::GroupRemoveMember(Process* child) // process_family_lock taken
{
assert(child->group == this);
if ( child->groupprev )
child->groupprev->groupnext = child->groupnext;
else
groupfirst = child->groupnext;
if ( child->groupnext )
child->groupnext->groupprev = child->groupprev;
child->group = NULL;
if ( IsLimboDone() )
delete this;
}
void Process::SessionRemoveMember(Process* child) // process_family_lock taken
{
assert(child->session == this);
if ( child->sessionprev )
child->sessionprev->sessionnext = child->sessionnext;
else
sessionfirst = child->sessionnext;
if ( child->sessionnext )
child->sessionnext->sessionprev = child->sessionprev;
child->session = NULL;
if ( !sessionfirst )
{
// Remove reference to tty when session is empty.
ScopedLock lock(&ptrlock);
tty.Reset();
}
if ( IsLimboDone() )
delete this;
}
bool Process::IsLimboDone() // process_family_lock taken
{
return limbo && !groupfirst && !sessionfirst;
}
// process_family_lock taken
void Process::NotifyChildExit(Process* child, bool zombify)
{
if ( child->prevsibling )
child->prevsibling->nextsibling = child->nextsibling;
if ( child->nextsibling )
child->nextsibling->prevsibling = child->prevsibling;
if ( firstchild == child )
firstchild = child->nextsibling;
if ( firstchild )
firstchild->prevsibling = NULL;
if ( zombify )
{
if ( zombiechild )
zombiechild->prevsibling = child;
child->prevsibling = NULL;
child->nextsibling = zombiechild;
zombiechild = child;
}
// Notify this parent process about the child exiting if it's meant to
// become a zombie process. Additionally, always notify init about children
// when init is exiting, because OnLastThreadExit needs to be able to catch
// every child exiting.
DeliverSignal(SIGCHLD);
if ( zombify || (is_init_exiting && Scheduler::GetInitProcess() == this) )
kthread_cond_broadcast(&zombiecond);
}
pid_t Process::Wait(pid_t thepid, int* status_ptr, int options)
{
// TODO: Process groups are not supported yet.
if ( thepid < -1 || thepid == 0 )
return errno = ENOSYS, -1;
ScopedLock lock(&process_family_lock);
// A process can only wait if it has children.
if ( !firstchild && !zombiechild )
return errno = ECHILD, -1;
// Processes can only wait for their own children to exit.
if ( 0 < thepid )
{
// TODO: This is a slow but multithread safe way to verify that the
// target process has the correct parent.
bool found = false;
for ( Process* p = firstchild; !found && p; p = p->nextsibling )
if ( p->pid == thepid && !p->nozombify )
found = true;
for ( Process* p = zombiechild; !found && p; p = p->nextsibling )
if ( p->pid == thepid && !p->nozombify )
found = true;
if ( !found )
return errno = ECHILD, -1;
}
Process* zombie = NULL;
while ( !zombie )
{
for ( zombie = zombiechild; zombie; zombie = zombie->nextsibling )
if ( (thepid == -1 || thepid == zombie->pid) && !zombie->nozombify )
break;
if ( zombie )
break;
if ( options & WNOHANG )
return 0;
if ( !kthread_cond_wait_signal(&zombiecond, &process_family_lock) )
return errno = EINTR, -1;
}
// Remove from the list of zombies.
if ( zombie->prevsibling )
zombie->prevsibling->nextsibling = zombie->nextsibling;
if ( zombie->nextsibling )
zombie->nextsibling->prevsibling = zombie->prevsibling;
if ( zombiechild == zombie )
zombiechild = zombie->nextsibling;
if ( zombiechild )
zombiechild->prevsibling = NULL;
thepid = zombie->pid;
// It is safe to access these clocks directly as the child process is no
// longer running at this point and the values are nicely frozen.
child_execute_clock.Advance(zombie->child_execute_clock.current_time);
child_system_clock.Advance(zombie->child_system_clock.current_time);
int status = zombie->exit_code;
if ( status < 0 )
status = WCONSTRUCT(WNATURE_SIGNALED, 128 + SIGKILL, SIGKILL);
zombie->WaitedFor();
if ( status_ptr )
*status_ptr = status;
return thepid;
}
pid_t sys_waitpid(pid_t pid, int* user_status, int options)
{
int status = 0;
pid_t ret = CurrentProcess()->Wait(pid, &status, options);
if ( 0 < ret &&
user_status &&
!CopyToUser(user_status, &status, sizeof(status)) )
return -1;
return ret;
}
void Process::ExitThroughSignal(int signal)
{
ExitWithCode(WCONSTRUCT(WNATURE_SIGNALED, 128 + signal, signal));
}
void Process::ExitWithCode(int requested_exit_code)
{
ScopedLock lock(&threadlock);
if ( exit_code == -1 )
exit_code = requested_exit_code;
// Broadcast SIGKILL to all our threads which will begin our long path
// of process termination. We simply can't stop the threads as they may
// be running in kernel mode doing dangerous stuff. This thread will be
// destroyed by SIGKILL once the system call returns.
for ( Thread* t = firstthread; t; t = t->nextsibling )
t->DeliverSignal(SIGKILL);
}
Ref<MountTable> Process::GetMTable()
{
ScopedLock lock(&ptrlock);
assert(mtable);
return mtable;
}
Ref<DescriptorTable> Process::GetDTable()
{
ScopedLock lock(&ptrlock);
assert(dtable);
return dtable;
}
Ref<ProcessTable> Process::GetPTable()
{
ScopedLock lock(&ptrlock);
assert(ptable);
return ptable;
}
Ref<Descriptor> Process::GetTTY()
{
ScopedLock lock(&ptrlock);
return tty;
}
Ref<Descriptor> Process::GetRoot()
{
ScopedLock lock(&ptrlock);
assert(root);
return root;
}
Ref<Descriptor> Process::GetCWD()
{
ScopedLock lock(&ptrlock);
assert(cwd);
return cwd;
}
void Process::SetTTY(Ref<Descriptor> newtty)
{
ScopedLock lock(&ptrlock);
tty = newtty;
}
void Process::SetRoot(Ref<Descriptor> newroot)
{
ScopedLock lock(&ptrlock);
assert(newroot);
root = newroot;
}
void Process::SetCWD(Ref<Descriptor> newcwd)
{
ScopedLock lock(&ptrlock);
assert(newcwd);
cwd = newcwd;
}
Ref<Descriptor> Process::GetDescriptor(int fd)
{
ScopedLock lock(&ptrlock);
assert(dtable);
return dtable->Get(fd);
}
Process* Process::Fork()
{
assert(CurrentProcess() == this);
Process* clone = new Process;
if ( !clone )
return NULL;
struct segment* clone_segments = NULL;
// Fork the segment list.
if ( segments )
{
size_t segments_size = sizeof(struct segment) * segments_used;
if ( !(clone_segments = (struct segment*) malloc(segments_size)) )
{
delete clone;
return NULL;
}
memcpy(clone_segments, segments, segments_size);
}
// Fork address-space here and copy memory.
clone->addrspace = Memory::Fork();
if ( !clone->addrspace )
{
free(clone_segments);
delete clone;
return NULL;
}
// Now it's too late to clean up here, if anything goes wrong, we simply
// ask the process to commit suicide before it goes live.
clone->segments = clone_segments;
clone->segments_used = segments_used;
clone->segments_length = segments_used;
kthread_mutex_lock(&process_family_lock);
// Forbid the creation of new processes if init has exited.
if ( is_init_exiting )
{
kthread_mutex_unlock(&process_family_lock);
clone->AbortConstruction();
return NULL;
}
// Register the new process by assigning a pid.
if ( (clone->pid = (clone->ptable = ptable)->Allocate(clone)) < 0 )
{
kthread_mutex_unlock(&process_family_lock);
clone->AbortConstruction();
return NULL;
}
// Remember the relation to the child process.
clone->parent = this;
clone->nextsibling = firstchild;
clone->prevsibling = NULL;
if ( firstchild )
firstchild->prevsibling = clone;
firstchild = clone;
// Add the new process to the current process group.
clone->group = group;
clone->groupprev = NULL;
if ( (clone->groupnext = group->groupfirst) )
group->groupfirst->groupprev = clone;
group->groupfirst = clone;
// Add the new process to the current session.
clone->session = session;
clone->sessionprev = NULL;
if ( (clone->sessionnext = session->sessionfirst) )
session->sessionfirst->sessionprev = clone;
session->sessionfirst = clone;
kthread_mutex_unlock(&process_family_lock);
// Initialize everything that is safe and can't fail.
kthread_mutex_lock(&resource_limits_lock);
for ( size_t i = 0; i < RLIMIT_NUM_DECLARED; i++ )
clone->resource_limits[i] = resource_limits[i];
kthread_mutex_unlock(&resource_limits_lock);
kthread_mutex_lock(&nicelock);
clone->nice = nice;
kthread_mutex_unlock(&nicelock);
kthread_mutex_lock(&ptrlock);
clone->root = root;
clone->cwd = cwd;
kthread_mutex_unlock(&ptrlock);
kthread_mutex_lock(&idlock);
clone->uid = uid;
clone->gid = gid;
clone->euid = euid;
clone->egid = egid;
clone->umask = umask;
kthread_mutex_unlock(&idlock);
kthread_mutex_lock(&signal_lock);
memcpy(&clone->signal_actions, &signal_actions, sizeof(signal_actions));
sigemptyset(&clone->signal_pending);
clone->sigreturn = sigreturn;
kthread_mutex_unlock(&signal_lock);
// Initialize things that can fail and abort if needed.
bool failure = false;
kthread_mutex_lock(&ptrlock);
if ( !(clone->dtable = dtable->Fork()) )
failure = true;
//if ( !(clone->mtable = mtable->Fork()) )
// failure = true;
clone->mtable = mtable;
kthread_mutex_unlock(&ptrlock);
if ( !(clone->program_image_path = String::Clone(program_image_path)) )
failure = true;
// If the proces creation failed, ask the process to commit suicide and
// not become a zombie, as we don't wait for it to exit. It will clean
// up all the above resources and delete itself.
if ( failure )
{
clone->AbortConstruction();
return NULL;
}
return clone;
}
void Process::ResetForExecute()
{
DeleteTimers();
for ( int i = 0; i < SIG_MAX_NUM; i++ )
{
signal_actions[i].sa_flags = 0;
if ( signal_actions[i].sa_handler == SIG_DFL )
continue;
if ( signal_actions[i].sa_handler == SIG_IGN )
continue;
signal_actions[i].sa_handler = SIG_DFL;
}
sigreturn = NULL;
stack_t* signal_stack = &CurrentThread()->signal_stack;
memset(signal_stack, 0, sizeof(*signal_stack));
signal_stack->ss_flags = SS_DISABLE;
ResetAddressSpace();
}
bool Process::MapSegment(struct segment* result, void* hint, size_t size,
int flags, int prot)
{
// process->segment_write_lock is held at this point.
// process->segment_lock is held at this point.
if ( !size )
size = 1;
if ( !PlaceSegment(result, this, hint, size, flags) )
return false;
if ( !Memory::MapMemory(this, result->addr, result->size, result->prot = prot) )
{
// The caller is expected to self-destruct in this case, so the
// segment just created is not removed.
return false;
}
Memory::Flush();
return true;
}
int Process::Execute(const char* programname, const uint8_t* program,
size_t programsize, int argc, const char* const* argv,
int envc, const char* const* envp,
struct thread_registers* regs)
{
assert(argc != INT_MAX);
assert(envc != INT_MAX);
assert(CurrentProcess() == this);
char* programname_clone = String::Clone(programname);
if ( !programname_clone )
return -1;
ELF::Auxiliary aux;
addr_t entry = ELF::Load(program, programsize, &aux);
if ( !entry ) { delete[] programname_clone; return -1; }
delete[] program_image_path;
program_image_path = programname_clone; programname_clone = NULL;
uintptr_t userspace_addr;
size_t userspace_size;
Memory::GetUserVirtualArea(&userspace_addr, &userspace_size);
const size_t stack_size = 512UL * 1024UL;
void* stack_hint = (void*) (userspace_addr + userspace_size - stack_size);
const int stack_prot = PROT_READ | PROT_WRITE | PROT_KREAD | PROT_KWRITE | PROT_FORK;
if ( !aux.tls_mem_align )
aux.tls_mem_align = 1;
if ( Page::Size() < aux.tls_mem_align )
return errno = EINVAL, -1;
if ( !aux.uthread_align )
aux.uthread_align = 1;
if ( Page::Size() < aux.uthread_align )
return errno = EINVAL, -1;
if ( aux.uthread_size < sizeof(struct uthread) )
aux.uthread_size = sizeof(struct uthread);
size_t raw_tls_size = aux.tls_mem_size;
size_t raw_tls_size_aligned = -(-raw_tls_size & ~(aux.tls_mem_align-1));
if ( raw_tls_size && raw_tls_size_aligned == 0 /* overflow */ )
return errno = EINVAL, -1;
int raw_tls_kprot = PROT_KWRITE | PROT_FORK;
int raw_tls_prot = PROT_READ | PROT_KREAD | PROT_FORK;
void* raw_tls_hint = stack_hint;
size_t tls_size = raw_tls_size_aligned + aux.uthread_size;
size_t tls_offset_tls = 0;
size_t tls_offset_uthread = raw_tls_size_aligned;
if ( aux.tls_mem_align < aux.uthread_align )
{
size_t more_aligned = -(-raw_tls_size_aligned & ~(aux.uthread_align-1));
if ( raw_tls_size_aligned && more_aligned == 0 /* overflow */ )
return errno = EINVAL, -1;
size_t difference = more_aligned - raw_tls_size_aligned;
tls_size += difference;
tls_offset_tls += difference;
tls_offset_uthread += difference;
}
assert((tls_offset_tls & (aux.tls_mem_align-1)) == 0);
assert((tls_offset_uthread & (aux.uthread_align-1)) == 0);
int tls_prot = PROT_READ | PROT_WRITE | PROT_KREAD | PROT_KWRITE | PROT_FORK;
void* tls_hint = stack_hint;
size_t auxcode_size = Page::Size();
int auxcode_kprot = PROT_KWRITE | PROT_FORK;
int auxcode_prot = PROT_EXEC | PROT_READ | PROT_KREAD | PROT_FORK;
void* auxcode_hint = stack_hint;
size_t arg_size = 0;
size_t argv_size = sizeof(char*) * (argc + 1);
size_t envp_size = sizeof(char*) * (envc + 1);
arg_size += argv_size;
arg_size += envp_size;
for ( int i = 0; i < argc; i++ )
arg_size += strlen(argv[i]) + 1;
for ( int i = 0; i < envc; i++ )
arg_size += strlen(envp[i]) + 1;
struct segment arg_segment;
struct segment stack_segment;
struct segment raw_tls_segment;
struct segment tls_segment;
struct segment auxcode_segment;
kthread_mutex_lock(&segment_write_lock);
kthread_mutex_lock(&segment_lock);
if ( !(MapSegment(&arg_segment, stack_hint, arg_size, 0, stack_prot) &&
MapSegment(&stack_segment, stack_hint, stack_size, 0, stack_prot) &&
MapSegment(&raw_tls_segment, raw_tls_hint, raw_tls_size, 0, raw_tls_kprot) &&
MapSegment(&tls_segment, tls_hint, tls_size, 0, tls_prot) &&
MapSegment(&auxcode_segment, auxcode_hint, auxcode_size, 0, auxcode_kprot)) )
{
kthread_mutex_unlock(&segment_lock);
kthread_mutex_unlock(&segment_write_lock);
ResetForExecute();
return errno = ENOMEM, -1;
}
char** target_argv = (char**) ((char*) arg_segment.addr + 0);
char** target_envp = (char**) ((char*) arg_segment.addr + argv_size);
char* target_strings = (char*) ((char*) arg_segment.addr + argv_size + envp_size);
size_t target_strings_offset = 0;
for ( int i = 0; i < argc; i++ )
{
const char* arg = argv[i];
size_t arg_len = strlen(arg);
char* target_arg = target_strings + target_strings_offset;
strcpy(target_arg, arg);
target_argv[i] = target_arg;
target_strings_offset += arg_len + 1;
}
target_argv[argc] = (char*) NULL;
for ( int i = 0; i < envc; i++ )
{
const char* env = envp[i];
size_t env_len = strlen(env);
char* target_env = target_strings + target_strings_offset;
strcpy(target_env, env);
target_envp[i] = target_env;
target_strings_offset += env_len + 1;
}
target_envp[envc] = (char*) NULL;
const uint8_t* file_raw_tls = program + aux.tls_file_offset;
uint8_t* target_raw_tls = (uint8_t*) raw_tls_segment.addr;
memcpy(target_raw_tls, file_raw_tls, aux.tls_file_size);
memset(target_raw_tls + aux.tls_file_size, 0, aux.tls_mem_size - aux.tls_file_size);
Memory::ProtectMemory(this, raw_tls_segment.addr, raw_tls_segment.size, raw_tls_prot);
uint8_t* target_tls = (uint8_t*) (tls_segment.addr + tls_offset_tls);
assert((((uintptr_t) target_tls) & (aux.tls_mem_align-1)) == 0);
memcpy(target_tls, file_raw_tls, aux.tls_file_size);
memset(target_tls + aux.tls_file_size, 0, aux.tls_mem_size - aux.tls_file_size);
struct uthread* uthread = (struct uthread*) (tls_segment.addr + tls_offset_uthread);
assert((((uintptr_t) uthread) & (aux.uthread_align-1)) == 0);
memset(uthread, 0, sizeof(*uthread));
uthread->uthread_pointer = uthread;
uthread->uthread_size = aux.uthread_size;
uthread->uthread_flags = UTHREAD_FLAG_INITIAL;
uthread->tls_master_mmap = (void*) raw_tls_segment.addr;
uthread->tls_master_size = aux.tls_mem_size;
uthread->tls_master_align = aux.tls_mem_align;
uthread->tls_mmap = (void*) tls_segment.addr;
uthread->tls_size = tls_size;
uthread->stack_mmap = (void*) stack_segment.addr;
uthread->stack_size = stack_segment.size;
uthread->arg_mmap = (void*) arg_segment.addr;
uthread->arg_size = arg_segment.size;
memset(uthread + 1, 0, aux.uthread_size - sizeof(struct uthread));
memset(regs, 0, sizeof(*regs));
#if defined(__i386__)
regs->eax = argc;
regs->ebx = (size_t) target_argv;
regs->edx = envc;
regs->ecx = (size_t) target_envp;
regs->eip = entry;
regs->esp = (stack_segment.addr + stack_segment.size) & ~15UL;
regs->ebp = regs->esp;
regs->cs = UCS | URPL;
regs->ds = UDS | URPL;
regs->ss = UDS | URPL;
regs->eflags = FLAGS_RESERVED1 | FLAGS_INTERRUPT | FLAGS_ID;
regs->signal_pending = 0;
regs->gsbase = (uint32_t) uthread;
regs->cr3 = addrspace;
regs->kernel_stack = GDT::GetKernelStack();
memcpy(regs->fpuenv, Float::fpu_initialized_regs, 512);
#elif defined(__x86_64__)
regs->rdi = argc;
regs->rsi = (size_t) target_argv;
regs->rdx = envc;
regs->rcx = (size_t) target_envp;
regs->rip = entry;
regs->rsp = (stack_segment.addr + stack_segment.size) & ~15UL;
regs->rbp = regs->rsp;
regs->cs = UCS | URPL;
regs->ds = UDS | URPL;
regs->ss = UDS | URPL;
regs->rflags = FLAGS_RESERVED1 | FLAGS_INTERRUPT | FLAGS_ID;
regs->signal_pending = 0;
regs->fsbase = (uint64_t) uthread;
regs->cr3 = addrspace;
regs->kernel_stack = GDT::GetKernelStack();
memcpy(regs->fpuenv, Float::fpu_initialized_regs, 512);
#else
#warning "You need to implement initializing the first thread after execute"
#endif
uint8_t* auxcode = (uint8_t*) auxcode_segment.addr;
#if defined(__i386__)
sigreturn = (void (*)(void)) &auxcode[0];
auxcode[0] = 0xCD; /* int .... */
auxcode[1] = 0x83; /* ... $131 */
#elif defined(__x86_64__)
sigreturn = (void (*)(void)) &auxcode[0];
auxcode[0] = 0xCD; /* int .... */
auxcode[1] = 0x83; /* ... $131 */
#else
(void) auxcode;
#warning "You need to initialize auxcode with a sigreturn routine"
#endif
Memory::ProtectMemory(this, auxcode_segment.addr, auxcode_segment.size, auxcode_prot);
kthread_mutex_unlock(&segment_lock);
kthread_mutex_unlock(&segment_write_lock);
dtable->OnExecute();
return 0;
}
static
const char* shebang_lookup_environment(const char* name, char* const* envp)
{
size_t equalpos = strcspn(name, "=");
if ( name[equalpos] == '=' )
return NULL;
size_t namelen = equalpos;
for ( size_t i = 0; envp[i]; i++ )
{
if ( strncmp(name, envp[i], namelen) )
continue;
if ( envp[i][namelen] != '=' )
continue;
return envp[i] + namelen + 1;
}
return NULL;
}
static char* shebang_tokenize(char** saved)
{
char* data = *saved;
if ( !data )
return *saved = NULL;
while ( data[0] && isspace((unsigned char) data[0]) )
data++;
if ( !data[0] )
return *saved = NULL;
size_t input = 0;
size_t output = 0;
bool singly = false;
bool doubly = false;
bool escaped = false;
for ( ; data[input]; input++ )
{
char c = data[input];
if ( !escaped && !singly && !doubly && isspace((unsigned char) c) )
break;
if ( !escaped && !doubly && c == '\'' )
{
singly = !singly;
continue;
}
if ( !escaped && !singly && c == '"' )
{
doubly = !doubly;
continue;
}
if ( !singly && !escaped && c == '\\' )
{
escaped = true;
continue;
}
if ( escaped )
{
switch ( c )
{
case 'a': c = '\a'; break;
case 'b': c = '\b'; break;
case 'e': c = '\e'; break;
case 'f': c = '\f'; break;
case 'n': c = '\n'; break;
case 'r': c = '\r'; break;
case 't': c = '\t'; break;
case 'v': c = '\v'; break;
default: break;
};
}
escaped = false;
data[output++] = c;
}
if ( data[input] )
*saved = data + input + 1;
else
*saved = NULL;
data[output] = '\0';
return data;
}
static size_t shebang_count_arguments(char* line)
{
size_t result = 0;
while ( shebang_tokenize(&line) )
result++;
return result;
}
// NOTE: The PATH-searching logic is repeated multiple places. Until this logic
// can be shared somehow, you need to keep this comment in sync as well
// as the logic in these files:
// * kernel/process.cpp
// * libc/unistd/execvpe.c
// * utils/which.c
// NOTE: See comments in execvpe() for algorithmic commentary.
static bool sys_execve_alloc(addralloc_t* alloc, size_t size)
{
if ( !AllocateKernelAddress(alloc, size) )
return false;
if ( !Memory::MapRange(alloc->from, alloc->size, PROT_KREAD | PROT_KWRITE, PAGE_USAGE_EXECUTE) )
return FreeKernelAddress(alloc), false;
Memory::Flush();
return true;
}
static void sys_execve_free(addralloc_t* alloc)
{
Memory::UnmapRange(alloc->from, alloc->size, PAGE_USAGE_EXECUTE);
Memory::Flush();
FreeKernelAddress(alloc);
}
static
int sys_execve_kernel(const char* filename,
int argc,
char* const* argv,
int envc,
char* const* envp,
struct thread_registers* regs)
{
Process* process = CurrentProcess();
ioctx_t ctx;
SetupKernelIOCtx(&ctx);
Ref<Descriptor> from = filename[0] == '/' ? process->GetRoot() : process->GetCWD();
Ref<Descriptor> desc = from->open(&ctx, filename, O_EXEC | O_READ, 0);
if ( !desc )
return -1;
from.Reset();
struct stat st;
if ( desc->stat(&ctx, &st) )
return -1;
if ( !(st.st_mode & 0111) )
return errno = EACCES, -1;
if ( st.st_size < 0 )
return errno = EINVAL, -1;
if ( (uintmax_t) SIZE_MAX < (uintmax_t) st.st_size )
return errno = EFBIG, -1;
size_t filesize = (size_t) st.st_size;
addralloc_t buffer_alloc;
if ( !sys_execve_alloc(&buffer_alloc, filesize) )
return -1;
uint8_t* buffer = (uint8_t*) buffer_alloc.from;
for ( size_t sofar = 0; sofar < filesize; )
{
ssize_t amount = desc->read(&ctx, buffer + sofar, filesize - sofar);
if ( amount < 0 )
return sys_execve_free(&buffer_alloc), -1;
if ( amount == 0 )
return sys_execve_free(&buffer_alloc), errno = EEOF, -1;
sofar += amount;
}
desc.Reset();
int result = process->Execute(filename, buffer, filesize, argc, argv, envc, envp, regs);
if ( result == 0 || errno != ENOEXEC ||
filesize < 2 || buffer[0] != '#' || buffer[1] != '!' )
return sys_execve_free(&buffer_alloc), result;
size_t line_length = 0;
while ( 2 + line_length < filesize && buffer[2 + line_length] != '\n' )
line_length++;
if ( line_length == filesize )
return sys_execve_free(&buffer_alloc), errno = ENOEXEC, -1;
char* line = new char[line_length+1];
if ( !line )
return sys_execve_free(&buffer_alloc), -1;
memcpy(line, buffer + 2, line_length);
line[line_length] = '\0';
sys_execve_free(&buffer_alloc);
char* line_clone = String::Clone(line);
if ( !line_clone )
return delete[] line, -1;
size_t argument_count = shebang_count_arguments(line_clone);
delete[] line_clone;
if ( !argument_count || INT_MAX < argument_count )
return delete[] line, errno = ENOEXEC, -1;
int sb_argc = (int) argument_count;
char** sb_argv = new char*[sb_argc];
if ( !sb_argv )
return delete[] line, -1;
char* sb_saved = line;
for ( int i = 0; i < sb_argc; i++ )
sb_argv[i] = shebang_tokenize(&sb_saved);
if ( INT_MAX - argc <= sb_argc )
return delete[] sb_argv, delete[] line, errno = EOVERFLOW, -1;
if ( !sb_argv[0] || !sb_argv[0][0] )
return delete[] sb_argv, delete[] line, errno = ENOENT, -1;
int new_argc = sb_argc + argc;
char** new_argv = new char*[new_argc + 1];
if ( !new_argv )
return delete[] sb_argv, delete[] line, -1;
for ( int i = 0; i < sb_argc; i++ )
new_argv[i] = sb_argv[i];
new_argv[sb_argc + 0] = (char*) filename;
for ( int i = 1; i < argc; i++ )
new_argv[sb_argc + i] = argv[i];
new_argv[new_argc] = (char*) NULL;
result = -1;
// (See the above comment block before editing this searching logic)
const char* path = shebang_lookup_environment("PATH", envp);
bool search_path = !strchr(sb_argv[0], '/') && path;
bool any_tries = false;
bool any_eacces = false;
const char* new_argv0 = sb_argv[0];
while ( search_path && *path )
{
size_t len = strcspn(path, ":");
if ( !len )
{
path++;
continue;
}
any_tries = true;
char* dirpath = strndup(path, len);
if ( !dirpath )
return -1;
if ( (path += len)[0] == ':' )
path++;
while ( len && dirpath[len - 1] == '/' )
dirpath[--len] = '\0';
char* fullpath;
if ( asprintf(&fullpath, "%s/%s", dirpath, sb_argv[0]) < 0 )
return free(dirpath), -1;
result = sys_execve_kernel(fullpath, new_argc, new_argv, envc, envp, regs);
free(fullpath);
free(dirpath);
if ( result == 0 )
break;
if ( errno == ENOENT )
continue;
if ( errno == ELOOP ||
errno == EISDIR ||
errno == ENAMETOOLONG ||
errno == ENOTDIR )
continue;
if ( errno == EACCES )
{
any_eacces = true;
continue;
}
if ( errno == EACCES )
{
any_eacces = true;
continue;
}
break;
}
if ( !any_tries )
result = sys_execve_kernel(new_argv0, new_argc, new_argv, envc, envp, regs);
if ( result < 0 && any_eacces )
errno = EACCES;
delete[] new_argv;
delete[] sb_argv;
delete[] line;
return result;
}
int sys_execve(const char* user_filename,
char* const* user_argv,
char* const* user_envp)
{
char* filename;
int argc;
int envc;
char** argv;
char** envp;
int result = -1;
struct thread_registers regs;
memset(&regs, 0, sizeof(regs));
if ( !user_filename || !user_argv || !user_envp )
return errno = EFAULT, -1;
if ( !(filename = GetStringFromUser(user_filename)) )
goto cleanup_done;
argc = 0;
while ( true )
{
const char* user_arg;
if ( !CopyFromUser(&user_arg, user_argv + argc, sizeof(user_arg)) )
goto cleanup_filename;
if ( !user_arg )
break;
if ( ++argc == INT_MAX )
{
errno = E2BIG;
goto cleanup_filename;
}
}
argv = new char*[argc+1];
if ( !argv )
goto cleanup_filename;
memset(argv, 0, sizeof(char*) * (argc+1));
for ( int i = 0; i < argc; i++ )
{
const char* user_arg;
if ( !CopyFromUser(&user_arg, user_argv + i, sizeof(user_arg)) )
goto cleanup_argv;
if ( !(argv[i] = GetStringFromUser(user_arg)) )
goto cleanup_argv;
}
envc = 0;
while ( true )
{
const char* user_env;
if ( !CopyFromUser(&user_env, user_envp + envc, sizeof(user_env)) )
goto cleanup_argv;
if ( !user_env )
break;
if ( ++envc == INT_MAX )
{
errno = E2BIG;
goto cleanup_argv;
}
}
envp = new char*[envc+1];
if ( !envp )
goto cleanup_argv;
memset(envp, 0, sizeof(char*) * (envc+1));
for ( int i = 0; i < envc; i++ )
{
const char* user_env;
if ( !CopyFromUser(&user_env, user_envp + i, sizeof(user_env)) )
goto cleanup_envp;
if ( !(envp[i] = GetStringFromUser(user_envp[i])) )
goto cleanup_envp;
}
result = sys_execve_kernel(filename, argc, argv, envc, envp, &regs);
cleanup_envp:
for ( int i = 0; i < envc; i++)
delete[] envp[i];
delete[] envp;
cleanup_argv:
for ( int i = 0; i < argc; i++)
delete[] argv[i];
delete[] argv;
cleanup_filename:
delete[] filename;
cleanup_done:
if ( result == 0 )
LoadRegisters(&regs);
return result;
}
pid_t sys_tfork(int flags, struct tfork* user_regs)
{
struct tfork regs;
if ( !CopyFromUser(&regs, user_regs, sizeof(regs)) )
return -1;
if ( Signal::IsPending() )
return errno = EINTR, -1;
bool making_process = flags == SFFORK;
bool making_thread = (flags & (SFPROC | SFPID | SFFD | SFMEM | SFCWD | SFROOT)) == SFPROC;
// TODO: Properly support tfork(2).
if ( !(making_thread || making_process) )
return errno = ENOSYS, -1;
if ( regs.altstack.ss_flags & ~__SS_SUPPORTED_FLAGS )
return errno = EINVAL, -1;
size_t stack_alignment = 16;
// TODO: Is it a hack to create a new kernel stack here?
Thread* curthread = CurrentThread();
size_t newkernelstacksize = curthread->kernelstacksize;
uint8_t* newkernelstack = new uint8_t[newkernelstacksize + stack_alignment];
if ( !newkernelstack )
return -1;
uintptr_t stack_aligned = (uintptr_t) newkernelstack;
size_t stack_aligned_size = newkernelstacksize;
if ( ((uintptr_t) stack_aligned) & (stack_alignment-1) )
stack_aligned = (stack_aligned + 16) & ~(stack_alignment-1);
stack_aligned_size &= 0xFFFFFFF0;
Process* child_process;
if ( making_thread )
child_process = CurrentProcess();
else if ( !(child_process = CurrentProcess()->Fork()) )
{
delete[] newkernelstack;
return -1;
}
struct thread_registers cpuregs;
memset(&cpuregs, 0, sizeof(cpuregs));
#if defined(__i386__)
cpuregs.eip = regs.eip;
cpuregs.esp = regs.esp;
cpuregs.eax = regs.eax;
cpuregs.ebx = regs.ebx;
cpuregs.ecx = regs.ecx;
cpuregs.edx = regs.edx;
cpuregs.edi = regs.edi;
cpuregs.esi = regs.esi;
cpuregs.ebp = regs.ebp;
cpuregs.cs = UCS | URPL;
cpuregs.ds = UDS | URPL;
cpuregs.ss = UDS | URPL;
cpuregs.eflags = FLAGS_RESERVED1 | FLAGS_INTERRUPT | FLAGS_ID;
cpuregs.fsbase = regs.fsbase;
cpuregs.gsbase = regs.gsbase;
cpuregs.cr3 = child_process->addrspace;
cpuregs.kernel_stack = stack_aligned + stack_aligned_size;
memcpy(&cpuregs.fpuenv, Float::fpu_initialized_regs, 512);
#elif defined(__x86_64__)
cpuregs.rip = regs.rip;
cpuregs.rsp = regs.rsp;
cpuregs.rax = regs.rax;
cpuregs.rbx = regs.rbx;
cpuregs.rcx = regs.rcx;
cpuregs.rdx = regs.rdx;
cpuregs.rdi = regs.rdi;
cpuregs.rsi = regs.rsi;
cpuregs.rbp = regs.rbp;
cpuregs.r8 = regs.r8;
cpuregs.r9 = regs.r9;
cpuregs.r10 = regs.r10;
cpuregs.r11 = regs.r11;
cpuregs.r12 = regs.r12;
cpuregs.r13 = regs.r13;
cpuregs.r14 = regs.r14;
cpuregs.r15 = regs.r15;
cpuregs.cs = UCS | URPL;
cpuregs.ds = UDS | URPL;
cpuregs.ss = UDS | URPL;
cpuregs.rflags = FLAGS_RESERVED1 | FLAGS_INTERRUPT | FLAGS_ID;
cpuregs.fsbase = regs.fsbase;
cpuregs.gsbase = regs.gsbase;
cpuregs.cr3 = child_process->addrspace;
cpuregs.kernel_stack = stack_aligned + stack_aligned_size;
memcpy(&cpuregs.fpuenv, Float::fpu_initialized_regs, 512);
#else
#warning "You need to implement initializing the registers of the new thread"
#endif
// Forbid the creation of new threads if init has exited.
ScopedLock process_family_lock_lock(&process_family_lock);
if ( is_init_exiting )
return errno = EPERM, -1;
// If the thread could not be created, make the process commit suicide
// in a manner such that we don't wait for its zombie.
Thread* thread = CreateKernelThread(child_process, &cpuregs,
making_process ? "main" : "second");
process_family_lock_lock.Reset();
if ( !thread )
{
if ( making_process )
child_process->AbortConstruction();
return -1;
}
thread->kernelstackpos = (addr_t) newkernelstack;
thread->kernelstacksize = newkernelstacksize;
thread->kernelstackmalloced = true;
memcpy(&thread->signal_mask, &regs.sigmask, sizeof(sigset_t));
memcpy(&thread->signal_stack, &regs.altstack, sizeof(stack_t));
StartKernelThread(thread);
return child_process->pid;
}
pid_t sys_getpid(void)
{
return CurrentProcess()->pid;
}
pid_t sys_getppid(void)
{
Process* process = CurrentProcess();
ScopedLock lock(&process_family_lock);
if ( !process->parent )
return 0;
return process->parent->pid;
}
pid_t sys_getpgid(pid_t pid)
{
ScopedLock lock(&process_family_lock);
Process* process = !pid ? CurrentProcess() : CurrentProcess()->GetPTable()->Get(pid);
if ( !process )
return errno = ESRCH, -1;
if ( !process->group )
return errno = ESRCH, -1;
return process->group->pid;
}
pid_t sys_getsid(pid_t pid)
{
ScopedLock lock(&process_family_lock);
Process* process = !pid ? CurrentProcess() : CurrentProcess()->GetPTable()->Get(pid);
if ( !process )
return errno = ESRCH, -1;
if ( !process->session )
return errno = ESRCH, -1;
return process->session->pid;
}
int sys_setpgid(pid_t pid, pid_t pgid)
{
if ( pid < 0 || pgid < 0 )
return errno = EINVAL, -1;
// TODO: Either prevent changing the process group after an exec or provide
// a version of this system call with a flags parameter that lets you
// decide if you want this behavior. This will fix a race condition
// where the shell spawns a child and both parent and child sets the
// process group, but the child sets the process group and execve's
// and the new program image exploits this 'bug' and also changes the
// process group, and then the shell gets around to change the process
// group. This probably unlikely, but correctness over all!
Process* current_process = CurrentProcess();
ScopedLock lock(&process_family_lock);
// Find the processes in question.
Process* process = !pid ? CurrentProcess() : CurrentProcess()->GetPTable()->Get(pid);
if ( !process )
return errno = ESRCH, -1;
Process* group = !pgid ? process : CurrentProcess()->GetPTable()->Get(pgid);
if ( !group )
return errno = ESRCH, -1;
// The process must be this one or a direct child.
if ( process != current_process && process->parent != current_process )
return errno = EPERM, -1;
// The process must be in this session.
if ( process->session != current_process->session )
return errno = EPERM, -1;
// The new group must be in the same session as the process.
if ( group->session != process->session )
return errno = EPERM, -1;
// The process must not be a process group leader.
// TODO: Maybe POSIX actually allows this.
if ( process->groupfirst )
return errno = EPERM, -1;
// The process must not be a session leader.
if ( process->sessionfirst )
return errno = EPERM, -1;
// The group must either exist or be the process itself.
if ( !group->groupfirst && group != process )
return errno = EPERM, -1;
// Exit early if this is a noop.
if ( process->group == group )
return 0;
// Remove the process from its current process group.
if ( process->group )
process->group->GroupRemoveMember(process);
// Insert the process into its new process group.
process->groupprev = NULL;
process->groupnext = group->groupfirst;
if ( group->groupfirst )
group->groupfirst->groupprev = process;
group->groupfirst = process;
process->group = group;
return 0;
}
pid_t sys_setsid(void)
{
Process* process = CurrentProcess();
ScopedLock lock(&process_family_lock);
// Test if already a process group leader.
if ( process->group == process )
return errno = EPERM, -1;
// Remove the process from its current process group.
if ( process->group )
process->group->GroupRemoveMember(process);
// Remove the process from its current session.
if ( process->session )
process->session->SessionRemoveMember(process);
// Insert the process into its new session.
process->sessionprev = NULL;
process->sessionnext = NULL;
process->sessionfirst = process;
process->session = process;
// Insert the process into its new process group.
process->groupprev = NULL;
process->groupnext = NULL;
process->groupfirst = process;
process->group = process;
return process->pid;
}
size_t sys_getpagesize(void)
{
return Page::Size();
}
mode_t sys_umask(mode_t newmask)
{
Process* process = CurrentProcess();
ScopedLock lock(&process->idlock);
mode_t oldmask = process->umask;
process->umask = newmask & 0666;
return oldmask;
}
mode_t sys_getumask(void)
{
Process* process = CurrentProcess();
ScopedLock lock(&process->idlock);
return process->umask;
}
static void GetAssertInfo(struct scram_assert* info,
const void* user_info_ptr)
{
memset(info, 0, sizeof(*info));
struct scram_assert user_info;
if ( !CopyFromUser(&user_info, user_info_ptr, sizeof(user_info)) )
return;
info->filename = GetStringFromUser(user_info.filename);
info->line = user_info.line;
info->function = GetStringFromUser(user_info.function);
info->expression = GetStringFromUser(user_info.expression);
}
static void FreeAssertInfo(struct scram_assert* info)
{
delete[] (char*) info->filename;
delete[] (char*) info->function;
delete[] (char*) info->expression;
}
static
void GetUndefinedBehaviorInfo(struct scram_undefined_behavior* info,
const void* user_info_ptr)
{
memset(info, 0, sizeof(*info));
struct scram_undefined_behavior user_info;
if ( !CopyFromUser(&user_info, user_info_ptr, sizeof(user_info)) )
return;
info->filename = GetStringFromUser(user_info.filename);
info->line = user_info.line;
info->column = user_info.column;
info->violation = GetStringFromUser(user_info.violation);
}
static void FreeUndefinedBehaviorInfo(struct scram_undefined_behavior* info)
{
delete[] info->filename;
delete[] info->violation;
}
__attribute__((noreturn))
void sys_scram(int event, const void* user_info)
{
Process* process = CurrentProcess();
// TODO: Prohibit execve such that program_image_path is protected.
process->ExitThroughSignal(SIGABRT);
if ( event == SCRAM_ASSERT )
{
struct scram_assert info;
GetAssertInfo(&info, user_info);
Log::PrintF("%s[%ji]: Assertion failure: %s:%lu: %s: %s\n",
process->program_image_path,
(intmax_t) process->pid,
info.filename ? info.filename : "<unknown>",
info.line,
info.function ? info.function : "<unknown>",
info.expression ? info.expression : "<unknown>");
FreeAssertInfo(&info);
}
else if ( event == SCRAM_STACK_SMASH )
{
Log::PrintF("%s[%ji]: Stack smashing detected\n",
process->program_image_path,
(intmax_t) process->pid);
}
else if ( event == SCRAM_UNDEFINED_BEHAVIOR )
{
struct scram_undefined_behavior info;
GetUndefinedBehaviorInfo(&info, user_info);
Log::PrintF("%s[%ji]: Undefined behavior: %s at %s:%lu:%lu\n",
process->program_image_path,
(intmax_t) process->pid,
info.violation ? info.violation : "<unknown>",
info.filename ? info.filename : "<unknown>",
info.line,
info.column);
FreeUndefinedBehaviorInfo(&info);
}
else
{
Log::PrintF("%s[%ji]: Unknown scram event %i\n",
process->program_image_path,
(intmax_t) process->pid,
event);
}
// TODO: Allow debugging this event (and see signal.cpp sigreturn).
kthread_exit();
}
} // namespace Sortix