1
0
Fork 0
mirror of https://github.com/yshui/picom.git synced 2024-11-11 13:51:02 -05:00
picom/src/kernel.c

167 lines
4.7 KiB
C
Raw Normal View History

// SPDX-License-Identifier: MPL-2.0
// Copyright (c) Yuxuan Shui <yshuiv7@gmail.com>
#include <assert.h>
#include <math.h>
#include "compiler.h"
#include "kernel.h"
#include "log.h"
#include "utils.h"
/// Sum a region convolution kernel. Region is defined by a width x height rectangle whose
/// top left corner is at (x, y)
double sum_kernel(const conv *map, int x, int y, int width, int height) {
double ret = 0;
// Compute sum of values which are "in range"
int xstart = normalize_i_range(x, 0, map->w),
xend = normalize_i_range(width + x, 0, map->w);
int ystart = normalize_i_range(y, 0, map->h),
yend = normalize_i_range(height + y, 0, map->h);
assert(yend >= ystart && xend >= xstart);
int d = map->w;
if (map->rsum) {
// See sum_kernel_preprocess
double v1 = xstart ? map->rsum[(yend - 1) * d + xstart - 1] : 0;
double v2 = ystart ? map->rsum[(ystart - 1) * d + xend - 1] : 0;
double v3 = (xstart && ystart) ? map->rsum[(ystart - 1) * d + xstart - 1] : 0;
return map->rsum[(yend - 1) * d + xend - 1] - v1 - v2 + v3;
}
for (int yi = ystart; yi < yend; yi++) {
for (int xi = xstart; xi < xend; xi++) {
ret += map->data[yi * d + xi];
}
}
return ret;
}
double sum_kernel_normalized(const conv *map, int x, int y, int width, int height) {
double ret = sum_kernel(map, x, y, width, height);
if (ret < 0) {
ret = 0;
}
if (ret > 1) {
ret = 1;
}
return ret;
}
static inline double attr_const gaussian(double r, double x, double y) {
// Formula can be found here:
// https://en.wikipedia.org/wiki/Gaussian_blur#Mathematics
// Except a special case for r == 0 to produce sharp shadows
2023-08-10 17:50:57 -04:00
if (r == 0) {
return 1;
2023-08-10 17:50:57 -04:00
}
return exp(-0.5 * (x * x + y * y) / (r * r)) / (2 * M_PI * r * r);
}
conv *gaussian_kernel(double r, int size) {
conv *c;
int center = size / 2;
double t;
assert(size % 2 == 1);
c = cvalloc(sizeof(conv) + (size_t)(size * size) * sizeof(double));
c->w = c->h = size;
c->rsum = NULL;
t = 0.0;
for (int y = 0; y < size; y++) {
for (int x = 0; x < size; x++) {
double g = gaussian(r, x - center, y - center);
t += g;
c->data[y * size + x] = g;
}
}
for (int y = 0; y < size; y++) {
for (int x = 0; x < size; x++) {
c->data[y * size + x] /= t;
}
}
return c;
}
/// Estimate the element of the sum of the first row in a gaussian kernel with standard
/// deviation `r` and size `size`,
static inline double estimate_first_row_sum(double size, double r) {
// `factor` is integral of gaussian from -size to size
double factor = erf(size / r / sqrt(2));
// `a` is gaussian at (size, 0)
double a = exp(-0.5 * size * size / (r * r)) / sqrt(2 * M_PI) / r;
// The sum of the whole kernel is normalized to 1, i.e. each element is divided by
// factor sqaured. So the sum of the first row is a * factor / factor^2 = a /
// factor
return a / factor;
}
/// Pick a suitable gaussian kernel standard deviation for a given kernel size. The
/// returned radius is the maximum possible radius (<= size*2) that satisfies no sum of
/// the rows in the kernel are less than `row_limit` (up to certain precision).
double gaussian_kernel_std_for_size(double size, double row_limit) {
assert(size > 0);
if (row_limit >= 1.0 / 2.0 / size) {
return size * 2;
}
double l = 0, r = size * 2;
while (r - l > 1e-2) {
double mid = (l + r) / 2.0;
double vmid = estimate_first_row_sum(size, mid);
if (vmid > row_limit) {
r = mid;
} else {
l = mid;
}
}
return (l + r) / 2.0;
}
/// Create a gaussian kernel with auto detected standard deviation. The choosen standard
/// deviation tries to make sure the outer most pixels of the shadow are completely
/// transparent, so the transition from shadow to the background is smooth.
///
/// @param[in] shadow_radius the radius of the shadow
conv *gaussian_kernel_autodetect_deviation(double shadow_radius) {
assert(shadow_radius >= 0);
int size = (int)(shadow_radius * 2 + 1);
if (shadow_radius == 0) {
return gaussian_kernel(0, size);
}
double std = gaussian_kernel_std_for_size(shadow_radius, 0.5 / 256.0);
return gaussian_kernel(std, size);
}
/// preprocess kernels to make shadow generation faster
/// shadow_sum[x*d+y] is the sum of the kernel from (0, 0) to (x, y), inclusive
void sum_kernel_preprocess(conv *map) {
if (map->rsum) {
free(map->rsum);
}
auto sum = map->rsum = ccalloc(map->w * map->h, double);
sum[0] = map->data[0];
for (int x = 1; x < map->w; x++) {
sum[x] = sum[x - 1] + map->data[x];
}
const int d = map->w;
for (int y = 1; y < map->h; y++) {
sum[y * d] = sum[(y - 1) * d] + map->data[y * d];
for (int x = 1; x < map->w; x++) {
double tmp = sum[(y - 1) * d + x] + sum[y * d + x - 1] -
sum[(y - 1) * d + x - 1];
sum[y * d + x] = tmp + map->data[y * d + x];
}
}
}
// vim: set noet sw=8 ts=8 :