nodes.coffee | |
---|---|
| {Scope} = require './scope' |
Import the helpers we plan to use. | {compact, flatten, merge, del, include, indexOf, starts, ends} = require('./helpers').helpers |
BaseNode | |
The BaseNode is the abstract base class for all nodes in the syntax tree.
Each subclass implements the | exports.BaseNode = class BaseNode
constructor: ->
@tags = {} |
Common logic for determining whether to wrap this node in a closure before compiling it, or to compile directly. We need to wrap if this node is a statement, and it's not a pureStatement, and we're not at the top level of a block (which would be unnecessary), and we haven't already been asked to return the result (because statements know how to return results). If a Node is topSensitive, that means that it needs to compile differently depending on whether it's being used as part of a larger expression, or is a top-level statement within the function body. | compile: (o) ->
@options = merge o or {}
@tab = o.indent
del @options, 'chainRoot' unless this instanceof AccessorNode or this instanceof IndexNode
top = if @topSensitive() then @options.top else del @options, 'top'
closure = @isStatement(o) and not @isPureStatement() and not top and
not @options.asStatement and this not instanceof CommentNode and
not @containsPureStatement()
o.scope.startLevel() if not o.keepLevel
code = if closure then @compileClosure(@options) else @compileNode(@options)
o.scope.endLevel() if not o.keepLevel
code |
Statements converted into expressions via closure-wrapping share a scope object with their parent closure, to preserve the expected lexical scope. | compileClosure: (o) ->
@tab = o.indent
o.sharedScope = o.scope
ClosureNode.wrap(this).compile o |
If the code generation wishes to use the result of a complex expression in multiple places, ensure that the expression is only ever evaluated once, by assigning it to a temporary variable. | compileReference: (o, options) ->
options or= {}
pair = if not (@containsType(CallNode) or
(this instanceof ValueNode and (not (@base instanceof LiteralNode) or @hasProperties())))
[this, this]
else if this instanceof ValueNode and options.assignment
this.cacheIndexes(o)
else
reference = literal o.scope.freeVariable 'ref'
compiled = new AssignNode reference, this
[compiled, reference]
return [pair[0].compile(o), pair[1].compile(o)] if options.precompile
pair |
Convenience method to grab the current indentation level, plus tabbing in. | idt: (tabs) ->
idt = @tab or ''
num = (tabs or 0) + 1
idt += TAB while num -= 1
idt |
Construct a node that returns the current node's result. Note that this is overridden for smarter behavior for many statement nodes (eg IfNode, ForNode)... | makeReturn: ->
new ReturnNode this |
Does this node, or any of its children, contain a node of a certain kind?
Recursively traverses down the children of the nodes, yielding to a block
and returning true when the block finds a match. | contains: (block) ->
contains = false
@traverseChildren false, (node) ->
if block(node)
contains = true
return false
contains |
Is this node of a certain type, or does it contain the type? | containsType: (type) ->
this instanceof type or @contains (n) -> n instanceof type |
Convenience for the most common use of contains. Does the node contain a pure statement? | containsPureStatement: ->
@isPureStatement() or @contains (n) -> n.isPureStatement and n.isPureStatement() |
Perform an in-order traversal of the AST. Crosses scope boundaries. | traverse: (block) -> @traverseChildren true, block |
| toString: (idt, override) ->
idt or= ''
children = (child.toString idt + TAB for child in @collectChildren()).join('')
'\n' + idt + (override or @class) + children
eachChild: (func) ->
return unless @children
for attr in @children when this[attr]
for child in flatten [this[attr]]
return if func(child) is false
collectChildren: ->
nodes = []
@eachChild (node) -> nodes.push node
nodes
traverseChildren: (crossScope, func) ->
@eachChild (child) ->
func.apply(this, arguments)
child.traverseChildren(crossScope, func) if child instanceof BaseNode |
Default implementations of the common node properties and methods. Nodes will override these with custom logic, if needed. | class: 'BaseNode'
children: []
unwrap : -> this
isStatement : -> no
isPureStatement : -> no
topSensitive : -> no |
Expressions | |
The expressions body is the list of expressions that forms the body of an
indented block of code -- the implementation of a function, a clause in an
| exports.Expressions = class Expressions extends BaseNode
class: 'Expressions'
children: ['expressions']
isStatement: -> yes
constructor: (nodes) ->
super()
@expressions = compact flatten nodes or [] |
Tack an expression on to the end of this expression list. | push: (node) ->
@expressions.push(node)
this |
Add an expression at the beginning of this expression list. | unshift: (node) ->
@expressions.unshift(node)
this |
If this Expressions consists of just a single node, unwrap it by pulling it back out. | unwrap: ->
if @expressions.length is 1 then @expressions[0] else this |
Is this an empty block of code? | empty: ->
@expressions.length is 0 |
An Expressions node does not return its entire body, rather it ensures that the final expression is returned. | makeReturn: ->
idx = @expressions.length - 1
last = @expressions[idx]
last = @expressions[idx -= 1] if last instanceof CommentNode
return this if not last or last instanceof ReturnNode
@expressions[idx] = last.makeReturn()
this |
An Expressions is the only node that can serve as the root. | compile: (o) ->
o or= {}
if o.scope then super(o) else @compileRoot(o)
compileNode: (o) ->
(@compileExpression(node, merge(o)) for node in @expressions).join("\n") |
If we happen to be the top-level Expressions, wrap everything in a safety closure, unless requested not to. It would be better not to generate them in the first place, but for now, clean up obvious double-parentheses. | compileRoot: (o) ->
o.indent = @tab = if o.noWrap then '' else TAB
o.scope = new Scope(null, this, null)
code = @compileWithDeclarations(o)
code = code.replace(TRAILING_WHITESPACE, '')
if o.noWrap then code else "(function() {\n#{code}\n}).call(this);\n" |
Compile the expressions body for the contents of a function, with declarations of all inner variables pushed up to the top. | compileWithDeclarations: (o) ->
code = @compileNode(o)
code = "#{@tab}var #{o.scope.compiledAssignments()};\n#{code}" if o.scope.hasAssignments(this)
code = "#{@tab}var #{o.scope.compiledDeclarations()};\n#{code}" if not o.globals and o.scope.hasDeclarations(this)
code |
Compiles a single expression within the expressions body. If we need to return the result, and it's an expression, simply return it. If it's a statement, ask the statement to do so. | compileExpression: (node, o) ->
@tab = o.indent
compiledNode = node.compile merge o, top: true
if node.isStatement(o) then compiledNode else "#{@idt()}#{compiledNode};" |
Wrap up the given nodes as an Expressions, unless it already happens to be one. | Expressions.wrap = (nodes) ->
return nodes[0] if nodes.length is 1 and nodes[0] instanceof Expressions
new Expressions(nodes) |
LiteralNode | |
Literals are static values that can be passed through directly into
JavaScript without translation, such as: strings, numbers,
| exports.LiteralNode = class LiteralNode extends BaseNode
class: 'LiteralNode'
constructor: (@value) ->
super()
makeReturn: ->
if @isStatement() then this else super() |
Break and continue must be treated as pure statements -- they lose their meaning when wrapped in a closure. | isStatement: ->
@value is 'break' or @value is 'continue' or @value is 'debugger'
isPureStatement: LiteralNode::isStatement
compileNode: (o) ->
idt = if @isStatement(o) then @idt() else ''
end = if @isStatement(o) then ';' else ''
idt + @value + end
toString: (idt) ->
'"' + @value + '"' |
ReturnNode | |
A | exports.ReturnNode = class ReturnNode extends BaseNode
class: 'ReturnNode'
isStatement: -> yes
isPureStatement: -> yes
children: ['expression']
constructor: (@expression) ->
super()
makeReturn: ->
this
compile: (o) ->
expr = @expression.makeReturn()
return expr.compile o unless expr instanceof ReturnNode
super o
compileNode: (o) ->
o.asStatement = true if @expression.isStatement(o)
"#{@tab}return #{@expression.compile(o)};" |
ValueNode | |
A value, variable or literal or parenthesized, indexed or dotted into, or vanilla. | exports.ValueNode = class ValueNode extends BaseNode
class: 'ValueNode'
children: ['base', 'properties'] |
A ValueNode has a base and a list of property accesses. | constructor: (@base, @properties) ->
super()
@properties or= [] |
Add a property access to the list. | push: (prop) ->
@properties.push(prop)
this
hasProperties: ->
!!@properties.length |
Some boolean checks for the benefit of other nodes. | isArray: ->
@base instanceof ArrayNode and not @hasProperties()
isObject: ->
@base instanceof ObjectNode and not @hasProperties()
isSplice: ->
@hasProperties() and @properties[@properties.length - 1] instanceof SliceNode
makeReturn: ->
if @hasProperties() then super() else @base.makeReturn() |
The value can be unwrapped as its inner node, if there are no attached properties. | unwrap: ->
if @properties.length then this else @base |
Values are considered to be statements if their base is a statement. | isStatement: (o) ->
@base.isStatement and @base.isStatement(o) and not @hasProperties()
isNumber: ->
@base instanceof LiteralNode and @base.value.match NUMBER |
If the value node has indexes containing function calls, and the value node needs to be used twice, in compound assignment ... then we need to cache the value of the indexes. | cacheIndexes: (o) ->
copy = new ValueNode @base, @properties[0..]
if @base instanceof CallNode
[@base, copy.base] = @base.compileReference o
for prop, i in copy.properties
if prop instanceof IndexNode and prop.contains((n) -> n instanceof CallNode)
[index, indexVar] = prop.index.compileReference o
this.properties[i] = new IndexNode index
copy.properties[i] = new IndexNode indexVar
[this, copy] |
Override compile to unwrap the value when possible. | compile: (o) ->
if not o.top or @properties.length then super(o) else @base.compile(o) |
We compile a value to JavaScript by compiling and joining each property.
Things get much more insteresting if the chain of properties has soak
operators | compileNode: (o) ->
only = del o, 'onlyFirst'
op = @tags.operation
props = if only then @properties[0...@properties.length - 1] else @properties
o.chainRoot or= this
for prop in props
hasSoak = yes if prop.soakNode
if hasSoak and @containsType CallNode
[me, copy] = @cacheIndexes o
@base.parenthetical = yes if @parenthetical and not props.length
baseline = @base.compile o
baseline = "(#{baseline})" if @hasProperties() and (@base instanceof ObjectNode or @isNumber())
complete = @last = baseline
for prop, i in props
@source = baseline
if prop.soakNode
if @base.containsType(CallNode) and i is 0
temp = o.scope.freeVariable 'ref'
complete = "(#{ baseline = temp } = (#{complete}))"
complete = if i is 0
"(typeof #{complete} === \"undefined\" || #{baseline} === null) ? undefined : "
else
"#{complete} == null ? undefined : "
complete += (baseline += prop.compile(o))
else
part = prop.compile(o)
if hasSoak and prop.containsType CallNode
baseline += copy.properties[i].compile o
else
baseline += part
complete += part
@last = part
if op and @wrapped then "(#{complete})" else complete |
CommentNode | |
CoffeeScript passes through block comments as JavaScript block comments at the same position. | exports.CommentNode = class CommentNode extends BaseNode
class: 'CommentNode'
isStatement: -> yes
constructor: (@comment) ->
super()
makeReturn: ->
this
compileNode: (o) ->
@tab + '/*' + @comment.replace(/\r?\n/g, '\n' + @tab) + '*/' |
CallNode | |
Node for a function invocation. Takes care of converting | exports.CallNode = class CallNode extends BaseNode
class: 'CallNode'
children: ['variable', 'args']
constructor: (variable, @args, @exist) ->
super()
@isNew = false
@isSuper = variable is 'super'
@variable = if @isSuper then null else variable
@args or= []
@first = @last = ''
@compileSplatArguments = (o) ->
SplatNode.compileSplattedArray.call(this, @args, o) |
Tag this invocation as creating a new instance. | newInstance: ->
@isNew = true
this
prefix: ->
if @isNew then 'new ' else '' |
Grab the reference to the superclass' implementation of the current method. | superReference: (o) ->
throw new Error "cannot call super outside of a function" unless o.scope.method
methname = o.scope.method.name
meth = if o.scope.method.proto
"#{o.scope.method.proto}.__super__.#{methname}"
else if methname
"#{methname}.__super__.constructor"
else throw new Error "cannot call super on an anonymous function." |
Compile a vanilla function call. | compileNode: (o) ->
o.chainRoot = this unless o.chainRoot
op = @tags.operation
if @exist
if @variable instanceof ValueNode and @variable.properties[@variable.properties.length - 1] instanceof AccessorNode
methodAccessor = @variable.properties.pop()
[first, meth] = @variable.compileReference o
@first = new ValueNode(first, [methodAccessor]).compile o
@meth = new ValueNode(meth, [methodAccessor]).compile o
else
[@first, @meth] = @variable.compileReference o, precompile: yes
@first = "(typeof #{@first} === \"function\" ? "
@last = " : undefined)"
else if @variable
@meth = @variable.compile o
for arg in @args when arg instanceof SplatNode
code = @compileSplat(o)
if not code
args = for arg in @args
arg.parenthetical = true
arg.compile o
code = if @isSuper
@compileSuper(args.join(', '), o)
else
"#{@first}#{@prefix()}#{@meth}(#{ args.join(', ') })#{@last}"
if op and @variable and @variable.wrapped then "(#{code})" else code |
| compileSuper: (args, o) ->
"#{@superReference(o)}.call(this#{ if args.length then ', ' else '' }#{args})" |
If you call a function with a splat, it's converted into a JavaScript
| compileSplat: (o) ->
meth = @meth or @superReference(o)
obj = @variable and @variable.source or 'this'
if obj.match(/\(/)
temp = o.scope.freeVariable 'ref'
obj = temp
meth = "(#{temp} = #{ @variable.source })#{ @variable.last }"
if @isNew
mentionsArgs = no
for arg in @args
arg.contains (n) -> mentionsArgs or= n instanceof LiteralNode and (n.value is 'arguments')
utility 'extends'
a = o.scope.freeVariable 'ctor'
b = o.scope.freeVariable 'ref'
c = o.scope.freeVariable 'result'
"""
#DIVIDER
"""
else
"#{@first}#{@prefix()}#{meth}.apply(#{obj}, #{ @compileSplatArguments(o) })#{@last}" |
{@first}(function() { {@idt(1)}var ctor = function(){}; {@idt(1)}__extends(ctor, #{a} = #{meth}); {@idt(1)}return typeof (#{c} = #{a}.apply(#{b} = new ctor, #{ @compileSplatArguments(o) })) === "object" ? #{c} : #{b}; {@tab}}).#{ if mentionsArgs then 'apply(this, arguments)' else 'call(this)'}#{@last} | |
ExtendsNode | exports.ExtendsNode = class ExtendsNode extends BaseNode
class: 'ExtendsNode'
children: ['child', 'parent']
constructor: (@child, @parent) ->
super() |
Node to extend an object's prototype with an ancestor object.
After | compileNode: (o) ->
ref = new ValueNode literal utility 'extends'
(new CallNode ref, [@child, @parent]).compile o |
Hooks one constructor into another's prototype chain. | |
AccessorNode | exports.AccessorNode = class AccessorNode extends BaseNode
class: 'AccessorNode'
children: ['name']
constructor: (@name, tag) ->
super()
@prototype = if tag is 'prototype' then '.prototype' else ''
@soakNode = tag is 'soak'
compileNode: (o) ->
name = @name.compile o
o.chainRoot.wrapped or= @soakNode
namePart = if name.match(IS_STRING) then "[#{name}]" else ".#{name}"
@prototype + namePart |
A | |
IndexNode | exports.IndexNode = class IndexNode extends BaseNode
class: 'IndexNode'
children: ['index']
constructor: (@index) ->
super()
compileNode: (o) ->
o.chainRoot.wrapped or= @soakNode
idx = @index.compile o
prefix = if @proto then '.prototype' else ''
"#{prefix}[#{idx}]" |
A | |
RangeNode | exports.RangeNode = class RangeNode extends BaseNode
class: 'RangeNode'
children: ['from', 'to']
constructor: (@from, @to, tag) ->
super()
@exclusive = tag is 'exclusive'
@equals = if @exclusive then '' else '=' |
A range literal. Ranges can be used to extract portions (slices) of arrays, to specify a range for comprehensions, or as a value, to be expanded into the corresponding array of integers at runtime. | compileVariables: (o) ->
o = merge(o, top: true)
[@from, @fromVar] = @from.compileReference o, precompile: yes
[@to, @toVar] = @to.compileReference o, precompile: yes
[@fromNum, @toNum] = [@fromVar.match(SIMPLENUM), @toVar.match(SIMPLENUM)]
parts = []
parts.push @from if @from isnt @fromVar
parts.push @to if @to isnt @toVar
if parts.length then "#{parts.join('; ')}; " else '' |
Compiles the range's source variables -- where it starts and where it ends. But only if they need to be cached to avoid double evaluation. | compileNode: (o) ->
return @compileArray(o) unless o.index
return @compileSimple(o) if @fromNum and @toNum
idx = del o, 'index'
step = del o, 'step'
vars = "#{idx} = #{@fromVar}"
intro = "(#{@fromVar} <= #{@toVar} ? #{idx}"
compare = "#{intro} <#{@equals} #{@toVar} : #{idx} >#{@equals} #{@toVar})"
stepPart = if step then step.compile(o) else '1'
incr = if step then "#{idx} += #{stepPart}" else "#{intro} += #{stepPart} : #{idx} -= #{stepPart})"
"#{vars}; #{compare}; #{incr}" |
When compiled normally, the range returns the contents of the for loop needed to iterate over the values in the range. Used by comprehensions. | compileSimple: (o) ->
[from, to] = [parseInt(@fromNum, 10), parseInt(@toNum, 10)]
idx = del o, 'index'
step = del o, 'step'
step and= "#{idx} += #{step.compile(o)}"
if from <= to
"#{idx} = #{from}; #{idx} <#{@equals} #{to}; #{step or "#{idx}++"}"
else
"#{idx} = #{from}; #{idx} >#{@equals} #{to}; #{step or "#{idx}--"}" |
Compile a simple range comprehension, with integers. | compileArray: (o) ->
idt = @idt 1
vars = @compileVariables merge o, indent: idt
if @fromNum and @toNum and Math.abs(+@fromNum - +@toNum) <= 20
range = [+@fromNum..+@toNum]
range.pop() if @exclusive
return "[#{ range.join(', ') }]"
i = o.scope.freeVariable 'i'
result = o.scope.freeVariable 'result'
pre = "\n#{idt}#{result} = []; #{vars}"
if @fromNum and @toNum
o.index = i
body = @compileSimple o
else
clause = "#{@fromVar} <= #{@toVar} ?"
body = "var #{i} = #{@fromVar}; #{clause} #{i} <#{@equals} #{@toVar} : #{i} >#{@equals} #{@toVar}; #{clause} #{i} += 1 : #{i} -= 1"
post = "{ #{result}.push(#{i}); }\n#{idt}return #{result};\n#{o.indent}"
"(function() {#{pre}\n#{idt}for (#{body})#{post}}).call(this)" |
When used as a value, expand the range into the equivalent array. | |
SliceNode | exports.SliceNode = class SliceNode extends BaseNode
class: 'SliceNode'
children: ['range']
constructor: (@range) ->
super()
compileNode: (o) ->
from = if @range.from then @range.from.compile(o) else '0'
to = if @range.to then @range.to.compile(o) else ''
to += if not to or @range.exclusive then '' else ' + 1'
to = ', ' + to if to
".slice(#{from}#{to})" |
An array slice literal. Unlike JavaScript's | |
ObjectNode | exports.ObjectNode = class ObjectNode extends BaseNode
class: 'ObjectNode'
children: ['properties']
topSensitive: -> true
constructor: (props) ->
super()
@objects = @properties = props or []
compileNode: (o) ->
top = del o, 'top'
o.indent = @idt 1
nonComments = prop for prop in @properties when (prop not instanceof CommentNode)
lastNoncom = nonComments[nonComments.length - 1]
props = for prop, i in @properties
join = ",\n"
join = "\n" if (prop is lastNoncom) or (prop instanceof CommentNode)
join = '' if i is @properties.length - 1
indent = if prop instanceof CommentNode then '' else @idt 1
prop = new AssignNode prop, prop, 'object' unless prop instanceof AssignNode or prop instanceof CommentNode
indent + prop.compile(o) + join
props = props.join('')
obj = '{' + (if props then '\n' + props + '\n' + @idt() else '') + '}'
if top then "(#{obj})" else obj |
An object literal, nothing fancy. | |
ArrayNode | exports.ArrayNode = class ArrayNode extends BaseNode
class: 'ArrayNode'
children: ['objects']
constructor: (@objects) ->
super()
@objects or= []
@compileSplatLiteral = (o) ->
SplatNode.compileSplattedArray.call(this, @objects, o)
compileNode: (o) ->
o.indent = @idt 1
objects = []
for obj, i in @objects
code = obj.compile(o)
if obj instanceof SplatNode
return @compileSplatLiteral o
else if obj instanceof CommentNode
objects.push "\n#{code}\n#{o.indent}"
else if i is @objects.length - 1
objects.push code
else
objects.push "#{code}, "
objects = objects.join('')
if indexOf(objects, '\n') >= 0
"[\n#{@idt(1)}#{objects}\n#{@tab}]"
else
"[#{objects}]" |
An array literal. | |
ClassNode | exports.ClassNode = class ClassNode extends BaseNode
class: 'ClassNode'
children: ['variable', 'parent', 'properties']
isStatement: -> yes |
The CoffeeScript class definition. | constructor: (@variable, @parent, @properties) ->
super()
@properties or= []
@returns = false
makeReturn: ->
@returns = true
this |
Initialize a ClassNode with its name, an optional superclass, and a list of prototype property assignments. | compileNode: (o) ->
@variable = literal o.scope.freeVariable 'ctor' if @variable is '__temp__'
extension = @parent and new ExtendsNode(@variable, @parent)
props = new Expressions
o.top = true
me = null
className = @variable.compile o
constScope = null
if @parent
applied = new ValueNode(@parent, [new AccessorNode(literal('apply'))])
constructor = new CodeNode([], new Expressions([
new CallNode(applied, [literal('this'), literal('arguments')])
]))
else
constructor = new CodeNode
for prop in @properties
[pvar, func] = [prop.variable, prop.value]
if pvar and pvar.base.value is 'constructor' and func instanceof CodeNode
throw new Error "cannot define a constructor as a bound function." if func.bound
func.name = className
func.body.push new ReturnNode literal 'this'
@variable = new ValueNode @variable
@variable.namespaced = include func.name, '.'
constructor = func
continue
if func instanceof CodeNode and func.bound
if prop.context is 'this'
func.context = className
else
func.bound = false
constScope or= new Scope(o.scope, constructor.body, constructor)
me or= constScope.freeVariable 'this'
pname = pvar.compile(o)
constructor.body.push new ReturnNode literal 'this' if constructor.body.empty()
constructor.body.unshift literal "this.#{pname} = function(){ return #{className}.prototype.#{pname}.apply(#{me}, arguments); }"
if pvar
access = if prop.context is 'this' then pvar.base.properties[0] else new AccessorNode(pvar, 'prototype')
val = new ValueNode(@variable, [access])
prop = new AssignNode(val, func)
props.push prop
constructor.body.unshift literal "#{me} = this" if me
construct = @idt() + (new AssignNode(@variable, constructor)).compile(merge o, {sharedScope: constScope}) + ';'
props = if !props.empty() then '\n' + props.compile(o) else ''
extension = if extension then '\n' + @idt() + extension.compile(o) + ';' else ''
returns = if @returns then '\n' + new ReturnNode(@variable).compile(o) else ''
construct + extension + props + returns |
Instead of generating the JavaScript string directly, we build up the equivalent syntax tree and compile that, in pieces. You can see the constructor, property assignments, and inheritance getting built out below. | |
AssignNode | exports.AssignNode = class AssignNode extends BaseNode |
The AssignNode is used to assign a local variable to value, or to set the property of an object -- including within object literals. | PROTO_ASSIGN: /^(\S+)\.prototype/
LEADING_DOT: /^\.(prototype\.)?/
class: 'AssignNode'
children: ['variable', 'value']
constructor: (@variable, @value, @context) ->
super()
topSensitive: ->
true
isValue: ->
@variable instanceof ValueNode
makeReturn: ->
if @isStatement()
return new Expressions [this, new ReturnNode(@variable)]
else
super()
isStatement: ->
@isValue() and (@variable.isArray() or @variable.isObject()) |
Matchers for detecting prototype assignments. | compileNode: (o) ->
top = del o, 'top'
return @compilePatternMatch(o) if @isStatement(o)
return @compileSplice(o) if @isValue() and @variable.isSplice()
stmt = del o, 'asStatement'
name = @variable.compile(o)
last = if @isValue() then @variable.last.replace(@LEADING_DOT, '') else name
match = name.match(@PROTO_ASSIGN)
proto = match and match[1]
if @value instanceof CodeNode
@value.name = last if last.match(IDENTIFIER)
@value.proto = proto if proto
val = @value.compile o
return "#{name}: #{val}" if @context is 'object'
o.scope.find name unless @isValue() and (@variable.hasProperties() or @variable.namespaced)
val = "#{name} = #{val}"
return "#{@tab}#{val};" if stmt
if top or @parenthetical then val else "(#{val})" |
Compile an assignment, delegating to | compilePatternMatch: (o) ->
valVar = o.scope.freeVariable 'ref'
value = if @value.isStatement(o) then ClosureNode.wrap(@value) else @value
assigns = ["#{@tab}#{valVar} = #{ value.compile(o) };"]
o.top = true
o.asStatement = true
splat = false
for obj, i in @variable.base.objects |
Brief implementation of recursive pattern matching, when assigning array or object literals to a value. Peeks at their properties to assign inner names. See the ECMAScript Harmony Wiki for details. | idx = i
if @variable.isObject()
if obj instanceof AssignNode |
A regular array pattern-match. | [obj, idx] = [obj.value, obj.variable.base]
else |
A regular object pattern-match. | idx = obj
if not (obj instanceof ValueNode or obj instanceof SplatNode)
throw new Error 'pattern matching must use only identifiers on the left-hand side.'
isString = idx.value and idx.value.match IS_STRING
accessClass = if isString or @variable.isArray() then IndexNode else AccessorNode
if obj instanceof SplatNode and not splat
val = literal obj.compileValue o, valVar,
(oindex = indexOf(@variable.base.objects, obj)),
(olength = @variable.base.objects.length) - oindex - 1
splat = true
else
idx = literal(if splat then "#{valVar}.length - #{olength - idx}" else idx) if typeof idx isnt 'object'
val = new ValueNode(literal(valVar), [new accessClass(idx)])
assigns.push(new AssignNode(obj, val).compile(o))
code = assigns.join("\n")
code |
A shorthand | compileSplice: (o) ->
name = @variable.compile merge o, onlyFirst: true
l = @variable.properties.length
range = @variable.properties[l - 1].range
plus = if range.exclusive then '' else ' + 1'
from = if range.from then range.from.compile(o) else '0'
to = if range.to then range.to.compile(o) + ' - ' + from + plus else "#{name}.length"
val = @value.compile(o)
"#{name}.splice.apply(#{name}, [#{from}, #{to}].concat(#{val}))" |
Compile the assignment from an array splice literal, using JavaScript's
| |
CodeNode | exports.CodeNode = class CodeNode extends BaseNode
class: 'CodeNode'
children: ['params', 'body']
constructor: (@params, @body, tag) ->
super()
@params or= []
@body or= new Expressions
@bound = tag is 'boundfunc'
@context = 'this' if @bound |
A function definition. This is the only node that creates a new Scope. When for the purposes of walking the contents of a function body, the CodeNode has no children -- they're within the inner scope. | compileNode: (o) ->
sharedScope = del o, 'sharedScope'
top = del o, 'top'
o.scope = sharedScope or new Scope(o.scope, @body, this)
o.top = true
o.indent = @idt(1)
empty = @body.expressions.length is 0
del o, 'noWrap'
del o, 'globals'
splat = undefined
params = []
for param, i in @params
if splat
if param.attach
param.assign = new AssignNode new ValueNode literal('this'), [new AccessorNode param.value]
@body.expressions.splice splat.index + 1, 0, param.assign
splat.trailings.push param
else
if param.attach
{value} = param
[param, param.splat] = [literal(o.scope.freeVariable 'arg'), param.splat]
@body.unshift new AssignNode new ValueNode(literal('this'), [new AccessorNode value]), param
if param.splat
splat = new SplatNode param.value
splat.index = i
splat.trailings = []
splat.arglength = @params.length
@body.unshift(splat)
else
params.push param
params = (param.compile(o) for param in params)
@body.makeReturn() unless empty
(o.scope.parameter(param)) for param in params
code = if @body.expressions.length then "\n#{ @body.compileWithDeclarations(o) }\n" else ''
func = "function(#{ params.join(', ') }) {#{code}#{ code and @tab }}"
return "#{utility('bind')}(#{func}, #{@context})" if @bound
if top then "(#{func})" else func
topSensitive: ->
true |
Compilation creates a new scope unless explicitly asked to share with the
outer scope. Handles splat parameters in the parameter list by peeking at
the JavaScript | traverseChildren: (crossScope, func) -> super(crossScope, func) if crossScope
toString: (idt) ->
idt or= ''
children = (child.toString(idt + TAB) for child in @collectChildren()).join('')
'\n' + idt + children |
Short-circuit traverseChildren method to prevent it from crossing scope boundaries unless crossScope is true | |
ParamNode | exports.ParamNode = class ParamNode extends BaseNode
class: 'ParamNode'
children: ['name']
constructor: (@name, @attach, @splat) ->
super()
@value = literal @name
compileNode: (o) ->
@value.compile o
toString: (idt) ->
if @attach then (literal '@' + @name).toString idt else @value.toString idt |
A parameter in a function definition. Beyond a typical Javascript parameter, these parameters can also attach themselves to the context of the function, as well as be a splat, gathering up a group of parameters into an array. | |
SplatNode | exports.SplatNode = class SplatNode extends BaseNode
class: 'SplatNode'
children: ['name']
constructor: (name) ->
super()
name = literal(name) unless name.compile
@name = name
compileNode: (o) ->
if @index? then @compileParam(o) else @name.compile(o) |
A splat, either as a parameter to a function, an argument to a call, or as part of a destructuring assignment. | compileParam: (o) ->
name = @name.compile(o)
o.scope.find name
end = ''
if @trailings.length
len = o.scope.freeVariable 'len'
o.scope.assign len, "arguments.length"
variadic = o.scope.freeVariable 'result'
o.scope.assign variadic, len + ' >= ' + @arglength
end = if @trailings.length then ", #{len} - #{@trailings.length}"
for trailing, idx in @trailings
if trailing.attach
assign = trailing.assign
trailing = literal o.scope.freeVariable 'arg'
assign.value = trailing
pos = @trailings.length - idx
o.scope.assign(trailing.compile(o), "arguments[#{variadic} ? #{len} - #{pos} : #{@index + idx}]")
"#{name} = #{utility('slice')}.call(arguments, #{@index}#{end})" |
Compiling a parameter splat means recovering the parameters that succeed the splat in the parameter list, by slicing the arguments object. | compileValue: (o, name, index, trailings) ->
trail = if trailings then ", #{name}.length - #{trailings}" else ''
"#{utility 'slice'}.call(#{name}, #{index}#{trail})" |
A compiling a splat as a destructuring assignment means slicing arguments from the right-hand-side's corresponding array. | @compileSplattedArray: (list, o) ->
args = []
for arg, i in list
code = arg.compile o
prev = args[last = args.length - 1]
if arg not instanceof SplatNode
if prev and starts(prev, '[') and ends(prev, ']')
args[last] = "#{prev.substr(0, prev.length - 1)}, #{code}]"
continue
else if prev and starts(prev, '.concat([') and ends(prev, '])')
args[last] = "#{prev.substr(0, prev.length - 2)}, #{code}])"
continue
else
code = "[#{code}]"
args.push(if i is 0 then code else ".concat(#{code})")
args.join('') |
Utility function that converts arbitrary number of elements, mixed with splats, to a proper array | |
WhileNode | exports.WhileNode = class WhileNode extends BaseNode
class: 'WhileNode'
children: ['condition', 'guard', 'body']
isStatement: -> yes
constructor: (condition, opts) ->
super()
if opts and opts.invert
condition = new ParentheticalNode condition if condition instanceof OpNode
condition = new OpNode('!', condition)
@condition = condition
@guard = opts and opts.guard
addBody: (body) ->
@body = body
this
makeReturn: ->
@returns = true
this
topSensitive: ->
true |
A while loop, the only sort of low-level loop exposed by CoffeeScript. From it, all other loops can be manufactured. Useful in cases where you need more flexibility or more speed than a comprehension can provide. | compileNode: (o) ->
top = del(o, 'top') and not @returns
o.indent = @idt 1
o.top = true
@condition.parenthetical = yes
cond = @condition.compile(o)
set = ''
unless top
rvar = o.scope.freeVariable 'result'
set = "#{@tab}#{rvar} = [];\n"
@body = PushNode.wrap(rvar, @body) if @body
pre = "#{set}#{@tab}while (#{cond})"
@body = Expressions.wrap([new IfNode(@guard, @body)]) if @guard
if @returns
post = '\n' + new ReturnNode(literal(rvar)).compile(merge(o, indent: @idt()))
else
post = ''
"#{pre} {\n#{ @body.compile(o) }\n#{@tab}}#{post}" |
The main difference from a JavaScript while is that the CoffeeScript while can be used as a part of a larger expression -- while loops may return an array containing the computed result of each iteration. | |
OpNode | exports.OpNode = class OpNode extends BaseNode |
Simple Arithmetic and logical operations. Performs some conversion from CoffeeScript operations into their JavaScript equivalents. | CONVERSIONS:
'==': '==='
'!=': '!==' |
The map of conversions from CoffeeScript to JavaScript symbols. | INVERSIONS:
'!==': '==='
'===': '!==' |
The map of invertible operators. | CHAINABLE: ['<', '>', '>=', '<=', '===', '!=='] |
The list of operators for which we perform Python-style comparison chaining. | ASSIGNMENT: ['||=', '&&=', '?='] |
Our assignment operators that have no JavaScript equivalent. | PREFIX_OPERATORS: ['typeof', 'delete']
class: 'OpNode'
children: ['first', 'second']
constructor: (@operator, @first, @second, flip) ->
super()
@operator = @CONVERSIONS[@operator] or @operator
@flip = !!flip
if @first instanceof ValueNode and @first.base instanceof ObjectNode
@first = new ParentheticalNode @first
@first.tags.operation = yes
@second.tags.operation = yes if @second
isUnary: ->
not @second
isInvertible: ->
(@operator in ['===', '!==']) and
not (@first instanceof OpNode) and not (@second instanceof OpNode)
isMutator: ->
ends(@operator, '=') and not (@operator in ['===', '!=='])
isChainable: ->
include(@CHAINABLE, @operator)
invert: ->
@operator = @INVERSIONS[@operator]
toString: (idt) ->
super(idt, @class + ' ' + @operator)
compileNode: (o) ->
return @compileChain(o) if @isChainable() and @first.unwrap() instanceof OpNode and @first.unwrap().isChainable()
return @compileAssignment(o) if indexOf(@ASSIGNMENT, @operator) >= 0
return @compileUnary(o) if @isUnary()
return @compileExistence(o) if @operator is '?'
@first = new ParentheticalNode(@first) if @first instanceof OpNode and @first.isMutator()
@second = new ParentheticalNode(@second) if @second instanceof OpNode and @second.isMutator()
[@first.compile(o), @operator, @second.compile(o)].join ' ' |
Operators must come before their operands with a space. | compileChain: (o) ->
shared = @first.unwrap().second
[@first.second, shared] = shared.compileReference(o) if shared.containsType CallNode
[first, second, shared] = [@first.compile(o), @second.compile(o), shared.compile(o)]
"(#{first}) && (#{shared} #{@operator} #{second})" |
Mimic Python's chained comparisons when multiple comparison operators are used sequentially. For example: | compileAssignment: (o) ->
[first, firstVar] = @first.compileReference o, precompile: yes, assignment: yes
second = @second.compile o
second = "(#{second})" if @second instanceof OpNode
o.scope.find(first) if first.match(IDENTIFIER)
return "#{first} = #{ ExistenceNode.compileTest(o, literal(firstVar))[0] } ? #{firstVar} : #{second}" if @operator is '?='
"#{first} #{ @operator.substr(0, 2) } (#{firstVar} = #{second})" |
When compiling a conditional assignment, take care to ensure that the operands are only evaluated once, even though we have to reference them more than once. | compileExistence: (o) ->
[test, ref] = ExistenceNode.compileTest(o, @first)
"#{test} ? #{ref} : #{ @second.compile(o) }" |
If this is an existence operator, we delegate to | compileUnary: (o) ->
space = if indexOf(@PREFIX_OPERATORS, @operator) >= 0 then ' ' else ''
parts = [@operator, space, @first.compile(o)]
parts = parts.reverse() if @flip
parts.join('') |
Compile a unary OpNode. | exports.InNode = class InNode extends BaseNode
class: 'InNode'
children: ['object', 'array']
constructor: (@object, @array) ->
super()
isArray: ->
@array instanceof ValueNode and @array.isArray()
compileNode: (o) ->
[@obj1, @obj2] = @object.compileReference o, precompile: yes
if @isArray() then @compileOrTest(o) else @compileLoopTest(o)
compileOrTest: (o) ->
tests = for item, i in @array.base.objects
"#{item.compile(o)} === #{if i then @obj2 else @obj1}"
"(#{tests.join(' || ')})"
compileLoopTest: (o) ->
[@arr1, @arr2] = @array.compileReference o, precompile: yes
[i, l] = [o.scope.freeVariable('i'), o.scope.freeVariable('len')]
prefix = if @obj1 isnt @obj2 then @obj1 + '; ' else ''
"(function(){ #{prefix}for (var #{i}=0, #{l}=#{@arr1}.length; #{i}<#{l}; #{i}++) { if (#{@arr2}[#{i}] === #{@obj2}) return true; } return false; }).call(this)" |
InNode | |
TryNode | exports.TryNode = class TryNode extends BaseNode
class: 'TryNode'
children: ['attempt', 'recovery', 'ensure']
isStatement: -> yes
constructor: (@attempt, @error, @recovery, @ensure) ->
super()
makeReturn: ->
@attempt = @attempt.makeReturn() if @attempt
@recovery = @recovery.makeReturn() if @recovery
this |
A classic try/catch/finally block. | compileNode: (o) ->
o.indent = @idt 1
o.top = true
attemptPart = @attempt.compile(o)
errorPart = if @error then " (#{ @error.compile(o) }) " else ' '
catchPart = if @recovery then " catch#{errorPart}{\n#{ @recovery.compile(o) }\n#{@tab}}" else ''
finallyPart = (@ensure or '') and ' finally {\n' + @ensure.compile(merge(o)) + "\n#{@tab}}"
"#{@tab}try {\n#{attemptPart}\n#{@tab}}#{catchPart}#{finallyPart}" |
Compilation is more or less as you would expect -- the finally clause is optional, the catch is not. | |
ThrowNode | exports.ThrowNode = class ThrowNode extends BaseNode
class: 'ThrowNode'
children: ['expression']
isStatement: -> yes
constructor: (@expression) ->
super() |
Simple node to throw an exception. | makeReturn: ->
return this
compileNode: (o) ->
"#{@tab}throw #{@expression.compile(o)};" |
A ThrowNode is already a return, of sorts... | |
ExistenceNode | exports.ExistenceNode = class ExistenceNode extends BaseNode
class: 'ExistenceNode'
children: ['expression']
constructor: (@expression) ->
super()
compileNode: (o) ->
test = ExistenceNode.compileTest(o, @expression)[0]
if @parenthetical then test.substring(1, test.length - 1) else test |
Checks a variable for existence -- not null and not undefined. This is
similar to | @compileTest: (o, variable) ->
[first, second] = variable.compileReference o, precompile: yes
["(typeof #{first} !== \"undefined\" && #{second} !== null)", second] |
The meat of the ExistenceNode is in this static | |
ParentheticalNode | exports.ParentheticalNode = class ParentheticalNode extends BaseNode
class: 'ParentheticalNode'
children: ['expression']
constructor: (@expression) ->
super()
isStatement: (o) ->
@expression.isStatement(o)
makeReturn: ->
@expression.makeReturn()
topSensitive: ->
yes
compileNode: (o) ->
top = del o, 'top'
@expression.parenthetical = true
code = @expression.compile(o)
return code if top and @expression.isPureStatement o
if @parenthetical or @isStatement o
return if top then @tab + code + ';' else code
"(#{code})" |
An extra set of parentheses, specified explicitly in the source. At one time we tried to clean up the results by detecting and removing redundant parentheses, but no longer -- you can put in as many as you please. Parentheses are a good way to force any statement to become an expression. | |
ForNode | exports.ForNode = class ForNode extends BaseNode
class: 'ForNode'
children: ['body', 'source', 'guard']
isStatement: -> yes
constructor: (@body, source, @name, @index) ->
super()
@index or= null
@source = source.source
@guard = source.guard
@step = source.step
@raw = !!source.raw
@object = !!source.object
[@name, @index] = [@index, @name] if @object
@pattern = @name instanceof ValueNode
throw new Error('index cannot be a pattern matching expression') if @index instanceof ValueNode
@returns = false
topSensitive: ->
true
makeReturn: ->
@returns = true
this
compileReturnValue: (val, o) ->
return '\n' + new ReturnNode(literal(val)).compile(o) if @returns
return '\n' + val if val
'' |
CoffeeScript's replacement for the for loop is our array and object comprehensions, that compile into for loops here. They also act as an expression, able to return the result of each filtered iteration. Unlike Python array comprehensions, they can be multi-line, and you can pass the current index of the loop as a second parameter. Unlike Ruby blocks, you can map and filter in a single pass. | compileNode: (o) ->
topLevel = del(o, 'top') and not @returns
range = @source instanceof ValueNode and @source.base instanceof RangeNode and not @source.properties.length
source = if range then @source.base else @source
codeInBody = @body.contains (n) -> n instanceof CodeNode
scope = o.scope
name = (@name and @name.compile(o)) or scope.freeVariable 'i'
index = @index and @index.compile o
scope.find(name, immediate: yes) if name and not @pattern and (range or not codeInBody)
scope.find(index, immediate: yes) if index
rvar = scope.freeVariable 'result' unless topLevel
ivar = if codeInBody then scope.freeVariable 'i' else if range then name else index or scope.freeVariable 'i'
varPart = ''
guardPart = ''
body = Expressions.wrap([@body])
if range
sourcePart = source.compileVariables(o)
forPart = source.compile merge o, index: ivar, step: @step
else
svar = scope.freeVariable 'ref'
sourcePart = "#{svar} = #{ @source.compile(o) };"
if @pattern
namePart = new AssignNode(@name, literal("#{svar}[#{ivar}]")).compile(merge o, {indent: @idt(1), top: true, keepLevel: yes}) + '\n'
else
namePart = "#{name} = #{svar}[#{ivar}]" if name
unless @object
lvar = scope.freeVariable 'len'
stepPart = if @step then "#{ivar} += #{ @step.compile(o) }" else "#{ivar}++"
forPart = "#{ivar} = 0, #{lvar} = #{svar}.length; #{ivar} < #{lvar}; #{stepPart}"
sourcePart = (if rvar then "#{rvar} = []; " else '') + sourcePart
sourcePart = if sourcePart then "#{@tab}#{sourcePart}\n#{@tab}" else @tab
returnResult = @compileReturnValue(rvar, o)
body = PushNode.wrap(rvar, body) unless topLevel
if @guard
body = Expressions.wrap([new IfNode(@guard, body)])
if codeInBody
body.unshift literal "var #{name} = #{ivar}" if range
body.unshift literal "var #{namePart}" if namePart
body.unshift literal "var #{index} = #{ivar}" if index
body = ClosureNode.wrap(body, true)
else
varPart = (namePart or '') and (if @pattern then namePart else "#{@idt(1)}#{namePart};\n")
if @object
forPart = "#{ivar} in #{svar}"
guardPart = "\n#{@idt(1)}if (!#{utility('hasProp')}.call(#{svar}, #{ivar})) continue;" unless @raw
body = body.compile(merge(o, {indent: @idt(1), top: true}))
vars = if range then name else "#{name}, #{ivar}"
"#{sourcePart}for (#{forPart}) {#{guardPart}\n#{varPart}#{body}\n#{@tab}}#{returnResult}" |
Welcome to the hairiest method in all of CoffeeScript. Handles the inner loop, filtering, stepping, and result saving for array, object, and range comprehensions. Some of the generated code can be shared in common, and some cannot. | |
SwitchNode | exports.SwitchNode = class SwitchNode extends BaseNode
class: 'SwitchNode'
children: ['subject', 'cases', 'otherwise']
isStatement: -> yes
constructor: (@subject, @cases, @otherwise) ->
super()
@tags.subjectless = !@subject
@subject or= literal 'true'
makeReturn: ->
pair[1].makeReturn() for pair in @cases
@otherwise.makeReturn() if @otherwise
this
compileNode: (o) ->
idt = o.indent = @idt 2
o.top = yes
code = "#{ @tab }switch (#{ @subject.compile o }) {"
for pair in @cases
[conditions, block] = pair
exprs = block.expressions
for condition in flatten [conditions]
condition = new OpNode '!!', new ParentheticalNode condition if @tags.subjectless
code += "\n#{ @idt(1) }case #{ condition.compile o }:"
code += "\n#{ block.compile o }"
code += "\n#{ idt }break;" unless exprs[exprs.length - 1] instanceof ReturnNode
if @otherwise
code += "\n#{ @idt(1) }default:\n#{ @otherwise.compile o }"
code += "\n#{ @tab }}"
code |
A JavaScript switch statement. Converts into a returnable expression on-demand. | |
IfNode | exports.IfNode = class IfNode extends BaseNode
class: 'IfNode'
children: ['condition', 'body', 'elseBody', 'assigner']
topSensitive: -> true
constructor: (@condition, @body, @tags) ->
@tags or= {}
if @tags.invert
if @condition instanceof OpNode and @condition.isInvertible()
@condition.invert()
else
@condition = new OpNode '!', new ParentheticalNode @condition
@elseBody = null
@isChain = false
bodyNode: -> @body?.unwrap()
elseBodyNode: -> @elseBody?.unwrap()
forceStatement: ->
@tags.statement = true
this |
If/else statements. Acts as an expression by pushing down requested returns to the last line of each clause. Single-expression IfNodes are compiled into ternary operators if possible, because ternaries are already proper expressions, and don't need conversion. | addElse: (elseBody, statement) ->
if @isChain
@elseBodyNode().addElse elseBody, statement
else
@isChain = elseBody instanceof IfNode
@elseBody = @ensureExpressions elseBody
this |
Rewrite a chain of IfNodes to add a default case as the final else. | isStatement: (o) ->
@statement or= !!((o and o.top) or @tags.statement or @bodyNode().isStatement(o) or (@elseBody and @elseBodyNode().isStatement(o)))
compileCondition: (o) ->
conditions = flatten [@condition]
conditions[0].parenthetical = yes if conditions.length is 1
(cond.compile(o) for cond in conditions).join(' || ')
compileNode: (o) ->
if @isStatement(o) then @compileStatement(o) else @compileTernary(o)
makeReturn: ->
if @isStatement()
@body and= @ensureExpressions(@body.makeReturn())
@elseBody and= @ensureExpressions(@elseBody.makeReturn())
this
else
new ReturnNode this
ensureExpressions: (node) ->
if node instanceof Expressions then node else new Expressions [node] |
The IfNode only compiles into a statement if either of its bodies needs to be a statement. Otherwise a ternary is safe. | compileStatement: (o) ->
top = del o, 'top'
child = del o, 'chainChild'
condO = merge o
o.indent = @idt 1
o.top = true
ifDent = if child or (top and not @isStatement(o)) then '' else @idt()
comDent = if child then @idt() else ''
body = @body.compile(o)
ifPart = "#{ifDent}if (#{ @compileCondition(condO) }) {\n#{body}\n#{@tab}}"
return ifPart unless @elseBody
elsePart = if @isChain
' else ' + @elseBodyNode().compile(merge(o, {indent: @idt(), chainChild: true}))
else
" else {\n#{ @elseBody.compile(o) }\n#{@tab}}"
"#{ifPart}#{elsePart}" |
Compile the IfNode as a regular if-else statement. Flattened chains force inner else bodies into statement form. | compileTernary: (o) ->
@bodyNode().tags.operation = @condition.tags.operation = yes
@elseBodyNode().tags.operation = yes if @elseBody
ifPart = @condition.compile(o) + ' ? ' + @bodyNode().compile(o)
elsePart = if @elseBody then @elseBodyNode().compile(o) else 'null'
code = "#{ifPart} : #{elsePart}"
if @tags.operation then "(#{code})" else code |
Compile the IfNode as a ternary operator. | |
Faux-Nodes | |
PushNode | PushNode = exports.PushNode =
wrap: (array, expressions) ->
expr = expressions.unwrap()
return expressions if expr.isPureStatement() or expr.containsPureStatement()
Expressions.wrap([new CallNode(
new ValueNode(literal(array), [new AccessorNode(literal('push'))]), [expr]
)]) |
Faux-nodes are never created by the grammar, but are used during code
generation to generate other combinations of nodes. The PushNode creates
the tree for | |
ClosureNode | ClosureNode = exports.ClosureNode = |
A faux-node used to wrap an expressions body in a closure. | wrap: (expressions, statement) ->
return expressions if expressions.containsPureStatement()
func = new ParentheticalNode(new CodeNode([], Expressions.wrap([expressions])))
args = []
mentionsArgs = expressions.contains (n) ->
n instanceof LiteralNode and (n.value is 'arguments')
mentionsThis = expressions.contains (n) ->
(n instanceof LiteralNode and (n.value is 'this')) or
(n instanceof CodeNode and n.bound)
if mentionsArgs or mentionsThis
meth = literal(if mentionsArgs then 'apply' else 'call')
args = [literal('this')]
args.push literal 'arguments' if mentionsArgs
func = new ValueNode func, [new AccessorNode(meth)]
call = new CallNode(func, args)
if statement then Expressions.wrap([call]) else call |
Wrap the expressions body, unless it contains a pure statement,
in which case, no dice. If the body mentions | UTILITIES = |
Utility Functions | extends: """
function(child, parent) {
var ctor = function(){};
ctor.prototype = parent.prototype;
child.prototype = new ctor();
child.prototype.constructor = child;
if (typeof parent.extended === "function") parent.extended(child);
child.__super__ = parent.prototype;
}
""" |
Correctly set up a prototype chain for inheritance, including a reference
to the superclass for | bind: """
function(func, context) {
return function(){ return func.apply(context, arguments); };
}
""" |
Create a function bound to the current value of "this". | hasProp: 'Object.prototype.hasOwnProperty'
slice: 'Array.prototype.slice' |
Shortcuts to speed up the lookup time for native functions. | |
Constants | TAB = ' ' |
Tabs are two spaces for pretty printing. | TRAILING_WHITESPACE = /[ \t]+$/gm |
Trim out all trailing whitespace, so that the generated code plays nice with Git. | IDENTIFIER = /^[a-zA-Z\$_](\w|\$)*$/
NUMBER = /^(((\b0(x|X)[0-9a-fA-F]+)|((\b[0-9]+(\.[0-9]+)?|\.[0-9]+)(e[+\-]?[0-9]+)?)))\b$/i
SIMPLENUM = /^-?\d+$/ |
Keep these identifier regexes in sync with the Lexer. | IS_STRING = /^['"]/ |
Is a literal value a string? | |
Utility Functions | literal = (name) ->
new LiteralNode(name) |
Handy helper for a generating LiteralNode. | utility = (name) ->
ref = "__#{name}"
Scope.root.assign ref, UTILITIES[name]
ref
|
Helper for ensuring that utility functions are assigned at the top level. | undefined |