jashkenas--coffeescript/lib/coffee_script/nodes.rb

1037 lines
34 KiB
Ruby

module CoffeeScript
# The abstract base class for all CoffeeScript nodes.
# All nodes are implement a "compile_node" method, which performs the
# code generation for that node. To compile a node, call the "compile"
# method, which wraps "compile_node" in some extra smarts, to know when the
# generated code should be wrapped up in a closure. An options hash is passed
# and cloned throughout, containing messages from higher in the AST,
# information about the current scope, and indentation level.
class Node
# Tabs are two spaces for pretty-printing.
TAB = ' '
# Tag this node as a statement, meaning that it can't be used directly as
# the result of an expression.
def self.statement
class_eval "def statement?; true; end"
end
# Tag this node as a statement that cannot be transformed into an expression.
# (break, continue, etc.) It doesn't make sense to try to transform it.
def self.statement_only
statement
class_eval "def statement_only?; true; end"
end
# This node needs to know if it's being compiled as a top-level statement,
# in order to compile without special expression conversion.
def self.top_sensitive
class_eval "def top_sensitive?; true; end"
end
# Provide a quick implementation of a children method.
def self.children(*attributes)
attr_reader(*attributes)
attrs = attributes.map {|a| "[@#{a}]" }.join(', ')
class_eval "def children; [#{attrs}].flatten.compact; end"
end
def write(code)
puts "#{self.class.to_s}:\n#{@options.inspect}\n#{code}\n\n" if ENV['VERBOSE']
code
end
# This is extremely important -- we convert JS statements into expressions
# by wrapping them in a closure, only if it's possible, and we're not at
# the top level of a block (which would be unnecessary), and we haven't
# already been asked to return the result.
def compile(o={})
@options = o.dup
@indent = o[:indent]
top = self.top_sensitive? ? @options[:top] : @options.delete(:top)
closure = statement? && !statement_only? && !top && !@options[:return] && !self.is_a?(CommentNode)
closure &&= !contains? {|n| n.statement_only? }
closure ? compile_closure(@options) : compile_node(@options)
end
# Statements converted into expressions share scope with their parent
# closure, to preserve JavaScript-style lexical scope.
def compile_closure(o={})
@indent = o[:indent]
ClosureNode.wrap(self).compile(o.merge(:shared_scope => o[:scope]))
end
# Quick short method for the current indentation level, plus tabbing in.
def idt(tabs=0)
@indent + (TAB * tabs)
end
# Does this node, or any of its children, contain a node of a certain kind?
def contains?(&block)
children.each do |node|
return true if yield(node)
return true if node.is_a?(Node) && node.contains?(&block)
end
false
end
# Default implementations of the common node methods.
def unwrap; self; end
def children; []; end
def statement?; false; end
def statement_only?; false; end
def top_sensitive?; false; end
end
# A collection of nodes, each one representing an expression.
class Expressions < Node
statement
children :expressions
attr_accessor :function
TRAILING_WHITESPACE = /\s+$/
# Wrap up a node as an Expressions, unless it already is.
def self.wrap(*nodes)
return nodes[0] if nodes.length == 1 && nodes[0].is_a?(Expressions)
Expressions.new(*nodes)
end
def initialize(*nodes)
@expressions = nodes.flatten
end
# Tack an expression on to the end of this expression list.
def <<(node)
@expressions << node
self
end
# Tack an expression on to the beginning of this expression list.
def unshift(node)
@expressions.unshift(node)
self
end
# If this Expressions consists of a single node, pull it back out.
def unwrap
@expressions.length == 1 ? @expressions.first : self
end
# Is this an empty block of code?
def empty?
@expressions.empty?
end
# Is the node last in this block of expressions?
def last?(node)
@last_index ||= @expressions.last.is_a?(CommentNode) ? -2 : -1
node == @expressions[@last_index]
end
def compile(o={})
o[:scope] ? super(o) : compile_root(o)
end
# Compile each expression in the Expressions body.
def compile_node(o={})
write(@expressions.map {|n| compile_expression(n, o.dup) }.join("\n"))
end
# If this is the top-level Expressions, wrap everything in a safety closure.
def compile_root(o={})
indent = o[:no_wrap] ? '' : TAB
@indent = indent
o.merge!(:indent => indent, :scope => Scope.new(nil, self, nil))
code = o[:globals] ? compile_node(o) : compile_with_declarations(o)
code.gsub!(TRAILING_WHITESPACE, '')
write(o[:no_wrap] ? code : "(function(){\n#{code}\n})();")
end
# Compile the expressions body, with declarations of all inner variables
# pushed up to the top.
def compile_with_declarations(o={})
code = compile_node(o)
args = self.contains? {|n| n.is_a?(ValueNode) && n.arguments? }
argv = args && o[:scope].check('arguments') ? '' : 'var '
code = "#{idt}#{argv}arguments = Array.prototype.slice.call(arguments, 0);\n#{code}" if args
code = "#{idt}var #{o[:scope].compiled_assignments};\n#{code}" if o[:scope].assignments?(self)
code = "#{idt}var #{o[:scope].compiled_declarations};\n#{code}" if o[:scope].declarations?(self)
write(code)
end
# Compiles a single expression within the expressions body.
def compile_expression(node, o)
@indent = o[:indent]
stmt = node.statement?
# We need to return the result if this is the last node in the expressions body.
returns = o.delete(:return) && last?(node) && !node.statement_only?
# Return the regular compile of the node, unless we need to return the result.
return "#{stmt ? '' : idt}#{node.compile(o.merge(:top => true))}#{stmt ? '' : ';'}" unless returns
# If it's a statement, the node knows how to return itself.
return node.compile(o.merge(:return => true)) if node.statement?
# Otherwise, we can just return the value of the expression.
return "#{idt}return #{node.compile(o)};"
end
end
# Literals are static values that can be passed through directly into
# JavaScript without translation, eg.: strings, numbers, true, false, null...
class LiteralNode < Node
children :value
# Values of a literal node that much be treated as a statement -- no
# sense returning or assigning them.
STATEMENTS = ['break', 'continue']
# Wrap up a compiler-generated string as a LiteralNode.
def self.wrap(string)
self.new(Value.new(string))
end
def initialize(value)
@value = value
end
def statement?
STATEMENTS.include?(@value.to_s)
end
alias_method :statement_only?, :statement?
def compile_node(o)
indent = statement? ? idt : ''
ending = statement? ? ';' : ''
"#{indent}#{@value}#{ending}"
end
end
# Return an expression, or wrap it in a closure and return it.
class ReturnNode < Node
statement_only
children :expression
def initialize(expression)
@expression = expression
end
def compile_node(o)
return write(@expression.compile(o.merge(:return => true))) if @expression.statement?
compiled = @expression.compile(o)
write("#{idt}return #{compiled};")
end
end
# A value, indexed or dotted into, or vanilla.
class ValueNode < Node
children :base, :properties
attr_reader :last, :source
# Soak up undefined properties and call attempts.
SOAK = " == undefined ? undefined : "
def initialize(base, properties=[])
@base, @properties = base, [properties].flatten
end
def <<(other)
@properties << other
self
end
def properties?
return !@properties.empty? || @base.is_a?(ThisNode)
end
def array?
@base.is_a?(ArrayNode) && !properties?
end
def object?
@base.is_a?(ObjectNode) && !properties?
end
def splice?
properties? && @properties.last.is_a?(SliceNode)
end
def arguments?
@base.to_s == 'arguments'
end
def unwrap
@properties.empty? ? @base : self
end
# Values are statements if their base is a statement.
def statement?
@base.is_a?(Node) && @base.statement? && !properties?
end
def compile_node(o)
soaked = false
only = o.delete(:only_first)
props = only ? @properties[0...-1] : @properties
baseline = @base.compile(o)
parts = [baseline.dup]
props.each do |prop|
if prop.is_a?(AccessorNode) && prop.soak
soaked = true
if @base.is_a?(CallNode) && prop == props.first
temp = o[:scope].free_variable
parts[-1] = "(#{temp} = #{baseline})#{SOAK}#{baseline = temp.to_s + prop.compile(o)}"
else
parts[-1] << "#{SOAK}#{baseline += prop.compile(o)}"
end
else
part = prop.compile(o)
baseline += part
parts << part
end
end
@last = parts.last
@source = parts.length > 1 ? parts[0...-1].join('') : nil
code = parts.join('').gsub(')())', '()))')
write(soaked ? "(#{code})" : code)
end
end
# Pass through CoffeeScript comments into JavaScript comments at the
# same position.
class CommentNode < Node
statement
def initialize(lines)
@lines = lines.value
end
def compile_node(o={})
delimiter = "\n#{idt}//"
write("#{delimiter}#{@lines.join(delimiter)}")
end
end
# Node for a function invocation. Takes care of converting super() calls into
# calls against the prototype's function of the same name.
class CallNode < Node
children :variable, :arguments
def initialize(variable, arguments=[])
@variable, @arguments = variable, arguments
@prefix = ''
end
def new_instance
@prefix = "new "
self
end
def <<(argument)
@arguments << argument
self
end
# Compile a vanilla function call.
def compile_node(o)
return write(compile_splat(o)) if @arguments.any? {|a| a.is_a?(SplatNode) }
args = @arguments.map{|a| a.compile(o) }.join(', ')
return write(compile_super(args, o)) if @variable == 'super'
write("#{@prefix}#{@variable.compile(o)}(#{args})")
end
# Compile a call against the superclass's implementation of the current function.
def compile_super(args, o)
methname = o[:scope].function.name
arg_part = args.empty? ? '' : ", #{args}"
meth = o[:scope].function.proto ?
"#{o[:scope].function.proto}.__superClass__.#{methname}" :
"#{methname}.__superClass__.constructor"
"#{meth}.call(this#{arg_part})"
end
# Compile a function call being passed variable arguments.
def compile_splat(o)
meth = @variable.compile(o)
obj = @variable.source || 'this'
args = @arguments.map do |arg|
code = arg.compile(o)
code = arg.is_a?(SplatNode) ? code : "[#{code}]"
arg.equal?(@arguments.first) ? code : ".concat(#{code})"
end
"#{@prefix}#{meth}.apply(#{obj}, #{args.join('')})"
end
# If the code generation wished to use the result of a function call
# in multiple places, ensure that the function is only ever called once.
def compile_reference(o)
reference = o[:scope].free_variable
call = ParentheticalNode.new(AssignNode.new(reference, self))
return call, reference
end
end
# Node to extend an object's prototype with an ancestor object.
# After goog.inherits from the Closure Library.
class ExtendsNode < Node
children :sub_object, :super_object
statement
def initialize(sub_object, super_object)
@sub_object, @super_object = sub_object, super_object
end
# Hooking one constructor into another's prototype chain.
def compile_node(o={})
constructor = o[:scope].free_variable
sub, sup = @sub_object.compile(o), @super_object.compile(o)
"#{idt}#{constructor} = function(){};\n#{idt}" +
"#{constructor}.prototype = #{sup}.prototype;\n#{idt}" +
"#{sub}.__superClass__ = #{sup}.prototype;\n#{idt}" +
"#{sub}.prototype = new #{constructor}();\n#{idt}" +
"#{sub}.prototype.constructor = #{sub};"
end
end
# A dotted accessor into a part of a value, or the :: shorthand for
# an accessor into the object's prototype.
class AccessorNode < Node
children :name
attr_reader :soak
def initialize(name, tag=nil)
@name = name
@prototype = tag == :prototype
@soak = tag == :soak
end
def compile_node(o)
proto = @prototype ? "prototype." : ''
write(".#{proto}#{@name}")
end
end
# An indexed accessor into a part of an array or object.
class IndexNode < Node
children :index
def initialize(index)
@index = index
end
def compile_node(o)
write("[#{@index.compile(o)}]")
end
end
# A this-reference, using '@'.
class ThisNode < Node
def initialize(property=nil)
@property = property
end
def compile_node(o)
prop = @property ? ".#{@property}" : ''
write("this#{prop}")
end
end
# A range literal. Ranges can be used to extract portions (slices) of arrays,
# or to specify a range for list comprehensions.
class RangeNode < Node
children :from, :to
def initialize(from, to, exclusive=false)
@from, @to, @exclusive = from, to, exclusive
end
def exclusive?
@exclusive
end
def compile_variables(o)
@indent = o[:indent]
@from_var, @to_var = o[:scope].free_variable, o[:scope].free_variable
from_val, to_val = @from.compile(o), @to.compile(o)
write("#{@from_var} = #{from_val}; #{@to_var} = #{to_val};\n#{idt}")
end
def compile_node(o)
return compile_array(o) unless o[:index]
idx, step = o.delete(:index), o.delete(:step)
vars = "#{idx}=#{@from_var}"
step = step ? step.compile(o) : '1'
equals = @exclusive ? '' : '='
intro = "(#{@from_var} <= #{@to_var} ? #{idx}"
compare = "#{intro} <#{equals} #{@to_var} : #{idx} >#{equals} #{@to_var})"
incr = "#{intro} += #{step} : #{idx} -= #{step})"
write("#{vars}; #{compare}; #{incr}")
end
# Expand the range into the equivalent array, if it's not being used as
# part of a comprehension, slice, or splice.
# TODO: This generates pretty ugly code ... shrink it.
def compile_array(o)
body = Expressions.wrap(LiteralNode.wrap('i'))
arr = Expressions.wrap(ForNode.new(body, {:source => ValueNode.new(self)}, Value.new('i')))
ParentheticalNode.new(CallNode.new(CodeNode.new([], arr))).compile(o)
end
end
# An array slice literal. Unlike JavaScript's Array#slice, the second parameter
# specifies the index of the end of the slice (just like the first parameter)
# is the index of the beginning.
class SliceNode < Node
children :range
def initialize(range)
@range = range
end
def compile_node(o)
from = @range.from.compile(o)
to = @range.to.compile(o)
plus_part = @range.exclusive? ? '' : ' + 1'
write(".slice(#{from}, #{to}#{plus_part})")
end
end
# An object literal.
class ObjectNode < Node
children :properties
alias_method :objects, :properties
def initialize(properties = [])
@properties = properties
end
# All the mucking about with commas is to make sure that CommentNodes and
# AssignNodes get interleaved correctly, with no trailing commas or
# commas affixed to comments. TODO: Extract this and add it to ArrayNode.
def compile_node(o)
o[:indent] = idt(1)
joins = Hash.new("\n")
non_comments = @properties.select {|p| !p.is_a?(CommentNode) }
non_comments.each {|p| joins[p] = p == non_comments.last ? "\n" : ",\n" }
props = @properties.map { |prop|
join = joins[prop]
join = '' if prop == @properties.last
indent = prop.is_a?(CommentNode) ? '' : idt(1)
"#{indent}#{prop.compile(o)}#{join}"
}.join('')
write("{\n#{props}\n#{idt}}")
end
end
# An array literal.
class ArrayNode < Node
children :objects
def initialize(objects=[])
@objects = objects
end
def compile_node(o)
o[:indent] = idt(1)
objects = @objects.map { |obj|
code = obj.compile(o)
obj.is_a?(CommentNode) ? "\n#{code}\n#{o[:indent]}" :
obj == @objects.last ? code : "#{code}, "
}.join('')
ending = objects.include?("\n") ? "\n#{idt}]" : ']'
write("[#{objects}#{ending}")
end
end
# A faux-node that is never created by the grammar, but is used during
# code generation to generate a quick "array.push(value)" tree of nodes.
class PushNode
def self.wrap(array, expressions)
expr = expressions.unwrap
return expressions if expr.statement_only? || expr.contains? {|n| n.statement_only? }
Expressions.wrap(CallNode.new(
ValueNode.new(LiteralNode.new(array), [AccessorNode.new(Value.new('push'))]),
[expr]
))
end
end
# A faux-node used to wrap an expressions body in a closure.
class ClosureNode
def self.wrap(expressions, statement=false)
func = ParentheticalNode.new(CodeNode.new([], Expressions.wrap(expressions)))
call = CallNode.new(ValueNode.new(func, AccessorNode.new(Value.new('call'))), [Value.new('this')])
statement ? Expressions.wrap(call) : call
end
end
# Setting the value of a local variable, or the value of an object property.
class AssignNode < Node
top_sensitive
children :variable, :value
PROTO_ASSIGN = /\A(\S+)\.prototype/
LEADING_DOT = /\A\.(prototype\.)?/
def initialize(variable, value, context=nil)
@variable, @value, @context = variable, value, context
end
def value?
@variable.is_a?(ValueNode)
end
def statement?
value? && (@variable.array? || @variable.object?)
end
def compile_node(o)
top = o.delete(:top)
return compile_pattern_match(o) if statement?
return compile_splice(o) if value? && @variable.splice?
stmt = o.delete(:as_statement)
name = @variable.compile(o)
last = value? ? @variable.last.to_s.sub(LEADING_DOT, '') : name
proto = name[PROTO_ASSIGN, 1]
if @value.is_a?(CodeNode)
@value.name = last if last.match(Lexer::IDENTIFIER)
@value.proto = proto if proto
end
return write("#{name}: #{@value.compile(o)}") if @context == :object
o[:scope].find(name) unless value? && @variable.properties?
val = "#{name} = #{@value.compile(o)}"
return write("#{idt}#{val};") if stmt
val = "(#{val})" if !top || o[:return]
val = "#{idt}return #{val}" if o[:return]
write(val)
end
# Implementation of recursive pattern matching, when assigning array or
# object literals to a value. Peeks at their properties to assign inner names.
# See: http://wiki.ecmascript.org/doku.php?id=harmony:destructuring
def compile_pattern_match(o)
val_var = o[:scope].free_variable
assigns = ["#{idt}#{val_var} = #{@value.compile(o)};"]
o.merge!(:top => true, :as_statement => true)
@variable.base.objects.each_with_index do |obj, i|
obj, i = obj.value, obj.variable.base if @variable.object?
access_class = @variable.array? ? IndexNode : AccessorNode
if obj.is_a?(SplatNode)
val = LiteralNode.wrap(obj.compile_value(o, val_var, @variable.base.objects.index(obj)))
else
val = ValueNode.new(val_var, [access_class.new(Value.new(i.to_s))])
end
assigns << AssignNode.new(obj, val).compile(o)
end
write(assigns.join("\n"))
end
def compile_splice(o)
var = @variable.compile(o.merge(:only_first => true))
range = @variable.properties.last.range
plus = range.exclusive? ? '' : ' + 1'
from = range.from.compile(o)
to = "#{range.to.compile(o)} - #{from}#{plus}"
write("#{var}.splice.apply(#{var}, [#{from}, #{to}].concat(#{@value.compile(o)}))")
end
end
# A function definition. The only node that creates a new Scope.
# A CodeNode does not have any children -- they're within the new scope.
class CodeNode < Node
top_sensitive
attr_reader :params, :body, :bound
attr_accessor :name, :proto
def initialize(params, body, tag=nil)
@params = params
@body = body
@bound = tag == :boundfunc
end
def compile_node(o)
shared_scope = o.delete(:shared_scope)
top = o.delete(:top)
o[:scope] = shared_scope || Scope.new(o[:scope], @body, self)
o[:return] = true
o[:top] = true
o[:indent] = idt(@bound ? 2 : 1)
o.delete(:no_wrap)
o.delete(:globals)
if @params.last.is_a?(SplatNode)
splat = @params.pop
splat.index = @params.length
@body.unshift(splat)
end
@params.each {|id| o[:scope].parameter(id.to_s) }
code = @body.empty? ? "" : "\n#{@body.compile_with_declarations(o)}\n"
name_part = @name ? " #{@name}" : ''
func = "function#{@bound ? '' : name_part}(#{@params.join(', ')}) {#{code}#{idt(@bound ? 1 : 0)}}"
func = "(#{func})" if top && !@bound
return write(func) unless @bound
inner = "(function#{name_part}() {\n#{idt(2)}return __func.apply(__this, arguments);\n#{idt(1)}});"
write("(function(__this) {\n#{idt(1)}var __func = #{func};\n#{idt(1)}return #{inner}\n#{idt}})(this)")
end
end
# A splat, either as a parameter to a function, an argument to a call,
# or in a destructuring assignment.
class SplatNode < Node
children :name
attr_accessor :index
def initialize(name)
@name = name
end
def compile_node(o={})
write(@index ? compile_param(o) : @name.compile(o))
end
def compile_param(o)
o[:scope].find(@name)
"#{@name} = Array.prototype.slice.call(arguments, #{@index})"
end
def compile_value(o, name, index)
"Array.prototype.slice.call(#{name}, #{index})"
end
end
# A while loop, the only sort of low-level loop exposed by CoffeeScript. From
# it, all other loops can be manufactured.
class WhileNode < Node
top_sensitive
children :condition, :body
statement
def initialize(condition, body)
@condition, @body = condition, body
end
def compile_node(o)
returns = o.delete(:return)
top = o.delete(:top) && !returns
o[:indent] = idt(1)
o[:top] = true
cond = @condition.compile(o)
set = ''
if !top
rvar = o[:scope].free_variable
set = "#{idt}#{rvar} = [];\n"
@body = PushNode.wrap(rvar, @body)
end
post = returns ? "\n#{idt}return #{rvar};" : ''
return write("#{set}#{idt}while (#{cond}) null;#{post}") if @body.nil?
write("#{set}#{idt}while (#{cond}) {\n#{@body.compile(o)}\n#{idt}}#{post}")
end
end
# Simple Arithmetic and logical operations. Performs some conversion from
# CoffeeScript operations into their JavaScript equivalents.
class OpNode < Node
children :first, :second
attr_reader :operator
attr_accessor :second
CONVERSIONS = {
:== => "===",
:'!=' => "!==",
:and => '&&',
:or => '||',
:is => '===',
:isnt => "!==",
:not => '!'
}
CHAINABLE = [:<, :>, :>=, :<=, :===, :'!==']
ASSIGNMENT = [:'||=', :'&&=', :'?=']
PREFIX_OPERATORS = [:typeof, :delete]
def initialize(operator, first, second=nil, flip=false)
@first, @second, @flip = first, second, flip
@operator = CONVERSIONS[operator.to_sym] || operator
end
def unary?
@second.nil?
end
def chainable?
CHAINABLE.include?(operator.to_sym)
end
def compile_node(o)
return write(compile_chain(o)) if chainable? && @first.unwrap.is_a?(OpNode) && @first.unwrap.chainable?
return write(compile_assignment(o)) if ASSIGNMENT.include?(@operator.to_sym)
return write(compile_unary(o)) if unary?
return write(compile_existence(o)) if @operator == '?'
write("#{@first.compile(o)} #{@operator} #{@second.compile(o)}")
end
# Mimic Python's chained comparisons. See:
# http://docs.python.org/reference/expressions.html#notin
def compile_chain(o)
shared = @first.unwrap.second
@first.second, shared = *shared.compile_reference(o) if shared.is_a?(CallNode)
"(#{@first.compile(o)}) && (#{shared.compile(o)} #{@operator} #{@second.compile(o)})"
end
def compile_assignment(o)
first, second = @first.compile(o), @second.compile(o)
o[:scope].find(first) if @first.unwrap.is_a?(Value)
return "#{first} = #{ExistenceNode.compile_test(o, @first)} ? #{first} : #{second}" if @operator == '?='
"#{first} = #{first} #{@operator[0..1]} #{second}"
end
def compile_existence(o)
first, second = @first.compile(o), @second.compile(o)
"#{ExistenceNode.compile_test(o, @first)} ? #{first} : #{second}"
end
def compile_unary(o)
space = PREFIX_OPERATORS.include?(@operator.to_sym) ? ' ' : ''
parts = [@operator.to_s, space, @first.compile(o)]
parts.reverse! if @flip
parts.join('')
end
end
# A try/catch/finally block.
class TryNode < Node
children :try, :recovery, :finally
attr_reader :error
statement
def initialize(try, error, recovery, finally=nil)
@try, @error, @recovery, @finally = try, error, recovery, finally
end
def compile_node(o)
o[:indent] = idt(1)
o[:top] = true
error_part = @error ? " (#{@error}) " : ' '
catch_part = @recovery && " catch#{error_part}{\n#{@recovery.compile(o)}\n#{idt}}"
finally_part = @finally && " finally {\n#{@finally.compile(o.merge(:return => nil))}\n#{idt}}"
write("#{idt}try {\n#{@try.compile(o)}\n#{idt}}#{catch_part}#{finally_part}")
end
end
# Throw an exception.
class ThrowNode < Node
children :expression
statement_only
def initialize(expression)
@expression = expression
end
def compile_node(o)
write("#{idt}throw #{@expression.compile(o)};")
end
end
# Check an expression for existence (meaning not null or undefined).
class ExistenceNode < Node
children :expression
def self.compile_test(o, variable)
first, second = variable, variable
first, second = *variable.compile_reference(o) if variable.is_a?(CallNode)
"(typeof #{first.compile(o)} !== \"undefined\" && #{second.compile(o)} !== null)"
end
def initialize(expression)
@expression = expression
end
def compile_node(o)
write(ExistenceNode.compile_test(o, @expression))
end
end
# An extra set of parentheses, specified explicitly in the source.
class ParentheticalNode < Node
children :expressions
def initialize(expressions, line=nil)
@expressions = expressions.unwrap
@line = line
end
def compile_node(o)
compiled = @expressions.compile(o)
compiled = compiled[0...-1] if compiled[-1..-1] == ';'
write("(#{compiled})")
end
end
# The replacement for the for loop is an array comprehension (that compiles)
# into a for loop. Also acts as an expression, able to return the result
# of the comprehenion. Unlike Python array comprehensions, it's able to pass
# the current index of the loop as a second parameter.
class ForNode < Node
top_sensitive
children :body, :source, :filter
attr_reader :name, :index, :step
statement
def initialize(body, source, name, index=nil)
@body, @name, @index = body, name, index
@source = source[:source]
@filter = source[:filter]
@step = source[:step]
@object = !!source[:object]
@name, @index = @index, @name if @object
end
def compile_node(o)
top_level = o.delete(:top) && !o[:return]
range = @source.is_a?(ValueNode) && @source.base.is_a?(RangeNode) && @source.properties.empty?
source = range ? @source.base : @source
scope = o[:scope]
name_found = @name && scope.find(@name)
index_found = @index && scope.find(@index)
body_dent = idt(1)
rvar = scope.free_variable unless top_level
svar = scope.free_variable
ivar = range ? name : @index ? @index : scope.free_variable
var_part = ''
body = Expressions.wrap(@body)
if range
index_var = scope.free_variable
source_part = source.compile_variables(o)
for_part = "#{index_var}=0, #{source.compile(o.merge(:index => ivar, :step => @step))}, #{index_var}++"
else
index_var = nil
source_part = "#{svar} = #{@source.compile(o)};\n#{idt}"
step_part = @step ? "#{ivar} += #{@step.compile(o)}" : "#{ivar}++"
for_part = @object ? "#{ivar} in #{svar}" : "#{ivar} = 0; #{ivar} < #{svar}.length; #{step_part}"
var_part = "#{body_dent}#{@name} = #{svar}[#{ivar}];\n" if @name
end
set_result = rvar ? "#{idt}#{rvar} = []; " : idt
return_result = rvar || ''
body = ClosureNode.wrap(body, true) if top_level && contains? {|n| n.is_a? CodeNode }
body = PushNode.wrap(rvar, body) unless top_level
if o[:return]
return_result = "return #{return_result}"
o.delete(:return)
body = IfNode.new(@filter, body, nil, :statement => true) if @filter
elsif @filter
body = Expressions.wrap(IfNode.new(@filter, body))
end
if @object
o[:scope].assign("__hasProp", "Object.prototype.hasOwnProperty", true)
body = Expressions.wrap(IfNode.new(
CallNode.new(
ValueNode.new(LiteralNode.wrap("__hasProp"), [AccessorNode.new(Value.new('call'))]),
[LiteralNode.wrap(svar), LiteralNode.wrap(ivar)]
),
Expressions.wrap(body), nil, {:statement => true}
))
end
return_result = "\n#{idt}#{return_result};" unless top_level
body = body.compile(o.merge(:indent => body_dent, :top => true))
vars = range ? @name : "#{@name}, #{ivar}"
return write(set_result + source_part + "for (#{for_part}) {\n#{var_part}#{body}\n#{idt}}\n#{idt}#{return_result}")
end
end
# If/else statements. Switch/whens get compiled into these. Acts as an
# expression by pushing down requested returns to the expression bodies.
# Single-expression IfNodes are compiled into ternary operators if possible,
# because ternaries are first-class returnable assignable expressions.
class IfNode < Node
children :condition, :body, :else_body
def initialize(condition, body, else_body=nil, tags={})
@condition = condition
@body = body && body.unwrap
@else_body = else_body && else_body.unwrap
@tags = tags
@multiple = true if @condition.is_a?(Array)
@condition = OpNode.new("!", ParentheticalNode.new(@condition)) if @tags[:invert]
end
def <<(else_body)
eb = else_body.unwrap
@else_body ? @else_body << eb : @else_body = eb
self
end
def add_comment(comment)
@comment = comment
self
end
def force_statement
@tags[:statement] = true
self
end
# Rewrite a chain of IfNodes with their switch condition for equality.
def rewrite_condition(expression)
@condition = @multiple ? @condition.map {|c| OpNode.new("is", expression, c) } :
OpNode.new("is", expression, @condition)
@else_body.rewrite_condition(expression) if chain?
self
end
# Rewrite a chain of IfNodes to add a default case as the final else.
def add_else(exprs)
chain? ? @else_body.add_else(exprs) : @else_body = (exprs && exprs.unwrap)
self
end
# If the else_body is an IfNode itself, then we've got an if-else chain.
def chain?
@chain ||= @else_body && @else_body.is_a?(IfNode)
end
# The IfNode only compiles into a statement if either of the bodies needs
# to be a statement.
def statement?
@is_statement ||= !!(@comment || @tags[:statement] || @body.statement? || (@else_body && @else_body.statement?))
end
def compile_condition(o)
[@condition].flatten.map {|c| c.compile(o) }.join(' || ')
end
def compile_node(o)
write(statement? ? compile_statement(o) : compile_ternary(o))
end
# Compile the IfNode as a regular if-else statement. Flattened chains
# force sub-else bodies into statement form.
def compile_statement(o)
child = o.delete(:chain_child)
cond_o = o.dup
cond_o.delete(:return)
o[:indent] = idt(1)
o[:top] = true
if_dent = child ? '' : idt
com_dent = child ? idt : ''
prefix = @comment ? @comment.compile(cond_o) + "\n#{com_dent}" : ''
body = Expressions.wrap(@body).compile(o)
if_part = "#{prefix}#{if_dent}if (#{compile_condition(cond_o)}) {\n#{body}\n#{idt}}"
return if_part unless @else_body
else_part = chain? ?
" else #{@else_body.compile(o.merge(:indent => idt, :chain_child => true))}" :
" else {\n#{Expressions.wrap(@else_body).compile(o)}\n#{idt}}"
if_part + else_part
end
# Compile the IfNode into a ternary operator.
def compile_ternary(o)
if_part = "#{@condition.compile(o)} ? #{@body.compile(o)}"
else_part = @else_body ? @else_body.compile(o) : 'null'
"#{if_part} : #{else_part}"
end
end
end