Jump To …

nodes.coffee

#

nodes.coffee contains all of the node classes for the syntax tree. Most nodes are created as the result of actions in the grammar, but some are created by other nodes as a method of code generation. To convert the syntax tree into a string of JavaScript code, call compile() on the root.

#

Set up for both Node.js and the browser, by including the Scope class.

if process?
  Scope:   require('./scope').Scope
  helpers: require('./helpers').helpers
else
  this.exports: this
  helpers:      this.helpers
  Scope:        this.Scope
#

Import the helpers we need.

compact: helpers.compact
flatten: helpers.flatten
merge:   helpers.merge
del:     helpers.del
#

Helper function that marks a node as a JavaScript statement, or as a pure_statement. Statements must be wrapped in a closure when used as an expression, and nodes tagged as pure_statement cannot be closure-wrapped without losing their meaning.

statement: (klass, only) ->
  klass::is_statement: -> true
  (klass::is_pure_statement: -> true) if only
#

BaseNode

#

The BaseNode is the abstract base class for all nodes in the syntax tree. Each subclass implements the compile_node method, which performs the code generation for that node. To compile a node to JavaScript, call compile on it, which wraps compile_node in some generic extra smarts, to know when the generated code needs to be wrapped up in a closure. An options hash is passed and cloned throughout, containing information about the environment from higher in the tree (such as if a returned value is being requested by the surrounding function), information about the current scope, and indentation level.

exports.BaseNode: class BaseNode
#

Common logic for determining whether to wrap this node in a closure before compiling it, or to compile directly. We need to wrap if this node is a statement, and it's not a pure_statement, and we're not at the top level of a block (which would be unnecessary), and we haven't already been asked to return the result (because statements know how to return results).

If a Node is top_sensitive, that means that it needs to compile differently depending on whether it's being used as part of a larger expression, or is a top-level statement within the function body.

  compile: (o) ->
    @options: merge o or {}
    @tab:     o.indent
    del @options, 'operation' unless this instanceof ValueNode
    top:      if @top_sensitive() then @options.top else del @options, 'top'
    closure:  @is_statement() and not @is_pure_statement() and not top and
              not @options.returns and not (this instanceof CommentNode)
    if closure then @compile_closure(@options) else @compile_node(@options)
#

Statements converted into expressions via closure-wrapping share a scope object with their parent closure, to preserve the expected lexical scope.

  compile_closure: (o) ->
    @tab: o.indent
    o.shared_scope: o.scope
    ClosureNode.wrap(this).compile o
#

If the code generation wishes to use the result of a complex expression in multiple places, ensure that the expression is only ever evaluated once, by assigning it to a temporary variable.

  compile_reference: (o) ->
    reference: literal o.scope.free_variable()
    compiled:  new AssignNode reference, this
    [compiled, reference]
#

Convenience method to grab the current indentation level, plus tabbing in.

  idt: (tabs) ->
    idt: @tab or ''
    num: (tabs or 0) + 1
    idt += TAB while num -= 1
    idt
#

Does this node, or any of its children, contain a node of a certain kind? Recursively traverses down the children of the nodes, yielding to a block and returning true when the block finds a match. contains does not cross scope boundaries.

  contains: (block) ->
    for node in @children
      return true if block(node)
      return true if node.contains and node.contains block
    false
#

Perform an in-order traversal of the AST. Crosses scope boundaries.

  traverse: (block) ->
    for node in @children
      block node
      node.traverse block if node.traverse
#

toString representation of the node, for inspecting the parse tree. This is what coffee --nodes prints out.

  toString: (idt) ->
    idt ||= ''
    '\n' + idt + @type + (child.toString(idt + TAB) for child in @children).join('')
#

Default implementations of the common node identification methods. Nodes will override these with custom logic, if needed.

  unwrap:               -> this
  children:             []
  is_statement:         -> false
  is_pure_statement:    -> false
  top_sensitive:        -> false
#

Expressions

#

The expressions body is the list of expressions that forms the body of an indented block of code -- the implementation of a function, a clause in an if, switch, or try, and so on...

exports.Expressions: class Expressions extends BaseNode
  type: 'Expressions'

  constructor: (nodes) ->
    @children: @expressions: compact flatten nodes or []
#

Tack an expression on to the end of this expression list.

  push: (node) ->
    @expressions.push(node)
    this
#

Add an expression at the beginning of this expression list.

  unshift: (node) ->
    @expressions.unshift(node)
    this
#

If this Expressions consists of just a single node, unwrap it by pulling it back out.

  unwrap: ->
    if @expressions.length is 1 then @expressions[0] else this
#

Is this an empty block of code?

  empty: ->
    @expressions.length is 0
#

Is the given node the last one in this block of expressions?

  is_last: (node) ->
    l: @expressions.length
    last_index: if @expressions[l - 1] instanceof CommentNode then 2 else 1
    node is @expressions[l - last_index]
#

An Expressions is the only node that can serve as the root.

  compile: (o) ->
    o ||= {}
    if o.scope then super(o) else @compile_root(o)

  compile_node: (o) ->
    (@compile_expression(node, merge(o)) for node in @expressions).join("\n")
#

If we happen to be the top-level Expressions, wrap everything in a safety closure, unless requested not to.

  compile_root: (o) ->
    o.indent: @tab: if o.no_wrap then '' else TAB
    o.scope: new Scope(null, this, null)
    code: if o.globals then @compile_node(o) else @compile_with_declarations(o)
    code: code.replace(TRAILING_WHITESPACE, '')
    if o.no_wrap then code else "(function(){\n$code\n})();\n"
#

Compile the expressions body for the contents of a function, with declarations of all inner variables pushed up to the top.

  compile_with_declarations: (o) ->
    code: @compile_node(o)
    code: "${@tab}var ${o.scope.compiled_assignments()};\n$code"  if o.scope.has_assignments(this)
    code: "${@tab}var ${o.scope.compiled_declarations()};\n$code" if o.scope.has_declarations(this)
    code
#

Compiles a single expression within the expressions body. If we need to return the result, and it's an expression, simply return it. If it's a statement, ask the statement to do so.

  compile_expression: (node, o) ->
    @tab: o.indent
    stmt:    node.is_statement()
    returns: del(o, 'returns') and @is_last(node) and not node.is_pure_statement()
    return (if stmt then '' else @idt()) + node.compile(merge(o, {top: true})) + (if stmt then '' else ';') unless returns
    return node.compile(merge(o, {returns: true})) if node.is_statement()
    "${@tab}return ${node.compile(o)};"
#

Wrap up the given nodes as an Expressions, unless it already happens to be one.

Expressions.wrap: (nodes) ->
  return nodes[0] if nodes.length is 1 and nodes[0] instanceof Expressions
  new Expressions(nodes)

statement Expressions
#

LiteralNode

#

Literals are static values that can be passed through directly into JavaScript without translation, such as: strings, numbers, true, false, null...

exports.LiteralNode: class LiteralNode extends BaseNode
  type: 'Literal'

  constructor: (value) ->
    @value: value
#

Break and continue must be treated as pure statements -- they lose their meaning when wrapped in a closure.

  is_statement: ->
    @value is 'break' or @value is 'continue'
  is_pure_statement: LiteralNode::is_statement

  compile_node: (o) ->
    idt: if @is_statement() then @idt() else ''
    end: if @is_statement() then ';' else ''
    "$idt$@value$end"

  toString: (idt) ->
    " \"$@value\""
#

ReturnNode

#

A return is a pure_statement -- wrapping it in a closure wouldn't make sense.

exports.ReturnNode: class ReturnNode extends BaseNode
  type: 'Return'

  constructor: (expression) ->
    @children: [@expression: expression]

  compile_node: (o) ->
    return @expression.compile(merge(o, {returns: true})) if @expression.is_statement()
    "${@tab}return ${@expression.compile(o)};"

statement ReturnNode, true
#

ValueNode

#

A value, variable or literal or parenthesized, indexed or dotted into, or vanilla.

exports.ValueNode: class ValueNode extends BaseNode
  type: 'Value'

  SOAK: " == undefined ? undefined : "
#

A ValueNode has a base and a list of property accesses.

  constructor: (base, properties) ->
    @children:   flatten [@base: base, @properties: (properties or [])]
#

Add a property access to the list.

  push: (prop) ->
    @properties.push(prop)
    @children.push(prop)
    this

  has_properties: ->
    !!@properties.length
#

Some boolean checks for the benefit of other nodes.

  is_array: ->
    @base instanceof ArrayNode and not @has_properties()

  is_object: ->
    @base instanceof ObjectNode and not @has_properties()

  is_splice: ->
    @has_properties() and @properties[@properties.length - 1] instanceof SliceNode
#

The value can be unwrapped as its inner node, if there are no attached properties.

  unwrap: ->
    if @properties.length then this else @base
#

Values are considered to be statements if their base is a statement.

  is_statement: ->
    @base.is_statement and @base.is_statement() and not @has_properties()
#

We compile a value to JavaScript by compiling and joining each property. Things get much more insteresting if the chain of properties has soak operators ?. interspersed. Then we have to take care not to accidentally evaluate a anything twice when building the soak chain.

  compile_node: (o) ->
    soaked:   false
    only:     del(o, 'only_first')
    op:       del(o, 'operation')
    props:    if only then @properties[0...@properties.length - 1] else @properties
    baseline: @base.compile o
    baseline: "($baseline)" if @base instanceof ObjectNode and @has_properties()
    complete: @last: baseline

    for prop in props
      @source: baseline
      if prop.soak_node
        soaked: true
        if @base instanceof CallNode and prop is props[0]
          temp: o.scope.free_variable()
          complete: "($temp = $complete)$@SOAK" + (baseline: temp + prop.compile(o))
        else
          complete: complete + @SOAK + (baseline += prop.compile(o))
      else
        part: prop.compile(o)
        baseline += part
        complete += part
        @last: part

    if op and soaked then "($complete)" else complete
#

CommentNode

#

CoffeeScript passes through comments as JavaScript comments at the same position.

exports.CommentNode: class CommentNode extends BaseNode
  type: 'Comment'

  constructor: (lines) ->
    @lines: lines
    this

  compile_node: (o) ->
    "$@tab//" + @lines.join("\n$@tab//")

statement CommentNode
#

CallNode

#

Node for a function invocation. Takes care of converting super() calls into calls against the prototype's function of the same name.

exports.CallNode: class CallNode extends BaseNode
  type: 'Call'

  constructor: (variable, args) ->
    @children:  flatten [@variable: variable, @args: (args or [])]
    @prefix:    ''
#

Tag this invocation as creating a new instance.

  new_instance: ->
    @prefix: 'new '
    this
#

Compile a vanilla function call.

  compile_node: (o) ->
    return @compile_splat(o) if @args[@args.length - 1] instanceof SplatNode
    args: (arg.compile(o) for arg in @args).join(', ')
    return @compile_super(args, o) if @variable is 'super'
    "$@prefix${@variable.compile(o)}($args)"
#

super() is converted into a call against the superclass's implementation of the current function.

  compile_super: (args, o) ->
    methname: o.scope.method.name
    meth: if o.scope.method.proto
      "${o.scope.method.proto}.__superClass__.$methname"
    else
      "${methname}.__superClass__.constructor"
    "${meth}.call(this${ if args.length then ', ' else '' }$args)"
#

If you call a function with a splat, it's converted into a JavaScript .apply() call to allow an array of arguments to be passed.

  compile_splat: (o) ->
    meth: @variable.compile o
    obj:  @variable.source or 'this'
    if obj.match(/\(/)
      temp: o.scope.free_variable()
      obj:  temp
      meth: "($temp = ${ @variable.source })${ @variable.last }"
    args: for arg, i in @args
      code: arg.compile o
      code: if arg instanceof SplatNode then code else "[$code]"
      if i is 0 then code else ".concat($code)"
    "$@prefix${meth}.apply($obj, ${ args.join('') })"
#

ExtendsNode

#

Node to extend an object's prototype with an ancestor object. After goog.inherits from the Closure Library.

exports.ExtendsNode: class ExtendsNode extends BaseNode
  type: 'Extends'

  code: '''
        function(child, parent) {
            var ctor = function(){ };
            ctor.prototype = parent.prototype;
            child.__superClass__ = parent.prototype;
            child.prototype = new ctor();
            child.prototype.constructor = child;
          }
        '''

  constructor: (child, parent) ->
    @children:  [@child: child, @parent: parent]
#

Hooks one constructor into another's prototype chain.

  compile_node: (o) ->
    o.scope.assign('__extends', @code, true)
    ref:  new ValueNode literal('__extends')
    call: new CallNode ref, [@child, @parent]
    call.compile(o)
#

AccessorNode

#

A . accessor into a property of a value, or the :: shorthand for an accessor into the object's prototype.

exports.AccessorNode: class AccessorNode extends BaseNode
  type: 'Accessor'

  constructor: (name, tag) ->
    @children:  [@name: name]
    @prototype: tag is 'prototype'
    @soak_node: tag is 'soak'
    this

  compile_node: (o) ->
    proto_part: if @prototype then 'prototype.' else ''
    ".$proto_part${@name.compile(o)}"
#

IndexNode

#

A [ ... ] indexed accessor into an array or object.

exports.IndexNode: class IndexNode extends BaseNode
  type: 'Index'

  constructor: (index, tag) ->
    @children:  [@index: index]
    @soak_node: tag is 'soak'

  compile_node: (o) ->
    idx: @index.compile o
    "[$idx]"
#

RangeNode

#

A range literal. Ranges can be used to extract portions (slices) of arrays, to specify a range for comprehensions, or as a value, to be expanded into the corresponding array of integers at runtime.

exports.RangeNode: class RangeNode extends BaseNode
  type: 'Range'

  constructor: (from, to, exclusive) ->
    @children:  [@from: from, @to: to]
    @exclusive: !!exclusive
#

Compiles the range's source variables -- where it starts and where it ends.

  compile_variables: (o) ->
    @tab: o.indent
    [@from_var, @to_var]: [o.scope.free_variable(), o.scope.free_variable()]
    [from, to]:           [@from.compile(o), @to.compile(o)]
    "$@from_var = $from; $@to_var = $to;\n$@tab"
#

When compiled normally, the range returns the contents of the for loop needed to iterate over the values in the range. Used by comprehensions.

  compile_node: (o) ->
    return    @compile_array(o) unless o.index
    idx:      del o, 'index'
    step:     del o, 'step'
    vars:     "$idx = $@from_var"
    step:     if step then step.compile(o) else '1'
    equals:   if @exclusive then '' else '='
    intro:    "($@from_var <= $@to_var ? $idx"
    compare:  "$intro <$equals $@to_var : $idx >$equals $@to_var)"
    incr:     "$intro += $step : $idx -= $step)"
    "$vars; $compare; $incr"
#

When used as a value, expand the range into the equivalent array. In the future, the code this generates should probably be cleaned up by handwriting it instead of wrapping nodes.

  compile_array: (o) ->
    name: o.scope.free_variable()
    body: Expressions.wrap([literal(name)])
    arr:  Expressions.wrap([new ForNode(body, {source: (new ValueNode(this))}, literal(name))])
    (new ParentheticalNode(new CallNode(new CodeNode([], arr)))).compile(o)
#

SliceNode

#

An array slice literal. Unlike JavaScript's Array#slice, the second parameter specifies the index of the end of the slice, just as the first parameter is the index of the beginning.

exports.SliceNode: class SliceNode extends BaseNode
  type: 'Slice'

  constructor: (range) ->
    @children: [@range: range]
    this

  compile_node: (o) ->
    from:       @range.from.compile(o)
    to:         @range.to.compile(o)
    plus_part:  if @range.exclusive then '' else ' + 1'
    ".slice($from, $to$plus_part)"
#

ObjectNode

#

An object literal, nothing fancy.

exports.ObjectNode: class ObjectNode extends BaseNode
  type: 'Object'

  constructor: (props) ->
    @children: @objects: @properties: props or []
#

All the mucking about with commas is to make sure that CommentNodes and AssignNodes get interleaved correctly, with no trailing commas or commas affixed to comments.

TODO: Extract this and add it to ArrayNode.

  compile_node: (o) ->
    o.indent: @idt(1)
    non_comments: prop for prop in @properties when not (prop instanceof CommentNode)
    last_noncom:  non_comments[non_comments.length - 1]
    props: for prop, i in @properties
      join:   ",\n"
      join:   "\n" if (prop is last_noncom) or (prop instanceof CommentNode)
      join:   '' if i is @properties.length - 1
      indent: if prop instanceof CommentNode then '' else @idt(1)
      indent + prop.compile(o) + join
    props: props.join('')
    inner: if props then '\n' + props + '\n' + @idt() else ''
    "{$inner}"
#

ArrayNode

#

An array literal.

exports.ArrayNode: class ArrayNode extends BaseNode
  type: 'Array'

  constructor: (objects) ->
    @children: @objects: objects or []

  compile_node: (o) ->
    o.indent: @idt(1)
    objects: for obj, i in @objects
      code: obj.compile(o)
      if obj instanceof CommentNode
        "\n$code\n$o.indent"
      else if i is @objects.length - 1
        code
      else
        "$code, "
    objects: objects.join('')
    ending: if objects.indexOf('\n') >= 0 then "\n$@tab]" else ']'
    "[$objects$ending"
#

ClassNode

#

The CoffeeScript class definition.

exports.ClassNode: class ClassNode extends BaseNode
  type: 'Class'
#

Initialize a ClassNode with its name, an optional superclass, and a list of prototype property assignments.

  constructor: (variable, parent, props) ->
    @children: compact flatten [@variable: variable, @parent: parent, @properties: props or []]
#

Instead of generating the JavaScript string directly, we build up the equivalent syntax tree and compile that, in pieces. You can see the constructor, property assignments, and inheritance getting built out below.

  compile_node: (o) ->
    extension:   @parent and new ExtendsNode(@variable, @parent)
    constructor: null
    props:       new Expressions()
    o.top:       true
    ret:         del o, 'returns'

    for prop in @properties
      if prop.variable and prop.variable.base.value is 'constructor'
        func: prop.value
        func.body.push(new ReturnNode(literal('this')))
        constructor: new AssignNode(@variable, func)
      else
        if prop.variable
          val: new ValueNode(@variable, [new AccessorNode(prop.variable, 'prototype')])
          prop: new AssignNode(val, prop.value)
        props.push prop

    if not constructor
      if @parent
        applied: new ValueNode(@parent, [new AccessorNode(literal('apply'))])
        constructor: new AssignNode(@variable, new CodeNode([], new Expressions([
          new CallNode(applied, [literal('this'), literal('arguments')])
        ])))
      else
        constructor: new AssignNode(@variable, new CodeNode())

    construct:                       @idt() + constructor.compile(o) + ';\n'
    props:     if props.empty() then '' else props.compile(o) + '\n'
    extension: if extension     then @idt() + extension.compile(o) + ';\n' else ''
    returns:   if ret           then '\n' + @idt() + 'return ' + @variable.compile(o) + ';' else ''
    "$construct$extension$props$returns"

statement ClassNode
#

AssignNode

#

The AssignNode is used to assign a local variable to value, or to set the property of an object -- including within object literals.

exports.AssignNode: class AssignNode extends BaseNode
  type: 'Assign'
#

Matchers for detecting prototype assignments.

  PROTO_ASSIGN: /^(\S+)\.prototype/
  LEADING_DOT:  /^\.(prototype\.)?/

  constructor: (variable, value, context) ->
    @children: [@variable: variable, @value: value]
    @context: context

  top_sensitive: ->
    true

  is_value: ->
    @variable instanceof ValueNode

  is_statement: ->
    @is_value() and (@variable.is_array() or @variable.is_object())
#

Compile an assignment, delegating to compile_pattern_match or compile_splice if appropriate. Keep track of the name of the base object we've been assigned to, for correct internal references. If the variable has not been seen yet within the current scope, declare it.

  compile_node: (o) ->
    top:    del o, 'top'
    return  @compile_pattern_match(o) if @is_statement()
    return  @compile_splice(o) if @is_value() and @variable.is_splice()
    stmt:   del o, 'as_statement'
    name:   @variable.compile(o)
    last:   if @is_value() then @variable.last.replace(@LEADING_DOT, '') else name
    match:  name.match(@PROTO_ASSIGN)
    proto:  match and match[1]
    if @value instanceof CodeNode
      @value.name:  last  if last.match(IDENTIFIER)
      @value.proto: proto if proto
    val: @value.compile o
    return "$name: $val" if @context is 'object'
    o.scope.find name unless @is_value() and @variable.has_properties()
    val: "$name = $val"
    return "$@tab$val;" if stmt
    val: "($val)" if not top or o.returns
    val: "${@tab}return $val" if o.returns
    val
#

Brief implementation of recursive pattern matching, when assigning array or object literals to a value. Peeks at their properties to assign inner names. See the ECMAScript Harmony Wiki for details.

  compile_pattern_match: (o) ->
    val_var: o.scope.free_variable()
    value: if @value.is_statement() then ClosureNode.wrap(@value) else @value
    assigns: ["$@tab$val_var = ${ value.compile(o) };"]
    o.top: true
    o.as_statement: true
    for obj, i in @variable.base.objects
      idx: i
      [obj, idx]: [obj.value, obj.variable.base] if @variable.is_object()
      access_class: if @variable.is_array() then IndexNode else AccessorNode
      if obj instanceof SplatNode
        val: literal(obj.compile_value(o, val_var, @variable.base.objects.indexOf(obj)))
      else
        idx: literal(idx) unless typeof idx is 'object'
        val: new ValueNode(literal(val_var), [new access_class(idx)])
      assigns.push(new AssignNode(obj, val).compile(o))
    code: assigns.join("\n")
    code += "\n${@tab}return ${ @variable.compile(o) };" if o.returns
    code
#

Compile the assignment from an array splice literal, using JavaScript's Array#splice method.

  compile_splice: (o) ->
    name:   @variable.compile(merge(o, {only_first: true}))
    l:      @variable.properties.length
    range:  @variable.properties[l - 1].range
    plus:   if range.exclusive then '' else ' + 1'
    from:   range.from.compile(o)
    to:     range.to.compile(o) + ' - ' + from + plus
    val:    @value.compile(o)
    "${name}.splice.apply($name, [$from, $to].concat($val))"
#

CodeNode

#

A function definition. This is the only node that creates a new Scope. When for the purposes of walking the contents of a function body, the CodeNode has no children -- they're within the inner scope.

exports.CodeNode: class CodeNode extends BaseNode
  type: 'Code'

  constructor: (params, body, tag) ->
    @params:  params or []
    @body:    body or new Expressions()
    @bound:   tag is 'boundfunc'
#

Compilation creates a new scope unless explicitly asked to share with the outer scope. Handles splat parameters in the parameter list by peeking at the JavaScript arguments objects. If the function is bound with the => arrow, generates a wrapper that saves the current value of this through a closure.

  compile_node: (o) ->
    shared_scope: del o, 'shared_scope'
    top:          del o, 'top'
    o.scope:      shared_scope or new Scope(o.scope, @body, this)
    o.returns:    true
    o.top:        true
    o.indent:     @idt(if @bound then 2 else 1)
    del o, 'no_wrap'
    del o, 'globals'
    if @params[@params.length - 1] instanceof SplatNode
      splat: @params.pop()
      splat.index: @params.length
      @body.unshift(splat)
    params: (param.compile(o) for param in @params)
    (o.scope.parameter(param)) for param in params
    code: if @body.expressions.length then "\n${ @body.compile_with_declarations(o) }\n" else ''
    name_part: if @name then ' ' + @name else ''
    func: "function${ if @bound then '' else name_part }(${ params.join(', ') }) {$code${@idt(if @bound then 1 else 0)}}"
    func: "($func)" if top and not @bound
    return func unless @bound
    inner: "(function$name_part() {\n${@idt(2)}return __func.apply(__this, arguments);\n${@idt(1)}});"
    "(function(__this) {\n${@idt(1)}var __func = $func;\n${@idt(1)}return $inner\n$@tab})(this)"

  top_sensitive: ->
    true
#

When traversing (for printing or inspecting), return the real children of the function -- the parameters and body of expressions.

  real_children: ->
    flatten [@params, @body.expressions]
#

Custom traverse implementation that uses the real_children.

  traverse: (block) ->
    block this
    child.traverse block for child in @real_children()

  toString: (idt) ->
    idt ||= ''
    children: (child.toString(idt + TAB) for child in @real_children()).join('')
    "\n$idt$children"
#

SplatNode

#

A splat, either as a parameter to a function, an argument to a call, or as part of a destructuring assignment.

exports.SplatNode: class SplatNode extends BaseNode
  type: 'Splat'

  constructor: (name) ->
    name: literal(name) unless name.compile
    @children: [@name: name]

  compile_node: (o) ->
    if @index? then @compile_param(o) else @name.compile(o)
#

Compiling a parameter splat means recovering the parameters that succeed the splat in the parameter list, by slicing the arguments object.

  compile_param: (o) ->
    name: @name.compile(o)
    o.scope.find name
    "$name = Array.prototype.slice.call(arguments, $@index)"
#

A compiling a splat as a destructuring assignment means slicing arguments from the right-hand-side's corresponding array.

  compile_value: (o, name, index) ->
    "Array.prototype.slice.call($name, $index)"
#

WhileNode

#

A while loop, the only sort of low-level loop exposed by CoffeeScript. From it, all other loops can be manufactured. Useful in cases where you need more flexibility or more speed than a comprehension can provide.

exports.WhileNode: class WhileNode extends BaseNode
  type: 'While'

  constructor: (condition, opts) ->
    @children:[@condition: condition]
    @filter: opts and opts.filter

  add_body: (body) ->
    @children.push @body: body
    this

  top_sensitive: ->
    true
#

The main difference from a JavaScript while is that the CoffeeScript while can be used as a part of a larger expression -- while loops may return an array containing the computed result of each iteration.

  compile_node: (o) ->
    returns:    del(o, 'returns')
    top:        del(o, 'top') and not returns
    o.indent:   @idt(1)
    o.top:      true
    cond:       @condition.compile(o)
    set:        ''
    if not top
      rvar:     o.scope.free_variable()
      set:      "$@tab$rvar = [];\n"
      @body:    PushNode.wrap(rvar, @body) if @body
    post:       if returns then "\n${@tab}return $rvar;" else ''
    pre:        "$set${@tab}while ($cond)"
    return      "$pre null;$post" if not @body
    @body:      Expressions.wrap([new IfNode(@filter, @body)]) if @filter
    "$pre {\n${ @body.compile(o) }\n$@tab}$post"

statement WhileNode
#

OpNode

#

Simple Arithmetic and logical operations. Performs some conversion from CoffeeScript operations into their JavaScript equivalents.

exports.OpNode: class OpNode extends BaseNode
  type: 'Op'
#

The map of conversions from CoffeeScript to JavaScript symbols.

  CONVERSIONS: {
    '==':   '==='
    '!=':   '!=='
    'and':  '&&'
    'or':   '||'
    'is':   '==='
    'isnt': '!=='
    'not':  '!'
  }
#

The list of operators for which we perform Python-style comparison chaining.

  CHAINABLE:        ['<', '>', '>=', '<=', '===', '!==']
#

Our assignment operators that have no JavaScript equivalent.

  ASSIGNMENT:       ['||=', '&&=', '?=']
#

Operators must come before their operands with a space.

  PREFIX_OPERATORS: ['typeof', 'delete']

  constructor: (operator, first, second, flip) ->
    @type += ' ' + operator
    @children: compact [@first: first, @second: second]
    @operator: @CONVERSIONS[operator] or operator
    @flip: !!flip

  is_unary: ->
    not @second

  is_chainable: ->
    @CHAINABLE.indexOf(@operator) >= 0

  compile_node: (o) ->
    o.operation: true
    return @compile_chain(o)      if @is_chainable() and @first.unwrap() instanceof OpNode and @first.unwrap().is_chainable()
    return @compile_assignment(o) if @ASSIGNMENT.indexOf(@operator) >= 0
    return @compile_unary(o)      if @is_unary()
    return @compile_existence(o)  if @operator is '?'
    [@first.compile(o), @operator, @second.compile(o)].join ' '
#

Mimic Python's chained comparisons when multiple comparison operators are used sequentially. For example:

bin/coffee -e "puts 50 < 65 > 10"
true
  compile_chain: (o) ->
    shared: @first.unwrap().second
    [@first.second, shared]: shared.compile_reference(o) if shared instanceof CallNode
    [first, second, shared]: [@first.compile(o), @second.compile(o), shared.compile(o)]
    "($first) && ($shared $@operator $second)"
#

When compiling a conditional assignment, take care to ensure that the operands are only evaluated once, even though we have to reference them more than once.

  compile_assignment: (o) ->
    [first, second]: [@first.compile(o), @second.compile(o)]
    o.scope.find(first) if first.match(IDENTIFIER)
    return "$first = ${ ExistenceNode.compile_test(o, @first) } ? $first : $second" if @operator is '?='
    "$first = $first ${ @operator.substr(0, 2) } $second"
#

If this is an existence operator, we delegate to ExistenceNode.compile_test to give us the safe references for the variables.

  compile_existence: (o) ->
    [first, second]: [@first.compile(o), @second.compile(o)]
    test: ExistenceNode.compile_test(o, @first)
    "$test ? $first : $second"
#

Compile a unary OpNode.

  compile_unary: (o) ->
    space: if @PREFIX_OPERATORS.indexOf(@operator) >= 0 then ' ' else ''
    parts: [@operator, space, @first.compile(o)]
    parts: parts.reverse() if @flip
    parts.join('')
#

TryNode

#

A classic try/catch/finally block.

exports.TryNode: class TryNode extends BaseNode
  type: 'Try'

  constructor: (attempt, error, recovery, ensure) ->
    @children: compact [@attempt: attempt, @recovery: recovery, @ensure: ensure]
    @error: error
    this
#

Compilation is more or less as you would expect -- the finally clause is optional, the catch is not.

  compile_node: (o) ->
    o.indent:     @idt(1)
    o.top:        true
    attempt_part: @attempt.compile(o)
    error_part:   if @error then " (${ @error.compile(o) }) " else ' '
    catch_part:   if @recovery then " catch$error_part{\n${ @recovery.compile(o) }\n$@tab}" else ''
    finally_part: (@ensure or '') and ' finally {\n' + @ensure.compile(merge(o, {returns: null})) + "\n$@tab}"
    "${@tab}try {\n$attempt_part\n$@tab}$catch_part$finally_part"

statement TryNode
#

ThrowNode

#

Simple node to throw an exception.

exports.ThrowNode: class ThrowNode extends BaseNode
  type: 'Throw'

  constructor: (expression) ->
    @children: [@expression: expression]

  compile_node: (o) ->
    "${@tab}throw ${@expression.compile(o)};"

statement ThrowNode
#

ExistenceNode

#

Checks a variable for existence -- not null and not undefined. This is similar to .nil? in Ruby, and avoids having to consult a JavaScript truth table.

exports.ExistenceNode: class ExistenceNode extends BaseNode
  type: 'Existence'

  constructor: (expression) ->
    @children: [@expression: expression]

  compile_node: (o) ->
    ExistenceNode.compile_test(o, @expression)
#

The meat of the ExistenceNode is in this static compile_test method because other nodes like to check the existence of their variables as well. Be careful not to double-evaluate anything.

ExistenceNode.compile_test: (o, variable) ->
  [first, second]: [variable, variable]
  if variable instanceof CallNode or (variable instanceof ValueNode and variable.has_properties())
    [first, second]: variable.compile_reference(o)
  [first, second]: [first.compile(o), second.compile(o)]
  "(typeof $first !== \"undefined\" && $second !== null)"
#

ParentheticalNode

#

An extra set of parentheses, specified explicitly in the source. At one time we tried to clean up the results by detecting and removing redundant parentheses, but no longer -- you can put in as many as you please.

Parentheses are a good way to force any statement to become an expression.

exports.ParentheticalNode: class ParentheticalNode extends BaseNode
  type: 'Paren'

  constructor: (expression) ->
    @children: [@expression: expression]

  is_statement: ->
    @expression.is_statement()

  compile_node: (o) ->
    code: @expression.compile(o)
    return code if @is_statement()
    l:    code.length
    code: code.substr(o, l-1) if code.substr(l-1, 1) is ';'
    "($code)"
#

ForNode

#

CoffeeScript's replacement for the for loop is our array and object comprehensions, that compile into for loops here. They also act as an expression, able to return the result of each filtered iteration.

Unlike Python array comprehensions, they can be multi-line, and you can pass the current index of the loop as a second parameter. Unlike Ruby blocks, you can map and filter in a single pass.

exports.ForNode: class ForNode extends BaseNode
  type: 'For'

  constructor: (body, source, name, index) ->
    @body:    body
    @name:    name
    @index:   index or null
    @source:  source.source
    @filter:  source.filter
    @step:    source.step
    @object:  !!source.object
    [@name, @index]: [@index, @name] if @object
    @children: compact [@body, @source, @filter]

  top_sensitive: ->
    true
#

Welcome to the hairiest method in all of CoffeeScript. Handles the inner loop, filtering, stepping, and result saving for array, object, and range comprehensions. Some of the generated code can be shared in common, and some cannot.

  compile_node: (o) ->
    top_level:      del(o, 'top') and not o.returns
    range:          @source instanceof ValueNode and @source.base instanceof RangeNode and not @source.properties.length
    source:         if range then @source.base else @source
    scope:          o.scope
    name:           @name and @name.compile o
    index:          @index and @index.compile o
    scope.find name  if name
    scope.find index if index
    body_dent:      @idt(1)
    rvar:           scope.free_variable() unless top_level
    svar:           scope.free_variable()
    ivar:           if range then name else index or scope.free_variable()
    var_part:       ''
    body:           Expressions.wrap([@body])
    if range
      index_var:    scope.free_variable()
      source_part:  source.compile_variables o
      for_part:     source.compile merge o, {index: ivar, step: @step}
      for_part:     "$index_var = 0, $for_part, $index_var++"
    else
      index_var:    null
      source_part:  "$svar = ${ @source.compile(o) };\n$@tab"
      var_part:     "$body_dent$name = $svar[$ivar];\n" if name
      if not @object
        lvar:       scope.free_variable()
        step_part:  if @step then "$ivar += ${ @step.compile(o) }" else "$ivar++"
        for_part:   "$ivar = 0, $lvar = ${svar}.length; $ivar < $lvar; $step_part"
    set_result:     if rvar then @idt() + rvar + ' = []; ' else @idt()
    return_result:  rvar or ''
    body:           ClosureNode.wrap(body, true) if top_level and body.contains (n) -> n instanceof CodeNode
    body:           PushNode.wrap(rvar, body) unless top_level
    if o.returns
      return_result: 'return ' + return_result
      del o, 'returns'
      body:         new IfNode(@filter, body, null, {statement: true}) if @filter
    else if @filter
      body:         Expressions.wrap([new IfNode(@filter, body)])
    if @object
      o.scope.assign('__hasProp', 'Object.prototype.hasOwnProperty', true)
      for_part: "$ivar in $svar) { if (__hasProp.call($svar, $ivar)"
    return_result:  "\n$@tab$return_result;" unless top_level
    body:           body.compile(merge(o, {indent: body_dent, top: true}))
    vars:           if range then name else "$name, $ivar"
    close:          if @object then '}}\n' else '}\n'
    "$set_result${source_part}for ($for_part) {\n$var_part$body\n$@tab$close$@tab$return_result"

statement ForNode
#

IfNode

#

If/else statements. Our switch/when will be compiled into this. Acts as an expression by pushing down requested returns to the last line of each clause.

Single-expression IfNodes are compiled into ternary operators if possible, because ternaries are already proper expressions, and don't need conversion.

exports.IfNode: class IfNode extends BaseNode
  type: 'If'

  constructor: (condition, body, else_body, tags) ->
    @condition: condition
    @body:      body and body.unwrap()
    @else_body: else_body and else_body.unwrap()
    @children:  compact [@condition, @body, @else_body]
    @tags:      tags or {}
    @multiple:  true if @condition instanceof Array
    @condition: new OpNode('!', new ParentheticalNode(@condition)) if @tags.invert
#

Add a new else clause to this IfNode, or push it down to the bottom of the chain recursively.

  push: (else_body) ->
    eb: else_body.unwrap()
    if @else_body then @else_body.push(eb) else @else_body: eb
    this

  force_statement: ->
    @tags.statement: true
    this
#

Tag a chain of IfNodes with their object(s) to switch on for equality tests. rewrite_switch will perform the actual change at compile time.

  rewrite_condition: (expression) ->
    @switcher: expression
    this
#

Rewrite a chain of IfNodes with their switch condition for equality. Ensure that the switch expression isn't evaluated more than once.

  rewrite_switch: (o) ->
    assigner: @switcher
    if not (@switcher.unwrap() instanceof LiteralNode)
      variable: literal(o.scope.free_variable())
      assigner: new AssignNode(variable, @switcher)
      @switcher: variable
    @condition: if @multiple
      for cond, i in @condition
        new OpNode('is', (if i is 0 then assigner else @switcher), cond)
    else
      new OpNode('is', assigner, @condition)
    @else_body.rewrite_condition(@switcher) if @is_chain()
    this
#

Rewrite a chain of IfNodes to add a default case as the final else.

  add_else: (exprs, statement) ->
    if @is_chain()
      @else_body.add_else exprs, statement
    else
      exprs: exprs.unwrap() unless statement
      @children.push @else_body: exprs
    this
#

If the else_body is an IfNode itself, then we've got an if-else chain.

  is_chain: ->
    @chain ||= @else_body and @else_body instanceof IfNode
#

The IfNode only compiles into a statement if either of its bodies needs to be a statement. Otherwise a ternary is safe.

  is_statement: ->
    @statement ||= !!(@comment or @tags.statement or @body.is_statement() or (@else_body and @else_body.is_statement()))

  compile_condition: (o) ->
    (cond.compile(o) for cond in flatten([@condition])).join(' || ')

  compile_node: (o) ->
    if @is_statement() then @compile_statement(o) else @compile_ternary(o)
#

Compile the IfNode as a regular if-else statement. Flattened chains force inner else bodies into statement form.

  compile_statement: (o) ->
    @rewrite_switch(o) if @switcher
    child:        del o, 'chain_child'
    cond_o:       merge o
    del cond_o, 'returns'
    o.indent:     @idt(1)
    o.top:        true
    if_dent:      if child then '' else @idt()
    com_dent:     if child then @idt() else ''
    prefix:       if @comment then "${ @comment.compile(cond_o) }\n$com_dent" else ''
    body:         Expressions.wrap([@body]).compile(o)
    if_part:      "$prefix${if_dent}if (${ @compile_condition(cond_o) }) {\n$body\n$@tab}"
    return if_part unless @else_body
    else_part: if @is_chain()
      ' else ' + @else_body.compile(merge(o, {indent: @idt(), chain_child: true}))
    else
      " else {\n${ Expressions.wrap([@else_body]).compile(o) }\n$@tab}"
    "$if_part$else_part"
#

Compile the IfNode as a ternary operator.

  compile_ternary: (o) ->
    if_part:    @condition.compile(o) + ' ? ' + @body.compile(o)
    else_part:  if @else_body then @else_body.compile(o) else 'null'
    "$if_part : $else_part"
#

Faux-Nodes

#

PushNode

#

Faux-nodes are never created by the grammar, but are used during code generation to generate other combinations of nodes. The PushNode creates the tree for array.push(value), which is helpful for recording the result arrays from comprehensions.

PushNode: exports.PushNode: {

  wrap: (array, expressions) ->
    expr: expressions.unwrap()
    return expressions if expr.is_pure_statement() or expr.contains (n) -> n.is_pure_statement()
    Expressions.wrap([new CallNode(
      new ValueNode(literal(array), [new AccessorNode(literal('push'))]), [expr]
    )])

}
#

ClosureNode

#

A faux-node used to wrap an expressions body in a closure.

ClosureNode: exports.ClosureNode: {
#

Wrap the expressions body, unless it contains a pure statement, in which case, no dice.

  wrap: (expressions, statement) ->
    return expressions if expressions.contains (n) -> n.is_pure_statement()
    func: new ParentheticalNode(new CodeNode([], Expressions.wrap([expressions])))
    call: new CallNode(new ValueNode(func, [new AccessorNode(literal('call'))]), [literal('this')])
    if statement then Expressions.wrap([call]) else call

}
#

Constants

#

Tabs are two spaces for pretty printing.

TAB: '  '
#

Trim out all trailing whitespace, so that the generated code plays nice with Git.

TRAILING_WHITESPACE: /\s+$/gm
#

Keep this identifier regex in sync with the Lexer.

IDENTIFIER: /^[a-zA-Z\$_](\w|\$)*$/
#

Utility Functions

#

Handy helper for a generating LiteralNode.

literal: (name) ->
  new LiteralNode(name)