2014-04-16 14:07:55 -04:00
% DOCKER(1) Docker User Manuals
2014-06-30 22:58:04 -04:00
% Docker Community
% JUNE 2014
2014-04-16 14:07:55 -04:00
# NAME
2014-06-30 22:58:04 -04:00
docker-run - Run a command in a new container
2014-04-16 14:07:55 -04:00
# SYNOPSIS
**docker run**
2014-06-30 22:58:04 -04:00
[**-a**|**--attach**[=*[]*]]
2014-09-13 00:35:59 -04:00
[**--add-host**[=*[]*]]
2015-05-06 23:55:58 -04:00
[**--blkio-weight**[=*[BLKIO-WEIGHT]*]]
2014-06-30 22:58:04 -04:00
[**-c**|**--cpu-shares**[=*0*]]
2014-07-22 22:40:10 -04:00
[**--cap-add**[=*[]*]]
[**--cap-drop**[=*[]*]]
2014-06-30 22:58:04 -04:00
[**--cidfile**[=*CIDFILE*]]
2015-04-08 04:58:59 -04:00
[**--cpu-period**[=*0*]]
move resources from Config to HostConfig
Cgroup resources are host dependent, they should be in hostConfig.
For backward compatibility, we just copy it to hostConfig, and leave it in
Config for now, so there is no regressions, but the right way to use this
throught json is to put it in HostConfig, like:
{
"Hostname": "",
...
"HostConfig": {
"CpuShares": 512,
"Memory": 314572800,
...
}
}
As we will add CpusetMems, CpusetCpus is definitely a better name, but some
users are already using Cpuset in their http APIs, we also make it compatible.
The main idea is keep using Cpuset in Config Struct, and make it has the same
value as CpusetCpus, but not always, some scenarios:
- Users use --cpuset in docker command, it can setup cpuset.cpus and can
get Cpuset field from docker inspect or other http API which will get
config info.
- Users use --cpuset-cpus in docker command, ditto.
- Users use Cpuset field in their http APIs, ditto.
- Users use CpusetCpus field in their http APIs, they won't get Cpuset field
in Config info, because by then, they should already know what happens
to Cpuset.
Signed-off-by: Qiang Huang <h.huangqiang@huawei.com>
2015-03-10 21:31:18 -04:00
[**--cpuset-cpus**[=*CPUSET-CPUS*]]
2015-04-14 21:33:46 -04:00
[**--cpuset-mems**[=*CPUSET-MEMS*]]
2014-06-30 22:58:04 -04:00
[**-d**|**--detach**[=*false*]]
2015-04-20 11:16:47 -04:00
[**--cpu-quota**[=*0*]]
2014-07-22 22:40:10 -04:00
[**--device**[=*[]*]]
2014-06-30 22:58:04 -04:00
[**--dns-search**[=*[]*]]
[**--dns**[=*[]*]]
[**-e**|**--env**[=*[]*]]
[**--entrypoint**[=*ENTRYPOINT*]]
[**--env-file**[=*[]*]]
[**--expose**[=*[]*]]
[**-h**|**--hostname**[=*HOSTNAME*]]
2014-10-15 17:14:12 -04:00
[**--help**]
2014-05-20 23:39:57 -04:00
[**-i**|**--interactive**[=*false*]]
2014-11-27 23:21:55 -05:00
[**--ipc**[=*IPC*]]
2015-02-16 19:36:03 -05:00
[**-l**|**--label**[=*[]*]]
[**--label-file**[=*[]*]]
2014-06-30 22:58:04 -04:00
[**--link**[=*[]*]]
[**--lxc-conf**[=*[]*]]
2015-02-05 19:24:47 -05:00
[**--log-driver**[=*[]*]]
2015-05-21 16:20:25 -04:00
[**--log-opt**[=*[]*]]
2014-06-30 22:58:04 -04:00
[**-m**|**--memory**[=*MEMORY*]]
2015-02-06 09:33:01 -05:00
[**--memory-swap**[=*MEMORY-SWAP*]]
2014-11-27 23:21:55 -05:00
[**--mac-address**[=*MAC-ADDRESS*]]
2014-06-30 22:58:04 -04:00
[**--name**[=*NAME*]]
[**--net**[=*"bridge"*]]
2015-02-26 06:53:55 -05:00
[**--oom-kill-disable**[=*false*]]
2014-06-30 22:58:04 -04:00
[**-P**|**--publish-all**[=*false*]]
[**-p**|**--publish**[=*[]*]]
2014-11-25 15:10:53 -05:00
[**--pid**[=*[]*]]
2015-05-05 18:32:36 -04:00
[**--uts**[=*[]*]]
2014-06-30 22:58:04 -04:00
[**--privileged**[=*false*]]
2015-01-13 16:52:51 -05:00
[**--read-only**[=*false*]]
2014-11-27 23:21:55 -05:00
[**--restart**[=*RESTART*]]
2014-06-30 22:58:04 -04:00
[**--rm**[=*false*]]
2014-11-27 23:21:55 -05:00
[**--security-opt**[=*[]*]]
2014-06-30 22:58:04 -04:00
[**--sig-proxy**[=*true*]]
[**-t**|**--tty**[=*false*]]
[**-u**|**--user**[=*USER*]]
[**-v**|**--volume**[=*[]*]]
[**--volumes-from**[=*[]*]]
[**-w**|**--workdir**[=*WORKDIR*]]
2015-03-16 19:06:47 -04:00
[**--cgroup-parent**[=*CGROUP-PATH*]]
2014-11-27 23:21:55 -05:00
IMAGE [COMMAND] [ARG...]
2014-04-16 14:07:55 -04:00
# DESCRIPTION
Run a process in a new container. **docker run** starts a process with its own
file system, its own networking, and its own isolated process tree. The IMAGE
which starts the process may define defaults related to the process that will be
run in the container, the networking to expose, and more, but **docker run**
gives final control to the operator or administrator who starts the container
from the image. For that reason **docker run** has more options than any other
Docker command.
If the IMAGE is not already loaded then **docker run** will pull the IMAGE, and
all image dependencies, from the repository in the same way running **docker
pull** IMAGE, before it starts the container from that image.
# OPTIONS
2014-11-27 23:21:55 -05:00
**-a**, ** --attach**=[]
Attach to STDIN, STDOUT or STDERR.
2014-04-16 14:07:55 -04:00
2014-11-27 23:21:55 -05:00
In foreground mode (the default when ** -d**
is not specified), **docker run** can start the process in the container
2014-04-17 11:36:58 -04:00
and attach the console to the process’ s standard input, output, and standard
error. It can even pretend to be a TTY (this is what most commandline
executables expect) and pass along signals. The ** -a** option can be set for
each of stdin, stdout, and stderr.
2014-11-27 23:21:55 -05:00
**--add-host**=[]
Add a custom host-to-IP mapping (host:ip)
2014-09-13 00:35:59 -04:00
Add a line to /etc/hosts. The format is hostname:ip. The ** --add-host**
option can be set multiple times.
2015-05-06 23:55:58 -04:00
**--blkio-weight**=0
Block IO weight (relative weight) accepts a weight value between 10 and 1000.
2014-04-17 11:36:58 -04:00
**-c**, ** --cpu-shares**=0
2014-11-27 23:21:55 -05:00
CPU shares (relative weight)
2015-03-03 21:17:46 -05:00
By default, all containers get the same proportion of CPU cycles. This proportion
can be modified by changing the container's CPU share weighting relative
to the weighting of all other running containers.
To modify the proportion from the default of 1024, use the ** -c** or ** --cpu-shares**
flag to set the weighting to 2 or higher.
The proportion will only apply when CPU-intensive processes are running.
When tasks in one container are idle, other containers can use the
left-over CPU time. The actual amount of CPU time will vary depending on
the number of containers running on the system.
For example, consider three containers, one has a cpu-share of 1024 and
two others have a cpu-share setting of 512. When processes in all three
containers attempt to use 100% of CPU, the first container would receive
2015-04-01 05:08:29 -04:00
50% of the total CPU time. If you add a fourth container with a cpu-share
2015-03-03 21:17:46 -05:00
of 1024, the first container only gets 33% of the CPU. The remaining containers
receive 16.5%, 16.5% and 33% of the CPU.
On a multi-core system, the shares of CPU time are distributed over all CPU
cores. Even if a container is limited to less than 100% of CPU time, it can
use 100% of each individual CPU core.
For example, consider a system with more than three cores. If you start one
container ** {C0}** with ** -c=512** running one process, and another container
**{C1}** with ** -c=1024** running two processes, this can result in the following
division of CPU shares:
PID container CPU CPU share
100 {C0} 0 100% of CPU0
101 {C1} 1 100% of CPU1
102 {C1} 2 100% of CPU2
2015-02-18 14:01:55 -05:00
2014-07-22 22:40:10 -04:00
**--cap-add**=[]
Add Linux capabilities
**--cap-drop**=[]
Drop Linux capabilities
2015-03-16 19:06:47 -04:00
**--cgroup-parent**=""
Path to cgroups under which the cgroup for the container will be created. If the path is not absolute, the path is considered to be relative to the cgroups path of the init process. Cgroups will be created if they do not already exist.
2014-07-22 22:40:10 -04:00
**--cidfile**=""
Write the container ID to the file
2014-04-17 11:36:58 -04:00
2015-04-08 04:58:59 -04:00
**--cpu-period**=0
Limit the CPU CFS (Completely Fair Scheduler) period
Limit the container's CPU usage. This flag tell the kernel to restrict the container's CPU usage to the period you specify.
move resources from Config to HostConfig
Cgroup resources are host dependent, they should be in hostConfig.
For backward compatibility, we just copy it to hostConfig, and leave it in
Config for now, so there is no regressions, but the right way to use this
throught json is to put it in HostConfig, like:
{
"Hostname": "",
...
"HostConfig": {
"CpuShares": 512,
"Memory": 314572800,
...
}
}
As we will add CpusetMems, CpusetCpus is definitely a better name, but some
users are already using Cpuset in their http APIs, we also make it compatible.
The main idea is keep using Cpuset in Config Struct, and make it has the same
value as CpusetCpus, but not always, some scenarios:
- Users use --cpuset in docker command, it can setup cpuset.cpus and can
get Cpuset field from docker inspect or other http API which will get
config info.
- Users use --cpuset-cpus in docker command, ditto.
- Users use Cpuset field in their http APIs, ditto.
- Users use CpusetCpus field in their http APIs, they won't get Cpuset field
in Config info, because by then, they should already know what happens
to Cpuset.
Signed-off-by: Qiang Huang <h.huangqiang@huawei.com>
2015-03-10 21:31:18 -04:00
**--cpuset-cpus**=""
2014-06-30 22:58:04 -04:00
CPUs in which to allow execution (0-3, 0,1)
2014-04-17 11:36:58 -04:00
2015-04-14 21:33:46 -04:00
**--cpuset-mems**=""
Memory nodes (MEMs) in which to allow execution (0-3, 0,1). Only effective on NUMA systems.
If you have four memory nodes on your system (0-3), use `--cpuset-mems=0,1`
then processes in your Docker container will only use memory from the first
two memory nodes.
2015-04-20 11:16:47 -04:00
**--cpu-quota**=0
Limit the CPU CFS (Completely Fair Scheduler) quota
Limit the container's CPU usage. By default, containers run with the full
CPU resource. This flag tell the kernel to restrict the container's CPU usage
to the quota you specify.
2014-07-23 16:49:07 -04:00
**-d**, ** --detach**=*true*|*false*
2014-11-27 23:21:55 -05:00
Detached mode: run the container in the background and print the new container ID. The default is *false* .
At any time you can run **docker ps** in
2014-04-16 14:07:55 -04:00
the other shell to view a list of the running containers. You can reattach to a
detached container with **docker attach** . If you choose to run a container in
the detached mode, then you cannot use the ** -rm** option.
2014-05-31 17:44:17 -04:00
When attached in the tty mode, you can detach from a running container without
stopping the process by pressing the keys CTRL-P CTRL-Q.
2014-10-07 23:10:31 -04:00
2014-07-22 22:40:10 -04:00
**--device**=[]
2014-10-07 23:10:31 -04:00
Add a host device to the container (e.g. --device=/dev/sdc:/dev/xvdc:rwm)
2014-05-27 13:56:11 -04:00
2014-06-30 22:58:04 -04:00
**--dns-search**=[]
2014-10-29 05:17:02 -04:00
Set custom DNS search domains (Use --dns-search=. if you don't wish to set the search domain)
2014-04-16 14:07:55 -04:00
2014-11-27 23:21:55 -05:00
**--dns**=[]
Set custom DNS servers
This option can be used to override the DNS
2014-04-17 11:36:58 -04:00
configuration passed to the container. Typically this is necessary when the
2014-06-29 21:31:15 -04:00
host DNS configuration is invalid for the container (e.g., 127.0.0.1). When this
2014-07-23 16:49:07 -04:00
is the case the ** --dns** flags is necessary for every run.
2014-04-16 14:07:55 -04:00
2014-11-27 23:21:55 -05:00
**-e**, ** --env**=[]
Set environment variables
This option allows you to specify arbitrary
2014-04-16 14:07:55 -04:00
environment variables that are available for the process that will be launched
inside of the container.
2014-11-27 23:21:55 -05:00
**--entrypoint**=""
Overwrite the default ENTRYPOINT of the image
2014-04-16 14:07:55 -04:00
2014-04-17 11:36:58 -04:00
This option allows you to overwrite the default entrypoint of the image that
is set in the Dockerfile. The ENTRYPOINT of an image is similar to a COMMAND
because it specifies what executable to run when the container starts, but it is
2014-04-16 14:07:55 -04:00
(purposely) more difficult to override. The ENTRYPOINT gives a container its
default nature or behavior, so that when you set an ENTRYPOINT you can run the
container as if it were that binary, complete with default options, and you can
pass in more options via the COMMAND. But, sometimes an operator may want to run
something else inside the container, so you can override the default ENTRYPOINT
2014-04-17 11:36:58 -04:00
at runtime by using a ** --entrypoint** and a string to specify the new
ENTRYPOINT.
2014-07-23 16:49:07 -04:00
2014-06-30 22:58:04 -04:00
**--env-file**=[]
2014-07-22 22:40:10 -04:00
Read in a line delimited file of environment variables
2014-04-17 11:36:58 -04:00
2014-09-16 21:08:30 -04:00
**--expose**=[]
2014-11-03 13:15:55 -05:00
Expose a port, or a range of ports (e.g. --expose=3300-3310), from the container without publishing it to your host
2014-04-17 11:36:58 -04:00
2014-11-27 23:21:55 -05:00
**-h**, ** --hostname**=""
Container host name
2014-04-17 11:36:58 -04:00
Sets the container host name that is available inside the container.
2014-04-16 14:07:55 -04:00
2014-10-15 17:14:12 -04:00
**--help**
Print usage statement
2014-07-23 16:49:07 -04:00
**-i**, ** --interactive**=*true*|*false*
2014-11-27 23:21:55 -05:00
Keep STDIN open even if not attached. The default is *false* .
2014-04-17 11:36:58 -04:00
When set to true, keep stdin open even if not attached. The default is false.
2014-04-16 14:07:55 -04:00
2014-11-27 23:21:55 -05:00
**--ipc**=""
Default is to create a private IPC namespace (POSIX SysV IPC) for the container
'container:< name | id > ': reuses another container shared memory, semaphores and message queues
'host': use the host shared memory,semaphores and message queues inside the container. Note: the host mode gives the container full access to local shared memory and is therefore considered insecure.
2014-11-10 16:14:17 -05:00
2015-02-16 19:36:03 -05:00
**-l**, ** --label**=[]
2015-03-16 16:28:55 -04:00
Set metadata on the container (e.g., --label com.example.key=value)
2015-02-16 19:36:03 -05:00
**--label-file**=[]
Read in a line delimited file of labels
2014-11-27 23:21:55 -05:00
**--link**=[]
2015-05-07 16:02:14 -04:00
Add link to another container in the form of < name or id > :alias or just < name or id >
in which case the alias will match the name
2014-09-29 06:44:32 -04:00
2014-11-27 23:21:55 -05:00
If the operator
2014-04-17 11:36:58 -04:00
uses ** --link** when starting the new client container, then the client
container can access the exposed port via a private networking interface. Docker
will set some environment variables in the client container to help indicate
which interface and port to use.
2014-04-16 14:07:55 -04:00
2014-06-30 22:58:04 -04:00
**--lxc-conf**=[]
(lxc exec-driver only) Add custom lxc options --lxc-conf="lxc.cgroup.cpuset.cpus = 0,1"
2014-04-16 14:07:55 -04:00
2015-05-29 17:00:46 -04:00
**--log-driver**="|*json-file*|*syslog*|*journald*|*gelf*|*none*"
2015-02-05 19:24:47 -05:00
Logging driver for container. Default is defined by daemon `--log-driver` flag.
**Warning** : `docker logs` command works only for `json-file` logging driver.
2015-05-21 16:20:25 -04:00
**--log-opt**=[]
Logging driver specific options.
2014-11-27 23:21:55 -05:00
**-m**, ** --memory**=""
Memory limit (format: < number > < optional unit > , where unit = b, k, m or g)
2014-06-30 22:58:04 -04:00
Allows you to constrain the memory available to a container. If the host
2015-02-04 20:12:56 -05:00
supports swap memory, then the ** -m** memory setting can be larger than physical
RAM. If a limit of 0 is specified (not using ** -m**), the container's memory is
not limited. The actual limit may be rounded up to a multiple of the operating
system's page size (the value would be very large, that's millions of trillions).
2014-04-16 14:07:55 -04:00
2015-01-19 19:16:36 -05:00
**--memory-swap**=""
2015-02-04 20:12:56 -05:00
Total memory limit (memory + swap)
2015-01-19 19:16:36 -05:00
2015-02-04 20:12:56 -05:00
Set `-1` to disable swap (format: < number >< optional unit > , where unit = b, k, m or g).
2015-04-01 05:08:29 -04:00
This value should always larger than ** -m**, so you should always use this with ** -m**.
2015-01-19 19:16:36 -05:00
2014-11-27 23:21:55 -05:00
**--mac-address**=""
Container MAC address (e.g. 92:d0:c6:0a:29:33)
Remember that the MAC address in an Ethernet network must be unique.
The IPv6 link-local address will be based on the device's MAC address
according to RFC4862.
**--name**=""
Assign a name to the container
The operator can identify a container in three ways:
2014-04-16 14:07:55 -04:00
UUID long identifier (“f78375b1c487e03c9438c729345e54db9d20cfa2ac1fc3494b6eb60872e74778”)
UUID short identifier (“f78375b1c487”)
Name (“jonah”)
2014-11-27 23:21:55 -05:00
The UUID identifiers come from the Docker daemon, and if a name is not assigned
2014-04-16 14:07:55 -04:00
to the container with ** --name** then the daemon will also generate a random
string name. The name is useful when defining links (see ** --link**) (or any
2014-04-17 11:36:58 -04:00
other place you need to identify a container). This works for both background
and foreground Docker containers.
2014-04-16 14:07:55 -04:00
2014-06-30 22:58:04 -04:00
**--net**="bridge"
Set the Network mode for the container
2014-11-27 23:21:55 -05:00
'bridge': creates a new network stack for the container on the docker bridge
'none': no networking for this container
'container:< name | id > ': reuses another container network stack
'host': use the host network stack inside the container. Note: the host mode gives the container full access to local system services such as D-bus and is therefore considered insecure.
2014-10-03 17:02:17 -04:00
2015-02-26 06:53:55 -05:00
**--oom-kill-disable**=*true*|*false*
Whether to disable OOM Killer for the container or not.
2014-07-23 16:49:07 -04:00
**-P**, ** --publish-all**=*true*|*false*
2015-01-06 02:01:10 -05:00
Publish all exposed ports to random ports on the host interfaces. The default is *false* .
2014-11-27 23:21:55 -05:00
2014-06-30 22:58:04 -04:00
When set to true publish all exposed ports to the host interfaces. The
default is false. If the operator uses -P (or -p) then Docker will make the
exposed port accessible on the host and the ports will be available to any
2015-01-21 07:40:59 -05:00
client that can reach the host. When using -P, Docker will bind any exposed
port to a random port on the host within an *ephemeral port range* defined by
`/proc/sys/net/ipv4/ip_local_port_range` . To find the mapping between the host
ports and the exposed ports, use `docker port` .
2014-06-30 22:58:04 -04:00
2014-07-23 16:49:07 -04:00
**-p**, ** --publish**=[]
2014-11-03 13:15:55 -05:00
Publish a container's port, or range of ports, to the host.
2014-11-27 23:21:55 -05:00
format: ip:hostPort:containerPort | ip::containerPort | hostPort:containerPort | containerPort
2014-11-03 13:15:55 -05:00
Both hostPort and containerPort can be specified as a range of ports.
When specifying ranges for both, the number of container ports in the range must match the number of host ports in the range. (e.g., `-p 1234-1236:1234-1236/tcp` )
2014-11-27 23:21:55 -05:00
(use 'docker port' to see the actual mapping)
2014-04-16 14:07:55 -04:00
2014-11-25 15:10:53 -05:00
**--pid**=host
Set the PID mode for the container
**host** : use the host's PID namespace inside the container.
Note: the host mode gives the container full access to local PID and is therefore considered insecure.
2015-05-05 18:32:36 -04:00
**--uts**=host
Set the UTS mode for the container
**host** : use the host's UTS namespace inside the container.
Note: the host mode gives the container access to changing the host's hostname and is therefore considered insecure.
2014-04-17 11:36:58 -04:00
**--privileged**=*true*|*false*
2014-11-27 23:21:55 -05:00
Give extended privileges to this container. The default is *false* .
By default, Docker containers are
2014-04-16 14:07:55 -04:00
“unprivileged” (=false) and cannot, for example, run a Docker daemon inside the
2014-04-17 11:36:58 -04:00
Docker container. This is because by default a container is not allowed to
access any devices. A “privileged” container is given access to all devices.
2014-04-16 14:07:55 -04:00
2014-11-27 23:21:55 -05:00
When the operator executes **docker run --privileged** , Docker will enable access
2014-04-17 11:36:58 -04:00
to all devices on the host as well as set some configuration in AppArmor to
allow the container nearly all the same access to the host as processes running
2014-04-16 14:07:55 -04:00
outside of a container on the host.
2015-01-13 16:52:51 -05:00
**--read-only**=*true*|*false*
2015-03-18 18:08:40 -04:00
Mount the container's root filesystem as read only.
2015-01-13 16:52:51 -05:00
2015-03-18 18:08:40 -04:00
By default a container will have its root filesystem writable allowing processes
2015-01-13 16:52:51 -05:00
to write files anywhere. By specifying the `--read-only` flag the container will have
its root filesystem mounted as read only prohibiting any writes.
2015-03-09 22:09:12 -04:00
**--restart**="no"
2015-03-18 18:08:40 -04:00
Restart policy to apply when a container exits (no, on-failure[:max-retry], always)
2015-03-10 17:10:28 -04:00
2014-04-17 11:36:58 -04:00
**--rm**=*true*|*false*
2014-07-22 22:40:10 -04:00
Automatically remove the container when it exits (incompatible with -d). The default is *false* .
2014-04-16 14:07:55 -04:00
2014-11-27 23:21:55 -05:00
**--security-opt**=[]
Security Options
"label:user:USER" : Set the label user for the container
"label:role:ROLE" : Set the label role for the container
"label:type:TYPE" : Set the label type for the container
"label:level:LEVEL" : Set the label level for the container
"label:disable" : Turn off label confinement for the container
2014-04-17 11:36:58 -04:00
**--sig-proxy**=*true*|*false*
2014-11-13 04:40:45 -05:00
Proxy received signals to the process (non-TTY mode only). SIGCHLD, SIGSTOP, and SIGKILL are not proxied. The default is *true* .
2014-04-16 14:07:55 -04:00
2014-07-22 22:40:10 -04:00
**-t**, ** --tty**=*true*|*false*
2014-11-27 23:21:55 -05:00
Allocate a pseudo-TTY. The default is *false* .
2014-04-17 11:36:58 -04:00
When set to true Docker can allocate a pseudo-tty and attach to the standard
2014-04-16 14:07:55 -04:00
input of any container. This can be used, for example, to run a throwaway
interactive shell. The default is value is false.
2014-12-05 19:50:56 -05:00
The ** -t** option is incompatible with a redirection of the docker client
standard input.
2014-07-22 22:40:10 -04:00
**-u**, ** --user**=""
2015-03-23 23:47:04 -04:00
Sets the username or UID used and optionally the groupname or GID for the specified command.
The followings examples are all valid:
--user [user | user:group | uid | uid:gid | user:gid | uid:group ]
Without this argument the command will be run as root in the container.
2014-04-16 14:07:55 -04:00
2014-11-27 23:21:55 -05:00
**-v**, ** --volume**=[]
Bind mount a volume (e.g., from the host: -v /host:/container, from Docker: -v /container)
2014-04-16 14:07:55 -04:00
2014-11-27 23:21:55 -05:00
The ** -v** option can be used one or
2014-04-17 11:36:58 -04:00
more times to add one or more mounts to a container. These mounts can then be
2014-10-29 05:17:02 -04:00
used in other containers using the ** --volumes-from** option.
2014-04-16 14:07:55 -04:00
2014-11-27 23:21:55 -05:00
The volume may be optionally suffixed with :ro or :rw to mount the volumes in
2014-05-16 14:31:43 -04:00
read-only or read-write mode, respectively. By default, the volumes are mounted
read-write. See examples.
2014-04-16 14:07:55 -04:00
2015-05-27 18:11:05 -04:00
Labeling systems like SELinux require that proper labels are placed on volume
content mounted into a container. Without a label, the security system might
prevent the processes running inside the container from using the content. By
default, Docker does not change the labels set by the OS.
To change a label in the container context, you can add either of two suffixes
`:z` or `:Z` to the volume mount. These suffixes tell Docker to relabel file
objects on the shared volumes. The `z` option tells Docker that two containers
share the volume content. As a result, Docker labels the content with a shared
content label. Shared volume labels allow all containers to read/write content.
The `Z` option tells Docker to label the content with a private unshared label.
Only the current container can use a private volume.
2015-05-11 18:28:36 -04:00
Note: Multiple Volume options can be added separated by a ","
2014-11-27 23:21:55 -05:00
**--volumes-from**=[]
Mount volumes from the specified container(s)
2015-03-06 09:36:23 -05:00
Mounts already mounted volumes from a source container onto another
container. You must supply the source's container-id. To share
a volume, use the ** --volumes-from** option when running
the target container. You can share volumes even if the source container
is not running.
By default, Docker mounts the volumes in the same mode (read-write or
read-only) as it is mounted in the source container. Optionally, you
can change this by suffixing the container-id with either the `:ro` or
`:rw ` keyword.
If the location of the volume from the source container overlaps with
data residing on a target container, then the volume hides
that data on the target.
2014-04-16 14:07:55 -04:00
2014-11-27 23:21:55 -05:00
**-w**, ** --workdir**=""
Working directory inside the container
2014-04-16 14:07:55 -04:00
2014-11-27 23:21:55 -05:00
The default working directory for
2014-04-17 11:36:58 -04:00
running binaries within a container is the root directory (/). The developer can
set a different default with the Dockerfile WORKDIR instruction. The operator
can override the working directory by using the ** -w** option.
2014-04-16 14:07:55 -04:00
# EXAMPLES
## Exposing log messages from the container to the host's log
If you want messages that are logged in your container to show up in the host's
2014-05-27 13:56:11 -04:00
syslog/journal then you should bind mount the /dev/log directory as follows.
2014-04-16 14:07:55 -04:00
# docker run -v /dev/log:/dev/log -i -t fedora /bin/bash
From inside the container you can test this by sending a message to the log.
(bash)# logger "Hello from my container"
Then exit and check the journal.
# exit
# journalctl -b | grep Hello
This should list the message sent to logger.
## Attaching to one or more from STDIN, STDOUT, STDERR
If you do not specify -a then Docker will attach everything (stdin,stdout,stderr)
. You can specify to which of the three standard streams (stdin, stdout, stderr)
you’ d like to connect instead, as in:
# docker run -a stdin -a stdout -i -t fedora /bin/bash
2014-11-10 16:14:17 -05:00
## Sharing IPC between containers
2015-04-11 13:42:17 -04:00
Using shm_server.c available here: https://www.cs.cf.ac.uk/Dave/C/node27.html
2014-11-10 16:14:17 -05:00
Testing `--ipc=host` mode:
Host shows a shared memory segment with 7 pids attached, happens to be from httpd:
```
$ sudo ipcs -m
------ Shared Memory Segments --------
key shmid owner perms bytes nattch status
0x01128e25 0 root 600 1000 7
```
Now run a regular container, and it correctly does NOT see the shared memory segment from the host:
```
2015-03-26 14:12:37 -04:00
$ docker run -it shm ipcs -m
2014-11-10 16:14:17 -05:00
------ Shared Memory Segments --------
key shmid owner perms bytes nattch status
```
Run a container with the new `--ipc=host` option, and it now sees the shared memory segment from the host httpd:
```
2015-03-26 14:12:37 -04:00
$ docker run -it --ipc=host shm ipcs -m
2014-11-10 16:14:17 -05:00
------ Shared Memory Segments --------
key shmid owner perms bytes nattch status
0x01128e25 0 root 600 1000 7
```
Testing `--ipc=container:CONTAINERID` mode:
Start a container with a program to create a shared memory segment:
```
2015-03-26 14:12:37 -04:00
$ docker run -it shm bash
2014-11-10 16:14:17 -05:00
$ sudo shm/shm_server &
$ sudo ipcs -m
------ Shared Memory Segments --------
key shmid owner perms bytes nattch status
0x0000162e 0 root 666 27 1
```
Create a 2nd container correctly shows no shared memory segment from 1st container:
```
2015-03-26 14:12:37 -04:00
$ docker run shm ipcs -m
2014-11-10 16:14:17 -05:00
------ Shared Memory Segments --------
key shmid owner perms bytes nattch status
```
Create a 3rd container using the new --ipc=container:CONTAINERID option, now it shows the shared memory segment from the first:
```
2015-03-26 14:12:37 -04:00
$ docker run -it --ipc=container:ed735b2264ac shm ipcs -m
2014-11-10 16:14:17 -05:00
$ sudo ipcs -m
------ Shared Memory Segments --------
key shmid owner perms bytes nattch status
0x0000162e 0 root 666 27 1
```
2014-04-16 14:07:55 -04:00
## Linking Containers
The link feature allows multiple containers to communicate with each other. For
2014-04-17 11:36:58 -04:00
example, a container whose Dockerfile has exposed port 80 can be run and named
as follows:
2014-04-16 14:07:55 -04:00
# docker run --name=link-test -d -i -t fedora/httpd
2014-04-17 11:36:58 -04:00
A second container, in this case called linker, can communicate with the httpd
container, named link-test, by running with the ** --link=< name > :< alias > **
2014-04-16 14:07:55 -04:00
# docker run -t -i --link=link-test:lt --name=linker fedora /bin/bash
Now the container linker is linked to container link-test with the alias lt.
Running the **env** command in the linker container shows environment variables
with the LT (alias) context (**LT_**)
# env
HOSTNAME=668231cb0978
TERM=xterm
LT_PORT_80_TCP=tcp://172.17.0.3:80
LT_PORT_80_TCP_PORT=80
LT_PORT_80_TCP_PROTO=tcp
LT_PORT=tcp://172.17.0.3:80
PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
PWD=/
LT_NAME=/linker/lt
SHLVL=1
HOME=/
LT_PORT_80_TCP_ADDR=172.17.0.3
_=/usr/bin/env
2014-04-17 11:36:58 -04:00
When linking two containers Docker will use the exposed ports of the container
to create a secure tunnel for the parent to access.
2014-04-16 14:07:55 -04:00
## Mapping Ports for External Usage
The exposed port of an application can be mapped to a host port using the ** -p**
2014-10-03 11:43:22 -04:00
flag. For example, a httpd port 80 can be mapped to the host port 8080 using the
2014-04-17 11:36:58 -04:00
following:
2014-04-16 14:07:55 -04:00
# docker run -p 8080:80 -d -i -t fedora/httpd
## Creating and Mounting a Data Volume Container
Many applications require the sharing of persistent data across several
containers. Docker allows you to create a Data Volume Container that other
containers can mount from. For example, create a named container that contains
directories /var/volume1 and /tmp/volume2. The image will need to contain these
directories so a couple of RUN mkdir instructions might be required for you
fedora-data image:
# docker run --name=data -v /var/volume1 -v /tmp/volume2 -i -t fedora-data true
# docker run --volumes-from=data --name=fedora-container1 -i -t fedora bash
2014-05-21 09:35:22 -04:00
Multiple --volumes-from parameters will bring together multiple data volumes from
2014-04-16 14:07:55 -04:00
multiple containers. And it's possible to mount the volumes that came from the
2014-07-10 00:14:06 -04:00
DATA container in yet another container via the fedora-container1 intermediary
2014-04-16 14:07:55 -04:00
container, allowing to abstract the actual data source from users of that data:
# docker run --volumes-from=fedora-container1 --name=fedora-container2 -i -t fedora bash
## Mounting External Volumes
2014-04-17 11:36:58 -04:00
To mount a host directory as a container volume, specify the absolute path to
the directory and the absolute path for the container directory separated by a
colon:
2014-04-16 14:07:55 -04:00
# docker run -v /var/db:/data1 -i -t fedora bash
When using SELinux, be aware that the host has no knowledge of container SELinux
policy. Therefore, in the above example, if SELinux policy is enforced, the
`/var/db` directory is not writable to the container. A "Permission Denied"
message will occur and an avc: message in the host's syslog.
To work around this, at time of writing this man page, the following command
needs to be run in order for the proper SELinux policy type label to be attached
to the host directory:
# chcon -Rt svirt_sandbox_file_t /var/db
Now, writing to the /data1 volume in the container will be allowed and the
changes will also be reflected on the host in /var/db.
2014-09-29 06:44:32 -04:00
## Using alternative security labeling
2014-10-03 11:43:22 -04:00
You can override the default labeling scheme for each container by specifying
the `--security-opt` flag. For example, you can specify the MCS/MLS level, a
requirement for MLS systems. Specifying the level in the following command
allows you to share the same content between containers.
2014-09-29 06:44:32 -04:00
# docker run --security-opt label:level:s0:c100,c200 -i -t fedora bash
2014-10-03 11:43:22 -04:00
An MLS example might be:
# docker run --security-opt label:level:TopSecret -i -t rhel7 bash
To disable the security labeling for this container versus running with the
`--permissive` flag, use the following command:
2014-09-29 06:44:32 -04:00
# docker run --security-opt label:disable -i -t fedora bash
2014-10-03 11:43:22 -04:00
If you want a tighter security policy on the processes within a container,
you can specify an alternate type for the container. You could run a container
that is only allowed to listen on Apache ports by executing the following
command:
# docker run --security-opt label:type:svirt_apache_t -i -t centos bash
2014-09-29 06:44:32 -04:00
2014-10-03 11:43:22 -04:00
Note:
2014-09-29 06:44:32 -04:00
2014-10-03 11:43:22 -04:00
You would have to write policy defining a `svirt_apache_t` type.
2014-09-29 06:44:32 -04:00
2014-04-16 14:07:55 -04:00
# HISTORY
2014-04-17 11:36:58 -04:00
April 2014, Originally compiled by William Henry (whenry at redhat dot com)
2014-07-01 20:30:25 -04:00
based on docker.com source material and internal work.
2014-07-02 21:07:42 -04:00
June 2014, updated by Sven Dowideit < SvenDowideit @ home . org . au >
2014-07-22 22:40:10 -04:00
July 2014, updated by Sven Dowideit < SvenDowideit @ home . org . au >