{throwSyntaxError} = require './helpers'
The CoffeeScript language has a good deal of optional syntax, implicit syntax, and shorthand syntax. This can greatly complicate a grammar and bloat the resulting parse table. Instead of making the parser handle it all, we take a series of passes over the token stream, using this Rewriter to convert shorthand into the unambiguous long form, add implicit indentation and parentheses, and generally clean things up.
{throwSyntaxError} = require './helpers'
Move attached comments from one token to another.
moveComments = (fromToken, toToken) ->
return unless fromToken.comments
if toToken.comments and toToken.comments.length isnt 0
unshiftedComments = []
for comment in fromToken.comments
if comment.unshift
unshiftedComments.push comment
else
toToken.comments.push comment
toToken.comments = unshiftedComments.concat toToken.comments
else
toToken.comments = fromToken.comments
delete fromToken.comments
Create a generated token: one that exists due to a use of implicit syntax. Optionally have this new token take the attached comments from another token.
generate = (tag, value, origin, commentsToken) ->
token = [tag, value]
token.generated = yes
token.origin = origin if origin
moveComments commentsToken, token if commentsToken
token
exports.Rewriter = class Rewriter
Rewrite the token stream in multiple passes, one logical filter at a time. This could certainly be changed into a single pass through the stream, with a big ol’ efficient switch, but it’s much nicer to work with like this. The order of these passes matters—indentation must be corrected before implicit parentheses can be wrapped around blocks of code.
rewrite: (@tokens) ->
Set environment variable DEBUG_TOKEN_STREAM
to true
to output token
debugging info. Also set DEBUG_REWRITTEN_TOKEN_STREAM
to true
to
output the token stream after it has been rewritten by this file.
if process?.env?.DEBUG_TOKEN_STREAM
console.log 'Initial token stream:' if process.env.DEBUG_REWRITTEN_TOKEN_STREAM
console.log (t[0] + '/' + t[1] + (if t.comments then '*' else '') for t in @tokens).join ' '
@removeLeadingNewlines()
@closeOpenCalls()
@closeOpenIndexes()
@normalizeLines()
@tagPostfixConditionals()
@addImplicitBracesAndParens()
@addParensToChainedDoIife()
@rescueStowawayComments()
@addLocationDataToGeneratedTokens()
@enforceValidCSXAttributes()
@fixOutdentLocationData()
if process?.env?.DEBUG_REWRITTEN_TOKEN_STREAM
console.log 'Rewritten token stream:' if process.env.DEBUG_TOKEN_STREAM
console.log (t[0] + '/' + t[1] + (if t.comments then '*' else '') for t in @tokens).join ' '
@tokens
Rewrite the token stream, looking one token ahead and behind. Allow the return value of the block to tell us how many tokens to move forwards (or backwards) in the stream, to make sure we don’t miss anything as tokens are inserted and removed, and the stream changes length under our feet.
scanTokens: (block) ->
{tokens} = this
i = 0
i += block.call this, token, i, tokens while token = tokens[i]
true
detectEnd: (i, condition, action, opts = {}) ->
{tokens} = this
levels = 0
while token = tokens[i]
return action.call this, token, i if levels is 0 and condition.call this, token, i
if token[0] in EXPRESSION_START
levels += 1
else if token[0] in EXPRESSION_END
levels -= 1
if levels < 0
return if opts.returnOnNegativeLevel
return action.call this, token, i
i += 1
i - 1
Leading newlines would introduce an ambiguity in the grammar, so we dispatch them here.
removeLeadingNewlines: ->
Find the index of the first non-TERMINATOR
token.
break for [tag], i in @tokens when tag isnt 'TERMINATOR'
return if i is 0
If there are any comments attached to the tokens we’re about to discard, shift them forward to what will become the new first token.
for leadingNewlineToken in @tokens[0...i]
moveComments leadingNewlineToken, @tokens[i]
Discard all the leading newline tokens.
@tokens.splice 0, i
The lexer has tagged the opening parenthesis of a method call. Match it with its paired close.
closeOpenCalls: ->
condition = (token, i) ->
token[0] in [')', 'CALL_END']
action = (token, i) ->
token[0] = 'CALL_END'
@scanTokens (token, i) ->
@detectEnd i + 1, condition, action if token[0] is 'CALL_START'
1
The lexer has tagged the opening bracket of an indexing operation call. Match it with its paired close.
closeOpenIndexes: ->
condition = (token, i) ->
token[0] in [']', 'INDEX_END']
action = (token, i) ->
token[0] = 'INDEX_END'
@scanTokens (token, i) ->
@detectEnd i + 1, condition, action if token[0] is 'INDEX_START'
1
Match tags in token stream starting at i
with pattern
.
pattern
may consist of strings (equality), an array of strings (one of)
or null (wildcard). Returns the index of the match or -1 if no match.
indexOfTag: (i, pattern...) ->
fuzz = 0
for j in [0 ... pattern.length]
continue if not pattern[j]?
pattern[j] = [pattern[j]] if typeof pattern[j] is 'string'
return -1 if @tag(i + j + fuzz) not in pattern[j]
i + j + fuzz - 1
Returns yes
if standing in front of something looking like
@<x>:
, <x>:
or <EXPRESSION_START><x>...<EXPRESSION_END>:
.
looksObjectish: (j) ->
return yes if @indexOfTag(j, '@', null, ':') isnt -1 or @indexOfTag(j, null, ':') isnt -1
index = @indexOfTag j, EXPRESSION_START
if index isnt -1
end = null
@detectEnd index + 1, ((token) -> token[0] in EXPRESSION_END), ((token, i) -> end = i)
return yes if @tag(end + 1) is ':'
no
Returns yes
if current line of tokens contain an element of tags on same
expression level. Stop searching at LINEBREAKS
or explicit start of
containing balanced expression.
findTagsBackwards: (i, tags) ->
backStack = []
while i >= 0 and (backStack.length or
@tag(i) not in tags and
(@tag(i) not in EXPRESSION_START or @tokens[i].generated) and
@tag(i) not in LINEBREAKS)
backStack.push @tag(i) if @tag(i) in EXPRESSION_END
backStack.pop() if @tag(i) in EXPRESSION_START and backStack.length
i -= 1
@tag(i) in tags
Look for signs of implicit calls and objects in the token stream and add them.
addImplicitBracesAndParens: ->
Track current balancing depth (both implicit and explicit) on stack.
stack = []
start = null
@scanTokens (token, i, tokens) ->
[tag] = token
[prevTag] = prevToken = if i > 0 then tokens[i - 1] else []
[nextTag] = nextToken = if i < tokens.length - 1 then tokens[i + 1] else []
stackTop = -> stack[stack.length - 1]
startIdx = i
Helper function, used for keeping track of the number of tokens consumed and spliced, when returning for getting a new token.
forward = (n) -> i - startIdx + n
Helper functions
isImplicit = (stackItem) -> stackItem?[2]?.ours
isImplicitObject = (stackItem) -> isImplicit(stackItem) and stackItem?[0] is '{'
isImplicitCall = (stackItem) -> isImplicit(stackItem) and stackItem?[0] is '('
inImplicit = -> isImplicit stackTop()
inImplicitCall = -> isImplicitCall stackTop()
inImplicitObject = -> isImplicitObject stackTop()
Unclosed control statement inside implicit parens (like class declaration or if-conditionals).
inImplicitControl = -> inImplicit() and stackTop()?[0] is 'CONTROL'
startImplicitCall = (idx) ->
stack.push ['(', idx, ours: yes]
tokens.splice idx, 0, generate 'CALL_START', '(', ['', 'implicit function call', token[2]], prevToken
endImplicitCall = ->
stack.pop()
tokens.splice i, 0, generate 'CALL_END', ')', ['', 'end of input', token[2]], prevToken
i += 1
startImplicitObject = (idx, startsLine = yes) ->
stack.push ['{', idx, sameLine: yes, startsLine: startsLine, ours: yes]
val = new String '{'
val.generated = yes
tokens.splice idx, 0, generate '{', val, token, prevToken
endImplicitObject = (j) ->
j = j ? i
stack.pop()
tokens.splice j, 0, generate '}', '}', token, prevToken
i += 1
implicitObjectContinues = (j) =>
nextTerminatorIdx = null
@detectEnd j,
(token) -> token[0] is 'TERMINATOR'
(token, i) -> nextTerminatorIdx = i
returnOnNegativeLevel: yes
return no unless nextTerminatorIdx?
@looksObjectish nextTerminatorIdx + 1
Don’t end an implicit call/object on next indent if any of these are in an argument/value.
if (
(inImplicitCall() or inImplicitObject()) and tag in CONTROL_IN_IMPLICIT or
inImplicitObject() and prevTag is ':' and tag is 'FOR'
)
stack.push ['CONTROL', i, ours: yes]
return forward(1)
if tag is 'INDENT' and inImplicit()
An INDENT
closes an implicit call unless
CONTROL
argument on the line. if prevTag not in ['=>', '->', '[', '(', ',', '{', 'ELSE', '=']
while inImplicitCall() or inImplicitObject() and prevTag isnt ':'
if inImplicitCall()
endImplicitCall()
else
endImplicitObject()
stack.pop() if inImplicitControl()
stack.push [tag, i]
return forward(1)
Straightforward start of explicit expression.
if tag in EXPRESSION_START
stack.push [tag, i]
return forward(1)
Close all implicit expressions inside of explicitly closed expressions.
if tag in EXPRESSION_END
while inImplicit()
if inImplicitCall()
endImplicitCall()
else if inImplicitObject()
endImplicitObject()
else
stack.pop()
start = stack.pop()
inControlFlow = =>
seenFor = @findTagsBackwards(i, ['FOR']) and @findTagsBackwards(i, ['FORIN', 'FOROF', 'FORFROM'])
controlFlow = seenFor or @findTagsBackwards i, ['WHILE', 'UNTIL', 'LOOP', 'LEADING_WHEN']
return no unless controlFlow
isFunc = no
tagCurrentLine = token[2].first_line
@detectEnd i,
(token, i) -> token[0] in LINEBREAKS
(token, i) ->
[prevTag, ,{first_line}] = tokens[i - 1] || []
isFunc = tagCurrentLine is first_line and prevTag in ['->', '=>']
returnOnNegativeLevel: yes
isFunc
Recognize standard implicit calls like f a, f() b, f? c, h[0] d etc. Added support for spread dots on the left side: f …a
if (tag in IMPLICIT_FUNC and token.spaced or
tag is '?' and i > 0 and not tokens[i - 1].spaced) and
(nextTag in IMPLICIT_CALL or
(nextTag is '...' and @tag(i + 2) in IMPLICIT_CALL and not @findTagsBackwards(i, ['INDEX_START', '['])) or
nextTag in IMPLICIT_UNSPACED_CALL and
not nextToken.spaced and not nextToken.newLine) and
not inControlFlow()
tag = token[0] = 'FUNC_EXIST' if tag is '?'
startImplicitCall i + 1
return forward(2)
Implicit call taking an implicit indented object as first argument.
f
a: b
c: d
Don’t accept implicit calls of this type, when on the same line as the control structures below as that may misinterpret constructs like:
if f
a: 1
as
if f(a: 1)
which is probably always unintended. Furthermore don’t allow this in literal arrays, as that creates grammatical ambiguities.
if tag in IMPLICIT_FUNC and
@indexOfTag(i + 1, 'INDENT') > -1 and @looksObjectish(i + 2) and
not @findTagsBackwards(i, ['CLASS', 'EXTENDS', 'IF', 'CATCH',
'SWITCH', 'LEADING_WHEN', 'FOR', 'WHILE', 'UNTIL'])
startImplicitCall i + 1
stack.push ['INDENT', i + 2]
return forward(3)
Implicit objects start here.
if tag is ':'
Go back to the (implicit) start of the object.
s = switch
when @tag(i - 1) in EXPRESSION_END then start[1]
when @tag(i - 2) is '@' then i - 2
else i - 1
startsLine = s <= 0 or @tag(s - 1) in LINEBREAKS or tokens[s - 1].newLine
Are we just continuing an already declared object?
if stackTop()
[stackTag, stackIdx] = stackTop()
if (stackTag is '{' or stackTag is 'INDENT' and @tag(stackIdx - 1) is '{') and
(startsLine or @tag(s - 1) is ',' or @tag(s - 1) is '{')
return forward(1)
startImplicitObject(s, !!startsLine)
return forward(2)
End implicit calls when chaining method calls like e.g.:
f ->
a
.g b, ->
c
.h a
and also
f a
.g b
.h a
Mark all enclosing objects as not sameLine
if tag in LINEBREAKS
for stackItem in stack by -1
break unless isImplicit stackItem
stackItem[2].sameLine = no if isImplicitObject stackItem
newLine = prevTag is 'OUTDENT' or prevToken.newLine
if tag in IMPLICIT_END or
(tag in CALL_CLOSERS and newLine) or
(tag in ['..', '...'] and @findTagsBackwards(i, ["INDEX_START"]))
while inImplicit()
[stackTag, stackIdx, {sameLine, startsLine}] = stackTop()
Close implicit calls when reached end of argument list
if inImplicitCall() and prevTag isnt ',' or
(prevTag is ',' and tag is 'TERMINATOR' and not nextTag?)
endImplicitCall()
Close implicit objects such as: return a: 1, b: 2 unless true
else if inImplicitObject() and sameLine and
tag isnt 'TERMINATOR' and prevTag isnt ':' and
not (tag in ['POST_IF', 'FOR', 'WHILE', 'UNTIL'] and startsLine and implicitObjectContinues(i + 1))
endImplicitObject()
Close implicit objects when at end of line, line didn’t end with a comma and the implicit object didn’t start the line or the next line doesn’t look like the continuation of an object.
else if inImplicitObject() and tag is 'TERMINATOR' and prevTag isnt ',' and
not (startsLine and @looksObjectish(i + 1))
endImplicitObject()
else
break
Close implicit object if comma is the last character and what comes after doesn’t look like it belongs. This is used for trailing commas and calls, like:
x =
a: b,
c: d,
e = 2
and
f a, b: c, d: e, f, g: h: i, j
if tag is ',' and not @looksObjectish(i + 1) and inImplicitObject() and not (@tag(i + 2) in ['FOROF', 'FORIN']) and
(nextTag isnt 'TERMINATOR' or not @looksObjectish(i + 2))
When nextTag is OUTDENT the comma is insignificant and should just be ignored so embed it in the implicit object.
When it isn’t the comma go on to play a role in a call or array further up the stack, so give it a chance.
offset = if nextTag is 'OUTDENT' then 1 else 0
while inImplicitObject()
endImplicitObject i + offset
return forward(1)
Make sure only strings and wrapped expressions are used in CSX attributes.
enforceValidCSXAttributes: ->
@scanTokens (token, i, tokens) ->
if token.csxColon
next = tokens[i + 1]
if next[0] not in ['STRING_START', 'STRING', '(']
throwSyntaxError 'expected wrapped or quoted JSX attribute', next[2]
return 1
Not all tokens survive processing by the parser. To avoid comments getting lost into the ether, find comments attached to doomed tokens and move them to a token that will make it to the other side.
rescueStowawayComments: ->
insertPlaceholder = (token, j, tokens, method) ->
tokens[method] generate 'TERMINATOR', '\n', tokens[j] unless tokens[j][0] is 'TERMINATOR'
tokens[method] generate 'JS', '', tokens[j], token
shiftCommentsForward = (token, i, tokens) ->
Find the next surviving token and attach this token’s comments to it, with a flag that we know to output such comments before that token’s own compilation. (Otherwise comments are output following the token they’re attached to.)
j = i
j++ while j isnt tokens.length and tokens[j][0] in DISCARDED
unless j is tokens.length or tokens[j][0] in DISCARDED
comment.unshift = yes for comment in token.comments
moveComments token, tokens[j]
return 1
else # All following tokens are doomed!
j = tokens.length - 1
insertPlaceholder token, j, tokens, 'push'
The generated tokens were added to the end, not inline, so we don’t skip.
return 1
shiftCommentsBackward = (token, i, tokens) ->
Find the last surviving token and attach this token’s comments to it.
j = i
j-- while j isnt -1 and tokens[j][0] in DISCARDED
unless j is -1 or tokens[j][0] in DISCARDED
moveComments token, tokens[j]
return 1
else # All previous tokens are doomed!
insertPlaceholder token, 0, tokens, 'unshift'
We added two tokens, so shift forward to account for the insertion.
return 3
@scanTokens (token, i, tokens) ->
return 1 unless token.comments
ret = 1
if token[0] in DISCARDED
This token won’t survive passage through the parser, so we need to rescue its attached tokens and redistribute them to nearby tokens. Comments that don’t start a new line can shift backwards to the last safe token, while other tokens should shift forward.
dummyToken = comments: []
j = token.comments.length - 1
until j is -1
if token.comments[j].newLine is no and token.comments[j].here is no
dummyToken.comments.unshift token.comments[j]
token.comments.splice j, 1
j--
if dummyToken.comments.length isnt 0
ret = shiftCommentsBackward dummyToken, i - 1, tokens
if token.comments.length isnt 0
shiftCommentsForward token, i, tokens
else
If any of this token’s comments start a line—there’s only
whitespace between the preceding newline and the start of the
comment—and this isn’t one of the special JS
tokens, then
shift this comment forward to precede the next valid token.
Block.compileComments
also has logic to make sure that
“starting new line” comments follow or precede the nearest
newline relative to the token that the comment is attached to,
but that newline might be inside a }
or )
or other generated
token that we really want this comment to output after. Therefore
we need to shift the comments here, avoiding such generated and
discarded tokens.
dummyToken = comments: []
j = token.comments.length - 1
until j is -1
if token.comments[j].newLine and not token.comments[j].unshift and
not (token[0] is 'JS' and token.generated)
dummyToken.comments.unshift token.comments[j]
token.comments.splice j, 1
j--
if dummyToken.comments.length isnt 0
ret = shiftCommentsForward dummyToken, i + 1, tokens
delete token.comments if token.comments?.length is 0
ret
Add location data to all tokens generated by the rewriter.
addLocationDataToGeneratedTokens: ->
@scanTokens (token, i, tokens) ->
return 1 if token[2]
return 1 unless token.generated or token.explicit
if token[0] is '{' and nextLocation=tokens[i + 1]?[2]
{first_line: line, first_column: column} = nextLocation
else if prevLocation = tokens[i - 1]?[2]
{last_line: line, last_column: column} = prevLocation
else
line = column = 0
token[2] =
first_line: line
first_column: column
last_line: line
last_column: column
return 1
OUTDENT
tokens should always be positioned at the last character of the
previous token, so that AST nodes ending in an OUTDENT
token end up with a
location corresponding to the last “real” token under the node.
fixOutdentLocationData: ->
@scanTokens (token, i, tokens) ->
return 1 unless token[0] is 'OUTDENT' or
(token.generated and token[0] is 'CALL_END') or
(token.generated and token[0] is '}')
prevLocationData = tokens[i - 1][2]
token[2] =
first_line: prevLocationData.last_line
first_column: prevLocationData.last_column
last_line: prevLocationData.last_line
last_column: prevLocationData.last_column
return 1
Add parens around a do
IIFE followed by a chained .
so that the
chaining applies to the executed function rather than the function
object (see #3736)
addParensToChainedDoIife: ->
condition = (token, i) ->
@tag(i - 1) is 'OUTDENT'
action = (token, i) ->
return unless token[0] in CALL_CLOSERS
@tokens.splice doIndex, 0, generate '(', '(', @tokens[doIndex]
@tokens.splice i + 1, 0, generate ')', ')', @tokens[i]
doIndex = null
@scanTokens (token, i, tokens) ->
return 1 unless token[1] is 'do'
doIndex = i
glyphIndex = i + 1
if @tag(i + 1) is 'PARAM_START'
glyphIndex = null
@detectEnd i + 1,
(token, i) -> @tag(i - 1) is 'PARAM_END'
(token, i) -> glyphIndex = i
return 1 unless glyphIndex? and @tag(glyphIndex) in ['->', '=>'] and @tag(glyphIndex + 1) is 'INDENT'
@detectEnd glyphIndex + 1, condition, action
return 2
Because our grammar is LALR(1), it can’t handle some single-line expressions that lack ending delimiters. The Rewriter adds the implicit blocks, so it doesn’t need to. To keep the grammar clean and tidy, trailing newlines within expressions are removed and the indentation tokens of empty blocks are added.
normalizeLines: ->
starter = indent = outdent = null
leading_switch_when = null
leading_if_then = null
Count THEN
tags
ifThens = []
condition = (token, i) ->
token[1] isnt ';' and token[0] in SINGLE_CLOSERS and
not (token[0] is 'TERMINATOR' and @tag(i + 1) in EXPRESSION_CLOSE) and
not (token[0] is 'ELSE' and
(starter isnt 'THEN' or (leading_if_then or leading_switch_when))) and
not (token[0] in ['CATCH', 'FINALLY'] and starter in ['->', '=>']) or
token[0] in CALL_CLOSERS and
(@tokens[i - 1].newLine or @tokens[i - 1][0] is 'OUTDENT')
action = (token, i) ->
ifThens.pop() if token[0] is 'ELSE' and starter is 'THEN'
@tokens.splice (if @tag(i - 1) is ',' then i - 1 else i), 0, outdent
closeElseTag = (tokens, i) =>
tlen = ifThens.length
return i unless tlen > 0
lastThen = ifThens.pop()
[, outdentElse] = @indentation tokens[lastThen]
Insert OUTDENT
to close inner IF
.
outdentElse[1] = tlen*2
tokens.splice(i, 0, outdentElse)
Insert OUTDENT
to close outer IF
.
outdentElse[1] = 2
tokens.splice(i + 1, 0, outdentElse)
Remove outdents from the end.
@detectEnd i + 2,
(token, i) -> token[0] in ['OUTDENT', 'TERMINATOR']
(token, i) ->
if @tag(i) is 'OUTDENT' and @tag(i + 1) is 'OUTDENT'
tokens.splice i, 2
i + 2
@scanTokens (token, i, tokens) ->
[tag] = token
conditionTag = tag in ['->', '=>'] and
@findTagsBackwards(i, ['IF', 'WHILE', 'FOR', 'UNTIL', 'SWITCH', 'WHEN', 'LEADING_WHEN', '[', 'INDEX_START']) and
not (@findTagsBackwards i, ['THEN', '..', '...'])
if tag is 'TERMINATOR'
if @tag(i + 1) is 'ELSE' and @tag(i - 1) isnt 'OUTDENT'
tokens.splice i, 1, @indentation()...
return 1
if @tag(i + 1) in EXPRESSION_CLOSE
tokens.splice i, 1
return 0
if tag is 'CATCH'
for j in [1..2] when @tag(i + j) in ['OUTDENT', 'TERMINATOR', 'FINALLY']
tokens.splice i + j, 0, @indentation()...
return 2 + j
if tag in ['->', '=>'] and (@tag(i + 1) is ',' or @tag(i + 1) is '.' and token.newLine)
[indent, outdent] = @indentation tokens[i]
tokens.splice i + 1, 0, indent, outdent
return 1
if tag in SINGLE_LINERS and @tag(i + 1) isnt 'INDENT' and
not (tag is 'ELSE' and @tag(i + 1) is 'IF') and
not conditionTag
starter = tag
[indent, outdent] = @indentation tokens[i]
indent.fromThen = true if starter is 'THEN'
if tag is 'THEN'
leading_switch_when = @findTagsBackwards(i, ['LEADING_WHEN']) and @tag(i + 1) is 'IF'
leading_if_then = @findTagsBackwards(i, ['IF']) and @tag(i + 1) is 'IF'
ifThens.push i if tag is 'THEN' and @findTagsBackwards(i, ['IF'])
ELSE
tag is not closed.
if tag is 'ELSE' and @tag(i - 1) isnt 'OUTDENT'
i = closeElseTag tokens, i
tokens.splice i + 1, 0, indent
@detectEnd i + 2, condition, action
tokens.splice i, 1 if tag is 'THEN'
return 1
return 1
Tag postfix conditionals as such, so that we can parse them with a different precedence.
tagPostfixConditionals: ->
original = null
condition = (token, i) ->
[tag] = token
[prevTag] = @tokens[i - 1]
tag is 'TERMINATOR' or (tag is 'INDENT' and prevTag not in SINGLE_LINERS)
action = (token, i) ->
if token[0] isnt 'INDENT' or (token.generated and not token.fromThen)
original[0] = 'POST_' + original[0]
@scanTokens (token, i) ->
return 1 unless token[0] is 'IF'
original = token
@detectEnd i + 1, condition, action
return 1
Generate the indentation tokens, based on another token on the same line.
indentation: (origin) ->
indent = ['INDENT', 2]
outdent = ['OUTDENT', 2]
if origin
indent.generated = outdent.generated = yes
indent.origin = outdent.origin = origin
else
indent.explicit = outdent.explicit = yes
[indent, outdent]
generate: generate
Look up a tag by token index.
tag: (i) -> @tokens[i]?[0]
List of the token pairs that must be balanced.
BALANCED_PAIRS = [
['(', ')']
['[', ']']
['{', '}']
['INDENT', 'OUTDENT'],
['CALL_START', 'CALL_END']
['PARAM_START', 'PARAM_END']
['INDEX_START', 'INDEX_END']
['STRING_START', 'STRING_END']
['REGEX_START', 'REGEX_END']
]
The inverse mappings of BALANCED_PAIRS
we’re trying to fix up, so we can
look things up from either end.
exports.INVERSES = INVERSES = {}
The tokens that signal the start/end of a balanced pair.
EXPRESSION_START = []
EXPRESSION_END = []
for [left, right] in BALANCED_PAIRS
EXPRESSION_START.push INVERSES[right] = left
EXPRESSION_END .push INVERSES[left] = right
Tokens that indicate the close of a clause of an expression.
EXPRESSION_CLOSE = ['CATCH', 'THEN', 'ELSE', 'FINALLY'].concat EXPRESSION_END
Tokens that, if followed by an IMPLICIT_CALL
, indicate a function invocation.
IMPLICIT_FUNC = ['IDENTIFIER', 'PROPERTY', 'SUPER', ')', 'CALL_END', ']', 'INDEX_END', '@', 'THIS']
If preceded by an IMPLICIT_FUNC
, indicates a function invocation.
IMPLICIT_CALL = [
'IDENTIFIER', 'CSX_TAG', 'PROPERTY', 'NUMBER', 'INFINITY', 'NAN'
'STRING', 'STRING_START', 'REGEX', 'REGEX_START', 'JS'
'NEW', 'PARAM_START', 'CLASS', 'IF', 'TRY', 'SWITCH', 'THIS'
'UNDEFINED', 'NULL', 'BOOL'
'UNARY', 'YIELD', 'AWAIT', 'UNARY_MATH', 'SUPER', 'THROW'
'@', '->', '=>', '[', '(', '{', '--', '++'
]
IMPLICIT_UNSPACED_CALL = ['+', '-']
Tokens that always mark the end of an implicit call for single-liners.
IMPLICIT_END = ['POST_IF', 'FOR', 'WHILE', 'UNTIL', 'WHEN', 'BY',
'LOOP', 'TERMINATOR']
Single-line flavors of block expressions that have unclosed endings. The grammar can’t disambiguate them, so we insert the implicit indentation.
SINGLE_LINERS = ['ELSE', '->', '=>', 'TRY', 'FINALLY', 'THEN']
SINGLE_CLOSERS = ['TERMINATOR', 'CATCH', 'FINALLY', 'ELSE', 'OUTDENT', 'LEADING_WHEN']
Tokens that end a line.
LINEBREAKS = ['TERMINATOR', 'INDENT', 'OUTDENT']
Tokens that close open calls when they follow a newline.
CALL_CLOSERS = ['.', '?.', '::', '?::']
Tokens that prevent a subsequent indent from ending implicit calls/objects
CONTROL_IN_IMPLICIT = ['IF', 'TRY', 'FINALLY', 'CATCH', 'CLASS', 'SWITCH']
Tokens that are swallowed up by the parser, never leading to code generation.
You can spot these in grammar.coffee
because the o
function second
argument doesn’t contain a new
call for these tokens.
STRING_START
isn’t on this list because its locationData
matches that of
the node that becomes StringWithInterpolations
, and therefore
addDataToNode
attaches STRING_START
’s tokens to that node.
DISCARDED = ['(', ')', '[', ']', '{', '}', '.', '..', '...', ',', '=', '++', '--', '?',
'AS', 'AWAIT', 'CALL_START', 'CALL_END', 'DEFAULT', 'ELSE', 'EXTENDS', 'EXPORT',
'FORIN', 'FOROF', 'FORFROM', 'IMPORT', 'INDENT', 'INDEX_SOAK', 'LEADING_WHEN',
'OUTDENT', 'PARAM_END', 'REGEX_START', 'REGEX_END', 'RETURN', 'STRING_END', 'THROW',
'UNARY', 'YIELD'
].concat IMPLICIT_UNSPACED_CALL.concat IMPLICIT_END.concat CALL_CLOSERS.concat CONTROL_IN_IMPLICIT