1
0
Fork 0
mirror of https://github.com/jashkenas/coffeescript.git synced 2022-11-09 12:23:24 -05:00
jashkenas--coffeescript/lib/coffee_script/nodes.rb

820 lines
24 KiB
Ruby
Raw Normal View History

module CoffeeScript
2009-12-13 18:37:29 -05:00
2009-12-17 22:58:40 -05:00
# The abstract base class for all CoffeeScript nodes.
class Node
# Tabs are two spaces for pretty-printing.
TAB = ' '
# Tag this node as a statement, meaning that it can't be used directly as
# the result of an expression.
def self.statement
class_eval "def statement?; true; end"
end
# Tag this node as a statement that cannot be transformed into an expression.
# (break, continue, etc.) It doesn't make sense to try to transform it.
def self.statement_only
statement
class_eval "def statement_only?; true; end"
end
2009-12-13 17:07:16 -05:00
def write(code)
puts "#{self.class.to_s}:\n#{@options.inspect}\n#{code}\n\n" if ENV['VERBOSE']
code
end
# This is extremely important -- we convert JS statements into expressions
# by wrapping them in a closure, only if it's possible, and we're not at
# the top level of a block (which would be unnecessary), and we haven't
# already been asked to return the result.
def compile(o={})
@options = o.dup
top = self.is_a?(ForNode) ? @options[:top] : @options.delete(:top)
closure = statement? && !statement_only? && !top && !@options[:return]
closure ? compile_closure(@options) : compile_node(@options)
end
def compile_closure(o={})
indent = o[:indent]
o[:indent] += TAB
"(function() {\n#{compile_node(o.merge(:return => true))}\n#{indent}})()"
end
# Default implementations of the common node methods.
def unwrap; self; end
def statement?; false; end
def statement_only?; false; end
end
2009-12-17 22:58:40 -05:00
# A collection of nodes, each one representing an expression.
class Expressions < Node
statement
2009-12-17 22:58:40 -05:00
attr_reader :expressions
2009-12-13 17:07:16 -05:00
STRIP_TRAILING_WHITESPACE = /\s+$/
# Wrap up a node as an Expressions, unless it already is.
def self.wrap(*nodes)
return nodes[0] if nodes.length == 1 && nodes[0].is_a?(Expressions)
Expressions.new(*nodes)
end
2009-12-13 17:07:16 -05:00
def initialize(*nodes)
@expressions = nodes.flatten
end
# Tack an expression onto the end of this node.
def <<(node)
2009-12-17 22:58:40 -05:00
@expressions << node
self
end
2009-12-31 17:50:12 -05:00
def unshift(node)
@expressions.unshift(node)
self
end
# If this Expressions consists of a single node, pull it back out.
def unwrap
2009-12-17 22:58:40 -05:00
@expressions.length == 1 ? @expressions.first : self
end
# Is the node last in this block of expressions.
def last?(node)
@last_index ||= @expressions.last.is_a?(CommentNode) ? -2 : -1
node == @expressions[@last_index]
end
def compile(o={})
o[:scope] ? super(o) : compile_root(o)
end
# The extra fancy is to handle pushing down returns to the final lines of
# inner statements. Variables first defined within the Expressions body
# have their declarations pushed up top of the closest scope.
def compile_node(options={})
compiled = @expressions.map do |node|
o = options.dup
returns = o.delete(:return)
if last?(node) && returns && !node.statement_only?
if node.statement?
node.compile(o.merge(:return => true))
else
constructor = o[:top] && o[:last_assign] && o[:last_assign][0..0][/[A-Z]/]
prefix = constructor ? "if (#{o[:last_assign]} !== this.constructor) " : ''
"#{o[:indent]}#{prefix}return #{node.compile(o)};"
end
else
ending = node.statement? ? '' : ';'
indent = node.statement? ? '' : o[:indent]
"#{indent}#{node.compile(o.merge(:top => true))}#{ending}"
end
end
write(compiled.join("\n"))
end
# If this is the top-level Expressions, wrap everything in a safety closure.
def compile_root(o={})
indent = o[:no_wrap] ? '' : TAB
o.merge!(:indent => indent, :scope => Scope.new(nil, self))
code = o[:no_wrap] ? compile_node(o) : compile_with_declarations(o)
code.gsub!(STRIP_TRAILING_WHITESPACE, '')
o[:no_wrap] ? code : "(function(){\n#{code}\n})();"
end
def compile_with_declarations(o={})
code = compile_node(o)
decls = ''
decls = "#{o[:indent]}var #{o[:scope].declared_variables.join(', ')};\n" if o[:scope].declarations?(self)
decls + code
end
2009-12-13 17:07:16 -05:00
end
# Literals are static values that have a Ruby representation, eg.: a string, a number,
# true, false, nil, etc.
class LiteralNode < Node
STATEMENTS = ['break', 'continue']
CONVERSIONS = {
'arguments' => 'Array.prototype.slice.call(arguments, 0)'
}
attr_reader :value
def initialize(value)
@value = value
end
2009-12-13 17:07:16 -05:00
def statement?
STATEMENTS.include?(@value.to_s)
end
alias_method :statement_only?, :statement?
2009-12-21 11:41:45 -05:00
def compile_node(o)
val = CONVERSIONS[@value.to_s] || @value.to_s
indent = statement? ? o[:indent] : ''
ending = statement? ? ';' : ''
write("#{indent}#{val}#{ending}")
end
2009-12-13 17:07:16 -05:00
end
# Try to return your expression, or tell it to return itself.
class ReturnNode < Node
statement_only
attr_reader :expression
def initialize(expression)
@expression = expression
end
2009-12-13 18:37:29 -05:00
def compile_node(o)
return write(@expression.compile(o.merge(:return => true))) if @expression.statement?
compiled = @expression.compile(o)
write(@expression.statement? ? "#{compiled}\n#{o[:indent]}return null;" : "#{o[:indent]}return #{compiled};")
end
2009-12-13 23:59:12 -05:00
end
# Pass through CoffeeScript comments into JavaScript comments at the
# same position.
class CommentNode < Node
statement_only
def initialize(lines)
@lines = lines.value
end
def compile_node(o={})
delimiter = "\n#{o[:indent]}//"
comment = "#{delimiter}#{@lines.join(delimiter)}"
write(comment)
end
end
# Node for a function invocation. Takes care of converting super() calls into
# calls against the prototype's function of the same name.
class CallNode < Node
attr_reader :variable, :arguments
def initialize(variable, arguments=[])
@variable, @arguments = variable, arguments
end
2009-12-17 09:07:42 -05:00
def new_instance
@new = true
self
end
2009-12-17 09:07:42 -05:00
def super?
@variable == :super
end
2009-12-13 17:07:16 -05:00
def prefix
@new ? "new " : ''
end
def splat?
@arguments.any? {|a| a.is_a?(ArgSplatNode) }
end
def <<(argument)
@arguments << argument
end
def compile_node(o)
return write(compile_splat(o)) if splat?
args = @arguments.map{|a| a.compile(o) }.join(', ')
return write(compile_super(args, o)) if super?
write("#{prefix}#{@variable.compile(o)}(#{args})")
end
2009-12-17 09:07:42 -05:00
def compile_super(args, o)
methname = o[:last_assign]
arg_part = args.empty? ? '' : ", #{args}"
"#{o[:proto_assign]}.__superClass__.#{methname}.call(this#{arg_part})"
end
def compile_splat(o)
meth = @variable.compile(o)
obj = @variable.source || 'this'
args = @arguments.map do |arg|
code = arg.compile(o)
code = arg.is_a?(ArgSplatNode) ? code : "[#{code}]"
arg.equal?(@arguments.first) ? code : ".concat(#{code})"
end
"#{prefix}#{meth}.apply(#{obj}, #{args.join('')})"
end
2009-12-13 17:07:16 -05:00
end
# Node to extend an object's prototype with an ancestor object.
# After goog.inherits from the Closure Library.
class ExtendsNode < Node
statement
attr_reader :sub_object, :super_object
def initialize(sub_object, super_object)
@sub_object, @super_object = sub_object, super_object
end
def compile_node(o={})
sub, sup = @sub_object.compile(o), @super_object.compile(o)
"#{o[:indent]}#{sub}.__superClass__ = #{sup}.prototype;\n#{o[:indent]}" +
"#{sub}.prototype = new #{sup}();\n#{o[:indent]}" +
"#{sub}.prototype.constructor = #{sub};"
end
end
# A value, indexed or dotted into, or vanilla.
class ValueNode < Node
attr_reader :literal, :properties, :last, :source
2009-12-13 17:07:16 -05:00
def initialize(literal, properties=[])
@literal, @properties = literal, properties
end
2009-12-13 18:37:29 -05:00
def <<(other)
@properties << other
self
2009-12-17 09:07:42 -05:00
end
2009-12-13 20:29:44 -05:00
def properties?
return !@properties.empty?
end
2009-12-13 20:29:44 -05:00
def statement?
@literal.is_a?(Node) && @literal.statement? && !properties?
end
def compile_node(o)
2010-01-02 00:20:24 -05:00
only = o.delete(:only_first)
props = only ? @properties[0...-1] : @properties
parts = [@literal, props].flatten.map do |val|
val.respond_to?(:compile) ? val.compile(o) : val.to_s
end
@last = parts.last
@source = parts.length > 1 ? parts[0...-1].join('') : nil
write(parts.join(''))
end
2009-12-13 20:29:44 -05:00
end
# A dotted accessor into a part of a value.
class AccessorNode < Node
attr_reader :name
def initialize(name)
@name = name
end
2009-12-13 20:29:44 -05:00
def compile_node(o)
write(".#{@name}")
end
2009-12-13 17:07:16 -05:00
end
# An indexed accessor into a part of an array or object.
class IndexNode < Node
attr_reader :index
def initialize(index)
@index = index
end
2009-12-16 21:43:26 -05:00
def compile_node(o)
write("[#{@index.compile(o)}]")
end
2009-12-16 21:43:26 -05:00
end
# A range literal. Ranges can be used to extract portions (slices) of arrays,
# or to specify a range for array comprehensions.
class RangeNode < Node
attr_reader :from, :to
def initialize(from, to, exclusive=false)
@from, @to, @exclusive = from, to, exclusive
end
def exclusive?
@exclusive
end
def less_operator
@exclusive ? '<' : '<='
end
def greater_operator
@exclusive ? '>' : '>='
end
def compile_variables(o)
idt = o[:indent]
@from_var, @to_var = o[:scope].free_variable, o[:scope].free_variable
from_val, to_val = @from.compile(o), @to.compile(o)
write("#{idt}#{@from_var} = #{from_val};\n#{idt}#{@to_var} = #{to_val};\n#{idt}")
end
def compile_node(o)
idx, step = o.delete(:index), o.delete(:step)
return compile_array(o) unless idx
vars = "#{idx}=#{@from_var}"
2010-01-01 11:54:59 -05:00
step = step ? step.compile(o) : '1'
compare = "(#{@from_var} <= #{@to_var} ? #{idx} #{less_operator} #{@to_var} : #{idx} #{greater_operator} #{@to_var})"
2010-01-01 11:54:59 -05:00
incr = "(#{@from_var} <= #{@to_var} ? #{idx} += #{step} : #{idx} -= #{step})"
write("#{vars}; #{compare}; #{incr}")
2009-12-26 03:16:40 -05:00
end
# Expand the range into the equivalent array, if it's not being used as
# part of a comprehension, slice, or splice.
# TODO: This generates pretty ugly code ... shrink it.
def compile_array(o)
body = Expressions.wrap(LiteralNode.new(Value.new('i')))
arr = Expressions.wrap(ForNode.new(body, {:source => ValueNode.new(self)}, Value.new('i')))
ParentheticalNode.new(CallNode.new(CodeNode.new([], arr))).compile(o)
end
end
# An array slice literal. Unlike JavaScript's Array#slice, the second parameter
# specifies the index of the end of the slice (just like the first parameter)
# is the index of the beginning.
class SliceNode < Node
attr_reader :range
def initialize(range)
@range = range
end
2009-12-13 17:07:16 -05:00
def compile_node(o)
from = @range.from.compile(o)
to = @range.to.compile(o)
plus_part = @range.exclusive? ? '' : ' + 1'
write(".slice(#{from}, #{to}#{plus_part})")
end
end
# Setting the value of a local variable, or the value of an object property.
class AssignNode < Node
PROTO_ASSIGN = /\A(\S+)\.prototype/
LEADING_DOT = /\A\./
attr_reader :variable, :value, :context
def initialize(variable, value, context=nil)
@variable, @value, @context = variable, value, context
end
def compile_node(o)
2010-01-02 00:20:24 -05:00
return compile_splice(o) if @variable.properties.last.is_a?(SliceNode)
name = @variable.compile(o)
last = @variable.last.to_s.sub(LEADING_DOT, '')
proto = name[PROTO_ASSIGN, 1]
o = o.merge(:last_assign => last, :proto_assign => proto)
o[:immediate_assign] = last if @value.is_a?(CodeNode) && last.match(Lexer::IDENTIFIER)
return write("#{name}: #{@value.compile(o)}") if @context == :object
o[:scope].find(name) unless @variable.properties?
val = "#{name} = #{@value.compile(o)}"
write(o[:return] ? "#{o[:indent]}return (#{val})" : val)
end
2010-01-02 00:20:24 -05:00
def compile_splice(o)
var = @variable.compile(o.merge(:only_first => true))
range = @variable.properties.last.range
plus = range.exclusive? ? '' : ' + 1'
from = range.from.compile(o)
to = "#{range.to.compile(o)} - #{from}#{plus}"
write("#{var}.splice.apply(#{var}, [#{from}, #{to}].concat(#{@value.compile(o)}))")
end
2009-12-13 17:07:16 -05:00
end
2009-12-13 20:29:44 -05:00
# Simple Arithmetic and logical operations. Performs some conversion from
# CoffeeScript operations into their JavaScript equivalents.
class OpNode < Node
CONVERSIONS = {
:== => "===",
:'!=' => "!==",
:and => '&&',
:or => '||',
:is => '===',
:isnt => "!==",
:not => '!'
}
CONDITIONALS = [:'||=', :'&&=']
PREFIX_OPERATORS = [:typeof, :delete]
attr_reader :operator, :first, :second
def initialize(operator, first, second=nil, flip=false)
@first, @second, @flip = first, second, flip
@operator = CONVERSIONS[operator.to_sym] || operator
end
def unary?
@second.nil?
end
2009-12-13 17:07:16 -05:00
def compile_node(o)
return write(compile_conditional(o)) if CONDITIONALS.include?(@operator.to_sym)
return write(compile_unary(o)) if unary?
write("#{@first.compile(o)} #{@operator} #{@second.compile(o)}")
end
2009-12-13 17:07:16 -05:00
def compile_conditional(o)
first, second = @first.compile(o), @second.compile(o)
sym = @operator[0..1]
"#{first} = #{first} #{sym} #{second}"
end
2009-12-13 17:07:16 -05:00
def compile_unary(o)
space = PREFIX_OPERATORS.include?(@operator.to_sym) ? ' ' : ''
parts = [@operator.to_s, space, @first.compile(o)]
parts.reverse! if @flip
parts.join('')
end
2009-12-13 17:07:16 -05:00
end
# A function definition. The only node that creates a new Scope.
class CodeNode < Node
attr_reader :params, :body
def initialize(params, body)
@params = params
@body = body
end
2009-12-13 17:07:16 -05:00
def compile_node(o)
shared_scope = o.delete(:shared_scope)
indent = o[:indent]
o[:scope] = shared_scope || Scope.new(o[:scope], @body)
o[:return] = true
o[:top] = true
o[:indent] += TAB
o.delete(:no_wrap)
name = o.delete(:immediate_assign)
if @params.last.is_a?(ParamSplatNode)
2009-12-31 17:50:12 -05:00
splat = @params.pop
splat.index = @params.length
@body.unshift(splat)
end
@params.each {|id| o[:scope].parameter(id.to_s) }
code = @body.compile_with_declarations(o)
name_part = name ? " #{name}" : ''
write("function#{name_part}(#{@params.join(', ')}) {\n#{code}\n#{indent}}")
end
2009-12-13 17:07:16 -05:00
end
2009-12-31 17:50:12 -05:00
# A parameter splat in a function definition.
class ParamSplatNode < Node
2009-12-31 17:50:12 -05:00
attr_accessor :index
attr_reader :name
def initialize(name)
@name = name
end
def compile_node(o={})
o[:scope].find(@name)
write("#{@name} = Array.prototype.slice.call(arguments, #{@index})")
end
end
class ArgSplatNode < Node
attr_reader :value
def initialize(value)
@value = value
2009-12-31 17:50:12 -05:00
end
def compile_node(o={})
write(@value.compile(o))
end
2009-12-31 17:50:12 -05:00
end
# An object literal.
class ObjectNode < Node
attr_reader :properties
def initialize(properties = [])
@properties = properties
end
2009-12-13 17:07:16 -05:00
# All the mucking about with commas is to make sure that CommentNodes and
# AssignNodes get interleaved correctly, with no trailing commas or
# commas affixed to comments. TODO: Extract this and add it to ArrayNode.
def compile_node(o)
indent = o[:indent]
o[:indent] += TAB
joins = Hash.new("\n")
non_comments = @properties.select {|p| !p.is_a?(CommentNode) }
non_comments.each {|p| joins[p] = p == non_comments.last ? "\n" : ",\n" }
props = @properties.map { |prop|
join = joins[prop]
join = '' if prop == @properties.last
idt = prop.is_a?(CommentNode) ? '' : o[:indent]
"#{idt}#{prop.compile(o)}#{join}"
}.join('')
write("{\n#{props}\n#{indent}}")
end
end
# An array literal.
class ArrayNode < Node
attr_reader :objects
def initialize(objects=[])
@objects = objects
end
def compile_node(o)
indent = o[:indent]
o[:indent] += TAB
objects = @objects.map { |obj|
code = obj.compile(o)
obj.is_a?(CommentNode) ? "\n#{code}\n#{o[:indent]}" :
obj == @objects.last ? code : "#{code}, "
}.join('')
ending = objects.include?("\n") ? "\n#{indent}]" : ']'
write("[#{objects}#{ending}")
end
end
# A while loop, the only sort of low-level loop exposed by CoffeeScript. From
# it, all other loops can be manufactured.
class WhileNode < Node
statement
attr_reader :condition, :body
def initialize(condition, body)
@condition, @body = condition, body
end
def compile_node(o)
returns = o.delete(:return)
indent = o[:indent]
o[:indent] += TAB
o[:top] = true
cond = @condition.compile(o)
post = returns ? "\n#{indent}return null;" : ''
write("#{indent}while (#{cond}) {\n#{@body.compile(o)}\n#{indent}}#{post}")
end
end
# The replacement for the for loop is an array comprehension (that compiles)
# into a for loop. Also acts as an expression, able to return the result
# of the comprehenion. Unlike Python array comprehensions, it's able to pass
# the current index of the loop as a second parameter.
class ForNode < Node
statement
2010-01-01 11:54:59 -05:00
attr_reader :body, :source, :name, :index, :filter, :step
2010-01-01 11:54:59 -05:00
def initialize(body, source, name, index=nil)
@body, @name, @index = body, name, index
@source = source[:source]
@filter = source[:filter]
@step = source[:step]
end
def compile_node(o)
top_level = o.delete(:top) && !o[:return]
range = @source.is_a?(ValueNode) && @source.literal.is_a?(RangeNode) && @source.properties.empty?
source = range ? @source.literal : @source
scope = o[:scope]
name_found = scope.find(@name)
index_found = @index && scope.find(@index)
svar = scope.free_variable
ivar = range ? name : @index ? @index : scope.free_variable
rvar = scope.free_variable unless top_level
tvar = scope.free_variable
2009-12-26 03:16:40 -05:00
if range
body_dent = o[:indent] + TAB
var_part, pre_cond, post_cond = '', '', ''
index_var = scope.free_variable
source_part = source.compile_variables(o)
for_part = "#{index_var}=0, #{source.compile(o.merge(:index => ivar, :step => @step))}, #{index_var}++"
2009-12-26 03:16:40 -05:00
else
2009-12-26 03:27:49 -05:00
index_var = nil
body_dent = o[:indent] + TAB + TAB
source_part = "#{o[:indent]}#{svar} = #{source.compile(o)};\n#{o[:indent]}"
for_part = "#{ivar} in #{svar}"
pre_cond = "\n#{o[:indent] + TAB}if (#{svar}.hasOwnProperty(#{ivar})) {"
var_part = "\n#{body_dent}#{@name} = #{svar}[#{ivar}];"
post_cond = "\n#{o[:indent] + TAB}}"
2009-12-26 03:16:40 -05:00
end
body = @body
set_result = rvar ? "#{rvar} = [];\n#{o[:indent]}" : ''
return_result = rvar || ''
temp_var = ValueNode.new(LiteralNode.new(tvar))
if top_level
body = Expressions.wrap(body)
else
body = Expressions.wrap(
AssignNode.new(temp_var, @body.unwrap),
CallNode.new(ValueNode.new(LiteralNode.new(rvar), [AccessorNode.new('push')]), [temp_var])
)
end
if o[:return]
return_result = "return #{return_result}" if o[:return]
o.delete(:return)
body = IfNode.new(@filter, body, nil, :statement => true) if @filter
elsif @filter
body = Expressions.wrap(IfNode.new(@filter, @body))
end
return_result = "\n#{o[:indent]}#{return_result};" unless top_level
body = body.compile(o.merge(:indent => body_dent, :top => true))
write("#{source_part}#{set_result}for (#{for_part}) {#{pre_cond}#{var_part}\n#{body}#{post_cond}\n#{o[:indent]}}#{return_result}")
end
2009-12-14 10:00:31 -05:00
end
# A try/catch/finally block.
class TryNode < Node
statement
attr_reader :try, :error, :recovery, :finally
def initialize(try, error, recovery, finally=nil)
@try, @error, @recovery, @finally = try, error, recovery, finally
end
2009-12-14 10:00:31 -05:00
def compile_node(o)
indent = o[:indent]
o[:indent] += TAB
o[:top] = true
2009-12-24 02:01:39 -05:00
error_part = @error ? " (#{@error}) " : ' '
catch_part = @recovery && " catch#{error_part}{\n#{@recovery.compile(o)}\n#{indent}}"
finally_part = @finally && " finally {\n#{@finally.compile(o.merge(:return => nil))}\n#{indent}}"
write("#{indent}try {\n#{@try.compile(o)}\n#{indent}}#{catch_part}#{finally_part}")
end
2009-12-13 23:25:00 -05:00
end
# Throw an exception.
class ThrowNode < Node
statement_only
attr_reader :expression
def initialize(expression)
@expression = expression
end
2009-12-17 10:33:57 -05:00
def compile_node(o)
write("#{o[:indent]}throw #{@expression.compile(o)};")
end
2009-12-17 10:33:57 -05:00
end
# Check an expression for existence (meaning not null or undefined).
class ExistenceNode < Node
attr_reader :expression
def initialize(expression)
@expression = expression
end
def compile_node(o)
val = @expression.compile(o)
2010-01-05 00:34:18 -05:00
write("(typeof #{val} !== \"undefined\" && #{val} !== null)")
end
end
# An extra set of parentheses, supplied by the script source.
# You can't wrap parentheses around bits that get compiled into JS statements,
# unfortunately.
class ParentheticalNode < Node
attr_reader :expressions
def initialize(expressions, line=nil)
@expressions = expressions.unwrap
@line = line
end
def compile_node(o)
compiled = @expressions.compile(o)
compiled = compiled[0...-1] if compiled[-1..-1] == ';'
write("(#{compiled})")
end
2009-12-17 10:33:57 -05:00
end
# If/else statements. Switch/whens get compiled into these. Acts as an
# expression by pushing down requested returns to the expression bodies.
# Single-expression IfNodes are compiled into ternary operators if possible,
# because ternaries are first-class returnable assignable expressions.
class IfNode < Node
attr_reader :condition, :body, :else_body
def initialize(condition, body, else_body=nil, tags={})
@condition = condition
@body = body && body.unwrap
@else_body = else_body && else_body.unwrap
@tags = tags
@condition = OpNode.new("!", ParentheticalNode.new(@condition)) if @tags[:invert]
end
2009-12-17 10:33:57 -05:00
def <<(else_body)
eb = else_body.unwrap
@else_body ? @else_body << eb : @else_body = eb
self
end
def force_statement
@tags[:statement] = true
self
end
2009-12-17 10:33:57 -05:00
# Rewrite a chain of IfNodes with their switch condition for equality.
def rewrite_condition(expression)
@condition = OpNode.new("is", expression, @condition)
@else_body.rewrite_condition(expression) if chain?
self
end
2009-12-17 10:33:57 -05:00
# Rewrite a chain of IfNodes to add a default case as the final else.
def add_else(exprs)
chain? ? @else_body.add_else(exprs) : @else_body = (exprs && exprs.unwrap)
self
end
# If the else_body is an IfNode itself, then we've got an if-else chain.
def chain?
@chain ||= @else_body && @else_body.is_a?(IfNode)
end
# The IfNode only compiles into a statement if either of the bodies needs
# to be a statement.
def statement?
@is_statement ||= !!(@tags[:statement] || @body.statement? || (@else_body && @else_body.statement?))
end
2009-12-17 10:33:57 -05:00
def compile_node(o)
write(statement? ? compile_statement(o) : compile_ternary(o))
end
# Compile the IfNode as a regular if-else statement. Flattened chains
# force sub-else bodies into statement form.
def compile_statement(o)
indent = o[:indent]
child = o.delete(:chain_child)
cond_o = o.dup
cond_o.delete(:return)
o[:indent] += TAB
o[:top] = true
if_dent = child ? '' : indent
if_part = "#{if_dent}if (#{@condition.compile(cond_o)}) {\n#{Expressions.wrap(@body).compile(o)}\n#{indent}}"
return if_part unless @else_body
else_part = chain? ?
" else #{@else_body.compile(o.merge(:indent => indent, :chain_child => true))}" :
" else {\n#{Expressions.wrap(@else_body).compile(o)}\n#{indent}}"
if_part + else_part
end
# Compile the IfNode into a ternary operator.
def compile_ternary(o)
if_part = "#{@condition.compile(o)} ? #{@body.compile(o)}"
else_part = @else_body ? "#{@else_body.compile(o)}" : 'null'
"#{if_part} : #{else_part}"
end
2009-12-17 10:33:57 -05:00
end
end