picom/src/backend/gl/gl_common.c

2047 lines
63 KiB
C

// SPDX-License-Identifier: MPL-2.0
// Copyright (c) Yuxuan Shui <yshuiv7@gmail.com>
#include <GL/gl.h>
#include <GL/glext.h>
#include <locale.h>
#include <stdbool.h>
#include <stdio.h>
#include <string.h>
#include <time.h>
#include <xcb/render.h> // for xcb_render_fixed_t, XXX
#include "backend/backend.h"
#include "common.h"
#include "compiler.h"
#include "config.h"
#include "kernel.h"
#include "log.h"
#include "region.h"
#include "string_utils.h"
#include "types.h"
#include "utils.h"
#include "backend/backend_common.h"
#include "backend/gl/gl_common.h"
#define GLSL(version, ...) "#version " #version "\n" #__VA_ARGS__
#define QUOTE(...) #__VA_ARGS__
static const GLuint vert_coord_loc = 0;
static const GLuint vert_in_texcoord_loc = 1;
struct gl_blur_context {
enum blur_method method;
gl_blur_shader_t *blur_shader;
/// Temporary textures used for blurring
GLuint *blur_textures;
int blur_texture_count;
/// Temporary fbos used for blurring
GLuint *blur_fbos;
int blur_fbo_count;
/// Cached dimensions of each blur_texture. They are the same size as the target,
/// so they are always big enough without resizing.
/// Turns out calling glTexImage to resize is expensive, so we avoid that.
struct texture_size {
int width;
int height;
} * texture_sizes;
/// Cached dimensions of the offscreen framebuffer. It's the same size as the
/// target but is expanded in either direction by resize_width / resize_height.
int fb_width, fb_height;
/// How much do we need to resize the damaged region for blurring.
int resize_width, resize_height;
int npasses;
};
GLuint gl_create_shader(GLenum shader_type, const char *shader_str) {
log_trace("===\n%s\n===", shader_str);
bool success = false;
GLuint shader = glCreateShader(shader_type);
if (!shader) {
log_error("Failed to create shader with type %#x.", shader_type);
goto end;
}
glShaderSource(shader, 1, &shader_str, NULL);
glCompileShader(shader);
// Get shader status
{
GLint status = GL_FALSE;
glGetShaderiv(shader, GL_COMPILE_STATUS, &status);
if (status == GL_FALSE) {
GLint log_len = 0;
glGetShaderiv(shader, GL_INFO_LOG_LENGTH, &log_len);
if (log_len) {
char log[log_len + 1];
glGetShaderInfoLog(shader, log_len, NULL, log);
log_error("Failed to compile shader with type %d: %s",
shader_type, log);
}
goto end;
}
}
success = true;
end:
if (shader && !success) {
glDeleteShader(shader);
shader = 0;
}
gl_check_err();
return shader;
}
GLuint gl_create_program(const GLuint *const shaders, int nshaders) {
bool success = false;
GLuint program = glCreateProgram();
if (!program) {
log_error("Failed to create program.");
goto end;
}
for (int i = 0; i < nshaders; ++i) {
glAttachShader(program, shaders[i]);
}
glLinkProgram(program);
// Get program status
{
GLint status = GL_FALSE;
glGetProgramiv(program, GL_LINK_STATUS, &status);
if (status == GL_FALSE) {
GLint log_len = 0;
glGetProgramiv(program, GL_INFO_LOG_LENGTH, &log_len);
if (log_len) {
char log[log_len + 1];
glGetProgramInfoLog(program, log_len, NULL, log);
log_error("Failed to link program: %s", log);
}
goto end;
}
}
success = true;
end:
if (program) {
for (int i = 0; i < nshaders; ++i) {
glDetachShader(program, shaders[i]);
}
}
if (program && !success) {
glDeleteProgram(program);
program = 0;
}
gl_check_err();
return program;
}
/**
* @brief Create a program from NULL-terminated arrays of vertex and fragment shader
* strings.
*/
GLuint gl_create_program_from_strv(const char **vert_shaders, const char **frag_shaders) {
int vert_count, frag_count;
for (vert_count = 0; vert_shaders && vert_shaders[vert_count]; ++vert_count) {
}
for (frag_count = 0; frag_shaders && frag_shaders[frag_count]; ++frag_count) {
}
GLuint prog = 0;
auto shaders = (GLuint *)ccalloc(vert_count + frag_count, GLuint);
for (int i = 0; i < vert_count; ++i) {
shaders[i] = gl_create_shader(GL_VERTEX_SHADER, vert_shaders[i]);
if (shaders[i] == 0) {
goto out;
}
}
for (int i = 0; i < frag_count; ++i) {
shaders[vert_count + i] =
gl_create_shader(GL_FRAGMENT_SHADER, frag_shaders[i]);
if (shaders[vert_count + i] == 0) {
goto out;
}
}
prog = gl_create_program(shaders, vert_count + frag_count);
out:
for (int i = 0; i < vert_count + frag_count; ++i) {
if (shaders[i] != 0) {
glDeleteShader(shaders[i]);
}
}
free(shaders);
gl_check_err();
return prog;
}
/**
* @brief Create a program from vertex and fragment shader strings.
*/
GLuint gl_create_program_from_str(const char *vert_shader_str, const char *frag_shader_str) {
const char *vert_shaders[2] = {vert_shader_str, NULL};
const char *frag_shaders[2] = {frag_shader_str, NULL};
return gl_create_program_from_strv(vert_shaders, frag_shaders);
}
void gl_destroy_window_shader(backend_t *backend_data attr_unused, void *shader) {
if (!shader) {
return;
}
auto pprogram = (gl_win_shader_t *)shader;
if (pprogram->prog) {
glDeleteProgram(pprogram->prog);
pprogram->prog = 0;
}
gl_check_err();
free(shader);
}
/*
* @brief Implements recursive part of gl_average_texture_color.
*
* @note In order to reduce number of textures which needs to be
* allocated and deleted during this recursive render
* we reuse the same two textures for render source and
* destination simply by alterating between them.
* Unfortunately on first iteration source_texture might
* be read-only. In this case we will select auxiliary_texture as
* destination_texture in order not to touch that read-only source
* texture in following render iteration.
* Otherwise we simply will switch source and destination textures
* between each other on each render iteration.
*/
static GLuint
_gl_average_texture_color(backend_t *base, GLuint source_texture, GLuint destination_texture,
GLuint auxiliary_texture, GLuint fbo, int width, int height) {
const int max_width = 1;
const int max_height = 1;
const int from_width = next_power_of_two(width);
const int from_height = next_power_of_two(height);
const int to_width = from_width > max_width ? from_width / 2 : from_width;
const int to_height = from_height > max_height ? from_height / 2 : from_height;
// Prepare coordinates
GLint coord[] = {
// top left
0, 0, // vertex coord
0, 0, // texture coord
// top right
to_width, 0, // vertex coord
width, 0, // texture coord
// bottom right
to_width, to_height, // vertex coord
width, height, // texture coord
// bottom left
0, to_height, // vertex coord
0, height, // texture coord
};
glBufferSubData(GL_ARRAY_BUFFER, 0, (long)sizeof(*coord) * 16, coord);
// Prepare framebuffer for new render iteration
glBindTexture(GL_TEXTURE_2D, destination_texture);
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D,
destination_texture, 0);
gl_check_fb_complete(GL_FRAMEBUFFER);
// Bind source texture as downscaling shader uniform input
glBindTexture(GL_TEXTURE_2D, source_texture);
// Render into framebuffer
glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_INT, NULL);
// Have we downscaled enough?
GLuint result;
if (to_width > max_width || to_height > max_height) {
GLuint new_source_texture = destination_texture;
GLuint new_destination_texture =
auxiliary_texture != 0 ? auxiliary_texture : source_texture;
result = _gl_average_texture_color(base, new_source_texture,
new_destination_texture, 0, fbo,
to_width, to_height);
} else {
result = destination_texture;
}
return result;
}
/*
* @brief Builds a 1x1 texture which has color corresponding to the average of all
* pixels of img by recursively rendering into texture of quorter the size (half
* width and half height).
* Returned texture must not be deleted, since it's owned by the gl_image. It will be
* deleted when the gl_image is released.
*/
static GLuint gl_average_texture_color(backend_t *base, struct backend_image *img) {
auto gd = (struct gl_data *)base;
auto inner = (struct gl_texture *)img->inner;
// Prepare textures which will be used for destination and source of rendering
// during downscaling.
const int texture_count = ARR_SIZE(inner->auxiliary_texture);
if (!inner->auxiliary_texture[0]) {
assert(!inner->auxiliary_texture[1]);
glGenTextures(texture_count, inner->auxiliary_texture);
glActiveTexture(GL_TEXTURE0);
for (int i = 0; i < texture_count; i++) {
glBindTexture(GL_TEXTURE_2D, inner->auxiliary_texture[i]);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_BORDER);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_BORDER);
glTexParameteriv(GL_TEXTURE_2D, GL_TEXTURE_BORDER_COLOR,
(GLint[]){0, 0, 0, 0});
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB8, inner->width,
inner->height, 0, GL_BGR, GL_UNSIGNED_BYTE, NULL);
}
}
// Prepare framebuffer used for rendering and bind it
GLuint fbo;
glGenFramebuffers(1, &fbo);
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, fbo);
glDrawBuffer(GL_COLOR_ATTACHMENT0);
// Enable shaders
glUseProgram(gd->brightness_shader.prog);
glUniform2f(glGetUniformLocationChecked(gd->brightness_shader.prog, "texsize"),
(GLfloat)inner->width, (GLfloat)inner->height);
// Prepare vertex attributes
GLuint vao;
glGenVertexArrays(1, &vao);
glBindVertexArray(vao);
GLuint bo[2];
glGenBuffers(2, bo);
glBindBuffer(GL_ARRAY_BUFFER, bo[0]);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, bo[1]);
glEnableVertexAttribArray(vert_coord_loc);
glEnableVertexAttribArray(vert_in_texcoord_loc);
glVertexAttribPointer(vert_coord_loc, 2, GL_INT, GL_FALSE, sizeof(GLint) * 4, NULL);
glVertexAttribPointer(vert_in_texcoord_loc, 2, GL_INT, GL_FALSE,
sizeof(GLint) * 4, (void *)(sizeof(GLint) * 2));
// Allocate buffers for render input
GLint coord[16] = {0};
GLuint indices[] = {0, 1, 2, 2, 3, 0};
glBufferData(GL_ARRAY_BUFFER, (long)sizeof(*coord) * 16, coord, GL_DYNAMIC_DRAW);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, (long)sizeof(*indices) * 6, indices,
GL_STATIC_DRAW);
// Do actual recursive render to 1x1 texture
GLuint result_texture = _gl_average_texture_color(
base, inner->texture, inner->auxiliary_texture[0],
inner->auxiliary_texture[1], fbo, inner->width, inner->height);
// Cleanup vertex attributes
glDisableVertexAttribArray(vert_coord_loc);
glDisableVertexAttribArray(vert_in_texcoord_loc);
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
glDeleteBuffers(2, bo);
glBindVertexArray(0);
glDeleteVertexArrays(1, &vao);
// Cleanup shaders
glUseProgram(0);
// Cleanup framebuffers
glDeleteFramebuffers(1, &fbo);
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0);
glDrawBuffer(GL_BACK);
// Cleanup render textures
glBindTexture(GL_TEXTURE_2D, 0);
gl_check_err();
return result_texture;
}
/**
* Render a region with texture data.
*
* @param ptex the texture
* @param target the framebuffer to render into
* @param dst_x,dst_y the top left corner of region where this texture
* should go. In OpenGL coordinate system (important!).
* @param reg_tgt the clip region, in Xorg coordinate system
* @param reg_visible ignored
*/
static void _gl_compose(backend_t *base, struct backend_image *img, GLuint target,
GLint *coord, GLuint *indices, int nrects) {
auto gd = (struct gl_data *)base;
auto inner = (struct gl_texture *)img->inner;
if (!img || !inner->texture) {
log_error("Missing texture.");
return;
}
GLuint brightness = 0;
if (img->max_brightness < 1.0) {
brightness = gl_average_texture_color(base, img);
}
auto win_shader = inner->shader;
if (!win_shader) {
win_shader = gd->default_shader;
}
assert(win_shader);
assert(win_shader->prog);
glUseProgram(win_shader->prog);
if (win_shader->uniform_opacity >= 0) {
glUniform1f(win_shader->uniform_opacity, (float)img->opacity);
}
if (win_shader->uniform_invert_color >= 0) {
glUniform1i(win_shader->uniform_invert_color, img->color_inverted);
}
if (win_shader->uniform_tex >= 0) {
glUniform1i(win_shader->uniform_tex, 0);
}
if (win_shader->uniform_dim >= 0) {
glUniform1f(win_shader->uniform_dim, (float)img->dim);
}
if (win_shader->uniform_brightness >= 0) {
glUniform1i(win_shader->uniform_brightness, 1);
}
if (win_shader->uniform_max_brightness >= 0) {
glUniform1f(win_shader->uniform_max_brightness, (float)img->max_brightness);
}
if (win_shader->uniform_corner_radius >= 0) {
glUniform1f(win_shader->uniform_corner_radius, (float)img->corner_radius);
}
if (win_shader->uniform_border_width >= 0) {
auto border_width = img->border_width;
if (border_width > img->corner_radius) {
border_width = 0;
}
glUniform1f(win_shader->uniform_border_width, (float)border_width);
}
if (win_shader->uniform_time >= 0) {
struct timespec ts;
clock_gettime(CLOCK_MONOTONIC, &ts);
glUniform1f(win_shader->uniform_time,
(float)ts.tv_sec * 1000.0f + (float)ts.tv_nsec / 1.0e6f);
}
// log_trace("Draw: %d, %d, %d, %d -> %d, %d (%d, %d) z %d\n",
// x, y, width, height, dx, dy, ptex->width, ptex->height, z);
// Bind texture
glActiveTexture(GL_TEXTURE1);
glBindTexture(GL_TEXTURE_2D, brightness);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, inner->texture);
GLuint vao;
glGenVertexArrays(1, &vao);
glBindVertexArray(vao);
GLuint bo[2];
glGenBuffers(2, bo);
glBindBuffer(GL_ARRAY_BUFFER, bo[0]);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, bo[1]);
glBufferData(GL_ARRAY_BUFFER, (long)sizeof(*coord) * nrects * 16, coord, GL_STATIC_DRAW);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, (long)sizeof(*indices) * nrects * 6,
indices, GL_STATIC_DRAW);
glEnableVertexAttribArray(vert_coord_loc);
glEnableVertexAttribArray(vert_in_texcoord_loc);
glVertexAttribPointer(vert_coord_loc, 2, GL_INT, GL_FALSE, sizeof(GLint) * 4, NULL);
glVertexAttribPointer(vert_in_texcoord_loc, 2, GL_INT, GL_FALSE,
sizeof(GLint) * 4, (void *)(sizeof(GLint) * 2));
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, target);
glDrawElements(GL_TRIANGLES, nrects * 6, GL_UNSIGNED_INT, NULL);
glDisableVertexAttribArray(vert_coord_loc);
glDisableVertexAttribArray(vert_in_texcoord_loc);
glBindVertexArray(0);
glDeleteVertexArrays(1, &vao);
// Cleanup
glBindTexture(GL_TEXTURE_2D, 0);
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0);
glDrawBuffer(GL_BACK);
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
glDeleteBuffers(2, bo);
glUseProgram(0);
gl_check_err();
return;
}
/// Convert rectangles in X coordinates to OpenGL vertex and texture coordinates
/// @param[in] nrects, rects rectangles
/// @param[in] dst_x, dst_y origin of the OpenGL texture, affect the calculated texture
/// coordinates
/// @param[in] texture_height height of the OpenGL texture
/// @param[in] root_height height of the back buffer
/// @param[in] y_inverted whether the texture is y inverted
/// @param[out] coord, indices output
static void
x_rect_to_coords(int nrects, const rect_t *rects, int dst_x, int dst_y, int texture_height,
int root_height, bool y_inverted, GLint *coord, GLuint *indices) {
dst_y = root_height - dst_y;
if (y_inverted) {
dst_y -= texture_height;
}
for (int i = 0; i < nrects; i++) {
// Y-flip. Note after this, crect.y1 > crect.y2
rect_t crect = rects[i];
crect.y1 = root_height - crect.y1;
crect.y2 = root_height - crect.y2;
// Calculate texture coordinates
// (texture_x1, texture_y1), texture coord for the _bottom left_ corner
GLint texture_x1 = crect.x1 - dst_x, texture_y1 = crect.y2 - dst_y,
texture_x2 = texture_x1 + (crect.x2 - crect.x1),
texture_y2 = texture_y1 + (crect.y1 - crect.y2);
// X pixmaps might be Y inverted, invert the texture coordinates
if (y_inverted) {
texture_y1 = texture_height - texture_y1;
texture_y2 = texture_height - texture_y2;
}
// Vertex coordinates
auto vx1 = crect.x1;
auto vy1 = crect.y2;
auto vx2 = crect.x2;
auto vy2 = crect.y1;
// log_trace("Rect %d: %f, %f, %f, %f -> %d, %d, %d, %d",
// ri, rx, ry, rxe, rye, rdx, rdy, rdxe, rdye);
memcpy(&coord[i * 16],
((GLint[][2]){
{vx1, vy1},
{texture_x1, texture_y1},
{vx2, vy1},
{texture_x2, texture_y1},
{vx2, vy2},
{texture_x2, texture_y2},
{vx1, vy2},
{texture_x1, texture_y2},
}),
sizeof(GLint[2]) * 8);
GLuint u = (GLuint)(i * 4);
memcpy(&indices[i * 6],
((GLuint[]){u + 0, u + 1, u + 2, u + 2, u + 3, u + 0}),
sizeof(GLuint) * 6);
}
}
// TODO(yshui) make use of reg_visible
void gl_compose(backend_t *base, void *image_data, int dst_x, int dst_y,
const region_t *reg_tgt, const region_t *reg_visible attr_unused) {
auto gd = (struct gl_data *)base;
struct backend_image *img = image_data;
auto inner = (struct gl_texture *)img->inner;
// Painting
int nrects;
const rect_t *rects;
rects = pixman_region32_rectangles((region_t *)reg_tgt, &nrects);
if (!nrects) {
// Nothing to paint
return;
}
// Until we start to use glClipControl, reg_tgt, dst_x and dst_y and
// in a different coordinate system than the one OpenGL uses.
// OpenGL window coordinate (or NDC) has the origin at the lower left of the
// screen, with y axis pointing up; Xorg has the origin at the upper left of the
// screen, with y axis pointing down. We have to do some coordinate conversion in
// this function
auto coord = ccalloc(nrects * 16, GLint);
auto indices = ccalloc(nrects * 6, GLuint);
x_rect_to_coords(nrects, rects, dst_x, dst_y, inner->height, gd->height,
inner->y_inverted, coord, indices);
_gl_compose(base, img, gd->back_fbo, coord, indices, nrects);
free(indices);
free(coord);
}
/**
* Blur contents in a particular region.
*/
bool gl_kernel_blur(backend_t *base, double opacity, void *ctx, const rect_t *extent,
const GLuint vao[2], const int vao_nelems[2]) {
auto bctx = (struct gl_blur_context *)ctx;
auto gd = (struct gl_data *)base;
int dst_y_fb_coord = bctx->fb_height - extent->y2;
int curr = 0;
for (int i = 0; i < bctx->npasses; ++i) {
const gl_blur_shader_t *p = &bctx->blur_shader[i];
assert(p->prog);
assert(bctx->blur_textures[curr]);
// The origin to use when sampling from the source texture
GLint texorig_x = extent->x1, texorig_y = dst_y_fb_coord;
GLint tex_width, tex_height;
GLuint src_texture;
if (i == 0) {
src_texture = gd->back_texture;
tex_width = gd->width;
tex_height = gd->height;
} else {
src_texture = bctx->blur_textures[curr];
auto src_size = bctx->texture_sizes[curr];
tex_width = src_size.width;
tex_height = src_size.height;
}
glBindTexture(GL_TEXTURE_2D, src_texture);
glUseProgram(p->prog);
glUniform2f(p->uniform_pixel_norm, 1.0F / (GLfloat)tex_width,
1.0F / (GLfloat)tex_height);
// The number of indices in the selected vertex array
GLsizei nelems;
if (i < bctx->npasses - 1) {
assert(bctx->blur_fbos[0]);
assert(bctx->blur_textures[!curr]);
// not last pass, draw into framebuffer, with resized regions
glBindVertexArray(vao[1]);
nelems = vao_nelems[1];
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, bctx->blur_fbos[0]);
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0,
GL_TEXTURE_2D, bctx->blur_textures[!curr], 0);
glDrawBuffer(GL_COLOR_ATTACHMENT0);
if (!gl_check_fb_complete(GL_FRAMEBUFFER)) {
return false;
}
glUniform1f(p->uniform_opacity, 1.0F);
} else {
// last pass, draw directly into the back buffer, with origin
// regions
glBindVertexArray(vao[0]);
nelems = vao_nelems[0];
glBindFramebuffer(GL_FRAMEBUFFER, gd->back_fbo);
glUniform1f(p->uniform_opacity, (float)opacity);
}
glUniform2f(p->texorig_loc, (GLfloat)texorig_x, (GLfloat)texorig_y);
glDrawElements(GL_TRIANGLES, nelems, GL_UNSIGNED_INT, NULL);
// XXX use multiple draw calls is probably going to be slow than
// just simply blur the whole area.
curr = !curr;
}
return true;
}
bool gl_dual_kawase_blur(backend_t *base, double opacity, void *ctx, const rect_t *extent,
const GLuint vao[2], const int vao_nelems[2]) {
auto bctx = (struct gl_blur_context *)ctx;
auto gd = (struct gl_data *)base;
int dst_y_fb_coord = bctx->fb_height - extent->y2;
int iterations = bctx->blur_texture_count;
int scale_factor = 1;
// Kawase downsample pass
const gl_blur_shader_t *down_pass = &bctx->blur_shader[0];
assert(down_pass->prog);
glUseProgram(down_pass->prog);
glUniform2f(down_pass->texorig_loc, (GLfloat)extent->x1, (GLfloat)dst_y_fb_coord);
for (int i = 0; i < iterations; ++i) {
// Scale output width / height by half in each iteration
scale_factor <<= 1;
GLuint src_texture;
int tex_width, tex_height;
if (i == 0) {
// first pass: copy from back buffer
src_texture = gd->back_texture;
tex_width = gd->width;
tex_height = gd->height;
} else {
// copy from previous pass
src_texture = bctx->blur_textures[i - 1];
auto src_size = bctx->texture_sizes[i - 1];
tex_width = src_size.width;
tex_height = src_size.height;
}
assert(src_texture);
assert(bctx->blur_fbos[i]);
glBindTexture(GL_TEXTURE_2D, src_texture);
glBindVertexArray(vao[1]);
auto nelems = vao_nelems[1];
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, bctx->blur_fbos[i]);
glDrawBuffer(GL_COLOR_ATTACHMENT0);
glUniform1f(down_pass->scale_loc, (GLfloat)scale_factor);
glUniform2f(down_pass->uniform_pixel_norm, 1.0F / (GLfloat)tex_width,
1.0F / (GLfloat)tex_height);
glDrawElements(GL_TRIANGLES, nelems, GL_UNSIGNED_INT, NULL);
}
// Kawase upsample pass
const gl_blur_shader_t *up_pass = &bctx->blur_shader[1];
assert(up_pass->prog);
glUseProgram(up_pass->prog);
glUniform2f(up_pass->texorig_loc, (GLfloat)extent->x1, (GLfloat)dst_y_fb_coord);
for (int i = iterations - 1; i >= 0; --i) {
// Scale output width / height back by two in each iteration
scale_factor >>= 1;
const GLuint src_texture = bctx->blur_textures[i];
assert(src_texture);
// Calculate normalized half-width/-height of a src pixel
auto src_size = bctx->texture_sizes[i];
int tex_width = src_size.width;
int tex_height = src_size.height;
// The number of indices in the selected vertex array
GLsizei nelems;
glBindTexture(GL_TEXTURE_2D, src_texture);
if (i > 0) {
assert(bctx->blur_fbos[i - 1]);
// not last pass, draw into next framebuffer
glBindVertexArray(vao[1]);
nelems = vao_nelems[1];
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, bctx->blur_fbos[i - 1]);
glDrawBuffer(GL_COLOR_ATTACHMENT0);
glUniform1f(up_pass->uniform_opacity, (GLfloat)1);
} else {
// last pass, draw directly into the back buffer
glBindVertexArray(vao[0]);
nelems = vao_nelems[0];
glBindFramebuffer(GL_FRAMEBUFFER, gd->back_fbo);
glUniform1f(up_pass->uniform_opacity, (GLfloat)opacity);
}
glUniform1f(up_pass->scale_loc, (GLfloat)scale_factor);
glUniform2f(up_pass->uniform_pixel_norm, 1.0F / (GLfloat)tex_width,
1.0F / (GLfloat)tex_height);
glDrawElements(GL_TRIANGLES, nelems, GL_UNSIGNED_INT, NULL);
}
return true;
}
bool gl_blur(backend_t *base, double opacity, void *ctx, const region_t *reg_blur,
const region_t *reg_visible attr_unused) {
auto bctx = (struct gl_blur_context *)ctx;
auto gd = (struct gl_data *)base;
bool ret = false;
if (gd->width != bctx->fb_width || gd->height != bctx->fb_height) {
// Resize the temporary textures used for blur in case the root
// size changed
bctx->fb_width = gd->width;
bctx->fb_height = gd->height;
for (int i = 0; i < bctx->blur_texture_count; ++i) {
auto tex_size = bctx->texture_sizes + i;
if (bctx->method == BLUR_METHOD_DUAL_KAWASE) {
// Use smaller textures for each iteration (quarter of the
// previous texture)
tex_size->width = 1 + ((bctx->fb_width - 1) >> (i + 1));
tex_size->height = 1 + ((bctx->fb_height - 1) >> (i + 1));
} else {
tex_size->width = bctx->fb_width;
tex_size->height = bctx->fb_height;
}
glBindTexture(GL_TEXTURE_2D, bctx->blur_textures[i]);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA8, tex_size->width,
tex_size->height, 0, GL_BGRA, GL_UNSIGNED_BYTE, NULL);
if (bctx->method == BLUR_METHOD_DUAL_KAWASE) {
// Attach texture to FBO target
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, bctx->blur_fbos[i]);
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER,
GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D,
bctx->blur_textures[i], 0);
if (!gl_check_fb_complete(GL_FRAMEBUFFER)) {
glBindFramebuffer(GL_FRAMEBUFFER, 0);
return false;
}
}
}
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0);
}
// Remainder: regions are in Xorg coordinates
auto reg_blur_resized =
resize_region(reg_blur, bctx->resize_width, bctx->resize_height);
const rect_t *extent = pixman_region32_extents((region_t *)reg_blur),
*extent_resized = pixman_region32_extents(&reg_blur_resized);
int width = extent->x2 - extent->x1, height = extent->y2 - extent->y1;
if (width == 0 || height == 0) {
return true;
}
int nrects, nrects_resized;
const rect_t *rects = pixman_region32_rectangles((region_t *)reg_blur, &nrects),
*rects_resized =
pixman_region32_rectangles(&reg_blur_resized, &nrects_resized);
if (!nrects || !nrects_resized) {
return true;
}
auto coord = ccalloc(nrects * 16, GLint);
auto indices = ccalloc(nrects * 6, GLuint);
x_rect_to_coords(nrects, rects, extent_resized->x1, extent_resized->y2,
bctx->fb_height, gd->height, false, coord, indices);
auto coord_resized = ccalloc(nrects_resized * 16, GLint);
auto indices_resized = ccalloc(nrects_resized * 6, GLuint);
x_rect_to_coords(nrects_resized, rects_resized, extent_resized->x1,
extent_resized->y2, bctx->fb_height, bctx->fb_height, false,
coord_resized, indices_resized);
pixman_region32_fini(&reg_blur_resized);
GLuint vao[2];
glGenVertexArrays(2, vao);
GLuint bo[4];
glGenBuffers(4, bo);
glBindVertexArray(vao[0]);
glBindBuffer(GL_ARRAY_BUFFER, bo[0]);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, bo[1]);
glBufferData(GL_ARRAY_BUFFER, (long)sizeof(*coord) * nrects * 16, coord, GL_STATIC_DRAW);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, (long)sizeof(*indices) * nrects * 6,
indices, GL_STATIC_DRAW);
glEnableVertexAttribArray(vert_coord_loc);
glEnableVertexAttribArray(vert_in_texcoord_loc);
glVertexAttribPointer(vert_coord_loc, 2, GL_INT, GL_FALSE, sizeof(GLint) * 4, NULL);
glVertexAttribPointer(vert_in_texcoord_loc, 2, GL_INT, GL_FALSE,
sizeof(GLint) * 4, (void *)(sizeof(GLint) * 2));
glBindVertexArray(vao[1]);
glBindBuffer(GL_ARRAY_BUFFER, bo[2]);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, bo[3]);
glBufferData(GL_ARRAY_BUFFER, (long)sizeof(*coord_resized) * nrects_resized * 16,
coord_resized, GL_STATIC_DRAW);
glBufferData(GL_ELEMENT_ARRAY_BUFFER,
(long)sizeof(*indices_resized) * nrects_resized * 6, indices_resized,
GL_STATIC_DRAW);
glEnableVertexAttribArray(vert_coord_loc);
glEnableVertexAttribArray(vert_in_texcoord_loc);
glVertexAttribPointer(vert_coord_loc, 2, GL_INT, GL_FALSE, sizeof(GLint) * 4, NULL);
glVertexAttribPointer(vert_in_texcoord_loc, 2, GL_INT, GL_FALSE,
sizeof(GLint) * 4, (void *)(sizeof(GLint) * 2));
int vao_nelems[2] = {nrects * 6, nrects_resized * 6};
if (bctx->method == BLUR_METHOD_DUAL_KAWASE) {
ret = gl_dual_kawase_blur(base, opacity, ctx, extent_resized, vao, vao_nelems);
} else {
ret = gl_kernel_blur(base, opacity, ctx, extent_resized, vao, vao_nelems);
}
glBindFramebuffer(GL_FRAMEBUFFER, 0);
glBindTexture(GL_TEXTURE_2D, 0);
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
glDeleteBuffers(4, bo);
glBindVertexArray(0);
glDeleteVertexArrays(2, vao);
glUseProgram(0);
free(indices);
free(coord);
free(indices_resized);
free(coord_resized);
gl_check_err();
return ret;
}
// clang-format off
const char *vertex_shader = GLSL(330,
uniform mat4 projection;
uniform float scale = 1.0;
uniform vec2 texorig;
layout(location = 0) in vec2 coord;
layout(location = 1) in vec2 in_texcoord;
out vec2 texcoord;
void main() {
gl_Position = projection * vec4(coord, 0, scale);
texcoord = in_texcoord + texorig;
}
);
// clang-format on
/**
* Load a GLSL main program from shader strings.
*/
static bool gl_win_shader_from_stringv(const char **vshader_strv,
const char **fshader_strv, gl_win_shader_t *ret) {
// Build program
ret->prog = gl_create_program_from_strv(vshader_strv, fshader_strv);
if (!ret->prog) {
log_error("Failed to create GLSL program.");
gl_check_err();
return false;
}
// Get uniform addresses
bind_uniform(ret, opacity);
bind_uniform(ret, invert_color);
bind_uniform(ret, tex);
bind_uniform(ret, dim);
bind_uniform(ret, brightness);
bind_uniform(ret, max_brightness);
bind_uniform(ret, corner_radius);
bind_uniform(ret, border_width);
bind_uniform(ret, time);
gl_check_err();
return true;
}
/**
* Callback to run on root window size change.
*/
void gl_resize(struct gl_data *gd, int width, int height) {
GLint viewport_dimensions[2];
glGetIntegerv(GL_MAX_VIEWPORT_DIMS, viewport_dimensions);
gd->height = height;
gd->width = width;
assert(viewport_dimensions[0] >= gd->width);
assert(viewport_dimensions[1] >= gd->height);
glBindTexture(GL_TEXTURE_2D, gd->back_texture);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB8, width, height, 0, GL_BGR,
GL_UNSIGNED_BYTE, NULL);
gl_check_err();
}
// clang-format off
static const char dummy_frag[] = GLSL(330,
uniform sampler2D tex;
in vec2 texcoord;
void main() {
gl_FragColor = texelFetch(tex, ivec2(texcoord.xy), 0);
}
);
static const char fill_frag[] = GLSL(330,
uniform vec4 color;
void main() {
gl_FragColor = color;
}
);
static const char fill_vert[] = GLSL(330,
layout(location = 0) in vec2 in_coord;
uniform mat4 projection;
void main() {
gl_Position = projection * vec4(in_coord, 0, 1);
}
);
static const char interpolating_frag[] = GLSL(330,
uniform sampler2D tex;
in vec2 texcoord;
void main() {
gl_FragColor = vec4(texture2D(tex, vec2(texcoord.xy), 0).rgb, 1);
}
);
static const char interpolating_vert[] = GLSL(330,
uniform mat4 projection;
uniform vec2 texsize;
layout(location = 0) in vec2 in_coord;
layout(location = 1) in vec2 in_texcoord;
out vec2 texcoord;
void main() {
gl_Position = projection * vec4(in_coord, 0, 1);
texcoord = in_texcoord / texsize;
}
);
// clang-format on
/// Fill a given region in bound framebuffer.
/// @param[in] y_inverted whether the y coordinates in `clip` should be inverted
static void _gl_fill(backend_t *base, struct color c, const region_t *clip, GLuint target,
int height, bool y_inverted) {
static const GLuint fill_vert_in_coord_loc = 0;
int nrects;
const rect_t *rect = pixman_region32_rectangles((region_t *)clip, &nrects);
auto gd = (struct gl_data *)base;
GLuint vao;
glGenVertexArrays(1, &vao);
glBindVertexArray(vao);
GLuint bo[2];
glGenBuffers(2, bo);
glUseProgram(gd->fill_shader.prog);
glUniform4f(gd->fill_shader.color_loc, (GLfloat)c.red, (GLfloat)c.green,
(GLfloat)c.blue, (GLfloat)c.alpha);
glEnableVertexAttribArray(fill_vert_in_coord_loc);
glBindBuffer(GL_ARRAY_BUFFER, bo[0]);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, bo[1]);
auto coord = ccalloc(nrects * 8, GLint);
auto indices = ccalloc(nrects * 6, GLuint);
for (int i = 0; i < nrects; i++) {
GLint y1 = y_inverted ? height - rect[i].y2 : rect[i].y1,
y2 = y_inverted ? height - rect[i].y1 : rect[i].y2;
// clang-format off
memcpy(&coord[i * 8],
((GLint[][2]){
{rect[i].x1, y1}, {rect[i].x2, y1},
{rect[i].x2, y2}, {rect[i].x1, y2}}),
sizeof(GLint[2]) * 4);
// clang-format on
indices[i * 6 + 0] = (GLuint)i * 4 + 0;
indices[i * 6 + 1] = (GLuint)i * 4 + 1;
indices[i * 6 + 2] = (GLuint)i * 4 + 2;
indices[i * 6 + 3] = (GLuint)i * 4 + 2;
indices[i * 6 + 4] = (GLuint)i * 4 + 3;
indices[i * 6 + 5] = (GLuint)i * 4 + 0;
}
glBufferData(GL_ARRAY_BUFFER, nrects * 8 * (long)sizeof(*coord), coord, GL_STREAM_DRAW);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, nrects * 6 * (long)sizeof(*indices),
indices, GL_STREAM_DRAW);
glVertexAttribPointer(fill_vert_in_coord_loc, 2, GL_INT, GL_FALSE,
sizeof(*coord) * 2, (void *)0);
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, target);
glDrawElements(GL_TRIANGLES, nrects * 6, GL_UNSIGNED_INT, NULL);
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0);
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
glDisableVertexAttribArray(fill_vert_in_coord_loc);
glBindVertexArray(0);
glDeleteVertexArrays(1, &vao);
glDeleteBuffers(2, bo);
free(indices);
free(coord);
gl_check_err();
}
void gl_fill(backend_t *base, struct color c, const region_t *clip) {
auto gd = (struct gl_data *)base;
return _gl_fill(base, c, clip, gd->back_fbo, gd->height, true);
}
static void gl_release_image_inner(backend_t *base, struct gl_texture *inner) {
auto gd = (struct gl_data *)base;
gd->release_user_data(base, inner);
assert(inner->user_data == NULL);
glDeleteTextures(1, &inner->texture);
glDeleteTextures(2, inner->auxiliary_texture);
free(inner);
gl_check_err();
}
void gl_release_image(backend_t *base, void *image_data) {
struct backend_image *wd = image_data;
auto inner = (struct gl_texture *)wd->inner;
inner->refcount--;
assert(inner->refcount >= 0);
if (inner->refcount == 0) {
gl_release_image_inner(base, inner);
}
free(wd);
}
static inline void gl_free_blur_shader(gl_blur_shader_t *shader) {
if (shader->prog) {
glDeleteProgram(shader->prog);
}
shader->prog = 0;
}
void gl_destroy_blur_context(backend_t *base attr_unused, void *ctx) {
auto bctx = (struct gl_blur_context *)ctx;
// Free GLSL shaders/programs
for (int i = 0; i < bctx->npasses; ++i) {
gl_free_blur_shader(&bctx->blur_shader[i]);
}
free(bctx->blur_shader);
if (bctx->blur_texture_count && bctx->blur_textures) {
glDeleteTextures(bctx->blur_texture_count, bctx->blur_textures);
free(bctx->blur_textures);
}
if (bctx->blur_texture_count && bctx->texture_sizes) {
free(bctx->texture_sizes);
}
if (bctx->blur_fbo_count && bctx->blur_fbos) {
glDeleteFramebuffers(bctx->blur_fbo_count, bctx->blur_fbos);
free(bctx->blur_fbos);
}
bctx->blur_texture_count = 0;
bctx->blur_fbo_count = 0;
free(bctx);
gl_check_err();
}
/**
* Initialize GL blur filters.
*/
bool gl_create_kernel_blur_context(void *blur_context, GLfloat *projection,
enum blur_method method, void *args) {
bool success = false;
auto ctx = (struct gl_blur_context *)blur_context;
struct conv **kernels;
int nkernels;
ctx->method = BLUR_METHOD_KERNEL;
if (method == BLUR_METHOD_KERNEL) {
nkernels = ((struct kernel_blur_args *)args)->kernel_count;
kernels = ((struct kernel_blur_args *)args)->kernels;
} else {
kernels = generate_blur_kernel(method, args, &nkernels);
}
if (!nkernels) {
ctx->method = BLUR_METHOD_NONE;
return true;
}
// Specify required textures and FBOs
ctx->blur_texture_count = 2;
ctx->blur_fbo_count = 1;
ctx->blur_shader = ccalloc(max2(2, nkernels), gl_blur_shader_t);
char *lc_numeric_old = strdup(setlocale(LC_NUMERIC, NULL));
// Enforce LC_NUMERIC locale "C" here to make sure decimal point is sane
// Thanks to hiciu for reporting.
setlocale(LC_NUMERIC, "C");
// clang-format off
static const char *FRAG_SHADER_BLUR = GLSL(330,
%s\n // other extension pragmas
uniform sampler2D tex_src;
uniform vec2 pixel_norm;
uniform float opacity;
in vec2 texcoord;
out vec4 out_color;
void main() {
vec2 uv = texcoord * pixel_norm;
vec4 sum = vec4(0.0, 0.0, 0.0, 0.0);
%s //body of the convolution
out_color = sum / float(%.7g) * opacity;
}
);
static const char *FRAG_SHADER_BLUR_ADD = QUOTE(
sum += float(%.7g) * texture2D(tex_src, uv + pixel_norm * vec2(%.7g, %.7g));
);
// clang-format on
const char *shader_add = FRAG_SHADER_BLUR_ADD;
char *extension = strdup("");
for (int i = 0; i < nkernels; i++) {
auto kern = kernels[i];
// Build shader
int width = kern->w, height = kern->h;
int nele = width * height;
// '%.7g' is at most 14 characters, inserted 3 times
size_t body_len = (strlen(shader_add) + 42) * (uint)nele;
char *shader_body = ccalloc(body_len, char);
char *pc = shader_body;
// Make use of the linear interpolation hardware by sampling 2 pixels with
// one texture access by sampling between both pixels based on their
// relative weight. Easiest done in a single dimension as 2D bilinear
// filtering would raise additional constraints on the kernels. Therefore
// only use interpolation along the larger dimension.
double sum = 0.0;
if (width > height) {
// use interpolation in x dimension (width)
for (int j = 0; j < height; ++j) {
for (int k = 0; k < width; k += 2) {
double val1, val2;
val1 = kern->data[j * width + k];
val2 = (k + 1 < width)
? kern->data[j * width + k + 1]
: 0;
double combined_weight = val1 + val2;
if (combined_weight == 0) {
continue;
}
sum += combined_weight;
double offset_x =
k + (val2 / combined_weight) - (width / 2);
double offset_y = j - (height / 2);
pc += snprintf(
pc, body_len - (ulong)(pc - shader_body),
shader_add, combined_weight, offset_x, offset_y);
assert(pc < shader_body + body_len);
}
}
} else {
// use interpolation in y dimension (height)
for (int j = 0; j < height; j += 2) {
for (int k = 0; k < width; ++k) {
double val1, val2;
val1 = kern->data[j * width + k];
val2 = (j + 1 < height)
? kern->data[(j + 1) * width + k]
: 0;
double combined_weight = val1 + val2;
if (combined_weight == 0) {
continue;
}
sum += combined_weight;
double offset_x = k - (width / 2);
double offset_y =
j + (val2 / combined_weight) - (height / 2);
pc += snprintf(
pc, body_len - (ulong)(pc - shader_body),
shader_add, combined_weight, offset_x, offset_y);
assert(pc < shader_body + body_len);
}
}
}
auto pass = ctx->blur_shader + i;
size_t shader_len = strlen(FRAG_SHADER_BLUR) + strlen(extension) +
strlen(shader_body) + 10 /* sum */ +
1 /* null terminator */;
char *shader_str = ccalloc(shader_len, char);
auto real_shader_len = snprintf(shader_str, shader_len, FRAG_SHADER_BLUR,
extension, shader_body, sum);
CHECK(real_shader_len >= 0);
CHECK((size_t)real_shader_len < shader_len);
free(shader_body);
// Build program
pass->prog = gl_create_program_from_str(vertex_shader, shader_str);
free(shader_str);
if (!pass->prog) {
log_error("Failed to create GLSL program.");
success = false;
goto out;
}
glBindFragDataLocation(pass->prog, 0, "out_color");
// Get uniform addresses
bind_uniform(pass, pixel_norm);
bind_uniform(pass, opacity);
pass->texorig_loc = glGetUniformLocationChecked(pass->prog, "texorig");
// Setup projection matrix
glUseProgram(pass->prog);
int pml = glGetUniformLocationChecked(pass->prog, "projection");
glUniformMatrix4fv(pml, 1, false, projection);
glUseProgram(0);
ctx->resize_width += kern->w / 2;
ctx->resize_height += kern->h / 2;
}
if (nkernels == 1) {
// Generate an extra null pass so we don't need special code path for
// the single pass case
auto pass = &ctx->blur_shader[1];
pass->prog = gl_create_program_from_str(vertex_shader, dummy_frag);
pass->uniform_pixel_norm = -1;
pass->uniform_opacity = -1;
pass->texorig_loc = glGetUniformLocationChecked(pass->prog, "texorig");
// Setup projection matrix
glUseProgram(pass->prog);
int pml = glGetUniformLocationChecked(pass->prog, "projection");
glUniformMatrix4fv(pml, 1, false, projection);
glUseProgram(0);
ctx->npasses = 2;
} else {
ctx->npasses = nkernels;
}
success = true;
out:
if (method != BLUR_METHOD_KERNEL) {
// We generated the blur kernels, so we need to free them
for (int i = 0; i < nkernels; i++) {
free(kernels[i]);
}
free(kernels);
}
free(extension);
// Restore LC_NUMERIC
setlocale(LC_NUMERIC, lc_numeric_old);
free(lc_numeric_old);
return success;
}
bool gl_create_dual_kawase_blur_context(void *blur_context, GLfloat *projection,
enum blur_method method, void *args) {
bool success = false;
auto ctx = (struct gl_blur_context *)blur_context;
ctx->method = method;
auto blur_params = generate_dual_kawase_params(args);
// Specify required textures and FBOs
ctx->blur_texture_count = blur_params->iterations;
ctx->blur_fbo_count = blur_params->iterations;
ctx->resize_width += blur_params->expand;
ctx->resize_height += blur_params->expand;
ctx->npasses = 2;
ctx->blur_shader = ccalloc(ctx->npasses, gl_blur_shader_t);
char *lc_numeric_old = strdup(setlocale(LC_NUMERIC, NULL));
// Enforce LC_NUMERIC locale "C" here to make sure decimal point is sane
// Thanks to hiciu for reporting.
setlocale(LC_NUMERIC, "C");
// Dual-kawase downsample shader / program
auto down_pass = ctx->blur_shader;
{
// clang-format off
static const char *FRAG_SHADER_DOWN = GLSL(330,
uniform sampler2D tex_src;
uniform float scale = 1.0;
uniform vec2 pixel_norm;
in vec2 texcoord;
out vec4 out_color;
void main() {
vec2 offset = %.7g * pixel_norm;
vec2 uv = texcoord * pixel_norm * (2.0 / scale);
vec4 sum = texture2D(tex_src, uv) * 4.0;
sum += texture2D(tex_src, uv - vec2(0.5, 0.5) * offset);
sum += texture2D(tex_src, uv + vec2(0.5, 0.5) * offset);
sum += texture2D(tex_src, uv + vec2(0.5, -0.5) * offset);
sum += texture2D(tex_src, uv - vec2(0.5, -0.5) * offset);
out_color = sum / 8.0;
}
);
// clang-format on
// Build shader
size_t shader_len =
strlen(FRAG_SHADER_DOWN) + 10 /* offset */ + 1 /* null terminator */;
char *shader_str = ccalloc(shader_len, char);
auto real_shader_len =
snprintf(shader_str, shader_len, FRAG_SHADER_DOWN, blur_params->offset);
CHECK(real_shader_len >= 0);
CHECK((size_t)real_shader_len < shader_len);
// Build program
down_pass->prog = gl_create_program_from_str(vertex_shader, shader_str);
free(shader_str);
if (!down_pass->prog) {
log_error("Failed to create GLSL program.");
success = false;
goto out;
}
glBindFragDataLocation(down_pass->prog, 0, "out_color");
// Get uniform addresses
bind_uniform(down_pass, pixel_norm);
down_pass->texorig_loc =
glGetUniformLocationChecked(down_pass->prog, "texorig");
down_pass->scale_loc =
glGetUniformLocationChecked(down_pass->prog, "scale");
// Setup projection matrix
glUseProgram(down_pass->prog);
int pml = glGetUniformLocationChecked(down_pass->prog, "projection");
glUniformMatrix4fv(pml, 1, false, projection);
glUseProgram(0);
}
// Dual-kawase upsample shader / program
auto up_pass = ctx->blur_shader + 1;
{
// clang-format off
static const char *FRAG_SHADER_UP = GLSL(330,
uniform sampler2D tex_src;
uniform float scale = 1.0;
uniform vec2 pixel_norm;
uniform float opacity;
in vec2 texcoord;
out vec4 out_color;
void main() {
vec2 offset = %.7g * pixel_norm;
vec2 uv = texcoord * pixel_norm / (2 * scale);
vec4 sum = texture2D(tex_src, uv + vec2(-1.0, 0.0) * offset);
sum += texture2D(tex_src, uv + vec2(-0.5, 0.5) * offset) * 2.0;
sum += texture2D(tex_src, uv + vec2(0.0, 1.0) * offset);
sum += texture2D(tex_src, uv + vec2(0.5, 0.5) * offset) * 2.0;
sum += texture2D(tex_src, uv + vec2(1.0, 0.0) * offset);
sum += texture2D(tex_src, uv + vec2(0.5, -0.5) * offset) * 2.0;
sum += texture2D(tex_src, uv + vec2(0.0, -1.0) * offset);
sum += texture2D(tex_src, uv + vec2(-0.5, -0.5) * offset) * 2.0;
out_color = sum / 12.0 * opacity;
}
);
// clang-format on
// Build shader
size_t shader_len =
strlen(FRAG_SHADER_UP) + 10 /* offset */ + 1 /* null terminator */;
char *shader_str = ccalloc(shader_len, char);
auto real_shader_len =
snprintf(shader_str, shader_len, FRAG_SHADER_UP, blur_params->offset);
CHECK(real_shader_len >= 0);
CHECK((size_t)real_shader_len < shader_len);
// Build program
up_pass->prog = gl_create_program_from_str(vertex_shader, shader_str);
free(shader_str);
if (!up_pass->prog) {
log_error("Failed to create GLSL program.");
success = false;
goto out;
}
glBindFragDataLocation(up_pass->prog, 0, "out_color");
// Get uniform addresses
bind_uniform(up_pass, pixel_norm);
bind_uniform(up_pass, opacity);
up_pass->texorig_loc =
glGetUniformLocationChecked(up_pass->prog, "texorig");
up_pass->scale_loc = glGetUniformLocationChecked(up_pass->prog, "scale");
// Setup projection matrix
glUseProgram(up_pass->prog);
int pml = glGetUniformLocationChecked(up_pass->prog, "projection");
glUniformMatrix4fv(pml, 1, false, projection);
glUseProgram(0);
}
success = true;
out:
free(blur_params);
if (!success) {
ctx = NULL;
}
// Restore LC_NUMERIC
setlocale(LC_NUMERIC, lc_numeric_old);
free(lc_numeric_old);
return success;
}
void *gl_create_blur_context(backend_t *base, enum blur_method method, void *args) {
bool success;
auto gd = (struct gl_data *)base;
auto ctx = ccalloc(1, struct gl_blur_context);
if (!method || method >= BLUR_METHOD_INVALID) {
ctx->method = BLUR_METHOD_NONE;
return ctx;
}
// Set projection matrix to gl viewport dimensions so we can use screen
// coordinates for all vertices
// Note: OpenGL matrices are column major
GLint viewport_dimensions[2];
glGetIntegerv(GL_MAX_VIEWPORT_DIMS, viewport_dimensions);
GLfloat projection_matrix[4][4] = {{2.0F / (GLfloat)viewport_dimensions[0], 0, 0, 0},
{0, 2.0F / (GLfloat)viewport_dimensions[1], 0, 0},
{0, 0, 0, 0},
{-1, -1, 0, 1}};
if (method == BLUR_METHOD_DUAL_KAWASE) {
success = gl_create_dual_kawase_blur_context(ctx, projection_matrix[0],
method, args);
} else {
success =
gl_create_kernel_blur_context(ctx, projection_matrix[0], method, args);
}
if (!success || ctx->method == BLUR_METHOD_NONE) {
goto out;
}
// Texture size will be defined by gl_blur
ctx->blur_textures = ccalloc(ctx->blur_texture_count, GLuint);
ctx->texture_sizes = ccalloc(ctx->blur_texture_count, struct texture_size);
glGenTextures(ctx->blur_texture_count, ctx->blur_textures);
for (int i = 0; i < ctx->blur_texture_count; ++i) {
glBindTexture(GL_TEXTURE_2D, ctx->blur_textures[i]);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
}
// Generate FBO and textures when needed
ctx->blur_fbos = ccalloc(ctx->blur_fbo_count, GLuint);
glGenFramebuffers(ctx->blur_fbo_count, ctx->blur_fbos);
for (int i = 0; i < ctx->blur_fbo_count; ++i) {
if (!ctx->blur_fbos[i]) {
log_error("Failed to generate framebuffer objects for blur");
success = false;
goto out;
}
}
out:
if (!success) {
gl_destroy_blur_context(&gd->base, ctx);
ctx = NULL;
}
gl_check_err();
return ctx;
}
void gl_get_blur_size(void *blur_context, int *width, int *height) {
auto ctx = (struct gl_blur_context *)blur_context;
*width = ctx->resize_width;
*height = ctx->resize_height;
}
// clang-format off
const char *win_shader_glsl = GLSL(330,
uniform float opacity;
uniform float dim;
uniform float corner_radius;
uniform float border_width;
uniform bool invert_color;
in vec2 texcoord;
uniform sampler2D tex;
uniform sampler2D brightness;
uniform float max_brightness;
// Signed distance field for rectangle center at (0, 0), with size of
// half_size * 2
float rectangle_sdf(vec2 point, vec2 half_size) {
vec2 d = abs(point) - half_size;
return length(max(d, 0.0));
}
vec4 default_post_processing(vec4 c) {
vec4 border_color = texture(tex, vec2(0.0, 0.5));
if (invert_color) {
c = vec4(c.aaa - c.rgb, c.a);
border_color = vec4(border_color.aaa - border_color.rgb, border_color.a);
}
c = vec4(c.rgb * (1.0 - dim), c.a) * opacity;
border_color = vec4(border_color.rgb * (1.0 - dim), border_color.a) * opacity;
vec3 rgb_brightness = texelFetch(brightness, ivec2(0, 0), 0).rgb;
// Ref: https://en.wikipedia.org/wiki/Relative_luminance
float brightness = rgb_brightness.r * 0.21 +
rgb_brightness.g * 0.72 +
rgb_brightness.b * 0.07;
if (brightness > max_brightness) {
c.rgb = c.rgb * (max_brightness / brightness);
border_color.rgb = border_color.rgb * (max_brightness / brightness);
}
// Rim color is the color of the outer rim of the window, if there is no
// border, it's the color of the window itself, otherwise it's the border.
// Using mix() to avoid a branch here.
vec4 rim_color = mix(c, border_color, clamp(border_width, 0.0f, 1.0f));
vec2 outer_size = vec2(textureSize(tex, 0));
vec2 inner_size = outer_size - vec2(corner_radius) * 2.0f;
float rect_distance = rectangle_sdf(texcoord - outer_size / 2.0f,
inner_size / 2.0f) - corner_radius;
if (rect_distance > 0.0f) {
c = (1.0f - clamp(rect_distance, 0.0f, 1.0f)) * rim_color;
} else {
float factor = clamp(rect_distance + border_width, 0.0f, 1.0f);
c = (1.0f - factor) * c + factor * border_color;
}
return c;
}
vec4 window_shader();
void main() {
gl_FragColor = window_shader();
}
);
const char *win_shader_default = GLSL(330,
in vec2 texcoord;
uniform sampler2D tex;
vec4 default_post_processing(vec4 c);
vec4 window_shader() {
vec4 c = texelFetch(tex, ivec2(texcoord), 0);
return default_post_processing(c);
}
);
const char *present_vertex_shader = GLSL(330,
uniform mat4 projection;
layout(location = 0) in vec2 coord;
out vec2 texcoord;
void main() {
gl_Position = projection * vec4(coord, 0, 1);
texcoord = coord;
}
);
// clang-format on
void *gl_create_window_shader(backend_t *backend_data attr_unused, const char *source) {
auto win_shader = (gl_win_shader_t *)ccalloc(1, gl_win_shader_t);
const char *vert_shaders[2] = {vertex_shader, NULL};
const char *frag_shaders[3] = {win_shader_glsl, source, NULL};
if (!gl_win_shader_from_stringv(vert_shaders, frag_shaders, win_shader)) {
free(win_shader);
return NULL;
}
GLint viewport_dimensions[2];
glGetIntegerv(GL_MAX_VIEWPORT_DIMS, viewport_dimensions);
// Set projection matrix to gl viewport dimensions so we can use screen
// coordinates for all vertices
// Note: OpenGL matrices are column major
GLfloat projection_matrix[4][4] = {{2.0F / (GLfloat)viewport_dimensions[0], 0, 0, 0},
{0, 2.0F / (GLfloat)viewport_dimensions[1], 0, 0},
{0, 0, 0, 0},
{-1, -1, 0, 1}};
int pml = glGetUniformLocationChecked(win_shader->prog, "projection");
glUseProgram(win_shader->prog);
glUniformMatrix4fv(pml, 1, false, projection_matrix[0]);
glUseProgram(0);
return win_shader;
}
uint64_t gl_get_shader_attributes(backend_t *backend_data attr_unused, void *shader) {
auto win_shader = (gl_win_shader_t *)shader;
uint64_t ret = 0;
if (glGetUniformLocation(win_shader->prog, "time") >= 0) {
ret |= SHADER_ATTRIBUTE_ANIMATED;
}
return ret;
}
bool gl_init(struct gl_data *gd, session_t *ps) {
// Initialize GLX data structure
glDisable(GL_DEPTH_TEST);
glDepthMask(GL_FALSE);
glEnable(GL_BLEND);
// X pixmap is in premultiplied alpha, so we might just as well use it too.
// Thanks to derhass for help.
glBlendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA);
// Initialize stencil buffer
glDisable(GL_STENCIL_TEST);
glStencilMask(0x1);
glStencilFunc(GL_EQUAL, 0x1, 0x1);
// Set gl viewport to the maximum supported size so we won't have to worry about
// it later on when the screen is resized. The corresponding projection matrix can
// be set now and won't have to be updated. Since fragments outside the target
// buffer are skipped anyways, this should have no impact on performance.
GLint viewport_dimensions[2];
glGetIntegerv(GL_MAX_VIEWPORT_DIMS, viewport_dimensions);
glViewport(0, 0, viewport_dimensions[0], viewport_dimensions[1]);
// Clear screen
glClearColor(0.0F, 0.0F, 0.0F, 1.0F);
glClear(GL_COLOR_BUFFER_BIT | GL_STENCIL_BUFFER_BIT);
glGenFramebuffers(1, &gd->back_fbo);
glGenTextures(1, &gd->back_texture);
if (!gd->back_fbo || !gd->back_texture) {
log_error("Failed to generate a framebuffer object");
return false;
}
glBindTexture(GL_TEXTURE_2D, gd->back_texture);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glBindTexture(GL_TEXTURE_2D, 0);
// Initialize shaders
gd->default_shader = gl_create_window_shader(NULL, win_shader_default);
if (!gd->default_shader) {
log_error("Failed to create window shaders");
return false;
}
// Set projection matrix to gl viewport dimensions so we can use screen
// coordinates for all vertices
// Note: OpenGL matrices are column major
GLfloat projection_matrix[4][4] = {{2.0F / (GLfloat)viewport_dimensions[0], 0, 0, 0},
{0, 2.0F / (GLfloat)viewport_dimensions[1], 0, 0},
{0, 0, 0, 0},
{-1, -1, 0, 1}};
gd->fill_shader.prog = gl_create_program_from_str(fill_vert, fill_frag);
gd->fill_shader.color_loc = glGetUniformLocation(gd->fill_shader.prog, "color");
int pml = glGetUniformLocationChecked(gd->fill_shader.prog, "projection");
glUseProgram(gd->fill_shader.prog);
glUniformMatrix4fv(pml, 1, false, projection_matrix[0]);
glUseProgram(0);
gd->present_prog = gl_create_program_from_str(present_vertex_shader, dummy_frag);
if (!gd->present_prog) {
log_error("Failed to create the present shader");
return false;
}
pml = glGetUniformLocationChecked(gd->present_prog, "projection");
glUseProgram(gd->present_prog);
glUniform1i(glGetUniformLocationChecked(gd->present_prog, "tex"), 0);
glUniformMatrix4fv(pml, 1, false, projection_matrix[0]);
glUseProgram(0);
gd->brightness_shader.prog =
gl_create_program_from_str(interpolating_vert, interpolating_frag);
if (!gd->brightness_shader.prog) {
log_error("Failed to create the brightness shader");
return false;
}
pml = glGetUniformLocationChecked(gd->brightness_shader.prog, "projection");
glUseProgram(gd->brightness_shader.prog);
glUniform1i(glGetUniformLocationChecked(gd->brightness_shader.prog, "tex"), 0);
glUniformMatrix4fv(pml, 1, false, projection_matrix[0]);
glUseProgram(0);
// Set up the size of the back texture
gl_resize(gd, ps->root_width, ps->root_height);
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, gd->back_fbo);
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D,
gd->back_texture, 0);
glDrawBuffer(GL_COLOR_ATTACHMENT0);
if (!gl_check_fb_complete(GL_FRAMEBUFFER)) {
return false;
}
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0);
gd->logger = gl_string_marker_logger_new();
if (gd->logger) {
log_add_target_tls(gd->logger);
}
const char *vendor = (const char *)glGetString(GL_VENDOR);
log_debug("GL_VENDOR = %s", vendor);
if (strcmp(vendor, "NVIDIA Corporation") == 0) {
log_info("GL vendor is NVIDIA, don't use glFinish");
gd->is_nvidia = true;
} else {
gd->is_nvidia = false;
}
gd->has_robustness = gl_has_extension("GL_ARB_robustness");
return true;
}
void gl_deinit(struct gl_data *gd) {
if (gd->logger) {
log_remove_target_tls(gd->logger);
gd->logger = NULL;
}
if (gd->default_shader) {
gl_destroy_window_shader(&gd->base, gd->default_shader);
gd->default_shader = NULL;
}
gl_check_err();
}
GLuint gl_new_texture(GLenum target) {
GLuint texture;
glGenTextures(1, &texture);
if (!texture) {
log_error("Failed to generate texture");
return 0;
}
glBindTexture(target, texture);
glTexParameteri(target, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(target, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(target, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(target, GL_TEXTURE_WRAP_T, GL_REPEAT);
glBindTexture(target, 0);
return texture;
}
/// Actually duplicate a texture into a new one, if this texture is shared
static inline void gl_image_decouple(backend_t *base, struct backend_image *img) {
if (img->inner->refcount == 1) {
return;
}
auto gd = (struct gl_data *)base;
auto inner = (struct gl_texture *)img->inner;
auto new_tex = ccalloc(1, struct gl_texture);
new_tex->texture = gl_new_texture(GL_TEXTURE_2D);
new_tex->y_inverted = true;
new_tex->height = inner->height;
new_tex->width = inner->width;
new_tex->refcount = 1;
new_tex->user_data = gd->decouple_texture_user_data(base, inner->user_data);
glBindTexture(GL_TEXTURE_2D, new_tex->texture);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA8, new_tex->width, new_tex->height, 0,
GL_BGRA, GL_UNSIGNED_BYTE, NULL);
glBindTexture(GL_TEXTURE_2D, 0);
assert(gd->present_prog);
glUseProgram(gd->present_prog);
glBindTexture(GL_TEXTURE_2D, inner->texture);
GLuint fbo;
glGenFramebuffers(1, &fbo);
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, fbo);
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D,
new_tex->texture, 0);
glDrawBuffer(GL_COLOR_ATTACHMENT0);
gl_check_fb_complete(GL_DRAW_FRAMEBUFFER);
glClearColor(0, 0, 0, 0);
glClear(GL_COLOR_BUFFER_BIT);
// clang-format off
GLint coord[] = {
// top left
0, 0, // vertex coord
0, 0, // texture coord
// top right
new_tex->width, 0, // vertex coord
new_tex->width, 0, // texture coord
// bottom right
new_tex->width, new_tex->height,
new_tex->width, new_tex->height,
// bottom left
0, new_tex->height,
0, new_tex->height,
};
// clang-format on
GLuint indices[] = {0, 1, 2, 2, 3, 0};
GLuint vao;
glGenVertexArrays(1, &vao);
glBindVertexArray(vao);
GLuint bo[2];
glGenBuffers(2, bo);
glBindBuffer(GL_ARRAY_BUFFER, bo[0]);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, bo[1]);
glBufferData(GL_ARRAY_BUFFER, (long)sizeof(*coord) * 16, coord, GL_STATIC_DRAW);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, (long)sizeof(*indices) * 6, indices,
GL_STATIC_DRAW);
glEnableVertexAttribArray(vert_coord_loc);
glEnableVertexAttribArray(vert_in_texcoord_loc);
glVertexAttribPointer(vert_coord_loc, 2, GL_INT, GL_FALSE, sizeof(GLint) * 4, NULL);
glVertexAttribPointer(vert_in_texcoord_loc, 2, GL_INT, GL_FALSE,
sizeof(GLint) * 4, (void *)(sizeof(GLint) * 2));
glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_INT, NULL);
glDisableVertexAttribArray(vert_coord_loc);
glDisableVertexAttribArray(vert_in_texcoord_loc);
glBindVertexArray(0);
glDeleteVertexArrays(1, &vao);
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
glDeleteBuffers(2, bo);
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0);
glDeleteFramebuffers(1, &fbo);
glBindTexture(GL_TEXTURE_2D, 0);
glUseProgram(0);
gl_check_err();
img->inner = (struct backend_image_inner_base *)new_tex;
inner->refcount--;
}
static void gl_image_apply_alpha(backend_t *base, struct backend_image *img,
const region_t *reg_op, double alpha) {
// Result color = 0 (GL_ZERO) + alpha (GL_CONSTANT_ALPHA) * original color
auto inner = (struct gl_texture *)img->inner;
glBlendFunc(GL_ZERO, GL_CONSTANT_ALPHA);
glBlendColor(0, 0, 0, (GLclampf)alpha);
GLuint fbo;
glGenFramebuffers(1, &fbo);
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, fbo);
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D,
inner->texture, 0);
glDrawBuffer(GL_COLOR_ATTACHMENT0);
_gl_fill(base, (struct color){0, 0, 0, 0}, reg_op, fbo, 0, false);
glBlendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA);
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0);
glDeleteFramebuffers(1, &fbo);
}
void gl_present(backend_t *base, const region_t *region) {
auto gd = (struct gl_data *)base;
int nrects;
const rect_t *rect = pixman_region32_rectangles((region_t *)region, &nrects);
auto coord = ccalloc(nrects * 8, GLint);
auto indices = ccalloc(nrects * 6, GLuint);
for (int i = 0; i < nrects; i++) {
// clang-format off
memcpy(&coord[i * 8],
((GLint[]){rect[i].x1, gd->height - rect[i].y2,
rect[i].x2, gd->height - rect[i].y2,
rect[i].x2, gd->height - rect[i].y1,
rect[i].x1, gd->height - rect[i].y1}),
sizeof(GLint) * 8);
// clang-format on
GLuint u = (GLuint)(i * 4);
memcpy(&indices[i * 6],
((GLuint[]){u + 0, u + 1, u + 2, u + 2, u + 3, u + 0}),
sizeof(GLuint) * 6);
}
glUseProgram(gd->present_prog);
glBindTexture(GL_TEXTURE_2D, gd->back_texture);
GLuint vao;
glGenVertexArrays(1, &vao);
glBindVertexArray(vao);
GLuint bo[2];
glGenBuffers(2, bo);
glEnableVertexAttribArray(vert_coord_loc);
glBindBuffer(GL_ARRAY_BUFFER, bo[0]);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, bo[1]);
glBufferData(GL_ARRAY_BUFFER, (long)sizeof(GLint) * nrects * 8, coord, GL_STREAM_DRAW);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, (long)sizeof(GLuint) * nrects * 6, indices,
GL_STREAM_DRAW);
glVertexAttribPointer(vert_coord_loc, 2, GL_INT, GL_FALSE, sizeof(GLint) * 2, NULL);
glDrawElements(GL_TRIANGLES, nrects * 6, GL_UNSIGNED_INT, NULL);
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
glBindVertexArray(0);
glDeleteBuffers(2, bo);
glDeleteVertexArrays(1, &vao);
free(coord);
free(indices);
}
bool gl_image_op(backend_t *base, enum image_operations op, void *image_data,
const region_t *reg_op, const region_t *reg_visible attr_unused, void *arg) {
struct backend_image *tex = image_data;
switch (op) {
case IMAGE_OP_APPLY_ALPHA:
gl_image_decouple(base, tex);
assert(tex->inner->refcount == 1);
gl_image_apply_alpha(base, tex, reg_op, *(double *)arg);
break;
}
return true;
}
bool gl_set_image_property(backend_t *backend_data, enum image_properties prop,
void *image_data, void *args) {
if (prop != IMAGE_PROPERTY_CUSTOM_SHADER) {
return default_set_image_property(backend_data, prop, image_data, args);
}
struct backend_image *img = image_data;
auto inner = (struct gl_texture *)img->inner;
inner->shader = args;
return true;
}
enum device_status gl_device_status(backend_t *base) {
auto gd = (struct gl_data *)base;
if (!gd->has_robustness) {
return DEVICE_STATUS_NORMAL;
}
if (glGetGraphicsResetStatusARB() == GL_NO_ERROR) {
return DEVICE_STATUS_NORMAL;
} else {
return DEVICE_STATUS_RESETTING;
}
}